

Minerals yearbook: Metals and minerals (except fuels) 1957. Year 1957, Volume I 1958

Bureau of Mines

Washington, D. C.: Bureau of Mines : United States Government Printing Office, 1958

https://digital.library.wisc.edu/1711.dl/PPYAWXJZXOESO8L

http://rightsstatements.org/vocab/NoC-US/1.0/

As a work of the United States government, this material is in the public domain.

For information on re-use see: http://digital.library.wisc.edu/1711.dl/Copyright

The libraries provide public access to a wide range of material, including online exhibits, digitized collections, archival finding aids, our catalog, online articles, and a growing range of materials in many media.

When possible, we provide rights information in catalog records, finding aids, and other metadata that accompanies collections or items. However, it is always the user's obligation to evaluate copyright and rights issues in light of their own use.

MINERALS YEARBOOK

1 9 5 7 Volume I of Three Volumes

METALS AND MINERALS (EXCEPT FUELS)

Prepared by the staff of the BUREAU OF MINES
DIVISION OF MINERALS
Charles W. Merrill, Chief
Frank D. Lamb, Assistant Chief
Paul Yopes, Assistant to the Chief

UNITED STATES DEPARTMENT OF THE INTERIOR FRED A. SEATON, Secretary

BUREAU OF MINES

MARLING J. ANKENY, Director

OFFICE OF THE DIRECTOR:

THOMAS H. MILLER, Deputy Director
PAUL ZINNER, Assistant Director for Programs
JAMES WESTFIELD, Assistant Director for Health and Safety
C. W. SEIBEL, Assistant Director for Helium Activities
PAUL T. ALLSMAN, Chief Mining Engineer
EARL T. HAYES, Acting Chief Metallurgist
CARL C. ANDERSON, Chief Petroleum Engineer
LOUIS L. NEWMAN, Acting Chief Coal Technologist
PAUL W. McGANN, Chief Economist
REXFORD C. PARMELEE, Chief Statistician
ALLAN SHERMAN, Chief, Office of Mineral Reports

DIVISIONS:

CHARLES W. MERRILL, Chief, Division of Minerals T. REED SCOLLON, Chief, Division of Bituminous Coal JOSEPH A. CORGAN, Chief, Division of Anthracite R. A. CATTELL, Chief, Division of Petroleum ELMER W. PEHRSON, Chief, Division of Foreign Activities W. E. RICE, Chief, Division of Administration

REGIONAL OFFICES:

MARK L. WRIGHT, Acting Regional Director, Region I, Albany, Oreg.
R. B. MAURER, Acting Regional Director, Region II, San Francisco, Calif.
JOHN H. EAST, JR., Regional Director, Region III, Denver, Colo.
HAROLD M. SMITH, Regional Director, Region IV, Burtlesville, Okla.
EARLE P. SHOUB, Acting Regional Director, Region V, Pittsburgh, Pa.

UNITED STATES
GOVERNMENT PRINTING OFFICE
WASHINGTON: 1958

Engénering ML .7UN3

1091466

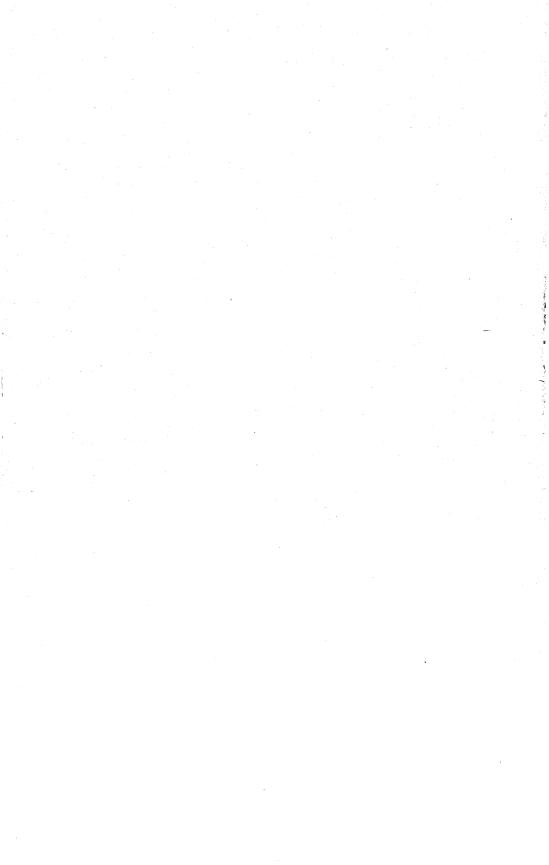
FOREWORD

MINERALS YEARBOOK, 1957, published in three volumes, provides a record of performance of the Nation's mineral industries during the year, with enough background information to interpret the year's

developments.

1957

Volume I includes chapters on metal and nonmetal mineral commodities, with the exception of the mineral fuels. Included also are a chapter reviewing these mineral industries, a statistical summary, and chapters on mining technology, metallurgical technology, and employment and injuries. An additional chapter in the 1957 volume I compares Bureau of Mines mineral-commodity production data for 1954 with those presented in the 1954 Census of Mineral Industries reports published by the United States Department of Commerce.


Volume II includes chapters on each mineral fuel, an employment and injuries presentation, and a mineral-fuels review chapter that summarizes developments in the fuel industries and incorporates all data previously published in the Statistical Summary chapter. Also now included in this review chapter are data on energy production and uses that have previously been included in the Bituminous Coal chapter.

Volume III is comprised of chapters covering each of the 48 States, plus chapters on the Territory of Alaska, the Territory of Hawaii and island possessions in the Pacific Ocean, and the Commonwealth of Puerto Rico and island possessions in the Caribbean Sea, including the Canal Zone. Volume III also has a Statistical Summary chapter, identical with that in volume I, and another presenting employment

and injury data.

The data in the Minerals Yearbook are based largely upon information supplied by mineral producers, processors, and users, and acknowledgment is made of this indispensable cooperation given by industry. Information obtained from individuals by means of confidential surveys has been grouped to provide statistical aggregates. Data on individual producers are presented only if available from published or other nonconfidential sources, or when permission of the individuals concerned has been granted.

MARLING J. ANKENY, Director.

ACKNOWLEDGMENTS

The Bureau of Mines, through cooperative agreements with State and Territorial agencies, has been assisted in collecting domestic mine-production data and the supporting information appearing in this volume of the Minerals Yearbook. For this assistance acknowledgment is made to the following cooperating State and Territorial organizations:

Alabama: Geological Survey of Alabama.

Alaska: Alaska Department of Mines.
Arkansas: Geological and Conservation Commission.
California: Division of Mines.

Delaware: Delaware Geological Survey. Florida: Florida Geological Survey. Georgia: Geological Survey of Georgia. Idaho: Bureau of Mines and Geology. Illinois: Illinois State Geological Survey.

Indiana: Indiana Department of Conservation.

Iowa: Iowa Geological Survey.

Kansas: State Geological Survey of Kansas. Kentucky: Kentucky Geological Survey. Louisiana: Louisiana Geological Survey.

Maine: Geological Survey of Maine.

Maryland: Department of Geology, Mines, and Water Resources.

Michigan: Michigan Department of Conservation.

Mississippi: Mississippi Geological Survey.

Missouri: Division of Geological Survey and Water Resources.

Missouri: Division of Geological Survey and Water Resources.

Montana: Montana Bureau of Mines and Geology.

Nevada: Nevada Bureau of Mines.

New Hampshire: New Hampshire State Planning and Development Commission.

New York: New York State Science Service.

New York: Combines: Coological Suprement Compliance.

North Carolina: Geological Survey of North Carolina. North Dakota: North Dakota Geological Survey.

Oklahoma: Oklahoma Geological Survey.

Oregon: State Department of Geology and Mineral Industries.
Pennsylvania: Bureau of Topographic and Geological Survey.
Puerto Rico: Mineralogy and Geology Section, Economic Development Admin-

South Carolina: Geological Survey of South Carolina.

South Dakota: State Geological Survey.

Tennessee: Tennessee Division of Geology.

Texas: Bureau of Economic Geology, The University of Texas.

Utah: Utah Geological and Mineralogical Survey.

Virginia: Division of Mineral Resources.

Washington: Division of Mines and Geology.
West Virginia: West Virginia Geological and Economic Survey.

Wisconsin: Wisconsin Geological Survey.
Wyoming: Geological Survey of Wyoming.

Except for the four review chapters, this volume was prepared by the staff of the Division of Minerals. The following persons supervised preparation of the various chapters: Richard H. Mote, chief, Branch of Base Metals; Henry G. Iverson, chief, Branch of Ferrous Metals and Ferroalloys; Frank J. Cservenyak, chief, Branch

of Light Metals; Charles T. Baroch, chief, Branch of Rare and Precious Metals; G. W. Josephson, chief, Branch of Construction and Chemical Materials; and W. F. Dietrich, chief, Branch of Ceramic and Fertilizer Materials. Preparation of this volume was supervised and the chapters were coordinated with those in volume III by Paul Yopes, assistant to the chief, Division of Minerals.

The manuscripts upon which this volume is based have been reviewed to insure statistical consistency between the tables, figures, and text, between this volume and volume III and between this volume and those for former years, by a staff directly supervised by Kathleen J. D'Amico, who was assisted by Julia Muscal, Hope R. Anderson, Helen L. Gealy, Ruby J. Phillips, Helen E. Tice, Anita

C. Going, and Anne C. Rogers.

Minerals Yearbook compilations are based largely on data provided by the mineral industries. Acknowledgment is made of the willing contribution both by companies and individuals of these essential data.

Charles W. Merrill, Chief, Division of Minerals.

CONTENTS

Foreword, by Marling J. Ankeny
Acknowledgments, by Charles W. Merrill
Foreword, by Marling J. Ankeny. Acknowledgments, by Charles W. Merrill. Review of the mineral industries (metals and nonmetals except fuels), by William A. Vogely.
Review of metallurgical technology by Taylor
Review of metallurgical technology, by Earl T. Hayes Review of mining technology, by Paul T. Allsman, James E. Hill, and Walter E. Lewis
Walter E. Lewis
Statistical summary of mineral production, by Kathleen J. D'Amico
Mineral production (comparison of D
Mineral production (comparison of Bureau of Mines and Bureau of Census
1954 data), by Robert E. Herman Abrasive materials, by Henry P. Chandler and Gertrude E. Tucker Aluminum, by R. August Heindl, Arden C. Sullivan, and Mary E. H.
Aluminum by R August Heindl Ander C C 11:
Aluminum, by R. August Heindl, Arden C. Sullivan, and Mary E. Trought
Asbestos, by D. O. Kennedy and Annie L. Mattla. Barite, by Albert E. Schreek and Lorse M. Wattla.
Ballyite by Richard C. Wilmot Ander C. C. 11.
Barite, by Albert E. Schreck and James M. Foley Bauxite, by Richard C. Wilmot, Arden C. Sullivan, and Mary E. Trought Beryllium, by Donald E. Eilertsen
Beryllium, by Donald E. Eilertsen
Boron, by Henry E. Stipp and Annie L. Mattille
Bromine, by Henry E. Stipp and Annie L. Mattila
Cadmium, by Arnold M. Lansche Calcium and calcium compounds, by C. Meade Patterson and Annie L. Mattila
L. Mattila Annie
Cement, by D. O. Kennedy and Betty M. Moore—Chromium, by Wilmer McInnis and Hilda V. Heidrich—Clays by Brooke I. Cypeallys and Hilda V. Heidrich—
Clays, by Brooke L. Gunsallus and Betty Ann Brett
Copper, by A. D. McMahon and Gertrude N. Greenspoon
Diatomite, by L. M. Otis and James M. Foley
E. Tucker E. Tucker
Ferroallovs by H Austin Tuelton and Hilds V. II : 1 : 1
Ferroalloys, by H. Austin Tucker and Hilda V. Heidrich
Fluorspar and cryolite, by Robert B. McDougal and Louise C. Roberts
Gem stones, by John W. Hartwell and Betty Ann Brett
Gold, by J. P. Ryan and Kathleen M. McBreen
Graphite, by Donald R. Irving and Betty Ann Brett
Gypsum, by Leonard P. Larson and Nan C. Jensen
odine, by Henry E. Stipp and James M. Foley
ron and steel, by James C. O. Harris and J. Kay Myers ron and steel scrap, by James E. Larkin
ron and steel screp, by James C. O. Harris and J. Kay Myers
ron and steel scrap, by James E. Larkin
venite and related minutes and Betty Ann Brett
ewel bearings, by Henry P. Chandler and Betty Ann Brett
ead, by O. M. Bishop and Edith E. den Hartog ead and zinc pigments and zinc salts, by Arnold M. Lansche and Esther B. Miller
ead and zinc pigments and zinc salts, by Arnold M. Lansche and Esther
B. Miller
B. Millerime, by C. Meade Patterson and James M. Foleyithium, by Albert E. Schrock
Magnesium, by H. B. Comstock

	P
Magnesium compounds, by H. B. Comstock and Jeannette I. Baker	7
	. 7
A F T W Donnington and Gertriide N Greensboom	8
Mica, by Milford L. Skow and Gertrude E. Tucker	8
Molybdenum, by Wilmer McInnis and Mary J. Burke	-8
Molybdenum, by Willier Wellings and Waly 5. Burketter	8
Nickel, by Hubert W. Davis	8
Nitrogen compounds, by E. Robert Ruhlman	g
Perlite, by L. M. Otis and James M. Foley Phosphate rock, by E. Robert Ruhlman and Gertrude E. Tucker Phosphate rock, by E. Robert Ruhlman and Gertrude E. Tucker	9
Phosphate rock, by E. Robert Ruhlman and Gertrude E. McBreen	9
Distinum anoun motals by I P RVXII XIII NAUHECH M. MUDICUL	ç
	ç
Potash, by E. Robert Rumman and Gerbrude E. Ludder-Pumice, by L. M. Otis and James M. Foley	
Quartz crystal (electronic grade), by Waldemar F. Dietrich and Gertrude	
	9
N.14 L. D. T. MooMillon and Annie I. Waltilla	9
and analysis by Wallace W. Key and Dorolly 1. Duupp	ç
N James motols - nonformous DV Archie J. WCDefilliu	10
	10
Silver, by J. 1. Ityan and Internated by Wallace W. Key	10
Slag—iron-blast-furnace, by Wallace W. KeySlate, by D. O. Kennedy and Nan C. JensenSlate, by D. O. Kennedy and Nan C. Jensen	10
Sodium and sodium compounds, by Robert T. MacMillan and Annie L.	
	1
MattilaStone, by Wallace W. Key and Nan C. Jensen	- 1
Strontium, by Albert E. Schreck and Anne M. Quinn	1
Strontium, by Albert E. Schreck and Annie L. MattilaSulfur and pyrites, by Leonard P. Larson and Annie L. Mattila	1
Tale, soapstone, and pyrophyllite, by Donald R. Irving and Betty Ann	
Tale, soapstone, and pyrophymie, by Donald It. IIving and Besty	1
Brett	ī
Thorium, by James Paone	1
Thorium, by James Faone Tin, by J. W. Pennington and John B. Umhau	ī
	î
Tungsten, by R. W. Holliday and Mary J. Burke	î
	1
Translium by Dhillin M. Rusch and Kathleen W. WUNUW.	1
Vormiculity by I. M Otis and Nan C. Jensen	1
William by Dobort T MacMillan	1
Tine by O M Rishon and Esther B. Miller	
Zirconium and hafnium, by F. W. Wessel. Barton, Donald E. Eilertsen, Minor metals, by C. T. Baroch, William R. Barton, Donald E. Eilertsen,	1
Minor metals, by C. T. Baroch, William R. Barton, Donald E. Eilertsen,	_
Total T Ticker Iemes Paone and H. Allstill Lucker	1
Minor nonmetals, by D. U. Kennedy, Albert Schleck, H. E. Supp, and	_
Inmes M Foley	1
Index	1

Review of the Mineral Industries 1

(Metals and Nonmetals Except Fuels)

By William A. Vogely 2

	Page		Page
Nondefense minerals program	2	Prices and costs	30
Defense mobilization	5	Income	32
Domestic production		Investment	33
Net supply		Transportation	35
Consumption		Foreign trade	
Stocks		World review	38
Labor and productivity	26		

CONSUMPTION of nonfuel minerals dropped sharply in 1957; stocks increased substantially; production remained stable for the year as a whole, but dropped during the last quarter. This was the pattern of reaction of the nonfuel-minerals industry to the recession in general business activity that began at midyear.

Domestic production of metals and nonmetals (except fuels) increased slightly in 1957. Nonferrous-metal production, reacting to decreased consumption, dropped below 1956. Toward the end of

1957 the rate of production of all groups had declined.

The most significant aspect was the accumulation of large physical stocks at the end of 1957. Stability in production was achieved in the face of declining consumption only by accumulation of stocks. As the year closed, these stocks were a disturbing factor overhanging the mineral markets.

The value of nonfuel mineral production was less than in 1956 because of the declines in metal prices. Prices of cost items and the indexes of relative labor costs per dollar of recoverable metals for iron ore, lead-zinc ore, and copper-ore mining were higher than in 1956.

Imports increased their share of the mineral markets.

The nondefense mineral programs supported domestic mining of asbestos, columbium-tantalum, Acid-grade fluorspar, and tungsten during 1957, and there was much policy discussion of the Administration's Long-Range Minerals Program. This program called for exploration assistance to all minerals, import tax assistance for lead and zinc, and special assistance to the domestic producers of beryl, columbium-tantalum, chromite, and asbestos. The proposals on lead and zinc led to an application for escape-clause relief under the Trade Agreements Act after the Congress took no action. The

¹ Some fuels are covered in this chapter but only where specifically indicated. In general, this occurs where mining-industry data were not available for both nonfuels and fuels components.

3 Assistant chief economist.

Defense Mobilization activities in minerals continued approximately

as in other years.

The world mineral markets reacted similarly to those in the United World metal-mining production was higher than States during 1957. in 1956 but dropped sharply in the last quarter of 1957. Freight rates were down to normal before the closing of the Suez Canal; world prices of minerals dropped slightly throughout the year.

NONDEFENSE MINERALS PROGRAM

Public Law 733.—Purchases under the Domestic Tungsten, Asbestos, Fluorspar, and Columbium-Tantalum Production and Purchase Act of 1956 were curtailed sharply during 1957. The Administration requested \$30 million for this program, but the Congress appropriated only \$6.7 million, with the express provision that none of the money be used for tungsten.³ Purchases under this act to December 31, 1957, are presented in table 1.

TABLE 1.—Domestic Tungsten, Asbestos, Fluorspar, and Columbium-Tantalum Production and Purchase Act of 1956 1

Commodity	Total limitation	Interim limitation (Dec. 31, 1957) ²	Quantity purchased to Dec. 31, 1957 3	Base price
Asbestos, chrysotile, nonferrous: Crude Nos. 1 and 2short tons	2,000	1,919	951	\$1,500 900
Crude No. 3, when offered with No. 1 and/or No. 2 short tons	2,000	1,919	618	400
Columbium-tantalum bearing ores: Contained combined pentoxides pounds	250,000	57, 559	5, 508	4 1. 40-3. 00
Fluorspar, Acid grade, 97 percent calcium fluoride, f. o. b. milling point short tons. Tungsten trioxide, f. o. b. milling point dodo	250,000 1,250,000	126, 647 293, 584	46, 732 283, 463	53 55

The state of the s

2d sess.
Plus 100 percent bonus.

Long-Range Minerals Program.—The Secretary of the Interior presented the Administration's Long-Range Minerals Program to the Senate Interior and Insular Affairs Committee on June 4, 1957. Secretary Fred A. Seaton, in presenting this program, stated:

The Administration believes that the Federal Government has a proper role to play in keeping [the mineral] industries healthy and strong. The Long-Range Minerals Program is designed to serve this purpose, within the scope of proper Federal activity and within the limits imposed by the Government's other responsibilities, both to the people of the United States and to the community of free nations.⁴

The Long-Range Minerals Program recommended three actions: First, accelerate Geological Survey, Bureau of Mines, and Bureau of Land Management activities which aid the development of all mineral resources; second, assist the lead and zinc industries to minimize

¹ Public Law 733, 84th Cong., 2d sess.
² General Services Administration, Report of Purchases Under Domestic Purchase Regulation, Dec. 31, 1957: Federal Register, Feb. 18, 1958, p. 1062.
³ Meeting same specifications and under regulations in effect on Jan. 1, 1956, Public Law 206, 83d Cong.,

A maximum of 5,000 short-ton units accepted from 1 producer in 1 month.

³ Public Law 77, 85th Cong., 1st sess., July 1, 1957. 4 Statement by Hon. Fred A. Seaton, Secretary of the Interior, before the Senate Interior and Insular Affairs Committee, June 4, 1957, p. 1.

injury as a result of imports by removing existing tariffs and substituting a sliding-scale import-excise tax; third, provide special encouragement to producers of beryl, columbium-tantalum, chromite, and asbestos.

Increases were recommended for research and development activities, including topographic- and geologic-mapping programs and continued research in methods of mineral discovery by the Federal Geological Survey; fundamental research on metallurgical processes (emphasis on developing and applying processes that produce highpurity metals); economic- and statistical-data collection and distribution by the Federal Bureau of Mines; revision of the mining laws to facilitate mineral development on the public domain under the Federal Bureau of Land Management; and continuing examination of mineral taxation by the Department of the Interior with the Treasury Department to assure that the fiscal incentives be maintained. In addition, a new program of financial assistance to private industry for exploration assistance was recommended. This program would provide loans for exploration purposes to applicants who cannot finance the exploration themselves and are unable to find private funds on reasonable terms. The loans would be repaid out of production, if any, or would be canceled if no minerals were discovered. Organic fuels were excluded from this program.

The import-excise tax recommended for lead and zinc would replace the present tariffs upon these minerals. The import-excise tax would be removed entirely when the price of lead exceeded 17 cents per pound and the price of zinc exceeded 14.5 cents per pound. The

detailed recommendation is presented in tables 2 and 3.

The special production bonus recommended covered beryl, chro-

mite, and columbium-tantalum. For beryl a bonus of \$70.00 per TABLE 2.—Import-excise tax recommendations for lead. Long Ropes Wiresala

TABLE 2.—Import-excise tax recommendations for lead, Long-Range Minerals Program

•	Current	Duty recom- mended	Import-e	xcise taxes nen price is	proposed
Lead article	duty	by Tariff Com- mission	16 cents, less than 17 cents	15 cents, less than 16 cents	Less than 15 cents
Par. 72: Lead pigments: Litharge	11/4 17/8 2 11/20 3 20 3/4 11/16 11/16	334 334 334 315100 432 30 1910 285100 285100 3916	11/6 11/6 11/6 11/6 11/6 10 10 12 1	214 214 214 2196 219600 3 20 114	336 334 334 315100 412 30 2

¹ All import-excise taxes are suspended when price is 17 cents or above.

short ton (10 percent BeO) not to exceed 750 short tons per person or 100 tons for any 1 producer was suggested. The chromite bonus was set at \$21.00 per long dry ton (48-percent basis) not to exceed 50,000 long dry tons per annum or 10,000 long dry tons from any 1 producer. The columbium-tantalum bonus at \$2.35 per pound, not to exceed 25,000 pounds annually or 5,000 pounds for any 1 producer, was expected to stimulate production to at least 16,000 pounds per year, considerably above the current rate of production. The other 2 bonuses were designed to maintain competitive production at approximately 500 tons for beryl and 37,000 long dry tons for chromite.

TABLE 3.—Import-excise tax recommendations for zinc, Long-Range Minerals
Program

(In cents per pound)

	Dt	ıt y		cise taxes nen price is	
Article	1957	Recom- mended by Tariff Commis- sion	13½ cents, less than 14½ cents	12½ cents, less than 13½ cents	12½ cents
Par. 77: Zinc oxide and leaded zinc oxides containing not more than 25 percent of lead: In any form of dry powder. Ground in or mixed with oil or water. Lithopone, and other combinations or mixtures of zinc sulfide and barium sulfate: Containing by weight less than 30 percent of zinc sulfide. Containing by weight 30 percent or more of zinc sulfide. Par. 393: Zinc-bearing ores of all kinds, except pyrites containing not more than 3 percent of zinc (zinc content). Par. 344: Zinc blocks, pigs, or slabs Old and wornout zinc, fit only to be remanufactured, zinc dross, and zinc skimmings Zinc sheets Zinc sheets coated or plated with nickel or other metal (except gold, silver, or platinum), or solutions	910 310	11340 214 214 (+2214%) 1810 2140 2140 3 338	%10 ½ 34	11/10 11/2 11/2 13/4 (+15%) 11/10 11/4 11/4 2 21/4	11340 234 234 (+2234%) 1910 2 234 2340 3

¹ All import-excise taxes are suspended when price is 14½ cents or above.

The part of the Long-Range Minerals Program not dealing with lead and zinc was incorporated in Senate bill 2375 but was not reported out of committee by the end of 1957. The lead and zinc proposal was the subject of hearings before the House Committee on Ways and Means on August 1 and 2, 1957. As a result of these hearings, Jere Cooper, Chairman of the committee, wrote to the President on August 16, 1957, and stated (in part):

It is my sincere conviction that you already have authority, previously delegated to you by the Congress in the trade agreements legislation, to afford relief to domestic industries from import competition in appropriate cases. The testimony of your representatives at the public hearings, in conjunction with the written recommendation of the Secretary of the Interior, indicates that the lead and zinc industries properly constitute such a case in the opinion of the administration. The testimony further shows that your present authority is adequate to afford the relief which you have recommended to the Congress.

⁶ Congressional Record—Senate, Aug. 29, 1957, p. 15026.

The President replied to Representative Cooper on August 23, 1957, and stated (in part):6

As I indicated in my press conference on August 21, my view with respect to maintaining the integrity of section 7 of the Trade Agreements Extension Act of 1951 is as one with yours and, I am sure, with that of all the members of the House Ways and Means Committee. H. R. 6894, as you know, is the sole exception proposed by this administration in over 4½ years. In view of this fact, I think you will agree that such exceptions are not proposed lightly.

The special circumstances of this case that suggest the desirability of following the legislative route were set forth by administration witnesses before both your

committee and the Senate Finance Committee.

It is understood, of course, that the initiation before the Tariff Commission of an escape-clause proceeding by the industry is available in the last instance. It is my understanding that the industry will take such course if the Congress does not pass the requested legislation. In that event, I would request the Tariff Commission to expedite its consideration of the matter.

The Emergency Lead and Zinc Committee, established by the industries, filed an application for relief under the escape clause with the Tariff Commission on September 27, 1957. The application is discussed in detail in the Tariff section of this chapter.

DEFENSE MOBILIZATION 7

Prepared by Gabrielle Sewall 8

Defense Production Act.9—In 1957 programs under the Defense Production Act declined, and net changes in statistics were relatively small. Gross transactions certified as of December 31, 1957, for all programs at \$8.3 billion were 11 percent less than at the end of 1956 because of cancellations and adjustments; gross transactions consummated increased slightly (\$38 million) to \$7.7 billion. The part covering metals and minerals programs amounted to \$5.5 and \$5.2 billion, respectively, and showed the same percentage changes from 1956 as the totals. 10

The probable ultimate net cost of gross transactions certified for all programs also dropped from \$1.0 billion to \$960 million. Of this amount, \$715 million covered metals and minerals programs, a 10percent decline from 1956. The amount covering metals and minerals was distributed as follows: \$4.8 billion for purchases, \$35 million for exploration grants, \$281 million for loans on facilities, and \$17 million for research and development. Purchases of metals and minerals amounted to 71 percent of total purchases, compared with 67 percent in 1956.

Purchase Programs.—As a result of an increased supply of aluminum and a temporary lull in demand, primary producers offered aluminum for stockpiling to the Government under provisions of

<sup>Work cited in footnote 5, p. 15027.
This report on Defense Mobilization summarizes activity to Dec. 31, 1957. Hereafter only yearly event</sup>

⁷ This report on Defense Mobilization summarizes activity to Dec. 31, 1957. Hereafter only yearly event will be reported in this review.

8 General economist, Office of Chief Economist.

9 Executive Office of the President, Office of Defense Mobilization, Report on Borrowing Authority, Dec. 31, 1956, and Dec. 31, 1957.

Joint Committee on Defense Production Activities, Seventh Annual Report: House Rept. 1172, 85th Cong., 2d Sess., Jan. 16, 1958.

10 The terms used to account for the activities under the Defense Production Act are unique, requiring definition for complete understanding. Terms used in this section are defined as follows: "Program" is a plan for an expansion of capacity or supply of a specific material. "Transactions" are the individual contracts or agreements entered into in carrying out a certified program. "Certificate" is an Office of Defense Mobilization notification that a program is essential and that transactions may be consummated up to specific limits. "Consummated" means executed contracts or agreements. "Probable ultimate net cost" is the estimated nonrecoverable cost to the Government of transactions under a certified program.

TABLE 4.—Costs of mineral programs under the Defense Production Act as of Dec. 31, 1957 ¹

(Million dollars)

Program	Gross tran	nsactions mated	Probable ul cost of t consum	ransactions
	Amount	Percent	Amount	Percent
Aluminum Nickel Copper Manganese Tungsten	1,570 807 795 482 374	20.3 10.4 10.3 6.2 4.8	18 123 20 111 218	1. 9 13. 0 2. 1 11. 8 23. 1
Tin	222 207 132 129 98	2.9 2.7 1.7 1.7 1.3	5 101 7 18 53	. 5 10. 7 . 8 1. 9 5. 6
Molybdenum	95 55 49 41 30	1. 2 . 7 . 6 . 5 . 4	1 35 	2.3 .8
Bauxite	21 20	.3 .3 .3 .3	(2) 3 4	(3)
Cryolite	9 7	.2 .2 .1 .1	2 2 9 7 4	1.
Asbestos, chrysotile	(2) 5, 246 2, 388	(3) (3) (3) (67. 8 30. 9 1. 3 100. 0	(2) 4 771 70 102 943	(*) 81. 7. 10. 100.

¹ Executive Office of the President, Office of Defense Mobilization, Report on Borrowing Authority as of Dec. 31, 1957, pp. 10-11.

Less than \$500,000.

Less than 0.05 percent.

Does not add to total owing to rounding.

The Asset of the State of the S

GSA contracts covering output from the new facilities developed during the Korean emergency.

Military cutbacks in the aircraft program were responsible for re-

leasing titanium for other uses.

Buying during the year continued under the Domestic Minerals Program Extension Act of 1953 (Public Law 206, 83d Cong.). The domestic manganese regulation (Butte-Philipsburg low-grade manganese) was amended in May 1957 to clarify and define acceptable mixtures of ore. The purchase programs for manganese at the Deming and Wendon Depots and for tungsten were completed, as the original objectives had been reached. In March an authorized extension of the mercury program through December 31, 1958, limited the quantity to 50,000 flasks—30,000 to be of United States origin and 20,000 to be of Mexican origin. Early in the year the industry made only nominal offerings, as the price of mercury was above that of the regulation but increased deliveries later in the year when the price of the metal had dropped to the \$225 purchase price.

TABLE 5.—Commodities delivered under United States Government domestic purchase programs, 1956-57 1

Commodity	Quantity de of Decen		Authorized
	1956	1957	purchases
Asbestos, chrysotile, nonferrous (short tons): Crude No. 1 and No. 2	1, 864 1, 075 1, 203 137, 700 15, 601	2, 027 1, 204 1, 695 175, 028 15, 586 46, 732	200, 000 15, 250 250, 000
Butte and Philipsburg Depots. Deming Depot. Wenden Depot. Domestic small producers (carload program). Mercury (flasks, prime virgin):	3, 262 6, 215 6, 108 10, 538	5, 296 6, 215 6, 108 16, 718	6,000 6,000 6,000 28,000
Domestic Mexican Mexican Mica: Block, film, and hand-cobbed (hand-cobbed equivalent) short tons. Tungsten concentrates (units WO ₃)thousand short tons.	10, 124	2, 967 15 12, 915	155, 000 95, 000 25, 000

General Services Administration, Report of Purchases Under Domestic Purchase Regulations, as of Dec. 31, 1956, and Dec. 31, 1957, under section 4, Public Law 206, 83d Cong., and under Public Law 733, on delegation of authority by Department of the Interior.
 Crude No. 3 accepted under Public Law 206 on tie-in basis with 2 other grades, not figured into the

quantity authorized

The only purchase contract was negotiated with Cuban American Nickel Co. for constructing facilities to produce nickel and cobalt. Several other contracts for copper, fluorspar, molybdenum, and titanium were terminated as the stockpile position of these materials became more favorable.

Loan Program.—Total loans under the Defense Production Act 11 borrowing authority carried a gross-transactions value of \$384 million at the end of 1957—an increase of \$3 million over 1956 furnished by a project for steel. Thus, the gross transactions consummated for loans on metals and minerals were raised to \$243 million from \$240 million in 1956. The probable ultimate net cost of the loans is carried on the Government books at zero, since interest income was assumed to offset expenses. No new loans were certified in 1957.

Cumulative advances to contractors in connection with purchase contracts for metals and minerals, as of December 31, 1957, stood at \$149.5 million—an 11-percent increase over the total at the end of 1956. Of this amount, the balance outstanding was \$54 million, down 14 percent from 1956, as a result of repayments in cash and commodities. New advances were made in the nickel and titanium programs.12

Four loan guarantees were outstanding under which borrowers could obtain as much as \$49.7 million from private sources but had actually drawn \$37.7 million. The cumulative net earning of the

Loan Guarantee Fund was \$4.2 million.

Purchased with stockpile funds for the national stockpile.
 Mostly foreign. Figures not published for domestic only. Reported delivered in 1956, 20,069 pounds was rejected in 1957.

¹¹ Work cited in footnote 9. 13 General Services Administration, Defense Materials Service, Financial Report Defense Production Activities: Dec. 31, 1957.

Tax Amortization Program.—The minerals section of the accelerated tax-amortization program is presented in tables 6 and 7. The number of certificates of necessity in the mineral industries at the end of 1957 represented 2 percent of all certificates granted and 8 percent of the total cumulative cost of facilities. Only 15 certificates were added during the year (out of a total of 263 for all industries), representing a value of new facilities certified of \$109 million, as compared with 14 in 1956 that were valued at \$49 million. The new certificates covered facilities as follows: 7 for uranium, 1 for nickel, 1 for beryllium, and 4 for titanium; 2 were reinstated for iron ore. The percentage of certified facilities reported in place as of December 31, 1957, was 88 for the metals and 99 for the nonmetallics. The several certificates that were dropped from the 1957 total in the table were withdrawn or expired in that year.

TABLE 6.—Certificates of necessity on facilities for producing metals and minerals on which construction was complete by Dec. 31, 1956 ¹

	Num- ber of certif- icates	Reported value in place 1956 (thousand dollars)		Num- ber of certif- icates	Reported value in place 1956 (thousand dollars)
Metal ores and materials: Antimony	2 7 2 1 8 9 3 1 1 2 2 17 — 53 — 1	194 2 30, 021 276 110 7, 024 19, 135 22, 994 101 3, 306 5, 960 89, 149	Nonmetal ores and materials—Continued Bromline Diamond recovery Diatomite Fluorspar and fluorides Garnet Gypsum Lithium Mullite Phosphate rock Quartz crystals Refractory clay Salt Sand Soda ash Total nonmetals	3 9 1 4 1 6 5	5, 061 48 6, 355 4, 214 299 158 1, 270 47 11, 360 632 1, 213 450 805 16, 200 52, 814

¹ Unpublished records of Defense Materials Service, General Services Administration; Business and Defense Services Administration, U. S. Department of Commerce; Office of Defense Mobilization.

² Revised.

During 1957 expansion programs were severely curtailed. By May the tax-amortization program had been cut back substantially in line with the needs of the Department of Defense and the Atomic Energy Commission. In February the ODM closed the goals for Battery-and Chemical-grade manganese, selenium, and Chemical-grade chromite. In April the goal for mercury and in June the goals for nickel and substitutes for strategic mica (the last goals to remain open for mineral facilities) were closed. However, other forms of financial aids and incentives for these materials were still available.

Research and Development Program.—During the year further research on synthetic mica was encouraged through contracts to develop material suitable for use in electronics. Research also continued on titanium to develop standard samples of titanium sponge, metal, and alloys and to produce high-purity material by an electrorefining process.

¹⁸ Executive Office of the President, Office of Defense Mobilization, Finance Division, Report on Tax Amortization, Jan. 8, 1958.

TABLE 7.—Certificates of necessity on facilities for the production of metals and minerals at end of year, 1954-57, and reported progress through Dec. 31, 1957 1

18											r	
6221—5	Total 1	of De	Total number of certificates as of Dec. 31	ates as	Total rep tifled as	oorted valu	Total reported value of facilities as certified as of Dec. 31 ² (million dollars)	es as cer- dollars)	Reporte	d value in 1957 ³ (mill	Reported value in place as of Dec. 31, 1957 ⁸ (million dollars)	Dec. 31,
Commodity	1954	1955	1956	1957	1954	1955	1956	1957	Total	Com- pleted	In	Percent reported in place, Dec. 31,
Metallic ores and minerals: Alumina 6. Aluminam Beryllium	13	13 37	13	13 37	134. 3 715. 0	134. 3 746. 5	134.3 746.5	134.3	134.9	112.9 392.6	22.0 345.2	100
Columbium-tantalum. Coppur Cop	27.7 140 48	30 144 144 1	31 146 49	29 146 49	3.8 200.8 1,246.2 57.4	3.8 217.9 1, 253.2 62.6	3.8 226.4 1,260.0 62.6	1,273.0 73.1	208.4 1,034.9 61.4	3.8 208.4 349.8 41.0	4. 2 685. 1 20. 4	8 100 001 001 8 8
Nickel and cobalt Rare earths Titanium Orantium Zirconium Other, with 100-percent value in place before 1967*	დო <u>ე</u> იოლ	844568	18 16 16 16 16	.04.22.4.55 .04.22.4.55	91.8 105.0 23.7 89.1	91.8 119.9 41.9 3.2 89.1	91.8 4.3 117.2 51.0 89.1	130.8 130.7 130.7 27.2	28.9 29.9 29.9 1.08	13.3 103.0 41.1 5.2	35.8 3.2 35.9 21.0 24.7	100 88 98 110 110
Total metallic.	354	374	387	397	2,671.3	2, 768. 7	2,814.7	2,912.1	2, 549.1	1,361.5	1, 187. 6	88
Nonnetatic ores and materials: Orgolite Lime, limestone, and dolomite Mitos Refractory magnesis Rutile and monazite Sulfut . Other, with 100-percent value in place before 1957 *	43 43 10 8 8 6	6.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00	10 44 10 6 6 6	10 4 4 6 6 5 7	6.3 44.0 19.5 7.7 52.3 8.23	22.2.1.0 22.2.2.2.2.2.2.4 22.3.3	6,44,00 10,19,00 10,00 1	6.44 14.6 14.6 20.5 8.5 8.5	66 141 146 202 205 805	6.7 26.7 14.1 2.4 20.5 52.8	16.0	100 88 100 100 100 100
	124	128	130	128	145.4	148.0	149.7	142.8	140.8	124. 5	16.3	66
Total metallic and nonmetallic.	478	203	212	525	2,816.7	2, 916.8	2, 964. 4	3, 054. 9	2,689.9	1, 486.0	1, 203.8	88

¹ Source: Unpublished records of Defense Materials Service, General Services Administration, and Business and Defense Services Administration, U. S. Department of Commerce. Figures may not add exactly owing to rounding. For definition of "certificate of necessity", see text footnote.
³ Value is amount certificated including all revisions of estimates indicated on latest Reports of Progress (Form BDSAR-1).

Latest available BDSAF-1 report, which for most facilities covered the period through Dec. 31, 1967.
4 Percentage based on amounts in thousand dollars, 8 Revised.
8 Revised.
8 For detail of summary, see table 41.
7 Mined only.

Defense Material System.—Table 8 shows the set-asides or allotments for "A" products for defense programs under the defense materials system under which the demand for certain materials in short supply was controlled. This program provided the nucleus of a system that could be rapidly expanded in an emergency. The allotments of "A" products represent purchase authority to prime contractors and producers of specially designed military equipment for the metals at the mill level. The set-asides for aluminum averaged about 15 percent of the primary metal availability. Because of the entry of 1 new producer and the changing structure of the industry since 1952, the base for them was set on shipments for 6 months in 1956 instead of the first quarter of 1952.

TABLE 8.—Allotments for "A" products 1

Commodity	First quarter	Second quarter	Third quarter	Fourth quarter	Year
Aluminum: 1956	60. 0 60. 4 +. 7 30. 0 19. 4 -35. 3	65. 9 61. 5 -6. 7 27. 3 22. 5 -17. 6	62. 5 63. 4 +1. 4 26. 0 23. 5 -9. 6	64. 5 55. 8 —13. 5 25. 4 22. 4 —11. 8	252. 9 241. 1 -4. 7 108. 7 87. 8 -19. 2
Steel: 1956	642.3 552.6 -14.0	607. 3 561. 6 -7. 5	592. 2 589. 2 —. 5	606. 2 546. 6 -9. 8 11. 9 4. 0 -66. 4	2, 448. 2, 250. -8. 11. 18. +55.

The second secon

National Strategic Stockpile Program. 14—The stockpiling of strategic and critical materials was implemented in 1946 by the Strategic and Critical Materials Stockpiling Act (Public Law 520). Procurement proceeded slowly at first but gathered momentum in later years until, at the end of 1957, many objectives had been filled.

During 1957 stockpile policy was reappraised and a new policy adopted; this action limited procurement at the "procurement priority level" calculated to provide adequate materials for a 3-year emergency rather than the 5 years previously used as a standard in the minimum stockpile objective. 15 New procurement was to exceed 3 years in only a few instances, involving maintenance of the domestic-production

¹ Office of Defense Mobilization various press releases.

¹⁴ Special Stockpile Advisory Committee, Stockpiling for Defense in the Nuclear Age: Jan. 2, 1958.

Executive Office of the President, Office of Defense Mobilization, Stockpile Report to the Congress: January-June 1957 and July-December 1957.

Executive Office of the President, Office of Defense Mobilization, Report on Borrowing Authority: Dec. 31, 1956, and Dec. 31, 1957.

Executive Office of the President, Office of Defense Mobilization, Report on Borrowing Authority: Dec. 31, 1956, and Dec. 31, 1957.

15 Determination of stockpile objectives by the previous standard was based on differing needs. A total national requirement consisted of requirements for an emergency in the categories: Military, atomic energy, industrial, essential civilian, and, in some cases, export. The Nation's ability to meet those needs was determined by measuring them against supplies that could be reasonably relied upon in wartime from domestic production and from accessible foreign sources. If the supply proved to be less than requirements, the indicated emergency deficit was termed the "minimum stockpile objective." Of this amount, the deficit that would exist over 3 years was identified as the "procurement priolity level," considered the predominant element in planning and procurement. The "long-term stockpile objective" provided an extra safety factor by discounting completely all foreign supplies excepting those accessible from neighboring countries. Additions to the long-term objectives were made only under certain favorable conditions, such as when the material could be acquired at favorable prices and when such procurement aided in maintaining the domestic mobilization base or could be arranged by the barter of surplus agricultural commodities abroad.

component of the mobilization base. In view of this reappraisal it is appropriate here to review the legislation under which materials are

acquired for the stockpile.

Three major acts, which authorize national stockpiling, are the Strategic and Critical Materials Stockpiling Act of 1946 (Public Law 520, 79th Cong.), the Defense Production Act of 1950 (Public Law 774, 81st Cong.), and the Agricultural Trade Development and Assistance Act of 1954 (Public Law 540 and Public Law 480, 84th Cong.).

Fifty-six percent of the total acquisition for the stockpile in 1957 was from open-market purchases under the Stockpiling Act, compared with 80 percent in 1956. Any material acquired or transferred to the inventory under this act requires congressional approval before release, and no surplus quantity may be sold unless the whole inventory of the material is declared no longer needed for defense purposes.

Inventories under the Defense Production Act included about \$880 million at the end of 1957, as shown in table 9. Metals and minerals purchased or contracted for under this act are obtained from new or expanded facilities, created to broaden the base of supply for an emergency. These materials may be transferred to the national stockpile, sold to industry, or diverted directly from their origin to meet scarcities in the economy. They are mainly under long-term contracts, which serve to guarantee a market for the mineral. Eighteen percent of stockpile acquisitions in 1957 came from Defense Production Act inventories.

The Commodity Credit Corporation was authorized by the Agricultural Trade Development and Assistance Act to barter strategic and other materials for surplus agricultural commodities. Under the act some of the strategic material, either bartered or acquired through the use of foreign currency, could be transferred directly to the national stockpile; the remainder could be placed in what is known as the Supplemental Stockpile that comprises strategic material over and above the minimum- and long-term objectives of the national stockpile. Provisions for release of this material are the same as

those of the Strategic and Critical Materials Stockpiling Act.

The barter program for surplus agricultural commodities was suspended at the end of April 1957 to permit the United States Department of Agriculture to study safeguards against the substitution of barter transactions for dollar sales without a net gain in total exports of agricultural surpluses. In May a revised barter program permitted United States firms to participate in barter only if the transaction would mean a net increase in United States exports of the agricultural commodity involved. The agricultural commodities were to be designated in the barter contracts and to be exported to one or more designated friendly countries, with a guarantee against further transshipping. A further important restriction stipulated that all materials delivered under the program must be produced and processed abroad and the country of origin designated. Lead and zinc ores and concentrates that had been siphoned from the world market by barter arrangements for processing at United States smelters and refining plants were no longer admissable. Total acquisitions to the stockpile through barter amounted to 21 percent in 1957.

Additional accumulations of strategic materials have been acquired by the Government under specific provisions in other legislation. The Mutual Security Act of 1954 (Public Law 162) and the Federal Property and Administrative Services Act of 1949 (Public Law 152) provide for transfer of strategic materials to the national stockpile without reimbursement. During 1957 the estimated market value of surplus material transferred to the national stockpile from all Government agencies at no acquisition cost to the stockpile amounted to approximately \$14.7 million—about 5 percent of total acquisitions.

In 1957 chrysotile asbestos, refractory bauxite, celestite, columbite, quartz crystal, and tungsten were added to the list of completed long-term objectives, bringing this total to 18; the minimum objectives for metallurgical chromite and Acid-grade fluorspar also were filled. Those metals and minerals for which the procurement priority had not been reached were amosite asbestos, Metallurgical-grade bauxite from Jamaica, Metallurgical-grade fluorspar, jewel bearings, magnesium, Chemical-grade manganese, mica, muscovite block and film, palladium, selenium, and silicon carbide. Titanium sponge was shifted from Group I, a list of commodities acquired through purchase or transfer, to Group II, acquired through transfer only; formal objectives are not established.

As of December 31, 1957, stockpile objectives representing 75 commodities were valued at \$9.3 billion, at prevailing prices. The value of total objectives had declined 15 percent as a result of lower market prices of metals and minerals. About 26.3 million tons of materials, having a value of \$5.7 billion, was actually on hand in 218 stockpile-storage sites at the end of 1957—an increase in physical volume of 7 percent over 1956. Of the \$5.7 billion in inventory \$3.0 billion was toward the procurement priority (97 percent filled), another \$1.7 billion was toward the minimum objective (65 percent filled), and \$1.0 billion was toward the long-term objective (28 percent filled), the last

all associated with metals and minerals.

Deliveries to the strategic stockpile during 1957 amounted to \$300 million and consisted principally of amosite asbestos, ferrochrome and ferrochrome silicon, metallurgical fluorspar, jewel bearings, lead, Battery-grade synthetic manganese dioxide, muscovite block-and-film mica, and zinc, all toward procurement priority levels, except lead, zinc, and Battery-grade synthetic manganese dioxide, which were purchased under the domestic incentive program as an aid in maintaining the respective mobilization bases. Materials on order amounted to \$140 million at the end of 1957—\$210 million less than was on order a year before.

There remained in 1957 industrial shortages of only two major materials being stockpiled—molybdenum and nickel. Deferral of shipments to the Government and release to industry of 3 million pounds during the first half of the year eased a temporary shortage of molybdenum. The continuing shortage of nickel necessitated diversion to industry of all nickel scheduled for delivery to the Government in 1957. In the first 3 quarters, over 85 million pounds was sold to industry, but by the fourth quarter demand had slackened and much of

that quarter's production was not claimed.

TABLE 9.—Inventory of minerals acquired under the Defense Production Act. as of Dec. 31, 1957 1

(Thousands)

Commodity		As of Dec	e. 31, 195 7	Net change in physical
		Quanti t y	Cost 2	quantity during 1957
Aluminum metal	short tons	304	\$154,096	+304
Asbestos, chrysotile	do	2	2, 103	
Banyite metallurgical, Jamaica	long dry tons	421	5, 585	+229
Beryl ore Bismuth	short dry tons	1	543	(3)
Bismuth	pounds	23	52	l
Chromite, metallurgical	long dry tons	503	20, 539	+102
Cobalt and cobalt-nickel alloy	pounds	2,992	6, 855	+2,804
Columbium-tantalum:	•		.,	1,
Columbium-tantalum: Pentoxides	do	12, 691	54, 289	+375
Potassium tantalum fluoride	do	86	664	
Malayan tin slag	do	3, 197	1, 497	l
Copper	short tons	25	13, 594	+2
Cryolite	short dry tons	39	10, 760	(3)
Fluorspar acid	do	19	1, 394	-188
Graphite, crystalline Lead	do	1	178	
Lead	short tons	2	782	+1
Manganese, metallurgical:	· ·			
Contained	long tons	37, 904	67, 216	+15,241
Recoverable	do	18, 304	31, 634	+2,718
Manganese, electrolytic	do	5	2, 951	
Manganese, synthetic dioxide	long dry tons	1	767	(3)
Manganese, electrolytic	flasks	3	671	+3
Mina forgion and domostic	and the second s			100
Graded	pounds	1,609	10, 224	+61
Ungraded.	do	163	10	-227
Nickel	do	29, 839	22, 333	+19,667
Palladium	trov ounces	8	177	
Rare-earths residue	pounds	1,700		+1,700
Tin	long tons	1	1,038	
Titanium'	short tons	20	144, 849	+11
Tungsten	pounds W	79, 897	325, 414	-342
Zinc	short tons		-,	-3
Total cost of metals and minerals			880, 215	

Dec. 31, 1956, and Dec. 31, 1957.

2 Cost represents acquisition cost plus pirect charges (duty, bank charges, ocean freight, transportation to first storage point, beneficiation costs, and accounting adjustments) but excludes storage, administrative expenses, and interest charges.

3 Less than 500.

Defense Minerals Exploration Administration. 16—Government encouragement, in the form of financial participation, of exploration for new sources of strategic and critical materials continued during 1957, with the issue of 40 certifications of discovery or development by DMEA, compared with 56 in 1956. Certifications on projects in 13 States were made for copper, lead, manganese, mercury, mica, tungsten, uranium, and zinc. In all, 173 exploration contracts were in force December 31, 1957. With respect to these, the Government contractual share amounted to \$11.1 million (60 percent) out of total estimated costs of \$18.7 million at the end of the year. Comparable amounts, for 1956, were \$12.9 and \$21.5 million, with the percentage unchanged. The potential ore reserves on all 316 certified projects were estimated to have a net recoverable value of \$465 million at the prevailing market prices. Total royalties paid to the Government to the end of the year on all projects amounted to \$2.2 million.

¹⁶ Defense Minerals Exploration Administration, Report for 4th Quarter, 1957, and monthly reports. 1957.

net value of the minerals produced, on which royalties had been

received, was approximately \$45 million.

October 22, 1957, the level of Government participation for exploration was reduced to 50 percent on 25 of the 34 materials eligible for exploration assistance, since they presented no major supply problems. Nine still eligible for 75 percent were antimony, beryl, cobalt, manganese, strategic mica, nickel, rutile-brookite, selenium, and block steatite talc.¹⁷

Office of Minerals Mobilization.¹⁸—Comprehensive mobilization base evaluations for metals and minerals were completed during 1957 with the assistance of the Bureau of Mines and the Geological Survey, for aluminum, cadmium, celestite, cobalt, copper, industrial diamonds, dolomite, emery, lead, magnesite, Battery- and Chemical-grade manganese, molybdenum, quartz crystals, platinum metals, rutile and ilmenite, selenium, tin, titanium metals, vanadium, zinc, and zirconium. Recommendations dealing exclusively with expansion-goal programs for mica and nickel were made to ODM during the year.

Export Control.¹⁹—Export controls as administered by the U. S. Department of Commerce are basically of two types—"short supply" and "security." All commercial exports from the United States and its Territories and possessions, except to Canada, are prohibited unless the Department of Commerce has either issued a "validated license" or established a "general license" permitting such shipments. A validated license is a formal document issued to an exporter upon application for a specific transaction. A general license is a broad authorization issued to an exporter, which permits exportation of some commodities under specified conditions without requiring the filing of an application by the exporter. Commodities under control by the Department of Commerce comprise the Positive List of Controlled Commodities.

As some of the scarce metals and minerals became more plentiful in 1957, export-control restrictions were eased considerably, particularly with respect to aluminum metal and scrap and copper ores, metal, and scrap. At the end of the year the only mineral commodities subject to quantitative export controls were nickel, certain types of

nickel scrap, and industrial-diamond bort.

In February, because of an unusually heavy volume of export applications, export licensing of iron and steel scrap to Japan, the United Kingdom, and the European Coal and Steel Community was suspended to protect domestic supplies of this material. In May an interim policy, which restricted export of No. 1 and No. 2 Heavy-Melting grades of iron and steel scrap for these destinations to the

¹⁷ Joint Committee on Defense Production, 7th Annual Report on Activities: Jan. 16, 1958, pp. 65-66.

18 U. S. Department of the Interior, Office of Minerals Mobilization, Quarterly Report to the Joint Committee: January-March, April-June, July-September, October-December, 1957.

19 Secretary of Commerce, Export Control, 42d Quarterly Report to the President, the Senate, and House of Representatives: Feb. 1, 1958.

tonnages shipped in 1956, was adopted. In June an agreement was made with these countries whereby they would voluntarily limit their total imports of Heavy-Melting grades of scrap from the United States to approximately 13 percent above that imported in each category in 1956, and open-end export quota to all the Free World was reestablished.

DOMESTIC PRODUCTION

Value of Mineral Production.—The value of nonfuel mineral production in the United States decreased in 1957 compared with 1956, the first drop since 1954 and only the third since the end of World War II. The major contributor to the 10-percent-value decrease in metals was from declines in prices—production was up only slightly. The value of nonmetals decreased slightly, while that of fuels rose 9 percent.

Volume of Mineral Production.—The Bureau of Mines index of the physical volume of mineral production in the United States rose 0.1 point in 1957. The metals index rose 1.6 points, supplied primarily by a rise in ferrous metals of 5.7 points, since nonferrous metals declined as a group. The nonmetals group rose 2.9 points, bolstered by the rise of 9.0 points in construction materials. The Federal Reserve Board indexes correlate fairly closely with the Bureau of Mines index; metal mining increased 2 points and nonmetal mining 1 point.

The monthly Federal Reserve Board indexes, seasonally adjusted, show that the impact of the recession began for metal mining in September 1957 and had not been felt in stone and earth minerals by the end of the year. This dating of the downturn in metals is not firm, because the index was severely affected in July and August 1956 by the steel strike. The 1957 index itself turned downward in August but was higher than the year before until September.

TABLE 10.—Value of mineral production in continental United States, 1948-52 (average) and 1953-57, by mineral group

(Million dollars)

		(
Mineral group	1948-52 (average)	1953 1	1954 1	1955 1	1956 ¹	1957 1	Change in 1957 from 1956 (percent)
Metals and nonmetals except fuels: Nonmetals Metals	1, 835 1, 392	2, 250 1, 811	2 2, 630 1, 518	² 2, 972 2, 055	² 3, 284 2, 358	² 3, 277 2, 129	<u></u>
Total Mineral fuels	3, 227 9, 101	4, 161 10, 257	4, 148 9, 919	5, 0 27 10, 7 80	5, 639 11, 741	5, 406 12, 720	-4 +8
Grand total	12, 328	14, 418	14, 067	15, 807	17, 383	18, 126	+4

Includes Alaska and Hawaii.
 The total has been adjusted to eliminate duplicating the value of clays and stone.

TABLE 11.—Indexes of the physical volume of mineral production in the United States, 1948-57, by groups and subgroups 1

	== 100	

			Metals						Nonmetals					
Year	All min- erals		Fer- Nonferrous Con	Fer-		Con-	Chem-							
era.			rous	Total	Base	Mone- tary	Other	Total	struc- tion	ical	Other	Fuels		
1948 1949 1950 1951 1952 1953 1954 1955 1956 2	105. 9 92. 1 102. 6 112. 6 110. 9 112. 6 107. 9 119. 0 125. 8 125. 9	104. 4 94. 1 108. 8 117. 2 112. 7 119. 1 97. 6 115. 0 117. 2 118. 8	108. 6 91. 2 106. 1 126. 6 109. 5 133. 3 95. 5 122. 8 116. 5 122. 2	101. 4 96. 1 110. 7 110. 6 114. 9 109. 2 99. 0 109. 5 117. 6 116. 4	101. 7 95. 7 109. 0 110. 0 109. 4 103. 0 93. 2 106. 8 116. 2 113. 7	100. 6 97. 2 117. 4 100. 8 97. 4 98. 3 93. 6 95. 3 94. 9 93. 0	99. 0 98. 9 113. 9 149. 7 251. 8 236. 7 205. 2 194. 0 207. 0 229. 5	103. 4 101. 0 116. 1 127. 3 132. 1 135. 2 146. 4 161. 0 172. 4 175. 3	103. 3 102. 8 117. 9 128. 3 134. 6 137. 5 152. 4 170. 0 179. 5 188. 5	103. 0 98. 2 112. 9 123. 9 127. 7 133. 6 140. 9 146. 4 163. 4 154. 3	106. 8 93. 5 110. 0 130. 0 124. 2 118. 5 107. 8 2127. 5 135. 9 125. 4	106. 5 90. 7 100. 1 110. 1 107. 8 108. 8 104. 0 113. 8 120. 5		

¹ For description of index see Minerals Yearbook 1956, vol. I, Review of the Mineral Industries chapter, pp. 2-5.
Revised figures.

TABLE 12.—Indexes of physical volume of metal and mineral mining, production of metals, production of nonmetallic products, and industrial production, 1950-57 1 (1947-49=100)

Year	Metal, stone, and earth minerals	Pig iron and steel	Primary and secondary nonferrous metals ²	Stone and clay products and fertilizer 2	Total industrial production
1950 1951 1952 1953 1954 1955 1955 1956	111 121 115 119 106 120 127 129	117 131 115 138 108 144 142 140	111 116 121 136 136 145 152	118 134 131 138 137 155 164 160	112 120 124 134 125 139 143

¹ Federal Reserve Bulletin, April 1958, pp. 478-481. Indexes for years before 1947 are not available on the 1947-49 base, and recent years are not available on the 1935-39 base.

² Weighted average, computed by authors of this chapter, employing Federal Reserve indexes and weights.

Revised figure.

NET SUPPLY

Net Supply.—The net supply 20 of minerals and metals in 1957 showed a mixed pattern when compared with 1956. The net supply of the ferrous group varied more widely than in 1956; chromite increased by 48 percent; and tungsten decreased by 49 percent. The other metallic ores group showed similar disparity, but the nonmetallic-minerals group was generally more stable. Of the 32 com-

³⁰ Sum of primary shipments, secondary production, and imports, minus exports.

modities shown in table 14, 9 declined over 5 percent, 13 changed less than 5 percent, and 10 increased over 5 percent. The net supply analysis indicates that 1957 was a year of indecision for minerals, as the general business recession was making itself felt during the latter part of the year.

TABLE 13.—Monthly indexes of production, metal mining, and stone and earth minerals, 1956-57, seasonally adjusted ¹

(1947-49 average=100)

	M	etal mini	ng	Stone and earth minerals			
Month	1956	1957	Change from 1956 (percent)	1956	1957	Change from 1956 (percent)	
January February March April	117 116 117 129 118	120 122 121 121 121 114	2. 6 5. 2 3. 4 -6. 2 -3. 4	138 138 138 141 140	142 142 143 140 142	2.9 2.9 3.6 7	
June	113 60 103 123 132	121 122 121 115 107	7. 1 103. 3 17. 5 -6. 5 -18. 9	143 142 140 143 141	142 143 146 144 143	7 4.8 1.4	
November December	128 127	100 110	-21.9 -13.4	142 141	140 141	-1.4	
Annual average	114	116	1.8	141	142	.:	

¹ Federal Reserve Bulletin, various issues; 1957 data subject to revision.

Sources of Supply.—Mineral imports continued to increase in importance as a source of supply during 1957. Iron, copper, lead, zinc, aluminum, tungsten, titanium concentrates, and fluorspar were important minerals from domestic production considerations, where imports supplied a larger part of the market in 1957 (12 other imports also increased); mercury (and 11 other categories) either showed the same or decreased import contribution to supply. When the 5-year period (1953-57) is analyzed for the above mentioned major commodities, imports increased persistently as a source of supply in iron, aluminum, and fluorspar; decreased in copper and tungsten; and no significant change in lead, zinc, and titanium concentrates (comparable data are not available for mercury).

Sources of Imports.—Canada and Mexico increased their share of the import market, while most other regions lost some part of the market. The U. S. S. R. Bloc, already unimportant as a source of supply, dropped still further. This analysis is of significance in that it indicates the magnitude of the supply problem in time of war—the East and South Pacific region supplies normally move through the

Panama Canal.

TABLE 14.-Net supply of principal minerals in the United States and components of gross supply, 1956-57 1

(Thousand short tons, unless otherwise stated)

W 101	Exports as a per-	cent of gross supply	1957	(e) 16 (f) (h) 16 (h) 16 (h) 17 (h) 18 (h) 19 (h) 1
	Exports	cent cent	1956	(a) (b) (c) (d) (d) (e) (e) (e) (e) (e) (e) (e) (e) (e) (e
	ply=100)	orts 4	1987	6.€. 28.40
	(gross sup)	Imports	1956	**************************************
	oss supply	ary pro-	1957	6 28 10 2 3 4 4 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
	Components as a percent of gross supply (gross supply=100)	Secondary p duction	1956	6 18 8 9 1 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9
	ents as a pe	Primary ship- ments 2	1957	252 97 97 98 98 98 11 11 100 100 100 100 100 100 100 100
	Сотроп		1956	49 119 119 100 100 125 127 128 138 141 141 158 158 168 169 160 160 160 160 160 160 160 160 160 160
		Change from 1956	(percent)	1 + + + + + + + + + + + + + + + + + + +
	Net supply	1957		118, 063 1, 10614 1,
		1956		118, 654 6, 1, 227 1720 38, 629 38, 1549 17, 815 1, 289 1, 119 1, 188 1, 288 1, 289 1, 188 2, 288 2, 288
		Commodity		Ferrous ores, serap, and metals: Iron (equivalent)4. Managanese (content). Chonlite (Cryq content). Molydeanum (content). Molydeanum (content). Tungsten ore and concentrate (W content). short tons. Opter (content). Lead (content). Lead (content). Lead (content). Aluminum (equivalent)! Aluminum (equivalent)! Aluminum (content). Aluminum (content). Aluminum (content). Magnesium (content). Ruile (TiO ₂ content). Bartte, cude. Bromine and slag (TiO ₃ content). Bromine and slag (TiO ₃ content). Closs. Brite, cude. Bromine and bromine in compounds. million pounds. Closs. Fluorspar, finished. Gross weight)! Gross weight)! Closs. Fluorspar, finished. Closs. Closs. Fluorspar, finished. Clypsum, cride. Mice (except scarp). Mice (except scarp). Clossin (Kr) oquivalent). Salt (common). Salt (common). Salt (common). Salt (common).

¹ Net supply is the sum of primary shipments, secondary production, and imports, minus exports. Gross supply is the forch before the subtraction of exports.

**Primary shipments are mine shipments or mine sales (including consumption by producers) plus byproduct output. Shipments more nearly represent quantities marketed by the domestic undustry and as such are more comparable to imports. Use of shipments deta, retainer than production data also permits uniform treatment. among more commodities.

From old scrap only.

Imports for consumption, except where otherwise indicated; scrap is excluded where possible both in imports and exports but included are all other sources of minerals through the refined couparable stage, except where the commodity description indicates an earlier stage.

I from one reduced to an estimated pig-from equivalent; reported weights used for all other items of supply.

Beyised figure.

¹ Receipts of purchased scrap.

General imports; corresponding exports are of both domestic and foreign mer-

10 Consumption of purchased scrap. Less than 0.5 percent.

u Includes 85 percent of bauxite mine production (rather than shipments) and imports, and sure, and 82 percent of autumina Imports, both converted to estimated aluminum equivalent (3.88 long tons bauxite to I short ton aluminum) in 1966; 83 and 22 percent

These percentages are based on estimated propor-To avoid a duplicate adjustment for nonmetallic

tions used in producing metal. To avoid a duplicate adjustment for nonnetallie use, exports of benxite to Canada were excluded from exports.

¹ Mine production of banxite.

² Includes into benxite.

³ Includes into the control of the contro both years. Secondary includes recovery from both old and new scrap, data cannot be disclosed and are included with primary.

16 Primary production of metal.

r Recovery from both old and new scrap.

B Exports of foreign merchandise (reexports) are included.

B Reported in terms of finished products: not comparable with earlier years.

B Estimated by adjusting production, excluding byproduct, for changes in I

21 For pyrites, includes sulfur content (48 percent) of production.

pro-

TABLE 15.—Percentage distribution of imports of principal minerals consumed in the United States in 1956-57, by country group of origin 1

Commodity		Canada and Mexico		East and South Pacific 2		Other West- ern Hemi- sphere		Other Free World		U. S. S. R. bloc 3	
	1956	1957	1956	1957	1956	1957	1956	1957	1956	1957	
Ferrous ores, scrap, and metals: Iron (equivalent) 4 Manganese (content)	(5) 9 79 11 29 30 66 13 (5) 36 52 25 28 48 92 76 72 95	36 9 9 13 78 13 18 27 31 64 12 (5) 57 82 13 17 40 92 62 65 95 (6) (3) (3) 100	11 1 3 3 4 48 18 (8) 11 1 1 (9) 5 5 6	15 2	35 19 2 11 20 3 2 2 85 3 (6) 3 	43 32 5 16 27 3 4 28 88 (6) (9) (1) 1	8 8 74 795 911 100 344 116 620 144 11 19 847 75 665 40 8 816 28 (5) 17 665 (5)	6 6 58 96 87 6 22 22 14 (**) 100 28 17 87 81 45 51 (**) 86 51 (**)	(8)	(6)	

Data are based upon imports for consumption and are classified like net supply shown in table 14.
 West coast of South America (Salvador, Chile, Bolivia, Peru, and Ecuador), New Zealand, New Cale-

West coast of South America (Salvador, Chine, Bohlvas, Letu, and Ecoador), 170 Bohlman, 180 donis, and Australia.

3 U. S. S. R., Bulgaria, East Germany, Albania, Czechoslovakia, Hungary, Estonia, Latvia, Lithuania, Poland, Rumania, China, and North Korea.

4 Includes iron ore, pig iron, and scrap.

5 Less than 0.5 percent.

6 See footnotes 11 and 13, table 14.

7 Evaluates antimony from foreign silver and lead ores.

Excludes antimony from foreign silver and lead ores.
 Metal and flue dust only.

CONSUMPTION

Patterns.—The sharp decline in consumption reflects the depth of the recession in 1957 more accurately than the production data. Only 2 minerals showed consumption increases of greater than 5 percent (boron up 19 percent and rutile up 13 percent), while consumption of 15 minerals dropped by 5 percent or more during the year. Consumption of minerals going into the steel complex and the aluminum industry held virtually steady in 1957 compared with 1956, but molybdenum was a major exception, dropping 11 percent. Increased consumption of rutile resulted from the continuing shift from ilmenite and slag to These two minerals taken together declined in this raw material. consumption.

Sales and Orders.—Seasonally adjusted sales of the primary-metalmanufacturing industry dropped almost steadily throughout 1957, and the total for the year was 2 percent below 1956. Adjusted sales of stone, clay, and glass dropped sharply during the last 5 months of 1957, and the total for the year was 6 percent below 1956. The

December 1957 volume was 16 percent lower than December 1956 in the primary metal industry, and 12 percent lower in the stone,

clay, and glass industry.

New orders (seasonally adjusted) were much lower for the primary metal industry for the entire year (down 12 percent) and also fell at an accelerated rate in the last quarter of 1957. The volume of new orders in December 1957 was 36 percent below that in December 1956.

TABLE 16.—Reported consumption of principal metals and minerals in the United States, 1956-57

(Thousand short tons, unless otherwise stated)

Commodity	1956	1957	Change from 1956 (percent)
Antimony, primary 1	14, 962 \$2, 035 7, 751 1, 847 9, 562 1, 521 621 125, 170 1, 210 53, 610 2, 264 54, 143 8, 662 39, 082 127, 578 \$8, 59 90, 324 579	11, 931 1, 671 7, 633 1, 760 9, 157 1, 348 645 130, 602 1, 108 43, 811 2, 361 52, 889 8, 037 34, 662 122, 466 82, 507	-20 -18 -22 -5 -4 -11 +14 +4 -8 -18 +4 -2 -7
Rutile do	46 4,531 1,009	4, 272 936	+13 -6 -7

Inf.udes antimony content of antimonial lead produced from foreign and domestic ores. In previous years this class of material was reported separately.
 F. vised figure.

LE 17.—Apparent consumption of metals and minerals in the United States, 1956-57 1

(Thousand short tons, unless otherwise stated)

Commodity	1956	1957	Change from 1956 (percent)
Aluminum, primary Asbestos, all grades 2 Boron minerals and compounds	1, 782 \$ 728 \$ 4 324 191 \$ 12, 701 \$ 50, 550 \$ 14, 663 3, 576 2, 058 24, 248 \$ 5, 744 \$ 716	1, 778 4 383 181 10, 999 45, 387 13, 529 3, 626 2, 084 24, 117 5, 563 672	-1 +18 -5 -13 -10 -8 +1 +1 -1 -3 -6

Covers commodities on which reported consumption is not collected.
 Adjustments are not made for national stockpile acquisitions, if any.
 Revised figures.
 Reported in terms of finished products. Not comparable with prior years.
 Estimated at 31 percent.

TABLE 18.—Sales, primary metal industry and stone, clay, and glass industry, and new orders, primary metal industry, 1954-57 1

Year	Primar	y metal	Stone, clay, and glass	Year	Primar	y metal	Stone, clay, and glass
	Sales	New orders	Sales		Sales	New orders	Sales
1954 1955 1956 1957 1957 1957: 1957: January February March April	20, 106 26, 468 28, 339 27, 852 2, 594 2, 453 2, 389 2, 357	18, 721 29, 542 29, 028 25, 500 2, 345 2, 403 2, 330 2, 197	7, 215 8, 677 8, 982 8, 484 751 766 747 707	1957 2—Continued May June July August September October November December	2, 263 2, 289 2, 447 2, 362 2, 182 2, 224 2, 156 2, 073	2, 136 2, 306 2, 241 2, 078 2, 202 2, 081 1, 686 1, 512	747 741 736 708 668 650 659

U. S. Department of Commerce, Office of Business Economics, Survey of Current Business: Vol. 38, February 1958, May 1958, and previous issues.
 Seasonally adjusted data, therefore will not add to 1957 total.

STOCKS

Physical Stocks.—Mineral stocks in the hands of manufacturers, consumers, and dealers increased sharply during 1957. These major stock accumulations account for the general stability of production in spite of sharply decreased consumption. Table 19 details the stock movements, and the large increases in aluminum, copper, iron ore, lead, and zinc are especially noticeable. The existence of such large stocks at year end in these major commodities was a definitely de-

pressing factor in the short-term outlook for the mineral industries.

Mine Stocks.—Mine stocks, available only for those minerals shown in table 20, also increased markedly during 1957. Tungsten stocks continued their sharp rise but did not quite reach the 266percent increase shown in 1956. The large increase in iron-ore stocks (20 percent) indicates that the increase shown in physical stocks discussed in the preceding paragraph probably carried over to mine stocks for those minerals for which data are not available.

Stocks in Bonded Warehouses.—Most changes in stocks in customs bonded warehouses were opposed to other stock movements. Stocks of lead, zinc, and aluminum decreased, but stocks of copper increased. The zinc decrease was especially large.

Value of Inventories.—The seasonally adjusted value of inventories for all primary-metal manufacturing (including several industries that are not ordinarily considered part of mineral manufacturing) increased during 1957; December 1957 was 7 percent above December 1956. Inventory value in stone, clay, and glass products also increased throughout the year and stood 8 percent above December 1956 at the end of 1957. These data reinforce the finding that 1957 was a year of very substantial stock accumulation in the mineral industries.

TABLE 19.—Selected physical stocks of mineral commodities of mineral manufacturers, consumers, and dealers in the United States at end of year, 1954-57 ¹

				19	57
Commodity and type of stock	1954	1955	1956	Quantity	Change from 1956 (percent)
Aluminum: Primary, at reduction plantsshort tons	21, 100	15, 020	102, 496	171, 141	+67
Purchased aluminum scrap, consumers (gross weight) short tons Arsenic, producers' stocksthousand short tons	18, 462 12. 5	19, 457 11. 6	24, 426 2 4. 8	25, 163 2. 5	+3 -48
Bauxite, at consumers (dried equivalent) thousand long tons	2, 286	2, 248	2,016	2,779	+38
Bismuth, consumers' and dealers' stocks thousand pounds	252. 8	234. 3	2 229. 0	348.4	+52
Cadmium, metal and compounds, producers, distribu- tors, and consumers (Cd content) thousand pounds. Cement, at mills million 376-pound barrels.	6, 294 16. 6	5, 139 17. 5	² 5, 052 ² 22. 5	5, 322 28. 6	+5 +27
Chromite, at consumers' plants: Metallurgical thousand short tons Refractory do Chemical do	804 257 206	628 313 168	640 431 155	849 610 160	+33 +42 +8
Totaldodo	1, 268	1, 110	1, 227	1,619	+32
Copper: At primary smelting and refining plants (Cu content):					
Refinedthousand short tons_ Blister and material in processdo In fabricators' hands, refined, including in process	25 189	34 201	78 261	109 274	+40 +5
and primary fabricated shapes (Cu content) thousand short tons	361	390	437	430	-2
Purchased copper scrap, consumers (gross weight) thousand short tons	108	152	150	121	-19
Ferrous scrap and pig iron, at consumers' plants: Total scrapthousand short tons Pig irondo	7, 349 2, 536	7, 210 2, 289	7, 416 2, 355	8, 949 3, 817	+21 +62
Totaldo	9, 885	9, 499	9, 771	12, 766	+31
Fluorspar: At consumers' plantsdodododo	143. 8 26. 1	140. 6 54. 0	² 189 6 53. 9	227. 0 70. 6	+20 +31
Iron ore: At consumers' plantsthousand long tons. On Lake Erie docksdo	43, 139 6, 591	44, 358 6, 820	47, 292 2 4, 277	54, 182 5, 200	+15 +22
Totaldo	49, 730	51, 178	2 51, 569	59, 382	+15
Lead (Pb content): At smelters and refineries:					
Refined pig lead thousand short tons.	77. 9 14. 8	21. 2 9. 9	29. 4 11. 7	79. 7 11. 9	+171 +2
In base bullion, including in process at and in transit to refineriesthousand short tons In ore, matte, and in process at smeltersdo	47. 1 62. 1	47. 9 71. 8	40. 2 77. 9	37. 0 79. 4	-8 +2
Totaldo	201. 9	150. 8	159. 3	207. 9	+31
Consumers' stocks: Refined Antimonial Antimonial Antimonial Antimonial	82. 0 17. 6	73. 5 23. 1	73. 7 40. 2	75. 8 38. 0	+3 -5
In unmelted white-metal scrap, percentage metals, copper-base scrap, and drosses, residues, etc. ³	25. 0	20. 9	10. 1	8.7	-14
Total	124. 6	117. 5	124. 0	122. 4	-1
bonded warehouses (gross weight): Orethousand short tons Ferromanganese (excludes producers' stocks)do	1, 579 175	1,362 152	² 1, 274 155	1, 559 168	+22 +8
Mercury, in hands of consumers and dealers thousand 76-pound flasks	23. 3	9.1	21. 1	17.0	-19
Molybdenum primary products, producers' stocks (Mo content) thousand pounds	3, 430	3, 156	2, 812	5, 789	+106

See footnotes at end of table.

TABLE 19.—Selected physical stocks of mineral commodities of mineral manufacturers, consumers, and dealers in the United States at end of year, 1954-57-Con.

			8	19	57
Commodity and type of stock		1955	1956	Quantity	Change from 1956 (percent)
Nickel, consumers' plants: Metal 4 (Ni content) short tons In other forms, exclusive of scrap 5 (Ni content)		7, 017	9, 838	21, 130	+115
short tons	2, 146	2, 262	3,044	4, 203	+38
Total 4 (Ni content)do Purchased nickel scrap (gross weight)	10, 774 1, 627	9, 279 1, 404	12, 882 3, 142	25, 333 2, 113	+97 -33
Platinum-group metals, all forms, held by refiners, importers, and dealers: Platinum thousand troy ounces Palladium do Iridium, osmium, rhodium, and ruthenium do Iridium, and ruthenium do Iridium, and ruthenium do Iridium, and Iridium, a	115.3	304. 5 153. 1 45. 5	353. 8 163. 7 47. 0	307. 0 154. 0 46. 2	-13 -6 -2
Totaldo	401.8	503. 1	564. 5	507. 2	-10
Tin, consumers' plants: Pig tin, virgin, (includes in transit in United States, at other warehouses, and held by jobbers)					
In process (tin content)	14, 702 11, 164 547	18, 470 11, 552 915	18, 725 12, 156 2 584	22, 096 11, 904 654	+18 -2 +12
mated TiO2 content)thousand short tons Tungsten concentrate, consumers and dealers (W con-	369	345	2 385	545	+42
tent) thousand pounds. Zinc: Slab:	3, 913	3, 502	2,980	4, 103	+38
At primary smelters and secondary distilling plants thousand short tons. At consumers' plantsdo. Purchased zinc scrap, at consumers' plants	120. 5 103. 7	39. 3 123. 5	² 68. 6 105. 0	166. 7 86. 0	+143 -18
(gross weight)thousand short tons	34. 6	34.1	41.2	29. 0	-30

ing.

* Revised figure.

In 1956 and 1957 unmelted white-metal scrap, drosses, residues, etc., included in secondary smelter stocks

Seriap.
Includes quantities in transit to consumers' plants.
Revised on new basis. Not comparable with figures published in previous years.

TABLE 20.—Stocks of minerals at mines or in hands of primary producers, 1956-57

Commodity and unit	1956	1957	Change from 1956 (percent)
Antimony ore and concentrate	1 19, 180 2, 265 5, 465 1, 210	88 748 6 17, 445 2, 313 6, 536 3, 642 7, 093 1, 150 939 4, 423 157 18, 062 78 2, 084	-64 -34 -39 +20 +201 +143 -15 +27 +122 +32 -39 +225 +182

¹ Revised figure.

¹ Stocks in the National Strategic Stockpile or Reconstruction Finance Corporation stocks of tin or Government-held nonstrategic stockpiles of bauxite are not included. Figures do not add to totals owing to round-

Includes stocks of concentrate at plants making molybdenum products.

TABLE 21.—Estimated changes in stocks of selected minerals in custom bonded warehouses, Jan. 1, 1957–Dec. 31, 1957 ¹

(Short tons, unless otherwise stated)

Commodity	Estimated stock change		
	Component	Class	
Aluminum		-1, 239	
Bauxite. crude	-1.232		
Metal and alloys in crude form		-363	
Antimony	-363	-303	
Barite, crude	- 000	+88, 597	
Barite, crude		+154,876	
Cadmiumdo Cadmium flue dustdo	+4,850		
	+150,026		
Clay China clay or kaolin	+117, 228	+117, 228	
Copper (content)	T111, 220	+42, 950	
Copper ore and concentrate	+42,715	1 22,000	
Regulus, black, coarse	+836		
Refined ingots, plates, bars	-601		
Fluorspar, finished	-131, 618	-84, 665	
Acid grade Metallurgical grade			
Lead (content)	1 20, 300	-28, 107	
Lead (content) Ores, flue dust, matte, base bullion	-34, 369		
Pigs and bars	+6.862		
Manganese (content)		+476, 143	
Manganese ore, Battery grade Manganese ore, Metallurgical grade	+37, 041 +489, 379		
Ferromanganese and manganese-silicon	-50.277		
Ferromanganese and manganese-silicon		+1,793	
Mica, except scrappounds		+3, 574, 734	
Manufactureddo	+3, 385, 448		
Reex ports of foreign merchandise, both typesdo Molybdenumdo	-189, 286	+1, 236, 916	
Nickel		+2, 139	
Nickel alloy and metal, including scrap	+2, 139		
Nickel alloy and metal, including scrap. Tale and allied minerals. long tons. long tons		-22	
Tungsten ore and concentrate (W content)		-2,901	
Zinc (content)		-156, 316	
Zinc bearing ores			
TOTOMO, DEPO, OF STONE	-201		

¹ Estimated by the subtraction of "imports for consumption" and "reexports of foreign merchandise" from "general imports." All data from U. S. Department of Commerce. Minerals are those included in net-supply table, which enter bonded warehouses and changed during 1957.

TABLE 22.—Seasonally adjusted book value of inventory, primary metal industry and stone, clay, and glass, December 1954-56 and monthly 1957 ¹

(Million dollars)

Year and month	Primary metal	Stone, clay, and glass	Year and month	Primary metal	Stone, clay, and glass
1954: December 1955: December 1956: December 1957: December January February March April	3, 138 3, 420 3, 975 4, 269 3, 962 4, 071 4, 102 4, 114	917 1,013 1,171 1,270 1,156 1,170 1,174 1,209	1957: May	4, 192 4, 207 4, 245 4, 326 4, 344 4, 356 4, 279	1, 240 1, 254 1, 239 1, 210 1, 251 1, 273 1, 274

¹ U. S. Department of Commerce, Office of Business Economics, Survey of Current Business: Vol. 38, February 1958 and May 1958, and earlier issues.

486221-58-3

LABOR AND PRODUCTIVITY

Employment.—Total employment held up relatively well in the mineral industries during 1957, in line with the stability in production. Employment in the copper and lead and zinc industries, however, dropped persistently during 1957; the average for 1957 was 500 and 700 employees lower, respectively, than in 1956. These declines were more than offset by the increase of 2,800 employees in the iron-ore industry. Employment in the smelting and refining of nonferrous metals remained virtually stable compared with 1956, but in blast furnaces, steel works and rolling mills it rose substantially. The increase in the iron-ore and steel industries employment as compared with 1956 were affected to some degree by the strikes during the summer of 1956, but the 1957 levels were also higher than 1955 when there was no strike. The major changes in employment for 1957 over 1956 follow:

All industries	+1
A11 ID01081/IP8	T 1
Mining (including fuels)	+3
Metals and minerals (except fuels)	+1
Metal mining	+1
Nonmetallic mining and quarrying	+1
Fuels	+4
Mineral manufacturing 1	+1

¹ Based upon categories listed under "Mineral Manufacturing" in table 23.

Employment in the lead- and zinc-mining industries decreased beginning in May; in copper mining it began to decline in August. Total metal-mining employment turned downward in August, but employment in the nonmetallic-mining and quarrying industry did not fall until September, after its usual seasonal upturn during the summer months.

Total Wages and Salaries.—Wage and salary income rose 3 percent over 1956 but did not match the 12-percent increase in 1956. All categories of mining shared the lower rate of increase, and the primary metal industries also felt the impact of the business recession.

Hours and Earnings.—Average weekly hours of production workers dropped below 1956 to match 1954—42.4. However, total weekly earnings rose as a result of continued increases in hourly earnings. Both the copper and the lead and zinc industries declined in hourly earnings as well as in weekly hours.

The declines in mining were not found in the nonferrous smelting and refining industries. Although the drop in weekly hours was general throughout the mineral-manufacturing industries, both weekly and hourly earnings increased over 1956. The rates of increase, especially in the primary smelting and refining of copper and lead and zinc, were substantially less than those for 1956 over 1955. As in employment, these data on hours and earnings show the relatively large decreases in the nonferrous-metal industries during the 1957 recession.

Labor-Turnover Rates.—The 1957 total accession rate and layoff rate reflect the weakness in the nonferrous mineral industries. The copper- and lead-zinc-mining layoff rate increased sharply over 1956

TABLE 23.—Total employment in the mineral industries (nonfuel) in the continental United States, 1954-57, by industry ¹

(In thousands)

	Mining						
Year and month	Total Non-metallic mining and quarrying			Metal			
		Total 2	Iron	Copper	Lead and zinc		
1954	204. 4	105. 1	99.3	35. 2	27.9	16.4	
1955	208.0 3 224.5	107. 0 3 116. 2	101. 0 3 108. 3	33. 7 34. 6	29. 2 8 33. 3	16. 6 3 17. 4	
1956 1957:	224. 5	110.2	100.3	- 04E. U	* 55. 5	111.3	
January	222.0	111.8	110.2	35. 1	33. 6	18. 3	
February	220. 2	110.0	110.2	34.9	33. 7	18. 3	
March	222.0	111.8	110.2	34. 8	33. 9	18. 3	
April	226. 1	115.3	110.8	36.1	33. 5 33. 0	18.2	
May	230. 1 231. 1	118. 2 118. 7	111. 9 112. 4	38. 2 38. 9	33. 4	17. 4 17. 5	
June	231. 1	119.2	113. 4	39. 3	33. 4	16.8	
JulyAugust	233. 5	121.3	112.2	40. 1	32. 8	15. 9	
September	231. 3	121. 2	110.1	39. 6	32. 0	15. 4	
October	225. 8	120. 1	105. 7	38. 1	30. 3	14.9	
November	223. 2	118.7	104. 5	36. 9	30. 3	14.7	
December	220. 1	116.1	104.0	35. 9	30. 3	15.3	
Year (average)	226. 5	116.8	109. 7	37. 4	32. 5	16.7	

	Mineral manufacturing					
Year and month	Fertilizers	Cement,	Blast fur- naces, steel works, and		d refining of us metals	
			rolling mills	Primary	Secondary	
1954 1955 1956 1957: January February March April May June July August September October November December Year (average)	34. 4 36. 7 42. 0 44. 9 42. 5 33. 5 30. 5 31. 0 33. 3 32. 6	41. 4 42. 6 43. 4 42. 3 42. 4 42. 2 42. 6 41. 5 29. 7 41. 6 43. 1 42. 5 42. 1 42. 5 42. 1	580. 8 635. 3 3 630. 6 661. 8 662. 2 659. 5 654. 6 651. 5 652. 1 648. 9 648. 4 641. 7 629. 7 616. 4 599. 3 643. 7	62.3 63.8 867.5 70.3 68.5 68.9 67.9 67.9 66.0 64.6 64.6 64.3	12. 4 12. 7 2 14. 3 14. 5 14. 5 14. 4 14. 4 14. 1 13. 9 14. 1 13. 9 13. 8 14. 8	

¹ U. S. Department of Labor, Bureau of Labor Statistics. Published in the Monthly Labor Review, Employment and Payrolls, and other publications. Data are based on reports from cooperating establishments covering both full- and part-time employees who worked during, or received pay for, any part of the pay period ending nearest the 15th of the month. Data are for "all employees," those for "production and related workers" are also available in the above publications.

² Includes other metal mining, not shown separately.

³ Revised figure.

TABLE 24.—Wages and salaries in the mineral industries in the United States, 1956-57

(Million dollars)

Industry	1956 1	1957 2	Industry	1956 1	1957 2
Mining Nonfuel mining Metal mining Nonmetallic mining and quarrying	4, 088 1, 127 588 539	4, 230 1, 163 608	Mining—Continued Fuel mining Manufacturing Primary metal industries	2, 961 77, 629 7, 200	3, 067 80, 000 7, 370

¹ U. S. Department of Commerce, Office of Business_Economics, Survey of Current Business: Vol. 37, No. 7, July 1957, p. 16,

² Estimated by author from data on employment, hours, and earnings. No longer published as part of the National Income Issue of the Survey of Current Business.

TABLE 25.—Average hours and gross earnings of production and related workers in the mineral industries (nonfuel) in continental United States, 1954-57, by industries ¹

					Mining						
		Total 2				M	etal				
Year					Total 3			Iron			
	Weel	rly—	Hourly	Weel	cly—	Hourly	Weekly-		Hourly		
	Earnings	Hours	earnings	Earnings	Hours	earnings	Earnings	Hours	earnings		
1954 1955 1956 1957	\$80. 85 86. 54 4 91. 03 93. 10	42. 4 43. 4 43. 4 42. 4	\$1. 91 2. 00 2. 10 2. 20	\$84, 46 92, 42 4 96, 83 98, 98	40. 8 42. 2 4 42. 1 40. 9	\$2.07 2.19 2.30 2.42	\$82. 03 92. 46 4 96. 71 104. 01	37. 8 40. 2 4 39. 8 39. 7	\$2. 1 2. 3 2. 4 2. 6		
Year		Metal—Continued						Nonmetallic mining and			
<u>.</u>		Copper		L	ead and zir	ne		quarrying			
1954 1955 1956 1957	\$87. 13 95. 70 4 100. 28 98. 23	42. 5 44. 1 4 43. 6 41. 1	\$2.05 2.17 42.30 2.39	\$76. 92 83. 82 4 89. 24 89. 19	40.7 41.7 441.7 41.1	\$1.89 2.01 42.14 2.17	\$77. 44 80. 99 85. 63 87. 60	44. 0 44. 5 44. 6 43. 8	\$1.70 1.8 1.90 2.00		
				Miner	al manufac	turing					
Year		Fertilizer		Cem	Cement, hydraulic			Blast furnaces, steel works, and rolling mills ⁵			
1954 1955 1956 1957	\$61. 48 63. 75 4 67. 68 71. 66	42. 4 42. 5 42. 3 42. 4	\$1.45 1.50 4 1.60 1.69	\$75. 71 78. 85 4 83. 84 87. 91	41.6 41.5 41.3 40.7	\$1. 82 1. 90 2. 03 2. 16	\$83. 38 95. 99 4 102. 06 104. 40	37. 9 40. 5 40. 5 39. 1	\$2, 20 2, 3 4 2, 5 2, 6		
Year	Electrome	etallurgical	products		Other		Primary si of non	melting an ferrous me			
1954 1955 1956 1957	\$80. 20 87. 14 4 88. 44 93. 43	40. 3 41. 3 40. 2 40. 1	\$1. 99 2. 11 2. 20 2. 33	\$83. 16 96. 39 102. 47 104. 79	37. 8 40. 5 40. 5 39. 1	\$2. 20 2. 38 2. 53 2. 68	\$80.00 84.45 91.46 95.41	40. 2 40. 6 41. 2 40. 6	\$1. 99 2. 09 2. 29 2. 39		
Year		melling an er, lead, ar		Primary refining of aluminum			Secondary smelting and rei				
1954 1955 1956	\$76. 80 81. 61 4 89. 02 90. 13	40. 0 40. 6 41. 6 40. 6	\$1. 92 2. 01 4 2. 12 2. 22	\$84. 84 88. 88 95. 34 103. 68	40. 4 40. 4 40. 4 40. 5	\$2. 10 2. 20 2. 36 2. 56	\$74. 80 82. 03 4 85. 04 87. 53	41. 1 42. 5 4 42. 1 40. 9	\$1. 82 1. 93 4 2. 02 2. 14		

The restriction of The Contraction

U. S. Department of Labor, Bureau of Labor Statistics, Monthly Labor Review: Vol. 81, No. 3, March 1988, table C-1, p. 327ff and earlier issues.
 Weighted average of data for metal mining and nonmetallic mining and quarrying, computed by author of chapter, using figures for production workers as weights.
 Includes other metal mining, not shown separately.
 Revised figure.
 Italicized titles that follow are components of this industry.

while the accessions rate dropped substantially. Iron-ore mining was a relatively strong factor but did show a lower accession rate and a slightly higher layoff rate as compared with 1956. For total metal mining the decrease in the accession rate and the increase in the layoff rate were much greater than those shown for total manufacturing.

Productivity.—Productivity increased slightly in the copper-ore industry but decreased in the iron-ore industries. The rise was striking in recoverable metal per man-hour in the copper-ore industry,

TABLE 26.—Monthly labor-turnover rates in the mineral industries, 1956 average. and 1957 by months 1

(Per 100 employees)

	All	Hydraulic	Blast furnaces, steel	Primary smelting and refining of		Metal	mining	
Turnover rate	manu- facturing	cement	works, and rolling mills	nonferrous metals: copper, lead, zinc	Total metal mining	Iron mining	Copper mining	Lead and zinc mining
Total accession rate: 1956 average 1957:	3. 4	1.9	1.7	2. 2	3.8	1.9	4.1	3.0
January February March April May June	2. 8 2. 8 3. 0 3. 9	1. 4 1. 2 1. 6 1. 5 2. 3 3. 1	1.6 1.3 1.2 1.3 1.4 2.5	1.7 1.4 1.2 1.9 2.3 2.7	3. 2 2. 4 2. 5 2. 9 2. 8 4. 1	1.0 .6 1.0 1.2 .6 1.6	4.1 2.9 2.4 2.6 2.5 2.8	2. 1 1. 5 1. 7 2. 4 2. 3 5. 2
July August September October November December	3.3 2.9 2.2 1.6	2.3 3.0 1.8 1.4 .9	1. 5 1. 3 1. 1 1. 1 . 7 . 8	1.4 1.4 2.1 1.3 1.1	2.2 2.4 2.1 2.2 1.3 1.1	.8 .7 .6 .4	2.4 2.3 1.5 2.5 1.9	1.5 1.0 1.2 1.4 1.0 2.6
1957 average Total separation rate: 1956 average	2. 9 3. 5	1.7 1.9	1.3 1.5	1. 7 2. 1	2. 4 3. 6	.8 1.7	2. 4 4. 1	2.0 2.9
1997: January February March April May June July August September October November 1957 average Lavoff rate:	3. 3 3. 0 3. 3 3. 3 3. 4 3. 0	2.1 1.5 1.1 1.4 1.6 2.3 1.7 2.4 3.1 1.4 2.0 4.8 2.1	1. 2 1. 3 1. 7 2. 1 1. 8 1. 5 2. 1 1. 9 3. 2 3. 0 3. 7 3. 5 2. 3	1.7 1.8 1.7 2.3 2.4 2.3 2.4 2.0 2.0 2.0 2.2 2.2 2.2	3.17 3.61 3.27 4.12 3.27 4.42 4.23 3.6	.8 1.3 1.0 1.2 .6 .7 1.8 2.9 1.2 5.8 1.6	3.3.4.4.5.2.0.0.6.6.6.6.2.5.4.4.6.6.3.3.4.	2. 4 1. 6 5. 3 3. 5 2. 9 4. 1 7. 8 8 2. 8 1. 8 3. 5
Layoff rate: 1956 average 1957: January February March April May June July August September October November December 1957 average	1.5 1.4 1.5 1.5 1.1 1.4 1.6 2.3	.4 1.1 .7 (2) .5 1.0 .4 .3 .6 .3 1.1 4.1	.3 .2 .4 .7 1.1 .8 .5 1.2 .8 1.4 2.2 3.0 3.0	.2 .2 .4 .1 .3 .6 .1 1.1 1.5 .7 .5 1.3	.4 .4 .9 .3 .5 1.7 2.2 2.5	.7 .8 .3 .2 .5 .3 .2 .3 .4 .2 .3 .3 .4 .2 .3 .5 .5 .5 .6 .6 .6 .6 .6 .6 .6 .6 .6 .6 .6 .6 .6	.1 .1 .2 .1 .3 1.4 3.7 1.1 1.1	.6 .5 .5 2.6 .7 2.3 5.6 1.1 1.5 2.0

U. S. Department of Labor Bureau of Labor Statistics Monthly Labor Review: various monthly issues, table B-2.
 Less than 0.05.

well above the previous high in 1955, but the index per production worker did not rise.

The computed index of production per man-hour for lead and zinc showed a slight rise in productivity, 104 in 1957, compared with 102 in 1956.21

TABLE 27.—Labor-productivity indexes for copper- and iron-ore mining, 1948-52 (average) and 1953-57 1

(1947)	_40-	. 100

	Cor	per	Iron Crude ore mined per—		
Year	Crude ore r	nined per—			
	Production worker	Man-hour	Production worker	Man-hour	
1948-52 (average) 1953 1954 1955 1956 1956	119. 9 114. 4 134. 2 135. 4	111. 3 115. 5 118. 8 134. 3 137. 2 3 149. 0	111.0 122.6 2 99.3 132.7 2 133.1 3 131.4	107. 5 116. 9 2 106. 1 133. 4 2 135. 3 3 134. 4	
	Recoverable	metal 4 per—	Recoverable	metal per	
Year	Production worker	Man-hour	Production worker	Man-hour	
1948–52 (average) 1953. 1954. 1955. 1956.	112. 2 104. 0 121. 8 116. 1	109. 3 108. 2 108. 1 122. 0 117. 6 127. 3	107. 3 114. 2 87. 4 118. 2 2 109. 6 107. 0	104. 0 108. 9 93. 4 118. 9 2 111. 4 109. 5	

U.S. Department of Labor, Bureau of Labor Statistics, Monthly Labor Review: February 1956, vol. 79, No. 2, and later reports.

Revised figure.

PRICES AND COSTS

Prices.—The price indexes for the mineral categories listed in table 28 showed the spotty nature of the mineral markets during 1957. The nonferrous metals and iron- and steel-scrap indexes both dropped 12 percent for the year; the January to December fall in iron and steel scrap reached 44 percent. The 1957 experience contrasted strongly with 1956, when all indexes increased substantially.

Costs.—Indexes of cost items rose during the year, except for lumber, indicating that the spread between price and cost for many minerals, especially the nonferrous group, narrowed during 1957.

Relative Labor Costs.—The index of labor cost per pound increased for iron-ore mining, dropped for copper-ore mining, and remained stable for lead-zinc-ore mining. However, owing to the softening in price for the nonferrous group, the index of labor costs per dollar of recoverable metal increased for each industry, increasing 22 points in copper-ore mining, 16 points in lead-zinc-ore mining, and 3 points in

³ Preliminary.

4 Figures refer to usable ore rather than recoverable metal. For iron ore, usable ore is that product with the desired iron content (by selective mining, mixture of ores, washing, jigging, concentrating, sintering, etc.).

²¹ Index computed by author of chapter. See Review of the Mineral Industries, Minerals Yearbook, 1956, pp. 19-20, for description of index.

iron-ore mining. The lead-zinc-ore mining index was at its highest point since 1949, and the copper-ore-mining index equaled that for 1953-54.

TABLE 28.—Price relatives for selected metals and mineral commodities, January and December 1956, and annual averages, 1956 and 1957 1

(1947-49=100)

Commodity	19	57	Change from	Annual a	Change from		
	January	December	January (percent)	1956 1957		(percent)	
Iron ore	172. 9 149. 2 164. 3 148. 7 150. 6 127. 1 134. 6	182. 4 83. 6 166. 5 130. 6 155. 1 127. 1 136. 9	+5 -44 +1 -12 +3 0 +2	173. 0 132. 4 154. 7 156. 1 148. 0 127. 1 130. 6	181. 7 116. 9 166. 2 137. 4 154. 0 127. 1 136. 0	+5 -12 +7 -12 +4	
Building lime, insulation material and asbestos cement shingles————————————————————————————————————	124. 3 105. 9 116. 9	131. 1 107. 8 118. 5	+5 +2 +1	123. 4 108. 4 114. 3	128. 0 106. 8 117. 6	+4 -1 +3	

¹ U. S. Department of Labor, Bureau of Labor Statistics, Wholesale Price Index: Annual and monthly releases. Also published currently in Monthly Labor Review.

TABLE 29.—Price relatives for selected cost items in nonfuel mineral production, January and December 1956, and annual averages, 1956 and 1957 ¹
(1947-49=100)

Commodity	1957		Change from	Annual a	Change from	
	January	December	January (percent)	1956	1957	1956 (percent)
Coal	124. 1 159. 1 119. 9 124. 9	122. 9 161. 9 120. 7 123. 5	-1 +2 +1 -1	114. 4 149. 7 114. 3 118. 2	124. 4 161. 7 116. 1 127. 0	+9 +8 +2 +7 +2
Industrial chemicals Lumber Explosives	123. 5 122. 6 133. 8	123. 9 116. 4 139. 5	(2) -5 +4	121. 4 127. 2 130. 5	123. 5 119. 7 136. 7	+2 -6 +5
Construction machinery and equipment	156. 2	165.3	+6	148. 6	160.0	+8

¹ U. S. Department of Labor Bureau of Labor Statistics, Wholesale Price Index: Annual and monthly releases. Also published currently in Monthly Labor Review.

² Less than 0.5 percent.

Index of Mining Expenses.—The following index represents the changes in major expense items, 1950-57 (1947-49=100) and uses weights derived from the 1954 Census of Mineral Industries and data in tables 29 and 30. The index does not represent changes in total costs of mining as it excludes capital cost and contract work. It does, however, gage the impact of labor cost and productivity and changes in prices of items used by the mining industry. The Index of Mining Expenses for the 8-year period (1947-49=100) is:

1950	96. 21	1954	127. 6
1951	105. 6	1955	119. 7
1952	113. 1	1956	
1953	120. 1	1957	132. 9

TABLE 30.-Indexes of relative labor costs, copper-, lead-zinc-, and iron-ore mining, 1949-57

(1949 = 100)

Year	Index of labor costs per pound		Index of value of recoverable			Index of labor costs per dollar			
	of recoverable metal ¹		metal per man-hour ²			of recoverable metal ³			
	Copper	Lead- zinc	Iron ore	Copper	Lead- zinc	Iron ore	Copper	Lead- zine	Iron ore
1949	100	100	100 96	100 128	100 109	100 114	100	100 94	100
1951	97	112	100	146	130	132	77	87	8 9
1952	108	124	115	146	116	130	86	105	
1953	122	122	129	160	89	150	82	137	9'
1954	126	120	153	166	89	130	82	135	11:
1955	118	124	128	235	102	168	61	125	9:
956	129 125	133 133	141 153	254 193	106 96	172 180	60 82	128 144	9

Index computed by author from data in tables 25 and 27.
 Index computed by author from data in table 27, multiplied by price of electrolytic copper, average lead and zinc, and iron ore, and rebased.
 Index computed by author using the above index of value and data in table 25.

INCOME

National Income Originated.—Metal mining declined sharply in national income originated in 1957 as compared with 1956. decrease contrasted strongly with the increases in 1955 and 1956 and illustrates again the wide cyclical swings characteristic of the metal-mining industry. Nonmetals also decreased, but only by about one-third as much. Although the national income originated in mining, except fuels, was still above the 1954 figure, the share of the total dropped below that in 1954.

TABLE 31.—National income originated in the mineral industries in the United States, $1955-57^{-1}$

(Million dollars)

	Income							
Industry	1955 \$	1956 3	1957	Change from 1956 (percent)				
All industries. Metal mining. Nonmetallic mining and quarrying. Total mining except fuels. Total mining including fuels. Primary metal industries. Stone, clay, and glass products.	330, 206 990 763 1, 753 5, 609 10, 176 3, 792	349, 356 1, 095 844 1, 939 6, 265 11, 105 4, 031	363, 951 847 781 1, 628 6, 191 11, 229 3, 957	+4 -23 -7 -16 -1 +1 -2				
(Percent)	······································						
All industries	100 .30 .23 .53 1.69 3.08 1.15	100 .31 .24 .56 1.79 3.18 1.15	100 . 23 . 21 . 45 1. 70 3. 09 1. 09					

¹ U. S. Department of Commerce, Office of Business Economics, Survey of Current Business, July 1958, p. 9, T. 6. In arriving at national income, depletion charges are not deducted. This affects the data for the mining industries.

2 Revised figures.

Business Failures.—The number of mining failures increased sharply in 1957 as compared with 1956, and the current liabilities of those firms that failed increased. The experience in mining approximated that in all industrial and commercial industries.

TABLE 32.—Industrial and commercial failures and liabilities, 1955-571

Industry	1955	1956	1957
Mining: 2 Number of failures. Current liabilities (thousand dollars). Manufacturing: Number of failures. Current liabilities (thousand dollars). All industrial and commercial industries: Number of failures. Current liabilities (thousand dollars).	55	42	75
	5, 156	8, 193	11, 588
	2, 147	* 2, 243	2, 336
	151, 789	183, 037	185, 253
	10, 969	12, 686	13, 739
	449, 380	562, 697	615, 293

Dun & Bradstreet, Inc., Monthly Business Failures: New York, N. Y., Jan. 23, 1958, p. 2.

² Including fuels. Revised figure.

INVESTMENT

New Plant and Equipment.—The expenditure for new plant and equipment by fuel- and nonfuel-mining firms was almost the same as in 1956. Unlike 1956, however, the expenditure rate turned sharply downward in the last quarter of 1957, reflecting the dropoff in demand resulting from the recession. Manufacturing firms as a whole spent over \$1 billion more in 1957 for new plants and equipment than in 1956; this contrasted with the \$3.5 billion increase between 1955 and 1956. The expenditure of firms manufacturing stone, clay, and glass products declined.

Issues of Mining Securities.—The mining industry (including fuels) was the source of only 2.2 percent of all new corporate securities offered in 1957, as compared with 4.2 percent in 1956, 4.1 percent in 1955, and 5.7 percent in 1954. Quite significant was the continued shift away from common stocks in the mining industries—a drop to 27 percent from 34 percent in 1956 and 50 percent in 1955. The total gross proceeds from securities offered in 1957 was \$166 million lower than in

TABLE 33.—Expenditures on new plant and equipment by firms in mining and selected mineral manufacturing industries, 1955-57 1

	(1	Million d	оцаrs)				
Industry	1955	1956	1957	1957			
				January- March	April- June	July- Septem- ber	October- Decem- ber
Mining 3	957 11, 439 863 214 498 1, 016 2, 798	1, 241 14, 954 1, 268 412 686 1, 455 3, 135	1, 243 15, 959 1, 722 814 572 1, 724 3, 453	300 3, 505 327 147 135 353 728	327 4, 183 437 217 156 435 892	314 4,010 452 223 139 440 894	302 4, 261 506 227 142 496 939

¹ Office of Business Economies, U. S. Department of Commerce, Survey of Current Business: Vol. 38, No. 3, March 1953, p. 12.
³ Including fuels.

1956 for the mining group, a 36-percent drop, compared with the 16percent increase in the manufacturing group. In this area the mining industry was affected relatively strongly by the general business recession.

TABLE 34.—Estimated gross proceeds of new corporate securities offered for cash in the United States in 1957 1

	Total corporate		Manufacturing		Mining 2	
Type of security	Million dollars	Percent	Million dollars	Percent	Million dollars	Percent
BondsPreferred stock.	9, 957 411 2, 516	77 3 20	2, 858 94 1, 282	68 2 30	204 6 79	71 2 27
Total	12, 884	100	4, 234	100	289	100

¹ U. S. Securities and Exchange Commission, Statistical Bulletin: Vol. 17, No. 5, May 1958, p. 10. Substantially all new issues of securities offered for cash sale in the United States in amounts over \$100,000 and with terms to maturity of more than 1 year are covered in these data.

² Including fuels.

Prices of Mining Securities.—The mining-company common-stock annual average price index for 1957 dropped somewhat more than the composite index or the manufacturing index. Even so, the mining index was well above that in 1955. When compared with the 1956 average, the 1957 averages were down 4.2 percent for mining, 3.7 percent for manufacturing, and 3.9 percent for the composite.

TABLE 35.—Indexes of common-stock annual average prices, 1953-57 1

(1939=100)			
Year	Composite 2	Manufac- turing	Mining 3
1953	193. 3 229. 8 304. 6 345. 0 331. 4	220. 1 271. 3 374. 4 438. 6 422. 1	240. 5 267. 0 312. 9 357. 5 342. 4

¹ Council of Economic Advisers, Economic Indicators (prepared for the Joint Committee on the Economic Report): June 1958, p. 30. These indexes are yearly averages of the weekly closing price indexes of common stock on the New York Stock Exchange, published currently in the U. S. Securities and Exchange Commission Monthly Statistical Bulletin.

² Covers, in addition to mining and manufacturing, transportation, utilities, and trade, finance, and service.

Foreign Investment.—The book value of United States (net) direct private investment in mining and smelting in foreign countries increased \$235 million during 1957. The largest increase (\$56 million) occurred in Canada, with Peru (\$38 million) and Mexico (\$25 million) the next in importance. Net capital movements contributed over 75 percent of the increase in book value, as compared to 50 percent in 1956 and 36 percent in 1955. Undistributed earnings of subsidiaries were lower than in 1956 (down 31 percent), net capital movements were higher (up 86 percent), and the total was higher (up 29 percent). The increase in investment in mining and smelting was considerably greater than the 10 percent rise for

all industries.

TABLE 36.—Direct private investments of the United States in foreign mining and smelting industries, 1957 1

(Million dollars; net inflows to the United States (-))

	Mining and smelting				All industries			
Country	Book value, begin- ning of year ?	Net capital move- ments	Undistributed earnings of subsidiaries	Book value end of year	Book value, begin- ning of year ²	Net capital move- ments	Undis- tributed earnings of sub- sidiaries	Book value end of year ²
Canada Latin American republics: Chile Mexico Peru	940 434 166 221	39 25 15 37	17 -2 10 1	996 457 191 258	7, 460 676 690 343	584 24 61 47	274 2 36 10	8, 332 702 787 400
Total *	1, 096 45 121 84 113	130 1 5 2 1	12 7 6 6 12	1, 238 50 132 92 126	7, 459 3, 520 805 288 2, 645	1, 104 254 66 -15 79	251 236 34 31 191	8, 805 3, 993 906 305 2, 911
Total, all areas	2, 399	177	61	2, 634	22, 177	2,072	1, 017	25, 252

¹ U. S. Department of Commerce, Office of Business Economics, Survey of Current Business: Vol. 38, No. 9, September 1958. Figures may not add to totals owing to rounding. All figures are preliminary except as footnoted.
² Final figures.

Includes countries not shown above.

TRANSPORTATION

Statistical transportation data for 1957 were not available when this chapter was prepared. There is no reason to believe that the patterns shown in the 1956 Review chapter were substantially changed.

TABLE 37.—Indexes of average freight rates on carload traffic, 1955-56, and average revenue per ton, originated or terminated, 1954-56, in the United States

Item	Indexes 1 (1950=100)		Average revenue per ton ² (dollars)		
	1955	1956	1954	1955	1956
Products of mines	107	110	2.82	2. 78	2. 90
Iron ore	110	115	1.83	1.84	2.0
Clay and bentonite	114	119	6.09	6.35	6. 58
Sand, industrial	108	113	2.88	2.82	3.0
Orovol and gand n o g	100	110	1.22	1, 25	1. 29
Stone and rock, broken, ground and crushed	108	111	1.53	1. 52	1. 5
Fluxing stone and raw dolomite	113	117	1. 52	1.50	1. 58
Salt	108	109	6.32	6. 24	6. 3
Phosphate rock	105	108	2.99	2. 56	2. 33
Mineral manufactures and miscellaneous	108	112	10.92	10. 54	10. 68
Fertilizers, n. o. s	111	112	5.81	6.07	7. 62
Iron, pig	114	117	3.83	4. 20	4. 49
Iron, pig	104	102	4. 51	4. 26	4. 14
Lime, n. o. s Scrap iron and scrap steel	111	116	5. 73	5. 62	5. 7
Scrap iron and scrap steel	108	113	3.75	3, 62	3. 9
Furnace slag	105	109	1.73	1.71	1.8
Nonmineral categories:					
Products of agriculture	109	112	8.58	8.38	8. 4
Animals and products	112	116	21.87	21. 78	22.34
Products of forests		117	7.85	7.83	7. 5
Forwarder traffic		115	38. 74	38. 57	40.6
All commodities	108	112	6.48	6. 23	6. 3

¹ U. S. Interstate Commerce Commission, Bureau of Transport Economics and Statistics, Index of Average Freight Rates on Railroad Carload Traffic 1948-56: Statement R1-1, 1948-56, March 1958. Indexes

Average r reigni Rates on Rauroad Carload Traitic 1948-56: Statement R1-1, 1948-56, March 1958. Indexes are based on the Commission's 1-percent waybill sample.

\$\frac{1}{2}\$ U. S. Interstate Commerce Commission, Bureau of Transport Economics and Statistics, Freight Commodity Statistics, Class 1 Steam (sie) Railways in the United States: Statement 55100, 1954; 56100, 1955; and 57100, 1956, Table 5.

Construction on the St. Lawrence Seaway continued, and its partial completion will alter mineral-transportation routes. Mineral commodities (except fuels) most likely to be directly affected are iron ore and other minerals associated with steel manufacture.

Freight Rates.—The 1957 indexes are not yet available. Freight rates increased across the board in 1956 compared with 1955. Cement is the only category in table 36 to decline. The index for all products of mines rose 3 percent; iron ore and sand and gravel increased 5 percent. Ocean freight rates are discussed in the World Review section.

FOREIGN TRADE

Value.—The total value of nonfuel minerals and metals imported in 1957 rose slightly over the 1956 total, but the value of exports declined. The entire increase in import value was furnished by the

TABLE 38.—Value of minerals and mineral products imported and exported by the United States, 1955–57, by commodity groups and commodities, (thousand dollars)

[U. S. Department of Commerce]

		- · · · · · · ·					
SITC number	Group and commodity	Import	s for consur	nption 2	Exp	orts of dom nerchandise	estic 3
		1955	1956 4	1957	1955	1956 4	1957
	CRUDE METALLIC MINERALS 5						
281-01 282-01	Iron ore and concentrates Iron and steel scrap Ores of nonferrous base metals and concentrates:	177, 345 7, 051	250, 855 11, 331	285, 062 10, 168	36, 993 177, 526	48, 805 300, 620	49, 227 217, 938
283-07 283-11 283-06	Manganese Tungsten Tin	71, 835 56, 155 36, 773	66, 975 58, 011 9, 423	99, 828 34, 525 118	612 65	664 225	724 227
283-01 283-08 283-05 283-03	Copper Chromium Zine Bauxite (aluminum ore)	77, 868 37, 854 39, 556	65, 213 49, 349 53, 110	70, 238 55, 661 89, 075	7, 326 76	11, 648 99 162	9, 964 53 1
283-04 6 283-19 283-02	and concentrates Lead Columbium Nickel	36, 629 38, 272 19, 852 3, 264	44, 414 51, 666 8, 387 4, 638	60, 951 61, 617 3, 038 5, 300	528 5 10	834 340 9 556	4, 847 257 44
6 283-19 6 283-19	Titanium: Ilmenite Rutile	7, 031 1, 984	9, 198 7, 148	10, 317 11, 843	} 194	312	278
\$ 283-19 \$ 283-19 \$ 283-19	Cobalt Molybdenum Other Nonferrous metal scrap;	5, 759 142 11, 016	3, 737 	1, 320 55 11, 516	15, 783 1, 887	21, 296 202	32, 428 683
284-01	AluminumOld and scrap copper Old brass and bronze and	16, 364 9, 058	10, 770 3, 463	5, 396 3, 039	6, 501 20, 560	8, 127 20, 056	6, 435 28, 414
	clippings Other, not elsewhere in-	5, 145	3, 003	2, 393	7 24, 507	7 29, 814	⁷ 32, 968
285-02	cluded Platinum-group metals	6, 916 15, 801	9, 839 15, 606	4, 932 11, 240	7, 030	5, 946	5, 852
	Total crude metallic minerals	681, 670	748, 903	837, 632	299, 603	449, 715	390, 340
	METALS (UNWROUGHT) 58						
681-01 681-02	Pig iron and sponge iron Ferroalloys:	15, 849	19, 108	14, 525	2, 056	15, 250	57, 158
	Ferromanganese Ferrochromium Other	12,022 8,012 3,394	28, 500 11, 403 3, 861	60, 232 14, 460 4, 512	643 2, 267 3, 325	682 2, 891 4, 836	1, 869 2, 419 3, 639
682-01 687-01 684-01	Copper Tin Aluminum	335, 721 141, 787 74, 695	383, 965 145, 835 100, 137	276, 554 130, 739 107, 339	152, 384 504 2, 773	191, 452 821 19, 109	212, 515 1, 526 14, 051
683-01 686-01	Nickel (including scrap)Zine	149, 522 46, 638	153, 888 65, 034	156, 786 63, 947	4, 203	2, 540	2, 618

See footnotes at end of table.

TABLE 38.—Value of minerals and mineral products imported and exported by the United States, 1955-57, by commodity groups and commodities,1 (thousand dollars)—Continued

SITC number	Group and commodity	Import	Imports for consumption 2			Exports of domestic merchandise 3			
	1955	1956 4	1957	1955	1956 4	1957			
	METALS (UNWROUGHT)—con.								
685-01	Lead[Cobalt	74, 753 38, 585	81, 111 32, 910	89, 993 32, 559	154 (9)	1,300 (9)	1, 345 (9)		
689-01	MercuryOther nonferrous base metals	5, 149 13, 575	11, 010 17, 073	9, 333 32, 643	155 11, 028	284 12, 349	484 9, 479		
671-02	Platinum-group metals, includ- ing unworked and partly	i.							
	worked	32, 361	42, 149	24, 492	2, 724	3, 927	2,804		
	Total metals and	952, 063	1, 095, 984	1, 018, 114	182, 216	255, 441	309, 907		
	metallic minerals	1, 633, 733	1, 844, 887	1, 855, 746	481, 819	705, 156	700, 247		
	CRUDE NONMETALLIC MINERALS (EXCEPT FUELS)			N.					
6 672-01 6 272-07	Diamonds: Gems, rough or uncut Industrial	76, 735 66, 051	75, 796 73, 989	77, 142 50, 870	785 16	675 98	424 544		
272-12	TotalAsbestos, crude, washed or	142, 786	149, 785	128, 012	801	773	968		
271-02 272-13	groundSodium nitrateMica, unmanufactured (in-	60, 958 21, 699	61, 472 16, 337	60, 140 17, 107	236 553	338 210	340 182		
6 272-14	cluding scrap) Fluorspar Stone for industrial uses, ex-	10, 862 8, 540	11, 232 11, 225	10, 910 16, 031	35 65	92 31	46 81		
272-11 272-06	cept dimensionSulfurPhosphates, natural, ground or	7, 106 612	9, 051 5, 274	8, 882 12, 232	738 51, 068	711 50, 081	763 44, 966		
271-03 272-04	Clay	2, 703 2, 941	2, 626 2, 971	3, 090 2, 938	20, 302 10, 891	25, 704 12, 593	28, 189 13, 528		
(10)	Other nonmetallic minerals (except fuels)	20, 473	23, 971	30, 884	22, 011	24, 930	26, 590		
	Total crude non- metallic minerals								
	(except fuels)	278, 680	293, 944	290, 226	106, 700	115, 463	115, 653		
	Grand total, minerals and metals (except fuels)	1, 912, 413	2, 138, 831	2, 145, 972	588, 519	820, 619	815, 900		

¹ The grouping of the commodities is based upon Standard International Trade Classification (SITC) ¹ The grouping of the commodities is based upon Standard International Trade Classification (SITC) of the United Nations. Basic data were compiled by the Office of the Chief Economist, Bureau of Mines, from copies of unpublished tabulations prepared by the Bureau of the Census for the United Nations, which tabulations represent a tentative conversion of United States import and export classification to SITC categories. Revisions in these data have been made by the Office of the Chief Economist insofar as possible to (1) include for the various classifications the latest revisions compiled by Mae B. Price and Elsie D. Jackson of the Bureau of Mines, from the records of the U. S. Department of Commerce; (2) incorporate in all years shown changes in assignments of classifications to SITC categories made by the Bureau of the Census; and, (3) in some few cases, make other changes in such assignments which it appeared would make the data more comparable and/or more in line with the SITC.
As could be expected, individual commodities and groupings shown or omitted will not in all instances.

As could be expected, individual commodities and groupings shown or omitted will not in all instances accord with usual Bureau of Mines practice as followed in individual commodity chapters in this Minerals Yearbook. In a few instances, values will differ from those for the same commodity in the corresponding chapter because of reclassifications, exclusions, or other reasons usually explained by footnotes in the

Includes both mineral products of domestic origin and foreign mineral products that have been smelted,

refined, manufactured, or otherwise processed in the United States.

Revised figures.

Excludes gold and silver.

Part of the SITC category indicated is covered, the remainder is elsewhere in the major grouping.
Copper-base alloy scrap (new and old) including brass and bronze.

³ Includes items entered for immediate consumption, items withdrawn from bonded storage warehouse for consumption, and ores, etc., smelted and refined under bond—included at time smelted or refined product is withdrawn for consumption or for export.

Includes alloys.
Exports, if any, are negligible and included with "Nonferrous metal scrap, other" (284-01; see Crude metallic minerals ¹⁰ Includes all SITC Nos. 271-04; 272-01, -02, -03, -05, -08, -15, -16, and -19; and those parts of Nos. 672-01, 272-07 and -14 not shown separately above.

crude-metallic-minerals group; the other two groups declined. The greatest decline in value of imports occurred in copper, iron ore, manganese, zinc, bauxite, and ferromanganese all increased substantially. The ratio of value of exports to value of imports remained stable at 38 percent. For the first time in recent years this ratio did not increase.

The decline in export value largely resulted from the \$82-million decrease in iron and steel-scrap exports. Exports of metals (unwrought) and crude nonmetallic minerals both increased in value

over 1956 in 1957.

Tariffs.—Proposed changes in the lead and zinc tariff in the Administration's Long-Range Minerals Program and a subsequent application for relief under the escape clause of the Trade Agreements Act were the most important tariff developments for the mineral industries during 1957. After President Eisenhower and the Chairman of the Joint Committee on Ways and Means had exchanged correspondence, the Emergency Lead-Zinc Committee applied to the Tariff Commission for escape-clause relief on September 27, 1957. This application included lead and zinc products, but the Commission limited the case to unmanufactured lead and zinc. Hearings were held on November 12–26, 1957. The Tariff Commission had not reported its findings by the end of the year.

Senate Resolution 195, 85th Congress, 1st session, August 28, 1957, called upon the Tariff Commission to investigate tungsten ores and concentrates under section 336, Tariff Act of 1930. This section provides that the Tariff Commission, upon a finding of the difference in costs of production between a foreign and domestic article, shall report its findings to the President and shall specify such increases or decreases in duty as will equalize the difference. The duty change cannot exceed 50 percent of the rate fixed by statute. Pursuant to the Senate resolution, the Tariff Commission instituted an investigation on August 30, 1957, but no action had been taken by the end of

1957.

A treaty establishing the European Economic Community was signed on March 25, 1957, by representatives of Belgium, France, West Germany, Italy, Luxembourg, and the Netherlands. The terms of this treaty will become fully effective after 15 years, when all internal tariff barriers among the 6 countries will be removed. Such a large free-trade area is certain to have repercussions on United States export markets and import sources.

WORLD REVIEW

World Production.—The United Nations Index of World Mining Production (including fuels) rose slightly from 116 in 1956 to 119 (1953 equals 100). The change is the same as shown by the United States mining industry, but the index for all member countries of the Organization for European Economic Cooperation rose somewhat more, from 108 in 1956 to 112 in 1957. The metal mining index of the United Nations for the world increased from 114 in 1956 to 121, but the index dropped sharply for the last quarter of 1957.

World Prices.—Prices of metal ores fell slightly but steadily throughout the year. This decrease in part reflected the major reduction in

ocean freight rates as the effects of the closing of Suez were overcome. Both the total minerals and primary commodities index rose at times during 1957, but on the average, they fell consistently over the year as a whole.

Ocean Freight Rates.—Ocean freight-rate indexes fell sharply during 1957 (at least 50 percent) from the high rates occasioned by the Suez crisis. By the end of 1957 the indexes were almost down to those in 1953.

TABLE 39.—Index of world metal-mining industrial production, 1953-57 1 (1953 = 100)

Year	Free World	North America ²	Latin America ³	Asia: East and South- east 4	Europe 5
1953 1954 1955 1956 1957 First quarter Second quarter Third quarter Fourth quarter 6	100 97 108 114 121 110 125 128 121	100 86 102 106 110 92 121 128 100	100 99 112 114 117 129 133	100 106 112 119 117 110 114 121 122	100 99 112 121 131 126 133 129 135

TABLE 40.—Index numbers of production in mining and quarrying, and production in basic metal industries in selected OEEC countries, 1951-57 1

(1953 = 100)All mem-A 118. Belgium-Gar-Nether Nor Swe United Tur-Year ber tria Luxem-Greece Italy France many, lands way den key King-West counbourg 2 dom tries MINING AND QUARRYING 1951... 8 94 8 99 99 8 96 41 58 75 88 100 77 88 99 1952____ 93 101 8 104 97 99 100 100 100 1953_____ 100 100 100 8 96 100 100 100 100 100 100 100 100 1954... 8 103 101 88 97 109 104 123 8 110 100 100 91 101 1955... 105 116 100 3 110 * 104 * 114 119 110 115 132 150 ³ 123 101 108 121 99 1956_____ \$ 108 8 113 100 139 103 107 100 100 1957 127 156 BASIC METAL INDUSTRIES 1951. **\$ 98** 92 97 100 104 124 94 105 74 90 91 1952____ 8 104 91 112 81 100 117 111 101 102 100 103 1953 100 100 100 100 100 100 100 100 8 113 1954 119 108 114 116 103 3 119 110 108 1955... 140 151 131 125 133 141 98 ³ 148 * 125 117 1956. 8 139 135 140 3 162 160 150 102 131 * 138 1957. 153 154 120 182 135 169 144 120

United Nations, Monthly Bulletin of Statistics: Vol. 12, No. 5, May 1958, pp. x-xiv.
 Canada and the United States.
 Central and South America and the Caribbean Islands.
 Burma, Cambodia, Ceylon, Federation of Malaya, and Colony of Singapore, Hong Kong, India, Indonesia, Japan, South Korea, Laos, Pakistan, Philippines, China (Taiwan), Thailand, and South Viet-Nam.

⁵ Excludes Albania, Bulgaria, Czechoslovakia, East Germany, Hungary, Poland, Rumania, and U. S. S. R.
Provisional

¹ Organization for European Economic Cooperation, General Statistics: No. 3, May 1958, pp. 10, 14. ² Weighted average, computed by authors, using Organisation for European Economic Cooperation weights.
3 Revised figure

⁴ Data not available.

TABLE 41.—World trade price and freight-rate indexes, 1953-56, and quarterly 1957 1

(1953 = 100)

	I	rice indexe	S	Trip charter freight rate indexes ?			
Year	Primary commod- ities	Total minerals	Metal ores	General cargo	Ore	Ferti- lizers	
1953	100 104 101 102 104 107 105 103 100	100 99 102 110 115 120 115 112 111	100 95 104 112 110 114 112 108	100 111 165 203 145 209 155 116	100 110 144 174 138 196 139 117	100 106 141 155 133 156 (3) (3)	

¹ United Nations, Monthly Bulletin of Statistics, March 1958, special tables A and D.
² United Kingdom indexes based upon weighted average of quotations by all flags on routes important to United Kingdom tramp fleet.

³ Data not available.

Review of Metallurgical Technology

By Earl T. Hayes 1

ETALLURGICAL PROGRESS during the year was high-lighted by the following events:

1. Half of the world's uranium needs will be produced by solvent-extraction processes when current plant-expansion programs are completed.

2. The United States now has achieved a production rate of 35

million tons of blast-furnace sinter a year.

3. The world's largest oxygen converters for use in steel production showed many advantages in installation costs, operation, and flexibility.

4. Columbium metal with a hardness of Brinell 60 was produced in the United States by melting in high vacuum in an electron-gun-

bombardment furnace.

Thirty-three papers from all countries were presented in the International Mineral Dressing Congress in Stockholm in September 1957; this undoubtedly constituted the best review of modern mineral-dressing technology today. Crushing and grinding at Outokumpu, Finland, using ore pebbles as the grinding mediums, was described by Tanner and Heikkinen. It was necessary to decrease the pulp density, increase the pebble charge and keep the circulating load as high as possible to obtain maximum grinding efficiency. The same principle has been revived at Canadian nickel and uranium mines and some South African gold mines to establish savings in their milling departments. Although not all ores are adaptable as grinding mediums it is clear that at many mills costs could be lowered by adoption of similar processes.

Another paper announcing the results of grinding at supercritical speeds in rod and ball mills destroyed many illusions about critical ball-mill speeds. When operating at 240 percent instead of the customary 80 to 85 percent of critical speed, the mill was found to be highly efficient and produced a semiattrition grind by slippage of the balls in the body of the mill. Svensson and Murkes described an empirical relationship between work input and particle size distribution before and after grinding. A large number of experiments were carried out in laboratory ball mills to establish a relationship between work input and particle size and the effect of various factors on grinding. The theories of Rittinger, Kick, and Bond did not conform fully with the experimental results, and a new empirical formula was

proposed to agree with the experimental results.

The use of cyclones for dewatering and subsizing operations continued unabated, and two papers at the Stockholm conference discussed the influence of orifices on the washing characteristics of the hydrocyclone and the evolution and newer applications of this versatile piece of equipment. From a modest beginning after World War II, the cyclone had developed in 1957 to the point where it was the

¹ Acting chief metallurgist.

primary method of classification for virtually all new installations, as witness the Reserve Mining Co. concentrator, which uses 96 such units to classify ball-mill discharge of approximately 36,000 tons of

iron ore per day.

As in other fields of metallurgy, the Russians have shown great efficiency in developing their basic knowledge of flotation, and four good papers were presented at Stockholm. These covered the separation of bulk sulfide concentrates by flotation, absorption of diethyldithiophosphate and butyl xanthate by sulfides, selective flotation of nonsulfide minerals, and some of the general problems concerning theory and practice of selective flotation in the U. S. S. R. This last paper pointed out that sodium sulfide, while commonly employed as a sulfidizer, has rather limited use in selective flotation in countries outside of the U. S. S. R. One example cited was production of a clean molybdenite concentrate from a bulk float product.

Frank McQuiston presented a general survey of practice employed at plants at Canada, Mexico, Peru, Africa, and the United States for flotation of complex copper-lead-zinc ores and traced a pattern that

applies to these ores.

Since uranium in 1957 became second to gold in the world, in terms of mineral production, it was only natural that uranium recovery should receive considerable attention. One of the most interesting discussions was that on applications of solvent extraction in processing uranium ores by Clemmer of the Federal Bureau of Mines. This paper reviewed laboratory and pilot-plant research at Salt Lake City, Utah, for the Atomic Energy Commission and application of solvent-extraction procedures for processing uranium ores; and it also described the selectivity and handling characteristics of various organic extractants. Proof of establishment of the solvent-extraction process can be seen in the fact that, when contemplated expansion plans are completed in 1958, almost half of the uranium recovered will be obtained by such methods.

In the field of iron-ore beneficiation, the tonnage of material treated by the iron-ore industries outshadowed all other products of the country combined. For the first time in history, the tonnage of beneficiated ore from the Mesabi area was higher than direct-shipping ores and the day seemed close when most of the ore from the entire iron range would be beneficiated in one form or the other before shipment.

A considerable increase in the capacity of a blast furnace is obtained by using the richer sintered concentrates in place of the domestic direct-shipping ores that are now available. With the tremendous investment required to build new blast-furnace installations it is easier, at least for the present, to beneficiate the blast-furnace feed and obtain production requirements. Ore has been beneficiated in increasing quantities by rather simple means of washing and screening, but beneficiation plants involving grinding, dense-medium separation, flotation, magnetic concentration, pelletizing, and sintering represent the modern tools that technology brought to bear on this portion of the steel industry. Consolidation of fine material resulting from oredressing operations is a continuing operational problem.

Plants continue to grow in size, and 2 under construction at the close of 1957 will have a capacity of over 4½ million tons of sinter a year. Most of the sintering machines being installed were larger than hereto-

fore. Some were 96 inches wide, although 2 were 144 inches. Capacity has risen rapidly to over 35 million tons of blast-furnace sinter capacity per year, with a probability that it will rise to 60 million tons

by 1960.

Another means of increasing blast-furnace and steel making capacity is the increased use of oxygen. Enrichment of the blast by 4 percent oxygen in 1 plant was found to increase iron output almost 20 percent. The same company was considering installing a second 500 ton-a-day oxygen plant. Close control of water vapor is known to improve blast-furnace operation. Some of the larger companies were considering installing such control. The Bureau of Mines scheduled studies of the effects of water-vapor control at its experimental blast

furnace at Bruceton, Pa.

The world's largest oxygen converters installed by Jones & Laughlin and put into production the latter part of the year promised great economies in steelmaking. Although the converter takes a much smaller charge than the open hearth, a heat of iron can be conditioned in 30 to 40 minutes rather than in several hours. The oxygen converter offers better quality control and greater flexibility than the Bessemer process and cheaper steel than that produced in the open hearth. Jones & Laughlin obtained an annual increase in capacity of 750,000 tons for \$11 million; similar capacity in an open hearth would have cost as much as twice that amount. The open hearth has been used for some production of steel by induction of oxygen, and 1 company using approximately 100-ton heats was able to produce a heat every 3.4 hours, using the oxygen conversion principle. The steel- and metal-working business used over 75 percent of the Nation's oxygen production.

As in late years, many millions of dollars were spent on the development of alternate reduction procedures. One of these, the R-N process, probably received the most attention. In this process iron-ore concentrate and process coal fines are charged into the kiln and heated in an oxidizing flame. There is excellent reduction of the ore with the large excess of carbon present. The kiln discharge is quenched, and crushed, the uncombined carbon is returned to the circuit, and the metallic iron is separated from the slag and briquetted for direct

use in the open hearth.

One of the most interesting metallurgical papers of recent years was that of Stanley Morgan of Imperial Smelting Corp., Avonmouth, England, describing two blast furnaces for producing 70 tons of zinc per day. This has been the dream of zinc-smelting people for over 30 years, and until Morgan's announcement all attempts had been unsuccessful. It is not difficult to reduce zinc in a blast furnace. The problem has been to prevent the metal from reoxidizing in the blast-furnace atmosphere before the reduced metal could be collected.

The same problem was solved in the case of carbothermic magnesium by Hansgirg in the early 1940's. There the reaction MgO—C to give Mg—CO proceeded nicely at temperatures of 2,100° to 2,200° C., but the reaction reversed near 1,800° C., and below that temperature the metal was converted to the oxide by contact with CO. Hansgirg solved this problem by quenching the reaction products in a hydrocarbon.

As noted in earlier metallurgical reviews, Morgan's group on zinc

has learned to control the amount of CO and CO₂ in the furnace atmosphere and to quench the reaction products in a stream of molten lead before the zinc can be reoxidized. In operation, a hard-burned sinter is heated to about 1,200° C. and produces gases containing 5 to 6 percent zinc and controlled amounts of CO, CO₂, PbO and PbS. Zinc recovery is almost 90 percent. The method offers possibilities of lowering zinc-smelting costs and treating smelter dumps, some of which have slags containing as much as 25 percent zinc.

Something new was added to chemical metallurgy when a firm in Newburg, N. Y., announced that it was successfully handling 10 tons a day of arsenical cobalt ores. The heart of the process is autoclave leaching at 120 p. s. i. and 240° F. in a 10-percent caustic solution to remove arsenic and sulfur. Following this treatment, the residue could be treated by conventional methods to recover both base and

rare metals.

The search for high-temperature materials was newly emphasized during the year owing to the demands of the rocket and missile people for action. Through the years a concept has developed that a high-temperature material must be able to withstand a certain load application for a given number of hours and at a given temperature. Modern high-temperature alloys are so rated for performance. Of late years, the extremely short term ability of a material to withstand high temperatures has become another rating factor. Out of this we find that some plastics are satisfactory for use even in applications where their expected life is only a matter of seconds or 1 or 2 minutes at most.

Corning Glass Co. announced a new ceramic material that is melted and formed like glass but is crystalline and almost 10 times as strong as plateglass. This material holds great promise not only for shortterm, high-temperature applications but for moderate-temperature

chemical-processing equipment.

Testing of columbium-base alloys for elevated-temperature mechanical properties and oxidation resistance continued through the year. It was reliably reported that alloys approaching the 1,650° F. working temperature appeared possible, but no announcement has been made on these at the year's end. Interest in the columbium metal continued to be high; but, as noted in the previous review, development of a columbium-base-alloy industry will depend entirely upon

the results of alloy tests now in progress.

The greatest single contribution to improving the quality of tantalum and columbium metal in many years was the electron-gun-bombardment furnace developed industrially by Temescal Metallurgical Corp. of Richmond, Calif. Furnaces capable of melting 3-inch-diameter ingots of columbium metal in a vacuum of 2 x 10⁻⁵ mm. Hg were used successfully through the latter part of the year on a custom basis for melting columbium metal produced by several companies in the United States. When melting in high vacuum, the furnace has the advantage in being able to draw off the more volatile tantalum or columbium oxides from the parent metal. Columbium metal with a Brinell hardness of 60 was produced in 100-pound and larger lots. The electron-gun furnace probably will be used to melt all tantalum and columbium metal in future. The metallurgical technology of columbium-ore beneficiation might be revised, since

large deposits of 3- to 5-percent columbium oxide ore have been found in Brazil.

In the field of pure metals, the Bureau of Mines at Boulder City, Nev., reported excellent progress on refining metals by fused-salt electrolysis. Vanadium with a Brinell hardness of less than 40, titanium with a BHN of 60, and chromium crystals that were cold ductile were produced by this electrolysis refinement. At least one industrial producer of titanium appeared close to solving the mechanical problems associated with producing electrolytic titanium by such methods, but the sharp decrease in demand for titanium removed some of the incentive for introducing the new method. The Kroll patent on the basic reduction of titanium chloride with magnesium expired in

August 1957.

The problem of purity that is paramount in the production of semi-conductors appeared to have been largely solved for germanium, where about 1 foreign atom in 10⁸ can be tolerated. On the same basis, the reliability of silicon semiconductors is disturbed by impurities of the order of 1 in 10¹² atoms. This means that there is still room for considerable improvement, since the 2 large manufacturers of the past year announced that their best purity was about 1 part in 6 billion, or 6 x 10⁹. Silicon is intrinsically harder to purify than germanium. This has led to development of new techniques for continuing and carrying out the refining operation, such as the Bell Laboratory new automatic floating refining process, which required no containers.

During the year General Electric scientists announced Borazon, a cubic boron nitride, with a hardness rivaling the diamond but able to withstand temperatures up to 3,500°F.—twice that of the diamond. This material is made under pressures of about 1 million pounds per square inch at temperatures of 3,000°F., using techniques similar to

that developed for producing synthetic diamonds.

The importance of metallurgical technology in the U. S. S. R. was the announcement that the Soviets were graduating seven times as many metallurgists as we are today and regarded metallurgy as the No. 1 physical science. An interesting sideline is that the number of women who graduate in metallurgy is twice our total output.

This was a memorable year for deemphasizing the metal titanium, for reasons that were more economic than technologic. For over 10 years titanium has been studied extensively, from production processes to the development of superalloys. In fact, there was little in metallurgical history to compare with the phenomenal expenditure of money and talent and production of technical papers. Because over 98 percent of the metal was used for defense purposes, the reduction in orders for the J-57 jet engine late in 1956, which used 55 percent of all titanium, affected the entire industry. Although the price of titanium sponge had decreased steadily through the years, there was no corresponding drop in the price of mill products. Materials like the high-strength precipitation hardening stainless steels are proving to be formidable competitors to titanium. Work on cheaper reduction processes and better scrap-utilization methods is continuing, and it is anticipated that a healthy and sizable titanium industry will emerge in the future.

Review of Mining Technology

By Paul T. Allsman, James E. Hill, and Walter E. Lewis 3

HIS CHAPTER reviews the highlights of development in mining technology during 1957 and presents a special report on the theory

of breaking rock with explosives.

Probably the most outstanding development in mining technology during the period has been the increased mining research in foreign Their concern with research in more publicized fields has not caused them to neglect mining. In reading numerous reports from foreign countries, including the U. S. S. R., it is apparent that many scientists and engineers are engaged in mining research. problems most mentioned concern control of subsidence over mine openings and new and improved means of fragmentation. The approach to the solution of these problems through application of scientific principles is most significant.

EXPLORATION

An interesting operations research study to determine what could be expected from systematic prospecting of about 400,000 square miles in the Algerian Sahara Desert was reported in 1957.4 estimate of the probable expenditures for development and of probable profits from the discovered ore deposits also was included in the study.

An initial approach to the problem was made by relating the accumulated prospecting data already proved on exploitable deposits in well-developed areas of other countries to the unprospected Algerian An exploitable deposit in the Algerian Sahara was defined as one that would have an annual output value between 330 million (\$1 million) and 330 billion francs (\$1 billion). The lower limit marked the least value deposit that could be exploited in an area such as the Algerian Sahara, and the upper limit marked the greatest value that could be reasonably anticipated.

Based on the statistical data accumulated from the distribution of deposits in other countries, it was assumed for the Sahara study that (1) the number of expected deposits would occur according to Poisson's distribution; (2) the value of the different deposits actually occurring would have a lognormal distribution; and (3) the normal law for dimensionless parameters, such as standard deviation, would apply.

Chief mining engineer.
 Assistant chief mining engineer.
 Mining engineer, Bureau of Mines.
 Allaing engineer, Bureau of Mines.
 Allais, M., Method of Appraising Economic Prospects of Mining Exploration Over Large Territories: Management Sci., vol. 3, No. 4, July 1957, pp. 285-347.

It was determined that the cost of complete prospecting of the 400,000-square-mile area would range from \$36 to \$54 million, and the expected number of exploitable deposits would be between 4 and 50. The mean total value of the exploitable deposits was expected to be about \$510 million. Because of the remote location of the Algerian Sahara and the difficulty of transportation and communications, it was estimated that \$300 million would be required for transportation and dwelling. Added to the cost of prospecting, this would result in an initial outlay of about \$354 million. Because of the excessively high first cost, the probability of net gain would be 0.35, or about 1 chance out of 3 that exploitation of the area would be profitable.

Minneapolis, Minn., and Denver, Colo., were selected as the locations of permanent Bureau of Mines drill-core storage facilities.⁵ Stored drill core includes that from Bureau of Mines mineral-exploration projects, other Government agencies, State agencies, private companies, and individuals. Decision of whether to accept the drill core offered for storage rests with the Bureau of Mines. A total of about 700,000 feet of drill core was stored. The core is available for inspection by anyone having a legitimate interest in the mineral

deposits represented by the core.

Development of a downhole television unit was reported in 1957.6 The unit is a television transmitting tube 13.5 millimeters in diameter. Suitably encased for lowering into a drill hole, the tube transmits, by closed-circuit television, a continuous picture of the rock formations penetrated by the hole. The total diameter of the encased unit, including a compass and level, is 62 millimeters (about 2.44 inches). The maximum operating depth at present is 300 meters, but an increase to about 800 meters by the addition of amplifiers was expected.

Research engineers in the Mining Research Laboratory at the Central Test Station in Limburg, Treebeek, Netherlands, perfected a seismic method of exploration for coal, whereby both reflection and refraction waves can be used for determining the horizon of coal beds.7

Development of a retractable rock bit by the Carter Oil Co. was reported at the 12th Annual Petroleum Mechanical Engineers' Conference, September 22-25, 1957, at Tulsa, Okla. The bit enters the hole by wireline in collapsed condition. At the bottom of the casing a special drill collar on the casing holds the bit in place. The bit is turned by the drill casing.8

DRILLING

In an attempt to overcome the limitations inherent in either the percussive action or rotary action commonly employed in pneumatic rock drills, a combined rotary-percussive-action drill has been developed. The first production models of this type of drill were developed in Germany.9 Early tests indicated drilling speeds 2 to 7 times greater for percussion-rotary over straight percussion drilling in harder rocks where maximum thrust could be applied. There is a definite relationship in percussion drilling between applied thrust,

^{*} Hill, James E., Storage and Cataloging of Drill Core by the Bureau of Mines: Bureau of Mines Inf. Circ. 7777, 1967, 24 pp.

* Anderson, Omer, Downhole Television Unit Is Developed in Germany: Drilling, vol. 19, No. 1, November 1967, p. 93.

* Obert, Leonard, Mining Research in Europe: Bureau of Mines unpub. rept., Aug. 27, 1967, 73 pp.

* Oil and Gas Journal, Retractable Bit Unveiled: Vol. 55, No. 39, September 1967, pp. 50-51.

* Inett, E. W., A Survey of Rotary-Percussive Drilling: Mine and Quarry Eng. (London), vol. 23, Nos. 1, 2, and 3, January, February, and March 1967, pp. 2-7, 62-68, 106-110.

penetration rate, and operating air pressure. At any given air pressure insufficient thrust will result in low drilling efficiency and excessive thrust will stall the drill. A comparable relationship exists between torque, applied thrust, and penetration rate in rotary drilling. but conditions inducing stalling are different in that cuttings are produced at such a rate that clogging occurs and contributes to eventual stalling.

Bits designed for use with rotary-percussive drills have the clearance space of rotary bits and the impact strength of percussive bits: the drilling action tends to overcome the limitations of the individual actions when high thrust is applied for a high rate of penetration.

A report was published on research on the process of fragmentation by rotary drilling.10 The research was simplified by testing the cutting action through straight-line motion with no confining side walls. Experimentation disclosed that, under these conditions, the action in rotary cutting consisted of producing fine particles and in sequence a solid chip, approximately equal to the volume of fine particles: the solid chip is formed when the bit face and rock surface are at some critical angle.

The sequence of fragmentation of fine particles and, in turn, a solid chip was thought to be an effect of the method of drilling and was not the effect of the shape of the bit or the type of rock being drilled. Tests further revealed that, regardless of speed, the solid chips broke in similar shapes as long as the thrust remained the same. The similarity in shapes was constant through tests of different types of rock

when the thrust was kept constant.

After extensive comparative drilling tests, the Chino Mines Division, Kennecott Copper Corp., ordered two large rotary drills to replace churn drills for blasthole drilling at the Chino mine in Santa Rita, N. Mex. 11 An electric rotary drill capable of drilling a 12-inch hole was purchased in May 1955 and tested in the pit for about 11/2 It drilled 95,701 feet, at a rate of 167.4 feet per shift, in various types of ground. During the same period the rate of churn drilling was 51.56 feet per shift. The electric rotary rig was equipped with a 1,200-cubic-feet-per-minute air compressor for blowing the cuttings out of the hole. Compressed-air pressure was 60 pounds per square inch, and the air velocity was 2,600 feet per minute.

Drilling represents 25 percent of the total cost of mining taconite at the Pilotac mine, owned and operated by the Oliver Iron Mining Division, United States Steel Corp., Virginia, Minn. 12 Since 1952, field drilling trials in taconite have been made with the churn drill, interchangeable percussive and rotary drill, rotary drill, down-the-hole drill, and jet piercer. Field test data indicate that there is no universal drill for drilling taconite, as the variation in physical characteristics of the taconites will require several types of drills rather than one all-purpose type. A systematic study of churn drilling indicated that a change in bit design and length of stroke was necessary

Goodrich, Ross H., High-Pressure Rotary Drilling: Bull. Missouri Sch. Mines and Metallurgy, Tech. Ser., No. 94, 1957, pp. 25-45.
 McNaughton, D. D., Recent Developments in Rock Drilling at Chino Mines: Min. Eng., vol. 9, No. 5, May 1957, pp. 542-543.
 Rubow, Irvin H., Drilling Taconites: Pres. at Metal Mining and Industrial Minerals Convention Am. Min. Cong., Salt Lake City, Utah, Sept. 9-11, 1957; press release, 8 pp.

for drilling taconite. A change in the clearance angle from 15° to 5° and a 40-inch length of stroke resulted in a penetration rate of 4.98 feet per hour and 11.5 feet per bit. Drilling rates of 10 to 30 feet per hour and bit life of 250 to 850 feet were achieved with the rotary drill. The jet piercer was found to be the most satisfactory drill in taconite that is massive and extremely hard and spalls readily. Drilling rates of 35 feet per hour were common in this type of taconite.

EXPLOSIVES FRAGMENTATION

An approximate method of computing the important detonating properties and performance parameters of blasting explosives was discussed at mining-research symposiums in 1956 and 1957.¹³ The computing method may be employed for most commercial blasting explosives, which are a combination of carbon, hydrogen, nitrogen, and oxygen, the mixture balanced so that there is enough oxygen to oxidize the carbon and hydrogen to carbon dioxide and steam. The computing method is not adequate for highly underoxidized explosives; however, these explosives are rarely used in commercial blasting.

Theoretical calculations are suitable for determining the gaseous products of explosion, explosion temperatures, heats of reaction, explosion pressures, and specific heats of the explosive ingredients. The computed explosion temperature and pressure represent an average result of the explosion; thus, only the upper limit of the explosion temperature can be computed. The computation is based on the following assumptions; (1) The explosion occurs at constant volume; (2) all of the explosive reacts; (3) heat losses are neglected; (4) motion of gases is neglected; (5) spectroscopic thermodynamic data are used; (6) the gaseous products of detonation obey Abel's gas law; and (7) the products of detonation are calculated by assuming thermodynamic equilibrium at the explosion temperature. Computations are not only useful for determining the important performance parameters of blasting explosives but also as an aid to interpreting and checking experimental results.

Special Report on Review of Blasting Research in the Bureau of Mines By Wilbur I. Duvall 15

The Bureau of Mines has been interested in blasting problems for many years, and various units within the Bureau have contributed to this field of study. However, it was not until 1947 that a concentrated effort was made to study some of the fundamental physical processes involved in breaking rock with explosives. At that time the Bureau of Mines undertook, on a contract basis from the United States Army Corps of Engineers, development of a gage for measuring the dynamic strain produced in rock by detonation of an explosive charge in a drill hole.

¹³ Brown, F. W., Determination of Basic Performance Properties of Blasting Explosives: Quart. Colorado Sch. Mines, Symposium on Rock Mechanics, vol. 51, No. 3, July 1956, pp. 171-188. Simplified Methods for Computing Performance Parameters of Explosives: Bull., Sch. Mines and Metallurgy, Rolla, Mo., Tech. Ser. 04, 1957, pp. 123-137.

Ser., 94, 1957, pp. 123-137.

Ser., 94, 1957, pp. 123-137.

Brown, F. W., Theoretical Calculations for Explosives. I. Explosion Temperatures and Gaseous Products and The Effects of Changes in Carbonaceous Material: Bureau of Mines Tech. Paper 632, 1941, 21 pp.

Bupervising physicist, Applied Physics Laboratory, Bureau of Mines, College Park, Md.

The Applied Physics Laboratory, College Park, Md., was successful in developing a suitable strain gage 16 and has continued a blasting-

research program ever since.

Instrumentation for a blasting-research program was a prime consideration at first, and considerable effort was devoted to developing gages and recording equipment for measuring the transient phenomena related to blasting.¹⁷ The Bureau of Mines strain gage, which can be cemented into a diamond drill hole in rock, proved the most satisfactory transducer for detecting the transient wave motion generated by detonation of explosives in rock.¹⁸ The output of these gages is recorded on high-speed oscilloscope drum cameras housed in the Bureau of Mines mobile laboratory.¹⁹ A high-speed camera is used for recording the various phenomena that take place as the rock is broken by a blast.

Theoretical and experimental investigations were conducted on the generation and propagation of strains in rock.²⁰ These studies showed that the size and shape of the strain pulse obtained was approximately what would be expected for a perfect elastic medium. Differences between theoretical and experimental results were noted. differences indicated that the rock was an absorbing medium, which caused the strain pulse to decay rapidly in amplitude and to spread out as it propagated. More important, the strain-gage records showed that detonation of an explosive charge in a drill hole produced a simple compressive strain pulse in the surrounding rock. The length of this pulse was of the order of magnitude of the burdens used in blasting. These facts suggested that reflection of strain waves by free surfaces might be important in explaining rock breakage by explosions.

The crater test was selected for study to determine if reflection phenomena played an important role in rock breakage by explosives. Extensive experimental investigation on crater formation was conducted for a number of years. Experimental evidences obtained from these investigations have been shown to support the reflection theory of rock breakage.²¹ Other investigators have published data demonstrating also that rock is broken by reflected stress waves.²²

According to the reflection theory of rock breakage, the rock is pulled apart, not pushed apart. Detonation of the explosive charge creates a high gas pressure in the drill hole in a few microseconds. Reaction of this high pressure on the walls of the drill hole generates a compressive stress pulse in the surrounding rock. This compressive stress pulse travels outward from the drill hole in all directions. Near the drill hole the amplitude of the compressive stress pulse is sufficient to cause crushing of the rock; however, as the compressive stress pulse travels outward, its amplitude decreases

¹⁶ Obert, Leonard, and Duvall, Wilbur I., A Gage and Recording Equipment for Measuring Dynamic Strain in Rock: Bureau of Mines Rept. of Investigations 4581, 1949, 12 pp.

17 Blair, B. E., and Duvall, W. I., Evaluation of Gages for Measuring Displacement, Velocity, and Acceleration of Seismic Pulses: Bureau of Mines Rept. of Investigations 5073, 1954, 21 pp.

celeration of Seismic Pulses: Bureau of Mines Rept. of Investigations 5073, 1954, 21 pp.

18 Work cited in footnote 16.
19 Atchison, T. C., Duvall, W. I., and Obert, Leonard, Mobile Laboratory for Recording Blasting and Other Translent Phenomena: Bureau of Mines Rept. of Investigations 5197, 1956, 22 pp.
20 Obert, Leonard, and Duvall, Wilbur I., Generation and Propagation of Strain Waves in Rock: Bureau of Mines Rept. of Investigations 4683, 1950, 19 pp.
Duvall, Wilbur I., and Atchison, T. C., Vibrations Associated With a Spherical Cavity in an Elastic Medium: Bureau of Mines Rept. of Investigations 4692, 1950, 9 pp.
Duvall, Wilbur I., Strain-Wave Shapes in Rock: Geophysics, vol. 18 No. 2, April 1953, pp. 310-323.
21 Duvall, Wilbur I., and Atchison, T. C., Rock Breakage by Explosives: Bureau of Mines Rept. of Investigations 5356, 1957, 52 pp.
22 Hino, Kumao, Fragmentation of Rock Through Blasting: Jour. Ind. Explosives Soc., Japan, vol. 17, No. 1, 1956, 11 pp.

rapidly until no further crushing of rock is possible. The compressive stress pulse continues to travel outward until it is reflected by a free surface. Upon reflection, the compressive stress pulse becomes a tensile stress pulse. As the strength of rock in tension is less than in compression by a factor of 50 or more, the reflected tensile stress pulse can break the rock in tension, progressing from the free surface

back toward the shot point.

The reflection theory of rock breakage will not solve all blasting problems today or tomorrow. Too little information is available on the details of this theory to apply it directly to all blasting problems. The importance of the reflection theory of rock breakage is that it provides a guide to the important variables in blasting problems. For example, the ratio of compressive to tensile strength of the rock must be large if reflection-type breakage is to occur. This ratio may be used as a blastibility coefficient.²³ Then rocks having a large blastibility coefficient should be easier to break with explosives than those with a small one, all other variables being constant. However, just how important this variable is has not been established. Thus, determination of the importance of this blastibility coefficient is an existing problem for study.

The crushing strength of the rock determines the amplitude of the compressive stress pulse generated in the rock around the charge hole. This compressive stress pulse must be propagated to a free surface before a reflection can occur. Amplitude of the compressive stress pulse arriving at the free surface, therefore, is a function of the propagation characteristics of the rock and the compressive strength of the rock. Thus, the propagation characteristics of rock for explosion-generated stress pulses have to be studied to determine their impor-

tance in blasting problems.

Thermodynamic properties of explosives would be expected to control the amount of stress applied to the walls of a blasthole. Therefore, another field for study and research is determination of those properties of explosives that are important in controlling the amplitude of the stress wave generated in the rock surrounding the charge hole

The above three examples illustrate the need for additional blasting research to attain better understanding of the physical processes

involved in breaking rock with explosives.

MECHANICAL FRAGMENTATION

According to the National Coal Board Technical Mission, hydraulic mining of coal has passed the experimental stage in the Soviet Union, and 69 installations are in the planning stage. An experiment with hydraulic methods in an operating Soviet mine resulted in an output of 12–15 tons per man shift, which was 4 to 5 times the output with conventional methods. The procedure in a mine developed to carry out the experimental work was first to loosen the coal by long-hole pulsed infusion. Loosened coal was then removed from the face by high-pressure water jets directed against the face by a monitor.

²² Work cited in footnote 22.
24 National Coal Board (London), The Coal Industry of the U.S.S.R., Part I: Rept. by Tech. Mission, 1957, pp. 82-57.

Fragmented coal was carried by water down steel flumes laid on the floor to a screen and crusher, which reduced all the coal to minus 2.36 inches in size. The crushed coal and water mixture was transferred from the crusher by gravity flow to a 350-cubic-foot sump. Low-pressure primary pumps transferred the water and coal to the main pump at the drift bottom, where they were pumped 765 yards to a preparation plant. Hydraulic transportation of coal was the only form used in the experimental mine. Materials and supplies were brought in by a monorail suspended from the roof.

All coal seams in the Soviet Union are classified for hardness by a standard test and assigned a hardness factor (Protodiakonov index F). This hardness factor is utilized to establish the minimum monitor nozzle pressure required to remove the coal without prior pulsedinfusion shot firing. In the experimental mine where the hydraulic method was undergoing extensive tests, a nozzle pressure of 880 to 1,000 pounds per square inch was needed to break the coal. Experiments were made with nozzle pressures of 3,000 pounds per square inch in conjunction with water-pulsed infusion, in an attempt to develop

a hydraulic mining system for rock.

Basically, hydraulic mining is not new in the United States or its Territories. It has been used for many years in placer mining for Nozzle pressures for placer mining above 260 pounds per square inch are unusual. Probably the most well-known uses of hydraulicking, other than placer, are the Florida phosphate field; mining silica sand at Ottawa, Ill.; tunnel construction at Minneapolis and St. Paul, Minn.; and mining gilsonite at Bonanza, Utah. In the Florida phosphate field, hydraulicking is employed to break up phosphate rock dug by a dragline and transport the broken rock to a concentrator.25 For this operation, pressure at the nozzle varies from a low of 80 pounds per square inch to a high of 130 pounds per square inch.

At Ottawa, Ill., silica sand is drilled and blasted, disintegrated by hydraulicking, and transported out of the underground workings by pump. The nozzle pressure used for disintegrating the blasted sand is 150 to 200 pounds per square inch.26 In tunnel construction at Minneapolis and St. Paul, Minn., St. Peter sandstone was cut from the face with jets and transported from the tunnel by pumps.²⁷ The nozzle pressure for breaking the sandstone at the face was maintained at 300 pounds per square inch. At Bonanza, Utah, the American Gilsonite Co. mines 700 tons of gilsonite per day by hydraulic methods.28 Nozzle pressure is maintained at 2,000 pounds per square Nozzles are mounted on booms attached to cars. Water directed at the surface of the gilsonite enters tiny fissures and breaks the material away from the face.

It is readily seen that only one of the hydraulic methods of mining that have been or are being used in the United States employs the high nozzle pressures used in the Soviet Union. Highest on record in

²⁵ Hughes, C. V. O., Modern Hydraulic Mining in Florida: Min. Eng., vol. 8, No. 1, January 1956, pp. 31-35.
38 Bryant, A. D., Hydraulic Methods for Underground Mining of Silica Sand: Min. Eng., vol. 5, No. 3,

³⁸ Bryant, A. D., Hydraulic Methods for Orderground Mining March 1953, pp. 282-283.

³⁸ Lewis, Walter E., Hydraulic Tunneling in St. Peter Sandstone at Minneapolis, Minn.: Bureau of Mines Inf. Circ. 7571, 1950, 12 pp.

³⁸ Engineering and Mining Journal, 72-Mile Pipeline Moves Gilsonite Ore: Vol. 158, No. 9, September 1957, pp. 106-108.

Argall, George O., New Jet Mining Method Stopes Gilsonite for Gasoline: Min. World, vol. 19, No. 10, September 1957, pp. 68-69.

the United States, in use for mining, is about 2,000 pounds per square inch, which is about twice the pressure used by the Russians for what

is apparently medium-hardness coal.

Methods of transporting water to the nozzles, types of nozzles, bracing to withstand the high pressures, and monitor anchorage were not discussed in describing the Soviet hydraulic method, but it could be assumed that these problems are important and would be exacting in their requirements. These problems appear to have been solved satisfactorily by the American Gilsonite Co. in its mine at Bonanza, Utah, to furnish 2,000 pounds per square inch of nozzle pressure at the ore face; in all probability, the mechanical problems associated with even higher pressures could be solved. Higher pressures have already been obtained by the indirect hydraulic methods of water-pulsed infusion.

Water infusion of solid coal, static or pulsed, has become an accepted, standard method of dust suppression in Great Britain. In mid-1956 it was applied to 27 percent of the total length of coal face requiring dust suppression.²⁹ Static water infusion is used in longwall and room-and-pillar mining in coal seams 1½ to 8 feet thick. Water is forced under 100 to 1,200 pounds per square inch pressure into 1½-to 2½-inch-diameter holes. The position and direction of the holes are determined by the thickness of the seam and formation of cleavages and fractures in the coal. In addition to controlling dust, the amount of explosives required for breaking the coal is often reduced; this feature, discovered in using static water infusion, led to development of a combined blasting-water-infusion technique for coal breaking. The combined method of fragmentation is termed water-pulsed infusion.

In pulsed infusion the holes bored in the coal are for both water infusion and the explosive. The process involves charging the borehole with explosive and then pumping water into the surrounding mass by an infusion tube inserted into the same borehole. While the water is being applied to the coal under pressure, the charge is detonated. The resulting high-pressure impulse is transmitted by the water into the cleavage planes and fractures and breaks the coal. Special explosives are required for the pulsed-infusion method. Basic requirements of the explosive are that it be waterproof and capable of complete detonation under pressures up to 800 pounds per square inch. Electric detonators capable of withstanding the high pressures and detonating the explosive are of the submarine type used in seismic exploration.

The Scientific Department of the National Coal Board, Great Britain, completed a laboratory study of water infusion as a preliminary investigation to pulsed-infusion experiments.³¹ Water was applied under known pressure to 1 face of a coal sample (4-inch cube) and flows to the opposite face measured. Factors that affect the flow of water through coal were determined by the study. It was found that the flow increased disproportionately with pressure but also decreased with time, independent of the pressure. It was deduced

Boyle, William, How Britain Controls Dust: Coal Age, vol. 62, No. 2, February 1957, pp. 86-91.
 Haslam, R., Davidson, S. H., and Hancock, J., Development of a Combined Blasting/Water Infusion Technique for Coal Breaking: Trans. Inst. Min. Eng. (London), vol. 114, session 1954-55, pp. 87-103.
 Fish, B. G., and Turski, A. B., A. Laboratory Study of Water Infusion: Nat. Coal Board (London), Mining Research Establishment, Rep. 2044, September 1956, 10 pp.

that the first factor was due to elastic deformation expansion of the water passages; the second factor was due to an inward swelling of the

coal over a period of time, which closed the water passages.

The Bureau of Mines conducted water-infusion tests in its Experimental Coal Mine at Bruceton, Pa., to determine whether water infusion would reduce the concentration of airborne dust during mining.³² Coal in the Experimental Mine is characterized by pronounced, nearly vertical face and butt cleats, which permit free flow of water from the infusion holes. Although good flow of water into the coal was obtained, the tests indicated that water infusion of the Pittsburgh coal seam in the Experimental Mine did not reduce the amount of fine dust produced during mining operations to the extent reported elsewhere. The experimental work was confined solely to the effect of water infusion on concentration of airborne dust, and the reduction in charge weight of explosives needed for blasting was not investigated.

A study was made to determine the augering practice, type of equipment used, and production rates of eight mines in Pennsylvania, West Virginia, and Ohio, employing coal augers to mine bituminous coal near outcrops.³³ Auger mining has been in use since 1947; and, as a coal-recovery method supplementary to strip mining, it has grown rapidly. About 6 million tons of bituminous coal was produced by auger mining in 1955. At the 8 mines studied the production of raw coal per man employed ranged from 22 to 46 tons. The average production of raw coal per shift ranged from 65 to 503 tons. study revealed that auger mining is used to best advantage in recovering coal between abandoned underground mines and adjacent strip mines and in areas where mining by other methods is not feasible.

A rotary-drilling machine had completed boring seven 6-footdiameter shafts in Virginia and West Virginia by April 1957.34 Greatest depth of the seven was the No. 6 shaft at the Bunker mine No. 2, Trotter Coal Co., Core, W. Va., which was drilled to 465 feet. machine has been patterned after rotary drills employed for drilling blastholes. The enormous amount of cuttings and high thrusts required on the bits necessitated designing the machine to core rather than cutting all of the bottom of the hole. A 4-inch-wide kerf is cut by 6 cutters mounted on bit bearings of the tricone type and bolted at equal intervals on the cutting end of the core barrel. A total thrust of 100,000 pounds can be applied to the bits. The complete machine, including rotary-drive motors and a cutting-head assembly, is suspended in the shaft by wire rope. Operators occupy a platform immediately above the drive motors. High thrusts are obtained by anchoring the unit to the shaft walls by a horizontal jack at the top of the unit and advancing the core barrel independently, through a thrust mechanism below the jack. Based on past performance of the boring machine, drilling shafts with 8-foot diameters may be possible.

Boring devices similar in cutting action to the type of borer described above have been in use in Germany for driving inclined and vertical raise openings up to 5 feet in diameter. One of the devices

²² Nagy, John, Hartmann, Irving, and Mitchell, Donald, Experiments on Water Infusion in the Experimental Coal Mine: Bureau of Mines Rept. of Investigations 5353, 1957, 12 pp.

²⁵ Haley, Wilbur A., and Dowd, James J., The Use of Augers in Surface Mining of Bituminous Coal: Bureau of Mines Rept. of Investigations 5325, 1957, 22 pp.

²⁶ Zenl, Victor, and Williamson, Thomas N., Sinking Large-Diameter Mine Shafts by Rotary Drilling: Min. Eng., vol. 9, No. 4, April 1957, pp. 455–459.

in use produced core, whereas, two other types cut the entire hole and produced no core. 35

The School of Mines, King's College, Durham, England, in association with the Durham Division of the National Coal Board, has conducted research on the plowability or planability of coal seams since 1955. Apparatus employed in testing for the plowability index is a hydraulic cylinder actuated through a hydropneumatic accumulator by a double-acting, high-pressure hand pump.36 Attached to the cylinder is a steel wedge to which various cutting blades may be fastened. A total thrust of about 19,000 pounds can be developed by the test apparatus. Pressure fluctuations and cutting-blade penetration are recorded automatically on a chart during a test. For underground testing of a seam, the apparatus is mounted on a screw-jack prop installed at the face to be tested.

General conclusions on tests at various coal mines in the Durham district in England were that the apparatus was satisfactory for testing the plowability of the coal and also for selecting the best design of plow for a particular seam.³⁷ To establish a "plowability index" for coal seams in Durham, data previously obtained in actual testing were summarized into the frequency distribution form, and the number of readings in each range of grouping calculated as percentages of the total number taken.³⁸ The cumulative percentage values were plotted against the cutting force (pounds), forming a distribution curve. These charts allowed direct reading of the cutting force in pounds required in any percentage of tests. With enough tests of any particular seam, the distribution curve indicated the cutting characteristic of the seam under a given set of conditions, such as depth of cut and blade angle. The curve, plotted at the same scale as previous data, can be compared against the curve of plowable coal seams, and the total amount of the seam plowable at the same cutting force can be read directly.

A laboratory experiment by the British National Coal Board mining-research establishment on the practicability of bursting coal from the face by a steel cone forced through a hole parallel to the face was described in 1957.39 The experiment was made on laboratory specimens ranging from 6 to 15 inches in height and width and from 15 to 36 inches in length. During the bursting process a simulated roof load was maintained on the specimens. Surfaces of the experimental bursting cones were machine-finished, and the cone angle was Initial experiments consisted of pulling the cone through the hole by wire rope, but later experiments included adding a percussive action to the back of the cone. With the percussive action it was possible to break larger burdens without undue stress on the haulage rope. Current experimental work indicates that the cone-bursting method may be applicable to solid soft coals or to coals with a pronounced cleat. Percussive action added to the haulage force of the

Engineering and Mining Journal, German Boring Units Speed Raising: Vol. 158, No. 10, October 1957,

^{**} Engineering and Mining Journal, German Boring Units Speed Raising: Vol. 108, 100, October 1837, pp. 100-102.

** Binns, P. D., and Potts, E. L. J., The Ploughability of Coal Seams: Colliery Eng. (London), vol. 32, May 1955, pp. 201-204.

** Binns, P. D., and Potts, E. L. J., The Ploughability of Coal Seams: Colliery Eng. (London), vol. 32, June and July 1955, pp. 241-246, 289-293.

** Potts, E. L. J., and Binns, P. D., The Establishment of a Ploughability Index for Seams in Durham: Trans. Inst. Min. Eng. (London), vol. 116, Part 2, November 1956, pp. 98-107.

** Fish, B. G., and Stevens, M. J., Studies in Coal Bursting, Using Cone Wedge: Colliery Eng. (London) vol. 34, May and June 1957, pp. 188-190, 240-244.

wire rope resulted in a marked reduction in the amount of haulage force required. If the method has a practical application, percussive action probably will have to be added to the haulage force.

MATERIALS HANDLING: LOADING, TRANSPORTATION, HOISTING

Loading continued to be one of the major problems in handling materials. At most mining operations loading machines were the most critical pieces of equipment in the materials-handling circuit.

In a search for a better loader, the Eagle-Picher Co., operating in the Tri-State and Upper Mississippi lead-zinc districts, has tentatively settled on rubber-tired end loaders for use in its mines under particular conditions.⁴⁰ For the majority of loading conditions, they appear to be the best.

Field tests in the Tri-State district with a 2-cubic-yard-capacity, rubber-tired end loader resulted in obtaining an average of 595 tons per shift at a total operating cost of \$0.090 per ton. Operating labor was \$0.038, fuel \$0.005, and tires \$0.033; other repairs and repair

labor were \$0.014 per ton.

A 2-cubic-yard-capacity, rubber-tired end loader was also tested 10 months in a mine in Wisconsin and, with an average of 450 tons per shift, the operating cost was \$0.151. Operating labor was \$0.039, fuel and lubrication \$0.010, tires \$0.055, and other repairs, supplies, and repair labor \$0.047 per ton. Adjustment of this cost to include complete overhaul (\$0.034 per ton) and amortization (\$0.05) results

in an overall loading cost of \$0.235 per ton loaded.

Montevecchio mines in Sardinia, Province of Cagliari, have developed a special machine for handling ore. It is comprised of an overshot-type shovel loader mounted on a rubber-tired dump wagon. The machine is designed to load, haul, and dump and has been developed in two sizes. The smaller had a 3½-cubic-foot bucket, body capacity of 26 cubic feet, turning radius of 4 feet 10 inches, and a traveling speed of 4 feet per second. The larger had an 8½-cubic-foot bucket, a body capacity of 58 cubic feet, and a speed of 3 feet per second. Both the large and small machines can pull a 12-percent grade fully loaded.

At the Jackpile uranium mine 48 miles west of Albuquerque, N. Mex., The Anaconda Co. employed a mobile, diesel-electric plant to power its open pit loading equipment.⁴² The mobile power plant is mounted in a 32-foot 8-inch-long, 11-foot 10¾-inch-high trailer. An 8-cylinder, 2-cycle diesel engine furnished the mechanical power for operating the alternating-current generator at 720 revolutions per minute. The resulting electrical energy was sufficient to power an electric shovel with a 5-cubic-yard dipper. The mobile plant will be

used in place of constructing a stationary power unit.

Shaft-mucking techniques have undergone several changes in the period 1948-57. Probably the latest change was introduction of

Dale, C. O., Discussion of Underground Loaders: Pres. at 1957 Metal Mining and Industrial Minerals Convention, Am. Min. Cong., Salt Lake City, Utah, Sept. 9-11, 1957; press release, 7 pp.
 Mine and Quarry Engineering (London), Ore Handling at Montevecchio: Vol. 23, No. 3, 1957, pp. 99-101.
 Engineering and Mining Journal, Mobile Unit Supplies Shovel Power: Vol. 158, No. 3, March 1957, pp. 75.

crawler-mounted loaders running directly onto the muckpile and loading by overshot action into the shaft bucket.43 In the Intermountain Chemical Co. Westvaco mine shaft near Green River, Wyo., the crawler-mounted loader, under optimum conditions, loaded 15 to 18 cubic yards of solid per hour. The shaft was 20 feet in unfinished diameter, and enough maneuvering room for the crawler was available. Loading in a shaft less than 14 feet in diameter was considered

Bucket-wheel excavators, employed in combination with beltconveyor haulage, were in use throughout the world.44 Machines built in the United States were used in the Northern Illinois coalfield to strip overburden too high to be reached by 30- to 40-cubic-yard shovels. In Germany bucket-wheel excavators were used to remove overburden 600 feet or more thick. For these operations, haulage has been largely by rail but was being changed to belt conveyors. Extensive use of the large machines in Germany since World War II has resulted in improved designs of excavators with a capacity up to 10,000 cubic yards per hour. Conveyor belts to support this high production are run at high speeds with troughing idlers at 30°.

The belt conveyor has become one of the major methods for transporting materials. Technologic advances in belt fabric, machinery design, and construction have been rapid. In about 1945 a 36-inch belt conveyor 500 feet long, with 150- or 200-horsepower drive, was about the maximum size of conveying unit. Belts in 1957 had widths greater than 72 inches and carrying capacities of 3,000 to 6,000 tons per hour, often requiring over 2,500 horsepower for drive. Belt speeds of 600 to 800 feet per minute were common, and overland conveyors followed the contour of the ground without being broken into sections. A major factor in the technologic advance of belt conveyors has been the improvements in strength and other properties of fibers used in manufacturing high-tension fabric belts.46

Tensions, which at one time could only be handled by belts having steel, cable-strength members, can be handled easily by fabric belts constructed of synthetic fibers. Fabric belts of rayon or nylon can withstand tensions of 1,400 to 1,800 pounds per inch of belt width. The new synthetic fiber materials not only have added tensile strength to the belt but have improved the properties of troughing, bending, and absorption of shock and impact under high tension. Where the tension range from 2,000 to 3,000 pounds per inch of belt width, steel cable belts were still used, especially in belt widths above 30 inches.

The design and use of belt conveyors in the underground coalmining industry have been undergoing changes since 1950. Continuous miners that mine coal from a solid face have pointed up the need for a transportation system that can handle the continuous flow of coal to accompany the mining operations. Application of beltconveyor transportation systems to continuous mining operations has resulted in designs that make conveyors exceptionally versatile for

⁴⁸ Berry, T. M., Shaft Loading, Clamshell vs. Crawler-Mounted Loader: Min. Eng., vol. 8, No. 12, December 1956, pp. 1196-1198.

48 Wamsley, W. H., German Bucket-Wheel Excavators and Belt Conveyors: Min. Eng., vol. 8, No. 12, December 1956, pp. 1179-1180.

49 Vander Laan, Martin, Current Trends in Heavy Conveyor Belts: Pres. at Metal Mining and Industrial Minerals Convention, Am. Min. Cong., Salt Lake City, Utah, Sept. 9-11, 1957; press release, 3 pp.

40 Arguedas, Arthur, Current Trends in Heavy Conveyor Belts: Pres. at Metal Mining and Industrial Minerals Convention, Am. Min. Cong., Salt Lake City, Utah, Sept. 9-11, 1957; press release, 6 pp.

continuous mining operations. Essentially, the belt conveyor has succeeded in providing continuous haulage for continuous mining.

Belt-conveyor systems being constructed work directly with continuous mining machines. Conveyors of this class are extensible and mobile train units. Extensible conveyors can be extended while in the process of transporting material.

Mobile train units are flexible conveyor assemblies designed specifically to support continuous mining machines. They are a train of portable belt conveyors, mounted on rubber tires permanently

connected.47

In addition to requiring flexible units at the mining face, the continuous miner also requires a main-line-conveyor transportation system that can be installed and extended quickly and cheaply. New designs of conveyors to meet these needs are rope or cable belt conveyors. In Europe, in a common type of design, the load is borne by twin steel rope upon which the belt is carried by means of a steel strap across the underside of the belt. Shoes on each end of the strap bear on the ropes. The ropes take the drive, the belt acting only as a carrier. Advantages of the design are listed as follows: (1) First cost is lower than that of comparable conventional conveyor installations; (2) belt-edge wear is eliminated; (3) maintenance is low; (4) driving power is provided at less cost than in conventional conveyor systems; and (5) the system can be all one unit, as the necessity of operating in tandem is eliminated because there is no tension on the belt.

In line with the design of a conveyor in which the sole function of the belt is to carry the load, steel conveyors have been developed in Europe employing chains as a means of furnishing the stress transmission. The steel conveyors, rather than running on idlers, are

equipped with wheels that run on tracks or angle irons.

Rope belt conveyors are of different design in the United States; however, the essential purpose—a conveyor system that can be installed quickly and cheaply—is the same as in Europe. In American design the belt conveyor is suspended on two parallel, stationary wire ropes. It design the belt conveyor is suspended on two parallel, stationary wire ropes. It design the belt conveyor is suspended on two parallel, stationary wire ropes. It design the belt furnishes the drive and also acts as the carrier. Ropes are supported at 20-foot intervals by 3-piece pipestands, which, in addition to giving support, also withstand the horizontal forces that tend to squeeze the ropes together. A feature of the system is that, under load, the rope flexes with the load, and the position of the idlers changes with the load pattern.

International Minerals & Chemical Corp. installed a rope-suspended belt conveyor at its potash mine near Carlsbad, N. Mex., to replace excessive shuttle-car haulage that had extended to distances of 1,500 feet. The initial flight of 540 feet was installed on rope spans 160 feet in length anchored in the roof. Idlers were placed on 4-foot centers. Further extensions of the belt were installed on ropes anchored in the floor instead of the roof. The rope belt conveyor proved to be flexible, high-capacity equipment. Only about 6 hours

⁴⁷ Stevenson, J. W., Jeffery Molveyor Supporting Continuous Type Mining Machines: Proc. Illinols Min. Inst., Ann. Meeting, Springfield, Ill., Oct. 26, 1956, pp. 66-69.
40 Ohlen, Louis S., Rope Belt Conveyors: Proc. Illinols Min. Inst., Ann. Meeting, Springfield, Ill., Oct. 26, 1956, pp. 58-65.
40 Skinner, E. C., Operating Experience With Steel-Supported Conveyors: Pres. at Metal Mining and Industrial Minerals Convention, Am. Min. Cong., Salt Lake City, Utah, Sept. 9-11, 1957; press release, 4 pp.

was required for extending the belt length, and the installation permitted a reduction from 5 shuttle cars to 3.

Pneumatic packing machines, which are employed for pneumatic packing or stowing in coal-mine workings, have focused attention on pneumatic transportation or conveying of solids through pipes. Scientific Department of the National Coal Board conducted a theoretical study on pneumatic transportation that will have as its final objective the study of pneumatically conveying sticky, irregularly shaped particles used in pneumatic packing in the coal industry. 50 Study was confined to the movement of dry, spherical particles through straight, level pipes. By using such materials, the range and number of variables involved in the study were limited. equations were obtained from the experimental study, giving the pressure gradient and velocity of a fully accelerated particle along the pipe when conveying nonadhesive, spherical particles. The equations were checked by testing application under smaller diameter pipe and smaller diameter particles and found to be true even under the widening range of these variables.

Central Test Station, State Mines in Limburg, Treebeek, Netherlands, employed a functional-type analog computer to determine mathematically the cause of vibrations in hoist cables and skips during high-speed hoisting and to assist in establishing corrective measures

for solution of the vibration problems.⁵¹

Experimental and practical studies on the electromagnetic method of testing wire ropes were discussed at a meeting of electrical engineers in South Africa. 52 The method consists of introducing a magnetizing force into the rope and in turn measuring the magnetic flux in the rope, the flux in the rope being proportional to the magnetizing force, the magnetic permeability of the steel, and the area of the steel in the Testing may be conducted while the rope is in motion, the rope speed during a test depending upon the response of the recorder and detector circuit. Usual speed is about 200 feet per minute.

Results of the testing are recorded on a chart in the form of traces. Charts are interpreted according to variations of the trace. tions may be caused by eddy currents, corrosion, or changes in magnetic permeability. Eddy currents and magnetic permeability are not indications of rope deterioration. Indication of corrosion in the rope probably is the most important information on the rope given by the charts. Corrosion may be hidden and cannot be detected by surface examination; often appreciable reduction in strength results from the corrosion. Proportionality of the magnetic flux to the area of the steel in the rope permitted establishment of a relationship between breaking load and magnitude of the magnetic flux; this relationship may be used to determine the amount of strength deterioration that has occurred, either by corrosion or excessive wear. Undoubtedly the method will have great value in testing wire ropes.

Closed-circuit television was employed at No. 17 coal mine, Pana, Ill., allowing the hoist operator to observe dumping of the loaded

<sup>Hitchcock, J. A., and Jones, C., The Pneumatic Conveying of Spheres Through Straight Pipes: Nat. Coal Board (London), Mining Research Establishment Rept. 2053, December 1956, 12 pp.
Work cited in footnote 7.
Empendink, A., Electromagnetic Testing of Winding Ropes: Trans. South African Inst. E ec. Eng., vol. 47, part 7, July 1956, pp. 206–233.</sup>

skip into the raw-coal hopper.⁵³ By the closed-circuit viewing system, the operator can easily see if large chunks of coal are wedged in the skip and if the skip door closed properly after dumping.

GROUND SUPPORT AND CONTROL

Developing instruments to measure the magnitude and direction of stresses induced by construction of underground openings continues to be a major problem in ground-control studies. A survey of European mining-research establishments by the Bureau of Mines indicated that they place great emphasis on basic research and are making noteworthy progress in solving the problem of developing instruments for rock-stress measurement.⁵⁴

A primary objective of the Strata-Control Research Laboratory at King's College, University of Durham, England, was to develop instrumentation for research in ground-control problems. The final objective was development of instruments that will measure the magnitude and direction of acting stresses in the solid ahead of the mining face, at the face, and in the packing area behind the face. Stressmeasuring devices developed for measuring support loads include a prop- and roof-bolt-load cell and stressmeter. 55 In the prop-load cell, load on the cell is related to measurement of an "out-of-balance" current produced by changes in the resistance of three electrical resistance strain gages fixed to the inner wall of the cell. The cell and associated measuring equipment record changes in the load taking place on the prop. With constant or selective switch reading of 20 to 40 load cells attached to props, the effect and extent of influence of operations at the face can be determined either on individual props or on all props included in the load survey.

The stressmeter is a device developed for insertion in a borehole to measure the stresses present in the solid ahead of the mining face. Two designs of the stressmeter were in use—one for coal, the other The hard-rock stressmeter has been designed to enter for hard rock. a 1-inch-diameter borehole. The method of measuring acting stresses is essentially the same as in the prop-load cell. Use of the stressmeter indicates that loads are constantly being redistributed as mining progresses. In 1 test the stressmeter was installed in a coal mine at a depth of 1,350 feet—20 feet ahead of the mining face. As coal cutting proceeded, stress rose from about 450 to a maximum of 850 pounds per square inch. In the course of filling, when there was no active mining in progress, the load pressure was changing, either

increasing or decreasing.

Research was also conducted at King's College on determination of strata pressures by measurement of sonic velocities over a constant length path.⁵⁶ This research was based on the almost invariable increase in sonic velocity as stress increases, unless the rock is undergoing failure. Measurement of velocity along paths from selected

S Coal Age, Closed-Circuit Television: Vol. 62, No. 10, October 1957, pp. 90-91.
Work cited in footnote 7.
Potts, Edward L. J., Underground Instrumentation: Quart. Colorado Sch. Mines, vol. 52, No. 3, July 1957, pp. 135-182.
Banister, Donald, The Measurement and Analysis of Support Loads Underground: Quart. Colorado Sch. of Mines, vol. 51, No. 3, July 1956, pp. 37-61.
Potts, E. L. J., A Scientific Approach to Strata Control: Trans. Inst. Min. Eng. (London), vol. 116, part 2, November 1956, pp. 113-129.

positions in an area indicates the relative stress distribution; however, because of the high velocity of sonic waves in rock, measurement of the length of paths and velocities must be done with extreme accuracy. This method of stress measurement was in the

experimental stage.

An outstanding example of basic research in Europe was development of a stress-measuring device by Prof. Nils Hast of Stockholm, Sweden. The device measures magnitude and principal direction of stress on or near the surface of underground openings and at depths up to 50 feet or more in solid rock; it can establish the stresses that were residual in the rock and those induced by mining.

At the Klausthal Mining Academy, Klausthal, Germany, the physical properties of rocks were investigated. A study of the effects of plasticity of rocks related to time was included. Stopes, pillar supports, shafts, and shaft pillars have been designed in nonmetal mines from criteria developed as a result of physical properties of rock studies.

Rock-mechanics research related to the control of subsidence was undergoing intensive study by the Technical Service Laboratory, Association of French Iron Mines, Briey, France. Studies were concerned primarily with control of ground subsidence as pillars are removed in retreating. The basic problem has been to control subsidence so that pillars next to the caved area do not fail prematurely, resulting in loss of pillar ore. Experimental work has demonstrated that there is an optimum rate of retreat. If pillars are removed too rapidly, incomplete subsidence transfers excessive loads upon pillars adjoining the caving area, causing them to fail. If pillars are removed too slowly, adjoining pillars undergo plastic deformation that causes them to spall and ultimately fail. Horizontal rock bolts have been employed for reinforcing the pillars.

The University of Durham, King's College, England, designed and supervised construction of a mine workers' community, including houses, water systems, sewerage, gas, and road systems over an area that was to be mined and caved. They were designed to eliminate failure during the subsidence produced by removing the coal lying beneath the area. A complete record of subsidence in the community was maintained, and all subsidence measurements were correlated

with the progress of underground mining.

A problem of shifting ground in shafts in the State Mines at Limburg, Treebeek, Netherlands, was solved by a new method for lining shafts. Shafts are sunk to approximately 3,000 feet in depth. During sinking the shaft diameter is mined with an overbreak of about 2 feet. Precast, steel-reinforced concrete lining sections are placed in the opening, leaving the overbreak area clear. The overbreak area is then filled with a material of asphaltic composition, which allows considerable rock movement without disturbing the shaft lining.

Ground-control problems in the Kolar goldfield, Mysore, India, were greater than elsewhere.⁵⁷ The Champion Reef mine was 10,030 feet deep and was the deepest in the world. At this depth rock temperature is 150° F. Two surface air conditioners were used to cool the mine to 86° F. at the bottom of the shaft and 125° F. at the end of drifts on the lowest level. Another cooling plant will be installed

⁵⁷ Tufty, Barbara, World's Deepest Mine: Science News Letter, vol. 72, No. 10, September 1957, pp. 154-155.

at 8,000 feet to assist the surface plant in cooling the air. The country rock is hornblende schist, which, though strong, is exhibiting evidences of natural plasticity in some of the deepest openings. Some walls move as much as 6 inches into the excavation within 24 hours

after opening.

As would be expected under such enormous pressures, rock bursts are common. To minimize their effect, granite blocks (8 or 12 inches in size) are quarried on the surface and transported underground for fill in the stopes. They are packed by hand to form a continuous, rigid wall. Over 5,000 tons of blocks is packed into the mine excavations each month. Underground openings that must be kept open are encircled with steel rails every 3½ feet. Areas between the rails are rock-bolted. The Champion Reef mine is expected to reach 11,500 feet in depth using these methods. To exceed this depth, new

ground-control methods will have to be devised.

Applied Physics Laboratory, Bureau of Mines, College Park, Md. continued its roof-span studies in 1957. Field tests were conducted at a limestone mine by instrumenting a selected 10-by 100-foot area and widening in successive increments to an open room 40 by 100 Measurements were made of separations in the roof strata and deflection of the roof through successive widening periods. The 40- by 100-foot dimension and the roof horizon of the room were determined by investigation of the physical features of the rock, the physical properties of samples of rock from the roof, and calculations from the theory of loaded beams. After each widening of the span the roof sagged abruptly; and, in the periods between widenings, the roof sagged slowly for about 4 months and then stopped. Cessation of sagging indicated that the roof was not being affected by time deterioration. The lowest 6-inch layer of the roof separated, but the layer did not fail. It was removed after standing for about 4 months, when the roof was at maximum dimension. The method of roof-span design employed in the test is applicable to any spanned opening in which the rock is bedded horizontally in thin layers; however, a safety-factor allowance must be made for rock defects, such as joints and variations in physical properties that would tend to weaken the rock structurally.

Information from Bureau of Mines coal-mine inspectors' reports during the calendar year 1956 indicated that 424 bituminous-coal mines in the United States employed rock bolts for ground control. An average of 2.64 million bolts was installed per month, which is a decrease of 0.36 million from 1955. Ninety-one percent of the 424 bituminous-coal mines used rock bolts equipped with expansion shells for anchorage, 3 percent used slotted-type bolt anchorage, and 6 percent used both types of anchorage. Data are not available on the

number of bolts installed in metal and nonmetal mines.

The third report on anchorage tests of mine rock bolts was published in 1957 by the Bureau of Mines.⁶⁰ Thirty tests were made to measure the anchorage in a sandstone and shale roof with 5 makes of expan-

¹⁸ Merrill, R. H., Roof-Span Studies in Limestone: Bureau of Mines Rept. of Investigations 5348, 1957, 38 pp.

¹⁹ Thomas, Edward, Summary of Coal-Mine Inspectors' Reports on Roof Bolting for Calendar Year 1956: Bureau of Mines unpub. rept., January 1957, 2 pp.

²⁰ Barry, A. J., Panck, L. A., and McCormick, John A., Anchorage Testing of Mine-Roof Bolts, Part 3. Expansion-Type, 36-Inch Bolts: Bureau of Mines Rept. of Investigations 5310, 1957, 8 pp.

sion-type shells and 2 types of mild-steel and high-strength %-inch bolts. Anchorage obtained in the sandstone or shale was such that the yield load of both bolt types was exceeded before excessive slip occurred. A method of evaluating the anchorage effectiveness of the %-inch expansion-type bolts was presented in graph form by plotting the relationship between bolt load and bolt displacement.

Self-advancing, hydraulic-powered roof supports have been developed in Britain. Greatest use of the supports is realized in fully mechanized mining. Support units are made in two types: One type has 2 props and a twin-section top beam, and the other has 3 props and a triple-section beam. When the support advances, it advances as a unit, including the beam and props. The props in each unit are set to yield independently at 21 tons. A cantilever section of the beam supporting the portion of roof over the mining machinery can

be preset at loads up to 9 tons.

An experimental test in the use of yielding steel supports (props) in combination with backfilling was conducted in an anthracite mine at Plymouth, Luzerne County, Pa., under a cooperative agreement between an operating company and the Bureau of Mines. 62 The test was made in an attempt to recover the maximum amount of coal from the pillars. Previous efforts to recover the coal with conventional timbering resulted in badly fractured roof, loss of some coal, and a major part of the working time being consumed in installing the timbers. Becorit yielding-type metal props were used in the experiment. For conventional use in longwall mining in Europe, this type of prop is in use only a few days, whereas in this experiment the props were in service and under continuous load for 90 days. the first test some of the props collapsed because of load shedding, but the difficulty was overcome by substituting a newly developed lock assembly to replace the original lock assembly on the props. The props were placed with a setting load of 10 tons, which dropped to 7 tons when the setting device was removed. At about 10-millimeter yield the props assumed carrying loads ranging from 30 to 50 tons.

The first of a series of reports concerning research on strengthening mine roof by pressure injection of cementing material into fractures and bedding planes was published by the Bureau of Mines.63 The aims of tests made in operating coal mines were development of suitable injection equipment, and determining the pressure required for injecting fluids into the roof strata. Initial tests that attempted injection of water at a pressure of 125 pounds per square inch were unsuccessful. Final equipment, developed and designed for mounting on a mobile, 3-wheeled cart, consisted of a high-pressure gear pump, electric motor, and auxiliary equipment capable of producing any desired pressure up to 1,200 pounds per square inch. Experiments in which oil was injected into the roof disclosed that higher pressures must be used at the face than are necessary a distance back from the face; and, when a flow could not be obtained at the face, it was possible to obtain a flow after the face had been advanced one or more

Mining Journal (London), Powered Roof Supports in Mines: Vol. 248, No. 6358, June 28, 1957, p. 818. Hartley, John C., Cooner, Sr., John D., and Brennan, Robert J., Anthracite Mechanical-Mining Investigations. Use of Yielding Steel Supports (Props) in Combination With Backfilling for Mining Thick, Flat Beds: Bureau of Mines Rept. of Investigations 5290, 1956, 29 pp.

Maize, Earl R., and Wallace, Joseph J., Cementation of Bituminous-Coal-Mine Roof Strata. Part I—Determining Penetrability of Mine Roof by Injecting Oil and Water: Bureau of Mines Rept. of Investigations 5304, 1956, 11 pp.

Relationship of the required pressure and position of the face cuts. were attributed to roof sag after mining. Research was to be continued and directed toward developing a cementing material capable

of being injected into the roof rock and bonding the fractures.

A water barrier surrounding a deep foundation excavation in New York City was constructed by chemical injection and solidification.⁶⁴ The chemicals were injected through 60-foot-long injection pipes placed in cased drill holes. Sodium silicate solution, followed by a calcium chloride solution, were the chemical mixtures used to solidify the rock. Casing was pulled, and successive injections were made as the injection pipe was removed from the hole in 1-foot stages. average height of column solidified was 18 feet. Injection pressures ranged from 150 to 600 pounds per square inch.

A progress report on a study of the physical features of the San Manuel (Ariz.) mineral deposit affecting and related to block caving was published.65 The study indicates that the physical features affecting block caving are essentially those that pertain to rock strength and include structure, rock types, alteration, mineralization, oxidation, and ground water. Detailed mapping of the fracture pattern and graphing of their density of occurrence, according to their strike and dip, indicated zones of weakness trending in the direction of strike. The study, which was essentially an experiment in correlating the physical feature data with action of block caving, will be

Fundamental data available for determining slope stability in openpit mines were reviewed.66 Physical property studies of the material in open-pit walls indicate that the extreme limits defining the physical condition of the material are as follows: (1) The condition of a solid, (2) condition of a liquid, and (3) condition of an aggregate of unbonded dry and loose, but individually solid, particles. In the solid condition resistance is offered to both tension and shear. In the condition of an aggregate of unbonded dry and loose solid particles, no resistance is offered in tension, but resistance is offered to shear through friction of individual particles. In the liquid condition no resistance is offered to either shear or tension. Normally, the materials comprising openpit slopes are in a physical condition that is somewhat of an average of all three extreme limits.

DRAINAGE

A revision of American Recommended Practice for drainage of coal mines (M6) was published by the Bureau of Mines.⁶⁷ The publication lists (1) standard practice for using gathering and permanent pumps; (2) piping for pumps; (3) methods of operation of pumps, storage of water, natural drainage, and unwatering abandoned workings; (4) the composition of mine waters, their action on mine drainage equipment, and alloys that are acid-resisting; and (5) methods for reducing electrolysis in pipelines. The newly recommended standards

Construction Methods and Equipment, Chemically Made Rock Seals Foundation Pit: Vol. 39, No. Construction Methods and Equipment, Unemically Made Rock Seals Foundation Pit: Vol. 39, No. 9, September 1957, pp. 94-97.

Wilson, E. D., Geologic Factors Related to Block Caving at San Manuel Copper Mine, Pinal County, Ariz., Progress Report, April 1954-March 1956: Bureau of Mines Rept. of Investigations 5336, 1957, 78 pp. Vine, W. A., Slope Stability in Open-Pit Mines: Pres. at the Metal Mining and Industrial Minerals Convention, Am. Min. Cong., Salt Lake City, Utah, Sept. 9-11, 1957; press release, 5 pp. 6 Bureau of Mines, American Standard Recommended Practice for Drainage of Coal Mines (M6.1-55, UDC 622.5) Bull. 570, 1957, 18 pp.

were formulated according to the procedure of the American Standards Association.

VENTILATION

A tube fabricated from Polyethylene film, 4-mil (0.004-inch) thickness, was employed for delivering air under low pressure and velocity to underground workings in the No. 1 mine of Minerva Oil Co., Fluorspar Division, Hardin County, Ill. 68 The plastic material was obtained in 100-foot rolls, 16 feet in width and fabricated into a tube 54 inches in diameter at the mine. Cost of the completed tube was \$0.96 per foot, and installation cost was \$0.38 per foot. The longitudinal seam fastened with staples and 3-inch acetate fiber tape, gave some trouble during 5 months of use, but it was thought that no serious difficulty would be experienced in developing an improved method of fastening the seams.

HEALTH AND SAFETY

Carbon dioxide gas and carbon dioxide as dry ice were used to control and extinguish an underground fire in the Penokee mine, Ironwood, Mich., operated by the North Range Mining Co., Negaunee, Mich. The fire area was a 300-foot, double-compartment, cribbed raise between the 29th and 31st levels of the mine. Carbon dioxide gas was introduced from the surface into the fire area through the main compressed-air line and 6 blocks of dry ice weighing about 50 pounds each were dumped into the raise from the top. Apparently sublimation was immediate when the dry ice encountered the high temperatures of the fire. When the smoke cleared and reentry to the area was possible, a ton of dry ice was dumped down the raise. while gas was continuously introduced into the area through the main Through the combined introduction of gas and dry ice, the fire was under control and extinguished in less than 24 hours.

A survey of State laws and regulations affecting the use of internalcombustion engines underground was published in 1957.70 The Bureau of Mines has conducted investigations on the safe use of diesel engines underground since 1937. Abstracts of laws, regulations, and comments of State officials covering 36 States were published. Some States ban internal-combustion engines but exempt diesel engines, subject to special regulations. The report recommends that manufacturers of diesel equipment consult State authorities before selling such equipment for underground use in States where laws are not specific.

Research on the cause and control of coal-dust explosions was reviewed.⁷¹ The Experimental Coal Mine of the Bureau of Mines has served as a laboratory for operational research for determining the explosibility of coal dust and mine gas, factors that govern the propagation of mine explosions, and the effect of preventive measures

⁶⁸ Daly, J. J., Plastic Ducts for Mine Ventilation: Pres. at Metal Mining and Industrial Minerals Convention, Am. Min. Cong., Salt Lake City, Utah, Sept. 9-11, 1957; press release, 3 pp.
69 Haller, F. J., Fightling a Fire With CO₂: Pres. at Metal Mining and Industrial Minerals Convention, Am. Min. Cong., Salt Lake City, Utah, Sept. 9-11, 1957; press release, 5 pp.
70 Holtz, J. C., Gleim, E. J., State Regulations Pertaining to the Use of Internal-Combustion Engines Underground: Bureau of Mines Inf. Circ. 7789, 1957, 24 pp.
71 Hartmann, Irving, Studies on the Development and Control of Coal-Dust Explosions in Mines, Bureau of Mines Inf. Circ. 7785, 1957, 27 pp.

to stop or eliminate explosions. About 2,500 explosion tests have been made in the Experimental Mine, but many of them are no longer applicable to current conditions. Highly mechanized operations, which are common in coal mines today, have increased the production of fine coal dust and raised problems of applying rock dust to within 40 feet of all active faces.

MINING METHODS AND PERFORMANCE

Publication by the Bureau of Mines of a series of information circulars reporting mining methods, performance, and costs was continued during 1957. During the year 13 circulars were published,⁷² making a total of 19 circulars published in this series since reactivation of the program in 1955.

72 Trengove, R. L., and Johnson, A. C., Sampling Deep-Ore Deposits by Rotary Drilling and Methods of Surveying and Controlling the Direction of Drill Holes: Bureau of Mines Inf. Circ. 7768, 1956, 15 pp. Clark, S. S., Mining Methods and Costs at the Westside Mine of the Eagle-Picher Co., Cherokee County, Kans.: Bureau of Mines Inf. Circ. 7774, 1957, 20 pp. Cole, W. A., Mining and Milling Methods and Costs, Tri-State Zinc, Inc., Jo Daviess County, Ill.: Bureau of Mines Inf. Circ. 7780, 1957, 19 pp. Lane, M. E., Mining Methods and Costs at the Hayden Creek Mine of St. Joseph Lead Co., St. Francois County, Mo.: Bureau of Mines Inf. Circ. 7781, 1957, 33 pp. Olds, E. B., and Parsons, E. W., Methods and Costs of Deepening the Crescent Shaft, Bunker Hill & Sullivan Mining & Concentrating Co., Kellogg, Shoshone County, Idaho: Bureau of Mines Inf. Circ. 7783, 1957, 11 pp.

Sullivan Mining & Concentrating Co., Kellogs, Shoshone County, Idaho: Bureau of Mines Inf. Circ. 7783, 1957, 11 pp.

Storms, W. R., and Bowman, A. B., Mining Methods and Practices at the Mineral Hill Copper Mine, Banner Mining Co., Pima County, Ariz.: Bureau of Mines Inf. Circ. 7786, 1957, 25 pp.

Hardwick, W. R., and Sierakoski, G., Mining Methods and Practices at the Johnson Camp Copper & Zinc Co., Cochise County, Ariz.: Bureau of Mines Inf. Circ. 7788, 1957, 27 pp.

Evans, T. B., and Eilertsen, N. A., Mining Methods and Costs at the Sunbright Limestone Mine, Foote Mineral Co., Sunbright, Va.: Bureau of Mines Inf. Circ. 7793, 1957, 44 pp.

Lickes, M. R., Mining, Processing, and Costs, Idaho Almaden Mercury Mine, Washington County, Idaho: Bureau of Mines Inf. Circ. 7800, 1957, 33 pp.

Dare, W. L., Mining Methods and Costs, Continental Uranium, Inc., Continental No. 1 Mine, San Juan County, Utah: Bureau of Mines Inf. Circ. 7801, 1957, 20 pp.

Dare, W. L., and Delicate, D. T., Mining Methods and Costs—La Sal Mining and Development Co., La Sal Uranium Mine, San Juan County, Utah: Bureau of Mines Inf. Circ. 7803, 1957, 48 pp.

Pettit, R. F., Jr., Calhoun, W. A., and Reynolds, B. M., Mining Methods and Costs, Ozark Ore Co., Iron Mountain Iron-Ore Mine, St. Francois County, Mo.: Bureau of Mines Inf. Circ. 7807, 1957, 46 pp.

Dare, W. L., Mining Methods and Costs, Calyx Nos. 3 and 8 Uranium Mines, Temple Mountain District, Emery County, Utah: Bureau of Mines Inf. Circ. 7811, 1957, 36 pp.

Statistical Summary of Mineral Production

By Kathleen J. D'Amico 1

THIS SUMMARY is identical to that in volume III of this series on mineral production in the United States (including Alaska and Hawaii), its island possessions, the Canal Zone, and the Commonwealth of Puerto Rico and on the principal minerals imported into and exported from the United States. For further details on production see the several commodity and area chapters. A summary table comparing world and United States mineral production also is included.

Mineral production may be measured at any of several stages of extraction and processing. The stage of measurement used in the chapter is normally what is termed "mine output." It usually refers to minerals in the form in which they are first extracted from the ground but customarily includes, for some minerals, the product of

auxiliary processing operations at or near mines.

Because of inadequacies in the statistics available, some series deviate from the foregoing definition. The quantities of gold, silver, copper, lead, zinc, and tin are recorded on a mine basis—that is, as the recoverable content of ore sold or treated; the values assigned to these quantities, however, are based on the average selling price of refined metal, not the mine value. Mercury is measured in the form of recovered metal and valued at the average New York price for metal.

Data for clays and limestone, 1954-57, include output used in making cement and lime. Mineral-production totals have been

adjusted to eliminate duplicating these values.

The weight or volume units shown are those customary in the particular industries producing the respective commodities. No adjustment has been made in the dollar values for changes in the purchasing power of the dollar.

¹ Publications editor.

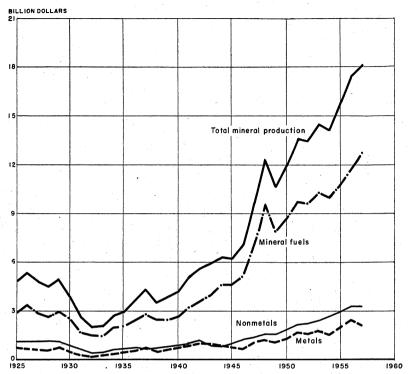


FIGURE 1.—Value of mineral production in the United States, 1925-57.

TABLE 1.—Value of mineral production in continental United States, 1925-57, by mineral groups ¹

(Millions)

Year	Min- eral fuels	Non- metals (except fuels)	Metals	Total	Year	Min- eral fuels	Non- metals (except fuels)	Metals	Total
1925 1926 1927 1928 1929 1930 1931 1931 1932 1933 1934 1935 1936 1936 1937 1938 1939 1939 1940	3, 371 2, 875 2, 666 2, 940 2, 500 1, 620 1, 460 1, 413 1, 947 2, 013 2, 405 2, 798 2, 436	\$1, 187 1, 219 1, 201 1, 166 973 671 412 432 520 5645 711 622 754 989	\$715 721 622 655 802 507 287 128 205 277 365 516 460 631 752 890	\$4, 812 5, 311 4, 698 4, 484 4, 908 3, 980 2, 578 2, 050 2, 744 2, 942 3, 606 4, 265 3, 518 3, 808 4, 198 5, 107	1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1951 1952 1953 2 1953 2 1954 2 1955 2 1956 2 1957 2	4, 574 4, 569 5, 090 7, 188 9, 502	\$1,056 916 836 888 1,243 1,338 1,552 1,559 1,822 2,079 2,163 2,350 3 2,972 3 3,237	\$999 987 900 774 729 1, 084 1, 219 1, 351 1, 671 1, 671 1, 518 2, 055 2, 358 2, 129	\$5, 623 5, 931 6, 310 6, 231 7, 062 9, 610 12, 273 10, 058 11, 862 13, 529 13, 396 14, 418 14, 067 15, 807 17, 383 18, 126

Data for 1925-46 are not strictly comparable with those for subsequent years, since for the earlier years the value of heavy clay products has not been replaced by the value of raw clays used for such products.
 Includes Alaska and Hawaii.
 The total has been adjusted to eliminate duplicating the value of clays and stone.

TABLE 2.—Mineral production 1 in the United States, 2 1954-57

	1954		1955	20	1956	9	1957	2
Mineral	Short tons (unless other- wise stated)	Value (thou- ands)	Short tons (unless other- wise stated)	Value (thou-	Short tons (unless other- wise stated)	Value (thou- ands)	Short tons (unless other- wise stated)	Value (thou- ands)
ANDERAL FUELS ASPIRIT PUELS ASPIRIT and related bitumens (native): Gilsonide, natural (estimated)	1, 337, 822 635, 945 637, 945 891, 706 8, 742, 687 8, 742, 687 8, 743, 687 8, 743, 687 8, 744, 113 8,	\$3,686 2,724 2,724 87,247 882,513 882,513 882,513 882,513 882,513 882,513 882,513 178,994 178,994 178,994 178,994 178,994 178,994 178,994 178,994 188,513 188,513 189,714 189,714 183,	1, 427, 207 82, 2827 702, 417 464, 633 2, 205, 205 2, 205, 205 2, 426, 331 2, 2, 206 2, 426, 331 2, 130 3, 2, 130 3, 44, 568 1, 108, 454 3, 106 465, 378 2, 20, 540 10, 684	\$4,111 \$4,111 \$2,117 \$2,092,383 \$7,8,381 \$1,000	1, 468, 533 89,003 713,030 26,037 10,081,932 2,617,2972 2,617,2972 2,617,2972 2,617,2972 2,617,2972 2,617,2972 1,293	\$4,114 \$,2413,004 \$1,083,413	1, 168, 507 206, 041 704, 276 492, 704 25, 338 4 10, 604, 130 5, 734, 307 6, 655, 232 6, 655, 232 4, 665, 232 7, 400 1, 506 1, 506 1, 43, 633 1, 152, 882 5, 645, 788 1, 152, 882 1, 153, 882 1, 163, 882 1, 163, 883 1, 183,	\$3, 221 \$3, 221 \$4, 256, 406 227, 754 41, 21, 24, 408 41, 21, 408 48, 079, 504 12, 720, 000 12, 720, 000 132, 666 48, 079, 504 132, 666 48, 079, 504 14, 917 14, 917 11, 756 48, 038 96, 721 108 109, 721 109, 721 108 109, 721 109, 721
Iron oxide pigment materials (crude)		- 1730 -		167	15, 362		18, 366	

TABLE 2,-Mineral production 1 in the United States, 1954-57-Continued

1954		1955		1956		1047	
						700	
Short tons unless other- wise stated)	Value (thou- ands)	Short tons (unless other- wise stated)	Value (thou- ands)	Short tons (unless other- wise stated)	Value (thou- ands)	Short tons (unless other- wise stated)	Value (thou- ands)
8, 621 284, 015	\$101, 525 1, 391	10,470	\$126,890	10, 567 686, 569	\$135, 532 2, 502	10, 266 678, 489	\$135, 143 3, 258
113, 774	9, 469	155, 779	12, 704	169, 019	13,668	184, 499	16, 235
206, 257	152	183, 044 5, 704	128 218	285, 653 (7)	(7) 215	<u>e</u> e	ĒE
81, 073 668, 788	1,734	95, 432	3,370	86,309 887,871	1,850	11 92, 438	11 2, 110 2, 492
219, 703 13, 821 248, 731	1, 762 86, 669 79, 950	286, 157 12, 265 9, 066, 706	75,379	310,800 15,747 2,171,584	97,922	301, 605 13, 976 2 266, 481	2, 562 87, 689 84, 619
1,647	2,974	1,804	986	1,482	6 4, 749	1,827	4, 628 9, 628
20, 660 556, 160	105, 487		123, 276	24, 206 6 631, 495	136, 139	23,844	147, 291 597, 372
761	12, 961 13, 536		12,914 15,001	645 652, 891	11,666	652, 717	11,029
249, 701 409, 196	3, 890 609, 445 (14)		5, 381 702, 142		6 6, 437 6 763, 313	331, 382 531, 488	6, 542 812, 193
5,328	142, 014	5,839	163, 156	5,676	150, 356	5,035	122, 915
185, 085 399, 950 618, 994	11, 209	199, 899 458, 021 725, 708	(') 12, 585 4, 517	185, 532 503, 314 739, 039	(¹) 14, 241 4, 859	(7) 472, 686 684, 453	(7) 12, 962 4, 796
41, 625 195, 538	1, 459 2, 538	1, 350 49, 662 204, 040	213	45,009 192,628	2, 543	50, 717 183, 987	2, 603
	22, 580		30, 805	1	40, 778	1	38, 813
9	2, 630, 000		5 2, 972, 000		5 3, 284, 000		3, 277, 000
		#101, #101,	#101,555 10,470 1,391 460,088 1,391 155 183,044 1,1734 96,432 1,734 96,432 1,734 96,432 1,734 96,432 1,734 96,432 1,734 96,432 1,734 96,432 1,734 96,432 1,734 96,732 1,735 10,07 1,136 10,07	#101, 525 10, 470 #11 #101, 525 10, 470 #1 #101, 525 10, 470 #1 #101, 525 10, 470 #1 #101, 525 10, 470 #1 #101, 525 #1	#101, 525 10, 470 4105, 890 10, 10, 11, 391 486, 088 2, 713 686, 11, 391 155, 779 12, 704 168, 115, 779 12, 704 168, 115, 779 12, 704 168, 115, 779 12, 704 168, 115, 779 12, 704 168, 115, 779 12, 886, 115, 779 12, 886, 115, 779 12, 886, 115, 779 12, 886, 115, 779 12, 886, 115, 116, 116, 116, 116, 116, 116, 11	#101, 525	#101, 525 10, 470 41.05, 890 10, 567 41.05, 502 10, 678, 11, 391 486, 688 2, 713 686, 569 2, 502 678, 11, 391 486, 688 2, 713 686, 569 13, 688 184, 11, 12, 11, 12, 11, 12, 11, 13, 11, 14, 14, 14, 14, 14, 14, 14, 14, 14

	(16) 12, 154	7,816	(16) 11 654, 289 62, 776	865, 703 96, 730 29, 363		8, 552 67, 605 (16)	34, 541	17, 362 1, 544	8, 186 78, 454	123, 235		59, 558	2, 129, 000	18, 126, 000
	710 1, 416, 172		370, 483 11 1, 086, 859 1, 793, 597	104, 157 338, 216 366, 334		57, 143		782, 975 10, 644	3, 682, 543 7, 583	531, 735	2	1		
	(16) 13, 973		(10) 11 938, 532 11 63, 950	11 750, 354 110, 787 26, 990		6 63, 901 (16)	(16)	14, 199	5 70, 601	148, 503)	, 48, 704	\$ 2,358,000	17, 383, 000
	1, 743, 344	17 207, 662 3, 657	216, 606 11 1, 104, 156 11 1, 827, 159	96, 944 352, 826 344, 735				735, 388	14, 737 5 3, 003, 590 7, 735		`			
	(16) 14, 543		744, 933 65, 805	748, 602 100, 731 21, 651		66, 919 (16)	(16) 33, 666	10, 268		126, 609		40, 596	2,055,000	15, 807, 000
	1, 788, 341		12, 954 998, 570 1, 880, 142	105, 237 338, 025 287, 254			(16) 37, 198	573, 192 9, 182		514, 671 28, 913				
	(E) 16,	7, 164	492, 64,	525, 818 89, 165 15, 176			(16) 33, 434	7,375	(18)	102, 180	90	08, 880	1, 518, 000	514, 067, 000
	766 1, 994, 896			76, 126 325, 419 206, 128			(16) 36, 941	531, 895 7, 305		473, 471 17, 959				
METALS	Antimony ore and concentrate	ate) ti	Copper (recoverable content of ores, etc.). Gold (recoverable contents of ores, etc.). Iron ore, usable (excluding hyproduct from sinter).		Manganiferous residuum Mercury 76-bound flasks	concentrate)t	And created in metals concentrates. Silver (recoverable content of ores, etc.)thousand troy ounces Titanium concentrate:	Illmenitegross weight Ruttile Tungsten one and concentrate	Uranium ore	f ores, etc.)	Value of items that cannot be disclosed: Magnesium chloride for magnesium metal, platinum-group metals (grude), tin (1964-55), and values frainched by fortune it.	4	Total metals	Grand total mineral production

¹ Production as measured by mine shipments, sales, or marketable production (including consumption by producers).

² Includes Alaska and Hawaii.

Includes small quantity of anthracite mined in States other than Pennsylvania.

4 Preliminary figure.

6 Revised figure.

• Excludes Sharpening stones, value for which is included with "Nonmetal items that cannot be disclosed."

7 Figure withheld to avoid disclosing individual company confidential data; value included with "Nonmetal items that cannot be disclosed."

8 Weight not recorded.

9 Excludes certain clays; value included with "Nonmetal items that cannot be

disclosed."

¹⁰ Beginning with 1957 calcareous mar! included with stone.
¹¹ Final figure. Supersedes preliminary figure given in commodity chapter.
¹² Marketable production. Supersedes figures for "Sold or used" as reported previ-

ously.

18 Excludes abrasive stone, bituminous limestone, bituminous sandstone, and ground in Excludes abrasive stone, bituminous limestone, bituminous sandstone, and ground soapstone, all included elsewhere in table.

18 The total has been adjusted to eliminate duplicating value of clays and stone. If There withheld to avoid disclosing individual company confidential data; value included with "Metal items that cannot be disclosed."

18 Thin it has hort tons of concentrate produced in 1955 and 1956 from low-grade ore and concentrate stockpiled near Coquille, Oreg., during World War II.

486221---58

TABLE 3.—Minerals produced in the United States, by States, and principal producing States in 1957

Alaboana	a cut	က	-	3		2		HIDH		ommo i	principle	sium chloride	anivorn		20111		3
	e a cut	20			8		2							7	4	7	
	ont,			7				7						7	'	7	
			-		-				-	4, 0		6	1	>%	2	>4	
			!	•		>		2	•	3			2	7		7	
		-						4			8		-			>	-
			-	-		-	-					1	-			> 7	!
		-				6	c	- 7						• >		>	
		-	-			•	•	•						. !		>	
		1				>		>			1			>	-	>	
		-	-			-	-	1	-					> 7	-	> 7	
			-			-	1	1	-				1	> 7		~~	
		-			1 1 1 1 1 1 1	-	-	1		-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		7		- >	
	-	-				-			-		1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		> >		. >	
		-	-	-	>		-	1	-					~	1	~	
	1	-			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			7				1		>	1 1	>	;
	<u> </u>			1				7					1	>	1	>	
	<u>-</u>								1	1				1		>	1
	ichigan						1			67		_	1	4		>	
	innesota							-				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	>		>	i
	ississippi				1	-				1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			>	1	>	i
	issouri		-		>	61		-	1	1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	>		>	
	ontana		1	-		>								> `	-	> 7	
	braska	-			1		1	1	1 1 1 1 1	1	-			>	1 1 1 1 1	> 7	:
	evada	67				4	1			1	4		-		1	> 7	:
	w Hampshire.	-				1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	>			-					> 7	L
	w Jersey	-		1					1		-		-	1 1 1 1 1 1 1 1 1 1	1	> 7	<u>l</u>
	w Mexico	-				>		9					4	1		- 7	
	W York	1		i	1			-1	-	1				-	1		İ
	orth Carolina	1		4				>	1	1				:		7	_
	•	-		-	1		1			-		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7	1	-	
	-	-	-				-	1						~ ~		· >	
	rianoma		-	1	*	1		!	!	1			>	· >	က	~	_
	regon.	-	-	1 1 1 1 1 1 1 1 1								1		-	1	C3	
	node Island						1				1 1 1 1 1 1 1					1	!
	uth Carolina			1		>	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-	1	1	1		1 1 1 1 1 1 1 1	>	-	>	<u> </u>
						-		-	1	-				>	1	>`	_
	nnessee		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-		>	1	-					-	>'		> °	_
	-	-	1		_					-				n -		۰-	l
	-	-			63	-					1		•	>	-	>~	
	ermont	-		-											1	> 7	!
<u> </u>	Irginia	-	-		1								<u></u>	>7		> 7	
	ashington	-				>		-	1					> 7		۶-	
	est Virginia		1 1 1 1 1 1 1 1	1					-	>	-		-	٠,	1	7	
TROODESITY TO THE PROPERTY OF	W Isconsin	-				1				-		1		· ~		د.	

-Continued
1957
States in
roducing
principal p
and I
States
þ
nited States,1
he U
Ë
produced
.—Minerals
TABLE 3

Alabama. Alaska. Arizona. Arizona. Arizona. Arizona. Griffornia. Colorado. Colorado. Colorado. Colorado. Colorado. Indiano. Illinois. Illinois. Indiano. Ind	7	-					1808	dariner	stones	700	drapune	mnsd fo		Todate
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	[A] 7													
	7			-		-				-6				
	۲ ۲	>*		-			7		>>	د ه		7		
1111111111111111	7	1				•	•		>	•	4	~		
	7	>	-	-		816	>0	-	m -	4-	-	01-		-
111111111111		>		i	1	· •	70		>7	>	-	>		1
		-	-	-		>		1	>			1 1		
									>					
				1		>		-	>				-	
- 831			1 1 1 1 1 1 1 1	-		-			1			-1		
	_	>		1				1	> 7	> .	-	>	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
				-		-	1		>			7		
	-								7			m		1
												7	က	
					1	1	4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		-			1	
			1	1						-		>		
		-				>		1	>			1		
<u> </u>				1					>			1 1 1 1 1 1 1 1 1		
				1 1 1 1 1 1						-				
		>							>			-	1	1
Minnesota			-						>		1			
Mississippi						1			10					
Missouri	1	>"	1				2	1	> >	7		7		
_	-	•							• >			- !		
Nevada	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4	2				7		.₩	>	1	>		
New Hampshire						>	. !		>		1	-		
New Jersey							-		>		1	1		-
New Mexico	4	>	-						>	>			7	
New York			-	-				-	>	-		>	1 1 1 1 1 1 1 1	1
North Carolina	1	>		-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	_			>	>			-	1
North Dakota				1		-			>	-				
Onio				1						-		> 7	1	!
	-		3	1					1	7				
Donneylyania	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	>>	•						ح ا	۰>				
Rhode Island		•							. !	. !	63			
				-						-	1			
-						4			>			>	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Tennessee	-	>			1	1	>		c	>	-	Y	-	1
Texas					-	>	-1		4-	6	•	۲-7	-	!
	-	N -				-	>		>	۹ - ۶		•	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Virginia	-	>			1	7			5	-		٦		
Washington		7	4		-	. !	1 1 1	1	7	>		7		
8				1				1 1 1 1 1 1 1 1		-				
-				1	, !	1			>	-				!
Wyoming.		>	-4			>			^	>		>		

State	Iron ore	Iron oxide pigments	Kyanite	Lead	Lime	Mange- site	Magnesium chloride	Magnesium	Manga-	Mer-	Mica	Molyb- denum	Natural gas	Natural-gas liquids	Nicke
AlabamaAlaska	က			10	>7						8		>		
Arizona Arkansas	>			>>	~~				67	ح ه	>	3	7		
California	7	-1-		>	>			-	- >	1	>	4	>>	>67	
Connecticut	•	>		#	>>				>		>>	-	>	7	
Florida					,							-			
Georgia	>	2			-				7		7		>		
daho	>			2	>				-		17		1		
llinois		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		>	>					•	>		7	7	
lowa.					7								>	1	
Kansas				>									>	7	
Joursiana.				>	7								>	>	
1					>>				1		7	-	N	**9	
Maryland				!	>						-		>		
Michigan	2	-	!		>7			6			-				
Minnesota	-	·>			>>			9	7				>	>	į
Mississippi	>7		-	-	c								>	>	
Montana	>>			1 >	4->				>"	1		-	-1		
Nebraska	-	-	-	-					,		>		>>	>>	
Nevada New Hampshire	>			>	>	67		1	_	7		>			
ew Jersey	>				7			60	-	-	>				
ew Mexico	>	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	>	>			ح. د	4		7	7	60	7	
North Carolina	>	8	-	>7	>						-		`>	-	
				>							-				
:					-								> >	<u>' '</u> >>	
regon	1/2	/*	1	> 7	>7	-	-		>		-		4	. ₩	
Pennsylvania.	>	• >		>	۳-					4	- /-	-		-1	
hode Island				-							-		-	<u>.</u> >	
South Carolina	1		7	-							4				
Tennessee.	>>				>>				-1		>				
Texas	>				-4		-	4	>	7	>		>"		
Utah	4			က	>	-			>	-		2	'>	1.>	
Virginia		4	1	7	>>				7		- 1	-		-	
Washington Wast Virginia	>			7	-	-				>	-		-		
Wisconsin	>			7	<u>د</u> د			: : : : : : : : : : : : : : : : : : : :	>				>	>	
Wwwming	_											, , , , , , , , , , , , , , , , , , , ,		***********	

		1010	na bron	T naan	n the un	Januarias produced in the United States, by States, and principal producing States in 1957—Continued	y States,	and prine	cipal pro	ducing St	ates i	n 1957-	-Contin	ned	
State	Olivine	ine Peat	Perlite	Petro- leum	Phosphate rock	Phosphate Platinum-group rock	Potassium salts	Pumice	Pyrites	Rare-earth	Salt	Sand and	Silver		Sodium car-
Alabama				7						metais		gravel			bonate
Arizona	-			-		-					>	>			
Arkansas		-	4			-		2	10		-	>	>		
California		4	7	ے۔		-			^		-	>7	4,	-	*
Colorado		۲>	-67	4 >		25	67	Η.	က	>	>	>-	7	> >	6
Delaware		>						>	4	67	>	>	->	-	9
Florida		6								-		>	-	-	
Georgia		د د		>	_					er		>7	-	+	
Hawaii										,		>>	-	-	
Tilinote		>			8			4-	-		>	>		•	
Indiana		>		>				>	-	41	-	>			
Iowa		>7		>						-	-	41-	-	-	
Kansas		-									:	> 7		-	
Kentucky				> 7				>			7	> 7	-	-	
Louisiana		-		-00				-	-		-	> >	- /*		
Morrish	-	>	-						-	-	4	>	-		
Massachusotte	-	-					1.1	-	-			>		>	
Michigan		>	-				>	-	-	-	:	>		. !	
Minnesota	-	1 7		>			4		-	-	-	>	-	-	
: :		>	-				' ' '				٦	21-	; >	-	
Missouri			-	> 7			-				:	>	-	-	
Montana				>>	4		-	-				<u>-</u> >	7	!	
Noned Ska	+			~ >	H		-		>			->	> 00	!	
New Hampshire	-		က	>				>	-	-		· >	,		
New Jersey		>		-				>			>	>	>		
New Mexico		>	-						-	-	-	>	-	-	
New York		7	-	> `			-	က		-	-17	>	-	+	
North Carolina	-	-		<u>-</u> -			-				- ~	>7	>7	-	
North Dakota	-	-		7			-	-			•	> 7	>7	+ -	
OFICE	-	>	1	<u>-</u> -				>				• >	•	<u>:</u> -	
	-		-	4			-				>	.m			
	-		-					> 7	-		>	>			
		>	!	>				-	10		-	>	>	-	
				 					•		-	>	>	7	
			_	7						-		> 7	:	-	
Tennessee				- '>	-6							> >		-	
Trah	-	-	-	. - -					-	-		~	->		
Vermont	-	:	>	>	7			>			~	7	-		
	-	1		-			0	>		-	>	>	7		
Washington	-6	-6	-	>					>°		-	>	>	8	
'	•	4		>7				<u>, , , , , , , , , , , , , , , , , , , </u>	9		>	> 7	>	<u>;</u> >	
Wisconsin		>		-	-						>	>>	<u>:</u> >	-	
w young.	-]			>	>				-	-		->			
¹ Includes Alaska and Haw	l Hawali,							^		7	-	7	7	-	-

5	-	_
3	l	
3	١	
Š	ŀ	
Į	١	
Į	-	
Ξ		-
Š		
522		_
너	,	
5		
5	-	-
ö	4	١
ng.	4	١
Ę		
Ę	į,	١
2	1	
0	3	١
+	Š	١
ť	2	
2	3	
7	á	
4	2	
Ď	2	
	001	
		•
	e	ì
٠	=	
,	ζ	
	110	,
٠	Š	5
	5	2
	ç	Š
	2	1
	2	1
	c	1
	F	3
	6	9
	Ě	

TARIE 9 M	inerals	prod	uced in	the Un	TARIE 3 - Minerals produced in the United States, by States, and principal producing States in 1957-Continued	States, al	nd princ	ipal prod	lucing St	ates in	1957—Co	ntinue	-		•
State	Sodium	Stone	Strontium	n Sulfur	Talc, pyrophyllite, and soapstone	Titanium	Tripoli	Tungsten Uranium	Uranium	Vana- dium	Vermicu- lite	Wollas- tonite	Şîne	Zirco- nium	•
	Sallano				14				-	-			1	-	
Alabama		7		1			1		>"		-		7		
Alaska		~						>	۲	•			-		
Arichas		7	-	₹ 1	>°		1	2	>			63	>		
California	-	c1 -		_	9	1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7	.eo	-	-	-	>		
Colorado	-	77		1			-				-				
Connecticut	-	>7												-	
Delaware		~				2						1	-		
Georgia		7	-		4						-		10		
Hawaii	-	7		1		4	! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !	7	>	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-		0-		
Idaho		>		· ·			-		1	-			>		
Illinois		>7		-				-			1 1				
Indiana	-	>>						-		1 1			>	-	ì
Toward		~	1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1	1				1	>		
Kansas		7	-								-	1		-	
Lonisiana		7	1	7									-	-	
Maine		>	-		[-					1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-		
Maryland		>		-	-	1							-		
Massachusetts	1 1 1 1 1 1	>			1			1			1		-	+	
Michigan	1 1 1 1	4.		>	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1 1 1 1 1 1 1 1 1	1 1 1 1 1 1				-	1	
Minnesota	1 1 1 1 1 1	>-	-	!			-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7		
Mississippl	1 1 1 1 1 1 1	> -	1	-		1	-			1	-		4		
Missouri	-	> 7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7	7			4	>	>	•				
Montana	!	~~						6	7				>		
Neoraska		~	-	7	?	1		•	•	- 1			-		
Nevada Now Hampshire		~	-			-			1	-		1	>		
New Jersey		>		>					_	4		-	>"		
New Mexico		>`		7		-		-	11111111	1		-	-		
New York		~				-	-		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				-		
North Carolina		- 7		7		-									
North Dakota						-	-	-	1				>	,	1
Ohio		_		-			-	7	7		-	1	-		,
Oregon		_	/	-		-	60			-		1	-	-	,
Pennsylvania	-		j	-				-	-				-		. 67
Rhode Island	-	,				7		1			N .				
South Carolina	-	-				-	-	-	>		-		2		
South Dakota	-	_					-	-		-		1 1		1	
Tennessee.		-	^		2		-	-	-67	2			>	-	. !
Titch			·	-			-					-	-	-	!
Vermont		•	·		1	65					-		>	-	:
Virginia	-	· -	·/		;			7	>		-	1	-		
Washington	-		-	4	· · · · · · · · · · · · · · · · · · ·			-	-				7		: :
West Virginia			~			-	-		7	7					:1
Wyoming	9		7		3										
H bus orles A to the Tr.	iteme														

¹ Includes Alaska and Hawaii.

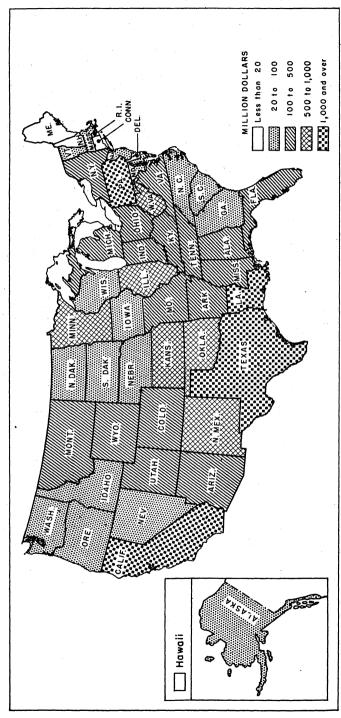


FIGURE 2.—Value of mineral production in the United States (including Alaska and Hawaii), 1957, by States.

TABLE 4.—Value of mineral production in the United States, 1954-57, by States, in thousand dollars, and principal minerals produced in 1957

!								
1957	Principal minerals in order of value	Coal, iron ore, cement, stone. Sand and gravel, gold, coal, stone. Copper, sand and gravel, cement, zinc, Petroleum, bauxite, stone, sand and gravel. Petroleum, cement, natural gas, natural-gas liquids.	Petroleum, molybdenum, eosl, uranium ore. Stone, sand and gravel, lime, clays. Sand and gravel, stone, clays. Phosphate rock, stone, cement, titanium concentrate. Clays, stone, cement, barite.	Stone, sand and gravel, pumice, lime. Lead, silver, zinc, phosphate rock. Petroleum, coal, stone, sand and gravel. Coal, cement, petroleum, stone. Cement, stone, sand and gravel, coal.	Petroleum, natural gas, cement, stone. Goal, petroleum, natural gas, stone. Petroleum, natural gas, natural-gas ilquids, sulfur. Gement, stone, sand and gravel, slate. Stone, sand and gravel, cement, coal.	Stone, sand and gravel, lime, clays. Iron ore, cement, salt, copper. Iron ore, sand and gravel, stone, cement. Petroleum, natural gas, sand and gravel, cement. Lead, cement, stone, lime.	Petroleum, copper, zinc, sand and gravel. Petroleum, cement, sand and gravel, stone. Copper, manganese ore, iron ore, sand and gravel. Sand and gravel, mics, feldspar, stone. Stone, sand and gravel, iron ore, magnesium compounds.	Petroleum, potassium salts, natural gas, copper. Cement, iron ore, stone, salt. Stone, sand and gravel, mics, feldspar. Petroleum, coal, sand and gravel, natural-gas liquids. Coal, stone, cement, lime.
	Percent of U.S. total	1. 16 2. 06 2. 06 78 9. 11	1.88 (1) .09 .75	.03 40 3.20 1.10	8.25. 8.41. 8.41. 22.	3.22 3.22 .82 .82 .84	1.06 .44 .02 .02	3.05 1.35 2.32 2.13
	Rank	25 14 12 25 25 4 4 1	17 45 50 26 31	21 8 82 82 82	011 84 39	451 ~ 48	22 28 4 8 8 4 8 4 8 4 8 4 8 8 4 8 4 8 8 4 8 8 4 8 8 4 8 8 4 8 8 4 8 8 4 8 8 4 8 8 8 4 8	9 18 40 36 13
	Value	209, 422 28, 792 372, 644 140, 939 1, 650, 855	340, 638 16, 055 1, 042 136, 026 69, 799	5, 930 73, 464 579, 584 198, 942 68, 985	505, 084 450, 354 1, 524, 928 12, 711 39, 607	24, 789 404, 377 584, 501 149, 305 152, 879	191, 728 83, 290 86, 023 3, 331 64, 937	553, 034 244, 349 37, 570 57, 796 385, 858
	1956	189, 186 23, 408 484, 959 135, 210 1, 551, 413	321, 914 11, 737 1, 232 140, 490 67, 912	6, 972 75, 150 572, 321 196, 753 66, 529	493, 770 443, 168 1, 288, 331 12, 728 40, 534	25, 085 394, 556 501, 027 133, 098 163, 693	213, 781 71, 311 126, 681 3, 436 64, 279	515, d09 237, 016 40, 873 53, 555 375, 488
	1955	186, 453 25, 412 378, 277 132, 822 1, 456, 682	286, 219 10, 428 1, 658 108, 957 60, 417	3, 592 68, 513 533, 062 183, 479 63, 555	470, 830 391, 068 1, 156, 637 12, 991 35, 488	22, 109 363, 778 501, 151 122, 620 151, 626	166, 993 54, 237 113, 220 2, 605 57, 495	438, 692 216, 907 41, 210 44, 123 340, 457
	1954	154, 639 24, 408 254, 479 131, 745 1, 429, 539	255, 852 9, 581 947 106, 510 55, 828	3, 596 69, 689 473, 077 165, 369 58, 798	449, 587 327, 503 998, 057 10, 716 30, 741	18, 851 279, 935 351, 474 110, 563 131, 280	126, 412 42, 393 89, 138 2, 112 47, 044	374, 690 192, 738 41, 651 22, 223 293, 659
	State	A labama A laska A rizona A rkansa California	Colorado Connecticut Delaware Florida Georgia	Hawaii Idaho Illinois Indiana Iowa	Kansas. Kentucky Louisana Maine, Maryland	Massachusetts. Michigan. Minneota. Mississippi. Missouri.	Montana. Nebraska. Nevada. New Hampshire. New Jersey.	New Mexico. New York North Carolina North Dakota.

Petroleum, natural gas, natural-gas liquids, coal. Sand and gravel, stone, cement, nickel. Coal, cement, stone, petroleum, Sand and gravel, stone, graphite. Cement, stone, clays, sand and gravel.	Gold, sand and gravel, stone, cement. Coal, stone, cement, zinc. Petroleum, natural gas, natural-gas liquids, sulfur. Copper, coal, iron ore, uranium. Stone, asbestos, slate, copper.	Coal, stone, cement, sand and gravel, Sand and gravel, cement, stone, zinc, Coal, natural gas, stone, cement. Stone, sand and gravel, iron ore, cement. Petroleum, clays, sodium carbonate, natural gas.	100.00 Petroleum, coal, natural gas, cement.
4.44. 5.97 .01	. 22 . 711 . 24. 81 1. 97 . 12	1. 24 5. 42 1. 38 1. 91	100.00
84 449 43	82-54	33 52 16	
803, 937 42, 480 1, 082, 093 1, 369 22, 168	39, 990 128, 738 4, 497, 264 356, 213 21, 893	224, 531 58, 690 982, 719 68, 644 345, 604	1
757, 120 34, 021 1, 088, 867 1, 627 21, 342	42, 281 137, 846 4, 245, 123 399, 759 23, 131	208, 806 61, 723 935, 074 65, 860 317, 594	17, 381, 000 18, 126, 000
711,089 31,736 969,910 1,834 20,197	40, 526 119, 316 3, 993, 310 332, 002 23, 884	172, 541 67, 334 755, 512 65, 813 297, 752	15, 807, 000
650, 205 32, 268 925, 545 1, 461 17, 744	37, 874 105, 686 3, 730, 705 255, 550 20, 483	129, 603 53, 300 636, 311 54, 286 281, 306	14, 067, 000
Oklahoma Oregon Pennsylvania Rende island South Carolina	South Dakota. Tennessee. Texas. Utah. Vermont.	Virginis. Washington. West Virginis. Wisconsin.	Total

Less than 1 percent.

TABLE 5.-Mineral production 1 in the United States, 2 1954-57, by States

ALABAMA

	18	1954	19	1955	1	1956	1957	57
Mineral	Short tons (unless otherwise stated)	Value (thousands)	Short tons (unless otherwise stated)	Value (thousands)	Short tons (unless otherwise stated)	Value (thousands)	Short tons (unless otherwise stated)	Value (thousands)
Cement 1 Clays. Clays. Colays. Colays. Colays. Colays. Colays. Colays. Colays. Thou ore (usable). Misse (sheet). Matural gas. Sand and gravel. Sand and gravel. Stone. Stone. Stone. Stone. Stone. Gold. Colays. Cola	11, 122 1, 331 10, 283 5, 913 422 (*) 87 1, 584 1, 584 7, 394	\$28, 583, 228, 583, 673, 683, 684, 488 (4) 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	(4) (4) (3) (8) (13) (8) (8) (4) (4) (4) (4) (5) (7) (7) (8) (8) (8) (8) (8) (8) (8) (8) (8) (8	\$38, 350 (4) 79, 337 44, 657 5, 186 (4) 2, 910 2, 910 3, 524 11, 867	14, 065 1, 594 12, 695 12, 683 5, 633 5, 633 1, 122 1, 122 4, 999 4, 999 4, 999 1, 12, 343	\$41,840 \$2,147 79,322 34,824 5,089 7,335 7,335 7,14,702	13,000 11,316 13,226 6,223 6,223 (4) 554 (4) 5,065 19,519	\$40, 279 \$1, 504 86, 1504 80, 518 6, 271 (4) (4) (4) (4) (4) (4) (4) (4)
Value of items that cannot be disclosed: Native asphalt, baratite, pozzolan cement (1954-56), ising cement (1957), clays (kaolin, 1956-57), scrap mica, salt, stone (dimension limestone and marble, shell, 1957), and values indicated by footnote 4.		4,856	T, but	4,325	z, zou	4, 083	T, 900	23, 225
Total Alabama I		154, 639		186, 453		189, 186		209, 422
	AL	ALASKA						
Antimony ore and concentrate——antimony content. Chromite——gross weight Clays. Cool Copper (recoverable content of ores, etc.) Gold (recoverable content of ores, etc.)	2, 953 (4) 667 248, 511	(4) (6, 442 6, 442 8, 698	7, 082 1 640 1 249, 294	625 4 4 5,759 1 8,725	28 7, 193 727 209, 296	(4) 711 6, 374 7, 325	4, 207 4, 207 842 (*)	(4) 431 7, 296 (10) 7, 541
tho (thous	1, 046 6, 640 34 284		(4) 9, 793 34 266	(10) (4) (8, 242 31 290 183	3, 280 5, 955 28 195	(10) 853 5,880 26 595	5, 461 6, 096 29 528	1, 349 8, 799 2, 26 1, 953
t be disclosed: Gem stones (19 ranium ore (1957), and values i	801	1, 572		1, 552	t 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1, 644		1, 394
Total Alaska	AR	ARIZONA		25, 412		23, 408		28, 792
Beryllum concentrate gross weight. Clays. Columbium-tantalum concentrate pounds.	(4) 254	(4) 814	(e) 254	(9) (9)	6 112	168	s 118 2, 435	1777

	7, 866	372, 644	3, 494 11, 600 1, 586 3, 976 (4) 3, 976 1, 726 1, 2, 813 2, 313 2, 313 2, 313 2, 949 (7) 6, 949 8, 378 8, 014 8, 014
(11) 844 (12) 844 (13) 844 (14) 122 441 (14) 138 (15) 138 (16) 138 (16) 138 (16) 138 (17) 138 (18) 138	33, 905		1, 366, 598 1, 366, 598 617 808 11, 508 123, 261 16, 304, 507 17, 278
450, 66 1022 1044 5, 1144 5, 1144 7, 1146 7, 1146 7, 1146 7, 1144 7, 1	5, 408 7, 009 12 11, 701	12 484, 959	11 14, 256 13, 307 1, 636 4, 601 2, 26 1, 810 1, 810 8, 113 8, 182 135, 210
2, 382 (1) 98 (1) 98 (1) 98 (1) 98 (2) 127 (3) 22 (4) 23 (5) 7, 832 (5) 7, 832 (6) 7, 832 (7)	25, 580		486, 234 1, 668, 424 1, 668, 424 (11) 560 (2) 465 29, 465 29, 365 20, 365 (6) 500 (6) 6, 500 (6) 6, 500 (7) 600 (7) 600 (8) 60
338, 752 338, 772 4, 4, 67 7, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	5, 580	378, 277	(*) 755 755 18,755 19,705 11,727 11,727 19,788 76,880 76,880 76,880 77,683 7,683
2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	22, 684	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(4) 462 886 1, 721, 243 (11) 773 (11) 773 (12) 774 82, 124 82, 124 82, 124 82, 108 28, 386 28, 386 (4) 176 (6, 176
222 9877 (5) 977 (18 18 18 18 18 18 18 18 18 18 18 18 18 1	4, 636	254, 479	ARKANSAS 3,489 368 368 477 2,586 477 3,589 477 3,284 1,021 1,021 1,841
(1), 937, 927 (21), 927 (31), 939 (4), 98, 985 (5), 98, 985 (1), 538 (1), 538 (2), 239 (2), 239 (1), 236 (2), 239 (2), 239 (3), 239 (4), 239 (5), 239 (6), 2	21, 461		ARK (4) 870, 623 1, 949, 368 6, 778 13, 728 13, 728 13, 728 13, 728 13, 728 13, 728 14, 604 4, 604
Copper (recoverable content of ores, etc.)	Urantum ore (1994–1994) or the content of ores, etc.) Value of items that cannot be disclosed: Asbestos, bartle (1954–55), coment, clays (bentonite, 1965–66), distomite (1964–65), feldspar, fluorspar (1964–1987), nitrogen compounds (1967), pyrites (1967), ma-carfh metals concentrates (1965), vanadium, vermiculite (1963), and values indicated by footbrote 4.	Total Arizona 4.	Abrastve stones (whetstones) Barite Barite Barite Clays. Clays. Colays. Colays. Colays. Con stones Iron ore (usable) Iron ore (usable) Manganese ore (35 percent or more Mn)

See footnotes at end of table.

TABLE 5.—Mineral production 1 in the United States, 1954-57, by States—Continued

CALIFORNIA

	1954	54	19	1955	1	1956	31	1957
Mineral	Short tons (unless otherwise stated)	Value (thousands)	Short tons (unless otherwise stated)	Value (thousands)	Short tons (unless otherwise stated)	Value (thousands)	Short tons (unless otherwise stated)	Value (thousands)
Boron minerals. Cement. Coment. Chromite. Chromite. Copyer (recoverable content of ores, etc.). Teld (standard) Magnesium compounds from sea water and bitterns (part fors weight. Thousand short tons. Iron ove (usable). Marganese ore (35 percent or more Mn). Marganese ore oriental sulfur. Marganese ore of temer that cannot be disclosed. Asbestos, bartie, bromine, called marganesium chloride, carbon dioxide, masony gement (1965-57), clay (xeolm 1967), distomite, fluorspar (1967), abrasive general (1965-67), clay (xeolm 1967), distomite, fluorspar (1967), abrasive general (1967-67).	7.00, 449 32,773 32,773 32,773 32,773 33,773 38,611 38,611 38,612 38,160 38,160 38,160 38,160 38,160 38,160 38,160 38,160 38,160 38,160 38,160 38,160 38,160 38,160 38,160 38,160 38,160 38,174 38,174 38,114	28, 28, 28, 28, 28, 28, 28, 28, 28, 28,	924, 496 22, 236, 087 28, 087 28, 087 28, 087 29, 088 20, 088 28, 288 388 48, 288	\$33 817 103,804 103,804 103,804 103,804 119,807 11	26, 000 200 200 200 200 200 200 200 200 20	18,81 120,52,122 120,2,130 120,2,130 130,2,13	**************************************	1117,852 1117,852 1117,852 12,732 1,036

62,188	1, 650, 855		182 3, 594 43, 584 43, 584 43, 511 (10) (11) (11) (12) (13) (14) (15) (17) (17) (17) (17) (18) (19) (1	340, 638
12 68, 030	12 1, 551, 413		(1) 1, 215 (1) 1, 215 (1) 3, 594 (2) 327 (3) 327 (4) 327 (4) 338 (5) 353 (6) 353 (7) 353 (8) 88 (9) 353 (10) 7 (10) 7 (10) 7 (10) 100 (10) 1	12 321, 914
			3, 523 3, 523 4, 228 4, 202 (1.5) 88 (1.6) 88 (1.6) 88 (2.7) 88 (3.7) 88 (3.7) 88 (4.7) 88 (5.7) 88 (5.7) 86 (6.7) 88 (7.7) 88 (7.7	
12 55, 858	13 1, 456, 682		(c) 174 886 17	286, 219
			464 464 464 48328 46,114 (E) (E) (E) (E) (E) (E) (E) (E) (E) (E)	
13 43, 650	13 1, 429, 539	COLORADO	1, 003 16, 003 16, 079 2, 197 3, 365 3, 365 4, 883 4, 883 (4) (5) (5) (5) (5) (6) (7) (7) (7) (7) (7) (8) (8) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9	255, 852
		COL	855 865 875 875 875 875 875 875 875 87	
iodine, lithium minerals (1964), magnesite (1964-56), mica, molybdenum, plathum-group metals (crude), potassium salts, pyrites, ravearth metals concentrates, slate, sodium carbonate and sulfate, ittanium fron concentrate (montitanium use, 1964-56), uranium cre (1966-57), and values indicated by footnote 4	Total California 1		Beryllium concentrate Clays Columbium-tantalum concentrate Godd (recoverable content of ores, etc.) Lond (recoverable content of ores, etc.) Lond (recoverable content of ores, etc.) Lond ore (usable) Lond (recoverable content of ores, etc.) Lond ore (usable) Lond (recoverable content of ores, etc.) Lond or (usable outent of ores, etc.) Lond (recoverable content of ores, etc.) Lond (recoverable conte	Total Colorado "

See footnotes at end of table.

TABLE 5.-Mineral production 1 in the United States, 1954-57, by States-Continued

	4	
	Э.	
۲		
	1	
	4	
	4	
	`	
	7	
	٠.	
_	٠.	
-	7	
5	7	
2	7	
2	7	
2	7	
2		
2	7,7,7	
	7,7,7	
6	7777	
6		
	•	
6	•	
6		
	•	
	•	
	•	
	•	
	•	
	•	
	•	
	•	
	•	
	•	
	•	
	•	
	•	
	•	
	•	
	•	
	•	
	•	

	CONNE	CONNECTIOUT						
	19	1954	18	1955	1	1956	19	1957
Mineral	Short tons (unless otherwise stated)	Value (thousands)	Short tons (unless otherwise stated)	Value (thousands)	Short tons (unless otherwise stated)	Value (thousands)	Short tons (unless otherwise stated)	Value (thousands)
Beryllium concentrate. Clays. Clays. Lime. Mica (sheet and scrap). Mole (sheet and scrap). Sand and gravel. Stone. Value of items that cannot be disclosed: Columbium-fantalum concentrate (1954-56), genn stones (1957), stone (crushed grantle and dimension limestone, 1956) and values indicated	13 289 3,280 (+) (+) 5,856 4,846 2,829	285 285 60 24 24 4, 315 4, 269	(4) 325 (5) 35 (4) 4, 345 3, 642	(4) 215 (7) 503 (4) 4,080 5,451	(4) 338 (4) 40 14.310 12.3, 190 14.369 7.4, 428	(4) 390 (4) 609 14 29 18 13 44, 101 7 6, 590	(+) 308 (+) 308 (+) 30 (+) 2, 004 4, 777 (-) 199	(4) 409 (5) 503 (5) 11 5, 042 10, 040
by 100thote 4		725		123		124		119
Total Connectiont 8.		9,581		10, 428		12 11, 737		16,055
	DELA	DELAWARE						
Sand and gravelthousand short tons Stone	(4)	(4) 752	2, 297	1, 407	1, 160	967	(4)	(+) 860
Total Delaware		947		1,658		1, 232		1,042
	FL	FLORIDA		-				
Clays. Lime. Motural gas. Peter. P	372 (*) 35 37, 449 548	(*) 43, 337 (*) 83 (*) 168	(*) 36 61, 098	\$4, 816 (*) 4 232 (*)	432 40 40 58, 496 (4)	\$5,826 490 3 203 (4)	(4) (4) (4) (5) (5)	\$6,067 (4) • 3 195 (4)
Sand and gravel thousand short tons. Stone	10. ±0.7 3, 469 7 14, 225	2,661 16,832	5, 747 5, 066 7 17, 028	22, 966	11, 822 5, 815 18, 779	74, 290 5, 034 25, 183	10, 191 6, 753 21, 786	64, 789 6, 148 30, 467

Titanium concentrate: Ilmenite. Rutile. Zirconium concentrate. Zirconium concentrate. Value of items that cannot be disclosed: Cement, abrasive garrier (1954-	157, 157 7, 305 17, 959	2,412 869 820	(4) 9, 182 28, 913	(4) 1, 122 1, 425	€€ 43,794	(*) (*) 2, 160	(4) (5) 56,802	(6) (6) 1,976
66) gem stones (1956), rare-earth metals concentrates (1956-57), stauro- lite (1957), stone (dimension limestone, (1954-55)), and values indica- ted by footnote 4.	1	15,956		22, 787		28, 452		28, 718
Total Florida 8		106, 510		108, 957		140, 490		136, 026
	GE	GEORGIA		-			-	
thousand short thousand long tons, gross were the thousand short disclosed: Asbestos (1964), harite, b facts, cement, folkspar, gen stones free, scrap mice, slate, stone (dimensional crushed marble and crushed marble and crushed sand d by footnote 4.	(*) (*) (*) (*) (*) (*) (*) (*) (*) (*)	24, 107 (4) 61 (9) 61 2, 466 21, 384 (1) 77 7, 481 66, 828 (6) (9)	2, 953 2112 2112 21139 3, 139 3, 139 3, 130 6, 3, 139 6, 3, 139	26, 145 964 964 964 964 (•) 36 (•) 417 17, 495 (•) 417 (•) 60, 417	3, 047 8, 05, 387 20, 149 20, 149 5, 2, 2, 25 7, 916 57, 916 63	29, 501 1, 609 (*) (*) 1, 609 1,	2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2	30, 120 (4) (4) (5) (4) (4) (5) (4) (4) (4) (4) (4) (4) (4) (4
Self. Stone Stone Value of items the cannot be disclosed: Other nonmetals and values indicated by footnote 4	1, 485	2, 993 2, 993 59	1,414	2,884	3, 494	6,076	2, 585	4, 632
Total Hawaii 14		3, 596		3, 592		6, 972		5, 930

See footnotes at end of table.

TABLE 5.—Mineral production 1 in the United States,2 1954-57, by States—Continued

IDAHO

1967	Value (thousands)	(a) (b) (c) (d) (d) (e) (e) (e) (e) (e) (e) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f	26, 356 5, 155 187, 908 8, 827 8, 827 849
19	Short tons (unless otherwise stated)	664 2 2 23 364,788 364,788 (U.), 912 (1), 912 (1), 912 (2), 912 (3), 927 (4), 937 (5), 937 (6), 937 (7), 942 (7), 942 (8),	8, 575 1, 917 46, 993 169, 939 (11) 2, 970
1956	Value (thousands)	(4) (5) (813 (9) (9) (9) (9) (9) (9) (9) (9) (9) (9)	27, 264 4,005 184, 678 8, 470 1, 203
Ä	Short tons (unless otherwise stated)	2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 3, 2, 3, 3, 3, 4, 4, 4, 4, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,	9, 301 2, 258 48, 102 178, 254 3, 832
1955	Value (thousands)	(5) (6) (7) (7) (10) (12) (12) (13) (13) (14) (15) (16) (16) (17) (17) (18) (18) (19)	25, 032 3, 979 167, 938 7, 838 1, 354
31	Short tons (unless otherwise stated)	6.3 (-) (-) (-) (-) (-) (-) (-) (-) (-) (-)	9, 397 2, 339 45, 932 166, 337 4, 544
1954	Value (thousands)	704 (1) (1) (1) (2) (3) (4) (4) (4) (5) (5) (6) (7) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	23, 148 3, 482 160, 213 5, 989
31	Short tons (unless otherwise stated)	(4) (764 (1) 1,702 (11) 245 (13) 245 (13) 245 (14) 603 (15) 603 (16) 603 (16) 603 (17) 603 (16) 603 (17) 603 (18) 603 (1	9, 109 2, 027 41, 971 107, 830 3, 232
	Mineral	Antimony ore and concentrate Beryllium concentrate Beryllium concentrate Cobalt (content of concentrate) Cobalt (content of concentrate) Cobalt (content of concentrate) Columbium-statable content of ores, etc.) Gen stones I cod (recoverable content of ores, etc.) Lead (recoverable content of ores, etc.) Lead (recoverable content of ores, etc.) Mercury Nickel (content of ore and concentrate) Past Peat Post P	Cement thousand 376-pound barrels. Clays Coal Fluorspar Gern stones Lead (recoverable content of ores, etc.)

Zinc (recoverable content of ores, etc.) Value of thems that cannot be disclosed. Iron oxide pigments (1964), natural-gas liquids, recovered elemental sulfur, tripoli, and values indicated by footnote 4. Total Illinois 4. Abrasive stones. Class. Abrasive stones. Class. Mail. calcarcous (except for cement). Mail. calcarcous (except for cement). Mail. calcarcous (except for cement). Petroleum (crude). Petroleum (crude). Petroleum (crude). Sand and gravel. thousand 42-gallon barrels. Sone. Sone. Total Illinois 4. Abrasive stones be disclosed: Cement, gypsum (1965-57), recovered elemented sulfur, and values indicated by footnote 4.	66, 798 196, 26, 443 26, 26, 443 26, 443 26, 447 27, 31, 447 27, 4473 26, 45, 56, 66, 66, 66, 67, 67, 67, 67, 67, 67, 6	199, 060 26, 164 3, 116 11, 061 12, 061 14, 077 14, 08 19, 2, 991 48, 913 (4) 19 (5) 48 11, 879 12, 460 14, 448	(e) 128 88.3 88.3 88.3 88.3 88.3 88.3 88.3 88	(4) 236, 940 238, 941 24, 949	24, 236 27, 236 24, 236 24, 236 24, 236 24, 236 24, 236 26, 236 26, 236 27, 206 27, 20	241, 274 33, 254 33, 254 40, 850 6, 887 26, 048 64, 061 64, 061 1, 66 66, 061 1, 67 1, 67	4 78 278 278 20, 151 891 22, 185 22, 185 185 185 185 185 185 185 185 185 185	27, 925 41, 835 5, 147 27, 925 579, 584 (19) (8) (8) (9) 60, 055 14, 206 14, 206 14, 206 14, 206 14, 206 14, 206 14, 206 14, 206 14, 206 16, 27 17, 206 18,
Total Indiana 8	IOWA	165, 369 VA		183, 479		18 196, 753		198, 942
Cement thousand 376-pound barrels. Clays Coal Gorys Coal Gorys Coal Gorysum Lead (recoverable content of ores, etc.) Feat Sand and gravel Stone Alfands by foothoot amount be disclosed: Nonmetals and minerals in-	9, 859 1, 197 1, 107 1, 107 1, 200 13, 240	27, 044 921 4, 503 3, 036 1, 276 16, 388	10, 430 (4) 1, 258 1, 337 (4) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	29, 539 (4) 4, 402 4, 177 (4) 8, 345 18, 555	10, 760 8 852 1, 358 1, 177 1, 177 12, 895 14, 035	32,823 6,1,078 4,732 3,919 (4) (4) (9,525 17,256	10, 828 8 752 1, 312 1, 123 (4) 12, 042 15, 214	34, 881 6 944 4, 543 3, 773 (4) (8) 927 18, 768
Total Iowa		58, 798		63, 555		66, 529		68, 985

486221-58-

See footnotes at end of table.

TABLE 5.—Mineral production 1 in the United States, 1954-57, by States.—Continued

-	
U,	
2	
-	
N	

	X	KANSAS						
	18	1954	19	1955	-	1956	1957	13
Mineral	Short tons (unless otherwise stated)	Value (thousands)	Short tons (unless otherwise stated)	Value (thousands)	Short tons (unless otherwise stated)	Value (thousands)	Short tons (unless otherwise stated)	Value (thousands)
Cement 17 Clays Clays Coal Hellum Lead (recoverable content of ores, etc.) Natural gas Natural gas ilquids: Natural gasoline Sasoline thousand sallons		\$23, 874 (4) (5, 603 593 1, 106 43, 711 (4)	9, 454 5, 768 742 42, 750 5, 498 471, 041	\$25, 854 \$ 873 3, 166 663 1, 638 52, 286	10, 598 977 884 45, 035 7, 635 526, 091	\$30, 696 1, 169 3, 856 698 2, 398 59, 448	8, 178 909 749 36, 743 4, 257 6 580, 700	\$24,814 1,240 3,331 570 1,217 66,200
thouse	(4) 119, 317 23 877 10, 422 10, 377	(4) 335, 280 93 7, 779 7, 194 12, 942	92, 596 121, 669 2 911 10, 665 12, 483	340, 643 340, 670 8, 432 6, 910 15, 946	124, 204 (4) (1) 1,004 12,515 13,434	3, 843 346, 529 (4) 9, 167 8, 022 15, 703	103, 494 121, 705 (*) (*) 1, 018 9, 345 7, 10, 412	6.366, 332 (4) (4) 10, 353 6, 175 7.11, 926
Line (recoverable content or ores, etc.). Value of tienns that cannot be disclosed: Natural cement, fire clay (1955). gypsum, stone (dimension and crushed sandstone, 1957), and values indicated by footnote 4.	19, 110	4, 128	27, 611	6, 792	28, 665	7, 854	15, 859	3, 679
Total Kansas 4		449, 587		470,830		493, 770		505, 084
	KEN	KENTUCKY						
Clays	56, 964 35, 831 80 72, 713	2, 995 236, 737 1, 510 16, 579	876 69,020 8,899 73,214	4, 416 288, 665 308 17, 352	905 74, 555 14, 865 228 73, 687	4,079 331,358 608 72 17,022	894 74, 667 20, 626 411 • 77, 300	3,915 338,109 979 118
Natural gasoline. Natural gasoline. Persos. Petroleum (cride). Sand and gravel. Sione. Zinc (recoverable content of ores, etc.).	28, 224 189, 966 13, 791 4, 730 10, 130	1, 552 5, 066 40, 270 4, 402 13, 286	34, 991 189, 247 15, 518 4, 899 11, 934	2, 492 6, 451 44, 850 5, 298 15, 579	35, 275 248, 992 17, 628 5, 684 11, 553	2, 414 8, 709 51, 297 5, 974 15, 324 11, 324	34, 956 176, 033 16, 879 4, 482 12, 718 837	1, 935 7, 403 52, 831 4, 556 16, 714
		5,626		6, 446		7,079		6, 211
Total Kentucky 4		327, 503		391, 068		443, 168		450, 354

LOUISIANA

Clays - thousand short tons dypsum. Natural gas Natural gas Iquids:	(4) 1, 399, 222	941 (*) 124, 531	651 335 1, 680, 032	659 587 189, 844	785 276 1, 886, 302	785 598 215, 038	(4) (1, 943, 900	(4) (262, 400
and cycle productsthousand 42-gallon t	292, 226 246, 558 3, 089	54, 330 11, 620 722, 370 11, 101	782, 328 291, 138 271, 010 3, 563	59, 158 10, 323 793, 280 15, 407	773, 949 305, 222 299, 421 3, 704	62, 394 14, 727 877, 951 17, 695	775,009 335,142 • 323,199 3,461	63, 956 14, 888 1, 072, 101 18, 944
Stone du gravel do	r, 0, -,	9, 687 3, 127 49, 222	8, 574 3, 253 2, 072	10, 942 4, 961 58, 028	12 15, 074 4, 405 2, 239	13 18, 640 6, 674 59, 330	12, 579 4, 383 2, 156	14, 730 7, 152 52, 690
Covereu elemental sunur, and values indicated by footnote 4		13, 334		15, 309		16, 563		1, 524, 928
	M	MAINE						
thousand 376-p thousan thousan	⊕ ⁺ 9€99	⊕°° €€€€	2, 349 2, 349 26, 282 (11) (4)	6, 875 33 189 (*)	(4) 12 (2) 26 22, 219 (11) 12	(4) 23 144 1179	(4) 30 (11) (4) (4) (7) (11) (12) (13) (14) (15) (15) (15) (15) (15) (15) (15) (15	33 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °
Peat Sheet. Dounds Sand and gravel short tons Sand and gravel short tons Stand and gravel short tons Stand of Items that cannot be disclosed: Columbium-tantalum concentrate (1954-66), slate, and values indicated by footnote 4	<u> </u>	(*) 2, 538 2, 356 865	21, 121 (*) 7, 529 1, 192	(*) 2,855 2,542 857	19, 913 (+) 7, 196 11 947	(4) 3, 085 13, 787 6, 912	25, 453 3, 770 8, 037 889	202 175 3, 099 3, 076 6, 617
Total Maine u.		10,716		12, 991		13 12, 728		12, 711
	MAR	MARYLAND						
Clays Clays Lime Lime Natural gas Sand and gravel Stone Value of items that cannot be disclosed: Beryllium concentrate (1954–67), cement, ball clay (1956–57), gren stone (1954–67), persentium selection and persone a	627 422 67 11 394 10,098 5,065	1, 166 1, 879 1, 879 282 12, 171 8, 266	698 512 3, 116 9, 695 7, 343	1,2 2,002 669 626 12,211 7,8,800	• 636 669 63 4, 619 10, 147 6, 229	51 046 2, 685 2, 685 1, 169 12, 395 13, 305	631 (4) 748 (4) 300 8, 679 6, 140	8 963 3, 082 (4) 11, 200 11, 392 13, 392
1		1, 201		11, 020		8Z./ 'OI er		10, 604
San frontrates at and at take		90, 741		13 35, 488 1.		40, 534	-	39, 607

See footnotes at end of table.

TABLE 5.-Mineral production 1 in the United States, 1954-57, by States-Continued

MASSACHUSETTS

	Value (thousands)	\$97 (4) (9) 9, 691 13, 165 6		71, 606 1, 982 35, 157 4, 823 111, 484 (5) (10) (11), 484 (11), 404 41, 077 41, 073 41, 073	541, 474
1957	Short tons (unless otherwise stated)	78 137 600 9, 900 4, 877	·	22, 23, 24, 28, 24, 25, 24, 25, 24, 25, 24, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25	67,656
1956	Value (thousands)	\$213 (4) (4) (5) (5) (5) (6) (7) (7) (7) (8) (7) (8) (7) (8)		67, 798 2, 401 5, 861 6, 861 1, 4, 61 1, 61 1	461, 904
31	Short tons (unless otherwise stated)	128 134 300 10, 189 5, 442		21, 880 1, 1386 1, 1386 1, 1386 1, 1, 1386 1, 1, 111 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	62, 637
1955	Value (thousands)	\$142 1, 957 (4) 8, 926 11, 381 6		# # /	465, 170
19	Short tons (unless otherwise stated)	125 135 (4) 9,581 4,128		19, 738 1, 938 1, 938 1, 1938 14, 144 46, 336 119, 313 3, 204 37, 214 37, 214 37, 214 37, 214 37, 214 37, 214 37, 214	69, 419
1954	Value (thousands)	\$121 1, 709 (4) (8, 366 9, 040 12 18, 851	MICHIGAN	7.72 87.1 1, 919 683 683 6, 709 70, 004 70, 004 70, 004 682 70, 004 88 80. 80. 1, 289 70, 004 1, 289 1, 289	319, 633
1961	Short tons (unless otherwise stated)	129 (*) 9, 640 2, 942	MIC	16, 712 2, 871 2, 871 1, 873 1, 673 1, 703 37, 038 15, 962 6, 962 6, 962 6, 962 7, 758 12, 028 3, 044 32, 041 32, 041 32, 041 32, 041	48, 613
	Mineral	Clays Lime Feat. Sond and gravel Value of thems that cannot be disclosed: Mineral fuels and nonmetals. Total Massachusetts "		Cement thousand 376-pound barrels.—Clays.—Clays.—Clays.—Clays.—Clays.—Clays.—Clays.—Copper (recoverable content of ores, etc.).—thousand short tons.—Gyptsum.—Thysum.—thousand short tons.—Thysum.—Thysum.—thousand short tons.—Thysum.—Thysum.—thousand short tons.—Thysum.—thousand short tons.—Thysum.—thousand short tons.—Thysum.—thousand short tons.—Thysum.—thousand short tons.—Thysum.—thysus.—Thysum.—thousand short tons.—Thysum.—thysus.—Thysum.—Thysus.—	Claysthousand snot vous Iron ore (usable)thousand long tons, gross weight.

(4) (3) (4) 19, 385 8, 175	15, 571		3, 635 1, 460 1, 460 4, 344 4, 694 4, 694 4, 694 1, 694	(4) 8, 942 8, 942 29, 836 685 685 7, 385	152, 879
692, 295 (19) 1, 300 28, 493 2, 968			(19) 6 182, 411 25, 152 10, 044 6 39, 202 5, 172 7, 100 11, 204 1, 309 1, 300 1	(4) 8, 480 184 22, 088 2, 981	
(e) (e) (h) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f	13, 443		(19) 3.590 (18) 143 1, 751 100, 019 4, 701 4, 701 133, 088 138, 088 1, 606 (1) 606 (2) 8, 888 (3) 888 (3) 888 (4) 888 (5) 898 (6) 898 (7) 898 (8) 898 (8) 898 (8) 898 (9) 898 (10) 898 (10, 117 10, 117 33, 577 1, 200 1, 200 5, 897	163, 693
633, 919 (4) 28, 197 3, 084			(a) 186, 137 186, 137 186, 137 186, 137 186, 137 186, 137 186, 138 186, 138 186, 138 188 188 188 188 188 188 188 188 188	65 9, 585 24, 295 4, 380 4, 380	
7, 043	11, 739		3, 913 11, 664 11, 573 28, 836 4, 603 12, 630 112, 630 112, 630 113, 604 113, 604 113, 604 114, 408 114, 408	9, 981 9, 981 7, 29, 580 1, 101 4, 833	151, 626
864, 628 (+) (+) (25, 896 3, 005			163, 164 1 1 1 25, 242 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	9, 984 9, 984 7 22, 369 4, 476	
(6.6) 16,319 7,485	8, 204	MISSISSIPPI	86.69 80.4 1,944 80.80 80.6	(*) 10, 204 10, 204 24, 752 1, 125 2, 908	131, 280
2, 629		MISS	140, 448 140, 448 15, 288 33, 280 6, 442 181 181 19, 379 11, 379 11, 927 11, 927 12, 9	(*) 9, 891 9, 891 18, 672 5, 210	
Manganiferous ore (5 to 35 percent Mn) Marl, calcareous (except for cement) Pest. Band and gravel. Stone Value of items that cannot be disclosed: A brasive stones, cement, fire clay (1956-57), gem stones (1955-57), lime, manganese ore (1955-57), stone (cruibned sandstone, 1964-57), calcareous	mari 1967), recovered elemental sulfur (1967), and values indicated by footnote 4. Total Minnesota 1.		Clays. Natural gas Not must gas Pet Gard Sand and gravel Sand and gravel Son gard Son gard Certain metals and nonmetals Total Mississippi " Ling Mousand 376-pound barrels Comput (recoverable content of ores, etc.) thousand short tons Copper (recoverable content of ores, etc.) thousand long tons, gross weight. Lead (recoverable content of ores, etc.) thousand short tons Not must gas gross weight. Lead (recoverable content of ores, etc.) thousand short tons Not must gas gross weight.	Patroleum (crude)	Total Missouri

See footnotes at end of table.

TABLE 5 .-- Mineral production 1 in the United States, 2 1954-57, by States-Continued

MONTANA

	19	1954	19	1955	1,1	1956	1957	25
Mineral	Short tons (unless otherwise stated)	Value (thousands)	Short tons (unless otherwise stated)	Value (thousands)	Short tons (unless otherwise stated)	Value (thousands)	Short tons (unless otherwise stated)	Value (thousands)
Chromite Coal: Bituminous and lignite Coal: Bituminous and lignite Coal: Bituminous and lignite Coal: Copper (crooverable content of ores, etc.) Choroper (crooverable content of ores, etc.) To ore (usable) Lead (recoverable content of ores, etc.) Lead (recoverable content of ores, etc.) To ore (usable) Lead (recoverable content of ores, etc.) Marganese ore (35 percent or more Mn) Marganese ore (35 percent Mn) Marganese ore and concentrate Thousand short tons Thingsten ore and concentrate Thousand short tons The (recoverable content of ores, etc.) Value of thems that cannot be disclosed: Bartle, cement, clay (bentonite, 1985; burtle, near and free day, 1937; gypsum, lime, natural-gas liquids, 1936; bentonte and free day, 1937; gypsum, lime, natural-gas liquids, 1937; vermicuille, uranium ore (1936-57), and values indicated by footnote 4. Total Montana 11.	(+) (+) (+) (+) (+) (+) (+) (+) (+) (+)	, 096	118, 703 1, 247 1, 247 28, 123 28, 123 106, 026 6, 036 10, 034 10,	\$3, 719 \$6, 3, 782 \$6, 830 \$6, 830 \$6, 984 \$6, 984 \$6, 984 \$7, 984 \$6, 984	18, 78, 88, 88, 88, 88, 88, 88, 88, 88, 8	\$3,807 \$1,468 81,468 81,962 (*) 35 (*) 5,853 (*) 6,141 3,957 (*) 7,174 (*) 7,174 (*) 7,174 (*) 19,322 19,322 19,322	119, 149 4.32 91, 512 92, 766 32, 766 32, 766 30, 208 4, 547 11, 108 5, 568 (4) 568 6, 500	\$3,921 (4),080 (5),080 (5),080 (4),3804 (4),080 (5),080 (5),080 (6),080 (6),080 (73,481 (73,48
Clays Gem stones. Natural gas Petroleum (crdde). Send and gravel. Stone.	164 6, 801 7, 783 8, 548 2, 660	164 796 21, 400 6, 992 3, 512	(11) 12, 515 12, 515 11, 203 8, 405 8, 605	151 2, 553 30, 810 6, 193 4, 177	(11) 13, 541 16, 204 10, 350 3, 063	2, 844 45, 209 7, 404 4, 142	(11) • 12, 500 • 19, 586 7, 944 3, 065	135 2 2,700 6 58,368 5,889 3,749

Value of items that cannot be disclosed: Cement, natural-gas liquids, and pumice		-					. <u>-</u>		
Total Makenaka 8		10, 03/		11, 144		12, 771	-	13, 670	
Lotal 14coltaka		42, 393		54, 237		11,311		83, 290	
	NE	NEVADA							
Antimony ore and concentrate———————————————————————————————————	88, 883 (1,0) 217 (1,0) 054 (2,0) 054 (3,0) 054 (3,0) 054 (4,0) 054 (5,0) 054 (6,0) 054 (7,0) 054 (7,0) 054 (7,0) 054 (8,0) 054 (9,0) 05	833 (517 67 67 67 67 67 67 67 67 67 67 67 67 67	113, 694 (1) 926 (2) 926 (2) 926 (3) 837 (3) 838 (4) 64 (5) 64 (5) 64 (7) 68 (7) 68 (7) 68 (8) 68 (7) 732 (7)	2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2	178, 440 19, 80, 824 (11) 88, 040 10, 83, 040 1121, 488 5, 888 6, 487 1, 401 1, 401 1	(4) 1,067 1,067 1,067 1,067 1,067 1,067 1,070 1,	29 109, 663 77, 72 (11), 76 (11), 76 (11), 76 5772 5, 778 (126), 046 126, 046 6, 313 6, 313 6, 313 6, 313 7, 467 1, 196 5, 292 5, 292	(4) 20 46,806 (5) 24 68 806 (6) 2,000 (7) 2,00	
Beryllium concentrate Clays Columbium-tantalum concentrate Columbium-tantalum concentrate Columbium-tantalum concentrate Columbium-tantalum concentrate Commissioner Commissioner Commissioner Columbium-tantalum concentrate Commissioner Columbium-tantalum concentrate Columbium-tantalum Columbium-ta	12 36 265 265 42 466 325 72 72 72	(19) 36 234 (1) 12 1, 095 473 255 255	69. 60. 60. 88 88. 88. 88.	12 12 35 35 (3) 35 (4) 1,583 2,605 2,605	(5) 36 (1) (1) (2) (3) (4) (5) (5) (5) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	(4) 47 1 178 (9) 10 (1) 822 (1) 3.438	(1) (1) (3) (4) (4) (5) (6) (7) (7)	(10) (10) (10) (10) (11) (11) (12) (13) (13) (14) (15) (16) (17) (17) (17) (17) (17) (17) (17) (17	
									•

TABLE 5.—Mineral production 1 in the United States, 1954-57, by States-Continued

NEW JERSEY

29	Value (thousands)	8 \$1, 872 16, 668 (4) (5) (5) 17, 619 21, 222 (7) 2, 857	4, 699		98 83 829 829 829 11 11, 614 1, 514 2, 114 2, 114 1, 514 2, 116 47 47
1957	Short tons (unless otherwise stated)	6 593 877 (4) (4) 10, 323 8, 792 (4) 12, 530			(11) 2, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 4, 2, 2, 2, 4, 2, 2, 4, 2, 2, 2, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
1956	Value (thousands)	\$2, 214 16, 842 (*) (*) (*) (*) 18, 239 20, 825 20, 825 201 1, 260	4, 608		(4) 95 (23) (53, 103 (3) 115 (4) 1, 897 (7) 1, 887 (7) 1, 887 (7) 1, 884 (7) 22 (8) 22 (8) 118
31	Short tons (unless otherwise stated)	651 130, 129 14, 14 11, 194 11, 194 19, 012 8, 972 4, 667			4,005 31 158 158 74,345 76,072 6,042 22,011 38,782 6,247 6,247 6,247 6,247 6,247
1955	Value (thousands)	\$1, 562 13, 633 (4) (4) (6) 16, 425 7, 17, 528 2, 864	5, 239	2	(5) 56 1109 11,236 (6),547 (6),547 (7) 946 (7) 982 (8) (8) (8) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9
19	Short tons (unless otherwise stated)	644 760 213, 370 (4) 11, 153 7, 8, 358 7, 404 11, 643			(*) 106 202 203 204 5 76 41, 917 1, 917 1, 917 1, 917 1, 390 40, 326 40, 326 40, 326 40, 421
75	Value (thousands)	\$1, 246 6, 622 (*) 185 14, 705 12, 110 (*) 7, 992	4, 184	NEW MEXICO	(4) 44 283 38, 729 4 (5) (7) 124 3736 (7) 243 82 82 82 83, 049
1954	Short tons (unless otherwise stated)	578 476 214, 931 2, 101 10, 005 5, 772 (*) 37, 416		NEW	(4) 117 2 128 2 129 2 12
	Mineral	Clays Clays Thousand short tons. In ore (usable) Manganiferous residuum Marl (greensand) Sand and gravel Sonn Anternate demental Jone 1955), and values indicated by footnote 4. Excludes limestone used in manufacturing lime. Total New Jersey.		Barite Beryllum concentrate Clays. Clays. Columbium-tantalum concentrate Columbium-tantalum concentrate Columbium-tantalum concentrate Columbium-tantalum concentrate Columbium-tantalum concentrate Columbium-tantalum concentrate Columbium-teorerable content of ores, etc.) Gold (recoverable content of ores, etc.) Thousand only feet Fluid (recoverable content of ores, etc.) Manganese ore (35 percent or more Mn) Mics. Sang Sheet Matural gas. Description ore (55 percent Mn) Million cubic feet Manganese ore (55 percent Mn) Mics. Sheet Matural gas. Description ore (55 percent Mn) Matural gas.	

283,1,13,0,1,1,13,1,13,1,13,1,13,1,13,1,1	16 553, 034	(*) 1,270 1,84 3,749 44,567 (*) (*) (*) (*) (*) (*) (*) (*)
300,010 375,930 875,930 9,94,759 2,080,475 2,915 7,991 1,386 1,785,742 1,775,742		(*) (11) (11) (13) (13) (14) (15) (15) (16) (16) (16) (16) (16) (16) (16) (16
16, 560 11, 065 11, 065 1, 271 24, 176 657 667 667 677 8, 5776 1, 272 24, 086 9, 563	12 16 515, 009	(4) 1,508 1,744 1,109 1,030 1,100 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,
306, 585 308, 218 167, 705 87, 883 1, 986, 683 202 202 202 1, 203 1, 203 1, 203 1, 203 36, 010		(*) 1.23 1.21 1.25 1.14 1.1.16 1.1.16 1.1.16 1.1.16 1.1.16 1.
15, 425 6, 767 1, 091 227, 330 71, 330 71, 330 6, 005 6, 005 6, 005 3, 768 3, 768	12 438, 692	52, 150 1, 676 1, 676 1, 676 1, 676 1, 306 1, 306 1, 306 1, 306 1, 310 2, 542 2, 542 2, 542 2, 542 2, 542 1, 673 1, 673 1, 646 1, 346 1, 346 1
261,023 278,403 147,805 82,958 1,888,770 4,556 4,556 1,573 1,573		17, 942 11, 394 11, 394 11, 204 12, 204 13, 204 10, 20, 304 10, 20, 304 10, 30
11, 744 5, 704 68, 786 205, 786 66, 538 1, 060 714 1	13 474, 690 NEW YORK	38, 861 1, 494 1, 132 31, 700 325 (4) 325 (5) 847 (6) 847 11, 140 22, 756 22, 756 23, 756 11, 491 11, 491 11, 491 11, 491 11, 491
224, 112, 226, 914, 111, 040, 111, 040, 111, 040, 111, 040, 110, 040, 04	NEW	14, 497 1, 1199 1, 1184 1, 1184 1, 1187 1, 118
Natural gas liquids: Natural gasoline and cycle products. thousand gallons. LP-gases Perlice Perlice Potassium salts and the salts and salts and the salts and the salts and salts and the salts and salts and the salts and salts and salts and the salts and s	Total New Mexico	Cement II Clays. Clays. Clays. Clays. Genery 17 Comment II Clays. Genery 28 Comment II Common II

See footnotes at end of table.

TABLE 5.-Mineral production 1 in the United States, 1954-57, by States-Continued

NORTH CAROLINA

	19	1954	16	1955	#	1956	1957	29
Mineral	Short tons (unless otherwise stated)	Value (thousands)	Short tons (unless otherwise stated)	Value (thousands)	Short tons (unless otherwise stated)	Value (thousands)	Short tons (unless otherwise stated)	Value (thousands)
Abrasive stones Beryllium concentrate. Clays. Feldsystones Gent stones Feldsystones	(4) 1, 873 230, 744	\$12 (4) 2,520 2,221	242, 724	(4) (1, 792 2, 185	2, 663 2, 663 255, 637	\$16 2,027 3,192	(11) 1 23, 392 233, 439	24 \$5 1 1,407 2,728
Gold (recoverable content of ores, etc.) Load (recoverable content of ores, etc.) Winer	214	8	190	2-1-2	(**) 882 10	31.	1,373	
Scrap Sheet San and gravel Silver freovership content of ones sto) thousand short tons.	61, 049 479, 221 7, 441	1, 457	60, 887 553, 444 7, 786	1, 377 2, 745 5, 911	47, 125 770, 903 7, 581	1,065 2,135 6,264	53, 452 577, 607 6, 829	1, 173 1, 575 5, 724
	10, 134 112, 704 2, 538	15, 625 389 (*)		16, 533 16, 533 (+)	1 8, 352 125, 487 2, 732	7 11, 472 529 (4)	7 9, 455 120, 905 1, 828	112,839 12,839 558 (4)
Value of items that cannot be disclosed: Abrasive stone (milistones, 1964, grinding pebbles and tube-mill linear, 1957), absects (1954-55, 1957), elsay (benchine, 1957), copper, lithium minerals, olivine, slate (1957), stone (crushed and dimension grantle, crushed linestone, crushed missone, and dimensions are such and discount grantle, or when the crushed missone, and discount and discount feature, or when the crushed missone and discount feature or when the crushed missone and discount feature or when the crushed missone are such discounted to the crushed missone and discounted are such as the crushed missone are such discounted to the crushed missone are such as the crushed missone are such			 				N	€
basal, dimension amenatoring, 1900), uniform the formula, crushed basal, dimension and curbach marble, crushed limestone, and crushed sandstone (1957), vermiculite (1954-55), and values indicated by footnote 4.		12, 123	1	10,075		13 14, 135		11, 498
Total North Carolina.		41,651		41,210		12 40, 873		37, 570
	NORTH	NORTH DAKOTA	s					
Clays thousand short tons. Coal (lightle) do Natural gas million cubic feet. Petroleum (crude) thousand 42-gallon barrels.	(*) (*) 1,093 6,025	(*) (*) 69 12, 890	(*) 3, 102 5, 256 11, 143	(4) 7, 261 405 32, 200	2,815 11,725 13,495	6, 578 6, 578 950 39, 136	2, 561 12, 400 13, 642	5, 947 01, 100 42, 699
vel ired elemental	7,105	2, 219	11, 169	2, 638	5, 946 83 1, 735	4, 259 87 46	7,048	4,967 52 264

Value of items that cannot be disclosed: Contain minged and and			,					
	. :	7,041		1, 529		2.423		809 6
Total North Dakota.		22, 223		44, 123		53, 555		57, 796
	0	оню						
Abrasive stones, grindstones and pulpstones Cement	⊕ టెచటి చట్టి చట్టి చట్టి చట్టి చట్టి చట్టి చట్టి చట్టి చట్టి చట్టే చ	077 835,929 051 117,530 117,530 824 81,144 824 81,117,630 10,710 827 67,802 827 47,802 827 47,802 827 47,802 827 47,802 827 82,084 827 833 827 833 827 833 830 12,359 830 12,359 831 832 831 832 832 833 833 833 834 833 835 833 837 837 833 837 837 837 837 837 837 837 837 837 837 837 837 837 837 837	(+) 14, 914 6, 7, 877 87, 870 83, 736 83, 736 83, 773 83, 773	(4) \$42,966 115,814 133,814 14,89 11,769 11,769 11,769 11,995 49,841 2,865 340,467	(4) 16, 065 8, 874 8, 874 2, 295 15, 509 17, 509 17, 509 18, 418 18, 4	(4) \$49,794 17,675 140,895 40,895 6,088 15,025 115,025 116,025 16,947 5,394 6,394	1, 508 16, 238 36, 136 29, 300 29, 300 20, 504 30, 506 77, 451	\$132 52, 184 16, 073 146, 134 38, 383 6, 7, 200 17, 694 16, 386 37, 503 7 61, 847 2, 452 385, 868
Clays Coal Legan (recoverable content of ores, etc.) Legan (recoverable content of ores, etc.) Natural gas liquids: Legan (recoverable content of ores, etc.) Punice Punice Punice Salt (common) Stone Tripoli 1, 915 14, 204 16, 204 16, 355 16, 355 185, 811 (*) (*) (*) (*) (*) (*) (*) (*) (*) (*)	1, 283 11, 286 3, 892 43, 145 24, 332 13, 506 (*) (*) (*) (*) (*) (*) (*) (*) (*) (*)	2 724 14, 126 614, 976 504, 662 512, 330 202, 817 (*) (*) (*) (*) (*) (*) (*) (*) (*) (*)	4, 268 4, 268 4, 208 45, 508 28, 770 14, 297 663, 830 (*) 15, 296 (*) 10, 220 11, 526 711, 089	5 705 2 007 12, 300 678, 603 489, 993 579, 101 216, 862 (9) 10, 647 (1), 647 (1), 647 (2), 615	6, 701 12, 341 3, 878 54, 288 28, 447 600, 096 4, 842 12, 417 (4) 7, 539	6 641 2 166 7,7 188 6 635,000 460,644 5 87,140 2 115,111 (5) 7,140 14,960 14,980 14,981	4 642 2, 165 2, 054 63, 300 25, 329 21, 824 61, 786 (4) 63 4, 507 14, 604 67, 63 3, 469 83, 469 803, 937	
Con doctor at an a to the contract of						2		1000

See footnotes at end of table.

TABLE 5.—Mineral production 1 in the United States, 1954-57, by States—Continued OREGON

	OR	OREGON	-		-			
	19	1954	19	1955	1	1956	1957	7
Mineral	Short tons (unless otherwise stated)	Value (thousands)	Short tons (unless otherwise stated)	Value (thousands)	Short tons (unless otherwise stated)	Value (thousands)	Short tons (unless otherwise stated)	Value (tnousands)
Ohromlum. Olays (Copper (recoverable content of ores, etc.). Gen stones (Gond (recoverable content of ores, etc.). Gen stones (Gond (recoverable content of ores, etc.). Then ore (resolue) (Fores, etc.).	6, 655 (*) 5 (11) 6, 520	\$538 (*) 3 (*) 228	5, 341 251 4 (11) 1, 708	* €€	26 54, 577 257 (11) 2, 738	26 \$2,001 278 278 6 250 96 (4)	240 7,900 (11) 3,381 (18)	\$675 266 266 14 200 118 (*)
e content of ores, etc.). of ore and concentrate).	1,993 13,157	(4) (178 14, 150	3 1,056 4,181 (*) 11,954	1 307 (4) (4) 11,832	1,6,€H	492 (4) (4) (4) 11, 647	3, 993 12, 276 123 123 12, 843	(*) (*) 294 13, 481
t of ores, etc.)thousand tro the disclosed: Carbon dioxide, ceme s (1954, 1956-57), lime (1957), sodium rate, uranium ore (1956-57), and ve		8,618	7,742		:	7, 890	10, 311	14, 405 11, 405 15, 954
cated by footnote 4		32, 268		31, 736		12,003		42, 480
	PENN	PENNSYLVANIA						
Cement thousand 376-pound barrels. Clavs.	43,068	117, 912 10, 244	48, 090 4, 020	141, 969	51,964	162, 387	44, 680 4, 074	148, 130 22, 012
Ooal: Anthracite Anthracite Bluminous Cobalt (content of concentrate) Gold (recoverable content of ores, etc.)	29, 083 72, 010 517 1, 317 708	247, 870 378, 659 (*) 46	26, 205 85, 713 479 1, 610 510	206, 097 440, 452 (*) 56 (*) 7	28, 900 90, 287 (*) 533 (*)	236, 785 479, 437 (4) (4) (4)	25, 338 85, 365 86, 365 (4) (4)	227, 754 492, 539 (4) (5) (6)
Iron oxide pigments (crude)thousand short tonsIme	145,934	13, 206 43, 634	1, 424 99, 172	17, 632 29, 652	1, 443 104, 508	18, 282 33, 652	1, 298 107, 300	18, 406 8 35, 400
Natural-gas liquids: Natural-gasolino. LP-gases. Peat.	4,830 1,008 15,621	320 89 141	4,305 995 23,277	281 90 220	4, 081 1, 127 20, 498	251 99 213	3, 106 1, 211 26, 086	192 106 236

Petroleum (crude) Pyrophyllite (sertite schist) Pyrophyllite (sertite schist) Sand and gravel Ellver (recoverable content of ores, etc.) Silver Silver Silver Chousand short tons. Silver Sulfur, recovered elemental Tripoli Tripoli Tripoli Value of tems that cannot be disclosed: Clavs (kaolin 1956). conder.	9, 107 1, 898 14, 218 8 8 40, 522 (*)	31, 150 20, 596 20, 596 4, 419 61, 193 (4)	8, 531 (4) 13, 313 10 10 44, 438 7, 738 1, 090	30, 200 (*) 20, 512 20, 512 1, 421 1, 68, 918 263 6	8, 230 (4) 14, 047 (4) 154 7 44, 913 11, 350 1, 030	(4) (2) 21, 321 (4) (4) 4, 194 7, 73, 831 386	(*) 179 (*) 12, 406 (*) 139 (*) 258 (*) (*)	(4) (5) (7) (7) (7) (8) (4) (4) (4) (4)
stones (1955-57), mica, pyrites, stone (dimension basait 1956, shell 1956), and values indicated by footnote 4.		12, 549	.1 1 1 1 1 1 1 1	15,819	1	16, 202		16,911
Total Pennsylvania 9.		925, 545		969, 910		1,088,867		1, 082, 133
	RHODE	RHODE ISLAND						-
Sand and gravelthousand short tons	1,013	086 (+)	1,941	1, 498	1,308	1, 263	1,058	1,060
Value of items that cannot be disclosed: Nonmetals and values indicated by footnote 4		481		336		143		295
Total Rhode Island		1,461		1,834		1,627		1, 369
8	оттн с	SOUTH CAROLINA						
Mice (sheet) Mice (sheet) Sand and gravel Stone Value of items that cannot be disclosed: Barite, cement, kyanite, scrap mice, rare-earth medis concentrates (196-E7), stanoitte (1957), stone (1960-E7), stanoitte (1957), stone (1960-E7), stanoitte (1957), stone (1960-E7), stanoitte (1957), stone (1960-E7), stanoitte (196	1, 136 (4) 2, 814 2, 862	4, 702 (*) 2, 550 4, 233	1, 086 (4) 3, 127 3, 455	5, 463 (4) 2, 677 4, 921	1, 087 5, 400 3, 229 3, 304	5, 450 14 2, 926 4, 285	937 2, 278 2, 647 7 3, 413	5, 161 12 2, 571 7, 681
1866-57; calcareous marl, 1967), titanium (1956-57), vermiculite, zir- conium concentrate (1967), and values indicated by footnote 4.		6, 374		7, 400		9, 277		10, 491
Total South Carolina 16		17, 744	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20, 197		21, 342		22, 168
	SOUTH	SOUTH DAKOTA						
Beryllium concentrategross weight Claysthousand short tons Coal (liente)	337	€£	(*) 294	€	195 6 201 25		268 6 176 21	'. "
talum concentrate	£€\$,44	. € & ~	5, 638 42, 164 (11)	10 267 7	45, 226 (11)	(10) 289 10	41, 316 (11), 316	267 15
See footnotes at end of table.								

TABLE 5.-Mineral production 1 in the United States, 21954-57, by States-Continued

SOUTA DAKOTA-Continued

	61	1954	19	1955	17	1956	1957	22
Mineral	Short tons (unless otherwise stated)	Value (thousands)	Short tons (unless otherwise stated)	Value (thousands)	Short tons (unless otherwise stated)	Value (thousands)	Short tons (unless otherwise stated)	Value (thousands)
Gold (recoverable content of ores, etc.)	541, 445 9 2	\$18, 951 11 (*)	529, 865 13	\$18, 545 16 (4)	568, 523 16 22	\$19, 898 63 100	568, 130 (18)	\$19,885 53 (4)
Scrap. Sheeft. Sheeft. Sheeft. Sheeft. Sheeft.	1,510	£ 59 66 27	1, 322	22.2	1, 268 12, 494	13 67	1, 626 9, 093	£ 94
t of ores, etc.) the trate 60	14, 819 151 1, 615	7,840	13, 538 154 2, 262	10, 097 140 5, 680	12, 539 136 2, 200	8, 423 123 5, 725	14,758 135 1,718	8,001 122 5,068
sclosed: Cement, o		1			35, 302	475	69, 800	760
values indicated by footnote 4		6, 121		6, 115	1	7, 547		6,084
Total South Dakota		37,874		40, 526		13 42, 281		39, 990
	TENI	TENNESSEE	-					
Cement thousand 376-pound barrels. Clays Clays Coal Copper (recoverable content of ores, etc.) God (recoverable content of ores, etc.) Lead (recoverable content of ores, etc.)	7, 569 1,015 6, 429 9, 087 218	19, 734 3, 781 25, 477 5, 362	8, 812 1, 208 7, 053 9, 911	23, 673 4, 170 28, 747 7, 394	8, 755 1, 379 8, 848 10, 449	25, 435 4, 4888 35, 609 8, 882	7, 415 1, 154 7, 955 9, 790 172	22, 806 4, 228 31, 147 5, 894 6
or more Mn)	80 11,823 89	968 920 10	103 15, 895 39	1, 102 1, 280 5	125 17,821 45	1, 436	12,938	1, 134
vel rable content of ores, etc.)	1,633 5,155 61	11, 743 6, 141 55	1, 466 5, 137 67	10, 526 5, 814 60	1, 685 5, 629 65	11, 643 6, 480 59	1,812 5,617	12, 514 6, 641 49
Stone Value of items that cannot be disclosed: Barite, fluorspar (1956–57), iron ore, maneaulferons ore (1954, scrap male (1956–57), period stone (erushed sandshone, 1956; crushed granite and crushed sandshone, 1956; crushed granite and crushed sandshone.	14,040 30,326	22, 046 6, 550	14, 381 40, 216	22, 276 9, 893	7 15, 556 46, 023	7 23, 796 12, 610	7 15, 354 58, 063	13,470
		5, 480		6, 994	-	8, 772		8, 029
Total Tennessee		105,686		119, 316		137,846		128, 738

Cement thousand 376-pound barrels. Clays thousand short tons.	21, 928 2, 401	56, 674 7, 002	24, 856	67, 549 5 5, 100	25, 966 53, 146	75,695 8 4,765	22, 144 5 2, 992	68, 541 6 4, 934	
	(11) 1. 218 110, 588 915 547 4, 551, 232	3, 773 1, 874 (*) 5, 422 386, 855	(11) 1,349 139,397 875 875 685 4,730,798	115 4, 220 2, 272 (*) 5, 549 378, 464	(II) 1.157 145,830 (4) (4) 592 4,999,889	3, 623 3, 623 2, 364 (4) 6, 938 434, 990	(11) 1,043 204,286 (4) 796 6,5.256,600	3, 343 3, 343 3, 353 (4) 7, 489	
Natural gasoline and cycle products Natural gasoline and cycle products T. P. gasos. Petroleum (crude). Self (common). Send and gravel. Sodum sulfate.	2, 732, 100 2, 983, 962 974, 275 2, 864 26, 316	200, 559 95, 913 97, 98, 490 9, 310 24, 841	2, 987, 808 3, 450, 430 1, 053, 297 3, 583 31, 518	206, 506 110, 414 2, 989, 330 12, 867 28, 480	2, 964, 609 3, 731, 047 1, 107, 808 29, 336	216, 378 144, 745 12 3, 131, 225 14, 370 27, 213	4 8 8 4 8	201, 423 147, 618 • 2, 369, 371 17, 104 23, 427	
	6 25, 840 3. 474 107, 232 19, 362	29,344 92,792 2,889 128		33, 544 105, 128 3, 144 2, 213	32, 773 3, 437 140, 164 41, 332	36,350 91,026 3,865 244	30, 660 2, 879 163, 571 47, 780		
th 1955-57 16 (for me 55-57), per 7, 1954), u		52, 527		50,069		18 62, 354		71. 510	
Total Texas 4.		3, 730, 705		3, 993, 310		11 4, 245, 123		4, 497, 264	
	Ū	UTAH							
Asphalt and related bitumens, native: Gilsonite—thousand short tons—thousand short tons—thousand short tons—copper (recoverable content of ores, etc.)—thousand	75, 943 (4) 5, 008 211, 835 4, 403	2, 724 (4) 29, 761 124, 983 82	82, 822 (*) (*) 6, 296 232, 949 7, 328	3, 117 (4) 40, 005 173, 780 151	(4) 1, 227 6, 522 6, 522 250, 604 10, 581	(4) 6 492 34, 436 213, 013 265	206, 041 4 164 6, 858 237, 857 11, 087	4, 259 473 40, 263 143, 190 387	
Gold (recoverable content of ores, etc.) Iron ore (usshle) Lead (recoverable content of ores, etc.) Lime Mangatuese ore (38 percent or more Mn) Rangatuese ore (38 percent or more Mn)	403, 401 3, 041 44, 972 30	14, 119 19, 277 12, 322 432 (•)	441, 206 3, 847 50, 452 39	15,442 24,688 15,035 583	416.031 4.002 49,555 55	14, 561 27, 508 15, 560 830	(11) 878, 438 4, 156 44, 471 53	13, 245 30, 383 12, 719 821 12	
Natural gas. Perilte. Petroleum (crude). Petroleum (crude). Petroleum (crude). Petroleum (crude).	16, 024 (*) (*) 1, 905 (*)	€,2,259 4,480	17, 163 (*) 2, 227	2, 386 (*) 5, 140	17, 268 2, 271 2, 466	2, 435	(+) (+) (4, 093	• 2, 700 (+) • 9, 291	
ti end of table.	167	1,020	5, 158 5, 158	3, 309	5,836	330 1, 471 4, 476	26, 958	2,00 2,013 15,485	

TABLE 5.-Mineral production 1 in the United States, 2 1954-57, by States-Continued

	,
ned	
ontin	
1	
$^{\mathrm{TA}}$	
Ρ	

	-		. ,					
	19	1954	19	1955	11	1956	1957	22
Mineral	Short tons (unless otherwise stated)	Value (thousands)	Short tons (unless otherwise stated)	Value (thousands)	Short tons (unless otherwise stated)	Value (thousands)	Short tons (unless otherwise stated)	Value (thousands)
Silver (recoverable content of ores, etc.)	6, 179 1, 127 84	\$5, 593 1, 546 309	6, 251 1, 926 65	\$5,657 2,650 225	6, 572 2, 322 11 11 096 973	\$5,948 3,298 13 25 214	6, 199 7, 854	\$5,610 8,540
Vanadium ore thousand pounds. Zine (recoverable content of the content of the disclosured	34, 031	(*) 7, 351	996 43, 556	(4)	1,099 42,374	(4) 11, 610	40,846	(+) (9, 476
varie of items this tennot be inscribed. Carloud diotack, cometre, tasy (kaolin, 1968-57), gypsum, molybdenum, natural gasoline, potassium salts, and values indicated by footnote 4.	† 1 1 1 1 1	12 26, 258	1	12 28, 806		12 33, 352		27, 651
Total Utah 19		12 255, 550		12 332, 002		12 399, 759		356, 213
	VEF	VERMONT						
Clays theoverable content of ores, etc.)	(*) 4, 352 185	(*) 2, 568	14 4, 305 181	3, 212 6	(4) 3, 403 (4)	€ [*] €	(4) 3, 405 (4)	(4) 2, 050 (4)
or ores, every	1,482	1,111	1, 763	(*) 1, 169	1,910		2, 216 3, 37	1,051
Slighter (recoverable content of ores, etc.)	(4) ±37 437 66, 195	(*) 8, 178 199	© 283 © ©	(*) 11,061 (*)	(s) (s)	3,722 11,622 (*)	(s) (s)	3, 269 11, 404 (4)
Value of items that cannot be disclosed: Asbestos, gem stones (1955), lime, and values indicated by footnote 4.		8, 401		8, 400		3, 915		4, 060
Total Vermont 16		20, 483		23, 884		23, 131		21, 893
	VIE	VIRGINIA						
Beryllium concentrate thousand short tons. Clays Coal Lead (recoverable content of ores, etc.)	(*) 705 16, 387 4, 320 445	(10) 723 72, 901 1, 184 4, 611	(*) 936 23, 508 2, 997 494	(10) 874 108, 174 5, 049	1,000 28,063 3,035 512	(10) 1, 033 138, 127 138, 227 5, 953	29, 506 3, 143 510	986 153, 959 899 6, 029
1/IIII								

1,058 (4) , 6 (9) , 700 (9) , 8,854 (1) , 1003 21,158 5,277	224, 531	(19) (4) (4) (4) (4) (4) (5) (4) (5) (4) (4) (5) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4
12, 655 (#) \$ 750 (#) \$ 750 (\$) \$ 75		(4) 288 288 288 38, 373 4 4 (1.1) 700 (4.6.5) 884 8, 83, 884 8, 454 8, 454 8, 665 24, 000
1,902 126 816 (4)810 9,240 1,02 1,02 23,076 5,181 24,931	208, 806	(a) 3,440 3,443 440 440 440 440 440 440 440 115,037 11,030 406 11,660 406 11,738 117,738 117,738
20, 231 10, 522 10, 523 2, 936 7, 783 1, 783 14, 082 19, 196		25 30 30 30 30 30 30 30 30 30 30
2, 779 (6) (7) (259 (8) (7) (8) (9) (19) (8) (19) (7) (4) (6) (7) (8) (7) (8) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9	172, 541	(6) (8) 4, 28 4, 283 4, 283 5, 983 6, 602 7, 2602 (6) 351 10, 386 10, 580 (7, 266 (6) 7, 266 (6) 7, 266 (7, 266 (6) 7, 266 (7, 266 (6) 836 (7, 266 (6) 836 (7, 266 (6) 836 (7, 266 (6) 836 (7, 266 (7, 266 (8) 836 (9) 836
32,654 (+) (+) (+) (+) (+) (+) (+) (+) (+) (+)		(E) 25 22 22 22 22 22 22 22 22 22 22 22 22
1, 781 (4) 21 (5) 380 (6) 8, 658 (6) 2 (7) 469 (7) 403 (8) 413 (8) 413 (9) 403	129, 603 WASHINGTON	(c) (d) (d) (d) (e) (e) (e) (e) (e) (e) (e) (e) (e) (e
22,678 33,174 (4) 1,401 7,115 7,116 10,894 16,738	WASE	(5) 261 261 619 60, 740 66, 740 69, 740 7, 134 7, 367 16, 045 16, 045 16, 045 17, 367 18, 314 22, 304
Manganese ore (35 percent or more Mn) Math, calcarcous (except for cement). Math, albest. Mather algas and the district control of the calculation of the calculat	Total Virginia *	Abrastve stone: Pebbles (grinding) Bartie. Chromite Chromite Chromite Chromite Chays. Collys Collys Collyper (recoverable content of ores, etc.). Copper grows Collys Collys Collys Chromite Chromite Collys Collysian Chromite Chr

486221--58--

See footnotes at end of table.

TABLE 5.—Mineral production 1 in the United States, 2 1954-57, by States—Continued

	-					_				٠ ــــ	
	29	Value (thousands)	\$2,691 875,587 (16) • 49,200	2, 185 6, 543 2, 643 9, 893 11, 934	14, 984	982, 719		(4) 543 (16) (16)	(*) 18, 694 22, 455 5, 006	22, 590	68, 644
	1957	Short tons (unless otherwise stated)	708 156, 842 (16) • 204, 900	30, 435 235,881 6 2,215 648 5,354 6,989				1,790 1,576 1,900 (4)	29, 394 12, 434 21, 575		
	1956	Value (thousands)	\$2, 449 824, 043 1 48, 518	2, 594 12, 031 8, 411 3, 453 10, 711 10, 765	14, 590	935, 074		(4) 811 (5) 6	19, 097 20, 402 6, 546	19, 421	65, 860
	16	Short tons (unless otherwise stated)	770 155, 890 1, 685 204, 717	35, 728 240, 989 2, 179 681 5, 110 6, 579				1, 093 163 1, 488 2, 582 (*) (1) 074	27, 715 11, 126 23, 890		
	1955	Value (thousands)	\$2, 563 653, 388 (4) 49, 915	2, 352 6, 376 7, 080 3, 477 9, 719	12, 930	755, 512		(4) 166 (4) 581 1, 768	19, 958 18, 843 4, 508	20, 528	65, 813
V	31	Short tons (unless otherwise stated)	707 139, 168 (*) 212, 403	35, 756 286, 871 2, 320 2, 320 638 5, 171		-		(4) 165 1, 886 1, 948 1, 948 14, 087	27, 978 12, 180 18, 326		
WEST VIRGINIA	1954	Value (thousands)	\$1, 451 541, 370 (+) 45, 601	2, 593 5, 035 8, 500 2, 886 1, 8, 351 743	10, 504	636, 311	WISCONSIN	(4) 174 (4) 346 1,558 10	(*) 17, 396 16, 188 3, 355	15,840	54, 286
WEST	19	Short tons (unless otherwise stated)	587 115, 996 (*) 191, 601	41, 076 142, 884 2, 902 472 4, 074 7, 315	or '-		WIS	(4) 180 1, 429 1, 261 1, 261 115 19, 607	(+) 23, 979 8, 289 15, 534	1	
		Mineral	Claysthousand short tons Coal. Marl, calcareous. Natural gas	Natural-gas liquids: Natural gasoline Natural gasoline LP-gasse Petroleum (crude) Salt (common) Salt (common) Salt (common) Salt (common) Adolore	Value of items that cannot be disclosed: Abrasive stone, (1955), bromine, calcium-magnesium chloride, cement, lime, manganese ore (1957), recovered elemental sulfur, and values indicated by footnote 4.	Total West Virginia 6		Abrastve stones: Pebbles (grinding)	Peat Sand and gravel Sand and gravel Sand content of ores, etc.) Zinc (recoverable content of ores, etc.) Value of ttems that cannot be disclosed: Abrastve stone (tube-mill liners,	1954-56), cement, gem stones (1957), stone (crushed pasait, 1955), and values indicated by footnote 4	Total Wisconsin 6

Rerellium concentrate					Đ	€	200	38
tho	2, 831	9, 534	10, 036	10, 924	2, 553	9,920	2, 117	7,777
Copper (recoverable content of ores, etc.)	-	-			1, 201		€	• ; •
	(1)	€	(m)	57	(11)		(11)	88
Gold (recoverable content of ores, etc.)	404	30	252	7 68	117	46	€	} €
thousand long	458	Ð,	749	(E)	650	(3)	\$ 90 000	• 8. 400
Natural gas	71,008	0/8.0	810'11				200 (00	
Natural gasolina	47,082	3, 137		2,775	48,859	3, 160	47, 709	2,866
	46,084	2, 128	46, 106	1,961	49,838	2,337		6 983 500
thousa	93, 533	229, 160	99, 483	238, (50	104, 830	721		121
Phosphate rock	Œ	: ::::::::::::::::::::::::::::::::::::	€	(E)	46	38	40	41
		1	0.00	010	-100	9 025	9 495	1 905
Sand and gravelthousand short tons	4, 164	2, 682	3,852	8,978 S. 978	337,851	8, 39	, E	•
Sodium carbonate (natural)	1,616) -	1,303	2,034	1, 333	2,076	1, 291	2, 266
	113, 101	2, 978	120, 697	3, 206	121, 161	3, 214	107, 306	2, 101
0-percent WO: basis		-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		12 156, 509	13 2, 765	274, 699	4, 669
Value of items that cannot be disclosed: Cement, fire clay (1957), silver, solium sulfate, vanadium, and values indicated by footnote 4.		12, 827		14, 983		7,824	1	17, 527
		281 306		297. 752		13 317, 594	1	345, 604
Total Wyoming 9		281, 306		701,182		617, USE		

1 Production as measured by mine shipments, sales, or marketable production (in

eluding consumption by producers).

**Includes Alaska and Hawaii.

**Excludes parcolan cement and slag, value for which is included with "Items that cannot be disclosed."

Figure withheld to avoid disclosing individual company confidential data.
 Excludes certain clays, value for which is included with "Items that cannot disclosed."

å

 Preliminary figure.
 Preliminary extin stone, value included with "Items that eannot be disclosed."
 Total adjusted to eliminate duplication in the value of clays and stone.
 Less than 1,000 short tons. 10 Less than \$1,000.
11 Weight not recorded.

Revised figure. Excludes masonry cement, value for which is included with "Items that cannot be

14 Sheet mica only

Grinding pebbles and tube-mill liners, weight of millstones not recorded.

**Millstones only. ported. 22 Less than 1 ton.

il Less than 1,000 long tons.

If Less than 1,000 long tons.

If Thind figure. Supersodes preliminary figure given in commodity chapter.

If Thind figure. Supersodes preliminary discrete price of Prime Western slab zinc,

Bast St. Louis market. Represents value established after transportation, smelting,
and manufacturing charges have been added to the value of ore at mine.

If Marketable production. Supersodes figures for "soid or used" as previously re-

In the manufacture of cement and/or lime.

Beginning with 1957 calcarcous mari included with stone.

Excludes natural cement, value for which is included with "Items that cannot be in Escludes."

18 Total has been adjusted to eliminate duplication in the value of raw materials used

14 Less than 1,000 troy ounces. 14 Includes 45,710 short tons of concentrate produced in 1955 and 1956 from low-grade ore and concentrate stockpiled near Coquille, Oregon during World War II.

TABLE 6.—Mineral production 1 in the Canal Zone and islands administered by the United States, 1954-57

-/

		19	1954	19	1955	19	1956	1961	2.
Mineral	,	Short tons (unless otherwise stated)	Value (thou- sands)	Short tons (unless otherwise stated)	Value (thou- sands)	Short tons (unless otherwise stated)	Value (thou- sands)	Short tons (unless otherwise stated)	Value (thou-sands)
American Samos: Sand and gravel	thousand short tons	67 2	183	110	\$1				
Total American Samoa		3	16	>	5	2	98	34	\$37
	-thousand short tons-	187	245	169	47	40	48	Ç	
	thousand short tons.	3	245	1	287	2	278	3 1	66
Guam: Sand and gravel. Stone.	op	843	2, 275	1, 241	3, 352	19	311	1,034	1.132
	thousand short tons	(8)	2, 275	12	3,352		335		1, 133
Virgin Islands: Stone (crushed). Wake: Stone (crushed).	qo	⊕	17.7	-	200	203 122 223	23.23	3,875 11 5	6, 700 31 6

1 Production as measured by mine shipments, sales, or marketable production (including consumption by producers).
2 Production data for Canton and Wake furnished by the U. S. Department of Commerce, Civil Aeronautics Administration; Midway and Johnston, by the U. S. Department of the Navy; Guam by the Government of Guam; American Samoa, by the Government of American Samoa.
3 Less than 1,000 short tons.
4 Less than \$1,000.

TABLE 7.-Mineral production 1 in the Commonwealth of Puerto Rico, 1954-57

	1954	75	19	1955	196	1956	1957	27
Mineral	Short tons (unless otherwise stated)	Value (thou- sands)	Short tons (unless otherwise stated)	Value (thou- sands)	Short tons (unless otherwise stated)	Value (thou- sands)	Short tons (unless otherwise stated)	Value (thou- sands)
Cement thousand 376-pound barrels Clays Lime Salt (common) do Sand and gravel do Sand and gravel do Sande of items that cannot be disclosed: Other nonmetals and values indicated by footnote 2.	3,682 (2) 8 9 375 3 1,752	\$9, 663 (2) 199 98 834 8 2, 493 154	4, 117 137 10 10 10 433 1, 784	\$12, 507 122 254 112 112 679 679 2, 516	4, 255 (2) 143 (3) 10 183 2, 076	\$14, 065 129 (3) 101 192 2, 556 195	5, 552 159 (3) 10 497 2, 452	\$17, 232 (4) 140 754 3, 505 180
Total Puerto Rico 4.		12, 381	-	14, 917		16, 395		20, 265

Production as measured by mine shipments, sales, or marketable production (including consumption by producers).

2 Figure withheld to avoid disclosing individual company confidential data.

3 Excludes certain stone, value for which is included with "Items that cannot be disclosed."

4 Total has been adjusted to eliminate duplication in the value of stone.

TABLE 8.—Principal minerals imported for consumption in the United States, 1956-57

[Compiled by Mae B. Price and Elsie D. Jackson, Division of Foreign Activities, Bureau of Mines, from records of the U. S. Department of Commerce Bureau of the Census]

	1950	6	1957		
Mineral	Short tons	Value	Short tons	Value	
	(unless other- wise stated)	(thou- sands)	(unless other- wise stated)	(thou- sands)	
METALS					
Aluminum:					
Metal	216, 401	\$100, 137	222, 158	1 \$107, 336	
ScrapPlates, sheets, bars, etc	25, 992 22, 582	1 10, 770 1 16, 480	16, 271 19, 633	1 5, 396 1 15, 099	
intimony.	1	-		f	
Ore (antimony content) Needle or liquated	6, 572 46	1, 762 23	8, 198 38	1, 973 1	
Metal	4,321	2, 245	5.412	2, 58	
Oxide Arsenic: White	1,479	636	1,893	790	
Arsenic: willie Bauxite:	6, 422	745	10, 135	794	
Crude	2 5, 669, 833	44, 414	2 7, 100, 998	60, 95	
Calcined:					
When imported for manufacture of fire	138, 716	3, 198	67, 172	1, 522	
Otherdo	9,960	221	50	(3) 2, 526 1 1, 598	
Beryllium ore	12, 371	4, 459	7, 290	2, 520	
When imported to manuacture of the brick	924, 614 93, 675	1,830 172	837, 603 74, 162	1 1, 598 12	
Jadmium:	1 ' '				
Metal do do do Flue dust (cadmium content) do	3, 115, 638 1, 451, 889	4, 640 876	1, 585, 547 1, 399, 851	2, 424 83	
Calcium:	1, 401, 008	810	1, 599, 651	001	
Metaldo	8, 387	10	24, 204	1 39	
Chloride Dhromate:	1,855	60	1, 989	7	
Ore and concentrates (Cr2O3 content)	919, 255	49, 350	982, 889	55, 661	
Ferrochrome (chromium content)	4 25, 978	4 11, 403	30, 910	14, 460	
Metal Dobalt:	409	1 687	1, 354	1 2, 748	
Alloy (cobalt content)pounds_	2,013,463	(4)	816, 501	(5)	
Ore (cobalt contentdo	5, 839	3	816, 501 15, 179 16, 240, 327	20	
Oxide (gross weight)	12, 974, 393 828, 450	32, 910 1 1, 413	646, 750	\$ 32, 559 85	
Salts and compounds (gross weight)do	828, 450 397, 711 5, 699, 553	247	364, 381 3, 348, 706	17	
Alloy (cobalt content)	5, 699, 553	8, 387	3, 348, 706	3, 03	
Copper (copper content):	6, 089	4,049	20, 940	12, 21	
Concentrates	74, 651	54 514	20, 940 62, 398	34, 27	
Regulus, black, coarse	5, 198	4, 395 1 225, 932	5, 324	3, 19	
Refined in ingots, etc	276, 085 191, 812	157 044	301, 182 162, 309	179, 44 97, 02	
Old and scrap	5, 410 4, 310	1 3, 463	5, 801	1 3, 03	
Copper (copper content): Ore	4, 310 5, 005	1 3, 463 1 3, 003 1, 737	4, 643 3, 813	1 2, 39 1, 67	
		1, 151	9, 818	1,07	
Ore and base bulliontroy ounces_ Bulliondo	1, 197, 136	41, 785	1, 185, 917	41, 47	
ron ore:	2, 532, 611	90, 882	6, 515, 253	231, 16	
Orelong tons_	4 30, 410, 652	4 250, 490	33, 653, 048	285, 06	
Pyrites cinderdodo	1, 430	6	567	11	
ron and steel: Pig iron	326, 700	17, 842	225, 387	13, 52	
Iron and steel products (major):	L	1	220,001		
	4 382, 754 4 1, 096, 077	1 44, 005	282, 830	33, 62	
ManufacturesScrap	1,096,077	1 4 161, 233	1,011,392	170, 86 9, 07	
Tin-plate scrap	222, 936 32, 633	1 10, 381 1 932	203, 407 35, 203	1,07	
Lead:	ł		į.	20.45	
Ore; flue dust, matte (lead content)	191, 302 31	50, 621	228, 783 25	60, 45	
Base bullion (lead content) Pigs and bars (lead content) Reclaimed, scrap, etc (lead content) Sheets, pipe, and shot Babbitt metal and solder (lead content)	262, 204	1 77, 719	327, 236	86, 93	
Reclaimed, scrap, etc (lead content)	20, 464	1 77, 719 1 5, 268	7, 610	1 1, 64	
Sheets, pipe, and shot	7, 654 2, 526	1 2, 017 1 3, 381	5,917	1 1, 37 1 3, 04	
Type metal and antimonial lead (lead content).	2, 526 8, 500	2, 763 1 184	2, 100 4, 858	1,52	
Manufactures	235	1 7,104	659	1 360	

TABLE 8.—Principal minerals imported for consumption in the United States, 1956-57—Continued

	195	6	1957		
Mineral		l			
	Short tons (unless other-	Value (thou-	Short tons (unless other-	Value (thou-	
	wise stated)	sands)	wise stated)	sands)	
METALS—continued		4			
Agnesium:					
Metallic and scrap	630	\$304	982	1 \$48	
Alloys (magnesium content) Sheets, tubing, ribbons, wire and other forms	24	203	35	28	
(magnesium content)	2	4.9	8	1	
Manganese: (Ore (35 percent or more manganese) (manga-					
nese content)	4 1, 007, 240	4 69, 726	1, 167, 112	96, 69	
Ferromanganese (manganese content)	123, 953	4 28, 500	257, 821	60, 23	
Spiegeleisen, less than 30 percent manganese, more than 1 percent carbon	234	18			
	100				
Compounds pounds pound flasks Metal 76 pound flasks finor metals: Selenium and salts pounds	27, 985 47, 316	1 100 11, 010	19, 221	1-6	
	234, 969	1 3, 452	42, 005 172, 678	9, 33; 1, 90 ₄	
Molybdenum: Ore and concentrates (molybdenum content)do		,			
lickel:			27, 461	50	
Ore and matte Pigs, ingots, shot, cathodes	12,820	4, 592 1 152, 409	13, 177	5, 202	
Scrap	106, 534 1, 078	1 152, 409	99, 676 410	156, 213 573	
Oxide	32, 955	1 1, 479 31, 776	37, 080	42, 925	
latinum group: Unrefined materials:					
Ore and concentrates troy ounces			1, 572	119	
Grains and nuggets, including crude, dust, and residues troy ounces. Sponge and scrap do	84.040				
Sponge and scrap do	34, 016 4 6, 234	2, 854 4 551	26, 628 2, 129	1, 960	
Osmiridiumdo	971	56	2,851	168	
Refined metal:	4 436. 757	4 40, 982	306, 195	OF 141	
Platinum do do Palladium do	530, 686	1 10, 958	327, 558	25, 141 6, 303	
Iridium do do Osmium do	2, 323	203	1, 431	109	
Rhodiumdo	20, 323	25 2,039	126 16, 629	1 1, 688	
Rutheniumdo	2, 220	87	1,864	75	
adium: Radium saltsmilligrams	43, 221	633	76, 206	1,061	
Radioactive substitutes	(7)	1 514	(7)	1 844	
are earths: Ferrocerium and other cerium alloy pounds	10 124	40	7 040	1.00	
lver:	12, 536	40	7, 948	1 26	
Ore and base bulliontroy ounces_ Bulliondo	63, 125, 065 99, 706, 716	52, 900 75, 209	99, 925, 905 106, 192, 994	78, 260	
antalum: Orepounds_	1, 312, 865	75, 209 1, 180	828, 265	79, 400 949	
in·		·			
Ore (tin content) long tons Blocks, pigs, grains, etc do Dross, skimmings, scrap, residues, and tin	16, 688 62, 590	32, 317 136, 412	56, 183	118 121, 311	
Dross, skimmings, scrap, residues, and tin		, i	· 1		
alloys n.s.p.f pounds	11, 364, 288	1 9, 430	11, 382, 988 (7)	9, 488 1 561	
tanium:		1	1		
Ilmenite Rutile Rutile	359, 281	1 9, 198	460, 353	1 10, 317	
Metal nounds	48, 906 4, 095, 621	7, 148 9, 509	84, 837 7, 064, 672	11, 843 16, 722	
Ferrotitanium do Compounds and mixtures do	225, 967	92	256,000	. 100	
Compounds and mixturesdododododododo	1, 387, 548	1 354	135, 116	1 79	
Ore and concentrates do	20, 860, 153	1 58, 011	14, 018, 140	1 34, 525	
Metal do Ferrotungsten do	37, 456	119	82, 617	1 239	
Otherdo	870, 621 146, 653	1, 945 1 328	414, 877 66, 955	674 1 112	
nc:					
Ores (zinc content)	462, 379 244, 726	49, 231 65, 034	679, 322 268, 852	88, 491 1 64, 057	
Sheets	454	172	732	245	

TABLE 8.—Principal minerals imported for consumption in the United States, 1956-57—Continued

	1950	3	1957			
Mineral						
mrannova We	Short tons	Value	Short tons	Value		
	(unless other- wise stated)	(thou- sands)	(unless other- wise stated)	(thou- sands)		
METALS—continued						
Zinc—Continued Old, dross, and skimmings	602	\$97	590	\$8		
Diret	72	1 18 1 287	(7)	1 2 1 26		
Manufactures	31, 140	792	41,692	1, 14		
NONMETALS						
Abrasives: Diamonds (industrial)carats_	4 16, 413, 281	1 4 74, 322	12, 570, 343 682, 732	¹ 51, 14 ¹ 60, 14		
Asbestos		1 4 61, 939	1 ' I	•		
Crude and ground	589, 421 2, 934	1 4 3, 615 110	833, 049 3, 029	¹ 5, 87		
Chemicals	4, 956	1 467	5,369	1 50		
Witherite Chemicals pounds Bromine pounds Cement 376-pound barrels	2, 918 4, 456, 120	135 1 14, 189	1,512 4,426,297	1 14, 81		
Claws:			1			
Raw	172, 244 3, 617	1 2, 873 1 98	159, 866	1 2, 85		
Manuactured	23, 122	2,901	2, 967 32, 712	4,02		
Manuactured	258	9	631, 367	1 16, 03		
		1 11, 225	1	•		
Total and the second of the se	4 1, 869, 974	1 4 162, 012	1, 612, 471 37, 245	1 142, 56 1 1, 59		
Diamonds cal aus Emeralds do	50, 931	1 1, 688 1 24, 009	1 (1)	1 24, 4]		
CitherGraphite	`47,888	1 2, 594	41,530	2, 10		
Gypsum:	4 4, 347, 281	1 7, 853	4, 335, 337	1 7, 60		
Manufactures	(1)	í 693	(7)	1 91		
Iodine, crudepounds	1,704,868	2, 180 1 2, 456	2, 685, 489 70, 127	2, 76 1 2, 78		
Gypsum: Crude, ground, calcined Manufactures Lodine, crude Lewel bearings Kyanite Livet	54, 800 6, 951	306	5, 999	26		
Time.	757	12	245	•		
Other Dead-burned dolomite	31,903	549	39,002	68		
Dead-burned dolomite	9,031	587	10, 419	6-		
Magnesium: Magnesite	102, 765	6, 446	80, 638	4, 2		
Compounds	13, 423	1 497	12, 582	5		
Mica: Uncut sheet and punchpounds_	1, 958, 907	1 3, 748	1,841,840	1 3, 3,		
Scrap	7, 218 5, 411	17,926	5, 187 5, 766	18,0		
Manufactures	0,411	- 1, 920	,	· ·		
Uncut sneet and punchpounds Scrap Manufactures. Mineral-earth pigments: Iron oxide pigments: Natural	3, 168 5, 997	138 1 879	3, 079 7, 033	1 1 1 1, 0		
Synthetic. Ocher, crude and refined. Siennas, crude and refined Umber, crude and refined Vandyke brown. Nitrogen compounds (major). Phosphate, crude. Phosphatic fertilizers. Digments and salts:	206	12	203	_		
Siennas, crude and refined	722	1 71	676 1, 944	1		
Umber, crude and refined	2,762	89 12	139			
Nitrogen compounds (major)	1, 473, 260	1 67, 431	1, 402, 427	1 58, 3		
Phosphate, crudelong tons_	109, 891 32, 251	2, 626 1, 906	109, 546 29, 175	3,0 12,2		
Pigments and salts:	52,201	1				
Lead pigments and salts	5, 851 5, 793	1 1, 530 1 1, 146	8, 565 6, 967	1,9 1,3		
I Lead pigments and salts	4 333, 951	1 12, 018	338, 690	1 11, 8		
Pilmice*	1	111	35, 182	2		
Crude or unmanufactured	_ 1,315	51	1 2, 124	1		
Mamuria etumon m n n f	(7)	1,249	(7)	7		
Salt	368, 212	1 2, 354	654, 149	1 3, 5		
Cand and mayol.	1	393	683	6		
Glass sand	332,031	1 454	290, 280	14		
Gravel	179		14, 877	1		

TABLE 8.—Principal minerals imported for consumption in the United States, 1956-57-Continued

	195	6	195	7
Mineral	Short tons (unless other- wise stated)	Value (thou- sands)	Short tons (unless other- wise stated)	Value (thou- sands)
NONMETALS—continued				
Sodium sulfateStoneStrontium: MineralSulfur and pyrites: Sulfur:		\$2,174 7,609 192	74, 111 (⁷) 6, 525	\$1,511 18,504 131
Ore long tons Other forms, n. e. s. do Pyrites do Talc: Unmanufactured.	4 197, 479	359 4, 975 1 8 480 1 749	14, 454 481, 214 8 70, 632 20, 395	350 1 11, 882 1 8 408 1 701
COAL, PETROLEUM, AND RELATED PRODUCTS				
Asphalt and related bitumenCarbon black:	4, 116	99	3, 972	104
Acetylene blackpounds_ Gas black and carbon blackdo	8, 373, 224 69, 890	1,383	7, 571, 116 20	1, 342 (⁸)
Anthracite Bituminous, slack, culm, and lignite Briquets Coke	46 355, 701 318 130, 955	(3) 1 2, 885 4 1 1, 471	1, 138 366, 506 850 117, 951	9 1 3, 146 10 1 1, 544
Peat: Fertilizer grade Poultry and stable grade		1 9, 764 1 766	236, 370 10, 389	¹ 10, 700 ¹ 587
Petroleum: Crude thousand barrels Crude do	9, 311 231 5, 572 4 165, 756 4, 561	1 4 837, 626 1 40, 506 1 896 1 17, 908 4 366, 448 12, 499 8, 768 1 34	386, 209 11, 483 125 9, 148 176, 021 1, 588 6, 419	1 980, 893 48, 202 537 1 31, 277 464, 960 4, 578 16, 749

1 Owing to changes in tabulating procedures by the Bureau of the Census data known to be not comparable to years before 1954.

2 Adjusted by the Bureau of Mines.

2 Less than 1,000.

4 Revised figure.

5 Data not available.

6 Includes 4,903 pounds of scrap (\$1,698).

7 Weight not recorded.

8 In addition to data shown an estimated 292,520 long tons (\$865,020) was imported in 1956 and 282,400 long tons (\$889,100) in 1957.

8 Includes naphtha but excludes benzol, 1956—1,656,000 barrels (\$17,813,000); 1957—1,317,212 barrels (\$14,516,000).

(\$14,516,000).

18 Includes quantities imported free of duty for supplies of vessels and aircraft.

11 Includes quantities imported free for manufacture in bond and export, and for supplies of vessels and

aircraft.

TABLE 9.—Principal minerals and products exported from the United States, 1956-57

[Compiled by Mae B. Price and Elsie D. Jackson, Division of Foreign Activities, Bureau of Mines, from records of the U. S. Department of Commerce, Bureau of the Census]

	195	5	195	1957		
Mineral	Short tons	Value	Chart tone	37-1		
	(unless other- wise stated)	(thou- sands)	Short tons (unless other- wise stated)	Value (thou- sands)		
METALS				-		
luminum: Ingots slabs crude	1 34 618	1 \$19, 109	27, 982	\$14.0		
Ingots, slabs, crude Scrap Plates, sheets, bars, etc	1 34, 618 19, 329	8, 127	18, 166	6, 4		
Plates, sheets, bars, etc	12, 493	13, 093	18, 166 13, 767	13, 1		
Castings and forgings ntimony: Metals and alloys, crude rsenic: Calcium arsenate pounds	1, 247	3,094	1, 333	3, (
rsenic: Calcium arsenate nounds	628, 020	24 52	2,779,954			
auxite, including bauxite concentrates	020,020	52	2, 119, 904	•		
	14, 921	834	60, 993	4,8		
Aluminum sulfateOther aluminum compounds	16, 130	583	19, 689			
erylliumpounds_	22, 452 89, 558	3, 183 260	48, 390 208, 771	5,		
ismuth.	ł ' I	200	1	•		
Metals and alloysdododo	287, 092 51, 251	559	158, 393			
salts and compoundsdo admiumdo	51, 251 1, 284, 248	182 1, 932	31, 703			
alcium chloride	32, 523	1, 952	158, 393 31, 703 692, 758 47, 965	1, 1,		
nrome:	02,020	2,001	11,000	Δ,		
Ore and concentrates:						
Exports	1, 727 12, 990	99 502	837 4,872	1		
	637	351	674			
Ferrochrome	5, 538	2,891	4, 535	2,		
Ferrochromepounds	3, 025, 142	1,820	1, 068, 731			
opper:	10, 500	9	59, 241			
Ores, concentrates, composition metal, and un-						
refined copper (copper content) Refined copper and semimanufactures	13, 717	11,648	15, 656	9,		
Other copper and semimanulactures	280, 575	253, 615	430, 446	288,		
Other copper manufactures Copper sulfate or blue vitriol	185 30, 177	291 8, 036	238 33, 644	6,		
Copper base alloys	(2)	54, 847	(2)	56,		
erroalloys:	4, 229, 074	483	F 007 601			
Ferrosiliconpounds_ Ferrophosphorusdo	150, 821, 010	2,339	5, 297, 681 100, 635, 032	1,		
old:				٠,		
Ore and base bulliontroy ounces_	19,962	710	23, 953 4, 781, 780			
Bullion, refined do lon ore long tons	713, 900 1 5, 508, 296	25, 851 1 48, 805	4, 781, 780 5, 002, 153	167, 49.		
on and steel:	- 0,000,200	- 40,000	0,002,100	Ŧð,		
Pig iron Iron and steel products (major):	1 269, 477	1 15, 084	882, 342	57,		
Iron and steel products (major):	1 2 000 001	1 400 000	9 207 110	****		
Semimanufactures Manufactured steel mill products	1 3, 026, 901 1 1, 721, 854	1 4 96, 688 1 395, 393	3, 395, 118 2, 521, 622	574, 579,		
Advanced products	(2)	1 167, 011	2, 021, 022	169,		
on and steel scrap: Ferrous scrap, including re-						
rolling materials	1 6, 446, 463	1 300, 620	6, 746, 314	32 8,		
Ore, matte, base bullion (lead content)	1,055	34 0	906	:		
Pigs, bars, anodes Scrap	4, 628	1,300	4, 339	1,		
agnesium:	2, 136	578	885	•		
Metal and allovs	3, 388	2, 240	1, 208	1,		
Metal and alloysSemifabricated forms, n. e. c	487	902	355	-,		
Powder	56	99	22			
anganese: Ore and concentrates	6, 133	664	5, 270			
r erromanganese	2, 248	682	7, 395	1.		
ercury:				•		
Exports76-pound flasks_ Reexportsdo	1,080	284	1,919	:		
almhdanum.	2,025	476	3, 275			
Ores and concentrates	17, 981, 007	21, 296	25, 465, 515	3 2,		
Metals and alloys, crude and scrapdo	35, 240	21	98, 513			
Wired0	11,440	202 28	13, 750 4, 289	:		
Ferromolybdenum do	4, 853 20, 735	28 44	4, 289 28, 222			
Formanolyh donum	944, 671	1,052				

TABLE 9.—Principal minerals and products exported from the United States, 1956-57—Continued

	1956	3	1957	
Mineral				
William.	Short tons	Value	Short tons	Value
	(unless other- wise stated)	(thou- sands)	(unless other- wise stated)	(thou- sands)
				
METALS—continued				
ickel:	07 221	\$556		
Ore	27, 331			
gots, bars, sheets, etc Nickel-chrome electric resistance wire	16, 361	18, 019	12,756	\$14,0
Nickel-chrome electric resistance wire	208 626	836 1,878	151 508	1,7
Semifabricated forms, n. e. catimum:	020	1,010	500	·
Bars, ingots, sheets, wire, sponge, and other				
forms including scrap troy ounces_Palladium, rhodium, iridium, osmiridium, ruthenium and osmium metals and alloys,	23, 823	2, 383	17, 199	1, 3
Palladium, rhodium, iridium, osmiridium,				
including scrap troy onnees	18, 249	634	23, 155	13
including scraptroy ounces_ Platinum group manufactures except jewelry	(2)	2, 489	(2)	1, 9
dium metal (radium content)milligrams			750	-
re earths: Cerium ores, metal and alloypounds	23, 784	79	13, 270	
Lighter flintsdo	16, 303	110	3,372	
ver:	ł			
Ore and base bulliontroy ounces	2, 058, 401	1,868	1, 372, 682	1, 2
Bullion, refineddodo	3, 442, 479	3, 154	8, 926, 674	8, 2
ntalum: Ore, metal, and other formspounds	3, 647	115	4,877	2
Powder do do	6,080	245	5, 997	
n;				
Ingots, pigs, bars, etc.: Exports	1 439	1 821	1,112	1, 8
Resynorts do	451	1,018	419	1, 2
Tin scrap and other tin bearing material except			1	
tinplate scraplong tons	1 4, 604	1 2, 324	9,545	3, 9
Tin cans finished or unfinisheddo	30, 502	13, 245 672	30, 166 489, 227	14, 8
tanium:	375, 021	072	103, 221	•
Ores and concentrates Sponge (including iodide titanium) and scrap	1,838	312	2,019	2
Sponge (including iodide titanium) and scrap	14	60	71	
Intermediate mill shapes.	469 90	5, 509 2, 796	698 81	7, 1 2, 2
Mill products n. e. c. Ferrotitanium Dioxide and pigments.	364	148	367	,
Dioxide and pigments	64, 766	25, 137	52,960	19, 6
		225	164	9
Exports	117 349	778	572	7
ExportsReexportsand concentrates (vanadium con-			1	
ient)pounds	1 1, 856, 594	1 4, 046	1,000,340	2, 1
ne:	0.54	162	7	(3)
Ores and concentrates (zinc content)	854 8,813	2, 465	10,785	2, 8
Slabs, pigs, or blocks Sheets, plates, strips or other forms, n. e. c Scrap (zinc content)	4,444	3, 031	4,056	2,9
Scrap (zinc content)	4, 444 14, 921	1,540	5,469	΄ ξ
Dust	372 582	136 3 01	595 485	-
Semifabricated forms, n. e. c	002	901	200	
Ores and concentrates	1,048	90	3,160	
Metals and alloys and other formspounds	18, 987	200	66,784	
NONMETALS				
montron.			.	
Grindstones pounds Diamond dust and powder carats Diamond grinding wheels do Other natural and artificial metallic abrasives	859, 231 210, 841	64	660, 057 199, 252	
Diamond dust and powdercarats_	210, 841	616	199, 252 194, 934	1,
Other natural and artificial metallic abragives	187, 438	948	194, 934	. 1,
and products	(1)	25, 217	(2)	25,
and productsbestos: Unmanufactured:			''	
Exports	2, 797	33 8	2,775	:
Reexports	153	37	118	
oron: Boric acid, borates, crude and refined pounds	487, 450, 563	16, 596	428, 994, 042	15,
romine, bromides, and bromatesdo	6, 111, 363	2,557	10,510,719	3, (
ement376-pound barrels	1 1, 980, 804		1, 330, 520	5, 8

TABLE 9.—Principal minerals and products exported from the United States, 1956-57—Continued

	1956	3	1957		
Mineral	Short tons	Value	Short tons	Value	
	(unless other-	(thou-	(unless other-	(thou-	
	wise stated)	sands)	wise stated)	sands)	
NONMETALS—continued					
Clay: Kaolin or china clay Fire clay Other clays Cryolite Fluorspar Graphite:	1	\$1,298 1,573 19,722 58 31	54, 879 136, 819 292, 921 165 754	\$1, 3 27 1, 794 10, 407 55 81	
Amorphous Orystalline flake, lump, or chip Natural, n. e. c. Gypsum:	790	90	902	93	
	147	47	167	57	
	125	24	280	75	
Orude, calcined, crushed Plasterboard, wallboard, and tile_square feet_ Manufactures, n. e. c. Iodine, todide, lodates Kyanite and allied minerals Lime Mica:	20, 757	711	24, 447	763	
	7, 026, 932	364	8, 866, 572	520	
	(2)	141	(2)	62	
	505, 274	750	232, 973	335	
	1, 331	63	2, 588	130	
	82, 737	1,546	65, 195	1,329	
Unmanufactured pounds	546, 673	92	911, 006	46	
Manuactured: Ground and pulverized do Other do Mineral-earth pigments: Iron oxide, natural and	8, 901, 497	486	9, 256, 170	521	
	343, 159	1, 139	541, 432	983	
Mineral-earth pigments: Iron oxide, natural and manufactured. Nitrogen compounds (major). Phosphate rock. long tons. Phosphatic fertilizers. do. Pigments and salts (lead and zine): Ladd pigments.	5, 071	909	3, 675	1, 038	
	1, 038, 307	53, 090	1, 126, 789	52, 926	
	2, 880, 484	25, 704	3, 126, 215	28, 189	
	504, 612	1 17, 921	575, 387	24, 705	
Lead salts. Lead salts. Potash:	1 3, 034	¹ 1, 129	3, 953	1, 422	
	4, 135	1, 087	4, 135	1, 163	
	1, 282	576	608	231	
Fertilizer Chemical Quartz crystal (raw) Radioactive isotopes, etc.	390, 716	13, 705	459, 699	16, 096	
	6, 839	1, 232	7, 796	1, 410	
	(²)	65	(2)	153	
	(²)	906	(2)	1, 367	
Salt: Crude and refined Shipments to noncontiguous Territories	336, 320	2, 464	390, 707	2, 591	
	11, 649	881	10, 975	857	
Sodium and sodium compounds: Sodium sulfate Sodium carbonate	1 29, 933	1 1,037	23, 667	859	
	1 241, 948	1 8,219	173, 756	6, 282	
Stone: Limestone, crushed, ground, broken Marble and other building and monumental	1,060,560	1, 3 59	1, 080, 460	1,640	
cubic feet. Stone, crushed, ground, broken Manufactures of stone Sulfur:	344, 210	976	415, 903	1, 158	
	175, 364	2, 890	129, 559	2, 699	
	(²)	3 77	(²)	506	
Crudelong tons	1 1, 651, 307	¹ 48, 305	1, 562, 301	43, 438	
	1 24, 024	¹ 1, 777	17, 420	1, 528	
Crude and ground Manufactures, n. e. c. Powders-talcum (face and compact)	42, 333 69	1,009 74 1,371	39, 985 291 (²)	1, 127 138 1, 322	
COAL, PETROLEUM, AND RELATED PRODUCTS	(-)	1,071	(-)	1, 322	
Asphalt and bitumen, naturak Unmanufactured. Manufactures, n. e. c. Carbon blackthousand pounds. Coal:	30, 844	1, 845	30, 792	1, 878	
	(²)	937	(²)	885	
	425, 3 28	3 6, 105	459, 671	40, 468	
Anthracite Bituminous Briquets Coke. See footnotes at end of table.	5, 244, 349	73, 535	4, 331, 785	65, 012	
	1 68, 552, 629	1 658, 537	76, 342, 312	763, 672	
	107, 452	1, 716	86, 464	1, 383	
	655, 717	11, 468	822, 244	14, 356	

TABLE 9.—Principal minerals and products exported from the United States, 1956-57—Continued

	1956	3	1957		
Mineral	Short tons	Value	Short tons	Value	
	(unless other-	(thou-	(unless other-	(thou-	
	wise stated)	sands)	wise stated)	sands)	
etroleum: Crude	1 28, 624	1 \$90, 336	50, 203	\$173, 2	
	28, 202	191, 233	30, 792	206, 9	
	2, 876	12, 323	4, 914	21, 7	
	1 31, 926	1 122, 149	45, 071	182, 1	
	22, 147	1 52, 812	32, 875	95, 9	
	13, 217	193, 579	13, 193	194, 8	
	1, 294	7, 478	1, 545	9, 9	
	4, 274	16, 214	4, 538	21, 1	
	920	20, 851	1, 023	22, 7	
	6, 376	20, 323	5, 176	20, 9	
	307	6, 195	270	5, 9	
	851	16, 967	1, 032	18, 4	

TABLE 10.—Comparison of world and United States 1 production of principal metals and minerals, 1956-57

[Compiled under the supervision of Berenice B. Mitchell, Division of Foreign Activities, Bureau of Mines]

		1956			1957		
Mineral	World	United	States	World United		1 States	
	Thousan	d short tons	Per- cent of world	Thousand	short tons	Per- cent of world	
Coal: Bituminous	1, 701, 042	497, 997	29	1, 751, 809	492, 704	28	
Lignite	621, 868	2,878	(2)	657, 596	2, 638	(2)	
Pennsylvania anthracite	156, 200	28, 900	`19	157, 700	25, 338	16	
Coke (excluding breeze):					'		
Gashouse 3 Oven and beehive	52, 812	182	(2)	51,645	(4)	(1)	
Fuel briquets and packaged fuel	282, 556	74, 483	26	294, 475	75, 951	26	
Natural gasmillion cubic feet	119, 400	1,584	1	121,800	1,152	(2) (5)	
Pest	58 000	10, 081, 923 292	(5) (2)	(⁵) 70, 300	(5) 316	(0)	
Peat	6, 124, 171	2, 617, 283	43		2, 616, 778	(2) 41	
		2, 011, 200	10	0, 110, 000	2,010,776	41	
Asbestos Barite Cement thousand barrels	1,970	41	2	2,050	44	2	
Barite	3, 100	1, 352	44	3,300	1,305	40	
Cementthousand barrels	1, 377, 428	333, 472	24	1, 443, 993	313, 756	22	
Corundum	11			10			
Diamondsthousand carats Diatomite	18, 300 760			20, 800			
Feldspar 6thousand long tons	1,230	368 693	48 56	750	368	49	
FluorsparFluorspar	1, 790	330	18	1, 160 1, 775	612 329	53	
Graphite	270	(4)	(4)	320	(4) 329	19	
Gypsum		10,316	29	33,900	9, 195	(4) 27	
Magnesite	5, 100	687	13	5, 300	678	13	
Mica (including scrap)	'			2,230	".0	10	
thousand pounds		173, 506	56	350,000	185, 646	53	
Nitrogen, agricultural 67	7, 385	2,178	29	7,826	2, 230	28	
Phosphate rockthousand long tons_ Potash K ₂ O equivalent_	33, 750	15, 747	47	32,350	13, 976	43	
Potasn	8, 300	2, 172	26	8, 700	2,266	26	

Revised figure.
 Weight not recorded.
 Less than \$1,000.
 Includes naphtha but excludes benzol: 1956—64,740 barrels (\$1,114,968); 1957—64,158 barrels (\$1,154,633).

TABLE 10.—Comparison of world and United States ¹ production of principal metals and minerals, 1956-57—Continued

		1956			1957	
Mineral	World	United 8	tates	World	United	States
villioi di	Thousand	short tons	Per- cent of world	Thousand	short tons	Per- cent of world
Vonmetals—Continued Pumice	8, 700 17, 300 74, 000 18 8, 000 1, 935 255	1, 482 1, 070 24, 216 4 6, 484 739 193	17 6 33 22 81 38 76	8, 400 17, 000 77, 400 11 7, 300 1, 875 249	1, 827 1, 067 23, 854 (4) 5, 579 684 184	22 6 31 (4) 76 36
Antomony (content of ore and concentrate) 6 Arsenic 6 Bauxite thousand long tons Beryllium concentrates Bismuth thousand pounds Cadmium do Chormite Cobalt (contained) short tons.	55 47 17, 200 13 5, 300 19, 950 4, 400 16, 000	(*) 12 1,743 (*) (4) 10,604 208 1,269	1 26 10 4 (4) 53 5 8	53 47 18, 700 11 4, 800 20, 430 4, 500 15, 500	10 1,416 (9) (4) 10,549 166 1,649	22 8 (4) 55
Columbian-tantalum concentrates thousand pounds Copper (content of ore and concentrates) thousand fine ounces Iron ore thousand long tons	9, 150 3, 780 38, 400 390, 367	217 1, 106 1, 865 97, 849	29 5 25	7,760 3,870 39,620 422,135	368 1,086 1,800 106,148	2 2
Lead (content of ore and concentrate) Manganese ore (35 percent or more	2, 440	353	14	2, 540	338	1
Mn) Mercury thousand 76-pound flasks Molybdenum (content of ore and	12, 319 215	345 24	3 11	13,000 235	366	1
Nickel (content of ore and concen-	63, 500 283	57, 462	91	66,800	60, 753	9
trate)	980 224, 200	21 38, 739	2 17	1, 190 228, 700	19 38, 720]
trate) thousand long tons. Titanium concentrates: Ilmenite	192 1,792 122	685 12	38 10	192 1,925 158	757 11	
Rutile	82, 500	14,737	18	72,700	5, 520	
Vanadium (content of ore and con- centrate) 6short tons Zinc (content of ore and concentrate)_	4, 230 3, 360	3,868 542	91 16	4, 312 3, 420	3, 691 532	
Smelter basis: Aluminum Copper Iron, pig (incl. ferroalloys) Lead Magnesium Steel ingots and castings Tin thousand long tons Zinc	3, 720 3, 990 222, 200 2, 370 157 312, 600 193	1, 679 1, 231 77, 667 542 68 115, 216 18 984	45 31 35 23 43 37 9	3, 730 4, 040 232, 900 2, 490 168 322, 300 186 3, 230	1, 648 1, 178 81, 144 533 81 112, 715 2 986	

¹ Including Alaska and noncontiguous Territories.
2 Less than 1 percent.
3 Includes low- and medium-temperature and gashouse coke.
4 Bureau of Mines not at liberty to publish United States figure separately.
5 Dats not available.
6 World total exclusive of U. S. S. R.
7 Year ended June 30 of year stated (United Nations).
8 In 1956 United States production of antimony was 630 short tons and in 1957, 709 short tons.
9 In 1956 United States production of beryl was 460 short tons and in 1957, 521 short tons.

Employment and Injuries in the Metal and Nonmetal Industries

By John C. Machisak 1

THIS CHAPTER of the Minerals Yearbook is confined to employment data and injury experience in the metal, nonmetal, and quarrying industries. Each industry is shown separately, and no attempt has been made to combine the data and show an overall picture for these sections of the mineral industries. Combined statistical data on the mineral industries as a whole are included in volume III.

Since no Federal law requires operators of metal and nonmetal mines to submit reports, the data have been reported on a voluntary basis, and the employment data and injury experience herein are based on reports received in the Branch of Accident Analysis. Response to the canvass has contributed greatly to the promotion of safety in the mineral industries.

METAL MINES

The overall injury experience at metal mines improved in 1957. The combined (fatal and nonfatal) frequency rate of injuries declined 23 percent. Fewer fatal injuries occurred, and the number of nonfatal disabling injuries decreased. Employment declined; 63,700 men were estimated to be working in 1957, while 67,788 were reported working in 1956. The number of active mine days increased by 2, and man-hours of employment declined slightly. The average length of shift worked was 7.98 hours each day, and the average employee worked 2,121 hours during the year.

Copper.—The injury-frequency rate for copper mines improved in 1957. The number of fatal injuries declined by 2; nonfatal injuries were reduced by 198—decreases of 7 and 14 percent, respectively. The combined (fatal and nonfatal) injury-frequency rate declined 15 percent from the rate of 32.43 reported for 1956 to an estimated 27.64 for 1957. A slight increase in the number of men employed and the number of man-hours worked is predicted, with an approximate decline of 9 working days. The length of shift worked was the same as that reported for 1956, and each employee averaged 2,459 hours of worktime.

Gold Placer.—Employment in the placer-gold-mining industry increased slightly in 1957. Nonfatal disabling work injuries decreased, and no fatal injuries are predicted. The average number of men

¹ Chief, Branch of Accident Analysis, Division of Safety.

TABLE 1.—Employment and injury experience at metal mines in the United States, 1931-57

	Men working	Average active mine	Man-days worked	Man-hours worked		Number of injuries		rates per nan-hours
Year	daily		(thousand)	Fatal	Nonfatal	Fatal	Nonfatal	
1931 1932 1933 1934 1935	71, 991 46, 602 49, 338 58, 411 83, 975	232 209 201 219 218	16, 692 9, 748 9, 913 12, 776 18, 266	138, 237 80, 213 80, 006 100, 959 145, 134	147 100 87 108 157	7, 868 4, 486 5, 180 7, 105 9, 393	1.06 1.25 1.09 1.07 1.08	56. 92 55. 93 64. 75 70. 38 64. 72
1936	108, 412 93, 501 102, 279	249 252 227 233 241	22, 521 27, 296 21, 255 23, 836 26, 631	180, 803 219, 008 170, 343 189, 554 211, 740	195 206 150 163 209	13, 606 17, 068 11, 996 12, 991 13, 940	1.08 .94 .88 .86 .99	75, 25 77, 93 70, 42 68, 53 65, 84
1941 1942 1943 1944 1945	199, 769 87, 880 70, 413	254 280 293 289 288	29, 034 27, 968 25, 790 20, 349 17, 673	230, 453 223, 093 206, 242 163, 027 141, 295	213 215 195 130 96	14, 590 12, 420 11, 533 8, 894 6, 922	. 92 . 96 . 95 . 80 . 68	63. 31 55. 67 55. 92 54. 56 48. 99
1946	71, 228 71, 436 71, 664	249 275 282 252 271	16, 238 19, 567 20, 124 18, 067 18, 522	130, 406 157, 024 161, 516 144, 368 147, 765	90 126 104 69 84	7, 345 8, 293 7, 631 6, 940 6, 611	.69 .80 .64 .48 .57	56. 33 52. 83 47. 2 48. 0 44. 7
1951 1952 1953 1954 1955	71, 603 74, 626 72, 529 66, 610	278 265 270 245 263	19, 913 19, 770 19, 559 16, 294 17, 113	130, 488	95 117 92 86 79	6, 824 6, 684 6, 164 4, 994 5, 837	.74 .59 .66	42.8 42.1 39.3 38.2 42.6
1956 1957 ²	67, 788		17, 891 16, 929		89 60	5, 287 3, 835		

¹ Fluorspar mines, previously included with lead-zinc data for the Mississippi Valley States, now included with nonmetal mines.

² Estimate.

working daily increased 4 percent—from 1,539 in 1956 to an estimated 1,600 in 1957. Man-hours increased 10 percent. The average length of shift worked was 8.48 hours, and the average worker accu-

mulated 1,861 hours of worktime during the year.

Gold-Silver Lode.—Employment, as measured by the number of man-hours worked, declined in 1957 in the gold-silver lode mines. The overall injury-frequency rate (fatal and nonfatal) declined 21 percent, with 3 fewer fatalities and 70 fewer nonfatal injuries indicated by the preliminary estimate for these mines. The number of men employed increased slightly, with fewer working days, and each averaged an 8.05-hour shift each day. The average number of hours worked by each man for the year was 1,920.

Iron.—Man-hours worked in the Nation's iron industry were approximately the same as in 1956. The safety record improved, with 7-percent decrease in the combined (fatal and nonfatal) injuryfrequency rates per million man-hours worked. There were 9 fewer fatal injuries estimated, and the nonfatal disabling work injuries were reduced by 43. An approximate 8-hour shift is indicated, with 2,079 hours of work for the average employee during the year.

Lead-Zinc.—A decline is indicated in the employment and the number of injuries in the lead-zinc mines for 1957, according to preliminary estimates of the branch. The overall (fatal and nonfatal) injury-frequency rate declined 24 percent. Fatalities were fewer by 4—a 17-percent decrease—and nonfatal injuries were 628 fewer than the number reported for the preceding year—a difference of 41 percent. The figures indicate an average of 2,023 hours for each

worker while working a straight 8-hour shift per day.

Miscellaneous Metals.—This group of mines includes those producing antimony, bauxite, chromite, cobalt, manganese, mercury, molybdenum, pyrite, titanium, tungsten, vanadium-uranium, magnesium, aluminum, and other minor metals. The safety record indicates improvement over that for the preceding year, with employment lower than for 1956. The combined (fatal and nonfatal) injury-frequency rates declined 19 percent. From preliminary

TABLE 2.—Employment and injury experience at metal mines in the United States, by industry groups, 1948-52 (average) and 1953-57

Industry and year	Men work- ing	Aver- age active	Man-days worked	Man-hours worked		aber of uries	Injury million	rates per man-hours
	daily	mine days	ů.		Fatal	Nonfatal	Fatal	Nonfatal
Copper:								
1948-52 (average)	15, 775	299	4, 721, 969	37, 743, 235	21	1,281	0.57	33, 94
1953	15, 894	311	4,941,301	39, 488, 069	25	1,212	. 63	30.69
1954	16,075	281	4, 517, 342	36, 143, 133	32	1,115	. 89	30.85
1955	17,000	299	5, 091, 275 5, 755, 581	40, 499, 892 45, 980, 991	26 28	1,482 1,463	. 64	36. 59
1956 1957 ¹	18, 147 19, 000	317 308	5, 849, 000	46, 717, 000	26	1, 465	. 56	31.82 27.08
Gold placer:	19,000	000	3, 349, 000	40, 111,000	20	1, 200		27.08
1948-52 (average)	3, 167	219	692, 778	5, 644, 826	1	180	.18	31.89
1953	2,588	212	549, 897	4, 397, 978	1	188	. 23	42.75
1954	2,049	215	440, 289	3, 519, 582	1	84	. 28	23. 87
1955	1,301	214 206	278, 525	2, 367, 916		132 138		55. 75
1956 1957 ¹	1,539 1,600	206 219	317, 416 351, 000	2, 697, 505 2, 977, 000		138 55		51. 16 18. 47
Gold-silver:	1,000	218	301,000	2, 911,000		00		10,47
1948-52 (average)	4,721	260	1, 229, 574	9,600,662	12	1,034	1.25	107.70
1953	3, 214	254	817, 573	6, 529, 816	6	680	. 92	104.14
1954	3,011	257	773, 283	6, 185, 439	6	593	. 97	95.87
1955	2,894	266	770, 659	6, 160, 793	10	485	1.62	78.72
1956 1957 ¹	2,146 2,200	259 239	555, 623 525, 000	4, 444, 901 4, 224, 000	1	285 215	. 90 . 24	64. 12 50. 90
Iron:	2,200	239	525,000	4, 224, 000	1	215	. 24	50.90
1948-52 (average)	28, 994	265	7, 685, 307	61, 707, 151	27	1,211	.44	18.65
1953	30.862	270	8, 335, 343	66, 839, 538	19	1, 131	. 28	16, 92
1954	27, 840	220	6, 131, 671	49, 177, 496	14	713	.28	14.50
1955	24, 954	245	6, 105, 392	48, 940, 671	15	776	.31	15.86
1956 1957 ¹	26, 817 24, 200	234 262	6, 281, 453 6, 345, 000	50, 376, 278 50, 322, 000	19 10	723 680	.38	14.35 13.51
Lead-zine:	24, 200	202	0, 345, 000	30, 322, 000	10	000	. 20	15. 51
1948-52 (average)	15, 549	261	4,065,086	32, 498, 277	26	2,721	. 80	83, 74
1953	13,503	248	3, 341, 999	26, 727, 287	30	2, 135	1.12	79.88
1954		256	2, 754, 503	22, 038, 722	19	1, 421	. 86	64.48
1955	11,656	256	2,983,694	23, 880, 106	16	1,583	. 67	66.29
1956 1957 ¹	11,041	269 253	2, 966, 982 2, 327, 000	23, 745, 126 18, 616, 000	23 19	1,548 920	. 97 1. 02	65.19 49.42
Miscellaneous: 2	9, 200	200	2, 327, 000	10, 010, 000	10	920	1.02	49.42
1948-52 (average)	3, 317	267	884, 643	7, 148, 813	. 6	510	.88	71.34
1953	6,468	243	1,573,139	12, 622, 249	11	818	. 87	64, 81
1954	6,880	244	1,676,576	13, 424, 116	14	1,068	1.04	79.56
1955	7, 338	257	1, 883, 635	15, 100, 849	12	1,379	. 79	91.32
1956	8,098	249	2,014,132	16, 153, 347	15	1,130	. 93	69.95
1957 ¹ Total:	7,500	204	1,532,000	12, 263, 000	4	700	. 33	57.08
1948-52 (average)	71,523	269	19, 279, 357	154, 342, 964	93	6, 937	. 60	44.95
1953	72, 529	270	19, 559, 252	156, 604, 937	92	6, 164	. 59	39.36
1954	66, 610	245	16, 293, 664	130, 488, 488	86	4,994	. 66	38. 27
1955	65, 143	263	17, 113, 180	136, 950, 227	79	5, 837	. 58	42.62
1956	67, 788	264	17, 891, 187	143, 398, 148	89	5, 287	. 62	36.87
1957 1	63, 700	266	16, 929, 000	135, 119, 000	60	3, 835	.44	28.38

² Includes antimony, bauxite, chromite, cobalt, manganese, mercury, molybdenum, pyrite, titanium, tungsten, vanadium-uranium, and several minor-metal mines.

estimates, fatal and nonfatal injuries for 1957 indicate a reduction from 1956. Approximately the same length of shift was worked, and the average worker accumulated 1,635 hours of worktime during the year.

NONMETAL MINES (EXCEPT STONE QUARRIES)

Nonmetal mines include those producing abrasives, asbestos, asphalt, barite, feldspar-mica-quartz, fluorspar, gypsum, magnesite, phosphate rock, potash, salt, sulfur, tale and soapstone, and minor nonmetals. A decline is indicated by preliminary estimates on employment data and injury experience for these mines. A drop is shown in both the fatal and the nonfatal injuries, and the overall (fatal and nonfatal) injury-frequency rate decreased 6 percent. The length of shift worked in 1957 was approximately the same as in 1956. The average nonmetal-mine worker had 2,045 hours of work to his credit.

Nonmetal Mills.—Employment in nonmetal mills increased in 1957 in both the number of men employed and in the man-hours worked. Disabling work injuries increased in the fatal group; the nonfatal group decreased, however, resulting in a 24-percent decline in the combined (fatal and nonfatal) injury-frequency rates. The average worker accumulated 2,223 hours during the year while working a 7.97-hour daily shift.

TABLE 3.—Employment and injury experience at nonmetal mines (except stone quarries) in the United States, 1931-57

Year	Men working daily	rking mine worke		Man-hours worked (thousand)	Number of injuries Fatal Nonfatal		Injury rates per million man-hours	
	l				Fatal	Nonfatal	Fatal	Nonfatal
1931 1932 1933 1934 1935	8,234	227 201 225 236 250	2, 029 1, 347 1, 729 1, 947 2, 086	17, 941 11, 825 14, 134 15, 187 16, 168	11 7 8 8 7	841 528 745 787 813	0. 61 . 59 . 57 . 53 . 43	46. 88 44. 65 52. 71 51. 82 50. 28
1936	10, 380 10, 017 9, 526 9, 630 9, 780	259 256 236 228 247	2, 689 2, 561 2, 251 2, 196 2, 416	21, 556 20, 536 17, 827 17, 281 18, 988	13 6 10 14	1,044 987 726 719 826	. 19 . 63 . 34 . 58 . 74	48. 43 48. 06 40. 72 41. 61 43. 50
1941 1942 1943 1944 1944	12,713	263 274 269 282 291	2, 920 3, 473 3, 426 3, 173 3, 016	23, 225 28, 093 27, 999 25, 760 24, 613	17 22 25 17 16	1, 182 1, 537 1, 471 1, 283 1, 145	.73 .78 .89 .66	50. 89 54. 71 52. 54 49. 81 46. 52
1946. 1947. 1948. 1949.	11, 312 12, 176 11, 950 12, 077 11, 977	291 292 287 277 293	3, 297 3, 555 3, 432 3, 340 3, 512	26, 877 28, 809 27, 784 26, 948 28, 456	26 12 15 10 19	1, 369 1, 308 1, 176 1, 125 1, 238	.97 .42 .54 .37 .67	50. 94 45. 40 42. 33 41. 75 43. 51
1951 1952 1958 1954 1955 2	12,500 12,447 12,765 12,810 14,504	298 288 292 284 264	3, 729 3, 588 3, 727 3, 638 3, 836	30, 130 28, 954 30, 488 29, 564 31, 093	17 14 22 9 19	1, 351 1, 171 1, 419 956 1, 156	.56 .48 .72 .30 .61	44. 84 40. 44 46. 54 32. 34 37. 18
1956 1957 ³	15, 595 16, 000	268 253	4, 178 4, 041	33, 963 32, 718	17 7	1,036 950	.50 .21	30. 50 29. 04

¹ Fluorspar for Illinois and Kentucky previously included with lead-zine data for Mississippi Valley States, now included with nonmetal mines.

States, now included with nonmetal mines.

² Includes clay mines, not compiled before 1955.

³ Estimate.

TABLE 4.—Employment and injury experience at nonmetal mines (except stone quarries) in the United States, 1948-52 (average) and 1953-57 1

Year	Men work i ng		Man-days worked	Man-hours worked		nber of uries		rates per man-hours
	daily	days	Workou	WOIRCU	Fatal	Nonfatal	Fatal	Nonfatal
1948-52 (average)	12, 190 12, 765 12, 810 14, 504 15, 595 16, 000	289 292 284 264 268 253	3, 520, 398 3, 727, 298 3, 637, 783 3, 835, 607 4, 178, 414 4, 041, 000	28, 454, 601 30, 488, 130 29, 563, 983 31, 092, 628 33, 963, 466 32, 718, 000	15 22 9 19 17 7	1, 212 1, 419 956 1, 156 1, 036 950	0. 53 . 72 . 30 . 61 . 50 . 21	42. 59 46. 54 32. 34 37. 18 30. 50 29. 04

¹ Includes abrasives, asbestos, asphalt, barite, clay, feldspar-mica-quartz, fluorspar, gypsum, magnesite, phosphate rock, potash, salt, sulfur, tale and soapstone, and minor nonmetals.

² Includes clay mines not compiled before 1955.

3 Estimate.

TABLE 5.—Employment and injury experience at nonmetal mills in the United States, by nonmetallic groups, 1957 1

Nonmetallic group	Men working		Man-days worked	Man-hours worked		nber of juries		rates per nan-hours
	daily	days			Fatal	Nonfatal	Fatal	Nonfatal
Abrasives	720	292	210, 000	1, 668, 000	2	25	1, 20	14, 99
Asbestos	150	240	36,000	290,000				
Asphalt	140	157	22,000	172,000		5		29, 07
Barite	630	257	162,000	1, 336, 000		35		26. 20
Feldspar-mica-quartz	430	256	110, 000	900,000		15		16.67
Fluorspar	420	288	121, 000	954, 000		5		5. 24
Gypsum		261	392, 000	3, 121, 000		10		3. 20
Magnesite		330	33,000	261,000		15		57. 47
Phosphate rock		285	598, 000	4, 738, 000	2	30	. 42	6. 33
Potash		333	400,000	3, 172, 000	2	75	. 63	23.64
Salt		311	249, 000	2, 034, 000	2	35	.98	17. 21
Sulfur	10	100	1,000	8,000				
Talc and soapstone	800	279	223, 000	1,803,000		55		30, 50
Minor nonmetals.	1,600	279	447, 000	3, 436, 000	2	_40	. 58	11.64
Clay	8,300	274	2, 271, 000	18, 128, 000	2	555	.11	30.62
Total	18, 900	279	5, 275, 000	42, 021, 000	12	900	. 29	21. 42

¹ Estimate.

Clay Mines.—Statistical data on clay mines for 1957 indicated a decline in employment when compared with the preceding year. Fewer injuries were predicted in both the fatal and the nonfatal groups, and the frequency rates for the combined groups decreased 5 percent. Clay mines operated on average 7.98-hour shift each day; and the average worker accumulated 1,548 hours during the year.

TABLE 6.—Employment data and injury experience at clay mines and mills in the United States, 1955-57

			vou souver	,				
Year	Men working		Man-days worked	Man-hours worked	Number of injuries		Injury rates per million man-hours	
	daily	days			Fatal	Nonfatal	Fatal	Nonfatal
Mine: 1955 1956 1957 1 Mill:	3, 501 4, 419 4, 200	223 202 194	779, 446 891, 254 815, 000	6, 342, 600 7, 266, 474 6, 502, 000	7 8 5	247 251 215	1, 10 1, 10 , 77	38, 94 34, 54 33, 07
1955 1956 1957 ₁	7, 759 8, 300	(No 280 274	figures for e 2, 176, 125 2, 271, 000	lay mills con 17, 552, 075 18, 128, 000	ipiled in 2 2	1955) 709 555	:11 :11	40. 39 30. 62

¹ Estimate.

METALLURGICAL PLANTS

Employment in metallurgical plants (ore-dressing and nonferrous reduction and refinery plants combined) declined slightly in 1957. According to the preliminary estimates, fewer fatal injuries are indicated, but an increased number of nonfatal injuries influenced the rise in the overall injury-frequency rate during the year. The combined (fatal and nonfatal) rate (15.60 per million man-hours of work for 1957) was 8 percent higher than the rate of 14.43 for 1956. Workers averaged 2,544 hours for the year while working a 7.97-hour daily shift.

TABLE 7.—Employment and injury experience at metallurgical plants in the United States, 1931-57

Year	Men working	Average active plant	Man-days worked	Man-hours worked		nber of juries		rates per nan-hours
2000	daily	days	(thousand)	(thousand)	Fatal	Nonfatal	Fatal	Nonfatal
1931	28, 938	299	8, 642	70, 374	16	1, 393	0. 23	19. 79
1932	21, 564	257	5, 542	44, 856	8	837	. 18	18. 66
1933	21, 999	267	5, 875	46, 180	13	1, 079	. 28	23. 37
1934	26, 932	274	7, 366	57, 966	13	1, 320	. 22	22. 77
1935	36, 493	291	10, 632	83, 874	28	1, 962	. 33	23. 39
1936	41, 167	309	12, 727	101, 218	32	2, 240	. 32	22. 13
	47, 530	313	14, 899	117, 551	41	3, 217	. 35	27. 37
	39, 043	292	11, 383	90, 018	20	2, 273	. 22	25. 25
	41, 583	303	12, 594	96, 737	24	2, 171	. 25	22. 44
	49, 068	295	14, 484	113, 116	18	2, 582	. 16	22. 83
1941	54, 349	311	16, 916	132, 102	34	3, 410	. 26	25. 81
	51, 154	334	17, 073	134, 998	29	3, 674	. 21	27. 22
	64, 735	336	21, 755	173, 633	31	4, 666	. 18	26. 87
	58, 085	329	19, 113	152, 326	38	4, 158	. 25	27. 30
	46, 467	329	15, 268	121, 491	19	3, 271	. 16	26. 92
1946	44, 954	284	12, 783	101, 673	20	2, 794	. 20	27. 48
	49, 082	313	15, 353	122, 630	21	3, 228	. 17	26. 32
	47, 768	317	15, 121	121, 028	14	2, 749	. 12	22. 71
	47, 663	294	14, 031	112, 095	23	2, 567	. 21	22. 90
	46, 277	314	14, 539	116, 430	29	2, 574	. 25	22. 11
1951	48, 019	318	15, 247	122, 088	16	2, 714	.13	22. 23
1952	49, 032	319	15, 628	124, 967	16	2, 853	.13	22. 83
1953	55, 283	318	17, 603	138, 811	12	2, 824	.09	20. 34
1954	54, 396	307	16, 713	133, 675	16	2, 578	.12	19. 29
1955	57, 741	314	18, 150	145, 840	11	2, 694	.08	18. 47
1956	63, 039	325	20, 508	164, 072	20	2, 348	. 12	14. 31
1957 ¹	60, 900	319	19, 442	154, 951	13	2, 405		15. 52

¹ Estimate.

ORE-DRESSING PLANTS

Ore-dressing plants include the crushing, screening, washing, jigging, magnetic separation, flotation, and other milling of metallic ores. Employment in ore-dressing plants for 1957 was slightly lower than in 1956; a decrease of 4 days active was noted, and the fatal and the nonfatal injuries were reduced 22 and 19 percent, respectively. Injury-frequency rates per million man-hours of work also declined accordingly. The plants were operated on an 8.10-hour daily shift during the year, and the average worker in ore-dressing plants worked 2.351 hours in 1957.

TABLE 8.—Employment and injury experience at ore-dressing plants in the United States, by industry groups, 1948-52 (average) and 1953-57 ¹

Industry and year	Men working		Man-days worked	Man-hours worked		nber of juries		rates per man-hours
	daily	days			Fatal	Nonfatal	Fatal	Nonfatal
Copper:								
1948-52 (average)		325	2, 009, 937	16, 086, 086	2	259	0.12	16. 10
1953		345	2, 156, 732	17, 253, 852	1	211	.06	12. 23
1954		294	2, 087, 365	16, 698, 943	4	273	. 24	16. 3
1955	6, 222	314	1, 951, 804	15, 854, 424		209		13. 18
1956	6, 683	344	2, 301, 344	18, 399, 827	3	184	.16	10.00
1957 2	6, 100	335	2, 042, 000	16, 331, 000	2	145	.12	8. 88
Gold silver:	801	288	231, 006	1 000 641	1	72	. 55	39. 78
1948-52 (average)	801 494	288 289	231, 006 142, 604	1, 809, 641 1, 140, 610	1	38	. 55	39.78
1954	385	301	116, 066	925, 843	1	34	1.08	36. 72
1955		298	121, 420	971, 223		43	1.00	44. 27
1956	343	298	102, 214	816, 244				29. 40
1957 2	500	336	168, 000	1, 360, 000		15		11.03
Iron:	000	000	100,000	1,000,000		10		11.00
1948-52 (average)	3,606	238	857, 140	6, 936, 041	1	79	.14	11.38
1953	4, 439	244	1, 082, 748	8, 721, 861	$\bar{2}$	88	. 23	10.09
1954		226	939, 314	7, 574, 213	3	80	.40	10. 56
1955	4,055	258	1, 044, 212	8, 383, 134	2	87	. 24	10. 38
1956	5, 114	241	1, 231, 247	9, 937, 172	1	92	.10	9. 26
1957 2	5, 300	281	1, 488, 000	11, 572, 000	2	65	.17	5. 62
Lead zine:								
1948-52 (average)		260	969, 296	7, 759, 923	2	225	. 26	29.00
1953		258	1,080,762	8, 650, 758	1	220	.12	25. 43
1954	3, 551	247	875, 911	7, 023, 574	1	132	.14	18. 79
1955	3, 667	223	817, 120	6, 615, 007		153		23. 13
1956 1957 ²	2, 977	274	816, 509	6, 532, 420	1	86	. 15	13. 17 17. 61
Miscellaneous metals: 3	2,800	250	701, 000	6, 532, 000	1	115	. 15	17.61
1948-52 (average)	1, 929	303	585, 767	4, 696, 744	1	174	2, 13	37, 04
1953	4, 400	314	1, 380, 298	11, 045, 420		269	2. 10	24. 35
1954		317	1, 238, 274	9. 898, 374	1	311	.10	31. 42
1955	3, 279	305	1, 000, 798	8, 012, 937	î	303	.12	37. 81
1956	4, 120	294	1, 210, 958	9, 704, 381	4	293	.41	30. 19
1957 2	3, 700	255	944, 000	7, 463, 000	2	210	.27	28. 14
Fotal:	,			1 1	_			
1948-52 (average)	16, 233	286	4, 653, 146	37, 288, 435	7	809	. 19	21.67
1953	19, 757	296	5, 843, 144	46, 812, 501	4	826	.09	17, 64
1954	19,095	275	5, 256, 930	42, 120, 947	10	830	. 24	19. 71
1955	17, 631	280	4, 935, 354	39, 836, 725	3	795	.08	19. 96
1956	19, 237	294	5, 662, 272	45, 390, 044	9	679	. 20	14.96
1957 2	18, 400	290	5, 343, 000	43, 258, 000	7	550	.16	12. 71
	1	!						

¹ Includes crushers, grinders, and washers and ore-concentration, sintering, cyaniding, leaching and all other metallic ore-dressing plants and auxiliary works.

² Includes antimony, bauxite, mercury, manganese, tungsten, chromite, vanadium, molybdenum, and other metals,

NONFERROUS REDUCTION PLANTS AND REFINERIES

Primary nonferrous reduction and refinery plants are engaged in extracting metals from ores and concentrates and in refining crude nonferrous metals, the only exclusion being iron and steel plants. Employment was lower in 1957 in these plants and refineries, and fatalities were estimated to be fewer by five. Nonfatal injuries show an 11-percent increase, however—from 1,669 in 1956 to 1,855 in 1957. This increase in nonfatal injuries caused an 18-percent increase in the combined (fatal and nonfatal) injury-frequency rates. The average hours worked per man per year were 2,628, and a 7.92-hour shift was worked daily by the average employee.

TABLE 9.—Employment and injury experience at primary nonferrous reduction and refinery plants in the United States, by industry groups, 1948-52 (average) and 1953-57 ¹

Industry and year	Men work- ing	Average active	Man-days worked	Man-hours worked		nber of juries	Injury million	rates per man-hours
	daily	smelter days		·	Fatal	Nonfatal	Fatal	Nonfatal
Copper:								
1948-52 (average)	11,672	321	3, 743, 118	29, 999, 738	5	499	0.17	16.63
1953	11, 177	324	3, 617, 642	28, 942, 736	1	332	. 03	11.47
1954	11, 244	303	3, 408, 422	27, 316, 287	4	323	. 15	11.82
1955	11,691	312	3, 651, 422	29, 661, 324	5	401	.17	13, 52
1956 1957 2	12, 194	323	3, 936, 906	31, 497, 463	2	469	.06	14.89
1957 2	12,000	322	3, 860, 000	30, 878, 000	1	780	.03	25. 26
Lead:					_			
1948-52 (average)	3, 921	311	1, 218, 673	9, 746, 353	2	147	. 21	15.08
1953	3, 753	292	1, 095, 526	8, 764, 219	1	80	.11	9. 13
1954	3, 259	314	1,021,980	8, 175, 841	1	93	. 12	11.37
1955	3, 506	284	996, 977	7, 975, 797	1	137	. 13	17. 18
1956 1957 ²	3, 758	314	1, 181, 157	9, 449, 245	6	138	. 63	14.60
Zine:	3, 300	312	1, 030, 000	8, 241, 000	2	135	. 24	16. 38
1049 59 (avarage)	9. 471	344	3, 255, 246	25, 887, 358	4	815	.15	31, 48
1948-52 (average) 1953	9, 709	354	3, 436, 291	27, 354, 478	2	808	.07	29, 54
1954	8, 881	334	2, 969, 269	23, 612, 421	í	675	.04	29. 54
1955		339	3, 074, 960	24, 437, 536	1	692	.04	28. 39
1956	9, 619	326	3, 133, 552	24, 982, 673	1	666	. 04	26. 66
1957 2	9, 400	306	2, 876, 000	22, 927, 000	2	645	.09	20.00 28.13
Miscellaneous metals: 3	5, 400	500	2, 0, 0, 000	22, 321, 000	-	010	.03	20, 10
1948-52 (average)	6, 455	316	2, 042, 936	16, 399, 617	1	420	.06	25, 61
1953	10, 887	332	3, 609, 904	26, 937, 080	4	778	.15	28. 88
1954	11, 917	340	4, 056, 044	32, 449, 905	-	657		20. 25
1955	15, 846	347	5, 491, 137	43, 929, 084	2	669	. 05	15. 23
1956		362	6, 594, 118	52, 752, 350	$\tilde{2}$	396	.04	7.50
1957 2	17, 800	356	6, 333, 000	49, 647, 000	ī	295	.02	5. 94
Total:	-1,000		0, 000, 000	20, 021, 000	_	200	.02	0.01
1948-52 (average)	31, 519	326	10, 259, 973	82, 033, 066	12	1.881	. 15	22, 93
1953	35, 526	331	11, 759, 363	91, 998, 513	8	1, 998	.09	21.72
1954	35, 301	325	11, 455, 715	91, 554, 454	6	1,748	. 07	19.09
1955	40, 110	329	13, 214, 496	106, 003, 741	8	1, 899	.08	17. 91
1956	43, 802	339	14, 845, 733	118, 681, 731	11	1,669	.09	14.06
1957 2	42,500	332	14, 099, 000	111, 693, 000	6	1,855	. 05	16.61
			·					

¹ Includes smelters, refineries and roasting, electrolytic, retort, and all other nonferrous metal reducing or refining plants.

3 Includes mercury, antimony, tin, and magnesium plants.

STONE QUARRIES

The preliminary estimated data compiled for the quarrying industry from reports received by the Bureau of Mines revealed a slight decline in employment and in the number of injuries received. The combined injury-frequency rate for the fatal and nonfatal injuries, however, showed a 3-percent increase. Stone quarries and their related plants operated on an 8.15-hour daily shift during the year and averaged 2,213 hours per man in 1957.

Cement.—The safety record for the cement industry in 1957 improved over that reported for 1956. Fatal injuries decreased from 12 in 1956 to 8 in 1957 (33 percent), and nonfatal injuries decreased from 318 reported in 1956 to 235 in 1957 (26 percent). The overall (fatal and nonfatal) injury-frequency rate declined from 4.48 to 3.36 (25 percent). The number of man-hours worked indicated a 2-percent decrease. The industry worked 6 fewer days and averaged slightly over an 8-hour shift. Each worker accumulated 2,609 hours during the year.

TABLE 10.—Employment and injury experience at stone quarries in the United States, 1924-57

Year	Men working	Average active mine	Man-days worked	Man-hours worked		abe r of uri es		rates per nan-hours
	daily	days	(thousand)	(thousand)	Fatal	Nonfatal	Fatal	Nonfatal
1924	94, 242	269	25, 328	236, 983	138	14, 777	0. 58	62. 35
	91, 872	273	25, 046	233, 222	149	14, 165	. 64	60. 74
	91, 146	271	24, 708	230, 464	154	13, 201	. 67	57. 28
	91, 517	271	24, 783	229, 806	135	13, 459	. 59	58. 57
	89, 667	272	24, 397	224, 953	119	10, 568	. 53	46. 98
1929	85, 561	268	22, 968	211, 766	126	9, 810	. 59	46. 32
1930	80, 633	255	20, 559	186, 502	105	7, 417	. 56	39. 77
1931	69, 200	224	15, 527	133, 750	61	5, 427	. 46	40. 58
1932	56, 866	195	11, 114	93, 710	32	3, 574	. 34	38. 14
1933	61, 927	183	11, 362	87, 888	59	3, 637	. 67	41. 38
1934	64, 331	204	13, 108	95, 259	60	3, 924	.63	41, 19
	73, 005	200	14, 623	110, 033	51	4, 152	.46	37, 73
	80, 022	236	18, 874	147, 064	91	5, 717	.62	38, 87
	84, 094	241	20, 264	158, 299	77	6, 348	.49	40, 10
	77, 497	223	17, 256	133, 766	82	5, 027	.61	37, 58
1939	79, 449	236	18, 726	143, 847	48	5, 204	.33	36. 18
	79, 509	240	19, 121	147, 244	72	5, 188	.49	35. 23
	86, 123	260	22, 370	173, 165	76	6, 870	.44	39. 67
	84, 270	271	22, 808	180, 836	112	6, 349	.62	35. 11
	69, 877	274	19, 136	155, 280	80	5, 199	.52	33. 48
1944	58, 476	268	15, 691	129, 302	73	4, 437	. 56	34. 32
1945	58, 180	264	15, 376	127, 168	53	4, 121	. 42	32. 41
1946	70, 265	274	19, 262	158, 528	55	5, 137	. 35	32. 40
1947	75, 245	279	20, 996	171, 979	75	5, 504	. 44	32. 00
1948	77, 344	284	21, 993	179, 111	75	4, 994	. 42	27. 88
1949	82, 209 85, 730 84, 802 81, 879 83, 641	275 272 277 277 279 278	22, 569 23, 346 23, 470 22, 844 23, 248	182, 258 189, 535 191, 113 186, 552 189, 777	66 54 57 74 43	4, 826 4, 762 4, 945 4, 503 4, 450	.36 .28 .30 .40 .23	26. 48 25. 12 25. 87 24. 14 23. 45
1954	78, 910	273	21, 506	175, 817	34	3, 834	.19	21. 81
	78, 238	274	21, 470	175, 775	53	3, 811	.30	21. 68
	80, 093	272	21, 776	178, 281	50	3, 754	.28	21. 06
	77, 900	272	21, 152	172, 387	44	3, 740	.26	21. 70

¹ Estimate.

Granite.—The number of fatal injuries, as estimated for the granite industry, decreased by 50 percent—from 8 reported in 1956 to 4 in 1957; nonfatal injuries, however, increased 2 percent in 1957. The combined (fatal and nonfatal) injury-frequency rate increased 3 percent. Fewer men were employed, and the number of man-hours worked decreased. This group of stone quarries operated on an average 8.25-hour shift, and the average worker accumulated 1,935 hours.

Lime.—Quarries that produced limestone, chiefly for the manufacture of lime, reported no fatal injuries in the preliminary estimates for 1957. Nonfatal injuries increased 24 percent, however—from 423 reported in 1956 to 525 in 1957. The industry had fewer men working and fewer man-hours of work were performed; days active were approximately the same as in the preceding year, with an average of 2,305 hours of work per man for the year.

Limestone.—The safety record at limestone quarries and their related plants was not as favorable in 1957 as in 1956, as far as fatal injuries were concerned. Nonfatal injuries, however, were compa-Fatal injuries increased by 11—65 percent—but the injuryfrequency rate for the combined fatal and nonfatal injuries increased A decrease was noted in the number of men employed, only slightly. the man-days, and the man-hours worked. The length of shift averaged the same for both years, as did the number of hours worked per man per vear.

Marble.—Marble quarries and their related plants operating in connection with the quarries had an improved safety record in 1957. The quarries operated 22 more days than in the preceding year, with fewer man-hours worked. No fatal injuries were indicated, and a drop of 11 in the nonfatal injuries (6 percent) was shown. The industry worked an average 8.33-hour shift, and each worker accumulated

2,293 hours during the year.

Sandstone.—The sandstone industry's safety record for 1957 was not as favorable as that for 1956, as indicated by preliminary estimates of the Bureau. The combined (fatal and nonfatal) injuryfrequency rates per million man-hours of work performed increased 14 percent, owing to the drop in employment. The same number of fatal injuries and only 17 fewer nonfatal injuries were indicated, causing the higher frequency rate. Days active were 9 less than in 1956, with an 8.05-hour shift each day during the year and an average of 1,807 hours for each worker.

Slate.—Slate quarries and their related plants reported increased employment during 1957, offsetting the increased number of injuries predicted and making for a better safety record. The injury-frequency rate (41.19) decreased 4 percent from the rate for the preceding year (42.92). The length of shift worked was lower and the number of hours worked by each man during the year was less than

Traprock.—Employment in the traprock industry was lower in 1957; fewer injuries were indicated. The combined (fatal and nonfatal) injury-frequency rate was reduced 6 percent. These quarries and related plants operated 17 more days in 1957 than in 1956, with approximately the same length of shift as in the preceding year and 1,943 hours of worktime credited to the average worker.

EMPLOYMENT, INJURIES IN METAL AND NONMETAL INDUSTRIES 129

TABLE 11.—Employment and injury experience at stone quarries in the United States, by industry groups, 1948-52 (average) and 1953-57

Industry and year	Men work- ing	Aver- age active	Man-days worked	Man-hours worked	Number	of injuries		rates per man-hours
	daily	mine- days			Fatal	Nonfatal	Fatal	Nonfatal
Cement: 1								
1049-59 (02702000)	28, 717	327	9, 393, 367	74, 119, 442	18	578	0.24	7.80
1953	28, 925	329	9, 504, 900	75, 800, 327	16	388	.21	5. 12
1954	27, 718 29, 141	320 320	8, 879, 804 9, 328, 414	71, 058, 012 74, 735, 071	6 9	322 287	.08	4. 53 3. 84
1956	27, 923	329	9. 183. 005	73, 553, 558	12	318	.16	4.32
1953 1954 1955 1956 1957 2 Crenite:	27, 700	323	9, 183, 005 8, 956, 000	73, 553, 558 72, 279, 000	8	235	.11	3. 25
Granite: 1948-52 (average)		249	1, 692, 198	14, 056, 496	7	582	. 50	41.40
1953	6.484	252	1, 631, 700	13, 506, 490	2	552	.15	40.87
1954 1955	6, 469	243	1, 631, 700 1, 571, 232 1, 487, 312	13, 018, 657	4	457	.31	35. 10
1955	• 6, 222	239 233	1, 487, 312	12, 319, 008	4	499	. 32	40. 51
1956 1957 2	6, 052 5, 900	235	1, 408, 521 1, 384, 000	11, 657, 989 11, 417, 000	8 4	472 480	. 69	40. 49 42. 04
Lime: 1				1			1	
1948-52 (average)	9, 150	297	2,720,279	21, 746, 809	8	725	. 37	33. 34
1953 1954	9, 165 7, 985	294 294	2, 690, 660 2, 345, 142	21, 663, 764 18, 809, 131	3 10	526 457	. 14	24. 28 24. 30
1955	8,416	292	2, 456, 132	19, 785, 736	6	417	.30	21.08
1956 1957 ²	9,040	290	2, 456, 132 2, 621, 497 2, 250, 000	19, 785, 736 21, 079, 218 17, 977, 000	6	423	. 28	20.07
Limestone:	7,800	288	2, 250, 000	17, 977, 000		525		29. 20
1948-52 (average)	26, 215 27, 764	237	6, 202, 405	52, 009, 749	25	1,880	. 48	36, 15
1953 1954	27, 764	240	6, 651, 663	55, 839, 029	16	2, 039	. 29	36. 52
1955	26, 246 24, 472	237 236	6, 224, 718 5, 772, 695	52, 231, 092	12 28	1, 748 1, 657	. 23	33. 47 34. 18
1956	26, 398	231	6, 087, 541	48, 483, 731 51, 163, 853	17	1,660	.33	32. 44
1956 1957 ²	26, 200	231	6,041,000	50, 807, 000	28	1,655	. 55	32. 57
Marble: 1948-52 (average)	2 624	255	670, 281	5 525 526	1	190	. 18	24 20
1953	2, 624 2, 442	248	606, 435	4. 981, 451	i	161	.20	34. 32 32. 32
1954	2, 558 2, 221	252	643, 873	5, 326, 541		159		29.85
1955	2, 221	251 253	557, 180	4, 669, 780	1 2	210 191	.21	44. 97 36. 01
1953-2 (average) 1953-1954-1955-1956-1957 2	2, 523 2, 300	275	557, 180 638, 656 633, 000	5, 535, 536 4, 981, 451 5, 326, 541 4, 669, 780 5, 303, 538 5, 273, 000		180	. 00	34. 14
			l					
1948-52 (average)	4, 132 4, 167	242 247	998, 913 1, 027, 719 768, 252	8, 256, 367	3 2	367 368	. 36 . 24	44. 45 43. 97
1954	3, 471	221	768, 252	6, 283, 356		262	. 24	41.70
1955	3, 410	241	820, 864 824, 296	6, 717, 942	2	369	. 30	54. 93
1953	3, 522 3, 100	234 225	824, 296 696, 000	8, 256, 367 8, 369, 173 6, 283, 356 6, 717, 942 6, 754, 007 5, 601, 000	1 1	327 310	.15	48. 42 55. 35
Slate:	3, 100	220	1	3,001,000	1	910	. 18	99. 59
1049_K9 (07707000)	1,903	266	506, 633	4, 334, 764 3, 615, 041 3, 276, 274 3, 413, 372 2, 935, 563	1	215	. 23	49.60
1953	1,682	263 261	442, 689 393, 270	3, 615, 041	1	186 181	. 28	51. 45 55. 25
1955	1,506 1,599	255	408, 160	3, 413, 372	1	159	.29	46. 58
1953 1954 1955 1956 1956	1, 395	250	408, 160 349, 281	2, 935, 563		126		42. 92
1957 2 Traprock:	2,000	2 75	549, 000	3, 399, 000		140		41, 19
1049-59 (0770700)	2,842	232	660, 422	5, 654, 572	3	271	. 53	47. 93
1953	3, 012	230	692, 605	5, 654, 572 6, 001, 314	2	230	.33	38. 32
1954	2,957	230	679, 468	5 814 087	2	248	.34	. 42.66
1956	2, 957 2, 757 3, 240	232 205	639, 623 663, 694	5, 650, 812 5, 833, 263 5, 634, 000	2	213 237	.35	37. 69 40. 63
1953	2, 900	222	643, 000	5, 634, 000	3	215	.53	38. 16
Total:	l	077	00 044 400	1	66	4 000	90	05.00
1948-52 (average)	82, 392 83, 641	277 278	22, 844, 498 23, 248, 371	185, 713, 735 189, 776, 589	43	4, 808 4, 450	.36	25. 89 23. 45
1954	78, 910	273	23, 248, 371 21, 505, 759	175, 817, 150	34	3, 834	.19	21.81
1955	78, 238	274	21, 470, 380	175, 817, 150 175, 775, 452 178, 280, 989	53	3, 811	.30	21.68
1953	80, 093 77, 900	272 272	21, 776, 491 21, 152, 000	178, 280, 989 172, 387, 000	50 44	3,754 3,740	.28	21.06 21.70
1001	11,000		22, 102, 000	1.2,001,000	**	0, 140		21.70

Includes burning or calcining and other mill operations.
 Estimate.

Mineral Production

(Comparison of Bureau of Mines and Bureau of the Census 1954 Data)

By Robert E. Herman 1

*HIS CHAPTER compares Bureau of Mines mineral-commodity production data for 1954 with those of the Bureau of the Census, United States Department of Commerce, as presented in its 1954 Census of Mineral Industries reports.² Data are shown for continental United States, exclusive of Alaska, since priority is given in Bureau of the Census publications to showing detailed commodity figures for

Individual comparisons are designed to provide users of statistics of these agencies with a rough measure of the extent to which their coverages match. Table 1, which gives these comparisons, also includes industry shipments data from the Census reports to afford readers (1) an approximate measure of the extent to which a particular commodity is produced in the industry of which such commodity is the primary products; and (2) information of the extent to which that industry produces other commodities. This information should

enable users to relate the statistics of the two agencies better.

The Bureau of Mines and the Bureau of the Census cooperated in gathering mineral-production and related data through the 1954 Census of Mineral Industries; this was the first such Census since that This cooperation involved various aspects, such as covering 1939. use of joint Census-Mines schedules in a number of mineral areas to collect 1954 data. The collection, editing, and processing of certain groups of such schedules were carried out for both agencies by Bureau of Mines personnel. In other areas each agency collected its data on a separate form, but provision was made for comparisons between agencies by means of tielines on individual forms. Last, in some areas each agency used its own form, with no tieline-comparison provision.3 Each agency prepared its own tabulations and subsequent publications in accordance with its own needs and responsibilities.

¹ Analytical statistician.
² U. S. Department of Commerce, Bureau of the Census, U. S. Census of Mineral Industries, 1954, Vol. I, Summary and Industry Statistics: Washington, D. C., 1958. (Issued earlier in subject and industry buletin form.)
³ Table 2 in this chapter indicates the relationship between 1954 Census of Mineral Industries report forms and Bureau of Mines report forms.

TABLE 1.—Comparison of the Bureau of Mines and

(Continental United

	T				(Contin	ental Unite
	-		Comm	odity data		
	Bureau	of Mines	data 3	Bureau o	of the Cens	sus data
Mineral	Measuremen stage	Quantity (thousand short tons unless otherwise stated)	Value (thou- sand dollars)	Measuremen stage ⁴	Quantity (thousand tons unless otherwise stated)	Value (thou- sand dollars)
MINERAL FUELS		1 4				
Asphalt and related bitumens (native). Coal:	Sales	i		Net ship- ments.	1, 408	6, 408
Bituminous 5 Lignite	Production_		" '	tion.67	1,	, ,
Pennsylvania anthracite. Natural gas (billion cubic feet) Petroleum, crude (million 42-gallon	Marketed production.	29, 088 8, 748	3 247, 870 882, 501	Marketed production.	4, 245 29, 255 12 8, 315	10, 347 250, 699 13 978, 712
Natural-gas liquids: Natural gasoline and cycle prod-	Production.				,	
ucts (million gallons). LP-gases (million gallons) Peat (short tons). Other fuels ¹⁷ .		5, 204	178, 994	tion.	5, 391 5, 338	,
Other fuels 17 Total: Bureau of Mines value	l	244, 163	3, 413		248, 664	16 184, 500 16 2, 313
of mineral produc-			9, 912, 000			
Values used in com- parison.			9, 912, 000			9, 762, 000
NONMETALS (EXCEPT FUELS)						
Abrasive stone: 18 Pebbles (grinding) and tube-mill liners (natural) (short tons).	Sold or used.	4, 003	159	Gross ship- ments.	4, 003	159
Asbestos (short tons) Barite, crude		47, 621 883	4, 698 8, 508	Net ship- ments.	50, 033 20 903	4, 874 ²⁰ 8, 698
Boron minerals Cement (thousand 376-lb. barrels)	Shipments	790	26, 714	do	556	14, 816
Clays: Kaolin or china clay	from mills.	²⁵ 274, 703	²⁶ 763, 413	Gross ship- ments.	280, 400	²⁶ 779, 932
Ball alam	Sold or used.	1, 873 328 8, 797	32, 187 33, 327	Net ship- ments. do	27 1, 847 27 372 27 8, 731	27 32, 702 27 31, 170
Fire clay Bentonite Fuller's earth Miscellaneous clay	do	1, 278 376 29, 713	14, 723 6, 862 36, 062	do do	1, 477 311 ²⁷ 30, 350	27 31, 179 21, 157 6, 029 27 36, 854
Total		42, 365	123, 161	do	43, 088	127, 921
Emery and garnet (short tons) Feldspar, crude (thousand long	1	23, 941	1, 104	Gross ship- ments.	24, 088	1,668
tons). Fluorspar Syssum Lime	Shipments	411 246	3, 490	Net ship- ments.	31 412	31 3, 084
Marl:	Sold or used.	8, 996 8, 612	12, 333 27, 384 ²⁶ 101, 273	Production Gross ship- ments.	266 33 9, 057 36 7, 485	12, 774 34 27, 171 6 36 93, 483
Calcareous (except for cement)	do	206		Net ship- ments.	260	342
See footnotes at end of table.	uo	2, 838	199	Gross ship- ments.	2, 837	196

Bureau of the Census mineral production data for 1954 $^{\rm 1}$

States only)

		Value or sand dol	f shipments lars; gross sh	and interp	lant transfe less otherwi	ers (thou- se stated)
Industry or industry group (unless		Total	Pri	mary produ	ıcts	
otherwise stated, the mineral specified is the primary product)	Industry code	primary and sec- ondary products produced in the industry	Total	Produced in specified industry	Produced in other industries	Second- ary products and services
Native asphalt and bitumens	1494	6, 424	6, 408	6, 408		16
Bituminous coal	1211	2, 040, 200	, ,	1, 773, 930	9 1, 053	4, 406
Lignite Anthracite	1212 1111	10, 387 365, 536	10, 330 8 246, 276	10, 330 8 246, 276		2, 237
Crude petroleum and natural gas	1312, 1313	7, 070, 097	7, 095, 624	7, 035, 108	18 60, 516	34, 989
Natural-gas liquids	1314, 1315	640, 422	⁸ 576, 828	8 576, 8 2 8		6, 038
Peat	1498	2, 326	2, 307	2, 307		19
Ábrasive stones, natural (in part)	19 1462					
Asbestos (subindustry of 1499) Barite	21 1472	4, 877 18, 269	4, 874 18, 298	4, 874 (²²)	(22)	(22 23)
Potash, soda, and borate minerals (in part). Cement, hydraulic **a	19 1474 26 3241	783, 719	779, 932	779, 171	761	4, 548
Kaolin and ball clay	1455	31, 892	8 27 32, 702	31, 160	²⁸ 1, 556	732
Fire clay Bentonite Fuller's earth Clay, ceramic, and refractory minerals n. e. c. (In part).	1453 1452 1454 80 1459	21,830 6,012	\$ 27 31, 179 \$ 21, 157 \$ 6, 029	20, 808 (22) (22)	29 10, 831 (23) (23)	1, 398 (22 23) (22 23)
Natural abrasives, except sand n. e. c. (in part).	19 1469					
FeldsparFluorspar	21 1456 1473		8 7, 478 8 12, 774	\$ 5,824 14,502		418 959
GypsumLime 26a	1492 26 3274	6, 631 105, 449	²⁷ 31, 843 93, 483	6, 613 87, 6 9 9	8 25, 230 5, 784	17, 75
Crushed and broken limestone (in part)	19 1422					
Miscellaneous nonmetallic minerals, n. e. c. (in part).	19 1499					

TABLE 1.—Comparison of the Bureau of Mines and Bureau

			Commo	dity data		
	Bureau	of Mines	data ³	Bureau of	the Cens	ıs data
Mineral	Measurement stage	Quantity (thousand short tons unless otherwise stated)	Value (thou- sand dollars)	Measurement stage 4	Quantity (thou-sand short tons unless otherwise stated)	Value (thou- sand dollars)
NONMETALS (EXCEPT FUELS)—con. Mica:						
Scrap (short tons) Sheet (thousand pounds)	Sold or used_	81, 073 669	1, 734 2, 393	Gross ship-	37 81, 112 40 500	³⁷ 1, 09, ⁴⁰ 2, 498
Perlite 41 (short tons) Phosphate rock (thousand long	do_ Marketable	219, 703 13, 821	1, 762 86, 669	ments.	277, 067	2, 136
tons).	production Sold or used	13, 044		Net ship- ments.	13, 386	82, 516
Potassium salts (K2O equivalent)	Sales	1, 918	71, 819		1, 919	71, 836
Pumice	Sold or used	1, 552		Gross ship- ments.	1, 937	3, 489
Pyrites (thousand long tons) Salt:	Production	909	1	Production	912	84 7, 484
Rock salt	Sold	4, 825		ments.	4, 879	32, 962
Evaporated salt Salt in brine	Sold or used.	3, 722	,	Gross ship- ments.	47 4, 063	47 76, 448
		12, 113	32, 064	(47a)	(47a)	(47a)
TotalSand and gravel	do.49	20, 660 549, 401	105, 470 496, 672	Sold or used.49a	8, 942 428, 599	109, 410 445, 075
Slate: Dimension slate 52	ducers.	152	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ments.	162	6, 419
Crushed (granules, flour and other).	do	609	6, 612	do	947	8, 199
Total Sodium carbonate (natural)	Sold or used.	761 527	12, 961 13, 536	do	1, 109 527	14, 618 13, 535
Sodium sulfate (natural)	do	250	3, 890	do	251	3, 883
Dimension stone: 52 Limestone		55 1, 075	⁵⁵ 19, 642	Net ship- ments.	1, 246	19, 985
Granite	do	634 85	24, 505	do	738	26, 691
Marble Sandstone	do	401	9, 855 9, 947	do	109 547	8, 905 10, 327
Basalt and related rocks (trap- rock).	1	52	358	do	34	183
Other stone.		34		do	112	1, 185
Total, dimension stone Crushed and broken stone:	do	⁵⁵ 2, 281	⁵⁵ 66, 885	do	2,786	67, 276
Limestone	do	313, 429	401, 192	do 56	301, 555	425, 493
Granite	do	22, 614 454	31, 915	do	22, 780	31, 766
Marble Basalt and related rocks (trap- rock).	do	454 29, 325	3, 939 46, 299	do	23, 574	5, 039 40, 280
Sandstone (including quartz)	do	55 11, 717	55 25, 375	do 56	10, 041	31, 219
Sandstone (including quartz) Shell Other stone	do	55 11, 717 12, 358 15, 268	55 25, 375 15, 320 15, 100	(61)	(61) 8, 891	(61) 1 17, 194
Total, crushed and broken stone.	do	405, 165	⁵⁵ 539, 140		367, 385	550, 991
				1.		

of the Census mineral production data for 1954 1—Continued

Industry	data (Bu	reau of th	ne Census) ²			
Industry or industry group (unless otherwise stated, the mineral specified is the primary product)	Industry code	Value of shipments and interplant transfers (thousand dollars; gross shipments unless otherwise stated)				
		Total	Primary products			
		primary and sec- ondary products produced in the industry	Total	Produced in specified industry	Produced in other industries	Second- ary products and services
}Mica	⁸⁸ 1493	4, 126	7, 938	4, 083	³⁹ 3, 855	43
Perlite (subindustry of 1499)		2, 259	⁴² 2, 136	(22)	(22)	(22)
Phosphate rock	1475	117, 976		8 82, 516	,	67
Potash, soda, and borate minerals (in part).	19 1474					
Pumice and pumicite	1495	3, 393	3, 489	3, 324	165	69
Pyrites (subindustry of 1479)		12, 001	43 7, 665	(22)	(22)	(22)
Rock salt	44 1476	35, 658	32, 962	30, 769	⁴⁵ 2, 193	46 4, 889
Salt 26a	48 2898	71, 933	⁴⁶ 76, 448	69, 400	46 7, 048	⁴⁵ 2, 533
Sand and gravel	⁵⁰ 1441	466, 015	425, 500	408, 546	⁵¹ 16, 954	57, 469
Dimension slate	53 1414		6, 438		6, 438	
Crushed and broken slate	1424	8, 162	⁸ 8, 199	8, 162	(22)	
Potash, soda, and borate minerals (in part).	ı					
do	19 1474					
Dimension limestone	53 1412	3, 754	20, 060	3, 170	16, 890	584
Dimension granite Dimension marble	53 1413 53 1415	5, 738 3, 491	27, 456 9, 480 10, 405	5, 649 3, 421	21, 807 6, 059	89 70
Dimension sandstone Dimension traprock Dimension traprock	53 1417 53 1416	5, 292		5, 036	5, 369	256
Dimension stone, n. e. c	53 1419	670	1, 368	651	717	19
Crushed and broken limestone	67 1422 1423 1425 1426	328, 757 30, 875 5, 142 45, 471	8 27 425, 835 8 31, 766 8 5, 039 8 40, 280	58 311, 525 58 30, 476 58 4, 586 58 38, 555	58 59 114, 310 58 59 1, 290 58 453 58 59 1, 725	17, 790 859 597 6, 497
Crushed and broken sandstone	60 1427	31, 190	8 27 29, 180	28, 351	(22)	2, 839
Crushed and broken stone, n. e. c	1429	15, 657	8 17, 194	⁵⁸ 16, 883	58 59 311	808

TABLE 1.—Comparison of the Bureau of Mines and Bureau

	Commodity data								
	Bureau o	f Mines da	ata ³	Bureau of	the Census	us data			
Mineral	Measurement stage	Quantity (thousand short tons unless otherwise stated)	Value (thou- sand dollars)	Measurement stage ⁴	Quantity (thousand short tons unless otherwise stated)	Value (thou- sand dollars)			
NONMETALS (EXCEPT FUELS)—con.									
Sulfur: Frasch-process and other mines	Shipments	5, 513 400	143, 521 11, 209	Net ship- ments.	5, 510 333	140, 661 9, 341			
Recovered, elemental 62 (thousand long tons).	Sold or used. (Production	618, 994	3, 493		000	5,011			
Tale, pyrophyllite, and soapstone (short tons).	Sold by pro-	599, 998	12, 634	Net ship- ments.63	605, 901	11, 574			
Tripoli (short tons)	ducers.63 Sold or used.	41, 625	1, 459	Gross ship- ments.	45, 549	1, 513			
Other nonmetals 65			76, 680			24, 622			
Total: Bureau of Mines value of mineral produc- tion. 66 Values used in com-			2, 619, 000 2, 623, 000			2, 532, 000			
parison.66									
METALS									
Bauxite (thousand long tons, dried equivalent).	Production Shipments to con-	1, 995 1, 766	16, 403 15, 945	Shipments to con-	1,766	15, 946			
Beryllium concentrate (short tons, gross weight).	sumers. Shipments	669		ments.	67 650 68 154	67 320			
Chromite (gross weight)	do	160		ments.		68 6, 937			
Copper (recoverable content of ores, etc.) (short tons).	Production 70			1					
Lead (recoverable content of ores, etc.) (short tons).	do ⁷⁰	1	1 .	do ⁷¹	455, 740	ĺ			
Zinc (recoverable content of ores, etc.) (short tons).	do 70	1	l	do 71		73 577, 926			
Gold (recoverable content of ores, etc.) (thousand troy ounces).									
Silver (recoverable content of ores, etc.) (thousand troy	do ⁷⁰	36,908	33, 403	do 71	36, 670				
ounces). Iron ore, usable (excluding by- product iron sinter) (thousand	Shipments	76, 126	525, 818	Net ship- ments. ⁷⁵	76, 999	537, 688			
long tons, gross weight). Manganese and manganiferous ore: Manganese ore (35 percent or	do	206	15, 176	Gross ship-	244	19, 574			
more Mn) (gross weight). Manganiferous ore (5 to 35 percent Mn) (gross weight).			'	ments.76	700				
Total (gross weight)	do	764	18, 25	Net ship- ments. ⁷⁵ ⁷⁸	524	26, 155			
Mercury (76-pound flasks)	Production.	17, 497	4, 626	=	17, 487	77 4, 160			
Titanium concentrate: Ilmenite (short tons, gross weight)	l			Gross ship- ments.78	531, 924	79 7, 45			
Rutile (short tons, gross weight). Tungsten ore and concentrate (short tons, 60-percent WOs basis).	do	7, 305 13, 691	51, 43	0do 78	9, 595 13, 917	1, 19: 51, 94			

See footnotes at end of table.

of the Census mineral production data for 1954 1-Continued

Industry	data (Bu	reau of the	e Census) ²				
		Value of sand dol	f shipments lars; gross sh	and interp nipments un	olant transfe dess otherwi	ers (thou- ise stated)	
Industry or industry group (unless		Total	Pri	mary produ	ıcts		
Industry or industry group (unless otherwise stated, the mineral specified is the primary product)	Industry	code and secondary produce in the	primary and sec- ondary products produced in the industry	Total	Produced in specified industry	Produced in other industries	Second- ary products and services
Sulfur	1477	140, 685	140, 661	140, 661		24	
Chemical and fertilizer mineral mining, n. e. c. (in part).	19 1479			-		-	
Tale, soapstone, and pyrophyllite	1496	11, 819	14, 595	11, 819	64 2, 776	-	
Natural abrasives, except sand, n. e. c. (in part).	¹⁹ 1469						
••••••••••••••••••••••••••••••••••••••							
Bauxite and other aluminum ores	1051	16, 819	⁸ 15, 946	⁸ 15, 946		83	
Metallic ores, n. e. c. (in part)	19 1099		67 320	67 300	67 20		
Chromite ores (subindustry of 1069)		7, 398	68 6, 937	⁶⁸ 6, 937	(69)		
Copper ores 72	1021	508, 729	8 393, 941	[‡] 385, 343	8, 598	24, 568	
Lead and zinc ores 72	103	175, 947	8 138, 617	⁸ 136, 787	1, 830	3, 345	
Gold—Lode 72 and placer	1042, 1043	34, 433	⁷⁴ 33, 412	⁷⁴ 32, 780	632	28	
Silver ores 72	1044	12, 148	⁸ 11, 956	(22)	(22)	(22)	
Iron ores	1011	547, 218	8 537, 688	(22)	(22)	(22)	
Manganese ores	1062	32, 398	⁶⁸ 26, 155	⁶⁸ 25, 916	239	1, 100	
Mercury ores	1092	4, 519	4, 519	4, 519		-	
Titanium ores	1093	12, 750	8, 647	8, 647		4, 103	
Tungsten ores	1064	60, 737	68 51, 941	68 49, 331	2, 610	515	

TABLE 1.—Comparison of the Bureau of Mines and Bureau

	Commodity data								
	Bureau o	of Mines o	lata 3	Bureau of the Census data					
Mineral	Measurement stage	Quantity (thousand short tons unless otherwise stated)	Value (thou- sand dollars)	Measurement stage 4	Quantity (thousand short tons unless otherwise stated)	Value (thou- sand dollars)			
METALS—continued Zirconium concentrate	Shipments	18	820		20	1, 029			
Other metallic minerals 80			101, 037	ments		67, 132			
Metal total: Bureau of Mines value of min- eral produc- tion.			1, 507, 000						
Values used in comparison.			1, 507, 000		-	1, 298, 000			
Total: Bureau of Mines value of min- eral produc- tion.			14, 038, 000						
Values used in comparison.			14, 042, 000			13, 592, 000			

¹In general, based on data published by the Bureau of Mines in Minerals Yearbook and by the Bureau of the Census in its 1954 Census of Mineral Industries, volume I. For discussion of the joint efforts of these agencies in collecting 1954 data, and general differences in methods of compiling mineral production data, see text

data, see text.

2 Unless otherwise stated data are for a mining industry as defined by the Bureau of the Census for purposes of the 1954 Census of Mineral Industries; that is, in general, the 1949 Standard Industrial Classification for nonmanufacturing industries, with a few modifications.

3 For each mineral the series used in computing the Bureau of Mines value of mineral production is shown; however, in some instances it seemed necessary or desirable to compare with Census data at another measurement stage, data for which have then also been shown (that is, on the same line with Census data).

4 The term "Gross shipments" is here used as an abbreviation of Census term "Gross shipments and interplant transfers." Gross shipments totals include some duplication to the extent that materials are transferred from I establishment to another for mineral preparation. Whet shipments' excludes this duplication. In general, net shipments for nonmetallic minerals represent gross shipments less quantity and value of minerals received from other establishments for preparation; for metals, gross shipments less milling ores shipped. Bureau of Mines shipments figures include no duplication.

5 Includes met production (clean-coal equivalent of all coal mined, including coal produced and used at the same establishment for power or heat) of bituminous-coal industry (386,864,000 short tons—valued at Census average value of net shipments of that industry) and shipments of bituminous coal from operations in other industries (313,000 short tons) plus coal used for power or heat at such operations (9,000 short tons—valued at the same establishment for power or heat of the shipments of bituminous coal from operations in other industries (313,000 short tons) plus coal used for power or heat at such operations (9,000 short tons—

or nother industries (313,000 short tons) plus coal used for power or heat at such operations (9,000 short tons—valued at Census average value of net shipments from such operations).

Bureau of Mines excludes from its statistics mines producing less than 1,000 tons, while the Census excludes only establishments for which neither value of shipments nor expenses for production, development, and maintenance work amounted to \$500 or more. Shipments by such small mines amounted to only

366,000 tons.

8 Net shipments

9 Includes \$488,000 for coal produced at State-owned or State-operated mines for use at State institutions.

10 Net production, as defined in footnote 6.

11 Net production, as defined in footnote 6.

12 Net production, as defined in footnote 6.

13 Net production, as defined in footnote 6.

14 Net production, as defined in footnote 6.

15 Net production, as defined in footnote 6.

16 Net production, as defined in footnote 6.

17 Net production, as defined in footnote 6.

18 Net production, as defined in footnote 6.

19 Net production, as defined in footnote 6.

10 Net production, as defined in footnote 6.

10 Net production, as defined in footnote 6.

11 Net production, as defined in footnote 6.

12 Net production, as defined in footnote 6.

13 Net production, as defined in footnote 6.

14 Net production, as defined in footnote 6.

15 Net production, as defined in footnote 6.

16 Net production, as defined in footnote 6.

17 Net production, as defined in footnote 6.

18 Net production, as defined in footnote 6.

19 Net production, as defined in footnote 6.

10 Net production, as defined in footnote 6.

10 Net production, as defined in footnote 6.

11 Net production, as defined in footnote 6.

12 Net production, as defined in footnote 6.

13 Net production, as defined in footnote 6.

14 Net production, as defined in footnote 6.

15 Net production, as defined in footnote 6.

16 Net production, as defined in footnote 6.

17 Net production, as defined in footnote 6.

18 Net production, as defined in footnote 6.

19 Net production, as defined in footnote 6.

10 Net production, as defined in footnote 6.

16 Net production, as defined in footnote 6.

17 Net production, as defined in footnote 6.

18 Net production, as defined in footnote 6.

18 Net production, as defined in footnote 6.

19 Net production, as of raw sold, and prepared coal at Census average value of breaker, washery, and dredge product. Census figures cover some late reports and revisions processed by Census Bureau after Bureau of Mines had closed its tabulations.

its tabulations.

12 Approximated by Bureau of Mines from Census product data, that is, gross production less that (1) returned to underground formations for repressuring, pressure maintenance, and cycling and (2) vented to air, burned in flares and other losses; in order to be as comparable as possible with Bureau of Mines data, items (1) and (2) cover operations of natural-gas liquids plants as well as crude petroleum and natural gas establishments. Bureau of the Census gross production total was only 92 percent of that of Bureau of Mines figure. However, since deductions for Census amounted to only 18 percent of Census gross production as compared with 20 percent for Bureau of Mines, marketed production derived from Census data equals 95 percent of Bureau of Mines marketed production.

13 Valued at Census average value, at well, of shipments, that is, net deliveries to instural-gasoline plants and deliveries to distributors, transmission companies, and consumers.

14 Includes crude petroleum shipped, crude used in lease operations (valued at Census average value of crude shipped), and field condensate and drips shipped.

of the Census mineral production data for 1954 1-Continued

Industry	data (Bu	reau of th	ne Census)²			
		Value o	f shipments lars; gross sl	and interp nipments un	lant transfeless otherwi	ers (thou- se stated)
Industry or industry group (unless		Total	Pr	imary produ	icts	
Industry or industry group (unless otherwise stated, the mineral specified is the primary product)		primary and sec- ondary products produced in the industry	Total	Produced in specified industry	Produced in other industries	Second- ary products and services
Clay, ceramic, and refractory minerals n. e. c.	19 1459					
			_			

¹⁵ Oil- and gas-field contract services industries (group 133).

in Census reports.

18 Data for other abrasive stones are included in "Other nonmetals."

19 Commodity is one of several primary to this industry. Value data, if any, in succeeding columns are for shipments of this commodity only, not for entire industry.

20 Net shipments of crude, ground (including flotation concentrates) and crushed, here valued at Census average value of crude shipped. Census reported 960,000 tons of crude produced (all in the barite and other mining industries) as compared with 926,000 reported by Bureau of Mines.

21 Captable and/or ground are considered primary products as well as grade. Values given for industry.

21 Crushed and/or ground are considered primary products, as well as crude. Values given for industry are as-shipped.

Withheld to avoid approximate disclosure of figures for individual companies.

Less than 1 percent of total value of shipments and interplant transfers.

Includes some production reported at finished-product stage but expressed in Bureau of Mines sold

²⁴ Includes some production reported at finished-product stage but expressed in Bureau of Mines sold or used figures in crude equivalent.

²⁵ Before 1955 Bureau of Mines did not include shipments of prepared masonry cement by portland-cement plants in its tabulations (such shipments totaled 12,831,000 barrels in 1954) but did include in shipments of portland cement that used in making masonry cement (2,216,000 barrels in 1954). If Bureau of Mines published 1954 total is adjusted to include prepared masonry cement shipped by portland-cement plants and to exclude portland cement used in making masonry cement, the revised total would be 285,-318,000 barrels.

²⁶ Franklage seet of containers.

26 Excludes cost of containers.

- 28 Excludes cost of containers.
 28 Excludes cost of containers.
 28 Excludes cost of containers.
 29 Includes quantity and/or estimated value for minerals produced and used at same establishment in producing manufactured products. (Note: The term "used" in the Bureau of Mines expression "sold or used" covers use of the mineral by the primary producer, whether in the same establishment where produced or in another plant of the same company.)
 29 Includes \$1,532,000 for kaolin and ball clay operations in manufacturing industries all of which was produced and used in the same establishment.
 29 Includes about \$9,600,000 for fire-clay operations in manufacturing establishments, including estimated value for clay produced and used in same establishment in producing manufactured products.
 30 Common clay is one of several minerals primary to this industry, total shipments of which were \$13,504,000, about 5 percent of which was for secondary products. Of the total net shipments of common clay, 25,803,000 short tons with an estimated value of \$25,287,000 represents that produced and used at the same establishment in the production of manufactured products. In addition, common clay operations in manufacturing establishments shipped \$247,000 of such clay.
 31 Net shipments of crude and ground by the feldspar and other mining industries, here valued at Census average value of net shipments of crude.
 32 Includes ground feldspar valued at \$1,503,000 produced at establishments classified in manufacturing industries.

industries.

30 Only 27/2 percent produced in mines and plants classified in gypsum-mining industry.
34 Production valued at Census average value of shipments.
35 Gypsum operations in manufacturing establishments. Includes estimated value for gypsum produced and used in same establishment.

Valued at Census average values of net shipments.
 Includes helium (\$3,202,000) not included in scope of the Census, since all is produced in Government owned and operated plants; and estimated value of carbon dioxide, natural (\$211,000), not shown separately in Census reports.

38 Lime made for use in same establishment is excluded; Bureau of Mines data include such lime. Value includes \$677,000 for "Other lime" and \$2,299,000 for "Lime, not specified by kind," quantities for which were not recorded.

37 Approximation. Production of ground mica as reported by Bureau of the Census valued at Census average value of scrap shipped. Census shipments of scrap represent only that sold to consumers for grinding; that produced and consumed in the same establishment appears only in terms of shipments of ground mica. Bureau of Mines reported 80,072 short tons of ground mica valued at \$4,889,000 sold by producers as opposed to shipments of 81,412 short tons valued at \$4,694,000 reported by Census.

38 Asshipped value included for ground mica.

as opposed to surplinents of 81,412 short tons valued at \$4,694,000 reported by Census.

38 As-shipped value included for ground mica.

39 Includes ground mica valued at \$3,155,000 produced at manufacturing establishments.

40 Quantity includes full-trim sheet mica equivalent of hand-cobbed mica; value includes as-shipped value of such mica.

41 Bureau of Mines reported 261,000 short tons produced as against 277,000 tons reported by Census Bureau.
42 Bureau of the Census reports indicate that production, if any, in other than primary industry was less than 0.5 percent.

than 0.5 percent.

43 Quantitywise, 93 percent of shipments was by pyrites subindustry.

44 Represents establishments primarily engaged in mining, crushing, and screening rock salt.

45 Includes value of rock salt shipped by salt industry; this value cannot be shown separately.

46 Includes value of evaporated salt shipped by rock-salt industry.

47 Represents shipments of (1) salt by the salt (2898) and other manufacturing industries (3,906,000 tons valued at \$1,836,000) and (2) evaporated salt by rock-salt industry (157,000 tons valued at \$4,812,000).

These figures probably include some salt produced from "salt in brine" as reported by the Bureau of Mines. Figures include duplication to extent that shipments of salt from 1 establishment have been processed further at another. further at another.

tra Census does not collect information on salt in brine produced and used in same establishment in manufacturing chemicals. Such use accounts for most of Bureau of Mines totals for "salt in brine." See

manufacturing chemicals. Such use accounts for most of Bureau of Mines totals for "salt in brine." See also, second sentence of footnote 47.

§ Represents establishments primarily engaged in manufacturing edible salt from rock salt and from natural and artificial brines.

© Classified into 2 categories: Commercial, 395,924,000 tons valued at \$414,753,000; and Government-and-contractor, 163,477,000 tons valued at \$81,919,000. Government-and-contractor classification includes direct output by Government agencies and some output of private producers. All of production of a private producer must be one contract to a Government agency to have production. All of production of a private producer must be one contract to a Government agency to have production classified as Government-and-contractor; if any part was sold, the entire production reverts to commercial classification.

Planting 24,410,000 short tons, valued at \$21,581,000 reported as "For use by same company as contractor or subcontractor on Federal, State, or local government projects," part of which may have been produced by private producers all of whose production was on contract to Government agencies. Other than the Census data cover only commercial production.

These data indicate that 96 percent of the value of shipments of sand and gravel was accounted for by establishments in the sand and gravel industry. However, "sold or used" value data reported indicate that such establishments accounted for only about 93 percent of the total value of sand and gravel sold or used. Further, actual proportion may have been still lower, since Census indicates that there may have been significant undercoverage of sand and gravel produced and used at same establishments in making readymixed concrete. mixed concrete

51 Includes \$12,290,000 for shipments of sand and gravel operations included in manufacturing and whole-

il Includes \$12,290,000 for shipments of sand and gravel operations included in manufacturing and wholesale trade establishments.

il Bureau of the Census classifies quarries without dressing plants primarily engaged in producing this kind of dimension stone in the mining industry noted under "Industry code," with rough dimension stone being the primary product. Quarries operated in conjunction with a dressing plant are included in manufacturing Industry 3281, "Cut stone and stone products," with dressed dimension stone the primary product. Census figures on dimension stone cover shipments from these 2 types of operations but do not cover shipments from any dressing plant not operated in conjunction with a quarry, even though such plant may be an integral part of a company engaged in quarrying and dressing stone. Bureau of Mines production data are compiled on basis of quantities of rough blocks and finished products odd by primary producers (that is, companies that quarried the stone) or used by them in construction or another end use. Thus, if a particular company operates both a quarry with no dressing plant are included by Bureau of Mines as finished products of the quarry produces at the rough-block stage. For this reason, Bureau of Mines shows less rough dimension and more dressed stone shipped by this company than Census. Further, overall dimension tonnage included for the company by Bureau of Mines is considerably less because of tonnage loss in converting rough blocks into finished products. On the other hand, Bureau of Mines value for the company is higher because of value added by processing.

is for purposes of this table, industry-shipments data have been rearranged by Bureau of Mines, considering dressed as well arough stone a primary product of this mining industry, even though none was shipped in the company in the company is not the company in the company in the company is not made and the products and the company is not the company in the company of the company is higher because of value added

Second for this table, industry-sinpments data have been rearranged by Bureau of Mines, considering dressed as well as rough stone a primary product of this mining industry, even though none was shipped by such industry. Thus, the column "Produced in other industries" covers not only shipments of rough stone by such industries but also all shipments of dressed stone. For dimension stone operations included in manufacturing (that is, Industry 3281) shipments of dressed and rough together included in this column for particular kind of stone are: Slate, \$6,438,000; granite, \$21,640,000; marble, \$5,596,000 dressed plus no more than \$448,000 rough (exact amount not available); limestone, \$16,070,000; sandstone, \$5,340,000; basalt and related stone, and Other stone, \$582,000 dressed plus no more than \$44,000 of rough (exact amount not available).

related stone, and Other stone, \$582,000 dressed plus no more than \$44,000 or rough (exact amount able).

4 "Noncommercial operations" are covered by Bureau of Mines but not by Census. Amounts included for such operations by the Bureau of Mines are as follows: All stone, 19,351,000 tons, \$2,000; Dimension stone: Total, 32,000 tons, \$39,000; Limestone, 23,000 tons, \$35,000; granite, 1,000 tons, \$2,000; sandstone, 6,000 tons, \$5,000; other stone: Total, 19,319,000 tons, \$2,1,167,000; Limestone, 10,479,000 tons, \$1,545,000; granite, 1,374,000 tons, \$1,879,000; sandstone, 1,607,000 tons, \$1,540,000; Limestone, 10,479,000 tons, \$3,42,000; other stone, 2,297,000 tons, \$1,861,000.

55 Figures for dimension limestone and crushed and broken sandstone together include a total of 19,000 tons valued at \$38,000 to avoid disclosing individual company confidential data. These amounts not included in figures for "Stone, total."

56 Includes quantity and estimated value for stone produced and used in same establishment in manufacturing cement and lime. Value was estimated by applying Census average value of actual net shipments to quantity of stone used. Bureau of Mines data cover such stone.

57 Covers actual net shipments of calcareous marl, not included in commodity data for limestone, but shown separately elsewhere in this table.

Net shipments. Data for all mining industries included in column "Produced in specified industry."

18 Includes following amounts of shipments of quarrying operations included in manufacturing establishments: Limestone, \$113,949,000 (including estimated value of stone produced and used in same establishment in manufacturing cement and lime); granite, \$355,000; traprock, \$1,398,000; and stone, n. e. c., \$546,000.

18 Does not cover quartz, which is classified in Industry 1469, Natural abrasives, except sand, n. e. c.

18 Information on oystershell not collected by Bureau of the Census.

28 Census data cover dimension soapstone, which the Bureau of Mines includes in its figures fer "Other dimension stone." Both agencies' data cover crude, sawed, crushed, and ground. However, Bureau of Mines figures cover a greater proportion of production measured at ground stage, which accounts for some of difference between two agencies' figures.

48 Represents ground talc, soapstone, and pyrophyllite produced at establishments classified in manufacturing industry, "Minerals and earths: Ground and otherwise treated."

40 Data for both agencies include vermiculite, graphite, lithium minerals, iron-oxide-pigment materials (crude), wollastonite, aplite, olivine, kyanite, brucite, magnesite, diatomite, sharpening stones, millstones, grindstones, and pulpstones. Bureau of Mines data included an estimated total for gem stones, while Census data include a reported figure on gem materials. In addition, Bureau of Mines total covers calcium-magnesium chloride, iodine, epsom salts from epsomite, titanium-iron concentrate (nontitanium use), strontium minerals, bromine, and magnesium compounds from sea water and brines (except for metals), for which minerals data are not available from Bureau of the Census reports. The latter agency's total includes calcite (Iceland spar), miscellaneous sulfur-bearing materials, bismuthnite, lignaceous shale, mineral-soil builders, and bat guano, not covered by Bureau of Mines figures.

48 Totals have been adjusted to eliminate duplicating value of clays and stone used in cement and line. For Bureau of th

cement but also that used in clay, ceramic and, refractory products), clay value employed to adjust Bureau

of Mines total has been used.

of Mines total has been used.

67 Census estimate based on receipts at mills.

68 Net shipments approximated by Bureau of Mines by subtracting from gross shipments quantity and/or value of minerals received for preparation by establishments classified in primary industry. Duplication may still exist to extent that establishments classified in other industries also received minerals for prepara-

tion.

6 Value of chromium concentrates not produced in chromium ores subindustry was only about \$1,000.

6 Value of chromium concentrates not produced in chromium ores subindustry was only about \$1,000. "Includes recoverable metal content of gravel washed (placer operations), ore milled, old tailings, slimes, etc., re-treated, and ore, old tailings, copper precipitates, old slag, mill cleanings, etc. shipped directly to smelters.

etc., re-treated, and ore, old tailings, copper precipitates, old slag, mill cleanings, etc. shipped directly to smelters.

"Recoverable content of concentrates produced and of shipments of direct smelting and leaching ores, old tailings, precipitates, mill bullion, and placer gold. Census reports indicate that differences between Bureau of Mines figures and those of Bureau of the Census arise principally from differences in methods followed and objectives sought by the two agencies in compiling and presenting statistics. Further, that for lead and zinc difference is due almost entirely to inclusion by Bureau of Mines of lead and zinc recovered at smelters from old slag and smelter cleanings if this material was not included in their statistics for earlier years. Census figures include only metals recoverable from ores mined or milled in 1954.

"P Primary products of industry are ores and concentrates valued chiefly for recoverable content of indicated metal. Bureau of the Census data on recoverable metal produced, by industry, indicate that following proportions of metal specified were produced in the mining industry or undustry group of the same name: Copper, 96.5 percent; lead-zinc, 97.3 percent (Census data were valued at Bureau of Mines average lead and zinc prices to combine these 2 metals); gold (ode and placer), 59.1 percent; and silver, 32.4 percent.

"Value of shipments of concentrates and other materials cited in footnote 71. Bureau of Mines values are recoverable contents valued as follows: Gold, at price under authority of Gold Reserve Act of Jan. 31, 1934; silver, at Treasury buying price for newly mined silver; copper, lead, and zinc, each at yearly average weighted price of all grades of respective primary metal sold by producers (except for New Jersey—see footnote in Statistical summary chapter of this volume).

"A Net shipments for "lode-gold" industry; gross shipments for "placer-gold" industry.

"Data for iron ore include, and those for manganiferous ore exclude, manganiferous iron ores valu

Valued at average value per flask determined from Census shipments data. Bureau of Mines production is valued at the average price at New York.
 Includes foreign ore concentrated at mills in United States. Bureau of Mines data apply only to domes-

tic ores.

**Includes value of small quantity of titanium ore shipped for concentration, amounting to less than 1 percent of the value for all titanium concentrates.

**Otovers cobalt, nickel, columbium-tantalum concentrate, antimony, tin, molybdenum, platinum-group metals, and rare-earth-minerals concentrate, with the following qualifications. For the Bureau of the Census data, this represents shipments of the Metallic ores, n. e. c. industry (1099) less the estimated shipments of beryllium (shown elsewhere in this table), the remainder being reduced one-third to approximate net shipments; and approximate net shipments of molybdenum-ores industry (1063) and ferroalloys (except vanadium and chromium) n. e. c. subindustry (part of industry 1069) plus the shipments of molybdenum concentrates by the copper-ores industry. Except for latter inclusion, no data are included for shipments by other industries of products listed (that is, as secondary products). Bureau of Mines data in addition to covering all shipments of the products indicated, regardless of industry classification, cover vanadium, magnesium chloride for metal, and manganiferous residium, data for which are not available separately from Census reports. from Census reports.

The Bureau of Mines regularly collects annually from mineral producers, processors, and users—on a voluntary basis—information on mineral commodities at various stages in their progression from mine to end use. For most minerals there are monthly or quarterly canvasses as well. Production data are generally tabulated and published on a commodity basis; that is, the total of a mineral commodity produced, regardless of the industry classification (very roughly, the major activity) of the producer.

The Bureau of the Census in its economic census program (which includes the Census of Mineral Industries) collects data on expenses. capital expenditures, horsepower of equipment, energy use, water intake, and other items related to production as well as product data. These data are collected on an establishment basis; each establishment is then classified for purposes of tabulation and publication according to its major activity into an industry as defined by the Standard Industrial Classification.⁴

Census industry data indicate that, in a number of instances, all of a particular mineral commodity is produced by establishments classified in the mining industry of which the commodity is the primary product. As regards most minerals, however, some is produced by establishments classified in other industries. Some mining operations are part of establishments classified in manufacturing or other nonmining industries, and the economic data relating to the mining operations are not separable from those relating to the establishments' major and nonmining activity. Such operations are not included in the 1954 Census of Mineral Industries. However, as part of the 1954 Census of Manufactures, selected economic data were collected on mine or quarry operations at cement, lime, clay-products, and gypsumproducts plants. For dimension-stone quarries operated with dressing plants (which are classified by Census in manufactures) complete product and economic data reports comparable to those for the minerals census were obtained. Data for such stone, clay, and gypsum operations are shown both separately and in combination with the corresponding mining-industry data in the Census of Mineral Industries reports. Also some economic data are included for sand and gravel mining operations included in establishments classified in the manufacturing and wholesale trade industries.

⁴ The Standard Industrial Classification used in the 1954 Census of Mineral Industries was that for non-manufacturing industries issued in May 1949. A revised classification for all industries was issued in 1957.

⁵ In table 1 of this chapter the value of shipments of primary products by such operations is indicated, where possible, in a footnote to industry data given in the column "Produced in other industries." This value, plus that given for shipments of the primary products by the "specified industry," constitutes the portion of all shipments of primary products by all industries for which separable economic data (in whole or in part) are available in the Census reports (after due allowance is made for secondary products and services of the primary industry). of the primary industry).

TABLE 2.—1954 Census of Mineral Industries reporting forms and related Bureau of Mines forms

	Census form	Relation to Bureau of	Rela	ated Bureau of Mines form
Number	Name	Mines annual surveys ¹	Number	Name
MC-10A	Iron and Manganese Ores	Joint survey.	6-1066A 6-1085A	Iron Ore. Manganese and Manganiferous
MC-10B	Copper, Lead, Zinc, Lode Gold, and Silver Ores.	do	6-1177A 6-1177S	Ores. Production of Lead and Zinc. Custom Lead and Zinc Ore Milled.
ara ma	Diagram and Diagram		6-1178A	Lode-Mine Production of Gold, Silver, Copper, Lead, and Zinc.
MC-10D	Placer Gold, Silver, and Plat- inum-Group Metals.			
MC-10D1	inum-Group Metals. Placer Gold, Silver, and Plat- inum-Group Metals (for use in Alaska only).	}do	6-1176A	Placer-Mine Production of Gold, Silver, and Platinum.
MC-10E	Ranvite	do	6-1010A	Bauxite.
MC-10F MC-10G	Tungsten Ores Chromium, Cobalt, Molyb- denum, and Nickel Ores.	do	6-1140A 6-1035A	Tungsten Ore and Concentrate. Chromite.
1120 100	denum, and Nickel Ores.		6-1040A 6-1100A	Cobalt-Bearing Ore. Molybdenum Ore and Concentrate.
MC-10H	General Minerals Form	None		
MC-10J	Mercury, Titanium, and Mis- cellaneous Metal Ores.	Joint survey.	6-1015A 6-1090A	Antimony Ore and Concentrate. Mercury.
	Continuous Institut of the		6-1130A 6-1135A	Tin. Production of Ilmenite and Ru- tile.
			6-1096A	Columbium, Tantalum, Zir- conium, and Hafnium. Monazite Sand and Rare Earths.
MC-10K	Mineral Contract Services	None	6-1272A	Monazite Sand and Rare Earths.
MC-10S	Metallic Ores (short form)	Joint survey		See MC-10A, MC-10B, MC- 10D, MC-10E, MC-10F, MC- 10G, and MC-10J above.
MC-11A	Pennsylvania Anthracite	do	6-1385A 6-1386A	Pennsylvania Anthracite. Pennsylvania Anthracite: Mines Without Preparation Plants.
			6-1388A	Pennsylvania Anthracite: Dredge Report.
MC-11B	Pennsylvania Anthracite Stripping Contract Services.	do	6–1387A	Pennsylvania Anthracite from Strip Pits and Culm Banks: Contractors' Report.
MC-12A	Bituminous Coal and Lignite.	do	6-1401A	Bituminous Coal and Lignite Production and Mine Operation.
MC-12B	Distribution of Bituminous	None		61011.
MC-12S MC-13A	Coal and Lignite Shipments. Coal (short form) Crude Petroleum and Natural	Joint survey.		See MC-11A and MC-12A above.
MC-13B	Gas. Natural-Gas Liquids	Joint survey.	6–1237A	Sulfur, Hydrogen Sulfide and Liquid Sulfur Dioxide Re- covered as a Byproduct (joint for producers of natural-gas liquids only).
			6-1343A	Natural-Gasoline and Cycling Plants.
MC-13C	Oil- and Gas-Field Contract Services.	None		
MC-13X	Offshore Oil and Gas Opera-	None		
MC-13S MC-14A	Oil and Gas (short form)	None Tieline	6-1222A 6-1278A 6-1279A 6-1280A 6-1281A	Calcareous Marl. Granite. Limestone and Dolomite. Marble. Sandstone and Quartzite.
			6-1282A 6-1283A 6-1285A	Slate. Stone. Production of Stone by Rail-
			6-1292A	roads. Production of Miscellaneous Minerals.

See footnote at end of table.

TABLE 2.—1954 Census of Mineral Industries reporting forms and related Bureau of Mines forms—Continued

	Census form	Relation to Bureau of	Rela	ated Bureau of Mines form
Number	Name	Mines annual surveys 1	Number	Name
M C-14B M C-14C	Sand and Gravel Sand and Gravel (short form)	Jointsurvey	6-1273A	Sand and Gravel.
M C-14C M C-14D	Clay, Ceramic, and Refrac-	Tieline	6-1273A 6-1244A	Do. Ball Clay.
1120 112	tory Minerals.	Tromc.	6–1254A 6–1255A	Bentonite and Fuller's Earth. Fireclay, Stoneware Clay, and Miscellaneous Clay or Shale.
MC-14E	Feldspar, Mica, and Other Pegmatite Minerals.	Joint survey.	6-1262A 6-1294A	Kaolin or China Clay. Crude Feldspar, Mica, and Mis- cellaneous Minerals.
MC-14F	Barite, Fluorspar, Talc, Soapstone, and Pyrophyllite.	Tieline	6-1060A 6-1060AS	Flurospar. Do.
			6-1227A	Barite (Crude, Crushed, and Ground).
350 140	But it and I have	.	6-1290A	Talc, Soapstone, and Pyrophyllite.
MC-14G	Potash, Soda, and Borate Minerals.	Joint survey.	6-1233A	Natural Salines (Miscellaneous) (joint for mineral products only).
MC-14H	Phosphate Rock	Tieline	6-1252A 6-1251A	Potash. Phosphate-Rock Production, Sold or Used, and Stocks of Your Plants.
M C-14J	Sulfur and Pyrites	Joint survey.	6-1236A 6-1239A	Pyrites. Sulfur.
MC-14K	Native Asphalt, Bitumens, Peat, and Graphite.	do	6-1292A	Production of Miscellaneous Minerals.
			6-1328A	Native Bitumens and Allied Substances.
MC-14L	Miscellaneous Nonmetallic	Tieline	6-1391 A 6-1202 A	Peat.
WI C-1412	Minerals.	1 leline	6-1202A 6-1203A	Diatomite. Millstones, Chasers, Pulpstones, Grindstones, Oilstones, Whet- stone, Scythestone, Hones, and Rubbing Stones.
			6-1204A	Pumice and Pumicite (Volcanic Ash).
			6-1206A	Tripoli.
			6-1207A 6-1210A	Production of Crude Vermiculite. Asbestos.
			6-1218A	Gypsum and Gypsum Products.
			6-1232A	Magnesium Compounds.
			6–1235A 6–1263A	Salt. Crude Iron Oxide Pigment Mate-
	,		6-1292A	rials. Production of Miscellaneous Minerals.
MC-148	Minerals (short form)	None	6-1298A	Production of Crude Perlite.
MC-148M	do	Joint survey		See MC-14E, MC-14G, MC-14J, and MC-14K above.

¹ See text regarding cooperative efforts of the two bureaus in collecting 1954 data. Where joint survey is indicated the related Bureau of Mines forms were not used in 1954, both agencies obtaining their information from the Census form.

Abrasive Materials

By Henry P. Chandler 1 and Gertrude E. Tucker 2

Contents

Pa			Page
Natural silica abrasives 14	46	Artificial abrasives	157
Special silica-stone products 14	47	Miscellaneous mineral-abrasive ma-	
Natural silicate abrasives 14	48	terials	161
Natural alumina abrasives 14	49	Foreign trade	161
Industrial diamond 15	50		

URING 1957 natural and artificial abrasive materials sold or used in the United States increased 7 percent in tonnage and 16 percent in value over 1956. Sales of abrasive grinding wheels, surface-coated abrasives, and graded abrasive grain advanced during the first 9 months of 1957 over 1956 but declined during the final 3 months.

TABLE 1.—Salient statistics of the abrasives industries in the United States, 1948-52 (average) and 1953-57

Kind	1948–52 (average)	1953	1954	1955	1956	1957
Natural abrasives (domestic) sold or used by producers:		,				
Tripoli: 1 Short tons Thousand dollars	33, 805	36, 183	41, 625	49, 662	45, 009	50, 717
	944	1, 139	1, 459	213	203	195
Quartz, ground sand and sandstone: 2 Short tons Thousand dollars	167, 925	188, 019	214, 152	239, 030	281, 894	269, 178
	1, 255	1, 422	1, 651	1, 844	2, 067	2, 103
Special silica-stone products: 3 Short tons Thousand dollars	9, 559	6, 190	6, 221	4, 929	6, 180	5, 847
	440	338	323	264	411	331
Garnet: Short tons Thousand dollars	9, 872	10, 520	14, 183	11, 835	9, 812	9, 776
	823	989	971	1, 191	1, 073	1, 080
Emery: Short tons Thousand dollars	7, 650	10, 562	9, 758	10, 735	12, 153	11, 893
	102	144	132	151	174	184
Artificial abrasives: 4 Short tons	384, 788	466, 937	404, 376	428, 243	431, 461	484, 702
	36, 940	50, 036	44, 480	51, 081	55, 692	65, 634
sives): Imports thousand dollars do Reexports do Recomposition do Recomposition de Reexports do Recomposition de Recompositi	⁵ 50, 670 18, 649	77, 684 18, 535	72, 023 20, 757 6, 264	89, 795 24, 876 6, 444	6 99, 968 26, 845 7, 755	84, 718 27, 589 8, 702

Figures are for processed tripoli sold or used in 1948-54 and for crude tripoli sold or used in 1955-57.

² For abrasive purposes.
³ Includes grindstones, pulpstones (1948–52), oilstones and other sharpending stones (1956), value of millstones (1948–53 and 1956–57), grinding pebbles, and tube-mill liners (1948–54 and 1956–57).

⁴ Production of silicon carbide and aluminum oxide (United States and Canada); shipments of metallic

abrasives (United States)

⁵ Includes value of pumice, 1948-49. ⁶ Revised figure.

¹ Commodity specialist.

² Statistical assistant.

Production of silicon carbide and aluminum oxide in the United States and Canada both advanced in tonnage and value. The production of metallic abrasives in the United States decreased in tonnage, but its value was unchanged. Production of tripoli increased; that of garnet and emery declined.

Imports of abrasive materials into the United States decreased in value, mainly because imports of industrial diamond were reduced.

Exports and reexports of abrasive materials increased slightly.

NATURAL SILICA ABRASIVES

Tripoli.—During 1957 sales of processed tripoli, amorphous silica, and rottenstone increased 2 percent in tonnage and 3 percent in value A small quantity was imported. Of the domestic sales, over 1956.

71 percent was for abrasive purposes.

Companies mining and processing tripoli, amorphous silica, or rottenstone in 1957 were: Ozark Minerals Co., Cairo, Ill. (amorphous silica); Tamms Industries Co., Tamms, Ill. (amorphous silica); American Tripoli Division, The Carborundum Co., Seneca, Mo., and Ottawa County, Okla. (tripoli); Penn Paint & Filler Co., Antes Fort, Pa. (rottenstone); and Keystone Filler & Manufacturing Co., Muncy, Pa. (rottenstone).

Price quotations on tripoli in E&MJ Metal and Mineral Markets were as follows (per short ton, paper bags, minimum carlot 30 tons, f. o. b. Missouri): Once-ground through 40-mesh, rose and cream, \$50; double-ground through 110-mesh, rose and cream, \$52; and air-floated

through 200-mesh, \$55.

TABLE 2.—Processed tripoli 1 sold or used by producers in the United States, 1948-52 (average) and 1953-57, by uses ²

			/		, ,			
	Abra	sives	Fi	ller		ncluding facings	To	otal
Year	Short tons	Thou- sand dollars	Short tons	Thou- sand dollars	Short tons	Thou- sand dollars	Short	Thou- sand dollars
1948-52 (average)	26, 206 25, 000 31, 050 32, 870 32, 189 31, 326	760 852 1, 181 1, 376 1, 328 1, 300	5, 257 7, 000 8, 719 8, 189 7, 274 7, 429	112 163 203 \$ 189 173 171	2, 342 4, 183 1, 856 4 5, 910 3, 875 5, 533	72 124 75 4 237 116 194	33, 805 36, 183 41, 625 46, 969 43, 338 44, 288	944 1, 139 1, 459 1, 802 1, 617 1, 665

¹ Includes amorphous silica and Pennsylvania rottenstone.

² Partly estimated.

3 Includes some tripoli used for abrasive purposes.
4 Includes some tripoli for filter block.

Abrasive Sands.—Glass grinding, stone polishing, sand blasting, and similar industries used substantial tonnages of natural sands with a high-silica content as abrasive materials. Sales of these sands totaled 1,911,218 short tons valued at \$5,574,176 in 1957, compared with 1,668,502 short tons valued at \$5,250,606 in 1956. The 1957 figure includes 916,231 short tons of blast sand valued at \$3,756,695.

Quartz.—Information on production and sale of crude, crushed, and ground quartz and ground sand and sandstone, which formerly appeared in the Abrasive Materials chapter of Minerals Yearbook, is included in the Stone and Sand and Gravel chapters of this volume. However, the quantity of these materials used for abrasive purposes is reported.

The tonnage of graded quartz used by the coated abrasive industry

decreased from the preceding year.

TABLE 3.—Ground sand and sandstone, quartz, and quartzite used for abrasive purposes, 1948-52 (average) and 1953-57

	Ground sand			quartz and tzite	Total	
Year	Short tons	Thousand dollars	Short tons	Thousand dollars	Short tons	Thousand dollars
1948–52 (average)	(1) 171, 974 182, 046 209, 729 257, 656 191, 978	(1) 1, 329 1, 467 1, 692 1, 939 1, 716	(1) 16, 045 32, 106 29, 301 24, 238 77, 200	(1) 93 184 152 128 387	167, 925 188, 019 214, 152 239, 030 281, 894 269, 178	1, 255 1, 422 1, 651 1, 844 2, 067 2, 103

¹ Distribution not available for 1948-51.

SPECIAL SILICA-STONE PRODUCTS

Grindstones and Pulpstones.—Ohio was the only State reporting production of grindstones. Sales of natural pulpstones were last reported in 1952.

Oilstones and Other Sharpening Stones.—Sales of sharpening stones increased 52 percent in tonnage and 4 percent in value in 1957, compared with 1956. The crude material for oilstones was mined in Arkansas; for whetstones, in Arkansas and Indiana; and for scythestones, in New Hampshire.

Millstones.—Rowan County, N. C., was the only area in the United States where millstones were made in 1957. No output of chasers

was reported.

Grinding Pebbles and Tube-Mill Liners.—Sales of grinding pebbles increased 25 percent in tonnage and 21 percent in value; tube-mill liners increased 36 percent in tonnage and 46 percent in value over the previous year.

TABLE 4.—Grindstones and pulpstones sold by producers in the United States, 1948-52 (average) and 1953-57

	Grind	stones	Pulpstones			
Year	Short tons	Thousand	Qua	ntity	Thousand	
		dollars	Pieces	Equivalent short tons	dollars	
1948–52 (average) 1953 1954	5, 269 2, 499 2, 218	288 170 164	8	26	2	
1955. 1956. 1957.	2, 799 1 2, 789 1, 505	196 1 262 132				

¹ Includes oilstones and other sharpening stones.

Sales of grinding pebbles were reported from Minnesota, North Carolina, Texas, Washington, and Wisconsin. Tube-mill liners were reported from Minnesota, North Carolina, and Wisconsin.

TABLE 5.—Value of millstones and chasers sold by producers in the United States, 1948-52 (average) and 1953-57 ¹

Year	Number of producers	Thousand dollars	Year	Number of producers	Thousand dollars
1948–52 (average) 1953 1954	2 2 2 2	11 18 (2)	1955 1956 1957	1 1 1	(2) 4 5

¹ Produced in New York (1948 and 1953-54), North Carolina, and Virginia (1948-50 only). ² Figure withheld to avoid disclosing individual company confidential data.

TABLE 6.—Grinding pebbles and tube-mill liners sold or used by producers in the United States, 1948-52 (average) and 1953-57

	Grinding pebbles		Tube-m	ill liners	Total		
Year	Short tons	Thousand dollars	Short tons	Thousand dollars	Short tons	Thousand dollars	
1948–52 (average)	2, 969 2, 472 3, 070 2, 130 2, 330 2, 902	80 81 100 68 71 86	1, 295 1, 219 933 (1) 1, 061 1, 440	59 69 59 (1) 74 108	4, 264 3, 691 4, 003 (1) 3, 391 4, 342	138 150 158 (1) 148 194	

¹ Figure withheld to avoid disclosing individual company confidential data.

NATURAL SILICATE ABRASIVES

Garnet.—Garnet sales during 1957 showed little change in either tonnage or value from the preceding year. The domestic producers were: Baumhoff-Marshall, Boise, Idaho; Idaho Garnet Abrasive Co., Fernwood, Idaho; Barton Mines Corp., North Creek, N. Y.; and Cabot Carbon Co., Willsboro, N. Y. New York was the leading garnet-producing State.

The tonnage of garnet used in manufacturing coated abrasives in

1957 was about the same as in 1956.

A shipment of 30 long tons of garnet was exported from Tanganyika to the United Kingdom.³ A shipment of garnet from Madagascar to France was reported.⁴

The use of garnet in manufacturing ferrites was suggested.⁵ Sales of garnet since 1920 are presented graphically in figure 1.

³ Bureau of Mines, Mineral Trade Notes: Vol. 44, No. 4, April 1957, p. 30; vol. 45, No. 4, October 1957,

pp. 37-38. ⁴ U. S. Consulate, Johannesburg, Union of South Africa, State Department Dispatch 161: Jan. 23, 1958,

p. 1. ⁵ Electronics, Business Edition, Garnets Enter Electronics: Vol. 30, No. 68, June 20, 1957, p. 30.

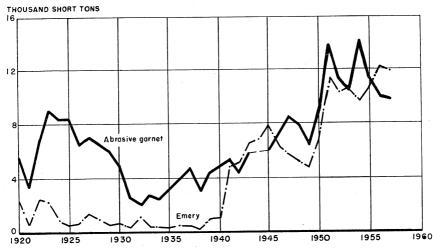


Figure 1.—Marketed production of abrasive garnet and emery in the United States, 1920-57.

TABLE 7.—Abrasive garnet sold or used by producers in the United States, 1948-52 (average) and 1953-57

Year	Short tons	Thousand dollars	Year	Short tons	Thousand dollars
1948-52 (average)	9, 872	823	1955	11, 835	1, 191
	10, 520	989	1956	9, 812	1, 073
	14, 183	971	1957	9, 776	1, 080

NATURAL ALUMINA ABRASIVES

Corundum.—Imports of corundum into the United States during 1957 increased 121 percent in tonnage and 186 percent in value over 1956. Nearly all came from the Union of South Africa. The average import value in 1957 was \$58 a short ton. There was no commercial production in either the United States or Canada during 1957.

A description of a corundum-sillimanite deposit in the Union of South Africa indicated that large reserves of this material were available. However, the material was apparently better suited for refractory than for abrasive purposes.⁶

Prices for crude corundum were quoted in E&MJ Metal and Mineral Markets as \$100 to \$120 per short ton, c. i. f. United States

The price of graded corundum quoted by a domestic processor, in sizes 8 to 240, inclusive, was 15 cents a pound, in carlots.

⁶ Bureau of Mines, Mineral Trade Notes: Vol. 44, No. 2, February 1957, pp. 23-25.

TABLE 8.—World production of corundum by countries, 1 1948-52 (average) and 1953-57, in short tons 2

[Compiled by	$^{\prime}$ Helen	L.	Hunt and	Berenice	В.	Mitchell]	
--------------	-------------------	----	----------	----------	----	-----------	--

1948-52 (average)	1953	1954	1955	1956	1957
14 12	(3)	(3)	(³) 10	(3)	(3)
725	363	527	149	395	142
$\begin{array}{c} 12\\4\end{array}$	1	1	4 2 9	4 100	(3)
100		17	20		
$\frac{25}{2}$	843	2,840	1, 168	4, 448	4, 506
3, 650	1, 865	1, 443	834	2,068	1, 547
10, 200	10,000	10,000	8, 000	11,000	10,000
	(average) 14 12 725 2 12 4 100 25 2 3,650	(average) 14 (3) 12	(average) (3) 14 (3) (3) 725 363 527 2	(average) (3) (3) (3) 12 (3) (3) 10 725 363 527 149 2 12 4 1 1 9 100 17 20 1,168 1,168 1,168 3,650 1,865 1,443 834	(average) (3) (3) (3) (3) 14 (3) (3) (3) 10 725 363 527 149 395 2 12 4 1 1 9 100 17 20 20 25 843 2,840 1,168 4,448 3,650 1,865 1,443 834 2,068

Emery.—Domestic production of emery decreased 2 percent in tonnage but increased 6 percent in value over 1956. The average value of emery ore at the mine was \$15.47 a short ton, an increase of 8 percent over the preceding year. The principal use of emery was for nonskid surfaces. A plant for processing emery ore operated at Peekskill, N. Y. The only domestic producers were DeLuca Emery Mine and DiRubbo & Ellis, both of Peekskill, N. Y. Domestic production of emery is presented graphically in figure 1. Emery imports declined.

The preparation and uses of emery were described.7

In 1956 the output of emery in Turkey was 4,980 metric tons, and in Greece, 7,000 metric tons.9 It was reported that a plant to produce emery paper and files was to be built in Alexandria, Egypt. 10

TABLE 9.—Emery sold or used by producers in the United States, 1948-52 (average) and 1953-57

Year	Short tons	Thousand dollars	Year	Short tons	Thousand dollars
1948–52 (average)	7, 650	102	1955	10, 735	151
1953	10, 562	144	1956	12, 153	174
1954	9, 758	132	1957	11, 893	184

INDUSTRIAL DIAMOND

Appraisals of the diamond industry and its outlook were made in English and South African publications. The opinions expressed indicated that the selling arrangements between the producers and

In addition to countries listed, corundum is produced in U. S. S. R., but data on production are not available; estimate is included in the total.
 This table incorporates a number of revisions of data published in previous Abrasive Materials chapters. Data do not add to totals shown owing to rounding where estimated figures are included in the detail.
 Data not available; estimate by senior author of chapter included in total.

Friedman, G. M., Emery: Min. Eng., vol. 9, No. 7, July 1957, pp. 745-746.
 Bureau of Mines, Mineral Trade Notes: Vol. 45, No. 1, July 1957, p. 22.
 Bureau of Mines, Mineral Trade Notes: Vol. 45, No. 3, September 1957, p. 20.
 U. S. Embassy, Cairo, Egypt, State Department Dispatch 401: Oct. 19, 1957, p. 15.

the Diamond Corp. had a stabilizing effect on the diamond market, but that they applied more to gem material than to industrial diamond.11

Manufactured diamond was available in sizes from 60 to 600 mesh.¹² The use of manufactured diamond in various grinding operations showed that its abrasive qualities are equal to the natural material in many industrial applications. Continued experimentation covering various phases of its manufacture and use indicated that it might soon be produced in commercial quantities at prices competitive with natural diamond.¹³

Production.—World production of industrial diamond during 1957 rose to 20.8 million carats, an increase of 14 percent over the previous During the first half of 1957, conditions in the industrial diamond market called for increased output. Expansion took place wherever possible, and prospecting activity rose.14

TABLE 10.-World production of industrial diamond, by countries, 1955-57, in thousand carats 1

Country	1955	1956	1957
Africa:			
Angola	305	300	350
Belgian Congo	12 480	13, 280	15, 100
rench Equatorial Airica	1 00	95	70
French West Africa	210	260	150
Ghana (Gold Coast)	1,770	1, 415	1, 950
Sierra Leone 23	540	780	1,000
South-West Africa	80	100	1,000
Tanganyika		187	200
Union of South Africa:	- 100	101	200
"Pipe" mines:		1	
Premier	1,050	1, 100	1,150
DeBeers group	450	400	400
Others	100	100	90
"Alluvial" mines.	65	60	40
		- 00	120
Total Africa	17, 300	18, 100	20, 600
	17,000	10, 100	20,000
Other areas:			
Brazil 3	100	150	150
British Guiana	20	18	150
Venezuela	100	75	70
Australia, Borneo, India, and U. S. S. R.3	100	10	70
		- 0	3
World total	17, 500	18, 300	20, 800
	17,000	10, 000	20,000

Prepared jointly by the Bureau of Mines and Dr. George Switzer, Smithsonian Institution.

² Includes unofficial production of Liberia. 3 Estimate.

Economist (London), The Diamond Ring: Vol. 185, No. 5962, Nov. 30, 1957, pp. 791-793.
 Leeper, Sir Reginald, The Development of the Diamond Industry: Optima (Johannesburg), vol. 7,
 No. 3, September 1957, pp. 125-129.
 Mining Journal (London), The Outlook for Industrial Diamonds: Vol. 248, No. 6352, May 17, 1957, p. 627.
 South African Mining and Engineering Journal (Johannesburg), vol. 68, pt. 1, No. 3354, May 24, 1957,

p. 1015.

12 Beardslee, K. R., Man-Made Diamond Ready for Market: Carbide Eng., vol. 9, No. 11, November

^{1987,} pp. 5-9.

18 Wentorf, R. H., Jr., A Hard-Rock Scientist: New York Times, Feb. 13, 1957, p. C29.

Mining Journal (London), The Shadow of Man-Made Diamonds: Vol. 249, No. 6375, Oct. 25, 1957, pp.

^{201-492.}Chemical Engineering News, Man-Made Gems Go to Market: Vol. 35, No. 44, Nov. 4, 1957, p. 60.
Chemistry, Man-Made Diamonds Going Into Production: Vol. 31, No. 4, December 1957, p. 22.
Slawson, C. B., Hardness of Synthetic Diamonds: Am. Mineral, vol. 42, No. 3-4, March-April 1957, pp.

Slawson, C. B., Hardness of Synthesic Diamonds. Am. Milletin, vol. 2, 200300, 329-300.

14 South African Mining and Engineering Journal (Johannesburg), Diamond Production: Vol. 68, pt. I, No. 3358, June 21, 1957, p. 1229.

Mining Journal (London), Increased Demand for Gems: Vol. 249, No. 6360, July 12, 1957, p. 57.

Although demand slackened in the United States during the last half of 1957, no apparent world oversupply developed and other con-

suming areas seemed to absorb the available material. 15

The principal increase in the world industrial diamond supply during 1957 occurred in Belgian Congo where production at the Bakwanga mine increased 12 percent over 1956, and was about 14 million carats.16

An unconfirmed increase in the Sierra Leone-Liberia industrial

diamond production may have been as much as 500,000 carats.

The U.S.S.R. reported that diamonds were found over a large area in central Siberia, but apparently no commercial production was reported.17

Prices.—London prices for certain types of industrial diamond

advanced during the year.18

Foreign Trade.—Owing to slackening industrial demand and reduced national stockpile purchases, imports of industrial diamond into the United States during 1957 decreased 25 percent in weight and 32 percent in value from 1956.

TABLE 11.—Industrial diamond (excluding diamond dust and manufactured bort) imported for consumption in the United States, 1948-52 (average) and 1953-57

[Bureau of the Census]

Year Thousand carats		Thousand dollars	Year	Thousand carats	Thousand dollars	
1948–52 (average)	10, 666	36, 842	1955	14, 952	65, 672	
1953	12, 769	46, 882		1 16, 166	1 73, 291	
1954	13, 807	48, 018		12, 178	49, 684	

¹ Revised figure.

1957, p. 5.

<sup>Mining Magazine (London), Diamonds: Vol. 156, No. 6, June 1957, p. 326.
South African Mining and Engineering Journal (Johannesburg), Demand for Diamonds: Vol. 68, No. 3357, June 14, 1957, p. 1175; Diamond Sales, pt. II, No. 3374, Oct. 11, 1957, p. 359.
Mining Journal (London), Diamond Demand Unabated: Vol. 248, No. 6355, June 7, 1957, p. 729.
Moyar, A., Brussels, Belgium, Letter to the Bureau of Mines: Jan. 30, 1958.
Davidson, C. F., The Diamond Fields of Yakutia: Min. Mag. (London), vol. 97, No. 6, December 1957, 220 220.</sup>

pp. 329-338.

Times Review of Industry (London), Siberian Diamonds for Soviets: Vol. 11, No. 127, August 1957,

pp. 77-79. South African Mining and Engineering Journal (Johannesburg), Diamonds for Soviet Industry: Vol. 68,

No. 3379, Nov. 15, 1957, p. 611.

South African Mining and Engineering Journal (Johannesburg), Industrial Diamonds: Vol. 68, pt. II,

South African Mining and Engineering Journal (Johannesburg), Industrial Diamonds: Vol. 68, pt. II,

No. 3375, Oct. 18, 1957, p. 409.

Wall Street Journal, Price of Some Diamond Drill Stones Increased in London: Vol. 150, No. 69, Oct. 7,

TABLE 12.—Industrial diamond (including diamond dust and manufactured bort) imported for consumption in the United States, 1956–57, by countries

[Bureau of the Census]

						.				
Country	fact (dia	manu- tured mond ies)	(inclu types suita	Crushing bort (including all types of bort suitable for crushing)		ndustrial d (includ- ziers' and ravers' nd unset niners')	Carbonado and ballas		Dust and powder	
	Carats	Value	Carats	Value	Carats	Value	Carats	Value	Carats	Value
1956										
North America: Bermuda					6, 342	\$79, 407 3, 578, 769				
Canada Mexico	192	\$1,528	64, 066 301			3, 578, 769 5, 251			10, 392	\$14, 984
Total	192	1, 528	64, 367	219, 531	547, 790	3, 663, 427			10, 392	14, 984
South America: Brazil					11, 642	230, 478	1, 549	\$23, 539		
British Guiana. Venezuela			2, 549	55, 996	240 11, 236					
Total			L .	55, 996	23, 118	516, 879	1, 549	23, 539		
Europe: Belgium- Luxembourg France Germany,	3,003	218, 349			1, 044, 053 123, 077	13, 258, 472 1, 084, 553			5, 475 1, 250	30, 428 3, 563
West Netherlands	362 2,824 122	28, 655 65, 558 7, 484	2, 160	6, 696	3, 926 168, 161	52, 459 1, 390, 212			1, 500	5, 750
Sweden Switzerland United King-	İ	0,000			1,000	20,100				
dom Total						24, 324, 606 40, 124, 095		16, 516		70, 596
Asia:	8,048	529, 491	1,024,754	1, 111, 100	0, 200, 220	10, 121, 030	1, 100	10, 010	20,000	=====
Hong Kong India Israel Japan					207 626 3, 067 1, 871	17, 625 21, 287				
Total					5, 771	45, 579				
Africa: Belgian Congo British West		1	ł	i e		1, 386, 115				
_ A frica, n. e. c_					6, 937	i i				
French Equa- torial Africa Liberia Union of South					22, 523 3, 169	368, 936 56, 074	949	29, 419		
Africa				871, 324						
Total Oceania: Aus-	214	1, 887		¹ 16,183,634	1, 471, 417 500		949			572, 413
tralia Grand										
total, 1956.	9, 054	² 332,912	18,817,004	120,870,270	7, 344, 825	² 52,351,559	3,648	69, 474	238, 750 =====	697, 734

Revised figure.
 Owing to changes in tabulating procedures by the Bureau of the Census, data known to be not comparable with years before 1954.

^{486221—58——11}

TABLE 12.—Industrial diamond (including diamond dust and manufactured bort) imported for consumption in the United States, 1956-57, by countries—Con.

Country	fact (dia:	t manu- ctured types of amond suitabl		Ishing bort cluding all diamond (including slates) best of bort itable for rushing) Other industrial diamond (including slaties) and engravers' diamond unset and miners')		Carbonado and ballas		Dust and powder		
	Carats	Value	Carats	Value	Carats	Value	Carats	Value	Carats	Value
1957				-					-	
North America: Bermuda Canada			53, 600	\$209, 946	1, 998 714, 086	\$31, 550 5, 011, 011			20, 117	\$43, 735
Total			53, 600	209, 946	716, 084	5, 042, 561			20, 117	43, 735
South America: Brazil British Guiana_ Venezuela					13, 582 12, 108 729	315, 900 324, 126 9, 475		\$8, 145		
Total					26, 419	649, 501	600	8, 145		
Europe: Belgium- Luxembourg France Germany, West	17 1, 621 465	148, 937			18, 692 1, 691	62, 397				3, 750
Italy	138 22 29 3, 739			2, 500 5, 147, 294	222 5, 335	294, 604 3, 855 28, 090	586	4, 913	3, 820	12, 340
Total	6, 031			5, 149, 794			1, 480		ļ	
Asia: India Israel Japan	26	776			230 290 500	8, 263 14, 626 10, 000				
Total	26	776			1,020	32, 889				
Africa: Belgian Congo British West Africa, n. e. c. French West			5,000	13, 975		1, 121, 992			92, 737	281, 509
AfricaGhanaLiberiaUnion of South					36 802 6, 331	248 2, 747 85, 672				616, 592
Africa Total	(3)	980		12, 442, 633					284, 051	
Grand total				17, 802, 373						1,186,227

³ Less than 1 carat.

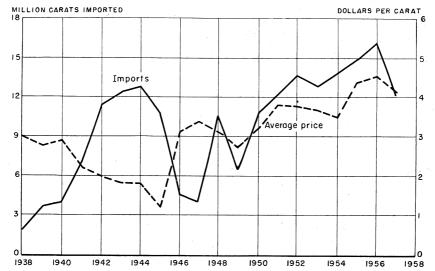


Figure 2.—United States imports and average price per carat of industrial diamond, 1938-57.

World Review.—Reviews of the world diamond industry in 1956

were published during 1957.¹⁹

The Portuguese Government was considering processing and grading, in Portugal, diamond from Angola. A drop in grade of the diamond-bearing gravel in Angola was offset by an increase in quantity mined, resulting in increased total diamond production.²⁰

At the Mwadui mine of Williamson Diamonds, Ltd., Tanganyika, a new recovery plant using heavy-medium separation and grease tables, began operating. Owing to the higher efficiency of this plant, the proportion of smaller and less valuable diamonds recovered was

larger than in the past.21

In Ghana all production of licensed diamond miners was sold through the Government Diamond Market where three private firms bought in competition. A duty of 9 percent on the appraised value was collected on diamond exports. A new washing plant capable of treating 300,000 cubic yards of diamond-bearing gravel annually was planned for the Akwatia district in Ghana.²²

Diamond discoveries were reported in South-West Africa, and

several prospecting concessions were granted.²³

Of the diamond output from the Union of South Africa, 86 percent came from "pipe" mines.24

¹⁹ Moyar, A., L'Industrie du diamant in 1956: Brussels, Belgium, November 1957, 181 pp. Switzer, George, 32d Annual Report on the Diamond Industry, 1956: Jewelers' Circ.-Keystone, 1957,

¹⁶ pp.

Bureau of Mines, Mineral Trade Notes: Vol. 44, No. 5, May 1957, pp. 26–28.

Bureau of Mines, Mineral Trade Notes: Vol. 45, No. 4, October 1957, p. 37.

Bureau of Mines, Mineral Trade Notes: Vol. 45, No. 5, November 1957, pp. 20–21.

Bureau of Mines, Mineral Trade Notes: Vol. 45, No. 5, November 1957, pp. 21–22.

Bureau of Mines, Mineral Trade Notes: Vol. 45, No. 5, November 1957, pp. 22–23.

The diamond production of Venezuela was 20 percent gem stones, 71 percent industrial stones, and 9 percent bort. Of the diamond

exports. 58 percent went to the United States.²⁵

Technology.—Articles summarizing recent geological studies of diamond-bearing kimberlite in Arkansas,²⁶ Tanganyika,²⁷ and the marine terrain of Namaqualand 28 appeared in the technical press.

Two American mining companies jointly examined diamond-mining areas in French Equatorial Africa with the view to dredging them—a new development in diamond mining.29

Descriptions of diamond-mining activities and new developments

in mining and recovery appeared in the technical press.30

Increased interest was shown in recovering diamond from grinding sludges, and new types of equipment were devised for that purpose. The removal of impurities, including organic materials, magnetic substances, silica, and alumina from industrial waste containing

diamond was explained in some detail.31

Continued demand for closer tolerances and automation in industry have increased the use of diamond tools and grinding wheels, and choosing the right diamond for the job has become more important.32 Studies in the use of industrial diamond indicate that a proper orientation of the diamond in a cutting tool is necessary to get the maximum results.33

Various factors that influence the choice of diamond or silicon carbide grinding wheels for sharpening cemented carbide tools were

25 Bureau of Mines, Mineral Trade Notes: Vol. 44, No. 5, May 1957, p. 28.
26 Leiper, H., Arkansas Dismonds: Jour. Gemmology, vol. 6, No. 2, April 1957, pp. 63-71.
27 Tremblay, M., The Geology of the Williamson Diamond Mine: Canadian Min. Jour., vol. 77, No. 12, December 1957, p. 92.
28 Sinelair, W. E., Notes on Namaqualand and Its Mineral Potential: Min. Mag., vol. 97, No. 2, August 1957, pp. 73-78.
29 California Mining Journal, Natomas Company Joins Tin Operators Mining for Diamonds in South Africa: Vol. 27, No. 4, December 1957, p. 23.
30 South African Mining and Engineering Journal (Johannesburg), Companhia de Diamantes de Angola: Vol. 68, No. 3344, Mar. 15, 1957, p. 475; Tanganyika Mining Industry in 1956, pt. 1, No. 3347, Apr. 5, 1957, p. 605.

Vol. 68, No. 3344, Mar. 15, 1957, p. 475; Tanganyika Mining Industry in 1956, pt. 1, No. 3347, Apr. 5, 1957, p. 605.

Mining Magazine (London), Diamonds in Sierra Leone: Vol. 116, No. 5, May 1957, pp. 259-260; Diamonds, No. 6, June 1957, p. 361.

Mining Journal (London), Illicit Diamond Miners Attack Sierra Leone Selection Trust: Vol. 249, No. 6368, Sept. 6, 1957, p. 281; Diamond Production in Tanganyika, No. 6378, Nov. 15, 1957, p. 577.

Mathur, S. M., Industrial Diamonds From Panna, India: Ind. Diamond Rev., vol. 17, No. 205, December 1957, pp. 227-228.

Mining World (London), South-West Africa: Vol. 19, No. 11, October 1957, pp. 97.

Mining World and Engineering Record, Williamson Diamond Mines: Vol. 172, No. 4484, Mar. 9, 1957, pp. 121.

Burford, J. H., Dredging operations by Wellington Alluvials, Ltd.: Chem. Eng. Min. Rev., vol. 49, No. 5, Feb. 15, 1957, pp. 157-160.

Burford, J. H., Dredging operations by Wellington Alluviais, Ltd.: Chem. Eng. Min. Rev., vol. 49, No. 5, Feb. 15, 1957, pp. 157-160.

Lottus, W. K. B., and Thorburn, G., Raising Vertical Ore Passes in Diamond Mines: Min. Mag. (London), vol. 117, No. 2, August 1957, pp. 82-85.

Jabel, J., Reclamation of Diamond Powder From Industrial Wastes: Ind. Diamond Rev., vol. 17, No. 195, February 1957, pp. 25-27.

Hunter, R. H., Diamond Swarf Collection, Is It Worthwhile?: Grits and Grinds, vol. 48, No. 3, March 1957, pp. 14-15.

Carbide Engineering, Be Dollars Ahead With Swarf Collections: Vol. 9, No. 5, May 1957, pp. 28-30.

Automotive Industry, Buick Installation Reclaims Diamond Dust From Grinding: Vol. 117, No. 3, 111 15 15 27, p. 23.

Automotive Industry, Buick Installation Reclaims Diamond Dust From Grinding: Vol. 117, No. 3, July 15, 1957, p. 33.

Industrial Diamond Review, Reclamation of Diamond: Vol. 17, No. 204, November 1957, p. 213. Swimmer, J., Diamond Powder Reclamation: Ind. Diamond Rev., vol. 17, No. 198, May 1957, p. 96.

3º Iron Age, Diamonds Reflect Industry Pace: Vol. 180, No. 11, Sept. 12, 1957, p. 92.

Engineering and Mining Journal, Choose the Right Diamond for the Job: Vol. 188, No. 6, June 1957, pp. 89-91; Choosing the Right Diamond for the Drilling Job, No. 12, December 1957, p. 106.

Ripple, J. W., Faster Carbide Grinding With Metal-Bonded Diamond Wheels: Ind. Diamond Rev., vol. 17, No. 196, March 1957, pp. 56-57.

Mine and Quarry Engineering (London), Tooled and Tools: Vol. 23, No. 5, May 1957, p. 193.

3º Denning, R. M., The Grinding Hardness of Diamond in a Principal Cutting Direction: Am. Mineral., vol. 46, No. 5-6, May-June 1957, pp. 362-366.

explained.34 Several methods of dressing diamond-grinding wheels were suggested, and the reasons for using different methods were explained.35 Increased use of diamond material for lapping was noted, and advice was given on the use of diamond compounds.36 New standard diamond-grinding wheel shapes were listed, and diamondwheel designations were explained. Also, a list of United States diamond-tool firms and an index of their products were published.37 The value of determining the ratio between the diamond content of a grinding wheel and its bonding material was emphasized.³⁸ Industrial diamond was used to grind boron carbide for gages and applications requiring high wear-resistance.39 Several new techniques for grinding sintered carbide cutting tools, without using diamond grinding wheels, were described. In a general survey of the use of diamonds in the wire industry, the hardness of individual stones and the quality of diamond powder used were considered.41

ARTIFICIAL ABRASIVES

During 1957, both the tonnage and value of artificial abrasives produced in the United States and Canada increased, compared with 1956. Silicon carbide increased 30 percent in tonnage and 28 percent in value; aluminum oxide increased 17 percent in tonnage and 25 percent in value.

TABLE 13.—Crude artificial abrasives produced in the United States and Canada, 1948-52 (average) and 1953-57

Year	Silicon carbide ¹		Aluminum oxide ¹ (abrasive grade)		Metallic	abrasives 2	Total	
	Short tons	Thousand dollars	Short tons	Thousand dollars	Short tons	Thousand dollars	Short	Thousand dollars
1948–52 (average)	77, 521 62, 301 66, 972 74, 805 95, 778 124, 688	8, 602 8, 190 8, 787 11, 027 14, 937 19, 152	163, 567 244, 136 219, 308 195, 822 195, 228 228, 511	13, 999 23, 808 22, 421 22, 142 22, 554 28, 202	143, 700 160, 500 118, 096 157, 616 140, 455 131, 503	14, 339 18, 038 13, 272 17, 912 18, 201 18, 280	384, 788 466, 937 404, 376 428, 243 431, 461 484, 702	36, 940 50, 036 44, 480 51, 081 55, 692 65, 634

Figures include material used for refractories and other nonabrasive purposes.
 Shipments from United States plants only.

³⁴ Pond, J. P., Factors That Influence the Choice of the Right Diamond Wheel: Carbide Eng., vol. 9, No. 5, May 1957, pp. 14-16.
Sinclair, E. L., Carbide Tool Grinding Starts With Wheel Selection: Grits and Grinds, vol. 48, No. 4, April 1957, pp. 7-13.
38 Ripple, J. W., What You Need to Know About Diamond-Wheel Dressing: Carbide Eng., vol. 9, No. 7, July 1957, pp. 14-16.
39 Grinding and Finishing, Lapping With Diamonds: Vol. 3, No. 2, June 1957, pp. 32-35.
Pond, J. P., What You Should Know About Diamond Abrasive Compounds: Carbide Eng., vol. 9, No. 5, May 1957, pp. 32-36.
39 Grinding Wheel Institute, Diamond Wheel Shapes: Am. Machinist, vol. 101, No. 14, July 15, 1957, pp. 167-169; Diamond Wheel Shapes III, IV, No. 15, July 29, 1957, pp. 123-125.
Carbide Engineering, Directory of Diamond Wheel and Abrasive Firms: Vol. 9, No. 5, May 1957. pp. 14-46.

<sup>41-46.

32</sup> Lindblad, F. W., Determining Diamond Concentration in a Diamond Wheel: Grinding and Finishing, vol. 2, No. 2, June 1957, p. 51.

33 Palm, A. I., How to Grind Boron Carbide: Ind. Diamond Rev., vol. 17, No. 196, March 1957, pp. 54-57.

43 Mechanical World, Carbide Grinding Methods: Vol. 137, No. 3455, June 1957, pp. 258-289.

44 Zucker, L. A., Industrial Diamonds in the Wire Mill: Ind. Diamond Rev. vol. 17, No. 202, September 1957, pp. 173-175, 179.

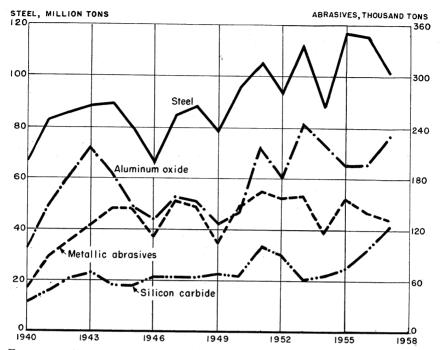


Figure 3.—Relationship between ingot-steel and artificial abrasive production, $1940{-}57.$

TABLE 14.—Production, shipments, and stocks of metallic abrasives in the United States, 1956-57, by products

Product		tured dur- year		sed during ear	Stocks on	Average annual capacity	
	Short tons	Thousand dollars	Short tons	Thousand dollars	Short tons	Thousand dollars	Short tons
1956							
Chilled iron shot and gritAnnealed iron shot and gritSteel shotOther types (including cut wire	72, 048 36, 501 28, 577	6, 944 3, 912 5, 338	72, 410 35, 917 27, 553	7, 171 4, 514 5, 484	1 8, 802 1 2, 241 1 4, 145	² 789 ² 279 ² 769	² 166, 134 69, 484 45, 025
shot)	5, 438	1, 197	4, 575	1,032	1 1, 320	² 346	9, 875
Total	142, 564	17, 391	140, 455	18, 201	1 16, 508	² 2, 183	² 290, 518
1957							=====
Chilled iron shot and grit Annealed iron shot and grit Steel shot Other types (including cut wire	60, 774 35, 634 29, 098	5, 847 4, 404 5, 420	61, 181 36, 111 27, 986	6, 336 4, 708 5, 849	8, 395 1, 764 5, 257	736 225 980	164, 294 69, 044 53, 100
shot)	6, 808	1, 423	6,225	1, 387	1, 903	506	11, 190
Total	132, 314	17, 094	131, 503	18, 280	17, 319	2, 447	297, 628

Stock adjustment.
 Revised figure.

The aluminum oxide production included 26,490 short tons of "white high-purity" material, valued at \$4,695,940. Nonabrasive uses consumed 38.4 percent of the silicon carbide and 4.9 percent of the aluminum oxide. In 1957, production was 95 percent of plant capacity for silicon carbide, compared with 81 percent in 1956; aluminum oxide production was 77 percent of plant capacity in 1957, compared with 69 percent in 1956.

TABLE 15.—Stocks of crude artificial abrasives and capacity of manufacturing plants, as reported by producers in the United States and Canada, 1948-52 (average) and 1953-57, in short tons

	Silicon carbide		Aluminu	ım oxide	Metallic abrasives 1		
Year	Stocks, Dec. 31	Average annual capacity	Stocks, Dec. 31	Average annual capacity	Stocks, Dec. 31	Average annual capacity	
1948-52 (average)	14, 650 18, 587 27, 852 10, 966 10, 314 13, 996	91, 342 110, 900 120, 000 118, 820 118, 900 131, 853	39, 698 25, 165 29, 924 39, 895 38, 551 36, 660	242, 634 273, 200 280, 200 282, 200 283, 500 298, 700	9, 397 11, 913 14, 414 14, 552 2 16, 508 17, 319	230, 447 255, 624 254, 950 264, 282 2 290, 518 297, 628	

Figures pertain to United States plants only.
 Revised figure.

The value of the domestic sales of abrasive grinding wheels in 1957 was \$174,207,000—a decline of less than 1 percent from 1956. Domestic coated-abrasives sales for 1957 were 2,175,591 reams, a decline of 4 percent from 1956, but their value increased 1 percent for the same

Domestic production of metallic abrasives in 1957 declined 7 percent in tonnage from 1956. A drop in production of chilled iron shot and grit furnished the decrease. There was virtually no change in the total value. In 1957, production of metallic abrasives was 44

percent of plant capacity, compared with 49 percent in 1956.

The modernization and expansion of The Carborundum Co. silicon carbide plants at Niagara Falls, N. Y., Vancouver, Wash., and Shawinigan Falls, Quebec, were described. Two abrasive companies were expanding their facilities for producing aluminum oxide in Brazil.43

Adequate manufacturing capacity and the availability of raw materials during 1957 assured a sufficient supply of abrasives for industry.44 Physical and chemical reactions are involved in abrasive grinding and influence the choice of grinding wheel for the intended work.⁴⁵ A comprehensive study of grinding-wheel manufacture explained some of the processes that are used in making the correct

Daily Metal Reporter, Carborundum Co. Launches Expansion: Vol. 57, No. 124, June 28, 1957, pp. 1, 9.
 Bureau of Mines, Mineral Trade Notes: Vol. 45, No. 6, December 1957, p. 26.
 Grinding Wheel Institute, 2130 Keith Bldg., Cleveland, Ohio, Simplified Practice Recommendation

Iron Age, No Strain in Buying Abrasives: Vol. 179, No. 25, June 30, 1957, p. 144.
48 Gardner, A. G., Grinding Wheels—Their Selection and Application: Mech. World, vol. 137, No. 3460, November 1957, pp. 486-492.

wheel for each grinding job.46 A comparison of the chemical and physical properties of natural and synthetic corundum were described.⁴⁷ A new grinding-wheel plant in California, providing a local supply of abrasives, was described.48

Increased use stimulated the development of new equipment for

manufacturing coated abrasives.49

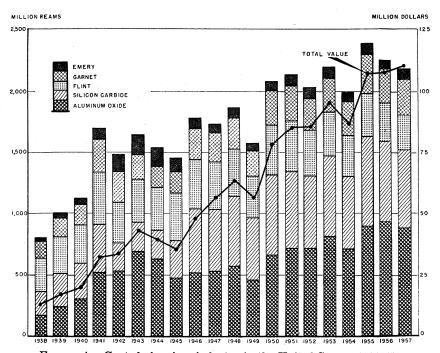


FIGURE 4.—Coated-abrasives industry in the United States, 1938-57.

Ceramic cutting tools, using aluminum oxide as the abrasive component, have shown increased cutting speed, more cuts per tool edge, and less machine idle time resulting in fewer tool changes in certain metal-cutting operations.⁵⁰ The number of machine operations where ceramic tools were used to advantage was increasing.⁵¹

General Electric Co. announced the synthesis of a new material, boron nitride in cubic form, under the trade name Borazon.

⁴⁶ Houchins, H. A., The Manufacture of Vitrified Grinding Wheels: Ceram. Age, vol. 69, No. 1, January 1957, pp. 12-15.

47 Barsta, C., The Production and Properties of Synthetic Corundum: Ind. Diamond Rev., vol. 17, No. 201, August 1957, pp. 147-150, 152.

48 Pacific Gas & Electric Progress, San Francisco, Grinding Wheels Custom Made: Vol. 34, No. 11, November 1957, p. 2.

49 Metal Industry (London), Coated Abrasives: Vol. 91, No. 3, July 19, 1957, pp. 45-46.

40 Machine and Tool Blue Book, How Ford Increased Production With Ceramic Tools: Vol. 21, No. 1, January 1957, pp. 140-143.

January 1957, pp. 140-143.

³¹ Haeme, A. O., and Hook, R. T. (Warner & Swasey Co.), Industrial Application of Ceramic Tools: Am. Soc. Tool Eng. Ann. Collected Pepers, 1957, No. 24, 8 pp.

Materials and Design Engineering, New Developments in Ceramic Materials: Vol. 46, No. 5, October 1957, pp. 214, 216, 218, 220, 222.

terial was reported to withstand a temperature of 3,500° F., to resist oxidation, and to have a hardness equal to that of diamond. The resistance to oxidation might allow wheels and tools made with Borazon to be operated at higher speeds than previously possible although there was no commercial production. 52

MISCELLANEOUS MINERAL-ABRASIVE MATERIALS

In addition to the natural and manufactured abrasive materials for which data are included, many other minerals were used for abrasive purposes. A number of oxides, including tin oxides, magnesia, iron oxides (rouge and crocus), and cerium oxide were employed as polishing agents. Certain carbides, such as boron carbide and tungsten carbide, were used for their abrasive properties, especially when extreme hardness was demanded. Other substances with abrasive applications included finely ground and calcined clays, lime, talc, ground feldspar, river silt, slate flour, and whiting.

Cerium.—An article on the production and uses of cerium ap-

peared in a technical journal.53

A patent was issued for a polishing composition consisting essentially of cerium oxide.54

FOREIGN TRADE 55

Imports.—The decline in industrial-diamond imports was the principal reason for a 15-percent drop in the total value of abrasive material imports into the United States during 1957. During the same period there was an increase of 21 percent in tonnage and 31 percent in value of the total imports of artificial abrasives. port value of coated abrasives increased; that of grinding wheels decreased. Imports of corundum ore increased substantially, but imports of emery ore decreased.

Exports.—Exports of abrasive materials during 1957 gained 3 percent in total value over 1956. Coated abrasives furnished 23 percent of the total; artificial abrasives, 21 percent; natural abrasives, 20 percent; grinding wheels and pulpstones, 19 percent; industrial diamond products, 8 percent; metallic abrasives, 4 percent; and other abrasive

products, 5 percent.

Industrial-diamond material comprised over 99 percent of the total value of the reexports of abrasive material in 1957. These reexports went to the following countries: Canada, 64 percent; Belgium, 17 percent; United Kingdom, 7 percent; West Germany, 4 percent; Japan, 4 percent; and 9 other countries, 4 percent.

²³ American Mineralogist, News and Notes: Vol. 42, No. 3-4, March-April 1957, p. 301.

New York Times, G. E. Makes Matter Hard as Diamond: Feb. 13, 1957, pp. 1, 29.

Industrial and Engineering Chemistry, Abrasives: Vol. 49, pt. II, No. 9, September 1957, p. 1589.

Electronic News, Industry Sees Many Uses for Borazon: Vol. 2, No. 16, Feb. 18, 1957, p. 12.

Lomas, J., Cerium: Canadian Min. Jour., vol. 78, No. 5, May 1957, p. 115-116.

Wilansky, Harold (assigned to Corning Glass Works, Corning, N. Y.), Cerium Oxide Polishing Compound: U. S. Patent 2,816,824, Dec. 17, 1957.

Figures on imports and exports compiled by Mae B. Price and Elsie D. Jackson, Division of Foreign Activities, Bureau of Mines, from records of the U. S. Department of Commerce, Bureau of the Census.

TABLE 16.—Abrasive materials (natural and artificial) imported for consumption in the United States, 1955-57, by kinds

[Bureau of the Census]

	1955		1	956	1957		
Kind	Quan- tity	Value	Quantity	Value	Quan- tity	Value	
Burrstones:							
Unmanufactured short tons					65	\$435	
Bound up into millstones short tons			(1)	\$480			
Hones, oilstones, and whet- stonesnumber_	58, 903	² \$31, 523	98, 689	² 39, 508	30,007	2 27, 71	
Corundum (including emery): Corundum ore_short tons_ Emery oredo	1, 399 840	96, 762 10, 686	1,857 1,960	83, 141 33, 775	4, 104 1, 334	238, 10 17, 30	
Grains, ground, pulverized, or refinedshort tons	566	118, 163	480	107, 890	722	168, 96	
Paper and cloth coated with emery or corundum reams	3 27, 012	319, 565	32, 317	² 331, 425	(4)	² 531, 757	
Wheels, files, and other manufactures of emery	34	² 61, 467	48	² 75, 030	31	² 63, 80	
wheels of corundum or sili- con carbideshort tons	4	2 10, 640	10	² 22, 312	13	2 18, 84	
Garnet in grains, or ground, pulverized, etcshort tons_		- 10, 010	2	280	2	240	
Tripoli, rottenstone, and di- atomaceous earth_short tons	28	1, 029			9	32	
Diamond: Bort, manufactured_carats Crushing bort (including all	2, 771	205, 139	9,054	² 332, 912	6, 057	2 275, 00	
types of bort suitable for crushing)carats Other industrial diamond	6, 502, 397	14, 630, 408	5 8, 817, 004	5 20, 870, 270	6, 833, 237	17, 802, 37	
(including glaziers' and engravers' diamonds un- set and miners')carats	8, 449, 010	51, 016, 224	7, 344, 825	² 52, 351, 559	5, 342, 766	31, 863, 50	
Carbonado and ballas carats Dust and powderdo	1, 175 152, 732	25, 602 435, 120	3, 648 238, 750	69, 474 697, 734	2, 080 386, 203	18, 34 1, 186, 22	
Flint, flints, and flintstones, ungroundshort tons Grit, shot, and sand, of iron and	7,809	² 169, 612	9, 492	² 243, 166	11, 502	2 280, 74	
steelshort tons	886	181, 658	836	222, 715	852	298, 76	
Artificial abrasives: Crude, not separately provided for: Carbides of silicon (carborundum, crystalon, carbolon, and electro-	en eo1	7 014 606	79.650	8, 906, 901	84,040	11, 205, 37	
lon)short tons Aluminous abrasives, alundum, aloxite, ex- olon, and lionite	67, 691	7, 914, 696	72, 659	8, 900, 901	04,040		
short tons Otherdo Manufactures:	151, 720 1, 390	14, 201, 390 109, 288	156, 982 2, 198	15, 044, 908 205, 006	192, 778 4, 695	19, 872, 66 456, 32	
Grains, ground, pulver- ized, refined, or man- ufactured_short tons_ Wheels, files, and other manufactures, not	1, 246	250, 168	1, 370	299, 915	1,624	2 350, 50	
separately provided forshort tons_	. 3	5, 849	17	2 29, 370	14	2 41, 01	
Total		289, 794, 989		2 5 99, 967, 771		2 84, 718, 30	

Less than 1 ton.
 Owing to changes in tabulating procedures by the Bureau of the Census, data known to be not comparable with years before 1954.
 Adjusted by Bureau of Mines: Bureau of the Census shows 271,012 reams
 Not recorded.
 Revised figure.

ABRASIVE MATERIALS

TABLE 17.—Abrasive materials exported from the United States, 1955-57
[Bureau of the Census]

Kind	195	55	195	56	195	57	
,	Quantity	Value	Quantity	Value	Quantity	Value	
Natural abrasives: Diamond grinding wheels, sticks, hones and laps carats_ Diamond dust and powder carats_	180, 405 215, 787	\$850, 225 515, 555	187, 438 210, 841	\$948, 007 616, 038	194, 934 199, 252	\$1, 134, 871 622, 480	
Diamond suitable only for in- dustrial use carats Grindstones and pulpstones	1, 168	16, 320	11, 725	97, 937	54, 413	543, 793	
short tons Emery powder, grains, and grits (natural)pounds Corundum (natural)do	452 2, 800, 285 310, 975	85, 167 179, 810 44, 497	430 3, 869, 277 496, 357	64, 303 248, 403 73, 989	330 2, 343, 422 417, 576	54, 306 204, 829 78, 822	
Whetstones, sticks, etc. (nat- ural)pounds_ Natural abrasives ¹ not else-	211, 134	95, 161	125, 580	95, 987	196, 128	109, 216	
where classifiedpounds_ Manufactured abrasives: Aluminum oxide, fused, crude and grainspounds_	131, 419, 734 26, 390, 434	4, 699, 379 3, 221, 190	142, 196, 239 24, 815, 955	5, 124, 926 3, 292, 934	147, 057 093 21, 475, 167	5, 394, 900 3, 146, 515	
Silicon carbide, fused, crude and grainspounds Alumina, unfuseddo	14, 141, 545 235, 866	2, 288, 373 25, 370	15, 682, 429 67, 403	2, 737, 896 7, 641	15, 299, 644 112, 791	2, 729, 166 14, 357	
Manufactured abrasives, not elsewhere classified pounds. Abrasive pastes, compounds	113, 247	37, 412	158, 681	45, 061	308, 337	59, 491	
and cakepounds_ Grinding wheels, except dia- mond wheelspounds	744, 911 4, 908, 799	170, 608 4, 018, 404	518, 767 4, 926, 902	159, 551 4, 262, 429	750, 902 5, 368, 241	186, 216 4, 530, 502	
Pulpstones of manufactured abrasives pounds. Whetstones, etc., of manu-	2, 670, 963	617, 831	3, 374, 244	860, 078	2, 488, 732	655, 817	
factured abrasives_pounds Abrasive paper and cloth (natural abrasives)_reams	419, 979 69, 222	539, 141 1, 185, 061	560, 661 55, 814	714, 606 1, 068, 057	363, 955 68, 237	687, 033 1, 225, 363	
Abrasive paper and cloth (ar- tificial abrasives)reams_ Metallic abrasives (except	151, 706	5, 474, 299	158, 441	5, 567, 078	142, 910	5, 124, 091	
steel wool)pounds Total	11, 413, 127	812, 390 24, 876, 193	11, 547, 717	860, 559 26, 845, 480	12, 409, 004	1, 087, 050 27, 588, 818	

¹ Includes: Flint, garnet, tripoli, rottenstone, natural rouge, polishing rouge, pumice, diatomaceous earth, infusorial earth, and kieselguhr.

TABLE 18.—Abrasive materials reexported from the United States, 1955-57, by kinds

[Bureau of the Census]

Kind	19	955	19	956	1957	
	Quantity	Value	Quantity	Value	Quantity	Value
Natural abrasives:						
Diamond grinding wheels, sticks, hones, and lapscarats_	711	810 405				
Diamond dust and powderdo Diamond suitable only for industrial	29, 933	\$12 495 70, 200		\$152, 991	937 71, 378	\$4, 165 221, 804
usecarats_	1, 179, 752	6, 347, 745	1, 198, 589	7, 586, 414	1, 261, 209	8, 465, 637
Natural abrasives 1 not elsewhere classifiedpounds Manufactured abrasives:	65, 660	1,400				
Aluminum oxide, fused, crude and		1				
grainspounds			10, 197	13,000	129, 600	5, 800
Silicon carbide, fused, crude and grainspounds_	27, 215	3, 257				
Grinding wheels, except diamond wheelspounds_	6, 025	6,002	1, 200	856	450	543
Abrasive paper and cloth (natural	•		2,200	000	100	010
abrasives) reams	30	1, 158			61	3, 610
Abrasive paper and cloth (artificial abrasives)reams	53	1, 899				
Metallic abrasives (except steel wool)		2,000				
pounds			23, 243	2, 189		
Total		6, 444, 156		7, 755, 450		8, 701, 559

¹ Includes: Flint, garnet, tripoli, rottenstone, natural rouge, polishing rouge, pumice, diatomaceous earth, infusorial earth, and kieselguhr.

Aluminum

By R. August Heindl, 1 Arden C. Sullivan, 2 and Mary E. Trought 3

URING 1957 the supplies of primary aluminum, especially in the Western Hemisphere, continued to exceed the demand. Despite the apparent surplus, world primary production in 1957 was slightly greater than in 1956; however, production in the United States was down 2 percent and in Canada down 9 percent from the preceding year.

Part of the surplus production in the United States was shipped to the Government under the terms of contracts negotiated during the

Korean war.

At the end of the year two companies that had not produced primary aluminum before were planning to complete new reduction plants in 1958. Work also was continuing on other new facilities, so that the annual primary aluminum capacity in the United States, which at the end of 1957 exceeded 1.8 million short tons, would be nearly 2.4 million tons before the end of 1959.

TABLE 1.—Salient statistics of the aluminum industry, 1948-52 (average) and 1953-57

•						
	1948-52 (average)	1953	1954	1955	1956	1957
	743, 950 \$251,286,000	1, 252, 013 \$496,315,000	1, 460, 565 \$592,837,000	1, 565, 721 \$684,038,000	1, 678, 954 \$805,782,000	1, 647, 709 \$836, 944, 000
Average ingot price per poundcents	17.8	20.9	21.8	23.7	26.0	27.
Secondary recovery short tons	261, 667	368, 566	1 292, 041	1 335, 994	1 339, 768	1 359, 66
Imports (crude and semi- crude)short tons	170, 894	359, 481	243, 750	239, 475	264, 975	258, 06
Exports (crude and semi- crude)short tons_	28, 189	15, 355	50, 096	33, 834	2 68, 032	61, 42
World: Production short tons	1,750,000	2, 725, 000	3, 090, 000	3, 460, 000	3, 720, 000	3, 730, 00
				l .	1	1

Not strictly comparable with previous years' data. The 1954-57 data are recoverable aluminum content; previous years' data are recoverable aluminum-alloy content.
 Revised figure.

A second firm began producing primary aluminum in Canada when the Canadian British Aluminium Co., Ltd., poured metal at its new Baie Comeau plant in Quebec. A new plant at Edea, French Cameroon, early in the year yielded the first primary ingot ever produced in Africa.

¹ Assistant chief, Branch of Light Metals.

Statistical clerk.
 Statistical assistant.

LEGISLATION AND GOVERNMENT PROGRAMS

The increased capacity for production, and increased supplies of aluminum, in the face of lessening demand resulted in changes in the Government's approach to assuring ample supplies of the metal

during possible emergencies.

Late in 1956 the Office of Defense Mobilization (ODM) announced that there would be no calls for aluminum during the first half of 1957. In May 1957 it was stated that no calls would be made during the last 6 months of the year. From the end of April to the end of May the U.S. Department of Agriculture suspended the barter program under which aluminum and other commodities could be obtained by the Government in exchange for surplus agriculture commodities. In August ODM removed aluminum from the list of materials which could be acquired by barter. Reexamination of the need for additional stockpiles of aluminum in the light of domestic

supply prompted the decision.

During the year the three major primary aluminum producers, Aluminum Company of America, Kaiser Aluminum & Chemical Corp., and Reynolds Metals Co., invoked the "put-right" provision of their Government supply contracts. Under the contracts, through which the Government encouraged expansion of the industry during the Korean war, the companies had the right to sell to the Government metal that nonintegrated consumers do not purchase. By the end of December 324,327 tons had been shipped to the Government. Of this total, Alcoa shipped 104,998 tons; Kaiser, 116,801; and Reynolds, 102,528. At the end of the year it appeared that such shipments would continue into 1958. Most of the contracts were scheduled to expire during 1958.

The Congressional Joint Committee on Defense Production held

hearings on the Government's obligations under these contracts. The original contracts, which were ruled valid by the Comptroller General, obliged the Government to take up to 658,475 short tons of aluminum for a year. However, the General Services Administration (GSA) negotiated with the producers, with the result that major aspects of

the contracts were modified as follows:

1. The producers will deduct from the metal that can be tendered to the Government any primary aluminum obtained from other sources (imports).

2. The metal delivered shall be of stockpile grade.

3. The price shall be that prevailing at the time of production rather than

the price at time of shipment.

4. Each year for 15 years after the expiration of the "put rights," 230,466 tons or 35 percent of the expanded production shall be made available to nonintegrated consumers.

The GSA estimated that under the revisions the maximum saving to the Government could be \$98 million.

In November, Subcommittee 3 of the Select Committee on Small Business of the House of Representatives, under the chairmanship of Congressman Sidney R. Yates, held hearings on the role of small business in the aluminum industry. Of particular interest was the determination of the effect of the so-called "hot-metal" contracts between Reynolds and Ford and Reynolds and General Motors. Representatives from the 3 major aluminum producers and 3 leading automobile manufacturers testified. Price policy, "hot-metal" contracts, aluminum's price history, outlook of the industry, and the future of

aluminum in the automotive industry were discussed.

Under the Defense Materials system effective since July 1953 that portion of the aluminum supply available in the United States above the quantity set aside for defense and atomic energy requirements and the national stockpile was free for civilian consumption without Government restriction. The total metal set aside, exclusive of the stockpile, consisted of an "A" allotment for specifically designed military equipment and a "B" allotment for aluminum required by manufacturers of civilian-type items incorporated in military end items. During 1957 the total of the two allotments, by quarters, as announced by Business and Defense Services Administration, was:

	Short tons	•	Short tons
First quarterSecond quarter	68, 500	Third quarter	72, 500
	70, 000	Fourth quarter	64, 000

The grand total of 275,000 tons was a decrease of 16,500 tons (6 per-

cent) from the preceding year.

The antitrust suit filed in 1937 by the Government against the Aluminum Company of America was closed in June, when the court denied a Department of Justice petition that would have permitted the Government to maintain watchdog jurisdiction over the company through 1962. The original suit asked the court to dissolve Alcoa, which at that time was the only primary aluminum producer; however, in a 1950 decision in the case the court required that holders of both Alcoa and Aluminium, Ltd., stock sell their holdings in one or the other company. The court in its 1957 decision held that, with 3 large and 2 smaller producers in or about to enter the field, such jurisdiction was unnecessary.

DOMESTIC PRODUCTION PRIMARY

Primary aluminum production in the United States was nearly 1.65 million tons, a decrease of over 30,000 tons or 2 percent from 1956. This was the first year since 1949 that aluminum production had not gained over the preceding year. Production, by companies, was: Alcoa, 712,000 tons; Reynolds, 466,100 tons; Kaiser, 417,500 tons; and Anaconda, 52,000 tons.

As a result of technological advances in the aluminum-smelting process since 1942, the industry began, in 1957, to advertise pig of 99.5-percent minimum purity instead of 99-percent minimum average

purity, as was sold previously.

Interruptible power in the Pacific Northwest was curtailed during January, February, and part of March. Some curtailment occurred in the period September-December. Much of the loss early in the year was replaced with steam-generated power; but, as aluminum supplies continued to be abundant, primary production in the area was curtailed at the year end. Production at Alcoa, Alcoa, Tenn., plant was curtailed during January as a result of low water conditions in the Tennessee Valley area.

⁴ Modern Metals, Competition in Aluminum: Vol. 13, No. 11, December 1957, pp. 82-94; and vol. 13, No. 12, January 1958, pp. 58, 60, 62, 64, 68, 70-72.

TABLE 2.—Production of primary aluminum in the United States, 1953-57, by quarters, in short tons

Quarter	1953	1954	1955	1956	1957
First	287, 004	349, 069	374, 711	419, 052	401, 794
	311, 687	366, 330	385, 156	441, 252	422, 333
	329, 163	371, 789	396, 826	376, 346	414, 768
	324, 159	373, 377	409, 028	442, 304	408, 814
	1, 252, 013	1, 460, 565	1, 565, 721	1, 678, 954	1, 647, 709

¹ Quarterly production adjusted to final annual totals.

TABLE 3.—Primary-aluminum production capacity in the United States
(Short tons per year)

Company and plant	End of 1956	End of 1957	Being built in 1957	Total 1
Aluminum Company of America:				
Alcoa, Tenn	157, 100	157, 100	}	157 100
Badin, N. C.	47 150	47, 150		157, 100 47, 150
Massena N Y	110 050	112, 250		149.750
Point Comfort, Tex	100 000	120, 000	20,000	140, 000
TOURUSIE. I EX	1 150 000	150, 000	20,090	150,000
vancouver, wash	07 500	97, 500		97, 500
Wenatchee, Wash	108 500	108, 500		108, 500
Evansville, Ind	-		150,000	150, 000
m. 4 - 1			200,000	100,000
Total	792, 500	792, 500	207, 500	1,000,000
Reynolds Metals Co.:				
Arkadelphia, Ark	55, 000	FF 000		
Jones Mills, Ark	100,000	55, 000 109, 000		55, 000
Listerniii, Ala. (I)	77 500			109,000
Longview, Wash	60 500	60, 500		77, 500
San Patricio, Tex	0,5,000	95, 000		
Troutdale, Oreg	01 500	91, 500		95, 000
Listernin, Ala. (11)	1	31,000	112, 500	91, 500
Massena, N. Y			100,000	112, 500 100, 000
				100,000
Total	488, 500	488, 500	212, 500	701, 000
Kaiser Aluminum & Chemical Corp.:				
Chalmette La	220, 000	247, 500		047 700
Mead, Wash	176,000	176, 000		247, 500
Tacoma, Wash	38, 500	41,000		176, 000
Mead, Wash Tacoma, Wash Ravenswood, W. Va	00,000	36, 250	108, 750	41, 000 145, 000
		00, 200	100, 700	140,000
Total	434, 500	500, 750	108, 750	609, 500
Anaconda Aluminum Co.: Columbia Falls, Mont	60,000	60,000		
Darvey Allillinnim Co ' The Dallee Orog	1	00,000	F4 000	60, 000
Ormet Corp.: Clarington, Ohio			54,000	54, 000
			180, 000	180, 000
Grand total	1, 775, 500	1, 841, 750	762, 750	9 604 500
	2, 110, 000	1, 011, 700	102, 100	2, 604, 500

¹ Expected to be in production before or during 1959.

The Anaconda Aluminum Co. plant at Columbia Falls, Mont., operated somewhat below its capacity of 60,000 tons. The plant operated at capacity until June, at which time, owing to a surplus of finished metal in inventory, production was curtailed 12.5 percent; again, on July 1, production was curtailed an additional 12.5 percent. The rate was increased to 88 percent of capacity on January 1, 1958. Acquisition by The Anaconda Co. of Harvey Aluminum Company's 5-percent interest in Anaconda Aluminum Co. resulted in its becoming a 100-percent-owned subsidiary of The Anaconda Co.

An unauthorized work stoppage at Kaiser's Chalmette, La., plant reduced its production late in September; although the strike was short lived, freezing of the cells resulted in a lengthy shutdown.

Primary aluminum production in the Ohio Valley became a reality with pouring in November of metal from the first potline at Kaiser's plant at Ravenswood, W. Va. The first line, with an annual capacity of 36,250 tons, was to be followed by a second line of equal capacity early in 1958. Provision was made for adding two more lines when market conditions warranted. The ultimate capacity of the plant,

therefore, was 145,000 tons.

Each potline consists of 164 cells measuring 10 by 20 feet and is designed for 80,000-ampere operation. Each pot is equipped with prebaked carbon electrodes, which are raised and lowered by a mechanized positioning system. Alumina was to be supplied by a new plant under construction at Gramercy, La., which was to use Jamaican bauxite as the raw material. The Ravenswood facility utilized coal for generating power. Early in 1957 cold-rolling facilities were placed in operation at Ravenswood and a hotline was scheduled to start operation in 1958.

Kaiser also added a ninth potline to its reduction plant at Chalmette, La. The new line, with a capacity of 27,500 tons, brought the total

plant capacity to 247,500 tons of aluminum a year.

A number of new reduction plants were under construction most of the year and were to be completed in 1958 or 1959. Reynolds had nearly completed a new 112,500-ton-annual-capacity plant at Listerhill, Ala., and late in December the first line was being baked out before activation. Following approval of the power contract by the Governor of New York, Reynolds in mid-June broke ground for a new 100,000-ton plant at Rooseveltown near Massena, N. Y., along the St. Lawrence Seaway. Plans called for pouring the first metal in mid-1959. Reynolds had made arrangements to sell substantial quantities of metal in the molten state ("hot-metal" contracts) from both facilities. Molten metal from the Listerhill plant was to be shipped to an adjacent new foundry of the Ford Motor Co. and from the Massena plant to a foundry of the Chevrolet Division of General Motors Corp. being constructed nearby.

In 1957 Alcoa had expansions underway at Point Comfort, Tex., and Massena, N. Y., and was building a new 150,000-ton reduction plant at Evansville, Ind. In Texas, capacity was to be increased by 20,000 tons to 140,000 tons. The two new potlines at Massena were to utilize power from the St. Lawrence project and would replace facilities scheduled to become inoperable upon its completion. Ultimately Alcoa's capacity at this location was to be increased from 112,250 to 149,750 annual tons. All three plants were expected to

produce metal before the end of 1958.

Ormet Corp. (originally called Olin Revere Metals Corp.) was constructing its 180,000-ton plant in the Ohio Valley at Omal near Clarington, Ohio. Completion was scheduled for early 1958.

Harvey Aluminum Co. was also continuing construction of a 54,000-ton plant at The Dalles, Oreg. The plant was scheduled to

be in partial operation early in 1958.

The long-term optimism of the industry was reflected in Alcoa's announcement in July that it had agreed to pay 23 percent of the cost of Rocky Reach Dam on the Columbia River in Washington and 23 percent of the subsequent operating costs in return for 23 percent of the power to be generated. The agreement was contingent on a pro-

vision that final costs do not exceed certain limits.

Alcoa also signed a letter of intent with the Government of Surinam that required Alcoa to build an alumina plant in Surinam within the next 12 years. A 60,000-ton-annual-capacity aluminum plant was also to be built by the company. Upon completion, this was to be the first alumina or aluminum plant built by a domestic company outside of the United States. (See Surinam in World Review, p. 184.)

The three major producers also expanded their fabricating facilities in 1957. Alcoa, at its Davenport, Iowa, works, completed installations costing \$54 million. Among the 10 new units were a 160-inch hot-rolling mill-widest in the industry; a 16-million pound plate stretcher; a 100-inch cold mill; and foil-rolling equipment with an annual capacity of 24 million pounds. Additions were also made at the Cleveland, Ohio, and Vernon, Calif., works.

New installations by Kaiser included a horizontal heat-treat furnace for production of stress-relieved heavy aluminum plate at its Trentwood plant, Spokane, Wash. New extrusion presses and auxiliary equipment at the Halethorpe plant, Baltimore, Md., were placed in operation. A new hydraulic press began operation at the Erie.

Pa., plant.

Reynolds opened a new \$5.5 million extrusion plant near Richmond. The plant, which contained four 2,300-ton extrusion presses, had a productive capacity of up to 2 million pounds per month. junction with the United States Navy, Reynolds expanded facilities at its McCook, Ill., plant. The total cost of the new equipment installed was \$20 million; the Navy owned 75 percent of the units. Included were a 145-inch tapered rolling mill, 2 fixed-bed gantry-type skin millers, and a plate stretcher with a pulling force of 16 million pounds.

A series of three articles discussed the aluminum industry in the United States.⁵ The first provided a brief history of the industry described its structure. The second dealt with the market for aluminum and various factors that influence the demand for the metal. The final article was concerned with the economic factors in the location of the aluminum industry and the influence of technological changes on the cost structure.

SECONDARY

Domestic recovery of secondary aluminum from new and old scrap totaled 360,000 short tons in 1957. Recovery from new scrap increased 7 percent to 288,000 tons, and recovery from old scrap was unchanged from the preceding year at 72,000 tons. Secondary aluminum was recovered from the 463,000 tons of aluminum scrap consumed in the United States (360,000 tons of new scrap and 103,000 tons of old scrap) and also from the aluminum contained in copper-, zinc-, and magnesium-base alloys produced from scrap. Used or discarded items that had been remelted were classified as old scrap; waste generated in fabrication or as rejected products was new scrap. Scrap was imported in both pig and unmelted forms. An estimated

⁵ Monthly Review, Federal Reserve Bank of San Francisco, The Aluminum Industry—Part I: Development of Production: August 1957, pp. 97-109; Part II; Growth of the Market: October 1957, pp. 145-152; Part III: Location Factors and Aluminum in the Pacific Northwest: January 1958, pp. 6-13.

90-percent recovery factor was applied to scrap imports to compensate for duplication and losses incident to remelting.

Recovery was calculated from reports to the Bureau of Mines on consumption of purchased and toll-treated scraps, excluding all home scrap (scrap produced and consumed at the same plant). Aluminum-scrap consumption was reported by the nonintegrated secondary smelters, primary producers, foundries, fabricators, chemical producers, and other miscellaneous consumers. Scrap imports were 16,000 tons compared with 26,000 tons in 1956, and exports in 1957 were 18,000 tons compared with 19,000 tons in 1956. Imports of scrap in the 3-year period 1955 to 1957 have decreased sharply from 41,000 tons to 16,000, while exports have remained unchanged at approximately 18,000 tons.

CONSUMPTION AND USES

For the first time since 1949 the apparent consumption of primary aluminum decreased from the preceding year. Apparent consumption in 1957 (1,778,000 short tons) represented a 4,000-ton decrease from 1956. The consumption for the years before 1957 include shipments to the national stockpile, which could not be shown separately. However, in 1957, when the primary producers invoked their rights to sell metal to the Government, the quantity of their shipments was released. Under these rights the companies shipped 324,327 tons to the Government in 1957.

The new supply of aluminum was calculated as the sum of domestic primary production, secondary recovery from both old and new pur-

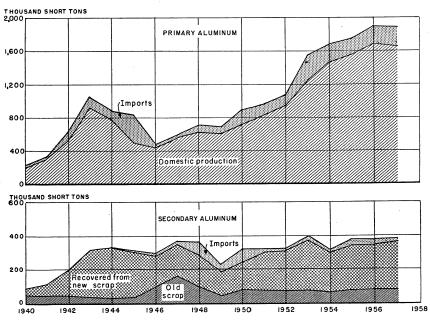


Figure 1.—United States production and imports of primary- and secondary-aluminum pig and ingot, 1940-57.

chased and toll-treated scrap, imports of pig and ingot, and the ingot equivalent of imported scrap. Exports of crude forms of the metal were considered a type of consumption. In 1957 primary production was 1,648,000 tons, secondary recovery 360,000 tons, and imports of crude and scrap 237,000 tons, to give a total new supply of 2,244,000 tons. This represented a decrease of 15,000 tons from 1956.

A demand for 4.2 to 4.5 million tons of aluminum in 1965 was forecast. Three methods for determining the consumption were used.

TABLE 4.—Apparent consumption of primary aluminum and ingot equivalent of secondary aluminum in the United States, 1948-52 (average) and 1953-57, in short tons

	Primary			Secondary		
Year	Sold or Import	Imports	Apparent consumption 2	Domestic recovery		Imports.
		(net) 1 2		From old scrap	From new scrap	scrap (net) 3
1948-52 (average)	745, 605 1, 219, 968 1, 478, 740 1, 571, 845 1, 591, 478 6 1, 579, 063	102, 166 322, 086 218, 147 183, 080 5 190, 280 198, 528	847, 771 1, 542, 054 1, 696, 887 1, 754, 925 5 1, 781, 758 1, 777, 591	72, 891 78, 940 4 59, 989 4 76, 372 4 71, 673 4 71, 642	188, 776 289, 626 4 232, 052 4 259, 622 4 268, 095 4 288, 024	36, 483 19, 836 -22, 044 20, 305 5, 997 -1, 706

¹Crude and semifabricated, excluding scrap. May include some secondary.

6 Includes 324,327 tons shipped to the Government.

TABLE 5.—Sources of aluminum supply—crude and scrap, 1948-52 (average) and 1953-57, in short tons

Year	Primary	Recovery	from scrap	Imports 2	Total	Exports 2
	production	Old	New		supply	-
1948-52 (average) 1953 1954 1955 1955 1956 1957	743, 950 1, 252, 013 1, 460, 565 1, 565, 721 1, 678, 954 1, 647, 709	72, 891 78, 940 3 59, 989 3 76, 372 3 71, 673 3 71, 642	188, 776 289, 626 3 232, 052 3 259, 622 3 268, 095 3 288, 024	154, 815 324, 888 228, 611 214, 418 239, 794 236, 802	1, 160, 432 1, 945, 467 1, 981, 217 2, 116, 133 2, 258, 516 2, 244, 177	3, 195 6, 499 39, 448 22, 430 4 52, 014 44, 331

Ingot equivalent of scrap.
 Crude metal (ingot, pig, slabs, etc.) plus ingot equivalent (wt. × 0.9) of scrap.
 Not strictly comparable with previous years' data. The 1954-57 data are recoverable aluminum content; previous years' data are recoverable aluminum-alloy content.
 Revised figure.

A survey compared the percentage distribution of aluminum end uses during selected 6-month periods from the latter half of 1954 through 1957.7 The data showed that 22 percent of the shipments in the July-December 1957 period went to building-materials industries and 16 percent to transportation. These figures represented an in-

Figures include mill shapes.
 Ingot equivalent of net imports (wt. × 0.9). Imports are largely scrap pig. Some duplication of secondary aluminum occurs because of small amount of loose scrap imported, which is included as secondary

recovery from old scrap.

4 Not strictly comparable with previous years' data. The 1954-57 data are recoverable aluminum content; previous years' data are recoverable aluminum-alloy content.

8 Revised figure.

⁶ Rosenzweig, James E., The Demand for Aluminum; a Case Study in Long-Range Forecasting: Univ. of Illinois Bull. 54, No. 63, April 1957, 67 pp.

⁷ American Metal Market, Aluminum Association End-Use Statistics: Vol. 65, No. 98, May 21, 1958, pp. 9-10; and vol. 65, No. 99, May 22, 1958, p. 9.

crease for building materials and a decrease for transportation from the preceding 6-month period. Shipments of sand castings to industrial and commercial machines, equipment, and tools during latest period was 35 percent of the total, up from 29 percent in the preceding period. Seventy percent of the permanent mold castings was shipped to transportation, motor vehicles (excludes military), during the last half of 1957. An additional 10 percent was shipped to the home appliances, furnishings, and equipment industries.

The data in table 6 present shipments of wrought products and castings, which decreased 7 percent from the preceding year to 1,715,000 short tons. The largest percent decreases occurred in plate, sheet and strip, forgings, and sand castings. The following distribution for wrought products also was obtained from figures published by

the Bureau of the Census:

		rcent
Plate, sheet and strip:	1956	1957
Non-heat-treatable	36. 4	35. 2
Heat-treatable	11. 3	9. 3
Foil	6. 6	7. 6
Rolled structural shapes:		
Rod bar etc	4. 1	4. 3
Cable, bare (including steel-reinforced)	6. 5	6.8
Wire and cable, covered or insulated	1. 9	1. 9
Bare wire conductor and nonconductor	2. 1	1. 9
Extruded shapes (including tube blooms):		
Soft alloys	22. 2	24. 1
Hard alloys	2. 2	2. 3
Tubing:		
Drawn, soft and hard alloys	2. 1	2. 1
Welded, non-heat-treatable 1	1. 0	1. 0
Powder, flake, and paste:		
Atomized	. 3	. 3
Flaked	. 2	. 2
Paste		. 6
Forgings	2. 6	2. 4
Lordings		
	100. 0	100.0

¹ Includes some heat-treatable welded tube.

A survey of the light-metals-consuming industries was released. The list tabulated more than 25,000 plants by State and consuming industry. These plants accounted for over 98 percent of the light metals consumed in the United States in 1957. Major consumers were the building industry, with 7,000 plants and consumption of 475,000 tons; consumer durables, consuming 270,000 tons in 2,000 plants; and containers and packaging, with 600 plants, utilizing 165,000 tons. Western States had 15 percent of the total number of plants, Central States 45 percent, and Eastern States 40 percent of the total.

The automotive industry continued to be an important aluminum consumer. Surveys were made on the aluminum content per car, and the long-range outlook was discussed. The 1958 model auto-

⁸ Modern Metals, A Market Survey of the Light-Metals-Consuming Industries: Vol. 13, No. 10, November 1957, pp. 100-101.
9 Darby, Kim, For Aluminum in '58 Autos: Modern Metals, vol. 13, No. 11, December 1957, pp. 33-34, 36, 38, 40.
Barr, H. F., What's Ahead for Aluminum in Autos: Modern Metals, vol. 13, No. 9, October 1957, pp. 39. 40, 42.

TABLE 6.—Net shipments 1 of aluminum wrought and cast products by producers, 1953-57, in short tons

[Bureau of the Census]

	1953	1954	1955	1956	1957
Wrought products:					
Plate, sheet, and strip	684, 083	582, 538	771, 362	784, 059	698, 251
Rolled structural shapes, rod, bar, and wire	211,023	180, 641	183, 976	210, 600	199, 520
tubing	225, 961	256, 650	387, 546	396, 202	394, 715
Powder, flake, and paste Forgings	22, 366	23, 452	17, 840 35, 172	14, 210 37, 833	14,094 32,132
Total	1, 143, 433	1, 043, 281	1, 395, 896	1, 442, 904	1, 338, 712
Castings:					
Sand Permanent mold	107, 277 100, 012	78, 277 107, 204	82, 741 149, 174	85, 890	72,061
Die	119, 665	122, 645	177, 602	122, 711 188, 115	116, 163 184, 543
Other	2, 057	3, 401	(2)	(2)	(2)
Total	329, 011	311, 527	410, 390	397, 291	375, 828
Grand total	1, 472, 444	1, 354, 808	1, 806, 286	1, 840, 195	1,714,540

¹ Net shipments consist of total shipments less shipments to other metal mills for further fabrication. ² Withheld because estimates did not meet publication standards of the Bureau of the Census owing to the associated standard error.

mobile contained an average of about 45 pounds per car—an increase of 5 pounds (13 percent) over 1957 models. The lower priced models contained 31 to 52 pounds per car, however, of the more expensive models one was said to contain over 200 pounds of aluminum. detailed breakdown of the utilization of aluminum in a 1958 model that required 64 pounds of aluminum was published.¹⁰ Major aluminum items were pistons, 17 pounds; automatic transmission parts, 19 pounds; and air-conditioner parts, 12 pounds. Based on a 5-million-car year aluminum consumed by the industry would exceed 100,000 tons.

One manufacturer introduced aluminum brake drums in the front wheels of its 1957 model. Such drums were made standard equipment in four 1958 models. The use of aluminum was reported to result in lower temperature operation of the drum. Research continued on development of aluminum engine blocks and radiators.

The announcement in September by Reynolds Metals Co. and Esso Standard Oil Co. of the signing of the first contract in the United States calling for production of aluminum cans signalized a major achievement in the aluminum industry's attempt to enter the can Under the contract Reynolds was to supply the metal for 35 to 60 million 1-quart oilcans and collect and reclaim the used cans Shortly thereafter Kaiser Aluminum & Chemical Corp. announced jointly with the Kraft Foods Division of National Dairy Products Corp., that an order for 5.5 million aluminum cans had been placed by Kraft.¹² Manufacture of the cans would require approxi-

¹⁰ Automotive Industries, Edsel Uses Estimated 64.2 Pounds of Aluminum: Vol. 117, No. 11, Dec. 1, 1957

No. 185, Sept. 25, 1957, pp. 1, 9.

Wall Street Journal, Reynolds Metals Gets Industry's First Big Order for Aluminum Cans: Vol. 150, No. 61, Sept. 25, 1957, pp. 8.

McManus, G. J., Can Aluminum Hit Can Market?: Iron Age, vol. 180, No. 15, Oct. 10, 1957, pp. 76-77.

Carr, G. G., Rebuttal to Aluminum-Can Critics: Iron Age, vol. 180, No. 18, Oct. 31, 1957, pp. 24, 25.

Modern Metals, Kaiser Makes Cans for Kraft: Vol. 13, No. 10, November 1957, pp. 94, 96, 98.

175 ALUMINUM

mately 35 pounds of aluminum per 1,000 units produced or a total of 96 tons. A commercial prototype canmaking facility, utilizing a deep drawing process, was installed at Kaiser's Wanatah, Ind...

container plant.

The first fully automatic can-making line was installed by a subsidiary of Aluminium Ltd. in Germany. The flexibility of the line was demonstrated by the range of can sizes that could be produced. These range from 2 to 3 inches in diameter and 2 to 6 inches in height.13 Other methods for producing cans were described. 14

A number of other companies were investigating methods of producing aluminum cans. One company, Victor Metal Products Corp., Newport, Ark., was constructing a plant to produce Aerosol-type cans to sell at \$45 per 1,000 which was said to be competitive with tin-plate Aerosol cans. 15

For several years Reynolds had been engaged in missile develop-At its plant at Sheffield, Ala., Reynolds fabricated ment work. ballistic shells for the Redstone and Jupiter-C missiles. Components for the shell, fabricated of aluminum, included the tail, center, and top sections and the spin launcher. Important components of the Explorer and the first successfully fired reentry missile were also fabricated of aluminum.

To popularize the use of aluminum in home construction, the Aluminum Company of America had houses built at 24 locations throughout the United States. Each "Care-Free" home utilized 7,500 pounds of aluminum compared with 30 pounds in the average dwelling. Components using aluminum included the roof, exterior

walls, doors, and vents. 16

Kaiser developed a new structural dome design suitable for factories, auditoriums, and stores.¹⁷ The first of these was an auditorium without pillars or any other interior support and having a seating capacity of 1,800 to 2,000. The aluminum shell was 49 feet high and 145 feet in diameter. The cost of the dome was approximately \$4 per square foot.

The multi-billion-dollar Federal and State highway program was expected to use large quantities of aluminum in such applications as signs, signal supports, railings, lighting standards, and fencing. It was estimated that under the projected program over 500,000 tons of aluminum would be consumed for this purpose by 1965.18

STOCKS

Inventories of primary aluminum at reduction plants on December 31, 1957, were 171,000 short tons, an increase of 69,000 tons (67 percent) above those on hand at the end of the preceding year. Dur-

¹³ Maeder, E. G., and Lovell, A. V., Automatic Plant Makes Aluminum Cans Faster, Cheaper: Modern Metals, vol. 13, No. 3, April 1957, pp. 36-38, 40.

14 Materials in Design Engineering, Aluminum Cans are Made by . . .: Vol. 47, No. 1, January 1958,

Materials in Design Engineering, Anamanian Cans at Materials in Design Engineering, Anamanian Cans at Materials in Design Engineering, Anamanian Cans Near Low-Cost Stage Spurred by New Processes: Wall Street Jour., vol. 149, No. 92, May 10, 1957, p. 6.

18 Farrell, E. A., Prototype of Tomorrow's House—Aluminum Makes It Care-Free: Modern Metals, vol. 13, No. 11, December 1957, pp. 72, 74, 76, 78, 80.

17 Light Metal Age, New Structural Design for Aluminum "Hula" Hut: Vol. 15, Nos. 1 and 2, February

^{1957,} D. 13.
American Metal Market, Design for Bank Includes Use of Aluminum Dome: Vol. 65, No. 1, Jan. 1, 1958,

P. 9. 18 American Metal Market, Aluminum—New Bridge Points Up Increasing Use of Lighter Structurals: Vol. 64, No. 54, Mar. 20, 1957, p. 9. Aluminum—Highway Program Needs Seen as 500,000 Tons Over 10 Years: Vol. 64, No. 112, June 12, 1957, p. 10.

ing January and February stocks increased rapidly to 166,000 tons and then throughout the remainder of the year fluctuated between 160,000 and 195,000 tons. At the end of May stocks were at an all-time high of 195,000 tons. Based on the December rate of production, the year-end stocks at primary plants were equivalent to 38 days' output. In addition to the pig-aluminum stocks reported, reduction plants also had inventories of ingot and aluminum in process.

Inventories of secondary aluminum pig and ingot at secondary smelters (18,700 tons at the end of 1957) had decreased approximately 6 percent from the beginning of the year. The low point occurred in July, when they were 15,800 tons, but during the remainder of the year these stocks approximated 18,000 tons. Consumers' stocks of aluminum-base scrap increased 3 percent to 25,200 tons at the end of the year. Stocks of scrap decreased during the first quarter of 1957 from the end of the previous year and then fluctuated between 22,000 and 25,600 tons.

TABLE 7.—Stocks of primary aluminum at reduction plants in the United States, 1953-57, by quarters, in short tons

Quarter ended	1953	1954	1955	1956	1957
Mar, 31	15, 257	63, 246	11, 970	19, 240	160, 501
	17, 810	66, 555	12, 630	17, 399	192, 856
	26, 991	46, 611	9, 898	47, 179	175, 085
	39, 319	21, 144	15, 020	102, 496	171, 142

PRICES

The base price of aluminum pig, 99-percent average guaranteed minimum (which on January 1, 1957, was 25.00 cents per pound), remained unchanged until August 1, when it was increased 1 cent to 26.00 cents per pound. When the price change was made, the quoted purity was changed from 99-percent average guaranteed minimum to 99.5-percent guaranteed minimum. The corresponding prices for ingot, 99-percent-plus, were 27.10 cents and 28.10 cents per pound. The new prices were in effect at the end of the year. All prices were base prices, f. o. b. shipping point, with freight allowance to United States destinations. The producers stated that the increases resulted from an automatic wage increase effective August 1, increased salaries for white-collar employees, and rising costs of materials, transportation, and services.

The combined average price for copper-silicon alloys 108 and 380 (AXS-679), as secondary ingot, was 22.54 cents per pound as compiled from quotations published daily in the American Metal Market. The average price in 1957 was 4.47 cents per pound below the 1956 average. The American Metal Market listed the following closing market prices on December 31, 1957: Alloy 195, 25.25 to 26.75 cents per pound, No. 12, 22.00 to 23.00, and Nos. 108, 319, 380, 22.25 to 23.50 cents per pound. These prices ranged from unchanged to 1.5 cents less per pound from the end of the preceding year.

Dealers' buying prices for new aluminum clips averaged 14.07 cents per pound, down from 16.99 cents in 1956. These prices were relatively stable, with the monthly averages ranging from a high of 14.98 cents per pound in January to a low of 13.75 cents per pound from

TABLE 8.—Prices of aluminum,	, other selected	metals, and	the Bureau of
Labor Statistics who	olesale price in	dex. 1936–57	7 1

Year	Aluminum, primary ingot (cents per pound)	Copper electrolytic, New York (cents per pound)		Zinc, Prime Western, East St. Louis (cents per pound)	Wholesale price index (1947–49= 100)
1936–40 (average) 1941–45 (average) 1946–50 (average) 1951–55 (average) 1956 (average) 1956 (average)	15.30 16.09	11. 08 11. 87 19. 62 28. 97 41. 88	2. 66 2. 67 3. 79 5. 12 6. 00	5. 50 8. 10 11. 77 13. 61 13. 49	52. 2 64. 9 96. 4 111. 5 114. 3
First quarter	27. 10 27. 10 27. 78 28. 10 27. 52	33. 56 31. 47 28. 12 26. 82 29. 99	6. 31 6. 34 6. 77 6. 77 6. 55	13. 50 12. 09 10. 00 10. 00 11. 40	116. 9 117. 2 118. 2 118. 1 117. 6
erage—percent	38. 6	170. 7	146. 2	107.3	125. 3

¹ Source: Metal Statistics, 1958 (American Metal Market).

March through June. Cast-aluminum-scrap prices averaged 10.86 cents per pound—3.13 cents below the 1956 average. The third-quarter average (11.19 cents per pound) was the high and the March average (10.25 cents per pound) was the low point during the year. The closing market prices for scrap on December 31, 1957, according to the American Metal Market, were: 2S, 3S, 51S, and 52S, 17.00 to 17.50 cents per pound; 75S clips, 12.00 to 13.00 cents per pound; and aluminum borings and turnings, 14.00 to 15.00 cents per pound. These prices were down 1 to 3.25 cents per pound from the end of the preceding year.

FOREIGN TRADE 19

Imports.—The tariff on imports of crude aluminum during the first half of 1957 was 1.40 cents per pound. In July 1957, as a result of the General Agreement on Tariffs and Trade of 1956, the duty was reduced to 1.3 cents per pound. It was scheduled to be reduced further to 1.25 cents per pound in July 1958.

Suspension of the 1½-cent-per-pound duty on scrap was continued in 1957.

Aluminum imported for consumption in 1957 totaled 258,000 short tons—a slight decrease from the preceding year. Eighty-six percent of the total was crude metal and alloys; 8 percent plates, sheets, and bars; and 6 percent scrap. Shipments of metals and alloys, crude, from Canada, increased 3 percent over 1956. Imports of crude metal from West Germany (7 tons in 1956) increased to 780 tons in 1957. In 1957 imports of crude from Taiwan were 441 tons, in contrast to no imports from this source in 1956. As in 1956, Canada supplied 92 percent of the crude imports in 1957. Norway supplied 7 percent, and the remainder came from 7 European countries and 2 Asiatic countries. Thirty-one percent of the semifabricated shapes was received from Belgium-Luxembourg, 23 percent from United Kingdom, and 17 percent from Canada. Other major suppliers of the semifabricated shapes included Italy, West Germany, Japan, and France.

¹⁹ Figures on imports and exports compiled by Mae B. Price and Elsie D. Jackson, Division of Foreign Activities, Bureau of Mines, from records of the U. S. Department of Commerce, Bureau of the Census.

TABLE 9.—Aluminum imported for consumption in the United States, 1955-57, by classes

_		_
Bureau	of tha	Concure

		1955		1956	1957	
Class	Short tons	Value	Short tons	Value	Short tons	Value
Crude and semicrude: Metals and alloys, crude Plates, sheets, bars, etc Scrap	177, 652 20, 972 40, 851	1 \$74, 694, 865 1 13, 972, 690 1 16, 393, 332	216, 401 22, 582 25, 992	\$100, 136, 584 ¹ 16, 479, 851 ¹ 10, 769, 830	19, 633 16, 271	\$107, 33 5, 561 15, 099, 111 5, 395, 868
Total	239, 475	1 105, 060, 887	264, 975	1 127, 386, 265	258, 062	127, 830, 540
Manufactures: Foil less than 0.006-inch thick. Folding rules. Leaf (5½ by 5½ inches). Powder and powdered foil (aluminum bronze). Table, kitchen, hospital utensils, etc Other manufactures.	1,758 (²) (³) 25 2,720 (⁴)	1 2, 963, 111 31 7, 972 28, 329 1 4, 266, 911 1 1, 239, 292	1, 653 (2) (3) 81 2, 431 (4)	1 2, 608, 869 1 636 1 8, 171 79, 836 1 3, 969, 914 1 2, 139, 104	1,752 (2) (3) 60 2,015 (4)	2, 881, 843 5, 014 10, 713 67, 312 3, 495, 053 2, 332, 438
Total	(4)	1 8, 505, 646	(4)	1 8, 806, 530	(4)	8, 792, 37
Grand total	(4)	1 113, 566, 533	(4)	¹ 1 3 6, 192, 795	(4)	136, 622, 91

Owing to changes in tabulating procedures by the Bureau of the Census data known to be not comparable with years before 1954.
 Number: 1955, 100; 1956, 1,200; 1957, 2,400; equivalent weight not recorded.
 Leaves: 1955, 2,466,054; 1956, 3,030,097; 1957, 3,050,680.
 Quantity not recorded.

Aluminum-base-scrap imports decreased 37 percent from 1956. Canada supplied 76 percent of the scrap in 1957. The next most important suppliers of scrap were the United Kingdom and France.

The average values of aluminum imported into the United States in 1957 were 24.2 cents per pound for crude, 38.5 cents for semifab-

ricated, and 16.6 cents for scrap.

Exports.—United States exports of crude, scrap, and semicrude aluminum in 1957 were 61,000 short tons—10 percent less than those Exports of ingots, slabs, and crude were down 19 percent in 1956. to 28,000 tons. Argentina received 20 percent of the exports of crude metal, the United Kingdom 12 percent, Brazil and Japan 11 percent each, and Mexico and the Philippines 10 percent each. plates, sheets, bars, castings, forgings, and unclassified semifabricated shapes increased slightly over the previous years. Canada, India, Venezuela, and Cuba were the major recipients. Exports of these shapes to India increased nearly four times to 3,250 tons. Aluminumbase-scrap exports decreased slightly from the previous year, going mainly to West Germany, Japan, Italy, and India.

The average values of aluminum exports in 1957 were as follows: 25.1 cents per pound for crude, 53.8 cents for semifabricated, and 17.7 cents for scrap. These values were all lower than in 1956.

TABLE 10.—Aluminum imported for consumption in the United States, 1956-57, by classes and countries, in short tons

[Bureau of the Census]

		1956			1957	
Country	Metal and alloys, crude	Plates, sheets, bars, etc.	Scrap	Metal and alloys, crude	Plates, sheets, bars, etc.	Scrap
North America: Canada Other North America	199, 919	3, 149	19, 3 50 165	205, 343	3, 346	12, 335 36
Total	199, 919	3, 149	19, 515	205, 343	3, 346	12, 371
South America			33			
Europe: Austria Belgium-Luxembourg Denmark France Germany, West Italy Netherlands Norway Sweden Switzerland United Kingdom Yugoslavia Other Europe	14, 715 156 496 133 441	2, 093 2, 131 1, 901 312 2 525 4, 462 15	58 168 53 897 314 (1) 1,889 16 229 46 2,017	178 780 14, 862 160 217 165	54 5, 998 639 1, 616 1, 926 246 299 4, 431 324	121 805 357 337 55 188 227 1,005
Asia: India Indonesia Japan Southern and Southeastern Asia, n. e. c Taiwan Total		1,796	33 61 68 —————————————————————————————————	2 441 443	753	21
Africa Oceania			131 80	443	753	
Grand total: Short tons	216, 401	22, 582	25, 992	222, 158	19, 633	16, 271
Value	\$100,136,584	2\$16,479,851	2\$10,769,830	\$107,335,561		\$5, 395, 868

 $^{^1}$ Less than 1 ton. 2 Owing to changes in tabulating procedures by the Bureau of the Census data known to be not comparable with years before 1954.

TABLE 11.—Aluminum exported from the United States, 1955-57, by classes [Bureau of the Census]

	1955			1956	1957		
Class	Short tons	Value	Short tons	Value	Short tons	Value	
Crude and semicrude: Ingots, slabs, and crude	5, 969 18, 290 8, 009 1, 139 427	\$2, 773, 040 6, 501, 382 7, 518, 319 2, 424, 571 474, 395	134, 618 19, 329 12, 493 1, 247 345	1\$19,108,867 8, 127, 293 13, 092, 897 3, 093, 903 376, 943	27, 982 18, 166 13, 767 1, 333 181	\$14, 051, 019 6, 435, 269 13, 178, 860 3, 063, 509 192, 489	
Total	33, 834	19, 691, 707	168, 032	143, 799, 903	61, 429	36, 921, 146	
Manufactures: Foil and leaf Powders and pastes (aluminum and aluminum bronze) (aluminum con-	543	957, 653	425	675, 985	887	1, 138, 221	
tent)Cooking, kitchen, and hospital	297	314, 814	351	419, 373	475	572, 833	
utensils	1, 422	2, 847, 748	1, 222	2, 863, 168	1,308	3, 055, 554	
window) Venetian blinds and parts Wire and cable Construction materials, n.e.c Other manufactures	570 2, 390 6, 581 3, 058 (2)	1, 034, 373 2, 151, 654 3, 700, 399 5, 301, 981 229, 444	760 2,875 3,288 3,644 (2)	1, 531, 357 2, 830, 531 2, 543, 250 6, 511, 631 204, 918	730 1,836 4,977 4,610 (2)	1, 322, 701 2, 099, 450 3, 612, 581 8, 552, 384 349, 926	
Total	(3)	16, 538, 066	(3)	17, 580, 213	(3)	20, 703, 650	
Grand total	(3)	36, 229, 773	(3)	¹ 61, 380, 116	(3)	57, 624, 796	

<sup>Revised figure.
Weight not recorded.
Quantity not recorded.</sup>

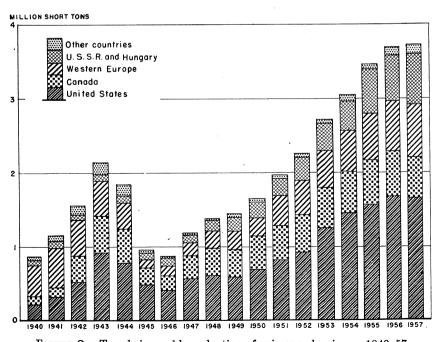


FIGURE 2.—Trends in world production of primary aluminum, 1940-57.

TABLE 12.—Aluminum exported from the United States, 1956-57, by classes and countries, in short tons

[Bureau of the Census]

•	1956			1957			
Country	Ingots, slabs, and crude	Plates, sheets, bars, etc. ¹	Scrap	Ingots, slabs, and crude	Plates, sheets, bars, etc. ¹	Scrap	
North America: Canada	1, 422 60 3, 466	7, 428 1, 180 180 727	1, 235 4 210 44	684 31 2, 804 8	6, 331 1, 309 196 803	253 50 10	
Total	4, 948	9, 515	1, 493	3, 527	8, 639	318	
South America: Argentina Brazil Chile Colombia Venezuela Other South America	7, 942 309 755 1, 390 30	160 187 5 124 1,321 150		5, 542 3, 094 487 1, 298 38 45	25 73 96 536 1,319 219	10	
Total	10, 426	1, 947		10, 504	2, 268	10	
Europe: Denmark Finland France. Germany, West Ireland Italy Netherlands. Spain. United Kingdom Other Europe.	1, 362 303 300 2 3, 464	25 29 13 56 34 12 114 155 68	20 7, 839 5, 734 180	516 616 770 50 3, 486 122	44 5 72 6 25 25 33 105 76	8, 140 2, 777 98 17 42	
Total	² 16, 078	508	13, 787	5, 560	391	11, 074	
Asia: India	770 1, 999	848 25 165 292 287	855 3, 187 4	1, 240 2, 982 2, 681 1 1, 481	3, 250 69 65 37 289	1, 438 5, 312 14	
Total Africa Oceania	3, 066 100	1,617 194 304	4,046	8, 385 6	3,710 243 30	6, 764	
Grand total: Short tons_ Value	² 34, 618 ² \$19, 108, 867	14, 085 \$16, 563, 743	19, 329 \$8, 127, 293	27, 982 \$14, 051, 019	15, 281 \$16, 434, 858	18, 166 \$6, 435, 269	

¹ Includes plates, sheets, bars, extrusions, castings, forgings, and unclassified "semifabricated forms." ² Revised figure.

During 1957 the Bureau of Foreign Commerce set the following export quotas on aluminum scrap:

	10ns
First quarter	7, 000.
Second quarter	8. 000.
Third quarter	Ópen ended.
Fourth quarter	Do.

The first quarter quota was originally set at 5,000 tons, but later revised to 7,000 tons. During the second quarter of the year exports of aluminum scrap from United States Territories and possessions were excluded from the quota.

WORLD REVIEW

The estimated world aluminum production, 3.7 million short tons in 1957, was virtually unchanged from the previous year. However, the North American production of 2.2 million tons was down 4 percent, while European production, including the Soviet Bloc, at 1.4 million tons represents a 6-percent increase over 1956.

North America produced approximately 60 percent of the world total, and the Soviet Bloc supplied an estimated 20 percent. During 1957 Soviet aluminum became available on the world market, especially in the United Kingdom, indicating that the metal supplies were as ample in the U.S.S.R. as they were in most parts of the world.

TABLE 13.—World production of aluminum, by countries, 1948-52 (average) and 1953-57, in short tons 1

Country	1948–52 (average)	1953	1954	1955	1956	1957
North America:					, , , , , , , , , , , , , , , , , , ,	
Canada	416, 056	548, 445	557, 897	612, 543	620, 321	557, 105
United States	743, 950	1, 252, 013	1, 460, 565	1, 565, 721	1, 678, 954	1, 647, 709
	ļ			<u> </u>		
Total	1, 160, 006	1, 800, 458	2, 018, 462	2, 178, 264	2, 299, 275	2, 204, 814
South America: Brazil	² 820	1, 322	1, 612	1, 834	6, 920	3 9, 800
Evenopor						
Europe: Austria	24, 082	47, 924	52, 920	63, 051	65, 490	62, 125
Czechoslovakia	24,002	3,000	17, 000	26, 900	23, 400	
	82, 619					18, 400
France	82, 619	124, 581	132, 426	142, 191	165, 082	176, 603
Germany:						
East	4 6, 200	10, 700	23, 100	29, 100	37, 800	³ 37, 500
West	52, 602	117, 881	142, 439	151, 089	162, 439	169, 576
Hungary	19, 136	30, 576	36, 115	40,740	38, 374	28, 700
Italy	43, 672	61, 136	63, 462	67, 741	69, 896	72, 962
Norway	47, 434	58, 610	67, 573	79, 102	102, 184	105, 434
Poland	,		³ 2, 800	22, 500	24,000	³ 22, 400
Rumania 3			_,	6, 200	8, 800	11, 000
Spain	2,683	4,823	4, 545	3, 466	14, 283	16, 452
Spain Sweden (includes alloys)	5, 777	10, 635	11, 768	11, 063	13, 734	16, 806
Switzerland	25, 000	32, 518	28, 660	33, 069	33, 069	34, 172
U. S. S. R. 3	208, 000	325, 000	375, 000	475, 000	500, 000	550, 000
					20,000	
United Kingdom	32, 609	34, 626	35, 395	27, 378	30, 892	39, 513
Yugoslavia	2, 579	3, 078	3, 854	12, 675	16, 162	19, 989
Total 3	552, 400	865, 000	995, 000	1, 190, 000	1, 305, 000	1, 380, 000
Asia:						
China (Manchuria)		(5)	3 3, 300	3 7, 700	3 11, 000	3 22, 000
India	4,001	4, 209	5, 439	8, 091	7, 281	8, 718
India			5, 439			
Japan Korea, North ³ Taiwan	29, 215	50, 145	58, 544	63, 392	72, 749	74, 931
Korea, North 3	840	(5)	(5)	(5)	(5) 9, 655	(5)
Taiwan	2, 738	5, 407	7, 861	7, 717	9, 655	9, 104
Total	36, 794	59, 761	³ 75, 100	³ 86, 900	³ 100, 700	³ 114, 800
Africa: French Cameroon						8, 379
Oceania: Australia				1, 398	10, 240	11, 899
World total (esti- mate) ¹	1, 750, 000	2, 725, 000	3, 090, 000	3, 460, 000	3, 720, 000	3, 730, 000

¹ This table incorporates a number of revisions of data published in previous Aluminum chapters. Data do not add to totals shown because of rounding where estimated figures are included in the detail.

² Average for 1951-52.

³ Estimate.

Average for 1950-52.
Negligible.

Primary metal was produced for the first time in Africa when the plant at Edea, French Cameroon, began producing. One article briefly reviewed the primary aluminum industry throughout the world.20

NORTH AMERICA

Canada.—Canadian British Aluminium Co., Ltd., a subsidiary of British Aluminium Co., Ltd., and Quebec North Shore Paper Co., became Canada's second aluminum producer when its plant began operations at Baie Comeau, Quebec, December 23, 1957. The first stage of development consisted of 2 cellrooms, each with 2 rows of 42 pots, capable of producing a total of 45,000 short tons of ingot annually.²¹

Aluminum Company of Canada, Ltd. (Alcan), produced 557,100 short tons of primary aluminum in 1957, 10 percent below that in 1956. The decline was attributed to the 4-month strike at the Arvida, Quebec, plant, a 10-day power breakdown in December at Kitimat, British Columbia, and to changing market conditions. Output in Quebec declined 20 percent to approximately 397,000 tons, whereas that of British Columbia increased 29 percent to 160,000 tons. As a result of lessened demand for aluminum, curtailments in production were being made at the end of the year at Arvida, Shawinigan Falls, and Kitimat.22

TABLE 14.—Primary-aluminum production capacity in Canada (Short tons per year)

	End of 1957	Being built or planned	Total
Aluminum Company of Canada: Arvida, Quebec Beauharnois, Quebec. Isle Maligne, Quebec. Kitimat, British Columbia. Saguenay area, Quebec. Shawinigan Falls, Quebec.	367, 500 37, 000 113, 400 186, 000	1 77, 000 1 120, 000	367, 500 37, 000 113, 400 263, 000 120, 000 70, 800
TotalCanadian British Aluminium Co., Ltd.: Baie Comeau, Quebec	774, 700 45, 000	197, 000 45, 000	971, 700 90, 000
Grand total	819, 700	242, 000	1, 061, 700

¹ Reactivation of these projects depends upon improvement of world markets for aluminum.

During the first half of 1957 the company postponed indefinitely construction of the eighth potline at Kitimat and construction of a new smelter in Quebec, which together would have added about 160,000 tons of annual capacity. In October the expansion program was adjusted further, and work on two potlines then under construction at Kitimat was suspended. This postponement involved 80,000 tons of additional capacity, which was more than 60 percent completed. Development of hydroelectric facilities in British Columbia and Quebec and alumina plants in Jamaica were not affected by the cutbacks.

Light Metals (London), Industry in the World Today: Vol. 21, No. 240, March 1958, pp. 94–96.
 Metallurgia (Manchester), New Aluminum Smelter in Production, First Metal Poured at Baie Comean: Vol. 57, No. 339, January 1958, pp. 31–32.
 Bureau of Mines, Mineral Trade Notes: Vol. 46, No. 6, June 1958, pp. 3–9.

Exports of primary aluminum declined 6 percent in 1957 to 479,000 tons. The United States, with 215,000 tons, and the United Kingdom, with 173,000 tons, took 81 percent of the exports.

SOUTH AMERICA

Brazil.—Two primary aluminum plants in Brazil produced an estimated 9,800 short tons of aluminum in 1957. Various reports indicated that Kaiser was considering building a reduction plant in Maceio, State of Alagoas. Kaiser had previously voiced interest in building at Recife in the State of Pernambuco. Reynolds Metals Co. considered building a plant on the San Francisco River. There also were reports that the Government of Brazil may build an aluminum plant on the borders of the States of Baía Pernambuco, and Alagoas.

Surinam.—The Aluminum Company of America signed a letter of intent to build a 66,000-short-ton aluminum plant in Surinam. The Government of Surinam agreed to finance the construction of a hydroelectric project to supply power to the plant. Initially Alcoa would construct only a smelter, at an estimated cost of \$45 million. The company would build an alumina plant within 12 years of the signing of the agreement or within 8 years after completion of the

smelter.

EUROPE

Austria.—Aluminum production reached a high of 65,000 tons in 1956 but declined to 62,000 tons in 1957. An article describing development of the aluminum industry was published.²³

France.—The output of primary aluminum increased 7 percent in 1957 and reached a new high of 176,600 short tons. Société Péchiney increased output 4 percent to 145,000 tons and Société Ugine 24

percent to 31,000 tons.

Plans for expanding the aluminum industry in France by using Lacq-area natural gas of southwestern France to produce thermal electricity were completed. The project was to consist of three installations: The thermal power station was to consist of 4 125,000 kilowatt groups each, 2 of which were to be used by Péchiney and Ugine; a 55,000-short-ton aluminum plant already under construction by Péchiney on the left bank of the Gave de Pau; and a new 25,000-ton plant to be built by Ugine near the company's existing plant. The total cost of the project was placed at \$85 to \$90 million, \$30 million of which would be used for producing and transporting electric power, and \$55-\$60 million for the aluminum plants.²⁴

The price of aluminum, which had been frozen at 174.3 francs per kilogram by the government since August 1955, was increased to 183 francs in March, 184 francs in July, 184.5 francs in August, and 198 francs in October, where it remained for the rest of the year. In October the government removed all controls on aluminum prices.

Germany, West.—Primary aluminum output increased 4 percent in 1957 to about 170,000 short tons, of which Vereinigte Aluminium Werke (VAW) produced 72 percent and Aluminium Hütte G. m. b. H.

Nachtigall, Eduard, Development of the Aluminum Industry in Austria: Metal Progress, vol. 71.
 No. 1, January 1957, pp. 77-81.
 Bureau of Mines, Mineral Trade Notes: Vol. 47, No. 1, July 1958, pp. 3-5.

the remaining 28 percent. During the latter part of the year Lippe Aluminium Werke of VAW reported a 30-percent cut in production at its Luenen plant, but no other reductions were reported. An article describing the present position and plans of the West German aluminum industry gave its capacity at the end of 1957 as 176,000 tons.²⁵

Production of secondary aluminum reversed the downward trend of 1956 and gained 3 percent to a total of 99,000 tons. The consumption of primary aluminum gained 7 percent in 1957 to 204,000 tons, but secondary aluminum consumption dropped 7 percent to 90,000 tons. The 1957 consumption paralleled that in 1956, when 24 percent was consumed in transportation, 16 percent in electrical industry, 14 percent in household goods, 13 percent in machinery, 10 percent in packaging, 6 percent in building, and 17 percent in other uses. Scrap consumption declined 32 percent to 17,000 tons, chiefly because of high prices.

The price of primary aluminum remained constant at DM233 per 100 kilograms (about US\$0.25 per pound) delivered at railhead,

throughout the year.

Imports of crude aluminum and aluminum scrap totaled 65,000 short tons in 1957, a 6-percent decrease from those of 1956. Major sources of imports were Canada, 21,000 tons; and Austria, 13,000 tons. Smaller amounts were imported from a number of other countries.

Greece.—The Greek Government was promoting interest in establishing an aluminum industry in Greece. Kaiser Aluminum & Chemical Corp. and Reynolds Metals Co. were reported to be interested. Greek bauxite, which is now exported at the rate of 650,000 tons a year, would be used as raw material.

Italy.—Additions to primary aluminum production capacity during the year brought the total capacity in Italy to about 92,000 short tons. Montecatini-Settore Alluminio (SEAL) supplied 58 percent of the 1957 output of 73,000 short tons, Societa Alluminio Veneto Anonima (SAVA) 36 percent, and Societa dell'Alluminio Italiano (SAI) 6 percent. Imports of primary aluminum totaled 21,000 short tons and exports 1,300 tons.

Norway.—The 3 aluminum companies, with 5 plants, operated at capacity during the year and produced 105,000 short tons of aluminum, of which 80,000 tons was exported. The United Kingdom was the principal recipient, with 19,000 tons, followed by the United States, with 12,000 tons; Sweden, with 11,000 tons; Belgium-Luxembourg, with 8,000 tons; and West Germany, with 7,000 tons. The remainder

went to numerous other countries.

Elektrokemish S. A. expected to complete the first stage of its plant at Mosjøen by the end of 1958, thus increasing Norwegian capacity 27,000 short tons. The total capacity of the plant upon completion was to be 99,000 tons. A/S Aardal og Sunndal Verk announced plans for a new plant, Aardal III. Aardal I had an annual capacity of 30,000 short tons, Aardal III, which was being constructed, was scheduled to be operating by 1961 with an estimated output of 40,000 tons. Aardal III was scheduled to begin initial production in 1963, with full operation of 35,000 tons by 1965. This company also operated a 44,000-ton plant at Sunndalsøra and was planning a new

²⁴ Light Metals (London), The Industry in the World Today: Vol. 20, No. 236, November 1957, pp. 356-357.

plant of 11,000 tons annual capacity at the same location. Upon completion of Aardal II, Aardal III, and Sunndal II, the company's

annual capacity would reach nearly 160,000 tons.26

Spain.—Sociedad Aluminio de Galicia was formed in the latter part of the year to build and manage a 22,000-short-ton aluminum and aluminum-alloy plant in the Province of Galicia. Necessary power for the plant would be supplied by three hydroelectric plants in the vicinity.

Aluminio Iberico S. A. proposed building an aluminum plant in the vicinity of Madrid capable of producing 4,400 short tons of primary aluminum, 4,400 tons of special alloys for sheet and foil, and 2,200

tons of alloys for production of sections.

Output of aluminum reached a high of 16,000 tons as new facilities came into production.

U. S. S. R.—Construction of 20 new aluminum plants was reported to

be included in the U.S.S.R. current Five-Year Plan.²⁷

United Kingdom.—Aluminum output increased 28 percent in 1957 to 39,500 short tons. Imports of aluminum ingots in 1957 totaled 239,800 short tons, principally from Canada, 191,500 tons; Norway, 20,000 tons; and the Soviet Bloc, 19,000 tons. The history and status of the aluminum industry in 1957 in Scotland, where the Fovers plant produced superpurity aluminum, and the Kinlockleven and Lochaber

plants produced primary aluminum, were reviewed.28

Imports from the Soviet Bloc, 90 percent of which were from U. S. S. R., represented a sharp increase from 1956, when only 1,000 tons was imported from this source. This increase in imports was the result of Soviet metal being offered in United Kingdom markets at about 1 cent per pound under the price for Canadian metal. It was further reported that the Soviets would sell metal at 1 cent below any Canadian price. Late in the year the Aluminum Company of Canada, in order to protect its important British market, requested that the United Kingdom Board of Trade impose an antidumping duty on crude-aluminum imports from U.S.S.R. No action had been taken by the end of the year.

Yugoslavia.—Aluminum output increased 24 percent to 19,990 The Kidricevo plant produced 16,490 short tons short tons in 1957.

and the Lozovac plant 3,500.

The agreement signed in August 1956 between the Government of Yugoslavia, The Soviet Union, and the German Democratic Republic, whereby the Soviet Union and East Germany would loan \$175 million for constructing an aluminum plant near Titograd, Montenegro, was canceled in April 1957. Later in the year the agreement was renewed, and construction of the 55,000-short-ton plant was to begin in 1958. The aluminum combine project was to include hydroelectric developments at Perucia and Komarnica and expansion of the caustic soda plant at Inkavac and the ferroalloys plant at Sibenik, as well as the aluminum plant in Titograd. It was reported that \$20 million was to be spent on the project during 1958 and that work on the powerplants was begun in the latter part of the year. The entire project was scheduled to be completed by 1964.

<sup>Bureau of Mines, Mineral Trade Notes: Vol. 46, No. 4, April 1958, p. 5.
Mining World, vol. 19, No. 13, December 1957, p. 89
Schofield, M., The Scottish Non-Ferrous Metal Industries: Metal Industry (London), vol. 91, No. 13, Sept. 27, 1957, pp. 269-273.</sup>

The aluminum industry in Yugoslavia was reviewed in several articles.29

ASIA

India.—In 1957 the Indian Aluminium Co., Ltd., a subsidiary of the Canadian company, Aluminium, Ltd., produced primary metal at its 5,500-short-ton plant at Alwaye. The only other producer (the Aluminium Corporation of India, Ltd., which is wholly Indianowned), operated a 2,800-ton plant at Asansol.³⁰

Progress was made on the expansion program during the year. The new plant of the Indian Aluminium Co., Ltd., at Hirakud in Orissa was expected to begin operations early in 1959, thus adding 10,000 tons of aluminum capacity. The company applied to the Government for permission to expand the plant to 20,000 tons.

An article discussing possibility of starting an aluminum industry

in central India had been published in 1956.31

Japan.—Aluminum output continued its upward trend in 1957, with a record high 74,900 short tons of primary aluminum and 21,000 tons of secondary aluminum. The aluminum industry since the Peace Treaty in 1952 was reviewed.³²

Showa Denko was reported to have completed a new plant with an annual capacity of 5,500 short tons near its Kitagata plant.

plant increased company capacity to 30,000 tons.

Japan Light Metal Co. announced that the reconstructed Niigata plant would be ready to operate in May 1958. The plant was equipped with 68 cells and was said to be capable of producing 11,000 short tons of aluminum a year, bringing total company capacity to 45,000 tons. The capacity of the Niigata plant was to be raised to 22,000 tons by 1960.

Primary aluminum-production capacity, which in 1957 was approximately 76,000 short tons, by 1960 would be 100,000 tons upon comple-

tion of all scheduled expansion.

AFRICA

Belgian Congo.—The Belgian Government approved the program for constructing dams and power stations at Inga estimated to cost £1,130 million. Construction was scheduled to begin in 1959. The British Aluminium Co., Ltd., joined the syndicate ALUMINGA, which included Belgian, United States, French, Swiss, German, and Italian companies.

French Africa.—The most important development during the year was the beginning of operations at the Edea aluminum plant of Compagnie Camerounaise de l'Aluminium Péchiney-Ugine (ALUCAM) in February 1957. Of the 8,400 short tons of aluminum produced

²⁹ Commercial Information, Federal Chamber of Foreign Trade, Belgrade, [The Boris Kidrië Alumina and Aluminum Works]: Vol. 10, No. 8, August 1957, pp. 16-17.
Djukič, Branko, The Yugoslav Aluminium Industry: Mining Mag. (London), vol. 97, No. 5, November

Djukic, Branko, The Yugoslav Aluminium Industry: Mining Mag. (London), vol. 97, No. 5, November 1957, pp. 278-280.

Baudart, G. A., [Aluminium in Yugoslavia]: Revue de l'Aluminium (Paris), vol. 34, No. 240, February 1957, pp. 151-154.

Bureau of Mines, Mineral Trade Notes: Vol. 47, No. 1, July 1958, pp. 6-10.

Mahendra, Balram K., A Plan for Establishing Aluminium Industry in Central India Near Rihand Dam Uttar Pradesh: Bull. Geol., Min., and Met. Soc. India, No. 16, March 1956, 32 pp. 21 Light Metals (London), The Industry in the World Today: Japan: Vol. 20, No. 235, October 1957 pp. 326-327.

during the year, 4,000 tons was exported to France. France reported shipping 26,600 short tons of alumina to French Cameroon in 1957

compared with 2,000 tons in 1956.

An article 33 on the Edea project stated that the 208 electrolytic cells each produced 1,400 pounds of aluminum daily. Latest production techniques were incorporated in the plant, which was said to be one of the most modern in the world. Production of 1 pound of aluminum required 1.9 pounds of alumina, 0.52 pound of carbon, and under 7.5 kw.-hr. of power. The production cost for 1 kw.-hr. of electricity was estimated at 0.7 franc (about 1/6 1 cent), whereas the costs of electricity in France varied from 2 to 4 francs per kw.-hr.

It was announced in September 1957 that the French Cabinet had decided to build the dam and powerplant in French Guinea on the Konkouré River near Souapiti. Société Civile d'Études Hydroélectriques de Konkouré et du Kouilou was formed to study harnessing

the hydroelectric resources of the rivers.34

TECHNOLOGY

During 1957, as aluminum supplies increased in the face of decreasing demand, marketing and technical research efforts were intensified. To meet the expected long-range increase in demand for aluminum, areas of fundamental research that required intensified activity were: (1) Investigation of primary raw materials other than high-grade bauxite; (2) development of new sources of energy; (3) modification of the Bayer alumina process or development of other alumina processes if different ores are used; (4) better efficiency of electrolytic cells and rectifiers; and (5) improvement in techniques and economics of recovering secondary aluminum.35

A British article which reviewed the industry in 1957 also included an extensive bibliography.36 Results of research during the year in production, melting and casting, working, joining, properties, corrosion and protection, and applications were discussed, with references.

A process for producing honeycomb aluminum making the metal almost as light as balsa wood, was announced by Bjorksten Research Laboratories.³⁷ The metal could be made in densities ranging from 12 to 40 pounds per cubic foot, and the cells could be as small as 1/64 inch or as large as 1/4 inch, and could be open or closed. Compressive and tensile strengths were low, and the material was said to have The material was produced by releasing hydrogen great rigidity. gas that resulted from adding gas-forming solids, such as titanium and zirconium hydrides, to molten aluminum.

Another application utilized aluminum as the foaming agent in producing foamed concrete. Two plants with a combined capacity of 350 cubic yards of blocks per day were put into operation in the West-

³³ Victor, Maurice, Edea, Première Usine Africaine de Production d'Aluminium: Revue de l'Aluminium, vol. 34, No. 246, August 1957, pp. 843-874.

34 The Mining Journal (London), Aluminium in French Africa: Vol. 249, No. 6376, Nov. 1, 1957, pp.

<sup>516-517.

35</sup> Modern Metals, Needed: More Research: Vol. 13, No. 6, July 1957, p. 14.

Ginsberg, H., [The Expansion of Production as Governing Factors of Fundamental Research in the Field of the Chemical Technology of Light Metals] (in German): Metall (Berlin), vol. 11, No. 3, March 1957, pp. 176-179.

36 Elliott, E., Aluminium and Its Alloys in 1957, Some Aspects of Research and Technical Progress Reported: Metallurgia (Manchester), vol. 57, No. 340, February 1958, pp. 79-92.

37 Chemical and Engineering News, Meet Foamed Aluminum: Vol. 35, No. 30, July 29, 1957, p. 56.

189 ALUMINUM

The process was based upon the reaction between ern United States. calcium hydroxide and aluminum to produce hydrogen, which formed small bubbles throughout the mass. The density of the product ranged from 675 to 1,215 pounds per cubic yard, which compared with a density of 2,700 pounds per cubic yard for cinder aggregate.38

Properties, uses, and methods for preparing superpurity aluminum were described. Such metal has total impurities of only 0.01 percent and was used in ornamental trim, automobile hardware, furniture fittings, costume jewelry, and watchcases and as foil in electrolytic

A two-section article reviewed alloy developments, fabrication procedures, joining methods, and newly developed finishing methods and indicated advantages to be gained by using aluminum in manufac-

turing processes.40

Loss of strength at moderately elevated temperatures threatened the use of aluminum in some parts of supersonic aircraft. Aluminum alloys used had significantly inferior physical properties in the 250° to 350° F. range, thereby limiting their usefulness to aircraft speeds below 1,300 miles per hour. Alcoa announced development of a new alloy containing lithium, designated X2020, that maintained high strength at temperatures up to 400° F. The new alloy had a high modulus of elasticity, was lighter than alloys previously available for aircraft, and would be useful at speeds up to 1,600 miles per hour.41

Aluminum powder metallurgy parts (APMP) became commercially available in 1957. APMP products included extruded shapes, forgings, sheet, foil, drawn extruded tube, compact extrusions, fasteners, and wire. At temperatures above 400° F. these products were stronger and more stable than any aluminum alloy produced by conventional methods. Certain products could withstand temperatures up to 900° F., an advance of 300° to 400° over previous limits. The improved properties of the extrusions or forgings produced from compacts of aluminum-flake powders were found to result from the oxide content The higher the oxide content the higher the tensile of the powder. strength, yield strength, and hardness and the lower the ductility of the extrusion or forging. Properties of the powders and extrusion were studied. 43 Variables investigated included particle size, flake thickness, and oxide content.

A series of articles discussed the technology of anodizing aluminum and discussed the efficiency of the operation, abrasion resistance of films obtained by different methods, and the surface appearance.44

³⁸ Chemical Engineering, Powdered Aluminum Makes Concrete Foam: Vol. 64, No. 11, November 1957, pp. 162-164.

39 Bloch, E. A., and Muller, P. H., Superpurity Aluminum: Metal Progress, vol. 72, No. 2, August 1957,

<sup>Bloch, E. A., and Muller, P. H., Superpurity Aluminum: Metal Progress, vol. 72, No. 2, August 1967, pp. 91-96.
Bron Age, How To Get More for Your Aluminum Dollar; sec. 1, Selection: Your Margin to Profit: Vol. 179, No. 5, Jan. 31, 1957, pp. 67-72.
Materials in Design Engineering, Lithium Improves Properties in Aluminum Alloy: Vol. 46, No. 7, December 1957, p. 159.
Modern Metals, Aluminum Powder Parts Withstand High Heat: Vol. 13, No. 10, November 1957, p. 102.
Lenel, F. V., Ansell, G. S., and Nelson, E. C., Metallography of Aluminum-Powder Extrusions: Jour. Metals, Trans. sec., vol. 9, No. 1, January 1957, pp. 117-124.
Lenel, F. V., Backensto, Jr., A. B., and Rose, M. V., Properties of Aluminum Powders and of Extrusions Produced From Them: Jour. Metals, Trans. sec., vol. 9, No. 1, January 1957, pp. 124-130.
Produced From Them: Jour. Metals, Trans. sec., vol. 9, No. 1, January 1957, pp. 199-111, vol. 91, No. 4, July 48, Kape, J. M., Thick Oxide Films on Aluminium Alloys: Metal Industry (London), vol. 91, No. 4, July 48, 1957, pp. 63-65; vol. 91, No. 5, Aug. 2, 1957, pp. 198-201; vol. 91, No. 6, Aug. 9, 1957, pp. 197, pp. 109-111; vol. 91, No. 7, Aug. 16, 1957, pp. 129-131; vol. 91, No. 8, Aug. 23, 1957, pp. 148-150; vol. 91, No. 9, Aug. 30, 1957, pp. 171-172, vol. 91, No. 10, Sept. 6, 1957, pp. 198-201; vol. 91, No. 11, Sept. 13, 1957, pp. 217-219; vol. 91, No. 12, Sept. 20, 1957, pp. 239-240.</sup>

Methods for cleaning and etching aluminum and compositions of baths used to brighten the metal during anodizing were also described.45 Mechanical finishes for aluminum are important from both the decorative and functional standpoint. An article was published listing different surfaces, methods of obtaining them, and the advan-

tages and disadvantages of each surface and method.46

The casting industry consumed approximately 20 percent of the aluminum used in 1957. The major casting methods were die, permanent mold, and sand. These and less common methods were subjects of an article, which also included information on cleaning, finishing, and heat-treating the castings. ⁴⁷ Another series of articles was based on the report of a tour of United States plants by European experts sponsored by the Organization for European Economic Cooperation.48

With the advent of nuclear reactors, studies on the behavior of aluminum alloys under high temperature-pressure stresses have increased. These studies showed that some commercial alloys resisted attack by high-purity water at 200° C. Other alloys were

resistant at temperatures up to 350° C.49

The Gilsonite refinery, opened in August by American Gilsonite Co., was designed to produce 55,000 gallons of high-octane gasoline and 275 tons of low-sulfur-content coke suitable for electrodes used

in the reduction of aluminum.⁵⁰

A method for extracting aluminum from aluminum-silicon alloys, developed in Bureau of Mines laboratories, was patented. 51 Aluminum is extracted from the alloy, under reduced pressure, by liquid zinc; the silicon is undissolved. The zinc is recovered from the aluminum by distillation and is used for further extraction of the aluminumsilicon alloy until extraction is completed. The zinc vapors are then condensed apart from the aluminum and silicon.

⁴⁶ Foulke, D. Gardner, and Irgens, O. Kendle, How to Clean and Etch Aluminum: Modern Metals, vol. 13, No. 4, May 1957, pp. 44, 46, and 48.

Brace, A. W., Chemical Brightening of Aluminium: Metal Industry (London), vol. 90, No. 8, Feb. 22, 1957, pp. 147-150, 153.

46 Vanden Berg, R. V., Selecting Mechanical Finishes for Aluminum: Materials in Design Eng., vol. 46, No. 2, August 1957, pp. 102-106.

47 Stewart, W. D., Cast Aluminum Products: Modern Metals, vol. 13, No. 10, November 1957, pp. 82, 84, 86, 90, and 92.

48 Modern Metals, Die Casting Aluminum and Zinc: Part 1, vol. 13, No. 5, June 1957, pp. 72, 76, 78, 80, 82, 84, 86, 89, 90, 12 Part 2, vol. 13, No. 6, July 1957, pp. 74, 76, 78, 80, 82, 84, 85; Part 3, vol. 13, No. 7, August 1957, pp. 48, 50, 52, 54.

48 Groot, Cornelius, and Wilson, R. E., Intergranular Corrosion of Aluminum in Superheated Steam: Ind. Eng. Chem., vol. 49, No. 8, August 1957, pp. 1251-1254.

49 American Metal Market, New Gilsonite Refinery Will Supply Electro Coke to Aluminum Industry: Vol. 64, No. 148, Aug. 2, 1957, pp. 1, 14.

48 Spendlove, Max J., and Caldwell, Herbert S. (assigned to United States of America, as represented by the Secretary of the Interior), Method of Extracting Aluminum From Aluminum-Silicon Alloys by Low Pressure: U. S. Patent 2,810,637, October 1957; appl. filed Feb. 13, 1953, patented.

Antimony

By H. M. Callaway 1 and Edith E. den Hartog 2

OMESTIC antimony supply in 1957 exceeded consumption by a considerable margin. Although domestic smelter output decreased, the increased volume of imports oversupplied the diminished industrial market. Government procurement tended to stabilize prices and prevent industrial stock buildups.

A 4-percent decline in world production of antimony was attributed

to lower prices and limited demand for ores and concentrates.

TABLE 1.—Salient statistics of antimony in the United States, 1948-52 (average) and 1953-57, in short tons

	1948-52 (aver- age)	1953	1954	1955	1956	1957
United States: Production: Primary: Mine	3, 251 14, 071 21, 709 15, 401 10, 151 3, 098 833 95 1, 224 259 17, 412 38, 60 50, 000	372 9, 890 22, 360 12, 842 7, 778 2, 627 1, 076 11 1, 350 24 17, 090 35, 90 37, 000	766 9, 868 22, 358 9, 566 4, 722 2, 825 1, 225 23 771 44 14, 136 30, 47 44, 000	633 10, 201 23, 702 14, 417 7, 514 3, 671 1, 834 32 1, 366 212 14, 504 32. 15 51, 000	590 12, 070 24, 106 13, 577 6, 572 4, 693 1, 236 32 1, 044 65 14, 962 34. 97 55, 000	709 11, 559 22, 565 15, 265 8, 198 5, 052 1, 571 27 417 68 11, 931 35, 09 53, 000

¹ Includes antimony content of antimonial lead produced from foreign and domestic ores. In previous years this class of material was reported separately.

LEGISLATION AND GOVERNMENT PROGRAMS

Government inventories in 1957 substantially equaled the current procurement priority level; however, domestic primary antimony producers continued deliveries in fulfilling prior contract commitments. Commodity Credit Corporation, under authority of the Agricultural

Trade Development and Assistance Act of 1954, continued to barter domestic agricultural surpluses for selected foreign minerals and metals. Antimony remained on the list of eligible commodities during 1957, and deliveries to Government under barter contracts constituted a substantial portion of total United States imports during the year.

Commodity specialist.Statistical assistant.

DOMESTIC PRODUCTION

MINE PRODUCTION

In 1957 the output from domestic antimony mines was 45 tons of contained antimony. Although many domestic mine ores contain minor quantities of antimony that eventually reports as byproduct domestic smelter production, data on the quantities redeemed from individual deposits are lacking. The tetrahedrite-rich ores of the Sunshine Mining Co., Shoshone County, Idaho, are an exception. Historically, the Bureau of Mines tabulates this company's output of impure cathode antimony as domestic mine production. In 1957, the Sunshine Mining Co. produced 664 tons.

TABLE 2.—Antimony-bearing concentrates, produced (shipped) in the United States and Alaska, 1948-52 (average) and 1953-57, in short tons

Year	Gross weight	Average percent antimony	Net weight antimony content	Year	Gross weight	Average percent antimony	Net weight antimony content
1948–52 (average)	8, 528	37. 8	3, 251	1955	3, 967	16. 0	633
1953	2, 161	17. 2	372	1956	3, 505	16. 8	590
1954	4, 686	16. 3	766	1957	4, 192	16. 9	709

SMELTER PRODUCTION

Primary.—United States primary smelter production of antimony in 1957 was 11,600 tons, 4 percent below the quantity produced in 1956. Metal and oxide, in approximately equal quantities, constituted 77 percent of the total output; antimony content of antimonial lead accounted for an additional 17 percent, and industrially consumed residues and sulfide comprised the remaining 6 percent. Foreign antimony ores and concentrates supplied 65 percent of the source material from which domestic smelter production was derived. Approximately 29 percent of the total smelter output was byproduct metal, oxide, and antimonial lead derived from refining lead bullion. The bullion, in turn, was derived from smelting of both foreign and domestic ore concentrates. According to the best available estimates, the portion that originated in domestic ores totaled 1,950 tons, or 17 percent of the total domestic primary smelter output. The remaining 6 percent of total smelter feed was from stock drawdowns and domestically mined ore concentrates.

Companies that reported primary antimony production in 1957 were: American Smelting & Refining Co., Foote Mineral Co., Harshaw Chemical Co., Hummel Chemical Co., McGean Chemical Co., Metal & Thermit Corp., National Lead Co., and Bradley Mining Co. Bradley Mining Co. announced shutdown of its Stibnite, Idaho, antimony smelter and mill in May. Previously the company had reopened the smelter to refine impure cathode antimony purchased from the Sunshine Mining Co.

The output of secondary antimony, all in antimonial alloys, totaled 23,000 short tons from all plants. This quantity includes 1,150 tons in antimonial lead produced from scrap at primary lead refineries.

Secondary.—Secondary antimony recovered in 1957 totaled 22,600 short tons, valued at \$15.8 million, compared with 24,100 tons, valued at \$16.9 million, recovered in 1956. Of the 1957 total, secondary smelters recovered 91 percent, primary producers 5 percent, and

manufacturers and foundries 4 percent.

Recovery of antimony from battery plate scrap (13,600 tons) comprised 60 percent of the total recovered compared with 58 percent in 1956. From type-metal scrap 3,200 tons of antimony was reclaimed, from lead dross 2,500 tons, from bearing metals 1,700 tons, and from antimonial lead scrap 1,200 tons. In addition to antimony recovered from scrap, 6,100 tons of primary antimony was consumed in making lead and tin alloys. Of this total 65 percent was used in making antimonial lead.

Although all secondary antimony recoverable was redeemed from antimony-bearing lead or tin scrap and was recovered in lead or tin alloys, the operation usually involved more than simple remelting. Most of the scrap was battery plates containing oxides that had to be reduced by smelting in a blast or reverberatory furnace. The antimony content of the antimonial lead produced from smelting battery-plate scrap was usually too low for the alloy to be used in making battery grids, and more antimony was added. Such antimony was often obtained by softening some of the antimonial lead produced.

TABLE 3.—Antimony recovered from scrap processed in the United States, by kind of scrap and form of recovery, 1956-57, in short tons

Kind of scrap	1956	1957	Form of recovery	1956	1957
New scrap: Lead-base Tin-base	3, 044 75	2, 531 50	In antimonial lead ¹ In other lead alloysIn tin-base alloys	16, 462 7, 599 45	15, 722 6, 808 35
Total	3, 119	2, 581	Grand total	24, 106	22, 565
Old scrap: Lead-baseTin-base	20, 931 56	19, 933 51			1.
Total	20, 987	19, 984			
Grand total	24, 106	22, 565			

 $^{^1}$ Includes 1,283 tons of antimony recovered in antimonial lead from secondary sources at primary plants in 1956 and 1,149 tons in 1957.

TABLE 4.—Smelter production of primary antimony in the United States, 1948-52 (average) and 1953-57, in short tons, antimony content

Year	Metal	Oxide	Sulfide	Residues	Byproduct antimonial- lead	Total
1948-52 (average)	4, 082 2, 000 2, 178 2, 138 4, 291 4, 658	6, 362 4, 600 4, 925 5, 390 4, 731 4, 210	109 100 124 92 129 107	(1) 400 685 549 854 629	2, 563 2, 790 1, 956 2, 032 2, 065 1, 955	14, 071 9, 890 9, 868 10, 201 12, 070 11, 559

¹ Data not available.

This process yielded a high-antimony dross, which was resmelted with plate scrap to produce an alloy with higher antimony content. Of the secondary metal content of antimonial lead produced, 6 percent was reclaimed antimony.

TABLE 5.—Antimony metal, alloys, and compounds, produced in the United States, 1948-52 (average) and 1953-57, in short tons

	Primary	Ant	Antimonial lead produced at primary lead refineries						
Year	metal, oxide, sul- fide, and							Total secondary antimony	
residues (anti- mony content)	Gross weight	From domestic ores 1		From	Total		(content of alloys) 36		
				scrap	Quantity	Percent			
1948-52 (average) 1953 1954 1955 1956 1957	11, 508 7, 100 7, 912 8, 169 10, 005 9, 644	65, 518 62, 373 59, 873 64, 044 66, 826 67, 786	1, 906 1, 684 1, 299 1, 307 1, 320 1, 300	657 1, 106 657 725 745 615	1, 929 1, 747 1, 565 1, 523 1, 283 1, 149	4, 492 4, 537 3, 521 3, 555 3, 348 3, 064	6. 9 7. 3 5. 9 5. 6 5. 0 4. 5	21, 709 22, 360 22, 358 23, 702 24, 106 22, 565	

Includes primary residues and small amount of antimony ore.
 Includes foreign base bullion and small quantities of foreign antimony ore.
 Includes antimony content of antimonial lead produced at lead refineries from scrap.

CONSUMPTION AND USES

In 1957 industrial users of primary antimony in the United States consumed 12,000 tons—20 percent less than in 1956. The magnitude of the decrease was considerably greater than that for other base metals with which antimony is closely allied. Consumption was divided nearly equally between metal and nonmetal products. largest use was in antimonial lead (including battery metal), which in previous years represented approximately one-third of the total domestic industrial consumption. However, this use in 1957 declined nearly 20 percent, paralleling the general restricted consumption of antimony. The glass and ceramics industry used 14 percent of the total antimony consumed in all industries during 1957, but only 74 percent of that used in glass and ceramics in 1956.

TABLE 6.—Industrial consumption of primary antimony in the United States, 1949-52 (average) and 1953-57, in short tons, antimony content

conc	Class of material consumed							
	Ore and concentrate	Metal	Oxide	Sulfide	Residues	Byproduct antimonial lead		
1949–52 (average) 1 1953	2, 672 2, 100 768 491 1, 149 677	5, 049 5, 400 4, 609 4, 041 4, 154 3, 638	6, 979 5, 800 5, 885 7, 051 6, 843 5, 129	149 100 94 127 112 103	(2) 900 824 762 639 429	2, 398 2, 790 1, 956 2, 032 2, 065 1, 955	17, 247 17, 090 14, 136 14, 504 14, 962 11, 931	

¹ Breakdown not available before 1949.

2 Data not available.

TABLE 7.—Industrial consumption of primary antimony in the United States, 1948-52 (average) and 1953-57, by class of material produced, in short tons, antimony content ¹

Product	1948-52 (average) ²	1953	1954	1955	1956	1957
Metal products: Ammunition Antimonial lead Bearing metal and bearings Cable covering Castings Collapsible tubes and foil Sheet and pipe Solder	7, 726 1, 324 89 83 24 210	3 8,090 1,000 60 80 60 170 200	5, 070 816 156 70 47 238 148	5 4, 551 831 146 67 24 157 131	14 4, 972 1, 077 190 57 12 300 144	12 3, 983 944 183 106 20 258
Type metal Other		700 127	613 118	598 161	528 137	399 153
Total metal products	10, 476	10, 490	7, 281	6, 671	7, 431	6, 148
Nonmetal products: Ammunition primers	(3)	30 50	22 27	20 32	13 37	14 37
pounds Ceramics and glass Matches Pigments	35	1, 230 1, 700 20 1, 170	1, 266 1, 469 15 1, 418	1, 218 2, 048 17 1, 283	1, 082 2, 188 18 1, 471	760 1, 611 26 1, 085
Plastics Rubber products Other	568	560 20 1,820	620 49 1, 969	767 78 2,370	976 156 1,590	748 284 1, 218
Total nonmetal products	6, 936	6, 600	6, 855	7, 833	7, 531	5, 783
Grand total	17, 412	17, 090	14, 136	14, 504	14, 962	11, 931

¹ The 1957 consumption components have been reclassified and previous years' figures have been revised to make all quantities of the table directly comparable.

2 Data for 1948-52 are not wholly comparable with those of following years, but comparisons may indicate

general trends.

3 Included with other nonmetal products.

STOCKS

Despite decreased consumption and a large volume of imports, industrial stocks declined 12 percent. Essentially, all stock drawdowns were in metal; stocks of oxide and ores and concentrates changed only slightly. Deliveries to Government account effectively prevented industry stock buildups.

TABLE 8.—Industry stocks of primary antimony in the United States at end of year, 1953-57, in short tons, antimony content

	1953	1954	1955	1956	1957
Ores and concentrates	2, 232 1, 254 2, 851 142 584 1, 135	2, 421 1, 577 2, 751 135 522 891 8, 297	3, 568 1, 267 3, 234 94 445 539 9, 147	2, 474 2, 236 2, 638 159 598 506 8, 611	2, 337 1, 300 2, 510 160 746 522 7, 575

¹ Inventories at primary lead smelters only.

PRICES

The domestic price of antimony metal, RMM brand, in bulk, 99½ percent f. o. b. Laredo, Tex., was 33.00 cents per pound throughout 1957. The equivalent New York price rose from 34.97 to 35.09 cents on January 2, reflecting higher freight rates.

News items from London indicated Chinese, Russian, and Czechoslovak metal of 99.6-percent minimum purity were quoted within the range 19.7 to 20.6 cents per pound. English metal of comparable quality sold for 26.2 to 27.8 cents during the first 10 months but dropped to a low of 23.5 cents toward the end of the year after resisting pressure of lower ore and concentrate prices for many months.

TABLE 9.—E&MJ Metal and Mineral Markets openings and subsequent changes in nominal quotations for antimony ore, 1957, antimony content, per unit (20 pounds)

Date	50-55 percent	Min. 60 percent	Min. 65 percent
January 8. June 20. July 11. September 12. September 19. October 3. December 5.	\$3. 00-\$3. 10	\$3. 55-\$3. 65	\$3. 90-\$4. 00
	3. 00- 3. 05	3. 45- 3. 55	3. 80- 3. 90
	2. 80- 2. 90	3. 20- 3. 30	3. 60- 3. 65
	2. 50- 2. 75	2. 85- 3. 00	3. 10- 3. 25
	2. 25- 2. 40	2. 40- 2. 60	2. 85- 2. 95
	2. 25- 2. 40	2. 40- 2. 60	2. 90- 3. 00
	2. 25- 2. 40	2. 40- 2. 60	3. 00- 3. 10

TABLE 10.—Foreign metal prices, New York, 1957, antimony content, cents per pound 1

[American Metal Market]

Date	99.6 percent	99.5 percent	99 percent
January 2	28. 00-29. 00	27. 50–28. 00	27. 00–27. 50
	26. 00-27. 00	25. 50–26. 50	25. 00–26. 00

¹ Duty paid New York-lots of 5 tons or more.

TABLE 11.—Antimony oxide prices, New York, 1957, cents per pound

[E&MJ Metal and Mineral Markets]

Date	Carlots in bags	Less than carlots
January 3	27. 00-29. 00 24. 00	28. 50-30. 50 26. 00

FOREIGN TRADE 3

Imports of all categories of antimony totaled 15,300 tons in 1957, a 12-percent increase over 1956. Approximately 18,000 tons of imported ores and concentrates supplied 65 percent of the source material that entered dometic primary antimony production in 1957. Imports of metal, oxide and antimonial lead, as well as 680 tons of ore concentrates, were directly consumed in industry. The United Kingdom and Yugoslavia were the largest contributors of metal, supplying 37 percent and 24 percent, respectively. Other European countries supplied 24 percent and the remaining metal imports were from Mexico and Peru. Nearly 80 percent of the imported ores and

² Figures on imports and exports compiled by Mae B. Price and Elsie D. Jackson, Division of Foreign Activities, Bureau of Mines, from records of the U. S. Department of Commerce, Bureau of the Census.

concentrates came from the Western Hemisphere. Mexico and Bolivia alone furnished 71 percent. Approximately 17 percent of the imported ore came from Union of South Africa.

Exports of antimony in 1957, as in prior years, were nominal.

Tariff on antimony and antimonial products remained unchanged in 1957. Ores and concentrates were admitted duty-free. Metal was dutiable at 2 cents per pound and oxide at 1 cent.

TABLE 12.—Antimony imported for consumption in the United States, 1948-52 (average) and $1953-57^{-1}$

[Bureau of the Census]

	A	ntimon	y ore		or liq- ntimony		ony metal	Type metal and		mony ide
Year	Short	Antimo	ony content	tons	Value	Short	Value	anti- monial lead ² (short	Short tons (gross	Value
	(gross weight)	Short tons	Value	(gross weight)		tons	value	tons)	weight)	value
1948-52 (average) 1953 1954 1955 1966 1957	25, 343 17, 242 12, 870 16, 307 17, 424 21, 374	10, 075 7, 778 4, 722 7, 514 6, 572 8, 198	\$3, 284, 745 2, 035, 125 1, 289, 782 1, 876, 601 1, 762, 210 1, 973, 269	135 17 33 46 46 38	\$78, 579 8, 678 17, 101 18, 628 22, 715 17, 297	3, 054 2, 612 2, 802 3, 667 4, 321 5, 412	\$1, 917, 773 1, 402, 226 1, 349, 179 1, 859, 906 2, 245, 194 2, 587, 234	1, 224 1, 350 771 1, 366 1, 044 417	1, 004 1, 296 1, 476 2, 210 1, 479 1, 893	\$607, 396 579, 600 645, 057 926, 312 635, 808 790, 367

TABLE 13.—Antimony imported into the United States, 1948-52 (average), 1953-55 (totals), and 1956-57, by countries 1

[Bureau of the Census]

		ntimon	y ore		or liq- ntimony	Antim	ony metal	Antii ox	mo ny ide
Country	Short	Antimo	ny content	Short tons		Short	37-3	Short	XY-1
	(gross weight)	Short tons	Value	(gross weight)	Value	tons	Value	(gross weight)	Value
1948-52 (average) 1953 1954 1955	25, 625 17, 242 12, 870 16, 307	10, 151 7, 778 4, 722 7, 514	\$3, 303, 798 2, 035, 125 1, 289, 782 1, 876, 601	135 15 33 46	\$78, 798 7, 582 17, 101 18, 628	3, 098 2, 627 2, 825 3, 671	\$1, 943, 124 1, 407, 424 1, 359, 497 1, 860, 472	1, 004 1, 296 1, 476 2, 210	\$607, 396 579, 606 645, 053 926, 313
1956									
North America: Canada Mexico	386 11, 106	201 2, 977	41, 989 624, 7 4 2			791	521, 232	25	12, 46
Total	11, 492	3, 178	666, 731			791	521, 232	25	12, 46
South America: Bolivia 2 Chile 2	2, 013 221	1, 306 98	454, 854 29, 420						
Peru 2	377	231	78, 021			200	79, 081		
Total	2, 611	1, 635	562, 295			200	79, 081		

See footnotes at end of table.

Does not include antimony contained in lead-silver ore.
 Estimated antimony content; for gross weight and value, see Lead chapter of this volume.

TABLE 13.—Antimony imported into the United States, 1948-52 (average), 1953-55 (totals), and 1956-57, by countries 1—Continued

[Bureau of the Census]

	A	ntimon	y ore		or liq- ntimony	Antim	ony metal		mony ide
Country	Short tons (gross weight)	Antimo	Value	Short tons (gross weight)	Value	Short tons	Value	Short tons (gross weight)	Value
1956									
Europe: Austria Belgium-Luxem-	16	11	\$3,883	6	\$2,688				
bourg France				2	1,030	964 131	\$472, 060 65, 656	178	\$81,686
Germany, West				7	2, 873	56	26, 113	202	83, 528
Italy United Kingdom Yugoslavia	6	4	2, 660	9 22	4, 256 11, 868	1, 346 1, 161	21, 818 657, 856 579, 978	1,084	462, 247
Total Asia: Turkey	22 82	15 44	6, 543 14, 512	46	22, 715	3,702	1, 823, 481	1, 464	627, 461
Africa: Algeria Union of South	744	260	41, 664						
Africa	2, 473	1, 440	470, 465						
Total	3, 217	1,700	512, 129						
Grand total, 1956	17, 424	6, 572	1, 762, 210	46	22, 715	4, 693	2, 423, 794	1, 489	639, 924
1957									
North America: Canada	523	248	47, 432						
Guatemala Mexico	26 14, 232	3, 869	3, 323 712, 151			494	325, 750		
Total	14, 781	4, 130	762, 906			494	325, 750		
South America: Bolivia 2 Chile 2	3, 075 198	1, 957 127	565, 379 27, 552 52, 708						
Peru 2	397	236	52, 708			258	101, 762		
Total	3, 670	2,320	645, 639			258	101, 762		
Europe: Austria Belgium-Luxem-	5	3	1,345						
bourg France Germany, West				18	7, 912 1, 016	840 45 102	369, 178 19, 344 40, 535	388 258	166, 951 106, 071
Italy						220	87, 539	l	
Netherlands Portugal United Kingdom. Yugoslavia	22	15	4, 872	17 1	7, 906 463	1, 865 1, 228	906, 688 562, 413	7 1, 240	2, 981 514, 364
TotalAsia: Turkey	27 358	18 215	6, 217 61, 418	38	17, 297	4, 300	1, 985, 697	1,893	790, 367
Africa: Mozambique	169	104	31, 649						
Union of South Africa	2, 369	1, 411	465, 440						
Total	2, 538	1, 515	497, 089						
Grand total, 1957	21, 374	8, 198	1, 973, 269	38	17, 297	5, 052	2, 413, 209	1,893	790, 367

Data are general imports, that is, include antimony imported for immediate consumption, plus material entering the country under bond. Table does not include antimony contained in lead-silver ores.
 Imports shown from Chile probably were mined in Bolivia or Peru and shipped from a port in Chile.

WORLD REVIEW

Belgium-Luxembourg.—Antimony was produced from imported ore in excess of internal need, and approximately 1,200 short tons of metal and oxides was exported to the United States.

Bolivia.—No antimony was produced from nationalized mines. The total output from the privately owned properties was 3,800 short tons,

of which 1,960 was shipped to the United States.

China.—Reports from London and from concerned United States antimony producers indicate that China assumed an increasingly active position in the antimony trade during 1957. Having large reserves, low production cost, and ability to produce high-grade metal, China may reasonably be expected to recoup its dominant position in the world open market. Estimated production during 1957 was 16,500 short tons.

Mexico.—The production of antimony in Mexico closely follows United States requirements. In 1957 output totaled 5,730 short tons—a considerable increase from the 5,000 tons produced in 1956. Total exports were 4,850 tons; the United States was the only recipient.

Union of South Africa.—Consolidated Murchison (Transvaal) Goldfields & Development Co., Ltd., recovered antimony from gold-antimony ores in the Pietersburg district of the Transvaal. A production of 17,550 short tons of 63-percent antimony concentrates was reported for 1957. Of this total, 14,360 tons was exported. The United States received approximately 16 percent. Following the export pattern of previous years the balance probably was shipped to the United

Kingdom

United Kingdom.—Second only to the United States in consumption of antimony, the United Kingdom has developed a large domestic smelter capacity that is fed exclusively by imported concentrate. When economics permits, excess production enters world trade; however, competition from lower-priced Chinese and Russian high-grade metal in 1957 reduced the export outlet considerably and threatened to capture a portion of United Kingdom's domestic market. The Government considered an industry proposal to increase the metal import tax to a more protective level, but no action had been taken by the end of 1957. The total industrial consumption of primary antimony in the United Kingdom was 5,177 short tons, and an additional 4,760 tons of secondary antimony was used in antimonial lead.

Yugoslavia.—Yugoslavia was the outstanding mine producer of antimony in Europe. The country's smelters, producing only from domestic ores, had an output of 1,950 short tons in 1957. Of this total, the United States received 1,228 tons—nearly 63 percent.

TABLE 14.—World production of antimony (content of ore), by countries, 1948-52 (average) and 1953-57, in short tons 3

[Compiled by Augusta W. Jann and Berenice B. Mitchell]

	1948-52					
Country 2	(average)	1953	1954	1955	1956	1957
North America:						
Canada 4 Guatemala	1,014	744	651	1,011	1,070	706
Mexico 4	6, 913	4,063	4,610	4, 209	5, 022	5, 732
United States	3, 251	372	766	633	630	709
Total	11, 178	5, 179	6, 027	5, 853	6, 722	7, 162
South America:						
Argentina	5 45	(6)	(6)	7	2	8 2
Bolivia (exports) Peru	11, 671 1, 095	6,376 1,062	5, 751 933	5, 907 960	5, 629	⁵ 6, 600
					953	
Total	12, 811	5 7, 490	§ 6, 740	6,874	6, 584	⁸ 7, 500
Europe:	404	***	400	400		
AustriaCzechoslovakia 5	464 2, 490	543 1,800	429 1,800	493 1,800	489 1,800	440 1, 800
France	464	330	1,000	90	251	1, 800
Greece	276	660	⁵ 60			
Italy Portugal	679 52	465 1	326 10	402	314	138
SpainYugoslavia (metal)	244	254	120	210	250	230
Yugoslavia (metal)	1,657	1, 554	1,711	1, 769	1, 767	1, 950
Total 2 5	6,600	5, 900	4, 600	4, 900	5,000	4, 800
Asia:						
Burma ⁵ China ⁵	110 6, 230	130 11,000	12,000	13, 000	90	80
Iran 8	177	11,000	12,000	15,000	13, 000 (6)	16, 500 (6)
Japan	202	354	291	357	619	473
Thailand Turkey	128 1, 441	50 951	78	28	2 700	5 33
			1,080	1,841	3, 700	(6)
Total 5	8, 300	12, 600	13, 600	15, 400	17, 500	20, 400
Africa:	1 000	0.104	0.04			
Morocco:	1, 290	2, 134	2, 845	1,086	2, 370	5 1, 600
Northern Zone	313	341	330	397	330	364
Southern Zone Rhodesia and Nyasaland, Fed. of:	817	46	434	327		
Southern Rhodesia	52	26	72	223	72	83
Union of South Africa	8,806	3, 009	9, 528	15, 641	15, 689	11,021
Total	11, 278	5, 556	13, 209	17, 674	18, 461	13, 068
Oceania:						
Australia	281	251	131	344	322	⁵ 3 30
New Zealand	3	12				
Total	284	263	131	344	322	§ 330
World total (estimate)2	50,000	37,000	44, 000	51,000	55, 000	53, 000

¹ Approximate metal content of ore produced, exclusive of antimonial lead ores.
2 Antimony is also produced in Hungary and U. S. S. R.; an estimate for Hungary by the author of the chapter is included in the total, but there is too little information to include an estimate for U. S. S. R.
3 This table incorporates a number of revisions of data published in previous Antimony chapters. Data do not add to totals shown due to rounding where estimated figures are included in the detail.
4 Includes antimony content of miscellaneous smelter products.
5 Estimate.

<sup>Estimate.
Data not available; estimate by author of chapter included in total.
Exports.
Year ended March 20 of year following that stated.</sup>

WORLD RESERVES

There are few deposits of antimony wherein ore is developed in advance of current mining requirements. World reserves therefore are necessarily based on known correlative data, such as historical

production levels and geologic patterns of occurrence.

China is the dominant possessor of reserves. Estimates range from 2 to 5.7 million tons of contained antimony—a quantity that dwarfs the reserves of any other country. Bolivia is second to China, with an estimated 400,000 tons. Mexico, the Union of South Africa, and U. S. S. R. are estimated to have approximately the same level of reserves—each is assigned 250,000 tons of contained antimony. The United States, Yugoslavia, Australia, and Algeria-Morocco each are assigned 100,000 tons. Canada, Peru, Turkey, and Czechoslovakia have approximately the same reserve level and collectively have an estimated 225,000 tons. An additional reserve in many small deposits throughout Austria, Hungary, France, and Japan totals 175,000 tons of antimony. Total world reserves, excluding China, are therefore estimated at approximately 2 million tons.

TECHNOLOGY

In an effort to contribute toward more economic redemption of by-product antimony from domestic ores, the Bureau of Mines continued laboratory-scale studies of the leaching and precipitation of antimony from ore concentrates. Sodium sulfide leaching of tetrahedrite concentrate, followed by organic complexing and extraction, produced discouraging results. Autoclave leaching with oxygenated water caused oxidation of the sulfide and generation of sulfuric acid. Both electrolysis and direct hydrogen reduction of the antimony component of the pregnant solution gave results yet to be fully evaluated.

Two American companies and one British company announced commercial production of superpurity antimony for the electronics indus-Previously, the use of antimonial intermetallic compounds has been restricted by lack of pure enough metal. Two promising antimonial semiconductors that now may be developed commercially are indium-antimony and aluminum-antimony. When an indium-antimony current-carrying conductor is placed in a properly oriented magnetic field it is polarized transverse to the current flow. By suitable electrocoupling a transverse secondary current is generated, giving rise to a flux field that opposes current flow in the primary circuit. The resulting effective resistance is proportional to the applied magnetic field intensity. The sensitivity and strength of the response are such that many uses are anticipated in control circuits. minum-antimony has essentially the same crystal structure as germanium and responds electrically in similar ways. Controlled processing of the alloy has yielded electrical resistivities varying by a factor of more than 500,000. Past experiments also indicate photoelectric properties of aluminum-antimony that have potential uses in lightcontrolled electric circuits and electric generation from light energy sources.

Hemeon Associates (air-pollution researchers of Pittsburgh) announced a newly developed technique of tracing, quantitatively, a selected industrial smoke to its source. The method involves additions of extremely fine powdered antimony oxide to the stream of gases issuing from smokestacks within a given area. Previously positioned automatic instruments dispersed at proper stations within the area take air samples from which calculations can be made. Radioactivation of the tracer antimony is deferred until the smoke sample is safely confined to the laboratory preparatory to analysis.

Arsenic

By A. D. McMahon 1 and Gertrude N. Greenspoon 2

OMESTIC output of white arsenic in 1957 was 10,500 short tons, 14 percent less than in 1956 and lower than in any year since Shipments exceeded production and producers' stocks on December 31, 1957 were reduced to 2,500 tons. Apparent consumption was 9 percent below 1956.

Imports of white arsenic in 1957 increased 58 percent over 1956, and the total available for domestic consumption rose 11 percent. United States refinery production from domestic and foreign ores accounted for 51 percent of the total supply (66 percent in 1956) and imports for 49 percent (34 percent in 1956).

World production, estimated at 47,000 short tons in 1957, was unchanged from 1956.

TABLE 1.—Salient statistics of white arsenic, 1948-52 (average) and 1953-57, in short tons

	1948-52 (average)	1953	1954	1955	1956	1957
United States: Production. Shipments. Imports. Producers' stocks at end of year. Apparent consumption 2 Price 3 cents per pound. World: Production.	15, 314	10, 873	13, 167	10, 780	12, 201	10, 493
	13, 214	11, 315	11, 523	11, 673	18, 876	12, 785
	9, 561	4, 717	4, 848	7, 222	6, 422	10, 135
	6, 123	10, 820	12, 464	11, 571	1 4, 827	2, 535
	22, 775	16, 032	16, 371	18, 895	25, 298	22, 920
	6	51/2	512	5½	512	5½
	55, 000	30, 000	38, 000	46, 000	47, 000	47, 000

DOMESTIC PRODUCTION

Domestic production of white arsenic dropped 14 percent in 1957 to the lowest quantity since 1946. White arsenic was produced by The Anaconda Co., Anaconda, Mont. (copper smelter), United States Smelting, Refining and Mining Co., Midvale, Utah (lead smelter), and American Smelting and Refining Co., Tacoma, Wash. (copper smelter). The entire domestic output of arsenic was a byproduct of smelting complex copper and lead ores. Arsenic metal was not produced in 1957.

Revised figure.
 Producers' shipments, plus imports, minus exports; no exports were reported by producers, 1948-57.
 Refined white arsenic, carlots, as quoted by E&MJ Metal and Mineral Markets.

¹ Commodity specialist.
2 Statistical assistant.

TABLE 2.—Production and shipments of white arsenic by United States producers, 1948-52 (average) and 1953-57

·		Crude			Refine	i		Total	
	Pro- duc-	Ship	ments	Pro- duc-	Ship	ments	Pro- duc-	Ship	ments
Year	tion, short tons 1	Short tons	Value	tion, short tons	Short tons	Value	tion, short tons	Short tons	Value
1948–52 (average)	14, 387 10, 345 12, 630 9, 968 11, 423 9, 814	12, 300 10, 816 10, 921 10, 986 18, 048 11, 980	\$869, 497 495, 673 492, 562 501, 104 685, 145 475, 629	927 528 537 812 778 679	914 499 602 687 828 805	\$79, 763 43, 383 48, 516 53, 557 69, 524 54, 721	15, 314 10, 873 13, 167 10, 780 12, 201 10, 493	13, 214 11, 315 11, 523 11, 673 18, 876 12, 785	\$949, 260 539, 056 541, 078 554, 661 754, 669 530, 350

¹ Excludes crude consumed in making refined.

CONSUMPTION AND USES

Apparent consumption of white arsenic in 1957 was 22,900 tons, a 9-percent decrease from 1956. The major portion of the output of white arsenic was used in manufacturing lead and calcium arsenate insecticides. Consumption of white arsenic varies with the severity of boll-weevil infestations of cotton in the southern cotton-producing States.

Arsenic also was used in weedkillers, glass manufacture, cattle and sheepdips, dyestuffs, and wood preservatives. Sodium arsenite was reported 3 to be used more than aromatic solvents to control submerged aquatic plants in parks when no flow of water was expected for 2 or 3 days after treatment. Sodium arsenite, when used properly. is not harmful to fish life.

TABLE 3.—Production of arsenical insecticides and consumption of arsenic wood preservatives in the United States, 1948-52 (average) and 1953-57, in short tons

		ction of icides ¹	Consump- tion of wood preserva- tives ²
Year	Lead arsenate (acid and basic)	Calcium arsenate (70 percent Ca ₃ (AsO ₄) ₂)	
1948-52 (average)	12,064 7,098 7,810 7,388 5,878 6,076	13, 712 3, 630 1, 379 1, 885 13, 553 9, 763	669 950 983 1,067 1,005 987

Bureau of the Census, U. S. Department of Commerce.
 Forest Service, U. S. Department of Agriculture.
 Preliminary figures.

STOCKS

Producers' stocks of white arsenic were 2,500 tons at the end of 1957—47 percent below 1956 and lower than in any year since 1950.

⁸ National Conference on State Parks, Park Practice Grist Supplement: Vol. 1, No. 4, 1957, 4 pp.

ARSENIC 205

Year-end inventories of calcium arsenate and lead arsenate were 2,028 and 1,366 tons, compared with 2,000 and 1,373 tons, respectively, at the end of 1956.

PRICES

White arsenic was quoted at 5½ cents per pound (powdered, in barrels, carlots) throughout 1957. According to the Oil, Paint and Drug Reporter, calcium arsenate, in carlots, was quoted at 9-9½ cents per pound and lead arsenate, carlots (3-pound bags), at 27½ cents per pound throughout 1957. The domestic price for arsenic metal (54 cents per pound) has remained unchanged since December 1954.

The London price for white arsenic, per long ton, 98-100 percent, was £40-£45 nominal (equivalent to 5.00 to 5.63 cents per pound) throughout 1957 and for arsenic metal, per long ton, £400 (50.00

cents per pound).

FOREIGN TRADE 4

Imports—Imports of white arsenic in 1957 totaled 10,100 short tons, a 58-percent increase over 1956 and larger than in any year since 1951.

Mexico continued to be the principal supplier of white arsenic with 68 percent of the total imports; Canada and France supplied 15 and 10 percent, respectively, and Sweden and Poland-Danzig

supplied the remainder.

Sixty-eight tons of metallic arsenic was received in 1957, of which 36 tons came from Sweden, 15 tons from the United Kingdom, 14 tons from Poland-Danzig, and 3 tons from West Germany. Belgium-Luxembourg furnished 21 tons of arsenic sulfide, and the United Kingdom furnished 34 tons of arsenical sheepdips. Of the 164 tons of sodium arsenate imported in 1957, 101 came from the United Kingdom, 53 from France, and 10 from West Germany.

Exports.—Producers of white arsenic reported no direct foreign sales in 1957. Exports of calcium arsenate were 1,390 tons, valued at \$201,409, and were more than 4 times those in 1956. Nicaragua received 648, Peru 589, Guatemala 61, Canada 55, El Salvador 25,

and Cuba 12 tons.

Exports of lead arsenate totaled 608 tons, valued at \$231,495, and were less than half those in 1956. Of the total exported, 501 tons went to Peru, 41 to Canada, 22 to France, 10 to Chile, and the remainder (in lots of less than 10 tons each) to 7 other countries.

remainder (in lots of less than 10 tons each) to 7 other countries.

Tariff.—White arsenic, arsenic sulfide, paris green, and sheepdip (certain varieties contain arsenic) were all free of duty. Arsenic acid was subject to duty at 3 cents per pound and lead arsenate at 1½ cents per pound. The duty on metallic arsenic was 2.8 cents per pound at the beginning of 1957 and was lowered to 2.7 cents per pound on June 30, 1957. Compounds of arsenic not specified in the Tariff Act were subject to duty at 12½ percent of their foreign market value.

⁴ Figures on imports and exports compiled by Mae B. Price and Elsie D. Jackson, Division of Foreign Activities, Bureau of Mines, from records of the U. S. Department of Commerce, Bureau of the Census.

TABLE 4.—White arsenic (As,03 content) imported for consumption in the United States, 1948-52 (average) and 1953-57, by countries

North Armerica: Canada—				[Bur	[Bureau of the Census]	Census]							
Short tons Value tons Short tons Value tons Short tons Value tons Short tons Value tons Short tons Value tons Short tons Value tons Short tons Value tons Short tons Value tons Short tons Value tons Short tons Value tons Short tons Value tons Short tons Value tons Short tons Value tons Short tons Value tons Short tons Value tons Short tons Value tons Short tons Value tons Short tons Short tons Value tons Short t		1948-52	(average)	19	53	19	75	161	55	19.	99	196	7
244 \$223,559 4,378 546,443 4,212 498,690 683 \$43,048 549,384 690 683 \$43,048 549,384 690 683 \$43,048 549,384 690 683 543,048 549,384 690 683 713,911 5,831 691,354 691,354 691,354 713,911 5,831 691,354 707,41 717,11 707,41 714,51 <th< td=""><td>Country</td><td>Short</td><td>Value</td><td>Short</td><td>Value</td><td>Short</td><td>Value</td><td>Short</td><td>Value</td><td>Short</td><td>Value</td><td>Short</td><td>Value</td></th<>	Country	Short	Value	Short	Value	Short	Value	Short	Value	Short	Value	Short	Value
8,135 843,979 4,670 569,461 4,804 542,371 7,114 756,989 6,371 740,741 1,127 9,300 47 4,605 44 2,597 75 5,880 12 927 1,146	North America: Canada Maxico	7, 891	\$23, 559 820, 420	292	\$26, 018 543, 443	592 4, 212	\$48, 690 493, 681	6, 431	\$43,048 713,911	5, 831	\$49, 387 691, 354	1, 508	\$119, 427 604, 932
197 9,300 47 4,600 44 2,897 75 6,880 12 927 1,1,61 1,1,51 1,683 11,463 6 675 6,715 1,1,31 1,239 145,911 47 4,608 44 2,597 108 8,293 51 4,456 1,339 145,911 47 4,608 4,848 544,968 7,222 765,252 6,422 745,197	Total. South America: Peru.		843, 979 3, 066	4, 670	569, 461	4, 804	542, 371	7, 114	756, 959	6, 371	740, 741	8, 359	724, 359
67 11,496 6 575 16 1,523 2,413 83 2,413 83 2,954 446 1,523 3,846 (1) 3 4,608 44 2,597 108 8,293 51 4,456 1,339 145,911 47,17 574,069 4,848 544,968 7,222 765,252 6,422 745,197	Europe: Belgium-Luxembourg France	197 505 2	9, 300 59, 966	47	4, 605	44	2, 597	75	5,880	12	927	981	34,770
445 52,048 (1) 3 2,413 33 2,413 33 2,964 1,339 145,911 47 4,608 44 2,597 108 8,293 51 4,456 9,61 1,000,702 4,717 674,069 4,848 544,968 7,222 765,252 6,422 745,197	Germany Itali Poland-Danzig	67 17	11, 496							9	575	16	686
1,339 145,911 47 4,608 44 2,587 108 8,298 51 4,456 9,661 1,000,792 4,717 574,069 4,848 644,968 7,222 765,252 6,422 745,197	Portugal Sweden	445 90	1, 523 52, 048 9, 864					33	2, 413	33	2,954	422	34, 317
0.00 1,000,792 4,717 674,969 4,848 644,968 7,222 765,252 6,422 745,197	United Kingdom. Total		145, 911		4,608	44	2, 597	108	8, 293	51	4, 456	1,776	70,076
	Asia: Japan	9, 561	1,000,792	4, 717	574, 069	4,848	544, 968	7, 222	765, 252	6, 422	745, 197	10, 135	794, 435

¹ Less than 1 ton.

TABLE 5.—Arsenicals imported into and exported from the United States by classes, 1948-52 (average) and 1953-57, in pounds

[Bureau of the Census]

123, 037 100, 075 85, 611 67, 158	9, 434, 212 141, 472 20, 018 52, 436	9, 695, 722 117, 085 55, 700	14, 443, 828 228, 960 93, 717	12, 843, 816 88, 666 84, 894	20, 270, 0 136, 7 42, 0
100, 075 85, 611 67, 158	141, 472 20, 018	117, 085	228, 960 93, 717	88, 666 84, 894	136, 7- 42, 0
100, 075 85, 611 67, 158	141, 472 20, 018	117, 085	228, 960 93, 717	88, 666 84, 894	136, 7- 42, 0
85, 611 67, 158	20, 018		93, 717	84, 894	42, 0
67, 158		55 700			
	52, 436	55.700			
		00.700	40, 960	70, 421	67, 7
34, 997					
		42, 544		60,000	
	79, 520		172, 175		328, 0
	,	2.0,000	2,2,2.0		020, 0
20, 0.0					
397 469	3 800 946	1 075 904	1 995 599	699 090	2, 779, 9
					2, 779, 8 1, 216, 1
3	1,560 94,882 71,083 25,979 87,468 63,945	1, 560 94, 882 71, 083 25, 979 87, 468 3, 890, 246	1, 560 94, 882	1, 560	1, 560 94, 882

WORLD REVIEW

Canada.—Although arsenical ores are widely distributed in Canada, production of arsenic is limited to a few localities where it is recovered as a byproduct in treating gold or silver-cobalt ores. Output in 1957 was 1,700 tons—almost double that in 1956.

TABLE 6.—World production of white arsenic, by countries, 1948-52 (average) and 1953-57, in short tons²

[Compiled by Augusta W. Jann and Berenice B. Mitchell]

Country 1	1948–52 (average)	1953	1954	1955	1956	1957
North America:						
Canada	654	702	590	786	895	1, 693
Mexico	7, 885	2, 204	2, 675	3, 255	2, 913	5, 076
United States	15, 314	10,873	13, 167	10,780	12, 201	10, 493
South America:						-
Brazil	1, 175	522	1, 273	1,077	820	(3)
Peru	226		105		28	
Europe: Belgium (exports)	863	1, 903	1, 979	2, 281	3,056	4 3, 300
France	4, 577	6, 217	812	6, 369	6,614	(3)
Germany: West (exports)	1, 291	675	239	635	334	4 220
Greece	47	68	200	42	44	(3)
Italy		1, 179	1, 243	1, 166	1, 173	41,800
Portugal	1,042	1, 301	1, 196	1, 973	1, 109	4 1, 100
Spain	290	60	22	_,	-,	
Sweden	16, 443	569	10, 762	13, 803	13, 437	(3)
Asia:			· ·	, , , , , , , , , , , , , , , , , , ,	•	,,
Iran	5 29					
Japan	1, 735	1, 576	1, 584	1, 910	1, 833	4 1, 800
Africa:			1			
Rhodesia and Nyasaland, Federation	0.50	410	450		1 004	
of: Southern Rhodesia	250	416	459	508	1,084	4 950
Union of South Africa	0					
	261			1		
Australia New Zealand	201					
TIOM MENTALINATION						
World total (estimate)1 3	55,000	30,000	38,000	46,000	47,000	47,000

¹ Arsenic is produced in Argentina, Austria, and East Germany, and estimates by the author of the chapter are included in the total. There is too little information to estimate production in China, Czechoslovakia, Finland, Hungary, U. S. S. R., and the United Kingdom.

² This table incorporates a number of revisions of data published in previous Arsenic chapters. Data do not add to totals shown owing to rounding where estimated figures are included in the detail.

³ Data not available; estimate by author of chapter included in total.

⁴ Estimate

Year ended March 20 of year following that stated.

Mexico.—Byproduct white arsenic was recovered by Cia. Metalurgica Peñoles, A. S. (subsidiary of American Metal Climax, Inc.), at its Torreón, Coahuila, lead smelter, and at the American Smelting and Refining Co. copper smelter at San Luis Potosi. Production in 1957 totaled 5,100 tons, compared with 2,900 tons in 1956, and was larger than in any year since 1951.

Sweden.—The Boliden Mining Co. continued to be the largest

producer of white arsenic in the world.

TECHNOLOGY

A report⁵ published in 1957 includes the history of arsenic and describes arsenic production, preparation of its compounds, and uses.

At the International Mineral Dressing Congress held in Stockholm, Sweden, September 18-21, 1957, S. I. Mitrofanov, of the U. S. S. R., reported that arsenopyrite can be separated from pyrite with pyrolusite. The following practice was used at the Darasum concentrator:

Activated charcoal is added to the bulk concentrate to remove excess organic reagents, and then the finely-ground pyrolusite is added as the concentrate enters staged conditioners. Contact time is two hours.

A lead-copper-pyrite concentrate is made with arsenical material remaining in the underflow. Charcoal consumption is 1.7 kg/ton and that of pyrolusite is

The new hydrometallurgical Sill process⁷ for winning cobalt from high-arsenic ores provides a method of direct byproduct recovery of calcium arsenate for insecticides. Alkaline-ore oxidation in an autoclave solubilizes arsenic and sulfur so that they leach from the ore. The clear solution filtered from autoclaved ore slurry contains arsenates and sulfates. Lime is added, precipitating calcium arsenate, which is filtered and sold as wet cake for insecticides.

Arsenic, Chemistry: Vol. 30, No. 9, May 1957, pp. 59-61.
 Engineering Mining Journal, Stockholm Spotlights Process Trends: Vol. 158, No. 11, November 1957, pp. 79-84.
⁷ Chemical Engineering, Leach Licks Arsenic Bugaboo in Metal Ore: Vol. 65, No. 1, Jan. 13, 1958, pp.

Asbestos

By D. O. Kennedy 1 and Annie L. Mattila 2

ORLD PRODUCTION of asbestos was somewhat higher in 1957 than in 1956. Production in Quebec increased 4 percent and in British Columbia 47 percent. Overall Canadian output was 5 percent higher than in 1956. Production in the United States reversed a 3-year decline by advancing slightly—3 percent over 1956. However, domestic production was only 2 percent of the world output.

Imports were slightly less in 1957 than in 1956, and their value declined 3 percent. Imports of low-iron chrysotile of Spinning-grade lengths from British Columbia increased 39 percent, and total imports from that source 17 percent. Imports of Canadian spinning fibers

increased 4 percent compared with 1956.

TABLE 1.—Salient statistics of the asbestos industry in the United States, 1948-52 (average) and 1953-57

	1948-52 (average)	1953	1954	1955	1956	1957
Domestic asbestos: Producedshort tons Sold or useddo Value Imports (unmanufactured) Short tons Exports (unmanufactured) Short tons Apparent consumption Exports of asbestos products 1	15, 483 \$3, 274, 916 697, 011	54, 456 \$4, 857, 359 692, 245 \$59, 753, 583 3, 076 \$592, 222 743, 625	47, 621 \$4, 697, 962 678, 390 2\$55, 856, 606 1, 894 \$291, 157 724, 117	1 44, 568 \$4, 487, 428 740, 423 2\$60, 957, 578 2, 787 \$267, 776 1 782, 204	41, 312 \$4, 742, 446 1 689, 910 1 2 61, 938, 889 2, 950 \$374, 964 1 728, 272	43, 653 \$4, 917, 548 682, 732 2\$60, 139, 815 2, 893 \$349, 602 723, 492

nevised names.
 Owing to changes in tabulating procedures by the U. S. Department of Commerce, data known to be not strictly comparable with earlier years.
 Includes material that has been imported and subsequently exported without change.

DOMESTIC PRODUCTION

Asbestos production in the United States increased 3 percent compared with 1956, reflecting a 5-percent increase in Vermont and a 12percent decrease in Arizona. Small quantities of amphibole asbestos were produced in California and North Carolina.

The Vermont Asbestos Mines Division of the Ruberoid Co., operating near Eden, Vt., continued to be the one large asbestos producer in the United States. Only a small percentage of spinning fiber was produced, and most of it was used in electrolytic cells rather than in textiles.

Assistant chief, Branch of Construction and Chemical Materials.
 Statistical assistant.

The purchase program for acquiring Government warehouse stocks of Arizona asbestos established under Public Law 733, 84th Congress, dated July 19, 1956, was continued in 1957. Purchases were made for a time with funds remaining from the previous program; but with exhaustion of the funds purchases ceased in April 1957, and most of the mines became virtually inactive. However, new funds amounting to \$2½ million were made available in the United States Department of Interior Appropriation Bill for 1958, and purchases were resumed on July 1, 1957. Production of the longer fibers (crudes Nos. 1, 2, and 3) decreased 10 percent compared with 1956, and production of the shorter grades increased 28 percent. During 1957, 98 percent of all crudes Nos. 1, 2, and 3 was purchased by the Government.

Some of the more important Arizona asbestos mines were described

and illustrated.3

The following firms and individuals produced chrysotile in the Globe district of Arizona in 1957: American Asbestos Cement Corp., American Fiber Corp., Barry De Rose, Jaquays Mining Corp., Kyle Asbestos Mines of Arizona, Lawrence D. Poor, Metate Asbestos Corp., Phillips Asbestos Mines, Via Development Co., and Western Chemical Co.

A small output of short-fiber chrysotile was reported by the Tabor Mining Co., Phoenix mine, Napa County, Calif. Amphibole asbestos was produced in small quantity by Huntley Industrial Minerals, Inc., at Lone Pine, Inyo County, Calif. Powhatan Mining Co. produced a small tonnage of amphibole asbestos in Transylvania County, N. C.

A chrysotile deposit in Beaverhead County, southwestern Montana,

was explored.4

CONSUMPTION AND USES

Consumption of chrysotile in the United States in 1957 was a little lower than in 1956; but amosite and crocidolite were consumed in substantially larger quantities, hence, the overall consumption was virtually the same in 1957 as in 1956. About 94 percent of the asbestos used was chrysotile; of this only 22,500 tons (approximately 3 percent) was of Spinning grade.

Asbestos was used extensively in building construction, and it also had many industrial applications. The relation of asbestos consumption to industrial production and total new construction is

shown in figure 1.

TABLE 2.—Apparent consumption of raw asbestos in the United States, 1948-52 (average) and 1953-57

Year	Short tons	Value	Year	Short tons	Value
1948–52 (average)	697, 011	\$47, 784, 041	1955	1 782, 204	\$65, 177, 230
1953.	743, 625	64, 018, 720		1 728, 272	1 66, 306, 371
1954.	724, 117	60, 263, 411		723, 492	64, 707, 761

¹ Revised figure.

Jaquays, D. W., and Gerhardt, A. W., How Low-Iron Chrysotile Asbestos Is Mined and Milled in Central Arizona: Min. World, vol. 19, No. 8, July 1957, pp. 54-58.
 Boots, David A., A New Montana Chrysotile Discovery: Asbestos, vol. 39, No. 5, November 1957, pp. 2-6

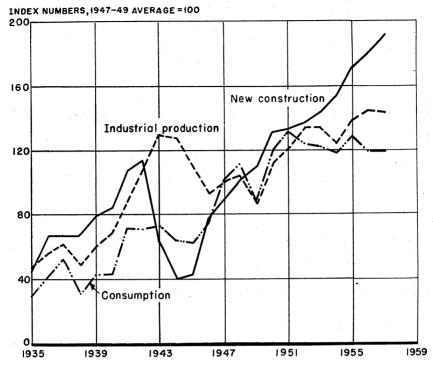


FIGURE 1.—Consumption of asbestos compared with total new construction and industrial production, 1935-57. Statistics on value of construction from Bureau of Foreign and Domestic Commerce and on industrial production from Federal Reserve Board.

PRICES

Prices of Quebec asbestos were advanced about 5 percent as of October 1, 1957. A requirement was added that payment must be in Canadian rather than United States funds. Under existing exchange rates such a requirement was, in effect an additional price advance. Following is the new schedule:

Grade:	Price per t	on
Crude No. 1	Can\$1,475-Ca	n\$1,850
Crude No. 2—Crude run-of-mine and sundry	790-	1,200
No. 3—Spinning fiber		650
No. 4—Shingle fiber	180-	245
No. 5—Paper fiber	120-	150
No. 6—Plaster fiber	86	
No. 7—Shorts	40-	80

Prices of British Columbia chrysotile asbestos similarly advanced were quoted in E&MJ Metal and Mineral Markets reports in November 1957 as follows, in Canadian funds: Per short ton f. o. b. Vancouver, B. C., effective October 1, 1957, crude No. 1 \$1,522, AAA \$787, AA \$682, A \$494, AC \$325, AK \$220. The AAA fiber is said to be equivalent to Rhodesian C&G No. 1, AA to C&G No. 2, A to Canadian 3K, AC to Rhodesian C&G No. 3, and AK to Canadian 4K.

Vermont prices were increased in December 1957 to quotations higher than Canadian quotations for some grades to compensate for Canadian exchange differences. Vermont prices per short ton, f. o. b. Hyde Park or Morrisville, were as follows:

Group 3 (spinning and filtering)	\$381-\$	3440
Group 4 (shingle)	185-	205
Group 5 (paper) Group 6 (plaster)	123 -	155
Group 6 (plaster)		. 88
Group 7 (shorts)	42-	77

Advanced prices for Arizona asbestos were quoted in December 1957 as follows:

Grade:		Per short ton f. o. b. Globe
No. 1 crude	(soft)	\$1, 500-\$2, 000
	(soft)	1, 000- 1, 350
No. 3 crude		400- 675

No advances were quoted for filter grades or for semisoft crudes. No increases were paid by the Government during 1957 for stockpile grades, because prices were fixed by law at those of January 1956.

No market quotations are available for African or Australian

No market quotations are available for African or Australian asbestos as sales are made by negotiation with individual purchasers. United States Department of Commerce reports show the following average prices for imports in 1956 and 1957, per short ton:

Crocidolite:	1956	1957
Amosite, Union of South Africa	\$126.51	\$145.56
Bolívia	92.74	75. 61
Australia	224. 00	230. 59
Union of South Africa	186. 46	197. 12

FOREIGN TRADE 5

Imports.—During 1957 imports of chrysotile totaled 644,095 tons, a decline of nearly 2 percent from 1956. On the other hand, imports of amosite increased 21 percent and of crocidolite 9 percent. Although these items represented less than 6 percent of total imports, their increases were large enough to overcome the decline in chrysotile imports, with the result that the total imports (682,732 tons) were only slightly less than in 1956. About 92 percent of the 1957 imports originated in Canada, but so much of the Canadian material was low-priced short fiber that Canadian imports represented only 84 percent of the total value of all imports into the United States in 1957.

Spinning fiber, most of which was imported from Canada, was available in excess of United States requirements in 1957. Imports of low-iron chrysotile of Spinning grade from British Columbia increased from 4.143 tons in 1956 to 5.764 tons in 1957.

⁵ Figures on imports and exports compiled by Mae B. Price and Elsie D. Jackson, Division of Foreign Activities, Bureau of Mines, from records of the U. S. Department of Commerce, Bureau of the Census.

TABLE 3.—Asbestos (unmanufactured) imported for consumption in the United States, 1948-52 (average), 1953-55 (totals), and 1956-57, by countries and classes

[Bureau of the Census]

		լոս	icau oi i	ne Census					
Country	Crude (including blue fiber)		Mi	Mill fibers		Short fibers		Total	
· · · · · · · · · · · · · · · · · · ·	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	
1948–52 (average) 1953 1954 1955	35, 818 39, 201 37, 461 40, 648	9, 052, 007 7, 502, 358	170, 692 148, 962	24, 556, 953	3 446, 926 3 482, 352 3 491, 967 531, 623	\$18, 522, 672 23, 180, 138 23, 797, 298 25, 310, 518	666, 810 692, 245 678, 390 740, 423	\$47, 864, 705 59, 753, 583 55, 856, 606 60, 957, 578	
North America: Can- ada	273	208, 248	155, 961	27, 814, 601	477, 512	24, 261, 803	633, 746	52, 284, 652	
South America: BoliviaVenezuela	34 120	3, 153 17, 866	14	2, 740	11	2, 316	34 145		
Total	154	21, 019	14	2, 740	11	2, 316	179	26, 075	
Europe: Germany, West Greece Italy Portugal U. S. S. R United Kingdom	1	1	11 6	2, 750			2 11 5 6	1, 530 400 12, 060 560 2, 750	
United Kingdom Yugoslavia	3, 735	141, 275	² 127	² 32, 671	193	48, 688	320 3, 735	81, 359 141, 275	
Total	3, 742	142, 235	144	47, 481	233	50, 218	4, 119	239, 934	
Africa British East Africa- French Morocco Rhodesia and Nyasa- land, Federation			13 3			1, 494	22 3	2, 693 3, 111	
of 3 Union of South	4 16, 375	4 3, 179, 721	339	180, 117	30	14, 244	4 16, 744	4 3, 374, 082	
Africa 5	4 31, 546	4 5, 239, 219	199	28, 097	202	35, 146	4 31, 947	4 5, 302, 462	
Total Oceania: Australia	4 47, 921 3, 150	4 8, 418, 940 705, 880	554	212, 524	241	50, 884	4 48, 716 3, 150	4 8, 682, 348 705, 880	
Grand total	4 55, 240	46 9, 496, 322	156, 673	628, 077, 346	477, 997	624, 365, 221	4689, 910	4661,938,889	
North America: Can- ada	590	239, 627	136, 505	24, 886, 273	489, 055	25, 067, 526	626, 150	50, 193, 426	
South America: Bolivia Venezuela	28 17	2, 117 5, 672	2	475			28 19	2, 117 6, 147	
Total	45	7, 789	2	475			47	8, 264	
Europe: Germany, West Italy Portugal United Kingdom Yugoslavia	3 496 10 1,920	4, 278 21, 839 1, 120 50, 742	9 2 69	10, 351 2 25, 472	6 4 261	458 3, 290 62, 954	9 509 10 330 1, 920	4, 736 35, 480 1, 120 88, 426 50, 742	
Total	2, 429	77, 979	78	35, 823	271	66, 702	2, 778	180, 504	
ı									

See footnotes at end of table.

TABLE 3.—Asbestos (unmanufactured) imported for consumption in the United States, 1948-52 (average), 1953-55 (totals), and 1956-57, by countries and classes—Continued [Bureau of the Census]

		[·				
Country		Crude (including blue fiber)		Mill fibers		Short fibers		Total	
	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	
Africa: Algeria Rhodesia and Nyasa-					7	\$589	7	\$589	
land, Federation of ² Union of South Af- rica ⁵	11, 083 34, 721	\$1, 997, 485 5, 998, 997	431 315	\$96, 595 60, 233		28, 980 54, 723	11, 716 35, 442		
TotalOceania: Australia	45, 804 6, 592	7, 996, 482 1, 520, 019	746	156, 828	615	84, 292	47, 165 6, 592	8, 237, 602 1, 520, 019	
Grand total	55, 460	9, 841, 896	137, 331	25, 079, 399	489, 941	25, 218, 520	682, 732	60, 139, 815	

¹ Includes 11 tons (\$1,632) classified by the Bureau of the Census as "amosite, crude;" reclassified by Bureau of Mines as "mill fibers."

Bureau of Mines as "mill fibers."

2 Belleved to be from Southern Rhodesia.

3 All believed to be from Southern Rhodesia.

4 Revised figure.

5 Includes 1956: 225 tons (\$57,304) of chrysotile crudes, 30 tons (\$5,820) of blue crocidolite, and 15 tons (\$3,875) of short fibers credited by the Bureau of the Census to Mozambique; 2 tons (\$785) of amosite crude credited by the Bureau of the Census to Mozambique; 2 tons (\$785) of amosite crude credited by the Bureau of the Census to the United Kingdom and 2 tons (\$679) of blue crocidolite believed to have originated in the Union of South Africa and processed in the United Kingdom. 1957: 51 tons (\$11,162) of blue crocidolite and 2 tons (\$607) of mill fibers credited by the Bureau of the Census to Southern British Africa; 1 ton (\$296) of short fibers credited by the Bureau of the Census to British East Africa; and 20 tons (\$1,773) of short fibers credited by the Bureau of the Census to Mozambique.

6 Owing to changes in tabulating procedures by the Bureau of the Census data known to be not comparable with other years.

parable with other years.

TABLE 4.—Asbestos (chrysotile) imported for consumption in the United States from Canada, by grades, 1948-52 (average) and 1953-57, in short tons

[Bureau of the Census]							
Grades	1948-52 (average)	1953	1954	1955	1956	1957	
Crude No. 1 Crude No. 2 Other crudes Spinning or textile fiber Shingle fiber Paper fiber Short fiber Total	227 266 422 21, 100 86, 409 74, 164 446, 884	168 207 467 19, 417 86, 540 63, 139 482, 179 652, 117	82 181 844 18, 319 72, 242 57, 465 491, 149 640, 282	65 164 644 21, 339 83, 898 61, 954 531, 023	50 217 6 20, 638 83, 032 52, 291 477, 512 633, 746	44 162 384 21, 222 67, 833 47, 450 489, 055	

TABLE 5.—Asbestos (chrysotile) imported for consumption in the United States from Southern Rhodesia, by grades, 1948-52 (average) and 1953-57, in short tone

[Bureau of the Census]							
Grades	1948-52 (average)	1953	1954	1955	1956	1957	
Crude No. 1 Crude No. 2 Spinning or textile fiber Other crudes Shingle fiber Short fiber	1, 142 2, 410 172 2 6, 404 49 6	1, 039 814 730 7, 304 103	181 275 156 6, 243	105 162 76 7, 901 161 15	61 71 339 * 16, 243	666 56 344 10, 361 87 202	
Total	10, 183	9, 990	7, 219	8, 420	⁸ 16, 744	11,716	

Effective July 1, 1954, reported by the Bureau of the Census as Federation of Rhodesia and Nyasaland.
 All believed to be from Southern Rhodesia.
 Includes small amounts credited by the Bureau of the Census to Mozambique.
 Revised figure.

TABLE 6.—Asbestos (amosite, crocidolite, and chrysotile) imported for consumption in the United States from Union of South Africa, 1954-57, in short tons

[Bureau of the Cens	sus			
	1954	1955	1956	1957
Amosite Crocidolite	14, 634 10, 911 1, 855	11, 745 2 14, 592 2, 363	1 2 11, 433 1 2 18, 344 2 2, 170	14, 197 2 17, 820 2 3, 425
Total	27, 400	28, 700	1 31, 947	35, 442

Exports.—Exports of unmanufactured asbestos decreased slightly in 1957. Compared with imports they are insignificant.

TABLE 7.—Asbestos and asbestos products exported from the United States, 1948-52 (average) and 1953-57

[Bureau	OT	LINA	(engite

	-	Unmanufact	ured asbestos		Asbestos products		
Year	Dom	estic 1	Fore	ign ²	Domestic ¹ Value	Foreign 2	
	Short tons	Value	Short tons	Value		Value	
1948-52 (average)	13, 539 2, 780 1, 847 2, 161 2, 797 2, 775	\$2, 841, 133 540, 273 275, 778 236, 336 337, 696 339, 923	1, 944 296 47 626 153 118	\$433, 743 51, 949 15, 379 31, 440 37, 268 9, 679	\$10, 886, 646 10, 615, 832 11, 475, 082 12, 820, 917 14, 171, 309 15, 208, 443	\$11, 719 11, 461 9, 653 37, 587 9, 813 14, 216	

¹ Material of domestic origin, or foreign material that has been milled, blended, or otherwise processed in the United States.

2 Material that has been imported and subsequently exported without change.

TABLE 8.—Asbestos and asbestos products exported from the United States, 1956-57, by kinds

[Bureau of the Census]

Products	1:	956	1957		
	Quantity	Value	Quantity	Value	
Unmanufactured asbestos: Crude and spinning fibers	514 301 1, 982 2, 797 1, 160, 166 19, 076 2, 262 1, 206 (2)	\$107, 022 54, 654 176, 020 337, 696 5, 380, 551 910, 820 3, 749, 659 737, 666 2, 785, 596 607, 017	333 334 2, 108 2, 775 (1) 1, 350, 181 17, 489 3, 522 1, 449 (2)	\$90, 826 60, 918 188, 179 339, 923 5, 117, 533 1, 044, 234 4, 034, 253 1, 091, 419 3, 238, 557 682, 170	
Total products		14, 171, 309		15, 208, 443	

Values have been summarized; quantities not shown.
 Quantity not recorded.

Revised figure.
 Includes countries adjusted by Bureau of Mines. See table 3, footnote 5, for explanation.

WORLD REVIEW

World production of asbestos was higher in 1957 than in 1956. The increase was due in part to an upward estimate of production in the U.S.S.R. Production in Quebec increased about 4 percent, and the overall Canadian production was 5 percent greater than in United States output increased 6 percent.

NORTH AMERICA

Canada.—The remarkable engineering operations involved in draining Black Lake and stripping the heavy overburden from the asbestos deposit, chiefly by dredging methods, were described in some detail in several articles.⁶ It was expected that stripping operations would continue into 1959 but that mining would begin by mid-1958 to furnish asbestos-bearing rock for the new mill having a capacity of 5,000 tons a day. Mining and milling operations were conducted by Lake Asbestos of Quebec, Ltd., a subsidiary of American Smelting and Refining

The deposit at East Broughton mined by Quebec Asbestos Mines, a subsidiary of the Philip Carey Manufacturing Co., was nearly exhausted. A new deposit 3 miles eastward was under development, and a new mill on this property was expected to be operated in 1958

by the Carey-Canadian Mines, Ltd.

National Asbestos Mines, a subsidiary of National Gypsum, Ltd., expected to operate its new 3,000-ton-per-day mill a few miles northeast of Thetford Mines during 1958.

Nicolet Asbestos Mines introduced additional facilities to increase

its mill capacity from 2,400 tons per day to 3,600.

The Beaver mill of the Asbestos Corp. was renovated and enlarged to handle the production of both the Beaver and King mines. The King mill will be dismantled.

A series of articles covering current progress in Quebec asbestos

mining appeared late in 1957.7

The Jeffrey mill of Canadian Johns-Manville at Asbestos, Quebec,

was described.8

Cassiar Asbestos Corp., Ltd., in British Columbia increased its milling capacity and improved its mining and transportation facilities. It acquired 3 additional asbestos properties, on 1 of which development

work was conducted.

Advocate Mines, Ltd., was reported to have delineated an asbestos reserve of about 13 million tons on its property in northern Newfoundland. The fiber, unsuited for spinning, was a semiharsh, free-filtering type of chrysotile well adapted for manufacturing pipe and other asbestos-cement products. Two 600-pound bulk samples gave a 14.9-percent fiber recovery with a value of \$21.53 per ton and 10.63percent recovery with a value of \$14.83 per ton, respectively.9

Mine and Quarry Engineering, Developing a Quebec: Not. 28, No. 2, August 1957, pp. 68-75.
Pit and Quarry, Lake Asbestos of Quebec: Vol. 50, No. 2, August 1957, pp. 68-75.
Mining Engineering, Black Lake Asbestos Opens Pit Scheduled to Begin Operations Next Summer: Vol. 9, No. 8, August 1957, pp. 845, 848, 854.
Asbestos, Lake Asbestos of Quebec, Ltd., New \$32.5 Million Asbestos Mine and Mill: Vol. 39, No. 2, August 1957, pp. 2-12.
Skillings' Mining Review, Lake Asbestos of Quebec, Ltd.: Vol. 46, No. 15, July 13, 1957, pp. 2-4, 20-21.
7 Guimond, Roger, and Canning, Hugh, The Asbestos Industry: Precambrian, vol. 30, No. 12, December 1987, pp. 12-31

Asbestos, Advocate Mines, Limited: Vol. 38, No. 8, February 1957, pp. 16-20.

⁶ Mine and Quarry Engineering, Developing a Quebec Asbestos Mine: Vol. 23, No. 9, September 1957,

^{1957,} pp. 12-31.

8 Pit and Quarry, World's Leading Asbestos Operation: Vol. 49, No. 12, June 1957, pp. 126-130, 136.

9 Northern Miner, Advocate's Asbestos Deposit Betters Grade and Tonnage: Vol. 42, No. 41, Jan. 3,

TABLE 9.—World production of asbestos by countries, 1948-52 (average) and 1953-57, in short tons 2

[Compiled by Helen L. Hunt and Berenice B. Mitchell]

Country 1	1948–52 (average)	1953	1954	1955	1956	1957
North America:				1 000 000	1 014 040	1 040 000
Canada (sales) 3 United States (sold or used by	813, 911	911, 226	924, 116	1, 063, 802	1, 014, 249	1, 046, 086
producers)	45, 684	54, 456	47, 621	44, 568	41, 312	43, 653
Total	859, 595	965, 682	971, 737	1, 108, 370	1, 055, 561	1, 089, 739
South America: ArgentinaBolivia (exports)	257 281	(4) 810	(4) 33	198	238 62	220 12
Brazil	1,408	1, 357	2, 816	3, 124	3, 739	5 3, 30 (4)
Chile Venezuela	224 271	(4) 185	⁽⁴⁾ 743	1, 757	5, 041	7,72
Total	2, 441	5 2, 800	§ 4, 000	5 5, 300	5 9, 300	⁵ 11, 60
Europe:	5 220	992	1, 213	1, 323	1, 102	8 1, 10
Bulgaria Finland 6	12,016	12,047	7, 853	18, 674	8, 282	10, 03
FranceGreece	5, 404 23	11, 419 1	14, 449 2	10, 913 3	9, 370 6	15, 43
ItalyPortugal	21, 816 275	22, 484 105	25, 955 30	33, 266 56	36, 459 35	37, 79 5 3
Spain U. S. S. R. ⁵ Yugoslavia	224, 000 1, 509	300, 000 4, 131	176 375, 000 3, 598	450, 000 4, 305	500, 000 4, 165	500, 00 6, 12
Total 1 5	270, 000	350, 000	435, 000	520, 000	565, 000	575, 00
Asia:						
Cyprus India	15, 297 407	15, 881 805	15, 309 435	15, 306 1, 564 110	15, 375 1, 378 39	7 13, 31, 66 8 5
Iran ⁸ Japan	5, 482	4, 495	6, 916	6, 932 66	9, 914 54	13, 33 9
Korea, Republic of Taiwan	(4)		233 161	403	118	26
Turkey	172		50	259	634	
Total 15	23, 700	27, 000	31,000	36, 000	39, 000	39, 00
Africa: Bechuanaland	114	548	729	1, 426	1, 356	⁵ 1, 30
Egypt Kenya	730 483	220 166	224	152	170	10
Madagascar Morocco: Southern Zone	6 547	600	597 196	631 301	379 202	13
MozambiqueRhodesia and Nyasaland, Fed.					118, 973	-
of: Southern Rhodesia Swaziland	76, 476 33, 760	87, 739 30, 103	79, 962 30, 142	105, 261 32, 613	29, 875	132, 12 30, 72
Uganda Union of South Africa		94, 817	7 109, 151	119, 699	136, 520	157, 29
Total	201, 171	214, 201	221, 008	260, 085	287, 477	321, 76
Oceania: Australia	2, 510 344	5, 567	5, 279	5, 993 172	9, 857 368	\$ 13, 80 \$ 33
New Zealand	344					
Total	2,854	5, 567	5, 279	6, 165	10, 225	5 14, 13
World total (estimate) 12	1, 360, 000	1, 565, 000	1,670,000	1, 935, 000	1, 970, 000	2, 0 50, 00

¹ In addition to countries listed, asbestos is produced in China, Czechoslovakia, and North Korea. Estimates by author of chapter are included in the total.

² This table incorporates a number of revisions of data published in previous Asbestos chapters. Data do not add to totals shown due to rounding where estimated figures are included in the detail.

³ Exclusive of sand and gravel and stone (waste rock only), production of which is reported as follows: 1848-52 (average) 40,178 tons; 1953, 21,118 tons; 1954, 26,429 tons; 1955, 28,582 tons; 1956, 45,428 tons; 1957, 18,652 tons.

⁴ Data not available; estimate by author of chapter included in total.

⁵ Estimate.

⁵ Estimate.

⁶ Includes asbestos flour.

 ⁷ Exports.
 8 Year ended Mar. 20 of year following that stated.

TABLE 10.—Sales of asbestos in Canada 1956-57, by grades

[Dominion Bureau of Statistics]

		1956			1957		
Grades		Val	ue		Value		
	Short tons	Total	Average per ton	Short tons	Total	Average per ton	
Crude No. 1, 2, and other	717 33, 929 246, 295 112, 759 168, 942 428, 159 23, 448	\$692, 677 14, 071, 703 42, 124, 569 13, 200, 835 12, 685, 874 16, 676, 452 407, 859	\$966 415 171 117 75 39 17	622 34, 320 259, 268 110, 428 159, 098 460, 539 21, 811	\$589, 410 14, 210, 634 45, 848, 069 13, 161, 082 12, 222, 231 18, 041, 742 416, 263	\$948 414 177 119 77 39	
Total, all grades	1, 014, 249 45, 428 21, 922, 874 13, 740, 326	99, 859, 969 52, 507	98	1, 046, 086 13, 652 22, 610, 743 14, 096, 117	104, 489, 431 18, 455	100 1	

EUROPE

Greece.—Kennecott Copper Corp. conducted further geological studies and diamond-drill exploration of an asbestos deposit in Kozani Province, western Macedonia. Conclusive results of tests of samples of fiber from the deposit had not yet been announced.

Italy.—The Vittore-Balangero Mine (Torino) was reported to have

Italy.—The Vittore-Balangero Mine (Torino) was reported to have attained a production of 35,300 short tons a year of chrysotile—about 98 percent of the total Italian production.¹⁰

AFRICA

Union of South Africa.—Difficult problems arose in mining both crocidolite and amosite in the Union. Crocidolite mining difficulties were largely overcome, and production increased steadily; but the

TABLE 11.—Asbestos produced in Southern Rhodesia, 1953-57

Year	Short tons	Value	Year	Short tons	Value
1953 1954 1955	87, 739 79, 962 105, 261	£6, 542, 731 5, 922, 724 7, 051, 831	1956 1957	118, 973 132, 124	£8, 524, 671 9, 016, 388

TABLE 12.—Asbestos produced in the Union of South Africa, 1953-57, by varieties and sources, in short tons

Variety and source	1953	1954	1955	1956	1957
Amosite (Transvaal)	38, 258 18, 840 16, 824 20, 883 12	45, 922 19, 373 15, 610 28, 136 110	50, 137 20, 535 13, 964 34, 878 185	50, 097 24, 336 14, 399 47, 688	56, 798 25, 646 15, 303 59, 549
Total	94, 817	109, 151	119, 699	136, 520	157, 296

Mining World (London), Production Doubled at Italy's Largest Open-Pit Asbestos Mine: Vol. 19, No. 11, October 1957, p. 95.

TABLE 13.—Asbestos produced in and exported from the Union of South Africa, 1953-57

	Produ	iction (short	Exports		
Year	Transvaal	Cape Province	Total	Short tons	Value
1953 1954 1955 1955 1957	73, 934 81, 015 84, 821 88, 832 97, 747	20, 883 28, 136 34, 878 47, 688 59, 549	94, 817 109, 151 119, 699 136, 520 157, 296	71, 971 94, 322 114, 056 122, 867 1 103, 399	£4, 158, 476 5, 453, 11 6, 697, 35 7, 336, 03 1 6, 559, 95

¹ January to September.

necessity for mining amosite at greater depths was attended with problems of pumping and ventilation that were not resolved. 11

OCEANIA

Australia.—Production of crocidolite at Wittenoon Gorge, Western Australia, increased considerably in 1957. Additional milling capacity was constructed. Mining was difficult and costly because the 2 main fiber seams were about 20 feet apart and 200 feet above the gorge floor. The fiber and fiber-bearing rock removed from a series of adits and crosscuts were transported 2 miles to the milling plant. nature of the fiber veins and mining methods pursued were described.12

TECHNOLOGY

A new type of lime product was marketed in California. It consisted of hydrated lime to which was added 10 percent asbestos fiber. It was claimed that addition of the asbestos increased workability, plasticity, water retentivity, and compressive and tensile strength. It was also said to improve fireproofing and insulating qualities. Finishing-coat plasters were prepared with even larger proportions of asbestos.13

A new gasket material consisting of rubber-coated asbestos fiber was introduced. It was said to have greater flexibility than conventional asbestos-fiber gasket products, and to have good sealing properties at temperatures up to 500° F., and at pressures up to 500 p. s. i.14

The importance of air currents in asbestos milling was described in some detail. Air is used as an aspirator or "lifter" of fiber from the screens, and is also employed for dust control, for pneumatic conveying, and in cyclone fiber collectors. It was estimated that the Quebec asbestos mills in toto use air at a rate of 10 million cubic feet per minute.15

A new filtering material that was claimed to have superior properties consisted of a combination of asbestos with diatomite.

Mining Journal (London), Blue and Amosite: Vol. 248, No. 6356, June 14, 1957, p. 758.
 Mine and Quarry Engineering, Australian Blue Asbestos: Vol. 23, No. 7, July 1967, p. 322.
 Mining Magazine (London), Wittenoon Blue Asbestos: Vol. 96, No. 2, February 1957, pp. 121–122.
 Mining Journal (London), Mining Blue Asbestos in W. Australia: Vol. 248, No. 6340, Feb. 22, 1957, pp.

¹³ Pit and Quarry, Diamond Springs Lime Co. Markets 10 Percent Asbestos Lime: Vol. 50, No. 1, July 1957, p. 158.

14 Materials and Methods, Coated Asbestos Fiber Used as Gaskets, Seals: Vol. 45, No. 5, May 1, 1957,

p. 198.

18 Rozovsky, H., Air in Aspestos Milling; Canadian Min. Jour., vol. 78, No. 5, May 1957, pp. 95-103.

The properties and qualities of the various types of African asbestos and their adaptability for ordinary and specialized uses were described. New and important applications were being developed, particularly in combination with plastics and resins.16

The composition, physical properties, qualities, and uses of amosite

were described. 17

Many patents relating to asbestos were recorded in 1957. Several related to improvements in asbestos milling processes, such as removal of dust and unopened fiber bundles, and a more complete recovery of short fibers.18

Improvements were devised in processes of manufacture of heatinsulating materials, such as asbestos paper and sheets, and 85-percent magnesia products; also in increasing their thermal efficiency. 19

Patents were issued in 1957 relating to improved processes for making molded products, including regulation of molding pressure, orientation of asbestos fiber, and preparation of free-flowing mixtures.²⁰

Patents were issued pertaining to methods of shaping and curing brake linings and other friction materials, and of making friction products from both long and short asbestos fibers.21

A new roofing and siding composition was patented consisting of 15 to 20 percent asbestos, together with 35 to 50 percent slate flour. and 25 to 35 percent portland cement.²²

A method was devised for making a two-layer composition floor tile in which asbestos was used as a strengthener and whiting as a filler.²³

A composition for demonstrating visually the efficiency of filtering materials consisted of a mixture of 3 to 15 percent of minimum 3micron asbestos fiber together with viscose, cotton or other materials.24

¹⁶ Sinclair, W. E., Asbestos in Industry: South African Min. and Eng. Jour., vol. 68, No. 3345, Mar. 22,

¹⁸ Sinclair, W. E., Asbestos in Industry: South African Min. and Eng. Jour., vol. 68, No. 3345, Mar. 22, 1957, pp. 519-521.

17 Sinclair, W. E., Amosite-Montasite the Unique Forms of Amphibole Asbestos: Asbestos, vol. 38, No. 9, March 1957, pp. 2-12.

18 Weston, D., and MacPherson, A. R., Movable Bed Stratifier With Constant Pneumatic Current: U. S. Patent 2,803,346, Aug. 20, 1957.

Sheldon, W. D., Jr., Apparatus for Removing Dust and Granular Material From Asbestos Fiber: U. S. Patent 2,813,306, Nov. 19, 1957.

Johnson, H. B., and Boss, C. C. (assigned to The Quaker Oats Co., Chicago, Ill.), Method of Separating Asbestos From Its Ores: U. S. Patent 2,813,626, Nov. 19, 1957.

19 Lillis, S. M. (assigned to Victor Manufacturing & Gasket Co., Chicago, Ill.), Method of Making Cement-Bound Asbestos Paper: U. S. Patent 2,791,159, May 7, 1957.

Spooner, L. W., and Joyner, G. A. (assigned to Westinghouse Electric Co.), Method of Making Asbestos Insulating Material With Improved Electrical Properties: U. S. Patent 2,804,908, Sept. 3, 1957.

Kloss, H. (assigned to Sued-Chemie-West G. m. b. H., New Ulm (Danube), Germany), Process of and Apparatus for Producing Continuous Layers of Fiber Material: U. S. Patent 2,811,95, Oct. 29, 1957.

Speil, S., and Barnett, I. (assigned to Johns-Manville Corp., New York, N. Y.), Inorganic Bonded Thermal Insulating Bodies and Method of Manufacture: U. S. Patent 2,804,338, Oct. 1, 1957.

Seipt, W. R. (assigned to Kassbey & Mattison Co., Ambler, Pa.), Asphaltic Magnesia Composition and Method of Producing the Same: U. S. Patent 2,806,338, Oct. 1, 1957.

Schwartz, A., and Fogelson, E. (assigned to Leobarb Corp., New York, N. Y.), Thermal Insulation: U. S. Patent 2,786,004, Mar. 19, 1957.

Fisher, E. J., Blending and Mixing Machine: U. S. Patent 2,764,392, May 14, 1957.

20 Reed, D. J. (assigned to Eternit Societa per Azioni, Genoa, Italy), Valve With Adjustable Weight for Automatically Varying the Moulding Pressure in Tube Moulding Machines: U. S. Patent 2,813,544, Nov. 19, 1957.

Thompson, Nov. 19, 1957.

Nov. 19, 1957.
Thompson, J. S. (assigned to Parker Rust Proof Co.), Inorganic Molding Composition: U. S. Patent 2,795,510, June 11, 1957.
Hutchcroft, C. R., Seipt, W. R., and Schneider, R. A. (assigned to Keasbey & Mattison Co., Ambler, Pa.), Equipment for Charging Fiber-Containing Slurry Into Molds: U. S. Patent 2,816,321, Dec. 17, 1957.
"1 Cofek, H. J. (assigned to Raybestos-Manhattan, Inc., Passate, N. J.), Production of Friction Material: U. S. Patent 2,811,750, Nov. 5, 1957; Method for Curing Friction Compounds: U. S. Patent 2,790,206, Apr. 20, 1057.

U. S. Patent 2,811,760, Nov. 5, 1957; Method for Chinig Friction Compounds. U. S. Patent 2,769,206, Apr. 30, 1957.

Banks, C. L., Cementitious Material Containing Slate Flour: U. S. Patent 2,785,987, Mar. 19, 1957.

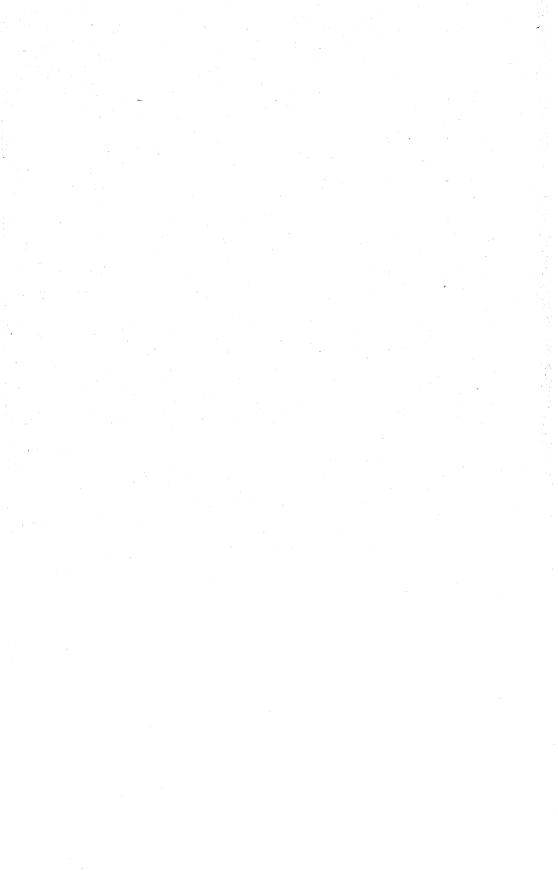
Banks, C. K. (assigned to Metal and Thermit Corp., New York, N. Y.), Floor Covering: U. S. Patent 2,816,852, Dec. 17, 1957.

Aper. 30, 1957.

Patent 2,790,253, Apr. 30, 1957.

ASBESTOS 221

A new self-lubricating packing material contained asbestos fiber agitated with a finely divided abrasive material, such as soot or ground glass, for the purpose of loosening the fibers.


The material was mixed with ground talc or graphite and molded.²⁵

Asbestos was an important constituent of a patented fire-resistant

artificial fireplace log.26

A barrier material in an intermittent dehumidifying apparatus was made by suspending asbestos fiber in excess of % inch in length with a binder in a water slurry and collecting a mat of desired thickness on a screen.²⁷

<sup>Zagorski, J., and Zagorski, J., Method of Preparing Self-Lubricating, Asbestos Containing Stuffing-Box Packings: U. S. Patent 2,809,397, Oct. 15, 1957.
Nielsen, H., Simulated-Log Fireplace Heater: U. S. Patent 2,762,362, May 14, 1957.
Asker, G. C. F. (assigned to Desomatic Products, Inc., Falls Church, Va.), Valveless Intermittent Dehumidifier: U. S. Patent 2,801,706, Aug. 6, 1957.</sup>

Barite

By Albert E. Schreck 1 and James M. Foley 2

OMESTIC production and consumption of barite declined during 1957 from the record established in 1956. Imports, however, exceeded last year's high by over 240,000 tons and thus established a new mark. Several new production facilities began operation, and one of the larger barite operations was closed.

TABLE 1.—Salient statistics of the barite and barium-chemical industries in the United States, 1948-52 (average) and 1953-57

	1948-52 (average)	1953	1954	1955	1956	1957
Barite:						
Primary:	040 400	200 000	000 000			1 004 540
Produced_short tons	812, 193	920, 025	926, 036	1, 114, 117	1, 351, 913	1, 304, 542
Sold or used by pro- ducers:		1				
Short tons	803, 014	944, 212	883, 283	1, 108, 103	1, 299, 888	1, 152, 882
Value	\$7,059,102	\$9, 435, 749	\$8, 508, 177		\$13, 497, 972	\$11, 756, 249
Imports for consump-	φ,, ουυ, 102	40, 100, 110	40,000,111	410,000,110	410, 101, 012	ψ11. 100j. 110
tion:			1	1	l ' .	
Short tons	59, 687	334, 788	317, 093	359, 636	589, 053	832, 626
Value	\$482, 158	\$2,514,828	2\$2, 274, 834	2\$2, 181, 119	12\$3,601,504	² \$5, 864, 124
Consumption						
short tons 3	876, 944	1, 149, 451	1, 215, 678	1, 459, 671	1 2, 035, 389	1, 670, 720
Ground and crushed sold				1	}	
by producers:	000 051	000 004	1 007 500	1 000 170	1, 503, 010	1, 467, 117
Short tonsValue	660, 251 \$12, 771, 142	920, 084 \$20, 372, 002	1, 037, 590 \$24, 219, 785		\$41, 623, 390	\$42, 352, 525
Barium chemicals sold by	φ12, 111, 1 1 2	φ20, 312, 002	Φ24, 215, 100	\$30,010,000	φ±1, 020, 000	ψ±2, 002, 020
producers:			1		1	ĺ
Short tons	74, 321	1 97, 770	1 86, 193	1 105, 171	1 106, 739	89, 757
Value	\$8, 863, 603	1 \$13,380,339		1\$14,490,048	1\$13,855,058	\$12, 253, 526
Lithopone sold or used by	1	1			\	1
producers:						
Short tons	97, 737	52 439	44, 011	42, 845	38, 434	(4)
Value	\$12, 237, 692	\$6,923,487	\$5, 929, 789	\$6,002,832	\$5, 630, 991	(4)

¹ Revised figure.

Figure withheld to avoid disclosing individual company confidential data.

DOMESTIC PRODUCTION

Output of domestic crude barite totaled 1.3 million short tons in 1957, a decrease of about 50,000 tons from the preceding year. Arkansas was again the leading producing State, with Missouri second, Georgia third, and Nevada fourth. Except for Nevada, production from the other three States increased compared with 1956. In addition to the foregoing States, output was also reported from

² Owing to changes in tabulating procedures by Bureau of Census, data known to be not comparable with previous years.
3 Includes some witherite.

¹ Commodity specialist.
¹ Supervisory statistical assistant.

California, Idaho, Montana, New Mexico, South Carolina, Tennessee,

and Washington.

Lithopone and barium chemical output was also below 1956 levels. Only two firms reported lithopone production to the Bureau of Mines in 1957. Of the barium chemicals produced, only barium oxide was produced in larger quantities than in the preceding year.

Late in the year, Magnet Cove Barium Corp., announced that it

would suspend operations at its Malvern, Ark., mine.

TABLE 2.—Domestic barite sold or used by producers in the United States, 1948-52 (average) and 1953-57, by States

State	1948-52	(average)	19)53	19	54
	Short tons	Value	Short tons	Value	Short tons	Value
ArkansasGeorgia	380, 925	1\$3,324,938	380, 763	1 \$3, 945, 583	370, 621	1 \$3, 488, 483
South Carolina Tennessee	79, 361	862, 234	81, 846	1, 066, 368	75, 492	1, 062, 016
Missouri Nevada Other States 2	252, 735 60, 905 29, 088	2, 290, 660 359, 223 222, 047	330, 763 99, 525 51, 315	3, 338, 395 614, 686 470, 717	312, 791 83, 833 40, 546	3, 047, 436 517, 492 392, 750
Total	803, 014	7, 059, 102	944, 212	9, 435, 749	883, 283	8, 508, 177
State	19	955	1956		1957	
	Short tons	Value	Short tons	Value	Short tons	Value
ArkansasGeorgia	462, 986	1\$3,755,094	486, 254	1 \$4, 255, 982	477, 327	\$3, 493, 606
South Carolina Tennessee	130, 396	1, 829, 141	174, 139	2, 946, 839	175, 072	2, 982, 195
Missouri Nevada Other States 2	363, 692 1 113, 694 37, 335	4, 003, 842 1 708, 804 512, 238	381, 642 178, 440 79, 413	4, 461, 955 1, 066, 930 766, 266	317, 350 109, 663 73, 470	3, 938, 486 720, 806 621, 156
Total	1, 108, 103	10, 809, 119	1, 299, 888	13, 497, 972	1, 152, 882	11, 756, 249

¹ Partly estimated.

A barite deposit discovered in 1956 near Austin, Nev., was reported to contain 5 million tons of 98 percent barite, having a specific gravity of 4.3 to 4.45.3

Seven barite claims, about 50 miles north of Wells, Nev., were

purchased by the American Colloid Co.⁴

The newly formed Barite Corp. of America planned to build a \$200,000 barite mill near Bernalillo, N. Mex., to process barite from

deposits about 8 miles east of Bernalillo.

A new firm, the P. & R. Barium Co., began open-pit mining about 6 miles southeast of Gaffney, Cherokee County, S. C., in 1957.5 A beneficiation plant under construction will have crushing, froth flotation, and drying equipment. Barite veins ranging from a few inches to several feet in width extend over an area 4 to 6 miles long. Mining

² Includes Arizona (1948 55), California, Idaho (1949-57), Montana (1951-57), New Mexico (1949-57), and Washington (1953-55, and 1957).

³ California Mining Journal, Tonopah Men Uncover What May Be Nation's Biggest Barite Deposit: Vol. 27, No. 2, October 1957, p. 27.
4 Chemical Week, vol. 80, No. 13, Mar. 30, 1957, p. 22.
5 Hughes, Bill, Barite Mine Grew From Ranger's Curiosity: Charlotte News, Charlotte, N. C., Oct. 22, 1957, Sec. 2, p. B-1.

225BARITE

rights to 500 acres were held by the company plus an option on an

additional 500 to 600 acres.6

An article describing the Macco Corp. barite operation in Tulare County, Calif., was published. The mine is in the Sierra Nevadas, 17 miles west of the company concentrating plant near Inyokern, Kern County. The ore, averaging 75-80 percent barium sulfate, occurs as veins in granite and shale. The ore was beneficiated by jigging to produce a concentrate having 93-94 percent BaSO₄ and a specific gravity of 4.3. The barite concentrate was shipped to the company plant at Rosamund to be ground and packaged for use as drilling mud.

Barium metal in small quantities was produced by the Kemet Co.,

Cleveland, Ohio, and King Laboratories Inc., Syracuse, N. Y.

TABLE 3.—Ground (and crushed) barite produced and sold by producers in the United States, 1948-52 (average) and 1953-57

Year	Plants	Production	Sales		
		(short tons)	Short tons	Value	
1948-52 (average)	24 29	461, 072 924, 392	660, 251 920, 084	\$12, 771, 142 20, 372, 002	
1954 1955 1966	29 29 30 33	1, 038, 649 1, 314, 810 1, 625, 879	1, 037, 590 1, 232, 176 1, 503, 010	24, 219, 785 30, 613, 095 41, 623, 390	
1957	. 33	1, 480, 585	1, 467, 117	42, 352, 525	

Sherwin-Williams Co., Chicago, Ill., planned construction of a \$1 million barium monohydrate plant next to its barium carbonate plant at Coffeyville, Kans.8 Production was expected to begin in early 1958. A new process developed by the firm, whereby a 99-percent-pure barium hydrate is made directly from barite ore, will be used.

CONSUMPTION AND USES

There was a pronounced reduction in consumption and sales of barite in 1957. The quantity of crude barite (domestic and imported) used in manufacturing crushed and ground, lithopone, and barium chemicals declined 18 percent from 1956. Producers had large stocks

of barite on hand at the close of the year.

Crude-barite consumption totaled over 1.6 million tons in 1957. About 90 percent was used in manufacturing ground barite and the

remainder in manufacturing lithopone and barium chemicals.

A contributing factor to the decline in crushed- and ground-barite sales was lessened activity in the oil- and gas-well-drilling industry, where barite is used as a weighting agent in drilling muds. Although the tonnage used was less in 1957, well drillers remained the largest consumers of ground barite, accounting for 95 percent of the total sales.

 Pit and Quarry, Barite Shipments Reported From New South Carolina Operation: Vol. 50, No. 3,
 September 1957, p. 202.
 Lenhart, Walter B., The Story of Barite: Rock Products, vol. 60, No. 4, April 1957, pp. 120, 122, 122, 190.
 Oil, Paint and Drug Reporter, Barium Monohydrate Unit Planned by S. W.: Vol. 171, No. 16, Apr. 22, 1957, pp. 3, 54.

Consumption of crushed and ground barite by the glass, paint, and

rubber industries was below 1956 levels.

Barium chemical sales also followed the downward trend. Total sales were about 16 percent less than in 1956. Of the many compounds produced, such as the carbonate, chloride, hydroxide, and sulfate, only barium oxide reflected an increase in sales.

TABLE 4.—Crude barite (domestic and imported) used in the manufacture of ground barite and barium chemicals in the United States, 1948-52 (average) and 1953-57, in short tons

Voor	In manufacture of—			2		In ma			
Year	Ground barite ¹	Litho- pone	Barium chemi- cals ³	Total	Year	Ground barite 1	Litho- pone	Barium chemi- cals ²	Tota
1948-52 (average) _ 1953 1954	669, 278 933, 673 1, 044, 094	98, 699 52, 308 35, 866	108, 967 163, 470 135, 718	876, 944 1, 149, 451 1, 215, 678	1955 1956 1957	1, 256, 361 1, 839, 770 1, 501, 415	45, 898 31, 065 (4)	³ 164, 554	1, 459, 671 \$2,035,389 1, 670, 720

TABLE 5.—Ground (and crushed) barite sold by producers, 1948-52 (average) and 1953-57, by consuming industries

	1948-52 (average)		1953		1954		1955		1956		1957	
Industry	Short tons	Percent of total	Short tons	Percent of total	Short tons	Percent of total	Short tons	Percent of total	Short tons	Percent of total	Short tons	Per- cent of total
Well drilling Glass Paint Rubber Concrete aggregates	579, 251 24, 074 24, 600 16, 800	4 4 2	824, 050 24, 853 24, 000 21, 000 25, 000	3 2 2		2 2	1, 142, 309 28, 737 25, 633 25, 104	2 2	20,602	2	16, 179	
Undistribut- ed	2, 340		1, 181		3, 953		10, 393		6, 613	(2)	9, 167	
Total	660, 251	100	920, 084	100	1,037,590	100	1, 232, 176	100	1, 503, 010	100	1, 467, 117	10

¹ Included with "Undistributed."

Less than 1 percent.

Includes some crushed barite.
 Includes some witherite.
 Revised figure.
 Included with "Barium chemicals" to avoid disclosing individual company confidential data.

The quantity of barite used in manufacturing lithopone as well as sales of lithopone was less than in 1956. Increased competition from titanium dioxide as a white pigment in paints continued to be the primary reason for the decreasing use of lithopone in the field.

Barium metal was used as a getter to remove traces of gases from vacuum tubes to increase the efficiency of the tube and improve the vacuum.

TABLE 6.—Lithopone sold or used by producers in the United States, 1948-52 (average) and 1958-57

	1948-52 (average)	1953	1954	1955	1956	1957	•
PlantsShort tonsValue	97, 737 \$12, 237, 692	52, 439 \$6, 923, 487	\$5, 929, 789	42, 845 \$6, 002, 832	38, 434 \$5, 630, 991	(1) (1)	2

¹ Figure withheld to avoid disclosing individual company confidential data.

TABLE 7.—Distribution of lithopone shipments, 1948-52 (average) and 1953-57, by consuming industries

	1948 (aver		19	53	19	54	19	55	19	56	19	57
Industry	Short tons	Per- cent of total	Short tens	Percent of total	Short tons	Per- cent of total	Short tons	Per- cent of total	Short tons	Per- cent of total	Short	Per- cent of total
Paints, varnishes, and lacquers Floor coverings Coated fabrics and textiles	1 72,129 6, 346 6, 699	74 6	37, 452 2, 575 5, 806	72 5	32, 177 2, 351 3, 995	73 9 5	30, 522 2, 378 4, 242	71 6 10	28, 238 1, 600	74 4	(3)	(2)
Paper Rubber Other	3, 806 3, 269 5, 288	4 4 5	2, 096 1, 723 2, 787	3 5	1, 841 1, 701 1, 946	4 4 5	1, 970 2, 163 1, 570	4 5 4	(3) (3) 8, 596	(3) (3) (3) 22		
Total	97, 737	100	52, 439	100	44, 011	100	42, 845	100	38, 434	100	(2)	(2)

Includes a quantity, not separable, used for printing ink.
 Figure withheld to avoid disclosing individual company confidential data.
 Included with "Other."

TABLE 8.—Barium chemicals produced and sold or used by producers in the United States, 1948-52 (average) and 1953-57, in short tons

		Pro-	Used by producers 1	Sold by 1	oroducers 3
Chemical	Plants	du c ed	in other barium chemicals 2	Short tons	Value
Black ash:4		100.000	100 110	400	400.00
1948-52 (average) 1953	13 11	130, 979 138, 980	130, 113 137, 801	462 1, 126	\$30, 36 81, 64
1954	11	116, 246	112, 863 134, 202	1,020	73, 90 165, 50
1955 1956	9 10	135, 455 5 131, 006	\$ 129, 969	1, 943 6, 356	524, 35
1957	9	112,048	110, 900	1, 087	79, 47
arbonate (synthetic): 1948-52 (average)	4	49, 353	15, 972	33, 708	2, 622, 88
1953	4	74, 122	26, 116	46, 846	4, 223, 52 3, 985, 67
1954	4	65, 319 78, 946	5 25, 307 5 27, 273	43, 325 53, 274	5, 021, 00
1956	5	82,043	\$ 27, 273 \$ 31, 022	⁵ 50, 524	4, 783, 45
1957 iloride (100 percent BaCl ₂):	6	74, 160	31, 056	42, 937	4, 335, 46
1948-52 (average)	3	13, 584 5 14, 772	3, 724 2, 186	9, 665 § 12, 565	1, 208, 74 1, 736, 77
1953 1954		5 9, 940	2, 180	5 10, 181	1, 441, 43
1955	3	5 11, 852	120	§ 11, 601	5 1, 689, 25 5 1, 706, 68
1956 1957	3	5 11, 746 9, 715	130	⁵ 11, 174 9, 373	1, 538, 80
vdroxide:	5		226	8, 016	1, 688, 22
1948-52 (average)	5	8, 410 12, 454	304	11, 843	2, 258, 27
1954	5 4	12, 616 15, 540	326 74	11, 697 16, 150	2, 200, 51 3, 174, 16
1955 1956	5	16, 957	120	16, 762	3, 051, 36
1957	5	12,698	162	12, 551	1, 915, 70
xide: 1948-52 (average)	3	8,072	5, 957	2, 149	489, 9
1953 1954	3	14, 578 15, 195	7, 604 7, 035	6, 820 7, 400	1, 678, 90 1, 853, 4
1955	3	16, 509	8, 102	8, 722	2, 128, 9
1956 1957	3	19, 816 20, 452	8, 117 5, 446	11, 222 14, 159	1, 969, 81 2, 585, 19
ılfate (synthetic):			1.5	, , , , , , , , , , , , , , , , , , ,	, ,
1948-52 (average) 1953	6	16, 202 14, 390	1, 013	14, 976 13, 448	1, 496, 99 1, 653, 50
1954	6	10, 495		10, 486	1, 356, 3
1955 1956	. 5 6	10, 722 9, 981	367 192	9, 976 9, 281	1, 347, 2 1, 263, 5
1957	4	9, 124		8, 719	1, 281, 6
ther barium chemicals: 6 1948-52 (average)	(7)	7, 946	2,782	5, 345	1, 326, 4
1953	(7) (7) (7)	7,822	1,762	5, 122	1,747,6
1954 1955	(7) (7)	2, 660 2, 396	722 176	2, 084 3, 505	721, 7 963, 9
1956	(7) (7)	1,808	190	1, 420	555, 8
1957otal: 8	(7)	1, 252	137	931	517, 2
1948-52 (average)	19			74, 321 5 97, 770	8, 863, 6
1953 1954	18 17			5 97, 770 5 86, 193	5 13, 380, 33 5 11, 633, 0
1955	16			5 105, 171	5 14, 490, 04
1956 1957	17 15			8 106, 739 89, 757	⁵ 13, 855, 05 12, 253, 52
1801	10			00,101	12, 200, 0

Of any barium chemical.
 Includes purchased material.
 Exclusive of purchased material and exclusive of sales by one producer to another.
 Black-ash data include lithopone plants.
 Revised figure.
 Includes barium acetate, nitrate, peroxide, sulfide, and other unspecified compounds. Specific chemicals may not be revealed by specific years.
 Plants included in above figures.
 A plant producing more than 1 product is counted but once in arriving at grand total.

PRICES

E&MJ Metal and Mineral Markets quoted the following market prices on barite during 1957: Barytes—f. o. b. cars: Georgia: Crude, jig and lump, \$18 per net short ton; beneficiated, \$21 per net short ton, in bulk, \$23.50 to \$25 in bags. The price remained unchanged throughout the year. Missouri: Per ton, water ground and floated, bleached, \$45, carlots, f. o. b. works; the quotation was changed in March to read \$45 to \$49. Crude ore, minimum 94 percent BaSO₄, less than 1 percent iron, January through March \$16; April to December \$16 to \$18. From January through March, crude, oil well drilling, minimum 4.3 specific gravity, bulk, short ton, \$11.50 nominal; April to December \$18. In April, and continuing to December a new quotation, some restricted sales \$11.50, was added. Ground, oil-well grade, \$26.75, April through December.

Foreign, crude-oil-well drilling, minimum 4.25 specific gravity, bulk,

short ton c. i. f. Gulf ports \$16 to \$18.

Canadian ore, crude, in bulk, f. o. b. shipping point, \$11 per long ton; ground, in bags, \$16.50 per short ton.

TABLE 9.—Quotations on barium chemicals in 1957 [Oil, Paint and Drug Reporter]

		Jan, 7	Dec. 30
Barium carbonate, precipit	ated, bags, carlots, worksshort tons_	\$100.00	\$106.50.1 121.50.1
Rarium chlorate kees wor	ksdo kspound_	110.00	0.3241.2
Barium chloride, anhydrou	is, bags, carlots, worksshort tons_	_ 165.00	176.00.3
Less carlots, works	do	175.00	191.00.3
Barium chromate, bags, fre	eight equaledpound_ drums, freight equaleddo	.35	Unchanged Do.
Barium hydrate, crystals, h	bags, carlots, ton lots, freight equaledshort ton_	208.00	Do.
Less carlots, less ton	lots, freight equaleddo	_ 218.00	Do.
Barium nitrate, barrels, car	rlots, ton lots, deliveredpound_	. 16	Do.
Less carlots, less ton	lots, delivereddo ms, carlots, ton lots, freight equaledshort ton_	275.00	Do. Do.
Less carlots, less ton	lots, freight equaleddodo		285.00.5
Blanc fixe, direct process, b	oags, carlots, worksdodo	_ 110.00	115.00.6
Less carlots, works	do	120.00	125.00.6 165.00.6
New York warehouse	edo carlots, deliveredpound_	155.00 08 E	0.0838 E.7
Less carlots, delivered	ddodo	_ .08¾ E	0.0918 E.7
Titanated (high-strength),	bags, carlots, delivereddo	_ .10	0.11.7
Less carlots, delivere	ddo	- 11	0.12.7
		1	1

Prices increased Jan. 28 to \$104 per short ton for carlots and \$114 for smaller lots. The Dec. 30 price first

published on Apr. 8.

Increase published Feb. 4.
Price increased on Feb. 4 to \$172 for carlots and \$182 for less than carlots; Dec. 30 price increase published.

FOREIGN TRADE®

Crude-barite imports totaled 832,600 tons in 1957—an increase of

243,000 tons over 1956—and a record quantity.

Canada (the leading source of crude imports for more than a decade) dropped to third place. Mexico replaced Canada as the principal supplier, and Peru ranked second.

^{*} Frace and the lished Apr. 8.

4 Not quoted.

5 Published Feb. 4.

6 Increase published Oct. 7.

7 Increase published Apr. 1.

Figures on imports and exports compiled by Mae B. Price and Elsie D. Jackson, Division of Foreign Activities, Bureau of Mines, from records of the U. S. Department of Commerce, Bureau of the Census.

Imports of crude witherite continued to increase for the third consecutive year. Of the total imported, the United Kingdom supplied 3,024 tons and West Germany the remainder. The small tonnage of ground witherite imported originated in Canada.

Barium-chemical imports for the most part continued to increase with West Germany and France the principal suppliers. The Netherlands, United Kingdom, Belgium, Luxembourg, and Switzerland

contributed the remainder.

The declining exports of lithopone went primarily to Canada and Cuba.

TABLE 10.—Barite imported for consumption in the United States, 1954-57, by countries

FT0				
Burean	OI	Lne	Censusi	

	* .	1954		1955		1956	. 1	.957
	Short tons	Value	Short	Value	Short tons	Value	Short tons	Value
Crude barite: North America: Canada Cuba	165, 612	\$1, 177, 616	187, 355	\$1, 364, 285	240, 650	\$1, 707, 597	109, 180 33, 172	\$745, 394 305, 992
El Salvador Mexico	43, 750	130, 384	108, 240	329, 335	58 204, 354	395 779, 044	406, 193	2, 200, 907
Total	209, 362	1, 308, 000	295, 595	1, 693, 620	445, 062	2, 487, 036	548, 545	3, 252, 293
South America: Brazil Peru	6, 184	35, 4 61	4, 960	22, 500	16, 069 1 36, 129	84, 877 1 263, 740	124, 440	1, 253, 167
Total	6, 184	35, 461	4, 960	22, 500	1 52, 198	1 348, 617	124, 440	1, 253, 167
Europe: Greece Italy Sweden Yugoslavia	5, 600 95, 947	37, 000 894, 373	59, 081	464, 999	22, 365 26, 559 54 42, 815	151, 757 265, 794 337 347, 963	79, 528 25, 490 54, 623	443, 097 231, 166 684, 401
Total	101, 547	931, 373	59, 081	464, 999	91, 793	765, 851	159, 641	1, 358, 664
Grand total_	317, 093	2, 274, 834	359, 636	² 2, 181, 119	1 589, 053	1 2 3, 601, 504	832, 626	5, 864, 124
Ground barite: North America: Mexico Europe:							297	6, 530
Germany, West Italy	63	2, 346	45 18	1, 614 509	49 74	2, 077 2, 212	53 73	1, 618 2, 473
TotalAfrica: Algeria	63 189	2, 346 6, 351	63 232	2, 123 7, 839	123 245	4, 289 8, 630	126	4, 091
Grand total_	252	8, 697	295	9, 962	368	12, 919	423	10, 621

Revised figure.
 Owing to changes in tabulating procedures by the Bureau of the Census data known to be not comparable with years before 1954.

TABLE 11.—Barium chemicals imported for consumption in the United States, 1948-52 (average) and 1953-57

[Bureau of the Census]

Year	Lithopone		Blanc fixe (precipitated barium sulfate)		Barium chloride			Barium hydroxide	
	Short	Value	Short	Value	Short	Va	lue	Shorton	
1948-52 (average)	30 65 30	\$66, 945 5, 658 7, 029 4, 355 119, 931 8, 124	20 1, 005 788 901 1, 026 1, 447	57, 346 64, 026 91, 341 104, 662	190 50 811 994 1,378 1,407	58 1 78 1 107	2, 105 1, 567 3, 238 5, 069 7, 913 0, 080	1 2	94 \$20, 465 22 3, 018 51 7, 283 15 2, 431 22 3, 130 13 18, 905
Year	Bai	ium nitr	ate	te Barium carbonate precipitated				Other barium compounds	
	Shor tons		alue	Short	Valu	16	Sh		Value
1948-52 (average)	1	35 64 77 91 1	37, 865 36, 433 24, 516 14, 906 91, 177 20, 075	316 4, 219 325 1, 638 1, 801 1, 543	297, 26, 105, 130,	187 402 240 852	1	34 513 1,344 841 138 61	\$14, 108 103, 100 265, 472 1 170, 345 29, 735 22, 209

¹ Owing to changes in tabulating procedures by the Bureau of the Census data known to be not comparable with years before 1954.

TABLE 12.—Lithopone exported from the United States, 1948-52 (average) and 1953-57

[Bureau of the Census]

					,			
	Year	Short	Value		Year	Short tons	Value	
	tons	Total	Average		Total		Average	
	1948-52 (average) 1953 1954	15, 058 3, 927 3, 013	\$2, 277, 677 584, 279 454, 461	\$151, 26 148, 79 150, 83	1955. 1956. 1957.	1, 892 1, 387 991	\$300, 960 239, 892 177, 891	\$159. 07 172. 96 179. 51

TABLE 13.—Witherite, crude, unground, imported for consumption in the United States, 1948-52 (average) and 1953-57

[Bureau of the Census]

Year	Short tons	Value ¹	Year	Short tons	Value 1
1948-52 (average)	2, 772	\$89, 047	1955	2, 363	\$77, 867
1953	4, 928	178, 846	1956	2, 934	110, 039
1954	4, 415	153, 139	1957	2 3, 029	2 138, 494

 $^{^1}$ Valued at port of shipment. 2 In addition, 8 tons (\$533) of crushed or ground witherite was imported. Class established June 1, 1956, no transactions.

TABLE 14.—World production of barite, by countries, 1948-52 (average) and 1953-57, in short tons 2

[Compiled by Helen L. Hunt and Berenice B. Mitchell]

Country 1	1948–52 (average)	1953	1954	1955	1956	1957
North America:						
Canada	90, 835	247, 227	221, 472	253, 736	320, 835	216, 325
Cuba (exports) Mexico (exports)	³ 4, 937	4, 904 63, 042	56, 871	117, 654	235, 792	37, 842 4 410, 000
United States	812, 193	920, 025	926, 036	1, 114, 117	1, 351, 913	1, 304, 542
Total	908, 037	1, 235, 198	1, 204, 379	1, 485, 507	1, 908, 540	1, 968, 709
South America:		11				
Argentina Brazil	16, 847 6, 574	16, 464 5 15, 863	4 16, 500 5 6, 272	25, 353	19, 152	4 22, 000
Chile	1,809	1, 556	3, 546	5 5, 071 3, 466	⁵ 16, 378 476	\$ 23, 755 4 1, 100
Colombia	1, 453	8, 543	9, 921	6, 614	8, 378	13, 228
Peru	9, 543	17, 129	12, 348	9, 410	56, 130	133, 356
Total	36, 226	59, 555	4 48, 600	49, 914	100, 514	4 193, 000
Europe:						
Austria	8, 163	2, 116	4, 802	4, 365	3, 413	3, 902
FranceGermany:	43, 603	43, 869	52, 361	70, 507	52, 911	4 55, 000
East 4	17, 600	27, 600	27, 600	27, 600	27, 600	27, 600
West	6 264, 752	334, 422	422, 589	456, 710	453, 836	448, 144
Greece	23, 410	29, 655	24, 249	21, 451	38, 581	4 27, 600
Ireland	6, 148 67, 239	79, 104	3, 031 81, 931	6, 134 114, 635	8, 157 103, 075	8, 488
Italy Portugal	507	347	385	357	346	113, 083 4 330
Spain	12, 628 669	19, 727	11, 740 108	9, 833 137	8, 505	19, 365
Sweden U. S. S. R.4	103, 600	110,000	110,000	110,000	110,000	110,000
United Kingdom 7	110, 493	77, 175	81, 967	92, 906	84, 670	89, 898
Yugoslavia	34, 054	89, 457	114, 640	109, 129	71, 209	86, 725
Total 14	698, 000	820, 000	940, 000	1, 030, 000	970, 000	1, 000, 000
Asia:						
India	17, 186	10, 528	21, 048	8, 537	7,072	14, 462
Japan Korea, Republic of	12, 879 175	19, 350 1, 210	20, 815 336	20, 374 933	20, 578 744	26, 372
Philippines	175	1, 210	990	900	5, 045	6, 367
Total 14	39, 900	42,000	53, 000	46, 000	55, 000	69,000
10001	33, 300	42,000	55,000	40,000	35,000	09,000
Africa:						
AlgeriaEgypt	19, 585	18, 821	21, 341	33, 720	32, 843	4 33,000
Morocco: Southern Zone	¹⁸ 3, 192	55 55	35 10, 246	27, 170	32, 622	4 70 16, 276
Rhodesia and Nyasaland, Federation of: Southern Rhodesia	256	268				
Swaziland	336	455	362	449	516	351
Tunisia Union of South Africa	203 $2,200$	2, 092	2, 342	1,892	2, 713	3, 369
Total	25, 790	21, 724	34, 326	63, 298	68, 782	53, 066
Oceania: Australia	5, 889	6, 358	7, 696	7, 016	6, 730	3, 390
World total (estimate) 1 2	1, 714, 000	2, 200, 000	2, 300, 000	2, 700, 000	3, 100, 000	3, 300, 000

In addition to countries listed, barite is produced in China, Czechoslovakia, and North Korea, but data on production are not available. Estimates by author of chapter included in total.

This table incorporates a number of revisions of data published in previous Barite chapters. Data do not add exactly to totals shown because of rounding where estimated figures are included in the detail.

Average for 1949-52.

Estimate.

Exports.

Beginning in 1950 marketable production is shown.

Beginning in 1950, marketable production is shown.
Includes witherite.

233 BARITE

WORLD REVIEW

NORTH AMERICA

Canada.—Magnet Cove Barium Corp. and Eastern Northern Explorations, Ltd., entered an agreement to develop barite deposits in the Cobequid Mountains of Colchester, Nova Scotia. The deposits were discovered during a search for base metals by the latter firm. Analyses of the barite indicate that it is of high grade.¹⁰

Cuba.—The Cuban Government granted a port concession at Santa Lucia to the Mora Mining Co. to ship barite from the Pinar del

The major portion of Cuba's barite deposits was reportedly held by the Mora Mining Co. and the West Indies Iron & Metals Co. The Mora Co. was drilling to delineate its deposits, which were estimated to contain 500,000 long tons. This firm was expected to begin shipments to the United States and Caribbean countries in August 1957.

The West Indies Iron & Metals Co. began shipments to the New Orleans and Houston plants of the Baroid Division, National Lead

Co. in February 1957 from the port of Mariel.¹¹

SOUTH AMERICA

Peru.—The leading barite producer in Peru was the Peruvian Chemicals Corp. from deposits about 31 miles east of Lima in the Rimac River Valley. Reportedly barite from this deposit contains 95 percent BaSO4 and has a specific gravity of 4.3. Open-pit mining was done and little mechanization employed. The ore was shipped to 2 company-owned grinding plants—1 in the Lima-Callao area and the other at Talara—for grinding to drilling mud specifications. Another important barite producer was Cia Minera Nor-Peruana which operated the large Suyo deposits in northern Peru near the Ecuadoran border. Output is consumed by oil companies in the Talara region.

The Mina Mercedes property in the interior of Chiclayo was another source of barite; however, the deposits did not meet expectations, and output had declined to less than 100 tons per month in the

latter half of 1956.

Other barite deposits of undetermined size occur south of Lima near Pucusana and Ica and near Tarma in the central Andes. of these deposits are now being developed commercially.

Barite exports increased from 21,309 short tons in 1955 to 60,288 tons in 1956, and in 1957 exports to the United States alone exceeded

124,000 tons.

A general surcharge on exports of barium sulfate or barite from Callao was reduced from \$1.60 per metric ton, weight or volume, to \$1.00 per metric ton on February 19, 1957. This was done to stimulate production.¹²

<sup>Canadian Mining Journal, Magnet Cove Barium Corp.: Vol. 78, No. 6, June 1957, p. 198.
Bureau of Mines, Mineral Trade Notes: Vol. 45, No. 1, July 1957, p. 24.
Bureau of Mines, Mineral Trade Notes: Vol. 44, No. 6, June 1957, p. 21.</sup>

EUROPE

Ireland.—Benbulben Barytes, Ltd., mined barite from the Gleniff mines in County Sligo. The average annual production rate was

reported to be about 6,000 tons.13

Greece.—Mykobar Mining Co., S. A., a Greek firm owned jointly by Dresser Industries and the Mykonos Mining Co., S. A., opened its new barite mine and crushing plant on the island of Mykonos. New shiploading facilities on the island were also completed. 15 To protect its investment in this enterprise, Dresser Industries obtained a United States Government guarantee under the International Cooperation Administration investment insurance program.¹⁶

United Kingdom.—The price of barium chloride was reported to have increased. 17 It was also stated that the barium-chemical industry (which was established in 1953) had developed in capacity and range

of products.18

AFRICA

Union of South Africa.—There were two barite producers in the Union in 1956: The Barytes Mining Co., Ltd., Barberton, Transvaal, and Bar Sul mine (Mrs. B. J. Pittendrigh), Duiwelskloof. Of the 2,713 tons produced, valued at \$20,969 f. o. r., all went for local consumption.19

OCEANIA

Australia.—An article described the mine and new milling plant of South Australian Barytes, Ltd.20 The mine is in the Flinders Range about 60 miles north-northeast of Hawker, and the mill is at Quorn about 200 miles north of Adelaide. The plant separates the barite from shale by jigging and tabling; the concentrate is then dry ground and bagged for shipment. Geology, mining methods, and plant processes are discussed.

TECHNOLOGY

An article on the heats of formation of crystalline, barium, and strontium silicates was published.²¹ The heats of formation for barium metasilicate, orthosilicate, and disilicate and dibarium trisilicate were The materials and the methods used to prepare the compounds, as well as the measurements and results, are discussed.

A patent was issued on a rubber and ground-barite mixture that can be used in road construction, roofing paints, and vehicle undercoats.²² The free-flowing powder is made by taking a barite composition (at least 40 percent by weight BaSO₄) in the form of particles

¹³ Mining Magazine (London), Barytes: Vol. 96, No. 6, June 1957, p. 362.
14 Mining World, vol. 19, No. 11, October 1957, p. 57.
15 Rock Products, Expands Barite Production: Vol. 60, No. 2, February 1957, p. 62.
16 Chemical and Engineering News, vol. 35, No. 32, Aug. 12, 1957, p. 78.
17 Chemical Age (London), Barium Chloride Reported Dearer: Vol. 78, No. 2004, Dec. 7, 1957, p. 939.
18 Chemical Trade Journal (London), More Barium Chemicals: Vol. 140, No. 3654, June 14, 1957, p. 1416.
19 Bureau of Mines, Mineral Trade Notes: Vol. 45, No. 5, November 1957, p. 19.
20 Jackson, Norton, New Barytes Treatment Plant: Chem. Eng. and Min. Rev., vol. 50, No. 1, Oct. 15, 1957, pp. 36-2.
21 Barany, R., King, E. G., and Todd, S. S., Heats of Formation of Crystalline Silicates of Strontium and Barium: Jour. Am. Chem. Soc., vol. 79, No. 14, July 20, 1957, pp. 3639-3641.
22 Endres, H. A., Shaw, J. W., Jr., and Pullar, H. B. (assigned to the Goodyear Tire & Rubber Co., Akron, Ohio), Rubber Barytes Compositions and Methods of Preparation: U. S. Patent 2,809,179, Oct. 8, 1957.

BARITE 235

ranging in size from 5-50 microns, with 90 percent less than 10 microns, and adjusting the water content juntil an approximate 25-75 percent by weight barite-water slurry is formed. The pH of the slurry is then adjusted to 8.5 by adding sodium hydroxide, after which the slurry is mixed with rubber latex (30-70 percent rubber-serum by weight) in the proportion of about 20 percent by weight of rubber and 80 percent by weight of barite composition. By adding aluminum sulfate solution to the rubber-barite composition, barite particles individually coated with a film of rubber are precipitated. The material is then filtered until only about 33 percent by weight of water remains and dried and pulverized until only about 0.5 percent by weight of water remains and about 95 percent passes through a 100-mesh standard screen. This also ruptures the rubber films so that some surface area of the barite particles is exposed.

A barium titanate ceramic, having a high dielectric constant, was described in a patent.²³ It consisted primarily of a crystal lattice of barium titanate in combination with iron and calcium ions, the latter 2, being at a maximum, less than 4 percent by weight of the barium titanate and neither being less than 0.3 percent by weight

of the barium titanate.

A process for making barium titanate crystals was patented.²⁴ Barium titanate is mixed with a fluxing agent, potassium fluoride, the flux comprising approximately 75 percent of the total weight of the mixture and heated to about 1,150° C. The mixture is maintained at this temperature for 6 to 12 hours and gradually cooled over a period of 6 hours to approximately 860° C., at which temperature the flux solidifies. It is then rapidly cooled to room temperature and the solidified potassium fluoride dissolved with water.

Oshry, H. T. (assigned to Eric Resistor Corp., Eric, Pa.), Barium Titanate Ceramic Dielectrics: U. S.
 Patent 2,803,533, Aug. 20, 1957.
 Karan, Clarence (assigned to International Business Machines Corp., New York, N. Y.), Method of Preparing Barium Titanate Crystals: U. S. Patent 2,803,519, Aug. 20, 1957.

Bauxite

By Richard C. Wilmot, Arden C. Sullivan, and Mary E. Trought 3

ORLD PRODUCTION of bauxite in 1957 increased 9 percent to continue the upward trend begun in 1951. Domestic production was 1.4 million tons, a 19-percent decline from 1956. However, consumption of domestic ore showed only a small decrease. Imports increased 25 percent and were 83 percent of the United States bauxite supply; the remainder came from domestic production. Jamaica became the leading world producer and supplied 51 percent of the United States imports. A new source of supply for the United States—Haiti—began to produce in the second quarter of the year.

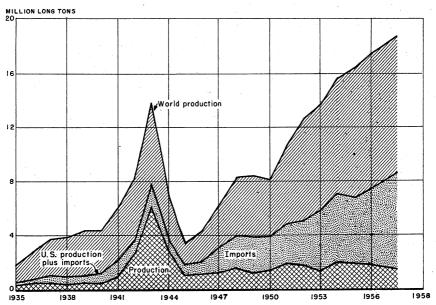


FIGURE 1.—United States supply and world production of bauxite, 1935-57.

In the United States about 3.5 million short tons of alumina and aluminum oxide products was produced from bauxite. Production of aluminum through utilization of alumina consumed 83 percent of the bauxite used. The Aluminum Company of America indefinitely suspended production at its East St. Louis, Ill., alumina plant, and Reynolds Metals Company added a new unit to its La Quinta, Tex., alumina plant. Construction of 1.7 million annual tons of new alumina-plant capacity was well under way; but, due to the reduced market for aluminum, completion dates were indefinite.

Aluminum is discussed in the Aluminum chapter of this volume.

¹ Commodity specialist.
2 Statistical clerk.
3 Statistical assistant.

TABLE 1.—Salient statistics of the bauxite industry, 1948-52 (average) and 1953-57, in long tons

	1948-52 (average)	1953	1954	1955	1956	1957
United States: Crude-ore production (dry equivalent)	1, 491, 238	1, 579, 739	1, 994, 896	1, 788, 341	1, 743, 344	1, 416, 172
	2, 802, 188	4, 390, 576	5, 258, 530	5, 225, 188	6, 075, 051	7, 725, 919
	53, 100	27, 907	16, 174	14, 117	14, 921	60, 993
	3, 380, 450	5, 628, 276	6, 427, 785	6, 988, 734	7, 751, 057	7, 632, 683
	9, 800, 000	13, 600, 000	15, 500, 000	116, 500, 000	17, 200, 000	18, 700, 000

¹ Revised figure.

DOMESTIC PRODUCTION

Production of crude bauxite in the United States during 1957 was 1.4 million long tons dried equivalent—a 19-percent decrease from 1956. In contrast, shipments, on a dry basis, of ore from domestic mines and processing plants to consumers showed a 7-percent increase when compared with 1956 shipments. The total domestic production of bauxite was 17 percent of the new supply, obtained by adding United States production to imports. This was the lowest percentage ever recorded. The dried-bauxite equivalent of the processed bauxite recovered was approximately the same as in the preceding year.

The combined bauxite production of Alabama and Georgia decreased 21 percent to 59,000 long dried tons; all was from open-pit mines. The D. M. Wilson Bauxite Co. and the R. E. Wilson Mining Co. both produced from mines in Barbour County, Ala. R. E. Wilson Mining Co. processed its ore at the company Eufaula drying plant, and D. M. Wilson Bauxite Co. shipped its ore in the crude state.

The American Cyanamid Co., with mines in Floyd, Macon, and Sumter Counties, was the only producer in Georgia. The crude ore was dried at its plant at Halls Station, Bartow County, for use in producing chemicals.

Production from the Arkansas mines (96 percent of the United States total) decreased 19 percent from 1956. Eighty-five percent of the Arkansas output was mined in Saline County and the remainder in Pulaski County. Open-pit operations supplied 80 percent.

The Aluminum Company of America was the leading producer in Arkansas during 1957, mining ore in Saline County. The second ranking producer was Reynolds Mining Co.—a subsidiary of Reynolds Metals Co. which produced ore in Saline County. Shipments at Reynolds were maintained from stocks, as well as underground and open-pit mines. Stripping was continued to develop open-pit tonnage. The ore of both companies was used at their own plants for producing alumina.

American Cyanamid Co. operated the Quapaw mine in Saline County and shipped from stocks at two mines in Pulaski County. Crude ore was received at the company mill in Pulaski County for drying before use in producing alum. A new mill was being constructed by the company at Bauxite in Saline County; this would

BAUXITE 239

concentrate ore to chemical-grade bauxite by a process developed by the Bureau of Mines.⁴

Dickinson McGeorge shipped crude ore from 3 mines in Pulaski County and 2 in Saline County. All ore was mined from open pits. Dulin Bauxite Co. had both open-pit and underground mines. It operated 4 mines in Pulaski County and 2 in Saline County. A portion of its ore was dried, and the remainder was shipped crude. The Norton Co. plant and mine were idle. Consolidated Chemical Industries, Inc., shipped crude ore from stocks to its own plant in Pulaski County; both dried and activated bauxite were produced for shipment.

The Campbell Bauxite Co. plant in Pulaski County purchased ore for preparing dried and activated bauxite. Activated bauxite also

was produced by the Porocel Corp. in Pulaski County.

Harvey Aluminum Co. had optioned an area in Salem Hills, Oreg., with a view to the possible development of the ferruginous laterites.

TABLE 2.—Mine production of bauxite in the United States, 1953-57, by quarter years, in long tons ¹

(Dried-bauxite equivalent)								
Quarter ended—	1953	1954	1955	1956	1957			
Mar. 31	378, 806 411, 070 387, 054 402, 809	399, 300 367, 750 686, 323 541, 523	486, 743 474, 147 402, 440 425, 011	490, 991 470, 816 357, 320 424, 217	368, 705 370, 404 375, 170 301, 893			
Total	1, 579, 739	1, 994, 896	1, 788, 341	1, 743, 344	1, 416, 172			

¹ Quarterly figures adjusted to final annual totals.

TABLE 3.—Mine production of bauxite and shipments from mines and processing plants to consumers in the United States, 1953-57, by States, in long tons

• State and year	M	line producti	on	Shipments from mines and processing plants to consumers		
	Crude	Dried- bauxite equivalent	Value 1	As shipped	Dried- bauxite equivalent	Value 1
Alabama and Georgia:	1					
1953	61, 186	49, 763	\$463, 149	59, 985	56, 085	\$580, 471
1954	56, 431	45, 528	409, 501	58, 446	55, 050	705, 950
1955	89, 447	67, 098	516, 448	72, 952	67, 141	713, 906
1956	94, 444	74, 912	665, 392	73, 517	68, 248	728, 462
1957	76, 656	59, 274	554, 163	67, 142	62, 273	671, 644
Arkansas:						
1953	1, 802, 797	1, 529, 976	12, 975, 992	1, 889, 206	1, 689, 207	15, 042, 236
1954	2, 296, 528	1, 949, 368	15, 993, 887	1, 978, 216	1, 711, 386	15, 239, 244
1955	2, 049, 623	1, 721, 243	14, 026, 190	1, 938, 811	1, 660, 263	14, 844, 798
1956	1, 966, 320	1, 668, 432	13, 307, 341	1, 827, 832	1, 576, 028	13, 724, 443
1957	1, 625, 098	1, 356, 898	11, 600, 216	2,004,289	1, 695, 992	14, 948, 537
Total United States:						
1953	1, 863, 983	1, 579, 739	13, 439, 141	1, 949, 191	1, 745, 292	15, 622, 707
1954	2, 352, 959	1, 994, 896	16, 403, 388	2, 036, 662	1, 766, 436	15, 945, 194
1955		1, 788, 341	14, 542, 638	2, 011, 763	1, 727, 404	15, 558, 704
1956	2, 060, 764	1, 743, 344	13, 972, 733	1, 901, 349	1, 644, 276	14, 452, 905
1957	1, 701, 754	1, 416, 172	12, 154, 379	2, 071, 431	1, 758, 265	15, 620, 181

¹ Computed from selling prices and values assigned by producers and estimates of the Bureau of Mines.

⁴ Calhoun, W. A., and Powell, H. E., Jr., Laboratory Investigation of Bauxite Ore From the Quapaw Deposit, Saline County, Ark.: Bureau of Mines Rept. of Investigations 5366, 1957, 11 pp.

By the end of 1957 exploration had outlined a total of about 360 square miles on the islands of Kauai, Maui, and Hawaii in the Territory of Hawaii that contained bauxitic laterite.⁵ It became apparent that the deposits were low- to medium-grade, and concentration probably would be necessary for commercial utilization. Much of the aluminous material was on Territorial land; and, as the organic law of the Territory made inadequate provision for regulation of mineral rights on such lands, an act of Congress would be necessary before mining could be extensive.

TABLE 4.—Recovery of processed bauxite in the United States, 1948–52 (average) and 1953–57, in long tons

		Processed bauxite recovered			
Year	Crude ore			To	tal
	0.000	Dried	Calcined or activated	As recovered	Dried- bauxite equivalent
1948–52 (average)	716, 061 200, 970 201, 894 199, 313 181, 625 187, 921	508, 366 100, 632 125, 511 114, 863 114, 685 128, 509	69, 567 34, 288 24, 686 23, 166 17, 914 13, 093	577, 933 134, 920 150, 197 138, 029 132, 599 141, 602	615, 658 155, 248 161, 638 151, 333 145, 166 147, 508

CONSUMPTION AND USES

Domestic consumption of bauxite decreased 2 percent from that of 1956 to 7.6 million tons; this is the first decrease since 1949. The proportion of domestic ore consumed to total consumption was approximately the same as in 1956. Consumption of bauxite for uses other than alumina production increased 9 percent to 665,000 tons.

Of the domestic ore shipped from the mines in 1957, 8 percent was estimated to contain less than 8 percent silica, approximately 66 percent contained 8 to 15 percent silica, and the remaining 26 percent contained over 15 percent silica. The proportion of ore containing less than 8 percent silica decreased from 11 percent in 1956, and the proportion of ore containing over 15 percent increased from the 12 percent shipped in 1956.

The 6 domestic alumina plants operated by the aluminum companies produced 3,442,000 short tons of calcined alumina, and aluminum oxide products calculated on the basis of the calcined equivalent, which was virtually the same as the 1956 production. The actual weight of calcined alumina and aluminum oxide products was 3,489,000 short tons. Of this, 92 percent was shipped to aluminum-reduction plants, and about four-fifths of the remaining 8 percent was shipped as commercial trihydrate or as activated, calcined, or tabular alumina for use primarily by the chemical, abrasive, ceramic, and refractory industries. The output of calcined alumina was 3,317,000 short tons, almost as much as in 1956. The production of other forms of alumina increased 8 percent to 172,000 tons.

⁵ Fellom, Roy, Jr., Hawaii Bauxite, Outlook for a New Alumina Industry in the West, pt. I: Light Metal Age, vol. 15, Nos. 3 and 4, April 1957, pp. 12-18.

At the end of 1957 the annual rated alumina-plant capacity in the United States was 3,533,000 short tons. This was a slight increase over the 3,501,000 tons reported at the beginning of the year. On November 1 the oldest alumina plant in the country—the Alcoa 328,500-ton-capacity plant at East St. Louis—suspended operation indefinitely. Laboratories and the cryolite plant at the same site were not affected. The loss was compensated by an upward revision of the rated capacities of 3 other alumina plants and by completion of an additional 182,500-ton-capacity unit at the Reynolds Metal Co. Sherwin plant, La Quinta, Tex.

TABLE 5.—Bauxite consumed in the United States, 1956-57, by industries, in long tons

Industry	Domestic	Percent	Foreign	Percent	Total	Percent
Alumina 1956 Alumina Chemical Refractory Other	1, 765, 973 7, 000 87, 776 21, 964 46, 057	91. 6 . 4 4. 5 1. 1 2. 4	5, 374, 276 270, 475 100, 865 62, 301 14, 370	92.3 4.6 1.7 1.1	7, 140, 249 277, 475 188, 641 84, 265 60, 427	92.1 3.6 2.4 1.1
Total 1 Percent	1, 928, 770 24. 9	100. 0	5, 822, 287 75. 1	100. 0	7,751,057 100.0	100.0
Alumina	1, 693, 181 1, 852 72, 147 17, 377 59, 059	91. 8 . 1 3. 9 1. 0 3. 2	5, 274, 638 316, 633 126, 678 64, 622 6, 496	91. 1 5. 5 2. 2 1. 1	6, 967, 819 318, 485 198, 825 81, 999 65, 555	91. 3 4. 2 2. 6 1. 1 . 8
Total ¹ Percent	1, 843, 616 24. 2	100.0	5, 789, 067 75. 8	100.0	7, 632, 683 100. 0	100.0

¹ Includes consumption by Canadian abrasives industry.

TABLE 6.—Consumption of crude and processed bauxite in the United States by grades, 1957, in long tons

(Dried-bauxite equivalent)

	Domestic origin	Foreign origin	Total	Percent
Crude Dried Calcined Activated	1, 706, 650 116, 730 8, 876 11, 360	7, 393 5, 414, 615 367, 059	1, 714, 043 5, 531, 345 375, 935 11, 360	22. 5 72. 5 4. 9 . 1
TotalPercent.	1, 843, 616 24. 2	5, 789, 067 75. 8	7, 632, 683 100. 0	100.0

Another 182,500-ton unit estimated to cost \$16 million was being constructed at La Quinta and scheduled for completion in 1958. Construction also was proceeding on the 350,000-ton plant of the Ormet Corp. at Burnside, La., and the first production was expected in early 1958.

At the end of the year construction had been slowed on the 430,000-ton plant of the Kaiser Aluminum & Chemical Corp. at Gramercy, La., and the 750,000-ton plant of Alcoa at Point Comfort, Tex. Both plants were in an advanced stage of construction, but their

completion would depend on an increased demand for aluminum. All of the new plants completed or under construction were designed to use foreign ores.

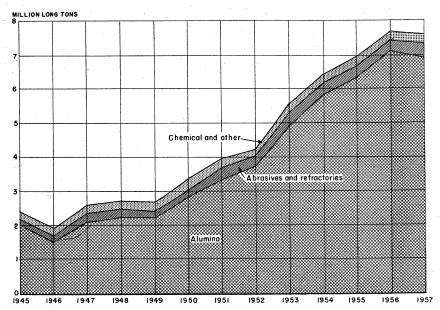


FIGURE 2.—Domestic consumption of bauxite, by uses, 1945-57.

TABLE 7.—Capacities of domestic alumina plants in operation and under construction

	Capacity	per year)	
Company and plant	Operating plants, December 1957	Plants under construc- tion	Total
Aluminum Company of America: Mobile, Ala	420,000	750, 000	985, 500 420, 000 750, 000
Total	1, 405, 500	750, 000	2, 155, 500
Reynolds Metals Co.: Hurricane Creek, Ark La Quinta, Tex	730, 000 547, 500	182, 500	730, 000 730, 000
Total	1, 277, 500	182, 500	1, 460, 000
Kaiser Aluminum & Chemical Corp.: Baton Rouge, La	850, 000	430, 000	850, 000 430, 000
Total	850, 000	430,000	1, 280, 000
Ormet Corp. Burnside, La		350, 000	350, 000
Total		350, 000	350, 000
Grand total	3, 533, 000	1, 712, 500	5, 245, 500

Calcined alumina consumed by the 18 aluminum-reduction plants in the United States during 1957 totaled 3,144,000 short tons, only 36,000 tons less than in 1956. An average of 2.024 long dry tons of bauxite was required to produce 1 short ton of alumina, and an average of 1.908 short tons of alumina was necessary to produce 1 short ton of aluminum metal. The overall ratio was 3.862 long dry tons of bauxite to 1 short ton of aluminum.

STOCKS

Bauxite stocks in the United States on December 31, 1957, totaled 5.3 million long dry tons and represented a 9-percent increase compared with the total stock figure for the preceding year. Consumers' inventories of crude and processed bauxite increased 37 percent. but those at mines and processing plants were 34 percent less than in There were no withdrawals from the Government-held nonstrategic stockpile in Arkansas. All figures exclude bauxite held for the national strategic stockpile. Metallurgical- and Refractorygrade bauxite remained on the Group I list of strategic materials for the national stockpile. Abrasive-grade ore was in Group II.

TABLE 8.—Stocks of bauxite in the United States, Dec. 31, 1953-57, in long tons 1

	Producers and processors		Consumers		Government	Total	
Year Crud	Crude	Processed 3	Crude	Processed 2	Crude	Crude and processed	Dried bauxite equivalent
1953 1954 1955 1956 1957	759, 165 964, 162 1, 042, 832 1, 132, 644 747, 992	44, 097 5, 810 4, 979 5, 812 6, 313	697, 653 762, 944 637, 508 8 483, 173 488, 564	1, 405, 587 1, 637, 920 1, 705, 694 3 1, 605, 262 2, 364, 206	2, 261, 392 2, 261, 392 2, 204, 674 2, 204, 674 2, 204, 674	5, 167, 894 5, 632, 228 5, 595, 687 3 5, 431, 565 5, 811, 749	4, 623, 552 5, 041, 936 5, 011, 270 3 4, 889, 308 5, 335, 216

Excludes strategic stockpile.
 Dried, calcined, and activated.
 Revised figure.

PRICES

No open-market price was in effect for bauxite mined in the United States, as the output was consumed mainly by the producing companies. The values in table 9 were determined from the approximate commercial value of the shipments and interplant transfers of crude and processed bauxite as assigned by the producers.

The average values in 1957 of bauxite as shipped and delivered to the domestic alumina plants were \$10.28 per long ton for domestic ore

and \$15.18 per ton for imported ore.

The year-end prices quoted in the E&MJ Metal & Mineral Markets showed only two changes from those quoted in 1956. The price of imported, Abrasive-grade, crushed and calcined bauxite rose \$0.95 to \$19.95 and imported Refractory-grade bauxite rose \$0.20 to \$25.40.

During 1957 the average value of calcined alumina shipped was

\$0.0346 per pound, as determined by producer reports.

TABLE 9.—Average value of domestic bauxite in the United States, 1956-57 1

Туре		ts f. o. b. or plants ig ton)	Туре	Shipments f. o. b. mines or plants (per long ton)		
	1956	1957		1956	1957	
Crude (undried) Dried	\$6.94 9.68	\$6. 96 10. 83	CalcinedActivated	\$21. 78 74. 25	\$61.34	

¹ Calculated from reports to the Bureau of Mines by bauxite producers.

TABLE 10.—Market quotations on bauxite in the United States on December 26, 1957

[E&MJ Metal and Mineral Markets]

Type of ore	Al ₂ O ₃ percent	Price	Type of ore	Al ₂ O ₃ percent	Price
Domestic (per long ton): Crude ¹ Chemical, crushed and dried ²	50–52 8 55–58	\$5. 00-\$5. 50 8. 00- 8. 50	Domestic (per long ton)—Con. Abrasive grade, crushed and calcined 1 Imported (per long ton):	80-84	\$17.00
Other grades ¹ Pulverized and dried ¹	4 56-59 5 56-59	8. 00- 8. 50 14. 00-16. 00	Calcined, crushed (ab- rasive grade) 6 Refractory grade	86 min.	19. 95 25. 40

TABLE 11.—Average value of bauxite imported into and exported from the United States, 1956-57, in long tons

[Bureau of the Census]

Type and country		value, port pment	Type and country	Average value, port of shipment		
Typo and obtainly	1956	1957		1956	1957	
Crude and dried: British Guiana. Halti ¹ . Jamaica ¹ . Surinam. Average.	\$6. 81 9. 12 6. 77 7. 83	\$6. 92 9. 05 9. 28 7. 84 8. 58	Calcined: 2 British Guiana Surinam Average Bauxite and bauxite concentrate exported	\$23. 05 26. 13 23. 05 55. 91	\$22. 66 26. 97 22. 66 79. 47	

¹ Dry tons used for computation.
² For refractory use.

TABLE 12.-Market quotations on alumina and aluminum compounds

[Oil, Paint and Drug Reporter]

Compound	Dec. 31, 1956	Dec. 30, 1957
Alumina, calcined, bags, carlots, workspound \(^1_1_1\) Aluminum hydrate, heavy, bags, carlots, freight equalizeddo \(^1_1_1\) Aluminum sulfate, commercial bulk, carlots, workston \(^3_1\) Aluminum sulfate, iron free, bags, carlots, works, freight equalized100 pounds	\$0, 0455 . 032 37, 00 3, 55	\$0.0475 .0335 41.00 3.55

¹ First quoted Aug. 12, 1957. ² First quoted June 10, 1957.

F. o. b. Arkansas mines.
 F. o. b. Alabama and Arkansas mines.
 I. 5 to 2.5 percent Fe₂O₂.
 5 to 8 percent SiO₂.
 8 to 12 percent SiO₂.
 F. o. b. port of shipment, British Guiana.

FOREIGN TRADE 6

United States bauxite imports in 1957 were 7.1 million tons, a 25-percent increase over 1956 imports. Surinam imports were almost the same as those for 1956 but declined as a percentage of the total from 49 percent to 39. Jamaican imports calculated on a dry basis increased 41 percent over 1956 and supplied 51 percent of total imports. British Guiana imports increased 43 percent but only supplied about 5 percent of the total. The remaining imports were supplied from Haiti, a new producer that first began shipping in the second quarter. Imports from Haiti totaled 372,769 long tons on an "as-shipped" basis, and after converting to a dry basis, by allowing for 14.6 percent contained free moisture, were 318,000 tons.

On an "as-received" basis, 34 percent of the bauxite imports entered through the Mobile (Ala.) customs district, 46 percent through the New Orleans (La.) customs district, 19 percent through the Galveston (Tex.) customs district, and 1 percent through other districts.

Except for 60 tons imported from Surinam in 1957, all calcined bauxite for refractory uses shown in table 14 was from British Guiana.

TABLE 13.—Bauxite (crude and dried 1) imported for consumption in the United States, 1948-52 (average) and 1953-57, in long tons

Country	1948-52 (average)	1953	1954	1955	1956	1957
North America: Haiti (dry equivalent)						2 318,000
Jamaica (dry equivalent) Trinidad and Tobago Other North America	² 45, 800 8, 808 34	2 1, 016, 000	2 1, 717, 000	² 2, 178, 000	2 2, 573, 000	2 3, 622, 000
Total	54, 642	1,016,000	1, 717, 000	2, 178, 000	2, 573, 000	3, 940, 000
South America: British Guiana Surinam Other South America	122, 364 2, 272, 769 3, 334	101, 911 3, 099, 554 2, 360	175, 002 3, 096, 120	241, 928 2, 462, 565	268, 626 2, 797, 713	383, 631 2, 777, 367
Total Europe	2, 398, 467	3, 203, 825 10, 257	3, 271, 122	2, 704, 493	3, 066, 339	3, 160, 998
Asia: Indonesia	341, 882 (³)				30, 494	
Grand total: Long tons 2. Value	2, 794, 991 \$17, 778, 416	4, 230, 082 \$29, 585, 129	4, 988, 122 \$36, 288, 926	4, 882, 493 \$36, 656, 142	5, 669, 833 \$44, 414, 420	7, 100, 998 \$60, 951, 253

Only small quantities of undried bauxite were imported.
 Bureau of Census import figures adjusted by Bureau of Mines to dry equivalent by deducting 13.6 percent free moisture for Jamaican and 14.6 percent for Haitian bauxite.
 Less than 1 ton.

Aluminum compounds imported into the United States totaled 5,735 short tons; 37 percent came from Canada and the remainder from countries of Western Europe. Only 299 tons of this total was alumina for use in aluminum production.

The duties on imports of bauxite and alumina for use in aluminum production remained suspended during the year. Duties on imports of aluminum hydroxide and alumina not used for aluminum remained at one-fourth cent per pound.

⁶ Figures on imports and exports compiled by Mae B. Price and Elsie D. Jackson, Division of Foreign Activities, Bureau of Mines, from records of the U. S. Department of Commerce, Bureau of the Census.

TABLE 14.—Calcined bauxite imported for consumption into the United States, 1950-57, by grades and countries, in long tons

[Bureau or the Central]								
	1950	1951	1952	1953	1954	1955	1956 1	1957 1
For refractory purposes: South America British Guiana Surinam	9	18, 642	31, 412	91, 606	99, 421	107, 694	138, 630 86	67, 112 60
Total Value	9 \$329	18, 642 \$405, 438	31, 412 \$705, 166	91, 606 \$2, 116, 121	99, 421 \$2, 361, 008	107, 694 \$2, 453, 331	138, 716 \$3, 197, 857	67, 172 \$1, 522, 236

¹ In addition calcined bauxite for other uses was imported as follows: 1956, British Guiana 9,960 tons (\$221,112); 1957, Surinam 50 tons (\$981).

Exports of bauxite and bauxite concentrate were four times those of 1956. Shipments to Canada were 96 percent of the total. Approximately four-fifths of the 19,689 short tons of aluminum sulfate exports went to Canada, Colombia, and Venezuela. Of the other aluminum compounds, totaling 48,390 short tons, 47 percent went to Norway and 46 percent to Canada and Mexico.

TABLE 15.—Bauxite (including bauxite concentrate 1) exported from the United States, 1948-52 (average) and 1953-57, in long tons

Country	1948-52 (average)	1953	1954	1955	1956	1957
North America: CanadaOther North America	52, 119	26, 880	14,777	13, 115	13, 337	58, 654
	699	379	1,014	606	800	1, 015
TotalSouth AmericaEuropeAsiaAfrica	52, 818 30 102 171 19	27, 259 95 553	15, 791 27 133 172 51	13, 721 70 326	14, 137 80 378 295 31	59, 669 121 403 764 36
Grand total as exported	53, 140	27, 907	16, 174	14, 117	14, 921	60, 995
Dried-bauxite equivalent 2	83, 564	43, 256	25, 070	21, 881	23, 128	74, 539
Total value	\$1, 186, 673	\$886, 275	\$666, 459	\$527, 888	\$834, 169	\$4, 846, 885

¹ Classified as "Aluminum ores and concentrates" by the Bureau of the Census. ² Calculated by Bureau of Mines.

The international flow of bauxite for 1955 is given in table 16. Total exports of 10.5 million tons represented only a 3-percent increase in relation to 1954. The most significant increase was in Jamaica, where exports increased 30 percent. Several other countries showed increases; the largest were in Greece, Malaya, and Yugoslavia. These increases were partly offset by decreased exports from Surinam (11 percent), Hungary (29 percent), and Ghana (29 percent).

Six countries received 97 percent of the total exports: The United States and Canada, 73 percent; Japan, West Germany, and the United

Kingdom, 18 percent; and U. S. S. R., 6 percent.

TABLE 16.—Production and trade of bauxite in 1955, by major countries, in thousand long tons

[Compiled by Corra A. Barry and Berenice B. Mitchell]

				Ex	ports, b	y count	ries of d	esti n atio	n		
Exports, by coun- tries of origin	Pro-		North A	America			Europe	3		Asia	
	tion	Ex- ports	Canada	United States	Ger- many, West	Italy	U. S. S. R. ¹	United King- dom	Other Eu- rope	Japan	Other
North America: Jamaica United States. South America:	2, 645 1, 788	2, 244 14	47 13	2, 172	(²)	(2)		(2)	25 (²)		1
Brazil British Guiana Surinam Europe:	2, 435 3, 074	2, 169 3, 012	1,752 433	353 2, 556	6	(2)		19	27 22	7	3 5 1
Austria France Germany.	19 1, 470	8 346			204			124	7		11
West Greece Hungary	4 492 1,221	(2) 471 545			238	<u></u>	119 545	44	(2) 57		13
Italy Rumania Spain	322 3 16 6	(4)									
U. S. S. R. Yugoslavia Other Europe.	3 980 779 3 29	(4) 648		-,	557	91			(2)		
Asia: India Indonesia Malaya	81 260 222	259 260			86	 				173 211	9 49
PakistanAfrica: French West AfricaGhanaMozambique.	485. 3 116 3	442 116 2	382		50			116	10		
Oceania: Australia.	8 16, 500	10, 548	2,627	5, 081	1, 149	91	664	303	148	391	94

¹ Includes Czechoslovakia and Poland.

Exports.

WORLD REVIEW

World production of bauxite in 1957 increased 9 percent over 1956 and continued the upward trend begun in 1951. Jamaica became the world's leading producer; and Haiti—a new source—began commercial shipments to the United States in the second quarter of 1957.

Increased interest was shown in locating alumina plants in the tropics close to the sources of bauxite. At the end of 1957 a total of 1,815,000 annual short tons of alumina capacity was anticipated in French Africa, British Guiana, and Jamaica. This figure included completed plants, those under construction, and those for which firm financial commitments had been made. Plans for two additional plants in Surinam and Australia also were announced.

² Less than 500 tons.

³ Estimate.

⁴ Data not available.

The countries that produced more than 50,000 tons of bauxite during 1957 and showed greater than a 5-percent change in production from the previous year were:

Country:	Increase, percent	Country:	Decrease, percent
Jamaica Ghana		Indonesia United States	
Malaya	23	French West Africa	19
Brazil France	15	Hungary	10
Greece U. S. S. R			
Haiti—shipped for the	he first time.		

The Free World output was about 16.6 million tons, of which 60 percent was produced in Jamaica, Surinam, and British Guiana.

TABLE 17.—Relationship of world production of bauxite and aluminum, 1948–52 (average) and 1953–57, in million long tons

Commodity	1948-52 (average)	1953	1954	1955	1956	1957
Bauxite	9. 8	13. 6	1 15. 5	1 16. 5	1 17. 2	18.7
	1. 6	2. 4	1 2. 8	3. 1	3. 3	3.3
	6. 1	5. 7	1 5. 5	5. 3	1 5. 2	5.7

¹ Revised figure.

NORTH AMERICA

Canada.—Canadian Alumina Corp. investigated the possibility of producing alumina from an aluminous shale near Chedabucto Bay, Nova Scotia. An acid-leach process was being developed by Federated Consultants.

Imports of bauxite and alumina totaled 2,540,000 short tons in 1957, 2,269,000 tons of which were for the aluminum industry. This

was 2 percent less than the 2,590,000 tons imported in 1956.

Dominican Republic.—A new contract for exploration and exploitation of bauxite was signed on February 7, 1957, between Alcoa Exploration Co. and the Government of the Dominican Republic. This contract supplemented and modified the original concession obtained in 1945. The revised concession was for 50 years, with an option for a 20-year extension. Construction of a bauxite-loading dock at Cabo Rojo and a road leading to the bauxite deposits to the north was continued.

Haiti.—Reynolds Haitian Mines, Inc., began commercial shipments of bauxite in April 1957 from a concession near Miragone. Shipments came from the mine and from a 250,000-ton stockpile that had been built up during the development and construction period. The ore went to the Reynolds Metals Co. alumina plant at La Quinta, Tex.

An article describing development of the mine stated that the ore was mined by 4 yard shovels, then trucked 8 miles downhill to the drying plant and pier, which were 3,000 feet lower in elevation than the mine. The ore, while similar geologically to that of Jamaica, was more uniform and easier to mine.⁸

Northern Miner (Toronto), Canadian Alumina Tests New Process: Vol. 43, No. 44, Jan. 23, 1958, p. 5.
 Engineering and Mining Journal, Haitian Bauxite—From Mine to Ship: Vol. 158, No. 9, September 1957, pp. 93-96.

TABLE 18.—World production of bauxite, by countries, 1948-52 (average) and 1953-57, in long tons 1

[Compiled by Pearl J. Thompson and Berenice B. Mitchell]

Country	1948-52 (average)	1953	1954	1955	1956	1957
North America (dried equivalent of crude ore):					4.	262, 946
Haiti Jamaica United States	² 340, 222 1, 491, 238	1, 154, 172 1, 579, 739	2, 043, 786 1, 994, 896	2, 645, 345 1, 788, 341	3, 141, 330 1, 743, 344	4, 643, 220 1, 416, 172
Total	1, 831, 460	2, 733, 911	4, 038, 682	4, 433, 686	4, 884, 674	6, 322, 338
South America: Brazil British Guiana Surinam	16, 319 1, 920, 996 2, 417, 411	18, 524 2, 274, 598 3, 222, 630	27, 182 2, 309, 934 3, 308, 914	44, 359 2, 435, 298 3, 073, 688	55, 089 4 2, 107, 657 3, 429, 972	³ 64, 000 ⁴ 2, 021, 207 3, 323, 677
Total	4, 354, 726	5, 515, 752	5, 646, 030	5, 553, 345	5, 592, 718	5, 408, 884
Europe:	7, 694 917, 525 4, 194 121, 869 698, 592 167, 612 4, 500 10, 478 738, 000 355, 964	17, 932 1, 137, 864 7, 724 323, 058 1, 372, 000 267, 100 14, 300 5, 106 890, 000 470, 016	16, 993 1, 266, 959 4, 153 347, 937 1, 240, 000 289, 454 14, 800 5, 644 980, 000 675, 846	18, 836 1, 470, 013 3, 814 492, 273 1, 221, 000 322, 005 15, 800 6, 290 980, 000 778, 527	21, 744 1, 442, 655 4, 817 688, 947 1, 083, 000 271, 427 15, 800 6, 921 1, 080, 000 867, 500	21, 972 1, 653, 473 3 4, 900 3 787, 900 256, 987 15, 800 7, 275 1, 230, 900 874, 215
Asia: India Indonesia Malaya Pakistan Taiwan (Quemoy)	51, 930 343, 835 4, 359	70, 848 147, 191 152, 171 7, 430	74, 748 170, 504 165, 622	81, 173 259, 512 222, 164 1, 025	91, 225 298, 511 264, 445 3, 000	96, 072 236, 703 325, 631 3, 315
Total	401, 679	377, 640	410, 874	303, 8/4	007, 101	001, 721
Africa: French West Africa Ghana (exports) Mozambique	\$25, 637 118, 923 2, 251	321, 384 115, 076 3, 058	424, 195 163, 517 2, 398	485, 216 116, 285 2, 611	444, 371 137, 873 3, 705	360, 221 185, 404 4, 963
Total	146, 811	439, 518	590, 110	604, 112	585, 949	550, 588
Oceania: Australia	5, 345	4,052	5, 487	7, 563	10, 329	6, 296
World total (estimate)	9, 800, 000	13, 600, 000	15, 500, 000	16, 500, 000	17, 200, 000	18, 700, 000

¹ This table incorporates a number of revisions of data published in previous Bauxite chapters. Data do not add to totals shown because of rounding where estimated figures are included in detail.

² Average for 1 year only, as 1952 was the first year of commercial production.

³ Estimate.

Exports.Average for 1949-52.

⁴⁸⁶²²¹⁻⁻⁵⁸⁻⁻⁻⁻¹⁷

The original concession, issued in February 1944, gives Reynolds Mining Corp. the right to explore and to exploit ores containing aluminum in six areas—Île de la Tortue, Region de Genavives, Île de la Gonave, Region de Carillon, Presque Île du Sud, and Region de Saint Mare. In 1952, after long exploratory work, the company relinquished the rights to all but the Ste. Croix area of Presque Île du Sud.

Jamaica.—Jamaica became the leading bauxite producer of the world in 1957 with a mined output of 4,643,000 long dry tons. First production was in 1952; by 1954 this had grown to 2 million tons per year and changes in progress in 1957 would result in a production capacity of 8 million tons of bauxite a year. Several articles 9 described the operations of the principal companies: Kaiser Bauxite Co., Reynolds Jamaica Mines, Ltd., and Alumina Jamaica, Ltd. Reynolds completed its expansion program for doubling production, and Kaiser's north coast project was in its initial stage.

Alumina production more than doubled in comparison with 1956 when 436,000 short tons was exported in 1957. Alumina Jamaica, Ltd., completed construction in March which raised the daily capacity of the Kirkvine alumina plant to 1,500 short tons and was building

a new 670-ton-per-day alumina plant at Ewarton.

Harvey Aluminum Co. and American Metal Climax, Inc., procured licenses to prospect for bauxite on the island.

Estimates of bauxite reserves were revised upward and were placed

at between 500 and 600 million tons. 10

Reynolds and Kaiser signed new contracts with the Government establishing bauxite royalties and taxes for 25 years and guaranteeing the companies mining rights for 99 years. Under the agreement the companies were to pay a royalty dependent on the quantity of ore An output of under 1 million long dry tons would pay 4 produced. shillings (1 shilling=\$0.14) per ton; production under 2 million tons would pay 3 shillings per ton; and all production in excess of 2 million tons would pay 2 shillings per ton. In addition, the assumed profit per ton of bauxite, which was the basis for income tax, was considerably increased. Half of both income taxes and royalties were to vary with the price of aluminum pig on the New York market. No export duty was to be imposed for 25 years, and no further taxes were to be levied on bauxite-mining operations. An important part of the contracts related to soil restoration of mined lands, and the Government stated that the companies were more than fulfilling their agricultural

Panama.—The first bauxite concession granted in Panama was obtained by Kaiser Exploration Co., subsidiary of Kaiser Aluminum & Chemical Corp. The company was given exploration and mining rights in a large area of western Panama near the Costa Rican border. Preliminary studies by the company indicated that the deposits were extensive.

[•] Engineering and Mining Journal, Mining in Jamaica Means More and More Bauxite: Vol. 158, No. 9, September 1957, p. 97; Reynolds Jamaica—Still Growing, p. 98; Kaiser Operations in Jamaica, p. 99; Alumina Jamaica—the Plant That Wouldn't Stop Growing, pp. 100–105.

10 Metal Bulletin (London), Jamaican Bauxite Reserves: No. 4217, Aug. 9, 1957, p. 29.

11 American Metal Market, Reynolds Signs Long-Term Bauxite Contract With Jamaica Government: Vol. 64, No. 57, Mar. 23, 1957, pp. 1, 5.

SOUTH AMERICA

British Guiana.—The 4-month strike at the Arvida, Quebec, aluminum smelter of Aluminium, Ltd., resulted in reduced bauxite shipments to Canada. Exports of bauxite registered a 4-percent decrease in 1957 as shown in the following table:

TABLE 19.—Bauxite exported from British Guiana, 1956-57 1

	19	56	1957		
Country of destination	Long tons	Value BW\$ 2	Long tons	Value BW\$ 2	
Canada United States United Kindgom Other countries	1, 585, 230 440, 527 19, 330 62, 556	18, 230, 828 8, 641, 709 544, 501 2, 118, 061	1, 469, 530 450, 658 21, 590 79, 416	20, 053, 383 6, 099, 945 573, 698 2, 792, 202	
Total	2, 107, 643	29, 535, 099	2, 021, 194	29, 519, 228	

 $^{^1}$ Includes exports of calcined bauxite as follows: 1956—317,878 tons valued at BW\$11,146,382 and 1957—287,130 tons valued at BW\$9,946,478. 2 1 BW\$= US\$0.58.

Demerara Bauxite Co. produced 1,976,880 long dry tons of bauxite, of which 1,362,430 tons was from the Mackenzie mines and 614,450 tons from the Ituni mines. The company acquired mining rights to the Christianburg properties of Plantation Bauxite Co., Ltd., but no production was reported during the year.

Progress was made on the construction of Demerara's new 250,000ton alumina plant at Mackenzie. The work was on schedule until November, when the adverse aluminum market caused the company to reduce the rate of construction so that completion would be in

1960 instead of 1959.

Reynolds Metals Co. continued exploration during the year and increased its bauxite exports to the United States.

Harvey Aluminum Co., after completing exploratory work on its

1-million-acre concession, decided to postpone mining operations.

The rate of royalty on bauxite processed into alumina was raised from \$0.02 to \$0.20 per ton. The export duty on calcined bauxite was reduced from \$1 to \$0.45 per ton—the rate that applied to dried bauxite.

Surinam.—Production and shipments of bauxite declined 3 percent in 1957 after reaching a record high of 3.4 million tons in 1956.

Mining area:	Shipments			
Surinam Aluminum Co. (Alcoa): Moengo	1956, long tons 2, 104, 441	1957, long tons 1, 968, 039		
	3, 427, 494	3, 326, 526		

Shipments of bauxite to the United States totaled 2,983,000 tons, of which 88,000 tons was calcined ore and 80,000 tons Chemical-grade ore. Exports to Canada were 316,000 tons of Metal-grade ore and to the Netherlands 27,000 tons of calcined ore.

The Surinam Aluminum Co.—a subsidiary of Alcoa—was organized to replace the Surinam Bauxite Co. It took over the mines and concessions of the former company and, in addition, was to build and operate the aluminum-reduction facilities that were to be constructed in conformity with the Letter of Intent signed by Alcoa and the Government of Surinam. Cutbacks in the second half of the year resulted in a decrease of 325,000 tons in shipments compared with 1956. Total shipments of 2,527,000 tons included 115,700 tons of calcined ore and 80,400 tons of Chemical-grade ore. The suction dredge built for the company in the Netherlands was put in operation removing overburden at the Ororibo deposit. A new jig plant was added to the company dense-medium concentrator at Rorac, which treated ferruginous bauxite.

The Billiton Co. increased shipments 39 percent in 1957. The increase resulted from deliveries made under the 1956 contract with Olin Revere Metals Corp. Repairs to the wharf at the Trinidad Transfer Station resulted in a loss of about 20,000 tons in August shipments of bauxite. A million-dollar contract for the design and manufacture of a 2-mile conveyor system to handle overburden from a new bauxite deposit was concluded between the Billiton Co. and Hewitt-Robins, a Netherland subsidiary of Hewitt-Robins, Inc., of Buffalo, N. Y.

Four companies had requests pending at the end of the year for new exploration permits. Alcoa, under the agreement with the Surinam Government for the Brokopondo hydroelectric project, was to receive an exploration permit covering 500,000 hectares, from which 20,000 hectares was to be selected for exploitation over a 20-year period. Billiton Co. has had an exploration request pending since 1956 for an area in the Saramacca district. Reynolds Aluminum Co. asked for 20,600 hectares on the Maretokka River (5° to 6° N., 56° to 57° W.). Petromina-Surinam, following organization of a local company, asked for 49,500 hectares in the Kabelebo area of the Nickeric district between 4° to 5° N., 57° to 58° W.

EUROPE

France.—Bauxite production in 1957 was 1,653,000 long tons, a 15-percent increase over 1956. Société Péchiney supplied 50 percent of the output, and Société des Bauxites de France, Union des Bauxites, Société des Bauxites du Midi, and Société Ugine the remaining 50 percent.

During the year 23,000 long tons of bauxite was imported for refractory and abrasive use. Exports of 320,000 tons of bauxite went principally to West Germany, 172,000 tons; and the United Kingdom, 127,000 tons.

Exports of alumina reached 114,000 long tons compared with 96,000 tons in 1956. Shipments to French Cameroon increased from 1,800 to 24,000 tons, and to Spain from 4,000 to 19,000 tons. Other shipments included 46,000 tons to Switzerland, 15,000 to Norway, 9,000 to Canada, and the remainder to other countries.

Germany, West.—Imports of bauxite into West Germany decreased 4 percent in 1957 and were from the following countries:

Country of origin:	1956, long tons 1957, long tons
Austria	4, 608 6, 540
British Guiana	16, 413 21, 024
France	203, 081 177, 686
French Guiana	19,140
French West Africa	77, 310 86, 742
Ghana	32, 849
Greece	271, 617 268, 124
Hungary	13, 780
Indonesia	133, 478 116, 854
Surinam	32, 375 16, 218
Yugoslavia	534, 302 491, 382
YugoslaviaOther countries	4, 449
Total quantity	1, 291, 413 1, 236, 571
Value, DM 1	69, 829, 000 70, 017, 000
¹ 1 DM—US\$0.238.	

Alumina exports in 1957 totaled 85,000 short tons, of which 68,000 tons went to Austria, 5,000 to Spain, 5,000 to Norway, 4,000 to Czechoslovakia, 1,000 to Switzerland, and 2,000 to other countries.

An article briefly reviewing the aluminum industry in Germany stated that alumina capacity at the end of 1957 was about 550,000

short tons.12

Greece.—The Greek Institute of Geology and Subsurface Research, as a result of investigations, estimated bauxite reserves at 84 million

Exports of bauxite totaled 769,000 long tons, 269,000 of which went to West Germany, 394,000 to the U.S.S.R., 43,000 to the United Kingdom, 34,000 to Norway, and the remainder to other countries. Under a trade agreement signed in January 1957, Greece was to export about 394,000 long tons of bauxite to the Soviet Union.

Hungary.—Estimated production showed a decline for the fourth year from the high of 1953. Deposits of bauxite were reported at

Varoslod and Sumeg, in western Hungary.

Poland.—Construction of a large alumina plant in Gorka, Cracow,

to use an ore from Lower Silesia was reported.¹³

U. S. S. R.—Three large deposits of nepheline syenite were reported near Krasnoyarsk, eastern Siberia. The U.S.S.R. adapted the limesoda sinter process to this type of ore and operated an alumina plant that used the nepheline syenite tailings of apatite mines of the Kola Peninsula as raw material.14

Bauxite was first discovered in the Ukraine near the village of Shestunia in Dneprotrovsk region. The deposits were reported to extend 12 miles and to lie about 200 feet deep. Reserves were estimated to suffice to supply the Zaporozhye aluminum plant for 40 years.15 It was estimated that this would be equivalent to 20 million tons.

Yugoslavia.—The agreement between the Government of Yugoslavia, the Soviet Union, and the German Democratic Republic, originally signed in August 1956, was abrogated in April 1957 and then reinstated later in the year. It included development of bauxite de-

Light Metals (London), The Industry in the World Today: Vol. 20, No. 236, November 1957, pp. 356-357.
 Metal Bulletin (London), Polish Alumina Plant: No. 4237, Oct. 18, 1957, p. 17.
 Polutoff, Von N., Die Gewinning von Aluminium aus Nephelin [The Production of Aluminium From Nepheline]: Aluminium, vol. 34, No. 4, April 1958, pp. 102-103.
 American Metal Market, Bauxite Located in Ukraine: Vol. 64, No. 242, Dec. 18, 1957, p. 10.

posits in Montenegro to support the proposed 55,000-short-ton alu-Two articles describing the bauxite deposits in Yugominum plant.

slavia were published.16

The output of bauxite in the Mostar district of Herzegovina Province in 1957 was about 241,000 long tons. Preparations were made to expand the production capacity of the district from 300,000 to 350,000 tons a year.¹⁷

ASIA

Borneo.—Semetan Bauxite Co. completed preparation for the mining of bauxite in the Luneu district of western Sarawak. Mining was to begin in 1958 at the rate of 175,000 tons a year. The bauxite was to be shipped principally to Japan. The deposits, discovered in 1949, contained 2.5 million tons of proved ore.

Indonesia.—Exports of bauxite declined 19 percent in 1957 when compared with those of 1956. Shipments to Japan decreased 45 percent to 97,000 long tons and those to Europe decreased 10 percent to 102,000 tons. Exports to Australia, however, increased 170 per-

cent to 50,000 tons.

Malaya.—The production of bauxite in 1957 increased 23 percent over 1956, due principally to increased demand from Japan. Of the 326,000 long tons produced, about 50,000 tons came from the South Asia Bauxite Co. (SEBA) property and the remainder from the Ramunia Bauxite Company deposits. Exports of bauxite during 1957 totaled 341,000 tons, 307,000 tons of which went to Japan and 33,000 tons to Taiwan.

AFRICA

French Africa.—A new company, Cie. Internationale pour la Production d'Alumine, was formed to develop the bauxite deposits of Fria, French Guinea. The project was being undertaken by the French companies, Société Péchiney and Société Ugine; the American company, Olin-Mathieson Chemical Corp.; the British Aluminium, Ltd.; and the Swiss Aluminium Industrie-Aktiengesellschaft. An alumina plant capable of producing 530,000 short tons a year was to be built to process the bauxite.18

The proposed alumina plant to be built on the Boké concession by Les Bauxites du Midi was to produce 240,000 short tons of alumina a year. Over 3 million tons of bauxite was expected from the Boké and Fria concessions by 1961; about half of it was to be shipped to Canada and the remainder processed in French Africa. It was estimated that a total of 200 to 300 million tons of bauxite has been

developed in the Boké and Fria districts.19

Exploration for bauxite in western Cameroon near the British Cameroon border, begun in 1956 by the Direction of Mines, disclosed only limited deposits near Foumban, but the area around Fongo-Tongo yielded samples averaging 45-50 percent alumina and was

<sup>Maruŝić, Richard, The Bauxite Deposits of Montenegro: Berg-u. hüttenmännische, Jahrbuch der Montanischen Hochschule, Leoben, vol. 102, June 1957, pp. 169-180.
Slobodan, Vučetić, Bauxitbergbau in Jugoslawien [Bauxite Industry in Yugoslavia]: Glückauf, Essen, vol. 93, No. 25/26, June 22, 1957, pp. 752-757.
Bureau of Mines, Mineral Trade Notes: Vol. 46, No. 3, March 1958, pp. 3-4.
Moyal, Maurice, Canadian Interest in Aluminum Developments in French Africa: Canadian Min. Jour., vol. 78, No. 7, July 1957, pp. 94-96.
Mining Journal (London), Aluminium in French Africa: Vol. 249, No. 6376, Nov. 1, 1957, pp. 516-517.</sup>

BAUXITE 255

believed to be extensive. A reserve of 30 million tons of bauxite had been indicated in the area, and prospecting in 1958 was to be expanded. Should enough ore be found, plans for establishing an alumina plant at Nkongsamba was to be considered.

Bauxite deposits estimated to contain 5 million tons of 40 percent alumina ore were reported near Dschang about 170 miles from Edea, in French Cameroon. A permit was issued for further exploration.

Société Péchiney applied for prospecting permits over a large area in the Sudan after reports indicated that there were significant bauxite reserves in the area.

OCEANIA

Australia.—Development of Australian bauxite deposits continued. The reserves of economically usable bauxite could exceed 200 million tons. The deposits on Cape York were composed of loose pisolitic gravels mixed with sand grains. In place the ore contained less than 50 percent alumina, but the gravel could be readily concentrated by washing to a commercial grade.

The ore bodies discovered on the Commonwealth Aluminum Corporation Pty., Ltd., concession on the west side of the Cape York Peninsula cover 2 areas totaling about 160 square miles, 1 near Pera Head and 1 near Weipa. The ore is 8 to 25 feet thick with up to 2 feet of overburden. At Pera Head the bauxite appears as a red strip 8 to 20 feet thick and extends 15 miles along the coastal cliffs.

Aluminium Laboratories, Ltd., prospected a belt inland from the original Commonwealth concession on the coast and another area on the western coast of the Gulf of Carpenteria in Arnhem Land, Northern Territory. Rio Tinto Australian Exploration Pty., Ltd., prospected a concession along the north coast of Arnhem Land, and the Reynolds Pacific Mines Pty., Ltd., explored a 6-million-acre concession inland and parallel to the north coast of Arnhem Land.

An agreement was entered into between the Queensland Government and Commonwealth Aluminium Corporation Pty., Ltd., for the mining lease of its prospecting concession covering 2,270 square miles on the west coast of the Cape York Peninsula and a prospecting option on 500 square miles on the east coast. The area was to be reduced over a 20-year period to a lease of 1,000 square miles. Export of bauxite was to be subject to Government approval but would be permitted in the early stages. The company was to build a harbor, town, and alumina plant. An aluminum-reduction plant may be constructed after 20 years if economic conditions warrant.

Fiji Islands.—Aluminium Laboratories, Ltd., subsidiary of Aluminum Company of Canada, was examining the Fiji Islands for possible bauxite deposits.

TECHNOLOGY

The Bureau of Mines published a report of investigations describing the successful beneficiation of high-silica, low-iron bauxite to Chemical grade.²¹ Crude bauxite was calcined at a low temperature, crushed

²⁹ The Australian Mineral Industry, Quarterly Review, Background of Aluminum: Pt. 1, vol. 10, No. 2, November 1957, p. 22.

²¹ Calhoun, W. A., and Powell, H. E., Jr., Laboratory Investigation of Bauxite Ore from the Quapaw Deposit, Saline County, Ark.: Bureau of Mines Rept. of Investigations 5366, 1957, 11 pp.

to 20-mesh, and passed over a magnetic separator. The iron oxide content was reduced from 3 percent to about 2. A commercial plant using the process was under construction by American Cyanamid Co. It was estimated that the result of this research would extend the life

of the company reserve of Chemical-grade bauxite 20 years.

There was continued interest in low-grade bauxite and in various nonbauxitic materials as ores of aluminum. At the end of the year the Anaconda Aluminum Co. pilot plant for the production of alumina from clay was nearing completion. Clay from the company Latah County, Idaho, mines had been stockpiled at the plant in preparation

for the test program.

A mineralogical investigation was made of some of the laterites of the Hawaiian Islands.22 The hydrolhumic latosol soil occurring on beds of andesitic ash, found chiefly on the island of Hawaii, separates on drying into light- and dark-color aggregates. The lightcolor fraction was composed chiefly of gibbsite; the dark-color aggregates contain over 20 percent silica and 30 to 40 percent iron oxide. This fraction is strongly magnetic, suggesting a method of concentration.

A method of calcining aluminum hydrate in a fluidized bed to a substantially nonhygroscopic alumina was patented.23 Two or more fluidized beds were used in the process. Partly calcined alumina entrained in the gas from the upper chamber was removed from the gas stream by a dust collector and returned to the lowest or cooling

hearth.

It was claimed that the partly calcined fines mixed with the coarser particles of the cooling bed produce a product more uniformly calcined than the product from a rotary kiln. It also stated that reclamation of the fines without further heating resulted in a sub-

stantial heat saving.

Several articles 24 described the bauxite operations and methods of mining in Jamaica and Haiti and the production of alumina in Jamaica. The bauxite operations, which produced the equivalent of about 2 million long dry tons of bauxite in 1954, had increased to a production of about 5 million tons in 1957. Further expansion was underway at mines, transportation facilities, ports, and alumina facilities.

The future of the aluminum industry was examined 25 to determine the research objectives that should be stressed. It was concluded that the chief problems were development of the use of raw materials other than bauxite, development of new sources of energy, investigation of the Bayer process with respect to chemical reactions and the recovery of byproducts, efficiency of electrolytic cells and rectifiers, and recovery of secondary aluminum.

pp. 176-179.

²² Sherman, G. D., Formation of Gibbsite Aggregates in Latosols Developed on Volcanic Ash: Science, vol. 125, No. 3260, June 21, 1957, pp. 1243-1244.

²³ Smith, D. B., and others (assigned to Dorr-Oliver, Inc.), Process of Calcining Alumina Trihydrate in Fluidized Bed: U. S. Patent 2,799,558, July 16, 1957.

²⁴ Engineering and Mining Journal, Halitan Bauxite From Mine to Ship: Vol. 158, No. 9, September 1957, pp. 39-96; Mining in Jamaica Means More and More Bauxite, p. 97; Reynolds Jamaica—Still Growing, p. 98; Kaiser Operations in Jamacia, p. 99; Alumina Jamaica—The Plant That Wouldn't Stop Growing, pp. 100-105.

²⁵ Ginsberg, H., [The Expansion of Production as Governing Factors of Fundamental Research in the Field of the Chemical Technology of Light Metals] (in German): Metallurgia, vol. 11, No. 3, March 1955, pp. 176-179.

Beryllium

By Donald E. Eilertsen 1

ORLD beryl production achieved its second highest annual record in 1957, and domestic beryl production ended a 3-year downward trend. In the United States 521 tons of beryl was produced, 7,290 tons imported, and 4,309 tons consumed.

Two new plants to produce Reactor-grade beryllium for the Atomic Energy Commission (AEC) were readied, and there was growing interest in developing the use of beryllium for aircraft, rockets, and missiles.

TABLE 1.—Salient statistics of beryllium, 1948-52 (average) and 1953-57, in short tons

	1948–52 (a verage)	1953	1954	1955	1956	1957
United States:						
Beryl, approximately 10-12 per- cent BeO:						
Domestic mine shipments	426	751	669	500	460	521
Imports	4, 137	7, 998	5, 816	6,037	12, 371	7, 290
Exports	0.5		6.8	1.1	0.4	
Consumption	2,574	2, 661	1,948	1 3, 860	1 4, 341	4, 309
Industrial end-of-year stocks A verage value per ton, domes-	1,979	4, 987	4, 101	2, 888	1 4, 643	7, 270
Approximate price per unit	\$349.65	\$472.02	\$453.88	\$535.85	\$514.67	\$529.47
BeO, domestic	\$35	\$47	\$45	\$49	\$47	\$48
Price per ton, imported Approximate price per unit	\$304.98	\$469. 21	\$442.58	\$368.73	\$360.47	\$346. 5
BeO, imported	\$30	\$47	\$44	\$37	\$36	\$38
scrap: Exports World: Beryl production, 10-12 per-	81. 4	9. 7	3.8	16. 9	44. 4	104.4
cent BeO	6,000	8, 200	7, 700	8, 900	1 12, 900	11, 300

¹ Revised figure.

DOMESTIC PRODUCTION

Mine Production.—A total of 521 tons of beryl was produced from almost 200 operations in a dozen States. Individual shipments of beryl ranged from a few pounds to 165 tons, and the Boomer mine in Park County, Colo., was again the leading single producer.

South Dakota produced about 51 percent of the total domestic beryl; Colorado, 35 percent; New Mexico, 6 percent; and 9 other

States, 8 percent.

The Government bought 492 short dry tons of beryl under the domestic purchase program, and by the end of the year 1,695 tons of beryl had been bought on this program. The Government beryl-

¹ Commodity specialist.

purchase program terminates June 30, 1962, or when deliveries of

beryl total 4,500 short tons, whichever occurs first.

Beryl was eligible for Government aid under the Defense Mineral Exploration Administration (DMEA), but no contracts were made in 1957.

TABLE 2.—Beryl shipped from mines in the United States, 1948-52 (average) and 1953-57, by States, in short tons 1

State	1948-52 (average)	1953	1954	1955	1956	1957
Colorado New Hampshire New Mexico South Dakota Other 3	84	75	59	46	179	182
	73	57	12	20	(2)	4
	89	89	117	106	31	29
	150	392	337	294	195	268
	30	138	144	34	55	38
Total: Short tons	426	751	669	500	460	521
	\$148, 951	\$354, 487	\$303, 649	\$267, 927	\$236, 748	\$275, 855
	\$349. 65	\$472. 02	\$453. 88	\$535. 85	\$514. 67	\$529. 47

¹ Estimated 10-12 percent BeO.

² Included with "Other" to avoid disclosing individual company confidential data.

³ Arizona (1949-51) and 1953-57; Connecticut, 1953-57; Georgia, 1952-57; Idaho, 1953-54, 1957; Maine, 1948-57; Maryland, 1954, 1957; New Hampshire, 1956; New York, 1954; North Carolina, 1949, 1951, 1953-57; Virginia, 1954-56; and Wyoming, 1956-57.

Refinery Production.—Two new plants were built to process beryl to Reactor-grade beryllium for the AEC, 1 at Hazelton, Pa., by the Beryllium Corp. of Reading, Pa., and 1 near Elmore, Ohio, by the Brush Beryllium Co. of Cleveland, Ohio.

The Beryllium Corp. also processed beryl at Reading, Pa., where it produced beryllium metal, beryllium-copper master alloy, berylliumaluminum, beryllium-nickel, beryllium-iron, and beryllia. This corporation also had rolling, foundry, and fabricating facilities at Reading, Pa., a wire-manufacturing plant at Holyoke, Mass., and a precision

alloy casting plant at Exton, Pa.

The Brush Beryllium Co. used its company-owned equipment in a Government-owned plant at Luckey, Ohio, to reduce beryl to beryllium hydroxide. Part of the beryllium hydroxide was used at the Luckey plant to produce beryllium metal, and the balance of the beryllium hydroxide was diverted to its plant near Elmore, Ohio, to produce beryllium-copper master alloy, other beryllium-copper alloys, beryllium-aluminum, and beryllium-nickel. The Brush Beryllium Čo. also had rolling, foundry, and fabricating facilities near Elmore, Ohio, and a beryllium-powder metallurgical fabricating plant in Cleveland, Ohio, and it increased its rolling-mill and fabrication capabilities by acquiring the net assets of Penn Precision Products, Inc., Reading, Pa.

Four other consumers of beryl were: Beryl Ores Co., Arvada, Colo., which produced specialized materials for the ceramic industry; A. O. Smith Corp., Milwaukee, Wis., which produced ground-coat frit (glass) for ceramics; Lapp Insulator Co., LeRoy, N. Y., which used ground beryl as one of the materials for high-voltage electrical porcelain; and the Ceramic Division, Champion Spark Plug Co., Detroit, Mich., which used beryl as a minor constituent in special

ceramic compositions.

CONSUMPTION AND USES

A little less beryl was consumed in 1957 than in 1956, and almost all of it was imported. Production of beryllium metal, beryllium-copper master alloy, and beryllium-aluminum increased in 1957 over 1956. Beryllium-copper continued to be the principal product of the

two producers.

There was growing interest in the potential use of high-purity beryllium metal for aircraft structure material and in the use of beryllium precision-machined components and parts in ultrasensitive gyroscopes and related components for inertial guidance systems for advanced missiles. Beryllium was used in developing these applications and also for development purposes in connection

with nuclear energy.

Most of the beryllium produced was alloyed, in small amounts, with copper to improve resistance to fatigue, corrosion, heat, and wear. Beryllium-copper was used in various compression, extension, torsion, and power springs for meters, motor brushes, electrical switches and relays, fuse clips, and in balance weights. The alloy was also used in bearings, gears, diaphragms, dies, screw machine and welder parts, pump impellers, fuel injectors, and nonsparking tools. In the manufacture of slides for zippers, a tiny beryllium-copper bail was used to connect the body, which fits around the teeth, to the pull tab.²

Beryllium-nickel was used in surgical instruments.

Beryllium hardens aluminum, and some beryllium-aluminum was

used as aircraft structure material.

Beryllium oxide was used in crucibles and in crucible wash for coating graphite crucibles used in vacuum induction melting. Beryllia was also used for high-temperature electrical and thermal insulators and for development purposes in connection with nuclear energy.

STOCKS

End-of-year consumers stocks of beryl totaled 7,270 tons—the largest ever recorded—and stocks on hand of beryllium metal, beryllium-copper master alloy, beryllium-nickel, and beryllium-aluminum

were larger than in the preceding year.

Some imported beryl was bought for the national stockpile, and quantities of beryl and beryllium-copper were obtained and placed in the national stockpile as a result of the United States Department of Agriculture barter program in which the Commodity Credit Corporation exchanges surplus farm commodities for strategic materials.

PRICES AND SPECIFICATIONS

E&MJ Metal and Mineral Markets quoted domestic beryl, 10-12 percent BeO, from \$46-\$48 per short-ton unit of BeO, f. o. b. mine. Quotations for imported ore per short-ton unit, based on 10-12 percent BeO, c. i. f. United States ports, ranged from \$36-\$38 per

² Steel. Strengthens Zipper: Vol. 140, No. 23, June 10, 1957, pp. 180, 182.

unit early in the year and remained at \$36-\$37 after February 20.

Special ore was quoted at \$39 per unit of BeO.

Domestically produced beryl crystals cobbed free of waste was purchased for Government stockpiles. Shipments of beryl up to 500 pounds were purchased on visual inspection at a flat price of \$400 per short dry ton. Shipments accepted by sampling and chemical analysis were purchased on the basis of short-ton units (20 pounds) of contained BeO as follows: 8 to 8.9 percent, \$40; 9 to 9.9 percent, \$45;

and 10 percent and over, \$50.

The American Metal Market quoted the following prices: Beryllium metal, 97 percent lump or beads, f. o. b. Cleveland, Ohio, and Reading, Pa., \$71.50 per pound. Beryllium-copper master alloy was quoted f. o. b. Reading, Pa., or Elmore, Ohio, and Reading, Pa., or Detroit, Mich., after June 28 at \$43 per pound of contained beryllium, with the balance as copper at market price on date of shipment. Beryllium-aluminum was quoted f. o. b., Reading, Pa., and Detroit, Mich., at \$74.75 per pound of contained beryllium plus aluminum at market price, for 5-pound ingot. The price of beryllium-copper strip ranged from \$1.78 to \$1.91 per pound and remained steady at \$1.82 per pound after September 6. Beryllium-copper rod, bar, or wire was quoted at \$1.77-\$1.83 per pound until September 6 and then \$1.80 per pound for the remainder of the year.

The price of Reactor-grade beryllium scheduled for annual delivery (at the rate of 200,000 pounds) to the Atomic Energy Commission over a period of 5 years was \$47 per pound.

The Beryllium Corp. quoted the following prices per pound of beryllia: Grade 1, calcined, \$10; grade 2, high-fired, \$15; and grade 3, high-fired and ball-mill-ground, \$20.

FOREIGN TRADE 3

United States imports of beryl, totaling 7,290 short tons, were 41 percent lower than in 1956 but still greater than in any previous year except 1953. Shipments of beryl were received from 11 countries, and those from Brazil, Argentina, and India composed 68 percent of the total imported beryl. Imports of beryl far exceeded consumption.

Other imports for consumption included: 5,007 pounds of beryllium compounds valued at \$32,594 from France and 2,204 pounds of

beryllium compounds valued at \$4,960 from West Germany.

Exports were: 90 pounds of beryllium and beryllium alloys (except beryllium-copper) valued at \$6,900 and shipped to United Kingdom; 2,076 pounds of beryllium semifabricated forms valued at \$7,121 and shipped mostly to Canada; and 206,605 pounds of beryllium metal and alloys in crude form and scrap (except beryllium-copper) valued at \$246,101 and shipped mostly to Canada.

³ Figures on imports and exports compiled by Mae B. Price and Elsie D. Jackson, Division of Foreign Activities, Bureau of Mines, from records of the U. S. Department of Commerce, Bureau of the Census.

TABLE 3.—Beryllium ore (beryl concentrate) imported for consumption in the United States, 1954-57, by countries, in short tons

[Bureau of the Census]

Country	1954	1955	1956	1957	Total (short tons)	Per- cent of total
South America:			11 545			
Argentina Brazil Surinam	1,828 10	. 441 1,735	2, 330 2, 607	1, 545 2, 165	4, 316 8, 335 10	13. 7 26. 8 (1)
Total	1,838	2, 176	4, 937	3, 710	12, 661	40. 2
Europe: PortugalSweden	338 5	283	242	33	896 5	2. 8
Total	343	283	242	33	901	2. 8
Asia: Afghanistan Hong Kong			1		11	(1)
India Korea Pakistan	392 4	845 6	3, 360	1, 256	5, 853 10 84	(1) (1)
Total	407	851	3, 376	1, 325	5, 959	18. 9
Africa: Belgian CongoBritish East Africa (principally	11	128	992	222	1, 353	4. 3
Uganda) British Somaliland	23	93	264 29	56	436 29	1.4 .1
British Somaliland British West Africa, n. e. c. Madagascar Morocco	77	28	22 212 26	43	22 360 26	1. 1 1. 1
Mozambique	1, 295	620	1, 110	965	3, 990	12, 7
Rhodesia and Nyasaland, Federation	957	861	559	266	2, 643	8.4
Union of South Africa (includes South-West Africa)	865	994	602	670	3, 131	9. 9
Total	3, 228	2, 727	3, 816	2, 222	11, 993	38. 1
Grand total: Short tonsValue	5, 816 \$2, 574, 061	6, 037 \$2, 226, 068	12, 371 \$4, 459, 387	7, 290 \$2, 526, 068	31, 514	100.0

¹ Less than 0.1 percent.

WORLD REVIEW

World output of beryl was the second largest reported for any year. Of the 11,300 tons of beryl produced, the United States furnished less than 5 percent and imported nearly 65 percent. North America (United States) produced 5 percent; South America, 33 percent; Europe, 2 percent; Asia, 11 percent; Africa, 46 percent; and Australia, 3 percent.

Afghanistan.—Sixty tons of beryl produced from Chapa Dara

during the past 3 years was sold to an American firm.4

United Kingdom.—The plant of Murex, Ltd., at Milford Haven, a producer of beryllium hydroxide since 1949, was placed under the control of the Atomic Energy Authority. Plans were made to enlarge operations.⁵

⁴ Bureau of Mines, Mineral Trade Notes: Vol. 45, No. 1, July 1957, p. 6. ⁵ Chemical Trade Journal and Chemical Engineer (London), Beryllium for Nuclear Reactors: Vol. 141, No. 3682, Dec. 27, 1957, p. 1554.

At the invitation of the Atomic Energy Authority, a small quantity of beryllium metal was produced from a pilot plant operated by Consolidated Zinc, Ltd. Rhodesian beryl was used.6

Temporary exemption of beryllium oxide from United Kingdom Key Industry Duty was extended from August 1957 to February 19, 1958.⁷

TABLE 4.—World production of beryl, by countries, 1948-52 (average) and 1953-57, in short tons 2

[Compiled by Augusta W. Jann and Berenice B. Mitchell]

Country 1	1948-52 (aver- age)	1953	1954	1955	1956	1957
North America: United States (mine shipments)	426	751	669	500	460	521
South America: Argentina Brazil. Surinam	202 2, 325	683 2, 126 2	705 1, 581 10	1, 488 1, 954	1,722 2,321	1, 519 8 2, 165
Total	2, 527	2, 811	2, 296	3, 442	4,043	3, 684
Europe: 1 Portugal	4 72	414	368	337	244	186
Asia: Afghanistan India Korea, Republic of	6 230	3 200 4	30 3 392 3 4	33 3 845 3 6	³ 3, 360	\$ 30 \$ 1, 256 (7)
Total	233	215	426	884	3,390	1, 286
Africa: Belgian Congo (including Ruanda-Urundi) British Somaliland		8	50	362 19	1,860 17	6 1, 400
KenyaMadagascarMorocco: Southern Zone	320	516 36	648 17	316 2	169	6 168
Mozambique	188	276	1,002	960	950	1,871
Northern Rhodesia Southern Rhodesia South-West Africa Uganda Union of South Africa	4 814	1, 774 590 55 531	1, 077 564 77 203	21 965 472 110 137	13 606 454 98 133	572 385 78 711
Total	2, 545	3, 792	3, 639	3, 364	4,300	5, 193
Oceania: Australia	71	140	166	230	356	6 330
World total (estimate) 1	6,000	8, 200	7, 700	8, 900	12,900	11, 300
	1	1	ı		1	I

¹ In addition to the countries listed, beryl has been produced in a number of countries, including France, Norway, Tanganyika, and U. S. S. R., for which no production data are available; except for U. S. S. R., their aggregate output is not significant. An estimate for U. S. S. R. is included in the world total.

² This table incorporates a number of revisions of data published in previous Beryl chapters. Data do not add to totals shown owing to rounding where estimated figures are included in the detail.

TECHNOLOGY

In the interest of conserving mineral resources and finding adequate and dependable long-range supplies of beryl, the Bureau of Mines continued research on recovering low-grade beryl and other minerals from pegmatites and developing beryllium-extraction methods.

³ United States imports.

⁴ Average for 1949-52.

<sup>Average for 1950-52.
Estimate.</sup>

Less than 0.5 ton.

⁶ One year only, as 1952 was first year of commercial production.

<sup>Mining Journal (London), Beryllium in the U. K.: Vol. 248, No. 6347, Apr. 12, 1957, p. 463.
Metal Bulletin (London), Beryllium Oxide Duty Exemption: No. 4225, Sept. 6, 1957, p. 20.</sup>

263

Work on beryl flotation was conducted at experiment stations at Tuscaloosa, Ala., College Park, Md., Rapid City, S. Dak., and Salt Lake City, Utah, and research on extracting beryllium from various grades of beryl concentrate was done at Rapid City and Salt Lake City.

BERYLLIUM

At the Rapid City Experiment Station, 25 percent beryl concentrate was produced from pegmatite containing 2 pounds of beryl per ton of rock; and, on re-treatment using batch testing methods, 88- to 93-percent beryl concentrate was produced. Another test produced 88-percent beryl concentrate from rock having 2.5 percent beryl. The results obtained were good, but it was found that more research was needed to simplify and improve procedures.8

At the Bureau of Mines Southern Experiment Station in Tuscaloosa, Ala., pegmatite samples from the North Carolina tin-spodumene belt containing about 8 pounds of beryl per ton of rock were upgraded to 3 to 5 percent beryl concentrate. On re-treatment of this concentrate, 10-percent BeO beryl concentrate was made. More research was needed to improve procedures.

A report describing the Peerless pegmatite in South Dakota was

published.9

The use of beryllium oxide for rocket nozzles was studied.¹⁰

With proper control of hazards during beryllium-metal machining, recommended standards can be met satisfactorily. 11

The attack on beryllium in water at 600° F. was described, 12 and results of some studies of the ductility of beryllium were published.¹³

A new type of beryllium-copper strip free from surface oxides was

produced for use in electronic and other fields.14

A patent was issued for beryllium-copper alloys having approximately 1 percent beryllium, 2 percent zinc, 0.35 percent cobalt, 0.40 percent iron, 0.15 percent aluminum, 0.35 percent silicon, 0.40 percent tin, and the balance copper.15

A patent was also issued for production of beryllium fluoride. 16 Hambergite, a rare beryllium borate containing approximately 53 percent BeO, was discovered in California. Crystals up to 2 inches in length were found.17

Data were published on toxicity, fire hazards, storage, and handling

of many beryllium materials.18

^{**}Runke, S. M., and Riley, J. M., Progress Report on Pegmatite Investigations in South Dakota for Fiscal Years 1954-56: Bureau of Mines Rept. of Investigations 5339, 1957, 18 pp.

* Sheridan, Douglas M., Stephens, Hal G., Staatz, Mortimer H., and Norton, James J., Geology and Beryl Deposits of the Peerless Pegmatite, Pennington County, S. Dak.: Geol. Survey Prof. Paper 297-A, 1957, 47 pp.

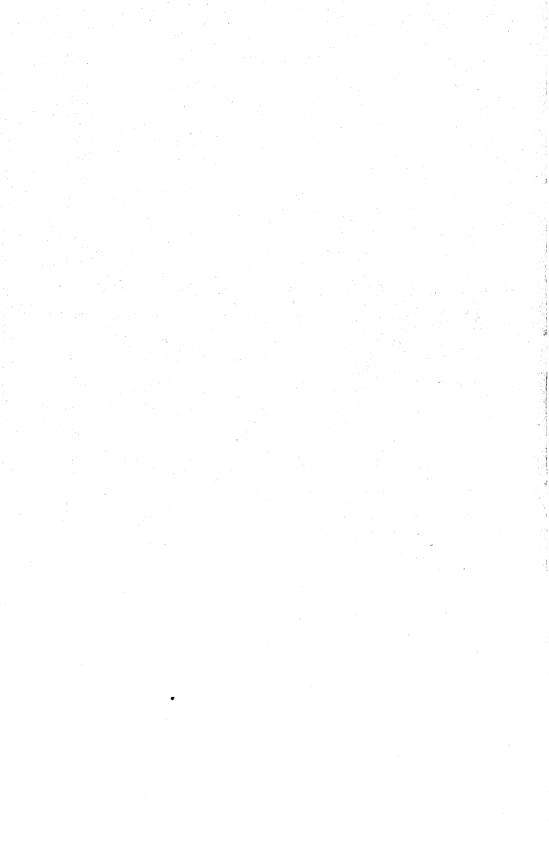
**Bielawski*, Chester A., Harkulick, Theodore M., and Long, Russell E., A Study of Hot Pressing of Beryllia Rocket Nozzles: Wright Air Development Center (WADC), Rept. 57-32, Astia Document AD 18278, Office of Tech. Services, U. S. Dept. of Commerce, May 1957, 50 pp.

**Mitchell, R. N., and Hyatt, E. C., Beryllium-Hazard Evaluation and Control Covering a Five-Year Study: Am. Ind. Hyg. Assoc. Quart., vol. 18, No. 3, September 1957, pp. 207-213.

**Eneppel, D. S., Corrosion of Beryllium in 600° F. Water: U. S. Atomic Energy Comm., NMI-1190, Office of Tech. Services, U. S. Dept. of Commerce, September 1957, 21 pp.

**Greenspan, Jacob, Ductility in Beryllium Related to Grain Orientation and Grain Size: U. S. Atomic Energy Comm., NMI-1174, Office of Tech. Services, U. S. Dept. of Commerce, August 1957, 39 pp.

**American Metal Market, American Silver Co. Making New Type of Beryllium-Copper: Vol. 64, No. 20, Jan. 29, 1957, p. 5.


**Bonachie, Matthew J. (assigned to Beryllium Corp., Reading, Pa.), Production of Beryllium Fluoride: U. S. Patent 2,804,372, Aug. 27, 1957.

**Morana, J. Simon, and Simmons, Gordon F. (assigned to Beryllium Corp., Reading, Pa.), Production of Beryllium Fluoride: U. S. Patent 2,804,372, Aug. 27, 1957.

**Morana Information Service, State of California, Rare Mineral Found in California; Vol. 10, No. 9, Sept. 1, 1957, p. 5.

Sept. 1, 1957, p. 5.

18 Sax, N. Irving, Dangerous Properties of Industrial Materials: Reinhold Pub. Co., New York, N.Y., 1957, pp. 357-362.

Bismuth

By H. M. Callaway 1 and Edith den Hartog 2

OMESTIC production of bismuth in 1957 remained essentially the same as in 1956—a departure from the large annual increases recorded in 1955 and 1956. Consumption of bismuth metal by the domestic industry advanced slightly above the general business trend, registering a 7-percent gain over 1956.

Although the volume of imports was 8 percent below 1956, exports declined at a much greater rate, giving a large net increase in the

segment of domestic supply obtained from foreign refiners.

Deliveries to Government account, although somewhat less than in 1956, were large enough to lessen considerably the effects of oversupply and to maintain a degree of stability in business transactions in bismuth.

TABLE 1.—Salient statistics of bismuth metal, 1948-52 (average) and 1953-57, in pounds

	1948-52 (average)	1953	1954	1955	1956	1957
United States: Consumption Imports Exports ²	(1) 569, 000 226, 800	1, 568, 000 641, 400 127, 000	1, 439, 000 644, 300 137, 900	1, 548, 000 595, 600 203, 700	1, 513, 000 918, 200 287, 100	1, 615, 200 847, 900 158, 400
Consumers' and dealers' stocks, Dec. 31	(¹) \$2, 10	166, 700 \$2. 25	252, 800 \$2. 25	234, 300 \$2. 25	229, 000 \$2. 25	348, 400 \$2. 25
World: Production	3, 900, 000	4, 600, 000	3, 700, 000	4, 200, 000	5, 300, 000	4,800,000

Data not available.
 Metal and alloys.

DOMESTIC PRODUCTION

Virtually the entire domestic output of bismuth metal in 1957 was a byproduct of lead refineries and came from bullion that contained bismuth as an impurity. The bullion, in turn, was derived from processing both domestic and foreign ores. After increasing 24 and 38 percent, respectively, in 1955 and 1956, production in 1957 remained virtually unchanged.

Companies reporting production in 1957 were American Smelting and Refining Co., The Anaconda Co., and United States Smelting Lead Refinery, Inc. (a subsidiary of United States Smelting, Refining

& Mining Co.).
Secondary bismuth accounted for more than 60,000 pounds of the consumer supply in 1957, according to industrial sources.

Commodity specialist.
 Statistical assistant.

CONSUMPTION AND USES

In 1957 users of bismuth in the United States consumed 1.6 million pounds of metal-7 percent more than in 1956. The increase was due to expanded uses in fusible bismuth alloys and in experimental devices. Bismuth consumed in alloy fabrication composed 64 percent of the total: most of the remainder was consumed in pharmaceutical compounds. Because consumer items have been regrouped and uses reclassified, the components of consumption shown in table 2 are not directly comparable with those published in earlier years.

STOCKS

Stocks of metallic bismuth held by consumers and dealers rose 52 percent in 1957 to 348,400 pounds. This quantity is the largest recorded in the 7 years that the Bureau of Mines has assembled data on bismuth stocks.

Stocks at domestic refineries increased very little during 1957.

TABLE 2.—Bismuth metal consumed in the United States, 1954-57, by uses

	1954		19	55	1956		
Use	Pounds	Percent of total	Pounds	Percent of total	Pounds	Percent of total	
Fuse metal	192, 300 139, 600 415, 000 42, 600 433, 500 216, 000	13 10 29 3 30 15	176, 000 122, 000 568, 000 26, 400 471, 000 184, 600	11 8 37 2 30 12	179, 600 152, 800 601, 300 13, 000 425, 200 141, 100	1: 14 4: 22	
Total	1, 439, 000	100	1, 548, 000	100	1, 513, 000	10	

	19	57
Use ²	Pounds	Percent of total
Fusible alloys. Other alloys. Pharmaceuticals. Experimental uses. Other uses.	335, 500 688, 000 402, 300 83, 600 105, 800	21 43 25 5 6
Total	1, 615, 200	100

PRICES

In 1957 the E&MJ Metal and Mineral Markets continued to quote the New York price for refined bismuth metal at \$2.25 per pound, in ton lots—a price that has remained unchanged since September 1950. The Metal Bulletin (London) quotation also remained unchanged at As commercial bismuth ore is not produced in this \$2.24 per pound. country, ore is not quoted on the domestic market. However, the Metal Bulletin (London) quoted \$1.19 per pound of contained bismuth for concentrate having a minimum of 65 percent bismuth. Bismuth concentrate of lower grade commanded proportionally lower prices. Prices of bismuth chemicals and compounds, as listed in Oil,

Includes industrial chemicals.
 The 1957 consumption components have been reclassified, and individual totals therefore are not directly comparable with those of preceding years.

Paint and Drug Reporter, were recorded in the 1955 Minerals Year-book chapter on Bismuth and remained unchanged in 1956 and 1957.

FOREIGN TRADE³

Imports of refined metal totaled 848,000 pounds in 1957, a decrease of 8 percent from the alltime peak of 1956 but 118,000 pounds above average annual imports for 1953–57. Peru was by far the principal contributor, furnishing 66 percent of the total, and Mexico was second, furnishing 25 percent. In order of their contribution Yugoslavia,

Canada, and Netherlands supplied the remaining 9 percent.

Substantial quantities of bismuth also entered the United States as a minor constituent of ore concentrates, base-metal bullion, and impure bismuth-lead bars. The economically recoverable bismuth in the concentrates and bullion eventually entered the market as domestically refined bismuth. The greater portion of the bismuth-lead bars was consumed directly in making alloys and is not included in Bureau of Mines figures. This category of imported bismuth was estimated by industrial sources to have been 200,000 pounds in 1957.

TABLE 3.—Metallic bismuth imported ¹ into the United States, 1954-57, in pounds
[Bureau of the Census]

Country	1954	1955	1956	1957
North America: Canada Mexico Total South America: Peru	34, 723 63, 866 98, 589 400, 278	54, 788 123, 722 178, 510 326, 415	50, 096 122, 115 172, 211 324, 824	21, 695 215, 475 237, 170 558, 737
Europe: Netherlands United Kingdom Yugoslavia	3, 307	17, 204	396, 866 24, 251	3, 461 48, 500
TotalAsia	78, 032 2 67, 358	83, 243 3 7, 398	421, 117	51, 961
Grand total	644, 257	595, 566	918, 152	847, 868

¹ Data are "general" imports; that is, they include bismuth imported for consumption plus material entering the country under bond. ² Republic of Korea. ³ Japan.

TABLE 4.—Bismuth metal and alloys exported from the United States, 1948-52 (average) and 1953-57

[Bureau of the Census]

Year	Gross weight, pounds	Value	Year	Gross weight, pounds	Value
1948-52 (average)	226, 791	\$493, 379	1955	203, 667	363, 186
	127, 010	300, 963	1956	287, 092	558, 601
	137, 856	185, 841	1957	158, 393	213, 313

The gross weight of bismuth metal and alloys exported from the United States in 1957 was 158,000 pounds. This figure is 55 percent below gross exports in 1956 but is considerably above average exports for earlier years. The decline in 1957 was due entirely to decreased shipments of refined metal.

³ Figures on imports and exports compiled by Mae B. Price and Elsie D. Jackson, Division of Foreign Activities, Bureau of Mines, from records of the U. S. Department of Commerce, Bureau of the Census.

WORLD REVIEW

Estimated world output of bismuth in 1957 was 4.8 million pounds a substantial decrease from that in 1956; however, the trend of world production in earlier years indicates continuing long-range expansion in output of bismuth.

Bolivia.—Mines in Bolivia produced 84,000 pounds of contained bismuth. Approximately 80 percent was from nationalized units. Exports through September were only 12,000 pounds, most of which

was shipped to United Kingdom refineries.

Canada.—Total production in 1957 was 277,000 pounds, of which approximately one-half was refined metal. Canada consumed about 100,000 pounds. Therefore, nearly 180,000 pounds was available for Net imports into the United States from Canada were 17,500 pounds of metal and an undetermined quantity of bismuth in intermediate metallurgical products.

TABLE 5.—World production of bismuth, by countries, 1948-52 (average) and 1953-57, in pounds 2 [Compiled by Augusta W. Jann and Berenice B. Mitchell]

Country 1	1948-52 (average)	1953	1954	1955	1956	1957
North America:						
Canada (metal) ³ Mexico ³	185, 489 606, 765	117, 366 739, 209	258, 675 795, 900	265, 896 773, 800	285, 861 1, 391, 100	276, 791 782, 600
South America: Argentina:						
Metal In ore 4	4 220 220	1. 340	10, 140	16, 300 20, 700	13, 700	13, 000
Bolivia Peru ³	5 67, 079 565, 500	5 138, 731 631, 990	5 101, 467 691, 726	⁵ 94, 600 734, 714	100, 000 634, 757	84, 000 757, 972
Europe:		'	24, 300	100	142, 200	
France (in ore)	36, 559	159, 000 56, 006	32, 985	69, 500 48, 234	6 139, 000	141, 100 6 210, 000
Sweden 4 Yugoslavia (metal)	26, 500 146, 315	132, 000 217, 047	110,000 241,842	145, 500 229, 516	88, 000 245, 039	120, 000 219, 805
Asia: China (in ore)	4 49, 600	(7)	(7)	(7)	(7)	(7)
Japan (metal) Korea, Republic of (in ore)	74, 075 139, 913	110, 159 529, 000	118, 610 254, 000	142, 364 287, 000	156, 859 401, 000	4 140, 000 240, 000
Africa: Belgian Congo (in ore)	1.041		2,000	70	,	1
Mozambique South-West Africa (in ore)	3, 247	7, 057 100	1, 905 2, 500	4, 145 2, 360	785 310	6, 800 670
Uganda	8, 851	1, 100	400	3, 100	660	4 1,000
Union of South Africa (in ore)	8, 314	1,600	1,080	228	360	145

United States production included in total; Bureau of Mines not at liberty to publish separately. Bismuth is believed to be produced also in Brazil and U. S. S. R. Production figures are not available for these countries, but estimates by senior author of chapter are included in total.
 This table incorporates a number of revisions of data published in previous Bismuth chapters. Data do not add to totals shown owing to rounding where estimated figures are included in the detail.
 Refined metal plus bismuth content of bullion exported.

880

3, 900, 000 4, 600, 000 3, 700, 000 4, 200, 000

1. 345

3,000

5, 150

5, 300, 000

(7)

4,800,000

3, 631

4 Estimate.

6 Estimated recoverable content of ore produced

Oceania: Australia (in ore)

World total (estimate) 12_____

8 Average for 1949-52.

Consolidated Mining & Smelting Co. of Canada, Trail, British Columbia, continued to be the leading Canadian producer. Most of the bismuth originated as a minor constituent of lead-zinc-silver ores mined at Kimberley, British Columbia. Molybdenite Corp. of Canada, Ltd., La Corne, Quebec, was the second largest producer,

⁵ Bismuth content in ore and bullion exported, excluding that in tin concentrates.

⁷ Data not available; estimate by senior author of chapter included in total.

redeeming a semirefined bismuth metal from its molybdenum-bismuth ore. A small part of the country's production was recovered in bullion by Deloro Smelting & Refining Co., Ltd., at Deloro, Ontario,

from silver-cobalt ores mined in northern Ontario.

France.—Estimated production of bismuth in France was 141,000 pounds in 1957. The entire output came from Mines et Usines de Salsigne at Meymac, France, where bismuth occurs in an ore body containing gold, tungsten, silver, and arsenic. A semirefined bismuth metal was produced at the company smelter. France is a net importer of bismuth, being one of the world's largest consumers. In addition to native production, France uses approximately 450,000 pounds annually. In 1957 the bulk of the French imports of bismuth came from the United Kingdom.

Japan.—Byproduct bismuth was derived from treating Japanese sulfide ores in excess of internal needs. Estimated production in

1957 was 140,000 pounds.

Korea, Republic of.—The Korea Tungsten Mining Co. produced byproduct bismuth from its San Dong tungsten mine. Estimated

output was 240,000 pounds in 1957.

Mexico.—Production of bismuth in Mexico is estimated at 783,000 pounds in 1957. American Smelting and Refining Co., which produced a semirefined high-bismuth bullion at Monterrey, was the leading producer. Cia. Metalúrgica Penoles, S. A., a subsidiary of American Metal-Climax, Inc., was the only other producer. Since 1953, this company has produced bismuth metal of high purity at its refinery at Penoles. Except for an insignificant quantity of bismuth consumed within the country, Mexico's bismuth output was exported to the United States and Great Britain. Minor quantities have gone to the Netherlands, Belgium, and other European countries in some years.

Peru.—Cerro de Pasco Corp. produced bismuth at its La Oroya smelter as a byproduct of processing base-metal ore containing minor quantities of bismuth. Virtually the entire output was shipped to the United States to Cerro de Pasco's fusible-alloy fabrication plant. Estimated Peruvian bismuth production in 1957 was 758,000 pounds,

of which approximately two-thirds was refined metal.

Spain.—Estimated production of bismuth in Spain was 210,000 pounds in 1957. Bismuth ores are mined from fissure veins in Córdoba Province. Reserves reportedly are sufficient to justify long-range development. German organizations have been granted investment concessions by the Spanish Government.

Sweden.—Bismuth was produced as a byproduct of sulfide ores from Boliden Co. mines. Sweden's production in 1957 was estimated at 120,000 pounds. Consumption within the country was about 20,000 pounds, leaving a balance of 100,000 pounds available for

export.

United Kingdom.—Having no commercial primary source of bismuth, the United Kingdom is a major importer of foreign ores and metal. It is also the distribution center for other European consumers. In 1957 United Kingdom industries consumed an estimated 680,000 pounds of bismuth metal. Bismuth is traded freely between the United Kingdom and the United States as world supply-and-demand schedules shift.

Yugoslavia.—Estimates of 1957 output of bismuth in Yugoslavia were 220,000 pounds. Less than 10 percent was consumed internally, approximately 170,000 pounds being distributed according to bilateral trade agreements between Yugoslavia and other European countries. Owing to Yugoslavia's preference for dollars, the remaining output entered the United States. Production was from the lead-zinc ores of the Trepca mines.

TECHNOLOGY

The Franklin Institute, under sponsorship of a group of refrigeration companies, reported "very satisfactory" results in experiments to develop practicable thermoelectric heat pumps using bismuth telluride junctions. Battelle Memorial Institute announced an experimental cooling unit that operated with a temperature difference of 85° F. between an inner chamber and outside heat-conducting fins and with a power input of 20 watts.4 The operation is based on the Peltier-Seebeck effect, a phenomenon that causes different temperatures to develop in two metals when an electric current is passed through their junction. Conversely, a current is generated in a circuit composed of such junctions having different temperatures. The effect is most pronounced in semiconductor materials. Bismuth telluride is the most widely recognized junction alloy. In previous experiments rapid backflow of heat generated by internal resistance at the junction has tended to nullify Peltier cooling. To overcome this problem, researchers have sought semiconductor materials having relatively high electrical and low thermal conductivity. Junction members are of different materials in which heat energy is transferred more readily through one member in the direction of current flow and through the

other member in the opposite direction. Babcock & Wilcox Co., under a contract signed in 1956 with the Atomic Energy Commission, was carrying forward engineering experiments preliminary to constructing a liquid-metal thermal reactor. The advantages of using a solution of uranium in molten bismuth as the fuel component of a nuclear reactor have long been recognized. The heat is transferred by the same mobile vehicle in which it is generated, thus allowing higher, more efficient operating temperatures in relatively simple, low-pressure systems. Also, an irradiated fertile material suspended in a bismuth blanket solution surrounding the core of the reactor may produce nuclear fuel as rapidly as it is exhausted in the core itself. Both the newly generated fuel and the fission products can be removed from the molten blanket and core, respectively, in a continuous-flow process. Bismuth's reasonably low neutron-capture cross section offers a minimum of interference to the neutron energy required to sustain fission in the core and transmute fertile material in the blanket. Its rather high density readily attenuates gamma radiation, reducing the mass of necessary external biological shielding, and its low melting point and low vapor pressure give a range of high temperatures for efficient operation at low pressure. An engineering problem that is being slowly solved is dynamic corrosion of the containing vessels by the bismuth fuel and blanket solutions. Some approaches to prevention are use of protective coatings, development of new alloys, and use of inhibiting additives.

⁴ Battelle Technical Review, vol. 6, No. 8, 1957, p. 13.

Boron

By Henry E. Stipp 1 and Annie L. Mattila 2

ORON received widespread attention in 1957 as one of the promising elements for use in high-energy fuels. Boron research also was heavily concentrated on developing high-energy fuels. growing use of boron in other fields, such as atomic energy, metallurgy, and hard and refractory materials, also was noteworthy. Expansion of industrial production capacity continued.

TABLE 1.—Salient statistics of boron minerals and compounds in the United States, 1948-52 (average) and 1953-57

	1948-52 (average)	1953	1954	1955	1956	1957
Sold or used by producers: Short tons: Gross weight 1 B ₂ O ₂ content. Walue Imports for consumption (refined): Pounds Value Exports: Short tons Apparent consumption: Short tons.	602, 577 175, 000 \$14, 537, 000 1, 490 \$631 127, 950 \$7, 857, 000 474, 630	715, 228 213, 300 \$17, 668, 000 624 \$216 139, 317 \$8, 972, 000 575, 911	205, 614	924, 496 293, 165 \$33, 816, 000 22, 046 \$2, 400 222, 588 \$14, 533, 000 701, 919	\$ 568, 087 2 282, 874 2 \$35, 722, 000 	597, 857 293, 483 \$40, 817, 000

Gross weights reported for 1948 to 1955 included a higher proportion of crude ore to finished products than in 1956 and 1957.

Revised figure.

DOMESTIC PRODUCTION

In the United States boron minerals were produced from the bedded deposits and natural brines of California. American Potash & Chemical Corp. recovered boron minerals from the brine of Searles Lake at Trona, Calif; Pacific Coast Borax Division of U. S. Borax & Chemical Corp. mined kernite and borax from a bedded deposit in the Kramer district near Boron, Calif., colemanite at Death Valley Junction, and ulexite from a deposit near Shoshone, Calif.; and West End Chemical Division of Stauffer Chemical Co. recovered boron minerals from the brine of Searles Lake at Westend, Calif.

The U.S. Borax & Chemical Corp. dedicated its \$20 million openpit mine and refinery at Boron, Calif., on November 13, 1957. resentatives from the United States Department of the Interior, the Air Force, the Navy, the State of California, and industry were among those participating in the ceremonies.

Commodity specialist. 2 Statistical assistant.

In constructing the open-pit mine, the company removed approximately 9,000,000 tons of alluvial material to reach the deposit at a depth of 137 feet. The underground Jenifer mine was closed soon after production from the open-pit mine began in May. The refinery, adjacent to the pit, covers an area of 80 acres and contains larger and more fully automated processing equipment than the older Wilmington refinery. The new refinery began operating in July; however, full production was not attained until the end of the year because of technical problems. All basic products were manufactured at Boron; however, boric acid and specialties were produced at the Wilmington (Calif.) refinery.

Wilmington (Calif.) refinery.

U. S. Borax & Chemical Corp. reported that dollar volume of domestic sales in 1957 was the highest in history, but total tonnage of all products sold was only slightly lower than in 1956.³ Export sales of this firm were generally excellent until the end of June when

demand eased.

CONSUMPTION AND USES

It was estimated that 50 percent of boron-minerals production was consumed in the glass and ceramics industries in 1957.4 Other major uses included soaps, cleansers and detergents, fertilizers, and weed-Boron compounds were used as the intermediate chemicals in many chemical and manufacturing industries. An application of special interest in 1957 was that in high-energy fuels. compounds reported used as intermediates in producing high-energy fuels are sodium borohydride, boron trichloride, and boron trifluoride. Sodium borohydride was also used as a reducing agent in manufacturing paper, pharmaceuticals, and fine chemicals. In addition to its use in producing high-energy fuel, boron trichloride was a catalyst in producing silicones and an extinguishing agent for magnesium fires. Boron trifluoride was employed in producing coumaron-indene resins and other coal and petroleum derivatives, dodecyl mercaptan dyes, and a variety of miscellaneous catalytic uses. It was used in recovering the boron-10 isotope, which is used to control neutrons in atomic reactors.

Boron carbide (B₄C) was used as a chemical intermediate, an

abrasive, and a neutron-control material in atomic reactors.

Elemental boron was utilized as a deoxidizer and grain-refining alloy in nonferrous metals, as an igniter in rectifier and control tubes, as a neutron absorber in control rods and shields for atomic reactors, in fuses for rockets and flares, and in solar batteries. Organic compounds of boron were employed as antiknock additives in motor fuel to improve the removal of carbon deposits and prevent preignition firing. Borate esters were used as dehydrating agents, synthesis intermediates, special solvents, catalysts, plasticizers, adhesion additives for latex paint, and in soldering or brazing fluxes. Extremely small quantities of boron, in the form of boron compounds, were added to low- and medium-carbon and low-alloy steels to increase harden-

³ U. S. Borax & Chemical Corp., Annual Report: 1957, p. 6. ⁴ American Ceramic Society Bulletin, Borax and Boron Compounds: Vol. 36, No. 6, June 1957, pp. 208-210

BORON 273

ability and save other alloying metals. Small additions of boron were increasingly used in stainless steels and related alloys to control corrosion and heat resistance, reduce hot shortness, and increase yield. During 1957, 64 net tons of boron metal (461 tons gross weight of alloying compounds) was consumed in manufacturing steel in the United States, as compared with 50 (revised figure) net tons of boron metal (468 tons gross weight of alloying compounds) in 1956.⁵

Expansion of boron-products capacity continued during 1957. Pilot-plant production of decaborane began at the Henderson, Nev., plant of American Potash & Chemical Corp.⁶ This firm also announced that the production of boron trichloride and boron tribromide

had begun at its Los Angeles plant.

American Potash & Chemical Corp., Food Machinery & Chemical Corp., and National Distillers & Chemical Corp. announced formation of a new firm, AFN, Inc.⁷ The new, jointly owned firm was formed for development and pilot-plant work on boron fuels.

Anderson Chemical Co. began producing trimethoxyboroxine

commercially.8

Callery Chemical Co. began constructing a \$38 million plant near Muskogee, Okla., and a \$4 million boron chemicals plant near Lawrence, Kans.⁹

The Hooker Electrochemical Co. plant has produced the boron-10 isotope since June 1954 at Model City, N. Y., under an AEC contract.

TABLE 2.—Production of alloy-steel ingots (other than stainless-steel ingots) in the United States, net tons ¹

	1956		1957	
Grade	Without boron	With boron	Without boron	With boron
Carbon-boron Nickel Molybdenum Manganese Manganese Manganese-molybdenum Chromium Chromium-vanadium Nickel-chromium Chromium-molybdenum Nickel-chromium-molybdenum Nickel-chromium-molybdenum Nickel-chromium-molybdenum Silico-manganese All other Subtotal	33, 347 582, 640 205, 270 390, 241 1, 377, 028 72, 222 114, 482 1, 195, 359 405, 349 1, 330, 686 111, 788 582, 269	29, 173 29, 192 38, 696 106, 054 3, 202 65, 400 26, 379 298, 096	31, 971 686, 968 145, 945 405, 729 1, 218, 982 55, 411 115, 666 898, 900 330, 579 1, 024, 922 72, 472 533, 786	18, 91: 36, 68 27, 52 76, 16: 211 8, 531 2, 87 37, 97 49, 094 257, 966
High-strength steels	982, 918 1, 313, 313 8, 696, 912	17, 060 	977, 454 1, 036, 925 7, 535, 710	

¹ American Iron and Steel Institute, Annual Statistical Report: New York, N. Y., 1957, p. 61.

American Iron and Steel Institute, Annual Statistical Report: New York, N. Y., 1957, pp. 24, 25.
 Chemical and Engineering News, Boron Made News Again This Week: Vol. 35, No. 18, May 6, 1957, p. 7.
 Oil, Paint and Drug Reporter, Boron Fuel Project Engages Big Companies: Vol. 172, No. 14, Sept. 30, 1957, p. 3.

^{101,} Faint and Edge 2017.

1957, p. 3.

8 Chemical and Engineering News, It's 18.7 Percent Boron: Vol. 35, No. 28, July 15, 1957, p. 62.

9 Chemical Engineering Progress, New Callery Plant Will Be Major Producer of High-Energy Boron Fuels: Vol. 53, No. 4, April 1957, p. 46: Chemical Week, Boron Chemicals: Vol. 80, No. 28, July 13, 1957, p. 25.

The new sodium borohydride plant of Metal Hydrides, Inc., Danvers, Mass., was dedicated.

The completed Norton Co. plant at Huntsville, Ala., manufactured

a variety of materials, including boron carbide.

Olin Mathieson Chemical Corp. dedicated a high-energy fuel plant,

which it will operate for the Air Force.

Stauffer Chemical Co. completed a commercial plant for producing boron trichloride at Niagara Falls, N. Y. It also produced boron trichloride at Richmond, Calif., and at Chauncey, N. Y.

U. S. Borax & Chemical Corp. was constructing an \$850,000 research laboratory at Anaheim, Calif. Completion was expected by late April 1957.

PRICES

The price of borax, boric acid, and certain borate compounds increased, effective January 1, 1957. The following prices were quoted by Oil, Paint and Drug Reporter:

	January- October	December
Borax, tech., anhydrous, bags, carlots, works, ton	\$83. 00	Unchanged.
Ton lots, exwarehouse, New York or Chicago, ton	137. 25	Do.
Bulk, carlots, works, ton	74. 00	Do.
Crystals, 99½ percent, bags, carlots, works, ton	71. 00	\$81.00.
Ton lots, exwarehouse, New York or Chicago, ton	125. 25	137.25.
Granular decahydrate, 99½ percent, bags, carlots,	45. 00	Unchanged.
works, ton.		_
Ton lots, exwarehouse, New York or Chicago, ton	99. 25	Do.
Bulk, earlots, works, ton	38. 50	\mathbf{Do}_{\bullet}
Pentahydrate, 99½ percent, bags, carlots, works, ton	60. 00	Do.
Ton lots, exwarehouse, New York or Chicago, ton_	114. 25	Do.
Powder, 99½ percent, bags, carlots, works, ton	50. 00	Do.
Ton lots, exwarehouse, New York or Chicago, ton-	10 4 . 25	Do.
U. S. P. borax is \$15 per ton higher than technical.		
Acid, boric, tech., 99½ percent:		
Crystals, bags, carlots, works	129.00	Do.
Ton lots, exwarehouse, New York or Chicago,	18 4 . 25	Do.
ton.	104.00	D-
Granular, bags, carlots, works, ton	104. 00	Do.
Ton lots, exwarehouse, New York or Chicago,	159. 25	Do.
ton.	109. 00	Do.
Powder, bags, carlots, works, ton	159. 25	Do.
Ton lots, exwarehouse, New York or Chicago, ton.	109. 20	D 0.
II S P haria said \$25 per ton higher		

U. S. P. boric acid \$25 per ton higher.

FOREIGN TRADE 10

Boron minerals and compounds were exported from the United

States to many countries.

The United States imported 74,000 pounds of boron carbide valued at \$123,000 from Canada and West Germany in 1957. Crude boron minerals, imported from Turkey, totaled 5,040 short tons valued at \$161,550.

¹⁰ Figures on imports and exports were compiled by Mae B. Price and Elsie D. Jackson, Division of Foreign Activities, Bureau of Mines, from records of the U. S. Department of Commerce, Bureau of the Census.

TABLE 3.—Boric acid and borates (crude and refined) exported from the United States, 1956-57, by countries of destination

[Bureau of the Census]

Countries	1956		1957	
	Short tons	Value	Short tons	Value
North America:				
Canada Costa Rica	13, 637	\$1, 397, 191	12, 805	\$1, 321, 83
Costa Rica	123	11, 489	273	22, 821
El Salvador	593 16	11, 489 45, 977 2, 760	529	47, 410
Mexico	4, 157	379, 469	23 4, 023	2,009 381,32
Nicaragua	12	5, 937	36	9, 104
Trinidad and Tobago	89	6, 975	18	1, 328
Other North America.	13	2, 209	122	13, 569
Total	18, 640	1, 852, 007	17, 829	1, 799, 397
South America:		All the		
Brazil	8, 188	596, 674	4, 267	347, 839
Colombia Peru	695	58, 402	739	73, 606
Uruguav	417 161	31,776	475 239	32, 233 31, 404
Venezuela	308	15, 001 27, 905	355	29, 531
Other South America	25	3, 200	30	3, 734
Total	9, 794	732, 958	6, 105	518, 347
Curope:			====	010, 011
Austria	3, 035	143, 184	3, 275	161, 298
Belgium-Luxembourg	4,013	268, 118	3, 348	223, 508
Denmark	640	44, 538	1, 178	74, 289
Finland.	804	51, 629 1, 894, 777	945	65, 162
France Germany, West	28, 472	1,894,777	22, 377	1, 562, 266 2, 859, 976
Greece	49, 235 198	3, 016, 752 9, 878	42, 884 518	2, 859, 976
Greece Ireland	1. 237	76, 072	1, 111	26, 766 70, 617
Italy	1, 237 17, 778	893, 391	10, 797	632, 982
Netherlands	12,605	893, 391 988, 271	12,063	1, 015, 408
Norway Portugal	2, 643	215, 473	3, 495	1, 015, 408 327, 135
Spain	1, 716	128, 658	165	16, 490
Sweden	$\frac{31}{3,532}$	3, 378 227, 407	30 3,640	5, 468 258, 865
Switzerland	4, 659	310, 172	4, 834	335, 895
United KingdomYugoslavia	47, 156	3, 122, 600	44, 369	3, 121, 024
· · · · · · · · · · · · · · · · · · ·	715	46, 963	1,685	127, 992
Total .sia:	178, 469	11, 441, 261	156, 714	10, 885, 141
Ceylon	185	14 019	39	2 220
Hong Kong	6, 138	14, 918 349, 556 348, 212	2, 551	3, 220 189, 581
India	4,612	348, 212	4,819	362, 579
Indonesia	239	14, 373	329	20, 261
IranIsrael	283	16,040	156	11,714
Japan	628 14, 274	40,779	476	35, 282
Korea	252	973, 717 17, 349	11, 862 238	893, 854 16, 008
Lebanon	33	4, 140	65	4,654
Malaya	134	9, 404	45	2,658
Pakistan	314	19, 961	497	48, 437
Philippines	356	33, 633	509	53, 491
Syria Taiwan	28 1, 564	2, 486	66	6, 201
	428	81, 835 26, 670	321 177	24, 664 14, 242
Vietnam, Laos, Cambodia	163	10, 455	956	74, 828
Other Asia	24	5, 420	21	3,860
Total	29, 655	1, 968, 948	23, 127	1, 765, 534
frica:				
Egypt	206 56	15, 496	119	9, 858
Rhodesia and Nyasaland, Federation of	144	7,770	266	10.000
Union of South Africa.	1, 452	9, 829 153, 182	2,790	19, 298 274, 961
Other Africa	44	6, 338	122	12, 448
Total	1, 902	192, 615	3, 297	316, 565

	4 070	318, 643	5, 155 2, 270	490, 602
Australia	4,0/3			
AustraliaNew Zealand	4, 073 1, 192	89, 658		199, 698
ceania: Australia	1, 192 5, 265	89, 658 408, 301	2, 270 7, 425	199, 698 690, 300

WORLD REVIEW

The world's principal supply of boron minerals came from the United States; however, several other countries produced moderate quantities of boron minerals and compounds in 1957.

SOUTH AMERICA

Argentina.—Production of ulexite totaled 22,046 short tons in 1956.11

Chile.—A total of 10,122 short tons of boron minerals averaging 33 percent B₂O₃ was produced in 1956.¹²

EUROPE

France.—A system of licensing exports of boron minerals and compounds from France was established.13

Italy.—Boric acid production in Italy totaled 4,065 short tons in

1956.14

Switzerland.—The Ministry of Economic Affairs announced that

exports of borax from Switzerland will require licenses.15

United Kingdom.—All aspects of boron chemistry were being investigated in a research program at the new laboratories of Borax Consolidated at Chessington, Surrey. 16 Crystalline elemental boron, 99.0to 99.5-percent pure, was marketed by Borax Consolidated, Ltd. 17 The Board of Trade changed some licensing controls, effective March 4, 1957, further restricting export of boron minerals, metals, alloys and compounds from the United Kingdom.¹⁸

ASIA

Turkey.—Production of boron minerals in 1957 totaled 34,879 short

tons valued at \$1,468,302.19

U. S. S. R.—Soviet geologists reported new discoveries of boron deposits in Kazakhstan.²⁰ A plant for producing borax concentrates was being erected at Indersk, Kazakhstan.21

TECHNOLOGY

Boron-10, used in nuclear reactors because of its high absorption for thermal neutrons, was recovered from boron by a complex distillation process at the Hooker Electrochemical Co. plant near Niagara Falls. N. Y.²² To separate the boron-10 isotope a dimethyl etherboron trifluoride complex was fed to fractionation towers. Repeated dissociation of the complex in the vapor phase and recombination as

¹¹ Bureau of Mines, Mineral Trade Notes: Vol. 46, No. 3, March 1958, p. 23.
12 U. S. Embassy, Santiago, Chile, State Department Dispatch 430: Oct. 30, 1957, 5 pp.
13 American Metal Market, France Places Export Ban on Boron Items: Vol. 64, No. 66, Apr. 5, 1957, p. 1.
14 U. S. Embassy, Rome, Italy, State Department Dispatch 1505: May 14, 1957, 6 pp.
15 Chemical Age (London), Swiss Borax Exports: Vol. 78, No. 1993, Sept. 21, 1957, p. 454.
16 Ohemical Age (London), Intensive Boron-Research Programme for Borax Consolidated: Vol. 78, No. 1993, Sept. 21, 1957, p. 450.
17 Chemical Age (London), Borax Market Cystalline Elemental Boron: Vol. 78, No. 1985, July 27, 1957, p. 148.

p. 148.

Schemical Trade Journal and Chemical Engineer (London), Boron Products Exports Control: Vol. 140, No. 3639, Mar. 1, 1957, p. 504.

U. S. Embassy, Ankara, Turkey, State Department Dispatch 699: May 5, 1958, 2 pp.

Northern Miner (Toronto), Russian Report Find of Lithium and Boron: Vol. 43, No. 38, Dec. 12, 1957,

p. 23.
"I Mining Journal (London), vol. 248, No. 6349, Apr. 26, 1957, p. 526.
"I Chemical Engineering, Complex Distillation Separates Isotopes: Vol. 64, No. 5, May 1957, pp. 148–150.

BORON 277

the liquid phase resulted in boron-10 concentrating in the liquid phase and boron-11 in the vapor phase. The B-10-enriched complex was converted to potassium fluoborate, which was electrolyzed in a bath

of potassium chloride to obtain the B-10 isotope.

Research workers at Purdue University discovered that the mild reducing power of sodium borohydride can be increased with lithium bromide or aluminum chloride.23 In addition, the powerful reducing potential of lithium-aluminum hydride can be lowered by adding alkoxy groups. These changes gave a series of reducing agents that could be used to give desired reductions. A new method was also discovered for making trialkylboranes from simple olefins. Polymers of boron and phosphorus were studied at the University of Southern California.²⁴ One boron-phosphorus compound [(CH₃)₂PBH₂]₃ could stand 400° C. temperature without much decomposition.

A report that covered the analysis of organo-boron compounds and the synthesis of alkyl and aryl boron dichlorides used as intermediates for producing boron-substituted borazones and tri-B-N-butylborazole was released for industrial use.25 The preparation of B-beta-chloro-

vinylborazole was also discussed.

Polymers of boron and other elements were being studied with a view to incorporating their neutron-absorption ability and heat resistance in atomic reactors and aircraft. Research workers at St. Louis University devised a new way to make borazine and companion

syntheses for several substituted borazines.26

Small additions of boron to austenitic stainless steels, significantly improved their hot working performance.27 Extremely small quantities of boron (0.0005 percent increased the ductility of 1 type of steel 50 percent) were needed to produce measurable results in a wide range of steel compositions. Additions to high-manganese, high-nitrogen austenitic alloys were also very effective.

Surface markings known as stretcher strains developed in coldworked steel during aging, owing to the formation of carbon or nitrogen atmospheres around imperfections in the crystal lattice. According to one report, steels that do not develop stretcher strains may be in mass production within a few years.²⁸ The addition of 0.007 percent boron is enough to precipitate nitrogen, thereby reducing development of strain during aging.

An alloy steel that can withstand stresses up to 285,000 pounds per square inch, without becoming brittle, has been developed by the National Bureau of Standards.29 The steel, containing titanium, silicon, and boron, can be made by normal melting and working

processes.

A high-temperature steel alloy, intended as a structural material for jet-engine-turbine disks, has been formulated.30 The alloy contains iron, nickel, chromium, and smaller quantities of molybdenum, titanium, and boron. Test samples withstood a temperature of 1,200° F. and stress of 75,000 p. s. i. for 300 hours without breaking.

Chemical and Engineering News, Versatile Hydroborons: Vol. 35, No. 18, May 6, 1957, p. 28.
 Chemical and Engineering News, B-P Polymers for High Temperatures: Vol. 35, No. 21, May 27, 1957,

^{Chemical and Engineering News, B-1 Folymors of the Property of the Pr}

The effect of boron and nitrogen on the hardenability of low-carbon alloy steels was reported.31 A base composition containing low values of carbon, nickel, and molybdenum was modified by boron and nitrogen additions. Results of tests showed that small additions of boron in the steels austenitized at 1,550° F. greatly increased Nitrogen counteracted the boron contribution to hardenability. Steels containing nitrogen showed lower hardenhardenability. ability than the base composition when quenched from 1.550° F. The hardenability of all steels increased when austenitized at 1,800° F. All steels except 1 containing boron-plus-nitrogen additions showed about the same high hardenability after quenching from 2,000° F. The behavior of the nitrogen-free boron steel indicated that boron was effective, owing to adsorption at grain boundaries. Both steels containing nitrogen responded to heat treatment in a manner that suggested the existence of a second phase in the austenite.

The creation of "borazon," a new material never before observed by man, was announced in 1957. Borazon, the cubic form of boron nitride (BN), was prepared by heating the compound in a metal capsule to 1,800° C., while subjecting it to pressures of 85,000 atmospheres.³² Borazon is not attacked by any of the usual acids and is only slowly oxidized in air at 2,000° C. It is a good electrical insulator. It is hard enough to scratch diamond, and diamond scratches it. Boron phosphide (BP), another new artificial abrasive, was prepared by the reaction of boron and red phosphorus in an evacuated, sealed silica tube, at 1,100° C.33 Boron phosphide was expected to be harder than silicon carbide.

High-Energy Boron Fuels.—The reasons for using boron compounds as high-energy fuels were reviewed.³⁴ Liquid hydrogen was ruled out because its low density would require a large refrigeration system. Beryllium was rejected owing to its toxic compounds and short supply. Compounds of boron and hydrogen yield a lower heat of combustion per pound than liquid hydrogen; however, they give much higher heats of combustion than the hydrocarbon fuels. Two graph charts showed the heating value of the elements and possible fuels.

It was reported that boron hydrides offered gains of 50 percent or more in the performance of airplanes and missiles.35 The greater energy of boron fuels could extend the range of airplanes, reduce airframe weights, increase payload, or improve performance in speed and climb. In addition, these compounds can be used efficiently at altitudes where ordinary air-mixing fuels will not burn.

Improved forms of high-energy, nontoxic boron fuels were being delivered to the military establishment in engine test quantities.36 The loss of heating value of boron-based fuels resulting from processes to improve their stability and handling qualities was minimized by a major chemical research effort. Two types of fuels were

³¹ Shyne, J. C., and Morgan, E. R., Effect of Nitrogen on Hardenability in Boron Steels: Jour. Metals, vol. 9, No. 1, January 1957, pp. 116-117.

32 Wentorf, R. H., Jr. Cubic Form of Boron Nitride: Jour. Chem. Phys., vol. 26, No. 4, April 1957, p. 956.

33 Chemical Age (London). Boron Phosphide a New High Abrasive: Vol. 77, No. 1978, June 8, 1957, p. 976.

34 Weilmuenster, E. A., Utilization of High-Energy Fuel Elements: Ind. Eng. Chem., vol. 49, No. 9, September 1957, pp. 1337, 1338.

35 Fortune, W. C., Jureau of Aeronautics General Representative Western District, Department of the Navy, Excerpts from talk at dedication ceremonies, U. S. Borax & Chemical Corp. Open Pit Mine and Refinery, Boron, Calif., Nov. 13, 1957.

28 Butz, J. S., Jr., Boron Fuel Stability Improved, Full Production Starts in 1959: Aviation Week. vol. 67, No. 2, July 15, 1957, p. 27

279BORON

derived from pentaborane and decaborane. Pentaborane has more heat energy per unit weight than decaborane, but decaborane has more energy per unit volume. Borane fuels could be used in existing rockets, ramjets, and afterburners, but not in conventional turbojets because the solid combustion products would erode turbine

The Federal Geological Survey released results of an exploratory drilling program in the Kramer area of San Bernardino County, Calif.³⁷ Five test holes were drilled in alluvial and lake sediments. A preliminary examination of drill cores revealed some colemanite, small quantities of realgar, some analcime, and an unusual magnetic

iron sulfide mineral.

The process for synthesizing boron fuels was reported to consist of reducing either boron trifluoride or boron trichloride with lithium hydride or sodium borohydride to produce diborane.³⁸ The diborane was converted to penta or decaborane and then alkylated.

A new process was reported for producing diborane by reacting aluminum trifluoride, sulfuric acid, boron trioxide, and N-trialkyl borazane.³⁹ A new method for synthesizing alkali metal borohydrides

was also described.

A new boron hydride (B_9H_{15}) was isolated by research workers at Iowa State University.⁴⁰ It was made by passing diborane through an ozonizer.

The basic process for making sodium borohydride, employed at the Danvers (Mass.), plant of Metal Hydrides, Inc., consisted of reacting sodium hydride with methyl borate in an inert mineral oil.41 anol is recovered and reused to make more methyl borate by reacting it with boric acid. Sodium hydride is obtained from sodium metal and hydrogen. A package unit produces the hydrogen from propane.

The effect on people and laboratory animals of using potentially dangerous boron hydride fuels was reviewed.42 The paper summarized the effects of diborane, pentaborane, and decaborane on laboratory animals exposed to measured concentrations for a given number of days. Threshold limits for these three compounds of boron, adopted by the American Conference of Governmental Industrial Hygienists, were given. The analytical methods developed for monitoring the atmosphere of places of work and analyzing biological specimens were listed. The report concluded that the boron hydrides were highly toxic compounds, and adequate control measures should be instituted to prevent serious hazards to health. Another article reported that routine safety measures could assure safe handling of toxic boron compounds.⁴³ Workers at Callery Chemical Co. have handled boron compounds since 1946, with no indication of permanent Two monitoring devices that can detect concentrations of

U. S. Department of the Interior Information Service, Geological Survey Reports on Saline Deposits' Explorations: Mar. 28, 1957, 1 p.; Apr. 17, 1957, 1 p.; May 10, 1957, 1 p.; May 23, 1957, 2 pp.
 Chemical Engineering Progress, Olin Mathieson Dedicates New High-Energy Fuel Plant: Vol. 53, No. 8, August 1957, pp. 46, 48.
 Chemical Week, Germany Joins the High-Energy Fuels Whirl: Vol. 80, No. 21, May 25, 1957, p. 48.
 Chemical and Engineering News, First New Boron Hydride (B₉H₁₆): Vol. 35, No. 38, Sept. 23, 1957, p. 77, 124.

⁴¹ Chemical Engineering, First Tonnage Sodium Borohydride; Vital Link to High-Energy Fuels: Vol. 64, No. 12, December 1957, pp. 146-148.

41 Industrial and Engineering Chemistry, Industrial Hygiene of Metals of Recent Industrial Importance: Vol. 49, No. 9, September 1957, Pt. I, pp. 87A-88A.

42 Chemical and Engineering News, Boron Is a Toxicity Problem: Vol. 35, No. 48, Dec. 2, 1957, pp. 54-55.

boron hydrides as low as 0.005 p. p. m. will soon give an added measure of safety.

A new class of borane derivatives was discovered when a decaborane

solution in acetonitrile was heated to reflux.44

A stable crystalline diammoniate of tetraborane (B₄H₁₀.2NH₃) was isolated.⁴⁵ The compound was stable in air and dissolved in cold

water slowly yielding hydrogen.

A mixed alkyl borane has been synthesized by use of a cyclic intermediate. A n-butyltrihydroxyborane, dehydrated under reduced pressure, yielded tri-n-butylboroxine. This compound reacted with trimethyl aluminum to form n-butyldimethylborane C₄H₉B(CH₃)₂. The compound, though spontaneously flammable in air, is one of the more stable boron hydrides.

⁴⁴ Schaeffer, R., A New Type of Substituted Borane: Jour. Am. Chem. Soc., vol. 79, No. 4, Feb. 20, 1957, pp. 1006-1007.
45 Kodama, G., The Diammoniate of Tetraborane: Jour. Am. Chem. Soc., vol. 79, No. 4, Feb. 20, 1957.

p. 1007.

6 Chemical and Engineering News, A Mixed Alkyl Borane: Vol. 35, No. 16, Apr. 22, 1957, p. 113.

Bromine

By Henry E. Stipp 1 and Annie L. Mattila 2

ALTHOUGH bromine-production capacity increased in 1957, sales of bromine and bromine compounds decreased 2.4 percent from the record sales in 1956. Bromine recovery plants constructed at El Dorado, Ark., and Sodom, Israel, were significant industrial developments.

DOMESTIC PRODUCTION

Bromine production (measured by sales) declined slightly from the high established in 1956. Bromine was recovered from sea water, well brines, and saline-lake brines in the United States during 1957. The greater part of the production was obtained from sea water, an

inexhaustible source of bromine.

The Ethyl-Dow Chemical Co. recovered bromine from sea water at Freeport, Tex., and Westvaco Chemical Division of Food Machinery & Chemical Corp. operated a sea-water plant at Newark, Calif. The following firms recovered bromine from well brines in Michigan: The Dow Chemical Co., Midland and Ludington; Great Lakes Chemical Corp., Filer City; Michigan Chemical Corp., East Lake and St. Louis; and Morton Salt Co., Manistee. The Westvaco Chemical Division at South Charleston, W. Va., also treated well brines. American Potash & Chemical Corp. recovered bromine from Searles Lake in California. Michigan Chemical Corp. and Murphy Corp. completed constructing a bromine-recovery plant at El Dorado, Ark. The plant, with a rated capacity of 5 million pounds per year, recovered bromine from waste brine of the Catesville oilfield. Construction of the addition to Great Lakes Oil & Chemical Co. bromine plant at Filer City, Mich., was completed.

TABLE 1.—Total sales of bromine and bromine compounds (bromine content) by primary producers in the United States, 1948-52 (average) and 1953-57

Year	Pounds	Value	Year	Pounds	Value
1948-52 (average)	109, 808, 042	\$21, 341, 441	1955	184, 453, 846	\$39, 855, 508
	164, 143, 348	35, 372, 386	1956	196, 730, 115	47, 433, 886
	187, 399, 110	41, 312, 669	1957	191, 971, 145	48, 038, 017

¹ Commodity specialist.
² Statistical assistant.

TABLE 2.—Bromine and bromine compounds sold by primary producers in the United States, 1956-57

	Pou	Pounds	
	Gross weight	Bromine content ¹	Value
Elemental bromine		9, 490, 006 (2) 1, 961, 027 (2) 185, 279, 082 196, 730, 115	\$2,170,056 (2) 878,190 (2) 44,385,640 47,433,886
Elemental bromine 1957 Sodium bromide Potassium bromide Other, including ethylene dibromide Total	9, 179, 027 (2) 3, 032, 155 (2) 213, 174, 731 225, 385, 913	9, 170, 957 (2) 2, 036, 092 (2) 180, 764, 096 191, 971, 145	2, 192, 884 (2) 971, 097 (2) 44, 874, 036 48, 038, 017

¹ Calculated as theoretical bromine content present in compound.
2 Included with "Other, including ethylene dibromide."

CONSUMPTION AND USES

Approximately 94 percent of the total bromine consumed in 1957 was in the form of ethylene dibromide and other compounds. Ethylene dibromide was added to tetraethyl lead for use as an antiknock mixture in gasoline. Other uses for ethylene dibromide were as an intermediate in the synthesis of dyes and pharmaceuticals, as a nonflammable solvent for celluloid, resins, gums, and waxes, and as an anaesthetic, sedative, and antispasmodic agent. It was used in fumigation mixtures for insect control in grain and soil. Methyl bromide and chlorobromopropene were used also as fumigants.

Five percent of the total consumed was elemental bromine, the second largest consumption category in 1957. Elemental bromine was used as a laboratory reagent and as a bleaching and disinfecting agent. It was also used in manufacturing lachrymators, brominated dyes, and

bromides for medicinal, photographic, and industrial uses.

Potassium bromide ranked third in quantity of bromide consumed in 1957 (1 percent of the total). Potassium and sodium bromides were used in medical and pharmaceutical preparations, photographic emulsions, and analytical reagents. Ammonium bromide was used in pharmaceutical preparations, photographic films, plates and papers, process engraving, and lithography. It was used also in fire retarding of wood and textiles, in soldering fluxes, and in textile processing.

Potassium bromate was employed as an oxidizing agent in permanent-wave preparations, in soya and high-protein wheat flour to improve baking characteristics, and as an ingredient of yeast foods.

Compounds of bromine were used as catalysts in controlling oxidation of hydrocarbons, as dehumidifying agents in air conditioning, and in the manufacture of hydraulic liquids, fire-extinguishing fluid, and effervescent mineral waters.

PRICES

According to Oil, Paint and Drug Reporter the following prices were quoted for bromine and bromine compounds in 1957: Bromine, purified, cases, carlots, delivered east of the Rocky Mountains, 32 cents a pound from January to mid-February, 33 cents a pound from mid-February to mid-April, and 32 cents a pound for the remainder of the year; less than carlots, same basis, 34 to 39 cents a pound from January to mid-February, 35 to 40 cents a pound from mid-February to mid-April, and 34 to 39 cents a pound for the remainder of the year; drums, lead-lined, carlots, delivered east of the Rocky Mountains, 31 cents a pound from January to mid-February, 32 cents a pound from mid-February to mid-April, and 31 cents a pound for the remainder of the year; potassium bromide, U. S. P., granular, barrels, kegs, 37 to 38 cents a pound from January to mid-February and 39 to 40 cents a pound for the remainder of the year; potassium bromate, drums, 1,000 pounds or more, 50 cents a pound from January through December; sodium bromide, U. S. P., barrels, works, 38 cents a pound from January to mid-February and 40 cents a pound for the remainder of the year; ammonium bromide, N. F., granular, barrels, 43 cents a pound from January to mid-February and 45 cents a pound for the remainder of the year.

FOREIGN TRADE 3

International trade was a relatively minor factor in the bromine industry. Many of the major industrialized countries supplied their requirements. United States exports of bromine, bromide, and bromates in 1957 totaled 10,510,719 pounds valued at \$3,053,172. Exports from the United States went principally to Canada (6,785,333 pounds) and Brazil (2,846,362 pounds). Smaller quantities were shipped to 39 other countries.

United States imports of bromine and bromine compounds in 1957 totaled 1,072 pounds valued at \$37,108. United Kingdom and West Germany were the principal sources of supply. Imports of 440 pounds of sodium bromide valued at \$968 came from the United Kingdom. No potassium bromide or ethylene dibromide was imported into the United States during the year.

WORLD REVIEW

France.—Production of bromine and bromine compounds in France

during 1956 totaled 1,160 metric tons.4

Israel.—The Dead Sea Bromine Co. began to operate in January 1957 and made satisfactory progress.⁵ Markets were being developed in Great Britain, Netherlands, West Germany, Switzerland, and Poland. The company produced elemental bromine and ethylene dibromide.

Figures on imports and exports compiled by Mae B. Price and Elsie D. Jackson, Division of Foreign Activities, Bureau of Mines, from records of the U. S. Department of Commerce, Bureau of the Census.
 U. S. Embassy, Paris, France, State Department Dispatch 2418, June 25, 1957, 3 pp.
 U. S. Embassy, Tel Aviv, Israel, State Department Dispatch 628, May 31, 1957, 4 pp.

TECHNOLOGY

A new plant for producing bromine was put into operation at Sodom, Israel, in December 1956, by the Dead Sea Bromine Co.6 The plant was scheduled to produce 1,250 tons of bromine per year, using a patented process that offered savings in equipment and operating costs. End brine from the Dead Sea Bromine Co. potash plant, containing about 10,000 p. p. m. of magnesium bromide, flows to earthen basins, where suspended solids settle. The solution is then clarified and pumped to the top of chlorination towers packed with glass chips. Chlorine gas is introduced at the bottom of the tower and passes upward through the descending brine. Chlorine replaces the bromine in the brine, and the bromine goes into solution. The brine passes down through a stripping tower where 150,000-200,000 cubic feet of air, at a pressure of 190 mm. of mercury and temperature of 95° F., is blown up through the brine for each ton of bromine stripped. bromine-air stream is dechlorinated by a countercurrent stream of brine and then goes to absorption columns packed with chipped glass. The bromine-air stream enters the bottom of the columns, rising countercurrently through an aqueous solution of 350 grams per liter sodium bromide at about 0° F. Bromine vapor reacts with sodium The polybromides are dissociated bromide, producing polybromides. by steam at 230° F. Steam and bromine vapor are condensed; the water separates from the bromine in a decanter. Recovery is estimated at 90 percent.

Flame and glow resistance of cellulose fabric was improved by the addition of phosphorus and bromine compounds.8 Early work on cellulose pyrolytic effects indicated the formation of a common intermediate, levoglucosan, at temperatures above 250° C. To prevent formation of levoglucosan a series of reactions was used to introduce various chemical groups. Cellulose was treated with methanesulfonyl chloride and then phosphorylated with diethyl chlorophosphate. Some of the methane-sulfonyl groups were replaced with bromide or iodide. An aqueous barium carbonate solution was used for this reaction to get good pH control and prevent any acid degradation of the cellulose. Although iodine compounds gave better flame resistance than bromine derivatives, bromine probably would

be used on a large scale owing to the difference in cost.

An electrolytic process for the production of potassium or sodium bromate, using a lead peroxide anode, was described.9 anodes used previously spalled, forming a mud which discolored bromate with a yellowish tint. Lead peroxide was deposited electrolytically from neutral lead nitrate solution upon the inner surface of an iron cylinder. The lead peroxide was cut into electrodes measuring 350 mm. in length, 50 mm. in width, and 7-9 mm. in thickness. Bromate was produced in a tank containing 10 lead peroxide anodes and 20 stainless steel cathodes. In two experimental runs conducted at constant temperature and anodic density of 20 a. per dm.2, lead peroxide losses averaged 57-60 grams per ton of product. Lead was not detected in the product.

⁶ Chemical Engineering, New Route to Bromine: Vol. 64, No. 9, September 1957, p. 164.
7 Block, R. M., and Yaron, F., Bromine Production: U. S. Patent 2,784,063, Mar. 5, 1957.
8 Chemical Engineering News, Cotton Glows, Flames Less: Vol. 35, No. 16, Apr. 22, 1957, pp. 28-29.
9 Osuga, T., and Kilchiro, S., Electrolytic Production of Bromates: Jour. Electrochem. Soc., vol. 104, No. 7, July 1957, pp. 448-451.

Cadmium

By Arnold M. Lansche 1

THERE was a surplus of cadmium in 1957. The quoted price for cadmium metal declined in the last month of the year. Industry stocks of metallic cadmium and cadmium (exclusive of consumers' stocks) rose over 1956. The value of negotiated contracts for the purchase of cadmium by the Commodity Credit Corporation in fiscal 1957 declined.

TABLE 1.—Salient statistics of cadmium, 1948-52 (average) and 1953-57, in pounds of contained cadmium

	1948-52 (average)	1953	1954	1955	1956	1957
United States:						
Primary production Metal imported for con-	8, 414, 233	9, 767, 197	9, 551, 710	1 9, 753, 699	2 3 10, 614, 356	² 10, 549, 415
sumption	473, 191	1, 555, 140	402, 299	927, 495	3, 115, 638	1, 585, 547
Exports	619, 018	65, 866	998, 959	1, 393, 915	1, 284, 248	692, 758
Apparent consumption Price (average)	8, 201, 478	9,570,063	7, 498, 719	10, 683, 705	3 4 12, 711, 015	4 10, 998, 870
World: Production	\$2. 20	\$1.99	\$1.73	\$1.70	\$1.70	\$1.70
thousand pounds	12, 480	15, 570	16, 100	18, 460	19, 950	20, 430

¹ Primary cadmium metal only.

² Primary and secondary cadmium metal. ³ Revised figure.

Revised figure.
Cadmium metal only.

DOMESTIC PRODUCTION

The production of cadmium metal, primary and secondary together, remained relatively high in 1957. Metal production declined about 1 percent from the high mark established in 1956. Production of secondary metal declined more than the output of primary metal.

Cadmium was produced in this country principally as a byproduct of slab-zinc output. Cadmium was also obtained from imported and domestic flue dusts and fumes from plants that processed, by thermal reduction, zinc concentrates and lead and copper concentrates containing zinc and associated cadmium. Other sources of cadmium raw material were cadmium precipitated in purifying zinc electrolyte at electrolytic zinc plants and also when zinc sulfate solutions were purified to make lithopone. A small quantity of secondary cadmium was recovered in 1957 by processing scrap alloys.

Of the 10.6 million pounds of cadmium produced in 1957 an estimated 13 percent was obtained from foreign flue dust; about equal quantities of the remainder came from domestic zinc ore and foreign zinc-ore concentrates and other base-metal concentrates containing zinc and associated cadmium. Mexico, Canada, and Peru were the chief sources of imported zinc concentrates.

¹ Commodity specialist.

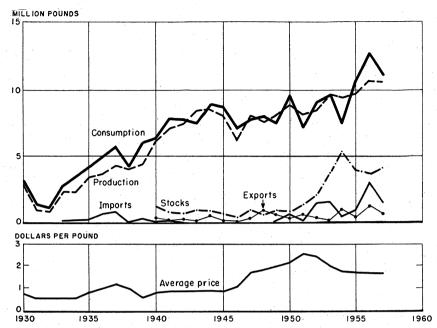


FIGURE 1.—Trends in production, consumption, year-end stocks, imports, exports, and average price of cadmium metal in the United States, 1930-57.

TABLE 2.—Cadmium produced and shipped in the United States, 1948-52 (average) and 1953-57, in pounds of contained cadmium

	1948–52 (average)	1953	1954	1955	1956	1957
Production: Primary:						-
Metallic cadmium Cadmium compounds 2	8, 191, 666 222, 567	9, 682, 197 85, 000	9, 415, 710 136, 000	9, 753, 699 (⁸)	¹ 10, 614, 356 (³)	¹ 10, 549, 41.
Total primary produc-	8, 414, 233	9, 767, 197	9, 551, 710	9, 753, 699	1 10, 614, 356	1 10, 549, 41
Secondary (metal and com- pounds) ² ⁴	236, 113	70,000	138, 000	285, 800	(3)	(3)
Shipments by producers: Primary:						
Metallic cadmium Cadmium compounds 2	7, 974, 370 222, 567	8, 137, 045 85, 000	7, 921, 741 136, 000	11, 166, 830 (³)	¹ 10, 936, 459	¹ 10, 091, 13;
Total primary ship- ments Secondary (metal and	8, 196, 937	8, 222, 045	8, 057, 741	11, 166, 830	1 10, 936, 459	1 10, 091, 13
compounds)2 4	228, 605	59, 636	148, 874	285, 800	(3)	(3)
Value of primary shipments: Metallic cadmium Cadmium compounds 6	\$16, 389, 362 456, 048	\$15, 229, 861 158, 950	\$11, 925, 068 204, 000	\$15, 729, 230	5\$16, 283, 101 (³)	5 \$14, 920, 94 (³)
Total value	16, 845, 410	15, 388, 811	12, 129, 068	15, 729, 230	16, 283, 101	14, 920, 94

¹ Total metallic cadmium, including secondary.

<sup>Fotal metallic cadmium, including secondary.
Excludes compounds made from metal.
Figure withheld to avoid disclosing individual company confidential data.
Bureau of Mines not at liberty to publish figures separately for secondary cadmium compounds.
Value of total metallic shipments, including secondary.
Value of metal contained in compounds made directly from flue dust or other cadmium raw materials</sup> (except metal).

Changes in 1957 included: Cadmium production was begun by the Blackwell Zinc Co. at its Blackwell, Okla., plant; The Bunker Hill Co. transferred production of cadmium at its lead smelter to its zinc smelter on July 1, 1957 (both plants are at Kellogg, Idaho); and the United States Steel Corp. (American Steel & Wire Division) permanently closed its cadmium-production facilities at Donora, Pa.

The production of cadmium sulfide, including cadmium lithopone and cadmium sulfoselenide (cadmium content), declined 17 percent in 1957. Statistics were not available on cadmium-mercury lithopone.

TABLE 3.—Cadmium oxide and cadmium sulfide produced in the United States, 1948-52 (average) and 1953-57, in pounds

Year	Oxi	de	Sulfide 1		
	Gross weight	Cd content	Gross weight	Cd content	
1948-52 (average) 1953 1954 1955 1955 1956	539, 999 1, 094, 263 958, 709 (2) (2) (2)	470, 944 956, 100 838, 222 (2) (2) (2)	3, 187, 447 3, 920, 402 3, 470, 127 4, 190, 837 3, 936, 629 3, 198, 063	1, 104, 210 1, 229, 282 1, 045, 669 1, 348, 100 1, 258, 446 1, 040, 805	

Includes cadmium lithopone and cadmium sulfoselenide.
 Figure withheld to avoid disclosing individual company confidential data.

CONSUMPTION AND USES

The apparent consumption of cadmium metal in 1957 was about 11 million pounds—13 percent below that in the peak year, 1956. Reduced barter acquisitions of cadmium by the Commodity Credit Corporation and less production of manufactured goods using cadmium in 1957 were factors that affected cadmium consumption.

Cadmium was consumed in electroplating such items as automobileengine parts, aircraft parts, radio and television parts, and nuts and bolts. Cadmium was also consumed in bearing alloys, fusible alloys, pigments, dentistry, photography, and dyeing. Nickel-cadmium batteries required up to 7 pounds of cadmium per battery. Cadmium found use in the increased number of nuclear reactors that were built and put into operation in 1957. Otherwise the uses changed little as reviewed in greater detail in the Cadmium chapter, Minerals Yearbook, volume I, 1956.

STOCKS

Stocks of cadmium metal in the hands of metal producers, compound manufacturers, and distributors totaled about 3.68 million pounds, a 14-percent increase over 1956. Stocks of cadmium compounds (cadmium content) held by compound manufacturers and distributors totaled 496,800 pounds, an 11-percent decline from 1956.

The value of cadmium contracted for in fiscal 1957 was \$4.1 million according to the Commodity Credit Corporation, or about 2.4 million pounds. This was \$1 million less than in 1956.

TABLE 4.—Industry stocks at end of year, 1956-57, in pounds of contained cadmium

		- Owaring	•				
		1956		1957			
	Metallic cadmium	Cadmium compounds	Total cadmium	Metallic cadmium	Cadmium compounds	Total cadmium	
Metal producers Compound manufacturers Distributors	1 2, 847, 123 128, 808 373, 043	490, 997 71, 016	1 2, 847, 123 619, 805 444, 059	3, 358, 645 98, 497 2 349, 854	445, 838 2 69, 511	3, 358, 645 544, 335 2 419, 365	
Total stocksConsumers' stocks	1 3, 348, 974 973, 074	562, 013 168, 226	¹ 3, 910, 987 1, 141, 300	² 3, 806, 996 (³)	² 515, 349 (³)	² 4, 322, 345 ² 1, 000, 000	

¹ Revised figure.

PRICES

Cadmium sticks, bars, and special platers' shapes declined December 23 in quoted price from \$1.70 to \$1.55 a pound, delivered in 1- to Oversupply of the metal and the reduced prices of com-5-ton lots. petitive metals were factors that contributed to the drop in price. Large quantities of cadmium were sold, both in the domestic and export markets, at prices considerably below the quoted price. London market quotation for cadmium sticks and bars declined from 12s. to 11s. 3d. (\$1.68 to \$1.57 per pound on the basis of \$2.80 per £). The French market price increased in December from 1,400 to 1,500 francs per kilogram (\$1.52 to \$1.63 per pound on the basis of \$0.0024 per franc). The quoted price in Italy for cadmium per kilogram declined during the year, in May it dropped from 2,800 to 2,700 lire, in October it lost a total of 150 lire, and again in November the price fell another 50 lire ending the year at 2,500 lire; in terms of dollars, the decline was from \$1.95 to \$1.75 per pound on the basis of \$0.00154 per

Cadmium-selenium lithopone (sulfoselenide), orange, deepshade, was quoted at \$2 a pound, in barrel quantities, in 1957. Cadmium-mercury lithopone, orange, deepshade, was quoted at \$1.78 on the same basis into June; in that month the price declined to \$1.70, at which it stayed for the remainder of the year.

FOREIGN TRADE²

Imports.—General imports of cadmium metal (1.6 million pounds) about equaled imports for consumption in 1957. General imports of the metal dropped 9 percent, and imports for consumption declined 49 percent from those in 1956. General imports of the metal averaged \$1.53 a pound in both 1956 and 1957, whereas, imports for consumption averaged \$1.49 in 1956 and \$1.53 in 1957.

General imports of flue dust (cadmium content) totaled 1.6 million pounds in 1957, down 5 percent; imports for consumption decreased 4 percent from the previous year to 1.4 million pounds. Mexico supplied all of the imported flue dust.

Tariff.—The import duty on cadmium metal remained 3.75 cents per pound in 1957—the rate established January 1, 1948, as a result of action taken at the Geneva Trade Conference of 1947. Cadmium contained in flue dust remained duty free.

Estimate.
Data not available.

² Figures on U. S. imports and exports compiled by Mae B. Price and Elsie D. Jackson, Division of Foreign Activities, Bureau of Mines, from records of the U. S. Department of Commerce, Bureau of the Census.

TABLE 5.—Cadmium metal and flue dust imported ¹ into the United States, 1955-57, by countries

[Bureau of the Census]

Country	19	55	1956	3	1957	•
	Pounds	Value	Pounds	Value	Pounds	Value
METALLIC CADMIUM						
North America: CanadaSouth America: Peru	665, 3 92 27, 826	\$959, 236 47, 744	809, 750 28, 409	\$1, 211, 159 48, 295	1, 042, 359 50, 413	\$1,585,749 81,470
Europe: Belgium-Luxembourg France	263, 344	382, 350	287, 496	455, 990	11,000 2,205	18, 700 3, 729
Germany, West	760, 587 91, 557	1, 070, 797 131, 328	44, 092 234, 800 33, 075 2, 094	67, 925 363, 071 51, 897 3, 078	55, 023 22, 046	88, 528 31, 526
Total Asia: Japan Africa: Belgian Congo	1, 115, 488 247, 046 220, 500	1, 584, 475 347, 480 330, 750	601, 557 43, 951 264, 410	941, 961 66, 774 407, 907	90, 274 77, 133 330, 218	142, 483 112, 705 508, 309
Total metallic cadmium	2, 276, 252	3, 269, 685	1,748,077	2, 676, 096	1, 590, 397	2, 430, 716
FLUE DUST (CD CONTENT)						
North America: Canada Mexico	160, 774 1, 865, 335	186, 189 1, 200, 835	1, 624, 655	1, 149, 347	1,549,876	1, 092, 291
TotalSouth America: Peru	2, 026, 109 32, 562	1, 387, 024 35, 330	1, 624, 655	1, 149, 347	1, 549, 876	1, 092, 291
Total fiue dust	2, 058, 671	1, 422, 354	1, 624, 655	1, 149, 347	1, 549, 876	1, 092, 291
Grand total	4, 334, 923	4, 692, 039	3, 372, 732	3, 825, 443	3, 140, 273	3, 523, 007

 $^{^1}$ Data are "general imports;" that is, they include cadmium imported for immediate consumption plus material entering the country under bond.

TABLE 6.—Cadmium metal and flue dust imported for consumption in the United States, 1955-57, by countries

[Bureau of the Census]

Country	19	55	19	956	1957		
	Pounds	Value	Pounds	Value	Pounds	Value	
METALLIC CADMIUM						·	
North America: Canada South America: Peru	565, 392 27, 826	\$802, 121 47, 744	932, 150 28, 409	\$1, 400, 474 48, 295	1, 042, 359 50, 413	\$1, 585, 749 81, 470	
Europe: Belgium-LuxembourgFrance	175, 829	252, 828	386, 034	602, 047	11, 000 2, 205	18, 700 3, 729	
Germany, West Italy Netherlands United Kingdom	66, 143 54, 606	88, 082 77, 161	44, 092 936, 745 33, 075 2, 094	67, 925 1, 345, 780 51, 897 3, 078	55, 023 17, 196	88, 528 24, 590	
TotalAsia: JapanAfrica: Belgian Congo	296, 578 37, 699	418, 071 52, 025	1, 402, 040 268, 129 484, 910	2, 070, 727 382, 184 738, 657	85, 424 77, 133 330, 218	135, 547 112, 705 508, 309	
Total metallic cadmium	927, 495	1, 319, 961	3, 115, 638	4, 640, 337	1, 585, 547	2, 423, 780	
FLUE DUST (CD CONTENT)							
North America: Mexico	1, 832, 827	1, 146, 253	1, 451, 889	876, 046	1, 399, 851	837, 173	
Total flue dust	1, 832, 827	1, 146, 253	1, 451, 889	876, 046	1, 399, 851	837, 173	
Grand total	2, 760, 322	2, 466, 214	4, 567, 527	5, 516, 383	2, 985, 398	3, 260, 953	

Exports.—Exports declined 46 percent in 1957 (cadmium is the metal of chief value in the exports). The United Kingdom received the largest quantity—more than 600,000 pounds.

TABLE 7.—Cadmium metal, alloys, dross, flue dust, residues, and scrap exported from the United States, 1948-52 (average) and 1953-57

[Bureau of the Census]

Year	Pounds	Value	Year	Pounds	Value
1948–52 (average)	619, 018	\$1, 446, 018	1955	1, 393, 915	\$1, 938, 355
	65, 866	60, 256	1956	1, 284, 248	1, 932, 305
	998, 959	1, 422, 040	1957	692, 758	1, 059, 569

WORLD REVIEW

World production of cadmium metal continued its record-breaking upward trend begun in 1950. World output of cadmium in 1957 was 20.4 million pounds—2 percent above 1956. The continued increase in world output was attributed to the additional cadmium refineries put into production since World War II.

NORTH AMERICA

The United States contributed 52 percent of total world cadmiummetal production, obtaining its raw materials from both domestic and foreign sources. This contribution is the lowest percentage

since 1945, when it was about 76 percent.

Canada.—For the third successive year cadmium production in Canada broke previous records. Consolidated Mining & Smelting Co. produced approximately 2.11 million pounds at its integrated lead-zinc smelting-refining plants at Trail, British Columbia. In 1957 Consolidated Mining & Smelting Co. delivered to consumers in eastern Canada 99.95-percent-pure cadmium, in the form of sticks, bars, and balls at the following prices: 10,000 pounds or more, \$1.60 a pound; 5,000–10,000 pounds, \$1.75 a pound; 2,000–5,000 pounds, \$1.85 a pound; and less than 2,000 pounds, \$1.95 a pound.

Hudson Bay Mining & Smelting Co. produced the remainder, about

226,000 pounds, at its Flin Flon, Manitoba, works.

EUROPE

United Kingdom.—The output of cadmium in the United Kingdom was 228,000 pounds in 1957—9 percent below the year before. Consumption increased 5 percent to about 2.16 million pounds. Details of quantities (in pounds) used during the year for various purposes were as follows: Plating anodes, 1,149,100; plating salts, 182,600; cadmium-copper alloy, 102,600; other alloys, 75,900; alkaline batteries, 128,700; dry batteries, 8,400; solder, 81,200; colors, 385,200; miscellaneous uses, 42,200.

TABLE 8.—World production of cadmium, by countries, 1948-52 (average) and 1953-57, in thousand pounds 1

[Compiled by Augusta W. Jann and Berenice B. Mitchell]

Country	1948-52 (average)	1953	1954	1955	1956	1957
North America:						
Canada	947	1, 118	1,087	1, 919	2, 339	2, 340
Guatemala					107	84
Mexico 2	178	2, 113	1, 130	2,855	1,892	1,678
United States (primary):	1	1		l		
Metallic cadmium	8 8, 192	3 9, 682	3 9, 416	3 9, 754	4 10, 604	4 10, 549
Cadmium compounds (Cd content)		85	136	(5)	(5)	(5) 6 140
South America: Peru	9	23	66	138	107	6 140
Europe:			i			
Austria 6		- -			7 22	22
Belgium 6	737	1,040	1,100	7 1, 433	7 1, 323	1, 323
France	156	283	313	397	238	6 350
Germany, West	68	227	618	709	645	608
Italy Netherlands 6	233	401	458	433	403	485
Netherlands 6			7 22	7 34	7 36	36
Norway	170	197	178	255	277	6 244
Poland 6	380	485	500	550	542	556
Spain	11	16	21	22	24	6 18
Spain	215	440	470	680	795	1,050
United Kingdom	283	380	315	337	251	228
Asia: Japan	197	459	611	757	886	873
Africa:				1		"
Belgian Congo	52	71	139	366	611	660
Rhodesia and Nyasaland, Federation of:			1 200	1		
Northern Rhodesia			l	l	117	117
South-West Africa	1, 338	1, 194	1,620	1,402	2,328	2,838
Oceania: Australia	609	665	645	674	618	6 750
~ ~~~~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~						
World total (estimate)	12, 480	15, 570	16, 100	18, 460	19, 950	20, 430
	, 100	20,010	-0,100	20, 200	10,000	

This table incorporates a number of revisions of data published in previous Cadmium chapters. Data do not add to totals shown, owing to rounding where estimated figures are included in the detail.
 Cadmium content of flue dust exported for treatment elsewhere; represents in part shipments from stocks on hand. To avoid duplication of figures, data are not included in the total.
 In addition, secondary metal and compounds were as follows: 1948-52 (average), 236,000 pounds; 1953, 70; 1954, 138; and 1955, 286,000 pounds.
 Includes secondary.

Includes secondary.

Bureau of Mines not at liberty to publish figures.

 According to the 44th annual issue of Metal Statistics (Metallgesellschaft).
 Estimates revised on basis of technologic developments and an assumed average cadmium content of 0.1 percent in zinc concentrates.
⁹ Cadmium content of concentrates exported for treatment elsewhere. To avoid duplication of figures,

data are not included in the total.

TECHNOLOGY

A clearer picture of the quantitative utilization of cadmium metal to filter out low-energy (thermal) neutrons in nuclear reactors developed in 1957. The Nuclear Products-Erco Division of ACF Industries, Inc., built some reactors using 11 to 28 pounds of cadmium per reactor in the control rods. The rated power of 5 research reactors ranged from 1,000 kilowatts to 30,000 kilowatts and together used 100 pounds of the metal for control rods. These rods are frequently immersed in the stream of water that cools the reactor core. The cadmium is protected from corrosion by aluminum. A layer of cadmium 0.040 to 0.080 inch thick is sprayed onto a sheet of aluminum, and then over that is sprayed a protective layer of aluminum. The quantity of cadmium used as control rods depends largely upon the power produced per unit volume of reactor core. An in-and-out oscillatory motion of some of the control rods holds the number of thermal neutrons available for further reaction with the uranium fuel at a level

that controls power production of a reactor and prevents high or

rapidly increasing power output.

Cadmium was also used as a lining material of the racks and vaults in which the uranium-bearing fuel elements are kept. In this application, cadmium insures that the number of thermal neutrons is kept low enough so that a nuclear chain reaction cannot develop due to the nearness of adjacent fuel elements.

Atomics International, a division of North American Aviation, Inc., built a laboratory reactor that used about 2.4 pounds of Commercial-

grade, unalloyed cadmium-metal sheet as control-rod material.

A prototype nuclear-energy-powered battery was built in 1957. Absorption of beta particle radiation from a promethium (oxide) coating on the phosphor cadmium sulfide or a mixture of cadmium and zinc sulfides caused emanation from the phosphor of red and infrared radiation, which was picked up by adjacent silicon photocells and converted to electricity.

A steel-encased, rechargeable, sintered-plate, alkaline-electrolyte, nickel-cadmium battery was introduced into the United States in 1957. The battery was about the size of a 50-cent coin; hermetically sealed; nongassing upon re-charging; of high-discharge rate because of its low internal resistance; ruggedly constructed; and maintenance-free. The battery has a nominal voltage of 1.2 and operates at normal temperature ranges.

A patent ³ was issued for producing a uniform adherent cadmium coating on irregularly shaped metal surfaces. The metal article to be coated is immersed in a fused-salt bath containing 88 to 99.9 percent of alkali-metal formate and 1 to 12 percent of cadmium compound.

The cadmium ionizes and forms the coating.

A patent 4 described the use of cadmium anthranilate to eliminate tapeworm in animals.

TOXICOLOGY,

A death due to inhalation of cadmium oxide fumes was reported in 1957.⁵ Two 500-gram batches of cadmium propionate were being dried in an electrically heated oven at 100° C. The temperature control was supposedly set for 60° C. for the hour that operating personnel was not attending the oven. During the absence of the attendants the compound exploded, blowing the oven door open and filling the room with a reddish brown smoke. Several people entered the room while it was filled with fumes. Later they became ill; 1 man died from the exposure about 6 days later. Postmortem examination revealed the presence of cadmium oxide in his urine, stomach contents, lungs (15 milligrams), liver (9 milligrams), heart (2 milligrams), and kidneys (1 milligram). Laboratory tests indicated that decomposition of cadmium propionate occurs in the temperature range of 200° to 290° C.

Couch, Dwight E., Deposition of Cadmium by Chemical Reduction: U. S. Patent 2,790,733, Apr. 30, 1957.
 Guthrie, James E., Cadmium Anthranilate Containing Anthelmintics: U. S. Patent 2,797,182, June 25,

<sup>1957.

&</sup>lt;sup>5</sup> Manley, C. H., and Dalley, R. A., A Fatal Case of Cadmium Poisoning: The Analyst, vol. 82, No. 973, April 1957, pp. 287–289.

Calcium and Calcium Compounds

By C. Meade Patterson¹ and Annie L. Mattila²

ALCIUM CHLORIDE production in the United States reached an alltime high in 1957, responding to the recently inaugurated, long-term, multi-billion-dollar, Federal-aid program for construction and improvements of the interstate highway network by 1969. An even greater demand for calcium chloride is anticipated, once the national highway program gets fully under way and the rate of concrete road construction grows.

DOMESTIC PRODUCTION

Calcium for Government requirements was produced by Nelco Metals, Inc., operating the Government-owned plant at Canaan, Conn., during 1957. Lime was reduced by heating with aluminum in vacuum retorts. A small quantity of calcium also was produced from lime by Electro Metallurgical Co., Division of Union Carbide Corp. Calcium for commercial needs was imported from Canada.

Calcium-silicon alloy was produced in the United States during 1957.

The total calcium chloride and calcium-magnesium chloride obtained from natural brines and dry lake deposits and as ammoniasoda byproducts increased to a new high in 1957, but production from natural brines alone decreased 8 percent in 1957 compared with 1956. The output of calcium chloride as an ammonia-soda byproduct constituted about 60 percent of the total domestic production. According to the Bureau of the Census, shipments of solid and flake (calcium chloride and calcium-magnesium chloride 77–80 percent CaCl₂) were 535,618 short tons valued at \$14,843,000 in 1957 compared with 531,561 short tons valued at \$14,099,000 in 1956. Shipments of calcium chloride and calcium-magnesium chloride brine (40–45 percent CaCl₂) in 1957 were 181,607 short tons valued at \$1,902,000, compared with 183,229 (revised figure) short tons valued at \$1,779,000 in 1956.

TABLE 1.—Calcium chloride and calcium-magnesium chloride from natural brines sold by producers in the United States, 1948–52 (average) and 1953–57 (average)

(In terms of 75 percent (Ca,Mg) Cl₂)

Year	Short tons	Value	Year	Short tons	Value
1948-52 (average)	306, 404	\$4, 100, 996	1953-57 (average)	339, 342	\$6, 170, 027

¹ Commodity specialist.

³ Statistical assistant. 3 Chemical Week, Calcium Chloride Continues Its Climb: Vol. 81, No. 23, Dec. 7, 1957, pp. 109–110, 112.

Calcium chloride and calcium-magnesium chloride were produced from underground saline waters or from a dry lake bed by the following companies:

Company:	Plant location
Hill Bros. Chemical Co	Amboy, Calif.
National Chloride Co. of America	Do.
California Salt Co	Do.
Michigan Chemical Corp	St. Louis, Mich.
Morton Salt Co	Manistee, Mich.
Wilkinson Chemical Co	Mayville, Mich.
	(Midland Mich
Dow Chemical Co	Ludington, Mich.
Westvaco Chlor-Alkali Div. Food Machinery & Chem-	
ical Corp	South Charleston,
	W. Va.

In California natural chloride brine was produced from the dry bed of Bristol Lake, San Bernardino County, Calif. Two articles described the California dry-lake-bed calcium chloride production and processing. The Michigan and West Virginia companies recovered chlorides of calcium and magnesium from underground formations by evaporation of well brines. Salt, bromine, and magnesium compounds were coproducts. The double salt (calcium-magnesium chloride) and bromine compounds were prepared from well brines obtained near South Charleston, W. Va., by the Westvaco Chlor-Alkali Division of the Food Machinery & Chemical Corp.

Calcium chloride was chemically produced by the Solvay Process Division of Allied Chemical & Dye Corp., New York, N. Y., and Columbia-Southern Chemical Corp., Pittsburgh, Pa., by the am-

monia-soda process.

CONSUMPTION AND USES

Calcium was used principally in the metallurgical industries as a reducing agent in 1957. Many uses were made of its affinity for oxygen, nitrogen, sulfur, and carbon in the production of both ferrous and nonferrous metals and alloys. Calcium was a reducing agent in preparing chromium, thorium, titanium, uranium, vanadium, and zirconium and a decarburizer and desulfurizer for ferrous metals and alloys. It was also used to debismuthize lead, to deoxidize iron castings, and to control grain size and inhibit carbide formation in steel production. Calcium is a useful alloying agent for aluminum, copper, lead, magnesium, and bearing metals, to separate argon and nitrogen, to desulfurize petroleum fractions, and to dehydrate alcohol. Calcium-silicon or calcium silicide (calcium 30–33 percent and silicon 60–65 percent) was also used in the metallurgy of steel and alloys by reason of its reducing capacity.

reason of its reducing capacity.

The estimated 1957 United States calcium chloride consumption by uses was as follows: Maintenance of unpaved roads, 30 percent; brine refrigeration and others, 25 percent; industrial processing, 17 percent; winter maintenance of highways, 15 percent; and concrete production, 13 percent. American Concrete Institute approval of

⁴ Nordyke, L., California Salt's Mine in the Mojave: Explosives Eng., vol. 35, No. 5, September-October 1957, pp. 134-142. Ver Planck, W. E., Mineral Commodities of California. Calcium Chloride: California Dept. of Nat. Res., Div. of Mines, San Francisco, Calif., Bull. 176, Dec. 1957, pp. 101-104.

its use in concrete further improved calcium chloride's future prospects.5

Calcium chloride has assumed importance by virtue of its hygroscopicity and low freezing point (-51° F.) and the relatively high specific gravity of its solutions. As a hygroscopic salt, it was used in dehumidifying air, fireproofing foliage, drying walnuts, and dustlaying roads, coal mines, construction yards, parking lots, and playgrounds. Its low freezing point makes it useful in refrigeration, ice and ice-cream manufacture, deicing roads, and freezeproofing fire barrels and coal and cinder piles. Having a specific gravity up to 40 percent higher than water,6 calcium chloride solutions are useful as oil-well drilling fluids and as ballast in weighting tires of tractors and earth-moving equipment (hydroflation).7 Calcium chloride was used in highway construction to stabilize bases, wearing courses, and shoulders. In concrete, calcium chloride provides quicker initial set, higher early strength, greater ultimate strength, uniform curing, increased workability, and cold-weather protection. As an industrial chemical, this readily available, soluble calcium compound was useful in recovering some metals from their ores and in precipitating calcium alginate from seaweed.

PRICES AND SPECIFICATIONS

E&MJ Metal and Mineral Markets quoted the New York City price of calcium, 97-98 percent pure, cast in slabs and small pieces, in ton lots, at \$2.05 a pound throughout 1957. This price has not changed, at least as far back as the beginning of 1952. The average value of imported calcium was \$1.26 a pound. Calcium silicon prices were not quoted, but the average value of imports in 1957 was 19.5 cents a pound compared with 16.5 cents in 1956. Oil, Paint and Drug Reporter quoted the following prices for calcium chloride in its various commercial forms during 1957:

Grade and form:	Price, Jan. 1, 1957	Price, Dec. 31, 1957
USP granular	\$0.32 per lb. (drums), no change.	\$0.32 per lb.
Granular (or crystal- line) purified.	\$0.27 per lb. (drums), no change.	\$0.27 per lb.
Flake, anhydrous, 94–97 percent.	Reported only for period Dec. 2-30, 1957 (paper bags, carlots, at works, frt. equald.), no change.	\$37.80 per ton.
Flake, 77–80 percent.	\$29.00 per ton through Feb. 18, 1957 (paper bags, carlots, at works frt. equald.), afterward.	\$31.00 per ton.
Powdered, 77–80 percent	\$35.00 per ton through Feb. 18, 1957 (bags, carlots, at works, frt. equald.), afterward.	\$37.00 per ton.
Pellets, 77-80 percent.	\$35.40 per ton through Feb. 18, 1957 (bags, carlots, at works, frt. equald.), afterward.	\$37.80 per ton.

Work cited in footnote 3.
 Calcium Chloride Institute, Properties of Calcium Chloride Solutions: Brief MB-2, Washington, D. C., 1 p.
 Columbia-Southern Chemical Corp., Pittsburgh, Pa., The Way to Better Traction; Tire Weighting With Calcium Chloride Solution: March 1957, 6 pp.

Grade and form:	Price, Jan. 1, 1957	Price, Dec. 31, 1957
Solid, 73–75 percent	\$34.00-\$71.00 per ton through Feb. 18, 1957 (drums, less than carlots, at works, frt.	\$36.00-\$73.00 per ton.
	equald.), afterward.	
Solid, 73-75 percent.		\$29.50 per ton.
T . 10	ward.	@10.70 t
Liquor, 40 percent	\$12.35 per ton through Feb. 18, 1957 (tank cars, at works, frt. equald.), afterward.	\$12.50 per ton.

In Eastern United States, granular, high-purity calcium chloride was prepared in C. P. (chemically pure) and U. S. P. (United States Pharmacopoeia) grades. Excluding the Commercial-grade anhydrous calcium chloride flake and pellets (94–97 percent), Eastern United States commercial calcium chloride flake, powder, and pellets run 77–80 percent, whereas solid California calcium chloride flake runs 73–75 percent. Much California calcium chloride was sold in solutions of 36° to 40° Be., 33 to 38 percent calcium chloride at 60° F.9°

FOREIGN TRADE¹⁰

Imports.—Calcium imports remained small in 1957. Canada continued as the only foreign supplier.

Calcium-silicon alloy imports in 1957 increased about 160 percent over 1956. Forty-four percent was from Norway, 31 percent from West Germany, 21 percent from France, and 4 percent from Japan. In 1957, of the 1,989 short tons of calcium chloride worth \$77,058

In 1957, of the 1,989 short tons of calcium chloride worth \$77,058 imported, Belgium-Luxembourg supplied 49 percent; West Germany, 44 percent; United Kingdom, 5 percent; and Italy and Canada, each 1 percent.

Exports.—Ninety-seven percent of the exported calcium chloride went to Canada, Cuba, Mexico, and Colombia, in descending order.

TABLE 2.—Calcium metal and calcium-silicon imported for consumption in the United States, 1948-52 (average) and 1953-57

[Bureau of the Census]

Year	Calcium metal		Calcium-silicon	
Teal	Pounds	Value	Pounds	Value
1948–52 (average)	281, 183 990, 017 685, 417 699, 799	\$296, 770 1, 009, 934 728, 379 834, 732	206, 626 178, 138 689, 114	\$15, 767 22, 055 92, 366
1956	8, 387 24, 204	10, 109 39, 411	194, 869 498, 735	32, 191 97, 077

⁸ Work cited in footnote 4 p. 6, pt. 2.9 Work cited in footnote 6.

Work cited in location 6.

10 Figures on imports and exports compiled by Mae B. Price and Elsie D. Jackson, Division of Foreign Activities, Bureau of Mines, from records of the U. S. Department of Commerce, Bureau of the Census.

TABLE 3.—Calcium chloride imported for consumption into and exported from the United States, 1948-52 (average) and 1953-57

[Bureau of the Census]

Year	Imports		Exports	
200	Short tons	Value	Short tons	Value
1948–52 (average) 1953 1954 1955 1956 1957	806 2, 671 1, 547 1, 844 1, 855 1, 989	\$27, 556 84, 594 51, 249 57, 881 59, 635 77, 058	17, 201 11, 572 10, 987 20, 743 32, 523 47, 965	\$500, 605 370, 799 374, 332 607, 579 1, 056, 958 1, 627, 548

Canada alone received 93 percent of the total. The remaining 3 percent was distributed among 20 countries in Latin America, Asia, Europe, and Africa, in descending order.

WORLD REVIEW NORTH AMERICA

Canada.—Dominion Magnesium, Ltd., Toronto, with a plant at Haley, near Ottawa, continued to be the world's leading calcium producer. Calcium was prepared by thermal reduction of lime with aluminum in vacuum retorts. Most of the metal was supplied as ingots, billets, granules, and powder to consumers in the United Kingdom in 1956,¹¹ but the United States was Canada's leading calcium consumer in 1957.

Calcium production in 1957 was only 66,341 pounds valued at Can\$83,589, or Can\$1.26 a pound. By contrast, in 1956 calcium production had been 394,900 pounds valued at Can\$515,305 or

Can\$1.30 a pound.

TABLE 4.—Value of Canadian calcium exports, 1955-57

[Canada Department of Mines]

	1955	1956	1957
United StatesUnited Kingdom	Can\$762, 260 507, 706 165	Can\$12, 560 616, 605	Can\$24, 784 7, 887
Australia. Belgium. France.	12, 030	16, 360	17, 634 20, 338 54
India	788 330	3, 243 330	6, 795
Total	1, 283, 279	649, 098	77, 492

¹¹ Dominion Bureau of Statistics, Industry and Merchandising Division (Ottawa), Miscellaneous Metal Mining Industry (1956): 1957, p. F-14.
¹² Dominion Bureau of Statistics, Preliminary Estimate of Canada's Mineral Production for 1957 (Ottawa): Jan. 2, 1953, p. 3.

486221--58---20

TABLE 5.—Calcium compounds exported from Canada, 1956-57, by countries of destination

[Canada Department of Mines]

Destination		1956	1957	
	Short tons	Value	Short tons	Value
United States	2, 529 8, 802 2, 365 2, 903	Can\$161, 120 653, 753 221, 468 264, 039	36, 709 22, 998 3, 575 3, 115 2, 014	Can\$3, 182, 982 1, 781, 287 320, 762 294, 630
Other countries	8, 455	724, 989	13, 664	243, 388 1, 380, 389
Total	25, 054	2, 025, 369	82, 075	7, 203, 438

TABLE 6.—Calcium compounds imported for consumption in Canada, 1956-57 [Canada Department of Mines]

Calcium compound	1956		1957	
	Short tons	Value	Short tons	Value
Calcium arsenate. Calcium chloride. Chloride of lime. Other calcium compounds.	6 29, 963 1, 658 3, 351	Can\$888 853, 407 221, 476 727, 634	41 45, 413 1, 316 3, 215	Can\$4, 952 1, 336, 776 212, 437 715, 527
Total	34, 978	1, 803, 405	49, 985	2, 269, 692

The only Canadian manufacturer of calcium chloride in 1955 was Brunner Mond Canada, Ltd., Amherstburg, Ontario.¹³ Most calcium chloride consumed came from the United States.

Exports of calcium compounds, most of which were shipped to the United States, more than trebled in 1957 over 1956. Canada's imports of calcium compounds in 1957 consisted mainly of calcium chloride from the United States. 14

EUROPE

United Kingdom.—Calcium metal and its alloys were available in England in 1957 from the following firms: ¹⁵ Blackwell's Metallurgical Works, Ltd., Liverpool; Mitcham Smelters, Ltd., Surrey; New Metals & Chemicals, Ltd., and Oakland Metal Co., Ltd., London; and Watsons, Ltd., Sheffield.

TECHNOLOGY

A viscous slurry of calcium chloride, magnesium hydroxide, hydrated lime, and laurylpolyglycol ether was found useful for laying

Metal Industry Handbook and Directory, 1957, Iliffe & Sons, Ltd.: London. 1957, 536 pp.

Dominion Bureau of Statistics, Industry and Merchandising Division (Ottawa), The Acids, Alkalies and Salts Industry (1955): 1957, p. B-14.
 Figures on Canadian exports and imports compiled from data in letters to Bureau of Mines from H. D. Worden, Canada Department of Mines and Technical Surveys, Mines Branch, Ottawa, Mar. 19, 1958.

dust in German coal mines, where it was sprayed on ceilings and coal faces.16

A calcium alloy slug in the crankcase may so prolong the lubricating properties of motor oils that automobiles of the future may travel

20,000 miles without an oil change. 17

The principal hazard in handling calcium is the risk of fire resulting from hydrogen formed by calcium reacting with moisture. ingly, it is usually shipped in lump form in an argon atmosphere

within special containers.18

Calcium chloride played a part in erecting the 60-story Chase Manhattan building in New York City. To provide protection against ground water during excavation, a gel made by mixing solutions of calcium chloride and sodium silicate in the ratio of 4:5 was pumped into the ground constantly by 15-man crews. 19

Buggisch, H., Müller-Römer, J., and Nees, H. (assigned to Chemische Fabrik Kalk G. m. b. H., Köln-Kalk, Germany), Composition for Binding Coal Dust: U. S. Patent 2,786,815, Mar. 26, 1957.
 Engineering and Mining Journal, vol. 157, No. 9, September 1956, p. 112.
 Chemical and Engineering News, Metals' Dangers Listed: Vol. 36, No. 8, Feb. 24, 1958, pp. 64–65.
 Gillson, J. L., Industrial Minerals: Min. Cong. Jour., vol. 44, No. 2, February 1958, p. 96.

Cement

By D. O. Kennedy 1 and Betty M. Moore 2

HE PRODUCTION of cement in the United States suffered a setback in 1957. Even the impetus of the President's highway program was unable to offset the effects of strikes in the construction industry on the west coast and a strike in the cement industry in June and July. Of the 162 cement plants in the United States, 68 were shut down in July. As a result, production and shipments decreased 11 percent for the first 7 months of 1957 compared with the first 7 months of 1956. Although production and shipments during the rest of 1957 and 1956 were about equal, the final figures for 1957 were 6 percent below those for 1956. Some contractors and suppliers felt that the highway program was lagging and was partly responsible for the decrease in cement production. The Bureau of Public Roads denied any delay, stating that the program was virtually on schedule and that actual construction always was 21 months behind preliminary engineering and right-of-way acquisitions.3

The decrease in cement production in 1957 did not slow down expansion programs of the cement industry. Six companies announced plans for adding more than 5 million barrels to the productive capacity of their plants. Plans for 8 new cement plants were announced by 6 established and 2 new companies. Under the stimulus of plans for constructing dams on the Colorado River, 5 companies announced that they intended to build cement plants in Arizona or

New Mexico.

Three classes of cement were produced in the United States in 1957—portland, natural, and slag cements. In addition, prepared masonry cements were produced at many portland cement plants and at all other cement plants.

pp. 60-65.
Construction Business, Beginning to Build Up Steam: Vol. 39, No. 11, November 1957, pp. 48, 53.
Trauffer, W. E., Highway Program Progressing Satisfactorily: Pit and Quarry, vol. 50, No. 5, November 1957, p. 10.

Assistant Chief, Branch of Construction and Chemical Materials.
 Statistical clerk.

³ Bell, Joseph N., The Road Program Isn't in Trouble: Rock Products, vol. 60, No. 12, December 1957,

TABLE 1.—Salient statistics of the cement industry in the United States, 1948-52 (average) and 1953-57

	1948-52 (average)	1953	1954
Production: Portlandthousand barrels Prepared masonrydo Natural, slag, and hydraulic limedo	227, 296 (²) ² 3, 545	264, 181 (²) ³ 3, 488	272, 353 (²) * 3, 504
Totaldo	230, 841	267, 669	275, 857
Capacity used at portland-cement millspercent	84. 4	90. 5	91. 4
Shipments from mills: Portland thousand barrels Prepared masonry do Natural, slag, and hydraulic lime do	226, 133 (2) 3 3, 550 229, 683	260, 879 (2) 3 3, 459 264, 338	274, 872 (²) ² 3, 513 278, 385
Total	550, 363	707, 604 \$2. 68 19, 414 386 2, 551 262, 173	773, 076 \$2. 78 16, 612 450 1, 859 276, 977
World: Production (estimated)do	776, 468	⁵ 1, 051, 902	
World: Production (estimated)do		5 1, 051, 902 1956	\$ 1, 142, 851
Production: Portland Propered masonry Natural, slag, and hydraulic lime	776, 468 1955 297, 453 16, 519	5 1, 051, 902	1957 298, 424 14, 701
Production: Portlandthousand barrels	776, 468 1955 297, 453 16, 519 941	1956 316, 438 15, 906	1957 298, 424 14, 701 631
Production: Portland thousand barrels for the prepared masonry do Natural, slag, and hydraulic lime do do do do do do do do do do do do do	297, 453 16, 519 941	1956 316, 438 15, 906 1, 128	\$ 1, 142, 851 1957 298, 424 14, 701 631 313, 756
Production: Portland	776, 468 1955 297, 453 16, 519 941 314, 913	1956 316, 438 15, 906 1, 128 333, 472	⁸ 1, 142, 851

¹ Includes Puerto Rico.

Not included in tabulation until 1955.

3 Includes masonry cement from natural, slag, and hydraulic-lime cement plants.
4 Value received f. o. b. mill, excluding cost of containers.

Shipments from domestic mills plus imports minus exports.

PORTLAND CEMENT

PRODUCTION AND SHIPMENTS

Production of portland cement decreased from 316 million barrels in 1956 to 298 million barrels in 1957. Less than one-third of the plants that produced cement in 1956 had larger outputs in 1957 than in 1956. Four new plants began producing in 1957: Lone Star Cement Corp., Lake Charles, La.; Marquette Cement Manufacturing Co., Milwaukee, Wis.; Permanente Cement Co., Cushenbury, Calif.; and Texas Portland Cement Co., Echo, Tex. Although companies with other interests purchased operating cement plants and thus entered the cement industry, the Texas Portland Cement Co. was the

TABLE 2.—Finished portland cement produced, shipped, and in stock in the United States, 1956-57, by districts

n Dec. 31		Change from 1956 (per-	cent)	++++++++++++++++++++++++++++++++++++++	+27.6 +31.8 +1.4
Stocks at mills on Dec. 31	Thousand barrels		1957	4,1,1,500 9,200 9,	28, 579 5, 077 931
Stocks	Tho	-	1956	13, 238 11, 369 11, 288 11, 228 11, 228 11, 100 18, 282 11, 100 1, 400 1,	1 22,395 1 3,851 1 918
		Change from 1956 (percent) in—	Aver- age value	++++++++++++++++++++++++++++++++++++++	+++ 3.6.1 8.10
		Chan 1956 (J	Bar- rels	11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	-14.1 -10.1
lls	1957	Value	Aver- age per barrel	######################################	83.83 81.83 81.83
from mi		3Δ	Total (thou- sand dollars)	717 78,3,4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1	921, 959 140, 100 34, 307
Shipments from mills		Thou-	sand barrels	35,705 12,745 12,745 12,745 13,745 14,745 17,745 17,745 17,745 17,745 17,745 17,745 18,745 19,745	289,698 • 42,519 10,794
SIS		lue	Aver- age per barrel	### ### ### ### ### ### ### ### ### ##	3.05 3.10 3.07
	1956	8 7			940, 020 153, 506 36, 888
		Thou-	sand barrels	14.00	1 308,678 49,527 12,014
п		Change from 1956 (per-	cent)	1 + + 1 + + + + + +	-5.7 -12.6 -12.7
Production	Thousand barrels		1957		298, 424 44, 004 10, 866
Н	Thou		1956	20, 25, 27, 28, 27, 28, 27, 28, 27, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28	316, 438 50, 358 12, 441
Active	nts		1957	11101 1010 1010 1010 1010 1010 1010 10	25. 20.
Act	pla		1956	1110r840804480 DD DED880rc98	160 24 3
		District		Esstern Pennsylvania, Maryland New York, Maine Olio Western Fennsylvania, West Virginia. Michigan. Illinois Indiana, Kentucky, Wisconsin Alabama Permessee Virginia, South Carolina Georgia, Florida. Louislana, Mississippi. Iowastern Missouri, Minnesota, South Dakota. Western Missouri, Minnesota, South Kansas Western Missouri, Mobraska, Okla- homa, Arkansas. Texas Texas Golorado, Arizona, Utah Wyoming, Montana, Idaho Wyoming, Montana, Idaho Wyoming, Montana, Idaho Wyoming, Montana, Idaho Woming, Womi	Total. Pennsylvania. Missouri.

1 Revised figure.

3 Does not include finished cement used in manufacturing prepared masoury cement, as follows: 1956; 2,884,000 barrels, 1957; 2,542,000 barrels.

TABLE 3.—Production, shipments from mills, and stocks at mills of finished portland cement in the United States in 1957, by months ¹ and districts, in thousand barrels

Decem- ber	3, 035 1,1458 1,1458 1,1110 1,1110 1,201 1,433 1,433 1,433 1,539 1	23, 386 24, 429 1, 615 754 661 681 892 482 482 482 482 482 482 482 482 482 48
Novem-	3, 473 1, 1, 654 1, 1, 12 1, 1, 12 1, 1, 13 1, 1, 13 1, 1, 1, 13 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	25, 014 25, 869 3, 012 1, 208 1, 208 1, 208 1, 204 1, 204 4, 4, 111 1, 204 4, 2
October	3 970 11,1744	30, 121 29, 051 2, 061 2, 005 1, 279 2, 566 2, 566 1, 279 2, 566 983 688 695 695 626
Septem- ber	7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	30, 884 28, 643 3, 967 2, 027 1, 246 2, 13 1, 124 1, 177 1,
August	3, 970 1, 1, 1480 1, 1, 1480 1, 1, 1480 1, 1, 199 1, 1, 199 1, 1, 199 1, 1, 199 1, 1, 624 1, 624 1, 624 1, 624 1, 634 1,	31,406 30,055 30,055 2,2540 2,2560 2,175 1,175 1,175 836 836 836 836 836 836 836 836
July	1, 289 2, 1, 289 2, 280 2, 461 1, 286 539 554 611 1, 283 1, 789 1, 789 1, 578 1,	20, 287 29, 288 29, 488 304 2, 241 1, 833 3, 657 1, 887 1, 887 207 207 207 207 207 207 207 207 207 20
June	3, 156 1, 242 1, 242 1, 246 2, 154 2, 154 1, 572 1, 573 1, 693 1, 886 1, 886 1, 884 1,	28, 462 28, 771 29, 287 29, 287 29, 287 29, 287 29, 287 1, 784 1,
May	3, 672 1, 884 1, 1884 1, 1159 1, 1159 2, 068 883 883 642 1, 173 1, 162 1, 162 1, 162 1, 162 1, 162 1, 163 1,	27, 485 29, 606 4, 056 2, 222 2, 222 2, 1599 1, 599 1, 739 1, 237 1, 237
April	3,318 1,611 1,611 1,651 1,651 1,222 1,050	23, 967 26, 134 2, 134 1, 002 1, 313 1, 323 1, 323 1, 823 1, 823
March	3, 073 1, 438 1, 438 1, 028 1,	22, 642 23, 386 23, 386 3, 278 1, 283 1, 284 1, 009 1, 009 6,16 641 641 641 641 641 641 641 641 641 6
February	1, 052 1, 052 1, 052 1, 052 1, 052 1, 053 1,	17, 827 19, 578 1, 882 679 679 679 564 564 2708 874 874 874 874 874 874 874 874 874 87
January	2, 665 895 896 898 898 898 898 898 698 698 608 608 608 608 608 608 608 608 608 728 608 608 728 608 728 608 728 608 728 738 738 748 748 748 748 748 748 748 748 748 74	19, 320 21, 440 1, 326 418 350 137 370 137 371 372 373 373 4119 4119 6411
District	PRODUCTION Bastern Pennsylvania, Maryland. New York, Maine Ohio. Western Pennsylvania, West Virginia. Michigan. Michigan. Michigan. Michigan. Alabama. Alabama. Alabama. Alabama. Virginia, South Carolina. Coorgia, Florida. Louisiana, Missiappi. Iowa. Kansas. Kansas. Kansas. Colorado, Arizona, Uzah Western Missouri, Nebraska, Oklahoma, Arkansas. Colorado, Arizona, Uzah Western California. Northern California. Southern California. Southern California. Pereson, Washington.	Total: 1967. 1966. SHIPMENTS Bastern Pennsylvania, Maryland. New York, Maine. Ohlo. Wostern Pennsylvania, West Virginia. Michigan. Initiols. Initiols. Initiols. Alabama. A

320 547 544	1, 702 1, 702 1, 642 1, 101 1, 426 404 474	16,834	28.00	22,018
470 703 525	1, 223 1, 223 661 11, 408 1, 642 507	20,829		15, 973
1, 213 1, 539 908	1, 115 1, 893 1, 894 283 1, 596 1, 993 641 563	30, 847		13,002
1,463	1, 222 1, 866 1, 866 921 296 1, 693 1, 803 625 506	30, 511		15, 532
1,583 1,818 1,014	1, 294 2, 113 2, 113 2, 113 1, 813 1, 854 1, 854 7, 713 515	35, 365 33, 324	2, 585 1, 187 1, 187 1, 184 1, 188 1,	17,068
1, 437 1, 659 672	1, 491 2, 126 893 362 1, 649 1, 783 685 685	25, 655		20, 298
1,219 1,315 858	1,006 1,893 1,870 320 1,523 1,708 426	29, 545		22, 685
1,095 1,099 667	1, 903 1, 903 1, 903 1, 448 1, 853 638 470	28, 940		26, 204
850 819 576	706 1,751 647 226 1,389 1,873 1,873 647	23, 125 27, 087		28, 679
396 693 560	637 1, 848 649 167 1, 109 1, 777 430 426	20, 551		29, 868
235 420 459	462 1,683 1,683 116 879 1,638 270 319	15, 106 15, 929	28 888 888 988 888 888 888 888 888 888 8	28, 939
142 197 233	260 1,545 399 92 1,015 1,263 241 335	11,802	2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2	25, 454
South Dakots	Ransasas Colores Arrangomes, Ortanoma, Arrangomes Ransas Texas Colorado, Arrangoma, Utah Wyoming, Montana, Idaho. Northern California Southern California Oregon, Washington. Puerto Rico.		Eastern Pennsylvania, Maryland. New York, Maine. Ohio. Nichigan. Illinois. I	1956

¹ Difference between monthly and annual reports not adjusted. ² Revised figure.

first company in 7 years to build its own plant and become a cement producer without a previously established market for its product.

Descriptions were published of new equipment installed as part of expansion plans at cement plants in Bessemer, Pa., East Fultonham, Ohio, Bunnell, Fla., and Speed, Ind.⁴ The equipment installed in new cement plants at Paulding, Ohio, and Echo, Tex., was described.⁵

Several changes in cwnership of cement plants occurred in 1957. The Kosmos Portland Cement Co, with 1 plant at Kosmosdale, Ky., was purchased by the Flintkote Co. of New York; the Northwestern Portland Cement Co., with 1 plant at Grotto, Wash., was acquired by the Ideal Cement Co. of Denver; and the Superior Portland Cement, Inc., with 2 plants in Washington, was merged with the Lone Star Cement Corp. of New York. Three companies, the Hercules Cement Corp, of Philadelphia, the Peerless Cement Co. of Detroit, and the Riverside Cement Co. of Los Angeles, were merged at the end of 1957 to become the American Cement Corp.

TYPES OF PORTLAND CEMENT

General-purpose and moderate-heat portland cement (types I-II) constituted 92 percent of all portland cement made in the United States in 1957 and was produced at 163 of the 164 portland-cement plants. High-early-strength portland cement (type III) was produced at 111 plants in 1957; the total quantity was about 4 percent of the portland-cement output.

TABLE 4.—Portland cement produced and shipped in the United States, 1 1948-52 (average) and 1953-57, by types

				hipments	
Type and year	Active plants	Production (thousand		Valu	le
		barrels)	Thousand barrels	Total (thousand dollars)	Average per barrel
General-use and moderate-heat (types I and II): 1948-52 (average) 1953 1954 1955 1956 1957 High-early-strength (type III): 1948-52 (average) 1953 1954 1955 1956 1957	152 156 157 157 160 163 91 99 102 106 101	192, 585 217, 555 217, 555 2276, 248 2292, 598 2275, 968 6, 726 6, 726 6, 726 11, 744 3 12, 142 2 12, 853	191, 499 215, 103 258, 307 272, 064 285, 856 268, 855 6, 630 7, 794 10, 172 11, 459 11, 808	453, 294 569, 217 705, 963 768, 520 858, 767 844, 962 18, 448 23, 743 31, 779 37, 550 42, 596 43, 325	\$2. 37 2. 65 2. 73 2. 82 2. 99 3. 14 2. 78 3. 05 3. 12 3. 65 3. 66

⁴ Trauffer, W. E., Expansion at Bessemer Limestone: Pit and Quarry, vol. 49, No. 9, March 1957, pp. 136–138, 140, 141–142, 168.

Herod, B. C., Columbia Cement's Latest Expansion: Pit and Quarry, vol. 50, No. 1, July 1957, pp. 129–132,

^{134, 136, 155.}Avery, Wm. M., Cement Plant Expands Twice Within Five Years: Rock Products, vol. 60, No. 6, June 1957, pp. 91-93, 174, 176, 177.

Herod, B. C., Louisville Cement Doubles Crushing Capacity During General Expansion: Pit and Quarry, vol. 50, No. 1, July 1957, pp. 145, 148, 150, 152, 154.

Meschter, E., Big Equipment Dominates New Cement Plant: Rock Products, vol. 60, No. 11, November 1957, pp. 90-93, 122.

Rock Products, Texas Portland Gets High Rate of Cement Output per Man-Hour: Vol. 60, No. 9, September 1957, pp. 300-93.

tember 1957, pp. 84-87.

TABLE 4.—Portland cement produced and shipped in the United States, 1948-52 (average) and 1953-57, by types—Continued

			s	hipments	
	Active	Production		Valu	.е
Type and year	plants	(thousand barrels)	Thousand barrels	Total (thousand dollars)	Averag per barrel
				**	
ow-heat (type IV): 1948-52 (average)	4 2 1 0	355 193 84	324 172 48	947 507 194	\$2.9 2.9 4.0
1955 1956 1957	2 2	14 21	3 5	9 16	3. 3.
ulfate-resisting (type V): 1948-52 (average) 1953 1954 1955 1956	4 4 7 6	83 79 142 65 93	98 90 120 80 79	340 318 433 302 312	3. 3. 3. 3.
1957. il-well: 1948-52 (average)	9 16 17 16 16 16	191 1,742 1,861 1,641 1,898 4 1,655	191 1, 792 1, 823 1, 665 1, 851 1, 705 1, 482	712 4,789 5,464 5,059 6,429 5,687 5,161	2. 3. 3. 3.
1967 V/hite: 1948-52 (average) 1953 1954 1955 1956 1956	16 4 4 4 4 3	1,511 1,100 1,114 1,110 41,191 41,171 41,087	1, 085 1, 091 1, 153 1, 205 1, 133 1, 024	5, 333 6, 088 6, 413 6, 580 7, 025 6, 595	4. 5. 5. 6. 6.
ortland-pozzolan: 1948-52	5 6 8 10 12	1, 627 2, 406 5 2, 413 5 4, 906 5 6, 936 5 5, 219	1, 654 2, 449 2, 251 4, 706 6, 817 5, 237	3, 963 6, 441 6, 100 13, 183 20, 940 17, 246	2. 2. 2. 2. 3.
ir-entrained: 1948-52 (average) 1953- 1954- 1955- 1956- 1957- 185cellaneous: ⁷	78 95 99 99 104 112	22, 218 32, 131 (6) (6) (6) (6)	22, 187 31, 474 (6) (6) (6) (6)	51, 440 82, 594 (6) (6) (6) (6)	2. 2.
Iiscellaneous: 7 1948-52 (average) 1953 1954 1955 1956	23 21 22 22 22 26 26	858 892 1, 124 1, 401 1, 829 4 1, 574	863 883 1, 156 1, 400 1, 277 1, 037	2, 617 2, 891 3, 921 4, 962 4, 684 3, 942	3. 3. 3. 3. 3.
Frand total: 1948-52 (average) 1953 1954 1955 1966 1957	152 156 157 157 160 164	227, 296 264, 180 272, 353 297, 453 316, 438 298, 424	226, 133 260, 879 274, 872 292, 765 308, 678 289, 698	541, 172 697, 263 759, 862 837, 526 940, 020 921, 959	2. 2. 2. 2. 3. 3.

¹ Including Puerto Rico.
² Includes air-entrained portland cement as follows (in thousand barrels): 1954, 31,204; 1955, 31,858; 1956, 35,458; 1957, 32,791.
³ Includes air-entrained portland cement as follows (in thousand barrels); (1954, 2,651; 1955, 3,378; 1956, 3,444; 1957, 3,497.
⁴ Includes a small quantity of air-entrained portland cement.
¹ Includes air-entrained portland cement as follows (in thousand barrels): 1954, 1,667; 1955, 945; 1956, 1,382; 1957, 2,311.
³ See footnotes 2, 3, 4, and 5.
' Includes hydroplastic, plastic, and waterproofed cements.

Portland-pozzolan cement was produced at 2 plants and portland blast-furnace-slag cement at 7 plants; 8 of these 9 plants produced other types of cement in addition to these special cements.

CAPACITY OF PLANTS

The estimated annual capacity of all portland-cement plants on December 31, 1957, as reported to the Bureau of Mines by producers, was 9 percent greater than that reported on December 31, 1956. The increase was due to expansion of facilities at 32 of the 160 plants operated in 1956 and to 4 new plants completed in 1957.

A comparison of the completion schedule through 1957 with expansion plans of December 1955 showed a lag of less than 2 percent.

Number of portland-cement plants in the United States (including Puerto Rico) in 1957, by size groups

Dec	ated annual . 31, million	barrels:	•			Number of plants	Percent of total capacity
\mathbf{L}	$ess than 1_{}$. 11	2. 1
1	to 2		. .	 	 	62	24. 4
2	to 3	<u>, : </u>		 			34. 7
3	to 4					20	17.1
4	to 5						7. 9
5	to 11				 	7	13. 8
	Total			 		1 163	100. 0
1 Does	not include clin	ker-grindin	g plants.			100	230.0

TABLE 5.—Portland-cement-manufacturing capacity of the United States, 1956-57, by districts

District	Estimated barr		Percent	utilized
	1956	1957	1956	1957
Eastern Pennsylvania, Maryland New York, Maine Ohio Western Pennsylvania, West Virginia Michigan Illinois Indiana, Kentucky, Wisconsin Alabama. Tennessee. Virginia, South Carolina Georgia, Florida.	14, 911 25, 370 9, 121 20, 323 13, 358 8, 520 8, 090 9, 382	49, 473 22, 401 18, 023 15, 998 25, 581 9, 977 24, 010 15, 029 8, 520 9, 270 9, 512	93. 0 94. 7 88. 2 94. 4 80. 7 96. 7 89. 2 97. 1 98. 4 86. 6 83. 3	75. 4 79. 6 90. 4 83. 2 88. 2 73. 6 84. 3 82. 4 75. 3
Louisiana, Mississippi Lowa Eastern Missouri, Minnesota, South Dakota Kansas Western Missouri, Nebraska, Oklahoma, Arkansas Texas Colorado, Arizona, Utah Wyoming, Montana, Idaho	6, 100 12, 850 14, 683 11, 777 12, 411 28, 256 8, 954	8, 525 13, 000 16, 514 11, 750 12, 865 32, 063 8, 880 3, 150	101. 8 85. 2 99. 1 89. 0 85. 6 90. 8 94. 2 97. 2	79. 6 80. 8 76. 0 69. 1 81. 5 68. 1 98. 4
Northern California Southern California Oregon, Washington Puerto Rico Total	3, 147 18, 400 24, 482 9, 510 5, 300 349, 442	3, 150 18, 335 31, 815 9, 695 6, 000 380, 386	97. 2 89. 7 94. 1 72. 9 79. 9	89. 6 91. 2 68. 1 67. 6 91. 7

TABLE 6.—Capacity of portland-cement plants in the United States, Dec. 31, 1955-57, by processes

		Car	acity, Dec	31				ercent		Per	cent of	total
Process	The	ousand bar	rels	Per	cent of	total	Сара	city ut	mzea	nnis	shed ce produce	ment ed
	1955	1956	1957	1955	1956	1957	1955	1956	1957	1955	1956	1957
Wet Dry	179, 911 135, 388	203, 522 145, 920	217, 114 163, 272	57. 1 42. 9	58. 2 41. 8	57. 1 42. 9	94. 6 93. 9	89. 3 92. 3	77. 9 79. 2	57. 2 42. 8	57. 4 42. 6	56. 7 43. 3
Total	315, 299	349, 442	380, 386	100.0	100.0	100.0	94.3	90.6	78. 5	100.0	100. 0	100.0

¹ Includes Puerto Rico.

CLINKER PRODUCTION

The production of clinker—the intermediate product between raw materials and finished portland cement—was 5 percent less in 1957 than in 1956. In July 1957, at the peak of the strike in cement plants, clinker production fell to 17 million barrels, the lowest monthly output since February 1951. At the end of 1957 stocks of clinker on hand were 55 percent greater than those reported at the end of 1956.

TABLE 7.—Production and stocks of portland-cement clinker at mills in the United States in 1957, by months and districts, in thousand

1,514 685 735 735 1,218 1,124 439 320 320 398 150 145 26,008 26,450 3,471 1,472 1,103 1,103 1,103 1,631 1,631 1,631 1,034 1,034 1,034 1,034 670 1,658 1,658 245 1,654 1,691 547 Decem-ber 1,147 360 130 691 61 913 331 251 293 80 27, 193 26, 607 879 882 301 726 873 4726 Novem-ber 242 242 242 39 249 215 848 63 28, 758 27, 940 October 1,003 523 403 281 923 1,032 194 184 189 2, 288 807 807 2, 1, 433 2, 028 440 324 3, 732 1, 686 1, 469 1, 093 1, 154 1, 158 1, Septem-8,2 1,078 2,052 783 281 1,502 1,775 451 1, 487 705 683 683 1, 478 1, 294 1, 294 174 243 213 60 60 3, 591 1, 603 1, 583 1, 208 2, 120 868 1, 571 1, 159 691 675 459 622 1, 021 1, 136 1, 136 1, 136 395 August 2,8 17,457 28,230 986 1, 716 290 1, 492 1, 789 438 42 42 1, 233 1, 967 1, 967 1, 050 386 329 166 510 592 909 909 July 1,965 1,161 1,049 1,765 1,765 361 446 246 246 24, 586 27, 053 3,011 1,536 1,1453 1,1108 1,736 1,736 1,020 1,020 1,985 400 548 733 400 1,097 1,097 1, 893 1, 893 1, 364 1, 827 422 444 June 2, 154 1, 466 1, 218 2, 886 2, 886 1, 871 328 459 501 258 958 1,901 781 245 1,488 1,761 500 481 26, 397 27, 853 1, 580 1, 580 1, 580 1, 742 1, 742 1, 742 1, 077 1, 077 1, 077 1, 250 1, 220 1, 220 May 2,355 1,767 1,299 1,299 1,290 1,921 1,921 454 454 604 203 barrels 26, 114 26, 047 3,576 1,653 1,937 1,700 1,700 1,700 1,054 1,054 1,054 1,054 1,054 1,154 1,124 1,124 1,124 1,124 843 2,011 756 1,420 1,703 448 April 2, 149 1, 724 1, 724 811 3, 072 401 1, 685 430 410 538 155 186 772 058 664 271 637 655 454 617 811 3,410 1,601 1,392 1,157 1,167 1,610 1,610 1,079 1,079 1,079 1,071 March સુંસુ 1, 853 1, 573 1, 573 821 821 612 2, 249 1, 381 407 299 519 121 22, 279 23, 131 3,144 1,1464 1,1464 1,1421 1,421 1,323 0915 650 670 679 884 884 864 679 1, 697 496 1, 325 1, 272 1, 272 378 February 1, 448 1, 177 1, 177 1, 476 1, 476 176 986 337 196 482 141 24, 412 25, 153 3, 278 1, 518 1, 277 1, 277 1, 702 1, 546 1, 034 1, 034 716 642 711 497 813 1, 108 940 1,864 587 213 1,412 1,406 389 381 January Tennessee. Virgina, South Carolina. Georgia, Mississippi Louisiana, Mississippi Texas, Arizona, Utah.
Colorado, Arizona, Utah.
Wyoming, Montana, Idaho
Northern California.
Southern California.
Oregon, Washington.
Puerto Rio. Michigan Illinois Indiana, Kentucky, Wisconsin Ohio Western Pennsylvania, West Virginia Eastern Pennsylvania, Maryland New York, Maine Tennessee. Virginia, South Carolina. Goorgia, Plorida. Louisiana, Mississippi 1956 888. Alabama Eastern Pennsylvania, Maryland..... Ohio Western Pennsylvania, West Virginia Michigan Illinois Indiana, Kentucky, Wisconsin Alabama.....Alabama owa Eastern Missouri, Minnesota, South Dakota Kansas Western Missouri, Nebraska, Oklahoma, Arkan New York, Maine STOCKS (END OF MONTH) PRODUCTION District Total: 1957.

n Missouri, Minnesota, South Dakota.s. m Missouri, Nebraska, Oklahoma, Arkan-do, Arizona, Utah.do, Arizona, Idahoem California.em California.s. Washington.	310 806 324 558 568 569 482 208 811 1,944 1,944	1, 109 1, 109 1, 109 625 591 1, 120 1, 800 1, 800 1, 800	1, 231 582 582 580 560 576 576 1, 184 1, 184 1, 641 957 238	1, 464 1, 464 1, 196 665 665 665 1, 244 1, 562 1, 005 1, 005	1, 528 1, 222 1, 222 1, 222 1, 288 1, 405 1, 405 254	1, 494 1, 218 828 1, 218 1, 228 1, 228 1, 516 1, 616	1, 162 1, 022 1, 022 1, 022 1, 162 1, 163 1, 163 1, 163 1, 163 1, 163	887 882 882 560 560 1,168 1,474 1,474 239	288 698 324 731 731 199 1, 510 420 184	222 738 738 658 658 169 1, 526 1, 526 161	306 871 197 1, 112 280 193 608 1, 787 379 154	331 1,036 253 1,208 1,208 268 1,762 1,475
Total: 1957.	14, 337 10, 460	18, 625 13, 873	21, 621 16, 151	23, 620 15, 951	22, 539 14, 222	20, 550 12, 537	17, 979 11, 059	13, 881 9, 264	11,016	9, 444 6, 874	11, 326 7, 476	14, 626 1 9, 443

¹ Revised figure.

TABLE 8.—Portland-cement clinker produced and in stock at mills in the United States, 1956-57, by processes, in thousand barrels 2

Process	Pla	nts	Produ	ıction	Stock Dec.	ks on 31—
	1956	1957	1956	1957	1956 3	1957 4
Wet Dry	95 65	98 66	183, 002 136, 931	175, 062 129, 266	4, 059 5, 384	7, 785 6, 841
Total	160	164	319, 933	304, 328	9, 443	14, 626

Including Puerto Rico.
 Compiled from monthly estimates of producers.

3 Revised figures. 4 Preliminary figures.

RAW MATERIALS

The principal raw materials used in the United States for manufacturing portland cement in 1957 were limestone and clay or shale. Since 1943 approximately 70 percent of the output has been made from these materials. Argillaceous limestone (cement rock) or a mixture of cement rock and pure limestone was used for 26 percent of the portland cement made in 1957. Nine portland-cement plants used shell in place of limestone.

Blast-furnace slag was used as an ingredient of portland cement at 15 plants, 7 of which used approximately 350,000 tons of blastfurnace slag to produce portland slag cement.

TABLE 9.—Production and percentage of total output of portland cement in the United States, 1909-14, 1926, 1929, 1933, 1935, and 1941-57, by raw materials used

Year	Cement ro pure lime		Limestone a		Marl and	clay	Blast-furna and limes	
	Thousand	Per-	Thousand	Per-	Thousand	Per-	Thousand	Per-
	barrels	cent	barrels	cent	barrels	cent	barrels	cent
1909	24, 274 26, 521 26, 812 24, 713 29, 333 24, 907 44, 091 51, 077 14, 135 23, 812 46, 534 49, 479 20, 384 39, 071 43, 625 47, 560 45, 655 47, 120 50, 328 48, 563 54, 029 57, 173	37. 3 34. 6 34. 1 30. 0 31. 8 28. 2 26. 8 29. 9 22. 3 31. 0 28. 4 27. 0 22. 4 19. 4 19. 4 19. 8 23. 3 23. 1 21. 8 20. 4 19. 5 20. 5	32, 219 39, 720 40, 666 44, 608 47, 832 50, 169 101, 638 97, 623 43, 638 45, 073 102, 286 6115, 948 92, 310 65, 478 112, 142 129, 338 144, 855 150, 436 164, 812 169, 204 177, 901 184, 182 190, 611 184, 182 190, 611	49. 6 51. 9 51. 8 54. 1 51. 9 56. 8 57. 2 58. 8 63. 4 69. 2 71. 4 69. 3 70. 5 71. 7 73. 8 71. 7 69. 9 69. 9	2, 711 3, 307 3, 314 2, 473 4, 038 4, 833 1, 403 1, 479 3, 142 3, 010 2, 079 2, 035 2, 720 2, 653 3, 310 2, 597 2, 653 4, 038 4,	4. 2 4. 3 4. 2 3. 0 4. 1 4. 6 2. 0 2. 9 2. 2 1. 9 1. 7 2. 3 2. 0 1. 7 1. 3 1. 6 1. 1 1. 1 1. 1 1. 1 1. 9 1. 9	5, 787 7, 002 7, 737 10, 650 11, 197 9, 116 15, 477 17, 113 4, 297 6, 378 12, 069 14, 344 8, 88 5, 740 6, 976 10, 131 11, 344 10, 413 10, 326 11, 497 23, 837 18, 754 20, 873 19, 487 18, 926	8. 9 2 9. 9 9 12. 2 2 10. 3 4 10. 0 8 8. 3 4 7. 9 9 6. 7 3 6 6. 2 1 5 4. 9 1 5 9 7 7 . 9 2 6 . 4 9 1 7 . 9 2 6 . 4 9 2 7 . 9 2 7 . 2 4 6 . 4 9 1 7 . 9 2 7 . 2 4 6 . 4 9 1 7 . 9 2 7 . 2 4 6 . 4 9 1 7 . 9 2 7 . 2 4 6 . 4 9 1 7 . 9 2 7 . 2 4 6 . 4 9 1 7 . 9 2 7 . 2 4 6 . 4 9 1 7 . 9 2 7 . 2 4 6 . 4 9 1 7 . 9 2 7 . 2 4 6 . 4 9 1 7 . 9 2 7 . 2 4 6 . 4 9 1 7 . 9 2 7 . 2 4 6 . 4 9 1 7 . 9 2 7 . 2 4 9 1 7 . 9 2 7 . 2 4 9 1 7 . 9 2 7 . 2 4 9 1 7 . 9 2 7 . 2 4 9 1 7 . 9 2 7 . 2 4 9 1 7 . 9 1 7 . 9 1 7 . 9 1 7 . 9 2 7 . 2 4 9 1 7 . 9 1 . 9
1956	72, 722	23. 0	216, 601	68. 4	5, 347	1.7	21, 768	6. 9
1957	64, 776	21. 7	206, 419	69. 2	5, 324	1.8	21, 905	7. 3

¹ Includes Puerto Rico, 1941–57; Hawaii, 1945–46. There has been no production in Hawaii since 1946. ² Includes output of 2 plants using oystershell and clay in 1926; 3 plants in 1929, 1933, and 1935; 4 plants in 1941–45; 5 plants in 1946–49; 6 plants in 1950; 7 plants in 1951; 8 plants in 1952–56; and 9 plants in 1957.

TABLE 10.—Raw materials used in producing portland cement in the United States. 1955-57

Raw material	1955	1956	1957
Cement rock thousand short tons	19, 120	19, 463	17, 152
Limestone (including oystershell)do	61, 117	66, 117	63, 903
Marldo	1, 332	1, 421	1, 565
Clay and shale 2dodo	8,692	9, 095	9,044
Blast-furnace slagdo	1,659	1,706	1, 455
Gypsumdo	2, 319	2,449	2, 366
Sand and sandstone (including silica and quartz)do	923	1,011	973
Iron materials 3do	327	494	516
Miscellaneous 4do	311	220	222
Total	95, 800	101, 976	97, 196
Average total weight required per barrel (376 pounds) of fin- ished cement pounds	644	645	651

FUEL AND POWER

The decrease in cement production in 1957 was accompanied by decreases of 4 and 32 percent, respectively, in coal and oil used in the production of cement compared with 1956. The quantity of natural gas utilized in cement plants increased 1 percent. The 164 plants used an average of 1.3 million B. t. u. per barrel of cement produced.

TABLE 11.—Finished portland cement produced and fuel consumed by the portland-cement industry in the United States, 1956-57, by processes

	Finish	ned cement p	roduced	F	uel consume	12
	Plants	Thousand barrels	Percent of total	Coal (short tons)	Oil (barrels of 42 gal- lons)	Natural gas (M cubic feet)
1956 WetDry	95 65	181, 686 134, 752	57. 4 42. 6	4, 482, 581 4, 787, 051	5, 938, 246 1, 987, 413	100, 386, 160 43, 805, 360
Total	160	316, 438	100.0	3 9, 269, 632	7, 925, 659	4 144, 191, 520
1957 Wet Dry	97 67	169, 109 129, 315	56. 7 43. 3	4, 340, 542 4, 512, 623	4, 319, 726 1, 095, 333	103, 852, 885 42, 312, 794
Total	164	298, 424	100.0	5 8, 853, 165	5, 415, 059	⁶ 146, 165, 679

Includes Puerto Rico.
 Includes fuller's earth, diaspore, and kaolin for making white cement.
 Includes iron ore, pyrite cinder and ore, and mill scale.
 Includes fluorspar, pumicite, pitch, red mud and rock, hydrated lime, tufa, calcium chloride, sludge, air-entraining compounds, and grinding aids.

Includes Puerto Rico.
 Figures compiled from monthly estimates of producers.
 Comprises 243,642 tons of anthracite and 9,070,661 tons of bituminous coal.
 Includes 101,545 M cubic feet of byproduct gas and 2,642,278 M cubic feet of coke-oven gas.
 Comprises 221,075 tons of anthracite and 8,632,090 tons of bituminous coal.
 Includes 55,606 M cubic feet of byproduct gas and 2,502,631 M cubic feet of coke-oven gas.

TABLE 12.—Portland cement produced in the United States, 1 1956-57, by kinds of fuel

	Finisl	ned cement r	oroduced	F	uel consume	d 2
Fuel	Plants	Thousand barrels	Percent of total	Coal (short tons)	Oil (barrels of 42 gal- lons)	Natural gas (M cubic feet)
1956 Coal	62 11 19 20 23 17 8 160 63 8 22 22 23 20 23 20	* 119, 713 * 25, 161 39, 173 42, 256 39, 459 11, 101 316, 438 * 113, 221 * 14, 543 * 36, 626 39, 728 35, 440 47, 603 11, 263	37. 8 8. 1 12. 4 12. 4 13. 3 12. 5 3. 5 100. 0 37. 9 4. 9 12. 2 13. 3 11. 9 16. 0 3. 8	6, 544, 780 1, 737, 232 882, 337 105, 283 © 9, 269, 632 6, 149, 964 1, 686, 864 837, 668 178, 669	5, 330, 254 1, 025, 827 1, 530, 096 39, 482 7, 925, 659 2, 705, 918 1, 205, 471 1, 460, 651 43, 019	4 51, 131, 030 5 35, 991, 411 43, 082, 237 13, 986, 842 144, 191, 520 7 47, 915, 347 8 29, 871, 334 55, 931, 343 12, 447, 655
Total	164	298, 424	100.0	9 8, 853, 165	5, 415, 059	146, 165, 679

Includes Puerto Rico.
 Figures compiled from monthly estimates of producers.
 Average consumption of fuel per barrel of cement produced as follows: 1956—coal, 109.3 pounds; ofl, 0.2084 barrel; natural gas, 1,306 cubic feet. 1957—coal, 108.6 pounds; oil, 0.1861 barrel; natural gas, 1,308 cubic feet.
 Includes 2,642,278 M cubic feet of coke-oven gas.
 Includes 101,545 M cubic feet of byproduct gas.
 Comprises 243,642 tons of anthracite and 9,070,661 tons of bituminous coal.
 Includes 5,560 M cubic feet of coke-oven gas.
 Includes 55,606 M cubic feet of byproduct gas.
 Comprises 221,075 tons of anthracite and 8,632,090 tons of bituminous coal.

おれば はない はない ないない ないかい

TABLE 13.—Electric energy used at portland-cement-producing plants in the United States, 1956-57, by processes

			Electric	energy use	i			Average electric
Process	General land-cen	ted at port- ient plants	Pur	chased	То	tal	Finished cement produced (thousand	energy used per barrel of
	Active plants	Million kilowatt hours	Active plants	Million kilowatt hours	Million kilowatt hours	Per- cent	barrels)	produced (kilowatt hours)
1956 WetDry	26 33	757 1, 569	89 60	3, 049 1, 478	3, 806 3, 047	55. 5 44. 5	181, 686 134, 752	20. 9 22. 6
Total Percent of total electric energy used	59	2, 326 33. 9	149	4, 527 66. 1	6, 853 100. 0	100.0	316, 438	21.7
1957 Wet Dry	26 37	705 1, 538	91 62	3, 009 1, 515	3,714 3,053	54. 9 45. 1	169, 109 129, 315	17. 6 23. 1
Total	63	2, 243 33, 1	153	4, 524 66. 9	6, 767 100, 0	100.0	298, 424	22.7

Includes Puerto Rico.

TRANSPORTATION

The trend toward shipping cement in bulk rather than in bags continued. Originally cement had been shipped in barrels, but later these were replaced by bags. By 1947 nearly two-thirds of all cement was shipped in bags. In 1957 less than one-fourth of the total was shipped in bags, and three-fourths was shipped in bulk. tity of cement shipped by truck has increased from 16 percent in 1947 to 34 percent in 1957. Shipments by boat were confined almost entirely to Puerto Rico, Kentucky, Louisiana, northern California, and Alabama, where 41, 40, 32, 19, and 10 percent, respectively, of the total shipments were by boat. The few shipments by boat in other localities were insignificant. Shipments between producing plants or from plants to distribution centers are not included in these tabulations, which represent only shipments from producing companies to consumers.

TABLE 14.—Shipments of portland cement from mills in the United States.1 1955-57, in bulk and in containers, by types of carriers

	In bulk		In containers				Total shipments	
Type of carrier	Thou- sand barrels	Per- cent	Bags		Other con-	Total	Thou-	
			Paper (thou- sand barrels)	Cloth (thou- sand barrels)	tainers 2 (thou- sand barrels)	(thou- sand barrels)	sand barrels	Per- cent
1955 TruckRailroadBoatUsed at plant	65, 714 137, 328 6, 788 256	31. 3 65. 4 3. 2 . 1	21, 284 59, 900 797 217	121 301 32 1	<u>19</u> - 7	21, 405 60, 220 829 225	87, 119 197, 548 7, 617 481	29. 7 67. 5 2. 6
Total Percent of total	210, 086 71. 8	100. 0	82, 198 28. 1	455 0. 1	(3)	82, 679 28. 2	292, 765 100. 0	100.0
1956 Truck	75, 374 150, 570 5, 868 601	32. 4 64. 8 2. 5 . 3	22, 993 52, 453 416 111	187 65 22 1	13	23, 181 52, 531 438 115	98, 554 203, 101 6, 307 716	31. 9 65. 8 2. 1
Total Percent of total	232, 413 75. 3	100.0	75, 973 24. 6	275 0. 1	(3)	76, 265 24. 7	308, 678 100. 0	100.0
Truck Railroad Boat Used at plant	78, 220 137, 043 6, 342 495	35. 2 61. 7 2. 9 . 2	21, 213 45, 472 580 84	163 60 16	9	21, 376 45, 541 596 85	99, 596 182, 584 6, 938 580	34. 4 63. (2. 4
Total Percent of total	222, 100 76. 7	100.0	67, 349 23. 2	239 0. 1	(3)	67, 598 23. 3	289, 698 100. 0	100.0

3 Less than 0.05 percent.

CONSUMPTION

Although shipments of cement into a State do not equal consumption in that State for a particular year, they afford a fair index of consumption. Shipments were higher in 14 States and lower in 34 States and the District of Columbia in 1957 than in 1956.

Includes Puerto Rico.
 Includes steel drums and iron and wood barrels.

Shipments of high-early-strength cement were greatest to Michigan, New York, New Jersey, and Pennsylvania.

As indicated in figure 1, regional consumption of portland cement in 1957 followed the upward trends held since 1945.

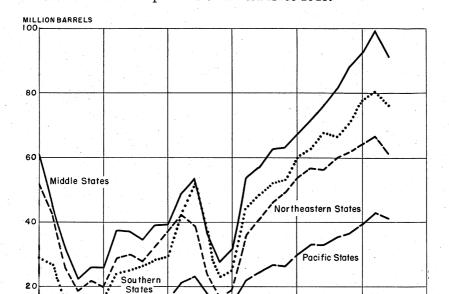


Figure 1.—Indicated consumption of portland cement in continental United States, 1930-57, by regions.

Rocky Mountain States

TABLE 15.—Destination of shipments of finished portland cement from mills in the United States, 1955-57, by States

	1955	1956	195	7
Destination	(thousand barrels)	(thousand barrels)	Thousand	Change
			barrels	from 198 (percen
ntinental United States:				
Alabama	3,940	4, 766	4,665	-2
Arizona	2, 337	2,624	2,773	+6
Arkansas	2, 519	1,843	1,694	-8
California	31, 643	35, 872	33, 388	-7
Colorado	3,486	3,704	4,026	+9
Connecticut 1	3, 385	4, 321	5, 185	+20
Delaware 1	1,096	1,085	904	-17
District of Columbia 1	1, 391	1,327	1,171	-12
Florida	8, 946	9, 499	9, 950	+5
Georgia	5, 201	5, 382	4,676	-13
Idaho	923	1,073	956	-11
Illinois	14, 670	16, 716	16, 236	-3
Indiana	7,984	9,064	7,044	-22
Iowa	5, 974	6,771	5, 813	-14
Kansas	7, 248	6, 963	4, 981	-28
Kentucky	3,640	3, 510	3, 281	-7
Louisiana	7, 340	8, 507	7, 585	-11
Maine	951	975	965	-1
Maryland	4,882	5,772	5, 127	-11
Massachusetts 1	5, 239	5, 847	4,922	-16
Michigan	13, 893	16, 237	14,871	8
Minnesota	5, 827	5, 518	5, 480	
Mississippi	1, 887	1,977	1,816	-8
Missouri	7, 919	7,643	6, 851	-10
Montana	951	1,409	1,378	-2
Nebraska	3, 485	3, 351	2, 649	-21
Nevada 1	740	619	568	-8
New Hampshire 1	1, 157	924	635	-31
New Jersey 1	9, 335	9, 427	7, 943	-16
New Mexico 1	1, 995	2,086	2, 207	+6
New York	19, 400	20, 395	19, 182	-6
North Carolina 1	4,415	4, 385	4,646	+6
North Dakota 1	1,057	1, 290	1,930	+50
Ohio	17, 475	17, 552	17, 338 4, 886	-1
Oklahoma	4, 789	4,814	4,880	+1
Oregon	2, 392	2, 550	2, 533	-8
Pennsylvania	16,083	15, 540	14, 354	
Rhode Island	830	747	727 2,011	-3 -15
South Carolina	2, 461	2,358		-22
South Dakota	1, 221	1,376	1,072	-14
Tennessee	5, 088	4,845	4, 156	-10
Texas	20, 782	20,954	18,891	-11
Ūtah	1,835	2,009	1,790	
Vermont 1	294	325	302 5, 435	-7
Virginia	4,802	5, 421	5, 088	+9
Washington	5, 595	4, 683 1, 938	2, 325	+20
West Virginia	1,849		6, 758	1 720
Wisconsin	6, 186	6, 745 654	688	+5
Wyoming	579 18	6	24	+300
Unspecified	- 18			
Total continental United States	287, 135	303, 399	283, 876 5, 822	+10
tside continental United States 2	5, 630	5, 279		
Total shipped from cement plants	292, 765	308, 678	289, 698	-6

¹ Non-cement-producing State.

² Direct shipments by producers to foreign countries and to noncontiguous Territories (Alaska, Hawaii, Puerto Rico, etc.), including distribution from Puerto Rican mills.

nd barrels	a- Decem-	200
in thousand	Novem- ber	2, 683 938 938 938 959 104 104 104 105 105 105 105 105 105 105 105 105 105
nths, in	October	11194 11197 11194 11194 11194 11197 11197 11198 11198
7, by months,	Septem- ber	2853 2868 61179 61179 61189 61189 61189 61189 61189 61189 61189 61189 6119
s in 1957,	August	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2
ted States in	July	2525 2525 2525 2527 2527 107 107 107 107 107 107 107 107 107 10
the United	June	2 1221 1 2 1221 1 2 1221 1 2 1222 1 3 1222 1 4 4 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ı mills in	May	2, 260 2, 260 2, 261 3,
cement from	April	289 289 116 289 116 289 116 289 1289 289 289 289 289 289 289 289 289 289
	March	2, 28, 28, 28, 28, 28, 28, 28, 28, 28, 2
ied portland	February	2, 282 2, 283 2,
of inished	January	297 298 2998 2998 2888 2888 2888 2888 28
TABLE 16.—Destination of shipments	Destination	Alabama. Alabama. Alabama. Alabama. Arkansas. Colorado. Connecticut. Delaware. District of Columbia. Golorado. Connecticut. District of Columbia. Indiana. Indiana. Manne. Maryland. Mississippl. Mi

Virgins. Washington. West Virgins. Wisconstin. Wisconstin. Transcripted	253 140 67 135 23	299 201 187 26	489 331 157 295 39	520 456 177 457 51	226 712 66 66	573 501 222 765 79	451 583 232 855 78	639 564 294 1,006	466 499 231 852 97	525 244 835	368 423 174 388 41	252 357 145 282 35	
Omspecura					*				-	-	-		
Total, continental United States	11,409	14, 719	20,067	22, 644 481	28, 425	29,084	25, 134	34, 878	30,040	30, 205	20, 298	16, 427	
Total	11,802	15, 106	20, 551	23, 125	28, 940	29, 545	25, 655	35, 365	30, 511	30,847	20,829	16, 834	
1 Shirmants by modinase to family sometimes and to mensoritimens Demitration of the Wester (Alaska Boundi and Dromto Dies)	on of to no	- ionitacon	n Pomitoni	The of the T	nitod Ctot	o (A logico	Tomoli	Discrete		inolinding distribution from	ibution fac	m Dironto	

¹ Shipments by producers to foreign countries and to noncontiguous Territories of the United States (Alaska, Hawaii, and Puerto Rico), including distribution from Puerto Ricon mills.

TABLE 17.—Destination of shipments of high-early-strength cement from mills in the United States, 1956-57, by States

		19	957			19	57
Destination	1956 (thou- sand barrels)	Thou- sand barrels	Change from 1956 (per cent)	Destination	1956 (thou- sand barrels)	Thou- sand barrels	Change from 1956 (per cent)
Continental United States: Alabama Arizona Arizona Arizona Arizona Arizona California Colorado Connecticut 2 Delaware 2 District of Columbia 2 Florida Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts 2 Michigan Mississippi Missouri Montana Nebraska Nevada 2 New Hampshire 3 New Hampshire 4 Ne	18 132 355 75 75 581 221 6 582 360 161 164 43 72 263 145 507 1, 647 218 20 146	535 2 16 92 18 348 67 74 786 226 226 409 142 116 54 440 1,296 285 15 10 35 10 35 10 10 31 10 31 10 31 10 31 10 31 10 31 10 31 31 10 31 10 31 10 31 10 31 10 31 10 31 10 31 10 31 10 31 10 31 31 31 31 31 31 31 31 31 31 31 31 31	$\begin{array}{c} +25\\ +100\\ -130\\ +38\\ -2\\ -11\\ +35\\ -22\\ +14\\ -129\\ +26\\ -13\\ -21\\ -28\\ +26\\ -13\\ -21\\ -25\\ -420\\ -13\\ -21\\ -25\\ -420\\ -17\\ -9\\ -29\\ -29\\ -29\\ -29\\ -29\\ -29\\ -29\\$	New Mexico 2 New York North Carolina 2 Ohio Oklahoma Oregon Pennsylvania Rhode Island 2 South Oarolina South Dakota Tennessee Texas Utah Vermont 2 Virginia Washington West Virginia Wisconsin Wyoming Unspecified Total, continental United States Outside continental United States Total shipped from cement plants	194 3 429 40 3 934 79 159 30 45 431 17 25 313	72 1, 292 162 1 392 57 77 3 955 62 75 13 377 600 20 21 313 315 7 40 24 1 11, 775 92	+20 +18 -16 -67 -9 +43 -22 -53 -57 +71 +39 -16 -36 -13 +700 -10 -10 -10 -10 -10 -10 -10 -10 -10 -

Included in figures of finished portland cement, table 15.
 Non-cement producing State.
 Direct shipments by producers to foreign countries and to noncontiguous Territories (Alaska and Hawaii).

TABLE 18.—Destination of shipments of high-early-strength cement from mills in the United States in 1957, by months, in thousand

TABLE 18.—Destination of shipments of high-early-strength cement from mills in the United States in 1957, by

	ber Novem- Decem-		2 2 1 18 18	3,18	3	1	$\begin{vmatrix} 71 & 1,035 & 890 \\ 10 & 4 & 1 \end{vmatrix}$	ļ	81 1,039 891
	Septem- October		83 KB		9		1, 002 1, 171 7 10	1	1,009 1,181
	August Sept			9 100-	1 4	1	9	1 223	<u>.</u>
	July At		27 18	122			2	596	
-	June	1	31 19	5		1,067	=	1,078	_
	May		28.82	101	2	1, 126	01	1, 136	-
1_	April		3307	- 40 H		1, 031	e	1,046	
	repruary March		34	w 01		1,060	100	1,007	
Top.	rebruary		110 121	-64		818	068	670	
Januara	s arraga		24 18	==	101	200	726		
Destination		Continental United States—Continued	Virginia Washington West Virginia Wisconsin	Wyoming Unspecified	Total continental United States	Cuestue continental United States	Total.		1 Shipments by producers to foreign

¹ Shipments by producers to foreign countries and to noncontiguous Territories of the United States (Alaska and Hawaii).

STOCKS.

Stocks of finished portland cement and clinker at portland-cement plants on December 31, 1957, were 27 and 55 percent higher, respectively, than on December 31, 1956.

Changes in stocks during the period 1950-57 are shown in figure 2.

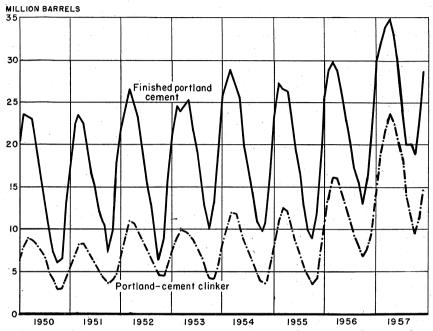


FIGURE 2.—End-of-month stocks of finished portland cement and portlandcement clinker, 1950-57.

TABLE 19.—Stocks of finished portland cement and portland-cement clinker at mills in the United States 1 on December 31 and yearly range in end-of-month stocks, 1953-57

			Ra	nge	**************************************
	Dec. 31 (thousand barrels)	Low		High	
		Month	Thousand barrels	Month	Thousand barrels
1953—{Cement Clinker Cement Clinker 19, 272 5, 349 16, 533 5, 294 17, 539 7, 001 22, 395 29, 443 28, 579 14, 626	October November October November October Octo	10, 049 4, 022 9, 667 3, 634 8, 754 3, 514 13, 007 6, 874 19, 213 9, 444	May	25, 24' 9, 896 28, 906 11, 947 27, 087 12, 622 29, 868 16, 157 34, 893 23, 620	

Includes Puerto Rico.
 Revised figure.

PREPARED MASONRY CEMENTS PRODUCTION AND SHIPMENTS

Prepared masonry cements were produced at 118 portland-cement plants, 4 natural-cement plants, 2 slag-cement plants, and 1 hydraulic

lime plant in 1957.

Prepared masonry cements vary considerably in the proportions of their constituents; consequently, they vary in weight per cubic foot and per barrel. Statistics on prepared masonry cements were converted to equivalent 376-pound barrels for uniformity in the tabulations.

The prepared masonry-cement tabulations in this chapter cover only production from cement-producing companies and do not include statistics on masonry cements made by nonproducing companies that purchased portland cement for reprocessing.

TABLE 20.—Prepared masonry cement produced and shipped in the United States, 1956-57, by districts

		d Average	\$6.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	www. 44
	1957	Value (thousand dollars)	888 8888888888888888888888888888888888	
Shipments from mills		Thousand barrels	1, 724 9974 9974 1, 455 1, 455 1, 708 1, 708	14, 381 2, 161 308
Shipments		Average	######################################	3.75 3.64 4.05
	1956	Value (thousand dollars)	2. (1) (1) (2) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	59, 689 8, 882 1, 364
		Thousand barrels	2, 0.59 1, 1.50 1, 1.643 1, 0.643 1, 0.643 1, 0.737 1, 0.737	15, 898 2, 437 337
tion barrels)		1957	1, 731 1, 037 1, 037 1, 529 1, 529 1, 645 1,	14, 701 2, 231 335
Production (thousand barrels)		1956	2, 006 1, 042 904 904 971 1, 632 1, 788 1, 7	15, 906 2, 406 346
Active plants		1957	ಪ್ರವಹಾಣ 4ರ್ಥ ಬೀಬಬಬ್ಬ 4ರ್ಡಿ ಪ್ರವಣ 1040	125 125 5
Active		1956	<u> </u>	122 21 5
	District		Bastern Pennsylvania, Maryland New York, Maine. Oho. Oho. Western Pennsylvania, West Virginia Michigan. Illindiana, Kentuoky, Wisconstn. Alabama. Tennessee. Virginia, South Carolina Georgia, Florida Louisiana, Missisaippi. Iousiana, Missisaippi. Iowassee. Western Missouri, Mehraska, Oklahoma, Arkansas. Ransas. Western Missouri, Nebraska, Oklahoma, Arkansas. Colorado, Arizona, Utah. Wyoming, Montana, Idaho Northern California. Southern California. Southern California. Oregon, Washington. Undistributed.	Total Pennsylvania. Missouri.

: Included with "Undistributed" to avoid disclosing individual company operations.

TABLE 21.—Production and shipments of prepared masonry cement from mills in the United States in 1957, by months 1 and districts, in thousand barrels

	Decem- ber	139 102 102 103 104 104 105 107 108 108 108 108 108 108 108 108 108 108	1,067	24888528 10888888
	Novem- ber	25 25 25 25 25 25 25 25 25 25 25 25 25 2	1, 170	22 22 23 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25
	October	152 152 152 153 153 153 153 153 153 153 153 153 153	1, 132	162 162 173 173 173 174 175 175 175 175 175 175 175 175 175 175
	Septem- ber	88888888888888888888888888888888888888	1, 220	041 048 044 044 044 044 044 044 044 044 044
	August	280 1186 1167 1167 1167 217 218 83 83 84 84 84 85 85 85 85 85 85 85 85 85 85 85 85 85	1,609	281 159 168 168 168 223 223 223 223 223 223 223 223 223 22
-	July	8 1 2 2 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1,326	22 411 88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
	June	74 88 88 84 84 88 88 88 88 88 88 88 88 88	1, 132 1, 401	180 133 133 147 147 182 182 183 60 60 60 60 60
MALL OFF	May	181 182 183 183 183 183 183 183 183 183 183 183	1,304	206 1119 1107 1148 56 57 57 57 57 73
T T T T T T T T T T T T T T T T T T T	April	88 841111111111111111111111111111111111	1, 154 1, 293	166 96 62 127 125 165 165 165 174 174
70 777	March	718888478888848 844	1,064	88 88 88 88 88 88 88 88 88 88 88 88 88
-	January February	112888282828282828282828282828282828282	919	21 88 88 88 88 88 88 88 88 88 88 88 88 88
	January	142 198 198 198 198 199 199 199 199 199 199	1,048	682888 68288 68288 6828 6828 6828 6828
	District	PRODUCTION Eastern Pennsylvania, Maryland New York, Maine Ohlo Western Pennsylvania, West Virginia Michigan Indiana, Kentucky, Wisconsin Indiana, Kentucky, Wisconsin Alabama Alabama Alabama Alabama Alabama Alabama Alabama Alabama Alabama Alabama Alabama Indiana, Mississippl Louisiana, Mississippl Eastern Missouri, Minnesota, South Dakota Kansas Rassa Arkansas Arkansas Colorado, Arizona, Utah Wyoming, Montana, Idaho Wyoming, Montana, Idaho Southern California Southern California Southern California Origon, Washington Puerto, Rico	Total: 1957	SHIPMENTS Eastern Pennsylvania, Maryland New York, Maine. Ohio. Western Pennsylvania, West Virginia. Michigan. Michigan. Indiana, Kentucky, Wisconsin. Alabama. Virginia, South Carolina. Virginia, South Carolina. Georgia, Florida.

22822	8489	7	738 855
1282	34 16 25	7 8	1,020
1042	**************************************	3 1	1, 244
242	25.4830	- 60	1, 144
2362	25.43.54.43		1, 658 1, 524
2422	86084	1 4	1, 033
22428	9228	4	1, 362
13 47 26 26	255 205 3	4	1, 395
24 84 84 84 84 84 84 84 84 84 84 84 84 84	22 52 3 3	ð	1, 178
8888	22 54 18	က	1, 076 1, 156
1988	17 16 16	2	752 823
8818	38 88 1	1	485 636
[[a] [Wegger Missouri, Nedrskra, Oklahoma, Arkansas, Travas. Colorado, Artzona, Utah Wyoming, Montana, Klaho.	Northern California Bouthern California Oregon, Washington Puerto Rico	Total: 1957

¹ Difference between monthly and annual reports not adjusted.

TABLE 22.—Destination of shipments of prepared masonry cement from mills in the United States, 1956-57, by States

		1	957			19)57
Destination	1956 (thou- sand barrels)	Thou- sand barrels	Change from 1956 (per- cent)	Destination	1956 (thou- sand barrels)	Thou- sand barrels	Change from 1956 (per- cent)
Continental United States: Alabama Arizona. Arkansas California Colorado Connecticut 1. Delaware 1 District of Columbia 1. Florida. Georgia Idaho. Illinois. Indiana. Iowa Kansas Kentucky Louisiana Maine. Maryland Massachusetts 1. Michigan Minnesota. Mississippi Mississippi Mississippi Mississuri Montana. Nebraska Nevada 1 New Hampshire 1. New Jersey 1.		1, 151 7 119 185 93 21 205 921 266 11 685 491 144 186 309 106 49 332 203 1, 070 286 104 143 24 55	-7 -10 -5 -4 -5 -4 -8 -8 -14 -16 -19 -2 -13 -3 -15 -20 -23 -23 -8	Continental United States—Continued New Mexico 1 New York North Carolina 1 North Carolina 1 North Dakota 1 Ohio Oklahoma Oregon Pennsylvania. Rhode Island 1 South Carolina South Dakota. Tennessee Texas. Utah. Vermont 1 Virginia Washington West Virginia. Wisconsin. Wyoming. Unspecified. Total continental United States. Outside continental United States 2 Total shipped from cement plants	79 1,041 754 44 1,285 179 2,081 22 330 455 499 657 19 31 617 38 168 531 8 42 15,876 22	72 903 704 38 1,084 151 2 1,019 21 265 38 466 553 17 29 604 439 6 2 114,365	-9 -13 -7 -14 -16 -16 -16 -5 -20 -16 -7 -14 -11 -6 -11 -17 -25 -95 -10 -27

Non-cement-producing State.
 Direct shipments by producers to foreign countries and to Alaska.

TABLE 23.—Destination of shipments of prepared masonry cement from mills in the United States in 1957, by months, in thousand

Destination	January	February	March	April	May	June	July	August	Septem- ber	October	Novem- ber	Decem- ber
Control	P-11-4	2-1-8	9 1 10	10 9	01-01			14 1	9 11			
California Colorado Connecticut Delawaico District of Columbia Florida Georgia	27.00	 	14 9 22 15 80 80	12 9 16 81 25				19 16 18 18 88 88 18	10 8 10 70 70 70 70 70 70 70 70 70 70 70 70 70			
Idaho Ilinois Indiana Iowa Kanssa Kentucky	125		8112 82112 83112 83112 83112 83112 83112 83112 83112 83112 83112 83112 83112 8312 83	812 13 82 1 82 13 13 13 13 13 13 13 13 13 13 13 13 13				885 136 373	- 28 - 28 - 28 - 28 - 28 - 28 - 28 - 28			
Louisiana Maine Maryland Massachusetts. Michigan Mississippi Mississipi Missouri Montana Nebraska	33,32,50	- 2811811 - 2811811 - 81	82 82 1 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	- r 2888 28 28 28 28 28 28 28 28 28 28 28 2	11,233,5,7 11,233,5,7 11,33	377 255 107 37 37 15 15 5	14. 117. 31. 31. 9. 9. 9. 13. 8.	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	20 20 20 20 20 20 20 20 20 20 20 20 20 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 8 2 2 7 3 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	
Newada New Hampslire. New Hampslire. New Mexico. New York. North Carolina. North Dakota.	1 14 88 4 1 8 4		4 & & 4 7 C 4 & E	442 698 448 884 864			450 44 133 173	73 73 139 93 93 122 122 13				25.448.142
Oregon Pennsylvania Rhode Island South Carolina South Dakota Temassee Temassee Utan	201 181 191 19		22 22 88 88 40 1	88 2 88 4 9 9 6 9 6 9 6 9 6 9 6 9 6 9 6 9 6 9 6								

TABLE 23.—Destination of shipments of prepared masonry

33()	I	MINE	RA:
in thousand	Decem- ber	252 7.7	738	738
ths, in t	Novem- ber	34 34 26 112 26	880	1881
by mon	October	2013 117 117 117 117 117	1,241	1,244
n 1957,	Septem- ber	22 22 15 15 1	1,143	1,144
States i	August	97.4.25 25.15 1	1,656	1,658
o United	July	880 441 174 166	1,032	1,033
us in the	June	852 222 1	1,361	1,362
rom mi ntinued	May	සපිසරිනී	1, 394	1,395
masonry centent from milks in the United States in 1957, by months, barrels—Continued	April	44 154 30 30	1,177	1,178
barr	March	20° 21° 21° 21° 21° 21° 21° 21° 21° 21° 21	1,075	1,076
•	February	32 1 1 17	750	752
D 10 20	January	233	484	485
The state of the s	Destination	Continental United States—Continued Vermont Virginia Washington West Virginia Wisconsin Wyoning Unspecified	Total continental United States.	1.00a/

¹ Shipments by producers to foreign countries.

NATURAL, SLAG, AND HYDRAULIC-LIME CEMENTS

Natural cement was produced for sale at 3 plants in the United States and slag cement at 2 in 1957. The output of these cements was small, as the 5 plants used most of their productive capacity to produce prepared masonry cements. Another natural-cement plant and a hydraulic-lime cement plant produced only prepared masonry cements in 1957. As all of these prepared masonry cements contained some portland cement, they were included in the tabulations of masonry cements prepared at portland-cement plants (tables 20-23).

Figures on production of natural and slag cements in 1957 are not entirely comparable with figures for former years because of changes in method of reporting by some producers. Producers of these cements reported consumption of 19,000 short tons of coal and 147 million

cubic feet of natural gas.

The 7 plants reported an estimated annual capacity of 1.3 million barrels. During 1957 they used 142,000 short tons of limestone, 133,000 tons of slag, and 44,000 tons of lime.

TABLE 24.—Natural, slag, and hydraulic-lime cements produced, shipped, and in stock at mills in the United States, 1948-52 (average) and 1953-57

	Prod	luction	Ship	Stocks on	
Year	Active plants	Thousand barrels	Thousand barrels	Value (thousand dollars)	Dec. 31 (thousand barrels)
1948-52 (average) 1953 1954 1955 1956 1957	9 8 8 6 5	3, 545 3, 488 3, 504 941 1, 128 631	3, 550 3, 459 3, 513 954 1, 074 662	9, 191 10, 341 13, 215 3, 019 3, 589 2, 027	167 142 79 66 2 116 85

¹ Includes natural masonry cements through 1954.

PRICES

The average net realization of all shipments from cement plants in

1957 was \$3.21 per barrel compared with \$3.08 in 1956.

Portland-cement prices at the cement plants increased from \$3.08 per barrel in the fourth quarter of 1956 to \$3.16, \$3.18, and \$3.19 in the first three quarters of 1957, respectively. The average price in the fourth quarter dropped slightly to \$3.18, the average for the year.

Average prices of high-early-strength cement rose from \$3.61 per barrel in the first and second quarters of 1957 to \$3.70 in the third quarter and dropped slightly to \$3.68 in the fourth quarter, resulting in an average for 1957 of \$3.65 per barrel.

Prepared masonry cements increased in price from \$3.69 per barrel of 376 pounds in the first quarter to \$3.79 in the third quarter and

dropped to \$3.74 in the last quarter.

The composite wholesale price index of portland cement, f. o. b. destination, according to the Bureau of Labor Statistics index (1947-49=100), was 146.9 in 1957 compared with 139.7 in 1956.

² Revised.

TABLE 25.—Average mill value per barrel, in bulk, of cement in the United States,1 1948-52 (average) and 1953-57

Year	Portland cement	Natural, slag, and hydraulic- lime cements	Prepared masonry cement?	All classes of cement ²
1948-52 (average)	\$2.39	\$2.47	\$2. 82	\$2. 40
	2.67	2.93	3. 22	2. 68
	2.76	3.18	3. 50	2. 78
1955	2. 86	3. 16	3. 41	2. 89
	3. 05	3. 34	3. 75	3. 08
	3. 18	3. 06	3. 81	3. 21

¹ Includes Puerto Rico.

Includes masonry cements made at portland-, natural-, and slag-cement plants.
 Includes shipments of masonry or 1955, 1956, and 1957.

FOREIGN TRADE 6

Imports.—Imports of hydraulic cement in 1957 were virtually the same as in 1956—almost 4½ million barrels. Imports from Canada, mainly into New York and the New England States, from July through October nearly doubled in 1957. Approximately 60 percent of the total 1957 imports entered through Florida and came mainly from Belgium-Luxembourg and West Germany. Imports from Yugoslavia and Israel decreased substantially in 1957 from the high quantities imported in 1956 to nearly the 1955 level.

Imports of white portland cement in 1957 amounted to 448,200 barrels—mainly from France, Belgium-Luxembourg, and West Germany; nearly 80 percent of all white portland cement entered through Florida.

Exports.—Exports of hydraulic cement in 1957 decreased to 1\% million barrels, the lowest figure since 1942.

TABLE 26.—Hydraulic cement imported for consumption in the United States, 1948-52 (average) and 1953-57

[Bureau of the Census]

Year		an, portland, and Hydraulic-cement hydraulic cement clinker		White, nonstaining portland cement		Total		
	Barrels	Value	Barrels	Value	Barrels	Value	Barrels	Value
1948–52(average) 1953 1954 1955 1955 1956	635, 473 337, 078 371, 558 4, 559, 953 3, 672, 527 3, 856, 435	\$1, 833, 278 1, 004, 608 1, 307, 876 112, 712, 524 111, 362, 209 111, 887, 440	503 3, 298 47 466, 962 483, 423 121, 663	\$2, 323 22, 794 280 589, 061 1, 068, 949 221, 249	4, 121 45, 675 78, 643 192, 785 300, 170 448, 199	\$21, 468 238, 419 454, 552 1, 052, 827 11, 757, 417 12, 710, 781	640, 097 386, 051 450, 248 5, 219, 700 4, 456, 120 4, 426, 297	\$1, 857, 069 1, 265, 821 1, 762, 708 114, 354, 412 114, 188, 575 114, 819, 470

1 Owing to changes in tabulating procedures by the Bureau of the Census, data are not comparable with years before 1954.

⁶ Figures on imports and exports compiled by Mae B. Price and Elsie D. Jackson, Division of Foreign Activities, Bureau of Mines, from records of the U. S. Department of Commerce, Bureau of the Census.

TABLE 27.—Hydraulic cement imported for consumption in the United States, 1955-57, by countries

[Bureau of the Census]

Country	1	955	1	.956	1	957
	Barrels	Value	Barrels	Value	Barrels	Value
North America:						
Canada Cuba	738, 741	\$2, 708, 887	568, 719		1,061,317	\$3, 845, 601
Dominican Republic	149, 364	347, 498	12, 566 149, 801		134, 722	323, 622
Mexico	281, 858	641, 675	58, 337	154, 677	21, 164	65, 046
Total	1, 169, 963	3, 698, 060	789, 423	2, 234, 020	1, 217, 203	4, 234, 269
South America: Colombia	56, 331	208, 016	194, 997	533, 613	134, 642	377, 168
Europe:						
Belgium-Luxembourg Denmark	1, 537, 427 504, 394	4, 496, 875 710, 199	650, 573	2, 495, 741	1, 157, 882	4, 016, 358
Finland	12, 899	49, 500	325, 630	1, 048, 714	37, 304	176, 474
France	90,004	137, 150	97, 227	637, 720	173, 539	1, 175, 374
Germany, WestItaly	1, 248, 112	3, 306, 407	903, 751	2, 604, 169	982, 729	2, 767, 130
Netherlands	1 750	7,642	500	2,800	1,512 1,001	12, 037 5, 597
Norway Poland and Danzig		.,012		2, 300	95, 190	269, 621
Poland and Danzig			12, 065	21, 931		=00,021
I Of fugat	2, 990	6, 273	176, 379	452, 817		
Sweden Switzerland	440, 595	917, 300	283, 252	1, 063, 974	346, 574	837, 859
United Kingdom	61, 947	337, 281	116, 030	474, 028	30, 000 90, 311	81, 600 336, 292
Yugoslavia	109, 506	328, 551	387, 533	1, 033, 862	43, 953	165, 169
Total	3, 939, 723	10, 297, 178	2, 952, 940	9, 835, 756	2, 959, 995	9, 843, 511
Asia:						
Israel	52, 497	148, 574	453, 414	1, 368, 681	100 005	000.00
Japan	1, 186	2, 584	4.454	18, 741	108, 205 6, 252	333, 395 31, 127
						01, 121
TotalAfrica: Tunisia	53, 683	151, 158	457, 868 60, 892	1, 387, 422 197, 764	114, 457	364, 522
Grand total	5, 219, 700	114, 354, 412	4, 456, 120	¹ 14, 188, 575	4, 426, 297	1 14, 819, 470

 $^{^{1}}$ Owing to changes in tabulating procedures by the Bureau of the Census, data are not comparable with years before 1954.

TABLE 28.—Hydraulic cement exported from the United States, 1948–52 (average) and 1953–57

[Bureau of the Census]

Year	Barrels	Value	Percent of total ship- ments from mills
1948–52 (average)	3, 801, 938 2, 550, 788 1, 859, 012 1, 795, 448 1, 980, 804 1, 330, 520	\$13, 052, 990 9, 347, 169 6, 651, 790 7, 066, 918 17, 291, 867 5, 321, 525	1.7 1.0 1.0 1.0 1.0

¹ Revised figure.

TABLE 29.—Hydraulic cement exported from the United States, 1955-57, by countries of destination

[Bureau of the Census]

Country	195	10	1956 1957			4
Country	Barrels	Value	Barrels	Value	Barrels	Value
Torth America:						
Bermuda	425 743, 671	\$2,210 3,032,905	628, 049	\$2, 649, 101	1, 355 294, 969	\$5, 474 1, 322, 11
Central America: British Honduras	2,382	9, 527	750	2, 805 13, 146	1, 133	5, 78
Canal Zone	1,582	7,042	2, 622	13, 146	2,382	9, 75 49, 79
Costa Rica	4, 125 760	34, 213 4, 880	11, 775 725	37, 841 3, 557	15, 250 200	2, 06
El Salvador	926	7 714	7. 419	32, 817	1,600	6, 35
Honduras	11, 461	7, 714 38, 191	9, 297	33, 337	16 776	62, 80
Nicaragua	5, 906	31, 911	4, 417	28, 308	10, 350	45, 40
Panama	1, 785	9, 791	396	3,428	264	1,83
Mexico.	213, 438	985, 760	345, 086	1, 539, 987	312, 830	1, 346, 54
West Indies: British:						
Bahamas	14, 774	64, 926	6, 225	36, 667	13, 092	64, 24
Barbados	1,380	7, 038	1,000	16, 833	e eno	07 99
Tamaica	1,847	13, 241	50	1, 109	6, 623	27, 33
Leeward and Windward Islands	5, 149	17, 188	5, 600	19, 130	11, 407	38, 11
Trinidad and Tobago	5, 347	25, 917	464	2, 421	1,472	8, 14 267, 32
Cuba	216, 349	574, 153	540, 352	900, 449	145, 489	267, 3
Cuba Dominican Republic				07 700	613	3, 4 16, 8
French West Indies	15, 203	43, 353	10, 025 96, 266	27, 769 263, 620	6, 553 50	10, 8
Haiti Netherlands Antilles	269, 068 3, 550	775, 060 9, 685	842	3, 145	989	1, 18 3, 10
Total	1, 519, 128	5, 694, 705	1, 671, 360	5, 615, 470	843, 397	3, 287, 68
South America: Argentina	1-				3, 476	28.7
Bolivia.	725	4,083			1, 995	28, 79 11, 40
Brazil	18, 388	85, 265	21, 230	93, 195	20, 059	89,5
British Guiana			1,958 13,894	10, 016 134, 199	1,056 6,013	4,7 41.4
Chile	1, 359 13, 060	17, 804 85, 606	20, 193	129 376	16, 120	110, 0
Colombia Ecuador	625	2,817	3, 058	129, 376 13, 335	48	5
Perm	13, 422	42,085	5, 247	19,703	943	6, 4
Surinam	201	1,481	132	1,494	1, 264	5, 1 1, 055, 4
Venezuela	163, 752	745, 475	126, 727	596, 590	353, 106	
Total	211, 532	984, 616	1 182, 439	1 897, 908	404, 080	1, 353, 7
Europe:				44.000	0.50	
Belgium-Luxembourg	1,416	19, 809	995	11,970	953 427	17, 7 10, 0
Denmark	821	7, 591	100 1,442		1,893	12, 5
France	021	7,001	473		1,003	25, 6
Germany, West Iceland					626	3, 5
Italy		.	. 140	6, 694	252	6, 4
Italy Netherlands				12, 978	367 795	10, 8 26, 9
Merway	. 100	500 4, 432	774 288	8, 843	258	9,0
SpainSweden	004	7, 102	2,005		722	27. 2
United Kingdom			369	9, 697	300	7.4
Other Europe		1, 553	375	1,923	214	7, 6
Other Europeanner						

See footnote at end of table.

TABLE 29.—Hydraulic cement exported from the United States, 1955-57, by countries of destination—Continued

[Bureau of the Census]

Country	19	55	19	956	19	57
	Barrels	Value	Barrels	Value	Barrels	Value
\sia:						
Aden	894	\$5, 275	894	\$6, 535		
Arabia Peninsula States n. e. c.		40,210	250	1, 320	2,300	\$12, 15
India			257	1, 285	2,883	14, 80
Indonesia	18, 635	92, 097	1 44, 187	1 199, 548	3, 272	13, 25
Iran			1,174	8, 524	0,2.2	10, 20
Iraq	3, 434	17, 136	4, 490	23, 728	1, 100	6, 31
Japan	1, 990	46, 832	3,442	98, 970	6,281	144, 03
Korea, Republic of	6, 692	35, 942	6, 175	29, 265		
Kuwait	5, 506	20, 219	1 15, 999	1 73, 735	8, 595	49, 61
Malaya	2,000	9,992	2, 132	11, 400	750	3,87
Pakistan			3,749	13, 892	4,008	18, 26
Philippines	1,863	18, 596	2,000	22, 310	2,924	23, 57
Saudi Arabia	1,000	4, 230	1,004	18, 923	856	11, 30
Turkey			1,000	6, 019	2,600	10, 34
Other Asia.	1, 724	12, 425	233	6, 480	783	4, 15
Total	43, 738	262, 744	1 86, 986	1 521, 934	36, 352	311, 70
frica:						
British East Africa.	796	3, 744	1 100	2 000		l .
Liberia.	8, 953	38, 569	1, 198	6, 908		
Libya	0, 500	00, 009	13, 111 894	51, 172	13, 156	53, 34
Mozambique	132	1. 490	632	4, 685 3, 940	1, 250	6, 90
Nigeria	250	1, 225	002	3, 940		
Somaliland	200	1, 220	1, 575	7, 409	1,813	8, 25
Other Africa	360	3, 181	232	1, 302	465	5, 62
		0, 101	202	1,002	400	0,02
Total	10, 491	48, 209	17, 642	75, 416	16, 684	74, 13
ceania:						
Australia	1, 330	15, 854	507	4, 546		
British Western Pacific Islands	1, 550	10, 004	3, 440	13, 968	5, 444	23, 02
New Guinea	532	6, 038	1 5, 564	1 38, 942	4, 648	55, 26
New Zealand	5, 332	20, 867	5, 405	22, 083	7, 830	32, 53
Trust Territory of the Pacific	0,002	20,001	0, 100	22,000	1,000	02,00
Islands	·			1	4, 275	18, 42
Other Oceania			500	2,041	2,210	10, 12
Total	7, 194	42, 759	1 15, 416	1 81, 580	22, 197	129, 25
Grand total	1, 795, 448	7, 066, 918	1 1, 980, 804	1 7, 291, 867	1, 330, 520	5, 321, 52

¹ Revised figure.

WORLD REVIEW NORTH AMERICA

Canada.—With completion of a new plant at Picton, Ontario, and enlargement of capacity at 5 other plants, shipments of cement in Canada in 1957 increased 5.5 million barrels over 1956. The new St. Lawrence Waterway was a large consumer.

An additional 350-foot kiln, which began operation in July 1957 at the British Columbia Cement Co., Ltd., plant at Barberton, Vancouver Island, increased productive capacity from 2.1 to 3.1 million barrels annually. A new plant of Lafarge Cement of North America, Ltd., on Lulu Island, 10 miles from Vancouver, was expected to begin operation in December 1957. It has an initial capacity of 1.1 million barrels annually.

⁷ Utley, H. F., Doubling of Cement Output in British Columbia This Year: Pit and Quarry, vol. 50, No. 3, September 1957, pp. 102-103, 104, 112.

TABLE 30.—World production of hydraulic cement, by countries, 1948–52 (average) and 1953–57, in thousand barrels $^{\rm 1}$

[Compiled by Helen L. Hunt and Berenice B. Mitchell]

1948-52 (average)	1953	1954	1955	1956	1957
4 7 007	00.00	00.00	00 400	00 710	00.15
			23, 430		32, 17
2,011		2, 468			3, 91
					1, 64
					5
2 440	592	575	639	780	6
7, 792	9, 774	10, 261	11, 815	13, 351	15, 0
106	141	141	170	246	2
	469	451	428	410	4
000					4
					$\tilde{7}$
920 041	267 660				313, 7
200, 041	201,008	210,001	314, 313	000, 472	510, 7
257, 637	303, 035	312, 368	356, 765	380, 554	369, 72
8,678	9, 710	9,850	10, 835	11, 961	13, 8
229	199	193	223	188	1
		14, 658	16, 247	19, 308	19, 7
3 594			4 714	4, 521	8 4. 5
2 221	5 110			7 153	7, 1
0, 201	524		956	201	9
					. 9
				0.007	
1.917			5, 195		3, 2
1,741	1,741		1,560		2, 4
2,902	5, 758	7, 112	7, 517	8, 508	10, 2
30, 729	42, 081	47, 168	51, 350	57, 837	62, 28
59	76	- 88	252	3 440	4
				11, 351	12, 4
21, 483	27 124		27 493	27 346	27. 5
2 966	4 110		4 761		5, 1
					21. 5
11, 328					21, 0
5, 482					6, 8
					5, 5
41,981	54, 593	57, 144	62, 303	65, 581	73, 1
3 7, 945	14, 353	15, 450	17, 420	19, 167	20, 2
58, 656	90, 166	95, 443	110,048	115, 267	112, 8
	4, 374		6, 620	7, 259	7, 1
	6, 215	5, 553	6, 889	5, 834	5. 7
	2 767	3 471		3 682	2, 6
	45 010				69. 8
	40, 910				8 9
3,811		5, 699			7, 7
3,647					5, 7
14, 113			22, 357		26, 3
3,471	4, 509		4,568	6,004	5, 8
5,042	11, 117	9, 381	11,674	12, 817	14, 1
			1, 659	1, 929	2, 0
			25, 400		28, 7
			14 951		14, 3
20,000	0.070	10 654			13, 9
					170, 0
	93, 584				
58, 211					71, 2
7, 229	7, 511	8, 168	9, 164	9, 117	11, 6
000 400		FO0 440	000 000	606 047	743, 8
389, 469	541, 382	586, 442	663, 990	698, 947	140,0
	(average) 15, 327 2, 011 481 270 2, 440 7, 792 300, 841 257, 637 8, 678 8, 678 8, 229 8, 039 3, 594 3, 231 375 233 1, 917 1, 741 2, 902 30, 729 59 7, 007 21, 483 3, 266 4, 17, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28	(average) 15, 327 20, 697 2, 011 2, 386 481 762 270 334 2440 592 7, 792 9, 774 369 211 250, 841 267, 669 257, 637 303, 035 8, 678 9, 710 229 1, 90 8, 039 11, 902 3, 594 4, 468 3, 231 5, 119 375 534 4, 468 3, 231 5, 119 375 534 1, 197 2, 632 1, 741 1, 741 2, 902 5, 758 30, 729 42, 081 59 76 7, 007 8, 173 21, 483 27, 124 3, 296 4, 110 11, 328 13, 603 5, 482 7, 388 4, 175 5, 494 41, 981 54, 593 37, 945 14, 353 58, 656 90, 166 2, 386 4, 374 41, 981 54, 593 37, 945 14, 353 58, 656 90, 166 2, 386 4, 374 4, 304 6, 215 2, 533 2, 767 29, 193 45, 910 704 862 2, 386 4, 374 4, 304 6, 215 2, 533 2, 767 29, 193 45, 910 704 862 3, 811 5, 048 3, 647 4, 427 14, 113 19, 314 3, 471 4, 509 5, 042 11, 117 11, 225 1, 671 15, 016 19, 091 10, 888 13, 790 6, 722 9, 270 59, 542 96, 884 7, 229 7, 511	(average) 15, 327	(average) 15, 327	(average)

See footnotes at end of table.

TABLE 30.—World production of hydraulic cement, by countries, 1948-52 (average) and 1953-57, in thousand barrels —Continued

	358 493 26, 971 586 26, 203	352 446 26, 385	229	
Ceylon \$ 264 375 China \$ 6,579 22,750 Hong Kong 375 375 India 15,491 22,515 Indonesia 516 874 Iran 358 381 Iraq 4369 1,038 Israel 1,952 2,726 Japan 27,282 51,409 Jordan Korea: North * North * 1,231 1,759 Republic of 111 258 Lebanon 1,519 1,788 Malaya 188 1,849 Pakistan 2,609 3,553 Philippines 1,442 1,706 Syria 463 1,313 Tawan 1,988 3,049 Thralland 1,996 1,689 Turkey 2,304 3,096 Vietnam 973 1,706 Total 66,998 122,788 Africa: Algeria 1,777 3,037 </td <td>493 26, 971 586 26, 203</td> <td>446</td> <td>920</td> <td>ĺ</td>	493 26, 971 586 26, 203	446	920	ĺ
Ceylon \$ 264 375 China \$ 6,579 22,750 Hong Kong 375 375 India 15,491 22,515 Indonesia 516 874 Iran 358 381 Iraq 4369 1,038 Israel 1,952 2,726 Japan 27,282 51,409 Jordan Korea: North * North * 1,231 1,759 Republic of 111 258 Lebanon 1,519 1,788 Malaya 188 1,849 Pakistan 2,609 3,553 Philippines 1,442 1,706 Syria 463 1,313 Tawan 1,988 3,049 Thralland 1,996 1,689 Turkey 2,304 3,096 Vietnam 973 1,706 Total 66,998 122,788 Africa: Algeria 1,777 3,037 </td <td>26, 971 586 26, 203</td> <td></td> <td></td> <td>205</td>	26, 971 586 26, 203			205
China	26, 971 586 26, 203		498	287
Hong Kong	586 26, 203		37,654	39, 911
India	26, 203	686	709	610
Indonesia		26, 309	29, 358	33, 362
Iran		874	616	879
Iraq	862			
Israel	364	469	915	815
Japan 27, 282 51, 409 Jordan Korea: North 3 1, 231 1, 759 Republic of 111 258 Lebanon 1, 519 1, 788 Malaya 188 188 Pakistan 2, 609 3, 553 Philippines 1, 442 1, 706 Syria 463 1, 313 Tatwan 1, 988 3, 049 Thatland 1, 966 1, 689 Turkey 2, 304 3, 096 Vietnam 973 1, 706 Vietnam 973 1, 706 Total 66, 998 122, 788 Africa: 1, 777 3, 037 Algeria 1, 777 3, 037 Angola 1 044 1, 454 Egypt 5, 576 6, 432 Ethiopia 3 41 59 French West Africa 4 552 352 Kenya 141 211 Madagascar 23 34	1, 161	1,859	3 2, 873	3, 541
Jordan	3, 301	4, 104	3, 594	4, 216
Jordan	62, 591	61. 934	76.364	88, 981
Korea: North 1,231 1,759 Republic of 111 258 2	369	3 498	528	627
North 1, 231 1, 759 Republic of	. 500		0-0	, , , , , ,
Republic of 111 258 Lebanon 1,519 1,788 Malaya 188 188 Pakistan 2,609 3,553 Philippines 1,442 1,706 Syria 463 1,313 Taiwan 1,988 3,049 Thailand 1,096 1,689 Turkey 2,304 3,096 Vietnam 973 1,706 Total 66,998 122,788 Africa: 1,777 3,037 Angola 170 170 Belgian Congo 1 044 1,454 Egypt 5,576 6,432 Ethiopia 341 59 French West Africa 4 352 352 Kenya 141 211 Madagascar 23 23 Morocco: Northern zone 346 510 Rhodesia and Nyasaland, Federation of: Northern Rhodesia 4 246 375 Nouthern Rhodesia 733 1,519 Tunisia 1,050 1,325 <t< td=""><td>2, 932</td><td>2, 111</td><td>3, 518</td><td>3, 518</td></t<>	2, 932	2, 111	3, 518	3, 518
Lebanon 1, 519 1, 788 Malaya 188 Malaya 1, 189 Pakistan 2, 609 3, 553 Philippines 1, 442 1, 706 Syria 463 1, 313 Talwan 1, 988 3, 049 Thalland 1, 196 1, 689 Turkey 2, 304 3, 096 Vietnam 973 1, 706 Total 66, 998 122, 788 Africa: Algeria 1, 777 3, 037 Angola 12, 788 Africa: Algeria 1, 777 3, 037 Angola 104 1, 454 Egypt 5, 676 6, 432 Ethiopia 3, 41 59 Ethiopia 3, 41 59 French West Africa 4552 352 Kenya 452 Ethiopia 3, 41 59 French West Africa 4552 352 Kenya 141 211 Madagascar 23 Morocco: Northern zone 50 Southern zone 1, 947 Mozambique Rhodesia 1, 947 Mozambique Rhodesia 1, 59 Federation of: Northern Rhodesia 733 1, 519 Tunisia 1, 050 1, 325 Uganda 135	364	328	270	539
Malaya 188 Pakistan 2,609 3,553 Philippines 1,442 1,706 Syria 463 1,313 Talwan 1,988 3,049 Thalland 1,096 1,689 Turkey 2,304 3,096 Vietnam 973 1,706 Total 66,998 122,788 Africa: 1,777 3,037 Angola 170 170 Belgian Congo 1 044 1,454 Egypt 5,576 6,432 Ethiopia 3 41 59 French West Africa 4 352 352 Kenya 141 211 Madagascar 23 23 Morocco: Northern zone 346 510 Rhodesia and Nyasaland, Federation of: Northern Rhodesia 4 246 375 Nouthern Rhodesia 733 1,519 Tunisia 1,050 1,325 Uganda 135				
Pakistan 2, 609 3, 553 Philippines 1, 442 1, 706 Syria 463 1, 313 Tatwan 1, 988 3, 049 Thatland 1, 969 1, 689 Turkey 2, 304 3, 096 Vietnam 973 1, 706 Total 66, 998 122, 788 Africa: 1, 777 3, 037 Angola 170 170 Belgian Congo 1 044 1, 454 Egypt 5, 576 6, 432 Ethiopia 3 41 59 French West Africa 4 552 352 Kenya 141 211 Madagascar 23 32 Moroeco: Northern zone 1, 947 3, 577 Mozambique 346 510 Rhodesia and Nyasaland, Federation of: 4 246 375 Northern Rhodesia 733 1, 519 Tunisia 1, 050 1, 325 Uganda 135	1,964	2, 463	2,861	3, 283
Philippines	504	639	610	668
Philippines 1, 442 1, 706 Syria 463 1, 313 Talwan 1, 988 3, 049 Thalland 1, 096 1, 689 Turkey 2, 304 3, 996 Vietnam 973 1, 706 Total 66, 998 122, 788 Africa: 1, 777 3, 037 Angola 170 Belgian Congo 1 1 044 1, 454 Egypt 5, 576 6, 432 Ethiopia 341 59 Ethiopia 341 59 French West Africa 4352 352 Kenya 141 211 Madagascar 23 Morocco: Northern zone Southern zone 1, 947 Mozambique Rhodesia 1, 747 Mozambique 1, 947 Mozambique 1, 947 Mozambique 346 510 Rhodesia and Nyasaland, Federation of: Northern Rhodesia 733 1, 519 Tunisia 1, 050 1, 325 Tunisia 1, 050 1, 325 Tunisia 1, 050 1, 325 Tunisia 1, 050 1, 325 Tunisia 1, 050 1, 325	4,010	4,063	4,609	6, 420
Syria. 463 1,313 Talwan. 1,988 3,049 Thailand. 1,096 1,689 Turkey. 2,304 3,996 Vietnam. 973 1,706 Total. 66,998 122,788 Africa: 1,777 3,037 Angola. 170 170 Belgian Congo. 1 044 1,454 Egypt. 5,576 6,432 Ethiopia. 341 59 Fenench West Africa. 4352 352 Kenya. 141 211 Madagascar. 23 3 Morocco: Northern zone 346 510 Rhodesia and Nyasaland, Federation of: 346 510 Northern Rhodesia. 733 1,519 Tumisia. 1,050 1,325 Uganda. 135	1,818	2, 345	2, 562	2,996
Talwan 1, 988 3, 049 Thailand 1, 096 1, 689 Turkey 2, 304 3, 096 Vietnam 973 1, 706 Total 66, 998 122, 788 Africa: Algeria 1, 777 3, 037 Angola 170 Belgian Congo 1 1 044 1, 454 Egypt 5, 676 6, 432 Ethiopia 341 59 Ethiopia 4552 352 Kenya 4552 352 Kenya 141 211 Madagascar 23 Morocco: Northern zone 500 Southern zone 1, 947 Mozambique Rhodesia 1, 733 1, 519 Tunisia 1, 050 1, 325 Tunisia 1, 050 1, 325 Tunisia 1, 050 1, 325 Tunisia 1, 050 1, 325 Tunisia 1, 050 1, 325 Tunisia 1, 050 1, 325 Tunisia 1, 050 1, 325 Tunisia 1, 050 1, 325	1,460	1,548	1, 911	1,841
Thalland 1, 096 1, 689 Turkey 2, 304 3, 096 Vietnam 973 1, 706 Total 66, 998 122, 788 Africa: 1,777 3, 037 Angola 170 Belgian Congo 1 044 1, 454 Egypt 5, 576 6, 432 Ethiopia 341 59 French West Africa 4352 352 Kenya 141 211 Madagascar 23 Morocco: Northern zone 1, 947 Southern zone 1, 947 Rhodesia and Nyasaland, Federation of: Northern Rhodesia 733 1, 519 Tunisia 1, 050 1, 325 Tunisia 1, 050 1, 325 Uganda 1, 706	3, 143	3, 459	3, 459	3, 541
Turkey	2, 252	2, 263	2, 334	2, 357
Vietnam. 973 1,706 Total. 66,998 122,788 Africa: 1,777 3,037 Angola. 170 170 Belgian Congo. 1 044 1,454 Egypt. 5,576 6,432 Ethiopia. 3 41 59 French West Africa. 4 352 352 Kenya. 141 211 Madagascar. 23 23 Morocco: Northern zone. 1,947 3,577 Mozambique. 346 510 Rhodesia and Nyasaland, Federation of: 6 246 375 Northern Rhodesia. 733 1,519 Tunisia. 1,050 1,325 Uganda. 135	4, 151	4, 814	5, 687	7, 394
Total		4,014		3 2, 052
Africa: Algeria	1, 489	³ 1, 759	³ 2, 052	° 2, 052
Algeria	147, 346	149, 708	183, 211	208, 043
Algeria				
Angola	0.004	0.000	0.000	4 100
Belgian Congo.	3,864	3, 958	3, 923	4, 169
Egypt 5,576 6,432 Ethiopia 3 41 59 French West Africa 4 352 352 Kenya 141 211 Madagascar 23 Morocco: 23 Northern zone 345 510 Rhodesia and Nyasaland, Federation of: 346 510 Northern Rhodesia 6 246 375 Southern Rhodesia 733 1, 519 Tunisia 1, 050 1, 325 Uganda 135	246	410	510	³ 510
Ethiopia.	2,029	2, 375	2, 691	³ 2, 697
Kenya	7,828	8, 039	7, 921	8,596
Kenya	164	3 188	158	á 188
Kenya	487	756	850	8 727
Madagascar 23 Morocco: Northern zone Southern zone 1,947 Mozambique 346 Rhodesia and Nyasaland, Federation of: 80 Northern Rhodesia 6 246 Southern Rhodesia 733 1,519 Tunisia 1,050 1,325 Uganda 135	416	768	1,091	1, 208
Morocco: Northern zone	110		2,001	,
Southern zone				
Southern zone	29	258	8 293	³ 293
Mozambique 346 510 Rhodesia and Nyasaland, Federation of: 8246 375 Northern Rhodesia 733 1,519 Tunisia 1,050 1,325 Uganda 135	3, 835	4,016	3, 436	2, 556
Rhodesia and Nyasaland, Federation of:	598	803	885	973
Federation of: Northern Rhodesia	000	000	000	
Northern Rhodesia 6 246 375 Southern Rhodesia 733 1, 519 Tunisia 1, 050 1, 325 Uganda 135	- 1			
Southern Rhodesia 733 1, 519 Tunisia 1, 050 1, 325 Uganda 135	900		000	•
Tunisia 1, 050 1, 325 Uganda 135	393	534	663	4, 257
Uganda 135	1, 935	2, 363	³ 2, 345)
Uganda	1,665	2, 246	2, 111	2, 351
Union of South Africa	246	293	358	504
	12,676	13, 697	14, 482	14, 805
Total 23, 238 31, 604	36, 411	40, 704	41, 717	43, 834
Occapios =				
Oceania:	11 000	11 071	10 510	19.01*
Australia 7,007 9,370	11, 222	11, 674	12, 518	13, 615
New Zealand 1, 390 1, 642	1,894	2, 398	2, 644	³ 2, 638
Total 8, 397 11, 012	13, 116	14, 072	15, 162	16, 253
World total (estimate) 1 776, 468 1, 051, 902 1,	142, 851	1, 276, 589	1, 377, 428	1, 443, 993

This table incorporates a number of revisions of data published in previous Cement chapters.
 Average for 1 year only, as 1952 was first year of commercial production.
 Estimate.
 Average for 1949-52.
 Average for 1951-52.
 Average for 1951-52.

Cement plants at Woodstock, Ontario, and Regina, Alberta, and a new clinker grinding mill at Montreal East, Quebec, were described.8

Imperial Cement, Ltd., made plans for a new \$12-million cement plant, using marl as raw material, to be constructed near Edmonton, Alberta, in 1958.9

A review of the Canadian cement industry was published.¹⁰

Cuba.—In mid-1956 the Compañía Cubana de Cement Portland S. A., a subsidiary of the Lone Star Cement Co., announced plans for constructing a new cement plant near Jaruco, 40 miles southeast of Havana. The plant was scheduled for completion late in 1957. Cuba imported large quantities of cement clinker, which was ground in a plant built in 1956 at Santiago de Cuba. It was expected that the new plant near Havana would alleviate the need for importing cement from abroad. To stimulate cement production, the Cuban Government granted a 1-year exemption from the 2.75-percent gross sales tax on all machinery and building materials imported for constructing or expanding cement plants.11

Preliminary plans were made to construct a \$4-million cement plant

The second second to the second

on the Isle of Pines. 12

Jamaica.—Addition of a kiln to the plant of the Caribbean Cement Co. increased its capacity to 1.1 million barrels of cement per year. Addition of a third kiln was planned to increase capacity to 1.6 million barrels per year. Rapid industrialization in Jamaica has increased greatly the demand for cement.¹³

CENTRAL AMERICA

Costa Rica.—According to press reports, plans were approved for building a cement plant on the Pacific coast just south of Puntarenas.14

Guatemala.—Completion of a \$2\%2-million expansion program at Guatemala's cement plant, Cementos Novella, was expected to double

plant capacity.15

Honduras.—No cement was produced in Honduras; however, according to a press report, equipment was to be supplied by a United States firm to Cementos de Honduras to build a 900-barrel-per-day wet-process plant in that country.16

**Howe, H. B., New 2,000 Hp. Clinker Mill Installed in Montreal East Plant of Canada Cement Company: Pit and Quarry, vol. 50, No. 6, December 1957, pp. 84-86, 88-92, 95, 100, 136.

**Trasler, F. M., Saskatchewan's New Cement Plant: Canadian Min. Met. Bull., vol. 50, No. 537, January 1957, pp. 14-20.

**Trauffer, W. E., Canada Cement Company Builds 3,200,000-Bbl. Plant: Pit and Quarry, vol. 50, No. 1, July 1957, pp. 72-76, 80-83, 86, 160, 163.

**Western Miner and Oil Review, New Cement Plant: Vol. 30, No. 11, November 1957, p. 65.

**Data Trauffer, W. E., Review and Forecast of the Canadian Cement Industry: Pit and Quarry, vol. 49, No. 9, March 1957, pp. 106-108, 110, 160-161.

**Bureau of Mines, Mineral Trade Notes: Vol. 45, No. 3, September 1957, pp. 21-22.

**Poreign Commerce Weekly, Cuban Income to Rise as Result of Higher Sugar Prices, Larger Crop. Vol. 57, No. 12, March 1957, pp. 2, 22.

**Pit and Quarry, Expansion to Triple Output of Caribbean Cement Co. to 300,000 Tons per Year: Vol. 50, No. 2, August 1957, p. 120.

**Bureau of Mines, Mineral Trade Notes: Vol. 45, No. 3, September 1957, p. 21.

**Thomson, G. F., Guatemala Cement Plant Provides a Real Lesson in Kiln Efficiency: Rock Products, vol. 60, No. 12, December 1957, pp. 73-76.

**Bureau of Mines, Mineral Trade Notes: Vol. 45, No. 3, September 1957, pp. 21.

339CEMENT

SOUTH AMERICA

Brazil.—Leaders of the Japanese cement industry considered the construction of a joint Japanese-Brazilian cement plant at Sao Paulo. Two Japanese survey teams were sent to Brazil.¹⁷

Colombia.—According to a press report, a United States firm was supplying equipment for a new cement plant to be constructed by Cementos del Sinu S. A. at Planeta Rica in the interior of Colombia. is

Peru.—Two new cement plants in northern Peru were completed, one at Pacasmayo and the other at Chiclayo. Plans were made by Chanchamina S. A. and Cía. Cemento Andino S. A. to build cement plants in the central plateau area. According to press reports, plans were completed early in 1957 by Compañía de Cemento del Sur del Peru S. A. with a London firm to finance a \$4.3-million cement plant at Juliaca, southern Peru. The plant was expected to begin production late in 1958.19

As a result of increased domestic production, the temporary importduty exemptions through the ports of Paita and Talera were withdrawn but were still in effect at the ports of Mollendo and Matarani.20

EUROPE

Denmark.—About mid-1957 the Alborg Portland Cement Works began constructing a cement plant near Karlstrup, about 20 miles south of Copenhagen. The plant was to have an annual capacity of 0.9 million barrels and was to be in operation before the end of 1958. Enough limestone, chalk, and clay for 50 years' operations were said to be available on a 660-acre tract acquired by the company.²¹

Italy.—Approximately 50 companies (operating about 100 plants) produced cement in Italy. About half of the total was produced by one company, Italcementi of Bergamo. Production was increasing

because of building activity in all parts of the country.22

Netherlands.—Cement production in the Netherlands in 1957 was approximately three times the annual output before World War II. Even that quantity supplied only about 50 percent of domestic requirements.23

Spain.—Large expansion was planned for the Spanish cement industry. Plans were formulated for new cement plants at Yanguas, Segovia; La Magdalena, Castellon; Ribas de Jarama, Madrid; Maco, Madrid; and Pedera, Seville. Additional productive capacity was planned for the plant operated by Cementos y Cales Freixa S. A. at Los Monjos, Barcelona.²⁴ An increase of 50 percent was forecast in Spanish productive capacity within the next 4 years.

¹⁷ Pit and Quarry, Brazilians Seek Japanese Aid to Erect Joint Cement Plant: Vol. 49, No. 9, March 1957,

¹⁷ Pit and Quarry, Diagnams 2002-12.

18 Work cited in footnote 16.

19 Bureau of Mines, Mineral Trade Notes Vol. 44, No. 6, June 1957, pp. 22-23.

29 Foreign Commerce Weekly, Peru Withdraws Exemption of Import Duty on Cement: Vol. 58, No. 22,

Nov. 25, 1957, p. 9.

21 Work cited in footnote 14, p. 21.

22 Bureau of Mines, Mineral Trade Notes: Vol. 45, No. 2, August 1957, pp. 21-22.

23 Bureau of Mines, Mineral Trade Notes: Vol. 44, No. 3, March 1957, pp. 19-20.

24 Chemical Trade Journal and Chemical Engineer (London), Cement Manufacture Expansion Plans: Vol. 140, No. 3644, Apr. 5, 1957, p. 799.

United Kingdom.—In 1957, for the first time since the end of World War II, domestic demand for cement in Great Britain decreased. Deliveries were 56.9 million barrels compared with 60.1 million barrels in 1956. The decline was reported to have been caused by smaller defense demands.25

A new cement plant having an annual capacity of 1 million barrels began operation at the end of April 1957 at Cauldon Low near Stokeon-Trent, Staffordshire. It was the 28th plant of the Blue Circle group operating in Great Britain. The plant was described in detail in a recent article.26

Work was in progress in 1957 to increase productive capacity of the plant of Chinnor Cement and Lime Co., Ltd., by 1,600 barrels per

ASIA

India.—A large increase in cement production in India was antic-Estimated output was 26 million barrels in 1956 and 35 million barrels in 1957. Production of 42 million barrels for 1958 was forecast. According to the Second Five-Year Plan, which began April 1, 1956, a goal of 85 million barrels was established. nine new plants and expansion of several existing units were licensed. To facilitate construction of new plants the Government tentatively approved the establishment of a cement-machinery manufacturing plant in India. Because of a serious decline in foreign-exchange reserves, importations of cement were greatly restricted during the first half of 1957, and steps were taken to economize in its use.²⁸ According to a later report, 29 more than ½ million barrels of cement was imported from July 1, 1956, to January 31, 1957, and the State Trading Corporation expected to import another million barrels by August 31, 1957, to relieve the acute shortage.

Indonesia.—A modern new plant with a capacity of 1.3 million barrels of cement a year was formally dedicated on August 7, 1957. It was expected that the plant would strengthen Indonesia's economy and spur new industries.36

Iran.—Orders were placed with a British firm to supply equipment for a new wet-process cement plant to be constructed in Iran, midway between the Persian Gulf and the Caspian Sea, where water was ample and limestone, clay, and gypsum were readily available.31

Iraq.—The Government-owned Sarchinar cement plant began producing in July 1957. This new plant, the fourth in the country, increased the total national output to 13,000 barrels a day.³²

Japan.—A new cement plant on Hokkaido Island, operated by Fuji Cement Co., was the first closed-circuit-grinding, wet-process plant in Japan.33

²⁵ U. S. Embassy, London, England, State Department Dispatch 2490; Jan. 20, 1958, p. 10.

28 Pit and Quarry, Interesting Features Observed at Cauldon Works of Blue Circle Group: Vol. 50, No. 6, December 1957, pp. 119-120, 122-126, 129-130.

27 Chemical Trade Journal and Chemical Engineer (London), Chinnor Cement and Lime: Vol. 141, No. 3660, July 26, 1957, p. 208.

28 Bureau of Mines, Mineral Trade Notes: Vol. 44, No. 2, February 1957, pp. 20-21.

29 Bureau of Mines, Mineral Trade Notes: Vol. 45, No. 4, October 1957, p. 33.

20 Rock Products, New Cement Plant Opens in Indonesia: Vol. 60, No. 10, October 1957, p. 68.

21 Pit and Quarry, New Iranian Cement Plant To Use British Equipment: Vol. 50, No. 1, July 1957, p. 155.

22 Bureau of Mines, Mineral Trade Notes: Vol. 45, No. 2, August 1957, pp. 20-21.

23 Rock Products, Japan's New Wet-Process Plant Starts Operation: Vol. 60, No. 3, March 1957, p. 52.

341 CEMENT

Korea.—A new cement plant financed by the United Nations Korean Reconstruction Agency was under construction at Mungyong, about 90 miles from Seoul. It will have a capacity of 1 million barrels of cement a year, and initial operation was scheduled for January 1958.34

Malaya.—Plans were made to construct a new cement plant near Ipoh, Perak, to supply the area in northern Malaya, which imported

cement through the port of Penang.35

Pakistan.—The Pakistan Industrial Development Corporation invited quotations for equipment to almost double the capacity of the

cement plants at Daukhel and Hyderabad.³⁶

Philippines.—The Republic Cement Corp. plant at Norzagary, near Manila, which began operation in July 1957, increased Philippine output about 30 percent. Its capacity is 750,000 barrels per year. It became the fifth producer in the Philippines and was the only dry-process plant in the country. Plans were already under way to double its capacity.37

Taiwan (Formosa).—A company known as the Chia Hsin Cement Corp., Ltd., was organized to raise capital and formulate plans for

building a new cement plant.38

Thailand.—A third kiln was added to the Ta Luang cement plant operated by the Siam Cement Co. The 395-foot rotary kiln was floated 60 miles up the river from Bankok harbor in 7 sealed sections. The new kiln will increase clinker capacity from 2.2 to 3.2 million barrels per year.³⁹

The Jalaprathan Cement Co. was building a new cement plant of 0.5 million barrels per year capacity at Takli, 190 km. north of Construction was expected to be completed early in 1958.

Turkey.—The new Adana cement plant, the eighth operation in Turkey, was officially opened in May 1957. Its capacity of 0.9 million barrels of cement a year increased the national capacity to 8.8 million barrels. A trend from stucco and brick to concrete structures in Turkey increased greatly the domestic demand for cement. 40

AFRICA

Angola.—Authorization was obtained to increase the annual cement production of the Companhia de Cimentos de Angola plant at Lobito to 0.8 million barrels per year. The Companhia de Cimento Secil do Ultramar had already applied for authority to increase production of its new plant at Luanda from 0.5 to 1.2 million barrels annually, although the plant was not expected to produce until May 1957.41

Pit and Quarry, UNKRA Finances Korean Cement Plant Costing \$9,000,000: Vol. 50, No. 5, November
 1957, pp. 74-75.
 Foreign Commerce Weekly, New Malay Cement Works Planned: Vol. 53, No. 3, Jan. 21, 1957, p. 12.
 Foreign Commerce Weekly, Pakistan To Expand Cement Plants: Quotations Wanted: Vol. 57, No. 23,

June 10, 1957, p. 20.

Foreign Commerce Weekly, New Cement Factory in the Philippines: Vol. 58, No. 17, Oct. 21, 1957, p. 124.
38 Foreign Commerce Weekly, New Cement Factory Planned for Taiwan: Vol. 58, No. 26, Dec. 23, 1957,

^{**} Foreign Commerce Transport Foreign Commerce T

Kenya.—Cement became the most important mineral product of Production in 1957 showed a gain of 20 percent over 1956 and was nearly twice as large as in 1955. The East African Portland Cement, Ltd., plant at the Athi River began producing in 1957. British Standard Portland Cement Co. plant at Bamburi was enlarged by the addition of a third kiln early in 1957. These two plants probably were large enough to supply the needs of the Colony.42

Mozambique.—Companhia de Cimentos de Mozambique, the sole producer of cement in the country, operated 2 plants, 1 at Dondo near Beira, and 1 in Laurenco Marques. Both plants were being enlarged in 1957, and completion of a third plant was expected by 1960. duction of cement increased greatly after 1953 to furnish concrete for

the Limpopo Irrigation Dam. 43

Nigeria.—A cement plant was being built at Nkalagu, Ogaja Prov-A limestone mining lease was obtained, covering 7,000 acres.44

Rhodesia and Nyasaland, Federation of.—The new plant of the Salisbury Portland Cement Co., Ltd., at Manresa near Salisbury began producing in 1957. It was said to be the most modern cement plant in southern Africa.45 The company was planning to construct another plant of 0.7 million barrels yearly capacity at Sternblick, 13 miles from Salisbury. Limestone and clay deposits had been obtained.46

It was reported that plans were being made to construct a cement plant at Changalumi, Nyasaland. The clinker would be ground in a

mill that was under construction at Blantyre.47

Uganda.—Expansion of productive capacity of the Uganda cement industry to 0.9 million barrels a year was nearly completed at the end With the new facilities in operation, it was expected that all the needs of Uganda would be met and that a surplus of cement would be available for export.⁴⁸

Union of South Africa.—Pretoria Portland Cement Co. planned an additional kiln to increase its annual capacity to 1 million barrels. The Cape Cement Co. was considering the construction of a new plant

in an area where it had extensive limestone deposits. 49

OCEANIA

Australia.—Australian Cement, Ltd., was adding a new rotary kiln to its plant at Geelong, Victoria, to increase plant capacity about 0.8 million barrels per year. It was not expected to be in operation before the end of 1958. The present plant was operating beyond its rated capacity to supply the heavy demands of the Melbourne area.50

New Zealand.—Two new cement plants were under construction in New Zealand, one for Waitomo Cement, Ltd., at Te Kuiti, and the

⁴² Bureau of Mines, Mineral Trade Notes: Vol. 45, No. 4, October 1957, pp. 33-34.
U. S. Embassy, Natrobi, Kenya, State Department Dispatch 259: Jan. 27, 1958, p. 17.
48 Bureau of Mines, Mineral Trade Notes: Vol. 44, No. 3, March 1957, pp. 1, 9.
48 Rock Products, New Nigerian Plant: Vol. 66, No. 6, June 1957, p. 183.
48 South African Mining and Engineering Journal, New Works: Vol. 68, No. 3368 (pt. II), Aug. 30, 1957, 5000.

p. 55.

Bureau of Mines, Mineral Trade Notes: Vol. 44, No. 2, February 1957, p. 22.

Bureau of Mines, Mineral Trade Notes: Vol. 44, No. 2, February 1957, p. 22.

Rhodesian Mining and Engineering Review (London), Vol. 21, No. 11, November 1956, p. 19.

Bureau of Mines, Mineral Trade Notes: Vol. 45, No. 4, October 1957, p. 34.

Rock Products, African Industry Expands: Vol. 60, No. 6, June 1957, p. 72.

Chemical Engineering and Mining Review, Geelong Cement to Increase Capacity: Vol. 50, No. 1,

other for Southland Cement, Ltd., at Orawia. Both were of the vertical-kiln type.51

TECHNOLOGY

Research.—The laboratories of the Portland Cement Association at Skokie, a suburb of Chicago, were described as the largest in the world devoted to cement research. The value of the buildings and equipment was stated to be \$3,500,000, and two buildings were under construction at a cost of \$2,750,000. The work was conducted under three main departments-Research, Development, and Manufacturing Processes.52

Dewatering.—Cement slurry has been dewatered by filtering, but a newer method was described, using a slurry additive of peat or boggy soil with alkali. The water content was reduced to 25 percent. The additive also acted as a grinding aid and reduced dust concentrations in kiln gases.53

Liquid cyclones were used successfully at a California plant to dewater slurry and thus decrease the volume of material handled by

existing equipment.54

A process was patented to facilitate filtering of a slurry by addition of an alkaline-earth metal halide.55

According to a recent patent, the viscosity of a slurry was reduced by adding enough CO₂ to lower the pH to 6 or 7.56

A new type of classifier for treating wet-process cement-plant

slurries was patented.57

Grinding.—It was found that only about 10 percent of the energy consumed in dry grinding clinker in ball mills created new surfaces in the ground product and that most of the energy was converted to heat that might increase the temperature high enough to damage the finished cement. One investigator claimed that 45 percent of the heat generated in grinding was contained in the charge of grinding balls; he proposed a method of reducing the heat by discharging the balls with the ground product, separating them by screening, cooling the grinding charge, and returning it to the circuit.58

A method of drying and grinding raw materials in a single operation, rather than as separate and independent steps, was employed suc-

cessfully at several plants.59

al Bureau of Mines, Mineral Trade Notes: Vol. 44, No. 2, February 1957, p. 22.

Bersons, Hubert C., A Tour of World's Largest Cement Research Lab: Rock Products, Vol. 60, No. 9, September 1957, pp. 76-79, 117-118; Vol. 60, No. 10, October 1957, pp. 120-121, 124, 128, 132, 190, 192; Vol. 60, No. 11, November 1957, pp. 100-103, 127; Vol. 60, No. 12, December 1957, pp. 66-69, 105.

Thaulow, Sven, The Portland Cement Association in the U. S. A. and Canada, Seen from the European Viewpoint: Pit and Quarry, Vol. 50, No. 4, October 1957, pp. 112-114, 116-118, 120.

Buttle, Johs, Reducing Water Content of Slurry in Wet-Process Cement Manufacture: Pit and Quarry, Vol. 49, No. 8, February 1957, pp. 78-79, 82-83, 89.

Curry, James, J., Operation of Liquid Cyclones at Calaveras Cement Co.: Min. Eng., Vol. 9, No. 10, October 1957, pp. 1109-111.

Geary, Eugene W., and Kreager, Edgar, C. (assigned to Pittsburgh Plate Glass Co., Pittsburgh, Pa.), Cement Slurry Fiftration: U. S. Patent 2,792,312, May 14, 1987.

Williams, Duncan R. (assigned to Monolith Portland Midwest Co., Los Angeles, Calif), Lowering the Viscosity of Cement Slurry by Addition of Co. Gas: U. S. Patent 2,790,725, Apr. 30, 1957.

Krebs, K. (assigned to Centricolne Corp., San Francisco, Calif.), Centrifugal Classifier: U. S. Patent 2,787,374, Apr. 2, 1957.

Clausen, C. F., Here's a New Way to Make Cool Cement: Rock Products, Vol. 60, No. 2, February 1957, pp. 104-105, 108-109, 112-114, 162.

Toury, J. R., Raw Mix Drying and Grinding Systems: Pit and Quarry, pt. I, vol. 50, No. 1, July 1957, pp. 96, 98, 100, 105, 128, 156; pt. II, vol. 50, No. 2, August 1957, pp. 102-103, 106-108, 115.

The widely known process for wet-grinding portland-cement raw materials in a nonaqueous liquid medium (U. S. Patent 2,611,714) was improved by a process for recovering the used liquid.60

Equipment and methods used in both raw-material and clinker

grinding were described in detail with illustrations.61

As a result of a questionnaire sent to 16 cement companies, it was found that good-quality, high-early-strength cement can be ground in single-stage ball mills with comparable or better results than in

compartment mills or multistage circuits. 62

The ends of hammers used in hammer-mill grinding were subject to rapid wear, and their repair was costly and time consuming. cement company saved considerable on repair work by using a trunioned fixture into which the hammers are clamped for treatment with a semiautomatic welder. Alloy flux permitted the use of mild-steel electrode wire.63 A similar problem confronted cement-plant operators seeking to improve die-ring wear resistance in clinker-grinding mills. One investigator found that the best results were obtained by applying alloy-rod and paste-type hardfacing materials to a die-ring base of carbon steel.64

Calcination.—Research on cement-kiln thermal efficiency by various individuals, companies, and organizations followed three lines of approach in 1957: (1) Utilization of heat that normally escapes with waste kiln gases, (2) reduction of heat that escapes in the calcined product, and (3) improvement of heat transfer within the kiln.65

A new type of slurry preheater was introduced by the National Portland Cement Co. at Broadhead, Pa. It was designed to reduce heat losses, particularly in gases leaving the kiln. Heat consumption was reduced to 900,000 B. t. u. per barrel at a daily output of 2,000 A system of preheating with coils, developed by the Coplay Cement Co., is said to have reduced fuel consumption 40 percent. 67

It was found at Kenya, Africa, that cement could be made more advantageously in shaft than in rotary kilns. One advantage of the shaft kiln was the low investment cost. Another was the successful use of anthracite screenings, which are unsuited to rotary kilns.

heat and power consumption also were claimed.68

To reduce the time lost while rotary kilns were shut down for relining, a new method of placing firebrick was devised. Instead of inserting separate cardboard and steel shims between the bricks to provide space for expansion, the shims were bonded to each brick, thus permitting rapid setting and uniform spacing.69

pp. 106, 118, 120.

⁶⁰ Witt, J. C., Method of and Apparatus for the Wet Grinding of Solids: U. S. Patent 2,801,932, Aug. 6,

Witt, J. C., Method of the Appeters of the Cement Industry: Min. Eng., vol. 9, No. 10, 1957.

61 Bendy, W. R., Modern Grinding Plant Design in the Cement Industry: Min. Eng., vol. 9, No. 10, October 1957, pp. 1145–1149.

62 Rowland, C. A., Production of High Early Strength Cement in Single-Stage Ball Mills: Min. Cong. Jour., vol. 43, No. 10, October 1957, pp. 110–111, 113.

63 Bayaria, Albert J., Welding Time Cut Two-Thirds: Pit and Quarry, vol. 50, No. 3, September 1957, 112–115.

⁸³ Bayaria, Albert J., Welding Time Cut Two-Thirds: Fit and quarty, vol. 30, No. 3, expectations pp. 113-115.
64 Rock Products, Unusual Technique Reduces Abrastve Wear: Vol. 60, No. 7, July 1957, pp. 94, 96.
65 Rock Products, Mining Engineers Discuss New Tools and Techniques: Vol. 60, No. 12, December 1957, pp. 124-126, 132, 134.
66 Peck, Roy L., National's New Slurry Preheater: Pit and Quarry, vol. 49, No. 8, February 1957, pp. 102-103, 106-107, 110.
67 Beil, Joseph N., Radical Preheater Design Proves Practical: Rock Products, vol. 60, No. 9, September 1957, pp. 90-92.
68 White, C. A., African Cement Firm Took a Look—Then Went to Vertical Kilns: Rock Products, vol. 60, No. 10, October 1957, pp. 108-111, 187-188.
69 Rock Products, New Kiln Liner Cuts Down Time, Offers Savings: Vol. 60, No. 9, September 1957, pp. 108, 118, 120.

Several patents issued in 1957 covered kiln operation and calcination processes. One pertained to accurately controlled flow of fluidized raw materials.70 Another patent covered a method and apparatus for preheating raw materials." A patented heat-exchange apparatus designed to reduce heat loss comprises cyclones arranged in series.72

A method was devised for feeding shaft kilns by dumping succes-

sively buckets of different raw materials.73

Equipment was designed for furnishing a uniform flow of heated secondary air to the firing hood of a kiln.⁷⁴ Cooling after calcination also received attention. A mechanism was invented for rapidly cooling cement clinker and similar calcined products on a rotating platform.75

A fluidized-solids process for making portland cement was carried successfully through a small pilot-plant stage. Powdered raw material entered from the bottom of the reactor into a fluidized bed where calcination took place. The clinker was discharged near the

top of the reactor.76

A process has been developed to the pilot-plant stage for making cement clinker in a mere fraction of the time required in the rotary The raw materials were discharged into a chamber where they were brought into immediate contact with a countercurrent of burning fuel.⁷⁷

Slag Cements.—Exhaustive tests proved that portland blast-furnace slag cements made in accordance with ASTM specifications performed as well as Type I portland cement but did not meet all the requirements of Type II portland cement.78

The strength and surface hardness of blast-furnace slag cements of

various compositions were tested in Japan.⁷⁹

Oil-Well Cements.—Several patents were issued on oil-well cements having retarded setting time or other special properties.80

Krauss, W. (assigned to Fuller Co., Catasauqua, Pa.), Material Feed Regulator: U. S. I accept 2,022,022, Aug. 13, 1957.
 Muller, F. (assigned to Klockner-Humboldt-Deutz Aktiengesellschaft, Kaln-Deutz, Germany), Method and Apparatus for Preheating Cement Raw Material by Kiln Exit Gases: U. S. Patent 2,785,886, Mar. 19, 1957.
 Sylvest, K. J. (assigned to F. L. Smidth & Co., New York, N. Y.), Heat Exchange Apparatus Including Cyclone Separators: U. S. Patent 2,802,280, Aug. 13, 1957.
 Beckenbach, K., Kiln Charging Apparatus: U. S. Patent 2,784,025, Mar. 5, 1957.
 Puerner, B. H. (assigned to Allis Chalmers Mfg. Co., Milwaukee, Wis.), Method and Apparatus for Supplying a Kiln With a Uniform Flow of Secondary Combustion Air at a Constant Temperature: U. S. Patent 2,793,020, May 21, 1957.
 Vreeland, G. W. (assigned to Kaiser Steel Corp., Oakland, Calif.), Cooling Device: U. S. Patent 2,792,924, May 21, 1957.

Note land, G. W. (assigned to Kaiser Steel Corp., Cakiana, Conn.)
May 21, 1967.
Chemical Week, Pyzel Fluid-Bed Cement Process: Vol. 80, No. 7. Feb. 16, 1957, pp. 108, 110.
Witt, J. C., Counter-Cyclone Unit Designed to Produce Clinker in Minutes: Pit and Quarry, vol. 50, No. 6, December 1957, pp. 94, 136.
Mather, Bryant, Laboratory Tests of Portland Blast-Furnace Slag Cements: Jour. Am. Concrete Inst., vol. 29, No. 3, September 1957, pp. 205-212.
Tanaka, Jaro, From Blast Furnace Slag to Cement: Rock Products, vol. 60, No. 3, March 1957, pp. 102, 102, 104, 106; vol. 60, No. 4, April 1957, pp. 107, 111, 114, 117; vol. 60, No. 10, October 1957, pp. 163, 164, 166, 106

102, 104, 106; vol. 60, No. 4, April 1957, pp. 107, 111, 114, 117; vol. 60, No. 10, October 1261, pp. 107, 196, 196, Anderson, F. M. (assigned to Halliburton Oil Well Cementing Co., Duncan, Okla.), High Temperature Well Cementing: U. S. Patent 2,805,719, Sept. 10, 1957.
Bergman, W. E. (assigned to Phillips Petroleum Co., of Delaware), Hydraulic Natural Cements Having an Extended Thickening Time: U. S. Patent 2,790,724, Apr. 30, 1957.
Clark, Roscoe, C., Jr., Coffer, Henry F., and Shock D'Arcy, A. (assigned to Continental Oil Co., Ponca City, Okla., of Delaware), Light Weight Well Cement: U. S. Patent 2,803,555, Aug. 20, 1957.
Jones, R. V. (assigned to Phillips Petroleum Co., of Delaware), Well Cementing Materials and Their Application: U. S. Patent 2,782,465, Feb. 26, 1957.
Morgan, Bryan, and Dumbauld, George K. (assigned to Esso Research & Engineering Co., Elizabeth, N. J., of Delaware), Jan, and Harmsen, Gerrit, J. (assigned to Shell Development Co., New York, N. Y., of Delaware), Hydraulic Cement With Retarded Setting Action: U. S. Patent 2,816,043, Dec. 10, 1957.

⁷⁰ Krauss, W. (assigned to Fuller Co., Catasauqua, Pa.), Material Feed Regulator: U. S. Patent 2,802,698.

Prestressed Concrete.—The manufacture of prestressed concrete units has grown from an infant industry to "big business" since 1950. In 1957 an estimated 220 factories in the United States were making prestressed girders, beams, piling, and other structural units.81 worldwide interest in this new type of construction material was emphasized by the weeklong World Conference on Prestressed Concrete, held in San Francisco, Calif., in August 1957 and attended by 1,200 persons from 31 countries and more than 40 States.82 Prestressed Concrete Institute devoted study to current problems in the industry. In cooperation with the University of Florida, the institute sponsored a second prestressed concrete short course scheduled for February 1958.83 A special application of the product was publicized, and testing methods were described.84

A CONTRACTOR OF THE PROPERTY O

Tests and Specifications.—ASTM issued a new edition of Standards

on Cement covering tests and specifications to February 1957.

Control of the magnesium content of cement raw materials required frequent analyses that were tedious and lengthy by standard methods. A new method of analyzing for magnesium was developed, whereby a determination could be made in 20 minutes.85

Tests conducted at the Portland Cement Association laboratories indicated that a P2O5 content of 2 percent or more in cement clinker

was not detrimental.86

⁸¹ Wall Street Journal, Stress on Prestress: Vol. 150, No. 29, Aug. 9, 1957, pp. 1, 12.
82 Engineering News Record, Spotlight on Presstressed Concrete: Vol. 159, No. 6, Aug. 8, 1957, pp. 23-25.
83 Concrete, Second Course Scheduled on Prestressed Concrete: Vol. 65, No. 11, November 1957, p. 22.
84 Concrete, Prestress Roof's 9,000 Precast Slabs: Vol. 65, No. 8, August 1957, p. 22. Prestressed Testing: Vol. 65, No. 4, April 1957, pp. 23, 34.
85 Gerhard, Henry E., Quick, Accurate Method for Magnesia Determination: Rock Products, vol. 60, No. 2, February 1957, pp. 117-118, 120.
86 Steinour, Harold H., The Effect of Phosphate in Portland Cement Clinker: Pit and Quarry, vol. 50, No. 3, September 1957, pp. 93-98, 100-101; vol. 50, No. 4, October 1957, pp. 80-85, 101.

Chromium

By Wilmer McInnis 1 and Hilda V. Heidrich 2

BOTH DOMESTIC mine production and imports of chromite in 1957 were higher than in any previous year. Consumption, following the lowered industrial activity, decreased compared with 1956, and industry stocks reached a new peak by the year end. The use of chromite by the refractory industry decreased most, but the quantities used by the chemical and metallurgical industries were also less. Consumption of chromium ferroalloys and chromium metal decreased 17 percent compared with 1956. Research included studies on the beneficiation and use of offgrade domestic ores, high-purity chromium, chromium-base alloys, and chromium plating. Prices quoted for foreign produced ores decreased during 1957.

The Defense Minerals Exploration Administration (DMEA) continued to encourage exploration of domestic chromite deposits but received only one application for assistance during the year.

TABLE 1.—Salient statistics of chromite in the United States, 1948-52 (average) and 1953-57, in short tons

					it e il e e e	
	1948-52 (average)	1953	1954	1955	1956	1957
United States: Domestic production (shipments) Imports for consumption	6, 563	58, 817	163, 365	153, 253	² 207, 662	166, 157
	1, 437, 536	2, 226, 631	1, 471, 037	1, 833, 999	2, 175, 056	2, 281, 591
Total new supply Exports Stocks Dec. 31 (consum-	1, 444, 099	2, 285, 448	1, 634, 402	1, 987, 252	2 2, 382, 718	2, 447, 748
	2, 176	1, 166	864	1, 341	1, 727	837
ers')	671, 502	1, 015, 878	1, 267, 817	1, 109, 924	1, 226, 578	1, 619, 113
	985, 223	1, 335, 755	913, 973	1, 583, 983	1, 846, 600	1, 760, 469
	2, 800, 000	4, 300, 000	3, 600, 000	3, 800, 000	8 4, 400, 000	4, 500, 000

¹ Includes Alaska

² Includes 45,710 short tons of concentrate produced in 1955 and 1956 from low-grade ore and concentrate stockpiled near Coquille, Oreg., during World War II.

8 Revised figure.

DOMESTIC PRODUCTION

Production (shipments) of chromite from newly mined ores in 1957 was higher than in any preceding year, but it comprised less than 7 percent of the total domestic supply. Approximately 22 percent of the output contained 42 percent or more Cr_2O_3 ; the Cr: Fe ratio was at least 2:1; the rest averaged 38.3 percent Cr_2O_3 and

¹ Commodity specialist.
2 Statistical assistant.

its Cr: Fe ratio was less than 2:1. Virtually all production was sold to the Government at incentive prices. According to General Services Administration, 175,028 long dry tons of chromite ore and concentrate had been accepted under the Domestic Purchase Program for The second of the second secon

The second secon

Chromite Ores and Concentrates on December 31, 1957.

Chromite was produced from 174 mines and mills in California (120), Montana (1), Oregon (51), and Alaska (2). The 158,800 short dry tons shipped averaged 40.7 percent Cr₂O₃. Of this quantity, 12,700 short dry tons was lumpy ore that averaged 46.8 percent Cr₂O₃; 2,700 tons, fines, averaging 47.6 percent Cr₂O₃; and 143,400 tons, concentrate, averaging 40.1 percent Cr₂O₃. Production in California was largely from small deposits. The principal mines and California was largely from small deposits. history of chromite production in California were published.3 output in Montana came from the Mouat mine in the Stillwater complex, where the grade of ore is sub-Metallurgical in respect to both chromic oxide content and Cr. Fe ratio. Chromite production The operator in Oregon decreased 11 percent compared with 1956. of the Oregon Chrome mine, which has been the major chromiteproducing mine in the State, discontinued exploration work and reduced mining activity.4 A study of chromite deposits in southwestern Oregon indicated that they occur along definite zones or horizons in sill-like ultramafic intrusions.5

Chromite was produced from two mines in Alaska during 1957. Kenai Chrome Co. shipped over 3,700 long tons of Metallurgicalgrade ore from its Star Four mine in Kenai Peninsula and stockpiled low-grade ore at its concentrating plant for beneficiation during the winter months. The firm was building a compressor shack and making other improvements at the Queen mine in anticipation of mining additional low-grade ore for beneficiation in the plant.

TABLE 2.—Chromite production (mine shipments) in the United States, 1953-57, by States, in short tons, wet weight

State	1953	1954 1955		56	1957				
1000				Shipments	Value	Shipments Value			
AlaskaCaliforniaMontanaOregonWashington	26, 512 26, 089 6, 216	2, 953 30, 661 123, 096 6, 655	7, 082 22, 105 118, 703 5, 341 22	7, 193 27, 082 118, 780 1 54, 577 30	\$711, 481 2, 191, 956 3, 806, 926 1 2, 001, 083 3, 330	4, 207 34, 901 119, 149 7, 900	\$431, 373 2, 788, 490 3, 921, 439 674, 631		
Total	58, 817	163, 365	153, 253	1 207, 662	18,714,776	166, 157	7, 815, 933		

¹ Includes 45,710 short tons of concentrate produced in 1955 and 1956 from low-grade ore and concentrate stockpiled near Coquille, Oreg., during World War,II.

CONSUMPTION AND USES

Domestic consumption of chromite ore and concentrate for all purposes during 1957 was 5 percent below the record quantity used in By industries, metallurgical consumption was off 3 percent, refractory 8 percent, and chemical 7 percent.

Rice, Salem J., Chromite: State of California, Dept. of Nat. Resources, Bull. 176, 1957, pp. 121-129.

4 Ore.-Bin, State of Oregon, Dept. of Geol. and Min. Ind., vol. 20, No. 1, January 1958, p. 4.

5 Ramp, Len, Geology of the Lower Illinois River Chromite District: Ore.-Bin, State of Oregon, Dept. of Min. Ind., vol. 19, No. 4, April 1957, pp. 29-34. Nature and Origin of Southwestern Oregon Chromite Deposits: Min. Eng., vol. 9, No. 8, August 1957, pp. 894-897.

The metallurgical industry consumed 1,177,000 tons of ore and concentrate, which averaged 47.1 percent Cr_2O_3 . Of this quantity, 1,155,000 tons was used to produce 496,893 short tons of chromium ferroalloys and chromium metal; 22,000 tons was added direct to steel. Of the 1,155,000 tons of ore used to produce chromium ferroalloys and chromium metal, 84 percent was Metallurgical grade (48 percent Cr_2O_3), 11 percent Chemical grade (44 percent Cr_2O_3), and 5 percent Refractory-grade (34.9 percent Cr_2O_3) ore. The ratio of Cr: Fe in 71 percent of the Metallurgical-grade ore was at least 3:1; 27 percent was less than 3:1, but at least 2:1; and 2 percent was less than 2:1 Cr: Fe ratio.

The refractory industry consumed 428,000 tons of chromite ore that averaged 34.8 percent Cr₂O₃ in manufacturing chrome brick and other refractory products, and 7,000 tons of ore was used direct in

furnace repairs.

Manufacturers of chromium chemicals used 148,000 tons of chromite ore that averaged 45 percent Cr₂O₃ in producing 106,337 short tons of chromium chemicals (sodium bichromate equivalent)—1.4 tons of

chromite ore per ton of sodium bichromate produced.

Metallurgical Uses.—Chromium used to produce chromium ferroalloys and metal comprised 65 percent of all the chromium contained in ore and concentrate consumed in the United States during 1957. The metallurgical products produced were high- and low-carbon ferrochromium (82 percent), ferrochromium silicon (13 percent), exothermic chromium alloys and chromium metal (4 percent), and miscellaneous chromium alloys (1 percent).

Vanadium Corporation of America opened a new ferroalloy plant at Vancoram, Ohio, in October 1957, for producing both high- and low-carbon ferrochromium. It was reported that the firm contemplated the addition of another unit to the plant for producing manga-

nese products.6

Domestic consumption of chromium ferroalloys and metal reported during 1957 totaled 246,000 short tons, which is estimated to be 85 percent of actual consumption; many users of small quantities were not canvassed. This tonnage reflected lowered industrial use and was 17 percent less than the quantity consumed in 1956. Consumption declined throughout 1957, dropping from 78,000 short tons in the first quarter to 64,000, 53,000, and 51,000 tons in the second, third, and fourth quarters, respectively. The chromium content of all the alloys and metal used totaled 146,000 tons compared with 178,000 tons in 1956.

The major metallurgical applications of chromium were for improving the properties of alloy steels such as hardness and resistance to corrosion, elevated temperatures, creep, impact, and wear. Smaller but important quantities were used in cast iron, high-temperature alloys, electrical-resistance alloys, and aluminum, copper, and titanium alloys. A new titanium-base alloy containing 5 percent aluminum, 1.5 percent iron, 1.4 percent chromium, and 1.2 percent molybdenum developed by Titanium Metals Corporation of America was reported to have the highest strength of any commercial available

⁶ American Metal Market, Vanadium's New Ferroalloy Plant Formally Opened in Ohio: Vol. 64, No. 204, Oct. 22, 1957, pp. 1, 13.

titanium alloy.⁷ A new iron-chromium alloy suitable for continuous resistance heating at temperatures up to 2,150° F. was reported de-

veloped by Hoskins Manufacturing Co.8

Refractory Uses.—Chromite ore used to produce refractories comprised 25 percent of the total consumed in the United States during 1957 and in terms of contained chromium was 19 percent of the total. The major uses of the chromite refractories were in lining basic openhearth and electric steel furnaces. Some steel producers prefer burned chrome brick in the subhearths of the basic openhearth furnace, because of its resistance to hydration. In furnaces that have basic hearths and acid roofs, chrome brick is preferred at the juncture of the two because of its neutral chemical qualities. Chromite refractory products were used also in lining reverberatory and other types of furnaces used in smelting metals such as aluminum, copper, and nickel.

Chemical Uses.—The domestic chemical industry consumed approximately 46,000 tons of chromium in ore and concentrate in producing chromium chemicals during 1957. Major uses of the chemicals were in pigments and allied products, tanning leather, treating and cleaning the surface of metals, and electroplating. The chemicals also were

TABLE 3.—Consumption of chromite and tenor of ore used by primary consumer groups in the United States, 1948-52 (average) and 1953-57, in short tons

	Metall	urgical	Refra	ctory	Cher	nical	Total	
	Gross weight (short tons)	Average Cr ₂ O ₃ (per- cent)	Gross weight (short tons)	Average Cr ₂ O ₃ (per- cent)	Gross weight (short tons)	Average Cr ₂ O ₃ (per- cent)	Gross weight (short tons)	Average Cr ₂ O ₂ (per- cent)
1948–52 (average)	485, 064 742, 822 502, 278 993, 653 1, 211, 914 1, 177, 073	47. 8 46. 3 46. 3 46. 5 46. 8 47. 1	355, 643 441, 155 278, 324 431, 407 474, 562 434, 922	34. 0 33. 6 34. 3 34. 4 34. 4 34. 8	144, 516 151, 778 133, 371 158, 923 160, 124 148, 474	44. 6 44. 8 45. 4	985, 223 1, 335, 755 913, 973 1, 583, 983 1, 846, 600 1, 760, 469	42. 4 42. 7 42. 4 43. 0 43. 5

TABLE 4.—Consumption of chromium ferroalloys and metal in the United States in 1957, by major end uses

Alloy	Short tons		Percent consumed in (gross weight)—					
	Gross weight	Cr content	Stainless steel	High- speed steel	Other alloy steels	High tempera- ture alloys	Other uses	
Low-carbon ferrochromium High-carbon ferrochromium Low-carbon ferrochromium-sil-	115, 933 56, 464	77, 883 35, 737	78. 9 49. 8	0.3 1.5	14. 1 42. 8	6.3 2.7	0. 4 3. 2	
iconOther 1	36, 780 36, 414	14, 987 17, 365	88. 8 11. 4	.0 .0	10. 1 78. 8	.7 4.3	. 4 5. 5	
Total	245, 591	145, 972	63. 7	.5	29. 7	4.3	1.8	

 $^{^{\}rm I}$ Includes chromium briquets, exothermic chromium additives, chromium metal, and other chromium alloys.

1957, p. 1. * Daily Metal Reporter, Development of New Alloy Announced by Hoskins: Vol. 57, No. 214, Nov. 5, 1957, p. 11.

⁷ American Metal Market, Strong Alloy of Titanium Now Made by T. M. C.: Vol. 64, No. 187, Sept. 27,

TABLE 5.—End use of individual chromium ferroalloys and chromium metal in the United States, 1957, in percent

Alloy	Stainless steel	High- speed steel	Other alloy steel	High- tempera- ture alloys	Other uses		
Low-carbon ferrochromium High-carbon ferrochromium Chromium briquets Chromium metal Exothermic ferrochromium-silicon Exothermic ferrochromium (low- and high-carbon) Low-carbon ferrochromiumsilicon Other chromium alloys 1	78. 9 49. 8 92. 2 4. 0 . 8	0.3	14. 1 42. 8 . 3 3. 1 96. 6 97. 7 10. 1 43. 3	6. 3 2. 7 1. 2 77. 9 . 5 . 4 . 7	0. 4 3. 2 6. 3 15. 0 2. 1 1. 9 . 4 56. 7		

¹ Includes V-5 alloy, chrome-silicon alloy, and other miscellaneous chromium alloys.

used in various other applications, such as catalysts and chemical reagents and in dry-cell batteries and matches. Chromate conversion coatings were used in an atomic reactor to prevent water corrosion of aluminum parts and to retard galvanic action where dissimilar metals met.⁹ Another use of chromium was the coating of small cutting tools, such as files, bits, and bandsaw blades. It was claimed that the chromium extended the shop life of such tools.¹⁰

STOCKS

Industry stocks of chromite ore and concentrate increased 32 percent to a record high at the close of the year. Of the 1.6 million short tons that averaged 41.6 percent Cr_2O_3 , 52 percent (45.9 percent Cr_2O_3) was at metallurgical plants, 38 percent (34.7 percent Cr_2O_3) at refractory plants, and 10 percent (45.2 percent Cr_2O_3) was at chemical plants.

Producers' and consumers' stocks of chromium ferroalloys and chromium metal on December 31, 1957, totaled 74,000 and 24,000 short tons, respectively, compared with 56,000 and 37,000 short tons, respectively, at the end of 1956.

Stocks of chromium chemicals at producers' plants totaled 14,000 short tons, sodium bichromate equivalent, at the close of 1957.

PRICES AND SPECIFICATIONS

Prices of foreign chromite declined during 1957 and on December 31 were \$1 to \$10 a ton lower than at the beginning of the year, according to E&MJ Metal and Mineral Markets. Domestically produced chromite was sold to the Federal Government at incentive prices. Base prices under the Purchase Program for Ore and Concentrate were: Lump ore, \$115 a long dry ton; and fines and concentrate, \$110 a ton.

E&MJ Metal and Mineral Markets quoted prices at the close of 1957 for ferrochromium in carload lots, f. o. b. destination continental United States were: High-carbon ferrochromium (4-9 percent carbon, 65-70 percent chromium) 28.75 cents a pound of contained chromium; low-carbon ferrochromium (0.10 percent carbon, 67-72 percent chromium)

Iron Age, Keep Corrosion at Bay With Chromates: Vol. 179, No. 15, Apr. 11, 1957, p. 115.
 Iron Age, Chrome-Coated Bench Tools Last Longer: Vol. 179, No. 11, Mar. 14, 1957, pp. 132-133.

TABLE 6.—Stocks of chromite at consumers' plants, December 31, 1953-57, in short tons

THE RESERVE OF THE PROPERTY OF

AND THE RESIDENCE OF THE PROPERTY OF THE PROPE

Grade	1953	1954	1955	1956	1957
Metallurgical Refractory Chemical	607, 724 259, 896 148, 258	803, 889 257, 451 206, 477	628, 244 313, 189 168, 491	640, 277 431, 285 155, 016	848, 7 59 610, 477 159, 877
Total	1, 015, 878	1, 267, 817	1, 109, 924	1, 226, 578	1, 619, 113

mium) 38.50 cents a pound of contained chromium; and special ferrochromium (0.01 percent carbon, 63-66 percent chromium) 37.75 cents a pound of contained chromium. Prices quoted for the various grades of chromium metal were unchanged in 1957. Commercial-grade electrolytic chromium (99 percent minimum) and 97-percent-grade chromium were \$1.29 a pound delivered, and chromium containing 9 to 11 percent carbon was \$1.38 a pound delivered.

Revised National Stockpile Purchase Specifications issued during 1957 were: P-96-R-Chromium Metal dated January 7, 1957; P-11a-R-Low-Carbon Ferrochromium dated December 26, 1957; and P-11c-R2-Ferrochromium Silicon dated December 23, 1957. Chemical requirements of the specification covering chromium metal were not changed, but the phosphorus content of low-carbon ferrochromium and ferrochromium-silicon was increased to 0.04 and 0.05 percent, respectively. The only change in the specification covering chromium metal pertained to the labeling of the containers.

TABLE 7.—Price quotations for various grades of foreign chromite in 1957

[E&MJ Metal and Mineral Markets]

Source	Cr ₂ O ₃	Cr : Fe	Price per	long ton 1
	(percent)		January 1	December 31
Pakistan Rhodesia Do Do South Africa, Union of (Transvaal) Do Turkey Do	48 48 48 48 48 48 44 44 48	3:1 3:1 2.8:1 	² \$52-\$53 55-58.50 52-56 46-49.75 38-39 26.50-27.50 59-61 56-58	2 \$52-53 2 47-49 2 44-46 2 37-39 36-37 26-26. 50 2 55-57 2 52-54

¹ Quotations are on a dry basis, subject to penalties if guarantees are not met, f. o. b. cars, East coast ports. ² Nominal.

FOREIGN TRADE 11

Imports.—Domestic imports of 2.3 million short tons of chromite ore and concentrate during 1957 were higher than in any preceding year. Imports of ore and concentrate were reported from 10 coun-

Il Figures on imports and exports compiled by Mae B. Price and Elsie D. Jackson, Division of Foreign Activities, Bureau of Mines, from records of the U. S. Department of Commerce, Bureau of the Census.

tries, but 91 percent came from the 4 major producing countries: Federation of Rhodesia and Nyasaland, Philippines, Turkey, and the Union of South Africa. Metallurgical-grade chromite (46.7 percent Cr_2O_3) comprised 62 percent of the total, Refractory-grade (33.9 percent Cr_2O_3) 26 percent, and Chemical-grade (43.9 percent Cr_2O_3) 12 percent.

Imports of chromium metal during 1957 totaled 1,354 short tons valued at \$2,747,923; West Germany supplied 41 percent, United Kingdom 35 percent, France 15 percent, and Japan 9 percent. A total of 1,101 short tons of chromate and bichromate valued at \$210,051 was imported from Canada, West Germany, and the Union

of South Africa during 1957.

Exports.—United States exports of chromic acid totaled 674 short tons valued at \$387,586. Sodium bichromate and chromate exports totaled 3,438 short tons valued at \$869,032. Exports of other chromium products included 5 tons of chromium metal and alloys in crude form and scrap valued at \$13,989 and 5 tons of semifabricated

forms valued at \$23,444.

Tariff.—No import duty was imposed on chromite ores. Pursuant to concessions granted in the General Agreement on Tariffs and Trade in 1956, the duties on some chromium products imported from countries other than Soviet Russia and other designated Communist countries and areas were reduced in 1957. The import duties on chromium metal and ferrochromium containing under 3 percent carbon were reduced from 11½ percent ad valorem to 11 percent ad valorem effective June 30, 1957. Import duties on other chromium products from Free World countries were: Ferrochromium, containing 3 percent or more carbon, ½ cent a pound of contained chromium; chromium carbide, chromium-nickel, chromium-silicon, and chromium-vanadium, 12½ percent ad valorem; chromium-cobalt-tungsten, chromium-tungsten, and ferrochromium-tungsten, 42 cents a pound of contained tungsten plus 12½ percent ad valorem; and chromic acid and chrome green and other colors containing chromium, 12½ percent ad valorem.

Tariffs on chromium products from Soviet Russia and other designated Communist countries and areas were: Chromium metal, and ferrochromium containing less than 3 percent carbon, 30 percent ad valorem; ferrochromium containing 3 percent or more carbon, 2½ cents per pound of contained chromium; chromium-cobalt-tungsten, chromium-tungsten, and ferrochromium-tungsten, 60 cents a pound of contained tungsten plus 25 percent ad valorem; chromium carbide, chromium-nickel, chromium-silicon, chromium-vanadium, chrome green and other colors containing chromium, 25 percent ad valorem.

Duties on imports from all countries: Chrome brick and shapes, 25 percent ad valorem; sodium chromate and bichromate 1% cents a pound; and potassium chromate and bichromate, 2% cents a pound.

TABLE 8.—Chromite imported for consumption in the United States, 1956-57, by countries and grades

[Bureau of the Census]

	D	Chemical grade	ade	Meta	Metallurgical grade	de	Ä	Refractory grade	ade		Total	
Country	Short tons	tons		Short tons	tons		Short tons	tons		Short tons	suo	
	Gross weight	Cr ₂ O ₃	Value	Gross weight	C12O3	Value	Gross weight	Cr2O ₃	Value	Gross. Weight	Cr203	Value
1956			2							1.		
North America: Cuba. Guatemala			! 1 ! 1 ! 1 ! 1 ! 1 ! 2 ! 1 ! 1 ! 1 ! 1 ! 1	5, 663 979	2, 557	\$143, 601 38, 420	46, 154	16, 176	\$1,024,766	51, 817	18, 733 551	\$1, 168, 367 38, 420
TotalSouth America: Brazil				6,642 1,120	3, 108	182, 021 30, 500	46, 154	16,176	1,024,766	52, 796 1, 120	19, 284 560	1, 206, 787 30, 500
Europe: Greece Yugoslavla	1 1	1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1, 680 16, 421	756	73, 500 487, 136				1, 680	7,869	73, 500 487, 136
Total				18, 101	8, 625	560, 636				18, 101	8, 625	560, 636
Asia: India Japan Pakistan Philippines Turkey				19, 149 120 7, 307 89, 295 528, 266	9, 247 56 3, 216 44, 071 247, 254	470, 031 3, 979 88, 086 2, 006, 971 17, 798, 605	12, 103	4,871	167, 326	31, 252 120 7, 307 677, 554 528, 266	14, 118 56 3, 216 235, 067 247, 254	637, 357 3, 979 88, 086 10, 581, 546 17, 798, 605
Total.				644, 137	303, 844	20, 367, 672	600, 362	195, 867	8, 741, 901	1, 244, 499	499, 711	29, 109, 573
Africa: British East Africa Rhodesia and Nyasaland, Federation of Union of South Africa	269, 447	118, 138	\$3, 432, 427	1, 683 342, 846 162, 524	724 160, 722 72, 661	24, 658 10, 367, 134 2, 649, 360	15, 961 16, 759	6, 961 6, 875	365, 411 222, 205	1, 683 358, 807 448, 730	724 167, 683 197, 674	24, 658 10, 732, 545 6, 303, 992
Total. Oceania: New Caledonia 1.	269, 447	118, 138	3, 432, 427	507, 053 49, 320	234, 107 24, 994	13, 041, 152 1, 381, 341	32, 720	13,836	587, 616	809, 220 49, 320	366, 081 24, 994	17, 061, 195 1, 381, 341
Grand total, 1956	269, 447	118, 138	3, 432, 427	1, 226, 373	575, 238	35, 563, 322	679, 236	225, 879	10, 354, 283	2, 175, 056	919, 255	49, 350, 032

	1, 990, 206	2, 032, 708	273, 196 171, 419	444, 615	486, 374 11, 154, 469 14, 618, 561	26, 259, 404	16, 381, 008 8, 430, 307	24, 811, 315 2, 112, 929	55, 660, 971
	34, 483 385	34, 868	3,047 2,042	5,089	9, 464 212, 708 192, 395	414, 567	241, 059 253, 861	494, 920 33, 445	982, 889
	100, 521	101, 323	6, 269	11,008	20, 920 573, 728 412, 664	1,007,312	523, 641 575, 537	1,099,178	2, 281, 591
	1,655,110	1, 655, 110			7, 428, 221	7, 435, 841	457, 674 573, 570	1, 031, 244	10, 122, 195
•	30, 702	30, 702			141, 403	141, 616	7, 381 18, 990	26, 371	198, 689
	92, 239	92, 239			560 426, 438	426, 998	18, 820 47, 575	66, 395	585, 632
	335, 096 42, 502	377, 598	273, 196 171, 419	444, 615	478, 754 3, 726, 248 14, 618, 561	18, 823, 563	15, 923, 334 4, 321, 555	20, 244, 889 2, 112, 929	42, 003, 594
-	3,781	4, 166	3, 047 2, 042	5,089	9, 251 71, 305 192, 395	272, 951	233, 678 107, 610	341, 288 33, 445	656, 939
-	8, 282 802	9,084	6, 269 4, 739	11,008	20, 360 147, 290 412, 664	580, 314	504, 821 238, 471	743, 292 62, 770	1, 406, 468
							3, 535, 182	3, 535, 182	3, 535, 182
_							127, 261	127, 261	127, 261
_							289, 491	289, 491	289, 491
1957	North America: Cuba			-			Africa: Rhodesta and Nyasaland, Federation of. Union of South Africa.	Total Oceania: New Caledonia 1	Grand total

¹ Assumed source; classified in import statistics under "French Pacific Islands."

TABLE 9.—Ferrochromium imported for consumption in the United States, 1956-57, by countries

[Bureau of the Census]

	Low-cark than	on ferrochro a 3 percent ca	mium (less arbon)	High-car perc	bon ferrochr ent or more c	omium (3 arbon)
Country	Shor	rt tons		Sho	rt tons	
	Gross weight	Chromium content	Value	Gross weight	Chromium content	Value
1956						
North America: Canada				8, 998	4, 839	\$1, 901, 147
Europe: France	4, 728 16	3, 503 11	\$2,041,894 11,447	156 55	110 38	39, 509 16, 538
ItalyNorwaySwedenYugoslavia	1, 121 641 1, 899	793 455 1 1, 304	416, 719 255, 089 733, 355	1, 580 1, 129	1,060 735	474, 712 266, 677
TotalAsia: Japan	8, 405 1 1, 025	6, 066 623	3, 458, 504 1 396, 444	2, 920 2, 102	1, 943 1 1, 418	797, 436 562, 806
Africa: Rhodesia and Nyasaland, Federation of	3, 300	2, 368	1, 225, 549			
Union of South Africa	3,300	2, 368	1, 225, 549	1 13, 132 13, 132	1 8, 721 8, 721	3, 061, 648 3, 061, 648
Grand total, 1956	1 12, 730	1 9, 057	1, 220, 349	1 27, 152	1 16, 921	6, 323, 037
1957	12,100		0,000,101	21,102	13,021	=======
North America: Canada				8. 238	4, 177	1, 709, 224
Europe: FranceGermany, WestItaly	3, 813 6, 686	2,716 4,610	1, 661, 044 2, 383, 184	228 3, 845 4, 034	165 2, 737 2, 658	60, 015 1, 089, 148 1, 223, 147
Netherlands Sweden Yugoslavia	112 869 1,757	80 596 1, 223	47, 689 370, 810 704, 335	99	67	29, 760
TotalAsia: Japan	13, 237 296	9, 225 196	5, 167, 062 115, 326	8, 206 5, 567	5, 627 3, 751	2, 402, 070 1, 637, 798
Africa: Rhodesia and Nyasaland,	1 000	907	564, 541	242	165	111, 402
Federation of Union of South Africa	1, 282 1, 538	1,039	457, 983	9,063	5, 823	2, 294, 990
Total	2, 820	1, 946	1, 022, 524	9, 305	5, 988	2, 406, 401
Grand total, 1957	16, 353	11, 367	6, 304, 912	31, 316	19, 543	8, 155, 492

¹ Revised figure.

TABLE 10.—Chromite ore and concentrates exported from the United States, 1948-52 (average) and 1953-57

[Bureau of the Census]

	Dome	stic 1	Forei	gn 2
	Short tons	Value	Short tons	Value
1948-52 (average)	2, 176 1, 166 864 1, 341 1, 727 837	\$87, 300 56, 393 50, 371 75, 656 99, 169 52, 579	12, 583 6, 071 427 2, 950 12, 990 4, 872	\$519, 693 251, 525 7, 611 86, 986 501, 938 193, 546

Material of domestic origin or foreign material that has been ground, blended, or otherwise processed in the United States.
 Material that has been imported and later exported without change of form.

WORLD REVIEW

World production of chromite during 1957 was estimated as higher than in any previous year. The Philippines, Federation of Rhodesia and Nyasaland, Turkey, and the Union of South Africa, combined. produced approximately 65 percent of the total estimated output. U. S. S. R. also was a major producer.

TABLE 11.—World production of chromite, by countries, 1948-52 (average) and 1953-57, in short tons 2

[Compiled by Pearl J. Thompson and Berenice B. Mitchell]

Country 1	1948-52 (average)	1953	1954	1955	1956	1957
North America:						,
Canada	415			.	l	
Cuba	92, 745	77, 205	80, 011	85, 107	3 59, 248	127, 126
Guatemala	477	441	146	320	979	4 1, 200
United States	6, 563	58, 817	163, 365	153, 253	⁵ 207, 662	166, 157
Total	100, 200	136, 463	243, 522	238, 680	267, 889	294, 483
South America: Brazil	2, 187	3, 942	2, 108	4, 546	4, 536	4 4, 000
Europe:						
Albania	48,600	51, 800	110, 200	135,000	4 147, 000	184, 400
Greece	16,612	40, 520	29, 508	27, 902	53, 581	² 49, 135
Portugal U. S. S. R. 46	99	6	23	l		
U. S. S. R.46	580,000	600,000	600,000	600,000	600,000	600,000
Yugoslavia	108, 760	139, 950	137, 216	139, 119	130, 913	132, 570
Total 1 4	765, 000	900, 000	900, 000	900,000	1,000,000	1,000,000
Asia:						
Afghanistan	7 448					
Cyprus (exports)	14, 629	9, 115	10,080	9, 599	6, 526	5, 678
India	24, 996	72, 543	50, 968	100,071	59,009	87, 968
Iran 8	6, 355	23, 657	23, 406	38, 504	29, 700	4 27, 600
Japan	34, 767	41, 418	36, 138	29, 269	43, 947	51,050
Pakistan	19, 756	26, 255	24, 527	31,808	25, 487	4 20, 000
Philippines	359, 837	614, 086	442, 230	655, 882	781, 598	799, 744
Turkey	566, 038	1, 005, 883	619,001	710, 253	918, 308	772, 368
Total 6	1, 026, 826	1, 792, 957	1, 206, 350	1, 575, 386	1, 864, 575	1, 764, 408
Africa:		,				
Egypt	61	231	584	926	281	
Sierra Leone	17, 159	27, 277	21,011	23, 231	21,900	3 18, 344
Rhodesia and Nyasaland,						
Federation of: Southern						
Rhodesia	306, 149	463, 028	442, 506	449, 202	448, 965	654, 072
Union of South Africa	537, 593	798, 562	706, 935	597, 368	690, 851	722, 588
Total	860, 962	1, 289, 098	1, 171, 036	1,070,727	1, 161, 997	1, 395, 004
Oceania:						
Australia	1.088	3.070	5, 536		6, 828	3, 650
New Caledonia	98, 175	134, 032	93, 645	50, 790	53, 932	4 71, 100
Total	99, 263	137, 102	99, 181	50, 790	60, 760	4 74, 750
World total (estimate) 1_	2, 855, 000	4, 300, 000	3, 600, 000	3, 800, 000	4, 400, 000	4, 500, 000

¹ In addition to countries listed, Bulgaria and Rumania produce chromite, but data on output are not available; estimates by senior author of chapter included in total.

³ This table incorporates a number of revisions of data published in previous Chromite chapters. Data do not add to totals shown because of rounding where estimated figures are included in the detail.

Exports.

<sup>Estimate.
Includes 45,710 short tons of concentrates produced in 1955-56 from low-grade ores and concentrates stockpiled near Coquille, Oreg., during World War II.
Output from U. S. S. R. in Asia included with U. S. S. R. in Europe.
Average for 1949-52.
Year ended March 20 of year following that stated.</sup>

Canada.—Steps were taken during 1957 to develop the large low-grade chromite deposits in the Cat Lake-Bird River area of southeastern Manitoba. Strannar Mines, Ltd., was reported formed by Strategic Materials Corp. and Gunnar Mines, Ltd., to develop the chromite claims in this area owned by Gunnar Mines, and Chromite Mining Corp., Ltd. 12 Goldmont Porcupine Mines planned to resume exploration of chromite prospects in the Ashcroft area of British Columbia.13

一般の大は大概的ないとうないないないというではないないというないないかられているというというないのであるというというないのであるというというないのできません

THE SHALL SHALL SAN

Cuba.—One of the most productive chromite mines (Cayoguan) in Cuba was nearly worked out.14 The mine is in Oriente Province, about 10 miles from Moa, and has been the source of over 1 million

tons of Refractory-grade ore.

Cyprus.—The Cyprus Chrome Co., the only producer of chromite in Cyprus during 1957, increased production 17 percent compared with 1956. The firm exported 6,525 short tons of ore and concentrate during 1957, and at the year end its stocks at the mine were about 6,900 tons.15

India.—Exports of chromite from India during 1957 were controlled The mine owners and shippers were given by the Government. quotas equal to the allotments given them in 1956.16 The Indian Government also permitted the State Trading Corporation of India

to export chromite.

Iran.—Chromite deposits in Iran attracted the attention of representatives from several countries during 1957. German geologists examined chromite deposits in Northeast Iran. A private British company was negotiating with the Plan Organization for joint exploitation of chromite mines near Esfandageh, 180 kilometers south of Kerman, and one American company was investigating other chromite deposits.

Pakistan.—Chromite deposits were discovered in the Ras Koh range in former Baluchistan Province by the Geological Survey of A summary of chromite resources in Pakistan contained data on historical production, mining problems, and deposits.¹⁸

Philippines.—Chromite production in the Philippines during 1957 was higher than in any preceding year. Refractory-grade ore from the Masinloc mine of Consolidated Mines, Inc., comprised 84 percent of the output: the remainder was Metallurgical-grade ore from several mines.

Chromite ore reserve of the Masinloc deposit was reported at 4.7 million short tons at the beginning of 1957.19 Exploration of these deposits was continued during 1957 to further increase ore reserves.

Consolidated Mines, Inc., sold Nanyo Busson Co., Ltd., of Tokyo, Japan, 550,000 tons of ore fines previously considered unmarketable because of the high silica content.²⁰ The firm shipped its Refractorygrade ore principally to the United States, but sizable quantities were also shipped to Japan and several Western European countries.

Mining World, Strategic, Gunnar Join to Produce Chromite: Vol. 20, No. 1, January 1958, p. 89.
 Northern Miner (Toronto), Goldmont to Resume Chromium Search: Vol. 43, No. 27, Sept. 26, 1957,

Northern Miner (Torono), Goldmont to Recent Community
 Engineering and Mining Journal, Cuba and Its Stake in Mining: Vol. 158, No. 9, September 1957, p. 76.
 U. S. Consulate, Nicosia, Cyprus, State Department Dispatch 62: Feb. 6, 1958.
 Bureau of Mines, Mineral Trade Notes: Vol. 44, No. 4, April 1957, p. 6.
 Bureau of Mines, Mineral Trade Notes: Vol. 45, No. 1, Special supplement 50, July 1957, p. 8.
 Bureau of Mines, Mineral Trade Notes: Vol. 45, No. 6, December 1957, pp. 7-9.
 Bureau of Mines, Mineral Trade Notes: Vol. 45, No. 6, December 1957, pp. 5-9.
 Mining Journal (London), Chrome for Japan: Vol. 249, No. 6362, July 26, 1957, p. 113.

Rhodesia and Nyasaland, Federation of.—Owing to a vast improvement in the railroad haulage in Southern Rhodesia since the Lourenco Marques Railway was completed in 1955, both production and shipments of chromite reached new peaks in 1957. Production increased 46 percent compared with output in 1956. The large stockpile of ore at mines was reported to have been eliminated by the end of 1957.

Chromite deposits covering an area of about 15 square miles were discovered in the Belingwe Reserve, 40 miles south of Shabani.²¹ Reserves of chromite in the Great Dyke were estimated roughly at 369 million tons down to a depth of 100 feet on the incline.²² The Great Dyke was described as a narrow belt of ultrabasic rocks up to 4 miles wide and extending some 330 miles from south of Belingwe to the Zambesi Valley beyond Sipolilo. The report also described the types of chromite deposits and the mining methods employed.

Turkey.—Production of chromite in Turkey during 1957 decreased slightly, compared with production in 1956. About one-third of the output came from the State-owned Guleman and Sori mines controlled by Etibank, and the rest came from many privately operated mines of which the majority are small. The principal chromite producing Provinces of Turkey were Bursa, Elazig, Eskisehir, Burdur, Mugla, Kütahya, Gaziantep, Hatay, and Antalya. Chromite-ore reserves in Turkey were estimated at 3 to 4 million tons.²³

The Turkish press announced that an agreement was signed by representatives of Etibank and two French firms for the construction of a ferrochromium plant near Antalyá capable of producing 8,000 tons of ferrochromium and 4,000 tons of calcium carbide annually.

TABLE 12.—Exports of chromite from Turkey, 1953-57, by countries of destination, in short tons ¹

Con	приед by Со	rra A. Barry	<u>.</u>		
Country	1953	1954	1955	1956	1957 2
North America: Canada United States	516, 577	224, 037	1, 120 434, 014	2, 240 490, 982	3, 360 297, 272
Europe: Austria Belgium France	20 286	31, 281 20, 224	35, 842 667 27, 476	34, 395 772 37, 883	30, 503
Germany, West Italy Netherlands	25, 374 2, 470 4, 700	69, 568 5, 897 7, 883	72, 410 5, 077 3, 797	72, 018 9, 737 2, 240	41, 549 7, 712 6, 720
Norway Spain Sweden Switzerland	1,764 24,413 9,060	8, 063 661 12, 125	8, 257 2, 205	4, 445 5, 197 8, 960 6, 599	9, 172 1, 102 4, 572 4, 256
United Kingdom Yugoslavia Asia:	14, 807	12, 419 882	25, 264 551	22,015	23, 068
JapanOther countries	1, 102		154	8, 623 1, 587	
Total	682, 838	393, 040	616, 834	707, 693	469, 225

¹ Compiled from Customs Returns of Turkey.
² January thru September inclusive.

<sup>Mining World, Africa: Vol. 19, No. 6, May 1957, p. 100.
Stanley, R., Chrome Ore Mines' Output Expansion, Rhodesia: Financial Times (London), Oct. 21, 1957, p. 28.
Mining World, Turkey: Vol. 19, No. 5, April 1957, p. 148.</sup>

Union of South Africa.—Chromite production in the Union of South Africa during 1957 increased 6 percent compared with that in 1956. The Marble Lime and Associated Industries, Ltd., reportedly purchased the Kroondal chromite property in Western Transvaal and built a plant for concentrating the ore.²⁴ Chromite valued at nearly \$168,000 was salvaged by a British crew from the wreck of an American American American American American States of Santh Africa's Core American can steamer 10 miles off South Africa's Cape Agulhas.25

RESERVES

In 1957 the Geological Survey estimated the measured, indicated, and inferred reserves of chromite in the United States and Alaska at 3.5 million long tons of chromic oxide. Over 90 percent of the reserve is in layered deposits in the Stillwater complex in Montana and in old beach sands along the coast of Oregon.

TECHNOLOGY

Bureau of Mines conducted research on the development of economical methods of beneficiating and using subgrade domestic chromite ores, recovering chromium from laterites, and producing ultrapure chromium and its alloys. Flotation studies were made on low-grade ores from the Seiad Creek area in California. Concentrates produced from ores in the Stillwater complex in Montana were smelted to usable ferrochromium and other chromium-bearing alloys. Other studies on the beneficiation of low-grade ores included roasting and leaching, direct smelting and flotation of laterites and serpentines. Ultrapure ductile chromium produced incident to the Bureau's research was made available to outside laboratories for special studies, including a laboratory that used the metal in the experimental treatment of cancer. Results of the Bureau's research in developing processes for producing both Commercial grade and ultrapure electrolytic chromium were published.26 Another report gave results of the Bureau's laboratory-scale work on the concentration of chromite ores from the Red Mountain district in Alaska.27

Results of worldwide research on ductile chromium and its alloys were published.²⁸ A process for producing electrolytic chromium direct from disseminated chromite ores was patented.²⁹ The process involves the leaching of the ore with sulfuric acid, the reduction of trivalent chromic sulfate with titanous sulfate, and electrolyzing to produce metallic chromium. A method for increasing the iron to chromium ratio of chromium-bearing iron ores was patented.³⁰ The method consists of oxidizing a solution containing iron and chromium sulfates to convert a substantial part of the chromium to the hexavalent

<sup>Mining World, Africa: Vol. 19, No. 2, February 1957. p. 116.
Mining Congress Journal, British Salvage Chrome Ore: Vol. 43, No. 6, June 1957, p. 118.
Gruzensky, P. M., and Block, F. E., Preparation of High-Purity Electrolytic Chromium: Bureau of Mines Rept. of Investigations 5305, 1957, 11 pp.
Rosenbaum, J. B., Lloyd, R. R., and Merrill, C. C., Electrowinning Chromium Metal: Bureau of Mines Rept. of Investigations 5322, 1957, 58 pp.
Wells, R. R., Sterling, F. T., Erspamer, E. G., and Stickney, W. A., Laboratory Concentration of Chromite Ores, Red Mountain District, Kenai Peninsula, Alaska: Bureau of Mines Rept. of Investigations 5377, 1957, 22 pp.
American Society for Metals, Ductile Chromium: 1957, 376 pp.
Mestby, George C. (assigned to Key Metals Corp., Seattle, Wash.), Chemical and Electrochemical Extraction of Chromium From Its Ores: U. S. Patent 2,803,594, Aug. 20, 1957.
Mancke, Edgar B. (assigned to Bethlehem Steel Co.), Treatment of Iron Ores: U. S. Patent 2,776,207, Jan. 1, 1957.</sup>

state and autoclaving the oxidized solution at about 390° F. to

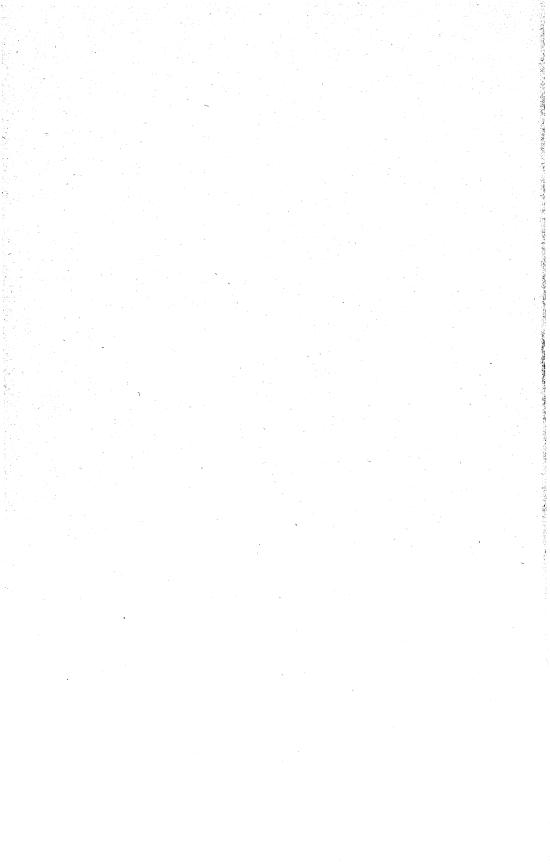
precipitate the iron compound.

Government-sponsored research on chromium-base alloys for high-temperature use included studies on brittle to ductile transition temperature of binary chromium alloys, oxidation resistance of binary chromium-base alloys, and transition temperatures of chromium and chromium-base alloys. Initial studies under a contract (NOas 56-1090-d) between the Department of the Navy, Bureau of Aeronautics, and the Massachusetts Institute of Technology indicated: Room-temperature, ductile, chromium-base alloys in the 60- to 90percent-chromium range can be achieved if the transition temperature of the starting chromium is low enough; chromium-palladium alloys have very good oxidation resistance in flowing air at 1,800° F.: and cost of producing low-transition-temperature chromium by deoxidation and denitrogenation is more favorable than other methods.

The use of the ion-exchange system for purifying and recovering chromium-plating waste solutions was discussed.31 A chromiumplating process developed by Heintz Manufacturing Co., Philadelphia, Pa., was reported to have been used for chromium-plating blackplate for use in manufacturing detergent containers.32 The process was said to be applicable to high-speed operation and to produce a scratchresistant coating capable of taking a high luster. A method for chromium-plating objects by using chromium-bearing gas was

patented.33

A modified alkaline chromate method for determining chromium in soils was described as useful in geochemical prospecting.34


31 Young, M. K., Chrome Waste Treatment: Metal Industry, vol. 90, No. 4, Jan. 25, 1957, pp. 67-68.

32 Metal Bulletin (London), On the Technical Side: No. 4203, June 18, 1957, p. 19.

33 Ostrofsky, Bernard, and Ballard, James W. (assigned to The Commonwealth Engineering Co., Dayton, Ohio), Method of Gas Plating With Chromium Compound and Products of the Method: U. S. Patent 2,793,140, May 21, 1957.

34 Wood, G. A., and Stanton, R. E., A Rapid Method for the Determination of Chromium in Soils for Use in Geochemical Prospecting: Inst. Min. and Met. (London), vol. 66, pt. 7, No. 605, April 1957, pp. 291-240

321-340.

Clays

By Brooke L. Gunsallus and Betty Ann Brett 2

	Page		Pag o
Review by type of clay	364	Consumption and uses	374
China clay or kaolin	364	Refractories	376
		Heavy clay products	
Fire clay	367	World Review	379
		Technology	
Fuller's earth			. 002
Miscellaneous clav			

OTAL CLAYS sold or used by producers in 1957 decreased 10 percent in tonnage compared with 1956. All six major classifications of clay-china clay or kaolin, ball clay, fire clay, bentonite, fuller's earth, and miscellaneous clay—reported quantity decreases in 1957 compared with 1956 and all except kaolin decreased in value.

Kaolin sold or used by producers decreased 3 percent in tonnage and increased 3 percent in value; ball clay decreased 11 and 9 percent; bentonite, 8 and 3 percent; fire clay, 8 and 5 percent; fuller's earth, 12 and 9 percent; and miscellaneous, 11 and 9 percent.

Prices for most clays and clay products in 1957, as shown in trade

papers, remained steady.

Imports of kaolin for 1957 decreased 7 percent over 1956 and were 6 percent of the total domestic consumption of kaolin. Imports of common blue and ball clay in 1957 decreased 16 percent in tonnage

and value compared with 1956.

Exports of kaolin or china clay in 1957 decreased 7 percent over 1956; 73 percent was shipped to Canada and 7 percent to Mexico. Exports of fire clay in 1957 decreased 10 percent in tonnage but increased 15 percent in value compared with 1956. Canada received 65 percent and Mexico 21 percent of the fire-clay exports.

Commodity specialist.
 Statistical clerk.

TABLE 1.—Salient statistics of clays in the United States, 1948-52 (average) and 1953-57, thousand short tons and thousand dollars

				<u> </u>		1
	1948-52 (average)	1953	1954	1955	1956	1957
Daniel				-		
Domestic clays sold or used by producers: Kaolin or china clayQuantity	1,686	1,884	1.873	2,166	2, 250	2, 18
Value	\$22, 648	\$27,092	\$28,019	\$31,883	\$34,504	\$35, 59
Ball clay Quantity	304	301	328	411	459	40
Value	\$3,614	\$3,389	\$4, 168	\$5,387	\$6,081	\$5,52
Fire clay, including stoneware clay						
Quantity	10, 219	10, 267	8, 797	10,840	11,803	10,80
ValueQuantity	\$36, 185 1, 060	\$38, 451	\$33, 327 1, 278	\$42,119 1,480	\$53,750 1,570	\$51,31 1,45
Volue	1 \$10 086	1, 270 \$16, 180	\$14,723	\$17, 219	\$18, 415	\$17, 83
Fuller's earthQuantity_	393	436	376	370	418	36
Voluo	FG 207	\$7,615	\$6, 862	\$7,620	\$8,879	\$8,05
Miscellaneous clayQuantity_	25, 806	28, 268	29, 853	32, 975	34, 385	30, 49
Value	\$24,830	\$32, 407	\$36, 185	\$35, 433	\$41,516	\$37,58
Total sold or used by producers_Quantity	39, 468	42, 426	42, 505	48, 242	50, 885	45, 71
Value.		\$125, 134		\$139, 661	\$163, 145	\$155, 89
mports:		-			7	-
Kaolin or china clayQuantity-	103	119	134	152	145	13
Value	\$1,506	\$1,854	1 \$2, 158	\$2, 445	\$2,479	\$2,37
Common blue and ball clayQuantity	² 31	2 3 26	26	34	26	1
Value	2 \$353	2 3 \$297	\$272	1 \$359	\$293	\$24
Other clays 4Quantity		3 4 3 \$44	\$55	1 \$137	\$197	\$32
Value		9 44	фоо	, 9191	9191	
Total importsQuantity_	139	149	165	192	176	16
Value	\$1,912	\$2, 195	\$2,485	\$2,941	\$2,969	\$2,94
Exports:	00	40	40			Ι.
Kaolin or china clay Quantity Value	29 \$514	\$795	\$946	\$1,017	\$1, 298	\$1,3
Fire clayQuantity_	89	91	78	109	152	φ1, 3
Value	\$870	\$920	\$815	\$1,358	5 \$1, 573	\$1, 79
Other clays Quantity	157	168	201	247	300	29
Value	\$4, 494	\$5,316	\$6,589	\$8, 516	5 \$9,722	\$10,40
Matal amounts Omortitus	075	200	200	400	F11	1
Total exports Quantity Value	275 \$5,878	302 \$7,031	\$8,350	\$10,891	511 5 \$12, 593	\$13, 52
value	φυ, οι ο	φι, υστ	φο, 300	φ10, 091	φ12, 093	φ10, 02

¹ Owing to changes in tabulating procedures by the U.S. Department of Commerce, data known to be not comparable with earlier years.

2 Figure includes Gross Almerode, 1948-53.

3 Figure revised to include "Wrought or manufactured," formerly included with "Other clays."

Figure includes fuller's earth (1948-57), bentonite (1948-55 and 1957), Gross Almerode (1954-57).

Revised figure.

REVIEW BY TYPE OF CLAY

CHINA CLAY OR KAOLIN

Domestic kaolin sold or used in 1957 decreased 3 percent in tonnage but increased 3 percent in value compared with 1956.

Eight States produced kaolin in 1957 compared with 9 in 1956. Arkansas did not report production in 1957. Georgia continued to be the principal producing State, with 76 percent of the total United States output; South Carolina was second, with 16 percent. Georgia and South Carolina reported decreases in 1957 compared

As in several preceding years the paper, rubber, refractories, and pottery industries were the principal kaolin consumers. Paper consumed 54 percent of the total—30 percent for coating and 24 percent for filling. Rubber consumed 14 percent; refractories, 12 percent; and pottery, 4 percent. The remaining 16 percent was consumed for

365

a wide variety of purposes, including cement, floor and wall tile, fertilizers, chemicals, insecticides, paint filler or extender, and linoleum. All large uses for kaolin decreased except refractories and rubber which showed small increases.

TABLE 2.—Kaolin sold or used by producers in the United States, 1956-57, by States

State	Sold by I	producers	Used by 1	producers	Tot	tal
58480	Short tons	Value	Short tons	Value	Short tons	Value
1956 Arkansas. California Florida and North Carolina Georgia South Carolina Other States 2 Total 1957	(1) 42, 687 (1) 370, 949 1, 589, 451 2, 003, 087	(1) \$1,007,451 (1) 4,667,321 26,154,617 31,829,389	(1) 20, 775 225, 734 246, 833	\$3, 240 (¹) 51, 766 2, 619, 321 2, 674, 327	324 15, 711 42, 687 1, 663, 707 391, 724 135, 767 2, 249, 920	\$3, 240 144, 191 1, 007, 451 26, 604, 891 4, 719, 087 2, 024, 856 34, 503, 716
Florida and North Carolina_ Georgia_ Pennsylvania_ South Carolina_ Other States ²	37, 163 1, 495, 905 35, 633 (1) 373, 100 1, 941, 801	903, 029 27, 070, 261 195, 398 (1) 4, 903, 950 33, 072, 638	162, 789 (1) 79, 095 241, 884	1, 149, 446 (1) 1, 375, 697 2, 525, 143	37, 163 1, 658, 694 35, 633 353, 698 98, 497 2, 183, 685	903, 029 28, 219, 707 195, 398 4, 590, 182 1, 689, 465 35, 597, 781

Included with "Other States."
 Includes States indicated by footnote 1, and Alabama, California (1957 only), Pennsylvania (1956 only), and Utah.

The average value of domestic kaolin sold or used, as reported to the Bureau of Mines in 1957, was \$16.30 per short ton compared with \$15.34 in 1956, \$14.72 in 1955, \$14.96 in 1954, and \$14.38 in 1953.

No quotations on domestic kaolin have been reported by E&MJ Metal and Mineral Markets since June 1951. In December 1957 the Oil, Paint and Drug Reporter quoted prices for Georgia kaolin as follows: Dry-ground, air-floated, 300-mesh, in bags, carlots, f. o. b. plant, \$13.50 to \$14.50 per short ton; l. c. l., same basis, \$35 to \$36 per short ton.

Prices for imported china clay in December 1957 were quoted by Oil, Paint and Drug Reporter as follows: White lump, carlots, ex dock (Philadelphia, Pa., and Portland, Maine), \$20 to \$35 per long ton; powdered, ex dock, in bags, \$50 per net ton; l. c. l., ex warehouse, \$60 to \$65.

Imports of kaolin for 1957 decreased 7 percent compared with 1956 and represented 6 percent of the total domestic consumption. Over 99 percent of the 1957 imports came from the United Kingdom and the remainder from Canada.

Exports of kaolin or china clay in 1957 decreased 7 percent compared with 1956; 73 percent went to Canada, 7 percent to Mexico, and 3 percent each to Venezuela and Italy. Small tonnages also were sent to Central and South America, Europe, Africa, and Asia.

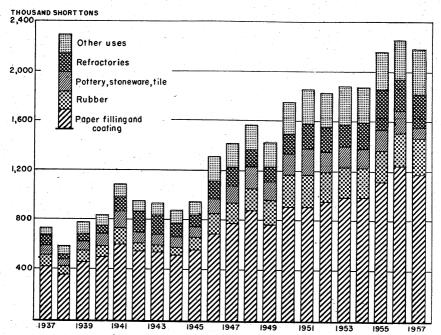


FIGURE 1.—Kaolin sold or used by domestic producers for specified uses, 1937-57.

TABLE 3.—Georgia kaolin sold or used by producers, 1948-52 (average) and 1953-57, by uses

	China c	lay, paper c	lay, etc.	Re	efractory 1	ises		rotal kaolin	
Year		Valu	1e		Va	lue		Valu	16
	Short	Total	Aver- age per ton	Short tons	Total	Aver- age per ton	Short tons	Total	Aver- age per ton
1953 1954 1955 1956	1, 057, 772 1, 170, 679 1, 190, 681 1, 327, 211 1, 456, 155 1, 414, 091	(1) (1) (1)	15. 89 (1) (1)	144, 538 171, 046 114, 184 165, 772 207, 552 244, 603	1, 053, 274 (1) (1) (1)	6.16	1, 202, 310 1, 341, 725 1, 304, 865 1, 492, 983 1, 663, 707 1, 658, 694	20, 525, 906 23, 375, 768 26, 604, 891	14. 65 15. 73

¹ Data not available.

BALL CLAY

Ball clay sold or used by producers in 1957 decreased 11 percent in tonnage and 9 percent in value compared with 1956.

Beginning with 1943, Tennessee has produced the most of any State. In 1957 Tennessee production was 64 percent of the United States total; Kentucky was second, with 25 percent. Compared with 1956, ball-clay production decreased 11 percent in Tennessee and 12 percent in Kentucky.

The pottery industry consumed 60 percent of the ball clay produced in 1957, compared with 63 percent in 1956. Ball clay used in making

whiteware (the major use) decreased 16 percent; floor and wall tile,

11 percent.

Quotations on domestic ball clay in Oil, Paint and Drug Reporter for December 1957 were: Crushed, in bulk, carlots, f. o. b. plant, \$8 to \$11 per short ton; air-floated in bags, carlots, f. o. b. plant, \$16.50 to \$21.50 per short ton; and purified, in bags, carlots, f. o. b. plant, \$16.50 to \$21.50 per short ton. In 1957 the average value per short ton for ball clay, as reported by producers, was \$13.52 compared with \$13.25 in 1956. In 1957 the average value per short ton was: Tennessee ball clay, \$13.67 compared with \$13.42 in 1956;

Kentucky ball clay, \$13.07 compared with \$13.03 in 1956.

Imports of common blue and ball clay in 1957 decreased 16 percent in tonnage and value compared with 1956. Unmanufactured blue and ball clays represented the major share of imports; United Kingdom supplied 98 percent of this classification and most of the imports of manufactured blue and ball clay. Small tonnages of unmanufactured blue and ball clays came from Canada and West Germany. Imports of Gross Almerode clays, including fuller's earth, totaled 1,608 short tons—521 from Canada, 73 from United Kingdom, 902 from West Germany, and 112 from the Netherlands. Exports, if any are not shown separately on official foreign-trade returns.

TABLE 4.—Ball clay sold or used by producers in the United States, 1955-57, by States

State	Sold by 1	oroducers	Used by	producers	То	tal
· · · · · · · · · · · · · · · · · · ·	Short tons	Value	Short tons	Value	Short tons	Value
1955						
Kentucky	111,600	\$1, 498, 950			111,600	\$1, 498, 950
Maryland	20, 640	267, 410			20, 640	267, 410
Tennessee	251, 104	3, 305, 277	2, 930	\$29, 300	254, 034	3, 334, 577
Other States	(1)	(1)	(1)	(1)	25, 080	285, 840
Total	383, 344	5, 071, 637	2, 930	29, 300	411, 354	5, 386, 777
1956						
California Kentucky			14, 860	104, 191	14, 860	104, 19
Kentucky	115, 243	1, 501, 550			115, 243	1, 501, 550
Tennessee	285, 792	3, 849, 709	4, 300	43, 000	290, 092	3, 892, 709
Other States 1	38, 611	582, 868			38, 611	582, 868
Total	439, 646	5, 934, 127	19, 160	147, 191	4 58, 8 06	6, 081, 318
1957						
California		1	11, 404	80, 332	11, 404	80, 332
Kentucky	101, 953	1, 332, 543			101, 953	1, 332, 54
Tennessee	255, 826	3, 510, 994	3, 575	35, 750	259, 401	3, 546, 744
Other States 1	35, 528	561, 576			35, 528	561, 576
Total	393, 307	5, 405, 113	14, 979	116, 082	408, 286	5, 521, 19

¹ Includes Maryland (1956-57), New Jersey, Mississippi, and Oregon (1955 only). Individual figures combined to avoid disclosing individual company confidential data.

FIRE CLAY

Fire clay sold or used by producers in the United States decreased 8 percent in 1957 compared with 1956, or to about the same level as in 1955. Lower activity in the refractory and construction industries was responsible for most of the decrease. The three States producing the largest quantities—Ohio, Pennsylvania, and Missouri—all re-

ported decreases. Six of the smaller producing States showed increases over 1956.

The principal uses of fire clay in 1957 were for manufacture of refractories, which consumed 52 percent of the total output, and heavy clay products, including architectural terra cotta and light-weight aggregate, which consumed 43 percent. About 1 percent was consumed in chemicals, 2 percent in floor and wall tile, and 2 percent for a variety of applications.

In 1957 Ohio ranked first in fire-clay production, followed in decreasing order by Pennsylvania, Missouri, California, Texas, Illinois,

TABLE 5.—Fire clay, including stoneware clay, sold or used by producers in the United States, 1956–57, by States 1

State	Sold by 1	producers	Used by	producers	То	Total		
	Short tons	Value	Short tons	Value	Short tons	Value		
1956								
Alabama	(2)	(2)	(2)	(2)	303, 329	\$990, 240		
Arizona			13	\$13	13	13		
Arkansas			274, 698	1, 188, 843	274, 698	1, 188, 843		
California	175, 154	\$590, 374	431, 038	1, 397, 537	606, 192	1, 987, 911		
Colorado	185, 412	437, 975	118, 975	380, 414	304, 387	818, 389		
Illinois	292, 439	547, 249	148, 542	322, 378	440, 981	869, 627		
Indiana	495, 499	826, 554	149, 755	375, 309	645, 254	1, 201, 863		
Kansas			139, 130	308, 960	139, 130	308, 960		
Kentucky	54, 119	235, 195	249, 156	1, 676, 820	303, 275	1, 912, 015		
Maryland	(2)	(2)	(2)	(2)	68, 434	409, 744		
Missouri	268, 966	1, 122, 293	1, 496, 955	5, 994, 528	1, 765, 921	7, 116, 821		
Montana	94	376	1,508	6, 032	1,602	6, 408		
Nebraska			2, 495	2, 495	2, 495	2, 495		
Nevada New Jersey	597	5, 369	750	2, 138	1, 347	7,507		
New Mexico	94, 928	765, 220	75, 218	453, 780	170, 146	1, 219, 000		
Ohio	988, 723	2, 872, 176	2, 175, 997	11, 125, 758	8,314	27, 481		
Oklahoma	900, 120	2, 012, 110	2, 175, 997	2, 900	3, 164, 720 290	13, 997, 934 2, 900		
Pennsylvania	674, 124	2, 017, 498	1, 768, 862	16, 020, 260	2, 442, 986	18, 037, 758		
Texas	(2)	(2)	(2)	(2)	483, 417	1, 007, 188		
Utah	37, 097	36, 274	19, 748	51, 345	56, 845	87, 619		
Washington	12,000	24, 300	74, 674	154, 256	86, 674	178, 556		
West Virginia	(2)	(2)	(2)	(2)	428, 033	2, 171, 942		
Other States 3	263, 389	668, 163	1, 132, 748	4, 137, 104	104, 610	198, 672		
Total	3, 542, 541	10, 149, 016	8, 260, 552	43, 600, 870	11, 803, 093	53, 749, 886		
1957								
Alabama	(2)	(2)	(2)	(2)	174, 817	483, 635		
Arizona	(-)	(9)	15	15	174, 617	400, 000		
Arkansas			390, 451	1, 369, 047	390, 451	1, 360, 047		
California	206, 318	675, 441	456, 064	1, 367, 182	662, 382	2, 042, 623		
Colorado	172, 444	405, 319	57, 079	259, 895	229, 523	665, 214		
Illinois	277, 535	1, 383, 908	160, 109	960, 733	437, 644	2, 344, 641		
Indiana	(2)	(2)	(2)	(2)	397, 825	748, 028		
Kansas			231, 218	550, 536	231, 218	550, 536		
Kentucky	60, 541	284, 629	269, 672	1, 683, 932	330, 213	1, 968, 561		
Maryland	(2)	(2)	(2)	(2)	82, 130	363, 357		
Missouri	197, 375	679, 735	1, 534, 705	6, 047, 270	1, 732, 080	6, 727, 005		
Nebraska			2, 500	2, 500	2,500	2, 500		
New Jersey New Mexico	111, 583	828, 082	55, 622	347, 895	167, 205	1, 175, 977		
New Mexico	471	2, 073	4, 421	14, 508	4, 892	16, 581		
Ohio	924, 254	2, 782, 152	1, 817, 730	9, 498, 199	2, 741, 984	12, 280, 351		
Oklahoma	404 #==		309	3,090	309	3,090		
Pennsylvania	484, 775	1, 179, 570	1, 606, 527	15, 236, 205	2, 091, 302	16, 415, 775		
Texas	(2)	(2)	(2)	(2)	453, 974	1, 057, 131		
Utah Washington	14, 866	60, 086	18, 757	48, 768	33, 623	108. 854		
West Virginia	(2)	(2)	(2) (2)	(2)	117, 844	321, 119		
Other States 3	497, 636	1, 150, 245	1, 252, 122	4, 498, 749	402, 581 120, 587	2, 445, 427 230, 297		
								
Total	2, 947, 798	9, 431, 240	7, 857, 301	41, 879, 524	10, 805, 099	51, 310, 764		

¹ Includes stoneware clay as follows: 1956—74,143 tons; 1957—30,089 tons.
² Included with "Other States."
³ Includes States indicated by footnote 2 above and Idaho, Iowa, Minnesota, Mississippi, Montana (1957 only), Nevada (1957 only), and Wyoming (1957 only).

West Virginia, Indiana, Arkansas, Kentucky, Kansas, and Colorado. These 12 States furnished 93 percent of the total production. The remainder was produced in 16 States. Of the 12 principal producing States, only California, Arkansas, Kansas, and Kentucky reported

increases.

Price quotations on fire clay do not appear in trade journals; however, the average value per short ton of fire clay sold by producers, as reported to the Bureau of Mines in 1957, was \$3.20 compared with \$2.86 in 1956, \$3.13 in 1955, and \$3 in 1954. The average value of all fire clay, including both sales and captive tonnage, was \$4.75 in 1957 compared with \$4.55 in 1956, \$3.89 in 1955, and \$3.79 in 1954. The following quotations on firebrick manufactured from fire clay were reported in December 1957 in E&MJ Metal and Mineral Markets: Missouri, Kentucky, and Pennsylvania, superquality, \$128; high-heat quality, \$114; Ohio firebrick, intermediate grade, \$120; second grade, \$103 per thousand.

Imports of fire clay are not shown separately in foreign-trade statistics. Exports of fire clay in 1957 decreased 10 percent in tonnage but increased 14 percent in value compared with 1956. Canada received 65 percent, Mexico 21 percent, and Japan 9 percent of the total exports. The remainder (5 percent) comprised small tonnages to many destinations in Central and South America, Europe, Asia, and

Africa.

BENTONITE

The quantity of bentonite sold or used by producers in 1957 decreased 8 percent in quantity and 3 percent in value from the alltime

highs established in 1956.

The foundry and petroleum industries consumed 78 percent of the total tonnage in 1957, compared with 83 percent in 1956 and 89 percent in 1955 and 1954. Rotary drilling mud consumed 38 percent in 1957 (40 percent in 1956 and 1955 and 43 percent in 1954); foundry-sand bond, 26 percent (26 percent in 1956, 28 percent in 1955, and 23 percent in 1954); and filtering and decolorizing oils and other filtering and clarifying, 14 percent (17 percent in 1956, 21 percent in 1955, and 23 percent in 1954). The remaining 22 percent of the national output was used for a wide variety of purposes. All major uses decreased in 1957 compared with 1956: Foundry-sand bond, 8 percent; filtering and decolorizing, 20 percent; rotary-drilling muds, 11 percent; and insecticides, less than 1 percent. Two minor uses—chemicals and absorbents—showed increases.

The three States producing the largest quantities, whose output in 1957 could be shown, and the percentage of total United States production they furnished were: Wyoming, 57 percent (54 percent in 1956, 56 percent in 1955, and 58 percent in 1954); Mississippi, 15 percent (14 percent in 1956, 15 percent in 1955 and 1954); and Texas, 9 percent (10 percent in 1956 and 1955 and 8 percent in 1954).

The price of Wyoming bentonite was given in the Oil, Paint and Drug Reporter for December 1957 as follows: 200-mesh, carlots, f. o. b. mines, \$14 per short ton. The average value per short ton, as reported by the producers to the Bureau of Mines in 1957, was \$12.28 compared with \$11.72 in 1956.

TABLE 6.—Bentonite sold or used by producers in the United States, 1955-57, by States

State	1955		19	56	1957		
	Short tons	Value	Short tons	Value	Short tons	Value	
Arizona. California. Colorado. Idaho. Mississippi. Nevada. Texas. Utah Washington Wyoming. Other States ² .	124, 872 3, 942 207 226, 852 442 155, 128 2, 520 825, 810 140, 432 1, 480, 205	\$674, 309 66, 192 931 2, 558, 399 4, 420 1, 461, 873 30, 200 10, 721, 577 1, 701, 114 17, 219, 015	(1) 3, 618 120 219, 216 (1) 160, 723 2, 741 300 847, 266 336, 626 1, 570, 610	(1) \$70, 328 1, 200 2, 360, 031 (1) 1, 182, 620 34, 700 3, 000 11, 624, 185 3, 138, 743 18, 414, 807	(1) 18, 646 20 185 220, 313 (1) 126, 635 2, 300 165 822, 163 261, 018	(1) \$302, 512 8(3, 700 2, 372, 244 (1) 963, 144 29, 800 11, 724, 854 2, 433, 315 17, 830, 644	

1 Included with "Other States." ² Includes States indicated by footnote 1 and Louisiana, Montana, North Dakota, Oklahoma, and South

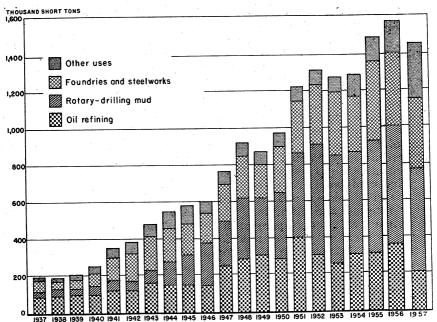


FIGURE 2.—Bentonite sold or used by domestic producers for specified uses,

FULLER'S EARTH

Fuller's earth sold or used by producers decreased 12 percent in tonnage and 9 percent in value in 1957 compared with 1956.

Absorbent uses required 42 percent of the national consumption in 1957 compared with 41 percent in 1956, 37 percent in 1955, and 31 percent in 1954; insecticides and fungicides, 18 percent compared

with 27 percent in 1956, 25 percent in 1955, and 19 percent in 1954; rotary-drilling mud, 20 percent compared with 19 percent in 1956, 13 percent in 1955, and 11 percent in 1954; and mineral-oil refining, 12 percent compared with 11 percent in 1956 and 15 percent in 1955. Vegetable-oil refining required slightly more than 0.5 percent of the total consumption in 1957 compared with slightly less than 0.5 percent in 1956, 1 percent in 1955, and 5 percent in 1954. The remainder—about 7 percent of the total—was used in other filtering and clarifying, in exports, and for other unspecified uses.

TABLE 7.—Fuller's earth sold or used by producers in the United States, 1955-57, by States

	State	Short tons	Value
California	1955		
Georgia		103, 883	\$82, 292 2, 226, 296
Tennessee		33, 791	3, 565 473, 074
		2, 829 214, 041	35, 175 4, 799, 917
Total		369, 719	7, 620, 319
Florida Georgia Tennessee	1956	228, 624 108, 632 48, 000	49, 458 5, 114, 050 2, 386, 122 658, 500 36, 962 634, 232
Total		417, 715	8, 879, 324
Florida Georgia Pennessee Utah	1957	223, 222 78, 199 35, 240	44, 220 5, 432, 367 1, 512, 592 413, 240 38, 000 616, 422
Total		366, 101	8, 056, 841

¹ Includes Florida (1955 only), Mississippi, Nevada (1956 only), and Texas.

In 1957 Florida furnished 61 percent, Georgia 21 percent, and Tennessee 10 percent of the United States total production. All States reported decreases in 1957 compared with 1956, except Utah,

which reported a slight increase.

The average value, per short ton, of fuller's earth reported sold or used in the United States in 1957 was \$22.01, compared with \$21.26 in \$1956, \$20.61 in 1955, and \$18.23 in 1954. The following quotations on fuller's earth were published in the Oil, Paint and Drug Reporter for December 1957: Insecticide grade, dried, powdered, in bags, carlots, Georgia or Florida mines, \$17.50 per short ton; calcined, in bags, carlots, same basis, \$20 to \$21.75 per short ton; and Oil-Bleaching grade, 100-mesh, in bags, carlots, \$16.30 to \$17 per short ton; 200-mesh, in bags, carlots, same basis, \$17.50 to \$18 per short ton.

Effective January 1, 1955, fuller's earth import statistics were not classified separately but were included under "Other clay." Exports are not given separately in official foreign-trade statistics.

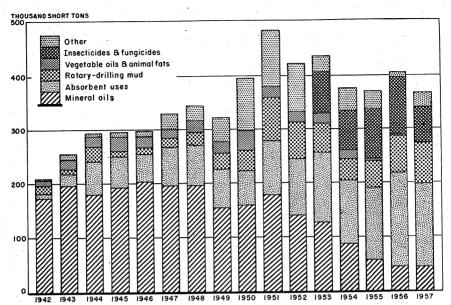


FIGURE 3.—Fuller's earth sold or used by producers for specified uses, 1942-57.

MISCELLANEOUS CLAY

This section presents statistics for the large-tonnage clays and shales—other than those discussed in the preceding pages—used in manufacturing heavy clay products, portland cement, and light-weight aggregate. With these are grouped small tonnages of slip clay, oil-well drilling mud, pottery clay, and clays that cannot clearly be identified with one of the types discussed separately in this chapter.

Miscellaneous clay sold or used by producers decreased 11 percent in tonnage and 9 percent in value in 1957 compared with 1956. Portland-cement production decreased 6 percent in 1957 from an all-time high in 1956, and clay used in cement production decreased 4 percent. Miscellaneous clay consumed in manufacturing heavy clay products decreased 15 percent. In 1957, 58 percent of the total miscellaneous clay was used in manufacturing heavy clay products, 29 percent in cement, and 12 percent in lightweight aggregate. Captive tonnage—clay produced by mine operators for their own use in manufacturing brick, tile, cement, and lightweight aggregate and marketed for the first time as such—was 99 percent of the miscellaneous clay sold or used in 1957. The quantity of miscellaneous clay used in producing lightweight aggregate for concrete mixtures decreased 8 percent in tonnage compared with 1956.

Ohio was the only State that reported tonnage exceeding 3 million short tons. In decreasing order, the following States reported tonnage exceeding 2 million short tons: Texas, North Carolina, and California. States reporting over 1 million and less than 2 million short tons were, in decreasing order of output: Pennsylvania,

Michigan, Illinois, Alabama, Indiana, and New York. Of the States for which data are shown in table 8 for both 1956 and 1957, 10

reported increases and 36 decreases.

The average reported value of miscellaneous clay sold as crude or prepared clay in 1957 was \$1.45, compared with \$1.37 in 1956, \$1.49 in 1955, \$1.66 in 1954, and \$1.91 in 1953. A decline in the construction industry and work stoppages in the cement industry were the basic reasons for the decreased consumption of miscellaneous clay.

Some special types of clay included under the miscellaneous-clay classification, however, sold at much higher prices. The value of the captive tonnage was computed from individual estimates that averaged about \$1 per short ton.

TABLE 8.—Miscellaneous clays, including shale and slip clay sold or used by producers in the United States, 1956-57, by States

State	Sold by p	roducers 1	Used by p	oroducers 2	To	tal
	Short tons	Value	Short tons	Value	Short tons	Value
1956			1 000 000	A- 150 440	1 000 000	01 120 440
Alabama			1, 290, 830	\$1,156,440	1, 290, 830	\$1, 156, 440
Arizona			111, 724	167, 587	111,724	167, 587
Arkansas			444, 229	444, 229	444, 229	444, 229
California	405, 434	\$831, 136	1, 926, 844	2, 950, 302	2, 332, 278	3, 781, 438
Colorado	(3) 92, 626	(3) 54, 018	(3)	(3)	218, 186	396, 916
Connecticut	92, 626	54,018	245, 358	336, 277	337, 984	390, 295
Georgia Hawaii			1, 275, 128	509, 980	1, 275, 128	509, 980
Hawaii			1,590	1,988	1,590	1,988
Idaho			22, 500	12, 225	22, 500	12, 225
Illinois	16,062	108, 439	1,800,832	3,027,374	1, 816, 894	3, 135, 813
Indiana	(3)	(3)	(3)	(3)	1, 405, 366	2, 255, 247
Iowa		11, 127	851, 465	1,066,515	852,020	1,077,642
Kansas		44	837, 963	860,044	837, 969	860,088
Kentucky		(3)	(3)	(3)	486, 309	665, 620
Louisiana		` ` `	785, 283	785, 283	785, 283	785, 283
Maine			26, 162	23, 045	26, 162	23, 045
Maryland		(3)	(3)	(3)	567, 116	636, 776
Maryland		(9)	127, 547	213, 682	127, 547	213, 682
Massachusetts		(3)	121,041			2, 401, 051
Michigan		53	(2)	(3)	2, 110, 030	
Minnesota	53	93	79, 647	91, 176	79, 700	91, 229
Mississippi			299, 614	299, 614	299, 614	299, 614
Missouri	9,400	21, 747	882, 494	877, 652	891, 894	899, 399
Montana			31,472	24, 597	31,472	24, 597
Nebraska			150, 642	151,054	150, 642	151,054
Nevada	2,625	3, 281	8, 745	10, 931	11, 370	14, 212
New Hampshire			36, 320	47,040	36, 320	47,040
New Jersey			480, 934	994, 965	480, 934	994, 965
New Mexico	(3)	(3) 19, 294	(3)	(3)	31,309	67, 905
New York	`1,430	19, 294	1, 233, 430	1, 488, 455	1, 234, 860	1,507,749
North Carolina			2, 641, 387	1, 539, 842	2, 641, 387	1,539,842
North Dakota			52, 282	70, 555	52, 282	70, 555
Ohio		226, 841	3, 272, 287	3, 450, 729	3, 537, 811	3, 677, 570
Oklahoma		40, 919	657, 219	657, 219	704, 771	698, 138
Oregon.		(8)	(3)	(3)	256, 942	278, 205
Pennsylvania		68, 169	1, 774, 507	5, 676, 002	1, 969, 564	5, 744, 171
		00, 100	142, 666	129, 166	142, 666	129, 166
Puerto Rico			695, 684	731, 598	695, 684	731, 598
South Carolina	(3)	(3)	(3)	(8)	201, 129	201, 129
South Dakota		(8)				
Tennessee	4 900	70 01	1,040,420	336, 400	1,040,420	336, 400
Texas		72, 915	2, 495, 673	2, 502, 345	2, 502, 061	2, 575, 260
Utah	23,064	30,091	141, 223	302, 417	164, 287	332, 508
Virginia			1,000,019	1, 032, 665	1,000,019	1,032,665
Washington	50	150	232, 964	257, 755	233,014	257, 905
West Virginia			341, 485	277, 266	341, 485	277, 266
Wisconsin	2,120	2, 460	160, 969	169, 627	163,089	172,087
Wyoming			206, 186	207, 796	206, 186	207, 796
Undistributed 4	419, 276	553, 873	5,091,696	6, 589, 610	234, 585	240, 634
						<u>_</u>
Total	1, 487, 222	2,044,557	32, 897, 420	39, 471, 447	34, 384, 642	41, 516, 004
	-,,				I	

See footnotes at end of table.

TABLE 8.-Miscellaneous clays, including shale and slip clay sold or used by producers in the United States, 1956-57, by States-Continued

State	Sold by p	roducers 1	Used by I	oroducers 2	То	tal
	Short tons	Value	Short tons	Value	Short tons	Value
1957						
Alahama			1, 140, 838	\$1,020,253	1, 140, 838	\$1,020,25
AlabamaArizona			117, 797	176, 696	117, 797	176, 69
A proper			226,068	226,068	226, 068	226, 06
Arkansas California	379,018	\$707,415	1,649,337	2, 587, 236		
Colorado	43, 907	77, 437	129, 906	2, 587, 230	2,028,355	3, 294, 65
Connecticut	45, 907	11,401		235, 540	173, 813	312, 97
	(3)	(3)	(3)	(3)	308, 236	408, 66
Jeorgia Hawaii			970, 320	388, 174	970, 320	388, 17
Hawan			2,488	3, 110	2,488	3, 11
.aano			23,000	12,600	23,000	12, 60
llinois ndiana	3,048	4,877	1, 476, 286	2, 805, 009	1, 479, 334	2, 809, 88
ndiana	170, 606	277, 695	906, 687	1, 543, 291	1,077,293	1, 820, 98
owa	455	8, 970	751, 428	935, 872	751, 883	944, 84
Cansas			677, 475	689, 253	677, 475	689, 25
Kentucky			461, 729	614, 144	461, 729	614, 14
Onisiana	1 1		641, 939	641, 939	641, 939	641, 93
Maine			29, 924	27, 636	29, 924	27, 63
Maryland	(3)	(8)	(3)	(3)	549, 175	599, 73
Maccachineatte		(-)	77, 577	97, 577	77, 577	97. 57
Vichigan	(3)	(8)	(3)	(3)	1,841,890	1, 981, 59
Winnesote		(9)	96, 928			113, 07
Maine Maryland Massachusetts Michigan Minnesota				113, 071	96, 928	
Mississippi Missouri Montana			294, 842	294, 842	294, 842	294, 84
dissouri	5, 394	13, 204	910, 529	907, 674	915, 923	920, 87
viontana			31,710	23, 860	31,710	23, 860
vebraska			131, 213	132, 763	131, 213	132, 76
vevada			9, 788	12, 235	9, 788	12, 23
Nebraska Nevada New Hampshire			37, 300	50, 500	37, 300	50, 500
vew Jersev	1		426, 197	696, 268	426, 197	696, 26
New Mexico	3,011	24,088	25,060	41,912	28, 071	66,000
New Mexico New York North Carolina	(3)	(3)	(3)	(3)	1,002,313	1, 270, 230
North Carolina			2, 391, 622	1, 406, 860	2, 391, 622	1,406,860
North Dakota			54,500	66, 700	54, 500	66, 700
)hio	189, 707	220, 753	3, 204, 333	3, 571, 779	3, 394, 040	3, 792, 53
)klahoma	43, 576	39, 219	597, 084	599, 549	640, 660	638, 76
)regon	(3)	(3)	(3)	(3)	239, 595	265, 55
ennsylvania	147, 156	39, 802	1, 799, 575	5, 361, 607	1, 946, 731	5, 401, 40
uerto Rico		00,002	158, 813	139, 813	158, 813	139, 81
outh Carolina				571, 113	583, 166	571, 11
outh Dakota		/2\	583, 166			
Tommograph	(3)	(3)	(3)	(3)	175, 680	175, 680
'ennessee			859, 201	268, 136	859, 201	268, 130
exas	3, 128	57, 148	2, 408, 441	2, 856, 203	2, 411, 569	2, 913, 35
Jtah	(3)	(3)	(3)	(3)	125, 491	295, 98
rirginia			893, 255	986, 302	893, 255	986, 30
Washington	(3)	(3)	(3)	(3)	179, 660	165, 96
Vest Virginia			304, 952	245, 182	304, 952	245, 183
Visconsin	1,000	1,050	130,007	134, 804	131,007	135, 85
Vyoming			246, 859	248, 164	246, 859	248, 16
Wyoming Indistributed 4	107, 614	116, 826	4, 519, 414	5, 257, 766	204, 988	211, 17
Total	1, 097, 620	1, 588, 484	29, 397, 588	35, 991, 501	30, 495, 208	37, 579, 98

¹ Purchases by portland-cement companies of common clay and shale: 1956—192,858 tons, estimated at \$192,858; 1957—none.

2 Includes the following: Common clay and shale used by portland-cement companies: 1956—9,067,390 tons, estimated at \$9,301,741; 1957—8,858,232 tons, estimated at \$8,721,154.

4 Included with "Undistributed."

4 Includes States indicated by footnote 3 and Delaware, Florida, and Vermont.

CONSUMPTION AND USES

Heavy clay products (building brick, structural tile, and sewer pipe) in 1957 comprised 49 percent of the total clay compared with 51 percent in 1956. Clays used in portland and other hydraulic cements in 1957 consumed 20 percent of the total clay output; refractories, 14 percent; lightweight aggregate, 8 percent; and rotary-drilling mud, paper filler, paper coating, and pottery, approximately 1 percent each. The remainder was consumed for a number of purposes. Exports were shown separately as a use.

TABLE 9.—Clay sold or used by producers in the United States in 1957, by kinds and uses, in short tons

	uu uscs	, 111 51	iore rons				
	Kaolin	Ball clay	Fire clay and stoneware clay	Benton- ite	Ful- ler's earth	Miscel- laneous clay, in- cluding slip clay	Total
Pottery and stoneware:							
Whiteware, etc		231, 410	1				319, 715
	120	3, 247	18, 505				21, 872
Art pottery, flower pots, and glaze slip	1, 127	11, 528	11, 584	105		53, 735	78, 079
TotalFloor and wall tile	89, 552 27, 470	246, 185 79, 802	30, 089 174, 064	105		53, 735 120, 463	419, 666 401, 799
Refractories:							
Firebrick and block Bauxite, high-alumina brick Fire-clay mortar Clay crucibles Glass refractories Zine retorts and condensers Foundries and steelworks Saggers, pins, stilts, and wads Other refractories	12, 539	238 3, 700	74, 279 135, 774 1, 786 87, 442 59, 370 825, 585 10, 829	267 833			4, 491, 321 74, 279 137, 453 1, 786 103, 681 59, 370 1, 215, 581 29, 122 273, 205
Total	269, 150	48, 131	5, 679, 217	376, 843		12, 457	6, 385, 798
Heavy clay products: Building brick, paving brick, drain tile, sewer pipe, and kindred products. Architectural terra cotta. Lightweight aggregates.	35	18, 378	4, 618, 059 41, 033 292			17, 589, 031 3, 752, 455	22, 225, 468 41, 068 3, 752, 747
Filler: Paper filling Paper coating Rubber Linoleum and oilcloth Paint Fertilizers Insecticides and fungicides Plaster and plaster products Plastics, organic Other fillers	35, 183		480		67, 477	3, 778 1, 145	528, 478 658, 335 301, 332 19, 127 36, 402 16, 555 126, 995 1, 285 11, 344 53, 109
Total	1, 639, 873	1,800	11, 729	21, 595	69, 646	8, 319	
Portland and other hydraulic cements	26, 555		106, 391	3, 125		8, 858, 232	8, 994, 303
Miscellaneous: Enameling Filtering and decolorizing (raw and	1, 468	1, 714		54			3, 236
activated earths): Mineral oils and greases Vegetable or animal oils and				138, 940	43, 966		182, 906
fats	9, 065		111,070	8, 488 14, 120	2, 270 4, 932 75, 017 153, 398		128, 623 167, 518
Artificial abrasives Exports Other uses	19, 489 101, 028	3, 376 8, 900	23, 010 9, 380	74, 212	10, 814 6, 058	1, 459 72, 545	1, 464 130, 901 385, 288
Total	131, 050	13, 990	144, 225	1, 049, 777	296, 455	100, 516	1, 736, 013
Grand total:	- 100 1	400.00					45 500 66
1957 1956	2, 183, 685 2, 249, 920	408, 286 458, 806	10, 805, 099 11, 803, 093	1, 451, 445 1, 570, 610	366, 101 417, 715	30, 495, 208 34, 384, 642	45, 709, 824 50, 884, 786

The total tonnage of clays consumed in 1957 decreased 10 percent, but consumption in several branches of the clay industry increased. Some of these increases were as follows: Other refractories, 52 percent; glass refractories, 45 percent; other fillers, 44 percent; enameling, 39

percent; floor and wall tile, 31 percent; fertilizers, 18 percent; paint, 17 percent; and rubber, 12 percent. Decreases were reported for insecticides, 28 percent; pottery, 27 percent; heavy clay products, 15 percent; refractories (except glass and other), 9 percent; and cements, 3 percent.

REFRACTORIES

The value of clay-refractories shipments was approximately the same in 1957 as in 1956. The value of fire-clay brick shipments (except superduty) represented 34 percent of the total value in 1957 compared with 35 percent in 1956; ladle brick, 11 percent, the same as in 1956; superduty fire-clay brick, 11 percent, compared with 9 percent in 1956; and insulating firebrick, 7 percent, the same as in 1956. A number of classifications composed the remaining 37 percent in 1957, compared with 38 percent in 1956, as shown in table 10.

TABLE 10.—Shipments of refractories in the United States, by kinds, 1956-57
[Bureau of the Census]

			Shipments				
Product	Unit of	19	956	1957			
	quantity	Quan- tity	Value (thou- sand dollars)	Quan- tity	Value (thou- sand dollars)		
Clay refractories: Fire-clay brick, standard and special shapes, except superduty. Superduty fire-clay brick and shapes. High-alumina brick and shapes (50 percent Al ₂ O ₃ and over) made substantially of calcined disspore or bauxite.¹ Insulating firebrick and shapes.	equivalent.	20,000	73, 439 18, 631 8, 631	469, 941 91, 221 23, 101	71, 764 22, 648 9, 460		
Ladle brick Hot-top refractories. Sleeves, nozzles, runner brick and tuyéres. Glasshouse pots, tank blocks, feeder parts and upper structure shapes used only for glass tanks.	do .	244 400	13, 698 21, 928 6, 234 11, 105 4, 443	57, 498 223, 094 31, 762 51, 848 17, 837	13, 583 22, 235 5, 355 11, 321 3, 962		
Refractory bonding mortars, air-setting (wet and dry) types. ² Refractory bonding mortars, except air-setting		1 1	³ 8, 916 ³ 975	88, 543 11, 401	7, 968 1, 124		
types. ² Plastic refractories and ramming mixes ¹ Castable refractories (hydraulic setting) Insulating castable refractories (hydraulic setting).	do	98, 051 14, 966	3 10, 524 9, 089 1, 716	125, 827 105, 032 16, 427	9, 106 10, 319 1, 852		
Ground crude fire clay, high-alumina clay, and silica fireday. 4 Clay-kiln furniture, radiant-heater elements, potters' supplies, and other miscellaneous refractory items.		1 '	7, 593 6, 963	658, 336	6, 717 5, 808		
Other clay refractory materials sold in lump or ground form.	Short ton		4, 723	296, 294	5, 040		
Total clay refractories			208, 608		208, 262		
Nonclay refractories: Silica brick and shapes	1,000 9-in. equivalent.	3 316, 653	³ 58, 979	304, 210	62, 002		
Magnesite and magnesite-chrome (magnesite predominating) brick and shapes (excluding molten east).	do	49, 653	32, 742	42, 487	31, 237		
Chrome and chrome-magnesite (chrome ore predominating) brick and shapes (excluding molten cast).	do	61, 651	36, 725	63, 286	42, 250		

See footnotes at end of table.

TABLE 10.—Shipments of refractories in the United States, by kinds, 1956-57— Continued

		,	Shipments					
Product	Unit of	19	56	1957				
	quantity	Quan- tity	Value (thou- sand dollars)	Quan- tity	Value (thou- sand dollars)			
Onclay refractories—Continued Graphite and other crucibles, retorts, stopper heads, and other shaped refractories. Carbon refractories; brick, blocks, and shapes, excluding those containing natural graphite.	Short ton	13, 677	8, 658	14, 094	8, 363			
Mullite brick and shapes made predominantly of kyanite, sillimanite, andalusite, or synthetic mullite (excluding molten cast).	1,000 9-in. equivalent.	5, 687	6, 719	4, 350	5, 043			
Extrahigh-alumina brick and shapes made pre- dominantly of fused bauxite, fused or dense- sintered alumina (excluding molten cast).	do	3, 186	5, 349	2, 538	4, 227			
Silicon carbide brick and shapes made substantially of silicon carbide.	do	4, 220	10, 152	4,606	9, 196			
Zircon and zirconia brick and shapes made pre- dominantly of these materials.	do	630	1,631	537	1,738			
Forsterite, pyrophyllite, molten-cast, and other nonclay brick and shapes.			3 8, 794		11,824			
Nonclay refractory bonding mortars, air-setting (wet and dry) types.	Short ton	1	8, 255	94, 160	9, 543			
Nonclay refractory bonding mortars, except air-setting types.			1,882	17, 273	1, 528			
Nonclay plastic refractories and ramming mixes (wet and dry) types.	i		17, 913	213, 857	21, 913			
Nonclay refractory castables (hydraulic setting) Dead-burned magnesia or magnesite 4 Dead-burned dolomite 4 Other nonclay refractory materials sold in lump	do	3 4, 488 (6)	3 535 (6) 11, 768	6, 799 6 214, 150 1, 367, 557 156, 226	798 6 10, 914 22, 424 10, 060			
or ground form.4				·				
Total nonclay refractories 6			3210, 102		253, 060			
Grand total refractories 6			3 418, 710		461, 322			

Does not include mullite or extra-high-alumina refractories. These products are included with mullite

Production of refractories almost doubled between 1947 and 1957. The steel industry was by far the largest single user of refractories; the second largest was the ceramic industry. Consumption of refractories for ceramics was distributed as follows: Glass, 49 percent; whiteware, 22 percent; structural clay products, refractories, and other ceramics, 8 percent each; and enamel, 5 percent.³

In 1957 Harbison-Walker Refractories Co. continued its program of expansion and modernization begun in 1951, estimated to cost \$78 million ultimately. New basic refractories plants were completed at Ludington, Mich., and Hammond, Ind., bringing the total to 36 plants—33 widely distributed in the United States and 1 each in Canada, Peru, and Mexico. Approaching completion as the year closed

and extra-high-alumina brick and shapes in the nonclay refractories section.

² Includes bonding mortars which contain up to 60 percent Al₂O₃, dry basis. Bonding m tain more than 60 percent Al₂O₃, dry basis, are included in the nonclay refractories section. Bonding mortars that con-

³ Revised figure

Revised figure.
 Represents only shipments by manufacturers who also produce and ship other types of refractories.
 Includes calcined clay, ground brick, and siliceous and other gunning mixes.
 Figures for 1956 exclude data for dead-burned magnesia and magnesite. The total quantity and value of shipments of dead-burned magnesia and magnesite including quantities shipped to refractory producers for incorporation into refractory products such as magnesite brick and shapes reported to the Bureau of the Census was 796,007 tons value at \$24,613,000 in 1956. Data for 1957 exclude shipments of dead-burned magnesia are resolved to refractory produces for the magnificative of brick and other refractories. nesia and magnesite to refractory producers for the manufacture of brick and other refractories.

³ Brick and Clay Record, Near-Doubling of Refractories Industry Brings Need for More Public Attention: Vol. 132, No. 1, January 1958, pp. 59-65, 73.

were a large research center near Pittsburgh, Pa., and a new research laboratory at Marelan, Quebec. The former research laboratory at Hays, Pa., was being converted into headquarters for the company work on quality control for raw materials and products in process.4 In 1957 Harbison-Walker Refractories Co. acquired the Freeman Fire Brick Co., Canon City, Colo.

A \$500,000 improvement and modernization program was initiated by Hiram Swank's Sons, the largest producer of pouring-pit refractories in the United States. The company operated plants at Large, Clymer, Irvona, and Johnstown, all in Pennsylvania. One project was to expand production by 30 percent (about 12,000 tons) at its Large, Pa.,

plant.

North American Refractories Co. completed a new research center at Curwensville, Pa., and a new plant at Farber, Mo., to produce highfired superduty brick. The Farber plant contained modern grinding, screening, and forming equipment and a new low-set kiln. 1952 North American Refractories Co. had modernized its clay and silica brick plants in Pennsylvania. Two gas-fired tunnel kilns were constructed at the Curwensville fire clay brick plant. At the Lumber City stiff-mud fire-clay brick plant the periodic kilns were converted from coal-burning to gas-burning. Both silica brick plants were converted from wet-grinding to up-to-date dry grinding equipment.5

Norton Co. broke ground for a new \$1 million refractories plant at

Worcester, Mass., scheduled to begin operating in 1958.

H. K. Porter Co., Inc., Laclede-Christie Division, acquired the

Mullite Refractories Co., Shelton, Conn.

Expansion at the Bessemer, Ala., fire-clay-refractories plant of H. K. Porter Co., Inc., to be completed in 1958, was announced. A \$1 million rehabilitation program, including a tunnel kiln and automatic production controls, was planned.

New facilities and techniques in manufacturing special refractories were introduced at both the Taylor, Ky., and Cincinnati, Ohio, plants of The Chas. Taylor Sons Co., a subsidiary of National Lead Co.

Gladding, McBean & Co. planned a new \$1.3 million plant at Mica, Wash., to produce quality refractories. Production will include

super-, high-, intermediate-, and low-duty refractories.

Mexico Refractories Co. installed a rotary kiln at its Mexico, Mo., plant to calcine semiflint, hard flint, and high-alumina clays. The kiln had a capacity of 250 tons and required only 2 men per 8-hour The installation permitted closer quality and tolerance control and a wider range of finished products.6

HEAVY CLAY PRODUCTS

The Clay City Pipe Co. of Uhrichsville, Ohio, designed and built a plant to replace one destroyed by fire in 1956. Engineering features and modern facilities in this plant reflect improvements made in vitrified clay pipe manufacture in the past 2 decades.

<sup>Harbison-Walker Refractories Co., letter to the Bureau of Mines: May 12, 1958.
North American Refractories Co., letter to the Bureau of Mines: June 9, 1958.
Weigel, R. C., Calcining Clays for Better Product Control: Ceram. Age, vol. 69, No. 5, May 1957, pp.</sup>

<sup>14-16.
7</sup> Ceramic Age, Plant Design for Efficient Clay-Pipe Production: Vol. 70, No. 6, December 1957, pp.

New and better ideas, equipment, and facilities at both the Minerva, Ohio, and Darlington, Pa., plants of Metropolitan Brick Co. resulted in improved clay-products production. Emphasis was on automatic glazing, efficient clay preparation, and forming and sizing.8

The trend toward increased plant modernization and improved

manufacturing methods in the structural clay products industry

continued through 1957.9

Buildex, Inc., Pittsburg, Kans., increased its production capacity for lightweight aggregate to 300,000 cubic yards annually by the purchase of Lite Stone Aggregate Corp., New Lexington, Ohio.

The J. L. Stiles & Son Brick Co., North Haven, Conn., utilized the overburden from its clay deposit to produce lightweight aggregate by the sintering method. The capacity of the lightweight aggregate plant was 200 cubic yards per 10-hour day.

WORLD REVIEW

Austria.—The production of kaolin totaled 300,230 short tons in 1956 compared with 289,154 short tons in 1955. bentonite and fuller's earth totaled 4,941 short tons in 1956.¹⁰

Canada.—The increased output of clay products in Canada in 1956 from domestic and imported clays (shown in table 11) was attributed mainly to greater demand for ceramic products used in structural

clay products.11

As in a number of prior years, Canadian production of bentonite was confined to Manitoba and Alberta in 1956.12 Most of the consumption was imported from the United States. Imports in 1956 were valued at \$1,484,124, compared with \$1,247,355 in 1955.

In Manitoba, bentonite was mined near Morden by Pembina Mountain Clays, Ltd., from shallow beds, with little overburden. The material was dried, crushed, and stored at Morden and later hauled by rail to the Winnipeg plant for grinding and activation. The company marketed both a natural ground bentonite that had good decolorizing properties and an activated bentonite that compared favorably with the best imported.

⁸ Ceramic Age, Modern Production Methods: Vol. 70, No. 2, August 1957, pp. 12–16; Effective Handling of Granular Materials, No. 3, September 1957, pp. 14–17.

⁸ Brick and Clay Record, vol. 130, No. 1, January 1957, pp. 42, 50, 53, 92–93, 96–97; No. 2, February 1957, pp. 41, 43, 52–55, 75; No. 3, March 1957, pp. 40–41, 61–63; No. 4, April 1957, pp. 66, 60; No. 5, May 1957, pp. 43, 43, 44, 48–93 and 114, 52–53 and 111, 113; No. 6, June 1957, pp. 37, 39, 42–43, 52–61, 63–68, 71–73 and 110–111, 74–75 and 110–111, 82–85, 89–92, 99; Vol. 131, No. 1, July 1957, pp. 36, 70–71; No. 2, August 1957, pp. 36–37, 63; No. 3, September 1957, pp. 45–46, 55, 64–73, 76–78, 88–89; No. 4, October 1957, pp. 40–41, 69–71; No. 5, November 1957, pp. 42–46, 48–50; No. 6, December 1957, pp. 33, 44–46 and 58.

Ceramic Industry, vol. 68, No. 1, January 1957, pp. 58; No. 2, February 1957, pp. 51–52; No. 3, March 1957, pp. 43–44, 46; No. 3, September 1957, pp. 55–66, 69, 82–89; No. 5, May 1957, pp. 49–50; No. 2, August 1957, pp. 43–44, 46; No. 3, September 1957, pp. 59–60, 62; No. 4, October 1957, pp. 63–64, 78, 102–103; No. 5, November 1957, pp. 52, 88–89; No. 6, December 1957, pp. 58–80, 62.

Ceramic Age, vol. 69, No. 1, January 1957, pp. 16–19 and 32–34, 20–21 and 29, 34, 22–27, 30–31; No. 2, February 1957, pp. 14–20, 22–27; No. 3, March 1957, pp. 28–31, 32–33; No. 4, April 1957, pp. 20–24 and 40, 26–29, 32–33 and 35, 43–45; No. 5, May 1957, pp. 20–23, 24–25; No. 6, June 1957, pp. 12–15 and 29–30, 20–22, 31; Vol. 70, No. 1, July 1957, pp. 14–20, 22–27; No. 3, September 1957, pp. 18–19, 28–31; No. 4, October 1957, pp. 26–22; No. 5, November 1957, pp. 12–15 and 29–30, 20–22, 31; Vol. 70, No. 1, July 1957, pp. 14–20, 22–27; No. 3, September 1957, pp. 18–19, 28–31; No. 4, October 1957, pp. 26–29, 31; Vol. 70, No. 1, July 1957, pp. 14–20, 22–27; No. 3, September 1957, pp. 18–19, 28–31; No. 4, October 1957, pp. 26–29, 23; Vol. 60, Lanuary 1957, pp. 18–19, 28–31; No. 4, October 1957, pp. 26–29, 31; Vol. 60, Lanuary 1957, pp. 18–19, 28–31; No

TABLE 11.—Clays production, products, and trade in Canada, 1955-56

	1955	1956
roduction from domestic clays:		**
Clay products, from—	\$521, 919	\$530,000
Common clays	28, 913, 159	31, 388, 844
Stoneware clays	4, 731, 121	4, 930, 093
Fire clavs	820, 817	913, 178
Other products	272, 754	300, 000
Total	35, 259, 770	38, 062, 112
roduction from imported clays, from—		
Stoneware clay	884, 997	
Fire clay	2, 783, 536	
China clay	14, 725, 857	
Total	18, 394, 390	1 20, 500, 000
Grand total	53, 654, 160	58, 562, 112
mports:		
Clays:		
Fire clay	421, 205	542, 167
China clay	1, 902, 470	2,002,154
All other, including activated, filtering, and bleaching clays	1, 726, 341	2, 081, 060
Total	4, 050, 016	4, 625, 381
lay products, from—		
United States	23, 040, 013	28, 801, 890
United Kingdom	13, 878, 775	15, 263, 87
Other countries	2, 893, 679	3, 693, 882
Total	39, 812, 467	47, 759, 647
exports:		
Clays, to—		
United States	93, 681	146, 736
Other countries	1,004	2, 02
Total	94, 685	148, 761
lay products, to—		
United States	1, 748, 227	2, 304, 91
Germany, West	95, 607	221, 178
Union of South Africa	72, 244	148, 939
Belgium	96, 990	145, 39
Brazil	75, 255	67, 949
New Zealand	71, 958	46, 77
Other countries	493, 414	405, 786
0.000		

¹ Estimate.

Source: Matthews, S., Clays and Clay Products in Canada, 1956 (Preliminary): Dept. of Mines and Tech. Surveys, Ottawa, Canada, p. 2.

TABLE 12.—Consumption of bentonite in Canada, by uses, in short tons, 1954-55

Uses	1954	1955	Uses	1954	1955
Steel foundries Cement products Miscellaneous nonmetallic mineral products Soaps and cleaning compounds Pulp and paper Petroleum refining Oil-well drilling	3, 434 78 1, 074 586 204 5, 538 11, 775	4,786 1 100 958 622 346 1 6,000 12,216	Vegetable oil mills Polishes and dressings Miscellaneous chemicals Iron castings Gypsum products Total	357 4 116 612 66 23,844	302 4 1, 103 196 1 50 1 26, 683

¹ Estimated.

Sources: Buchanan, R. M., Bentonite in Canada, 1956 (Preliminary): Dept. of Mines and Tech. Surveys, Ottawa, Canada, p. 4.

In Alberta, swelling (alkali) bentonite was produced in several localities in the Drumheller area, north of Calgary. The material, in raw lump form, was purchased by Alberta Mud Co., Ltd., which prepared it for market in western Canada. It was sold for use as a component of weed killers, as an aid in diamond drilling, for sealing irrigation ditches, and as a foundry-sand bond.

The price of Alberta bentonite ground to 90 percent minus-200mesh was quoted at \$40 per short ton f. o. b. Calgary in 1956. The

price has remained unchanged for several years.

Lightweight aggregate produced from expanded clay and shale increased 20 percent in tonnage and value in 1956 compared with 1955.

Nine plants were listed as producing lightweight aggregate from clay or shale, all by the rotary-kiln process. Expanded clay and shale

aggregate sold for \$4.50 to \$6.50 per cubic yard.

A list of ceramic plants in Canada in 1957 was compiled. 13 The names of the operators, plant locations, key personnel, raw materials used and source, process of manufacture, number and type of kilns. fuel used, products, and plant capacities were given.

Germany, West.—The output of marketable kaolin was 69,312

short tons in 1956.¹⁴

A clay deposit was developed in the Klardorf basin in eastern Bavaria (West Germany) containing clayey sands, fine gray clays with up to 41 percent Al₂O₃, and black-gray clays with up to 42 percent Al₂O₃. It was stated that all these clays could be used in ceramic products such as chemical stoneware, floor and wall tile, and refractories

maturing at cone 34-35.15

The refractories industry in West Germany was discussed.¹⁶ The Didier-Werke, A. G., the leading producer of refractories in Europe, founded in 1834, had 16 plants employing more than 7,000 people at the start of World War II, with an annual output of about 500,000 short tons of refractories. At the end of World War II it had lost control of 10 plants and the raw-material sources that accompanied them, resulting in a production loss of more than 300,000 short tons per year. New construction and purchase of other refractories companies since 1946 has increased the number of operating plants to 10 with an estimated production of 500,000 short tons. The general office of this company was in West Berlin.

The review stated that in 1956 there were 105 manufacturers of refractories in West Germany, with 127 plants. Ninety-seven of these refractory manufacturers, operating 119 plants, were members of the Forschungsinstitut—The German Refractories Institute—in Bonn. Approximately 23,000 people were employed in 1956 by the refractories industry in West Germany. The approximate value of all refractories produced in 1956 was US\$105 million. The average wage in the refractories plants in West Germany was about US\$2.50 per 8-hour

West German common practice was to produce a wide variety of dissimilar refractories, such as fire clay, high-alumina sillimanite,

¹³ Buck, W. K., Ceramic Plants in Canada, January 1958: Mineral Resources Division, Dept. of Mines and Tech. Surveys, Ottawa, Canada, 35 pp.

14 Bureau of Mines, Mineral Trade Notes: Vol. 45, No. 3, September 1957, p. 27.

15 Schüttig R., [Clays of the Klardorf Basin]: Euro-Ceram., vol. 7, No. 3, 1957, pp. 58-59; Ceram. Abs., vol. 40, No. 9, Sept. 1, 1957, p. 213.

16 Knauft, R. W., Impressions of the Refractories Industry in Western Europe: Refractories Institute (Presented at the 1957 Spring Membership Meeting), June 28, 1957, 7 pp.

and basic in the same works, using separate facilities for grinding,

screening, and batching.

West Germany was reported to have an ample supply of fire clay and other plastic clays but no high-quality flint clay similar to that found in the United States. Consequently, the fire-clay and highalumina refractories contain a high percentage of calcined clay. Magnesite ore does not occur in West Germany but is imported, mostly from Austria and Yugoslavia.

Hong Kong.—Production of kaolin totaled 6,120 short tons in 56. The market value of the 1956 output was estimated at US-

\$54,600.17

India.—A high-voltage insulator plant was established at Bangalore early in 1957 by the Mysore State Government at a cost of over US\$1 million. The only raw material not available locally was said

to be ball clav.18

A comprehensive report on the Indian refractories industry in 1957 was given, 19 containing statistical data through 1956. The report included data on the history of the industry, producers, capacity, production, raw materials used, and estimated reserves, outlook, and Government policy.

Israel.—A flint clay high in alumina and low in iron was reported

at Wadi Ramon.20

Peru.—Production of clays totaled 242,712 short tons in 1956, compared with 233,425 short tons in 1955, 200,633 short tons in 1954, and 185,724 short tons in 1953.

Kaolin output totaled 116 short tons in 1956, 105 short tons in

1955, 206 short tons in 1954, and 158 short tons in 1953.

The production of refractory clay totaled 935 tons in 1956.²¹

TECHNOLOGY

In 1957 the Expanded Shale, Clay, and Slate Institute began comparative studies on diagonal tension in concrete beams made with lightweight and normal-weight aggregates.

Lightweight Concrete Information Sheets 5 and 6 on design coeficients were published during 1957. The second edition of the Bridge Deck Survey also was published, listing more than 70 bridges in which

expanded shale concrete was used.²²

Lower in-the-wall cost of unit clay masonry construction remained the ultimate objective of the work of the Structural Clay Products Research Foundation in 1957. Interest in site-construction and material-handling techniques continued, and greater emphasis was placed on new product design, particularly in relation to preassembly of units into panels. The development of lightweight structural units also was an important project. These studies required added research on raw materials.²³ The Structural Clay Products Research Foundation developed a clay-masonry veneer to be attached to ex-

¹⁷ Bureau of Mines, Mineral Trade Notes; Vol. 45, No. 3, September 1957, p. 27.

18 Bureau of Mines, Mineral Trade Notes: Vol. 44, No. 4, April 1957, p. 27.

18 Bureau of Mines, Mineral Trade Notes; Special Supplement 52, Refractories Industry in India: Vol. 46, No. 4, April 1958, 21 pp.

20 Metal Bulletin (London), No. 4213, July 23, 1957, p. 30.

21 Bureau of Mines, Mineral Trade Notes: Vol. 46, No. 1, January 1958, p. 24.

22 Expanded Shale, Clay, and Slate Institute, letter to the Bureau of Mines: Apr. 2, 1958.

23 Structural Clay Products Research Foundation, letter to the Bureau of Mines: Mar. 7, 1958.

terior or interior walls by a special metal clip nailed to the existing wood wall. The unit is a \(\frac{3}{4}\)-inch-thick slab of hard-burned, Normansize brick. An L-shaped corner unit allows cornering with the same appearance as a conventional brick wall.

National Clay Pipe Manufacturers, Inc., continued its research to develop longer lengths, greater strength, and new methods of joining vitrified clay pipe. A research laboratory under construction at Crys-

tal Lake, Ill., was expected to be completed early in 1958.

New factory-prefabricated joints of thermoplastic resins, being made in greater quantities by a larger number of manufacturers, were successful, not only in reducing the jointing time but also in developing excellent resistance to all types of alkalies, acids, bacteria, and fungi present in sanitary sewage.24

A series of Paleozoic shales, ranging in age from Ordovician through Pennsylvanian, from widely separated localities in Illinois, was investigated by X-ray diffraction and differential thermal, chemical, and microscopic methods, to determine their clay mineral composition

and textural characteristics.25

A report on Illinois pottery-clay resources was published as a guide in prospecting for new clay deposits. The report described types of clays by their locations and contained simple field tests to determine the commercial potential of clays for pottery making.²⁶ A rotational viscosimeter to measure plastic viscosity, yield point, and gel strength of ceramic suspensions, a portable low-pressure filter press and equipment for the concurrent analysis of troublesome soluble salts, and a compact device capable of determining porosity and permeability of fired bodies at the rate of six samples per hour were described.²⁷ The following tests give useful data for drier and kiln design: Differential thermal analysis, to gain an idea of what to expect from empirical tests; a rate of drying test that yields data on rate of water loss and shrinkage per percent of water; a test for rate of carbon removal at either 1,200° or 1,400° F.; and the temperature gradient method of determining the firing range.28

An inexpensive, simple technique for the particle-size analysis of clays was evolved and checked on 75 representative whiteware clays.²⁹ Tests on a panel simulating a blast-furnace wall indicated that the presence of moisture had no detrimental effect on the degree of spalling, if the wall were heated at a reasonable rate. It was stated that standard tests are needed for predicting spalling behavior during initial heating and for determining maximum heating rate for various sizes of blast-furnace brick.30 The type of organic matter and relative amount of pyrite in an illitic Texas shale were determined by a new, controlled-atmosphere, differential thermal analysis technique. on these data, oxidation tests were run to determine time required

^{**} National Clay Pipe Manufacturers, Inc., letter to the Bureau of Mines: Mar. 24, 1958.

*** Grim, R. E., Bradley, W. F., and White, A. W., Petrology of the Paleozoic Shales of Illinois: Illinois State Geol. Survey Rept. of Investigations 203, 1957, 35 pp.

*** Jonas, E. C., Pottery Clay Resources of Illinois: Illinois State Geol. Survey Circ. 233, 1957, 8 pp.

*** Jonas, E. C., Pottery Clay Resources of Illinois: Illinois State Geol. Survey Circ. 233, 1957, 8 pp.

*** Jonas, E. C., Pottery Clay Resources of Illinois: Illinois State Geol. Survey Circ. 233, 1957, 8 pp.

*** Weintritt, D. J., and Fericone, A. C., New Testing Equipment for Quality Control: Bull. Am. Ceram. Soc., vol. 36, No. 11, November 1957, pp. 401-405.

*** Stone, R. L., Determinative Tests of Aid in the Design of Driers and Kilns: Bull. Am. Ceram. Soc., vol. 36, No. 1, January 1957, pp. 1-5.

*** Phelps, G. W., and Maguire, S. G., Jr., Practical Particle-Size Analysis of Clays: I, Sample Preparation: Jour. Am. Ceram. Soc., vol. 40, No. 12, December 1957, pp. 403-409.

*** Baab, K. A., Spalling, Tests on Blast-Furnace Brick: Bull. Am. Ceram. Soc., vol. 36, No. 1, January 1957, pp. 14-17.

for oxidation at 1,400° to 1,600° F. The effects of wirecut versus smooth-face textures on the rate of oxidation were illustrated.31 The "drying-ball test," used as a standard control procedure to check the drying characteristics of new clays, proposed new body mixes, and production mixes by a vitrified clay sewer pipe manufacturer, was described.82

A plan for quality control in structural clay plants was given. 33 Automatic body-preparation systems at a Pennsylvania floor-tile plant were described. Moisture content of the body mix, distribution of the selected color stain or stains, and degree of mixing are controlled automatically. In addition, pelletizing units provide uniform particle size for dry pressing. Better process control and greater

production efficiency resulted.34

Differential thermal and X-ray analyses of 11 kaolin-type clays indicated that silicon monoxide (SiO) is formed after the collapse of the clay lattice below 1,000° C. The crystallinity of the SiO is poor until heated to its melting point at about 1,390° C. and cooled, after which the crystals are perfectly formed, although extremely small and intimately mixed with the mullite crystals. Heating above 1,390° C. causes SiO to undergo volatilization and oxidation to amorphous silica or cristobalite below a temperature of 1,650° C. This hypothesis is substantiated by high-temperature X-ray analyses, measurements of gravimetric loss after heating, and specific-gravity measurements.35 The behavior of minute particles of kaolinite and halloysite under dehydroxylation was studied.36

The application of engineering principles to mining, mixing, and refining of ball clays assured uniform quality long-range reserves adaptable to many different ceramic processes at minimum cost.37

The mineralogy, properties, uses, and methods of mining fuller's earth at Nutfield near Redhill, Surrey, England, were discussed.³⁸ The mine is one of the largest fuller's earth mines in United Kingdom.

Twenty-four brands of fire-clay plastic refractories, 12 each of highduty and super-duty types, were investigated for water content, particle-size distribution, workability index, bulk density, wet strength, pyrometric cone equivalent, and ignition loss. The resistance to thermal shock was determined by the standard panel method. shrinkage, the modulus of rupture, and Young's modulus of elasticity were determined at several different temperatures. The results of the tests indicated that 10 of the 12 high-duty and 9 of the 12 super-duty plastic refractories were of high enough quality for their respective classes to enable the Federal Government to readily fill its requirements from reliable sources.39

³¹ Stone, R. L., Laboratory Tests on the Oxidation Characteristics of a Texas Shale: Bull. Am. Ceram. Soc., vol. 36, No. 5, May 1957, pp. 172-173.
32 Brick and Clay Record, vol. 131, No. 5, November 1957, pp. 72-73.
33 Greene, C. F., Quality Control in a Brick Plant: Bull. Am. Ceram. Soc., vol. 36, No. 6, June 1957, pp.

³³ Greene, C. F., Quanty Control in a Brick Plant: Bull. Alm. Ceram. Soc., vol. 30, No. 9, June 1507, pp. 210-211.

44 Ceramic Age, Controlled Body Preparation: Vol. 70, No. 5, November 1957, pp. 16-18

58 West, R. R., High-Temperature Reactions in Kaolin-Type Clays: Bull. Am. Ceram. Soc., vol. 36, No. 2, February 1957, pp. 55-58.

58 Brindley, G. W., and Nakahira, M., Kinetics of Dehydroxylation of Kaolinite and Halloysite: Jour. Am. Ceram. Soc., vol. 40, No. 10, October 1957, pp. 346-350.

57 Roberts, J. W., Mining and Refining Ball Clays: Ceram. Age, vol. 70, No. 4, October 1957, pp. 16-19.

58 Mine and Quarry Engineering (London), Quarrying Fuller's Earth: Vol. 23, No. 8, August 1957, pp. 292-232

<sup>326-333.

39</sup> Heindl, R. A., and Pendergast, W. L., Results of Laboratory Tests of High-Duty and Super-Duty Fire-Clav Plastic Refractories: Bull. Am. Ceram. Soc., vol. 36, No. 1, January 1957, pp. 6-13.

Young's modulus of elasticity, transverse strength, extensibility, and load resistance were determined at a series of test temperatures on six groups of laboratory prepared refractory castables which had (a) no heat treatment, (b) heat treatment at 1,050° C., and (c) heat treatment at 1,300° C. The data suggested that the alterations in composition that occur with a rise in temperature were related to corresponding changes in modulus of elasticity and strength. effects of dehydration, conversion of amorphous alumina to gamma alumina, and silica inversions were evident. The cement content and temperature of operation, as well as the heat treatment of the castables, affected all these mechanical properties.⁴⁰

Demands for longer life, higher operating temperatures, and some unique physical and chemical properties now required to meet specific conditions have caused a definite increase in the application and pro-

duction of special refractories.41

The formation and removal of black cores in structural clay products were studied. Analytical procedures indicated that carbonaceous matter caused black cores, but their properties depended on the state of oxidation of the iron.⁴²

Vanadium efflorescence in brick made from buff-firing clays was inhibited by adding fluorspar to the body mix. This procedure is more effective when the clays are of low refractory character, that is, where a considerable proportion of the clay minerals present is illitic. For clays in which the clay minerals are predominantly kaolinitic and the quartz content is high, larger quantities of fluorspar and higher temperatures are required.43

An investigation revealed that efflorescing salts can originate in concrete backup block and be deposited on the face of a brick wall. The degree of efflorescence was greater in the case of backup material

with the greatest soluble-salts content.44

The workability, firing behavior, and properties of a high-lime shale deposit were determined. The effect of small additions of wollastonite, flint, and talc upon the fired properties also was determined. Suggested uses for this material were as a building block, interior wall decoration, and brick veneer.45

The effects of additions of urea, monobasic ammonium phosphate, dibasic ammonium phosphate, sodium ammonium phosphate, ammonium nitrate, and ammonium chloride on some physical properties of an unfired and a fired illitic shale of high carbonate content were

studied.46

Seventeen relatively cheap and potentially promising fluxing materials were studied as additives to typical structural clay bodies.

⁴⁸ Schneider, S. J., and Mong, L. E., Elasticity, Strength, and Other Related Properties of Some Refractory Castables: Bull. Am. Ceram. Soc., vol. 41, No. 1, January 1958, pp. 27-32.
44 Easter, G. D., Special Refractories, Properties, and Production: Ceram. Age, vol. 69, No. 3, March 1957, pp. 19-23, 35.
43 Brownell, W. E., Black Coring in Structural Clay Products: Jour. Am. Ceram. Soc., vol. 40, No. 6, June 1, 1957, pp. 179-187.
44 Machin, J. S., Allen, A. W., and Deadmore, D. A., Controlling Vanadium Efflorescence: Ceram. Age, vol. 69, No. 4, April 1957, pp. 30-31.
44 Young, J. E., Backup Materials as a Source of Efflorescence: Jour. Am. Ceram. Soc., vol. 40, No. 7, July 1, 1957, pp. 240-243.
46 Coffin, L. B., Survey of Uses for a High-Lime Shale: Bull. Am. Ceram. Soc., vol. 36, No. 11, November 1957, pp. 410-421.
47 Bauleke, M. P., and Dodd, C. M., Effect of Ammonium Salts on an Illitic Shale: Jour. Am. Ceram. Soc., vol. 40, No. 10, October 1957, pp. 325-334.

Several were found that produced significant increases in strength and reductions in porosity. Data concerning the most promising were

presented in considerable detail.47

The uses of lignin as a deflocculant for slip casting and as an additive for extrusion bodies were investigated. The effect of lignin as an extra additive, when mixed with other additives, upon such properties as warpage, rate of air drying, and unfired dry strength was studied.48

Extrusion die problems and their solution in a glazed wall-unit plant were reviewed. A suggested die-control program included engineered die designs, specifications covering satisfactory die materials, precision workmanship, and control of external forces which affect die

balance.49

An engobe coloring process—a relatively new concept in coloring brick—was explained. It provides a low-cost coloring method and can be applied to virtually any brick body and any brick surface, including red face brick.⁵⁰ A report on the several ways to add color to heavy clay products and the problems involved were discussed.⁵¹

The utilization of Ohio shales, fire clays, and miscellaneous clay to produce expanded lightweight aggregate was discussed.⁵² Inherent process variables and specific raw material problems for the downdraft moving grate process for lightweight aggregate production were described. A solution to control raw material preparation and a

firing technique were given.53

Operation of the plant of Cinder Concrete Products, Inc., Denver, Colo., was discussed. The sintering process is controlled by a pushbutton arrangement centered on a single electric panel board. company produces 450 cubic yards per day of sintered lightweight

clay aggregate.54

Operation of the plant of Lehigh Materials Co., Tamaqua, Pa., was described. The plant produces lightweight aggregate from shale a byproduct from the mining of anthracite. Outstanding plant features are: Presizing of raw shale to eliminate pelletizing; grate-traveling stokers (sintering machines) of company design; and high-pressure steam installed above the stokers to use waste heat from the stokers and furnish steam for the turbine that make power used in the plant.⁵⁵

Changes in the sintering process at the Livonia plant of the Light-

weight Aggregate Corp. were discussed.⁵⁶

Some patents issued during 1957 covered the uses of bentonite: In an improved lubricant for use in the mechanical operations involved

⁴⁷ Everhart, J. O., Use of Auxiliary Fluxes to Improve Structural Clay Bodies: Bull. Am. Ceram. Soc., vol. 36, No. 7, July 1937, pp. 268-271.

48 Burgess, D. G., The Use of Lignin in Ceramic Processes: Bull. Am. Ceram. Soc., vol. 36, No. 5, May 1957, pp. 168-171.

49 Alt, L. R., Extrusion Die Problems: Bull. Am. Ceram. Soc., vol. 36, No. 4, April 1957, pp. 137-138.

50 Carnahan, Tom, Engobes: Ceram. Age, vol. 70, No. 4, October 1957, pp. 23-24, 34.

51 Carnahan, T. D., Color, How You Can Use It—and What the Problems Are: Brick and Clay Record, vol. 131, No. 5, November 1957, pp. 52-53, 74-76, 79; No. 6, December 1957, pp. 54-55, 61, 63.

52 Everhart, J. O., Johnson, J. E., and Ehlers, E. G., Evaluating Clay Deposits; Ceram. Age, vol. 70, No. 1, July 1957, pp. 34-36.

53 Pfeiffenberger, L. E., Problems of Manufacturing Lightweight Aggregate by the Moving-Grate Process: Bull. Am. Ceram. Soc., col. 36, No. 7, July 1957, pp. 272-275.

54 Brick and Clay Record, vol. 130, No. 6, June 1957, pp. 74-75, 110.

55 Brick and Clay Record, vol. 130, No. 3, March 1957, pp. 57-59.

56 Ceramic Age, vol. 69, No. 4, April 1957, pp. 36-38.

in making yarn and threads,⁵⁷ as a binder for pelletizing iron ores,⁵⁸ as a constitutent in foundry mold compositions,⁵⁹ in a product used for sound absorption and heat insulation, 60 to decolorize dextrose liquors from starch, 61 to make products by interaction of polymeric organic materials with inorganic solids, 62 and as a dispersing agent in bituminous emulsion compositions. 63 An acid-activated clay or heat-treated montmorillonite was used to modify the combustion of certain binders used in processing tobacco.64

A process and portable apparatus for use in kaolin mines to form a low-water slip so it can be transmitted by pipeline was perfected, 65 and a method for speeding up removal of water from paper clays (kaolin) using conventional dewatering equipment was developed. 66 A method for making impermeable paper or paperboard was developed

using kaolin or ball clay as the emulsifying agent. 67

Other patents issued during 1957 were on sulfonation of petroleum oil with fuller's earth and oleum (fuming sulfuric acid),68 a method and apparatus for converting contaminated fuller's earth from oil refineries to an artificial fertilizer product, 69 the use of acid-activated clay to separate nickel-kieselguhr or similar hydrogenation catalyst from hydrogenated polybutadiene, 70 a protective coating for salt-bath brazing, comprising graphite, a binder, bentonite, and kaolin,⁷¹ a composition using kaolin, ball clay, or calcined alumina, to produce a permanent, porous ceramic mold,⁷² methods of manufacturing basic refractory brick and constructing a metallurgical furnace roof to reduce spalling,73 and a method of drying large clay castings, such as glass-furnace tank blocks.74

57 Barnard, W. S., and Scarbrough, A. L. (assigned to National Lead Co.), Textile Lubricant and Process: U. S. Patent 2,805,933, Sept. 10, 1957.

58 Apuli, W. E. (assigned to the Regents of the University of Minnesota), Pelletizing Process: U. S. Patent 2,805,141, Sept. 3, 1957.

Haley, K. M., and Trask, H. V. (assigned to Oglebay, Norton & Co.), Metalliferous Agglomerates Having Improved Green Strength and Method of Forming Same: U. S. Patent 2,807,534, Sept. 24, 1957.

59 Sauter, N. A., and Horton, M. H. (assigned to Deere & Co.), Waterless Green Molding Sand: U. S. Patent 2,813,035, Nov. 12, 1957.

Wickett, J. A. (assigned to Monsanto Chemical Co.), Foundry-Sand Compositions and Process of Making: U. S. Patent 2,817,128, Dec. 24, 1957.

60 Kulmann, W. (assigned to Industrial Research Laboratores, Inc.), Sound Absorbing and Correcting Material and Method of Making Same: U. S. Patent 2,796,946, June 25, 1957.

61 Gottfried, J. B., Luby, W. K., and Newkirk, W. B. (assigned to Corn Products Refining Co.), Process for Interrupted Hydrolyzing of Starch: U. S. Patent 2,797,176, June 25, 1957.

62 Ruehrwein, R. A. (assigned to Monsanto Chemical Co.), Chemical Product: U. S. Patent 2,795,567, June 11, 1957.

for Interrupted Hydrolyzing of Starch: U. S. Patent 2,797,176, June 25, 1957.

Ruchrwein, R. A. (assigned to Monsanto Chemical Co.), Chemical Product: U. S. Patent 2,795,567, June 11, 1957.

Brown, E. C., Driesen, W. H., and Guepet, J. S. (assigned to The Patent & Licensing Corp.), Continuous Process for Producing Bituminous Emulsions: U. S. Patent 2,782,169, Feb. 19, 1957.

Frankenburg, W. G. (assigned to General Cigar Co., Inc.), Tobacco Products and Process Therefor: U. S. Patent 2,797,689, July 2, 1957.

Williamson, J. T. (assigned to Thiele Kaolin Co.), Process and Apparatus for Forming Clay Slip: U. S. Patent 2,789,772, Apr. 23, 1957.

Milley, W. F. (assigned to Thiele Kaolin Co.), Method for Dewatering Clay: U. S. Patent 2,815,292, Dec. 3, 1957.

Milley, W. F. (assigned to Thiele Kaolin Co.), Method for Dewatering Corp.), Process for Producing a Water-Vapor-Impermeable Board: U. S. Patent 2,803,171, Aug. 20, 1957.

Miltchell, E., and Humphrey, E. L. (assigned to Gulf Research & Development Co.), Production of Surface-Active Agents for Sulfonation of Petroleum Oil: U. S. Patent 2,807,589, Sept. 24, 1957.

Miltchell, E., and Humphrey, E. L. (assigned to Gulf Research & Development Co.), Production of Artificial Fertilizer: U. S. Patent 2,805,138, Sept. 3, 1957.

Hanson, G. E. (assigned to Phillips Petroleum Co.), Hydrogenation Catalyst Removal With Montmorillonite Clay: U. S. Patent 2,816,097, Dec. 19, 1957.

Hanson, G. E. (assigned to General Electric Co.), Porous Ceramic Mold and Method of Making Same: U. S. Patent 2,809,898, Oct. 15, 1957.

Hener, R. P., and Fay, M. A. (assigned to General Refractories Co.), Refractory Brick Having Spacer Plates: U. S. Patent 2,791,116, May 7, 1957.

Hener, R. P., assigned to General Refractories Co.), Refractory Brick Having Spacer Plates: U. S. Patent 2,791,116, May 7, 1957.

Hener, R. P., (assigned to General Refractories Co.), Refractory Brick Having Spacer Plates: U. S. Patent 2,799,233, July 16, 1957.

Armstrong, L. R., Henry, E. C., Lambie, J. M., and Young, R. A Co., Wa 23, 1957.

Cobalt

By Hubert W. Davis 1 and Charlotte R. Buck 2

ONSUMPTION of cobalt decreased slightly in 1957, but active interest continued in producing improved high-temperature alloys employing cobalt, in developing processes for recovering cobalt and nickel from ores, and in separating the two metals. Cobalt continued to be used principally in high-temperature and permanentmagnet alloys.

Consumption in the United States declined to 9.2 million pounds in 1957; 77 percent was used as metal. Consumption was the sixth highest of record, but it was 4 percent less than in 1956 and 5 percent below the average for the 5 years 1952-56. Consumption declined chiefly because less cobalt was used in high-temperature alloys and alloy hard-facing rods. This decrease was offset partly by record consump-

tion of cobalt in permanent-magnet alloys.

Output of cobalt products at refining and processing plants in the United States was 5.9 million pounds (contained cobalt), a 10-percent decrease from 1956. Cobalt metal represented 75 percent of the total production but was 12 percent less than in 1956. Domestic concentrates and white alloy from Belgian Congo provided the raw materials for metal production. Calera Mining Co., Garfield, Utah, refined 12 percent less cobalt metal than in 1956.

World production of cobalt decreased 3 percent, reversing a 7-year However, the 1957 output exceeded requirements. Seventeen percent more metal was delivered to the National Stockpile and

to consumers in the United States than in 1956.

Of the world output, Belgian Congo produced 11 percent less than in 1956 and supplied 58 percent of the total in 1957. Domestic mines produced the equivalent of 36 percent of the cobalt consumed in the United States, compared with 27 percent in 1956.

Despite the smaller consumption of cobalt in the United States in 1957, imports (mainly metal, white alloy, and oxide) increased 12 percent chiefly because of the receipt of 1,732,500 and 530,000 pounds

TABLE 1.—Salient statistics for cobalt, 1948-52 (average) and 1953-57

	1948-52 (average)	1953	1954	1955	1956	1957
Domestic mine production of concentratepounds Recoverable cobalt.do Imports for consumption dododo Price per pound of metal 1 World: Production.short tons	856, 866	1, 258, 924	1, 996, 488	2, 608, 660	3, 595, 028	4, 137, 297
	566, 840	878, 439	1, 438, 500	1, 852, 289	2, 538, 997	3, 298, 379
	10, 148, 600	17, 237, 000	16, 865, 000	18, 732, 000	15, 577, 000	17, 451, 000
	7, 751, 209	10, 748, 499	7, 350, 223	9, 740, 522	9, 562, 260	9, 156, 617
	\$1. 65-\$2. 40	\$2, 40–\$2, 60	\$2. 60	\$2. 60	\$2. 60–\$2. 35	\$2. 35–\$2. 00
	8, 200	12, 500	14, 500	14, 800	16, 000	15, 500

¹ F. o. b. Niagara Falls or New York, N. Y.

¹ Commodity specialist. ² Statistical clerk.

of metal from the United Kingdom and Federation of Rhodesia and Nyasaland, respectively, in exchange for surplus agricultural commodities. Belgian Congo and Belgium furnished 62 percent of the total imports of metal; Belgian Congo, the entire supply of white alloy; and Belgium, virtually all of the oxide.

The price of cobalt metal and oxide was lowered 35 cents a pound on February 1, 1957, following the 25-cent reduction of December 1, 1956.

DOMESTIC PRODUCTION

Mine Production.—Although domestic mines furnished a larger proportion than in any other year, foreign sources continued to supply by far the greater part of United States cobalt requirements. A record of 4.1 million pounds of cobalt (equivalent to 3.3 million pounds of recoverable cobalt) was produced from domestic mines in 1957, compared with 3.6 million pounds (equivalent to 2.5 million pounds of recoverable cobalt) in 1956. In 1957 domestic mines produced the equivalent of 36 percent of the cobalt consumed in the United States, compared with 27 percent in 1956.

In the United States in 1957 production and shipments of cobalt ore or concentrate (cobalt content) were 15 and 13 percent, respec-

tively, greater than in 1956.

Calera Mining Co., a wholly owned subsidiary of Howe Sound Co., was again the chief producer of cobalt concentrate in the United States. Its mine and concentrator are at Cobalt, Lemhi County, Idaho. The ore mined contained about 0.7 percent cobalt, about twice as much copper, and minor values in nickel and gold. During the year, 2,681,000 pounds of cobalt in concentrate was produced, a 14-percent increase over 1956. The company refined the concentrate, containing about 15 percent cobalt, to metal at its refinery in Garfield, Utah. It explored for cobalt at its Blackbird property in Idaho, partly under a Defense Minerals Exploration Administration contract, and made a certified discovery of cobalt-nickel.

Bethlehem Cornwall Corp. produced 10 percent more cobalt than in 1956 from its magnetite iron ore at Cornwall, Pa. Magnetite was recovered by wet magnetic separation, and cobalt-bearing pyrite concentrate was produced by differential flotation of the nonmagnetic tailing. The concentrate was roasted to remove sulfur. The residue (averaging 1.51 percent cobalt in 1957) was shipped to the Pyrites Co., Wilmington, Del., where it was processed to cobalt metal and other

cobalt products.

Near Fredericktown, Mo., the St. Louis Smelting & Refining Division of National Lead Co. produced and treated pyrite concentrate containing 4.10 percent cobalt, 5.36 percent nickel, and 5.05 percent copper. Also near Fredericktown its refinery produced 41 percent more cobalt metal than in 1956, but did not reach capacity production.

Bunker Hill Zinc Plant, Kellogg, Idaho, recovered cobalt at its electrolytic zinc plant but, as in previous years, made no shipments. In 1957 it recovered 121 short tons of residues, containing 6,700

pounds of cobalt.

TABLE 2.—Cobalt ore or concentrate produced and shipped in the United States, 1948-52 (average) and 1953-57

		Produced			Shipped from mines			
Year	Gross	Cobalt	Recoverable	Gross	Cobalt	Recoverable		
	weight	content	content	weight	content	content		
	(short tons)	(pounds)	(pounds)	(short tons)	(pounds)	(pounds)		
1948-52 (average)	24, 725	856, 866	566, 840	24, 425	701, 301	456, 886		
	22, 524	1, 258, 924	878, 439	24, 026	1, 775, 489	1, 271, 583		
	19, 036	1, 996, 488	1, 438, 500	19, 738	2, 219, 396	1, 608, 980		
	28, 398	2, 608, 660	1, 852, 289	25, 101	2, 438, 546	1, 741, 494		
	35, 985	3, 595, 028	2, 538, 997	36, 956	3, 657, 491	2, 586, 462		
	39, 417	4, 137, 297	3, 298, 379	39, 744	4, 123, 017	3, 281, 300		

Refinery Production.—In 1957, the United States ranked second to Belgian Congo in output of cobalt products and third as a world producer of cobalt ore. Domestic production of metal declined 12 percent from the alltime high in 1956. White alloy from Belgian Congo, concentrates from Idaho, Missouri, and Pennsylvania, and domestic scrap yielded the metal. Production of metal decreased 30 percent because of the shutdown of African Metals Corp. refinery at Niagara Falls, N. Y., in October. The plant refined white alloy from Belgian Congo. Calera Mining Co., Garfield, Utah, produced 2,156,000 pounds of metal, a 12-percent decrease from 1956.

TABLE 3.—Cobalt products produced and shipped in the United States, 1951-55 (average) and 1956-57, in pounds

	Produ	etion	Shipments		
Product	Gross weight	Cobalt content	Gross weight	Cobalt content	
1951-55 (average)					
Metal	2, 693, 731	2, 631, 509	2, 658, 163	2, 596, 988	
Oxide	606, 602	435, 956	604, 478	434, 466	
Crude oxide	18, 225	1, 336	18, 225	1,336	
Hydrate	283, 224	131, 180	283, 526	130, 964	
Salts:					
Acetate	110, 160	25, 758	108, 765	25, 4 05	
Carbonate	202, 058	96, 036	189, 694	89, 266	
Sulfate	647, 364	137, 884	653, 144	138, 498	
Other	211, 921 8, 477, 407	47, 256 517, 879	201, 903 8, 397, 150	45, 084 510, 434	
Driers	0, 411, 401	911, 819	0, 097, 100	010, 404	
1956					
Metal	5, 122, 571	4, 964, 453	4, 618, 519	4, 466, 383	
Oxide	625, 908	448, 350	572, 596	410, 004	
Hydrate	422, 288	221, 928	367, 798	191, 887	
Salts:					
Acetate	57, 327	13, 354	59, 802	13, 936	
Carbonate	298, 642	145, 826	327, 587	160, 633	
Sulfate	568, 459	121, 735	515, 599	112, 518	
Other	246, 936	54, 231	242, 091	53, 239	
Driers	9, 645, 405	549, 581	9, 502, 188	542, 305	
1957	1				
Metal	4, 514, 885	4, 376, 974	4, 409, 727	4, 281, 175	
Oxide	594, 690	425, 121	544, 486	387, 844	
Hydrate	323, 424	171, 656	310, 408	169, 782	
Salts:					
Acetate	64, 068	14, 936	75, 016	17, 480	
Carbonate	214, 340	100, 920	239, 524	114, 350	
Sulfate	445, 552	99, 751	496, 399	110, 173	
Other	253, 270	54, 199	259, 193	57, 208	
Driers	10, 581, 898	616, 695	10, 767, 643	623, 677	

Five percent less cobalt oxide than in 1956 was produced from white alloy from Belgian Congo, concentrate from Pennsylvania, and metal from New York. Output of hydrate, 23 percent less than in 1956, was prepared from scrap, metal, and concentrate. Production of salts was 19 percent smaller, but output of driers was 12 percent larger; both were derived from purchased hydrate, sulfate, scrap, and

Refiners used 9 percent less cobalt contained in white alloy and concentrate, compared with 1956.

TABLE 4.—Cobalt consumed by refiners or processors in the United States, 1948-52 (average) and 1953-57, in pounds of contained cobalt

Cobalt material ¹	1948–52 (average)	1953	1954	1955	1956	1957
Alloy and concentrate	2, 741, 811 674, 821 104, 442 5, 670 33, 491	4, 059, 287 801, 192 74, 504 108 { 109, 204 8, 540	3, 950, 826 592, 257 56, 717 100 172, 757 57, 284	4, 879, 608 884, 196 79, 339 305 114, 181 63, 123	6, 398, 709 884, 032 90, 740 581 95, 942 61, 370	5, 793, 359 876, 983 81, 727 92, 639 92, 901

¹ Total consumption is not shown because the metal, hydrate, and carbonate originated from alloy and concentrate; combining alloy and concentrate with these materials would result in duplication.

TABLE 5.—Refiners or processors of cobalt in the United States in 1957

Refiner or processor	Location of plant	Cobalt prod- uct ¹ made	Cobalt raw material ¹ used
African Metals CorpAllied Chemical & Dye Corp., General	Niagara Falls, N. Y. ² Marcus Hook, Pa	A, B, D B, D	F A
Chemical Div.			. A
Baker Chemical Co., J. T.	Phillipsburg, N. J	В, D	A
Carlisle Chemical Works, Inc	Reading, Ohio Jersey City, N. J	É	A _
Carlisle Chemical Works, Inc., Advance Solvents & Chemical Div.	Jersey City, N. J.		A, D
Calera Mining Co Ceramic Color & Chemical Manufac-	Garfield, Utah	A	F
Ceramic Color & Chemical Manufac- turing Co.	New Brighton, Pa	C, D	A
Chase Chemical Corp	Pittsburgh, Pa	E	C
Chase Chemical Corp Ferro Chemical Corp	Bedford, Ohio	C, D, E B, C, D D	A, C
Hall Chemical Co	Wickliffe, Ohio	B, C, D	A, G
Hanson-Van Winkle-Munning Co	Matawan, N. J.	D	A
Harshaw Chemical Co	Cleveland, Ohio	C, D, E	A
Mallinckrodt Chemical Works	St. Louis. Mo	D	A, D
McGean Chemical Co	Cleveland, Ohio	C, D, E	A
Metallurgical Resources, Inc	Newburgh, N. Y.3	В	A F A F
Mooney Chemicals, Inc	Cleveland, Ohio	E	A
National Lead Co	Fredericktown, Mo	A	
Nuodex Products Co., Inc	Elizabeth, N. J		A, C
D	Long Beach, Calif	7 E C	में
Pyrites Company, The	Wilmington, Del	A, B, C D, E	
Shepherd Chemical Co Sherwin-Williams Co		E E	A, C, D, G
Standard Oil Co. of California	Richmond, Calif	Ë	A, C
Stresen-Reuter, Inc., Frederick A	Bensenville, Ill	១ភូខ	A, C
Proy Chemical Co	Newark, N. J.	C, $\overline{\overline{D}}$, E	A
Vitro Rare Metals Co.	Cannonsburg, Pa	в, c	Ĝ
Whitmoyer Laboratories, Inc.		Ď	A, C
Witco Chemical Co		C, E	A

Code: A, metal; B, oxide; C, hydrate; D, salts; E, driers; F, concentrate or white alloy; G, scrap.
 Discontinued operation in October 1957.
 Scheduled to begin commercial operation in 1958.

CONSUMPTION

Industry consumed 4 percent less cobalt than in 1956, the sixth largest quantity on record. For the seventh consecutive year, cobalt-

chromium-tungsten-molybdenum cutting, wear-resisting, high-temperature alloys, the largest single use of cobalt, required 33 percent of the total cobalt consumed in 1957—8 percent less than in 1956.

As in 1951-56, magnet-alloys production ranked second in consumption of cobalt, established a new record, required 32 percent of the total, and used 5 percent more than in 1956.

Less cobalt was used for high-speed and low-cobalt alloy steels, alloy hard-facing rods, cemented carbides, ground-coat frit for

porcelain enamels, and pigments.

Consumption of cobalt metal, oxide, and purchased scrap was smaller by 4, 12, and 8 percent, respectively, compared with 1956. Cobalt salts and driers were used at a rate about 2 percent more than in 1956.

TABLE 6.—Cobalt consumed in the United States, 1948-52 (average) and 1953-57, by uses, in pounds of contained cobalt

						-
Use	1948-52 (average)	1953	1954	1955	1956	1957
Metallic: High-speed steel. Other steel. Permanent-magnet alloys Soft-magnetic alloys Cobalt-chromium-tung- sten-molybdenum al- loys:	- 1,801,222				122, 520	236, 687 109, 330 2, 926, 564
Cutting and wear- resisting materials. High-temperature, high-strength mate- rials	li .	204, 939	182, 641	194, 253	269, 978	264, 159
Alloy hard-facing rods		5, 116, 750	2, 571, 089	3, 220, 939	3, 018, 930	2, 755, 331
and materials Cemented carbides Other metallic	308, 057 249, 855 169, 862	591, 909 359, 125 233, 428	432, 342 166, 708 113, 522	535, 488 307, 366 291, 191	625, 122 253, 176 364, 185	501, 043 248, 957 236, 438
Total metallic	6, 191, 070	9, 234, 436	5, 871, 815	7, 727, 430	7, 700, 765	7, 278, 509
Nonmetallic (exclusive of salts and driers): Ground-coat frit	495, 861 163, 821 59, 657	374, 158 102, 612 84, 293	403, 953 145, 769 75, 686	567, 645 235, 866	525, 190 231, 961	474, 202 204, 839
Total nonmetallicSalts and driers: Lacquers, varnishes, paints, inks, pigments, enamels, glazes	719, 339	561, 063	625, 408	919, 092	872, 495	188, 067 867, 108
feed, electroplating, etc. (estimate)	840, 800	953, 000	853, 000	1, 094, 000	989, 000	1, 011, 000
Grand total	7, 751, 209	10, 748, 499	7, 350, 223	9, 740, 522	9, 562, 260	9, 156, 617

TABLE 7.—Cobalt consumed in the United States, 1948-52 (average) and 1953-57, by forms in which used, in pounds of contained cobalt

	pounds of co							
Form	1948-52 (average)	1953	1954	1955	1956	1957		
Metal Oxide Cobalt-nickel compound Ore and alloy	5, 716, 642 703, 896 3, 790 1, 322	7, 727, 210 524, 401	5, 119, 853 587, 799	7, 226, 383 906, 265	7, 321, 477 856, 952	7, 027, 738 755, 075		
Purchased scrap	484, 759 840, 800	2, 451 1, 541, 437 953, 000	789, 270 853, 000	513, 806 1, 094, 000	394, 831 989, 000	362, 804 1, 011, 000		
Total	7, 751, 209	10, 748, 499	7, 350, 223	9, 740, 522	9, 562, 260	9, 156, 617		

PRICES

Effective February 1, 1957, the price of metal rondelles (97-99 percent, in containers of 500 or 550 pounds) and metal granules (in containers of 2,152 pounds) was lowered to \$2 a pound f. o. b. Niagara Falls or New York, N. Y. Ceramic-grade oxide (72½-73½ percent, in 500-pound containers) was reduced to \$1.43 a pound east of the Mississippi River. The former prices of \$2.35 a pound for metal and \$1.78 a pound for oxide had been in effect since December 1, 1956.

FOREIGN TRADE 3

Imports.—The United States imported 17.5 million pounds (cobalt content) of cobalt, an increase of 12 percent over 1956 and the second highest on record. In 1957 Belgian Congo, the chief source, supplied 53 percent of total imports; Belgium, 11 percent. However, both the metal and the oxide imported were produced from Belgian Congo white alloy. Imports of metal were 25 percent greater than in 1956,

TABLE 8.—Cobalt imported for consumption in the United States, 1948-52 (average) and 1953-57, by classes

		[Bureau of th	e Census]	·			
		White alloy	1 (pounds)	Ore a	nd concentra	te ²	
Year		G	Cobalt	Pour	nds	Value	
		Gross weight	content	Gross weight	Cobalt content		
1948–52 (average)	5, 464, 511 2, 360, 5, 645, 894 2, 464,		2, 075, 050 2, 412, 804 2, 360, 360 2, 464, 336 2, 013, 463 816, 501	3 1, 838, 724 445, 063 27, 130 2, 233 76, 729 140, 482	3 191, 802 51, 323 3, 349 223 5, 839 15, 179	* \$145, 729 88, 470 5, 914 289 2, 920 19, 961	
	M	Metal		xide Sulfate comp		and other pounds	
Year	Pounds	Value	Pounds (gross weight)	Value	Pounds (gross weight)	Value	
1948–52 (average)	4 7, 539, 194 4 14, 431, 894 14, 227, 861 15, 535, 044 12, 974, 394 45 16, 240, 32	4 4 33, 203, 08 8 35, 391, 20 0 38, 585, 25 3 32, 909, 69	610, 054 430, 400 1, 072, 950 828, 450	979, 541 723, 368 1, 791, 939 1, 412, 911	4, 510 273, 286 353, 994 361, 600 397, 711 364, 381	\$5, 407 172, 986 211, 240 249, 409 246, 704 179, 038	

¹ Reported by importer to Bureau of Mines. Figures for 1948 as reported by the Bureau of the Census cover only partial imports of "White alloy," which were classed as "Ore and concentrates." Figures for "Ore and concentrate" for 1949-57 as reported by the Bureau of the Census have been adjusted by Bureau of Mines to exclude "White alloy" from Belgian Congo.

² Figures represent imports from Canada, Morocco, and Mexico, and therefore exclude receipts of "White alloy" from Belgian Congo.

³ Excludes 7,054,000 pounds of ore containing 742,000 pounds of cobalt, valued at \$551,500, imported from Canada in 1948 (see footnote 2, table 9) and 146 pounds of zaffer, valued at \$215 in 1951.

⁴ Adjusted by Bureau of Mines.

⁵ Includes 4,903 pounds of scrap, valued at \$1.698.

⁵ Includes 4,903 pounds of scrap, valued at \$1,698.

³ Figures on U. S. imports and exports (unless otherwise indicated) compiled by Mae B. Price and Elsie D. Jackson, Division of Foreign Activities, Bureau of Mines, from records of the U. S. Department of Commerce, Bureau of the Census.

but those of white alloy and oxide were smaller by 59 and 23 percent, respectively. Imports from Belgian Congo and Belgium were smaller by 18 and 3 percent, respectively, but those from Canada, West Germany, and Norway were larger by 75, 72, and 87 percent, respectively. Noteworthy was the receipt of 1,732,500 and 530,000 pounds, respectively, of metal from the United Kingdom and Federation of Rhodesia and Nyasaland; this metal together with 346,000 pounds of metal from Belgium was acquired in exchange for surplus agricultural commodities.

TABLE 9.—Cobalt white alloy, ore, metal, and oxide imported for consumption in the United States, 1956-57, by countries, in pounds

		[Burea	u of the C	ensus]					
	White	e alloy, ore	and conce	ntrates	M	etal	0-44	0-13-1	
Country	19	956	19.	57		cuai	Oxide (gross weight)		
	Gross weight	Cobalt content	Gross weight	Cobalt		1957	1956	1957	
North America: Canada	76, 729	5, 839	140, 482	15, 179	1, 276, 763	2, 230, 672			
Total	76, 729	5, 839	140, 482	15, 179	1, 276, 763	2, 230, 672			
Europe: Belgium Denmark France Germany, West. Norway					1, 360, 639 9, 367 498, 044 407, 255	1 918, 700		646, 550 200	
United Kingdom					407, 255	761, 775 1, 732, 540			
Total					2, 275, 305	4, 900, 068	828, 450	646, 750	
Ruodesia and Nyasa-	³ 4, 707, 634	³ 2, 013, 463	1, 882, 948	816, 501	9, 422, 325	8, 579, 587			
land, Federation of						530,000			
Total	4, 707, 634	2, 013, 463	1, 882, 948	816, 501	9, 422, 325	9, 109, 587			
Grand total	4, 784, 363	2, 019, 302	2, 023, 430	831, 680	12, 974, 393	16, 240, 327	828, 450	646, 750	

¹ Adjusted by Bureau of Mines.

During the 35 years 1923-57 the United States imported 189 million pounds of cobalt—72 percent in the 10 years 1948-57. Metal comprised 69 percent of the cobalt imports during the 35 years, supplied mostly by Belgium and Belgian Congo. Smaller quantities of metal were received from Austria, Canada, Federation of Rhodesia and Nyasaland, Finland, France, Germany, Japan, Norway, Sweden, and United Kingdom. Imports of alloy represented the second largest quantity (24 percent); virtually all came from Belgian Congo. About 6 percent of the imports of cobalt was in the form of oxide, chiefly from Belgium. Substantial quantities of oxide have also been received from Canada and Germany, and smaller quantities chiefly from Australia, Finland, and France. Cobalt ore, virtually all from Canada and Australia, has been about 1 percent of total imports. Substantial quantities of ore were imported from French Morocco in 1943 and 1944 and Canada in 1948; however, these ores were not

Reported by importer to Bureau of Mines.

treated in the United States, and subsequently the French Morocco ore was exported to Belgium in 1952 and 1953 and the Canadian ore returned to Canada in 1952 for refining to metal. As the quantities are included in the imports of metal, the figures for ore have been excluded from the tabulation of imports to avoid duplication. Cobalt sulfate and other compounds have been only 0.3 percent of the total imports.

TABLE 10.—Cobalt imported for consumption in the United States, 1948-52 (average) and 1953-57, in pounds ¹

			Gross weight			To	tal
Year	White alloy	Ore and concentrate	Metal	Oxide	Sulfate and other com- pounds	Gross weight	Cobalt content (estimated)
1948–52 (average) 1953 1954 1955 1956 1957	4, 549, 239 5, 249, 781 5, 464, 511 5, 645, 894 4, 707, 634 1, 882, 948	2 1, 838, 724 445, 063 27, 130 2, 233 76, 729 140, 482	7, 539, 194 14, 431, 894 14, 227, 868 15, 535, 040 12, 974, 393 3 16, 240, 327	575, 744 610, 054 430, 400 1, 072, 950 828, 450 646, 750	4, 510 273, 286 353, 094 361, 600 397, 711 364, 381	214, 507, 411 21, 010, 078 20, 503, 003 22, 617, 717 18, 984, 917 19, 274, 888	2 10, 148, 600 17, 237, 000 16, 865, 000 18, 732, 000 15, 577, 000 17, 451, 000

¹ Figures, by years, for 1923-52 in chapter on Cobalt, Minerals Yearbook, 1953, vol. 1, p. 359.

² Excludes 7,054,000 pounds of ore containing 742,000 pounds of cobalt imported from Canada in 1948. This ore was reexported to Canada in 1952 for refining. The metal produced from the ore is included in the import figures for 1952-54.

³ Includes 4,903 pounds of scrap.

Exports.—Exports of cobalt from the United States usually have been small, but from 1953 to 1957 large quantities of cobalt-bearing scrap were shipped abroad. In 1957, 1,443,170 pounds of ore, concentrate, metal and alloys in crude form, cobalt-bearing scrap metal (5 percent or more cobalt), and semifabricated forms valued at \$1,919,429 was exported. The bulk of the exports was cobalt-bearing scrap. Some oxide, salts, and driers were also exported, but the figures were not separately recorded by the Bureau of the Census.

Tariff.—Since June 7, 1951, the duty on cobalt sulfate has been 2½ cents a pound and on linoleate 5 cents a pound. On September 10, 1955, the duty on salts and compounds not specifically provided for was lowered to 15 percent ad valorem. On July 1, 1957, the duty on cobalt oxide was reduced to 4½ cents a pound. Cobalt metal and ore entered the United States duty-free.

WORLD REVIEW

The 7-year uptrend in world production of cobalt was reversed in 1957 when 15,500 short tons was produced, a decrease of 3 percent from 1956. Output from Belgian Congo declined 11 percent and furnished 58 percent of the 1957 total. Record quantities were produced in Canada and the United States. Production in Northern Rhodesia was the second largest.

NORTH AMERICA

Canada.—In Canada cobalt production was derived from the cobalt-silver ores in the Cobalt-Gowganda area of northern Ontario and as a byproduct of the nickel-copper ores of the Sudbury district, Ontario, and Lynn Lake area, Manitoba.

TABLE 11.—World mine production of cobalt, by countries, 1948-52 (average) and 1953-57, in short tons of contained cobalt

Country	1948-52 (average)	1953	1954	1955	1956	1957
North America: Canada ²	512	801	1, 126	1, 659	³ 1, 758	1, 868
Mexico (content of ore) United States (recoverable cobalt) ⁶	4 2 283	439	(5) 719	926	1, 269	1, 649
Total	797	1, 240	1, 845	2, 585	3, 027	3, 517
Africa: Belgian Congo (recoverable cobalt) Morocco (content of concentrate) Rhodesia and Nyasaland, Federation of 7 (con-	5, 825 557	9, 125 661	9, 490 811	9, 443 834	10, 019 710	8, 945 466
tent of white alloy, cathode metal, and other products): Northern Rhodesia	596	746	1, 264	871	1, 271	1, 330
TotalOceania: Australia (recoverable cobalt)	6, 978 11	10, 532 12	11, 565 12	11, 148 12	12,000 12	10, 741 12
Grand total (estimate)1	8, 200	12, 500	14, 500	14,800	16,000	15, 500

¹ The world total includes an estimate of cobalt recovered from pyrites produced in Finland and other European countries. Data do not add to totals shown because of rounding where estimated figures are included in the detail.

According to the Dominion Bureau of Statistics, 1,868 short tons of cobalt was produced in 1957, compared with 1,758 tons (revised figure) in 1956. These figures, however, do not include the cobalt recovered by Mond Nickel Co. at its Clydach (Wales) nickel refinery from nickel matte produced from the nickel-copper ores of the Sud-

bury district.

International Nickel Co. of Canada, Ltd., recovered an impure cobalt oxide from the electrolytic unit at its nickel refinery at Port Colborne, Ontario. The cobalt was contained in nickel-copper ores of the Inco Sudbury district mines. In 1957 considerable quantities of oxide were shipped to Clydach (Wales) for producing high-grade cobalt oxides and salts, which were sold to consumers in the United Kingdom and many other foreign countries; some of it, however, was reduced to metal, which was sold chiefly in the United States. duction of cobalt was about 12 percent more than in 1956; deliveries were 2,400,000 pounds in 1957, compared with 1,543,300 pounds in 1956. The larger part of the deliveries was as oxides and salts from the Clydach refinery for use in driers, ceramics, and catalysts. metal from the Port Colborne refinery was sold mainly for use in producing permanent magnets and high-temperature, high-strength materials.

The cobalt circuit of Sherritt Gordon Mines, Ltd., at Fort Saskatchewan, Alberta, was used as a pilot plant from April through August 1957; meanwhile, the cobalt sulfide feed for the circuit was stockpiled for treatment later. Output of cobalt metal was 172,053 pounds in 1957, compared with 107,414 pounds in 1956. The cobalt

³ Figures comprise cobalt content of Canadian ore processed in Canada and exported (irrespective of year when mined), plus the cobalt recovered from nickel-copper ores at Port Colborne, Ontario, Fort Saskatchewan, Alberta, and Kristiansand, Norway; consequently, the figures exclude the cobalt recovered at Clydach, Wales, from Canadian nickel-copper ores, which cobalt the senior author of chapter has estimated and included in the world total.

³ Portect forms

³ Revised figure

⁴ Imports into the United States. 5 Less than 0.5 ton.

⁶ Not strictly comparable with figures for years preceding 1947, which represented the cobalt contained in concentrate shipped.

7 Year ended June 30 of year stated.

was contained in the nickel-copper concentrate produced by the

company at Lynn Lake, Manitoba.

Falconbridge Nickel Mines, Ltd., produced about 5 percent more electrolytic cobalt at its refinery at Kristiansand, Norway, than in 1956. Deliveries to customers were 777,000 pounds in 1957, compared with 543,000 pounds in 1956. The cobalt was recovered from the matte produced from Sudbury nickel-copper ore.

Deloro Smelting & Refining Co., Ltd., Deloro, Ontario, smelted arsenical cobalt-silver concentrate from the Cobalt-Gowganda area of northern Ontario for itself and Canadian concentrate for the United

States Government.

Cuba.—Facilities were being constructed at Moa Bay, Cuba, by Moa Bay Mining Co. (subsidiary of Freeport Sulphur Co.) for producing a high-grade nickel-cobalt concentrate from laterite ore containing 1.35 percent nickel and 0.14 percent cobalt. The concentrate will be shipped to Braithwaite, La., where a refinery will be built to reduce it to yield separate products of high-purity nickel and cobalt. The planned annual cobalt capacity was 4.4 million pounds.

EUROPE

Finland.—The cupriferous pyrite of the Outokumpu mine in eastern Finland contains about 0.2 percent cobalt, 3 percent copper, 25 percent iron, 27 percent sulfur, and 1.2 percent zinc. Sinter produced by roasting pyrite concentrate to remove the sulfur was shipped to Duisburg, West Germany, for recovery of the cobalt, copper, iron, and zinc. The cobalt content of the sinter averaged 0.4 to 0.5 percent.

Germany, West.—No cobalt ore was mined in West Germany in 1957, and its two refineries depended on foreign sources for their raw materials. The Duisburger Kupferhütte refinery at Duisburg, the larger producer of cobalt, recovered it chiefly from pyrite sinter obtained from Finland, Spain, Norway, Sweden, and other countries. The refinery of Gebrüder Borchers A. G. at Goslar treated cobalt-bearing scrap, residues, and speiss.

AFRICA

Belgian Congo.—The Union Minière du Haut-Katanga continued to be the only producer, and Belgian Congo the chief world source of cobalt. Output was 8,945 short tons in 1957, an 11-percent decrease from 1956 (the record year), the smallest since 1952, and the second decline since 1946. The Jadotville-Shituru plant (capacity, 6,000 tons) produced granules containing about 99.5 percent cobalt, and the Jadotville-Panda plant (capacity, 4,400 tons) produced a white alloy containing about 43 percent cobalt, which was shipped to Belgium and the United States for refining. Shipments of white alloy to the United States ceased after April 1957.

The opening of new mines rich in copper and cobalt near Kolwezi and the construction underway of copper and cobalt electrolytic plants at Luilu for refining the ore by the Union Minière will increase its annual capacity to produce electrolytic cobalt by about 4,000 tons. About 1960, when the Kolwezi-Luilu plant begins producing, Union Minière will have a capacity of about 10,000 tons of electrolytic cobalt, but output could easily be expanded to 11,000 or 12,000 tons.

399 COBALT

However, because the reserves of cobalt ore or concentrate suitable for treatment in electric furnaces at the Jadotville-Panda plant are limited, future production of white alloy was expected to be of

diminishing importance.

Morocco.—Production of cobalt concentrate in Morocco was 4,663 short tons containing 466 tons of cobalt in 1957, compared with 7,097 tons containing 710 tons of cobalt in 1956. The decline in production was reported to be due to curtailment of operation at the Bou-Azzer mine while a new washing plant was being installed. The chapter on Cobalt in Minerals Yearbook, 1956, erroneously stated that installation of the washing plant had been completed. La Société Minière de Bou-Azzer et du Graara, Casablanca, was the only producer.

Rhodesia and Nyasaland, Federation of.—Production of cobalt at the refinery of Rhokana Corp. at Nkana, Northern Rhodesia, was 5 percent more in 1957 than in 1956 and the highest since 1940. year ended June 30, 1957, production comprised 1,148 short tons of metal, 141 tons of cobalt in carbonate, and 41 tons of cobalt in ferro-Thus, total production was 1,330 tons in 1957, compared with 1,271 tons in 1956. The cobalt carbonate was shipped to the United Kingdom for toll refining into cobalt oxide. No cobalt allow

was produced from converter slag in 1957.

The grade of ore treated was 0.191 percent cobalt in 1957, compared with 0.165 percent in 1956. Concentrate produced contained 1.495

percent cobalt in 1957, compared with 1.39 percent in 1956. Chibuluma Mines, Ltd., near Ndola, Northern Rhodesia, which began producing cobalt concentrate May 6, 1956, treated ore averaging 0.36 percent cobalt in the year ended June 30, 1957. Because its plant for producing cobalt matte was not completed until nearly the end of the fiscal year 1957, none of the 1,962,000 pounds of recoverable cobalt contained in concentrate or semiprocessed materials was prepared for sale. Consequently, no figure for Chibuluma Mines, Ltd., has been included in the world-production statistics. During the latter half of 1957 some cobalt matte was refined to metal in Europe on a toll basis.

Uganda.—At the operation of Kilembe Mines, Ltd., in western Uganda, where production of copper and cobalt concentrates was begun in 1956, the cobalt-leaching plant was still on the design board; meanwhile, the cobalt concentrate was being transferred by pipeline

to a stockpile dam near the Kasese roasting plant.4

TECHNOLOGY

There was much activity in improving cobalt-refining processes, in producing better high-temperature alloys employing cobalt, in developing methods for recovering cobalt and nickel from various types of ores, and for separating the two metals.

Calera Mining Co. added an electrolytic unit to its plant at Garfield, Utah, in late 1957 for refining cobalt. The unit will produce higher grade cobalt metal at lower cost and eliminate the hydrogen-reduction

and arc-furnacing steps formerly used.

⁴ Hawkins, D. A., The Kilembe Mine: Min. Mag. (London), vol. 96, No. 3, March 1957, pp. 137-145.

Sherritt Gordon Mines, Ltd., was installing a new and improved cobalt-leaching circuit at its refinery at Fort Saskatchewan, Alberta, The new circuit will make the old one available for pilot-

plant work without interfering with cobalt production.

Chibuluma Mines, Ltd., near Ndola, Northern Rhodesia, completed a plant consisting basically of a fluosolids roaster and an electric furnace for converting cobalt flotation concentrate to a 10-percent matte. Production of matte was begun in the last half of 1957; it was shipped to Belgium for refining.

Incoloy T, a new nickel-cobalt-chromium-iron high-temperature alloy containing 30 to 34 percent nickel and cobalt, 19 to 22 percent chromium, 40 to 47 percent iron, and 0.75 to 1.5 percent titanium, was developed by International Nickel Co., Inc., for use in highly stressed parts of jet-engine-combustion systems and in airframes used for hypersonic flight.⁵ As a result of the titanium addition, the alloy exhibits improved tensile and rupture properties and has excellent oxidation resistance up to 1,600°-1,700° F.

A patent was issued for an alloy containing about 53 to 62 percent cobalt, 24 to 28 percent chromium, 14 to 18 percent tungsten, 0.25 to 0.55 percent boron, less than 1 percent each of nickel, manganese, and silicon, and 0.10 to 0.20 percent carbon.6 The alloy is adapted particularly for use as a bucket material in turbosuperchargers, gas turbines, or other jet apparatus, where great strength and formability at high temperature are required. The alloy improves tensile ductility and impact strength and does not reduce the stress-rupture strength at high temperatures.

Supermendur, a new magnetic alloy containing 49 percent cobalt, 49 percent iron, and 2 percent vanadium, was developed by Bell Telephone Laboratories.7 It was reported that the alloy will permit reductions in the size of magnetic components without any sacrifice in performance and will facilitate the design of new components

having greatly improved performance characteristics.

Patents were issued for processes for recovering nickel and cobalt from laterite ore,8 garnierite ore,9 mixed sulfide matte,10 and an ore also containing iron, sulfur, and at least one metalloid selected from arsenic, antimony, selenium, and tellurium.11

Sept. 10, 1957.

Materials and Methods, Improved Nickel-Alloy Sheet Can Be Used Up to 1,600° F.: Vol. 45, No. 4, April 1957, p. 173. § Jahnke, L. P. (assigned to General Electric Co.), Cobalt Base Alloy: U. S. Patent 2,816,024, Dec. 10,

<sup>1957.

7</sup> American Metal Market, New Magnetic Alloy of Bell Laboratory Contains Cobalt and Vanadium: Vol. 64, No. 20, Jan. 29, 1957, p. 1.

8 Donaldson, J. W. (assigned to Quebee Metallurgical Industries, Ltd.), Method for Recovering Nicke and Cobalt From Ores: U. S. Patent 2,816,015, Dec. 10, 1957.

Simons, C. S., III (assigned to Freeport Sulphur Co.), Process of Preparing Limonitic Ores for Separation of Metal Content: U. S. Patent 2,798,804, July 9, 1957.

8 Schaufelberger, F. A. (assigned to Chemical Construction Corp.), Recovery of Nickel and Cobalt Values From Garnierite Ores: U. S. Patent 2,778,729, Jan. 22, 1957.

10 Kenworthy, Heine, Process for Obtaining Nickel and Cobalt From a Mixed Sulphide Matte: U. S. Patent 2,790,713, Apr. 30, 1957.

11 Bennedsen, H. O., Process for Extracting Cobalt and Nickel From Their Ores: U. S. Patent 2,805,940, Sept. 10, 1957.

401 COBALT

Patents were issued for processes for separating cobalt and nickel; 12 purifying cobalt compounds containing zinc, sulfur, and chlorine; 13 and hydrometallurgical precipitation of nickel and cobalt.14

12 Schaufelberger, F. A., and Czikk, A. M. (assigned to American Cyanamid Co.), Separation of Cobalt From Nickel: U. S. Patent 2,777,753, Jan. 15, 1957.

Roy, T. K., and Bocckino, H. G. (assigned to Chemical Construction Corp.), Hydrometallurgical Separation of Nickel and Cobalt: U. S. Patent 2,778, 728, Jan. 22, 1957.

Voos, Walter (assigned to Lonza Electric & Chemical Works, Ltd.), Method of Separating Nickel and Cobalt Compounds From Each Other: U. S. Patent 2,793,936, May 28, 1957.

DeMerre, Marcel (assigned to Société Générale Métallurgique de Hoboken), Separation of Nickel From Cobalt: U. S. Patent 2,803,537, Aug. 20, 1957.

Schackmann, Heinrich, Gregor, Ulrich, Kayser, Carl, and Teworte, Wilhelm (assigned to Duisburger Kupferhütte), Method for the Recovery of Cobalt From Impure Cobalt Oxide: U. S. Patent 2,793,111, May 21, 1957.

Shaw, J. J., and Schaufelberger, F. A. (assigned to Chemical Construction Corp.), Process for the Hydrometallurgical Precipitation of Nickel and Cobalt: U. S. Patent 2,796,343, June 18, 1957.

Columbium and Tantalum

By William R. Barton 1

CUPPLY overtook demand for columbium (niobium) and tantalum ores and finished products in 1957. The absence of the United States Government from the market for foreign ores resulted in a second consecutive annual decline in world output of columbium and tantalum concentrates. Increased production and less-than-anticipated steel industry needs for ferrocolumbium, defense requirements for tantalum, and Atomic Energy Commission requirements for columbium resulted in increased stocks in the hands of industrial consumers. All columbium and tantalum products were readily available by the end of 1957. However, metal producers were optimistic about future demand for their products. New plants entered production, and the capacities of other plants were expanded.

TABLE 1.—Salient statistics of columbium-tantalum concentrate, 1948-52 (average) and 1953-57

	1948-52 (average)	1953	1954	1955	1956	1957
United States: Columbium-tantalum concentrate shipped from mines; Pounds. Value Imports for consumption: Columbium-mineral concentratepounds. Tantalum-mineral concencentratepounds. Value Volumbium-mineral concentratepounds.	1, 786	14, 867	32, 829	12, 954	216, 606	370, 485
	\$14, 566	\$29, 779	\$57, 262	\$22, 125	(2)	(2)
	1, 734, 566	4, 186, 080	6, 804, 076	9, 612, 576	5, 699, 553	3, 348, 706
	232, 078	759, 409	981, 872	1, 907, 686	1, 312, 865	828, 265
	2, 800, 000	5, 760, 000	9, 750, 000	11, 490, 000	9, 150, 000	7, 760, 000

^{1 1956–57} data are for columbium-tantalum concentrate plus columbium-tantalum oxide content of euxenite concentrate.

2 Figure withheld to avoid disclosing individual company confidential data.

LEGISLATION AND GOVERNMENT PROGRAMS

In October the Government share in columbium and tantalum mineral exploration under the Defense Minerals Exploration Administration program was reduced from 75 to 50 percent.

Domestic columbium-tantalum ores continued to be purchased

under Public Law 733, 84th Congress.

Columbium-tantalum oxides produced from Porter Bros. Corp. euxenite concentrate were purchased by the Government under a special contract.

The first meeting of the Tantalum and Columbium Metal Producers Industry Advisory Committee was held on June 4, 1957, at the United

¹ Commodity specialist.

States Department of Commerce, Washington, D. C. Problems involved in the production of columbium and tantalum were discussed by industry and the Government. The ability to expand columbium and tantalum facilities to meet potential military requirements was affirmed by industry.

DOMESTIC PRODUCTION

Concentrate.—Domestic production of columbium-tantalum mineral concentrate increased 71 percent to a new peak in 1957. The increase was due principally to the higher production reported by Porter Bros. Corp. from its euxenite-columbite-monazite placer at Bear Valley, The deposit furnished more than 98 percent of the total domestic production of contained oxides in ore. Other States producing in 1957, in order of decreasing shipments, were Arizona, South Dakota, New Mexico, and Colorado. Maine, a producing State in 1956, reported no production in 1957; Arizona did not produce in 1956. Except for Porter Bros. Corp., all production was a byproduct of pegmatite deposits mined for other minerals; 13 pegmatite mine operators reported shipments compared with 10 in 1956.

A petition was filed by the Federal Fish and Wildlife Service asking that 31,000 acres, including potential sources of columbium ore, in the Bear Valley area be closed to entry under the mining laws. Hearings were held in Boise on September 19 and 20, 1957. Wildlife groups generally supported the measure; the mining industry, business groups,

and chambers of commerce opposed the withdrawal.2

Metal, Alloys, and Compounds.—Tantalum foil for capacitor use, which required 48 weeks for delivery early in the year, was readily available later in the year. By December new facilities and less urgent defense demands reduced customers' waiting period to about

2 weeks.

A new \$6.5-million plant was completed by Fansteel Metallurgical Corp. at Muskogee, Okla., in October 1957. The new plant, designed to increase Fansteel's tantalum capacity by 50 percent and columbium capacity by 150 percent, was expected to be in full production by the end of 1957. Installation of solvent-extraction facilities at the plant was delayed. Construction was begun on an addition to the Fansteel plant at North Chicago, Ill. The \$665,000 project was scheduled for completion early in 1958.

Electro-Metallurgical Co., Niagara Falls, N. Y., began commercial production of columbium and tantalum as roundels, pressed electrodes,

Kawecki Chemical Co. reported a 100-percent increase in tantalum capacity in September. Columbium capacity remained unchanged. Wah Chang Corp., late in 1957, began production of columbium

and tantalum at existing plants in Albany, Oreg., and Glen Cove, N. Y. United States Industrial Chemicals Co. began pilot-plant production of columbium and tantalum in November at Ashtabula and Cincin-

nati, Ohio. E. I. duPont de Nemours & Co., Inc., announced on November 6, 1957, that they had begun production of demonstration quantities of

² Idaho Daily Statesman (Boise, Idaho), Fishing, Mining Conflict to be Aired at Hearing: Sept. 19, 1957, p. 11.

columbium alloys possessing high strength at high temperatures. Thompson Products, Inc., Cleveland, Ohio, will develop fabrication techniques for the Du Pont series of alloys.

A small solvent-extraction plant for producing columbium and tantalum pentoxides from ore was completed at Murray, Utah, by Alpha

Mining & Milling Corp.

Transition Metals & Chemicals, Inc., Wallkill, N. Y., began producing ferrocolumbium, chrome-columbium, and aluminum-columbium-titanium alloy.

Vanadium Corporation of America, Cambridge, Ohio, and Shield-

alloy Corp., Newfield, N. J., began production of ferrocolumbium. Reading Chemicals, Wyomissing, Pa., broadened the scope of its operations by starting to produce ferrocolumbium and nickel-columbium in 1957.

Kennametal, Inc., Latrobe, Pa., increased production of columbium

metal and became the leading producer of the metal in 1957.

Mallinckrodt Chemical Works, St. Louis, Mo., increased both quantity and quality of mixed columbium-tantalum oxides made from Porter Bros. Corp. euxenite concentrate.

CONSUMPTION AND USES

Domestic industrial consumption of columbium-tantalum-bearing mineral concentrates and slags, measured by contained metal, is estimated to have increased about 10 percent to a record 890 tons of contained metal in 1957 compared with 810 tons in 1956 and 350 tons The 1957 total was comprised of about 290 tons of tantalum and 600 tons of columbium.

Consumption of tantalum was expected to continue to expand, chiefly in electronic devices and ferrotantalum-columbium. Demand for columbium also was expected to expand as an alloying element

and as a pure metal.

Nuclear uses included columbium-base alloys as structural parts of proposed nuclear-powered air vehicles, columbium metal as a fuelelement sheathing and fuel-alloying element, type 347 columbiumstabilized stainless steel in reactor structural parts and heat-exchange systems, tantalum as a container for uranium-bismuth slurry in the Liquid Metal Fuel Reactor Experiment, as a fuel container in the Los Alamos Molten-Plutonium Reactor Experiment, and in heatexchanger piping.

A new weldable titanium alloy, MST-821 was introduced, which contained 2 percent columbium, 1 percent tantalum, and 8 percent aluminum. The alloy extends the useful temperature limit 200° F.

above conventional alpha-phase titanium alloys.3

Wider use of columbium was predicted in carbon and low-alloy steels to improve their high-temperature properties and impact resistance. In addition, E. I. duPont de Nemours & Co., Inc., announced development of a new series of high-temperature, nonferrous, columbium-base alloys that should solve some critical design problems in jet engines, high-speed aircraft, guided missiles, and atomic

³ Abkowitz, S., and Evers, Dillon, Two Promising New Titanium Alloys: Metal Progress, vol. 72, No. 3, September 1957, pp. 97-102.

reactors. The alloys may lead to more efficient turbines capable

of running at temperatures ranging from 2,000° to 2,200° F.4

A large new market for high-temperature alloys would be created if automotive gas turbines replace reciprocating engines in motor vehicles. Some engineers have felt that turbines already are practical for heavy-duty and military vehicles.⁵

Nuclear and high-temperature properties and applications of columbium were summarized in a paper by the Director of Research,

Murex, Ltd., Rainham, England.

PRICES

The price for foreign columbite concentrate reported in E&MJ Metal and Mineral Markets increased in January, then fell to a new low level late in 1957. At the beginning of the year, ore containing 65 percent combined pentoxides was quoted at \$1.25 to \$1.35 per pound of contained pentoxides for material with a Cb:Ta ratio of 10:1 and \$1.05 to \$1.15 for an 8½:1 ratio. On January 10, 10:1 concentrate was quoted at \$1.35 to \$1.40 and 8½:1 at \$1.15 to \$1.20. The price remained constant until October 3, when it was adjusted to \$1.15 to \$1.20 for 10:1 and \$1.00 to \$1.05 for 8½:1. Prices paid for foreign tantalite were not reported regularly but were several times the price of columbite. Domestic columbite-tantalite prices continued to be affected by Public Law 733, 84th Congress. Most purchases under the law were at a price of \$1.70 per pound gross weight on a 50-percent pentoxide basis (\$3.40 per pound of contained pentoxides).

On January 1, 1957, ferrocolumbium was quoted at \$6.90 per pound of contained Cb, in ton lots, lump (2-inch), packed, f. o. b. destination continental United States (50-60 percent Cb, maximum 0.40 percent C, maximum 8 percent silicon). The price dropped to \$5.10, effective March 5, and finally to \$4.90, effective May 17. The price of ferrotantalum-columbium, per pound of contained Cb

plus Ta, dropped from \$4.65 to \$4.25 during the year.

High-quality columbium metal was quoted nominally at \$120 per pound until October 16, 1957, when Electro-Metallurgical Co. announced its price schedule per pound, 99½ percent pure, depending on size of lot, as: Roundels \$55–\$70, electrode segments \$60–\$75, rough ingot \$65–\$80. Tantalum was quoted nominally throughout the year, per kilogram, base price, at \$128 for rod and \$100 for sheet. Actually, prices for both forms varied widely, depending upon specified dimensions and size of order.

A Technical-grade columbium powder was made available in May by Shieldalloy Corp., Newfield, N. J. The material imported from H. C. Starck, Aktiengesellschaft, Goslar, Germany, contained not more than 2 percent tantalum and 1 percent titanium; minimum columbium content was 97 percent. The price per pound, f. o. b.

Newfield, in large lots, was \$16.

⁴ Oil, Paint and Drug Reporter, Niobium Key to Design Problems of Jets and Missiles, duPont Says: Vel. 172, No. 20, Nov. 11, 1957, pp. 5, 79.

⁵ American Metal Market, G. M. Engineers See Approach of Gas Turbine: Vol. 64, No. 112, June 8, 107.

^{1957,} pp. 1, 11.

6 Miller, G. L., Columbium and Its Uses: Materials and Methods, vol. 45, No. 5, May 1957, pp. 131-135.

\$3,037,706

FOREIGN TRADE 7

Imports.—Columbium tantalum mineral imports declined for the Imports of columbium concentrate declined 41 percent second vear. in 1957; and imports of tantalum concentrate declined 37 percent. The decline reflected the absence of the United States Government

from the market for foreign ores.

In 1957, 3.3 million pounds of columbium-mineral concentrate was imported, compared with 5.7 million pounds in 1956. The average value per pound decreased from \$1.47 to \$0.91. Nigeria, the principal source of supply, provided 54 percent of the total imports—a 9-percent decrease from 1956. Belgian Congo, Norway, and Malaya supplied 27, 7, and 4 percent, respectively. West Germany again shipped columbium concentrate to the United States after a 1-year

TARLE 2.—Columbium-mineral concentrates imported for consumption in the United States, 1948-52 (average) and 1953-57, by countries, in pounds [Bureau of the Census]

Country 1948-52 1953 1954 1955 1956 1957 (average) South America: Argentina 11,023 10,800 10, 375 34, 391 2, 324 3, 791 160, 462 2, 936 7, 574 5, 714 124, 460 233, 012 54, 500 Brazil. British Guiana 160 7,033 141, 197 54, 500 10,670 47,090 250, 845 164, 253 Europe:
Belgium-Luxembourg 1___
Germany, West_____ 5, 425 849, 310 562, 759 168, 362 1, 653 236, 147 72, 953 267, 957 342, 886 148, 732 521, 003 31, 024 40, 367 Norway... Portugal... 68, 121 4, 410 16, 713 421 2,525 Spain___ 240 11, 200 29. 621 United Kingdom 1_____ 129,611 759, 575 1,582,956 563, 227 340, 374 6,086 Asia: . Aden.. 1,350 Japan Korea, Republic of 6, 367 2,000 101,967 127, 524 4,053 180, 225 515, 688 521, 741 Malaya ... 180, 225 515, 688 523, 091 127, 524 Total.... 10, 420 103, 967 Africa: 1, 247, 901 14, 521 4, 700 36, 412 64, 974 5, 739, 526 Belgian Congo British West Africa French Equatorial Africa 249,054 580, 232 976, 832 758, 919 905, 989 10, 621 43, 124 3, 593, 114 3,075 11,060 Madagascar..... 31, 183 4, 575, 648 57, 894 3, 167, 344 81, 422 1, 804, 631 7.897 Mozambique.... 1, 447, 945 Nigeria Rhodesia and Nyasaland, 6, 652 18, 780 17, 772 ² 20, 460 19, 891 34, 472 11, 788 4, 446 76, 714 13, 529 24, 399 55, 539 Federation of.... 924 Uganda 3. Union of South Africa.... 31, 191 1,570 3, 880, 293 25, 119 5, 687, 671 7, 201, 501 61, 586 4, 448, 982 2,826,308 Total..... Oceania: Australia..... 1,707,390 35, 408 Grand total: Pounds___ Value____ 6, 804, 076 \$14, 191, 142 9, 612, 576 \$19, 912, 381 5, 699, 553 \$8, 386, 659 3, 348, 706 4, 186, 080

\$1, 140, 997

\$6,890,914

Presumably country of transshipment rather than original source.
 Southern Rhodesia.
 Classified by the Bureau of the Census as British East Africa.

⁷ Figures on imports and exports compiled by Mae B. Price and Elsie D. Jackson, Division of Foreign Activities, Bureau of Mines, from records of the U.S. Department of Commerce, Bureau of the Census.

lapse. Aden, Bolivia, Rhodesia and Nyasaland, and Uganda sup-

plied concentrate in 1956 but not in 1957.

The United States Department of Commerce reported that West Germany, the United Kingdom, Norway, and Canada shipped 4,061 pounds of columbium metal worth \$22,152 to the United States in It is believed that only about 680 pounds, worth \$14,800 was metal; the remainder probably was in alloyed form. Department of Commerce data on 1956 imports of columbium metal were revised to 5,798 pounds of metal valued at \$233,939 from the United Kingdom and West Germany. No details of ferroalloy and metal-bearing tin-slag imports were obtained in 1957.

In 1957, 828,265 pounds of tantalum mineral concentrate entered the country, compared with 1,312,865 pounds in 1956. The average value was \$1.15 per pound in 1957, compared with \$0.90 per pound in If imports from Belgian Congo are excluded, the average value for 1957 was \$2.00 per pound and for 1956, \$2.26 per pound. Belgian Congo continued as the world's leading exporter of tantalum minerals to the United States, supplying 59 percent of United States

TABLE 3.—Tantalum-mineral concentrates imported for consumption in the United States, 1948-52 (average) and 1953-57, by countries, in pounds

[Bureau of the Census]

South America: Argentina Brazil French Guiana Total Europe: Belgium-Luxembourg ¹ Germany, West Netherlands ¹ Norway Portugal Spain Syain Sweden United Kingdom	27, 174 27, 389 21, 312 5, 900	46, 146 10, 987 57, 133	255, 533 24, 809 280, 342	6, 614 221, 834 23, 085 251, 533	4, 409 140, 039 14, 532 158, 980	199, 205 3, 075
Argentina Brazil French Guiana Total Europe: Belgium-Luxembourg ¹ Germany, West Netherlands ¹ Norway Portugal Spain Sweden United Kingdom	27, 174 27, 389 21, 312 5, 900	10, 987 57, 133	24, 809	221, 834 23, 085	140, 039 14, 532	3, 075
Brazil French Guiana Total Europe: Belgium-Luxembourg ¹ Netherlands ¹ Norway Portugal Spain Sweden United Kingdom	27, 174 27, 389 21, 312 5, 900	10, 987 57, 133	24, 809	221, 834 23, 085	140, 039 14, 532	3, 075
French Guiana Total Europe: Belgium-Luxembourg ¹ Germany, West Netherlands ¹ Norway Portugal Spain Sweden United Kingdom	27, 389 21, 312 5, 900	57, 133	24, 809	23, 085	14, 532	3, 075
Europe: Belgium-Luxembourg ¹ Germany, West Netherlands ¹ Norway Portugal Spain Sweden United Kingdom	21, 312			251, 533	158, 980	000 000
Belgium-Luxembourg ¹	5, 900					202, 280
Belgium-Luxembourg ¹	5, 900					
Germany, West Netherlands 1 Norway Portugal Spain Sweden United Kingdom	5, 900		1	ł		6, 391
Norway. Portugal. Spain. Sweden. United Kingdom.		1	62, 865	594, 030		
Norway. Portugal. Spain. Sweden. United Kingdom.				-		
Spain Sweden United Kingdom				11,729		
Sweden United Kingdom	1,000	154, 323	86, 279	6, 614		5, 966
United Kingdom	148	4. 242	19, 251	11, 276		
		4, 242	19, 251	28, 533		
Total	34, 446	158, 565	168, 395	652, 182	7,054	12, 357
	01, 110	100,000	100,000	002, 102	7,001	12, 357
Asia:				1		
Japan 1	2, 138					
Malaya	417	3, 639	1, 479	5,853		
Total	2, 555	3, 639	1, 479	5, 853		
Africa:						
Belgian Congo	158, 112	507, 282	420, 562	539, 214	953, 092	491, 124
Madagascar		007, 202	6, 173	10, 693	20, 165	6, 835
Mozambique			10, 893	57, 184	4, 409	24, 046
Nigeria	6, 911		50,018	303, 692	31, 174	16, 815
Rhodesia and Nyasaland, Fed-						
eration of Uganda 3		2 8, 163	4, 944	18, 326	22, 166	38, 975
Union of South Africa	224	2,050 2,036	2, 158	8, 507		
O mon or bodin mind	224	2,000	4, 480	14, 428	6, 511	6, 910
Total	167, 077	519, 531	499, 228	952, 044	1, 037, 517	584, 705
Oceania: Australia	611	20, 541	32, 428	46, 074	109, 314	28, 923
Grand total: Pounds	232, 078	759, 409	981, 872	1, 907, 686	1, 312, 865	828, 265
Value	\$230,706		\$1, 972, 320	\$4, 820, 453	1.012.000	

Presumably country of transshipment rather than original source.
 Southern Rhodesia.
 Classified by the Bureau of the Ceusus as British East Africa.

imports compared with 73 percent in 1956. Brazil supplied 24 percent, Rhodesia and Nyasaland 5 percent, and Australia 3 percent. Argentina, which supplied tantalum mineral concentrate in 1956, did not ship any to the United States in 1957. Belgium-Luxembourg shipped tantalum concentrate to the United States after a lapse of several years. West Germany, the United Kingdom, and Austria shipped 2,430 pounds of tantalum metal worth \$121,474 to the United States in 1957.

Exports.—In 1957, 59,220 pounds of low columbium content material valued at \$43,886 was shipped to Canada, West Germany, and Japan. France received 6 pounds of semifabricated columbium forms valued at \$1,335. Fifteen pounds of columbium metal in crude form, valued at \$1,721, was shipped to the United Kingdom. Tantalum powder, weighing 5,997 pounds and valued at \$228,014, was shipped to Brazil, United Kingdom, France, West Germany, and Austria. Tantalum scrap, metal, and alloys in crude form, weighing 2,047 pounds and valued at \$44,628, were exported to West Germany, Canada, and Austria. Approximately 2,830 pounds of tantalum in semifabricated forms valued at \$206,627 was exported to 13 countries.

WORLD REVIEW

World (except the U. S. S. R.) production of columbium and tantalum mineral concentrates was 7.8 million pounds in 1957—15 percent less than in 1956. The Eastern Hemisphere produced 92 percent of the world supply of ore in 1957 compared with 91 percent in 1956. Record production was reported in 1957 by Belgian Congo, Mozambique, Rhodesia and Nyasaland, and the United States. Swaziland produced concentrate for the first time.

The drop in world production was due largely to cessation of United States Government purchases of foreign ores. Although the United States Government program for purchasing foreign columbiumtantalum materials had been terminated in 1955, large deliveries were made in 1956 under prior commitments to buy. By mid-1957

all deliveries were completed.

The United States used 59 percent of the Free World production of columbium and tantalum concentrates in 1957 compared with 79 percent in 1956. Foreign sources furnished the United States with 92 percent of the country's supply in 1957, compared with 97 percent in 1956.

NORTH AMERICA

Canada.—A subsidiary of Headway Red Lake Gold Mines, Ltd., and Coulee Lead & Zinc Mines, Ltd., continued research on processing pyrochlore ore from its Oka, Quebec, property.8

Oka Rare Metals, Ltd., reported plans to conduct a deep-drilling program at its Oka property to prove reserves large enough to justify construction of a chemical plant to treat the pyrochlore-type ore.9

Northern Miner (Toronto), Headway and Coulee Continue Research, Columbium Process: Vol. 43, No. 8, May 16, 1957, p. 26.
 Northern Miner (Toronto), Deep Drilling Plans for Oka Rare Metals: Vol. 48, No. 14, June 27, 1957

TABLE 4.—World production of columbium- and tantalum-mineral concentrates by countries, 1948-52 (average) and 1953-57, in

[Compiled by Augusta W. Jann and Berenice B. Mitchell]

							1088		1056	9	1957	
	1948-52 (average)	average)	1953	83	1954	4	TAT	2	OT			
Country 1	Colum- bium	Tantalum	Colum- bium	Tantalum	Colum- bium	Tantalum	Colum- bium	Tantalum	Colum- blum	Tantalum	Colum- blum	Tantalum
Argentina Augeritalia Augeritalia Bolivia (exports) Bolivia (exports) Braul British Guiana Granda Granda Granda Granday Madagascar Malaya Mozahique Nigeria Noway Portugal (U. S. imports) Portugal (U. S. imports) Portugal (U. S. imports) Portugal (U. S. imports) South West Africa South West Africa South West Africa South West Africa South West Africa South West Africa South West Africa South West Africa South West Africa South G. S. imports) Uganda Union of South Africa	262, 202, 200, 10, 6, 17, 365, 6, 73, 365, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	25 88, 372 482 4, 785 12, 510 7, 741 86 3, 600 986 3, 600	88888 890 1110 1100 1100 1100 1100 1100	18, 124 18, 124 18, 124 1900 1900 1900 113, 228 113, 228 116, 228 117, 634 117, 636 118, 323 118, 323 119, 323 111, 634 111, 634 1	111, (432, 44, 4, 4, 138, 138, 138, 138, 138, 138, 138, 138	7, 520 777 777 777 7400 8, 865 8, 865 8, 868 9, 251 9, 251	2, 350 170, 240 170, 240 6, 720 6, 720 6, 720 6, 720 7, 047 12, 240 12, 240 12, 240 12, 240 12, 240 12, 240 12, 240 12, 240 12, 240 12, 240 13, 385 14, 66 12, 240 14, 66 168, 382 168, 382 17, 240 188, 382 188,	900 3.6,614 5.8 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9	159, 921, 384, 240	968 655 623 8 14, 533 14, 533 14, 533 14, 533 17, 05 29, 324 1, 900 1, 900	1 905,999 465,000 1 905,999 3 491,11 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2, 205 4 66, 000 3 199, 205 3 199, 205 3 199, 205 3 199, 205 3 2, 075 3 3, 075 3 3, 075 3 4, 032 4,

1 Frequently the composition (Ob₂O₂-Ta₂O₄) of these concentrates lies in an intermediate position, neither Cb₂O₃ nor Ta₂O₄ being strongly predominant. In such instances the production figure has been centered.

3 This table incorporates a number of revisions of data published in previous chapters. Data do not add to totals shown owing to rounding where estimated figures are included

in the detail.

8 United States imports.

4 Estimate.

In addition, tin-columbium-tantalum concentrates were produced as follows: 1948-32 (average), 2,187,404 pounds; 1963, 3,575,861 pounds; 1965, 5,970,087 pounds; 1955,

The spiritual section of the section of

8,941,825 pounds; 1956, 4,810,437 pounds; 1957, not yet available; columbium-tantalum content averaging about 10 percent.

6 Exports.
7 Average for 1 year only, as 1962 was first year of commercial production.
7 Average for 1961–32.
8 Average for 1960–32.
9 Average for 1960–32.
10 In addition to figure shown, 176 pounds of samarskite was produced in 1961 and 132 pounds in 1962 figure shown, 178 pounds in 1963 and 1161 a

SOUTH AMERICA

Brazil.—A recent article 10 described deposits of columbium and tantalum minerals in Brazil and discussed uses, production, and consumption of the minerals. The principal mining regions were listed as the Territory of Amapa and the States of Minas Gerais, São Paulo, Paraná, Řio Grande do Sul, Ceara, Paraíba, and Rio Grande do Norte. Details on reserves were not included.

Surinam.—Surinam Mining Co. (a subsidiary of Union Carbide Corp.) prospected for tantalite and columbite in eastern Surinam.

EUROPE

United Kingdom.-Murex, Ltd., announced plans to erect a new plant at Rainham, England, to produce tantalum and columbium powders. The plant is to be completed in 1959.11

ASIA

India.—The Indian Department of Atomic Energy announced that native columbite-tantalite ores of low radioactivity would be purchased at a flat rate of 0.125 rupee per pound. Previously ores were purchased only if the uranium content exceeded 3.8 percent.

Pakistan.—Undetermined quantities of columbite and tantalite were

discovered in the northern part of the Hazara district.

U. S. S. R.—At Alyudyanka, at the southern end of Lake Baikal, in south-central Siberia, betafite deposits were mined that contained calcium, columbium, tantalum, and uranium.12

AFRICA

Rhodesia and Nyasaland, Federation of.—Two new deposits of pyrochlore were found in the Southern Province of Nyasaland. Reserves were not determined.¹³

Tanganyika.—Mbeya Exploration Co. reported that development was proceeding satisfactorily on its carbonatite deposit at Panda Hill. A pilot plant with a capacity of 150 tons of ore per day began operating in September. It was expected that about 10 tons of columbium concentrate would be marketed in 1958.14

Uganda.—Sukulu Mines, Ltd., began operating a pilot plant to treat ore from its apatite-columbium-magnetite deposit in the Sukulu Hills near the Kenya border. The company superseded Tororo Exploration Co.¹⁵

OCEANIA

Australia.—Euxenite was found on the south coast of Western Australia near Albany. The size of the deposit was not known.

No. 146, February 1957, pp. 86-88,

11 Metal Bulletin (London), Murex Limited—Confidence in Long-Term Prospects: No. 4225, Sept. 6,

12 Mining World (London), Russia Seeks to Develop New Domestic Sources of Uranium While Exhausting Satellite Supply: Vol. 19, No. 8, July 1957, p. 11.

13 South African Mining and Engineering Journal, Rare Metals: Vol. 68, pt. 1, No. 3365, Aug. 9, 1957, p. 1555

No. 239, Dec. 13, 1957, p. 14.

14 American Metal Market, Substantial Reserves of Columbium and Tantalum Ores, in East Africa Vol. 64, No. 239, Dec. 13, 1957, p. 14.

15 Mining World (London), Uganda: Vol. 19, No. 8, July 1957, p. 106.

WORLD RESERVES

The known world reserves of columbium were estimated early in 1957 at 1.5 million tons of metal.16 As a result of prospecting and exploration, the total reserves at the end of 1957 were estimated to exceed 3.5 million tons of contained columbium. Although the search for tantalum also continued, no extensive new sources were found, and most columbium-ore discoveries contained little or no tantalum.

TECHNOLOGY

The increased tempo of technological studies of columbium and tantalum metals, their alloys, compounds, and ores resulted in numer-

ous reports.

A symposium on columbium was held during the 111th meeting of the Electrochemical Society in Washington, D. C., in May 1957. The program comprised 21 papers that ranged in content from sources of columbium ores, through properties of the metal, its compounds and alloys, to the outlook of the industry. The assembled papers were to be published in 1958.

A recent survey of columbium and tantalum included a complete list of Canadian resources of the two metals and data on metallurgy,

production, and uses of the two metals.17

Geologic reports were published on columbium-tantalum-bearing

alluvial deposits in Idaho. 18

A comprehensive review of columbium and tantalum in iron and steel was published. 19 This well-prepared book included chapters on: Columbium minerals, columbium metal, and ferrocolumbium; the constitution of iron-columbium and iron-columbium-carbon alloys; general effects of columbium in carbon and low-alloy steels; lowcarbon, 2- to 30-percent chromium steels containing columbium; austenitic chromium-nickel steels containing columbium; effect of temperature on austenitic stainless steel containing columbium; physical properties and corrosion resistance of austenitic stainless steels containing columbium; and gas-turbine alloys containing columbium and tantalum.

An unusual ore body was reported in Ravalli County, Mont. The minerals included columbite, a rare calcium columbate identified by the Federal Bureau of Mines as fersmite, and rare-earth minerals This is the first domestic columbium-ore dein a carbonate rock.

posit of this type.20

The exploration, geology, and theories of origin of the Nemogosenda Lake (Ontario) columbium deposit were described. The pyrochlore-

¹⁶ Higbie, K. B., Sources of Columbium: Pres. before Electrochem. Soc., Washington, D. C., May 15, 1957, 11 pp.
17 Jones, R. J., Columbium (Niobium) and Tantalum: Canada Dept. Mines and Tech. Surveys, Mines Branch, Memo. Ser. 135, 1957, 56 pp.
18 Armstrong, F. C., Dismal Swamp Placer Deposit, Elmore County, Idaho: Geol. Survey Bull. 1042-K,

Armstrong, F. C., and Weis, P. L., Uranium-Bearing Minerals in Placer Deposits of the Red River Valley, Idaho County, Idaho: Geol. Survey Bull. 1046-C, 1957, 11 pp.

10 Grange, R. A., Shortsleeve, F. J., Hilty, D. C., Binder, W. O., Motock, G. T., and Offenhauer, C. M., Boron, Calcium, Columbium, and Zirconium in Iron and Steel; Alloys of Iron Research Monograph Series: John Wiley & Sons, Inc., New York, N. Y., 1957, 533 pp.

20 Sahinen, U. M., Mines and Minerals Deposits, Missoula and Ravalli Counties, Mont.: Montana Bureau of Mines and Geol., Bull. 8, January 1957, pp. 53-54.

type ore occurs in a metasomatic aureole surrounding an alkalic syenite plug.21

A somewhat similar deposit at Lake Nipissing, Ontario, also was

described.22

The geology, reserves, and processing techniques at Panda Hill, Tanganyika, were summarized in a short article. The recovery

technique included flotation and magnetic separation.23

A field method for rapid determination of heavy minerals in sands was devised at the Bureau of Mines Southern Experiment Station, Tuscaloosa, Ala. The method used a heavy liquid to separate constituents having different densities. Results of the rapid evaluation technique approximated closely those of more precise laboratory procedures.24

A recent article describes use of gravity, magnetic, and hightension electrostatic methods to produce a columbium-tantalum concentrate from alluvial sand. The techniques point the way to economic utilization of large low-grade deposits of the two metals.25

The use of gravity concentration to recover cassiterite, columbite, zircon, and xenotime from decomposed Nigerian granites was de-The report included experimental flowsheets, which subsequently were modified for commercial application. Flowsheets of this type could be used for treating similar ores.26

A process for treating columbium-bearing titanium minerals from Arkansas was developed at the Rolla (Mo.) Station of the Federal Bureau of Mines. The technique comprised coke reduction to form a carbide-suboxide sinter, chlorination in the 400°-500° C. range, and

fractional condensation of the chlorides.27

A solvent-extraction process was patented, which used hydrofluoric acid plus sulfuric, nitric, hydrochloric, or perchloric acid to be contacted by di-isopropyl ketone. The columbium is recovered as oxide by treating the aqueous phase with ammonium hydroxide and boric acid; the tantalum is extracted from the ketone with water and precipitated as an oxide through contact with ammonium hydroxide and boric acid.28

A Canadian paper discussed isolation of pure columbium and tantalum pentoxides from pyrochlore ore by solvent extraction. The paper outlined a technique using the hydrofluoric acid-nitric acid-methyl isobutyl ketone system. It was possible to produce, on a laboratory scale, separated pentoxides of 99.5 percent purity, with a recovery of 95 percent.29

²¹ Parsons, G. E., Memegosenda Lake—Columbium Area: Canadian Min. Jour., vol. 78, No. 8, August 1957, pp. 83-87.

22 Gill, J. E., and Owens, O. E., Columbium-Uranium Deposits at North Bay, Ontario: Canadian Inst. Min. and Met. Bull., vol. 50, No. 544, August 1957, pp. 458-464.

23 Metal Bulletin (London) Pyrochlore Progress: No. 4229, Sept. 20, 1957, p. 18.

24 Clemmons, B. H., Stacy, R. H., and Browning, J. S., Heavy-Liquid Techniques for Evaluation of Sands by Prospectors and Plant Operators: Bureau of Mines Rept. of Investigations 5340, 1957, 12 pp.

25 Shelton, J. E., and Stickney, W. A., How to Process Alluvial Sand for Tantalum-Columbium: Eng. and Min. Jour., vol. 158, No. 4, April 1957, pp. 93-95.

26 Williams, F. A., Performance Analyses of Screens, Hydrocyclones, Jigs, and Tables Used in Recovering Heavy Accessory Minerals From an Intensely Decomposed Granite on the Jos Plateau, Nigeria: Bull. Inst. Min. and Met. (London), vol. 67, pt. 3, No. 613, December 1957, pp. 89-108.

27 Nieberlein, V. A., Low-Temperature Chlorination of Columbium-Bearing Titanium Minerals: Bureau of Mines Rept. of Investigations 5349, 1957, 15 pp.

28 Hicks, H. G., Norvik, W. E., and Stevenson, P. C. (assigned to the U. S. Atomic Energy Commission), Solvent-Extraction Process for the Separation of Tantalum and Niobium Values: U. S. Patent 2,795,481, June 11, 1957.

June 11, 1957.

Faye, G. H., and Inman, G. H., The Isolation and Separation of Niobium and Tantalum Pentoxides From Mineral Concentrates by Liquid-Liquid Extraction: Canadian Inst. Min. and Met. Bull., vol. 50. No. 546, October 1957, pp. 609-613.

At a symposium on the metallurgy of columbium in London on May 1, 1957, five papers were presented: The Development of Niobium, by A. B. McIntosh; The Melting Point of Niobium, by T. H. Schofield; The Physical and Mechanical Properties of Niobium, by C. R. Tottle; Purification of Niobium by Sintering, by W. G. O'Driscoll and G. L. Miller; and The Production and Fabrication of Massive Niobium Metal, by L. R. Williams. The collected papers were published in a British journal.³⁰

A general review of columbium metallurgy also discussed properties The author pointed out that very few constitutional of the metal. diagrams of binary columbium alloys are known and that this field must be fully explored if the characteristics of columbium are to be

used to their optimum.31

Zone melting, levitation melting, and electron-bombardment melting were used to produce ultrapure columbium and tantalum. techniques were reviewed in the literature.32

The Federal Geological Survey published a bibliography on the analytical chemistry of columbium and tantalum.³³

A spectrophotometric study of columbium and columbium-hydrogen peroxide in aqueous sulfuric acid and sulfuric acid-sulfur trioxide solutions revealed three peroxycolumbium complexes. These were found to be, respectively: 2Cb:3H₂O, 1Cb:2H₂O, and 1Cb:1H₂O. The condensation equilibrium of the first two complexes was investigated.34

A rapid and accurate differential spectrophotometric method was given for determining uranium and columbium in binary alloys of the two metals. Columbium is determined by measuring the absorbance of the columbium-hydrogen peroxide complex formed in a sulfuric acid solution against a columbium reference solution. The method also should be useful for determining total columbium in columbium metal, compounds, and alloys.35

Tantalum extracted by solvent-extraction methods was determined colorimetrically, using hydroquinone in concentrated sulfuric acid. The only metal interfering seriously was columbium. For solutions containing Ta: Cb in a 10:1 ratio, tantalum values were 10 to 15

percent high.36

The National Research Council issued a report on high-temperature alloys that contained specific recommendations for accelerating re-

search and development in this field.37

Data on several nickel-base high-temperature alloys showed that Inconel 713C, which contains 2 percent columbium, exhibits outstanding rupture strength at 1,700° F. and has excellent resistance to thermal fatigue.38

³⁰ Journal of the Institute of Metals (London), Symposium on the Metallurgy of Niobium: Vol. 85, pt. 8,

<sup>Journal of the Institute of Metals (London), Symposium on the Metallurgy of Niobium: Vol. 85, pt. 8, April 1957, pp. 367-392.
Jepson, M. D., The Metallurgy of Niobium: Research, vol. 10, No. 10, October 1957, pp. 390-395.
Pfann, W. G., Zone Melting: Met. Rev., vol. 2, No. 5, 1957, pp. 29-76.
Cuttitta, Frank, Annotated Bibliography of the Analytical Chemistry of Niobium and Tantalum, January 1935-June 1953: Geol. Survey Bull. 1029-A, 1957, 73 pp.
Hiskey, C. F., and Adler, N., Spectra of the Peroxy Complexes of Niobium in Sulfuric Acid; Composition of the Peroxy Complexes of Niobium in Sulfuric Acid; Condensation Equilibrium of the Peroxy Complexes of Niobium in Sulfuric Acid; Jour. Am. Chem. Soc., vol. 79, No. 8, Apr. 20, 1957, pp. 1827-1837.
Banks, C. V., Burke, K. E., O'Laughlin, J. W., and Thompson, J. A., Differential Spectrophotometric Determination of Uranium and Niobium: Anal. Chem., vol. 29, No. 7, July 1957, pp. 995-998.
Waterbury, G. R., and Bricker, C. E., Separation and Determination of Tantalum: Anal. Chem., vol. 29, No. 10, October 1957, pp. 1474-1479.
No. 10, October 1957, pp. 1474-1479.
National Research Council, Report on Alloys for Use at Elevated Temperatures by the Panel on Alloys for Use at Elevated Temperatures: Materials Advisory Board Rept. MAB-115-M, Feb. 25, 1957, 97 pp. 30 Dominic, R. P., New Nickel Alloys for High-Temperature Service: Materials in Design Eng., vol. 46, No. 3, September 1957, pp. 115-119.</sup>

High-temperature technology was reviewed in detail. It was concluded that columbium, molybdenum, tantalum, tungsten, and their alloys are the refractory metals with the greatest potential. Columbium-tungsten alloys made at Stanford Research Institute resisted oxidation up to 3,000° F. The carbides of tantalum, mixed with those of hafnium or zirconium, are among the highest melting of the metallic compounds. A mixture of 80 percent tantalum carbide and 20 percent hafnium carbide melts at 7,120° F.; 80 percent tantalum carbide mixed with 20 percent zirconium carbide melts at 7,130° F.³⁹

The behavior of columbium and tantalum at temperatures near absolute zero was studied to determine their possible cryogenic uses. Columbium became superconductive at 8° K. and tantalum at 4.4° K. A tin-columbium compound had a transition temperature of 18° K. The columbium-tantalum cryotron and other cryogenic devices were being considered for use in sensitive electrical measuring devices, switches, computer memory devices, resonating chambers in radio equipment and radio telescopes. The cryotron permits use of ex-

tremely small currents without loss of energy.40

The modes of formation of anodic oxidation films at very low current densities were examined for several metals, including columbium and tantalum. The metals were placed in three categories as a result Tantalum was classed as a film former and of the experiments. columbium as intermediate between film-former and non-film-former

metals.41

Annealing anodic Ta₂O₅ films lessened the solubility of the films in HF and produced sharper X-ray diffraction patterns. It was concluded that tantalum-ion migration caused local changes in ionic configuration that controlled the specific properties involved. Another article on anodic tantalum pentoxide films discussed crystallization of amorphous films. Initial nucleation took place at heterogeneities on the metal surface where the amorphous film was cracked. cracks may be due to highly impure inclusions in the metal.43

The nuclear properties of columbium and its value as a reactor material were discussed. The most attractive features of columbium are its resistance to corrosion, its high-temperature strength, its comparatively low specific gravity, and its moderate neutron-capture cross It also stabilizes uranium in its high-temperature phase and

improves the resistance of uranium to corrosion.44

A recent article revealed that the Dounreay reactor in Scotland

would utilize columbium-clad fuel elements. 45

The Experimental Boiling-Water Reactor (EBWR), Argonne National Laboratory, Lemont, Ill., was fueled with a uranium-zirconiumcolumbium alloy containing 1.5 percent columbium. Manufacturing

^{**} Hiester, N. K., Ferguson, F. A., and Fishman, N., Todays Frontiers in High-Temperature Technology: Chem. Eng., vol. 64, No. 3, March 1957, pp. 237-252.

** Matthias, B. T., Superconductivity: Sci. Am., vol. 197, No. 5, 1957, pp. 92-102.

** Johansen, H. A., Adams, G. B., Jr., and van Rysselberghe, Pierre, Anodic Oxidation of Al, Cr, Hf, Nb, Ta, Tl, Vd, and Zr at Very Low Current Densities: Jour. Electrochem. Soc., vol 104, No. 6, June 1957, pp. 339-346.

** Vermilyea, D. A., Annealing Anodic Ta₂O₅ Films: Jour. Electrochem. Soc., vol. 104, No. 8, August 1957, pp. 485-488.

** Vermilyea, D. A., Nucleation of Crystalline Ta₂O₅ During Field Crystallization: Jour. Electrochem. Soc., vol. 104, No. 9, September 1957, pp. 542-546.

** Cotter, M. J., Niobium as a Nuclear Metal: Atomics and Nuclear Energy, vol. 8, No. 9, September 1957, pp. 339-342.

** Nucleonics, Dounreay Reactor Center Nears Completion: Vol. 15, No. 10, October 1957, p. 27.

practices for producing the fuel elements were described and the fuel plates evaluated.46

Several uranium-columbium-zirconium alloys were evaluated to determine their reactivity when contacted by steam at high temperatures. Reactivity was lowest with an alloy of 90 percent uranium and 10 percent columbium.47

A ductile alloy of 1.5 percent columbium, 1.0 percent aluminum, and 97.5 percent zirconium was patented. The alloy was characterized by a low thermal neutron-capture cross section of 0.19 barn and a 0.2 percent offset yield strength at 500° C. of 34,300 pounds per square inch.48

A quasi-technologic problem received considerable attention in 1957. American metallurgists and industry continued to support use of the term "columbium" in preference to "niobium." Justification for this support was outlined. 49 The opposition comprised chemists and foreign metallurgists.

<sup>Machery, R. E., Bean, C. H., Carson, N. J., Jr., and Lindgren, J. R., Manufacture of Fuel Plates for the Experimental Boiling-Water Reactor: Argonne Nat. Lab. Rept. ANL-5629, June 1957, 250 pp. Smith, K. F., The Metallurgy of EBWR: Metal Prog., vol. 72, No. 5, November 1957, pp. 79-83.
Lemmon, A. W., Jr., The Reaction of Steam With Uranium and With Various Uranium-Niobium-Zirconium Alloys at High Temperatures: Battelle Memorial Inst., Rept. BMI-1192, June 1957, 75 pp.
Marsh, L. L., Jr., and Chubb, W. (assigned to U. S. Atomic Energy Commission), Zirconium Ternary Alloys: U. S. Patent 2,784,084, Mar. 5, 1957.
Burke, J. J., Columbium and Niobium—Who Threw the Monkeywrench: Jour. Metals, vol. 9, No. 10, October 1957, pp. 1350-1351.</sup>

Copper

By A. D. McMahon 1 and Gertrude N. Greenspoon 2

Legislation and Government programs Domestic production Primary copper Secondary copper and brass Consumption	Page 419 420 420 429 437	Europe	Pag 450 450 450 450 450
Consumption Stocks Prices Foreign trade	437 438 440 442	AfricaOceania Technology	46 46 46

HROUGHOUT 1957 the copper industry faced the continuing problem of oversupply, which was not relieved by the 25-percent drop in the price of copper or by the efforts of most producers to curtail mine output at many major producing units in the United States. slightly over 7 months the producer's price of copper dropped from 36 to 27 cents per pound, the lowest since February 1953. Although most of the major producers made determined efforts to effect a supply-demand balance by closing some mines and shortening work periods at others, continued development toward capacity production at new mines and expanded facilities offset the cutbacks, and high mine production was maintained throughout the year. Mine production of recoverable copper dropped 2 percent from the alltime high in 1956; smelter and refinery production from domestic ores was 3 percent lower; and imports of copper in unmanufactured form remained virtually the same.

The economic downtrend affected important consumers of copper products, including the electrical, construction, automotive, and appliance industries, forcing curtailment of operations and reduced copper purchases. The consumption of refined copper fell 11 percent in 1957, and producers' stocks of refined and blister copper (including materials in process of refining), increased 40 and 5 percent, respec-

In September 1956 all restrictions on exports of refined copper were removed by the Bureau of Foreign Commerce, and shipments of refined copper from the United States during 1957 rose 55 percent to 346,000 tons—the highest since 1940. As a result of relaxation of export controls on scrap in 1957, exports of old and scrap copper almost doubled those in 1956.

The 2-cents-per-pound excise tax on copper continued under suspension in 1957, subject to the concessions granted at the June 1956 meetings in Geneva on General Agreements Tariffs and Trade (GATT). Suspension of nonferrous scrap duties was extended to June 30, 1958.

Shortly after the price of copper in the United States fell to 27 cents per pound in September the San Manuel Copper Corp. exercised the option to deliver its production to the Government under the Defense

¹ Commodity specialist.
2 Statistical assistant.

Minerals Production Administration (DMPA) floor-price contract negotiated in 1952. In December the White Pine Copper Co. was authorized to make deliveries under a similar Government contract.

Copper prices also were reduced drastically by the London Metal Exchange (LME) and the Rhodesian Selection Trust (RST) Group. The LME quotation was equivalent to 33.3 cents per pound at the beginning of the year, dropped to 21.9 cents in December (the lowest since June 1950), and ended the year at 22.5 cents. The RST fixed price was lowered throughout the year, and on October 7 the group announced that it would return to the LME price basis.

World mine and smelter production of copper rose slightly over 1956 and established new alltime peak rates. Smelter output dropped 9,000 tons in Chile and 8,500 in Belgian Congo, but increases of 18,000 and 37,000 tons, respectively, were recorded for Japan and Rhodesia.

In the United States a strike at the White Pine mine in Michigan from September 23 to October 28 resulted in a 5-percent decrease in output for the State. Operations at the Gaspé mine, Quebec Province, Canada, were curtailed by a 7-month strike; and the Braden mine, Chile, was closed by a 2-week strike in April. Northern Rhodesian properties were affected by a number of work stoppages during the year.

TABLE 1.—Salient statistics of the copper industry in the United States, 1948-52 (average) and 1953-57, in short tons

(4.024	8-7					
	1948-52 (average)	1953	1954	1955	1956	1957
New (primary) copper produced— From domestic ores, as reported by— Mines— Copper ore produced 1— Average yield of copper, percent. Smelters————————————————————————————————————	(average) 870, 119 90, 157, 814 . 85 873, 980 30 870, 107 261, 871 1, 131, 978 449, 397 571, 711, 1285, 646	926, 448	835, 472 93, 654, 258 . 83 834, 381 25 841, 717 370, 202 1, 211, 919 407, 066 594, 829 215, 086	112, 549, 665 .83 1, 007, 311 .28 .997, 499 .344, 960 1, 342, 459 .514, 585 .594, 100 .202, 312 4 259, 942	131, 775, 959 .78 1, 117, 580 2, 28 1, 080, 207 362, 426 1, 442, 633 468, 489 595, 747 191, 745 4 280, 575	1, 081, 055 27 1, 050, 496 403, 680 1, 454, 176 428, 277 594, 027 162, 309 4 430, 446
Refined (ingots and bars) Stocks at end of year (producers) Refined copper Refined copper Blister and materials in solution Withdrawals (apparent) from total supply on domestic account: Total new copper Total new and old copper (old scrap only) Price averagecents per pound World smelter production, new copper	146, 485 252, 000 43, 000 209, 000 1, 279, 000 1, 729, 000 22, 1	109, 580 272, 000 49, 000 223, 000 1, 435, 000 1, 864, 000 5 28. 7	215, 951 214, 000 25, 000 189, 000 1, 235, 000 1, 642, 000 5 29. 5	199, 819 235, 000 34, 000 201, 000 1, 336, 000 1, 851, 000	339, 000 78, 000 261, 000 1, 367, 000 1, 835, 000	383, 000 109, 000 274, 000 1, 239, 000 1, 667, 000 5 30. 1

¹ Includes old tailings smelted or re-treated. Not comparable with mine production figure shown in that latter includes recoverable copper content of ores not classified as "copper."

1 Data are "general" imports; that is, they include copper imported for immediate consumption plus material entering country under bond. Comprises copper in ingots, plates, and bars, ores and concentrates, regulas bilister and scrap.

Total exports of copper, exclusive of ore, concentrates, composition metal, and unrefined copper. Exclusive also of "Other manufactures of copper," for which quality figures are not recorded before 1953. (See 4 Due to changes in classifications 1953-57 data are not strictly comparable to earlier years.
 4 Exclusive of copper produced abroad and delivered in the United States.
 6 Revised figure.

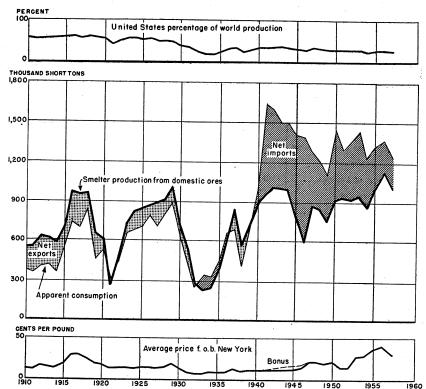


FIGURE 1.—Production, consumption, and price of copper in the United States, 1910-57

LEGISLATION AND GOVERNMENT PROGRAMS

No contracts for expansion of copper production under the Defense Production Act of 1950, as amended, were entered into by the Government in 1957; also no tax on amortizations were granted.

Defense Minerals Exploration Administration contracts involving

copper, executed in 1957, totaled 7 in 7 States.

As the supply of copper expanded, the Bureau of Foreign Commerce (BFC) announced relaxations on export controls. On March 4, BFC announced removal of export-quota limits through the second quarter of 1957 on copper scrap and copper-base-alloy scrap containing less than 5 percent nickel; under open-end licensing no quantitative limit was set, but exports were controlled for national security. Restrictions were relaxed on copper-nickel-alloy scrap containing 40 percent or more copper and 5 percent or more nickel. Export applications, previously not approved, were considered if the applicants certified that at least 90 percent of the nickel content would be returned to the United States in the form of nickel metal. On September 19 a fourth-quarter export quota of 500 tons was established for copper-nickel-alloy scrap containing 40 percent or more copper and 5 percent or more nickel. Applications no longer required certifications that the nickel content would be returned to the United States, but they

TABLE 2.—DMEA contracts involving copper executed during 1957, by States

			Contra	ct
State and contractor	Property	County	Date	Total amount 1
ALASKA MacLaren River Copper Corp	Kathleen-Margaret	Talkeetna	May 29, 1957	\$13,740
IDAHO Highland-Surprise Cons. Mining Co. MONTANA	Copper Camp	Valley	Mar. 20, 1957	16, 005
Uranium Corp. of America	Dailey	Jefferson	Oct. 18, 1957	85, 172
OREGON Fred M. Converse	Grand Cove	Jackson	July 23, 1957	7, 200
TEXAS Trans-Pecos Minerals, Inc	Hazel	Culberson	Apr. 30, 1957	61, 880
VERMONT Appalachian Sulphides, Inc	Elizabeth	Orange	June 13, 1957	62, 860
WASHINGTON Howe Sound Co	Calumet	Snohomish	July 22, 1957	23, 560

¹ Government participation was 50 percent in exploration projects in 1957.

had to be accompanied by evidence of unsalability in the domestic market and identification of the foreign consumer. Identification of foreign consumers also was required on fourth-quarter applications for copperweld rods, new and old copper scrap, and copper-base-alloy scrap containing less than 40 percent copper and less than 5 percent nickel, including ashes, slags, drosses, residues, etc., copper-base-alloy ingots, and other crude forms.

DOMESTIC PRODUCTION

PRIMARY COPPER

Mine Production.—Production of copper in the United States decreased 2 percent from the alltime high of 1956 and was previously exceeded in the World War II year of 1943.

A new mine—the Pima, Pima County, Ariz.—began to produce in 1957. The mill went into operation in January, and it was expected

that the mine would be a major source of copper.

Arizona continued to lead all other States in mine production of copper by a wide margin; the State supplied 47 percent of the domestic total and exceeded its previous peak output of 1956 by 2 percent. Utah was second, with 22 percent, but produced 5 percent less than in 1956. Arizona's output came from a number of important copper-producing districts and mines. Output from Utah was principally from one mine—Utah Copper—the largest copper producer in the United States. Production from Montana, Nevada, New Mexico, and Michigan ranked next in importance and made up 27 percent of the total. These 6 States produced 97 percent of the United States

COPPER 421

total copper output in 1957. Output in Michigan dropped 5 percent, mainly because of a strike at the White Pine mine from September 23 to October 28. Production in Idaho established a peak for the second successive year. In Montana the Mountain Con mine was closed in March; the Banner Mining Co. suspended operations at the Miser's Chest mine, New Mexico, in October; and the Holden mine in Washington was closed in June.

TABLE 3.—Copper produced from domestic 1 ores, as reported by mines, smelters, and refineries, 1953-57, in short tons

Year	Mine	Smelter	Refinery
1953	926, 448	943, 391	932, 232
	835, 472	834, 381	841, 717
	998, 570	1, 007, 311	997, 499
	1, 106, 215	1, 117, 580	1, 080, 207
	1, 086, 141	1, 081, 055	1, 050, 496

¹ Includes Alaska.

As the price of copper dropped during the year, a number of producers curtailed output in an effort to bring supply in balance with demand. In October 1956 the Phelps Dodge Corp. had announced a 7½-percent cutback in output, and in March 1957 a further cutback was reported, equivalent to a 10-percent reduction in output for both cutbacks. Another announcement in September of a 5-percent reduction at the Morenci and Lavender open pits in Arizona resulted in a total cut in production of 15 percent and a work schedule of 22 days per month. The Anaconda Company began a 16-percent curtailment in output at its Yerington mine in Nevada, effective July 1; the company had previously announced a similar cutback in October 1956. Also, in July, a 20-percent cut was made by Miami Copper Co., Arizona. The Inspiration Consolidated Copper Co. in Arizona began a 500-ton-per-month curtailment in output in June, and in September, Calumet & Hecla, Inc., Michigan, announced a 10-percent reduction in production. In mid-December Kennecott Copper Corp. reported that it would reduce output approximately 12 percent at its mines in Utah, New Mexico, and Nevada. soon after the first of 1958. The company's Ray mine in Arizona had been on a 6-day-week basis since April 7, 1957.

Classification of production, by mining methods, showed that approximately 72 percent of the recoverable copper and 77 percent of the copper ore came from open pits in 1957. Most domestic copper ore was treated by flotation at or near the mine of origin, and the resulting concentrate was shipped for smelting. Some copper ores were direct-smelted either because of their high grade or because of

their fluxing qualities.

The first 5 mines in table 8 produced 52 percent of the United States total, the first 10 produced 76 percent, and the entire 25 furnished

96 percent.

Quantity and Estimated Recoverable Content of Copper-Bearing Ores.—Tables 9-12 list the quantity and estimated recoverable copper content of the ore produced by copper mines in the United States in 1957.

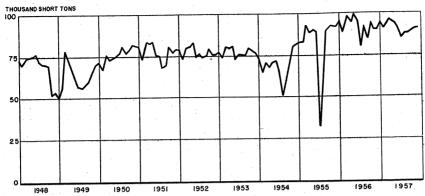


FIGURE 2.—Mine production of recoverable copper in the United States, 1948-57, by months, in short tons.

TABLE 4.—Copper ore and recoverable copper produced by open-pit and underground methods, 1940-57, percent of total

Year	Ope	n pit	Under	ground	Year	Ope	n pit	Under	ground
1940	Ore 61 63 66 69 68 68 68 73 76	Copper 44 47 51 54 57 61 58 68 68	Ore 39 37 34 31 32 32 34 27 24	56 53 49 46 43 39 42 32 32	1949	78 81 84 85 83 83 83 78 77	70 74 74 77 75 75 77 77 73 72	Ore 22 19 16 15 17 17 17 22 23	30 26 26 23 25 21 23 27 28

TABLE 5.—Mine production of recoverable copper in the United States in 1957, by months 1

Month	Short tons	Month	Short tons
January February March April May June	93, 294 90, 411 95, 369 94, 561 93, 228 90, 469 84, 969	August September October November December Total	87, 113 87, 120 89, 132 90, 089 90, 386 1, 086, 141

¹ Includes Alaska. Monthly figures adjusted to final annual mine-production total.

TABLE 6.—Mine production of recoverable copper in the United States, 1948-52 (average) and 1953-57, with production of maximum year, and cumulative production from earliest record to end of 1957, by States, in short tons

State	Ma pro	Maximum production 1			Production	Production by years			Total production from earliest
	Year	Quantity	1948–52 (average)	1953	1954	1955	1956	1957	record to end of 1957
TATE A. A									
Western States and Alaska: Alaska	1016	50 027	ıc		4	,	8	6	685 010
Arizona	1957	515, 854	389, 804	393, 525	377, 927	454, 105	505	515, 854	15, 740, 650
California	1909	28, 644	669	382	362	613		945	634,
Colorado	1938	14, 171	9,33	2,941	4, 523	4,323	4,0	5,115	288, 651
Montana	1916	176, 464	57, 739	77, 617	59, 349	81, 542	96, 426	91, 512	7, 331, 394
Nevada	1942	83, 663	49, 976	61,850	70, 217	78, 925	85,	77, 750	2, 453, 776
New Mexico	1942	80, 100 -	69, 209	72, 477	60, 558	66, 417	74,	67, 472	2,097,718
South Dakota	1918	33	1	0		1	-	9	106
Texas	1928	224	14			1			1,384
Utah	1943	323, 989	251, 373	269, 496	211, 835	232, 949	250, 604	237, 857	7, 626, 577
Washington.	1900	2,102	£, 008	o, (#0 1	o, 090 1	one 'e	2, 920	1, 100	16,335
Total			899 750	99E 17A	703 945	098 458	1 094 845	1 008 144	27 1K0 K98
T OCOL.	1		970, 109	271,100	130, 210	820, 400	1, 024, 040	1, 000, 1**	91, 108, 000
West Central States: Missouri	1949	3, 670	2,804	2,374	1,925	1,722	1,890	886	3 44, 255
States east of the Mississippi:									
Alabama	1907	42						1	€
(Jeorgia	1917	465							€.
Maryland	1917	146							Đ€
Massachusetts	1906	9							€
Michigan	1916	136,846	23, 914	24,097	23, 593	50,066	61, 526	58, 400	5, 180, 925
North Carolina	1030	6 605		1	(9)	(9)			€€
Pennsylvania	1942	6,410	4, 449	3,027	3,270	4,110	4, 102	7, 516	œ ~_
South Carolina	€	€			111111111111111111111111111111111111111	1			€
Tennessee	1930	10, 584	6,944	7,829	9,087	9,911	10, 449	9, 790	€:
Vermons	1994	4, 602		o, 94/	4, 502	4, 303	5, 405	3, 405	€
Wisconsin	1914	2							D©
		-	022	000	000	000			
T.00al.	-		38, 556	38, 900	40, 302	68, 392	79, 480	79, 111	7 5, 924, 476
Grand total	1956	1, 106, 215	870, 119	926, 448	835, 472	998, 570	1, 106, 215	1, 086, 141	8 43, 128, 267
1 For Missouri and States east of the Mississium maximum sines 1005	1005		6 T acc	hon 0 5 ton					
2 Less than 1 ton.	oner ann		7 For S	tates other	than Michig	an, figures	7 For States other than Michigan, figures represent largely smelter output.	gely smelter	output. Ex-

² Less than 1 ton.
⁸ Small quantity for Wisconstn meluded with Missourt.
⁸ Charlon of Mineral Resources credits this figure to Massachusetts and New Hampshire; the 1909 volume or edits it to New Hampshire alone.

¹ For States other than Michigan, figures represent largely smelter output, educies small quantity, not separable, for Wisconsin shown with Missouri. * Largely smelter production for States east of the Missishpio except Michigan.

TABLE 7.—Mine production of copper in the principal districts 1 of the United States, 1948-52 (average) and 1953-57, in terms of recoverable copper, in short tons

District or region	State	1948–52 (average)	1953	1954	1955	1956	1957
West Mountain (Bingham).	Utah	250, 252	268, 511	210, 643	232, 016	249, 417	236, 486
Copper Mountain (Morenci)	Arizona Montana	57, 187	77. 520	59, 240	81, 428	96, 292	91, 392
Globe-Miami	Arizona	87, 332	86, 478	63, 222	86, 575	86, 947	79, 606
Warren (Bisbee)	New Mexico	19, 420	29,344	41,884	58, 145	72,080	73, 392
	Arizona.	61,053	64, 730	60, 794	70, 222	66, 432	62, 458
Old Hat	Michigan	378	34 007	93 503	(3)	39, 078	59, 902
	Arizona	34, 729	47, 574	40, 462	49, 174	53, 518	56, 888
	Nevada	49, 491	60, 557	43, 972	44, 417	50, 130	€
1	Arizona	19,670	(*) 25 093	26,040	53, 918	21,216	27, 034
uttes)	do	464	1,353	4, 132	()	4,840	20, 156
	op	525	88	€	€	19, 975	19, 259
nyon	Tennessee	8,828 9,444	10,072	0,00	040	6,752	11,081
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Pennsylvania	4,449	3,027	3,270	4, 110	(£)	(£)
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Idaho	6 274	€	€	2,673	3,328	(4)
	Colorado	1, 638	2, 5,0	2,566	2,637	2,00	3, 520 3, 473
	Vermont	3,249	3, 947	4,352	4, 305	3, 403	3, 405
Ashe CountyTordshire	North Carolina	1 740	1 988	9 210	€	()	2,886
	Washington	6 4, 802	7 3, 614	8 3, 534	8 3, 733	2,630	1,571
	Colorado	245	440	2, 355	2,246	€	1, 193
Cochise.	Arizona	1,069	1,849	1,947	1,948	1,669	1, 104
NOROTICA DE LA LOS DA LA	1/14000M14	Z, 00.	4,012	7,040	7, 1	7,000	000

Districts producing 1,000 short tons or more in any year of the period 1953-57.
 Includes average for Burro Mountain for 1948-49 to avoid disclosing individual company operations.
 Less than 0.5 ton.
 Figures withheld to avoid disclosing individual company operations.

operations.

Includes average for Peshastin Creek and Wenatchee for 1949-50 to avoid disclosing hardridge and operations.

Includes Ferry to avoid disclosing individual company operations.

Includes Ferry and King to avoid disclosing individual company operations.

⁵ Includes Spring Mountain and Texas for 1952 to avoid disclosing individual company

TABLE 8.—Twenty-five leading copper-producing mines in the United States, in 1957, in order of output

Rank	Mine	District	State	Operator	Source of copper
100400000111111111111111111111111111111	Utah Copper Morend. Morend. Butte Mines (includes Kelley, Berkeley) Copper Queen-Lavender Pit. Copper Queen-Lavender Pit. Copper Queen-Lavender Pit. Copper Queen-Lavender Pit. Copper Queen-Lavender Pit. Ray Pit. Ray Pit. Ray Pit. Rayma Magma Magma Magma Liberty Pit. Liberty Pit. Columet & Hecla, Inc. Pima Tripp Pit. Bagdad Bagdad Burra Burra, Calloway, Mary, Eureka, Boyd Veteran Pit. Cornwall Minnesota-Hi. Minnesota-Hi. Minnesota-Hi. Minnesota-Hill	West Mountain (Bingham) Copper Mountain (Morenci). Surmin (Bisbee) Central Ajo Central Ajo Mineral Creek (Ray) Lake Superior Pioneer (Superior) Pi	Utah. Arizona Motataa Arizona Michigan Arizona Michigan Arizona Michigan Arizona Michigan Arizona Michigan Arizona	Kennecott Copper Corp- Phelps Dodge Corp- Phelps Dodge Corp- Phelps Dodge Corp- Kennecott Copper Corp- Phelps Dodge Corp- San Manuel Copper Corp- Magna Copper Corp- Inspiration Consolidated Copper Co. Magna Copper Cor- Inspiration Consolidated Copper Co. Magna Copper Cor- Magna Copper Cor- Comper Cor- Kennecott Copper Cor- Kennecott Copper Cor- Remicont Smelting & Refining Co- Counsolidated Copper Corp- Pina Mining Co. Consolidated Copper Corp- Bagdad Copper Corp- Bagdad Copper Corp- Remicott Copper Corp- Arentessee Copper Corp- Arentessee Copper Corp- Bagdad Copper Corp- Bagdad Copper Corp- Bagdad Copper Corp- Bagdad Copper Corp- Agnecott Copper Corp- Agnecott Copper Corp- Bathlehem Steel Co- Bathlehem Steel Co- Banner Mining Co- Banner Mining Co-	Copper ore. Copper, gold-silver-zinc ores. Copper, gold-silver-zinc ores. Copper, gold-silver ores. Copper ore. Do. Do. Do. Do. Do. Do. Do. Do. Copper ore and tailings. Copper ore. Copper ore. Magnetite-pyrite-chalcopyrite ore.

TABLE 9.—Copper ore sold or treated in the United States in 1957, with copper, gold, and silver content in terms of recoverable metals 1

		Rec	overable n	netal conte	at	Value of
State	Ore sold or treated (short tons)	Coppe	r	Gold (fine	Silver (fine	gold and silver per ton of ore
		Pounds	Percent	ounces)	ounces)	
Arizona	59, 571, 834	947, 840, 100	0.80	123, 375	4, 088, 618	\$0. 13
California Colorado	8, 198 32, 138	239, 200 1, 872, 100	1.46 2.91	2, 313	6, 007 599, 688	2. 97 19. 41
Idaho	282, 550	8, 680, 800	1.54	4, 284	18, 160	. 59
Michigan 2	8, 308, 580	116, 800, 000	.70	2,202	430,000	. 05
Montana	9, 576, 968	176, 471, 681	. 92	16, 964	2, 480, 760	. 30
Nevada	11, 514, 197	155, 401, 000	. 67	48, 872	408, 441	.18
New Mexico	7, 600, 248	102, 420, 000	. 67	1,796	51, 537	. 01
North Carolina	102, 635	5, 772, 000	2.81	628	11, 761	. 32
Oregon Tennessee 3	167	43, 100	12.90	38	157	8. 81
Tennessee	1, 394, 020	19, 580, 000	.70 .74	172	54, 407	.04
Utah Vermont	30, 933, 883	460, 791, 500 6, 810, 000	1, 53	352, 735 62	2, 871, 007 36, 794	. 48
Washington	222, 625 167, 474	3, 308, 700	. 99	10, 453	39, 896	2.40
Wyoming	69	7,700	5, 58	2	34	1.46
Total	129, 715, 586	2, 006, 037, 881	.77	562, 234	11, 097, 267	. 23

¹ Excludes copper recovered from precipitates as follows: Arizona, 75,180,700 pounds; California, 44,200 pounds; Montana, 2,788,396 pounds; New Mexico, 28,357,100 pounds; Utah, 9,777,200 pounds.

Includes tailing.
 Copper-zinc ore.

TABLE 10.—Copper ore concentrated in the United States in 1957, with content in terms of recoverable copper

State	Ore- concentrated	Recoverable cor	per conten
	(short tons)	Pounds	Percent
Arizona.	1 54, 835, 773	2 849, 648, 900	0.7
California.	7, 280	162, 300	1.1
Colorado Idaho		7,600	. 6 1. 4
Michigan 3	8, 308, 580	116, 800, 000	.7
Montana		176, 448, 081 4 151, 307, 600	.9
NevadaNew Mexico	5 7, 393, 962	6 100, 776, 100	.6
North Carolina	102, 635	5, 772, 000	2.8
Tennessee 7		19, 580, 000 9 460, 622, 000	.79
Utah Vermont	222, 625	6, 810, 000	1. 5
Washington	167, 473	3, 308, 100	.9
Total	124, 640, 436	1, 899, 105, 381	. 7

¹ In addition 4,112,282 tons was treated by straight leaching.

² In addition 35,310,800 pounds of copper was recovered by straight leaching. 3 Includes tailings.

In addition 131,200 pounds of copper was recovered by straight leaching.
Copper-zinc ore.
In addition 50 tons was treated by straight leaching.
In addition 700 pounds of copper was recovered by straight leaching.

Smelter Production.—The total recovery of copper by smelters in the United States was nearly 1.3 million tons-4 percent less than in 1956. The output from all sources was lower than in the previous In 1957 production from domestic ores constituted 27 percent of world production, compared with 51 percent in 1925-29 and a range of 25-34 percent in 1945-56.

⁴ Includes ore treated by straight leaching, and copper precipitates recovered therefrom; Bureau of Mines not at liberty to publish.

5 In addition 135,592 tons was treated by straight leaching.

TABLE 11.—Copper ore shipped to smelters in the United States in 1957, with content in terms of recoverable copper

	Ore sl	nipped to sm	elters		Ore sh	ipped to sm	elters
State	Short tons	Recoverabl conte		State	Short	Recoverabl conte	
		Pounds	Percent			Pounds	Percent
Arizona California Colorado Idaho Montana Nevada	623, 779 918 31, 563 6, 447 180 92, 488	62, 880, 400 76, 900 1, 864, 500 818, 100 23, 600 4, 093, 400	5. 04 4. 19 2. 95 6. 34 6. 56 2. 21	New Mexico Oregon Utah Washington Wyoming	70, 694 167 920 1 69 827, 226	1, 512, 700 43, 100 168, 800 600 7, 700 71, 489, 800	1. 07 12. 90 9. 17 30. 00 5. 58 4. 32

TABLE 12.—Copper ores 1 produced in the United States, 1948-52 (average) and 1953-57, and average yield in copper, gold, and silver

	Smeltin	g ores	Concentrat	ing ores			Total		
Year	Short tons	Yield in cop- per (per- cent)	Short tons 2	Yield in cop- per (per- cent)	Short tons 2 3	Yield in cop- per (per- cent)	Yield per ton in gold (ounce)	Yield per ton in sil- ver (ounce)	Value per ton in gold and silver
1948-52 (average) 1953	765, 715 893, 248 896, 363 877, 287 906, 319 827, 226	3. 51 3. 47 4. 02 3. 81 4. 11 4. 32	85, 730, 351 96, 594, 903 89, 620, 197 108, 060, 525 127, 251, 488 124, 640, 436	0. 87 . 82 . 79 . 81 . 75 . 76	90, 157, 814 101, 064, 945 93, 654, 258 112, 549, 665 131, 775, 959 129, 715, 586	0. 89 . 85 . 83 . 83 . 78 . 77	0.0059 .0061 .0056 .0052 .0044 .0043	0. 089 . 091 . 087 . 102 . 087 . 086	\$0, 29 . 30 . 27 . 28 . 23 . 23

Includes old tailings, smelted or re-treated, etc., for 1948-52.
 Includes some ore classed as copper-zinc ore.
 Includes copper ore leached.

Smelter-production data are based upon reports from domestic primary smelters handling copper-bearing materials. Blister copper is accounted for in terms of fine-copper content. Production of furnace-refined copper in Michigan is included in smelter production, as well as in refinery output. Metallic and cement copper recovered by leaching is included in smelter production.

The quantity and value of copper produced from domestic ores by smelters in the United States were shown by years for 1845–1955

in Minerals Yearbook, 1955, volume I.

TABLE 13.—Copper produced by primary smelters in the United States, 1948-52 (average) and 1953-57, in short tons

Year	Domestic	Foreign	Secondary	Total
1948-52 (average)	873, 980	96, 955	62, 094	1, 033, 029
	943, 391	104, 419	72, 532	1, 120, 342
	834, 381	111, 518	83, 747	1, 029, 646
	1, 007, 311	99, 215	53, 554	1, 160, 080
	1, 117, 580	113, 772	81, 374	1, 312, 726
	1, 081, 055	97, 090	75, 931	1, 254, 076

Refinery Production.—The refinery output of primary copper in the United States in 1957 was made by 14 plants; 8 of these employed the electrolytic method only, 3 used the furnace process on Lake Superior copper, and 2 used both the electrolytic and furnace methods. One western smelter fire-refined its blister but shipped part of its blister output to electrolytic refineries in 1957. The leaching plant of the Inspiration Consolidated Copper Co. at Inspiration, Ariz., produced electrolytic copper direct from leaching solutions; all this copper was shipped as cathodes to other refineries for melting and casting into merchant shapes.

These 14 plants constitute what commonly are termed "primary refineries." The electrolytic plants, exclusive of that at Inspiration, had a rated capacity of 1,687,000 tons of refined copper a year and produced at 90 percent of capacity in 1957, the same as in 1956.

Five large electrolytic refineries were on the Atlantic seaboard; 3 lake refineries, on the Great Lakes; 4 electrolytic refineries, west of the Great Lakes (1 each at Great Falls (Mont.), Tacoma (Wash.),

TABLE 14.—Primary and secondary copper produced by primary refineries in the United States, 1948-52 (average) and 1953-57, in short tons

	1948-52 (average)	1953	1954	1955	1956	1957
Primary: From domestic ores, etc.: 1						
ElectrolyticLakeCasting	765, 738 24, 133 80, 236	826, 086 23, 671 82, 475	777, 507 22, 510 41, 700	883, 674 35, 387 78, 438	948, 732 57, 053 74, 422	945, 394 58, 814 46, 288
Total From foreign ores, etc.: ¹ Electrolytic	870, 107 261, 871	932, 232 353, 727	841, 717 353, 667	997, 499 320, 822	1, 080, 207 351, 768	1, 050, 496
Casting and best select Total refinery production	201, 871	7, 158	16, 535	24, 138	10, 658	372, 791 30, 889
of new copper	1, 131, 978	1, 293, 117	1, 211, 919	1, 342, 459	1, 442, 633	1, 454, 176
Electrolytic 2Casting	166, 738 14, 245	166, 802 22, 783	156, 764 23, 179	196, 386 10, 169	220, 340 13, 477	203, 073 8, 521
Total secondary	180, 983	189, 585	179, 943	206, 555	233, 817	211, 594
Grand total	1, 312, 961	1, 482, 702	1, 391, 862	1, 549, 014	1, 676, 450	1, 665, 770

¹ The separation of refined copper into metal of domestic and foreign origin is only approximate, as accurate separation is not possible at this stage of manufacture.

² Includes copper reported from foreign scrap.

TABLE 15.—Copper cast in forms at primary refineries in the United
States, 1955-57

	1955		1956	,	1957	
Form	Thousand short tons	Percent	Thousand short tons	Percent	Thousand short tons	Percent
Wirebars	963 109 162 141 158 16	62 7 11 9 10	1, 049 125 190 155 141 16	63 8 11 9 8 1	1, 028 170 165 152 136 15	62 10 10 9 8
Total	1, 549	100	1, 676	100	1, 666	100

COPPER 429

El Paso (Tex.), and Garfield (Utah)). The El Paso plant of the Phelps Dodge Refining Corp. and the Carteret plant of the American Metal Climax, Inc., produced fire-refined copper, in addition to the

electrolytic grade.

Copper Sulfate.—Shipments of copper sulfate increased 5 percent over 1956. Of the total shipments, producers' reports indicated that 15,700 tons (13,900 in 1956) was for agricultural uses, 20,800 (22,000) for industrial uses, and 33,800 (31,100) for other purposes, chiefly for export.

TABLE 16.—Production, shipments, and stocks of copper sulfate, 1948-52 (average) and 1953-57, in short tons

	Produ	etion	Shipments	Stocks at
Year	Gross weight	Copper content	(gross weight)	end of year 1 (gross weight)
1948-52 (average) 1953 1954 1955 1956 1957 1957 1957	92, 896 72, 944 65, 308 78, 088 66, 808 70, 680	23, 224 18, 236 16, 327 19, 522 16, 702 17, 670	93, 106 72, 188 66, 488 79, 112 67, 008 70, 256	6, 434 7, 072 5, 540 4, 852 4, 068 3, 828

¹ Some small quantities are purchased and used by producing companies, so that the figures given do not balance exactly.

SECONDARY COPPER AND BRASS 3

Domestic recovery of copper in unalloyed and alloyed form, from all classes of nonferrous scrap metals, totaled 825,000 short tons in 1957—11 percent lower than the 931,000 tons recovered in 1956 and the lowest since 1949, when 713,000 tons was reclaimed. Production of refined copper and of brass ingot by secondary smelters declined 8 and 10 percent, respectively; the secondary copper content of brassmill products dropped 14 percent, and the output of refined copper from secondary sources, by primary producers, decreased 10 percent.

Demand for copper scrap was weaker in 1957 than in 1956, but this did not result in an oversupply. The lower industrial activity reduced generation of process scrap; and low prices, together with high labor costs, curtailed old scrap-collection operations. Total copper-scrap consumption declined 10 percent in 1957 and affected nearly all items consumed. There were moderate increases in the use of No. 2 wire by secondary smelters, of low-grade scrap and residues by primary producers, and of low-brass scrap by brass mills. According to the Bureau of Census, shipments of brass-mill products decreased 12 percent to 974,000 tons.

Domestic consumption of brass and bronze ingot reported by foundries in 1957 decreased 26 percent. A total of 1,741 plants reported use of ingot and/or refined copper and scrap in 1957. Of these plants, 1,349 used brass ingot, 636 used scrap, and 454 used refined copper. In California 49 percent of the foundries reporting used scrap, in Pennsylvania 48 percent, in Ohio 37 percent, and in

Illinois 20 percent.

³ Prepared by Archie J. McDermid, commodity specialist.
⁴ Bureau of the Census, Facts for Industry, Shipments of Copper-Base Mill and Foundry Products: Fourth Quarter and Summary for 1957, ser. BDSAF-84-07, Apr. 22, 1958, p. 1.

Of the total copper-scrap consumption by foundries, 56,000 tons consisted of railroad-car boxes, distributed as follows:

	Short tons		Short tons
Indiana, Kansas, and Texas California, Colorado, Oregon, and Washington Florida, Georgia, Tennessee,	6, 943	Massachusetts, New York, and Pennsylvania Missouri Ohio	9, 629 7, 490 5, 813
and Virginia Illinois Minnesota and Wisconsin	10, 241 5, 924	Total	55, 636

TABLE 17.—Secondary copper produced in the United States, 1948-52 (average) and 1953-57, in short tons

	1948–52 (average)	1953	1954	1955	1956	1957 (pre- liminary)
Copper recovered as unalloyed copper Copper recovered in alloys i	231, 037 668, 693	242, 855 715, 609	212, 241 627, 666	246, 928 742, 076	273, 060 657, 604	248, 940 575, 964
Total secondary copper	899, 730	958, 464	839, 907	989, 004	930, 664	824, 904
From new scrapFrom old scrap	450, 333 449, 397	529, 076 429, 388	432, 841 407, 066	474, 419 514, 585	462, 175 468, 489	396, 627 428, 277
Percentage equivalent of domestic mine output	103	103	101	99	84	76

¹ Includes copper in chemicals, as follows: 1948–52 (average), 17,632; 1953, 21,550; 1954, 18,055; 1955, 15,898; 1956, 14,739; 1957, 14,240.

TABLE 18.—Copper recovered from scrap processed in the United States, by kind of scrap and form of recovery, 1956-57, in short tons

Kind of scrap	1956	1957 (pre- liminary)	Form of recovery	1956	1957 (pre- liminary)
New scrap: Copper-base Aluminum-base Nickel-base	456, 099 5, 727 311	390, 203 6, 013 232	As unalloyed copper: At primary plants At other plants	233, 817 39, 243	211, 594 37, 346
Zinc-base	38	179	Total	273, 060	248, 940
Total Old scrap: Copper-base Aluminum-base	462, 175 464, 623	396, 627 424, 445	In brass and bronze In alloy iron and steel In aluminum alloys In other alloys In chemical compounds	620, 779 2, 917 18, 784 385 14, 739	544, 394 2, 169 14, 833 328 14, 240
Nickel-base Lead-base Tin-base Zinc-base	2, 744 1, 038 5 33 46	2, 909 689 5 29 200	TotalGrand total	657, 604 930, 664	575, 964 824, 904
Total	468, 489	428, 277 824, 904	Grand Wal	000,001	021, 901

TABLE 19.—Copper recovered as refined copper, in alloys and in other forms, from copper-base scrap processed in the United States, 1956-57, in short tons

	From r	iew scrap	From	old scrap	Т	otal
	1956	1957 (pre- liminary)	1956	1957 (pre- liminary)	1956	1957 (pre- liminary)
By secondary smelters. By primary copper producers. By brass mills. By foundries and manufacturers. By chemical plants.	62, 493 105, 570 264, 446 21, 754 1, 836	52, 592 98, 910 222, 782 14, 686 1, 233	214, 703 135, 345 26, 090 83, 654 4, 831	202, 662 119, 251 26, 814 70, 699 5, 019	277, 196 240, 915 290, 536 105, 408 6, 667	255, 254 218, 161 249, 596 85, 385 6, 252
Total	456, 099	390, 203	464, 623	424, 445	920, 722	814, 648

TABLE 20.—Production of secondary copper and copper-alloy products in the United States, 1955-57, in short tons

						Gross	weight pro	duced
Item produced f	rom so	rap		. •		1955	1956	1957 (pre- liminary)
nalloyed copper products: Refined copper by primary produc Refined copper by secondary smelt Copper powder ! Copper castings. Total.	ers					206, 555 29, 762 9, 138 1, 473 246, 928	233, 817 27, 382 9, 337 2, 524 273, 060	211, 59 25, 31: 7. 34: 2, 06: 246, 31:
Item produced from scrap			nal con percen		on			
Item produced nom scrap	Cu	Sn	Pb	Zn	Ni			
rass and bronze ingots (gross weight): Tin bronze Leaded tin bronze Leaded semired brass High-leaded tin bronze Do Do Leaded yellow brass Nickel silver Do Low brass Conductor bronze Manganese bronze Aluminum bronze Silicon bronze Silicon bronze Copper-base hardeners and miscells	90Cu 92Cu meous	, 40Zn, , 10Al, , +Si, alloys	±Mn, ±Mn, ±Zn, F	30 18 5 20 2 Al, etc Zn, Fe'e, Al,	14 22 22 2, etcMn	14, 911 20, 129 115, 888 69, 844 21, 446 6, 928 6, 889 25, 062 3, 230 4, 012 1, 031 13, 840 5, 137 4, 677 12, 884 335, 908	17, 803 20, 816 104, 698 58, 054 22, 915 20, 311 5, 742 18, 834 4, 107 3, 272 760 15, 483 6, 421 4, 888 12, 896	15, 72 18, 25; 91, 79 57, 09 19, 26 16, 87; 4, 09 16, 81 3, 63 2, 48 6, 99 15, 77 5, 90 4, 24 11, 58
Total Brass-mill products Brass and bronze castings Brass powder Copper in chemical products.						470, 780 105, 670	383, 057 102, 806 1, 027 14, 739	329, 95 84, 99 2, 62 14, 24
Grand total						1, 176, 899	1, 091, 689	962, 38

¹ Includes black-copper shipments.

TABLE 21.—Composition of secondary copper-alloy production, 1955-57, gross weight in short tons

Year	Copper	Tin	Lead	Zinc	Nickel	Alumi- num	Total
	BRASS- AN	D BRONZE-	INGOT PRO	DUCTION 1			
1955 1956 1957 (preliminary)	259, 384 248, 828 224, 703	16, 670 14, 703 12, 828	21, 481 20, 240 17, 425	37, 896 32, 639 28, 737	411 526 493	66 64 61	335, 908 317, 000 284, 247
SECON	DARY META	AL CONTEN	r of brass	-MILL PROD	UCTS		
1955 1956 1957 (preliminary)	356, 489 290, 552 249, 597	119 94 94	4, 059 3, 359 3, 167	108, 095 87, 349 75, 597	1, 948 1, 627 1, 406	70 76 95	470, 780 383, 057 329, 956
SECONDA	RY METAL C	CONTENT OF	BRASS AN	D BRONZE	CASTINGS		
1955	81, 168 80, 540 66, 081	4, 857 4, 666 3, 926	13, 005 11, 602 10, 166	6, 413 5, 795 4, 699	62 51 34	165 152 92	105, 670 102, 806 84, 998

¹ About 95 percent secondary metal and 5 percent primary metal.

TABLE 22.—Stocks and consumption of new and old copper scrap in the United States in 1957 (preliminary), gross weight in short tons

	Stocks,	Rece	ipts		Consu	mption		
Class of consumer and type of scrap	begin- ning of year	Pur- chased	Ma- chine-	Р	urchased s	crap	Ma- chine-	Stocks, end of year
		scrap	shop scrap	New	Old	Total	shop scrap	
Secondary smelters: No. 1 wire and heavy cop-								
No. 2 wire, mixed heavy.	2, 600	37, 802		3,526	34, 023	37, 549		2, 853
Composition or red brass Railroad-car boxes	3,001 4,009 41	45, 693 86, 350 344		1,759 31,889 2	43, 427 54, 217 295	45, 186 86, 106 297		3, 508 4, 253 88
Yellow brass Cartridge cases Auto radiators (unsweated)	5, 343 76 3, 041	61, 555 1, 804 46, 562		9, 212	52, 161 1, 618 46, 583	61, 373 1, 621 46, 583		5, 525 259 3, 020
Bronze Nickel silver Low brass	1,574 453	28, 435 3, 582		9, 664 751	18, 421 2, 690	28, 085 3, 441		1, 924 594
Aluminum bronze	339 181	3, 048 463		1, 909 64	1, 216 344	3, 125 408		262 236
dues	5,717 26,375	41, 247 356, 885		22, 899 81, 678	16, 791	39, 690		7, 274
Primary producers:	20, 313	=======================================		01,078	271, 786	353, 464	====	29, 796
No. 1 wire and heavy cop- per	1,401	47, 064		21, 504	26, 296	47, 800		665
and light copper Refinery brass Low-grade scrap and resi-	4, 921 3, 017	101, 208 27, 507		55, 424 8, 400	47, 716 20, 712	103, 140 29, 112		2, 989 1, 412
dues	53, 881	145, 505		59, 487	108, 645	168, 132		31, 254
Total	63, 220	321, 284		144, 815	203, 369	348, 184		36, 320
Brass mills: 1 No. 1 wire and heavy copper No. 2 wire, mixed heavy,	3, 857	61, 222		48, 067	13, 155	61, 222		4, 633
and light copper Yellow brass	4, 290 24, 452	26, 644 166, 827		24, 526 163, 589	2, 118 3, 238	26, 644 166, 827		1, 798 22, 037
See footnote at end of tab	le.							

TABLE 22.—Stocks and consumption of new and old copper scrap in the United States in 1957 (preliminary), gross weight in short tons—Continued

	1	Rec	eipts]	Cons	umption		<u> </u>
Class of consumer and type of scrap	Stocks, begin-	·	T			-	T	Stocks,
type of scrap	ning of year	Pur- chased scrap	Ma- chine- shop		Purchased	T	Ma- chine- shop	end of year
			scrap	New	Old	Total	scrap	
Brass mills: —Continued Cartridge cases and brass Bronze Nickel silver Low brass Aluminum bronze Mixed alloy scrap	1, 272 2, 202 2, 722 355 3, 206	41, 807 1, 698 6, 416 22, 706 934 6, 894		1, 449 6, 350 21, 883 934	249 66 823	1, 698 6, 416 22, 706 934		1,028 2,119 2,760 248
Total 1	45, 861	335, 148		302, 978	32, 170	335, 148		39, 997
Foundries, chemical plants and other manufacturers: No. 1 wire and heavy cop-								
No. 2 wire, mixed heavy.	2, 547	18,988	432	5, 592	13, 894	19, 486	270	2, 211
and light copper Composition or red brass Railroad-car boxes Yellow brass Auto radiators (unsweated)	3, 152 3, 117 1, 743 110	11, 022 5, 263 56, 076 11, 447 5, 256	9, 273 2, 037 6, 040	5, 400 1, 590 3, 208	6, 279 4, 857 55, 636 7, 411 5, 236	11, 679 6, 447 55, 636 10, 619 5 236	9, 712 2, 036 6, 173	1, 232 1, 529 3, 558 2, 438 130
Bronze Nickel silver Low brass Aluminum bronze	1, 014 42 153	4,354 48 752	2, 889 224 696	951 10 12	2, 995 43 802	5, 236 3, 946 53 814	2,859 205 624	1, 452 56 163
Low-grade scrap and residues	248 724	790 6, 526	517 1, 453	177 2, 261	581 3, 392	758	510	287
Total	14, 744	120, 522		219, 201	2 101, 126	5, 653 2 120, 327	1, 405 23, 966	1, 645
Grand total: 3			=====	10,201	101,120	- 120, 021	20, 900	14, 701
No. 1 wire and heavy cop- per	10, 405	165,076	432	78, 689	87, 368	166, 057	270	10, 362
and light copper Composition or red brass Railroad-car boxes Yellow brass	14, 106 7, 161 3, 158 31, 538	184, 567 91, 613 56, 420 239, 829	167 9, 273 2, 037 6, 040	87, 109 33, 479 2 176, 009	99, 540 59, 074 55, 931 62, 810	186, 649 92, 553 55, 933 238, 819	172 9, 712 2, 036 6, 173	9, 527 5, 782 3, 646 30, 000
Cartridge cases and brass_ Auto radiators (unsweated) Bronze Nickel silver	3, 581 3, 151 3, 860	43, 611 51, 818 34, 487	2, 889	29, 289 12, 064	14, 139 51, 819 21, 665	43, 428 51, 819 33, 729	2,859	1, 894 3, 150 4, 404
Low brassAluminum bronze	2, 697 3, 214 784	10, 046 26, 506 2, 187	224 696 517	7, 111 23, 804 1, 175	2, 799 2, 841 925	9, 910 26, 645 2, 100	205 624 510	2, 769 3, 185 771
Low-grade scrap and residues 4	3, 206	220, 785 6, 894	1, 453	93, 047 6, 894	149, 540	242, 587 6, 894	1, 405	41, 585 3, 739
Total 3	150, 200	1, 133, 839	23, 728	548, 672	608, 451	1, 157, 123	23, 966	120, 814

¹ Brass-mill stocks include home scrap; purchased scrap consumption assumed equal to receipts, so lines in brass-mill and grand total sections do not balance.

² Of the totals shown, chemical plants reported the following: Unalloyed copper scrap, 1,114 tons of new and 3,934 old; copper-base alloy scrap, 1,261 tons of new and 3,387 old.

³ Includes machine-shop scrap receipts and consumption for foundries, chemical plants, and other manufacturers manufacturers.
4 Includes refinery brass.

TABLE 23.—Consumption of copper and brass materials in the United States, 1956-57, by principal consuming groups, in short tons

Titen consumed Producers Brass mills Wire mills Cellaneous minor users Smelter minor users Smelt						
Copper scrap 370, 946 388, 738 135, 933 384, Refined copper 1 611, 098 864, 585 36, 294 7, Brass ingot 7, 670 731 2305, 049 5, 304 6,	Item consumed		Brass mills	Wire mills	and mis- cellaneous minor	Secondary smelters
Miscellaneous. 348 302 15,	Copper scrap	370, 946	611, 098 7, 670 111, 778		36, 294 2 305, 049 5, 304	384, 780 7, 654 6, 922 15, 267
1957 (preliminary)						-
Copper Scrap————————————————————————————————————	Copper scrap	348, 184	335, 148 533, 954		30, 873	353, 464 7, 876
Brass ingot 6, 757 734 281, 472	Brass ingot		6, 757	734	² 281, 472	6, 938
						14, 041

Detailed information on consumption of refined copper will be found in table 27.
Shipments to foundries by smelters plus decrease in stocks at foundries.

TABLE 24.—Foundry consumption of brass ingot by types, refined copper, and copper scrap, in the United States in 1957 (preliminary), by geographic divisions and States, in short tons

-	•	0										
Geographic division and State	Tin bronze	Leaded tin • bronze	Leaded red brass	High- leaded tin bronze	Leaded yellow brass	Man- ganese bronze	Hard- eners	Nickel silver	Low	Total brass ingot	Refined copper consumed	Copper scrap consumed
New England: Connecticut. Maine. Massedurestis. New Hampshire. Rhode Island and Vermont.	181 17 871 8 2 2	1, 220 23 1, 368 18 62	2, 576 134 3, 409 418 865	371 84 463 114 23	2, 037 1 56 383 12	100 53 384 59 16	7 13 22 1 1	10 164 176	482 245 75	6, 984 325 6, 982 1, 252 1, 548	1, 336 488 }	1,057 1,080 23
Total	1, 104	2, 691	7,402	1,055	2, 489	612	49	350	1,339	12,091	1,968	2, 160
Middle Atlantic: New Jersey New York. Pennsylvania	938 933 2, 689	2, 517 2, 517 3, 361	3, 809 8, 537 14, 520	1, 893 1, 104	233 248 995	581 812 2, 721	22 95 255	103 130 205	29 1, 247 1, 386	6, 762 16, 412 27, 236	709 1,954 7,433	4, 168 6, 565 15, 456
Total.	4, 560	6, 401	26, 866	3, 521	1, 476	4, 114	372	438	2,662	50, 410	10,096	26, 189
East North Central: Illinois. Indiana. Indiana. Michigan. Ohlo. Wisconsin.	871 359 798 1, 589 564	1,773 135 260 5,554 878	15, 578 9, 746 9, 456 16, 310 6, 043	1, 201 732 312 8, 154 1, 895	135 42 776 214 890	495 109 688 845 309	48 45 45 81 195 116	313 30 30 5 260 260 913	572 15 199 645 202	20, 986 11, 213 12, 575 33, 766 11, 810	501 1, 149 4, 187 4, 925 4, 419	8, 182 5, 623 10, 788 2, 630
Total	4, 181	8, 600	57, 133	12, 294	2,057	2, 446	485	1, 521	1, 633	90, 350	15, 181	29, 617
West North Central: Iowa. Kansas. Minnesota. Missouri. Nebraska and South Dakota.	26 64 721 74 74	27 3 35 41 1	1, 778 248 1, 425 1, 424 1, 624	61 12 269 269 173	1 76 30 606 144	139 19 31 70 5	8 9	49 3 3 1	254 507	2,089 430 2,774 2,898 2,898	451 75 445 8	48 2, 349 3, 194 10, 288
Total	- 911	101	4,983	515	857	264	16	92	766	8, 475	626	15, 896
							Ī		-	-		

	<u>:</u>	Leaded	Leaded	High-	Leaded	Man-	How'd	Michel	1	Total	Refined	Copper
Geographic division and State b	Tin	tin bronze	red brass	leaded tin bronze	yellow	ganese	eners	Nickel	brass	brass ingot	consumed	scrap
	15	14	601	#	4.0	17	-			662		305
	. 25:32 . 25:33	593 90 24 226	150 150 796 988 988	185 164 343	47 85 142 460	182208	10	94	14 16 5	1, 124 1, 259 1, 259	294 294 436 213	1, 158 643 118 9, 069
	675	947	5, 770	846	751	240	20	16	48	9, 394	1, 127	11, 445
<u> </u>	112	310 63	1,274	76	4, 556	110	2	35	336	2, 152 5, 037	503	227
 	22	324	888	088	15	37	∞			2, 229		4,720
	06	269	2, 332	1, 191	4, 571	151	10	35	348	9, 425	203	5,024
	88	21	83	19	7	42	1		6	245		440
 	84	103	3, 769	296	71	388	14	32	171	4,928	268	2,846
	147	124	3,852	315	28	430	15	32	180	5, 173	268	3, 319
	105	31 10	122	121	6160	19	1	Ħ	19	367	56 258	1,644
	105	41	190	22	2	74	1	11	27	476	314	2,084
<u> </u>	580	546	6,942	547	921	265	42	21	141	9, 714	169	12,008
	8	œ	51	36		8	1			112	215	1, 485
	297	554	6,993	583	921	273	43	21	141	9,826	437	14, 897
 	12,070	20, 162	115, 521	20, 342	13, 205	8,604	1,011	2, 561	7, 144	200, 620	30,873	110, 631

TABLE 25.—Dealers' monthly average buying prices for copper scrap and consumers' alloy-ingot prices at New York in 1957, in cents per pound

-	[Metal	Statistics.	10591
	INTERNI	otausucs.	TAUDI

	Jan.	Feb.	Mar.	Apr.	Мау	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Aver- age
No. 1 Heavy Copper Scrap No. 1 Composition													20.09
Scrap No. 1 Composition													19. 11
Ingot	34. 6 8	31. 56	31. 50	31. 50	3 0. 95	30.15	29. 50	29. 26	27.45	27. 23	27. 19	27. 25	29.85

CONSUMPTION

Apparent consumption of primary copper, which includes deliveries to the national strategic stockpile, when there are any, decreased 9 percent in 1957.

TABLE 26.—New refined copper withdrawn from total year's supply on domestic account, 1953-57, in short tons

	1953	1954	1955	1956	1957
Production from domestic and foreign ores, etc. Imports ¹ Stock at beginning of year ¹	1, 293, 117 274, 111 26, 000	1, 211, 919 215, 086 49, 000	1, 342, 459 202, 312 25, 000	1, 442, 633 191, 745 34, 000	1, 454, 176 162, 309 78, 000
Total available supply	1, 593, 228	1, 476, 005	1, 569, 771	1, 668, 378	1, 694, 485
Copper exported ¹ Stock at end of year ¹	109, 580 49, 000	215, 951 25, 000	199, 819 34, 000	223, 103 78, 000	346, 025 109, 000
Total	158, 580	240, 951	233, 819	301, 103	455, 025
Apparent withdrawals on domestic account 2	1, 435, 000	1, 235, 000	1, 336, 000	1, 367, 000	1, 239, 000

May include some copper refined from scrap.
 Includes copper delivered by industry to the national strategic stockpile.

Actual consumption of refined copper in 1957 was 11 percent below that in 1956. Consumption in the first and second quarters of the year averaged 118,000 and 118,800 tons per month, respectively. Vacations at fabricators in July and the decrease in demand in consumers' activities resulted in a drop to a monthly average of 101,700 tons in the third quarter; consumption then rose to 111,500 tons in the last 3 months of 1957.

Distribution of consumption by principal consuming groups followed the pattern of recent years, with wire mills using 57 percent and brass mills 40 percent of the total consumed in 1957 (1956 percentages were identical). Unlike table 26, in which all but new copper is eliminated so far as possible, table 27 does not distinguish between new and old copper but lists all copper in refined form.

Some copper precipitates were used directly in manufacturing paint and other items. The figures may not be shown separately and are not covered by table 27, which relates to refined copper only.

TABLE 27.—Refined copper consumed in 1955-57, by classes of consumers, in short tons

Class of consumer	Cathodes	Wire bars	Ingots and ingot bars	Cakes and slabs	Billets	Other	Total
Wire mills Brass mills Chemical plants Secondary smelters Foundries Miscellaneous 1 Total	4, 768 4, 063 1, 403	791, 816 63, 394 58 131 855, 399	11, 797 133, 710 564 1, 213 13, 004 4, 079	200, 012 469 3 318 200, 802		45 1, 180 377 139 9, 940	812, 663 647, 044 1, 744 6, 827 17, 478 16, 248
1956 Wire mills Brass mills Chemical plants Secondary smelters Foundries Miscellaneous	1	838, 476 72, 716 76 85	16, 415 102, 451 559 1, 411 13, 341 5, 532	177, 583 207 3 402	166, 426 237 538	35 1, 199 434 143 8, 933	864, 585 611, 098 1, 758 7, 654 18, 980 17, 314
Total	114, 187	911, 353	130, 709	178, 195	167, 201	10, 744	1, 521, 389
Wire mills. Brass mills. Chemical plants. Secondary smelters. Foundries. Miscellaneous ¹ Total	5, 197 4, 113 1, 905	751, 815 57, 399 	15, 406 76, 046 708 1, 839 12, 177 2, 285	158, 344 212	154	772 628	773, 632 533, 954 1, 480 7, 876 16, 999 13, 874 1, 347, 815

Includes iron and steel plants, primary smelters producing alloys other than copper, consumers of copper powder and copper shot, and miscellaneous manufacturers.

Figures on apparent consumption of primary copper are available for a long period, whereas compilations on the actual consumption of refined copper were begun in 1945. In estimating apparent consumption it has been assumed that copper used in primary fabrication of copper is consumed. Although table 26 aims to show primary consumption only, it should be noted that exports and stocks, as well as the import component of "total supply," doubtless include some refined secondary copper that cannot be determined separately. Actual consumption of new copper would also differ from the figures shown in the table by changes in consumers' stocks.

STOCKS

Producers' stocks of refined and unrefined copper rose 13 percent in 1957. These stocks rose in February and, except for slight declines in April, September, and November, continued to increase throughout the year. Refined stocks increased 40 percent over 1956 and were the largest since 1945. Inventories of unrefined copper were 5 percent higher. Of the total stocks at the end of 1957, 28 percent was in the form of refined copper, and the remainder consisted of smelter shapes in inventory at smelters, in transit to refineries, and smelter shapes and materials in process of refining at refineries.

Figures compiled by the Copper Institute show that domestic stocks of refined copper increased from 120,645 tons to 181,024 in

439 COPPER

TABLE 28.—Stocks of copper at primary smelting and refining plants in the United States at end of year, 1952-57, in short tons

Year	Refined copper ¹	Blister and materials in process of refining ²	Year	Refined copper 1	Blister and materials in process of refining 2
1952 1953	26, 000 49, 000 25, 000	185, 000 223, 000 189, 000	1955 1956 1957	34, 000 78, 000 109, 000	201, 000 261, 000 274, 000

May include some copper refined from scrap.
 Includes copper in transit from smelters in the United States to refineries therein.

TABLE 29.—Stocks of copper in fabricators' hands at end of year, 1953-57, in short tons

[United States Copper Association]

Year	Stocks of refined copper 1	Unfilled purchases of refined copper from pro- ducers	Working stocks	Unfilled sales to customers	Excess stocks over orders booked 2
	(1)	(2)	(3)	(4)	(5)
1963 1964 1965 1965 1966	380, 881 360, 526 389, 974 437, 187 430, 171	25, 022 58, 125 139, 094 117, 601 75, 627	309, 664 304, 619 314, 145 336, 217 347, 465	170, 917 136, 581 293, 264 183, 834 138, 631	-74, 678 -22, 549 -78, 341 34, 737 19, 702

¹ Includes in-process metal and primary fabricated shapes. Also includes small quantities of refined copper held at refineries for fabricators' account.

² Columns (1) plus (2) minus (3) and minus (4) equals column (5).

1957. Inventory data of the Bureau of Mines and Copper Institute always differ, owing to somewhat different bases. Before 1947 a principal reason was that Copper Institute coverage was limited to duty-free copper. After January 1, 1947, all copper was included by the Copper Institute, and differences were reduced chiefly to the method of handling metal in process of refining (included as "refined" by Copper Institute and as "unrefined" by the Bureau of Mines) and to other minor variations in interpretation until May 1951, when the institute's inventory data began to include tonnages delivered to United States consumers at foreign ports. Bureau of Mines figures are on the basis of metal physically held at primary smelting and refining plants in the United States. In the Bureau of Mines classification cathodes to be used chiefly for casting into shapes are considered stocks in process and not refined stocks.

Fabricators' stocks of refined metal (including in-process copper and primary fabricated shapes), according to the United States Copper Association, were 430,200 tons at the end of 1957 (a 2-percent decrease over those on hand at the beginning of the year). Working stocks (see table 29) were 347,500 tons (3 percent more than at the end of 1956). Fabricators' inventory position improved during the year, and for the second successive year there was no deficit in stocks. After the unfilled sales of metal were accounted for, copper classed as "available for sale" was 19,700 tons at the close of 1957, compared

with 34,700 tons at the end of 1956.

PRICES

Reports from copper-selling agencies indicate that 1,119,500 tons of domestic refined copper was delivered to purchasers at an average price of 30.1 cents a pound. The average price of foreign copper

delivered in the United States was 29.6 cents a pound.

Copper prices were subject to frequent changes during 1957, both in the United States and abroad. At the beginning of the year domestic primary producers were quoting 36 cents per pound for electrolytic copper, delivered. Early in February the principal producers lowered their price to 34 cents and still later in the month to 32 cents. Effective June 20, all primary producers were quoting 29.25 cents. On August 6 and August 8 the price was dropped to 28.5 cents and on September 3 to 27 cents, where it remained beyond the end of 1957. The total drop in price was 19 cents from the high of 46 cents in effect from February 17, 1956, to July 10, 1956, a decrease of 41 percent.

TABLE 30.—Average weighted prices of copper deliveries,1 f. o. b. refinery,2 1953-57, in cents per pound

Year	Domestic copper	Foreign copper	Year	Domestic copper	Foreign copper
1953 1954 1955	28. 7 29. 5 37. 3	34. 1 29. 4 37. 5	1956 1957	42. 5 30. 1	43. 2 29. 6

¹ Covers copper produced in the United States and delivered here and abroad and copper produced abroad and delivered in the United States; excludes copper both produced and delivered abroad, whether or not handled by United States selling agencies.

1 In 1953 a substantial quantity of copper was sold on a delivered consumers' plant basis; beginning in 1954 all deliveries were made on that basis, and the delivered price is reflected in averages shown.

Quotations by domestic custom smelters declined persistently throughout 1957, except for recoveries of ½ cent and 1 cent for a few short periods. Early in January the market was quoted at a range of 35-36 cents per pound, delivered; 2 reductions late in the month brought the price to 34 cents; and 3 reductions in February resulted in a 31-cent price by February 20. On March 25 a custom smelter reduced its price to 30.5 cents, but on March 27 and 28, the price advanced, and the market was quoted at a range of 30.75-31.00 cents; on April 1 the customer-smelter market was at a flat 31.5 cents. The price was lowered to 31 cents on April 12, to 30.5 cents on May 3, and to 30 cents on May 9. Following the reduction in the primary producers' price in June, custom smelters lowered their price to 29 cents. Additional price cuts in July resulted in a price of 28.25 cents by July 19 (1 cent per pound below the price of the primary pro-Custom smelters continued to lower their price during August, and on September 9 were quoting 25 cents—the lowest since the period October 2, 1950, to February 24, 1953, when the price was 24.5 cents. Two ½-cent-per-pound advances on September 12 and 13 raised the price to 26 cents, but on October 15 it was lowered to 25.5 cents. On November 6 the price rose to 26 cents, on November 13 it dropped to 25.5 cents, and on November 21 it declined to 25 cents. An increase of ½ cent per pound on December 13 raised the price to 25.5 cents, and it was unchanged at the end of 1957.

TABLE 31.—Average yearly quoted prices of electrolytic copper for domestic and export shipments, f. o. b. refineries, in the United States, 1948-57, in cents per pound

	1948	1949	1950	1951	1952	1953	1954	1955	1956	1957
Domestic f. o. b. refinery 1 Domestic f. o. b. refinery 2 Export f. o. b. refinery 2	22, 038	19, 202	21.235	24.200	24. 200	28. 92 28. 798 30. 845	26, 694	37.491	41. 88 41. 818 40. 434	29.576

TABLE 32.—Average monthly quoted prices of electrolytic copper for domestic and export shipments, f. o. b. refineries, in the United States, 1956-57, in cents per pound

January February April June July August f.	o. b. nery ¹	Domestic f. o. b. refinery ²	Export f. o. b. refinery 2	Domestic f. o. b. refinery 1	Domestic f. o. b. refinery 2	Export f. o. b.
February March April June July August August						refinery 2
September	42. 87 43. 90 45. 87 45. 87 45. 87 41. 59 39. 87 39. 87 39. 15 35. 87 35. 87	43. 749 44. 588 46. 728 46. 161 45. 531 45. 056 40. 807 39. 625 39. 597 38. 623 35. 696 35. 649	45. 562 45. 822 48. 532 46. 964 43. 118 40. 260 36. 002 37. 667 37. 511 35. 431 34. 466 33. 876	35. 82 33. 05 31. 82 31. 82 30. 72 29. 07 28. 46 26. 82 26. 82 26. 82 26. 82	35. 526 32. 576 31. 452 31. 517 31. 288 30. 334 28. 690 28. 098 26. 435 26. 339 26. 339 26. 320	33. 337 30. 553 29. 555 29. 775 29. 448 28. 410 26. 727 25. 694 23. 926 22. 931 23. 109 22. 418

TABLE 33.—United Kingdom monthly average prices in 1957 1

			Cash		3 months					Settlement		
Month	Per long ton		Cents	Per long ton		Cents	Per l	ong	ton	Cents per		
	£	s.	d.	pound 2	£	s.	d.	pound 2	£	s.	d.	pound 3
January February March April May June July August September October November December	265 245 239 241 237 227 217 208 193 186 187 181	17 11 10 19 17 2 10 12 18 9 18	11 2 11 2 5 8 12 3 8 8 7 8	33. 19 30. 67 29. 87 30. 12 29. 64 28. 29 27. 08 25. 92 24. 11 23. 31 23. 51 22. 73	264 244 239 242 238 228 219 210 197 190 191 185	14 2 2 15 1 16 11 12 5 0 17	4 0 9 9 2 2 9 7 1 9 9 5 5	33. 04 30. 49 29. 82 30. 23 29. 66 28. 50 27. 33 26. 17 24. 53 23. 75 24. 01 23. 26	266 245 239 242 238 227 217 208 194 186 188 181	3 16 14 2 0 5 14 15 3 14 3	2 3 6 0 3 9 9 9 4 7 4	33. 22 30. 71 29. 89 30. 14 29. 66 28. 31 27. 10 25. 94 24. 14 23. 34 23. 54 22. 75
Average	219	8	10	27. 36	221	0	3	27. 56	219	12	10	27. 39

¹ American Metal Market.
2 E&MJ Metal and Mineral Markets.

¹ American Metal Market.
2 E&MJ Metal and Mineral Markets.

Metal Bulletin (London).
 Based on average monthly rates of exchange by Federal Reserve Board.

⁴⁸⁶²²¹⁻⁵⁸⁻²⁹

London Price.—Quotations on the London Metal Exchange (LME) opened the year at £266 10s. per long ton (equivalent to 33.3 cents per pound). It rose to £273 (34.125 cents) on January 9 and dropped to £175 10s. (21.9 cents) on December 11—the lowest since June 5, 1950, when the Government-controlled price was £170. The LME

price closed the year at £180 (22.5 cents).

Effective February 1 the Rhodesian Selection Trust (RST) price was reduced to £250 per long ton c. i. f. London (31.25 cents per pound) from £270 (33.75 cents) established on December 17, 1956. On February 19 the price was quoted at £240 (30 cents) which held until June 17 when it dropped to £230 (28.75 cents). It was further reduced to £220 (27.5 cents) on July 1, and to £210 (26.25 cents) on August 12. Two reductions occurred in September—on September 5 to £200 (25 cents) and on September 9 to £190 (23.75 cents). The RST Group announced that, effective October 7, it would price copper on the LME price basis. The group had established its fixed-price basis on May 9, 1955, and the changeover to the LME basis ended the dual pricing for Rhodesian copper that had been in effect for more than 2 years.

FOREIGN TRADE 5

Imports.—Imports of unmanufactured copper in 1957 were virtually unchanged from 1956. Chile continued to be the chief source of supplies from abroad and supplied 40 percent of the total—the same as in 1956. Increased receipts from Rhodesia, the Philippines, Cyprus, and Cuba nearly equaled the smaller imports from Mexico, Australia, Belgian Congo, and Peru.

Although Canada was the chief supplier of refined copper for the third successive year, shipments to the United States dropped 6 percent. Receipts from Chile and Peru decreased 76 and 11 percent, respectively, whereas those from Rhodesia more than doubled the

1956 imports.

Imports of unrefined copper rose 7 percent, chiefly because of a 16-percent increase in receipts from Chile. Canada, Cuba, Peru, and the Philippines sent more unrefined metal, but Mexico and Union of South Africa shipped smaller quantities. Much of the foreign copper that entered the country was later exported in refined or manufactured forms. United States smelters and refineries continued in 1957

to treat foreign crude materials, both purchased and toll.

Exports.—Most of the copper exported from the United States was in the form of refined copper and in advanced forms of manufacture in which the copper content is not calculable. As indications that supply exceeded requirements became more pronounced during the year, the Bureau of Foreign Commerce announced relaxations on export controls. Exports of refined copper in 1957 rose 55 percent to 346,000 tons, the largest since 1940. More than half of the total exported went to European countries—United Kingdom, France, Germany, Italy, and Switzerland. Shipments to Japan represented 14 percent of the United States exports and were 58 percent greater than the quantity shipped in 1956. Exports of old and scrap almost doubled those in 1956 and went mainly to Japan and Germany.

⁵ Figures on imports and exports compiled by Mae B, Price and Elsie D. Jackson, Division of Foreign Activities, Bureau of Mines, from records of the U. S. Department of Commerce, Bureau of the Census.

TABLE 34.—Copper (unmanufactured) imported into the United States, 1948-52 (average) and 1953-57, in short tons, in terms of copper content ¹

		Bureau	of the Cen	susj			
	Ore	Concen- trates	Regulus, black, or coarse copper and cement copper	Unrefined, black, blis- ter, and converter copper in pigs or con- verter bars	Refined in ingots, plates, or bars	Old and scrap cop- per fit only for remanu- facture, and scale and clippings	Total
1948-52 (average) ² 1953 ² 1954 ² 1955 ²	4, 569 6, 997 5, 343 8, 132	98, 003 106, 574 107, 438 109, 497	3, 185 7, 019 5, 795 7, 898	167, 310 273, 610 256, 484 253, 693	285, 646 274, 111 215, 086 202, 312	12, 998 7, 793 4, 683 12, 568	571, 711 676, 104 594, 829 594, 100
1956							
North America: Canada Cuba Mexico Other North America	292 354 447 5	22, 857 15, 040 6, 482 (3)	1, 581 4, 017 3	1, 038 37, 411	93, 525 4, 033	1, 196 951 445 663	120, 489 16, 345 52, 835 671
Total	1,098	44, 379	5, 601	38, 449	97, 558	3, 255	190, 340
South America: Bolivia	1, 417 3, 307 3, 146 18	3, 066 15, 404 8, 226 444	17 1, 174	175, 889 14, 294	41, 915 16, 001	108	4, 500 236, 623 42, 841 772
Total	7, 888	27, 140	1, 191	190, 183	57, 916	418	284. 736
Europe: Belgium-Luxembourg France Germany, West					769 2, 738	31 991 6	800 991 2, 744
France. Germany, West. Malta, Gozo, and Cyprus Netherlands. Norway. Sweden United Kingdom.		6, 945			1 5, 969 224 3, 348 138	10 30 8	6, 945 11 5, 969 254 3, 356 138
Yugoslavia Total		6, 945			13, 187	1,076	21, 208
Asia: Philippines Turkey Other Asia	11	10,896	4	5, 586	799		10, 911 5, 586 811
Total	23	10, 896	4	5, 586	799		17, 308
Africa: Belgian CongoRhodesia and Nyasa-				4, 345	8, 419		12, 764
land, Federation of Union of South Africa Other Africa	7, 907	7, 321	9	13, 452 6, 054 1, 085	13, 866		27, 562 21, 291 1, 085
TotalOceania: Australia	7, 907 543	7, 565 479	9 506	24, 936 16, 931	22, 285	994	62, 702 19, 453
Grand total	17, 459	97, 404	7, 311	276, 085	191, 745	5, 743	595, 747
1957							
North America: CanadaCubaMexico Other North America	.] 165	27. 637 15. 846 3, 659	1, 070 3, 318 3	37, 574	87, 482 2, 924	3, 160 585 107 540	120, 182 17, 435 47, 747 543
Total	2, 002	47, 142	4, 391	37. 574	90, 406	4, 392	185, 907
South America: Argentina Bolivia	13 1, 513	105 2, 937					309 4, 463

See footnotes at end of table.

TABLE 34.—Copper (unmanufactured) imported into the United States, 1948-52 (average) and 1953-57, in short tons, in terms of copper content ¹—Continued

	Ore	Concentrates	Regulus, black, or coarse copper and cement copper		Refined in ingots, plates, or bars	Old and scrap cop- per fit only for remanu- facture, and scale and clippings	Total
South America—Continued Chile Peru Other South America	1, 609 3, 636 11	15, 678 8, 027	79 1, 253	208, 460 14, 486	10, 190 14, 224	666	236, 016 41, 626 677
Total	6, 782	26, 747	1, 536	222, 946	24, 414	666	283, 091
Europe: Belgium-Luxembourg Germany, West Malta, Gozo, and Cy prus Sweden		8, 937			447 2, 545 2, 688	7	447 2, 552 8, 937 2, 689
United Kingdom Other Europe	L	1	i -		2, 413	682	2, 415 1, 298
Total		8, 937		616	8, 093	692	18, 338
Asia: Philippines Turkey Other Asia	21	13, 053	7	3, 496	(3)	1	13, 067 3, 496 22
Total	28	13, 053	7	3, 496	(3)	1	16, 585
Africa: Belgian Congo Rhodesia and Nyasa- land, Federation of Union of South Africa	9, 243	75 3, 838	2	16, 728 5, 744	10, 221 28, 055 1, 120		10, 221 44, 860 19, 945
Total	9, 243	3, 913	2	22, 472	39, 396		75, 026
Oceania: Australia Other Oceania	773		224	14, 078		(3) 5	15, 075
Total	773		224	14, 078		5	15, 080
Grand total	18, 828	99, 792	6, 160	301, 182	162, 309	5, 756	594, 027

¹ Data are "general" imports: that is, they include copper imported for immediate consumption plus material entering the country under bond.

² Some copper in "Ore" and "Other" from Republic of the Philippines is not separately classified and is included with "Concentrates."

³ Less than 1 ton.

TABLE 35.—Copper (unmanufactured) imported into the United States, 1948-52 (average) and 1953-57 1

Year	Contained copper (short tons)	Year	Contained copper (short tons)
1948-52 (average)	571, 711	1955	594, 100
1953	676, 104	1956	595, 747
1954	594, 829	1957	594, 027

¹ Data are "General" imports; that is, they include copper imported for immediate consumption plus material entering the country under bond.

TABLE 36.—Copper (unmanufactured) imported into the United States, 1948-52 (average) and 1953-57, by countries, in short tons, in terms of copper content 1

[Bureau of the Census] 1948-52 1953 1954 1955 1956 1957 Country (average) North America: Canada (including Newfoundland 120, 489 16, 345 52, 835 and Labrador) 69, 788 19, 449 56, 784 107, 427 18, 206 65, 818 89, 911 18, 282 51, 229 107, 034 21, 122 49, 642 120, 182 17, 435 47, 747 Cuba..... Mexico Other North America 571 543 146, 592 192,080 159,828 178, 491 190,340 185, 907 Total... South America: Bolivia Chile 3, 972 281, 074 26, 523 328 4, 463 236, 016 41, 626 986 4, 833 305, 793 18, 301 845 3, 301 226, 772 31, 119 3, 913 236, 623 42, 841 772 266, 933 22, 450 329, 772 311, 897 293, 303 261, 212 284,736 283,091 Europe: 5, 615 2, 160 2 3, 570 3, 680 175 Belgium-Luxembourg. 447 1, 491 1, 795 5, 421 2,128 2 3,582 4,388 France.... 1,587 2 81 991 2 2, 744 660 Germany
Malta, Gozo, and Cyprus
Netherlands 2 2, 552 6, 945 8, 937 2, 291 5, 969 254 Norway_____ 828 4, 427 5,664 149 Sweden. 2, 217 2, 194 1,024 2,689 2,415 11 25 United Kingdom 781 3, 356 11, 650 Yugoslavia Other Europe 9,816 7, 775 3,886 2, 149 138 616 20,880 31.813 11,978 27, 744 21, 208 18, 338 Asia: 11, 540 9, 549 2, 324 75 13, 321 547 Japan. 19,425799 10, 911 13, 538 11, 894 110 13,067 Philippines ... 2, 664 5, 586 3, 496 Turkey____ Other Asia____ 25, 542 17, 308 16, 585 Total____ 23,920 22, 122 14, 113 Africa: 5, 799 88, 042 212 Belgian Congo... 15,539 14, 160 12,764 10, 221 Northern Rhodesia 40, 020 3 1, 142 8, 128 4 61, 905 73, 464 27, 562 44,860 Southern Rhodesia
Union of South Africa 21, 291 1, 085 7,678 13,482 13,089 19,945 Other Africa 75,026 49, 335 101.731 90, 926 100,713 62, 702 Oceania: 15,075 1,129 13,041 16,672 11,827 19,453 Other Oceania 83 13,041 16,672 19,453 15,080 1,212 11,827 594,027 Grand total 571, 711 676, 104 594, 829 594, 100 595, 747

Data are "general" imports; that is, they include copper imported for immediate consumption plus Pass are general mipors, that is, they hende copper imported for immunitarial entering the country under bond.
 West Germany.
 Chiefly from Northern Rhodesia.
 Beginning July 1, 1954, classified as Federation of Rhodesia and Nyasaland.

TABLE 37.—Old brass and clippings from brass or Dutch metal 1 imported for consumption in the United States, 1948-52 (average) and 1953-57

	Short tons				Shor	rt tons		
Year	Gross weight	Copper	Value	Year	Gross weight	Copper content	Value	
1948–52 (average) 1953 1954	27, 570 9, 679 5, 272	19, 410 7, 503 3, 657	\$7, 824, 129 3, 737, 085 1, 567, 574	1955	11, 758 6, 519 7, 911	8, 295 4, 310 4, 643	\$5, 170, 383 ² 3, 002, 940 2, 393, 405	

TABLE 38.—Copper imported for consumption in the United States, 1948-52 (average) and 1953-57, by classes 1 (Quantity in terms of copper content)

[Bureau of the Census]

Year	Year			Cone	entrates	coarse	Regulus, black, or coarse copper and cement copper	
		Short tons	Value	Short tons	Value	Short tons	Value	
1948-52 (average) ² 1953 ² 1954 ² 1955 ² 1956 1957		5, 560 6, 182 7, 476 6, 089	560 3, 057, 966 96, 448 53, 006, 531 6, 547 182 3, 398, 562 114, 353 62, 675, 609 5, 408 476 4, 948, 251 105, 045 68, 405, 687 6, 386 089 4, 048, 965 74, 651 54, 514, 496 5, 198		\$1, 122, 859 4, 040, 632 3, 088, 549 4, 515, 264 4, 395, 456 3, 195, 764			
Year	Unrefined, blister, a verter ec pigs or o Year bars		Refined plates	in ingots, , or bars	fit on manufa	crap copper ly for re- lecture, and ad clippings	Total value	
	Short tons	Value	Short tons	Value	Short tons	Value		
1948-52 (average) ²	146, 814 279, 242 257, 393 253, 693 276, 085 301, 182	\$66,126,747 179,225,693 150,790,719 182,073,314 3225,931,796 179,440,276	287, 734 274, 111 215, 118 202, 312 191, 812 162, 309	\$140 295 401 182,190,014 127,130,493 154,137,270 157,943,985 97,024,574	12, 452 7, 827 4, 752 12, 577 5, 410 5, 801	\$4, 534, 708 4, 017, 577 3 2, 080, 720 3 9, 030, 398 3 3, 463, 270 3, 038, 915	\$249, 982, 377 425, 538, 413 349, 164, 652 3423, 110, 184 3450, 297, 968 329, 186, 390	

¹ Exclude imports for manufacture in bond and export, which are classified as "imports for consumption"

2 Some copper in "Ore" and "Other" from Republic of the Philippines is not separately classified and is included with "Concentrates."

3 Owing to changes in tabulating procedures by the Bureau of the Census, data known to be not comparable with years before 1954.

¹ For remanufacture.

² Owing to changes in tabulating procedures by the Bureau of the Census data known to be not comparable with years before 1954.

TABLE 39.—Copper exported from the United States, 1948-52 (average) and 1953-57, in short tons

		րզյ	reau or ti	de Censu	S				
	Ore, con- centrates, composi- tion metal, and un- refined copper (copper	Refined in bars, ingots, or other forms	Rods	Old and scrap	Pipes and tubes	Plates and sheets	Wire and cable, bare 1	Wire and cable, in- sulated	Other copper manufactures 1
1948-52 (average) 1953	834 495	146, 485 109, 580	6, 662 321	7, 327 34, 568	3, 066 1, 622	1, 129	8, 146 9, 313	21, 987 15, 622	(2) 294 250
1954 1955 1956 1957	2, 369 12, 897 13, 717	146, 485 109, 580 215, 951 199, 819 223, 103	344 202 366	34, 568 75, 749 31, 137 25, 681	1, 199 1, 292 1, 550	300 542 337	9, 313 4, 548 6, 976 11, 104	14, 342 19, 974 18, 434	250 234 185
North America:									
Canada Cuba Mexico Other North Amer-	2,095	3, 546 6 158	1, 295 2	3, 596	391 112 42	79 15 21	128 112 137	2, 821 1, 306 848	204
ica	10.00#	14	2	2	76	28	182	1, 182	(3)
TotalSouth America:	13, 335	3, 724	1, 362	3, 598	621	143	559	6, 157	214
Argentina Brazil Chile Colombia		11, 152 8, 776 10 214 2	(³) ⁵⁵	7	16 8 2 64 41	(3) 9 33 4 8	64 450 20 794 105	93 74 410 463 839	17 4
Venezuela Other South Amer- ica		8 261	30		286	6	1, 422	2, 320	
Total	121	20, 423	89	7	434	61	22 2,877	4, 465	21
Europe: Belgium-Luxem-					404		2, 811	4,400	
bourg Denmark France	1	1, 127 800 54, 687	112 2	256 3, 754	7 5	(3)	(3) 10	37 261 31	
France Germany, West Italy Netherlands	1	50, 773 33, 535 7, 846		10,670	(3)	(3) 1	136	17 25 42	<u>2</u>
Norway Portugal Spain Sweden		3, 212 50 2, 192 2, 519		400 339 183 281	1 5 3	2 1	34 5 2, 169 2	7 4 394 47	(3)
SwitzerlandUnited Kingdom Other Europe		14, 620 89, 649 4, 777	56	180 884 22	1 1	(3)	548	6 28 25	
Total	791	265, 787	170	17, 398	24	8	2, 906	924	2
Asia: India		7, 617	29	561	4		874	289	
IndiaIndonesia	1, 409	46, 850	1	26, 984	13 67	5 1	95 (8)	289 317 158	
Korea Pakistan		210	1	28 11	6 6	1	86 1, 548	3, 516 152	
Philippines Taiwan Turkey		9 129	(3)		81 4 5	3 18 (3)	500 157 474	1, 924 648 968	
Other Asia			2	342	64	4	95	850	
Total	1,409	54, 815	36	27, 926	250	32	3, 829	8,822	
Africa: Rhodesia and Ny- asaland, Federa- tion of Union of South Af-		181					526	1	
ricaOther Africa		535	1 1	60	16 7	<u>2</u>	114 305	520 108	<u>ī</u>
Total		716	2	60	23	2	945	629	1
					·				

See footnotes at end of table.

TABLE 39 -- Copper exported from the United States, 1948-52 (average) and 1953-57, in short tons-Continued

	Ore, con- centrates, composi- tion metal, and un- refined copper (copper content)	Refined in bars, ingots, or other forms	Rods	Old and scrap	Pipes and tubes	Plates and sheets	Wire and cable, bare ¹	Wire and cable, in- sulated	Other copper manu- fac- tures ¹
Oceania: Australia Other Oceania		560			(3)	1 18	3	12 26	
Total		560			2	19	3	38	
Grand total	15, 656	346, 025	1, 659	48, 989	1, 354	265	11, 119	21, 035	238

 $^{^1}$ Owing to changes in classification, 1952-57 data not strictly comparable with earlier years. 2 Weight not recorded. 3 Less than 1 ton.

TABLE 40.—Copper exported from the United States, 1948-52 (average) and 1953-57

Year	composi and t coppe	ncentrates, tion metal, inrefined r (copper ntent)		Refined copper and emimanufactures ¹		Other copper manufactures ¹		Total	
	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	
1948–52 (average)	834 495 2, 369 12, 897 13, 717 15, 656	\$400, 041 290, 405 1, 309, 158 9, 478, 941 11, 648, 348 9, 963, 640	194, 802 171, 393 312, 433 259, 942 280, 575 430, 446	\$109, 243, 249 116, 212, 961 197, 050, 734 207, 741, 551 253, 614, 925 288, 936, 283	(2) 294 250 234 185 238	\$1, 520, 273 352, 124 307, 848 308, 792 290, 552 321, 237	195, 636 172, 182 315, 052 273, 073 294, 477 446, 340	\$111, 163, 563 116, 855, 490 198, 667, 740 217, 529, 284 265, 553, 825 299, 221, 160	

 $^{^{\}rm 1}$ Owing to changes in classifications, 1953–57 data not strictly comparable with earlier years. $^{\rm 2}$ Weight not recorded.

TABLE 41.—Unfabricated copper-base alloy 1 ingots, bars, rods, shapes, plates, and sheets exported from the United States, 1948-52 (average) and 1953-57

[Bureau of the Census]

Year	Short tons	Value	Year	Short tons	Value
1948-52 (average)	4, 470	\$3, 530, 140	1955 ²	2, 175	\$3, 200, 780
1953 ²	4, 453	3, 568, 657	1956 ²	2, 233	3, 844, 261
1954 ²	3, 492	2, 924, 161	1957 ²	1, 747	2, 943, 557

¹ Includes brass and bronze.
² Owing to changes in classifications, data not strictly comparable with earlier years.

TABLE 42.—Copper-base alloys (including brass and bronze) exported from the United States, 1956-57, by classes

Class	19)56	1957	
Torrela	Short tons	Value	Short tons	Value
Ingots Scrap and other forms Bars, rods, and shapes Plates, sheets, and strips Plipes and tubes Pipe fittings Plumbers' brass goods. Welding rods and wire Castings and forgings Powder Hardware Semifabricated forms, not elsewhere classified Other copper-base-alloy manufactures. Total	734 837 1, 420 1, 197 2, 887	\$1, 242, 624 29, 814, 431 1, 039, 402 1, 562, 235 2, 293, 238 3, 265, 883 8, 198, 263 2, 192, 198 772, 850 239, 025 3, 783, 403 63, 183 380, 331	373 69, 996 585 789 1, 461 1, 301 2, 870 7777 435 209 (1) 27	\$655, 93 32, 968, 16, 863, 81; 1, 423, 80; 2, 367, 48; 3, 362, 05; 7, 733, 24; 1, 659, 93; 221, 80; 3, 863, 74; 488, 86; 56, 371, 22;

¹ Weight not recorded.

TABLE 43.—Copper sulfate (blue vitriol) exported from the United States, 1948-52 (average) and 1953-57

[Bureau of the Census]

Year	Short tons	Value	Year	Short tons	Value
1948–52 (average)	38, 110	\$6, 444, 692	1955	37, 382	\$8, 381, 815
1953	32, 659	6, 250, 121		30, 177	8, 036, 233
1954	29, 762	5, 780, 801		33, 644	6, 534, 037

TABLE 44.—Brass and copper scrap imported into and exported from the United States, 1948–52 (average) and 1953–57, in short tons

[Bureau of the Census]

	1948-52 (average)	1953	1954	1955	1956	1957
Imports for consumption: Brass scrap (gross weight) Copper scrap (copper content) Exports: Brass scrap Copper scrap	27, 570	9, 679	5, 272	11, 758	6, 519	7, 911
	12, 452	7, 827	4, 752	12, 577	5, 410	5, 801
	1 8, 144	1 33, 680	1 93, 972	1 45, 260	1 50, 485	1 69, 996
	7, 327	34, 568	75, 749	31, 137	25, 681	48, 989

¹ Copper-base-alloy scrap (new and old); not strictly comparable with earlier years.

Tariff.—The 2-cent-per-pound excise tax on copper continued under suspension in 1957, subject to the concessions granted at the June 1956 meetings in Geneva on General Agreements Tariffs and Trade (GATT). On April 25, 1957, a bill to continue suspension of duties on metal scrap was signed by President Eisenhower.

TABLE 45.—Copper scrap imported into and exported from the United States, 1957, by countries, in short tons

	Exp	orts	Imp	orts
Country	Unalloyed copper scrap	Copper- alloy scrap (gross weight)	Unalloyed copper scrap (copper content)	Copper- alloy scrap (gross weight)
North America: CanadaCubaOther North America		68 1 17	3, 160 655 622	5, 11 11 63
Total	3, 598	86	4, 437	5, 85
outh America: Venezuela Other South America Total	7	11 11	650 16 666	27
Europe: France	10,070	4, 867 18, 590 7, 423	660	1, 4
United KingdomOther Europe	884	1, 059 2, 469	2 23	
Total	17, 398	34, 408	692	1, 5
Asia: India	_ 26, 984	3, 067 31, 555 869	1	i
TotalAfrica		35, 491	1	
Oceania Grand total	48, 989	69, 996	5, 801	7,9

WORLD REVIEW

World mine production of copper was 2 percent higher in 1957 than in 1956 and established a new alltime record output. Small decreases in the United States, Belgian Congo, and Chile were more than offset by increases of 8 percent in Northern Rhodesia, 50 percent in the Philippines, and 27 percent in Peru. Production in Canada and Northern Rhodesia established new peaks; Chile's output was slightly less than in 1956 but maintained its rank as the world's second largest producer.

Labor strikes and voluntary cutbacks prevented even higher outputs in some of the principal copper-producing countries. In Canada the Gaspé mine was struck for 7 months, and in Chile the Braden mine was closed by a 2-week strike. A number of work stoppages affected operations at Northern Rhodesian properties. Roan Antelope Copper Mines, Ltd., and Mufulira Copper Mines, Ltd., announced 10-percent reductions from June 1 at their Northern Rhodesian properties. On December 17 Cerro de Pasco Corp. stated that a cutback of approximately 11 percent would be made in copper output in Peru.

TABLE 46.—World mine production of copper, by countries, 1948-52 (average) and 1953-57 in short tons ¹

[Compiled by Augusta W. Jann and Berenice B. Mitchell]

	,		,		,	
Country	1948-52 (average)	1953	1954	1955	1956	1957
North America:						
Canada	260, 191	253, 252	302, 732	325, 994	354, 860	360, 745
Cuba.	20, 216	17, 800	17, 500	20, 800	18, 200	18,000
Mexico	66, 984	66, 302	60, 413	60, 269	60, 478	66, 800
United States	870, 119	926, 448	835, 472	998, 570	1, 106, 215	1, 086, 141
Total	1, 217, 510	1, 263, 802	1, 216, 117	1, 405, 633	1, 539, 753	1, 531, 686
	1,217,010	1, 200, 002	1, 210, 111	1, 100, 000	1,000,100	1, 001, 000
South America:	F 700	4 000	4, 034	3, 855	4, 896	4, 320
Bolivia (exports)	5,720 433,990	4, 920 400, 287	400, 861	477, 873	539, 844	533, 855
Foundor	376	400, 201	100.001	111,015	000,011	000,000
Chile Ecuador Peru	30,600	39, 023	42, 356	47,844	50, 966	64, 493
			12,000			01, 100
Total	470, 686	444, 230	447, 251	529, 578	595, 706	602, 668
Europe:						
Austria	1,851	3, 279	3, 381	2,841	2, 579	2, 574
Finland	20,531	21,000	23, 150	23, 700	23, 150	28,700
France	635	500	88	580	660	² 550
Germany:	10.000		00.000	07 000	07 700	OH F00
East 2	12,600	17,600	22,000	25, 300	27, 500	27, 500
West	1,462 2 490	2, 262 (3)	2, 600 (3)	1, 335	1,077	1, 203
Hungary Italy	101	236	357	(3)	(3)	(3) 310
Norway	16, 148	14, 362	14, 980	15, 419	15, 432	16, 525
Poland	4 2, 240	4,700	5, 300	6, 100	8,000	8, 300
Poland Portugal	600	826	475	600	1,066	1, 100
Chain is	7 607	9, 406	7,951	6,726	7, 525	11, 077
Sweden	17,092	14, 924	14, 565	17, 275	18, 436	19, 914
U. S. S. R.2 7 8	253,000	334, 000	352, 000 33, 394	385, 000	430,000	450, 000
Sweden_ U. S. S. R. ²⁷⁸ _ Yugoslavia ⁸ _	38, 838	34, 381	33, 394	31, 151	32, 390	37, 186
Total 2 7	373, 000	457, 000	480,000	516,000	568, 000	605, 000
Asia:						
China ^{2 8}	4, 100	8, 800	8,800	9,900	11,000	13, 000
Cyprus (exports)	24, 825	23, 937	30, 059	26, 179	39, 497	i 43, 676
India	7, 391	5, 500	8, 300	8,500	8,800	9,000
Japan Korea, Republic of	42,852	64, 907	73, 056	80, 466	86, 497	89, 200
Korea, Republic of	138	1,540	550	1,760	970	710
	10, 294	14, 016 287	15, 817 550	19, 247 1, 100	29, 722 1, 593	44, 513 1, 840
Taiwan Turkey 8	1, 146 15, 518	25, 901	27, 042	26, 234	27, 297	29, 896
· · · · · · · · · · · · · · · · · · ·						
Total 2 7 9	106, 300	144, 900	164, 200	173, 400	205, 400	231, 800
Africa:						
Algeria	56	153	236	74	160	476 3 3, 300
Angola	1,026	1,397	3, 691	2,011	3, 154	
Belgian Congo 8	191, 914	236, 057	243, 424 90	259, 161 152	275, 538 105	267, 026
French West Africa Morocco: Southern Zone	381	1, 264	884	823	811	694
Rhodesia and Nyasaland, Feder-	901	1, 201		020	011	00.
ation of:			1	l	l	•
Northern Rhodesia	315, 678	410, 808	438, 708	395, 308	445, 466	480, 313
Southern Rhodesia	117	197	298	1, 179	1,931	2, 118
South-West Africa	12, 176	13, 357	15,668	23, 588	28, 980	29, 910
Tanganyika 10	95	543	478	650	1, 276	² 1, 100
Union of South Africa	35, 987	39, 843	46, 638	49, 239	51, 252	50, 959
Total	557, 430	703, 619	750, 115	732, 185	808, 673	835, 896
Oceania: Australia	17, 345	40, 875	45, 760	50, 956	59, 406	63, 407
World total (estimate)	2, 740, 000	3, 050, 000	3, 100, 000	3, 410, 000	3, 780, 000	3, 870, 000
World total (commate)	_, , , 0, 000	2, 000, 000	-, 200, 000	1 -, 225, 500	1 -, ,	.,,

¹ This table incorporates a number of revisions of data published in previous Copper chapters. Data do not add exactly to totals shown because of rounding where estimated figures are included in the detail.

2 Estimate.

3 Negligible.

4 Average for 1950-52.

5 According to Yearbook of American Bureau of Metal Statistics.

6 Does not include content of iron pyrites, the copper content of which may or may not be recovered.

7 Output from U. S. S. R. in Asia included with U. S. S. R. in Europe.

8 Smelter production.

9 Includes estimates for Burma, beginning in 1951.

10 Copper content of exports and local sales.

TABLE 47.—World smelter production of copper, 1948-52 (average) and 1953-57, by countries, in short tons 1

[Compiled by Augusta W. Jann and Berenice B. Mitchell]

The first section of the section of						
Country	1948-52 (average)	1953	1954	1955	1956	1957
North America:						
Canada	225, 470	236, 966	253, 365	288, 997	331, 174	323, 588
Mexico	56,660	57, 633	48, 527	49, 730	52, 089	62, 061
United States 2	970, 935	1,047,810	945, 899	1, 106, 526	1, 231, 352	1, 178, 145
Total	1, 253, 065	1, 342, 409	1, 247, 791	1, 445, 253	1, 614, 615	1, 563, 794
a 11. A						
South America:	411 040	971 745	970.010	447 000	FOO OFO	400.000
Chile Peru	411, 049 22, 272	371, 745 25, 802	372, 818 29, 178	447, 292 34, 862	506, 256 34, 259	496, 939 45, 292
Total	433, 321	397, 547	401, 996	482, 154	540, 515	542, 231
10001	400, 021	001,011	401, 550	402, 104	340, 313	042, 20
Europe:	1			1		
Austria	5,334	10, 278	10, 357	11, 363	11, 799	10, 450
Finland	19,541	21, 814	23, 551	24, 583	24, 767	28, 469
Germany:						
East 3	19, 200	27, 500	28,000	30,000	33,000	33,000
West 4	176, 951	233, 328	258, 271	286, 306	279, 463	279, 231
Italy	127	160	140	1,024	373	310
Norway	10, 128	13, 342	14, 221	15, 142	16, 457	17, 24
Poland	4 10,000	4 17, 000	9,000	17, 300	22, 400	22,000
Spain	5, 680	6, 590	6,374	6, 477	6, 940	6,600
Sweden	16,913	19, 215	18, 422	19, 159	18, 673	21, 472
U. S. S. R. 35	252,900	334,000	352,000	385,000	430,000	452,000
Yugoslavia	38, 838	34, 381	33, 394	31, 151	32, 390	37, 186
Total 3 5 6	555, 600	718,000	754,000	828, 000	876,000	908, 000
Asia:						
China 3 4	4,000	0 000	0 000	0.000	11 000	10.000
India		8,800	8,800	9,900	11,000	13,000
Japan		5, 510	8,020	8, 155	8, 543	8,790
Korea:	43,651	70, 080	75, 914	89, 353	101, 946	120, 012
North	3 1, 200	/m	(7)		(7)	<i>a</i>
Republic of	270	(7)	265	362	1,000	(7) 874
Taiwan	580	655	1,012			
Turkey	15, 518	25, 901		1, 295	1,659	1,883
	10,016	20, 901	27,042	26, 234	27, 297	29, 896
Total 3 5	72, 400	111, 200	121, 100	135, 400	151, 400	174, 500
Africa:						
Angola	8 1, 807	1,304	1,989	926	1 405	3 1, 800
Belgian Congo	191, 914	236, 057	243, 424	259, 161	1, 425 275, 538	
Morocco: Northern Zone	9 172	63	240, 424	200, 101	210,000	267,026
Rhodesia and Nyasaland, Fed.	1 112	00				
of: Northern Rhodesia	306, 881	406, 087	494 045	904 957	400 502	400 155
Uganda	000,001	400,007	424, 045	384, 357	429, 503 168	466, 157
Union of South Africa	35,092	38, 575	45, 152	47, 480	48, 681	8, 361 48, 229
Total	535, 866	682, 086	714, 610	691, 924	755, 315	791, 573
Oceania: Australia	16, 103	38, 258	42, 613	41, 932	54, 914	56, 987
World total (estimate)	2, 865, 000	3, 290, 000	3, 280, 000	3, 620, 000	3, 990, 000	4, 040, 000

¹ This table incorporates a number of revisions of data published in previous Copper chapters. Data do not add exactly to totals shown because of rounding where estimated figures are included in the detail.

² Smelter output from domestic and foreign ores, exclusive of scrap. Production from domestic ores only, exclusive of scrap, was as follows: 1948–52 (average), 873,980; 1953, 943,391; 1954, 834, 381; 1955, 1,007,311; 1956, 1,117,580; and 1957, 1,081,055.

³ Estimate.

Estimate.
 Includes scrap.
 Output from U. S. S. R. in Asia included with U. S. S. R. in Europe.
 Belgium reports a large output of refined copper which is believed to be produced principally from crude copper from Belgian Congo; it is not shown here, as that would duplicate output reported under latter country.
7 Negligible.
8 Average for 1949-52.
9 Average for 1950-52.

NORTH AMERICA

Canada.—Production of copper rose 2 percent over 1956 and established a new production peak. A 15-percent drop in output in Quebec Province, because of a 7-month strike at Gaspé Copper Mines, Ltd., was partly offset by substantial production in New Brunswick Province. The largest production in Canada—49 percent of the total—came from the nickel-copper ores of the Sudbury district, Ontario. Output increased 8 percent in 1957 and was the largest since 1940. Quebec Province was second, with 30 percent of the total production, and the remainder was supplied by Saskatchewan, Manitoba, British Columbia, New Brunswick, Newfoundland, and Northwest Territories, in that order. Output from the latter Province was the first since 1952.

Output of refined copper (all from plants of The International Nickel Co. of Canada, Ltd., at Copper Cliff, Ontario, and the Canadian Copper Refiners, Ltd., Montreal East, Quebec) was 324,000 tons. Consumption of refined copper totaled 118,000 tons compared with 145,000 tons in 1956.

TABLE 48.—Copper produced (mine output) in Canada, 1948–52 (average) and 1953–57, by Provinces, in short tons $^{\rm 1}$

Province	1948-52 (average)	1953	1954	1955	1956	1957 (pre- liminary)
British Columbia	22, 473 16, 390	24, 148 9, 411	25, 088 12, 274	22, 127 19, 380 35	21, 682 17, 973	14, 879 18, 725
Newfoundland Northwest Territories	3, 449 1	2,814	3, 481	3,052	3, 108	5, 487 3, 035 143
Nova Scotia Ontario Quebec Saskatchewan	77 120, 957 65, 447 31, 397	788 130, 583 54, 920 30, 588	991 140, 776 83, 930 36, 192	1, 027 146, 407 101, 021 32, 945	404 156, 271 122, 300 33, 116	168, 976 103, 836 30, 946
Total	260, 191	253, 252	302, 732	325, 994	354, 860	346, 027

¹ Dominion Bureau of Statistics, Department of Trade and Commerce, Government of Canada, Preliminary Report on Mineral Production, 1957.

The International Nickel Co. of Canada, Ltd., in Ontario, was by far the leading copper producer in Canada. The 16,049,000 tons of ore mined in 1957 was the largest attained in any year and consisted of 14,948,000 tons (14,351,000 in 1956) from underground and 1,101,000 tons (1,159,000 in 1956) from open-pit operations. The Frood-Stobie and Levack mines were largely responsible for the increased output from underground operations. Development programs were continued at the Creighton, Frood-Stobie, Garson, Levack and Murray mines; the Crean Hill mine was being prepared for production; and an additional mining program begun in 1956 at the Frood open-pit was continued. At Levack work continued on construction of the 6,000-ton-per-day concentrator. Ore reserves as of December 31, 1957, totaled 264.5 million tons containing 8 million tons of nickel and copper. The company delivered 140,400 tons of copper to customers in Canada and the United Kingdom in 1957.

Falconbridge Nickel Mines, Ltd., the other important producer of copper in the Province made a record output of ore. A total of 2.018,800 tons of ore was produced from company mines; receipts of

ore and concentrate for treatment for independent mines decreased during 1957 and by the end of the year had ceased. Production from the Onaping area (Hardy, Fecunis Lake, and Longvack mines) increased from 31 percent in 1956 to 43 percent in 1957; mining at the Mount Nickel mine stopped in November. Development was continued at the Boundary, Onaping, and Fecunis Lake mines. Mining of a large ore body, formed by deposits at Fecunis Lake, and at the Levack mine started in November. The property will be mined jointly by Falconbridge Nickel Mines, Ltd., and the International Nickel Co. of Canada, Ltd. The first level was turned over to the International Nickel Co. for preparation for mining. Construction of the Fecunis concentrator was completed early in 1957, and operations began in May. Mill feed consisted of the Longvack-mine production and development ore from the Fecunis Lake mine. new smelter was completed in 1957, and production was expected to begin in January 1958. The developed and indicated ore reserve on December 31, 1957 was 45.8 million tons, containing 1.44 percent nickel and 0.79 percent copper. The company delivered 12,614 tons of copper to customers in 1957, a 5-percent decrease from the record 13,211 tons in 1956.

Production at Geco Mines, Ltd., was begun in September; a total of 345,800 tons of ore averaging 2.40 percent copper was milled, and 27,900 tons of 28.26-percent copper concentrate was produced. Concentrate was shipped to the Noranda smelter and accounted for 7,900 tons of copper. The ore reserve was 14.8 tons averaging 1.76

percent copper and containing zinc, silver, and pyrite.

At the Horne mine of Noranda Mines, Ltd., in Quebec, 1,336,400 tons of ore was mined; the smelter treated 1,303,800 tons of ore, concentrate, and secondary materials, of which 647,800 tons was smelted for other companies on a toll basis. The total estimated recovery from new metals was 109,600 tons. Copper recovered from Horne ore and concentrate was estimated at 26,000 tons. The third reverberatory furnace began operating October 1.

The copper was recovered at the electrolytic copper refinery of Noranda's subsidiary—Canadian Copper Refiners, Ltd., Montreal East. The output of refined copper was 175,000 tons, compared with 187,000 tons in 1956. The 6-percent decrease was due to lower

receipts from Gaspé Copper Mines.

The indicated ore reserve in the Horne mine on January 1, 1958, was 11.7 million tons, of which 10.8 million tons was sulfide ore averaging 2.26 percent copper and 0.9 million tons of siliceous fluxing

ore averaging 0.15 percent copper.

Output at Gaspé Copper Mines, Ltd., subsidiary of Noranda, was considerably less than in 1956 because of a strike that began March 11. By June production was at about 50 percent of the normal rate, and the first shipment to the refinery was made in August; the strike ended early in October. Production of ore totaled 873,900 tons, compared with 1,333,000 tons in 1956, and ore treated totaled 941,000 tons. Production of copper totaled 17,700 tons compared with 27,600 tons in 1956. The ore reserve was 64 million tons, averaging 1.3 percent copper.

The Quemont Mining Corp. Ltd., which adjoins the Horne mine, treated 837,000 tons of ore averaging 1.46 percent copper and 2.53

COPPER 455

percent zinc. The copper concentrate, which was smelted at Noranda, accounted for a production of 11,300 tons of copper. Ore reserves at the end of 1957 amounted to 7 million tons averaging 1.33 percent

copper and containing zinc, gold, silver, and pyrite.

The Waite Amulet Mines, Ltd., a subsidiary of Noranda, treated 290,000 tons of ore averaging 3.64 percent copper from the East Waite No. 3 shaft, Amulet Dufault, and "A-11" winze. Copper production totaled 9,900 tons. The treatment of West Macdonald ore continued during the year, and 329,300 tons was milled. The total ore reserve was 846,000 tons, consisting of 326,000 tons of 3.01-percent copper and 71,000 tons of 4.15-percent copper at the Waite Amulet, and 335,000 tons of 6.2-percent copper and 114,000 tons of 3.35-percent copper at Amulet Dufault.

The Normetal Mining Corp. Ltd., milled 378,300 tons of ore containing 2.33 percent copper. Concentrate produced yielded 8,200 tons of copper, which was smelted at Noranda. The ore reserve on December 31, 1957, was estimated at 2.4 million tons, averaging 3.51

percent copper and 5.02 percent zinc.

Operations at the Opemiska Copper Mines (Quebec), Ltd., were resumed March 1, following a fire in October 1956. In the 10 months of 1957, 240,400 tons of ore averaging 3.90 percent copper was milled, and 8,055 tons of copper was produced. The ore reserve on December 31, 1957, was estimated at 4.7 million tons averaging 3.21 percent copper.

Rainville Mines, Ltd., treated 161,600 tons of ore and produced 2,234 tons of copper. The mill capacity (500 tons of ore per day) was attained during the first 6 months of 1957. The ore reserve above the 550 level in the No. 4 and No. 2 zones was estimated at 368,000

tons averaging 1.3 percent copper.

Saskatchewan and Manitoba together produced 14 percent of Canada's total output in 1957. The Hudson Bay Mining & Smelting Co., Ltd., and Sherritt Gordon Mines, Ltd., accounted for almost the

entire output.

The Hudson Bay Mining & Smelting Co. mined and milled 1,644,300 tons of ore from 5 mines; 1,377,800 tons came from the Flin Flon mine. The Schist Lake mine supplied 73,300, North Star 106,700, Don Jon 33,500, and Birch Lake 53,000 tons. Mining operations at the Don Jon ended and production began at the Birch Lake in August. Development work at three other mines—Coronation, Chisel Lake, and Stall Lake—was continued. Production of copper was 44,300 tons, compared with 46,300 tons in 1956. The ore reserve at the end of 1957 was 19.5 million tons, averaging 2.71 percent copper and 5 percent zinc.

Sherritt Gordon Mines, Ltd., mined and milled 833,000 tons of nickel-copper ore at its Lynn Lake property during 1957. All ore was produced from the "A" and "EL" mines. The company was preparing the "E" and "C" ore bodies for mining, and part of the mill feed in 1958 will come from these properties. Copper concentrate produced contained 4,700 tons of copper. The ore reserve at the end of 1957 was 13.6 million tons averaging 1.064 percent nickel and 0.561 percent copper.

The Granby Consolidated Mining, Smelting & Power Co., Ltd., operated the Copper Mountain mine in British Columbia until April,

when operations were terminated. During the 4-month period 568,000 tons of ore containing 0.82 percent copper was treated and 3,583 tons of copper produced. Development was continued at the Granduc property, but work was expected to be deferred early in 1958 because of the low price of copper. Construction of a 700-ton-per-day plant at the Phoenix property was also delayed; much of the equipment

from Copper Mountain was installed at Phoenix.

Exports of copper in ore, matte, regulus, etc., totaled 46,548 (40,994 in 1956) tons, of which the United States was the destination of 30,484 (25,354) tons, Norway 13,817 (13,373), the United Kingdom 1,103 (1,175), Belgium 455 (398), West Germany 342 (693), Mexico 286 (none), and Netherlands 61 (none). In addition, 11,793 (11,915) tons of rods, strips, sheet, and tubing was shipped, of which 4,372 (4,570) went to Switzerland, 2,411 (1,730) to United Kingdom, and 2,312 (2,350) to the United States. Copper-slag skimmings totaling 12,281 (14,593) tons also was exported in 1957.

Imports of refined copper totaled 4,175 tons in 1957 compared with

2,541 tons in 1956.

Exports of ingots, bars, and billets from Canada in 1957, as compared with 1956, were as follows, by countries of destination, in short tons:

Destination:	1956	1957
United States	96, 747	86, 300
United Kingdom	63, 990	84, 672
France	9, 860	12, 502
India	3, 972	3, 968
Sweden		3, 381
Switzerland		1, 567
Brazil	257	1, 541
West Germany		1, 315
Italy		1, 092
Australia		1,007
Other	18	1, 449
Total	174. 844	198, 794

SOUTH AMERICA

Chile.—Slightly less copper was mined than in 1956; Chile, however, maintained its rank as the world's second largest producer. Operations at the Braden mine were adversely affected by a 2-week

strike in April.

At the Braden mine of the Braden Copper Co., a subsidiary of Kennecott Copper Corp., 10,919,500 short tons of ore was mined and milled, and 172,700 tons of copper was produced compared with 10,767,300 and 179,900 tons, respectively, in 1956. The ore contained 39.3 pounds of copper per ton (40.3 pounds in 1956) in 1957. Improved mill recovery from new flotation equipment in the concentrator and enough rainfall for power generation made possible a near record mine and mill output.

Copper production at the Chuquicamata mine of the Chile Exploration Co., a subsidiary of The Anaconda Company, dropped slightly in 1957 to 263,400 tons (266,000 in 1956). Work was continued on the expansion projects announced in 1956. Additional mine equipment was in operation, as well as more flotation machines

COPPER 457

in the concentrator and the cooling system for condenser water in the waste-heat powerplant. Progress continued on converting part of the electrolytic tankhouse for refining blister copper. The company estimated that, with these additions and others still under construction, Chuquicamata's annual capacity would be 300,000 tons of copper. Additional oxide ore was developed by drilling on the north and northeast margins of the Chuquicamata ore body.

At the Andes Copper Mining Co., another subsidiary of The Anaconda Company, production was unchanged from 1956. The output totaled 43,300 tons of copper compared with 43,200 in 1956. Development of the El Salvador mine continued throughout the year and resulted in an increase in the ore reserve from 300 million tons to approximately 375 million averaging 1.50 percent copper. It was still expected that work would be completed in time for ore production to begin early in 1959.

The La Africana mine of the Santiago Mining Co., another subsidiary of The Anaconda Company, began producing in September.

Empresa Nacional de Fundiciones, the Government agency that operates the national smelter at Paipote, produced about 17,000 tons

of blister copper in 1957 compared with 17,000 tons in 1956.

On February 6 the Chilean Government 6 announced that the Government Mine Credit Bank (CACREMI) would suspend indefinitely exports of ore and concentrate because of increases in ocean freight rates and foreign refinery fees, and the decline in copper prices. CACREMI would continue to buy ore and concentrate from the small and medium mines. The high-grade ore and the concentrate would be treated at the Paipote smelter; the other raw material would be stockpiled until the expanded smelter (as planned) could treat it.

TABLE 49.—Principal types of copper exported from Chile, in 1957, by countries, in short tons

Country	Ref	ined	Standard (blister)	Total
	Electrolytic	Fire-refined		
Argentina France Germany Italy Netherlands Spain Sweden Switzerland United Kingdom Unted States Other	17, 204 48, 288 11, 248	1, 654 5, 432 7, 757 3, 471 2, 941 44, 647 4, 238 450	26, 287 7, 675 3, 946 10, 345 3, 644 207, 530	666 3, 30 72, 75 32, 633 55, 70 10, 34 11, 24 2, 94 91, 65 216, 14
Total	168, 166	70, 590	259, 427	498, 18

In addition to the exports shown in table 49, 37,971 tons of ore and concentrate was shipped, of which 17,838 tons went to the United States, 11,102 to Germany, 7,348 to Japan, 747 to Netherlands, 413 to Belgium, 379 to Sweden, 125 to Brazil, and 19 to Argentina.

Peru.—Mine production of copper in Peru rose for the fifth consecutive year; output in 1957 was 27 percent higher than in 1956. Ac-

⁶ Bureau of Mines, Mineral Trade Notes: Vol. 44, No. 4, April 1957, p. 7.

cording to the annual report to stockholders of the Cerro de Pasco Corp. (Peru's leading producer), the output of ore rose 9 percent to 2,115,800 tons. Production of copper totaled 45,300 tons (34,100 in 1956), of which 33,800 tons (26,700) was from company ores and 11,500 tons (7,400) from purchased ores. Production at the small open-pit copper mine, which began early in 1957, was discontinued in December, when Cerro de Pasco announced a cutback in copper production. In March the Paucartambo hydroelectric powerplant began operations. The initial capacity was 72,000 kv.-a but can be expanded to 96,000 kv.-a, if needed, at small cost. The additional power from Paucartambo prevented curtailment of refinery operations during the dry season.

Remarkable progress was made in Southern Peru Copper Corp. stripping schedule at its Toquepala project in Peru. Between November 1956 and November 1957, 20 million tons of waste was removed from 10 benches. In one of the largest open-pit blasts in history, 270,000 pounds of powder loaded in 700 churn- and rotary-drilled holes totaling 51,589 feet in length was detonated to start the stripping operation; over 1 million tons of waste was broken with this initial blast. Work on the railroad from sea level to the mine at an elevation of 10,600 feet and construction of the 30,000-ton-per-day flotation mill and crushing plant are underway. The permanent wharf at the port of Ilo was completed, and construction of the smelter 15 miles north of Ilo is planned to start soon.

Copper exports in 1957 totaled 54,200 tons, of which 38,100 tons went to the United States, 7,400 to Germany, 4,700 to the United Kingdom, and 3,600 to Japan.

EUROPE

United Kingdom.—Consumption of primary and secondary copper in the United Kingdom (the second largest consumer in the world) was slightly more than in 1956. Of the total of 718,500 tons consumed in 1957, 548,400 tons was refined copper and 79,800 tons scrap for wrought products; and 19,900 tons of refined and 70,200 tons of scrap for castings, sulfate, and miscellaneous products. Inventories of blister and refined copper, exclusive of Government stocks, rose from 66,800 tons at the end of 1956 to 102,500 at the end of 1957.

In August the British Board of Trade announced that it would sell 27,000 tons of copper from the stockpile. The monthly rate of disposal was not expected to exceed 2,700 tons, and no metal would be offered before October. On September 16 the board stated that sale of this copper was deferred and on December 24 was postponed indefinitely.

According to the British Bureau of Nonferrous Metal Statistics, imports of copper into United Kingdom in 1956 and 1957 were as follows:

⁷ Mining World, How Southern Peru Stripped 20,000,000 Tons of Toquepala Waste In First Year: Vol. 19, No. 13, December 1957, pp. 50-52.

TABLE 50.—Copper imported into United Kingdom, 1956-57, in short tons

Country	1956			1957		
	Blister	Electro- lytic	Fire- refined	Blister	Electro- lytic	Fire- refined
Northern Rhodesia Chile United States Canada Belgian Congo Peru		144, 071 48, 497 10, 716 65, 708 8, 624 2, 958	37, 402	124, 617 3, 298	118, 098 45, 211 82, 630 85, 794 3, 360 2, 669	40, 632 10, 639
Norway Turkey Union of South Africa Belgium Sweden	2, 232	548 5, 475 977	954	999	1, 228 	532
Germany, WestOther countries	223	1, 887 756	267	635	84 34	1
Total	119, 531	290, 217	38, 623	129, 549	340, 537	51, 804

Exports and reexports of refined copper were 53,178 tons (54,563 in 1956), of which 14,832 (6,379) went to France, 9,538 (22,221) to Germany, 4,780 (4,161) to the United States, 4,317 (none) to Argentina, 3,244 (3,386) to Switzerland, 2,866 (1,221) to Portugal, 2,416 (2,970) to Italy, 2,377 (3,735) to the Netherlands, 1,483 (3,666) to India, and 1,086 (2,289) to Belgium. In 1957, 551 tons (616 in 1956) of blister was reexported.

Yugoslavia.—It was reported ⁸ that work on the Majdanpek copper deposits, begun in 1949, was completed. Ore reserves were estimated to total 220 million short tons, containing about 1.7 million tons of copper. Three to four years may be required to remove the overburden, after which the property will be operated by open-pit methods. A 23,000-ton-per-day flotation plant will be built, and 27,500 tons of concentrate will be produced annually. At the Bor mine it was planned to increase copper production from 33,100 tons to 60,600 annually.⁹

ASIA

Cyprus.—Production of the Cyprus Mines Corp., the principal producer, totaled 327,100 tons in 1957 compared with 277,300 tons in 1956, an increase of 18 percent. The output consisted of 125,900 tons of copper concentrate containing 21.36 percent copper, 3,800 tons of precipitate averaging 77 percent copper, and 197,400 tons of cupreous pyrite containing 3.04 percent copper. In addition, 593,500 tons of flotation pyrite averaging 49.85 percent sulfur was produced. The Cyprus Sulphur and Copper Co., Ltd., produced 76,200 tons of cupreous pyrite containing 2.17 percent copper. Very little exploration work was done in 1957 because of the unsettled conditions in the country, but the Cyprus Mines Corp. plans to resume work on the Skouriotissa mine as an open-pit operation in about 2 or 3 years and to work a smaller ore body south of the main Mayroyouni mine.

Philippines.—Copper production in the Philippines rose for the fourth successive year. Output by the 2 principal producers was 8,500 tons greater than in 1956.

American Metal Market, vol. 65, No. 25, Feb. 5, 1958, p. 4.
 Mining World, vol. 19, No. 13, December 1957, p. 88.

The Atlas Consolidated Mining Co. produced 3,402,000 tons of ore averaging 0.68 percent copper and milled 3,388,000 tons. The output of copper was 19,100 tons compared with 12,000 tons in 1956. The Lepanto Consolidated Mining Co. produced 14,300 tons of copper in

1957 compared with 12,800 tons in 1956.

The Marinduque Iron Mines, Inc., mill at the Sipalay mine in Negros Occidental began operations in May, and the company planned to build a smelter at Iligan, Lanão. The plant will treat ore from the Elizalde properties in Visayas and Mindanão, and concentrate recovered at the Sipalay and Bagacay mines. In 1957 the Bagacay mine shipped 44,000 tons of 15.1-percent copper ore to Japan.

AFRICA

Belgian Congo.—Production of copper reversed the upward trend of the past 7 years and was 3 percent lower than in 1956. The Union Minière du Haut-Katanga (UMK) was, as heretofore, the only producer. In July the company announced that, effective August 1, the UMK price of copper in the United States was equalized to that at European ports. The 1-cent-per-pound differential due to freight and insurance was eliminated.

Most of the output continued to come from mines in the Western Group and the Prince Leopold mine. The Kamoto open pit supplied increasing tonnages of ore, and the Kolwezi mine was reopened after being closed for more than 3 years. A total of 11,076,000 tons of ore was mined, and 8,463,000 tons was sent to concentrators, washing

plants, and the smelter.

The Kolwezi concentrator treated 4,314,000 tons of copper and mixed ores from the Musonoi, Ruwe, Kamoto, and Kolwezi mines; it produced 665,600 tons of concentrate assaying 27.3 percent copper and 1.31 percent cobalt and 38,500 tons of concentrate averaging 9.9

percent copper and 8.05 percent cobalt.

The Prince Leopold mine sent 1,279,900 tons of ore to the Kipushi concentrator. Production consisted of 59,500 tons of concentrate, averaging 21.42 percent copper, from straight copper ore, 279,800 tons of 26.62-percent copper concentrate, and 207,400 tons of 56.97-percent zinc concentrate from copper-zinc ore.

The Ruwe concentrator treated 2,466,100 tons of material and produced 152,900 tons of 22.49-percent copper concentrate and 191,200 tons of intermediate products running 5.49 percent copper that

required further treatment.

The Ruashi washery treated 137,800 tons of ore from small mines

in the southeast region and produced 31,600 tons of products.

Production of copper at the Lubumbashi smelter and Shituru electrolytic plant dropped 8,000 tons from 1956. The company stated that, as part of the reduction in output decided upon in 1957, operations at the Lubumbashi smelter were curtailed during the latter half of the year, but production increased at the Shituru electrolytic plant. Production of scalped wirebars was begun. In addition, certain expansion programs were to be delayed at the Kamoto open pit, the West Kambove underground mine, and the Luilu copper-cobalt electrolytic plant.

461 COPPER

The output of copper, in short tons, was distributed as follows:

	1956	1957
Lubumbashi smelter (blister)	132, 093	118, 276
Jadotville-Shituru (electrolytic plant)	138, 867	144, 782
Jadotville-Panda (electric copper-cobalt alloy furnaces)	997	919
Copper recoverable contained in zinc concentrates	812	886
Total	272, 769	264, 863

The company produced 5,787,000 tons of copper from the beginning of operations through 1957.

Kenya.—Production of copper rose from 900 tons in 1956 to about 2,000 tons in 1957 as a result of the first full year's operation of the

Macalder mine of Macalder-Nyanza Mines, Ltd.

Rhodesia and Nyasaland, Federation of.—Mine production of copper in Northern Rhodesia established a new record in 1957, despite work stoppages and announced curtailment at some properties. The output was 480,300 tons and exceeded the 1956 record by 8 percent. There was no shortage of power supplies following importation of power from the Le Marinel installation, and wood burning was discontinued in February after nearly 11 years. Total wood burned on the Copperbelt was approximately 3.8 million cords, equivalent to over 1.7 million tons of coal. Work was continued on the Kariba hydroelectric project on the Zambezi River, and power was expected to be available in 1960.

In May Roan Antelope Copper Mines, Ltd., and Mufulira Copper Mines, Ltd., announced a 10-percent cutback on current production

rates, effective June 1.

The Rhodesian Selection Trust Group, which had established a fixed copper price May 9, 1955, reverted to the London Metal Exchange price basis in October, and the dual pricing of Rhodesian

copper ended.

A total of 5,582,800 tons of ore containing 1.95 percent copper was mined and milled by Roan Antelope Copper Mines, Ltd., in the fiscal year ended June 30, 1957—5 percent more than the record output of the preceding fiscal year. The grade of ore milled, however, was the lowest since operations were begun in 1932. The concentrate smelted yielded 96,600 tons of blister copper compared with 99,400 tons in 1956. In addition, 5,600 tons of blister was produced for Chibuluma and 1,600 tons for Nchanga (including 900 tons from Nchanga ore used as a flux). At the end of June the ore reserve totaled 95.2 million tons averaging 3.09 percent copper. About 10.6 million tons was added to the ore reserve during the year, mainly because of inclusion, for the first time, of ore in the Muliashi Special Grant area.

High-record tonnage of ore was mined and milled by Mufulira Copper Mines, Ltd., in the fiscal year ended June 30, 1957. Ore mined totaled 4,498,600 tons, averaging 2.86 percent copper; a total of 4,481,300 tons was milled and 110,500 tons of copper produced, of which 19,700 tons was blister, 26,500 tons cathodes, and 64,300 tons wire bars. A third reverberatory furnace began operations in the smelter in January 1957. Smelting of concentrate for Chibuluma Mines, Ltd., continued throughout the year. In the refinery a second wire-bar furnace began production in November 1956, and installation of a billet-casting wheel was almost completed by the end of

The ore reserve estimated on June 30, 1957, was 151 million tons averaging 3.35 percent copper. During the year the company announced plans for the development of Mufulira West. Annual copper production will be increased from 112,000 to 173,600 tons. is estimated that 5 years will be required to complete the program,

which will cost £16 million.

Chibuluma Mines, Ltd., completed its first full year's operation in the fiscal 1956-57 year. Ore mined totaled 460,900 tons averaging 5.84 percent copper and 0.36 percent cobalt, and 504,400 tons was Copper concentrate treated was 49,700 tons; the Mufulira smelter treated 32,700 tons and produced 10,600 tons of blister, and the Roan smelter treated 17,000 tons and produced 5,600 tons of Smelting capacity was not available to treat the total output of 75,800 tons of copper concentrate in the 1957 fiscal year, and arrangements were made to treat the remainder in the next fiscal year. The ore reserve on June 30, 1957, was estimated at 6.7 million tons averaging 5.10 percent copper.

Progress was maintained on all phases of construction work at the electrolytic refinery of Ndola Copper Refineries, Ltd., Ndola, a subsidiary of Roan Antelope. In the first section of the refinery most of the electrolytic cells have been erected, and machinery was being installed in all major sections of the plant. Power from the interconnected system of the Rhodesia Congo Border Power Corp., Ltd., became available in 1957. The first section of the refinery was expected to begin operations in August 1958 and the second section in April

1960.

Bancroft Mines, Ltd., came into production at the beginning of 1957, and 3,800 tons of blister copper was produced at the Rhokana smelter. The estimated ore reserve on June 30, 1957, was 102.6

million tons averaging 3.88 percent copper.

The Rhokana Corp., Ltd., mined and milled record tonnages of ore in the fiscal year ended June 30, 1957. A total of 4,230,900 tons was mined from the Nkana and Mindola mines, and 4,265,000 tons of ore averaging 2.54 percent copper was treated in the concentrator. Concentrate produced totaled 345,800 tons, averaging 28.92 percent copper and 1.495 percent cobalt. Finished copper produced was 25,500 tons of blister and 73,400 tons of electrolytic copper. The smelter produced 190,200 tons of copper, of which 25,500 tons was blister and 71,400 tons was anode copper for Nkana, 22,900 tons was blister and 64,500 anode copper for Nchanga, 3,800 tons was blister for Bancroft, 2,100 tons was blister for Kansanshi, and 78 tons was blister for other companies. Ore reserves at the end of June 1957 were as follows:

	Short tons (million)	Copper (percent)
Nkana north ore body	. 25	2. 99
Nkana south ore body		2. 70
Mindola south ore body	. 82	3. 31
		-
	134	3. 13

In the year ended March 31, 1957, 3,163,200 tons of ore was mined and 3,116,300 tons milled by Nchanga Consolidated Copper Mines, Ltd. Production of finished copper was 23,200 tons of blister and 102,900 tons of electrolytic. Preparation of the Nchanga ore body COPPER 463

for open-pit mining was continued during the year, and operations were begun in April 1957. An extensive exploration program on the Chingola ore body resulted in an estimated ore reserve of 7.4 million tons, averaging 5.68 percent copper, and it was decided to mine this property by open-pit methods. Overburden stripping was begun, and it was expected that mining operations would be started in 1958. The Nchanga mill was being enlarged to treat 360,000 tons per month, of which about 240,000 tons will come from the Nchanga West, 80,000 tons from the Nchanga open pit, and 40,000 tons from the Chingola open pit. The ore reserve on April 1, 1958, in the Nchanga West and Nchanga ore bodies was estimated at 154.7 million tons averaging 4.55 percent copper, an increase of over 8 million tons from April 1, 1957.

Production was begun in late 1956 at the Kansanshi mine, of Kansanshi Copper Mining Co., Ltd., about 100 miles west of Nchanga and 6 miles south of Belgian Congo border. Copper concentrate was treated at the Rhokana smelter, and 2,100 tons of blister copper was produced. The mine was flooded and closed in November 1957.

The Rhodesia Copper Refineries, Ltd., produced 182,000 tons of electrolytic copper in the fiscal year ended June 30, 1957, compared with 176,000 tons in the 1956 fiscal year. The output consisted of 173,000 tons of refinery shapes and 9,000 tons of cathodes. In addition, bismuth-bearing cathodes and refinery slimes containing small quantities of copper were shipped elsewhere for treatment.

TABLE 51.—Copper exported from Federation of Rhodesia and Nyasaland in 1957, in short tons

Destination	Ore and			Electrolytic	3	Copper
Destination	concen- trates	Blister	Bar and ingot	Cath- odes	Wire- bars	slimes
Argentina Australia Belgium Brazil	1	56	2,072	1, 682	5, 893 1, 681 3, 334	212
Germany, West		1, 056 39, 914 1, 587 2, 547 2, 128	2,856	2, 306 5, 544 56	10, 098 11, 199 2, 130 22, 135 10, 169	
Spain Spain Union of South Africa United Kingdom United States	6, 000 20 5, 053	7, 396 2, 958 	196 644 829 2, 591	13, 199 1, 289	6, 905 13, 806 18, 353 94, 614	
Other countries Total	16,086	191, 709	11, 997	24, 916	28, 394 310 229, 021	34 246

Production of copper in Southern Rhodesia rose 10 percent to 2,100 tons in 1957. The Umkondo mine of Messina (Transvaal) Development Co., Ltd., was the principal producer. The Mangula mine in the Sinoia district began operations in 1957, 18 months before the target date (1959). It was planned to double the daily mill capacity (1,500 tons) and to build a smelter near the mine. Concentrate was being shipped overseas for smelting. The reserve of sulfide ore was estimated to be 25.9 million tons averaging 1.36 percent copper.

South-West Africa.—Production of copper continued the upward trend for the fourth successive year and exceeded the previous 1956 peak by 3 percent. At the Tsumeb mine of the Tsumeb Corporation, Ltd., 638,500 tons of ore averaging 5.03 percent copper was milled. Sales of copper in the fiscal year ended June 30, 1957, totaled 27,800 tons compared with 25,800 in the 1956 fiscal year. The ore reserve at the end of June was estimated at 9.5 million tons averaging 5.38

percent copper.

Uganda.—In the first full year's operation of the Kilembe mine, Kilembe Mines, Ltd., treated 479,300 tons of ore averaging 2.23 percent copper and 0.17 percent cobalt. Blister copper shipped totaled 8,400 tons. According to the annual report to stockholders of Ventures, Ltd., the daily tonnage milled was increased to 1,550 tons from the rated capacity of 1,335 tons, and production of blister copper substantially exceeded the initial target of 840 tons per month. The ore reserve totaled 17 million tons averaging 2.02 percent copper and 0.17 percent cobalt, of which 9 million tons was proved and probable ore, averaging 2.24 percent copper and 0.18 percent cobalt. The company planned to install a 500-ton-per-day concentrator to

begin operating early in 1959.

Union of South Africa.—Production of blister copper by the O'okiep Copper Co. Ltd., in the fiscal year ended June 30, 1957, was 31,300 tons, a 3-percent decrease from the record output of 32,300 tons in fiscal 1956. A total of 1,428,400 tons of ore averaging 2.15 percent copper was milled from the Nababeep, East O'okiep, West O'okiep, and Wheal Julia mines. During 1957 the high-grade section of the Wheal Julia, which had accounted for the increased production in the past 4 years, was exhausted. A new mine, the Nababeep West, began producing in March and was expected to attain full production of 600,000 to 700,000 tons of ore annually by late 1958. The combined capacity of the Nababeep and East O'okiep concentrators was expanded to 1.8 million tons of ore per year, because of the necessity of mining lower grade ore. The ore reserve on June 30, 1957, was 25.4 million tons, averaging 2.23 percent copper.

OCEANIA

Australia.—The upward trend in production in Australia continued in 1957; output was 63,400 tons compared with 59,400 tons

in 1957, an increase of 7 percent.

The Mount Isa Mines, Ltd., milled a record tonnage of 1,573,400 tons of copper and silver-lead-zinc ores in the year ended June 30, 1957. Copper ore treated totaled 821,400 tons averaging 4.5 percent copper compared with 812,800 tons averaging 3.8 percent copper in the 1956 fiscal year. Blister copper produced (32,300 tons) was also a record. On June 30 the ore reserve totaled 14.3 million tons The company decided to proceed averaging 3.75 percent copper. with part of the expansion program to increase production from the current rate of 4,480 tons per day of silver-lead-zinc and copper ores The entire program depended upon rehabilitation of to 14,560 tons. the Townsville-Mount Isa railway. The intermediate stage in process would increase output to 7,840 tons of sulfide ore per day, and the first part of the expansion was reached in October. It was expected that

465 COPPER

by April 1958 production would be at the rate of 6,720 tons per day and full production of 7.840 tons would be attained by December Work on the electrolytic refinery at Townsville was proceeding satisfactorily, and production was expected in June 1958.

Mount Morgan, Ltd., Queensland, delivered 839,000 tons of ore averaging 0.81 percent copper to the mills, compared with 943.000 tons averaging 0.93 percent in 1956. Copper production dropped 1,600 tons to 6,100 tons (7,700 tons in 1956). The ore reserve was

16.8 million tons containing 1 percent copper.

Other producers in Australia included Mount Lyell Mining & Railway Co., Ltd., Tasmania; Peko Gold Mines, N. L., Northern Territory: and Ravensthorpe Copper Mines, N. L., Western Australia.

TECHNOLOGY

During the year the Bureau of Mines 10 published information on results of investigations at copper deposits and laboratory studies on concentration of ores.

The Geological Survey 11 published information on deposits in

California, Peru, and Central America.

The geophysical work responsible for locating the copper ore body now being mined by the Pima Mining Co.¹² was begun in 1949. The ore body was delineated by using hand instruments (magnetic, electromagnetic) followed by some work with a mobile magnetometer. Analysis of the geophysical surveys indicated a lenticular deposit dipping steeply to the south and striking nearly east-west. Diamond drilling and underground development confirmed the projections. Oxide mineralization was found at 209 feet and sulfide ore at 225 feet. Ore mineralization occurs along a large east-west thrust fault or at near intrusive contacts with limestone or quartzite. Chalcopyrite is the principal ore mineral, with small amounts of bornite and chalcocite. The oxide minerals chrysocolla (copper silicate) and tenorite (black copper oxide) are found above the sulfide zone. After approximately 3 million cubic yards of material had been stripped, the first official production was made on January 1, 1957.

¹⁰ Peyton, A. L., Examination of Copper-Lead-Zinc*Deposits, Cabarrus*and Union Counties, N. C. Bureau of Mines Rept. of Investigations 5313, 1957, 13 pp.

Mihelich, Miro, and Wells, R. R., Copper Mines and Prospects Adjacent to Landlocked Bay, Prince William Sound, Alaska: Bureau of Mines Rept. of Investigations 5320, 1957, 21 pp.

Wilson, E. D., Geologic Factors Related to Block Caving at San Manuel Copper Mine, Pinal County, Ariz.; Progress Report April 1954-March 1956: Bureau of Mines Rept. of Investigations 5336, 1957, 78 pp.

Magill, E. A., and Appling, R. N., Jr., The Miners Queen Copper Deposit, Skamania County, Wash.: Bureau of Mines Rept. of Investigations 5343, 1957, 16 pp.

Look, Allen D., and Williams, M. L., Safety Plan at Ray Mines Division, Kennecott Copper Corp., Ray, Ariz.: Bureau of Mines Inf. Circ. 7772, 1957, 19 pp.

Look, Allen D., and Anderson, Ludlow G., Use of Precast Shaft Supports, Banner Mine, Lordsburg, N. Mex.: Bureau of Mines Inf. Circ. 7775, 1957, 15 pp.

Storms, Walter R., and Bowman, Allan B., Mining Methods and Practices at the Mineral Hill Copper Mine, Banner Mining Co., Pina County, Ariz.: Bureau of Mines Inf. Circ. 7786, 1957, 25 pp.

Hardwick, W. R., and Sierakoski, Joe, Mining Methods and Practices at the Johnson Camp Copper-Zinc Mine, Coronado Copper & Zinc Co., Cochise County, Ariz.: Bureau of Mines Inf. Circ. 7788, 1957, 27 pp.

Wolle, D. R. Fernance, E. G. and Steviller, E. H. Beanfaisticn of Lear County On France County Models.

Zinc Mine, Coronado Copper & Zinc Co., Cochise County, AIL... Buteau of Allines Zinc. 27 pp. Wells, R. R., Erspamer, E. G. and Sterling, F. T., Beneficiation of Iron-Copper Ore From Kasaan Peninsula, Prince of Wales Island, Alaska: Bureau of Mines Rept. of Investigations 5312, 1957, 15 pp. Engle, A. L., and Heinen, H. J., Leach-Precipitation-Flotation Tests of a California Copper-Gold Ore: Bureau of Mines Rept. of Investigations 5342, 1957, 9 pp. "Kinkel, A. R., Jr., Hall, W. E., and Albers, J. P., Geology and Base-Metal Deposits of West Shasta Copper-Zinc District, Shasta County, Calif.: Geol. Survey Prof. Paper 285, 1956 (1957), 156 pp. Bodenlos, A. J., and Straczek, J. A., Base-Metal Deposits of the Cordillera Negra, Departamento de Ancash, Peru: Geol. Survey Bull. 1040, 1957, 165 pp. Roberts, R. J., and Irving, E. M., Mineral Deposits of Central America, With a section on Manganese Deposits of Panama by F. S. Simons: Geol. Survey Bull. 1034, 1957, 205 pp. 19 pp. 100-106.

The Pima and Twin Buttes districts in Arizona 13 have been the scene of intense exploration and development in recent years. Known ore deposits of both districts occur at or near the contacts of intrusive granites with limestones and quartzites. The deposits are typical of pyrometasomatic mineralization with contact zoning of hightemperature gangue minerals. The principal copper mineralization is chalcopyrite, with minor amounts of bornite and chalcocite. Locally magnetite and pyrrhotite are associated with the ore minerals and have served as exploration aids. Magnetic surveys have been extensively used as guides to possible alluvial-covered deposits. The Banner Mining Company Mineral Hill, Daisy, and Copper Glance mines, the Duval Sulphur & Potash Co. open-pit Esperanza mine to the south, and the American Smelting and Refining Co. encouraging diamond drilling on the Papago Indian Reservation to the north are significant achievements so far in the area.

Theories 14 on the genesis of copper deposits of the "manto" type in Lower California, Mexico, including hydrothermal solutions of magmatic origin, submarine mud volcanoes, hot springs, supergene enrichment, and lateral secretion are questioned. Field observations during extensive geological investigations of the Boleo copper district indicate that the copper deposits are of sedimentary rather than

magmatic origin.

The Cuajone porphyry-copper deposit in Peru lies north of Toquepala and Quelleveco on the western slope of the Andean Range, where guartz-monzonite invaded earlier diorite intrusives and volcanic flows. 15 Sulfide mineralization occurs in small veinlets and disseminations in intervening fragments. Pyrite predominates, and chalcopyrite is the principal ore mineral. Nearly all of the well-known copper minerals are found in small quantities—bornite, chalcocite, covellite, and enargite, plus the oxide forms of chrysocolla, cuprite, and tenorite. Lead and zinc minerals occur in the periphery of the ore zone but apparently in uneconomic concentrations. Drilling data indicate that copper values were deposited along zones of shattering or brecciation that were open when copper-bearing solutions were introduced.

Mining costs at The Anaconda Co. Berkeley pit 16 in Butte, Mont., were reduced by using ammonium nitrate of Fertilizer grade for blasting benches. The cost of nitro-carbo-nitrate previously used was \$225 per ton as against \$78.25 for Fertilizer-grade ammonium nitrate. This material alone is not explosive or cap-sensitive and is therefore safer to handle, store, and transport than most other explosives. Good fragmentation in both ore and waste by using ammonium nitrate, with no secondary blasting required, contributed to a higher

mining rate with resultant lower mining costs.

Kennecott Copper Corporation plans and development operations for mining the Deep Ruth ore body involved 17 sealing off waterbearing formations in sinking the Deep Ruth and Kellinshe shaft,

The Mining World, Geology and Exploration Point Way for Banner's Copper Developments: Vol. 19,
 No. 12. November 1957, pp. 38-42.
 Nishihara, Hironao, Origin of The "Manto" Copper Deposits in Lower California, Mexico: Econ. Geol., vol. 52, No. 8, December 1957, pp. 944-951.
 Lacy, W. C., Porphyry-Copper Deposit, Cuajone, Peru: Min. Eng., vol. 10, No. 1, January 1958, pp. 104-107.

<sup>104-107.

104-107.

105</sup> Engineering and Mining Journal, At Berkeley Pit, Blasting Is an Art: Vol. 158, No. 12, December 1957, pp. 107-110.

11 Huttl, John B., Bringing Deep Ruth Into Production: Eng. Min. Jour., vol. 158, No. 5, May 1957,

467 COPPER

establishing three haulage levels, moving office buildings and numerous homes to the New Ruth townsite, and constructing a modern surface plant at the Deep Ruth shaft. Deep Ruth production was scheduled

for 1958.

Appalachian Sulphides, Inc., began to produce from the famous Ore Knob mines in North Carolina in March 1957.18 The ore body is a vertically dipping fissure approximately 200 feet wide and 1,500 feet long, containing copper-bearing ore minerals of pyrrhotite and pyrite.

The American Smelting and Refining Company announced a major copper discovery at its properties in the Papago Indian Reservation about 15 miles south of Tucson, Arizona. Exploration by diamond, churn, and rotary drilling has developed reserves of about 65 million

tons of ore averaging 0.90 to 1.00 percent copper.

Underground truck haulage 20 is being reduced at the White Pine Copper Co. mine in Michigan's Upper Peninsula. When the mine first was opened, all ore was trucked to a conveyor system installed in the slope leading out of the mine; however, as new mining areas have been opened up increasing distances from the slope, conveyors have replaced the trucks for much of the haulage. This convevor

program is expected to continue as mining progresses.

The Sherritt Gordon Co. original Lynn Lake discovery of nickelcopper ore was made in 1941, where a small occurrence of massive pyrrhotite and disseminated sulfides yielded some ore-grade specimens containing nickel and copper.²¹ Geophysical surveys covering 42.4 square miles, and costing \$5,212 per square mile, resulted in the subsequent delineation of 14 million tons of ore averaging 1.22 percent nickel and 0.62 percent copper. Five ore bodies were found, and 2 were being mined. Ore hoisted in 1955 amounted to 761,000 tons at a distributed cost of \$4.04 per ton; production rates were 2,087 tons per day, 22.71 tons per shift worked underground, or 6.22 tons per shift for the total payroll.

Three articles 22 described smelter equipment and operations and show statistics of copper smelting at 1 Canadian and 2 United States

smelters.

In a 24-hour full-scale experimental test at the Cerro de Pasco Corporation Oroya smelter in Peru it was determined 23 that the high magnetite content and the copper losses in reverberatory slags are partly related to the presence of converter slag in the reverberatory Increased slag-settling time, addition of pyrites on top of furnace. the slag, and elimination of converter slag from the reverberatoryfurnace charge lower copper losses in reverberatory slags.

¹⁸ Engineering and Mining Journal, Reopened Ore Knob Copper Is Thriving: Vol. 158, No. 10, October 1957, pp. 104-105.

10 Mining World, ASARCO Announces Major Arizona Copper Discovery: Vol. 19, No. 10, September

^{1957,} p. 49.

Dispeaker, F. B., Conveyor Operation in Michigan Wilderness: Min. Eng., vol. 9, No. 12, December 1957, pp. 1324–1325.

Gallie, Alan E., Sherritt Gordon Nickel-Copper Mines: Min. Eng., vol. 9, No. 3, March 1957, pp. 222

Totalie, Ann. E., Sherite Goton France Cerron.

130-333.

2 McKerrow, G. C., The Gaspé Smelter: Jour. Metals, vol. 9, No. 9, September 1957, pp. 1114-1117.

Woodside, T. J., and Roberts, B., The El Paso Smelter: Jour. Metals, vol. 9, No. 9, September 1957, pp. 1118-1121.

Wilson, R. C., The San Manuel Smelter: Jour. Metals, vol. 9, No. 9, September 1957, pp. 1122-1124.

28 Barker, I. L., Jacobi, J. S., and Wadia, B. H., Some Notes on Oroya Copper Slags: Jour. Metals, vol. 9, No. 6, June 1957, pp. 774-780.

Several articles ²⁴ constituting a symposium on powder metallurgy describe the uses, properties, fabrication, and technology as applied

to copper and copper-alloy products.

The roast-leach-electrolytic precipitation process 25 in the development stage, with a 5-ton-per-day pilot plant operated by the Bagdad Copper Corporation, is showing encouraging results. The process is not new, having been described to the American Electrochemical Society by Charles T. Baroch in June 1930. The solubility of iron is apparently the principal problem to be solved. Close control at high temperatures in FluoSolids roasters appears to be responsible for better solubilities of both iron and copper.

The Braden Copper Co. El Teniente mine at Sewell, Chile, was

the largest underground copper mine in the world.26

When operating at capacity the mill recovered 2,000 tons of copper concentrates from 34,000 tons of dry ore daily. The tonnage of tailings is equivalent to about 100,000 tons of pulp. Because the streams flowing from the Andes are used for irrigation, tailings cannot be dumped directly into the river, and the pulp is separated into solids and water. The coarse sand is separated in settling boxes and used to build dams at various sites, while the slimes are transported to the reservoirs behind the dams; the clear water is returned to the originating watershed. Disposal of tailings from the concentrator to the final area of deposition required 37 miles of wooden flumeline, about 3 miles of tunnel through rock, 11/4 miles of false. tunnels and snowsheds, 275 bridges, and 8 partial camps.

Design of a gravity tailing-disposal system 27 for the San Manuel concentrator required controlled pH value and density of the tailings Laboratory tests showed that a pH of approximately 11.0 was required for satisfactory tailings thickening and a clear overflow. A higher pH (11.4) caused plugging of the entire tailing line, while a

lower pH (below 10.85) produced a murky overflow.

The Phelps Dodge Corp. Lavender-pit concentrator, treating lowgrade porphyry copper ore from the nearby mine, handles 16,000 tons per day having an average total copper content of 1.039 percent; sulfide copper composes 0.985 percent and oxide 0.054 percent.²⁸ chalcocite content in the millheads varies greatly from hour to hour, shift to shift, and day to day. In 1 month the daily chalcocite content ranged from 0.86 to 1.87 percent; hourly variations from 0.70 to 1.50 percent copper are not uncommon.

Cyclones 29 were used for thickening copper concentrate, classifications of ore in fine grinding circuits, classification of middling concentrate for regrinding, desanding milk of lime, and classification and thickening of tailings at disposal areas. At the Chino Mines Division of Kennecott Copper Corp. they have been employed widely to supplement existing equipment or improve efficiencies of particular

operations.

Journal of Metals, Powder-Metallurgy Symposium: Vol. 9, No. 3, March 1957, p. 325.
 Howell, E. S., Grothe, J. D., and McLeod, B. H., Bagdad Reports Metallurgical Test Results On Copper Recovery Method: Eng. Min. Jour., vol. 185, No. 7, July 1957, pp. 86-89.
 Jigins, R. W., Tailings Disposal at Braden Copper Co.: Min. Eng., vol. 9, No. 10, October 1957, pp.

²⁶ Jigins, R. W., Tailings Disposal at Braden Copper Co.: Min. Eng., vol. 9, No. 10, October 1957, pp. 1135-1140.

²⁷ Wallach, A. A., Tailings Line Design as Affected by pH: AIME Tech. Paper, Prepr. 5819 AH. (Pres. at Annual Meeting of AIME, February 1958.)

²⁸ Martin, H. K., Milling Practice at the Lavender-Pit Concentrator: Min. Eng., vol. 9, No. 11, November 1957, pp. 1229-1235.

²⁸ Lemke, Paul A., Experience With Cyclones At Chino: Min. Cong. Jour., vol. 43, No. 9, September 1957, pp. 42-45.


COPPER 469

In January 1957 Inspiration Consolidated Copper Company at Inspiration, Ariz.³⁰ placed in operation its dual metallurgical process for treating mixed oxide-sulfide copper ore. The new process increased the company ore reserve by allowing treatment of lower grade ore and eliminated the necessary control of the oxide-sulfide ratio required by acid ferric-sulfate leaching practice. The dual process is essentially a straight acid leach to extract the copper oxide fraction from the ore, followed by flotation of the washed residue to

recover the sulfide portion.

Intimate blending of a concentrated siliceous flux with copper concentrate allows Magma Copper Company 31 to provide a predetermined uniform charge for its reverberatory furnace at Superior, Ariz. A specially designed circuit installed in the mill that floats pyrite from a portion of the mill scavenger tailings gives a finely ground flux averaging 70 percent silica. The flux is mixed with the copper concentrate in a pump sump. The mixture is pumped almost 3,000 feet through a 4-inch pipeline to the filtering plant at the smelter. Daily observation and analysis of the reverberatory slag indicate the quantity of crushed silica that must be charged with the filtercake for necessary minor adjustment to control composition of the slag.

³⁰ Dayton, Stanley, Dual-Process Metallurgy Stretches Inspiration Ore Reserves: Min. World, vol. 19, No. 10, September 1957, pp. 50-59.
³¹ Caldwell, E. J., and Rex, Halder, Fluxed Concentrate Pumped to Magma's Copper Smelter: Min. World, vol. 20, No. 4, April 1958, pp. 43-45.

Diatomite

By L. M. Otis 1 and James M. Foley 2

UTPUT of diatomite in the United States in 1957 was appreciably greater than in 1956, continuing the uninterrupted upward trend in production since 1952. Production data cannot be published for 1957 until the 1959 release when the 3-year average for 1957-59 will be available.

TABLE 1.—Diatomite production, 1939-56

	1939-41	1942-44	1945–47	1948-50	1951–53	1954-56
Domestic productionshort tons_Average value per ton	360, 502	524, 872	640, 764	722, 670	908, 448	1, 105, 279
	\$15. 94	\$18. 85	\$20. 17	\$25. 55	\$29. 97	\$39. 21

DOMESTIC PRODUCTION

Since 1910 California has been the leading diatomite-producing State. In 1957 Nevada was second, followed in order by Oregon and Washington. Arizona and New Mexico have not produced since 1955. Thirteen plants reported output during the year, compared with 12 in 1956.

Great Lakes Carbon Co. began stripping operations in Lake County, Oreg., in October 1957. Ore was to be shipped to the company processing plant at Lower Bridge (near Terrebonne).

CONSUMPTION AND USES

The market for diatomite appeared to be widening, owing to new uses. Most new uses are not important tonnagewise, but the aggregate is reflected in the gradual increase in the proportion classified as miscellaneous.

Filtration continued to be the principal sales outlet; 45 percent was sold for this purpose, compared with 48 percent in 1956.

Diatomite was originally used as a filter aid for clarifying raw cane-sugar solution. In 1957 it was used for almost every industrial filtration application, including processing water, alcoholic and non-alcoholic beverages, antibiotics, oils, solvents, and various chemicals.

Since 1943 its use as a filler or extender has ranked second, 26 percent being sold for this purpose in 1957, the same as in 1956. Diatomite was used as a filler in paper, paints, varnish, brick, tile, ceramics, oilcloth, linoleum, plastics, soap, detergents, welding-rod coatings, belt dressing, crayons, phonograph records, and in many other items.

Commodity specialist.
 Supervisory statistical assistant.

Insulation against temperature change and sound ranked third in The cellular structure and irregular outline of the grouped, many-shaped diatoms entrap a mass of dead air, inhibiting the passage of heat and sound. Diatomite was used as insulation for ovens, kilns, safes, refrigerators, driers, evaporators, cold-storage space, pipes, flues, furnaces, retorts, stacks, stills, stoves, tanks, etc. Acoustical plaster and panels for sound-deadening walls and ceilings also used The quantity consumed in all types of insulation in 1957 was 7 percent of the total sales, the same as in 1956.

Hundreds of miscellaneous uses comprised the remainder of diatomite sales, and included: Abrasives, absorbents, catalyst carriers, herbicide and fungicide vehicles, glazes, enamels, flatting agents for paints, and manufacturing sodium and calcium silicates. These miscellaneous uses increased from 19 percent in 1956 to 22 percent in

1957.

In 1956 Canada used 45 percent for fertilizer dusting, 41 percent for filtration, 12 percent as fillers, 1 percent for insulation, and less than 1 percent in miscellaneous uses.

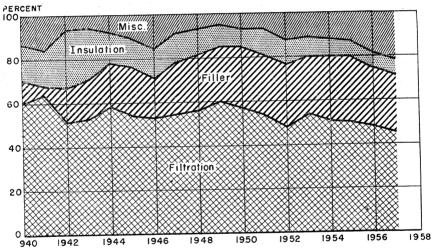


FIGURE 1.—Proportion of diatomite sales in the United States for each principal class of use, 1940-57.

PRICES

Prices varied according to purity, particle-size range, whether uncalcined, calcined, or calcined with fluxes, whether sold in bulk or bagged, and type of bag used. The following prices were average bulk values per short ton at producers' plants for five use categories, covering 1957 transactions, as reported to the Bureau of Mines: Filtration, \$42.13; insulation, \$39.91; abrasives, \$136.79; fillers, \$37.44; miscellaneous, \$22.81. The weighted average for all domestic diatomite sold during 1957 was \$36.48 per short ton, 17 percent less than in 1956.

FOREIGN TRADE

Because exports and imports of diatomite are not reported separately by the United States Department of Commerce, reliable statistics are lacking. Crude material may be imported into the United States duty-free under paragraph 1775 of the Tariff Act of 1930. Refined diatomite, principally of filtering quality, was exported to many countries from the United States.

WORLD REVIEW

Some foreign prices in 1956 for diatomite as calculated from available information, per short ton, were: Kenya, \$49; South Korea, \$27; France, \$5; Finland, \$4.

NORTH AMERICA

Canada.3—Although there has been small sporadic production since 1896, the most recent from Nova Scotia, present requirements depend on imports from the United States and Denmark, which totaled 21,000 short tons in 1956. The largest known Canadian deposits (but so far undeveloped) are along the Fraser River in the Quesnel area of British Columbia.

Costa Rica.—Requirements of a new pesticide-manufacturing plant in Costa Rica increased the local production of diatomite in 1956 125 percent above 1955 to 6,737 short tons.4

AFRICA

Algeria.—Disturbed political conditions were responsible for curtailment of production. The geographic distribution of Algerian exports for the first quarter of 1957, in percent, was: France, 50 percent; Netherlands, 16 percent; Great Britain, 16 percent; Belgium-Luxembourg, 9 percent; Netherlands Guiana, 3 percent; Italy, 1 percent: Indonesia, 1 percent; miscellaneous, 4 percent.

TECHNOLOGY

A new filter aid on the market used a combination of asbestos and diatomite. The producer claimed improved clarity and simplified use, particularly for the final clarifying stage in beermaking.5

Patents.—Various patents were granted covering diatomite as a filler in resinous coatings, reinforcing in molding compounds, and to lend consistency to foamed resins.

Materials used in a patented white, quick-setting cement include a pozzolan cement made from fly ash, kaolin or ball clay, and diatomite.

³ Department of Mines and Technical Surveys, Ottawa, Diatomite in Canada, 1956 (Preliminary): Bull.

³ Department of Mines and Tecunical Guiveys, 5, 5, 5, 7, 7, 19, 1957, p. 28.

⁴ Bureau of Mines, Mineral Trade Notes: Vol. 44, No. 4, April 1957, p. 28.

⁵ Industrial and Engineering Chemistry, vol. 49, No. 9, September 1957, Pt. I, p. 126 A.

⁶ Mittl, S. J. (assigned to Glidden Co., Cleveland, Ohio), Process for Preparing Polyester-Faced Bodies:
U. S. Patent 2,817,619, Dec. 24, 1957; Weyer, D. E. (assigned to Dow Corning Corp., Midland, Mich.),
Powdered Siloxane Resin and Process of Preparing Cellular Resin Therefrom: U. S. Patent 2,803,606, Aug.
20, 1957; Biefeld, L. P., and Shannon, R. F. (assigned to Owens-Corning Fiberglas Corp.), Fibrous Glass
Reinforced Resinous Molding Compound: U. S. Patent 2,804,438, Aug. 27, 1957.

⁷ Randall, M. C., and Gethen, G. S. (assigned to M. I. Randall, Notre Dame, Ind., and E. G. Gethen,
Collingwood, N. J.), Insulating Finishing Cement and Structural Material: U. S. Patent 2,815,293, Dec.

⁸ 1957.

TABLE 2.—World production of diatomite, by countries, 1948-52 (average) and 1953-57, in short tons 2

[Compiled by Helen L. Hunt and Berenice B. Mitchell]

Country 1	1948–52 (average)	1953	1954	1955	1956	1957
North America:			1.65			-
Canada	55	103	4	16	2	168
Costa Rica	285	430	595	3,000	6,737	3 6, 600
Guatemala	3 9, 500	3 11, 900	3 12, 900	³ 16, 500	3 16,600	20,600
United States	265,000	4 302, 816	5 368, 426	⁵ 368, 426	5 368, 426	§ 368, 426
South America:						
Argentina	\$ 1,980	(6)	(6)	2,750	6,600	⁸ 6, 600
Chile	1, 222	11	31	550		
Peru		2	2	1	34	3 30
Europe:						
Europe: Austria	4, 279	3, 435	3, 532	4, 445	5,490	3, 82
Denmark:						# co co
Diatomite	7 22, 238	12, 454	30, 337	39, 103	7 22, 238	7 22, 23
Moler 8	3 62,000	9 39, 080	42,990	39, 442	9 39, 080	9 39, 08
Finland	1,329	1,985	1,367	2,059	2,535	3 2, 800
France 10	56, 325	76, 235	68, 092	70, 025	69,440	3 69, 500
Germany, West 10	39, 691	54, 530	53,666	62, 575	72,890	3 77, 00
ItalyPortugal 10Spain 10	9,572	10, 158	11, 160	11, 314	13, 244	3 13, 00
Portugal 10	1,792	1,089	2,011	2,499	1,985	⁸ 2, 200
Spain 10	7,950	7,975	10,002	15, 927	10, 915	12, 31
Sweden	1,942	1,504	1,013	1,625	1, 243	⁸ 1, 200
United Kingdom:	10.040	10.074	10 550	04 050	19, 361	a 22, 00
Great Britain Northern Ireland	10,648	13, 974	10,778 4,675	24, 656 7, 293	6, 577	6,84
Northern Ireland	8,627	8, 139				
Yugoslavia	11 2, 250	3, 901	4, 439	4, 490	(6)	(6)
Asia:	(6)	245	1,377	3, 393	3,912	1, 47
Korea, Republic of	(9)	240	1,577	0,000	0, 512	1, 1,
Africa: Algeria	16, 912	28, 162	38, 581	30, 384	29, 201	3 11, 00
Algeria	1, 559	353	173	545	320	3 33
Egypt	3, 568	4,903	3,649	3,304	5, 418	4,73
Kenya Union of South Africa	897	120	1,047	850	635	60
Oceania:	091	120	1,047	500	1 000	00
Australia	6, 679	4, 973	6,091	5, 647	6, 484	3 4, 90
New Zealand	143	115	188	623	152	3 22
TADM TORISHOTT	140	110	100	020	102	
World total (estimate) 12	580,000	635, 000	725, 000	765,000	760,000	750,00

¹ Diatomaceous earth believed to be also produced in Brazil, Hungary, Japan, Mozambique, Rumania, and U. S. S. R., but complete data are not available; estimates by senior author of chapter included in

total.

This table incorporates a number of revisions of data published in previous Diatomite chapters. Data do not add to totals shown, owing to rounding where estimated figures are included in the detail.

3 Estimate

A Stimate.
 A verage annual production, 1951-53.
 A verage annual production, 1954-56.
 Data not available; estimate by senior author of chapter included in total.
 A verage annual production, 1947-55.
 A clay-contaminated diatomite used principally for lightweight building brick.

Average annual production, 1951-56.

11 Average for 1 year only, as 1952 was first year of commercial production.

A patented insecticide carrier specified mixtures of gum and diatomite or kaolin to form hardened pellets containing the poison, which is released in the soil as the binder in the pellets slowly dissolves.8

The use of diatomite to prevent atmospheric condensation on

finished surfaces was patented.9

Two patents were granted covering the use of diatomite as aggregate in oil-well concretes. Permeability of the concrete and the pozzolanic effect are the principal reasons for its use in this application.10

⁸ Hortley, G. S. (assigned to Pest Control, Ltd., Bourn, England), Method and Means of Introducing a Predetermined Amount of Poisonous Material Beneath the Surface of the Soil: U. S. Patent 2,809,469, Oct.

Predetermined Amount of Poisonous Material Poincate and Constance of States. 15, 1957.

Natz, S., and Kut, S. (assigned to Pearl Varnish Co., Ltd., Pontypridd, Wales), Diatomite—Phenol-Formaldehyde Antisweat Coating: U. S. Patent 2,804,437, Aug. 27, 1957.

Mangold, G. B., Dyer, J. A., and Hart, J. T. (assigned to Petroleum Engineering Associates, Inc., Pasadena, Calif.), Permeable Concrete: U. S. Patent 2,793,957, May 28, 1957; Mangold, G. B., Dyer, J. A., and Hart, J. T. (assigned to Petroleum Engineering Associates, Inc., Pasadena, Calif.), Well Completion With Permeable Concrete: U. S. Patent 2,786,531, Mar. 26, 1957.

A patented surfacing material for roads and floors contains gypsum. a lime-reactive silica, such as diatomite, and an anhydrous metal sulfate.11

A mixture of diatomite, asbestos fiber, hydrated lime, bentonite, and magnesium carbonate was patented as the ingredients in high-

temperature insulating blocks and shapes.12

A patented method of making a fireproof acoustical tile consists of mixing a carbonaceous material with a ceramic product, such as

fire clay, potter's clay, and diatomite.13

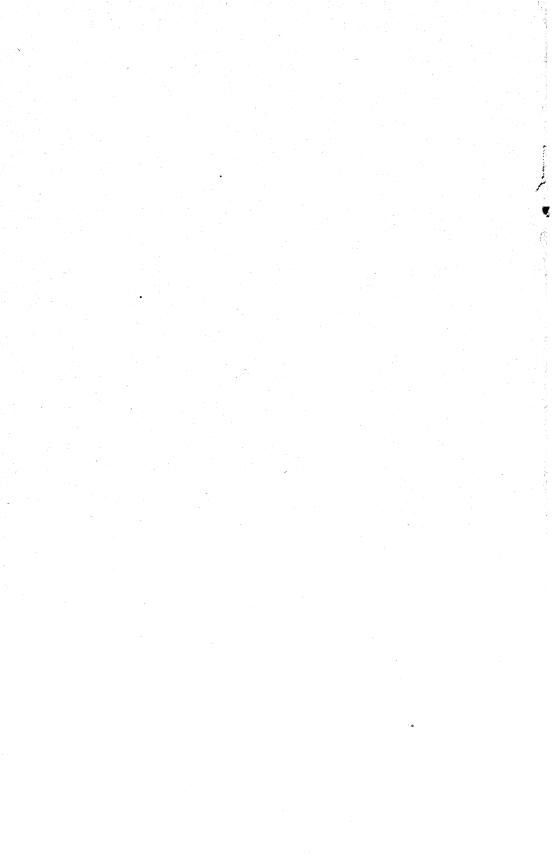
A dimensionally stable sheet used for reproducing drawings on template stock is made by a patented method, which employs a glasscloth base impregnated with a polyester or alkyd resin admixed with talc and diatomite.14

A patented tobacco-smoke-filter material uses a zirconium compound applied in solution to a porous carrier base, such as diatomite. 15
Diatomite is admixed with the soil surrounding septic-tank outlets

in a patented method of handling the effluent.16

A high-temperature insulation material was patented and is made by binding a mixture of expanded perlite, long-fiber asbestos, and diatomite with lime. It can be used in both high- and low-temperature applications. 17

Diatomite is used in patented formulas for reinforced inorganic


molding compositions.18

11 Lipkind, H., Sherer, A. I., and Zara, M. H. (assigned to L. Sonneborn Sons, Inc.), Surfacing Materials: U. S. Patent 2,785,988, Mar. 19, 1957.

12 Binkley, M. E. (assigned to Johns-Manville Corp., New York, N. Y.), Thermal Insulating Shape and Method of Manufacture: U. S. Patent 2,793,131, May 21, 1957.

13 Heine, H. W., Method of Making Composite Fireproof Acoustical Tile: U. S. Patent 2,791,020, May 7, 1957.

Heine, H. W., Method of Making Composite Frepton Accusated Lie.
 Heichorn, A. (assigned to Screen Engineering Co., Santa Monica, Calif.), Photographic Method for Making Templates: U. S. Patent 2,801,919, Aug. 6, 1957.
 Seldeen, M., Tobacco-Smoke Filter: U. S. Patent 2,795,227, June 11, 1957.
 Horne, F. F., and Edwards, T. J. (assigned by Edwards to Horne), Disposal of Septic Tank Effluent and the Like: U. S. Patent 2,795,542, June 11, 1957.
 Denning, P. S. (assigned to F. G. Schundler & Co., Inc., Joliet, Ill.), Manufacture of High Temperature Insulating Materials: U. S. Patent 2,784,085, Mar. 5, 1957.
 Slayter, G. (assigned to Owens-Corning Fiberglas Corp.), Reinforced Inorganic Molded Products U. S. Patent 2,781,274, Feb. 12, 1957.

Feldspar, Nepheline Syenite, and **Aplite**

By Taber de Polo 1 and Gertrude E. Tucker 2

OMESTIC PRODUCTION of crude feldspar and flotation concentrate declined in 1957 because of decreased demand from the glass and pottery industries. Many expansion programs planned in 1956 were curtailed.

The price of Glass-grade feldspar from North Carolina, the largest producing area in the United States, dropped 20 percent in July 1957

from \$12.50 to \$10 per ton.

The entry into the field of Lawson-United Feldspar & Mineral Co. late in 1957 at Minpro, N. C., and the completion of a new plant by Spar-Mica Corp., Ltd., in Canada raised the industry's milling capacity to approximately twice the demand.

TABLE 1.—Salient statistics of the feldspar industry, 1948-52 (average) and 1953-57

	1948-52 (average)	1953	1954	1955	1956	1957
United States:			100			
Crude feldspar:	1		1			1
Domestic sales: 1	411 027	450 600	411 010	405 970	2 002 074	611 001
Long tons	411,857	452,600	411,018	465, 378	² 693, 276	611,801
Thousand dollars	2,783	4,594	3,490	3,801	2 6, 014	5, 439
Average per long ton	\$6.76	\$10.15	\$8.49	\$8.17	2 \$8.67	\$8.89
Imports:	10,000	F 001	70	105	070	70
Long tons	16,389	5, 901	79	105	258	72
Thousand dollars	122	61	840.48	*****	400.00	400.00
Average per long ton	\$7.46	\$10. 25	\$42.49	\$89.01	\$36.09	\$92.03
Ground feldspar:					i	
Sales by merchant mills:	450 040	400 050	400 005	450 505	9 7700 000	004 011
Short tons	450, 643	463, 876	428, 895	479, 567	³ 762, 868	634, 211
Thousand dollars	6, 412	7, 149	6, 517	7, 699	2 9, 300	7, 451
Average per short ton	\$14.23	\$15.41	\$15. 20	\$16.05	2 \$12.19	\$11.75
Apparent domestic consumption:						
Long tons	428, 246	458, 501	411,097	465, 483	2 693, 534	611, 873
World production:					1	
Long tons	740,000	780,000	820,000	960,000	1, 230, 000	1,160,000

Includes flotation concentrate, 1951-57.

2 Revised figure.

DOMESTIC PRODUCTION

Crude Feldspar.—Crude feldspar (including concentrate obtained by flotation of feldspathic rocks and sands) sold or used by domestic producers in 1957 decreased 12 percent in quantity and 10 percent in value from 1956. Production was reported from 12 States, the same as in 1956.

¹ Commodity specialist.
² Statistical assistant.

North Carolina continued to lead in production, with 38 percent of the quantity and 50 percent of the value. California again ranked second, producing 30 percent of the quantity and 20 percent of the The California figures are not comparable with figures before Figures for 1956 and 1957 were revised to include the substantial production of "Silspar" (a mixture of feldspar and silica) from dune sands by Del Monte Properties Co. and a similar material produced by Owens-Illinois Glass Co., both of which contain more than 50 percent feldspar.

Over 40 percent of all marketable feldspar was obtained by flotation

treatment of feldspar and feldspathic rock in 1957.

Toward the end of 1957 Lawson-United Feldspar & Mineral Co. opened its new plant at Minpro, N. C., to recover feldspar and other minerals from alaskite ore. The plant was equipped to produce 8,000 tons of Glass-grade feldspar, 2,500 tons of low-iron, glass-melting sand, and 400 tons of mica per month.

In connection with its long-range exploration program, Bell Minerals

Co. opened two new mines.

TABLE 2.—Crude feldspar sold or used by producers in the United States, 1948-52 (average) and 1953-57 1

Year Long tons	Long	Valı	1e		Long	Valu	ıe .
	Total	Average per ton	Year	tons	Total	Average per ton	
1948-52 (average) 1953 1954	411, 857 452, 600 411, 018	\$2, 782, 565 4, 594, 450 3, 490, 466	\$6. 76 10. 15 8. 49	1955 1956 ² 1957	465, 378 3 693, 276 8 611, 801	\$3, 801, 291 ³ 6, 013, 797 ³ 5, 439, 209	\$8. 17 8. 67 8. 89

Includes flotation concentrate, 1951-57.

TABLE 3.—Crude feldspar 1 sold or used by producers in the United States, 1955-57, by States

State	19	55	19	956	1957		
	Long tons	Value	Long tons	Value	Long tons	Value	
California Colorado Connecticut	(2) 46, 114	(2) \$313, 716	3 241, 160 47, 014	3 \$1, 265, 149 327, 276	³ 181, 613 43, 818	³ \$1, 085, 500 307, 033	
New Hampshire	44,064 26,282	366, 383 188, 961	28, 657 22, 219	286, 802 143, 495	53, 776 14, 330	566, 410 91, 79	
North Carolina South Dakota Wyoming	242, 724 42, 164	2, 184, 793 267, 286	255, 637 45, 226 1, 201	3, 191, 559 288, 843 8, 195	233, 439 41, 316 (2)	2, 728, 153 266, 786 (2)	
Other States 4	64,030	480, 152	⁵ 52, 162	5 502, 478	43, 509	393, 538	
Total	465, 378	3, 801, 291	56 693, 276	5 66, 013, 797	6 611, 801	6 5, 439, 209	

Revised figures.

Includes feldspar-silica mixture not previously reported. Figures comparable to previous years are as follows: 1956: 485,300 long tons valued at \$5,169,861; 1957: 454,313 tons, \$4,655,487.

Includes flotation concentrate.
 Included with "Other States" to avoid disclosing individual company confidential data.
 Includes silspar.

⁴ Includes Arizona, Georgia, Texas, Virginia, and States indicated by footnote 2.

Includes feldspar-silica mixture not previously reported. Figures comparable to previous years are as follows: 1956: 485,300 long tons valued at \$5,169,861; 1957: 454,313 tons, \$4,655,487.

Golding-Keene Co. used electrostatic beneficiation methods at its Keene, N. H., plant in 1957. In November the first shipment of electrostatically beneficiated feldspar was received at its Trenton, N. J., plant from its affiliated company, Spar-Mica Corp., Quebec,

Ground Feldspar.—Ground feldspar sold by merchant mills in the United States decreased 17 percent in quantity and 20 percent in value, compared with 1956. The average value dropped from \$12.19 to \$11.75 per short ton. Twelve States with 23 active mills reported production of ground feldspar, compared with 14 States with 25 Texas and New Jersey reported in 1956 but not in 1957.

North Carolina, California, Colorado, and South Dakota were again the leading producers, in that order. The Southeastern States (Georgia, North Carolina, Tennessee, and Virginia) produced 46 percent of the total tonnage of ground feldspar and furnished 56 percent of the value. Ground feldspar figures include flotation concentrate and feldsparsilica mixture containing more than 50 percent feldspar.

TABLE 4.—Ground feldspar sold by merchant mills 1 in the United States, 1948-52 (average) and 1953-57

		D omestic feldspar		Can	adian felds	Total			
Year	Active mills	ShortValue		Value Short Value		10	Short	Value	
		tons	Total	Aver- age	tons	Total	Aver- age	tons	
1948-52 (average) 1953 1954 1955 1956 ³		435, 467 454, 692 427, 161 479, 567 2762, 868 2634, 211	\$6, 052, 381 6, 909, 177 6, 471, 621 7, 698, 905 2 9, 299, 790 2 7, 451, 427	\$13. 90 15. 20 15. 15 16. 05 12, 19 11. 75	15, 176 9, 184 1, 734	\$359, 681 239, 512 45, 837	\$23. 70 26. 08 26. 43	450, 643 463, 876 428, 895 479, 567 762, 868 634, 211	\$6, 412, 062 7, 148, 689 6, 517, 458 7, 698, 905 9, 299, 790 7, 451, 427

CONSUMPTION AND USES

Crude Feldspar.—Crude feldspar was either ground by the producing company or sold to merchant grinders. Some pottery, enamel, and soap manufacturers purchased crude feldspar for all or part of their requirements and ground it to company specifications in their own mills.

TABLE 5.—Ground feldspar sold by merchant mills in the United States, 1948-52 (average) and 1953-57, in short tons, by uses

Year	Glass	Pottery	Enamel	Other 1	Total
1948-52 (average)	226, 274	194, 027	25, 451	4, 891	450, 643
	253, 596	179, 323	14, 383	16, 574	463, 876
	226, 157	167, 824	18, 088	16, 826	428, 895
	204, 757	224, 162	25, 919	24, 729	479, 567
	2 502, 318	198, 595	24, 732	37, 223	8 762, 868
	331, 864	168, 041	26, 052	4 108, 254	8 634, 211

¹ Includes other ceramic uses, soaps, and abrasives.

Includes some miscellaneous uses not previously included in feldspar data.

¹ Exclude potters and others who grind for consumption in their own plants.

² Includes feldspar-silica mixture not previously reported. Figures comparable to previous years are as follows: 1956: 529,935 short tons valued at \$8,333,876; 1957: 457,824 tons, \$6,667,705. Revised figures.

Revised figure.

Includes feldspar-silica mixture not previously reported. Figures comparable to previous years are as follows: 1956: 529,935 short tons valued at \$8,333,376; 1957; 457,824 tons, \$6,667,705.

Ground Feldspar.—Most feldspar consumers bought material already ground, sized, and ready for use in their manufactured prod-In 1957 the glass, pottery, and enamel industries consumed over 82 percent of the ground feldspar sold by merchant mills. Glass consumed about 52 percent (66 percent in 1956); pottery, 26 percent (26 percent in 1956); and enamel, 4 percent (3 percent in 1956). Smaller quantities were used for scouring powders and soaps, abrasives, and artificial teeth. Of the tonnage shipped to the 3 principal classes of consumers, glass decreased 34 percent and pottery, 15 percent, but enamel increased 5 percent. Other uses rose almost 200 percent.

Shipments of ground feldspar to 25 States were specified in 1957; some destinations were not reported. California, Illinois, New Jersey, Ohio, Pennsylvania, and West Virginia furnished 73 percent of the total.

TABLE 6.—Ground feldspar shipped, by States of destination, from merchant mills in the United States, 1953-57, in short tons

Destination	1953	1954	1955	1956	1957
California. Illinois Indiana Maryland Massachusetts New Jersey New York	11, 386	(1)	(1)	275, 148	206, 053
	61, 751	60, 391	37, 305	73, 067	56, 852
	20, 024	13, 864	(1)	(1)	(1)
	16, 871	16, 324	15, 016	18, 835	15, 930
	5, 010	4, 764	5, 539	5, 647	4, 697
	45, 835	32, 465	38, 125	41, 144	28, 314
	30, 950	28, 923	22, 242	23, 169	22, 769
Ohio Pennsylvania Tennessee West Virginia Wisconsin	63, 410	58, 198	102, 273	79, 757	61, 844
	66, 302	79, 688	62, 072	69, 506	64, 203
	14, 468	12, 618	(1)	(1)	(1)
	51, 029	46, 636	36, 677	(1)	44, 958
	8, 617	6, 534	10, 674	10, 813	10, 217
Other destinations 2	68, 223 463, 876	68, 490 428, 895	479, 567	³ 165, 782 ³ 4 762, 868	118, 374 4 634, 211

¹ Included with "Other destinations."

4 Includes feldspar-silica mixture not previously reported. Figures comparable to previous years are as follows: 1956: 529,935 short tons valued at \$8,333,376; 1957: 457,824 tons, \$6,667,705.

TABLE 7.—Crude feldspar sold or used by producers in the United States, imports, and apparent domestic consumption, 1948-52 (average) and 1953-57

Year	Production		Imp	orts	Apparent domestic consumption		
	Long tons	Value	Long tons	Value	Long tons	Value	
1948-52 (average) 1953 1954 1955 1956 1957	411, 857 452, 600 411, 018 465, 378 12 693, 276 2 611, 801	\$2, 782, 565 4, 594, 450 3, 490, 466 3, 801, 291 126, 013, 797 25, 439, 209	16, 389 5, 901 79 105 258 72	\$122, 285 60, 501 3, 357 9, 346 9, 311 6, 626	428, 246 458, 501 411, 097 465, 483 1 693, 534 611, 873	\$2, 904, 850 4, 654, 951 3, 493, 823 3, 810, 823 1 6, 023, 108 5, 445, 835	

1 Revised figure.

¹ Included with "Other destinations."

² Includes Alabama (1953-54), Arkansas, Colorado, Connecticut (1953-54 and 1956), Florida (1953-54), Georgia (1953-54), Kansas (1954), Kentucky, Louisiana, Maine (1953 and 1957), Michigan, Minnesota, Mississippi, Missouri, New Hampshire (1953-54 and 1956), New Mexico (1955), North Carolina (1953-54), North Cakota (1956), Oklahoma, Puerto Rico, Rhode Island, Texas, Washington (1954-57), shipments that cannot be segregated by States, and shipments to States indicated by footnote 1. Also includes shipments to Belgium (1953), Canada, Cuba (1953), England (1954-57), Mexico, Panama (1954 and 1957), Peru (1954), Philippines (1954), Venezuela (1954-57), and West Germany (1957).

§ Revised figure.

² Includes feldspar-silica mixture not previously reported. Figures comparal follows: 1956: 485,300 long tons valued at \$5,169,861; 1957: 454,313 tons, \$4,655,487. Figures comparable to previous years are as

PRICES

Crude-feldspar prices are not given in the trade publications. The average value, computed from producers reports to the Bureau of Mines in 1957, was \$8.89 per long ton, compared with \$8.67 in 1956.

Computed from reports from merchant grinders, the average selling price of ground feldspar in 1957 was \$11.75 per short ton,

decreasing 4 percent from 1956.

The following producing States had the highest selling price per short ton: Illinois, \$25.25; Tennessee, \$21.50; Arizona, \$20.79; New Hampshire, \$20; Maine, \$19.93; and Virginia, \$19.50.

The highest average value by uses was reported for enamel feldspar

at \$20.24 per short ton.

Quotations on ground feldspar appearing in E&MJ Metal and Mineral Markets for December 1957 were as follows: North Carolina, bulk carlots, 200-mesh, \$18.50 per short ton; 325-mesh, \$22.50; glass, No. 18 grade, \$12.50; and semigranular, \$10-\$11 (add \$3 per ton to bulk quotations for bags and bagging).

FOREIGN TRADE³

Imports of crude feldspar for consumption in 1957 (all from Canada) decreased to less than 28 percent of the 1956 figure; the average value per long ton increased from \$36 a ton in 1956 to \$92 in 1957.

Imports of ground feldspar increased 189 percent in quantity and

98 percent in value.

According to reports from grinders, ground-feldspar exports increased 2 percent in 1957. Countries of destination were Mexico, Canada, Puerto Rico, Venezuela, England, West Germany, and Panama.

Cornwall Stone.—Imports for consumption of ground cornwall stone (from England) decreased from 90 long tons in 1956 to 70 in 1957.

TABLE 8.—Feldspar imported for consumption in the United States, 1948-52 (average) and 1953-57

[Bureau of the Census]											
	Cı	rude	Ground		Ground			Cru	de	Gro	und
Year	Long tons	Value	Long tons	Value	Year	Long tons	Value	Long tons	Value		
1948-52 (average) 1953 1954	16, 389 5, 901 79	\$122, 285 60, 501 3, 357	(¹) 98 898	\$71 2,740 22,449	1955 1956 1957	105 258 72	\$9, 346 9, 311 6, 626	1, 254 1, 374 3, 969	\$31, 737 33, 589 66, 548		

¹ Less than 1 ton.

WORLD REVIEW

The estimated Free World production of feldspar decreased 6 percent from 1956. The United States furnished 53 percent of the Free World output. West Germany, France, Italy, Norway, Sweden,

Figures on imports compiled by Mae B. Price and Elsie D. Jackson, Division of Foreign Activities, Bureau of Mines, from records of the U. S. Department of Commerce, Bureau of the Census.

and Japan were other major producers, in that order, together supplying 40 percent of production. No data are available on feldspar production in China, Rumania, and U. S. S. R.

Canada.—Shipments of feldspar to the United States from the newly completed plant of Spar-Mica Corp. on the St. Lawrence River in Quebec began in November 1957.

TABLE 9.—World production of feldspar by countries, 1948-52 (average) and 1953-57, in long tons 2

[Compiled by Helen L. Hunt and Berenice B. Mitchell]

and the second s			- 1			
Country 1	1948-52 (average)	1953	1954	1955	1956	1957
NTouth America						
North America: Canada (sales)	33, 636	10.070	14 071	10.00	10.000	10.000
United States (sold or used)	411, 857	18, 970 452, 600	14, 371 411, 018	16, 207 465, 378	16, 208	18, 363
onition states (sold of asou)	411, 607	402,000	411,018	400, 578	693, 276	611,801
Total	445, 493	471, 570	425, 389	481, 585	709, 484	630, 164
South America:						
Argentina	\$ 5, 900	(4) ·	(4)	4. 921	9, 842	3 7, 900
Brazil	8 9, 800	(4) (4)	(4)	(4)	(4)	(4)
Chile	725	2,047	1,319	854	826	3 800
Peru	126					
Uruguay	1, 569	779	696	381		168
Total 8	18, 100	21,000	21,000	19,000	23,000	22,000
Europe:						
Austria	2,609	1, 332	2, 137	2, 510	2,677	2, 492
Finland	8, 292	9, 180	12, 062	12, 529	8, 799	9,055
France	54, 202	59, 053	61,021	71, 847	70, 863	3 71,000
Germany, West	70, 673	94, 190	124, 586	163, 599	172, 718	188, 269
Italy	19, 219	24, 342	28, 449	52,097	49, 676	57, 012
Norway	28, 485	18, 411	27, 764	39, 434	³ 54, 000	3 49, 000
PortugalSpain (quarry) 5	781	59	-,,,,,,,,	592	912	\$ 1,000
Spain (quarry) 5	2.048				3, 245	4, 392
Sweden	39, 884	37, 333	48, 494	50, 639	52, 500	3 49, 000
Total 1 8	233,000	249,000	309,000	398, 000	421,000	436, 000
Asia:						
India	1,802	3, 881	6, 476	F 020	3, 263	7 070
Japan 6	21, 094	24, 682	33, 627	5, 230 30, 587	48, 665	7, 872 44, 977
	21,004	24,002	30,021	30, 301	40,000	44, 977
Total	22, 896	28, 563	40, 103	35, 817	51, 928	52, 849
Africa:						
Eritrea	98	. 3	6	12	12	3 12
Kenya	6		U	12	12	120
Madagascar		24				120
Rhodesia and Nyasaland, Federation						
of: Southern Rhodesia	7 919					
Union of South Africa	4, 517	5, 480	3, 525	6, 421	9,730	11, 381
Total	5, 540	5, 507	3, 531	6, 433	9, 742	11, 513
Oceania: Australia 8	12, 368	6, 883	16, 384	20, 833	18, 629	9.607
World total (estimate) 12	740.000	780,000	820,000	960,000	1, 230, 000	1, 160, 000

[!] In addition to countries listed, feldspar is produced in China, Czechoslovakia, Rumania, and U. S. S. R., but data are not available; no estimates included in total except for Czechoslovakia.

2 This table incorporates a number of revisions of data published in previous Feldspar chapters. Data do not add to totals shown because of rounding where estimated figures are included in the detail.

² Estimate.

Estimate.
4 Data not available; estimate by senior author of chapter included in total.
5 In addition the following quantity of feldspar is reported as ground, but there is no crude production data to support these ground figures: 1948-52 (average), 7,406 tons; 1953, 10,495 tons: 1954, 8,160 tons; 1955, 5,041 tons; 1956, 898 tons; 1957, not available.
6 In addition, the following quantities of aplite and other feldspathic rock were produced: 1948-52 (average), 51,926 tons; 1953, 71,263 tons; 1954, 74,817 tons; 1955, 66,291 tons; 1956, 63,723 tons; 1957, 80,772 tons.
7 A verage for 1950-51.
8 Includes some phine stone

⁸ Includes some china stone.

TABLE 10.—Canadian production and trade of feldspar, 1955-56 1

	198	55	1956		
	Short tons	Value	Short tons	Value	
Production: Quebec	18, 152	\$355, 879	17, 763	\$365, 370	
Imports: Ground: United States Crude: United Kingdom	137	3, 106	196 5	4, 530 228	
Total	137	3, 106	201	4,758	
Exports: United StatesGermany, West	1,419	37, 553 572	1,771 33	45, 464 2, 904	
Total	1,426	38, 125	1,804	48, 369	

Canada Department of Mines and Technical Surveys, Feldspar in Canada, 1956 (Preliminary): Ottawa, 1956, p. 2.

TECHNOLOGY

Feldspar deposits of the Winnipeg River area, Manitoba, Canada, and the occurrence and uses of feldspathic sands in California were described.5

A patent was granted for an electrostatic process for beneficiating feldspathic ore.⁶ An article was published describing the new feldspar operation in Canada of the Spar-Mica Corp., Ltd., including the background of electrostatic beneficiation and details of mining and milling methods. A reagent obtained by oxidizing the residue from petroleum distillate was used successfully to float feldspar and other ores.8 The procedures and results of pilot-plant-beneficiation experiments on granites and feldspar-quartz sands in the Asov region for ceramic uses were published. Magnetic separation of the ground material and flotation were used. It was claimed that the product was more uniform than that obtained from pegmatites.9

The procedures and results of tests to determine the relative translucency of bodies made of mixtures of quartz and potash feldspar,

and quartz and soda feldspar, were published.¹⁰

The origin of pores in soda- and potash-feldspathic glasses and their development during firing was studied. The pores were attributed to gases released from impurities, such as clay minerals, in feldspar grains and retained until the grains melt. Soda-feldspathic glass contained more pores than potash-feldspathic glass, but the size of the pores was smaller, resulting in the lower translucence of soda-feldspathic glass.11

⁴ Davies, J. F., Geology of the Winnipeg River Area, Manitoba: Manitoba Dept. Mines Nat. Res., Mine Branch Pub. 56-1, 1957, 27 pp.

⁵ Seitz, W. A., Glass-Making Raw Materials of California: Glass Industry, vol. 38, No. 9, September 1957, pp. 497-500, 509-510, 512, 514.

⁶ Lawver, J. E. (assigned to International Minerals & Chemical Corp.), Method of Beneficiating Feldspar: U. S. Patent 2,805,771, Sept. 10, 1957.

⁷ Diamond, G. S., Electrostatic Separation of Feldspar and Other Non-Metallic Minerals: Canadian Min. Met. Bull. (Montreal), vol. 50, No. 547, November 1957, pp. 669-673.

⁸ Pascovici, S., and Pascalide, Gh. IA Flotation Resgent Produced From Residues of Petroleum Industry]: Rev. Minelor (Bucharest), vol. 8, 1957, pp. 392-394; Chem. Abs., vol. 52, No. 1, Jan. 10, 1968, p. 197a.

⁹ Vartanyan, K. T., and Lutsenko, V. I. [Beneficiation of Granites and Feldspar-Quartz Sands for Fine Ceramics]: Steklo i Keram. (Moscow), vol. 13. No. 6. 1956, pp. 19-23; Chem. Abs., vol. 51, No. 16, Aug. 25, 1957, p. 12,458d.

¹⁰ Hamano, Kenya [Translucency of Bodies Consisting of Feldspar and Quartz! Yogyo Kyokai Shi (Tokyo), vol. 64, 1956, pp. 271-279; Chem. Abs., vol. 51, No. 19, Oct. 10, 1957, p. 15,088g.

¹¹ Hamano, Kenya [Pores in Feldspathic Glasses]: Yogyo Kyokai Shi (Tokyo), vol. 65, 1957, pp. 44-54; Chem. Abs., vol. 51, No. 20, Oct. 25, 1957, p. 15,912g.

Viscosity and surface tension of bodies of the feldspar-quartz system decreased when firing temperature and soaking time increased. The viscosity of bodies of soda-feldspar is higher than that of potashfeldspar bodies, while surface tension of the former is higher than that of the latter. The flow point of soda-feldspar bodies fired at 60° per hour is 1.270°-1.280° C, and that of potash-feldspar bodies is 1.350°-1.360° C.12

Infrared absorption spectra were determined for powdered samples of 18 plagioclase feldspars. Band positions and number of bands were definitely correlated with composition throughout the albiteanorthite series.¹³ Optical and geometrical properties and the chemistry of the authigenic feldspars were discussed. 14 Experiments were conducted on the effect of heat on microcline and albite crystals. 15

NEPHELINE SYENITE

Domestic Consumption.—Domestic consumption, in the glass and ceramic industries, of nepheline svenite imported from Canada continued to increase. Nepheline syenite unsuitable for the glass and ceramic industries was mined in Arkansas for use as roofing granules, and production statistics are included in the Stone chapter.

Prices.—In 1956 prices of processed nepheline syenite per short ton were quoted as follows, f. o. b. Nephton or Lakefield, Ontario, Canada, carlots, in bulk: Glass grade (30-mesh) \$14.50; Pottery grade (200mesh) \$18.50; Pottery grade (270-mesh) \$19; Pottery grade (325-mesh) \$24; Lower grade (100-mesh) \$10. There was an additional charge for bagged material.16

TABLE 11.—Nepheline syenite imported for consumption in the United States, 1948-52 (average) and 1953-57

	Crude		Ground			C	rude	Gı	ound
Year	Short tons	Value	Short tons	Value	Year	Short tons	Value	Short tons	Value
1948-52 (average)_ 1953 1954	20, 751 181	\$83, 778 659	42, 954 89, 195 95, 782	\$600, 480 1, 308, 058 1, 436, 325	1955 1956 1957			111, 863 140, 306 166, 989	\$1, 856, 062 12, 136, 092 2, 505, 248

[Bureau of the Census]

Foreign Trade.—Imports of ground nepheline syenite, mostly for use in the glass industry (all from Canada) increased 19 percent in quantity and 17 percent in value over 1956.

¹ Owing to changes in tabulating procedures by the Bureau of the Census, data known to be not comparable with years before 1954.

¹² Hamano, Kenya [Viscosity of Bodies of the Feldspar-Quartz System With Special Reference to High Feldspar Content]: Yogyo Kyokai Shi (Tokyo), vol. 65, 1957, pp. 1-8; Chem. Abs., vol. 51, No. 20, Oct. 25,

Feldspar Contentj: Yogyo Kyokai Sin (10Kyo), Vol. 66, 100, pp. 1 o, 105, pp. 1 o, 1057, p. 15, 914i.

18 Thompson, C. S., and Wadsworth, M. E., Determination of the Composition of Feldspars by Means of Infrared Spectroscopy: Am. Mineral., vol. 42, No. 3-4, March-April 1957, pp. 334-341.

18 Baskin, Yehuda, Study of Authigenic Feldspars: Jour. Geol., vol. 64, No. 2, February 1956, pp. 132-155.

19 Baskin, Yehuda, Observation on Heat-Treated Authigenic Microcline and Albite Crystals: Jour. Geol., vol. 64, No. 3, March 1956, pp. 219-224.

10 Reeves, J. E., Nepheline Syenite in Canada, 1956 (Preliminary): Canada Dept. of Mines and Tech. Surveys, Ottawa, No. 47, 1956, p. 4.

World Review.—From available data Canada appears to be the major producer of nepheline syenite for the ceramic industries. 12 shows Canadian production and trade of nepheline syenite.

TABLE 12.—Canadian production and trade of nepheline syenite, 1955-56 1

	19	55	1956		
	Short tons	Value	Short tons	Value	
roduction, crude (crude ore mined)	194, 205	(2)	233, 011	(2)	
nipments: Ground: Glass grade Pottery grade Miscellaneous	99, 651 33, 551 10, 694	(2) (2) (2)	(2) (2) (2)	(2) (2) (2)	
Total	143, 896 2, 172	(2) (2)	177, 599 2, 407	(2) (2)	
Total shipments	146, 068	\$2,099,512	180,006	\$2, 574, 14	
orts, crude and processed material: Juited States	114, 297 1, 832 848 720 578	1, 682, 372 32, 960 14, 669 12, 480 10, 636	130, 318 4, 272 1, 951 1, 230 1, 534	1, 773, 700 76, 890 34, 70- 21, 173 28, 83	
Total	118, 275	1, 753, 117	139, 305	1, 935, 31	

¹ Canada Department of Mines and Technical Surveys, Nepheline Syenite in Canada, 1956 (Preliminary): Ottawa, 1956, p. 2.

2 Data not available in detail; included in total.

Technology.—An article was published giving the background, development, mining, and processing of nepheline syenite at Nephton, Detailed flowsheets were included.17

Results of a study to determine the effect of substituting nepheline syenite for high-potash feldspar in a high-voltage electric porcelain

were reported. 18

Articles described investigations and results of using nepheline syenite in high-talc-ball-clay bodies, 19 and nepheline syenite tailings in sewer-pipe bodies.20 Small percentages of nepheline syenite, ground very finely, improved the properties of 60-percent-talc 40-percent-ballclay type bodies, but there was little improvement using nepheline syenite ground to 270-mesh. Small additions of low-cost nepheline syenite tailings containing 2 to 3 percent Fe₂O₃ significantly improved the physical properties of sewer-pipe bodies.

The Volkhov Aluminum Works near Leningrad was reported to be successfully utilizing nepheline instead of bauxite as the raw material for alumina production. The nepheline is associated with apatite in deposits on the Kola Peninsula.21 Investigations and tests on the foregoing and other deposits were reported in a Soviet publication.22

¹⁷ Deeth, H. R., Nepheline Syenite at Blue Mountain: Min. Eng., vol. 9, No. 11, November 1957, pp.

¹⁷ Deeth, H. R., Nephelme Syenite & Bite Mountain. 18th. 18th.; vol. 8, vol. 8, vol. 8, 1241-1244.

18 Oberschmidt, L. E., Jr., The Use of Nepheline Syenite in Electrical Porcelain Bodies: Bull. Am. Ceram. Soc., vol. 36, No. 12, December 1957, pp. 464-465.

19 Wilson, R. C., and Koenig, C. J., Use of Nepheline Syenite in High-Talc-Ball-Clay Bodies: Bull. Am. Ceram. Soc., vol. 38, No. 9, September 1957, pp. 347-351.

29 Wilson, R. C., and Koenig, C. J., Use of Nepheline Syenite Tailings in Sewer-Pipe Bodies: Jour. Am. Ceram. Soc., vol. 41, No. 1, Jan. 1, 1958, pp. 33-39.

21 Ceramic Trade Journal and Chemical Engineer, vol. 141, No. 3672, Oct. 18, 1957, p. 953.

22 Ponomarev, V. D., and Sazhin, V. S. [Hydrochemical Alkaline Method for Nepheline-Rock Treatment]: Tsvetnye Metally (Moscow), No. 12, December 1957, pp. 45-51.

There are huge apatite-nepheline and nepheline syenite deposits in the U. S. S. R., and much attention has been devoted to treating nepheline. The alumina content of some of the deposits makes them comparable to high-grade bauxite. The most successful treatment appears to be the dry-alkaline method based on the principle of decomposition of the mineral during a high-temperature (1,250° C.–1,300° C.) sintering with lime and the formation of sodium (potassium) aluminate.

The use of nepheline syenite as a paint-pigment extender was

discussed.23

APLITE

Production of aplite increased 1 percent in tonnage and value, compared with 1956, but sales of ground aplite declined 13 percent in quantity and 16 percent in value. Two companies in Virginia produced aplite, which was entirely consumed in the glass industry.

Japan has rich sources of aplite and in 1957 produced 46,563 short

tons for use in its glass industry.24

Armstrong, W. N. B., and Croutch, V. K., Nepheline Syenite as an Extender Pigment for Paint: Official Digest, Foundation Paint and Varnish Production Clubs, 1957, pp. 272-330.
 U. S. Embassy, Tokyo, Japan, State Department Dispatch 783: Jan. 17, 1958, enclosure 1, p. 1.

Ferroalloys

By H. A. Tucker 1 and Hilda V. Heidrich 2

FERROALLOY is an alloy of iron so rich in some element other than carbon that it can be used as a vehicle for introducing that element in the manufacture of iron and steel. Usually the iron content is not important, and some products that contain little or no iron are now considered with ferroalloys. Each ferroalloy is described only in its role as an alloying vehicle in this chapter; other

aspects are reported in the separate chapters in this volume.

During 1957 total production, consumption, and sales value of ferroalloys decreased only slightly from the peak quantity of 1956, the record-setting year. Nevertheless, great fluctuations occurred in the unit values of some of the individual ferroalloys. For example, titanium, tungsten, and columbium decreased in unit values—the latter 28 percent. On the other hand, chromium, molybdenum, and exported ferrophosphorus increased in unit value—the latter 22 percent.

Significantly, the inventories of ferromanganese, ferrosilicon, and silvery iron have increased at producers' plants. Other changes, such

as prices, have already been mentioned.

The quantity of foreign ferromanganese consumed in the United

States in 1957 was the largest of any in the last 5 years.

The Pittsburgh Coke and Chemical Company made the first smelting runs of ore in its Neville Island, Pa., blast furnaces preparatory to producing ferromanganese.

The Vanadium Corporation of America began the first production of ferrochromium and ferrochrome-silicon alloys in its new electric-

furnace plant at Vancoram, Ohio.

DOMESTIC PRODUCTION AND SHIPMENTS

Ferroalloy production declined slightly to 2.5 million tons in 1957 from the record high of 2.6 million tons established in 1956. This 4.70-percent decline in 1957 is comparable with the decrease in steelingot production of 2.17 percent, which dropped from 115.2 million

ingot tons in 1956 to 112.7 in 1957.

Shipment weights of ferroalloys followed the same trend, declining 7.96 percent in 1957 from 1956. The combined weights of the ferroalloys containing the 3 principal alloying elements (manganese, silicon, and chromium) amount to more than 90 percent of the total ferroalloys produced and shipped, and the value is 97 percent of the

Commodity specialist.Statistical assistant.

total value of the shipments. The total dollar value declined less than 1 percent from the 1956 total, since the average unit value of ferroallovs continued its increase from \$197 a ton in 1955 to \$233 in 1956 to \$251 in 1957.

The difference between the quantity of ferroalloys produced and that shipped in 1957 was 9 percent, increasing significantly from the

2-percent difference in 1956.

A better balance of the number of producers and the amount of ferroalloy they made permits a more detailed presentation in 1957 The data for silicomanganese, ferronickel, ferrocolumthan in 1956. bium, ferrotantalum-columbium, and chrom-columbium are published as individual items for the first time.

Manganese Alloys.—To obtain comparative figures for 1956 and 1957 for "Total ferromanganese" in table 1, silicomanganese for 1957 must be added to the total ferromanganese figures above, giving 1,078,380 tons gross weight produced, 990,012 tons shipped, and a value of \$237,857,328. These figures show that manganese-alloy

TABLE 1.—Ferroalloys produced and shipped from furnaces in the United States, 1956-57

		1956				1957				
	Production		Ship	Shipments		ction	Shipments			
	Gross weight (short tons)	Alloy element contained (average percent)	Gross weight (short tons)	Value	Gross weight (short tons)	Alloy element contained (average percent)	Gross weight (short tons)	Value		
Ferromanganese: Blast furnace Electric fur- nace	(1) (1)	(1) (1)	(1) (1)	(1) (1)	735, 493 228, 321	77. 03 77. 53		\$157, 813, 411 52, 190, 835		
Total ferro- manganese Silicomanganese Ferrosilicon Silvery iron	² 1, 062, 171 (¹) 460, 193 438, 694	(1) 57. 93	1, 052, 432 (1) 434, 213 413, 953		3 963, 814 114, 566 417, 025 351, 826	66. 07 55. 24	882, 066 107, 946 395, 454 360, 649	27, 853, 082 70, 788, 584		
Ferrochromium Other chromium alloys					⁵ 410, 327 ⁶ 84, 260	67. 11 40. 71	402, 115 76, 492	, , , , , ,		
Total ferro- chromium_ Ferrotitanium Ferroplosphorus Ferrocolumbium, ferrotantalum- columbium and	5 6 498, 855 7, 762 73, 175	24, 63	480, 169 7, 228 94, 545	4, 628, 779	494, 587 6, 676 77, 167	62. 61 21. 55 24. 26		3, 410, 204		
chrom-colum- bium Ferronickel Other	(4) (4) 7 98, 831	(4) (4) 28. 70	(4) (4) 107, 033	(4) (4) 57, 882, 859	530 20, 564 8 68, 780	58. 11 44. 08 26. 17	434 19, 708 62, 590	10 005 000		
Total	2, 639, 681	55. 78	2, 589, 573	603, 846, 669	2, 515, 535	57. 63	2, 383, 412	597, 488, 091		

¹ Data not available; included with total ferromanganese.

Includes manganese briquets.
Included with "Other."
Included work and high-carbon ferrochromium and chromium briquets.

² Includes manganese briquets and silicomanganese.

⁶ Includes ferrochrome-silicon, exothermic chromium additives, and other chromium alloys.
7 Includes alsifer, ferroboron, ferrocolumbium, ferrotantalum-columbium, ferronickel, ferrotungsten, ferromolybdenum, simanal, spiegeleisen, zirconium-ferrosilicon, ferrovanadium, and miscellaneous ferro-

[§] Includes same as in 1956, except ferrocolumbium, ferrotantalum-columbium, and ferronickel.

production in 1957 increased 2 percent, shipments decreased 15 percent, and the value declined 1 percent

cent, and the value declined 1 percent.

Excluding silicomanganese, the average value for ferromanganese in 1957 was \$238 a ton. Total unsold alloy amounted to 138,000 tons.

Ferromanganese produced in 1957 in 6 blast-furnace plants by 4 companies in 4 States represented 76 percent of the total. Shipments were 11 percent less than production. The average value was \$237

a ton. Stocks on hand at year end totaled 92,898 tons.

The 4 companies operating blast furnaces smelted 1 million short tons of ore with an average grade of 43.3 percent manganese. Manganese recovery and coke consumption per ton of manganese produced at 5 ferromanganese blast plants were as follows:

•	Manganese recovery (percent)	Coke consumption (pounds)
	63. 00 84. 75	3, 260 3, 702
	87. 00 89. 30	3, 755 3, 780
	89. 55	3, 955
Average	87. 10	3, 768

The ferromanganese produced in 10 electric furnace plants by 5 companies in 8 States was 228,321 tons—24 percent of the total. Shipments of ferromanganese from electric-furnace plants were 217,055 tons—9 percent less than that produced. The value was \$52 million, averaging \$240 a ton. Stocks on hand at the end of the year totaled 44,893 tons.

Additionally 257,821 tons (29 percent of the domestic production total) of ferromanganese valued at \$60 million imported for consumption in the United States was used. The average unit price was \$233 per ton, \$4.51 less than that domestically produced which, with the vastly increased tonnage in 1957, may indicate a trend toward

more foreign production.

Silicomanganese, the high-silicon, low-carbon alloy, reported separately in table 1 for 1957, represents 10.62 percent of the total manganese alloys produced. Its average value is \$258 a ton. It is produced by 5 companies in 10 electric-furnace plants in 5 States.

Ferrosilicon.—Ferrosilicon, ranging in silicon content from 22 to 75 percent, declined in 1957 in all categories except unit value. Production was down 9 percent, shipments 9 percent, and total value 6 percent. The average unit value of ferrosilicon in 1957 was \$179 a ton compared with \$173 in 1956, an increase of \$5.85 or 3 percent. Producing ferrosilicon in 1957 were 11 companies at 23 electric-furnace plants in 11 States. At the end of 1957, 79,560 tons of alloy remained unsold.

Silvery Iron.—Output of silvery iron by 5 companies at 6 furnace plants in 4 States declined in all categories except unit value. Production was down 20 percent, consumption 13 percent, and total value 7 percent. The average unit value of silvery iron was \$88 a ton in 1957 compared with \$82 in 1956, an increase of \$5.86 (7 percent).

Again in 1957, comparable tonnages of silvery iron were produced by the blast and electric furnaces. The 3 blast-furnace plants made an average of 8.5 percent-silicon grade of silvery iron and the 3 electric, a 15.9-percent grade. More silvery iron was sold than was made by 8,823 tons, leaving

62,618 tons in stock at the end of 1957.

Chromium Alloys.—In 1957, 1.2 million tons of chromite was smelted in 18 electric furnace plants operated by 10 companies in 9 States. This is 23,486 tons (2 percent) less ore than was used in 1956. A new electric furnace plant of Vanadium Corporation of America at Vancoram, Ohio, near New Alexandria, began operating in October, increasing the number of producing plants by one over those in 1956.

The chromite ore used in 1957 averaged 47.1 percent Cr₂O₃, and

the ferrochromium produced averaged 62.6 percent chromium.

In 1957, chromium-alloys production and shipments decreased 8.5 and 0.3 percent, respectively, but the total value increased 17.7 percent because the average unit value increased 5.8 percent—from \$393 to \$416 a ton.

Molybdenum Products.—Ferromolybdenum and other molybdenum products continued to be produced by Climax Molybdenum Company and Molybdenum Corporation of America plants in Pennsylvania. In 1957 the Electro Metallurgical Company made molybdenum products at its Alloy, W. Va. plant. According to the AISI, ferromolybdenum retained the same relationship with molybdic oxide in 1957 as in previous years, the latter supplying 65.3 percent of molybdenum metal used in the production of steel. Ferromolybdenum with average grade of 61.6 percent was valued at \$2,100 per ton, equivalent to \$1.70 per pound of contained metal. This price exceeded the peak price of \$1.65 established in 1953 and represented a 7.6-percent increase in cost per ton and a 6.9-percent increase in cost per pound of contained metal in sales prices in 1957, compared with those in 1956. The average cost per ton of the miscellaneous molybdenum products in 1957 was \$967 per ton where the range was \$360 to \$3,500 per ton.

Ferrophosphorus.—Ferrophosphorus was produced as a byproduct of 8 phosphate chemical producers at 10 electric furnace plants in 6

States.

During 1957, 77,167 short tons of ferrophosphorus was produced, a gain of 6 percent over 1956, but the quantity sold was 27 percent less than in 1956. Continuing the trend upward for the second year, the unit cost increased 4 percent to an average of \$36.20 per ton. The stock on hand at the year end was 97,186 tons.

Exports declined 25,093 tons (33 percent), but the average of the 4 years calculated from table 4 is only 50,782 tons, 464 more than that exported in 1957. The unit price rose \$6.76 per ton to \$37.78

a ton in 1957, an increase of 22 percent.

Titanium Alloys.—Five companies at 6 plants in 3 States produced titanium alloys; about one-half was high-carbon ferrocarbontitanium. Of the total tennage produced, 3,218 tens was ferrotitanium. The reported value of all ferrotitanium-type alloys sold in 1957 was \$1 million less than that of 1956, a decrease of 26 percent. Production and consumption tennages declined 14 and 6 percent, respectively, compared with 1956. The average unit value of all these alloys for the year was \$499 a ten, a decrease of 22 percent from the \$640 a ten corresponding value for 1956. The average value of the metal contained (21.55 percent) of the several grades is \$1.15 per pound as compared with \$1.30 in 1956, a decrease of 12 percent. Producers'

stocks on hand at the end of 1957 total 1,130 tons—9 percent less

than at the beginning of the year.

Ferrovanadium.—Ferrovanadium was produced in 1957 by 2 companies at 2 plants in 2 States. The average grade of the ferroalloy was 54.1 percent, little changed from the 54.05-percent figure of 1956 or the 54.23-percent average of the 1951–55 period. The average value of contained vanadium was \$3.21 a pound in 1957 as compared with \$3.15 in 1956. The production, consumption, and total value of ferrovanadium sold declined sharply and uniformly by 35, 32, and 30 percent, respectively, in 1957 compared with 1956. The stock on hand at year end was 15 percent less than a year ago. In 1957, the quantity of ferrovanadium exported remained nearly the same as that in 1956, but the unit value dropped 17 percent to \$3,880.26 per ton.

Ferrozirconium.—One company continued to produce ferrozirconium in 2 plants in 2 States. The average grade of the alloy, 13 percent, was the same as in 1956, and the value of the contained zirconium was 72 cents a pound—4 percent more than the 69 cents a pound value for 1956. Production, consumption, and total value of alloy sold dropped precipitously and uniformly by about 60 percent. Shipments exceeded production by 6.75 percent.

Ferroboron.—Ferroboron continued to be produced by 3 companies at 3 plants in 3 States. The boron content of the alloy produced was 15.8 percent, which falls between the 16.8 and 15.1 percent averages for 1956 and 1955, respectively. The value of the element contained was \$6.03 a pound—a 3-percent decrease over the \$6.21 a pound value for 1956. Production, consumption, and total value declined

in 1957.

Ferrotungsten.—Ferrotungsten was produced by 3 companies at 3 plants in 2 States. The average value of the tungsten in the ferrotungsten was \$2.67 a pound in 1957—a 20-percent decline from the \$3.34 a pound value for 1956. The prices quoted at year end were \$2.15 to \$2.25, indicating further price declines. The average tungsten content was 79.33 percent and was within the range held since 1953.

Columbium and Tantalum.—Ferrocolumbium was produced in 1957 by 6 companies at 6 plants in 4 States. Ferrotantalum-columbium was produced by three of the above companies in the same plants and locations used for ferrocolumbium production. These ferroalloys contained alloying elements as follows: Ferrocolumbium averaged 56.9 percent columbium; ferrotantalum-columbium was reported by 2 producers to have a 60-percent columbium—40-percent tantalum content, and a 40-percent columbium—20-percent tantalum content made by the third producer. The average value of ferrocolumbium was \$4.89 per pound of contained columbium, a 28-percent decrease in unit value from 1956. The 2 grades of ferrotantalum-columbium had an average value of \$4.40 a pound of rare elements contained, which is comparable with the \$4.51-a-pound price of 1956, a decrease of 2 percent. Production of ferrocolumbium exceeded sales by 23 percent, compared with 16 percent in 1956. Ferrocolumbiumtantalum production exceeded sales by 13 percent compared with 9 percent in 1956.

Nickel.—One producer (Hanna Nickel Smelting Co., Riddle, Oreg.), made all the ferronickel in 1957. The value of the element contained

is \$1.04 per pound in the 1 grade (44 percent) produced. Production, consumption, and total value increased 66, 64, and 74 percent, respectively, in 1957 over 1956.

CONSUMPTION AND USES

Alloy-steel-ingot production was reported to the AISI as: 5.78 million ingot tons of heat-treatable, engineering and constructional steel; 1 million tons of high-silicon electrical sheets; 1 million tons of low-alloy, high-strength non-heat-treated engineering and constructional alloy; 604,078 tons of nominal 18–8 nickel-chrome stainless steels (AISI 300 series); 414,113 tons of essentially nickel-free, chromium steels (AISI 400 and 500 series). Additionally, ferroalloys were used in 1.5 million tons of steel made into castings by foundries independent of the ingot producers. Shipments of alloy tool and die steels amounted to 88,385 tons, resulting from the production of an unknown quantity of tons of ingot.

Discussions of the purpose and use of many of the ferroalloys are

given in the Ferroalloys chapter of Minerals Yearbook, 1956.

Manganese Alloys.—Consumed in the production of 112.7 million ingot tons of steel in 1957 was 1 million tons of ferromanganese, consisting of 816,179 tons of high-carbon and 58,940 tons of medium- and low-carbon ferromanganese; 90,558 tons of high-silicon, low-carbon alloy (silicomanganese); 36,574 tons of spiegeleisen; and 6,787 tons of manganese metal.

Manganese additions to steel ingots in 1957 were distributed: 80.9 percent as high-carbon ferromanganese, 5.8 percent as medium- and low-carbon alloy, 9.0 percent as silicomanganese, 3.6 percent as spiegel-

eisen, and 0.7 percent as manganese metal.

Additional manganese was used in producing 1.5 million tons of castings by independent foundries. These castings consumed 27,192 tons of ferromanganese. In producing Hadfield-type castings, 4,800 tons of manganese is estimated to have been used in 1957. The remaining low-alloy and carbon-steel castings are estimated to have

consumed 34 pounds of manganese per ton.

Silicon Alloys.—The consumption of silicon alloys was about the same in quantity and distribution (table 2) as in 1956. An exception was in the "Iron foundries and miscellaneous" columns for table 2 and the comparable table of the Ferroalloys Chapter of the Minerals Yearbook for 1956, which show that the use of silicon briquets increased 25 percent (7,706 tons), and the use of silicon metal and refined metal decreased 30 percent (6,056 tons). The greatest divergence in silicon-alloy tonnages between 1956 and 1957 was the amount of unsold product. In 1957, 151,015 tons of all silicon alloys remained in the producers' stock bins compared with 25,980 tons in 1956, an increase of 481 percent.

The AISI reported 263,506 tons of ferrosilicon used by the steel industry in 1957 compared with 215,345 tons for steel ingots and 14,935 tons of steel castings, a total of 230,280 tons, 33,226 tons more (14 percent) than that reported to the Bureau of Mines. The AISI showed that the consumption of the total tonnage of silicon alloys in 1957 decreased 7 percent, compared with 1956, and the comparable

Bureau of Mines figure showed a 4-percent decrease.

TABLE 2.—Consumption of silvery pig iron, ferrosilicon, silicon metal, briquets, and miscellaneous silicon alloys in the United States, in 1957 by end uses, in short tons 1

Alloy	Silicon content (percent)	Steel ingots	Steel castings	Iron foundries and mis- cellaneous	Total	Stocks on hand Dec. 31
Silvery pig iron. Do Ferrosilicon. Do Do Do Silicon metal and refined silicon. Silicon briquets. Miscellaneous silicon alloys. Total.	5-13 14-20 2 21-55 56-70 71-80 81-89 90-95	14, 474 87, 192 141, 805 27, 686 37, 835 1, 979 6, 040 3 663 17, 843 335, 520	14, 309 7, 284 13, 388 67 810 647 23 2 1, 877 1, 918	126, 671 78, 559 47, 805 47, 805 6, 899 1, 895 2, 614 14, 092 28, 763 8, 918 316, 576	155, 454 173, 035 202, 998 28, 113 45, 544 4, 521 8, 677 14, 097 31, 303 28, 679	26, 046 72, 796 28, 144 1, 626 7, 525 978 1, 112 1, 932 7, 256 3, 600 151, 015

¹ Coverage estimated as 97, 54, and 85 percent complete for ingots, steel castings, and foundries and miscellaneous, respectively.

Nearly all this material is in the range from 40 to 55 percent silicon.

Ferrophosphorus.—Less ferrophosphorus (17 percent) was consumed in producing steel ingots than in 1956; 73 percent or 50,300 tons was exported for making pig iron and phosphorus used mostly in fertilizer. Exports usually average 88 percent of the annual pro-

Chromium Alloys.—The shipments of chromium alloys of all grades totaled 478,607 tons, containing 299,400 tons of chromium. amount, 269,784 tons containing 152,465 tons of chromium, as reported by the AISI, was used in producing alloy-steel ingots. rochromium represents 84 percent of the total chromium alloys used by industry. Of the ferrochromium consumed by the steel industry, 64 percent was used in producing stainless steel.

Consumption of chromium ferroalloys and chromium metal by major end uses was reported to the Bureau of Mines as: 167,002 tons (68 percent) for stainless steel and heat-resisting alloy production (AISI types 200, 300, 400, 500, and the like), 62,380 tons (25 percent) for engineering and constructional steels, and 16,209 tons (7 percent) for tool and die steels.

Ferrochromium was produced and used in several grades. Lowcarbon ferrochromium represented 47.2 percent of the total alloys and 53.4 percent of the chromium content and was employed mostly (78.9 percent) in making stainless steels. Low-carbon ferrochromium silicon (15 percent of the total alloys) also was used mostly in stainless-steel production. High-carbon ferrochromium was used partly in stainless and partly in other alloy-steel ingotmaking.

As in other years, approximately 40 percent of the ingot production of stainless steel became scrap in processing to finished products. The ferrochromium consumed in 1957 was 17 percent less than in

1956, but the distribution as to uses was the same.

Nickel.—A total of 48,402 tons of nickel (exclusive of scrap) was consumed as a ferroalloying element in 1957—14 percent less than the unsurpassed yearly total of 56,115 tons in 1956. Another 9,837 tons was used in high-temperature and heat-resistant alloys-14 percent less than in 1956. Of the 48,402 tons of nickel used as a ferroalloying element in 1957, 26,986 tons went into stainless steels, 15,882

tons into engineering and constructional steels, and 5,534 tons into cast iron. These quantities were apportioned as in 1956 but the greatest decrease, 18 percent, in use of nickel was in stainless steel.

Molybdenum.—Consumers of molybdenum used 15,009 tons in 1957; 70 percent (10,522 tons) of the total was in molybdic oxide, 23 percent (3,389 tons) in ferromolybdenum and molybdenum silicide, and the remaining 7 percent (1,098 tons) in other compounds and in molybdenum metal. The steel industry used 10,113 tons of contained molybdenum in producing wrought products; 89 percent (8,946 tons) was consumed in producing heat-treatable engineering steels and in stainless steels; the remaining 11 percent (1,167 tons) was used in high-speed tool steels. The steel industry also used 1,098 tons in steel castings. Foundries used 1,137 tons of molybdenum in gray and malleable castings. These figures are 12 percent less than those for 1956 for the quantity of molybdenum used in high-speed steel; the quantity used in engineering steels was 9 percent less.

The AISI reports 1,781 tons of contained molybdenum used in the form of ferromolybdenum and 8,195 tons as molybdic oxide by the steel industry. These quantities show a 12 percent (1,207 tons) decline in the use of molybdenum in 1957 by the steel industry. These

figures agree closely with those of the Bureau of Mines.

Tungsten Products.—A total of 8,978 tons of 60-percent grade calcium tungsten oxide, containing 4,272 tons of tungsten was consumed in 1957. Manufacturers of steel ingots and ferrotungsten consumed 25 percent of the total—2,217 tons of oxide, containing

1,055 tons of tungsten.

Reports to the Bureau of Mines from steel makers showed that 1,064 tons (75 percent) of tungsten was used in producing high-speed tool steel, 209 tons in other tool steels, and 149 tons in all other kinds of steel. These uses amounted to 1,422 tons of tungsten—33 percent of the total consumed in 1957. The AISI reported 1,365 tons of tungsten consumed in steel production, only 4 percent less than the Bureau of Mines total.

The consumption of tungsten for producing tool steel declined 25 percent in 1957 from that consumed in 1956, probably because

of the business recession.

Columbium and Tantalum Alloys.—The Bureau of Mines reports show that 126 short tons of contained metal in ferrocolumbium was consumed in 1957. Of this quantity 79 percent was used in producing stainless steels 12 percent in nonferrous high-temperature alloys, 7 percent in other alloy steels, and 2 percent in welding rods and Additionally, 137 tons of tantalum and columbium contained in the alloy, ferrotantalum-columbium, was consumed. The proportion of tantalum to columbium for most of this alloy was 60 to 40, respectively. Of this combination of metals 60 percent was used in stainless steels, 16 percent in other alloy steels, and 24 percent in non-ferrous, high-temperature alloys. These metals (columbium singly and tantalum-columbium combined) were used mostly as additives to stainless steels (AISI 347 and 348) in order to stabilize the carbon during welding operations. The steel industry consumed 17 percent less in quantity than in 1956, for the ferroalloy and 19 percent less for the contained metals, according to AISI.

Titanium Alloys.—Titanium, like columbium, was used in producing stainless steels as a stabilizing agent for those alloys later to

be welded.

The Bureau of Mines figures show that 6,831 tons of ferrotitanium with 1,472 tons of contained metal was shipped. These figures compare well with those reported by the AISI, 5,794 tons of ferrotitanium and 1,537 tons of metal. However, the AISI quantity for the total of all titanium products used in making steel is 7,123 tons, containing 2,819 tons of metal. Consumption of titanium alloys declined only 6 percent in 1957. An estimated 7 percent of the total titanium consumed was used in producing 36,000 tons of AISI Type-321 stainless steel.

Ferrovanadium.—A total of 1,418 short tons of vanadium metal was alloyed with steel in 1957. High-speed tool-steel production consumed 395 tons (28 percent) of the total quantity; AISI 6100 series, 83 tons; and heat-resisting and other alloy steels, the remainder.

Of the several vanadium compounds, ferrovanadium amounted to 77 percent (1,374 tons) of all consumed in 1957. Also reported to the Bureau of Mines was consumption of 132 tons of vanadium pentoxide, 100 tons of ammonia metavanadate, and 184 tons of other compounds including vanadium oxide, grainal, and briquets.

Vanadium was used in steel principally for its grain-refining and alloying effects and secondarily for its hardenability contribution.

Ferrozirconium.—According to the AISI, the steel industry consumed 4,303 tons of ferrozirconium in 1957 compared with its revised figure of 6,718 tons in 1956—a decrease of 36 percent. However, consumption of the contained metal decreased only 10 percent in 1957, because the grade increased from 15 percent in 1956 to 21 percent in 1957. The reports to the Bureau of Mines differ considerably on grade of alloy with that stated by AISI, the former being 13 percent for both 1956 and 1957.

Ferroboron.—The sole purpose of ferroboron is to increase the ability of steel to harden, thereby permitting the use of a thicker cross section, or of a milder quenching medium, or permitting the saving of all or part of the more expensive alloying elements. The AISI reported that only 16 tons of ferroalloy was consumed in manufacturing steel in 1957, a decrease of 48 percent from that consumed in 1956. This continues the trend that began in 1953 indicating that the steel producers and their customers regard the value of ferroboron as a hardening intensifier with decreasing favor, in spite of the fact that one-half an ounce of boron to a ton of steel causes a 79-percent increase in the steel's depth of hardening.

Bureau of Mines figures show that 22 tons of ferroboron was shipped

at an average price of \$6.73 per pound of contained metal.

FOREIGN TRADE 8

Although the domestic trade in ferroalloys changed little from 1956 to 1957, imports consumed increased 74 percent in tonnage and 80 percent in value from 233,980 tons in 1956 (valued at \$46 million) to 408,230 tons in 1957 (valued at \$83.6 million). The

³ Figures on imports and exports compiled by Mae B. Price and Elsie D. Jackson, Division of Foreign Activities, Bureau of Mines, from records of the U. S. Department of Commerce, Bureau of the Census.

overall average value of imported ferroalloys increased from \$198 in 1956 to \$204 in 1957. The large increase in tonnage and value of imports consumed from 1956 to 1957 was owing largely to the greatly increased quantity of ferromanganese and the lesser gains in ferrochromium. As usual, the imported manganese and chromium alloys comprised the bulk of the tonnage and value followed by ferrosilicon and ferrotungsten.

TABLE 3.—Ferroalloys and ferroalloy metals imported for consumption in the United States, 1956-57, by varieties

[Bureau of the Census]

		1956		, 5° 'N' .	1957	
Variety of alloy	Gross weight (short tons)	Con- tent (short tons)	Value	Gross weight (short tons)	Con- tent (short tons)	Value
Calcium silicide Chromium metalvanadium	97 409	(1) (1)	\$32, 191 2 687, 244	249 1, 354 (³)	(1) (1)	\$97, 077 2, 747, 923 1, 692
Ferrocerium and other cerium alloys	244 6	(1)	45, 852 40, 108	4	(1)	26, 393
Ferrochrome and ferrochromium: Containing 3 percent or more carbon Containing less than 3 percent carbon	27, 152 4 12, 730	4 16, 921 4 9, 057	6, 323, 037 4 5, 080, 497	31, 316 16, 353	19, 543 11, 367	8, 155, 493 6, 304, 912
Ferrochromium-tungsten, chromium tungsten, chromium-cobalt-tungsten, tungsten nickel, and other compounds of tungsten, n. s. p. f. (tungsten content)	(1)	73	² 328, 154	(1)	33	112, 099
Ferromanganese:	166	123	60, 856	767	676	617, 329
Containing over 1 and less than 4 percent carbon	19, 051 140, 986	15, 622 108, 208	4, 846, 062 423, 593, 306	15, 237 322, 626	12, 268 244, 877	3, 970, 527 55, 644, 018
powder, calcium molybdate and other com- pounds and alloys of molybdenum (molyb- denum content)	(1) 22, 017	5 5,005	23, 058 1, 736, 946	(1) 19, 904	748 3, 813	2, 047, 540 1, 678, 814
Ferrosilicon— Ferrosilicon-aluminum, ferroaluminum-silicon, and alsimin— Ferrotitanium	(5)	(1)	256 92, 450	128	(1)	99, 982
Ferrottianum Ferrotungsten Manganese silicon (manganese content) Silicon-aluminum and aluminum-silicon	537	435 6, 357 (1)	1, 944, 595 1, 385, 759 46, 679	252 (1) 40	207 5, 109	674, 364 1, 140, 679 21, 252
Silicon metal (silicon content)		(1)	8, 121 18, 085	(8)	(1) (9)	4, 150
Tungsten and combinations, in lump, grains, or powder (tungsten content) Tungstic acid and other alloys of tungsten,	(1)	19		(1)	41	238, 663
n. s. p. f. (tungsten content)	. (1)	1	4, 920	(1)	6	34,00

Not recorded.

2 Owing to changes in tabulating procedures by the Bureau of the Census, data known to be not comparable to earlier years.

3 400 pounds.

4 Revised figure.

^{5 100} pounds. 6 147 pounds. 7 129 pounds. 8 110 pounds. 9 99 pounds.

TABLE 4.—Ferromanganese and ferrosilicon imported for consumption in the United States, 1956-57, by countries

[Bureau of the Census]

		nanganese (r excluding sili			Fe	rrosilicon (sil	llicon content)		
Country		1956		1957	145	1956		1957	
	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	
North America: Canada Mexico	2, 897 3, 832	\$694, 371 702, 722	94, 873 1, 628	\$22, 544, 924 366, 793	4, 956	\$1,723,001	3, 776	\$1, 635, 261	
TotalSouth America: Chile_	6, 729 1, 861	1, 397, 093 392, 310	96, 501 1, 022	22, 911, 717 230, 183	4, 956	1, 723, 001	3, 776	1, 635, 261	
Europe: Belgium-Luxem- bourg France Germany, West Norway Yugoslavia	1, 628 17, 149 58, 672 9, 901 1, 925	340, 165 3, 831, 150 12, 920, 697 2, 596, 373 423, 085	3, 571 76, 219 24, 403 9, 465 3, 465	740, 210 17, 412, 582 5, 807, 324 2, 529, 046 866, 307	5 44	5, 038 8, 907	37	43, 558	
Total Asia: Japan Africa: Belgian Congo_	89, 275 26, 088	20, 111, 470 1 6, 599, 351	117, 123 42, 734 441	27, 355, 463 9, 638, 636 95, 875	49	13, 945	37	43, 558	
Grand total	123, 953	128,500,224	257, 821	60, 231, 874	5, 005	1, 736, 946	3, 813	1, 678, 814	

¹ Revised figure.

TABLE 5.—Ferroalloys and ferroalloy metals exported from the United States, 1954-57, by varieties

[Bureau of the Census]

		1954		1955		1956	1957	
Variety of alloy	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value
Ferrochrome. Ferromanganese. Ferromolybdenum. Ferrophosphorous. Ferrosilicon. Ferrotitanium and ferrocarbon-titanium. Ferrotunesten.	2, 105 1, 732 124 24, 342 2, 080	\$995, 797 614, 544 237, 698 792, 671 365, 338 39, 885 3, 963	4, 693 1, 789 175 53, 055 1, 689	\$2, 266, 579 642, 806 353, 073 1, 345, 514 308, 033 65, 091 9, 698	5, 538 2, 248 472 75, 411 2, 115	\$2, 891, 379 682, 257 1, 052, 281 2, 339, 328 483, 021 148, 459 4, 203	4, 535 7, 395 192 50, 318 2, 649	\$2, 419, 102 1, 866, 456 447, 098 1, 901, 036 502, 401 130, 046 10, 092
Ferrotungsten Ferrovanadium Other ferroalloys Spiegeleisen	70 168	237, 333 102, 748	220 457	991, 955 258, 187	1 139 316	1 650, 955 158, 805	134 262 29	519, 955 129, 468 2, 735
Total	30, 798	3, 389, 977	62, 325	6, 234, 636	186, 604	1 8, 410, 688	65, 883	7, 928, 389

¹ Revised figure.

Fluorspar and Cryolite

By Robert B. McDougal 1 and Louise C. Roberts 2

OMESTIC fluorspar production during 1957 was below the output in 1956; but there was an increase in imports, and consumption reached a new record.

Domestic Acid-grade fluorspar was purchased in 1957 under a program established by Public Law 733. Metallurgical grade was purchased for the national stockpile.

TABLE 1.—Salient statistics of crude and finished fluorspar in the United States, 1948-52 (average) and 1953-57, in short tons

	1948-52 (average)	1953	1954	1955	1956	1957
Domestic production: Crude fluorspar: Mine production. Crude material milled or washed. Cleaned or concentrated fluorspar recovered. Finished fluorspar production (shipments from mines and mills). Value, thousand dollars. Foreign trade: Imports for consumption. Exports. Domestic consumption.	688, 463	903, 400	616, 900	656, 500	922, 100	861, 500
	718, 721	823, 900	622, 600	667, 500	775, 700	790, 600
	308, 520	322, 700	247, 700	1 268, 400	1 306, 500	322, 600
	309, 652	318, 000	245, 600	279, 500	329, 700	328, 900
	\$11, 968	\$15, 737	\$12, 333	\$12, 590	\$14, 257	\$15, 777
	181, 131	359, 569	293, 320	363, 420	485, 552	2 631, 367
	811	767	643	874	197	754
	438, 964	586, 798	480, 374	570, 261	621, 354	644, 688
Stocks on hand at end of year: Domestic mines: Crude *	77, 450	176, 248	184, 143	139, 077	1 189, 021	207, 686
	26, 834	31, 896	26, 370	23, 439	21, 794	17, 329
	172, 699	227, 511	143, 813	140, 577	189, 679	227, 990
	10, 549	15, 492	26, 100	54, 021	53, 900	70, 600
	287, 532	451, 147	380, 426	357, 114	1 454, 394	523, 605

¹ Revised figure.

TABLE 2.—Domestic mine production of crude fluorspar, 1956-57, according to size of operation, in tons per year

Production	195	61	1957		
	Short tons	Percent	Short tons	Percent	
Under 1,000 2 1,000-10,000 10,000-20,000 Over 20,000	10, 100 44, 400 71, 900 795, 700	1.1 4.8 7.8 86.3	2,800 68,600 41,000 749,100	0.3 8.0 4.8 86.9	
Total	922, 100	100.0	861, 500	100.0	

³ See footnote 1, table 10.
3 This crude (run-of-mine) fluorspar must be beneficiated before it can be marketed.

Revised to correspond with 1957 canvass data reported by producers.
 Includes prospects and reworked dumps and tailings of previous mining and milling operations.

¹ Commodity specialist. ² Statistical clerk.

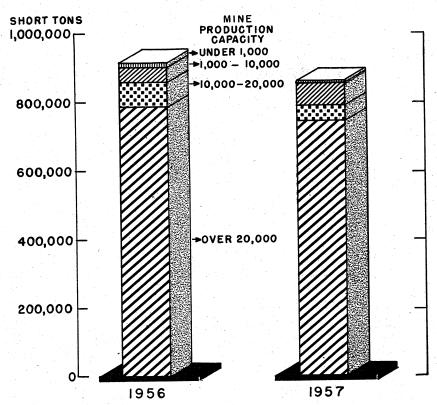


FIGURE 1.—Domestic production of crude fluorspar by mine capacity, 1956-57

DOMESTIC PRODUCTION

Mine production of crude ore totaled 861,500 short tons in 1957 compared with 922,100 tons in the preceding year. About 86 percent of the mine run ore was from mines producing over 20,000 tons.

Sixteen mills, including those operated by consumers, in 1957 processed 790,600 tons of crude ore to recover 322,600 tons of finished fluorspar that included 224,500 tons of flotation concentrate. In 1956 the output of finished fluorspar from 15 mills totaled 306,500 tons, recovered from 755,700 tons of crude ore. Of this 217,600 tons was flotation concentrate. The balance of production, during 1957, approximately 104,300 tons, consisted of crude fluorspar that was of finished grade without processing, compared with the production of nearly 76,000 tons in 1956.

Consumer-operated mines produced 168,700 tons of crude material in 1957, and their mills recovered 86,700 tons of finished fluorspar

from processing 206,900 tons.

Illinois was again the primary producing area. Production decreased slightly from output in 1956, supplying about 52 percent (169,939 short tons) of finished fluorspar including 152,700 tons of flotation concentrate. Shipments in 1956 totaled 178,300 tons (of

which 131,500 tons was flotation concentrate) and provided about 54

percent of the United States supply.

Production of fluorspar in Montana increased 8 percent in 1957 to 64,300 tons from 59,800 tons in the preceding 12 months. Of this output, 59,500 tons was from the Cummings-Roberts operation east of Darby, Ravalli County. A heavy-medium plant was installed on the property during the latter part of the year. The Finlen & Sheridan Mining Co., which had begun operations at a site in the Fish Creek area of Mineral County in August 1956, ceased operations during the fall of 1957.

Fluorspar production, virtually all Acid grade, in Colorado increased

slightly in 1957 from the output in 1956.

Production of fluorspar rose slightly in Utah in 1957 to 11,087 short tons above the output of 10,581 tons in 1956. Early in the year the Bell Hill Mining Co. fluorspar property on Topaz Mountain, Juab County, was purchased by Quo Vadis Mines, Inc., Salt Lake City.3 Development by the new owner disclosed additional ore reserves beyond previously announced reserves. Construction of a flotation mill with a capacity of about 150 tons per day was begun by the new firm at Delta, Utah, to upgrade local ore to Acid-grade material.

In mid-November H. Evans Roberts, partner in the Montana operation, purchased the Mackey-Humm Mining Co. and Hicks Creek Fluorspar Mining Co. and announced plans for expanding Acid-grade fluorspar production. The new name of the firm was Southern Illinois Mining Co., with local offices in Rosiclare.

Near the end of the year Union Carbide Nuclear Co. and Kaiser

Aluminum Co. were reported to be exploring for new deposits in the

Hardin County area.5

Production of finished fluorspar in Kentucky increased slightly to 20,626 short tons in 1957—about 39 percent over the 1956 output of 14.865 tons. The Rosiclare Lead & Fluorspar Mining Co. Pigmy

TABLE 3.—Shipments of domestic fluorspar, 1956-57, by State of origin

		1956		1957			
State	Short	Val	ue	Short	Value		
	tons Total Average per ton	tons	Total	Average per ton			
Illinois	178, 254 14, 865 10, 581	\$8, 469, 450 607, 704 265, 449	\$47. 51 40. 88 25. 09	169, 939 20, 626 11, 087	\$8, 827, 171 979, 357 387, 042	\$51. 94 47. 48 34. 91	
Montana Arizona. California. Colorado. Nevada.	59,775 	4, 914, 574	39. 00	64, 339	5, 583, 318	43. 89	
Tennessee	329,719	14, 257, 177	43. 24	328, 872	15, 776, 888	47. 97	

Mining Record, Quo Vadis Mines Is Speeding Up Plans at Fluorspar Mill: Vol. 68, No. 36, Sept. 5, 1957, p. 8.

4 Hardin County Independent, Elizabethtown, Ill., 2 Fluorspar Mines Bought by E. Roberts: Vol. 88, No. 48, Nov. 7, 1957, p. 1.

5 Engineering and Mining Journal, vol. 158, No. 12, December 1957, p.[182.

mine in Crittenden County closed since the end of 1952 resumed production during the early part of the year.⁶ The mine was leased by J. Willis Crider, fluorspar operator in Marion, Ky., after the Rosiclare firm pumped out and retimbered the mine.

TABLE 4.—Shipments 1 of domestic fluorspar by State of origin, 1948-52 (average) and 1953-57, with shipments of maximum year and cumulative shipments from earliest record to end of 1957, in short tons 2

		imum me nt s			Shipn	nents by	y years			Total shipment to date	
State		l	1948-52					19	957		
Diste	Year	Short tons	(aver- age)	1953	1954	1955	1956	Short tons	Per- cent of total	Short tons	Per- cent of total
TennesseeColorado 5 CaliforniaNew Mexico ArizonaNeyada	1956 1944 1934 1944 1953 1953	(3) 65, 209 181 42, 973 1, 951 (3)	19,739	53, 276 11, 890 1, 951	59, 197 8, 876	71, 753	66, 244	62, 881	19.1	1, 501, 620	15. (
Idaho	1951 1951 1941 1957 1917 1944 1950 1945 1944	204, 328 141, 862 64, 339 1, 274 4, 769 18, 936 132	3, 388 679 14, 384	47, 244 5, 932	35, 831 15, 102	8, 899 25, 223	14, 865 59, 775	20, 626 64, 339	6. 2 19. 7	187, 312 8, 302 14, 779	28. 1.
Total	1944	413, 781	309, 651	318, 036	245, 628	279, 540	329, 719	328, 872	100.0	10, 010, 077	100.

Finished-fluorspar output in Nevada declined in 1957 from that produced in 1956 owing to the closing of the Kaiser Aluminum & Chemical Corp. flotation mill near Fallon, Nev., during 1957.7 Earlier in the year its mine near Gabbs, Nev., closed owing to depletion of the deposit, and for a while the mill continued to operate on stockpile ore. Acid-grade fluorspar was recovered as a byproduct of scheelite processing by the Wah Chang Mining Co. at its mill near Tempiute, Nev.

Metallurgical-grade fluorspar was produced in Tennessee during

the first part of 1957. Fluorspar was produced in Arizona and California in 1957.

In 1957 the Bureau of Mines canvass was revised to present better detail on production and shipments of fluorspar by grade and consumption by grade and end use. Data on the production, shipment, and consumption by grade of fluorspar in tables 5 and 6 have been estimated for 1956 based upon 1957 information.

¹ Figures for 1880–1905 represent production.
2 Quantity and value figures, by States, for 1880–1925 in Mineral Resources, 1925, pt. 2, pp. 13–14, and for 1910–40 in Minerals Yearbook Review of 1940, p. 1297.
3 Figures withheld to avoid disclosing individual company confidential data.
4 Synthetic calcium fluoride recovered by TVA.
5 Figures on production not recorded for Colorado before 1905, for Illinois before 1880, and for Kentucky before 1886 and for 1888–95. Total unrecorded production (estimated) included in "Total shipments" column, as follows: Colorado, 4,400 tons; Illinois, 20,000 tons; and Kentucky, 600 tons.
6 Less than 0.05 percent. 6 Less than 0.05 percent.

Engineering and Mining Journal, vol. 158, No. 7, July 1957, pp. 144, 150.
 Oil, Paint, and Drug Reporter, Kaiser Fluorspar Mill in Nevada Shut Down: Vol. 172, No. 12, Sept. 16, 1957, p. 3.

TABLE 5.—Fluorspar shipped from mines in the United States, by grades and industries, 1956-57, in short tons and value

		1	956 1		1957				
Grade and industry	Quan	ntity	Valt	1e	Quar	ntity	Value		
	Short tons	Per- cent of total	Total	Aver- age	Short tons	Per- cent of total	Total	Aver	
Ground and flotation concentrates: Hydrofluoric acid 2_Glass. Ceramic and enamel_Nonferrous Ferrous 4_Bxported.	3 20, 492 4, 828 2, 711 15, 025 20	78. 1 3 9. 9 2. 3 1. 3 7. 2 (5) 1. 2	\$9,022,848 \$ 843,432 207,315 117,607 527,233 900	\$55, 72 \$41. 16 42. 94 43. 38 35. 09 45. 00	186, 946 18, 693 4, 181 2, 119 11, 198 (6)	8.3 1.8 0.9 5.0	\$10, 502, 364 831, 454 197, 975 100, 135 425, 088	\$56. 19 44. 49 47. 30 47. 20 37. 90	
Miscellaneous Total		1.2	96, 514	40. 65 52. 15	\$ 2,124 225, 261	1.0	97, 741 12, 154, 757	(6) 46. 02 53. 96	
Fluxing gravel and foundry lump: Glass. Nonferrous	(7) 1,160 120,191 30 958	(7) 0.9 98.3 (5) 0.8	(7) 32, 264 3, 376, 960 1, 269 30, 835	(7) 27. 81 28. 10 42. 30 32. 19	548 100, 191 (6) 6 2, 872	0. 5 96. 7 (6) 2. 8	17, 940 3, 478, 081 (6) 126, 110	32. 74 34. 71 (6) 43. 91	
Total	122, 339	100.0	3, 441, 328	28, 13	103, 611	100.0	3, 622, 131	34. 96	
All grades: Hydrofluoric acid ² _Glass. Ceramic and enamel_ Nonferrous. Ferrous ² ⁴ _Exported. Miscellaneous.	161, 930 20, 492 4, 828 3, 871 135, 216 50 3, 332	49. 1 6. 2 1. 5 1. 2 41. 0 (5) 1. 0	9, 022, 848 843, 432 207, 315 149, 871 3, 904, 193 2, 169 127, 349	55. 72 41. 16 42. 94 38. 72 28. 87 43. 38 38. 22	186, 946 18, 693 4, 181 2, 667 111, 389 (6) 6 4, 996	56. 8 5. 7 1. 3 0. 8 33. 9 (6) 6 1. 5	10, 502, 364 831, 454 197, 975 118, 075 3, 903, 169 (6) 6 223, 851	56. 18 44. 48 47. 35 44. 27 35. 04 (6) 6 44. 81	
Total	329, 719	100.0	14, 257, 177	43. 24	328, 872	100.0	15, 776, 888	47. 97	

Revised for 1956 on basis of classifying shipments in 1957; see 1956, Fluorspar chapter, tables 5 and 6, p. 5.
 Includes shipments to G. S. A.
 Includes gravel and lump material to avoid disclosing individual company confidential data.

4 Includes pelletized flotation concentrates.

In May 1957 the new Olin Mathieson Chemical Corp. sodium silicofluoride plant at Pasadena, Tex., went into full production, recovering fluorides from the phosphoric-acid-manufacturing facilities at its Ammo-Phos fertilizer plant.⁸ Effluent gas from TVA's nodulizing kilns, containing low concentrations of fluorine as HF and SiF₄ was given an expensive treatment to inactivate the fluorine prior to discarding it as a waste product.9 TVA reported that cryolite meeting aluminum specifications can be recovered from such gases.

International Minerals & Chemical Corp. contracted to supply Kaiser Aluminum & Chemical Corp. annually with more than 10,000 tons of fluosilicic acid.10 Fluorine compounds will be recovered in processing phosphate chemicals at International's plant at Bonnie. Fla. Kaiser's new plant at Mulberry, Fla., will convert the fluosilicic

Less than 0.05 percent.
 Included with miscellaneous to avoid disclosing individual company confidential data.
 Included with glass under ground and flotation concentrate; see footnote 3.

⁸ Farm Chemicals, OM Recovers Fluoride from P₂O₅ at Pasadena: Vol. 120, No. 5, May 1957, p. 8, 6 Chemical and Engineering News, Fluorine From Phosphate Rock: Vol. 35, No. 38, Sept. 23, 1957, pp. 81-82.

10 Mining Congress Journal, vol. 43, No. 12, December 1957, p. 79

acid into sodium silicofluoride, which will be shipped for final proc-

essing into synthetic cryolite at its Chalmette, La., plant.

Synthetic calcium fluoride (and other fluorine values) were recovered by the Columbia-Geneva Division, United States Steel Corp., at its mill near Provo, Utah, which treated Minnesota iron ore, relatively high in fluorine content. Furnace charges averaged 0.003 percent F.11

CONSUMPTION AND USES

Industrial consumption of fluorspar reached a new record totaling 644,700 short tons in 1957, compared with 621,400 tons in the previous year. Of this total 334,300 tons was Acid-grade fluorspar, 41,500 tons Ceramic-grade, and 268,900 tons Metallurgical-grade.

Fluorspar consumed in producing hydrofluoric acid increased to 328,700 tons compared with 289,500 tons in 1956. Acid-grade fluorspar was used also as a flux in the production of primary aluminum

being added directly to the electrolyte in the reduction cell.

Glass and enamel plants reported consuming 37,300 tons of three fluorspar grades; 32,200 tons were Ceramic-grade. Other uses in which this grade was consumed were for welding-rod coatings, nonferrous, special flux, ferroalloys, and also in magnesium reduction.

The steel industry, which in 1957 operated below capacity, consumed about 243,100 tons, in contrast with 264,400 tons in the previous year, when there was a month-long strike at the plants. An average of 4.2 pounds of fluorspar was consumed per short ton of basic open-hearth steel produced in 1957, compared with 4.8 pounds in the previous year.

Fluorspar was reported consumed in 37 States in 1957; the three largest-Illinois, Pennsylvania, and Ohio-consumed about 39 per-

cent of the total.

Allied Chemical & Dye Corp. expects to consume quantities of fluorine for the production of uranium hexafluoride at its plant now under construction at Metropolis, Ill.¹² The plant is scheduled to go into production late in 1958 and is to supply the Atomic Energy Commission with 5,000 tons of U₃O₈ equivalent annually. Eventually other fluorine chemicals are expected to be produced.

Activity in the fluorocarbon field was further increased.¹³ A plant was under construction at Institute, W. Va., scheduled to begin production of various fluorinated hydrocarbons for refrigerants and aero-

sol propellants late in 1958.

Use of fluorochemicals to replace oil as coolants in electronic transformers makes possible a reduction in size and weight.¹⁴

Engineering and Mining Journal, USS Unveils \$9-Million Fluorine Plant; Vol. 159, No. 1, January 1958, p. 154; Chemical Engineering, Giant Fume Catcher Stops Fluoride Emission: Vol. 65, No. 4, Feb. 24, 1958, pp. 66, 68.
 Chemical and Engineering News, vol. 35, No. 11, Mar. 18, 1957, p. 7.
 Chemical and Engineering News, vol. 35, No. 8, Feb. 25, 1957, p. 7; Chemical and Engineering News, Fluorocarbons to the Fore: Vol. 35, No. 13, Apr. 1, 1957, pp. 14, 16.
 Chemical and Engineering News, Chemicals Cut Transformer Size: Vol. 35, No. 51, Dec. 23, 1957, p. 38.

STOCKS

Producers reported that stocks of fluorspar at mines, mills, and shipping point at the end of 1957 were 17,300 tons of finished and

207,700 tons of crude fluorspar.

Stocks at consumers' plants on December 31, 1957, were 20 percent larger than at the close of 1956. Fluorspar stocks at steel plants increased about 7 percent and were equivalent to a 9-month supply at the December 1957 consumption rate. Stocks at hydrofluoric acid plants increased about 86 percent over those in December 1956.

TABLE 6.—Fluorspar (domestic and foreign) consumed and in stock in the United States, by grades and industries, 1956-57, in short tons

	1	956 1		957
Grade and industry	Consumption	Stocks at consumers' plants, Dec. 31	Consumption	Stocks at consumers' plants, Dec. 31
Acid grade: Hydrofluoric acid	4, 694 158 803	336 42	328, 672 3, 221 118 819 131	43, 234 361 27 60 29
Primary aluminum	1, 192	984	1,352	1, 185
Total	296, 370	24, 582	334, 313	44, 896
Ceramic grade: Glass Enamel Welding rod coatings Nonferrous Special flux Ferroalloys	1	3, 618 758 115 1, 375	27, 899 4, 314 1, 154 118 7, 983	3,746 697 149 26 1,363
Total	37, 717	5, 866	41,468	5, 981
Metallurgical grade: Glass Enamel. Welding rod coatings Nonferrous. Special flux Ferroalloys. Primary aluminum Primary magnesium Iron foundry. Basic open-hearth steel. Electric-furnace steel. Bessemer steel.	1,010 369 879	207 136 60 368 1, 381 2, 748 } 154, 331	1, 017 800 343 5, 123 3, 134 15, 382 212, 304 30, 376 428	127 96 44 1, 653 907 9, 618 164, 668
Total	287,267	159, 231	268, 907	177, 113
All grades: Hydrofluoric acid Chass Enamel. Welding rod coatings Nonferrous Special flux Ferroalloys Primary aluminum Primary magnesium Iron foundry Basic open-hearth steel Electric-furnace steel Bessemer steel	289, 523 30, 861 5, 442 2, 482 879 6, 880 4, 601 1, 682 13, 738 227, 943 35, 967 524	23, 187 4, 161 936 208 368 1, 332 1, 074 1, 131 203 2, 748 }	328, 672 32, 137 5, 232 2, 316 5, 372 7, 959 1, 981 2, 529 15, 382 212, 304 30, 376 428	43, 234 4, 234 820 253 1, 708 1, 356 610 1, 489 9, 618
Total	621, 354	189, 679	644, 688	227, 990

¹ Data by grade estimated.

⁴⁸⁶²²¹⁻⁵⁸⁻³³

TABLE 7.—Production of steel, and consumption and stocks of fluorspar (domestic and foreign) at basic open-hearth and electric-furnace steel plants, 1948-52 (average) and 1953-57

	1948–52 (average)	1953	1954	1955	1956	1957
Production of basic open-hearth			V 14	3.5		
steel ingots and castings at plants consuming fluorspar_short tons_	82, 299, 947	95, 972, 563	79, 099, 507	99, 926, 806	95, 175, 209	100, 297, 307
Consumption of fluorspar in basic open-hearth steel production	010 700	070 440	184 100	017 059	007 049	010 20#
short tons Consumption of fluorspar per short	216, 596	252, 442	174, 198	217, 353	227, 943	212, 304
ton of basic open-hearth steel madepounds	5. 3	5. 3	4.4	4.3	4.8	4.2
hearth steel plants at end of year short tons	132, 200	163, 300	95, 200	102 100	1 142, 500	158, 100
Production of electric-furnace steel	102, 200			=====		
ingots and castings at plants con- suming fluorsparshort tons_ Consumption of fluorspar in electric-	5, 832, 972	7, 219, 262	5, 380, 180	7, 510, 684	8, 813, 722	9, 551, 301
furnace steel production short tons Consumption of fluorspar per short	27, 954	35, 027	21, 409	33, 436	35, 967	30, 376
ton of electric-furnace steel made pounds	9. 6	9.7	7. 9	8.9	8. 2	6.4
Stocks of fluorspar at electric-furnace steel plants at end of year short tons	4, 200	7,600	8, 300	4,900	11,700	6, 50

¹ Revised figure.

TABLE 8.—Fluorspar (domestic and foreign) consumed in the United States, by States, in 1956-57, in short tons

State	1956 1	1957	State	1956 1	1957
Alabama, Georgia, North Carolina, and South Carolina. Arkansas, Kansas, Louisiana, and Oklahoma California. Colorado and Utah. Connecticut. Delaware and New Jersey. Florida, Rhode Island, and Virginia. Illinois. Indiana. Iowa, Minnesota, Nebraska, South Dakota, and Wisconsin.	11, 851 76, 859 30, 766 21, 209 1, 148 81, 272 2 44 92, 016 33, 311 5, 234	12, 268 88, 622 35, 985 22, 944 585 79, 275 1, 059 97, 454 33, 451 4, 948	Kentucky Maryland Massachusetts Michigan Missouri New York Ohio Oregon and Washington Pennsylvania Tennessee Texas West Virginia Undistributed Total	24, 836 5, 357 21, 013 3, 987 20, 088 74, 544 1, 685 87, 729 610 16, 315 6, 329 4, 522 621, 354	30, 111 5, 494 20, 455 4, 340 20, 204 72, 151 1, 686 82, 883 1, 058 21, 221, 221 8, 054

Consumption partly estimated from sample canvass of consumers who accounted for more than 95 percent of total usage in 1955.

2 Virginia only.

PRICES 15

Acid-grade fluorspar prices declined slightly. Ceramic-grade prices increased while those for Metallurgical-grade remained virtually unchanged in 1957. Mexican fluorspar prices dropped slightly toward the end of the year. Domestic Acid-grade concentrate, f. o. b. Rosiclare, Ill., was quoted at \$52.50 per short ton contract and \$55 spot lots until April. From then until the end of the year the price,

¹⁸ E&MJ Metal and Mineral Market quotations during 1957.

TABLE 9.—Stocks of fluorspar at mines of shipping points in the United States, by States, at end of year, 1955-57, in short tons

State	19	1955		1956		157
	Crude 1	Finished	Crude 1	Finished	Crude 1	Finished
California Colorado Nevada New Mexico	1, 300 66, 843 } 14, 091	1, 067 420	1, 300 } 118, 546	1,017	72, 831	1, 101
Illinois. Kentucky. Montana. Utah	48, 271 7, 272 1, 000 300	13, 236 8, 716	98, 913 2 1, 126 2 800	11, 748 6, 372 2, 657	126, 123 5, 914 2, 813 5	7, 359 5, 905 2, 964
Total	139, 077	23, 439	² 220, 685	21, 794	207, 686	17, 329

1 This crude (run of mine) fluorspar must be beneficiated before it can be marketed.

² Revised figure.

f. o. b. Illinois-Kentucky and Colorado, was quoted at \$50, with some sales at \$55. European Acid-grade fluorspar, c. i. f. United States ports, duty paid, was quoted until November at \$52.50, when the

price changed to \$52 with spot lots at \$53.

Ceramic-grade fluorspar containing 93-94 percent CaF₂, variable amounts of calcite and silica, and 0.14 percent of Fe₂O₃ was quoted at \$43 per short ton, in bulk, f. o. b. Rosiclare, Ill., until mid-April, when the price advanced to \$46 for the remainder of the year. This grade containing 95 percent CaF₂, was quoted during the same period at \$45 and \$48 per short ton, in bulk, f. o. b. Rosiclare, Ill. Quoted prices for Ceramic-grade fluorspar in 100-pound bags was \$4 to \$5 per

ton higher than those for bulk shipments.

Metallurgical-grade fluorspar containing 72½ percent CaF₂ was quoted at \$41 per short ton, f. o. b. shipping point, Illinois-Kentucky throughout the year, following the increase from \$39 per ton in September 1956. Metallurgical-grade containing 70 and 60 percent CaF₂ was quoted at \$40 and \$36.50, respectively, per short ton, f. o. b. shipping point, Illinois-Kentucky during 1957 after the advance in September 1956. Pelletized Metallurgical-grade flotation concentrate containing 65 percent effective CaF₂ was quoted at \$30 per short ton, f. o. b. shipping point, Illinois-Kentucky until October, when the

price advanced to \$33 per ton.

Foreign Metallurgical-grade fluorspar containing 72½ percent effective CaF₂, c. i. f. United States ports, duty paid, fluctuated from \$34 per short ton until April, when it rose to \$35 per ton; in June it was again \$34, where it remained through November. In November the price increased to \$35 per ton, but after mid-December it was quoted at \$33 per ton contract and \$35 per ton spot lots. Mexican Metallurgical-grade fluorspar price quotations declined. The price for 72½-percent effective CaF₂, all rail, duty paid, f. o. b. border, was \$27.75 per short ton from January through June, \$25.75 per ton to November, when it declined to \$25 per ton. Prices of this grade, f. o. b. border, barge, Brownsville, Tex., were as follows: January to April \$30 per short ton, April to June \$29 per ton, June to November \$27.50 per ton, and from November to the end of the year \$27 per ton.

FOREIGN TRADE 16

Imports.—Imports for consumption were recorded in 1957 at a new high of 631,400 short tons valued at \$16 million and for the sixth consecutive year exceeded domestic production. In May and September 1957 the imports for consumption from Italy and Mexico included withdrawals from bonded warehouses of entries made in 1955–56, which were not officially recorded as withdrawn by the Bureau of the Census until 1957. Actual imports for consumption in 1957 would total 546,648 short tons, comprising 327,527 tons containing more than 97 percent CaF₂ and 219,121 tons containing less than 97 percent CaF₂. Revised total import figures would be 532,000 short tons for 1956 and 401,700 tons for 1955. As in recent years, Mexico was the principal foreign source, supplying 365,000 tons or approximately 67 percent of the total quantity imported in 1957. Italy supplied 82,000 tons, about 15 percent, and Spain 62,000 tons, about 11 percent, of the total. Duty-free imports by the United States Government totaled nearly 78,000 short tons in 1957 compared with 130,000 tons (revised) in the previous year.

Early in the year domestic fluorspar producers supported an effort to gain Congressional support for import quotas as a means of pro-

tecting domestic industries from foreign competition.17

Table 11, compiled from data supplied to the Bureau of Mines by importers and domestic companies milling or otherwise handling foreign fluorspar, shows the quantities of imported fluorspar delivered to consumers in the United States. Most of the imports were sold to manufacturers of hydrofluoric acid and steel producers. The quantities in table 11 represent the finished product recovered from milling or drying foreign ores or concentrates rather than the crude ores milled or concentrate dried.

Exports.—The Bureau of the Census, United States Department of Commerce, reported that exports totaled 754 short tons valued at \$80,703. Canada received the bulk, 642 tons, of the exports; Chile, Colombia, Cuba, Venezuela, Belgium-Luxembourg, France, Netherlands, West Germany, and the Union of South Africa received smaller

shipments.

¹⁶ Figures on imports and exports compiled by Mae B. Price and Elsie D. Jackson, Division of Foreign Activities, Bureau of Mines, from records of the U. S. Department of Commerce, Bureau of the Census.
17 Engineering and Mining Journal, Fluorspar Miners Gird for Import Quota Fight: Vol. 158, No. 5, May 1957, pp. 122-123.

TABLE 10.—Fluorspar imported for consumption in the United States in 1957, by countries and customs districts

[Bureau of the Census]

Country and customs district		ing more 7-percent cal- luoride	Containi than 97 cium fl	ng not more percent cal- uoride	Total		
	Short tons	Value	Short tons	Value	Short tons	Value	
North America: Canada: Philadelphia	19, 099	\$865, 943	955	\$43,888	20, 054	\$909, 83	
Mexico: Arizona Buffalo			. 58	857	58	85	
El Paso Galveston	18, 621 189	6,054		158, 753 579, 358 2, 222	10, 583 48, 655 259	158, 75 1, 056, 579 8, 270	
Laredo Michigan Philadelphia		- Constant of the second	132, 840 6, 352 28, 193	1, 773, 681 113, 463 567, 210	272, 683 6, 352 28, 193	6, 199, 820 113, 463 567, 210	
St. Louis San Diego	1 24, 236	1 922, 686	29	582	1 24, 236 29	1 922, 686 582	
Total Mexico	1 182, 889	1 5, 832, 100	208, 159	3, 196, 126	1 391, 048	1 9, 028, 226	
Total North America	1 201, 988	1 6, 698, 043	209, 114	3, 240, 014	1 411, 102	1 9, 938, 05	
Europe: Germany, West: New Orleans	4 070						
Philadelphia	6, 653 6, 974	271, 870 249, 136			6, 653 6, 974	271, 870 249, 136	
Total	13, 627	521,006			13, 627	521,000	
Italy: Maryland Michigan	1 22, 173	1 717, 710	485	18, 648	r 22, 173 485	1 717, 710	
Ohio Philadelphia	15, 120 1 101, 472	403, 260 1 2, 882, 872	1,032	18, 250	15, 120 1 102, 504	18, 648 403, 260 1 2, 901, 122	
Total	1 138, 765	1 4, 003, 842	1, 517	36, 898	1 140, 282	1 4, 040, 740	
Spain: Maryland			1, 861	24, 930	1, 861	24, 930	
Ohio	9, 115 44, 514	229, 497 1, 084, 150	6, 617	88, 828	9, 115 51, 131	229, 497 1, 122, 978	
Total United Kingdom: New York	53, 629	1, 263, 647	8, 478 12	113, 758 420	62, 107 12	1, 377, 405 420	
Yugoslavia: Philadelphia	3, 104	131, 731			3, 104	131, 731	
Total EuropeAfrica: Union of South Africa: Michigan	1 209, 125 1, 133	¹ 5, 920, 226 21, 726	10,007	151, 076	1 219, 132 1, 133	1 6, 071, 302 21, 726	
Grand total: 1957	1 412, 246 251, 039	1 12,639, 995 7, 858, 850	219, 121 234, 513	3, 391, 090 3, 366, 118	1 631, 367 485, 552	1 16, 031, 085 11, 224, 968	

¹ The following material, that had entered bonded warehouses during 1955 and 1956, was withdrawn from bonded warehouses for the United States Government in 1957: Mexico: St. Louis, 24,236 tons (\$922,686); Italy: Maryland, 22,173 tons (\$717,710), Philadelphia, 39,444 tons (\$1,243,755); Total Italy 61,617 tons (\$1,961,465); Grand total, 85,853 tons (\$2,884,151).

TABLE 11.—Imported fluorspar delivered to consumers in the United States, 1956-57, by uses

		1956 1			1957 1	and the second
Use	Short tons		oorder, or nill in the States, in-	Short tons		border, or mill in the States, in-
		Total	Average		Total	Average
Hydrofluoric acid	170, 739 16, 802 274, 348 13, 553	\$7, 803, 732 610, 071 7, 402, 284 410, 019	\$45. 71 36. 31 26. 98 30. 25	189, 327 9, 310 188, 566 20, 635	\$8, 311, 428 430, 751 4, 639, 962 637, 315	\$43. 90 46. 27 24. 60 30. 88
Total	475, 442	16, 226, 106	34. 13	407, 838	14, 019, 456	34. 37

¹ Estimated in part.

TABLE 12.—Fluorspar reported by producers as exported from the United States, 1948–52 (average) and 1953–57

Year	Short	Value		Year	Short	v	alue
	tons	Total	Average	104	tons	Total	Average
1948-52 (average) 1953 1954	794 695 479	\$34, 014 36, 906 23, 838	\$42.59 53.10 49.77	1955 1956 1957	52 50 (¹)	\$2,055 2,169 (1)	\$39. 52 43. 38 (1)

¹ Figures withheld to avoid disclosing individual company confidential data.

WORLD REVIEW

NORTH AMERICA

Canada.—The Department of Mines and Technical Surveys, Ottawa, 18 reported that fluorspar production in Canada in 1956 totaled 151,738 short tons valued at Can\$3,835,565, compared with 128,114

tons valued at Can\$2,708,437 in 1955.

Exports in 1956, shipped entirely to the United States, reached a new record of 78,380 tons valued at Can\$1,941,500, compared with 58,390 tons (revised figure) valued at Can\$1,460,844. Imports in 1956 increased to 28,148 tons. Of this, 26,523 tons came from Mexico, 1,566 tons from the United States, and 59 tons from the United Kingdom, whereas in 1955 a total of 21,774 tons came from Mexico, Spain, the Union of South Africa, the United States, and the United Kingdom in the order named. Consumption of flurospar totaled 87,927 short tons in 1955, of which 68,592 tons was used to produce heavy chemicals, 18,610 tons was used at steel plants, 592 tons in glass plants, 97 tons in the enameling and ceramic industries, and 36 tons for white metal alloys. By comparison, consumption in 1954 totaled 80,610 tons, including 63,751 tons for heavy chemicals, 16,002 tons in the steel plants, 757 tons in the glass industry, 85 tons in the enameling and glazing industries, and 15 tons for white-metal alloys.

¹⁸ Canada Department of Mines and Technical Surveys, Fluorspar in Canada, 1956 (preliminary): Ottawa, 6 pp.

TABLE 13.—World production of fluorspar, by countries, 1 1948-52 (average) and 1953-57, in short tons 2

[Compiled by Helen L. Hunt and Berenice B. Mitchell]

Country,1	1948-52 (average)	1953	1954	1955	1956	1957
North America:					1	
Canada	75. 211	88, 569	118, 969	128, 114	140, 071	68, 46
Mexico (exports)	97, 845	173, 163			360, 117	389, 80
United States (shipments)	309, 652	318, 036				328, 87
Total	482,708	579, 768	510, 795	607, 874	829, 907	787, 14
South America:		-	 	 		
Argentina	5,053	\$ 8,000	14, 308	14,991	12, 983	* 16, 500
Bolivia (exports)	148	21			300	10,000
Brazil			4 487		300	
Total	5,750	* 8, 021	15,008	15, 560	13, 283	* 16, 500
				= =====================================	=======	10,000
Europe: Belgium	1		1			1
Beigium		(5)	(5)	(5)	(5)	(5)
FranceGermany:	. ,	69, 702	81,788	94, 863	89, 287	88, 18
East 3		90,000	90,000	90,000	90,000	90,000
West	104, 888	177, 719	190, 916	170, 816	160, 937	154, 323
Italy	41, 732	83, 544		110,694	136, 675	158, 918
Norway Spain	978	777	488	317	198	331
Spain	56, 105	56, 426	81,032	73,653	81, 281	* 88, 200
Śweden (sales)	4.000	4,773	4, 140	1, 459	976	\$ 1, 100
United Kingdom	77, 412	88, 624	92, 607	96, 235	102, 536	104, 467
Total 3	407, 000	575,000	630,000	645,000	665, 000	690,000
Asia:						
Japan	0 510	7 000				
Korea, Republic of	2, 513	7, 206	6,771	5, 738	8, 911	8, 404
Turkey	3, 709	12, 139	9, 360	11, 105	3, 431	5,644
U. S. S. R. ³ 6	165	110		23		
	83, 800	90,000	110,000	110,000	165, 000	165,000
Total # 3	103, 000	140,000	170,000	180,000	245,000	245,000
Africa:				-		
Morocco: Southern zone	1,271	9 100	1 100		4=0	
Rhodesia and Nyasaland, Federation		3, 188	1, 188	11	170	
of: Southern Rhodesia	179	373	120	480	943	97
South-West Africa Tunisia	1, 162	5, 641	3,063	675		24
Tunisia		2, 249	l	1		
Union of South Africa	7,7-7	16, 029	21, 996	32, 839	35, 065	35, 106
Total	11, 763	27, 480	26, 367	34, 005	36, 178	35, 227
Oceania: Australia	498	373	21	316	834	305
World total (estimate) 12	1,010,000	1, 330, 000	1, 350, 000	1, 485, 000	1, 790, 000	1, 775, 000

¹ In addition to countries listed, fluorspar is produced in China and North Korea. Estimates by author

of chapter are included in the total.

This table incorporates a number of revisions of data published in previous Fluorspar chapters. Data do not add exactly to totals shown because of rounding where estimated figures are included in the detail.

Estimate.

* ESEMBAGE.

* EXPORTS.

* Data not available; estimate by author of chapter included in total.

* U. S. S. R. in Europe included with U. S. S. R. in Asia, as the deposits are predominantly in Asiatic

The St. Lawrence Corp. of Newfoundland, Ltd., recovered from 111,062 tons of ore mined 73,393 tons of "heavy-medium" concentrate; 72,718 tons was shipped to St. Lawrence Fluorspar Corp., a subsidiary company, at Wilmington, Del. Newfoundland Fluorspar, Ltd., recovered 76,049 tons as heavy-medium concentrate from 118,154 tons mined and shipped 68,083 tons to its parent company, Aluminum Co. of Canada, Ltd., at Arvida, Quebec. Production, though small in recent years, was reported from the Madoc area in Ontario by the Huntingdon Fluorspar Mines, Ltd., at its Kilpatrick mine.

St. Lawrence Fluorspar Corp. of Newfoundland, Ltd., suspended mining on June 4, 1957, following expiration of a contract with the United States Government earlier in the year. 19 Since then alternative markets were sought in the United States by the company as it was unable to compete in the Canadian market with foreign fluorspar.

A complete investigation into the fluorspar tariff structure was ordered by the Canadian Finance Minister; public hearings were

scheduled to begin May 6, 1958.20

In 1957 fluorspar entered Canada duty free from all sources under Canadian tariff item No. 296, but this free rate was not bound by the General Agreement on Tariffs and Trade (GATT).21 It was reported by the Tariff Board that one Canadian producer requested that a tariff of \$10 per net ton be imposed on all grades of fluorspar entering Canada.

Newfoundland Fluorspar, Ltd., was planning by the end of the year to expand the capacity of its Burin Peninsula mines from 75,000

tons to 110,000 tons annually.22

Mexico.—Principal producers of Acid-grade fluorspar were Fluorita de Mexico, S. A., Muzquiz, Coahuila, and Cia Minero Nacional, S. A., Rosita, Coahuila, with a combined current capacity of about 100,000 tons.²³ In the fall of 1957 Fluor-mex, S. A., opened a hydrofluoric acid plant, which was expected to produce at full capacity-1,200-1,500 tons—early in 1958. Fluor-mex, S. A., was the only producer in Mexico. Imports in 1956 totaled 585 tons.

SOUTH AMERICA

Argentina.—On October 10, 1957, a Freon manufacturing plant was placed in operation by Ducilo, a DuPont affiliate, at Berazategui, Province of Buenos Aires.²⁴ The plant will consume fluorspar from mines operated by the National Lead Co. Its annual capacity of 1,360 tons was believed sufficient to meet all domestic requirements. In addition to Freon for use as a refrigerant, the plant will produce aerosol-type products for insecticide, cosmetic, paint, pharmaceuticals,

and other industries in the country.

Brazil.—Northeast Brazil, embracing the States of Maranhão, Piauí, Ceará, Rio Grande do Norte, Paraíba, Pernambuco, Alagoas, and the Territory, Island of Fernando de Noronha, has attracted little attention as a source of minerals other than gypsum, dolomite, and scheelite.25 Intensive aerial surveys and ground prospecting during the last 6 years revealed more than 20 minerals, including fluorite. The official Bank for Northeast Brazil reported that many of the minerals, fluorite included, were being exploited with relative success.

EUROPE

Germany, West.—Output of crude fluorspar totaled 277,231 short tons in 1956 compared with 281,089 tons in 1955. Marketable production totaled 170,858 tons in 1956 compared with 176,370 tons in

<sup>Bureau of Mines, Mineral Trade Notes: Vol. 45, No. 1, July 1957, p. 26.
Northern Miner (Toronto), Fluorspar Tariffs To Be Investigated: Vol. 43, No. 27, Sept. 26, 1957, p. 7.
U. S. Department of Commerce, Foreign Commerce Weekly: Vol. 59, No. 8, Feb. 24, 1958, p. 5.
Engineering and Mining Journal, vol. 158, No. 7, July 1957, p. 184.
U. S. Embassy, Mexico, D. F., Mexico, State Department Dispatch 699, Jan. 2, 1958, pp. 17, 18.
U. S. Embassy, Buenos Aires, Argentina, State Department Dispatch 529: Oct. 14, 1957, 1 p.
Mining Journal, Brazil's Growing: Vol. 250, No. 6385, Jan. 3, 1958, p. 12.</sup>

Imports, including those into the Soviet Zone of East Germany, totaled 30,390 tons in 1956, an increase over the 27,215 tons, which entered in 1955. Exports, mostly Acid-grade, totaled 36,287 tons in 1956 compared with 35,380 tons in 1955. The principal consuming industries, metallurgical, chemical, ceramics, and cement, used an estimated 134,263 tons in 1956 and 127,005 tons in 1955. Fluorspar reserves in West Germany, estimated at nearly 2 million tons, will last for 10 years at the current rate of production.

Italy.—Production of Acid-grade fluorspar totaled 112,481 short

tons in 1956 compared with 91,099 tons in 1955.27

United Kingdom.—Production of fluorspar during 1957 was reported as follows: Acid-grade, 24,409 short tons; Metallurgical-grade, 72,644 tons; and ungraded or crude, 7,414 tons; total, 104,467 tons.28

Korea.—Production of fluorspar in Korea in 1957 totaled 4,645

short tons, with an average content of 80 percent CaF₂.²⁹

Pakistan.—Fluorspar was mined on a small scale in the Koh-I-Maran Range from a deposit first discovered in 1954, and prospecting work was done during 1955-57 by the Geological Survey of Pakistan (GSP) and the Pakistan Industrial Development Corp.30 recommended mining the fluorspar veins in the Zori-Badami-Aapurshi area, as they were relatively accessible at an average elevation of 6,850 feet.

AFRICA

Egypt.—Unexplored fluorspar deposits were reported in Wadi Igla and Jebel Al Enaigi east of the Bramia district and in Wadi El Gammal.31

South-West Africa.—Production of fluorspar in South-West Africa

totaled 24 short tons in 1957.32

Union of South Africa.—Exports in 1956 totaled 19,413 short tons valued at £110,133 (£ equals US\$2.80), f. o. b. from the Union of South Africa.33 Japan received 10,776 tons; Sweden, 4,541 tons; and Kenya, 2,286 tons; the remainder was exported to Finland, Germany, the Netherlands, Norway, Rhodesia, and the United Kingdom.

Seven major fluorspar producers were reported in 1956: G. R. Steenkamp (Antoinette mine), Vryheid, Natal; Fluorspar Export (Pty.), Ltd., Johannesburg (direct exporters); Frank Martin & Co. (Pty.), Ltd., Gemiston; Leeuwbosch Lead Mines, Ltd., Thabanzimbi, Transvaal; Rhenosterfontein Fluorspar Mines (Pty.), Ltd., Zeerust, Transvaal; Rhino Springs Mining Co., Zeerust, Transvaal; Vergenoeg Mining Co., care of General Overseas Traders (Pty.), Johannesburg.

Feb. 21, 1958, p. 1, encl. 1.

Bureau of Mines, Mineral Trade Notes: Vol. 45, No. 3, September 1957, pp. 23-24.

^{**} Bureau of Mines, Mineral Trade Notes: Vol. 45, No. 3, September 1957, p. 23.

** Bureau of Mines, Mineral Trade Notes: Vol. 45, No. 2, August 1957, p. 26.

** U. S. Embassy, London, England, State Department Dispatch 3768: May 19, 1958, pp. 14-15.

** U. S. Embassy, Seoul, Korea, State Department Dispatch 631: Apr. 2, 1958, p. 2.

** U. S. Embassy, Karachi, Pakistan, State Department Dispatch 712: Feb. 17, 1958, 1 p.

** U. S. Embassy, Cairo, Egypt, State Department Dispatch 632: Dec. 21, 1957, pp. 24-25, encl. 2.

** American Consul General, Johannesburg, Union of South Africa, State Department Dispatch 200: 188, p. 1 engl. 1.

TECHNOLOGY

Nearly 30 patents, relating to methods of processing and recovering fluorspar and fluorine compounds and to uses, were issued in 1957. Two patents were concerned with recovering calcium fluoride in either solid or filter-cake form in processing phosphate rock.34 The first described a process for the simultaneous production of fluorine chemicals and a commercial silica gel. Phosphate rock was treated with sulfuric acid, and the resulting hydrofluosilicic acid solution was heated with marble dust. Filtering produced a calcium fluoride cake containing silica gel.

Some 15 processes for recovering or producing fluorine compounds from phosphate rock and other sources were patented. One described a method of recovering fluorine compounds from the "den gases" evolved during acid treatment of apatite, phosphate rock, or other phosphatic material.35 Another patent related to a process for

recovering boron trifluoride.36

An improved process for manufacturing gasoline with boron trifluoride and liquid phosphoric acid was described in another

About midyear duPont announced that it will expand production of all four of its commercial tetrafluoroethylene resins at its

Parkersburg, W. Va., plant.38

Expansion of its plant capacity was announced by the manufacturer of a new fluorochemical for treating fabrics and suede leather first sold commercially in 1957.39 Used on wool apparel, upholstery, and on suede leather, this new product repelled water and oilborne stains, but its effectiveness on cotton apparel was lost with frequent laundering

or cleaning.

The \$9-million fluorine-recovery system at United States Steel's Provo, Utah, mill in operation for 2 years was described. Farmers in the area made some 900 claims that the stack gases had contaminated nearby lands, damaging crops and dairy herds. cipal complaint was that fluorine caused fluorosis—a bone disease—in It was found that fluorine was being emitted from two the livestock. separate places in the mill—the sintering plant and open-hearth department.

Fluorine emission was reduced 50 percent in the sinter plant, without detriment to the sintering properties, by mixing powdered limestone with the sinter charge. The CaF₂ formed remained in the charge to blast furnaces and passed off when the slag was tapped. Gases, at 800° F., from the plant were collected, and hydrated lime dust (95 percent passing 325-mesh) was forced at a rate of 20 pounds per minute into the collecting duct at two points. From the collecting

²⁴ Butt, C. A. (assigned to International Minerals & Chemical Corp.), Process for Producing Colloidal Silica-Free Calcium Fluoride: U. S. Patent 2,780,251, Feb. 5, 1957; Gloss, G. H. (assigned to International Minerals & Chemical Corp.), Process for Recovering Solid Calcium Fluoride Containing Product and Colloidal Silica Solution from a Weak Aqueous Fluosilicie Acid Solution: U. S. Petent 2,780,253, Feb. 5,

and Colloidal Silica Solution from a weak Aqueous Fluosincia Acid Solution. Comp.), Production of 1987.

35 Gloss, G. H., and Gross, J. H. (assigned to International Minerals & Chemical Corp.), Production of Fluorine Compounds: U. S. Patent 2,780,522, Feb. 5, 1957.

38 Klipatrick, M. (assigned to the United States Atomic Energy Commission), Method for Recovering Boron Values: U. S. Patent 2,787,527, Apr. 2, 1957.

38 Schemical Engined to Esso Research & Engineering Co.), Polymerization With Boron Trifluoride-Phosphoric Acid Catelyst: U. S. Patent 2,810,774, Oct. 22, 1957.

38 Chemical Engineering Progress, Major Teflon Resin Expansion: Vol. 53, No. 7, July 1957, p. 78.

38 Chemical Engineering Progress, Major Teflon Resin Expansion: Vol. 53, No. 7, July 1957, p. 78.

49 Work cited in footnote 11.

duct the gases containing 0.4 percent solids entered the cyclone-precipitator unit, where the bulk of the solid was removed. The process was completed when powdered limestone (80 percent passing 200-mesh) was injected at two points at a rate of 64 pounds per minute; the gases then passed into electrostatic precipitators, where

most of the remaining particles were removed.

Though similar in principle, the open-hearth treatment section did not require the second limestone addition. Gases at 600° F., from 10 open-hearth furnaces, containing 160 parts per million fluorine were channeled through a 16-foot-diameter distributing duct along which at 8 points lime dust was forced into the gas stream at the rate of 7 pounds per minute. About 96 percent of fluorine effluent was removed by cyclone-precipitator units. Steam injected into the collecting mains kept the humidity around 20 percent, enough to precipitate CaF₂, which does not take an electrostatic charge when dry.

A total of 115 tons per day in dust was removed from effluent gases by the precipitating units—50 tons, containing 1.5 tons of fluorine, from the sinter plant and 65 tons, containing 2.5 tons of fluorine, from the open-hearth furnaces—then discharged into hoppers, agglomerated to prevent blowing, and dumped on slag piles. Eventually, the company hopes to find some commercial use for the

fluorine values now being disposed.

An article described a method of using a fluidized bed in producing uranium tetrafluoride.⁴¹ The benefits claimed included reduction of capital and operating costs, uniform-temperature control, simplified heat removal, and the absence of moving mechanical parts.

CRYOLITE

Natural cryolite was mined from the only known commercial-size deposit at Ivigtut, Greenland, owned by the Danish Government. The mining concession was held by the Kryolitselskabet Oresund Ald, Copenhagen. Part of the output was shipped to the United States, where the Pennsalt Chemicals Corp. (formerly Pennsylvania Salt Manufacturing Co.) processed the ore in its mill at Natrona, Pa. Synthetic cryolite was produced in the United States by the Aluminum Company of America at East St. Louis, Ill., and Reynolds Metal Co. at Bauxite, Ark. The Kaiser Aluminum & Chemical Corp., in addition to the Aluminum Company and Reynolds Metals, reclaimed cryolite from scrapped pot linings of aluminum reduction cells.

Cryolite prices quoted throughout the year in the Oil, Paint and Drug Reporter were as follows: "Cryolite, nat., indust., bgs., c. l., works, 100 lb. \$13.00; l. c. l., works, 100 lb., \$14.25." These listings, representing the lowest prices, were firsthand quotations prevailing on large lots, f. o. b. New York, and did not represent bid and asked

prices or a range over the week.

During the year several patents were issued for recovering and using cryolite. An improved process for producing synthetic cryolite from certain chemical-industry byproducts was reported.⁴²

⁴¹ Lewitz, N. M., Petkus, E. J., Katz, H. M., and Jonke, A. A., A Fluidized Bed Process for the Production of Uranium Tetrafuoride: Chem. Eng. Prog., vol. 53, No. 4, April 1957, pp. 199-201.

4 Wendt, G. (assigned to Verinigte Aluminium-Werke Artiengesellschaft, Bonn, Rhine, Germany), Process of Producing Cryolite From Washing and Waste Liquors Containing Sodium Fluoride: U. S. Patent 2,783,128, Feb. 26, 1957.

The use of cryolite in an improved aluminum-brazing flux was

described in another patent issued later in the year. 43

Cryolite imports for 1948 through 1957 shown in table 14 do not differentiate between natural and synthetic, but most of the shipments from countries other than Greenland and Denmark are believed to have been synthetic cryolite.

Exports of natural and synthetic cryolite in 1957, totaling 165 short tons valued at \$55,300, were shipped mostly to Canada and Mexico; India, Turkey, and the Union of South Africa received

smaller shipments.

TABLE 14.—Cryolite imported for consumption in the United States, 1948-52 (average), 1953-55 (totals), and 1956-57, by countries, in short tons

	[Bureau of the Census]										
	Short tons	Value		Short tons	Value						
1948-52 (average) 1953 1954	23, 443 29, 457 21, 141 21, 980	\$1, 563, 082 3, 528, 148 2, 215, 887 3, 189, 761	1957 North America: Canada	2, 380	100. 938						
1956 North America: Greenland 1	12, 212	507, 650	Greenland 1 Total	14, 398	610, 615 711, 553						
Europe: Denmark France Germany, West Italy	531 2, 204 5, 307 2, 866	41, 271 526, 661 1, 200, 760 624, 265	Europe: Denmark France Germany, West	408 1, 102 10, 407 4, 017	29, 537 206, 944 2, 217, 107 857, 245						
Spain Total Grand total	10, 910 23, 122	2, 393, 705 2, 901, 355	TotalGrand total	15, 934 32, 712	3, 310, 833 4, 022, 386						
	,	-, -, -, -, -, -, -, -, -, -, -, -, -, -			I						

¹ Crude natural cryolite.

⁴⁸ Hanink, D. K. (assigned to General Motors Corp., Detroit, Mich.), Salt Flux and Method for Brazing Aluminum Parts Therewith: U. S. Patent 2,809,423, Oct. 15, 1957.

Gem Stones

By John W. Hartwell 1 and Betty Ann Brett 2

EM MATERIAL collected during 1957 in the United States was valued at about \$900,000, slightly less than in 1956. New regulations on the advertising of jewelry and gem stones in publications, circulars, or orally, were issued by the Federal Trade Commission on June 28, 1957. These regulations apply to all manufacturers, importers, and sellers and are designed to protect the trade and public from unfair practices.

DOMESTIC PRODUCTION

No new localities for gem materials were reported in 1957. Sources

of gem materials were listed in previous Gem Stones chapters.

About 800 gem and mineral clubs were active in the United States in 1957, mostly in the Rocky Mountain and Pacific Coast areas. The number of members was not known but was reported to be close to 40,000; about one-quarter owned and operated their own lapidary equipment.

Collecting gem material in the Pacific Northwest by amateurs was reported becoming more difficult, as more privately owned properties were closed to collectors. Collecting gained popularity in the East.

Some owners of gem-stone claims opened their land to collectors for certain fees and used power-operated dirt-moving equipment to

uncover the gem material.

In the Pacific Northwest commercial producers of baroque or "tumbled"-type gems reported production valued at nearly \$100,000. Because of the popularity of baroque jewelry, suitable "tumbling" material was difficult to obtain. Commercial lapidaries sold less of this type of jewelry because more amateurs "tumbled" their own material.

Six States-Oregon, California, Nevada, Texas, Arizona, and Washington-produced 72 percent of the total reported value of gem materials in 1957. Oregon led in production, with an estimated

\$200,000—20 percent less than was reported in 1956.

Agate.—Agate produced in the United States during 1957 was valued at more than \$125,000, a 25-percent increase over 1956. Commercial and amateur lapidaries sold about 200 short tons of "tumbled" agate material as baroque gems. Principal States, in decreasing order of production, were: Oregon, New Mexico, Arizona, Texas, and Wyoming. Output in Oregon was valued at approximately \$60,000, a 20-percent increase over 1956. Principal areas of production were Jefferson, Crook, and Deschutes Counties. Reports from New Mexico indicated an agate production of nearly \$25,000, largely from near Deming, Luna County.

Commodity specialist.
 Statistical clerk.

Arizona produced agate worth an estimated \$15,000, principally from Greenlee, Maricopa, Pima, and Yuma Counties; this was a 40-percent decrease from the value reported in 1956.

Emerald.—The emerald mine near Little Switzerland, N. C., formerly leased by the American Gem and Pearl Co., was reopened

by Little Switzerland Emerald Mines, Inc.

Yearly production of synthesized emeralds by C. F. Chatham, San Francisco, Calif., was estimated at 60,000 carats. About 10 percent of the stones were high quality, retailing at \$90 to \$120 per carat.³

Jade.—Jade production in the United States during 1957 was valued at \$50,000, a 50-percent reduction from 1956. About half of

the total value was reported from Wyoming.

During 1957 the Empire Jade Co., Shungnak district, Alaska, produced jade estimated equal to the 1956 output. Some jade boulders were cut to sizes suitable for 24-inch saws and sold to retailers in the United States. The balance of the material was exported to Germany for finishing into jewelry. The Government-sponsored Shungnak Jade Project in Alaska did not sell raw jade but continued to finish ornamental objects and jewelry. Only a small part of the jade, purchased from Eskimo claim owners, was gem quality.

Petrified Wood.—Production of petrified wood decreased in quantity and value from the record reported during 1956. Estimated value of production from four States was as follows: Arizona, \$25,000;

Utah, \$5,000; Wyoming, \$4,000; and Colorado, \$3,000.

Gingko, tempska, and other rare fossil woods were produced in small quantities in California, Montana, Oregon, and Washington.

Turquois.—Arizona became the principal turquois-producing State in 1957, surpassing Nevada, the leading State in 1956. Arizona production of turquois was \$30,000. Localities near Miami and Kingman produced about 7,500 pounds of low-grade material valued at \$17,000. Nevada reported production of 1,300 pounds of high-grade material, which was valued at \$13,000. The Lone Mountain and Battle Mountain mines were the principal producers. Turquois also was produced in Colorado.

Miscellaneous Gem Materials.—Fire-opal production from the Virgin Valley area, Nevada, was reported for the first time since 1955.

Production was valued at \$52,000.

A dispatch from the Pike County diamond field, Arkansas, states that a diamond weighing 3.11 carats was found during 1957. One diamond weighing 15.33 carats was found in 1956 near the same location.⁴

Development of the Yogo sapphire mine in Judith Basin County, Mont., uncovered 2 large stones, weighing 4½ and 5½ carats. Plans

were made to build a mill in 1958.

Over 5 tons of obsidian and quantities of other durable gem materials were used by lapidaries for "tumbling" during 1957 to fill the demand for baroque gems.

Morello, Ted, Green Treasure of the Andes: Nature Mag., vol. 50, No. 10, December 1957, p. 515.
 Washington Evening Star, Woman Finds 3.11-Carat Diamond in Arkansas Mine: 105th Year, No. 140, May 20, 1957, p. A5.

TABLE 1.—Estimated production of gem stones in the United States, 1955-57, in thousand dollars

	1955	1956	1957		1955	1956	1957
Alaska	(2) 97	(²) 104	(³) 75	Nevada	<i>(</i> 1)	50	100
ArizonaArkansas		25	(1)	New Hampshire	(1) 5	(2)	100
California	(1)	90	100	New Jersey	(2)	(2)	(2)
Colorado	(1) 48	30	35	New Jersey New Mexico	25	`á0	3(
Connecticut			(2)	New York	(2)	2	
Florida	ļ	(1)	(2) (2)	North Carolina	(2)	1	(2)
Jeorgia	(2)	(1)		North Dakota			(2) 20
daholinois	. 6	(4)	5 2	Oregon	150	250	20
owa				Pennsylvania South Dakota	(2) 7. 4	(²) 10	(²) 1
Maine.	5	(2)	(2)	Texas.	115	115	10
Maryland	1	(A)	(2)	Utahl	6	10	1
Michigan	(2)	(9)	(2)	Washington	65	75	7
Minnesota	. (2)	(4)	(2) (2)	Wyoming	57	75	5
Missouri			(2)	Other States and Territories.	226	20	3
Montana	(1)	35	35	m-1-1	010		- 00
Vebraska	2.4	3	2	Total	818	925	88

Included with "Other States and Territories."
 Figures of less than \$1,000 included with "Other States and Territories."

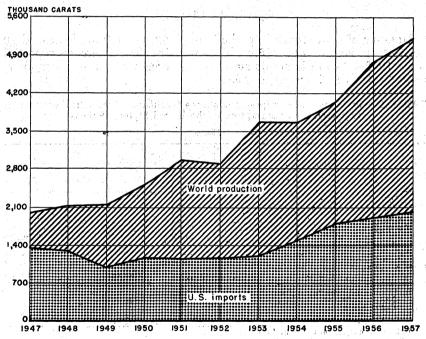


FIGURE 1.—World production and United States imports of gem diamonds, 1947-57.

CONSUMPTION

Sales of lapidary equipment and supplies, gem materials (excluding diamond), and mineral specimens were estimated at nearly \$5 million. Synthetic gem-stone purchases from producers in the United States were estimated to be about \$1 million; other countries supplied over \$10 million. Purchases of natural gem material, exclusive of diamond, from other sources was reported to be nearly \$15 million.

The apparent consumption (domestic production plus imports minus exports) of gem stones in the United States in 1957 was over \$142 million.

PRICES

In January 1957 the Diamond Trading Co. of London, England, announced price increases of 5 to 7½ percent on all qualities of rough diamonds used in manufacturing regular goods, tapered baguettes, and melee.⁵

The average diamond prices per carat imported into the United States were for cut, but unset, \$107.28 and for rough or uncut, \$76.93. The upward trend of prices paid for rough or uncut stones continued in 1957, with an average increase of \$4.35 per carat; prices for cut but not set stones decreased \$2.07 per carat.

Average prices paid for sapphire imported into the United States for consumption were \$9.67 higher per carat in 1957 than in 1956.

FOREIGN TRADE 6

Imports of gem stones into the United States in 1957 decreased 10 percent in value from 1956. This was the first decrease reported since 1952. Gem diamonds supplied 85 percent of the total imports, compared with 86 percent in 1956.

TABLE 2.—Precious and semiprecious stones (exclusive of industrial diamonds) imported for consumption in the United States, 1956-57

[Bureau of	the Census				
Item		1956	1957		
	Carats	Value	Carats	Value	
Diamonds: Rough or uncut (suitable for cutting into gem					
stones), duty-free	1 1, 176, 832	1 \$86, 216, 172	1,002,696	\$77, 142, 072	
Cut but unset, suitable for jewelry, dutiable	693, 142	2 75, 795, 826	609, 775	65, 418, 387	
Emeralds: Cut but not set, dutiable	50, 931	2 1, 688, 429	37, 245	1, 594, 789	
Pearls and parts, not strung or set, dutiable:			1		
Natural		2 626, 237		480, 172	
Cultured or cultivated		3 8, 024, 660		9, 508, 701	
Other precious and semiprecious stones:		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1,000,100	
Rough or uncut, duty-free		2 280, 692		629, 814	
Cut but not set, dutiable		3 3, 116, 372		3, 163, 573	
Imitation, except opaque, dutiable:		0,110,012		0, 100, 0.0	
Not cut or faceted		2 40, 496		59, 598	
Cut or faceted:		10, 100		00,000	
Synthetic.		2 402, 272		463, 687	
Other		2 11, 448, 744		10, 061, 841	
Imitation, opaque, including imitation pearls,		- 11, 110, 111		10,001,011	
dutiable	1	2 30, 410	İ	23, 054	
Marcasites, dutiable: Real and imitation					
marcasites, dutiante. Real and initiation		38, 911		26, 413	
Total		1 2 187, 709, 221		168, 572, 101	

¹ Revised figure.

Nowing to changes in tabulating procedures by the Bureau of the Census data known to be not comparable with years before 1954.

Jewelers' Circular-Keystone, The Diamond Industry, 1956: P. 2.
 Figures on imports and exports compiled by Mae B. Price and Elsie D. Jackson, Division of Foreign Activities, Bureau of Mines, from records of the U. S. Department of Commerce, Bureau of the Census.

The principal imported gem stones that showed decreases in value were imitation gems (25 percent), natural pearls (23 percent), and diamond (11 percent). Increases were noted in rough or uncut precious and semiprecious gems, excluding diamond and cultured pearls, 124 and 18 percent, respectively.

TABLE 3.—Diamonds (exclusive of industrial diamonds) imported for consumption in the United States, 1956-57, by countries

[Bureau of the Census]

	R	ough or uncu	t	Cut but unset			
Country	Carats Value			Carats	Value		
		Total	Average		Total	Average	
1956							
North America: Bermuda	498	\$48, 664	\$97.72	+ +			
Canada Mexico	4, 929	576, 212	116.90	279 57	\$22, 304 23, 467	\$79. 94 411. 70	
Total	5, 427	624, 876	115. 14	336	45, 771	136. 22	
South America: Brazil British Guiana	2, 456 6, 595	112, 342 200, 740	45. 74 30. 44	253	20, 196	79. 83	
Colombia Surinam Uruguay Venezuela		12, 055 1, 644, 575	140. 17 28. 85	85 75 156	834 23, 000 25, 363	9. 81 306. 67 162. 58	
Total	66, 133	1, 969, 712	29. 78	569	69, 393	121. 96	
Europe: Austria Belgium-Luxembourg Czechoslovakia France Germany, West Italy Netherlands Switzerland United Kingdom	4, 634 2, 442 3, 776 11, 085	16, 579, 867 436, 790 108, 457 212, 270 429, 418 60, 991, 614	118. 46 94. 26 44. 41 56. 21 38. 74 75. 24	480 422, 002 25 9, 293 38, 333 64 21, 987 385 3, 526	52, 800 46, 810, 415 5, 660 1, 173, 809 2, 750, 098 8, 806 2, 696, 243 340, 049 536, 427	110. 00 110. 92 226. 40 126. 31 71. 74 137. 59 122. 63 883. 24 152. 13	
Total	972, 493	78, 758, 416	80. 99	496, 095	54, 374, 307	109. 60	
Asia: Ceylon Hong Kong India Israel Japan	2, 556	1, 662 51, 011 7, 666	21. 87 19. 96 86. 13	14 4 1, 424 145, 950 1, 050	1, 058 419 121, 254 13, 169, 447 88, 242	75. 57 104. 75 85. 15 90. 23 84. 04	
Lebanon				111	15, 670	141.17	
Total	2, 721	60, 339	22. 18	148, 553	13, 396, 090	90. 18	
Africa: British East AfricaEgypt		740	10.00	77	6, 674	86. 68	
French Equatorial AfricaLiberia	35, 536	1, 242, 420 1, 420, 676	25. 88 39. 98	15	4, 130	275. 33	
Southern British AfricaUnion of South Africa		2, 138, 993	46.06	47, 496	7, 898, 97 4	487. 00 166. 31	
Total	1 130, 058	1 4, 802, 829	1 36. 93	47, 589	7, 910, 265	166. 22	
Grand total	1 1, 176, 832	186, 216, 172	1 73. 26	693, 142	75, 795, 826	109. 35	

¹ Revised figure; Belgian Congo revised to none.

TABLE 3.—Diamonds (exclusive of industrial diamonds) imported for consumption in the United States, 1956-57, by countries—Continued

	· R	ough or uncu	t	Cut but unset			
Country	Carats	Value		Carats	Val	ue	
		Total	Average		Total	Average	
1957							
North America: Canada	5, 850	\$567, 531	\$97.01	419	\$52, 190	\$124.56	
South America: Argentina Brazil	147 3, 426	2, 600 135, 503	17. 69 39. 55	9 778	615 75, 620	68. 33 97. 20	
British Guiana	4, 782	135, 938	28. 43	236	24, 011	101.74	
Surinam	2, 726	88, 438	32.44	200	24,011	101.72	
Venezuela	61, 890	2 , 057, 533	33. 24	4	493	123. 25	
Total	72, 971	2, 420, 012	33. 16	1, 027	100, 739	98. 09	
Europe: Belgium-Luxembourg France	130, 646 21, 052	13, 308, 054 846, 483	101. 86 40. 21	345, 899 6, 228	37, 482, 783 987, 074	108. 36 158. 49	
Germany, West	588	18, 498	31.46	29, 873	2, 019, 582	67. 61	
Hungary			02.20	105	3, 500	33. 33	
Italy				147	21, 839	148. 56	
Netherlands	4, 248	319, 044	75. 10	22, 686	2, 914, 262	128, 46	
Switzerland	917	27, 160	29.62	134	107, 905	805. 26	
United Kingdom	646, 424	55, 447, 905	85.78	3, 275	551, 728	168. 47	
Total	803, 875	69, 967, 144	87.04	408, 347	44, 088, 673	107. 97	
Asia:							
Hong Kong India		2, 250	07 09	3	274	91.33	
3 112HI		2, 200	97.83	385 147	259, 119 12, 519	673. 04 85. 16	
Israel	3, 462	128, 664	37.16	151, 488	13, 685, 980	90. 34	
Israel Japan	249	4, 148	16.66	1, 297	115, 713	89. 22	
Malaya	300	43, 655	145. 52	1, 20,	110, 110	00. 22	
Thailand.				152	1, 283	8. 44	
Total	4, 034	178, 717	44. 63	153, 472	14, 074, 888	91.71	
Africa:							
Belgian Congo British East Africa	4, 150	13, 584	3. 27	<u>1</u>	515	515.00	
French Equatorial Africa French West Africa	23, 690	633, 920	26. 76		919	515.00	
French West Africa	2, 469	52, 572	21. 29				
Liberia	45, 496	1, 607, 795	35. 34				
Southern British Africa.		791		42	3, 250	77. 38	
Union of South Africa	40, 161	1, 700, 797	42. 35	46, 284	7, 063, 491	152. 61	
Total	115, 966	4, 008, 668	34. 57	46, 327 183	7, 067, 256 34, 641	152. 55 189. 30	
Grand total	1, 002, 696	77, 142, 072	76. 93	609, 775	65, 418, 387	107. 28	

² Owing to changes in tabulating procedures by the Bureau of the Census, data known to be not comparable with years before 1954.

WORLD REVIEW

In a historical world review of diamond discoveries, production, and sales it was estimated that, in 1955, nearly 22 thousand workers were engaged in cutting and polishing diamonds. Belgium led in number of workers, with 10,700, followed by Germany, 4,000; Israel, 2,500; and the United States, 2,000. The remaining workers were in 11 countries. Rough diamonds sold by the Diamond Syndicate during 1920–29, and the Central Selling Organization, 1930–56, were included. Sales in 1956 were nearly \$210 million.

⁷ Leeper, Sir Reginald, The Development of the Diamond Industry: Optima (Johannesburg), vol. 7, No. 3, September 1957, pp. 125-129.

NORTH AMERICA

Canada.—An increased quantity of jade was produced from the Frazer River deposits of British Columbia, Canada, during 1957. These deposits were becoming more important as a source of good gem material as deposits in the United States and Alaska were being

Cuba.—The diamond cutting and polishing industry established during World War II was reported almost nonexistent in 1957. Over 12,000 carats were exported to the United States from 1947 to

1950, inclusive; none was exported from 1951 to 1956.8

Guatemala.—A study on jade and jade artifacts found in Guatemala gave the history of use; nomenclature; geologic occurrence; chemical, physical, and optical properties; and types of jade and other green minerals used in meso-American cultures.9 After the study was published a jade deposit was found in place near Monzanal, Guatemala.

Mexico.—The quality, quantity, and location of agate, amethyst, apatite, beryl, danburite, garnet, obsidian, opal, orthoclase, scapolite, topaz, and tourmaline were reported. Many agate varieties, including iris, moss, flame, plume, and banded, were considered more valuable than other gem materials found. Agate was produced in

large quantities.10

It was reported that a "lost" Mexican jade deposit was traced to an area near Taxco, Guerrero.11

SOUTH AMERICA

Surinam.—A diamond area near Rosebel and Sabanpassie, known since 1880, was investigated by the Geological and Mining Service. Diamond was found in eluvial conglomerate deposits. Mining would depend on the adaptability of large-scale equipment.¹²

Venezuela.—Over 19,000 carats of gem-quality diamonds was produced in 1956, equivalent to 20 percent of total diamond production, Only a small part was domestically cut and polished. Pearls sold in domestic jewelry came from local sources but were only a small part of the total production. Most of the pearls produced were exported.18

India.—A total of 360 tons of ore from 20 sampling shafts, sunk at intersections of gridlines 250 feet apart, in the Panna diamond-mining area yielded 63 diamonds, equivalent to 12.5 carats per 100 tons.

Iran.—An estimated 15,000 pounds of turquois was mined in Nishapur during 1956. Production in 1957 was reported to be 30 percent less in quantity but 15 percent more in value. Sales to the United States were about \$2,400.14

<sup>U. S. Embassy, Havana, Cuba, State Department Dispatch 412: Nov. 18, 1957, p. 1.
Foshag, W. F., Mineralogical Studies on Guatemalian Jade: Smithsonian Miscellaneous Collections, vol. 135, No. 5, Dec. 3, 1957, 60 pp.
Barron, E. M., Report on Mexican Gem Minerals: Unpublished.
Science Newsletter, vol. 71, No. 13, Mar. 30, 1957, p. 198.
U. S. Consulate, Paramaribo, Surinam, State Department Dispatch 115: Nov. 20, 1957, p. 3.
U. S. Embassy, Carácas, Venezuela, State Department Dispatch 469: Jan. 7, 1958, pp. 39-40.
Bureau of Mines, Mineral Trade Notas: Vol. 45, No. 6, December 1957, pp. 28-29.</sup>

Israel.—Progress was reported by the Israel diamond-polishing industry, which anticipated exports valued at \$31 million during 1957, compared with \$24.5 million in 1956. According to spokesmen of the industry, employment rose to about 3,000. The average "added value" of the diamond increased from 17 to 20 percent.15

Japan.—The pearl industry overproduced in the spring during declining prices, cut production, increased exports, and stabilized prices in the last half of 1957. Production for the year was 45,469 pounds— 4,134 pounds less than in 1956. Exports were 55,140 pounds valued at \$14.3 million.16

U. S. S. R.—Diamond was discovered in an area of over 115 square miles near Yakutia. In an article describing the deposits, data were given on diamond properties and methods of prospecting, petrography, and mineralogy of the kimberlite. The largest diamond found weighed 32.5 carats; but in typical deposits, 70 to 90 percent of the diamonds were smaller than 1/10 carat. Because the stones were small, the field might be regarded principally as a source of industrial diamond.17

The Yakutia discoveries also were summarized and references to Russian publications describing the six separate diamond-bearing areas were given. It was indicated that about 19 percent of the diamonds were good industrial stones and gem stones.18

AFRICA

Angola.—The Portuguese Government was formulating plans to develop a diamond-cutting and polishing industry in Lisbon, utilizing diamond produced in Angola. Most of the Angola output was gem quality (60 percent), and was exported to the United Kingdom.19

Belgian Congo.—A decree effective August 1, 1957, was issued increasing the base value of Kasai diamonds, but reducing the export tax from 5 to 3 percent ad valorem.

French West Africa.—On February 20, 1957, at Kerouane, French Guinea, an African cooperation, Bakima, was created for diamond exploitation in the Famarodou area. This organization was established to protect the authorized miners and to help stop the illegal production and sale of diamond. The history of the area and methods of mining were related.20

Liberia.—Diamond exports in 1956 were over 1 million carats,

more than 5 times the 1955 exports.²¹

A second diamond rush was reported in the Suehn-Bopolo district,

northeast of Bomi Hills, about 75 miles from Monrovia.22

Rhodesia and Nyasaland, Federation of.—An emerald discovery near the Belingwe Native Reserve, Southern Rhodesia, was placed under Government control. Specimens were sent to the United States

¹⁸ U. S. Embassy, Tel Aviv, Israel, State Department Dispatch 222: Oct. 15, 1957, p. 3.

18 U. S. Consulate, Nagoya, Japan, State Department Dispatch 43: Jan. 10, 1958, p. 1.

17 Davidson, C. F., The Diamond Fields of Yakutia: Min. Mag. (London), vol. 47, No. 6, December 1957, pp. 329-338.

18 Moyar, A., The Diamond Industry in 1956-57, Vlaams Economisch Verbond (Antwerp, Belgium), undated: Pp. 72-76.

19 U. S. Consulate, Luanda, Angola, State Department Dispatch 62: Nov. 26, 1957, pp. 1-2.

20 U. S. Consulate, Dakar, French West Africa, State Department Dispatch 24: Apr. 10, 1957, pp. 1-7.

11 U. S. Embassy, Menrovia, Liberia, State Department Dispatch 265: Apr. 10, 1957, pp. 2-3.

22 U. S. Embassy, Monrovia, Liberia, State Department Dispatch 206: Feb. 6, 1957, pp. 5-6.

for appraisal. The value and extent of deposits were not known.²³ Tanganyika.—In 1957 production from the Williamson and Alamasi, Ltd., diamond mines exceeded that for 1956. Exports from the territory increased about 4 percent in weight and over 1 percent in value. Improvements made by Alamasi, Ltd., increased the output above the average of former years.²⁴ John T. Williamson, principal owner of the Williamson Diamond, Ltd., mine died January 8, 1958.25

Union of South Africa.—The Diamond Export Duty Act of 1957 was approved and adopted by the Government. This act, consolidating the export duty acts of 1917, 1919, 1947, 1950, and 1956, which were wholly or partly repealed, regulated the export duty of rough and uncut diamonds from the Union of South Africa.26

The DeBeers Consolidated Mines, on behalf of the Central Sales Organization, reported sales of gem diamond in 1957 totaling nearly \$148 million, the highest on record and about \$6 million over 1956.27

H. F. Oppenheimer became chairman of the board of DeBeers Consolidated Mines, Ltd., on the death of his father, Sir Ernest Oppenheimer, on November 25, 1957.28

OCEANIA

Australia.—Recovery of an additional 100 tons of oystershell by Japanese "pearlers" outside the 10-mile zone was approved by the Australian Government. The number of pearls recovered was not known.

A quantity of cultured pearls was produced by the Australian-Japanese-United States company described in the 1956 Gem Stones chapter.29

TECHNOLOGY

Scheelite crystals % inch in maximum dimensions were discovered in the Tyler Creek tungsten mine near Deer Creek, Calif. Crystals are rare, because most deposits contain only disseminated scheelite grains.30

A series of articles was published on gem materials, listing the properties that make them highly esteemed. Information on localities and facts about cutting and polishing were given.31

The properties of natural and artificial gem stones and methods of distinguishing between them were described.32

² Rhodesia and Nyasaland Newsletter (Salisbury), Value of Rhodesian Emerald Find Still Unknown:

²² Rhodesia and Nyasaland Newsletter (Salisbury), Value of Rhodesian Emerald Find Still Unknown: Feb. 7, 1958, p. 3.

32 U. S. Consulate, Dar es Salaam, Tanganyika, State Department Dispatch 157: Feb. 19, 1958, p. 4.

33 Canadian Mining Journal, The Late John T. Williamson: Vol. 51, No. 550, February 1958, p. 120.

34 U. S. Embassy, Pretoria, Union of South Africa, State Department Dispatch 76: Sept. 3, 1957, p. 1.

33 DeBeers Consolidated Mines, Ltd., Annual Report, 1957: p. 18.

34 DeBeers Consolidated Mines, Ltd., Annual Report, 1957: p. 19.

35 U. S. Consulate, Perth, Australia, State Department Dispatch 3: Aug. 28, 1957, p. 4.

36 California State Division of Mines, Mineral Information Service, Scheelite-Crystal Discovery: Vol. 10, No. 5, May 1, 1957, pp. 6-7.

36 Oslifornia State Division of Mines, Mineral Information Service, Scheelite-Crystal Discovery: Vol. 10, No. 5, May 1, 1957, pp. 6-7.

37 Owens, G. S., Gems: Rocks and Minerals, vol. 32, Nos. 1-2, January-February 1957, pp. 43-46; Report on Spinel: Nos. 7-8, July-August 1957, pp. 375-377; Beryl: Nos. 9-10, September-October 1957, pp. 469-472; Report on Chrysoberyl: Nos. 11-12, November-December 1957, pp. 582-585.

Cole, Bill, Tourmaline: Rocks and Minerals, vol. 32, Nos. 1-2, January-February 1957, pp. 47-48; Turquoise: Nos. 3-4, March-April 1957, pp. 146-147; Feldspar Gems: Nos. 5-6 May-June 1957, pp. 268-269; Quartz Gems (part I, The Crystalline Forms): Nos. 7-8, July-August 1957, pp. 473-474.

37 Blas, L. [Characteristics of Natural and Synthetic Gems]: Ion, vol. 16, No. 176, March 1956, pp. 147-152; Eng. Index Service No. 57-1879; Ind. Diamond Rev. Abs., vol. 17, No. 198, May 1957, p. B78.

A review of the gem-stone industry in California included mineralogy and geology, occurrences, locations of deposits, mining, utilization and treatment, markets, and a bibliography.33

A method of forming emerald crystals under high temperature and

pressure was given.34

Sapphires grown in aqueous solutions—a process similar to that used to grow quartz crystals—appeared free from strain. The crystals might be useful in manufacturing optical items. The process might be used to make synthetic rubies and star sapphires under controlled conditions.35

A synthetic gem-strontium titanate was made by the Verneuil It had an index of refraction higher than diamond and a

hardness of 6 on the Mohs scale.³⁶

Quality corundum crystals without strains and with minimum

brittleness were grown by the Verneuil process.³⁷

A report on gem stones and industrial crystals other than natural discussed the inadequacies of the terminology used in the trade to

describe the finished products.38

Twelve mineral specimens were described, giving the synonyms, nomenclature, varieties, compositions, crystallography, physical and optical properties, tests, diagnoses, occurrence, and uses. Each mineral was illustrated in color. These mineral specimens were listed in chronological order: Beryl, sphalerite, chrysocolla, garnierite, pitchblende, chromite, quartz, corundum, fuller's earth, kyanite, pyrrhotite, and feldspar.39

A formula for calculating the weight of regular cuts of gem stones and pearls, particularly brilliant-cut diamonds, was given. Tables

and graphs were included.40

A new instrument, the refractoscope, to determine the density and/or the index of refraction of gem stones, was introduced to iewelers and gemmologists.41

Laboratory methods to remove surface coatings from rough diamonds by chemical means were investigated. Present methods

require a window cut into the stone to determine its quality.42

The color terminology and quality grades in diamond evaluation were discussed.43

³² Wright, L. A., Gem Stones: Chap. in Min. Commodities of California, California Div. Mines, Bull. 176, December 1957, pp. 205-214.

34 Hurst, V. J., Mineralogical Notes: Georgia Mineral Newsletter, vol. 10, No. 3, Autumn 1957, p. 95.

35 Chemical Engineering News, vol. 35, No. 38, Sept. 23, 1957, p. 62.

38 Pough, R. H., Fabulite: Jewelers' Circ.-Keystone, vol. 127, No. 8, May 1957, pp. 78-83.

37 Ikonikova, N. Yu., and Popova, A. A. [Preparation of Uniaxial Crystals of Synthetic Corundum]; Doklady Akad. Nauk (S. S. S. R.), vol. 106, No. 3, 1956, pp. 460-461; Ceram. Abs., vol. 40, No. 7, July 1957, column 1721.

38 Pough, F. H., Reconstruction, Synthesis, Culture-or-What?: Jewelers' Circ.-Keystone, vol. 127, No. 10, July 1957, pp. 69-70, 87; No. 11, August 1957, pp. 160, 162, 188, 196; No. 12, September 1957, pp. 24, 96, 98, 114, 153; vol. 128, No. 1, October 1957, pp. 126, 128, 193-195.

39 Mine and Quarry Engineering (London), Mineral Specimens No. 40-51: Vol. 23, No. 1, January 1957, pp. 14-15; No. 2, February 1957, pp. 58-59; No. 3, March 1957, pp. 102-103; No. 4, April 1957, pp. 144-145; No. 5, May 1957, pp. 190-191; No. 6, June 1957, pp. 238-239; No. 7, July 1957, pp. 288-289; No. 8, August 1957, pp. 334-335; No. 9, September 1957, pp. 386-381; No. 10, October 1957, pp. 428-429; No. 11, November 1957, pp. 516-517.

40 Schiebel, W. [Formula for Calculating the Weight of Regular Cuts of Gemstones and Pearls, Particularly of the Brilliant Cut Diamondl: Deutsch. Gesell. Edelsteinkunde Ztschr., No. 18, Winter 1956-57, pp. 16-2; Ind. Diamond Rev. Abs., vol. 17, No. 196, March 1957, p. 83.

41 Pough, F. H., Refractoscope: Jewelers' Circ.-Keystone, vol. 127, No. 9, June 1957, pp. 62, 64, 66, 111.

42 International Cooperation Administration, Monthly Report, Bureau of Mines Metallurgist, Rio de Janeiro, Brazil, July 1957: July 31, 1957, 2-page airgram.

43 Klippel, Robert, Modern Diamond Assorting: Jewelers' Circ.-Keystone, vol. 127, No. 11, August 1957, pp. 152, 154, 156, 158; No. 12, September 1957, pp. 90, 92

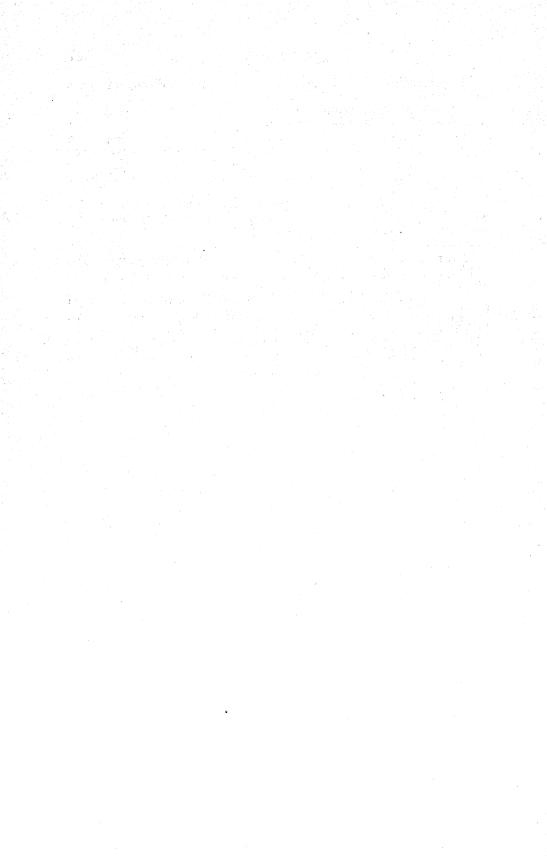
The properties of certain natural and synthetic colorless gem stones were described.44

Methods of determining the difference between true jade and

artificially colored jade were given.45

Patents, suitable for use in lapidary processes, were obtained on a diamond bandsaw, 46 a diamond-filled-paste applicator, 47 an automatic feeder for cooling lapidary grinding tools, 48 a machine for grinding gem diamonds to selected shapes, 49 and an apparatus for cutting and polishing gem facets.50

Patents were also issued on a process of bonding diamond powder on a tool grinding face, 51 and a method of producing blue-white


boules, which have gemlike properties. 52

⁴⁴ Pough, F. H., Colorless Stones: Jewelers' Circ.-Keystone, vol. 128, No. 2, November 1957, pp. 100, 102,

⁴⁴ Pougn, F. H., Colories Stories. Seweles. Chec. 20, 2012.

112-114.
45 Wong, Edward, Be Sure It's Really Fine Jade: Jewelers' Circ.-Keystone, vol. 128, No. 3, December 1957, pp. 70, 84.
46 Barron, J. H., Diamond Bandsaw: U. S. Patent 2,784,536, Mar. 12, 1957.
47 Booth, S. M., Applicator for Applying a Diamond-Filled Paste to a Working Surface: U. S. Patent 2,775,851, Jan. 1, 1957.
48 Locey, J., Jr., Control Means for Cooling of Dressing Diamond or the Like: U. S. Patent 2,781,035, Feb.

Loecy, J., Jr., Control Means for Cooling of Dressing Diamond or the Like: U. S. Patent 2,781,035, Feb. 12, 1957.
 Salzer, A., Automatic Diamond Cutting and Polishing Device: U. S. Patent 2,829,472, Apr. 8, 1958.
 Collar, L. H., Machine for Grinding and Polishing Gem Facets: U. S. Patent 2,779,138, Jan. 29, 1957.
 Keeleric, G. F., Process for Making Abrasive Article: U. S. Patent 2,785,060, Mar. 12, 1957.
 Merker, Leon (assigned to National Lead Co.), Synthetic Ruttle Composition: U. S. Patent 2,801,182, July 30, 1957.

Gold

By J. P. Ryan 1 and Kathleen M. McBreen 2

PRODUCTION of gold from domestic mines continued to decline in 1957 and, except for the war years 1943—46, reached the lowest peace-time level of production in more than 60 years. Output for 1957 of 1.8 million troy ounces valued at \$62.8 million was 2 percent below that for 1956. World gold production rose for the fourth successive year in 1957, again owing almost entirely to the remarkable expansion of output in the Union of South Africa rather than to any general improvement in gold-mining conditions. Total world output for the year was valued at \$1.39 billion—3 percent higher than in 1956. The decline in domestic production reflected the closing or curtailment of some straight gold-mining operations and reduction in the scale of operations at some base-metal mines where gold is recovered as a byproduct.

United States consumption of gold in the arts and industry increased nearly 4 percent in 1957 to 1.45 million ounces valued at

\$50.7 million, about 80 percent of domestic mine production.

United States Treasury gold stocks increased \$831.7 million in 1957, and estimated gold reserves of the Free World gained about \$720 million during the year. Prices of gold in the principal world markets remained close to the official United States price of \$35 an ounce; but in some markets of the Far East, the United States dollar equivalent of the bar-gold price continued to range higher than the official price reflecting local conditions.

Sales of gold by the U. S. S. R. in 1957 were estimated by a leading bullion firm ³ to have aggregated 7.5 million ounces, nearly 75 percent

higher than in 1956.

Of a total of 37 million ounces of new gold sold in 1957, the bullion firm estimated that 24 million ounces went to Central Bank reserves, about 9 million ounces to hoarders, and 4 million ounces for industrial

consumption.

Several bills were introduced in the first session of the 85th Congress, which provided for: (1) Return of the United States to the gold standard, with free coinage of gold; and (2) unrestricted free trading of gold and limiting the use of gold held or acquired by the Treasury or Federal Reserve banks to monetary purposes exclusively. The bills were referred to the respective Committees on Banking and Currency of the House of Representatives and Senate, but no further action was taken. A joint resolution (S. J. Res. 16) was introduced

¹ Commodity specialist.
2 Statistical assistant.
3 Samuel Montagu & Co., Ltd.

TABLE 1.—Salient statistics of gold, 1948-52 (average) and 1953-57

	1948-52 (average)	1953	1954	1955	1956	1957
United States: 1 Mine productionthousand ounces	2, 055	1, 958	1,837	1,880	2 1, 832	1,794
Valuethousand dollars_ Ore (dry and siliceous) produced (thousand short tons):	71, 918	68, 540	64, 306	65, 805	64, 112	62, 776
Gold ore	3,033	2, 199	2, 249	2, 234	2, 255	2, 359
Gold-silver ore	404	82	46	120	245	110
Silver ore	494	555	680	570	687	71:
Percentage derived from—			300	16. 9		
Dry and siliceous ores	41	40	43	41	42	4
Base-metal ores	33	39	34	37	39	3
Placers	26	21	23	22	19	1
Importsthousand ounces 3	21,083	1,344	1,083	2,930	3,730	7, 70
Exportsdo	8,074	854	494	162	734	4,80
Monetary stocks (end of year)	17.5	17.				
million dollars 4		22,030	21, 713	21,690	21,949	22, 78
Net consumption in industry and the				1 1		
artsthousand ounces	2,386	2, 143	1,270	1,300	1,400	1,45
Price, average, per fine troy ounce 5	\$35.00	\$35.00	\$35.00	\$35.00	\$35.00	\$35.0
World: Production	1000	1 V24-1		5 (15 / 74 / 75	15.63,433.11	
thousand ounces (estimated)	32, 200	33,700	35, 100	36, 400	38, 400	39, 62

¹ Includes Alaska. 2 Revised figure.

in the Senate to establish a joint committee to investigate the gold mining industry and recommend enabling legislation to reestablish the industry as an integral part of the national economy. The resolution was referred to the Committee on Interior and Insular Affairs,

but no further action was taken.

The Government's appeal of the Court of Claims ruling that a group of gold mines was entitled to recover compensation for losses suffered as a result of War Production Board Limitation Order L-208 was under review by the Supreme Court at the end of the year.

TABLE 2.—Gold produced in the United States, 1948-52 (average) and 1953-57, according to mine and mint returns, in fine ounces of recoverable metal

	1948-52 (average)	1953	1954	1955	1956	1957
MineMint.	2, 054, 809	1, 958, 293	1,837,310	1, 880, 142	² 1, 831, 765	1, 793, 597
	2, 011, 573	1, 970, 000	1,859,000	1, 876, 830	1, 865, 200	1, 800, 000

Includes Alaska.

DOMESTIC PRODUCTION

United States mine production of recoverable gold declined 2 percent in 1957 to 1.8 million ounces valued at \$62.8 million—the lowest output in 64 years, except for the period 1943-46 during World War

^{*} Excludes coinage.

[•] Owned by Treasury Department; privately held coinage not included.
• Price under authority of Gold Reserve Act of Jan. 31, 1934.

² Revised figure.

GOLD 531

II. The production drop in 1957 was attributed chiefly to the lower output of byproduct gold from copper and zinc-lead-copper ores in Utah and lower recovery from gold ores in California and Colorado, which more than offset production gains from gold and copper ores

in Washington and Arizona and lead ores in Nevada.

The continued rise in operating costs in relation to the fixed price for gold again brought about the closing or curtailment of some straight gold-mining operations as ore reserves became depleted. In addition, several base-metal mines recovering byproduct gold operated on a reduced scale as a result of the drop in prices of base metals. Of the total domestic production in 1957, 43 percent was recovered from precious metal ores, 19 percent from placers, and 38 percent as a byproduct of base-metal ores.

Units of measurement, classification of mines, and methods of calculating mine production are described in detail in the Gold chapter

of Minerals Yearbook, 1954.

South Dakota continued to rank as the leading gold-producing State by a wide margin, followed by Utah, Alaska, and California, the same order as in 1956. These 3 States and 1 Territory again furnished about three-fourths of the total domestic production in 1957. Nearly all South Dakota's gold was from gold ore produced at the Homestake mine; Utah gold production was almost entirely as a byproduct of base-metal ores, chiefly copper ore at the Utah Copper mine; Alaska gold was recovered from many placer mines, chiefly by bucket-line dredging; and California production was obtained almost exclusively from straight gold mines, both placer and lode. Again in 1957, about 39 percent of United States gold production was recovered by amalgamation and cyanidation, 19 percent by placer mining and recovery methods, and 42 percent in smelting ores and concentrates.

Lawrence County (Lead), S. Dak., continued to rank first among the leading gold-producing regions in the United States, a position it has held for many years. The West Mountain (Bingham) district, Utah, again was second, and the Fairbanks district in Alaska was third. The two leading districts continued to furnish about half the

domestic gold output.

Of the 25 leading gold producers in the United States in 1957, 8 were lode mines, 5 were placer mines worked by bucketline dredges, 8 were copper mines, 1 was a lead-zinc mine, and 3 were copper-lead-zinc mines. The entire 25 mines supplied about 87 percent of the

domestic output valued at \$54.7 million.

Ore classification, methods of recovery, and metal yields, embracing all ores that yielded gold in the United States in 1957, are given in the following tables 7 to 11. The terminology used in classifying ores is described in detail in the 1954 Minerals Yearbook Gold chapter.

TABLE 3.—Mine production of gold in the United States 1 in 1957, by months

Month	Fine ounces	Month	Fine ounces
January February March April May June July	134, 046 124, 489 139, 186 132, 881 143, 708 146, 960 164, 765	August September October November December Total	168, 783 169, 902 178, 052 156, 043 134, 782

¹ Includes Alaska.

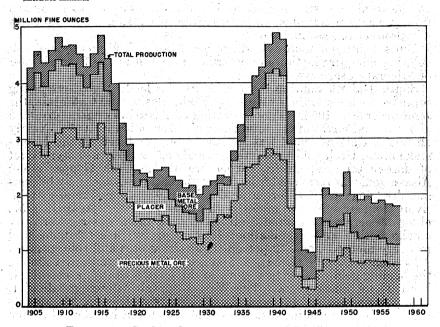


FIGURE 1.—Gold production in the United States, 1905-57.

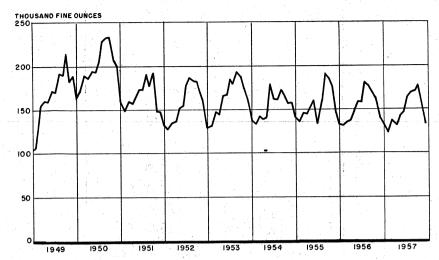


FIGURE 2.—Mine production of gold in the United States, 1949-57, by months, in terms of recoverable gold.

TABLE 4.—Mine production of recoverable gold in the United States, 1948-52 (average) and 1953-57, by districts that produced 10,000 fine ounces or more during any year (1953-57), in fine ounces ¹

District or region	State	1948-52 (average)	1953	1954	1955	1956	1957
Lawrence County	do difornia Arizona Nevada Colorado Alaska Arizona California Montana Arizona Colorado Colorado Colorado	470, 207 374, 372 113, 042 (2) (2) (2) 19, 330 49, 122 29, 807 (2) 36, 982 90, 825 18, 118 16, 292 38, 965	534, 984 450, 882 136, 571 * 61, 468 (3) (2) 29, 840 61, 093 51, 559 29, 560 36, 599 65, 275 19, 871 17, 788 39, 876	541, 445 369, 760 142, 369 3 66, 47 (2) 40, 208 34, 139 48, 935 21, 177 32, 708 61, 885 17, 325 17, 802 21, 514	529, 865 405, 194 146, 876 \$ 74, 135 (2) 42, 351 39, 430 47, 171 23, 410 40, 030 55, 794 22, 262 19, 942 18, 987 19, 384	568, 523 393, 227 115, 175 3 70, 257 (2) 45, 088 45, 911 52, 544 24, 058 39, 040 49, 651 31, 132 25, 327 27, 137 16, 465	568, 130 365, 924 98, 173 (2) (2) 49, 140 (2) 323 43, 654 35, 027 (2) (2) (2) (2) (2) (3) (4) (4) (5) (6) (7) (8) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9
Park City	Utah California do	1, 798 (2) 1, 842 12, 231 18, 992 (2) (2) (2)	14, 184 3, 727 (2) 214, 480 27, 919 (2) 13, 112 (2) 3, 750 (2)	19, 777 13, 838 (2) 32 13, 382 27, 900 (2) 8, 483 (2) 10, 121 (2)	11, 299 32, 208 (2) 5, 769 (2) 8, 416 (2)	15, 405 15, 048 (2) 9, 720 11, 648 17, 647 (3) (2) (2) (2) 2, 031 (3)	(3) (2) (2) (2) (3) (4) (1) (2) (3) (4) (4) (4) (5) (6) (7) (7)

Includes Alaska.
 Figure withheld to avoid disclosing individual company confidential data.
 Chelan and Ferry Counties combined to avoid disclosing individual company confidential data.

TABLE 5.—Twenty-five leading gold-producing mines in the United States in 1957, in order of output

1	
Source of gold	Gold ore. Copper ore. Do. Gold ore. Copper ore. Dredge. Gold silver, copper ores. Gold silver, copper ores. Lead-zinc ore. Gold ore. Copper-lead-zinc ore. Gold ore. Gold ore. Copper ore. Gold ore. Copper ore. Gold ore. Do. Silver, lead, lead-zinc ores. Copper ore. Oopper ore. Do. Silver, lead, lead-zinc ores. Copper ore. Do. Silver, lead, lead-zinc ores. Copper ore.
Operator	Homestake Mining Co. Kamecott Copper Corp. U. S. Smelting, Refining & Mining Co. The Consolidated Gold Fields. Knob Hill Mines, Inc. Phelps Dodge Corp. U. S. Smelting, Refining & Mining Co. The Natomas Co. Phelps Dodge Corp. Phelps Dodge Corp. Consolidated Coppermine Corp. Gonsolidated Coppermines Corp. Kamecott Corp. Consolidated Coppermines Corp. Kamecott Copper Corp. The London Extension Mining Co. The London Extension Mining & Mining Co. The London Extension Mining & Mining Co. The London Extension Mining & Mining Co. William Co. Bad Mountain Mining Co. U. S. Smelting, Refining & Mining Co. U. S. Smelting, Refining & Mining Co. Howe Sound Co. The Anaconda Co.
State	South Dakota— Utah. Alasha Alaska— Arizona— Washington— Washington— Washington— Montana—
District or region	Whitewood (Lead). West Mountain (Bingham). Yuba River. Republic. Nome. Nome. Nome. Nome. Nome. Nome. American River (Folsom). Big Bug Bug Bug Bug Cripple San Miguel. Cripple Greek. Alamath River. Robinson. Bullion. Old Hat. Cripple Greek. Bald Mountain (Lead). West Mountain (Bingham). Ploneer. Chelan Lake.
Mine	Homestake Utah Copper Yula Unit Yula Unit Yula Unit Knob Hill Copper Queen-Lavender Pit Copper Queen-Lavender Pit Copper Queen-Lavender Pit Copper Queen-Lavender Pit Copper Queen-Lavender Pit Copper Queen-Lavender Pit Copper Queen-Lavender Pit Copper Queen-Lavender Pit Now Connells Nation King Gold King Tressury Union Nation Nation Siskon Liberty Pit Liberty Pit Liberty Pit Liberty Pit Liberty Pit Liberty Pit Coldacres Siskon Clinton-Portland Group United States and Lark Magnia Holden Kelley
Rank	1222222 222222 222222 222222 222222 22222

-Mine production of recoverable gold in the United States, 1948-52 (average) and 1953-57, by States, in fine ounces

State	1948-52 (average)	1953	1954	1955	1956	1957
A laska	249, 425 113, 048 369, 746 125, 782 58, 799 46, 448 131, 724 3, 397	253, 783 112, 824 234, 591 119, 218 17, 630 24, 768 101, 799 2, 614	248, 511 114, 809 237, 886 96, 146 13, 245 23, 660 79, 067 3, 539	249, 294 127, 616 251, 737 88, 577 10, 572 28, 123 72, 913 1, 917	209, 296 146, 110 193, 816 97, 668 1 9, 210 38, 121 72, 646 3, 275	215, 46 152, 44 170, 88 87, 92 12, 30 32, 76 76, 75 3, 21
North Carolina Oregon Pennsylvania South Dakota Tennessee Texas	11, 066 1, 858 470, 226 167 43	8, 488 1, 134 534, 987 293	6, 520 1, 317 541, 445 218	1,708 1,708 1,610 529,865 221	5, 882 2, 738 (2) 568, 523 189	1, 37 3, 38 (3) 568, 13
Utah Vermont Washington Wyoming	401, 551 138 71, 274 103	483, 430 171 62, 560 1	403, 401 185 66, 740 407	441, 206 181 74, 360 52	416, 031 4 1, 829 70, 669 762	378, 43 6: 89, 70 57:
Total	6 2, 054, 809	⁷ 1, 958, 293	1, 837, 310	1, 880, 142	1 1, 831, 765	1, 793, 59

1 Revised figure.
2 Included with Vermont.
3 Included with Washington.
4 Includes gold recovered from magnetite-pyrite-chalcopyrite ores in Pennsylvania.
5 Includes production from Pennsylvania.
6 Includes 8 ounces from Georgia and 4 ounces from Maryland,
7 Includes 2 ounces from Georgia.

TABLE 7.—Ore, old tailings, etc., yielding gold, produced in the United States, and average recoverable content, in fine ounces, of gold per ton in 1957

e,		Average ounces of gold per ton	0.035 0.035 1.241 1.241 1.004 1.006 1.234 1.234 0.12 277	.011
Total ore		Short tons	11, 626 204, 343 204, 351 1, 110, 892 2, 130, 009 11, 769, 834 11, 769, 834 11, 775, 834 11, 778, 838 831, 728, 183 831, 728, 183 831, 728, 183 74, 929, 948	132, 750, 496
, zinc-	er ores	Average ounces of gold per ton	0.067 .006 .035 1.001 .010 .010 .039	.014
Zinc-lead, zinc- copper, and zinc-	lead-copp	Short	462,471 68,206 922,172 1,286,785 60,471 82,582 543,621	6, 052, 973
		Average ounces of gold per ton	0.003	.003
Zinc ore		Short tons	7,072 786 786 188,427 1,069,177 327,591 8 25,240	3, 223, 877
22	-	Average ounces of gold per ton	0.509 .025 2.200 .001 .101 .376 .002	.087
Lead ore		Short	55 9, 920 1, 609 27, 225 56, 903 7, 003 26, 740 35, 748	200, 212
e ₁ 0		Average ounces of gold per ton	0.002 1.085 .072 .002 .004 .228	. 005
Copper ore		Short	69, 621, 032 8, 242 8, 243 282, 386 9, 576, 988 11, 514, 197 7, 618, 016 30, 940, 388	120, 086, 801
ore		Average ounces of gold per ton	0.216 .019 .003 .022 .021	800.
Silver ore		Short	33, 919 37 2, 208 403, 584 92, 243 4, 243 13, 434 162, 011	711, 543
er ore		Average ounces of gold per ton	0.009 .093 .042 2.778 .108 .491 .185	.032
Gold-silver ore		Short	74, 870 4, 966 4, 966 13, 791 1, 278 20, 852	116, 020
ore		Average ounces of gold per ton	0.033 .340 .382 .378 .378 .100 1.348 1.304 .319 .720 .286	. 325
Gold ore		Short	11, 571 5,039 126,114 121,338 2,938 7,980 161,902 2,427 1,778,583 2,427 1,778,583 2,000 138,839	2, 359, 070
		State	Alaska Arizona Arizona Colorado Colorado Montana Nevada New Mexico Oregon Oregon Woth Dakota Wyoming	Total 2,

Includes gold recovered from tungsten ore. Includes gold recovered from fluorspar ore.

Zine sing.

Tained size 1888 tons of zine sing.

Includes 25,220 tons of zine sing.

Includes 25,220 tons of zine sing.

Includes North Carolina, Tennessee, Vermont, and Washington.

Excludes magnetite-pyrite-chalcopyrite ore and gold therefrom in Pennsylvania.

TABLE 8.—Mine production of gold in the United States, 1948-52 (average) and 1953-57, by percentage from sources and in total fine ounces

GOLD

Year	Placers	Dry ore	Copper ore	Lead ore	Zinc ore	Zinc-lead, zinc-copper, lead-copper, and zinc- lead-copper ores	Total fine ounces
1948-52 (average) 1953 1954 1955 1956 1957	25. 9 20. 9 22. 8 21. 8 19. 0 19. 1	41. 2 40. 4 42. 8 41. 3 42. 5 43. 3	24. 3 30. 9 28. 6 30. 1 31. 8 31. 5	0.6 .3 .3 .2 .6 1.0	0.2 .1 .1 .1 (2)	7.8 7.4 5.4 6.5 6.1 4.6	2, 054, 809 1, 958, 293 1, 837, 310 1, 880, 142 1, 832, 584 1, 793, 597

TABLE 9.—Mine and refinery production of gold in the United States in 1957, by States and sources, in fine ounces of recoverable metals

		Mine production								
State	Placers	Dry ore	Copper ore	Lead ore	Zinc	Zinc-lead, zinc-copper, lead-copper, and zinc- lead-copper ores	Total	Refinery produc- tion 1		
Alaska Arizona California Colorado Idaho Montana Nevada New Mexico North Carolina Oregon Pennsylvania	215, 062 60 121, 617 1, 601 2, 965 802 376	377 2, 358 48, 131 46, 184 3, 102 6, 000 16, 859 74 745 3, 164	123, 463 ² 702 2, 313 4, 288 16, 964 48, 872 1, 796 628 38	28 179 40 * 5, 439 41 706 10, 065 72	23 228 7, 957 1, 026	26, 366 395 32, 163 21, 905 337 580 244	215, 467 152, 449 170, 885 87, 928 2 12, 301 32, 766 76, 752 3, 212 1, 373 3, 381	215, 890 158, 000 173, 000 91, 000 12, 900 39, 600 75, 000 3, 780 1, 240 3, 600 1, 930		
South Dakota	11	568, 130 3, 663 77, 323 571	352, 737 62 12, 380 2	789	10	172 21, 228	568, 130 172 378, 438 62 4 89, 708 573	560, 000 170 384, 370 60 78, 900 560		
Total	342, 677	776, 681	564, 245	17, 359	9, 244	83, 391	1, 793, 597	1, 800, 000		

Includes Alaska.
 Less than 0.1 percent.

U. S. Bureau of the Mint.
 Includes gold recovered from tungsten ore.
 Includes gold recovered from fluorspar ore.
 Included with Washington.
 Includes gold recovered from magnetite-pyrite-chalcopyrite ores in Pennsylvania.

TABLE 10.—Gold produced in the United States from ore and old tailings, in 1957, by States and methods of recovery, in terms of recoverable metal

Total ore, old tail- State ings, etc. treated		Short tons	Recover bull	rable in ion	Concen smelted recoverab	l and	Crude o smelt	
	(short tons)		Amal- gamation (fine ounces)	Cyanidation (fine ounces)	Concen- trates (short tons)	Fine ounces	Short tons	Fine ounces
Alaska Arizona California Colorado Idaho Montana Newada New Mexico Oregon South Dakota Utah Washington 3 Wyoming Undistributed 4	11, 626 60, 214, 343 204, 251 1, 110, 892 2, 130, 501 110, 790, 009 11, 769, 834 8, 077, 655 2, 594 1, 778, 583 231, 728, 191	11, 571 59, 423, 329 194, 219 1, 069, 343 2, 005, 330 10, 623, 288 11, 647, 126 7, 974, 647 2, 371 1, 778, 583 31, 515, 590 2, 000 54, 860, 565	353 12 20, 993 7, 579 832 64 209 4 147 404, 581 99	3, 971 18, 877 45, 148 635 15, 507 163, 549	1, 906, 661 13, 479 151, 499 217, 882 585, 371 283, 008 286, 288 195 926, 537 25 272, 973	24 110, 549 8, 934 30, 775 7, 155 25, 834 48, 133 2, 996 2, 584 374, 298 279 56, 254	55 791, 014 10, 032 41, 549 125, 171 1 166, 721 122, 708 103, 008 223 212, 601 	28 37, 857 464 2, 825 1, 349 5, 431 12, 527 212 471

TABLE 11.—Gold produced at amalgamation and cyanidation mills in the United States and percentage of gold recoverable from all sources, 1948–52 (average) and 1953–57 ¹

	Bullion and precipi- tates recoverable (fine ounces)		Gold	from all so	ources (per	cent)
	Amal- gamation	Cyani- dation	Amal- gamation	Cyani- dation	Smelt- ing ²	Placers
1948–52 (average)	448, 776 467, 561 429, 558 445, 135 439, 180 435, 387	270, 343 265, 552 286, 989 268, 600 270, 785 257, 008	21. 8 23. 9 23. 4 23. 7 24. 0 24. 3	13. 2 13. 5 15. 6 14. 3 14. 8 14. 3	39. 1 41. 7 38. 1 40. 2 42. 2 42. 3	25. 9 20. 9 22. 9 21. 8 19. 0 19. 1

¹ Includes Alaska.

Includes 51,888 tons of zinc slag.
 Includes 25,220 tons of zinc slag.
 Included in "Undistributed."
 Included North Carolina, Pennsylvania, Tennessee, Vermont, and Washington.
 Excludes magnetite-pyrite-chalcopyrite ore from Pennsylvania.

² Both crude ores and concentrates.

TABLE 12.—Gold production at placer mines in the United States, by class of mine and method of recovery, 1948-52 (average) and 1953-57 ¹

			Material	Gold recoverable			
	Mines pro- ducing	Washing plants (dredges)	treated (cubic	Fine ounces	Value	Average value per cubic yard	
Surface placers: Gravel mechanically handled: Rushetling dradges:					·		
Bucketline dredges; 1948-52 (average) 1953. 1954. 1955. 1956. 1957. Dragline dredges:	45 21 22 25 19 18	65 41 44 20 32 33	100, 473, 201 65, 313, 835 62, 082, 120 53, 351, 709 48, 955, 036 45, 489, 183	431, 365 343, 132 356, 018 348, 131 294, 585 297, 204	\$15, 097, 789 12, 009, 620 12, 460, 630 12, 184, 585 10, 310, 475 10, 402, 140	\$0. 15 . 18 . 20 . 22 . 21 . 22	
1948-52 (average)	28 14 15 19 16 13	26 13 15 7 7 14	3, 742, 005 659, 600 554, 460 479, 885 774, 324 377, 798	18, 521 2, 453 4, 184 2, 939 2, 502 1, 562	648, 228 85, 855 146, 440 102, 865 87, 570 54, 670	. 17 . 13 . 26 . 21 . 11 . 14	
1948-52 (average)	12 7 3 5 2	11 8 3 5 2	176, 273 87, 700 3, 800 2, 400 23, 920	867 341 53 46 27	30, 345 11, 935 1, 855 1, 610 945	. 17: . 13: . 48: . 67 . 04:	
Nonfloating washing plants: 1948-52 (average) 1953 1954 1955 1956 1957 Gravel bydraulically handled: 1948-52 (average)	148 128 128 118 110 94	147 128 128 109 99 111	6, 267, 068 4, 019, 325 2, 973, 510 2, 259, 263 1, 354, 976 2 2, 188, 105	69, 444 58, 295 52, 491 53, 332 47, 808 39, 456	2, 430, 540 2, 040, 325 1, 837, 185 1, 866, 620 1, 673, 280 1, 380, 960	. 38 . 50 . 61 . 82 1. 23 . 63	
1948-52 (average) 1953 1954 1955 1955 1956 1957 Small-scale hand methods: Wet:	78 48 48 44 36 30		703, 247 440, 290 258, 100 200, 001 49, 652 100, 170	6, 642 1, 923 2, 079 1, 528 1, 438 2, 151	232, 477 67, 305 72, 765 53, 480 50, 330 75, 285	.33 .15 .28 .26 1.01 .75	
1948-52 (average)	214 139 112 78 69 65		201, 474 152, 565 171, 780 236, 226 99, 355 59, 994	4, 919 2, 534 3, 248 3, 580 2, 141 2, 128	172, 158 88, 690 113, 680 125, 300 74, 935 74, 480	. 854 . 581 . 662 . 530 . 754	
1948–52 (average)	7 3 3 2 2 1		1, 904 9, 875 905 420 300 360	86 103 78 75 53 49	3, 003 3, 605 2, 730 2, 625 1, 855 1, 715	1. 577 . 368 3. 017 6. 250 6. 183 4. 764	
1957	27 13 23 18 12 7		9, 051 3, 778 9, 130 5, 358 3, 886 3, 140	443 172 304 216 166 127	15, 512 6, 020 10, 640 7, 560 5, 810 4, 445	1, 714 1, 593 1, 165 1, 411 1, 495 1, 416	
1948-52 (average)	559 373 354 309 266 228		111, 574, 223 70, 686, 968 66, 053, 805 56, 535, 262 51, 261, 449 248, 218, 750	532, 287 408, 953 419, 866 409, 847 348, 720 342, 677	18, 630, 052 14, 313, 355 214, 697, 585 14, 344, 645 12, 205, 200 11, 993, 695	. 167 . 202 . 223 . 254 . 238	

Includes Alaska.
 Does not include commercial sand and gravel operations recovering byproduct gold in Colorado.
 Includes 1,476 ounces of gold valued at \$51,660 recovered from unclassified placers.

CONSUMPTION AND USES

Industry and the Arts.—Consumption of gold in domestic industry and the arts in 1957 rose nearly 4 percent to 1.45 million ounces, according to data furnished by the Bureau of the Mint. This was equivalent to about 80 percent of the domestic mine production for the year. Domestic consumption represents the net amount of gold issued by Government mints and assay offices and private refiners and dealers for industrial, professional, and artistic use after deduction of secondary materials returned to monetary use and old jewelry, plate, and other scrap returned for refining.

According to estimates of a leading bullion firm,⁴ of 37 million ounces of new gold sold in 1957, 24 million ounces went into Central Bank reserves, 9 million to hoarders, and 4 million ounces for industrial

consumption.

Most nonmonetary gold was used in manufacturing jewelry, watchcases, and utensils, for gold leaf and decorative finishes. Gold alloyed with platinum and palladium was used for spinnerets for making synthetic fibers and for dentures and orthodontic appliances, thermocouples, and electrical contacts. Because of its resistance to corrosion and oxidation, extreme ductility, and high conductivity, industrial application of gold continued to expand, despite its relatively

high price.

New methods of applying gold to ceramic materials are expected to lead to broader uses in architectural panels and for other decorative purposes. Gold coating of engine shrouds was developed to help cool aircraft as they challenge the thermal barrier. The gold coating protects the metal shroud surrounding the engines from internal heat and corrosion. Gold plating of the outer surface of the Vanguard earth-satellite provided protection from the elements in outer space and facilitated optical tracking. Most of the internal parts and instrument housings also are gold-plated as a shield against friction heat and corrosion.

The heat-reflecting properties of gold were applied to protect steelworkers from heat rays emanating from molten steel or white-hot billets. Plastic face and eye protectors were sprayed with a thin film of gold that reflected 95 percent of the heat rays without impairing the transparency of the shield. Similarly, observation windows in smelting furnaces may be made heat reflecting by gold coating.

TABLE 13.—Net industrial 1 consumption of gold in the United States, 1948-52 (average) and 1953-57, in fine ounces

[U. S. Bureau of the Mint]

Year	Issued for industrial use	Returned from indus- trial use	Net indus- trial con- sumption
1948-52 (average)	3, 462, 249	1, 076, 525	2, 385, 724
	3, 210, 829	1, 067, 969	2, 142, 860
	2, 236, 179	966, 379	1, 269, 800
	1, 964, 500	664, 500	1, 300, 000
	2, 186, 450	786, 450	1, 400, 000
	2, 241, 892	791, 892	1, 450, 000

1 Including the arts.

⁴ Samuel Montagu & Co., Ltd., Annual Bullion Review, 1957, p. 3.

541 GOLD

Other new applications of gold reported during the year included the radioactive gold treatment of certain forms of cancer and the use of radioactive gold to increase the burning speed of fuel thus increasing efficiency and permitting substantial weight reduction in engines, especially in aircraft and guided missiles. Researchers also reported the development of improved gold-bond transistors with better uniformity and collector characteristics.

Gold continued to be the most widely used jewelry metal; approximately half of the total gold used in industry in 1957 was for jewelry. The unusual materials and processes used by the jewelry-manufacturing industry, the commercial standards and stamping-law requirements for composition of jewelry alloys, and their mechanical proper-

ties were described.⁵

Reports from producers to the Bureau of Mines indicate that about 800 ounces of gold was sold on the open market in the United States in 1957, most of which was used for jewelry. Prices were reported to be \$3-\$5 an ounce above the mint price of \$35 an ounce.

Monetary.—Gold continued to be used chiefly for settling international transactions and to give stability of value to currency. Demand for gold coins continued strong and prices trended upward

during the year.

An economic analysis of the present and future position of gold in the monetary system 6 discussed the effects of prevailing policies with respect to gold on prices, currency inflation, and international

A study of the international function of gold, by an American economist,7 points up the need for reestablishing a normal relationship between gold production and the production of goods, and outlines essential steps for restoring an international gold standard.

MONETARY STOCKS

United States Treasury gold stocks continued to increase in 1957 for the second successive year, with a gain of \$831.7 million to \$22,781 The estimated world gold reserve, excluding U.S.S. R. and other eastern European countries, was \$38,930 million, according to the Federal Reserve Bulletin, a gain of \$720 million for the year. United States Treasury stock thus was about 60 percent of the Free World monetary gold reserve.

Monetary gold reserves of the principal Free World central banks and governments outside of the United States at the end of the year.8 in million dollars, were: Germany, 2,542; United Kingdom, 2,273; Switzerland, 1,706; Canada, 1,115; Belgium, 913; Netherlands, 744;

France, 574; and International Monetary Fund, 1,180.

PRICES

The official United States price of gold, established under authority of the Gold Reserve Act of 1934 at \$35 per fine troy ounce, remained Virtually all domestic gold production was sold to Govunchanged.

^{*} Atkinson, Ralph H., Alloys for Precious Metal Jewelry: Metal Progress, vol. 72, No. 5, November 1957, pp. 107-111.

Groseclose, Elgin, A Look Ahead at Gold and Silver: Mines Mag., vol. 48, No. 8, August 1957, pp. 31-37.
Cortney, Philip, A New Gold Standard Could Restore Monetary Order: Optima, vol. 7, No. 2, June 1957, pp. 79-85. 1957, pp. 79-85. Federal Reserve Bulletin, vol. 44, No. 3, March 1958, p. 366.

ernment mint institutions or to licensed private dealers and refiners at the official price, less handling and refining charges. Sales for industrial and artistic uses also were made at the official price by the

Government and private refiners.

The equivalent London market price of gold continued to remain close to the official United States price, fluctuating during the year within the narrow range of 17 cents an ounce between the United States buying and selling prices of \$34.9125 and \$35.0875, usually reflecting sterling/dollar exchange. This compares with a range of 23 cents an ounce in 1956 and 11 cents in 1955. In foreign markets other than London, the price at which gold was traded directly for United States dollars remained close to the London price but in several markets where gold was traded in local currencies, especially in the Far East, the dollar equivalent of the bar-gold price continued to range considerably higher than the official rate of \$35 per ounce, reflecting local financial and political conditions.

It is significant that the prices in some foreign markets were quoted in local inconvertible currencies, which, when computed in United

States dollars, are not always realistic.

Average price 1 of "free" gold bars (12.5 kg.) per fine troy ounce, in 1957.2

City		Price	City:	Price
10.40	Manila	\$36. 37	Beirut	\$35, 10
	Hong Kong	38. 23	Paris	36. 35
	Bombay	56. 73	Buenos Aires	35, 75
	Tangier	34. 96		
	an Pagasimus un contrata de la compa			

Prices are quoted at the "free" or black-market value of the U. S. dollar in the local markets.
 Engineering and Mining Journal, vol. 158, Nos. 2-12, February-December 1957, No. 1, January 1958 in the "Markets" section of each issue.

At the 12th annual meeting of the Board of Governors of the International Monetary Fund, Undersecretary of the Treasury, W. Randolph Burgess, stated with regard to the Government's gold policy:

The United States is resolved to check inflationary pressures existing in its economy. We are equally resolved to preserve our international gold bullion standard. The dollar has traditionally been linked to gold, and it is our policy to keep it firmly linked to gold, at \$35.00 per ounce.

FOREIGN TRADE®

In the settlement of favorable trade balances in 1957, imports of gold again exceeded exports for the sixth successive year; however, the excess of imports over exports declined \$1.8 million during the year to \$104.3 million. Net imports of gold, plus domestic production, continued to exceed net consumption in the arts and industry by a wide margin, thus increasing monetary stocks. Canada furnished about 57 percent of gold imports in 1957 and Argentina, 31 percent. Nearly all of the gold exported by the United States went to Venezuela.

[•] Figures on imports and exports compiled by Mae B. Price and Elsie D. Jackson, Division of Foreign Activities, Bureau of Mines, from records of the U. S. Department of Commerce, Bureau of the Census.

TABLE 14.—Value of gold imported into and exported from the United States, 1948-52 (average) and 1953-57, in thousand dollars

[Bureau of the Census]

Year	Imports	Exports	Excess of imports over exports
1948-52 (average)	\$747, 365	\$321, 258	\$426, 107
	47, 025	44, 992	2, 033
	37, 853	21, 731	16, 122
	104, 592	7, 257	97, 335
	132, 667	26, 562	106, 105
	272, 641	168, 332	104, 309

TABLE 15.—Gold imported into the United States in 1957, by countries of origin [Bureau of the Census]

Country of origin	Ore and be	se bullion	Bullion, refined		
	Troy ounces	Value	Troy ounces	Value	
North America:					
Canada Costa Rica	730, 857	\$25, 544, 215	3, 678, 256 705	\$128, 728, 046 24, 66	
Cuba	915	32,020			
Dominican Republic	325	10, 136			
El Salvador	2,466	86, 376			
Honduras	1,878	65, 862			
Mexico	74,774	2, 605, 548			
Nicaragua	125, 703	4, 393, 462			
Panama	61	2, 135			
Total	936, 979	32, 739, 754	3, 678, 961	128, 752, 709	
South America:					
Argentina	436	15, 217	2, 423, 943	84, 847, 12	
Bolivia	467	16, 220	34, 594	1, 210, 79	
Brazil	494	16, 795	01,001	1,210,10	
British Guiana	4, 197	147, 002			
Chile	49, 277	1,798,041			
Colombia	463	16, 183			
Ecuador	16, 354	567, 978			
Peru	75, 799	2, 626, 458	218 823	7, 658, 82	
Venezuela	175	6,000	210, 020	1,000,02	
Total	147, 662	5, 209, 894	2, 677, 360	93, 716, 74	
10031	147,002	0, 200, 001	2,077,300	50, 710, 74	
Europe: France	21	723			
Malta, Gozo, and Cyprus	2, 591	90, 459			
Portugal Portugal	21, 189	726, 422			
United Kingdom	10,604	371, 968	88	3, 09	
Total	34, 405	1, 189, 572		3, 094	
10141	31, 103	1, 100, 0, 2		0,00	
Asia:				1	
Korea, Republic of	14	509			
Philippines	51, 113	1, 785, 768	156, 100	8, 599, 82	
Turkey	1,759	59, 847			
Total	52, 886	1, 846, 124	156, 100	8, 599, 820	
A 8-1					
Africa:	1 000	67 990	ľ ·		
Rhodesia and Nyasaland, Federation of	1,926	67, 338			
Union of South Africa	113	3, 973			
Total	2,039	71, 311			
Oceania: Australia	11,946	417, 605	2,744	94, 27	
Grand total	1, 185, 917	41, 474, 260	6, 515, 253	231, 166, 63	

TABLE 16.—Gold exported from the United States in 1957, by countries of destination

[Bureau of the Census]

Country of destination	Ore and ba	se bullion	Bullion, refined		
	Troy ounces	Value	Troy ounces	Value	
North America: Canada Cuba			197 169	\$6, 900 6, 362	
El Salvador Mexico		\$505, 680	3, 335 1, 109	117, 160 38, 96	
Total	14, 448	505, 680	4, 810	169, 39	
South America: Brazil. Chile. Venezuela.			229 1, 382 4, 748, 753	7, 524 48, 423 166, 208, 538	
Total			4, 750, 364	166, 264, 482	
Europe: PortugalUnited Kingdom	9, 505	328, 675	20, 039	702, 044	
Total	9, 505	328, 675	20, 039	702, 04	
Asia: Ceylon			26 92 2 4,744 1,703	950 3, 218 73 298, 109 59, 637	
Total			6, 567	361, 98	
Grand total	23, 953	834, 355	4, 781, 780	167, 497, 90	

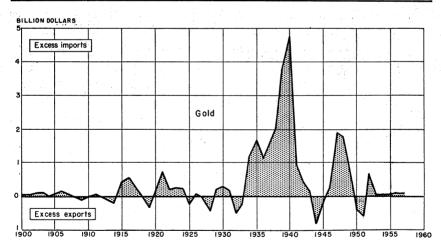


FIGURE 3.—Net imports or exports of gold, 1900-57.

WORLD REVIEW

World output of gold rose 3 percent in 1957 to 39.6 million ounces valued at \$1.39 billion, again reaching the highest production level since 1941 and only 6 percent below the alltime peak production of 42.3 million ounces in 1940. Again, the gain in world production

GOLD 545

resulted almost entirely from increased output in South Africa, which more than offset lower output from Colombia, the Philippines, India, and the United States. Mining costs continued to rise during the year in most of the principal gold-producing countries, and several countries outside of the United States continued to grant financial assistance to the industry by subsidies or tax concessions. Notwithstanding financial aid by the foreign governments, some mines were forced to close owing to rising costs and depletion of economically recoverable reserves.

Australia.—The output of gold from Australia rose slightly in 1957 to 1.08 million ounces. Western Australia was again the leading gold-producing state, contributing about 80 percent of the total output. The Commonwealth subsidy to gold producers was increased to a maximum of £A2-15s an ounce from £A2-0s, equivalent to \$6.19 and \$4.50, respectively. In addition, premium sales during the year, on the open market through the Gold Producers Association,

averaged 9.83d per ounce above the standard price.

Western Australian mines were able to maintain ore reserves, despite increased costs and ore extraction, through economies effected

by greater mechanization.

Canada.—Gold production in Canada in 1957 was 4.42 million ounces, valued at \$148.27 million—a slight gain over the 1956 output. Because of a decline in the premium on the Canadian dollar in relation to the United States dollar, the value of the 1957 gold output, in Canadian dollars, declined slightly. Gold continued to rank fifth in value among minerals produced in Canada. The average price re-

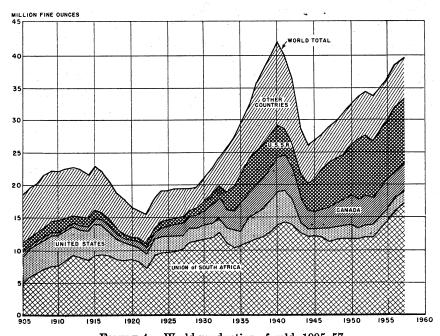


FIGURE 4.—World production of gold, 1905-57.

TABLE 17.—World production of gold, 1948-52 (average) and 1953-57, by countries, in fine ounces 2

[Compiled by Augusta W. Jann and Berenice B. Mitchell]

Country 1	1948-52 (average)	1953	1954	1955	1956	1957
North America:						
Canada Central America and West Indies:	4, 191, 766	4, 055, 723	4, 366, 440	4, 541, 962	4, 383, 863	4, 419, 383
Costa Rica 8	299 2, 931	1, 181	677	2, 024	535 1,008	705 915
Cuba 3 Dominican Republic Guatemala	448 3 86	4 300	4 300	4 300	290 4 360	286 4 360
Guatemala. Honduras. Nicaragua Panama Salvador	27, 839 5 234, 440	47, 523 261, 899	20, 429 232, 212	817 237, 376	1, 611 217, 140	4 1, 878 203, 636
Salvador Mexico	2, 934 5 26, 340 406, 932	19, 934 483, 483	5, 326 386, 870	3, 818 382, 883	2, 983 350, 218	2, 508 357, 369
Mexico United States (incl. Alaska) 6	2, 011, 573	1, 970, 000	1, 859, 000	1, 876, 830	1, 865, 200	1, 800, 000
Total	6, 906, 000	6, 840, 000	6, 871, 000	7, 046, 000	6, 823, 000	6, 787, 000
South America: Argentina	7, 530 12, 381	5, 048 22, 923	7, 202 28, 614	7, 330 31, 508	11, 414 35, 549	9, 64
Bolivia Brazil ⁴ British Guiana	12, 381 179, 180	22, 923 147, 000	28, 614 153, 000	31, 508 145, 000	35, 549 162, 000	27, 685 4 150, 000
Chile	17, 132 176, 830	20, 966 130, 693	26, 938 124, 970	23, 766 141, 978	15, 815	16, 490 103, 587
ColombiaEcuador French Guiana	385, 420	437, 297	377, 466	380, 824	94, 459 438, 349	325, 114
Ecuador French Guiana	62, 194 12, 185	29, 239 2, 576	18, 942 1, 512	15, 289 8, 713	15,076 47,500	16, 247 5 9, 549
Peru	12, 185 125, 617	2, 576 141, 193	1, 512 147, 424 6, 771	170, 747 7, 204	159.074	165, 052
Surinam Venezuela	5, 029 3 0, 646	6, 482 27, 304	6, 771 56, 074	7, 204 61, 140	6, 736 69, 826	6, 516 89, 654
Total 4	1, 014, 000	971, 000	949, 000	993, 000	1, 016, 000	920, 000
Europe:	14 200	10,400	10.050	10.040	10.000	01.00
Finland France	14, 382 60, 735	19, 483 64, 687	16, 976 15, 947	18, 840 30, 286	18, 229 24, 800	21, 898 4 25, 000
Germany, West	4 1, 591	6, 398	4, 665	3, 839	4 4, 500	4 4, 500
Italy	13, 285	2, 048 12, 153	7, 620 5, 208	6, 655 5, 562	3, 504 5, 337	4 3, 500 5, 691
Portugal	14, 789 15, 326	14.854	18, 583	28, 807	22, 120	4 23, 000
Sweden	73, 477	8, 263 88, 254	9, 677 110, 277	10, 449 98, 767	11,510 95,745	4 10, 000 4 100, 000
Friance. Germany, West Greece. Italy. Portugal. Spain Sweden U. S. S. R. 47 Yugoslavia.	8, 200, 000 32, 266	89,000,000 36,620	110, 277 9, 000, 000 44, 785	9, 000, 000 41, 635	95, 745 10, 000, 000 47, 808	10, 000, 000 4 53,000
Total 4	8, 500, 000	9, 400, 000	9, 400, 000	9, 400, 000	10, 400, 000	10, 400, 000
Asia: Burma	150	047	170	101	150	
Burma Cambodia	158	647	170	124	179 482	104 1, 608
China	4 91, 200	4 100, 000	(9)	(9)	(9)	(9)
India Indonesia	204, 237 4 44, 000	223, 376 (9)	239, 168	210, 880 (9)	209, 251 (9)	179, 182 (9)
Japan Korea:	133, 724	228, 255	243, 149	240, 732	241, 422	251, 290
North Republic of	4 240, 000 10, 011	(9) 15, 882	(9)	(⁹) 47, 037	(9) 49, 903	(9)
Malaya	15, 818	18, 283	52, 406 20, 955	22, 838	49, 903 20, 253	66, 578 11, 157
Philippines	338, 814 1, 067	480, 625 442	416, 052	419, 112	406, 163	379, 982
Malaya Philippines Sarawak Saudi Arabia Taiwan	69, 907	81, 566	531 34, 298	463	599	888
Total 47	26, 922 1, 182, 000	27, 200 1, 440, 000	25, 010	28, 100 1, 380, 000	33, 131	20, 548
A frica:	-, 102, 000	±, ±10, 000		=======================================	1, 420, 000	1, 370, 000
Angola	213	20	36	57	34	4 30
Angola Bechuanaland Belgian Congo ¹⁰ Egypt	752 338, 817	1, 109 371, 020	1, 216 365, 490	560 369, 926	590 373 , 840	190 374, 23
Egypt	11,030	14. 234	17, 387	6, 524	7, 697	4 7, 500
Entrea	1, 380 38, 090	1, 363 26, 696	1, 484 33, 894	161 22, 058	3, 215 25, 700	4, 501 4 25, 000
Ethiopa						

TABLE 17.-World production of gold, 1948-52 (average) and 1953-57, by countries,1 in fine ounces 2-Continued

Country 1	1948-52 (average)	1953	1954	1955	1956	1957
Africa—Continued						
French Equatorial Africa	56, 097	54, 180	45, 307	46, 548	40, 703	30, 768
French West Africa		1, 608	45, 507	579	40, 703	331
Ghana		730, 963	787, 075	687, 151	599, 316	790, 381
Kenya		9, 603	6, 607	9, 528	13, 843	7, 388
Liberia	10, 047	863	1, 135	672	500	381
Liberia Madagascar	1, 886	1,640	1, 363	1,074	894	842
Morocco: Southern zone	1, 537	2, 533	3, 566	4, 270	265	
Mozambique	1, 978	1,034	2,027	1,248	1, 247	1,080
Nigeria	2, 113	689	730	681	439	389
Rhodesia and Nyasaland, Federation of:						
Northern Rhodesia 11		3, 107	2,648	2, 234	3, 243	3, 296
Southern Rhodesia	507, 484	501, 057	535, 852	524, 701	536, 392	536, 849
Sierra Leone	2, 824	1, 451	2, 254	474	6 452	
South-West Airies	1 104			7		
Sudan Swaziland	2, 847	2, 175	1, 554	1,526		4 2, 000
Swaziland	1, 614				252	7
Tanganyika	1 64 390	69, 886	71, 447	68, 892	59, 293	54, 088
Uganda (exports) Union of South Africa	548	511	568	450	293	213
Union of South Africa	11, 657, 748	11, 940, 616	13, 237, 119	14, 602, 267	15, 896, 693	17, 031, 690
Total	13, 465, 000	13, 740, 000	15, 120, 000	16, 350, 000	17, 570, 000	18, 880, 000
Oceania:						
Australia	903, 907	1, 075, 181	1, 117, 742	1, 049, 039	1, 029, 821	1, 084, 079
Fiji		76, 970	72, 200	70, 100	67, 475	75, 150
New Guinea	95, 243	120, 568	86, 195	73, 980	79, 085	68, 564
New Zealand	77, 914	38, 656	41, 713	26, 443	26, 063	30, 195
Papua	360	141	318	873	391	466
				0.0		100
Total	1, 171, 911	1, 311, 516	1, 318, 168	1, 220, 435	1, 202, 835	1, 258, 454
World total (estimate)	32, 200, 000	33, 700, 000	35, 100, 000	36, 400, 000	38, 400, 000	39, 620, 000

¹ In addition to countries listed, gold is also produced in Austria, Bulgaria, Czechoslovakia, East Germany, Hungary, Rumania, and Thailand, but production data are not available; estimates are included in total. Figures were derived in part from American Bureau of Metal Statistics. For some countries accurate figures are not possible to obtain owing to clandestine trade in gold (as for example, French West Africa).

² This table incorporates a number of revisions of data published in previous Gold chapters. Data do not add to totals shown because of rounding where estimated figures are included in detail.

3 Imports into United States.

4 Estimate. 5 Exports.

7 Output from U. S. S. R. in Asia included with U. S. S. R. in Europe.

Production is believed to have decreased because of a probable diversion of forced labor into other activities

EIES.

⁹ Data not available; estimate included in total.

¹⁰ Includes Ruanda-Urundi.

¹¹ Included is yield from Nkana mine refinery slimes; 1948–52 (average), 1,803 ounces; 1952, 2,503; 1953, 2,820; 1954, 2,470; 1955, 2,203; 1956, 3,243; and 1957, not yet available.

ceived for gold dropped from \$34.45 per ounce in 1956 to \$33.55 in 1957. This adverse price situation, combined with increased production costs, was partly offset at some mines by milling higher grade ore. Except for a few mines with low costs, straight-gold mines continued to receive cost aid under the Emergency Gold Mine Assistance Act, which was extended through 1960.

Subsidy payments under the Emergency Gold Mining Assistance Act to high cost mines, aggregated over \$106 million since the act came into force in 1948 to the end of 1957. The Minister of Mines announced early in 1958 that the Government intended to extend the operation of the act beyond the end of 1958 to the end of 1960.

Ontario continued as the leading gold-producing Province, accounting for 58 percent of the total; Quebec was second, with 23 percent, followed by the Northwest Territories, with 8, and British Columbia, with 5 percent. Lode- and placer-gold mines again furnished 86 percent of the gold output; the remainder was recovered as a byproduct of base-metal ores. No gold mines closed during 1957 and no new mines came into production.

Production of gold in Canada in 1956 and 1957 was distributed as

follows:10

	Fine ounces			
Province or Territory: British Columbia Manitoba Northwest Territories Ontario Quebec Saskatchewan Yukon Others¹	120, 232 352, 669 2, 513, 910 1, 036, 059 82, 687 72, 001	1957 221, 392 119, 595 338, 721 2, 569, 110 1, 013, 347 77, 052 66, 429 12, 704		
Total	 4, 383, 863	4, 418, 350		

1 Alberta, Nova Scotia, and Newfoundland.

Operating costs were reduced significantly by consolidation of milling facilities of the adjoining Lake Shore and Wright-Hargreaves mines in the Kirkland Lake district. The merging of surface facilities and closer coordination of the operations of the two companies resulted in reducing the production cost of gold.

Colombia.—Gold production in Colombia dropped about 26 percent during 1957 to 325,100 ounces. Most of the output was from placer mines and was recovered by bucketline dredging. The Department of Antioquia accounted for about three-quarters of the total output. A 15-percent export tax imposed by the Colombian Government

in 1957 hindered the sale of bullion.

A special statute was drafted for the precious metal industry, under which all gold, silver, and platinum metals are to be sold to the Banco de la Republica, which will become the sole exporter.

Germany, West.—Restrictions on gold trading in West Germany were relaxed further in 1957. German residents were permitted to import gold from countries affiliated with the European Payments Union, provided that payment was made in Bedo marks of limited convertibility. However, gold for industrial uses was still purchased against dollars. Permits to export gold still were required.

India.—India's gold production declined 14 percent in 1957 to 179,200 ounces valued at \$10.72 million. Kolar gold mines in Mysore State supplied 92 percent of the total output; the remainder came from the Hutti Gold Mines Co. operations in Mysore. The average price paid for gold was about Rs 285.75 equivalent to \$60 per troy

ounce.

Philippines.—Output of gold in the Philippines declined 6 percent in 1957 to 380,000 ounces—the lowest output since 1950. However, due to the higher free-market price, the value of the gold produced was 2 percent higher in 1957 than in 1956. The average price on the Manila market was \$\mathbb{P}\$120.24 per ounce, compared with an average of \$\mathbb{P}\$109.76 in 1956, equivalent to \$60.12 and \$54.88, respectively.

¹⁰ Department of Mines and Technical Surveys, Ottawa, Canada, Gold in Canada, 1957.

GOLD 549

The Emergency Gold Mining Assistance Act by which the Central Bank purchased gold from producers at a subsidy price averaging \$\mathbb{P}39.07\$ an ounce above the official price of \$\mathbb{P}70.00\$ expired in July 1957; however, the producers were permitted to sell part of their gold to holders of blocked pesos at the free market price.

Two mines, Benguet and Balatoc, which were under 1 management, furnished over 50 percent of the total gold production. One small mine (Benguet Exploration) was brought into production during the

year.

Union of South Africa.—Gold output rose about 7 percent in 1957 to 17 million ounces, the highest ever recorded in the Union and the sixth successive annual increase. As in preceding years since 1953, the 1957 gain reflected increased output from new mines in the Orange Free State, the Klerksdorp district, and the Far Western Rand in the Transvaal.

Working profits from gold increased from £48.5 million to £57.8 million, and average grade increased from 4.5 dwts. to 5.0 dwts. per ton milled. Three mines closed during the year bringing the total number of working mines to 54. The improvement in grade reflected both higher grade ore and more extensive sorting.

A historical review of the South African gold mining industry published in a trade journal ¹¹ traced the growth and development of the industry and the financial organizations that brought about the

remarkable record of production over 73 years.

Some of the older marginal mines on the Witwatersrand, where the cost of producing gold is close to the price realized for it, were expected to close in 1958, as their ore reserves will be exhausted.

TABLE 18.—Salient statistics of gold mining in the Union of South Africa, 1948-52 (average) and 1953-57

fees T	~ .	
[Transvaal	(:nam ner	Of Milnesi

	1948-52 (average)	1953	1954	1955	1956	1957
Ore milled (tons)	58, 165, 650	58, 772, 000	62, 534, 500	65, 950, 700		
Gold recovered (fine ounces)1_	11, 656, 346	11, 440, 830	12, 682, 328	14, 093, 668	15, 373, 680	16, 540, 817
Gold recovered (dwt. per			1. 1.			
ton)	3.847	3. 893	4.068			5,000
Working revenue (gold)£	2 125, 010, 806	142, 198, 156	158, 630, 787	177, 414, 094	193, 214, 230	207, 705, 565
Working revenue per ton					7 11 1	
milled	42s. 11d.					
Working cost \pounds	86, 605, 617	107, 306, 956	120, 435, 001		144, 763, 823	149, 871, 972
Working cost per ton	29s. 9d.	36s. 6d.	38s. 8d.	40s. 5d.	42s. 11d.	45s. 4d.
Working cost per ounce of						
gold	155s. 1d.	187s. 7d.	189s. 11d.	189s. 0d.	188s. 4d.	181s. 3d.
Estimated working profit						**
from gold£_	38, 435, 591	34, 891, 200	38, 195, 786	44, 252, 990	48, 450, 407	57, 833, 593
Estimated working profit		, ,				
per ton from gold	13s. 2d.	11s. 11d.			14s. 4d.	
Premium gold sales \pounds		1, 934, 421	12, 999	233, 942	882, 368	
Uranium and thorium ex-						
ports£_		3, 873, 029	14, 835, 344	29, 959, 589	38, 571, 195	49, 859, 496
Estimated uranium profits						
£		1, 828, 067				
Dividends£	19, 621, 153	18, 994, 307	19, 127, 166	22, 361, 887	28, 177, 343	36, 699, 373

¹ Excludes gold produced by nonmembers of Chambers of Mines. ² 1£ valued at \$4.03 (approx. average) from Jan. 1, 1948, to Sept. 19, 1949; after that date, 1 £ valued at \$2.80.

¹¹ Waspe, L. A., The South African Mining Industry and the Growth of Finance Institutions-II: Mining Mag. (London), vol. 97, No. 5, November 1957, pp. 273-277.

TECHNOLOGY

Methods of reducing gold losses in cyanide mills treating ores containing mercury and the chemical effects of using mercury salts in cyanide solutions to improve recovery were discussed in a technical journal 12 and some practical suggestions made to increase efficiency.

The adoption of FluoSolids roasting combined with flotation, cyanidation, and tailings-scavenging treatment of a refractory arsenical gold ore made it possible to operate profitably at a Southern Rhodesia mine. Metallurgical techniques and equipment used in developing the treatment process were described and detailed tech-

nical and cost data given.13

Gold Plating without electrodes was accomplished with Baker & Company's Atomex process, by which 24-carat gold can be deposited by ionic displacement on metals and alloys, such as copper, steel, diecast metals, and nickel. The base metals, under chemical attack by the electrolyte, sheds atoms and dissolves into the electrolyte, while gold atoms come out of solution and plate onto the base-metal surface. The deposits were reported to be unusually dense and uniform.14

New developments in research by the Atomic Energy Commission Oak Ridge Laboratories on the transmutation of gold into mercury by neutron bombardment indicate possible important commercial uses of the isotope produced—mercury 198—in such scientific equipment as supersensitive measuring instruments and superior optical devices. A patent was issued for a method of recovering gold 15 and other minerals from colloidal clays by spraying the material with an alkaline solution, such as a complex phosphate or a mixture of crude tannic acid and hydrated lime or caustic soda to disperse sticky hydrophilic clay and enable effective recovery of minerals.

A patent was issued for an improved method of electrolytically depositing gold by subjecting an aqueous solution containing an alkali metal-gold-cyanide complex to electrolysis in the presence of a buffer sufficient to maintain a pH of 6.5 to 7.5 during electrolytic dep-A method was developed for removing gold and silver cyanides from adsorption on certain ion-exchange resins 17 by treatment with an eluting solution of a complex base-metal cyanide. new brazing alloy composed of 60 percent gold, 35 percent copper, and 5 percent indium was developed for use under conditions of elevated

temperature and high vacuum.18

Several other significant articles pertaining to the technology of gold were published in 1957.19

18 Morrison, R. P., Method and Apparatus for Recovering Valuable Minerals: U. S. Patent 2,801,003, July 30, 1957.

18 Pforzheim, Fritz Volk (assigned to Birle & Co.), Electrolytic Deposition of Gold and Gold Alloys: U. S. Patent 2,812,299, Nov. 5, 1957.

17 Hazen, Wayne C., Methods of Eluting Adsorbed Complex Cyanides of Gold and Silver: U. S. Patent 2,810,638, Oct. 22, 1957.

18 Hack, Walter L. (assigned to Western Gold & Platinum Co.), Gold-copper Indium Brazing Alloy: U. S. Patent 2,813,790, Nov. 19, 1957.

19 Findlay, R. E., Sill Pillar Recovery at Aunor: Canadian Min. and Met. Bull., vol. 50, No. 546, October 1957, pp. 626-628.

Allen, G. Keith, Gold Mining in Ghana: Inst. Min. and Met., vol. 66, No. 608, July 1957, pp. 505-526. Tufty, Barbara, Kolar Gold Field Mines Rock Bursts Feature at all Levels: Canadian Min. Jour., vol. 11, No. 78, November 1957, pp. 87-91.

Coleman, Leslie C., Mineralogy of the Giant Yellowknife Gold Mine, Yellowknife, N. W. T.: Economic Geology & Bull. Soc. Econ. Geol., vol. 52, No. 4, June-July 1957, pp. 400-425.

McLaughlin, Donald H., Gold in 1957: Min. Cong. Jour., vol. 44, No. 2, February 1958, pp. 115-117.

Mead, H. W. and Birchenall, C. E., Diffusion of Gold and Au-Ag Alloys: Jour. Metals, vol. 9, No. 7, July 1957, pp. 874-877.

¹² Allingham, John, How to Reduce Gold Losses in Cyanide Mills: Eng. Min. Jour., vol. 158, No. 6, June 1957, pp. 101-102.
¹³ Rabone, Philip, How FluoSolids Roasting Aids Gold Recovery at Dalny Mine: Eng. and Min. Jour., vol. 158, No. 5, May 1957, pp. 98-104.
¹⁴ E&MJ Metal and Mineral Markets, vol. 28, No. 38, Sept. 19, 1957, p. 7.
¹⁵ Morrison, R. P., Method and Apparatus for Recovering Valuable Minerals: U. S. Patent 2,801,003, July 20, 1957.

Graphite

By Donald R. Irving 1 and Betty Ann Brett 2

AN ALLTIME high was recorded for world production of natural graphite in 1957 because the output of amorphous graphite in the Republic of Korea increased sharply. Most other countries

produced about the same or moderately less than in 1956.

Late in 1957, General Services Administration sold, at public auction, the Government-owned Benjamin Franklin graphite mine and mill near Chester Springs, Pa. When national stockpile objectives for all grades of graphite were complete, the Department of Defense ruled that there was no need to retain the property in the National Industrial Reserve.

Also, during 1957 Crescent Carbon Corp. began to produce manufactured (artificial) graphite at Rosamond, Calif.—the first such plant

west of Tennessee.

TABLE 1.—Salient statistics of graphite in the United States, 1948-52 (average) and 1953-57

	1948-52 (average)	1953	1954	1955	1956	1957
United States: Natural graphite consumed: Short tons. Value	24, 600 \$3, 451, 600	34, 900 \$4, 779, 000	33, 000 \$4, 386, 800	45, 200 \$6, 289, 400	40, 400 \$5, 920, 300	41, 000 \$5, 568, 000
Imports: Short tons Value Exports:	45,000 \$2,251,500	51, 300 \$2, 809, 200	40, 800 \$2, 281, 300	48, 800 \$2, 386, 600	47, 900 \$2, 593, 700	41, 500 \$2, 106, 800
Short tons	1, 400 \$173, 500	1, 800 \$200, 100	\$105, 600	1, 400 \$199, 400	1, 100 \$159, 800	1, 300 \$225, 500
Short tons	195, 000	200, 000	185, 000	290, 000	270, 000	320, 000

DOMESTIC PRODUCTION

Southwestern Graphite Co., Burnet, Tex., continued to be the only producer of crystalline flake graphite in North America in 1957. Graphite Mines, Inc., Cranston, R. I., was the only producer of amor-

phous graphite in the United States.

The output of manufactured (artificial) graphite powder and products came from plants of the following companies: National Carbon Co., Division of Union Carbide Corp. (formerly Union Carbide & Carbon Corp.), Niagara Falls, N. Y., Clarksburg, W. Va., and Columbia, Tenn.; Great Lakes Carbon Corp., Niagara Falls, N. Y., and Morganton, N. C.; International Graphite & Electrode Division, Speer

2 Statistical clerk.

¹ Assistant chief, Branch of Ceramic and Fertilizer Materials.

Carbon Co., St. Marys, Pa., and Niagara Falls, N. Y.; Stackpole Carbon Co., St. Marys, Pa.; and Crescent Carbon Corp., Rosamond, Calif. The Dow Chemical Co. produced graphite electrodes for its own use at Midland, Mich.

TABLE 2.—Production and shipments of natural graphite in the United States, 1948-52 (average) and 1953-57

		Year		Production		nents
			(short tons)	Short tons	Value	
1948-52 (average)		 	 6, 779	6, 516	\$543, 997 488, 008
1953 1954-57			 	 6, 281	4,850 488 (1) (1)	

¹ Figures withheld to avoid disclosing individual company confidential data.

CONSUMPTION AND USES

In 1957 domestic consumption of natural graphite increased 2 percent in quantity but decreased 6 percent in value compared with 1956. Greater quantities were consumed only for bearings (22 percent) and foundry facings (17 percent). Steelmaking, lubricants, and brake linings consumed virtually the same quantity as in 1956. Other uses decreased from 14 to 46 percent.

TABLE 3.—Consumption of natural graphite in the United States, 1948-52 (average) and 1953-57

Year	Consu	mption	Year	Consu	mption
	Short tons	Value		Short tons	Value
1948–52 (average) 1953 1954	24, 636 34, 884 33, 038	\$3, 451, 586 4, 778, 981 4, 386, 760	1955 1956 1957	45, 245 40, 401 41, 029	\$6, 289, 416 5, 920, 298 5, 567, 952

TABLE 4.—Consumption of natural graphite in the United States in 1957, by uses

	Crysta	lline flake	Ceylon amorphous		Other a	morphous 1	Total	
Use	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value
Batteries Bearings Brake linings Carbon brushes Crucibles, retorts, stoppers, sleeves, and nozzles Foundry facings Lubricants Packings Paints and polishes Peneils Rubber Steelmaking Other 2 Total	363 141 3, 136 423 2, 731 212 3 265 14	\$26, 282 3, 615 148, 310 60, 482 621, 208 66, 402 618, 302 114, 165 789 101, 789 4, 372 48, 356 38, 250 1, 852, 292	61 251 331 27 372 2, 137 49 576 1 1 58	\$33, 957 69, 836 171, 313 5, 712 64, 916 423, 514 25, 226 1, 680 200, 850 643 750 41, 501 1, 039, 898	1, 266 57 157 150 5 15, 645 2, 557 112 406 77, 983 162 29, 375	\$87, 235 16, 565 55, 163 19, 742 605 1, 125, 797 313, 442 20, 511 47, 614 113, 815 12, 351 763, 891 99, 031 2, 675, 762	1, 346 124 771 622 3, 168 16, 440 7, 425 373 418 1, 619 112 8, 277 334	\$113, 517 54, 137 273, 309 251, 537 627, 525 1, 257, 115 1, 355, 258 159, 902 50, 083 416, 424 17, 366 812, 997 178, 782

¹ Includes small quantity of mixtures of natural and manufactured graphite.
² Includes adhesives, carbon resistors, catalyst manufacture, chemical equipment and processes, copper refining, electrodes, electronic products, insulation, plastics, powdered metal parts, refractory materials, roofing granules, specialties, and other uses not specified.

PRICES

Quoted prices for graphite merely indicate the range of prices; actual prices are negotiated between buyer and seller on the basis of

a wide range of specifications.

Quotations in E&MJ Metal and Mineral Markets were as follows per pound, carlots, f. o. b. shipping point (United States): Crystalline flake, natural, 85–88 percent carbon, crucible grade, 13 cents; 96 percent carbon, special and dry usage, 22 cents; 94 percent carbon, normal and wire drawing, 19 cents; 98 percent carbon, special for brushes, etc., 26½ cents. Amorphous, natural, for foundry facings, etc., up to 85 percent carbon, 9 cents: Madagascar, c. i. f. New York, "standard grades, 85–88 percent carbon," \$235 per short ton; special mesh, \$260; special grade, 99 percent carbon, nominal. All of these prices remained unchanged during the year. The quotation for Mexican amorphous graphite, f. o. b. point of shipment, per metric ton, was \$9 to \$18 until December 5, when it was increased to \$12 to \$18.

FOREIGN TRADE 3

Graphite imports for consumption in the United States decreased 13 percent in quantity and 19 percent in value in 1957, compared with 1956. Of the major suppliers, Hong Kong (39 percent) and Norway (38 percent) reported quantity increases and Madagascar and West Germany (26 percent each), Ceylon (17 percent), and Mexico (16 percent) quantity decreases. Small quantities were imported from Denmark, India, and Turkey in 1957 but not in 1956.

Total exports of natural graphite, 1953-55, were: 1953, 1,760 tons, \$200,110; 1954, 798 tons, \$105,598; 1955, 1,394 tons, \$199,383.

TABLE 5.—Graphite (natural and artificial) imported for consumption in the United States, 1948-52 (average) and 1953-57

			[Burea	u of the	Census	5]		<u> </u>			
		Crysta	lline			Amorp	ohous				
				Lump, chip, or dust		Natural		Artificial		Total	
	Short	Value	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	
1948-52 (average)	6, 192 10, 579 8, 464 7, 706	\$863, 680 1, 608, 960 1, 198, 665 1, 018, 600	79 653	7, 958 100, 191	40, 382		283 212	15, 647 1 11, 629	51,323	\$2, 251, 528 2, 809, 178 12, 281, 256 2, 386, 630	
North America: Canada Mexico					229 30, 866	10, 847 648, 395	50	1,012	279 30, 866	11, 859 648, 395	
Total					31, 095	659, 242	50	1,012	31, 145	660, 254	

See footnote at end of table.

³ Figures on imports and exports compiled by Mae B. Price and Elsie D. Jackson, Division of Foreign Activities, Bureau of Mines, from records of the U. S. Department of Commerce, Bureau of the Census.

TABLE 5.—Graphite (natural and artificial) imported for consumption in the United States, 1948-52(average) and 1953-57—Continued

		Crysta	lline			Amorp	hous			
	F	'lake	Lump	p, chip, dust	N	atural	Art	ificial	1	Potal
	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value
1956—Continued										
Europe: Austria France. Germany, West. Italy. Norway Switzerland.	48 530 33	\$19, 741 96, 242 5, 909	132	\$30, 295	1,026 1,814	\$252 915 121,084 154,338	3 27 3	\$980 2, 455 980	1 50 1,688 36 1,841	\$252 20, 656 247, 621 6, 889 156, 793 980
Total	611	121, 892	132	30, 295	2, 843	276, 589	33	4, 415	3, 619	433, 191
Asia: Ceylon Hong Kong			39	4, 412	3, 964 2, 386	562, 321 51, 464			4, 003 2, 386	566, 733 51, 464
Total			39	4, 412	6, 350	613, 785			6, 389	618, 197
Africa: British East Africa Madagascar Madeira Islands	61 6, 564 28	9, 915 861, 859 4, 080			82 	6, 212			143 6, 564 28	16, 127 861, 859 4, 080
Total	6, 653	875, 854			82	6, 212			6, 735	882, 066
Grand total, 1956.	7, 264	997, 746	171	34, 707	40, 370	11, 555, 828	83	5, 427	47, 888	2, 593, 708
1957					1			1 4 4		
North America: Canada Mexico					25, 789	562, 836	3	263	3 25, 789	263 562, 836
Total					25, 789	562, 836	3	263	25, 792 ———	563, 099
Europe: Denmark France Germany, West Italy Norway	43 332	18, 408 64, 052		10, 814	110 904 2, 538	9, 757 112, 584 210, 086	5	1, 934	110 43 1, 255 5 2, 538	9, 757 18, 408 187, 450 1, 934 210, 086
Total	375	82, 460	19	10, 814	3, 552	332, 427	5	1,934	3, 951	427, 635
Asia: Ceylon Hong Kong India. Turkey	55	7, 161	28	4,056	3, 304 3, 318 56	476, 579 72, 059 9, 150			3, 332 3, 318 56 55	480, 635 72, 059 9, 150 7, 161
Total	55	7, 161	28	4, 056	6, 678	557, 788			6, 761	569, 005
Africa: British East Africa Madagascar	168 4, 858	19, 081 527, 982							168 4, 858	
Total	5, 026	547, 063							5, 026	547, 06
Grand total, 1957.	5, 456	636, 684	47	14, 870	36, 019	1, 453, 051	. 8	2, 197	41, 530	2, 106, 802

Owing to changes in tabulating procedures by the Bureau of the Census, data known to be not comparable to earlier years.

TABLE 6.—Graphite exported from the United States, 1956-57, by countries of destination

[Bureau of the Census]

	[Bureau of	the Census	3]			
Country	Amor	rphous	Crystall lump,	ine flake, or chip	Natura	l, n. e. c.
	Short tons	Value	Short tons	Value	Short tons	Value
1956					in a second	
North America: Canada	546	\$49, 223	21	\$13, 258	36	\$4,82
Cuba Mexico	10	1, 150	14 8	2, 316 3, 966	12	3, 42
Total	556	50, 373	43	19, 540	48	8, 25
South America:				18,010	10	0, 200
Brazil					1	580
Colombia Ecuador			11 10	2,666 1,900		
Venezuela			ĭ	1,360		
Total			22	5, 926	1	580
Europe:						
Belgium-Luxembourg Denmark			2 2	980 1, 240	11	1, 813
France Netherlands	11	2, 750		549		
Switzerland	8	1,311	(1)	549		
United Kingdom	205	32, 532			23	3, 544
Total	224	36, 593	4	2, 769	34	5, 357
Asia: India						- 400
Pakistan			3 75	1, 935 16, 500	34	5, 493
Philippines	10	2, 590			4	1, 294
Total	10	2, 590	78	18, 435	38	6, 787
Africa:			-			
EgyptLibya	-				(¹) 4	1, 145 1, 444
Total					4	2, 589
Grand total, 1956	790	89, 556	147	40.070	125	
	- 190	89, 550	147	46, 670	120	23, 566
North America:				· .	1	
Canada Cuba	- 706	62, 884	66 30	26, 964	109 11	14, 910 1, 700
Mexico	_ 20	2,000	17	26, 964 7, 775 7, 530		1, 700
Total.	726	64, 884	113	42, 269	120	16, 610
South America:						
ChileColombia	-		4 5	2, 498 2, 771	19	4, 109
Peru	-		1	2, 771 754	(1)	140
Venezuela	- 7	1, 282	10	2, 500	64	14, 470
Total.	- 7	1, 282	20	8, 523	83	18, 719
Europe: Denmark	_ 11	1, 813		9.5		
France	- 6	1,400	,;			
NetherlandsUnited Kingdom	128	20,005	(1)	630	18	2, 804
Total	145	23, 218	(1)	630	18	2, 804
Asia:					=======================================	
India Japan	- 8	1, 318	4	1,140	28	6, 807 1, 746
Philippines	16	2, 763	30	4,600	I	
Taiwan	-				30	28, 223
Total	- 24	4,081	34	5, 740	59	36, 776
Grand total, 1957	902	93, 465	167	57, 162	280	74, 909

¹ Less than 1 ton.

WORLD REVIEW

World production of natural graphite, at an alltime high of 320,000 short tons in 1957, exceeded the previous record 299,000 tons for 1943, because the output reported from the Republic of Korea increased 142 percent. During 1957 exportation of anthracite from the Republic of Korea was banned, but exportation of amorphous graphite was permitted; and it appeared likely, as reported in the Korean press, that sizable quantities of anthracite were exported as "amorphous graphite."

Production in most other countries remained about the same or

decreased moderately.

TABLE 7.—World production of natural graphite, by countries, 1948-52 (average) and 1953-57, in short tons 2 [Compiled by Helen L. Hunt and Berenice B. Mitchell]

Country 1	1948-52 (average)	1953	1954	1955	1956	1957
North America:			1 2 2 1 2 2 2	(1)		16.00
Canada	2, 376	3, 466	2, 463			
Mexico	31, 115	33, 433	24, 013	32, 342	32, 655	25, 938
United States	6, 779	6, 281	(3)	(3)	(3)	(3)
South America:			4.5		-ulli	
Argentina	4 330	(5)	(5)	2	572	4 550
_ Brazil	752	648	1,008	855	579	4 550
Europe: Austria				40.00=	00 505	00.000
Austria	15, 182	16, 185	19, 184	19, 637	20, 597	20, 860
Czechoslovakia	4 16, 500	(5) 8, 222	(5)	(5)	(5)	(5)
Germany, West	8, 210		10, 448	11, 556	12,878	4 13, 200
ItalyNorway	5, 581	5, 731	4, 165	2, 595	3, 262	3, 649
		3, 255	3, 993	5, 970	5, 562	4 5, 500
Spain	411	352	451	349	331	304
Sweden	39			309	440	4 440
U. S. S. R.	(5)	(3)	(5)	(5)	(5)	4 50, 000
Yugoslavia	151			1,033		
Asia:		0.004	0 0		10.010	0 150
Ceylon (exports)	13, 293	8, 084	8, 655	11,064	10, 312	9, 172
Hong Kong		220	2,061	1.722	2, 734	3, 703
India	1,812	859	1,657	1,807	4 1, 650	4 1, 650
Japan	6, 242	4, 488	4, 515	3, 441	3, 757	5, 278
Korea, Republic of		21, 416	15, 344	99, 228	67, 367	162, 703
Taiwan (Formosa)	154				2, 285	(5)
Africa:				i.		100
Egypt	11					
Kenya		205	347	241	619	1,056
Madagascar	14, 915	14, 847	13, 284	17, 443	17, 451	4 17, 600
Morocco: Northern Zone				100	1	!
				129	137	
Southern Zone		108				
Mozambique	97					
South-West Africa			115	1,011	26	
Tanganyika	6	21	1 200	1 000		
Union of South Africa		413	1,396	1, 829	1,862	1,750
Oceania: Australia	140	17	78	24	11	(5)
World total (estimate) 1 2	195, 000	200, 000	185, 000	290, 000	270,000	320,000

Austria.—In 1956, 74 percent of the graphite produced was exported. Major countries of destination, in descending order of importance, were West Germany, Italy, Belgium, Poland, Switzerland, Yugoslavia, and France.4

In addition to countries listed, graphite has been produced in China and North Korea, but production data are not available; estimates by senior author of chapter included in total.
 This table incorporates a number of revisions of data published in previous Graphite chapters. Data do not add to totals shown, owing to rounding where estimated figures are included in the detail.
 Production included in total; Bureau of Mines not at liberty to publish.

Data not available; estimate by senior author of chapter included in total.

⁴ Engineering and Mining Journal, Austria: Vol. 158, No. 8, August 1957, p. 214.

Brazil.—The Compagnie de Produits Chimiques et Electrométallurgiques, Paris, and Industrias Reunidas Francisco Matarazzo Co. announced plans for building a plant to produce 4,000 tons of graphite electrodes a year. The proposed plant would be the first manufactured-graphite plant in Brazil.5

Ceylon.—The number of mines producing graphite at the end of

1956 was 34, compared with 44 at the end of 1955.6

TABLE 8.—Graphite exported from Ceylon, 1953-57, by countries of destination, in short tons 1 2

Com	halie	h	Corre	A	Barryl
ГСОШІ	mea	D.Y	Corra	A.	Darry

Country	1953	1954 1955		1956	1957	
North America: Canada. United States. Europe:	112 1, 938	196 2, 054	453 4, 234	207 3, 782	185 3, 175	
France Germany, West Italy	83 77	163 20 8	198 95 8	207 110 8	160 348 7	
Netherlands	3, 429	4, 172	3, 624	3,076	1, 698	
Hong Kong India Japan Pakistan	417 1, 588	8 274 1, 219 91	535 1, 306 118	9 422 2, 237 87	385 2, 759 99	
ThailandOceania: AustraliaOther countries	9 303 128	437 1	444 2	385	360	
Total	8, 084	8, 654	11,064	10, 541	9, 22	

TABLE 9.—Exports of graphite from Ceylon to the United States, by grades, 19571

Grade	Short tons	Percent of total	Value per ton
97 percent C or higher	1, 383 1, 618 168	43. 6 51. 1 5. 3	\$161. 56 128. 36 100. 00
Total	3, 169	100.0	141. 34

¹ U. S. Embassy, Colombo, Ceylon, State Department Dispatch 38: July 15, 1957, 2 pp.; Dispatch 73, July 25, 1957, 2 pp.; Dispatch 360, Oct. 18, 1957, 2 pp.; Dispatch 667, Jan. 21, 1958, 2 pp.

Egypt.—Graphite was discovered at Baremia, near Jebel Abu Selim. Other deposits are in the Bint Abu Garria district and in the

Wadi Sitra zone at Um Gheig.⁷

Korea, Republic of.—United Nations Korean Reconstruction Agency (UNKRA) announced plans to finance construction of a modern graphite mill at the Sihung graphite mine in Kyonggi Do. The mill will have a capacity of 2,400 tons of crystalline graphite a year and will supplement production from the existing mill, which has a capacity of 800 tons a year. Deposits at Sihung contain an estimated 20 million tons of ore.8

1957, p. 14.

'U. S. Embassy, Cairo, Egypt, State Department Dispatch 632: Dec. 21, 1957, enclosure 2, p. 23.

8 Mining World, Korea: Vol. 19, No. 3, March 1957, p. 112.

Compiled from Ceylon Customs Returns.
 This table incorporates a number of revisions of data published in previous Graphite chapters.

Chemical Week, Graphite/Brazil: Vol. 80, No. 26, June 29, 1957, p. 26.
 Industrial and Mining Standard (Melbourne), Mining in Ceylon in 1956: Vol. 112, No. 2839, Aug. 1.

Companies exporting graphite included the following: 9

Choong-ku, Seoul, Korea

Dongchang Commercial Co., Ltd., 51–2, 1–ka, Choongmu-ro. Dongseong Moolsan Co., Ltd., 34, 1-ka, Myung-dong. Kumjeng Industrial Co., Ltd., 40, 1-ka, Wheihyun-dong. Kumsaing Trading Co., Ltd., 95, 3-ka, Namdaemun-ro. Samduk Trading Co., Ltd., Dong Shin Bldg., 70, Sokong-dong. Sekai Mulsan Co., Ltd., 82–13, 2-ka, Myung-dong. Sungha Commercial Co., Ltd., 51, 1-ka, Choongmu-ro. Washin Industrial Co., Ltd., 187, 1-ka, Sinmun-ro.

Pusan, Korea

Dongan Moolsan Co., Ltd., 20, 2-ka, Taikyo-ro.

Madagascar.—The ratio of coarse flake (flake) to fine flake (fines) produced in Madagascar continued to decline and was 54:46 in the first 9 months of 1957 compared with 60:40 in 1956 and 66:34 in 1955.10

TABLE 10.—Exports of graphite from Madagascar, 1952-56, by countries of destination, in short tons 1 2

[Compiled by Corra A. Barry]

Country	1952	1953	1954	1955	1956
North America: United StatesEurope:	8, 236	10, 152	8, 465	7, 510	6, 300
Belgium-Luxembourg	149	39	(3)	44	(3)
France Germany, West	4, 055 42	2, 457 72	2, 862 63	7, 837 476	5, 508 998
Italy	2, 441	797	661	1, 099 20	2, 199
United Kingdom	3, 983	1, 272	1,675	1, 312	1, 278
Asia: Japan	110	110	27	(3)	(3) (3)
Oceania: AustraliaOther countries	220 31	99	55 235	160 30	(a) 700
Total	19, 267	15,000	14, 043	18, 488	16, 97

Mexico.—A graphite electrode plant, being built near Monterrey by Electrodos Nacionales, S. A., an affiliate of Union Carbide Corp., New York, N. Y., was scheduled to begin production in 1958. plant was to supply electrodes to the electric-furnace steel, ferroalloy, and electrochemical industries, as well as provide manufacturedgraphite materials essential to the nuclear-power development of Mexico. It was anticipated that part of the output would be exported.11

Sweden.—According to a press announcement of December 12, 1957, the Norrbottems Järnverk AB (the Government-owned steel mill at Lulea) and the Institute of Technology, Stockholm, were investigating the possibility of recovering graphite from large deposits

Compiled from Customs Returns of Madagascar.
This table incorporates a number of revisions of data published in previous Graphite chapters.
Data not available.

U. S. Embassy, Seoul, Korea, State Department Dispatch 481: Jan. 28, 1958, 5 pp.
 U. S. Consulate, Johannesburg, Union of South Africa, State Department Dispatch 1: July 2, 1957, p.
 Dispatch 54, Sept. 19, 1957, p. 1; Dispatch 161, Jan. 23, 1958, p. 1.
 Engineering and Mining Journal, Union Carbide Plans Mexican Graphite Plant: Vol. 158, No. 11, November 1957, p. 158.

559GRAPHITE

of graphite-bearing shales in Lapland. It was estimated that Lapland shale deposits contain 70 to 80 million tons of crude graphite.¹²

Tanganyika.—Discovery of a deposit of good-quality graphite was

reported near Masasi in the Southern Province. 13

United Kingdom.—Anglo-Great Lakes Corp., Ltd., organized by the Electrode Division of Great Lakes Carbon Corp., New York, N. Y., and four British companies, began constructing a plant at Newcastle, England, to produce manufactured graphite for nuclear and other commercial applications. The plant was to have an initial capacity of 15,000 long tons a year and was scheduled for production in late 1958.14

TECHNOLOGY

Graphite occurrences in California,15 Canada,16 Hong Kong,17 and India 18 were noted, and several articles on the beneficiation of graphite ores were published.19

A bibliography of methods of purifying graphite, covering 1926 to

1955, was published in 1957.20

The covering capacity, particle thickness, and specific surface of natural graphite samples from different sources and in particle-size ranges usually used in crucible manufacture were determined.21 The influence of the graphite-silicon carbide ratio, effect of varying proportions of fire-clay grog, and conditions for binder carbonization in manufacturing carbon-bonded graphite crucibles were discussed and two suitable body compositions were suggested.22

The lubricating properties of graphite in reactors 23 and internal-

combustion motors were described.24

The Society of Chemical Industry (London) sponsored a conference on "Industrial Carbon and Graphite," attended by delegates from Australia, France, Germany, Italy, Japan, Netherlands, Norway,

U. S. Embassy, Stockholm, Sweden, State Department Dispatch 674: Dec. 13, 1957, p. 1.
 Bureau of Mines, Mineral Trade Notes: Vol. 44, No. 4, April 1957, p. 30.
 Chemical Engineering Progress, vol. 53, No. 1, January 1957, p. 120.
 Oakeshott, G. B., Graphite: Chap. in Mineral Commodities of Calif., California Div. Mines Bull. 176,

 ^{1937,} pp. 227-229.
 19 Geological Survey of Canada, Geological and Economic Minerals of Canada: Dept. Mines and Tech.
 Surveys, Econ. Geol., Ser. I., 4th ed. (Ottawa), 1957, pp. 120, 439.
 19 Ruxton, B. P., Graphite Seams in Hong Kong: Colonial Geol. and Miner. Res. (London), vol. 6, No. 4, 1957, pp. 429-441.
 18 Majurndar, K. K., India's Industrial Minerals: Indian Min. Jour. (Calcutta), vol. 5, No. 2, February

¹⁸ Majumdar, K. K., India's Industrial Minerals: Indian Min. Jour. (Calcutta), vol. 2, 2, 2018.

1937, pp. 5-8.

Sinha, B. N., Note on Graphite Deposits Around Sokra in Palamau: Indian Min. Jour. (Calcutta), vol. 4, No. 1, January 1956, pp. 16-18.

10 Decc Trefoil, Flowsheet Study, Recovery of Graphite: Vol. 21, No. 4, July-August 1957, pp. 15-16.

Mathur, G. P., and Narayanan, P. I. A., Beneficiation of Low-Grade Graphite From Attipra, Trivandrum: Jour. Sci. Ind. Res. (New Delhi, India), vol. 16A, No. 1, January 1957, pp. 38-41.

Nallaperumel, U., and Palaniappan, N. P., Graphite Ore Deposit at Maduri Taluk Madras State. Beneficiation by Flotation Methods: Jour. Annamalai Univ. (Annamalainagar, India), vol. 20B, 1956, pp. 43-49; Chem. Abs., vol. 51, No. 16, Aug. 25, 1957, p. 11948g.

Smith, A. D., Beneficiation of Graphite Ore From Uley: South Australia Dept. Mines, Min. Rev. 1954 (ppb. 1956), pp. 113-119.

Stewart, A. L., Dressing of Flake Graphite in Kenya: Inst. Min. and Met. (London), vol. 67, pt. 3, No. 613, December 1957, pp. 109-114.

30 Harris, P. M., Purification of Graphite: Atomic Energy Res. Estab. (Great Britain), Inf. Bibliog. 109, 1967, 7 pp.

Carbon-Bonded Graphite Crucines: Jour. Sci. Ind. Res. (New Belli, Hula), vol. 13B, No. 11, November 1956, pp. 645-650

2 Braithwaite, E. R., Graphite and Molybdenum Disulphide: Nuclear Eng. (London), vol. 2, No. 12, March 1957, pp. 107-110.

3 Augustin, J. U., and D'Ans, A. M., [Colloidal Graphite and Its Effect on Friction and Lubrication, Especially in Internal Combustion Motors]: Ztschr. Ver. deut. Ing. (Düsseldorf, Germany), vol. 99, March 1957, pp. 274-279; May 1957, pp. 624-632; Battelle Tech. Rev., vol. 6, No. 6, June 1957, p. 394a; No. 9, September 1957, p. 615a.

Poland, Sweden, United States, and U. S. S. R., in addition to the The use of manufactured graphite in nuclear-United Kingdom. energy applications heightened interest in the proceedings. A total of 66 papers was given in groups, covering the following topics: Physical properties, manufacture, crystal structure, surface chemical properties and reactivity, electrical behavior and applications, graphite in the nuclear-power industry, and mechanical, chemical, and metallurgical applications.²⁵

Manufactured graphite has been widely used in nuclear reactors since the beginning of the atomic-energy program.²⁶ By far the major atomic-energy use has been as a neutron moderator, but manufactured graphite also has been used or proposed for tubes to contain reactor coolants, neutron filters and attenuators for experimental purposes,

and containers for irradiating samples of materials.

Graphite molds and crucibles, with high alumina and magnesia coatings, are employed in casting and melting uranium and uranium alloys.²⁷ The performance of graphite parts was said to be improved by a new technique for placing a hard, refractory, wear-resistant coating on machined graphite parts.28

A manufactured graphite body bonded by silicon carbide, with

physical properties superior to graphite alone, was developed.²⁹

A statistical analysis was made of the effect of electrode length, diameter, and surface area on graphite-electrode consumption in electric-arc furnaces.30

Interest in manufactured graphite for use in nuclear and missile applications resulted in publication of a large number of technical papers on its properties.31

Blyholder, G. D., and Eyring, Henry, Kinetics of Graphite Oxidation: Jour. Phys. Chem., vol. 61, No. 5, May 1957, pp. 682-688.
Croft, R., Graphite Compounds: Research (London), vol. 10, No. 1, January 1957, pp. 23-28.
Crowell, A. D., Interaction of Rare Gases With Graphite: Jour. Chem. Phys., vol. 26, No. 6, June 1957,

Crowell, A. D., Interaction of Rare Gases With Graphite: Jour. Chem. Phys., vol. 26, No. 6, June 1907, pp. 1407-1408.

De Sorbo, W., and Tyler, W. W., Effect of Irradiation on the Low-Temperature Specific Heat of Graphite: Jour. Chem. Phys., vol. 26, No. 2, February 1957, pp. 244-247.

Richey, C. R., and Block, E. Z., Graphite Diffusion Length Measurements at Hanford: Hanford Atomic Products Operation, Richland, Wash., Contract W-31-109-eng-52, September 1956, 41 pp.; U. S. Govt. Res. Repts., Off. Tech. Services, U. S. Dept. of Commerce, vol. 27, No. 6, June 14, 1957, p. 355.

Schofield, H. Z., Slyh, J. A., and Loch, L. D., Fabrication of Urania-Bearing Graphite: Battelle Memorial Inst., Columbus, Ohio, Contract W-7405-eng-92, May 1950, 16 pp.; U. S. Govt. Res. Repts., Off. Tech. Services, U. S. Dept. of Commerce, vol. 28, No. 1, July 12, 1957, p. 50.

Scott, A. F., and Scheuerman, R. F., Compressibility of Graphite-Ferric Chloride Compounds: Jour. Phys. Chem., vol. 61, No. 1, January 1957, pp. 97-98.

Spalaris, C. N., Bupp, L. P., and Gilbert, E. C., Surface Properties of Irradiated Graphite: Jour. Phys. Chem., vol. 61, No. 3, March 1957, pp. 350-354.

²⁵ Chemistry and Industry (London), S. C. I. Conference on Industrial Carbon and Graphite: No. 44,

<sup>Chemistry and Industry (London), S. C. 1. Conference on Industrial Carbon and Graphics. 188, 189, 1892.
Nov. 2, 1957, pp. 1442-1447.
Fletcher, J. F., and Snyder, W. A., Use of Graphite in the Atomic-Energy Program: Bull. Am. Ceram.
Soc., vol. 36, No. 3, March 1957, pp. 101-104.
Stoddard, S. D., and Harper, W. T., Refractories for Melting and Casting Uranium and Other Metals: Bull. Am. Ceram. Soc., vol. 36, No. 3, March 1957, p. 107.
Electronic News, Develop Technique for Hard Coating of Graphite Parts: Vol. 2, No. 55, Oct. 28, 1957, 10</sup>

Belectronic News, Develop Technique for Hard Coating of Graphite Parts: Vol. 2, No. 55, Oct. 25, 1907, p. 12.
Cline, C. F., SiC—Graphite Body for Elevated Temperature Service: Wright Air Development Center Tech. Rept. 57-491, pt. I, October 1957, 16 pp.
Cosh, T. A., Graphite Electrode Consumption in Electric-Arc Furnaces. A Statistical Analysis: Jour. Iron and Steel Inst. (London), vol. 185, pt. III, March 1957, pp. 328-332.
Attree, R. W., and Dahlinger, O., Electrical Resistivity of Graphite Irradiated With Neutrons: Canadian Jour. Phys. (Ottawa), vol. 35, No. 4, April 1957, pp. 462-469.
Aygul, N. N., and Kiselev, A. V., [The Adsorption Energies of Hydrocarbons on Graphite]: Doklady Akad. Nauk U. S. S. R. (Moscow), vol. 112, 1957, pp. 673-676; Chem. Abs., vol. 51, No. 21, Nov. 10, 1957, p. 16044h.
Bacon, G. E., A Method for Determining the Degree of Orientation of Graphite: Jour. Appl. Chem. (London), vol. 6, No. 11, November 1956, pp. 477-481.
Baldock, G. R., Lattice Vibrations and Specific Heat of Graphite: Philosophical Mag. (London), vol. 1, Ser. 8, 1956, pp. 789-802; Chem. Abs., vol. 51, No. 14, July 25, 1957, p. 10167g.
Bergenlid, U., Hill, R. W., Webb, F. J., and Wilks, J., The Specific Heat of Graphite Below 90° K.; Philosophical Mag. (London), vol. 45, Ser. 7, 1954, pp. 851-854; Chem. Abs., vol. 51, No. 15, Aug. 10, 1957, p. 11026i.

Reports dealing with the properties of graphite were declassified

by the Atomic Energy Commission.32

Patents were issued during 1957 for the purification of natural graphite,³³ the preparation of graphitic acid,³⁴ and for the use of

Swarts, E. L., Action of Molten Uranium on Graphite: U. S. Atomic Energy Commission Rept. KAPL-1765, 1957, 23 pp.

Thorn, R. J., and Winslow, G. H., Vaporization Coefficient of Graphite and Composition of the Equilibrium Vapor: Jour. Chem. Phys., vol. 26, No. 1, January 1957, pp. 188-196.

Tuzuku, Takuro, Conical Spiral Structure and Laminar Cleavage of Graphite (English): Jour. Phys. Soc. Japan (Tokyo), vol. 12, July 1957, pp. 778-788; Chem. Abs., vol. 51, No. 20, Oct. 25, 1957, p. 15207d.

Ubbelohde, A. R., Hole and Claw Defects in Graphite: Nature (London), vol. 180, No. 4582, Aug. 24, 1957 p. 362

Unbelonde, A. R., Hole and Can Dollar Description of the Management of the Management of the Management of the Management of the Management of Artificial Graphites as Revealed by X-ray, Electron-Microscope, and Adsorption Studies: Canadian Jour. Chem. (Ottawa), vol. 35, No. 1, January 1957, pp.

vol. 179, No. 4652, Jan. 26, 1937, pp. 193-194.
Wilson, L. G., and McDermot, H. L., Structure of Artificial Graphites as Revealed by X-ray, Electron-Microscope, and Adsorption Studies: Canadian Jour. Chem. (Ottawa), vol. 35, No. 1, January 1957, pp. 15-20.

** The following references were cited in U. S. Government Research Reports, Office of Technical Services, U. S. Dept. of Commerce (page number in parentheses after each reference):

Vol. 26, No. 2, Aug. 17, 1956:
Bowen, Dwain, The Electrical Conductivity of Irradiated Graphite, pt. 2: North American Aviation, Inc., Downey, Calif., Contract AT-11-1-gen-8, July 1950, 31 pp. (p. 109).
Boyd, G. E., The Analysis of Graphite: Clinton Labs., Oak Ridge, Tenn., April 1946, 23 pp. (p. 96). Garbrecht, M., Purification of Graphite: Hanford Works, Richland, Wash., October 1949, 6 pp. (p. 108). Keen, R. D., The Creep Characteristics of ECA Graphite: North American Aviation, Inc., Los Angeles, Calif., January 1950, 16 pp. (p. 109).
Slyh, J. A., Notes on Commercial Carbon and Graphite: Battelle Memorial Inst., Columbus, Ohio, January 1950, 16 pp. (p. 109).
Vol. 27, No. 3, Mar. 15, 1957:
Zapp, F. C., Graphite for the Materials Testing Reactor: Oak Ridge Nat. Lab., Oak Ridge, Tenn., Contract W-7405-eng-26, January 1950, 3 pp. (p. 162).
Vol. 28, No. 1, July 12, 1957:
Coultas, T. A., Cygan, R.; and others, Compatibility of Sodium, Graphite, and Stainless Steel: North American Aviation, Inc., Downey, Calif., Contract AT-11-1-gen-8, July 1953, 30 pp. (p. 52).
Loch, L. D., Slyh, J. A., and Duckworth, W. H., Studies of Graphite for Fuel Elements: Battelle Memorial Inst., Columbus, Ohio, Contract W-7405-eng-92, October 1954, 71 pp. (p. 53).
North American Aviation, Inc., Downey, Calif., Contract AT-11-1-gen-8, July 1953, 30 pp. (p. 52).
Bennett, G. A., and Pearlman, H., Experiments on Graphites of High Density and Low Permeability: North American Aviation, Inc., Downey, Calif., Contract AT-11-1-gen-8, April 1954, 44 pp. (p. 131).
Chernick, J., and Kaplan, I., Review of Graphite Tes

Stroud, W. G., Penetration of Graphites of Different Purities by Lead Bismuth Eutectic. Final Report: Univ. Chicago Metallurgical Lab., September 1944, 15 pp. (p. 189).

Vol. 28, No. 4, Oct. 18, 1957:

Bowen, Dwain, On the Mechanism of Thermal Annealing of Irradiated Graphite: North American Aviation, Inc., Downey, Calif., Contract A^{*}1-11-1-gen-8, August 1950, 37 pp. (p. 272).

James, H. M., Neutron Damage in Graphite: Oak Ridge Nat. Lab., Oak Ridge, Tenn., Contract W-7405-eng-26, March 1949, 23 pp. (p. 272).

Spalaris, C. N., Surface Studies of Irradiated Graphite: Hanford Atomic Products Operation, Richland, Wash., Contract W-31-109-eng-52, July 1953, 25 pp. (p. 271).

Warren, B. E., and Chipman, D. R., X-ray Measurement of Radiation Damage in Graphite: Knolls Atomic Power Lab., Schenectady, N. Y., Contract W-31-109-eng-52, July 1953, 21 pp. (p. 264).

Vol. 28, No. 5, Nov. 15, 1957:

Maurer, R. J., and Ruder, R. C., Hall Effect in Neutron Irradiated and Annealed Graphite: Carnegle Inst. Tech., Pittsburgh, Pa., Contract W-7405-eng-277, April 1945, 8 pp. (p. 333).

Peterson, J. E., Whitehead, H. D., and Bennett, R. K., Spectrographic Analysis of Graphite Raw Materials for Boron and Vanadium: Carbide and Carbon Chem. Co., Oak Ridge, Tenn., Contract W-7405-eng-26, May 1950, 15 pp. (p. 325).

Vol. 29, No. 2, Feb. 14, 1958:

Loch, L. D., and others, Effect of Constitution of Graphites on Their Stability Under Low-Temperature Irradiation: Battelle Memorial Inst., Contract W-7405-eng-92, September 1955, 71 pp. (p. 108).

Warren, B. E., and Chipman, D. R., Small Angle X-ray Scattering Study of Radiation Damage in Graphite: Massachusetts Inst. Tech., Cambridge, Mass., Contract W-31-109-eng-52, October 1954, 16 pp. (p. 108).

Graphite: Massachusetts Inst. Teen., Cambridge, Mass., College W.,
Apr. 2, 1957.

** Hummers, W. S., Jr. (assigned to National Lead Co.), Preparation of Graphitic Acid: U. S. Patent 2,78°,878, July 9, 1957.

graphite in packings,35 in a protective coating for salt-bath brazing,36 in electrically conductive coating compositions,37 and to reduce the octane requirement in internal-combustion engines. 38 Patents were issued for preparing impervious manufactured graphite,39 and its use in making a magnetic sound tape.40

²⁸ Leistensnider, G. P. (assigned to Johns-Manville Corp.), Polychloroprene-Palm Oil Packing Composition: U. S. Patent 2,813,084, Nov. 12, 1957.

Zagorski, Johann, and Zagorski, Johann, Method for Preparing Self-Lubricating Asbestos Containing Stuffing-Box Packings: U. S. Patent 2,809,397, Oct. 15, 1957.

28 Francisco, A. C., and Gyorgak, C. A. (assigned to Secretary of the Navy, U. S. A.), Protective Coating for Salt-Bath Brazing: U. S. Patent 2,812,275, Nov. 5, 1957.

28 Smith-Johanssen, R. (assigned to S-J Chemical Co.), Method of Coating Articles With Heat-Resistant Electrically Conducting Compositions: U. S. Patent 2,803,566, Aug. 20, 1957.

Hesemans, H. P. J. (assigned to North American Phillips Co., Inc.), Method of Producing a Conductive Layer of Graphite on an Insulating Substratum: U. S. Patent 2,818,355, Dec. 31, 1957.

38 Bartleson, J. D., Klingel, A. R., Jr., and Darling, S. M. (assigned to The Standard Oil Co., Cleveland, Ohio), Composition and Process for Reducing the Octane Requirement and Minimizing the Octane Requirement Increase in an Internal-Combustion Engine: U. S. Patent 2,809,617, Oct. 15, 1957.

39 Bennett, G. A., Inatomi, T. H., and Fiskin, J. M. (assigned to Atomic Energy Commission), Preparation of Impervious Graphite: U. S. Patent 2,789,038, Apr. 16, 1957.

40 Cousino, B. A., Magnetic Sound Tape: U. S. Patent 2,804,401, Aug. 27, 1957.

Gypsum

By Leonard P. Larson 1 and Nan C. Jensen 2

ARALLELING the reduced level of residential construction, the domestic gypsum industry during 1957 experienced a further decline in production.

TABLE 1.—Salient statistics of the gypsum industry in the United States, 1948-52 (average) and 1953-57

	1948-52 (average)	1953	1954	1955	1956	1957
Active establishments 1	89	94	86	83	88	84
Crude gypsum: 3 Minedshort tons Importeddo	7, 827, 222 3, 039, 330	8, 292, 876 3, 184, 292	8, 995, 960 3, 368, 133	10, 683, 733 3, 977, 105	10, 316, 483 8 4, 346, 135	9, 194, 580 4, 334, 467
Apparent supplydo	10, 866, 552	11, 477, 168	12, 364, 093	14, 660, 838	3 14,662, 618	13, 529, 047
Calcined gypsum produced: Short tons Value	6, 736, 185 \$55, 907, 448	7, 166, 005 \$66, 668, 981	7, 617, 617 \$76, 170, 562	8, 848, 029 \$88, 575, 600	8, 608, 378 \$91, 335, 989	7, 801, 050 \$83, 454, 677
Gypsum products sold: 4 Uncalcined uses: Short tons	2, 334, 062 \$8, 399, 326 247, 646 \$4, 458, 249 \$187,353,699	2, 656, 446 \$9, 844, 330 254, 148 \$5, 260, 875 \$229,948,261	2, 745, 571 \$10, 592, 392 250, 088 \$5, 383, 874 \$256,176,655	2, 938, 108 \$11, 435, 694 299, 119 \$6, 337, 055 \$301,550,728	3, 259, 312 \$13, 173, 189 334, 382 \$7, 309, 336 \$301,169,171	3, 138, 786 \$13, 120, 432 318, 642 \$6, 998, 102 \$280, 976, 226
Total valueGypsum and gypsum prod-	\$200,211,274	\$245,053,466	\$272,152,921	\$319,323,477	\$321,651,696	\$301, 094, 760
ucts: Imported for consumption Exported	\$3, 411, 814 \$1, 420, 086	\$4, 792, 191 \$1, 993, 671	\$5,377,710 \$1,600,477	5\$7, 275, 615 \$1, 348, 068	\$\$8,546,119 \$1,214,847	\$8, 514, 497 \$1, 344, 053

Each mine, plant, or combination mine and plant is counted as 1 establishment.
 Excludes byproduct gypsum.
 Revised figure.

DOMESTIC PRODUCTION

Crude.—The rate of output of domestically mined crude gypsum reached a 3-year low when production declined to 2 million short tons in the first quarter of 1957. This tonnage was 23 percent below the first-quarter figure for 1956 and 15 percent below that for 1955. ing the second and third quarters the output of crude gypsum increased steadily, with production in the third quarter exceeding the output

Made from domestic, imported, and byproduct gypsum.
 Owing to changes in tabulating procedures by the Bureau of the Census, data known to be not comparable with previous years.

¹ Commodity specialist.
2 Supervisory statistical assistant.

in the corresponding period of the previous year. The output of crude gypsum for the year totaled 9.2 million short tons—11 percent below 1956. Compared with 1956, nearly all States reported lower production. The five leading States mining crude gypsum were California, Iowa, Michigan, New York, and Texas; together they furnished about 62 percent of the United States total. Mining was discontinued at 3 mines in Colorado and 1 each in Arizona and Wyoming; 2 properties

TABLE 2.—Crude gypsum mined in the United States, 1956-57, by States

		1956		1957			
State	Active nines	Short tons	Value	Active mines	Short tons	Value	
Arizona California Colorado Lowa Louisiana Michigan Nevada New York South Dakota Texas Washington Wyoming Other States	3 12 6 4 1 4 3 5 1 5 (1) 2 17	95, 666 1, 389, 390 88, 026 1, 177, 488 1, 715, 832 790, 356 1, 140, 187 15, 794 1, 156, 956 (1) 11, 380 2, 449, 424	\$366, 115 3, 401, 606 352, 761 3, 919, 032 598, 000 5, 861, 152 2, 700, 708 4, 817, 353 63, 176 3, 623, 005 (1) 45, 521 8, 351, 016	(1) 12 (1) 4 (1) 4 (1) 5 1 7 1 (1) 27	(1) 1, 268, 021 (1) 1, 123, 468 (1) 1, 385, 952 (1) 863, 963 13, 303 1, 043, 236 6, 000 (1) 3, 490, 637	(1) \$2, 995, 106 (1) 3, 773, 251 (1) 4, 822, \$10 (1) 3, 749, 243 53, 212 18, 000 (1) 11, 116, 60 7	
Total	63	10, 316, 483	34, 099, 445	61	9, 194, 580	29, 871, 446	

¹ Included with "Other States."
² Includes the following States to avoid disclosing individual company confidential data: Arkansas, Idaho (1957 only), Louisiana (1957), Virginia, Washington (1956), and Wyoming (1957), 1 mine each; Arizona (1957), Indiana, Kansas, Montana, Ohio, and Utah, 2 mines each; Colorado (1957) and Nevada (1957), 3 mines each; and Oklahoma, 4 mines.

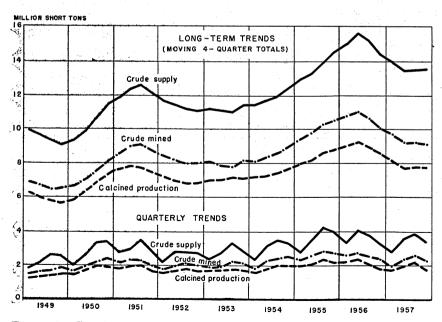


FIGURE 1.—Trends of new crude supply, domestic crude mined, and production of calcined gypsum, 1949-57, by quarters.

were opened in Texas and 1 in Idaho. Of the 61 mines producing in 1957, 43 were open pit, 15 underground, and 3 combinations of the

2 types.

Calcined.—Production of calcined gypsum from domestic and imported ores in 1957 dropped 9 percent below kettle and kiln output in 1956. Calcined gypsum was produced from domestic and imported ore by 57 plants having 210 kettles and 63 pieces of other calcining equipment. Oil, natural gas, propane, and coal were the fuels used to supply the heat necessary for converting crude gypsum to the calcined form in which most gypsum is used. The average mill value, which in most instances is the transfer value assigned by the producers who also mine crude, was \$10.70 per ton, an increase of \$0.09 above the value in 1956.

Mine and Products-Plant Development.—Kaiser Gypsum Co., which recently entered the insulation-board market through the purchase of Fir-Tex Insulation Board, Inc., completed constructing its new wall-board and plaster plant at Antioch, Calif.³

TABLE 3.—Calcined gypsum produced in the United States, 1956-57, by districts

District	19	56	1957		
	Short tons	Value	Short tons	Value	
New Hampshire, Massachusetts, and Connecticut Eastern New York, New Jersey, Pennsylvania, Geor-	295, 926	\$3, 191, 498	268, 519	\$2, 808, 503	
gia, and Florida	1, 640, 531	17, 347, 710	1,626,072	17, 811, 873	
Ohio, Virginia, Indiana, and Maryland	1, 547, 171	17, 404, 918	1, 438, 622	16, 208, 680	
Western New York	708, 447	7, 731, 126	550, 895	6, 046, 012	
Michigan	673, 890	6, 673, 743 8, 484, 783	518, 314 714, 708	5, 189, 702 7, 340, 587	
Iowa Kansas and Oklahoma	803, 137 517, 598	4, 410, 150	473, 681	3, 980, 045	
Kansas and Oklahoma Louisiana and Texas	902.046	10, 169, 270	847, 412	9, 763, 173	
Colorado, Montana, Utah, and Washington	308, 641	3, 958, 335	279, 372	3, 691, 518	
Arizona, California, and Nevada	1, 210, 991	11, 964, 456	1, 083, 455	10, 614, 584	
Total	8, 608, 378	91, 335, 989	7, 801, 050	83, 454, 677	

TABLE 4.—Active calcining plants and equipment in the United States, 1955-57, by States

		1955			1956			1957		
State		Equipment			Equipment			Equipment		
Dicave	Calcin- ing plants	Ket- tles	Other cal- ciners 1	Calcin- ing plants	Ket- tles	Other cal- ciners ¹	Calcin- ing plants	Ket- tles	Other cal- ciners 1	
California	5 4 4 7 4 26 50	12 21 20 21 29 94 197	9 4 6 32 51	6 4 4 8 4 31 57	13 21 20 24 29 102	12 4 3 6 38 63	6 4 7 5 31 57	18 21 20 24 30 97	12 4 3 5 39 63	

¹ Includes rotary and beehive kilns, grinding-calcining units, and hydrocal cylinders.

² Comprises calcining plants in 1955-57 as follows: 1 each in Arizona (1956-57), Connecticut, Florida, Georgia, Maryland, Massachusetts, Montana, New Hampshire, Oklahoma, Pennsylvania, and Washington; 2 each in Kansas, Louisiana (1956-57), Nevada, New Jersey (1 in 1955), Ohio, Utah, and Virginia; 3 in Colorado (2 in 1955) and Indiana.

Chemical Engineering, vol. 64, No. 2, February 1957, p. 352.

It was reported that the Flintkote Co. of East Rutherford, N. J., was constructing a new plant at North Judson, Ind., for manufacturing building material for combination roof decks and ceilings, floor slabs, structural insulation, interior sheathing, stucco, and interior plaster base.4

United States Gypsum Co., Chicago, Ill., announced plans in December for constructing a multimillion-dollar gypsum plant near

Houston, Tex.5

National Gypsum Co., Buffalo, N. Y., purchased the gypsumproducts plant of Connecticut Adamant Plaster Co. at New Haven,

The company planned to expand plant operations to include other

building products, such as sheathing and roof deck.

The Allied Chemical and Dye Corp. Barrett Division began manufacturing gypsum board products at its plant in Edgewater, N. J. This plant was reported to be fully automatic and to have a daily capacity of 800,000 square feet of gypsum board. The annual production goal for the plant has been set at a quarter billion square feet.6

Cheekako Development Corp. was reported to have begun mining gypsum on the Wind River Indian Reservation, 27 miles northwest of

Riverton, Wyo.⁷

New facilities were acquired at Des Plaines, Ill., by the Celotex Corp., Chicago, as a major step in expanding its research facilities. The existing company research facilities in other parts of the country will be maintained.8

CONSUMPTION AND USES

Outlays for new construction in 1957 reached a record high as public construction increased. Total private building was almost unchanged, as the increase in nonresidential construction offset the decline in residential building. Activity in the industry reached a low in the first quarter, when the seasonally adjusted annual rate was reported as 940,000, a decrease of almost one-third from the peak reached in the second quarter of 1955. By late spring the seasonally

⁴ Pit and Quarry, Flintkote Co. Constructing \$1,000,000 Insulation Plant at 30-Acre Indiana Site: Vol. 49, No. 7, January 1957, p. 26.

[‡] Pit and Quarry, United States Gypsum Plans Big Plant at Texas Site: Vol. 50, No. 5, November 1957,

<sup>Pit and Quarry, Olive States 197
Oil, Paint and Drug Reporter, Gypsum-Board Unit Opened in New Jersey by Barrett Division: Vol. 173, No. 2, Jan. 13, 1958, p. 55.
Engineering and Mining Journal, vol. 158, No. 4, April 1957, p. 165.
Pit and Quarry, Celotex Buys Des Plaines Site to Expand Research Facilities: Vol. 49, No. 7, January 1977, p. 127</sup>

GYPSUM 567

adjusted rate had risen to about 1 million units and remained close

to it for the remainder of the year.

Consumption of most gypsum building products, particularly the high-value prefabricated materials used in residential construction, followed the trends of the residential building industry. Sales of uncalcined gypsum products were 4 percent lower than in the previous year, due primarily to the decline in the production of portland-cement retarder. Industrial and building plasters declined 5 and 6 percent respectively.

STOCKS

Producers reported stocks of crude gypsum totaling 2,313,000 short tons on hand December 31, 1957, compared with 2,265,000 tons on the same date of the preceding year and 1,894,000 tons at the end of 1955.

FIGURE 2.—Value of gypsum products sold or used in 1928, 1938, 1948, and 1950-57, by uses.

TABLE 5.—Gypsum products (made from domestic, imported, and byproduct crude gypsum) sold or used in the United States, 1956-57, by uses

		1956			1957		Perce	nt of
Use		Valu	е		Valu	e	chang	
	Short tons	Total	Aver- age	Short tons	Total	Aver- age	Ton- nage	Aver- age value
Uncalcined: Portland-cement retarder	2, 393, 502 830, 337 35, 473	\$9, 616, 456 3, 131, 822 424, 911	\$4.02 3.77 11.98	2, 272, 809 831, 249 34, 728	\$9, 574, 240 3, 121, 429 424, 763	\$4. 21 3. 76 12. 23	-5 (1) -2	(1) +
Total uncal- cined uses	3, 259, 312	13, 173, 189	4.04	3, 138, 786	13, 120, 432	4. 18	-4	+
Industrial: Plate-glass and terracotta plasters Orthopedic and dental plasters Industrial molding, art, and easting plas-	67, 751 51, 296 10, 112	1, 007, 896 1, 056, 465 360, 045	14. 88 20. 60 35. 61	66, 663 46, 263 10, 656	986, 077 951, 597 400, 185	14. 79 20. 57 37. 55	-2 -10 +5	(1) +
other industrial uses 3.	91, 111 114, 112	1, 789, 975 3, 094, 955	19.65 27.12	84, 795 110, 265	1, 675, 546 2, 984, 697	19. 76 27. 07	-7 -3	(¹) +
Total indus- trial uses	334, 382	7, 309, 336	21.86	318, 642	6, 998, 102	21.96	-5	(1)
Building: Cementitious: Plasters: Base-coat	1, 566, 574 656, 551 4, 817 152, 521 12, 862 432, 139 21, 920 46, 889	25, 028, 412 15, 224, 222 66, 738 2, 819, 216 950, 459 6, 707, 468 2, 124, 817 1, 156, 867	15. 98 23. 19 13. 85 18. 48 73. 90 15. 52 96. 94 24. 67	1, 412, 223 616, 845 3, 157 141, 616 12, 741 468, 654 21, 816 41, 311	22, 781, 424 14, 464, 858 42, 802 2, 637, 580 1, 011, 754 7, 362, 848 2, 002, 020 1, 045, 045	16. 13 23. 45 13. 56 18. 62 79. 41 15. 71 91. 77 25. 30	-10 -6 -34 -7 -1 +8 (1) -12	++1 +++1+
Total cementi- tious	2, 894, 273	54, 078, 199	18. 68	2, 718, 363	51, 348, 331	18. 89	-6	+
Prefabricated: Lath	2, 021, 469 4, 184, 636 145, 493 1, 394	67, 819, 914 167, 055, 985 5, 458, 631 66, 806	⁸ 25. 35 ⁵ 36. 32 ⁸ 39. 37 ⁵ 53. 53	1, 697, 662 3, 917, 180 138, 334 1, 564	57, 410, 171 160, 323, 998 5, 345, 332 83, 898	5 25. 47 5 37. 26 5 40. 60 5 64. 59	6-16 6-6 6-5 6+4	(1) +
poured-in-place gypsum roof deck_ Tile	56, 176 181, 710	2, 205, 911 4, 483, 725	5 41, 29 7 93, 20	52, 727 174, 172	2, 151, 900 4, 312, 596	⁵ 42. 61 7 94. 48	6—5 6—3	‡
Total prefab- ricated	6, 590, 878	247, 090, 972	37. 49	5, 981, 639	229, 627, 895	38. 39	6—10	+
Total building uses		301, 169, 171			280, 976, 226			
Grand total		321, 651, 696			301, 094, 760			

Less than 1 percent.
 Includes uncalcined gypsum for use as filler and rock dust, in brewer's fixe, in color manufacture, and for unspecified uses.
 Includes dead-burned filler, granite polishing, and miscellaneous uses.
 Includes joint filler, patching, painter's, insulating, and unclassified building plasters.
 Average value per thousand square feet.
 Percent of change in square footage.
 Average value per thousand square feet of partition tile only.

TABLE 6.—Gypsum board and tile sold or used in the United States, 1948-52 (average) and 1953-57, by types

		Lath			Wallboard		i y	Sheathing	
Year	Thou-	Value	3	Thou-	Value	Э	Thou- sand	Value	•
	square feet	Total	Average 1	square feet	Total	Aver- age 1	square feet	Total	Aver- age 1
1948-52 (av- erage) 1953 1954 1955 1956 1957	2, 477, 492 2, 437, 481 2, 489, 665 2, 939, 914 2, 675, 184 2, 253, 806	58, 396, 664 60, 744, 726 71, 340, 593 67, 819, 914	23. 96 24. 40 24. 27 25. 35	3, 564, 427 4, 006, 951 4, 732, 331 4, 598, 927	139, 010, 481 165, 899, 184 167, 055, 985	33. 66 34. 69 35. 06 36. 32	119, 560 135, 027 125, 921 138, 644	\$4, 014, 420 4, 366, 801 5, 010, 992 4, 671, 953 5, 458, 631 5, 345, 332	36, 52 37, 11 37, 10 39, 37
	Lan	ninated board	đ	I	Formboard			Tile *	
Year	Thou- sand	Value)	Thou-	Value	3	Thou-	Value)
	square feet 4	Total	Aver- age 1	square feet	Total	Aver- age 1	square feet	Total	Aver- age
				(2)	(2)	(2)	33, 127	\$3, 943, 537	\$75, 50

Per thousand square feet, f. o. b. producing plant.
 Formboard included with wallboard. Separate data not available.
 Includes partition, roof, floor, soffit, shoe, and all other gypsum tiles and planks.
 Area of component board and not of finished product.
 Per thousand square feet, f. o. b. producing plant, of partition tile only.

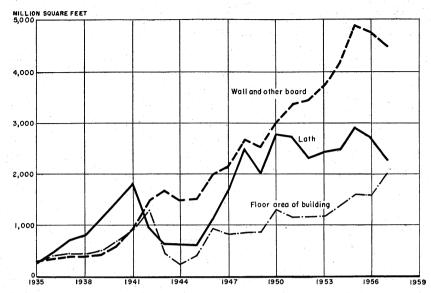


FIGURE 3. -Trends in sales of gypsum lath and wallboard and other boards (including wallboard, laminated board in terms of component board, formboard, and sheathing), compared with Dodge Corp. figures on combined floor area of residential and nonresidential buildings, 1935-57.

TABLE 7.—Gypsum lath and wallboard sold or used in the United States, 1956-57, by thickness

	195	6			198	57	
Thousand	Short	Valu	е	Thousand	Short	Valu	ıe
square feet	tons	Total	Aver- age 1	square feet	tons	Total	Aver- age 1
2, 654, 641 20, 543 2, 675, 184	2, 000, 176 21, 293 2, 021, 469	\$67, 193, 429 626, 485 67, 819, 914	\$25. 31 30. 50 25. 35	2, 231, 799 22, 007 2, 253, 806	1, 674, 990 22, 672 1, 697, 662	\$56, 738, 263 671, 908 57, 410, 171	\$25. 42 30. 53 25. 47
120, 848 2, 074, 722 2, 310, 303 93, 054	69, 018 1, 617, 682 2, 370, 611 127, 325	3, 554, 065 69, 612, 368 88, 994, 890 4, 894, 662	29. 41 33. 55 38. 52 52. 60	199, 498 1, 836, 752 2, 157, 610 109, 527	129, 636 1, 436, 105 2, 203, 811 147, 628	6, 249, 713 62, 433, 052 85, 638, 759 6, 002, 474	31, 33 33, 99 39, 69 54, 80
	2, 654, 641 20, 543 2, 675, 184 120, 848 2, 074, 722 2, 310, 303	Thousand square feet tons 2, 654, 641 21, 293 2, 675, 184 2, 021, 469 120, 848 2, 074, 722 1, 1, 617, 682 2, 310, 303 2, 370, 611	Thousand square feet Short tons Total 2, 654, 641 2, 000, 176 \$67, 193, 429 20, 543 21, 293 626, 485 2, 675, 184 2, 021, 469 67, 819, 914 120, 848 69, 018 3, 554, 065 21, 310, 303 2, 370, 611 88, 994, 890	Thousand square feet Short tons Total Average 1 2, 654, 641 20, 543 21, 293 626, 485 30. 50 2, 675, 184 2, 021, 469 67, 819, 914 25. 35 120, 848 69, 018 3, 554, 065 29, 41 2, 017, 722 1, 617, 682 69, 612, 368 33. 55 2, 310, 303 2, 370, 611 88, 994, 890 38. 55	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Per thousand square feet, f. o. b. producing plant.
 Includes a small amount of ¼-inch lath.
 Includes a small amount of 5/6-inch wallboard.

PRICES

Producers reported that the average value of crude gypsum mined was \$3.25 per short ton (\$3.31 in 1956); among the uncalcined uses, the unit values of portland-cement retarder and agricultural gypsum products were \$4.21 and \$3.76, respectively. The values of industrial gypsum products, except orthopedic and dental plasters (which

increased 5 percent), varied within 1 percent. All prefabricated products increased in value, particularly laminated board, which increased 21 percent.

FOREIGN TRADE®

As in the previous year, import of crude gypsum into the United States totaled 4.3 million short tons. Canada supplied 85 percent of the total quantity imported and approximately 27 percent of the total United States supply. Imports of crude gypsum from Canada, United Kingdom, and Italy declined.

TABLE 8.—Gypsum and gypsum products imported for consumption in the United States, 1948-52 (average) and 1953-57

[Damesta	of the	Census
Dureau	or rue	Censusi

Year	Crude (i anhy	ncluding drite)		nd or sined	Keene's	cement	Alabaster manufac-	Other manufac- tures.	Total
Short tons Value	Value	Short tons	Value	Short tons	Value	tures ¹ n. e. s. (value)	value		
1948-52 (average)	3, 039, 330 3, 184, 292 3, 368, 133 3, 97, 105 4 4, 346, 135 4, 334, 467	\$3, 146, 046 4, 288, 589 3 4, 878, 405 3 6, 298, 410 3 7, 814, 223 7, 570, 671	784 888 684 937 1, 146 870	\$24, 388 31, 108 25, 438 32, 674 39, 333 33, 043	(2) 11 1	\$307 2 433 834	\$97, 519 181, 421 3 210, 503 3 346, 357 3 415, 973 577, 273	291, 071 3 262, 931	\$3, 411, 814 4, 792, 191 \$ 5, 377, 710 \$ 7, 275, 615 \$ 8, 546, 119 8, 514, 497

¹ Includes imports of jet manufactures, which are believed to be negligible.

2 Less than 1 ton

TABLE 9.—Crude gypsum (including anhydrite) imported for consumption in the United States, 1955-57, by countries

[Bureau of the Census]

Country	18	155	19	56	195	57	
*	;Short tons	Value	Short tons	Value	Short tons	Value	
Vorth America: Canada Dominican Republic Jamaica Mexico Total	3, 483, 179 45, 472 68, 294 380, 160 3, 977, 105	\$5, 770, 040 96, 807 80, 990 350, 573 6, 298, 410	1 3, 771, 282 38, 923 135, 441 388, 839	\$6, 986, 334 93, 943 357, 985 348, 563 7, 786, 825	3, 686, 237 57, 089 167, 203 419, 304 4, 329, 833	\$6, 500, 085 152, 375 536, 888 373, 473 7, 562, 821	
Europe: ItalyUnited Kingdom	5, 677, 100	0, 280, 410	11,648	268 27, 130	4, 634	7,85	
Total			11,650	27, 398	4,634	7, 850	
Grand total	3, 977, 105	² 6, 298, 410	1 4, 346, 135	2 7, 814, 223	4, 334, 467	7, 570, 67	

¹ Revised figure.

³ Owing to changes in tabulating procedures by the Bureau of the Census data known to be not comparable with years before 1954.
4 Revised figure.

² Owing to changes in tabulating procedures by the Bureau of the Census data known to be not comparable with years before 1954.

[•] Figures on imports and exports compiled by Mae B. Price and Elsie D. Jackson, Division of Foreign Activities, Bureau of Mines, from records of the U. S. Department of Commerce, Bureau of the Census.

TABLE 10.—Gypsum and gypsum products exported from the United States, 1948-52 (average) and 1953-57

[Bureau of the Census]

Year	Crude, cru calcin		Plasterbo board,	ard, wall- and tile	Other man- factures,	Total value
	Short tons	Value	Square feet	Value	n. e. s. (value)	
1948-52 (average)	19, 394 23, 690 22, 384 22, 539 20, 757 24, 447	\$466, 860 693, 632 761, 524 737, 531 710, 564 762, 687	25, 713, 073 45, 767, 496 20, 968, 956 8, 686, 854 7, 026, 932 8, 866, 572	\$761, 444 1, 195, 168 688, 820 412, 397 363, 648 519, 668	\$191, 782 104, 871 150, 133 198, 140 140, 635 61, 698	\$1, 420, 086 1, 993, 671 1, 600, 477 1, 348, 068 1, 214, 847 1, 344, 053

¹ Effective Jan. 1, 1949, calcined gypsum not separable from crude, crushed, or calcined.

WORLD REVIEW

NORTH AMERICA

Canada.—Western Gypsum Products, Ltd., Winnipeg, a wholly-owned subsidiary of British Plaster Board (Holding), Ltd., of London, acquired extensive deposits of gypsum at Windermere in East Kootenay, British Columbia, through the purchase of Westroc Industries, Ltd., and Columbia Gypsum Co. of Vancouver. Reported sales price of the 2 companies was \$2 million.¹⁰

Preliminary investigations of a number of gypsum deposits in the southern portion of Cape Breton Island, Nova Scotia, was begun by

the Bestwall Gypsum Co. (Canada), Ltd.¹¹

Jamaica.—Exports of gypsum from Jamaica in 1956 totaled 135,053 short tons, compared with 92,014 tons in 1955 and 179,062 tons in 1954. Exports were discontinued during the latter half of 1955, while Jamaica Gypsum, Ltd., a subsidiary of United States Gypsum Co., installed a new crushing plant at the quarry. In 1956 about 90 workers were employed by Jamaica Gypsum in its mining operations.¹²

EUROPE

United Kingdom.—Solvay Chemicals, Ltd., a subsidiary of Marchon Products, Ltd., White-haven, Cumberland, England, is supplying approximately 7,000 tons of anhydrite per week to its chemical plant. The plant produces 1 ton of portland cement for each ton of sulfuric acid resulting from the anhydrite process.¹³

ASIA

U. S. S. R.—It was reported that large deposits of gypsum have been found in the Angara Steppe area. Deposits containing more than 10 million tons have been made ready for exploitation. When operated at full capacity the mines are expected to produce in excess of 300,000 tons per year.¹⁴

¹⁰ Pit and Quarry, Western Gypsum Products Acquires Two B. C. Companies: Vol. 50, No. 2, August

^{1957,} p. 34. ¹¹ Wall Street Journal, Bestwall Gypsum Developing Properties in Nova Scotia: Vol. 149, No. 54, Mar. 19, 1957, p. 22.

^{1957,} p. 22.

1957, p. 22.

1958, p. 22.

1959, p. 22.

1959, p. 20.

1959, p. 200.

1959, p. 200.

AFRICA

Tanganyika.—According to a report contained in the April 1956 issue of The East African Trade and Industry, plans are being made by Gypsum Products, Ltd., to develop the extensive deposits of gypsum at Mkomasi. Reserves at this property have been conservatively estimated to contain 1 million tons, but may exceed this figure by 100 percent when the ore deposit is proved. Gypsum obtained from this property will be processed by the Bellrock system of continuous calcination into a plaster. 15

Union of South Africa.—According to the Union of South Africa Department of Mines (Pretoria) Quarterly Reports, 1956, the output of gypsum increased 17 percent in 1956 compared with 1955. The following nine companies were listed as producers of gypsum in 1956:

Daroba Gypsum Co. (Pty.), Ltd., Vanrhynsdorp, Cape Province.
Fincham's Base Mineral Mines (Pty.), Ltd., Postmasburg, Cape Province.
Kimberley Gypsum Supplies (Pty.), Ltd., Kimberley, Cape Province.
Nantwich Salt Works, Ltd., Riverton, Cape Province.
National Portland Cement Co., Ltd., Claremont, Cape Province.
Dr. J. Nortje and J. Gauche, Vredendal, Cape Province.
P. J. Theophilus, Barroe, Cape Province.
Permanent Gypsum and Allied Minerals (Pty.), Ltd., Longlands, Barkly West,

Cape Province.

Potgieter's Gypsum Operations (Pty.), Ltd., Kimberley, Cape Province.

OCEANIA

Australia.—Large-scale mining operations were planned on Kangaroo Island, Australia, by Fred Ingham Co. The company was recently granted a 500-acre lease on an area known as Salt Lake, which was estimated to contain 2.5 million tons of gypsum. Gypsum mined at this property will supply a new plaster plant to be constructed at Port Adelaide.16

TABLE 11.—World production of gypsum, by countries, 1 1948-52 (average) and 1953-57, in thousand short tons 2

[Compiled by Hel	len L. Hun	t and Bere	nice B. Mi	tchell]		
Country 1	1948-52 (aver- age)	1953	1954	1955	1956	1957
North America: Canada ¹ Cuba Dominican Republic. Guatemala	3, 580 4 23 13	3, 839 + 33 20	4, 184 4 33 29	4,540 4 35 64	4, 900 24 84	4, 501 4 45 4 77
Jamaica United States	25 7, 827	83 8, 293	186 8, 996	92 10, 684	140 10, 316	212 9, 195
Total 1 4	11, 516	12, 378	13, 538	15, 525	15, 574	14, 147
South America: Argentina Brazil Chile Colombia Peru Venezuela	146 4 34 66 4 39 2	4 138 82 77 9 4 81	164 83 4 83 17 4 65	141 178 4 83 24 4 91	193 170 4 77 55 4 94	4 198 4 165 4 77 4 66 4 96
Total i 4	291	387	412	517	589	602

See footnotes at end of table.

Bureau of Mines, Mineral Trade Notes: Vol. 45, No. 4, October 1957, p. 38.
 Chemical Age (London), Gypsum Project: Vol. 77, No. 1956, Jan. 5, 1957, p. 15.

TABLE 11.—World production of gypsum, by countries, 1 1948-52 (average) and 1953-57, in thousand short tons 2—Continued

Country 1	1948-52 (aver- age)	1953	1954	1955	1956	1957
			1.1			
Europe:	100	004	404	4.55	400	
Austria 3 Finland	123 4 1	331	404	455	499	579
Finland France (saleable) 3	2, 337	3, 193	9 512	4, 018	9 007	40.000
Germany, West 5	709	857	3, 513 932	999	3, 967 1, 046	4 3, 860 982
Greece	13	28	22	17	1, 040	4 19
Ireland	82	102	124	139	121	149
Italy	565	739	785	817	870	4 880
Luxembourg	13	10	100	3	6	4 6
Poland	4 46	(6)	(6)	(6)	(6)	(6)
Portugal	42	51	64	52	61	4 60
Spain	1, 849	1, 154	957	1,067	1, 245	851
Switzerland	4 125	138	165	4 220	266	259
U. S. S. R.	1, 851	2, 635	2,799	3, 164	4 3, 300	4 3, 300
United Kingdom 3	2, 482	2, 995	3,093	3, 266	3, 734	3, 721
Yugoslavia	14	49	99	74	4 77	4 77
Total 1 4	10, 341	12, 490	13, 200	14, 550	15, 500	15, 050
Asia:						
Ceylon	(7)	(7)	(7)	(7)	1	1
China 4	70	110	220	280	330	330
Cyprus 4	100	210	220	180	140	165
India	233	656	686	773	952	1,024
Iran 4 8	275	180	220	740	380	390
Iraq 4	275	275	275	275	385	440
Israel 4	22	25	31	56	55	24
Japan	165	299	372	374	417	524
Pakistan	20	31	35	31	41	4 40
Philippines	2					
Syria 6	4	1	1	1	2	4 2
Taiwan	. 4	2	4	11	14	7
Thailand	(7)					2
Total 1 4	1, 170	1, 790	2,060	2, 720	2, 720	2, 950
Africa:						
Algeria	54	100	80	132	84	4 84
Angola	5	6	10	3	22	4 22
Belgian Congo	3	7	10	11	11	4 11
Egypt	113	205	157	432	225	4 220
Kenya	1	1	1	1	2	5
Morocco: Southern Zone	18	16	23	16	28	4 28
Sudan	3	8	4	3	2	4 2
Tanganyika	(7)	2	5	9	11	11
Tunisia	25	25	33	38	15	4 17
Union of South Africa	121	168	174	178	209	180
Total	343	538	497	823	609	4 580
Oceania:						
Australia	367	370	492	526	524	538
New Caledonia	12	21	3			
Total.	379	391	495	526	524	538

¹ In addition to the countries listed, gypsum is produced in Bulgaria, Ecuador, Korea, Mexico, and Rumania, but production data are not available. Estimates for these countries are included in the totals.

³ This table incorporates a number of revisions of data published in previous Gypsum chapters. Data do not add to totals shown, because of rounding where estimated figures are included in the detail.

⁴ Includes convicting.

Includes anhydrite.
 Estimate.

<sup>Estimate.
Crude production estimates based on calcined figures.
Data not available; estimate by senior author of chapter included in total.
Less than 500 tons.
Year ended March 20 of year following that stated.
Some pure, some 80 percent gypsum and 20 percent limestone.</sup>

575 **GYPSUM**

TECHNOLOGY

A rapid hydration process for converting anhydrite was developed as a result of a study conducted to determine natural conversion of anhydrite to gypsum. Conditions were determined from laboratory data on the effects of particle size, seeding, ratio of solid to liquid, activation, temperature, agitation, time, and washing conditions. A slurry of 10 to 50 percent pulverized anhydrite with minor gypsum in a solution of sodium sulfate or potassium sulfate (also saturated with calcium sulfate) is agitated below 30° C. for 1 to 7 hours; after filtration, the solids are washed with water or saturated calcium sulfate solution. The alkali sulfate activator may be recycled. 17

A report on the control of mine roofs at United States Gypsum Co. property at Oakfield, Calif., through the use of roof bolts was described in the trade press. The elimination of timber supports, roof-bolt type and pattern used, testing of bolts, roof-bolting equipment, bit life,

and the advantages of roof bolting were discussed.¹⁸

Two substantial deposits of gypsum, varying in thickness from 120 to 125 feet and averaging 75-percent-pure gypsum, were reported found in the Ottumwa and Hendrick areas of Iowa. The deposits were discovered by testing rock samples obtained during well drilling. Depths extend from 825 to 950 feet at Ottumwa and 935 to 1,055 feet at Hendrick. It is now believed that the gypsum beds are continuous between Ottumwa and Hendrick, a distance of 15 miles.¹⁹

The feasibility of producing ammonium sulfate commercially from gypsum and ammonium carbonate has attracted interest both in the United States and abroad, especially in areas where sulfuric acid is made from imported sulfur. A brief description of the process and

cost involved are contained in a trade press article.²⁰

An article in the trade press discussed the basic factors in an economic appraisal of gypsum deposit. Among the factors discussed were available markets, efficient operating, high quality, and adequate tonnage.21

A report was published on a modernization program at the Ruberoid Co. mine and mill at Wheatland, N. Y. Mining method, roof bolting, and mine and mill equipment were discussed.²²

A report was made of the scrape stripping operations at United States Gypsum Co. Fort Dodge, Iowa, plant. A new method of stripping, geology of the ore body, mining system employed, drilling,

blasting, and crushing were discussed.23

Patents.—An apparatus and method were patented for machine application on walls of mortars formed by the use of binders. Water requirements are held to a minimum with this method, which is especially useful for rapid, high-quality plastering of walls, using a lightweight aggregate and gypsum plaster.24

Leininger, R. K., Conley, R. F., and Bundy, W. M., Rapid Conversion of Anhydrite to Gypsum: Ind. Eng. Chem., vol. 49, No. 5, May 1957, p. 13A.
 Ernst, E., and Runuik, R., Control of Mine Roof at Oakfield: Min. Eng., vol. 9, No. 6, June 1957,

Brist, E., and Runius, R., Control of Mine Roof at Oakheid: Min. Eng., vol. 9, No. 6, June 1957, pp. 646-647.
 Rock Products, Promotes Iowa Gypsum: Vol. 60, No. 3, March 1957, p. 44.
 Industrial and Engineering Chemistry, Ammonium Sulfate by the Gypsum Process: Vol. 49, No. 2, February 1957, pp. 57A-58A.
 Harvard, J. F., What Makes a Gypsum Deposit Economic: Min. Cong. Jour., vol. 43, No. 3, March 1957, pp. 476-676.

Harvard, J. F., When Advanced to The Harvard, J. F., When Advanced to T. 1957, pp. 65-58.

Rock Products, Modernizing a Gypsum Plant: Vol. 60, No. 2, pp. 98-102, 128.

Rock Products, Scraper Stripping Steps Up Output: Vol. 60, No. 2, February 1957, pp. 94-97.

Hubson, L. H., Method of Emplacing Mortar: U. S. Patent 2,770,560, Nov. 13, 1956.

A new molding composition was disclosed in a recent patent. The composition comprises gypsum plaster, asbestos fiber or ground pumice, wood flour, powdered cork, castor oil, and a solution of nitrocellulose in ethyl acetate.25

A patent disclosed an apparatus designed for gravity removal of contaminants, such as tramp iron from a moving stream of fine, dry

material.26

²⁵ Petersilie, H. H., and Zimmermann, E. O., Hardened Molded Article and Method of Forming Same: U. S. Patent 2,770,026, Nov. 13, 1956.

26 Morrow, U. H., Material Trap: U. S. Patent 2,769,544, Nov. 6, 1956.

lodine

By Henry E. Stipp 1 and lames M. Foley 2

NCREASED imports and the reduced price of crude iodine were problems confronting the domestic iodine industry during 1957. New uses for iodine and iodine compounds in sanitation and medicine, industry, and agriculture were reported.

DOMESTIC PRODUCTION

Iodine was produced from waste oil-well brines in 1957 by the Dow Chemical Co., with plants at Seal Beach, Venice, and Inglewood, Calif., and the Deepwater Chemical Co., Ltd., with a plant at Compton, Calif. Domestic producers supplied a substantial part of national requirements. In addition to the 2 California producers, approximately 19 firms processed crude iodine and produced refined iodine and iodine compounds.

CONSUMPTION AND USES

Consumption of iodine compounds during 1957 increased substantially over that in 1956. The increase was due partly to expansion of the Bureau of Mines canvass. The 1957 data include 152.113 pounds of iodine reported by firms not previously canvassed.

TABLE 1.—Crude iodine consumed in the United States, 1956-57

		1956			1957	
Compound manufactured	Num- ber of	Crude iodi sume		Num- ber of	Crude iodi sume	
	plants	Pounds	Percent of total	plants	Pounds	Percent of total
Resublimed iodine	5 9 5 10 15	142, 647 622, 889 123, 493 86, 172 300, 459	11 49 10 7 23	6 12 8 12 18	203, 062 1, 091, 009 213, 095 322, 699 379, 868	9 49 10 15 17
Total	1 22	1, 275, 660	100	1 27	2, 209, 733	100

¹ A plant producing over 1 product is counted but once in arriving at total.

¹ Commodity specialist.
2 Supervisory statistical assistant.

Iodine and iodine compounds found numerous and varied uses in medicine and sanitation, agriculture, and industry during 1957. large part of the iodine consumed was used in medicines and anti-Probably the best known use for iodine is the household antiseptic, "tincture of iodine." Increased use was made of iodophors as antiseptics and disinfecting agents. Iodine was also employed for disinfecting drinking water. Potassium or sodium iodide, potassium iodate, or cuprous iodide was added to livestock feed. Iodized proteins in stock and fowl feeds prevented various diseases and increased the yield of milk and eggs. The use of silver iodide crystals to seed clouds, thereby inducing rainfall, was small; however, this use has great potential for expansion. Radioactive iodine 131 was used in medicine and industry in increasing quantities. It was used in medicine for physical therapy and examinations of the human body. Industrially it was used for process control and research. new expanding use in metallurgy was in producing such high-purity metals as titanium, silicon, hafnium, and zirconium. In addition, iodine was used in photography, metallurgy, rubber, dyes, and analytical reagents and as catalysts.

STOCKS

Some stocks of iodine were maintained at St. Louis, Mo., and New York, N. Y., by domestic producers. In addition large stocks were held in Chile and at Staten Island, N. Y., by Chilean Nitrate Sales Corp. These stocks are replenished at irregular intervals as they become depleted. Iodine was also stockpiled by the United States Government.

PRICES AND SPECIFICATIONS

According to the Oil, Paint and Drug Reporter the prices of iodine and iodine compounds during 1957 were as follows: Crude iodine, in kegs, \$1.10 per pound throughout the year; resublimed iodine, U. S. P., bottles, drums, \$2.30-\$2.32 per pound throughout the year; potassium iodide, drums, \$1.90-\$1.95 per pound throughout the year; sodium iodide, U. S. P., bottles, drums, \$2.55 per pound from January to mid-October and \$2.42-\$2.54 per pound for the remainder of the year; ammonium iodide, N. F., drums, bottles, \$4.26-\$4.38 per pound throughout the year.

National stockpile purchase specifications for crude iodine to supersede those of May 23, 1956, were issued December 27, 1957.

FOREIGN TRADE³

Imports of crude iodine from Chile increased 114 percent in 1957; however, imports from Japan decreased 23.7 percent from the 1956 high. Total imports of crude iodine in 1957 increased 58 percent to a new high. The increase in imports resulted from a reduction in the price of crude iodine in October 1956. Increased output by Chile was reported to be responsible for the price decrease.

Exports of iodine and iodine compounds in 1957 decreased 54 per-

cent to a total of 232,973 pounds.

² Figures on imports and exports compiled by Mae B. Price and Elsie D. Jackson, Division of Foreign Activities, Bureau of Mines, from records of the U. S. Department of Commerce, Bureau of the Census.

TABLE 2.—Crude iodine imported for consumption in the United States, 1948-52 (average) and 1953-57, by countries

[Bureau of the Census]

Country	1948-52 (average)	19	53	198	i4 .	
Journal	Pounds	Value	Pounds	Value	Pounds	Value	
South America: Chile	528, 970	\$822, 681	681, 484	\$1, 197, 379	615, 744 110	\$667,088	
Europe: France	161, 092	238, 658	276, 154	408, 645	330, 131	366, 354	
Grand total	690, 062	1, 061, 339	957, 638	1, 606, 024	945, 985	1, 033, 935	
Country	19	55	19	56	198	366, 35 1, 033, 934 57 Value	
Johnson	Pounds	Value	Pounds	Value	Pounds	Value	
South America: Chile	868, 040	\$1,034,834	1, 001, 701	\$1, 225, 849	2, 149, 065	\$2, 048, 594	
Europe: France	363, 954	477, 673	703, 167	954, 008	536, 424	720, 284	
Grand total	1, 231, 994	1, 512, 507	1, 704, 868	2, 179, 857	2, 685, 489	2, 768, 878	

TABLE 3.—Iodine, iodide, and iodates exported from the United States, 1948-52 (average) and 1953-57

[Bureau of the Census]

Year	Pounds	Value	Year	Pounds	Value
1948-52 (average)	287, 637 274, 690 338, 258	\$542, 727 452, 387 487, 633	1955	243, 686 505, 274 232, 973	\$356, 531 750, 140 335, 075

WORLD REVIEW

SOUTH AMERICA

Chile.—Exports of iodine totaled 792.4 metric tons in the 1955-56 crop year (July 1, 1955, through June 30, 1956) compared with 1,163 tons for the preceding year.⁴

TABLE 4.—Exports of iodine from Chile, crop year, 1955-56

Country of destination	Metric tons	Country of destination	Metric tons
Argentina Australia Belgium Brazil Czechoslovakia France Germany India Ireland Netherlands	25. 9 3. 3 27. 0 4. 6 5. 1 108. 7 71. 0 2. 2 . 1 6. 0	Peru Portugal. Spain Sweden Switzerland. United Kingdom. United States Total.	0. 4 . 5 35. 1 2. 1 1. 0 139. 6 359. 8

Chile produced 1,000 metric tons of iodine during the 1956 calendar year.⁵

<sup>Bureau of Mines, Mineral Trade Notes: Vol. 45, No. 1, July 1957, p. 29.
U. S. Embassy, Santiago, Chile, State Department Dispatch 430: Oct. 30, 1957, 4 pp.</sup>

EUROPE

Italy.—Production of iodine totaled 14,158 kilograms in 1955.6 1956 production totaled 13,415 kilograms of iodine.

United Kingdom.—Imports of iodine in 1956 were valued at £237,507, compared with £592,124 in 1955.8

Japan.—Production of elemental iodine in Japan during 1956 totaled 597 metric tons.9

TECHNOLOGY

Properties of iodophors, their advantages over aqueous iodine solutions, formulation problems, and the speed with which iodine acts were reviewed by chemists of the American Chemical Society.10 iodophor was described as a mixture of iodine and a carrier, in which the carrier increased the solubility of iodine in water and stabilized the iodine solution. Iodophors are less toxic but have all the germicidal activity of iodine. They are stable in solution due to lowering cidal activity of iodine. of the iodine vapor pressure. Iodophors do not stain and do not irritate the skin and eyes. Hard water does not interfere with their Interference of high bicarbonate content with germicidal action. germicidal action is corrected by proper formulation. Formulas have three basic ingredients-iodine, surfactant, and acid. Ingredients are varied to obtain different characteristics, such as storage stability, viscosity, foaming, and solubility. In tests of various iodine solutions, iodophors were effective against germs, as little as 10 p. p. m. iodine acting for 10 seconds. Iodine was more effective than chlorine or quarternary compounds.

Silicon suitable for semiconductor devices was produced from silicon tetraiodide by crystallization, sublimation, zone purification, and decomposition in vacuum.11

Cuprous iodide was said to have strong anti-inflammatory action in The compound and its effects on people were being studied. Data suggested that it may give action equal to that of corticosteroids at lower cost.

The United States Naval Ordnance Laboratory introduced an electrochemical device, termed a "solion," that may replace vacuum tubes and transistors for some applications. In the device ions move through a solution in a small sectionalized cylinder containing electrodes and a chemical solution. Potassium iodide and iodine were among the chemicals used. A low-voltage battery starts the current flow; and changes in condition, such as sound, temperature, pressure, and acceleration, influence the flow rate of iodide ions, and thus vary-

<sup>Bureau of Mines, Mineral Trade Notes: Vol. 44, No. 3, March 1957, p. 23.
U. S. Embassy, Rome, Italy, State Department Dispatch 1505: May 14, 1957, 5 pp.
U. S. Embassy, London, England, State Department Dispatch 2486: Apr. 3, 1957, 13 pp.
U. S. Embassy, Tokyo, Japan, State Department Dispatch 1191: May 6, 1957, 7 pp.
U. S. Embassy, Tokyo, Japan, State Department Dispatch 1191: May 6, 1957, 7 pp.
U. S. Embassy, Tokyo, Japan, State Department Dispatch 1191: May 6, 1957, 7 pp.
U. S. Embassy, Tokyo, Japan, State Department Dispatch 1191: May 6, 1957, 7 pp.
U. S. Embassy, Tokyo, Japan, State Department Dispatch 1191: May 6, 1957, 7 pp.
U. S. Embassy, Tokyo, Japan, State Department Dispatch 1191: May 6, 1957, 7 pp.
U. S. Embassy, Tokyo, Japan, State Department Dispatch 1967.
U. S. Embassy, Tokyo, Japan, State Department Dispatch 1970, 1971, 197</sup>

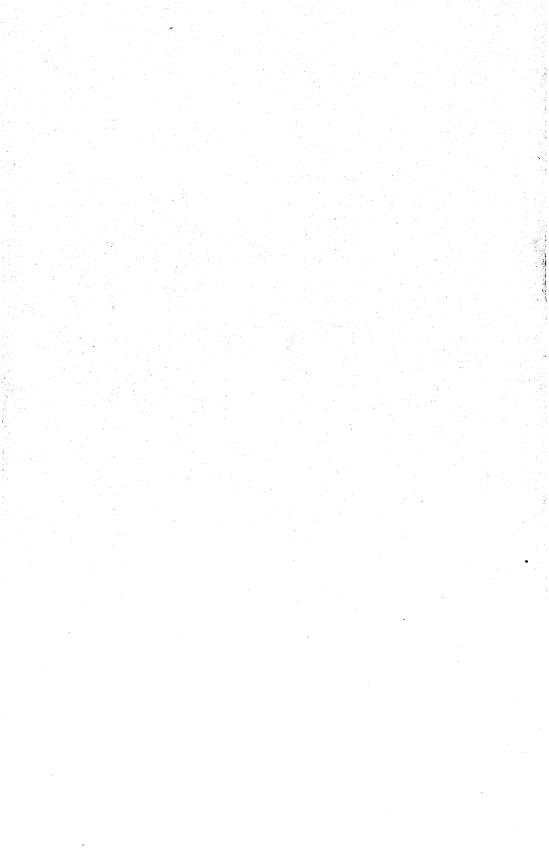
¹³ Chemical and Engineering News, Cuprous Iodide May Compete With Corticosteroids: Vol. 35, No. 42, Oct. 21, 1957, p. 21.

13 Chemical and Engineering News, New Jobs for Ions: Vol. 35, No. 27, July 8, 1957, pp. 24, 26.

TODINE 581

ing the current. The change in current is used to set off control devices.

The minimum cost for isotopes that could be expected under the largest volume uses was estimated by Willard F. Libby. The cost for iodine 131 was estimated as \$0.0004 per curie as compared with


the present selling price of \$550 per curie.

Milk from farms within 200 miles of Britain's Windscale plutonium plant was discarded because of possible contamination by radioactive iodine. Flant filters contained most of the harmful material that escaped. Air, vented to the atmosphere after filtering, was thought

to contain some radioactive material.

Iodine pentoxide was used in a field apparatus for determining the concentration of saturated hydrocarbons in air, developed by Stanford Research Institute. It will determine the concentration of aliphatic or alicyclic hydrocarbons in the range 0 to 5,000 p. p. m., with a maximum error of plus or minus 20 percent. The apparatus consists of a squeeze-bulb assembly fitted with a special calibration scale. A tube containing I_2O_5 and 65 percent fuming H_2SO_4 on silica gel is alongside the scale. The I_2O_5 oxidizes hydrocarbons in the air sample drawn through the tube and is reduced to elemental iodine. The hydrocarbon concentration is read directly from the scale and is proportional to the length of the brown iodine stain in the tube.

<sup>Chemical and Engineering News, Price of Isotopes Drops With Use: Vol. 35, No. 20, May 20, 1957, p. 19.
Chemical and Engineering News, vol. 35, No. 42, Oct. 21, 1957, p. 21.
Chemical and Engineering News, Analyzing for Hydrocarbons: Vol. 35, No. 21, May 27, 1957, p. 82.</sup>

Iron Ore

By Horace T. Reno 1 and Helen E. Lewis 2

■RON-ORE exploration was continued vigorously in 1957, and iron ore was produced for export at a record rate throughout the world despite the decline in business activity in the last half of the year. Iron ore imported for consumption in the United States comprised one-fourth of the total domestic supply.

TABLE 1.—Salient statistics of iron ore in the United States, 1948-52 (average) and 1953-57

	1948-52 (average)	1953	1954	1955	1956	1957
Iron ore (usable; less than 5 percent Mn): Production by districts: Lake Superior						
long tons Southeasterndo Northeasterndo Westerndo	80, 358, 720 7, 937, 181 4, 473, 795 6, 323, 785	95, 655, 105 7, 691, 745 5, 161, 813 8, 868, 658	6, 150, 260 4, 083, 608	83, 255, 400 7, 105, 706 4, 649, 566 2 6, 958, 070	77, 817, 113 6, 034, 638 4, 867, 098 2 8, 073, 272	6, 804, 825 4, 961, 470
Undistributed (byprod- uct ore)_long tons_	³ 588, 31 4	617,448	836, 052	1, 034, 002	1, 085, 210	810, 379
Totaldo	99, 681, 795	117, 994, 769	78, 128, 794	2 103, 002, 744	2 97, 877, 33 1	106, 148, 419
Production by types of product: Directlong tons Concentratesdo	73, 360, 419 21, 204, 952	82, 163, 882 29, 161, 642	49, 105, 976 23, 172, 948	2 28, 775, 735	² 59, 895, 222 ² 27, 342, 720	63, 885, 256 29, 106, 481
Agglomeratesdo Byproduct material (pyrites cinder and sinter)long tons	4, 563, 677 552, 747	6, 051, 797 617, 448			9, 554, 179 1, 085, 210	
Totaldo	99, 681, 795	117, 994, 769	78, 128, 794	² 103, 002, 744	2 97, 877, 331	106, 148, 419
Production by types of ore:						
Hematitelong tons Brown oredo Magnetitedo Byproduct material	87, 830, 293 2, 416, 286 8, 882, 469	2, 238, 236	2, 315, 407	92, 957, 669 2 2, 461, 011 6, 550, 062	81, 143, 609 2 3, 202, 450 2 12, 446, 062	
(pyrites einder and sinter)long tons	552, 747	617, 44 8	836, 052	1, 034, 002	1, 085, 210	810, 379
Totaldo Shipmentsdo Value Average value per ton at	99, 495, 207	117, 994, 769 117, 821, 981 \$796, 732, 998	76, 954, 081	² 103, 002, 744 ² 106, 257, 579 ² \$756, 852, 687	2 97, 924, 400	106, 148, 419 104, 969, 871 \$874, 884, 972
mineStocks at mines Dec. 31	\$5. 02	\$6. 76		\$7.12	² \$7. 7 6	
long tons_ Importsdo Valuelong tons	5, 694, 353 8, 332, 902 \$50, 064, 439		15, 792, 450 \$119, 458, 945		3 5, 465, 340 3 30, 410, 652 2 \$250, 490, 199	33, 653, 048 \$285, 060, 340
Valuelong tons Consumptionlong tons Manganiferous iron ore (5	3, 501, 547 \$22, 503, 212 102, 361, 015	4, 251, 955 \$32, 421, 637 122, 124, 661	\$24, 783, 997	4, 516, 828 \$36, 992, 523 4 125, 028, 306		\$49,301,960
to 35 percent Mn): Shipmentslong tons Value	1, 024, 918 \$3, 830, 512		498, 511 \$3, 079, 380			865, 123 \$5, 413, 353

¹ Direct shipping ore, washed ore, concentrates, agglomerates, and byproduct pyrites cinder and agglomerates.
² Revised figure.

Revised figure.
 Includes Puerto Rican ore—39,212 tons in 1951 and 138,613 tons in 1952.
 Includes 1,119,704 gross tons of manganiferous iron ore.
 Bureau of Mines not at liberty to publish figure.

¹ Assistant chief, Branch of Ferrous Metals and Ferroalloys. ² Statistical assistant.

TABLE 2.—Employment at iron-ore mines and beneficiating plants, quantity and tenor of ore produced, and average output per man in 1956, by districts and States

		日日	Employment	4.					Pro	Production					
Time	Time	Time	не	Time employed				Usable ore			Avera	Average per man (long tons)	an (long	tons)	
0.				Ma	Man-hours	Crude ore	**	Iron contained	ained	Orude	e ore		Usab	Usable ore	
of men Average Total amployed number man- of days shifts		Total man- shifts		Average		(long tons)	Long tons		Natu- ral	Per	Per	Per	Per	Iron contained	tained
				per shift	Total			Long tons	(per-	shift	hour	shift	hour	Per shift	Per hour
924 1 618	1 616	618 260		8	66	100	100 010 01	010	1	9					
11, 973 221 1, 010, 200 1, 164 229 266, 206	3,002, 266,2,	88		388	24, 023, 246 24, 023, 246 2, 129, 658	15, 950, 901 95, 571, 251 1, 551, 894	15, 045, 204 63, 818, 412 1, 551, 438	32, 781, 346 814, 504	51.72 52.50	31.832 5.830	3. 978 3. 978 . 729	8.070 21.256 5.828	1.009 2.657 .728	4. 174 10. 918 3. 060	0.522 1.365 .382
20, 046 244 4, 884, 969	4	, 884, 969		8.00	39, 083, 756	111, 109, 096	78, 413, 114	40, 341, 826	51.45	22.745	2.843	16.052	2.006	8.258	1.032
3, 214 175 562, 384		562, 384		8.18	4, 601, 800	11, 042, 699	5, 983, 327	2, 336, 297	39.05	19.636	2.400	10.639	1.300	4, 154	. 508
511 247 126,018	126, 018			8.00	1, 008, 147	1, 831, 391	933, 565	590, 013	63.20	14. 533	1.817	7.408	986	4.682	. 585
1, 657 244 403, 980	403,	403, 980	- 1	8.01	3, 236, 583	9, 791, 869	3, 933, 533	2, 430, 136	61.78	24, 238	3.025	9. 737	1.215	6.015	. 751
2, 168 244 529, 998	529,	529, 998	- 1	8.00	4, 244, 730	11, 623, 260	4, 867, 098	3, 020, 149	62.05	21.931	2. 738	9. 183	1.147	5.698	.712
649 227 147, 569 740 212 156, 533	147, 156,		1	8.00 8.08	1, 180, 549 1, 265, 443	4, 776, 804 8, 536, 069	4, 776, 804 3, 272, 693	2, 471, 908 1, 681, 203	51.75 51.81	32. 370 54. 532	4. 046 6. 746	32.370 20.907	4. 046 2. 586	16.751	1.329
1, 389 219 304, 102	304,	304, 102	1 1	8.04	2, 445, 992	13, 312, 873	8, 049, 497	4, 153, 111	51.77	43.778	5. 443	26.469	3, 291	13.657	1.698
26, 817 234 6, 281, 453	6,	, 281, 453		8.02	50, 376, 278	147, 087, 928	97, 313, 036	49, 851, 383	51.24	23.416	2.920	15.492	1.932	7.936	066

Includes manganese-bearing ore in the Lake Superior district.
 California, Newada, Colorado, Missouri, New Mexico, Texas, Washington, Montana, Arkansas, and Kentucky.
 Man-hour data for Idaho, Mississippi, Oregon, South Dakota, and Tennessee not available; therefore, production data for these States are excluded from all totals.

On the Mesabi range iron-ore beneficiation marked its 50th anniversary, flotation was applied commercially for the first time, and the Nation's largest iron-ore-beneficiation plant produced its first agglomerate. Direct reduction of iron ore was the item of principal technical interest in 1957.

EMPLOYMENT

Employment statistics for 1956 show that the average number of men employed in iron mines and beneficiating plants in all districts except those in the Southeastern States increased 8 percent in 1956 compared with 1955, although the quantity of usable iron ore and contained iron produced in these districts decreased in 1956. Complete employment data for the Southeastern and Western States could not be published for 1955, but their omission has no significance in comparing employment statistics of one year with another. The apparent decrease in labor efficiency in 1956 was due to increased output of low-grade ore in the Lake Superior district, where usable iron-ore output per man-shift dropped from 18.3 tons in 1955 to 16.0 tons in 1956.

DOMESTIC PRODUCTION

Domestic iron-ore production continued throughout 1957 at a near record rate; however, consumption declined in the last quarter, following a decline in steel production. Consequently, iron-ore stocks at mines, at United States docks, and at consuming plants were much above normal by the end of the year. Throughout the iron-mining industry, beneficiation and agglomeration of ore to obtain a product of higher grade and better structure was the principal concern. Reserve Mining Co. E. W. Davis plant at Silver Bay, Minn., produced taconite concentrate and agglomerate at capacity. Erie Mining Co. taconite concentration and agglomeration plant near Aurora, Minn., began operating late in 1957, and the company shipped iron-ore agglomerates from its new dock at Taconite Harbor, Minn., on Lake Superior. Jones & Laughlin Steel Corp. Hill-Annex tailings-reclamation plant at Calumet, Minn., used froth flotation to concentrate iron ore—the first commercial application of this process to ores of the Mesabi range.

Output of crude ore (mine product before it is treated to remove waste constituents) increased 10 percent in 1957 compared with 1956, principally owing to increased production from the taconite and jaspilite deposits of the Lake Superior district. Minnesota continued as the principal producer of crude ore, with 66 percent of the total; Michigan ranked second with 9 percent and Alabama third with 6 percent. Hematite ore comprised 71 percent, magnetite ore 22 percent, and brown ore 7 percent of the total crude iron ore produced in the United States in 1957. Most iron ores contain more than one iron mineral; therefore, this division among mineral types is made according to the mineral that predominates and is not precise. Underground iron mines in 1957 regained about 1 percentage point of their share of total crude-ore output in 1957, after reaching a low of 18 percent in 1956. The output of crude ore from underground iron mines does not fluctuate as much as the output from open-pit mines, but underground mines have been losing an average of 0.75

percentage point of the total production to open-pit mines each year since 1950. The continuing trend toward beneficiation of all iron ores, begun in 1940, resulted in an increase in crude-ore shipments to beneficiation plants from 60 percent of the total in 1956 to 69 percent in 1957.

TABLE 3.—Crude iron ore mined in the United States, 1956-57, by States and varieties, in long tons

(Exclusive of ore containing 5 percent or more manganese)

State	Num- ber of mines	Hematite	Brown ore	Magnetite	Total	Rank
4040	7					l
1956 Alabama	1 48	4, 506, 076	5, 164, 863	l	9,670,939	
Arkansas, Colorado, and Missis- sippi	2 6		2 49, 155	A Section		
California	3	(3)	49, 100	3 4 3, 451, 902	2 49, 155 3, 451, 902	1
Georgia	1 25		1, 371, 760		1, 371, 760	1
Kentucky	1		1,796	714	714 1, 796	2
Michigan	37	13, 985, 951			13, 985, 951	
Minnesota Missouri, Tennessee, and Texas	152 27	80, 214, 840 449, 303	613, 499 3, 764, 748	13, 684, 035	94, 512, 374	
Montana	2	3, 358	3, 104, 146	8, 285	4, 214, 051 11, 643	1 1
Nevada	10	30, 122		842, 466	872, 588	1
New Jersey New Mexico	$\frac{4}{2}$	768, 095		1, 063, 296 5, 899	1, 831, 391 5, 899	1
New York and Pennsylvania	6			9, 791, 869	9, 791, 869	1
Oregon South Dakota	1	00.146	893		893	1
Utah	10	22, 146 5 3, 247, 967		878, 844	22, 146 4, 126, 811	1
Washington	1	2, 201			2, 201	1
WisconsinWyoming	3 2	1, 551, 894 647, 762		2, 231	1, 551, 894 649, 993	1
Total	2 342					
Percent of total	* 342	105, 429, 715 72, 1	² 10, 966, 714 7, 5	² 29, 729, 541 20, 4	2 146,125,970 100. 0	
			<u> </u>			
1957 Alabama Arkansas	1 47	4, 916, 430	5, 447, 849 6, 973	(4)	10, 364, 279 6, 973	1
Alabama Arkansas California Colorado		4, 916, 430		(6)		1
Alabama Arkansas Dalifornia Oolorado Jeorgia	1 6 2 23		6, 973	(6)	6, 973 (9)	1
Alabama Irkansas Jalifornia Jolorado Jeorgia daho	1 6 2 23 1	(6)	6, 973 (6)	(6)	6, 973 (6) (6) 1, 704, 019	1 1 1
Alabama Arkansas -Palifornia - Colorado - Feorgia - daho Michigan Minnesota	1 6 2 23 1 33 143		6, 973 (6) 1, 704, 019	(9) 7 18, 516, 801	6, 973 (6) (7) (6) 1, 704, 019 (6) 15, 022, 408 106, 128, 292	1 1 1
Alabama Arkansas Jalifornia Colorado Georgia daho Michigan Mississippi	1 6 2 23 1 33 143 1	(6) 	6, 973 	(6)	6, 973 (6) 1, 704, 019 (6) 15, 022, 408 106, 128, 292 160	1 1 1 2
Alabama Arkansas -Balifornia -Colorado -Feorgia -daho	1 6 2 23 1 33 143	15, 022, 408 87, 611, 491 439, 852 26, 297	6, 973 (6) 1, 704, 019	(6) 7 18, 516, 801 	6, 973 (6) (7) (6) 1, 704, 019 (6) 15, 022, 408 106, 128, 292	1 1 1
Alabama Arkansas -alifornia -Colorado -Beorgia daho Wichigan Winnesota Mississippi Wissouri Montana Nevada	1 6 2 23 1 33 143 143 42 2	15, 022, 408 87, 611, 491 439, 852 26, 297 205, 319	6, 973 	(6) 7 18, 516, 801 	6, 973 (6) 1, 704, 019 (6) 15, 022, 408 106, 128, 292 160 721, 279 35, 538 970, 512	1 1 1 2 1 1 1
Alabama Arkansas -balifornia -colorado -leorgia -daho -dichigan -dinnesota -dississippi -dissouri -dissouri -dissouri -dontana -levada -lew Jersey	1 6 2 23 1 33 143 143 42 2 11	15, 022, 408 87, 611, 491 439, 852 26, 297	(e) 1,704,019 (7) 160 281,427	(6) 7 18, 516, 801 	6, 973 (6) 1, 704, 019 (6) 15, 022, 408 106, 128, 292 160 721, 279 35, 538 970, 512 1, 710, 246	1 1 2 1 1 1 1
Alabama Arkansas -balifornia -lolorado -feorgia daho Michigan Minnesota Mississippi Montana Nevada New Jersey New Mexico New York and Pennsylvania	1 6 2 23 1 33 143 142 2 11 42 2 11 4 2 6	15, 022, 408 87, 611, 491 439, 852 26, 297 205, 319	(e) 1, 704, 019 (7) 160 281, 427	(6) 7 18, 516, 801 	6, 973 (6) 1, 704, 019 (6) 15, 022, 408 106, 128, 292 160 721, 279 35, 538 970, 512	1 1 1 2 1 1 1 1 2
Alabama Arthansas Jalifornia Jolorado Jeorgia daho Michigan Minnesota Mississippi Missouri Montana Nevada New Jersey New Mexico New York and Pennsylvania	1 6 2 23 1 33 143 1 42 2 11 4 2 6	(9) 15, 022, 408 87, 611, 491 439, 852 26, 297 205, 319	(e) 1,704,019 (7) 160 281,427	(6) 7 18, 516, 801 	6, 973 (6) 1, 704, 019 15, 022, 408 106, 128, 292 160 721, 279 35, 538 970, 512 1, 710, 246 650 10, 406, 036	1 1 2 1 1 1 1 2 2
Alabama Arkansas Dalifornia Colorado Georgia daho Michigan Minnesota Mississippi Missouri Montana Nevada New Jersey New Mexico New York and Pennsylvania Dregon Outh Dakota Fennessee	1 6 2 23 1 33 143 142 2 11 42 2 11 4 2 6	15, 022, 408 87, 611, 491 439, 852 26, 297 205, 319	(e) 1, 704, 019 (7) 160 281, 427 (9) (9) (9)	(6) 7 18, 516, 801 	6, 973 (6) (1, 704, 019 (6) 15, 022, 408 106, 128, 292 160 721, 279 35, 538 970, 512 1, 710, 246 650 10, 406, 036	1 1 1 2 1 1 1 2
Alabama Arkansas -alifornia -Colorado -Beorgia daho Michigan Minnesota Mississippi Mississippi Mississippi Mostana Newada New Jersey New Mexico New York and Pennsylvania Dregon South Dakota -Pennessee - Fexas	1 6 2 23 1 33 143 1 42 2 11 4 2 6 1 1 1	(9) 15, 022, 408 87, 611, 491 439, 852 26, 297 205, 319 (7)	(e) 1, 704, 019 (7) 160 281, 427 (9)	(°) 7 18, 516, 801 9, 241 765, 193 7 1, 710, 246 650 10, 406, 036	6, 973 (6) 1, 704, 019 (9) 15, 022, 408 106, 128, 292 35, 538 970, 512 1, 710, 246 650 10, 406, 036 (6) (6)	1 1 1 2 1 1 1 1 2 2 2 2 2 2 1
Alabama Arkansas Jalifornia Jolorado Jeorgia daho Michigan Minnesota Missistipi Missouri Montana Nevada New Jersey New Mexico New York and Pennsylvania Jouth Dakota Jennessee Jexas Jennessee Jexas Jennessee Jexas	1 6 2 23 1 33 143 1 42 2 111 4 2 6 1 1 1 3 3	15, 022, 408 87, 611, 491 439, 852 26, 297 205, 319 (7) (9)	(e) 1, 704, 019 (7) 160 281, 427 (9) (9) (9)	(°) 7 18, 516, 801 9, 241 765, 193 7 1, 710, 246 650 10, 406, 036	6, 973 (e) 1, 704, 019 15, 022, 408 106, 128, 292 35, 538 970, 512 1, 710, 246 650 10, 406, 036 (e) (f) (g) (g) 4, 245, 038	1 1 1 2 1 1 1 1 2 2 2 2 2 2 1
Alabama Arkansas Dalifornia Colorado Feorgia daho Wichigan Minnesota Missouri Montana Newada New Jersey New Mexico New York and Pennsylvania Dregon South Dakota Pennessee Fexas Utah Washington Wisconsin	1 6 2 23 13 143 143 142 2 11 4 2 6 6 11 3 3 4 10 13	(9) 15, 022, 408 87, 611, 491 439, 852 26, 297 205, 319 (7) (9) (9) 7 4, 245, 038 3, 591 1, 618, 347	(e) 1, 704, 019 (7) 160 281, 427 (9) (9) (9)	(9) 7 18, 516, 801 9, 241 765, 193 7 1, 710, 246 650 10, 406, 036	(e) (73 (e) (1, 704, 019 (f) (1, 704, 019 (f) (1, 704, 019 (f) (1, 222, 408 (f) (1, 222, 408 (f) (1, 246 (f) (1, 2	1 1 1 2 1 1 1 1 2 2 2 2 2 1 1 1 1 1 1 1
Alabama Arkansas Palifornia Polorado Peorgia daho Michigan Minnesota Mississippi Missouri Montana Pevada Pewada Pew Jersey Pew Mexico Pregon Outh Dakota Pennessee Pexas Ptah Vashington Visconsin Viyconsin Vyconsin Vyconsin	1 6 6 2 23 11 33 143 144 2 2 11 4 2 2 6 1 1 3 4 4 10 1 1	(9) 15, 022, 408 87, 611, 491 439, 852 26, 297 205, 319 (7) (9) (9) (9) 7 4, 245, 038 3, 591 1, 618, 347 702, 277	(e) 1, 704, 019 (f) 160 (g) 160 (g) (e) (e) (e) (f) (f) (h) (h) (h) (h) (h) (h) (h) (h) (h) (h	9, 241 765, 193 71,710, 246 650 10, 406, 036	(e) 73 (e) 1, 704, 019 (f) 15, 022, 408 106, 128, 292 106, 128, 292 35, 538 970, 512 1, 710, 246 (f) (e) (f) (f) (g) 4, 245, 038 3, 591 1, 618, 347 736, 134	1 1 1 2 1 1 1 1 2 2 2 2 2 1 1 1 1 1 1 1
Alabama Arkansas -balifornia -Colorado -leorgia -daho -Michigan -Minnesota -Mississippi -Missouri -Montana -Nevada -New Jersey -New Mexico -New York and Pennsylvania -pregon -outh Dakota -levase -lexas -leah -Washington	1 6 2 23 13 143 143 142 2 11 4 2 6 6 11 3 3 4 10 13	(9) 15, 022, 408 87, 611, 491 439, 852 26, 297 205, 319 (7) (9) (9) 7 4, 245, 038 3, 591 1, 618, 347	(e) 1, 704, 019 (7) 160 281, 427 (9) (9) (9)	(9) 7 18, 516, 801 9, 241 765, 193 7 1, 710, 246 650 10, 406, 036	(e) (73 (e) (1, 704, 019 (f) (1, 704, 019 (f) (1, 704, 019 (f) (1, 222, 408 (f) (1, 222, 408 (f) (1, 246 (f) (1, 2	1 1 1 2 1 1 1 1 2 2 2 2 2 2 1

¹ Excludes an undetermined number of small pits. Output of these pits included with tonnage given.

¹ Excludes an undetermined Manager 2
2 Revised figure.
3 Semialtered magnetite containing various proportions of hematite.
4 Small amount of hematite included with magnetite.
5 Hematite mixed with a small quantity of magnetite.
6 Included with "Undistributed" to avoid disclosing confidential company data.
7 Varieties of ore not shown separately (quantities are small) are combined with other varieties mined in the same State. the same State.

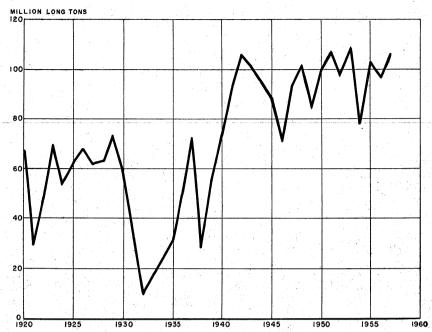


FIGURE 1.—Production of iron ore in the United States, 1920-57.

TABLE 4.—Crude iron ore mined in the United States, 1956-57, by States and mining methods, in long tons

		1956			1957	artina da de la composición de la composición de la composición de la composición de la composición de la comp La composición de la
State	Open pit	Under- ground	Total	Open pit	Under- ground	Total
Alabama	5, 274, 327	4, 396, 612	9, 670, 939	5, 548, 782	4, 815, 497	10, 364, 279
Arkansas	1 2 49, 155		12 49, 155	6,973		6,973
California	3, 451, 902		3, 451, 902	(3 4)	(4)	(3)
Colorado	1, 371, 760		1, 371, 760	(3) 1, 704, 019		1, 704, 019
Georgia Idaho	714		714	(3)		(8)
Kentucky	1, 796		1, 796	(5)		(7)
Michigan	2, 269, 608	11, 716, 343	13, 985, 951	(5)	15, 022, 408	15, 022, 408
Minnesota	92, 338, 296	2, 174, 078	94, 512, 374	103, 529, 263	2, 599, 029	106, 128, 292
Mississippi	(1)		(1)	160		160
Missouri	4 3, 808, 731	405, 320	6 4, 214, 051	282, 944	438, 335	721, 279
Montana	11,643		11,643	35, 538		35, 538
Nevada	872, 588		872, 588	970, 512		970, 512
New Jersey		1,831,391	1, 831, 391		1,710,246	1,710,246
New Mexico	5, 899		5, 899	650		650
New York and Pennsylvania	6, 057, 197	3, 734, 672	9, 791, 869	6, 709, 116	3, 696, 920	10, 406, 036
Oregon	893		893	(3)		(2)
South Dakota	22, 146		22, 146	(3)		(8)
Tennessee	(6)		(6)	(3)		(3)
TexasUtah			4, 126, 811	4, 245, 038		4, 245, 038
Washington			2, 201	3, 591		3, 591
Wisconsin	84, 732	1, 467, 162	1, 551, 894	(5)	1, 618, 347	1, 618, 347
Wyoming		647, 762	649, 993	33, 857	702, 277	736, 134
Undistributed 2	2, 201	021,102	025, 550	7, 151, 792		7, 151, 792
Total	2 119,752,630	26, 373, 340	2146,125,970	130, 222, 235	30, 603, 059	160, 825, 294
Percent of total	81. 9	18.1	100.0	81.0	19.0	100.0

Mississippi and Colorado included with Arkansas.
 Revised figure.
 Included with "Undistributed" to avoid disclosing individual company data.
 Included with open pit.
 Included with underground.
 Tennessee and Texas included with Missouri.

TABLE 5.—Crude iron ore shipped from mines in the United States, 1956-57, by States and disposition, in long tons

		1956			1957	
State	Direct to consumers	To beneficiation plants	Total	Direct to consumers	To beneficiation plants	Total
Alabama Arkansas	2, 825, 867	6, 817, 750 1 2 49, 155	9, 643, 617 1 2 49, 155	3, 564, 447	6, 769, 937 6, 973	10, 334, 384 6, 973
California	1,063,523	2, 396, 599	3, 460, 122	(3)	(3)	(3)
Colorado	18,060	1, 353, 700	(1) 1, 371, 760	(3) (4)	4 1, 704, 019	(8) 1, 704, 019
Idaho	714	1, 555, 700	714	8	- 1, 104, 019	(8)
Kentucky		1,796	1,796			()
Michigan	12, 031, 612	1, 435, 884	13, 467, 496	(4)	14, 546, 637	14, 546, 637
Minnesota	35, 380, 111	59, 425, 280	94, 805, 391	37, 281, 090	68, 439, 410	105, 720, 500
Mississippi		(1)	(1)		120	120
Missouri	5 85, 403	5 4, 128, 648	4, 214, 051		721, 279	721, 279
Montana	11,643		11,643	35, 538		35, 538
Nevada	916, 592		916, 592	539, 133	427, 065	966, 198
New Jersey New Mexico	144, 663	1, 698, 960	1,843,623	(4) 150	1,790,978	1, 790, 978
New York and Pennsyl-	3, 120	2,779	5, 899	150		150
vania	39, 151	9, 739, 262	9, 778, 413	(4)	10, 520, 054	10, 520, 054
Oregon	893	0, 100, 202	893	8	10, 020, 001	(3)
South Dakota	22, 146		22, 146	(3)		/3
Tennessee	(5)	(5)	(5)	(3)	(8)	(8)
Texas	(6)	(5)	(5)		(3)	(8)
Utah	4,001,739		4,001,739	4, 155, 988		4, 155, 988
Washington	2, 201	1	2, 201	3, 591		3, 591
Wisconsin	1, 488, 067	750	1, 488, 817	1, 576, 057		1, 576, 057
Wyoming	647, 762	2, 231	649, 993	702, 277	33, 857	736, 134
Undistributed 2				1, 586, 347	5, 562, 752	7, 149, 099
<u> </u>		202 - 22 - 24	0.117 700 001			
Total	² 58, 683, 267		² 145, 736, 061		110, 523, 081	159, 967, 699
Percent of total	40.0	60.0	100.0	30.9	69.1	100.0

¹ Mississippi and Colorado included with Arkansas.

3 Revised figure.
3 Included with "Undistributed" to avoid disclosing confidential company data.
4 Included with ore shipped to beneficiation plants.
5 Tennessee and Texas included with Missouri.

Usable ore is that produced by both mines and beneficiating plants, measured in the form shipped to the consumer. Heretofore, the forms of usable ore have been called either direct-shipping ore, concentrate, or sinter. The term "sinter" covered all material that had been treated to form lump, including material called nodules, pellets, or briquets by the iron-ore industry. The practice has caused misunderstanding, because most fine iron-bearing material treated at steel mills before smelting is sintered and this product is also known as sinter. To avoid further misunderstanding, usable ore that previously was classified as "sinter" is now classified as "agglomerate." This broader term includes not only sinter produced by sintering but also nodules, pellets, briquets, and any other glomerule made from fine-grained ore or concentrate. Frequently, agglomerating facilities are part of the beneficiating plants, and the usable ore shipped from these plants is measured in the form of agglomerates. The product of beneficiation plants that do not have agglomerating facilities will continue to be measured in the form of concentrate. Usable ore, then, will comprise direct-shipping ore, iron-ore concentrate, and iron-ore agglomerate. Agglomerate made at consuming plants will continue to be excluded from usable-iron-ore tables.

Production of usable iron ore in 1957 increased 9 percent compared with 1956. The Lake Superior district, as usual, was the principal producing district with 80 percent of the total, increasing production 7 percent over 1956. The Western States produced 9 percent of the total, and increased their output 25 percent over 1956. Missouri, Utah, Wyoming, Montana, and Nevada (in the order named) increased their output significantly, contributing to the big increase in usable-iron-ore production in the Western States. Southeastern States produced 6 percent of the total domestic output of usable iron ore in 1957 and increased their production 13 percent over 1956. The Northeastern States produced 5 percent of the total and increased their output only 2 percent, owing to the preponderance of iron ore produced from underground mines. Usable-iron-ore production in all mining districts was affected by reduced steel production in the last half of the year. Small mine operators in the South and Southwest and a few independent mines in the Lake Superior district cut production early in the fall. As a large part of the output of iron ore is sold under annual contracts and demand for ore in the North and West did not decrease much until October, usable-iron-ore output was not much below that in a year of normal industrial activity.

TABLE 6.—Iron ore mined in the United States, 1956-57, by mining districts and varieties, in long tons

(Exclusive of ore containing 5 percent or more manganese)

Variety of ore	Lake Superior district	South- eastern States	North- eastern States	Western States	Total
Crude ore: 1956 Crude ore: Hematite	95, 752, 685 ¹ 613, 499 13, 684, 035	4, 469, 272 6, 648, 206	768, 095 10, 855, 165	4, 358, 876 2 3, 785, 796 2 5, 190, 341	105, 348, 928 ² 11, 047, 501 ² 29, 729, 541
Total	110, 050, 219	11, 117, 478	11, 623, 260	2 13, 335, 013	² 146, 125, 970
Usable iron ore: HematiteBrown ore. Magnetite	72, 376, 985 ¹ 395, 026 5, 045, 102	4, 323, 140 1, 711, 498	252, 063 4, 615, 035	4, 191, 421 2 1, 095, 926 2 2, 785, 925	81, 143, 609 2 3, 202, 450 2 12, 446, 062
Total	77, 817, 113	6, 034, 638	4, 867, 098	2 8, 073, 272	2 96, 792, 121
1957 Crude ore: Hematite	104 070 040	4 050 450	(0)		
Brown ore Magnetite	104, 252, 246 (3) 1 8 18, 516, 801	4, 956, 452 7, 216, 868	(³) ³ 12, 116, 282	4, 657, 366 4, 191, 378 4, 917, 901	113, 866, 064 11, 408, 246 35, 550, 984
Total	122, 769, 047	12, 173, 320	12, 116, 282	13, 766, 645	160, 825, 294
Usable ore: Hematic	76, 537, 631 1 8 6, 993, 370 83, 531, 001	4, 890, 673 1, 914, 152 	(3) 3 4, 961, 470 4, 961, 470	4, 466, 076 1, 352, 212 4, 222, 456 10, 040, 744	85, 894, 380 3, 266, 364 16, 177, 296 105, 338, 040

¹ Includes brown ore produced in Fillmore County, Minn., not in the true Lake Superior district.

Frevised lighte.

Included with magnetite to avoid disclosing confidential company data.

TABLE 7.—Iron ore produced in the United States, 1956-57, by States and types of product, in long tons (Exclusive of ore containing 5 percent or more manganese)

	oxa)	distre of ore	contaming	EXCIUSIVE OF OUR CONTAINING O DESCENT OF MINIS MALESSO.	NI OI O III GUISGUI	(000)				
			1956					1957		
State	Direct ship- ping ore	Agglom- erates 1	Concen- trates	Total	Iron con- tent, natural (percent)	Direct ship- ping ore	Agglom- erates ¹	Concentrates	Total	Iron con- tent, natural (percent)
Mined ore: Alabama Alabama Alabama Alabama Alabama Alabama Colorado Georgia Idaho Mandigan Mississippi Mississippi Mississippi Missourl Montana New York and Pennsylvania Oregon South Dakota Tennessee Tennessee Tennessee Utah Washington Washington Washington Washington Washington Washington Washington Washington Washington Washington Washington Washington Washington Washington Washington Washington Washington	2, 847, 650 1, 047, 486 1, 047, 486 18, 060 18, 060 18, 284, 463 18, 284, 463 19, 2	551,000 55,737 (°) (°) (°) (°)	2, 227, 942 3, 449, 165 338, 675 442, 900 22, 383, 837 6, 1, 249, 490 (0) (0) (0)	5,626,622 1,149,155 1,047,486 1,047,486 3,56,735 3,56,735 3,56,735 3,53,235 3,53,235 3,53,536 3,53,536 3,53,536 4,126,811 1,55,149 1,55,14	2.58 88 88 89 89 89 89 89 89 89 89 89 89 89	4, 122, 733 (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	725, 000		6, 290, 963 (6, 973 (7) 457, 672 (8) 6, 973 (9) 286, 341 65, 286, 341 65, 286, 341 66, 286, 384 (9) 306 (9) 306 (9) 306 (10) 4, 245, 088 (10) 4,	88 10 66 69 88 88 88 88 88 88 88 88 88 88 88 88 88
Total	3 59, 895, 222	9, 554, 179		1, 085, 210	51.31	64, 503, 022	810, 379	29, 255, 427	105, 338, 040	51.27
Grand total	3 59, 895, 222	10, 639, 389	3 27, 342, 720	3 97, 877, 331	51. 47	64, 503, 022	12, 389, 970	29, 255, 427	106, 148, 419	01. 07

1 Exclusive of agglomerates produced at consuming plants. Small quantity of agglomerates included with concentrates in 1956 to avoid disclosing confidential company data.

3 Mississippi and Colorado included with Arkanssa. Also includes small quantity of direct shipping ore.

4 Restact ords in the consumerate of the combined under "Undistributed."

5 Taples of ore not shown separately are combined with other types produced in the same State.

6 Tennessee and Texas included with Missouri.

7 Chiefer and Switzer obtained from treating pyrites.

TABLE 8.—Iron ore produced in the United States, 1956-57, by States and varieties, in long tons

		1	1956				1957	
State	Hematite	Brown ore	Magnetite	Total	Hematite	Brown ore	Mag- netite	Total
Alabama Arkansas California Colorado Georgia Idaho	(3)	1, 347, 435 1 2 49, 155 (1) 356, 735	³ 1, 047, 486	1, 047, 486 (1) 356, 735	(4)	6, 973	(4)	6, 290, 963 6, 973 (4) (4) (4) 457, 672
Kentucky Michigan Minnesota Mississippl Missouri Montana	13, 043, 264 57, 782, 283 6 281, 848 3, 358	395, 026 (1) 61, 053, 045	5, 045, 102	161 13, 043, 264 63, 222, 411 (1) 6 1, 334, 893	13, 626, 313 61, 292, 971 245, 562	(5) 160 281, 427		13, 626, 313 68, 286, 341 160 529, 989
New Jersey New Mexico New York and Pennsylvania Oregon	252, 063	893	842, 466 681, 502 5, 899 3, 933, 533	872, 588 934, 565 5, 899 3, 933, 533 893	205, 319 (5)	(4)	703, 986 \$ 885, 248 650 4, 076, 222	909, 305 885, 248 650
South Dakota	(6) 3, 247, 967 2, 201	(6) (6)	878, 844	22, 146 (6) (6)	(4) (4) 54, 245, 038 3, 591	(4) (4)	(5)	(4) (4) (4) 4, 245, 038 3, 591
Wyoming Undistributed 3	81 143 609	² 3, 202, 450	212 446 062	649, 993	702, 277	1, 079, 820	15 101 054	
Byproduct ore 7 Grand total_	81, 143, 609	3, 202, 450	2 12, 446, 062	1, 085, 210 297, 887, 331	86, 877, 602	3, 266, 364	15, 191, 074	810, 379 106, 148, 419

¹ Mississippi and Colorado included with Arkansas to avoid disclosing confidential company data.

Small tomage of hematite included with magnetite.

State totals not shown separately are combined under "Undistributed."

Varieties of ore not shown separately are combined with other varieties produced in the same State.

Tempessee and Texas included with Missouri.

Cinder and sinter obtained from treating pyrites.

Direct-shipping ore comprised 61 percent of the usable-iron-ore output, exclusive of byproduct ore; iron-ore concentrate comprised 28 percent and iron-ore agglomerates 11 percent. The proportion of agglomerate to total output in 1957 rose only 1 percent compared with 1956, but agglomerate production was 2 million long tons more in 1957 than in 1956 (an increase of 21 percent) and 5 million tons more than in 1955 (an increase of 79 percent in 2 years). Most of this increase resulted from newly opened taconite mines in Minnesota and jaspilite mines in Michigan.

The principal States producing usable iron ore ranked in the same order and had the same percentages of the total output in 1957 as in Minnesota ranked first, with 65 percent of the total; Michigan ranked second, with 13 percent; Alabama was third, with 6 percent; Utah was fourth, with 4 percent; and New York and Pennsylvania together ranked fifth, with 4 percent. Domestic output of usable iron ore in 1957 contained an average of 51.4 percent iron, compared with 51.5 percent in 1956, 51.2 percent in 1955, 50.9 percent in 1954, and 50.4 percent in 1953. More extensive use of beneficiation was responsible for maintaining the high average iron content and the high rate of production in 1957.

TABLE 9.—Shipments of iron ore in the United States in 1957, by States and uses, in long tons

	Iro	n and stee	el .				То	tal
State	Direct- shipping ore	Agglom- erates ¹	Concen- trates	Cement	Paint	Miscel- laneous	Quantity	Value
Mined ore: Alabama Arkansas California Colorado Georgia Idaho Michigan Mimesota Mississippi Missouri Montana Nevada Nevada Nev Jersey New Mexico New York Oregon Pennsylvania South Dakota Tennessee Texas Utah Washington Wisconsin Wyoming Undistributed § Total Byproduct ore §	35, 538 539, 133 (2) 150 (2 3) (2 3) (3) 24, 155, 988 21, 576, 057 702, 277 2, 554, 612	(2) 6, 835, 830 2, 878, 999 (3) (4) (4) 1, 047, 583	2 2,658,437 6,973 (2) 2 442,672 2 23,539,120 120 529,899 365,322 2 876,605 2 449,905 (3) (4 3) 955,752 29,824,895	(*) (*) (*) (*) (*) (*) (*) (*) (*) (*)	(2)	(2) (2) (2) (3) (3) (3) (3) (3) (3) (3) (3) (3) (4) (4)	6, 973 (*) 442, 672 (*) 13, 122, 875 67, 656, 040 529, 989 904, 455 876, 605 3, 328, 904 (*) (*) (*) (*) (*) (*) (*) (*)	\$40, 518, 329 34, 560 (9) 2, 109, 352 111, 483, 808 541, 473, 783 4, 625, 209 5, 340, 639 16, 667, 716 1, 055 44, 567, 403 (9) (9) 30, 383, 465 (9) (9) 68, 496, 891 865, 702, 930 9, 182, 042
Grand total	63, 532, 167	10,762,412	29,824,895	3, 591		33, 857	104,969,871	874, 884, 972

The values of iron-ore shipment shown in table 9 are those reported by producers at the mines, exclusive of transportation costs but including all costs of mining, concentration, and agglomeration. The average value at the mines in 1957 was \$8.33 per long ton. Shipments are classified by uses according to data submitted by the producer: therefore, the classification may not be precise because the

shipper does not control the end use.

Active iron-ore mines in the United States, exclusive of many small open-pit mines that operated intermittently, totaled 349 in 1957. Forty mines each produced more than 1 million long tons of crude ore; 44 mines produced ½ to 1 million tons; 82 mines produced 100 thousand to 1/2 million tons; and the remaining 183 mines each produced less than 100 thousand long tons of crude ore. The forty 1-million-ton mines produced 64 percent of the crude ore and 61 percent of the usable ore; the forty-four 1/2- to 1-million-ton mines produced 19 percent of the crude and 22 percent of the usable ore; the eighty-two 100-thousand- to 1/2-million-ton mines produced 14 percent of the crude and 15 percent of the usable ore; and the 183 small mines produced 3 percent of the crude ore and only 2 percent of the usable iron ore.

Exclusive of agglomerates produced at consuming plants.
 Iron-ore uses not shown separately are combined with other uses in the same State to avoid disclosing individual company confidential data.
 Tonnages and values not shown separately are combined with "Undistributed."
 Cinder and sinter obtained from treating pyrites.

TABLE 10.—Iron ore mined in the United States in 1957, by States and counties, in long tons

State and county	Active mines	Crude ore	Usable ore	State and county	Active mines	Crude ore	Usable ore
Alabama: Barbour Bibb	2 1 1	445, 000 } 903, 000	111, 069 225, 563	Montana: Broadwater Judith Basin	1 1	35, 538	35, 538
Blount Butler	9	987, 800	246, 811	Total	2	35, 538	35, 538
Calhoun Conecuh Crenshaw Etowah Franklin	4 1 2 2 5	17, 205 } 1, 085, 900 } 1, 371, 415	4, 277 271, 649 422, 762	Nevada: Churchill Douglas Humboldt	1 1 3	501, 325	464, 638
Jefferson Pike	9	4, 851, 713 } 590, 682	4, 785, 934	Nye Pershing	1 5	469, 187	444, 667
St. Clair Shelby	2	K	148, 970	Total	11	970, 512	909, 308
Talladega Tuscaloosa Total	1 1 47	111, 564	73, 928 6, 290, 963	New Jersey: Morris Warren	3	1,710,246	885, 248
Arkansas: Fulton.	==== 1	6, 973	6, 973	Total	4	1, 710, 246	885, 248
California: Riverside San Bernar- dino	1 5	(1)	(1)	New Mexico: Grant Socorro	1 1	} 650	650
Total	6	(1)	(1)	Total	2	650	650
Colorado: San Miguel	2	(1)	(4)	New York: Clinton Essex St. Lawrence.	1 3 1	}310,406,036	⁸ 4, 076, 222
Bartow Polk	8 7	731, 019 513, 000	213, 880 128, 521	Total	5	³ 10, 406, 036	3 4, 076, 222
Stewart Webster	6 2	460,000	115, 271	Oregon: Colum-	1	(1)	(1)
Total	23	1, 704, 019	457, 672	Pennsylvania:			
daho:Washington.	1	(1)	(1)	Lebanon	1	(3)	(3)
Michigan: Baraga Dickinson Gogebic	1 1 6	321,924	142, 775	South Dakota: Lawrence Tennessee:	1	(1)	(1)
Iron Marquette	11 14	14, 700, 484	13, 483, 538	Blount McMinn Roane	1 1 1	(1)	(1)
Total	33	15, 022, 408	13, 626, 313	Total	3	(1)	(1)
Minnesota: Crow Wing Fillmore 2 Itasca St. Louis	14 2 28 99	3, 436, 590 35, 456, 644 67, 235, 058	2, 400, 255 16, 393, 437 49, 492, 649	Texas: Cass Cherokee Morris	1 2 1	(1)	(1)
Total	143	106, 128, 292	68, 286, 341	Total	4	(1)	(1)
Mississippi: Webster	1	160	160	Utah: Iron	10	4, 245, 038	4, 245, 038
Missouri: Crawford	1)		Washington: Stevens	1	3, 591	3, 591
Dent Douglas Greene	1 2 1	5, 211	5, 211	Wisconsin: Florence Iron	1 2	1, 618, 347	1, 618, 347
Howell Miller	23 1	137, 670 105, 086	137, 670 105, 086	Total	3	1, 618, 347	1, 618, 347
Oregon Ozark Reynolds Ripley	5 1 1 1	447, 265	255, 975	Wyoming: Albany Platte	1	736, 134	736, 134
St. Francois Wayne	4	26,047	26, 047	Undistributed 1		7, 151, 792	3, 629, 556
Total	42	721, 279	529, 989	Grand total.	349	160, 825, 294	105, 338, 040

State totals not shown separately are included under "Undistributed."
 Not in the true Lake Superior district.
 Pennsylvania included with New York.

TABLE 11.-Iron ore produced in the Lake Superior district, 1854-1957, by ranges, in long tons

Year	Marquette	Menominee	Gogebic	Vermilion	Mesabi	Cuyuna	Total
1854—1952	267, 560, 381 5, 785, 118 4, 670, 603 5, 412, 956 5, 869, 171 6, 557, 010	237, 124, 941 4, 604, 765 3, 640, 320 4, 126, 417 4, 348, 683 4, 250, 269	280, 904, 750 5, 179, 608 3, 931, 233 4, 359, 761 4, 376, 848 4, 437, 381	87, 812, 079 1, 643, 039 1, 371, 967 1, 454, 365 1, 284, 536	1, 850, 244, 021 75, 324, 236 45, 724, 827 64, 860, 493 59, 346, 091 1 65, 886, 086	49, 431, 025 2, 900, 579 1, 497, 296 2, 770, 738 2, 242, 216 2, 240, 255	2, 773, 077, 197 95, 437, 345 60, 836, 246 82, 984, 730 77, 467, 545 83, 531, 001
Total	295, 855, 239	258, 095, 395	303, 189, 581	93, 565, 986	2, 161, 385, 754	61, 242, 109	3, 173, 334, 064

Included with Mesabi range to avoid disclosing individual company data.
 Includes production from Spring Valley district not in the true Lake Superior district.

TABLE 12.—Average analyses of total tonnages (bill-of-lading weights) of all grades of iron ore from all ranges of Lake Superior district, 1948-52 (average) and 1953-57

[Lake Superior Iron Ore Association]

			Content	t (natura	l), percent	
Year	Long tons	Iron	Phos- phorus	Silica	Manga- nese	Moisture
1948–52 (average)	80, 222, 546 95, 438, 743 59, 585, 720 85, 404, 796 76, 407, 170	50. 40 50. 37 50. 86 50. 63 51. 34	0. 096 . 090 . 095 . 099 . 090	9. 76 10. 25 10. 22 10. 11 9. 78	0. 76 . 75 . 70 . 72 . 67	11. 12 10. 90 10. 47 10. 81 10. 39

TABLE 13.—Beneficiated iron ore shipped from mines in the United States, 1948-52 (average) and 1953-57, in long tons

(Exclusive of ore containing 5 percent or more manganese)

Year	Beneficiated	Total	Proportion of beneficiated to total (percent)
1948-52 (average)	25, 738, 811	98, 927, 170	26. 0
	35, 895, 529	117, 197, 537	30. 6
	27, 756, 129	76, 125, 664	36. 5
	36, 181, 983	105, 240, 644	34. 4
	38, 259, 926	96, 945, 017	39. 4
	42, 027, 130	104, 156, 922	40. 3

¹ Revised figures.

CONSUMPTION AND USES

Sixty-eight percent of the usable iron ore consumed in the United States in 1957 was used in blast furnaces, 26 percent in agglomerating plants, 6 percent in steel furnaces, and less than 1 percent in ferroalloy furnaces and for nonmetallurgical uses. Total consumption of iron ore increased 3 percent over 1956. Consumption in agglomerating plants increased 21 percent, but consumption in ferroalloy furnaces decreased 40 percent. The increase in ore consumed in agglomerating plants was due to more extensive use of beneficiation at the mines and increased use of sintering to agglomerate fine ore at the steel mills. The 40-percent decline in ferroalloy-furnace consumption was more the result of timing than of an actual decrease in ferroalloy output. Most ferroalloy furnaces were operated intermittently, depending on demand and producers' inventories. This practice results in wide fluctuations in reported annual consumption of iron ore.

TABLE 14.—Consumption of iron ore in the United States in 1957, by States and uses, in long tons

(Exclusive of ore containing 5 percent or more manganese)

		Metallurg	ical uses		Miscellaneous uses				
State	Iron blast furnaces	Steel furnaces	Agglom- erating plants	Ferro- alloy fur- naces	Cement	Paint	Other	Total	
Alabama Kentucky Tennessee Texas California Colorado Utah Delaware Maryland West Virginia Illinois Indiana Massachusetts New York Michigan Minnesota Oregon	\begin{array}{c} 9, 119, 355 \\ 3, 687, 500 \\ 5, 148, 895 \\ 8, 891, 920 \\ 12, 164, 145 \\ 5, 114, 330 \\ 5, 443, 673 \\ 17, 107, 599 \end{array}	420, 785 562, 337 704, 694 520, 971 846, 513 561, 596 322, 277 1, 400, 274	2, 808, 734 2, 720, 837 3, 886, 654 521, 875 1, 024, 620 4, 460, 166 8, 978, 894 2, 755, 871	{ (1) 	27, 551 (1) 50, 803 37, 181 (1) (1) (1) (1) (1) (1) (1) (1	(1)	(1)	12, 427, 228 7, 007, 855 9, 740, 243 9, 934, 766 14, 035, 278 10, 234, 452 14, 744, 844 21, 444, 528	
Pennsylvania Undistributed 2 Total Total	20, 746, 509 87, 423, 926	2, 185, 784 7, 525, 231	6, 604, 904 33, 762, 555	2, 086 1, 052 264, 592	27, 629 97, 306 258, 160	25, 882 25, 882	114, 888	29, 566, 912 239, 128 129, 375, 234	

¹ Included with "Undistributed."
² Includes States indicated by footnote 1 plus the following: For cement, Arkansas, Florida, Georgia, Idaho, Iowa, Kansas, Louisiana, Missouri, Montana, Oregon, South Dakota, Virginia, and Washington; for other uses, New Jersey, Wisconsin, Wyoming, and Idaho.

Agglomerate (Sinter)—In previous Iron-Ore chapters of the Minerals Yearbook all iron-bearing fine-grained material that had been massed or gathered together to form lumps was called sinter, as sintering formerly was the principal method used to make the lumps. This sinter included some material that properly could have been classified as either nodules, pellets, or briquets. The statistical data on production and consumption of nodules, pellets, and briquets were not accurate enough nor were the quantities involved large enough to warrant changing past practice. In 1957, however, production and consumption data on sinter, nodules, pellets, and briquets were essentially complete and precise, and the term "agglomerate" is used in this issue to describe these items as a group. Individually, the materials are designated by their industry names.

TABLE 15.—Production and consumption of agglomerate in the United States in 1957, by States, in long tons

	Agglomerate	Agglomerate	ate consumed 1	
State	produced	In blast furnaces	In steel furnaces	
Alabama)			
Kentucky Tennessee Texas	2, 789, 815	2, 862, 625	55, 998	
California Colorado	2, 626, 192	2, 632, 802		
Delaware	2 227 822	4, 163, 744	{	
West Virginia Illinois Indiana New York	2, 300, 258	1, 137, 703 2, 282, 696 3, 037, 925	\ \begin{pmatrix} (2) \\ 742,801 \\ (3) \end{pmatrix}	
Minnesota	8, 656, 456	1, 204, 645	(2)	
Ohio Pennsylvania	3, 702, 446	4, 937, 729 9, 553, 340	² 435, 068 ⁸ 492, 952	
Total	37, 737, 297	31, 813, 209	1,726,819	

Includes 1,208,582 long tons of agglomerate produced in foreign countries.
 West Virginia, Michigan, and Minnesota included with Ohio.
 New York included with Pennsylvania.

In table 15, the 37,737,297 long tons of agglomerate produced included 6,575,498 tons of pellets, 221,145 tons of briquets, 29,356,169 tons of sinter, and 1,584,487 tons of unclassified agglomerate. 31,813,209 long tons of agglomerate consumed in blast furnaces included 57 tons of nodules, 1,300,015 tons of pellets, 213,217 tons of briquets, 28,206,478 tons of sinter, 980,041 tons of unclassified agglomerate, and 1,113,402 tons of agglomerate produced in foreign countries. The 1,726,819 tons of agglomerate consumed in steel furnaces included 91,991 tons of pellets, 402,207 tons of nodules, 11,285 tons of briquets, 35,174 tons of unclassified agglomerate, and 95,180 tons of agglomerate produced in foreign countries.

STOCKS

Usable iron-ore stocks at mines on December 31, 1957, totaled 6.7 million long tons, about 1 million tons more than normal and 23 percent more than at the same time in 1956. The increase in mine stocks was the result of decreasing shipments from the Lake Superior district in the latter part of the year.

TABLE 16.—Stocks of usable iron ore at mines, Dec. 31, 1956-57, by States, in long tons

State	1956	1957	State	1956	1957
Alabama California Colorado Georgia Idaho Michigan Minnesota Mississippi Nevada	28, 453 47, 958 365 179 2, 155, 060 2, 273, 577 9, 850	96, 532 (1) 15,000 	New Jersey New Mexico New York Pennsylvania Texas Utah Wisconsin Total	31, 789 217, 855 8, 703 145, 868 383, 176 162, 507 2 5, 465, 340	40, 262 1, 000 164, 681 (1) (1) 472, 226 204, 797 6, 718, 263

1 Included in United States total.

² Revised figure.

According to the American Iron Ore Association, stocks of ore at United States docks (principally Lake Erie docks) totaled 5.2 million long tons on Dec. 31, 1957. Consuming-plant inventories of iron ore plus agglomerates (including manganiferous ore) totaled 54.0 million tons. Thus, United States stock of iron ore and agglomerates at the end of the year totaled 65.9 million long tons.

PRICES

The average value of domestically produced iron ore per long ton, f. o. b. mines, was \$8.33 in 1957 compared with \$7.76 in 1956, \$7.12 in 1955, and \$6.99 in 1954. These data are taken from producers' statements and probably approximate the commercial selling price less the cost of mine-to-market transportation. In all instances, the reported value includes all expense of mining and beneficiating the ore. In the Lake Superior district the mine value is the Lake Erie price less freight from mines to lower Lake ports.

E&MJ Metal and Mineral Markets quoted Lake Superior iron ore. 51.5 percent iron, per long ton, lower Lake ports, in 1957 as follows: Mesabi Non-Bessemer \$11.45, Old Range Non-Bessemer \$11.70, Mesabi Bessemer \$11.60, Old Range Bessemer \$11.85. The same

TABLE 17.—Average value per long ton of iron ore at mines in the United States, 1956-57 (Exclusive of ore containing 5 percent or more manganese)

				195	8						1957			
		Direc	t	Co	ncent	rates			Direc	t	Cor	centr	ates	
State	Hematite	Brown ore	Magnetite	Hematite	Brown ore	Magnetite	Sinter	Hematite	Brown ore	Magnetite	Hematite	Brown ore	Magnetite	Sinter
Alabama Arkansas. California Colorado. Georgia Idaho Kentucky Michigan Minnesota. Mississippi Montana Nevada New Jersey New Mexico New York Oregon Pennsylvania South Dakota Tennessee Texas Utah Washington Wysomin Wyoming Undistributed 1	\$5. 97 (2) 7. 80 6. 92 (2) (2) (2) (2) (3) (4) (5) (7) (9) (7) (9) (7) (9) (1) (1) (2) (2) (3) (4) (5) (7) (8) (9) (9) (9) (9) (9) (9) (9) (9	(2)	(1) (2) (1) (2) (1) (2) (1) (2) (3) (4) (4) (4)	(2) 8. 36 7. 54 (2) (1)	(2) (2)	(1)	(1) (1) (1) (1) (1) (2) (2) (2)	\$6. 61 (2) 7. 64 (2) (2) (3) (4) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	(2)	(2) (2) (2) (3) (4) (4) (7) (7) (7) (7) (8) (9) (9) (9) (9) (9) (10) (10) (10) (10) (10) (10) (10) (10	8. 81 7. 97	\$5. 40 (2) 4. 96 (2) (2) (3) (3) (3) (2) (3) (3) (3) (3) (3) (4) (5) (7) (7) (8) (9) (9) (1) (1) (1) (2) (3) (4) (5) (6) (7) (7) (7) (7) (7) (7) (7) (7	(2) 	(2) (2) (2) (3) (3) (4) (4) (4) (6)
Average all States 1 Byproduct ore 8	7. 12	5. 52	5.80	7. 89	6. 70	13. 74	11. 00 9. 57	7.64	4. 05	8. 52	8. 19	6. 71	10. 97	11. 39 11. 29

Included with average for all States to avoid disclosing individual company data.
Combined and shown under "Undistributed."
Cinder and sinter obtained from treating pyrites.

publication quoted Eastern ores, foundry and basic, at 17 and 18 cents per long ton delivered at the furnaces; Swedish ore, 60 to 68 percent, contracts, at 25 cents plus per short ton, depending on grade; Brazilian ore per long ton, 68.5 percent iron, f. o. b. port of shipment,

\$14.60, premium for low-phosphorus ore.

Freight Rates.—Total freight charges from the Mesabi range to the Pittsburgh-Wheeling district via the Great Lakes were \$5.98 per long ton in 1957 compared with \$5.64 per ton in the last half of 1956. Component charges were: \$1.31 Mesabi range to Duluth, including \$0.17 dock-handling charge; \$2.26 Duluth to Lake Erie ports, including \$0.26 handling charge from hold to rail of vessel; and \$2.41 Lake Erie ports to the Pittsburgh-Wheeling district, including \$0.17 handling charge from vessel rail to car.

TRANSPORTATION

Iron ore continued to move at record rates over most of the waterways of the world throughout 1957, but in August the Japanese asked their suppliers to cut shipments 15 percent, and in October and November Great Lakes shipments were much below normal.

Great Lakes.—Iron-ore shipments on the Great Lakes in 1957 began on April 1, when the first ship was loaded at Escanaba, Mich., and ended on December 3, when the last ship was loaded at Superior,

Wis.

A list of Canadian and United States Lake ports that serve the Lake Superior district, arranged in order of the quantity of iron ore handled in 1957,³ follows:

Port	ron ore handled, long tons
Superior, Wis	27, 415, 536
Duluth, Minn	17, 430, 495
Two Harbors, Minn	17, 143, 168
Escanaba, Mich	5, 907, 580
Silver Bay, Minn	5, 121, 172
Marquette, Mich	4, 620, 331
Ashland, Wis	3, 483, 740
Port Arthur, Ontario	2, 347, 692
Michipicoten, Ontario	1, 032, 483
Taconite Harbor, Minn	112, 537
Total	84, 614, 734

RESOURCES AND RESERVES

The iron-ore resources of the United States in 1957 were estimated to be about 75 billion long tons of crude ore. About 10 of the 75 billion tons was classed as reserves; direct-shipping ore and concentrate obtainable from low-grade ore totaled 5½ billion long tons. The remaining 65 billion tons probably could yield approximately 25 billion tons of concentrate.

Iron-ore reserves of Michigan and Minnesota, given in tables 18 and 19, represent only taxable and State-owned reserves and not the total that may become available; taconite and jaspilite reserves are excluded. These reserves are recalculated each year as deposits are explored and mined; since 1944 they have been decreasing.

Skillings' Mining Review, Lake Superior Iron Ore Shipments From Upper Lake Ports, 1957: Vol. 46,
 No. 37, Dec. 14, 1957, pp. 2, 25.
 U. S. Department of the Interior, Geological Survey Estimates United States Iron-Ore Resources:
 Inf. Service Release, July 15, 1957, 6 pp.

TABLE 18.—Iron-ore reserves in Michigan, Jan. 1, 1949-53 (average) and 1954-58, in thousand long tons

[Michigan	Department of	Conservation]
-----------	---------------	---------------

Range	1949-53 (a verage)	1954	1955	1956	1957	1958
Gogebic Marquette Menominee	31, 742 66, 120 59, 355	28, 607 65, 364 60, 086	31, 326 69, 549 59, 322	30, 810 63, 820 58, 284	26, 209 64, 464 63, 536	25, 187 64, 027 60, 877
Total Michigan	157, 217	154, 057	160, 197	152, 914	154, 209	150, 091

TABLE 19.—Unmined iron-ore reserves in Minnesota, May 1, 1948-52 (average) and 1953-57, in thousand long tons

[Minnesota	Department	of	Taxation]
------------	------------	----	-----------

	1948-52 (average)	1953	1954	1955	1956	1957
Mesabi	895, 139 11, 836 40, 643	839, 733 12, 989 43, 983	825, 292 12, 063 58, 903	787, 992 11, 307 58, 859	739, 971 10, 449 54, 518	697, 267 9, 641 52, 337
Total Lake Superior district (taxable)Fillmore County	947, 618 602 29	896, 705 608	896, 258 573	858, 158 666	804, 938 926	759, 245 1, 125
Morrison County Aitkin County Mower County	170	850	870 118	870 118	825 118	825 118
State ore (not taxable)	3, 040	117	117	117	2,352	2, 629
Total Minnesota	951, 459	898, 280	897, 936	859, 929	809, 159	763, 942

FOREIGN TRADE

Iron ore imported for consumption in the United States in 1957 comprised almost one-fourth of the total domestic supply, establishing new import records in both tonnage and value. The total tonnage of imported iron ore was 11 percent more and the total value

14 percent more than the previous record of 1956.

Canada continued as the principal supplier of iron ore to the United States but by a narrow margin, as imports from Venezuela continued to increase whereas Canadian imports decreased slightly. Of the total quantity of iron ore imported, Canada and Venezuela each supplied 37 percent, Chile supplied 8 percent, Peru 7 percent, Brazil 4 percent, Liberia 3 percent, and 9 other countries together supplied the remaining 4 percent.

Most of the iron ore exported from the United States went to Canada. The Western States, principally Nevada, continued to export iron ore to Japan; the total value of these exports exceeded \$10

million for the first time in history.

World iron-ore export-import statistics are given for 1955, because the statistical pattern of iron-ore transactions in international trade does not emerge with acceptable accuracy for at least 2 years. Preliminary data indicate that world trade in iron ore in 1957 was similar to that in 1955, except that 1957 was marked by increased imports into European Coal and Steel Community countries and by initial imports of high-grade Asian iron ore into Soviet satellite countries in Europe.

TABLE 20.—Iron ore imported for consumption in the United States, 1948-52 (average) and 1953-57, by countries, in long tons

1948-52	(average)	ä	953	16	354	31	55	37	956	18	1967
Long tons	Value	Long tons	Value	Long tons	Value	Long tons	Value	Long tons	Value	Long tons	Value
1, 644, 222 90 33, 370 3, 682 161, 560	\$11,506,689 201 220, 184 39, 589 391, 526	1, 840, 983 3, 076 196, 676 80, 401 241, 636	\$16, 050, 131 4, 588 1, 853, 187 947, 442 1, 048, 617	3, 537, 489 32, 165 89, 160 140, 863	\$28, 622, 647 313, 563 1, 066, 861 417, 539	10, 077, 238 42, 697 101, 934 176, 293	\$79, 058, 021 328, 586 1, 173, 494 573, 867	113, 722, 656 93, 041 162, 612 132, 934	1\$117,665,974 909, 733 2, 043, 397 446, 461	12, 536, 809 33, 166 149, 295 235, 910	\$111, 783, 124 346, 199 2, 024, 795 746, 107
1,842,924	12, 158, 189	2, 362, 772	19, 903, 965	3, 799, 677	30, 420, 610	10, 398, 162	81, 133, 968	268 114, 111, 511	2, 679	12, 955, 180	114, 900, 225
2, 498, 869 496, 239	4, 962 6, 479, 725 7, 613, 578 3, 678, 313	458, 282 2, 363, 401 844, 481 1, 949, 618	6, 386, 308 12, 347, 510 5, 955, 545 17, 026, 862	595, 907 1, 664, 300 1, 931, 929 5, 209, 812	7, 016, 488 7, 865, 692 15, 594, 978 36, 034, 782	1, 010, 579 1, 035, 399 1, 558, 629 7, 159, 832	11, 215, 864 5, 379, 900 13, 691, 003 45, 549, 052	1, 223, 047 1, 563, 783 1, 840, 320 1 9, 254, 404	15, 415, 573 10, 813, 219 1 16, 405, 089 1 61, 929, 331	1, 430, 880 2, 740, 709 2, 358, 886 12, 293, 271	20, 275, 179 20, 641, 331 20, 713, 054 87, 713, 863
3, 674, 539	17, 776, 578	5, 615, 782	41, 716, 225	9, 401, 948	66, 511, 940	10, 764, 439	75, 835, 819	113, 881, 554	1104, 563, 212	18, 823, 746	149, 343, 427
1,908	21 21 21 21 21 21	123	4, 408					169	4, 072	98	2, 182
21, 723 18, 911 2, 013, 296 508	126, 920 155, 663 15, 229, 476 24, 676	2, 097, 522 444	27, 207, 210 24, 011	235 1, 543, 753 354	6, 291 14, 241, 188 30, 129	1, 221, 334	12, 334, 640 58, 461	999, 124	11, 914, 183	676, 929	9, 575, 270 35, 049
2, 059, 659	15, 575, 498	2, 108, 779	27, 360, 408	1, 544, 342	14, 276, 608	1, 223, 413	12, 393, 101	999, 892	11, 957, 357	677, 552	9, 614, 581
2, 394	131, 551 23, 339	2, 953	205, 053	2, 953	200, 858			3, 937 23, 500	266, 238 381, 000		
4, 996	154, 890	2, 953	205, 053	2, 953	200, 858			27, 437	647, 238		
	1948-52 Long tons 1, 644, 222 33, 370 38, 370 38, 370 38, 882 11, 842, 924 2, 498, 869 2, 059, 659 2, 11, 239 2, 17, 239 2, 103, 296 2, 059, 659 2, 059, 659 2, 059, 659 2, 059, 659 2, 059, 659 2, 059, 659	-52 (average value)	(average) Value Long ton. \$11,506,689 \$20, 184 280, 408 20, 184 30, 689 30, 689 30, 689 220, 184 30, 613 30, 689 12, 168, 189 2, 614, 481 3, 678, 313 12, 888 12, 898 12, 898 12, 898 12, 806 12, 806 12, 806 13, 678 12, 806 12, 806 12, 806 12, 806 13, 678 13, 678 14, 481 15, 806 16, 298 17, 776, 578 18, 809 18, 809 18, 809 18, 809 18, 809 18, 809 18, 809 18, 809 18, 809 18, 809 18, 809 18, 809 18, 809 2, 108, 779 18, 809 2, 108, 779 18, 809 2, 108, 779 18, 809 2, 108, 779 18, 809 2, 108, 779 18, 809 2, 108, 779 2, 676 2, 676 2, 676 2, 676 2, 676 2, 678 2, 108, 779 2, 678 2, 108, 779 2, 678 2, 108, 779 2, 678 2, 108, 779 2, 678 2, 108, 779 2, 678 2, 108, 779 2, 678 2, 678 2, 678 2, 678 2, 678 2, 678 2, 688 2, 108, 779 2, 688 2, 108, 779 2, 688 2, 108, 779 2, 688 2, 108, 779 2, 688 2, 108, 779 2, 688	(average) 1963 (average) 1, 840, 983 \$16,050, 220, 184 196, 676 1, 947, 397, 676 1, 194, 983 11,506, 689 1, 840, 911 194, 678 1, 943, 912 1, 943, 913 1, 944, 942 1, 944, 948	Value Long tons Yalue Long tons Value Long tons Yalue Long tons S11,506,689 1,840,983 \$16,050,131 3,537,489 220, 131 3,077 19,039,965 3,790,677 13, 158, 189 2,362,772 19,903,965 3,790,677 4, 962 241,636 1,943,617 140,883 12, 158, 139 2,362,772 19,903,965 3,790,677 4, 962 246,203 2,367,510 1,644,309 1, 776,578 5,615,782 41,716,225 9,401,948 1, 970 1, 940 1, 940 1, 940 1, 980 1, 940 1, 940 1, 940 1, 980 1, 940 1, 940 1, 980 1, 940 1, 940 1, 980 1, 940 1, 940 1, 980 1, 940 1, 940 1, 980 1, 940 1, 940 1, 980 1, 940 1, 940 1, 980 1, 940 1, 940 1, 980 1, 940 1, 940 1, 980 1, 940 1, 940 1, 980 1, 940	Value	Value	Value	Value Long tons Value	Value Long tons Value Value Long tons Value Value Value Long tons Valu	Value

1, 252, 812	9, 783, 452	4, 298 165, 843	11, 202, 107	285, 060, 340
169, 646	11, 115, 262 1, 012, 626	1	1, 196, 570	33, 653, 048
85, 893 1, 052, 993	11, 115, 262		12, 254, 148	1250, 490, 199
10, 600 161, 698	7, 048, 791 1, 217, 960		1, 390, 258	130, 410, 652
245, 176 800, 426	927, 988 7, 048, 791		8, 094, 393	177, 457, 281
20, 255	927, 988		1, 085, 942	23, 471, 956
339, 550 1, 404, 547	6, 304, 832		8, 048, 929	86, 788, 218 15, 792, 450 1119, 488, 945 23, 471, 956 177, 457, 281 130, 410, 652 1250, 490, 199
29, 100 250, 820	763, 610	111	1, 043, 530	15, 792, 450
273, 888 1, 305, 910	5, 764, 548		7, 602, 567	96, 788, 218
231, 600	710, 290	19,700	983, 749	11, 074, 035
2, 154, 521 975, 391	741,899	72, 385 409, 416 15, 776	4, 399, 284	50, 064, 439
365, 470 148, 864	136, 528	11, 386 82, 448 2, 850	750, 784	8, 332, 902
Africa: Algeria British West Africa Herrit	Liberta	Spanish Africa. Tunisia. Union of South Africa.	Total	Grand total

486221---58-

-39

1 Bevised figure.

9 Owing to changes in tabulating procedures by the Bureau of the Census, data are not comparable to years before 1954.

TABLE 21.—Pyrites cinder 1 imported for consumption in the United States, 1948-52 (average) and 1953-57, by countries, in long tons

		-	mq]	Bureau or the Census	Census					:		
	1948-52 (average)	average)	1953	53	1954	54	1955	25	1956	99	1987	4
Country	Long	Value	Long	Value	Long	Value	Long	Value	Long	Value	Long	Value
North America: Canada	12, 045	\$45, 471	12, 053	\$54, 172	868	\$3, 556	3, 879	\$15, 801	1, 430	\$5, 972	292	\$2, 222
Europe: Belgtum-Luxembourg. Italy.	ଚଚ	17										
Total.	(8)	19								-		
Grand total	12, 045	45, 490	12, 053	54, 172	868	3, 556	3, 879	\$ 15, 801	1, 430	5, 972	299	2, 222

¹ Byproduct fron ore.

¹ Less than 1 ton.

³ Owing to changes in tabulating procedures by the Bureau of the Census, data are not comparable to years before 1954.

TABLE 22.—Iron ore exported from the United States, 1948-52 (average) and 1953-57, by countries of destination, in long tons [Bureau of the Census]

	1948-52	1948-52 (average)	11	1953	31	1954	16	1955	31	1956	1967	22
Destination	Long	Value	Long	Value	Long tons	Value	Long	Value	Long	Value	Long	Visitue
Nonth America: Chaids		\$17, 491,,543	3, 853, 880	\$28, 094, 069	2, 812, 367	\$21, 669, 146	4, 231, 806	\$34, 076, 880	1 4,528, 751	1\$39, 271, 565	2 22	138, 629, 492.
Mexico	F 65	25			88	2,379			3, 188	41, 486	#IL	7, 960
Total	2,973,928	17, 491,,678	3, 853, 580	28,084,069	2, 812, 455	21, 671, 525	4, 231, 806	34076, 880	14, 531, 939	1 39, 313, 051	3, 958, 399	38, 637(452
South America: Break. Chris.	1	65							273	26,674	1 8 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Colombia Suriham					46	1,700	18	089	68	6;094		
Total	4	65:			46	1, 700	18	089	362	32,768		
Europe: Garasay, West.	188	I, 365							206	1,960	782	6, 102
United Kingdom	, to	1,280										
Totall.	209	5,,028							253	2,668	287	6, 102
Asia: Japan Philippines	526, 571	4, 995,,905 7,610	398, 374	4, 327, 448	332, 231	3, 065; 285	284, 602	2, 874, 243	973, 862	9, 313, 164	1, 041, 144	10, 532, 106
Total	527, 383	5,003,515	398, 375	4, 327, 568	332, 231	3, 065; 285	285, 002	2, 914, 243	973, 862	9, 313, 164	I, 041, 144	10, 532, 106
Africa: Franch Margeau. Gold Coast. Union of South Africa	(2) 26	986			978	43,808			1,880	142, 932	2,371	125, 445
TotalOceania: Australia	20	1, 083 1, 843	2.		978	43, 808 1, 679	6 1	720)	1,880	142, 932	2,371	125, 445 855
Grand total	3, 501, 547	22, 503, 212	4, 251, 955	32, 421, 637	3, 145, 714	24, 783, 997	£, 516, 828	36, 992, 523	15, 508, 296	1 48, 804, 583	5, 002, 153	49, 361, 980

TABLE 23.—World trade in iron ore, iron-ore concentrates, and iron-ore agglomerates, in thousand long tons, in 1955

[Compiled by Corra A. Barry]

		Other countries	€ •	£		33. 1.	(1) 188 25 25 25 1 2, 530
	Asia	Japan	485	285	£		
		United King- dom	1, 343	544	151	67 640 16	1112 88 713 4, 068
		Swit- zer- land			€	€	\$2
		Spain					
		Saar				7, 262	
nation		Po- land		95		141	120 462 13, 474
of destir		Neth- er- lands	160 14	92		139	100 248
Exports by countries of destination	Europe	Italy	18	46	17	60 cd	26 218 218
ts by co		Ger- many, West	1, 036	391 110	314	380 56 350	35 710 51 956 6,315
Expor		France		14	ε	2 3	182
		Fin- land					93
		Ozech- oslo- vakia		233	39	10	24 26 12, 667
		Bel- glum- Lux- em- bourg				12, 350	2, 432
		Aus- tria		22		274	121 121 134
	North America	United States	9, 984 68 99 183	1,091	7,823		1, 204
	No Am	Can- ada	6	4, 232 30 10			
	EX.		13,008 121 99 183	4, 517 2, 525 1, 218	8, 305 39	20, 751 20, 751 206	1, 164 165 2, 102 15, 407 15, 407 18, 661
	Produc-	tion	14, 539 129 99 705	4, 084 1, 693		7, 195 181 49, 517 15, 436 189	1, 328 1, 236 1, 236 3, 709 17, 080 16, 175 1, 376
	Fe Per		88888	3 82 2 8	3 28	88888	888888888
	Exports by countries	1	North America: Canada	United States	Venezuela Burope: Austria Relptim-Luxem-	bourg. Finland France Germany, West Greece.	Norway Norway Portugal Spain Sweden Switzerland U. S. S. R. United Kingdom.

	2	1	- 23	22								2,824
	22	803	1,156	000			-	1 1			-	4, 925
					2, 182	88	241	732	853		-	12, 714
	1											73
							369				1	369
	-				-							7, 284
				63	17	3			6			4, 380
	-			4	276	294	124	10	2			1, 513
	-		100	128	141	П	∞		#		-	1, 037
		148	1	§ 3	669	388	155	88	106	*	-	13, 639
				2	89	9	81	9	9			501
												103
	-	153		2								3, 147
	-	24			Ħ		22					15, 010
	-	20	6	3-	R			က				816
-	1		232		8	867		167				24, 522
						8						4, 341
-, 1, .	194	1,281	1,1,	337	3, 568	1,716	1,003	1.332	1, 124	*	€	97, 198
	3,000	4, 653	1,410		3, 541	1,870	1,017	305	1, 122	3,573	189 '6 2	365, 721
-	8. 4	383	3.42	88	222	38	29	348	88	8	-	1 !
Asia:	Hone Kone	India	Philippines	Turkey	Algeria	Liberia	Northern zone	Southern zone	Tunisia	Oceania: Australia.	Other countries	Total

1 Less than 500 tons. 2 Estimate. 3 Data not available.

WORLD REVIEW NORTH AMERICA

Canada.—Canada produced about the same quantity of iron ore in 1957 as in 1956, but the average grade of ore was lower, and the value of shipments in 1957 was about \$5 million less than in 1956. Seven companies in Canada shipped iron ore from properties operated solely for the production of iron. Of these 2 produced direct-shipping ore, 2 magnetite concentrate, 1 sinter, 1 pelletized concentrate, and

1 heavy-medium concentrate.

British Columbia.—The Provincial Government of British Columbia amended its Mineral Act to abolish the system of crown-granted mineral claims, as had been the practice throughout the history of the Province. The Government also imposed a maximum and minimum tax of 50 and 25 cents per ton on iron-ore exports. The British Columbian Minister of Mines was given authority to decide the tax rate within the maximum and minimum based on his department's evalution of exploration and development done at each deposit.⁵

TABLE 24.—World production of iron ore, iron-ore concentrates, and iron-ore agglomerates, by countries, 1948-52 (average) and 1958-57, in thousand leng tons ²

[Compiled by Pearl J. Thompson and Berenice B. Mitchell]

Country 1	1948-52 (average)	1953	1954	1955	1956	1957
			77 77			C 1 - 2
North America:						
Canada		5, 813	6, 578	14, 539	19, 954	19, 988
Cuba	_ 32	197	25	129	135	105
Dominican Republic	- 3 19	91	105	99	161	4 180
Guatemala Mexico	- 41	4 3	4 2	4 3	# 3	4
Mexico	413	538	514	- 705	801	4 935
United States	99, 681	117, 995	78, 129	103, 003	97,877	106, 148
Total	103,756	124, 637	85, 348	118, 478	118, 931	127, 360
South America:		7	क्रांच			
Argentina	4 44	72	60	74	64	69
Brazil	2, 168	3, 560	3, 023	4, 084	4, 765	3, 937
Chile	2 669	2,893	2, 164	1,693	2,955	2, 165
Colombia	-,	-, , , , ,	82	344	388	7 590
Peru		985	2, 188	1, 763	2,604	3, 522
Venezuela	5 1, 128	2, 260	5, 335	8, 306	10, 930	15, 054
Total	- 6,009	9, 770	12, 852	16, 204	21, 706	25, 337
Europe:		\$4 15°				
Austria	1,883	2, 713	2,678	2, 793	3, 207	3, 441
Belgium		-, , , , , , ,	81	104	144	136
Bulgaria	4 30	113	116	111	232	295
Czechoslovakia	1,612	1,700	1,650	1, 955	2, 050	2, 756
Finland	_	17	132	181	203	412
France	31, 595	41, 777	43, 134	49, 517	51, 858	56, 854
Germany:	1 1	//	रस्य रहर	737 - 77		99,20
East	4 450	1, 338	1, 447	1,638	1, 583	1,624
West	_ 10,944	14, 388	12, 830	15, 436	16,661	18, 031
Greece	_ 56	87	76	189	394	4 200
Hungary	325	353	421	347	4 295	4 255
[taly	_ 580	975	1,074	1, 328	1,629	1, 540
Luxembourg	4, 773	7, 057	5, 794	7, 091	7,474	7, 719
Norway	369	1, 167	1,078	1, 236	1, 526	1, 476
Poland	_ 797	1, 288	1, 550	1,827	1,942	1, 963
Portugal	6 54	143	110	187	233	280
Rumania	4 400	675	685	627	683	634
Spain	2, 135	2,976	2, 869	3,709	4, 410	5, 291

See footnotes at end of table.

⁵ U. S. Consulate General, Vancouver, Canada, State Department Dispatch 27: Nov. 12, 1957. Northern Miner (Toronto), B. C. Iron-Ore Miners Shocked by Confiscatory Taxatlen Bill: Vol. 43, No. 2, Apr. 4, 1957, pp. 1, 9.

TABLE 24.—World production of iron ore, iron-ore concentrates, and iron-ore agglomerates, by countries, 1948-52 (average) and 1953-57, in thousand long tons 2-Continued

Country i	1948-52 (average)	1953	1954	1955	1956	1957
Surope—Continued						
Sweden	14, 362	16, 715	15, 083	17,080	18, 648	19, 665
Switzerland	78	103	100	127	129	114
U. S. S. R. ⁷	4 38, 900	4 59,000	63, 300	70,800	76, 900	82, 900
United Kingdom	14, 092	15, 818	15, 557	16, 175	16, 245	16, 902
United Kingdom Yugoslavia	728	782	1,093	1, 376	1,698	1,846
Total	4 124, 240	4 169, 283	170, 858	193, 834	208; 144	224, 334
sia:						
Burma			3	4	. 2	4
China 4	2,095	5,600	7, 200	8,600	10,800	11,800
Hong Kong	103	123	91	115	123	94
India	3, 130	3,855	4, 308	4,653	4,830	5,066
Iran 8	6 12	10	10	¥ 10	5	4 5
Japan 9	954	1, 517	1,605	1,492	1,882	2, 208
Korea, Republic of	6 35	19	31	29	62	182
Lebanon	87	30	49	42	41	4 39
Malaya	482	1,063	1, 213	1,466	2,445	2, 972
Philipping	602	1, 199	1,402	1,410	1,417	1, 325
Philippines Portuguese India	238	929	1, 359	2, 176	4 2, 100	10 2, 360
Thailand	54	8	4	5	6	. 9
Turkey	265	489	577	860	915	1; 220
Total 1 4 7	8,000	14, 900	18, 350	21, 850	25, 600	28, 300
frica:						
Algeria	2, 538	3,335	2,881	3, 541	2, 543	2,746 4 39
Favnt				2.1.1.1.1.2.2	130	4 39
French Guinea		393	583	640	840	1, 97 1, 93
Liberia	6 530	393 1, 264	583 1, 238	1,870	2, 108	1,93
Moroeco:			1			1114 (124
Northern Zone	905	970	916	1,017	1, 356	10 1, 378
Southern Zone	430	501	329	305	482	461
Rhodesia and Nyasaland, Federation	1			1. 43 4		
of:				2		Laboret
Northern Rhodesia	2	2	63		114	135
Southern Rhodesia	50	62	63	83 1, 235	1,307	1. 44
Sierra Leone	1, 102	1,368	817	1, 235		1, 15
Tunišia	799	1,040	985	1, 122	1, 151	
Union of South Africa	1, 334	1,940	1,863	1, 967	2,031	2, 047
Total	7, 690	10, 875	9,626	11, 782	12, 062	12, 768
ceania:						
Aristralia	2, 198	3, 299	3, 519	3, 573	3,924	3,800
New Caledonia	. 55				28	230
Total	2, 203	3, 299	3, 519	3, 573	3, 952	4, 03
World total (estimate)	251, 898	332,764	300, 553	365, 717	390, 367	422, 13

1 In addition to countries listed, North Kofea reports production of iron ore, but data are not available; esimate by author of chapter included in the total.

2 This table incorporates a number of revisions of data published in previous Iron Ore chapters. Data do not add exactly to totals shown because of rounding where estimated figures are included in the detail.

3 Average for 1 year only, as 1952 was the first year of commercial production:

4 Estimate.

Newfoundland-Quebec. On June 7, 1957, the Newfoundland House of Assembly approved agreements with the Canadian Javelin, Pickands Mather, and other companies for developing iron-ore deposits in Labrador. These companies will produce iron ore for sale to the steel industries in the United States, Canada, Great Britain, and Germany at an estimated rate of 25 million long tons per year.

^{*} Estimate.

§ Average for 1950-52.

§ Average for 1951-52.

§ Average for 1951-52.

§ Year ending March 31 of year following that stated.

§ Year ending March 31 of year following that stated.

§ Includes iron-sand production as follows: 1948-52 (average), 149,398 tons; 1953, 430,954 tons; 1954, 501,439 tons; 1955, 541,890 tons; 1956, 846,953 tons; and 1957, 1,079,667 tons.

Newfoundland will collect 22 cents royalty for each ton of ore shipped. The Iron Ore Co. of Canada produced about 1/2 million tons more iron ore in 1957 than in 1956; to provide better service for its European and United Kingdom customers, the company began building a 1/2million-ton storage-transfer dock at Rotterdam, Holland.

Ontario.—Steep Rock Iron Mines, Ltd., continued to dredge the silt overlying its middle (G) ore body but produced about 1 million tons less iron ore from the Hogarth pit and Errington mine in 1957

than in 1956.

The Canadian National Railroad Co. completed a 4.5-mile spur from Milnet to the Moose Mountain property of the Lowphos Ore, Ltd. Lowphos Ore, Ltd., continued construction of a mining plant and concentrator, which will have annual capacity of about a half

million tons of 65-percent iron concentrate when completed.7

The Anaconda Company (Canada), Ltd., subsidiary of The Anaconda Company, New York, N. Y., exercised options to purchase the iron-ore properties of the Lake Superior Iron Ore Co., Ltd., of Mont-The claims are 32 miles north of Nakina on the Canadian National Railway in the Kowash mining division of the district of Thunder Bay, Ontario.

SOUTH AMERICA

Brazil.—Iron-ore resources of the Congonhas District, Minas Gerais, Brazil, were estimated at 39 billion metric tons of 40 percent iron. The high-grade hematite reserve, averaging 68 percent iron, was estimated at 250 million metric tons.8

Chile.—Chile produced about 1 million tons more iron ore in 1957 an in 1956. Technicians of the Chilean Production Development than in 1956. Corporation discovered an iron-ore deposit in the coastal range, Nahuelbuta, about 200 kilometers south of Concepcion. The deposit

was estimated to contain over 100 million tons of ore.9

Peru.—Peru produced about 1/2 million tons more iron ore in 1957 The Marcona Mining Co. succeeded in enlarging its than in 1956. market to include the interior of the United States when it sold a small cargo of iron ore to the Granite City Steel Co. of East St. Louis, The ore was loaded on ocean freighters at San Juan, Peru, and routed through the Panama Canal and the Gulf of Mexico to Mobile, Ala., where it was transferred to railroad cars and shipped to St. Louis, Mo.10

Venezuela. — Mineroferroviaria de Venezuela, C. A., a new iron-ore mining company in 1957, planned to invest \$52 million to develop the El Trueno deposit southwest of Ciudad Bolivar, Venezuela. company will operate under a profit-splitting agreement on concessions owned by Trans Western de Venezuela, C. A., a United States-

Venezuelan company.

Iron ore was mined in Venezuela in 1957 by Iron Mines Co. of Venezuela, subsidiary of Bethlehem Steel Co., and Orinoco Mining

<sup>Bureau of Mines, Mineral Trade Notes: Vol. 45, No. 2, August 1957, p. 6.
Northern Miner (Toronto), Pushed Construction at Ontario Iron Mine of Lowphos Ore: Vol. 43, No. 14, June 27, 1957, pp. 1, 4.
Guild, P. W., Geology and Mineral Resources of the Congonhas District, Minas Gerais, Brazil: Geol. Survey Prof. Paper 290, 1957, 90 pp.
Mining World, vol. 19, No. 13, December 1957, p. 83.
Skillings' Mining Review, Granite City Steel Receives Shipment of Peruvian Iron Ore: Vol. 46, No. 3, Add. 20, 1957, p. 6.</sup>

Apr. 20, 1957, p. 6.

Co., subsidiary of United States Steel Corp. Iron-ore-mining companies pay normal corporate taxes ranging up to 26 percent on annual profits of \$8.4 million and a production royalty of 1 percent to the Venezuelan Government. If company profits exceed 15 percent on net worth in any tax year, the law provides for a special surtax to equalize the Government's tax revenue and the company's net profits.11

EUROPE

France.—According to the Federation of French Iron Mines current 5-year plan, which began on January 1, 1957, iron-ore output will be increased 32 percent to 70 million tons annually within the next 5 years. French iron-ore reserves have been estimated to total 8 billion tons-6 billion tons in Lorraine and 2 billion in western France and the Pyrenees.12

Germany, West.—The German iron and steel industry made longterm contracts to buy iron ore from recently reopened mines in Labrador and Venezuela. In 1957 the industry imported 30 percent

of its iron-ore requirements.13

German steel companies participated in exploring and evaluating iron-ore deposits in eastern Quebec and the Ungava Bay area of Canada, in French North Africa, and in Minas Gerais, Brazil. Three West German steel companies contracted to take 350,000 tons of

iron ore from Chile in 1957.14

Sweden.—On September 30, 1957, the Government of Sweden made the first of five equal installment payments to Trafik a.-b. Grängesberg-Oxelösund to acquire that company's stock in the iron-oremining corporation Luossavaara-Kiirunavaara, a.-b. Through this action the Swedish Government acquired what has been reported to be the world's largest mine and ore-dressing plant and control of about 75 percent of Sweden's iron-ore output.15

U. S. S. R.—Iron-ore resources of the Soviet Union and the iron and steel industry of that country were described in three publications issued by agencies of the Soviet Government. A summary of the

context of these three publications was presented in English.16

ASIA

India.—The Indian Government contracted with Hewitt-Robins, Inc., to build a \$5.5-million material-handling and crushing and screening facility for a new iron-ore mine at Barsua, Orissa Province, 225 miles southwest of Calcutta. The deposit, said to contain 150 million tons of 54- to 65-percent iron, is owned by Hindustan Steel Private, Ltd. 17

¹¹ Engineering and Mining Journal, Mivenca Plans \$52-Million Iron Mine: Vol. 158, No. 11, November 1957, pp. 144, 148.

12 South African Mining and Engineering Journal, vol. 68, pt. I, No. 3355, May 31, 1957, p. 1053.

13 Skillings' Mining Review, French Iron Ore Production: Vol. 46, No. 11, June 15, 1957, p. 29.

14 Foreign Commerce General, Duesseldorf, Germany, State Department Dispatch 187: June 24, 1967, 4 pp.

14 Foreign Commerce Weekly, German Firms Active in Joint Iron Mining: Vol. 57, No. 11, Mar. 18, 1957,

<sup>If Foreign Commerce Weekly, German Firms Active in Joint Mon Maning; vol. 61, 745, 75, 75
Mining World, vol. 19, No. 9, August 1957, p. 32.
Mining Journal (London), vol. 248, No. 6354, May 31, 1957, p. 691.
Is U. S. Embassy, Stockholm, Sweden, State Department Dispatch 383: Oct. 4, 1957.
Mining Engineering, Arctic Iron-Ore Plant Starts Operation: Vol. 9, No. 4, April 1957, p. 407.
Bureau of Mines, Mineral Trade Notes: Vol. 45, No. 3, September 1957, pp. 3-12; vol. 45, No. 4, October 1957, pp. 11-23.
Metal Bulletin, Indian Mine Equipment Order: No. 4256; Dec. 24, 1957, p. 25.</sup>

Japan.—The Japanese iron and steel industry continued to seek new sources of iron ore in the first half of 1957. In August, however, it was reported that the steel industry was negotiating with its ironore suppliers temporarily to reduce shipments by about 15 percent.18 Two special-purpose ore-cement carriers to transport cement from Japan to southeast Asian countries and return with iron ore to Japan were being constructed by a leading Japanese cement manufacturer.¹⁹

Malaya.—Iron-ore output in Malaya in 1957 established a new

record.

The Endau Iron Mining Co., 51 percent owned by Malayans and 49 percent by Japanese, was formed to reopen mines obtained from the Federation's Custodian of Enemy Property. The mines were operated by Japanese before the war. Malayan Enterprises, Ltd., another newly formed company, was granted mining rights near Kota Tinggi in Johore. Malayan Enterprises is owned by Malayans, but the Japanese assisted in prospecting the property, and when iron ore is produced it will be sold to the Fuji Steel Co. in Japan.20

AFRICA

Liberia.—The Liberia Mining Co. built a beneficiation plant to increase its iron-ore output by about 40 percent-from 2.2 million

tons to 3 to 4 million tons annually.21

The Liberian-American-Swedish Minerals Co. began intensive geological and engineering studies of an iron-ore deposit in the Nimba Mountains, about 20 miles from Sanniquelle on the Liberia-French Guinea frontier. The company plans to begin mining in 1960 and produce at the rate of 10 million tons annually by 1962.22

TECHNOLOGY

Hydraulic mining with a suction dredge and use of froth flotation at the Jones & Laughlin Steel Corp.'s Hill Annex tailings reclamation plant at Calumet, Minn., were significant "firsts" in applying stand. ard mining and beneficiating techniques to recover iron commercially on the Mesabi Range.23

The world's largest walking dragline was installed at the United Steel Companies, Ltd., iron mine at Exton Park, Rutland, England. The machine weighs 1,676 tons, has a 282-foot boom and a 20-cubicyard bucket, and will move 10,000 tons of overburden a day, digging at 90 feet.24

p. 15.

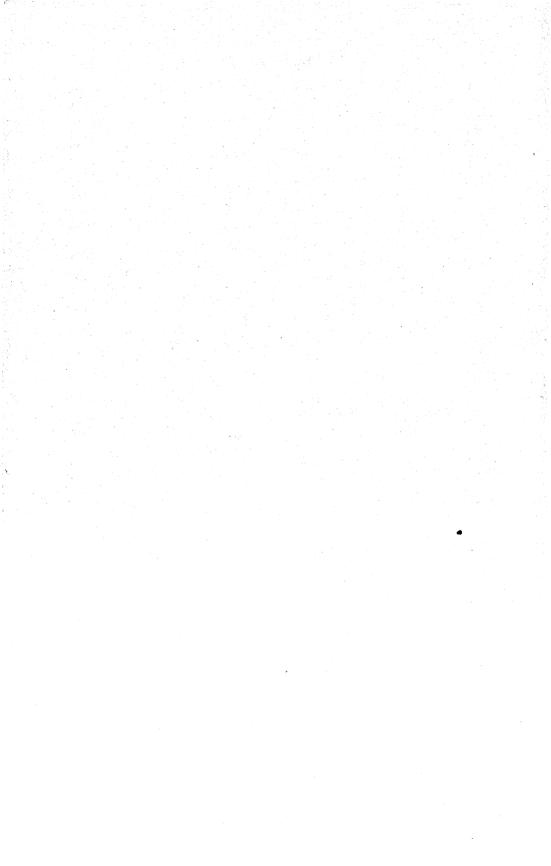
28 Bureau of Mines, Mineral Trade Notes: Vol. 44, No. 5, May 1957, p. 9.

23 Livingston, R. W., Flotation Starts on the Mesabi: Eng. Min. Jour., vol. 159, No. 1, January 1958, pp. Metal Bulletin (London), World's Largest Walking Dragline: No. 4213, July 23, 1957, pp. 20-21.

Dry magnetic concentration and a fluidized-solids technique for converting nonmagnetic iron minerals to magnetite and subsequent magnetic concentration were suggested as possible methods of exploiting low-grade iron-ore deposits. 25 The Ontario Research Foundation operated a pilot plant in the summer of 1956 at Lakefield, Ontario, and a new plant at Rexdale near Toronto in 1957 to evaluate dry grinding and magnetic concentration of iron ore. Dry-concentration results were comparable to those on the same ore concentrated by wet methods. Economic studies of the fluidized-solids system for reducing hematite in low-grade deposits to magnetite indicated operating costs per long ton of feed (5 percent H₂O) of \$0.76, using coal for fuel, and \$0.66, using gas for fuel.

Worldwide interest in iron-ore direct-reduction processes continued In most foreign countries this interest was instigated by desire for a local steel industry and by lack of coking coal. In the United States continuing interest was supported by successful pilotplant operations, indicating that most of the technical obstacles to commercial operation had been overcome.26

Research and development to produce additional iron from blast furnaces through improved practice included use of oxygen, beneficiated iron ore, agglomeration, moisture in the blast, higher blast heats, and improved coke quality.27


²⁸ Cavanagh, F. E., and Williams, E. W., Dry Magnetic Concentration: The Canadian Min. and Met. Bull., vol. 50, No. 545, September 1957, pp. 558-564.

Priestley, Robert J., Magnetic Conversion of Iron Ores: Ind. Eng. Chem., vol. 49, No. 1, January 1957,

pp. 62-64.
²⁶ Squires, A. M., and Johnson, C. A., The H-Iron Process: Jour. Metals, vol. 9, No. 4, April 1957, pp.

Turner, H. S., Research in the Direct Reduction of Iron Ore: Min. Cong. Jour., vol. 43, No. 12, December

^{1957,} pp. 59-63.
Franklin, James W., Industry Looks at Direct Reduction: Eng. Min. Jour., vol. 158, No. 12. December 1957, pp. 84-93.
Franklin, James W., Industry Looks at Direct Reduction: Eng. Min. Jour., vol. 158, No. 12. December 1957, pp. 84-93.
Franklin, James W., Industry Looks at Direct Reduction: Eng. Min. Jour., vol. 158, No. 12. December 1957, pp. 84-93.

Iron and Steel

By James C. O. Harris¹ and J. Kay Myers²

$oldsymbol{P}$	age		Page
Production and shipments of pig		Prices	626
iron 6	15	Foreign trade	628
Production and shipments of steel. 6	20	World review	681
Consumption of pig iron6	24	Technologic developments	638

•HE DOMESTIC steel industry celebrated its 100th anniversary in 1957 commemorating the Kelley and Bessemer converters, which made possible the manufacture of large quantities of steel economically. In observance of this historic event a special stamp was issued by the Post Office Department. Production was the third highest on record, totaling 112.7 million short tons compared with 115.2 million in 1956 and the alltime record of 117.0 million tons in In the second half of 1957 steel production dropped 14 percent below the high rate of the first half of the year. Improved blastfurnace and operating techniques and a drop in scrap consumption contributed to a new record in pig-iron production of 78.4 million short Scrap prices dropped sharply during the last 4 months, but blast-furnace output did not drop substantially until November. At the end of the year 94 furnaces were out of blast compared with 13 on January 1. The ratio of scrap to pig iron consumed was 49 to 51 in 1957 compared with 52 to 48 in 1956.

At the end of 1957 blast- and steel-furnace capacities reached new highs of 91.0 and 140.7 million short tons, respectively. Steelmaking capacity increased 7.2 million tons—the second highest annual gain; capacity for blast furnaces increased 4.2 million—the highest gain on record. More than half of the blast-furnace capacity was increased through the enlargement and modernization of existing furnaces; three new furnaces were blown in—one each at Morrisville, Pa., Sparrows Point, Md., and Fontana, Calif. The 2-million-ton increase in steelmaking capacity at Bethlehem Steel's Sparrows Point plant makes this the world's largest steelworks, with a capacity of 8.2

million tons.

The American steel industry continued to improve existing ironand steel-making facilities, develop new direct iron-reduction processes, and expand vacuum-melting facilities. The use of oxygen and humidification of blast-furnace blast received further attention, and more than half a dozen direct-iron processes were active. According to a survey conducted at the end of 1957, domestic capacity of vacuum-

Commodity specialist.
 Statistical clerk.

melting facilities was 20 million pounds of the induction melting and

50 million pounds of the consumable-electrode type.

The use of oxygen in steel furnaces received further attention; Jones & Laughlin Steel Corp. constructed the Nation's second oxygen steelmaking plant at Aliquippa, Pa., and Inland Steel used oxygen and made steel in an open-hearth furnace without fuel. In 1957, for every ton of steel ingots made, more than 200 cubic feet of oxygen was used.

Domestic shipments of steel products, including exports, in 1957 totaled 79.9 million short tons,—the fourth highest on record—6 percent below the record year 1955. Receipts by the automotive industry, again the Nation's leading consumer, was 14 million tons or 19 percent of domestic shipments, slightly higher than in 1956. Exparts of iron and steel products in 1957 were the highest since 1947,

and pig-iron exports were the highest on record.

Weekly hours worked per employee in the steel industry during 1957 averaged 39.1, compared with 40.4 in 1956. The number of employees for the year averaged 538,000 compared with 534,000, and the hourly wage averaged \$2.68 in 1957 compared with \$2.52 for the previous year. The average composite price of finished steel, as published by Iron Age, was 5.800 cents per pound compared with 5.358 in 1956.

TABLE 1.—Salient statistics of iron and steel in the United States, 1948-52 (average) and 1953-57, in short tons

	1948-52 (average)	1953	1954	1955	1956	1957
Pig iron:				7		
Production Shipments Imports Exports	61, 896, 525 61, 816, 337 514, 114 23, 159	74, 853, 319 74, 162, 829 589, 825 18, 837	57, 947, 551 57, 782, 686 290, 716 10, 247	76, 848, 509 77, 300, 681 283, 559 34, 989	75, 030, 249 75, 109, 714 326, 700 1 269, 477	78, 404, 266 76, 886, 551 225, 387 882, 342
Steel: 3						
Production of ingots and castings: Open-hearth:						
Basie A cid Bessemer	81, 729, 892 642, 993	99, 827, 729 646, 094	80, 019, 628 307, 866	104, 804, 570 554, 847	102, 167, 989 672, 596	101, 027, 725 630, 051
Electric 3	4, 227, 802 5, 763, 835	3, 855, 705 7, 280, 191	2, 548, 104 5, 436, 054	3, 319, 517 8, 357, 151	3, 227, 997 9, 147, 567	2, 475, 138 8, 582, 082
TotalCapacity, annual on	92, 364, 522	111, 609, 719	88, 311, 652	117, 036, 085	115, 216, 149	112, 714, 996
Jan. 1 Percent of capacity	100, 512, 902 91. 9	117, 547, 470 94. 9	124, 330, 410 71. 0	125, 828, 310 93. 0	128, 363, 090 89. 8	133, 459, 150 84. 5
Production of alloy steel:						
Stainless Other	756, 332 7, 685, 293	1, 054, 113 9, 274, 081	852, 021 6, 340, 842	1, 222, 316 9, 437, 775	1, 255, 725 9, 072, 343	1, 046, 919 7, 864, 904
Total	8, 441, 625	10, 328, 194	7, 192, 863	10, 660, 091	10, 328, 068	8, 911, 823
Shipments of steel products: For domestic consump-						
tion For export	65, 575, 412 3, 072, 988	77, 472, 162 2, 679, 731	60, 618, 843 2, 533, 883	81, 134, 367 3, 583, 077	79, 628, 741 3, 622, 427	75, 325, 782 4, 568, 795
Total	68, 648, 400	80, 151, 893	63, 152, 726	84, 717, 444	83, 251, 168	79, 894, 577

Revised figure.

American Iron and Steel Institute.
Includes a very small quantity of crucible steel and oxygen converter steel for 1954-57.

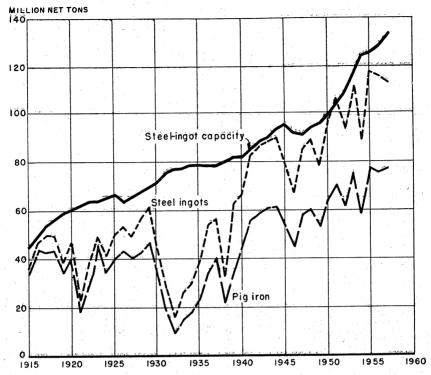


FIGURE 1.—Trends in production of pig iron and steel ingots and steel-ingot capacity in United States (1915-57).

PRODUCTION AND SHIPMENTS OF PIG IRON

Domestic production of pig iron, exclusive of ferroalloys, reached a record high of 78.4 million short tons, a 5-percent increase over 1956 and a 2-percent increase over the previous record year 1955. Blast furnaces operated at 90 to 100 percent of capacity for the first 9 months of the year but dropped sharply from 88.4 percent in October to 71.6 percent in December. Pig-iron production increased in 13 States but decreased in California, Illinois, Ohio, and West Virginia. Pennsylvania, Ohio, and Indiana ranked first, second, and third in pig-iron production, supplying 27, 19, and 11 percent, respectively, compared with 27, 20, and 11 percent in 1956.

Other products of the blast furnace were 40.9 million short tons of blast-furnace slag or 1,040 pounds per ton of pig iron and 8 million tons of flue dust recovered or 204 pounds per ton of pig iron, virtually

unchanged from 1956.

The combined capacity of the new blast furnaces, installed by Bethlehem Steel Co., Kaiser Steel Corp., and United States Steel Corp., was 1.9 million short tons; modernization and enlargement of 8 furnaces added 2.3 million tons to the annual capacity.

United States Steel Corp. reported what might be the record month for the Nation in blast-furnace output. During the month of May the United States Steel Corp. Fairless Works Pennsylvania, No. 2 blast furnace produced 66,395 short tons of pig iron or an average daily output of 2,142 tons.

Shipments of pig iron (including onsite transfers) were the second highest on record and 2 percent greater than in 1956. Value of shipments increased 12 percent. The average values per ton of pig iron shown in table 4 are lower than market prices published in trade journals because handling charges, selling commissions, freight costs, and other related items are excluded.

TABLE 2.—Pig iron produced and shipped in the United States, 1956-57, by States

	Prod	uced		Shipped fro	om furnaces	
State	1956 (short	1957 (short		1956	1	957
	tons)	tons)	Short tons	Value	Short tons	Value
A labama Illinois	4, 166, 593 6, 515, 852	4, 903, 627 6, 308, 891	4, 326, 511 6, 537, 451	\$217, 314, 687 356, 432, 770	4, 693, 224 6, 195, 023	\$253, 160, 817 359, 569, 030
IndianaOhioPennsylvania	8, 245, 756 15, 127, 518 20, 618, 260	9, 007, 611 14, 979, 958 21, 031, 230	8, 203, 198 15, 086, 354 20, 651, 381	435, 543, 342 790, 897, 903 1, 135, 945, 127	8, 991, 482 14, 683, 645 20, 610, 846	524, 510, 587 820, 587, 336 1, 221, 274, 798
California Colorado Utah	3, 869, 003	3, 941, 135	3, 819, 248	193, 503, 622	3, 929, 547	225, 701, 696
Kentucky rennessee rexas	1, 505, 111	1, 967, 259	1, 495, 815	73, 617, 998	1, 915, 912	104, 179, 069
Maryland West Virginia	6, 087, 184	6, 669, 910	6, 078, 044	336, 066, 425	6, 538, 592	415, 751, 270
Michigan Minnesota	3, 998, 520	4, 197, 654	4, 004, 081	217, 446, 898	4, 118, 061	239, 156, 672
New York Massachusetts	4, 896, 452	5, 396, 991	4, 907, 631	267, 908, 584	5, 210, 219	328, 408, 630
Total	75, 030, 249	78, 404, 266	75, 109, 714	4, 024, 677, 356	76, 886, 551	4, 492, 299, 905

TABLE 3.—Foreign iron ore and manganiferous iron ore consumed in manufacturing pig iron in the United States, 1956-57, by sources of ore, in short tons

Source	1956	1957	Source	1956	1957
Africa Brazil Canada Chile Cuba India Mexico	137, 699 17, 583 8, 196, 055 188, 423 74, 691 1, 954 121, 837	50, 438 2, 488 8, 311, 912 122, 790 35, 330 784 213, 014	Peru	1, 548, 032 290, 200 6, 482, 917 346, 403 17, 405, 794	1, 385, 199 169, 038 5, 464, 336 222, 552 15, 977, 881

TABLE 4.—Pig iron shipped from blast furnaces in the United States, 1956-57, by grades 1

		1956			1957	
Grade	Short	Valu	e	Short	Valu	e
	tons	Total	Average	tons	Total	Average
Foundry	2, 502, 265 62, 012, 160 6, 625, 236 346, 924 3, 471, 100 152, 029	\$129, 841, 696 3, 325, 547, 674 358, 447, 652 20, 603, 109 182, 801, 123 7, 436, 102	\$51. 89 53. 63 54. 10 59. 39 52. 66 48. 91	2, 077, 003 64, 197, 669 6, 204, 829 814, 399 3, 239, 745 352, 096	\$117, 301, 167 3, 762, 500, 726 362, 538, 961 47, 490, 482 182, 082, 365 20, 386, 204	\$56, 48 58, 61 58, 43 58, 31 56, 20 57, 90
Total	75, 109, 714	4, 024, 677, 356	53. 58	76, 886, 551	4, 492, 299, 905	58. 43

¹ Includes pig iron transferred directly to steel furnaces at same site.

Metalliferous Materials Used.—The production of pig iron in 1957, excluding coke and fluxes, required 135.1 million short tons of iron and manganiferous ores and agglomerates, 4.1 million tons of scrap, 0.4 million tons of flue dust, and 9.8 million tons of miscellaneous materials or 1.905 tons of material per ton of pig iron made. The scrap charge consisted of 1,733,645 short tons of purchased scrap and 2,407,697 tons of home scrap, including 560,124 tons of home-slag scrap. Miscellaneous materials consumed included 3.9 million tons of mill cinder and scale, 5.8 million tons of open-hearth and Bessemer slag, 65,000 tons of other metalliferous materials, and 97,000 tons of nonmetalliferous materials. Net totals shown in table 6 were computed by deducting 8 million tons of flue dust recovered and 1 million tons of scrap produced at blast furnaces.

The agglomerate charge consisted of 32,505,806 tons of sinter, 1,788,476 tons of pellets, and 1,336,513 tons of other agglomerates; 1,247,010 tons of the total was of foreign origin. Canada, Venezuela, and Peru supplied 52, 37, and 9 percent, respectively, of foreign iron

and manganiferous ores used in blast furnaces.

Alabama furnaces consumed hematite from the Birmingham district, brown ores from Alabama and Georgia, and byproduct ore from Tennessee; imported iron ores from Brazil, Labrador, Peru, Sweden, and Venezuela; and a small quantity of foreign manganese-bearing ores from Brazil, India, and South Africa.

Blast furnaces at Fontana, Calif., were supplied with iron ore from

California and Nevada.

Pueblo, Colo., furnaces (Colorado Fuel & Iron Corp.) used iron ores

from Wyoming and Utah.

Over 97 percent of the iron ores consumed at Sparrows Point, Md., was of foreign origin—Labrador, Venezuela, Chile, Peru, Cuba, and Liberia. A small quantity of manganiferous ore from Labrador and Egypt was used.

The Lake Superior region was the principal source of iron ores for Pennsylvania blast furnaces. The major foreign sources (20 percent of total ore) were Venezuela, Canada, and Peru; manganiferous ores came from Labrador, Africa, and Egypt.

Eighty-eight percent of the iron ore used in Illinois, Indiana, Ohio, and West Virginia was of domestic origin, largely from the Lake

Superior region; Canada was the major foreign source.

The Everett, Mass., blast furnace used iron ore from Canada, Peru, and Venezuela and iron and manganiferous ores from Labrador. Less than 15 percent of the iron ore used was of domestic origin.

New York furnaces used ores from the Lake Superior region, Mineville area, and eastern New York, and iron and manganiferous ores from Canada. Canadian ores furnished 12 percent of the total, excluding agglomerating ores.

Texas furnaces consumed brown ores from east Texas and iron

ores from Mexico and Peru.

Utah furnaces used iron ore from Iron County, Utah, and manganese ore from Mexico.

TABLE 5.—Number of blast furnaces (including ferroalloy blast furnaces) in the United States, December 31, 1956–57

[Ameri	can Iron ar	id Steel Ins	stitute			<u> </u>
	1	Dec. 31, 195	6	Ì	Dec. 31, 195	7
State	In blast	Out of blast	Total	In blast	Out of blast	Total
Alabama. California Colorado. Illinois. Indiana. Kentucky Maryland Massachusetts. Michigan. Minnesota. New York Ohio Pennsylvania. Tennessee Texas. Utah Virginia. West Virginia.	3 4 22 23 3 9 1 8 3 16 49 75 3 2 5	1 4 3	21 3 4 22 23 3 9 1 8 3 17 53 78 3 2 5	15 3 2 11 17 2 9 1 7 7 2 13 28 49 1 2 4	6 1 2 11 6 1 1 1 4 25 300 2 2	21 4 4 22 23 3 10 1 1 8 3 17 53 79 8 2 5
Total	249	13	262	171	94	265

TABLE 6.—Iron ore and other metallic materials, coke, and fluxes consumed and pig iron produced in the United States, 1956-57, by States, in short tons

		A	detalliferor	Metalliferous materials consumed	consumed			Net coke	Fluxae	Pio tmn	Metalliferous materials consumed per ton of pig fron made	stalliferous materials con per ton of pig fron made	or made	peuns	Consumed fluxes consumed per ton of pig fron	d fluxes sed per sig fron
State	Iron and r niferous	manga- 13 ores	Agglom-	Net ores	Net	Miscel-	Net total			produced	Netores and ag-		Miscel-	Total	N.	Fluxes
	Domestic	Foreign	erates	glomer- ates 1		laneous 8		•			glomer- ates 1	scrap 2	g sno		coke	
1956		1													j	
	5, 576, 001 10, 476, 328	1, 737, 475	1, 587, 088	8, 539, 544	342, 215 1, 2	95, 674	8,844,669 12,500,284	4, 017, 769 5, 463, 493	2,090,416	4,166,593	2.050	0.050	0.023	2. 123	0.964 839	0
: :	12, 062, 650 16, 557, 639	4	2, 117, 4, 568,	13, 545, 127 24, 103, 208	141, 918 790, 730	82, 186 74, 032	14,969, 26,867,	6, 982, 306	2, 864, 803 5, 728, 531	8, 245,	1.642	017	126	1.815	75.8	379
Pennsylvania	19, 886, 545	4	9,014,	31, 717, 868	1, 221, 819	20,308	36, 189, 495	17, 027, 748	8, 006, 628	0, 618,	1.538	. 059	1158	1.755	.826	
Colorado	3, 890, 869	6,694	2,886,940	6, 607, 934	74, 864	184, 503	6,866,801	2, 973, 585	1, 145, 112	3, 869, 003	1.708	010	.048	1.775	592	296
Kentucky Tennessee	1, 792, 590	289, 114	349,882	2, 391, 268	122, 222	202, 512	2,716,002	1, 323, 013	653, 882	1, 505, 111	1, 589	180	135	1.806	.879	184
Maryland West Virginia	2, 033, 815	4, 833, 797	2, 882, 752	6,069,939	101, 374	705, 236	9,876,549	4, 716, 103	1,867,778	6, 087, 184	1.490	.017	.416	1.628	.775	307
Michigan Minnesota	6, 025, 652	238, 134	1, 262, 273	6, 992, 676	197, 732	334, 135	7, 524, 543	3, 630, 196	1, 664, 135	3, 998, 520	1.749	. 040	.084	1.882	.908	.416
New York Massachusetts	5, 447, 276	508, 212	2, 444, 528	8, 027, 440	229, 915	512, 894	8, 770, 249	4, 148, 579	1, 755, 794	4, 896, 452	1.639	.047	.105	1. 791	. 847	.359
Total	83, 749, 365	17, 405, 794	28, 185, 953	121, 913, 130	3, 431, 740	9, 780, 923	135, 125, 793	63, 389, 930	27, 131, 562	75, 030, 249	1.625	970.	130	1.801	.845	.362
1957														Ï	ľ	
	7, 231, 358 9, 959, 732 13, 232, 090	528,019 56,160 433,862	2, 694, 339 1, 274, 227 2, 556, 620	920,	239, 040 213, 258 168, 467	136, 319 854, 510 1, 300, 667	10,404,996 11,768,840 16,401,766	4, 685, 961 5, 094, 445 7, 537, 155	1, 513, 711 4, 903, 8 2, 044, 922 6, 808, 8 3, 962, 601	4, 903, 627 6, 308, 891 9, 007, 611	2.045 1.696 1.648	034	185	1.685	956	328
	15, 153, 482 18, 719, 669	4, 400, 024	5, 530, 10, 699,	23, 926, 159 32, 150, 441	1,096,647	, 859, 3, 523,	26, 490, 809 36, 770, 312	12, 735, 191 17, 478, 623	5, 430, 148 7,827, 163	14, 979, 958 21, 031, 230	1.597	0.047	157	1.768	96.86	8
Colorado	4, 140, 071	3, 599	2,948,739	6, 924, 260	70, 120	202, 465	7, 196, 845	8, 101, 464	1, 117, 244	3, 941, 135	1.767	018	. 061	1.826	787	288
Kentucky.	2, 046, 388	466,715	511, 801	2, 962, 078	150, 072	283, 411	3,395,561	1, 588, 947	781,360	1, 967, 259	1.506	.076	144	1.726	808	.397
Texas Maryland West Virginia	1, 921, 589	4,074,857	4, 663, 394	9, 980, 006	153, 993	781, 170	10,915,169	5, 075, 212	2, 106, 378		1. 498	80.	- H	1,636	.761	316
Michigan	5, 920, 503	330, 392	1,349,202	7, 028, 041	239, 262	326, 418	7, 593, 721	3,715,964	1,641,055	4, 197, 654	1.674	.057	.078	1.809	1885	. 391
New York Massachusetts	5, 134, 430	951, 722	3, 402, 476	8, 860, 663	161, 614	531, 450	9,493,727	4, 619, 740	1, 932, 288	5, 396, 991	1:631	. 030	860.	1.759	85.	.358
Total	83, 459, 312	83, 459, 312 15, 977, 881 35, 630, 796 127,	35, 630, 795	127, 434, 989	3. 197, 628	799, 129	434, 989 3, 197, 628 9, 799, 129 140, 431, 746 65, 632, 702 27, 356, 870 78, 404, 268	65 632 702	27. 358. 870	78 404 9RB	1 695	170	195	102. 1	837	349

PRODUCTION AND SHIPMENTS OF STEEL

Domestic steel production in 1957 was 112.7 million short tons, or 84.5 percent of capacity; the AISI index was 134.6 (1947-49=100). The corresponding figures for 1956 were 115.2, 89.8, and 137.2, respectively. Production was above 90 percent of capacity for the first quarter; the second highest monthly output-11 million tonswas recorded for January and was only 40,000 tons below the record month of October 1956. As the year progressed the demand for steel continued to decrease, and the operating rate dropped to 65.5 percent of capacity in December. The percentages of total steel made by the several processes were as follows: Open hearth, 90; electric, 8 (oxygenconverter output and operating rate are included with the electric furnace); and Bessemer, 2. Corresponding figures for 1956 were 89, 8, and 3, respectively.

Thirty-three percent of domestic steel was produced in the Pittsburgh-Youngstown district, 22 percent in both the Chicago and Eastern districts, 11 percent in the Cleveland-Detroit district, and 6 percent in both the Western and Southern districts. These figures compare with 35, 22, 22, 10, 6, and 5 percent, respectively, in 1956.

The above districts are those designated by AISI.

During the year open-hearth capacity increased 5.4 million short tons to 122.3 million tons; electric furnace, 1.8 million tons to 13.3 million; oxygen converter, 541,000 to 1.1 million tons. Bessemer furnace capacity decreased 478,000 to 4 million tons.

Figures for steelmaking capacity represent net-steel capacity after the producers deducted an average of 8.8 percent for operating time lost for rebuilding, relining, repairing, and holiday shutdowns (AISI). The output from steel foundries that did not produce steel ingots are

not included in the production data.

The Bethlehem Steel Sparrows Point plant became the largest steel plant in the world with the addition in 1957 of 2 million tons of new open-hearth capacity; this brought total capacity to 8.2 million tons compared with 7.2 million tons for the United States Steel, Gary, Ind., plant, formerly the world's largest. On December 10, 1957, the Nation's second oxygen-steelmaking plant started operating in Pennsylvania at the Aliquippa Works of Jones & Laughlin Steel Corp. Annual capacity of this installation totaled 492,000 tons. capacity of the McLouth Steel Corp. oxygen-steelmaking plant in Trenton, Mich., built in 1954, was increased to 589,000 tons. Three other steel companies were building or planning oxygen-steelmaking plants.

Shipments of steel products, given in table 11, decreased 3.4 million tons. Although most categories decreased, shipments for construction and maintenance increased 2.1 million tons.

Alloy Steel.³—Domestic alloy-steel production in 1957 was 8,911,823 short tons, a decrease of 14 percent from 1956; it furnished 8 percent of total steel output compared with 9 percent in 1956 and 1955.

Stainless-steel ingot 32 production (12 percent of the 1957 alloy-steel output) was 1,043,719 tons. Output for the year was 16 percent below 1956 and 14 percent below 1955. The production of austenitic stainless steel AISI 300 (nickel-bearing) and 200 series (manganese-nickel bearing), representing 60 percent of total stainless-steel production, was 17 percent below 1956; the ferritic and martensitic, straight chromium types, AISI 400 series, decreased 16 percent. Production of AISI 200 series (25,528 short tons) increased 31 percent. output of type 501, 502, and other high-chromium, heat-resisting steels included in the stainless-steel-production figure decreased 7 percent. Production of all grades of alloy steel, other than stainless, Production of molybdenum, manganesedecreased 14 percent. molybdenum, and nickel-chromium steels increased. All others decreased, with silico-manganese and manganese steels showing the greatest decline. Silicon sheet steel (1 million short tons) decreased 21 percent. The percentages of alloy steel produced in the basic open-hearth, acid open-hearth, and electric furnaces were 64, 2, and 34 percent, respectively, compared with 61, 2, and 37 percent, respectively, in 1956.

TABLE 7.—Steel capacity, production, and percentage of operations, in the United States, 1948-52 (average) and 1953-57, in short tons ¹

American	Iron	and	Steel	Institute
----------	------	-----	-------	-----------

	Annual		1	Production		
Year	capacity as of Jan. 1	Open hearth	Bessemer	Electric ²	Total	Percent of capacity
1948–52 (average)	100, 512, 902 117, 547, 470 124, 330, 410 125, 828, 310 128, 363, 090 133, 459, 150	82, 372, 885 100, 473, 823 80, 327, 494 105, 359, 417 102, 840, 585 101, 657, 776	4, 227, 802 3, 855, 705 2, 548, 104 3, 319, 517 3, 227, 997 2, 475, 138	5, 763, 835 7, 280, 191 5, 436, 054 8, 357, 151 9, 147, 567 8, 582, 082	92, 364, 522 111, 609, 719 88, 311, 652 117, 036, 085 115, 216, 149 112, 714, 996	93. 0 89. 8

Includes only that portion of steel for castings produced in foundries operated by companies manufacturing steel ingots. Omitted portion is about 2 percent of total steel production.
 Includes a very small quantity of crucible steel and oxygen-converter steel for 1954-57.

² The Bureau of Mines uses the American Iron and Steel Institute specifications for alloy steels, which include stainless and any other steel containing one or more of the following elements in the designated quantities: Manganese in excess of 1.65 percent, silicon in excess of 0.60 percent, and copper in excess of 0.60 percent. These specifications also include steel containing the following elements in any quantity specified or known to have been added to obtain a desired alloying effect: Aluminum, boron, chromium, cobalt, columbium, molybdenum, nickel, titanium, tungsten, vanadium, zirconium, and other alloying elements.

3a All figures in this paragraph refer to ingots only except the last two sentences.

TABLE 8.—Open-hearth steel ingots and castings manufactured in the United States, 1948-52 (average) and 1958-57, by States, in short tons 1

[American Iron and Steel Institute]

States	1948-52 (average)	1953	1954	1955	1956	1957
Mass., R. I., Conn New York Pennsylvania N. J., Del., Md. West Virginia, Kentucky Georgia, Alabama Ohio Indiana. Illineis Michigan, Minnesota Mo., Okla,, Colo,, Texas Utah, Wash., Calif	4, 459, 285 23, 844, 103 4, 900, 377 3, 198, 435 3, 664, 957 14, 612, 762 10, 582, 300 6, 553, 536 4, 094, 029	489, 967 5, 771, 684 28, 805, 249 5, 687, 465 3, 648, 235 4, 321, 489 17, 570, 814 13, 818, 187 7, 735, 397 4, 979, 415 3, 088, 318 4, 557, 603	327, 198 4, 596, 359 20, 549, 346 5, 582, 382 3, 069, 339 3, 451, 696 12, 339, 815 5, 963, 127 4, 247, 700 2, 868, 874 3, 678, 754	468, 893 6, 304, 168 29, 357, 878 6, 350, 784 3, 810, 285 4, 265, 487 18, 446, 670 15, 032, 809 8, 025, 030 5, 463, 778 3, 480, 238 4, 353, 397	378, 626 6, 045, 209 29, 218, 214 5, 986, 771 3, 935, 260 3, 439, 887 18, 240, 360 14, 323, 470 8, 505, 262 5, 318, 570 3, 250, 580 4, 638, 376	238, 744 6, 224, 628 28, 648, 151 6, 471, 163 3, 798, 038 16, 722, 719 14, 856, 378 7, 352, 766 5, 055, 011 4, 887, 429
Total	82, 372, 885	100, 473, 823	80, 327, 494	105, 359, 417	102, 840, 585	101; 657, 776

i includes only that portion of steel for eastings produced in foundries operated by companies manufacturing steel ingots. Omitted portion is about 2 percent of total steel production.

TABLE 9.—Bessemer-steel ingots and castings manufactured in the United States, 1948-52 (average) and 1953-57, by States, in short tons 1

[American Iron and Steel Institute]

State	1948–52 (average)	1953	1954	1955	1956	1957
Ohio Pennsylvania Other States	1, 965, 681 1, 184, 228 1, 077, 893	2, 326, 983 689, 814 838, 908	1, 658, 176 451, 845 438, 083	2, 268, 715 589, 249 461, 553	2, 210, 386 593, 208 424, 403	1, 735, 526 739, 612
Total	4, 227, 802	3, 855, 705	2, 54 8 , 104	3, 319, 517	3, 227, 997	2, 475, 138

¹ Includes only that portion of steel for castings produced in foundries operated by companies manufacturing steel ingots. See table 7.

TABLE 10.—Steel electrically manufactured in the United States, 1948-52 (average) and 1953-57, in short tons 1

[American Iron and Steel Institute]

Year	Îngots	Castings	Total 3	Year	Ingots	Castings	Total 2
1948–52 (average)	5, 667, 060	96, 775	5, 763, 835	1955	8, 307, 138	50, 013	8, 357, 151
1953	7, 229, 340	50, 851	7, 280, 191	1956	9, 090, 264	57, 303	9, 147, 567
1954	5, 381, 762	54, 292	5, 436, 054	1957	8, 513, 659	68, 423	8, 582, 082

¹ Includes only that portion of steel for castings produced in foundries operated by companies manufacturing steel ingots. See table 7.

² Includes a very small quantity of crucible steel and oxygen-converter steel for 1954–57.

TABLE 11.—Shipments of steel products by market classifications, all grades, including carbon, alloy, and stainless

[American Iron and Steel Institute]

	1955		1956		1957	
Market classification	Shipments, short tons	Percent of total	Shipments, short tons	Percent of total	Shipments, short tons	Percent of total
Steel for converting and processing ¹ Forgings Bolts, nuts, rivets, and screws	3, 753, 381 1, 266, 032 1, 475, 340	4.6 1.6 1.8	3, 776, 559 1, 473, 186 1, 485, 087	4.7 1.8 1.9	3, 396, 529 1, 056, 036 1, 149, 545	4. 5 1. 4 1. 5
Warehouses and distributors: Oil and gas industryAll other	2, 196, 491 13, 561, 514	2. 7 16. 7	2, 247, 184 14, 505, 049	2. 8 18. 2	2, 323, 742 12, 183, 566	3. 1 16. 2
Total	15, 758, 005	19. 4	16, 752, 233	21.0	14, 507, 308	19. 3
Gonstruction, including maintenance: Rail transportation Oil and gas All other	74, 937 2, 447, 430 7, 159, 411	.1 3.0 8.8	65, 959 2, 556, 036 7, 819, 131	.1 3.2 9.8	71, 097 3, 469, 507 8, 982, 681	. 1 4. 6 11. 9
Total	9, 681, 778	11.9	10, 441, 126	13. 1	12, 523, 285	16.6
Contractor's products	3, 982, 161	4.9	4, 074, 577	5. 1	3, 403, 580	4.5
Automotive: Passenger cars, trucks, parts, etc Forgings	18, 203, 409 518, 471	22. 4 . 7	13, 744, 303 397, 584	17. 3 . 5	13, 895, 315 331, 781	18. 5 . 4
Total	18, 721, 880	23. 1	14, 141, 887	17. 8	14, 227, 096	18. 9
Rail transportation:						
Railroad rails, trackwork, and equip-	1, 580, 155	1.9	1, 590, 013	2.0	1, 406, 157	1.9
Freight cars, passenger cars, and loco- motives	1, 900, 686	2.3	2, 604, 447	3. 3	2, 703, 006	3.6
Street railways and rapid-transit sys- tems	40,008	.1	32, 194		39, 911	
Total	3, 520, 849	4. 3	4, 226, 654	5. 3	4, 149, 074	5. 5
Shipbuilding and marine equipment Aircraft	601, 234 96, 892 792, 767 268, 987	.8 .1 1.0 .3	760, 306 134, 721 778, 714 349, 508	1.0 .2 1.0 .4	1, 277, 772 99, 561 700, 501 328, 803	1.7 .1 .9 .4
Agricultural: Agricultural machinery All other agricultural	1, 112, 354 224, 532	1.4 .3	818, 731 263, 728	1.0 .3	915, 151 1 82 , 951	1. 2 . 3
Total	1, 336, 886	1.7	1, 082, 459	1.3	1, 098, 102	1.5
Machinery, industrial equipment, and tools. Electrical machinery and equipment. Appliances, utensils, and cutlery Other domestic and commercial equipment.	4, 699, 024 2, 291, 866 2, 199, 114 2, 189, 416	5.8 2.8 2.7 2.7	5, 031, 599 2, 437, 804 2, 129, 115 2, 263, 775	6. 3 3. 1 2. 7 2. 8	4, 512, 298 2, 085, 675 1, 558, 569 1, 837, 940	6. 0 2. 8 2. 1 2. 4
Containers: Cans and closures Barrels, drums, and shipping pails All other containers	4, 946, 829 982, 651 793, 594	6. 1 1. 2 1. 0	5, 025, 825 1, 018, 873 773, 663	6.3 1.3 1.0	4, 830, 538 817, 533 589, 512	6. 4 1. 1 . 8
Total Ordnance and other military Shipments of neureporting companies	6, 723, 074 856, 527 919, 154	8. 3 1. 1 1. 1	6, 818, 361 523, 890 947, 180	8. 6 . 7 1. 2	6, 237, 583 356, 406 820, 119	8.3 .5 1.1
Total domestic Export	81, 134, 367 3, 583, 077	100.0	79, 628, 741 3, 622, 427	100.0	75, 325, 782 4, 568, 795	100.0
		1		į.		1

¹ Net total after deducting shipments to reporting companies for conversion or resale.

TABLE 12.—Alloy-steel ingots and castings manufactured in the United States, 1948-52 (average) and 1953-57, by processes, in short tons ¹

[American Iron and Steel Institute]

Process	1948-52 (average)	1953	1954	1955	1956	1957
Open hearth: Basic Acid Electric 2	5, 721, 658 162, 924 2, 557, 043	6, 599, 038 185, 341 3, 543, 815	4, 528, 336 130, 559 2, 533, 968	6, 735, 450 185, 473 3, 739, 168	6, 288, 648 201, 377 3, 838, 043	5, 745, 682 169, 898 2, 996, 243
Total	8, 441, 625	10, 328, 194	7, 192, 863	10, 660, 091	10, 328, 068	8, 911, 823

 ¹ Includes only that portion of steel for castings produced in foundries operated by companies manufacturing steel ingots. See table 7.
 ² Includes a very small quantity of crucible steel and oxygen-converter steel for 1954-57.

Metalliferous Materials Used in Steelmaking.—Pig iron and scrap consumed in steelmaking furnaces in 1957 totaled 125.5 million short tons; the percentage of each was 55 and 45, respectively, compared with 52 and 48 percent in 1956 and 1955 (see table 13). The increase in the proportion of pig iron to scrap in 1957 resulted in an alltime record consumption of pig iron in steel furnaces. Consumption of foreign iron ore and agglomerates, including sinter, also reached a record high.

For the fourth consecutive year consumption of foreign iron ore in steelmaking furnaces exceeded that from domestic sources. The principal sources of foreign ore consumed were: Chile, 34 percent (18 percent in 1956); Brazil, 22 percent; Liberia, 16 percent; Venezuela, 14 percent; and Sweden, 6 percent.

CONSUMPTION OF PIG IRON

Although all the States used some pig iron, consumption was concentrated largely in steelmaking centers in the East North Central, Middle Atlantic, South Atlantic, and East South Central States. These areas in 1957 consumed 93 percent of the pig iron. Pennsylvania (the leading consumer) used 27 percent of the total, Ohio (second) 18 percent, and Indiana (third) 13 percent; corresponding figures for 1956 were 27, 20, and 12, respectively.

TABLE 13.—Metalliferous materials consumed in steel furnaces in the United States, 1948-52 (average) and 1953-57, in short tons

Year	Iron or		Agglom-	Pig iron	Ferro-	Iron and	
	Domestic	Foreign	erates 1 2	_	alloys 2	steel scrap	
1948–52 (average)	3, 548, 561 4, 178, 398 2, 619, 871 3, 352, 182 3, 398, 359 2, 836, 650	1, 723, 252 3, 459, 075 3, 640, 771 4, 615, 966 4, 741, 062 5, 592, 024	1, 358, 433 1, 817, 722 1, 143, 160 1, 751, 663 1, 516, 936 2 1, 934, 038	54, 038, 403 65, 839, 018 51, 658, 482 67, 957, 207 66, 437, 573 68, 767, 530	1, 300, 000 1, 650, 000 1, 270, 000 1, 620, 000 1, 630, 600 1, 530, 000	49, 680, 857 59, 100, 900 46, 064, 651 61, 774, 897 62, 276, 019 56, 764, 655	

¹ Excludes consumption in steelmaking furnaces at plants that do not have blast furnaces.
² Includes ferromanganese, spelgeleisen, silicomanganese, manganese briquets, ferrosilicon, and ferro-

chromium alloys.

Includes 1,255,048 tons of sinter, 120,538 tons of pellets, 450,472 tons of nodules, and 107,980 tons of agglomerates. (106,602 tons of foreign origin).

TABLE 14.—Consumption of pig iron in the United States, 1954-57, by type of furnace

Type of furnace	1954	la de la	1955	5	1956		1957	'
or equipment	Short tons	Percent of total						
Open hearth	48, 632, 261 2, 848, 691 177, 530 4, 896, 703 232, 422 42 1, 874, 400	82. 9 4. 9 . 3 8. 3 . 4 (2) 3. 2	63, 750, 490 3, 932, 920 273, 797 5, 961, 861 295, 209 38 3, 002, 020	82. 6 5. 1 . 3 7. 7 . 4 (2) 3. 9	62, 165, 807 4, 038, 845 232, 921 5, 349, 402 292, 717 36 2, 915, 751	82. 9 5. 4 . 3 7. 1 . 4 (2) 3. 9	64, 997, 545 3, 494, 883 275, 102 4, 660, 016 244, 552 22 2, 681, 006	85. 1 4. 6 . 4 6. 1 . 3 (²) 3. 5
Total	58, 662, 049	100.0	77, 216, 335	100.0	74, 995, 479	100.0	76, 353, 126	100.0

¹ Includes pig iron used in oxygen-converter steel process.

² Less than 0.05 percent.

TABLE 15.—Consumption of pig iron in the United States, 1953-57, by States and districts, in short tons

District and State	1953	1954	1955	1956	1957
New England:		40 004	F0 100	** ***	
Connecticut.	63, 436	48, 981	50, 126	54, 104	41,506
Maine Massachusetts	5, 928 174, 513	3,057 140,194	3, 357 160, 664	4, 556 170, 658	3, 171 135, 025
New Hampshire	3,503	3, 731	3, 731	4,059	3,710
Rhode Island	49, 432	38, 583	53, 316	52, 875	38, 381
Vermont.	8, 974	9,033	10, 626	13, 053	8, 961
Total	305, 786	243, 579	281, 820	299, 305	230, 754
Middle Atlantic:					
New Jersey 1	200, 572	207, 610	234, 153	245, 524	168, 947
New York Pennsylvania 1	3, 689, 763	2, 984, 809	3, 891, 870	3, 710, 751	4,000,712
	20, 608, 854	14, 601, 423	20, 600, 273	20, 450, 118	20, 450, 516
Total	24, 499, 189	17, 793, 842	24, 726, 296	24, 406, 393	24, 620, 175
East North Central:					
Illinois 1	6, 055, 031	4, 320, 164	5, 877, 830	5, 942, 389	5, 771, 407
Indiana 1	8, 928, 835	7, 713, 815	9, 411, 067	9, 015, 531	9, 589, 218
Michigan		3, 140, 805	4, 642, 449	4, 401, 778	4, 333, 789
Ohio 1	14, 641, 399	11, 117, 854 206, 221	15, 203, 917 259, 552	14, 818, 433	14, 101, 850
Wisconsin	258, 786	200, 221	209, 552	275, 984	232, 338
Total	33, 695, 462	26, 498, 859	35, 394, 815	34, 454, 115	34, 028, 602
West North Central:					
Iowa	89, 467	71,868	88,072	73, 814	70,060
Kansas Nebraska	12, 378	6, 559	7, 322	5, 769	3,959
Minnesota	K		·		
North Dakota	518, 930	486, 718	601, 199	532, 391	500, 217
South Dakota	010, 500	100,110	001, 100	002,001	000, 211
Missouri	77,075	36,002	51, 864	45, 722	51, 932
Total	697, 850	601, 147	748, 457	657, 696	626, 168
South Atlantic:					
Delaware	1				1.0
District of Columbia	3, 919, 420	3, 877, 686	4, 260, 786	4, 050, 142	4, 642, 440
Maryland	Į)				
Florida	65, 111	24,600	45, 371	23, 245	19,448
Georgia	1)	17, 886			
North CarolinaSouth Carolina	22, 644 10, 501		23, 456	22, 109	25, 061 13, 297
Virginia	h '	13, 107	14, 165	13, 777	
West Virginia	1, 933, 541	1, 706, 519	2,006,306	2, 098, 515	2, 133, 902
Total	5, 951, 217	5, 639, 798	6, 350, 084	6, 207, 788	6, 834, 148

See footnote at end of table.

TABLE 15.—Consumption of pig iron in the United States, 1958-57, by States and districts, in short tens.—Continued

District and State	1953	1954	1955	1956	1957
East South Central: Alabama	4, 163, 931	3, 554, 765	4, 319, 869	3, 674, 477	4, 168, 930
Kentucky ! Mississippi Tennessee	1, 055, 604	764, 232	1, 137, 360	958, 142	1, 017, 233
Total	5, 219, 535	4, 318, 997	5, 457, 229	4, 632, 619	5, 186, 169
West South Central:	1				
Louisiana	12, 464	8, 673	10, 229	9, 132	7, 972
Oklahoma Texas	568, 161	661, 821	749, 298	675, 432	913, 087
Totál	580, 625	670, 494	759, 527	684, 564	921,059
Mountain:					
Arizona Nevada New Mexico	195	266	82	184	195
Utah and Colorado	2, 506, 885	1, 889, 089	2, 259, 694	2, 199, 915	2, 448, 029
Montana Idalio Wyoming	478	324	180	318	542
Total	2, 507, 558	1, 889, 679	2, 259, 956	2, 200, 417	2, 448, 766
Pacific: California ¹	1, 233, 898	1,000,576	1, 223, 264	1, 430, 737	1, 436, 691
Öregon Washington	15, 357	5, 078	14, 887	21,845	20, 600
Total	1, 249, 255	1,005,654	1, 238, 151	1, 452, 582	1, 457, 291
Undistributed 1	1, 267				
Total United States	74, 707, 744	58, 662, 049	77, 216, 335	74, 995, 479	76, 353, 126

¹ Small tonnages of pig iron, not separable, shown as "Undistributed."

PRICES

The major price increases for pig iron and steel were effective July 1 and were generally attributed to the 3-year contract between the steel industry and labor calling for wage increases on July 1 of each year.

TABLE 16.—Average value of pig iron at blast furnaces in the United States, 1948-52 (average) and 1953-57, by States, per short ton

State	1948-52 (aver- age)	1953	1954	1955	1956	1957
AlabamaCalifornia	\$40.21	\$46.63	\$46.97	\$47.89	\$50. 23	\$53.94
ColoradoUtah	45. 98	51. 14	51.08	53.82	50. 67	57. 44
Illinois	43. 15	49.85	50.09	51. 21	54, 52 53, 09	58, 04 58, 33
Indiana New York	43. 41 43. 55	49. 29 50. 46	50. 16 50. 60	50. 79 51. 54	54. 54	63. 09
Ohio	43.03	49.44	48. 92	49. 35	52.42	55.88
Pennsylvania Other States ¹	43. 87 45. 19	50. 69 49. 66	50. 52 50. 61	51. 30 50. 78	55. 01 54. 19	59, 25 60, 37
Average	43. 60	49. 83	49. 93	50. 68	53. 58	58, 43

¹ Comprises Kentucky, Maryland, Massachusetts, Michigan, Minnesota, Tennessee, Texas, Virginia, and West Virginia.

The weighted average annual price of pig iron, as published by Iron Age, was \$58.17 per short ton compared with \$54.60 in 1956. The Iron Age composite price of finished steel for 1957 was 5.800 cents per pound, compared with 5.358 cents per pound in 1956. Prices increased in February, March, and July. Prices of hot-, cold-rolled, and galvanized sheets, strip, bars, structural shapes, bright wire, and stainless sheets increased on July 1. Tinplate prices increased on May 1 and tool steel on October 1.

TABLE 17.—Average menthly prices per short ton of chief grades of pig iron, 1956-57

Statistics

Month	iro: Birmi	lry pig n at ngham laces	ire	lry pig 1 at jurnaces	iro	ner pig n at furnaces	at V	oig iron alley aces
	1956	1957	1956	1957	1956	1957	1956	1957
January February March	.		}\$52. 68	\$56. 25	\$53. 13	\$56. 70	\$52. 23	\$55.80
March April May June	\$49. 11	\$52.68	52.94	57. 87 58. 04	53. 38 54. 46	58. 31 58. 48	52.49	57. 42 57. 59
July August September	52.51	55. 23	J	58. 64	J	59. 09	J	58. 20
October November December	52.68	55. 80	56. 25	59.38	56. 70	59.82	55.80	58. 93
Average	50. 88	54. 20	54. 63	58. 33	55.08	58. 78	54. 19	57. 88

TABLE 18.—F. o. b. value of steel mill products in the United States, 1956–57, in cents per pound ¹

	1956			1957				
Product	Carbon	Alloy	Stain- less	A ver-	Carbon	Alloy	Stain- less	Aver- age
Ingots Semifinished shapes and forms Plates Sheets and strips Tin-mill products	4. 307 5. 081 5. 717 6. 474 8. 449	8. 361 8. 446 9. 471 13. 252	31. 559 29. 487 54. 791 50. 991	5. 398 5. 846 6. 241 7. 413 8. 449	4. 216 5. 447 6. 244 6. 868 8. 879	9. 012 9. 160 11. 772 14. 579	37. 063 36. 135 63. 630 54. 238	9. 505 6. 151 6. 781 7. 919 8. 879
Structural shapes and piling Bars Rails and railway-track material	5 540 6.642 6.328	6. 986 12. 848	55. 923	5. 551 8. 158 6. 328	6. 074 7. 190 6. 987	7. 595 13. 428	64. 399	6. 087 8. 707 6. 987
Pipes and tubes Wire and wire products Other rolled and drawn products	9. 099 10. 938 7. 882	16. 614 34. 396 32. 343	142, 899 75, 215 60, 530	10. 071 11. 909 11. 081	10. 564 12. 025 8. 904	17. 955 35. 087 35. 844	158. 624 84. 714 59. 985	11. 564 13. 023 12. 156
Average total steel	6. 915	12.770	53. 587	7. 731	7. 497	13.862	60, 218	8. 328

¹ Computed from figures supplied by the U. S. Department of Commerce, Bureau of the Gensus.

FOREIGN TRADE 4

Exports of pig iron (882,342 short tons valued at \$57,202,035) in 1957 reached a record high, exceeding the previous record year, 1937, by 6,014 tons. Japan and India received 68 and 22 percent, respectively, of pig iron exported. The remaining 10 percent went to 14 other countries. Imports of pig iron were 31 percent below 1956;

Canada supplied 98 percent of the total.

Exports of iron and steel products were the highest since 1947. Exports of railway track material and plates were 150 and 102 percent, respectively, greater than 1956. Tubular products and structural steel increased 45 to 50 percent. Hot- and cold-rolled strip and wire-mill products decreased. Overall imports decreased 12 percent. Imports of barbed wire increased and exceeded domestic production. Total exports of pig iron, iron and steel scrap, ferroalloys, and iron and steel products, exceeding 13.5 million short tons, were at an alltime high.

TABLE 19.—Pig iron imported for consumption in the United States, 1948-52 (average) and 1953-57, by countries, in net tons

Bureau	~ 4	h. 0.	
1 Dureau	OI L	це С	tusus i

Country	1948-52 (average)	1953	1954	1955	1956	1957
North America; Canada	144, 525	305, 256	203, 303	260, 741	303, 121	221, 166
South America:	(1)				1	
Argentina	(1) 6, 897				19, 621	
Brazil	10,097				19, 021	
Chile	13, 480					
Total	20, 377			7.45.44	19, 621	
Total	20, 377				19, 621	
Thursday						
Europe: Austria	34, 925		Laborator British		100	
Belgium-Luxembourg	34, 923					
Beigium-Luxembourg	15, 314	168				
Finland		108				
France	18, 705		2 31, 854			2 34
Germany	119, 904	2 3, 539	2 31, 854			* 34
Italy	1,025					
Netherlands	84, 181	18, 475	7, 914	1,232	112	
Norway	10, 230	2,692	3, 482	224	339	
Spain	11,855	4, 665	11,704	3,000		
Sweden	12, 491	56, 633	1, 203	2, 466	1,852	3, 135
United Kingdom	1,393					
Total	310, 023	86, 172	56, 157	6, 922	2, 303	3, 169
Asia:	1			1		
India	16, 101	12, 659	7,470	11, 217	336	
Turkey	7,442					
Total	23, 543	12, 659	7, 470	11, 217	336	-
Africa:	1			1		1
Rhodesia and Nyasaland,	ļ.					
Federation of		⁸ 6, 606	4 1, 944	241		
Union of South Africa	4, 108		5, 517	1, 425	128	
Total	4, 108	6, 606	7, 461	1,666	128	-
Oceania: Australia	11, 538	179, 132	16, 325	3,013	1, 191	1,052
					000 500	207
Grand total: Net tons	514, 114	589, 825	290, 716	283, 559	326, 700	225, 387
Value	\$22, 331, 329	\$25, 967, 435	\$13, 315, 255	\$14, 563, 612	\$17, 842, 357	\$13, 527, 813

Less than 1 ton.
 West Germany.
 Southern Rhodesia.

⁴ Southern Rhodesia not separately classified after July 1, 1954; 1,562 net tons January to June.

⁴ Figures on imports and exports compiled by Mae B. Price and Elsie D. Jackson, Division of Foreign Activities, Bureau of Mines, from records of the U. S. Department of Commerce, Bureau of the Census.

TABLE 20.—Major iron and steel products imported for consumption in the United States, 1955-57

[Bureau of the Census]

	**	1955	1:	956	19	957
Products	Net tons	Value	Net tons	Value	Net tons	Value
Semimanufactures:						
Steel bars: Concrete reinforcement bars Solid and hollow, n. e. s Hollow and hollow drill steel	158,973 33,225 592	1\$13, 559, 126 3, 664, 784 183, 256	173, 302 47, 372 954	¹ \$17, 314, 051 ¹ 5, 794, 523 251, 145	160, 374 26, 369 1, 466	\$15, 903, 262 3, 879, 629 385, 582
Bar iron, iron slabs, blooms, or other forms	79	17, 909	93	1 21, 842	113	35 , 559
Wire rods, nail rods, and flat rods up to 6 inches in width	47, 761	1 5, 699, 167	64, 193	7, 823, 521	54, 371	6, 712, 135
steel, n. e. s. Steel ingots, blooms, and slabs;	3, 964	469, 571	² 62, 493	8, 414, 026	29, 798	4, 905, 157
billets, solid or hollow Die blocks or blanks, shafting, etc Circular saw plates Sheets of iron or steel, common or	146, 103 285 24	1 10, 635, 444 46, 464 18, 688	487	3, 069, 702 143, 478 34, 125	7, 787 243 50	1, 145, 998 94, 595 51, 140
iron or steelSheets and plates and steel, n. s. p. f_	2, 571 298	348, 957 90, 287	2 6, 798 223	¹ 870, 834 119, 018	1, 430 784	216, 997 276, 673
Tinplate, terneplate, and taggers'	44	16, 826	656	1 148, 235	45	17, 352
Total semimanufactures	393, 919	1 34, 750, 479	2 382, 754	1 44, 004, 500	282, 830	33, 624, 079
Manufactures: Structural iron and steel	266, 161 6, 278	1 28, 963, 223 362, 469	² 615, 983 7, 437	² 76, 936, 436 662, 853	437, 400 4, 853	61, 495, 142 442, 706
splice bars and tie plates Pipes and tubes:	772	¹ 36, 323	112	1 13, 709	193	23, 194
Cast-iron pipe and fittings Other pipes and tubes	9, 219 77, 105	¹ 1, 383, 590 ¹ 10, 990, 257	² 10, 820 140, 365	² 2, 141, 929 ¹ 22, 486, 171	8, 765 190, 837	1, 891, 397 36, 298, 717
Barbed	60, 084 40, 495	7, 695, 229 1 5, 627, 152	62, 296 49, 921	¹ 8, 416, 191 ¹ 7, 790, 678	63, 109 70, 763	9, 361, 129 11, 555, 551
Flat wire and iron and steel strips. Rope and strand	635 24, 765 5, 537	1 582, 963 1 7, 043, 253 1 2, 933, 517	18, 394	1 1, 378, 254 1 8, 035, 028 1 5, 445, 568	16, 208	1, 289, 843 8, 433, 649 5, 803, 283
Galvanized fencing wire and wire fencing	13, 460 (³)	¹ 1, 709, 300 409, 196	21, 988 (³)	1 2, 922, 962 1 609, 678	30, 157 (³)	4, 369, 296 743, 344
baling Hoop, band and strips, or scroll iron	6, 261	726, 812	13, 595	1, 876, 792	13, 866	1, 906, 046
or steel, n. s. p. f	24, 549 132, 838 8, 011	2, 243, 672 1 18, 093, 133 2, 242, 451	113, 480	2, 434, 121 1 16, 860, 733 1 3, 221, 773	15, 472 137, 558 -9, 729	1, 985, 972 21, 816, 051 3, 450, 616
Total manufactures	676, 170	1 91, 042, 540	21, 096, 077	¹² 161, 232, 876	1, 011, 392	170, 865, 936
Advanced manufactures: Bolts, nuts, and rivets Chains and parts Hardware, builders' Hinges and hinge blanks Screws (wholly or chiefly of iron or	21, 643 1, 556	1 5, 402, 242 1 974, 561 1 341, 011 1 1, 363, 490	3, 201	¹ 7, 072, 721 ¹ 1, 816, 388 ¹ 578, 734 ¹ 1, 495, 571		8, 666, 612 1, 830, 899 553, 733 1, 065, 794
steel)		¹ 1, 328, 502 ¹ 8, 198, 468 ¹ 25, 672	l	¹ 1, 507, 455 ¹ 2 8, 890, 498 ¹ 83, 558		1, 225, 666 10, 494, 579 208, 955
Total advanced manufactures		1 17, 633, 946		1 2 21, 444, 925		24, 046, 238
Grand total		1143, 426, 965		¹ 226, 682, 301		228, 536, 253

Owing to changes in tabulating procedures by the Bureau of the Census, data known to be not comparable with years before 1954.
 Revised figure.
 Weight not recorded.

TABLE 21.—Major iron and steel products exported from the United States, 1955-57

[Bureau of the Census]

Products	1955			1956	1957		
	Net tons	Value	Net tons	Value	Net tons	Value	
Semimanufactures:	•	+	fate and				
Steel ingots, blooms, billets,		1 1 1					
slabs, and sheet bars	621, 333	\$51, 350, 303	362, 724	\$35, 719, 065	510, 350	\$55, 364, 58	
Iron bars	408	89, 559	1, 151	204, 186	548	183, 18	
Concrete reinforcement bars Other steel bars	73, 969 131, 276	8,018,949	97, 301	11, 927, 535	84, 720	11, 129, 0	
Wire rods	30, 930	21, 424, 479 3, 227, 968	199, 599 17, 514		129, 361 13, 696	26, 010, 2 1, 743, 6	
Iron and steel plates, sheets, skelp, and strips:		-,,	,	_, 550, 500	10,000	1, 110, 0	
Plates, including boiler plate.							
not fabricated	215, 391	28, 803, 072	298, 664	46, 369, 238	604, 093	92, 699, 4	
Skelp iron and steel	88, 329	8, 455, 238	148, 520	13, 704, 087	197, 120	23, 697, 8	
vanized	157, 036	28, 102, 680	154, 598	30, 187, 805	126, 285	26, 068, 9	
Steel sheets, black, ungal- vanized-	1, 067, 085	164, 614, 295	1 929, 837	1 158, 057, 731	968, 868		
Strip, hoop, band, and scroll iron and steel:	1,001,000	104, 014, 290	- 929, 001	- 100, 001, 101	908, 808	178, 737, 37	
cold-rolled	54, 149	10 DR2 045	40 091	00 070 170	99 014	10 401 0	
Hot-rolled.	38, 373	19, 963, 245 7, 022, 547	49, 921 40, 733	29, 676, 172 7, 002, 004	83, 846 25, 511	18, 421, 91 6, 662, 67	
Tin plate and terneplate	837, 404	7, 022, 547 1 43 , 195, 161	1 726, 339	1 134, 495, 400	700, 720	133, 829, 2	
Total semimanufactures	8, 315, 683	483, 367, 496	3, 026, 901	1 496, 687, 738	3, 395, 118	574, 548, 12	
I anufactures—steel-mill prod- ucts:	4						
Structural iron and steel:							
Water, oil, gas, and other storage tanks complete and							
knockdown material	41, 781	11, 294, 219	75, 453	19, 482, 217	81, 566	24, 114, 27	
Structural shapes:							
Net fabricated Fabricated	279, 487 87, 619	32, 198, 998 22, 080, 038	363, 400 84, 315	46, 954, 245 26, 206, 978	452, 544 220, 256	62, 003, 70 33, 905, 30	
PINIES. SUPPLS. INDICATED		W 1				aa, 800, a	
punched, or shaped Metal lath	18, 653 2, 452	4, 209, 725 829, 066	21, 158	4,773,832	37, 184	8, 976, 26	
Frames, sasnes, and sneet	2, 402	829,000	2, 689	875, 109	2, 343	838, 00	
piling Railway-track material:	11, 035	2, 116, 256	11, 013	2, 294, 154	20, 596	4, 410, 3	
Rails for railways. Rail joints, splice bars, fish-	57, 825	4, 579, 185	68, 319	7, 559, 764	196, 950	23, 441, 92	
Rail joints, splice bars, fish-	· 1						
plates, and tie plates Switches, frogs, and crossings_	11, 279 3, 000	2, 316, 702 932, 772	17, 549 6, 104	3, 557, 549 1, 921, 048	33, 957 5, 3 59	6, 961, 87 2, 205, 96	
Railroad spikes	1, 930	369, 962	2, 850	559, 894	2, 035	458, 61	
Railroad bolts, nuts, washers, and nut locks	818	317, 480	1, 081	480, 344	1, 168	459, 11	
Tubular products:					1, 100		
Boiler tubes Casing and line pipe	26, 683 216, 049	7, 679, 501 44, 613, 066	26, 375 i 603, 520	9, 739, 104	31, 168	13, 183, 91	
Seamless black and galvan-	210,013	44, 013, 000	1 000, 520	1116, 082, 009	991, 196	222, 326, 83	
ized pipe and tubes, except easing; line and boiler, and				1			
other pipes and tubes	22, 140	4, 977, 734	45, 658	1 10, 194, 135	52.822	13, 330, 52	
Welded black pipe	22, 140 27, 929	4, 977, 734 5, 351, 135	45, 658 30, 770	6, 554, 216	52, 822 31, 782	7, 528, 11	
Welded galvanized pipe	1 2 , 125	2, 449, 004	11, 254	2, 548, 844	13, 054	3, 187, 78	
fittings	1,857	1, 652, 137	1, 983	1, 849, 679	1, 927	1, 835, 13	
Cast-iron pressure pipe and fittings	21, 021	3, 077, 033	27, 345	4, 661, 595	38, 608	6, 165, 82	
Cast-iron soil pipe and fittings_	9, 243	1, 895, 536	9, 329	1, 907, 159	13, 517	0, 109, 82 2, 674, 94	
Iron and steel pipe, fittings, and tubing, n. e. e	48, 928	27, 422, 795					
See footnotes at end of table		21, 222, 190	71, 102	42, 107, 628	70, 678	53, 028, 41	

TABLE 21.—Major iron and steel products exported from the United States, 1955-57-Continued

Products	1	1955		1956	1957		
A CASE CASE	Net tons	Value	Net tons	Value	Net tons	Value	
Wire and manufactures:							
Barbed wire	1,641	\$285, 576			1,340	\$256, 76	
Galvanized wire	10,668	2, 175, 877	10, 677			2, 085, 27	
Iron and steel wire, uncoated.	23, 299	5, 670, 926	30, 551	7, 531, 831	17, 992	5, 078, 25	
Spring Wire	4,696	2, 444, 793 7, 263, 801	4,714	2, 577, 276		2, 432, 13	
Wire rope and strand	14, 166	7, 263, 801	18, 350	9, 748, 332	19,063	10, 816, 91	
Woven-wire fencing and	1						
screen cloth	4, 174	² 2, 265, 921	3, 905	2 2, 274, 819			
All other	30, 576	10, 816, 808	34, 328	13, 385, 891	32, 179	14, 197, 18	
Nails and bolts, iron and steel,		. ,					
n. e. c.:							
Wire nails, staples, and spikes.	3,090	2, 022, 481	3, 273	2, 347, 621	3, 737	2,659,59	
All other nails, staples, spikes,	1 12						
and tacks	2, 733	1, 401, 259	2,208	1, 232, 351	2,048	1, 256, 81	
Bolts, screws, nuts, rivets,	1 1						
and washers, n. e. c.	19,868	15, 445, 666	21, 751	17, 462, 012	19, 813	17, 765, 01	
Castings and forgings: Iron and			, ,				
steel, including car wheels,						•	
tires, and axles	109, 534	25, 323, 043	109, 745	25, 858, 696	112, 340	29, 608, 89	
Total manufactures	1, 124, 299	255, 278, 495	11, 721, 854	1 395, 393, 477	2, 521, 622	579, 235, 88	
dvanced manufactures:		100			-		
Buildings (prefabricated and		7 002 000		1 11 100 174		6 100 02	
knockdown).		7, 083, 068		1 11, 126, 174	0 000	6, 108, 03	
Chains and parts	8, 206	7, 936, 142		10, 480, 268			
Construction material	8, 012	4, 727, 559	10, 648				
Hardware and parts		17, 123, 664		20, 533, 440		22, 298, 74	
House-heating boilers and		7 000 040		0 401 500		0 611 60	
radiators		7, 896, 943		9, 491, 888		8, 611, 62	
Oil burners and parts		10, 134, 831		11, 030, 717		8, 916, 89	
Plumbing fixtures and fittings.		7, 407, 358		0, 914, 909		7, 358, 95	
Tools		48, 183, 073		54, 161, 771		55, 924, 78	
Utensils and parts (cooking,		4 500 500	1 540	4 007 740	1 500	4 015 05	
kitchen, and hospital)	1,531	4, 569, 769		4, 687, 746			
Other advanced manufactures.		29, 410, 460		32, 622, 941		39, 811, 17	
Motel admonard manner	22 2.	100					
Total advanced manufac-		144 470 007		1 167 011 040		169, 139, 94	
tures	Z 757777777	144, 472, 867		1 167, 011, 246		109, 109, 94	
Crond total	*** * #2#*	002 110 050	-	11,059,092,461		1, 322, 923, 95	
Grand total	[883, 118, 858		- 1,000,004,401		1, 424, 540, 90	

WORLD REVIEW

World production of pig iron, including ferroalloys, and steel in 1957 reached a new high with a 5-percent increase in pig iron and a 3-percent increase in steel. The United States, the European Coal and Steel Community, and the Soviet Union ranked first, second, and third in both pig-iron and steel production. The United States produced 35 percent of both world pig iron and steel compared with 35 and 37 percent, respectively, in 1956.

Revised figure.
 Includes wire cloth as follows—1955: \$1,163,185 (6,950,825 square feet); 1956: \$1,104,737 (6,713,660 square feet); 1957: \$1,168,144 (6,601,139 square feet).

TABLE 22.—World production of pig iron, (including ferroalloys), by countries, 1 1948-52 (average) and 1953-57, in thousand short tons 2

[Compiled by Pearl J. Thompson and Berenice B. Mitchell]

Country 1	1948-52 (average)	1953	1954	1955	1956	1957
North America:						
Canada	2, 589	3, 166	2, 327	3, 380	3, 810	3, 948
Mexico 3		271	297	356	455	4 485
United States	63, 814	77, 201	59, 752	79, 263	77, 667	81, 144
Omica states	- 00,011	,201				
Total	66, 663	80, 638	62, 376	82, 999	81, 932	85, 577
South America:			7-			
	4 24	39	30	40	32	37
Argentina Brazil		985	1, 222	1, 198	1, 291	4 1. 320
Chile		315	336	282	368	4 420
Cille	- 140	910	97	109	128	139
Colombia			91	109	120	108
Total	903	1, 339	1, 685	1, 629	1, 819	4 1, 916
Europe:						
Austria	1,006	1, 456	1, 493	1,660	1, 915	2, 161
Belgium		4, 641	5, 098	5, 941	6, 350	6, 158
Rulgaria	7,000	2, 021 R	5, 556	2	2,000	4 44
Bulgaria Czechoslovakia	4 2, 180	3,065	3,075	3, 287	3, 618	3, 968
Denmark	2, 180	3,000	44	61	62	4 66
		87	82	126	114	142
Finland					12,833	
France	9, 173	9, 678	9,868	12, 198	12, 800	13, 314
Germany:	405	1 100	1 450	1 670	1 7727	4 1 000
East	- 405	1, 188	1, 453	1,672	1, 735	4 1, 820
West	9,888	12, 846	13, 792	18, 168	19, 375	20, 236
Hungary	514	777	904	942	820	4 770
Italy	892	1,536	1, 484	1,911	2, 200	2, 431
Luxembourg		3,000	3, 086	3, 401	3, 652	3, 713
Netherlands	_ 528	654	672	739	730	773
Norway	_ 263	305	271	392	492	614
PolandRumania 4	1,658	2,600	2, 935	3, 430	3,865	4, 059
Rumania 4	340	500	480	630	650	€ 660
Saar	2,055	2,626	2,752	3, 174	3, 341	3, 492
Spain		911	1,004	1,093	1, 100	1,030
Sweden		1, 165	1, 103	1,375	1,552	1, 548
Switzerland		45	39	60	45	50
U. S. S. R. 6	21, 230	30, 200	33, 100	36, 700	39, 500	40.800
United Kingdom		12, 516	13, 309	13, 966	14, 750	16, 024
Yugoslavia	257	310	406	585	713	812
Total 6	70, 923	90, 152	96, 457	111, 519	119, 420	4 124, 685
						
Asia:	1					
China	4 1,050	4 3, 300	3, 340	4,057	5, 616	• 4 6, 060
India	1,884	1,990	2, 197	2, 122	2, 194	2, 14 7, 86
Japan	2,546	5, 129	5, 237	5, 981	6, 905	7,86
Korea, North 4 Taiwan (Formosa)	32			125	200	300
Taiwan (Formosa)	6	8	10	11	18	4 22
Thailand	17	6	2	2	4	4.4
Turkey	153	239	216	223	243	4 24
Total 6	5, 678	4 10, 672	11, 002	12, 521	15, 180	4 16, 640
Africa:	. 1	1	1			1
Rhodesia and Nyasaland, Federation	33	40	15	22	29	4 7
of: Southern Rhodesia Union of South Africa		1,348	1, 319	1, 433	1, 495	1, 57
		ļ				
Total	920	1,388	1, 334	1,455	1, 524	1, 640
Oceania: Australia	1, 424	2,064	2, 079	2, 013	2, 309	2, 48
World total (estimate)	146, 500	186, 300	174, 900	212, 100	222, 200	232, 900

Pig iron is also produced in Belgian Congo and Indonesia, but quantity produced is believed too small to affect estimate of world total.
 This table incorporates a number of revisions of data published in previous Iron and Steel chapters. Data do not add to totals shown owing to rounding where estimated figures are included in the detail.
 Excluding ferroalloy production, for which data are not yet available; but estimates have been included in total.

<sup>Excluding lerroancy products.
total.
Estimate.
Average for 1 year only, as 1952 was the first year of commercial production.
U. S. S. R. in Asia included with U. S. S. R. in Europe.
Average for 1950-52.</sup>

TABLE 23.—World production of steel ingots and castings, by countries, 1948-52 (average) and 1953-57, in thousand short tons $^{\rm 1}$

[Compiled by Pearl J. Thompson and Berenice B. Mitchell]

Mexico	Country	1948-52 (average)	1953	1954	1955	1956	1957
United States 2 92, 364 111, 610 88, 312 117, 036 115, 216 112, Total. 96, 225 116, 305 92, 192 122, 403 121, 491 118, 1801 11	Canada	3, 409					5, 038
South America: Argentina 140	Mexico United States 2	92, 364			117, 036		1, 136 112, 715
Argentina 3	Total	96, 225	116, 305	92, 192	122, 403	121, 491	118, 889
Total	Argentina 3 Brazil	799 119	1, 120	1, 265	1, 380 320	1,626 420	4 400 3 1, 760 3 440 130
Austria. 995 1, 415 1,822 2,010 2,291 2,91		1,069	1,655	1,824	2, 025	2, 485	³ 2, 730
Asia:	Austria Belgium Bulgaria Czechoslovakia Denmark Finland France Germany: East West Greece Hungary Ireland 3 Italy Luxembourg Notherlands Norway Poland Rumania Saar Spain Sweden Switzerland 5 U. S. S. R. 6 United Kingdom Yugoslavia	4,776 3,471 134 132 10,078 1,193 12,379 28 1,188 1,92 2,899 9 2,922 549 9 2,811 595 2,273 883 1,595 149 29,784 17,647	4, 957 14 4, 813 198 10, 951 2, 384 16, 998 8, 45 1, 701 22 3, 858 2, 931 956 122 3, 973 793 2, 959 1, 063 1, 939 1, 173 41, 988 19, 723 580	5, 462 68 4, 707 219 195 11, 627 2, 569 19, 218 62 1, 644 33 4, 637 3, 117 1, 030 133 4, 353 693 3, 992 1, 296 2, 028 165 45, 636 20, 742 692	6, 504 82 4, 932 201 206 13, 831 2, 765 23, 519 73 1, 796 33 5, 947 3, 555 1, 080 183 4, 879 844 3, 489 1, 427 2, 342 2, 183 49, 935 22, 165 903	7, 035, 143, 5, 381, 265, 217, 14, 770, 3, 020, 25, 561, 571, 571, 316, 5, 527, 859, 3, 719, 1, 365, 5, 572, 2, 644, 188, 53, 572, 23, 137, 993	2, 766 6, 917.7 \$ 190 \$ 5, 680 230 15, 540 3, 191 27, 014 2, 282 7, 481 3, 850 1, 300 1, 300
China 646 1,955 2,453 3,145 4,922 5,101 India 1,591 1,688 1,887 1,909 1,947 1,11 Japan 5,105 8,446 8,543 10,371 12,242 13,10 Korea: 34 11 60 150 210 210 Republic of 4 1 1 12 11 Philippines 11 22 28 44 68 Thailand 78 1 2 4 4 Turkey 130 187 187 207 213 Total 6 7,529 12,311 13,161 15,842 19,617 21, Africa: Egypt 3 11 22 78 95 117 Rhodesia and Nyasaland, Federation of: Southern Rhodesia 25 28 36 55 64 Union of South Africa 912 1,368 1,577 1,742 1,769 1, Total 948 1,418 1,691 1,892 1,950 2,		97,058	124, 728	135, 240	152, 944	104, 109	173, 356
North \$	China India Japan	1, 591 5, 105	1, 688 8, 446	1, 887 8, 543	1, 909 10, 371	1, 947 12, 242	5, 497 1, 916 13, 856
Africa: Egypt 3	Republic of	11 78	1 22 1	28 2	12 44 4	68 4	310 19 63 96 194
Egypt 3 11 22 78 95 117 Rhodesia and Nyasaland, Federation of: Southern Rhodesia 25 28 36 1,577 1,742 1,769 1, Total 948 1,418 1,691 1,892 1,950 2,	Total 6	7, 529	12, 311	13, 161	15, 842	19, 617	21, 957
Total 948 1,418 1,691 1,892 1,950 2,	Egypt 3 Rhodesia and Nyasaland, Federation	25	28	36	55	64	11(77
	Union of South Africa						1, 918
1, 009 2, 200 2, 410 2, 400 2, 910 3,							3, 260
World total (estimate) 204, 400 258, 700 246, 600 297, 600 312, 600 322,							322, 300

¹ This table incorporates a number of revisions of data published in previous Iron and Steel chapters. Data do not exactly add to totals shown because of rounding where estimated figures are included in the detail.

² Data from American Iron and Steel Institute. Excludes production of castings by companies that do not produce steel ingots.

3 Estimate.

<sup>Including castings.
Including secondary.
U. S. S. R. in Asia included with U. S. S. R. in Europe.
Average for 1950-52.</sup>

NORTH AMERICA

Canada.—The Canadian steel industry increased its ingot capacity from 3.7 million short tons in 1948 to 6.0 million tons by the end of At the end of the year, plant capacity was adequate to supply over 60 percent of Canadian steel requirements, and further expansion was under way or planned. There was enough tinplate capacity to meet all Canadian needs. In recent years mill capacity has been increased for hot strip (continuous), electrolytic tinplate, galvanizing (continuous), and annealing (continuous). New plate mills

and cold reduction mills have also been installed.

In 1957 the Steel Company of Canada, Ltd. (Stelco), added a new blooming mill capable of handling 30-ton ingots and having an annual capacity of 2.8 million tons. A new electrolytic tinning line was expected to be completed in early 1959. In the Hamilton area Stelco planned to spend \$179,000 to reduce air pollution. At Algoma the following facilities were added: An iron foundry for making ingot molds, equipment to recover flue dust at the blast-furnace department, and a new coke-oven battery with 57 ovens. Construction of the oxygen-steelmaking plant and expansion of the bar and strip mill were scheduled for completion in 1958. A 27-foot-diameter hearth blast furnace to boost pig-iron capacity to 1.5 million tons and a new blooming and plate mill were scheduled for 1959. Dominion Steel & Coal Co. lit a new open hearth and installed new soaking pits. Several firms were investigating the economic feasibility of constructing an integrated steel mill in the Montreal area and steel plants in British Columbia and at Quebec City.5

SOUTH AMERICA

Venezuela.—The Venezuelan Government increased the investment for its new steel plant at Puerto Ordaz from \$200 to \$343 million, which called for increasing annual steelmaking capacity to 1.3 million tons. Nine 220-ton-capacity, low-shaft, electric pig-iron furnaces and four 305-ton open hearths will be installed. Power will be furnished from a Government hydroelectric project under construction on the Caroni River. The major part of the plant reportedly will be completed, and tubes will be produced by March 1958. units should be operating by 1960. Other products will include rails. reinforcing rods, bars, shapes, and wire products.6

EUROPE

Portugal.—In the spring of 1956 the Economic Committee of the Portuguese Government declared itself in favor of building an iron and steel works. Bids for equipment were presented in Germany, England, France, United States, and Belgium. Late in 1957 a contract was signed with a German-Belgium combine to build the steelworks at Seixal, south of Lisbon; the plant was scheduled for completion in 3 years. It will include a blast-furnace plant (675 short tons of pig iron a day), a sintering plant (750 to 900 tons per day), a coking plant, a 40-ton electric-arc furnace, a 35-ton oxygen converter,

U. S. Consul, Toronto, Canada, State Department Dispatch 84: Mar. 26, 1958.
 Metalworking Weekly, vol. 141, No. 5, July 29, 1957, p. 81.
 American Metal Market, vol. 64, No. 114, June 14, 1957, p. 1.
 Foreign Commerce Weekly, vol. 58, No. 5, July 29, 1957, p. 25.

a blooming and billet mill, and a merchant mill (165,000 tons per year). Initial ingot capacity will be 275,000 tons per year. Port facilities

for handling iron ore and coal were to be built.7

U. S. S. R.—Having reached an alltime high output of 40.8 million short tons of pig iron and 56.2 million tons of steel in 1957, the U. S. S. R. announced plans to increase production of these commodities by 5 to 6 percent in 1958. It appeared that original Five-Year Plan objectives for 1960 calling for an output of 58 and 75 million short tons, respectively, of pig iron and steel would fall short by 8 to 10 million tons.8 The plan was revised as the industry did not fulfill its capital construction program for 1957. However, 3 blast furnaces, 7 open-hearth furnaces, 5 rolling stands, 5 coke-oven batteries, 7 sintering strands, and several open-pit and shaft mines were put into operation (total investment—8.8 billion rubles).9

A book on U. S. S. R. iron ore resources also described plans for development of the Soviet iron and steel industry. Information on iron and steel in this book and from other Soviet sources was reviewed. 10

The European Coal and Steel Community.—The European Coal and Steel Community celebrated its fifth anniversary with new record production of pig iron and steel. Pig-iron production for the year was 50.1 million short tons (including ferroalloys) compared with 48.5 million tons in 1956 and 38.6 million tons in 1952. corresponding production figures for steel were 65.7, 62.6, and 46.0 million, respectively. With the exception of Belgium, all countries in the Community reached new record production in 1957. Belgian production decreased 0.5 million short tons because of a strike. Italy ranked third as a producer of steel in the Community, surpassing The Community planned to increase its pig iron to steel ratio to lessen its dependence on foreign scrap. In 1957 the quantity of pig iron consumed per short ton of steel was 1,510 pounds, compared with 1,535 pounds in 1956 and 1,660 pounds in 1952. The objective for 1960 was 1,570 pounds. Although the operating rate of the iron and steel industry was slightly below 1956, pig-iron and steel production increased because of expanding facilities. Pig-iron and steel capacities increased 4.5 and 7.2 percent, respectively. Of the total tonnage of steel produced in 1957, 50.4 percent was produced in the basic Bessemer, 39.5 percent in the open hearth, and 10.1 percent in the electric furnace, virtually the same as 1956.

Production of rolled-steel products in 1957 was 46.5 million short tons, compared with 43.2 million in 1956 and 31.5 million in 1952. 1957 the increase was 5.3 percent over 1956, essentially the same as in raw-steel production. However, in 1952 to 1957 expansion of rolled steel exceeded this rate—44.4 percent compared with 42.7 The production of finished and special steels increased

⁷ Metal Bulletin (London), No. 4264, Jan. 24, 1958, p. 21.
U. S. Embassy, Lisbon, Portugal, State Department Dispatch 372: Jan. 23, 1958.
Iron and Steel Works of the World, 2d ed., 1956-57, p. 624.

8 Bureau of Mines, Mineral Trade Notes: Vol. 46, No. 3, March 1958, pp. 11-12.

9 Stal, No. 1, January 1958, pp. 1-3.

19 Academy of Sciences of the U. S. S. R., The Iron Ore Base of the U. S. S. R., I. P. Bardin, Editor in Chief, Moscow, 1957, 560 pp.

The Industry of the U. S. S. R., Moscow, 1957.

Planovoye Khozyatstvo, The Outlook for the Development of a Ferrous Metallurgy in Eastern Areas of the U. S. S. R., February 1957.

Bureau of Mines, Mineral Trade Notes: Vol. 45, No. 3, September 1957, pp. 3-16; vol. 45, No. 4, October 1957, pp. 11-23.

^{1957,} pp. 11-23.

slightly over 1956. Production in France, the Saar, and Italy increased, while production in Germany and the Benelux countries decreased.

Investments at blast-furnace and steel plants in 1957 were \$798 million, compared with \$573 million in 1956. Investments for pig iron, steelmaking furnaces, rolling mills, and auxiliary service in 1957 were \$233 million, \$127 million, \$294 million, and \$144 million, respectively.

Information on technical developments is given for the European

Coal and Steel Community under Technologic Developments.

ASIA

India.—India's iron- and steel-expansion plan was on schedule in private industry but lagging in Government-supported industry except for the Durgapur plant. The Tata Iron and Steel Co. began operating 3 of the seven 225-ton open-hearth furnaces, a battery of 26 coke ovens, and a roughing stand and finishing equipment at the plate mill; a plant for recovering scrap from slag was nearing completion. Iron & Steel Co. completed a battery of 78 coke ovens, a 1,350-tonper-day blast furnace and a 335-ton open hearth. At the Durgapur steel project where construction was progressing on schedule, twothirds of the site's preparation had been accomplished, and foundations for the coke-oven and blast-furnace plant were completed or in progress. A 500-house town also was built. Only at the coke-oven plant of the Rourkela steel project was noticeable progress made. the Soviet Bhilai steel project construction had been delayed because of the lack of raw steel for fabricating certain structures. Twothirds of the steel needed for construction is supplied by the U.S.S.R., and the rest must be fabricated in India. Construction of the coal washery for this plant was also delayed because of the difficulty with building the foundation and late delivery of machinery from abroad.11

Main features of Indian steel plants in the Government-supported sector 1

	Rourkela	Bhilai	Durgapur
Coke ovens Blast furnaces	3 batteries of 70 ovens each. 3 of 1,000 tons capacity each.	3 batteries of 65 ovens each. 3 of 1,135 tons capacity each.	3 batteries of 78 ovens each. 3 of 1,250 tons capacity each.
Steel melting	2 mixers of 1,100 tons each 3 L.D. converters of 40 tons each 4 basic stationery openhearth furnaces of 80		2 mixers. 7 open-hearth furnaces of 200 tons capacity each. 1 open-hearth furnace of 100 tons capacity.
Rolling mills	tons each. 1 blooming and slabbing mill. 1 heavy-plate mill 1 continuous strip mill 1 cold-rolling mill with 2 sets of stands.	1 blooming mill, 45.2-inch 1 rail and structural mill 1 merchant mill 1 continuous billet mill	1 blooming mill. 1 intermediate mill. 1 medium structural mill. 1 merchant mill. 1 continuous billet mill. 1 wheel, tire, and axle plant.
Power plant	75,000 kw	24,000 kw	15,000 kw.

¹ Figures in long tons.

Japan.—The Japanese iron and steel industry reached another record in 1957 in production, shipments, and earnings. Pig-iron production was 14 percent higher than in the preceding year, steel-ingot

¹¹ U. S. Consul, Calcutta, India, State Department Dispatch 372: Mar. 27, 1958.

production was 13 percent higher, and production of ordinary rolledsteel products increased by 14 percent. Gross sales during the 12month period ending in September 1957 were 30 percent higher than during the preceding year, and net earnings increased 82 percent. Exports were 22 percent below 1956. Imports of raw materials and finished steel products were exceptionally high because it had been anticipated that domestic production would not be enough to meet the rapidly growing demand.

Japan expanded its blast-furnace capacity during the year and improved blast-furnace efficiency. New furnaces were built by Amagasaki Iron & Steel Co. and Nakayama Steel Works, Ltd. The quantities of sintered ore and coke used per short ton of pig iron made,

in pounds, are as follows:

		1957	1957
	1956 average	January-June	July-December
Sintered ore	$1,262_{}$	$1,272_{}$	1, 326
Coke		$1,452_{}$	1, 422

In steelmaking Japan's first 2 surface-blowing oxygen converters each with a capacity of 50 tons, were completed at Yawata Steel Corp. and produced 40,000 short tons in December. The Government and the steel industry emphasized construction of oxygen converters be-

cause of their negligible use of ferrous scrap.

Several new rolling mills were completed. The chief of these was a 160-inch, 4-high plate mill by Yawata Iron & Steel Co. In September Fuji Iron & Steel Co. began operating a new 6-stand hot-strip mill with an annual capacity of 800,000 tons, and Japan Steel & Tube Corp. completed a new seamless-tube mill with an annual capacity of 130,000 tons.¹²

Philippines.—The National Shipyards & Steel Corp. (NASSCO), P. I., announced a steel-development program calling for 200,000 tons of finished steel by 1961. The proposed pig-iron and steel-converter plants will be installed in Panganiban (Southern Luzon), and a rolling mill with a capacity of 200,000 tons will be constructed at Iligan in Mindanao. NASSCO has purchased two 18,000 kv.-a. electric-smelting furnaces with a combined capacity of 300 tons per day from Elektrokjemisk of Oslo, Norway. The plant was scheduled

for delivery in the fall of 1958.13

Turkey. Expansion plans of the Karabuk Iron & Steel Works, Turkey's only integrated steel plant, called for more than doubling existing capacity. A new 165-short ton open hearth was added during 1957, and a new contract for constructing a blast furnace with an annual capacity of 330,000 tons was signed. Three of the four existing 82.5-ton open-hearth furnaces were to be enlarged to 165 tons, and a new 165-ton open hearth was to be added. When the entire expansion program is completed, the plant can produce 660,000 tons of pig iron and 600,000 tons of steel per year. 14

OCEANIA

New Zealand.—Plans were announced for building a £25-million iron and steel industry utilizing iron sands from the western Taranaki

¹² U. S. Embassy, Tokyo, Japan, State Department Dispatch 1365: May 13, 1958.
¹³ Metal Bulletin (London), No. 4198, May 28, 1957, p. 17.
¹⁴ U. S. Embassy, Ankara, Turkey, State Department Dispatch 620: Apr. 8, 1957.

area at Port Chalmers, Dunedin. Coal and power are available, and further large-scale power developments were planned. Because the iron sands contain titanium, a new type of electric-smelting furnaces will be used.15

TECHNOLOGIC DEVELOPMENTS

During 1957 the American steel industry continued to improve ironand steel-making facilities, develop new direct iron-reduction processes, and expand vacuum-melting facilities. The use of oxygen and humidification of blast-furnace blast received further attention. In an experiment at the National Steel, Weirton, W. Va., plant, pig-iron output was increased 19 percent by using a blast enriched with 4 percent of oxygen. Oxygen enrichment with humidification of blast increases carbon monoxide and hydrogen content of the bosh gas and reduces the amount of nitrogen. By increasing the proportion of reducing gases to nitrogen and carbon dioxide, more of these reducing gases are available for shaft reduction, which decreases overall smelting time. The time required for reduction with hydrogen is about one-fourth of that required with carbon monoxide. 16

The use of oxygen in steelmaking increased during the year, and new oxygen plants were under construction. Jones & Laughlin Steel Corp. constructed the Nation's second oxygen-steelmaking plant at Aliquippa, Pa. Inland Steel used oxygen and made steel in

an open-hearth furnace without fuel.

In 1957, for every ton of steel ingots made, more than 200 cubic feet of oxygen was used.¹⁷ One oxygen-steelmaking plant was under construction by Acme Steel. The company will use oxygen converters to make steel from molten iron produced in two hot-blast cupolas, a new practice in the United States.

A summary of oxygen usage in various steel-mill operations follows: 1. Open-hearth lancing—150 to 300 cubic feet per ton of ingots.

2. Open-hearth jets through roof—100 to 500 cubic feet per ton of ingots.

3. Open-hearth combustion—125 to 500 cubic feet per ton of

4. Bessemer—400 to 500 cubic feet of oxygen per ton of ingots.

5. Top-blown oxygen converter—1,800 to 2,200 cubic feet per ton of ingots.

6. Hot scarfers—100 to 150 cubic feet per ton of slabs.

7. Blast furnaces—1,200 to 4,500 cubic feet per ton of pig iron at 1

to 4 percent enrichment.¹⁸

Inland Steel Co. produced steel in an open hearth without fuel, using lance injection of oxygen at the slag-metal interface. A 125-ton heat of steel was made in about half the time compared with conventional practice.

<sup>Mining World, vol. 19, No. 13, December 1957, p. 79.
Strassburger, J. H., The Use of Oxygen in Iron and Steel Production: Pres. at AISE meeting, Pittsburgh, Pa., July 15, 1957.
American Iron and Steel Institute, Annual Statistical Report: May 1958, p. 23.
Work cited in footnote 16.</sup>

Inland's test showed that high-carbon, low-phosphorous steel can be made from pig iron containing 0.7 percent or more phosphorous without external heat. The steel produced is identical with basic open-hearth steel.19

A new method developed for deoxidizing and alloying steel with aluminum employs an aluminum bar, which is wired in place in the mold before the steel ingot is poured. This method reportedly increases product yield, reduces aluminum requirement, and improves

mixing.

Battelle Memorial Institute announced a new process for desulfurizing pig iron with caustic soda. Molten iron and caustic soda are fed continuously into an apparatus in which desulfurization occurs as the materials are mixed. Slag and desulfurized metal flow continuously from the apparatus into molds or ladles. Under laboratory conditions the process has been used to reduce the sulfur content from 0.1 to less than 0.02 percent.20

Direct-iron processes, discussed in technical journals and under investigation during the year, are summarized below. These were studied in pilot plants at virtually every major steel plant in the United States. Between \$10 and \$12 million was estimated as spent

in research on direct-iron processes.²¹

Another development—casting steel ingots that are free from surface imperfections—was accomplished by using a 0.040-inch fiber-glass-The liner prevents splashed molten steel from sticking to the mold wall and forming scabs and other defects on the ingot.

The fiber-glass liner melts at the metal-contact surface.

Armco Steel Corp. tried an unconventional system for charging scrap into open-hearth furnaces. Scrap was transported to the openhearth charging floor in gondola cars and transferred by magnet hoist to a charging hopper. Three charging pans were under the hopper; I received the charge, and 2 others took any spillage. As soon as the pans were full, the charging machine moved the pan containing scrap directly into the furnace. This system speeded charging of scrap by about 15 percent and eliminated long trains of charging-pan railroad cars, which frequently cause delay in charging adjacent furnaces.

The increased demand for superior steel and alloys led to expansion in vacuum-melting-furnace capacity in the United States. At the end of 1957 capacity of facilities totaled about 20 million pounds of induction vacuum melting and 50 million pounds by consumable-electrode, vacuum-arc melting. Allegheny Ludlum Steel Corp. began operating probably the world's largest vacuum furnace for making high-purity superalloys at its Watervliet, N. Y., plant. This unit uses the consumable-electrode remelting process and can produce 26-inch-diameter ingots weighing up to 6 tons. This new furnace brings Allegheny Ludlum's capacity for producing these special alloys to 2 million pounds a month.

Luerssen, F. W., Halley, J. W., and Tenenbaum, Michael, Inland Steel Co., An Oxygen Steelmaking Process for American Raw Materials: Pres. at AIME annual meeting, New Orleans, La., Feb. 28, 1957.
 Battelle Technical Review, vol. 6, No. 8, August 1957, p. 15.
 Madsen, I. E., Developments in the Iron and Steel Industry During 1957: Iron & Steel Eng., vol. 35, No. 10, January 1958, pp. 139-189.

World direct-iron processes 1

Process	Its nature	Location	Reducing agent	Type product	Status	Remarks
	The second secon					
Tysland-Hole	Electric-arc furnace	Several in Scandinavia	H	Pig iron	Production	Requires cheap electric power.
Lubatti	Electric-resistance furnace.	Forni Lubatti Co., Tur- in, Italy.	Coal.	op	(3)	Siemens furnace is similar. Fine ore reduced by coal fines in slag maintained molten by
Krupp-Renn (Johannsen)	Rotary kiln	Several in Europe, Asia, Africa.	Low-grade coal or coke breeze.	Iron nodules, sponge fron.	Production	• O
R-N (Republic Steel-National	ор	Birmingham, Ala	Low-grade carbon	Iron-flake	Semiproduction.	Employs a highly beneficiated
Madaras	Fluidized bed	Longview, Tex	Cracked natural gas	Sponge iron	do	A modified Madaras plant is
Nu-Iron (U. S. Steel)	qo	South Works, Chicago,	Hydrogen and carbon	Iron-powder	Pilot	Mexican steel company. Continuous process using natural
Esso-Little (Arthur D. Little)	qo	Arthur D. Little, Inc.,	monoxide.	compacts.	qo	gas for reducing gases. Do.
H-Iron (Hydrocarbon Re-	ор	Hydrocarbon Research	Hydrogen	qo	Semiproduction.	Alan Wood Steel Co. has ordered
Hoganas (Sleurin)	Tunnel kiln	Hoganas, Sweden; Riv-	Coke or coal	Sponge iron	Production	rull-scale plant. Used mainly for iron-powder pro-
Domnarfvet	Rotary furnace	Domnarfvet, Sweden	qo	qp	Experimental	duction. Operating problems similar to
Diamond Alkali	Rotating drum	Battelle Memorial Insti-	Coal	iron or	op	Application to direct reduction
Demag-Humbolt	Low-shaft blast fur- nace.	Germany	op	Steel. Pig iron	Production	sull theoretical. One of many low-shaft designs. Not competitive with coke
DLM (Dwight-Lloyd-Mc-Wane).	Sintering machine and shaft furnace.	McDowell Co., Inc., Cleveland, Ohio.	Oheap coal or coke breeze	ор	Experimental	blast furnace. Primarily a pellet-roasting proc-
Cyclosteel	Slagging cyclone with fluidized bed preheater.	British Iron & Steel Research Association, London.	Cheap coal or natural gas and oxygen.	Steel	do	Several stage reduction with liquid end product.

¹ Steel: The Case for Direct Reduction, vol. 141, No. 18, Oct. 28, 1957, p. 185.

Greater automation was introduced in rolling mills to speed up One mill used a punch-card system on a roughing mill for controlling 15 programmed passes from a single card at accuracies of 0.01 inch. Another mill used a trailing-end tension compensator, which reduced the amount of overgage on the tail end of strip steel; strip produced from one steel slab is frequently ½ mile long. though it is rolled at speeds of 2,500 feet per minute, the temperature drop in the back end of the bar is great enough to cause overgage. Another unit is being planned to obtain the same results by installing automatic machines for changing mill-gage settings and speeds to

give uniform gage at the end of the bars. 22

The Bureau of Mines made a number of significant contributions to iron and steel technology during 1957. In a unique experiment at Pittsburgh the composition and constitution of a blast-furnace charge column was determined by quenching the Bureau's experimental blast furnace with nitrogen during normal operation. Examination of sections of the unfused part of the charge column held together with plastic and of the fused part by core drilling revealed many heretofore unknown phenomena. A spherical cavity or raceway at the mouth of each tuyere, heretofore a matter of conjecture, was clearly defined. Other outstanding accomplishments in blast-furnace research were the development of factors for applying experimental data to industrial-scale blast furnaces and the production of commercial-grade pig iron from green (unfired) taconite pellets.

In Bureau steel research vapor-pressure studies of solid and liquid manganese and of manganese in liquid iron-manganese alloys provided useful data in predicting the behavior of the metal in high-temperature reactions. Low-nickel manganese-austenitic stainless steels, substitutes for the 8-percent-nickel type, were made from offgrade western ores. High-silicon iron (possibly a substitute for silvery pig iron) was made from pyrite cinders and nonferrous smelter slag in an open-top electric furnace using coke and wood chips as reductants.

In continuing the search for methods to conserve manganese and improve the quality of steel the Bureau installed equipment for the safe employment of radioactive isotopes to identify trace inclusions Mischmetal was found experimentally effective in desulin steel.

The low-shaft blast furnace employing low-rank coals continued to be used in Europe. A 100-ton-per-day low-shaft furnace was under construction at Klockner Mannstaedt-Werke at Troisdorf, near Bonn, West Germany. At Cologne, Germany, an experimental pilot plant, in operation since 1954, produced all types of pig iron, including Bessemer, foundry, and the basic open-hearth grades with normal composition except for perhaps the generally lower sulfur grades. Coal requirements, about 4,400 pounds per ton of pig iron, may be reduced in larger units to as low as 2,100 to 2,400 pounds per short ton of pig iron.23

At the beginning of the current Five-Year Plan in the U.S.S.R., the average blast-furnace working volume was 26,240 cubic feet.

²² Madsen, I. E., Developments in the Iron and Steel Industry During 1957: Iron & Steel Eng., vol. 35, No. 10, January 1958, pp. 139–189.
²³ Chatterjea, A. B., Low-Shaft Furnaces as an Alternative to the Blast Furnace: Iron and Coal Trades Rev., Nov. 23, 1956, pp. 1255–1261.

Some old furnaces were being reconstructed in 1957, and most of the new ones were to range from 53,400 to 60,700 cubic feet in size.24

Of the 7 blast furnaces, construction of which is to begin in 1958, 5 will have working volumes of 60,700 cubic feet each. Blast furnaces with working volumes of 70,600 cubic feet and a daily output of

3,700 short tons of pig iron were on the drawing board.

Many Soviet blast furnaces used a high proportion of self-fluxing sinter (90 percent at Magnitogorsk), humidified blast, high-top pressure (70 percent of total pig iron produced), hot-blast temperatures of 1,500°-1,700° F., and were blowing 100,000 c. f. m. of wind. While modernization continued, the industry was plagued by decreasing iron content in the Krivoi Rog basin (from 55.4 to 54.5 percent during the year). The ores and sinter fed to the Chelyabinsk and Nizhne-Tagil blast furnaces dropped 1.5 to 2.5 percent in iron content during the first 9 months of the year; and the ash content in the coke used by the eastern plants increased an average of 0.67 percent.25

Most of the large open-hearth furnaces in operation had a capacity per heat of 200 to 400 tons; some of the new ones will be up to 550 short tons. Oxygen-enriched flames, vacuum melting and teeming of steel, centrifugal and semicontinuous pipe casting are being adopted. Continuous casting machines were to be introduced at the Magnito-

gorsk and Kuznetsk plants.

Visitors returning from the U.S.S.R. report that open-hearth roofs made of basic brick last for 650 heats.²⁶ This compares with about

350 heats for silica-brick roofs.

The main features of the European Coal and Steel Community research program were: (1) Reducing the quantity of coke per ton of pig iron by employing unusual blast-furnace innovations; (2) agglomerating iron ore without a binder; (3) producing direct iron as a substitute for scrap; (4) improving and increasing the life of furnace refractories; and (5) increasing emphasis on process control during

rolling of steel to improve quality.

For the first problem (reducing metallurgical coke per ton of metal produced) the High Authority made an \$850,000 grant to the International Low-Shaft Blast Furnace Group at Liege, Belgium, to study for a 3-year period the different factors influencing coke consumption. The first problem of this experiment was making the Liege furnace operate like a commercial blast furnace on a reduced scale. One experiment was reducing the blowing rate which decreased direct reduction and daily coke rate. In this phase of the study the movement of the furnace charge down the shaft was more uniform, and the problem of local fusion and the formation of channels in the charge column were not apparent. Paralleling the decrease in blowing rate, the use of high-top pressure, screened coke and ore, and increased hot-blast temperature were employed. Finally studies were made or in process to determine whether a circular hearth or an elliptical one was preferable and to find the optimum height of the stack. The 1958 program

<sup>Sominskiy, V. S., O Tekhnicheskom Progresse Promyshlennosti SSSR (about the Technical Progress in USSR Industry), Moscow, 1957, pp. 62-70.
Work cited in footnote 13.
Business Week: Russia Crowds the U. S., Dec. 7, 1957, No. 1475, pp. 110, 111.</sup>

called for addition of water vapor to the hot blast, injection of liquid fuels through the tuyères, enrichment of the blast with oxygen, and

use of greater proportions of sinter.

In 1957 a \$250,000 grant was devoted to completing studies particularly directed to agglomerated materials produced without a binder in an extruding press operating in vacuum. Three direct-iron processes (rotary kiln, shaft furnace, and fluidized bed) were studied to produce a material that can be substituted for scrap in open-hearth and electric furnaces. Service tests of refractories in four open-hearth furnaces were conducted. In an effort to improve steel quality, an electronic computer was used to study experimental results relating irregularities that occur during heating and rolling of steel to the finished steel products.27

²⁷ European Iron and Steel Community [Sixth General Report on the Activities of the Community] (in French): Pub. Dept., vol. II, Apr. 13, 1958, 425 pp. (Translated by Percy H. Royster and Bernadetta Michalski.)

Iron and Steel Scrap

By James E. Larkin 1

URING 1957, prices and demand were uncertain in the iron and steel scrap industry. The price of No. 1 Heavy-Melting scrap at Pittsburgh was at a yearly high of \$60.70 per gross ton in January. In April its price dropped to \$42.00 but by July had increased to \$56.25. The price then declined to \$32.50 (estimate) per ton in December—the lowest price since December 1954.

Domestic demand for scrap was high during the first quarter of 1957, when steel mills were producing at 96 percent of the annual rated capacity, during which time they were able to obtain an ample supply of scrap. During January scrap consumption totaled 7.4

TABLE 1.—Salient statistics of ferrous scrap and pig iron in the United States, 1956-57

		<u> </u>	
	1956 (short tons)	1957 (short tons)	Change from 1956 (percent)
Stocks, December 31: Ferrous scrap and pig iron at consumers' plants:			
Total scrap Pig iron	7, 416, 055 2, 354, 796	8, 949, 386 3, 816, 699	$^{+21}_{+62}$
Total	9, 770, 851	12, 766, 085	+31
Consumption: Ferrous scrap and pig iron charged to: Steel furnaces: ¹			
Total scrap Pig iron	62, 276, 019 66, 437, 573	56, 764, 655 68, 767, 530	-9 +4
Total	128, 713, 592	125, 532, 185	-3
Iron furnaces: ² Total scrap Pig iron	16, 698, 026 8, 557, 906	15, 647, 960 7, 585, 596	-6 -11
Total	25, 255, 932	23, 233, 556	-8
Miscellaneous uses 3 and ferroalloy production: Total scrap-	1, 341, 125	1, 136, 208	-15
All uses: Total ferrous scrapPig iron	80, 315, 170 74, 995, 479	73, 548, 823 76, 353, 126	-8 +2
Grand total	155, 310, 649	149, 901, 949	-4
Imports of scrap (including tinplate scrap) Exports of scrap:	255, 569	238, 610	-7
Iron and steel	4 6, 340, 261 4 24, 481	6, 655, 963 21, 875	+5 -11
Scrap: No. 1 Heavy Melting, Pittsburgh 6 No. 1 Cast Cupola, Chicago 4	4 \$54. 14 6 \$55. 05	6 \$47. 53 (7)	-12
For exportPig iron, f. o. b, Valley furnaces: 5		\$54.14	+4
Basic. No. 2 Foundry		\$64. 92 \$65. 42	+7 +7

¹ Includes open-hearth, Bessemer, electric furnaces, and oxygen-steel process. ² Includes cupola, air, crucible, and blast furnaces; also direct castings.

³ Includes rerolling, reforging, copper precipitation, nonferrous, and chemical uses.

Revised figure. Iron Age.

[•] Estimate

⁷ No longer quoted in Iron Age.

¹ Commodity specialist.

million short tons, highest for the year; but, as the year progressed, scrap requirements fluctuated each month and dropped to a low of

4.8 million short tons during December.

A 2-percent drop in steel output and an increase in the ratio of pig iron to scrap in 1957 as compared with 1956 resulted in a 9-percent decrease in the use of scrap in steelmaking furnaces. Consumption of pig iron in these furnaces was at an alltime high—4 percent above 1956—but the use of ferrous materials, scrap and pig iron, decreased 3 percent. The decline in the use of materials for manufacturing steel ingots and castings was attributed to scattered work stoppages in the steel industry and a lack of demand resulting from a general business recession in the third and fourth quarters.

LEGISLATION AND GOVERNMENT PROGRAM

On February 1, 1957, the United States Department of Commerce transmitted a report on the supply and availability of iron and steel scrap to the Speaker of the House of Representatives. The report was prepared in accordance with section 2 of Public Law 631, 84th Congress. It concerned a study of the Nation's mobilization base in ferrous metallics for the Office of Defense Mobilization and was in response to a request from the Congress to the Secretary of Commerce for a comprehensive survey of the national ferrous scrap situation. This report was based on a special survey of obsolete scrap by the Battelle Memorial Institute of Columbus, Ohio, and from records of the Federal Bureau of Mines.

In summarization, the report indicated that future requirements for obsolete Heavy-Melting grades would exceed the rate at which these grades will return to the Nation's scrap supply. Alleviating this drain upon Heavy-Melting grades of scrap would require a change in the pattern of domestic and foreign scrap consumption and less

dependence on these grades of scrap for steelmaking.

Regulations governing licensing of scrap for export were temporarily suspended by the Bureau of Foreign Commerce, United States Department of Commerce, to permit a review of the domestic supply situation and because of the heavy volume of export applications received in February. The suspension was rescinded within a short time and permitted resumption of scrap licensing of all grades, other than Heavy-Melting scrap to Japan, the United Kingdom, and the European Coal and Steel Community. These countries agreed to limit their imports of Heavy-Melting grades of scrap to approximately 13 percent of the quantity imported in 1956.

AVAILABLE SUPPLY

Consumers of iron and steel scrap had a net available supply at their plants of 75.1 million short tons during 1957—a 7-percent decrease from the net available supply held during the previous year. Home scrap produced by consumers was slightly higher than during 1956, but scrap received from dealers and other sources decreased 14 percent. The net available supply decreased 26 percent in the New England district; however, the Rocky Mountain district supply increased 11 percent.

TABLE 2.—Iron and steel scrap, net available supply 1 for consumption in 1957, by districts and States, in short tons

25 41501100	s and Stat	CS, III SHO	i i tons		
District and State	Home production	Receipts from dealers and all others	Total available supply	Shipments 2	Net available supply for consumption
New England: Connecticut. Maine. Massachusetts. New Hampshire. Rhode Island. Vermont.	96, 669	113, 178	209, 847	10, 128	199, 719
	3, 788	7, 787	11, 575	4, 165	7, 410
	180, 008	234, 968	414, 976	23, 085	391, 891
	8, 023	8, 424	16, 447	769	15, 678
	35, 981	36, 265	72, 246	2, 713	69, 533
	10, 478	11, 111	21, 589	67	21, 522
Total: 1957	334, 947	411, 733	746, 680	40, 927	705, 753
	429, 794	571, 431	1, 001, 225	43, 045	958, 180
Middle Atlantic: New Jersey New York Pennsylvania	178, 409	492, 371	670, 780	27, 422	643, 358
	2, 137, 451	2, 002, 132	4, 139, 583	68, 799	4, 070, 784
	11, 601, 899	6, 963, 182	18, 565, 081	1, 031, 260	17, 533, 821
Total: 1957	13, 917, 759	9, 457, 685	23, 375, 444	1, 127, 481	22, 247, 963
	13, 503, 537	11, 111, 531	24, 615, 068	933, 585	23, 681, 483
East North Central: Illinois Indiana Michigan Ohio Wisconsin	3, 670, 943	3, 357, 564	7, 028, 507	227, 984	6, 800, 523
	5, 212, 778	3, 390, 251	8, 603, 029	150, 401	8, 452, 628
	3, 097, 291	3, 167, 331	6, 264, 622	96, 758	6, 167, 864
	7, 790, 071	4, 593, 598	12, 383, 669	421, 824	11, 961, 845
	453, 426	429, 962	883, 388	90, 912	792, 476
Total: 1957	20, 224, 509	14, 938, 706	35, 163, 215	987, 879	34, 175, 336
	20, 861, 974	17, 783, 820	38, 645, 794	1, 027, 393	37, 618, 401
West North Central: Iowa Kansas and Nebraska Minnesota, North Dakota, and South Dakota Missouri	119, 789 25, 355 273, 364	244, 432 81, 448 219, 952	364, 221 106, 803 493, 316	3, 573 3, 035 2, 757 25, 644	360, 648 103, 768 490, 559 930, 517
Total: 1957	191, 469 609, 977 665, 106	764, 692 1, 310, 524 1, 570, 865	956, 161 1, 920, 501 2, 235, 971	35, 009 16, 305	930, 517 1, 885, 492 2, 219, 666
South Atlantic: Delaware, District of Columbia, and Maryland Florida and Georgia North Carolina South Carolina Virginia and West Virginia	2, 420, 743	451, 685	2, 872, 428	18, 479	2, 853, 949
	69, 580	221, 253	290, 833	1, 500	289, 333
	29, 482	33, 354	62, 836	8, 237	54, 599
	10, 564	11, 609	22, 173	864	21, 309
	765, 465	776, 094	1, 541, 559	53, 078	1, 488, 481
Total: 1957	3, 295, 834	1, 493, 995	4, 789, 829	82, 158	4, 707, 671
1956	3, 051, 997	1, 980, 559	5, 032, 556	96, 515	4, 936, 041
East South Central: Alabama Kentucky, Mississippi, and Tennessee.	1, 694, 827	1, 378, 722	3, 073, 549	298, 122	2, 775, 427
	609, 591	807, 071	1, 416, 662	62, 255	1, 354, 407
Total: 1957	2, 304, 418	2, 185, 793	4, 490, 211	360, 377	4, 129, 834
	2, 065, 555	2, 278, 119	4, 343, 674	264, 477	4, 079, 197
West South Central: Arkansas, Louisiana, and Oklahoma Texas	44, 396	145, 413	189, 809	3, 271	186, 538
	755, 660	1, 115, 147	1, 870, 807	28, 891	1, 841, 916
Total: 1957	800, 056	1, 260, 560	2, 060, 616	32, 162	2, 028, 454
	719, 673	1, 239, 599	1, 959, 272	52, 665	1, 906, 607
Rocky Mountain: Arizona, Nevada, and New Mexico Colorado and Utah Idaho, Montana, and Wyoming	14, 946	65, 095	80, 041	2, 876	77, 165
	1, 254, 089	554, 576	1, 808, 665	12, 058	1, 796, 607
	5, 807	19, 631	25, 438	31	25, 407
Total: 1957	1, 274, 842	639, 302	1, 914, 144	14, 965	1, 899, 179
1956	1, 073, 728	649, 463	1, 723, 191	17, 696	1, 705, 495

See footnotes at end of table.

TABLE 2-Iron and steel scrap, net available supply 1 for consumption in 1957. by districts and States, in short tons-Continued

District and State	Home production	Receipts from dealers and all others	Total available supply	Shipments 2	Net available supply for consumption
Pacific Coast: California Oregon Washington	1, 098, 546	1, 639, 014	2, 737, 560	86, 983	2, 650, 577
	42, 089	187, 454	229, 543	5, 010	224, 533
	93, 332	336, 918	430, 250	2, 888	427, 362
Total: 1957	1, 233, 967	2, 163, 386	3, 397, 353	94, 881	3, 302, 472
	1, 304, 250	2, 239, 184	3, 543, 434	127, 608	3, 415, 826
Total United States: 1957	43, 996, 309	33, 861, 684	77, 857, 993	2, 775, 839	75, 082, 154
	43, 675, 614	39, 424, 571	83, 100, 185	2, 579, 289	80, 520, 896

¹ Net available supply for consumption is a net figure computed by adding home production to receipts from dealers and all others and deducting consumers scrap shipped, transferred, or otherwise disposed of during the year.

2 Includes scrap shipped, transferred, or otherwise disposed of during the year.

CONSUMPTION AND USES

The total domestic consumption of ferrous scrap during 1957 decreased 8 percent from the previous year and comprised 49 percent of the total charge of ferrous materials, scrap and pig iron. This decreased consumption of ferrous scrap was accompanied by increased use of pig iron, totaling 76.4 million short tons, the second largest quantity consumed. The average monthly consumption rate of ferrous scrap was 6.1 million short tons compared with 6.7 million short tons in 1956.

The output of steel ingots and castings (112 million short tons) decreased 2 percent from 1956 and required melting 125.5 million short tons of ferrous materials, scrap and pig iron, in steelmaking furnaces (open-hearth, Bessemer, oxygen-steel process, and electric). These furnaces consumed 56.7 million short tons of scrap and 68.8 million short tons of pig iron, a 9-percent decrease and a 4-percent increase, respectively, compared with 1956. The use of pig iron in these furnaces during January established a record and totaled 6.5 million short tons.

The proportions of scrap and pig iron used in steel furnaces in 1957 were 45 and 55 percent, respectively, compared with 48 and 52 percent The charge of scrap and pig iron used in iron foundries, mainly cupola furnaces, comprised 67 percent scrap and 33 percent

pig iron, compared with 66 and 34 percent in 1956.

As in 1956, a noticeably greater quantity of scrap than pig iron was consumed in the New England, West North Central, West South Central, and Pacific Coast districts. These districts together used 11 percent of the total scrap and 4 percent of the pig iron consumed in 1957, unchanged from 1956. The average ratio of scrap to pig iron in these 4 districts was 2.5:1, compared with 2.7:1 in 1956. The United States average was 0.96: 1, compared with 1.07: 1 in 1956.

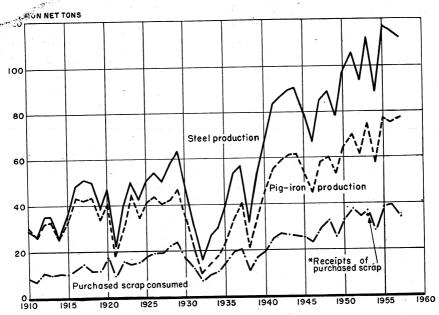


FIGURE 1.—Consumption of purchased scrap in the United States, 1910–52, and output of pig iron and steel, 1910–57. Figures on consumption of purchased scrap for 1910–32 are from State of Minnesota vs. Oliver Iron Mining Co., et al., Exhibits, vol. 5, 1935, p. 328; those for 1933–34 are estimated by authors; and those for 1935–52 are based on Bureau of Mines records. Data for 1953–57 represent receipts of purchased scrap by consumers, based on Bureau of Mines records. Data on steel output were supplied by the American Iron and Steel Institute.

TABLE 3.—Ferrous scrap and pig iron consumed in the United States and percent of total derived from scrap and pig iron, 1956-57, by districts

	. 1	1956		1	957	
District	Total consumed	Percent		Total consumed		of total amed
District	(short tons)	Scrap	Fig iron	(short tons)	Scrap	Pig iron
New England	1, 280, 530 47, 904, 683 72, 076, 494 2, 841, 214 11, 179, 773 8, 730, 76 2, 578, 353 3, 868, 423 4, 850, 410	76. 6 49. 1 52. 2 76. 9 44. 5 46. 9 73. 4 43. 1 70. 1	23. 4 50. 9 47. 8 23. 1 55. 5 53. 1 26. 6 56. 9 29. 9	963, 141 46, 414, 857 67, 437, 247 2, 577, 915 11, 336, 257 9, 176, 086 2, 940, 851 4, 326, 634 4, 728, 961	76. 0 47. 0 49. 5 75. 7 39. 7 43. 5 68. 7 43. 4 69. 2	24. 0 53. 0 50. 5 24. 3 60. 3 56. 5 31. 3 56. 6 30. 8
Total	155, 310, 649	51.7	48.3	149, 901, 949	49. 1	50.9

and the second

TABLE 4.—Consumption of ferrous scrap and pig iron in the United States, 1 57, by type of furnace, in short tons

	Type of furnace or equipment	Total scrap	Pig iron	Total scrap and pig fron
	1956	4.1		
Open-hearth_		50, 805, 559	62, 165, 807	112, 971, 366
Bessemer 1		//13 2/7	4, 038, 845	4, 452, 192
Electric		11 057 113	232, 921	11, 290, 034
Cupola		11 025 003	5, 349, 402	16, 374, 408
Air		1 960 000	292, 717	1, 561, 816
Crucible		01	36	1, 301, 310
Biast		4, 403, 833		4, 403, 833
Direct casting	S	1	2, 915, 751	2, 915, 751
rerroamoy		271 120		371, 130
Miscenaneous	3	969, 995		969, 998
Total		80, 315, 170	74, 995, 479	155, 310, 649
	1057			
Open-hearth	1001	46, 438, 637	64, 997, 545	111, 436, 182
Dessemer		1 207 /70	3, 494, 883	3, 882, 361
Electric		0 038 540	275, 102	10, 213, 642
∪upoia		10 324 726	4, 660, 016	14, 984, 742
Air.		1 150 202	244, 552	1, 396, 875
Crucible		78	22	100
DIASE		1 170 000		4, 170, 833
Parrocllor	8		2, 681, 006	2, 681, 006
Migoellone erro				337, 570
M 1806HWH60US		798, 638		798, 638
Total		73, 548, 823	76, 353, 126	149, 901, 949

¹ Includes scrap and pig iron used in oxygen-steel process.

TABLE 5.—Proportion of scrap and pig iron used in furnaces in the United States, 1956-57, in percent

Type of furnace	19	956	19)57
	Scrap	Pig iron	Scrap	Pig iron
Open-hearth Bessemer '- Electric Cupola Air. Crucible Blast.	45. 0 9. 3 97. 9 67. 3 81. 3 71. 7 100. 0	55. 0 90. 7 2. 1 32. 7 18. 7 28. 3	41. 7 10. 0 97. 3 68. 9 82. 5 78. 0 100. 0	58. 3 90. 0 2. 7 31. 1 17. 5 22. 0

¹ Includes oxygen-steel process.

CONSUMPTION BY DISTRICTS AND STATES

The use of domestic scrap for all purposes decreased in 7 of the 9 geographical areas; the largest decrease—25 percent—occurred in the New England district. The use of pig iron increased in all but 3 districts; the largest increase—35 percent—was in the West South Central district. As in previous years, the largest consuming districts, for scrap and pig iron, were East North Central, Middle Atlantic, and South Atlantic. The States consuming the largest quantities of scrap and the percentages consumed were: Pennsylvania 24, (23 in 1956); Ohio, 16 (18 in 1956); Indiana, 11 (10 in 1956); and Illinois, 9 (10 in 1956).

TABLE 6.—Consumption of ferrous scrap and pig iron in the United States in 1957, by type of consumer and type of furnace, in short

		Scrap and pig iron	111, 436, 182 3, 882, 381 10, 213, 642 14, 884, 742 14, 884, 742 1, 106, 833 2, 881, 106 337, 570 798, 633 144, 901, 949 1149, 901, 949
	Total	Pig iron	64, 997, 545 3, 494, 883 275, 102 68, 767, 530 4, 680, 016 244, 522 2, 681, 006
		Scrap	46,438,637 87,478 9,938,540 56,764,656 10,324,726 1,108,337 4,170,833 337,570 73,548,823 80,315,170
	cellaneous	Total scrap and pig iron	9, 073 202, 093 211, 166 13, 043, 044 1, 033, 044 1, 007, 157 337, 570 579, 938 16, 218, 281 18, 102, 304
	Iron foundries and miscellaneous users	Pig iron	2, 325 20, 181 22, 506 4, 057, 204 116, 24 1, 007, 157 5, 282, 955 6, 247, 621
Type of consumer	Iron found	Scrap	6, 748 181, 912 188, 660 8, 922, 020 867, 080 837, 570 570, 938 10, 955, 326 11, 854, 688
Type of	Manufacturers of steel castings 2	Total scrap and pig fron	169, 628 32, 371 202, 760 24, 501 55, 600 55, 600 115, 784 55, 600 115, 784 55, 600 115, 784 58, 600 115, 784 58, 600 115, 784 58, 600 116, 784 117 280, 881 3, 622, 587 280, 881 3, 622, 587
	rers of stee	Pig iron	169, 628 761 82, 371 202, 760 24, 501 53, 600
	Manufactu	Scrap	814,345 11,373 1,725,639 2,551,387 528,195 262,194 263,194 3,341,736 3,341,736
-	ingots and	Total scrap and pig fron	110, 452, 209 3, 861, 154 8, 253, 539 1122, 566, 902 1, 883, 900 4, 77, 77 1, 673, 849 218, 700 139, 061, 071
	Manufacturers of steel ingots and castings 1	Pig iron	64 827, 917 3, 491, 797 222, 550 68 542, 264 578, 489 14, 703 1, 673, 849 70, 809, 310 68, 445, 053
	Manufactı	Scrap	45, 624, 262 869, 357 8, 030, 989 54, 024, 638 804, 511 218, 700 218, 700 66, 261, 761 66, 261, 761
	Type of furnace or equipment	-	Open-hearth Bessemer * Bettric. Total steelmaking furnaces. Cupola. Air. Direct eastings. Direct eastings. Ferroalloy. Miscellaneous.

Includes only those eastings made by companies producing steel ingots. § Excludes companies that produce both steel ingots and steel eastings. § Includes serap and pig from used in oxygen-steel process. Includes consumption in all plast furnaces producing pig fron.

TABLE 7.—Consumption of ferrous scrap and pig iron in the United States, 1953-57, by districts

District and year	Total scrap (short tons)	Change from pre- vious year (percent)	Pig iron (short tons)	Change from pre- vious year (percent)
New England: 1953	942, 226	+0. 2	305, 786	+3.3
	757, 486	-19. 6	243, 579	-20.3
	939, 422	+24. 0	281, 820	+15.7
	981, 225	+4. 4	299, 305	+6.2
	732, 387	-25. 4	230, 754	-22.9
Middle Atlantic: 1953 ¹ 1954 ¹ 1955	23, 270, 654	+12.7	24, 499, 189	+20.1
	16, 257, 629	-30.1	17, 793, 842	-27.4
	23, 143, 420	+42.4	24, 726, 296	+39.0
	23, 498, 290	+1.5	24, 406, 393	-1.3
	21, 794, 682	-7.2	24, 620, 175	+.9
East North Central: 1953 1 1954 1 1955 - 1956 - 1957 -	35, 465, 748	+13.5	33, 695, 462	+24.1
	29, 269, 021	-17.5	26, 498, 859	-21.4
	38, 827, 041	+32.7	35, 394, 815	+33.6
	37, 622, 379	-3.1	34, 454, 115	-2.7
	33, 408, 645	-11.2	34, 028, 602	-1.2
West North Central: 1953 1 1954 1 1955 1956 1956	2, 187, 526	-5.7	697, 850	+. 3
	1, 819, 496	-16.8	601, 147	-13. 9
	2, 230, 430	+22.6	748, 457	+24. 5
	2, 183, 518	-2.1	657, 696	-12. 1
	1, 951, 747	-10.6	626, 168	-4. 8
South Atlantic: 1953 1 1954 1 1955 - 1956 - 1957 -	5, 078, 804	+10.7	5, 951, 217	+14. 2
	4, 221, 583	-16.9	5, 639, 798	-5. 2
	5, 145, 031	+21.9	6, 350, 084	+12. 6
	4, 971, 985	-3.4	6, 207, 788	-2. 2
	4, 502, 109	-9.5	6, 834, 148	+10. 1
East South Central: 1953 1 1954 1 1955 - 1956 - 1957 - 1957 - 1957 - 1957 - 1957 - 1958 - 1957 - 1958 - 1959 - 1	3, 959, 665	+13. 5	5, 219, 535	+19.3
	3, 323, 212	-16. 1	4, 318, 997	-17.3
	4, 232, 268	+27. 4	5, 457, 229	+26.4
	4, 098, 150	-3. 2	4, 632, 619	-15.1
	3, 989, 923	-2. 6	5, 186, 163	+11.9
West South Central: 1953	1, 377, 747	+15. 4	580, 625	+34.7
	1, 508, 612	+9. 5	670, 494	+15.5
	1, 863, 407	+23. 5	759, 527	+13.3
	1, 893, 789	+1. 6	684, 564	-9.9
	2, 019, 792	+6. 7	921, 059	+34.5
Rocky Mountain; 1953. 1954. 1955. 1956. 1957.	1,595,976 1,483,596 1,657,623 1,668,006 1,877,868	+9.8 -7.0 +11.7 +.6 +12.6	2, 507, 558 1, 889, 679 2, 259, 956 2, 200, 417 2, 448, 766	$egin{array}{c} +41.1 \\ -24.6 \\ +19.6 \\ -2.6 \\ +11.3 \end{array}$
Pacific Coast: 1953 ! 1954 ! 1955 . 1956 . 1957 .	3, 167, 946 2, 643, 106 3, 336, 457 3, 397, 828 3, 271, 670	+3.5 -16.6 $+26.2$ $+1.8$ -3.7	1, 249, 255 1, 005, 654 1, 238, 151 1, 452, 582 1, 457, 291	$\begin{array}{c} -4.5 \\ -19.5 \\ +21.1 \\ +17.3 \\ +(2) \end{array}$
Undistributed: 1953	84, 210 70, 708		1, 267	
United States, 1948–52 (average)	66, 790, 919 77, 130, 502 61, 354, 449 81, 375, 099 80, 315, 170 73, 548, 823	+11. 7 -20. 5 +32. 6 -1. 3 -8. 4	62, 276, 313 74, 707, 744 58, 662, 049 77, 216, 335 74, 995, 479 76, 353, 126	+21. 4 -21. 5 +31. 6 -2. 9 +1. 8

¹ Some scrap consumed in East North Central, West North Central, East South Central, Middle Atlantic, Pacific Coast, and South Atlantic districts and some pig iron consumed in the East North Central district—not separable—are included with "Undistributed." ² Less than 0.05 percent.

TABLE 8.—Consumption of ferrous scrap and pig iron in the United States in 1957, by districts and States, in short tons

	is and bla					
District and State	Total scrap (short tons)	Per- cent of total	Pig iron (short tons)	Per- cent of total	Total scrap and pig iron (short tons)	Per- cent of total
New England: Connecticut. Maine. Massachusetts. New Hampshire Rhode Island Vermont.	202, 513 7, 523 408, 656 17, 297 74, 276 22, 122	0.3 (¹) .6 (¹) .1	41, 506 3, 171 135, 025 3, 710 38, 381 8, 961	0. 1 (¹) (¹) (¹) (¹)	244, 019 10, 694 543, 681 21, 007 112, 657 31, 083	0. 1 (1) . 4 (1) . 1
Total	732, 387	1.0	230, 754	.3	963, 141	. 6
Middle Atlantic: New Jersey New York Pennsylvania	632, 882 3, 906, 761 17, 255, 039	. 8 5. 3 23. 5	168, 947 4, 000, 712 20, 450, 516	5. 3 26. 8	801, 829 7, 907, 473 37, 705, 555	. 5 5. 3 25. 2
Total	21, 794, 682	29. 6	24, 620, 175	32. 3	46, 414, 857	31.0
East North Central: Illinois. Indiana. Michigan. Ohio. Wisconsin.	6, 565, 983 8, 215, 756 6, 107, 461 11, 721, 889 797, 556	8. 9 11. 2 8. 3 15. 9 1. 1	5, 771, 407 9, 589, 218 4, 333, 789 14, 101, 850 232, 338	7. 5 12. 6 5. 7 18. 5	12, 337, 390 17, 804, 974 10, 441, 250 25, 823, 739 1, 029, 894	8. 2 11. 9 7. 0 17. 2 . 7
Total	33, 408, 645	45. 4	34, 028, 602	44.6	67, 437, 247	45. 0
West North Central: Iowa Kansas and Nebraska Mimesota, North Dakota, and South	360, 460 99, 752	.5	70, 060 3, 959	(1).1	430, 520 103, 711	.3
Dakota Missouri	515, 269 976, 266	.7 1.3	500, 217 51, 932	.6 .1	1, 015, 486 1, 028, 198	.6 .7
Total	1, 951, 747	2.7	626, 168	.8	2, 577, 915	1.7
South Atlantic: Delaware, District of Columbia, and Maryland. Florida and Georgia. North Carolina. South Carolina. Virginia and West Virginia.	2, 685, 870 283, 855 54, 035 27, 644 1, 450, 705	3. 6 . 4 . 1 (¹) 2. 0	4, 642, 440 19, 448 25, 061 13, 297 2, 133, 902	6. 1 (1) (1) (1) 2. 8	7, 328, 310 303, 303 79, 096 40, 941 3, 584, 607	4. 9 . 2 . 1 (1) 2. 4
Total	4, 502, 109	6.1	6, 834, 148	8.9	11, 336, 257	7.6
East South Central: Alabama Kentucky, Mississippi, and Tennes-	2, 644, 697	3. 6	4, 168, 930	5. 5	6, 813, 627	4.5
See	1, 345, 226	1.8	1, 017, 233	1.3	2, 362, 459	1.6
Total West South Central:	3, 989, 923	5. 4	5, 186, 163	6.8	9, 176, 086	6.1
Arkansas, Louisiana, and Oklahoma. Texas	201, 920 1, 817, 872	. 3 2. 5	7, 972 913, 087	(1) 1. 2	209, 892 2, 730, 959	1.8
Total	2, 019, 792	2.8	921, 059	1.2	2, 940, 851	2.0
Rocky Mountain: Arizona, Nevada, and New Mexico Colorado and Utah Idaho, Montana, and Wyoming	75, 470 1, 779, 112 23, 286	2. 4 (¹)	195 2, 448, 029 542	(1) 3. 2 (1)	75, 665 4, 227, 141 23, 828	2. 8 (1)
Total	1, 877, 868	2.5	2, 448, 766	3. 2	4, 326, 634	2.9
Pacific Coast: California Oregon Washington	2, 656, 218 213, 524 401, 928	3.6 .3 .6	1, 436, 691 1, 902 18, 698	1. 9 (¹) (¹)	4, 092, 909 215, 426 420, 626	2.7 .1 .3
Total	3, 271, 670	4. 5	1, 457, 291	1.9	4, 728, 961	3.1
Total United States: 1957	73, 548, 823 80, 315, 170	100. 0 100. 0	76, 353, 126 74, 995, 479	100. 0 100. 0	149, 901, 949 155, 310, 649	100. 0 100. 0

¹ Less than 0.05 percent.

TABLE 9.—Consumption of iron and steel scrap and pig iron, by districts and States, by type of manufacturers for year 1957, in short tons

Diales,	by type	or manu	lacturer	s for ye	ear 1957	, in shor	tions	
District and State	Steel ing casti	gots and ngs 1	Steel cas	tings 2	Iron foun miscellane		То	tal
	Scrap	Pig iron	Scrap	Pig iron	Scrap	Pig iron	Scrap	Pig iron
New England: Connecticut	82, 107		7, 354	167	113, 052	41, 339	202, 513	41, 506
Maine Massachusetts	138, 499	57, 191	30, 687	4, 959	7, 523 239, 470	3, 171	7, 523	3, 171
New Hampshire			3, 415		13, 882	72, 875 3, 504	408, 656 17, 297	135, 025 3, 710
Rhode Island Vermont	43, 234	20, 652			31, 042 22, 122	17, 729 8, 961	74, 276 22, 122	38, 381 8, 961
Total	263, 840	77, 843	41, 456	5, 332	427, 091	147, 579	732, 387	230, 754
Middle Atlantic:								
New Jersey New York	169, 799 3 , 193, 049	37, 001 3, 757, 156	59, 015 149, 083	1, 311	404, 068	130, 635	632, 882	168, 947 4, 000, 712
Pennsylvania	15, 882, 246	19, 664, 322	591, 396	31, 008 77, 654	564, 629 781, 397	212, 548 708, 540	3, 906, 761 17, 255, 039	20, 450, 516
Total	19, 245, 094	23, 458, 479	799, 494	109, 973	1, 750, 094	1, 051, 723	21, 794, 682	24, 620, 175
East North Central: Illinois	5, 071, 659	5, 205, 646	376, 702	28, 795	1, 117, 622	536, 966	6, 565, 983	5, 771, 407
Indiana	7, 335, 106	9, 274, 356	376, 702 239, 959	18,005	1, 117, 622 640, 691	296, 857	6, 565, 983 8, 215, 756	5, 771, 407 9, 589, 218
Michigan Ohio	4, 055, 131 9, 895, 628	3, 610, 409 13, 317, 929	177, 521 505, 481 247, 470	3, 968 67, 366 14, 778	1, 874, 809 1, 320, 780	719, 412 716, 555	6, 107, 461 11, 721, 889	4, 333, 789 14, 101, 850
Wisconsin			247, 470	14, 778	550, 086	217, 560	797, 556	232 , 338
Total	26, 357, 524	31, 408, 340	1, 547, 133	132, 912	5, 503, 988	2, 487, 350	33, 408, 645	34, 028, 602
West North Central: Iowa			38, 115	480	322, 345	69, 580	360, 460	70, 060
Kansas and Nebraska			10.14	1				3, 959
Minnesota, North			40, 246	321	59, 506	3, 432	99, 752	9, 909
Dakota, and South Dakota	319, 703	445, 472	32, 347	450	163, 219	54, 295	515, 2 69	500, 217
Missouri	701, 456	8, 350	109, 695	11, 594	165, 115	31, 988	976, 266	51, 932
Total	1, 021, 159	453, 822	220, 403	13, 051	710, 185	159, 295	1, 951, 747	626, 168
South Atlantic: Delaware, District								
of Columbia, and Maryland	2, 575, 961	4, 599, 899	35, 711	318	74, 198	42, 223	2, 685, 870	4, 642, 440
Florida and Georgia	239, 374	4, 399	11, 636	166	32, 845	14, 883	283, 855	19, 448
North Carolina South Carolina					54, 035 27, 644	25, 061 13, 297	54, 035 27, 644	25, 061 13, 297
Virginia and West Virginia	1, 126, 292	2, 017, 505	84, 678	10, 256	239, 735	106, 141		
Total	3, 941, 627							6, 834, 148
	3, 941, 027	6, 621, 803	132, 025	10, 740	428, 457	201, 605	4, 502, 109	0, 804, 140
East South Central: Alabama	1, 790, 945	3, 392, 885	75, 190	880	778, 562	775, 165	2, 644, 697	4, 168, 930
Kentucky, Mississippi, and	000 001	MEE 230	FO. 000	7 004	401 020	050 630	1 045 000	1, 017, 233
Tennessee	886, 921	755, 739	56, 666		401, 639	259, 630		
Total	2, 677, 866	4, 148, 624	131, 856	2, 744	1, 180, 201	1, 034, 795	3, 989, 923	5, 186, 163
West South Central: Arkansas,								
Louisiana, and								- 070
Oklahoma Texas.	104, 548 1, 416, 690	1,744 882,851	53, 716 113, 915	1, 134 787	43, 656 287, 267	5, 094 29, 449	201, 920 1, 817, 872	7, 972 913, 087
Total	1, 521, 238	884, 595	167, 631	1, 921	330, 923	34, 543	2, 019, 792	921, 059
Rocky Mountain: Arizona, Nevada,								
and New Mexico			38, 398	127	37, 072	68	75, 470	195
Colorado and	1 000 00-	0.000.000		Į.	ļ			l
UtahIdaho, Montana,	1, 606, 355	2, 398, 022	34, 028	726	138, 729	49, 281		
and Wyoming.	1 000 055	0.000.000	PO 100		23, 286	542	23, 286	
Total	1, 606, 355	2, 398, 022	72, 426	853	199, 087	49, 891	1, 877, 868	2, 448, 766

See footnotes at end of table.

TABLE 9.—Consumption of iron and steel scrap and pig iron, by districts and States, by type of manufacturers for year 1957, in short tons—Continued

District and State	Steel ing casti		Steel cas	tings 2	Iron foun miscellane	dries and eous users	To	tal
	Scrap	Pig iron	Scrap	Pig iron	Scrap	Pig iron	Scrap	Pig iron
Pacific Coast: California Oregon Washington	2, 144, 726 142, 101 330, 231	1, 342, 071 15, 711	154, 177 40, 533 34, 602	169	30, 890	92, 473 1, 733 1, 968		1,902
Total	2, 617, 058	1, 357, 782	229, 312	3, 335	425, 300	96, 174	3, 271, 670	1, 457, 291
	59, 251, 761 64, 707, 933				10, 955, 326 11, 854, 683	5, 262, 955 6, 247, 621	73, 548, 823 80, 315, 170	76, 353, 126 74, 995, 479

¹ Includes only those castings made by companies producing steel ingots.

² Excludes companies that produce both steel ingots and steel castings.

CONSUMPTION BY TYPES OF FURNACE

Open-Hearth Furnaces.—Despite scattered work stoppages and less demand, production of ingots and castings (101.7 million tons) in open-hearth furnaces was only 1 percent less than the previous year, and resulted in the use of 111.4 million short tons of ferrous materials, scrap and pig iron, being consumed in these furnaces. The use of scrap in open hearths decreased 9 percent from 1956; however, the use of pig iron increased 5 percent over the previous year and established a record yearly consumption in 1957. The open-hearth melt consisted of 42 percent scrap and 58 percent pig iron compared with 45 percent scrap and 55 percent pig iron during 1956. The 42 percent charge of scrap in open-hearth melt is the lowest on record.

Pennsylvania continued to lead in using scrap in open-hearth furnaces, followed by Indiana, Ohio, and Illinois—the first time since 1936 that Ohio has not been second in the use of scrap in open-hearth

furnaces.

Bessemer Converters.—The 3.9 million short tons of ferrous raw materials used in Bessemer converters and the oxygen-steel process in 1957 represents a 13-percent decrease from 1956. The largest decrease in metallic charge in these furnaces was in the use of pig iron, 13 percent less than during the previous year. The ratio of scrap to total charge was 1:10 compared with 1:11 during 1956. These furnaces, including the oxygen-steel process, consumed 5 percent of the total pig iron and 0.5 percent of the total scrap, unchanged from the previous year.

Ingots produced only in Bessemer converters decreased 23 percent

from 1956.

Electric Steel Furnaces.—Electric furnaces consumed 14 percent of the total scrap (unchanged from 1956) and 0.4 percent of the pig iron, compared with 0.3 percent in 1956. The melt of ferrous scrap and pig iron used in these furnaces in 1957 totaled 10.2 million short tons, a 10-percent decrease from 1956. Scrap used in these furnaces decreased 10 percent from 1956; however, pig iron increased 18 percent. The ratio of scrap to pig iron used in the electric furnaces was 36:1 compared with 47:1 in 1956. Total scrap used in electric furnaces decreased but it increased in 4 of the 9 districts; the largest

TABLE 10.—Consumption of ferrous scrap and pig iron in open-hearth furnaces in the United States in 1957, by districts and States, in short tons

District and State	Total scrap	Pig iron	Total scrap and pig iron
New England: Massachusetts and Rhode Island 1	185, 361	79, 547	264, 908
Total: 1957		79, 547 107, 421	264, 908 421, 812
Middle Atlantic: New Jersey and New York Pennsylvania	3, 059, 605 13, 224, 718	3, 813, 611 18, 160, 715	6, 873, 216 31, 385, 433
Total: 1957		21, 974, 326 21, 418, 958	38, 258, 649 38, 783, 337
East North Central: Illinois Indiana Michigan and Wisconsin Ohio Total: 1957	7, 203, 239 2, 041, 556 7, 199, 168	4, 642, 046 9, 281, 030 2, 906, 298 11, 003, 182 27, 832, 556	8, 193, 328 16, 484, 269 4, 947, 854 18, 202, 350 47, 827, 801
1956West North Central:	22, 410, 558	27, 593, 887	50, 004, 445
Minnesota and Missouri		459, 689	1, 175, 175
Total: 1957		459, 689 490, 318	1, 175, 175 1, 407, 103
South Atlantic: Delaware and MarylandGeorgia and West Virginia	2, 293, 885 988, 518	4, 320, 095 2, 025, 865	6, 613, 980 3, 014, 383
Total: 1957		6, 345, 960 5, 594, 619	9, 628, 363 9, 301, 229
East South Central: Alabama, Kentucky, and Tennessee	1,764,153	3, 975, 337	5, 739, 490
Total: 1957		3, 975, 337 3, 185, 509	5, 739, 490 5, 038, 985
West South Central: Oklahoma and Texas	871,074	787, 644	1, 658, 718
Total: 1957		787, 644 518, 632	1, 658, 718 1, 550, 704
Rocky Mountain: Colorado and Utah	1, 525, 438	2, 261, 701	3, 787, 139
Total: 1957	1, 525, 438 1, 319, 201	2, 261, 701 1, 999, 654	3, 787, 139 3, 318, 855
Pacific Coast: California and Washington	1, 815, 154	1, 280, 785	3, 095, 939
Total: 1957	1, 815, 154	1, 280, 785 1, 256, 809	3, 095, 939 3, 144, 896
Total United States: 1957	46, 438, 637	64, 997, 545 62, 165, 807	111, 436, 182 112, 971, 366

¹ Connecticut included in 1956.

increase occurred in the West South Central district. The Middle Atlantic and East North Central areas continued to melt the largest quantity of scrap in the electric furnaces, consuming 66 percent of the total.

TABLE 11.—Consumption of ferrous scrap and pig iron in Bessemer 1 converters in the United States in 1957, by districts and States, in short tons

District and State	Total scrap	Pig iron	Total scrap and pig iron
New England and Middle Atlantic: Connecticut and New Jersey Pennsylvania.	1, 410 87, 254	58 638, 014	1, 468 725, 268
Total: 1957		638, 072 716, 100	726, 736 797, 845
East North Central: Illinois Michigan ² Ohio	196, 765	73, 149 509, 188 1, 998, 620	74, 199 705, 953 2, 092, 097
Total: 1957	291, 292 322, 022	2, 580, 957 2, 953, 121	2, 872, 249 3, 275, 143
South Atlantic and West South Central: Delaware, Maryland, and Louisiana	7,060	275, 841	282, 901
Total: 1957		275, 841 369, 611	282, 901 378, 624
Rocky Mountain and Pacific Coast: Colorado and Washington	462	13	475
Total: 1957	462 567	13 13	475 580
Total United States: 1957	387, 478 413, 347	3, 494, 883 4, 038, 845	3, 882, 361 4, 452, 192

Includes scrap and pig iron used in oxygen-steel process.
 Minnesota included in 1956.

Cupolas.—Consumption of ferrous materials, scrap and pig iron, in cupolas, 8 percent less than in 1956, decreased for the second consecutive year; scrap decreased 6 percent and pig iron 13 percent. Despite the decreased use in cupola furnaces, they consumed the second largest quantities of ferrous materials during the year. charge to cupolas consisted of 69 percent scrap and 31 percent pig iron, compared with 67 and 33 percent, respectively, in 1956.

Michigan, continuing as the leading State, consumed 22 percent

of the total scrap used in cupola furnaces. As a result, the East North Central district was the largest consuming area for these

furnaces, using 53 percent of the total.

Air Furnaces.—The total charge of scrap and pig iron in air furnaces in 1957 was 11 percent less than in 1956. Total scrap consumed in these furnaces decreased 9 percent from the previous year; pig iron declined 16 percent. Owing to the large consumption of scrap in air furnaces in Ohio, the East North Central district used 73 percent of the total scrap consumed, to continue as the largest consuming area for these furnaces.

TABLE 12.—Consumption of ferrous scrap and pig iron in electric steel furnaces in the United States in 1957, by districts and States, in short tons

District and State	Total scrap	Pig iron	Total scrap and pig iron
New England: Connecticut and New Hampshire Massachusetts	98, 726	689	99, 411
	28, 560	714	29, 27
Total: 1957	127, 286	1,403	128, 689
	155, 886	1,613	157, 499
Middle Atlantic: New Jersey New York Pennsylvania	30, 574 180, 492 1, 536, 209	2, 633 3, 666 23, 962	33, 207 184, 158 1, 560, 171
Total: 1957	1, 747, 275	30, 261	1, 777, 536
	2, 151, 596	33, 066	2, 184, 662
East North Central: Illinois. Indiana. Michigan. Ohio. Wisconsin Total: 1957.	1, 483, 395 114, 406 1, 365, 252 1, 697, 560 167, 336 4, 827, 949	136, 480 2, 466 20, 698 25, 441 3, 808 188, 893 180, 333	1, 619, 875 116, 872 1, 385, 950 1, 723, 001 171, 144 5, 016, 842
1956 West North Central: Iowa, Kansas, and Nebraska Minnesota Missouri	78, 166	800	78, 966
	23, 200	450	23, 650
	368, 538	5, 529	374, 067
Total: 1957	469, 904	6, 779	476, 683
	362, 357	3, 058	365, 415
South Atlantic: Delaware, District of Columbia, and Maryland Florida and Georgia Virginia and West Virginia 1	114 094	1, 832	115, 926
	242 111	1, 715	243, 826
	118, 761	246	119, 007
Total: 1957	474, 966	3, 793	478, 759
	479, 250	2, 809	482, 059
East South Central: Alabama. Kentucky, Mississippi, 2 and Tennessee	276, 904	28, 634	305, 538
	340, 162	1, 160	341, 322
Total: 1957	617, 066	29, 794	646, 860
	713, 321	3, 690	717, 011
West South Central: Arkansas, Louisiana, and Oklahoma Texas	136, 480	1, 135	137, 615
	490, 359	9, 088	499, 447
Total: 1957	626, 839	10, 223	637, 062
	378, 245	4, 711	382, 956
Rocky Mountain: Arizona, Colorado, Nevada, and Utah	70, 072	922	70, 994
Total: 1957	79, 072	922	70, 994
	61, 060	523	61, 583
Pacific Coast: California. Oregon Washington	696, 090	2, 615	698, 705
	175, 065	169	175, 234
	106, 028	250	106, 278
Total: 1957	977. 183	3. 034	980, 217
	962. 574	3, 118	965, 692
Total United States: 1957	9, 938, 540	275, 102	10, 213, 642
	11, 057, 113	232, 921	11, 290, 034

North Carolina included in 1956.
 Mississippi not included in 1956.

TABLE 13.—Consumption of ferrous scrap and pig iron in cupola furnaces in the United States in 1957, by districts and States, in short tons

District and State	1	Cotal scrap	Pig iron	Total scrap and pig iron
Vew England: Connecticut. Maine. Massachusetts. New Hampshire. Rhode Island. Vermont.		68, 629 7, 523 210, 430 11, 604 31, 042 22, 122	34, 939 3, 171 71, 819 2, 258 17, 730 8, 961	103, 56 10, 69 282, 24 13, 86 48, 77 31, 08
Total: 19571956		351, 350 436, 848	138, 878 176, 947	490, 22 613, 79
Middle Atlantic: New Jersey New York Pennsylvania		305, 676 456, 089 659, 080	128, 616 205, 825 301, 121	434, 29 661, 91 960, 20
Total: 1957		1, 420, 845 1, 522, 158	635, 562 743, 829	2, 056, 40 2, 265, 98
East North Central: Illinols. Indiana. Michigan. Ohio. Wisconsin. Total: 1957.		887, 195 560, 940 2, 229, 605 1, 307, 393 489, 741	265, 905 275, 937 897, 569 532, 214 193, 371	1, 153, 10 836, 87 3, 127, 17 1, 839, 60 683, 11
1956		5, 474, 874 5, 846, 564	2, 164, 996 2, 320, 964	7, 639, 83 8, 167, 53
West North Central: Iowa		186, 673 38, 795 20, 906 165, 671 152, 225	66, 720 3, 326 314 50, 851 29, 814	253, 39 42, 19 21, 29 216, 59 182, 00
Total: 19571956		564, 270 602, 375	151, 025 154, 794	715, 29 757, 10
South Atlantic: Delaware and Maryland		77, 744 6, 645 24, 637 53, 982 23, 642 229, 179 23, 429 439, 258	41, 518 2, 928 11, 955 25, 061 13, 297 47, 711 57, 328	119, 20 9, 5' 36, 5t' 79, 0 36, 92 276, 8 80, 7.
1956 East South Central:	=	493, 649	229, 256	722, 9
Alabama		743, 147 121, 165 272, 377	780, 845 148, 101 184, 952	1, 523, 9 269, 2 457, 3
Total: 1957		1, 136, 689 1, 097, 355	1, 113, 898 1, 382, 878	2, 250, 5 2, 480, 2
West South Central: Arkansas and Louisiana Oklahoma Texas		8, 427 41, 327 309, 983	6, 837 80, 442	8, 4 48, 1 390, 4
Total: 1957		359, 737 364, 969	87, 279 132, 923	447, 0 497, 8
Rocky Mountain: ColoradoUtahIdaho, Montana, and Wyoming		78, 503 68, 324 17, 116	28, 553 44, 263 542	107, 0 112, 5 17, 6
Total: 1957		163, 943 175, 846	73, 358 90, 725	237, 3 266, 5
4000	=			

TABLE 13.—Consumption of ferrous scrap and pig iron in cupola furnaces in the United States in 1957, by districts and States, in short tons—Continued

District and State	Total scrap	Pig iron	Total scrap and pig iron
Pacific Coast: California. Oregon. Washington.	341, 876	90, 764	432, 640
	35, 104	1, 733	36, 837
	36, 780	2, 725	39, 505
Total: 1957	413, 760	95, 222	508, 982
	485, 239	117, 086	602, 325
Total United States: 1957	10, 324, 726	4, 660, 016	14, 984, 742
	11, 025, 003	5, 349, 402	16, 374, 405

TABLE 14.—Consumption of ferrous scrap and pig iron in air furnaces in the United States in 1957, by districts and States, in short tons

District and State	Total scrap	Pig iron	Total scrap and pig iron
NewEngland:			
Connecticut Massachusetts and New Hampshire	33,803	6, 026	39, 829
		4, 841	20, 910
Total: 1957		10, 867 13, 271	60, 739 68, 852
Middle Atlantic:			
New Jersey	1, 244	705	1, 949
New York Pennsylvania	42, 282	12, 501	54, 783
		44, 743	179, 028
Total: 1957		57, 949	235, 760
1956	218, 189	69, 904	288, 093
East North Central:			
Illinois	158, 966	28, 499	187, 465
Indiana Michigan	152, 544	29, 295	181, 839
Ohio.	120, 019 335, 057	10, 198 61, 634	130, 217 396, 691
Wisconsin	72, 787	24, 997	97, 784
Total: 1957	839, 373	154, 623	993, 996
1956	898, 083	183, 523	1, 081, 606
West North Central:			
Iowa, Minnesota, and Missouri	12,774	8, 548	21, 322
Total: 1957	12,774	8, 548	21, 322
1956	13, 796	9, 496	23, 292
South Atlantic:			
Delaware, North Carolina, and West Virginia	16, 983	8, 699	25, 682
Total: 1957	16, 983	8, 699	25, 682
1956	22, 251	11, 414	33, 665
East South Central and West South Central:			
Alabama and Texas.	43, 294	2, 569	45, 863
Total: 1957	43, 294	2, 569	45, 863
1956	50, 423	3, 877	54, 300
Pacific Coast:			
California	12, 216	1, 297	13, 513
Total: 1957	12, 216	1, 297	19 519
1956	10,776	1, 232	13, 513 12, 008
Total United States: 1957	1, 152, 323	244, 552	1, 396, 875
1956	1, 269, 099	292, 717	1, 561, 816

Crucible and Puddling Furnaces.—The consumption of scrap and pig iron in crucible furnaces was negligible—slightly less than in 1956. No iron and steel scrap was reported as melted in puddling furnaces.

Blast Furnaces.—The proportion of scrap used in blast furnaces to pig iron produced was 5.3 percent, compared with 5.8 percent in 1956; total scrap consumption was 5 percent lower than in 1957. Blast-furnace slag-scrap consumption, 560,124 short tons, was reported for the first time in 1957. Domestic and foreign materials other than scrap constitute by far the largest proportion of blast-furnace charge and comprised 135,067,988 short tons of iron ore, agglomerates, and manganiferous ore: 3,945,872 tons of mill cinder and scale; 5,787,924 tons of open-hearth and Bessemer slag; and 4,128,529 tons of miscellaneous materials exclusive of fluxes and coke.

TABLE 15.—Consumption of ferrous scrap in blast furnaces in the United States in 1957, by districts and States, in short tons

District and State	Total scrap	District and State	Total scrap
New England and Middle Atlantic: Massachusetts and New York Pennsylvania. Total: 1957	242, 615 1, 519, 257 1, 761, 872 1, 807, 552 303, 599 177, 454 221, 067 937, 915 1, 640, 035 1, 984, 680	South Atlantic, East and West South Central: Alabama. Kentucky, Maryland, Tennessee, Texas, and West Virginia. Total: 1957	293, 199 397, 661 690, 850 564, 273 78, 076 67, 328 4, 170, 833 4, 403, 833

USE OF SCRAP IN FERROALLOY PRODUCTION

The ferroalloy plants operating electric furnaces or aluminothermic units used 9 percent less scrap than in 1956.

Scrap used in blast furnaces in manufacturing ferroalloys is included in this chapter under blast furnaces.

TABLE 16.—Consumption of ferrous scrap by ferroalloy producers in the United States in 1957, by districts, in short tons

District	Total scrap	District	Total scrap
Middle Atlantic: Total: 1957	34, 681 34, 251	South Atlantic: Total: 19571956	12, 515 13, 547
East North Central: Total: 19571956	70, 656 73, 366	East South Central: Total: 19571956	77, 651 72, 659
West North Central: Total: 1957	132, 986 168, 421	Pacific Coast: Total: 19571956	9, 081 8, 886
		Total United States: 1957 1956	337, 570 371, 130

MISCELLANEOUS USES OF SCRAP

Scrap consumed in 1957 for miscellaneous purposes, such as rerolling, nonferrous metallurgy, and as a chemical agent was 1.1 percent of the total scrap consumption, compared with 1.2 percent during the preceding year. The quantity so used decreased 18 percent from that used for similar purposes in 1956.

TABLE 17.—Consumption of ferrous scrap in miscellaneous uses in the United States in 1957, by districts and States, in short tons

District and State	Total scrap	District and State	Total scrap
New England:		South Atlantic:	
Connecticut and Massachusetts		Georgia Virginia and West Virginia	1, 562 30, 429
Total: 1957			
1900	16, 239	Total; 1957	31, 991 46, 788
Middle Atlantic:	107.071		10, 100
New Jersey New York	127, 971 60, 348	East South Central and West South Central:	
Pennsylvania	93, 875	Alabama and Texas	59, 296
Total: 1957	282, 194	Total: 1957	59, 296
1956	320, 682	1956	66, 024
East North Central:		Rocky Mountain:	
Illinois Indiana	180, 497 7, 173	Arizona, Idaho, and Montana Colorado and Utah	37, 408 7, 301
Michigan and Wisconsin	13, 846		
Ohio	80, 604	Total: 1957	44, 709 45, 288
Total: 1957			70, 200
1956	334, 671	Pacific Coast: California	38, 393
West North Central:		Washington	1, 052
Minnesota Missouri	359 43, 011	Total: 1957	39, 445
		1956	40, 983
Total 1957	43, 370 99, 320	Total United States: 1957	798, 638
1000-1	88, 020	1956	969, 995

STOCKS

Complete iron- and steel-scrap figures covering 1957 year-end stocks are not available; producers (railroads and manufacturers) were not canvassed; dealers, brokers, automobile wreckers, and shipbreakers were canvassed and reported on a voluntary basis.

Consumers' Stocks.—Total iron- and steel-scrap stocks held by consumers during the first half of 1957 were slightly below the quantity on hand at the end of 1956. However, beginning in July these stocks increased each month to reach a record quantity of 9.1 million short tons on October 31. By the end of the year iron- and steel-scrap stocks had decreased slightly from the end of October but were 21 percent higher than on January 1, 1957. Increases occurred in all but 2 districts; the largest increase—763,000 tons—was in the East North Central district. Stocks of pig iron held by consumers and suppliers on December 31, 1957, were 62 percent greater than those on hand December 31, 1956.

Suppliers' Stocks.—Stocks of iron and steel scrap in the hands of a combined total of 1,011 dealers, automobile wreckers, and ship-breakers, as reported voluntarily to the Bureau of Mines, totaled 991,652 short tons on December 31, 1957.

TABLE 18.—Consumers' stocks of ferrous scrap and pig iron on hand in the United States on December 31, 1956, and December 31, 1957, by districts and States, in short tons

District and State	Decembe	r 31, 1956	December	31, 1957
District and brace	Total scrap	Pig iron	Total scrap	Pig iron
New England:		•		
Connecticut	15, 412	10, 550	16,605	6, 82
Maine	1, 234	813	868	100.00
Massachusetts	60, 337	57, 431	42, 747	102, 29 32
New Hampshire	2, 955	295	1,331 8,361	
Rhode Island Vermont	11, 921 2, 570	7, 213 2, 520	3, 423	4,69 1,60
Total	94, 429	78, 822	73, 335	116, 16
Middle Atlantic:				
Now Iersey	68, 672 511, 863 1, 640, 957	32, 425 232, 784 425, 047	80, 823 677, 141 1, 901, 301	28, 40 375, 11 812, 31
New York	511, 863	232, 784	677, 141	375, 11
New York Pennsylvania	1, 640, 957	425, 047	1,901,301	812, 31
Total	2, 221, 492	690, 256	2, 659, 265	1, 215, 84
East North Central:	813 235	172, 846	1, 040, 359	272, 9
Indiana	813, 235 769, 542	137, 510	1,009,868	146, 2
Michigan	362, 853	283, 262	424, 813	335, 30
Ohio	1, 013, 583	390, 948	1, 252, 334	683, 55
Wisconsin	1, 013, 583 72, 295	39, 295	1, 252, 334 67, 210	683, 55 29, 35
Total	3, 031, 508	1, 023, 861	3, 794, 584	1, 467, 30
West North Central:	00 700	00.005	21 620	10.6
Iowa.	30, 760	23, 985 577	31, 638 14, 020	19, 6: 3
Kansas and Nebraska	11, 860	977	14,020	
Minnesota, North Dakota, and South Dakota	145, 974	24, 863	127, 725	104, 5
Missouri	234, 868	24, 105	187, 220	14, 8
Total	423, 462	73, 530	360, 603	139, 37
South Atlantic:				
Delaware, District of Columbia, and Mary-	180, 793	37, 283	350, 555	182, 69
land Florida and Georgia	7, 481	3, 169	13, 075	2, 0
North Carolina	6, 447	1, 539	6, 393	3.8
South Carolina	1, 911	2, 419	13, 075 6, 393 2, 027	2, 5
Virginia and West Virginia	155, 634	2, 419 16, 860	187, 685	2, 5' 18, 2'
Total	352, 266	61, 270	559, 735	209, 50
East South Central:				
Alahama	139, 741 152, 505	112, 829	275, 050	297, 10
Kentucky, Mississippi, and Tennessee	152, 505	101, 615	164, 081	149, 97
Total	292, 246	214, 444	439, 131	447, 07
West South Central:				
Arkansas, Louisiana, and Oklahoma	38, 380	1,484	17, 592	1,39
Texas	295, 411	43, 435	327, 424	48, 8
Total	333, 791	44, 919	345, 016	50, 25
Rocky Mountain:				
Arizona, Nevada, and New Mexico	13, 225 171, 334	120	13,659	11
Colorado and Utah	171, 334	79, 177	189, 154	93, 50
Idaho, Montana, and Wyoming	4, 561	325	7,853	37
Total	189, 120	79, 622	210, 666	93, 99
Pacific Coast:	05 500	10.000	00.017	1 00
Alaska and Washington	65, 552	10,098	92, 215	1,0
Oregon	31, 678	370 77, 604	45, 085 369, 751	75, 86
California	380, 511			
Total	477, 741	88, 072	507, 051	77, 18

TABLE 19.—Iron and steel scrap: Consumers' stocks, production, receipts, consumption, and shipments by grades, in 1957, in short tons

Grades of scrap	Total stocks on hand Jan. 1, 1957	Scrap produced	Receipts from dealers and all others	Total consumption	Shipments	Total stocks on hand Dec. 31, 1957
No. 1 Heavy-Melting steel No. 2 Heavy-Melting steel Bundles Low-phosphorus scrap Cast-iron scrap other than borings.	1, 852, 780 1, 010, 610 1, 197, 020 577, 495 1, 000, 747	18,·609, 821 1, 988, 637 1, 346, 740 1, 369, 025 6, 561, 068	6, 031, 096 4, 372, 826 8, 430, 948 3, 297, 985 4, 471, 136	23, 405, 182 6, 484, 154 9, 520, 645 4, 565, 424 10, 561, 974	154, 612 15, 270 145, 055 356, 253	2, 911, 684 910, 138 1, 438, 793 534, 026
All others	1, 777, 403	14, 121, 018	7, 257, 693	19, 011, 444	2, 104, 649	1, 114, 724 2, 040, 021
Total, all grades	7, 416, 055	14, 121, 018 43, 996, 309	7, 257, 693	73, 548, 823	2, 104	<u> </u>

PRICES 2

The price of No. 1 Heavy-Melting scrap at Pittsburgh was at a yearly high of \$60.70 per gross ton in January—\$8.20 higher than in January 1956. The price for this grade of scrap dropped to \$42 in April but increased to \$56.25 per ton in July, after which it declined to \$32.50 (estimate) in December—46 percent lower than at the beginning of the year and the lowest price since December 1954.

No. 1 Heavy-Melting scrap at Chicago averaged \$44.43 (estimate) per gross ton for the year. The highest price—\$57.90 per ton—for this grade of scrap was during January and the lowest—\$30.50 (esti-

mate)—in December, a drop of \$27.40 from January.

The average composite price of No. 1 Heavy-Melting iron and steel scrap in January was \$59.37 per gross ton, the high for the year, \$7.04 higher than in January 1956. The composite price for this grade of scrap fluctuated for the first 6 months, but during July it began a downward trend to reach a low, \$32.33 (estimate), for the year in December.

The average annual and monthly composite price for No. 2 Bundles was quoted for the first time in the Iron Age Annual Review and, following the trend of other grades of scrap, was quoted at the highest average in January (\$47.43 per gross ton) and the lowest in December (\$24.20 per gross ton). The average for the year was \$37.63 (estimate).

FOREIGN TRADE³

The House of Representatives, Select Committee on Small Business, held hearings during May to consider the limitations on exports of

iron and steel scrap and their impact on small business.4

The export-licensing regulations governing iron and steel scrap during 1956 remained in effect until February 19, 1957, when processing of export licenses to Japan, the United Kingdom, and the European Coal and Steel Community were temporarily suspended. This suspension was decided upon to protect domestic supplies while review-

 ² Iron Age, vol. 181, No. 1, Jan. 2, 1958, p. 338.
 ³ Figures on imports and exports compiled by Mae B. Price and Elsie D. Jackson, Division of Foreign Activities, Bureau of Mines, from records of the U. S. Department of Commerce, Bureau of the Census.
 ⁴ Hearings Before the Select Committee on Small Business, House of Representatives, 85th Congress, 1st Sess., Pursuant to a Resolution Creating a Select Committee to Conduct a Study and Investigation of the Problems of Small Business, May 20, 22, 23, and 24, 1957, 269 pp.

TABLE 20.—Consumption and stocks, December 31, 1957, of iron and steel scrap, by grades, by districts and States, in 1957, in short tons

	,													
496991	No. 1 Heavy- Melting steel	leavy-	No. 2 Heavy- Melting steel	leavy-	Bundles	lles	Low-phospho- rous scrap	ospho- crap	Cast-iron scrap other than borings	scrap borings	All others	hers	Total all grades	grades
District and State	Con- sump- tion	Stocks	Con- sump- tion	Stocks	Con- sump- tion	Stocks	Con. sump- tion	Stocks	Con- sump- tion	Stocks	Con- sump- tion	Stocks	Con- sump- tion	Stocks
New England: Connecticut.	14, 308	833	23, 773	. 230	17, 697	808	13, 624	707		5,907	87, 425	8, 120		16,605
Massachusetts New Hampshire Rhode Island Vermont.	72, 279 2, 744 639 4, 519	6, 666 191 51 158	2,836 356 20,770 510	4, 495 6	3,410	6, 737	56,018 101 11,042	3, 577	182, 539 11, 723 17, 553 17, 093	12, 549 853 3, 259 3, 259	68, 964 2, 373 20, 862	13, 162 234 1, 163	408, 656 17, 297 74, 276 22, 122	42, 747 1, 331 8, 361 3, 423
Total	95, 636	7, 899	48, 245	4,840	47, 127	7, 545	80, 785	4, 504	280, 811	25, 837	179, 783	22, 710	732, 387	73, 335
Middle Atlantic: New Jersey New York Pennsylvania.	15, 169 1, 602, 825 6, 448, 512	4, 153 247, 519 664, 531	21, 354 105, 299 1, 163, 858	1, 705 14, 430 90, 898	75, 952 549, 265 2, 261, 606	20, 313 227, 826 263, 270	51, 183 133, 126 966, 044	11, 761 16, 819 163, 162	275, 028 428, 427 1, 662, 857	27, 011 55, 504 142, 437	1, 087, 819 4, 752, 162	15, 880 115, 043 577, 003	632, 882 3, 906, 761 17, 255, 039	80, 823 677, 141 1, 901, 301
Total	8, 066, 506	916, 203	1, 290, 511	107, 033	2, 886, 823	511, 409	1, 150, 353	191, 742	2, 366, 312	224, 952	6, 034, 177	707, 926	21, 794, 682	2, 659, 265
East North Central: Illinois. Indiana. Michigan. Ohio.	1, 789, 837 4, 025, 129 730, 663 3, 446, 865 53, 504	235, 868 623, 964 78, 263 407, 725 7, 173	872, 518 335, 511 24, 997 763, 142 8, 707	106, 71, 76,	634 1, 025, 274 519 1, 210, 475 504 1, 141, 057 172 1, 409, 550 495 14, 078	243, 824 74, 704 107, 103 212, 608	542, 885 211, 643 873, 064 910, 666 213, 449	68, 238 28, 166 68, 771 99, 373 21, 567	802, 626 751, 906 1, 312, 808 1, 409, 405 294, 555	96, 340 50, 400 75, 073 108, 518 16, 213	1, 532, 843 1, 681, 092 2, 024, 872 3, 782, 261 213, 263	289, 455 161, 115 95, 099 347, 938 21, 377	6, 565, 983 8, 215, 756 6, 107, 461 11, 721, 889 797, 556	1, 040, 359 1, 009, 868 424, 813 1, 252, 334 67, 210
Total	10, 045, 998 1,	352, 993	2,004,875	255, 324	4, 800, 434	638, 624	2, 751, 707	286, 115	4, 571, 300	346, 544	9, 234, 331	914, 984	33, 408, 645	3, 794, 584
	14, 997	1, 433	8, 471	1, 668	1, 764	19	38, 115 32, 321	1, 039	141, 874 54, 273	8, 930 11, 436	155, 239 9, 199	18, 549	360, 460 99, 752	31, 638 14, 020
South Dakota	142, 041 37, 060	30, 110 13, 505	59, 560 577, 125	47,889 105,355	36, 025 11, 726	3,011	18, 313 25, 832	1, 529	157, 724 240, 403	20, 816 53, 263	101, 606 84, 120	27,862 10,557	515, 269 976, 266	127, 725 187, 220
Total	198, 057	45,089	645, 156	154, 912	49, 515	3,088	114, 581	5, 832	594, 274	94, 445	350, 164	57, 237	1, 951, 747	360, 603

486221—58——43

TABLE 20.—Consumption and stocks, December 31, 1957, of iron and steel scrap, by grades, by districts and States in 1957, in short tons—Continued

					21100 0 10112	TO THE PARTY OF	1							
	No. 1 Heavy- Melting steel	feavy- g steel	No. 2 Heavy- Melting steel	eavy-	Bundles	dles	Low-phospho- rous scrap	spho- rap	Cast-fron scrap other than borings	scrap	All others	hers	Total all grades	grades
District and State	Con- sump- tion	Stocks	Con- sump- tion	Stocks	Con- sump- tion	Stocks	Con- sump- tion	Stocks	Con- sump- tion	Stocks	Con- sump- tion	Stocks	Con- sump- tion	Stocks
South Atlantic: Delaware, District of Columbia, and Maryland. Florida and Georgia North Carolina.	1, 215, 484	196, 534 4, 933 403	96, 998 125, 133	10, 477	311, 096	4, 680	38, 005 1, 966 1, 202	3, 188 34 269	228, 412 26, 591 50, 186	107, 155 1, 155 5, 685	795, 875 58, 628 2, 647	28, 521 4, 734 36	2, 685, 870 283, 855 54, 035	350, 555 13, 075 6, 393
South Carolina. Virginia and West Virginia.	18, 909	2, 505	167,964	18, 411	292, 630	42, 083	60, 246	11, 531	248, 789	30, 584	8, 580	82, 571	450,	2,027
Total	1, 305, 930	204, 375	390, 095	31, 107	603, 726	46, 763	101, 419	15, 022	573, 042	145, 397	1, 527, 897	117, 071	4, 502, 109	559, 735
Bast South Central: Alabama. Kentucky. Mississippi and Ten-	867, 252	94, 441	115,086	22, 564	266, 423	24, 438	61, 144	8, 558	753, 973	88, 126	580, 819	36, 923	2, 644, 697	275, 050
	560, 784	62, 399	127, 560	17, 047	178, 526	48, 261	55, 563	1,609	292, 786	17,926	130,007	16, 839	1, 345, 226	164, 081
Total	1, 428, 036	156, 840	242, 646	39, 611	444, 949	72, 699	116, 707	10, 167	1,046,759	106,052	710, 826	53, 762	3, 989, 923	439, 131
West South Central: Arkansas, Louisiana, and Oklahoma. Texas.	336 65, 294	7, 222	99, 125 1, 124, 729	7, 655 184, 363	505 83, 558	58, 433	47, 748 74, 972	3,899	42, 073 355, 712	4, 109 50, 669	12, 133 113, 607	1, 929 21, 864	201, 920 1, 817, 872	17, 592 327, 424
Total	65, 630	7, 222	1, 223, 854	192, 018	84, 063	58, 433	122, 720	8, 772	397, 785	54, 778	125, 740	23, 793	2, 019, 792	345,016
Rocky Mountain: Arizona, Nevada, and New Mex- Colorado and Utah. Idaho, Montana, and Wyoming	1,009,448	68,947	31, 866	4, 170	105, 718	23, 978	4, 462	513	4, 162 249, 333 14, 489	919 34, 810 3, 378	39, 442 310, 626 8, 797	8, 570 41, 128 4, 475	75, 470 1, 779, 112 23, 286	13, 659 189, 154 7, 853
Total	1,009,448	68,947	131, 391	23, 948	105, 718	23, 978	4, 462	513	267, 984	39, 107	358 865	54, 173	1, 877, 868	210, 666
Pacific Coast: California Oregon. Washington.	988, 476 63, 488 137, 977	108, 642 11, 738 31, 736	367, 201 47, 349 92, 831	66, 751 11, 188 23, 406	448, 986 24, 629 24, 675	66, 350 3, 516 6, 388	102, 695 2, 063 17, 932	9, 323 441 1, 595	373, 716 30, 412 59, 579	64, 382 2, 913 10, 317	375, 144 45, 583 68, 934	54, 303 15, 289 18, 773	2, 656, 218 213, 524 401, 928	369, 751 45, 085 92, 215
Total	1, 189, 941	152, 116	507, 381	101, 345	498, 290	76, 254	122, 690	11, 359	463, 707	77, 612	489, 661	88, 365	3, 271, 670	507, 051
Total United States	23, 405, 182 2, 911, 684 6, 484, 154	2, 911, 684	3, 484, 154	910, 138	, 520, 645	910, 138 9, 520, 645 1, 438, 793 4, 565, 424	1, 565, 424	534, 026	10, 561, 974	, 114, 724	19, 011, 444	2, 040, 021	534, 026 10, 561, 974 1, 114, 724 19, 011, 444 2, 040, 021 73, 548, 823 8, 949, 386	3, 949, 386

TABLE 21.—Stocks of iron and steel scrap and pig iron on hand at plants of major consuming industries, in short tons

	Manufac- turers of steel ingots and castings	Manufac- turers of steel cast- ings	Iron found- ries and mis- cellaneous users	Total
		SCRAP	STOCKS	
Dec. 31, 1957	7, 619, 819 6, 036, 585	414, 136 425, 034	915, 431 954, 436	8, 949, 386 7, 416, 055
		PIG-IRO	n stocks	
Dec. 31, 1957	3, 185, 130 1, 556, 121	56, 578 81, 690	574, 991 716, 985	3, 816, 699 2, 354, 796

TABLE 22.—Average monthly price and composite price per gross ton for No. 1 Heavy-Melting scrap in 1957

1957	Chicago	Pittsburgh	Philadelphia	Composite price 1
January February March April May June July August September October November December 2 Average 2	\$57. 90 49. 00 44. 00 39. 50 42. 00 51. 75 52. 63 46. 50 31. 75 30. 50	\$60. 70 53. 50 48. 75 42. 00 46. 25 55. 50 56. 25 55. 00 49. 00 37. 90 33. 00 32. 50	\$59. 50 57. 00 52. 75 46. 88 50. 25 56. 10 54. 00 51. 25 46. 38 37. 70 33. 75 34. 00	\$59. 37 53. 17 48. 50 42. 80 46. 17 54. 23 54. 00 52. 96 47. 29 37. 37 32. 83 32. 33

¹ Composite price, Chicago, Philadelphia, and Pittsburgh.
2 Estimate.

ing the 1957 supply-demand situation as presented in the United States Department of Commerce report to the Congress. The heavy volume of export applications during early February was also a contributing factor to the suspension. The Bureau of Foreign Commerce, United States Department of Commerce, rescinded this suspension on February 27 and resumed licensing scrap for export to the aforementioned countries for all grades other than Heavy-Melting scrap.

On March 26, the United States Department of Commerce resumed processing applications for export of all grades of iron and steel scrap to Japan, the United Kingdom, and the European Coal and Steel Community. This removed all temporary restrictions on licensing

that had been imposed during February.

An interim policy, covering licensing exports of Heavy-Melting grades of steel scrap to the United Kingdom, Japan, and the European Coal and Steel Community, was announced on May 6. Under this policy the quantity of No. 1 and No. 2 Heavy-Melting scrap exported to these countries could not exceed the tonnage of these grades shipped in 1956. Licensing of other grades to the aforementioned destinations, as well as licensing of all grades to all other Free World destinations, remained under open-end quotas.

TABLE 23.—Ferrous scrap imported for consumption in the United States, by countries, 1948-52 (average) and 1953-57, in short tons

[Bureau of the Census]

Country	1948-52 (average)	1953	1954	1955	1956	1957
North America:						
Bahamas Canada-Newfoundland-	731	198	28	190	885	99
Labrador Canal Zone	64, 528 4, 322	131, 371 2, 180	223, 030	207, 617	235, 295	228, 40
Cuba Dominican Republic	26, 255	3,012	511 2,893	3, 685	14, 940	3, 50
French West Indies	94 1, 258	282 1, 381	1, 215	- 198 57	2 294	80
Guatemala Honduras	403 501	401	-	1, 363	336	
Mexico	487	133	444	211	586 132	2,06
Netherlands Antilles Panama Other North America	3, 285 525	7, 104 1, 410	3, 360		2 29	1
Other North America	5, 219	1, 993	39	24	33	13
Total	107, 608	149, 465	231, 520	213, 345	252, 534	236, 33
South America:						
Peru	568 1, 945	2, 240	2, 912	10, 554 674		
Other South America	1,811			0/4		1
Total	4, 324	2, 240	2, 912	11, 228		. 10
Europe:						
Belgium-Luxembourg Denmark	10, 975 2, 312			13		
France	38, 303	373	46			3
Germany Netherlands	202, 081 59, 953	1 253 77	11	1 78	1 150 66	1 90
Norway	610	3				
Sweden Switzerland	834 1, 347		152		1, 547	11
United Kingdom Other Europe	3, 857 1, 299	5, 686 247	591 25	2, 062 100	132	14
Total	321, 571	6, 639	828	2, 253	1 005	1.00
Asia:			620	2, 200	1,895	1, 335
India	7, 995		L		27	1
Japan Korea	7, 995 84, 344 3, 031	1, 751	400	575	537	20
Philippines	28, 389	51				
Other Asia	4, 769					
Total	128, 528	1,802	400	575	564	26
Africa:						
Algeria Morocco	8, 018 2 3, 376	790 2 3, 778	688 2 906	195	222 2 109	220
Union of South Africa	5, 437	2, 167	1, 399	802	143	223 146
Other Africa	362	316	224	122	102	317
Total	17, 193	7,051	3, 217	1, 119	576	906
Oceania:	10.00					
Australia New Zealand	13, 708 2, 076	6, 145 318	56 102	9		
Western Pacific Islands Other Oceania	1, 364 1, 185					
į-				10		
Total.	18, 333	6, 463	158	19		
Grand total: Short tons	597, 557	173, 660	239, 035	228, 539	255, 569	238, 610

¹ West Germany.

Voluntary agreements, which resulted from the discussions with the United Kingdom, Japan, and the European Coal and Steel Community (ECSC), prompted the rescinding on June 18, 1957, of the

<sup>French Morocco.
Owing to changes in tabulating procedures by the Bureau of the Census, data known not to be comparable with years before 1954.</sup>

interim licensing policy that had been in effect since May 6, 1957, and reestablished the open-end export quota for iron and steel scrap to all Free World destinations. Under these agreements these countries during 1957 voluntarily limited their total imports of Heavy-Melting grades of scrap from the United States to approximately 13

percent above that imported in each category in 1956.

On April 25, 1957, Public Law 85-27, H. R. 4686, was signed by President Eisenhower, continuing, until June 30, 1958, suspension of

duties on certain metal scrap, including iron and steel scrap.

TABLE 24.—Ferrous scrap exported from the United States, 1948-52 (average) and 1953-57, by countries of destination, in short tons 1 [Bureau of the Census]

Destination	1948-52 (average	1953	1954	1955	1956	1957
North America:						_
Canada-Newfoundland-	1	1		ł	1	1
Labrador	. 139, 343	76, 76	2 48, 544	429, 75	700 50	477.055
Merico	110 201	156, 394				
Other North America	106			- 8		
Total	249, 830	233, 156	272, 953	688, 330	1, 013, 486	767, 557
South America:			=			
Argentina	1,901		75, 425	103, 932	14 105	, , ,,,,,
Brazil	1 1000		928			
Chile Other South America	11		-	- 54		
		9	191			
Total	3, 085	9	76, 544	104, 149	14, 774	55, 545
Europe:						=
Belgium-Luxembourg	74	15	00 000	707.004		1
France	76	10	20, 330 31, 427			
Germany	31		2 350, 212	256, 631 2 677, 235	352, 612	231, 429
ITAIV	970	171				
Netherlands	321	27	20,906	1, 152, 533 42, 487		
Spain	11		54, 492	25, 589	35, 667	18, 244
United Kingdom	1, 935	9,055	181, 342	1, 056, 864	52, 488	102, 062
Other Europe	1, 247	126	87, 544	137, 684	596, 108 40, 112	
Total	4, 073	9, 394	998, 279	3, 534, 354	2, 889, 391	
Asia:					-, 100, 001	0, 121, 101
Hong Kong	1,050	101				1
India	876	121	939	541	525	
Japan	1.815	3, 205	1, 929	1,366	3, 192	4,036
Maiava I	879	62, 471	316, 691	791, 086	3 2, 372, 533	2, 341, 809
Philippines 1	57	361 287	73	345	959	414
Taiwan	20	201	439	722	1, 221	1,050
Turkev	373	624	459	8,000	42, 694	54, 231
Other Asia	354	84	10, 741	904	197 966	1, 513
Total	5, 424	67, 153	331, 271			
.frica:		07, 100	331, 271	802, 964	³ 2, 422, 287	2, 404, 440
			i	l		
Union of South Africa	211	91		50		
Other Africa.	76	11	130	104	323	657
Total	287	102	130	154	323	657
Grand total:						
Short tons	262, 699	200 014	1 670 150	F 100 0		
Value		309, 814 \$10, 827, 452	1, 679, 177	5, 129, 951	3 6, 340, 261 3 \$293, 667, 911	6, 655, 963
·	v, 040, 000	DIU. 041. 402	MOU. 746 951	35176 660 967	3 COO GG7 O11	\$321, 773, 583

¹ In addition to data shown, rerolling materials exported as follows: 1949, Canada, 37 tons; Mexico, 1,095 tons; Honduras, 30 tons; Bolivia, 44 tons; total 1,206 tons (\$50,086): 1951, Mexico, 9,813 tons (\$358,146): 1952, Canada, 69 tons; Mexico, 1,217 tons; total, 1,286 tons (\$77,287): 1953, Belgium-Luxembourg, 163 tons; Japan, 5,873 tons; Mexico, 692 tons; total, 6,728 tons (\$391,464): 1954, Canada, 110 tons; Mexico, 3,062 tons; India, 2,824 tons; Japan, 10,688 tons; total, 16,684 tons (\$865,413): 1955, Canada, 454 tons; Mexico, 19,504 tons; El Salvador, 76 tons; United Kingdom, 24 tons; Belgium-Luxembourg, 733 tons; Japan, 19,304 tons; El Salvador, 147 tons; India, 1,343 tons; Hong Kong (\$1,398,367): 1956, Canada, 5,815 tons; Mexico, 61,208 tons; El Salvador, 147 tons; India, 1,343 tons; Hong Kong (\$777 tons; Japan, 36,912 tons; total 106,202 tons (\$6,951,722): 1957, Canada, 2,730 tons; Mexico, 37,377 tons; El Salvador, 298 tons; Hong Kong, 349 tons; Japan, 49, 73 tons; Nansei and Nanpo Islands, 224 tons; total 90,351 tons (\$6,928,634).

² Revised figure.

Imports.—Iron and steel scrap, including timplate, decreased 7 percent in quantity and 10 percent in value from the previous year. Of the scrap imported, the largest quantity was received from Canada-Newfoundland-Labrador (96 percent of the total). Of the total imports, 15 percent was tinplate scrap, mostly from Canada, compared

with 13 percent during the preceding year.

Exports.—Continued record demand by the European Coal and Steel Community and other countries resulted in a record for exports of ferrous scrap from the United States. Exports increased 4.7 percent over those in the previous high year of 1956 and were 105 percent greater than the 5-year pre-World War II annual average (1935-39) of 3,298,000 short tons. Total ferrous scrap, excluding rerolling materials, exported during 1957 increased 5 percent in quantity and 10 percent in value over 1956.

TABLE 25.—Ferrous scrap imported into and exported from the United States, 1948-52 (average) and 1953-57, by classes 1

[Bureau of the Census] Exports Imports Tinplate Terne-Tincircles, strips, plate Iron and Total clip Total Iron and plate Tinplate steel Year cob bles, pings scrap steel scrap scrap scrap etc. and scrap SHORT TONS 1948-52 253, 309 291, 177 1, 664, 869 5, 113, 216 2 6, 311, 987 8, 106 12, 819 13, 251 16, 574 24, 481 262, 699 1,107 177 597, 557 173, 660 48, 997 (average)_ 1953_____ 548, 560 5, 818 1, 057 161 309, 814 42, 092 32, 719 32, 167 32, 633 131, 568 1, 679, 177 5, 129, 951 239, 035 206, 316 196, 372 222, 936 1954_____ 228, 539 255, 569 238, 610 11 1955_____ 2 6, 340, 261 3,782 1956_____ 21,875 6,655,963 6, 630, 025 4.063 203, 407 35, 203 1957_____ VALUE \$8, 328, 050 10, 827, 452 50, 746, 951 176, 660, 967 2293, 667, 911 321, 773, 583 1948-52 (av-\$7, 276, 701 9, 574, 911 49, 625, 759 175, 275, 625 290, 938, 797 211, 080 288, 456 \$21,800 \$16, 249, 726 5, 870, 215 3 5, 947, 731 3 6, 989, 360 \$997,836 \$15, 021, 789 4, 754, 939 3 5, 115, 808 \$1, 227, 937 erage).... 1, 153, 500 1, 098, 541 1, 370, 919 2, 516, 954 2, 460, 353 1, 115, 276 831, 923 838, 984 3 932, 447 1954...----³ 6, 150, 376 ³ 10, 380, 668 1955_____ 1,080 3 11, 313, 115 1956_____ 10, 149, 653 9, 077, 654 1,071,999 1957_____

WORLD REVIEW

NORTH AMERICA

Guatemala.—The regulation prohibiting the sale and export of Government-owned iron scrap, which had been in effect since 1952, was removed May 14, 1957, by the Minister of Economy. This was done because of inadequate storage facilities and because of favorable prices in the international market. Exports, by purchasers of this

 $^{^1}$ In addition to data shown, rerolling materials exported as follows: 1949, 1,206 tons (\$50,086); 1951, 9,813 tons (\$358,146); 1952, 1,286 tons (\$77,287); 1953, 6,728 tons (\$391,464); 1954, 16,684 tons (\$865,413); 1955, 41,823 tons (\$1,898,357); 1956, 106,202 tons (\$6,951,722); 1957, 90,351 tons (\$6,928,634). Not separately classified

eiore 1949. 2 Revised figure. They is a name of the Census data known not to be comparable with order to change in tabulating procedures by the Bureau of the Census data known not to be comparable with years before 1954.

scrap, were limited to 90 percent of the total owned by the Government; the remaining 10 percent was reserved for use by the domestic industry.5

SOUTH AMERICA

Peru.—According to terms of Supreme Resolution 150, dated May 31, 1957, the Peruvian Government prohibited exportation of iron and steel scrap.6

Authorizations pending for export licenses were revoked, and those

that had been issued expired on their respective deadline dates.

The reason given for placing this resolution in effect was that the domestic supply of iron and steel scrap would be needed by the new Chimbote steel plant.

EUROPE

France.—The iron and steel industry of France and the Saar consumed 8,111,000 short tons of iron and steel scrap during 1957, compared with 7,929,000 short tons in 1956. The steel producers in this area supplemented their supply of scrap during 1957 by purchasing 3,703,000 tons from French Dealers, shipyards, other ECSC countries and through imports.7

Inventories held by steel producers on December 31, 1957, decreased 12 percent from the first of the year, but they remained satisfactory.

Germany, West.—Through an order of the High Authority of the ECSC, a long-awaited revision of the regulations governing ferrousscrap distribution in the European Coal and Steel Community was put into effect during December 1956. The revision, additional to the equalization fund, comprised a system of penalties based on scrap consumption of steel producers. The equalization fund, which remained in effect, was paid into on the basis of a Community-wide fee per ton of scrap purchased and used to equalize the cost of expensive scrap imported for Community members.

The penalty system, which began August 1, provided that additional payments be made by a producer to the equalization fund if he exceeded the quota of scrap consumption established for that company. Quotas were determined by the following formula: Each producer selected as his base period any successive 6-month consumption between January 1, 1953, and January 31, 1957. The normal equalization charge on scrap was to be paid on the quantity equal to that used during this base period. On any quantity consumed that exceeded the quantity used during the producer's base period, he must pay into the equalization fund at the present rate plus a penalty

Reduction or elimination of the additional penalty on excess consumption may be obtained by a producer through reducing his specific consumption either below his base period or below the average specific consumption in the Community; 1-percent reduction in either entitled him to a 5-percent reduction in the penalty increment chargeable on his absolute excess of scrap consumption. Thus, when a 20-percent reduction was achieved in specific consumption, no

U. S. Embassy, Guatemala, State Department Dispatch 681: June 4, 1957.
 Foreign Commerce Weekly, vol. 58, No. 2, July 8, 1957, p. 14.
 U. S. Embassy, Paris, France, State Department Dispatch 1747: Apr. 2, 1958.
 U. S. Consul, Dusseldorf, Germany, State Department Dispatch 105: Feb. 15, 1957.

penalty was chargeable, regardless of how much his absolute scrap consumption exceeded that of the base period.

ASIA

Japan.—About 70 shiploads of steel scrap were scheduled to be shipped to Japan for delivery from April through June, according to the Japanese Steel Scrap Coordinating Committee, which handles—on behalf of Japanese steel mills—the imports of scrap steel from the United States.⁹

These shipments were part of a long-term contract with American shippers for 1,800,000 tons; 70 shiploads had been shipped during January through March, and the remainder were to be delivered from

July through September.

Some problems developed in carrying out the purchase contracts for the above-mentioned 1.8 million tons. Domestic scrap prices in Japan declined sharply; as a result, scrap imported from the United States was more expensive; this was the reverse of the situation that prevailed in the early part of the year. As of July 1, ingot-steel production plans had expanded more than enough to compensate for increased prospective supplies of domestic pig iron and scrap imported from sources other than the United States. If these production plans were to be carried out, the scrap contracted for from the United States would be needed.

The tight-money policy of the Japanese Government was strictly enforced and customers of the steel industry, unable to get bank loans, were paying for purchases with promissory notes or reducing their purchases and living off their stockpiles. As a result, production schedules were lowered. Faced with these circumstances, steelmakers were extremely reluctant to purchase and pay for imported scrap at higher than prevailing domestic prices.

TECHNOLOGY

An economical, semiportable flame-cutoff machine that eliminates some manual flame cutting and increases the speed of cutting iron and steel scrap was in use during 1957. The machine is nonautomatic but can be operated from a central position through a control assembly.¹¹

The operator works the torch from the control assembly, adjusting the height and speed, and positioning it to begin cutting at the required point. He starts the torch, adjusts the preheat gases and oxy-

gen, and retracts the machine, when cutting is complete.

The cutoff unit comprises an 18-inch, structural-steel guide rail, a carriage, and a torch truck that travels on a boom. The boom rotates horizontally about the center of the carriage, allowing the torch and torch truck to be anywhere in the circle covered by the boom.

Armco Steel tried a new scrap-charging method for their openhearth furnaces at the Butler (Pa.) plant; this process lowered operating cost by reducing furnace charging and heating time each by I hour. The scrap used in this operation is hauled to the furnaces in a modified

American Metal Market, vol. 64, No. 47, Mar. 9, 1957, p. 11.
 U. S. Embassy, Tokyo, Japan, State Department Dispatch 209: Aug. 21, 1957.
 Iron Age, vol. 179, No. 16, Apr. 18, 1957, pp. 136, 138, 139.

gondola car, where a magnetic crane lifts the scrap and dumps it into a hopper outside the door of the furnace. It is then fed through a hopper into a charging box and shoved into the furnace by a conventional charging machine. This article describes the charging assembly and discusses further the advantages of this method through increased production, reduced heating time, and greater capacity. 12

More intensive efforts were made by mills to recover scrap from

slags and waste materials originating in steelmaking plants, where

sizable amounts of scrap are lost.13

A convenient method for recovering metallics contained in slags and waste materials has been to use combinations of magnetic separators and heavy-duty cleaning equipment. Commonly used equipment are 2 magnetic separators, 1 having a capacity to handle 150 to 200 yards of material per hour and 1 that is larger for handling 400 to 450 yards of material per hour. Each of the many changes in these machines has tended to prevent jams and improve production. Because the materials handled are abrasive, all wearing surfaces of the machines are made of manganese steel.

A method for handling hot slag and waste materials is to dump them into pits approximately 50 feet wide and 200 to 300 feet long or large enough to hold a 24-hour output of material. Enough pits should be

available to allow time for the slag to cool.

A pit is filled with slag, which after spraying with water, is broken up by means of a 10- to 20-ton drop ball. The lifting magnets then remove the large pieces of steel scrap, placing them in trucks for hauling to cleaning facilities. The remainder of the material is dug with a dragline and fed directly into a magnetic separator.

This article describes other ways to process slag and the results in

metallics recovered.

¹² McManus, G. J., Fast Scrap—Charging Boasts Openhearth Output: Iron Age, vol. 181, No. 12, Mar. 20, 1958, pp. 110-111.

¹³ Fritz, Lawrence J. (assistant to general superintendent, Heckett Engineering, Inc., Butler, Pa.), Iron and Steel Eng., vol. 34, No. 4, April 1957, pp. 95-97.

Iron Oxide Pigments

By Taber de Polo 1 and Betty Ann Brett 2

ALES of iron oxide pigments in 1957 declined slightly, primarily because of the slowdown in housing construction during the latter part of the year.

TABLE 1.—Salient statistics of iron oxide pigment materials in the United States, 1948-52 (average) and 1953-57

	1948-52 (average)	1953	1954	1955	1956	1957
Mine production: Short tons Crude pigments sold or used:	(1)	(1)	45, 700	56, 200	53, 900	49, 300
Short tons	(1)	(1) (1)	40, 900 \$371, 500	52, 900 \$419, 400	49, 800 \$468, 300	47, 400 \$462, 300
used: Short tonsValue Imports:	² 115, 300 ² \$12, 909, 700	108, 400 \$14, 246, 700	98, 000 \$13, 977, 500	115, 300 \$17, 471, 700	³ 113, 900 ³ \$17, 103, 500	104, 700 \$16, 356, 000
Short tons Value Exports:	8, 200 \$586, 200	11, 000 \$802, 200	10, 700 \$846, 400	14,000 \$1,195,600	13, 100 \$1, 201, 700	13, 100 \$1, 314, 400
Short tonsValue	5, 500 \$782, 400	4, 200 \$688, 300	3, 600 \$682, 300	4, 700 \$893, 900	5, 100 \$909, 200	3, 700 \$1, 038, 200

DOMESTIC PRODUCTION

Crude Materials.—The quantity of crude iron oxide pigment materials mined in 1957 decreased 9 percent from 1956, the quantity sold or used decreased 5 percent, and the value of sold or used materials decreased 1 percent. Red iron oxide pigments comprised 67 percent of the quantity and 71 percent of the value of crude material sold or used, compared with 66 and 67 percent in 1956.

Of the 47,400 short tons of material sold or used by crude-pigment producers, 29,000 tons (61 percent) was supplied as a byproduct by iron-ore producers. The average value of byproduct pigments was \$9.28 per short ton, and the value of material produced at iron oxide

pigment mines was \$10.53 per ton.

Finished Pigments.—Combined sales (almost 105,000 short tons) of natural and manufactured iron oxide pigments reported by processors in 1957 were 8 percent lower in quantity and 4 percent lower in value than in 1956. The average price increased \$5.95 per ton.

Natural pigments (excluding those in mixtures of natural, manufactured, and undesignated pigments) supplied 30 percent of the

Figure not available.
 Includes mineral blacks, 1948-51.
 Revised figure.

¹ Commodity specialist. ² Statistical clerk.

TABLE 2.—Crude iron oxide pigment materials mined and sold or used in the United States, 1957, by States

State	Number of producers	Quantity mined (short tons)	Quantity sold or used (short tons)	Value
PennsylvaniaColorado	2	1,040	998	\$9, 116
Michigan Minnesota Oregon	6	35, 760	33, 118	287, 892
Georgia	} 3	12, 548	13, 238	165, 253
Total	11	49, 348	47, 354	462, 261

TABLE 3.—Crude iron oxide pigment materials mined and sold or used in the United States, 1956-57, by sources

		1956		·	1957	
Source	Quantity mined	Quantit us	y sold or ed	Quantity mined	Quantit; us	
	(short tons)	Short tons	Value	(short tons)	Short tons	Value
Iron oxide pigment mines Iron-ore mines	21, 464 32, 469	17, 312 32, 469	\$168, 021 300, 245	20, 360 28, 988	18, 366 28, 988	\$193, 349 268, 912
Total	53, 933	49, 781	468, 266	49, 348	47, 354	462, 261

TABLE 4.—Crude iron oxide pigment materials produced, and sold or used by processors in the United States, 1956-57, by kinds

		1956		1957			
Pigments	Quantity mined	Quantity sold or used		Quantity mined	Quantity sold or used		
	(short tons)	Short tons	Value	(short tons)	Short tons	Value	
Brown iron oxide:	4, 270	3, 514	\$74, 260	5, 636	3, 009	\$58, 140	
Umber	36, 322	455 32, 909	6, 857 312, 370	551 31, 781	551 31, 781	6, 277 326, 858	
Ocher	8, 370	8, 370	47, 237	6, 057	6, 057	33, 849	
pigments	4, 476	4, 533	27, 542	5, 323	5, 956	37, 137	
Total	53, 933	49, 781	468, 266	49, 348	47, 354	462, 261	

^{1 1956} only.

tonnage and 15 percent of the value of the total finished pigments in 1957. Mixtures of natural and manufactured pigments (all reds) furnished 7 percent of the tonnage and 7 percent of the value. The average value of finished natural pigments rose from \$72.21 per ton to \$78.58; the average value of manufactured pigments dropped from \$200.18 to \$196.62 per ton.

Of the 62,000 tons of manufactured pigments sold in 1957 (a 4-percent decrease from 1956), the reds comprised 75 percent of the market—a slight increase in percentage over 1956. Yellow pigments comprised 20 percent of the market in 1957 compared with 21 percent in 1956. The reds furnished 68 percent of the value in both 1956 and 1957 and the yellows, 23 and 24 percent, respectively. The average value for the reds was approximately \$178 and the average value for the yellows \$242 per ton.

TABLE 5.—Sales of finished iron oxide pigments in the United States, 1957, by States

State	Number of producers	Quantity sold (short tons)	Value
Georgia	1	1, 725	\$56, 257
Ohio. Pennsylvania. Maryland	8	69, 439 12, 229	9, 940, 323 1, 173, 926
Virginia New Jersey New York	} 3	2, 919	329, 182
Other ¹	18	18, 426	4, 856, 297 16, 355, 985

¹ Includes California, Oregon, and a quantity unspecified by State.

TABLE 6.—Finished iron oxide pigments sold by processors in the United States, 1956-57, by kinds

Pigment		1956	19	957
	Short tons	Value	Short tons	Value
Natural: Black: Magnetite	2, 901 597 179	\$82, 220 684, 272 427, 018 80, 467 39, 190 948, 921	229 7, 497 2, 321 580 144 14, 140	\$19, 055 739, 042 353, 460 79, 831 30, 808 695, 987
Sienna, burnt. Pyrite cinder Yellow: Iron oxide Ocher Sienna, raw	1, 039 359 174 5, 736 908	212, 888 32, 655 20, 880 198, 024 173, 292	1, 046 380 4, 601 719	218, 047 34, 170 172, 826 144, 442
Total natural Manufactured: Black: Magnetic Brown: Iron oxide Red: Pure red iron oxides:	40, 156 1, 919 1, 951	2, 899, 827 538, 617 585, 745	31, 657 1, 764 1, 515	2, 487, 668 513, 962 421, 853
Calcined copperas. Other chemical processes. Other manufactured red iron oxides. Venetian red. Yellow: Iron oxide.	15, 914 6, 637 21, 329 3, 273 13, 261	4, 365, 538 1, 839, 459 2, 166, 310 375, 814 2, 997, 181	14, 446 6, 647 22, 169 3, 122 12, 355	4, 207, 724 1, 912, 542 1, 773, 791 378, 235 2, 985, 836
Total manufactured	64, 284 5, 689 1 3, 732	12, 868, 664 836, 950 1 498, 092	62, 018 7, 575 3, 488	12, 193, 943 1, 149, 774 524, 600
Grand total	1 113, 861	1 17, 103, 533	104, 738	16, 355, 985

¹ Revised figure.

Of the finished iron oxide pigments (natural and manufactured) sold in 1957, the reds dominated the market, with 59 percent of the quantity and 56 percent of the value; yellows supplied 17 percent of the quantity and 20 percent of the value; and browns furnished 12 percent of the quantity and 10 percent of the value. Natural black (magnetite) sales dropped to only 8 percent of the 1956 figure. As in 1956, the highest total valued pigment in 1957, with 14 percent of the total tonnage and 26 percent of the value of the iron oxide pigment market, was manufactured red from calcined copperas, valued at \$291 per ton compared with \$274 in 1956.

A total of 18 companies in 10 States reported sales of finished iron

oxide pigments in 1957, the same as for 1956.

PRICES

Prices of finished iron oxide pigments remained virtually unchanged during 1957.

TABLE 7.—Prices quoted on finished iron oxide pigments in 1957, per pound
[Paint, Oil and Chemical Review]

	Dec. 27, 1957
lacks:	40.10
Mineral blacks	
Black oxide of iron, pure	
Black oxide of iron, syntheticrowns:	.1474
Brown, metallic	04
Brown, iron oxide, pure	
Umber, Turkey, burnt, powdered	.081
Umber, American	.07%
Vandyke brown	.103
eds:	
Crocus martis	04
Indian red, American common	
Indian red, American pure	.141
Iron oxide, casks: Domestic, natural	.063
Persian Gulf	
Spanish	1 00'
Sienna, American, burnt and powdered, in bags	
Sienna, Italian, burnt and powdered, in barrels	. 163
Venetian red	
ellows:	
Iron oxide, yellow, pure	.113
Ocher, domestic	02
Ocher, French	
Sienna, American, raw, powdered, in barrels	.091
Sienna, Italian, raw, powdered, in barrels	.163

FOREIGN TRADE³

Total imports of natural and manufactured iron oxide pigments remained almost the same as in 1956.

Natural pigments supplied 46 percent of the tonnage compared with 54 percent in 1956, but the manufactured pigments accounted for 80

³ Figures on imports and exports compiled by Mae B. Price and Elsle D. Jackson, Division of Foreign Activities, Bureau of Mines, from records of the U. S. Department of Commerce, Bureau of the Census.

percent of the value in 1957 and 73 percent in 1956. The average value of natural pigments imported was \$44 per ton and of manufactured pigments \$149 per ton in 1957 compared with \$46 and \$147

in 1956.

Iron oxide pigments designated by the United States Department of Commerce as "natural iron oxide and iron hydroxide pigments, n. s. p. f.," supplied 51 percent of all natural varieties and came from Spain (94 percent), United Kingdom (5 percent), and West Germany. The Union of South Africa furnished all imports of both crude and refined ocher.

TABLE 8.—Selected iron oxide pigments imported for consumption in the United States, 1954-57

[Bureau of the Census]													
	1	954		1955		1956	1957						
Pigments	Short Value		Short tons	Value	Short tons	Value	Short tons	Value					
Natural: Ocher, crude and re-													
fined	154	\$8,666	218	\$15,362	206	\$11,827	203	\$11,979					
Siennas, crude and refined Umber, crude and	338	34, 848	840	1 80, 041	722	1 71, 190	676	56, 340					
refined	2, 598	74, 276	2, 654	79, 446	2,762	89, 489	1, 944 139	64, 835 9, 917					
Vandyke brown Other 2	89 2, 546	5, 194 120, 600	151 3, 702	9, 206 161, 488	200 3, 168	12, 465 137, 507	3, 079	125, 227					
Total natural	5, 725	243, 584	7, 565	1 345, 543	7,058	1 322, 478	6,041	268, 298					
Manufactured (syn- thetic)	4, 997	602, 847	6, 394	1 850, 095	5, 997	1 879, 200	7, 033	1, 046, 139					
Grand total	10, 722	846, 431	13, 959	1 1, 195, 638	13,055	1 1, 201, 678	13, 074	1, 314, 437					

[Bureau of the Census]

Crude and refined siennas came from Italy (57 and 82 percent); and Malta, Gozo, and Cyprus.

Malta, Gozo, and Cyprus supplied all of the crude and 76 percent of the refined umbers; the remainder came from the United Kingdom.

Vandyke brown was imported only from West Germany.

Imports of manufactured (synthetic) iron oxide pigments came from West Germany (65 percent), United Kingdom (19 percent), Canada (15 percent), and Netherlands.

The tonnage of iron oxide pigments exported from the United States in 1957 decreased 28 percent compared with 1956, but the value

increased 14 percent, rising from \$179 to \$283 per ton.

Countries in North America received 71 percent of all pigments exported from the United States and Canada alone received 60 percent.

¹ Owing to changes in tabulating procedures by the Bureau of the Census data known to be not comparable with previous years.
2 Classified by the Bureau of the Census as: "Natural iron oxide and iron hydroxide pigments, n. s. p. f."

TABLE 9.—Iron oxide pigments exported from the United States, 1954-57, by countries of destination

[Bureau of the Census]

		(Dures	u or the	Census				
G		1954	:	1955		1956		1957
Country	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value
North America: Canada Cuba Dominican Republic Guatemala. Haiti Mexico Netherlands Antilles Panama Other North America.	2, 208 197 22 33 9 128 10 37 22	\$265, 266 48, 578 5, 122 8, 162 3, 260 61, 525 2, 720 5, 193 8, 320	3, 149 205 35 20 38 64 14 1	\$404, 717 53, 252 9, 480 6, 931 4, 930 27, 300 5, 195 390 13, 075	3, 552 281 43 16 	\$427, 462 81, 809 11, 514 5, 801 35, 797 5, 605 8, 430	2, 212 195 18 29 4 120 (¹) 2	\$380, 575 58, 404 5, 350 8, 267 1, 390 53, 625 573 970 9, 307
Total	2, 666	408, 146	3, 565	525, 270	4,036	576, 418	2,610	518, 461
South America: Argentina Bolivia Brazil Chile Colombia Ecuador Peru Uruguay Venezuela	78 8 176 5 15 1 210	1,060 21,116 3,290 76,478 1,717 5,196 528 38,943	20 36 30 22 198 3 95 4 105	7, 682 16, 763 8, 045 12, 764 62, 120 795 21, 470 9, 365 38, 044	(1) 41 34 5 136 7 41 (1) 115	438 14, 830 8, 863 1, 858 50, 570 2, 235 8, 238 180 66, 686	(1) 14 18 25 187 18 31 19 75	
Total	497	148, 328	513	177, 048	379	153, 898	387	171, 043
Europe: Belgium-Luxembourg France Iceland Italy Netherlands Norway	40 5 7 14 104	11, 824 9, 212 7, 347 11, 007 5, 918	22 61 7 175 30	18, 300 12, 974 9, 785 18, 675 1, 932	18 37 7 22 134	7, 360 26, 890 2, 274 7, 640 5, 580	11 53 3 4 69	13, 436 29, 048 800 3, 824 5, 560
Norway Portugal Spain Sweden	11 1 7	3, 068 564 1, 902	11 3	3, 075 796	70	14, 145	15	4, 512
Sweden Switzerland United Kingdom Other Europe	45 3	9, 948 695	12 2 8	5, 636 1, 130 5, 058	42 12 1	13, 434 4, 010 2, 632	11 51 3 4	3, 290 17, 506 2, 536 8, 746
Total	237	61, 485	331	77, 361	343	83, 965	224	89, 258
Asia: Indonesia Japan Malaya Philippines	13	7, 074	10 25	3, 061 7, 408	40 13	6, 384 12, 605	29 9 18	39, 311 6, 855 23, 825
Laiwaii	69 11	33, 656 3, 451	119	34, 955	173 1	43, 784 2, 676	188 31	92, 041 6, 310
Turkey Other Asia	7	2, 971	33 31	8, 041 6, 330	3 5	525 2, 040	28 20	9, 376 7, 568
Total	100	47, 152	218	59, 795	235	68, 014	323	185, 286
Africa: Union of South Africa Other Africa	51 1	16, 100 576	101 8	36, 472 4, 125	67 (1)	20, 338 305	98 (¹)	36, 788 2, 107
TotalOceania	52 2	16, 676 542	109 8	40. 597 13, 785	67 11	20, 643 6, 287	98 33	38, 895 35, 275
Grand total	3, 554	682, 329	4,744	893, 856	5,071	909, 225	3, 675	1, 038, 218

¹ Less than 1 ton.

WORLD REVIEW

Argentina.—Imports of ochers and terras into Argentina totaled 265 short tons in 1956, 14 tons in 1955, and 7 tons in 1954.4

Cyprus.—In 1957 umber production was 4,835 short tons valued at £51,021 (US\$143,000), and yellow other production was 443 short tons valued at £6,690 (US\$18,700).

India.—The production of ocher in 1957 was reported to be 13,902 short tons valued at 270,000 rupees (US\$56,700), an increase of 13 percent in tonnage and 7 percent in value from 1956.6

Italy.—The output of umber and sienna totaled 4,124 short tons in

1957.7

Iran.—Production of natural red iron oxide pigment (Persian Gulf oxide) was 6,792 short tons from March 21, 1955, to March 20, 1956 (Iranian year 1334), and the estimated quantity from March 21, 1956, to March 20, 1957 (Iranian year 1335), was 14,330 short tons.8

Morocco.—A total of 1,725 short tons of natural iron oxide pigment, valued at 31 million francs (US\$85,000) was produced during

1957.9

Peru.—Output of ocher totaled 32 short tons in 1955 and 7 tons each in 1954 and 1953.10

Union of South Africa.—Production and local sales of ochers, umber, and other iron oxides decreased in 1956, compared with 1955. 11

TABLE 10.—Production and local sales of iron oxide pigments in Union of South Africa, 1955-56

·	Produ	1ction		Loca	l sales	
	1955 1956		1955		1956	
	Short tons Short tons S		Short tons	Value	Short tons	Value
Ochers Umbers Other iron pigments Total	8, 223 2, 811 1, 435	7, 111 2, 115 1, 142 10, 368	431 2, 346 1, 253 4, 030	\$3, 906 53, 149 11, 379 68, 434	177 1, 703 1, 285 3, 165	\$1, 921 39, 373 14, 392 55, 686

TECHNOLOGY

A siderite deposit in Southern Australia, partly oxidized to hematite and containing over 50 percent Fe₂O₃, was investigated. The deposit was said to be suitable for use as a paint pigment. The reserve was estimated to be 700,000 tons.12

<sup>Bureau of Mines, Mineral Trade Notes: Vol. 46, No. 3, March 1958, p. 27.
U. S. Consulate, Nicosia, Cyprus, State Department Dispatch 66: Feb. 28, 1958, p. 1.
U. S. Embassy, Rome, Italy, State Department Dispatch 893: Mar. 3, 1958, enclosure 1, p. 1.
U. S. Embassy, Rome, Italy, State Department Dispatch 859: Jan. 15, 1958, p. 1.
U. S. Embassy, Tehran, Iran, State Department Dispatch 859: Jan. 15, 1958, p. 1.
U. S. Embassy, Rabot, Morocco, State Department Dispatch 1099: May 25, 1957, p. 1.
U. S. Embassy, Rabot, Morocco, State Department Dispatch 271: Mar. 17, 1958, enclosure 1, p. 2.
Bureau of Mines, Mineral Trade Notes: Vol. 45, No. 1, January 1958, p. 26.
Bureau of Mines, Mineral Trade Notes: Vol. 45, No. 5, November 1957, p. 27.
Johns, R. K., Copper King Ocher Deposit: Southern Australia, Dept. Mines, Mining Review, No. 100, 1954 (pub. in 1956), pp. 42-48; Chem. Abs., vol. 51, No. 5, Mar. 10, 1957, p. 3383e.</sup>

A comprehensive review covering the composition, properties, and uses of pigments, including iron oxides, 13 and a concise review of the pigment industry in Japan 14 were published.

Investigations showed the influence on color and quality of red pigments precipitated as basic ferric sulfates rather than as ferric hydroxide. A patent was issued for preparing a modified hydrous ferric oxide pigment by precipitation in the presence of a sulfur-containing compound.16

Wormold, G., Review: Paint and Varnish Production, vol. 47, No. 4, April 1957, pp. 37-44; No. 5, May
 1957, pp. 53-56; No. 6, June 1957, pp. 43-48.
 Mori, Masutoshi, Pigments in Japan—1956: Paint, Oil and Chemical Rev., vol. 120, No. 22, Oct. 31,

¹⁴ Mori, Masutoshi, Pigments in Japan—1956: Paint, Oil and Chemical Rev., vol. 120, No. 22, Oct. 31, 1957, pp. 10-11.

¹⁵ Kranz, M., [Red Pigments Composed of Ferric Oxide of Sulfates of Alkali Earth Metals in Systems: Fe₂O₃-BaSO₄, Fe₂O₃-CaSO₄]: Przemysl Chem., vol. 13, 1957, pp. 171-177; Chem Abs., vol. 51, No. 19, Oct. 10, 1957, pp. 15143i.

¹⁶ Jackson, Julius (assigned to E. I. duPont de Nemours & Co.), Modified Iron Oxide Pigments: U. S. Patent 2,818,348, Dec. 31, 1957.

Jewel Bearings

By Henry P. Chandler 1 and Betty Ann Brett 2

RODUCTION of finished jewel bearings in the United States during 1957 increased slightly over 1956, but domestic consumption declined. Imports increased both in quantity and value.

DOMESTIC PRODUCTION

The output of finished jewel bearings increased slightly over 1956. Firms in Santa Barbara (Calif.), North Falmouth, Waltham, and West Lynn (Mass.), Newark, Perth Amboy, and Trenton (N. J.), Rochester (N. Y.), Rolla (N. Dak.), and Morrisville (Pa.) reported production of jewel bearings.

TABLE 1.—Salient statistics of the jewel-bearings industry in the United States, 1948-52 (average) and 1953-57 1 [Million jewel bearings]

	1948-52 (average)	1953	1954	1955	1956	1957
Production:						
Blanks	1.0	6.0	0.8	2.9	4.8	(2) 13. 9
Finished iewels 3	5.8	15.7	10.5	4 11. 8	4 13. 8	13, 9
Consumption:						
Blanks	8.3	7.9	2.8	4.9	5.0	3. 6 66. 1
Finished jewels 3	73.6	70.9	66.2	74.8	74.6	66. 1
Shipments:	! !	-			ı	
Blanks	20.6	8.2	(5)	2.2	4.3	(2)
Finished jewels 3	20.6	36.8	29.4	40.1	42.9	47.
Stocks on hand Dec. 31:						
Blanks	5.5	1. 4 97. 5	.7	1.5	1. 8 96. 4	. 9
Finished jewels 3	96.0	97.5	95.4	103.6	96.4	97. 0

¹ The annual jewel-bearings industry survey is conducted by the Federal Bureau of Mines in cooperation with the Business and Defense Services Administration, U. S. Department of Commerce. The 1957 survey included data from 97 respondents in 16 States and Puerto Rico.

² Figure withheld to avoid disclosing individual company confidential data ³ Includes finished jewels made from glass; includes phonograph needles in 1954-57.

CONSUMPTION AND USES

Domestic consumption of finished jewels in 1957 declined 11 percent and consumption of blanks 28 percent from 1956.

Synthetic sapphire and ruby bearings constituted 87 percent of the total consumption and glass bearings nearly 13 percent; bearings of various other materials made up the remainder.

The more widely used types of jewel bearings were illustrated in the Jewel Bearings chapter of Minerals Yearbook, 1955.

⁴ Revised figure.
5 Less than 0.1 million.

¹ Commodity specialist. ² Statistical clerk.

In 1957, 13 firms in New York consumed 25 percent of the national jewel-bearings total; 10 firms in Illinois consumed 32 percent.

The following firms used 86 percent of the jewel bearings consumed

in the United States in 1957:

Simpson Electric Co., Division of American Gage & Machine Co., Chicago, Ill. Elgin National Watch Co., Elgin, Ill. Westclox Div., General Time Corp., La Salle, Ill. Sangamo Electric Co., Springfield, Ill. Duncan Electric Mfg. Co., Lafayette, Ind. General Electric Co., West Lynn, Mass., and Sommersworth, N. H. Westinghouse Electric Corp., Newark, N. J. Weston Electrical Instrument Corp., Newark, N. J. Bulova Watch Co., Flushing, N. Y. Hamilton Watch Co., Lancaster, Pa. The George W. Borg Corp., Delavan, Wis.

TABLE 2.—Consumption and sales of finished jewels in the United States, 1957, by uses (Million jewel bearings)

Use	Consump- tion	Sales	Use	Consump- tion	Sales
Synthetic sapphire and ruby: Watch holes: Olive Straight Pallet stones	13. 2 12. 7 4. 1	0. 9 2. 2	Glass: Vees	8.2	7.3
Roller (jewel) pins End stones or caps: Watch Instrument	2. 2 14. 8	9.3 2.4	Total number of glass bearingsOther jewel bearings	8.3 .1	7. 3 (¹)
Vees. Instrument rings. Cups or double cups. Orifice jewel. Dies (wire drawing).	3.8 .8	7. 5 9. 6 4. 0 . 3	Total finished jewel bear- ings	66.1	47. 5
Total number of fin- ished synthetic sap- phire and rub y jewel bearings	57.7	40. 2			

Included with "Other" to avoid disclosing individual company confidential data.

TABLE 3.—Consumption of finished jewel bearings in the United States and the Commonwealth of Puerto Rico, 1957, by States

State	Number of con- sumers	Jewel bear- ings (million)	State	Number of con- sumers	Jewel bear- ings (million)
California	4 6 10 1 9 4 7	0.4 .6 21.4 1.2 2.0 3.0 4.9 16.4	Ohio	4 3 1 1 3 5	1.1 6.1 .3 .7 7.9 .1

¹ Figure includes Maryland, Michigan, Minnesota, and Missouri.

² Includes phonograph needles.

FOREIGN TRADE 3

Imports of jewel bearings into the United States in 1957 increased 28 percent in quantity and 13 percent in value compared with 1956. Of these imports, 89 percent came from Switzerland and 7 percent from Italy. Canada supplied most of the remainder. Jewel bearings in loose form (not assembled in units) were dutiable at 10 percent ad valorem.

TABLE 4.-Jewel bearings imported for consumption in the United States, 1948-52 (average) and 1953-57 [Bureau of the Census]

Year	Jewel bear- ings (million)	Value (thousand dollars)	Year	Jewel bear- ings (million)	Value (thousand dollars)
1948–52 (average)	111. 5	4, 533	1955	66. 1	1 2,875
1953	86. 9	3, 708	1956	54. 8	1 2,456
1954	49. 3	1 2, 219	1957	70. 1	2,780

Owing to changes in tabulating procedures by the Bureau of the Census, data known not to be comparable to years before 1954.

TABLE 5.—Imports 1 of jewel bearings in 1957, by uses

Use	Jewel bearings (percent)	Use	Jewel bearings (percent)
Watch holes: Olive	14 21 5 2 25 1	Vees	7 14 5 6 100

² Includes glass vees, dies, agate balls, orifice jewels, rollers, insulators, bearing pads, phonograph points, jewel tips, specialties, and guides.

TECHNOLOGY

Beginning with the cutting of "blanks" from sapphire boule and rod, the manufacture of V-jewel bearings was outlined, with special emphasis on the automatic equipment used in the various processes and the care taken to prevent defects in the finished bearings.4

Methods for calculating frictional losses in jewel-bearing movements and the necessity for care in their manufacture were discussed.5 Also, a general article on jewel bearings gave much information on the materials used and the design of bearings for various applications.6

New growing techniques in synthetic sapphire production make possible larger size pieces. The physical properties of jewel bearings, precautions required in their fabricating, and possible applications were discussed.

pp. 39-42.

* Materials in Design Engineering, Synthetic Sapphire: Vol. 46, No. 3, March 1957, p. 161.

^{*} Figures on imports and exports compiled by Mae B. Price and Elsie D. Jackson, Division of Foreign Activities, Bureau of Mines, from records of the U. S. Department of Commerce, Bureau of the Census. A Humphrey, R., and Leeds, R. E., Mechanized Production of Instrument Jewels: Engineering, vol. 183, No. 4746, Feb. 22, 1957, pp. 236-238.

* Warring, R. H., Calculating Frictional Losses in Jewel Bearing Movements: Design News, vol. 12, No. 7, Apr. 1, 1957, pp. 148-151.

* Warring, R. H., Industrial Jewel Bearings: Machinery Lloyd (London), vol. 29, No. 20A, Oct. 5, 1957, pp. 39-42.

Kyanite and Related Minerals

By Brooke L. Gunsallus 1 and Gertrude E. Tucker 2

OMESTIC production of crude kyanite decreased less than 1 percent from 1956 in 1957. No domestic output of other minerals of this group was reported. Crude kyanite imports decreased owing to competition from African sillimanite, the availability of synthetic mullite comparable in quality and price with that made from high-quality imported kyanite, and the reduction in accumulated stocks of Indian kvanite.

Kyanite, sillimanite, andalusite, dumortierite, topaz, and synthetic mullite are discussed in this chapter because of similarities in properties and end use. These minerals are aluminum silicates that may

be used to produce mullite-containing refractories.

DOMESTIC PRODUCTION

Kyanite was the only natural mullite-forming mineral produced in the United States in 1957. All kyanite produced was recovered as flotation concentrate. Demand for kyanite concentrate was limited. largely because mullite produced from it is of such small grain size and low strength that it is not suitable for the highest grade

For many years only two companies have produced kyanite in the United States: Commercialores, Inc., New York, N. Y., from deposits near Clover, S. C.; and Kyanite Mining Corp., Cullen, Va., from its Farmville, Prince Edward County, Va., property and from its Willis Mountain property near Dillwyn, Buckingham County, Va., at which a new plant was completed during the year.

The following companies produced synthetic mullite in 1957:

Babcock & Wilcox Co., Refractories Division, New York, N. Y. (plant at Augusta, Ga.).

Carborundum Co., Niagara Falls, N. Y. (plant at Keasbey, N. J.).
Harbison-Walker Refractories Co., Pittsburgh, Pa. (plant at Vandalia, Mo.).
Laclede-Christy Co., Division of H. K. Porter Co., Inc., St. Louis, Mo. (plant at Shelton, Conn.).
Richard C. Remmey Son Co. (a subsidiary of A. P. Green Fire Brick Co.),

Philadelphia, Pa. (plant at same address). Chas. Taylor Sons Co. (a subsidiary of National Lead Co.), Cincinnati, Ohio (plant at Taylor, Ky.).

Production of synthetic mullite in the United States in 1957 was estimated at 20,000 short tons, with an estimated value of over \$2 million.

CONSUMPTION AND USES

Mullite was produced in 1957, as in 1956, either by calcining natural ores or by synthesis. The output was used almost entirely in manufacturing superduty refractories. Mullite refractories repre-

¹ Commodity specialist. ² Statistical assistant.

sented only a small percentage of the total tonnage of refractories used in the United States; but they occupied an important position because of their relatively high softening points, low coefficients of expansion, and resistance to loads at high temperatures, thermal shock, and corrosive action of certain fluxing agents. Although mullite refractories were relatively expensive, industry found it profitable to use them for some superduty-refractory applications.

Mullite refractories have been used as brick and shapes or in cements, mortars, plastics, and ramming mixtures. In some instances the relatively fine grained domestic mullite has been blended with coarse-grained mullite obtained from imported kyanite or synthetic mullite in the production of refractory brick and shapes. Domestic kyanite has been satisfactory for use in refractory cement and for other uses that do not require a coarse-grained material; such uses composed the major part of United States consumption of domestic kyanite in 1957.

For a number of years about 90 percent of all mullite refractories have been employed to line furnaces operated by the metallurgical and glass industries. In 1957 about 50 percent of the mullite refractories were used by the metallurgical industry and 40 percent by the glass industry. The remaining 10 percent was consumed in miscel-

laneous applications, chiefly in the ceramic industry.

In the metallurgical industry the principal use of mullite refractories in 1957 was in electric furnaces (largely the induction type) for melting brass, bronze, copper-nickel alloys, certain steels, and ferrous alloys. Other metallurgical applications were in zinc-smelting and gold-refining furnaces.

In the glass industry mullite refractories were used mainly in constructing continuous tanks, especially in the superstructure, and in plungers, rings, and tubes for feeding molten glass to the forming

machines.

In the ceramic industry small quantities of mullite refractories were used for manufacturing kiln furniture (for placing ceramic ware in kilns), in saggers (open-topped refractory boxes for protecting ware during firing), and in kiln construction. Small quantities of kyanite without calcination were used as a source of alumina in glass and as an ingredient of electrical and chemical porcelain and pyrometer tubes.

PRICES

As reported in E&MJ Metal and Mineral Markets for December 1957, quotations on kyanite were as follows: Per short ton, f. o. b. point of shipment, Virginia and South Carolina, 35-mesh, carlots, in bulk \$29, in bags \$32; 200-mesh, in bags, carlots, \$40. Quotations on imported kyanite (60-percent grade) in bags were \$76 to \$81 per short ton, c. i. f. Atlantic ports.

FOREIGN TRADE 3

India continued as the principal supplier of kyanite in 1957 (1,630 short tons). Imports from Union of South Africa in 1957 (4,140 short tons) were sillimanite, not kyanite; the 1956 imports from

³ Figures on imports and exports compiled by Mae B. Price and Elsie D. Jackson, Division of Foreign Activities, Bureau of Mines, from records of the U.S. Department of Commerce, Bureau of the Census.

Union of South Africa (1,709 short tons) should have been classified as sillimanite. Competition from African sillimanite and domestic synthetic mullite and the reduction of accumulated stocks of Indian kyanite were the principal causes for the abnormal drop in imports of Indian kyanite.

TABLE 1.—Kyanite and allied minerals imported for consumption into and exported from the United States, 1948-52 (average) and 1953-57

[Bureau of the Census] Imports Exports Year and origin Short Value Year and destination Short Value tons tons 15, 051 6, 620 4, 826 7, 581 \$474, 944 287, 689 1 196, 609 1948-52 (average)..... 912 \$38,509 1948-52 (average) 41, 401 57, 952 1953_____ 1,032 1954_____ 1955_____ 338, 993 1955_____ 1,716 87.315 Asia: India... 5, 242 1, 709 255, 376 North America: Africa: Union of South Africa... Canada.... 34, 530 50,805 826 Mexico.... 18, 537 306, 181 Grand total, 1956..... 1,158 53,067 1957 Europe: Europe: Netherlands_____ 5 550 Italy_____ United Kingdom____ 8, 126 93, 704 144, 487 24, 634 Asia: India... 1,630 2,000 Africa: Union of South Africa 4, 140 173 10, 126 Oceania: Australia..... 224 Total.____ 263, 375 Grand total, 1956..... 1,331 63, 193 Grand total, 1957 5,999 1957 North America: Canada..... 1,147 53, 164 40, 252 Mexico.... 93, 416 3, 700 2,040 South America: Peru.... Europe: France.. Germany, West..... 3, 393 181 10, 620 2, 304 3, 640 60 436 26, 181 6,666 Grand total, 1957----2,588 129,963

WORLD REVIEW

India.—Principal kyanite deposits occur in Singhbhum (Bihar) and Seraikella (Orissa). The Bihar reserves were estimated at 750,000 tons to a depth of 10 feet.

TABLE 2.—Production and exports of kyanite from India, 1952-56, in short tons 1

Year	Production	Exports	Year	Production	Exports
1952 1953 1954	30, 108 17, 219 47, 410	28, 495 16, 660 25, 669	1955 1956	13, 206 16, 654	28, 937 29, 752

¹ Bureau of Mines, Mineral Trade Notes: Vol. 46, No. 4, April 1958, Spec. Suppl. 52, p. 8.

¹ Owing to changes in tabulating procedures by the Bureau of the Census, data known to be not comparable with other years.

Sillimanite deposits occur in Assam. The minimum reserves were estimated at 250,000 tons. Sillimanite brick sold for US\$50.36 per hundred.

TABLE 3.—Production of sillimanite in India, 1952-56, in short tons 1

Year	Short tons	Year	Short tons
1952	5, 685 6, 150 3, 434	1955. 1956.	2, 714 5, 600

¹ Bureau of Mines, Mineral Trade Notes: Vol. 46, No. 4, April 1958, Spec. Suppl. 52, p. 8,

Kenya.—During the first part of 1957 reorganization of Kenya Kyanite, Ltd., was begun by the new owner, G. F. K. Refractories, Ltd., a subsidiary of New Consolidated Goldfields, Ltd. Kenva Kyanite, Ltd., which had been in technical difficulties for several years, went into receivership in July 1955.4

Union of South Africa.—The Pella corundum-sillimanite, an important reserve of refractory material with high alumina content, had been utilized since 1954 for manufacturing furnace linings in West Germany.5

The Pella West deposits lie between the Bushmanland Plateau in the south and the highly dissected valley of the Orange River, which passes about 8 miles to the north, on a flat, low-lying, partly sandcovered terrace in the southwestern corner of the Pella Mission Farm. The farm is in the Namaqualand district about 90 miles from Springbok and about 108 miles from the railroad at Kakamas, in the Northwestern Cape Province of the Union of South Africa.

The available reserves of the Pella deposits totaled approximately 400,000 short tons at the end of June 1955, equivalent to 33 years' production, at the rate of 1,000 tons a month.

The average chemical composition is: SiO₂, 19.68; Al₂O₃, 74.65; Fe_2O_3 , 1.63; TiO_2 , 2.49; and ignition loss, 1.28 percent.

TECHNOLOGY

The new Willis Mountain plant of Kyanite Mining Corp. near Dillwyn, Buckingham County, Va., was completed and began operating full scale. Potential plant capacity may double the output of kyanite concentrate by the company. Mining was by open pit, and the ore was concentrated by froth flotation. Byproducts were sand and pyrites.

Chas. Taylor Sons Co. rebuilt its batching and grinding system and its screening system, with installation of controlled batching, at the Taylor, Ky., plant. These new facilities made it possible to produce mullite brick and shapes and special mullite refractories, including high-temperature cements and ramming mixtures, using fused mullite, sintered bauxite (domestic and imported), and calcined Indian kyanite in any desired proportions. The company was preparing to produce sintered mullite from Bayer alumina and other aluminous and siliceous raw materials.6

<sup>Bureau of Mines, Mineral Trade Notes: Vol. 45, No. 1, July 1957, p. 29.
Bureau of Mines, Mineral Trade Notes: Vol. 44, No. 2, February 1957, pp. 23-24.
Chas. Taylor Sons Co., Letter to the Bureau of Mines, Apr. 7, 1958.</sup>

Lead

By O. M. Bishop 1 and Edith E. den Hartog 2

	Page		Page
Legislation and Government pro-	692	Domestic production—Continued Antimonial lead—primary	
grams Defense Minerals Exploration	092	and secondary	703
Administration	692	Other secondary lead	703
Government barter program	693	Lead pigments	705
Conoral Services Administra-		Consumption and uses	100
tion	694	Stocks	708
Domestic production	694	Prices	
Mine production	694	Foreign trade	715
Smelter and refinery produc-	700	World reserves	724
Defend load w primary			
and secondary	702	l comology	
Mine production	700	World reserves	724

CONTINUED supply in excess of consumer needs, actual or impending cutback in United States Government acquisitions of lead, and increasing industry stocks and falling prices marked both the United States and the foreign lead industries in 1957.

Lead supply in the United States was 1.35 million tons, 2 percent more than in 1956, and 211,000 tons in excess of consumption. Domestic mine production and secondary metal recovery both declined about 4 percent, but total imports of primary lead increased 14 percent from 459,000 to 522,000 tons. Combined producers' and consumers' stocks of lead increased 54,000 short tons, and 100,075 tons of foreign lead acquired through barter contracts was delivered

to the Government supplemental stockpile.

Other lead acquisitions to the Government stockpile were not made public, but on August 1 the Office of Defense Mobilization (ODM) announced that at the then current rate of procurement the long-term objective for lead (and zinc) would be met within a few months. In late April the Commodity Credit Corporation (CCC) announced that no further lead and zinc barter contracts would be made until the program had been evaluated. Later, when barter-contract negotiations were again authorized, the authorization was under restrictive terms that sharply delimited offerings. In August the British Government announced it would dispose of 20,000 tons of lead (and 27,000 tons of zinc) from its stockpile. Under the impact of these announcements, growing stocks, and declining American consumption, the price of lead dropped from 16.0 cents a pound—

¹ Commodity specialist. ² Statistical assistant.

a price that had prevailed since January 13, 1956—to 15.5 cents on May 9, 1957, 15.0 cents on May 16, 14.0 cents on June 11, 13.5 cents on October 14, and 13.0 cents on December 2. Zinc prices between May 6 and July 1 were dropped from 13.0 to 10.0 cents a pound. Almost at once domestic mining companies began to curtail operations or shut down mines, and output of recoverable lead in the last quarter of 1957 was down 13 percent from that of the first quarter. Production of 534,000 tons refined lead from domestic and foreign ores was the second greatest quantity refined since 1942.

LEGISLATION AND GOVERNMENT PROGRAMS

Government programs affecting lead chiefly related to stockpiling and mineral exploration or to mobilization plans. Under the Provisions of the Defense Production Act of 1950, as amended, exploration continued to be carried out by the Defense Minerals Exploration Administration (DMEA), and the procurement for the national stockpile was continued by the General Services Administration (GSA) while the Office of Minerals Mobilization (OMM) continued evaluation of metal and mineral supply versus requirements and the development of mobilization programs. Lead was also acquired by the Federal Government through the barter program authorized under the Agricultural Trade Development and Assistance Act of 1954.

DEFENSE MINERALS EXPLORATION ADMINISTRATION

The DMEA program to encourage exploration and increase domestic reserves of strategic and critical minerals and metals was continued throughout 1957. DMEA provided 50 percent of the approved cost of exploration contracts for lead and zinc.

During 1957, 15 new contracts were executed for exploration, altogether costing \$2,150,000. Amendments to existing lead-zinc

TABLE 1.—Salient statistics of the lead industry in the United States, 1948-52 (average) and 1953-57, in short tons

	1948-52 (average)	1953	1954	1955	1956	1957
Production of refined primary lead: From domestic ores and base bullion From foreign ores and base bullion	377, 734	328, 012	322, 271	321, 132	349, 188	347, 675
	78, 844	139, 879	164, 441	158, 025	193, 120	185, 858
Total	456, 578	467, 891	486, 712	479, 157	542, 308	533, 533
Recovery of secondary leadImports (general):	476, 787	486, 737	480, 925	502, 051	506, 755	489, 229
Lead in pigs, bars, and old	347, 792	390, 510	281, 941	284, 729	283, 392	333, 526
Lead in base bullion	3, 143	869	41		31	84
Lead in ores and matte Exports of refined pig lead Consumption of primary and secondary	83, 971	160, 899	161, 261	177, 479	196, 452	197, 831
	1, 432	803	596	403	4, 628	4, 339
lead	1, 129, 028	1, 201, 604	1, 094, 871	1, 212, 644	1, 209, 717	1, 138, 115
Average for period. Quotation at end of period. London average for period. Mine production of recoverable lead ¹ . World smelter production of lead.	16. 13	13. 48	14. 05	15. 14	16. 01	14. 66
	16. 72	13. 50	15. 00	15. 54	16. 00	13. 00
	16. 89	11. 48	12. 08	13. 19	14. 52	12. 05
	401, 907	342, 644	325, 419	338, 025	352, 826	338, 216
	1, 780, 000	2, 060, 000	22,200,000	2, 220, 000	2, 370, 000	2, 490, 000

¹Includes Alaska.

Revised figure.

LEAD 693

exploration contracts made during the year authorized an additional \$1,095,000, or a total of \$3,245,000 for the year. Since inception of the program in 1951, 257 contracts involving lead and zinc were executed, which authorized Government participation of \$12.6 million and combined Government and private expenditures of \$25.3 million. Ore discoveries were certified at 78 of the 257 properties explored; discoveries ranged from several hundred tons of zinc and lead ore to one of more than 35 million tons of zinc ore in eastern Tennessee. A list of DMEA contracts for lead and zinc exploration in 1957, as in previous years, is given in the Zinc chapter of this volume.

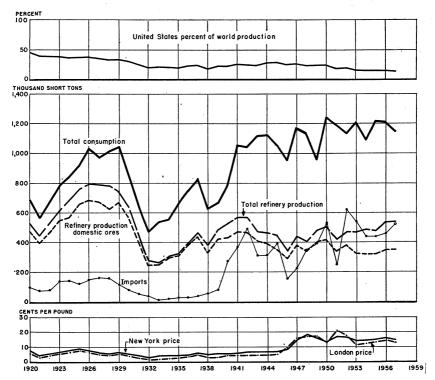


FIGURE 1.—Trends in the lead industry in the United States, 1920-57. Consumption includes primary refined, antimonial, and secondary lead and lead in pigments made directly from ore. Imports are factored to include 95 percent of the lead content of ores, mattes, and concentrates and 100 percent of pigs, bars, base bullion, and scrap.

GOVERNMENT BARTER PROGRAM

Under authority of Public Law 480 (1954) and the ODM Authorization of May 1956, the Department of Agriculture, through its agent, the Commodity Credit Corporation, continued to trade perishable surplus agricultural products for zinc and other commodities of foreign origin. In 1957 the CCC contracted for 55,438 tons of lead (76,325 tons in 1956) to be added to the Government supplemental stockpile.

On April 30 the Department of Agriculture ceased making new barter agreements, pending an evaluation of its program. On May 28 the program was resumed under restrictions to assure that agricultural commodities traded were in addition to marketings that would otherwise have taken place. Relatively few barter contracts were made after April 30 under the modified program.

GENERAL SERVICES ADMINISTRATION

The General Services Administration (GSA) continued to be responsible for stockpile procurement and administration, procurement under foreign-aid programs as agent of the International Cooperation Administration (ICA), and for administration of Defense Production Act programs, including domestic purchase programs. Purchases of lead produced from domestic ores were made against the long-term stockpile objective for lead throughout 1957. The quantities purchased were not made public.

Foreign lead received at GSA warehouses under barter agreements during the year totaled 100,075 tons (29,899 tons in 1956). This lead was credited to the "supplemental" stockpile and cannot be

released except by an act of Congress.

DOMESTIC PRODUCTION

Lead output is compiled on both a mine and smelter-refinery basis. Mine output is the sum of the lead recovered from all domestic lead ores, concentrates, mill tailings, and smelter residues or slags. The recovery at smelters, refineries, and other processing plants in the United States in 1957 averaged 97.8 percent of the lead content of the lead-hearing primary material processed.

lead-bearing primary material processed.

Pig-lead output, as reported by smelters and refineries, represents actual lead recovered. Smelter and refinery output from domestic ores usually differs from the mine-production figure, because there is a lag between mine shipments and smelter treatment of ore and concentrate and because 3,000 to 5,000 tons of lead concentrate is used

directly in manufacturing pigment.

MINE PRODUCTION

Mines in the United States produced 338,200 tons of recoverable lead in 1957—4 percent less than in 1956. The average monthly production rate through April, when lead sold at 16.0 cents a pound, was 4 percent above the monthly rate of 1956. Monthly production declined thereafter in response to drops in price; by December output was 26,000 tons or only 82 percent of that in April. Missouri for the 51st year ranked first as a lead-producing State. For the same years Idaho ranked second and Utah third (except from 1925–27, when Utah was second and Idaho third). Together these 3 States produced 72 percent of the domestic mine production of lead in 1957 and 67 percent in 1956.

Western States.—Mines of the Western States produced 56 percent of the total domestic mine output, the same proportion as in 1956. Sharp declines in Montana, California, New Mexico, Utah, and Nevada were not wholly offset by increases in Idaho, Washington,

TABLE 2,-Ores yielding lead and zinc in the United States in 1957, in short tons 1

	Zinc	33, 892 2, 963 47, 000 45, 329 5, 116 33, 117 23, 453	278, 183	15,859 2,951 14,951	33, 761	15, 915 64, 659 12, 530 23, 080 58, 063 21, 575 195, 822	507, 766
Total	Lead	12, 414 20, 414 20, 438 20, 707 64, 807 12, 473 4, 961 12, 742 12, 730	179, 114	4, 257 126, 263 7, 183	137, 703	1, 791 1, 667 (-3, 143 1, 900 8, 501	325, 318
	Ore, gross weight	65 479, 305 69, 762 948, 895 1, 213, 125 672, 364 84, 529 411, 075 578, 321 1, 189, 688	5, 647, 116	933, 569 8, 145, 692 899, 973	9, 979, 234	493, 255 1, 605, 276 3, 108, 602 727, 842 5, 934, 975	21, 561, 325
er-zinc, nc ores	Zinc	8,754 13,254	22, 016			3,401	25, 417
ad, copper	Lead	195 8, 525 2 2	8, 726	6, 751	6, 751		15, 477
Copper-lead, copper-zinc, and copper-lead-zinc ores	Gross weight	91, 059 499, 562 22 33 34 44	590, 720	8 354, 764	354, 764	1, 394, 020	2, 339, 504
	Zinc	23, 542 2, 961 33, 637 48, 441 4, 4, 641 2, 962 23, 845 23, 453	187, 236	5,845 860 9,283	15, 988	52, 970 19, 271 193 72, 443	275, 667
Lead-zinc ore	Lead	10, 497 3, 042 10, 497 11, 978 1, 841 1, 281 3, 976 39, 874 12, 658	145, 131	2, 686 12, 236 4, 981	19, 903	1, 96 -3, 143 -3, 143 -2, 143 -2, 143	170, 032
Lei	Gross weight	371, 412 62, 153 422, 616 1, 157, 206 32, 964 60, 438 82, 582 543, 577 1, 189, 578	3, 928, 520	399, 954 523, 005 568, 779	1, 491, 738	478 31, 261, 424 8, 518 1, 270, 420	6, 690, 678
	Zinc	1, 464 62 43, 574 22, 705	67, 914	10, 012 85 5, 246	15, 343	15,905 11,689 12,530 3,809 54,662 21,382	203, 234
Zinc ore	Lead	9, 706 9, 706 1, 655 1, 655	11, 383	1, 522	2, 244	1, 021	16, 456
Z	Gross weight	7, 072 785 632, 397 1, 003 327, 591 20	968, 868	531, 008 2, 900 238, 587	772, 495	491, 239 343, 852 1, 714, 582 719, 324 3, 268, 997	5, 010, 360
	Zinc	132 2 47 148 114 303 12 259	1,017	2,006 422	2, 430	1	3, 448
Lead ore	Lead	1, 722 1, 396 1, 259 2, 825 3, 666 3, 666 2, 897 72	13, 874	49 107, 276 1, 480	108,805	674	123, 353
Le	Gross weight	9, 762 1, 609 25, 935 55, 897 7, 003 23, 065 34, 680 34, 680	159,008	2,607 27,265,023 92,607	7, 360, 237	1, 538	7, 520, 783
State		Western States and Alaska: Alaska. Alaska. Arizona Arizona California. Colorado Idaho. Montana Newada Newada New Mexico. Utah Washington.	Total	West Central States: Kansas. Missouri. Oklahoma	Total	States East of the Missis- sippi River: Illinois. New York New Jersey. Viguila 4 Tennessee. Wisconsin.	Grand total

Does not include lead or zinc recovered from other ores, tailing, slags, dumps, etc., except where exclusion was impossible. A findledes 12.71684 tons of tailors on taining 7.247 tons of recoverable lead and 788 tons of recoverable zinc.
 Includes some copper concentrate, yielding 38 tons of recoverable lead.
 Includes some copper concentrate, yielding 38 tons of recoverable lead.
 A Data partly combined to avoid disclosure of individual company operations.

Colorado, and Arizona; the group as a whole produced 7.400 tons less than in 1956.

Lead output in Idaho increased to 71,600 tons, the highest level since 1953. Increased output was reported by most of the principal The Bunker Hill mine of the Bunker Hill Co. and the Page mine owned by American Smelting & Refining Co., recorded the largest gains. However, the decline in lead prices during the latter half of the year caused production cutbacks and closures. Idaho mines shut down in 1957 included the Hull lease on the Frisco mine, the Nabob Silver Lead mine, and the Triumph Mining Co. operation. In mid-December the Bunker Hill Co. announced curtailment of its production in the Coeur d'Alene region.

Output of recoverable lead in Utah declined 10 percent, to 44,500 tons, because of the closing of the Eagle-Blue Bell, Chief No. 1, the Plutus mines in June, and the Mayflower-Park Galena (New Park) mines in September. The United States and Lark mine unit continued to be the largest producer in the State. Other important producers in 1957 were United Park City, Mayflower-Park Galena, Calumet, Ophir, and Eagle-Blue Bell mines.

TABLE 3.—Mine production of recoverable lead in the United States, 1948-52 (average) and 1953-57, by States, in short tons

	1948-52 (average)	1953	1954	1955	1956	1957
Western States and Alaska: Alaska Arizona California Colorado Idaho Montana Nevada New Mexico Oregon South Dakota Texas	110 24, 753 12, 085 27, 881 83, 660 19, 721 8, 750 5, 864 8 5	9 9, 428 8, 664 21, 754 74, 610 19, 949 4, 371 2, 943 5	8, 385 2, 671 17, 823 69, 302 14, 820 3, 041 887 5	1 9, 817 8, 265 15, 805 64, 163 17, 028 3, 291 3, 296 3	1 11, 999 9, 296 19, 856 64, 321 18, 642 6, 384 6, 042	9 12, 441 3, 458 21, 003 71, 637 13, 300 5, 979 5, 294
Utah Washington Wyoming	50, 887 8, 729	41, 522 11, 064	44, 972 9, 938	50, 452 10, 340	49, 555 11, 657	44, 471 12, 734
Total	242, 559	194, 329	171, 844	182, 461	197, 758	190, 331
West Central States: Arkansas. Kansas Missouri Oklahoma. Total	14 8, 502 123, 476 17, 842 149, 834	3, 347 125, 895 9, 304 138, 546	4, 033 125, 250 14, 204 143, 487	5, 498 125, 412 14, 126 145, 036	7, 635 123, 783 12, 350 143, 768	4, 257 126, 345 7, 183 137, 785
States east of the Mississippi River: Illinois Kentucky New York Tennessee Virginia ¹ Wisconsin	3, 534 127 1, 331 80 3, 314 1, 128	3, 391 52 1, 435 9 2, 788 2, 094	3, 232 80 1, 187 4, 324 2 1, 265	1,037 2,999 1,948	3, 832 228 1, 608 5 3, 045 2, 582	2, 970 411 1, 667 3, 152 1, 900
Total	9, 514	9,769	10,088	10, 528	11,300	10, 100
Grand total	401, 907	342, 644	325, 419	338, 025	352, 826	338, 216

Includes 4 tons from North Carolina in 1954, 2 tons in 1955, 10 tons in 1956, and 9 tons in 1957.
 Includes 4 tons from Iowa.

Colorado output of lead increased 6 percent to 21,000 tons in 1957. The Idarado Mining Co. mine group continued to be the largest proLEAD 697

ducer in the State. Other important producers included the Eagle mine of the New Jersey Zinc Co. (Eagle County) and the Keystone mine of the American Smelting & Refining Co. (Gunnison County). Mines closed after price declines included the Keystone mine, the Rico group of Rico Argentine Mining Co., and the Leadville properties

of Ressurrection Mining Co.

Montana mine production of lead totaled 13,300 tons, 29 percent less than in 1956 and was the smallest since 1946. The Anaconda Co. closed several of its lead-zinc mines in the Butte district (Silver Bow County) in the second half of 1957 and postponed its scheduled mine-expansion program. Production from other Montana mines, principally the Jack Waite and Hand (Maulden) mines, was continued at essentially the same rate as in 1956.

Lead output in Washington increased 9 percent to 12,700 tons, the largest production on record. The principal lead producer was the Pend Oreille Mines & Metals Co. lead-zinc mine in Pend Oreille County. Other mines that produced considerable lead but were predominantly zinc producers were the Grandview (American Zinc, Lead & Smelting Co.) in Pend Oreille County and the Van Stone (American Smelting & Refining Co.). The Van Stone mine was closed in early July 1957.

Although several Arizona mines closed during 1957, the State output of lead increased 4 percent to 12,400 tons. The largest producer, the Iron King mine, operated continuously. Of the other substantial producers, the San Xavier mine suspended operations in June, the Head Center (Athletic) in July, and the Trench unit in October.

California production dropped from 9,300 tons in 1956 to 3,500 tons in 1957. The Anaconda Co. Darwin and Shoshone mine groups, the State's only large lead producers, suspended operations after the mid-

year zinc and lead price declines.

In Nevada Combined Metals Reduction Co. closed its mines at Pioche in August, contributing to a 6-percent decline in Nevada production during 1957. New Mexico mines recorded a 12-percent decrease in lead output. The State's principal lead (and zinc) producer, the Ground Hog mine of American Smelting & Refining Co., closed in July, pending higher metal prices.

West Central States.—Kansas, Missouri, and Oklahoma mines yielded 137,800 tons of recoverable lead in 1957—41 percent of the United States domestic total. All production of the West Central States came from the southeast Missouri lead belt and the Tri-State

district of Kansas, Oklahoma, and southwestern Missouri.

Mines in southeast Missouri produced 37 percent of the total domestic mine output of lead in 1957—essentially the same as in 1956. The St. Joseph Lead Co., the largest lead-producing company in the Nation on a mine basis, maintained steady output at its Bonne Terre, Desloge, Federal, and Leadwood mine-mill units in St. Francois County and the Indian Creek mine and mill in Washington County. In Madison County the Mine La Motte Corp. and the National Lead Co. each operated a mine group and mill. The ore from the National Lead Co. also yielded byproduct copper, cobalt, and nickel. Output of recoverable lead in the Tri-State zinc-lead district dropped

Output of recoverable lead in the Tri-State zinc-lead district dropped from 20,400 tons in 1956 to 11,500 tons in 1957 the lowest since railway service was initiated in the 1870's. Nearly all mines in the district

were closed, following the sharp declines in lead and zinc prices. The Nellie B mine of the American Zinc, Lead & Smelting Co. was closed in May, and the Eagle-Picher Co. operated its mines and central custom mill only intermittently. The National Lead Co., second largest producer in the district, operated its Ballard-mine group and

mill throughout the year.

States East of the Mississippi River.—Lead was recovered from ores in Illinois, Wisconsin, Kentucky, New York, and Virginia in 1957; but production was 11 percent less than in 1956, owing to cutbacks and closures in the Illinois-Wisconsin district. American Zinc, Lead & Smelting Co. closed its Vinegar Hill Division mines and mill in Wisconsin; Eagle-Picher Co. closed the Linden mine and mill and curtailed activity elsewhere in the district. Tri-State Zinc, Inc., 1 of the 3 leading producers, maintained a fairly high production. Leadbearing zinc ores of New York and Virginia yielded 4,800 tons of lead in 1957. St. Joseph Lead Co. operated its Balmat mine steadily

TABLE 4.—Mine production of recoverable lead in the United States, 1948-52 (average) and 1953-57, by districts or regions that produced 1,000 tons or more during any year, 1953-57, in short tons

District or region	State	1948-52 (aver- age)	1953	1954	1955	1956	1957
Southeastern Missouri re-	Missouri	121, 173	125, 273	125, 173	125, 357	123, 395	126, 323
gion. Coeur d'Alene region	Idaho	77 007	69, 885	64, 812	FO 000	CO 001	07 105
West Mountain (Bingham)	Utah	30, 838	29, 311	29, 671	59, 820 31, 712	60, 221 32, 891	67, 125 29, 490
Metaline	Washington	5, 173	8, 694	(1)	(1)	9, 440	11, 971
Tri-State (Joplin region)	Kansas, southwestern	28, 641	13, 273	18, 314	19, 679	20, 373	11, 462
111 Duale (Copini region)	Missouri, Oklahoma.	20,011	10, 210	10,011	10,010	20,010	11, 402
Summit Valley (Butte)	Montana	14,634	16, 767	11, 516	14, 331	14, 989	9,617
Park City region	Utah	9,601	4, 735	5, 432	9, 954	9, 147	9, 421
Upper San Miguel	Colorado	6,507	7, 440	5, 574	5,098	(1)	7, 721
Red Cliff	do		2,500	2, 588	3, 171	(1)	4, 477
California (Leadville)	do		3,072	1, 935	1,404	1,660	3,694
Upper Mississippi Valley	Iowa, northern Illinois,	2, 222	3,688	3, 229	3,809	4, 306	3,691
(Ct1	Wisconsin.	0.004					
CentralAustinville	New Mexico	3, 231 3, 314	1,460	5	2,604	4,682	3, 519
Creede		3, 314	2,788	4, 320	2,997	3,035	3, 143
Rush Valley & Smelter	Utah	1, 143 2, 760	1,696 2,753	2, 178	1, 192	1,266	2, 231
(Tooele County).	Utan	2, 700	2, 100	2, 454	1,607	2, 529	1, 977
Tintic.	do	5, 800	3,590	5, 926	5, 017	3,061	1,775
St. Lawrence County	New York	1, 330	1. 435	1, 187	1.037	1,608	1, 667
Kentucky-Southern Illinois.	New York Kentucky-southern Illi-	2, 524	1,849	1,348	2,683	2,336	1,590
	nois.	_, 0	2,020	2,010	2,000	2,000	2,000
Ophir		908	1, 157	1, 159	(1)	(1)	1,418
Bayhorse	Idaho		1,484	1,372	1,367	1,607	1,351
Warm Springs	do	2, 566	2, 583	2, 415	2, 388	1,804	1, 293
Magdalena	New Mexico	1, 393		47	95	688	1, 214
Tyndall		86	234	202	595	894	1, 162
Las Vegas	Nevada				956	2,698	858
Pima (Sierritas, Papago, Twin Buttes).	Arizona	3, 169		1	1, 105	1,810	750
Northport (Aladdin)	Washington	837	2, 165	1, 275	2, 212	2,085	722
Animas	Colorado	3, 063	1, 212	1,275	2, 212	2,080	508
Hansonberg	New Mexico	460	1, 031	800	517	413	455
Breckenridge	Colorado	309	1,056	1.000	474	553	272
Big Bug 2	Arizona	3, 707	4, 339	4, 336	4.612	5, 776	(1)
Eureka	Nevada	18	1,000	(1)	828	(1)	K
Coso (Darwin)	California	6, 805	8, 269	(1)	(1)	(1)	(1) (1) (1) (1) (1)
Harshaw	Arizona	1, 813	2, 104	2, 135	(1)	(1)	(i) ·
Eagle	Montana	819	1, 179		` 7 06	1, 207	(1)
Pioche	Nevada	5, 677	3, 306	(1)	(1)	(1)	(1)
Elk Mountain	Colorado	104		(1) (1)	(1)	(1)	(1)
Resting Springs	California	(1)			22	(1)	(1)
Pioneer (Rico)	Colorado	1,883	1,871	2, 177	(1)	(1)	(1)
Sneffels	do	965	1, 307	1, 113	634	525	

¹ Figure not shown to avoid disclosure of individual company operations.
² The following districts or regions are not listed in order of 1957 output.

TABLE 5.-Twenty-five leading lead-producing mines in the United States in 1957, in order of output

-	
Type of ore	Lead. Lead. Lead. Lead. Do. Lead.zinc. Do. Lead.zinc. Copper-lead.zinc. Lead.copper
Operator	St. Joseph Lead Co. The Bunker Hill Co. U. S. Smelting, Refining & Mining Co. do. do. The Anaconda Co. The Anaconda Co. The Bunker Hill Co. Shattuck-Denn Mining Co. Shattuck-Denn Mining Co. Shattuck-Denn Mining Co. Shattuck-Denn Mining Co. Shattuck-Denn Mining Co. Shattuck-Denn Mining Co. Shattuck-Denn Mining Co. Shattuck-Denn Mining Co. Shattuck-Denn Mining Co. Shattuck-Denn Mining Co. Shattuck-Denn Mining Co. United Park City Mines Co. United Park City Mines Co. United Park City Mines Co. Luckry Friday Birver-Lead Mines, The New Jersey Zinc Co. American Zinc, Lead & Smelting Co. The Anaconda Co. Sunshine Mining Co. Sunshine Mining Co. Bay Mines, Inc.
State	Missouri Idaho Missouri do do do do Washington Montana Missouri Colorado Artiona Idaho Missouri Utah Colorado Idaho Washington Virginia Virginia Virginia Utaho Artiona
District or region	Southeastern Missouri Coeur d'Alene West Mountain (Bingham) West Mountain (Bingham) Go do Summit Valley Metaline Southeastern Missouri Upper San Miguel Coeur d'Alene Southeastern Missouri Upper San Miguel Coeur d'Alene Southeastern Missouri Hag Bug Coeur d'Alene Southeastern Missouri Coeur d'Alene Southeastern Missouri Hach Bu Ladge Darwin (Coso) Coeur d'Alene Darwin (Coso) Coeur d'Alene Coeur d'Alene
Mine	Federal. Bunker Hill Leadwood Indian Creek. Desloge. Butte Mines. Butte Mines. Pend Orelle Bonne Tressury Tunnel-Black Bear-Smug- glet Union. Star. Mine La Motte Mine La Motte Mine La Motte Mine La Motte Mine La Motte Low King Page. United Park City Bage. Locky Friday. Austhrylle. Grand view Maydiower. Darwin Group. Burst Group. Darwin Group. Burst Group. Darwin Group. Darwin Group. Darwin Group.
Rank	122475578 02422222

throughout 1957, and the New Jersey Zinc Co. operated its Austinville mine in Virginia continuously, except for a 3-week shutdown caused by a labor dispute in midyear. Mines in the western Kentucky fluor-spar district produced 400 tons of recoverable lead from lead-bearing fluorspar-zinc ores in 1957.

The 25 leading lead-producing mines in the United States in 1957 yielded 79 percent of the total domestic output—the 10 leading mines,

59 percent, and the 4 largest mines, 43 percent.

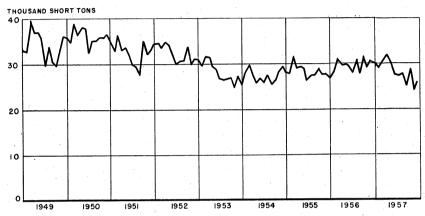


FIGURE 2.—Mine production of recoverable lead in the United States, 1949-57, by months.

TABLE 6.—Mine production of recoverable lead in the United States, 1 1956-57, by months, in short tons

Month	1956	1957	Month	1956	1957
January February March April May June July	26, 813 28, 221 30, 855 29, 549 29, 892 29, 480 28, 242	30, 218 29, 061 30, 962 31, 700 30, 104 27, 366 27, 306	August	30, 727 27, 781 31, 503 29, 277 30, 486 352, 826	27, 806 25, 006 28, 663 24, 042 25, 982 338, 216

¹ Includes Alaska.

SMELTER AND REFINERY PRODUCTION

Refined lead produced in the United States was derived from three sources—domestic mine production, imports of foreign ore and base bullion, and scrap material (treated largely at secondary smelters). It was recovered at primary refineries that treat ore, base bullion, and small quantities of scrap and at secondary plants that process scrap exclusively. Refined lead and antimonial (hard) lead were produced by both primary and secondary plants. Because of the large quantity of hard lead (such as battery scrap) melted at secondary smelters, the output from this type of operation was principally antimonial lead.

701 LEAD

The 5 smelters, 6 combination smelters and refineries, and 2 refineries treating ore, base bullion, and other primary materials in 1957 are listed below:

Smelters:

Arkansas Valley, American Smelting & Refining Co., Leadville, Colo. East Helena, American Smelting & Refining Co., E. Helena, Mont. El Paso, American Smelting & Refining Co., El Paso, Tex. Midvale, United States Smelting, Refining & Mining Co., Midvale, Utah. Tooele, International Smelting & Refining Co., Tooele, Utah.

Smelter-Refineries:

Selby, American Smelting & Refining Co., Selby, Calif. Bunker Hill, Bunker Hill Co., Bradley, Idaho. Federal, American Smelting & Refining Co., Alton, Ill. Herculaneum, St. Joseph Lead Co., Herculaneum, Mo. Galena, Eagle-Picher Co., Galena, Kans. Perth Amboy, American Smelting & Refining Co., Barber, N. J.

Refineries:

East Chicago, U. S. S. Lead Refinery, Inc., East Chicago, Ind. Omaha, American Smelting & Refining Co., Omaha, Nebr.

In addition to primary plants operating in 1957, 259 secondary plants smelted lead scrap, and 58 foundries and manufacturers melted and cast or otherwise directly used lead scrap or other scrap containing lead. These firms variously produced soft and hard lead and various alloys in pig or other commercial shapes or manufactured form. An incomplete list of major secondary smelting firms, with plant locations. follows:

American Smelting & Refining Co. (including Federated Metals Division).

Plants: Los Angeles, San Francisco, and Selby, Calif.; Whiting Ind.; Omaha,
Nebr.; Newark and Perth Amboy, N. J.; Houston, Tex.

Bers & Co., Inc., Philadelphia, Pa.
The Bunker Hill Co., Seattle, Wash.
Continental Smelting & Refining Co., McCook, Ill.
Detroit Lead Corp., Detroit Mich.
Eastern Smelting & Refining Co., Los Angeles, Calif.
Electric Storage Battery Co., Philadelphia, Pa.
Goldsmith Bros. Smelting & Refining Co., Chicago, Ill.
Gopher Smelting & Refining Co., St. Paul, Minn.
Imperial Type Metals Co. Plants: Chicago, Ill., and Philadelphia, Pa.
Inland Metals Refining Co., Chicago, Ill.

Imperial Type Metals Co. Plants: Chicago, Ill., and Philadelphia, Pa. Inland Metals Refining Co., Chicago, Ill.
Nassau Smelting & Refining Co., Inc., Tottenville, N. Y.
National Lead Co. (including Magnus Metal Division, Morris P. Kirk & Son, Inc., and Master Metals, Inc.). Plants: Los Angeles, Calif.; Denver, Colo.; Atlanta, Ga.; Chicago and Granite City, Ill.; Indianapolis, Ind.; Topeka, Kans.; Baltimore, Md.; Boston and Fitchburg, Mass.; St. Louis Park, Minn.; St. Louis, Mo.; Omaha, Nebr.; Perth Amboy, N. J.; Albany and Depew, N. Y.; Cincinnati and Cleveland, Ohio; Portland, Oreg.; Philadelphia and Pittsburgh, Pa.; Dallas and Houston, Tex.; Milwaukee, Wis.
National Metal & Smelting Co., Fort Worth, Tex.
North American Smelting Co., Wilmington, Del.
Pennsylvania Smelting & Refining Co., Philadelphia, Pa.
Price Battery Corp., Hamburg, Pa.
Revere Smelting & Refining Co., Newark, N. J.
Schuylkill Products Co., Baton Rouge, La.
Thos. F. Seitzinger's Sons, Inc., Atlanta, Ga.

Thos. F. Seitzinger's Sons, Inc., Atlanta, Ga. Southern Lead Co., Dallas, Tex.
U. S. S. Lead Refinery, Inc., East Chicago, Ind. Hyman Viener & Sons, Richmond, Va. Western Lead Products Co., Los Angeles, Calif. Willard Smelting Co., Inc., Charlotte, N. C.

Refined Lead-Primary and Secondary

The 13 primary lead smelters and refineries operating in the United States in 1957 consumed about 565,000 tons of lead in primary raw materials and 46,000 tons in secondary materials to produce 536,800 tons of refined lead and 64,700 tons of lead in 67,800 tons of antimonial lead. Standard specifications for pig lead (ASTM Standard Specification B 29–55) were published in the Lead chapter of Volume 1, 1956, Minerals Yearbook.

Of the 536,800 tons of refined lead, 3,300 tons was from scrap and the remainder from ores and bullion, of which 65 percent was domestic

TABLE 7.—Refined lead produced at primary refineries in the United States, 1948-52 (average) and 1953-57, by source material, in short tons

Source	1948–52 (average)	1953	1954	1955	1956	1957
Refined lead: From domestic ores and						
base bullion	377, 734	328, 012	322, 271			
From foreign ores From foreign base bullion_	75, 912 2, 932	139, 711 168				185, 798 60
Total from primary sourcesFrom scrap	456, 578 8, 120	467, 891 4, 211				
Total refined leadAverage sales price per pound. Total calculated value of	464, 698 \$0. 161	472, 102 \$0. 131				
primary refined lead 1	\$147, 018, 000	\$122, 587, 000	\$133, 359, 000	\$142, 789, 000	\$170, 285, 000	\$152, 590, 000

¹ Excludes value of refined lead produced from scrap at primary refineries.

TABLE 8.—Refined primary lead produced in the United States, 1948-52 (average) and 1953-57, by source material and country of origin, in short tons

Source	1948-52 (a verage)	1953	1954	1955	1956	1957
Domestic ore and base bullion	377, 735	328, 012	322, 271	321, 132	349, 188	347, 675
Foreign ore: Australia. Canada. Europe. Mexico. South America. Other foreign.	5, 983 109 4, 972	19, 886 26, 673 199 5, 876 50, 828 36, 249 139, 711	17, 311 47, 150 865 16, 790 58, 341 23, 896	26, 701 39, 919 109 10, 123 44, 855 36, 156	23, 811 26, 558 11, 183 76, 073 55, 459 193, 084	38, 579 20, 694 23, 462 75, 196 27, 867 185, 798
Foreign base bullion: Australia Mexico South America Other foreign	1, 418 1, 241 153 120	42 126	88	162	36	60
Total Total foreign	2, 932 78, 843	168 139, 879	88 164, 441	162 158, 025	36 193, 120	60 185, 858
Grand total	456, 578	467, 891	486, 712	479, 157	542, 308	533, 533

LEAD 703

and 35 percent foreign. South America was the chief source of foreign ore, followed by Australia, Mexico, and Canada.

Refined lead recovered from scrap at secondary plants totaled an

additional 123,300 tons.

Antimonial Lead-Primary and Secondary

Antimonial lead produced at primary and secondary lead smelters and refineries in 1957 totaled 278,400 tons containing 260,000 tons of lead—about 2 percent less than the 269,600 tons in that produced in 1956. The output of 67,800 tons from primary refineries was the highest since 1948; about two-thirds was from scrap, principally battery lead plates. Production of antimonial lead at secondary smelters totaled 210,600 tons containing 195,300 tons of lead.

TABLE 9.—Antimonial lead produced at primary lead refineries in the United States, 1948-52 (average) and 1953-57

	Produc-	Antimon	y content	Lead content by difference (short tons)			
Year	tion (short tons)	Short	Percent	From domestic ore	From foreign ore	From scrap	Total
1948–52 (average) 1953 1954 1955 1956	64, 727 62, 373 59, 873 64, 044 66, 826 67, 786	4, 491 4, 537 3, 521 3, 555 3, 348 3, 064	7. 2 7. 3 5. 9 5. 6 5. 0 4. 5	14, 269 10, 366 5, 136 5, 259 6, 739 10, 271	7, 955 10, 721 7, 661 9, 327 6, 918 9, 599	38, 012 36, 749 43, 555 45, 903 49, 821 44, 852	60, 23 57, 83 56, 35 60, 48 63, 47 64, 72

Other Secondary Lead

In addition to 126,600 tons of refined lead and 256,600 tons of antimonial lead containing 240,200 tons of lead, smelters and remelters of lead scrap also produced 114,900 tons of babbitt, solder, type metal, cable lead, miscellaneous alloys, and foil containing 96,600 tons of lead.

Considerable lead (35,900 tons) was recovered in processing copperbase scrap at secondary copper smelters and plants of nonferrous ingotmakers.

In summation, secondary lead recovered in the United States in 1957 totaled 489,000 short tons, a decrease of 3 percent from the 507,000 tons reclaimed in 1956. The lead recovered exceeded domestic mine production (338,000 tons) for the 12th consecutive year but was considerably less than the 598,000 tons of lead in refined and antimonial lead produced at primary smelters from domestic and imported primary materials. The more than 300 secondary lead smelters and remelters recovered 405,200 tons or 83 percent of all secondary lead recovered; primary lead smelters recovered 48,100 tons (10 percent), and secondary copper plants 35,900 tons (7 percent).

TABLE 10.—Stocks and consumption of new and old lead scrap in the United States in 1957, gross weight in short tons

	Stocks begin-		C	Consumption	n	Stocks
Class of consumers and type of scrap	ning of year ¹	Receipts	New scrap	Old scrap	Total	end of year
Smelters and refiners:						
Soft lead.	3, 448	48 812		49, 397	49, 397	2,868
Hard lead	2, 344	19 821		20, 259	20, 259	1, 90
Cable lead	3, 781	26, 492		27,000	27,000	3, 27
Battery-lead plates	26, 142	376, 504		385, 149	385, 149	17, 497
Mixed common babbitt	1 183			10, 083	10, 083	1, 650
Solder and tinny lead	396	10, 222		10, 303	10, 303	318
Type metals	898	22, 888		22, 225	22, 225	1. 561
Solder and tinny lead Type metals Drosses and residues	21, 825	74, 949	74, 402		74, 402	22, 372
Total	60, 017	590, 238	74, 402	524, 416	598, 818	51 , 43 7
Foundries and other manufacturers:						
Soft lead	232	987	6	1, 118	1, 124	95
Hard lead	2	281	2	174	176	107
Cable lead	96	466		519	519	43
Battery-lead plates	12					12
Mixed common habbitt	281	9, 262		9,431		112
Solder and tinny lead	98	975	971	47	1,018	55
Type metals Drosses and residues	367		3		3	3 64
Total	1,088	11, 971	982	11, 289	12, 271	788
Grand total:						
Soft lead	3, 680	49,799	6	50, 515	50, 521	2, 958
Hard lead	2, 346	20, 102	2	20, 433	20, 435	2, 013
Cable lead	3,877			27, 519	27,519	3, 316
Battery-lead plates	26, 154	376, 504		3 85, 149	3 85, 149	17, 509
Mixed common babbitt	1, 464	19,812		19, 514	19, 514	1, 762
Solder and tinny lead	494	11, 197		10, 350	11, 321	370
Type metals Drosses and residues	898			22, 225	22, 225	1,561
Drosses and residues	22, 192	74, 949	74, 405		74, 405	22, 736
Total	61, 105	602, 209	75, 384	535, 705	611, 089	52, 225

¹ Revised.

TABLE 11.—Secondary metal recovered 1 from lead and tin scrap in the United States in 1957, by type of products, gross weight in short tons

Products	Lead	Tin	Anti- mony	Other	Total
Refined pig lead Remelt lead Lead foil	16,889				109, 489 16, 889 193
Total	126, 571				126, 571
Refined pig tin		3, 610 350			3, 610 350
Total		3, 960			3, 960
Lead and tin alloys: Antimonial lead Common babbitt Genuine babbitt Solder Type metals Cable lead Miscellaneous alloys	96 23, 610 26, 962	549 1, 200 311 5, 793 1, 964 11 788	15, 722 2, 005 35 372 4, 110 256 35	216 349 15 721 58 4 136	256, 638 21, 766 457 30, 496 33, 094 25, 831 2, 674
Total	336, 306	10, 616	22, 535	1, 499	3 70, 956
Composition foil	461	150 627	30		641 627
Grand total	463, 338	15, 353	22, 565	1, 499	502, 755

¹ Most of the figures herein represent actual reported recovery of metal from scrap rather than secondary metal content of shipments as in years before 1956.

TABLE 12.—Secondary lead recovered in the United States, 1948-52 (average) and 1953-57, in short tons

	1948-52 (average)	1953	1954	1955	1956	1957
As refined metal: At primary plants At other plants	8, 120 136, 452					
Total	144, 572	126, 574	120, 007	128, 320	133, 392	126, 571
In antimonial lead: At primary plants At other plants	38, 012 180, 958					44, 852 195, 299
Total In other alloys	218, 970 113, 245					240, 151 122, 507
Grand total: Short tons Value	476, 787 \$154, 102, 445		480, 925 \$131, 773, 450	502, 051 \$149, 611, 198	506, 755 \$159, 121, 070	489, 229 \$139, 919, 494

TABLE 13.—Lead recovered from scrap processed in the United States, by kind of scrap and form of recovery, 1956-57, in short tons

Kind of scrap	1956	1957	Form of recovery	1956	1957
New: Lead-base	54, 435 6, 205 599 61, 239	51, 536 5, 487 323 57, 346	As soft lead: At primary plents At other plants Total	4,069 129,323 133,392	3, 263 123, 308 126, 571
Old: Battery-lead plates All other lead-base Copper-base Tin-base	260, 757 161, 439 23, 313 7	255, 208 146, 265 30, 404 6	In antimonial lead ¹	252, 582 92, 448 28, 205 128	240, 151 95, 132 27, 279 96
Total	445, 516 506, 755	431, 883	Grand total	373, 363 506, 755	362, 658 489, 229

¹ Included 49,821 tons of lead recovered in antimonial lead from secondary sources at primary plants in 1956 and 44,852 tons in 1957.

Lead Pigments

The principal lead pigments marketed were litharge, white lead, red lead, basic lead sulfate, and leaded zinc oxide. These products were manufactured chiefly from metal, but about 4,500 tons of lead in ore and concentrate was converted directly into pigments. Lead-pigments production is reviewed in the Lead and Zinc Pigments and Zinc Salts chapter of this volume.

CONSUMPTION AND USES

Domestic consumers used 1.14 million tons of lead in 1957, 6 percent less than in 1956. Of the total consumed, 715,300 tons (63 percent) was soft lead, both secondary and primary; 303,200 tons (26 percent) was in antimonial lead; 50,900 tons (4 percent) in lead-base alloys; 18,400 tons (2 percent) in copper-base scrap; 42,100 tons (4 percent), which went directly from scrap to a finished product; and 8,200 tons (1 percent) recovered from ore in producing leaded zinc oxide and other pigments.

Approximately 71 percent of all lead was consumed in metal products (including storage batteries), 10 percent in pigments, 16 percent in chemicals, and 3 percent in miscellaneous and unclassified uses, including lead used for molding rubber, making lead powder, supplying AEC requirements, and that added to steel. Storage batteries alone took 32 percent of all lead consumed in 1957, tetraethyl fluid 16 percent, and cable covering 10 percent—a total of 58 percent and about 51,000 tons less than was required for these 3 products in 1956. October was the month of highest consumption (105,300 tons) and December the lowest (79,300 tons).

The Association of American Battery Manufacturers, Inc., reported shipments of 25.9 million units of replacement batteries in 1957, compared with 25 million (revised) in 1956 and 25.4 million in 1955.

New Jersey was again the largest lead-consuming State with 15 percent of total consumption (excluding that going directly from scrap

TABLE 14.—Consumption of lead in the United States in 1956-57, by products, in short tons

	1956	1957		1956	1957
Metal products: Ammunition Bearing metals. Brass and bronze. Cable covering. Calking lead. Casting metals. Collapsible tubes. Foil. Pipes, traps, and bends. Sheet lead. Solder. Terne metal. Type metal.	44, 438 28, 321 27, 063 134, 339 64, 970 12, 932 10, 945 4, 593 28, 028 30, 249 75, 290 1, 709 26, 709	42, 509 26, 997 24, 491 108, 225 65, 634 12, 672 10, 316 4, 839 24, 739 27, 474 70, 684 1, 642 28, 726	Pigments: White lead_ Red lead and litharge Pigment colors_ Other 1 Total Chemicals: Tetraethyl lead Miscellaneous chemicals. Total	16, 951 79, 199 13, 866 10, 354 120, 370 191, 990 3, 146	15, 701 78, 323 12, 449 8, 888 115, 361 177, 001 3, 556 180, 557
Total Storage batteries: Antimonial lead Lead oxides Total	489, 586 191, 568 179, 203 370, 771	185, 617 175, 398 361, 015	Miscellaneous uses: Annealing Galvanizing Lead plating Weights and ballast Total Other, unclassified uses	5, 899 1, 658 916 7, 250 15, 723 18, 131 21,209, 717	5, 317 1, 354 670 7, 526 14, 867 17, 367

¹ Includes lead content of leaded zinc oxide and other nonspecified pigments.
² Includes lead which went directly from scrap to fabricated products.

TABLE 15.—Consumption of lead in the United States, 1956-57, by months, in short tons 1

Month	1956	1957	Month	1956	1957
January February March April May June	110, 562 100, 201 97, 755 97, 836 104, 418 100, 571 88, 325	102, 952 95, 788 98, 822 96, 189 96, 443 92, 100 85, 569	August September October November December Total.	107, 711 96, 576 112, 179 102, 408 91, 175 1, 209, 717	103, 442 95, 790 105, 337 86, 385 79, 298

¹ Includes lead content of leaded zinc oxide and other nonspecified pigments and lead which went directly from scrap to fabricated products.

³ American Metal Market, vol. 65, No. 25, Feb. 5, 1958, p. 6.

and ore to end products). Illinois followed with 12 percent, California 9 percent, Indiana 7, Pennsylvania 6, Missouri and New York 5 each, and Louisiana and Texas together 13 percent—a total of 72 percent consumed in the 9 States.

TABLE 16.—Consumption of lead in the United States in 1957, by classes of product and types of material, in short tons

	Soft lead	Lead in antimonial lead	Lead in alloys	Lead in copper- base scrap	Total
Metal products. Storage batteries. Pigments. Chemicals.	228, 503 175, 398 106, 805 180, 524	110, 457 185, 617 142 33	50, 473 190	18, 400	407, 833 361, 015 107, 137 180, 557
Miscellaneous Unclassified	9, 802 14, 256	5, 056 1, 926	244		14, 867 16, 426
Total	715, 288	303, 231	50, 916	18, 400	1 1, 087, 835

 $^{^1}$ Excludes 42,056 tons of lead that went directly from scrap to fabricated products and 8,224 tons of lead contained in leaded-zinc oxide and other nonspecified pigments.

TABLE 17.—Lead consumption, by States, in 1957, in short tons 1

State	Refined soft	Lead in anti-	Lead in	Lead in	Total
	lead	monial lead	alloys	base scrap	
California	60, 207	07.000	0.007	1.150	05 050
Colorado	1,579	27, 989 1, 524	6, 3 07	1, 156 279	95, 659 3, 539
Connecticut	14, 980	10,004	107	1.035	26, 0 28
District of Columbia	121	91	. "	1,000	20, 028
Florida	1, 932	3, 335			5. 267
Illinois	87, 360	40, 106	5,993	2, 424	135, 883
Indiana	45, 360	29, 610	4, 144	776	79, 890
Kansas	5,042	8,048	72	421	13, 583
Kentucky	150	2, 411	3		2, 564
Maryland	16,423	13, 595	1, 188	40	31, 246
Massachusetts	5,770	4, 545	1,364	364	12,043
MichiganMissouri	10,902	11, 031	1,762	513	24, 208
Missouri	49,091	4, 616	417	1,507	55, 631
Nebraska	10,067	3, 141		54	13, 262
New Jersey	114, 958	40, 726	9,690	594	165, 968
New York	31, 418	10, 563	8, 133	897	51, 011
Ohio	21,083	16, 787	3, 213	1,772	42, 855
Pennsylvania	38,688	23, 308	1,084	2, 225	65, 305
Rhode Island	4,993	348	33	372	5, 374
Tennessee	335	5, 199	345		6, 251
Virginia Washington	1,620 8,477	1, 419 3, 440	1, 140	1,665	5,844
West Virginia	14. 444	2, 914	3		11, 917 17, 361
Wisconsin	946	3, 563	215	364	5,088
Alabama and Georgia 2	22, 807	9, 204	828	621	33, 460
Iowa and Minnesota	651	5, 916	537	356	7, 460
Montana and Idaho	8, 276	0,510	001	300	8, 276
New Homoshire Maine and Delaware	2, 314	233	1, 594	308	4, 449
New Hampshire, Maine, and Delaware Arkansas and Oklahoma	2,059	1,862	24	000	3, 945
Hawaii and Oregon	885	2,063	26	262	3, 236
North and South Carolina	460	2,606			3,066
Louisiana and Texas	131, 493	12, 308	1,518	395	145, 714
Utah, Nevada, and Arizona	96	634			730
Undistributed	301	92	1, 117		1, 510
Total	715, 288	303, 231	50, 916	18, 400	1, 087, 835

¹ Excludes 42,056 tons of lead, which went directly from scrap to fabricated products, and 8,224 tons of lead contained in leaded-zinc oxides and other nonspecified pigments.

² The following States are grouped to avoid disclosure of individual figures.

STOCKS

National Stockpile.4—Under authority of the Strategic and Critical Materials Stockpiling Act of 1946 and supplemental legislation and in accord with directives from ODM monthly purchases of domestic lead and zinc continued to be made throughout 1957. All domestic lead was acquired to meet the long-term objective, since the minimum stockpile objective for lead and the procurement priority level had been equaled or exceeded. In addition to domestic lead, there also were deliveries of lead to the stockpile in repayment of ICA advances under several contracts. On August 1 Director Gray of ODM stated that at the current rate of procurement the long-term stockpile objective for lead and zinc would soon be met.

During 1957 GSA 5 received 100,075 tons of foreign lead (29,899) in 1956), which was acquired under barter contracts authorized under the Agricultural Trade Development and Assistance Act of 1954 and amendments. Lead acquired under this program was placed in the supplemental stockpile and was in addition to quantities acquired under the minimum and long-term-stockpile lead objectives.

Producers' Stocks.—Stocks at the end of 1957 at primary producing plants had reached the highest level since the survey was begun in 1943. Lead in bullion declined almost 2,300 tons but increased 3 percent in antimonial lead and 11 percent in ore, and stocks of refined lead more than doubled during the year. The overall increase over 1956 was 48 percent, and the total (143,900 tons) was 4 percent higher than at any time in the past 10 years. These data represent physical inventories at the plants, irrespective of ownership, and do not include material in process or in transit. However, data from the American Bureau of Metal Statistics show an additional 2,800 tons of bullion in transit to refineries, 23,200 tons of bullion in process at refineries. and approximately 30,000 tons of ore in process at smelting plants a grand total of primary material at these plants of 205,000 tons.

TABLE 18.—Stocks of lead at primary smelters and refineries in the United States at end of year, 1948-52 (average) and 1953-57, in short tons

	1948-52 (average)	1953	1954	1955	1956	1957
Refined pig lead	33, 738 8, 190 10, 699 45, 299	65,035 14,414 13,545 43,734	78, 928 13, 253 14, 934 29, 924	21, 871 9, 084 15, 585 42, 903	30, 237 10, 740 11, 141 44, 925	74, 194 11, 079 8, 855 49, 788
Total	97, 926	136, 728	137, 039	89, 443	97, 043	143, 916

Consumers' Stocks.—Consumers' stocks of lead (including those secondary smelter plants that also are consumers of lead) increased 4 percent during the year. Lead in antimonial lead, in alloys, and in copper-base scrap all decreased, but stocks of soft lead increased by about 7,000 tons.

⁴ Stockpile Report to the Congress, January-June 1957 and July-December 1957, by Office of Defense

Mobilization.

§ United States Tariff Commission, Lead and Zinc—Report to the President on Escape-Clause Investigation No. 55 Under the Provisions of Sec. 7 of the Trade Agreements Extension Act of 1951, as amended, April 1958, table 9.

TABLE 19.—Consumer stocks of lead in the United States at end of year, 1953-57, by type of material, in short tons, lead content

Year	Refined soft lead	Antimonial lead	Unmelted white scrap	Lead in alloys	Lead in copper- base scrap	Drosses, residues, etc.	Total
1953	75, 801 82, 039 73, 480 73, 673 80, 708	14, 867 17, 573 23, 081 40, 226 39, 375	3, 607 3, 199 2, 914	7, 921 9, 367 8, 146 8, 007 7, 651	2, 083 2, 005 1, 618 2, 089 1, 576	9, 484 10, 458 8, 219	113, 763 124, 641 117, 458 123, 995 129, 310

¹ Beginning 1956, consumer stocks of scrap were added to secondary smelter stocks of scrap, and secondary smelter metal stocks were included with consumer metal stocks.

PRICES

The quoted New York price for common lead, which held at 16.0 cents per pound through most of 1956, was maintained in the early However, reduced consumption, increasing inmonths of 1957. ventories, and announced cutbacks in Government stockpiling started a downward movement in May, which resulted in a 3-cent decline by The first reduction was ½ cent a pound on May 9, the end of the year. followed by an additional ½ cent on May 16, 1.0 cent on June 11, ½ cent on October 14, and another ½ cent on December 2 to a price of 13.0 cents, held through the remainder of the year.

The London Metal Exchange quotations ranged from a high of £118¼ per long ton on January 3 (equivalent to 14.8 cents per pound U. S. currency, computed on the average monthly rate of exchange) to a low of £69 on December 12 (8.6 cents per pound). The bid price on December 31 was £73 per long ton (9.1 cents per pound), and the average for 1957 was £96.7 (12.1 cents per pound).

TABLE 20.—Average monthly and yearly quoted prices of lead at St. Louis, New York, and London, 1955-57, in cents per pound 1

	1955			1956			1957		
Month	St. Louis	New York	Lon- don ²	St. Louis	New York	Lon- don 2	St. Louis	New York	Lon- don ²
January February March April May June July August September October November December	14. 80 14. 80 14. 80 14. 80 14. 80 14. 80 14. 80 14. 92 15. 30 15. 30	15. 00 15. 00 15. 00 15. 00 15. 00 15. 00 15. 00 15. 12 15. 50 15. 50	12. 94 12. 88 12. 96 13. 04 12. 88 12. 80 13. 17 13. 25 13. 38 13. 33 14. 18	15. 96 15. 80 15. 80 15. 80 15. 80 15. 80 15. 80 15. 80 15. 80 15. 80 15. 80	16. 16 16. 00 16. 00 16. 00 16. 00 16. 00 16. 00 16. 00 16. 00 16. 00	14. 86 14. 96 15. 17 14. 50 13. 98 14. 16 14. 17 14. 42 14. 56 14. 35 14. 70 14. 38	15. 80 15. 80 15. 80 15. 80 15. 18 14. 12 13. 80 13. 80 13. 80 13. 80 13. 80	16. 00 16. 00 16. 00 16. 00 15. 38 14. 32 14. 00 14. 00 13. 69 13. 50 13. 00	14. 51 14. 13 14. 10 13. 93 12. 39 11. 42 11. 28 11. 37 10. 74 10. 41 9. 17
Average	14. 94	15. 14	13. 19	15. 81	16.01	14. 52	14. 46	14. 66	12. 05

¹ St. Louis: Metal Statistics, 1958, p. 513. New York: Metal Statistics, 1958, p. 507. London: E&MJ Metal and Mineral Markets.

2 Conversion of English quotations into American money based on average rates of exchange recorded by

Federal Reserve Board.

FOREIGN TRADE 6

Imports.—General imports of primary lead totaled 522,200 tons in 1957—an increase of 14 percent over imports in 1956 and the largest quantity of primary lead imported since 1953. Lead in pigs and bars was 62 percent of the total and lead in ore and concentrate 38 percent. Of the pigs and bars, Mexico supplied 32 percent, Australia 29 percent, Yugoslavia 12 percent, Peru 11 percent, Canada 9 percent, and all other countries 7 percent. Of the lead in ore and concentrate, 28 percent came from Peru, 22 percent from Union of South Africa, 19 percent from Australia, 13 percent from Canada, 9 percent from Bolivia, and the remaining 9 percent from all other countries.

Exports.—Lead exported in 1957 consisted of 4,300 tons of pigs and bars, 900 tons in ore, matte, and bullion, and 900 tons in scrap, a total of 6,100 tons.

TABLE 21.—Total lead imported into the United States in ore, matte, base bullion, pigs, bars, and reclaimed, by countries, 1948-52 (average) and 1953-57, in short tons, in terms of lead content ¹

[Bureau of the Census]

Country	1948-52 (average)	1953	1954	1955	1956	1957
Ore, flue dust, and matte: North America: Canada-Newfoundland and Lab-						
brador Guatemala Honduras Mexico Other North America	9, 473 2, 213 383 3, 792 360	39, 242 5, 391 1, 090 3, 443	40, 593 2, 686 1, 636 2, 167 (2)	33, 090 5, 208 2, 757 2, 201 3	30, 692 6, 904 2, 969 3, 866	25, 193 8, 623 2, 955 3, 835 113
Total	16, 221	49, 166	47, 082	43, 259	44, 439	40, 719
South America: Argentina Bolivia Chile Colombia Peru Other South America	9 18, 205 3, 162 25 16, 938 289	18, 984 3, 341 255 32, 842 90	14, 946 173 356 38, 734 110	13, 812 409 546 44, 223 82	6 17, 177 118 1, 440 55, 174 178	974 18, 319 35 (²) 55, 450 105
TotalEurope	38, 628 109	55, 512	54, 319 696	59, 072	74, 093 24	74, 883 264
Asia: Korea ³	165 896 172	2, 980 92	2, 160	2, 635	422 2, 222	246 783
Total	1, 233	3,072	2, 160	2, 635	2, 644	1,029
Africa: Morocco Union of South Africa Other Africa	4 1, 837 17, 043 32	4 2, 633 29, 777 63	35, 507 19	41, 575	44, 208	43, 916 25
Total	18, 912	32, 473	35, 526	41, 575	44, 208	43, 941
Oceania: Australia Other Oceania	8, 835 33	20, 676	21, 478	30, 938	31, 044	36, 995
Total	8,868	20, 676	21, 478	30, 938	31, 044	36, 995
Total ore, flue dust, and matte	83, 971	160, 899	161, 261	177, 479	196, 452	197, 831

See footnotes at end of table.

⁶ Figures on imports and exports compiled by Mae B. Price and Elsie D. Jackson, Division of Foreign Activities, Bureau of Mines, from records of the U. S. Department of Commerce, Bureau of the Census.

TABLE 21.—Total lead imported into the United States in ore, matte, base bullion, pigs, bars, and reclaimed, by countries, 1948-52 (average) and 1953-57, in short tons, in terms of lead content ¹—Continued

Country	1948-52 (average)	1953	1954	1955	1956	1957
Base bullion: North America:					91	: 1
Canada Guatemala Mexico	100 1, 296	736			31	
TotalSouth America	1, 396 192 (²)	736 133	41		31	84
Europe Asia Africa	200 6 1,349					(2)
Oceania: Australia Total base bullion	3, 143	869	41		31	84
Pigs and bars: North America: Canada-Newfoundland and Lab-						
rador MexicoOther North America	75, 914 136, 297 18	49,000 140,751 209	59, 887 68, 695 20	34, 453 93, 369	16, 220 77, 541	28, 607 102, 504 (²)
Total	212, 229	189, 960	128, 602	127, 822	93, 761	131, 111
South America: Bolivia Peru Other South America	127 32, 774 (²)	220 52, 216 9/	20, 047	24, 509	33, 540	1, 100 34, 999 501
Total	32, 901	52, 445	20, 047	24, 509	33, 540	36, 600
Europe: Belgium-Luxembourg	2, 281 4, 753 4, 954	2,017 4,006	339 799	231 496	1, 206 168	1, 852 1, 550
Italy Netherlands Spain United Kingdom Yugoslavia	1, 055 1, 520 1, 066	1, 981 1, 148 51, 826 1, 496	156 5, 580 2, 386 38, 465	10, 649 47 35, 659	6, 700 115 38, 901	111 3, 119 2, 666 40, 262
Other Europe Total	32, 098 202 47, 929	1,496	3, 902 51, 627	2, 351 49, 433	2, 162 49, 252	2, 473 52, 033
Asia:	41, 525			10, 100	10, 202	
Burma Japan Other Asia	752 1, 564 299	138	10	55		
Total	2, 615	138	10	55		
Africa: MoroccoOther Africa	4 1, 790 101	4 9, 258 448	4 17, 555	4 7, 800	4 5, 428	9,018
TotalOceania: Australia	1, 891 33, 214	9, 706 70, 348	17, 555 58, 445	7,800 54,530	5, 428 80, 673	9, 018 95, 517
Total pigs and bars	330, 779	385, 071	276, 286	264, 149	262, 654	324, 279
Reclaimed, scrap, etc.: North America: Canada-Newfoundland and Lab-						
rador MexicoOther North America	4, 527 1, 277 1, 202	371 98 847	3, 023 1, 298 832	7, 598 6, 120 1, 378	5,898 9,701 1,549	2, 596 2, 583 652
Total	7,006	1,316	5, 153	15,096	17, 148	5, 831
South America: PeruVenezuela Other South America	91 196 44	59	173	166 1, 653	299 230	53
	331	59	173	1,819	529	53

See footnotes at end of table.

TABLE 21.—Total lead imported into the United States in ore, matte, base bullion, pigs, bars, and reclaimed, by countries, 1948-52 (average) and 1953-57, in short tons, in terms of lead content -Continued

Country	1948-52 (average)	1953	1954	1955	1956	1957
Reclaimed, scrap, etc.—Continued Europe:						
Belgium-Luxembourg	266 21 191 530	202 14	56	576 282 3	117 1,000 348	84 168
Netherlands Spain	707	502		112 431	157	
Yugoslavia Other Europe	199 417	103 442	110 103	136	179	32
Total	2, 331	1, 263	269	1, 540	1,801	284
Asia: Japan Other Asia	3, 670 1, 259	21	13 47	26	4 1	
TotalAfrica	4, 929 165	21 17	60	26	5	
Oceania: Australia Other Oceania	2, 164 87	2, 666 97		2, 099	1, 255	3,079
Total	2, 251	2, 763		2,099	1, 255	3,079
Total reclaimed, scrap, etc	17, 013	5, 439	5, 655	20, 580	20, 738	9, 247
Grand total	434, 906	552, 278	443, 243	462, 208	479, 875	531, 441

¹ Data are "general imports," that is, include lead imported for immediate consumption plus material entering the country under bond.

² Less than 1 ton.

3 Republic of Korea, effective Jan. 1, 1952.

TABLE 22.—Lead imported for consumption in the United States, 1948-52 (average) and 1953-57, by classes 1

[Bureau of the Census]

Year	Lead in ores, flue dust or fume, and mattes, n. s. p. f.			Lead in base bullion		and bars		Sheets, pipe, and shot		Total value
	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	(value)	Value
1955 1956	67, 030 196, 054			10, 149	328, 256 379, 119 274, 286 263, 977 262, 204 327, 236	268, 419, 607 73, 032, 055 277, 718, 626	178 397 2, 048 7, 654	58, 291 2128, 812	2149, 208 2163, 610 2184, 107	111, 919, 588 ² 118, 125, 081 ² 115, 804, 005 ² 135, 820, 762

¹ In addition to quantities shown (value included in total value), "reclaimed, scrap, etc.," imported as follows—1948-52 (average): 16,975 tons, \$4,316,697; 1953: 3,660 tons, \$324,997; 1954: 7,217 tons, ² \$1,450,036; 1955: 18,944 tons, ² \$3,930,668; 1956: 20,464 tons, ² \$5,268,423; 1957: 7,610 tons, ² \$1,645,769.

² Owing to changes in tabulating procedures by the Bureau of the Census, data are not comparable with years before 1954.

Morocco.
West Germany, effective Jan. 1, 1952.

LEAD 713

TABLE 23.—Miscellaneous products containing lead, imported for consumption in the United States, 1948-52 (average) and 1953-57

[Bureau of the Census]

	Babbitt me and other ing lead	tal, solder, v combination	white metal, ons contain-	Type metal and antimonial lead			
Year	Gross weight (short tons)	Lead content (short tons)	Value	Gross weight (short tons)	Lead content (short tons)	Value	
1948-52 (average)	1, 592 2, 375 2, 309 2, 286 4, 106 3, 502	1, 008 1, 343 1, 572 1, 283 2, 526 2, 100	\$1, 262, 039 1, 869, 312 11, 945, 992 11, 910, 998 13, 381, 310 13, 048, 595	10, 630 6, 366 4, 138 14, 579 9, 544 5, 275	9, 406 5, 016 3, 367 13, 213 8, 500 4, 858	\$3, 793, 254 1, 921, 453 1, 250, 938 4, 378, 769 2, 762, 814 1, 526, 818	

¹ Owing to changes in tabulating procedures by the Bureau of the Census data are not comparable with years before 1954.

Tariff.—The duties on pig lead and lead content of ore and concentrate remained at 11/16 cents and 3/4 cent per pound, respectively,

throughout 1957.

In May Secretary Seaton, United States Department of the Interior, presented to Congress a program for legislation to give long-range support to the domestic mining industry. Recommendations included a graduated excise tax on entries of foreign lead and zinc. The sliding-scale adjustment was designed to discourage excessive imports but to permit unhampered entry of the quantity of lead and zinc needed to supplement the domestic supply. After much debate, Congress adjourned without decisive action on the measure.

In September the Emergency Lead and Zinc Committee, representing domestic mining groups, petitioned the Tariff Commission for regulation of imports, claiming that concessions made by the United States under the Trade Agreements Act had caused serious injury to the domestic industry. Formal hearings were held by the Tariff Commission in November, and a study of the facts was in progress at

the end of the year.

TABLE 24.—Total lead exported from the United States in ore, matte, base bullion, pigs, bars, anodes and scrap, by destination, 1948–52 (average) and 1953–57, in short tons ¹

[Bureau of the Census]

Destination re, matte, base bullion (lead content): North America: Canada. Mexico.	1948-52 (average)	1953	1954	1955	1956	1957
Canada Mexico						
Canada Mexico						
Mexico		1 000				_
	630	1,038	18	$12 \\ 1,322$	1,049	5 85
	coo	1 000	10	1 204	1.055	
TotalEurope: Belgium-Luxembourg	630 (2)	1,038	18	1,334	1,055	90
Asia			84			
Total ore, matte, base bullion	630	1,038	102	1, 334	1,055	90
ice hars anodes:						
igs, bars, anodes: North America:		ł			l	
Canada	101	32	18	13	38	26
Cuba	. 54	28	. 23	36	44	l
Mexico	. 6	8	34	16	2	1
Other North America	. 88	135	89	25	53	13
Total	249	203	164	90	197	48
South America	691	161	164 202	167	137 306	19
bouth Hintings.	001	101	202	107	500	10
Europe:						
Belgium-Luxembourg	. 23				2, 128	56
Other Europe	49	2	2	13		
Total.	72	2	2	13	2, 128	56
Asia:				ابر	CAA	
India	_ 28			5	644	
Japan Nansei and Nanpo	- } 5	12	{		1,176	2, 30
Philippines Philippines	91	405	192	5	180	.1
Other Asia		13	34	96 27	180	45 33
						<u>-</u>
Total	. 413	430	226	133	2,051	3, 10
Africa Oceania		6	2		6	
Oceama	-					
Total pigs, bars, anodes	1,432	803	596	403	4, 628	4, 33
erap:						
North America:	1					
Canada	(3)	27		1	11	
Mexico	(3)		370			
M-4-1	(0)		070			
TotalSouth America	(3)	27	370	-1	11	
South America	. (%)		(2)			
Europe:						
Belgium-Luxembourg	(3)		103	754	20	ļ
Germany	- /3/	4 39	4 29	4 495	4 563	4 20
Netherlands	7 /3	1	- 20	148	788	30
United Kingdom	- 3	2,000	1,060	880	554	1
Other Europe	(3) (3) (3) (3) (3) (3)	2,000	318	219	14	1
Other Europe	-		516	215	1.4	·
Total	(3)	2, 039	1, 510	2, 496	1, 939	74
Asia:		1				
Japan	(3)	640	2,014	486	186	13
Lebanon.	(3)		2,011	100	100	
	(3)	640	2,014	486	186	13
Total						
Total		2,706	3, 894	2, 983	2, 136	88

In addition, foreign lead was reexported as follows: Ore, matte, base bullion, 1948-52 (average): less than 1 ton; 1953-54: none; 1955, 3 tons; 1956: 6 tons; 1957: 4 tons. Pigs, bars, anodes, 1948-52 (average): 28 tons; 1958: 799 tons; 1954-55: none; 1956: 50 tons; 1957: 300 tons. Scrap: 1948-52 (average): less than 1 ton; 1958: none; 1954: 121 tons; 1955-57: none.

2 Less than 1 ton.

² Less than 1 ton.
³ 1948 not separately classified—1949—Belgium-Luxembourg, 362 tons; Canada, 95 tons; Lebanon, 11 tons; United Kingdom, 279 tons; total scrap, 747 tons. 1950—Canada, 41 tons; United Kingdom, 1,271 tons; Germany, 264 tons; total scrap, 1,576 tons. 1951—Canada, 203 tons; Belgium-Luxembourg, 31 tons; Germany 145 tons; United Kingdom, 20 tons; Japan, 195 tons; total scrap, 594 tons. 1952—Canada, 20 tons; United Kingdom, 55 tons; total scrap, 75 tons.
⁴ West Germany.

WORLD REVIEW

World mine production of lead in 1957 increased for the 11th successive year to 2.54 million tons compared with 2.44 million in 1956. Of the larger producers, Australia, South-West Africa, U. S. S. R., Morocco, Mexico, and Peru increased output, whereas Canada and the United States each dropped 4 percent. Each of these 8 countries produced more than 100,000 tons, and together they supplied 71 percent of total world production.

Smelter production also increased from 2.37 million to 2.49 million tons in 1957. In Canada, United States, and Belgium output was less by 4, 2, and 3 percent, respectively; but increases in Australia, Mexico, U. S. S. R., and West Germany ranged from 1 percent to a substantial 18 percent. Smelter production from the 7 countries was

71 percent of total output.

Total world consumption of lead is not available, but calculations based on available information, estimates, and stock changes indicate that consumer requirements were of the order of 175,000 to 275,000 tons less than supply. In the United States smelter production and imports of lead exceeded consumption and exports by 225,000 tons.

TABLE 25.—World mine production of lead, by countries, 1948-52 (average) and 1953-57 in short tons ¹

	1948-52 (average)	1953	1954	1955	1956	1957
Tth A-monitors		1 1 1 1				
Torth America: CanadaCubaCubaGreenland	_ 22	193, 706	218, 495	202, 762 88	188, 854 120 5, 000	181, 690 90 8, 000
Guatemala Honduras Mexico	3, 385 411 247, 723	7, 789 851 244, 216	2, 607 1, 286 238, 788	5, 084 1, 961 232, 383	8, 967 2, 315 220, 029	12, 535 ² 2, 955 236, 860
Salvador 3 United States 4	401, 907	342, 644	325, 419	338, 025	352, 826	338, 216
Total	817, 807	789, 206	786, 595	780, 303	778, 111	780, 346
outh America: Argentina	31, 673 3, 241 5, 811	17, 600 26, 222 3, 300 3 3, 500	32, 000 20, 092 3, 200 3 3, 500 121	26, 500 21, 070 4, 400 3, 300 929	31, 700 22, 687 5, 500 3, 190	34, 200 28, 789 3 5, 000 4, 000
Peru		126, 303	121, 327	130, 900	142, 281	144, 704
TotalGurope:	140, 844	³ 177, 100	³ 180, 200	³ 187, 100	205, 358	³ 216, 700
Austria Bulgaria 3 Czechoslovakia 3 Finland France Germany:	10, 400 1, 100 171	5, 677 11, 000 1, 650 239 13, 681	5, 432 (5) 3, 300 291 12, 300	5, 286 (*) 5, 500 853 9, 900	5, 281 (⁵) 6, 600 1, 554 9, 300	5, 969 (5) 6, 600 2, 623 11, 684
East 3	46, 646 3, 986 7 949 40, 741	3, 300 69, 085 6, 300 1, 005 44, 600	5, 500 74, 171 5, 900 1, 511 47, 400 778	6,600 74,334 9,500 2,931 56,100 783	6,600 72,181 11,400 2,912 53,200 882	6, 600 78, 392 3 10, 000 2, 240 59, 300
Norway	20,000 1,375 8,500 39,430	23, 500 1, 900 11, 000 59, 750 28, 146	24,000 1,931 11,600 61,002 32,731	24, 100 1, 614 12, 200 68, 994 35, 459	24, 100 1, 365 13, 200 66, 765 36, 097	3 24, 10 3 1, 10 13, 20 70, 50 39, 68

See footnotes at end of table.

TABLE 25.—World mine production of lead, by countries, 1948-52 (average) and 1953-57 in short tons 1-Continued

Country	1948-52 (average)	1953	1954	1955	1956	1957
Europe—Continued United Kingdom	4, 183	8, 951	9, 736	8, 336	8, 139	7, 821
Yugoslavia	83, 502	93, 864	92, 735	99, 297	96, 257	99, 304
Total 3	428, 200	586, 200	640, 900	709, 900	742, 200	794, 100
Asia:						
Burma	³ 1, 400	8,800	13, 200	17,600	17, 100	15, 400
China 3 Hong Kong	1,260 106	6,600 330	11,000 220	13, 200 220	16,500 110	16, 500 80
India	1, 132	2,327	2,391	2,948	3, 183	3,666
Iran 9	10 13, 154	8, 800	3 13, 300	3 19, 900	3 18, 700	3 18, 700
Japan	12, 577	20, 562	25, 176	28, 852	32, 545	39, 533
Korea:						
North 3	2,900	(5)	(5)	(5)	(5)	(5)
Republic of Philippines	117 963	164 2,683	91 2,014	753 2,555	1,600 2,360	1, 016 897
Thailand	7 715	4,000	5,500	6,000	4, 400	3, 300
Turkey	1,062	3 1, 500	2,200	3,000	5, 100	1,100
Total 3	35, 400	56, 900	76, 200	97, 200	103, 800	102, 400
						
Africa: Algeria	2, 482	8, 804	11,564	11,645	11, 281	11, 497
Belgian Congo	128	72	184	91	3 110	3 220
Egypt	39	276	143	143	132	3 130
Egypt French Equatorial Africa Morocco:	2,470	4,877	3, 833	3, 673	3, 316	2, 034
Northern Zone	365	739	515	900	670	897
Southern Zone	58, 979	88, 556	90, 813	98,000	95, 458	101, 288
Nigeria	76	39	10	18	49	51
Rhodesia and Nyasaland, Federation of: Northern Rhodesia 8	15,058	12,890	16,800	17,975	17.024	16,800
South-West Africa 11	43, 596	4 65, 287	4 77, 146	100, 707	109, 367	³ 110, 000
Tanganyika (exports)	1,019	3, 085	2,372	4, 828	7, 804	6, 923
Tunisia	20,804	26, 514	28,976	29, 306	25, 848	26, 347
Uganda (exports)	25	18	61	90	128	17
Union of South Africa	528	551	181	564	911	1,885
Total	145, 569	211, 708	232, 598	267, 940	272,098	278, 089
Oceania: Australia	247, 882	274, 303	319, 046	331, 458	335, 423	372, 367
World total (estimate)	1, 820, 000	2, 100, 000	2, 240, 000	2, 370, 000	2, 440, 000	2, 540, 000

¹ This table incorporates a number of revisions of data published in previous Lead chapters. Data do not add exactly to totals shown because of rounding where estimated figures are included in the detail.

2 U. S. imports.

3 Estimate.

4 Tonnage recoverable from ore.

5 Data not available; estimate by senior author of chapter included in total.

6 Includes lead content of zinc-lead concentrates.

7 Average for 1949-52.

8 Smelter production.

9 Year ended March 21 of year following that stated.

10 Average for 1950-52.

11 Includes lead content of lead-vanadium concentrates.

TABLE 26.—World smelter production of lead, by countries where smelted, 1948-52 (average) and 1953-57, in short tons 12

[Compiled by Augusta W. Jann and Berenice B. Mitchell]

Country	1948-52 (average)	1953	1954	1955	1956	1957
North America:	104 550	100 050	100 970	140 705	149, 262	144, 017
Canada	164, 550 183	166, 356 725	166, 379 3 110	149, 795	147	144,017
Guatemala	239, 521	236, 966	230, 567	224, 474	213, 947	231,745
Mexico United States (refined)4	453, 646	467, 723	486, 624	478, 995	542, 272	533, 473
Total	857, 900	871, 770	883, 680	853, 264	905, 628	909, 235
outh America:						
Argentina	22, 251	14, 330	26,800	19,800	26, 800	28,600
Brazil	2, 407	3, 250	3,026	4, 028 554	4, 896	5, 038
ChilePeru	42, 963	65, 041	63, 648	66, 533	65, 892	75, 90
Total	67, 621	82, 621	93, 523	90, 915	97, 588	109, 539
						
Europe: Austria ⁵	11 389	13, 113	13, 294	12, 673	12, 293	13, 150
Doloism 5	11, 382 79, 313	84, 162	79, 258	91, 242	112, 715	109, 423
Bulgaria Czechoslovakia ⁸		3,000	3, 300	3, 750	6,600	20, 90
Czechoslovakia 8	5, 461	8,800	8,800	8,800	9, 900	9, 90
France	56, 749	60, 390	68, 877	76, 465	69, 776	81,60
Germany:			99 000	33,000	33,000	33,00
East 8 8. West	95,000	24, 200	33,000 121,504	118, 593	128, 417	151, 94
West Greece Italy Netherlands 3 Poland Portugal Rumania 3 Spain	2 652	118,801 2,600 41,881	3,042	2,776	3,814	3, 98
Italy	2, 652 35, 567	41, 881	41, 150	46, 086	43, 118	43, 70
Netherlands 3	3, 100	1, 100 23, 500	4,000			
Poland	20,000	23, 500	24,000	24, 100	24, 100 938	⁸ 24, 10 ⁸ 77
Portugal	643	973	1, 109 11, 600 64, 617	2, 167 12, 200	13, 200	13, 20
Rumania 3	8, 500 41, 922	11,000	64 617	68, 132	64, 829	67, 44
Spain	11 985	56, 492 17, 806 202, 000	22.147	23 397	25, 553	27, 60
IT S S R 8	11, 985 123, 200	202,000	228, 500	255,000	290,000 l	320,00
United Kingdom	3,628	7,446	228, 500 7, 708	255, 000 6, 798 83, 348	7, 212	3 7, 10
Spam	64, 036	78, 039	73, 556	83, 348	83, 509	86, 53
Total 3	563, 100	755, 300	809, 500	868, 500	929, 000	1, 014, 40
Asia:			40 500	15 500	01 000	21, 81
Burma China ^{3 5}	3, 406	9,641	12, 722 16, 500	10,008	21,889	22, 00
China 3 5	4,000 841	10,000 1,897	2 005	15, 568 19, 300 2, 838 1, 366	22, 000 2, 797 842	3, 55
India Iran ⁶	7 551	500	2,005 1,000	1,366	842	8 77
Japan	11, 132	19, 537	28, 916	31, 918	41, 151	3 49, 00
Korea.	1			(0)	(0)	(8)
North 3 Republic of	3,000	2, 200	(8)	(8)	(8)	(8)
Republic of	* 220	55	(8) 3 30			
Total 3	23, 200	43, 800	66, 700	79, 800	97, 500	106, 00
Africa:				00.45	00.00	94.4
Morocco: Southern Zone	16, 402	30, 240	29, 418	29, 421	30, 991	34, 44
Rhodesia and Nyasaland, Federation	15.050	10.000	16 900	17, 975	17, 624	16, 80
Morocco: Southern Zone Rhodesia and Nyasaland, Federation of: Northern Rhodesia Tunisia	15, 058 24, 120	12,890 30,071	16,800 29,972	30, 123	27, 357	29, 66
		.				
Total	55, 580	73, 201	76, 190	77, 519	75, 372	80, 91
Oceania:						ļ.
Australia:		100 10:	004 450	000 501	910 500	215, 4
Rafinad laad	177, 068 37, 943	193, 164	224, 459	209, 591 41, 879	218, 500 46, 657	52, 9
Pb content of lead bullion		38, 137	42,723	ļ		
m . 1	215, 011	231, 301	267, 182	251, 470	265, 157	268, 40
Total	210, 011		2, 200, 000			

NORTH AMERICA

Canada.—Output of recoverable lead from Canadian mines in 1957 was 182,000 tons, a 4-percent decrease from the 1956 quantity. Approximately 144,000 tons of lead was produced at Canada's only primary lead smelter, a unit of the smelting and refining works of the Consolidated Mining & Smelting Co. of Canada, Ltd., at Trail, British Columbia. Canadian exports in 1957 included 84,500 tons of refined lead and 44,600 tons of lead in concentrate. Approximately 1/3 of the refined lead and 1/2 of the lead in concentrate were shipped to the United States. Lead consumed by the Canadian

industry in 1957 was estimated at 60,000 tons.

The Consolidated Mining & Smelting Co. of Canada, Ltd., as in previous years, was the largest Canadian producer of lead. During 1957 its Sullivan, H. B., Bluebell, and Tulsequah mines in British Columbia milled 3,274,000 tons of lead-zinc-silver ore (3,661,000 in 1956). Lead and zinc concentrates produced at the 4 concentrating mills were smelted with purchased ores at the company smelters at Trail to produce 144,000 tons of refined lead (149,300), 189,300 tons of zinc (193,000), 95,400 ounces of gold (97,400), 10,877,500 ounces of silver (11,584,000), 900 tons of cadmium (900), 73 tons of bismuth (78), 800 tons of antimony (1,100), and 400 tons of tin (300). decrease in ore treated and metal recovered resulted from closing the open-pit unit of the Sullivan mine in May and the Tulsequah mines at the end of August. Other British Columbia lead mines included Reeves-McDonald Mines, Ltd., at Remac; Sheep Creek Mines, Ltd., at Nelson; and Yale Lead & Zinc Mines, Ltd., Ainsworth. Giant Mascot Mines, Ltd., another lead-zinc-silver producer at Spillimacheen, British Columbia, was shut down in June.

In Newfoundland the Buchans Mining Co., Ltd. (subsidiary of American Smelting & Refining Co.), continued to operate its mine near Red Indian Lake and to produce lead, zinc, and copper concen-In 1957 the mill concentrated 371,000 tons of crude ore. Sinking the McLean shaft, begun in 1956 to develop a new deep ore

body, was being continued. In Yukon Territory the United Keno Hill Mines, Ltd., operated the Hector and Calumet mines in the Mayo district, at capacity throughout the year, but Galkeno Mines, Ltd., suspended production in favor of a development program.

In Quebec New Calumet Mines, Ltd., on Calumet Island, Golden Manitou Mines, Ltd., Abitibi East County, and Anacon Lead Mines,

Ltd., Portneuf County, produced lead concentrate.

In Ontario, Jardun Mines, Ltd., produced both lead and zinc concentrates, but the Consolidated Sudbury Basin Mines, which was developing a mine plant to treat 1,500 tons of ore daily, postponed operations.

The newly developed mine of Heath Steele Mines, Ltd., near Newcastle, New Brunswick, began producing early in 1957 from a

copper-lead-zinc ore body that averages over 2 percent lead.

Brunswick Mining & Smelting Corp., Ltd., which holds very large deposits of lead-zinc-copper-silver ore near Bathurst, continued mine

⁷ Figures in parentheses give corresponding quantities for 1956.

719LEAD

development and intensive test work on ore dressing and concentrate reduction.

Greenland.—The Nordic Mining Co. shipped 8,750 tons of lead concentrate and 13,650 tons of zinc concentrate to Western Germany and Belgium from its mine at Mestersvig during its first year of operation. The company announced that enough ore was developed

to permit 4 years production at the 1957 rate.

Guatemala.—Compañia Minera de Guatemala, S. A., produced lead and zinc concentrates from its Caquipec mine near Coban throughout 1957. Compañia Minera de Huehuetenango, S. A., produced lead concentrate for shipment to the Torreon lead smelter. Mexico, throughout 1957. Production from this mine (up to 26,250 tons of lead) is subsidized under terms of a contract made in 1952 with the United States Defense Minerals Procurement Administration (DMPA). Kellie Safi y Cía., Ltd. (Minera Occidental, Ltd.), received a 40-year concession to extract lead-zinc, antimony, and silver from its Anabella mine in Huehuetenango.

Mexico.—Production of lead from Mexican mines in 1957 increased 8 percent to 237,000 tons. American Metal Climax, Inc., through its Mexican subsidiary, Cía. Minera de Penoles, S. A., produced 325,000 tons of crude ore mainly from the Avalos mine unit. A 31/2-mile haulage tunnel was begun to develop a large low-grade section from the Avalos mine. Concentrating plants of Penoles yielded 31,275 tons of lead concentrate and 43,320 tons of zinc concentrate during the year. Cía. Metalurgica Penoles, S. A., with a lead smelter at Torreon and a refinery at Monterrey, produced 40 percent of the total lead refined in Mexico.⁸

Except for closing the Aurora-Xichu mine unit, owing to depletion of ore, American Smelting & Refining Co. operated its Mexican mines on a normal basis throughout 1957.9 Mines leased or owned and managed by American Smelting & Refining Co. were Cia. Metalurgica Mexicana mines, Montezuma Lead Co. mines at Santa Barbara, Plomosas unit at Picachos in Chihuahua, Rosario Property, Nuestra Senora group at Cosala, Sinaloa, and Santa Eulalia and Parral group in Chihuahua. The company operated its lead smelters at San Luis Potosi and Chihuahua throughout 1957. Its lead refinery at Monterrev was closed for 47 days by a labor strike during July and August.

San Francisco Mines of Mexico, Ltd., at San Francisco del Oro, Chihuahua, milled 878,000 short tons of lead-zinc-copper-silver ore during the year ending September 30. Concentrates produced contained 38,300 tons of lead, 59,600 tons of zinc, 4,500 tons of copper,

and important quantities of gold and silver.

Fresnillo Co. continued to operate its lead-zinc mines at Fresnillo in Zacatecas and its Naica and Gibraltar mines in Chihuahua. the year ended June 30, 1957, the company mined and milled 1,036,000 tons of ore to produce 36,900 tons of lead and 39,000 tons of zinc in concentrates as well as values in copper, gold, and silver.

Among other significant lead producers in Mexico during 1957 were El Potosi Mining Co. (subsidiary of Howe Sound Co.), which operated

American Metal Climax, Inc., Annual Report, 1957, 52 pp.
 American Smelting & Refining Co., Annual Report, 1957, 32 pp.

its El Potosi and El Carmen mines in Chihuahua to produce both lead and zinc concentrates, and Minas de Iquala, S. A. (subsidiary of Eagle-Picher Co.), at Parral, Chihuahua.

SOUTH AMERICA

Argentina.—Total lead output from Argentine mines in 1957 was 34,000 short tons, a substantial gain over the 32,000 tons produced in 1956. Estimated consumption was 26,500 tons, giving Argentina some surplus over internal needs. The Aguilar mine of Compañía Minera Aguilar, S. A. (subsidiary of St. Joseph Lead Co.), produced 26,300 tons each of lead and zinc in concentrate, which was 77 percent of Argentine mine output of lead in 1957. A National Lead Co. affiliate, Cia Minera Castano Viejo, S. A., produced 5,500 tons of concentrate, containing about 4,300 tons of lead, from its Castano Viejo mine. National Lead operated its smelter at Puerto Villelas and shipped pig lead to metal-fabricating plants in Buenos Aires.

Bolivia.—Production from the nationalized mines—Animas, Pulacayo, San Jose, Tatasi, Pampa Grande, and Matilde—totaled about 9,200 short tons of lead in concentrate, compared with 11,700 tons in the previous year. The lead content of concentrates from principal privately owned mines was 18,700 short tons compared with 13,500 tons in 1956.

Brazil.—Lead was produced by a number of small mines in the States of Sao Paulo and Parana. Estimated consumption of lead in 1957 was 26,700 tons. Production from Brazilian mines was estimated at about 5,000 tons.

Peru.—Mine output of lead in 1957 was 145,000 tons—about 2,500 tons less than in 1956. Cerro de Pasco Corp. continued to be the largest producer. Its copper-lead-zinc mines at Casapalca, Cerro de Pasco, Morococha, San Cristobal, and Yauricocha produced 2,115,840 tons of crude ore. Cerro's lead production from these mines and from purchased ores was 75,890 tons. The company smelter at La Oroya operated without interruption throughout the year. A large quantity of lead-bearing material, accumulated during the smelter strike toward the end of 1956, was treated at Oroya in 1957 and contributed to the refined lead production of the company.

Other significant lead producers in Peru during 1957 were American Smelting & Refining Co. Chilete mine at Chilete, Hochschild & Cia. Esquilache mine, and the Huaron, Volcan, Atacocha Rio Pallanga, and Milpo mines.

According to mid-year reports, 11 Venturosa, Huaron, Yauli, Atacocha, and Milpo had curtailed production, and the Carahuacra unit of Volcan Mines was shut down.

Cía. Minerales Santander, Inc., was engaged in stripping the ore body and constructing a hydroelectric powerplant and a 500-ton-perday mill on Chancay River, Peru. The plant was to be completed in 1958 but may be left in standby condition, pending an improved market.

Cerro de Pasco Corp., Annual Report, 1957, pp. 9-10.
 American Metal Market, vol. 64, No. 144, July 27, 1957, p. 7; Metal Bulletin (London), No. 4215, July 30, 1957, p. 17.
 St. Joseph Lead Co., Annual Report, 1957, 23 pp.

721LEAD

On July 10, 1957, Peru suspended the base export tax of 4 percent on the net export price, the suspension was to remain in effect as long as export prices remained below 12.0 cents a pound on zinc and 15.0 cents on lead. Since payment of the export tax was credited against the corporation profits tax, the suspension gives relief from the tax when the profit is less than the export tax.

EUROPE

Austria.—Lead-zinc mines in the Province of Carinthia, operated by Bleiberg-Bergwerks Union, produced 202,000 short tons of crude and dump ore, which yielded 8,200 tons of lead concentrate (6,000 tons recoverable lead) and 12,600 tons of zinc concentrate (6,300 tons recoverable zinc). The company lead smelter near Arnoldstein produced slightly more than 13,000 short tons of pig lead.

Bulgaria.—According to Comtel-Reuter reports in Vienna, exploration in Bulgaria revealed 37 zinc-lead lodes having a total of 15 million tons of reserve ore in Harmanti, Swilengard, and Ivailovograd areas. Ore production of 330,000 tons annually with a yield of 50,000

tons of concentrates was expected from this source.

France.—Lead and zinc production from the Malines mines of Société Miniere et Metalurgique de Penarroya was doubled, and development of deposits at St. Sebastien d'Agrefeuille was begun. Though several other lead-zinc mines within France contributed to the domestic need, French smelters receive most of their feed from North African concentrate. Morocco shipped 103,000 short tons of lead in concentrate to French smelters in 1957, French Equatorial Africa shipped 6,600 tons, and Algeria shipped 5,500 tons. In addition, Morocco and Tunisia exported 46,000 tons of pig lead to France in 1957.

France taxed most imports (including lead and zinc) 20 percent and granted a 20-percent bonus to French exporters of approved com-

modities in an effort to create a more favorable trade balance.

Germany, West.—Lead smelters in West Germany produced 195,500 short tons, 86,000 tons of which was from native ores. Estimated consumption was about 200,000 tons in 1957. Bindsfeldhammer lead smelter of Stolberger Zinc, A. G., has been expanded by about 40 percent to a yearly capacity of 50,000 tons. Imported concentrates supplemented domestic ores to furnish feed to the plant.

Ireland.—The output of many small mines totaled 2,240 tons in 1957, a decrease of 23 percent from the preceding year. St. Kevin's lead-zinc mine at Glessdalough, County Wicklow, closed in August. Cyprus Mines Corp. and Cerro de Pasco Corp. were considering the purchase of mining and exploration rights from Silvermines Lead &

Zinc Co., Ltd., the largest lead and zinc producer in Ireland.¹³

Sweden.—Boliden Co. continued lead output from its mines at Sal and Larsvall. Concentrates were smelted at Ronnskar. In September Boliden announced it would develop its lead mine at Vassbo, Idre, in the Province of Dalecarlia. Anticipated yield was 12,000 tons of 74 percent lead concentrate a year by 1960. Sweden's apparent lead consumption was 31,000 tons.

Mining World, vol. 174, No. 4510, January 1958, p. 37.
 Metal Bulletin (London), No. 4230, Sept. 24, 1957, p 26.

U. S. S. R.—Official data on lead production in the U. S. S. R. in 1957 were not available, but mine production was estimated at 310,000 short tons and smelter production at 320,000 tons. Prayda announced the workers of the Ust-Kamenogorsk Lead-Zinc Combine exceeded their 1957 quota by 10 percent and that lead and zinc production in Kyzl-Ordinskaya oblast will be 50 percent greater in 1960 than in 1955. The first slag-treating plant in Russia began producing late in 1957 and recovered 3,500 tons of lead from processing slag dumps

of Leninogorsk Polymetallic Combine.

United Kingdom.—Concentrate from ores mined in the United Kingdom in 1957 contained 7,800 tons of lead. Output of English refined lead (including lead refined from scrap material and from domestic ores) was 180,000 tons. Imported lead and lead alloys totaled 158,000 tons, 63 percent of which was from Australia. sumption of lead from all sources was 349,000 tons. In January the British Board of Trade announced that it would release 30,000 tons of lead from its stocks; delivery was spread over a 9-month period beginning in March. In October the Board announced that the remaining 20,000 tons in the stockpile would be sold in a similar manner.

Yugoslavia.—Mines in Yugoslavia produced 1.75 million tons of lead-zinc ore, which yielded 99,000 tons of lead. Newly discovered deposits in Sasa-Toranica Basin were reported adequate to warrant a flotation mill. The major lead-producing regions in Yugoslavia are in adjoining parts of Serbia and Macedonia and in Slovenia. The Trepca mines in Serbia continued to be the largest producer. lead-zinc mine opened in 1957 in addition to that at Zletovo near Prokestip. Other discoveries of lead-bearing ore were made along the Yugoslav-Bulgar border in Krieva, Palanka-Delievo areas. Lead concentrates produced in Yugoslavia were smelted at Zvecan near the Trepca mines in Serbia and at Mezica in Slovenia. In 1957 the United States received 40 percent of Yugoslavian lead production.

ASIA

Burma.—The Burma Corp., Ltd., continued to operate the Bawdwin lead-zinc-silver mine in the Shan States of northern Burma. Ore mined during the year ended June 30, 1957, totaled 131,200 tons. ¹⁶ The company mill, smelter, and refinery are at Namtu, 13 miles from The ore reserve was reported to be 2,324,000 long tons the mine. containing 20.6 percent lead, 12.7 percent zinc, 0.93 percent copper, and 15.8 ounces silver per ton. The reserve declined by an amount equal to the year's production.

India.—The only lead-producing mines worked in India in 1957 were the Zawar mines of Rajasthan. Output in 1957 was estimated to be 100,000 tons of lead-zinc ore. A smelter at Tundoo in Bihar treated the lead concentrate. Zinc concentrate from the same ore was

sent to Japan for smelting.

Japan.-In 1957 refined-lead output from the 8 smelters and refineries of Japan was about 50,000 tons. The principal producer of

American Bureau of Metal Statistics Yearbook, 37th Annual Issue, 1957: June 1958, 136 pp.
 Burma Corp., Ltd., Annual Report, June 30, 1957, 4 pp.

LEAD 723

both lead and zinc concentrates continued to be the Kamioaka mine of the Mitsui Metal Mining Co., Ltd.

AFRICA

Algeria.—Mine production was essentially the same as that of the previous year; total output was 11,500 tons lead.

French Equatorial Africa.—The M'Fouati mine in Niari-Basin area produced 5,700 tons of concentrate containing 53.3 percent lead.

Exports of concentrate totaled 6,000 tons.

Morocco (Southern zone).—Lead concentrate production totaled 140,000 short tons in 1957, a gain of 6 percent over 1956. Approximately 78 percent of the concentrate was exported, mostly to France. The remainder was smelted at the Zellidja-Penarroya lead smelter at Oued-El-Heimer. Most of the lead and zinc output came from the mines at Touissit and Bou Beker, eastern Morocco, on the Algerian border. The large producing companies included the Société des Mines de Zellidja and Companie Royale Asturienne des Mines.

Rhodesian and Nyasaland, Federation of.—The Rhodesia Broken Hill Development Co., Ltd., at New Broken Hill, continued to operate its mine, mill, lead smelter, and refinery and electrolytic zinc plant.¹⁷ The company mill treated 136,600 short tons of lead-zinc ore, analyzing 19.7 percent lead and 29.1 percent zinc. Metal production from the smelters was 16,800 short tons of lead, 33,000 tons of zinc and 63 tons of cadmium, about the same quantities as in 1956.

South-West Africa.—The Tsumeb Corp., Ltd., controlled by Newmont Mining Corp. and American Metal Climax, Inc., operated at capacity in 1957. During the fiscal year ended June 30, 1957, the mill processed 638,000 tons of crude ore averaging approximately 25 percent combined copper, lead, and zinc. Sales of refined metal or concentrate included 87,436 short tons of lead, 27,792 tons of copper, 13,172 tons of zinc, 202 tons of cadmium and 1,702,000 ounces of silver. The assured reserve of Tsumeb high-grade ore was estimated at 9.5 million tons. Exploratory drilling in 1957 disclosed 2 ore bodies of about 1 million tons, averaging 11 percent combined copper and lead.

Tanganyika.—Uruwira Minerals, Ltd., only producer of lead concentrate in Tanganyika, continued to operate its Mpanda lead-copper mine and 1,250-ton-per-day mill. About 13,400 short tons of concentrate containing about 45 percent lead and 10 percent copper was exported to Belgium for smelting.

Tunisia.—Mine output increased 2 percent to 26,300 tons of lead in 1957. Total pig-lead production was 24,100 tons, most of which was produced by Société Miniere et Metallurgique de Penarroya at Megrine.

Union of South Africa.—The Argent mine near Johannesburg in the Transvaal was operated throughout 1957 by Argent Lead & Zinc Co. The lead concentrate was shipped to Germany for smelting.

 ¹⁷ The Rhodesia Broken Hill Development Co., Ltd., 48th Annual Report, Dec. 31, 1957, 20 pp.
 18 American Metal Climax, Inc., Annual Report, 1957, 52 pp.

OCEANIA

Australia.—In 1957 Australia was the leading lead-producing country in the world. Mine output totaled 372,000 tons, an 11-percent gain over the preceding year. The world-production record followed 8 yearly increases in which Australian lead output gained 58 percent. The United States and U. S. S. R., the only close production rivals, trailed Australian output by 34,000 and 62,000 tons, respectively.

The Broken Hill in New South Wales continued by far to be the leading Australian lead-producing district. Mining companies operating in 1957 were New Broken Hill Consolidated, Ltd., Zinc Corp., Ltd., Broken Hill South, Ltd., and North Broken Hill, Ltd. Broken Hill district production was estimated at 2,450,000 tons of crude ore, which yielded 288,000 tons of lead and 282,500 tons of zinc, in addi-

tion to several million ounces of silver.

During the fiscal year ended June 30, Mount Isa Mines, Ltd., mined 1,573,400 tons of lead-zinc-copper ore from the Cloncurry district in Queensland. The ore yielded 50,600 tons of lead bullion, 32,340 tons of blister copper, and 39,650 tons of zinc concentrate. The company planned to install a new 4,500-hp. hoist made by the British General Electric Co., designed to increase monthly capacity from 100,000 to 180,000 rock tons a month. Exploration and development increased the ore reserve by more than 50 percent.

The Lake George Mining Corp., Ltd., produced 17,700 tons of lead concentrate and 35,800 tons of zinc concentrate from ores mined in the Captain's Flat district in New South Wales.²⁰ The company ex-

pressed disappointment at failure to extend ore reserves.

Electrolytic Zinc Co. of Australasia, Ltd., continued to operate its mines in the Read-Roseberry district of Tasmania. The larger producing properties were the Roseberry and Hercules mines. Mines on Tasmania's west coast produced 214,000 short tons of ore, which yielded 10,400 tons of lead concentrate, 63,000 tons of zinc concentrate, and 6,700 tons of copper concentrate during the fiscal year ended June 30, 1957.

WORLD RESERVES

The lead reserves compiled here include only lead in ores that have been inventoried and were economic at the time of inventory. The reserves listed include lead in measured and indicated ores but make no allowance for metal in inferred and undiscovered ores. Definitions of the classes of reserves agreed to by the Federal Bureau of Mines and Federal Geological Survey and used in these estimates follow:

Measured ore is ore for which tonnage is computed from dimensions revealed in outcrops, trenches, workings, and drill holes and for which the grade is computed from the results of detailed sampling. The sites for inspection, sampling, and measurement are so closely spaced and the geologic character is so well defined that the size, shape, and mineral content are well established. The computed tonnage and grade are judged to be accurate within limits which are stated, and no such limit is judged to differ from the computed tonnage or grade by more than 20 percent.

Indicated ore is ore for which tonnage and grade are computed partly from specific measurements, samples, or production data and partly from projection for

American Smelting & Refining Co., Annual Report, 1957, 32 pp.
 Lake George Mining Corp., Ltd., Annual Report, 1957, 18 pp.

a reasonable distance on geologic evidence. The sites available for inspection, measurement, and sampling are too widely or otherwise inappropriately spaced to outline the ore completely or to establish its grade throughout.

Inferred ore is ore for which quantitative estimates are based largely on broad knowledge of the geologic character of the deposit and for which there are few, if any, samples or measurements. The estimates are based on an assumed continuity or repetition for which there is geologic evidence; this evidence may include comparison with deposits of similar type. Bodies that are completely concealed may be included if there is specific geologic evidence of their presence. Estimates of inferred ore should include a statement of the special limits within which the inferred ore may lie.

TABLE 27.—Estimate of world reserves of lead in measured and indicated ore January 1957, in short tons

	Lead content, tons	Per- cent of total		Lead content, tons	Per- cent of total
North America: Canada ¹	8, 033, 800 3, 525, 000 2, 910, 000 150, 000 2, 500, 000 4, 600, 000 9, 100, 000	16. 5 7. 2 6. 0 0. 3 5. 1 9. 4 18. 6	Africa: Algeria, Belgian Congo, Morocco, Northern Rho- desia, South-West Africa, and Tunisia. Asia: Burma, China, India, Iran, and Japan. Australia. Total.	3, 500, 000 2, 000, 000 12, 500, 000 48, 818, 800	7.2 4.1 25.6 100.0

¹ Source: Canada Department of Mines and Technical Surveys, Mines Branch; Memorandum Ser.,

No. 137.

² Estimate by Bureau of Mines in 1957.

³ Survey by Bureau of Mines in 1957.

TECHNOLOGY

Lead research and new developments reported in the press during the year showed the variety of effort being employed to increase the usefulness of lead. Reports were issued on the use of lead in a new-type dry cell, in ceramic colorants, in lead-corrosion inhibitors, on its effect, on the machinability of steel, in bearing metals, in compounds, in electronics, and in isotopes 21 to obtain information about the geological history of lead ores.

A lead dry-cell cylindrical battery 22 about 11/4 inches in diameter and % inch thick was developed by the Naval Ordnance Laboratory. The new battery, capable of delivering 0.9 volt, was claimed to have an indefinite shelf life in the uncharged state, and its capacity

is said not to be affected by repeated charging over long periods. Pittsburgh Corning Corp.²³ applied leaded ceramic colors to one face of glass building blocks, giving them a semigloss or satin appearance in blue, green, yellow, or coral colors. The finish is reported to be as scratch- and abrasive-resistant as the glass block, with no significant fading on long exposure to sunlight.

Russell, R. D., and Farquhar, R. M., Isotopic Constitutions and Origins of Lead Ores: Trans. AIME,
 Min. Eng., vol. 9, No. 5, May 1957, pp. 556-559.
 Wall Street Journal, New Lead Uses Reported in Dry Cell Batteries, Glass Building Blocks: Vol. 150, No. 74, Oct. 14, 1957, p. 16.
 Work eited in footnote 22.

An article 24 of interest to those concerned with copper-leadbearing corrosion discussed inhibition of such corrosion in dieselengine service. A class of inhibitors suitable for use with copperlead bearings was developed as additives for oils. Zinc organic dithiocarbamate (the organic portion of the compound is a paraffinic) with zinc organic dithiophosphate was formed to reduce the rate of formation of corrosive acids in oil, which attack the lead in the copper-lead bearings.

A new process 25 was developed for manufacturing tetraethyl lead; it converts nearly all the lead in lead acetate to tetraethyl lead, rather than only 25 percent, in the ethyl chloride-sodium-lead-alloy process. It has been found that nearly complete ethylation of lead can be accomplished by carrying out the ethylating process in the presence of cadmium acetate, ethyl iodide, and excess triethyl-aluminum.

Lead in cast steel 26 has been shown to improve the machinability of high-strength cast steel, 0.12 to 0.20 percent lead was reported to have increased the speed of machining cast steel by about 40 percent, with longer tool life and improved surface finish. Best results were achieved only when the lead was uniformly dispersed in the castings.

The Aluminum Co. of America 27 developed an aluminum-bearing alloy containing lead, cadmium, and tin, which is said to withstand loads up to 1,500 pounds per square inch for use in refrigeration

equipment, marine motors, and household equipment.

A tinning compound 28 in powder form was developed for tinning all metals before babbitting. The American Solder & Flux Co., developer of the compound, says it forms a strong and permanent chemical bond with cast iron, steel, and all metals used in bearings.

Some binary lead-compound semiconductors 29 have shown unusual capabilities in new uses. Lead telluride (white), lead selenide, and lead sulfide (black) crystals were discovered to be infrared radiation detectors, and lead sulfide now is the essential component in a system developed for the Army's Nike-Cajun rocket to measure the watervapor content of the earth's gaseous envelope. The lead sulfide function depends on its ability to control electrical energy under the influence of the sun's radiations. Lead sulfide photoconductive cells in combination with infrared light form part of another process for recording an optical-magnetic sound track on motion-picture film. The Army used the technique and CBS-News was switching to the process in 16-mm. news and documentary films.

<sup>Thomas, J. R., Harle, O. L., Richardson, W. L., and Bowman, L. O., Copper-Lead Bearing Corrosion Inhibition in Diesel Service: Ind. Eng. Chem., vol. 49, No. 10, October 1957, pp. 1703-1708.
Chemical and Engineering News, Toward Cheaper TEL: Vol. 36, No. 17, Apr. 28, 1958, p. 66.
Phillips, W. J., and Barron, D. B., Lead in Cast Steel: How Much Does Machinability Improve?: Iron Age, vol. 180, No. 7, Aug. 15, 1957, pp. 102-103.
The Northern Miner, New Aluminum-Bearing Alloy: Vol. 43, No. 51, Mar. 13, 1958, p. 11.
American Metal Market, Tinning Compound Prior to Babbitting: Vol. 64, No. 212, Nov. 1, 1957, p. 6.
Lead Industries Association, Lead, Lead Compound Semiconductors: Vol. 22, No. 1, 1958, p. 5.</sup>

LEAD 727

The Federal Bureau of Mines 30 and the Federal Geological Survey 31

published several reports relating to lead.

In 1957 the United States Patent Office 32 issued a patent for processing lead sulfide on sintering equipment, one for using of goulac and selected fractions of chestnut extract in electrodeposition of lead, one for an alloy of lead with 3 percent titanium and 3 percent copper for bonding metals to ceramics, and one for a zinc-lead alloy for fluxless soldering or welding of aluminum or zinc.

³⁰ Salsbury, M. H., Leadville Drainage Tunnel Second Project, Lake County, Colo.: Bureau of Mines Rept. of Investigations 5284, December 1956, 50 pp. Shell, H. R., Hatch, R. A., and Brown, D. L., Synthetic Asbestos Investigations, III. Synthesis and Properties of Fibrous Potassium-Lead Silicate: Bureau of Mines Rept. of Investigations 5293, January 1957,

20 pp.
Peyton, A. L., Examination of Copper-Lead-Zinc Deposits, Cabarrus and Union Counties, N. C.: Bureau of Mines Rept. of Investigations 5313, February 1957, 13 pp.
Lane, M. E., Mining Methods and Costs at the Hayden Creek Mine of St. Joseph Lead Co., St. Francois County, Mo.: Bureau of Mines Inf. Circ. 7781, April 1957, 33 pp.
Olds, E. B., and Persons, E. W., Methods and Costs of Deepening the Crescent Shaft, Bunker Hill & Sullivan Mining & Concentrating Co., Shoshone County, Idaho: Bureau of Mines Inf. Circ. 7783, March

Olds, E. B., and Persons, E. W., Methods and Costs of Deepening the Crescent Shaft, Bunker Hill & Sullivan Mining & Concentrating Co., Shoshone County, Idaho: Bureau of Mines Inf. Circ. 7783, March 1956, 19 pp.

Engel, A. L., and Heinen, H. J., Lead Precipitation-Flotation Tests of a California Copper-Gold Ore: Bureau of Mines Rept. of Investigations 5342, June 1957, 9 pp.

Jings, McClelland, and Robinson, Charles, Geology and Ore Deposits of the Garfield Quadrangle, Colo: Geol. Survey Prof. Paper 289, 1957, 110 pp.

Bodenlos, A. J., and Straczer, J. A., Base-Metal Deposits of the Cordillera Negra, Dept. de Ancash, Peru: Geol. Survey Phill. 1040, 1957, 165 pp.

Brown, C. E., Whitlow, J. W., and Crosby, P., Geology and Zinc-Lead Deposits in the Catfish Creek Area, Dubuque County, Iowa: Geol. Survey Field Study MF-116, 1957, map.

Wendeborn, Helmut, Schwartz, Werner, Maeizer, Carl-August, and Rausch, Hans (assigned to Metallgesellschaft Aktiengesellschaft, Frankfurt-am-Main, Germany), Process for Producing Lead From Lead Sulfide Containing Materials: U. S. Patent 2,797,158, June 25, 1957. A process for the production of metallic lead from materials containing lead sulfide with a content of at least 50 percent lead. Fly ssh or recycled sinter material is mixed with the lead sulfide and sintered under oxidizing-roasting conditions without addition of fuel. Oxygen obtained from lead in the sintered part of the mix compounds with sulfur to form volatile sulfur products and free lead.

Smyers, Frank C., Lantz, Grover B., Mathers, Frank C. (assigned to United States Smelting, Refining & Mining Co., Boston, Mass.), Electrolytic Refining of Lead: U. S. Patent 2,827,410, Mar. 18, 1957. A process for depositing lead in an aqueous electrolyte containing lead-fluosilicate, using 0.1 to 5.0 pounds of coulac and 3.0 to 0.1 pounds of material selected from the group consisting of water-soluble portions of chestnut extract per ton of lead deposited.

Bender, Harry (assigned to Sylvania Electric Products, Inc., Mass.), Lead Alloy

Lead and Zinc Pigments and Zinc Salts

By Arnold M. Lansche 1 and Esther B. Miller 2

RODUCTION of lead and zinc pigments and zinc salts in 1957 was adequate for all demands, and the raw materials—lead and zinc, their ores and scrap-were in surplus supply. Shipments of pigments declined despite increased activity in those industries that were the major consumers, but shipments of the two zinc salts increased.

TABLE 1.—Salient statistics of the lead 1 and zinc pigments industry of the United States, 1948-52 (average) and 1953-57

	1948-52 (average)	1953	1954	1955	1956	1957
	11					
Shipment of principal pig-		i			1	1
ments:		· ·				
White lead (dry and in oil)short tons	36, 136	26, 217	25, 571	25, 575	25, 698	23, 574
Red leaddo	31, 401	31, 333	27, 163	29, 272	27, 975	26, 998
Lithargedo	149, 807	154, 518	139, 877	148, 511	131, 525	110, 779
Black oxide 2do	71, 306	81, 831	79, 233	113, 874	106, 956	127, 583
Zinc oxidedo	142, 369	148, 627	140, 285	168, 541	154, 955	151, 267
Leaded zinc oxidedo	50,074	39, 712	33, 972	32, 661	27, 164	24, 203
Lithoponedo	97, 737	52, 439	44,011	42, 845	38, 434	(3)
Littloponedo	31, 101	02, 100	11,011	12,010	00, 101	
Value of products:						
All lead pigments.	\$78, 168, 000	\$64, 303, 000	\$61, 756, 000	\$69, 133, 000	\$67, 106, 000	\$55, 430, 000
All zinc pigments	63, 714, 000	56, 475, 000	50, 438, 000	58, 031, 000	55, 245, 000	4 47, 036, 000
All zine pigments	00, 114, 000	00, 410, 000	00, 100, 000	00,001,000	00, 210, 000	
Total	141, 882, 000	120, 778, 000	112, 194, 000	127, 164, 000	122, 351, 000	4102, 466, 000
Value per ton received by producers:						
White lead (dry)	373	378	383	392	413	416
Red lead	364	312	323	342	364	354
Litharge	346	285	303	326	346	321
Zinc oxide	266	264	255	258	271	271
Leaded zinc oxide	272	259	258	259	282	249
Lithopone	125	132	135	140	147	(8)
Littiopone	120	102	100			
Foreign trade:					Ì	l
Lead pigments:	1	ļ	i	ì	ĺ	1
Value of exports	998, 800	799, 000	872,000	976, 000	5 1, 106, 000	1,404,000
Value of imports 6	673, 600	16,000	149,000	195,000	1, 465, 000	1,896,000
Zinc pigments:	0.0,000	10,000	110,000	200,000		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Value of exports.	4, 397, 200	1, 468, 000	1, 351, 000	1,073,000	1,087,000	1, 163, 000
Value of imports	470, 800	287, 000	515,000	773,000	947, 000	1, 157, 000
value of imports	2.0,000				130,000	
Export balance	4, 251, 600	1, 964, 000	1, 559, 000	1,081,000	⁸ −219,000	-486,000

Excludes basic lead sulfate; figure withheld to avoid disclosing individual company confidential data.

Production by battery manufacturers.
 Figure withheld to avoid disclosing individual company confidential data.
 Excludes lithopone value; figure withheld to avoid disclosing individual company confidential data.

Fred Revised figure.
Includes "other lead pigments."

Commodity specialist.
 Statistical assistant.

DOMESTIC PRODUCTION

The value of reported shipments of lead and zinc pigments in 1957 excluding basic lead sulfate and zinc sulfide was \$102 million. Of the total value, lead pigments comprised 54 percent and zinc pigments, 46 percent.

Lead and zinc pigments and zinc salts manufacturers, their plants and products, were listed in Minerals Yearbook, volume 1, 1953, and subsequent changes have been noted annually in the Yearbooks.

LEAD PIGMENTS

Total shipments of lead pigments in 1957 declined about 13 percent

to 161,000 tons worth \$55.4 million.

The quantity of dry white lead shipped was down 15 percent from that of 1956, but the "in oil" variety increased 5 percent. The total 1957 white lead shipments declined 8 percent below those in 1956 and were 15 percent of the total lead pigments shipped compared with 14 percent in 1956.

Shipments of red lead and litharge declined 34 and 16 percent,

respectively.

In addition to these pigments (production and shipments are shown in table 2), 128,000 tons of black or gray suboxide of lead was manufactured by battery makers for their own use in 1957. suboxide, sometimes called a leady litharge, is used in place of litharge. Suboxide production required 124,000 tons of pig lead in 1957.

White lead, red lead, litharge, and the suboxide were made directly or indirectly from refined lead and constituted 98 percent of all lead used in pigments. The lead content of leaded zinc oxide made up the remaining 2 percent. Basic lead sulfate is not reported herein, except as it enters leaded zinc oxide; lead silicate is included with white lead.

TABLE 2.—Production and shipments of lead pigments 1 in the United States, 1956-57

		1	956		1957			
Pigment	Produc-		Shipments		Produc-	Shipments		
8	tion (short tons)	Short	Valu	ie ²	tion (short tons)	Short	Valu	ie ²
	COLLEY	tons	Total	Average	,	tons	Total	Average
White lead: Dry In oil 3 Red lead Litharge Black oxide	17, 248 7, 203 28, 612 132, 659 106, 956	17, 448 8, 250 27, 975 131, 525	\$7, 206, 668 4, 133, 509 4 10, 195, 102 45, 571, 080	\$413 501 364 346	15, 280 7, 494 27, 094 110, 303 127, 583	14, 898 8, 676 26, 998 110, 779	\$6, 193, 571 4, 072, 929 9, 566, 096 35, 597, 815	\$416 469 354 321

¹ Except for basic lead sulfate and orange mineral; figures withheld to avoid disclosing individual company confidential data.

³ At plant, exclusive of container.
3 Weight of white lead only, but value of paste.
4 Corrected figure.

TABLE 3.—Lead pigments ¹ shipped by manufacturers in the United States, 1948-52 (average) and 1953-57, in short tons

Year		White lead		Red lead	Litharge	Black
	Dry	In oil	Total			oxide ²
1948–52 (average)	21, 983	14, 153	36, 136	31, 401	149, 807	71, 300
	16, 784	9, 433	26, 217	31, 333	154, 518	81, 83
1954	17, 235	8, 336	25, 571	27, 163	139, 877	79, 23
1955	17, 858	7, 717	25, 575	29, 272	148, 511	113, 87
1956	17, 448	8, 250	25, 698	27, 975	131, 525	106, 95
	14, 898	8, 676	23, 574	26, 998	110, 779	127, 58

¹ Excludes basic lead sulfate and orange mineral; figures withheld to avoid disclosing individual company confidential data.

2 Production by battery manufacturers.

TABLE 4.—Lead content of lead and zinc pigments 1 produced by domestic manufacturers, by sources, 1956-57, in short tons

		19)56		1957				
Pigment	Lead in	pigments p from—	produced	Total lead in pig- ments	Lead in	Total			
	О	re	Pig		0	re	Pig	lead in pig- ments	
	Domestic	Foreign	lead		Domestic	Foreign	lead		
White leadRed lead			19, 560 25, 937	19, 560 25, 937			18, 219 24, 561	18, 219 24, 561	
Litharge Black oxide Leaded zinc oxide	4, 332	2, 063	123, 373 102, 494	123, 373 102, 494 6, 395	3, 231	1, 253	102, 582 124, 109	102, 582 124, 109 4, 484	
Total	4, 332	2, 063	271, 364	277, 759	3, 231	1, 253	269, 471	273, 955	

¹ Excludes lead in basic lead sulfate and orange mineral; figures withheld to avoid disclosing individual company confidential data.

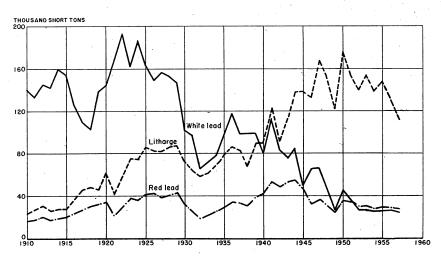


FIGURE 1.—Trends in shipments of lead pigments, 1910-57.

ZINC PIGMENTS AND SALTS

Combined shipments of the reported zinc pigments totaled about 175,000 pounds in 1957. Shipments of zinc oxide and leaded zinc oxide declined 2 and 11 percent, respectively. Shipments of zinc chloride and zinc sulfate increased 10 and 4 percent, respectively.

A mixed trend was displayed in the average values of the zinc pigments and salts as reported by producers in 1957 compared with the general advance in values in 1956 over those of 1955. Compared with 1956 values, zinc oxide remained unchanged at \$271 per ton, leaded zinc oxide declined \$33 to \$249, zinc chloride (50° B.) was up \$3 to \$127, and zinc sulfate increased \$7 to \$160.

Zinc ore, refined metal, and secondary materials—scrap metal, residues, drosses, skimmings, and zinc ashes—serve as source materials

for manufacturing zinc pigments and salts.

Lead-free zinc oxide was made by several processes; 24 percent was produced from metal by the French process, 67 percent from ores and residues by the American process, and 9 percent by "Other" processes from scrap residues and scrap materials. Zinc sulfate was made from ores and scrap; leaded zinc oxide was made from ores only. Zinc oxide production derived from metal and scrap was 34 percent in 1957 compared with 31 percent in 1956.

Zinc Oxide.—About 151,000 tons of lead-free zinc oxide was shipped—

2 percent less than in 1956.

Leaded Zinc Oxide.—Four grades of leaded zinc oxide classified according to lead content were produced in the United States. The 5- to 35-percent grade constituted the bulk of production; smaller quantities were produced as less than 5-percent grade, over 35- to 50-percent grade, and over 50-percent grade. Total shipments of leaded zinc oxide were 24,000 tons, down 11 percent from 1956. Output in 1957 (comparison with 1956 in parentheses) for the 35-percent

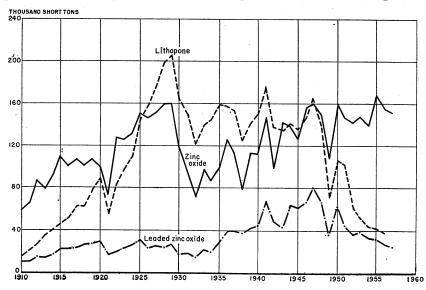


FIGURE 2.—Trends in shipments of zinc pigments, 1910-57.

lead and under was 24,800 (24,100) tons, and 1,600 (2,100) tons of over 35-percent lead.

Lithopone.—Both ordinary lithopone and the high-strength product were made in 1957.

TABLE 5.—Production and shipments of zinc pigments and salts in the United States, 1956-57

		19)56		1957				
Pigment or salt	Produc-	Shipments			Produc-	Shipments			
	tion (short tons)	Short	Value ¹		tion (short tons)	Short	Value ¹		
		tons	Total	Average		tons	Total	Average	
Zinc oxide ² Leaded zinc oxide ² Lithopone Zinc chloride, 50° B Zinc sulfate	158, 982 26, 219 36, 639 54, 503 32, 861	154, 955 27, 164 38, 434 53, 201 32, 200	\$41, 966, 858 7, 647, 169 5, 630, 991 6, 590, 815 4, 917, 073	\$271 282 147 124 153	152, 730 26, 420 (³) 61, 186 33, 752	151, 267 24, 203 (3) 58, 569 33, 620	\$41, 007, 424 6, 028, 233 (3) 7, 455, 739 5, 368, 063	\$271 249 (3) 127 160	

¹ Value at plant, exclusive of container.

TABLE 6.—Zinc pigments and salts ¹ shipped by manufacturers in the United States, 1948-52 (average) and 1953-57, in short tons

Year	Zinc oxide	Leaded zinc oxide	Lithopone	Zinc chloride (50° B.)	Zinc sulfate
1948–52 (average)	142, 369	50, 074	97, 737	60, 234	21, 720
	148, 627	39, 712	52, 439	57, 537	22, 220
	140, 285	33, 972	44, 011	48, 252	19, 027
	168, 541	32, 661	42, 845	54, 161	23, 864
	154, 955	27, 164	38, 434	53, 201	32, 200
	151, 267	24, 203	(2)	58, 569	33, 620

¹ Excludes zinc sulfide, figures withheld to avoid disclosing individual company confidential data.

² Figure withheld to avoid disclosing individual company confidential data.

TABLE 7.—Zinc content of zinc pigments 1 and salts produced by domestic manufacturers, by sources, 1956-57, in short tons

•			1956							
Pigment or salt	Zine		ents and d from—		Total zinc in	Zinc in pigments and salts produced from—				Total zinc in
	0	re	Slab	Second-	pig- ments and	Ore		Slab	Second-	pig- ments and
	Do- mestic	For- eign	zine	ary ma- terial ³	salts	Do- mestic	For- eign	zine	ary ma- terial ²	salts
Zinc oxide Leaded zinc oxide Lithopone	57, 320 9, 535 (3)	29, 831 5, 362 (³)	18, 894	21, 083	127, 128 14, 897 418, 839	61, 3 99 9, 599 (³)	19, 300 6, 334 (³)	19, 423	22, 129	122, 251 15, 933 (³)
Total pig- ments Zinc chloride Zinc sulfate	(3)	(3)	18, 894	12, 133 (³)	160, 864 12, 133 (5)	(3)	(3)	19, 423	13,873	138, 184 13, 873 11, 948

¹ Excludes zinc sulfide; figures withheld to avoid disclosing individual company confidential data.

² These figures are higher than those shown in the report on Secondary Metals—Nonferrous because they include zinc recovered from byproduct sludges, residues, etc., not classified as purchased scrap material.

² Figure withheld to avoid disclosing individual company confidential data.

⁴ Includes zinc sulfate production.

⁸ Included with lithopone.

² Zinc oxide containing 5 percent or more lead is classed as leaded zinc oxide. In this table data for leaded zinc oxide include a small quantity containing less than 5 percent lead.
3 Figure withheld to avoid disclosing individual company confidential data.

CONSUMPTION AND USES

Shipments of all lead and zinc pigments to consumers declined despite greater activity in the industries that use large quantities of pigments. This divergence of pigment shipments from the upward trend in activity of the consuming industries was attributed to reduction in consumer stocks and to increasing use of substitutes. Among the major pigment-consuming industries there were increases in the production of automobiles, trucks, and paint; the consumption of natural and synthetic rubber; and in the value of public and private construction.

The paint industry, the principal consumer received 82, 59, and 99 percent of white lead, red lead, and leaded zinc oxide, respectively; it ranked second in quantity (22 percent) of zinc oxide used and received only 6 percent of litharge (chrome pigments and in varnish) shipments. Of the total quantity of lead and zinc pigments shipped, the paint industry received 99,000 tons in 1957 compared with 101,000 tons in 1956, a decline of 2 percent (for comparability lithopone shipments are not included in the 1956 figure, which totaled 129,000 tons with it).

Titanium pigments continued to furnish the chief competition to lead and zinc pigments in paintmaking. Production and shipments of titanium pigments, based on the titanium dioxide content, decreased about 7 and 10 percent, respectively, from the high in 1956. The use of titanium pigments in paint has about doubled over the past 12 years.

Shipments of replacement automotive batteries increased 4 percent

to 25.9 million units.

The rubber industry was in first place for shipments of lead-free zinc oxide, taking 54 percent of the total. The rubber industry also took about 1,900 tons of litharge and a small quantity of leaded zinc oxide. The quantity of natural and synthetic rubber consumed for all purposes increased 2 percent.

The ceramics industry received 3 percent of the white lead, 16 percent of the litharge, and 6 percent of the lead-free zinc oxide shipped. A small quantity of red lead went to the ceramics industry.

LEAD PIGMENTS

White Lead.—Paintmaking required 82 percent of the white lead shipments in 1957 compared with 79 percent of the total in 1956. Shipments to ceramics makers furnished 3 percent of total distribution

TABLE 8.—Distribution of white lead (dry and in oil) shipments,¹ by industries, 1948-52 (average) and 1953-57, in short tons

Industry	1948-52 (average)	1953	1954	1955	1956	1957
Paints	30, 808	21, 030	20, 929	19, 825	20, 288	19, 253
	1, 341	785	487	484	633	667
	3, 987	2 4, 402	24, 155	2 5, 266	8 4, 777	3, 654
	36, 136	26, 217	25, 571	25, 575	25, 698	23, 574

¹ Excludes basic lead sulfate; figures withheld to avoid disclosing individual company confidential data.

² Includes the following tonnages for plasticizers and stabilizers: 1952—986; 1953—1, 089; 1954—1,133; 1955—

Figures for plasticizers and stabilizers withheld to avoid disclosing individual company confidential data.

in 1957. Other uses for the pigment were as plasticizers, stabilizers, base for dry colors, and unspecified purposes. A substantial part of the unspecified category belongs properly under paint.

Basic Lead Sulfate.—Substantial quantities of lead sulfate were used as an intermediate product in manufacturing leaded zinc oxide.

Red Lead.—The paint industry received 59 percent of the red lead shipped in 1957 compared with 51 percent in the previous year. The "Other" classification, consisting of storage batteries, ceramics, rubber, and unspecified uses, composed the remainder.

TABLE 9.—Distribution of red-lead shipments, by industries, 1948-52 (average) and 1953-57, in short tons

Industry	1948-52 (average)	1953	1954	1955	1956	1957
Paints Storage batteries Ceramics Other Total	12, 498 15, 003 816 3, 084 31, 401	14, 570 13, 975 1, 188 1, 600	12, 568 12, 062 1, 207 1, 326 27, 163	14, 308 11, 998 667 2, 299 29, 272	14, 331 9, 953 1, 483 2, 208	15, 993 (1) (1) 11, 005 26, 998

Included with "Other."

Orange Mineral.—This pigment was reported used in manufacturing

Litharge.—Battery makers continued to claim most of the litharge shipped to industry. The ceramics industry received 16 percent, chrome pigment manufacturers 4 percent; oil refining, varnish, and rubber obtained 3, 3, and 2 percent, respectively. The "Other" classification, composed of storage batteries, insecticides, floor coverings, driers, friction materials, lead chemicals, and unspecified uses, received 72 percent. Total shipments for all purposes declined 16 percent.

Battery makers produced 128,000 tons of leaded litharge, commonly termed black or gray suboxide, for making the paste used in filling the interstices of battery plates.

TABLE 10.—Distribution of litharge shipments, by industries, 1948-52 (average) and 1953-57, in short tons

Industry	1948-52 (average)	1953	1954	1955	1956	1957
Storage batteries	95, 017 19, 954 4, 843 9, 105 5, 921 6, 090 2, 406 599 5, 872	103, 849 20, 924 3, 915 8, 821 4, 342 2, 305 2, 230 603 7, 529	94, 656 17, 118 4, 162 4, 335 3, 775 2, 501 1, 768 596 10, 966	90, 200 24, 173 5, 206 6, 025 3, 853 3, 521 1, 947 803 12, 783	82, 041 19, 802 3, 571 3, 558 3, 523 (1) 2, 266 (1) 16, 764	(1) 18, 071 3, 227 3, 955 3, 266 (1) 1, 898 (1) 80, 362
Total	149, 807	154, 518	139, 877	148, 511	131, 525	110, 779

¹ Included with "Other."

ZINC PIGMENTS AND SALTS

Zinc Oxide.—The zinc oxide requirements of the rubber industry, the leading user of this pigment, increased about 2 percent over 1956

to 82,000 tons. The rubber industry took 54 percent of the total zinc oxide shipped. The quantity of zinc oxide shipped to the paint

industry rose less than 1 percent in 1957.

Shipments to the ceramic, coated-fabric, and floor-covering industries declined 17, 57, and 13 percent, respectively, in 1957. ments to the petroleum, agriculture, chemical, and printing industries and to dealers, who resell and export, increased 7 percent above 1956; this category received 16 percent of the zinc oxide shipped. total zinc oxide distributed was 2 percent less than in 1956.

TABLE 11.—Distribution of zinc oxide shipments, by industries, 1948-52 (average) and 1953-57, in short tons

Industry	1948-52 (average)	1953	1954	1955	1956	1957
Rubber—Paints—Ceramics—Coated fabrics and textiles ¹ —Floor coverings—Other—	73, 723 31, 408 10, 015 6, 901 3, 360 16, 962	78, 439 31, 920 8, 862 8, 718 2, 234 18, 454	71, 058 31, 157 8, 990 6, 322 1, 749 21, 009	86, 677 33, 932 10, 617 11, 263 2, 281 23, 771	80, 459 32, 485 10, 160 8, 447 1, 436 21, 968	81, 745 32, 605 8, 459 3, 623 1, 249 23, 586
Total	142, 369	148, 627	140, 285	168, 541	154, 955	151, 267

¹ Includes the following tonnages for rayon: 1953—7,388; 1954—5,603; 1955—4,584; 1956—7,721; 1957—2,838

Leaded Zinc Oxide.—Paint manufacturing used 99 percent of the leaded zinc oxide. Rubber and miscellaneous minor uses required the remainder.

TABLE 12.—Distribution of leaded zinc oxide shipments, by industries, 1948-52 (average) and 1953-57, in short tons

Industry	1948-52 (average)	1953	1954	1955	1956	1957
Paints	49, 027 135 912	39, 276 41 395	33, 690 7 275	32, 178 483	26, 825 339	23, 904 299
Total	50, 074	39, 712	33, 972	32, 661	27, 164	24, 203

TABLE 13.—Distribution of lithopone shipments, by industries, 1948–52 (average) and 1953-57, in short tons

Industry	1948-52 (average)	1953	1954	1955	1956	1957
Paint, varnish, and lacquers ¹ Coated fabrics and textiles Floor coverings Rubber Paper Printing ink Other	72, 129 6, 699 6, 346 3, 269 4, 112 } 5, 182	37, 452 5, 806 2, 575 1, 723 2, 096 { 716 2, 071	32, 177 3, 995 2, 351 1, 701 1, 841 195 1, 751	30, 522 4, 242 2, 378 2, 163 1, 970 } 1, 570	28, 238 (²) 1, 600 (²) (²) (²) 8, 596	(3)
Total	97, 737	52, 439	44, 011	42, 845	38, 434	

Includes a small quantity, not separable, used for printing ink, except in 1950, 1951, and 1952.
 Included with "Other."
 Figure withheld to avoid disclosing individual company confidential data.

Lithopone.—Lithopone was used in the paint, varnish, and lacquer industry and in coated fabrics, rubber, floor covering, paper, and

printing inks.

Zinc Chloride.—Statistics on end-use distribution of zinc chloride are not available. The principal uses of the salt were for soldering and tinning fluxes, battery making, galvanizing, vulcanizing fiber, preserving wood, refining oil, and fungicides.

Zinc Sulfate.—Rayon and agriculture were the chief consumers of the zinc sulfate, receiving 60 and 28 percent of the shipments (dry basis), respectively. The remainder was consumed in electrogal-vanizing, dyeing and printing, paint manufacturing, and other miscellaneous uses.

TABLE 14.—Distribution of zinc sulfate shipments, by industries, 1948-52 (average) and 1953-57, in short tons

Industry	1948-52 (aver- age)		53	19)5 4	19	955	19	956	19	57
	Gross weight	Gross weight	Dry basis	Gross weight	Dry basis	Gross weight	Dry basis	Gross weight	Dry basis	Gross weight	Dry basis
Rayon Agriculture Chemicals Glue Electrogalvanizing Flotation reagents Paint and varnish	9, 993 5, 236 1, 871 476 278 1, 087	9, 008 6, 773 2, 539 601 337 736	7, 612 5, 894 2, 105 501 225 648	6, 615 7, 067 2, 300 648 454 357	6, 139 1, 973 545 301 317	10, 732 8, 187 (1) (1) 258 226	9, 537 7, 089 (¹) (¹) 177 202	21, 083 7, 051 (1) (1) (1)	18, 825 6, 291 (¹) (¹) (¹)	19, 903 9, 818 (¹) (¹)	17, 785 8, 261 (¹) (¹)
processing Textile dyeing and printing Other	235 405 2, 139 21, 720	106 155 1, 965 22, 220	70 138 1, 219 18, 412	$ \begin{array}{r} 130 \\ \hline 1,452 \\ \hline 19,027 \end{array} $	114 4 1,024 16,157	(1) 4, 461 23, 864	(1) 3, 343 20, 348	(1) (1) 4, 066 32, 200	(1) (1) 3, 190 28, 306	(¹) 3,899 33,620	(¹) (¹) 3, 465 29, 511

¹ Included with "Other."

PRICES

Total and average values received by producers for lead and zinc pigments and zinc salts are shown in tables 1, 2, and 5. The average value of dry white lead increased \$3 per ton in 1957; red lead, litharge, and the in-oil variety of white lead declined \$10, \$25, and \$32 per ton, respectively. The average quoted price for common lead at New York declined from 16 cents per pound to 13 cents. The average weighted sales price of lead was 14.3 cents a pound, compared with 15.7 cents in 1956 and 14.9 cents in 1955.

The average value of zinc oxide did not change from the \$271 per ton of 1956. Leaded zinc oxide per ton was \$249 compared with \$282 in 1956. The average price per ton of zinc chloride, 50° B., and zinc sulfate increased \$3 and \$7, respectively, in 1957. The average quoted price of Prime Western zinc declined from 13.5 cents per pound to 10 cents. The average weighted sale price for all grades of zinc was 11.6 cents a pound compared with 13.7 cents in 1956.

TABLE 15.—Range of quotations on lead pigments, and zinc pigments and salts at New York (or delivered in the East), 1953–57, in cents per pound

[Oil.	Paint	and	Drug	Reporter]

Product	1953	1954	1955	1956	1957
2.234400					
White lead (basic lead carbonate), dry,	121	-			
carlots, bags Basic lead sulfate (sublimed lead), less	16. 25–17. 25	16. 00–17. 50	17. 50–18. 00	18.00-19.00	17. 50–19. 50
than carlots, bags	15. 00–15. 75	15. 75–16. 75	16. 75–17. 25	17. 25–18. 50	18. 25
than carlots, barrels	15, 75–18, 50	15. 50-18. 00	18. 00–18. 50	18. 50-20. 00	16, 25-20, 00
Orange mineral, American, less than carlots, barrels.	18. 10-20. 85	17. 85–20. 60	20. 35-21. 10	21. 10-22. 35	18.60-22.35
Litharge, commercial, powdered, less than carlots, barrelsZinc oxide:	14. 75–17. 50	14. 50–17. 00	17. 00-17. 50	17. 50–19. 00	15. 75–19. 00
American process, lead-free, bags, carlots	13. 50-14. 25	13.50	13. 50-14. 00	14. 00-14. 50	14.50
American process, 5 to 35 percent lead, bags, carlots	14. 00-14. 40	14. 00-14. 25	14. 25-14. 63	14. 63–15. 50	15. 50
French process, red seal, bags, carlots	14. 75–15. 50	14.75	14. 75–15. 25	15. 25	15. 25
French process, green seal, bags, carlotsFrench process, white seal, bags,	15. 25-16. 00	15. 25	15. 25-15. 75	15. 75	15. 75
carlots	15. 75–16. 50	15. 75	15, 75-16, 25	16. 25	16. 25
Lithopone, ordinary, less than carlots, bags	8. 25- 8. 50	8. 25- 8. 50	8. 25- 8. 50	8. 50- 8. 75	8. 75- 9. 13
Zinc sulfide, less than carlots, bags, barrels	25, 30-26, 30	25, 30	25. 30	25. 30	25. 30
Zinc chloride, works: Solution, tanks	4. 10- 4. 85	4.85		4.85-5.15	5. 15
Fused, drumsZinc sulfate, crystals, less than carlots,	9, 85–10, 85	10. 10–10. 85		10. 10–10. 70	10. 70
barrels	8. 10–10. 30	7. 90- 8. 60	8. 60-10. 60	8.60- 9.75	9. 75

¹ Includes granulated.

FOREIGN TRADE³

Imports of lead and zinc pigments and salts in 1957 increased in value and quantity 21 and 33 percent, respectively, over 1956. The value of imports was \$3.2 million compared with \$2.7 million in 1956. The value of major classes of exports was \$2.8 million, an increase of less than 1 percent over 1956.

Imports of litharge rose to 8,000 tons, about 51 percent over 1956. In 1957 litharge supplied 95 percent of the lead pigments and salts received. Lead products imported in 1957 increased 46 percent above 1956.

About 5,000 tons of zinc oxide was imported in 1957, a 43-percent increase over 1956. Total imports of all the zinc pigments and salts reported was about 7,000 tons, a 20-percent increase over 1956. Other components of the total were about 60 tons of lithopone, 340 tons of zinc sulfide, 600 tons of zinc chloride, and 700 tons of zinc sulfate. The total value of these imports increased almost 17 percent.

Litharge exports advanced to 2,500 tons, rising 25 percent over 1956. Total exports of the lead pigments and salts were nearly 4,600 tons, an increase of 6 percent.

³ Figures on imports and exports compiled by Mae B. Price and Elsie D. Jackson, Division of Foreign Activities, Bureau of Mines, from records of the U.S. Department of Commerce, Bureau of the Census.

Exports of zinc oxide increased nearly 400 tons (14 percent) to about 3,000 tons. Those of lithopone declined 400 tons (about 29 percent) to almost 1,000 tons. The quantity of zinc pigments exported was the same as in 1956, but the value rose 7 percent.

TABLE 16.—Value of foreign trade of the United States in lead and zinc pigments and salts, 1955-57

[Bureau of the Census]

Lead pigments: White lead Red lead 15,980 Red lead 174,895 174,895 18,708 30,706 60,040 133,580 147,617 24 11tharge 174,895 18,708 39,241 16,961 (3) (3) (3) (3) Total 194,526 1,464,660 1,896,587 (4) (5) (6) (7) (6) (7) (8) Zinc pigments: Zinc oxide 23,732 2156,675 211,464,660 21,443,629 21,746,621 21,621 22,526 21,621 21,621 21,621 22,526 21,725 22,526 21,735 22,526 22,526 21,735 22,526 21,735 22,526 21,735 22,526 21,735 22,526 21,735 22,526 21,735 22,526 21,735 22,526 22,526 22,526 22,526 22,526 22,526 23,528 24,735 24,617 24		Impo	rts for consu	mption	Exports			
White lead \$5,980 \$25,508 \$24,735 \$109,528 \$27 Red lead \$923 30,706 60,040 133,580 147,617 2758,978 88 Litharge 174,895 18,708 18,923 1,388,783 1,794,078 558,029 2758,978 28 Total 194,526 1 1,464,660 1,896,587 (3) (3) (3) Zinc pigments: 2inc oxide 685,186 770,156 1,043,629 771,621 846,883 98 Zinc sulfide 83,732 156,675 104,930 (3) (3) (3) (3) (3) (3) (4) (3) (3) (4) (3) (4) (3) (4) (3) (4) (4) (5) (4) (4) (4) (5) (4) (5) (4) (5) (4) (4) (4) (5) (4) (4) (4) (4) (5) (4) (4) (4) (5) (4) (4) (5)		1955	1956	1957	1955	1956	1957	
White lead. \$5,980 \$25,508 \$28,758 \$190,528 \$27 Red lead \$923 30,706 60,040 133,580 147,617 2758,978 88 Litharge. 174,895 1,887,08 39,241 16,961 558,029 2758,978 88 Total. 194,526 1,404,660 1,896,587 (3) (3) (3) (3) Zinc pigments: 2inc sulfide. 685,186 770,156 1,043,629 771,621 846,883 98 Zinc sulfide. 83,732 156,675 104,930 (4) (3) (3) (3) (3) (3) (3) (3) (4) (3) (4) (3) (4) (3) (4) (3) (4) (3) (4) (4) (4) (4) (5) (4) (5) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) </td <td>Lead pigments:</td> <td></td> <td></td> <td> </td> <td></td> <td></td> <td></td>	Lead pigments:							
Red lead \$923 30,706 60,040 133,580 147,617 24 Litharge 174,895 11,388,733 1,794,078 558,029 2758,978 88 Other lead pigments 194,526 11,464,660 1,896,587 (3) (3) (3) Zinc pigments: Zinc oxide 685,186 770,156 1,043,629 771,621 846,883 98 Zinc sulfide 83,732 156,675 104,930 (3) (3) (3) (4) (3) (4) (4) (4) (5) (4) (5) (4) (5) (4) (5) (4) (5) (4) (5) (4) (5) (4) (4) (5) (4) (5) (4) (5) (5) (4) (5) (4) (5) (4) (5) (5) (5) (4) (5) (4) (5) (4) (5) (4) (5) (4) (5) (4) (5) (4) (5) (4) (5) (5) (5) (5) (5) (5) (5) (5) (5) (4)	White lead		\$5, 980	\$25, 508	\$284, 735	\$199 528	\$273, 363	
Litharge. 174, 895 1, 388, 733 1, 794, 078 558, 029 2 758, 978 88 (3						147, 617	242, 166	
Other lead pigments 18,708 39,241 16,961 (*) (*) (*) (*) Total 194,526 1,484,660 1,896,587 (*) (*) (*) (*) Zinc pigments: 2inc sulide 685,186 770,156 1,043,629 771,621 846,883 98 Zinc sulide 83,732 156,675 104,930 (*) (*) (*) (*) (*) Lithopone 4,355 19,931 8,124 300,960 239,892 17 Total 773,273 1946,762 1,156,683 1,072,581 1,086,775 1,16 Lead and zinc salts: 216,266 215,206 575,745 23 Other lead compounds 72,089 65,610 15,003 21,181 22,874 18	Litharge			1, 794, 078			888, 586	
Zine pigments: Zine oxide Sine Other lead pigments	18, 708	39, 241	16, 961	(8)	(8)	(3)		
Zinc oxide	Total	194, 526	1 1, 464, 660	1, 896, 587	(3)	(8)	(3)	
Zinc oxide	Zinc pigments:							
Zinc sulfide. 83, 732 156, 675 104, 930 (4) (3) (2) (2) (2) (2) (3) (4) (5) (2) (4) (5) (2) (4) (5) (4) (5) (6) (7) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	Zinc oxide	685, 186	770, 156	1,043,629	771, 621	846, 883	985, 325	
Total			156, 675	104, 930			(3)	
Lead and zinc salts: Lead arsenate	Lithopone	4, 355	1 19, 931	8, 124	300, 960		177, 891	
Lead arsenate 215, 206 575, 745 231 Other lead compounds 72, 089 65, 610 15, 003 21, 181 22, 874 18	Total	773, 273	1 946, 762	1, 156, 683	1, 072, 581	1, 086, 775	1, 163, 216	
Other lead compounds 72,089 65,610 15,003 21,181 22,874 18	Lead and zinc salts:							
Other lead compounds 72,089 65,610 15,003 21,181 22,874 18					215, 206	575, 745	231, 495	
	Other lead compounds		65, 610	15,003	21, 181		18, 332	
Zinc enfortide 72, 369	Zinc arsenate				(8)	(8)	(3)	
Zinc sunate	Zinc chloride				(8)	(8)	(3)	
	Zine sunate	56, 301	84, 058	74,710	(3)	(3)	(3)	
Total	Total	202, 519	264, 940	194, 211	(3)	(8)	(3)	
Grand total 1, 170, 318 12, 676, 362 3, 247, 481 (3) (3) (3)	Grand total	1. 170. 318	1 2 676 362	3 247 481	(8)	(3)	(3)	

Owing to changes in tabulating procedures by the Bureau of the Census, data known to be not comparable to earlier years.
Revised figure.

3 Data not available.

TABLE 17.—Lead pigments and salts imported for consumption in the United States, 1948-52 (average) and 1953-57

[Bureau of the Census]

Year	White lead (basic carbon- ate)	Red lead	Litharge	Lead suboxide	Lead pigments n. s. p. f.	Lead arsenate	Other lead com- pounds	Total value
1948-52 (average) 1953 1954 1955 1956 1957	(1) 855 (1) 20 92	111 (1) 2 3 113 258	730 60 596 751 5,371 8,118	44 1 28 34 78 33	13 4 6	18	43 18 86 352 269 63	\$697, 792 22, 507 2 169, 477 266, 615 2 1, 530, 270 1, 911, 590

¹ Less than 1 ton.

² Owing to changes in tabulating procedures by the Bureau of the Census, data known to be not comparable with earlier years.

TABLE 18.—Zinc pigments and salts imported for consumption in the United States, 1948-52 (average) and 1953-57

[Bureau of the Census]

									
Year Zinc	Short tons								
	Zinc oxide		Litho-	Zine	Zinc	Zinc	Zinc	Total value	
	Dry	In oil	pone	sulfide	chloride	arsenate	sulfate		
1948–52 (average)	1, 461 1, 157 2, 348 3, 320 3, 667	2 29	404 30 65 30 143	7 23 106 265 510	243 179 260 500 632	(1) (1) (1) 17	145 46 399 634 824	\$543, 46 316, 60 2 581, 83 903, 70 2 1, 146, 09	
1957	5, 245		57	342	601		722	1, 335, 89	

1 Less than 1 ton.

TABLE 19.—Lead pigments and salts exported from the United States, 1948-52 (average) and 1953-57

[Bureau of the Census]

Year	White lead	Red lead	Litharge	Lead arsenate	Other lead com- pounds	Total value
1948–52 (average)	724 818 951 957 654 812	713 417 335 325 352 622	1, 177 1, 238 1, 284 1, 459 2, 000 2, 502	482 152 355 540 1, 282 608	(1) 12 31 33 28 17	2 \$1, 227, 48 892, 90 1, 056, 75 1, 212, 73 3 1, 704, 74 1, 653, 94

TABLE 20.—Zinc pigments exported from the United States, 1948-52 (average) and 1953-57

[Bureau of the Census]

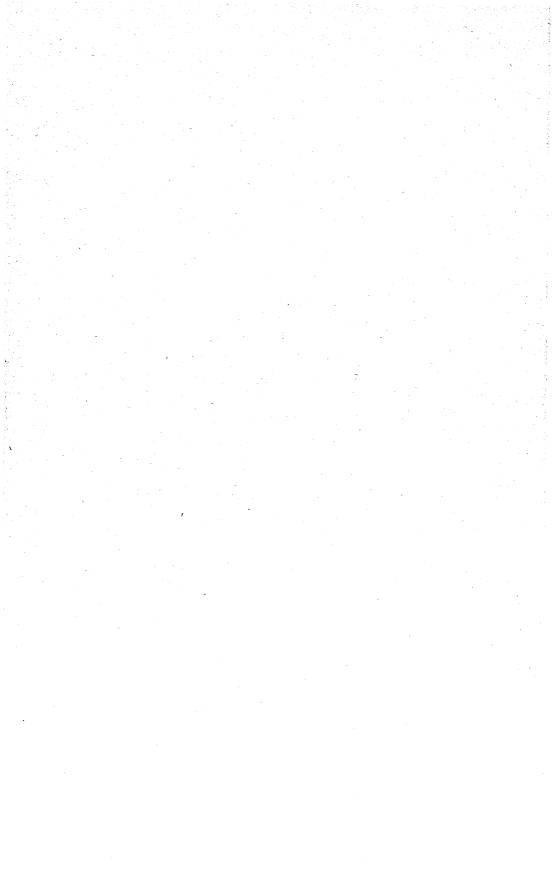
Year	Short	tons	Total	Year	Short	Total		
	Zinc Litho- oxide pone value		value		Zinc oxide	Litho- pone	value	
1948–52 (average)	6, 657 2, 971 3, 111	15, 058 3, 927 3, 013	\$4, 397, 271 1, 468, 100 1, 351, 526	1955	2, 649 2, 748 3, 144	1, 892 1, 387 991	\$1, 072, 581 1, 086, 775 1, 163, 216	

² Owing to changes in tabulating procedures by the Bureau of the Census, data known to be not comparabl with earlier years.

¹ Classification established 1949; quantity and value not included in averages.

² In addition, lead acetate and sugar of lead exported as follows: 1949—108,533 pounds, \$39,565; 1950—64,135 pounds, \$19,973; 1951—140,427 pounds, \$46,191.

³ Revised figure.


TECHNOLOGY

In 1957 the E. & E. Maier Solutier Bleimennigefabrik K. G. of Nuremberg, West Germany, was reported to have designed for sale a red-lead plant with a capacity of 1,200 pounds per hour. The plant used an electrothermal process and produced highly dispersed flaky red lead directly from metallic lead. Electric energy provided the high temperature required for evaporating the lead, which combined with oxygen to form red lead. Precipitation under controlled conden-

sation produced the desired flaky form.

Japanese scientists tested various types of paints in an effort to find which types protect metal against corrosion induced by radiation and can be easily stripped for decontamination. When irradiated, a dry film of oil paint pigmented with zinc oxide became more tacky, was higher on scratch hardness, was brittle on the drawing test, and displayed considerable flaking. The pigment in the paint appeared to give the metal good protection. A dry film of oil paint incorporating white lead subjected to the same intensity of gamma radiation increased in the scratch hardness test and did not change in the drawing or bending test; vinyl chloride paint and chlorinated rubber paint, both pigmented with white lead, decreased in the scratch hardness test; there was some tendency toward increased brittleness in the chlorinated rubber paint, and neither displayed any change in the bending test.

⁴ Terai, Ichiro, Damage to Various Films by Gamma Irradiation: Paint, Oil and Chem. Rev. vol. 121, No. 2, Jan. 23, 1958, pp. 6, 7, 9.

Lime

By C. Meade Patterson 1 and James M. Foley 2

IME ranks among the largest tonnage chemicals in the United States. It was the leading low-priced alkali in the chemical industry and entered into at least 7,000 uses. Total lime output was lower in 1957 than in 1956, owing to declining business conditions, but the growth of some uses, such as road stabilization, provided an optimistic note to the industry.

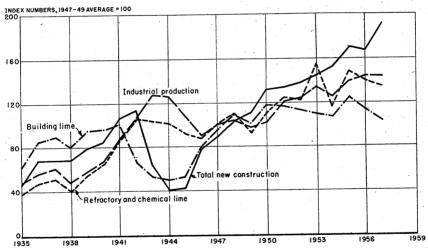


FIGURE 1.—Production of building lime compared with physical volume of total new construction, and output of refractory and chemical lime compared with industrial production, 1935-57. Units are reduced to percentages of the 1947-49 average. Statistics of new construction from U. S. Department of Commerce and on industrial production from Federal Reserve Board.

¹ Commodity specialist. ² Supervisory statistical assistant.

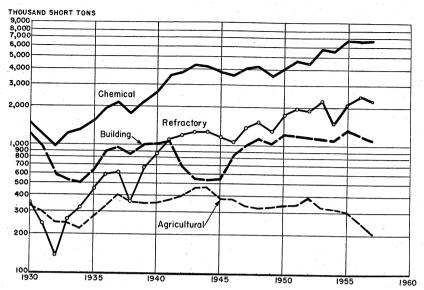


FIGURE 2.—Trends in major uses of lime, 1930-57.

TABLE 1.—Salient statistics of lime sold or used in the United States, 1948-52 (average) and 1953-57

						44.11
	1948-52 (average)	1953	1954	1955	1956	1957
Active plants	169	156	154	150	153	146
Sold or used by producers: By types:						
Quicklimeshort tons_ Hydrated limedo Dead-burned dolomitedo	3, 933, 515 1, 840, 864 1, 703, 478	2,042,100	1, 979, 895	2, 237, 753	2, 186, 247	2,080,718
Total lime: Short tons	7 477 057	0.054.700	0 000 110			
	7, 477, 857 \$83, 979, 215 \$11. 20	9, 674, 183 \$112,158,060 \$11. 59	\$101,723,102	10, 479, 928 \$127,144,035 \$12. 13	\$135,727,133	10, 274, 506 \$135,322,835 \$13. 17
short tons Total captive tonnage lime	7, 038, 909	8, 114, 396	7, 180, 159	8, 929, 803	9, 004, 139	8, 516, 132
By uses:	² 438, 948	1, 559, 787	1, 448, 960	1, 550, 125	1, 573, 157	1, 758, 374
Agricultural short tons Building do Chemical and industrial do Refractory (dead-burned dolo-	344, 103 1, 173, 401 4, 256, 875	329, 455 1, 166, 240 5, 883, 673	1, 130, 032	1, 309, 774	252, 035 1, 203, 005 6, 698, 347	208, 600 1, 101, 310 6, 713, 168
mite) short tons Imports for consumption do Exports do	1, 703, 478 32, 455 60, 351	2, 294, 815 37, 202 79, 934	36, 298	39, 616	2, 423, 909 41, 691 82, 737	2, 251, 428 49, 666 65, 195

DOMESTIC PRODUCTION

Lime production in 1957 declined 3 percent from the alltime high of 1956 to 10.3 million short tons. The loss was entirely in openmarket sales. Captive output rose 12 percent. Seventeen percent of the total lime production was captive in 1957 compared with 15

Selling value, f. o. b. plant, excluding cost of containers.
 Incomplete figures; before 1953 the coverage of captive plants was incomplete.

percent in 1955 and in 1956. All major use categories showed slight

to moderate declines compared with 1956.

At the end of 1957 some lime plants were operating at only 65percent capacity; others, virtually at full capacity, and nationwide, at 80-percent capacity. In areas where the steel industry was the principal consumer, lime production was expected to continue at about 75 percent of capacity into 1958.3

Lime production was widespread. It was produced by 33 States and 2 Territories in 1957. Ohio, Missouri, and Pennsylvania, in descending order, remained the 3 leading lime-producing States, furnishing 53 percent of the national output. The States ranking next in lime production during 1957, in descending order, were Texas. Illinois, Alabama, Virginia, and California.

Large tonnages of lime entered interstate commerce. Most lime shipped in 1957 came from the following lime-producing States, in

decreasing order: Ohio, Missouri, Pennsylvania, and Virginia.

When Chemical Lime Co. began operating its new \$2 million lime plant 5 miles north of Baker in October, Oregon had commercial lime production for the first time since 1952. The company plans to produce 75,000 tons of high-calcium lime a year from 2 rotary kilns. Chemical-grade lime, pulverized quicklime, and regular and superfine hydrated lime will be used in acetylene manufacture, steel production, nickel smelting, paper manufacturing, water treatment, adhesives, insecticides, and building materials.4

Gaspro, Ltd., rebuilt its lime plant at its Waianae, Hawaii, quarry site 30 miles from Honolulu at the end of 1957. Major improvements included modernizing the rotary kilns and installing new wet dust

collectors.5

Woodville Lime Products Co., Toledo, Ohio, one of the largest of all independent lime manufacturers marketing building, agricultural, and industrial lime, announced that modern equipment was being added and facilities were undergoing changes intended to improve quality and efficiency.6

Edna Bay Pure Stone Co., Dallas, Tex., announced plans for constructing a \$5-million limestone and lime-processing plant at Van-

couver, Wash., to produce 300 tons per day.

Linwood Stone Products Co., Linwood, Iowa, produced pebble quicklime for water treatment, carbide manufacture, and steel-furnace flux and hydrated lime for water treatment, chemical uses, and masonry. Its 175-foot rotary kiln was gas-fired, except in winter when coal was used. To make hydrated lime, pebble lime was crushed, fed to a 6-ton-per-hour continuous hydrator, and then pulverized.8

³ Oil, Paint and Drug Reporter, vol. 173, No. 4, Jan. 27, 1958, p. 33.

4 Mining Engineering, Chemical Lime Co. Plant in Baker, Oreg.: Vol. 10, No. 2, February 1958, pp. 216-218; Utley, H. F., Chemical Lime Company. First Large Scale Commerical Lime Producer in Oregon: Pit and Quarry, vol. 50, No. 6, December 1957, pp. 144-145, 150; Chemical Engineering, vol. 64, No. 12, December 1957, p. 170; Rock Products (Industry News), vol. 60, No. 12, December 1957, p. 33.

8 National Lime Association, Limeographs: Vol. 24, February 1958, p. 65.

9 Pit and Quarry, vol. 50, No. 8, February 1958, p. 35.

7 National Lime Association, Limeographs: Vol. 23, April 1957, p. 86.

8 Trauffer, Walter E., Iowa's Rotary Kiln Lime Plant: Pit and Quarry, vol. 49, No. 11, May 1957, pp. 101-104, 156.

TABLE 2.—Lime (quick, hydrated, and dead-burned dolomite) sold or used by producers in the United States, 1956-57, by States

· · · · · · · · · · · · · · · · · · ·						
		1956	,		1957	
State or Territory	Active plants	Short tons	Value	Active	Short tons	Value
Alabama Arizona Arkansas California Colorado Connecticut Florida Hawaii Illinois Indiana Louisiana Maine Maryland Massachusetts Michigan Minnesota Misouri Montana Nevada New Jersey New Mexico New Yerk Ohio Oklahoma Oregon Pennsylvania Puerto Rico South Dakota Tennessee Texas Utah Virginia Washington West Virginia Westorica Westorica Washington West Virginia Wisconin	9 4 4 2 5 5 1 2 1 6 6 1 1 1 1 1 1 5 5 3 3 3 1 6 2 2 3 1 1 3 3 8 1 1 2 7 2 1 1 3 9 9 3 2 1 1 1 5 8	466, 399 126, 876 (1) 302, 479 39, 748 39, 542 9, 555 (1) 80 (1) 11, 997 52, 604 134, 248 (1) 1, 481, 611 (1) 30, 771 2, 995, 320 (1) 1, 443, 430 (1) 1, 443, 430 (1) 1, 443, 430 (1) 1, 443, 430 (1) 124, 592 592, 136 55, 110 (1) 512, 346 (1) (1)	\$5, 088, 695 1, 755, 774 (1) 5, 077, 951 609, 202 490, 086 305, 709 (2) 960 (1) 179, 162 580, 928 2, 093, 195 (1) 15, 813, 573 (1) 372, 641 1, 029, 496 40, 804, 580 (1) 18, 282, 135 (1) 1, 436, 200 6, 397, 951 8, 297, 772 (1) 5, 925, 915 (1) (1)	9 9 5 2 2 5 5 1 1 1 1 2 1 6 6 2 3 3 1 1 2 2 3 3 1 1 2 2 3 2 1 1 3 3 3 1 1 1 2 2 3 2 1 1 3 1 0 1 5 5 1 0 1 5 5	553, 552 138, 221 (1) 325, 309 2, 500 30, 341 (1) 8, 469 (1) (1) (1) (1) (1) (1) (1) (1)	\$6, 271, 495 2, 126, 708 2, 126, 708 407, 588 45, 500 503, 295 (1) 270, 686 (1) (1) (2) 2, 232, 731 (1) 16, 475, 404 (1) (290, 231 38, 383, 106 (1) 18, 405, 823 (1) 1, 134, 221 7, 488, 795 821, 293 (6, 029, 142
Undistributed 1	153	2, 071, 715	28, 112, 708	146	2, 146, 915 10, 274, 506	29, 436, 817 135, 322, 835

 $^{^{\}rm 1}$ Figures withheld to avoid disclosing individual company confidential data. $^{\rm 2}$ Estimated by Bureau of Mines.

TABLE 3.—Lime sold or used by producers in the United States, 1956-57, by types and major uses

y Vojekovski se se se se		1956	3			195	7		Change
	Sold	Used	Total	Percent of total	Sold	Used	Total	Per- cent of total	from 1956, percent
By type:									
Quicklime Hydrated lime	7, 047, 079 1, 957, 060	1, 343, 970 229, 187	8, 391, 049 2, 186, 247	79 21	6, 650, 584 1, 865, 548	1, 543, 204 215, 170	8, 193, 788 2, 080, 718	80 20	-2 -5
Total lime	9, 004, 139	1, 573, 157	10,577,296	100	8, 516, 132	1, 758, 374	10,274,506	100	8
By use:									
Agricultural: Quicklime Hydrated lime	96, 049 155, 857				69, 382 139, 218		69, 382 139, 218		-28 -11
Total	251, 906	129	252, 035	2	208, 600		208, 600	2	-17
Building: Quicklime Hydrated lime	123, 918 1, 009, 465		178, 808 1, 024, 197	2 10				1 10	-21 -6
Total	1, 133, 383	69, 622	1, 203, 005	12	1, 037, 689	63, 621	1, 101, 310	11	-8
Chemical and other industrial: Quicklime Hydrated lime	4, 425, 146 791, 738	1, 267, 057 214, 406	5, 692, 203 1, 006, 144				5, 730, 904 982, 264	56 9	
Total	5, 216, 884	1, 481, 463	6, 698, 347	63	5, 038, 134	1, 675, 034	6, 713, 168	65	(2)
Refractory (dead-burned dolomite)	2, 401, 966	21, 943	2, 423, 909	23	2, 231, 709	19, 719	2, 251, 428	22	-7

Includes Hawaii and Puerto Rico.
 Less than 1 percent.

TABLE 4.—Distribution of lime (including refractory) plants, 1955-57, according to size of production 1

	-	1955			1956		1957			
Size group (short tons)		Production			Production				Production	
	Plants	Short tons	Percent of total	Plants	Short tons	Percent of total	Plants	Short tons	Percent of total	
Less than 1,000	10 20 14 22 33 22 29	4, 855 53, 585 95, 335 386, 119 1, 285, 061 1, 641, 229 7, 013, 744 10, 479, 928	(2) 1 4 12 16 67		5, 041 48, 401 86, 652 405, 379 1, 109, 215 2, 004, 186 6, 918, 422	1 4 11 19 65		5, 698 46, 800 75, 879 492, 269 998, 243 1, 885, 062 6, 770, 555	(2) 1 5 10 18 66	

Includes captive tonnage.
 Less than 1 percent.

TABLE 5.—Hydrated lime sold or used by producers in the United States, 1956-57, by States, in short tons

			1956			1	957	
State or Territory	Active plants	Open- market	Captive	Total	Active plants	Open- market	Captive	Total
Alabama California Hawaii Illinois Maryland Massachusetts Missouri Ohio Pennsylvania Tennessee Texas Virginia Other States ² Undistributed	55 1 4 33 35 14 16 36 8 32	(1) (2) (2) (12, 798 (1) 227, 164 (1) 294, 404 29, 057 (1) (1) 399, 937 984, 190	(1) (1) (1) (1) (1) (1) (4), 830 164, 357	73,078 35,521 9,510 (2) 112,798 64,077 227,164 680,011 294,404 29,057 242,443 53,417 464,767	5 5 1 4 2 3 4 14 14 3 5 9 31	(1) 36, 309 8, 466 (1) (1) (20, 662 615, 363 276, 693 (1) 97, 156 57, 337 307, 028 246, 534	(1) (1) (1) (1) (1) 4, 924 1, 102 (1) 139, 812 60, 161 9, 171	(1) 36, 30(8, 466 (1) (1) (65, 077 220, 662 620, 283 277, 795 (1) 236, 968 57, 337 367, 188
Total	105	1, 957, 060	229, 187	2, 186, 247	100	1, 865, 548	215, 170	2, 080, 71

¹ Figures withheld to avoid disclosing individual company confidential data; included with "Undistributed."

Frouted."

2 Includes the following States and number of plants in 1957 (1956 same as 1957 unless shown differently in parentheses): Arizona 2, Arkansas 1, Colorado 1 (1957 only), Connecticut 1, Florida 1, Illinois 4, Iowa 1, Maine 1, Michigan 1, Minnesota 1, Montana 1, Nevada 3, New Jersey 1, New Mexico 1, New York 2, Oklahoma 1, Oregon 1 (1957 only), Puerto Rico 1, Utah 2, Vermont 1, Washington 1 (1956 only), West Virginia 3 (4), and Wisconsin 4 (5).

CONSUMPTION AND USES

Sixty-five percent of total lime produced in 1957 was consumed by chemical and industrial plants; 22 percent was used as a refractory material in metallurgical processes; 11 percent was used by the building trades; and 2 percent was employed in liming land.

Quicklime and hydrated lime (excluding refractory lime or deadburned dolomite) were used in three major fields—chemical and industrial processes, building trades, and agriculture. Of the total sold or used by producers in 1957, 84 percent was employed in chemical and industrial applications, 14 percent in building and construction, and 2 percent in agriculture. The corresponding 1956 percentages were, 82, 15, and 3, respectively.

Most captive tonnage was consumed in chemical and industrial plants. Eighty percent of open-market lime (excluding refractory lime or dead-burned dolomite) entered chemical and industrial uses; 17 percent was employed in building and construction; and 3 percent in agriculture. Dead-burned dolomite or refractory lime was used for metallurgical furnace linings.

Moderate to substantial gains were made in the quantities of lime used in concentrating ore, treating sewage and trade wastes, and in manufacturing glue, rubber, precipitated calcium carbonate, and refractory silica brick. Lime used in purifying gas and in manufacturing coke byproducts, glass, paper, paint, steel, insecticides, fungicides, disinfectants, sand-lime brick, and slag brick declined. Other chemical and industrial uses of lime remained about the same in 1957 as in 1956. Table 11 compares the use of lime in soil conditioning in 1957 with the following competitive liming materials: Crushed shell, pulverized limestone, calcareous marl, and blast-furnace slag.

TABLE 6.—Lime (quick and hydrated) sold by producers in the United States in 1957, by districts 1 and by types

State or Terrifore	Agricultural	ltural	Building	ling	Chemical and industrial	and other	Refractory	ctory	Total	.a.l
Crosses to page	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value
District 1: Connecticut, Maine, Massachusetts, and Vermont. District 2 and 3: Maryland, New Jersey, New	(6)	(e)		(e)	(a)	(3)	100 466	000 040 36	(3)	(2)
York, Pennsylvania, and West Virginia. District 4: Virginia. District 5: Onlo.	127, 423 25, 230 34, 931	\$1,708,950 354,287 481,809	126, 587 4, 333 510, 052	\$2, 092, 408 51, 995 9, 049, 380	1, 094, 494 480, 653 917, 827	\$14, 809, 250 5, 622, 860 8, 410, 762	1,300,318	20, 441, 155	2, 763, 128	6, 029, 142 6, 029, 142 38, 383, 106
District 7: Illinois, and that part of Missouri east of the 93d meridian.	1		50,026	942, 432	1, 285, 396	15, 380, 872	530, 267	8, 510, 960	1, 865, 689	24, 834, 264
Districts 6, 8, and 9: Iowa, Michigan, Minnesota, South Dakota, and Wisconsin	2	8	8	©	360, 144	4, 755, 497			403, 701	5, 382, 436
Districts 10 and 11: Alabama, Florida, and Ten- nessee	•	3	86, 129	982, 265	596, 846	6, 869, 423	£	€	685, 812	7, 888, 623
District 12: Arkansas, Oklahoma, Louislana, and that part of Missouri west of the 93d meridian. District 13: Tersa	300	2,950	(2) 51, 510	(2) 594, 081	(*) 744, 584	(2) 6, 891, 764			602, 144 796, 394	6, 570, 578 7, 488, 795
Districts 14 and 15: Arizona, California, Montana, Nevada, New Mexico, Utah, Oregon, and Colorado	<u>©</u>	8)	104, 211	1, 663, 139	566, 254	8, 021, 541	8	€	752, 769	11, 224, 913
Noncontiguous territories: Hawaii			1, 535	52, 989	6, 934	217, 697	1	1	8, 469	270, 686
Puerto Rico	20,716	309, 730	166, 927	2, 619, 728	660,036	7, 565, 732	83,042	1, 546, 421	199, 879	3, 266, 926
Total	208, 600	2, 857, 726	1, 101, 310	18, 048, 477	6, 713, 168	78, 545, 398	2, 251, 428	35, 871, 234	10, 274, 506	135, 322, 835

1 The districting is the same as that used by the National Lime Association. Non-lime-producing States are omitted. Figures withheld to avoid disclosing individual company confidential data.

TABLE 7.—Lime (quick, hydrated, and dead-burned dolomite) sold or used by producers in the United States, 1956-57, by uses, in short tons

		1956			1957	
Use	Open- market	Captive	Total	Open- market	Captive	Total
Agriculture	251, 90	12	252, 03	208, 60	0	208, 600
Building: Finishing lime Mason's lime Other (including masonry mortars)	441, 224 31, 737	2 5, 28 4 5, 98 7 58, 35	447, 20	7 503, 103 4 437, 82 4 96, 75	4 6,52	444, 353
Total	1, 133, 383	69, 622	1, 203, 00	1, 037, 68	63, 62	1, 101, 310
Chemical and other industrial: Alkalies (ammonium, potassium and sodium compounds) Asphalts and other bitumens Bleach, liquid and powder 2	3, 151	894, 228	897, 379	13, 490	843, 932	857, 422 (1)
Brick, salica (refractory)	16, 789 22, 548	100	781 696	25, 158 739, 877	50	14, 525 25, 208
Calcium carbide and cyanamide Calcium carbonate (precipitated) Coke and gas (gas purification and plant byproducts) Explosives. Food and food byproducts Glassworks Glue Grease, lubricating	31, 500 5, 314 28, 231 287, 924 2, 808		28, 231 287 924	4, 563 5, 230 259, 300 3, 668		18, 922 4, 563 5, 230 259, 300 3, 668
Grease, lubricating Insecticides, fungicides, and disinfectants Medicines and drugs Metallurgy:	i i		/	15, 222		13, 222 62, 998 (1)
Nonferrous smelter flux Steel (open-hearth and electric- furnace flux) Ore concentration ³ Wire drawing Other ⁵ Oil drilling Paints	12, 820 130, 504 18, 248	342, 178	542, 893 4 12, 820 130, 504 18, 248 22, 555	16, 317		1, 462, 617 569, 381 12, 818 125, 202 16, 317 15, 249
Petrochemicals (glycol) Petroleum refining Rubber manufacture Salt refining Seways and trade-wastes treatment	(1) 110, 945 35, 841	(1) (1) 	857, 254 110, 945 35, 841 2, 487 (1) 108, 688	(1) (1) (1) 35, 834 2, 799 (1) 123, 048		817, 466 (1) 35, 834 2, 799 (1)
Suga and rat. Sugar refining. Tanneries. Varnish. Water purification	(1) (1) 74, 905	(1)	(1) 36, 433 74, 905	(1) 30, 033 70, 397	7, 067	123, 103 (¹) 37, 100 70, 397
Undistributed 6 Unspecified	638, 456 41, 050, 637 191, 847	23, 904 70, 804 379	662, 360 4 205, 199 192, 226	1, 097, 001 164, 833	23, 850 (1) 119, 839 169, 900	664, 354 (1) 384, 125 334, 733
Total	5, 216, 884	1, 481, 463	6, 698, 347	5, 038, 134	1, 675, 034	6, 713, 168
Refractory lime (dead-burned dolomite)	2, 401, 966	21, 943	2, 423, 909	2, 231, 709	19, 719	2, 251, 428
Grand total lime	9, 004, 139	1, 573, 157	10, 577, 296	8, 516, 132	1, 758, 374	

Included with "Undistributed" and "Total" columns to avoid disclosing individual company confidential data.
 Bleach used in paper mills excluded from "Bleach" and included with "Paper mills."
 Includes flotation, cyanidation, bauxite purification, and magnesium manufacture.
 Revised figure.
 Includes barium and vanadium processing, cupola, gold recovery, and unspecified metallurgical uses.
 Includes alcohol, asphalt, medicine and drugs, magnesium products, paints, paper mills, polishing compounds, retarder, salt soap, and fat, sugar, sulfur, varnish, and miscellaneous industrial uses.

TABLE 8.—Lime (quick, hydrated, and dead-burned dolomite) sold or used by producers in the United States, 1956-57, by major uses

		1956			1957	
Use	Short	Valu	ıe ²	Short	Valu	ie ²
	tons	Total	Average	tons	Total	Average
Agricultural	252, 035	\$3, 082, 509	\$12.23	208, 600	\$2,857,726	\$13. 70
Building: Finishing lime Mason's lime Other (including masonry mortars)	665, 707 447, 204 90,094	11, 634, 025 6, 296, 199 1, 026, 516	17. 48 14. 08 11. 39	507, 508 444, 353 149, 449	9, 152, 826 6, 976, 493 1, 919, 158	18 03 15.70 12.84
Total building	1, 203, 005	18, 956, 740	15. 76	1, 101, 310	18, 048, 477	16. 39
Chemical and industrial uses Refractory (dead-burned dolomite)_	6, 698, 347 2, 423, 909	75, 942, 536 37, 745, 348	11. 34 15. 57	6, 713, 168 2, 251, 428	78, 545, 398 35, 871, 234	11. 70 15. 93
Grand total lime	10, 577, 296	135, 727, 133	12.83	10, 274, 506	135, 322, 835	13. 17

TABLE 9.—Quicklime sold or used by producers in the United States, 1956-57, by uses, in short tons

		1956			1957	
Use	Open- market	Captive	Total	Open- market	Captive	Total
AgricultureBullding	96, 049 123, 918	80 54, 890	96, 029 178, 808	69, 382 98, 529	43, 545	69, 385 142, 074
Chemical and industrial: Bleach, liquid and powder Brick, sand-lime and slag Brick, silica Coke and gas Food products. Insecticides, fungicides, and disinfectants Metallurgy Paints Paper mills Petroleum Sewage and trade-waste treatment Sugar refining Tanneries Water purification Undistributed 2 Unspecified	2,454 (1) 10,904 17,909 1,631,920 (1) 12,673 61,945 (1) 28,858	(¹) (¹) 	6, 779 2, 454 (1) 10, 904 17, 909 2, 060, 397 7, 041 805, 370 12, 673 64, 469 15, 254 28, 858 426, 612 2, 101, 393 132, 090	4, 775 2, 188 (1) 1, 476 15, 466 1, 592, 851 (1) (1) 12, 414 72, 400 5, 820 23, 930 389, 532 2, 018, 761 111, 351	455, 905 (1)	4, 77; 2, 23; (1) 1, 476 2, 048, 75; 4, 000 774, 28; 12, 41- 72, 42- 12, 88; 23, 93; 413, 14; 2, 063, 82; 281, 25
Total			5, 692, 203	4, 250, 964	1, 479, 940	5, 730, 90
Refractory lime (dead-burned dolomite) Grand total quicklime			2, 423, 909 8, 391, 049	2, 231, 709 6, 650, 584	19,719	2, 251, 42 8, 193, 78

Included with "Undistributed" to avoid disclosing individual company confidential data.
 Includes alkalies, calcium carbide, cement products, glass, glue, grease (lubricating), medicines and drugs, oil-well drilling, petrochemicals, rubber, and miscellaneous industrial uses.

Includes Hawaii and Puerto Rico.
 Selling value, f. o. b. plant, excluding cost of container.

TABLE 10.—Hydrated lime sold or used by producers in the United States, 1956-57, by uses, in short tons

		1956			1957	
Use	Open- market	Captive	Total	Open- market	Captive	Total
Agricultural Building	155, 857 1, 009, 465	49 14, 732	155, 906 1, 024, 197	139, 218 939, 160	20, 076	139, 218 959, 236
Chemical and industrial: Bleach, liquid and powder						
Brick, sand-lime and slag Brick, silica Coke and gas Food products Insecticides, fungicides, and dis- infectants Metallurgy Paints Paper mills Petroleum Sewage and trade-waste treatment Sugar refining Tameries Water purification Undistributed 3	10, 110 20, 094 (1) 17, 327 52, 160 2 61, 640 (1) (1) 23, 168	61, 047 (1) (1) 	20, 094 (1) 17, 327 52, 160 2 122, 687 15, 514 51, 884 23, 168 44, 219 21, 179 46, 047	9, 750 22, 970 (1) 3, 754 47, 532 66, 826 (1) (1) 23, 420 50, 648 24, 213 46, 467 250, 972 187, 136	54, 436 (1) (1) (1) 240 140, 418	9, 750 22, 970 (1) 3, 754 47, 532 121, 262 11, 243 43, 178 23, 420 50, 648 24, 213 46, 467 251, 212 273, 133
Unspecified	(1)	(1)	60, 136	53, 482		53, 482
Total	791, 738	214, 406	1, 006, 144	787, 170	195, 094	982, 264
Grand total hydrated lime	1, 957, 060	229, 187	2, 186, 247	1, 865, 548	215, 170	2, 080, 718

¹ Included with "Undistributed" to avoid disclosing individual company confidential data.

TABLE 11.—Lime and other calcareous materials sold or used for conditioning soil in the United States, 1956-57

		1956			1957	
Calcareous material	Short tons	Valu	le	Short tons	Valu	ıe
		Total	Average		Total	Average
Lime (agricultural): Quick Hydrated	96, 1 2 9 155, 906	} \$3,082,509	\$12.23	69, 382 139, 218	}\$2, 857, 726	\$13, 70
Total lime	252, 035	3, 082, 509	12. 23	208, 600	2, 857, 726	13.70
Limestone Shell ² Marl Blast-furnace slag	19, 864, 045 591, 000 285, 653 77, 043	32, 087, 185 825, 000 214, 562 112, 742	1. 62 1. 40 . 75 1. 46	18, 941, 235 591, 000 264, 841 68, 643	31, 397, 800 825, 000 158, 527 107, 148	1. 66 1. 40 . 60 1. 56
Grand total	21, 069, 776	36, 321, 998	1.72	20, 074, 319	35, 346, 201	1.76

 $^{^1}$ Owing to changes in tabulating procedures, data are not comparable with previous years. 2 1956–57 average figures to conceal confidential data.

Revised figure.

3 Includes alkalies, calcium carbide, cement products, coke and gas, glass, glue, grease (lubricating), medicines and drugs, oil well drilling, petrochemicals, rubber, and miscellaneous industrial uses.

TABLE 12.—Apparent consumption of lime sold and used in continental United States in 1957, by States, in short tons

			<u> </u>			
State	Sales by	Shipments	Shipments	Apparent c	onsumption	
	producers	from State 1	into State	Quicklime	Hydrated lime	Total
Alabama	FE0 FE0	044 055	11 404	001 147	00.014	000 001
AlabamaArizona	553, 552 138, 221	244, 655 15, 838	11, 464 8, 340	291, 147 120, 030	29, 214 10, 693	320, 361 130, 723
Arkansas	(2)	(2)	(2)	76, 621	6,879	83, 500
California	325, 309	4, 544	105, 044	335, 002	90, 807	425, 809
Colorado.	2, 500	1,000	41, 375	28, 818	14, 057	42,875
Connecticut	30, 341	30, 341	31, 045	9, 226	21, 819	31, 045
Delaware	30, 341	30, 511	57, 925	50, 597	7, 328	57, 925
District of Columbia			6, 446	200	6, 246	6, 446
Florida.			(2)	114, 417	78, 940	193, 357
Georgia	()		113, 243	84, 750	28, 493	113, 243
Idaho			10, 979	9, 224	1, 755	10, 979
Illinois		(2)	(2)	426, 965	160, 133	587, 098
Indiana		(7)	521, 868	481, 926	39, 942	521, 868
Iowa.		(2)	(2)	82, 388	18, 408	100, 796
Kansas		()	53, 032	32, 970	20, 062	53, 032
Kentucky			564, 222	541, 921	22, 301	564, 222
Louisiana	(2)		(2)	325, 723	66, 381	392, 104
Maine			(2)	92, 216	13, 419	105, 635
Maryland	(2)	(2)	<u>}2</u> 5	121, 508	23, 399	144, 907
Maryland Massachusetts	137, 284	(2) 80, 129	40, 676	46, 995	50, 836	97, 831
Michigan	(2)	(2)	(2)	312, 741	64, 642	377, 383
Minnesota	(2)	(2)	(2)	85, 833	23, 613	109, 446
Minnesota	()		48, 904	42, 049	6, 855	48, 904
Missouri	1, 392, 780	1, 179, 793	24, 410	183, 824	53, 573	237, 397
Montana	(2)	(2)	(2)	61, 338	3, 961	65, 299
Nebraska			ìí, 131	3, 632	7, 499	11, 131
Nevada	(2)	(3)	(2)	113	32, 941	33, 054
New Hampshire			ìź, 980	5, 669	7, 311	12, 980
New Jersey	(2)	(2)	(2)	42, 380	101, 649	144, 029
New Mexico	23, 986	1	34, 271	29, 561	28, 696	58, 257
New York	(2)	(2)	(2)	199, 422	130, 929	330, 351
North Carolina	L	l	92 245	58, 036	34, 209	92, 245
North Dakota			7, 788	5, 577	2, 211	7, 788
Ohio		1, 560, 062	2 86, 739	1, 344, 631	145, 174	1, 489, 805
Oklahoma	(2)	(2)	(2) (2)	59, 130	11, 781	70, 911
Oregon.			(2)	38, 669	10, 134	48, 803
Pennsylvania	1, 298, 401	478, 667	693, 252	1, 293, 059	219, 927	1, 512, 986
Rhode Island			18, 517	9, 555	8, 962	18, 517
South Carolina			12, 469	5, 827	6,642	12, 469
South Dakota	(2)		(2)	9, 929	1, 437	11,366
Tennessee	93, 650	73, 455	54, 740	49, 793	25, 142	74, 935
Texas	796, 394	98, 309	50, 104	662, 412	85, 777	748, 189
Utah	53, 360	4,449	36, 437	59, 364	25, 984	85, 348
Vermont		(2)	(2)	7	1,645	1,652
Virginia	510, 216	414, 777	37, 396	87, 998	44, 837	132, 835
Washington			32, 783	23, 840	8, 943	32, 783
West Virginia	(2)	(2) (2)	(2)	205, 385	28, 438	233, 823
Wisconsin	(2)	(²)	(2)	96, 369	49, 261	145, 630
Wyoming			3, 011	163	2,848	3,011
Undistributed 2	2, 137, 939	1, 004, 503	2, 045, 708			
Total	10, 257, 061	5, 190, 522	5, 068, 544	8, 248, 950	1, 886, 133	10, 135, 083
10001	10, 201, 001	0, 130, 022	0, 000, 044	0, 210, 000	1,000,100	10, 100, 000
	L	l			l	L

¹ Includes 139,423 tons exported or unclassified as to destination.

² Figures withheld to avoid disclosing individual company confidential data; included with "Undistributed."

PRICES

The average price for quicklime and hydrated lime in 1957, f. o. b. plant, excluding cost of container, was \$13.17 compared with \$12.83 in 1956. The trend in prices over a period of years is shown in figure 3.

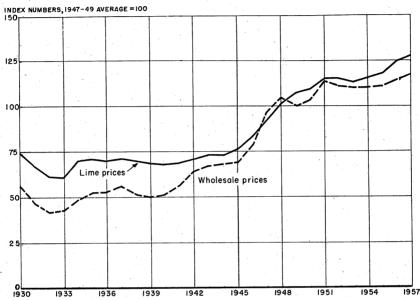


Figure 3.—Average price of lime per ton compared with wholesale prices of all commodities, 1930-57. Units are reduced to percentages of the 1947-49 average. Wholesale prices from U. S. Department of Labor.

Oil, Paint and Drug Reporter 9 quoted the following:

Type:	Price, Jan. 1, 1957	Price Dec. 31, 1957
Quicklime (or chem-	\$20.46 per ton, becoming \$20.82 Feb. 11,	\$22. 13
ical lime).	1957, to Sept. 2, 1957, afterwards.	
Hydrated lime	\$21.96 per ton, becoming \$22.32, Feb. 11,	\$23. 63
	1957, to Sept. 2, 1957, afterwards.	
Spray	\$25.96 per ton (bags), becoming \$26.32,	\$27.63
	Feb. 11, 1957, to Sept. 2, 1957, after-	
	wards.	

FOREIGN TRADE 10

Imports.—Lime imports received by the United States in 1957 were relatively small as usual—only 49,666 short tons, including dead-burned dolomite. They reached an alltime high, however—19 percent above the previous record of 1956. All 1957 imports of lime came from Canada, entering border States from New England to Washington.

Exports.—During 1957 lime exports went to more than 25 countries in all continents but fell to 65,195 short tons, 21 percent below the

Oil, Paint and Drug Reporter: Vol. 171, Nos. 1-27; vol. 172, Nos. 1-27, Jan. 7-Dec. 30, 1957.
 Figures on imports and exports compiled by Mae B. Price and Elsie D. Jackson, Division of Foreign Activities, Bureau of Mines, from records of the U. S. Department of Commerce, Bureau of the Census.

record high of 1956. As usual, lime exports exceeded imports, but only by a much reduced margin of 31 percent. Exports of lime were less in 1957 than in any year since 1952. In descending order, five North American countries—Canada, Honduras, Costa Rica, Panama, and Mexico—received 90 percent of all exported lime.

TABLE 13.—Lime imported for consumption in the United States, 1948-52 (average) and 1953-57

[Bureau of the Census]

Year	Hydrat	ed lime	Othe	r lime	Dead-l dolor	burned nite 1	To	tal
	Short tons 2	Value	Short tons 2	Value	Short tons 2	Value	Short tons 3	Value
1948–52 (average) 1953 1954 1955 1966 1957	1, 406 2, 177 1, 259 1, 359 757 245	\$26, 568 30, 944 17, 326 17, 983 12, 312 4, 603	28, 691 31, 149 30, 613 30, 264 31, 903 39, 002	\$480, 737 506, 704 537, 676 559, 216 549, 290 687, 421	2, 358 3, 876 4, 426 7, 993 9, 031 10, 419	\$100, 504 259, 427 344, 665 557, 554 586, 754 639, 741	32, 455 37, 202 36, 298 39, 616 41, 691 49, 666	\$607, 809 797, 075 899, 667 1, 134, 753 1, 148, 356 1, 331, 765

¹ "Dead-burned basic refractory material consisting chiefly of magnesia and lime."
³ Includes weight of immediate container.

TABLE 14.—Lime imported for consumption in the United States, 1955-57, by countries and customs districts 1

		_		
Bureau	Λf	tha	Concine	ľ

	19	55	19	56	198	57
Country and customs district	Short tons 2	Value	Short tons 2	Value	Short tons 3	Value
North America: Canada:						
Buffalo Duluth and Superior	1, 880 108	\$23, 063 1, 874	153	\$2,075	438	\$5, 16
Maine and New Hampshire Montana and Idaho	166	2,062	270	3, 704	124 615	1, 88 10, 84
St. Lawrence Vermont Washington	1 31 28, 676	3 468 542, 925	1, 120 31, 053	15, 330 539, 920	630 37, 440	8, 81 665, 31
Total Canada	30, 862 761	570, 395 6, 804	32, 596 64	561, 029 573	39, 247	692, 02
Total North America	31, 623	577, 199	32, 660	561, 602	39, 247	692, 02
Grand total	31, 623	⁸ 577, 199	32, 660	561, 602	39, 247	692, 02

TABLE 15.—Lime exported from the United States, 1948-52 (average) and 1953-57 [Bureau of the Census]

Year	Short tons	Value	Year	Short tons	Value
1948-52 (average)	60, 351	\$988, 634	1955	82, 461	\$1, 464, 036
	79, 934	1, 422, 238	1956	82, 737	1, 546, 127
	78, 246	1, 299, 681	1967	65, 195	1, 328, 575

Exclusive of dead-burned basic refractory material.
 Includes weight of immediate container.
 Owing to changes in tabulating procedures by the Bureau of the Census, data known to be not comparable with other years.

TABLE 16.—Lime exported from the United States, 1955-57, by countries of destination

[Bureau of the Census]

Destination	1955		1956		1957	
	Short	Value	Short	Value	Short	Value
	tons		tons		tons	
North America:						
Canada	45, 542	\$730, 837	55, 031	\$945, 686	35, 677	\$653, 40
Costa Rica	11, 588	218, 814	7, 410	148, 234	7, 285	153, 89
Cuba	295	6, 310	61	2, 450	.,	200,00
Dominican Republic	406	11, 090	457	10, 552	288	9. 99
El Salvador	118	2, 990	20,	20.002	232	20, 97
Honduras	10.648	201, 068	9, 144	194, 487	8, 998	189, 45
Mexico	2, 502	54, 641	2,074	50, 055	2, 240	63. 48
Netherlands Antilles	150	2, 920	2,074	7, 132	150	3. 45
		5, 680	267	4. 081		
Nicaragua.	7 000				483	11, 75
Panama Other North America	7,029	140, 684	3. 446	70, 632	4, 471	93, 91
Other North America	121	2, 973	71	2, 535	160	6, 00
Total	78, 699	1, 378, 007	78. 201	1, 435, 844	59, 984	1, 206, 32
South America:						
Chile			. 3	541	245	8.60
Colombia	2, 926	59, 639	4,060	91, 860	4.396	78, 22
Peru	2, 320	00,000	4,000	81,000	122	4, 40
Vanazuola	505	11, 140	92	2, 445	25	7, 10
VenezuelaOther South America	50	2, 265	55	2, 980	82	2, 73
Other South America	30	2, 200	- 55	4, 900	- 02	2, 10
Total	3, 481	73, 044	4, 210	97, 826	4,870	94, 69
Europe		1, 236	25	743	25	82
Asia:						
Indonesia.					18	2, 04
Japan	16	2,000	8	1, 186	34	3, 95
Korea, Republic of	10	2,000		1, 100	128	13. 38
Nansei and Nanpo Islands	123	3, 810			128	13, 30
Nansei and Ivanpo Islands	123	3, 810	88	2, 412		
Pakistan			125	4,025	25	95
Philippines	94	2.204	50	1, 160		
Thailand					50	2,00
Other Asia	5	212	15	2, 380	25	1,58
Total	238	8, 226	286	11, 163	280	23, 91
Africa	21	2,083	200	11,100	36	2, 81
)ceania	9	1.440	15	551	30	ري ري
		1, 110		501		
Grand total	82, 461	1, 464, 036	82, 737	1, 546, 127	65, 195	1, 328, 57

WORLD REVIEW

NORTH AMERICA

British West Indies.—Lime production in the Bahama Islands totaled about 4,800 short tons valued at US\$36,367 in 1956. 11

Canada.—The industrial growth of Canada has been reflected in a steadily increasing lime production. The 1956 output was 300 per-

cent greater than that of 1926.12

All Provinces except Prince Edward Island have limestone deposits suitable for lime manufacture. Dolomitic and high-calcium limes were produced in Manitoba, New Brunswick, and Ontario. High-calcium lime only was produced in Alberta, British Columbia, and Quebec. Quicklime production in 1955 totaled 995,639 short tons valued at Can\$12,221,541 (Can\$12.28 per ton average) and hydrated lime production, 335,479 short tons at Can\$3,589,363 (Can\$10.70)

¹¹ Bureau of Mines, Mineral Trade Notes: Vol. 45, No. 1, July 1957, p. 30,
12 Dominion Bureau of Statistics (Industry and Merchandising Division, Mineral Statistics Section,
Ottawa), General Review of the Mining Industry, 1956: 1958, pp. A-8, A-9.
12 Western Miner and Oil Review, vol. 30, No. 10, October 1957, p. 49.

757 LIME

per ton average). 14 Quicklime production in 1956 was 947,316 short tons valued at Can\$11,852,860 (Can\$12.51 per ton average) and for hydrated lime, 348,383 short tons at Can\$3,814,738 (Can\$10.95 per ton average). Preliminary figures placed 1957 production of all lime at 1,379,871 short tons valued at Can\$16,563,493.16

TABLE 17.—Lime (quick and hydrated) sold or used by producers in Canada 1955-56, by Provinces

[Dominion	Bureau	of	Statistics	

Province	19	955	1956		
	Short tons	Value	Short tons	Value	
Alberta	38, 335 56, 362 57, 510 18, 861 698, 245 461, 805	Can\$553, 526 1, 115, 591 886, 901 385, 979 8, 420, 382 4, 448, 525	41, 309 45, 536 64, 286 18, 432 673, 357 452, 779	Can\$624, 066 803, 205 1, 066, 704 408, 335 8, 258, 85 4, 506, 436	
Total	1, 331, 118	\$15, 810, 904	1, 295, 699	\$15, 667, 59	

Although high-calcium limestone low in impurities and of good white color for chemical uses is relatively scarce in Canada, facilities for producing chemical lime continued to expand. North American Cyanamid, Ltd., announced plans for a 300-ton-per-day plant near Beachville, Ontario.17 A new use for substantial quantities of lime was in the treatment of uranium ores in the Blind River and Bancroft, Ontario, areas. A new \$150,000 lime-distributing system was put into operation by United Steel Corp., Ltd., Toronto, for supplying Northspan Uranium Mines, Ltd., in the area surrounding Spanish Junction, Northern Ontario. This was considered to be the forerunner of similar systems in the Northern Ontario uranium field.18

The lime industry in Canada was concentrated in Ontario, Quebec, and Manitoba. Thirty-eight plants with 140 kilns, including 18 rotary kilns, operated in Canada in 1956. Limestone used in manufacturing lime reached 2,274,211 short tons in 1955 and an estimated 2,272,500 tons in 1956. Almost all of the lime that Canada imported in 1957 came from the United States. Canada exported 36,184 short tons of lime valued at Can\$741,969 in 1957; virtually the entire quantity was shipped to the United States; 5 tons valued at Can\$165 went to St. Pierre.²²

¹⁴ Dominion Bureau of Statistics (Industry and Merchandising Division, Mineral Statistics Section, Ottawa), Preliminary Report on Mineral Production, 1956: 1957, pp. 7, 10-11, 14-15, 42.

15 Dominion Bureau of Statistics (Industry and Merchandising Division, Mineral Statistics Section, Ottawa), The Lime Industry, 1956: 1957, 8 pp.

16 Dominion Bureau of Statistics (Ottawa), Preliminary Estimate of Canada's Mineral Production for 1957: Jan. 2, 1958, p. 3; Northern Miner (Toronto), vol. 43, No. 27, Sept. 26, 1957, p. 16.

17 Chemical Week, vol. 80, No. 16, Apr. 20, 1957, p. 35.

18 Precambrian, vol. 30, No. 10, October 1957, p. 92.

19 Woodrooffe, H. M., Lime in Canada, 1956 (Prelim.): Canada Dept. of Mines and Tech. Surveys, Ind. Min. Div., Ottawa, Bull. 42, 1957, 6 pp.

20 Woodrooffe, H. M., Limestone (General) in Canada, 1956 (Prelim.): Canada Dept. of Mines and Tech. Surveys, Ind. Min. Div., Ottawa, Bull. 43, 1957, p. 2.

21 Dominion Bureau of Statistics (International Trade Division, External Trade Section, Ottawa), Trade of Canada, Imports, 1957: 1958, p. 151.

22 Dominion Bureau of Statistics (International Trade Division, External Trade Section, Ottawa), Trade of Canada, Exports, 1957: 1958, p. 142.

Winnipeg Fuel & Supply Co., Winnipeg, Manitoba, a lime producer, became actively interested in the lime stabilization of roads in Western Canada.23

SOUTH AMERICA

Peru.—Preliminary 1956 figures 24 showed lime production totaled 53,814 short tons. Use in agriculture totaled 8,956 tons; in chemical and industrial applications, 11,133 tons; in construction, 20,117 tons; and in mineral concentration, 13,608 tons. Output of lime, excluding lime used in cement manufacture, totaled 132,577 tons in 1955, 94,843 tons in 1954, and 92,842 tons in 1953.

EUROPE

Belgium.—A traveling-grate-kiln system planned for Chaux de Meuse was expected to produce 170 to 200 tons of lime a day.25 traveling grate affords good heat transfer, low dust loss, and nonsegregation of pelletized raw feed.

Norway.—Two large, unusual kilns, suitable for alternate or combination firing with either fuel oil, carbide furnace gas, or coke by

the mixed-feed principle, were planned.26

Sweden.-In March 1957 the Swedish lime industry consisted of about 80 plants producing 660,000 short tons annually; 25 percent of which was building lime.²⁷ A vertical kiln at Limhamn near Malmö, Sweden, burned a hard chalk, which did not disintegrate as readily as most Scandinavian limes. Oil-firing was tried, but the

operators returned to firing with producer gas.²⁸

United Kingdom.—Chalk, Lime, and Allied Industries Research
Association was organized in February 1955 to aid British firms producing or marketing lime, chalk, or their products. In June 1957 there were more than 30 members from the lime and sand-lime brick industries. Their new laboratories at Welwyn, England, conducted research on lime uses in building and highway construction and in sand-lime brick manufacture. Fundamental research on lime calcination and hydration was planned.29

ASIA

Philippines.—The Portland Cement Co. at Buena Vista, Guimaras Island, produced about 125 short tons of hydrated lime monthly for sale to sugar centrals.30

AFRICA

Belgian Congo.—In 1956 lime production totaled 107,070 short tons with an estimated value of \$1,554,000.31

<sup>National Lime Association, Limeographs: Vol. 23, May 1957, p. 102.
Bureau of Mines, Mineral Trade Notes: Vol. 46, No. 1, January 1958, p. 27.
Rock Products, vol. 60, No. 12, December 1957, p. 113.
Azbe, Victor J., Lime Around the World: Rock Products, vol. 60, February 1958, p. 172.
National Lime Association, Limeographs: Vol. 23, March 1957, p. 82.
Knibbs, N. V. S., Scandinavian Experience With Heavy Oil as a Fuel in Shaft Lime Kilns: Pit and Quarry, vol. 49, No. 11, May 1957, pp. 116-118, 120.
Chemical Trade Journal & Chemical Engineer (London), vol. 141, No. 3658, July 12, 1957, p. 112; Chem. and Ind. (London), No. 24, June 15, 1957, p. 751.
U. S. Embassy, Manila, Philippines, State Department Dispatch 384, Oct. 22, 1957, p. 17.
U. S. Consulate, Elisabethville, Belgian Congo, State Department Dispatch 8, Encl. No. 1, Dec. 8, 1957.</sup>

LIME 759

Rhodesia and Nyasaland, Federation of.—In 1956 Southern Rhodesia imported 24,000 tons of hydrated lime from South Africa. The two new Rhodesia Cement Co. lime plants at Colleen Bawn near Gwanda and at Shamva were expected to produce enough hydrated lime to meet all the needs of the Federation of Rhodesia and Nyasaland by the end of 1957. The Colleen Bawn lime plant, largest in the Federation, had a vertical kiln that produced 25 tons per day of hydrated, air-separated lime. The Shamva lime plant opened August 23, 1957, to supply hydrated-lime needs in the Salisbury district.32

South-West Africa.—Lime production in 1956 increased 212 per-

cent-5,674 short tons compared with 1,821 tons in 1955.33

Tanganyika.—Although the value of lime produced in 1956 remained virtually the same as in 1955, increasing slightly from \$55,412 to \$55,485, total export and domestic lime tonnages declined 12 percent. Exports in 1956 were 862 short tons valued at \$9,733 compared with 1,053 short tons valued at \$11,640 in 1955. Local sales were 4,845 short tons valued at \$45,752 in 1956, whereas they were 5,397 short tons valued at \$43,772 in 1955.34

Uganda.—Production of hydrated lime totaled 9,247 short tons in 1956, showing a marked increase from 1,609 short tons in 1955, 454

tons in 1954, and 644 tons in 1953.35

Union of South Africa.—Union Lime Co., Ltd., produced 867,186 tons of lime and limestone in the year ending June 30, 1957, approximately 10 times its 1946 production of 87,430 tons. Two additional kilns and a duplication of the primary crushing and sorting section

were planned for the next fiscal year's operation.³⁶

Production of lime and limestone totaled 7,232,657 short tons in 1956 compared with 7,248,932 tons in 1955. Lime and limestone exports increased from 4,403 short tons valued at \$43,344 in 1955 to 5,635 tons valued at \$63,386 in 1956. Lime exports in 1956 to Rhodesia totaled 2,936 tons or 52 percent; to Portuguese East Africa, 2,438 tons or 43 percent; to Kenya, 240 tons or 4 percent; and to Mauritius and Belgian Congo, 21 tons or less than 1 percent.³⁷

OCEANIA

Australia.—There have been very few lime plants in Australia. October 1957 a survey was undertaken under the auspices of Hydrated Lime, Ltd., Adelaide, South Australia, and the South Australian Geological Survey Bureau to find limestone deposits suitable for calcining. Many samples were collected, a testing laboratory was set up, and a new oil-fired plant was planned.38

³² South African Mining and Engineering Journal (Johannesburg), vol. 68, No. 3343, Mar. 8, 1957, p. 431; Chem. Age (London), Rhodesian Lime Production: Vol. 78, No. 1991, Sept. 7, 1957, p. 364.

33 Bureau of Mines, Mineral Trade Notes: Vol. 45, No. 3, September 1957, p. 27.

34 Bureau of Mines, Mineral Trade Notes: Vol. 45, No. 4, October 1957, p. 39.

35 Work cited in footnote 34.

36 Menell, S. G., Union Lime Company, Ltd.: South African Min. and Eng. Jour. (Johannesburg), vol. 68, No. 3380, pt. 2, Nov. 22, 1957, pp. 684-685.

37 Work cited in footnote 33, pp. 27-28.

38 Asbe, Victor J., Lime Around the World: Rock Products, vol. 61, No. 2, February 1958, pp. 110-112, 172.

TECHNOLOGY

Patents.—Lime patents fell into two principal categories: (1) Patents relating to lime manufacture; (2) patents involving lime uses. Technological improvements in lime manufacturing were intended to conserve fuel, regulate and conserve heat, control dust, increase kiln efficiency, extend refractory life, apply FluoSolids techniques, improve product quality, increase production, reduce costs, and save

manpower by automatic controls.

A method and apparatus for calcining finely divided limestone or any other solid material was patented.³⁹ Limestone is kept in a fluidized state during both the pre-heating and heat-processing stages. To conserve heat, a process was patented 40 whereby the heat from a fluidized bed of pulverized limestone being calcined is utilized in preheating aerially suspended fresh material. To control accurately the flow of fluidized-lime particles from bins to kilns and bagging machines, a feed regulator was patented.41

Aqueous limestone suspensions must be dewatered and dried before calcination, so kiln capacity will be increased and fuel requirements decreased. A patent for an apparatus to predry slurries was A rotary drum was designed to improve heat economy and to minimize dust formation during drying, calcining, and cooling

by high-velocity, circulating gases.43

Efforts were directed toward better kiln design. A vertical-shaft kiln, in which crushed limestone, or other raw material, was to be deflected to flow around a central burner in its upper section, was patented. The burner and burning chamber were arranged to permit combustion at an equal rate throughout the kiln cross section, thus producing uniformly burned lime and avoiding undue deterioration of refractory lining at inlet points. Another means of controlling calcination in vertical limekilns was patented. 45 Local overheating, which results in the formation of undesirable hard-burned or vitrified lime, was counteracted by a new method of recirculating waste gases.

A new device for air-cooling burned lime was patented.46 Thin, successive layers of lime spread on a partially inclined and stepped rotating platform expose a large surface area to the atmosphere for heat loss through radiation. A sanitary lime for treating garbage and other wastes may be produced by a recently patented process.47 Hydrated lime may be manufactured by a new method.48 calcium quicklime is continuously hydrated with water at atmospheric pressure and at a temperature not exceeding 80° C. The hydrated-

³⁹ Bradford, J. H. (one-half assigned to Combined Metals Reduction Corp., Utah), Method of Heat Processing Finely Divided Materials and Furnace Therefor: U. S. Patent 2,782,018, Feb. 19, 1957.
40 Knibbs, N. V. S., and Thyer, E. G. S. (assigned to Fawkham Developments, Ltd., London, England), Heat Treatment of Finely-Divided Solids: U. S. Patent 2,812,592, Nov. 12, 1957.
41 Krauss, W. (assigned to Fuller Co., Catasauqua, Pa.), Material Feed Regulator: U. S. Patent 2,802,698,

⁴¹ Krauss, W. (assigned to Fuller Co., Catasauqua, Pa.), Material Feed Regulator: U. S. Patent 2,802,608, Aug. 13, 1957.

42 Gordon, C. W., Apparatus for Drying Material Slurry and Introducing Into a Kiln Which Calcines or Otherwise Treats It: U. S. Patent 2,812,934, Nov. 12, 1957.

43 Simon, J., and Kiesbauer, J., Rotary Drum Apparatus for Gaseous Treatment of Divided Material: U. S. Patent 2,809,024, Oct. 8, 1957.

44 Pooley, H., and Parker, L. D. (assigned to Vickers-Armstrongs, Ltd., London, England), Shaft Kilns: U. S. Patent 2,788,961, Apr. 16, 1957.

45 Vogel, R. B. (assigned to The National Lime & Stone Co., Findlay, Ohio), Lime Kiln: U. S. Patent 2,784,956, Mar. 12, 1957.

46 Vreeland, G. W. (assigned to Kaiser Steel Corp., Oakland, Calif.), Cooling Device: U. S. Patent 2,792,924, May 21, 1957.

47 Cheronis, H. D., Treatment of Garbage and Other Wastes: U. S. Patent 2,793,973, May 28, 1957.

48 Locke, R. S., Lawson, R. B., and Green, H. C. (assigned to Diamond Springs Lime Co., California), Lime Process: U. S. Patent 2,784,062, Mar. 5, 1957.

lime putty formed contains 10 to 15 percent free moisture. It is continuously, mechanically agitated while being exposed to a circulating gas heated between 370° and 425° C. The dried hydrate is then.

ground in tube mills at temperatures below 100° C.

Some 1957 patents involved lime uses. Continuous circulation of an oil-well drilling mud composed of lime (or portland cement), an amine-treated bentonite, and a hydrocarbon was expected to form a stable filter cake on the borehole walls. Lime, exceeding the amount that combines with the drilling-mud clay, forms the base of lowwater-loss drilling muds; the water-loss inhibitor being either karaya gum 50 or ground Irish moss. 51 A new role for hydrated lime in the building industry was that of an ingredient in a casein adhesive used for cementing layers of gypsum wallboard into laminated wall and partition structures.⁵² Lime may be used as an ingredient with graphite, magnesium chloride, magnesia, and water in a patented sand-core coating.53 A thick slurry of hydrated lime may be used to form a hard, resistant crust on iron-ore briquets to protect them from breakage before entering the furnace.54 After drying, the lime-coated briquets are fired above the lime-iron oxide eutectic point.

To stabilize soil in a road base, lime and fly ash may be added to the inert aggregate.55 Finely divided calcium carbonate (whiting) was produced in a patented process ⁵⁶ by suspending, heating, and moistening quicklime or hydrated lime. After the water had vaporized, the lime-particle cloud was treated with CO₂. Lime was used in a process for manufacturing terephthalamic acid derivatives.⁵⁷ A slag was formulated in France for rapidly desulfurizing cast iron. It consisted of 60 to 85 percent fluorite, 15 to 40 percent lime, and from none to 20 percent alkali halide or alkaline earth metal.⁵⁸ A patented process for recovering lithium salts from spodumene was developed for use in the Belgian Congo.⁵⁹ Crushed spodumene was heated with a lime flux to about 1,300° C. The calcined mass was cooled, finely ground, and leached with dilute acid (such as hydrochloric), at elevated

temperature and pressure, to extract a soluble lithium salt.

Calcination.—At Odda, Norway, from 1950 to 1954 a standard gas-fired, 100-ton-per-day vertical kiln, similar to that used in England and elsewhere in Europe and by Ash Grove Lime & Portland Cement Co. near Springfield, Mo., was fired by high-pressure (500 p. s. i.) atomized oil injected into recirculated kiln-exhaust gases. The lime

⁴⁹ Dírey, W. T., and Prokop, C. L. (assigned to Esso Research and Engineering Co., Elizabeth, N. J.), Method of Drilling Wells: U. S. Patent 2,776,112, Jan. 1, 1957.

30 Watkins, T. E. (assigned to Socony Mobil Oil Co., New York, N. Y.), Method of Treating Lime Base Drilling Fluids to Reduce Water Loss: U. S. Patent 2,816,071, Dec. 10, 1957.

31 Watkins, T. E. (assigned to Socony Mobil Oil Co., New York, N. Y.), Method of Reducing Water Loss of Lime Base Drilling Fluids: U. S. Patent 2,816,072, Dec. 10, 1957.

32 Nelsson, N. (assigned to United States Gypsum Co., Chicago, Ill.), Laminated Wall and Partition Structure: U. S. Patent 2,810,166, Oct. 22, 1967.

32 Waterhouse, F. L., and Zinsmeister, L. L. (assigned to Eaton Manufacturing Co., Cleveland, Ohio), Sand Core Coating Composition: U. S. Patent 2,809,117, Oct. 8, 1957.

33 Weale, J. H., and West, H. F. (assigned to Illinois Clay Products Co., Joilet, Ill.), Crust-Bearing Iron Oxide Agglomerate: U. S. Patent 2,806,777, Sept. 17, 1967.

34 Havelin, J. E., and Kahn, F., Stabilized Soil: U. S. Patent 2,815,294, Dec. 3, 1957.

35 Avedikian, S. Z., Process for Preparing Completely Carbonated Lime: U. S. Patent 2,802,719, Aug. 13, 1957.

^{**}A Vedikian, S. Z., Process for Freparing Completely Carbonace Time. C. L. Ratest Cotyl. 1957.

**Hotten, B. W. (assigned to California Research Corp., San Francisco, Calif.), Use of Lime in the Production of Monoesters of N-Alkyl Terephthalamic Acids: U. S. Patent 2,808,427, Oct. 1, 1957.

**Perrin, R., and Lamberton, J. (assigned to Societe d'Electro Chimie d'Electro-Metallurgie et des Acieries Electriques d'Ugine, Paris, France), Process for Rapidly Desulphurizing Cast Iron: U. S. Patent 2,704,730, June 4, 1957.

***Kroll, A. V. (assigned to Compagnie Geologique et Minière des Ingénieurs et Industriels Belges "Geomines" Société par Actions a Responsabilité Limitee, Manono, Belgian Congo), Method of Producing Lithium Salts From Lithium Minerals: U. S. Patent 2,793,933, May 28, 1957.

formed was too friable and created a dust problem in the recirculated gases.60 Considering the Scandinavian fuel problem, oil should be used, but it should be either gasified by partial combustion or atomized and injected into exhaust gases, so that the mixture will assume a

gaseous behaviour.

Three gas-fired, 100-ton-per-day vertical kilns, 50 by 11 feet square, were converted to oil-fired 480-ton-per-day kilns at Electro Metallurgical Co., Ashtabula, Ohio. Lime for carbide manufacture and metallurgical uses was produced. Hanging of lime to kiln walls, refractory-lining damage, and operating costs were reduced by control of increased heat input, distribution of liquid fuel across the kilns, and highest practical rate of throughput. Three transverse, watercooled. steel-burner ducts were installed at two levels.61

West End Chemical Co., Westend, Calif., installed an automatic, natural gas, 8- by 340-foot rotary kiln in 1956. Its use reversed emphasis on lime. CO₂ is usually lost in calcining or recovered as a byproduct only, but West End considered it the primary kiln product and used it for processing sodium chemicals. Bulk chemical-grade quicklime and bagged pulverized hydrated lime were only byproducts. From the feed end of the kiln CO2 was passed through 3 scrubbers, cooled to 125° F., and piped to soda-ash plant.62

Stabilization.—Annual consumption of lime for road stabilization reached 150,000 tons in 1957, according to the National Lime Association. Lime-stablized roads were reported as having withstood hurricane and floodwater damage better than connecting nonstabilized

roads in Louisiana and Texas.63

In a Milwaukee, Wis., suburb 400 bags of hydrated lime were used to stabilize the 6-inch layer of crushed bank-run clay gravel used in a 400-foot residential street.64

In constructing the Dallas-San Antonio-Laredo, Tex., interstate highway 22,000 tons of hydrated lime was used in 1957 for stabilizing

a weak, highly plastic subgrade.65

Over 3,000 tons of hydrated lime were to be used to stabilize the plastic-clay subbase of a 300-foot-wide runway, 2½ miles long, at

Bergstrom Air Force Base, Austin, Tex.66

Reuse.—National Carbide Co., Division of Air Reduction Co., announced plans for lime recovery at Louisville and Calvert City, Ky. Lime will be recovered from residues of acetylene operations for use in calcium carbide production. The two \$2-million reclamation plants will use heat and centrifuging to dewater sludge, which has accumulated at the rate of several hundred tons per day on a 70-acre tract at the Louisville plant.67

⁶⁰ Work cited in footnote 28.

<sup>Work cited in footnote 28.
Pit and Quarry, Industrial Minerals Given New Prominence: Vol. 49, No. 11, May 1957, pp. 89-90.
De Wet Erasmus, H., and Leuenberger, H., High-Capacity Vertical Kilns: Pit and Quarry, vol. 49, No. 11, May 1957, pp. 106, 154, 156.
Utley, H. F., West End Chemical's New Rotary-Kiln Lime Plant: Pit and Quarry, vol. 49, No. 11, May 1957, pp. 138-140, 142.
National Lime Association, Limeographs: Vol. 24, July-August 1957, p. 8.
Work cited in footnote 63, p. 9.
National Lime Association, Limeographs: Vol. 24, September 1957, p. 21; Roads and Streets, Lime Subgrade Stabilization on Texas Interstate Projects: Vol. 100, No. 7, July 1957, pp. 75-76, 83-84, 87, 99.
National Lime Association, Limeographs: Vol. 24, October 1957, p. 30.
Chemical and Engineering News, vol. 36, No. 1, Jan. 6, 1958, p. 33; Chemical Week, vol. 81, No. 25, Dec. 21, 1957, p. 23; vol. 82, No. 2, Jan. 11, 1958, p. 24.</sup>

763 LIME

Research.—Research sponsored by the National Lime Association at the Masonry Materials Research Laboratory, Massachusetts Institute of Technology, employed a heating microscope to observe lime shrinkage during calcination and to study the relation of shrinkage to hydration and temperature of calcination. Those quicklimes, which had high shrinkages and consequently low porosities, had lowhydration rates. Higher temperatures were found to produce higher shrinkages. A quicklime produced at a high heating rate shrank more than one produced at a low rate. Shrinkage on calcination may or may not depend upon concentrations of air and/or CO₂ in the kiln atmosphere. Sodium salts added to limestone reduced shrinkage on calcining, and shrinkage of a lime was found to vary inversely with the soda content of its parent limestone. 68

The Chalk, Lime, and Allied Industries Research Association Laboratories, Welwyn, England, investigated the analytical and physical chemistry of lime and lime products, the rheology of mortars, the structural and chemical features of soil relating to lime stabilization in highway and foundation construction, and the nature and properties of calcium silicate hydrates formed in manufacturing brick

when sand and lime are steam-treated under pressure. 69

The British Department of Scientific and Industrial Research began laboratory work to study lime reactions with various soils. Their first report, Laboratory Experiments in the Stabilization of Clays With Hydrated Lime, by K. E. Clare and A. E. Cruchley,

appeared October 1956.70

New Uses.—Acidic drainage from two nearby coal mines had lowered the pH of Lake Alma, Vinton County, Ohio, to 4.5, destroying fish life. Over a 4-year period, beginning in 1952, 5 tons of hydrated lime were added to the 72½-acre lake, raising its pH to 7.1, and fish

life was reported as thriving again.71

To prevent contamination of grazing land and resulting bone disease (fluorosis) in dairy herds, a process was introduced at the United States Steel Corp. Columbia-Geneva mill near Provo, Utah, for injecting hydrated lime dust (95 percent below 325-mesh) at the rate of 20 pounds a minute into 800° F. fluorine- and fluoride-bearing furnace gases to form calcium fluoride particles later removed by cycloning and electrostatic precipitation.72 Ninety percent of the fluorine was removed by this \$9-million installation.

<sup>Murray, James A., Shrinkage Activity as Functions of Lime Burnig Conditions: Pit and Quarry, pt. 1, vol. 49, No. 11, May 1937, pp. 122-127, 152; pt. 2, vol. 49, No. 12, June 1957, pp. 140-143.
Work cited in footnote 29.</sup>

Work cited in founde 29.

National Lime Association, Limeographs: Vol. 23, March 1957, p. 83.

Work cited in foundte 63, pp. 5-6.

Chemical Engineering, Giant Fume Catcher Stops Fluoride Emission: Vol. 65, No. 4, Feb. 24, 1958, pp. 66, 68; Eng. Min. Jour., USS Unveils \$9-Million Fluorine Plant: Vol. 159, No. 1, January 1958, p. 154.

Lithium

By Albert E. Schreck¹

ARKET development and expansion, rather than increases in production capacity, characterized the lithium industry in 1957. Some of the cloak of secrecy surrounding the industry was lifted with the announcement that the Atomic Energy Commission (AEC) was purchasing lithium hydroxide from three lithium-chemical producers. Prices of lithium carbonate and hydroxide were sharply reduced.

DOMESTIC PRODUCTION

No new firms entered the lithium picture in 1957, and no major expansion of existing facilities was undertaken. American Potash & Chemical Corp. continued producing dilithium-sodium phosphate from Searles Lake brines; Foote Mineral Co. produced spodumene from its open pit at Kings Mountain, N. C., and Maywood Chemical Works produced spodumene from its Etta mine in the Black Hills, S. Dak. Lithium Corp. of America continued to produce lithium chemicals at its Bessemer City, N. C., plant from spodumene concentrate supplied by Quebec Lithium Corp. American Lithium Chemicals, Inc., a subsidiary of American Potash & Chemical Corp. at San Antonio, Tex., processed lepidolite from Southern Rhodesia to lithium chemicals.

In addition to these major producers, the following firms produced lithium minerals in 1957: Consolidated Feldspar Corp., from the Hugo mine, Pennington County, S. Dak. (amblygonite); Bland Mining & Milling Co., from the Beecher No. 3 mine, Custer County, S. Dak. (spodumene); Walter Hough and A. L. Judson from the High Climb mine, Custer County, S. Dak. (amblygonite); the Black-Hills-Keystone Corp., from the Ingersoll mine, Pennington County, S. Dak. (lepidolite and amblygonite); and York Minerals from the Helen Beryl mine, Custer County, S. Dak. (spodumene).

TABLE 1.—Shipments of lithium ores and compounds from mines in the United States, 1948-52 (average) and 1953-57

Ore Li ₂ O				Li ₂ O			
Year	Short tons	Value	(short tons)	Year	Short tons	Value	(short tons)
1948-52 (average) 1953	9, 307 27, 240	\$617,000 2,134,000	711 1, 767	1954 1955-57	37, 830 (1)	\$3, 126, 000 (1)	2,459 (¹)

¹ Data not available.

¹ Commodity specialist.

American Potash & Chemical Corp. began commercial production of lithium metal during the latter half of 1957. Production of lithium perchlorate and lithium nitrate was also started.²

Modernization of the Foote Mineral Co. ceramic grinding unit at Cold River, N. H. (acquired in late 1956), was completed, and com-

mercial processing of Ceramic-grade petalite was begun.³

Lithium Corp. of America further expanded its lithium-metal-production facilities at the St. Louis Park, Minn., plant.

CONSUMPTION AND USES

The AEC revealed early in 1957 that it had contracts with Foote Mineral Co., Lithium Corp. of America, and American Lithium Chemicals, Inc., to purchase undisclosed quantities of lithium hydroxide. The Commission was reported to be extracting the lithium-6 isotope from the hydroxide. The residue (lithium hydroxide rich in lithium-7) was stockpiled and made available for repurchase by the suppliers. The Commission is obligated to refrain from selling, other than to the supplier, stockpiled lithium hydroxide until 10 years after termination of the contracts. In this manner the producers are protected from competition with a Government stockpile.

The leading commercial consumers of lithium compounds in 1957 were the all-purpose grease and the ceramics industries. For use in lithium-base greases lithium hydroxide is converted to the stearate. The addition of lithium stearate increases water and temperature resistance. In ceramics, lithium carbonate added to porcelain enamels for steel and aluminum coatings imparts high gloss and greater impact and acid resistance and permits thinner, more fluid coats

which can be fired at lower temperatures.

In glasses and glazes lithium reduces viscosity and improves

electrical properties and resistance to weathering.

Lithium bromide and chloride were used in industrial air-conditioning systems, and the chloride and fluoride are used in welding and brazing compounds. Lithium hydroxide was used as an additive in alkaline storage-battery electrolytes to increase output and lengthen cell life.

Lithium metal was used in alloys, as a deoxidizer, desulfurizer, and degasifier in metal manufacture, and as a catalyst in synthetic

"natural" rubber manufacture and in organic synthesis.

Research continued on use of lithium metal and compounds in high-energy chemical fuels, in lithium-aluminum and other lightweight alloys, and in many other potential applications.

PRICES

The prices of the two major lithium compounds—lithium carbonate and lithium hydroxide—were sharply reduced in 1957. The carbonate, technical grade, was quoted at \$0.82 per pound in January and reduced to \$0.77 per pound in May and to \$0.73 in November. Likewise, the hydroxide, which was quoted at \$0.80 per pound in January, was reduced to \$0.78 in May and to \$0.75 in November and

Chemical Engineering, Lithium Compounds: Vol. 64, No. 10, October 1957, p. 174.
 Foote Mineral Co., 41st Annual Report, 1956: Philadelphia, Pa., p. 5.

further reduced in the latter part of December to \$0.55 per pound. Producers believed that the reduction would stimulate the market and help increase sales to levels commensurate with production capacity.4

E&MJ Metal and Mineral Markets quoted lithium metal, 98 per-

cent pure, at \$11 to \$14 a pound.

Prices of lithium minerals were not quoted in trade journals.

TABLE 2.—Range of prices of selected lithium compounds, in 1957, in pounds [Oil, Paint and Drug Reporter]

Name of compound	January 1957	December 1957
Lithium benzoate, drums	\$1.65-\$1.67 2.45 .82 .85-1.11½	\$1. 65-\$1. 67 2. 60 1. 73
Drums, smaller lots, same basis Lithium chloride, technical, anhydrous, drums, car lots, ton lots, delivered or works, freight allowed Less than car lots, same basis Lithium hydride, powder, drums, 500-pound lots, works Lithium hydroxide monohydrate, drums, car lots, ton lots, delivered or works, freight allowed Less than car lots, same basis Lithium nitrate, technical, drums, 100-pound lots Lithium stearate, drums, car lots, works Ton lots, works Less than ton lots, works	1. 00- 1. 05 1. 05- 1. 05½ 10. 50-12. 50 .8080½ .8181½ 1. 25 .47½	. 87 . 92 9. 50 \$. 55 4. 56 1. 15– 1. 25 . 47½ . 48½

¹ Quotation changed to read "Lithium carbonate, technical, drums, car lots, ton lots, freight allowed," Nov. 11, 1957.

Nov. 11, 1957.

Nov. 11, 1957.

Nov. 11, 1957.

Nov. 11, 1957.

Nov. 11, 1957.

Nov. 11, 1957.

Quotation changed to read "drums, less than car lots, freight allowed," Nov. 11, 1957.

FOREIGN TRADE

Canada and the Federation of Rhodesia and Nyasaland continued

to be the principal sources of imported lithium minerals.

Figures on imports and exports of lithium minerals and compounds are not separately classified by the United States Department of Commerce on the import or export schedules.

WORLD REVIEW NORTH AMERICA

Canada.—An article describing and giving the location of the lithium occurrences in Canada was published.⁵ Methods for recognizing lithium minerals and evaluating deposits were discussed and

geologic features of lithium deposits described.

Quebec Lithium Corp., Canada's only lithium producer, announced plans to construct a lithium-chemical plant at Rouses Point, N. Y.6 The firm had an option on a 450-acre site near the Canadian border, due south of Montreal. Output for the firm in 1957 totaled 50,430 tons of spodumene concentrate averaging 5.1 percent lithia.

⁴ Chemical Week, Lithium Prices' Long Slide: Vol. 81, No. 25, Dec. 21, 1957, pp. 20-21.
5 Mulligan R., Lithium in Canada: Canadian Min. Jour., vol. 78, No. 4, April 1957, pp. 121-126.
6 Northern Miner (Toronto), Quebec Lithium Chooses Plant Site for New Refinery: Vol. 43, No. 30, Oct. 17, 1957 p. 1.

concentrate was valued at \$2,827,143.7 The firm operated on a 44hour week, 265-day-per-year schedule. The average hoisting rate was reported to be 1,027 tons per day, and the mill treated an average of 856 tons per day. The shaft was enlarged from 3 compartments to 5. At the close of 1957, 152 persons were employed at the mine.

American Metal Co. obtained an option to participate in a joint venture with Montgary Explorations, Ltd., to develop the latter's spodumene deposit at Bernic Lake, Manitoba; however, American Metals allowed its option to expire on November 1. Montgary has indicated that it plans to develop the operation through the lithiumchemicals stage. The ore body reportedly contains 8 million tons of ore averaging 1.85 percent lithia.8

EUROPE

U. S. S. R.—The Soviet Academy of Sciences reported that a large lithium deposit was discovered in the Kola Peninsula in northern The discovery reportedly increased the Russian European Russia. reserves "a thousandfold." 9

AFRICA

Rhodesia and Nyasaland, Federation of.—The output of lithium minerals in 1956, all from Southern Rhodesia, increased over 20,000 tons compared with 1955.

Most of the lithium exported from the Federation went to the United States, with smaller quantities to Germany, France, and the United Kingdom.

TABLE 3.—Production of lithium minerals in Southern Rhodesia, 1954-56, in short tons 1

	Туре	1954	1955	1956
Amblygonite Lepidolite Petalite Spodumene		26, 909 26, 707	180 57, 714 24, 210 50	646 84, 599 13, 524 4, 445
Total		- 54,050	82, 154	103, 214

¹ Bureau of Mines, Mineral Trade Notes: Vol. 44, No. 3, March 1957, p. 24; vol. 45, No. 3, September 1957, pp. 28, 29.

TABLE 4.—Exports of lithium ores from the Federation of Rhodesia and Nyasaland, 1956 1

Country of destination	Short tons	Value _	Country of destination	Short tons	Value
FranceGermany, WestItalyJapanNetherlands	3, 488 4, 832 40 250 633	\$49, 672 80, 125 980 5, 314 52, 237	Union of South Africa. United Kingdom. United States. Total.	5, 432 63, 470 78, 192	\$1, 932 109, 107 1, 007, 734 1, 307, 101

¹ Bureau of Mines, Mineral Trade Notes: Vol. 45, No. 3, September 1957, p. 29.

⁷ Northern Miner (Toronto), Quebec Lithium Profits Climb; Views Future With Confidence: Vol. 43, No. 44, Jan. 23, 1958, pp. 1, 8.

8 Chemical and Engineering News, vol. 35, No. 24, June 17, 1957, p. 107.

9 Oil, Paint and Drug Reporter, Boron, Lithium Deposits Unearthed in Soviet Union: Vol. 172, No. 24, Doc. 0 1087, p. 5. Dec. 9, 1957, p. 5,

South-West Africa.—Production of lithium minerals declined in 1956, but exports (composed primarily of petalite) increased. The following firms produced lithium minerals in South-West Africa in 1956: E. M. Becker, Karibib (lepidolite); M. H. C. Brockmann, Karibib (amblygonite, lepidolite); Consolidated Tin Mines, Omaruru (amblygonite); J. E. É. Huhle, Karibib (amblygonite); P. J. Human, P. O. Omaruru (amblygonite); E. E. Simon, Karibib (amblygonite, petalite); S. W. A. Lithium Mines, Windhoek (amblygonite, lepidolite, petalite); and P. Weidner, Warmbad (amblygonite).

TABLE 5.—Production of lithium minerals in South-West Africa, 1955-56, in short tons

Туре	Li ₂ O, percent	1955	1956
Amblygonite	6-8 3-3.6 3-4	1, 414 1, 832 5, 278	831 1, 139 3, 675
Total		8, 524	5, 645

TABLE 6.—Exports of lithium minerals in South-West Africa, 1955-56

	19	55	1956		
Country of destination	Short tons	Value f. o. b.	Short tons	Value f. o. b.	
Amblygonite: Netherlands	1, 107	\$140 137, 404 23, 430 7, 784	438	\$50, 610 17, 209	
United States Total	1,467	168, 758	664	67, 819	
Lepidolite: Germany	200	9, 932 32, 029 4, 900 3	301 208 56	9, 635 8, 798 1, 131	
Total	1,490	46, 864	565	19, 564	
Petalite: Belgium Germany Netherlands United Kingdom United States	22	6, 720 6, 633 448 2, 089 6, 832	165 901 2, 181 355	3, 466 21, 316 55, 580 8, 392	
Total	1, 298	22, 722	3, 602	88, 754	
Spodumene: Netherlands	(2)	8			
Grand total	4, 255	238, 352	4, 831	176, 137	

¹ Bureau of Mines, Mineral Trade Notes: Vol. 45, No. 1, July 1957, pp. 31-32. ² 416-pound sample.

Union of South Africa.—Lithium-ore output increased from 426 short tons in 1955 to 713 in 1956.

Of the total 556 tons exported, 389 tons (valued at \$24,290) went to the United States and the remaining 167 tons (valued at \$11,200) to Germany. 10

¹⁰ Bureau of Mines, Mineral Trade Notes: Vol. 45, No. 5, November 1957, p. 29.

TECHNOLOGY

An article describing Surpass Petrochemicals' new lithium-grease plant at Toronto, Canada, was published.11 It was said to be the second continuous-process plant to be built in the United States and Canada. The annual capacity of the plant was reported to be 25 million pounds. The pros and cons of continuous processing versus batch processing were discussed, and a flowsheet accompanied the article.

Half of the oil required for the grease is agitated in one of two 300-gallon slurry tanks, the tank is evacuated to deaerate the oil, and the lithium stearate and other ingredients are added. After mixing, the slurry passes to a heat-transfer unit, where the temperature is raised from 85° to 400° F. in 3 minutes. Rotating blades insure high heat transfer and provide additional mixing. The mix then passes to an agitated steel blender, where the remaining oil, heated to 190° F., is added. The oil is blended at 300° F. and agitated slowly to avoid high shear. The blended material passes through a cooling unit, where its temperature is reduced to 140° F.; here the gel formation is completed. The cooled grease is then milled, deaerated, and barreled.

Methods for identifying various lithium minerals, including their physical properties, tests for determining the presence of the element lithium, and tests for identifying specific lithium mineral species, were outlined in an article.12 The difficulties encountered in using flame tests and methods for resolving these problems were given. The author also described fusion tests for lithium minerals, differentiating lithium mineral from related minerals and identifying grains in composite samples by staining amblygonite grains, decrepitation or staining tests for spodumene, and fluorescence tests for petalite.

Several methods for recovering lithium from ores were patented. One method involves calcining spodumene to the beta form and digesting the beta spodumene with excess aqueous hydrochloric acid above 90° C. but below the boiling point of the acid for at least 10 hours. 13 The lithium in the spodumene is converted to lithium chloride, which is recovered by washing.

In another method water-soluble lithium salts are produced from silicoaluminous lithium ores by heating the ore to above about 1,050° C, cooling, and treating the calcined ore with sodium or potassium acetate between 280° and 324° C. The mass is cooled and lithium acetate extracted. The acetate can be converted to the carbonate by treating with an alkali carbonate.14

Lithium values can also be recovered from spodumene ores by converting alpha spodumene to beta spodumene, roasting the beta spodumene at 300°-700° F., with dry ammonium sulfate to convert the lithium to the sulfate. The resulting mass is leached with aqueous ammonia to recover lithium sulfate and ammonium sulfate.

¹¹ Chemical Engineering, New Grease Process Ousts Batch Kettles: Vol. 64, No. 6, June 1957, pp. 150, 152.
12 Hosking, K. F. G., Identification of Lithium Minerals: Mining Mag., vol. 96, No. 5, May 1957, pp.

¹⁴ Hosking, K. F. G., identification of Lithium Primerals: Priming Mag., vol. 90, No. 9, May 1991, pp. 271–276.

13 Reader, Lawrence, J. (assigned to Foote Mineral Co., Philadelphia, Pa.), Method of Recovering Lithium Values: U. S. Patent 2,803,518, Aug. 20, 1957.

14 Kroll, A. V. (assigned to Compagnie Géologique et Minière des Ingenieurs et Industriels Belges "Geomines" Société par Actions à Responsabilité Limitée, Manono (Belgian Congo), Brussels, Belgium), Method of Extracting Lithium From Its Silico-Aluminous Ores: U. S. Patent 2,816,007, Dec. 10, 1957.

771 LITHIUM

leach liquor is then treated to recover the lithium values. monium sulfate is recovered from the leach liquor or can be recycled. 15

In still another process silicoaluminous ores are calcined at about 1,100°-1,300° C. to a vitreous and substantially noncrystalline state. The mass is then cooled and ground. The lithium salt is next extracted by using an aqueous leach, such as hydrochloric acid, sodium chloride, potassium chloride, sodium sulfate, or others, at superatmospheric pressure and temperatures from 100°-400° C. 16

The use of lithium carbonate in a dry-powder fire-extinguishing composition was patented.¹⁷ The powder consists of a finely divided dry mixture of about 85 percent by weight of sodium bicarbonate and

about 15 percent by weight of lithium carbonate.

Alcoa Research Laboratories developed a lithium-aluminum alloy that retains its strength at higher temperatures than existing aluminum aircraft alloys. 18 The alloy reportedly stays strong up to 400° F., which means that the thermal barrier has been moved up 100° F. The density of the alloy is reported to be 3 percent less than that of alloys previously used in aircraft and has improved the modulus of elasticity of aluminum-aircraft alloys by 8 percent.

Research by the Wool Textile Research Laboratory at Geelong, Australia, indicated that lithium compounds, such as the sulfate, chloride, hydroxide, citrate, bromide, and iodide, are deadly to clothes

moths and carpet-beetle larvae. 19

The diversity of uses for lithium compounds was increased further when a patent was issued on the use of lithium carbonate in laundering.20 Soiled articles are rinsed in a solution of lithium carbonate and cold water and then washed in a regular manner. The carbonate

absorbs odors and reportedly leaves no irritating residue.

The American Lithium Institute sponsored research on lithium in various applications. A project to determine the behavior of lithium in glass was underway at Pennsylvania State University; research on lithium alloys was being conducted at Massachusetts Institute of Technology; and lithium's role as a polymerization catalyst was being investigated at Princeton University. In addition to these projects the Institute was preparing a treatise on lithium and its compounds to be published as an American Chemical Society monograph.

¹⁵ Dwyer, Thiel E. (assigned to Tholand, Inc., New York, N. Y.), Recovery of Lithium From Spodumene Ores: U. S. Patent 2,801,153, July 30, 1957.

16 Kroll, A. V. (assigned to Compagnie Géologique et Minière des Ingenieurs et Industriels Belges "Geomines" Société par Actions à Responsabilité Limitée, Manono (Belgian Congo), Method of Producing Lithium Salts from Lithium Minerals: U. S. Patent 2,793,933, May 28, 1957.

17 Sylvester, Walter G., and Anthony, Charles J. (assigned to Specialties Development Corporation, Belleville, N. J.), Fire-Extinguishing Composition and Method of Extinguishing Fires: U. S. Patent 2,776,942, Jan. 8, 1957.

18 Chemical and Engineering News, New Alloy Resists Heat: Vol. 35, No. 41, Oct. 14, 1957, p. 83.

19 McPhee, J. R., Toxicity of Lithium Salts to Keratin-digesting Insect Larvae: Nature, vol. 180, No. 4593, Nov. 9, 1957, pp. 1001-1002.

20 Melander, L. W. (one-half assigned to Ikel C. Benson), Process for Eliminating Urine Odors in Textile Materials by Applying Lithium Carbonate: U. S. Patent 2,815,260, Dec. 3, 1957.

Magnesium

By H. B. Comstock 1

PRODUCTION of magnesium in the United States in 1957, which rose 19 percent above 1956, was 48 percent of world output. In the United States consumption of magnesium fell 17 percent below 1956, and exports fell 64 percent. Research continued in 1957, both in development of magnesium alloys with improved qualities and in fabrication and use techniques. Use of light metals in the atomic

TABLE 1.—Salient statistics of magnesium, 1948-52 (average) and 1953-57

	1948-52 (average)	1953	1954	1955	1956	1957
United States: Domestic production: Primary magnesium do Imports ! do Exports do Consumption do Price 2 cents per pound World: Primary production short tons	9, 199 1, 641 797 23, 168 22, 4	93, 075 11, 930 2, 443 2, 722 46, 843 26. 6 168, 000	69, 729 8, 250 733 3, 096 39, 218 27. 0 136, 000	61, 135 10, 246 1, 844 8, 230 46, 463 29. 5 143, 000	68, 346 10, 529 630 3, 388 53, 610 33. 9 3 157, 000	81, 263 10, 658 982 1, 208 44, 442 35, 25 168, 000

Metallic and scrap.
 Magnesium ingots (99.8 percent) in carlots, f. o. b. Freeport, Tex.

8 Revised figure.

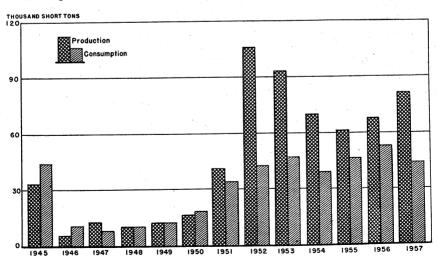


FIGURE 1.—Trends in domestic production and consumption of primary magnesium, 1945-57.

¹ Commodity specialist.

energy and missile programs promoted development of magnesium alloys with superior strength at elevated temperatures. The relatively new technique of pellet extrusion of magnesium with high compressive yield strength was in use in 1957 to produce stronger sections for military aircraft and missiles.

DOMESTIC PRODUCTION

Primary.—In 1957 output of primary magnesium in the United States was 81,263 tons—the highest yearly production since 1953. Dow Chemical Co. operated its electrolytic plant at Freeport, Tex., and the Government-owned electrolytic plant at Velasco, Tex., which it had leased since 1951. On November 4, 1957, Dow purchased the Velasco plant.²

Nelco Metals, Inc., continued to produce magnesium and calcium in the Government-owned silicothermic plant at Canaan, Conn.

Titanium Metals Corp. of America reported a decrease below 1956 of the quantity of magnesium it recycled as an integrated operation with its production of titanium at Henderson, Nev.

TABLE 2.—Production of primary magnesium in the United States, 1948-52 (average) and 1953-57, by months, in short tons

	Month	1948-52 (average)	1953	1954	1955	1956	1957
February March A pril May June July August September October		2, 435 2, 426 2, 720 2, 712 2, 809 2, 815 3, 127 3, 274 3, 203 3, 534 4, 023	9, 908 9, 078 10, 352 9, 751 9, 116 7, 286 6, 207 6, 266 6, 076 6, 341 6, 227 6, 467	6, 447 5, 856 6, 545 6, 204 6, 460 6, 191 6, 049 5, 772 5, 325 5, 149 4, 942 4, 789	5, 090 4, 647 4, 942 1, 859 4, 277 4, 757 5, 112 5, 881 5, 923 6, 287 6, 130 6, 230	6, 337 5, 908 6, 347 6, 081 6, 359 6, 098 1, 136 3, 314 6, 735 6, 818 7, 085	7, 39 6, 61 7, 38 7, 22 7, 22 6, 77 7, 18 6, 48 6, 46 5, 99 5, 82
Total		 36, 813	93, 075	69, 729	61, 135	68, 346	81, 20

Secondary.—Secondary magnesium recovered from scrap in 1957 was 10,658 tons, 129 tons above 1956. This slight increase resulted from the use of a larger quantity of aluminum scrap containing magnesium. As in 1956, the three largest uses of secondary magnesium were in magnesium and aluminum alloys and anodes for cathodic protection. Of the total 9,518 tons of magnesium scrap consumed, 94 tons was used in magnesium castings, 5,249 in magnesium-alloy ingot, 497 in aluminum alloys, 53 in other alloys and chemicals, and 3,625 in anodes for cathodic protection. Although consumption of wrought magnesium scrap rose 66 percent, no secondary magnesium was reported used in wrought products. Use of magnesium turnings and cast scrap fell 16 and 7 percent, respectively, below 1956.

² American Metal Market, Dow Chemical Co. Buys Magnesium Plant From Government: Vol. 65, No. 214, Nov. 5, 1957, pp. 1, 9.

TABLE 3.—Magnesium recovered from scrap processed in the United States. 1956-57, in short tons 1

Recoverable magnesium content of	scrap pr	ocessed	Magnesium recovered from scrap processed						
Kind of scrap	1956	1957	Form of recovery	1956	1957				
New scrap:			In magnesium-alloy ingot 1	4, 072	4, 200				
Magnesium-base Aluminum-base	3, 099 2, 071	3, 360 2, 237	In magnesium-alloy castings (gross weight) In magnesium-alloy shapes	206	75				
Total	5, 170	5, 597	In aluminum alloysIn zinc and other alloys.	3, 188 85	3, 383 22				
Old scrap: Magnesium-base	4, 662	4, 350	In chemical and other dissipative	11	29				
Aluminum-base	697	711	In cathodic protection	2, 962	2, 949				
Total	5, 359	5, 061	Grand total	10, 529	10, 658				
Grand total	10, 529	10, 658							

¹ Figures include secondary magnesium incorporated in primary magnesium ingot.

TABLE 4.—Stocks and consumption of new and old magnesium scrap in the United States in 1957, gross weight in short tons

	Stocks,	Receipts	Consumption			Stocks,
Scrap item	beginning of year		New scrap	Old scrap	Total	end of year
Cast scrap	485 176 278	6, 477 1, 587 1, 536	1, 012 1, 584 1, 609	5, 313	6, 325 1, 584 1, 609	637 179 205
Total	939	9, 600	4, 205	5, 313	9, 518	1, 021

CONSUMPTION AND USES

The lag in the defense-missile program in 1957 was a substantial factor in the 18-percent drop below 1956 in consumption of primary magnesium.3

The volume of the use of the metal in permanent mold castings was the lowest since 1950. Production of magnesium forgings, which

had increased steadily during 1954-56, fell below that in 1953.

The drop in production of aluminum alloys and the use of reducing agents other than magnesium for titanium production accounted for most of the 18-percent decrease below 1956 in consumption of primary

magnesium for nonstructural purposes.

Although a 10-percent decrease was noted in production of sheet and plate, new uses were reported for magnesium tooling plate and photoengraving plate.4 Use of magnesium extrusions continued above 5.000 tons. Extrusion capacity was greatly increased in 1957, when the 13,200-ton press went into operation at the Dow Chemical Co. plant at Madison, Ill. This press, capable of extruding aluminum also, could produce sections up to 40 inches wide and 80 feet long. Pellet extrusions produced in this press were used in 1957 in military

Wall Street Journal, Air Force Cancels Further Work on North American Aviation Missile: Vol. 150,
 No. 9, July 12, 1957, p. 16.
 Snyderman, Nat, Magnesium Sales Rise Seen Tied to Missiles: Electronic News, vol. 2, No. 58, Nov.
 18, 1957, p. 14.
 Materials and Methods, New Uses of Magnesium: Vol. 45, No. 1, January 1957, pp. 112-115.

TABLE 5.—Domestic consumption of primary magnesium (ingot equivalent and magnesium content of magnesium-base alloys), by uses, 1948-52 (average) and 1953-57, in short tons

Product	1948–52 (average)	1953	1954	1955	1956	1957
For structural products:						
Castings: Sand	6, 560	14, 306	9, 545	6,872	6, 478	6,076
Die Permanent mold	871 478	2, 401 1, 106	1, 743 785	2, 619 876	1,875 1,034	1, 649 571
Wrought products: Sheet and plate	3, 382	5, 443	3, 033	6, 424	5, 496	4, 916
Extrusions (structural shapes, tubing)Forgings	3, 213 231	4, 744 24	2, 461 110	4, 106 307	6, 223 473	5, 081 7
Total for structural products	14, 735	28, 024	17, 677	21, 204	21, 579	18, 300
For distributive or sacrificial purposes:						
PowderAluminum alloys	418 4, 449	1, 219 10, 347	582 8, 061	681 11, 104	918 13, 323	386 11, 236
Other alloys	340	418	103	364	98	587
Scavenger and deoxidizer	771	423	80	654	865	867
Chemical	404	363	63	124	63	325
Cathodic protection (anodes)	1, 404	2, 539	5, 479	3, 941	3, 036	2, 997
Reducing agent for titanium, zirconium, haf- nium, and beryllium	(1)	(1)	6.386	8, 056	13, 303	9, 695
Other 2	647	3, 510	787	335	425	49
Total for distributive or sacrificial purposes	8, 433	18, 819	21, 541	25, 259	32, 031	26, 142
Grand total	23, 168	46, 843	39, 218	46, 463	53, 610	44, 442

¹ This use, which was very small before 1954, was included in the figure for other distributive purposes. ² Includes primary metal consumed for experimental purposes, debismuthizing lead, producing nodular iron and secondary magnesium alloys.

aircraft and missiles.5 (Pellet extrusion is described under Technology.)

Increased uses for magnesium in 1957 were reported by the automotive and trucking industries.⁶ Among new uses for the metal were items of materials handling equipment, automobile carriers for convoy trucks, hospital stretchers and carts, and military electronics items.7

STOCKS

Producers' and consumers' stocks at the close of 1957 were 58,864 tons of primary magnesium and 11,041 tons of primary magnesiumalloy ingot. This was equivalent to approximately 19 months' supply of the metal at the rate of consumption during 1957. Government agencies continued to hold quantities of primary magnesium, as provided by the Strategic and Critical Materials Stockpiling Act.

⁵ American Metal Market, Largest Magnesium Extrusion Press Operating at Dow Plant: Vol. 64, No.

American Metal Market, Dargest Magnesian Balance
 May 7, 1957, p. 11.
 American Metal Market, Corvette Pilot Model Features Greater Usage of Light Metals: Vol. 64, No. 56, Mar. 22, 1957, p. 9.
 Glaza, G. K., Magnesium Swings More Weight in Trucking: Iron Age, vol. 179, No. 3, Jan. 17, 1957, pp. 78-79.
 Modern Metals, Pallet Dollies: Vol. 13, No. 3, April 1957, p. 96. Sensible Stretcher System: Vol. 12, No. 12, 12 (1992)

No. 12, January 1957, pp. 68, 70.

Fortune, Lightweight Auto Carriers: Vol. 56, No. 5, November 1957, p. 208.

Maynard, A. F., Magnesium in Military Electronics: Modern Metals, vol. 13. No. 4, May 1957, pp. 66,

PRICES

The base price of primary magnesium ingot in standard 42-pound pig form remained throughout 1957 at 35.25 cents per pound, f. o. b. Velasco, Tex.8

FOREIGN TRADE®

Imports.—Imports of magnesium in 1957 rose 369 tons above 1956. About 16 percent of the total 1,025 tons was scrap metal. On June 30, 1957, duty on magnesium metal was reduced from 17.2 cents to 14.3 cents per pound; and on magnesium powder, sheets, tubing, manufactures, etc., duty was lowered from 19 cents per pound, plus 9.5 percent ad valorem, to 18 cents per pound plus 9 percent ad valorem. Suspension of duty on magnesium scrap was extended to June 30, 1958. The metal came from eight countries in 1957. Of the total 1,025 tons imported, 4 came from Algeria, 304 from Canada, 1 from the Dominican Republic, 55 from West Germany, 5 each from Morocco and Pakistan, 160 from Taiwan, and 491 from the United Kingdom.

Exports.—Magnesium exports in 1957 fell 2,346 tons below 1956 and were the lowest since 1952. The countries that received the metal are shown in table 7.

TABLE 6.—Magnesium imported for consumption and exported from the United States, 1948-52 (average) and 1953-57

			Imp			the Cen			Exp	orts		
Year	Metallic and scrap (Magnesium content)		Sheets, tubing, ribbons, wire, and other forms, (magnesium content)		Metal and alloys in crude form and scrap		Semifabricated forms,		Powder			
	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value
1948–52(average) 1953	2, 443 733	877, 130 337, 773 1, 034, 241 303, 586	3 6 9 24	\$7, 304 15, 537 29, 767 52, 254 202, 675 283, 099	5 3 4 2	14, 159 324, 526 4 8, 715	2, 722 3, 096 8, 230 3, 388	\$295, 898 1, 718, 232 1, 766, 650 4, 556, 229 2, 239, 577 1, 114, 234	² 227 ² 161 ² 236 ² 487	\$210, 380 ² 771, 032 ² 605, 251 ² 514, 986 ² 901, 924 ² 767, 656	21 34 14 56	33, 911 98, 635

Not separately classified before 1952. 1952—43 tons (\$59,843).
 Owing to changes in items included in each classification, data are not strictly comparable with earlier

³ Owing to changes in tabulating procedures by the Bureau of the Census, data known to be not comparable with other years.

⁴ Revised figure.

American Metal Market, Magnesium: Vol. 65, No. 1, Jan. 1, 1958, p. 8.
 Figures on imports and exports compiled by Mae B. Price and Elsie D. Jackson, Division of Foreign Activities, Bureau of Mines, from records of the U. S. Department of Commerce, Bureau of the Census.

TABLE 7.—Magnesium exported from the United States in 1957, by classes and countries, in short tons

[Bureau of the Census]

Country	Primary metal, alloys, and scrap	Semifab- ricated forms, n. e. c.	Powder
North America: Canada	94 100 7 5 76	165 2 24	14
Total	289	191	(1)
South America: Argentina Brazil Colombia Venezuela Total Europe: Belgium-Luxembourg Denmark France Germany, West Italy Netherlands Norway Sweden Switzerland United Kingdom Other Europe	6 6 89 101 27 44 102 90 10 71 71 95 (1) 23	1 2 16 19 38 4 2 19 6 2 5 15 17 2 (1)	(1)
Total	514	72	
Asia: India Israel Ispan Ispan Kuwait Saudi Arabia Other Asia Total Desania Africa	5 21 249 7 12 9 303	9 5 28 3 1 46 3 5	
Grand total	1, 208	355	2

¹ Less than 1 ton.

WORLD REVIEW

World production of magnesium in 1957 was 7 percent above 1956. The greatest increase was in the United States, showing actual production of 48 percent of the estimated total.

Canada.—Output of magnesium in Canada in 1957 fell 16 percent below 1956, which was the peak year in the history of its production there. Dominion Magnesium, Ltd., produced thorium at its magnesium plant site at Haley, Ontario, for use in making the new magnesium-thorium alloys.¹⁰

Northern Miner (Toronto), Dominion Mangesium Produces Thorium for Alloying Uses: Vol. 43, No. 43, Jan. 16, 1958, pp. 1, 5.

TABLE 8.—World production of magnesium metal, by countries, 1948-52 (average) and 1953-57, in short tons 1

[Compiled by Pearly. Thompson and Berenice B. Mitchell]

Country	1948-52 (average)	1953	1954	1955	1956	1957
Canada	² 2, 400 ² 90 745	² 6, 600 (³) 1, 098	² 6, 600 (³) 1, 268 154	² 7, 700 (³) 1, 670 144	9, 606 (³) 1, 676 194	8, 037 (8) 1, 752 261
Italy Japan	270	1, 595	1, 836 23	3, 161 6 148	4,097 86	2 4, 300 2 100
Nôrway Switzerland	6 338 176	3, 853 2 275	5, 813	7, 441	8, 267	2 8, 000
U. S. S. R. ²	28, 000 3, 880 36, 806	55, 000 5, 936 93, 075	45, 000 5, 577 69, 729	55, 000 6, 054 61, 135	60, 000 4, 064 68, 346	60, 000 3, 831 81, 263
World total (estimate)	72, 700	168, 000	136, 000	143, 000	157, 000	168, 000

¹ This table incorporates a number of revisions of data published in previous Magnesium chapters. Data do not add to totals shown due to rounding where estimated figures are included in the detail.

 Estimate.
 Data not available; estimate by author of chapter included in total.
 Primary metal and remelt alloys.
 In addition, the following amounts of remelted magnesium were produced: 1955, 401 short tons; and 1956, 897 short tons.

6 Average for 1951-52.

Japan.—Although production of magnesium in Japan in 1957 rose

very little above 1956, new markets were sought.11

Norway.—Most of the output of magnesium in Norway was exported; however, the producing company announced that in 1957 it produced magnesium anodes for cathodic protection of ships, tanks, and ground pipe.12

U. S. S. R.—Announcement was made in the Soviet News that plans were under way to increase production of magnesium during

the next 5 years.13

United Kingdom.—The electrolytic plant at Clifton Junction, near Manchester, continued in 1957 as the sole producer of primary magnesium in the United Kingdom. Published articles listed new uses and described progress in technology and fabricating facilities and techniques.14

The excellent service record of the magnesium-alloy sheaths in the

Calder Hall reactor was published. 15

American Metal Market, Magnesium—Japan to Export Small Tonnages to Red China on Trial Basis:
 Vol. 64, No. 175, Sept. 11, 1957, p. 10.
 Metal Bulletin (London), Magnesium—Herøya Producing Anodes: No. 4261, Jan. 14, 1958, p. 26.
 Metal Bulletin (London), Soviet Metallurgy Goes Ahead: No. 4267, Feb. 4, 1958, pp. 13-14.
 Wilkinson, R. G., Magnesium Forming: Metal Ind. (Birmingham, England), vol. 90, No. 4, February

^{1957,} pp. 83-86.
Emley, E. F., The Founding of Magnesium: Foundry Trade Jour. (London), vol. 103, Nos. 2126 and 2127, July 11 and 13, 1957.
Modern Metals, Magnesium Fabrication Facilities of Magnesium Elektron, Ltd.: Vol. 13, No. 9, October

^{1957,} p. 34.

19 5; hop, Tom, Metallurgical Aspects of Calder Hall: Metal Prog., vol. 71, No. 6, June 1957, pp. 65-71.

TECHNOLOGY

In 1957 research gained momentum in the development and use of magnesium and its alloys. Published articles reflected detailed studies of the properties of the primary metal.16

A report of fundamental studies of the properties and behavior of magnesium and its alloys prepared by the Dow Chemical Co. for the

United States Air Force was released.17

The Mines Branch of the Department of Mines, Ottawa, Canada, reported development of the new high-strength magnesium alloy

designated as ZK61A, containing zinc and zirconium.¹⁸

Continued work in 1957 developed improved magnesium alloys containing thorium, with good creep resistance in applications reaching temperatures up to 700° F. and with superior tensile strength for short periods in applications reaching 900° F.19 The Dow Chemical Co. published instructions covering proper health precautions for persons working in plants where magnesium-thorium alloys were melted and fabricated and described hazards from radioactive materials, including thorium, which were controlled by Government regulations.20

Reports were published describing a new fabrication technique pellet extrusion of magnesium. In the process the molten magnesium alloy was poured from the pot onto a metal disk spinning at high speed within an atomizer tank and was hurled off in globules or pellets to the inner walls of the tank. Each cooling spherical pellet retained the exact ratio of alloying constituents as the molten mass. spherical pellets (about 0.016 inch in diameter) settled to the bottom of the tank, they were transferred to the extrusion press. truded sections had extremely fine grain size and high compressive yield strength.21

Reports were published describing improvements in techniques and facilities for casting, forging, rolling, and forming of magnesium

alloys.22

16 Sporh, D. A., and Webber, R. T., Resistance Minimum of Magnesium—Electrical and Thermal Resistivities: Physical Rev., vol. 105, No. 5, Mar. 1, 1957, pp. 1427–1433.

Reed-Hill, Robert E., and Robertson, William D., Deformation of Magnesium Single Crystals by Non-basal Slip: Jour. Metals, pt. 2, vol. 9, No. 4, April 1957, pp. 496–502.

Conrad, Hans, and Robertson, W. D., Effect of Temperature on the Flow Stress and Strain-Hardening Coefficient of Magnesium Single Crystals: Jour. Metals, pt. 2, vol. 9, No. 4, April 1957, pp. 503–512.

Couling, S. L., and Roberts, C. S., Grain Boundary Deformation in Fine-frained Electrolytic Magnesium: Jour. Metals, vol. 9, No. 10, October 1957, pp. 1252–1256.

Metal Industry, Ductility of Magnesium: Vol. 91, No. 15, Oct. 11, 1957, pp. 319–320.

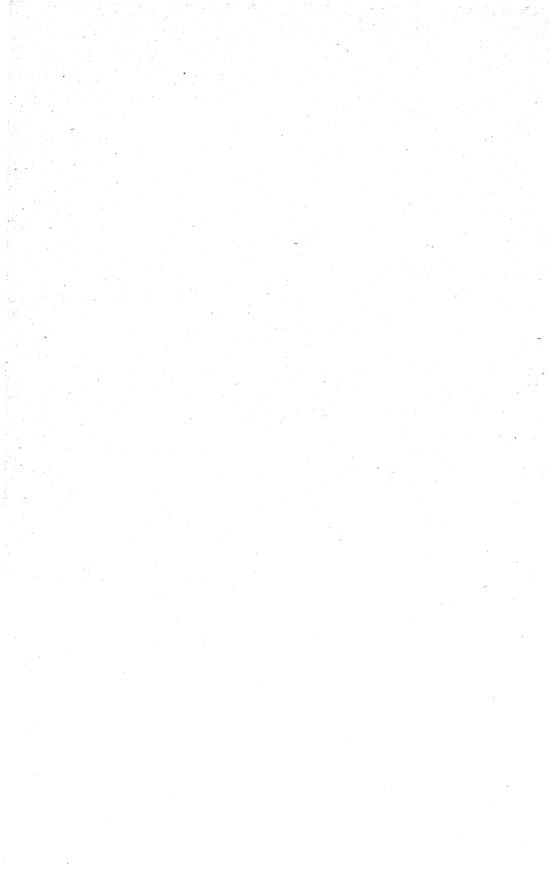
17 Foster, G. D., and others, Investigation of Alloys of Magnesium and Their Properties: WADC Rept. 56–88 PB 121801, Office of Tech. Services, U. S. Department of Commerce, January 1957, 84 pp.

18 Roast, Harold J., Metallurgy at Canada's Mines Branch: Metal Prog., vol. 71, No. 4, April 1957, pp. 74–77.

74-77.

19 Leontis, T. E., New Magnesium Alloys for High Temperature: Metal Prog., vol. 72, No. 2, August 1957, pp. 97-103.

pp. 185-187. Light Metal Age, Extruding Magnesium Pellets in Big Press: Vol. 15, Nos. 9 and 10, October 1957, pp.


 33-34.
 22 Carvell, J. E., Quality Control in Pressure Die Castings: Metal Ind. (Birmingham, England), vol. 90,
 No. 17, April 1957, pp. 325-327, 334.
 Materials and Methods, Magnesium Alloys—Forging Practice: Vol. 45, No. 3, March 1957, pp. 151-152.
 Coeneu, F. L., Magnesium-Alloy Sheet: Modern Metals, vol. 13, No. 8, September 1957, pp. 88, 90.
 American Metal Market, Magnesium—Strength in Forgings Increased by Solution Heat Treatment:
 Vol. 64, No. 2020, No. 27, 1957, pp. 10 Vol. 64, No. 228, Nov. 27, 1957, p. 10.

New coatings to protect magnesium from corrosion were described.²³ Reports were published outlining the weld characteristics of magnesium alloys and giving instructions for relief from stress corrosion cracks at the point of joining.24 Automatic welding was described, which insured rapid joining of the metal.25 A successful process of welding aluminum to magnesium was described.26

Progress was reported on tests of magnesium alloys for new structural applications.27 The technology for new and improved uses of the metal for nonstructural purposes was described. This included work at the Bureau of Mines Northwest Electrodevelopment Experiment Station, Albany, Oreg., in which magnesium was used as a reducing agent.28

Steel, Vapor Plating Magnesium With Aluminum: Vol. 140, No. 23, June 10, 1957, p. 162.
 Iron Age, New Coating Gives Magnesium Extra Protection: Vol. 181, No. 2, Jan. 9, 1958, pp. 64-66.
 Nelson, R. L., How to Join Magnesium Alloys: Modern Metals, vol. 13, No. 3, April 1957, pp. 42, 44,

²⁴ Nelson, R. L., How to Join Magnesium Alloys: Modern Metals, vol. 19, 100. 6, April 46-47.
25 Iron Age, Welds Magnesium Continuously: Vol. 180, No. 2, July 11, 1957, pp. 132, 134.
26 Iron Age, Welds Magnesium Continuously: Vol. 140, No. 24, June 17, 1957, pp. 103.
27 American Metal Market, Field Tests Show Magnesium Rods Cut Engine Wear: Vol. 64, No. 141, July 24, 1957, pp. 1, 9. Dow to Construct Magnesium Body for Army Vehicle: Vol. 65, No. 7, Jan. 10, 1958, pp. 1, 5.
Rizley, John H., and Mihalco, Robert E., Future Aircraft and Missile Structures: Light Metal Age, vol. 15, Nos. 11 and 12, December 1957, pp. 24-27.
28 Chemical Week, A Newly Developed Process for Making Reactor-Grade Hafnium and Zirconium: Vol. 80, No. 29, July 20, 1957, pp. 73.
1ron Age, Produces Ductile Iron by New Process: Vol. 181, No. 2, Jan. 9, 1958, pp. 86-88.
1ron Age, Produces Ductile Iron by New Process: Vol. 181, No. 2, Jan. 9, 1958, pp. 86-88.
1rdustrial and Engineering Chemistry, Pyrometallurgical Separation of Uranium From Thorium: Vol. 50, No. 2, February 1958, pp. 137-140.
Winsch, Irvin O., and Burris, Leslie, Jr., Magnesium Extraction Process for Plutonium Separation From Uranium: Chem. Eng. Prog., vol. 53, No. 5, June 1957, pp. 237-242.
Steel, Planes Use Metallic Fuels: Vol. 141, No. 10, Sept. 2, 1957, pp. 92-93.

Magnesium Compounds

By H. B. Comstock 1 and Jeannette I. Baker 2

ORLD PRODUCTION of crude magnesite in 1957 increased 4 percent above 1956. Austria continued to lead; the United States ranked second as a producer. No crude magnesite was imported in 1957, and substantial decreases below 1956 were noted in imports of dead-burned and caustic-calcined magnesia. producers of caustic-calcined and refractory magnesia reported increased deliveries above 1956; 51 percent of these materials came from sea water and well brines. The program for expanding facilities to produce magnesia and basic refractories, begun in 1956, was continued in 1957, and by the close of the year total annual production capacity was 750,000 tons. Research completed during 1957 indicated new and increased uses for magnesium oxide, particularly in ceramics and refractories. Ceramics developed from ductile magnesium oxide in 1957 promised new aircraft and missile structural materials at temperatures reaching 2,000° F.

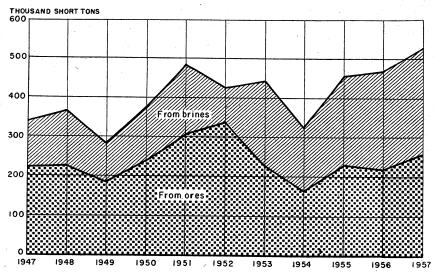


FIGURE 1.—Domestic production of magnesia from ores and brines, 1947-57.

Commodity specialist.
 Research assistant.

TABLE 1.—Salient statistics of magnesite, magnesia, and dead-burned dolomite in the United States, 1948-52 (average) and 1953-57

	1948-52 (average)	1953	1954	1955	1956	1957
Crude magnesite produced: Short tons	453, 030 \$2, 992, 086 \$6. 60	553, 147 \$3, 223, 759 \$5. 83	284, 015 \$1, 391, 392 \$4. 90	486, 088 \$2, 712, 942 \$5. 58	686, 569 \$2, 502, 218 \$3. 64	678, 489 \$3, 257, 708 \$4. 80
or used by producers: Short tons	39, 039 \$3, 841, 550 \$98. 40	43, 020 \$3, 991, 309 \$92. 78	32, 254 \$2, 154, 652 \$66. 80	35, 751 \$2, 240, 612 \$62. 67	35, 508 \$2, 426, 424 \$68. 33	60, 815 \$3, 160, 579 \$51. 97
by producers: Short tons	346, 933 \$14,898,853 \$42. 94	399, 132 \$19,060,796 \$47. 76	288, 270 \$19, 850, 712 \$48. 05	\$18,761 \$20,304,639 \$48.49	430, 619 \$22, 663, 353 \$52, 63	\$26, 319, 103 \$56. 27
used by producers: Short tons Value Average per ton	1, 703, 478 \$21,595,347 \$12.68	2, 294, 815 \$31,455,384 \$13. 71	1, 520, 854 \$21, 960, 684 \$14. 44		2, 292, 539 \$35, 761, 630 \$15. 60	2, 294, 747 \$36, 715, 952 \$16. 00

DOMESTIC PRODUCTION

Magnesite.—Crude magnesite was mined in Washington by Northwest Magnesite Co. and in Nevada by Basic, Inc., and Standard Slag Co. No magnesite was reported mined in California in 1957. Northwest Magnesite Co. continued to be the leading producer. The total output for 1957 decreased 1 percent in quantity below 1956, but the total value increased 30 percent.

Magnesia.—Of the entire output of magnesia in 1957, 49 percent came from magnesite, brucite, and dolomite and 51 percent from sea water, well brines, and bitterns. Production from sea water and well brines increased 9 percent above 1956; the total recovered from brucite,

magnesite, and dolomite increased 18 percent.

The program begun in 1956 for expanding facilities to produce magnesia and basic refractories was continued in 1957. In July, Michigan Chemical Corp. announced final plans to construct a 70,000-ton-capacity plant on the Gulf coast to produce magnesium oxide from sea water.³

E. J. Lavino & Co. announced that it would build a plant at Free-port, Tex., for producing high-grade magnesia (periclase) from sea

water.4 The plant was expected to be producing by 1959.

In October Harbison-Walker Refractories Co. delivered the first shipment of chemically bonded basic brick from its new refractories

plant at Hammond, Ind.

Kaiser Aluminum & Chemical Corp. completed expansion of its Moss Landing, Calif., magnesia plant by adding a new 150-ton-perday rotary kiln, which increased production capacity to about 375 tons per day.⁵ Kaiser also increased the facilities at its 2-year-old Columbiana, Ohio, plant and doubled its capacity to produce fused and chemically bonded shapes and grain refractories.⁶

³ Chemical Engineering News, Concentrates—Magnesium Oxide From Sea Water: Vol. 35, No. 27, July 8, 1957, p. 7.

⁴ American Metal Market, Lavino Plans \$8,000,000 Unit for Magnesite: Vol. 64, No. 197, Oct. 11, 1957,

pp. 1, 3.

6 Chemical Engineering News, Kaiser Expands Magnesia Plant: Vol. 35, No. 34, Aug. 26, 1957, p. 23.

6 Steel, More Basic Refractories: Vol. 141, No. 7, Aug 12, 1957, p. 136.

Late in 1957, H. K. Porter Co., Inc., began to install a new tunnel kiln at its Bessemer, Ala., refractories plant to permit more rapid delivery of refractory brick to the southern steel industry. The company expected to complete this project in 1958. Porter's new magnesia plant at Pascagoula, Miss., begun in 1956, was nearing completion in 1957 and was expected to begin producing in 1958.⁷

In October 1957 a list of major magnesium oxide producing plants was published, showing total annual production capacity of 750,000 tons; 100,000 tons additional capacity was expected to be ready in

1959.8

Dolomite.—The quantity of dead-burned dolomite produced in 1957 remained approximately the same as in 1956 but increased 3 percent in value.

TABLE 2.—Magnesia sold or used by producers in the United States, 1956-57, by kinds and sources

Magnesia	From mag cite, and	nesite, bru- dolomite		brines, raw r, and sea- terns ¹	Total		
	Short tons	Value	Short tons	Value	Short tons	Value	
1956							
Caustic-calcined	2,570 214,961	\$91, 925 9, 579, 067	32, 938 215, 658	\$2, 334, 499 13, 084, 286	35, 508 430, 619	\$2, 426, 424 22, 663, 353	
Total	217, 531	9, 670, 992	248, 596	15, 418, 785	466, 127	25, 089, 777	
1957							
Caustic-calcined Refractory	28, 688 228, 384	828, 035 10, 624, 306	32, 127 239, 339	2, 332, 544 15, 694, 797	60, 815 467, 723	3, 160, 579 26, 319, 103	
Total	257, 072	11, 452, 341	271, 466	18, 027, 341	528, 538	29, 479, 682	

¹ Magnesia made from a combination of dolomite and sea water is included with that from sea water.

In 1957 the Federal Geological Survey published a report, summarizing the dolomite and other mineral resources in the United States for producing magnesium and magnesium compounds.9

Owing to increased requirements for dolomite by the iron and steel industry in Illinois, two surveys of reserves and quality of the ore in

the State were made by the Illinois Geological Survey. 10

The New Mexico Bureau of Mines published a report, showing the location of dolomite and other magnesium ores in the State and discussing the possibilities for their exploitation.¹¹

Brucite.—In 1957 the production of brucite dropped 71 percent in quantity and 43 percent in value below 1956. Basic, Inc., Gabbs,

Nev., remained the only producer.

Olivine.—The quantity of olivine mined in 1957 was 6 percent above 1956. The output came from the four mines that were operated in

⁷ Chemical Week, Magnesia: Vol. 80, No. 1, Jan. 5. 1957, p. 23.
8 Chemical Week, Major U. S. Magnesium Oxide Producers: Vol. 81, No. 17, Oct. 26, 1957, p. 95.
9 Davis, Robert E., Magnesium Resources of the United States—a Geologic Summary and Annotated Bibliography to 1953: Geol. Survey Bull. 1019—E., 1957, 142 pp.
19 Ostrom, Meredith E., Subsurface Dolomite and Limestone Resources of Grundy and Kendall Counties: Illinois Geol. Survey, 1957, 25 pp.
Lamar, J. E., Chemical Analyses of Illinois Limestones and Dolomites: Illinois Geol. Surv. Rept. of Investigations 200, 1957, 33 pp.
18 Kottlowski, Frank E., High-Purity Dolomite Deposits of South Central New Mexico: New Mexico Bureau of Mines and Mineral Resources, New Mexico Inst. Min. and Tech., Circ. 47, 1957, 43 pp.

TABLE 3.—Dead-burned dolomite sold in and imported into the United States, 1948-52 (average) and 1953-57

Yeat	Sales of dom	estic product	Impo	orts 1
	Short tons	Value	Short tons 2	Value
1948-52 (average)	1, 703, 478 2, 294, 815 1, 520, 854 2, 128, 960 2, 292, 539 2, 294, 747	\$21, 595, 347 31, 455, 384 21, 960, 684 31, 424, 587 35, 761, 630 36, 715, 952	2, 293 3, 876 4, 426 7, 993 9, 031 10, 419	\$100, 504 259, 427 3 344, 665 3 557, 554 3 586, 754 3 639, 741

Dead burned basic refractory material, consisting chiefly of magnesia and lime.
Includes weight of immediate container.

Nowing to changes in tabulating procedures by the Bureau of the Census, data known to be not comparable with years before 1954.

1955 and 1956. The largest production came from the Harbison-Walker Refractories Co. Addie mine in North Carolina.

Other Magnesium Compounds.—Total production of specified magnesias, U. S. P. and technical grades, both light and heavy, dropped in 1957 about 50 percent below 1956. The production of precipitated magnesium carbonate decreased 10 percent below 1956. The production of magnesium chloride for cell feed increased 13 percent, and of magnesium chloride crystals 59 percent, above 1956. Magnesium hydroxide production increased 79 percent above 1956, and epsom salts output rose 6 percent. Production of magnesium trisilicate decreased 11 percent below 1956.

Mines and plants producing magnesium compounds in the United States in 1957 were the same as those listed in table 5 of the Magnesium Compounds chapter, Minerals Yearbook, 1955.

TABLE 4.—Specified magnesium compounds produced, sold, and used by producers in the United States, 1956-57

		Produced	S	old	Used
Products 1	Plants	(short tons)	Short tons	Value	(short tons)
1956					
Specified magnesias (basis, 100 percent MgO) U.S.P. and technical:					
Extra-light and light Heavy	6 4	4, 973 36, 865	4, 821 26, 463	\$1, 436, 986 2, 694, 701	10, 701
Total	28	41, 838	31, 284	4, 131, 687	10, 701
Precipitated magnesium carbonate Magnesium hydroxide U. S. P. and technical (basis,	8	33, 544	4, 495	884, 000	28, 551
100 percent Mg(OH) ₂)	4	87, 537	7, 562	494, 656	82, 716
Specified magnesias (basis, 100 percent MgO) U.S.P. and technical:					
Extra-light and light Heavy	5 3	2, 130 18, 689	2, 219 17, 654	1, 196, 342 2, 133, 332	204
Total	² 6	20, 819	19, 873	3, 329, 674	204
Precipitated magnesium carbonate	7	30, 231	7, 566	1, 768, 395	22, 111
100 percent Mg(OH) ₂)	4	156, 610	7, 526	551, 157	148, 931

¹ In addition, magnesium chloride, sulfate, phosphate, and trisilicate were produced.

2 A plant producing more than 1 grade is counted but once in arriving at total.

CONSUMPTION AND USES

Consumption of caustic-calcined magnesia in 1957 increased 71 percent above 1956; consumption of refractory magnesia rose 9 percent. The total quantity of magnesium hydroxide sold or used by producers increased 73 percent above 1956. Consumption of crude magnesite decreased slightly below 1956; brucite dropped 38 percent; and olivine remained about the same. The consumption of specified magnesias, U. S. P. and technical grades, both light and heavy, decreased 52 percent below 1956, and that of precipitated magnesium carbonate declined 10 percent. Total consumption of magnesium sulfate (epsom salts) rose 5 percent above 1956.

Table 5 indicates a rising trend in the use of caustic-calcined magne-

sia for refractories.

TABLE 5.—Domestic consumption of caustic-calcined magnesia (percent) by uses, 1953-57

• Use	1953	1954	1955	1956	1957
Oxychloride and oxysulfate cement Rayon. Fertilizer 85 percent MgO insulation Rubber Fluxes Refractories	41 8 2 13 1	33 3 2 14 1 1	34 4 1 11 3 (1) 4	32 3 2 10 8 (1)	(¹) (²) (²) (²) (²)
Miscellaneous (including chemicals and paper industry)	34	46	43	45	32
Total	100	100	100	100	100

¹ Less than 1 percent.

TABLE 6.—Domestic consumption of U. S. P. and technical-grade magnesias (percent) by uses, 1953-57

Use	1953	1954	1955	1956	1957
Rayon Rubber (filler and catalyst)	45 29 13 3	24 47 10 3	16 27 15 7 2	8 9 42 1 3	17 18 11 3 4
Miscellaneous industrial and chemical (including neoprene compounds)	10	16	33	37	47
Total	100	100	100	100	100

¹ Less than 1 percent.

PRICES

Comparison of 1956 and 1957 prices and net-sales values shows that prices remained the same for about half of the magnesium compounds. However, there was an increase of from \$6 to \$8.75 per ton, in the price of dead-burned and grain magnesite, and an increase of \$2.50 per ton in the sales value of periclase. Prices of technical and rubber-grade and light U. S. P.-grade magnesia and of U. S. P.-grade magnesium carbonate rose one-half cent per pound during 1957. The price of magnesium hydroxide decreased 3 cents per pound on February 27, 1957; on December 16 the price of the top grade decreased another 1½ cents, and the lower grade rose 1 cent. Dead-burned dolomite price increases ranged from 65 to 75 cents per ton during 1957. 12

¹² Steel, vol. 139, No. 27, Dec. 31, 1956, p. 90; vol. 141, No. 26, Dec. 23, 1957, p. 106.

TABLE 7.-Prices quoted on selected magnesium compounds, carlots, 1956-57

Commodity	Unit	Container	F. o. b.	Source	January 1956	January 1957	December 1957
Magnesite: Gaustic-calcined, oxychloride-cement grade, powdered. Dead-burned, grain. Do	Short tondo.	Bags Bulk Bags	Newark, Calif Chewelah, Wash	චමම	2 \$79.64 40.00 45.75	2 \$82. 79 40. 00 45. 75	2 \$82. 79 4 46. 00 452.00-54.00
Periclase: Kiln-run, 90 percent Epsom salt: Technical grade.	gp		Newark, Califdodo.	EE	57.50 2.15	57. 50 2. 15	6 60. 00 2. 15
	Pounddo.	Cartons do	Worksdo	<u>වෙ</u>	. 2525 26	. 2525 26 . 2925 30	7.2575265
	op-	Barrels	qo	<u>වෙ</u>	. 45 52	. 45 36	7.365-375
Magnesium carbonate: Technical gradeT S Posedies	qo	Bags	(8)	වෙ	105		7.13
Magnesium chloride (hydrous): Powdered or flaked Magnesium hydroxide: Medicinal grade	Short ton Pound	Barrels Drums	Works	EE	50.00	. 265 30	55.00 924, 5-25, 5

¹ Westvaco Chemical Division, Food Machinery & Chemical Corp. Average net sales value.
² Average net sales value.
³ E&M.I Medal and Mineral Markets.
⁴ Effective September 1957.
⁵ Effective Jan. 1, 1957.

Oil, Paint and Drug Reporter.
 Effective Mar. 1, 1957.
 Magnesium achonate prices are quoted f. o. b. works, freight equalized with metropolitan New York and competitive producing points.
 Effective Dec. 16, 1957.

FOREIGN TRADE 13

Imports.—No crude magnesite was imported in 1957. Decreases of total imports below 1956 were reported for magnesium minerals and

compounds.

Imports of dead-burned and grain magnesia (refractory) and periclase decreased 21 percent in quantity and 34 percent in value below 1956. Of the total imports, Yugoslavia supplied 38 percent, Austria 34 percent, and Trieste 27 percent; Canada and Sweden together furnished less than 1 percent.

Imports of lump or ground caustic-calcined magnesia decreased 27 percent in quantity and 24 percent in value below 1956. India supplied 54 percent of the total, Yugoslavia 34 percent, Netherlands 9

percent, Austria 2 percent, and United Kingdom 1 percent.

TABLE 8.—Magnesite imported for consumption in the United States, 1955-57, by countries

[Bureau of the Census] 1955 1956 1957 Country Short tons Value Short tons Value Short tons Value CRUDE MAGNESITE North America: Canada__ 11 \$531 Europe: Greece_____ Netherlands \$1,500 1,606 110 140 3.106 Grand total.... 531 140 3, 106 LUMP OR. GROUND CAUSTIC-CALCINED MAGNESIA North America: Canada \$2,375 32 \$2,459 Europe:
Austria....
France.....
Netherlands. 2, 815 1, 440 866 88 33 126 6,791 110 \$4,300 9, 095 1, 776 14, 353 86, 527 16 534 30, 205 165 Switzerland United Kingdom. 50 9,817 51,240 70 9, 371 69, 997 1, 885 Yngoslavia 1, 378 2,370 2, 764 4, 945 1,565 1,955 66, 178 75, 179 118, 542 228, 961 2, 574 3, 060 113, 873 150, 955 Asia: India.... Grand total 3, 550 143, 732 7,741 349, 962 5,634 264, 828 DEAD-BURNED AND GRAIN MAGNESIA AND PERICLASE North America: Canada 4,095 \$945, 995 3,002 \$697, 320 343 \$64, 153 Europe: Austria. Italy.... Sweden 66, 281 7, 115 61,460 3, 672, 000 4, 091, 056 25, 872 1,701,936 87,000 1, 653 423, 946 2,064 19, 933 1, 265, 796 Switzerland 55 3,500 19, 998 28, 780 978, 131 Yugoslavia 15, 551 757, 723 18, 431 877, 479 1, 286, 967 Total 98, 597 5, 782, 519 91,882 5, 395, 981 74, 661 3, 969, 098 Grand total... 102,692 6, 728, 514 94, 884 6,093,301 75,004 4, 033, 251

¹³ Figures on imports and exports compiled by Mae B. Price and Elsie D. Jackson, Division of Foreign Activities, Bureau of Mines, from records of the U. S. Department of Commerce, Bureau of the Census.

TABLE 9.—Magnesium compounds imported for consumption in the United States, 1948-52 (average) and 1953-57

[Bureau of the Census]

Year	cined	or cal- mag- sia	carbo	esium nate, itated	chloric	esium le (an- us and p. f.)	sulfa	nesium te (ep- salt)	salts compo	esium and ounds, p. f. ¹	Manui of carl of ma	
	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value
1948-52 (average) 1953 1954 1955 1956 1957	197	\$100 	253 199 282 264	60, 133 258, 763	319 254 220 350	9, 878 8, 082 5, 999 9, 421	11, 613 11, 101	167, 478 2226, 691 260, 275 2256, 455	182 33 108 1,508	² 17, 369 107, 435		1, 500 5, 135 1, 730

Includes magnesium silicofluoride or fluosilicate and calcined magnesium.
 Owing to changes in tabulating procedures by the Bureau of the Census, data known to be not comparable to years before 1954.

Exports.—Magnesite, magnesia, and manufactures (except refrac-

Exports.—Magnesite, magnesia, and manufactures (except refractories) exported in 1957, valued at \$2,862,981, increased 47 percent above the 1956 value of \$1.952.515 (revised figure).

above the 1956 value of \$1,952,515 (revised figure).

The duty on crude magnesite in 1957, based on the Geneva Agreement of 1947, was ¹%₄ cent per pound. Duty on dead-burned and grain magnesite and periclase was ²%₀ cent per pound, with an ad valorem of 14.26 percent; and on caustic-calcined magnesia, ¹%₂ cent per pound, with an ad valorem of 19.94 percent. Duty on magnesium oxide was 2½ cents per pound, with an ad valorem of 13.52 percent.

TABLE 10.—World production of magnesite, by countries, 1948-52 (average) and 1953-57 in short tons 2

[Compiled by Helen L. Hunt and Berenice B. Mitchell]

Country 1	1948-52 (average)	1953	1954	1955	1956	1957
North America: United States	453, 030	553, 147	284, 015	486, 088	686, 569	678, 489
Total 1 3	680,000	880,000	760, 000	720, 000	990,000	970, 000
South America: Brazil * Venezuela	7, 700 1, 477	11,000	11,000	11,000	11,000	11,000
Total 3	9, 177	11,000	11,000	11,000	11,000	11,000
Europe: Austria. Czechoslovakia. Germany, West. Greece Italy Norway. Spain. Yugoslavia. Total 1 3	634, 152 193, 000 5, 000 42, 949 896 1, 682 11, 151 72, 007 2, 400, 000	895, 971 (4) 117, 879 2, 269 2, 049 16, 652 168, 121 3, 100, 000	925, 007 (4) 114, 410 3, 348 915 32, 399 153, 572 3, 100, 000	1, 093, 173 (4) 66, 980 4, 527 874 29, 973 129, 114 3, 200, 000	1, 194, 502 (4) 71, 650 5, 448 26, 891 214, 260 3, 400, 000	1, 292, 567 (4) 3 71, 650 8, 512 4 880 42, 355 233, 983 3, 500, 000
Asia: Cyprus (exports)	18 89, 210	22 103, 878	78, 968	64, 410	102, 717	96, 161
Korea, Republic of Turkey	2, 609	386	1, 174		937	998
Total 1 8	233, 000	340,000	420,000	530, 000	570, 000	670, 000

See footnotes at end of table.

TABLE 10.—World production of magnesite, by countries, 1948-52 (average) and 1953-57, in short tons 2-Continued

Country 1	1948-52 (average)	1953	1954	1955	1956	1957
Africa: Egypt Kenya	255					
Rhodesia and Nyasaland, Fed-	42					117
eration of: Southern Rhodesia.	10, 526	10,824	7, 792	11,610	8, 611	2,910
Tanganyika (exports) Union of South Africa	16, 779	25, 229	26, 874	367 19, 753	272 33, 485	284 35, 414
Total.	28, 219	36, 117	34, 753	31, 730	42, 368	38, 725
Oceania:						
Australia New Zealand	40, 923 582	51, 965 579	48, 331 807	64, 595 434	72, 447 818	³ 88, 200 ³ 770
Total	41, 505	52, 544	49, 138	65, 029	73, 265	8 88, 970
World total (estimate) 12	3, 400, 000	4, 400, 000	4, 400, 000	4, 600, 000	5, 100, 000	5, 300, 000

¹ Quantities in this table represent crude magnesite mined. In addition to countries listed, magnesite is also produced in Canada, China, Mexico, North Korea, Poland, and U. S. S. R., but data on tonnage of output are not available; estimates by senior author of chapter included in total.
² This table incorporates a number of revisions of data published in previous Magnesium Compounds chapters. Data do not add to totals shown owing to rounding where estimated figures are included in the data.

the detail.

WORLD REVIEW

World production of crude magnesite in 1957 increased 4 percent above 1956. Austria continued to lead.

NORTH AMERICA

The United States reported 13 percent of the world output of crude magnesite in 1957, the same proportion as in 1956.

Canada.—An article related the history of the development and use of Canadian basic refractories for electric furnaces.¹⁴

SOUTH AMERICA

Brazil.—In 1957 Brazil remained the only country reporting production of magnesite in South America.

EUROPE

Approximately 66 percent of the world output of magnesite in 1957 came from European countries.

Austria.—Austria produced 24 percent of the total world output of magnesite in 1957, an 8-percent increase above its 1956 production.

A magnesite deposit in Fieberbrunn, in the Tyrols, was opened in 1957 by Austria's second largest magnesite producer, the Austro-American Magnesite Co. (Österreichisch-Amerikanische Magnesit The deposit was reported to contain 100 million A. G. Radenthein). tons.15

Czechoslovakia.—Plans were reported for mining magnesite from a recently discovered deposit near the Soviet-Czechoślovak border, containing an estimated 100 million tons of high-grade ore. 16

⁴ Data not available; estimate by senior author of chapter included in total.

Thomson, A. H., Canadian Basic Refractory Practice in Electric Furnaces: Pres. at Electric Steel Furnace Conference, Pittsburgh, Pa., AIME Prepr. Dec. 4-6, 1957, 5 pp.
 Mining World, vol. 19, No. 13, December 1957, p. 88.
 Metal Bulletin (London), Czech Plans: No. 4252, Dec. 10, 1957, p. 26.

TABLE 11.—Exports of caustic-calcined magnesia from Austria, by countries of destination, 1953-57, in short tons 1 2

[Compiled by Corra A. Barry]

Country	1953	1954	1955	1956	1957
North America: United StatesSouth America: Argentina	82 5	98 160	64 214	185 126	139 204
Europe:		200			
Belgium-Luxembourg	181	197	148	166	99
Bulgaria	147	44	71		
Czechoslovakia	3,067	3, 275	4, 359	4, 360	4,868
Denmark	18	82	142	126	82
France	3,090	3, 297	3, 785	3, 595	3, 347
Germany:				007	070
East	3, 421	424	364	327	379
West	64, 440	70, 202	67, 142	72,060	72, 923
Hungary	63	437	781	844 3, 059	1, 027 3, 214
Italy	2, 441	2,851	3, 766 33	3,039	3, 214
Netherlands	50	98	20	''	10
Norway	44	55	20	546	2, 918
Poland	109			0±0	2, 010
Rumania	55	83	127	66	88
SwedenSwitzerland	1, 341	1, 436	2,022	2, 280	2, 433
United Kingdom	776	1,384	1,391	854	150
Other countries.	47	79	23	57	173
Other countries	71	10			
Total	79, 377	84, 202	84, 452	88, 728	92, 059

TABLE 12.—Exports of refractory magnesia from Austria, by countries of destination, 1953-57, in short tons 1 2

[Compiled by Corra A. Barry]

Country	1953	1954	1955	1956	1957
North America:					
Canada	3,300	1,098	551	88	
United States	7, 335	28, 741	63, 477	46, 918	19, 426
South America:	1		0.004	- 040	1 001
Argentina	987	1, 439	3, 264	1, 342	1, 601
Brazil	196	14			119
Chile	19	175	239	136	119
Peru	45	1,033	1,305		
Europe:			1		=00
Belgium-Luxembourg	1,628	779	1,041	1, 255	569
Bulgaria	1	2	17	147	116
Czechoslovakia	429	348	463	338	472
Denmark	331	236	618	551	1,084
Finland	475	512	475	819	474
France	12, 368	9,065	11,671	12, 519	9, 927
Germany:				1	
East	_3, 537	52	29	64	
West	21,854	18, 409	44, 874	47,852	58, 140
Greece	37	83	77	128	191
Hungary	32	7,748	4,378	9, 967	7, 417
Italy	10, 993	4, 986	6,640	9,857	10, 672
Netherlands	245	138	109	123	186
Norway		132	324	336	284
Poland		5, 460		54	6, 381
Rumania	5, 917	438			
Spain		8	21	26	58
Sweden		832	801	1,074	1, 122
Switzerland	559	688	1,457	1,555	1,009
United Kingdom		2, 227	22, 508	25, 304	32, 66
Yugoslavia	709	134	138	10	28
Asia:		101			
India	742	1, 310	571	152	1, 19
Japan		2,020	1, 126	3, 574	10, 830
Korea, Republic of			1,120	0,0.1	65
Turkey		19	60	63	260
Oceania: Australia	1	21	636	1, 196	1, 540
Other countries		791	738	840	2,04
Other countries	000	191	.00		
Total	79, 894	86, 918	167, 608	166, 288	168, 46

Compiled from Customs Returns of Austria.
 This table incorporates a number of revisions of data published in previous Magnesium Compounds chapters.

Compiled from Customs Returns of Austria.
 This table incorporates a number of revisions of data published in previous Magnesium Compounds chapters.

TABLE 13.—Exports of magnesite brick from Austria, by countries of destination, 1953-57, in short tons 12

[Compiled by Corra A. Barry]

Country	1953	1954	1955	1956	1957
South America:					
Argentina	801	3, 430	8, 892	3, 433	3, 836
Chile	229	60	639	441	595
Colombia	384	563	312	373	554
Mexico	101	52	293	429	379
Europe:	202	V-			
Belgium-Luxembourg	11, 361	7,715	9, 636	10.377	9, 693
Bulgaria	288	.,	151	874	1, 234
Czechoslovakia	510	550	22	550	551
Denmark	4. 347	3, 641	3, 516	4.367	4, 980
Finland	4, 153	3, 180	3, 157	2, 369	3,075
France	37, 947	26, 346	36, 562	49, 680	38, 325
Germany:	0.,02.	20,020	03,002		,
East	2, 712	1,661	815	1, 248	266
West	31, 095	38, 742	46, 843	54, 015	63, 651
Greece	714	786	1, 218	916	1, 120
Hungary	4, 405	245	137	270	247
Ireland	1, 100		îii	503	811
Italy	18, 231	11, 896	21, 248	27, 994	34, 304
Netherlands	3, 787	2, 987	3, 610	3, 782	6, 811
Norway	1,096	921	1, 404	1, 430	1, 835
Poland	15, 558	11, 662	3, 573	1, 921	4, 990
Rumania	4, 974	5, 860	0,010	3, 104	2, 144
Saar	7,017	0,000		0, 101	2, 429
Spain	563	515	302	181	1, 289
Sweden	12, 785	10, 899	13, 049	11, 299	11, 732
Switzerland	1, 595	1, 197	1, 933	2, 036	1, 130
United Kingdom	1, 195	848	2,344	4,608	3, 293
Vargorio	8, 643	5, 386	1, 484	121	158
YugoslaviaAsia:	0, 010	0,000	1, 101	121	100
India		517	330	700	2, 950
Turkey	2, 355	602	1, 597	3, 521	5,074
A frica:	2, 500	002	1,004	0,021	0,011
	132	410	329	423	142
Belgian Congo British South Africa	2, 515	1, 101	020	720	140
	398	669	1, 123	883	1,779
Egypt	20	115	4, 110	4.059	6, 657
Oceania: Australia		2, 231	6,040	4, 588	9, 420
Other countries	1, 588	2, 231	0,040	4,000	9, 420
Total	174, 482	144, 787	174, 780	200, 495	225, 454
1 U(81	114, 402	1TE, 101	117,100	200, 100	

Compiled from Customs Returns of Austria.
 This table incorporates a number of revisions of data published in previous Magnesium Compounds chapters.

Greece.—The Austro-American Magnesite Co. concluded an agreement with the Greek Government to operate the Vavdos magnesite mine on the Chalcidice Peninsula in northern Greece.¹⁷ It was reported later than Magnomin A. G. of Zurich, Switzerland, had begun to mine this deposit and to install an electric furnace. Annual production was expected to reach 23,000 tons of magnesite and 12,000 tons of caustic-calcined magnesia. 18

United Kingdom.—As a result of extensions completed near the close of 1957, the output of refractory magnesia from the Hartlepool works of Steetley Magnesite Co., Ltd., increased 12 percent above 1956.19 In November Steetley announced plans to open a new dolo-

mite quarry at West Cornforth, County Durham.²⁰

Engineering Mining Journal, vol. 158, No. 8, August 1957, p. 216.
 Engineering Mining Journal, vol. 158, No. 10, October 1957, p. 200.
 Refractories Journal (London), No. 10, October 1957, pp. 468-469.
 Refractories Journal (London), No. 11, November 1957, p. 517.
 Refractories Journal (London), No. 2, February 1958, p. 87.

TABLE 14.—Exports of magnesite, from Greece, by countries of destination, 1953-57, in short tons $^{1\,2}$

[Compiled by Corra A. Barry]

Country	1953	1954	1955	1956	1957
Austria	(3) 1, 323	(³) 4, 850	(3) 5, 098	10, 720 4, 387	5, 508 3, 412
West	11, 401 551	3, 847 2, 320	298 982 1,654 1,543	1, 907 2, 927 1, 325	(³) 2, 028
United KingdomOther countries	1, 880 1, 323	2, 315 827	1, 598 882	1, 325 888 110	(3) 6, 647
Total	16, 478	14, 159	12, 055	22, 264	18, 424

TABLE 15.—Exports of calcined magnesia from Greece, by countries of destination, 1953-57, in short tons 1

[Compiled by Corra A. Barry]

Country	1953	1954	1955	1956	1957
France	14, 370 1, 687 661 506	1, 039 23, 679 13, 027 2, 389 62	1, 064 15, 710 20, 771 3, 146 111	1, 211 16, 721 19, 142 2, 589 701	(2) 12, 063 15, 782 3, 412 1, 802
Total	17, 224	40, 196	40, 802	40, 364	33, 059

Compiled from Customs Returns of Greece.
 Data not available.

TABLE 16.—Exports of refractory magnesia from the Netherlands, by countries of destination, 1953-57, in short tons 1

[Compiled by Corra A. Barry]

Country	1953	1954	1955	1956	1957
Belgium-Luxembourg	57	503 825	386 695	602 670	595 588
Finland France. Germany, West. Norway. Portugal. Saar	424 65	540 190 9, 197 470 99 202	784 131 10, 546 333 84 142	787 119 8, 926 331 112 229	547 248 7, 980 280 138 126
Sweden Union of South Africa United Kingdom United States Other countries	990 136 3, 211	975 127 3, 746	960 177 3, 727	826 69 3, 788 290	774 106 3, 285 505
Total	16, 409	17, 014	18, 198	17, 095	373 15, 545

¹ Compiled from Customs Returns of the Netherlands.

¹ Compiled from Customs Returns of Greece.
2 This table incorporates a number of revisions of data published in previous Magnesium Compounds chapters.

8 Data not available.

ASIA

India.—Magnesite production in India in 1957 decreased 6 percent The history, development, and status of the refractories below 1956. industry of India to 1957 were related, 21 including the location and size, and description of the country's magnesite deposits, the methods of production, and use of the ore.

AFRICA

Union of South Africa produced 92 percent of the magnesite reported mined in that continent in 1957. Three other countries reported small quantities.

OCEANIA

Australia.—Australia produced 99 percent of the crude magnesite in the area of Oceania in 1957, an increase of 22 percent above its production in 1956. One of the large consumers was Shell Refinery at Geelong, Victoria, which installed more than 3 miles of piping insulated with 85 percent magnesia.²²

New Zealand.—The small tonnage of magnesite produced in New

Zealand was used locally for fertilizer by tobacco growers.

TECHNOLOGY

Reports of research published in 1957 indicated progress in developing improved processes for producing and using magnesium ores and

The techniques of mining, crushing, and processing of magnesite and brucite in Nevada were discussed, and development of improve-

ments in quality control of the ores was described.23

Harbison-Walker Refractories Co. reported in November that it had begun constructing a new research center near Pittsburgh, Pa. All company research activities were coordinated at this central point, and programs in progress included studies of magnesium ores and compounds to develop new and improved processes of producing refractory materials, insulation for industrial furnaces, and magnesium chemicals.24

A description was published of the design and operation of the 2 all-basic open-hearth furnaces that were built in 1956.25 6 all-basic open-hearth furnaces were operating. Their record of operation during 1957 indicated that they permitted higher heat-input rates and higher temperatures, and promised longer refractory life than furnaces with front and back walls made of silica brick.

²¹ Bureau of Mines, Mineral Trade Notes, Refractories Industry in India, Special Suppl. 52 (vol. 46, No. 4), April 1958, 20 pp.
22 Chemical Age (London), Shell's Geelong Refinery Uses Magnesia Insulation: Vol. 79, No. 2010, Jan. 18,

²² Chemical Age (London), Sneil's Greeiong Remiery Oscol Registers 1958, p. 167.

23 Martin, Conrad, and Willard, H. P., Quality Control in Selective Mining of Magnesite: Min. Eng., vol. 9, No. 4, April 1957, pp. 425-427.

Menzi, Fred W., and Sutton, Raymond E., Production of Calcined Magnesite: Min. Eng., vol. 9, No. 7, July 1957, pp. 753-755.

24 Blast Furnace and Steel Plant, Research Center Being Erected by Harbison-Walker: Vol. 45, No. 11, November 1957, pp. 1324-1325.

24 Heuer, R. P., and Fay, M. A., The All-Basic Open Hearth Furnace: Iron Steel Eng., vol. 34, No. 2, February 1957, pp. 95-118.

Development of a new type of high-strength magnesite-chrome basic refractory was announced. The use of basic brick made of this highly corrosion-resistant material was said to increase productivity

of steel furnaces as much as 20 percent.26

Improved processes to produce fused magnesium oxide were described.27 Fused magnesium oxide (99.0 percent MgO) was recommended for use as insulation material in such applications as tubular heating elements operating at high-watt densities and temperatures

reaching 1,800° F.

Research completed by the close of 1957 promised a wider use of magnesium oxide as a ceramic material.23 California University was developing a method to produce ductile magnesium oxide.29 The single crystals of magnesium oxide did not fracture when bent in air at room temperature. In view of the strength and temperatureresistant properties of magnesium oxide, whose melting point is about 5,000° F., it was believed that refractory ceramics could be developed for use as new structural materials in aircraft and missiles where temperatures rise above 2,000° F.30

Processes were improved for producing magnesium compounds to

use in pharmaceuticals.31

The relatively new use of basic refractories in window glass furnaces was described.³² Tests at the end of 40 months of constant service of the furnaces showed that the checkers, heat-control framework made of burned basic brick, had much longer life than those that had been made of other types of refractories.

Uranium as well as many uranium alloys was melted in magnesia The manufacture and use of magnesia crucibles as concrucibles.33

tainers for melting uranium was described.³⁴

Development of a new olivine-base molding sand was reported.³⁵ The absence of silica in olivine was mentioned as a great advantage because it left the foundry workers free from the danger of contracting Aluminum castings formed in the olivine-base sand were said to require no outside blasting and minimum blasting for cleaning the inside.

²⁸ Chemical Engineering, Refractory: Vol. 64, No. 8, August 1957, p. 186.

²⁷ Chemical Engineering News, New Grade of Fused MgO: Vol. 35, No. 42, Oct. 21, 1957, p. 60.

²⁸ American Metal Market, Flexible Ceramics: Vol. 64, No. 220, Nov. 15, 1957, p. 7.

²⁹ Beller, William, Materials Breakthrough: American Aviation, vol. 21, No. 1, June 3, 1957, pp. 27-29.

²⁰ Chemical Engineering News, Structural Ceramics on the Way: Vol. 35, No. 49, Dec. 9, 1957, p. 60.

Industrial Engineering Chemistry, Ductile Ceramics: Vol. 50, No. 2, February 1958, pp. 29a-30a.

²⁰ Chemical Age (London), Producing Magnesium Hydroxide From Sea Water: Vol. 78, No. 2006, Dec. 1, 1957, p. 1021

³¹ Chemical Age (London), Froducing Magnesium Hydroxide From Sea Water. Vol. 76, 145, 2506, Bec. 21, 1957, pp. 1021.

32 Walker, Henry E., Use of Basic Refractories in Glass Tank Checkers: Am. Ceram. Soc. Bull., vol. 36, No. 9, Sept. 15, 1957, pp. 355-357.

33 Stoddard, S. D., and Harper, W. T., Refractories for Melting and Casting Uranium and Other Metals: Am. Ceram. Soc. Bull., vol. 38, No. 3, March 1957, pp. 105-108.

34 Rengstorff, G. W. P., and Lownie, H. W., Jr., Casting Large Ingots of Uranium: Metal Progress, vol. 72, No. 3, September 1957, pp. 76-78.

35 Schaller, Gilbert, New Foundry Sand: Modern Metals, vol. 13, No. 9, October 1957, pp. 82, 84, 86.

Manganese

By Gilbert L. DeHuff 1 and Teresa Fratta 2

ITH a continued Government market, domestic production of manganese ore achieved a new record when 366,000 short tons of ore, concentrate, and nodules containing 35 percent or more manganese were shipped in 1957. Domestic consumption at 2.36 million short tons also established a record.

For the second year in succession the trend of consumption was opposed to that of declining steel production and was reflected in a relatively high ratio of manganese ore used to ferromanganese pro-

duced.

Manganese-ore imports of 3.1 million short tons in 1957 were almost 1 million tons more than those in 1956 and were second to the record importations of 1953. Brazil supplanted India as the principal supplier, and domestic industrial stocks at year-end were two-thirds of the year's consumption. Alloy stocks at producers' plants were abnormally high.

Financial participation in the exploration for domestic manganese deposits was continued by Defense Minerals Exploration Administration to the extent of 75 percent of approved exploration costs, the funds advanced to be repaid from proceeds of future production.

TABLE 1.—Salient statistics of manganese in the United States, 1948-52 (average) and 1953-57, gross weight in short tons

	1948-52 (average)	1953	1954	1955	1956	1957
Manganese ore (35 percent or more Mn):					-	
Production (shipments): Metallurgical ore Battery ore Miscellaneous ore	109, 991 12, 293 130	139, 960 17, 576	191, 376 14, 694 58	275, 544 11, 711	341, 291 3, 444	364, 22 2, 10
Total shipments 1	122, 414	157, 536	206, 128	287, 255	344, 735	366, 33
General imports Consumption	1, 814, 493 1, 650, 133	3, 500, 986 2, 195, 742	2, 165, 694 1, 740, 648	2, 078, 205 2, 109, 623	2, 238, 568 2, 264, 159	3, 105, 17 2, 361, 46
Ferromanganese: Domestic production Imports for consumption Exports Consumption	698, 925 91, 408 5, 798 748, 788	907, 533 126, 518 1, 112 931, 401	718, 721 56, 772 1, 732 716, 910	869, 977 65, 121 1, 789 934, 451	923, 012 160, 203 2, 248 2 945, 210	963, 81 338, 63 7, 39 935, 72
Spiegeleisen: Domestic production Imports for consumption	73,767 2,075 107	97, 729 785	(3)	(3)	(3) 234	(3)
Exports Consumption	80,820	73, 512	52, 082	69, 564	62, 398	53, 61

^{&#}x27;Shipments are used as the measure of manganese production for compiling United States mineral-production value. They are taken at the point when the material is considered to be in marketable form from the consumer's standpoint. Besides direct shipping ore, they include, without duplication, the following beneficiated products made from domestic ores: Concentrates, nodules, synthetic battery ore, and synthetic miscellaneous ore.

Revised figure.
Bureau of Mines not at liberty to publish.

¹ Commodity specialist.

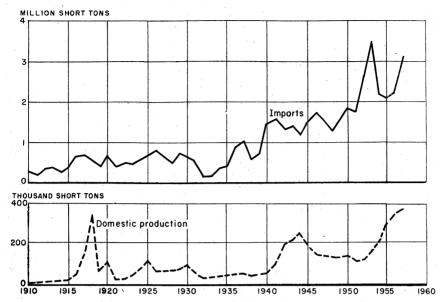


FIGURE 1.—General imports and domestic production (shipments) of manganese ore, 1910-57.

The Government received both high- and low-grade ores and concentrates under its Butte-Philipsburg purchase program. The quantity limitations remained unchanged at 6 million recoverable long-ton units for Butte-Philipsburg and 28 million contained long-ton units for the "carlot" program. The final registration date for participation in the Butte-Philipsburg program was extended to December 31, 1957, and an amendment was made providing for acceptance of certain mixtures of ores and concentrates.

DOMESTIC PRODUCTION

As in 1956, Government purchases of domestic Metallurgical-grade material on the "carlot" program and under special contracts for Nevada nodules provided approximately three-quarters of the 1957 record production of manganese ore containing 35 percent or more manganese. Shipments under the "carlot" program from Western States in 1957 increased more than 50 percent to 115,000 short tons, while those from Arkansas, Tennessee, and Virginia were lower than

in the previous year.

Manganese, Inc., with its production from Three Kids oxide ore of metallurgical nodules containing approximately 47 percent manganese, was again responsible for Nevada's leading position among the manganese-ore-producing States. Arizona, with 40 mines shipping to the "carlot" program, was in second place. Metallurgical nodules containing approximately 57 percent manganese, produced by The Anaconda Co. from Butte carbonate ore, provided the bulk of Montana shipments. Trout Mining Division, American Machine and Metals, Inc., Philipsburg, Mont., continued to be the Nation's only producer of natural Battery-grade ore or concentrate. Manganese

Chemicals Corp., Riverton, Minn., continued to use the ammonium carbamate leach process to produce synthetic battery ore and synthetic miscellaneous ores from low-grade Cuyuna range material.

Commercial shipments of low-grade manganese ores containing 10 to 35 percent manganese were made from Georgia, Minnesota, Montana, and New Mexico. Both Michigan and Minnesota shipped manganiferous iron ore containing 5 to 10 percent manganese. Manganiferous zinc residuum continued to be produced from New Jersey zinc ores.

In addition to the shipments recorded in tables 1 through 5, and table 16 as the measure of domestic production, the Government received both high- and low-grade ores and concentrates under its Butte-Philipsburg purchase program. The bulk of the low-grade receipts came from Montana; the remainder from Nevada, Utah, California, and Idaho, in that order. The high-grade receipts were

TABLE 2.—Metallurgical manganese ore shipped in the United States, 1948-52 (average) and 1953-57, by States, in short tons

State	1948-52 (average)	1953	1954	1955	1956	1957
Alabama Arizona Arkansas California	28 212 2,050 781	(1) 6, 123 720	13, 728 393	1, 396 23, 744 3, 136	42, 008 29, 485 6, 595	79, 50 23, 26 9, 00
Colorado. Montana. Nevada. New Mexico. Oregon.	105, 657 33 781	102, 878 18, 368	44, 735 (¹)	94, 762 101, 070 1, 390	77, 573 121, 017 22, 011	17 66, 19 129, 04 25, 45
rennessee Pexas Utah	94 11 43	2, 625	11, 823	15, 895	17, 821	12, 93
Urginia Washington Undistributed 2	214 87	8, 454 (1) 746	22, 678 98, 019	32, 654 1, 497	20, 231 4, 550	142 12, 655 5, 840
Total	109, 991	139, 960	191, 376	275, 544	341, 291	364, 22

¹ Included with "Undistributed." ² Includes shipments from Missouri in 1953; from Georgia and Missouri in 1954; from Georgia and Minnesota in 1955 and 1956; and from Georgia, Minnesota, Missouri, Oklahoma, and West Virginia in 1957.

TABLE 3.—Ferruginous manganese ore shipped in the United States, 1948-52 (average) and 1953-57, by States, in short tons

State	1948–52 (average)	1953	1954	1955	1956	1957
ArizonaArkansas	3, 081 216 15	534	(1)			
Georgia Michigan Mimnesota Montana Nevada New Mexico Oregon	13, 184 6, 683 6, 362 65, 953	201, 090 5, 598 25, 064 (1) 271	15, 361 7, 552 5, 266 12, 870 20, 546	347 115, 285 6, 341 40, 320	94, 139 4, 752 38, 782	200, 817 4, 547 42, 535
Utah Virginia Washington. Undistributed ²	2, 881 748 29	5, 155 35, 026	97 135		(¹) 3, 198	
Total	99, 197	272, 738	61, 827	162, 293	140, 871	247, 899

¹ Included with "Undistributed."

² Includes shipments from North Carolina and Wyoming in 1953 and from Tennessee in 1954.

TABLE 4.—Manganiferous iron ore shipped in the United States, 1948-52 (average) and 1953-57, by States, in short tons

State	1948-52 (average)	1953	1954	1955	1956	1957
Michigan Minnesota	 41, 868 983, 083	76, 251 890, 401	496, 505	749, 343	539, 780	123, 547 491, 478
New Mexico Utah	 13, 150 215					
Total	 1, 038, 316	966, 652	496, 505	749, 343	539, 780	615, 025

TABLE 5.—Manganese and manganiferous ores shipped 1 in the United States in 1957, by States, in short tons

	Metall	urgical	Bat	tery	Miscell	laneous		Total	
	Gross weight	Man- ganese content	Gross weight	Man- ganese content	Gross weight	Man- ganese content	Gross weight	Man- ganese content	Value
Manganese ore: 2									
Arizona	79, 505	33, 117					79, 505	33, 117	\$6, 626, 097 1, 726, 164
Arkansas	23, 261	10,000					23, 261	10,000	1, 726, 164
California	9,009	3, 970					9,009	3, 970	802, 310
Colorado	175	71	l		l		175	71	14, 108
Montana	66, 191	37, 379	2, 107	870			68, 298	38, 249	(3)
Nevada		60, 047					129,046	60,047	(3)
New Mexico	25, 459						25, 459		2, 113, 962
Tennessee	12, 938	5, 165					12, 938	5, 165	1,007,018
Utah							142	58	
Virginia	12,655						12,655	5, 464	
, mg									
Total	4 364, 227	4 169, 229	4 2, 107	4 870	(4)	(4)	4 366, 334	4 170, 099	429, 362, 859
Ferruginous manga- nese ore: 5									
Georgia			l 		2, 203	234		234	(3)
Minnesota	200, 817	24, 146			l		200, 817		(3)
Montana	4, 547	1 005	1	l .			4, 547	1,005	
New Mexico	42, 535	4, 254					42, 535	4, 254	151, 913
Total	247, 899	29, 405			2, 203	234	250, 102	29, 639	(6)
Manganiferous iron ore: 7									
Michigan	123, 547	7 080				l	123, 547	7,080	(3)
Minnesota		30, 846					491, 478		
INTIDUESO (Sa	401,410	00,040					101, 110	50,010	
Total	615, 025	37, 926					615, 025	37, 926	(6)

¹ Shipments are used as the measure of manganese production for compiling United States mineral-production value. They are taken at the point that the material is considered to be in marketable form from the consumer's standpoint. Besides direct shipping ore, they include without duplication the following beneficiated products made from domestic ores: Concentrates, nodules, synthetic battery ore, and synthetic miscellaneous ore.

2 Containing 35 percent or more manganese (natural).

3 Included in total.

Containing 10 to 35 percent manganese (natural).
 Combined value for ferruginous manganese ore plus manganiferous iron ore equals \$5,413,352.
 Containing 5 to 10 percent manganese (natural).

mostly from Montana and Utah, but also from California, Nevada, None of these shipments are included in the tables nor will they appear in them until shipment is made from the depots as usuable ore or concentrate. As of December 31, 1957, total receipts under the Butte-Philipsburg program was reported by GSA as 5,296,218 long-ton units of recoverable manganese; for the "carlot" program, 16,718,218 long-ton units of contained manganese.

⁴ Synthetic battery ore and synthetic miscellaneous ores produced in Minnesota from low-grade Minnesota ore, plus metallurgical ore from Georgia, Missouri, Oklahoma, and West Virginia, are included in metallurgical and grand totals.

CONSUMPTION, USES, AND STOCKS

Consumption of manganese ore increased 4 percent over the preceding year. Domestic sources supplied 2 percent and foreign sources 98 percent of the total manganese ore consumed, compared with 3 and 97 percent, respectively, in 1956 and 2 and 98 percent in 1955 and in 1954. Industrial stocks of ore, at 1.55 million short

tons, increased 21 percent over those in 1956.

The consumption of manganese as ferroalloys and direct-charged ore per short ton of open-hearth, bessemer, and electric steel produced was 13.3 pounds compared with 13.2 pounds in 1956. Of the 13.3 pounds, 12.0 pounds was in the form of ferromanganese, 1.1 pound silicomanganese, 0.1 pound spiegeleisen, and 0.1 pound ore and manganese metal. These data apply to the consumption of manganese in producing steel ingots and that part of steel castings made by companies that also produce steel ingots. The companies reporting in this part of the survey approximate those reporting steel production to the American Iron and Steel Institute. If the manganese consumed by companies that produce steel castings only is also included, the manganese consumed in manufacturing steel in 1957 becomes 13.8 pounds per short ton of steel produced, of which 12.4 represents ferromanganese, 1.2 silicomanganese, 0.1 spiegeleisen, and 0.1 ore, metal, and briquets.

TABLE 6.—Consumption of manganese ore 1 and manganese alloys in the United States, 1956-57, and stocks Dec. 31, 1957, gross weight in short tons

	Quantity	consumed	Stocks Dec. 31, 1957
Category of use and form in which consumed	1956	1957	(including bonded warehouses)
Manganese alloys and manganese metal: Manganese ore:			
Domestic Foreign		41, 315 2, 232, 463	1, 510, 165
Total manganese ore Ferromanganese, silicomanganese, and manganese metal Spiegeleisen	2, 174, 625	2, 273, 778	1, 510, 427 148, 117
Steel ingots and steel castings: ³ Manganese ore:			14, 32
Domestic Foreign.	550	234	473
Total manganese ore	550	234	479
Ferromanganese: High-carbon Medium-carbon Low-carbon	816, 591 64, 773	816, 179 58, 940	146, 552 9, 518
Total ferromanganese. Spiegeleisen. Silicomanganese. Manganese briquets.	52, 166 98, 383	875, 119 36, 574 90, 558	156, 070 11, 986 14, 132
Manganese metalteel castings: 4	6,706	6, 787	817
Manganese ore: DomesticForeign	171	276	48
Total manganese ore	171	276	48

See footnotes at end of table.

TABLE 6.—Consumption of manganese ore ¹ and manganese alloys in the United States, 1956-57, and stocks Dec. 31, 1957, gross weight in short tons—Continued

	Quantity	consumed	Stocks Dec. 31, 1957 ²
Category of use and form in which consumed	1956	1957	(including bonded warehouses)
Steel castings—Continued Ferromanganese: High-carbon Medium-carbon Low-carbon	27, 688	24, 004	4, 194
	3, 743	3, 188	1, 026
Total ferromanganese	31, 431	27, 192	5, 220
	3, 522	3, 424	740
	11, 573	11, 248	1, 538
	1, 050	631	180
	377	639	267
Pig iron: Manganese ore: Domestic	3, 763	4, 819	348
	19, 504	6, 695	8, 212
Total manganese ore	23, 267	11,514	8, 560
Dry cells: Manganese ore: Domestic	1, 510	1, 400	297
	30, 853	28, 702	19, 939
Total manganese ore	32, 363	30, 102	20, 236
Chemicals and miscellaneous industries: Manganese ore: Domestic	731 32, 452	1, 014 44, 542	6, 922
Total manganese ore	25, 822	27, 366	3, 922
		6, 048	1, 236
Total ferromanganese	\$ 32, 415	33, 414	5, 158
	6, 710	13, 617	2, 648
	15, 865	11, 893	3, 196
	14, 000	10, 531	2, 732
	\$ 2, 263	3, 407	745
Grand total: Manganese ore: Domestic	69, 565	48, 548	913
	2, 194, 594	2, 312, 912	1, 545, 759
Total manganese ore	6 2, 264, 159	6 2, 361, 460	7 1, 546, 672
Ferromanganese: High-carbon	870, 101	867, 549	154, 668
	6 75, 109	68, 176	11, 780
Total ferromanganese	⁸ 945, 210	935, 725	⁸ 166, 448
Spiegeleisen Silicomanganese Manganese briquets Manganese metal. Producers stocks ferromanganese, silicomanganese, and manganese metal	62, 398 125, 821 15, 050 5 9, 346	53, 615 113, 699 11, 162 10, 833	29, 697 8 18, 866 8 2, 912 8 1, 829 148, 117

Containing 35 percent or more manganese (natural).
 Excluding Government stocks.
 Includes only that part of castings made by companies that also produce steel ingots.
 Excludes companies that produce both steel castings and steel ingots.
 Revised figure.
 The greater part of ore consumption was used in manufacturing ferromanganese and silicomanganese.
 Combining consumption of ore with that of ferromanganese and silicomanganese would result in duplication.

cation.
7 Excludes small tonnages of dealers' stocks.
8 Excludes producers' stocks.

Electrolytic Manganese and Manganese Metal.—Consumption of electrolytic manganese metal again increased but at a much reduced rate. The electrolytic metal continued to be produced by 2 com-

panies and the electric furnace metal by 1 company.

Ferromanganese.—Production of ferromanganese in the United States was 964,000 short tons in 1957, compared with 923,000 short tons in 1956. The quantity made in blast furnaces was 3½ times that in electric furnaces—an abrupt reversal to the trend of recent years. Shipments of ferromanganese from producing furnaces decreased 5 percent in quantity but increased slightly in value. Of the 2,103,000 short tons of manganese ore consumed in manufacturing ferromanganese in 1957, 2 percent was of domestic origin.

TABLE 7.—Ferromanganese imported into and made from domestic and imported ores in the United States, 1956-57

	19	956	1957		
	Gross weight (short tons)	Mn content (short tons)	Gross weight (short tons)	Mn content (short tons)	
Ferromanganese: 1 Made in United States: From domestic ore 2 From imported ore 2	40, 125 882, 887	32, 166 677, 729	22, 484 941, 330	18, 07	
Total domestic production Imported	923, 012 160, 203	709, 895 123, 953	963, 814 338, 630	725, 56 743, 63 257, 82	
Total ferromanganese	1, 083, 215	833, 848	1, 302, 444	1, 001, 45	
Open-hearth, bessemer, and electric ³ furnace steel produced	115, 216, 149		112, 714, 996		

¹ Number of domestic plants making ferromanganese: 1956, 18; 1957, 16.

TABLE 8.—Ferromanganese produced in the United States and metalliferous materials consumed in its manufacture, 1948-52 (average) and 1953-57

	Ferror	nanganese	produced	Materials	consumed (s	short tons)	Manganese ore used
Year	Short tons		inese con- ined	percent	ese ore (35 or more atural)	Iron and manga- niferous	per ton of ferro- manga- nese ¹ made
		Percent	Short tons	Foreign	Domestic	iron ores	(short tons)
1948-52 (average)	698, 925 907, 533 718, 721 869, 977 923, 012 963, 814	77. 24 76. 74 75. 04 77. 03 76. 91 77. 16	539, 883 696, 436 539, 364 670, 165 709, 895 743, 634	1, 271, 309 1, 829, 382 1, 412, 030 1 1, 924, 643 2, 025, 678 2, 066, 693	98, 646 75, 594 31, 351 1 46, 936 63, 561 36, 692	7, 673 31, 562 8, 404 1, 594 283 503	1. 96 2. 10 2. 01 1 2. 02 2. 26 2. 18

For 1955 includes ore used in manufacture of silicomanganese and manganese briquets.

² Estimated. ⁸ Includes crucible.

TABLE 9.—Manganese ore used in manufacture of ferromanganese 1 in the United States, 1953-57, by source of ore

	195	3	195	4	195	51	195	6	195	7
	Gross weight (short tons)	Mn con- tent, natu- ral (per- cent)	Gross weight (short tons)	Mn con- tent, natu- ral (per- cent)	Gross weight (short tons)	Mn con- tent, natu- ral (per- cent)	Gross weight (short tons)	Mn con- tent, natu- ral (per- cent)	Gross weight (short tons)	Mn con- tent, natu- ral (per- cent)
Domestic	75, 594 637, 934 192, 280 36, 456 172, 700 716, 568 6, 763 42, 675 40 8, 586 8, 382 6, 490 1, 904, 976	45. 85 40. 20 43. 95 39. 89 44. 51 44. 48 41. 99 47. 50 41. 52 45. 76 45. 87	397, 153 123, 234 10, 516 144, 870 637, 475 6, 988 54, 969 4, 943 591 8, 200	40. 23 43. 44 39. 85 46. 10 44. 86 42. 00 46. 83 44. 50 45. 73	586, 602 138, 276 24, 707 253, 271 817, 710 9, 198 60, 889 2, 179 105 11, 176	47. 21 41. 07 44. 12 40. 25 45. 31 45. 34 44. 00 45. 57 39. 05 46. 41	135, 423 1, 725 2, 199 1, 591	39. 76 45. 31 39. 34 44. 38 	673, 260 411, 615 16, 072 185, 746 598, 511 	44. 99 44. 01 46. 12 37. 51 44. 47 38. 22 44. 27 47. 18 39. 00 42. 62

¹ For 1955, includes silicomanganese and manganese briquets.

TABLE 10.—Ferromanganese shipped from furnaces in the United States, 1948-52 (average) and 1953-57

Year	Short tons	Value	Year	Short tons	Value
1948-52 (average)	696, 925	\$109, 795, 125	1955	886, 886	\$172, 863, 154
1953	900, 110	185, 192, 588	1956	925, 450	209, 412, 426
1954	707, 415	139, 157, 801	1957	882, 066	210, 004, 246

Pittsburgh Coke & Chemical Company equipped 1 of the 2 blast furnaces at its Neville Island (Pittsburgh), Pa., plant for ferromanganese production by providing special gas-cleaning equipment and additional stove capacity, among other improvements. The capacity of the furnace became either 400 tons of ferromanganese per day, or 900 tons of pig iron. Ferromanganese production was begun in December, making the company a new producer.

Silicomanganese.—Ten plants of 5 companies produced silicomanganese in 1957, compared with 11 plants of 5 companies in 1956. The only significant change was one of name—from Globe Metallurgical Corp., Beverly, Ohio, to Interlake Iron Corp., Beverly, Ohio. Consumption of silicomanganese was 12.2 percent that of ferromanganese, compared with 13.3 percent in 1956, 12.0 percent in 1955, and 11.2 percent in 1954.

Spiegeleisen.—New Jersey Zinc Co., Palmerton, Pa., was the only

producer of spiegeleisen in 1957.

Manganiferous Pig Iron.—Pig-iron furnaces used 1,667,000 short tons of manganese-bearing ores containing (natural) over 5 percent manganese in 1957. Of this total, 547,000 tons was of domestic origin and 1,120,000 tons foreign. Of the domestic ore used, 496,000 tons contained (natural) 5 to 10 percent manganese, 46,000 tons contained 10 to 35 percent manganese, and 5,000 tons contained over 35 percent

manganese. Of the foreign ore used 1,012,000 tons contained (natural) 5 to 10 percent manganese, 101,000 tons contained (natural) 10 to 35 percent manganese, and 7,000 tons contained 35 percent or more manganese.

Battery and Miscellaneous Industries.—Manufacturers of dry-cell batteries during 1957 used 30,000 short tons of manganese ore; 1,400 tons was of domestic origin. All contained over 35 percent manganese

(natural).

Chemical plants and miscellaneous industries used 46,000 short tons of manganese ore containing 35 percent or more manganese; 2 percent was from domestic sources. All the manganese dioxide ore used which was essentially of Chemical grade, 28,000 tons, was imported. The consumption of this high-grade dioxide ore by uranium mills, as an oxidant in certain acid-leaching processes, started in the United States in 1954 and by 1957 had become an appreciable proportion of the total used. This high-grade ore continued to be used for manufacturing manganese sulfate, hydroquinone, potassium permanganate, other manganese compounds, and as an oxidizing agent in various chemical processes. This or other grades containing 35 percent or more manganese was used in manufacturing welding rods and welding-rod coatings, frits, dyes, paint and varnish driers, glass, ceramics, bricks, fertilizers, pharmaceuticals, and magnesium alloys and for producing high-quality synthetic manganese dioxide for dry-cell batteries.

TABLE 11.—Foreign ferruginous manganese ore and manganiferous iron ore consumed in the United States, 1954-57, in short tons

Source of ore	Fe	ruginous 1	nanganese	ore	1	Manganifer	ous iron or	е
	1954	1955	1956	1957	1954	1955	1956	1957
Canada Egypt	128, 102 1, 033	102, 070	1 113, 062	101, 512	408, 467	408, 292	618, 998	1, 012, 063
India	129, 191	102, 070	113, 062	101, 512	408, 467	408, 292	618, 998	1, 012, 063

¹ Includes 129 short tons from unidentified sources in Africa.

PRICES

Manganese Ore.—Government prices for domestically mined manganese ore meeting specifications and regulations continued to be calculated on the basis of \$2.30 per long dry-ton unit for 48 percent of either contained or recoverable manganese. Commercial prices for Indian manganese ore of 46- to 48-percent manganese content, as quoted by E&MJ Metal and Mineral Markets, opened the year at \$1.64 to \$1.69 per long-ton unit of manganese, c. i. f. United States ports, import duty extra, including Indian export duty. Prices on this basis gradually decreased, to close the year at \$1.36 to \$1.39, nominal, but the weighted average for the year at \$1.44 to \$1.53 was higher than for 1956. Long-term contract prices were not quoted. At the end of the year E&MJ Metal and Mineral Markets quoted

crude manganese dioxide, 84 percent MnO₂, c. i. f. United States ports, at \$110 to \$120 per long ton in bulk; and Chemical grade, 84 percent MnO₂, coarse or fine, per short ton in carlots at \$152.50 in drums, \$148.00 in burlap bags, and \$144.50 in paper bags. Duty on manganese ore remained at 1/4 cent per pound of contained manganese, with continuing exceptions that ore from Cuba and the Philippines was exempt from duty and ore from the U.S.S.R. and certain neighboring countries was dutiable at 1 cent per pound of contained manganese.

Manganese Alloys.—The average value, f. o. b. producers' furnaces, for ferromanganese shipped during 1957 was \$238.08 per short ton, compared with \$226.28 (revised figure) in 1956. The price of ferromanganese at eastern furnaces, carlots, at the beginning of the year was 12.75 cents per pound of alloy and was cut in September to 12.25 cents per pound. According to Iron Age, the price averaged 12.60 cents per pound for the year. The quoted price for spiegeleisen of 19- to 21-percent manganese content, as given by the same source,

was unchanged at \$102.50 per long ton for the year.

Manganese Metal.—The price of electrolytic manganese metal was quoted by E&MJ Metal and Mineral Markets as increasing 1 cent in April to 34 cents per pound for carlots and 36 cents per pound for ton lots. These prices remained to the end of the year. A premium of 0.75 cent per pound for hydrogen-removed metal was unchanged throughout the year.

FOREIGN TRADE 3

Imports of manganese ore in 1957 were the second highest of record. The average grade was 46.1 percent manganese, compared with 45.4 percent in 1956 and 46.3 percent in 1955. Brazil, providing 30 percent of the total ore received in 1957, was the leading supplier, surpassing India, which had been the principal source since 1948. Brazil, India, Ghana (formerly Gold Coast), Union of South Africa, and Mexico, in that order, supplied over three-fourths of total United States imports for the year.

Imports for consumption of ferromanganese in 1957 increased 111 percent over those in 1956; value also increased 111 percent. Exports of ferromanganese at 7,395 short tons were more than 3 times those in 1956. Exports of manganese ore and concentrate (10 percent or more manganese) totaled 5,270 short tons valued at \$724,447.

Barter of surplus United States agricultural products for various manganese items by the Commodity Credit Corporation, United States Department of Agriculture, continued to be a factor in trade between the United States and other nations.

³ Figures on imports and exports compiled by Mae B. Price and Elsie D. Jackson, Division of Foreign Activities, Bureau of Mines, from records of the U. S. Department of Commerce, Bureau of the Census.

TABLE 12.—Manganese ore (85 percent or more Mn) imported into the United States, 1956-57, by countries

[Bureau of the Census]

				in and and						
	Ď	eneral impor	General imports ' (short tons)	(\$1		Г	Imports for consumption	onsumption	8	
Country						Short tons	tons		Value	en
	Gross	Gross weight	Mn c	Mn content	Gross	Gross weight	Mn co	Mn content		}
	1956	1957	1956	1981	1956	1957	1956	1957	1956	1957
North America: Canada Corta Rica	129	50	58	22		183	1	186		\$5, 405
Cuba. Mexico	242, 036 171, 201	49 156, 651 218, 229	104, 356 78, 131	18 64, 086 98, 173	237, 189 182, 632	49 159, 393 217, 648	102, 126 83, 087	18 65, 402 97, 950	\$6, 290, 743 5, 846, 807	1, 767 5, 727, 361 8, 055, 126
Total	413, 366	374, 979	182, 545	162, 299	419, 821	377, 273	185, 213	163, 451	12, 137, 550	13, 789, 659
South America: Argentina. Brazil British Guiana.	237, 219	546 926, 498 332	99, 624	240 438, 769 133	236, 515	546 600, 408	99, 296	240 281, 495	7, 249, 508	22, 135 25, 776, 697
Ohile Peru Venezuela	13, 353 8, 284	33, 586 15, 074 6, 884	6,014 3,634	14, 859 6, 574 2, 917	19, 550 10, 332	28, 093 15, 074 3, 756	8, 959 4, 548	12, 342 6, 574 1, 728	712,306 231,189	295, 363 1, 295, 363 551, 874 105, 000
Total	258, 856	982, 920	109, 272	463, 492	266, 397	648, 209	112, 803	302, 512	8, 193, 003	27, 754, 632
Europe: Greece Portugal	5,818	6, 684 1, 598	2, 722	3,174	6, 714 3, 335	5, 565 1, 598	3, 177 1, 600	2, 670	255, 139 130, 875	253, 292 86, 954
Total	5,818	8, 282	2, 722	3, 963	10,049	7, 163	4,777	3, 459	386, 014	340, 246
Asia: India Indonesia	648, 558	794, 583 5, 130	289, 551	359, 675 2, 185	650, 528	678, 470	293, 930	307, 626	17, 339, 742	21, 402, 789
Philippines Portuguese Asia, n. e. c. Turkey	7, 201 21, 308 4, 290	9,835 18,979 13,209	3, 571 9, 280 1, 927	4, 473 8, 278 5, 196	7, 201 2, 910 4, 290	7, 584 18, 979 13, 209	3, 571 1, 432 1, 927	3, 445 8, 278 5, 196	210, 252 102, 600 126, 231	309, 061 664, 346 364, 078
Total	681, 357	841, 736	304, 329	379, 807	664, 929	723, 372	300, 860	326, 730	17, 778, 825	22, 882, 038

See footnotes at end of table.

TABLE 12.—Manganese ore (35 percent or more Mn) imported into the United States, 1956-57, by countries—Continued

S.	
₽	
S	
75	
-	
~	

	8	neral import	General imports ¹ (short tons)	(SI		I	Imports for consumption 2	nsumption 2		
Country		•	•			Short tons	tons		Value	92
	Gross weight	weight	Mn content	ntent	Gross weight	veight	Mn content	ntent		
	1956	1957	1956	1957	1956	1957	1956	1957	1956	1957
Africa: Angola Belgian Congo Design Congo	15, 295 206, 850 1, 703	3 47, 827 3 163, 638	7,258 4 103,439 860	3 23, 372 3 81, 564	11,487 160,867 1 793	3 32, 661 3 139, 225	5, 365 80, 610 860	3 15, 674 3 69, 607	\$463, 562 7, 156, 428 74, 617	3 \$1, 539, 733 3 6, 126, 762
Egypt. Ghans 4. Morocco. Rhodesis and Nyasaland, Federation of	288, 062 95, 210 10, 227	1, 640 313, 270 50, 882 25, 359	4 140, 524 46, 666 4, 875	754 151, 195 24, 246 12, 015	308, 831 87, 387 10, 227	1,640 249,294 70,015 25,359	148, 552 41, 629 4, 875	754 122, 113 34, 552 12, 015	13,068,192 3,130,781 3,84,324	87, 909 11, 084, 652 3, 687, 437 1, 052, 264
Sudan Union of South Africa	255, 738	243, 722	111, 125	105, 317	280, 638	224, 988	121, 682	97, 028	6, 951, 501	6, 351, 047
Total	873, 209	848, 296	4 414, 761	399, 285	861, 264	743, 182	403, 587	351, 743	31, 230, 958	29, 929, 804
Oceania: Australia British Western Pacific Islands	5, 962	18, 213 30, 746	3, 232	8, 378 14, 634	1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1	18, 213 22, 011		8, 378 10, 839		1, 043, 426 959, 409
Total	5,962	48, 959	3, 232	23, 012		40, 224		19, 217	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2,002,835
Grand total 6	2, 238, 568	3, 105, 172	4 1, 016, 861	1, 431, 858	2, 222, 460	2, 539, 423	1, 007, 240	1, 167, 112	69, 726, 350	96, 699, 214

1 Comprises ore received in the United States during year; part went into consump-

tion, and remainder entered bonded warehouses.

*Compress receipts during year for consumption and one withdrawn from bonded warehouses during year, stollede imports for manufacture in bond and export.

*General imports for Belgian Congo include 4,319 short tons (gross weight), 2,224 short tons (Mn content); Belgian Congo imports for consumption include 2,128 short tons (Mn content), 1,156 short tons (Mn content), \$114,049 credited by the Burean of the Consumption and an appreciable part of the ore shown in this short so consumption include 2,128 short tons (gross weight), 1,156 short tons (Mn content), \$114,049 credited by the Burean the Consumption and the Consumption include 2,128 short tons (gross weight), 1,156 short tons (Mn content), \$114,049 credited by the Burean than expreciable part of the ore shown in this shop as confine from Angola.

* Revised figure.

• Effective Mar. 1, 1957; formerly Gold Coast.

• In 1957, receipts of one classified as Battery and Chemical grades totaled 135,777

short tons averaging 54.6 percent manganese. Of this quantity 98,547 short tons came

tons from Belgran Congo (meludes 4,319 short tons credited to Angola but believed to have overlinated in Belgran Congo), and 1,823 short tons from Peru. Imports for consumption of Battery and Chemical grades in 1987 totaled 92.851 short tons related 92.851 short tons walued 49.475 short tons (a.842.99 per short tons (a.842.99 per short tons (a.842.99 per short tons (a.842.99 per short tons (a.844.709), Chan 3 piplied 49.475 short tons (a.844.709), Delgran Congo, 5.769 short tons (8344.709), Belgran Congo, 6.769 short tons (8344.709), Belgran Congo, and 1,522 short tons (1,823.90) from Peru. In addition it is believed some of the ore from Greece reported as Merallurgical grade in 1965 and 1967 was Battery and Chemical grades. Changes in Minerals Yearbook, 1965, pp. 801 are as follows: receipts of Battery and Chemical grades. Changes to taled 121,172 short tons. Of this quantity 76,949 short tons came from Ghana.

TABLE 13.—Ferromanganese imported for consumption in the United States, 1955-57, by countries

[Bureau of the Census]

		1955			1956			1957	
Country	Gross weight (short tons)	Mn con- tent (short tons)	Value	Gross weight (short tons)	Mn con- tent (short tons)	Value	Gross weight (short tons)	Mn con- tent (short tons)	Value
North America: Canada Mexico	1, 142 160	926 122	\$311,889 21,533	3, 761 4, 996		\$694, 371 702, 722			\$22,544,924 366, 793
TotalSouth America: Chile	1, 302 4, 959			8, 757 2, 350					22, 911, 717 230, 183
Europe: Belgium-Luxem- bourg	20, 184 128 23, 511 2, 232	16, 267 113 19, 357 1, 722	57, 041 5, 031, 651	77, 095 11, 597	17, 149 58, 672 9, 901	3, 831, 150 12, 920, 697 2, 596, 373	101, 735 32, 018 11, 405	76, 219 24, 403 9, 465	17, 412, 582 5, 807, 324 2, 529, 040
Total	46, 055	37, 459	8, 922, 688	115, 674	89, 275	20, 111, 470	154, 363	117, 123	27, 355, 463
Asia: Japan Africa: Belgian Congo	12, 805	9, 819	2, 028, 917	33, 422	26, 088	1 6, 599, 351	55, 783 551	42, 734 441	9, 638, 636 95, 875
Grand total	65, 121	52, 236	11, 898, 383	160, 203	123, 953	128, 500, 224	338, 630	257, 821	60, 231, 874

¹ Revised figure.

TABLE 14.—Spiegeleisen 1 imported for consumption in the United States, 1948–52 (average) and 1953–57

[Bureau of the Census]

Year	Short tons	Value	Year	Short tons	Value
1948–52 (average) 1953 1954	2, 075 785	\$112, 827 63, 149	1955 1956 1957	234	\$18,085

¹ Exclusive of spiegeleisen containing not more than 1 percent carbon, manganese metal, and manganese boron.

TABLE 15.—Ferromanganese exported from the United States, 1948-52 (average) and 1953-57

[Bureau of the Census]

Year	Gross weight (short tons)	Value	Year	Gross weight (short tons)	Value
1948–52 (average)	5, 798	\$1,034,420	1955	1, 789	\$642,806
1953.	1, 112	389,064		2, 248	682,257
1954.	1, 732	614,544		7, 395	1,866,456

WORLD REVIEW NORTH AMERICA

Canada.—Six separate iron-manganese deposits have been outlined 5 miles west of Woodstock, New Brunswick, on property controlled by Strategic Manganese Corporation, Ltd., subsidiary of Stratmat, Ltd. (Strategic Materials Corp.). Gravimetric surveys and reconnaissance diamond drilling, with detailed drilling confined mostly to 1 deposit, have indicated 194 million short tons, averaging 9 percent manganese and 13 percent iron, to a depth of 500 feet. More than 34,000 feet of drilling was completed, half in 43 holes in the Plymouth deposit. The deposits are similar in type and grade to those of adjoining Aroostook County, Maine. Research on treatment methods continued. A small sink-float plant at the mine was helpful in upgrading electric-furnace feed from certain of the ores.4

TABLE 16.—World production of manganese ore, by countries, 1948-52 (average) and 1953-57, in short tons 2

[Compiled by Pearl J. Thompson and Berenice B. Mitchell]

Country 1	Percent Mn	1948–52 (average)	1953	1954	1955	1956	1957
North America:							
Cuba		127, 108	389, 356	296, 801	346, 680	3 257, 996	3 148, 276
MexicoPanama	30+	80, 461	269, 863	277, 996	97, 326	4 171,000	\$ 220,000 \$ 2,154
United States (shipments)	35+	122, 414	157, 536	206, 128	287, 255	344, 735	366, 334
Total		329, 983	816, 755	780, 925	731, 261	773, 731	736, 764
South America:							
Argentina	30-40	1,914	5, 512	1, 323	5, 512	9,682	16, 535
Brazil		230, 096	255, 058	179, 157	234, 249	342, 580	879, 717
Chile	40-50	39, 585	60, 207	58, 422	4 58, 400	51,878	4 50,000
Peru Venezuela	40+ 46-48	788	1, 323	4,960	6,008	8,047 10,318	11,850 32,939
Total		272, 383	322, 100	243, 862	304, 169	422, 505	991, 041
2001-1		= 1.2,000	====				
Europe:							
Bulgaria		⁵ 14, 330	23, 149	36, 376	69,005	77, 933	4 88,000
Greece		8, 201	15, 577	18,697	27, 148	28,660	4 28, 000
Hungary	30+	84, 794	132, 038	120, 412	105, 208	4 83,000	4 83,000
Italy	30	30, 579	44, 157	54, 902	62, 371	50, 627	51,811
Portugal	35+	4, 468	13, 918	10, 627	4, 388	3,508	5,812
Rumania	35	4 92, 400	199, 518	302, 033	429, 814	259, 054	292, 402
Spain.	30+	23, 250	36, 044	39, 511	48, 375	36, 100	40, 543
U. S. S. R.6.		3, 760, 000	5, 115, 800	5, 356, 100	5, 228, 300	5, 443, 200	5, 467, 500
Yugoslavia	30+	10, 720	5, 181	4,960	4,850	4 6,000	4 6, 000
Total 1		4, 028, 742	5, 585, 382	5, 943, 618	5, 979, 459	5, 988, 082	46, 063, 100
Asia:							
Burma	35+	1,897	9, 610	4, 160	342	1, 287	506
India		1,077,278	2, 130, 511	1, 582, 639	1, 773, 566	1, 824, 483	1, 756, 163
Indonesia	35-49	2, 204	36, 729	22, 309	38, 810	90, 568	59, 257
Iran 7	36-46	4, 582	4 4, 400	8, 799	5, 484	6,614	2, 205
Japan	32-40	152, 954	214, 286	180, 155	222, 350	314, 175	308, 429
Korea, Republic of	30-48	2, 175	3, 371	1,744	3, 838	2, 158	3, 533
Philippines	35-51	27, 489	23, 708	10, 354	13, 131	4,866	33, 324
Portuguese India	32-50+	54, 919	166, 227	116, 756	149, 523	3 177, 702	131, 998
Thailand	52					450	381
Turkey	30-50	42, 793	99, 038	54, 925	55, 228	65, 962	58, 038
Total 1 4		1, 381, 000	2, 737, 500	2, 048, 000	2, 350, 000	2, 576, 000	2, 464, 000

See footnotes at end of table.

⁴ Sidwell, K. O. J., The Woodstock, N. B., Iron-Manganese Deposits: Canadian Min. and Met. Bull., vol. 50, No. 543, July 1957, pp. 411-416.

Monture, G. C., Woodstock Manganese Ores—Occurrence and Treatment: Canadian Min, Jour., vol. 78, No. 4, April 1957, pp. 117-120,

TABLE 16.—World production of manganese ore, by countries, 1948-52 (average) and 1953-57, in short tons 2-Continued

Country 1	Percent Mn	1948–52 (average)	1953	1954	1955	1956	1957
Africa:							
Angola	38-48	28, 571	72,603	34, 865	34, 853	29,647	23, 517
Belgian Congo	50	53, 115	238, 831	424, 320	508, 972	363, 250	404, 572
Fount 8	57	1,509	3,578	6,991	7,994	21, 195	4 10, 000
Ghana (exports)	48	824, 923	835, 510	515, 475	604, 330	712, 154	713, 757
Morocco:						1	1
Northern zone	50	1,204	1, 181	856	1, 262	953	732
Southern zone	35-50	339, 802	473, 304	441, 203	453,013	464, 523	541, 772
Rhodesia and Nyasaland, Federation of:	20 00	,	,	,			
Northern Rhodesia	30+	10 2, 905	7,984	17, 562	19,717	44, 171	41, 29
Southern Rhodesia		355	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	18	1,330	816	1,78
South-West Africa		11 12, 515	40,654	34,066	41,880	57, 262	89, 66
Sudan	36-44	-2,0-0	,	,		7,716	4 9,000
Union of South Africa	40+	739, 873	912, 333	772, 862	649, 471	768, 395	787, 87
Total_,		2,004,772	2, 585, 978	2, 248, 218	2, 322, 822	2, 470, 082	2, 623, 96
Oceania:	-						
Australia	45-48	10, 404	36, 897	31, 587	53,039	66, 510	86, 40
Fiii	40+	683	2,448	10,773	19, 823	21,636	3 27, 65
New Caledonia	45+	9,854	6, 163	20,	,	,	
New Zealand	48+	427	324	268	179	175	4
Papua		50	47		17		
Total		21,418	45, 879	42, 628	73,058	88, 321	114, 09
± 0.000+ 4 +							
World total (esti- mate)1		8, 038, 000	12,094,000	11.307.000	11,761,000	12,319,000	13, 000, 00

¹ In addition to countries listed, China and North Korea have produced manganese ore; data of output are not available, but estimates for them are included in the totals. Czechoslovakia and Sweden report production of manganese ore, but because the manganese content averages st han 30 percent, the output is not included in this table. Sweden averages amountly 15,000 tons of approximately 15-percent manganese

? This table incorporates a number of revisions of data published in previous Manganese chapters. Data do not add exactly to totals shown because of rounding where estimated figures are included in the detail.

3 Exports

4 Estimate

⁵ 1 year only. 6 Grade unstated. Source: The Industry of the U. S. S. R., Central Statistical Administration, 1957

10 Average for 1951–52. 11 Average for 1950-52.

Central American Countries.—Manganese deposits of Costa Rica, Guatemala, Honduras, and Panama were described. Only those of

Costa Rica and Panama have produced ore.

Cuba.—Annual production of Chemical-grade manganese ore from the mines of Holston Trading Corp., subsidiary of Eastman Kodak Co., has run between 5,000 and 6,000 tons. Plus purchases from numerous small independent operators, the total ore handled by the company in Cuba has approximated 17,000 tons per year of both Chemical and Metallurgical grades. Some of the latter is invariably obtained in producing the chemical ore. All of the Chemical grade and most of the Metallurgical normally is shipped to the United The principal company mining operations have been near Bueycito, some 90 miles from Santiago. Late in 1957 Holston was developing a new mine near El Cristo, about 15 miles north of Santi-

⁽MOSCOW).

7 Year ending March 20 of year following that stated.

8 In addition to high-grade ore shown in the table, Egypt produced the following tonnages of less than 30 percent manganese content: 1948-52 (average), 152,160; 1953, 309,571; 1954, 188,703; 1955, 227,042; 1956, 200,075; and 1957, not available.

9 Dry weight.

10 A verage for 1951-52

⁴ Roberts, Ralph J., Irving, Earl M., and Simons, Frank S., Mineral Deposits of Central America: Geol. Survey Bull. 1034, 1957, pp. 104-142.

ago. Cuba's only heavy-medium manganese plant was that of Inter-American Industries, Inc., at Cambute, Oriente, about 35 miles east

of Santiago.⁷

-Preliminary figures indicate that 1957 exports of manga-Mexico.nese totaled 88,000 short tons (metal content); all went to the United States.8

SOUTH AMERICA

Brazil.—The first shipment of manganese ore from the Amapa deposits of Industria e Commercio de Minerios, S. A. (ICOMI) was made January 9, 1957. The ore was reported to be of excellent quality—a hard ore containing more than 51 percent manganese, low in iron, silica, and phosphorus. The mine was open-pit, with overburden reported to vary up to 30 feet. The ore was washed to remove clay. According to preliminary figures, approximately 80 percent of the Brazilian manganese ore exported in 1957 came from Amapa, less than 1 percent from Baiá, and the remainder principally from the Lafaite mine of United States Steel Corp.'s Cia. Meridional de Mineracão in Minas Gerais. Of the total, approximately 1 percent went to West Germany, 52 percent to the United States Government, and the remainder to United States industry.

British Guiana.—An agreement was signed May 6, 1957, between the Government of British Guiana and the Northwest Guiana Mining Co., Ltd., to provide for mining manganese on the 38,000-acre company lease in northwestern British Guiana on the Barima River. Plans called for investing approximately US \$12 million and for production to begin in 1959 at a monthly rate of 10,000 tons, to be increased to 30,000 tons by 1961. A 38-mile railroad was to be constructed from the mine to a shipping point.9 The ore then will be barged to Trinidad for transshipment to Newport News, Va. 10 The first commercial shipment of manganese ore from British Guiana, of

approximately 300 short tons, was in December 1956.11

Chile.—The 52,000 short tons of manganese ore produced in 1956 had a manganese content of 24,000 short tons. Two-thirds of this ore was produced by Cia. Manganesos de Atacama, which also made 2,500 short tons of ferromanganese for export. Chile's other ferromanganese producer, Fabrica Nacional de Carburo y Metalurgia, consumed 18,000 short tons of manganese ore in producing 7,200 short tons of ferromanganese and 3,700 short tons of silicomanganese. 12 During the first half of 1957, Chile exported 12,000 short tons of manganese ore averaging 45.7 percent manganese, of which Germany received 550 short tons and the United States the remainder. In the same period 1,400 short tons of ferromanganese was exported, plus 300 short tons of silicomanganese. The United Kingdom took 81 percent of the ferromanganese and the United States, Uruguay, Netherlands, and Peru, the remainder in that order. All of the silicomanganese went to the United States except for 6 tons to Mexico.¹³

⁶ U. S. Consulate, Santiago de Cuba, Cuba, State Department Dispatch 45: Jan. 28, 1958.
⁷ Engineering and Mining Journal, High-Grade Manganese Source Grows in Cuba: Vol. 158, No. 9, September 1957, pp. 90-91.
⁸ U. S. Embassy, Mexico, D. F., Mexico, State Department Dispatches 276 and 981: Sept. 9, 1957 and Mar. 11, 1958.
⁹ Bureau of Mines, Mineral Trade Notes: Vol. 46, No. 1, January 1958, p. 11.
¹⁰ Engineering and Mining Journal, vol. 158, No. 12, December 1957, p. 205.
¹¹ U. S. Consulate, Georgetown, British Guiana, State Department Dispatch 66: Oct. 15, 1957.
¹² U. S. Embassy, Santiago, Chile, State Department Dispatch 128: Aug. 6, 1937.
¹³ U. S. Embassy, Santiago, Chile, State Department Dispatch 498: Nov. 21, 1957.

Peru.-In 1956 Cia. Minas Gran Bretana supplied 80 percent of Peru's manganese ore production of 5,100 short tons (MnO2 content). A small quantity was consumed in Peru by the zinc refineries of Cerro de Pasco Corp., and 3,300 short tons was exported to the United States. Local consumption is expected to increase when the Chimbote steel mill under construction is completed.14

Venezuela.—Operations of Upata Mines, S. A., had stopped by Manganese ore was exported to Europe and the United mid-1957.15 States during the period of mining which began late in the previous

year.

EUROPE

France.—Of the 723,000 short tons of manganese ore imported in 1956, Morocco supplied 280,000, India 184,000, U. S. S. R. 117,000, and South Africa 52,000.16

Greece.—Exports of manganese ore in 1956 totaled 14,000 short tons compared with 21,000 in 1955. The quantities, by country of destination, were (1955 figures in parentheses): United States, 6,200 (3,200); Italy, 2,900 (2,000); France, 1,700 (none); West Germany, 1,300 (7,800); other countries, 2,000 (7,800).¹⁷

Norway.-Production of ferromanganese in 1956 and 1955 was, respectively, 77,000 and 66,000 short tons; ferrosilicomanganese, respectively, 45,000 and 32,000 short tons. Of the 83,000 short tons of ferromanganese exported in 1956, the 3 principal receiving countries were United Kingdom and Belgium-Luxembourg, with 23,000 tons each, and the United States, with 12,000 tons. In 1955 the United States was the leading recipient, with 27,000 short tons out of a total Belgium-Luxembourg was second, with 18,000 short tons; and West Germany third, with 11,000 tons. In 1956, 51,000 short tons of ferrosilicomanganese was exported; West Germany took 23,000 short tons, the United Kingdom 15,000, and Belgium-Luxembourg 2,900. In 1955 the total was 34,000 short tons, and the 3 principal receiving countries were: West Germany, 16,000; United Kingdom, 11,000; and Austria, 2,900. Imports of ferroalloys other than ferrosilicon were insignificant in 1956. Imports of manganese ore in 1956 and 1955, respectively, totaled 240,000 and 171,000 short tons. The three principal supplying countries in 1956 were British West Africa, 156,000; U. S. S. R., 27,000; and South Africa, 20,000 short tons; in 1955 British West Africa, 104,000; U. S. S. R., 31,000; and India, 13,000 short tons.18

Portugal.—Exports of manganese ore in 1957 totaled 5,500 short tons, of which Sweden received 2,600 tons, Netherlands 2,400, and the

United States 500.19

Rumania.-Manganese ore in the form of roasted carbonates or

unprocessed ore was reported to be available for export.20

Sweden.—Imports of manganese ores in 1956 totaled 42,000 short tons compared with 35,000 short tons in 1955. The largest suppliers

Bureau of Mines, Mineral Trade Notes: Vol. 46, No. 2, February 1958, p. 19.

18 U. S. Embassy, Caracas, Venezuela, State Department Dispatch 134: Sept. 3, 1957.

18 Bureau of Mines, Mineral Trade Notes: Vol. 46, No. 2, February 1958, p. 19.

17 Bureau of Mines, Mineral Trade Notes: Vol. 45, No. 2, August 1957, pp. 16–17.

18 U. S. Embassy, Oslo, Norway, State Department Dispatch 436: Dec. 30, 1957.

19 U. S. Embassy, Lisbon, Portugal, State Department Dispatch 488: Mar. 11, 1958.

20 Metal Bulletin (London), No. 4201, June 7, 1957, p. 26.

in 1955 were U.S.S.R., 12,000 short tons; Union of South Africa.

10,000; India, 9,000; and Belgian Congo, 2,700.21

U. S. S. R.—A new Franco-Russian trade treaty, signed in February, provided for the exchange of French iron and steel products for Soviet manganese ore among other things.²² From import statistics of the various countries concerned, Soviet exports of manganese ore to non-Soviet bloc countries in 1956 apparently totaled 406,000 short tons compared to 386,000 in 1955, and 243,000 in 1954. The distribution was as follows:

Country	1954	1955	1956
United Kingdom	141, 000	133, 000	164, 000
West Germany	900	57, 000	51, 000
France	37, 000	102, 000	117, 000
Sweden	36, 000	12,000	20, 000
Norway	4, 300	31, 000	27, 000
Yugoslavia		8, 500	18, 000
Italy	23, 000	20,000	4, 900
Japan.		22, 000	4,000
Others	650	900	

ASIA

India.—Tata Iron and Steel Co., at Jamshedpur, was the principal producer of ferromanganese in India. The other producers were the Indian Iron and Steel Co. at Asansol and the Mysore Iron and Steel Works at Bhadravati. Production in India has been intermittent, normally varying between 12,000–20,000 tons per year. In 1956, 28,000 tons was produced. The record was 36,784 tons in 1954.23 Tata's output was from blast furnaces. Electro Metallurgical Works, Ltd.'s, new ferromanganese plant at Dandeli, Mysore State, went into operation before the close of 1957. Several other electric furnace plants were under construction or planned.

Central Provinces Manganese Ore Co., Ltd., continued exploration by diamond drilling. Good-quality concentrate continued to be produced at the company heavy-medium-separation plant at the Dongri Buzurg mine, and shaft sinking at Balaghat continued during the

Magnetic surveys by the Geological Survey of India in the Tirodi area of Balaghat district, Madhya Pradesh, were credited with leading to the discovery of many isolated massive manganese ore bodies.²⁵ The State Trading Corp. planned to ship manganese and iron ore through Cochin port on an experimental basis.26 Internal railtransportation difficulties continued to hamper Indian shipments, and a quota system for moving and exporting manganese ores was continued with some modifications. As a result of Government efforts toward conservation and difficulties in marketing the lower grade ores, serious consideration was given to plans for beneficiating more of these ores.

Indonesia.—In the 6-month period, November 1956 through April 1957, Indonesia exported 50,000 short tons of manganese ore, dis-

²¹ U. S. Embassy, Stockholm, Sweden, State Department Dispatch 251: Aug. 28, 1957.

²² American Metal Market, vol. 64, No. 34, Feb. 19, 1957, p. 1.

²³ Narayanaswami, S., Ferromanganese in India: Indian Min. Jour., vol. 5, No. 10, October 1957 (ECAFE Number), pp. 82-87.

²⁴ Mining Journal (London), vol. 248, No. 6356, June 14, 1957, p. 766.

²⁵ Kailsasm, L. N., The Use of Geophysics in Prospecting for Metallic Ores: Indian Min. Jour., vol. 5, No. 10, October 1957 (ECAFE Number), p. 73.

²⁶ Foreign Commerce Weekly, vol. 57, No. 21, May 27, 1957, p. 19.

tributed as follows: Japan, 33,000; Belgium-Luxembourg, 12,000;

and Netherlands, 5,000 short tons.27

Philippines.—Through 1955, a total of 110,000 short tons of manganese oxide ore is believed to have been shipped from the deposits of the Anda Peninsula, Bohol. The average grade shipped since 1949 was 40 percent manganese, but some high-grade masses of pyrolusitetype ore contained 45 to 55 percent manganese. Manganese was first found in this region in 1936.28 The manganese-mining operations of General Base Metals, Inc., have been based on the Anda Peninsula.

Philippine exports of manganese ore in 1956 totaled 7,100 short

tons, slightly more than half of which went to Japan and the rest to the United States.²⁹ Preliminary figures indicate that in 1957 33,000 tons was exported, with Japan and the United States receiving all in about the same proportions. Eight firms supplied the ore in 1957.30

Portuguese India.—Exports of manganese ore from Goa in 1957 totaled 206,000 short tons. The United States received 50,000; West Germany, 40,000; Italy, 32,000; Netherlands, 29,000; France, 27,000;

Austria, 22,000; Trieste, 3,900; and Japan, 2,000.31

Syria.—Recent discoveries of manganese ore near al-Rouaiseh assayed 50.6 percent manganese, 1.7 percent iron, and 5.2 percent silicon. Reported deposits near al-Touaykli (56.7 percent manganese, 0.7 percent iron, and 4.6 percent silicon) and at al-Azruth (42.6 percent manganese, 0.6 percent iron, and 27.3 percent silicon) are in Latakia region. Quantity data were not available.32

Turkey.—Manganese ore mined in Turkey had a manganese content ranging from 32 to 50 percent. Part of the production was used in

the Government-owned Karabuk iron and steel plant.33

AFRICA

Egypt.—Most manganese ore produced in Egypt in 1956 was from the operations of one company in the Um-Bogma district of Sinai. Two classes of ore were shipped: High-grade, having a manganese dioxide content of 80 to 92 percent; and ferruginous manganese ore, containing 20 percent manganese and 35 percent iron. Production has been of the order of 10,000 tons a year of the former and 200,000 tons a year of the latter. Part of the dioxide ore was used by the local steel industry, and the rest was exported; all of the ferruginous ore was exported. Total exports in 1956 were 294,000 short tons, compared with 237,000 in 1955; the United States continued to be the chief recipient.34 Both production and plant suffered heavily as a result of the Israeli invasion and occupation of the Sinai Peninsula. After return of the region to Egypt, the sequestered mine of Egypt's only large manganese-mining organization (Sinai Mining Co., Ltd.) was in the hands of an Egyptian Government company, Sociètè Sinai pour le Manganese, S. A. E. 35

U. S. Embassy, Djakarta, Indonesia, State Department Dispatch 108: Aug. 28, 1957.
 Fernandez, N. S., Sorem, R. K., and Palacio, D. N., Manganese Deposits of the Anda Peninsula, Bohol: Philippines Bureau of Mines—Special Projects Series, Pub. 11, Manganese, Manila, 1956, 49 pp.
 Bureau of Mines, Mineral Trade Notes: Vol. 46, No. 1, January 1958, p. 11.
 U. S. Embassy, Manila, P. I., State Department Dispatches 181, 488, 754: Aug. 29 and Nov. 27, 1957, and Mar. 10, 1958.
 Bureau of Mines, Mineral Trade Notes: Vol. 46, No. 2, March 1969.

nd Mar. 10, 1988.

3 Bureau of Mines, Mineral Trade Notes: Vol. 46, No. 3, March 1958, p. 16.

3 U. S. Embassy, Damascus, Syria, State Department Dispatch 179: Oct. 11, 1957.

3 U. S. Embassy, Ankara, Turkey, State Department Dispatch 475: Jan. 14, 1958.

3 Bureau of Mines, Mineral Trade Notes: Vol. 46, No. 4, April 1958, pp. 18–14.

3 U. S. Embassy, Cairo, Egypt, State Department Dispatch 632: Dec. 21, 1957.

French Equatorial Africa.—To receive certain tax concessions. Compagnie Miniere de l'Ogeoue (COMILOG) agreed to develop its large manganese deposits near Moanda and Franceville, Gabon. production target of 500,000 tons a year within 6 years was established.36 By the end of 1957, final surveys had been virtually completed for 175 miles of railway plus 45 miles of overhead cable tramway to connect the deposits with the existing railway from Brazzaville to Pointe Noire.

French West Africa.—Interest was shown in large manganese deposits containing 20 to 30 percent manganese, in the Ivory Coast and French Guinea.

Ghana.—Exports of manganese ore in 1957 totaled 718,000 short tons, of which 86,000 tons was Battery grade, 627,000 tons was Metallurgical grade, and 5,000 tons contained less than 30 percent manganese.37

Morocco.—Of the 465,000 short tons of manganese ore produced in 1956, 42,000 tons were Chemical grade. Reserves of the 2 principal fields were estimated to be as follows: South Atlas (Imini, Tiouine, and Tasdrent), greater than 6.6 million tons; and Bou Arfa, East Morocco, 1.65 million tons. In the first quarter of 1957 the Department of Mines reported production of 17,000 short tons of chemical ore, and 120,000 tons (45.4 percent manganese) of metallurgical ore. Preliminary Customs figures for the quarter showed that France received almost three-quarters of the exports of both grades; the United States about 15 percent of each. Norway, Italy, and Sweden took the remainder of the metallurgical ore; Netherlands, Germany, Great Britain, and Denmark, the rest of the Chemical grade.³⁹

Rhodesia and Nyasaland, Federation of.—Exports of manganese ore in 1956 totaled 23,000 short tons, having the following distribution: United States, 13,000; Japan, 8,000; France, 1,000; United Kingdom, West Germany, Sweden, and Union of South Africa, the remainder. The Bahati mine of Rhodesian Vanadium Corp., subsidiary of Vanadium Corp. of America, was mined as a surface operation, using bulldozers and front-end loaders. The ore occurs as highgrade, steep-dipping veins, extending 150 feet deep, averaging 1,200 feet long and 3 feet wide, with lower grade material in immediate association. A washing plant with trommels and jigs was a part of Transportation for export from the port of Beira, the installation. Mozambique, presented problems in trucking 150 miles to Mufulira and railing from that point. The same corporation obtained an additional 2,500-square-mile concession in the nearby Chipili East

manganese fields, scene of a recent manganese prospectors' "rush." 42

³⁶ American Metal Market, vol. 64, No. 44, Mar. 6, 1957, p. 1.
37 U. S. Embassy, Accra, Ghana. State Department Dispatch 393; Apr. 28, 1958.
38 U. S. Embassy, Rabat, Morocco, State Department Dispatch 150: Nov. 8, 1957.
39 U. S. Consulate General, Casablanca, Morocco, State Department Dispatch 33: Sept. 12, 1957.
40 Bureau of Mines, Mineral Trade Notes: Vol. 45, No. 1, July 1957, pp. 17-18.
41 Mining World, Rhodesian Firm Opens Mangabelt District for Large-Scale Mining: Vol. 19, No. 6, May 1957, pp. 50-52.
42 South African Mining and Engineering Journal (Johannesburg), vol. 68, pt. 1, No. 3349, Apr. 19, 1957, pp. 713, 715.

South-West Africa.—Exports of manganese ore in 1957 were 94,000 short tons (45 percent manganese) 43 compared with 55,000 short tons

(48 percent manganese) in 1956.44

Union of South Africa.—Production of manganese ore in 1956, short tons by grades, follows (local sales in parentheses): 40 percent and less, 462,000 (250,000); 40 to 45 percent, 209,000 (76,000); 45 to 48 percent, 74,000 (none); and over 48 percent, 23,000 (67). In June 1957 a new company, Ferroalloys, Ltd., was formed to produce standard The Associated Manganese ferromanganese in electric furnaces. Mines of South Africa, Ltd., of the Anglo-Transvaal group, held a 40percent interest and will supply the ore. At least one pilot plant was in operation in South Africa in 1957, producing electrolytic manganese from uranium leaching plant effluent. 45 Many of the South African uranium mills had facilities for recovering for reuse as the dioxide the manganese used as oxidant in the leaching process. The Daggafontein plant was equipped for a 75 percent recovery.46 The supply of railway trucks continued inadequate to meet both export needs and increased local demand; no improvement was expected for 1958. major part of the exports of South African Manganese, Ltd., was through Port Elizabeth, and that company entered into a long-term contract to supply manganese ore to African Metals Corp., Ltd., for its production of ferromanganese which was expected to be increased substantially. South African Manganese began stripping overburden and constructing plant and townsite preparatory to opening a new mine on a large deposit of manganese ore at Hotazel farm in the Kuruman district, production being planned for early 1959.47 This district lies between the older ones of Postmasburg and Black Rock. Mining in these areas continued to be by open pit for the most part, but some underground work was done at Black Rock.

OCEANIA

New Zealand.—The output of New Zealand's only operating manganese mine, known as G. M. Manning's Manganese Mine, Otau, was used for manufacturing fertilizer in 1957. The mine, employing one man, is in the South Aukland district.⁴⁸

⁴⁸ U. S. Consulate General, Johannesburg, Union of South Africa, State Department Dispatch 200: Feb. 21, 1958. 44 U. S. Consulate General, Johannesburg, Union of South Africa, State Department Dispatch 249: Apr.

<sup>10, 1957.

45</sup> Bureau of Mines, Mineral Trade Notes: Vol. 46, No. 1, January 1958, pp. 11-12.

46 Industrial and Engineering Chemistry, Uranium From Gold Wastes: Vol. 49, No. 1, January 1957,

pp. 9-10.

47 South African Mining and Engineering Journal (Johannesburg), South African Manganese, Ltd.: Vol. 68, pt. 2, No. 3382, Dec. 6, 1957, pp. 797-798.

48 U. S. Embassy, Wellington, New Zealand, State Department Dispatch 166: Sept. 16, 1957.

TECHNOLOGY

Three reports of Federal Bureau of Mines investigations of, and metallurgical research on, the Artillery Peak deposits of Arizona were published during the year. Field work by the Bureau in 1949-51 included exploration by trenching and diamond drilling, mine development by adits, and one experimental room-and-pillar mine panel. a cutoff grade of 5 percent manganese, a reserve of slightly less than 2 million tons of "hard" (enriched) ore was established for the limited This reserve averaged 10.6 percent mangaarea under investigation. nese and represented an ore zone 7.5 to 29.5 feet thick. 49

Following extensive laboratory investigations of ore from this mine, pilot-mill flotation tests were made in a 25-ton-per-day plant at the Bureau's Electrometallurgical Experiment Station, Boulder City, Nev.

Using the oil-emulsion flotation process here, a recovery of 80 percent of the manganese was achieved in obtaining concentrate assaying 35.6 percent manganese, 2.8 percent iron, 19.4 percent silica plus alumina, 0.9 percent lead, and 0.08 percent phosphorus. The oil-emulsion collector was composed of 16 percent tall oil, 32 percent No. 2 fuel oil, and 2 percent petroleum sulfonate. Proper conditioning was the most critical step.50 A sinter of blended flotation concentrate from the above operations, analyzing 41.5 percent manganese and 19.9 percent silica plus alumina, was leached with a heated 50percent caustic soda solution in a pilot plant, using equipment of standard commercial design. This leaching of silica gave a product analyzing 43.7 percent manganese and 14.3 percent silica plus alumina.51

A report also described Boulder City experiments on producing

Battery-grade manganese dioxide by chemical means. 52

The Bureau's Southwest Experiment Station, Tucson, Ariz., showed by laboratory and larger scale tests that percolation sulfur dioxide leaching of roasted low-grade wad-type ores and of unroasted lowgrade granular ores was technically feasible in either vats or open heaps.5

Laboratory mineral-dressing tests of samples representing different kinds of low-grade manganese-ore deposits of the Batesville district of Arkansas produced Specification-grade metallurgical concentrate,

but with low recoveries for the most part.54

Results were reported of core-drilling the Dudley low-grade manganese deposit in the northern district of Aroostook County, Maine, to obtain a representative bulk sample for metallurgical research. At a 5-percent manganese cutoff composite samples analyzed 10.3

⁴⁰ Kumke, C. A., Rose, C. K., Everett, F. D., and Hazen, S. W., Jr., Mining Investigations of Manganese Deposits in the Maggie Canyon Area, Artillery Mountains Region, Mohave County, Ariz.: Bureau of Mines Rept. of Investigations 5292, 1957, 87 pp.

50 Rosenbaum, J. B., Schack, C. H., Lang, R. S., and Clemmer, J. B., Pilot-Plant Flotation of Manganese Ore From the Maggie Canyon Deposit, Artillery Mountains Region, Mohave County, Ariz.: Bureau of Mines Rept. of Investigations 5330, 1957, 45 pp.

51 Perkins, E. C., Caustic Leaching of Manganese Flotation Concentrate From Artillery Peak, Ariz.: Bureau of Mines Rept. of Investigations 5341, 1957, 16 pp.

52 Lundquist, R. V., Manganese Dioxide Prepared From Manganous Hydroxide: Bureau of Mines Rept. of Investigations 5347, 1957, 34 pp.

53 Bender, F. N., and Rampacek, Carl, Percolation Leaching of Manganese Ores With Sulfur Dioxide: Bureau of Mines Rept. of Investigations 5323, 1957, 20 pp.

54 Fine, M. M., A Mineral-Dressing Study of Manganese Deposits of the Batesville, Ark., District: Bureau of Mines Rept. of Investigations 5301, 1957, 12 pp.

percent manganese, 17.3 percent iron, 31.5 percent silica, 10.7 percent alumina, and 0.6 percent phosphorus. The manganese mineralization is extremely fine textured and intimately mixed.⁵⁵

Studies by the Federal Bureau of Mines indicated that manganese

might be extracted from low-grade materials by bacterial action.

A contract involving an amount not to exceed \$270,541 was signed January 4, 1957, between General Services Administration and Vitro Corporation of America, whereby the latter was to build and operate a pilot plant at West Orange, N. J., to test and develop the Sheer-Korman "Hi-Arc" process for obtaining manganese from low-grade domestic manganese deposits, particularly the rhodonite deposits of the Silverton area of Colorado. Operation of the pilot plant was limited to 19 months from the date of the contract. In the process a mixture of rhodonite and carbon is shaped into anodes that are vaporized in a high-intensity arc at temperatures of 7,000° to 10,000° C. Manganous oxide and silica condense as a fine powder from which manganese is extracted by leaching.⁵⁶

Ethyl Corporation announced that a new gasoline antiknock additive, containing manganese, was being tested as a supplement to

tetraethyl lead.

Production of ferromanganese at U. S. Steel Corporation's Duquesne works was reported to have been increased 25 percent by the

use of oxygen in the furnace blast.⁵⁷

In the synthesis and testing of manganese and other ferrites, spinel-type metallic oxides, it was found that furnace atmosphere influenced their magnetic properties. X-ray diffraction measurements showed that manganese ferrite (MnFe₂O₄) forms at 850° to 1,250° C., de-

pendent upon furnace atmosphere. 58

For economic treatment, the wad ore from the Three Kids mine (Nevada) requires a high recovery of manganese in slimes. Good recovery is achieved by intensive conditioning of the pulp by mechanical agitation after addition of all the reagents—sulfur dioxide solution first, followed immediately by an emulsion of tall oil soap skimmings (a lightweight petroleum oil) and a petroleum sulfonate wetting agent. As much as 38 kw.-hr. per dry short ton of ore was used for conditioning a pulp containing 18 to 23 percent solids. One roughing, 1 scavenging, and 4 cleaning stages were used in the flotation circuit. 59

A paper describing the Dean-Leute ammonium carbamate process, as practiced by Manganese Chemicals Corp. at Riverton, Minn., on Cuyuna range materials containing 9 to 10 percent manganese and 25 to 28 percent iron, emphasized importance of careful control in the initial reduction step. The high-purity manganese carbonate produced is readily converted to manganese oxides. In 1955 oxide metallurgical nodules containing more than 60 percent manganese, low in silica and iron, was the plant's principal end product. In 1956

St Eilertsen, N. A., and Earl, K. M., Bulk Sampling by Diamond Drilling, Dudley Manganese Deposit, Northern District, Aroostook County, Maine: Bureau of Mines Rept. of Investigations 5303, 1957, 26 pp. Chemical Week, High-Intensity Arc: Getting Ready to Go Commercial: Vol. 80, No. 10, Mar. 9, 1957, pp. 28-34.

St Iron and Steel Engineer, vol. 34, No. 7, July 1957, p. 11.

Kedesdy, Horst, and Tauber, Arthur, Synthesis of Some Ferrites: Min. Eng., vol. 9, No. 7, July 1957, 274-276.

³⁰ Kedesdy, Horst, and Tauber, Arthur, Synthesis of Some Ferrites: Min. Eng., vol. 9, No. 7, July 1957, pp. 784-792.
³⁰ Gates, Ellis H., Agglomeration Flotation of Manganese Ores: Min. Eng., vol. 9, No. 12, December 1957, pp. 1282-1372.

and 1957 the end product was high-quality synthetic manganese dioxide for dry-battery use, made from the high-purity carbonate by chemical means. The cost of producing synthetic dioxide in this

manner was claimed to be lower than by electrolysis.60

Strategic Materials Corp. continued to investigate the Udy selective reduction process for producing ferromanganese from low-grade ores. Following work in a 100-kv.-a. electric-furnace pilot plant at Niagara Falls, N. Y., activities were transferred to a pilot plant using 50 tons of feed a day at Niagara Falls, Ontario, Canada, containing three 1,000-kv.-a. electric arc furnaces. It was claimed that the data obtained forecast competitive costs for a commercial-size operation using manganiferous-ferruginous slates and manganiferous hematite from Woodstock, New Brunswick (see World Review—Canada).61 On October 1, Koppers Company, Inc., and Strategic Materials Corp. announced a working agreement between the two companies whereby the former was to provide certain funds and personnel. 62

Go Welsh, J. Y., and Peterson, D. W., Manganese From Low-Grade Ore by the Ammonium Carbamate Process: Jour. Metals, vol. 9, No. 6, June 1957, pp. 762-765.

Gl Chemical Week, How to Pull Manganese From Ore: Vol. 80, No. 6, Feb. 9, 1957, pp. 40-42, 46, 48.

Monture, G. C., Woodstock Manganese Ores—Occurrence and Treatment: Canadian Min. Jour., vol. 78, No. 4, April 1957, pp. 117-120.

Burke, J. J., Ferromanganese From Low-Grade Ores: Jour. Metals, vol. 9, No. 3, March 1957, pp. 340-342

Onthern Miner, vol. 43, No. 30, Oct. 17, 1957, p. 3.

Mercury

By J. W. Pennington 1 and Gertrude N. Greenspoon 2

ERCURY output at domestic mines rose 38 percent to 33,400 flasks in 1957—the highest annual peacetime rate (except for 1940) since 1904, when 35,100 flasks was recovered. Significant gains in Alaska, California, Nevada, and Oregon more than offset the decline in Idaho's output, and Washington produced mercury for the first time since 1942. Of the total primary output, 10 mines supplied 83 percent and 20 mines 95 percent. Production of 5,800 flasks of mercury from secondary sources was the same as in 1956.

Despite an increase in receipts of mercury from Spain, general imports in 1957 declined 13 percent from 1956, as less metal was received from the other principal sources—Italy, Mexico, and Yugo-Exports and reexports of mercury continued to rise and reached the highest annual rates since 1941 and 1943, respectively.

Expansions at chlorine and caustic soda plants using mercury cells, coupled with a 20-percent increase in the quantity of mercury required for replacement purposes at all similar installations in 1957, helped to keep mercury consumption high at 53,000 flasks—only 2 percent less than in the preceding year. In other major uses, consumption of mercury for agricultural purposes fell 36 percent to 6,300 flasks and for electrical apparatus 6 percent to 9,200 flasks; for industrial and control instruments it continued virtually unchanged at 6,000 flasks.

Mercury prices, after remaining constant at \$255-\$257 a flask from the beginning of 1957 to the latter part of July, gradually declined to \$225-\$230 a flask in November and stayed at the latter range the remainder of the year. As a result, the average price of \$246.98 a

flask for 1957 was about \$13 a flask below that of 1956.

Government assistance to the mercury industry under provisions of the Defense Production Act of 1950, as amended, continued in 1957. During the year the General Services Administration (GSA) guaranteed-price purchase program for mercury, which was scheduled to expire December 31, 1957, was extended to December 31, 1958; the Defense Minerals Exploration Administration (DMEA) program was revised to lower Government participation from 75 percent to 50 percent of approved costs for exploration of mercury deposits; and the expansion goal for mercury was closed by the Office of Defense Mobilization (ODM).

With increased output in virtually all the major mercury-producing countries, world production of mercury in 1957 reached 235,000 flasks—the highest annual rate since 1942. Foreign (London) mercury prices fluctuated more frequently than domestic quotations and

averaged \$232.36 a flask for the year.

Assistant chief, Branch of Base Metals.
Statistical assistant.

TABLE 1.—Salient statistics of mercury, 1948-52 (average) and 1953-57, in 76-pound flasks

1948–52 (average)	1953	1954	1955	1956	1957
9, 739 29 62, 177 62, 565 438 714 30, 259 2, 999 27, 260 46, 946	14, 337 49 83, 393 85, 784 916 27, 021 1, 1, 121 25, 900 52, 293	18, 543 71 64, 957 65, 317 890 1, 436 22, 486 22, 486 22, 300 42, 796	18, 955 98 20, 354 20, 948 451 267 10, 028 9, 100 57, 185	24, 177 147 47, 316 52, 009 1, 080 2, 025 22, 310 1, 210 21, 100 54, 143 \$259, 92	33,380 93 42,005 45,449 1,919 3,275 20,642 3,642 17,000 52,889 \$246,98
	9, 739 29 62, 177 62, 565 438 714 30, 259 2, 999 27, 260	9, 739 14, 337 29 49 62, 177 83, 393 62, 565 85, 784 714 916 30, 259 27, 021 27, 260 25, 900 46, 946 52, 259	(average) 9,739 14,337 18,543 29 49 71 62,177 83,393 64,957 62,565 85,784 65,317 488 546 890 714 916 1,436 30,259 27,021 22,486 2,999 1,121 186 27,260 25,900 22,300 46,946 52,259 42,796	(average) 9, 739	(average) 9, 739

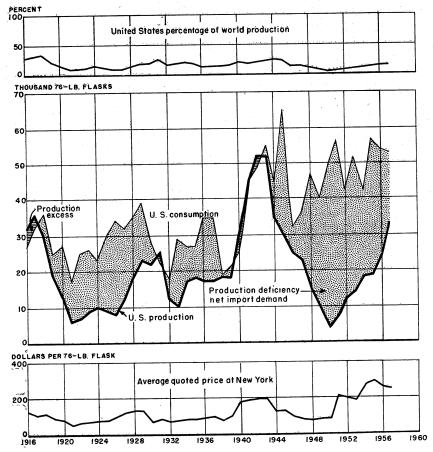


FIGURE 1.—Trends in production, consumption, and price of mercury, 1916-57.

MERCURY 823

LEGISLATION AND GOVERNMENT PROGRAMS

Under provisions of the Defense Production Act of 1950, as amended, the Defense Minerals Exploration Administration (DMEA) entered into contracts for the exploration of mercury deposits. The assistance advanced amounted to 75 percent of approved costs for mercury-exploration projects. In October 1957, DMEA issued Order 1, Revised, which lowered Government participation to 50 percent on mercury applications on and after October 22. Contracts that were executed during 1957 are shown in table 2. In addition, amendments to prior contracts were executed, which totaled \$70,318.

TABLE 2.—DMEA contracts involving mercury executed during 1957, by States

			Con	tract
State and contractor	Property	County	Date	Total amount 1
CALIFORNIA	/			
New Idria Mining & Chemical Co	New Idria Guadalupe	San Benito Santa Clara	Oct. 1 July 31	\$96, 980 20, 020
NEVADA				× .
Walter L. & Dorothy Low	Mount Tobin	Pershing	Sept. 11_	10, 544
OREGON		·		
International Engineering & Mining Co Orion Exploration & Development Co	Axe Handle Log Cabin, Ridge & Camp.	Jefferson Crook	Aug. 21. Aug. 9	10, 420 12, 100
Dow Chemical Co	V	_		
Southern Geophysical Co., Inc	Maravillas Texas-Almaden	Brewsterdo	Apr. 24_ Sept. 4	59, 244 63, 240

¹ Government participation in exploration projects was 75 percent.

The Government guaranteed-purchase-price program announced by General Services Administration (GSA) in July 1954 and in force in 1955 and 1956 was continued in 1957. The program provided for purchasing 125,000 flasks of domestic mercury and 75,000 flasks of Mexican metal at \$225 a flask and was scheduled to end December 31, 1957. The import duty of \$19 a flask was included in the price for Mexican mercury.

On March 21 the Office of Defense Mobilization announced that it was authorizing GSA to extend the purchase program through 1958. The extension would permit purchasing up to 50,000 flasks (30,000 domestic, including Alaska, and 20,000 Mexican) at \$225 a flask. Revisions 1 to Regulations 11 and 12 were issued November 8, extending the program and revising packaging specifications. After mercury producers stated that they could not meet the delivery deadline because of the new packaging requirements, they were notified by GSA that deliveries against the December 31, 1957, quota could be made until March 31, 1958.

From the inception of the program in 1954 until November 1957 only 5 flasks of mercury had been tendered and purchased, as the market price had been higher than \$225 a flask; however, following the price decline in November, both domestic and Mexican mercury

were tendered GSA. Under the 1957 quotas GSA purchases totaled 8,596 flasks of domestic and 766 flasks of Mexican mercury; however, only 2,967 flasks of domestic and 15 of Mexican mercury were delivered up to December 31, 1957.

On April 25 Office of Defense Mobilization (ODM) closed expansion goal 64 for mercury, which had been established April 1, 1952, following studies that indicated enough capacity either is planned or

now exists to meet mobilization requirements now known.

DOMESTIC PRODUCTION

Mercury production in the United States rose for the 7th consecutive year; output in 1957 increased 38 percent above 1956 to 33,400 flasks—the highest since 1944. Alaska, California, Nevada, and Oregon shared the increased production, whereas Idaho's output declined. Alaska and Nevada reported record high outputs; California's production was the largest since 1947; and Washington produced for the first time since 1942. Although the number of properties that produced mercury dropped from 147 in 1956 to 93 in 1957, the quantity of ore treated rose 22 percent and was the largest since 1944. The average grade of the ore treated exceeded 1956 by 1 pound of mercury per ton—the highest since 1950, when mercury production was the smallest in 100 years. The same quantity of secondary mercury was produced as in 1956.

Production in California was 69 percent higher than in 1956, and the State continued to be the leading mercury producer in the United States. Because of a substantial gain in output, California furnished 46 percent of the total United States production compared with 37 percent in 1956 and 52 percent in 1955. The number of producing operations dropped from 71 to 43 in 1957, but the quantity of ore

treated rose 34 percent.

Nevada continued in second place and supplied 19 percent of the domestic total. The 8-percent increase in output from 1956 was due in large part to production at the Red Ore mine in Humboldt County, where the Triumph Mining Co. operated a flotation plant for concentrating cinnabar ore. Another flotation plant was operated by the United Mercury Corp. in Pershing County.

Alaska displaced Idaho as the third ranking mercury-producing State in 1957. Output was 66 percent more than the previous record for 1956 and represented 16 percent of the total United States production. Virtually all the output was from the Red Devil mine in

the Kuskokwim River region.

Output in Oregon more than doubled the 1956 total and was the largest since 1943. The gain in production enabled the State to rank fourth in output and raised Oregon's contribution to the total United States production from 8 percent in 1956 to 12 percent in 1957.

Idaho dropped to fifth place among leading mercury-producing States, as the Idaho-Almaden mine in Washington County was the only large producer in 1957. The other principal mine in Idaho—the Cinnabar in Valley County—was closed when the plant was destroyed by fire in August 1956. The company was reported to be experimenting with a new method using flotation, leaching, and electrolytic deposition for recovering mercury from the ore. Output was also recorded for the Vermillion mine in Valley County.

Arizona, Texas, and Washington supplied the remainder of the United States output. Washington's production was the first since 1942.

TABLE 3.-Mercury produced in the United States, 1954-57, by States

Year and State	Pro- ducing mines	76- pound flasks	Value 1	Year and State	Pro- ducing mines	76- pound flasks	Value 1
1954: Alaska Arizona. California Idaho. Nevada. Oregon. Total.	2 3 35 1 21 9	1,046 163 11,262 609 4,974 489 18,543	\$276, 552 43, 096 2, 977, 560 161, 013 1, 315, 076 129, 287 4, 902, 584	1956: Alaska Arizona and Texas California Idaho Nevada Oregon Total	2 8 71 2 51 13	3, 280 734 9, 017 3,394 5, 859 1, 893 24, 177	\$852, 538 190, 781 2, 343, 699 882,168 1, 522, 871 492, 029 6, 284, 086
1955: Alaska and Texas Arizona California Idaho Nevada Oregon Total	4 4 48 2 33 7	690 477 9, 875 1, 107 5, 750 1, 056	200, 342 138, 497 2, 867, 206 321, 417 1, 669, 512 306, 610 5, 503, 584	1957: Alaska Arizona California Idalo Nevada Oregon Texas and Washington Total	2 5 43 2 31 8 2	5, 461 28 15, 266 2, 260 6, 313 3, 993 59 33, 380	1, 348, 758 6, 915 3, 770, 397 558, 174 1, 559, 185 986, 191 14, 572 8, 244, 192

¹ Value calculated at average price at New York.

TABLE 4.—Mercury produced in the United States, 1948-52 (average) and 1953-57, by quarters, in 76-pound flasks

Quarter	1948-52 (average)	1953	1954	1955	1956	1957
First	2, 474 2, 094 5, 046 9, 614 9, 739	3,530 3,790 3,040 3,970 14,330 14,337	4, 170 4, 700 5, 160 4, 470 18, 500 18, 543	4, 050 4, 860 4, 720 5, 200 18, 830 18, 955	4, 910 5, 980 6, 300 6, 750 23, 940 24, 177	6, 630 8, 560 8, 710 9, 440 33, 340 33, 380

TABLE 5.—Mercury ore treated and mercury produced in the United States, $1953{-}57\,^{1}$

	Ore	Mercury	produced	Year	Ore	Mercury	produced
Year	treated (short tons)	76- pound flasks	Pounds per ton of ore		treated (short tons)	76- pound flasks	Pounds per ton of ore
1953 1954 1955	138, 090 174, 083 222, 740	14, 262 18, 524 18, 819	7. 8 8. 1 6. 4	1956	244, 148 298, 752	24, 109 33, 374	7. 5 8. 5

¹ Excludes mercury produced from placer operations and from cleanup activity at furnaces and other plants.

A total of 93 mines, compared with 147 in 1956, contributed to production in 1957; 10 properties each produced 1,000 flasks or more and supplied 84 percent of the total output. The largest producers were as follows:

State:	County	Mine
AlaskaCalifornia	Aniak districtLakeSan BenitoSan MateoSanta Clara	Guadalupe.
Idaho Nevada Oregon	Washington Humboldt Douglas Malheur	New Almaden Mine and dumps. Idaho-Almaden. Cordero. Bonanza. Bretz.

In addition to the foregoing mines, the following produced 100 flasks or more during 1957:

State:	County	Mine	
California	Kings	Fredana Group.	
	Lake	Sulphur Bank.	
	Marin	Edward Bros.	
	Napa	Oat Hill.	
	San Benito	San Carlos.	
	San Luis Obispo	Buena Vista.	
	Santa Barbara	Gibraltar.	
	Sonoma	Buckman.	
	2020-W2222222	Mount Jackson	(including
		Great Eastern).	
Nevada	Humboldt	Red Ore.	
11074444	Pershing	Pershing Group.	
Oregon	Jefferson	Horse Heaven.	
Oregon	Lane	Black Butte.	

The 23 mines listed produced 96 percent of the total domestic output. Of the leading producers, properties that produced for the first time in several years were the Red Ore and Pershing Group mines.

Secondary.—Production of secondary mercury in 1957 was about the same as in 1956. Although less metal was recovered from the usual scrap sources, secondary output did not decline, as mercury was reclaimed from a plant that abandoned a process using mercury.

TABLE 6.—Production of secondary mercury in the United States, 1953-57, in 76-pound flasks

Year:	Quantity
1953	2,800
1054	6, 100
1955	10,030
1056	5,850
1957	5,800

CONSUMPTION AND USES

Although industrial consumption of mercury in 1957 was 2 percent less than in 1956, it was only 8 percent less than the peacetime peak in 1955 and otherwise was the largest since 1951. Expansions in chlorine and caustic soda plants using mercury cells at McIntosh, Ala., Western Division of Dow Chemical Co., Brunswick, Ga., and Calvert City, Ky., were chiefly responsible for the continued high level of consumption.

TABLE 7.-Mercury consumed in the United States, 1948-52 (average) and 1953-57, in 76-pound flasks

Use	1948-52 (average)	1953	1954	1955	1956	1957
Pharmaceuticals. Dental preparations ¹ . Fulminate for munitions and blasting caps. Agriculture (includes insecticides, fungicides, and bactericides for industrial	3,396 1,049 342	1, 858 1, 117 39	1, 846 1, 409 106	1, 578 1, 177 90	1,600 1,328 11	1, 751 1, 371
purposes)	5, 968 1, 898	6, 936 655	7, 651 512	7, 399 724	9, 930 511	6, 337 568
caustic soda	1,384 2,442	2, 380 826	2, 137 594	3, 108 729	3, 351 871	4, 025 859
Electrical apparatus	8,822	9, 630	10,833	9, 268	9, 764	9, 151
Industrial and control instruments 1Amalgamation	5, 725 161	5, 546	5, 185	5, 628	6, 114	6,028
	517	200 1, 241	203 1, 129	217 976	239 984	244 894
General laboratory Redistilled ¹		7,784	9, 281	9, 583	9, 483	9, 703
Other	7,829	14,047	1, 910	16, 708	9, 957	11, 958
Total	46, 946	52, 259	42, 796	57, 185	54, 143	52, 889

¹ A breakdown of the "redistilled" classification showed ranges of 53 to 43 percent for instruments, 16 to 5 percent for dental preparations, 39 to 16 percent for electrical apparatus, and 17 to 8 percent for miscellaneous uses in the period 1948-56, compared with 39 percent for instruments, 8 percent for dental preparations, 44 percent for electrical apparatus, and 9 percent for miscellaneous uses in 1957.

As a result of new installations and expansions at chlorine and caustic soda plants, the quantity of mercury required to replace losses in these operations rose for the third consecutive year; in 1957, 20 percent more metal was used for this purpose than in 1956. The consumption of mercury in pharmaceuticals increased 9 percent over 1956, and dental preparations took 3 percent more.

Among the uses that required less metal in 1957 were agriculture (including insecticides, fungicides, and bactericides for industrial purposes), which dropped 36 percent and electrical apparatus 6 percent. Industrial and control instruments and catalysts each

consumed about the same quantities as in 1956.

TABLE 8.-Mercury consumed in the United States, 1948-52 (average) and 1953-57, by quarters, in 76-pound flasks

Quarter	1948-52 (average)	1953	1954	1955	1956	1957
First Second Third. Fourth Total: Preliminary Final	11, 420	12, 700	11, 500	19, 500	12, 400	16, 400
	11, 140	13, 200	11, 300	17, 900	11, 700	12, 000
	10, 080	11, 000	9, 000	8, 300	12, 300	14, 600
	14, 260	15, 500	9, 500	11, 600	17, 500	9, 400
	46, 900	52, 400	41, 300	57, 300	53, 900	52, 400
	46, 946	52, 259	42, 796	57, 185	54, 143	52, 889

STOCKS

Consumers' and dealers' stocks of mercury dropped 7 percent in 1957, mainly because of the withdrawal of metal from inventories for expansions at chlorine and caustic soda plants during the year. Metal at industrial plants at the end of 1957 continued to include mercury accumulated for chlorine and caustic soda installations in the near future; except for such metal, inventories were well below those normally held by industry.

TABLE 9.—Stocks of mercury at producers and consumers and dealers, 1953-57, in 76-pound flasks

	End of year	Producers	Consumers and dealers	Total
1953 1954 1955 1956 1957		1, 121 186 928 1, 210 3, 642	25, 900 22, 300 9, 100 21, 100 17, 000	27, 021 22, 486 10, 028 22, 310 20, 642

Stocks held by producers were more than double those at the end of 1956. They were the largest since 1949 and represented 18 percent of total inventories.

In addition to the stocks of metal shown in table 9 the National Stockpile contained inventories of mercury that may not be disclosed.

PRICES

The annual average mercury quotation in 1957 was \$246.98 a flask, 5 percent less than in 1956. The price quotation of \$255-\$257 from early November 1956 remained constant through the third week of July 1957. It dropped to \$252-\$255 a flask the last week in July and remained there during the first 2 weeks in August. Thereafter, the price declined gradually and without interruption to \$225-\$230 by mid-November and ended the year at that range.

TABLE 10.-Average monthly prices per 76-pound flask of mercury at New York and London and excess of New York price over London price, 1955-57

		1955 1956 1957			1956			1957	
Month	New York 1	Lon- don ²	Excess of New York over London	New York 1	Lon- don ²	Excess of New York over London	New York 1	Lon- don 2	Excess of New York over London
January February March April May June July August September October November December	302. 92 283. 27 264. 92	\$304. 63 304. 63 305. 24 304. 12 301. 96 301. 30 300. 77 280. 75 259. 15 258. 61 253. 79 200. 81	\$17. 37 17. 37 16. 32 11. 73 96 3 18. 03 3 35. 85 3 26. 86 4. 25 16. 95 25. 60 78. 61	\$273. 04 267. 58 258. 78 266. 56 265. 23 258. 12 255. 00 255. 00 255. 00 254. 77 255. 00 255. 00	\$248. 38 245. 03 242. 90 240. 41 240. 61 243. 27 238. 30 233. 50 232. 38 232. 51 233. 73 234. 11	\$24. 66 22. 55 15. 88 26. 15 24. 62 14. 85 16. 70 21. 50 22. 62 22. 26 21. 27 20. 89	\$255.00 255.00 255.00 255.00 255.00 255.00 255.1.11 251.11 244.75 231.62 226.96 225.00	\$236. 94 236. 96 238. 28 239. 85 248. 12 254. 26 248. 81 240. 43 238. 13 213. 06 197. 23 193. 60	\$18. 06 18. 04 16. 72 15. 15 6. 88 - 7. 4 5. 50 10. 68 6. 62 18. 56 29. 73 31. 40
Average	290. 35	280. 22	10. 13	259. 92	238. 68	21. 24	246. 98	232. 36	14.

Engineering and Mining Journal, New York.
 Mining Journal (London) prices in terms of pounds sterling were converted to American dollars by using average rates of exchange recorded by Federal Reserve Board.
 London excess.

FOREIGN TRADE³

Imports.—Imports of mercury for consumption in the United States in 1957 were 11 percent less than the quantity received in 1956. Of the imports for consumption, 9,114 flasks from Spain, 4,003 from Italy, and 2,000 from the United Kingdom entered the country duty free for the United States Government; in addition, 12 flasks were also

received from Canada duty free.

The chief suppliers were Spain (60 percent), Italy (19 percent), and Mexico (13 percent). As receipts from Italy in 1957 were less than half the 1956 entries, Italy dropped to second place among the principal suppliers of mercury. The quantity from Yugoslavia was the smallest received since that country became a supplier of mercury following acquisition of the Idria mine after World War II. Of the chief mercury-producing countries, only Spain shipped more metal to the United States in 1957 than in 1956. Small quantities of mercury were received from Colombia and Peru, and the remainder came from Canada and the United Kingdom. The latter two countries are normally importers of mercury, and the 1957 shipments no doubt represented reexported mercury.

Imports of various mercury compounds, usually insignificant, dropped 32 percent in 1957. Of the 18,891 pounds (27,985 in 1956) of mercuric chloride, corrosive sublimate, mercurous chloride (calomel), oxide (red precipitate), and other mercury preparations received in 1957, 12,300 pounds came from Canada, 4,269 from the United Kingdom, 1,551 from Yugoslavia, 551 from Spain, and 220 from Italy;

330 pounds of vermilion reds was imported from Italy.

Exports.—Exports of mercury rose 78 percent in 1957 but were small in relation to total imports. Of the total of 1,919 flasks exported in 1957 (1,080 in 1956), 798 (400) went to Japan, 776 (none) to the United Kingdom, 102 (100) to Canada, 56 (29) to Venezeula, 41 (27) to Cuba, 29 (86) to Korea, 25 (47) to Colombia, 24 (16) to Brazil, and the remainder in lots of less than 10 flasks to 14 other countries.

Reexports.—Although reexports of mercury also are usually small, they rose 62 percent in 1957 to the largest since 1943, when substantial quantities were shipped to the U. S. S. R. following the German occupation of the Donets Basin—the principal source of Russian mercury. Of the 3,275 flasks reexported in 1957 (2,025 in 1956), 1,855 (823) went to Japan, 697 (1,164) to Canada, 499 (none) to the United Kingdom, 153 (none) to Taiwan, 23 (none) to Korea, 20 (none) to Rhodesia and Nyasaland, 15 (10) to Cuba, 7 (18) to Venezuela, and 2 each (none) to Nicaragua, Ecuador, and Chile.

³ Figures on United States imports and exports compiled by Mae B. Price and Elsie D. Jackson, Division of Foreign Activities, from records of the U. S. Department of Commerce, Bureau of the Census.

TABLE 11,-Mercury imported for consumption in the United States, 1948-52 (average) and 1953-57, in flasks 1

[Bureau of the Census]

Country	1948–52	1948-52 (average)		1953		1954		1955		1956		1957
	Flasks	Value	Flasks	Value	Flasks	Value	Flasks	Value	Flasks	Value	Flasks	Value
North America: Canada	159	\$28,607	171	\$33, 217	115	\$31, 221	114	\$36, 500	08	\$20,876	99	\$15, 580
Mexico	4, 622	537, 050	13, 298	2,079,096	8,887	1, 729, 601	10, 250	2, 545, 925	11, 536	2, 617, 553	5, 280	1,023,251
Total	4, 783	566, 085	13, 469	2, 112, 313	9,002	1, 760, 822	10, 364	2, 582, 425	11,616	2, 638, 429	5,346	1, 038, 831
South America: Bolivia. Chile	4	349							25	5, 837	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Colombia			9	875			95	26, 276	372	88,880	244	3, 732 52, 358
Total	4	349	9	875			95	26, 276	397	94, 717	259	56, 090
Europe: Czechoslovakia	40	1,984		3 5 5 5 6 7				1		1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Germany Italy	30,392	4, 020 7, 981 2, 936, 655	36, 120	5, 938, 004	22, 180	3, 393, 759	629	178, 487	16,810	3, 933, 934	8, 056	1, 869, 085
Netherlands. Spain. Sweden	19, 233	1, 724, 834	28, 049	8, 959 4, 549, 115	29,884	4, 875, 352	5,458	1, 302, 234	15, 713	3, 667, 215	25, 276	5, 677, 032
Switzerland United Kingdom Yugoslavia.	41 169 5, 357	4, 690 10, 629 649, 748	(2) 5, 649	36 951, 008	3,891	753, 724	3,807	314 1, 059, 260	350 2, 350	77, 840 579, 446	2, 500 568	559, 511 132, 175
Total	55, 895	5, 389, 497	69, 868	11, 447, 122	55, 955	9, 022, 835	9,895	2, 540, 295	35, 243	8, 263, 411	36, 400	8, 237, 803
Asla: India- Japan Turkey	1, 485	73, 687	88	3, 666					09	13, 388		
Total.	1,485	73, 687 1, 650	50	8, 266					09	13, 388		
Grand total	62, 177	6, 031, 268	83, 393	13, 568, 576	64, 957	\$ 10, 783, 657	20, 354	5, 148, 996	47, 316	11, 009, 945	42, 005	9, 332, 724

¹ Flask = 76 pounds.
2 Less than I flask.
4 Owing to changes in tabulating procedures by the Bureau of the Census data known to be not comparable with other years.

TABLE 12.—Mercury imported (general imports) into the United States, 1957, by months

[Bureau of the Census]

Month	76-pound flasks	Month	76-pound flasks
January February March April May June July	6,818 5,618 4,325 4,014 2,836 5,628 3,300	August September October November December Total	2, 063 4, 562 1, 881 1, 548 2, 856 45, 449

TABLE 13.—Mercury imported (general imports) into the United States, 1948-52 (average) and 1953-57, in 76-pound flasks

[Bureau of the Census]

Country	1948-52 (average)	1953	1954	1955	1956	1957
North America: Canada	163	171	115	114	80	66
Honduras	2					
Mexico	4,903	13, 637	9,374	10, 310	12, 502	5, 991
Total	5,068	13, 808	9, 489	10, 424	12, 582	6, 057
South America: BoliviaChile	4				125	
Colombia Peru		6		95	372	15 244
Total	4	6		95	497	259
Europe: Denmark Germany Italy Netherlands Spain Sweden Witzerland United Kingdom Yugoslavia Total Asia: Japan Turkey	60 50 30, 270 185 19, 364 363 41 10 5, 627 55, 970	37, 827 50 28, 303 	21, 858 29, 859 4, 057 55, 774	579 5, 524 4, 325 10, 429	17, 592 20 18, 104 564 2, 590 38, 870	9, 208 25, 993 2, 500 1, 432 39, 133
Total	1,513	25	54		60	
Africa: Morocco	62, 565	85, 784	65, 317	20, 948	52, 009	45, 449

¹ Less than 1 flask.

TABLE 14.—Mercury exported from the United States, 1948-52 (average) and 1953-57

[Bureau of the Census]

Year	Pounds	76-pound flasks	Value	Year	Pounds	76-pound flasks	Value
1948–52 (average)	33, 306	438	\$55, 699	1955	34, 301	451	\$155, 433
1953	41, 497	546	105, 975		82, 044	1,080	284, 418
1954	67, 628	890	183, 417		145, 833	1,919	483, 892

TABLE 15.-Mercury reexported from the United States, 1948-52 (average) and 1953-57

[Bureau	of the	Census]
---------	--------	---------

Year	Pounds	76-pound flasks	Value	Year	Pounds	76-pound flasks	Value
1948–52 (average)	54, 259	714	\$65, 548	1955	20, 274	267	\$77, 664
1953	69, 640	916	157, 880	1956	153, 896	2, 025	475, 667
1954	109, 147	1,436	257, 342	1957	248, 864	3, 275	763, 303

Tariff.—The duty of 25 cents a pound (\$19 a flask) on imports of mercury, in effect since 1922, was continued.

WORLD REVIEW

The highest annual world production of mercury since 1942 was attained in 1957 as output rose 20,000 flasks to an estimated 235,000 flasks. Increased mine output was recorded in all major mercury-producing countries except Yugoslavia, where it declined slightly. Except for small fluctuations, production in the minor mercury-producing countries continued unchanged.

TABLE 16.—World production of mercury, by countries, 1 1948-52 (average) and 1953-57, in 76-pound (34.5-kilogram) flasks 2

[Compiled by Augusta W. Jann and Berenice B. Mitchell]

Country 1	1948-52 (average)	1953	1954	1955	1956	1957
North America:		٠.				
Honduras	2					
Mexico	6, 118	11,643	14, 755	29, 881	19, 530	21,089
United States	9, 739	14, 337	18, 543	18, 955	24, 177	33, 380
South America:	٠, ١٥٠	22,00	20,020	10,000	22, 211	00,000
Bolivia (exports)	4			l		
Chile	364	100	243	526	575	8 4 520
Colombia		100		36	010	020
Peru			77	148	335	4 395
Europe:				110	000	- 000
Austria	17	22	27	16	6	6
Czechoslovakia 3 5	760	725	725	725	725	725
Italy	49, 163	51, 373	54, 477	53, 520	61, 932	63, 237
Spain	38, 079	43, 541	43, 135	36, 231	48, 269	3 50, 000
Spain U. S. S. R. ³ 5	11,600	12, 300	12, 300	12, 300	(6)	(8)
Yugoslavia	13, 473	14, 272	14, 446	14, 591	13, 228	12, 328
Asia:	10, 110	17, 212	11, 110	14, 551	10, 220	12, 526
China	3 2,000	3 5,000	3 10,000	* 11, 500	(6)	(6)
Japan		6, 406	10, 264	4, 990	8, 334	11,864
Philippines	2,010	0, 400	10, 204	635	3, 015	3, 363
Taiwan			44	58	9,010	ა, ასა
Turkey			261	841	562	³ 500
Africa:	9		201	0.41	302	• 500
Algeria	99					
Tunisia	99			166	- 22	
I UIIIDIG				100	- 22	
World total (estimate)	133, 500	160,000	180,000	185, 000	215,000	235, 000

¹ Rumania and a few other countries may also produce a negligible amount of mercury, but production data are not available.

² This table incorporates a number of revisions of data published in previous Mercury chapters. Data do not add to totals shown owing to rounding where estimates are included in the detail.

³ Estimate.

⁴ Exports.

According to the 44th annual issue of Metal Statistics (Metallgesellschaft) through 1955.

Data not available; estimate by author of chapter included in total.

TABLE 17.—Exports of mercury from Italy, 1953-57, by countries of destination, in 76-pound flasks ¹

[Compiled by Corra A. Barry]

Country	1953	1954	1955	1956	1957
Argentina				470	. 94
Australia		98	165	215	197
Austria	_ 43	471	368	629	1.010
Belgium-Luxembourg	400	288	299	690	264
Brazil	_ 11	141	310		4,052
Canada		400	473	1, 125	99
Colombia	_ 9			2, 100	
Czechoslovakia	_ 1,389	177	1, 433	1,848	812
Finland		512	232	232	
France	_ 3, 351	5, 629	3,014	6,846	4, 363
Germany:	1	1	1	, ,	, ,
East			348	l	
West	_ 3,881	15, 234	12, 473	9, 796	5, 924
Hungary	_ 583		270	335	
India	_	. 3	l	2, 260	487
Indonesia			339	l	
Japan			641	6, 353	2, 680
Netherlands	_ 496	820	595	316	99
Norway	- 466	145			
Poland	_ 2.817	751	1,738	2, 039	818
Rumania	_		325		
Sweden		304	177	806	78
Switzerland.		250	67	339	78
Union of South Africa.	_ 181			299	148
United Kingdom	8, 506	16, 210	3, 951	13, 735	3, 252
United States.	32,025	20, 230		24, 242	4, 151
Other countries	235	257	705	328	276
Total	55, 168	61, 920	27, 923	75, 003	28, 788

¹ Compiled from Customs Returns of Italy.

Mexico.—It was reported ⁴ that a low-grade mercury deposit that may become one of Mexico's principal mercury sources would be put into operation in 1957. The deposit is on the Luz Julieta exploitation concession near Pedernales, municipality of Guerrero, 130 kilometers west of Chihuahua City. Uniform grade of furnace feed, 5 pounds of mercury per ton, would be maintained by blending of the ores. Although the reduction plant was rated at 75 tons per day, only a 50-ton-per-day rotary furnace would be required, because one-third of the total plant input was to be discarded as waste ahead of the furnace.

TABLE 18.—Exports of mercury from Mexico, 1953–57, by countries of destination, in 76-pound flasks ¹

[Compiled by Corra A. Barry]

Country	1953	1954	1955	1956	1957
Argentina	100 110 236 50 15, 629 234	193 294 605 517 4,790 11,469 596	2, 060 460 1, 575 339 5, 284 14, 251 267	271 978 711 1,626 11 1,388 17,821 271	889 1, 108 5, 340 2, 973 10, 637
Total	16, 359	18, 464	24, 236	23, 077	20, 96

¹ Compiled from Customs Returns of Mexico.

⁴ Mining World, Old Mexico's Newest Mercury Mine Developed by Cia. Minera Peralta: Vol. 19, No. 9, August 1957, pp. 47-49.

Philippines.—Palawan Quicksilver Mines, Inc., continued to be the only quicksilver producer in the Philippines. Production totaled 3,400 flasks, 12 percent greater than in 1956. It was reported that a third kiln would be added to the furnacing plant on Palawan Island where two 80-ton Gould furnaces are in operation. A D-type retort

was installed to process the soot and settling-tank residues.

Exploration and development were continued through diamond drilling, tunnels, and trenches. Reserves 6 were estimated to total 23,000 flasks, enough for 5 years' operation at the increased rate of production. In 1957 Palawan was reclassified as a major producer and allowed to barter only 15 percent of its shipments,7 whereas, during the latter half of 1956, Palawan was granted barter licenses under the No-Dollar Import Law for 100 percent of its exports because it was considered a minor producer.

TABLE 19.—Exports of mercury from Spain, 1953-57, by countries of destination, in 76-pound flasks 1

[Compiled b	oy Corra A. Ba	arry]			
Country	1953	1954	1955	1956	1957
Australia		1, 392	195 64	220	181
Belgium-Luxembourg	38 367	777	123 1, 437 1, 501	195 2, 352 601	856 1,836 651
Denmark Finland France	3, 415	1, 001 4, 226	297 7, 629	450 317 3, 991	1, 340 5, 140
Germany India Japan	1,761	1, 460 901	4, 214 927	2, 434 1, 689 1, 787	4, 450 550 1, 178
Netherlands Norway Portugal	290	1,016 145 345	896 150 159	1, 964 145 96	3,749 300 341
SwedenSwitzerlandUnited Kingdom	2,451	640 751 6, 315	1, 236 1, 159 4, 203	2, 599 153 3, 859	1, 256 618 6, 482
United States Venezuela Other countries	24,972	24, 217	7,835	16, 586 1, 287	17, 258
Total	40,000	43, 534	32, 245	40, 735	46, 497
	ı		i		1

United Kingdom.—Foreign trade data for the United Kingdom indicated that consumption of mercury in 1957 was the lowest since 1946. Imports of metal dropped 7 percent in 1957; but reexports rose sharply, and the new supply of mercury available for consumption was 2,900 flasks.

6-1/	1953	1954	1955	1956	1957
Imports	21, 300	29, 500	12, 900	19, 600	18, 200
	2, 500	6, 600	3, 300	4, 000	15, 300
	18, 800	22, 900	9, 600	15, 600	2, 900

¹ Compiled from Customs Returns of Spain.

<sup>Mining World, vol. 19, No. 8, July 1957, p. 10.
Engineering and Mining Journal, vol. 158, No. 7, July 1957, p. 196.
Bureau of Mines, Mineral Trade Notes: Vol. 46, No. 1, January 1958, pp. 12-13.</sup>

Reexports of mercury in 1956 and 1957, in 76-pound flasks, were as follows:

Destination:	1956	1957
United States	810	9, 308
Canada		1, 129
Germany, West		821
Sweden	334	592
Finland	255	553
Australia	422	389
India	573	341
Union of South Africa		298
Hong Kong	200	275
Denmark	364	265
Belgium	140	259
Netherlands		218
Korea	164	186
Rhodesia and Nyasaland, Federation of	72	103
Other	687	573
•		
Total	4, 021	15, 310

Yugoslavia.—Although new mercury deposits have been discovered in recent years near Fonica and Kresevo in Bosnia, near Beograd in Serbia, and in the vicinity of Sutomore, Montenegro, virtually all of the mercury production in Yugoslavia came as usual from the Idria mines in Slovenia. An annual output of approximately 15,000 flasks has been maintained by processing large quantities of ore, as mercury content has decreased from about 13 pounds per ton to 7 pounds per ton. Because of large potential mercury reserves, large-scale production is regarded as favorable; and, if mining capacities could be increased by modernization, it is believed that the country could produce 18,000 flasks a year.

TABLE 20.—Exports of mercury from Yugoslavia, 1953-57, by countries of destination, in 76-pound flasks 1

[Compiled	bу	Corra A.	Barry]
-----------	----	----------	--------

Country	1953	1954	1955	1956	1957
Austria	360 347	366 330	577 90 200	1,829	953
Canada France Germany, West	300 2, 289	585 3,874	510 1,662	612 816 100	410 2, 742 350
NetherlandsSwedenSwitzerland.	300 336 195	260 977	236 40 4, 967	379 165 2, 405	60 1, 010
United Kingdom	2, 666 5, 972 51	1,001 4,353 95	175 4, 753	474 1,821	125 1, 201 5
Total	12, 816	11,841	13, 210	8, 601	6, 856

¹ Compiled from Customs Returns of Yugoslavia.

⁸ Djukic, Branko, Mercury in Yugoslavia: Mining Jour. (London), vol. 249, No. 6367, Aug. 30, 1957, p. 246.

WORLD RESERVES

Domestic.—According to the Federal Geological Survey, mercury reserves of all classes of ore in the United States, minable at \$250 a flask (approximately the 1957 price), totaled 315,300 flasks, distributed as follows:

Mercury reserves of the United States, in 76-pound flasks

	Measured and indicated	Inferred
Alaska	30,000	10,000
Arizona	2, 000	3, 000
Arkansas	_, 000	1,000
California	64, 000	90, 000
Idaho	20, 000	6, 000
Nevada	31, 000	33, 000
<u>Oregon</u>	8, 000	7, 300
Texas	2, 000	
Utah and Washington	2, 000	7, 000 1, 000
0		
Total	157, 000	158, 300

Based on the grade of ore processed in 1957, reserves in the United States would average about 0.4 percent and those in Alaska about 1.5 percent mercury. Nearly all the measured and indicated ore is in mines that are now being operated; at the 1957 rate of mine production, these reserves would be adequate for 10 years. In addition, large quantities of lower grade ore are available.

large quantities of lower grade ore are available.

Foreign.—Reserves ¹⁰ of mercury minable at \$250 a flask estimated by the Geological Survey in 1957 were as follows:

Foreign mercury reserves, in 76-nound flasks

Lacito	
Measured	Inferred and indicated
150, 000	150, 000
30′000	100, 000
4,000	10, 000
¹ 100, 000	1, 000, 000
500, 000	1, 000, 000
150, 000	300, 000
10,000	
	500, 000
	50, 000
00, 000	500, 000
45.000	50, 000
45, 000	4 5, 000
·	
1, 875, 000	3, 710, 000
	Measured 150, 000 30, 000 4, 000 1100, 000 500, 000 150, 000 10, 000 2850, 000

¹ Data inadequate and reserves known to owners may be much larger.

² Based on U. S. S. R. estimate, which seems large for amount of exploration that had been done at time of estimate.

Most of the foreign ore reserves were of higher grade than those in the United States and probably averaged 0.8 percent mercury in Italy, 2.5 percent in Spain, 1.0 percent in Mexico, 0.4 percent in Yugoslavia, and 0.5 percent in other Free World countries. Information was not available on the grade of ore reserve in U. S. S. R.

 $^{^9}$ Geological Survey, Mercury Reserves of the United States Estimated: Aug. 12, 1957, 2 pp. 10 Bailey, Edgar H., Mercury Resources of the World; Materials Survey on Mercury (unpublished).

TECHNOLOGY

A report 11 was published by the Federal Bureau of Mines on the Idaho-Almaden mercury mine. This deposit, which was mined by underground methods before it was closed in 1942, was reopened in New and modern processing facilities, including 1955 as an open pit. a 150-ton-per-day rotary furnace, were installed, which permitted economic treatment of the low-grade material.

A Federal Geological Survey report describing mineral deposits of Central America gave information on quicksilver deposits in the

region.12

Through atomic radiation, a superpure mercury containing just one isotope, 198, was made from gold. Mercury-198 has unusually fine and sharp spectral lines, desirable in the light source of optical instruments.¹³ In the process the gold picked up one neutron and formed radioactive gold, which decayed to mercury. The value of the mercury was placed at about \$3,000 compared with about \$1

for the gram of gold.

A vertical retort consisting of a fused-silica flask fitted with a delivery tube and receiver in one piece was developed 14 to determine the mercury content of mercury compounds by distillation. mercury-bearing material was distilled in the presence of iron filings, and the gases were passed through a mixture of iron filings and calcium oxide. Zinc wool in the receiver formed an amalgam with the mercury, which was dissolved in nitric acid and titrated with 0.1 normal ammonium thiocyanate. Addition of sucrose assisted in the distillation by providing the correct atmosphere and enough gas to drive all the mercury into the receiver within 15 minutes.

Several other new analytical procedures were reported for deter-

mining mercury. 15

During a study 16 of the reactions that occur in retorting cinnabar in the presence of lime, it was determined that the reaction $4 \mathrm{HgS} + 4 \mathrm{CaO} = 4 \mathrm{Hg} + 3 \mathrm{CaS} + \mathrm{CaSO_4}$ was accurate. As long as CaO was present, the ratio of 3 moles of CaS to 1 mole of CaSO₄ was attained.

A novel method ¹⁷ of preparing a beryllium amalgam by electrolysis of beryllium from a NaCl-BeCl₂ fused-salt mixture into a mercury

20, 1957, p. 3925.

Lickes, Margaret R., Mining, Processing, and Costs, Idaho Almaden Mercury Mine, Washington County, Idaho: Bureau of Mines Inf. Circ. 7800, September 1957, 33 pp.
 Roberts, R. J., and Irving, E. M., Mineral Deposits of Central America (with a section on manganese deposits of Panama, by F. S. Simons): Geol. Survey Bull. 1034, 1957, 205 pp.
 Industrial and Engineering Chemistry, Modern Alchemy: Vol. 49, No. 11, November 1957, pp. 28A-201

³⁰A.

14 Chemical Age, Mercury Determination by Direct Distillation: Vol. 78, No. 1996, Oct. 12, 1957, pp. 595-596.

15 Leroux, Jean, Maffett, Patricia A., and Monkman, J. L., Microdetermination of Heavy Elements Such as Mercury and Iodine, in Solution, by X-Ray Absorption: Anal. Chem., vol. 29, No. 7, July 1957,

Such as Mercury and Iodine, in Solution, by A-Kray Absolution, 1921.

Such as Mercury and Iodine, in Solution, by A-Kray Absolution. Annual Chem., vol. 29, Miller, V. L., and Swanberg, Frank, Jr., Determination of Mercury in Urine: Anal. Chem., vol. 29, No. 3, March 1957, pp. 391-393.

Menis, Oscar, Ball, Robert G., and Manning, D. L., Amperometric Titration at Mercury (II) With Tetraphenylarsonium Chloride: Anal. Chem., vol. 29, No. 2, February 1957, pp. 245-248.

Parry, E. P., Determination of Mercury in Presence of Halides: Anal. Chem., vol. 29, No. 4, April 1957, pp. 466-549.

Ueno, Kelhel, Simultaneous Complexometric Determination of Copper and Mercury: Anal. Chem., vol. 29, No. 11, November 1957, pp. 1868-1869.

18 Peretti, E. A., Textbook Errors; The Production of Mercury: Jour. Chem. Educ., vol. 34, No. 3, March 1957, pp. 135-136.

^{1957,} pp. 135-136.

17 Journal American Chemical Society, The Preparation of Beryllium Amalgam; Vol. 79, No. 14, July

cathode was developed and applied to the preparation of beryllium

The development, characteristics, and uses of various types of batteries, including mercury cells, were described ¹⁸ and compared. Long shelf life, low internal resistance, voltage stability, high temperature stability, and a wide variety of sizes and shapes were cited

as advantageous characteristics of mercury batteries.

The growing trend in the use of transistors for tubes in radios caused a study 19 to be made of the type and characteristics of available batteries that will be required. An evaluation of the mercury cell and the LeClanche cell, the zinc-carbon unit used in flashlights and the most common type of dry cell for radio use, showed that the mercury unit offered many advantages. The shelf life of zinccarbon batteries was only 8 to 12 months compared with 2 years or more for mercury batteries stored under the same conditions. Under the same operating conditions, the useful output of the mercury type was five times that of the LeClanche type. Thus, despite a larger initial cost, the mercury type provided more favorable cost-per-hour ratios than the zinc-carbon type.

An appraisal of the development technology of chlorine-caustic soda manufacture in the United States and Europe, showed a trend in use of the mercury cell.20 For Europe as a whole about 85 percent of the chlorine was manufactured in mercury cells whereas, in the United States, mercury cells' share of United States production has risen from 4.3 percent in 1946 to an expected 18.7 percent in The reasons for the trend are complex but in general were due to larger cells, lower capital and operating costs, simplicity, and purity of product. The evaluations contained descriptions and operating characteristics of the various cells and a list of chlorine-caustic

soda producers.

In another report 21 diaphragm and mercury cells used in producing chlorine and caustic soda were analyzed. The study included design, operation, power and labor requirements, feed material, costs, and

other pertinent factors of each type of cell.

An investigation 22 of the influence of graphite particles on the mercury-cell process for producing chlorine and caustic soda revealed that the effect of less than 3 grams a liter of graphite was small in pure brine but that, in the presence of magnesium or aluminum, the loss of current efficiency was appreciable. The simultaneous presence of graphite and iron, calcium, or less than 0.1 mg. a liter of vanadium did not affect the electrolysis process; silicates and stannates inhibited the action of the graphite particles.

An electrode consisting of a tiny drop of mercury hanging from a platinum wire was the basis of a new method developed for determining the metal content of solutions.²³ Any metal that will form an alloy

<sup>Look, Arnold E., Jr., New Horizons for Battery Power: Electronic Ind. and Tele-Tech., vol. 16, No. 7, July 1957, pp. 34-37, 118-119.
Radio and TV News, Batteries for Transistor Radios: Vol. 57, No. 6, June 1957, pp. 40-41.
Sommers, H. A., Chlorine Caustic Cell Development: Chem. Eng. Prog., vol. 53, No. 9, September 1957, pp. 409-417; vol. 53, No. 10, October 1957, pp. 506-510.
Hardy, Walter L., Chlorine Manufacture: Ind. Eng. Chem., vol. 49, No. 9, September 1957, pp. 55A-56A.
Angel, Gösta, Brännland, Rolf, and Dahlerus, Stig, Influence of Impurities in the Electrolyte in Chlorine-Caustic Electrolysis by the Mercury-Cell Process: Electrochem. Soc. Jour., vol. 104, No. 3, March 1957, pp. 167-170</sup> 1957, pp. 167-170.

23 Chemistry, Sensitive Test for Metals: Vol. 31, No. 3, November 1957, p. 45.

839 MERCURY

with mercury can be tested, and concentrations as low as 1 part of

lead in 5 trillion parts of solution can be determined.

By changing from an incandescent system to a new mercury-vapor lighting system at a large foundry,24 production was increased, safety was improved, and more comfortable working conditions were obtained with the better lighting. Other advantages included easy economical maintenance, less cleaning, longer life, reduced power needs, reduction of transformers and switching panels, and use of smaller electrical conductors.

The substitution of mercury-vapor lamps for incandescent types not only cut costs but also solved a constant maintenance problem due to vibration and delivered more light to working areas in a jetengine-testing building.25 During engine testing the entire installation was subjected to high-frequency vibrations, which caused the filament of incandescent lamps to fail but had little adverse

effect on the mercury-vapor-type lamp.

Because of high efficiency, rugged design, and competitive price, mercury-arc rectifiers provide one of the principal methods of converting electricity from alternating to direct current.26 Improved electromagnetic rectifier control equipment also has been developed. These include transductors and magnetic amplifiers designed for either fixed direct-current output or varied output voltages.

<sup>Factory Management and Maintenance, New Light for Heavy Work: Vol. 115, No. 1, January 1957, pp. 96-97.
Davis, W. L., Mercury Lamps Solve Vibration: Elec. West, vol. 118, No. 3, March 1957, p. 126.
Spooner, F. E., Mercury-Arc Rectifier Control: Elec. Rev., vol. 161, No. 17, Oct. 25, 1957, pp. 741-746.</sup>

Mica

By Milford L. Skow 1 and Gertrude E. Tucker 2

OMESTIC sheet mica sold or used in the United States in 1957 decreased 22 percent in quantity and 10 percent in value, compared with 1956. Most of the decrease in quantity occurred in sales of punch mica. The yield of full-trimmed block from sales of domestic mica to the Government was 12 percent below that in 1956. Sales of scrap and flake mica increased to the highest value on record and to a tonnage second only to that in 1955, the peak year. Consumption of sheet mica decreased 9 percent to 11.4 million pounds, and consumption of scrap mica (as indicated by the quantity of ground mica sold) was 6 percent higher than in 1956. Total imports were down 13 percent, but total exports increased 9 percent to a new record.

TABLE-1.—Salient statistics of the mica industry, 1948-52 (average) and 1953-57 (Quantity and total value in thousands)

	1948-52 (average)	1953	1954	1955	1956	1957
United States: Domestic mica sold or used by producers:				-		
Total sheet mica: Pounds Value Average per pound	531	849	669	642	888	690
	\$274	\$2, 154	\$2, 393	\$3, 370	1 \$2, 757	\$2, 492
	\$0. 52	\$2. 54	\$3. 58	\$5. 25	1 \$3. 11	\$3. 61
Scrap and flake mica: Short tons Value A verage per ton Ground mica: ²	60	73	\$1	95	\$6	92
	\$1, 494	\$1, 824	\$1,734	\$2,058	\$1,850	\$2, 111
	\$24. 77	\$24. 90	\$21.39	\$21.57	\$21.43	\$22. 82
Short tonsValueConsumption of block and	68 \$3,630	73 \$ 4, 192	\$4, 889	106 \$6, 558	\$6, 228	96 \$6, 073
Pounds Value Consumption of splittings:	(3)	4, 379	3, 229	4, 093	3, 822	3, 340
	(3)	3 \$11, 541	\$4, 322	\$5, 607	\$5, 708	\$4, 651
Pounds	10, 083	10, 346	6, 733	8, 998	8, 662	8, 037
Value	\$8, 704	\$7, 902	\$4, 132	\$4, 388	\$4, 435	\$4, 018
Imports for consumption short tons Exportsdo	16 2	11 2	9	16 3	14 5	12 5
Apparent consumption of sheet mica 4poundsWorld: Productiondo	21, 272	14, 413	8, 424	13, 881	12, 711	12, 564
	226, 000	255, 000	285, 000	330, 000	310, 000	350, 000

Revised figure.

<sup>From domestic and some imported scrap mica.
Available data are not comparable with data for succeeding years.
Sheet mica sold or used plus imports of unmanufactured and manufactured sheet mica minus exports</sup>

¹ Commodity specialist.
2 Statistical assistant.

LEGISLATION AND GOVERNMENT PROGRAMS

Exploration, purchasing, and research programs for mica were continued by various Government agencies under authority delegated by the Office of Defense Mobilization (ODM). ODM closed the expansion goal on proved substitutes for strategic natural mica in June. This goal was established in January 1956, but industry showed little interest.

Defense Minerals Exploration Administration.—Decreased activity in exploration was indicated by the smaller number of contracts in force at the end of the year—14 in 1957, compared with 28 at the end of 1956. From the beginning of the program in 1951 through December 31, 1957, 285 contracts for strategic mica were executed. Of these, 7 were canceled, and 264 were terminated by the end of 1957. The total value of the 264 contracts terminated was \$1,507,624; the Government advanced \$911,023. Certificates of discovery or development were issued on 62 of these contracts, which had a total value of \$453,261.

TABLE 2.—Defense Minerals Exploration Administration mica contracts in force during 1957, by States, counties, and mines

-					
				Contract	
State and operator	Property	County	Date	Total value 1	Status, Dec. 31, 1957
GEORGIA					
Boone, Homer Phillips, John	Bray Prospects 1	do		6, 276	In force. Terminated.
Wood, E. B. Boone & Phillips Medford, Lee	Wood Mercer Prospect	Upsondo	August 1956 November 1957do	6, 348 5, 696 6, 680	Do. In force. Do.
MONTANA					1.
Barham, Daniel T	Thumper Lode & Thumper Lode No. 2.	Gallatin	October 1955	14, 000	Do.
NORTH CAROLINA	110.2.			-	
Duncan and Smith Mining Co.	Little Mines	Ashe	June 1957	9, 480	Terminated.
Aldridge, L., et al Phillips, John	Johnson Ed Burleson Prospect.	Averydo	January 1957 November 1956	6, 644 4, 580	Do. Do.
Do. Smith, Sam G. Vance, Joe C. Phillips, S. L. Beam, J. R. Charlie Blanton Mining Co.	John Prospect Doe Hill No. 2 Leaning Locust Black Mountain Back Prospect Charlie Blanton	4.0	September 1956_ July 1956_ May 1956_ May 1957_ November 1956_ May 1957	6, 940 5, 164 8, 902 5, 376 4, 840 6, 216	Do. Do. Do. In force. Terminated. Do.
Huskins, Ed Phillips & Beam Carolina Mining Co Do Crawford, E Arnold Young Mining Co.	Falls Prospect	Jackson Jackson Macon	June 1957 August 1957 November 1956 December 1957 December 1957 November 1956 May 1957	6, 316 6, 064 5, 240 5, 068 4, 492 5, 484 7, 600	Do. Do. In force. Terminated. In force. Terminated. Do.
Black Jack Mining Co Boone, Jeter, et al	Black Jack Paul McMahan Prospect.	do	February 1956 October 1957	4, 416 6, 288	Do. In force.
Buchanan, C. D Buchanan, G	Boone Chestnut Branch_	do	December 1956 January 1957	5, 552 6, 296	Terminated. Do.

See footnote at end of table.

TABLE 2.—Defense Minerals Exploration Administration mica contracts in force during 1957, by States, counties, and mines—Continued

			(Contract	
State and operator	Property	County	Date	Total value 1	Status, Dec. 31, 1957
NORTH CAROLINA—con.					
Gouge, M., et al	Turbyfill Pros-	Mitchell	November 1956	\$5, 500	Terminated.
Gouge, W. G Grindstaff, G	pect. Dinkey Line Grover	do	March 1957 October 1956		Do. Do.
Grindstaff & Greene	Johnson	do	October 1957	6,624	In force.
Huskins, Ed	Bill Prospects 1 &.	do	December 1956	4, 936	Terminated.
Huskins, Ed. & Gage, Fred.	2. Briggs	do	October 1956	2, 696	Do.
Huskins, Ed	George	do	July 1956	4, 104	Do.
Huskins, Paul Jarrett, J.	Big Ridge	do	October 1957 January 1957		In force, Terminated.
Jarrett, J. & Grindstaff, F.	Big Ridge Hensley McBee Prospect	do	May 1956	10, 662	Do.
McKinney, Howard	McKinney Pros-	do	May 1957	5, 652	In force.
Mitch-Lincoln Mining	pect. Mitch-Lincoln	do	April 1957	6, 856	Terminated.
Phillips, John, et al.	Hawk	do	July 1956	6, 760	Do.
Phillips, John	RobyOld Buchanan	do	September 1956 June 1956	6, 612 6, 640	Do. Do.
Phillips, S. L., and Ellis, C. W.	Avery Prospect	do	November 1957	6, 080	In force.
Pitman, E., et al	Pitman Tract	do	January 1957	5, 496	Terminated.
Stevenson, Ted, et al	Stevenson	Putherford	February 1956 July 1956	6, 716 5, 412	Do. Do.
Toney, F. & G Mines & Mining, Inc	Farlow Gan	Transvlvania	July 1955	5, 136	Do.
Beam, J. R., & Phillips,	Claude Blanton Farlow Gap Little Ray	Yancey	November 1955	12, 735	Do.
J. Bennet, Y., & Phillips, S. L.	Palen Ridge Pros- pect.	do	January 1957	5, 692	Do.
Boone, H.	Pete Prospect	do	February 1957	5, 048	Do.
Boone, J	Riddle Prospects	do	December 1956	5, 472	Do.
Brown, C. L., & Rath- burn, G. C.	1, 2, & 3. Fox	do	August 1954	5, 788	Do.
McMurry, G., et al	Mitchell Branch		November 1956	5, 876	Do.
Moody Rock Mining Co.	Moody Rock Murphy	do	May 1957 December 1956	8, 910 4, 236	In force.
Murphy Mining Co Rathbone, C. W., et al	Crip Ogle	do	January 1957	5, 712	Terminated.
SOUTH CAROLINA					
King, H. B., Sr Burdette, Ralph	Clinkscales No. 2 Knight No. 2	Abbeville Greenville	May 1956 June 1957	5, 948 5, 480	Do. Do.

¹ Government participation, 75 percent. Total actual expenditures by the Government on terminated and certified contracts often were less than the obligated funds.

Defense Materials Service.—Government mica purchases at 3 micapurchasing depots of General Services Administration (GSA) yielded 191,671 pounds of full-trimmed muscovite block mica (over 0.007 inch thick), comprising 138,564 pounds of ruby and 53,107 pounds of nonruby. The total yield of full-trimmed mica was 12 percent lower than in 1956. Good Stained or better qualities constituted about 30 percent of the ruby and 42 percent of the nonruby; Stained quality made up about 48 percent of the ruby and 40 percent of the nonruby. The Spruce Pine, N. C., depot furnished 73 percent of the total yield of ruby block mica and 95 percent of the nonruby.

The total quantity of Stained or better qualities of full-trimmed muscovite block obtained from Government purchases of domestic mica in 1957 was equivalent to 8.4 percent of the total fabrication in 1957 of muscovite block and film of these qualities, irrespective of grades.

Domestically produced mica purchased by the Government since the program was begun in July 1952 has yielded 1,066,121 pounds of

full-trimmed mica, 76 percent of which was the ruby variety.

In May, GSA invited offers on new long-term contracts for delivery of mica from foreign sources to the stockpile. These 5-year contracts permitted the importer to deliver up to 1 pound of Heavy Stained ruby block mica for each pound of Stained A/B or better qualities of ruby muscovite block mica meeting stockpile specifications.

TABLE 3.—Yield of full-trimmed muscovite ruby and nonruby block mica from domestic purchases by GSA, 1957, by quality, grade, and depot, in pounds

		Ru	ıby			Nonr	uby	
Depot and grade	Good Stained or better	Stained	Heavy Stained	Total	Good Stained or better	Stained	Heavy Stained	Total
Spruce Pine, N. C.: 2 and larger	185 460 1, 012 5, 037 3, 681 22, 244 32, 619	189 537 1, 137 6, 030 4, 399 34, 552 46, 844	114 233 510 2, 733 1, 980 16, 570 22, 140	488 1, 230 2, 659 13, 800 10, 060 73, 366 101, 603	129 308 708 3, 626 2, 370 14, 689 21, 830	31 127 357 2, 250 1, 749 15, 697	7 27 99 681 747 7,091	167 462 1, 164 6, 557 4, 866 37, 477 50, 693
Franklin, N. H.: 2 and larger 3 4 5 5 6	9 55 142 1, 138 938 5, 889	124 259 394 2, 103 1, 513 9, 310	42 78 135 759 629 3, 263	175 392 671 4,000 3,080 18,462	(¹) 1 4 3 7	(1) (1) (3) 4 10	} 1 1	(1) 1 15 18
Total	8, 171 2 4 6 51 68 435 566	13, 703 12 38 159 830 816 3, 486 5, 341	4, 906 18 53 194 774 660 2, 575 4, 274	26, 780 32 95 359 1, 655 1, 544 6, 496 10, 181	15 4 11 21 83 56 234 409	17 26 48 226 167 717 1, 194	16 25 49 159 120 408	30 62 118 468 343 1,359 2,380
Grand total	41, 356	65, 888	31, 320	138, 564	22, 254	21, 422	9, 431	53, 107

¹ Less than 1 pound.

TABLE 4.—Yield of byproducts from domestic purchases of ruby and nonruby mica by GSA, 1957, by depots, in pounds

		Ruby			Nonruby	
Depot	Miscel- laneous 1	Punch	Scrap	Miscel- laneous 1	Punch	Scrap
Spruce Pine, N. C. Franklin, N. H. Custer, S. Dak. Total.	5, 612 10, 054 821 16, 487	85, 606 21, 717 12, 007 119, 330	1, 218, 174 522, 536 129, 544 1, 870, 254	5, 542 1 201 5, 744	21, 554 1, 068 22, 622	444, 557 (2) 48, 685 493, 242

¹ Includes some full-trimmed thins and block of lower than Heavy Stained qualities.

2 Less than 1 pound.

TABLE 5.—Yield of full-trimmed muscovite ruby and nonruby mica and byproducts from domestic purchases by GSA, 1953-57, by depots, in pounds

Category and depot	1953	1954	1955	1956	1957	Total
Full-trimmed: Spruce Pine, N. C.	113, 270	139, 872	188, 915	176, 942	152, 296	771, 295
Franklin, N. H. Custer, S. Dak	25, 303 26, 125	35, 046 23, 894	29, 257 18, 433	23, 003 1 18, 875	26, 814 12, 561	139, 423 99, 888
Total	164, 698	198, 812	236, 605	1 218, 820	191, 671	1, 010, 606
Other: Spruce Pine, N. C Franklin, N. H Custer, S. Dak	1, 821 7, 995	12, 566 1, 623	16, 069 19, 785 27, 081	12, 739 36, 914 1 2, 382	11, 154 10, 055 1, 022	39, 962 81, 141 40, 103
Total	9, 816	14, 189	62, 935	1 52, 035	22, 231	161, 206
Punch: Spruce Pine, N. CFranklin, N. HCuster, S. Dak	16 23, 052 193, 505	8, 940 93, 229 44, 388	119, 333 69, 786 8, 149	97, 744 28, 878 1 18, 320	107, 160 21, 717 13, 075	333, 193 236, 662 277, 437
Total	216, 573	146, 557	197, 268	1 144, 942	141, 952	847, 292
Scrap: Spruce Pine, N. C. Franklin, N. H. Custer, S. Dak.	47 21, 708 157, 505	15, 255 193, 363 363, 174	1, 607, 165 367, 208 270, 622	934, 672 466, 078 1 350, 958	1, 662, 731 522, 536 178, 229	4, 219, 870 1, 570, 893 1, 320, 488
Total.	179, 260	571, 792	2, 244, 995	1 1, 751, 708	2, 363, 496	7, 111, 251

¹ Revised figure.

GSA signed contracts during the year with Battelle Memorial Institute, Frankford Arsenal, General Electric Co., Arthur D. Little, Inc., Sylvania Electric Products, Inc., and Synthetic Mica Corp. for studies on reconstituting synthetic mica. The contract with Frankford Arsenal was for continuing the work begun under the contract signed in 1956. By December 31, seven contracts were in effect for research and development of substitutes for strategic natural mica under the industry-Government program certified by the Office of Defense Mobilization.

Commodity Credit Corporation.—No additional contracts were negotiated in 1957. Small quantities of muscovite block and film and sizable quantities of muscovite splittings were delivered under old contracts.

DOMESTIC PRODUCTION

Sheet Mica.—The quantity of crude sheet mica sold or used by producers was 22 percent lower than in 1956. However, the value dropped only 10 percent, as 85 percent of the decrease in quantity was attributed to sales of punch mica, and the average value for sheet mica sold to the Government was slightly higher than in 1956. North Carolina, with 84 percent of the total output of domestic sheet mica, continued to be the principal producing State. New Hampshire, Maine, Georgia, and South Dakota were other leading producers.

Scrap and Flake Mica.—The quantity of scrap and flake mica sold or used by grinders increased 7 percent over 1956 to the second highest tonnage on record. The value increased 14 percent to a record high. North Carolina again produced over half the tonnage, and South Carolina, Georgia, and Alabama furnished considerable

quantities.

TABLE 6.—Mica sold or used by producers in the United States, 1948-52 (average) and 1953-57

			Sheet	Sheet mica						
Year	Uneut punc	Uncut punch and circle mica	Uncut mics larger than punch and circle ¹	larger than	Total sheet mica	et mica 2	Scrap and 1	Scrap and flake mica \$	Total	1 8
	Pounds	Value	Pounds	Value	Pounds	Value	Short tons	Value	Short tons	Value
1948-52 (average) 1933 1964 1965	476, 681 667, 241 450, 105 383, 401	\$81, 895 98, 010 51, 947 41, 290	54, 464 182, 153 218, 683 258, 712	\$192, 589 2, 055, 574 2, 341, 094 3, 329, 107	531, 145 849, 394 668, 788 642, 113	\$274, 484 2, 153, 584 2, 393, 041 3, 370, 397	60, 296 73, 259 81, 073 95, 432	\$1, 493, 694 1, 823, 840 1, 733, 772 2, 058, 035	60, 562 73, 684 81, 407 95, 754	\$1, 768, 178 3, 977, 424 4, 126, 813 5, 428, 432
1956: Alabama Colorado	(9)	•	(+)	(4)	1, 122	6,812	(4) 517	(4) 7, 596	(4)	(4)
Georgia	££	€€	(+)		20, 149 19, 913	2, 004 149, 459 146, 437	(4)	(4) 3, 213	124	2, 004 (4) 149, 650
New Hampshire. New Mexico	(*)	(*)	(4) 6, 247		50, 873 6, 247	177, 376 52, 566	305	10, 243	330	187, 619 74, 779
North Carolina. South Carolina. South Dakota	2, 991	48, 205	205, 285 2, 409 12, 494	2, 086, 852 13, 426 67, 053	770, 903 5, 400 12, 494	2, 135, 057 13, 784 6 67, 053	47, 125 (4) 1, 268	1, 064, 631 (4) 31, 224	47, 510 (e) 1, 274	3, 199, 688 (4) 6 98, 277
virginia Undistributed 7	25,011	5,351	67,046		390	5, 814	36, 213	710, 453	(e) 36, 228	5, 814 880, 508
Total	- 593, 620	53, 914	294, 251	6 2, 703, 159	887, 871	6 2, 757, 073	86, 309	1, 849, 573	86, 753	6 4, 606, 646
1987: Arizona Oslorado. Gorgia Idabo. Matine. Mortena	4, 923		12, 010 1, 240 25, 347	52 167, 291 9, 239 202, 075	16, 933 11, 240 25, 453	52 157, 883 9, 239 202, 086	1,650 312 (4) 40 6	16, 500 6, 400 (4) 1, 200 1, 80	1,650 312 (4) 41 19	16, 500 6, 452 (*) 10, 439 202, 254
New Hampshire. New Mexico. North Carolina. South Carolina.	(4) 418, 306	(4) 32, 998	(4) 134 2, 134 159, 301	(4) 15, 645 1, 542, 101	53, 554 2, 134 577, 607	459, 976 15, 645 1, 575, 099	1, 347 1, 347 53, 452	17, 301 46, 865 1, 173, 215	1, 348 1, 348 53, 741	477, 277 62, 510 2, 748, 314
South Dakota Virginia Undistributed 7	2, 402	740	9, 093 529 54, 634	45, 507 6, 401 479, 722	9, 093 529 1, 204	45, 507 6, 401 8, 175	1, 626	43, 142	1, 631 (6) 33, 532	88, 649 6, 401 984, 241
Total	- 425, 737	34, 341	264, 315	2, 458, 121	690,052	2, 492, 462	92, 478	2, 110, 663	92, 823	4, 603, 125
I to be to be the first the manner of the section of the section of the	11.1.1.1	HA GAGE		L						

Includes the full-trimmed mice equivalent of hand-cobbed mice, 1952-57.

Includes small quantities of splittings in certain years.

Includes mely divided mice recovered from mice and sericite schist, and as a byproduct of feldspar and kaolin beneficiation.

Included under "Undistributed" to avoid disclosing individual company operations.

Less than 1 ton.
 Revised figure.
 Figures include Alabama (1967), California, Connecticut (1967), Maryland (1967),
 Pennsylvania, Tennessee, and States indicated by footnote 4.

Ground Mica.—Sales of ground mica increased 6 percent in tonnage but decreased more than 2 percent in value, compared with 1956. Dry-ground mica constituted 86 percent of the total tonnage and was used principally for roofing materials, joint cement, well drilling, and paint. Wet-ground mica was used chiefly in paint and rubber. Production was reported by 25 grinders in 21 dry-grinding and 8 wet-grinding plants.

During 1957 Imperial Milling Co. ground mica schist at Ogilby, Calif., in the plant operated by Western Non-Metallics in 1956. Robert K. Foster, Imperial County, Calif., reported production at the wet-grinding mill operated by John Humer in 1956. Buckeye Mica Co., Buckeye, Ariz., which last reported in 1955, again produced dry-ground mica. Robert E. Osthoff, Santa Fe, N. Mex., and Sunshine Mica Co., Los Nietos, Calif., dry ground mica in 1956 but reported no production in 1957.

TABLE 7.—Ground mica sold by producers in the United States, 1948-52 (average) and 1953-57, by methods of grinding

Year	Dry-g	round	Wet-g	round	То	tal
1948–52 (average)	57, 486 60, 127 67, 618 91, 695 77, 665 83, 025	\$2, 216, 227 2, 438, 628 3, 134, 277 4, 541, 482 4, 150, 996 4, 015, 353	Short tons 10, 157 12, 945 12, 454 14, 490 13, 605 13, 307	\$1, 413, 776 1, 753, 792 1, 754, 845 2, 016, 157 2, 077, 062 2, 058, 055	Short tons 67, 643 73, 072 80, 072 106, 185 91, 270 96, 332	\$3, 630, 003 4, 192, 420 4, 889, 122 6, 557, 639 6, 228, 058 6, 073, 408

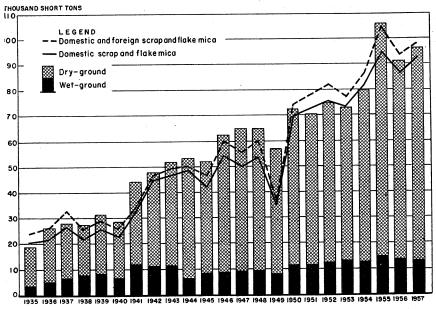


FIGURE 1.—Scrap, flake, and ground mica sold in the United States, 1935-57.

CONSUMPTION AND USES

Sheet Mica.—Consumption of sheet mica (block, film, and splittings) in the United States in 1957 decreased 9 percent compared with 1956.

Domestic fabricators consumed more than 3.3 million pounds of muscovite block and film mica—13 percent below the 1956 consump-Stained quality constituted 49 percent of the total; lower than Stained qualities, 46 percent; and Good Stained or better, 5 percent. Electronic applications used 65 percent of the total muscovite block and film fabricated, distributed by qualities as follows: 7 percent, Good Stained or better; 73 percent, Stained; and 20 percent, lower than Stained. Of the mica fabricated for electronic uses, tubes consumed 91 percent, capacitors, 6 percent, and other uses, 3 percent. Grade 6 block mica constituted 52 percent of the muscovite block and film consumed, compared with 46 percent in 1956.

Fabrication of muscovite block and film mica was reported by 24 companies in 9 States. About 55 percent (1.8 million pounds) of the total was reported by 13 companies in 3 States—New Jersey (5), New

York (4), and North Carolina (4).

The quantity of mica splittings consumed was 7 percent less and had a value 9 percent less than in 1956. Most of the splittings used were from India (94 percent by weight); the remainder was principally phlogopite splittings from Madagascar. Consumption of splittings for producing built-up mica was reported for 12 operations in 9 States. Allis-Chalmers Manufacturing Co., Milwaukee, Wis., reported no fabrication of splittings in 1957.

TABLE 8.—Fabrication of muscovite ruby and nonruby block and film mica and phlogopite block mica, by qualities and end-product uses in the United States, 1957, in pounds

		Electron	nic uses		Nor	electronic	uses	
Variety, form, and quality	Capaci- tors	Tubes	Other	Total	Gage glass and dia- phragms	Other	Total	Grand total
Muscovite: Block:								
Good Stained or better Stained Lower than Stained	310 10, 259 17	19, 188 1, 541, 709 404, 395	34, 343	1, 586, 311	4,905		55, 816	1,642,127
Total	10, 586	1, 965, 292	58, 019	2, 033, 897	11, 539	11, 151, 827	1, 163, 366	3, 197, 263
Film: First quality Second quality Other quality	99, 546			99, 546		310 150		
Total	127, 410			127, 410		460	460	127, 870
Block and film: Good Stained or better 2 Stained 3 Lower than Stained	124, 907 13, 072 17	1,541,709	34, 343	144, 481 1, 589, 124 427, 702	4,905	50, 911	55, 816	152, 400 1, 644, 940 1, 527, 793
TotalPhlogopite: Block (all qualities)	137, 996	1, 965, 292	58, 019	2, 161, 307	11, 539	1, 152, 287 14, 796		3, 325, 133 14, 796

Includes punch mica.
 Includes first- and second-quality film.
 Includes other-quality film.

TABLE 9.—Fabrication of muscovite ruby and nonruby block and film mica in the United States, 1957, by qualities and grades, in pounds

Form, variety, and quality			Gı	ade		
roim, variety, and quanty	No. 4 and larger	No. 5	No. 51/2	No. 6	Other 1	Total
Block: Ruby:						
Good Stained or better Stained Lower than Stained	4, 784 20, 011 140, 892	1, 812 70, 734 92, 622	1, 355 116, 343 74, 358	18, 443 1, 272, 339 334, 544	50, 723 378, 055	26, 394 1, 530, 150 1, 020, 471
Total	165, 687	165, 168	192, 056	1, 625, 326	428, 778	2, 577, 015
Nonruby: Good Stained or betterStained. Lower than Stained. Total	892 155 40, 445 41, 492	57 4, 512 12, 235 16, 804	2, 408 5, 063 7, 471	96, 953 7, 375 104, 328	7, 949 442, 204 450, 153	949 111, 977 507, 322 620, 248
Film: Ruby: First quality Second quality Other quality	4, 626 21, 040	10, 833 35, 229	3, 464 15, 944	5, 788 25, 084	2, 813	24, 711 97, 297 2, 813
Total	25, 666	46, 062	19, 408	30, 872	2, 813	124, 821
Nonruby: First quality Second quality Other quality	691	568	650 824	316		650 2, 399
Total	691	568	1, 474	316		3, 049

¹ Figures for block mica include "all smaller than No. 6" grade and "punch" mica.

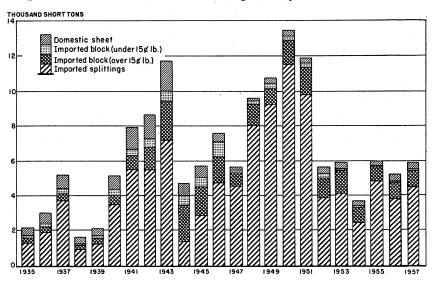


FIGURE 2.—Block mica and splittings imported for consumption in the United States and sales of domestic sheet mica, 1935-57.

Built-Up Mica.—Consumption of domestically produced built-up mica was 12 percent less in quantity and 8 percent lower in value than in 1956. The various forms were used principally for electrical insulation. A total of 11 companies at 12 plants reported domestic production of built-up mica in 1957.

TABLE 10.—Consumption and stocks of mica splittings in the United States, 1948-52 (average) and 1953-57, by sources

	•	- •				
	1948-52 (average)	19	53	195	4
	Pounds	Value	Pounds	Value	Pounds	Value
Consumption: Domestic Canadian Indian Madagascan Mexican	1 2 3 15, 079 2 3 173, 567 9, 240, 353 654, 068 (2)	1 2 3 \$6, 621 2 3 96, 207 8, 122, 243 478, 546 (2)	158, 343 9, 443, 645 744, 171	\$98, 738 7, 225, 899 577, 595	67, 311 6, 158, 769 506, 639	\$37, 505 3, 727, 441 367, 472
Total	10, 083, 067	8, 703, 617	10, 346, 159	7, 902, 232	6, 732, 719	4, 132, 418
Stocks (Dec. 31): Domestic Canadian Indian Madagascan Mexican Total	(4) 4 5 116, 628 6, 093, 362 460, 100 (5) 6, 670, 090	(4) 4 5 68, 794 6, 002, 975 407, 763 (3) 6, 479, 532	39, 354 6, 688, 997 387, 905 7, 116, 256	20, 423 6, 110, 975 316, 610 	(6) 5, 206, 178 6 330, 900 5, 537, 078	(6) 3, 901, 194 6 256, 767
	19	KE '	19	156	19	57
	19		<u> </u>		1	
	Pounds	Value	Pounds	Value	Pounds	Value
Consumption: Domestic Canadian Indian Madagascan Mexican	(6) 8, 204, 210 6 793, 464	(6) \$3, 844, 745 6 543, 671	7, 995, 956 665, 627	\$3, 945, 461 489, 916	(6) 7, 530, 646 6 506, 188	(6) \$3, 616, 929 6 400, 841
Total	8, 997, 674	4, 388, 416	8, 661, 583	4, 435, 377	8, 036, 834	4, 017, 770
Stocks (Dec. 31): Domestic Canadian Indian Madagascan Mexican	(6) 6, 191, 472 6 400, 710	(°) 3, 622, 764 6 302, 405	(6) 5, 076, 672 6 374, 024	(6) 2, 814, 261 6 303, 918	(6) 4, 942, 549 6 324, 851	(6) 2, 594, 444 6 266, 548
	1	l				

TABLE 11.—Consumption of mica splittings in the United States, 1957, by States

State	Number of consumers	Quantity (pounds)
Indiana, Michigan, and Ohio Massachusetts New Hampshire and New York North Carolina, Pennsylvania, and Virginia Total	12 12	1, 896, 439 1, 091, 183 3, 221, 903 1, 827, 309 8, 036, 834

Reconstituted Mica.—This sheet material, which is formed by paper-making procedures from specially delaminated natural mica scrap, can substitute for built-up mica in many applications. Two companies continued to produce reconstituted mica commercially in 1957: General Electric Co. at Coshocton, Ohio, and Samica Corp. (sub-

Average for 1948 only.
 Mexican included with domestic in 1948, and with domestic and Canadian in 1950-51.
 Domestic included with Canadian, 1949-51.
 Domestic included with Canadian, 1948-50.

Mexican included with domestic and Canadian, 1949-50.
 Canadian included with Madagascan.

TABLE 12.—Built-up mica 1 sold or used in the United States, 1955-57, by kinds of product

Product	19)55	19	056	19	57
	Pounds	Value	Pounds	Value	Pounds	Value
Molding plate	1, 664, 239 2, 151, 471 639, 127 564, 007 1, 595, 129 310, 433	\$3, 337, 871 4, 278, 900 1, 730, 629 1, 689, 908 6, 759, 207 1, 088, 274	1, 776, 361 1, 933, 896 718, 537 622, 172 2, 021, 815 228, 826	\$3, 909, 668 4, 237, 062 2, 018, 061 1, 869, 837 8, 373, 565 1, 300, 131	1, 470, 474 1, 771, 580 640, 327 588, 095 1, 716, 515 228, 021	\$3, 519, 655 3, 673, 241 1, 863, 233 1, 850, 723 8, 089, 146 1, 002, 887
Total	6, 924, 406	18, 884, 789	7, 301, 607	21, 708, 324	6, 415, 012	19, 998, 885

¹ Consists of a composite of alternate layers of a binder and irregularly arranged and partly overlapped splittings.
² Includes a small quantity of built-up mica for "Other combination materials."

Total output, appreciably greater than in 1956, was the largest since

sidiary of Minnesota Mining & Manufacturing Co.) at Rutland, Vt.

production began in 1952.

Other Substitutes for Sheet Mica.—Finely divided natural mica can be bonded with water-soluble aluminum phosphate to form a heat-resistant electrical insulation. Farnam Manufacturing Co., Inc., Asheville, N. C., produced this material commercially in the form of rigid sheets and various shapes.

Ground Mica.—Increased sales of ground mica to many of the principal consumers resulted in a 6-percent rise in total quantity of ground mica sold. Roofing materials and well-drilling compounds took a larger portion of the total than in 1956, but joint cement used a smaller percentage. Roofing materials and paint continued to be the leading consumers of ground mica.

TABLE 13.—Ground mica sold by producers in the United States, 1956-57, by uses

	-	1956			1957	
Use	Short tons	Percent of total	Value	Short tons	Percent of total	Value
Roofing. Wallpaper. Rubber Paint. Plastics. Welding rods. Joint cement. Miscellaneous ¹	25, 487 728 7, 021 20, 756 1, 968 2, 944 17, 681 14, 685	28 1 8 23 2 3 19 16	\$955, 628 107, 428 669, 974 1, 910, 084 167, 400 203, 972 1, 254, 776 958, 796	29, 629 774 8, 579 22, 619 2, 203 2, 822 13, 435 16, 271	31 1 9 23 2 3 14 17	\$1,009,742 112,608 779,687 1,856,026 193,121 196,899 1,051,399 873,926
Total	91, 270	100	6, 228, 058	96, 332	100	6, 073, 408

¹ Includes mica used for molded electric insulation, house insulation, Christmas-tree snow, annealing, well drilling, and other purposes.

PRICES AND SPECIFICATIONS

Prices offered by mica fabricators for domestic sheet mica (roughly trimmed) were unchanged from 1956.

The Government continued to purchase domestically produced full-trimmed and half-trimmed muscovite mica at prices established

Government prices for hand-cobbed mica have not in May 1956. changed since 1954, although purchasing procedures have varied.

North Carolina scrap mica was quoted throughout the year at \$25

to \$30 per short ton, depending on quality.

Prices of dry- and wet-ground mica were steady throughout the year, the same since March 1956.

TABLE 14.—Prices for various grades of clear and sheet mica in North Carolina district, December 1957 1

		Marketsl

Grade (size)	Price per pound	Grade (size)	Price per pound
Punch 1½ x 2-inch 2- x 2-inch 2- x 3-inch 3- x 3-inch	\$0.07 to \$0.12 .70 to 1.10 1.10 to 1.60 1.60 to 2.00 1.80 to 2.30		\$2.00 to \$2.60 2.60 to 3.00 2.75 to 4.00 4.00 to 8.00

 $^{^{1}}$ Stained or electric—sold at approximately 10 to 20 percent lower than clear sheet.

TABLE 15.—Prices for domestically produced muscovite mica purchased by the Government, 1957, by grade and quality

		Pri	ce per pour	ıd	
	Fu	ıll-trimme	1	Half-tr	immed
	Good Stained or better	Stained	Heavy Stained	Stained	Heavy Stained
Block and film mica: Ruby: No. 3 and larger No. 4 and No. 5. No. 5½ and No. 6 Nonruby: No. 3 and larger No. 4 and No. 5. No. 5½ and No. 6	\$70.00 40.00 17.70 70.00 40.00 17.70	\$31. 90 18. 25 7. 55 25. 55 14. 60 6. 55	\$14. 80 6. 85 4. 00 11. 85 5. 45 4. 00	\$12.00 5.00 3.00 9.60 4.00 2.40	\$8. 00 4. 00 2. 00 6. 40 3. 20 1. 60
Hand-cobbed mica:				P	er short ton

The tentative specifications for visual qualities of muscovite mica again were revised and accepted by the American Society for Testing Materials (ASTM).³ Standards of muscovite block mica for each of the visual qualities V-2 through V-7 were selected, framed, and accepted by the ASTM for deposit at headquarters.

³ American Society for Testing Materials, Tentative Specifications for Natural Muscovite Mica Based on Visual Quality: D 351-57T, Supplement to Book of Standards, Including Tentative, pt. 6, 1957, pp. 153-161.

853

TABLE 16.—Price of dry- and wet-ground mica in the United States, 1957 1 [Oil, Paint and Drug Reporter]

	Cents per pound		Cents per pound
Dry-ground: Paint, 100-mesh Plastic, 100-mesh Roofing, 20- to 80-mesh Wet-ground: Biotite Biotite, less than carlots 3 Paint or lacquer	4 4 3 6½ 7¼ 8¼	Wet-ground: 2—Con. Paint or lacquer, less than carlots 3. Rubber. Rubber, less than carlots 3. Wallpaper. Wallpaper, less than carlots 4. White, extra fine. White, extra fine, less than carlots 3.	9 8 834 834 9 814 9

 In bags at works, carlots, unless otherwise noted.
 Freight allowed east of the Mississippi River, ½ cent higher west of the Mississippi River, 1 cent higher west of the Rockies

³ Exwarehouse or freight allowed east of the Mississippi River.

FOREIGN TRADE 4

Imports.—Imports of mica were 13 percent lower in tonnage and 3 percent lower in value compared with 1956. The large drop in imports of scrap (28 percent) and the moderate decrease in imports of uncut sheet and punch (6 percent) were not counteracted by the increase in uncut films and splittings (7 percent).

Imports of muscovite block and film were 18 percent lower than in 1956, according to compilations of general imports by the Tariff Brazil and India furnished 51 percent and 46 percent Commission. respectively, of the total block and film imports. Of the Stained and better qualities of these imports, 57 percent came from India and 40 percent from Brazil.

Exports.—Total exports of mica and mica products were 9 percent greater than in 1956. Ground-mica exports were 4 percent greater than in 1956 and again constituted most of the total. Exports of other manufactured mica and of unmanufactured mica increased 58 percent and 67 percent, respectively.

TABLE 17.-Mica imported into and exported from the United States, 1948-52 (average) and 1953-57 [Bureau of the Census]

			Imj	ports for	consu	mption			E	ports
Year		sheet and inch	So	rap	Mar	ufactured		Total	All	classes
	Pounds	Value	Short	Value	Short tons	Value	Short	Value	Short tons	Value
1948-52 (average)	2, 599, 007 1, 829, 457 1, 747, 106 1, 958, 907	\$3, 011, 859 4, 279, 273 13, 197, 918 3, 333, 721 13, 747, 682 13, 358, 889	3, 927 4, 647 9, 461 7, 218	72, 100 163, 341 121, 343	5, 763 3, 363 6, 156 5, 411	10, 910, 292 15, 448, 706 17, 814, 400 17, 925, 802	10, 990 8, 924 16, 490 13, 608	\$19, 149, 852 15, 261, 665 18, 709, 965 111, 269, 464 111, 752, 381 111, 447, 403	2, 402 3, 328 3, 314 4, 896	\$853, 981 1, 109, 865 1, 514, 738 1, 707, 629 1, 716, 731 1, 550, 394

¹ Owing to changes in tabulating procedures by the Bureau of the Census, data known to be not comparable with years before 1954.

⁴ Figures on imports and exports compiled by Mae B. Price and Elsie D. Jackson, Division of Foreign Activities, Bureau of Mines, from records of the U. S. Department of Commerce, Bureau of the Census.

TABLE 18.—Mica imported for consumption in the United States, 1948-52 (average), 1953-56 1 (totals), and 1957, by kinds and by countries of origin

[Bureau of the Census]

					Unmanufactured	actured	4.	-		
Country	Waste and	1 scrap, valued at no cents per pound	Waste and scrap, valued at not more than 5 cents per pound	re than 5	Untrimmed phlogopite mica from which no rectangular piece ex-	atrimmed phlogopite mica from which no rectangular piece ex-		Other	er	
Anno	Phlog	Phlogopite	Other	ıe r	ceeding 1 in size ma	ceeding 1 by 2 inches in size may be cut	Valued not above 15 cents per pound n. e. s	t above 15 und n. e. s.	Valued above 15 cents per pound	bove 15 pound
	Pounds	Value	Pounds	Value	Pounds	Value	Pounds	Value	Pounds	Value
1948-52 (average). 1953. 1954. 1956.	1, 557, 132 1, 205, 633 549, 476 270, 200 365, 794	\$11, 761 13, 793 7, 521 2, 822 3, 050	8, 723, 139 6, 647, 233 8, 744, 446 18, 651, 490 14, 070, 144	\$65, 864 58, 307 1 55, 820 118, 521 75, 847	175, 572 251, 811 40, 050	\$30, 435 46, 727 9, 448	423, 067 128, 401 132, 530 139, 843 209, 274	\$46, 463 11, 404 11, 194 11, 034 16, 858	2, 336, 450 2, 218, 795 1, 656, 877 1, 607, 263 1, 749, 633	\$2, 934, 961 4, 221, 142 1 3, 177, 276 3, 322, 687 1 3, 730, 824
r. North America: Canada. Mexico.	1 1 1 1 1 1 1 1 1 1	1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	160	984 4, 192
Total									4, 359	5,176
South America: Argentina. Brazil.							220, 460	16, 424	8, 224 796, 221	9,254 1,671,210
Total							220, 460	16, 424	804, 445	1, 680, 464
Europe: Netherlands. United Kingdom.				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2, 438 112	5, 143 2, 638
Total		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							2, 550	7, 781
Asia: India. Japan.			9, 236, 106	47, 304	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				755, 464 12, 300	1, 523, 614 15, 636
Total			9, 236, 106	47, 304					767, 764	1, 539, 250

A frice:		•							
Anica. Briftsh Boot Africa			778, 690	5,720				25, 794	59, 659
Madagasan						 		6, 115	23, 445
Mozambiana	1				1			9, 932	23, 170
Union of South Africa	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		250 076	700 6		 		18	172
			000, 010	5, 204				400	3,348
Total	1		1, 137, 065	9.584				49 969	100 704
								42, 202	TAP 'BOT
Total unmanufactured			10, 373, 171	56,888		220, 460	16. 424	1.621.380	13 349 465

See footnote at end of table.

TABLE 18.—Mica imported for consumption in the United States, 1948-52 (average), 1953-56 1 (totals), and 1957, by kinds and by countries of origin—Continued

		9						
			Ma	nufactured—fil	Manufactured—films and splittings	ngs		
	No	t cut or stamp	Not cut or stamped to dimensions	su	Cut or sta	Out or stamped to	;	;
Country	Not above 12/10,000 inch thick	/10,000 inch	Over 12/10,000 inch thick	0 inch thick	dimer	ısions	Total films and splittings	d splittings
	Pounds	Value	Pounds	Value	Pounds	Value	Pounds	Value
1948-52 (average) 1953 1954 1955 1955	17, 057, 634 8, 377, 873 4, 807, 338 9, 622, 464 7, 708, 637	\$13, 357, 614 4, 041, 972 11, 657, 784 12, 620, 989 2, 684, 774	1, 127, 539 2, 645, 230 1, 592, 224 2, 520, 390 2, 757, 479	\$1, 938, 857 5, 069, 044 1, 2, 743, 725 3, 821, 161 3, 651, 949	35, 678 69, 349 30, 277 51, 558 62, 918	\$456, 355 1, 218, 721 660, 035 964, 543 1 1, 064, 288	18, 220, 851 11, 092, 452 6, 429, 839 12, 194, 412 10, 529, 034	\$15, 752, 826 10, 329, 737 15, 061, 544 17, 406, 693 17, 401, 011
1957: North America: Canada. Mexico			25, 970	41, 643	40 11, 703	1, 068 203, 185	40 37, 673	1, 068 244, 828
Total			25, 970	41,643	11,743	204, 253	37,713	245, 896
South America: Argentina Brazil	1, 482	1,866	4, 860 824, 891	5, 409 853, 586	2, 628	8, 297	4, 860 829, 001	5, 409 863, 749
Total	1, 482	1,866	829, 751	858, 995	2,628	8, 297	833, 861	869, 158
Europe: Austria France Germany, West.	3, 125 21, 667	484 12,758	16, 535	15,387	2, 129 3, 744	42, 398 67, 941	3, 125 21, 716 18, 664 3, 744	484 13, 705 57, 785 67, 941
Netherlands Spain United Kingdom	35, 391	10,804	8,258	9,067	2,831 7,406	37, 128 177, 265	6, 208 2, 831 43, 783	37, 128 37, 128 192, 380
Total	60, 173	24, 046	25, 779	28, 765	16, 169	325, 679	102, 121	378, 490
Asia: India Indonesia	8, 579, 822	3, 470, 221	934, 500	1, 495, 934		198, 539	9, 540, 174	5, 164, 694 853
Japan	21,600	6, 108		5, 335	15, 260	314, 031	40, 251	325, 474
Total	8, 601, 422	3, 476, 329	938, 391	1, 502, 122	41, 112	512, 570	9, 580, 925	5, 491, 021
Africa: Angola			2, 205	1,961		8 8 8 8 1 1 2 3	2,205	1,961

2, 418 7, 420 493, 490 1, 187	507, 317	17,491,882		ulverized	Value	\$32, 494 19, 156 12, 000 4, 140	2.760		2,760		2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	F E E E E E E E E E E E E E E E E E E E			1	2, 760
1, 070 298 3, 538 747, 559	755, 760	11, 310, 380		Ground or pulverized	Pounds	866, 440 320, 000 200, 000 69, 000	46.000	2006	46,000							46,000
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1, 050, 799	Manufactured	All mica manufactures of which mica is the com- ponent material of chief value	Value	\$106, 300 104, 608 181, 719 168, 362 1 241, 248		66, 129	66, 129 78, 208	9,655 14,347 1,818	747	158,012	191, 137	22, 854 48, 624	71, 478	1 406, 952
	1	71, 652	Manuf	All mica ma which mic ponent ma value	Pounds	29, 797 26, 542 43, 401 48, 020 54, 703		30, 260	30, 260 25, 108	11, 831 2, 967 57	75	17,418	32, 871	14, 131 1, 554	15,685	103, 924
2,418 7,420 126,144	137, 943	1 2, 569, 468		Mica plates and built-up mica	Value	\$52, 132 374, 112 1 141, 523 1 192, 449 1 200, 130		12, 251	12, 251	1,684	650	62, 782	65, 116	8, 566	8, 566	1 85, 933
1,070 3,638 136,637	143, 550	1, 963, 441		Mica plates m	Pounds	14, 170 42, 635 23, 593 32, 005 110, 963		6, 165	6, 165	204	90	25, 133	25, 387	6, 314	6,314	37,866
841 367, 346 1, 187	369, 374	13,871,615		sandsetured—cut or stamped to dimensions, shape, or form	Value	\$116,616 82,679 51,920 1 46,896 1 79,273		1,254	1, 254 7, 839			251	251	34, 755	34, 755	1 44, 099
298 610, 922 990	612, 210	9, 275, 287		Manufactured—cut or stamped to dimensions, shape, or form	Pounds	97, 246 45, 186 27, 776 37, 492 59, 518		089	680 2,612			112	112	28, 500	28, 500	31, 904
British East Africa. Egypt. French West Africa. Madagascan. Union of South Africa.	Total	Total films and splittings		Country		1948-52 (average). 1953. 1956. 1956. 1956.	1957; North America: Ochanda	Mexico.	Total. South America: Brazil	Europe: Belgum-Luxembourg Germany, West Italy	Netherlands Spain.	United Kingdom	Total	Asia: India Japan	TotalT	Total manufactured: Other

1 Owing to changes in tabulating procedures by the Bureau of the Census, data known to be not comparable with years before 1954.

TABLE 19.—Muscovite block and film mica, United States general imports, 1956–57, by qualities and principal sources, in pounds

		-	Count	ries	_		To	tal
Quality	In	dia	Br	azil	Ot	her		
	1956	1957	1956	1957	1956	1957	1956 2	1957
Block: Good Stained and								
betterStained Heavy Stained Lower	68, 541 1, 646, 599 220, 264 96, 872	40, 562 1, 409, 152 67, 037 31, 428	167, 748 913, 192 641, 882 316, 266	194, 306 909, 928 556, 036 206, 250	33, 352 101, 229 3, 462	37, 456 46, 553 6, 464 1, 219	269, 641 2, 661, 020 865, 608 413, 138	272, 324 2, 365, 633 629, 537 238, 897
Total	2, 032, 276	1, 548, 179	2, 039, 088	1.866, 520	138, 043	91, 692	4, 209, 407	3, 506, 391
Film: First quality Second quality Other quality	91, 276 141, 126 2, 962	40, 090 97, 386 11, 890			1,390	2, 679 935 85	91, 276 142, 516 2, 962	42, 769 98, 321 11, 975
Total	235, 364	149, 366			1,390	3, 699	236, 754	153, 065
Block and film: Good Stained and better *	300, 943 1, 649, 561 220, 264 96, 872	178, 038 1, 421, 042 67, 037 31, 428	167, 748 913, 192 641, 882 316, 266	194, 306 909, 928 556, 036 206, 250	34, 742 101, 229 3, 462	41, 070 46, 638 6, 464 1, 219	503, 433 2, 663, 982 865, 608 413, 138	413, 414 2, 377, 608 629, 537 238, 897
Total	2, 267, 640	1, 697, 545	2, 039, 088	1, 866, 520	139, 433	95, 391	4, 446, 161	3, 659, 456

Compiled by U. S. Tariff Commission from official documents of the U. S. Bureau of Customs.
 Does not include imports of mixed grades and qualities from Belgium, Ethiopia, Federation of Rhodesia, Japan, Mozambique, and United Kingdom—total 10,651 pounds.
 Includes first and second-quality film.
 Includes other-quality film.

TABLE 20.-Mica block and film imported into the United States, 1956-57, by variety and principal sources, in pounds

		ff Commis- data		the Census
	1956	1957	1956	1957
Muscovite block: India	2, 032, 276	1, 548, 179	679, 169	755, 464
Other	2, 039, 088 138, 043	1, 866, 520 91, 692	2, 041, 167 120, 406	1, 621, 112 67, 333
Total	4, 209, 407	3, 506, 391	1 2, 840, 742	1 2, 443, 909
Muscovite film: India Brazil	235, 364	149, 366	² 1, 588, 473	² 934, 500
Other	1, 390	3, 699		
Total	236, 754	153, 065	1, 588, 473	934, 500

¹ Includes imports of unmanufactured mica valued above 15 cents per pound, minus phlogopite valued above 15 cents per pound, plus imports from Brazil of manufactured films and splittings, not cut or stamped to dimension, over 12/10,000 inch thick.

2 Manufactured films and splittings, not cut or stamped to dimensions, over 12/10,000 inch thick, from Trads (final data of the state

India (includes split block).

TABLE 21.—Mica and manufactures of mica exported from the United States, 1948-52 (average), 1953-56 (totals), and 1957, by countries of destination

[Bureau of the Census]

	Unmanı	ıfactured		Manufa	ctured	
Country			Ground or	pulverized	Ot	her
	Pounds	Value	Pounds	Value	Pounds	Value
1948-52 (average)	356, 010	\$68, 932	2, 813, 578	\$161,988	200, 591	\$623, 061
1953	45, 046	27, 978 79, 310	2, 813, 578 4, 560, 883	240.356	197.370	841, 531
1954	318, 518	79, 310	6.058.118	342, 860 332, 293	280, 415 372, 548	1, 092, 568
1955	447, 491	35, 241	0, 808, 347	332, 293	372, 548	1, 340, 095
1956	546, 673	91, 991	8, 901, 497	485, 879	343, 159	1, 138, 861
1957: North America:						
Canada	13, 300	4, 210	3, 230, 371	159 599	427, 724	586, 253
Cuba	15, 500	4, 210	282 000	152, 523 16, 130	1, 144	2, 974
Cuba Dominican Republic			282, 000 21, 000	1, 445	1,144	2,919
Jamaica	1,900	1, 500	21,000	1, 110	10	2 330
Mexico	39, 707	12, 970	232, 500	12,057	3, 005	2, 330 15, 100
Netherlands Antilles			232, 500 240, 000	9,046		
Nicaragua			86, 900	9, 046 8, 641		
Trinidad and Tobago					10	1,250
	 		 			
Total	54, 907	18, 680	4, 092, 771	199, 842	431, 893	607, 907
a 11 4 1						
South America:				1		
Argentina					4, 674	8,815
Bolivia Brazil			7, 500	472		
Chile			44 000	1,960	6, 741 3, 972	29, 628
Colombia			44, 000 90, 270 10, 000	6,061	3, 698	16, 145 6, 672
Ecuador			10,000	800	0,000	0,072
Peru	2,000	2,000	45, 500	2,027		
Uruguay	2,000	2,000	10,000	2,02	865	6 101
Venezuela	350,000	6, 347	2, 136, 069	102, 110	4, 561	6, 101 8, 703
, , , , , , , , , , , , , , , , , , , ,						
Total	352,000	8, 347	2, 333, 339	113, 430	24, 511	76, 064
Europe:						
Belgium-Luxembourg			569, 600	42, 608	30	1, 174
France Germany, West Iceland	2,024	640	760, 760	61,069	36, 615	123, 717 690
Germany, West	10,000	675	446,000	35, 433 2, 025	65	090
Italy	85,000	2, 338	30, 000 467, 000	25, 607	10, 290	34, 168
Netherlands	00,000	2, 556	407,000	20,001	9, 503	18 503
Spain			83, 600	5, 993	2 488	18, 593 14, 300
Sweden				0,000	2, 488 12, 753	49, 188
Sweden United Kingdom			42,000	3, 677	5, 084	32, 497
Total	97, 024	3, 653	2, 398, 960	176, 412	76, 828	274, 327
Asia:	l					
India	741	4, 223	107, 500	5, 146	1,049	4, 921
Israel			10,000	800		
Japan	405, 894	10, 028	120,000	6, 110	463	1, 590
Kūwait Philippines			10, 000 106, 600	635	300	693
Taiwan			100,000	10, 656	2, 993	4, 252
Thailand	- -				1, 549	2, 937
Turkey			7, 500	476	1,010	2, 50,
1 dimoy						
Total	406, 635	14, 251	361, 600	23, 823	6, 354	14, 393
Africa:	1	l				
Belgian Congo	440	1, 460			391	2,006
Egypt			1, 500	1, 725 5, 325	10	540
Union of South Africa			68,000	5, 325	211	574
(Doto)	440	1 400	60 500	7 050	910	9 100
Total Oceania: Australia	440	1,460	69, 500	7, 050	612 1, 234	3, 120 7, 635
Occama: Austrana					1, 234	7, 035
Grand total	911,006	46, 391	9, 256, 170	520, 557	541, 432	983, 446
21212 VVM	1 022,000	10,001	3, 200, 210	320, 001	J.1, 102	000, 110

WORLD REVIEW

The world production of mica was estimated to be the highest on record in 1957, totaling 13 percent greater than in 1956 and 6 percent greater than in 1955, the former record year. A 7-percent increase in production of scrap mica in the United States and a 42-percent increase in total exports of sheet and scrap mica from India were responsible for the gain.

TABLE 22.—World production of mica, by countries, 1948-52 (average) and 1953-57, in thousand pounds $^{\rm 2}$

[Compiled by Helen L. Hunt and Berenice B. Mitchell]

Country 1	1948-52 (aver- age)	1953	1954	1955	1956	1957
North America: Canada (sales): Block Splittings Ground Scrap United States (sold or used by pro-	322 9 2, 174 1, 947	280 9 666 1,312	71 2 937 699	57 944 639	79 2 1,493 269	1, 426
ducers): Sheet Scrap	531 120, 592	849 146, 518	669 162, 146	642 190, 864	888 172, 618	690 184, 956
Total	125, 575	149, 634	164, 524	193, 146	175, 349	187, 072
South America; Argentina: Sheet	} 527 4,010 2	540 4, 347 2	529 3, 962	{ 99 139 3,051	322 2 2, 926	* 310 * 3,100
Total	4, 539	4, 889	4, 491	3, 289	3, 250	8 3, 410
Europe: Austria Italy Norway, including scrap Spain Sweden:	450 11 1, 127 24	2, 185 29	3, 968 260	3, 086 443	2, 646 227	2, 205 26
Block Ground	33 262	7 379	331	368	392	⁸ 400
Total 18	46, 600	59, 000	60,000	60,000	60,000	60,000
Asia: Ceylon India (exports): Block Splittings Sorap	2, 200 22, 582 14, 568	13 3, 840 12, 211 11, 444	3, 609 10, 855 23, 031	(4) 4, 802 16, 479 25, 699	6, 065 14, 663 27, 282	67, 983
Taiwan: Sheet	7 214	} 53	44		29	11
Total 18	40, 300	32,000	48,600	62, 400	63, 500	90,000
Africa: Angola: Sheet Scrap and splittings Kenya	35 273	42 243	24 362	33 518 2	53 968	46 844
Madagascar (phlogopite): Block	551 1, 351	115 1, 684	101 1,056	62 534	77 1, 109	3 2, 100
Scrap Mozambique, including scrap	203 71	29	18 18 2	} 29	26	66

See footnotes at end of table.

TABLE 22.—World production of mica, by countries, 1 1948-52 (average) and 1953-57, in thousand pounds 2-Continued

Country 1	1948-52 (aver- age)	1953	1954	1955	1956	1957
Africa—Continued						
Rhodesia and Nyasaland, Federation of:	1		1	1	1	
Northern Rhodesia, SheetSouthern Rhodesia:	11	18	. 7	4	7	(4)
Block	276	148	183	141	123	71
Scrap	655	201	100	141	120	(1
South-West Africa, Scrap	77					
Tanganyika (exports):					1	
Block	157	165	174	146	128	150
Ground Scrap	51 11	115	62	613		
Uganda	11 2	110	(4) 02	019	280	
Union of South Africa:	_					
Sheet	- 11	11	4	11	(4)	2
Scrap	3, 624	4, 284	4, 107	7,818	5, 038	4, 226
Total	7, 366	7, 062	6, 111	9, 911	7,809	7, 505
Oceania: Australia 5	1, 296	1,069	1, 316	1,054	1,087	1,371
	1,200	1,000		1,004	1,007	1, 3/1
World total (estimate) 12	226, 000	255, 000	285, 000	330,000	310,000	350,000

Argentina.—Unrestricted sale of mica was authorized in September by an executive decree. Instituto Argentino de Promocion del Intercambio, which for a number of years controlled the purchase and export of mica, continued its liquidation, which began in October 1955.5

Exports of mica, mostly to the United States, totaled 134 short tons, valued at US\$40,000. Corresponding figures for 1956 were 293 short tons and US\$217,000.6

Australia.—Imports of all categories of mica were less in 1956 than in 1955. Exports of block, 51 percent of which went to the United Kingdom, totaled 6,490 pounds compared with 7,784 pounds in 1955.

Canada.—Preliminary estimates of quantity and value of mica production in 1957, by Provinces, were reported as follows: 8

Unit	Quebec	Ontario	British Columbia	Total
Thousand pounds	1, 056	191	180	1, 427
	85. 9	8. 7	1, 2	95. 8

¹ In addition to countries listed, mica is also produced in China, Rumania, and U. S. S. R., but data on production are not available; estimates for these countries are included in the total.

2 This table incorporates a number of revisions of data published in previous Mica chapters. Data do not add to totals shown because of rounding where estimated figures are included in detail.

Estimate. 4 Less than 500 pounds.

⁵ These figures include the following tonnages of damourite produced in South Australia, in thousand pounds: 1948-52 (average): 1,217; 1953: 996; 1954: 1,151; 1955: 977; 1956: 1,058; 1957: 1,294.

Bureau of Mines, Mineral Trade Notes; Vol. 46, No. 1, January 1958, p. 35.
 U. S. Embassy, Buenos Aires, Argentina, State Department Dispatch 345; Sept. 11, 1957, p. 1.
 U. S. Embassy, Buenos Aires, Argentina, State Department Dispatch 1240; Feb. 14, 1958, p. 5.
 Bureau of Mines, Mineral Trade Notes; Vol. 45, No. 6, December 1957, p. 32.
 Dominion Bureau of Statistics, Industry and Merchandising Division, Preliminary Report on Mineral Podquetion, 1957 (Ottawa); P. 7. Production, 1957 (Ottawa): P. 7.

Although the total quantity was 23 percent lower, the value was virtually unchanged from the final figures reported for 1956. Phlogopite still the predominant variety produced—came mostly from Quebec. Mica continued to be recovered from schist in British Columbia.9

TABLE 23.—Salient statistics of the Canadian mica industry, 1955-56 1

	19	55	1956	3
	Pounds	Value	Pounds	Value
P. J. Hinger				
Production (primary sales): TrimmedSplittings	24, 317	\$26,019	22, 355 2, 000	\$26, 641 3, 480
Sold for mechanical splitting	8,000	2,080	16,000	4, 160
Rough, mine-run, or rifted	25, 275	2, 272	40, 826	58, 08
Ground or powdered Scrap	943, 158 639, 958	42, 837 4, 313	1, 493, 410 269, 220	2, 46
Total	1, 640, 708	77, 521	1, 843, 811	95, 660
Imports:	***************************************			
Unmanufactured	198, 900	105, 810	324, 900	200, 779
Manufactured		482, 853		538, 22
Total		588, 663		739, 00
Exports:				
Unmanufactured:				
Rough, untrimmed	2,000	195	24, 500	6, 05
Trimmed	46, 900	41, 318	41,800 119,500	39, 98 3, 23
Scrap	313, 000	4,060	119, 500	3, 23
Total unmanufactured	361, 900	45, 573	185, 800	49, 27
Manufactured: Manufactures		42	i i	1, 91
Ground	900	45	92,000	5, 52
Total manufactured		87		7, 43
Total exports		45, 660		56, 71

¹ Source: Dominion Bureau of Statistics.

India.—In February the Export Promotion Committee was appointed by the Government and held its first meeting. This committee was to undertake a comprehensive study of all Government export promotional measures, including those of the Export Promotion Councils for various commodities, including mica.¹⁰

Occurrences of mica on the southern slopes of the Jabar Range in

the Purulia district, West Bengal, were reported.¹¹

The number of active mica mines in South India dwindled from 144 in 1951 to 40 in 1957; about 6 of the 40 were considered economical.¹²

The Andhra Legislative Assembly passed a bill to control trade in Provisions include a system of licenses to control the possession and sale of mica and a system of permits to control its removal and transport.13

The mica belt of Nellore, which spreads over 7,000 acres, produces approximately 2,500 pounds of mica daily. Production probably

<sup>Dominion Burcau of Statistics, Industry and Merchandising Division, The Miscellaneous Non-Metal-Mining Industry, 1956 (Ottawa): Pp. P-26—P-27.
U. S. Embassy, New Delhi, India, State Department Dispatch 1075: Mar. 4, 1957, 2 pp.
Bureau of Mines, Mineral Trade Notes: Vol. 45, No. 5, November 1957, p. 29.
Mining Journal (London), Fall in Mica Exports: Vol. 259, No. 6392, Feb. 21, 1958, p. 218.
U. S. Consulate, Madras, India, State Department Dispatch 830: May 9, 1957, p. 1.</sup>

863MICA

could be increased 2,000 pounds daily if temporarily suspended mines were worked.14

Pakistan.—The discovery of muscovite mica of excellent quality was reported in Chitral at Mogh, Sirnik, and 8 miles north of Drosh. 15

Tanganyika.—Exports of sheet mica totaled 150,000 pounds valued at \$195,000, compared with 128,000 pounds valued at \$164,000 in African cooperative societies furnished about half of this mica: 4 European companies supplied the remainder. 16

Growth of the membership of the Uluguru Mica Mining Cooperative Society, Ltd., to over 1,000 members resulted in a division into 2 separate societies with the lease area divided between them. Both

had successful years.¹⁷

Union of South Africa.—Production of 1,318 pounds of sheet mica was reported; local sales of 1,206 pounds were valued at US\$3,346. Scrap mica production was 2,113 short tons, local sales were 840 short tons valued at US\$13,730, and exports were 1,923 short tons valued at US\$50,700.18

TECHNOLOGY

Natural Mica.—An article described the occurrence, properties, and uses of mica.¹⁹ The location, geology, economic aspects, and descriptions of some individual prospects were reported for mica deposits in Alaska 20 and Central America.21 The effect of geological environment on polymorphism of micas was studied by X-ray dif-

In a brief review of the mineral deposits of Bihar, India, future trends in their use were discussed, and the geographical distribution of mica was indicated.²³ The geology, mining, processing, marketing, and economics of muscovite deposits in Southern Rhodesia were

Data were given on the rigid requirements for mica films in capacitors used with transatlantic telephone cables.²⁵ An electronic machine to sort mica according to thickness ²⁶ and a method for detecting oil on punched mica parts ²⁷ aided fabricators of mica for electronic uses.

The use of mica as a window in equipment for high-vacuum work above 100° C. was reported.²⁸

¹⁴ Central Glass & Ceramic Research Institute Bulletin (Calcutta), Mica Mining in Nellore: Vol. 3, No. 4, October-December 1956, p. 198.

15 Bureau of Mines, Mineral Trade Notes: Vol. 44, No. 2, February 1957, p. 28.

16 U. S. Consulate, Dar es Salaam, British East Africa, State Department Dispatch 157: Feb. 19, 1958, p. 3.

17 South African Mining and Engineering Journal (Johannesburg), Mining in Tanganyika—Mica: Vol. 69, pt. I, No. 3396, Mar. 14, 1958, p. 433.

18 U. S. Consulate, Johannesburg, South Africa, State Department Dispatch 223: Mar. 10, 1958, p. 3.

19 Tilden, P. M., That Remarkable Mineral Called Mica: Nature Mag., vol. 50, No. 9, November 1957, pp. 487-489, 498.

20 Sainsbury, C. L., Some Pegmatite Deposits in Southeastern Alaska: Geol. Survey Bull. 1024-G, 1957, pp. 141-161.

pp. 141-161.

21 Roberts, R. J., and Irving, E. M., Mineral Deposits of Central America: Geol. Survey Bull. 1034, 1957,

⁷a Roberts, R. J., and Irving, E. M., Mineral Deposits of Central America: Geol. Survey Bull. 1034, 1957, pp. 142-160.
22 Hurst, V. J., Polymorphism of Micas in the Mineral Bluff and Epworth Quadrangles, Ga.: Bull. Geol. Soc. America, vol. 68, No. 11, November 1957, pp. 1581-1583.
23 Jacob, K., and Mahadevan, T. M., Mineral Wealth of Bihar: Indian Min. Jour. (Calcutta), vol. 5, No. 10, October 1957, pp. 47-57.
24 Benusan, A. M., Notes on Muscovite Mining in Southern Rhodesia: Trans. Inst. Min. Met. (London), vol. 66, pt. 4, 1956-57, pp. 155-164; vol. 66, pt. 7, 1956-57, pp. 341-348; vol. 66, pt. 12, 1956-57, pp. 621-622.
25 Lamb, H. A., and Heffner, W. W., Repeater Production for the North Attantic Link: Bell System Tech. Jour., vol. 36, No. 1, January 1957, pp. 103-138.
26 Electronics, Electronic Gage Sorts Mica Automatically: Vol. 30, No. 7, July 1, 1957, pp. 228-229.
27 Electronics, Detecting Oil on Punched Mica Parts: Vol. 30, No. 1, January 1957, pp. 234, 236.
28 Sterzer, F., Simple High-Temperature Vacuum-Tight Mica Window: Rev. Sci. Instruments, vol. 28. No. 3, March 1957, pp. 208-209.

The mechanism of the action of dilute aqueous acid, alkaline, and neutral solutions on muscovite mica was investigated.29 The weathering of muscovite was explained on the basis of crystal structure, 30 an explanation of spiral cleavage in mica was proposed, 31 and chemical and optical data were reported for several micas. 32

Data on equipment and processing were reported for a plant recovering mica from the silt that accumulated behind a TVA dam.³³

An ultrasonic method of delaminating mica to a product comparable with wet-ground mica was reported as superior to the usual wetgrinding processes in economics and technical operation.³⁴ process for wet-grinding mica used more conventional methods of producing a ground and purified material.³⁵ Dry-grinding mica in a fluid-energy mill was described.36

Additional studies of latex paints containing wet-ground mica demonstrated the need for reporting the surface condition of the test panels as an additional factor in evaluating adhesion characteristics.³⁷ Outdoor latex with varying proportions of wet-ground mica in their formulations were found to have moisture-sealing properties under rigorous exposure.38 Wet-ground mica as a component of the pigments of alkyd paints increased the density of the paint film; greatest densities resulted from mixtures of large and small sizes of platy mica.39 Organic dispersing agents and antisettling additives improved the mixing characteristics of wet-ground mica pigment in an alkyd Phenolic varnish paints containing wet-ground mica, with or without surface pretreatment, had better storage properties than paints using other extenders. Incorporating 325-mesh wet-ground mica in the pigments of traffic paints based on vehicles of either phenolic varnish or chlorinated rubber resulted in paints having improved storage properties and good reflectance before and after accelerated weathering.⁴¹ Initial results of tests subjecting the chlorinated rubber paints to the wear of heavy traffic indicated that wet-ground mica increased the resistance of these paints to chipping.42

²⁹ Gaines, G. L., Jr., Ion-Exchange Properties of Muscovite Mica: Jour. Phys. Chem., vol. 61, No. 10, October 1957, pp. 1408-1413.

Gaines, G. L., Jr., and Rutkowski, C. P., Extraction of Aluminum and Silicon From Muscovite Mica by Aqueous Solutions: Jour. Phys. Chem., vol. 61, No. 10, October 1957, pp. 1439-1441.

³⁰ Uchiyama, Nobuo, [Discussion and Aluminum-Substitution Ratio in Tetrahedral Layer and Relation Between Contents of Magnesia and Potassium Oxide of Mica Minerals]: Tohoku Jour. Agric. Res., vol. 7, 1956, pp. 1-7; Chem. Abs., vol. 51, No. 11, June 10, 1957, p. 7963c.

³¹ Kinoshita, Koreo, and Nakayama, Jun, [Spiral Cleavage of Mica]: Jour. Phys. Soc. Japan, vol. 11, 1956, pp. 1055-1058; Chem. Abs., vol. 51, No. 17, Sept. 10, 1957, p. 12762c.

³² Emeliani, Francesco, [Crystal Chemical Studies of Micas. I. Chemical and Optical Study of Some Muscovite of the Pegmatitic Orthognesis of Val Venosta]: Acta Geologica Alpina, No. 6, 1956, pp. 79-104; Chem. Abs., vol. 51, No. 13, July 10, 1957, p. 9426g.

³³ Herod, B. C., Mica Reclaimed, Processed in New Tennessee Plant of International Minerals: Pit and Quarry, vol. 50, No. 10, October 1957, pp. 76-78.

³⁴ Kunz, E. C., and Ensminger, Dale, Method and Apparatus for Treating Mica: U. S. Patent 2,798,673, July 9, 1957.

July 9, 1957.

Sa Ram, Atma, and Roy, S. B. (assigned to Council of Scientific and Industrial Research), Wet-Grinding of Mica: Indian Patent 55,454, Aug. 8, 1957.

Rock Products, Mica Processing; The Story of One Plant's Operation: Vol. 60, No. 9, September 1957,

³⁹ Rock Products, Mica Processing; The Story of One Plant's Operation: Vol. 60, No. 9, September 1957, pp. 112-114.
Engineering and Mining Journal, Santa Fe Firm Mines and Processes Ground Mica: Vol. 158, No. 7, July 1957, p. 160.
37 Wet-Ground Mica Association, Inc., Supplement 1 to Studies on the Influence of Wet-Ground Mica on the Adhesion Characteristics of Later Paint: Tech. Bull. 28A, January 1957, 2 pp.
38 Wet-Ground Mica Association, Inc., Some Studies on the Moisture-Sealing Characteristics of Mica in Polyvinyl Acetate Later Paints for Outdoor House Use: Tech. Bull. 31, June 1957, 3 pp.
39 Wet-Ground Mica Association, Inc., A Study of the Effect of Platy Wet-Ground Mica on the Density of the Paint Film: Tech. Bull. 32, September 1957, 3 pp.
40 Wet-Ground Mica Association, Inc., Studies on the Sedimentation Characteristics During Storage of Pigmented Organic Coating Materials: Tech. Bull. 29, January 1957, 4 pp.
41 Wet-Ground Mica Association, Inc., Studies on the Use of Wet-Ground Mica in Traffic Paints: Tech. Bull. 30, May 1957, 4 pp.
42 Wet-Ground Mica Association, Inc., Further Studies on the Use of Wet-Ground Mica in Traffic Paints: Tech. Bull. 33, November 1957, 4 pp.

Tech. Bull. 33, November 1957, 4 pp.

865 MICA

Ground mica was an essential ingredient for imparting moisture and thermal-shock resistance to an encapsulating composition for electrical

Synthetic Mica.—Research on synthetic mica by the Bureau of Mines at the Electrotechnical Experiment Station, Norris, Tenn., was summarized for the 8-year period ended in May 1955. This work included developing the internal electric-resistance melting process, studies of crystallization, and discovery of machinable synthetic-mica ceramic materials. 44 Studies continued during 1957 on compositions, properties, crystal growth, and production of synthetic mica.

Research under the industry-Government program (see section on Defense Materials Service) to develop substitutes for strategic natural mica was in its preliminary stages. Developing a satisfactory method of delaminating flake synthetic mica for reconstitution into a sheet

material was emphasized at first.

Substitutions of gallium for aluminum and of nickel for magnesium in the phlogopite lattice were studied for effects on structure and decomposition temperature.45 A mica with germanium in place of silicon was synthesized by solid-state reaction and its structure determined.48 The influence of cooling rate on the crystal size of synthetic mica was studied on melts prepared in a graphite crucible.47

A furnace with a melting capacity of 30 kilograms and precise temperature control at high temperatures was designed and constructed for preparing synthetic mica.48 Autoclaving an agglomerate mass of synthetic mica crystals with water or alkaline solutions made it easier to separate the individual crystals.49 A method of hot rolling was proposed for improving the mechanical and electrical properties of sheets reconstituted from synthetic mica flake.50

Commercial production of synthetic mica flake for use in glassbonded mica ceramic materials was continued by two companies. Development of the process was reviewed briefly,51 and recent opera-

tions of one of the producers were described.52

Built-Up and Reconstituted Products From Natural and Synthetic Mica.—Reconstituted mica, with its uniform thickness and smooth surface, made possible an automatic process for manufacturing commutators used in automobile generators and starters.53 A heatresistant, nonhygroscopic insulation suitable for high-voltage applications was formed by impregnating reconstituted mica paper with a

⁴⁸ Bolson, H. B. (assigned to General Electric Co.), Encapsulating and Coating Composition and Products Treated Therewith: U. S. Patent 2,809,952, Oct. 15, 1957.

48 Hatch, R. A., Humphrey, R. A., Eitel, W., and Comeforo, J. E., Synthetic Mica Investigations IX: Review of Progress From 1947 to 1955: Bureau of Mines Rept. of Investigations 5337, 1957, 79 pp.

48 Klingsberg, Cyrus, and Roy, Rustum, Synthesis, Stability, and Polytypism of Nickel and Gallium Phlogopite: Am. Mineral., vol. 42, No. 9-10, September-October 1957, pp. 629-634.

49 Mullers, S., and Brasseur, H., [Synthesis of Germanium-Bearing Mica]:Bull. soc. franc. mineral. et cust., vol. 79, 1956, pp. 582-590; Chem. Abs., vol. 51, No. 11, June 10, 1957, p. 7922h.

47 Noda, Tokiti, and others, [Medium-Scale Experiment for the Preparation of Synthetic Mica Crystals]: Kogyo Kagaku Zasshi, vol. 59, 1956, pp. 352-355; Chem. Abs., vol. 51, No. 14, July 25, 1957, p. 10319b.

48 Noda, Tokiti, Ishida, Yoshihiro, Tamura, Kojiro, and Kanatsu, Shinsaku, [Carbon-Particle Electric Resistance Furnace Designed for the Preparation of Synthetic Mica Crystals]: Jour. Ceram. Assoc. Japan, vol. 64, No. 721, 1956, pp. 45-55; Ceram. Abs., vol. 40, No. 9, Sept. 1, 1957, p. 207.

49 Noda, Tokiti, Hydrothermal Treatment of an Agglomerate of Synthetic Mica Crystals: U. S. Patent 2,778,713, Jan. 22, 1957.

49 Barr, F. A. (assigned to Sylvania Electric Products, Inc.), Process for Preparing Synthetic Mica Products: U. S. Patent 2,788,837, Apr. 16, 1957.

30 Chemical Trade Journal & Chemical Engineering (London), Synthetic Mica: Vol. 141, No. 3664, Aug. 23, 1957, p. 436.

^{23, 1957,} p. 436. Engineering News, Synthetic Mica Moves Ahead: Vol. 35, No. 31, Aug. 5, 1957, pp. 110, 134. Chemical Week, Man-made Mica Mountain: Vol. 81, No. 5, Aug. 3, 1957, p. 50.

S Journal of the Franklin Institute, Current Topics, Mica Mat Insulation: Vol. 264, No. 5, November 1957, pp. 430-431.

hydrocarbon oil and polymerizing the absorbed oil by a two-stage heating process.54 A method was developed for forming a heatresistant, dielectric sheet of mica flakes bonded with a cellular skeleton of silica.55 The strength and water resistance of reconstituted mica paper were increased by depositing an adhesive form of silica either during or after formation of the sheet.⁵⁶ Synthetic mica was used in a new ceramic material having excellent electrical properties, dimensional stability, heat resistance, and a thermal expansion matching that of steel.⁵⁷

<sup>Heyman, M. D., Integrated Mica Oil-Impregnated Sheet: U. S. Patent, 2,781,819, Feb. 19, 1957.
Heyman, M. D., Mica Base Insulating Sheet and Method for Producing the Same: U. S. Patent 2,810,425, Oct. 22, 1957.
Budnik, F. (assigned to Mica Insulator Co.), Sized Mica Paper and Process of Preparing the Same: U. S. Patent 2,791,262, May 7, 1957.
Ceramic News, On the Ceramic Scene, New Ceramic Materials: Vol. 6, No. 9, September 1957, p. 8.</sup>

Molybdenum

By Wilmer McInnis 1 and Mary J. Burke 2

OMESTIC production of molybdenum concentrate during 1957 was 6 percent higher than during 1956, despite a sharp decrease in output from several byproduct sources. Shipments of concentrate increased slightly, but consumption decreased compared with 1956, largely because of a strike that kept a conversion plant at Langeloth, Pa., closed during the last 6 months of the year.

Molybdenum was used chiefly to alloy iron and steel, but it also had a large variety of smaller uses, including several relatively new

applications.

Industry stocks of molybdenum concentrate at the close of 1957

were the highest since 1953.

Exports of molybdenum concentrate, including roasted concentrate, increased 42 percent compared with 1956 to an alltime high.

Prices quoted for molybdenum concentrate and molybdenum products were unchanged. Import duty on ore and concentrate was reduced under terms of the General Agreement on Tariffs and Trade.

TABLE 1.—Salient statistics of molybdenum in the United States, 1948-52 (average) and 1953-57, thousand pounds of contained molybdenum

	1948-52 (average)	1953	1954	1955	1956	1957
Concentrate: Production Shipments Value of shipments, thousand dollars Shipments for export. Consumption Imports for consumption. Stocks, end of year Primary products: Production. Shipments to domestic destinations. Shipments for export Total shipments Consumption. Stocks Stocks	31, 966 35, 633 30, 900 4 4, 473 27, 510 21 11, 321 26, 915 26, 324 1, 543 27, 867 (8) 5, 258	57, 243 53, 823 52, 362 5, 893 31, 193 11, 326 30, 283 29, 595 1, 107 30, 702 (8) 3, 894	58, 668 64, 021 64, 070 12, 974 24, 710 154 5, 317 24, 328 23, 717 1, 640 25, 357 (*) 3, 430	61, 781 64, 709 66, 919 12, 046 38, 799 134 2, 730 37, 774 35, 935 2, 671 38, 606 (8) 3, 156	57, 462 57, 126 8 63, 901 14, 736 42, 652 2, 920 41, 208 39, 082 3, 738 42, 820 33, 497 2, 812	60, 753 57, 143 67, 605 17, 543 38, 954 27 7, 093 37, 639 34, 662 2, 244 36, 906 30, 018 5, 789

Includes exports.
 Largely estimated by Bureau of Mines.
 Revised.

Includes roasted concentrate for 1948.

[•] At mines and at plants making molybdenum products.

• Comprises ferromolybdenum, molybdic oxide, and molybdenum salts and metal.

• Reported by producers to the Bureau of Mines.

• Data not available.

• Producers' stocks, end of year.

Commodity specialist.
 Statistical assistant.

DOMESTIC PRODUCTION

In 1957 production from ores mined chiefly for molybdenum more than offset an 8-percent decrease in output from byproduct sources. Production was from six States: Colorado led, followed by Utah, Arizona, California, New Mexico, and Nevada. Total domestic mine output for the year was 61 million pounds compared with 57 million pounds in 1956. Molybdenite was the source of all molybdenum produced in 1957, except for a small quantity of powellite recovered from tungsten ores at the Pine Creek Tungsten mill in California.

Molybdenum Mines.—The Climax Molybdenum Co. Climax mine in Lake County, Colo., was the only domestic mine operated chiefly for molybdenum in 1957. Production from this mine increased 13 percent during 1957 compared with output in 1956. The increase was due largely to a new milling unit placed in operation during February that enabled the company to treat more than 10 million short tons of ore during the year. The contract between Climax Molybdenum Co. and the Federal Government, which had required the firm to mine and mill daily a minimum of 5,000 tons of low-grade ore, was terminated by agreement during 1957.

Climax Molybdenum Co. reported that: 3

On the basis of extensive diamond drilling and other methods of exploration, Climax now estimates that its proven ore reserves which are commercially minable at present cost and price levels total 418 million short tons of an average grade of 0.43 percent molybdenum sulfide. However, the full extent of the ore body and its grades have not been defined.

Climax Molybdenum Co. and American Metal Co., Ltd., were merged on January 1, 1958. The name of the new firm is American Metal Climax, Inc., and Climax Molybdenum Co. became a subsidiary

of the new company.

The Questa deposit was explored further by Molybdenum Corp. of America under a DMEA (Defense Minerals Exploration Administration) contract. This was the only contract executed by DMEA in 1957 covering exploration for molybdenum. Tailing from previous operations of the Questa mine was treated in the Questa mill during late 1957.

Byproduct Sources.—Production of molybdenum as a byproduct of copper and tungsten mining comprised about 30 percent of the total output in 1957 compared with 35 percent in 1956. Compared with 1956, American Smelting and Refining Co. increased molybdenum production 64 percent in 1957; Bagdad Copper Corp., 5 percent; San Manuel Copper Corp., 145 percent; and Union Carbide Nuclear Co., 51 percent. The substantial increase in production by both American Smelting and Refining Co. and San Manuel Copper Corp. resulted from the first full year's output by these firms, but the large increase by Union Carbide Nuclear Co. was due to milling of higher molybdenum bearing tungsten ores. A reduced demand for copper in 1957 led to a decrease in molybdenum output by Kennecott Copper Corp., Miami Copper Co., and Phelps Dodge Corp. compared with production by these firms in 1956.

Shipments of Concentrate.—Shipments of molybdenum contained in concentrate comprised 39.6 million pounds to domestic destinations

³ Climax Molybdenum Co., Notice of Special Meeting of Stockholders: Nov. 27, 1957, pp. 20, 21.

and 17.5 million pounds for export. The shipments to domestic destinations include concentrate shipped to Canada for conversion to molybdic oxide and returned to the United States. The quantity converted in Canada is included in total domestic shipments to prevent disclosing individual company data.

Primary Products.—Production of molybdenum products during 1957 decreased 9 percent compared with 1956. The decreased production was due mainly to a strike that kept the Langeloth, Pa.,

conversion plant closed during the latter half of 1957.

TABLE 2.—Production, shipments, and stocks of molybdenum products in the United States in 1957, thousand pounds of contained molybdenum

	Re- ceived	Gross produc-	Used to make			Shipment	3	Pro- ducers'
Product	from other pro- ducers	tion during year	other products listed here	Net pro- duction	Domes- tic con- sumers	Export	Total	stocks, end of year
Molybdie oxide ¹ Ammonium molybdate Metal powder Sodium molybdate Other ²	2,288 59 5	34, 687 579 1, 125 280 8, 423	7,068 384 2 1	27, 619 195 1, 125 278 8, 422	25, 079 270 1, 119 301 7, 893	1, 917 1 326	26, 996 270 1, 120 301 8, 219	4, 681 65 156 12 875
Total	2, 352	45,094	7, 455	37, 639	34, 662	2, 244	36, 906	5, 789

CONSUMPTION AND USES

Domestic consumption of molybdenum contained in concentrate during 1957 decreased 9 percent compared with 1956. Of 38,954,000 pounds consumed during 1957, 91 percent was estimated to have been converted to molybdic oxide, and the rest was used for direct addition to steels, manufacture of molybdenum disulfide lubricants, and miscellaneous applications such as antifriction materials. The decreased consumption of concentrate was due mainly to a strike from July 1 to near the end of November that idled the large Langeloth, Pa., conversion plant. The strike also caused a temporary shortage of molybdic oxide and other molybdenum products.

Consumption of molybdenum contained in primary products totaled 30 million pounds compared with 33.5 million pounds consumed in These data, given in tables 3 and 4, are estimated to comprise only about 90 percent of the total molybdenum consumed in the United States during the year, because many small consumers were

not canvassed.

Molybdenum consumed in steels totaled 22.4 million pounds, of which 80 percent was used in low-alloy and stainless steels, 10 percent in high-speed steel, and 10 percent in steel castings. Molybdenum was added to low-alloy steels to improve such mechanical properties as uniform hardness and strength. It was added to stainless steels primarily to aid in resistance to corrosion and to high-speed steels to impart red hardness that prevents softening at the high temperatures developed during cutting operations.

Eight percent of the total molybdenum consumed was added to gray and malleable castings to improve hardenability, strength, and

¹ Includes molybdic oxide briquets, molybdic acid, and molybdenum trioxide.
² Includes ferromolybdenum, calcium molybdate, phosphomolybdic acid, and molybdenum disulfide.

resistance to chipping, and 5 percent was added to special alloys designed for use at high temperatures; in addition, a substantial quantity of the molybdenum powder consumed was used in melting arccast ingots designed principally for high-temperature applications. It was reported that molybdenum and its alloys were used in manufacturing guided-missile parts, such as nozzles and vanes.4

The effect of the purity of molybdenum-base alloys in the future of high-temperature metallurgy was discussed.⁵ The Wolverine Tube, Division of Calumet & Hecla, Inc., announced that it had developed

a process for extruding molybdenum tubing.6

The extruded tubing is expected to be suitable for use in nuclear heat exchangers because of molybdenum's resistance to liquid metals such as sodium. Sintered molybdenum was used principally in producing wire, rod, and sheet for manufacturing electronic parts, heating elements, and heat-radiation shields and for various miscellaneous applications. Molybdenum powder reported used in manufacturing electrical contacts during 1957 totaled 8,000 pounds.

A relatively new use of molybdenum was in titanium alloys, to which 6,000 pounds was reported to have been added during 1957. The effect of molybdenum on the properties of titanium alloys was

discussed.⁷

Purified molybdenum disulfide was used in manufacturing lubricants and as an additive to such solid materials as rubber, plastic, and brake linings. In 1957, 13,000 pounds of molybdenum was reported consumed in friction materials, 9,000 pounds in brake linings, and 2,000 pounds in packings; 1,000 pounds was used in rubber prod-Molybdenum disulfide was reported to impart antiseize characteristics and lower surface friction to rubber, supply stable frictional properties to asbestos brake linings, and provide a combination of lubrication characteristics and strength to plastics.8

TABLE 3.—Consumption of molybdenum products in the United States and stocks at plants of consumers in 1957, thousand pounds of contained molyb-

Product	Con- sump- tion	Stocks, Dec. 31	Product	Con- sump- tion	Stocks, Dec. 31
Molybdic oxide ¹	21, 045 158 6, 778 1, 105 59	1, 922 25 800 112 10	Sodium molybdate Other ³ Total	229 644 30, 018	38 190 3,097

¹ Includes molybdic oxide briquets, molybdic acid, and molybdenum trioxide.
² Includes molybdenum silicide.

³ Includes molybdenum disulfide, thermite molybdenum, molybdenite concentrate added direct to

 ⁴ American Metal Market, Predicts Coated Moly Will Have Considerable Life at About 2,000° F.: Vol.
 ⁶⁴ No. 59, Mar. 27, 1957, p. 1.
 ⁵ Jahnke, L. P., The Future of High-Temperature Metallurgy: Metal Prog., vol. 72, No. 4, October 1957,

pp. 113-118. ⁶ American Metal Market, Calumet & Hecla Now Extruding Moly Tubing: Vol. 64, No. 132, July 11,

^{1957,} p. 1.

Margolin, Harold, Molybdenum as an Alloy Addition for Titanium: Metal Prog., vol. 71, No. 2, February 1957, pp. 86-91.

Margolin, Harold, Molybdenum as an Alloy Addition for Titanium: Metal Prog., vol. 71, No. 2, February 1957, pp. 86-91.

Margolin, Harold, Molybdenum as an Alloy Addition for Titanium: Metal Prog., vol. 71, No. 2, February 1957, pp. 148-149, 151.

TABLE 4.—Consumption of molybdenum by class of manufacture in 1957, thousand pounds of contained molybdenum

Stoel: High speed	2, 335 17, 891 2, 196 2, 274 832 237 1, 401	Molybdenum metal (wire, rod, and sheet) Chemicals: Catalysts. Colors. Other. Lubricants. Miscellaneous ¹ . Total.	868 492 660 75 192 321 30, 018
-------------------	---	--	--

¹ Includes research and magnetic alloys.

STOCKS

Stocks of molybdenum concentrate at mines and at plants making molybdenum products increased 143 percent during 1957. Stocks of molybdenum products at producers' plants increased 106 percent during the year, but those held by consumers decreased 29 percent.

PRICES AND SPECIFICATIONS

There was no change in the quoted prices for molybdenum concentrates or primary products during 1957. The quoted price for molybdenum contained in concentrate grading 90 percent or more MoS₂ was \$1.18 a pound, plus the cost of container, f. o. b. Climax, Colo., and \$1.23 a pound, f. o. b. Washington, Pa. Prices of the principal molybdenum products based on the contained molybdenum, f. o. b. producers' plants, were: Ferromolybdenum, 58–64 percent Mo, powdered \$1.74, all other sizes \$1.68 a pound; calcium molybdate, \$1.42 a pound; technical molybdic oxide, bagged \$1.38, canned \$1.39, and briquets packed, \$1.41 a pound; and carbon-reduced molybdenum powder, \$3.35 a pound.

National Stockpile Purchase Specification P-74-R, covering ferromolybdenum, molybdenum disulfide, and molybdic oxide, was revised to P-74-RI on September 6, 1957. The new specification required the use of 55-gallon, 16-gage, steel drums, hot-dipped galvanized after fabrication, for packaging ferromolybdenum, and the same size and type of drums, except they may be made of 18-gage steel, for packaging molybdenum disulfide and molybdic oxide. Chemical requirements under the revised specification were unchanged; these were reported in table 6 of the 1956 Minerals Yearbook Molyb-

denum chapter.

FOREIGN TRADE 9

Exports of 25.5 million pounds of molybdenum contained in concentrate and molybdic oxide during 1957 were the highest in any year. However, a large part of the concentrate exported to Canada was converted to molybdic oxide that was shipped to the United States. The exports went to 13 countries; West Germany received 23, United Kingdom 20, Canada 18, Japan 14, France 13, Sweden 8, and 7 countries combined 4 percent of the total.

[•] Figures on imports and exports compiled by Mae B. Price and Elsie D. Jackson, Division of Foreign Activities, Bureau of Mines, from records of the U. S. Department of Commerce, Bureau of the Census.

Ferromolybdenum exports during 1957 totaled 383,271 pounds (gross weight), valued at \$447,098. Of the total exports, 62 percent was shipped to Canada, 11 to Italy, 10 to Brazil, and 6 to Denmark; the remainder was shipped to 7 other countries. Exports of molybdenum wire totaled 13,750 pounds (gross weight), valued at \$230,798, and exports of metals and alloys in crude form and scrap were 98,513 pounds (gross weight), valued at \$182,381.

Imports of molybdenum ores and concentrates for consumption during 1957 totaled 27,461 pounds of contained molybdenum valued at \$54,943, all from Canada. Imports of ferromolybdenum, molybdenum metal and powder, calcium molybdate and other compounds, and alloys of molybdenum totaled 1,496,465 pounds of contained molybdenum valued at \$2,047,540; molybdenum ingots, shot, bars, or scrap totaled 15,957 pounds (gross weight), valued at \$29,212; and molybdenum sheets, wire, or other forms totaled 24,327 pounds (gross weight), valued at \$449,052.

TABLE 5.—Molybdenum ore and concentrate (including roasted concentrate) exported from the United States, 1948-52 (average) and 1953-57, by countries of destination

[Bureau of the Census]

-						
	1948-52	(average)	19	953	19	954
Country	Molyb- denum content (pounds)	Value	Molyb- denum content (pounds)	Value	Molyb- denum content (pounds)	Value
North America: Canada- Canal Zone Jamaica-	255, 661 323	\$254, 445 304	404, 626 590	\$454, 294 881	232, 287	\$248, 305
Mexico	3, 667	3, 316	3, 119	3,050	2,716	3,096
TotalSouth America; Brazil	259, 651	258, 065	408, 335	458, 225	235, 003	251, 401
Europe: Austria. Belgium-Luxembourg Denmark. Finland France. Germany Italy. Netherlands Norway. Spain. Sweden. Switzerland Trieste. United Kingdom.	16, 243 4, 631 600 1, 471 1, 189, 281 850, 465 100, 047 26, 162 12, 000 1, 998 360, 753 495 2, 219, 528	16, 738 5, 594 780 2, 712 1, 078, 435 837, 250 104, 444 27, 849 11, 284 2, 690 333, 944 624	80, 020 13, 400 1, 368, 112 1, 028, 275 7, 056 4, 410 339, 208 595 3, 420, 028	91, 823 15, 745 1, 386, 909 1, 087, 912 8, 700 5, 027 379, 062 1, 050 3, 465, 136	305, 588 15, 480 2, 306, 383 1 3, 725, 351 145, 860 710, 945 806, 247 33, 919 4, 717, 073	351, 833 18, 392 2, 321, 539 13, 872, 874 164, 835 774, 619 847, 576
Total	4, 783, 674	4, 379, 682	6, 261, 104	6, 441, 364	12, 766, 846	13, 160, 084
Asia: Japan Philippines Taiwan	60, 410	67, 173	366, 5 4 7	406, 368	540, 661	572, 701
Total Africa: Rhodesia and Nyasa- land, Federation of	60, 410	67, 173	366, 897	406, 946	540, 661 4, 000	572, 701 4, 700
Oceania: Australia New Zealand	11, 817 2, 016	13, 514 2, 298	1,100	1, 254		
Total	13, 833	15, 812	1,100	1, 254		
Grand total	5, 117, 568	4, 720, 732	7, 037, 436	7, 307, 789	13, 546, 510	13, 988, 886

See footnote at end of table.

TABLE 5.—Molybdenum ore and concentrate (including roasted concentrate) exported from the United States, 1948-52 (average) and 1953-57, by countries of destination—Continued

	19	955	19	956	19)57
Country	Molybdenum content (pounds)	Value	Molyb- denum content (pounds)	Value	Molyb- denum content (pounds)	Value
North America: Canada Canal Zone	529, 359	\$599,082	636, 312	\$783, 384	4, 567, 836	\$5, 439, 899
Jamaica Mexico	1,000	1, 250			528	367
TotalSouth America: Brazil	530, 359	600, 332	636, 312 4, 136	783, 384 5, 736	4, 568, 364 1, 652	5, 440, 266 1, 148
Europe: Austria Belgium-Luxembourg Denmark	585, 4 05 1, 998	724, 297 2, 650	863, 280 732	1, 206, 601 1, 336	314, 722 24, 100	469, 278 35, 083
Finland France Germany Italy Netherlands Norway	2, 368, 726 1 3, 621, 486 157, 324 217, 900	2, 470, 469 1 3, 953, 999 174, 445 327, 442	3, 383, 634 1 5, 562, 604 204, 949 272, 543	3, 870, 034 1 6, 399, 830 241, 134 381, 661	3, 371, 629 1 5, 807, 870 572, 070 162, 612	4, 140, 673 17, 200, 117 754, 786 194, 190
Spain Sweden Switzerland		1, 647, 137	1, 569, 844 2, 948	1, 811, 866 5, 400	2, 073, 864	2, 636, 519
Trieste United Kingdom	5, 354, 342	5, 542, 038	3, 719, 668	4, 239, 817	5, 044, 886	6, 199, 113
Total	13, 772, 403	14, 842, 477	15, 580, 202	18, 157, 679	17, 371, 753	21, 629, 759
Asia: Japan Philippines Taiwan	277, 196 400	339, 171 1, 220	1, 752, 486	2, 338, 216	3, 514, 545	5, 342, 209
Total_ Africa: Rhodesia and Nyasa- land, Federation of	277, 596	340, 391	1, 752, 486	2, 338, 216	3, 514, 545	5, 342, 209
Oceania: Australia New Zealand			7, 871	10, 547	9, 201	14, 715
Total			7, 871	10, 547	9, 201	14, 715
Grand total	14, 580, 358	15, 783, 200	17, 981, 007	21, 295, 562	25, 465, 515	32, 428, 097

¹ West Germany.

Tariff.—Under authority of the General Agreement on Tariffs and Trade, the duty on several molybdenum products was reduced further in 1957. The tariff on molybdenum ores and concentrates in 1957 was 33 cents a pound of contained molybdenum to June 30 and 31½ cents a pound during the remainder of the year. Forms containing over 50 percent molybdenum, molybdenum carbide, or combinations not specially provided for were: Ingots, shots, bars or scrap molybdenum carbide, 23.5 percent ad valorem to June 30 and 22.5 percent ad valorem during the remainder of the year; and sheet, wire, or other forms of molybdenum or molybdenum carbide, 28.5 percent ad valorem to June 30 and 27 percent ad valorem the rest of the year.

The duty on ferromolybdenum, molybdenum metal and powder, calcium molybdate, and other compounds and alloys of molybdenum remained at 25 cents a pound of contained molybdenum plus 7.5

percent ad valorem throughout the year.

TABLE 6.-Molybdenum reported by producers as shipments for export from the United States, 1955-57, thousand pounds of contained molybdenum

*/	1955	1956	1957
Concentrate (not roasted)	1 12, 046	1 14, 736	17, 543
	2, 401	3, 082	1, 917
	270	656	327

¹ Revised figure.

TABLE 7.- Molybdenum products exported from the United States, 1955-57. gross weight in pounds

[Bureau of the Census]

Product	1955	1956	1957
Ferromolybdenum 1	349, 193	944, 671	383, 271
	22, 564	35, 240	98, 513
	11, 482	11, 440	13, 750
	21, 173	20, 735	28, 222
	3, 952	4, 853	4, 289

¹ Ferromolybdenum contains about 60-65 percent molybdenum.

WORLD REVIEW

World production of molybdenum during 1957 was estimated at 66.8 million pounds, of which 91 percent was produced in the United States.

Canada.—All production of molybdenum in Canada during 1957 was from the La Corne mine about 22 miles Northwest of Val d'Or, Quebec, owned and operated by Molybdenite Corporation of Canada, Ltd. The firm produced 873,000 pounds of molybdenum contained in concentrate during 1957. The concentrate was converted to molybdic oxide before shipment.

TABLE 8.—World production of molybdenum in ores and concentrates, by countries, 1948-52 (average) and 1953-57, thousand pounds 2

[Compiled by Pearl J. Thompson and Berenice B. Mitchell]

Country 1	1948-52 (average)	1953	1954	1955	1956	1957
Australia Austria Canada Chile Hong Kong Japan Korea, Republic of. Mexico Norway Peru Portugal Sweden United States Yugoslavia	29 157 2, 403 (*) 71 11 207 4 31, 966 611	2 194 3, 007 2 397 20 (3) 317 11 2 57, 243 1, 920	(*) 452 2, 663 (*) 450 22 159 335 2 4 58, 668 441	2 18 833 2,817 (*) 439 24 55 379 11 61,781 948	(3) 2 842 3, 122 527 31 33 366 11 57, 462 (4)	873 2, 998 600 31 29 390 11 60, 753 (4)
World total (estimate) 1	36, 300	64, 200	64, 300	68, 400	63, 500	66, 800

Molybdenum is also produced in China, North Korea, Rumania, Spain, and U. S. S. R., but production data are not available. Estimates by senior author of chapter included in total.
 This table incorporates a number of revisions of data published in previous Molybdenum chapters. Data do not add to totals shown due to rounding where estimated figures are included in the detail.
 Less than 500 pounds.
 Data not available; estimate by senior author of chapter included in total.

The proved ore reserve of the La Corne deposit at the beginning of 1957 was estimated at 184,861 tons grading 0.50 percent molybdenite, compared with 176,166 tons averaging 0.438 percent MoS₂ a

year earlier. 10

The Preissac Molybdenite Mines, Ltd., continued to explore its molybdenite and bismuth property about 25 miles northwest of the La Corne mine by surface diamond drilling. Quebec Metallurgical Industries, Ltd., carried out diamond drilling and development work at its Kirkham Molybdenum Prospect near Shawville, Quebec. Acme Molybdenite Mining Co., Ltd., was reported to have failed to obtain a \$300,000 loan for development of its molybdenum properties in Quebec and British Columbia.¹¹

Climax Molybdenum Co. continued to explore a molybdenum prospect on Boss Mountain 32 miles northeast of Lac la Hache in the Cariboo district of British Columbia. The 1957 exploration program was directed mainly to outlining the area of mineralization, which was said to be quite extensive. Beattie-Duquesne mines roasting plant at Duporquet, Quebec, was reported to have been rehabilitated by Climax Molybdenum Co. and used to convert molybdenite concentrate to oxide for shipments to the United States and overseas markets.12

Chile.—All of the 3 million pounds of molybdenum produced in Chile during 1957 was recovered from the copper sulfide ores of the Braden mine. The Anaconda Co. was constructing a molybdenumrecovery unit at its Chuquicamata copper property at the year end and expected to have it in operation early in 1958.

TABLE 9.—Exports of molybdenite concentrate 1 from Chile, 1953-57, by countries of destination, thousand pounds 2

Country	1953	1954	1955	1956	1957
France. Germany, West. Notherlands. Sweden. United Kingdom. Total.	462	368	458	52	394
	771	392	400	330	502
	676	438	516	156	666
	147	156	330	358	392
	3, 581	3, 192	3, 964	4,062	3, 602
	5, 637	4, 546	5, 668	4,958	5, 556

[Compiled by Corra A. Barry]

Italy.—A molybdenum deposit was reported to have been discovered in Sardinia, but the molybdenum mineral or minerals and grades were

not given.13

Japan.—Molybdenum was produced from several small mines in Japan during 1957, but mine output was not enough to supply the country's needs for the metal. Japan imported more molybdenum from the United States during 1957 than in any preceding year. However, the Japanese industry had accumulated fairly large stocks of

¹ Dry concentrate containing approximately 96 percent MoS₂ with 58 percent contained molybdenum. ² Compiled from Customs Returns of Chile.

Northern Miner (Toronto), Molybdenite Corp. Earns Profit; Operation's Outlook Improving: Vol. 43, No. 6, May 2, 1957, pp. 1, 7.

Metal Bulletin (London), Molybdenite: No. 4219, Aug. 16, 1957, p. 26.

Northern Miner (Toronto), Beattle Duquesne Roasts Molybdenite: Vol. 43, No. 38, Dec. 12, 1957, p. 1.

Chemical Age (London), Molybdenum in Sardinia: Vol. 78, No. 2000, Nov. 9, 1957, p. 764.

molybdenum by the third quarter of 1957; and, in order to prevent a further build-up, the Japanese Ministry of Trade removed molybdenum from the list of goods that could be imported freely under the automatic approval system.

Norway.—Molybdenum was produced from the Knaben mine near

Egersund near the southwest coast of Norway.

Rhodesia and Nyasaland, Federation of.—It was reported that a molybdenite deposit was discovered near Selukwe, Southern Rhodesia, but the size and grade of the deposit had not been determined.14

Sierra Leone.—A molybdenite deposit was reported to have been discovered in the area of the Wankatayna River on the west side of

the Sula Mountain in Sierra Leone. 15

Turkey.—Turkish Molybdenum Co. continued to explore the molybdenite deposit near the village of Gelemic, district of Bursa, Turkey, during 1957. It was reported that the deposit contained an estimated 500,000 tons of ore averaging 0.4 percent Mo and that a flotation plant would be built to treat the ore. 16

TECHNOLOGY

Molybdenum technologic news included construction of increased production capacity and investigation of new methods for producing the metal and protecting it from oxidation.

The Climax ore body was mined by large-scale caving that consists of undercutting sections of about 68 by 100 feet and allowing the broken ore to flow by gravity through finger raises into concrete-

lined slusher drifts.

Development of another level at the Climax mine was begun in 1957. The mine was being deepened by a 900-foot vertical shaft 20 feet in diameter. It was estimated the new level would be ready for production in about 8 years and would coincide with depletion of the ore above the Phillipson level, which is at 11,470 feet elevation.¹⁷ Other improvements at Climax included enlargement of the byproducts plant, where tungsten concentrate, pyrite, and cassiterite were recovered from the rougher-concentrate-circuit tailing. This plant was being expanded from about 20,000 tons a day capacity to about 34,000 tons, and the expansion was expected to be completed early in 1958.

Inspiration Copper Co. was installing a molybdenum flotation unit at its copper plant at Inspiration, Ariz., that was expected to be in operation early in 1958. Exploration of copper-molybdenum mineral deposits near Tucson, Ariz., by Duval Sulphur & Potash Co. was reported to have resulted in the discovery of 49 million tons of ore. 18 The company announced a \$20 million expansion program that included constructing a 10,000-ton-a-day concentrator plant.

The flotation process employed at the American Smelting and Refining Co. Silver Bell, Ariz., plant to increase overall molybdenum

recovery was described. 19

¹⁴ Bureau of Mines, Mineral Trade Notes: Vol. 45, No. 3, September 1957, p. 17.
¹⁵ Mining World, Africa: Vol. 19, No. 13, December 1957, p. 79.
¹⁶ Mining World, vol. 19, No. 2, February 1957, p. 37.
¹⁷ Mining Congress Journal, Climax Retains Production Title: Vol. 43, No. 6, June 1957, p. 123.
¹⁸ Mining Journal (London), vol. 249, No. 6359, July 5, 1957, p. 14.
¹⁹ Engineering and Mining Journal, How AS&R Raised Molybdenite Recovery on Copper Concentrate: Vol. 158, No. 8, August 1957, pp. 105-106.

A process for recovering molybdenum from ore material containing sulfides of molybdenum by mixing alkali metal and alkali-metal carbonate with the material and causing an exothermic reaction followed by water leaching to recover the molybdenum values was patented.²⁰ Laboratory experiments conducted at Brigham Young University, Provo, Utah, demonstrated that autotrophic bacteria can oxidize molybdenite.²¹

The Bureau of Mines continued research on the preparation of ductile molybdenum by bomb reduction of molybdenum oxides. Other Bureau work included studies of the recovery of molybdenum from uranium-plant solutions, preparation of ultrapure molybdenum, and the study of rock mechanics and ground movement in mining. A survey containing both technical and economic data on molybdenum

was published by the Bureau.22

A process for producing molybdenum metal in pure, dense form was patented.²³ A method for sintering compressed molybdenum powder to an ingot having a uniform density and a uniform grain size suitable for forming into lamp filaments, with resistance to breaking or cracking, was patented.24 Another patent covered a method for heat-treating molybdenum and its alloys.25 Other patents issued during the year included: Producing an adherent molybdenum coating on a metal substrate capable of forming a diffusion bond with cobalt; 26 forming a protective coating on molybdenum-base alloys by using a powder-fed metal spray gun employing a mixture of the powders of different metals; 27 molybdenum-containing catalysts produced by impregnating inorganic inert material with molybdenum compoundoxalic acid solution containing a strong mineral acid; 28 and removal of molybdenum heteroploy acids from ether solutions containing both the acids and uranyl nitrate.29

The effect of small quantities of alloying elements on the ductility of cast molybdenum was investigated.³⁰ A method for making molybdenum welds that are moderately ductile at room temperature

was described.31

pp. 101-102.

Was described.

**Porcess for Recovering Molybdenum: U. S. Patent 2,796,344, June 18, 1957.

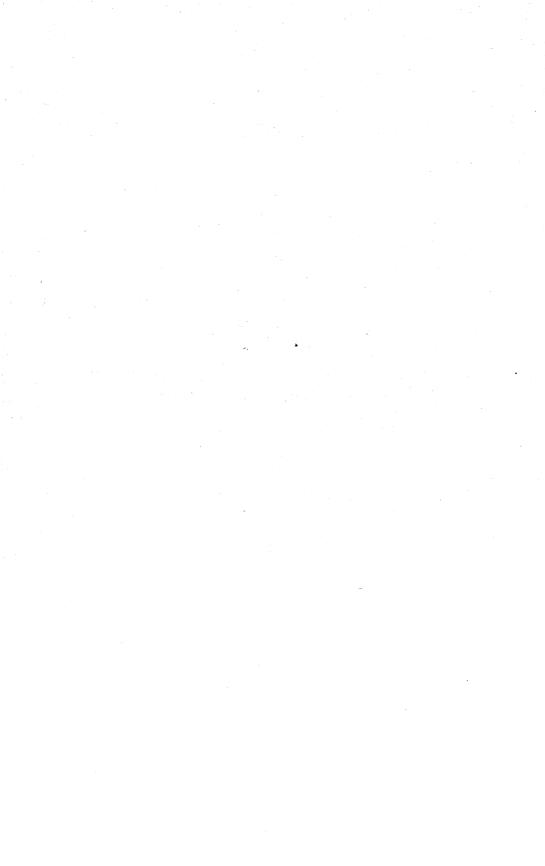
**Il Bryner, Loren C., and Anderson, Ralph, Microorganisms in Leaching Sulfide Minerals: Ind. and Eng. Chem., vol. 49, No. 10, October 1957, pp. 1721-1724.

**McInnis, Wilmer, Molybdenum, a Materials Survey: Bureau of Mines Inf. Circ. 7784, 1957, 77 pp. 28 Kelly, John, C. R., Jr., and Caterson, Alan G. (assigned to Westinghouse Electric Corp., East Pittsburgh, Pa.), Preparation of Molybdenum: U. S. Patent 2,776,887, Jan. 8, 1957.

**Cuthbert, Stuart V., and Marden, John W. (assigned to United States of America), Process of Sintering Molybdenum: U. S. Patent 2,793,116, May 21, 1957.

**Cuthbert, Stuart V., and Sutherlin, Lee (assigned to United States of America), Method of Heat-Treating Molybdenum and Molybdenum-Base Alloys: U. S. Patent 2,789,929, Apr. 23, 1957.

**Hill, Morse (assigned to National Research Corp., Cambridge, Mass.), Method of Coating a Metal Substrate Molybdenum: U. S. Patent 2,783,164, Feb. 26, 1957.


**Deuble, Norman L. (assigned Climax Molybdenum Co., New York, N. Y.), Method of Forming a Protective Coating on Molybdenum-Base Articles: U. S. Patent 2,788,290, Apr. 9, 1957.

**De Rosset, Armand J. (assigned to Universal Oil Products Co., Des Plaines, Ill.), Manufacture of Molybdenum-Containing Catalysts: U. S. Patent 2,799,661, July 16, 1957.

**De Wibbles, Howard L., and Miller, Earl I. (assigned to United States of America), Purification Process: U. S. Patent 2,819,944, Jan. 14, 1958.

**Olds, L. E., and Rengstroff, G. W. P., Effect of Small Amounts of Alloying Elements on the Ductility of Cast Molybdenum: Jour. Metals, vol. 9, No. 4, April 1957, pp. 468-471.

**IF Freeman, R. R., and Briggs, J. Z., How to Weld Molybdenum: Steel, vol. 141, No. 2, July 8, 1957 pp. 101-102.

Nickel

By Hubert W. Davis 1

ICKEL available in the second half of 1957 exceeded industrial demand for the first time since 1950. The supply-demand position was reversed, principally because of increased production, virtually complete stockpile deferments, and decreased requirements for nickel in the United States. Despite the improved supply, intense activity continued in exploring for new sources, developing new mines, and expanding and increasing the efficiency of smelting and refining facilities. In anticipation that the supply of nickel will continue to be abundant, activity was accelerated in developing new and larger uses for the metal and its alloys. A program was launched to restore the use of nickel in applications where other metals were substituted during the period of nickel shortage and also to increase the nickel content of alloys in which the nickel content had been A number of patents were issued on processes for recovering nickel and cobalt from various types of ores and for separating the two metals.

The Attorney General publicized the results of a study of the competitive problems of the nickel industry in relation to the Defense Production Act. The report ² discussed the preemergency status of the industry, the expansion of the supply base necessary for defense and civilian purposes, and the problems of distributing the available nickel supply to preserve competitive elements within the user industries; it also analyzed the competitive status of the industry. One important conclusion stated that:

From an antitrust point of view, the total effects of the defense expansion of nickel supply have resulted in significant contributions to the creation of truly competitive status in this industry.

The Office of Defense Mobilization announced that the nickel-expansion goal, for the purpose of providing the United States with an annual supply of 220,000 short tons by 1961, was closed June 28. Expansion and development programs in progress, mainly in Canada and Cuba, were scheduled to raise the Free World nickel-production capacity to at least 325,000 tons and possibly to 340,000 tons annually by the end of 1961.

The Government, through General Services Administration (GSA), supported certain research done by the Bureau of Mines and industry. The objective was to improve extraction of nickel from the deposits in Cuba owned by the United States Government and at its recovery plant at Nicaro, Cuba.

Commodity specialist.
 Committee on Banking and Currency, The Nickel Industry: U. S. Senate, 85th Cong., 1st Sess., Aug. 28, 1957, pp. 3-43.

TABLE 1.—Salient statistics of nickel, 1948-52 (average) and 1953-57

1948-52 (average)	1953	1954	1955	1956	1957
	11	2,006	4, 411	7, 392	12, 900
795	591	639	451	623	502
7, 881 96, 172	11 8,352 118,737	192 8, 605 131, 784	3, 356 11, 540 142, 117	6, 099 14, 860 142, 642	9, 568 1 12, 017 140, 000
² 5, 573 90, 252	15, 168 105, 681 56½-60	14, 245 94, 733 60-64½	20, 601 110, 100 64½	44, 526 127, 578 64½–74	13, 415 122, 466 74
132, 510	143, 693 4 145, 117	161, 279 158, 719	174, 928 173, 880	4 178, 515 176, 837	188, 962 178, 656 314, 000
	795	795 591 7,881 8,352 96,172 118,737 25,573 15,168 90,252 105,681 3334-561/2 561/2-60 132,510 143,693 130,767 4145,117	(average)	(average)	(average) 11 2,006 4,411 7,392 795 591 639 451 623 7,881 8,352 8,605 11,540 14,860 96,172 118,737 131,784 142,117 142,642 25,573 15,168 14,245 20,601 44,526 90,252 105,681 94,733 110,100 127,578 33%4-56½ 56½-60 60-64½ 64½ 64½ 64½ 132,510 130,767 4145,117 158,719 173,880 176,837

Preliminary figure.
 Excludes "Manufactures" weight not recorded.
 Price quoted to United States buyers by International Nickel Co., Inc., for electrolytic nickel in carlots f. o. b. Port Colborne, Ontario; price includes duty of 1¼ cents.
 Revised figure.

World production of nickel advanced for the seventh consecutive year to a new peak and was 11 percent greater than in 1956. Domestic production made a new record, increasing 50 percent, but equaled only 8.2 percent of consumption in the United States in 1957, compared with 5.3 percent in 1956.

The 7-year uptrend in imports of nickel into the United States was reversed in 1957; however, imports were only 2 percent less than in the record year 1956.

The price of nickel remained unchanged throughout 1957.

DOMESTIC PRODUCTION

Domestic production of nickel (other than from imported matte and oxide) continued to be small; it comprised nickel contained in ore (produced at Riddle, Oreg., Fredericktown, Mo., and Cobalt, Idaho), primary nickel recovered from copper refining, and nickel recovered from scrap (nickel anodes and nickel-silver and copper-nickel alloys, including Monel metal).

MINE PRODUCTION

Domestic mine output of nickel contained in ore was 75 percent more in 1957 than in 1956. The larger output was necessary, mainly to supply ore for the 4 furnaces at the Hanna smelter near Riddle, Oreg.; during the early part of 1956 only 2 furnaces were operated. In 1957 Hanna Coal & Ore Corp. mined 813,000 dry short tons of ore averaging 1.51 percent nickel from its deposit near Riddle, Oreg. The output of ore was 86 percent more than in 1956. The method of mining ore at the Riddle deposit and transporting it to the smelter stockpile was described.3 National Lead Co. produced a pyrite concentrate containing 4.9 percent nickel near Fredericktown, Mo.,

³ Foster, W. A., Open Pit on Nickel Mountain: Min. Eng., vol. 9, No. 8, August 1957, pp. 903-904.

in 1957. The output of contained nickel was 23 percent more than in 1956. Calera Mining Co. recovered nickel as a byproduct of cobalt ore produced at its Blackbird mine in Lemhi County, Idaho.

PLANT PRODUCTION

Hanna Nickel Smelting Co. treated ore from the nearby deposit at its four furnaces near Riddle, Oreg., in 1957. In 1957, 781,456 dry short tons of ore, averaging about 1.5 percent nickel, was used at the smelter, and 20,564 short tons of ferronickel, averaging 44 percent nickel, was produced. The output of ferronickel was 66 percent more than in 1956. Although the refinery of National Lead Co. at Fredericktown, Mo., did not attain capacity operation in 1957, it produced 30 percent more nickel metal than in 1956. National Lead Co. continued to reduce Cuban nickel oxide sinter to nickel metal at its refinery at Crum Lynne, Pa. The metal was produced under a Government contract.

Substantial quantities of nickel-bearing ferrous scrap were recovered and used chiefly in producing engineering alloy steels and stainless steels in 1957, but no figures are available. However, the importance of scrap as a supplement to the supply of nickel in the fiscal year ended June 30, 1956, is shown in table 2.

TABLE 2.—Receipts of nickel by melters July 1, 1955–June 30, 1956, in thousand pounds of nickel content

Melter	Primary nickel	Purchased scrap (5 percent or higher nickel content)	Melter	Primary nickel	Purchased scrap (5 percent or higher nickel content)
Iron and steel alloy pro- ducers. Nickel-alloy producers, ex- cept plating anodes. Copper-base-alloy produc-	100, 469 59, 198	37, 225 9, 157	Nonferrous-ingot makersAluminum-base-alloy pro- ducers	92 1, 595 169, 308	9, 385
ers (brass mills and brass and bronze foundries)	7, 954	3, 222			

[Business and Defense Services Administration]

In all, 502 short tons of nickel, in the form of sulfate, was recovered in 1957 as a byproduct of copper refining at Carteret and Perth Amboy, N. J.; El Paso, Tex.; and Laurel Hill, N. Y. Shipments contained 461 tons of nickel. All of the nickel recovered as a byproduct of copper refining is credited to domestic production, but some was actually recovered from imported raw materials, largely blister copper.

In addition to the nickel sulfate recovered as a byproduct of copper refining in 1957, refined nickel salts (chiefly sulfate) containing 2,571 short tons of nickel was produced in the United States from nickel shot powder oxide and screp

shot, powder, oxide, and scrap.

Thus, total production of nickel contained in refined nickel salts in the United States was 3,073 tons in 1957; shipments to consumers for electroplating, catalysts, and ceramics were 2,958 tons.

TABLE 3.—Nickel produced in the United States, 1948-52 (average) and 1953-57

		nickel con- nort tons)	Secondary		
	Byproduct of copper refining	Domestic ore	Nickel content, in short tons	Value	
948–52 (average) 	795 591 639 451 623 502	11 2, 006 4, 411 7, 392 12, 900	7, 881 8, 352 8, 605 11, 540 14, 860 2 12, 017	\$7, 762, 4 10, 399, 9 10, 821, 6 15, 445, 0 20, 132, 0 2 18, 862, 0	

 $^{^{\}rm 1}$ Value withheld to avoid disclosing individual company operations. $^{\rm 2}$ Preliminary figure.

Secondary Nickel.—The recovery of nickel from nonferrous scrap in the United States totaled 12,000 short tons in 1957, a 19-percent decrease from 1956. The decrease was chiefly in nickel recovered from nickel-base scrap. The loss in products was chiefly in secondary

nickel recovered in ferrous and high-temperature alloys.

The apparent increase in nickel-alloy scrap and the decrease in nickel-residue scrap consumption by smelters in 1957, shown in table 5 and the corresponding table in the 1956 Minerals Yearbook, indicate only reclassification of material. The 19 percent decrease in total 1957 nickel scrap consumption involved only the foundries and manufacturers, consisting chiefly of iron and steel plants and chemical The total nickel scrap consumption by smelters was virtually the same in 1957 as in 1956. The latter group included 45 plants, chiefly secondary copper smelters.

TABLE 4.—Nickel recovered from scrap processed in the United States, by kind of scrap and form of recovery, 1956-57, short tons

Kind of scrap	1956	1957 (pre- liminary)	Form of recovery	1956	1957 (pre- liminary)
New scrap: Nickel-base Copper-base Aluminum-base Total	4, 568 1, 466 310 6, 344	3, 557 1, 416 325 5, 298	As metal. In nickel-base alloys In copper-base alloys. In aluminum-base alloys. In lead-base alloys. In ferrous and high-temperature alloys!	3, 762 3, 122 2, 399 424 3	3, 187 3, 332 1, 969 442
Old scrap: Nickel-base	7, 900	6, 182	In chemical compounds	997	621
Copper-base Alluminum-base	486 130	402 135	Grand total	14, 860	12, 017
Total	8, 516	6, 719			
Grand total	14, 860	12, 017			

¹ Includes only nonferrous nickel scrap added to ferrous and high-temperature alloys.

TABLE 5.—Stocks and consumption of new and old nickel scrap in the United States in 1957 (preliminary), gross weight in short tons

Class of consumer and type of scrap	Stocks, beginning	Receipts	c	Stocks, end of		
	of year	_	New	Old	Total	year
Smelters and refiners: Unalloyed nickel. Monel metal. Nickel silver. Miscellaneous nickel alloys. Nickel residues.	892 274 1 453 4 7	3, 699 1, 813 1 3, 582 2, 772 146	2, 329 480 1 751 12 4	1, 670 1, 309 1 2, 690 2, 761 94	3, 999 1, 789 1 3, 441 2, 773 98	592 298 1 594 3 55
Total	1, 177	8, 430	2, 825	5, 834	8, 659	948
Foundries and plants of other manufacturers:						
Unalloyed nickel	1, 316 286 1 2, 244 33 330	1, 345 659 1 6, 400 452 1, 449	604 172 1 6, 360 28 1, 034	1, 386 699 1 109 422 360	1, 990 871 1 6, 469 450 1, 394	671 74 1 2, 175 35 385
Total	1, 965	3, 905	1, 838	2, 867	4, 705	1, 165
Grand total: Unalloyed nickel	2, 208 560 1 2, 697 37 337	5, 044 2, 472 1 9, 982 3, 224 1, 595	2, 933 652 1 7, 111 40 1, 038	3, 056 2, 008 1 2, 799 3, 183 454	5, 989 2, 660 1 9, 910 3, 223 1, 492	1, 263 372 1 2, 769 38 440
Total	3, 142	12, 335	4, 663	8, 701	13, 364	2, 113

¹ Excluded from totals because it is copper-base scrap, although containing considerable nickel.

CONSUMPTION AND CONSUMERS' STOCKS

Total consumption of nickel in 1957 was 4 percent less than in 1956 and second largest on record. Of the 1957 total consumption, 35 percent was used in stainless and engineering alloy steels. Usage of nickel in stainless and engineering alloy steels was 18 and 9 percent, respectively, smaller than in 1956. Consumption of nickel in nonferrous alloys, high-temperature and electrical resistance alloys, cast irons, ceramics, and magnets was also smaller; losses ranged from 3 to 16 percent. Usage of nickel for electroplating and in catalysts was 44 and 6 percent, respectively, greater than in 1956.

TABLE 6.—Nickel (exclusive of scrap) consumed and in stock in the United States, 1956-57, by forms, in short tons of nickel

		1956		1957		
Form	Consump- tion	Stocks at consumers' plants Dec. 31	In transit to con- sumers' plants Dec. 31	Consump- tion	Stocks at consumers' plants Dec. 31	In transit to con- sumers' plants Dec. 31
Metal ¹ . Oxide powder and oxide sinter. Matte. Salts ² . Total	96, 403 20, 742 8, 875 1, 558	9, 684 1, 976 424 588 12, 672	154 56 	94, 765 17, 049 9, 047 1, 605	21, 082 3, 037 787 376 25, 282	48 1 2 51

Includes a relatively small but undetermined quantity of secondary nickel (ingot or shot remelted from scrap nickel and scrap-nickel alloys).
 Figures for consumption estimated to represent about 62 percent of total.

TABLE 7.—Nickel (exclusive of scrap) consumed in the United States, 1948-52 (average) and 1953-57, by forms, in short tons of nickel

Form	1948-52 (average)	1953	1954	1955	1956	1957
Metal Oxide powder and oxide sinter Matte	66, 621 13, 100 9, 175 1, 356	73, 773 19, 997 10, 470 1, 441	67, 241 16, 191 9, 710 1, 591	83, 357 18, 785 6, 219 1, 739	96, 403 20, 742 8, 875 1, 558	94, 765 17, 049 9, 047 1, 605
Total	90, 252	105, 681	94, 733	110, 100	127, 578	122, 466

¹ Figures estimated to represent about 60 percent of total in 1948-55 and 62 percent in 1956-57.

TABLE 8.—Nickel (exclusive of scrap) consumed in the United States, 1953-57, by uses, in short tons of nickel

Use	1953	1954	1955	1956	1957
Ferrous:	22, 274	20, 399	26, 520	32, 883	26, 986
Other steels Cast iron	18, 959 4, 214	13, 637 4, 115	18, 977 5, 431	17, 413 5, 819	15, 882 5, 534
Nonferrous 1	33, 657	31, 197	29, 361	35, 840	33, 449
High-temperature and electrical resistance alloys	8, 221	6, 597	8, 669	11, 373	9, 837
Anodes 2	13, 274	13, 460	14, 627	15, 952	23, 354
Solutions 8Catalysts	972 1,435 251	1, 323 1, 344 304	1, 357 1, 525 417	1, 074 2, 001 425	1, 131 2, 113 358
Ceramics Magnets Other	798 1, 626	681 1, 676	882 2, 334	933 3, 865	902 2, 920
Total	105, 681	94, 733	110, 100	127, 578	122, 466
l l					

Comprises copper-nickel alloys, nickel-silver, brass, bronze, beryllium alloys, magnesium and aluminum alloys, Monel, Inconel, and malleable nickel.
 Figures represent quantity of nickel put into process for producing rolled anode bars, plus nickel used in

quantity of nickel anodes consumed by platers.

* Figures estimated to represent about 50 percent of total in 1953-55 and 60 percent in 1956-57.

SUBSTITUTES

Interest in the search for substitute materials for nickel was diminishing because of the favorable supply position of the metal in 1957 and of the outlook for adequate future supplies. However, despite the outlook for adequate future supplies of nickel, the use of stainless steels containing less nickel, nickel-free stainless steels, and electronickel-clad products probably will continue to grow. Production of stainless steels containing 1- to 5-percent nickel increased from 19,454 short tons in 1956 to 25,528 tons in 1957.

Some practical suggestions for conserving nickel in electroplating and in overcoming the lack of uniformity associated with nickel coatings were made.

Certain copper-base alloys, such as Strenicor containing 4.5 percent nickel, 1 percent silicon, 0.5 percent iron, and the remainder essentially copper, modified with zinc or aluminum, were found to make an effective substitute for 18-percent nickel silver at operating temperatures up to 1,000° F.5

casting anodes and nickel cathodes used as anodes in plating operations. Therefore, figures do not represent

⁴ McEnally, V. L., Jr., and Brune, F. G., Conservation of Nickel: Metal Ind., vol. 90, No. 6, Feb. 8, 1957,

pp. 109-111. **

§ Hannon, C. H., Copper-Base Alloy Compares With Nickel Silver: Iron Age, vol. 180, No. 21, Nov. 21, 1957, pp. 134-136.

PRICES AND SPECIFICATIONS

Prices.—Throughout 1957 the contract price to United States buyers of electrolytic nickel in carlots, f. o. b. Port Colborne, Ontario, was 74 cents a pound, including duty of 1½ cents. For nickel oxide sinter (no duty) the price remained at 70½ cents a pound (nickel content) f. o. b. Copper Cliff, Ontario. Cuban nickel oxide powder and nickel oxide sinter likewise remained at 69 and 70½ cents a pound (nickel content) in bags f. o. b. Philadelphia, Pa.

Nickel scrap prices quoted in the American Metal Market declined in 1957. Prices paid by dealers for nickel clippings averaged about \$1.80 a pound in January compared with \$0.45 in December. The spot-delivered price of Grade F nickel ingot or shot at New York was 78.48 cents a pound throughout 1957.

Specifications.—Specifications listed in table 9 also were those

commonly used by industry.

TABLE 9.—Nickel purchase specifications for National Stockpile, in percent, by weight

			,	
[Ganaral Sarviage	Administration	Fmongono	Theorement Commissi	1
[CIGHEL ST DEL VICES	Aummon amon,	Emergenc.	y Procurement Service]	

		M	Oxide			
Constituent	Electro- lytic	Ingots	Briquets	Shot	Powder	Sinter
Nickel plus cobalt, minimum Cobalt, maximum Iron, maximum Sulfur, maximum Carbon, maximum Copper, maximum	99. 50 1. 00 . 25 . 02 . 10	98. 50 1. 00 . 90 . 07 . 30	99. 50 1. 00 . 25 . 02 . 10	98. 90 1. 00 . 60 . 05 . 25	76. 50 1. 00 . 50 . 05 . 10 . 30	² 76. 50 1. 10 3. 00 .08 .10

National Stockpile Specification P-36-R1, Dec. 27, 1957.
 When the nickel plus cobalt content of sintered nickel oxide exceeds the minimum requirement, the cobalt, iron, sulfur, carbon, and copper may increase proportionately.

FOREIGN TRADE 6

Imports of nickel into the United States reversed a 7-year uptrend in 1957 and declined 2 percent from the alltime high in 1956. Imports comprised chiefly metal, oxide powder, oxide sinter, and sintered matte. As heretofore, Canada was the principal source of imports. The sintered matte was refined to Monel metal and other products at the plant of International Nickel Co., Inc., Huntington, W. Va. Some Cuban nickel oxide sinter was reduced to metal at Crum Lynne, Pa.

The nickel content of refined nickel, oxide powder, oxide sinter, matte, and slurry imported into the United States was estimated at 140,000 short tons in 1957, compared with 142,600 tons in 1956.

⁶ Figures on U. S. imports and exports (unless otherwise indicated) compiled by Mae B. Price and Elsie D. Jackson, Division of Foreign Activities, Bureau of Mines, from records of the U. S. Department of Commerce, Bureau of the Census.

TABLE 10.—Nickel products (excluding residues) imported for consumption in the United States, 1955-57

[Bureau of the Census]

		1955		956 1	1957 1	
Class	Short tons (gross weight)	Value	Short tons (gross weight)	Value	Short tons (gross weight)	Value
Nickel ore and matte Nickel pigs, ingots, shot, cathodes, etc. ² Nickel scrap ² Nickel oxide powder and oxide sinter.	9, 088 109, 404 464 32, 896	\$3, 264, 015 148, 925, 269 692, 733 29, 893, 660	12, 820 106, 534 1, 078 3 32, 955	\$4, 591, 578 152, 408, 971 1, 479, 117 31, 776, 346	13, 177 99, 676 410 4 37, 080	\$5, 201, 946 156, 212, 811 573, 091 4 42, 925, 411
Total		182, 775, 677		190, 256, 012		204, 913, 259

¹ Nickel containing material in powder, slurry, or any other form, derived from ore by chemical, physical, or any other means, and requiring further processing for the recovery therefrom of nickel or other metals was imported as follows: 1956, 37 tons valued at \$45,961; 1957, 211 tons valued at \$97,562. Not provided for in import schedule before July 1, 1956.

² Separation of metal from scrap is on basis of unpublished tabulations.

³ Includes 1,524 tons valued at \$1,905,354 received from Cuba in December but not included in figures of Bureau of the Census until 1957.

⁴ Excludes figures given in footnets 2

4 Excludes figures given in footnote 3.

3 Excludes figures given in footnote 2.

TABLE 11.—New nickel products imported for consumption in the United States, 1956-57, by countries, in short tons

[Bureau of the Census] Slurry 1 Metal Oxide powder and oxide sinter 1957 1956 1956 1957 1956 1957 Country Nickel Nickel Nickel Gross Gross Nickel Gross Gross Gross Gross weight weight content weight content content weight weight weight content North America: 211 62 92,601 90,774 14, 163 10,569 12,762 9,620 Canada.. ² 21, 598 2 18, 791 ² 16, 434 ² 24, 318 Cuba_ 1 1 Mexico... 62 211 92,602 90, 775 2 32, 954 2 27, 003 37,080 Total__ Europe: France____ Germany, West. Netherlands___ 66 ī 516 165 66 12, 208 8,442 Norway.... Sweden....United King-25 317 112 dom. 1 1 Total____ 13, 173 8,744 37 25 Asia: Japan.... 759 157 25 211 62 37 27,004 37,080 31, 218 Total... 106, 534 99,676 Refinery residues 4 Ore and matte 1957 1957 1956 1956 Country Nickel Nickel Gross Gross Nickel Gross Nickel Gross content weight content weight content weight content weight North America: 1,946 Canada.... 12,820 8,647 13, 177 9, 103

¹ See footnote 1, table 10.
2 Includes 1,524 tons of oxide sinter containing 1,359 tons of nickel received in December but not included in figures of Bureau of the Census until 1957.

A Reported to Bureau of Mines by importers. 4 Reported to Bureau of Mines by importers.

887NICKEL

TABLE 12.—New nickel products imported for consumption in the United States, 1948-52 (average) and 1953-57, in short tons

[Bureau of the Census]

			Gross weight Total				
Year	Metal	Ore and matte	Oxide powder and oxide sinter	Refinery	Slurry ²	Gross weight	Nickel content (esti- mated)
1948-52 (average)	73, 633 84, 714 97, 263 109, 404 106, 534 99, 676	12, 675 14, 605 14, 135 9, 088 12, 820 13, 177	17, 290 31, 850 32, 264 32, 896 7 32, 955 8 37, 080	(3) 516 211 89 1,946	(4) (4) (4) (4) (4) 37 211	\$ 103, 598 131, 685 143, 873 151, 477 154, 292 150, 144	6 96, 172 118, 737 131, 784 142, 117 142, 642 140, 000

From January 1, 1948, through December 31, 1957, the rate of duty on refined nickel imported into the United States has been 11/4 cents a pound. Nickel ore, oxide powder, oxide sinter, matte, and slurry entered the United States duty free.

The nickel exported from the United States was principally contained in nickel and nickel alloys in ingots, bars, rods, sheets, plates, and other crude forms and scrap. Canada (3,904 tons), West Germany (3,684 tons), and United Kingdom (2,908 tons) were the chief foreign markets in 1957.

Owing to the improved sup, by of primary nickel and slackening demand in 1957, restrictions on ports of nickel-bearing copper-base alloy scrap were relaxed in directives announced by the Bureau of Foreign Commerce early in March.

TABLE 13.—Nickel products exported from the United States, 1955-57, by classes [Bureau of the Census]

		1955		1956		1957	
Olass	Short tons	Value	Short tons	Value	Short tons	Value	
Ore, concentrate, and matte Nickel and nickel-alloy metals in ingots, bars, rods, and other crude forms, and			27, 331	\$555, 660			
scrap	19, 317	\$14, 098, 863	15, 116	15, 262, 575	11, 940	\$11, 965, 309	
Nickel and nickel-alloy metal sheets, plates, and strips	647	1, 511, 441	1, 245	2, 756, 171	816	2, 124, 371	
forms, not elsewhere classified	429	1, 480, 935	626	1, 877, 705	508	1, 796, 505	
Nickel-chrome electric resistance wire, except insulated	208	773, 180	208	836, 036	151	631, 625	
		17, 864, 419		21, 288, 147		16, 517, 810	

WORLD REVIEW

World output of nickel continued upward for the seventh consecutive year to a new high of 314,000 short tons in 1957, an 11-percent

¹ Reported to Bureau of Mines by importers.
2 See footnote 1, table 10.
3 Data not available.
4 Not provided for in import schedule before July 1, 1956.
5 Excludes "Refinery residues."
6 Includes nickel content of "Refinery residues."
7 See footnote 2 table 10

 ⁷ See footnote 3, table 10.
 8 Excludes 1,524 tons received in 1956 but included in figure of Bureau of the Census in 1957.

increase over 1956 and more than double the quantity produced in Record outputs were again made in all of the principal producing countries. Canada supplied 60 percent of the 1957 total and has supplied 64 percent of the total from 1953-57.

NORTH AMERICA

Canada.—Virtually all the Canadian output was derived from copper-nickel ores of the Sudbury district, Ontario; Lynn Lake area, Manitoba; and Rankin Inlet area, Northwest Territories. Some nickel was also recovered as a byproduct from silver-cobalt ores of Cobalt, Ontario. Virtually the entire production came from the

TABLE 14.—World mine production of nickel, by countries, 1948-52 (average) and 1953-57, in short tons of contained nickel ¹

[Compiled by Augusta W. Jann and Berenice B. Mitchell]

Country	1948-52 (average)	1953	1954	1955	1956	1957
North America:		1				
Cuba (content of oxide)	132, 510 1, 785	143, 693 13, 844	161, 279 14, 545	174, 928 15, 138	178, 515 16, 062	188, 962 22, 245
United States: Byproduct of copper refiningRecovered nickel in domestic ore	795	591	639	451	623	502
refined		11	192	3, 356	6, 099	9, 568
Total	135, 090	158, 139	176, 655	193, 873	201, 299	221, 277
South America:					4	
Bolivia (content of ore)Brazil (content of ferronickel)	(8)	55	(3)	57	70	(8)
' Total	(3)	55	(3)	57	74	(3)
Europe: Finland (content of nickel sulfate) Greece	(3)	4 309	89	134	164 386	(3)
U. S. S. R. 6 (content of ore)	31,000	44,000	46,000	48,000	52,000	(3) 55, 000
Total	(3)	44, 309	46, 089	48, 134	52, 550	(3)
Asia: Burma (content of speiss) Iran (content of speiss)	154	16	116 1	72 1	115 1	72 (³)
Total	154	16	117	73	116	(3)
Africa: French Morocco (content of cobalt ore) Rhodesia and Nyasaland, Federation of: Southern Rhodesia (content of	40	132	162	167	142	93
ore)		(8)	(8)	(8)	(8)	(8)
Union of South Africa (content of matte and refined nickel)	951	1,891	2, 112	2, 598	3, 624	4, 562
Total	991	2, 023	2, 274	2, 765	3, 766	4, 655
Oceania: New Caledonia 9	5, 784	13, 000	13,000	18,000	25, 000	33, 000
World total (estimate)	173,000	218,000	238, 000	263, 000	283, 000	314, 000

¹ This table incorporates a number of revisions of data published in previous Nickel chapters. Data do

not add to totals shown because of rounding where estimated figures are included in the detail.

2 Comprises refined nickel and nickel in oxide produced and recoverable nickel in matte exported.

3 Data not available; estimate by author included in the total.

4 Includes 233 tons in matte.

According to the 44th annual issue of Metal Statistics (Metallgesellschaft), except 1957.

⁷ Year ended Mar. 21 of year following that stated.
⁸ Data not available. Production of ore was in 1953, 63 tons; 1954, 62 tons; 1955, 18 tons; 1956, 200 tons; and 1957, 359 tons.

Omprises nickel content of matte and ferronickel produced in New Caledonia and estimate (by author) of recoverable nickel in ore exported. Mine production (nickel content) was as follows: 1948-52 (average), 6,073 tons; 1953, 18,800 tons; 1954, 15,100 tons; 1955, 27,200 tons; 1956, 32,500 tons; and 1957, 47,000 tons.

NICKEL 889

following six companies: International Nickel Co. of Canada, Ltd., Falconbridge Nickel Mines, Ltd., Nickel Rim Mines, Ltd., and Nickel Offsets, Ltd., all in the Sudbury district; Sherritt Gordon Mines, Ltd., in the Lynn Lake area; and North Rankin Nickel Mines, Ltd., on the shore of Rankin Inlet. Nickel production in Canada was 189,000 short tons, a 6-percent gain over 1956 and a new high. Exports of nickel from Canada were 178,700 short tons, also a new peak and 1 percent more than in 1956.

International Nickel Co. of Canada, Ltd., operated at capacity in 1957 for the eighth consecutive year. Its deliveries of nickel in all forms approximated the alltime high of 1955 and totaled 145,000

short tons, compared with 143,000 tons in 1956.7

Continued progress of conversion from open pit to almost entirely underground mining at the Inco Sudbury mines was reflected in the new record of 14.9 million tons mined underground in 1957, compared with 14.3 million tons in 1956. The quantity of ore mined at open pits was 1.1 million tons, compared with 1.2 million tons in 1956. The total of ore mined in 1957 was a record 16 million tons, compared with 15.5 million tons in 1956. By far the greater part of underground ore was again mined by block-caving and blast-hole methods. According to the company, the proved ore reserve in its Sudbury district holdings at the end of 1957 was 264 million tons containing 8 million tons of nickel-copper, or about the same as at the end of 1956. At the end of 1957 underground development in the active mines in the Sudbury district was brought to a cumulative total of 427 miles, compared with 410 miles in 1956.

The following information concerning exploration, developments, and expansions was abstracted from the Annual Report of Inter-

national Nickel Co. of Canada, Ltd., for 1957.

In the Sudbury district systematic investigation of the extensions of ore zones and favorable structures at the five active underground mines—Creighton, Frood-Stobie, Garson, Levack, and Murray—was continued from both surface and underground with satisfactory results. Work proceeded toward preparing the Crean Hill mine for production. At the Thompson mine in the Mystery-Moak Lakes region of Manitoba, completing the 1,057-foot development shaft and sinking the 2,100-foot production shaft, to be completed in late 1958, proceeded on schedule. The 30-mile branch line that links the mine with the Hudson Bay line of Canadian National Railways was completed in October. Development was also done at the Moak Lake mine.

Favorable progress in the exploration program at the Thompson mine resulted in a decision to bring it into production before the Moak Lake mine. Consequently, the scheduled output of 37,500 tons of nickel annually from Manitoba will come first from the Thompson mine. Production was expected to begin in 1960.

Substantial exploratory programs were also conducted by Inco in Saskatchewan and Quebec, Canada, and Australia. Tests of the ore possibilities were continued in the area which includes the company Coppermine River concession in the Northwest Territories. Property examinations were made in Africa, the East Indies, the West Indies, and elsewhere.

⁷ International Nickel Co. of Canada, Ltd., Annual Report: 1957, pp. 7, 9.

During 1957 Inco spent \$8.9 million in search for new nickel ore,

half of it for exploration in Manitoba.

Falconbridge Nickel Mines, Ltd., set new records in production of ore and matte for the eighth consecutive year. Its six mines—Falconbridge, McKim, Mount Nickel, Hardy, East, and Longvack—in the Sudbury district were again in production. Some development ore was obtained from the Fecunis mine. The Mount Nickel mine ceased production in November because of depletion of ore. Ore and concentrate delivered from company mines to treatment plants totaled 2 million short tons in 1957, compared with 1.9 million tons in 1956.

The following information concerning developments, exploration, expansions, and reserves was abstracted from the 29th Annual Re-

port of Falconbridge Nickel Mines, Ltd., for 1957.

Deepening of the openings at the Falconbridge and East mines was continued. The internal shaft at the McKim mine was completed; four new levels were being developed to mine a separate ore known as the "track ore body." At the Fecunis mine the underground crushing, loading, and hoisting systems and surface conveyers to the main storage bin were placed in service in November, when the first level was turned over to International Nickel in preparation for mining on Falconbridge account. The Fecunis concentrator began operating at partial capacity in May, treating production from the Longvack mine and development ore from the Fecunis mine. Development continued at the Boundary and Onaping mines. Near the Falconbridge plant a small, proved ore body owned by Emtwo Mines, Ltd., will be mined by Norduna Mines, Ltd. Funds were advanced by Falconbridge, which contracted to purchase the ore. Regular ore production was planned for 1958.

The ore reserve of Falconbridge in the Sudbury district was increased half a million tons. There was also a slight increase in the grade of both nickel and copper. The total ore reserve was 45.8 million short tons on December 31, 1957. The reserve comprised 23.4 million tons of developed ore averaging 1.54 percent nickel and 0.86 percent copper in the Falconbridge, East, McKim, Hardy, Longvack, and Fecunis mines and 22.4 million tons of indicated ore averaging 1.33 percent nickel and 0.72 percent copper in Sudbury district

holdings.

Falconbridge explored in Quebec (Ungava), western Ontario, and southeastern and northern Manitoba. No discoveries of substantial importance were made. In the Kenora area, Ontario, work on the Kenbridge property was suspended about midyear. The results of exploration and the economic prospects did not warrant additional

development at this time.

The Sherritt Gordon Mines, Ltd., produced a record 20,067,400 pounds of nickel metal at its refinery in Fort Saskatchewan, Alberta, compared with 19,239,600 pounds in 1956. The metal was refined from company concentrate produced at its mines and mill at Lynn Lake, Manitoba. In addition to its own production, 2,419,800 pounds of nickel was produced on a toll basis in 1957, compared with 152,900 pounds in 1956. The capacity of the refinery was increased

Sherritt Gordon Mines, Ltd., Annual Report: 1957, p. 3.

NICKEL 891

to 27.5 million pounds of nickel annually, providing substantial capacity for the treatment of custom concentrate or matte. Ore was also produced at a higher rate than in 1956. Ore hoisted at the A and EL mines was 833,400 short tons in 1957, compared with 752,800 tons in 1956. Shaft sinking at the Farley property continued throughout 1957 and reached 1,862 feet, with stations at 150-foot intervals. This shaft will be completed in 1958 to a depth of 2,350 feet and equipped with headframe, hoisting machinery, and other surface facilities. Exploration was conducted at an accelerated rate at properties in northern Manitoba and the Northwest Territories, but no significant ore discoveries were made. Location of a new ore body (found by Sherritt Gordon during 1957) together with extensions of known ore bodies resulted in a net increase of 570,000 tons in the ore reserve. Ore reserves totaled 13.6 million tons averaging 1.064 per-

cent nickel and 0.561 percent copper on December 31, 1957.

Other Canadian companies—Nickel Rim Mines, Ltd., and Nickel Offsets, Ltd., both in the Sudbury district—again shipped to Falconbridge Nickel Mines, Ltd.; Nickel Rim also again shipped to the Sherritt Gordon refinery. Nickel Rim Mines, Ltd., Eastern Mining & Smelting Corp., Ltd., and Canalask Nickel Mines were merged into Nickel Mining & Smelting Co. Plans were reported to be progressing satisfactorily for beginning production of ore in November by Arcadia Nickel Corp., also in the Sudbury district; construction of a mill was in progress. North Rankin Nickel Mines, Ltd., on the shore of Rankin Inlet, Northwest Territories, began producing nickel concentrate in May; the concentrate averaged 13.5 percent nickel and 2.58 percent copper. Proved ore reserves to the 300-foot level total 460,000 tons containing 3.3 percent nickel, 0.8 percent copper, and 0.03 and 0.06 ounce, respectively, of platinum and palladium a ton. Much information, including a description of the mining and milling methods, on the North Rankin operation was published. The 1957 production was reported sold to overseas buyers at premium prices.¹² The mine of Western Nickel, Ltd., at Choate, British Columbia, was being rehabilitated and a concentrator constructed; the concentrate will be shipped to Sherritt Gordon for refining.¹³ Much publicity was given to discoveries of nickel-copper deposits in the Ungava area in Quebec, where the Quebec Government had granted exploration permits to many companies. Exploration work by Asarco Nickel Co., subsidiary of American Smelting and Refining Co., on a nickel-copper prospect in the Ungava area failed to indicate enough potential tonnage and grade to justify an integrated nickel operation based on deposits in this isolated area.14

Cuba.—Production of nickel in Cuba increased progressively after the recovery plant at Nicaro, Cuba, was rehabilitated in 1952. It reached a new high in 1957 and was 38 percent greater than in 1956. Output of oxide powder and oxide sinter was 24,983 short tons (22,245)

Northern Miner (Toronto), Nickel Rim Okays Merger Agreement, But Tempers Flare: Vol. 43, No. 37, Dec. 5, 1967, p. 2.
Dec. 5, 1967, p. 2.
Oanadian Mining Journal (Gardenvale), Arcadia Nickel Corporation: Vol. 78, No. 9, September 1957,

pp. 157-158.

11 Canadian Mining Journal (Gardenvale), North Rankin Nickel Mines: Vol. 78, No. 8, August 1957,

pp. 93-97.

13 Northern Miner (Toronto), North Rankin Nickel to Start Production Before End of April: Vol. 43, No. 2, Apr. 4, 1967, p. 1.

No. 2, Apr. 4, 1957, p. 1.

11 Northern Miner (Toronto), vol. 43, No. 14, June 27, 1957, p. 25,

12 American Smelting and Refining Co., Annual Report: 1957, p. 14.

tons of nickel plus cobalt content) in 1957, compared with 18,285 tons (16,062 tons of nickel plus cobalt content) in 1956. The 1957 output consisted of 3,040 tons of oxide powder averaging 78.35 percent nickel plus cobalt and 21,943 tons of oxide sinter averaging 90.52 percent nickel plus cobalt.

Exports of nickel from Cuba in 1957 were 24,323 short tons (21,603) tons of nickel plus cobalt content) and consisted of 3,169 tons of oxide powder averaging 78.32 percent nickel plus cobalt and 21,154 tons of

oxide sinter averaging 90.39 percent nickel plus cobalt.

Production of ore was 2.2 million dry short tons in 1957, compared with 1.5 million tons in 1956. Ore fed to the driers was 2.15 million dry short tons averaging 1.37 percent nickel in 1957, compared with

1.5 million tons averaging 1.40 percent nickel in 1956.

The 75-percent expansion of the nickel-producing facilities at the United States Government-owned plant at Nicaro was completed in March 1957, increasing its rated annual capacity to at least 50 million

pounds of nickel.¹⁵

During 1957 Moa Bay Mining Co., a subsidiary of Freeport Sulphur Co., began constructing ore-processing facilities at Moa Bay, Cuba.

Dominican Republic.—Minera y Beneficiadora Falconbridge Dominicana C. por A. (subsidiary of Falconbridge Nickel Mines, Ltd.) continued exploration on the 300-square-mile concession in the Dominican Republic. Delimiting of the nickeliferous laterite deposits within the concession was completed, and work was being concentrated on determining the tonnage and grade of two deposits considered to have the best ore potential.

SOUTH AMERICA

Brazil.—The Jeoro nickel silicate ore deposit in the Jacupiranga district, São Paulo, was under development, and 500 tons of ore was shipped to Japan in February for experimental study.¹⁶

EUROPE

Finland.—The nickel content of ores of the Outokumpu copper mine and the Nivala nickel-copper mine was recovered as nickel sulfate at the Pori metal works of Outokumpu Oy. Nickel sulfate production was about 400 short tons containing 89 tons of nickel in 1957, compared with 744 tons containing 164 tons of nickel in 1956.

Discovery of large nickel deposits in the vicinity of Kotalahti, 20

miles from Kuopio, was announced by Outokumpu Oy.17

France.—The only nickel refinery in France was that of Société le Nickel at Le Havre, which refined matte imported from New Cale-Production of nickel metal was 6,600 short tons in 1957, comdonia. pared with 5,677 tons in 1956.

An expansion program of Société le Nickel provided for increasing the refinery capacity at Le Havre from 7,000 tons to 14,000-15,000

tons by 1960.18

Greece.—A much higher grade of ferronickel was expected to be produced at the nickel plant at Larymna; an electric furnace was to

Engineering and Mining Journal, Nicaro Expands Nickel Capacity: Vol. 158, No. 9, September 1957, pp. 82-89.
 Mining World, vol. 19, No. 7, June 1957, p. 109.
 Mining World, vol. 19, No. 12, November 1957, p. 106.
 Mining Journal (London), vol. 249, No. 6378, Nov. 15, 1957, p. 587.

NICKEL 893

be put in operation in August 1957 to replace another facility.19 The

Karditsa mine near Larymna was the source of the ore.

Norway.—Output of nickel at the refinery of Falconbridge Nickel Mines, Ltd., at Kristiansand established a new high of 23,500 short tons in 1957, a 7.5-percent increase over 1956. The metal was produced from matte from Canada. Deliveries of nickel to customers were 23,440 short tons in 1957, compared with 21,692 tons in 1956. Nickel-refining capacity was further increased in 1957.

ASIA

Burma.—Nickel in the form of speiss was produced in Burma as a byproduct of lead-zinc mining at the Bawdwin mine of the Burma

Corporation, Ltd.

Japan.—Production in Japan consisted of 7,994 short tons of pure nickel and 37,184 tons of ferronickel in 1957, compared with 6,243 tons of pure nickel and 23,045 tons of ferronickel in 1956. New Caledonia was the main source of nickel ore.

AFRICA

Rhodesia and Nyasaland, Federation of.—An option to purchase the mineral rights of the Empress nickel claims near Gatooma, Southern Rhodesia, was exercised by the Rio Tinto Mining Co. of Central Africa, Ltd.²⁰ About £500,000 had been spent on development, which included sinking a 400-foot shaft to obtain bulk samples and building a pilot plant in which to develop the most economical method of separating the nickel and copper.²¹ The pilot plant consists of a small crusher, a ball mill, 46 flotation cells, and accessory equipment.

A deposit of nickel-bearing ore, 3 miles long and varying in width from 150 to 650 feet, was reported to have been discovered on claims owned by Trojan Nickel Mine in the Bindura area of Southern

Rhodesia.22

Union of South Africa.—From 1938-57 there was a small annual production of nickel from the sulfide ore in the Rustenburg district by Rustenburg Platinum Mines, Ltd. Production comprised 3,700 short tons of matte and 862 tons of electrolytic nickel in 1957, compared with 2,773 tons of matte and 851 tons of electrolytic nickel in 1956.

OCEANIA

New Caledonia.—Production of nickel ore (containing about 26 percent moisture) in New Caledonia established an alltime high of 1,983,000 short tons containing about 47,000 tons of nickel in 1957, compared with 1,367,000 tons containing 32,500 tons of nickel in 1956.

Production of nickel in matte and ferronickel by Société le Nickel

was 7 percent more in 1957 than in 1956.

Metal Bulletin (London), New Plant at Larymna: No. 4209, July 9, 1957, p. 30.
 Mining World, Rio Tinto Purchases Rhodesian Nickel Mines: Vol. 19, No. 6, May 1957, p. 91.
 Rhodesian Mining and Engineering Review (London), Tour of the Empress Nickel Prospect Near Gatooms: Vol. 22, No. 5, May 1957, pp. 28-31.
 Metal Industry (London), vol. 91, No. 12, Sept. 20, 1957, p. 243.

TABLE 15.—Production of nickel matte and ferronickel by Société le Nickel, 1956-57, in short tons

[New Caledonia Mines Service]

	19	56	1957		
Product	Gross	Nickel	Gross	Nickel	
	weight	content	weight	content	
MatteFerronickel	8, 639	6, 669	10, 647	7, 802	
	15, 347	3, 973	14, 747	3, 569	
Total	23, 986	10, 642	25, 394	11, 371	

Exports of nickel ore at an alltime high in 1957 were 44 percent more than in 1956; those of matte and ferronickel were greater by 55 and 12 percent, respectively. Of the 1957 exports of ore, 1,122,954 short tons was shipped to Japan, 22,021 tons to Australia, and 73,629 tons to France. All of the matte and ferronickel was shipped to France.

TABLE 16.—Nickel ore and nickel products exported from New Caledonia, 1956-57, in short tons

[New Caledonia Mines Service]

	19	56	19	57
Product	Gross	Nickel	Gross	Nickel
	weight	content	weight	content
Ore	848, 988	19, 600	1, 218, 604	28, 000
	7, 628	5, 892	11, 839	8, 71
	14, 193	3, 691	15, 903	3, 849

Tasmania.—An occurrence of nickel-copper sulfide ore, averaging 1.5 percent nickel, was reported discovered by Montana Silver Lead N. L. at Zeehan, Tasmania.²³ A unique feature of the find, according to the company, was the occurrence of dense sulfide nickel-copper ore assaying 8 to 14 percent nickel and 4 to 5 percent copper.

TECHNOLOGY

Nickel research by the Bureau of Mines for GSA included improving the extraction of nickel and cobalt from the United States Government-owned deposits in Cuba and at its recovery plant at Nicaro, Cuba. The Bureau also conducted large-scale tests for GSA in reducing nickel oxide to metal and in separating nickel and cobalt by selective leaching and electrolysis. In addition, the Bureau continued its research in recovering nickel from Missouri ores. The results of smelting tests by the Bureau on samples of Cuban nickeliferous serpentine and laterite were published.²⁴ The tests on nickeliferous serpentine demonstrated that over 91 percent of the nickel can be

Industrial and Mining Standard (Melbourne), Montana Strikes Rich Nickel-Copper Lode at Zeehan
 Property: Vol. 112, No. 2832, Apr. 18, 1957, p. 17.
 Anable, W. E., and Banning, L. H., Electric Smelting of Cuban Serpentine and Laterite Nickel Ores:
 Bureau of Mines Rept. of Investigations 5346, 1957, 24 pp.

895 NICKEL

recovered in a low-carbon ferronickel product containing 25 percent or more nickel.

In connection with Bureau of Mines research on utilization of Cuban lateritic ores, a comprehensive review was made of the chemical literature on nickel and cobalt. As a result, a bibliography of 1,600

references was published.25

Industry was active in developing new processes for recovering nickel and new uses for nickel and its alloys, and in producing improved nickel-base high-temperature alloys. International Nickel Co. of Canada, Ltd. (Inco), made an important advance in chemical metallurgy by developing a new process for recovering nickel by direct electrolysis of nickel matte. A section of its existing electrolytic units at the Port Colborne, Ontario, refinery was modified to use the process. The process contrasts with the usual electrorefining methods, including those employed in the nickel industry, in which a metal anode is used. The new method eliminates high-temperature oxidation and reduction processes with attendant losses of metals and sulfur and Instead, nickel sulfide of low copper content from the Bessemer converter or other source can be cast directly to sulfide anodes and electrolyzed to produce high-quality nickel. Another unique feature of the process is that it permits commercial recovery of elemental sulfur and selenium as valuable byproducts, in addition to cobalt and precious metals conventionally recovered.

Inco intensified its efforts to develop new and more diversified uses for nickel and its alloys in anticipation that abundant supplies of the metal will continue to be available. Emphasis was placed on those research projects that promised important increases in the use of nickel. Prominent among the uses were new nickel steels offering economy and special properties for gears, heavy forgings and service at subzero temperatures, and high-nickel alloys for automotive gas turbines and for

atomic powerplants.

Incoloy T, a new nickel-chromium-iron high-temperature alloy, was developed by International Nickel Co., Inc., for use in highly stressed parts of jet-engine combustion systems and in airframes used for hypersonic flight.²⁶ The alloy contains 30 to 34 percent nickel and cobalt, 19 to 22 percent chromium, 40 to 47 percent iron, and 0.75 to 1.5 percent titanium. As a result of the titanium addition, the alloy exhibits improved tensile and rupture properties and has excellent oxidation resistance up to 1,600°-1,700° F.

Falconbridge Nickel Mines, Ltd., continued research at Falconbridge and Richvale, Ontario, and Kristiansand, Norway. gical investigations were directed principally to improving practices in concentration, smelting, and refining. Laboratory investigation and development of spectrographic and other instrumental methods were continued, and mineralogical and chemical studies were conducted for the purpose of developing more efficient operations and improved quality of products. The expanded metallurgical laboratory and pilot plant completed early in 1957 at Richvale were devoted largely to investigation of lateritic nickel ore, over 100 tons of which was partly processed by methods under development.

<sup>Bauder, R. B., Bibliography on Extractive Metallurgy of Nickel and Cobalt, January 1929–July 1955:
Bureau of Mines Inf. Circ. 7805, 1957, 159 pp.
Materials and Methods, Improved Nickel-Alloy Sheet Can Be Used up to 1,600° F.: Vol. 45, No. 4,</sup> pril 1957, p. 173.

Sherritt Gordon Mines, Ltd., conducted research on problems connected with its own operations and also conducted extensive pilotplant work in the treatment of nickel matte for a prospective licensee. This latter work demonstrated that nickel matte is amenable to treatment by its leaching and reduction processes.

A description was given 27 of the reaction by which nickel can be precipitated from aqueous ammoniacal nickel sulfate solutions by

hydrogen at elevated pressures and temperatures.

Patents were issued for processes for recovering nickel from laterite ore, 28 garnierite ore, 29 and mixed sulfide matte 30 and from an ore also containing iron, sulfur, and at least one metalloid selected from arsenic, antimony, selenium, and tellurium.31

Patents were issued for processes for separating nickel and cobalt 32

and hydrometallurgical precipitation of the two metals.³³

Patents pertaining to plating of nickel included the following:34 A patent was issued for a process of preparing high-purity nickel for use as a cathode material in an electron tube.35

1957.
Mond Nickel Co., Improvements in the Recovery of Nickel From Lateritic Ores: British Patent 782,242,

Mond Nickel Co., Improvements in the Recovery of Nickel And Corp.), Recovery of Nickel and Cobalt Schaufelberger, F. A. (assigned to Chemical Construction Corp.), Recovery of Nickel and Cobalt Values From Garnierite Ores: U. S. Patent 2,778,729, Jan. 22, 1957.

38 Kenworthy, Heine, Process For Obtaining Nickel and Cobalt From a Mixed Sulphide Matte: U. S. Patent 2,790,713, Apr. 30, 1957.

38 Considers H. O. Process for Extracting Cobalt and Nickel From Their Ores: U. S. Patent 2,805,940.

31 Bennedsen, H. O., Process for Extracting Cobalt and Nickel From Their Ores: U. S. Patent 2,805,940,

31 Bennedsen, H. O., Process for Extracting Cobalt and Nickel From Their Ores: U. S. Patent 2,805,940, Sept. 10, 1957.

32 Schanfelberger, F. A., and Czikk, A. M. (assigned to American Cyanamid Co.), Separation of Cobalt From Nickel: U. S. Patent 2,777,753, Jan. 15, 1957.

Roy, T. K., and Bocekino, H. G. (assigned to Chemical Construction Corp.), Hydrometallurgical Separation of Nickel and Cobalt: U. S. Patent 2,778,728, Jan. 22, 1957.

Voos, Walter (assigned to Lonza Electric & Chemical Works, Ltd.), Method of Separating Nickel and Cobalt Compounds From Each Other: U. S. Patent 2,793,936, May 28, 1957.

DeMerre, Marcel (assigned to Société Générale Métallurgique de Hoboken), Separation of Nickel From Cobalt: U. S. Patent 2,203,537, Ang. 20, 1957; 2,818,377, Dec. 31, 1957.

32 Shaw, J. J., and Schanfelberger, F. A. (assigned to Chemical Construction Corp.), Process for the Hydrometallurgical Precipitation of Nickel and Cobalt: U. S. Patent 2,796,343, June 18, 1957.

34 Du Rose, A. H., and Little, J. D. (assigned to Harshaw Chemical Co.), Electrodeposition of Nickel: U. S. Patent 2,782,154, 2,782,154, and 2,782,155, Feb. 19, 1957.

Ellis, D. G. (assigned to Harshaw Chemical Co.), Electrodeposition of Nickel: U. S. Patents 2,782,154, 2782,154, and 2,782,155, Feb. 19, 1957.

Brown, Henry (assigned to Udylite Research Corp.), Electrodeposition of Nickel: U. S. Patents 2,781,305

Mar. 5, 1957.

Brown, Henry (assigned to Udylite Research Corp.), Electrodeposition of Nickel: U. S. Patents 2,781,305 and 2,781,306, Feb. 12, 1957; 2,795,540, June 11, 1957; 2,800,440 and 2,800,442, July 23, 1957.

Brown, Henry, and Clauss, R. J. (assigned to Udylite Research Corp.), Electrodeposition of Nickel: U. S. Patent 2,800,441, July 23, 1957.

Foulke, D. G., and Kardos, Otto (assigned to Hanson-Van Winkle-Munning Co.), Nickel Plating: U. S. Patent 2,818,876, Dec. 31, 1957.

Moore, J. H., Clough, P. J., and Franks, A. E. (assigned t National Research Corp.), Process of Preparing High-Purity Nickel: U. S. Patent 2,815,279, Dec. 3, 1957

Mackiw, V. N., Lin, W. C., and Kunda, W., Reduction of Nickel by Hydrogen From Ammoniacal Nickel Sulfate Solutions: Jour. Metals, Trans. AIME, vol. 9, No. 6, June 1957, pp. 786-793.
 Donaldson, J. W. (assigned to Quebec Metallurgical Industries, Ltd.), Method for Recovering Nickel and Cobalt From Ores: U. S. Patent 2,816,015, Dec. 10, 1957.
 Simons, C. S., III (assigned to Freeport Sulphur Co.), Process of Preparing Limonitic Ores for Separation of Metal Content: U. S. Patent 2,798,804, July 9, 1957.
 Mancke, E. B. (assigned to Bethlehem Steel Co.), Treatment of Iron Ores: U. S. Patent 2,776,207, Jan. 1, 1987.

Nitrogen Compounds

By E. Robert Ruhlman 1

EXPANDED facilities of the atmospheric nitrogen industry raised United States capacity to about 4.75 million short tons of equivalent nitrogen compared with 3.9 million for 1956. The 1957 output was 82 percent of the year-opening capacity.

TABLE 1.—Salient statistics of the nitrogen compounds industry, 1948-52 (average) and 1953-57, in thousand short tons

	1948-52 (average)	1953	1954	1955	1956	1957
United States: Production of anhydrous ammonia, nitrogen equivalent. Imports of nitrogen compounds, gross weight. Exports of nitrogen compounds, gross weight. Consumption of nitrogen compounds,	1, 468 1, 387 700	2, 096 2, 218 133	2, 432 1, 927 433	2, 895 1, 605 828	2, 985 1, 493 1, 038	3, 266 1, 428 1, 127
nitrogen equivalent, for years end- ing June 30	1,750	2, 585	2, 956	3, 178	3, 350	3, 550
pounds, nitrogen equivalent, for years ending June 30	4, 593	5, 840	7, 122	8, 062	8, 909	9, 396

DOMESTIC PRODUCTION

Anhydrous ammonia production continued its upward trend and reached a new high in 1957 that amounted to 9 percent more than in 1956. Ammonium sulfate output increased slightly but did not reach the previous record of 1955. The production of ammonium nitrate in 1957 was 16 percent above that in the preceding year. Synthetic sodium nitrate was produced by Allied Chemical & Dye Corp., Hopewell, Va., and Olin Mathieson Chemical Corp., Lake Charles, La.

A urea plant was being constructed by Hercules Powder Co. at Hercules, Calif. This 10,000-ton-per-year plant was scheduled for completion by late 1958.

Mississippi Chemical Corp. was expanding its nitric acid facilities

by adding a 150-ton-per-day unit.

Monsanto Chemical Co. began to construct a 100-ton-per-day urea plant adjoining the ammonia and carbon dioxide plants at El Dorado, Ark. This plant was to make both prilled and solution forms.

¹ Commodity specialist.

TABLE 2.—Principal nitrogen compounds produced in the United States, 1948-52 (average) and 1953-57, in short tons

Commodity	1948-52 (average)	1953	1954	1955	1956	1957 1
Ammonia (NH ₃):						
Synthetic plants 2 Coking plants	1, 555, 720 229, 525	2, 287, 785 261, 379	2, 736, 478 221, 809	3, 251, 599 269, 607	3, 378, 362 3 251, 292	3, 710, 916 260, 684
Total anhydrous ammonia Total N equivalent		2, 549, 164 2, 096, 076	2, 958, 287 2, 432, 481	3, 521, 206 2, 895, 347	3 3,629,654 3 2,984,519	
Principal ammonium compounds: Aqua ammonia, 100 percent NH ₃ :						
Synthetic plants 2	(4) 23, 566	33, 676 24, 846	53, 943 16, 104	39, 341 16, 621	40, 719 17, 681	(4) 16, 458
Total aqua ammonia	(4)	58, 522	70, 047	55, 962	58, 400	(4)
Ammonium sulfate, 100 percent (NH ₄) ₂ SO ₄ :						
Synthetic plants 2 Coking plants	736, 654 823, 836	576, 232 946, 133	943, 825 822, 818	1, 172, 779 981, 326	1, 095, 782 882, 700	1, 073, 423 909, 995
Total ammonium sulfateAmmonium nitrate, 100 percent NH ₄ NO ₃	1, 560, 490	1, 522, 365	1, 768, 643	2, 154, 105	1, 978, 482	1, 983, 418
Solution 2 Ammonium chloride, 100 percent NH ₄ Cl,	1, 206, 949	1, 558, 457	1, 885, 463	2, 099, 504	2, 203, 672	2, 561, 886
gray and white 2	(4) (4)	33, 341 360, 720	28, 443 444, 705	30, 192 3 468, 519	29, 712 490, 320 6, 067	(4) (4) 9, 629

Preliminary figures.
 Data from Bureau of the Census Facts for Industry series.

3 Revised figure. 4 Data not available.

The Sohio Chemical Co. utilized the Swiss Invento process for urea production at its Lima, Ohio, plant. The urea section had a capacity of 120 tons per day.²

Spencer Chemical Co. completed a urea plant at Vicksburg, Miss.,

and planned another urea plant at Henderson, Ky.

St. Paul Ammonia Products, Inc., began operations about midyear. This company, owned by the Central Farmers Fertilizer Co., will supply anhydrous ammonia and nitrogen solution to the 16 membercooperatives.

Nitric acid capacity in the United States was 3.7 million tons per year at the end of 1957, a 100-percent increase in 6 years.³ A total of 49 nitric acid plants were operating at the end of year, more than half

adjacent to ammonia plants.

Guano production from Bat Cave, on the south rim of the Grand Canyon some 60 miles north of Kingman, Ariz., was begun during 1957 by Randall Mills Corp. The guano was conveyed from the cave, 600 feet above the Colorado River, to the north rim by a 1½-mile aerial tramway, where it was packaged for sale by the United States Guano Corp. The material was marketed with a minimum content of 10 percent nitrogen. Both companies were subsidiaries of New Pacific Coal & Oils, Ltd., of Toronto, Canada. The reserve was estimated to exceed 100,000 short tons.

² Grindrod, John, New U. S. Fertiliser Plant: Fertiliser and Feeding Stuffs Jour. (London), vol. 46, No. 13, June 19, 1957, pp. 592, 595, 597, 601.

³ Chemical Week, Nitric Capacity—Doubled Since '51—More Needed by '60?: Vol. 80, No. 28, July 3 107, pp. 447. 1957, pp. 46-47.

CONSUMPTION AND USES

Agriculture continued to be the leading consumer of nitrogen Over 2.1 million short tons of contained nitrogen was consumed by agriculture, a 10-percent increase over the previous year. The principal nitrogen materials, in order of importance as fertilizers, were: (1) Ammonium nitrate and ammonium nitrate-limestone mixtures, (2) anhydrous and aqua ammonia, (3) ammonium sulfate, (4) sodium nitrate, (5) nitrogen solutions, (6) urea, (7) calcium cyanamide, and (8) calcium nitrate.

According to the United States Department of Agriculture, for the year ended June 30, 1957, consumption of nitrogen solutions, ammonium sulfate, aqua ammonia, urea, ammonium nitrate, and anhydrous ammonia as fertilizers increased 87, 25, 21, 16, 15, and 12 percent, respectively, whereas consumption of sodium nitrate de-

creased 11 percent.

The United States Department of Agriculture, in addition to its regular fertilizer reports, released a bulletin on fertilizer production in the United States since 1880, by types of fertilizer.4

Chemical and industrial uses of ammonia continued to expand and

accounted for about 25 percent of consumption.⁵

The chemical industry, while using a small quantity of elemental nitrogen, requires most of its nitrogen in various compounds. major industrial uses included the manufacture of explosives, chemicals, rocket propellants, dyes, resins, and paper; processing of rubber, metal ores, and metals; in water treatment; and as a refrigerant. It was estimated that 175,000 tons of ammonium nitrate was used in field-compounded explosives in the calendar year 1956.

New nonagricultural uses of gaseous nitrogen resulted in a doubling of production in the United States in 1956-57 compared with 1955-56.6 Food processing and military application consumed a major part of Foodstuffs, such as coffee, edible oils, wine, nuts, potato the increase. chips, and various dehydrated fruits and vegetables, are kept fresh

by the use of nitrogen.

PRICES

Prices of Chilean nitrate, synthetic sodium nitrate, ammonium nitrate, and anhydrous ammonia all increased during 1957. oven ammonium sulfate prices, which dropped 25 percent early in 1956, remained steady during 1957.

Mehring, A. L., Adams, J. R., and Jacob, K. D., Statistics on Fertilizers and Liming Materials in the United States: U. S. Dept. of Agriculture Statistical Bull. 191, 1957, 182 pp.
 Industrial and Engineering Chemistry, Ammonia Wins New Industrial Market Outlets: Vol. 49, No. 10, October 1957, pp. 32A, 34A.
 Chemical and Engineering News, Nitrogen's Above-Ground Market: Vol. 35, No. 7, Feb. 18, 1957, pp. 126, 127.

TABLE 3.—Prices of major nitrogen compounds in 1957, per short ton

[Oil, Paint and Drug Reporter of the dates listed]

Commodity	Jan. 7, 1957	Dec. 30, 1957	Effec- tive date of change
Chilean nitrate, port, warehouse, bulk	\$46. 00 43. 50 32. 00 55. 00	1 \$46. 25 45. 25 32. 00 55. 00	Oct. 7. Oct. 7.
Ammonium nitrate, fertilizer grade, 33.5 percent N: Canadian, eastern, c. 1., shipping point, bags. Western, domestic, works, bags. Anhydrous ammonia, fertilizer, tanks, works. Ammonium-nitrate-dolomite compound, 20.5 percent N, Hopewell, Va., bags.	64. 00 64. 00 75. 00 51. 00	68. 00 64. 00 2 84. 00 3 49. 75	Oct. 7. Oct. 7. Oct. 7.

Quoted at \$44.50 per ton from May 20 to Oct. 7.
 Quoted at \$80 per ton from Jan. 14 to Oct. 7.
 Quoted at \$48 per ton from Sept. 30 to Oct. 7.

FOREIGN TRADE 7

Imports of major nitrogen compounds in 1957 continued their downward trend and were 4 percent less than in 1956. Chilean nitrate imports increased 17 percent in 1957 over 1956.

Exports continued to increase and were 9 percent above 1956 exports.

TABLE 4.-Major nitrogen compounds imported for consumption into and exported from the United States, 1954-57, in short tons

[Bureau of the Census]

	1954	1955	1956	1957
Imports:				
Industrial chemicals: Anhydrous ammonia			26	
Fertilizer materials:				
Ammonium nitrate mixtures: Containing 20 percent or				-
more nitrogen	524, 938	405, 246	437, 580	352, 805
Ammonium phosphates		234, 523	190, 574	169, 471
Calcium cyanamide.		173, 118	197, 650	164, 729
Calcium nitrate	68, 637	81, 708 56, 362	67, 185 65, 291	57, 928 60, 055
Nitrogenous materials, n.e.s.:	00,007	00, 002	00, 201	00,000
Organic	17, 748	11, 194	6,011	3, 334
Inorganic and synthetic, n.e.s.	16, 991	8, 494	8, 931	9, 160
Potassium nitrate, crude	732	1, 118	924	642
Potassium-sodium nitrate mixtures, crude	13, 228	19, 300	19, 451	25, 393
Sodium nitrate	731, 530	614, 186	500,012	584, 945
Exports:				
Industrial chemicals:				
Anhydrous ammonia	39, 257	44,054	53, 324	67, 946
Ammonium nitrate	7, 560	5, 996	6, 991	7, 897
Fertilizer materials:	.,	-,	.,	.,
Ammonium nitrate	9, 402	71, 919	126, 054	109, 492
Ammonium sulfate	202, 249	612, 407	762, 751	781, 938
Nitrogenous chemical materials, n. e. sSodium nitrate	48, 871	82, 116	85, 109	155, 935
Domain mare	25, 316	11,625	4,078	3, 581

⁷ Figures on imports and exports compiled by Mae B. Price and Elsie D. Jackson, Division of Foreign Activities, Bureau of Mines, from records of the U. S. Department of Commerce, Bureau of the Census.

TABLE 5.—Sodium nitrate and potassium-sodium nitrate imported for consumption in the United States, 1948-52 (average) and 1953-57, by countries

[Bureau of the Census]

	[Dut	au or the Ce	iisus _i				
	1948-52	(average)	1	1953		1954	
	Short tons	Value	Short tons	Value	Short tons	Value	
Sodium nitrate: North America: Canada South America: Chile	70 683, 075	\$4, 274 25, 213, 334	568, 872	\$45 23, 268, 068	731, 530	\$26, 817, 84	
Europe: FranceGermanyPoland	6 3 3	643 381 193					
Total	12	1, 217					
Grand total	683, 157	25, 218, 825	568, 873	23, 268, 113	731, 530	26, 817, 845	
Potassium-sodium nitrate, mix- tures: North America: Canada South America: Chile	(¹) 10,465	30 482, 673	12, 516	626, 149	13, 228	599, 230	
Europe: France				020, 149	10, 220	599, 23	
Total							
Grand total	10,465	482, 703	12, 516	626, 149	13, 228	599, 230	
	1	955	1	956	1957		
	Short tons	Value	Short tons	Value	Short tons	Value	
Sodium nitrate: North America: Canada South America: Chile	50 614, 136	\$2, 306 21, 925, 596	101 499, 911	\$5, 983 16, 330, 892	584, 945	\$17, 107, 478	
Europe: France Germany Poland							
Total							
Grand total	614, 186	21, 927, 902	500, 012	16, 336, 875	584, 945	17, 107, 478	
Potassium-sodium nitrate, mix- tures:							
North America: Canada South America: Chile	19, 252	789, 799	19, 437	713, 879	25, 112	872, 268	
Europe:	13	1, 324 3, 779	14	1, 324	281	12, 406	
Germany, West	35	3, 778					
FranceGermany, West	35 48	5, 103	14	1, 324	281	12, 406	

¹ Less than 1 ton.

WORLD REVIEW

According to the report of Aikman (London), Ltd., world production and consumption of nitrogen (excluding U. S. S. R.) in 1957–58 increased 10 and 7 percent, respectively, compared with 1956–57. Detailed data in table 7 show that the United States supplied 28 percent of the world production and consumed 33 percent of the world total of fertilizer nitrogen.

TABLE 6.—Revised estimates of world production and consumption of nitrogen. years ended June 30, 1954-58, in thousand short tons [Aikman (London), Ltd.]

	Estimated	production	Estimated of	onsumption
Year	For agri-	For indus-	In agri-	In indus-
	culture	try	culture	try
1953-54	5, 967	1, 155	5, 933	1, 155
	6, 780	1, 282	6, 537	1, 282
	7, 526	1, 383	7, 056	1, 383
	7, 875	1, 521	7, 659	1, 521
	8, 674	1, 681	8, 132	1, 681

¹ Exclusive of U.S.S.R.

TABLE 7.—World production and consumption of fertilizer nitrogen compounds, years ended June 30, 1956-58, by principal countries, in thousand short tons of contained nitrogen

[Converted and rounded from United Nations Food and Agriculture Organization]

Country		Production		С	onsumption	on.
	1955–56	1956–57 1	1957-58 2	1955-56	1956–57 1	1957-58 2
Australia	18	26	26	20	32	32
Austria	142	142	(3)	35	41	44
Belgium	249	257		94	96	105
Brazil	4	4	4	26	26	26
Canada	224	233	241	52	53	53
Ceylon				23	23	23
Chile	198	206	224	28.	35	36
Denmark				98	108	109
Egypt	29	37	37	127	136	136
Finland	19	23	(3) (3)	40	48	48
France	441	473	((((420	444	474
Germany: East	320	320	(3)	264	264	264
West	829	970	(3)	520	581	606
Greece	90	90	90	46 156	61 170	61 228
India	90	90	90	27	24	248
Indonesia Israel	2	11	13	13	13	13
	378	423	(3)	280	295	309
Italy	776	849	951	639	647	679
Japan Korea, (South)	110	010	901	161	172	172
Mexico.	14	14	14	124	159	152
Netherlands	332	364		203	209	209
Norway	197	235	(3) (3)	42	50	55
Peru	46	37	37	48	41	41
Philippines.	7	- 9	1 %	33	40	40
Portugal		26	(3)	52	52	52
Spain	49	50	(3) (3) (3)	189	186	220
Sweden	29	36	3	92	99	107
Switzerland	12	12	\ \a	12	12	13
Taiwan (Formosa)	1 19	19	33	83	93	98
Union of South Africa	9	14	17	29	29	30
United Kingdom	341	369	(3)	327	343	387
United States	2, 178	2, 229	2, 251	1, 875	1,875	1,875
Yugoslavia	14	14	(3)	42	74	74
World total 4	7, 372	7,872	(3)	6, 926	7, 275	7, 546

Preliminary figures.

SOUTH AMERICA

Brazil.—The ammonium nitrate plant of Petroleras, S. A., at the Cubatão Refinery, began operation in 1957, and the nitrate plant of Fertisa Fertilizanto Minas Gerais, S. A., was being constructed at Vespasiano, Minas Gerais. The Nitrogenie, S. A., was planning a nitrogenous plant near the Mataripe refinery in Bahia.8

<sup>Forecast.
Forecasts for 1957-58 not available for Europe.
Exclusive of U. S. S. R.; includes quantities for minor producing and consuming countries not listed</sup>

Bureau of Mines, Mineral Trade Notes: Vol. 44, No. 6, June 1957, p. 26.

Chile.—Nitrate production increased 14 percent in 1957 compared with 1956, and totaled 1,456,000 tons, about three-quarters by the Guggenheim process and one-quarter by the Shanks process.9 Exports totaled 1.4 million tons and local sales were nearly 110,000 tons.

Expansion and modernization of facilities by the two major producers, Anglo-Lautaro Nitrate Co. and Cia Salitrera y Antofagasta, were ahead of schedule. Independent producers continued to have financial difficulties, and further shutdowns were reported imminent.

The 1957 sodium nitrate and potassium nitrate prices were \$34.48

and \$43.56, respectively, per short ton, f. a. s., Chilean port.

TABLE 8.—Exports of nitrate from Chile, 1957, by countries of destination, in thousand short tons

ntry of destination:	Thor shor
Argentina	
Australia and New Zealand	
Belgium	
Brazil	
Denmark	
$\mathbf{E}\mathbf{gypt}_{}$	
France	
India	
${ m Italy}_{}$	
Japan	
${f Netherlands}_{}$	
Peru	
Spain	
Sweden	
United Kingdom	
United States	
Other countries	

Colombia.—Output of nitric acid, ammonium nitrate, urea, and ammonia from the plant of Acerías Paz del Rio, S. A., totaled about The Índustria Colombiana 30,000 short tons of contained nitrogen. de Fertilizantes, S. A., announced plans for a nitrogenous fertilizer plant at Barrancabermeja. 10

Peru.—The nitrogenous fertilizer plant of Fertilizantes Sinteticos, S. A., was scheduled for completion by late 1958.11 Products were to include anhydrous ammonia, ammonium nitrate, ammonium sul-

fate, and nitric acid.

EUROPE

Austria.—The nitrogen plant of the Oesterreichische Stickstoffwerke at Linz employed over 4,400 people and produced, in addition to nitrogenous fertilizers, more than 80 other chemicals in 1957. 80 percent of the production was exported. Plans called for expansion to 700,000 tons by 1959 from the 635,000 tons produced in 1955. The expansion program included plans for a urea plant.

France.—The Office Nationale Industriel de l'Azote announced plans for expanding its ammonia plant. The new facilities were to

use petroleum as the raw material.

Germany, West.—A fertilizer and chemical nitrogen plant was under construction at Krefeld by Stickstoffwerk Krefeld G. m. b. H.¹²

Bureau of Mines, Mineral Trade Notes: Vol. 46, No. 3, March 1958, pp. 29-33.

Bureau of Mines, Mineral Trade Notes: Vol. 44, No. 4, April 1957, p. 31.

Chemical Age (London), Peruvian Fertiliser Plant on Stream by End-1958: Vol. 78, No. 1991, Sept. 7, 1957, p. 364.

Chemical Trade Journal (London), New German Fertiliser Plant; Vol. 140, No. 3652, May 31, 1957,

This company is jointly owned by the Wasag Chemie A. G. of Essen and the Union Rheinische Braunkohlen Kraftstoffwerk of Cologne.

Netherlands.—The Netherlands State Mines completed the urea plant and expansion of the ammonia plant at Limburg at the beginning of 1957. The nitrogen plant expansion at Ijmuiden of N. V. Mij tot Exploitatie van Kooksovengasseb was completed, increasing capacity about 33 percent.

Portugal.—The Sociedade Portuguesa de Petroquimica was formed

to build a nitrogenous fertilizer plant adjoining the SACOR petroleum

refinery.13

Spain.—Amoniaco Espânol, S. A., announced plans for an ammo-

nium sulfate and ammonium nitrate plant in Seville.14

United Kingdom.—The new nitrogenous fertilizer plant of Shell Chemical Co., Ltd., at Shell Haven, Essex, was scheduled for completion late in 1958. Products were to include ammonia, nitric acid, and ammonium nitrate. 15 Expansion of facilities to recover nitrogen from coking operations were completed by Dorman Long (Steel), Ltd., at South Bank, Middlesbrough, and by the National Coal Board at the Avenue Carbonisation and Chemical Plant near Chesterfield, Derbyshire.¹⁶

U. S. S. R.—Ammoniation was under investigation to increase plantfood content and improve physical conditions of phosphatic fertiliz-This work was being done by the Chirchiksk Electro-Chemical Combine Research Institute (N. I. U. I. F.) and Chemistry Institute

of the Academy of Science, U.S.S.R.

Yugoslavia.—Expansion of ammonium nitrate and ammonium sulfate facilities was planned by the Yugoslav Government.¹⁸ Production of ammonium nitrate in the first 6 months of 1957 was 10,000 tons—47 percent above the same period of 1956.

ASIA

China.—Nitrogenous fertilizer production in 1957 totaled 747,000 Planned expansion programs by the fertilizer industry totaled 1.8 million tons additional annual capacity of nitrogenous fertilizer.

India.—The ammonium sulfate industry in India was comprised of 8 plants with an annual rated capacity of 425,000 tons, the largest being the Government-owned plant at Sindri. Output continued below capacity owing to sulfur shortages.19 Construction of the ammonium nitrate plant at Nangal was begun and scheduled for completion in 1960.

Iraq.—Natural gas was to be one of the raw materials for a proposed ammonium sulfate plant at Basra. The plant will have an annual

capacity of 250,000 tons.

¹³ Chemical Trade Journal and Chemical Engineer, Fertilisers in Portugal: Vol. 141, No. 3671, Oct.

^{11, 1957,} p. 871.

14 Chemical Week, Fertilizer/Spain: Vol. 81, No. 21, Nov. 23, 1957, p. 24.

15 Commercial Fertilizer, Shell-Fisons \$50,000,000 Plant Ready Late 1958: Vol. 2, No. 8, August 1957, p.

<sup>48.

18</sup> Fertiliser and Feeding Stuffs Journal (London), Ammonium Sulfate: Vol. 46, No. 8, Apr. 10, 1957, pp. 357-358, 361; Ammonia Recovery: Vol. 47, No. 1, July 3, 1957, pp. 18.

17 Ivanov, R. N., Khimicheskaya Promyshlemost: No. 2, 1957, pp. 79-82.

18 Chemical Age (London), Yugoslavia's Fertiliser Plans: Vol. 78, No. 1985, July 27, 1957, p. 144.

Chemical and Engineering News, Fertilizers, Agricultural Chemicals: Vol. 35, No. 36, Sept. 9, 1957,

pp. 64-65.

19 Oil, Paint and Drug Reporter, vol. 172, No. 23, Dec. 2, 1957, p. 51.

Israel.—Production of ammonium sulfate totaled 65,000 tons in 1956, of which 7,000 tons was exported. Estimated production in 1957 was 88,000 tons. Facilities were being built for handling anhy-

drous and aqua ammonia for agricultural use.

Japan.—A new atmospheric ammonia plant at Noboeka, on Kyushu Island was being constructed by Ashi Chemical Industry Co., Ltd.²⁰ Output will go for fertilizer and various chemicals. Increased production goals for calcium cyanamide were reported by the Japanese Ministry of International Trade and Industry.

Pakistan.—In addition to the ammonium sulfate plant at Daudkhel, with an annual capacity of 50,000 tons, plans were underway for 2 more nitrogenous fertilizer plants to produce 200,000 tons per year.²¹

Philippine Islands.—Plans were announced to construct a 150-tonper-day ammonium sulfate plant which will include hydrogen, nitrogen, ammonia, and sulfuric acid facilities.22

Angola.—An ammonia plant was planned near Luanda by the Companhia Fabril Commercial Do Ultramar with a capacity of

40,000 tons per year.²³

Union of South Africa.—The Sasol oil-from-coal plant began producing nitrogen compounds as a byproduct, for use in fertilizers. African Explosives and Chemical Industries, Ltd., expanded facilities of its nitrogenous fertilizer plant at Modderfontein.24

TECHNOLOGY

The nitrate deposits in California and the uses of nitrogen were reviewed.25 The absence of economic nitrate deposits in California stimulated growth of the atmospheric nitrogen industry. In all, five plants produce ammonia from hydrogen and atmospheric nitrogen.

The use of prilled ammonium nitrate field-compounded explosives continued to attract attention.²⁶ The advantages of this material were given as lower cost than for standard explosives, greater rock breakage, and increased safety.²⁷ Improved equipment in ammonium

nitrate plants was described.²⁸

A flowsheet of the single-step Stengel process for producing granular ammonium nitrate was published.29 Utility requirements per ton of product by this process were 1,000 tons of steam, 2,000 gallons of water, and 19 kw.-hr. of electricity. The cost of a 225 ton-per-day plant was quoted at from \$1 million to \$1.25 million.

May 22, 1957, p. 523.

23 Agricultural Chemicals, vol. 12, No. 7, July 1957, p. 92.

24 Fertiliser and Feeding Stuffs Journal (London), Southern Africa Fertilisers: Vol. 46, No. 2, Jan. 16,

Fertiliser and Feeding Stuffs Journal (London), Southern Africa Fertilisers: Vol. 46, No. 2, Jan. 16, 1957, p. 60.
 Ver Planck, W. E., Nitrogen Compounds: Chap. in Mineral Commodities of California, Dept. of Natural Resources, Div. of Mines, Bull. 176, pp. 401-402.
 Cook, M. A., Large-Diameter Blasting With High Ammonium Nitrate-Nonnitroglycerin Explosives: Pres. at 3d Ann. Symposium on Mining Research, Rolla, Mo., Nov. 14-15, 1957.
 Cooley, C. M., Properties and Recommended Practices for Use of Ammonium Nitrate in Field Compounded Explosives: Pres. at 3d Ann. Symposium on Mining Research, Rolla, Mo., Nov. 14-15, 1957.
 Parrott, F. M., Use of Ammonium Nitrate Blasting Agent in Strip Mine Operation: Pres. at 3d Ann. Symposium on Mining Research, Rolla, Mo., Nov. 14-15, 1957.
 Engineering and Mining Journal, At Berkley Pit, Blasting Is an Art: Vol. 158, No. 12, December 1957 pp. 107-110.
 Intermountain Industry and Mining Review, Blasting With Ammonium Nitrate: Vol. 59, No. 4, April 1957, pp. 41-42.

1857, pp. 41-42.
Western Mining and Industry News, Use of Fertilizer as Blasting Agent Beyond Test Stages: Vol. 25, No. 8, August 1957, pp. 6-7.

Rindustrial and Engineering Chemistry, Ammonium Nitrate: Vol. 49, No. 9, pt. II, September 1957,

1957, pp. 171-173.

Chemical and Engineering News, Ammonia Plant for Japan: Vol. 35, No. 2, Jan. 14, 1957, p. 50.
 Chemical Age (London), Fertiliser Factories in Pakistan: Vol. 77, No. 1967, Mar. 2, 1957, p. 511.
 Fertiliser and Feeding Stuffs Journal (London), Ammonia Plant for the Philippines: Vol. 66, No. 11,

pp. 1580-1581.

**Petroleum Processing, Granular Ammonium Nitrate: Process Data Sheet 22, vol. 12, No. 9, September

The production of ammonium sulfate in areas lacking ample supplies of sulfur or sulfuric acid was accomplished by the use of gypsum or anhydrite.30 This process was being used in Germany, the United

Kingdom, and India.

Research with various types of nitrogenous fertilizers enabled the development of guides for selecting a type best suited for various crops. 31 Studies in progress on ammoniation and granulation resulted in compilation of numerous physical and chemical properties of nitrogenous materials.32

The progress and problems in the use of liquid fertilizers in the United States 33 and the possible use of liquid fertilizers in the United

Kingdom were discussed.34

Results of experiments with liquid nitrogenous fertilizers in the

U. S. S. R. and present practices were published.³⁵

It was reported that use of diammonium phosphate (DAP) would reduce costs in the manufacture of granular fertilizers.36 Although it was manufactured in Germany in the 1930's, only in the last few years has DAP received serious consideration in the United States or the United Kingdom.

Investigations continued on means of improving the demand for certain low- and intermediate-grade nitrogen compounds. conversion of ammonium sulfate to higher-grade nitrogenous materials

was suggested.37

Ammonium perchlorate generated more gas and eliminated the smoke problem of potassium perchlorate used as a solid rocket propellant. The increased demand for ammonium perchlorate resulted in industry expansion and development of new production techniques.³⁸

Experimental work with high-pressure techniques resulted in development of a nitrogen pump capable of withstanding 10,000 pounds per square inch and delivering 40,000 cubic feet per minute.39

A new method of nitrogen purification was developed by scrubbing with sodium dithionite. The purified nitrogen was used to purge oxygen from emulsion polymerization reactors.

The safety precautions necessary for handling various nitrogen

compounds were published.41

³⁰ Hardy, W. L., Ammonium Sulfate by the Gypsum Process: Ind. Eng. Chem., vol. 49, No. 2, February 1957, pp. 57A-58A.
³¹ Wehunt, R. L., and Bergeaux, P. J., Factors to Consider in Comparing Nitrogen Fertilizers: Comm. Fert., vol. 94, No. 4, April 1957, pp. 32-33.
²³ Sharp, J., Characteristics of Nitrogen Materials: Agric. Chem., vol. 12, No. 4, April 1957, pp. 104, 107.
²⁵ Slack, A. V., Liquid Mixed Fertilizers: Comm. Fert., vol. 2, No. 8, August 1957, pp. 28-29, 33, 35-37, 20. 40.

Slack, A. V., Liquid Mixed Fertilizers: Comm. Fert., vol. 2, No. 8, August 1957, pp. 28-29, 33, 35-37, 39-40.
 Pizer, N. H., Fertilisers in Solution Form: Chem. Trade Jour. and Chem. Eng. (London), vol. 140, No. 3644, Apr. 5, 1957, pp. 797-798.
 Cass, W. G., Liquid Nitro-Fertilisers—Progress in the Soviet Union: Fertiliser and Feeding Stuffs Jour. (London), vol. 47, No. 9, Oct. 23, 1957, pp. 409-412, 424.
 Fertiliser and Feeding Stuffs Journal (London), DAP—Major Material for Future Compounding: Vol. 47, No. 4, Aug. 14, 1957, pp. 149-150, 153.
 Agricultural Chemicals, Ammonium Sulfate—Its Current Status: Vol. 12, No. 12, December 1957, pp. 49, 105.
 Chemical Engineering, How to Upgrade Coke Oven Ammonia: Vol. 64, No. 12, December 1957, pp. 142, 144.

Chemical Engineering, How to Operate Cover American Cover American Cover American Cover American Cover American Cover American Cover American Cover American Cover American Cover American Cover American Cover American Cover American Cover American Cover American Cover American Cover

Perlite

By L. M. Otis¹ and James M. Foley²

N EACH of the 11 years since 1946 domestic production of crude perlite increased steadily.

DOMESTIC PRODUCTION

Crude Perlite.—There were 12 companies in 1957 operating 14 mines in 6 States, the same as in 1956.

TABLE 1.—Crude and expanded perlite produced and sold or used by producers in the United States, 1953-57

	Crude perlite						Expanded perlite			
Year Produced (short			lold		own plant e expand- erial	Produced (short		old		
	tons)	Short tons	Value	Short tons	Value	tons)	Short tons	Value		
1953 1954 1955 1956 1957	213, 532 261, 024 335, 187 350, 224 422, 346	141, 282 154, 531 198, 446 207, 436 194, 211	\$1, 072, 065 1, 375, 706 1, 778, 894 1, 940, 162 1, 730, 149	57, 469 65, 172 87, 711 103, 364 107, 394	\$367, 593 386, 394 502, 738 609, 894 832, 076	175, 234 196, 447 246, 730 262, 815 249, 139	174, 461 195, 499 246, 343 263, 627 245, 433	\$9, 254, 374 10, 278, 745 12, 585, 297 13, 122, 473 12, 511, 467		

Of the 422,346 short tons of crude perlite produced in the United States in 1957, the 256,265 tons from New Mexico was 61 percent of the total mined, compared with 48 percent in 1956. Other producing States, in order of output, were Colorado, Nevada, and Arizona.

Expanded Perlite.—Perlite was expanded by 70 companies at 83 plants in 29 States. California with 12 plants had the largest number of operations; followed by Illinois, Pennsylvania, and Texas, each with 5 plants; and New York and New Jersey, 4 plants each.

Expanded perlite sold or used in 1957 totaled 245,433 short tons,

7 percent less than 1956.

Mine and Plant Developments.—A new crude perlite mine was reported in New Mexico, 6 miles from Magdalena, in Socorro County. This is the second perlite mine in this county and the fourth in the State.

Since 1950, Great Lakes Carbon Co. has mined perlite by open pit south of Socorro, N. Mex.; underground mining will soon be used, in conjunction with the present methods.

Commodity specialist.
 Supervisory statistical assistant.

TABLE 2.—Expanded perlite produced and sold by producers in the United States, 1956-57, by States

		:	1956				1957	
State	Pro-	5.4	Sold		Pro-		Sold	
	duced (short tons)	Short tons	Value	Average value per ton	duced (short tons)	Short tons	Value	Average value per ton
California Florida Florida Illinois Iowa Kansas Michigan Missouri New Jersey New York Ohio Pennsylvania Texas Utah Other Western States 4	24, 556 7, 083 22, 424 10, 721 (1) (2) (1) 7, 395 22, 024 10, 044 18, 178 9, 927 3, 468 54, 868 72, 127	24, 158 7, 137 22, 399 10, 721 (1) (2) (1) 7, 395 22, 006 10, 779 18, 113 9, 941 3, 468 55, 512 71, 998	\$1, 308, 381 379, 058 1, 209, 014 510, 553 (!) 367, 732 955, 063 712, 534 988, 509 537, 577 158, 981 2, 227, 647	\$54. 16 53. 11 53. 98 47. 62 (1) (2) (1) 49. 73 43. 40 66. 00 54. 57 54. 08 45. 84 40. 13 52. 33	23, 668 8, 235 22, 500 (1) 1, 191 8, 836 4, 500 6, 597 19, 509 (2) 16, 711 8, 664 (1) 51, 174 77, 554	23, 521 8, 241 22, 500 (1) 1, 290 8, 836 4, 500 6, 600 19, 495 (2) 16, 858 8, 664 (1) 49, 377 75, 551	\$1, 287, 850 474, 279 1, 213, 522 (1) 63, 915 420, 256 289, 820 358, 728 840, 676 (2) 975, 398 488, 369 (1) 2, 208, 519 3, 890, 135	\$54, 75 57, 55 53, 93 (¹) 49, 55 47, 56 64, 40 54, 35 43, 12 (²) 57, 86 56, 37 (¹) 44, 73 51, 49

¹ Included under "Other Western States" to avoid disclosing individual company confidential data.
² Included under "Other Eastern States" to avoid disclosing individual company confidential data.
³ Includes Arizona, Colorado, Iowa (1957 only), Kansas (1956 only), Louisiana, Minnesota, Missouri (1956 only), Nebraska, Nevada, New Mexico, Oklahoma (1956 only), Oregon, and Utah (1957 only), Includes Indiana, Maryland, Massachusetts, Michigan (1956 only), North Carolina, Ohio (1957 only), Tennessee, Virginia, and Wisconsin.

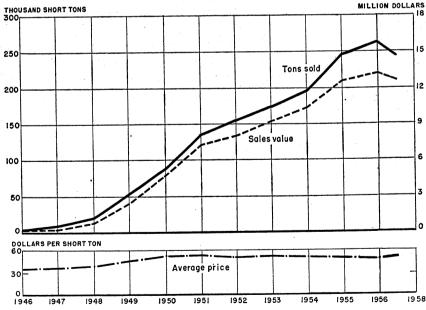


Figure 1.—Sales and value of expanded perlite and average price per ton, 1946-57.

PERLITE 909

A brief description of the only active perlite mine in Colorado during 1957 appeared in the press.³ The mine is in Custer County near Rosita; its product was sent to Florence, Colo., for crushing, cleaning, sizing—ready to ship to expanding plants. Production was reported ranging from 5,000 to 18,000 tons a month in 1956.

The Great Lakes Carbon Co. Dicalite and Perlite Divisions were consolidated into the Mining and Mineral Products Division. Administrative headquarters of the new division will be at Los Angeles. In the past, the Dicalite Division handled diatomite production,

sales, and research.

The Zonolite Co. increased its perlite-expanding facilities at its

Atlanta, Ga., plant.4

Great Lakes Carbon Corp. Mining and Mineral Products Division began limited mining at its No Agua deposit of crude perlite in northern New Mexico. A new crushing and sizing plant near the mine was scheduled for completion in 1958. In the meantime ore was treated at the Great Lakes Florence, Colo., plant.

CONSUMPTION AND USES

Expanded Perlite.—The following percentages were computed from processors' estimates of end uses for their expanded perlite during 1957: 69 percent in building plaster aggregate, 15 percent for concrete aggregate, 3 percent in fillers, 1 percent in filter aids, and 12 percent in miscellaneous uses; the last item included oil-well drilling muds, oil-well concrete, loose fill insulation, horticulture, insecticides, catalysts, refractory brick, and absorbents. In 1956 building plaster consumed 76 and concrete aggregate 10 percent.

An account of the annual meeting of the Perlite Institute ⁵ included percentages of perlite used in 1956, produced by their members only, as follows: Plaster aggregate, 63; insulating concrete for roof-deck construction, 19; insulation board, gypsum wallboard, acoustical plaster and tile, pipe insulation, loose fill insulation, soil conditioning, paint filler, filtration medium, and as a carrier for insecticides and

herbicides, 18.

PRICES

The average value f. o. b. processing plants for crude perlite, crushed, cleaned, sized, and sold by producers to expanders was \$8.91 per ton, 5 percent less than in 1956. The average price of this material used by prime producers in their own expanding operations was \$7.75 per ton, compared with \$5.90 in 1956. A weighted average of these 2 classifications of crude perlite was \$8.50 compared with \$8.20 per ton in 1956.

The slight but consistent decline in the average annual unit price of expanded perlite since 1953 was reversed in 1957; the annual unit price averaged \$50.98 per ton, an increase of 2 percent. In 1953

this average price was \$53.05 per ton.

Mining Record, Colorado Perlite Property Is Quiet But Large Producer: Vol. 68, No. 3, Jan. 17, 1957,

p. 8.

4 Rock Products, Expands Perlite Plant: Vol. 60, No. 1, January 1957, p. 41.

5 Western Mining and Industrial News, Perlite Industry Uptrend Predicted, Institute Elects New Directors: Vol. 25, No. 10, October 1957, p. 27.

FOREIGN TRADE

Crude perlite may be imported duty-free under paragraph 1719 of the Tariff Act of 1930. Expanded perlite has been dutiable at 15 percent ad valorem since January 1, 1948, when it was reduced from 30 percent under paragraph 214 of the Tariff Act of 1930.

Crude perlite was exported to Canada in 1957. Usually expanded

perlite is exported to Canada, Cuba, and Venezuela.

WORLD REVIEW

NORTH AMERICA

Canada.—Large deposits of perlite have been found in British Columbia on Francois Lake near Uncha Lake in Empire Valley and on Graham Island in the Queen Charlottes. These deposits were too remote from markets to have economic importance. A perlite-expanding plant at New Westminister, British Columbia, imported crude perlite, precrushed and sized, from Colorado and New Mexico for processing. Crude perlite was not produced in Canada. The consumption of expanded perlite during 1956 was 2,317,000 cubic feet, an increase of 34 percent over 1955 and considerably greater than the increase for any other lightweight aggregate used commercially in Canada. ^{5a}

TECHNOLOGY

Research was conducted by perlite expanders in manufacturing filter aids. For this purpose minus-200-mesh expanded perlite is required. A hammer mill was used for comminution in closed circuit with air cyclones. Early in the processing, unexpanded, high-density particles were removed, because reducing the size of these harder pieces can produce an excessive quantity of ultrafine expanded perlite from attrition of the softer expanded material. Ultrafine fragments in the filtering medium tend to clog the filter cake at the screen cloth.

Twenty to sixty microns is generally considered the maximum to minimum size range for filter-aid particles covering the range from rapid to slow filtering. The size range for any 1 filtering rate is closer,

for example, 20 to 30 microns.

Although a small percentage of 6- to 10-micron expanded perlite particles does not seem to affect the filter flow rate, even 4 or 5 percent of 2-micron particles may reduce the flow rate drastically and should therefore be avoided.

A brief summary of the perlite industry was published.⁶ It referred to the history of the industry, current sources, mining, milling, expanding, shipping, physical characteristics, uses, and reserves.

At the 8th annual meeting of the Perlite Institute, a special committee was appointed to study more efficient techniques for building

^{5a} Department of Mines and Technical Surveys, Ottawa, Lightweight Aggregates in Canada, 1956 (prelim.): Bull. 27, pp. 1-5.
⁶ Leppla, P. W., Perlite and Other Lightweight Aggregates: Min. Cong. Jour., vol. 43, No. 9, September 1957, pp. 73-74.

911 PERLITE

perlite concrete roof decks and to develop methods of training contractors in using these newer methods of roof-deck construction.7

A paper by the administrative secretary of the Perlite Institute was presented before the American Institute of Mining, Metallurgical and Petroleum Engineers.8 It outlined a history of perlite in the United States, the properties of perlite, its sources, commercial growth,

mining, milling, expanding, uses, and reserves.

Perlite concrete was sprayed on three 27- by 18-foot-diameter fueloil tanks as a protection against fire, evaporation losses, and weather corrosion by U. S. Gypsum Co. at its Philadelphia plant. Multiple layers of perlite concrete totaling 6 inches were sprayed onto paperbacked wire lath attached to a Trussteel stud-framework built around the cylindrical surface of the tank, with a 1¾-inch dead-air space between tank and concrete. The tank tops were covered with a 6-inch built-up layer of perlite concrete. All outside concrete tank surfaces were waterproofed with a special wax preparation.9

Patents.—A method of expanding perlite by high-frequency induction was patented. Better control of the operating variables is

claimed as compared with methods using combustion fuels.¹⁰

A patent covered a horizontal kiln apparatus for expanding perlite or other earthy materials and included the use of borax to produce a

glaze on the expanded particles.11

A patented composition for making highly porous cutting and grinding wheels is claimed to result in cooler, faster operation. perlite is specified as one of the suitable ingredients.¹²

Perlite was specified as one of the suitable mineral fillers in a patented fireproofing composition for coating wood structural units.¹³

A method of manufacturing lightweight gypsum board, lath, or sheathing was patented. It consists of calcined gypsum, expanded perlite, and an air-entraining agent.14

Two patents were granted covering methods of comminuting ex-

panded perlite to sizes suitable for filter aids. 15

A claimed improvement in the permeability of oil-well concrete to liquids was patented. It consists of a slurry of portland cement, a pozzolan, and a mixture of lightweight aggregates having different particle size. Perlite is one of several suitable aggregates. 16

A high-temperature insulation material was patented and is made by bonding a mixture of expanded perlite, long-fiber asbestos, and

 ⁷ Pit and Quarry, Increased Sales Predicted at Eighth Annual Meeting of Perlite Institute: Vol. 49, No.
 11, May 1957, p. 33.
 8 Funk, Richard S., Perlite: Its Production and Use: Perlite Inst., New York, N. Y., February 1957, 6 pp.
 9 Engineering and Mining Journal, Perlite Concrete Protects Tanks: Vol. 158, No. 11, November 1957,

^{**} Engineering and Mining Journal, Perlite Concrete Protects Tanks: Vol. 158, No. 11, November 1957, p. 110.

10 White, E. B., Apparatus for Expanding Finely Divided Particles of Obsidian-Like Material: U. S. Patent 2,810,810, Oct. 22, 1957.

11 Pierce, H. L., Apparatus for Expanding Earth Materials: U. S. Patent 2,807,453, Sept. 24, 1957.

12 Robie, N. P. (assigned to Electro Refactories & Abrasives Corp., Buffalo, N. Y.), Abrasive Bodies: U. S. Patent 2,806,772, Sept. 17, 1957.

13 Hooks, R. M. (assigned to Southwestern Petroleum Co., Inc., Fort Worth, Tex.), Method of Preserving and Fireproofing a Structural Member and Resultant Article: U. S. Patent 2,804,398, Aug. 27, 1957.

14 Riddell, W. C., and Kirk, G. B. (assigned to Kaiser Gypsum Co., Inc., Oakland, Calif.), Gypsum Board: U. S. Patent 2,803,575, Aug. 20, 1957.

14 Denming, P. S. (assigned to F. E. Schundler & Co., Joliet, Ill.), Filter Aid & Its Preparation: U. S. Patent 2,798,674, July 9, 1957.

15 Goldberg, J. Z. (assigned to International Minerals & Chemical Corp., Chicago, Ill.), Apparatus for Comminuting Exfoliated Perlite: U. S. Patent 2,808,212, Oct. 1, 1957.

16 Mangold, G. B., Dyer, J. A., and Hart, J. T. (assigned to Petroleum Engineering Associates, Inc., Pasadena, Calif.), Permeable Concrete: U. S. Patent 2,793,957, May 28, 1957.

diatomite with lime. It can be used in both high- and low-temperature applications.17

An apparatus used for bagging lightweight particulate materials,

especially perlite, was patented.¹⁸

A patent covered a furnace for heating finely divided materials and a method of operation particularly adapted to expansion of perlite. The fluidizing principle, whereby hot gases are injected from the bottom of the furnace, keeping the particles in motion while in contact with the heat, was used.19

An insulating wall structure was patented and formed by applying to a metal or plastic screen a composition comprising sodium silicate, aluminum powder, and an insulating mineral aggregate, such as perlite. After implacement, the composition foams, leaving airspaces.²⁰

A patented soil-conditioning fertilizer is made by absorbing essential fertilizer chemicals onto expanded perlite, mixing with an organic

material such as peat moss, and drying.²¹

A method and apparatus for the continuous, large-scale manufacture of lightweight, reinforced, insulating concrete roof and floor slabs was patented. Expanded perlite may be used as one of the suitable lightweight aggregates.22

In Denning, P. S. (assigned to F. E. Schundler & Co., Joliet, Ill.), Manufacture of High-Temperature Insulating Materials: U. S. Patent 2,784,085, Mar. 5, 1957.

18 Bradford, J. H. (one-half assigned to Combined Metals Reduction Corp., a corporation of Utah), Bag-Filling Apparatus: U. S. Patent 2,781,799, Feb. 19, 1957.

19 Bradford, J. H. (one-half assigned to Combined Metals Reduction Corp., a corporation of Utah), Method of Heat-Processing Finely Divided Materials and Furnace Therefor: U. S. Patent 2,782,018, February 1957.

20 Rasmussen, P. D. (assigned to Invention Development Corp., a corporation of Illinois), Insulating Structure: U. S. Patent 2,780,090, Feb. 5, 1957.

21 Burkell, A. LeR. (assigned to Combined Minerals, Inc., Denver, Colo.), Soil-Conditioning and Fertilizing Compounds and Methods of Manufacture: U. S. Patent 2,779,670, Jan. 29, 1957.

22 Sterrett, R. W. (assigned to Southern Zonolite Co., Atlanta, Ga.), Manufacture of Roofing Slabs and the Like: U. S. Patent 2,778,088, Jan. 22, 1957.

Phosphate Rock

By E. Robert Ruhlman¹ and Gertrude E. Tucker²

LTHOUGH marketable production of phosphate rock decreased 11 percent in 1957, total sales continued to rise and were 3 percent more than in 1956. World production declined 4 percent.

LEGISLATION AND GOVERNMENT PROGRAMS

The phosphate mineral-leasing act was amended during 1957 to permit leasing a maximum of 10,240 acres of Federal land without geographic limitation. Previously, a company could lease only 5,120 acres in 1 State and a total of 10,240 acres in the United States.

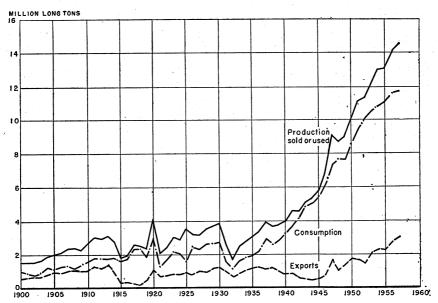


FIGURE 1.—Marketed production, apparent consumption, and exports of phosphate rock, 1900-57.

¹ Commodity specialist.
2 Statistical assistant.

TABLE 1.—Salient statistics of the phosphate-rock industry, 1956-57

		1	956			1	957	
	Thousand long tons		Value at mines		Thousand long tons		Value at mines	
	Rock	P ₂ O ₅ con- tent	Thou- sand dollars	Average per ton	Rock	P ₂ O ₅ con- tent	Thou- sand dollars	Aver- age per ton
United States: Mine production Marketable production 2	52, 198 15, 747	5, 752 4, 960	⁽¹⁾ ³ 97, 922	(1) 3 \$6. 22	45, 460 13, 976	6, 435 4, 356	(1) 3 87, 689	(1) 3 \$6. 27
Sold or used by producers: Florida: Land pebble Soft rock Hard rock	10, 366 - 59 103	3, 425 12 36	64, 354 376 872	6. 21 6. 40 8. 45	10, 508 56 80	3, 467 12 28	66, 863 401 682	6. 36 7. 15 8. 59
Total Florida Tennessee	10, 528 1, 663	3, 473 434	65, 602 12, 792	6. 23 7. 69	10, 644 1, 778	3, 507 459	67, 946 11, 857	6. 38 6. 67
Western States: Idaho Montana Wyoming	1, 206 } 714	314 211	6, 044 4, 794	5. 01 6. 72	1, 418 575 182	374 166 58	6, 589 4, 129 1, 197	4. 65 7. 18 6. 60
Total Western States	1, 920	525	10, 838	5.64	2, 175	598	11, 915	5. 48
Total United States Imports Exports ⁵	14, 111 110 2, 685	4, 432 (1) 876	89, 232 4 2, 626 15, 649	6. 32 4 23. 90 5. 83	14, 597 110 3, 010	4, 564 (1) 977	91, 718 4 3, 090 20, 070	6. 28 4 28. 21 6. 67
Apparent consumption World: Production	11, 536 33, 750	(1) (1)			11, 697 32, 350	(1) (1)		

Data not available.
 See table 3 for kind of material produced.
 Derived from reported value of "sold or used."
 Market value (price) at port of shipment and time of exportation to the United States.
 As reported to the Bureau of Mines by domestic producers.

DOMESTIC PRODUCTION

Production of phosphate-rock ore and marketable phosphate rock decreased in 1957—13 and 11 percent, respectively. The decreased output in 1957, compared with 1956, did not reflect a lower demand. The high output in 1956 was to rebuild normal working stocks, depleted during 1955, when activities in the Florida land-pebble field were curtailed by a labor strike. Florida continued to be the leading producer, followed by the Western States. Statistics on crude ore and marketable ore production have been expanded to show further detail, beginning with the 1957 chapter.

American Cyanamid Co. began operating its new Orange Park mine, washer, and flotation plant 4 miles northeast of Lakeland, Fla.

This mine replaced the Saddle Creek operation.

Florida Lightweight Products Co. announced plans to construct at Bartow, Fla., an 80,000-ton-per-year lightweight-aggregate plant

that will use phosphatic slimes as raw material.3

Victor Chemical Works acquired phosphate-rock deposits formerly owned by Federal Chemical Co. near Mount Pleasant, Tenn., increasing its holdings in Tennessee to more than 10,000 acres.⁴ This company also announced plans to construct a phosphate-chemical

³ Chemical Week, vol. 81, No. 11, Sept. 14, 1957, p. 27. ⁴ Victor Chemical Works, 1957 Annual Report, p. 4.

TABLE 2.—Mine production of crude phosphate-rock ore in the United States, 1953-57, by States, in thousand long tons

Florida		Tennessee ¹		Western States		Total United States		
Year	Rock	P ₂ O ₅ content	Rock	P ₂ O ₅ content	Rock	P2Os content	Rock	P ₂ O ₅ content
1953	35, 972 41, 232 34, 491 47, 250 40, 584	4, 096 4, 729 3, 884 4, 530 5, 293	2, 465 2, 571 2, 980 2, 524 2, 752	541 527 510 576 587	1, 702 1, 783 2, 200 2, 424 2, 124	465 489 590 646 555	40, 139 45, 586 39, 671 52, 198 45, 460	5, 102 5, 745 4, 984 5, 752 6, 435

¹ Includes brown rock, white rock, and blue rock in 1954-57.

TABLE 3.—Marketable production of phosphate rock in the United States, 1948-52 (average) and 1953-57, by States, in thousand long tons

	Florida ¹		Tennessee ²		Western States 3		United States		
Year	Rock	P ₂ O ₅ content	Rock	P ₂ O ₅ content	Rock	P ₂ O ₅ content	Rock	P ₂ O ₅ content	
1948–52 (average) 1953 1954 1955 1956 1957	7, 979 9, 331 10, 437 8, 747 11, 822 10, 191	2, 666 3, 133 3, 454 2, 934 3, 910 3, 352	1, 449 1, 519 1, 633 1, 466 1, 685 1, 812	398 399 422 389 438 469	1, 016 1, 654 1, 751 2, 052 2, 240 1, 973	295 455 484 564 612 535	10, 444 12, 504 13, 821 12, 265 15, 747 13, 976	3, 359 3, 987 4, 360 3, 887 4, 960 4, 356	

¹ Salable products from washers and concentrators of land pebble and hard rock, and drier production of

soft rock (colloidal clay).

Salable products from washers and concentrators of brown rock, brown-rock ore (matrix) used directly, blue rock in 1954-57, and white rock in 1953-57.

Mine production of ore (rock), plus a quantity of washer and drier production.

plant at Richmond, Calif., a laboratory at Chicago Heights, Ill., and an organic-phosphate chemical plant at Mount Pleasant, Tenn.

The Bear Creek Mining Co., subsidiary of Kennecott Copper Co., explored phosphate-rock deposits in northeastern North Carolina.

Interest in reestablishing phosphate-rock production in South Carolina was reported; output in Beaufort County, S. C., stopped in 1904.

A new beneficiation plant of San Francisco Chemical Co. at Leefe, Wyo., began operating at the close of 1957. This plant enabled mining of a phosphate bed formerly not considered economic. The company acquired 360 acres of phosphate-bearing land in the Swan Lake mining district in southeastern Idaho under a Federal lease and planned early development. Elemental-phosphorus production was considered as a means to exploit the Humphreys phosphate deposit near Vernal, Utah. The 15,000 acre deposit was estimated to contain 700 million tons averaging 21 percent P₂O₅.

Plans to mine phosphate rock in the vicinity of Drummond, Mont.,

were announced by Midas Minerals, Inc.⁶

Central Farmers Fertilizer Co. began open-pit mining at Georgetown, Idaho; the processing plant was nearly completed by December. The 8-mile railroad spur from Georgetown to the plant site was com-

Agricultural Chemicals, Victor Plans Expansions: Vol. 12, No. 8, August 1957, p. 75.
 Mining World, vol. 19, No. 7, June 1957, p. 86.

pleted. Yet to be constructed were the elemental phosphorus and calcium metaphosphate plants.

The Huskey Oil Co. and J. A. Terteling & Sons explored for phosphate rock on Federal land in southeastern Idaho.

CONSUMPTION AND USES

Apparent consumption of phosphate rock again set a new record,

rising 1 percent above 1956.

Phosphate rock was sold or used primarily for ordinary superphosphate (33 percent in 1957 and 36 percent in 1956), elemental phosphorus (23 percent in 1957 and 1956), exports (21 percent in 1957 and 19 percent in 1956), triple superphosphate including wet-process phosphoric acid (16 percent in 1957 and 14 percent in 1956), and direct application to the soil (5 percent in 1957 and 1956).

The United States Department of Agriculture, in addition to its regular fertilizer reports, released a bulletin on fertilizer production

in the United States since 1880 by types of fertilizer.7

TABLE 4.—Apparent consumption 1 of phosphate rock in the United States, 1948-52 (average) and 1953-57

Year	Thousand long tons	Year	Thousand long tons
1948–52 (average)	8, 712 10, 558	1955	11, 120 11, 536
1954	10, 887	1957	11, 697

¹ Quantity sold or used by producers plus imports minus exports.

TABLE 5.—Phosphate rock sold or used by producers in the United States, 1948-52 (average) and 1953-57

	Thousand	Value at mines		
Year	Year	long tons	Thousand dollars	Average per ton
1954 1955		 10, 066 12, 518 13, 044 13, 186 14, 111 14, 597	59, 045 76, 597 81, 510 82, 904 89, 232 91, 718	\$5. 87 6. 12 6. 25 6. 29 6. 32 6. 28

⁷ Mehring, A. L., Adams, J. R., and Jacob, K. D., Statistics on Fertilizers and Liming Materials in the United States: U. S. Dept. of Agriculture Statistical Bull. 191, 1957, 182 pp.

TABLE 6.—Florida phosphate rock sold or used by producers, 1948-52 (average) and 1953-57, by kinds

		Hard rock			Soft rock 1		
Year	Thousand	Value at	mines	Thousand	Value at	mines	
	long tons	Thousand Average dollars per ton		long tons	Thousand dollars	Average per ton	
1948–52 (average)	60 82 74 92 103 80	458 644 585 739 872 682	\$7.63 7.88 7.88 8.04 8.45 8.59	79 76 90 72 59 56	395 470 554 466 376 401	\$4. 99 6. 19 6. 12 6. 47 6. 40 7. 15	
	3	and pebble		Total			
Year	Thousand	Value at mines		Thousand	Value at mines		
	long tons	Thousand dollars	Average per ton	long tons	Thousand dollars	Average per ton	
					44, 555	\$5.75	

¹ Includes material from waste-pond operations.

TABLE 7.—Tennessee phosphate rock ¹ sold or used by producers, 1948–52 (average) and 1953–57

	Thousand	Value at	mines
Year	long tons	Thousand dollars	Average per ton
1948–52 (average)	1, 382 1, 622 1, 701 1, 699 1, 663 1, 778	9, 761 12, 251 12, 012 12, 579 12, 792 11, 857	\$7.00 7.5 7.00 7.40 7.60 6.6

¹ Includes small quantity of Tennessee blue rock in 1954-57, white rock in 1952-57, and Virginia apatite in 1949.

TABLE 8.—Western States phosphate rock sold or used by producers, 1948-52 (average) and 1953-57

		Idaho 1			Montana 2		
Year	Thousand	Value at	mines	Thousand	Value at	mines	
	long tons	Thousand dollars			Thousand dollars	Average per ton	
1948-52 (average)	1, 071 879 1, 122	2, 016 4, 091 4, 300 5, 551 6, 044 6, 589	\$3. 61 3. 82 4. 89 4. 95 5. 01 4. 65	290 658 734 799 714 575	2, 153 4, 643 5, 168 5, 595 4, 794 4, 129	\$7. 42 7. 06 7. 04 7. 00 6. 72 7. 18	
		Wyoming			Total		
Year		Value at	mines		Value at mines		
	Thousand long tons	Thousand dollars	Average per ton	Thousand long tons	Thousand dollars	Average per ton	
1948-52 (average) ³	(2) (2) (2) (2) (2) (2)	560 (2) (2) (2)	\$6. 15 (2) (2) (2) (2)	940 1, 729 1, 613 1, 921	4, 729 8, 734 9, 468 11, 146	\$5. 03 5. 05 5. 87 5. 80	

Idaho includes Utah in 1948 and 1950-52, and Wyoming in 1949-50.
 Montana includes Utah in 1953-55, and Wyoming in 1953-56.
 Includes Wyoming data for 1948 and 1951-52 only.

TABLE 9.—Phosphate rock sold or used by producers in the United States in 1956-57, by grades and States

Grades—B. P. L. ¹	Flor	Florida		Tennessee		States	Total United States		
content (percent)	Thousand long tons	Percent of total	Thousand long tons	Percent of total	Thousand long tons	Percent of total	Thousand long tons	Percent of total	
1956									
Below 60	1, 236 1, 124 4, 088	2 24 12 10 39 13	1, 311 174 174 	79 11 10 (2) 100	1, 139 334 447 	59 18 23 	2, 641 689 4, 222 1, 124 4, 092 1, 343 14, 111	19 5 30 8 29 9	
Below 60	142 245 2, 170 1, 246 2, 013 3, 596 1, 232	1 2 20 12 19 34 12	1, 506 (3) 77 3 172 23 	(3) 4 3 10 1 100	1, 237 (3) 637 3 301 	(3) 29 3 14 	2, 885 372 2, 884 1, 592 2, 036 3, 596 1, 232 14, 597	20 20 11 14 25 8	

 $^{^1}$ Bone phosphate of lime, Ca₃(PO₄)₂. 3 Less than 0.5 percent. 3 Some 60 to 66 grade included with 70 minimum grade.

TABLE 10.—Phosphate rock sold or used by producers in the United States, 1956-57, by uses and States, in thousand long tons

	Flo	rida	Ten	nessee	Wester	n States		United
Uses								
	Rock	P ₂ O ₅ content	Rock	P ₂ O ₅ content	Rock	P ₂ O ₅ content	Rock	P ₂ O ₅ content
1								
1956 Domestic: Agricultural:								
Ordinary superphosphate 2	1, 534	1, 683 503	(1) 1 164	(¹) 1 41	115 273	37 87	5, 139 1, 971	1, 720 631
Nitraphosphate	(3) 637	(3) 198	131	41	7	2	(3) 775	(³) 241
Stock and poultry feed Fertilizer filler	229	73	} 101	21	∫ 1	(4)	230 } 109	73 23
Other 5	8	2) 101		()	
Total agricultural	7, 432	2, 459	396	103	396	126	8, 224	2, 688
Industrial: Elemental phosphorus, ferro- phosphorus, phosphoric acid Other 6	701	229	1, 262 5	330 1	1, 234	308	3, 197 5	867 1
Total industrial	701 2, 395	229 785	1, 267	331	1, 234 290	308 91	3, 202 2, 685	868 876
Grand total	10, 528	3, 473	1,663	434	1, 920	525	14, 111	4, 432
1957 Domestic: Agricultural:			-					
Ordinary superphosphate Triple superphosphate	2 1,813	1, 542 2 597	(¹) ¹ 132	(1)	1 2 503	1 2 160	4,786 2 2,273	1, 598 2 734
Nitraphosphate Direct application to soil Stock and poultry feed	623	192 92	84	26	5 1	(4)	(3) 712 281	(3) 219 92
Fertilizer fillerOther 3	5		93	19	{		98	21
Total agricultural	7, 332	2, 425	309	78	509	161	8, 150	2, 664
Industrial: Elemental phosphorus, ferro- phosphorus, phosphoric acid	705	231	1, 446	374	1, 261	311	3, 412	916
Other 6	2	(4)	23	7			25	7
Total industrial	707 2, 605	231 851	1,469	381	1, 261 405	311 126	3, 437 3, 010	923 977
Grand total	10, 644	3, 507	1,778	459	2, 175	598	14, 597	4, 564

STOCKS

Producers' stocks on hand at the end of 1957 were 14 percent less than in 1956; they did not include quantities of matrix reported by producers, except as noted.

Rock for ordinary superphosphate and triple superphosphate are combined.
 Rock for phosphoric acid (wet process) included with triple superphosphate.
 Included with "Other" agricultural.
 Less than thousand long tons.
 Includes phosphate rock used in calcium metaphosphate, fused tricalcium phosphate, nitraphosphate, and other applications.

⁴ Includes phosphate rock used in pig-iron blast furnaces, parting compounds, research, defluorinated phosphate rock, refractories, and other applications.

⁷ As reported to the Bureau of Mines by domestic producers.

TABLE 11.—Stocks of phosphate rock in the United States, 1956-57, in thousand long tons

	In producers' hands, Dec. 31 1						
Source	19)56	1957				
	Rock	P2O5 content	Rock	P2Os content			
Florida. Tennessee ² . Western States ² . Total.	2,785 251 21,394 34,430	929 69 8 360 2 1, 358	2, 332 285 1, 192 3, 809	775 79 296 1, 150			

¹ As reported to the Bureau of Mines by domestic producers.

² Includes a quantity of washer-grade ore (matrix).

Revised figure.

PRICES

The year opening and closing prices of Florida land-pebble phosphate rock, as quoted by the Oil, Paint and Drug Reporter, continued their upward trend and averaged 5 percent higher at the end of 1957 than at the close of 1956. Price changes were announced at various times during the year. Prices for Tennessee and Western States phosphate rock were not-quoted in the trade journals.

TABLE 12.—Prices per long ton of Florida land pebble unground, washed, and dried phosphate rock, in bulk, carlots, at mine, in 1957, by grades

[Oil, Paint and Drug Reporter of dates listed]

Grades (percent B. P. L.)1				Jan. 7	De	c. 30
68/66 70/68 72/70 75/74 78/76				\$4, 94-4, 99 5, 34-5, 39 5, 99 6, 99 7, 99		\$5. 26 5. 66 6. 31 7. 31 8. 31

¹ B. P. L. signifies bone phosphate of lime, Ca₂(PO₄)₂ (P₂O₅=0.458 times B. P. L.).

FOREIGN TRADE 8

Imports.—Crude-phosphate-rock imports into the United States were the same as in the previous year. Curação (Netherlands Antilles) supplied 99 percent of the imports into the continental United States. Makatea Islands (French) continued to furnish phosphate rock to Hawaii. Imports of normal, concentrated, and ammoniated superphosphates, all from Canada, increased 16 percent over 1956. Imports of fertilizer-grade ammonium phosphate, originating mostly from Canada, decreased 11 percent. A small quantity was imported from West Germany and Mexico. Other phosphatic fertilizer materials were imported from Belgium, Canada, Cuba, Luxembourg, Peru, and the United Kingdom.

⁸ Figures on imports and exports compiled by Mae B. Price and Elsie D. Jackson, Division of Foreign Activities, Bureau of Mines, from records of the U. S. Department of Commerce, Bureau of the Census.

TABLE 13.—Phosphate rock and phosphatic fertilizers imported for consumption in the United States, 1956-57

[Bureau of the Census]

Fertilizer	1	956	1957		
	Long tons	Value	Long tons	Value	
Phosphates, crude, not elsewhere specifiedSuperphosphates (acid phosphate): Normal (standard), not over 25 percent P ₂ O ₅ con-	109. 891	\$2, 626. 226	109, 546	\$3, 090, 481	
tentConcentrated (treble), over 25 percent P ₂ O ₅ con-	272	1 17, 457	71	3, 196	
tentAmmoniated	39 6 42	3, 218 41, 394	598 433	38, 909 27, 806	
Total superphosphates. Ammonium phosphates, used as fertilizer. Bone dust, or animal carbon and bone ash, fit only	953 170, 155	62, 069 13, 034, 579	1, 102 151. 313	69, 911 11, 504, 968	
for fertilizer	11, 536 11, 157 5, 049	¹ 656, 576 949, 180 16, 109	9, 592 16, 685 111	530, 670 1, 542, 385 1, 354	
Dicalcium phosphate (precipitated bone phosphate) all grades	3, 556	222, 492	1, 685	101, 545	

 $^{^{1}}$ Owing to changes in tabulating procedures by the Bureau of the Census, data known to be not comparable with earlier years.

Exports.—Total exports of phosphate rock in 1957 were over 3 million long tons, a 9-percent increase over 1956. Florida land-pebble exports increased 5 percent and went mainly to Japan (40 percent), Netherlands (10 percent), United Kingdom (9 percent), Spain (9 percent), and Canada (8 percent). Shipments of "Other phosphate rock," mainly to Canada increased 39 percent in 1957 compared with 1956. A major part of the phosphate exported to Canada was reimported into the United States in the form of manufactured fertilizers. Superphosphates exported mostly to Canada, Brazil, Republic of Korea, and Cuba, increased 14 percent over 1956.

TABLE 14.—Phosphate rock exported from the United States, 1956-57, by grades and countries of destination

[Bureau of the Census]

Grade and country	19	56	1957		
	Long tons	Value	Long tons	Value	
Florida: High-grade hard rock:¹ North America:					
CanadaCuba	45	\$754	69 101	\$924 1, 274	
Mexico Nicaragua	1, 205	12, 246	1, 373 45	15, 040 1, 832	
Total	1, 250	13, 000	1, 588	19, 070	
South America: Brazil. Chile Ecuador	3, 237 1, 969	49, 155 30, 864	482	6, 660	
Total	5, 206	80, 019	738	10, 322	
Total high-grade hard rock 1	6, 456	93, 019	2, 326	29, 392	

See footnotes at end of table.

TABLE 14.—Phosphate rock exported from the United States, 1956-57, by grades and countries of destination—Continued

	195	56	1957		
Grade and country	Long tons	Value	Long tons	Value	
orida—Continued and pebble:					
and pebble: North America: Canada	234, 479	\$2, 452, 206 123, 218	223, 983	\$2, 346, 251	
Cuba Mexico	234, 479 18, 431 58, 632	123, 218 404, 704	24, 611 63, 454	179, 347 435, 897	
Total	311, 542	2, 980, 128	312, 048	2, 961, 495	
South America: Brazil	61, 598	740, 724 76, 958	47, 370 1, 989	490, 945 18, 029	
Chile	4, 908 1, 003	76, 958 15, 291	1, 004 2, 933	15, 718 26, 400	
Uruguay Venezuela	19, 595 91	214, 228 1, 604	14, 078	132, 560	
Total	87, 195	1, 048, 805	67, 374	683, 64	
Europe: Austria Denmark Germany:	3, 578 24, 834	27, 550 218, 151	31, 322	267, 129	
West	36, 474 96, 921	222, 364 750, 677	163, 949 152, 889	1, 317, 398	
Italy Netherlands Spain	118, 724 189, 777 145, 846	1, 171, 148 1, 697, 763 1, 283, 428 383, 371	152, 889 282, 165 232, 445 64, 822	1, 534, 05 2, 440, 18 2, 078, 78	
Sweden Switzerland United Kingdom	38, 335 269, 342	383, 371 2, 339, 774	2, 980 240, 246	656, 96 26, 22 2, 008, 19	
Total	923, 831	8, 094, 226	1, 170, 818	10, 328, 92	
Asia: Japan	1, 168, 131	8, 688, 854	1, 067, 229	7, 752, 28	
Korea, Republic of Philippines Taiwan	1,600	12, 320 458, 790	3, 752 49, 437 447	34, 44 444, 89 6, 17	
Vietnam, Laos, and Cambodia	1, 219, 787	9, 159, 964	1, 120, 865	8, 237, 80	
Africa:			3 278	32. 7	
Egypt Union of South Africa	19, 980	199, 780	3, 278 16, 690	32, 78 166, 8	
Total	19, 980 2, 562, 335	199, 780 21, 482, 903	19, 968 2, 691, 073	199, 6 22, 411, 5	
Total land pebble	2, 002, 000	21, 102, 000	2,001,010		
Other phosphate rock: ² North America: Canada	304, 201	4, 002, 839	421, 279 228	5, 582, 6 2, 5	
Costa Rica Cuba El Salvador	- 89 223	1, 271 3, 633	44 357	6 5, 4	
Total	304, 513	4, 007, 743	421, 908	5, 591, 3	
South America: Brazil Venezuela	7, 162	119, 331	9, 228 36	130, 9 7	
Total	7, 162	119, 331	9, 264	131, 6	
Asia: Japan Philippines			1, 626 18	23, 7 1, 3	
Total	18	1, 050	1,644	25, 0	
Africa: Liberia Total other phosphate rock	311, 693	- 	-	5, 748, 0	
Grand total	2, 880, 484	25, 704, 046	3, 126, 215	28, 188, 9	

¹ Assumed by the Bureau of Mines to be land pebble.
2 Includes colloidal matrix, sintered matrix, soft phosphate rock, and Tennessee, Idaho, and Montana rock.

TABLE 15.—Superphosphates (acid phosphates) exported from the United States, 1956-57, by countries of destination

[Bureau of the Census]

Destination	1	956	1957		
	Long tons	Value	Long tons	Value	
North America:					
Bahamas British Honduras	.9	\$556	259 201	\$6, 52 12, 70	
Canada	190, 903	5, 452, 288	190, 281	5, 294, 04	
Costa Rica	2,328	129, 303	2, 322	119, 55	
Cuba	63, 670	1, 424, 932	63, 507	1, 670, 94	
Dominican Republic	3, 339	193, 108	6, 944	319, 50	
El Salvador	585	36, 013	804	49, 64	
Guatemala	263	16, 197	262	13, 29	
Mexico	8, 277	524, 456	13, 396	816, 64	
Nicaragua	421	31, 142	346	25, 98	
Panama		0-,	18	1.05	
Trinidad and Tobago	120	7, 526	912	59, 01	
Other	21	552	219	14, 59	
Total	269, 936	7, 816, 073	279, 471	8, 403, 50	
South America:					
Bolivia			134	11, 55	
Brazil	94, 457	1 3, 807, 508	107, 173	5, 012, 55	
British Guiana			135	8, 39	
Chile	2,968	170,600	5, 484	338, 96	
Colombia	9, 325	558, 043	28, 995	1, 896, 509	
Ecuador	318	20, 135	119	7,99	
Peru	979	41,059	5, 920	138, 43	
Venezuela	8, 539	387, 052	7,888	335, 19	
Total	116, 586	1 4, 984, 397	155, 848	7, 749, 59	
Europe: Greece			9, 498	553, 96	
Asia:	F00	10.005			
Indonesia Iran	596	40, 205	246	16, 79	
Korea, Republic of-	100 057	2 070 074	62	4, 24	
Pakistan	102, 657	3, 972, 874	102, 385	5, 913, 46	
Philippines	1, 071	FO 494	4, 591	254, 086	
Saudi Arabia.	1,071	50, 434 18, 360	2, 204	139, 65	
Vietnam, Laos, and Cambodia.	708	18, 300 44, 554			
Total.	105, 182	4, 126, 427	109, 488	6, 328, 234	
			100, 100	0,020,20	
Africa:					
Belgian Congo			1,322	2, 800	
Rhodesia and Nyasaland, Federation of			3, 125	161, 480	
Union of South Africa	2, 321	39, 780	2, 672	160, 509	
Total	2, 321	39, 780	7, 119	324, 789	
Grand total	494, 025	116, 966, 677	561, 424	23, 360, 092	

¹ Revised figure.

TABLE 16.—''Other phosphate material'' 1 exported from the United States, 1948-52 (average) and 1953-57

[Bureau of the Census]

Year	Long tons	Value	Year	Long tons	Value
1948-52 (average)	1, 807	\$244, 142	1955	4, 923	\$556, 779
1953	8, 477	178, 168	1956	10, 587	954, 110
1954	5, 243	456, 330	1957	13, 963	1, 344, 641

¹ Class includes animal carbon, apatite, basic slag, bone-ash dust, bone meal, char dust, defluorinated phosphate rock, duplex basic phosphate, permanente thermosphos (granular), tricalcium phosphate (fused).

WORLD REVIEW

World consumption of fertilizer from 1951 to 1956 was reviewed, and some analyses of changes in supply-demand pattern were given.

NORTH AMERICA

Canada.—The Electric Reduction Co. of Canada, an elemental phosphorus producer, announced plans for a new plant at Port Maitland, Ontario. 10 The plant will have facilities for producing phosphoric acid from elemental phosphorus and from phosphate rock by the wet process.

Mexico.—Investigation of the phosphate-rock deposits in northern Zacatecas continued, and the estimated reserve was 6 million tons containing 18 to 20 percent P₂O₅. 11 Deposits containing 20 percent

P₂O₅ were reported in the Carbonera area of Nueva Leon.

The phosphatic sand deposits in Santo Domingo containing a mixture of collophane, quartz, feldspar, zircon, and ilmenite, extend for over 45 miles along the coast of Baja California. The clean sand as mined, about \% minus 60-plus 100-mesh, contains about 3 percent P₂O₅ and is suitable for beneficiation. In addition to producing 31-percent P₂O₅ phosphate-rock concentrate, the recovery of quartz, ilmenite, and zircon byproducts was also being investigated.12

SOUTH AMERICA

Brazil.—Fosphorita Olinda operated the phosphate rock mine at Olinda near Recife, Pernambuco. The 2,400-ton-per-day washing plant began producing during the second half of the year. The planned distribution of this material is 70 percent to southern and 30 percent to northeast Brazil.

Venezuela.—Reserves of phosphate rock in deposits in the State of Falcon were estimated at 3 million tons containing 31 percent P₂O₅

and 2 million tons containing 25-27 percent P₂O₅. 13

EUROPE

Germany, West.—The Third World Fertilizer Congress was held at Heidelberg, Germany, from September 9 to 12, 1957. This convention, held every fifth year, was organized by the International Confederation of Agricultural Engineers and Technicians (Paris, France) and the International Center of Chemical Fertilizers (Zurich, Switzer-

U. S. S. R.—Expansion of the Kara-Tau phosphate-rock deposits as part of the fertilizer 5-year plan was underway. 14 The hygroscopic nature of superphosphate made from Kara-Tau rock caused considerable difficulty. One way of improving the physical condition of the

material was ammoniation.

[•] Ewald, D. U., Recent Developments of the World Fertiliser Market: Institut fur Weltwirtschaft an der Universitat Kiel, Kiel, Germany, 1957, 227 pp.

□ Chemical Age (London), New Canadian Phosphate Plant: Vol. 77, No. 1976, May 25, 1957, pp. 885-886.
□ Zubryn, Emil, Mexico's "New Look:" Farm Chemicals, vol. 120, No. 3, March 1957, p. 53.
□ Smiley, W. D., Schellinger, A. K., and Elkind, Charles, Mexican Phosphate's Role in the Pacific Basin: Pres. at Pacific Southwest Mineral Industry Conference, Reno, Nev., Apr. 5-6, 1957, 9 pp.
□ Ministerio de Misas e Hidrocarburos, Memoria y Cuenta 1956: Caracas, Venezuela, April 1957, p. 339.
□ I Ivanov, R. N., Khimicheskaya Promyshlennost: No. 2, 1957, pp. 79-82.

TABLE 17.—World production of phosphate rock by countries, 1948-52 (average) and 1953-57, in thousand long tons ²

[Compiled by Helen L. Hunt and Berenice B. Mitchell]

Country 1	1948-52 (average)	1953	1954	1955	1956	1957
North America:						
United States	10, 444	12, 504	13, 821	12, 265	15, 747	13, 976
West Indies:	81	1		40	(A)	
Jamaica (guano) Netherlands Antilles (exports)	93	95	124	109	(4) 104	(4) 105
Total	10, 538	12,600	13, 946	12, 374	15, 851	14, 081
South America:						
Brazil	12	8 12	5 64	5 123	6 123	§ 123
Chile:	1	l				
ApatiteGuano	39 37	58 5 30	5 30	52 5 30	58 5 30	5 54 5 30
Peru (guano)	5 295	257	289	285	331	280
Venezuela	200	201	200	200	30	30
Total 8	383	357	424	490	572	517
Europe:						
Belgium		35	26	19	13	16
France	89	86	117	101	66	₹ 69
Spain Sweden (apatite)	23	22	22	23	8	1
U. S. S. R.:	1					
Apatite 5 Sedimentary rock 5	2,030	2,760	3, 100	3, 445	3, 690	3,940
		1, 205	1, 330	1, 425	1, 575	1,720
Total 1 5	3, 390	4, 370	4, 850	5, 260	5, 600	6,000
Asia:						
British Borneo (guano)	1	1	1	(4) 250	(4) 250	(4) 300 336
Christmas Island (Indian Ocean) (exports)	45	150	200			300
India (apatite)	271	280	351 2	390 6	341 9	336 9
Indonesia	52	î	6	16	56	86
Israel	8.9	23	54	84	118	148
Jordan Philippines (guano)	67	39	74	161	205	258
	10	1	2	(4)	8	4
Total 1 5	350	510	710	920	960	1,080
Africa:	:					
Algeria	686	609	761	740	596	596
Egypt French West Africa (aluminum phosphate)	423 22	477 7 93	526 7 77	636 7 111	605 7 72	5 590 7 89
Madagascar	(4) 22	2	i ii	2	3	1 63
Morocco: Southern Zone	3,831	4,090	4, 940	5, 245	5, 435	5, 480
Seychelles Islands (exports)	10	9	12	4	4	6
South-West Africa (guano) Tunisia	1,727	1,691	1, 795	2, 067	2,044	3
Uganda	1, 121	1, 031	1, 780	2,007	2,011	2, 035 3
Uganda Union of South Africa.	64	79	93	134	154	166
Total	6, 766	7, 057	8, 209	8, 944	8, 917	5 8, 970
Oceania:						
Angaur Island (exports)	145	8 111	122	137		
Australia	3	3	6	6	7	5 10
Makatea Island (French Oceania) (exports)	229 890	247	225	216	250	300
Nauru Island (exports) Ocean Island (exports)	226	1, 160 282	1, 178 292	1, 401 309	1,333 297	1, 105 292
Total	1, 493	1,803	1, 823	2,069	1,887	1, 707
World total (estimate) 12	22, 920	26, 750	29, 950	30, 050	33, 750	32, 350

¹ In addition to the countries listed, a negligible quantity is produced in Angola, British Somaliland, Canada, Japan, Southern Rhodesia, and Tanganyika; estimates by the author of the chapter for Austria, Ireland, North Korea, and Poland are included in the total.
² This table incorporates a number of revisions of data published in previous Phosphate Rock chapters. Data do not add to totals shown, owing to rounding where estimated figures are included in the detail.
² Average for 1951-62.
² Less than 500 tons.
² Estimate.
² Exports.

Exports.

7 Includes calcium phosphate, production of which is reported in thousand long tons, as follows: 1953, 41; 1954, 5; 1955, 8; 1956, 5; 1957, 1.

ASIA

Israel.—The Negev Phosphate, Ltd., further expanded phosphateore production from the Oron district in the Negev Desert. The ore averaging 24 percent P₂O₅, was processed in an air separation plant to 28.5 percent P₂O₅ with less than 50-percent recovery. By the end of 1957 marketable output was reported at the rate of 200,000 tons The major cost continued to be transportation to Haifa. Joint surveys with foreign groups were underway to extend phosphaterock reserves and improve recovery methods.15

Jordan.—The Jordan Phosphate Co. Ltd., Roseifa (Ruseifeh) mine, continued to be the only producer in 1957. Recent reserve estimates disclosed 2.7 million tons proved and 25 million tons probable, 32 to 34 percent P₂O₅, at Roseifa and 10 to 20 million tons probable, 29 to 32 percent P₂O₅, at Al Hasa. ¹⁶ A Yugoslav company was exploring for phosphate rock in southern Jordan under a concession from the Government. Improvement of transportation and port facilities was underway further to increase exports. 17

AFRICA

French Equatorial Africa.—The Société des Phosphates du Congo reported reserves of 3.5 million tons in a narrow phosphate belt nearly 100 miles long. Exploration was stopped in early 1957, pending availability of electric power.18

French West Africa.—The Société Minière du Benin began developing phosphate deposits in Southern Togo under 50-year con-

cessions granted by the Togo Government.¹⁹

Plans were reported for phosphate production from the deposits near Taiba in Serregal during 1959, by the Compagnie Sénégalaise des Phosphates de Taïba. This company was owned by Bureau Minier de la France d'Outre-Mer, Pierrefitte, Péchiney, the Phos-

TABLE 18.—Exports of phosphate rock from Egypt, 1952-56, by countries of destination, in long tons 1 2

[Compiled by Corra A. Barry]

Country	1952	1953	1954	1955	1956
Belgium-Luxembourg Ceylon. Czechoslovakia. Finland Germany, West Greèce. India. Indonesia Italy Japan Netherlands Spain. Union of South Africa. Other countries.	33, 909 23, 325 37, 156 11, 732 28, 498 4, 675 38, 976 173, 593	1, 500 31, 749 12, 500 10, 137 	600 34, 949 52, 204 5, 019 3, 899 27, 470 3, 133 33, 834 210, 997 16, 733	(4) 38, 299 62, 164 \$ 9, 744 \$ 2, 067 (4) 18, 199 (4) 32, 912 231, 534 \$ 19, 155 (4) 231	(4) 36, 899 70, 969 (4) 18, 133 3, 446 3, 956 236, 358 8 1, 511 31, 099 (4) 6, 173
Total	416, 129	373, 129	388, 841	414, 305	408, 538

Compiled from Customs Returns of Egypt.
 This table incorporates a number of revisions of data published in the previous phosphate-rock chapter.
 Detail shown by country of importation.
 Data not available.

Bureau of Mines, Mineral Trade Notes: Vol. 45, No. 2, August 1957, p. 28.
 Mining Journal (London), Phosphate and Potash in Israel: Vol. 249, No. 6376, Nov. 1, 1957, p. 510.
 Bureau of Mines, Mineral Trade Notes: Vol. 44, No. 1, January 1957, pp. 26-27.
 Chemical Trade Journal and Chemical Engineer (London), Jordanian Phosphate: Vol. 140, No. 3631

Jan. 4, 1957, p. 23.

10 U. S. Consulate, Elisabethville, Belgian Congo, State Department Dispatch 15: Feb. 20, 1958, p. 7.

13 Bureau of Mines, Mineral Trade Notes: Vol. 44, No. 5, May 1957, p. 31.

phates de l'oceanie, the Phosphates de Constantine, and the Terri-

toire du Sénégal.20

Rhodesia and Nyasaland, Federation of.—The Dorowa deposits in Southern Rhodesia, explored by African Explosives and Chemical Industries, Ltd., were reported to contain 20 million tons of phosphate rock. Plans for constructing a pilot processing plant were announced.²¹ Another deposit at Shawa, 16 miles from Dorowa, was explored during

The Anglo-American Corp. planned exploration of phosphate de-

posits near Mlanje in southern Nyasaland.²²

Tunisia²³.—Phosphate-rock production in Tunisia came mainly from the Southern Basin around Gafsa, where the Compagnie des Phosphates et du Chemin de Fer de Gafsa operated mines and beneficiation plants at Metlaoui, Moulares, and Redeyef, and the Compagnie Tunisienne des Phosphate du Djebel M'Dilla operated a mine and beneficiation plant at M'Dilla. The Gafsa company normally produced 75 percent and the M'Dilla company 15 percent of the Tunisian output. The remaining 10 percent came from the Kalaa Djerda mine in the Central Basin in east central Tunisia.

In the Southern Basin, the ore, averaging 27 percent P₂O₅, was mined underground and upgraded by washing to 29.7 percent P₂O₅. Output by the Gafsa and M'Dilla companies was shipped about 155 miles to Sfax on the Gafsa-owned railroad. The beneficiated rock at Sfax was either used for manufacturing triple superphosphate or hyperphosphate (finely ground for direct application), or exported crude. In 1957 the annual capacity of the triple superphosphate plant was 100,000 tons of 44 percent P₂O₅ material, and that of the hyperphosphate plant was 150,000 tons.

A total of 8,500 Tunisians and 500 Europeans mined and processed

phosphate rock in Tunisia.

Both the Gafsa and M'Dilla plants were investigating further beneficiation methods to produce a 34-percent P₂O₅ phosphate rock.

Exports in 1957 were 4 percent less than in 1956.

Uganda.—Investigation of the Sukulu apatite deposits near Tororo by the Sukulu Mines, Ltd., continued during 1957. A pilot plant began recovering apatite concentrate in November 1956, and the

market was being studied in early 1957.24

of South Africa.—The Fosfaat Ontginningskorporasie (FOSKOR) resumed mining apatite at its Phalaborwa mine early in Fertilizer manufacturers expressed a preference for sedimentary phosphate rock for acidulation, and the company (FOSKOR) experienced difficulty in disposing of its output.25

African Metals Corp., Ltd., and Pretoria North Development Co.

(Pty.), Ltd., produced small tonnages of phosphate rock.

OCEANIA

Australia and New Zealand.—The British Phosphate Commission began a 3-year exploration program for phosphate-rock deposits in Australia, New Zealand, and many coastal islands.

²⁰ Chemistry and Industry, Exploitation of the Phosphates at Taiba in Sénégal: No. 27, July 6, 1957

<sup>Chemistry and Industry, Exploitation of the Phosphates at Tanoa in Senegai: No. 21, July 0, 1801
Chemical Week, vol. 80, No. 8, Feb. 23, 1957, p. 25.
Chemical Week, vol. 80, No. 8, Feb. 23, 1957, p. 25.
Rhodesian Mining Review (Salisbury), Prospects of Mining Development in Nyasaland: Vol. 21, No. 3, March 1956, p. 29.
U. S. Embassy, Tunis, Tunisia, State Department Dispatch A-277: Feb. 12, 1958, 17 pp.; Dispatch 402: Jan. 8, 1958, pp. 21, 24; enclosure 1, pp. 3, 6.
Bureau of Mines, Mineral Trade Notes: Vol. 45, No. 1, July 1957, pp. 41-42.
Bureau of Mines, Mineral Trade Notes: Vol. 44, No. 1, January 1957, pp. 27-30.
Fertiliser and Feeding Stuffs Journal (London), vol. 66, No. 8, Apr. 10, 1957, p. 367.</sup>

TABLE 19.—Exports of phosphate rock from North Africa, 1955-57, by countries of destination, in long tons 1

[Compiled by Corra A. Barry]

Country	1955	1956	1957
North America:			-
Canada	6, 457	4,921	
French West Indies	738	-,0-2	
South America:			
Argentina	3, 475	888	
Brazil		68, 098	46, 757
Chile		7,642	12, 795
		17,042	
_ Uruguay	16, 840	17, 616	11, 564
Europe:			
Austria		6, 154	40, 353
Belgium		416 132	436, 309
Czechoslovakia	67, 614	21, 993	21, 544
Denmark		228, 591	207, 264
Finland		99, 636	127, 603
France		1, 460, 763	1, 505, 286
Germany		631, 174	668, 707
Greece		139, 581	101, 791
Hungary		14,019	
Ireland	111,836	118, 180	68, 319
Italy	1, 211, 007	1, 195, 711	1, 121, 892
Netherlands		351, 642	375, 554
Norway		53, 606	75, 524
Poland		305, 135	254, 982
Portugal		257, 052	248, 916
Spain		727, 270	622, 110
Sweden	252, 528	289, 550 24, 318	243 , 038
Switzerland		24,318	23, 587
United Kingdom		792, 961	729, 118
Yugoslavia	65, 950	34, 182	54, 693
Asia:			•
Ceylon	1,000		
India	9, 590	8, 308	3, 100
Indonesia		17, 416	14, 592
Japan		97, 767	90, 288
		91,101	20, 200
Malaya	3		
Philippines	115		
Taiwan		25	
Thailand			
Turkey	48, 301	26, 687	8, 449
Vietnam, Laos, and Cambodia	25, 836	10.150	2, 953
Africa:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		.,
Canary Islands		3, 223	14, 916
Madagascar		0, 220	11,010
Morocco: Northern Zone	3, 130		
South Africa (including Rhodesia)	9, 100	949 074	050 000
	341, 698	343, 854	379, 39
Oceania:			
Australia	11, 108		
New Zealand			
L ocal shipments 2	(3)	357, 245	415, 278
Total	7, 797, 311	8, 131, 490	7, 926, 67
Algeria	711, 709	621, 560	602, 91
Morocco: Southern Zone	5, 165, 172	4, 481, 576	5, 385, 85
Tunisia		2, 028, 354	1, 937. 90
1 UHIOIG.	1, 740, 400	2,020,004	1, 501, 50.

Compiled from Customs Returns of Algeria, Morocco, and Tunisia.
 Trade between Algeria, Morocco, and Tunisia.

3 Data not available

Albright & Wilson (Australia) Pty., Ltd., the only elementalphosphorus producer in Australia, began constructing its third electric

furnace at the Yarraville plant near Melbourne.²⁶

Christmas Island.—Administration of Christmas Island was transferred from Singapore to the Australian Government. The British Phosphate Commission announced that increased mechanization and processing facilities were planned and would enable production to reach 800,000 tons of phosphate rock by 1961.27

Makatea Island.—Exports of phosphate rock in 1957 went to

Chemical Trade Journal and Chemical Engineer (London), Phosphorus Products in Australia: Vol. 141, No. 3664, Aug. 23, 1957, p. 453.
 Fertiliser and Feeding Stuffs Journal (London), vol. 47, No. 6, Sept. 11, 1957, p. 263.
 Industrial and Mining Standard (Melbourne), Phosphate Outpost: Vol. 112, No. 2836, June 20, 1957, p. 2.

Japan, 202,100; New Zealand, 56,000; India, 27,500; Formosa, 10,500; and Hawaiian Islands, 3,675 long tons.

Solomon Islands.—Phosphate rock was reported from Bellona Island. Grade and extent of the deposits were not known.²⁸

TECHNOLOGY

Studies of the Federal Geological Survey in Beaufort and Hyde Counties, N. C., disclosed extensive phosphate-rock deposits. The phosphate-bearing sands, ranging from a few feet up to 90 feet in thickness, were overlain by 45 to 250 feet of overburden. The sands, ranging from 8 to 31 percent P2O5, occurred in an area of more than 450 square miles.

Phosphate-rock deposits in Florida were divided into the "pebble district," "outlying pebble districts," and the "hard-rock district." Industry was active mainly in the pebble district.²⁹ Phosphate deposits in the northern part of the hard-rock district in Alachua County were investigated.³⁰

Methods employed in mining Tennessee brown-rock phosphate were described.31 Stripping was accomplished by bulldozers and

draglines. Ore was recovered with draglines.

The research on mechanized, underground phosphate-rock mining was continued by the Federal Bureau of Mines. A new phosphate planer was built and tested with encouraging results. Test work in the southeast Idaho area was planned.

Occurrences of phosphate rock in California were described.³²

Belt concentrators were used in the Florida land-pebble phosphate

field to upgrade and recover minus-20-, plus-48-mesh rock. 33

Beneficiation investigations of phosphate-rock deposits in the Wind River Mountains of Wyoming disclosed that 40 to 50 percent of calcite in phosphate rock could be eliminated by calcining, slaking, and washing.34

Problems of elemental-phosphorus production and means of solving them in a United States plant were described.35 Operation of the largest elemental phosphorus plant in England, Albright & Wilson, Ltd., at Portishead, was described. The plant capacity was 20,000

tons per year from 6 electric furnaces.³⁶
The Clinker process for manufacturing phosphoric acid eliminated the evaporation step used in the wet process and enabled production of phosphoric acid containing about 33 percent P₂O₅.37 Improvement of the wet process was also reported.38

November 1957, p. 83.

** Kundert, C. J., Phosphates: Chap. in Mineral Commodities of California, Dept. of Natural Resources, Division of Mines, Bull. 176, 1957, pp. 425-429.

** Engineering and Mining Journal, How Coronet Uses Belt Concentrator: Vol. 158, No. 12, December

8, 1957, p. 569.

Mining Magazine (London), Phosphate on Bellona Island: Vol. 96, No. 1, January 1957, pp. 36-37.
 LeBaron, I. M., The Phosphate Industry in Florida: Farm Chemicals, vol. 120, No. 8, August 1957.

²⁸ JeBaron, I. M., The Phosphate Industry in Florida: Farm Chemicals, vol. 120, No. 8, August 1957, pp. 49-52.

30 Pirkle, E. C., Economic Consideration of Pebble Phosphate Deposits of Alachua County, Florida: Econ. Geol. and Bull. of Soc. of Econ. Geol., vol. 52, No. 4, June-July 1957, pp. 354-378.

31 Mining Magazine (London), Overburden Removal at an American Phosphate Pit: Vol. 97, No. 4, October 1957, pp. 219-220.

Mining World (London), Recovering Phosphate From Hillside Deposits in Tennessee: Vol. 19, No. 12, Navarable 1957, pp. 2

^{1857,} pp. 81-83.

2 Dunean, W. E., and Fisk, H. G., Central Wyoming Phosphate Rock—Character, Processing and Economics: Univ. of Wyoming, Coll. of Eng., Natural Resources Research Inst., Laramie, Wyo., Bull. 6,

Economics: Univ. of Wyoming, Coll. of Eng., Natural Resources Research Inst., Laramie, Wyo., Bull. o, September 1957, 60 pp.

3 Antaki, V. N., Production of Elemental Phosphorus: Min. Eng., vol. 9, No. 3, March 1957, pp. 339-341.

5 Chemical Trade Journal and Chemical Engineer (London), Phosphorus Manufacture at Portishead: Vol. 140, No. 3643, Mar. 29, 1957, pp. 739-740.

5 Legal, C. C., Jr., Pryor, J. N., Tongue, T. O., and Veltman, P. L., Phosphoric Acid by the Clinker Process: Ind. Eng. Chem., vol. 49, No. 3, March 1957, pp. 334-337.

5 Chemical Trade Journal and Chemical Engineer (London), Phosphoric Acid: Vol. 140, No. 3640, Mar. 2016 1860.

Facilities for using fluorine liberated in processing phosphate rock were increased.39

Processes for extracting uranium from phosphate rock were based mainly on solvent extraction or ion exchange. Moroccan phosphate rock contained 105 parts per million of U₃O₈, and the fertilizer industry in the United Kingdom was investigating possible recovery methods.40

Additional information on properties and production methods of

"superphosphoric acid" was published.41

Research continued on the use of liquid fertilizers. 42

Several articles concerning the advantages of various types of phosphates, 43 the solubility of phosphates, 44 and analyses for phosphate

content 45 were published in 1957.

Granulation and ammoniation continued to play an important role new fertilizer technology. 46 Recent developments, including methods of producing ammonium phosphate-nitrate and ammonium phosphate-urea, were described.⁴⁷

Safety in handling phosphate insecticides was stressed as an im-

portant factor in the expanding complex insecticide market.48

A new technique in manufacturing sodium-phosphate glass was using colloidal platinum in separating 2 liquid phases before crystallization.49

Trace elements in phosphatic and other fertilizers continued to

receive considerable attention during the year.⁵⁰

Continued research by the synthetic-detergent industry developed a bar detergent for home use.⁵¹ This development, together with food processing and other new chemical uses for synthetic detergents, will increase the demand for phosphate chemicals produced from elemental phosphorus.

39 Farm Chemicals, OM Recovers Fluoride From P₂O₈ at Pasadena: Vol. 120, No. 5, May 1957, p. 8. Mining Congress Journal, Big Fluorine Contract Set: Vol. 43, No. 12, December 1957, p. 79.
40 Stedman, R. E., The Recovery of Uranium From Phosphate Rock: Chem. Ind. (London), No. 6, Feb. 9, 1957, pp. 150-153.
41 Commercial Fertilizer, Data on 76 Percent P₂O₈ "Superphosphoric Acid" for Granular and Liquid Mixes: Vol. 95, No. 4, October 1957, pp. 57-58.
42 Commercial Fertilizer, TVA Liquid-Fertilizer Experiments With Wet-Process Acids, Interim Rept.: Vol. 94, No. 4, April 1957, pp. 28-29.
43 Agricultural Chemicals, Di-Calcium Phosphate as a Phosphatic Fertilizer: Vol. 12, No. 9, September 1957, pp. 57-58; Calcium Phosphates: No. 7, July 1957, pp. 40-41, 47; No. 8, August 1957, pp. 30-32, 95, 97. Boylan, D. R., New Developments in Fertilizer Technology: Com. Fert., vol. 94, No. 5, May 1957, pp. 24-33.

Boylan, D. R., New Theories of Phosphate Reactions in the Soil: Fertiliser and Feeding Stuffs Jour. (London), vol. 47, No. 8, Oct. 9, 1957, pp. 345-346, 348-352.

4 Cook, R. L., Lawton, K., Robertson, L. S., and Hansen, C. M., Phosphorus Solubility, Particle Size and Placement as Related to the Uptake of Fertilizer Phosphorus and Crop Yields: Com. Fert., vol. 94, No. 6, June 1957, pp. 41-43, 46, 47.

Sauchelli, Vincent, Water Solubility of Phosphates: Agr. Chem., vol. 12, No. 2, February 1957, pp. 49-50; No. 3, March 1957, p. 55.

Sauchelli, Vincent, Water Solubility of Phosphates: Agr. Chem., vol. 12, No. 2, February 1957, pp. 49-50; No. 3, March 1957, p. 55.

4 Journal of the Association of Official Agricultural Chemists, Report on Phosphorus in Fertilizers: Vol. 40, No. 3, August 1957; Jacob, K. D., and Hoffman, W. M. I, Preparation of Solution of Sample for Total Phosphorus Determination, pp. 690-700; Epps, E. A., Jr., and Jacob, K. D., II, Photometric Determination of Phosphorus, pp. 700-711; Jacob, K. D., and Hoffman, W. M., III, Mechanical Analysis of Phosphate Rock, pp. 711-722.

Marshall, H. L., and Replogle, M. H., Volumetric Analysis of Triple Superphosphate: Agr. Chem., vol. 12, No. 4, April 1957, pp. 48-50, 120-122.

46 Hignett, T. P., The Changing Technology of Granulation and Ammoniation: Agr. Chem., vol. 12, No. 1, January 1957, pp. 30-33, 107, 109, 111.

Chemical Age (London), New Developments in Fertiliser Granulation: Vol. 78, No. 2003, November 1957, pp. 877.

1957, p. 877.

4 Rapp, H. F., and Hardesty, J. O., Granulation of Mixed Fertilizers in Experimental Equipment and Determination of Storage and Drilling Characteristics of the Products: Agr. Food Chem., vol. 5, No. 6, June 1957, pp. 426–433.

4 Shaffer, C. B., Safety with Phosphate Insecticides: Agr. Chem., vol. 12, No. 1, January 1957, pp. 34–35,

48 Shaffer, C. B., Salety with rhosphate insections. 15.1. State, 15.1

Platinum-Group Metals

By J. P. Ryan 1 and Kathleen M. McBreen 2

RECORD world production, declining demand, and growing oversupply featured the platinum-group-metal industry in 1957. Supply and demand were reversed from last year, when domestic consumption reached an alltime high and prices remained relatively stable. Reflecting the falling demand and increased world supply, platinum prices declined steadily from a high of \$103-\$107 at the beginning of the year to a low of \$76-\$80 at the end of the year. Both net imports and domestic consumption of platinum declined sharply from the alltime high of 1956 owing principally to the drop in demand from the petroleum-refining industry, the leading consumer of the metal. Substantial quantities of platinum continued to be offered on the open market by the U. S. S. R. and contributed to the decline in prices.

Rustenburg Platinum Mines, Ltd., the world's leading producer of platinum, continued the expansion of production facilities begun in 1956 at its mines in the Union of South Africa. Full-scale development of the large deposits of platinum-bearing nickel deposits in Manitoba, Canada, begun last year was continued during 1957 by International Nickel Co. of Canada, Ltd., which ranked second in

the world as a producer of platinum-group metals.

LEGISLATION AND GOVERNMENT PROGRAMS

The regulations established on March 23, 1953, under the Defense Materials System by Business and Defense Services Administration of the United States Department of Commerce included platinum-group metals and remained in effect throughout 1957. Orders for military or atomic-energy uses had priority ratings and took precedence over unrated orders.

All platinum-group metals and their manufactures required a validated license for export to Soviet Bloc countries—Communist China, Hong Kong, and Macao, and Communist-controlled areas of Viet-Nam

and Laos.

Platinum-group metals were eligible for 50-percent financial assistance under the Defense Minerals Exploration Administration (DMEA) program; no projects were active in 1957.

¹ Commodity specialist. ² Statistical assistant.

TABLE 1.—Salient statistics of platinum-group metals in the United States 1948-52 (average) and 1953-57, in troy ounces

	1948-52 (average)	1953	1954	1955	1956	1957
Production: Mine production from crude plati- num placers, and byproduct platinum-group metals recovered			-	,		
largely from domestic gold and copper ores 1	30, 655 (²)	25, 072 \$1, 860, 000	24, 235 \$1, 767, 995	23, 170 \$1, 874, 271	21, 398 \$1, 884, 487	18, 531 \$1, 428, 642
Refinery production: New metal: Platinum Palladium Other	42, 064 7, 100 4, 872	46, 963 6, 347 6, 957	4,605	52, 011 6, 123 3, 347	50, 516 4, 389 3, 745	37, 109 4, 031 6, 088
Total	54, 036	60, 267	56, 766	61, 481	58, 650	47, 228
Secondary metal: Platinum Palladium Other	37, 051 28, 067 4, 366	29, 547 30, 494 4, 816	31, 190	32, 901 26, 124 5, 311	60, 916 37, 774 7, 579	31, 294
Total	69, 484	64, 857	65, 699	64, 336	106, 269	87, 521
Consumption: Platinum Palladium Other	215, 498 172, 285 25, 851	231, 525	234, 537	351, 663	430, 644 399, 991 28, 277	347, 983 367, 287 30, 278
Total	413, 634	533, 298	581, 946	850, 811	858, 912	745, 548
Stocks in hands of refiners, importers, and dealers, Dec. 31: 3 Platinum	172, 663 141, 381 40, 796	130, 206	115, 299	153, 092	353, 778 163, 730 47, 025	154,005
Total	354, 840	375, 346	401, 877	503, 088	564, 533	507, 189
Imports for consumption: Unrefined materialsRefined metals	42, 983 351, 578	48, 525 585, 563		50, 953 958, 987	4 41, 221 4 992, 656	
Total	394, 561	634, 088	606, 444	1, 009, 940	4 1, 033, 877	686, 983
Exports: Ore and concentrates	. 197				5.40.076	40, 354
ing scrap	39, 908	25, 728 (6)	28, 423	5 28, 968 (6)	⁸ 42, 072 (⁶)	(6)

¹ Includes Alaska.

DOMESTIC PRODUCTION

CRUDE-PLATINUM PRODUCTION

Mine returns and refinery reports indicate a domestic recovery of 18,500 troy ounces of platinum-group metals from crude platinum in 1957 compared with 21,400 ounces in 1956, a decrease of 13 percent. This metal was recovered from crude platinum mined at placerplatinum deposits in the Goodnews Bay district in Southwestern Alaska, from gold placers in California that yielded byproduct crude platinum, from some gold and copper ores that contained small quantities of platinum-group metals, and as a byproduct in smelting and refining operations.

² Figure not available.

Figures for 1948-56 are revised.
4 Revised figure.
5 Due to changes in classifications data not strictly comparable with years before 1955.
6 Beginning January 1, 1952, quantity not recorded.

REFINED PLATINUM-GROUP METALS

New Metals Recovered.—Reports from refiners indicate recovery in the United States of 47,230 ounces of new platinum-group metals in 1957, compared with 58,650 ounces in 1956, a drop of nearly 20 percent. Of the total new metals refined in 1957, 89 percent was recovered from crude platinum, both domestic and foreign, and 11 percent was recovered as a byproduct of gold and copper ores; comparable

figures in 1956 were 90 and 10 percent, respectively.

Secondary Metals Recovered.—Refiners in the United States recovered 87,500 ounces of platinum-group metals, chiefly from scrap, sweeps, and outmoded jewelry, in 1957, compared with 106,300 in 1956. In addition, about 800,000 ounces of platinum-group metals in wornout catalysts, spinnerets, laboratory ware, and other forms was returned to refiners for reworking or refining on toll; the metals so recovered (or their equivalent in refined metals) are returned to consumers for reuse and are not included in the total for secondary metals.

Domestic-refinery production of platinum, palladium, and iridium (new and secondary) in 1957 dropped 23, 16, and 3 percent, respectively, below 1956 production. Refinery production (new and secondary) of osmium, rhodium, and ruthenium increased 84, 13, and 33

percent, respectively.

Refinery production of platinum-group metals from domestic ores and secondary materials furnished about 14 percent of domestic requirements.

TABLE 2.—New platinum-group metals recovered by refiners in the United States, 1948-52 (average), 1953-55, and 1956-57, by sources, in troy ounces

	Plati-	Palla-		0	72		
	num	dium	Iridium	Osmium	Rho- dium	Ruthe- nium	Total
1948-52 (average) 1953 1954 1955	42, 064 46, 963 47, 421 52, 011	7, 100 6, 347 4, 605 6, 123	2, 467 3, 857 2, 273 2, 056	1, 044 1, 192 1, 214 689	814 891 655 324	547 1,017 598 278	54, 036 60, 267 56, 766 61, 481
1956	1 4 .						
From domestic— Crude platinum Gold and copper refining	13, 942 1, 466	92 4, 163	1,780	282	19	32	16, 147 5, 629
Total From foreign—	15, 408	4, 255	1,780	282	19	32	21, 776
Crude platinum	35, 108	134	696	218	344	374	36, 874
Total	50, 516	4, 389	2, 476	500	363	406	58, 650
1957							
From domestic— Crude platinumGold and copper refining	11, 316 1, 172	84 3, 798	1, 265	236	702	235	13, 838 4, 970
Total	12, 488	3, 882	1, 265	236	702	235	18, 808
From foreign— Crude platinum	24, 621	149	1, 428	1, 113	354	755	28, 420
Total	37, 109	4, 031	2, 693	1, 349	1,056	990	47, 228

TABLE 3.—Secondary platinum-group metals recovered in the United States, 1948-52 (average) and 1953-57, in troy ounces

	Platinum	Palladium	Iridium	Others	Total
1948-52 (average)	37, 051	28, 067	1, 284	3, 082	69, 484
	29, 547	30, 494	853	3, 963	64, 857
	31, 330	31, 190	734	2, 445	65, 699
1955	32, 901	26, 124	1, 499	3, 812	64, 336
1956	60, 916	37, 774	1, 751	5, 828	106, 269
1967	49, 022	31, 294	1, 406	5, 799	87, 521

CONSUMPTION AND USES

United States continued to consume about three-fourths of the world production of platinum-group metals, but in 1957 the quantity used was 13 percent less than in 1956. The decline in demand was attributed chiefly to the sharp cut in purchases of platinum by the petroleum-refining industry; this was the chief factor contributing to the oversupply during the second half of the year. The usefulness of platinum and allied metals in industry is based principally on high corrosion resistance in electrochemical operations, catalytic activity,

and freedom of oxidation at high temperatures.

Catalytic uses, particularly in petroleum refining continued to provide the major market for platinum. Large quantities of platinumgroup metals also were used as catalysts in producing nitric and sulfuric acids, hydrogenation and dehydrogenation, synthesis of hydrocarbons, and hydroxylation. Platinum catalysts in the petroleumcracking industry partly made possible the growth in octane rating and production of high-octane gasoline in the United States. ing to estimates by a leading producer of platinum-group metals,3 catalytic cracking amounted to 10 percent of crude-oil production in 1955; and in 1956 the proportion was almost 14 percent. research indicates that the proportion should reach 30 percent in the next decade, with a corresponding increase in the use of platinum. Nearly 38 percent of the total platinum-group metals sold in 1957 went to the chemical industry. Palladium catalysts were used principally in producing pharmaceuticals and petrochemicals and in purifying industrial gases.

Electrical industries, the leading industrial consumers of platinumgroup metals in 1957, furnished 46 percent of total sales. Platinum and palladium and their alloys were used for contacts in voltage regulators, relays, high-tension magnetos and sparkplugs, in thermocouples, and for many other electrical and thermal-regulating devices where high resistance to oxidation and spark erosion and high melting

point are required.

Platinum-gold and platinum-rhodium alloys were used in spinnerets for manufacturing synthetic fibers and in nozzles for extruding fiber glass. Platinum-iridium alloys were utilized as anodes in electroplating; platinum and platinum-rhodium alloys were used for melting crucibles and other glass-handling equipment; and platinum utensils continued to be employed extensively in chemical laboratories. Platinum-iridium and platinum-ruthenium alloys continued to find nu-

³ Process Industries Quarterly, International Nickel Co., Inc., Platinum Catalyst for Better Gasoline: Vol. 18, No. 1, 1957, pp. 8-9.

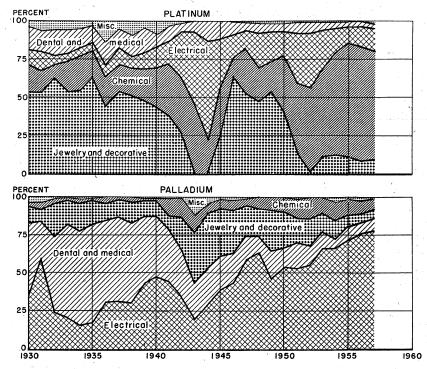


FIGURE 1.—Sales of platinum and palladium to various consuming industries in the United States, 1930-57, as percent of total.

merous applications in jewelry and as decorative materials. Palladium alloys also were used for jewelry and fountain-pen nibs. Both platinum and palladium are beaten into leaf for signs, bookbindings, and other decorative uses. Because of their strength, workability, and resistance to tarnish, alloys of platinum and palladium were widely consumed for appliances and fittings in dentistry. Rhodium was used chiefly in alloys with platinum for chemical and electrical equipment, and in electroplate for reflectors, electronic components, and jewelry, rhodium-platinum wire in resistance-wound laboratory furnaces for producing high temperatures. Osmium and ruthenium were employed principally in hard alloys for fountain-pen tips and phonograph needles.

In spite of their high cost, platinum-group metals have important advantages over other metals as construction materials in the chemical industry, especially for service under extremely severe conditions, because of their resistance to chemical attack and oxidation. The more important chemical applications of platinum-group metals and their alloys were described in a trade journal.⁴

Sales of platinum to consuming industries in 1957 were 19 percent lower and represented about 47 percent of the total sales of platinum-group metals, compared with 50 percent in 1956. The chemical

⁴ Warwick, B. A., Noble Metals in Chemical Engineering: Chemical Age (London), vol. 78, No. 1994, September 1957, pp. 501-502.

industry, including petroleum refining, was again the leading consumer, purchasing 70 percent of the total platinum sold; this quantity was about 24 percent less than in 1956. Electrical and electronics industries requirements were slightly lower and comprised 15 percent of the total; platinum sold for jewelry and decorative uses was 12 percent lower in 1957 and represented 10 percent of the total; dental and medical uses accounted for 3 percent and miscellaneous uses 2 percent of the total.

Eight percent less palladium was sold in 1957 than in 1956, representing 49 percent of total domestic sales of platinum-group metals compared with 47 percent in 1956. The electrical industry purchased 78 percent of the total palladium sold; dental and medical, 8 percent; chemical, 7 percent; jewelry and decorative, 6 percent; and miscel-

laneous, 1 percent.

TABLE 4.—Platinum-group metals sold to consuming industries in the United States, 1956-57, in troy ounces

320, 476 53, 872 12, 436 38, 745	31, 449 304, 990 30, 344 25, 447	14, 882 3, 704 610 6, 402	366, 807 362, 566 43, 390 70, 594
5, 115	7, 761	2, 679	15, 555
430, 644	399, 991	28, 277	858, 912
243, 226 52, 574 11, 514 34, 102 6, 567	25, 936 285, 576 29, 131 21, 257 5, 387	13, 644 4, 388 736 3, 975 7, 535	282, 806 342, 538 41, 381 59, 334 19, 489
	243, 226 52, 574 11, 514 34, 102	243, 226 25, 936 52, 574 285, 576 11, 514 29, 131 34, 102 21, 257 6, 567 5, 387	243, 226 25, 936 13, 644 52, 574 285, 576 4, 388 11, 514 29, 131 736 34, 102 21, 257 3, 975 6, 567 5, 387 7, 535

Iridium, osmium, rhodium, and ruthenium sold to domestic consumers totaled 7 percent more in 1957 than in 1956 and represented 4 percent of total platinum-group metals sold, compared with 3 percent in 1956. About 45 percent of these minor platinum-group-metal sales, chiefly rhodium, went to the chemical industry, 15 percent for electrical uses, 13 percent for jewelry and decorative uses, 2 percent for dental and medical, and 25 percent for miscellaneous uses.

Newly developed uses for platinum are expected to lead to increased consumption and alleviation of the oversupply. Promising new applications include: (1) The use of platinum anodes in automatic electrical systems to protect the hulls and propellers of ships and submarines from corrosion, (2) platinum-metal bursting disks in protecting chemical-process equipment, (3) electroplated rhodium in coaxial radio-frequency circuits, (4) palladium high-resistance alloys for potentiometers and transducers, especially suitable for use in guided-missile instrumentation and industrial equipment, (5) platinum

as the active element in "glow plugs" or reigniters to prevent "flameout" in jet engines and insure continuity of combustion under extreme climatic conditions. The automatic reigniter called "Instalite" developed by Engelhard Industries is essentially a platinum-alloy rod, having high heat retentivity, that acts as a catalyst for jet-fuel combustion and a "pilot light" when flameout occurs.

A cobalt-platinum alloy which provides a more powerful permanent magnet than any other known material was developed. The alloy contains 23 percent cobalt and 77 percent platinum. The first practical application of this alloy was in the first electric watch designed by the Hamilton Watch Company. Radioactive iridium-192 was being used to a greater extent in radiography as a source of gamma-rays for examining castings and welds in steel construction for flaws.

STOCKS

Platinum-group-metal stocks in all forms in the hands of refiners, dealers, and importers at the end of 1957 were 507,200 ounces—a 10-percent drop from the preceding year. Substantial quantities of platinum-group metals also were held in Government stockpiles, but pertinent data are not available for publication.

TABLE 5.—Stocks of platinum-group metals held by refiners, importers, and dealers in the United States, December 31, 1953-57, in troy ounces

Year	Platinum	Palladium	Iridium, osmium, rhodium, and ruthenium	Total
1953	203, 413	130, 206	41, 727	375, 346
	243, 040	115, 299	43, 538	401, 877
	304, 462	153, 092	45, 534	503, 088
	353, 778	163, 730	47, 025	564, 533
	306, 988	154, 005	46, 196	507, 189

PRICES

Oversupply and reduced demand from the petroleum-refining industry resulted in steadily falling prices on the platinum market during the year. This was the first time in recent years that supply substantially exceeded demand. Although supplies of platinum of Soviet origin were less than in the preceding year, they were, nevertheless, a contributing factor in lowering prices. In view of virtual fulfillment of major nonrecurring requirements of the domestic petroleum-refining industry, further price cuts on platinum may be expected unless new uses are developed and established uses expanded at an accelerated rate to absorb the supplies of newly mined metal coming on the market. The price of palladium eased slightly during the year, although demand was relatively steady compared with platinum.

Market prices of the platinum-group metals in 1957, as published by E&MJ Metal and Mineral Markets were as follows per fine troy

ounce: Platinum declined steadily from \$103-\$107 at the beginning of the year to \$96-\$101 early in February, then to \$92-\$95 in the first week of March and \$91-\$95 in the first week in May, \$89-\$95 in early June, \$88-\$95 in July, and \$83-\$87 in the first week of August. After dropping to \$81-\$87 in the middle of August, the price of platinum remained unchanged until the first week in December, when it was lowered to \$77-\$80 and again to \$76-\$80 near the end of the year.

Palladium was \$23-\$24 for the first 6 months and \$21-\$22½ thereafter. Iridium, osmium, rhodium, and ruthenium prices remained unchanged at \$100-\$110, \$80-\$100, \$118-\$125, and \$45-\$55, respec-

tively.

The platinum futures market continued to function throughout the year, but the quantities traded were too small to have an appreciable effect on the market price.

FOREIGN TRADE 5

Imports.—More than 85 percent of domestic requirements of platinum-group metals was again supplied by foreign countries. United States imports of platinum-group metals in 1957 were one-third less than in 1956, reflecting the sharp drop in industrial demand. About two-thirds of the total imports were supplied by Canada and the United Kingdom; the remainder (probably of Soviet origin) was supplied chiefly by continental countries. Colombia furnished about 4 percent of the total imports, mostly as crude platinum.

Imports of refined platinum decreased 30 percent, palladium 38 percent, and iridium, osmium, rhodium, and ruthenium 38, 64, 18,

and 16 percent, respectively, compared with 1956.

Imports included palladium acquired for the Government stockpile through exchange of agricultural products to friendly countries by the Commodity Credit Corporation of the United States Department of Agriculture.

Exports.—Exports of refined platinum (including scrap) decreased 28 percent in 1957 compared with 1956, but exports of other platinum-

group metals (including scrap) increased 27 percent.

TABLE 6.—Platinum-group metals imported for consumption in the United States, 1948-52 (average) and 1953-57

[Bureau of the Census]

Year	Troy	Value	Year	Troy	Value
1948–52 (average)	394, 561	\$22, 378, 206	1955	1, 009, 940	1 \$48, 162, 664
1953	634, 088	39, 447, 072	1956		1 257, 755, 225
1954	606, 444	1 35, 284, 842	1957		1 35, 731, 332

Owing to changes in tabulating procedures by the Bureau of the Census, data known to be not comparable with years before 1954.
 Revised figure.

⁵ Figures on imports and exports compiled by Mae B. Price and Elsie D. Jackson, Division of Foreign Activities, Bureau of Mines, from records of the U. S. Department of Commerce, Bureau of the Census.

TABLE 7.—Platinum-group metals (unmanufactured) imported for consumption in the United States, 1956-57, by countries, in troy ounces 1

[Bureau of the Census]

		•		•							
		Unrefined material 2	terial 3				R	Refined metals	ıls		
Country	Ores and concentrates of platinum metals	Platinum grain and nuggets (including crude, dust, and resi- dues)	Platinum sponge and scrap	Osmirid- tum	Platinum	Palla- dium	Iridium	Osmium	Osmium Rhodium	Ruthe- nium	Total
1956 North America: Oanada. Mexico.		∞	(6)		4 128, 358	141, 645	200		15, 644	1,620	4 287, 475
Total		8	(9)		4 128, 407	141, 746	203		15, 644	1,620	4 287, 628
South America: Argentina Brazil Colombia		32, 947	1,936		70	88	12		12	1	28 95 34, 953 3
Total		32, 947	2,001		20	33	12		15	1	35,079
Europe: France. Gramany, West. Netherlands. Noway. Waltzerland. U. S. S. R. United Kingdom.		950	2, 606	971	4, 033 4, 42, 483 1, 524 87, 610 30, 767 141, 660	75, 752 6, 375 128, 431 5, 393 82, 647 11, 614 78, 689	2, 108	347	4,664	599	79, 785 8, 981 4 170, 914 7, 867 170, 257 42, 381 229, 149
Total		1,061	2, 606	126	4 308, 077	388, 901	2, 108	347	4, 664	289	4 709, 334
Asia: Japan Lebanon.			1,374		203			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1	1,374
Total Oceania: Australia			1, 374		203	9					1,577
Grand total		34,016	4 6, 234	126	4 436, 757	530, 686	2,323	347	20,323	2, 220	2, 220 41, 033, 877

See footnotes at end of table.

TABLE 7.—Platinum-group metals (unmanufactured) imported for consumption in the United States, 1956-57, by countries, in troy ounces!—Continued

		Unrefined material 2	terial 2				Be	Refined metals	als		
Country	Ores and concentrates of platinum metals	Platinum grain and nuggets (including crude, dust, and resi- dues)	Platinum sponge and scrap	Osmirid- tum	Platinum	Palla- dium	Iridium	Osmlum	Osmium Rhodium	Ruthe- nium	Total
North America: Canada. Mexico.		125	6		119, 698	124, 505			11,800	50	256, 178 9
Total	1	125	6		119, 698	124, 505			11,800	20	256, 187
South America: Brazil . Colombia.		24, 267	65 153		408	20					85 26, 225
Total	1,397	24, 267	218	-	408	8			-		26,310
Europe: Netherlands. Norway. Switzerland. U. S. S. R. United Kingdom.	17.5	500		2,829	12, 175 7, 891 2, 805 24, 043 7, 094 130, 779	6, 139 17, 600 4, 497 84, 511 17, 716 72, 558	1,431	128	100	1,814	18, 314 25, 591 7, 977 108, 554 24, 810 215, 802
Total	175	2,236		2,829	184, 787	203, 021	1, 431	126	4,629	1,814	401,048
Asia: Japan. Lebanon. Philippines			1, 559		1,302	12			200		1, 559 1, 845 12
Total Coeania: Australia			1,902	22	1,302	12			200		3, 416 22
Grand total	1, 572	26, 628	2, 129	2,851	306, 195	327, 558	1, 431	126	16, 629	1,864	686, 983

On the basis of detailed information received by the Bureau of Mines from importers, certain items recorded by the Bureau of the Census as "sponge and scrap" have been a Bureau of the Census categories are in terms of metal content. It is believed, however, that in many instances, gross weight is actually reported.

Revised to none.

Revised figure.

TABLE 8.—Platinum-group metals (unmanufactured) imported for consumption in the United States, 1956-57 1

	19	56	195	7
Material	Troy ounces	Value	Troy ounces	Value
Unrefined materials: 2 Ores and concentrates of platinum metals			1, 572	\$119 , 42 0
Platinum grains and nuggets (including crude, dust, and residues) Platinum sponge and scrap Osmiridium	34,016 8 6,234 971	\$2,854,382 \$ 550,915 55,614	26, 628 2, 129 2, 851	1, 959, 634 159, 965 167, 565
Total	* 41, 221	3 3, 460, 911	33, 180	2, 406, 58
Refined metals: Platinum Palladium Iridium Osmium Rhodlum Rhefinenum	* 436, 757 530, 686 2, 323 347 20, 323 2, 220	3 40, 982, 280 4 10, 957, 570 203, 126 25, 228 2, 039, 310 86, 800	306, 195 327, 558 1, 431 126 16, 629 1, 864	25, 141, 313 6, 303, 38, 108, 613 8, 504 41, 687, 52 75, 40
Total	⁸ 992, 656	3 4 54, 294, 314	653, 803	4 33, 324, 75
Grand total	\$ 1, 033, 877	8 4 57, 755, 225	686, 983	4 35, 731, 3

¹ On the basis of detailed information received by the Bureau of Mines from importers, certain items recorded by the Bureau of the Census as "sponge and scrap" have been reclassified and included with "platinum refined metal" in this table.

2 Bureau of the Census categories are in terms of metal content. It is believed, however, that in many instances gross weight is actually reported.

3 Revised figure.

4 Owing to changes in tabulating procedures by the Bureau of the Census, data known to be not comparable with years before 1954.

TABLE 9.—Platinum-group metals exported from the United States, 1948-52 (average) and 1953-57 1

[Bureau of the Census]

		120	шоми от т				
Year		and ntrates	gots, she	(bars, in- ets, wire, and other including	ruthenium	rhodium, smiridium, n, and os- metals and including	Platinum- group manufac- tures except jewelry 2
	Troy ounces	Value	Troy ounces	Value	Troy ounces	Value	(value)
1948-52 (average)	197 30 29	\$24, 050 580 2, 367	12, 232 2, 522 16, 980 3 17, 073 23, 823 3 17, 199	\$995, 188 237, 853 1, 218, 250 3 1, 306, 011 3 2, 383, 443 3 1, 328, 551	27, 671 23, 206 11, 443 3 11, 895 3 18, 249 3 23, 155	\$782, 420 591, 439 287, 400 3 469, 774 3 634, 293 373, 728	\$662, 533 1, 555, 046 1, 730, 626 3 1, 208, 784 3 2, 489, 260 3 1, 960, 062

Quantities are gross weight.

Beginning January 1, 1952, quantity not recorded. Quantity, troy ounces: 1948—4,874, 1949—20,702, 1950—12,640, 1951—17,348.

Owing to changes in classification, data not strictly comparable with years before 1955.

TABLE 10.—Platinum-group metals exported from the United States, 1956-57, by countries of destination ¹

Destination	Platinum sheets, and oth cluding	(bars, ingots wire, sponge er forms, in scrap)	rutheni mium (n, rhodium, ,osmiridium, um, and os- metal and al- luding scrap)	Platinum- group man- ufactures, except
	Troy ounces	Value	Troy ounces	Value	jewelry 2 (value)
North America:					
Canada	1,920	\$172, 822	9, 564	\$184, 366	e1 F04 F04
Cuba Mexico	60 1, 272	6, 538	100	2,400	\$1, 584, 504 17, 457
Other North America	1, 272	45, 960 1, 670	986	22, 906	17, 457 17, 350 5, 385
Total	3, 268	226, 990	10, 650	209, 672	1, 624, 696
South America: Brazil					
Chile	547 48	57, 036	38	800	3, 057
Colombia	964	0, 080	48 600	1, 170	3, 057 11, 816
Colombia Uruguay Venezuela	128	5, 585 96, 366 14, 054	000	13, 500	
Venezuela Other South America	59	2, 585	373 16	8, 652 525	2, 564 13, 640
Total	1,746	175, 626	1,075	24, 647	31, 077
Europe:					
France	2, 144 2, 972	249, 036	10	1, 621 24, 168	44, 491
Germany, West Netherlands	2, 972 4, 846	282, 023	867	24, 168	44, 491 28, 800
Switzerland	816	87, 948		[07 100
Switzerland United Kingdom Other Europe	5, 036	282, 023 561, 793 87, 948 482, 657	5, 050 12	346, 806 1, 710	25, 160 353, 058 305, 427
Total	15, 814	1, 663, 457	5, 939	374, 305	756, 936
Asia:					700, 800
India	150	15, 300			
Japan	2, 769	293, 093	585	25, 669	660 40, 521
Other Asia	76	8, 977			24, 335
Total	2, 995	317, 370	585	25, 669	65, 516
Grand total	23, 823	2, 383, 443	18, 249	634, 293	11, 035
1957		=,000,110	10, 245	034, 293	2, 489, 260
North America:					
Canada	1,038	105, 030	7, 755	184 205	1 455 041
Cuba Mexico	38	3, 972 37, 123	100	164, 385 2, 390	1, 455, 041 116, 525
Other North America	522	37, 123	560	11, 927	116, 525 18, 913 5, 521
Total	1, 598	146, 125	8, 415	178, 702	1, 596, 000
South America:				= =====================================	1,000,000
Brazil	106	10, 558			
Chile	35	6, 530	32	750	4, 276 5, 499
Colombia Uruguay	· .				615
Venezuela	82	8, 637			` 577
VenezuelaOther South America		0,007	212 197	4, 657 3, 972	15, 514 7, 125
Total	223	25, 725	441	9, 379	33, 606
Europe:		=		 =	,
Germany West	-				20, 402
France	209 522	3, 953 48, 099 12, 749	381	26, 282	2, 411
Switzerland	146	48, 099 . 12 740	100		
United KingdomOther Europe	8, 220 27	535, 678	12, 646	5, 500 57, 630	7, 090 7, 941 236, 135
Total	9, 124	604, 212	13, 127	89, 412	236, 135

See footnotes at end of table.

TABLE 10.—Platinum-group metals exported from the United States, 1956-57, by countries of destination 1-Continued

Destination	sheets, w	bars, ingots, ire, sponge, r forms, in- crap)	iridium,0 ruthenium mium (m	rhodium, smiridium, n, and os- etal and al- ding scrap)	Platinum- group man- ufactures, except
	Troy ounces	Value	Troy ounces	Value	jewelry ² (value)
1957					
Asia: India	84 5, 961 209	\$9, 108 523, 630 19, 751	25 1, 127 20	\$3,050 91,585 1,600	\$7, 319 23, 560 24, 878
TotalAfrica	6, 254	552, 489	1, 172	96, 235	55, 757 720
Grand total	17, 199	1, 328, 551	23, 155	373, 728	1, 960, 062

WORLD REVIEW

World production of platinum-group metals rose for the fifth consecutive year in 1957 and again reached a new high estimated at 1.19 million ounces—about 21 percent over 1956. The Union of South Africa and Canada, the leading producers, furnished 85 percent of the world output of platinum-group metals; the Soviet Union supplied most of the remainder. In contrast to the record output, world consumption of platinum-group metals declined as a result of lower demand for platinum from the United States petroleum-refining industry.

Canada.—The output of platinum-group metals in Canada, which ranked second as a world producer, was 409,400 ounces valued at \$25.2 million, a gain of 30 percent over 1956. Platinum constituted about 48 percent of the total yield of platinum-group metals and palladium nearly all of the remainder. Canadian mines contributed about 34 percent of world production compared with 32 percent in Virtually all of the Canadian production was a byproduct of

treating nickel-copper ores mined in the Sudbury district, Ontario.

Deliveries of platinum-group metals by International Nickel Co., Ltd., Canada's principal producer, declined about 9 percent to 339,400 ounces. Favorable progress was reported by the company on development of its Thompson mine (Northern Manitoba), which will become the second-ranking producer of platinum metals in Canada. Completion of underground development, concentrating plant, and smelting and refining facilities in Manitoba, scheduled for 1960, and completion of the long-range expansion of active mines in the Sudbury district will result in a substantial increase in the company productive capacity of platinum-group metals.

Eastern Mining and Smelting Co. continued development of the Gordon-Werner Lake property in Northwestern Ontario in 1957. About 3.5 million tons of nickel-copper ore containing appreciable

amounts of platinum-group metals has been indicated.

Quantities are in gross weight.
 Beginning January 1, 1952, quantity not recorded.

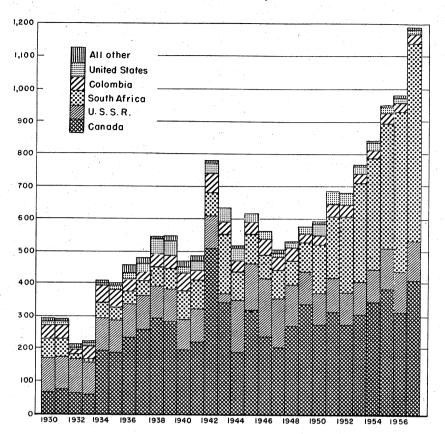


FIGURE 2.—World production of platinum-group metals, 1930-57.

Completed or progressing expansion of production facilities by Falconbridge Nickel Mines, Ltd., in the Sudbury district also may eventually result in increased output of platinum-group metals.

North Rankin Nickel Mines, Ltd., began producing platinum-bearing nickel-copper concentrate in 1957 from its mine at Rankin Inlet, Northwest Territories. About 5,400 tons of concentrate was shipped during the year.

Colombia.—Platinum-group-metal production in Colombia declined for the fifth successive year; however, output in 1957 was only slightly lower than in 1956. Crude platinum containing about 85 percent platinum-group metals was recovered chiefly by the bucket-line dredging of South American Gold & Platinum Co. in Choco.

Owing to a 15-percent export tax imposed by the Colombian Government, South American Gold & Platinum Co. withheld shipment of part of its platinum production pending negotiation of an agreement with the Government.

A special statute was drafted for the precious metal industry under which all platinum, silver, and gold is to be sold to the Banco de la Republica.

TABLE 11.—World production of platinum-group metals, 1948-52 (average) and 1953-57, in troy ounces 1

[Compiled by Augusta W. Jann and Berenice B. Mitchell]

Country	1948-52 (average)	1953	1954	1955	1956	1957
North America: Canada:						
Platinum: Placer platinum and from refining nickel-copper matte	135, 112	137, 545	154, 356	170, 494	151, 357	196, 077
Other platinum-group metals: From refining nickel-copper matte United States: Placer platinum and from domestic gold and copper	160, 326	166, 018	189, 350	214, 252	163, 451	213, 285
refining	30, 655	26, 072	24, 235	23, 170	21, 398	18, 531
Total	326, 093	329, 635	367, 941	407, 916	336, 206	427, 893
South America: Colombia: Placer platinum	30, 598	29, 201	28, 465	27, 526	26, 215	26, 000
Europe: U. S. S. R.: Placer platinum and from refining nickel-copper ores 2	105, 000	100, 000	100, 000	125, 000	125, 000	125, 000
Asia: Japan: Palladium from refineries Platinum from refineries	334	71 987	248 1, 347	221 628	218 483	200 425
Total	234	1, 058	1, 595	849	701	625
Africa: Belgian Congo: Palladium from refineries ⁸ Ethiopia: Placer platinum Sierra Leone: Placer platinum Union of South Africa:	63 332 29	566	176 230	2 350	160 2 300	325 2 300 4 5
Platinum-group metals from plati- num ores Concentrates (platinum-group metal content from platinum	47, 858	90, 292	101, 921	109, 267	484, 574	603, 704
ores) Osmiridium from gold ores	96, 929 6, 409	208, 885 6, 966	236, 241 6, 266	272, 465 7, 021	6, 696	5, 361
Total	151, 620	306, 709	344, 834	389, 103	491, 730	609, 695
Oceania: Australia: Placer platinum Placer osmiridium. New Guinea. New Zealand: Placer platinum Papua: Placer platinum	53 5 3 2	59 6 2	23 16 5 1	7 21 10	12 26 9	20 66 14
Total	64	67	49	38	47	100
World total (estimate)1	615, 000	775, 000	850, 000	950, 000	980, 000	1, 190, 000

¹ This table incorporates a number of revisions of data published in previous Platinum chapters, do not add to totals shown because of rounding where estimated figures are included in the detail. 2 Estimate.

Includes platinum.

7 Less than 0.5 ounce .

Union of South Africa.—Output of platinum-group metals in the Union of South Africa, the world's leading producer, rose for the 10th successive year to an alltime high of 609,000 ounces—about 51 percent of world production of platinum-group metals; the corresponding figures for 1956 were 491,300 ounces and 50 percent.

Nearly all of the platinum-group metals were recovered from platinum ores in the Transvaal by Rustenburg Platinum Mines, Ltd. A relatively small quantity of platinum-group metals was recovered

⁴ Exports.

Average for 4 years only, as 1949 was the first year of commercial production. Year ended June 30 of year stated.

as an osmiridium byproduct of gold mining operations on the Rand. In the 10 years, 1948-57, production of osmiridium averaged about

6,500 ounces annually.

Expansion of production facilities completed by Rustenburg Platinum Mines, Ltd., in 1957 included sinking its fourth shaft to a depth of 1,500 feet and further extension to the treatment plant, which brought treatment capacity to 2.6 million from 2.2 million tons of ore annually; however the additional capacity will not be used until market conditions improve. Because of the oversupply, which was brought about chiefly by a sharp drop in requirements of petroleum refiners, the company announced plans to reduce output of platinum-group metals next year by 60 percent to reduce excessive stocks.

TECHNOLOGY

In producing high-octane gasoline by the re-forming process, improved techniques in using platinum catalysts have been a significant factor in reducing the amount of catalyst required and in extending the effective life of installed catalyst. Catalysts containing only 0.3 percent platinum were being used in preference to the type containing 0.6 percent platinum, with a corresponding reduction in the installed weight of platinum per barrel of capacity of the re-forming plants.

Re-forming processes using platinum catalysts, which have become of such major importance in petroleum refining during the past 7

years, were described and compared on an efficiency basis.6

An understanding of the mechanism of color formation in glass is of obvious importance in manufacturing decorative glasses and of interest to the maker of dense, colorless glasses. Studies and research investigations on the use of platinum metals in glass were described

in a publication of a leading refiner.

European metallurgists and chemists have endeavored for over a century and a half to produce pure, malleable platinum from crude platinum recovered from placer deposits. An interesting historical account of the development of techniques for treating crude platinum. which finally led to determining and separating other platinum-group metals from platinum, was published in a British technical journal.8

The operations of the world's largest platinum producer, Rustenburg Platinum Mines, Ltd., and a description of the geology of the platinum deposits, mining methods and reduction practice, were reviewed

during the year.

Increased antiknock properties of gasoline are obtained when naphthas are "re-formed" to increase the proportion of aromatics. An article 10 in a company publication related how this is accomplished

⁶ Curry, S. W., Platinum Catalysts in Petroleum Refining: Platinum Metals Review, vol. 1, No. 2, April 1957, pp. 38-43.

7 Hawes, M. G., The Platinum Metals in Glass: Platinum Metals Review, vol. 1, No. 2, April 1957, pp. 44-48, Johnson. Matthey & Co., Ltd., London.

8 Schofield, M., The Long Struggle to Make Malleable Platinum: Metallurgia, vol. 55, No. 329, March 1957, pp. 137-139.

9 Platinum Metals Review, Platinum Mining in the Transvaal: Vol. 1, No. 1, January 1957, pp. 3-8.

10 Work cited in footnote 3.


by catalytic cracking and why platinum was found to be the most efficient and most economical metal for use as a catalyst.

The occurrence and method of recovering osmiridium from amalgam residues in the gold extraction process of South African mines were

described in the publication 11 of a leading mining firm.

Over 100 United States and British patents were issued on preparing, applying, and methods of treating platinum catalysts in the chemical and petroleum-refining industries.¹² In addition, several patents were issued pertaining to platinum-group metals in the electrical field and for miscellaneous applications. A comprehensive list of abstracts of articles pertaining to the technology of platinum-group metals and their alloys also was published in the Review, which comprises a quarterly survey of research on platinum metals and development of new applications in industry.

Optima, Osmiridium: Vol 7, No. 3, September 1957, insert between pages 158 and 159.
 Platinum Metals Review, vol. 1, Nos. 1-4, 1957.

Potash

By E. Robert Ruhlman¹ and Gertrude E. Tucker²

POTASH production in the United States increased 4 percent in 1957 over 1956, and exports increased 18 percent, but imports remained about the same. The total supply of potash (K₂O equivalent), including stocks, available in the United States in 1957 was 2.7 million short tons.

Worldwide expansion of the potash industry continued in 1957, with the greatest activity centered in the Canadian potash field.

World production was 5 percent greater than in 1956.

The possibility of excess potash production in the United States and the world caused some concern among potash producers. Canadian potash, the soil-bank program, the softening market, United States imports, and growing United States capacity were factors cited as influencing the situation.³

TABLE 1.—Salient statistics of the potash industry in the United States, 1948-52 (average) and 1953-57, thousand short tons and thousand dollars

	1948-52 (average)	1953	1954	1955	1956	1957
United States: Production of potassium salts (market-						
able) quantity Approximate equivalent K2O do Value	2, 356	3, 266	3, 322	1 3, 514	8, 679	3, 840
	1, 326	1, 912	1, 949	1 2, 067	2, 172	2, 266
	\$47, 743	\$72, 031	\$72, 950	\$78, 602	\$82, 107	\$84, 612
Sales of potassium salts by producers quantity_ Approximate equivalent K ₂ Odo	2, 329	2, 966	3, 270	1 3, 405	1 3, 572	3, 625
	1, 309	1, 732	1, 918	1 2, 006	2, 103	2, 137
Value at plant Average per ton Imports of potash materials quantity.	\$47, 152	\$65, 403	\$71, 819	1 \$76, 176	1 \$79, 768	\$79, 628
	\$20, 25	\$22. 05	\$21. 96	1 \$22, 37	\$22, 33	\$21. 97
	282	251	225	331	334	339
Approximate equivalent K2Odo Value Exports of potash materials_quantity	\$10, 135 119	134 \$9, 953 88	\$8,387 117	\$11, 769 229	181 \$12, 018 398	182 \$11,823 467
Approximate equivalent K ₂ O do	\$6, 673	49	66	130	226	234
Value		\$3, 936	\$5, 463	\$9, 203	\$14, 937	\$17, 506
Apparent consumption of potassium saltsquantity Approximate equivalent K ₂ Odo	2, 492	3, 129	3, 378	1 3, 507	3, 508	3, 497
	1, 393	1, 817	1, 971	1 2, 054	2, 058	2, 085
World: Production (marketable): Approximate equivalent K ₂ Oquantity_	5, 000	6, 500	7, 300	7, 900	8, 300	8, 700

Revised figure.

² Derived from reported value of "Sold or used."

Commodity specialist.
 Statistical assistant.

³ Chemical Week, Five Factors for a Future Potash Squeeze: Vol. 80, No. 28, July 13, 1957, pp. 69-70, 72, 74.

Tanner, J. C., Potash Pile-Up: Wall Street Jour. (New York), vol. 150, No. 81, Oct. 23, 1957, pp. 1, 17.

DOMESTIC PRODUCTION

Marketable potassium salts production in the United States continued its upward trend and reached a new high in 1957 of more than 3.8 million short tons, a 4-percent increase above 1956 and more than twice that in 1947.

New Mexico, California, and Utah were the principal States producing domestic marketable potassium salts. New Mexico supplied 92 percent of the domestic output; small quantities were produced in Maryland and Michigan.

The plant locations of potash-producing companies in the United

States in 1957, by States, were as follows:

California:

The American Potash & Chemical Corp., Trona, San Bernardino County.

A. M. Blumer, Davenport, Santa Cruz County.

Maryland: North American Cement Corp., Security, Washington County.

Michigan: The Dow Chemical Co., Midland, Midland County.

New Mexico:

Duval Sulphur & Potash Co., Eddy County.

International Minerals & Chemical Corp., Eddy County.

National Potash Co., Lea County.

Potash Company of America, Eddy County.

The Southwest Potash Corp., Eddy County.

United States Borax & Chemical Corp., United States Potash Division, Eddy County.

Utah: Bonneville, Ltd., Wendover, Tooele County.

TABLE 2.—Production and sales of potassium salts in New Mexico, 1948-52 (average) and 1953-57, thousand short tons

	Crude	salts 1		Marl	cetable pot	assium sal	ts	
Year	Mine pr	oduction		Production	1		Sales	
	Gross weight	K2O equiv- alent	Gross weight	K ₂ O equiv- alent	Thou- sand dollars 2	Gross weight	K ₂ O equiv- alent	Thou- sand dollars
1948-52 (average) 1953 1954 1955 1956 1957	6, 046 9, 101 9, 975 10, 956 11, 941 12, 893	1, 256 1, 908 1, 986 2, 159 2, 305 2, 313	2, 030 2, 938 3, 008 3, 221 3, 384 3, 528	1, 134 1, 721 1, 763 1, 899 1, 997 2, 080	40, 273 64, 106 65, 538 71, 839 75, 122 77, 197	2, 008 2, 662 2, 954 3, 122 3, 279 3, 353	1, 120 1, 553 1, 732 1, 841 1, 931 1, 977	39, 801 58, 076 64, 367 69, 641 72, 802 73, 243

Mine production of potash ores in New Mexico (over 12.8 million tons, a new record) was 8 percent more than in 1956. The calculated grade of the crude salts mined decreased to 17.94 percent K₂O equivalent compared with 19.30 in 1956 and 20.7 percent in 1947.

All six companies operating in the Carlsbad region mined sylvinite (potassium and sodium chlorides) and processed the ore to yield various grades of muriate. International Minerals & Chemical Corp. also mined langbeinite and processed it to yield potassium sulfate and potassium-magnesium sulfate.

Changes in industry operations in the Carlsbad region included increased mechanization and installation of more facilities for granular products. Continuous mining machines and conveyor belts were

being used in more mines.

¹ Sylvite and langbeinite.
2 Derived from reported value of "Sold or used."

951 POTASH

National Potash Co., jointly owned by Freeport Sulphur Co. and Pittsburgh Consolidation Coal Co., began operating early in 1957. The facilities of this company, the 6th major producer in the New Mexico potash basin and the 1st in Lea County, included, two 1,800 foot shafts, a refinery, and storage for 100,000 tons of potash. plant was closed from early June until mid-July because of a labor strike.

The Government Potash Reserve of 1,840 acres in Eddy County, N. Mex., was leased to National Potash Co. following competitive

bidding.

The first shaft of the Farm Chemical Resources Development Corp. was completed at the end of the year. This company, owned by the National Farmers Union, Kerr-McGee Oil Industries, and Phillips Chemical Co., will be the seventh producer in the New Mexico potash basin and plans to mine potash from both Eddy and Lea Counties.

To meet market demands, The American Potash & Chemical Corp. doubled the capacity of its granular potash facilities. This company

also expanded its research laboratories at Whittier, Calif.

Delhi-Taylor Oil Corp. reported reserves of 10 million tons of proved and probable ore. The company completed one pilot drill hole for a shaft location. Final development plans awaited results of a market survey and establishment of freight rates.

its basic purposes and major accomplishments during its 22-year existence.4 The American Potash Institute published a booklet describing

CONSUMPTION AND USES

The domestic apparent consumption of K2O in 1957 (producers' sales, plus imports, minus exports) was 1 percent greater than in 1956 (table 1).

The United States Department of Agriculture, in addition to its regular fertilizer reports, released a bulletin on fertilizer production

in the United States since 1880 by types of fertilizer. 5

The American Potash Institute stated that:6

Deliveries of potash for agricultural purposes in the United States, Canada, Cuba, Puerto Rico, and Hawaii by the eight principal American producers and also Cupa, Puerto Rico, and Hawan by the eight principal.

the importers totaled 3,461,578 tons of salts containing an equivalent of 2,026,239

the R.O. during 1957 according to the American Potash Institute. This was an the importers totaled 3,461,578 tons of salts containing an equivalent of 2,026,239 tons K_2O during 1957, according to the American Potash Institute. This was an increase of less than 1% in salts and K_2O over the same period in 1956. Continental United States took 1,867,732 tons K_2O , Canada, 92,147 tons, Cuba, 18,059 tons, Puerto Rico, 21,899 tons, and Hawaii, 26,402 tons K_2O . These figures include imports from Europe of 219,903 tons K_2O . Exports to other countries were 205,168 tons K_2O , an increase of 28%. Deliveries of potash for non-agricultural purposes amounted to 129,517 tons K_2O , an increase of 1% over last year. Total deliveries for all purposes were 4,019,313 tons of salts containing an equivalent of 2,360,924 tons K_2O , an increase of 2% in salts and K_2O .

⁴ American Potash Institute, The American Potash Institute and How It Serves the Fertilizer Industry: Washington, D. C., 1957, 12 pp.
⁵ Mehring, A. L., Adams, J. R., and Jacob, K. D., Statistics on Fertilizers and Liming Materials in the United States: U. S. Dept. of Agriculture Stat. Bull. 191, 1957, 182 pp.
⁶ American Potash Institute, North American Deliveries of Potash Salts—Calendar Year and Fourth Quarter 1957: Press Release E-143, Washington, D. C., Mar. 14, 1958, pp. 1-2.

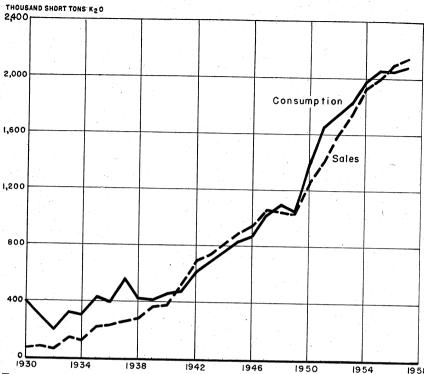


Figure 1.—Comparison of apparent domestic consumption of potash (K_2O) and sales of domestic producers of potash in the United States, 1930-57.

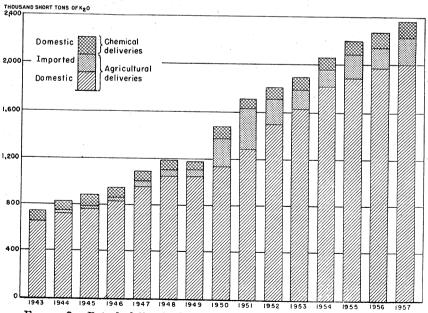


FIGURE 2.—Potash deliveries by use groups in North America, 1943-57.
[American Potash Institute.]

In the United States, agricultural potash was delivered in 46 states and the In the United States, agricultural potash was delivered in 46 states and the District of Columbia. Illinois with nearly 200,000 tons K_2O was the leading state followed in order by Ohio, Indiana, Georgia, Florida, and Virginia, each taking more than 100,000 tons K_2O during the year. Due to shipments across state lines, consumption does not necessarily correspond to deliveries within a state. Agricultural potash accounted for nearly 95% of deliveries. Muriate of potash continued to be by far the most popular material, comprising over 93% of the total K_2O delivered for agricultural purposes, and sulphate of potash and sulphate of potash magnesis 7%.

potash magnesia 7%.

Deliveries for nonagricultural purposes in 1957 were 194,171 tons of muriate of potash containing an equivalent of 122,002 tons K₂O, 9,998 tons of sulphate of potash containing 5,044 tons K₂O, and 10,591 tons of manure salts containing 2,471 tons K₂O. The total non-agricultural deliveries of 129,517 tons K₂O were about 5% of all potash deliveries, and 1,531 tons or 1% more than in 1956.

TABLE 3.—Deliveries of potash salts in 1957, by States of destination, in short tons of K20

[American	Potash	Institute]
-----------	--------	------------

					<u> </u>
State	Agricul- tural potash	Chemical potash	State	Agricul- tural potash	Chemical potash
Alabama Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louislana Mane Maryland Massachusetts Michigan Minnesota Mississipi Missouri Montana	36, 556 22, 236 22, 236 22, 236 3, 173 7, 556 7, 412 117, 581 128, 992 47, 517 2, 571 38, 086 25, 531 11, 309 69, 955 17, 615 57, 866 55, 313 30, 394	3, 968 26 6, 868 24 216 506 724 354 1, 864 1, 654 240 485 3, 653 795 936 100 0, 1, 187	Nebraska Nevada New Hampshire New Hersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washingter West Virginia Wisconsin Wyoming Total	21 32, 565 1, 395 38, 774 88, 689 3, 102 166, 950 2, 973 3, 953 39, 348 2, 200 53, 584 4, 27 67, 091 53, 842 1, 819 107, 157 6, 073 1, 176 56, 914	25 2, 361 4, 715 1, 086 69, 745 300 4, 356 4, 356 4, 356 6, 947 4, 40 6, 678 1, 701 6, 678 45 123, 501

STOCKS

Stocks (K₂O equivalent) reported by producers at the end of 1957 were 27 percent more than in 1956 and were equivalent to about onequarter of the annual production. Year-end stocks in the potash industry are not entirely unsold output but include large inventories in anticipation of orders for the spring planting season that begins in February.

TABLE 4.—Stocks of potassium salts in the United States, 1948-52 (average) and 1953-57, thousand short tons

•	Number of	Stocks on h	and Dec. 31
Year	producers	Potassium salts	Equivalent potash (K ₂ O)
1948-52 (average)	8 10	63 472	34 279
1954 1955 1956	10 11 10	526 1 633	312 372
1957	11	¹ 739 ² 939	440 2 560

¹ Revised figure.

PRICES

The prices of domestic potash decreased about 5 percent in 1957-58 compared with 1956-57. Prices continued to vary with the date of order.

The American Potash & Chemical Corp. issued its price schedule for agricultural-grade Trona potash for the 1957–58 season on May 24, 1957. The prices for muriate of potash, 60 percent K_2O minimum, f. o. b. Trona, Calif., in bulk, in carlots of not less than 40 tons, were as follows: 44.5 and 46.5 cents per unit of K_2O for contracts made before July 1, 1957, and for July 1, 1957–June 30, 1958, respectively; and granular, 46 and 48 cents per unit for the same periods. The prices for Trona sulfate of potash, f. o. b. Trona, Calif., in bulk, in carlots of not less than 40 tons, were quoted for the 2 periods as 75.5 and 78.5 cents per unit K_2O .

Price schedules for New Mexico potash for agricultural purposes were issued during April, May, and June and were immediately followed by several revisions, reducing the price about 2 cents per unit of K_2O . The average final prices varied according to the month of sale and are shown in table 5. The additional cost for bagged material varied from \$2 to \$4.90 per ton.

TABLE 5.—Prices of agricultural potash quoted by producers, f. o. b. Carlsbad, N. Mex., for 1957–58 season, in bulk, minimum carlots of 40 tons, cents per short-ton unit K_2O

Effective period	Standard muriate, 60-percent K ₂ O minimum	Granular muriate, 60-percent K ₂ O minimum	Sulfate of potash	Manure salts
June	34 34 35 35 35 35 35 35 35	34 34 35 35 36 36 36 36 36 36 36 36	64	17. 65

² Figure includes an inventory adjustment during the year, as reported by the producers.

FOREIGN TRADE 7

Imports.—Imports of fertilizer and chemical potash materials in the United States were about the same as in 1956. West Germany, East Germany, France, Spain, and Chile continued to be the principal supplying countries. Latvia is not a potash-producing country, and the imports from Latvia may have been reexports of Russian origin.

Exports.—Exports of potash material in 1957 reached a new high and were 18 percent greater than in 1956. Japan continued to be the major market and received 61 percent of exports. Countries in the Western Hemisphere received 33 percent of United States exports of potash materials.

TABLE 6.—Potash materials imported for consumption in the United States, 1956-57

Bureau	- 4	42	C1

			19	56			19	57	
Material	Approximate equivalent as potash	Short tons	Appr mate e alent pota (K ₂	quiv- ; as sh	Value	Short tons	Appr mate e alent pota (K ₂ e	quiv- as sh	Value
	(K ₂ O) (per- cent)		Short tons	Per- cent of total			Short tons	Per- cent of total	
Used chiefly in fertilizers: Muriate (chloride) Potassium nitrate, crude Potassium-sodium ni-	59. 0 40. 0			81.6 .2	\$6, 651, 764 99, 680	254, 715 642	150, 282 257	82. 6 . 1	\$6, 777, 814 74, 005
trate mixtures, crude_ Potassium sulfate, crude_ Other potash fertilizer	1	1 53, 136	2,723 1 26,568	1.5 14.6	715, 203 11, 919, 485	25, 393 48, 441	3, 555 24, 221	2. 0 13. 3	884, 674 1, 699, 941
materials	6.0	10	1		255				
Total fertilizer		¹ 324, 159	¹ 177, 5 3 8	97.9	9, 386, 387	3 29, 191	178, 3 15	98. 0	9, 436, 434
Used chiefly in chemical industries: Bicarbonate Bitartrate: Argols Cream of tartar Carbonate Caustie Chiorate and perchlorate Chromate and dichromate Cyanide Ferricyanide Ferricyanide Nitrate Permanganate Rochelle salts All other	46. 0 20. 0 25. 0 61. 0 80. 0 36. 0 40. 0 70. 0 42. 0 44. 0 29. 0 22. 0 50. 0	3, 085 819 268 347 925 352 559 1, 332 671 10	14 617 205 214 125 648 148 246 613 195 2 1 697	2.1	7, 548 479, 778 364, 834 94, 745 87, 399 558, 990 225, 955 221, 172 150, 301 240, 228 4, 805 4, 905	3, 361 512 5 268	672 128 3 214 133 1 551 124 301 741 114 4 592	2.0	3, 093 516, 739 242, 021 748 98, 118 104, 964 43, 284 178, 154 267, 250 184, 300 164, 178 7, 353 175, 874
Total chemical		1 9, 792	1 3, 724	2. 1	2, 631, 245	9, 499	3, 584	2. 0	2, 386, 713
Grand total		¹ 333 , 951	1181, 262	100.0	12, 017, 632	338, 690	181, 899	100.0	11, 823, 147

¹ Revised figure.

[†] Figures on United States imports and exports compiled by Mae B. Price and Elsie D. Jackson, Division of Foreign Activities, Bureau of Mines, from records of the U.S. Department of Commerce, Bureau of the Cansus.

TABLE 7.-Potash materials imported for consumption in the United States, 1956-57, by countries, in short tons

(Figures in parentheses in column headings indicate, in percent, approximate equivalent as potash (K4O))

	Total	Short Value		139 \$44, 648	378 59, 453 19, 465 723, 799	19, 843 783, 252	6, 024 831, 193 62 36, 859 78, 850 10, 27, 845 100, 990 14, 918, 927 10, 933 14, 918, 927 10, 933 14, 918, 927 10, 933 14, 918, 927 10, 933 14, 918, 927 10, 933 14, 918, 927 10, 933 14, 918, 927 10, 933 14, 918, 927 10, 933 175, 933 175, 933 10, 933 175, 933	1 333, 951
	-	All other 1		8			193 16 27 210 2,380 2,380 171 171	3,026
	Potas-	sium sulfate, crude	(20)	8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	* 1 * 1 * 4 * 1 * 1		1, 605 * 10, 607 \$6, 512 \$6, 413	\$ 53, 136
	Potas-	(salt- peter), refined	(46)	6 1 2 6 1 1 1			1, 277	1, 332
	Potas-	sodium nitrate mixtures, crude	(14)	6 6 6 6 6 6 7	19, 437	19, 437	11 11 11 11 11 11 11 11 11 11 11 11 11	19, 451
	Potas-	slum nitrate, crude	(40)				752	924
		Muriate (chloride)	(29)	42			4, 766 43, 203 60, 304 123, 476 1, 509 27, 338	250, 638
		Cyanide	(70)	3			46 81 100 433 221 831	928
. [Chlorate	and per-	(36)	1	28	28	11 1134 134 165	347
	Canatic	(hydrox- ide)	(80)				700 198	268
	rate	Cream of tartar	(22)				466 336 386 28	819
	Bitartrate	Argols or wine lees	(%)		378	378	511 568 568 243 1,322	1,385
		Country		1956 North America: Canada	South America: Argentina. Ohile.	Total	Belgium-Luxembourg. Czethoslovakia. Denmark. France. Germany: Best. West. Italy. Italy. Portugal. Spaln. Spaln. Sweden. Switzerland. United Kingdom.	Africa: Algeria

1961													
North America: Canada					1			1				-	1, 296
South America: Argentina. Obile.	167			œ				25, 112				167 25, 120	30, 265 875, 125
Total	167			œ				25, 112				25, 287	905, 390
Europe: Belgtum-Luxembourg. Czechoslovakia. France.	377			22	22 212	2, 100	22 565			16,371	143 11 21	2, 266 33 60, 823	150, 555 18, 133 2, 187, 702
East West Italy	929	319	55		426	60, 335 85, 251	55	281	1, 593	32, 070	881	60, 448 119, 900 981	1, 476, 859 3, 828, 496 246, 022
Latvia s Netherlands Portugal	918		5			11, 664					2,060	11, 664 2, 065 915	262, 720 554, 725 131, 845
Spain Sweden Switzerland United Kingdom	60	80	208	127 210 2	126	52, 110					80	52,223 335 210 296	1, 531, 991 128, 089 56, 556 136, 059
Total	1,950	512	268	361	786	254, 715	642	281	1,610	48, 441	2, 592	312, 158	10, 709, 752
Africa: Afgeria. Morocco. Tunisia.	943 167 134											943 167 134	159, 580 26, 769 20, 360
Total	1, 244											1,244	206, 709
Grand total	3, 361	512	268	369	181	254, 715	642	25, 393	1, 610	48, 441	2, 592	338.690	11, 823, 147

Approximate equivalent as potash (KsO): 1966, 34 percent; 1967, 42 percent.
 Revised figure.
 Believed to be country of shipment.

TABLE 8.—Potash materials exported from the United States, 1948-52 (average) and 1953-57

Year	Fert	ertilizer Che		nical	Total		
	Short tons	Value	Short tons	Value	Short tons	V alue	
1948-52 (average)	105, 424 83, 412 111, 184 222, 499 390, 716 459, 699	\$3, 694, 674 2, 893, 946 4, 133, 527 7, 958, 862 13, 705, 131 16, 096, 123	14, 050 4, 796 6, 202 6, 804 6, 839 7, 796	\$2, 978, 181 1, 042, 469 1, 329, 925 1, 244, 103 1, 231, 759 1, 409, 841	119, 474 88, 208 117, 386 229, 303 397, 555 467, 495	\$6, 672, 855 3, 936, 415 5, 463, 452 9, 202, 965 14, 936, 890 17, 505, 964	

TABLE 9.—Potash materials exported from the United States, 1956-57, by countries of destination

[Bureau of the Census]

		Fert	ilizer			Chemical				
Country	1	956	1	957	1	956	1957			
	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value		
North America:						*				
Canada		\$3, 368, 052		\$3, 110, 930		\$649, 873	5, 495	\$856, 935		
Costa Rica	545 26, 175		1, 536 20, 324		8 82	2, 025 22, 267	20 71	10, 752 21, 982		
Cuba Dominican Republic	249	9, 125	275	10, 850			4	1,583		
El Salvador	1, 475		682	30, 333	11	1, 440	2	3, 130		
Guatemala Honduras	133 80		287 80	8, 111 4, 418	103 8	21, 835 3, 470	48 7	12, 525 2, 070		
Mexico	8. 358					101, 882	587	134, 531		
Panama			150	9, 589						
Other North America	200	9, 138	. 50	1,602	15	6, 300	3	8, 078		
Total	132, 336	4, 592, 308	120, 599	4, 178, 514	4, 701	809, 092	6, 237	1, 051, 586		
South America:										
Argentina					5	6, 151	8	5, 601		
Brazil	22,050	951, 686				124, 256	57	22, 989		
ChileColombia	552	23, 626	2, 756 675		38 118	8, 342 38, 172	62 84	19, 166 28, 532		
Ecuador	110					14, 890		7, 560		
Peru	89		450		3	5, 713	2	5, 198		
Uruguay		54, 284	2, 917			19, 281				
VenezuelaOther South America	288	14, 738	574	31, 360	101	26, 369	112	26, 038		
Other South America			20	1, 540	(1)	176	3	5, 130		
Total	24, 669	1, 054, 461	26, 141	1, 008, 199	1, 287	243, 3 50	352	120, 214		
Europe:										
Belgium-Luxembourg]					4	5, 188		
France							3	4,826		
Germany, West							36 86	10, 954 16, 475		
1taiv				1	21			29, 810		
SwedenUnited Kingdom	56	2 327			136		48	27, 051		
Other Europe		2,021				872		244		
Total	56	2 327			597	61, 865	778	94, 548		

See footnote at end of table.

TABLE 9.—Potash materials exported from the United States, 1956-57, by countries of destination—Continued

	Fertilizer					Chemical				
Country	1956		1	957	1	956	1	957		
	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value		
Asia: India	\$195, 732 6, 658 2, 523 13, 756	265, 610 97, 349 448, 540	6, 613 2, 420	128, 224	20	\$30, 544 1, 880 4, 617 37, 780 2, 740		\$2, 967 4, 000 12, 897 75, 572 2, 400		
Other Asia	240	11, 493		10, 258, 556	17 212	10, 966 88, 527	6 312	3, 194		
Africa: Belgian Congo Union of South Africa Other Africa	30				(¹) 35	675 24, 896	3 28 6	5, 383 12, 380 2, 072		
Total	30	2, 970			35	25, 571	37	19, 835		
Oceania: Australia New Zealand	14, 056	457, 407	19, 502	650, 854	7	3, 354	80	22, 628		
Total	14, 056	457, 407	19, 502	650, 854	7	3, 354	80	22, 628		
Grand total	390, 716	13, 705, 131	459, 699	16, 096, 123	6, 839	1, 231, 759	7, 796	1, 409, 841		

¹ Less than 1 ton.

WORLD REVIEW NORTH AMERICA

Canada.—Activity continued high in the Saskatchewan potash area, and at the end of 1957 the following 18 companies from Canada, United States, and Europe were engaged in exploration or development: Campana, Ltd., Continental Geological Corp., Continental Potash Corp., Dominion Potash, Ltd., Duval Sulphur & Potash Co., General Petroleum of Canada, Gordon Daly Corp., International Minerals & Chemical Corp., International Potash Minerals, Ltd., National Potash Co., Palmer Oils, Ltd., Potash Company of Amerca, Ltd., R. Campbell & Associates, S. A. M. Explorations, Ltd., Saxon Mining Co., Southwest Potash Corp., United States Borax & Chemical Corp., and Winsal of Canada.

The Potash Company of America, Ltd., which began Canadian exploration in 1952, reported that its 20-foot-diameter, 3,500-foot shaft near Floral, Saskatchewan, was more than 2,500 feet deep at the end of 1957 and was scheduled for completion in 1958. Construction for a refinery with an announced capacity of 1.5 million tons of ore annually was begun at mid-1957 and was scheduled to begin

operating in late 1958.

International Minerals & Chemical Corp. began developing a deposit near Esterhazy, Saskatchewan, about 150 miles east of Regina and announced that production would be double the com-

pany New Mexico output. At the end of the year the shaft was

300 feet deep. Completion was scheduled for 1959.
Continental Potash Corp. resumed shaft sinking near Unity in August 1957 at the location previously controlled by Western Potash, Ltd., which suspended all operations in December 1954. Continental acquired the property in 1955. The original agreement between Western Potash, Ltd., and the Provincial Government was terminated acquired the property in 1955. during the year, and Continental again acquired control through competitive bidding.

S. A. M. Explorations conducted exploration near Moosomin in southeast Saskatchewan and also had potash permits in southern

Manitoba.

TABLE 10.—World production of potash (marketable, unless otherwise stated) in equivalent K_2O , by countries, 1948-52 (average) and 1953-57, short tons²

[Compiled by	Helen L	. Hunt a	nd Berenice	В.	Mitchell]

Country 1	1948–52 (average)	1953	1954	1955	1956	1957
North America: United States	1, 326, 287	1, 911, 891	1, 948, 721	2, 066, 706	2, 171, 584	2, 266, 481
Crude (including brines) 3	1, 448, 180	2, 098, 736	2, 170, 969	2, 326, 946	2, 479, 463	2, 498, 558
South America: Chile	4, 009	330	550	11, 000	12, 000	4 11, 000
Europe: France	922, 315	996, 575	1, 192, 083	1, 310, 961	1, 462, 722	4 1, 529, 000
	1, 041, 498	1, 135, 657	1, 361, 734	1, 490, 764	1, 653, 465	1, 736, 800
East 4	1, 271, 000	1, 488, 000	1, 488, 000	1,580,000	1,598,000	1, 650, 000
Crude 3 4	1, 467, 000	1, 720, 000	1, 720, 000	1,820,000	1,840,000	1, 900, 000
West	998, 961	1, 459, 309	1, 783, 394	1,870,848	1,823,000	1, 862, 000
Crude 3	1, 190, 820	1, 743, 000	2, 135, 000	2,227,000	2,166,000	2, 212, 000
SpainU. S. S. R. 4		202, 764	243, 166	242, 539	256, 525	4 282, 800
Asia:		480, 700	593, 700	870, 500	983, 600	1, 040, 000
Israel		3, 415	4 12, 000	4 12, 000	4 31, 000	4 50, 000
Japan	204 811 525	283	454	461	475	4 440
World total (marketable) (estimate) 12	5, 000, 000	6, 500, 000	7, 300, 000	7, 900, 000	8, 300, 000	8, 700, 000

¹ In addition to countries listed, China, Ethiopia, Italy, and Korea are reported to produce potash salts, but statistics of production are not available; estimates by senior author of chapter included in totals.

² This table incorporates a number of revisions of data published in previous Potash chapters. Data do not add to totals shown owing to rounding where estimated figures are included in the detail.

³ To avoid duplication of figures, data on crude potash are not included in the total.

EUROPE

Germany, East.—The Government of East Germany announced plans for a 40-percent expansion of the potash industry by 1960 by modernization of shafts and mining equipment and expansion of flotation and other processing equipment. It was anticipated that the expanded facilities would require only half of the 1957 labor force of 25,000 workers.⁸ Planned output was not reached in 1957 owing to lack of mechanized equipment. Mine I, Glückauf Potash Plant at Sandershausen, was closed 17 months for repair and modernization.

TABLE 11.—Exports of potash materials from France, 1952-56, by countries of destination, in short tons 12

[Compiled by Corra A. Barry]

Country	1952	1953	1954	1955	1956
North America:					
Canada	20, 975	34, 167	11, 514	31, 750	15, 31
Cuba	9,019		3, 215		
United States	70, 363	54, 789	28,606	66, 580	64, 09
South America:				123	
Argentina	147				10, 92
Brazil	16, 892	45, 897	24, 245	12, 302	10, 92
Colombia	3, 142		5, 219		
Europe:	14 000	0 010	8, 706	12,831	30, 04
Austria	14, 323	6, 618 144, 394	164, 451	127, 407	175, 73
Belgium-Luxembourg	185, 555	12, 603	13, 979	7,061	13, 12
Denmark	16, 905	3,674	4, 277	7, 865	6, 69
Finland	10, 196 3, 619	33, 304	28, 192	30, 072	36, 41
Ireland	19, 441	24, 707	38, 798	48, 155	57, 79
Italy	227, 490	208, 256	153, 589	150, 286	182, 20
Netherlands	17, 653	11, 344	12, 494	15,748	17, 72
Norway	26, 731	76, 245	15, 043	37, 659	41, 4
SwedenSwitzerland	27, 570	32, 367	33, 827	40, 648	43, 5
United Kingdom	131, 832	172, 374	258, 787	208, 840	297, 66
Yugoslavia	5, 022	9, 480	89		5, 5
A sia:	0,022	0, 200			•
Cevlon	9,762	23, 626	31, 139	23, 687	26, 24
China (incl. Taiwan)			10, 913	10,050	32, 6
India	31	5, 075	10, 360	10,873	10, 3
Japan	60, 130	155, 649	178, 742	159, 360	242, 78
Turkey			8, 083		11, 9
Africa:	1				
Algeria	16, 359	17, 186	21,059	16, 409	16, 8
Morocco: Southern Zone	0,811	7,624		12,002	2, 7
Union of South Africa	8,660	5, 923	3, 677	8,814	6, 5
Oceania:	i .				
Australia	15, 665	9, 558	11,747	11,420	8, 6 18, 8
New Zealand	17, 153	9, 375	10, 919	18, 220	78, 9
Other countries	37, 920	45, 288	65, 623	65, 152	10, 9
Total	981, 526	1, 149, 523	1, 157, 293	1, 133, 314	1: 454.8

Compiled from Customs Returns of France. Figures include salts, carbonate, chloride, and nitrate of potash.
 This table incorporates a number of revisions of data published in the preceding Potash chapter.

Germany, West.—The Salzdetfurth Potash Co. of Hanover announced plans to expand production facilities and voted to increase its capital investment by over \$7.5 million.9

A Government subsidy, effective in 1956, was expected to increase domestic sales of agricultural potash 15 percent in 1957-58 over the 933,000 short tons of equivalent K₂O sold in 1955-56.¹⁰

⁸ Chemical Week, East Germany's Five-Year Plan: Vol. 81, pt. I, No. 12, Sept. 21, 1957, pp. 137, 140, 142, 144.

^{142, 144.}Die Wirtschaft (Berlin, East), Des Kalibergbau: Vol. 12, No. 27, July 4, 1957.

Chemical Week, vol. 80, No. 5, Feb. 2, 1957, p. 25.
Commercial Fertilizer, West German Fertilizer Capacity Expanding: Vol. 95, No. 3, August 1957, p. 56.

TABLE 12.—Exports of potash materials from West Germany, 1953-57, by countries of destination, in short tons 12

[Compiled by Corra A. Barry]

Country	1953	1954	1955	1956	1957
North America:					
Canada	21, 643	24, 465	20 005	07 001	00 700
			36, 695	27, 091	22, 520
Puerto Rico	1,654	3, 031	2, 353	2, 205	1,301
United States	51, 445	91,057	104, 350	114, 957	113, 516
South America:		1		1	1
Brazil	8, 295	25, 874	45, 290	33, 452	27, 757
Colombia	1, 653	10, 047	4,960	3, 307	21,101
Dominican Republic	551	1,653	1, 435	3, 329	0.070
Europe:	1 001	1,000	1,400	3, 329	8, 278
Austria	00.000	10.045			
Austria		48, 345	42,077	33, 118	29, 291
Belgium-Luxembourg	162, 527	148, 544	100, 216	168, 582	165, 473
Denmark	218, 357	251, 995	162, 202	276, 414	230, 557
Greece	===0,000	3, 318	2, 205	8,030	11, 814
Ireland	19, 130	36,079	43, 930		
T4-1-				32, 135	15,686
Italy	28, 417	21,763	33, 274	41, 161	37, 545
Netherlands		236, 468	168, 070	214, 476	184, 319
Norway	21, 364	4, 429	6,577	5, 713	2,780
Poland	,	7	0,0	0,	16, 532
Portugal				728	661
Sweden	62, 543	FC 000	40 011		
Giti		56, 082	43, 811	72, 395	32, 815
Switzerland	20, 947	19, 287	20, 285	25, 999	29, 719
United Kingdom	259, 961	193, 729	220, 352	244, 714	162, 983
Yugoslavia	8, 965	19, 931	33,069	48, 315	104, 343
Asia:	-,	1 -0,00-	1 00,000	10,010	. 101,010
Ceylon	1,036	3, 416	6, 882	13, 339	9, 800
India	2, 174	5, 322			
Indonesia	2, 174		8, 656	13, 533	12,609
indonesia	2,016	1,542	3, 844	2,682	2,762
Japan	200, 862	210, 706	206, 121	258, 189	152, 415
Korea, Republic of		9, 331	16, 610	6,614	4, 244
Malaya	1.064	2, 127	4, 216	1.844	5, 614
Taiwan	1,001	1, 323	11, 464	5, 655	
Turkey	9, 733		11, 404		17, 306
Africa:	9, 100	9, 370		14,612	
Rhodesia and Nyasaland, Federation					
of	11,047	15, 987	20, 212	15 240	14 000
Union of South Africa		10,987		15, 349	14,889
	7,603		26, 744	28, 118	14, 574
Oceania:					
Australia	6, 181	10, 447	9, 238	21, 926	18, 341
New Zealand.	2,022	16, 583	7, 591	5, 622	14, 454
Other countries	19, 899	41,832	18, 661	22,894	44, 343
	10,000	71,002	10,001	44, 094	44, 343
Total	1, 406, 919	1, 524, 083	1, 411, 390	1,766,498	1, 509, 241

¹ Compiled from Customs Returns of West Germany. Data include crude salts, chloride, sulfate, mag-This table incorporates a number of revisions of data published in the preceding Potash chapter.

Italy.—Exploration of an area 70 miles long and averaging 12 miles wide from Cattolica Eraclea to Agira, Sicily, by the Montecatini Co. and the Edison Co. disclosed potash deposits at Racalmulto, Bosco San Cataldo, Santa Caterina, Salinella, Sambuco-Casazze, Capodarso-Scioltabino, and Mandre-Villadoro. Preliminary reserve estimates indicated 200 million tons of ore averaging 12 percent K₂O, mainly kainite, from beds 1,000 to 2,500 feet beneath the surface.¹¹ Tentative plans called for production of 150,000 tons of potash salts per year. A potash refinery was being constructed by the Montecatini Co. near Campofraneo. 12

Poland.—Exploration in the Izbica-Klodawa-Leczycza area disclosed potash deposits 600 to 900 feet beneath the surface. Gravimetric, seismic, and radioactive-analysis exploration methods were used to determine the geology of the extensive salt formation and to locate the potash ore. Development was begun at Klodawa.¹³

Mining World, Sicily Potash Reserves Undergoing Exploration: Vol. 19, No. 9, August 1957, p. 89.
 Chemical Age (London), Potassium Salts Factory: Vol. 77, No. 1956, Jan. 5, 1957, p. 14.
 Fertiliser and Feeding Stuffs Journal (London), Polish Rock Salt: Vol. 66, No. 10, May 8, 1957, p. 458.

Spain.—Potasas Ibericas S. A. and Potasas de Suria, S. A. reported expansion of potash-production facilities in the Province of Barcelona.14

Plans were reported to form a new company to produce potash in the Province of Navarra. The National Institute of Industry (I. N. I.) completed extensive exploration of the Navarra deposits in 1955 and was to participate in the new company. 15

Exports of potash materials from Spain increased 6 percent in 1956 over 1955. European countries received the major portion—72

Data for 1957 were not available. percent.

TABLE 13.—Exports of potash materials from Spain, 1952-56, by countries of destination, in short tons 1

[Compiled by Corra A. Barry]								
Country	1952	1953	1954	1955	1956			
North America: United States	43, 497	40, 339	19, 786	26, 676	18, 045			
Belgium-Luxembourg	54, 456	74, 689	58, 081	37, 690	63, 614			
Ireland	5, 557	5, 243		4, 543	970			
Italy	10, 367	14, 545	15,041	18, 607	19,407			
Netherlands	10, 086	9, 199	21, 924	16, 462	12,644			
Norway	9, 190	8, 047	23, 115	25, 530	40,619			
Portugal	8, 736	7,021	8,662	10, 411	17,626			
United Kingdom	46, 878	59, 800	24,605	31, 442	48, 831			
Asia:								
China	10, 023	2, 645						
Japan	21, 253	55, 191	98, 337	89, 391	59, 784			
Korea	5, 376							
Other countries	13, 149			5, 555				
Total	238, 568	276, 719	269, 551	266, 307	281, 540			

United Kingdom.—Fertilizer-grade potash from U. S. S. R. was being sold in the United Kingdom and Eire with guaranteed analyses of 50 and 60 percent K_2O .

ASIA

Israel.—Potash production at Sodom by the Dead Sea Potash Works averaged 7,000 tons per month by the end of the year. Expansion of the port facilities at Eilot, on the Red Sea, and construction of a pipeline to either the Red Sea or the Mediterranean were being considered as aids to expanded potash exports.¹⁶

A carnallite deposit on Mount Sodom, disclosed by oil prospecting,

was being investigated.17

The United Kingdom continued to receive the major part of Israel's Smaller quantities were shipped to Australia, Ceylon, and exports. Japan.

Japan.—Investigation of a new recovery process to obtain potash

from dolerite was reported.18

¹ Compiled from Customs Returns of Spain.

<sup>Bureau of Mines, Mineral Trade Notes: Vol. 44, No. 3, March 1957, p. 30.
Mining Journal (London), vol. 248, No. 6351, May 10, 1957, p. 590.
Mining World (London), vol. 19, No. 12, November 1957, p. 105.
Fertiliser and Feeding Stuffs Journal (London), Phosphate and Potash in Israel: Vol. 47, No. 10, Nov. 6, 1957, p. 479.
Chemical Trade Journal and Chemical Engineer (London), vol. 140, No. 3634, Jan. 25, 1957, p. 212.</sup>

Jordan.—The multigovernment-owned Jordan Potash Co., Ltd., announced plans for a potash recovery plant at the north end of the Dead Sea.19

French Equatorial Africa.—Plans for exploring the potash deposits along the lower Ogooué River between Lambarene and Port Gentil were announced by the Syndicate for Potash Research in Gabon.²⁰

OCEANIA

Australia.—Potash occurrences in Queensland, New South Wales. Victoria, South Australia, and Western Australia were described.²¹

TECHNOLOGY

The potash deposits in Saskatchewan occur in the upper part of the Elk Point geological group of Devonian age. The upper part of the Elk Point group, called the Prairie Evaporites, is made up of salt, anhydrite, and dolomite. It varies from 640 to 1,200 feet in thickness in a 200 mile-wide basin and extends some 800 miles northwestward from northern North Dakota across Saskatchewan and Alberta.22

The Federal Geological Survey continued to explore the potashbearing saline deposits in the Searles Lake area of the Mojave Desert, Calif. Results of the drilling program were released.23

Occurrences of saline deposits, including potash, in California and

the industrial recovery practices were discussed.24

Mechanization of a potash mine was the subject of an article.²⁵ Belt conveyors, portable crushers, electric shuttle cars, and diesel trucks and jeeps all were standard equipment.

Investigation of dry beneficiation of soluble potash minerals, although successful on a small scale, did not develop economic

processes for producing high-grade potassium muriate.26

Application of ore-dressing techniques to soluble minerals was discussed in an article.27 Topics covered included the solubility of surface-active agents in salt solutions, conditions for flotation in soluble salt systems, activators and depressants in soluble salt systems, correlation between flotation and heat of solution of a salt, and mechanisms of adsorption of collectors on soluble chlorides.

¹⁹ Foreign Commerce Weekly, Jordan Invites Bids for Potash Plant: Vol. 57, No. 3, Jan. 21, 1957, p. 10. 20 U. S. Consul, Elisabethville, Belgian Congo, State Department Dispatch 15: Feb. 20, 1958, p. 7. 21 Thomas, G. A., and Barrie, J., Potassium: Mineral Resources of Australia, Summary Rept. 34, Australian Bureau of Mineral Resources, Geology, and Geophysics, Canberra, 1956, 19 pp. 21 Geological Survey of Canada. Geology and Economic Minerals of Canada: Dept. of Mines & Tech. Surveys, Economic Geology Series No. 1, 4th ed., Ottawa, Canada, 1957. pp. 255, 280. 23 Haines, D. V., Investigation of Saline Deposits in Southeastern Calif.: Geol. Survey, Open File Rept., Apr. 18, 1957. 24 Ver Planck, W. E., Salines: Chap. in Mineral Commodities of California, Dept. of Natural Resources, Division of Mines, Bull. 176, 1957, pp. 475-482. 24 Tong, J. E., Trackless Mining at Duval Sulphur & Potash Co.: Min. Cong. Jour., vol. 43, No. 6, June 1957, pp. 77-79. 25 LeBaron, I. M., and Knopf, W. C., Application of Electrostatics to Potash Beneficiation: Pres. at Annual Meeting, AIME, New Orleans, La., Feb. 28, 1957, 11 pp. 27 Rogers, J., Flotation of Soluble Salts: Inst. Min. and Met. (London), vol. 66, pt. IX, No. 607, June 1957, pp. 439-452.

Pumice¹

By L. M. Otis 2 and James M. Foley 3

"HE OUTPUT of pumice and pumiceous materials increased substantially in 1957; production was influenced by a sharp rise in the demand for pumice as railroad ballast. The average price was considerably less than in 1956.

DOMESTIC PRODUCTION

Fifteen States plus the Territory of Hawaii reported pumice production from 79 companies, individuals, or Government agenices at 83 properties, compared with 73 different producers at 79 separate projects in 1956.

Total production of pumice and related materials in 1957 was 1.8

million short tons—23 percent more than in 1956.

For the fourth successive year California was the leading pumiceproducing State. There were 34 active pumice pits in California during 1957, compared with 33 in 1956. New Mexico had 11 active mines, followed by Arizona with 4.

All output came from open-pit mines.

An excellent bulletin on pumice production in California was published.4 The history of the industry, geological occurrence, origin of deposits, and detailed descriptions of many properties in California were included, as well as treatise on using pumiceous materials in construction and agriculture.

A publication on pumice and volcanic-cinder production in California described the various producing areas together with notes on

processing, utilizing, and marketing.5

TABLE 1.—Pumice 1 sold or used by producers in the United States,2 1948-52 (average) and 1953-57

Year	Short tons	Value	Year	Short tons	Value
1948-52 (average)	678, 166	\$2, 510, 386	1955	1, 804, 488	\$3, 369, 006
1953	1, 348, 136	2, 526, 040	1956	1, 482, 214	3 4, 748, 507
1954	1, 647, 397	2, 974, 318	1957	1, 826, 978	4, 627, 552

Includes volcanic cinder as follows—1953: 669,831 short tons valued at \$565,846; 1954: 690,056 tons.
 \$475,424; 1955: 961,526 tons, \$926,816; 1956: 594,661 tons, \$1,527,053; 1957: 772,384 tons, \$1,536,935.
 Includes Alaska (1951 only) and Hawaii (1953-67).

8 Revised figure.

¹ This chapter also covers pumicite, volcanic cinder, scoria, tuff, lapilli, cinder, and similar pumiceous materials.

materials.

2 Commodity specialist.

Supervisory statistical assistant.

4 Chesterman, Charles W., Pumice, Pumicite, and Volcanic Cinders in California: California Div. Mines, Bull. 174, 1956, 119 pp.

State of California, Department of Natural Resources, Pumice, Pumicite, and Volcanic Cinders in California: Mineral Info. Service, vol. 10, No. 1, Jan. 1, 1957, 8 pp.

TABLE 2.—Pumice sold or used by producers in the United States. 1955-57. by States

States	19	55	19	956	19	57
	Short tons	Value	Short tons	Value	Short tons	Value
Arizona California Colorado Hawaii Idaho Kansas Montana Nevada New Mexico North Dakota Oregon Utah Washington Wyoming Other States \$	92, 136 797, 306 (2) 130, 306 (2) 2, 320 (2) 393, 597 (2) (2) (2) (2) (3) (4) (2) (2) (3) (4) (5) (6) (7) (8) (8) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9	\$372, 735 1, 099, 459 75, 906 (9) 59, 710 (2) 780, 339 (2) 20, 011 (2) (2) 960, 846	114, 609 634, 356 50, 015 58, 851 101, 913 (2) (2) 11, 534 292, 330 4, 840 (2) 44, 769 5, 291 118, 189	\$366, 095 2, 333, 809 109, 206 01, 695 206, 064 (2) (3) 34, 516 667, 146 4, 840 (2) 829, 603 14, 757 37, 859 4 552, 917	397, 154 459, 089 24, 772 266, 222 100, 197 (2) 320, 861 2, 300 123, 644 35, 794 (2) 49, 254 47, 691	\$640, 30 1, 510, 13 53, 06 492, 55 167, 94 (2) 756, 00 2, 30 294, 37 148, 15 (2) 40, 38 522, 33
Total	§ 1, 804, 488	5 3, 369, 006	6 1, 482, 214	4 6 4, 748, 507	7 1, 826, 978	7 4, 627, 55

¹ Includes Hawaii.

Included with "Other States" to avoid disclosing individual company confidential data.

3 Includes States indicated by footnote 2, and Nebraska, Oklahoma, and Texas.

5 Includes 961,526 short tons of volcanic cinder valued at \$926,816 from California, Hawaii, New Mexico.

Nevada, and Texas.

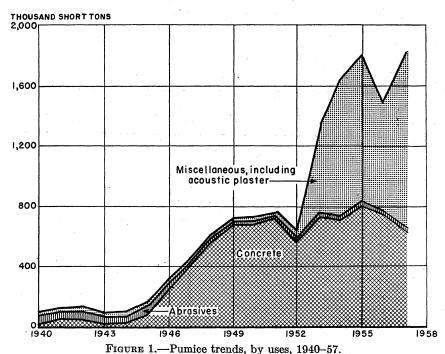
Includes 594,661 short tons of volcanic cinder valued at \$1,527,053 from California, Hawaii, and Nevada.
Includes 772,384 short tons of volcanic cinder valued at \$1,536,935 from Arizona, California, Hawaii, Nevada, New Mexico, Oregon, Texas, and Utah.

CONSUMPTION AND USES

Pumice was formerly considered an abrasive, a major use until World War II, when a large-scale demand developed for pumiceous type materials as lightweight concrete aggregate \mathbf{for} railroad ballast, and fire-retardant plasters. Its effectiveness as insulation against sound and temperature also added materially to its phenomenal rise from 608,000 tons in 1948 to 1.8 million tons in 1957.

During 1957, 44 percent of all pumice consumed was used as railroad ballast and 34 percent as aggregate and admixtures in con-The remainder was used for road surfacing and various miscellaneous purposes.

TABLE 3.—Pumice 1 sold or used by producers in the United States, 1955-57,


		Dy us				
Use	19	55	19	056	19	57
	Short tons	Value	Short tons	Value	Short tons	Value
Abrasive: Cleansing and scouring compounds and hand soap. Other abrasive uses. Acoustic plaster. Concrete admixture and concrete aggregate. Railroad ballast. Other uses 4.	19, 979 12, 474 3, 313 799, 360 (3) 969, 362	\$418, 637 131, 181 71, 726 2, 007, 987 (3) 739, 475	10, 727 27, 341 2, 434 745, 684 (3) 696, 028	² \$352, 202 529, 176 79, 197 2, 229, 285 (3) 1, 558, 647	17, 241 3, 924 3, 872 628, 366 797, 881 375, 694	\$499, 904 116, 884 67, 365 1, 884, 234 1, 062, 541 996, 624
Total	1,804,488	3, 369, 006	1, 482, 214	2 4, 748, 507	1, 826, 978	4, 627, 552

1 Includes volcanic cinder as follows--1955: 961,526 short tons valued at \$926,816; 1956: 594,661 tons, \$1,527,053; 1957: 772,384 tons, \$1,536,935.

Revised figure.

Included with "Other uses."

⁴ Insecticide, insulation, brick manufacture, filtration, railroad ballast, roads (surfacing and ice control), absorbents, soil conditioner, and miscellaneous uses.

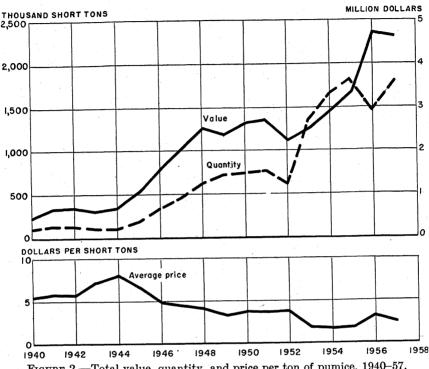
ridente i. Tumice trends, by dises, 1940–91.

TABLE 4.—Crude and prepared pumice 1 sold or used by producers in the United States in 1957

						Valu	16
	: .	-	-		Short tons	Total	Average per ton
Crude Prepared		 	 	 	670, 645 1, 156, 333	\$1, 189, 567 3, 437, 985	\$1. 7' 2. 9'
Total		 	 	 	1, 826, 978	4, 627, 552	2. 5

¹ Includes 772,384 short tons of volcanic cinder valued at \$1,536,935.

PRICES


Trade publications regularly carry quotations of domestic and imported prepared pumice. The Oil, Paint and Drug Reporter quoted the following average prices for 1957, per pound, bagged, in ton lots: Domestic, coarse to fine, \$0.03625; imported, Italian, silk-screened, coarse, \$0.0650; the same, but fine, \$0.0400. Imported, Italian, sun-dried, coarse, was quoted at \$58 per ton.

Italian, sun-dried, coarse, was quoted at \$58 per ton.

E&MJ Metal and Mineral Markets quoted nominal year-end prices for 1957, per pound, f. o. b. New York or Chicago, in barrels, powdered, 3 to 5 cents; lump, 6 to 8 cents.

The weighted average value, per short ton, for both crude and prepared pumice, as reported to the Bureau of Mines in 1957, is shown in table 4 and was \$2.53, 21 percent less than in 1956 owing

principally to the higher proportion of low-priced ballast. The average price per ton for pumice used as concrete aggregate and admixtures in 1957 was virtually the same as in 1956, and that used for abrasive applications increased.

FIGURE 2.—Total value, quantity, and price per ton of pumice, 1940-57.

FOREIGN TRADE®

As in previous years, Greece was the major source of imported crude pumice supplying 28,571 short tons in 1957, compared with 13,025 tons in 1956. Italy supplied 6,513 tons of crude and 2,084 tons of manufactured pumice; in 1956, such imports were 6,462 and 1,312 tons, respectively.

The duty per pound on imported pumice at the beginning of 1957 was: Crude valued at \$15 per ton and under, \$0.0475; crude valued over \$15 per ton, \$0.120; wholly or partly manufactured, \$0.475. On June 30, 1957, tariff rates were reduced to \$0.0450 for pumice valued at \$15 per ton and under; and \$0.450 for wholly or partly manufactured pumice.

Imports of pumice valued at less than \$15 per ton were 93 percent of the total, compared with 92 percent in 1956. Twenty-three percent came from Italy in 1957 and had an average value of \$14.48 per ton. Except for insignificant quantities, the remainder, 77 percent, came

[•] Figures on imports and exports compiled by Mae B. Price and Elsie D. Jackson, Division of Foreign Activities, Bureau of Mines, from records of the U. S. Department of Commerce, Bureau of the Census.

TABLE 5.—Pumice 1 imported for consumption in the United States, 1956-57, by countries

[Bureau of the Census]

			Ö	Orude or unmanufactured	nanufactur	eđ			Whol	ly or partly	Wholly or partly manufactured	ured
66221	Val	Valued at \$15 or less per ton	or less per	ton	Δ	Valued over \$15 per ton	\$15 per to	а				
Country	19	1956	1957	25	1956	99	1957	57	1956	26	1957	1
62	Short	Value	Short	Value	Short	Value	Short	Value	Short	Value	Short	Value
North America: Canada		1									21	\$1,671
Europe: Azores		1					26	\$1,485	6	\$2 023	19	1, 283
Greece Greece Italy Portugal	13,025 6,040	\$44, 524 58, 394	28, 571 6, 227 46	\$230,095 50,859 442	422	\$8, 139	286 26	6,756		49, 320	2,084	66,836
Total	19, 065	102, 918	34,844	281, 396	422	8, 139	338	9,886	1,315	51, 343	2, 103	68, 119
Grand total	19,065	102, 918	34,844	281, 396	422	8, 139	338	9,886	1,315	51, 343	2, 124	69, 790

¹ Exclusive of "manufactures, n. s. p. f."

TABLE 6.—Pumice imported for consumption in the United States, 1948-52 (average) and 1953-57

[Bureau of the Census]

						-						
	1948-52 (average)	average)	19	1953	1954	74	1955	55	19(1956	1957	25
Class	Short	Value	Short	Value	Short	Value	Short	Value	Short	Value	Short	Value
Orude or unmanufactured Wholly or partly manufactured Manufactured, n. s. p. f.	14, 865 749 (2)	\$121, 789 16, 858 2, 108	32, 712 943 (2)	\$166,079 19,975 5,415	20, 951 950 (2)	\$117, 136 1 20, 541 1 6, 720	29, 938 1, 497 (²)	1\$164, 539 1 38, 971 1 4, 371	19, 487 1, 315 (²)	\$111,057 51,343 17,674	35, 182 2, 124 (²)	\$291, 282 69, 790 13, 876
Total		140, 755		191, 469		1 144, 397		1 207, 881		1 170, 074		374, 948

1 Owing to changes in tabulating procedures by the Bureau of the Census, data known to be not comparable with years before 1964.

9 Quantity not recorded.

from Greece and averaged \$8.05 per ton in value. Virtually all of the crude imported pumice valued at more than \$15 per ton came from Italy and the average value per ton was \$23.62 but was less than 1 percent by weight of total crude imports.

Canada and the Azores were new, but minor, pumice exporters to

the United States in 1957.

WORLD REVIEW NORTH AMERICA

Canada.—No pumice was produced in Canada, but a quantity valued at Can\$110,000 was imported from Western United States in

This was 6 percent less than in 1955.7

A pumice deposit was reported in the Bridge River area of British Columbia near Mount Meager 35 miles northwest of Pemberton Meadows. It consists of a surface accumulation of particles from dust size to 3 inches maximum.

EUROPE

Austria.—Trass, a rock formed by the consolidation of numerous small pumice particles, is often classified as pumice. In 1956, 37,500 short tons of trass was produced, compared with 53,000 tons in 1955.

TABLE 7.—World production of pumice, by countries,1 1948-52 (average) and 1953-57, in short tons 2

[Compiled by	Helen L	. Hunt and	Berenice B.	Mitchell]

Country 1	1948-52 (average)	1953	1954	1955	1956	1957
Argentina 3Austria: Trass	4.00.000			49, 604	15, 708	4 22, 000
Egypt France:	4 38, 600 525	4 44, 100 761	51, 601 441	52, 935 181	37, 499 4 170	38, 875 4 170
Pumice Pozzolan	18, 023 95, 776	11, 464 232, 903	11, 133 296, 207	9, 921 242, 508	14, 330 243, 611	4 11,000 4 242,500
Germany, West (marketable)_Greece:	4 2, 200, 000	2, 489, 378	2, 218, 950	3, 105, 207	3, 966, 111	3, 261, 735
Pumice Santorini earth	15, 638 36, 714	47, 179 44, 092	34, 409 38, 581	33, 069 40, 234	27, 558 4 44, 000	4 28, 000 4 44, 000
Iceland Italy:			12, 125	4 14, 600	4 19, 000	4 19, 000
PumicePumicitePozzolan	68, 461 35, 289 1, 010, 801	192, 132 37, 148 1, 392, 703	166, 915 40, 400 1, 657, 290	} 198, 614 1, 452, 282	168, 969 17, 196 2, 567, 280	4 2, 800, 000
Kenya New Zealand Spain (Canary Islands) United State (Cold	10, 772 748	2, 254 612	9, 916 529	8, 670 944	1, 831 8, 527	2, 319 16, 991
United States (sold or used by producers)	678, 166	⁵ 1, 348, 136	5 1, 647, 397	5 1, 804, 488	5 1, 482, 214	5 1, 826, 978
World total (estimate) ^{1 2}	4, 300, 000	5, 900, 000	6, 200, 000	7, 100, 000	8, 700, 000	8, 400, 000

Pumice is also produced in Canada, Japan, Mexico, U. S. S. R., and a few other countries, but data on production are not available; estimates by senior author of chapter are included in total.
 This table incorporates a number of revisions of data published in previous Pumice chapters. Data do not add to totals shown because of rounding where estimated figures are included in detail.
 Includes volcanic ash and cinders, and pozzolan.

Includes in 1953, 560,502 tons; 1954, 690,056 tons; 1955, 961,526 tons; 1956, 594,661 tons; and in 1957, 772,384 tons of volcanic cinder and scoria, used for railroad ballast or similar purposes.

⁷ Canada Department of Mines and Technical Surveys, Ottawa, Lightweight Aggregates in Canada, 1956 (Prelim.): 5 pp.

971 PUMICE

Greece.—Of the 27,500 short tons of pumice produced in 1956, 12,300 tons was exported; 10,000 tons, valued at \$20,900, went to the This compared with exports of 20,200 tons in 1955 United States. and 18,750 tons in 1954. The value of exports was \$40,700 and \$45,700 in 1955 and 1954, respectively. In early 1955, with Government approval, a Greek-owned Panamanian shipping firm loaned \$418,000 to Greek pumice producers for mining, processing, and transportation facilities on the island of Yali. Expected annual production was 85,000 cubic yards.

TECHNOLOGY

A patented precoating for a rocket-type combustion chamber consists of a mixture of sodium silicate, stannic acid, sodium hydroxide, and an inorganic filler, such as pumice.8

Pumice was mentioned as a filler used in a patented reinforced

plastic sheet.9

The preferred composition for making a patented, precast, building

panel was crushed pumice, sawdust, and portland cement.¹⁰

A patented process for forming insulating walls and ceilings consisted of a stabilized mineral aggregate, such as pumice, in concrete or gypsum plaster poured between removable forms.¹¹

Pumice was specified as suitable for use with a patented blasting

device.12

The use of pumice as a suitable soil bed for receiving septic-tank

effluent was patented.¹³

A unitary seed-carrying package was patented, consisting of exfoliated vermiculite and pumice mixed with plant foods and an organic, water-soluble binder. The seeds are placed in indentations in the package and covered with another layer of the mixture. When embedded in soil, the seeds germinate.14

Two formulas were patented for producing permeable concrete for

cementing oil wells and specified pumice as suitable aggregate. 15

A method and apparatus for the continuous, large-scale manufacture of lightweight, reinforced, insulating concrete roof and floor slabs was patented. Pumice is one of the suitable lightweight aggregates specified.16


⁸ Hull, E. H., and Winslow, A. F., Preliminary Coating for Combustion Chamber Wall: U. S. Patent 2,811,467, Oct. 29, 1957.

9 Petersilie, H. H., and Zimmermann, E. O. (assigned to Frank R. Lushas, New York, N. Y.), Hardened Molded Articles: U. S. Patent 2,812,570, Nov. 12, 1957.

10 Clary, R. L., Hollow Building Construction: U. S. Patent 2,811,850, Nov. 5, 1957.

11 Hand, D., and Swanson, W. R. (said Swanson assigned to said Hand, Witchita, Kans.), Wall-Forming Process: U. S. Patent 2,806,277, Sept. 17, 1957.

12 Ryan, M. A. (assigned to Phillips Petroleum Co.), Explosive Apparatus: U. S. Patent 2,797,892, July 2, 1957.

Quartz Crystal (Electronic Grade)

By Waldemar F. Dietrich 1 and Gertrude E. Tucker 2

OMESTIC consumption of Electronic-grade quartz crystal increased 11 percent in 1957. The number of piezoelectric units was 6 percent greater. No domestic production of Electronic-grade quartz crystal was reported. Imports for consumption, principally from Brazil, decreased substantially.

GOVERNMENT PROGRAMS

Defense Minerals Exploration Administration.—DMEA, on October 22, 1957, lowered the Government's participation in quartz-crystal exploration contracts to 50 percent from 75 percent. No applications for exploration assistance for quartz crystal were received in 1957.

Defense Materials Service.—Purchases of Electronic-grade quartz crystal for the strategic stockpile by Defense Materials Service were completed in 1957.

Commodity Credit Corporation.—Some quartz crystal was obtained through barter in 1957 by the United States Department of Agriculture, Commodity Credit Corporation.

CONSUMPTION AND PRODUCTION

Raw quartz crystal consumed in the United States in 1957 for the production of piezoelectric units increased substantially for the second consecutive year—the only notable increases in consumption since 1952. Quartz-crystal cutters reported using 16,900 pounds more in 1957. Forty-one consumers reported to the Bureau of Mines in 1957 compared with 42 in 1956. Although most of the crystals consumed continued to weigh 100 to 500 grams, there was an accelerated demand for crystals weighing 700 to 2,000 grams for the production of crystal filters to be used in long-distance automatic-dialing telephone circuits.

The number of piezoelectric units produced in 1957 increased 6 percent. Production excludes finished crystal units reported produced from approximately 100,000 reworked blanks cut from quartz previously reported as consumption and a small quantity of finished crystal units marketed in the United States, which were produced from blanks imported from Canada. The yield of units per pound of raw quartz consumed decreased 4.5 percent from the alltime high reported in 1956, reflecting the unusually high production of large filter units; however, for most other applications, the trend toward increased production of smaller units continued.

¹ Chief, Branch of Ceramic and Fertilizer Materials.
2 Statistical assistant.

TABLE 1.—Consumption of Electronic-grade quartz and production of piezoelectric units in the United States in 1957, by States

	State		otion of Elec- ade quartz ¹	Producti electri	on of piezo- c units ²
		Con- sumers	Pounds consumed	Pro- ducers	Units produced
Illinois Iowa, Kansas, Nebrask Missouri New Jersey Ohio New York Pennsylvania Texas	chusettsa, and Wisconsin	4 2 5 2 3	5, 300 5, 000 15, 000 24, 000 17, 500 34, 500 } 9, 800 52, 700 1, 900 * 1, 500	8 4 3 5 5 3 6 2 2 4 7 2 9 4 9	140, 900 61, 000 1, 528, 800 754, 500 932, 100 1, 645, 500 19, 70 4 123, 20
Total		41	167, 200	53	5, 368, 60

May include a small quantity of reworked scrap previously reported as consumption.
 For radio oscillators, telephone resonators, filters, and miscellaneous purposes.
 Includes Florida, Maryland, and Virginia.
 Includes Florida, Georgia, Louisiana, Maryland, Oklahoma, Virginia, and Washington.

Consumers of quartz crystal and producers of piezoelectric units were distributed among 17 States; there were producers of units only in 4 other States, as shown in table 1. Pennsylvania continued to lead and reported about 31 percent of both consumption of quartz and production of units. Other important consuming States were Illinois, Kansas, Missouri, and New Jersey. About 90 percent of the total was consumed in 8 States. Thirty-nine of the 41 quartz-crystal consumers also produced piezoelectric units, and 14 of the 53 producers of units did not consume quartz crystal.

Production of piezoelectric units for oscillator plates comprised 91 percent of the total crystal units and was reported from all 21 States. Piezoelectric units also were produced for filter and telephone-resonator plates, and a small quantity was produced for other uses.

Westinghouse Electric Corp. began to manufacture fused quartz in

1957.3

PRICES

Prices of Electronic-grade quartz crystal are negotiated between buyer and seller. The heavy demand for large crystals in 1957 resulted in increases up to about 10 percent in the prices of high-quality crystals in the 701- to 1,000- and 1,001- to 2,000-gram weight groups, which were sold at about \$30 and \$40 per pound, respectively. was a softening of prices in the weight groups up to 500 grams. Class 1 crystals, weighing 201 to 300 and 301 to 500 grams, sold up to 20 percent below the 1956 prices of about \$12 and \$17 to \$18 per pound, respectively. Importers reported some changes in export prices of quartz crystal from Brazil, but details were not available.

Synthetic quartz Z-bar crystals, 200 to 250 grams in weight and free from crystallographic and electrical twinning, were offered at \$50 per pound. These crystals are said to have a usability 4 to 5 times that

of natural quartz.

³ Ceramic Age, vol. 70, No. 6, December 1957, p. 33.

Approximate prices for lasca, used to produce clear fused quartz, were \$0.50 per pound for 10- to 29-gram crystals, \$0.80 per pound for 30- to 99-gram crystals, and \$1 per pound for crystals weighing 100 grams or more.

FOREIGN TRADE 4

Imports of Electronic- and Optical-grade quartz crystal in 1957, valued at 35 cents or more per pound, decreased 17 percent in quantity and 43 percent in value, the lowest in quantity since 1950 and the lowest in value since 1940 (see table 2). The average declared value per pound declined from \$2.19 in 1956 to \$1.51 in 1957. Of the total imports, Brazil supplied 411,100 pounds (95 percent) and Japan 18,900 pounds (4 percent). The remaining 2,100 pounds was furnished by France, United Kingdom, Madagascar, and Canada. Shipments from France were believed to have originated in Madagascar. Part of the United States imports credited to Japan comprised material sent from the United States for partial processing. Most of the United States imports credited to Canada were believed to comprise material reentering the United States after shipment from the United States to Canada for partial processing. The value of imports from the United Kingdom was believed to have been balanced approximately by United States exports of crystals of different weight groups.

TABLE 2.—Estimated imports for consumption of Electronic- and Optical-grade quartz crystal, consumption of raw Electronic-grade quartz, and production of piezoelectric units in the United States, 1948-52 (average) and 1953-57

		mports of Ele rade quartz	ectronic- and crystal 1 2	Consump-	Piezoelec	tric units
Year	Pounds	Value	Value per pound	Electronic- grade quartz (pounds)	Production (number)	Number per pound of raw quartz
1948-52 (average)	733, 100 1, 119, 200 613, 100 704, 500 521, 400 432, 100	\$2, 275, 800 2, 240, 200 1, 562, 800 1, 393, 500 1, 142, 200 651, 900	\$3, 10 2, 00 2, 55 1, 98 2, 19 1, 51	201, 400 399, 200 133, 900 134, 200 150, 300 167, 200	2, 649, 600 7, 217, 700 3, 653, 800 4, 089, 500 5, 044, 500 5, 368, 600	13. 2 18. 1 27. 3 30. 5 33. 6 32. 1

Figures for 1948-52 (average) derived from Bureau of the Census reports of total Brazilian pebble imports, corrected by deducting the imports of Fusing-grade quartz from Brazil as estimated from industry advices and Brazilian Government statistics.
 Figures for 1953-57 are imports of Brazilian pebble, valued at 35 cents or more per pound.
 Revised figure.

In 1957 imports of quartz crystal valued at less than 35 cents per pound—classed as lasca—totaled 1,114,100 pounds valued at \$77,300, compared with 645,100 pounds valued at \$106,600 in 1956. Brazil was the principal supplier of lasca, obtained from the rejects of Electronic-grade quartz-crystal production. A small quantity of lasca was imported from Canada.

Exports of quartz crystal in 1957 were valued at \$152,800, an increase of 137 percent over 1956. The value of reexports, totaling

⁴ Figures on imports and exports compiled by Mae B. Price and Elsie D. Jackson, Division of Foreign Activities, Bureau of Mines, from records of the U. S. Department of Commerce, Bureau of the Census.

\$310,800, declined 49 percent in 1957. "Exports" include crystals of foreign origin that have been changed in the United States to enhance their value, and "reexports" comprise crystals of foreign origin that have been exported without being changed. The principal country of destination for United States reexports in 1957 was Japan, which received lasca and ornamental quartz, as well as some 100- to 200-gram irregular Electronic-grade crystals for partial processing and return to United States dealers.

WORLD REVIEW

Brazil.—Exports of Piezoelectric (Electronic)-grade quartz crystal from Brazil in 1956 totaled 491,500 pounds valued at US\$1,099,000. Exports of lasca, principally classed as Fusing-grade quartz, totaled 1,615,500 pounds valued at \$181,000.

Madagascar.—The production and exports of quartz crystal in Madagascar in 1956 and for the first 9 months of 1957 are shown in

table $\tilde{3}$.

TABLE 3.—Production and exports of quartz crystal in Madagascar in 1956 and 1957^{1}

		Produ	iction	_		Exp	orts	
Class	19	956	19	57	19	56	195	7
	Pounds	Value 2	Pounds	Value 2	Pounds	Value 2	Pounds	Value 2
Piezoelectric Ornamental Fusing	3 31, 100 3 30, 900 8 8, 400	\$120, 900 \$ 4, 000 \$ 600	18, 100 20, 500 11, 000	\$70, 300 2, 700 900	3 38, 300 24, 500 15, 600	3 \$397, 700 6, 300 2, 000	33, 500 23, 100 24, 000	\$347, 400 6, 000 3, 100
Total	3 70, 400	³ 125, 500	49, 600	73, 900	3 78, 400	3 406, 000	80, 600	356, 500

¹ U. S. Embassy, Johannesburg, Union of South Africa, State Department Dispatches 29, Aug. 14, 1957 (revised data, 1956); 1, July 2, 1957; 54, Sept. 19, 1957; 161, Jan. 23, 1958; 310, July 16, 1958.

² Converted from African Colonial Francs (CFA) at 175CFA equal US\$1.

Revised figure.

TECHNOLOGY

The quartz-crystal deposits of Guatemala were described, and past

production was reviewed.6

Sawyer Research Products, Inc., Eastlake, Ohio, under contract with the United States Army Signal Corps Supply Agency, continued pilot-plant production of synthetic quartz crystal in vertical stationary autoclaves. According to C. B. Sawyer, president of Sawyer Research Products, Inc., improvements were made in the design of equipment and in operating practices that resulted in a substantial decrease in equipment and operating-cost estimates for full-scale operation.

Research on quartz-crystal synthesis at Clevite Research Center, Cleveland, Ohio, was continued under contract with the United States Army Signal Engineering Laboratories. Emphasis was placed on improving the quality of synthetic quartz. It was confirmed that the growing Z-crystallographic surface of quartz rejects impurities, causing

Bureau of Mines, Mineral Trade Notes: Vol. 45, No. 6, December 1957, p. 43.
 Roberts, R. J., and Irving, E. M., Mineral Deposits of Central America: Geol. Survey Bull. 1034, 1957, pp. 161-169.

darkening by X-ray irradiation. Criteria were established to control the critical variables of quartz synthesis to obtain a structurally uniform and improved product.7

A patent was granted on a method of growing quartz crystals.8

Hungarian scientists reported experiments on the growing of synthetic quartz crystal in autoclaves by using Wooster's method.9

Articles on various aspects of quartz-crystal synthesis in the

U. S. S. R. were published. 10

Data were published on the effect of X-ray irradiation and heat treatment on the piezoelectric properties of synthetic quartz crystal grown under different conditions and containing either aluminum or germanium as an added impurity.11 Various kinds of silica glass and natural and synthetic crystals were irradiated with fast neutrons, and the paramagnetic resonance was correlated with lattice defects.¹² The frequency-temperature characteristics of natural quartz were compared with those of piezoelectric units prepared from doped and undoped synthetic quartz.13 The direct-current resistivity of Z-cut plates of quartz was measured.14

Studies were made of the anelasticity of quartz, 15 and data were

published on the anisotropic relaxation peak of quartz crystal.¹⁶

The structure of accessory growth on synthetic quartz crystals was described, 17 the dynamic elastic constants of quartz were redetermined, 18 the pattern of light diffracted by ultrasonic waves in quartz

⁷ Augustine, Frank, Improving the Quality of Synthetic Quartz: Proc. 11th Ann. Symposium on Frequency Control, U. S. Army Signal Engineering Laboratories, Fort Monmouth, N. J., May 1957, pp. 130-

^{141.}Buehler, E. (assigned to Bell Telephone Laboratories, Inc.), Method of Growing Quartz Crystals: U. S.

⁸ Buehler, E. (assigned to Bell Telephone Laboratories, Inc.), Method of Growing Quartz Crystals: U. S. Patent 2,785,058, Mar. 12, 1957.

9 Nagy, J., and Tarján, I. [Growing of Artificial Quartz Crystals]: Acta Phys. Acad. Sci. Hung., vol. 6, 1957, pp. 485-488 (in German); Chem. Abs., vol. 51, No. 16, Aug. 25, 1957, p. 11943h.

10 Ikornikova, N. Y., and Butuzov, V. P. [The Relief of Crystal Faces in Synthetic Quartz in the Initial Period of Growth]: Trudy Inst. Krist., Akad. Nauk S. S. R., 1955, No. 11, pp. 223-228; Chem. Abs., vol. 51, No. 17, Sept. 10, 1957, p. 12589b.

Butuzov, V. P., and Ikornikova, N. Y. [The Formation of Quartz in Nature]: Trudy Inst. Krist., Akad. Nauk S. S. S. R., 1955, No. 11, pp. 229-232; Chem. Abs., vol. 51, No. 16, Aug. 25, 1957, p. 11943h.

Sheftal, N. N. [The Genesis of Piezoquartz Deposits Considering the Data of Growing Artificial Quartz]: Voprosy Geokhim: in Mineral., Akad. Nauk S. S. S. R., Otdel. Geol. Geograf. Nauk, 1956, pp. 142-157; Chem. Abs., vol. 51, No. 17, Sept. 10, 1957, p. 13329e.

Vitovskif, B. V. [Increasing the Growth Rate of a Crystal by Exposing It to Vibrations of Sonic Frequency]: Trudy Inst. Krist., Akad. Nauk S. S. S. R., 1955, No. 11, pp. 221-222; Chem. Abs., vol. 51, No. 17, Sept. 10, 1957, p. 12689a.

11 Stanley, J. M., and Chi, A. R., Some Properties of Doped and Undoped Synthetic Quartz: Proc. 11th Ann. Symposium on Frequency Control, U. S. Army Signal Engineering Laboratories, Fort Monmouth, N. J., May 1957, pp. 90-111.

12 Weeks, R. A., Paramagnetic Resonance of Lattice Defects in Irradiated Quartz: Jour. Appl. Phys., vol. 27, No. 11, November 1956, pp. 1376-1381.

13 Chi, A. R., Resonator Properties of Synthetic and Doped Synthetic Quartz: Inst. Radio Eng. Nat. Convention Record, vol. 5, pt. 9, 1957, pp. 70-75.

14 Wenden, H. E., Ionic Diffusion and the Properties of Quartz. I. The Direct Current Resistivity: Am. Mineral., vol. 42, No. 11/12, November-December 1957, pp. 559-888.

13 Cook, R. K., and Wasilik, J. H., Anelasticity and Dielectric Loss o

on Frequency Control, U. S. Army Signal Engineering Laboratories, Fort Monthoden, N. J., pp. 62-77.

Doby, V. G., The Variation of the Elastic Constants of Quartz With Temperature: Soviet Phys. Doklady, vol. 1, 1956, pp. 187-188 (English translation—see footnote 10, Chap. on Quartz Crystal (Electronic Grade) in Minerals Yearbook, 1956).

Wasilik, J. H., Anisotropic Relaxation Peak in the Internal Friction of Crystaline Quartz: Phy. Rev., vol. 105, No. 4, Feb. 15, 1957, pp. 1174-1180.

Tsinober, L. I. (The Spiral Structure of Accessory Growth on the 0001 Surfaces of Crystals of Synthetic Quartz]: Kristallografiya, vol.1, 1956, pp. 609-610; Chem. Abs., vol. 51, No. 9, May 10, 1957, p. 6261f.

Zubov, V. G., and Firsova, M. M. (Measurement and Recalculation of the Dynamic Elastic Constants of Quartz]: Kristallografiya, vol. 1, 1956, pp. 546-554; Chem. Abs., vol. 51, No. 9, May 10, 1957, p. 6262c.

was reported,19 and various imperfections in synthetic quartz revealed by optical methods were described.²⁰
The dispersion of Faraday rotation in fused quartz was measured

and found to differ significantly from that of quartz crystal.21

¹⁹ Zubov, V. G., and Firsova, M. M. [Peculiarities in the Diffraction of Light by Ultrasonic Waves in Quartz]: Kristallografiya, vol. 1, 1956, pp. 555-556; Chem. Abs., vol. 51, No. 9, May 10, 1957, p. 6262e.

²⁰ Arnold, G. W., Jr., Defects in Quartz Crystals: Proc. 11th Ann. Symposium on Frequency Control, U. S. Army Signal Engineering Laboratories, Fort Monmouth, N. J., May 1957, pp. 112-117.

²¹ Sivaramakrishnan, V., Dispersion of Faraday Rotation in Fused Quartz: Proc. Indian Acad. Sci., vol. 44A, 1956, pp. 206-215.

Salt

By R. T. MacMillan 1 and Annie L. Mattila 2

UTPUT of salt in 1957 decreased slightly from the record high mark established for the United States in 1956. Small decreases in both rock salt and brine sold or used followed a general leveling off in business activity in 1957.

TABLE 1.—Salient statistics of the salt industry in the United States, 1948-52 (average) and 1953-57 1

	1948-52 (average)	1953	1954	1955	1956	1957
Sold or used by producers: Dry salt: Evaporated (manufactured)						1.
short tons Rock saltdo	3, 423, 549 4, 089, 636					
Totaldo Value Average per ton In brine:	7, 513, 185 \$52, 473, 044 \$6. 97	\$65, 407, 021	\$73, 405, 616			
Short tons Value Total salt:		12, 608, 043 \$12, 869, 646	12, 113, 608 \$32, 180, 276			
Short tonsValue 2 Imports for consumption:			20, 669, 403 \$105, 585, 892			23, 854, 019 \$147, 394, 754
Short tonsValueExports:	\$50, 247				368, 212 3 \$2, 353, 728	
Short tonsApparent consumption:	345, 368 \$3, 603, 923					
short tons	17, 332, 401	20, 676, 790	20, 444, 914	22, 482, 665	24, 247, 515	24, 117, 461

 Includes Hawaii (1952-57 only) and Puerto Rico.
 Values are f. o. b. mine or refinery and do not include cost of cooperage or containers.
 Owing to changes in tabulating procedures by the U. S. Department of Commerce, data known to be not comparable with earlier years.

DOMESTIC PRODUCTION

As in previous years, most salt came from Michigan, where 22 percent of the total was produced. Texas ranked second, with 19 percent, and New York, third, with 15 percent. Louisiana, Ohio, and California ranked fourth, fifth, and sixth, with 15, 12, and 6 percent, Together these 6 States furnished about 89 percent of the salt sold or used in the United States in 1957.

Salt was produced at 89 facilities in the United States, Hawaii, and Puerto Rico in 1957; 4 leading companies operating 10 plants supplied 53 percent of the total output; the next 5 companies, operating 17 plants, furnished 31 percent; and the remaining 62 plants supplied 16 percent.

¹ Commodity specialist.
2 Statistical assistant.

Over 1 million tons of salt was produced by each of 8 plants during the year; 6 plants reported production ranging between 500,000 and 1 million tons each, and 30 plants produced 100,000 to 500,000 tons. Of the remaining plants, 26 produced less than 10,000 tons each.

About 61 percent of the total salt sold or used was produced and used as brine.

TABLE 2.—Salt sold or used by producers in the United States, 1955-57, by States

		1955			1956			1957	
State	Quant	ity		Quant	ity		Quant	ity	
	Short tons	Per- cent of total	Value	Short tons	Per- cent of total	Value	Short tons	Per- cent of total	Value
California	1, 314, 535 (1) 910, 866 3, 562, 636 4, 975, 442 49, 738 3, 779, 547 2, 905, 028 (1) 10, 496 3, 583, 242 195, 726 638, 390 778, 497	(1) 16 22 (2) 16 13 (1)	\$6, 751, 420 (1) 8, 4\$2, 325 15, 406, 993 13, 668, 351 596, 780 (1) 114, 768, 761 (1) 112, 399 12, 867, 094 1, 339, 085 3, 476, 352 2, 755, 096	270 1, 004, 042 3, 703, 500 5, 548, 178 57, 156 3, 872, 777 2, 971, 702 9, 980 9, 936 3, 962, 778 183, 701 680, 964	(2) 4 15 23 (2) 16 12 (2) (2) (2) (3) 17 1 3	35, 643, 860 501, 040 27, 544, 908	194 1, 018, 027 3, 460, 921 5, 225, 425 53, 065 3, 690, 981 2, 824, 878 6, 943 9, 755 4, 612, 093 220, 942 648, 139	(2) 4 15 22 (2) 15 12 (2) (2) (2) 19 1 3	41, 072, 497 429, 320 28, 001, 832
Total	22, 704, 143	100	123, 388, 847	24, 215, 623	100	136, 239, 623	23, 854, 019	100	147, 394, 754

¹ Included with "Other States" to avoid disclosing individual company confidential data.

Less than I percent.
Includes States indicated by footnote 1, and Alabama, Colorado, Nevada, and Virginia.

TABLE 3.—Salt sold or used by producers in the United States, 1 1956-57, by methods of recovery

Method of recovery	19	56	1957		
	Short tons	Value	Short tons	Value	
Evaporated: Bulk: Open pans or grainers. Vacuum pans. Solar Pressed blocks. Rock: Bulk. Pressed blocks. Salt in brine (sold or used as such).	379, 746 2, 147, 078 1, 232, 161 268, 968 5, 571, 114 51, 783 14, 564, 773 24, 215, 623	\$9, 210, 091 32, 610, 436 5, 685, 437 4, 967, 529 35, 045, 478 993, 895 47, 726, 757 136, 239, 623	399, 806 2, 158, 627 1, 146, 024 289, 232 5, 286, 322 55, 264 14, 518, 744 23, 854, 019	\$11, 005, 50 36, 664, 93 6, 582, 64 6, 063, 69 35, 062, 11 1, 327, 19 50, 688, 66	

¹ Includes production in Hawaii and Puerto Rico.

CONSUMPTION AND USES

The apparent consumption of salt in 1957 was 24.1 million tons, a decrease of less than 1 percent compared with the preceding year. Following an increasing trend of the past 3 years, chlorine manufacture consumed more salt than any other single use. Soda-ash manufac-

981

ture, formerly the chief consumer of salt, ranked second. State and local governments consumed salt largely for road stabilization and ice and snow removal. Meatpackers, feed dealers, grocery stores, and chemical and water-softener manufacturers also consumed important tonnages of salt.

SALT

In a few categories, such as the production of soda ash and chemicals, salt consumption decreased. These two uses and chlorine production

consumed 71 percent of the salt produced in 1957.

TABLE 4.—Evaporated salt sold or used by producers in the United States, 1955-57, by States

State	19	55	19	56	1957		
23400	Short tons	Value	Short tons	Value	Short tons	Value	
California. Hawaii Kansas Louisiana. Michigan New York. Ohio. Oklahoma. Puerto Rico. Texas. Utah. Other States 2.	1, 105, 772 (1) 361, 612 110, 218 857, 265 568, 497 509, 905 (1) 10, 496 117, 237 (1) 345, 965	\$6, 120, 822 (1) 5, 819, 536 1, 743, 445 14, 234, 709 9, 655, 884 6, 113, 567 (1) 112, 399 2, 016, 600 3, 156, 713	(1) 270 350, 208 121, 900 854, 335 560, 693 (1) 9, 980 9, 936 112, 984 176, 057 1, 831, 590	(1) \$18, 119 5, 963, 055 1, 995, 188 15, 150, 073 10, 116, 141 (1) 89, 764 101, 243 2, 214, 480 1, 421, 395 15, 404, 035	(1) 371, 752 128, 220 835, 263 (1) (1) (1) (6, 943 9, 755 127, 105 (2, 514, 457	(1) \$15, 239 7, 259, 628 2, 691, 921 16, 746, 595 (1) (1) 62, 664 104, 324 2, 930, 819 30, 505, 589	
Total	3, 986, 967	48, 973, 675	4, 027, 953	52, 473, 493	3, 993, 689	60, 316, 779	

¹ Included with "Other States" to avoid disclosing individual company confidential data.
² Includes States indicated by footnote, 1, and Nevada, New Mexico, and West Virginia.

TABLE 5.—Rock salt sold by producers in the United States, 1948-52 (average) and 1953-57

			l	<u> </u>	<u> </u>
Year	Short tons	Value	Year	Short tons	Value
1948–52 (average) 1963 1954	4, 089, 036 4, 478, 655 4, 824, 708	\$20, 070, 013 23, 777, 527 28, 319, 630	1955	5, 293, 282 5, 622, 897 5, 341, 586	\$31, 978, 403 36, 039, 373 36, 389, 308

TABLE 6.—Pressed-salt blocks sold by original producers of the salt in the United States, 1948-52 (average) and 1953-57

Year		From evaporated salt		ock salt	Total	
- 0	Short tons	Value	Short tons	Value	Short tons	Value
1948-52 (average) 1953 1954 1955 1956 1957	274, 380 293, 014 284, 276 285, 670 268, 968 289, 232	\$3, 493, 875 4, 603, 864 4, 929, 057 5, 069, 998 4, 967, 529 6, 063, 695	62, 616 62, 247 59, 615 57, 539 51, 783 55, 264	\$678, 395 853, 521 1, 011, 607 1, 037, 523 993, 895 1, 327, 194	336, 996 355, 261 343, 891 343, 209 320, 751 344, 496	\$4, 172, 270 5, 457, 385 5, 940, 664 6, 107, 521 5, 961, 424 7, 390, 889

TABLE 7.—Salt sold or used by producers in the United States, 1956-57, by classes and consumers or uses, in thousand short tons

		19)56			19	957	
Consumer or use	Evap- orated	Rock	Brine	Total	Evap- orated	Rock	Brine	Total
Chlorine	716 (1) 55 35 174 (1) 23 55 173 105 55 84	1, 402 (¹) 137 (¹) 470 510 13 19 35 3 3 32	6, 190 7, 797 (1) 516 (1)	8, 308 7, 805 192 43 1, 160 934 36 74 208 108 58 116	648 (¹) 64 36 171 (¹) 25 57 173 111 55 77	1,314 135 6 420 486 11 6 36 4 3 3 32	6, 734 (¹) 452 (¹)	8, 69 7, 22 199 42 1, 042 1, 043 88- 36 209 111 55
Ice manufacturers and cold-storage companies. Feed dealers. Feed mixers. Metals. Ceramics (including glass) Rubber. Oil Paper and pulp. Weterseftper manufacturers and	(1) 558 168 76 4 (1) (1) (1)	46 319 54 78 11 82 77 88	(1) 4 (1) (1) (1)	83 877 222 158 15 100 135 126	(1) 575 171 (1) (1) (1) (1) (1) (1)	43 267 65 67 (1) 144 72 94	(1) (1) (1) (1) (2)	79 84 23 15 19 20 12 13
Water-softener manufacturers and service companies. Grocery stores. Railroads. Bus and transit companies. State, counties, and other political subdivisions (except Federal). U.S. Government. Miscellaneous. Undistributed 2	(1)	256 150 66 (¹) 1, 494 18 218 42	(¹) 	370 718 86 34 1, 573 44 633	(1) 582 14 (1) (1) (1) 22 420 793	252 151 55 (1) 1,456 18 156 48	(¹) (¹) 7, 333	38; 73; 6; 3; 1, 54; 4(57;
Total	4, 028	5, 623	14, 565	24, 216	3, 994	5, 341	14, 519	23, 85

Included with "Undistributed" to avoid disclosing individual company confidential data.
 Includes some exports and consumption in Territories and possessions.

TABLE 8.—Distribution (shipments) of evaporated and rock salt in the United States, 1956-57, by States of destination, in short tons

	19	56	195	7
Destination	Evapo- rated	Rock	Evapo- rated	Rock
Mahama	10.004	050 005	09 107	004.01
Alabama	19, 684 15, 274	256, 065 19, 361	23, 187 13, 940	224, 21 14, 41
Arkansas	9, 293	65, 645	10, 978	56, 76
Dalifornia	554, 168	107, 316	539, 400	103, 36
Colorado	73, 404	24, 682	76, 523	21, 61
Connecticut	12, 758	36, 637	12, 497	40, 95
Delaware	6, 619	6, 263	6,676	4, 39
District of Columbia	5, 454	2,862	5, 225	3, 76
Florida	13, 558	47,842	17, 244	46, 56
Feorgia	29, 851	65, 222	29, 262	61, 94
daho	24, 621	2,090	26, 625	2,09
llinois	226, 215	286, 947	233, 579	327, 26
ndiana	132, 097	98, 850	132, 112	117, 01
owa	129, 689	111, 980	130,662	111,48
Kansas	45, 890	194, 853	50, 619	196, 72
Kentucky	33, 489	117, 700	32, 240	114, 95
Jouisiana	20, 950	157, 457	23, 171	167, 08
Maine	9, 527 43, 436	128, 736	8, 765 41, 601	115, 86 93, 67
Maryland		94, 577	41, 549	140, 59
Massachusetts	43, 380 135, 749	143, 008 338, 487	141, 338	260, 75
Minnesota	133, 580	62,045	130, 919	57, 90
Mississippi	12, 309	42, 434	13, 166	44, 38
Missouri	78, 788	79, 430	78, 197	73, 39
Montana	25, 207	4, 729	23, 541	4, 34
Nebraska	56, 931	65, 559	57, 593	54, 52
Nevada	6, 423	141, 631	6, 318	132, 37
New Hampshire	4, 567	135, 872	4,852	116, 74
New Jersey	115, 017	182, 747	111, 463	193, 61
New Mexico	14, 299	32, 945	19, 159	40,63
New York	195, 379	960, 124	189, 315	905, 99
North Carolina	65, 120	102, 824	68, 450	102, 89
North Dakota	18, 789	15, 768	16, 132	8, 85
Ohio	236, 758	344, 565	235, 402	325, 02
Oklahoma	30, 533	34, 756	29,072	32, 35
Oregon	134, 862	359	112, 180 143, 062	(1) 146, 98
Pennsylvania	141, 898	141, 766 13, 971	9, 748	140, 98
Rhode Island	10, 975 13, 782	23, 467	15, 734	24, 61
South Dakota	24, 089	17, 268	23, 327	14, 90
Pennessee.	38, 579	89, 905	38, 849	95, 59
Texas.	96, 740	265, 783	93, 335	209, 03
Jtah	33, 726	(1)	42, 934	(1)
Vermont	5, 984	53, 122	5, 955	45,09
Virginia	100, 685	72, 884	96, 645	64, 49
Vashington	407, 486	(1)	329, 244	(1)
Vest Virginia	148, 530	106, 528	156, 023	`84, 44'
Wisconsin	137, 038	74, 856	137, 616	82, 78
Wyoming	14, 166	1,015	15, 088	1, 25
Other 2	140, 607	249, 964	193, 177	238, 99
Total	4, 027, 953	5, 622, 897	3, 993, 689	5, 341, 58

¹ Included with "Other" to avoid disclosing individual company confidential data.
² Includes shipments to Territories and possessions of the United States, exports, and some shipments to unspecified destinations.

PRICES

Prices quoted in Oil, Paint and Drug Reporter for both rock and table salt, vacuum, common fine, increased during 1957. In January the price of rock salt in paper bags, carlots, f. o. b. New York, was \$1.02½ per 100 pounds; table salt, vacuum, common fine, on the same basis was quoted at \$1.27½ per 100 pounds. These prices were increased in February to \$1.04 and \$1.29 and again in April to \$1.07 and \$1.32 per 100 pounds of rock and table salt, respectively. From September to the end of the year the prices quoted per 100 pounds were \$1.07½ for rock and \$1.27½ for table salt.

The average value of dry salt in 1957 was \$10.36 per ton, a 13-percent increase over the previous year. Salt in brine averaged \$3.49 per ton of contained salt, a 6-percent increase compared with 1956.

FOREIGN TRADE³

Salt imported for consumption in the United States increased 78 percent in 1957, compared with the previous year. This was the second consecutive year that salt imports increased substantially. Most of the increase came from the Bahamas, Canada, and Mexico, although shipments from the Dominican Republic and Jamaica were also larger than in 1956. A small tonnage was imported from Italy.

Exports of salt from the United States increased slightly but were less than imports. Chief recipients were Japan and Canada; each received more than in 1956.

Salt exports were less than 2 percent of the United States production in 1957; imports were slightly less than 3 percent.

TABLE 9.—Salt imported for consumption in the United States, 1956-57, by countries

FT0	- 4	47	C
Bureau	UΙ	ше	Censusi

Country	19	56	1957		
	Short tons	Value	Short tons	Value	
North America: Bahamas. Canada Dominican Republic. Jamaica. Leeward and Windward Islands. Mexico.	19, 477 306, 166 32, 757 3, 501 6, 048 263	\$50, 531 2, 146, 297 124, 297 7, 940 21, 773 2, 890	134, 473 405, 952 37, 559 11, 984	\$463, 112 2, 820, 938 148, 145 26, 751	
Total Europe: Italy	368, 212	2, 353, 728	643, 509 10, 640	3, 519, 712 26, 060	
Grand total	368, 212	2, 353, 728	654, 149	3, 545, 772	

TABLE 10.—Salt imported for consumption in the United States, 1948-52 (average) and 1953-57, by classes

[Bureau of the Census]

	In bags, sacks, barrels, or other packages (dutiable)		Bulk				
Year			Dutiable		Free (used in curing fish)		
	Short tons	Value	Short tons	Value	Short tons	Value	
1948–52 (average)	2, 663 2, 550 946 8, 109 25, 255	\$34, 326 26, 428 1 13, 672 1 116, 409 1 360, 864	3, 420 134, 758 159, 824 177, 544 342, 957	\$15, 372 447, 044 865, 289 1 1, 044, 110 1, 992, 864	154	\$549 	
1957	34, 501	426, 596	619, 648	3, 119, 176			

¹ Owing to changes in tabulating procedures by the Bureau of the Census, data known to be not comparable with years before 1954.

³ Figures on imports and exports compiled by Mae B. Price and Elsie D. Jackson, Division of Foreign Activities, Bureau of Mines, from records of the U. S. Department of Commerce, Bureau of the Census.

TABLE 11.—Salt exported from the United States, 1956-57, by countries
[Bureau of the Census]

Country	19	56	1957	
	Short tons	Value	Short tons	Value
North America:				
Bermuda	27	\$1,930		
Canada	244, 292	1, 459, 201	261, 109	\$1, 485, 668
Central America:		*		
Canal Zone	487	30, 605	145	13, 476
Costa Rica	127	3, 529	102	3, 150
El Salvador	155	5, 889	65	2, 457
Guatemala	179	5, 649	130	5, 910
Honduras	528	14, 091	485	11,500
Nicaragua		7, 033	650	16, 140
Panama	92	10, 794	280	14, 473
Mexico	6,842	209, 673	4, 921	180, 443
West Indies:	29	0.000	18	2, 600
Bahamas		3, 990 255, 675	5, 858	2, 600 156, 970
Cuba Dominican Republic	8, 584 222	255, 675 15, 983	307	22, 979
Haiti	39	3, 600	49	5, 000
Netherlands Antilles	597	38, 017	446	37, 265
Other West Indies		1, 270	19	2, 650
Other West Indestruction				
Total	262, 450	2, 066, 929	274, 584	1,960,681
South America	115	11, 280	160	22, 050
Europe	2	3, 150	9	6, 250
Asia:				
Japan Korea, Republic of	72, 852	319, 223	114, 814	526, 083
Korea, Republic of			144	5, 214
Philippines		29, 396	237	18, 466
Saudi Arabia	183	18, 453	299 190	19, 016 5, 338
Viet-Nam, Laos, and Cambodia Other Asia	9	1 000	190	8, 401
Other Asia	9	1, 200	20	0, 401
Total	73, 475	368, 272	115, 704	582, 518
A frica	138	3, 050	110, 101	720
Oceania	140	11, 085	240	18, 830
VV41114				
Grand total	336, 320	2, 463, 766	390, 707	2, 591, 049

TABLE 12.—Salt shipped to possessions and other areas administered by the United States, 1955-57

[Bureau of the Census]

Territory	1955		19	56	1957		
	Short tons	Value	Short tons	Value	Short tons	Value	
American Samoa	52 99 9,784 84 (2)	\$2, 171 7, 772 703, 222 7, 128 412	58 71 11,448 72 (2)	\$2,558 6,836 863,175 7,126 1,464	76 59 10, 672 167 1	\$3, 796 6, 059 828, 800 16, 281 1, 753	
Total	10, 019	720, 705	11,649	881, 159	10, 975	856, 689	

Salt is also shipped to the Territories of Alaska and Hawaii, but no record has been kept of these shipments since March 1948.
 Less than 1 ton.

Tariff.—The duty on bulk salt imported into the United States was reduced from \$0.019 to \$0.018 per 100 pounds, effective July 1, 1957. A further reduction to \$0.017, effective July 1, 1958, was agreed upon at the 11th meeting of the Contracting Parties of the General Agreement on Tariffs and Trade at Geneva in 1956. Duty on packaged salt was unchanged at \$0.035 per 100 pounds.

WORLD REVIEW

NORTH AMERICA

Canada.—Salt production in Canada increased about 11 percent in 1957, compared with 1956. Although this gain was substantial, it was less than that in the previous year. The new rock-salt mine opened at Ojibway largely supplied the increased output in the past several years.

Further expansion of the industry was planned, as, for example, the

projected development of a salt mine near Goderich.4

Mexico.—Shipments of salt from a new solar-evaporation installation at Guerrero Negro in Baja California were reported.

SOUTH AMERICA

Peru.—Private firms were permitted to exploit the coastal salt deposits of Peru for the first time. Formerly Estanco de la Sal, a Government agency, operated a salt monopoly.⁵

TABLE 13.—World production of salt by countries, 1 1948-52 (average) and 1953-57, in short tons 2

Compiled b	v Helen	T.	Hunt and	Berenice B	Mitchelll

Country 1	1948-52 (average)	1953	1954	1955	1956	1957
North America:				-		
Canada	050 050	050 000	000 000	1 050 050		
		959, 898	963, 357	1, 253, 870	1, 598, 549	1,771,800
Costa Rica	6, 794	4, 289	4, 519	4,960	3 5, 500	48,039
Guatemala		16,736	12,804	17, 313	15, 950	17, 50
Honduras		3 11,500	3 11,000	3 11,000	15,018	3 11,000
Mexico	168, 738	246, 763	246, 917	3 248,000	3 265,000	3 265, 00
Nicaragua		15, 400	16,035	11, 250	11,460	10,03
Panama		4,764	7,692	11, 377	8,471	9, 36
Salvador	21,760	38, 304	41, 104	3 42,000	55,001	55,00
United States:	1		1	1 -,	1 00,002	1 00,00
Rock salt	4, 089, 636	4, 458, 393	4, 824, 708	5, 293, 282	5, 622, 897	5, 341, 586
Other salt	13, 581, 844	16, 330, 610	15, 844, 695	17, 410, 861	18, 592, 726	18, 512, 43
West Indies:	,,	1 - 0, 000, 020	1-0, 011, 000	11, 110,001	10,002,120	10, 012, 10
British:	i			1		
Bahamas	70, 111	165, 347	149, 357	59, 149	154, 560	191, 33
Leeward Islands (ex-	10, 111	100,011	110,001	00, 140	101,000	191,000
ports)	6,076	5, 934	4,664	5, 104	f, 142	9 1 10
Turks and Caicos	0,010	0, 504	4,004	0,104	1,142	3 1, 100
Islands	43, 946	11,046	10,740	7 000	15 000	401 05
Cuba	60,054	57,027		7,033	15, 392	4 21, 275
Dominican Republic:	00,004	31,021	60, 305	70, 649	70, 989	75, 106
Rock salt	2,636	4, 183	47, 573	10 709	00 500	FO 00
Other salt	13, 183			19,763	36, 533	50, 284
Toiti	10, 100	15,064	15,948	20, 242	559	441
Haiti Netherlands Antilles	3 21, 250	33, 510	33, 510	33, 510	49, 383	11,500
		3 3, 300	³ 3, 300	3 3, 300	1, 265	347
Total 3	18, 982, 000	22, 382, 000	22, 298, 000	24, 523, 000	26, 520, 000	26, 393, 000
South America:						
Argentine	428, 764	498, 775	578, 713	606, 271	410 400	407 500
Argentina Brazil	971, 402	839, 192	744, 416		416, 496	465,726
Chile:	311,402	009, 192	744, 410	640, 241	822, 610	826,700
Rock salt	50, 468	20 100	l	l		
Other salt		39, 129	49,726	56,870	\$ 55,000	\$ 55,000
Colombia:	8, 271	1, 345),	1 00,0.0	00,000	00,000
	400 400					
Rock salt	129, 123	163, 305	190, 117	193, 052	214, 395	228, 223
Other salt		53, 191	39, 943	44, 789	40, 982	86, 862
Ecuador		15, 831	38, 443	55, 077	30, 368	3 33, 000
Peru	73, 552	84,860	92, 494	98, 723	112,031	104, 940
Venezuela	70, 299	80,012	91, 948	68, 504	41, 434	94, 443
(Motol 13	1 010 000	1 700 000				
Total 13	1, 813, 000	1,792,000	1,842,000	1,780,000	1,750,000	1,911,000

See footnotes at end of table.

Northern Miner, Develop Salt Mine Near Goderich: Vol. 48, No. 18, July 25, 1957, p. 32.
 Chemical Age, vol. 77, No. 1967, Mar. 16, 1957, p. 470.

TABLE 13.—World production of salt by countries, 1948-52 (average) and 1953-57, in short tons 2—Continued

Country 1	1948-52 (average)	1953	1954	1955	1956	1957
Europe:						
Austria:				000	000	
Rock salt Other salt	1, 188 354, 300	1, 349	1,409 394,661	893	692	712
Other salt	354,300	365, 485	394,661	438, 110	3 481,000	491,777
Bulgaria	3 106,000	97, 003	91, 492	36, 376 146, 607	63, 934	3 66,000
Czechoslovakia	113, 538	200, 620	149, 914	140,007	³ 168, 700	³ 168, 700
France: Rock salt and salt from			1		-	
nock sait and sait from	2, 540, 816	2, 670, 988	2, 715, 835	2, 374, 376	2, 987, 701	3 2, 980, 000
springs Other salt	662, 125	622, 677	564, 332	787, 177	606, 271	3,606,000
Germany:	002, 120	022, 011	001,002	101, 111	000, 211	- 000,000
East	⁸ 1, 653, 500	31,653,500	31,653,500	1, 675, 511	1,862,904	3 1, 874, 000
West:	2,000,000	2,000,000	2,000,000	2,0.0,022	2,002,001	1,0,1,000
Rock salt	2, 274, 193	3, 522, 953	3, 503, 217	3, 361, 434	3, 591, 326	3, 597, 940
Brine salt	288, 673	327, 607	393, 423	369, 023	356, 046	357, 148
Brine salt Greece	92, 593	327, 607 86, 796	393, 423 86, 746	79, 511	356, 046 102, 515	357, 148 3 110, 000
Italy:	,			1		8.5
Rock sait and prine sait	914, 482	983, 621	1, 133, 965	1, 103, 000	1, 082, 769	1, 152, 634
Other salt	1,065,970	818, 596	816, 338	948, 228	655, 607	488, 787
Other salt Malta Netherlands	2,395	4, 103	3, 618 563, 835	1.262	1,724	3 1,650
Netherlands	418, 812	503, 664	563, 835	644, 851	689, 973	803, 634
Poland:			and the second	1	1	
Rock salt	652, 738	∫ 405, 650	421, 082	424, 389	435, 412	440, 924
Other salt	1 002,100	908, 303	870, 825	939, 168	963, 419	964, 521
Portugal:						
Rock salt Other salt (exports)	47	54	60	53	19	\$ 20
Other salt (exports)	24, 395	3, 325 3 440, 900	2, 513	1,383	3, 948	2,937
Rumania	417, 335	• 440, 900	³ 551, 200	623, 907	929, 247	3 937, 000
Spain:	960 090	494 000	447 010	470 000	E4E 000	EE0 200
Rock salt	360, 030 801, 314	434, 098 1, 074, 363 121, 544	447, 210 957, 580 128, 405	476, 209 671, 075 134, 977	545, 908 822, 643 131, 405	558, 302 881, 848 144, 281
Other salt Switzerland U. S. S. R. ³	121, 575	101 544	190 405	124 077	121 405	144 991
TI C C D 3	5, 800, 000	6, 800, 000	7, 200, 000	7, 200, 000	7, 200, 000	7, 200, 000
United Kingdom:	3, 800, 000	0, 800, 000	1,200,000	1,200,000	1, 200, 000	7,200,000
Great Britain:						
Rock salt	49, 724	48 160	48 160	78 401	111, 145	98, 710
Other salt	4, 511, 817	4, 495, 689	48, 160 4, 964, 970	78, 401 5, 195, 689	5, 471, 453	5, 479, 057
Northern Ireland	13, 984	48, 160 4, 495, 689 8 11, 000	12, 143	13, 879	10,065	8, 132
Rock saltOther saltNorthern IrelandYugoslavia	129, 196	136, 045	152, 119	149, 221	3 159, 800	8 159, 800
Total 1 3	23, 600, 000	27, 100, 000	28, 200, 000	28, 200, 000	29, 800, 000	29, 900, 000
Asia:	990 400	000 074	007 001	207 544	000 000	001 570
AdenAfghanistan	338, 406	209, 274	235, 201	307, 044	239, 052 24, 912	221, 576 3 24, 250
Alguanistan	28, 976	269, 274 30, 016 69, 909	28, 550 107, 456	307, 544 24, 471 117, 297	06 499	128, 248
Cordon	49,012	65, 970	57 500	40, 684	96, 428 120, 783	04 011
Burma. Ceylon China* Cyprus.	57, 183 3, 748, 000	5, 500, 000	57, 500 6, 100, 000	6, 600, 000	6, 600, 000	94, 911 8, 820, 000 4 7, 097
Cyprus	3, 380	2, 196	5, 249	0,000,000	4 5, 025	4 7, 097
India:	0,000	2,100	0, 210		0,020	1,00.
Rock salt	5 549	6 465	4, 488	5, 512	4, 480	4, 856
Other salt	2, 780, 272	6, 465 3, 538, 383	1 3 03X X67	1 3, 227, 564	3, 550, 407	4, 856 4, 040, 967
Indonesia	409, 748	295, 419	143, 300	50, 846	112, 436	3 110, 000 330, 693
India:	5, 549 2, 780, 272 409, 748 139, 993	295, 419 3 241, 400 22, 408	143, 300 275, 600 33, 936	50, 846 294, 317	3, 550, 407 112, 436 308, 647 3 22, 000	330, 693
Irag 5	15, 576	22, 408	33, 936	21, 455	3 22,000	3 22,000
Israel	10, 401	23, 141	1 26.511	30, 865	28,000	29, 762
Japan	338, 663	1 507, 944	473, 552	619, 328	690, 487	917, 169
Jordan	3 3, 500	7, 778 212, 400	11, 472 198, 547	8, 493 390, 128	12, 125 216, 775 5, 300	11, 139 406, 962
Korea, Republic of	163, 604	212, 400	198, 547	390, 128	216, 775	406, 962
Lebanon 8	5, 500	4, 400	4, 400	5,000	5, 300	5, 500
Pakistan:	i i	1	1	1	I	
Rock salt	164, 626	163, 716 189, 097 52, 690 17, 606	164, 654	156, 559 289, 877 88, 180	180, 261 210, 176 70, 107	174, 349 220, 462
Other salt	202, 564 73, 333	189, 097	280, 539	289,877	210, 176	220, 462
Philippines	73, 333	52, 690	52, 990	88, 180	70, 107	121, 899
Portuguese India	21,605	17,606	14, 858	³ 16, 500	6, 167	3 6, 600
Kyukyu Islands	2, 266	0,040	3, 771	5, 650	5, 215	3, 769 27, 558 426, 696
Syria	17, 884	21, 479	14, 330 406, 232	1 10,000	36, 094	496 606
Pakistan: Rock salt Other salt Philippines Portuguese India Ryukyu Islands Syria. Taiwan Thailand 3 Turkey	304, 522	178, 536 275, 000	220,000	464, 127 330, 000	336, 345 330, 000	920,090
Tusuand	231, 500	2/0,000	330, 000	330,000	330,000	220, 000
Turkey:		90.000	90 000	21 255	29 000	10.075
Cock Sail	28, 444	29, 962	28, 660 458, 561	31, 355	33, 069	10,075
	300, 313	354, 020 117, 947	116 000	529, 109 71, 030	385, 809 97, 332	493, 681 86, 729
Wist Nom				. 41.000	81,332	1 60,729
Rock salt Other salt Viet-Nam	105, 857	110,021	110,000	110 021	97 575	1 11n non
Viet-Nam Yemen	105, 857 2, 266	110, 231	116, 899 110, 231	110, 231	27, 575	* 110, 000
Viet-Nam Yemen Total	9, 553, 000	110, 231	110, 231	110, 231	27, 575 13, 800, 000	\$ 110,000 17,100,000

See footnotes at end of table.

TABLE 13.—World production of salt by countries, 1948-52 (average) and 1953-57, in short tons 2—Continued

Country 1	1948-52 (average)	1953	1954	1955	1956	1957
Africa:						
Algeria	94, 799	66, 409	108, 798	113, 709	117, 271	\$ 110,000
Angola	53, 334	63, 723	60, 810	63, 860	89, 794	57, 674
Belgian Congo	786	893	928	505	562	303
Canary Islands Cape Verde Islands	12.243	19, 456	20, 408	21, 466	19, 276	\$ 22,000
Cane Verde Islands	20, 922	11, 715	23, 326	24, 057	24, 221	22,000
Egypt	485, 185	418, 878	496, 552	442, 797	584, 715	\$ 550,000
Eritrea	143, 580	212, 746	201, 723	202, 825	147, 710	220, 462
Effica. Dock solt	\$ 16,500	16, 211	15, 432	16, 535	* 13,000	220, 402
Ethiopia: Rock salt French Equatorial Africa	. 10,000		10, 402			3 7, 700
French Equatorial Airica	2,998	4,519	6,834	5, 291	5,300	* 5, 300
French Somaliland	72, 223	67, 202	63, 389	20,082	7, 356	
French West Africa *	62, 200	40,000	24,000	11,000	3, 300	3,300
Ghana ³ Italian Somaliland ³	24,000	24,000	24,000	24,000	24,000	
Italian Somaliland *	3,000	5,000	5, 500	5, 500	5, 500	5, 500
Kenva	19,900	23, 392	21,051	28, 421	24, 511	25, 315
Libya	10,613	13, 228	16, 535	16, 535	18, 894	* 16, 500
Kenya Libya Mauritius	3,705	2,646	3, 417	3, 858	3, 858	4, 189
Morocco:	. 0,.00	2,010	0,	0,000	0,000	1, 100
Northern zone	275	\$ 275	9, 389	9, 649		
Southern zone:	210	210	D, 000	0,010		
Rock salt	10, 701	0.01#	0.040	17 001		
ROCK Salt	10, 701	8, 317	3,648	17, 961	30, 773	57, 282
Other salt	40,676	42, 117	38, 320	31, 313),	0.,202
Mozambique:		100	1 1 1 1 1 1 1		9.0	
Rock salt	. 89	121	109	153	79	3 110
Other salt	. 10, 992	11, 891	13, 834	16, 477	8 13,000	* 13,000
Nigeria 8	440	210	240	280	330	330
South West Africa: Rock salt	1		1.0			
Rock salt	4.941	5, 176	5, 404	7.004	5,010	6, 959
Other salt	24. 292	40, 262	46, 792	58, 527	82, 253	66, 033
Sudan	48, 401	60, 473	61, 330	57, 320	3 77, 000	\$ 77,000
Tanganvika	16, 344	22, 159	23, 961	26, 343	31, 214	28, 684
Sudan Tanganyika Tunisia	124, 546	169, 108	181, 881	146, 607	145, 505	\$ 143, 300
Tigondo	6, 576	8, 419	8,052	10,091	9, 915	10, 686
Uganda Union of South Africa	157, 123			154, 318		
Omon of South Africa	107, 120	140, 610	172, 186	104, 318	189, 249	160, 743
Total 1 3	1, 472, 000	1, 500, 000	1,660,000	1, 540, 000	1, 675, 000	1, 640, 000
Oceania:	001 -00					
Australia	301, 729	3 347, 200	³ 425, 500	8 413, 400	8 457, 500	3 440, 900
New Zealand	6 784		1,680	3, 360	12, 768	8, 568
Total	302, 513	3 347, 200	⁸ 427, 180	3 416, 760	\$ 470, 268	³ 449, 468
WW. 13 4-4-3 4-44						
World total (esti-	55 700 000	65 400 000	67 100 000	70, 400, 000	74 000 000	77, 400, 000

¹ In addition to the countries listed, salt is produced in Albania, Boliyia, Hungary, and Madagascar, but figures on production are not available. Estimates by senior author of chapter included in total.

² This table incorporates a number of revisions of data published in previous Salt chapters. Data do not add to totals shown because of rounding where estimated figures are included in detail.

* Estimate. Exports.

Year ended March 31 of year following that stated.
 Average for 1 year only; 1952 was first year of commercial production.

EUROPE

Denmark.—A 7-year plan for the economic and cultural development of areas in West Jutland was advanced by the director of a large Danish chemical concern. A key feature of the plan was development of large underground deposits of salt—said to be among the largest in Europe.

ASIA

India.—With a production target of 3.6 million tons for the Second 5-Year Plan the Indian salt industry continued to develop its mines, refineries, laboratories, and model salt farms. Production improved Salt exports, chiefly to Japan, also increased.

⁶ Bureau of Mines, Mineral Trade Notes: Vol. 44, No. 3, March 1957, pp. 32, 33.

SALT 989

AFRICA

French Somaliland.—The Compagnie des Salins du Midi et des Salins de Djibouti ceased operations owing to competition from

Eritrean salt in the Ethiopian market.

Tanganyika.—Output of salt by the Nyanza Salt Mines, Ltd., at Uvinza, the largest producer in Tanganyika, reached a new production record of over 18,200 short tons in 1956.

TECHNOLOGY

The addition of sodium chloride to sulfuric acid pickling baths has been found to inhibit attack on steel. A concentration of 1.5 percent sodium chloride was specified for the pickling baths of certain

high-yield-strength steels.8

Installation of belt haulage as the sole means of transport from the face to the mine shaft tripled the production capacity of a Louisiana salt mine. At the same time working force in the mine was reduced one-third. The determining factor was the practicability of using a portable crusher at the working face to reduce lumps to a size that could be handled by the belts. The problem was solved by adopting a screw-feeder crusher originally developed to crush lump sulfur. As rock salt is harder and tougher than sulfur a sturdier machine was developed. After blasting from the face, a shovel loaded the broken salt into the portable crusher, which discharged on portable conveyers. These were 35 feet long and 2½ feet wide and had a speed up to 350 feet per minute.

The portable conveyers discharged on to semiportable conveyers, which fed the main haulage belt. The total length of conveyers was 4,550 feet. Construction costs for modernization of the mine's haulage system were considerably reduced by using coarse salt in place of aggregate and minus-18-mesh salt in place of sand for all concrete work. These salts, when mixed with cement and saturated brine in the same proportions as ordinary concrete, were found to develop about 75 percent of the strength of ordinary concrete. The use of "saltcrete" for footings and walls in the mine was possible

only because there was no exposure to moisture.

Storage of petroleum products in cavities in salt domes has gained increasing acceptance as a solution to the problem of low-cost storing of products that have a seasonal demand. Salt domes are especially suitable because salt forms an excellent seal for many petroleum products, which do not dissolve salt and are not contaminated by it. The cavities are leached from deep inside the salt mass by injecting water and removing the brine. A cavity roughly 850 feet from bottom to top and 35 feet in diameter will hold about 150,000 barrels. The costs of providing underground storage of this type were estimated to be about one-twelfth the cost of above-ground storage of similar capacity. 10

<sup>Bureau of Mines, Mineral Trade Notes: Vol. 45, No. 4, October 1957, p. 41.
Iron Age, New Method Speeds Analysis for Salt in Pickling Bath: Vol. 179, No. 23, June 6, 1957, p. 105.
Johnson E., Hauling Salt At Avery Island Mine: Min. Eng., vol. 9, No. 6, June 1957, p. 667.
Ohemical and Engineering News, Wells for L. P. G.: Vol. 35, No. 17, Apr. 29, 1957, pp. 104, 106.</sup>

The problems and techniques associated with the use of rock salt for highway snow and ice control were discussed in a technical journal. Compared with alternate methods, the use of rock salt was equally or more effective and had advantages of economy and the end effect of street cleanliness. The rate of application averaged 2,930 pounds of mixed No. 1 and CC grades of rock salt per mile of 20-foot roadway. Corrosion problems of vehicles and of the concrete roadway itself were found to be less serious than anticipated. Use of 1 percent admixture of rust inhibitor with the salt was found to reduce corrosion of steel test panels. Damage to concrete by the action of salt is relatively minor and is correctible; old concrete may be protected by a sealing agent; new concrete using air-entrained cement produces a cellular, spongelike concrete that absorbs the expansive forces of recrystallizing salt.¹¹

¹¹ Rogus, C. A., Rock Salt for Snow and Ice Removal: Public Works Mag., vol. 88, No. 11, November 1957, p. 113-117.

Sand and Gravel

By Wallace W. Key 1 and Dorothy T. Shupp 2

TIRST in tonnage of all minerals, sand and gravel production in 1957 increased slightly over 1956, despite declines in the cement and asphalt industries and in home building. Initiation of the construction phase of the Federal Highway Program was a major factor in maintaining the stability of the sand and gravel industry in 1957.

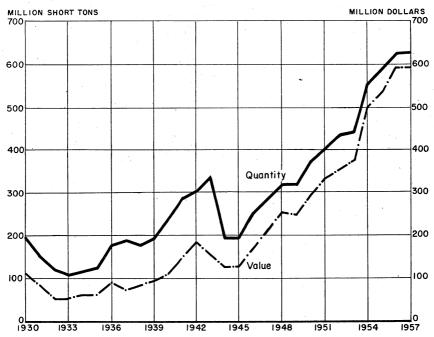


FIGURE 1.—Production of sand and gravel in the United States, 1930-57.

Commodity specialist.
 Statistical assistant.

DOMESTIC PRODUCTION

An output of 627 million short tons valued at \$594 million elevated sand and gravel production to a new level in 1957, despite declines in related industries. Sand and gravel was used in road construction as fill, subbase, and base materials and in several large dam and airfield construction projects. Many other large construction projects were in progress, and the construction phase of the Federal Highway Program began to gain momentum.

California maintained the lead in production, followed by Michigan, Ohio, Illinois, Wisconsin, Minnesota, Utah, New York, Texas, and Washington. These States, with an output of 336 million tons, con-

tributed more than half of the total output.

Commercial Production.—Commercial operations produced about three-fourths of the total output of sand and gravel in 1957 valued at \$1.06 per ton, a decrease of 1 cent a ton compared with 1956. The higher value of commercially produced sand and gravel is attributed to the larger proportion that is processed. Most stationary commercial plants were well equipped to meet complex specifications, but portable plants gained increased recognition for their ability to produce a marketable material from small deposits near the jobsite.

TABLE 1.—Sand and gravel sold or used by producers in the United States, 1 1956-57, by classes of operations and uses

		1956		i .	1957	<u> </u>		ent of ge in—
	Thou-	Val	lue	Thou-	Val	lue		
	sand short tons	Total (thou- sand dollars)	Aver- age per ton	sand short tons	Total (thou- sand dollars)	Aver- age per ton	Ton- nage	Aver- age value
COMMERCIAL OPERATIONS								
Sand: 2 Glass Molding Building Paving. Grinding and polishing 4 Fire or furnace Engine Filter. Railroad ballast Other 4	\$ 6, 758 7, 962 114, 828 66, 337 1, 668 687 1, 356 549 917 11, 540	* 19, 325 16, 639 108, 553 58, 518 5, 251 1, 396 1, 825 849 552 21, 313	\$2.86 2.09 .95 .83 3.15 2.03 1.35 1.55 .60 1.85	6, 748 7, 538 100, 450 63, 932 1, 911 585 1, 286 391 764 24, 639	19, 139 16, 552 99, 469 59, 163 5, 574 1, 274 1, 775 750 404 24, 726	\$2. 84 2. 20 . 99 . 93 2. 92 2. 18 1. 40 1. 92 . 53 1. 00	-5 -13 -4 +15 -15 -5 -29 -17 +114	-1 +8 +4 +6 -7 +7 +4 +24 -12 -46
Total commercial sand.	8 212, 602	³ 234, 221	1.10	208, 244	228, 848	1. 10	-2	
Gravel: Building Paving Railroad ballast Other	96, 744 130, 031 8, 392 22, 051	115, 081 128, 138 5, 905 18, 698	1. 19 . 99 . 70 . 85	88, 497 128, 750 6, 963 30, 371	109, 449 124, 793 5, 027 22, 728	1. 24 . 97 . 72 . 75	-9 -1 -17 +38	+4 -2 +3 -12
Total commercial gravel	257, 218	267, 822	1.04	254, 581	261, 997	1.03	-1	-1
Total commercial sand and gravel	³ 469, 820	⁸ 502, 043	1.07	462, 825	490, 845	1.06	-2	-1
GOVERNMENT-AND-CONTRAC- TOR OPERATIONS 7								
Sand: Building Paving	2, 321 19, 568	2, 058 9, 586	.89 .49	2, 383 24, 159	2, 163 12, 280	.91 .51	+3 +23	+2 +4
Total Government- and-contractor sand.	21, 889	11, 644	. 53	26, 542	14, 443	. 54	+21	+2
Gravel: Building Paving	5, 434 3 127, 717	3, 689 3 77, 740	.68 .61	7, 428 130, 691	5, 215 83, 282	.70 .64	+37 +2	+3 +5
Total Government- and-contractor gravel	³ 133, 151	³ 81, 429	. 61	138, 119	88, 497	. 64	+4	+5
Total Government- and-contractor sand and gravel	³ 155, 040	* 93, 073	.60	164, 661	102, 940	. 63	+6	+5
ALL OPERATIONS	⁸ 234, 491	1 04E 00P	1.05	004 700	042 001	1.04		-1
SandGravel	* 390, 369	* 245, 865 * 349, 251	1. 05 . 89	234, 786 392, 700	243, 291 350, 494	1.04	+1	-1
Grand total	⁸ 624, 860	⁸ 595, 116	. 95	627, 486	593, 785	. 95		

²¹ Includes Territories, possessions and other areas administered by the United States, n Includes sand produced by railroads for their own use—1956: 229,045 tons valued at \$98,254; 1957: 177,471 to¹ s, \$62,489.

4 Revised figure.

5 Includes produced by railroads for their own valued at \$3,611,085; 1957: 916,231 tons, \$3,756,695.

6 Includes ground sand as follows—1956: 1,422,116 tons valued at \$10,208,266; 1957: 798,052 tons, \$7,472,633.

8 Includes gravel produced by railroads for their own use—1956: 3,651,198 tons valued at \$1,774,978; 1957: 2,06,745 tons, \$1,523,924.

7 Approximate figures for States, counties, municipalities, and other Government agencies directly or under lease.

TABLE 2.—Sand and gravel sold or used by producers in the United States, 1 1948-52 (average) and 1953-57

	Sa	nd	Gravel (inc	eluding rail- allast)	Total		
Year	Quantity	Value	Quantity	Value	Quantity	Value	
	(thousand	(thousand	(thousand	(thousand	(thousand	(thousand	
	short tons)	dollars)	short tons)	dollars)	short tons)	dollars)	
1948-52 (average)	136, 078	126, 744	232, 938	169, 901	369, 016	296, 645	
	160, 581	160, 336	279, 818	214, 459	440, 399	374, 795	
	194, 964	199, 554	361, 573	304, 573	556, 537	504, 127	
	221, 119	222, 241	371, 034	313, 995	592, 153	536, 236	
	234, 491	2 245, 865	2 390, 369	349, 251	2 624, 860	2 595, 116	
	234, 786	243, 291	392, 700	350, 494	627, 486	593, 785	

 $^{^{\}rm 1}$ Includes Territories, possessions, and other areas administered by the United States. $^{\rm 2}$ Revised figure.

TABLE 3.—Sand and gravel sold or used by producers in the United States in 1957, by States

State	Quantity (thousand short tons)	Value (thousand dollars)	State	Quantity (thousand short tons)	Value (thousand dollars)
Alabama Alaska Arizona Arkansas Colorado Colorado Connecticut Delaware Florida Georgia Guam Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri	6,096 10, 287 8, 599 79, 024 16, 400 4, 777 974 6, 753 2, 127 1286 6, 601 30, 151 16, 750 12, 042 9, 345 4, 482 4, 8870 8, 637 9, 900 41, 838 28, 493 5, 172 8, 480	4, 883 8, 799 9, 222 6, 949 87, 030 13, 994 5, 042 2, 096 6, 148 2, 096 32, 572 14, 206 8, 927 6, 175 4, 556 10, 388 3, 099 11, 594 9, 692 35, 144 19, 344 19,	Nebraska. Nevada. New Hampshire New Jersey. New Mexico. New York North Carolina. North Dakota. Ohio. Oklahoma. Oregon. Pennsylvania. Puerto Rico. Rhode Island. South Carolina. South Carolina. South Dakota. Tennessee. Texas. Utah. Vermont. Virginia. Washington. West Virginia. Wisconsin. Wyoming.	5, 233 4, 505 10, 323 7, 919 25, 640 6, 829 7, 048 30, 596 4, 960 12, 843 12, 406 497 1, 058 2, 647 14, 758 2, 617 23, 685 2, 216 6, 298 19, 924 5, 354 5, 354 29, 394	5, 88 5, 194 1, 970 17, 610 7, 800 26, 486 5, 7, 500 4, 507 13, 488 19, 577 5, 8, 000 6, 644 23, 422 15, 488 1, 057 9, 895 16, 77 9, 895 18, 699 18, 699 19, 907 593, 78

TABLE 4.—Sand and gravel sold or used by producers in the United States in 1957, by States, uses, and class of operations

[Commercial unless otherwise indicated]

	1.0			Sa	nd			
						Bui	lding	
State	Gl	ass	Molding		Comn	nercial	Government-and- contractor	
	Short tons	Value	Short tons	Value	Short tons	Value	Short	Value
Alabama			132, 433	\$212, 239	1, 158, 652 63, 852	\$1,079,321	94, 989	\$397, 310
Alaska Arizona					730, 700	154, 846 754, 400	94, 909	\$297, 510
Arkansas	(1)	(1)	8,000	7, 200	1. 167, 491	987, 025		
Arkansas California Colorado	409, 391	(1) \$1,693,564	121, 534	7, 200 187, 171	15, 393, 932 2, 751, 400	17, 585, 135	1, 113, 970	758, 536
Colorado			16, 200 (¹)	17,000	2, 751, 400	2, 756, 100	117,000	87, 500
Connecticut			(1)	(1)	1, 260, 560	1, 295, 098		
Delaware					(1)	2 510 040		
FloridaGeorgia		(1)	(1)	(1) (1)	4, 474, 332 1, 137, 372	3, 519, 949 729, 249		
Guam	(9)	(9)	(9	(-)	1, 157, 572	1, 450		
Hawaii					104, 555	198, 967		
Idaho					104, 555 224, 819 5, 874, 777 2, 775, 282	299, 339	56, 200	19, 800
Illinois	1, 321, 550	3, 216, 458	834, 324	2, 184, 013	5, 874, 777	4, 909, 122	56, 200 1, 989	59
Indiana			(1)	(1)	2, 775, 282	2, 085, 794	81,000	20, 250
Iowa	(1)	(1)	(1)	(1)	1, 778, 561 2, 890, 213	1, 518, 573		
Kansas			(1)	(1)	2, 890, 213	2,071,620	6, 931	1, 386
Kentucky			(1)	(1)	1, 908, 215 1, 227, 372	1, 905, 750 1, 284, 727	98, 970	69, 279
Louisiana Maine			(5)	(-)	180, 839	132, 265	80, 210	00, 21
Maryland	(1)	(1)			2, 032, 641	2, 789, 502		
Massachusetts	()		(1)	(1)	2, 214, 379	2, 384, 931		
Michigan	(1)	(1)	2, 237, 004	3, 002, 990	2, 214, 379 4, 334, 624	3, 326, 107	43, 265	10, 664
Minnesota	(1)	(1)	(1)	(1)	2, 927, 872	2, 452, 046	4,050	1, 013
Mississippi			(1)	(1)	293, 959	204, 661		
Missouri	419, 785	1, 059, 416	82, 633	186, 741	2, 201, 664	1,615,298		
Montana		1, 300			340, 690 1, 577, 400 184, 201 241, 915 3, 277, 351	542, 212 1, 321, 700 221, 979	103, 556	67, 239
Nebraska Nevada	1, 300 (1)	(1)	77, 042	258, 402	184 201	221, 700	5, 540	3, 040
New Hampshire	(-)	(9)	11,012	200, 102	241, 915	201, 086	0,010	0,010
New Jersey	920, 539	2, 493, 399	1,625,598	4, 644, 932	3, 277, 351	3, 119, 484		
New Mexico					114,000	845, 700	4, 300	5, 130
New York	89, 718	356, 330	199, 122	569, 097	6, 734, 935	7, 729, 686		
North Carolina					1, 663, 958	1, 212, 091	19, 221	9, 80
North Dakota			545, 495	1, 845, 081	550, 500 5, 791, 853	403, 100 6, 376, 735		
OhioOklahoma	(1) (1)	(1)	040, 490	(1)	1, 014, 993	826, 180		
Orogon	(9)		(1)		932, 562	1, 324, 941	413	413
Pennsylvania	(1)	(1)	185, 865	531,037	3 630 924	4 812 433	44, 239	15, 48
Puerto Rico	(1) 29, 595	(¹) 21, 013	40, 823	33, 097 (1)	2, 584	1, 427	200,000	480, 000
Puerto Rico Rhode Island			(1)	(1)	(1)	(1)		
South Carolina	(1)	(1)			784, 454	395, 316		,
South Dakota					327, 400 1, 233, 890 4, 647, 826 653, 300	342, 900 1, 469, 085		
Tennessee	(1) (1)	(1)	(1) 32, 256	(1) 60, 721	4 647 826	4, 262, 098	4,775	10, 450
Utah	(-)		(1)	(1)	653, 300	566, 600		
Vermont			l		19, 033	18, 986	2, 700	6, 00
Virginia	(1)	(1)			1, 291, 435	1, 661, 867		
Washington	(1) 15, 683	93, 500	(1)	(1)	1, 772, 442	1, 961, 994	375, 195	194, 40
West Virginia	(1)	(1)	(1)	(1)	973, 526	1, 228, 895		
Wisconsin			240, 159	468, 145	2, 483, 539	2, 101, 977	3, 463	86
Wyoming	2 540 000	10 904 000	1, 159, 112	2 242 050	77, 400 419, 160	104, 200 374, 466	1, 600	3, 600
Undistributed 1	o, 040, 93/	10, 204, 090	1, 109, 112	4, 020, 800	319, 100	014, 400		
					100,450,522			

¹ Figures that may not be shown separately are combined under "Undistributed."

TABLE 4.—Sand and gravel sold or used by producers in the United States in 1957, by States, uses, and class of operations—Continued

State	Comn Short tons	Pav nercial	Governm		Grindi	ng and		
State	Short	nercial					1	
			0024	ent-and- actor	polis	hing 2	Fire or	furnace
		Value	Short tons	Value	Short tons	Value	Short tons	Value
Alabama Alaska Arizona	588, 606 3, 812 290, 900 905, 385 6, 573, 041	\$481, 548 7, 904 313, 300 750, 515	15, 288 194, 200 646, 700	\$7, 644 673, 637 539, 700	(1) (1)	(1) (1)		
ArkansasCaliforniaColoradoConnecticut	1, 288, 620	308, 400 1, 185, 754	1, 064, 973 5, 155, 841 172, 700 181, 990	1 398, 115	200, 759 (1) (1)	\$699, 531 (1)		
Delaware Florida Georgia Guam	(1) 601, 685 428, 052	478, 340 303, 820			(1) (1)	(1) (1)		
Hawaii Idaho Illinois Indiana	(1) 87, 452 3, 910, 616 3, 158, 250	(1) 109, 550 3, 134, 818 2, 668, 831	472 23, 521 155, 928 3, 652 469, 355	1, 922 7, 056 54, 805 1, 461 142, 167	1, 800 130 364, 338 1, 000	13, 860 1, 400 1, 574, 701 500	16, 410 159, 275	\$48, 236 159, 275
Iowa Kansas Kentucky Louisiana	1, 554, 835 2, 467, 854 608, 744 1, 489, 909	1, 249, 184 1, 596, 579 653, 473 1, 403, 033	556, 846	370, 666	(1) (1)	(1) (1)	(1)	(1)
Maine Maryland Massachusetts Michigan	208, 305 2, 504, 767 1, 491, 244 4, 779, 676 1, 215, 594	1, 590, 579 653, 473 1, 403, 033 97, 113 3, 175, 388 1, 290, 255 4, 004, 980	419, 466 59 137, 977 1, 112, 183 626, 257 199, 788	134, 430 5 32, 676 356, 115	(¹) 800 (¹)	(1) 2, 800 (1)	(1) 1, 973	(1) 1, 223
Minnesota Mississippi Missouri Montana	880,009 779,880 35,866	730, 498 682, 634 43, 229	169, 440 219, 587	241, 325 181, 950	(1)	(1)	10, 366	23, 453
Nebraska Nevada New Hampshire New Jersey New Mexico	1, 626, 500 75, 218 184, 745 1, 143, 780 342, 200	1, 122, 400 90, 550 155, 504 1, 082, 746	235, 000 29, 576 391, 281 4, 469	106, 400 17, 154 97, 614 497	114, 429	520, 662	20, 281	40, 247
New York North Carolina North Dakota	6, 240, 864 361, 640 126, 900	254, 700 5, 498, 220 255, 370 91, 000	20, 900 245, 766 2, 158, 369 82, 500	34, 000	1, 472	515		
Ohio Oklahoma Oregon Pennsylvania	5, 460, 797 1, 141, 063 279, 013 1, 884, 880 82, 019	5, 554, 297 879, 643 264, 666 2, 828, 916 66, 620	11, 247 602, 641	2, 338 194, 690	(1) 400 200 (1)	(1) 210 500 (1)	65, 521 169, 862	173, 919 590, 671
PennsylvaniaPuerto Rico	311, 323 132, 600	66, 620 (1) 112, 402 101, 500	14, 379 50, 222 374, 800	5, 287 22, 030 253, 600	(1)	(1)	11, 791 (¹)	8, 100 (¹)
Tennessee Texas Utah Vermont	460, 019 2, 962, 248 360, 500 209, 346	657, 235	1, 190, 395 32, 200 58, 086	270, 840 39, 400 24, 772	(1) 162, 043	587, 101	967 (1)	1, 160 (¹)
Virginia Washington West Virginia Wisconsin	710, 067 526, 644 909, 529 1, 747, 097	751, 637 455, 995 1, 130, 924 1, 388, 962	57, 924 378, 662 6, 679, 539	33, 905 239, 992	(1) (1) (1)	(1) (1)	54, 295	86, 607
Wyoming Undistributed 1	56, 600 335, 942	52, 700 339, 008	14, 600	7, 600 12, 280, 700	3, 300 1, 060, 547 1, 911, 218	6, 600 2, 165, 796 5, 574, 176	74, 039 584, 780	141, 448

Figures that may not be shown separately are combined under "Undistributed."
 Includes 916,231 tons of blast sand valued at \$3,756,695.

TABLE 4.—Sand and gravel sold or used by producers in the United States in 1957, by States, uses, and class of operations—Continued

				Sand-C	ontinued			
State	Eng	ine ³	Fil	ter	Railroad	ballast 4	Otl	ner s
	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value
AlabamaAlaska	86, 423	\$64 , 42 2			(1)	(1)	125, 187	\$74, 890
Arizona	(1)	(1)	(1)	(3)	(1) (1)	(1)	166, 600	184,800
Arkansas	101 101		(¹) 61, 933	(1)	24 705	¢90 074	49, 496	25, 664
California	101, 181	208, 526	17, 700	\$58, 421	34, 795	\$22,074 (1)	3, 658, 796 42, 100	3, 175, 887
Colorado Connecticut	(1)	(1)	(1), 700	17, 500 (1)	(1)	(1)	(1)	32, 700 (¹)
Delaware	42, 307	25, 384	(7)	(9)			(-)	(-)
Florida	7,000	3,500	2, 465	2, 960			328, 368	186, 231
Georgia	., 000	0,000	(1)	2, 960 (¹)	(1)	(1)	71, 475	90, 823
Guam								
Hawaii							(1)	(1)
Idaho			(1)	(¹) 16, 445			(1)	(1)
Illinois	85, 545	130, 013	12, 807	16, 445	5, 250	3, 943	940, 198	3, 750, 252
Indiana	100, 582	72,897			(1)	(1)	238, 475	145, 917
Iowa	(1)	(1)	(¹) 16, 092	(¹) 17, 320	32, 758	15, 517	164, 142	108, 317
Kansas	33, 615	25, 218	16,092	17, 320	(1)	(1)	451, 428	206, 418
Kentucky Louisiana	19, 532	20, 281 849	2,000 (¹)	2,000 (1)	58, 803	42, 413	(¹)´ 91, 254	262, 094
Maine	2, 123 (¹)	(1)	124	43	00,000	12, 110	(1)	(1)
Maryland	()	. (7	(1)	(1)	(1)	(1)	31, 594	(1) 20, 257
Massachusetts			8	715			439, 091	248, 947
Michigan	74, 809	67, 644	6, 767	3, 774	63, 636	31, 818	1, 596, 293	769, 669
Minnesota	(1) 6, 500 33, 289	(1)			45, 700	13,063	337, 956	572, 535
Mississippi	6, 500	`4, 300					38, 719	20, 235 864, 788
Missouri	33, 289	27, 245	(1)	(1)	7, 375	2, 950	320, 212	
Montana	(1)	(1)					(1)	(1)
Nebraska	46, 300	32, 3 00			22, 900	14, 600	149, 300	65, 400 (1)
New Hampshire		//	(1)		(1)	(1)	(1)	- K
New Jersey	(1) 20, 810	(1) 33, 041	(¹) 38, 121	(¹) 101, 303	()	(-)	658, 948	1, 896, 026
New Mexico	(1)	(1), (11)	00, 121	101,000			(1)	(1)
New York	(3)	(1)	(1)	(1)			(¹)´ 855, 702	454, 438
North Carolina			8	(1) (1)	(1)	(1)	(1)	(1)
North Dakota			100	100			5, 200	3, 300
Ohio	(3)	2	78, 503	115, 140	(1)	(1)	597, 672	1, 193, 544
Oklahoma	Ω	(2)					(1) 42, 242	(1)
Oregon	(1)	(1)	(1)	(1)	445	171	42, 242 287, 326	3ó, 109 970, 808
Pennsylvania Puerto Rico	91, 955	215, 032					5, 850	2,700
Rhode Island							(1)	an' ·
South Carolina	35, 344	32, 087	4, 312	15, 585	(1)	(1)	(¹)′ 35, 224	48, 865
South Dakota	50, 511	02,001	(1), 012	(1), 000	(1)	(1) (1)	24, 200	13, 400
Tennessee	1, 300	1,625	572	715	1, 352	`í, 690	(1)	(1)
Texas	22, 850	15, 336	(1)	(1)	(1)	(1)	834, 066	645, 862
Utah	(4)	(1)					(1)	(1)
Vermont	368	537				5:-:::	69, 324	39,047
Virginia	80, 879	93, 251	(1)	(1)	35, 258	34, 100	325, 322	167, 257
Washington			(i)	(1)	(1)	(1)	137, 457	51, 935
West Virginia	172, 449	386, 475	(1)	(1)	(1)	(1)	(¹) 1, 122, 460	(1) 574, 209
Wisconsin Wyoming	(1)	(1)	(1)	(7)	9.	(7)	26,000	28, 600
Undistributed 1	221,008	336, 723	149, 848	398, 960	455, 807	221, 944	10, 371, 049	7, 800, 153
OTTOTAL PROPERTY.								
Total	1, 286, 169	1, 796, 686	391, 344	750, 266	764, 079	404 909	94 690 796	24, 726, 077

¹ Figures that may not be shown separately are combined under "Undistributed."

1 Includes 1,753 tons of engine sand valued at \$1,277, produced by railroads for their own use.

1 Includes 9,261 tons of ballast sand valued at \$36,309, produced by railroads for their own use.

1 Includes 106,457 tons of sand valued at \$24,822, used by railroads for fills and similar purposes. Also includes 798,052 tons of ground sand valued at \$7,472,633. See table 11 for ground sand.

TABLE 4.—Sand and gravel sold or used by producers in the United States in 1957, by States, uses, and class of operations—Continued

				Gravel					
	11 1	Buil	ding			Pav	ing		
State	Comm	ercial •	Governm	nent-and- actor	Comm	ercial 7		ent-and- actor	
	Short	Value	Short	Value	Short	Value	Short	Value	
	tons	v alue	tons	value	tons	value	tons	varue	
Alabama	1, 322, 912	\$1,390,587			664, 515	\$751, 394	151, 413	\$127, 765	
Alaska	113, 607	225, 777	216, 821	\$494, 309	28, 957	47, 601	5, 078, 624	6, 541, 054	
Arizona Arkansas	1, 162, 200 1, 198, 077	1, 343, 800 1, 247, 092	800	1,300	594, 000 1, 678, 191	647, 400 1, 582, 169	6, 232, 200 2, 040, 539	5, 035, 000 1, 206, 719	
California	16 061 084	20, 607, 123	1, 963, 823	1 800 161	14 935 511	16, 955, 746	9, 855, 192	9, 119, 397	
Colorado	2 072 400	2, 740, 100	292, 800	196,000	14, 235, 511 3, 054, 900	2, 721, 300	7 257 100	4, 682, 400	
Colorado Connecticut	2, 072, 400 986, 216	1, 349, 605		200, 500	648, 897	746, 273	7, 257, 100 57, 890	20, 435	
Delaware	(1) (1)	(1)			(1) (1)	(1)			
Florida	(1)				(1)				
Georgia	135, 990	145, 990			(1)	(1)			
Guam									
HawaiiIdaho	925 369, 831	3, 400 480, 219	56 1, 331, 650	207 406, 495	81, 424 1, 607, 022	58, 744 1, 235, 102	898 2, 848, 051	2,882	
Illinois	5, 628, 097	5, 116, 771	35, 804	13, 981	7, 764, 732	6, 376, 159	1, 439, 221	2, 640, 504 670, 329	
Indiàna	2, 532, 254	2, 417, 558	130, 424	37, 923	5, 560, 760	5, 121, 292	382, 141	149, 013	
Iowa	1, 103, 306	1, 587, 562	66, 180	19, 854	3, 909, 287	2, 626, 163	2, 680, 578	1, 135, 574	
Kansas	280, 077	230, 030	20, 250	4,050	1, 458, 976	1, 148, 678	1,081,326	373, 952	
Kentucky	1, 164, 546	1, 226, 100			338, 789	392, 154	250, 828	197, 437	
Louisiana	1, 880, 301	2, 574, 480			3, 777, 087	4, 522, 004	2, 700 6, 088, 244	800	
Maine Maryland	250, 052 1, 739, 119	277, 151 2, 956, 809	4, 500	450	557, 526 1, 585, 470	426, 738 2, 110, 932	311,003	1, 868, 337 27, 183	
Massachusetts	1, 962, 566	2, 664, 927			2 134 886	1, 699, 801	611, 188	539, 346	
Michigan	3, 770, 659	4, 409, 145	103, 641	40, 553	2, 134, 886 15, 779, 056 7 484 389	10 007 040	C FE 4 400	0 500 500	
Minnesota	2, 376, 614	3, 552, 497				5, 065, 797	6, 574, 493 12, 011, 067 487, 986 1, 113, 315 8, 032, 518 602, 200 3, 492, 764 2, 692, 305	5, 590, 913	
Mississippi	430, 652	404, 382			2, 021, 443	2, 111, 342	487, 986	271, 513	
Missouri	1,848,071	1, 874, 540			1, 180, 122	1, 035, 187	1, 113, 315	700, 515	
Montana Nebraska	1, 848, 071 1, 052, 350 564, 800	884, 211	27, 960 47, 200	72, 654 44, 500	932, 453	1, 189, 522	8,032,518	4, 880, 274	
Nevada	164, 424	1, 874, 540 884, 211 423, 900 216, 785	13, 560	13, 932	2, 979, 500 685, 500	2, 218, 600 596, 040	2 402 764	474, 500 2, 945, 250	
New Hampshire	190, 161	286, 594	10,000	10, 002	672 068	831, 602	2 692 305	341, 245	
New Hampshire New Jersey	190, 161 1, 510, 397 948, 700	286, 594 2, 673, 760			672, 068 866, 012	887, 099	22, 107	4, 094	
New Mexico New York	948, 700	1, 168, 000	27, 700	53, 400	2, 278, 700	2, 085, 400	3, 390, 000	3, 158, 580	
New York	3, 690, 137	5, 323, 616			4, 033, 823	4, 370, 369	1, 737, 194	641, 706	
North Carolina	838, 727	1, 267, 372			1,086,944	1, 304, 631	351, 479	258, 131	
North Dakota	229, 100 5, 434, 932	387, 400 6, 429, 913	41, 200	35, 000	1, 881, 400 9, 798, 593	1, 303, 200 11, 505, 049	3, 727, 300 33, 822	2, 446, 400 21, 040	
OhioOklahoma	234, 159	260, 633	13, 986	22, 274	288, 338	259. 311	1, 046, 603	682, 205	
Oregon	2, 109, 366	2, 774, 281	174, 381	56, 626	3, 903, 920	4, 123, 510	4, 546, 207	4, 187, 735	
Oregon Pennsylvania	3, 456, 047	4, 760, 230	112, 367	56, 626 39, 328	1, 527, 864	2, 204, 341		,, , , , ,	
Puerto Rico Rhode Island	18, 996	28, 759			117, 111	120, 335			
Knode Island	185, 091				300, 371	304, 601	8, 330	4, 877	
South Carolina South Dakota	(¹) 77, 600	(1) 97, 000	10 000	F 000	1 262 200	(1)	10 955 500	G 007 100	
Tennessee	1, 246, 081	1, 480, 735	10,000	5,000	1, 363, 300 1, 455, 389	1, 362, 588	12, 355, 500 692, 256	6, 297, 100 543, 961	
Texas	5, 852, 411	7, 203, 410	63, 542	47, 869	3, 709, 971	4, 645, 522	3. 271. 455	1, 119, 293	
Utah	814, 400	7, 203, 410 712, 700 60, 339	753, 200	635, 600	1,906,100	1, 579, 500	3, 271, 455 2, 240, 700	1, 408, 600	
Vormont	99 564	60, 339			656, 081	1, 579, 500 462, 317	1,049,691	249,974	
Virginia	(1)	1 (1)			(1)	(1)	151, 468	94, 492	
Virginia Washington West Virginia Wisconsin	3, 050, 888	3, 306, 541	1, 954, 482	1, 154, 172	3, 149, 776	3, 279, 736	7, 116, 706	4, 728, 205	
west virginia	1, 392, 791 2, 862, 228	1, 445, 064	10 0=0		424, 061	729, 378			
W voming	2, 862, 228 167, 600	2, 456, 075 213, 200	10,679 10,500	3, 204 7, 100	5, 197, 402 916, 800	3, 885, 619	6, 540, 137	3, 532, 125 797, 400	
Wyoming Undistributed 1	3, 926, 894	6, 550, 652	10, 500	7, 100	2, 472, 383	625, 900 2, 892, 928	1,034,500	191,400	
	J, 020, 00T	3,000,002			2, 1,2,000	~, 002, 020			
i i									

¹ Figures that may not be shown separately are combined under "Undistributed."
6 Includes 44,759 tons of building gravel valued at \$22,963, produced by railroads for their own use.
7 Includes 91,391 tons of paving gravel valued at \$23,739, produced by railroads for their own use.

TABLE 4.—Sand and gravel sold or used by producers in the United States in 1957, by States, uses, and class of operations—Continued

		Gravel-	Continued			Sand ar	id gravel	
State	Railroad	l ballast ⁸	Ot	her 9	Total co	mmercial		vernment- ntractor
	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value
Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware Florida Georgia Guam Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Hampshire New Jersey New Wexico North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Puerto Rico Rhode Island South Carolina South Carolina South Carolina South Carolina South Carolina South Carolina South Carolina South Dakota Tennessee Texas Utah Vermont Vermont Vermont Vermont Vermont Vermont Vermont Vermont Vermont Vermont Vermont Vermont Vermont Vermont Vermont Vermont Vermont	276, 972 20, 400 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	240, 965 23, 200 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	440, 900 202, 668 3, 876, 843 163, 100 (1) 1, 100, 659 600, 503 61, 144 66, 167 (1) 370, 336 749, 545 452, 157 282, 826 697, 948 19, 703 328, 328 47, 264 99, 900 249, 900 249, 000 24, 106, 349, 900 24, 106, 349	(1) 377, 000 121, 831 4, 216, 455 160, 700 (1) (1) 8, 448 939, 109 333, 626 89, 983 113, 476 (1) 569, 664 (1) 220, 850 509, 551 320, 126 147, 451 383, 701 16, 581 16, 581 122, 144 200, 200 1, 219, 221 (1) (2) 85, 900 2, 723, 689 2, 250 341, 138 (1) 383, 402 17, 700 (1) 645, 278 (1)	3, 407, 700 5, 494, 006 80, 935, 611 8, 560, 700 974, 014, 537, 997 2, 126, 718 285, 168, 322 16, 153, 295 8, 265, 325 8, 265, 325 8, 265, 325 1, 524, 546 15, 852, 043 14, 034, 312 15, 852, 043 14, 034, 312 16, 158, 522 17, 150, 461 16, 166 17, 197, 572 17, 23, 923 17, 102, 940 18, 102, 103 19, 103 10, 296, 516 10, 296, 578 10, 295, 174 11, 155, 033 23, 928, 800 1, 107, 766 10, 88, 877	5, 344, 477 72, 284, 129 8, 822, 400 4, 939, 153 859, 949 6, 147, 874 2, 966, 446 1, 450 533, 421 2, 161, 826 31, 832, 331 13, 997, 757 7, 628, 949 9, 119, 566 31, 173, 520 11, 566, 728 11, 73, 520 9, 119, 566 31, 173, 520 13, 633, 741 3, 633, 741 3, 634, 741 3, 634, 741 4, 565, 400 2, 210, 626 1, 531, 054 17, 614, 843 2, 451, 300 2, 210, 626 1, 531, 054 17, 614, 843 2, 451, 300 2, 210, 626 1, 531, 054 17, 614, 543 1, 545, 400 2, 210, 626 1, 531, 054 17, 614, 543 1, 545, 400 2, 546, 400 2, 546, 400 2, 546, 400 2, 546, 400 2, 546, 400 2, 546, 540 2, 747, 616 2, 747, 646 2, 747, 747, 646 2, 747, 747, 747 2, 747, 747 2, 747, 747 2, 747, 747 2, 747,	6, 879, 700 13, 105, 512 18, 088, 824 7, 839, 600 239, 882 4, 289, 422 1, 562, 942 1, 562, 942 1, 562, 942 1, 562, 942 1, 562, 520, 828 101, 677 6, 512, 210 6, 512, 210 6, 512, 210 6, 512, 210 6, 512, 210 6, 512, 210 6, 512, 210 6, 512, 210 6, 512, 210 6, 512, 210 6, 512, 210 6, 512, 210 7, 833, 582 26, 576 8, 384, 400 3, 581, 582 90, 693 1, 663, 230 45, 069 200, 000 22, 709 22, 256 4, 500, 167 3, 142 4, 721, 001 156, 606 200, 000 692, 256 4, 500, 167 3, 128, 800 692, 256 4, 500, 167 7, 777 204, 302 1, 107, 777 204, 302 1, 107, 777 209, 302	8, 106, 316 5, 576, 001 1, 604, 834 14, 746, 000 5, 171, 200 102, 346 112, 373, 712 208, 647 1, 297, 595 750, 054 197, 437 70, 079 2, 003, 27 27, 188 572, 022 3, 970, 832 5, 751, 745 423, 983 941, 840 2, 979, 376 438, 859 4, 591 3, 237, 410 798, 448, 812 480, 000 23, 378 49, 169 4, 244, 774 54, 812 480, 000 10, 164 22, 039, 600 543, 961 1, 448, 452 2, 089, 600 543, 961 1, 448, 452 2, 089, 600 547, 746 22, 089, 600
Verininia. Washington. West Virginia. Wisconsin. Wyoming. Undistributed i	389, 049 14, 899 947, 702 116, 600 889, 870	231, 225 17, 134 507, 536 58, 300 679, 128	1, 050, 384 109, 752 1, 376, 040 	209, 271 674, 828 	10, 098, 576 5, 353, 527 16, 159, 707 1, 364, 300	12, 273, 239 1, 089, 500	9, 825, 045 13, 233, 818 1, 061, 200	6, 316, 775 6, 420, 215 815, 700
Total		5, 027, 292	30, 371, 205	22, 727, 955	462,825,598	490,845,197	164,660,890	102,940,167

Figures that may not be shown separately are combined under "Undistributed."
 Includes 2,335,085 tons of ballast gravel valued at \$1,271,644, produced by railroads for their own use.
 Includes 335,510 tons of gravel valued at \$205,578, used by railroads for fills and similar purposes.

Government-and-Contractor Production.—As shown in figure 2, Government-and-contractor production in 1957 continued to gain in percentage of total output. This gain can be attributed mainly to the tendency of the contractor to maintain portable plants. The quantity of aggregates purchased and produced by contractors in 1957 for use under the new highway program fell short of estimates by the Bureau of Public Roads owing to greater emphasis on land acquisition than on construction. The Bureau of Public Roads also estimated that about 58 percent of the aggregates used for the program would be produced by the contractor himself.³

States reported 59 percent of the Government-and-contractor production in 1957, counties 27 percent, Federal Agencies 12 percent, and municipalities 2 percent. Contractors continued to lead the Government construction and maintenance crews in quantity pro-

duced by a wide margin.

A contracting company in New York that had difficulty in acquiring an adequate supply of aggregates of the desired quality and gradation became self-sufficient by setting up a separate company to supply aggregates.⁴

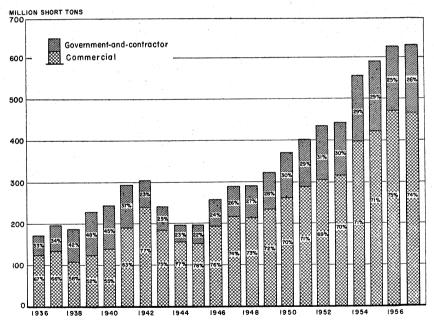


FIGURE 2.—Sand and gravel sold or used in the United States by producers, 1936-57.

³ U. S. Department of Commerce, Bureau of Public Roads Release, Comm. D. C. 10077, July 25, 1956.

⁴ Trauffer, Walter E., New York Plant Built to Supply Ready-Mix*Aggregates: Pit and Quarry, vol. 49, No. 8, February 1957, pp. 114-116.

TABLE 5.—Sand and gravel sold or used by Government-and-contractor producers in the United States, 1948-52 (average) and 1953-57, by uses

		Sa	nd			Gı	avel		Total C	
	Bui	lding	Par	ving	Building		Paving		tractor sand and gravel	
Year	Quantity (thou sand short tons)	Value (thou- sand dollars)	Quantity (thousand short tons)	Value (thou- sand dollars)	Quantity (thousand short tons)	Value (thou- sand dollars)	Quantity (thousand short tons)	Value (thou- sand dollars)	Quantity (thousand short tons)	Value (thou- sand dollars)
1948-52 (average) _ 1953	1, 789 1, 078 1, 202 1, 758 2, 321 2, 383	1, 317 1, 197 1, 299 1, 975 2, 058 2, 163	10, 777 13, 925 16, 447 22, 833 19, 568 24, 159	4, 313 5, 926 8, 826 11, 099 9, 586 12, 280	5, 013 9, 044 10, 966 15, 045 5, 434 7, 428	3, 983 5, 937 6, 418 7, 994 3, 689 5, 215	89, 453 107, 456 130, 989 132, 441 2 127,717 130, 691	39, 144 49, 575 71, 225 77, 616 2 77,740 83, 282	107, 032 131, 503 159, 604 172, 077 2 155,040 164, 661	48, 757 62, 635 87, 768 98, 684 2 93, 073 102, 940

¹ Includes Territories, possessions, and other areas administered by the United States. ² Revised figure.

TABLE 6.—Sand and gravel sold or used by Government-and-contractor producers in the United States, 1948-52 (average) and 1953-57, by types of producer

	1948-52 (a	verage)	1958		1954	.
Type of producer	Thousand short tons	Average value per ton	Thousand short tons	Average value per ton	Thousand short tons	Average value per ton
Construction and maintenance crewsContractors	44, 679 62, 353	\$0.34 .55	46, 250 85, 253	\$0.38 .53	49, 232 110, 372	\$0.37 .63
Total.	107, 032	. 46	131, 503	. 48	159, 604	. 55
States. Countles Municipalities Federal agencies	56, 127 35, 456 2, 069 13, 380	. 47 . 33 . 47 . 77	71, 199 39, 954 2, 720 17, 630	. 49 . 38 . 46 . 64	95, 420 43, 378 3, 920 16, 886	. 57 . 42 . 42 . 81
Total	107, 032	. 46	131, 503	. 48	159, 604	. 55
	1955	5	1956		1957	·
Type of producer	Thousand					
	short tons	Average value per ton	Thousand short tons	A verage value per ton	Thousand short tons	Average value per ton
Construction and maintenance crews		value		value		value
	short tons 46, 483	value per ton \$0.40	2 47, 592	value per ton \$0.48	short tons 49,646	value per ton \$0.48
Contractors	46, 483 125, 594	value per ton \$0.40 .64	2 47, 592 107, 448	value per ton \$0.48 .65	49, 646 115, 015	\$0.48 . 69

¹ Includes United States Territories and possessions, and other areas administered by the United States.

Revised figure.

Degree of Preparation.—Many plants producing for construction were called upon to furnish as many as 15 sizes of gravel to satisfy requirements set by various purchasers. At one extreme, the sand and gravel industry in 1957 included large operations with flow-sheet complexities comparable to high-value ore-processing plants; at the other extreme were one-man "bank run" operations with little or no

processing.

Owing to specific requirements and refinements in technology, the quantity of prepared sand and gravel continued to increase. In 1957 washed, screened, and otherwise prepared material accounted for 82 percent of the total commercial production and averaged \$1.15 per ton compared with \$0.63 a ton for the unprepared commercial production. The fact that commercial producers furnished most of the prepared material accounted for the higher value of their output. Only 54 percent of Government-and-contractor production was prepared; its average value was \$0.78 per ton. Bank-run material was preferred for many uses because of its binding quality and lower unit value.

Size of Plants.—As in 1956 the average sand and gravel plant was comparatively small. Plants producing more than 1 million tons annually furnished only 17 percent of the output. Portable plants, where higher cost of production was offset by lower cost of transporting the product, reportedly increased in number. On the other hand, the number of plants producing more than 500,000 tons decreased.

The widespread occurrence of sand and gravel deposits is the principal difference between sand and gravel and most other mineral operations; consequently, sand and gravel producers are less restricted by the location of raw materials. As a result, hundreds of small operations produced for brief periods or were in transit between

locations in 1957.

Methods of Transportation.—As demand for sand and gravel continued to grow and sources became more distant, many problems of transportation were critical. For example, in Los Angeles, where about 32 million tons is used annually, an average delay of 1 minute for each truck coming into the city would cost an estimated \$250,000 a year.⁵ Trucks were again by far the most widely used method of transport. Railroads were still used exclusively by some operators, and waterways were used locally.

Increases in freight rates were widespread throughout the transportation industry. Barge lines associated with the Waterways Freight Bureau increased their rates 4 percent. The 16 member companies handled about 95 percent of barge-line, common-carrier freight in the Nation. The Middle Atlantic Rate Conference, representing 1,500 trucking firms, indicated that truck rates would increase

about 7 percent to rail level.6

⁵ Rock Products, Sand and Gravel Producers Find That an Expanding Market Poses Some Rough Transportation Problems: Vol. 60, No. 7, July 1957, pp. 80-81.
⁶ Rock Products vol. 60, No. 11, November 1957, p. 11.

TABLE 7.—Sand and gravel sold or used by producers in the United States,¹
1956-57, by classes of operation and degrees of preparation

		1956	•		1957	
	Quantity A verage			Quant	Average	
	Thousand short tons	Per- cent	value per ton	Thousand short tons	Per- cent	value per ton
Commercial operations: Prepared Unprepared	² 410, 425 59, 395	87 13	\$1. 13 . 61	381, 344 81, 481	82 18	\$1. 1. . 6
Total	² 469, 820	100	1.07	462, 825	100	1.00
Government-and-contractor operations: Prepared Unprepared	80, 104 2 74, 936	52 48	.76	89, 665 74, 996	54 46	. 78
Total	² 155, 040	100	. 60	164, 661	100	. 63
Grand total	² 624, 860		. 95	627, 486		.9

¹ Includes Territories, possessions, and other areas administered by the United States.
² Revised figure.

TABLE 8.—Comparison of number and production of commercial sand and gravel plants in the United States, 1956-57, by size groups 1

		1	956			1957				
Annual production, short tons	Plants 2		Produ	Production		Plants 2		Production		
	Num- ber	Per- cent of total	Thou- sand short tons	Percent of total	Num- ber	Per- cent of total	Thou- sand short tons	Per- cent of total		
Less than 25,000	3 1, 680 730 3 681 589 237 117 76 46 32 16 14 15 43	39. 3 17. 1 15. 9 13. 8 5. 5 2. 7 1. 8 1. 1 . 7 . 4 . 3 . 4 1. 0	\$ 15, 352 26, 253 \$ 48, 835 57, 238 40, 562 34, 130 24, 919 20, 454 12, 076 11, 508 14, 138 76, 772	3. 3 5. 6 10. 5 18. 0 12. 3 8. 7 7. 3 5. 3 4. 4 2. 6 2. 5 3. 0 16. 5	1, 759 658 699 577 264 134 70 45 24 16 17 1	40. 9 15. 3 16. 2 13. 4 6. 1 3. 1 1. 6 1. 0 . 6 . 4 (4)	16, 257 23, 681 50, 161 81, 995 63, 949 46, 099 31, 372 24, 412 15, 391 11, 783 14, 339 987 79, 415	3. 5 5. 2 11. 0 17. 8 13. 9 10. 0 6. 8 5. 3 3. 3 2. 6 3. 1 . 2 17. 3		
Total	4, 276	100.0	³ 465, 940	100. 0	4, 306	100.0	459, 841	100.0		

¹ Excludes operations by or for States, counties, municipalities, and Federal Government agencies as follows—1956: 1,683 operations with an output of 155,039,837 tons (revised figure) of sand and gravel; 1957: 1,639 operations, 164,660,890 tons. Excludes operations by or for railroads as follows—1956: 94 operations with an output of 3,880,243 tons of sand and gravel; 1957: 71 operations, 2,984,216 tons. Includes territories, possessions, and other areas administered by the United States.

² Includes a few companies operating more than 1 plant but not submitting separate returns for individual

Revised figure.
Less than 0.05 percent.

TABLE 9.—Sand and gravel sold or used in the United States, 1 1955-57, by method of transportation

	1958	i `	1956	1956		
	Thousand short tons	Per- cent of total	Thousand short tons	Per- cent of total	Thousand short tons	Per- cent of total
Commercial: Truck Rail. Waterway Unspecified	284, 825 85, 001 23, 679 26, 571	48 14 4 5	341, 029 2 83, 737 26, 991 18, 063	55 13 4 3	340, 432 87, 845 21, 387 13, 161	55 14 3 2
Total commercial Government-and-contractor: Truck 8	420, 076 172, 077	71 29	² 469, 820 ² 155, 040	75 25	462, 825 164, 661	74 26
Grand total	592, 153	100	² 624, 860	100	627, 486	100

¹ Includes Territories, possessions, and other areas administered by the United States.

Entire output of Government-and-contractor operations assumed to be moved by truck.

Expanding markets forced the sand and gravel industry throughout the country to develop new facilities. Recognition of the value of portable plants continued to increase. Manufacturers advertised off-the-road, bottom-dump trucks having capacities up to 40 tons. Moreover, weight limitations of trucks on highways were more rigidly controlled.

In addition to freight-rate increases, another factor causing the shift from rail to truck has been the exhaustion of many deposits near railroads. Also, according to the National Sand and Gravel Association, at least one railroad considers the commodity freight rate so low that it would prefer not to haul sand and gravel.⁷

The first large-scale belt-conveyor transportation of sand and gravel was under way at the Great Salt Lake Fill Project, where 19 million cubic yards will be transported over a 9,900-foot belt-conveyor

system.8

Employment and Productivity.—Plant automation and technology continued to increase the number of tons produced per man in 1957. The industry employed 32,000 men in 1957 compared with 33,000 The average number of days decreased, also the average number of hours per man per day decreased slightly compared with The highest average production per hour was reported from the Michigan-Wisconsin area; the California and Nevada area employed the most men. Additional requirements for manpower are anticipated when the National Highway Program fully reaches the construction phase. The Bureau of Public Roads estimated that 9,710 million tons of aggregate would be needed for the new highway program alone. A large part of this tonnage will be sand and gravel. Public Roads also estimated that the highway program would require 442,000 men directly on construction jobs.

⁷ Pit and Quarry, NISA Convention Features Important Committee Meetings and Reports: Vol. 50, No. 6, December 1957, pp. 98-100.

§ Utley, Harry F., 19,000,000 Cu. Yds. of Gravel For Great Salt Lake Fill: Pit and Quarry, vol. 49, No. 9, March 1957, pp. 132-134.

§ U. S. Department of Commerce, Bureau of Public Roads Release, Comm. D. C. 10077, July 25, 1956.

TABLE 10.—Employment in the commercial sand and gravel industry and average output per man in the United States, 1948-52 (average) and 1953-57, by regions ¹

			Employn	nent			outp	rage ut per	
			Time e	mploy	ed		m	an	Per-
	Aver-	Aver		М	an-hours	Produc- tion (short			com- mer- cial in-
	num- ber of men	age num- ber of days	Total man shifts	Average men per day	Total	tons)	Per shift	Per hour	dustry repre sented
1948–52 (average)	23, 853 24, 663 31, 891 30, 913	239 240 251 231	5, 705, 129 5, 907, 199 8, 003, 743 7, 143, 735	8. 7 8. 6 8. 6 8. 8	49, 530, 774 51, 004, 252 69, 047, 194 63, 102, 620	235, 125, 095 278, 744, 705 364, 647, 149 362, 779, 573	41. 2 47. 2 45. 6 50. 8	4.7 5.5 5.3 5.7	89. 8 90. 3 91. 9 86. 4
1956 Maine, N. H., Vt., R. I., Mass., and Conn	1, 642 1, 450 2, 461 1, 782	212 234 262 252	348, 183 339, 435 644, 364 449, 702	8. 8 8. 2 8. 4 8. 7	3, 066, 396 2, 769, 417 5, 443, 441 3, 906, 463	17, 294, 626 21, 305, 409 25, 462, 315 18, 591, 262	49. 7 62. 8 39. 5 41. 3	5.6 7.7 4.7 4.8	92. 2 83. 7 96. 9 83. 0
S. C., Ga., Ala., Fla., and Miss. N. C., Ky., and Tenn. Ark., La., and Tex Ohio. Ill, and Ind. Mich. and Wis. N. Dak., S. Dak., and Minn	1, 726 1, 386 3, 614 2, 256 2, 239 2, 673	263 240 270 251 261 180	454, 603 332, 411 973, 990 566, 657 584, 799 480, 127	10. 4 9. 2 9. 0 8. 6 8. 6 8. 7	4, 735, 877 3, 046, 548 8, 805, 745 4, 898, 286 5, 011, 262 4, 182, 488	20, 853, 272 14, 793, 591 39, 310, 238 28, 690, 505 36, 118, 656 39, 561, 374	45. 9 44. 5 40. 4 50. 6 61. 8 82. 4	4. 4 4. 9 4. 5 5. 9 7. 2 9. 5	99. 9 95. 7 98. 0 95. 7 78. 7 77. 2
Nebr. and Iowa Kans., Mo., and Okla Wwo Colo N. Mex.	933 1, 098 1, 736	168 215 255	156, 517 235, 732 442, 784	8. 9 9. 3 8. 6	1, 399, 193 2, 195, 970 3, 787, 958	9, 756, 709 14, 035, 467 22, 012, 132	62. 3 59. 5 49. 7	7. 0 6. 4 5. 8	56. 0 72. 2 99. 0
Utah, and ArizCalif. and NevMont Wash Oreg., and	1, 210 24, 200	225 229 153	271, 977 2 960, 428	8. 3 8. 4	2, 248, 904 28, 070, 753	13, 512, 000 269, 401, 077	49. 7 72. 2 57. 2	6. 0 8. 6	90. 4 91. 8 86. 5
Idaho Alaska, Hawaii, Panama Canal Zone, and Puerto Rico	2, 228 125	170	340, 424 21, 191	8.1	2, 762, 745 173, 603	19, 476, 856 598, 139	28. 2	7. 0 3. 4	49. 7
Total	232,759	232	27,603,324	8.7	266,505,049	2410,773,628	54.0	6. 2	87. 4
Maine, N. H., Vt., R. I., Mass., and Conn N. Y	1, 442 1, 261 2, 445 1, 636	218 226 246 219	314, 477 284, 595 602, 506 358, 747	8. 5 8. 3 8. 3 8. 5	2, 678, 598 2, 369, 597 5, 015, 850 3, 054, 103	15, 750, 451 16, 812, 784 22, 984, 977 16, 344, 709	50. 1 59. 1 38. 1 45. 6	5. 9 7. 1 4. 6 5. 4	83. 9 71. 1 97. 7 82. 5
Miss. N. C., Ky., and Tenn. Ark., La., and Tex. Ohio. Ill. and Ind. Mich. and Wis. N. Dak., S. Dak., and Minn.	1, 634 1, 199 3, 173 2, 488 2, 043 2, 228	254 234 264 237 236 195	414, 404 280, 256 838, 022 588, 939 481, 883 433, 966	8. 6 8. 4 8. 9 8. 9 8. 3 8. 8	3, 555, 994 2, 358, 892 7, 464, 546 5, 227, 930 4, 001, 565 3, 812, 875	19, 375, 782 13, 457, 115 32, 493, 143 29, 524, 740 28, 906, 395 37, 136, 399	46. 8 48. 0 38. 8 50. 1 60. 0 85. 6	5. 4 5. 7 4. 4 5. 6 7. 2 9. 7	99. 7 100. 0 97. 2 96. 6 64. 7 74. 0
None and lows	1, 435 1, 372 1, 530	151 156 247	215, 978 214, 046 378, 490	9. 4 9. 6 8. 5	2, 024, 502 2, 053, 295 3, 227, 739	14, 344, 656 12, 094, 313 17, 690, 304	66. 4 56. 5 46. 7	7. 1 5. 9 5. 5	68. 1 76. 1 97. 3
Kans., Mo., and Okla	1, 532 3, 876	231 224	353, 829 868, 425	8. 5 8. 3	2, 993, 355 7, 181, 771	17, 626, 000 57, 170, 386	49. 8 65. 8	5. 9 8. 0	42. 2 91. 3
Idaho Alaska, Hawaii, and Puerto Rico	2, 054 183	144 166	295, 044 30, 400	8. 3 10. 0	2, 440, 001 303, 279	20, 991, 615 726, 337	71. 1 23. 9	8. 6 2. 4	90. 1 66. 4
Total	31, 531	221	6, 954, 007	8. 6	59, 763, 892	373, 430, 106	53. 7	6.2	80. 7

¹ Incomplete totals. Includes only those companies reporting employment figures and does not include plants operated by or directly for States, counties, municipalities, and Federal Government agencies.

² Revised figure.

CONSUMPTION AND USES

Construction Uses, Including Ballast.—Although private residential construction declined in 1957, total new construction increased 3 percent over 1956. Impact of the construction phase of the Federal Highway Program began to be felt in some areas. New highways completed increased 8 percent in 1957 over 1956. Paving uses accounted for 55 percent of the total production, a slight increase over 1956. Large quantities of sand and gravel also were used for industrial-building and water-control projects. Construction was begun on several new dams in 1957, and plans were made for additional ones. For example, 2 million cubic yards of sand and gravel will be used in Priest Rapids Dam on the Columbia River in Washington. The project is one of the largest in construction history and is scheduled for completion in 1961.

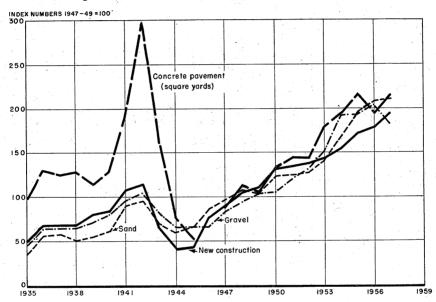


FIGURE 3.—Quantity of sand and gravel produced compared with value of total new construction, adjusted to 1947–49 prices, and total square yards of concrete pavements contracted for in the United States, 1935–57. Data on construction from Construction Review and on pavements from Survey of Current Business.

U. S. Department of Commerce, Construction Review: Vol. 4, No. 2, February 1958, p. 17.
 Lenhart, Walter B., New Dam Gobbles Up Sand, Gravel at Furious Pace: Rock Products, vol. 60, No. 10, October 1957, pp. 144, 146, 195.

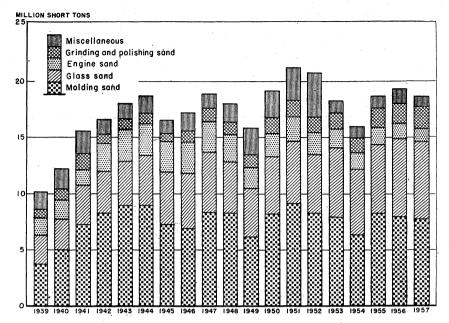


FIGURE 4.—Production of industrial sands in the United States, 1939-57.

TABLE 11.—Ground sand sold or used by producers in the United States, 1956-57, by uses

		1956		1957			
Use		Valu	e		Value		
	Short tons	Total	Aver- age per ton	Short tons	Total	A ver- age per ton	
A brasives	257, 656 38, 261 (1) 153, 347 (1) 314, 063 (1) 214, 953 136, 925 306, 911	\$1, 939, 524 365, 748 (1) 1, 186, 976 (1) 2, 009, 693 (1) 2, 042, 704 1, 090, 906 1, 572, 715	\$7. 53 9. 56 (1) 7. 74 (1) 6. 40 (1) 9. 50 7. 97 5. 12	191, 978 25, 876 134, 163 (¹) 133, 249 (¹) 196, 354 100, 557 15, 875	\$1, 716, 196 263, 900 1, 196, 842 (1) 1, 314, 558 (1) 1, 847, 249 993, 463 140, 425 7, 472, 633	\$8. 94 10. 20 8. 92 (1) 9. 87 (1) 9. 41 9. 88 8. 85	

¹ Figures that may not be shown separately are combined under "Undistributed."

A new plant was built on the San Juan River in New Mexico to help supply aggregates for the Bureau of Reclamation's Glen Canyon Dam. More materials will be required here than at the Hoover Dam. 12

¹² Utley, Harry F., Booming New Mexico Construction Calls for New Gravel Operation: Pit and Quarry, vol. 49, No. 12, June 1957, pp. 120-121, 138.

Many other dams were reported to be in various stages of completion throughout many sections of the country.¹³ The St. Lawrence seaway still exerted a large influence on the local aggregates supply in 1957, and sand was so scarce locally that some plants began to produce manufactured sand.

Plans were completed to begin testing asphalt-paved airstrips at Columbus, Miss., to see how they compare with concrete for big military aircraft.¹⁴

Wasteland became a commercial asset in the California desert, where a large dune was the source of more than half a million tons of road material. The operation used three portable plants operating simultaneously to produce sized aggregate for a hot-mix asphalt plant.15

Bonds totaling \$614 million were approved for public-works con-

struction.16

The economic aspects of the 41,000-mile interstate highway system 17 and the quantity of materials required for its construction, by years, 18 were outlined.

The quantity of aggregates needed for the base material alone was reported to be equivalent to 500 conical piles, 4 city blocks square, rising to the height of a 40-story building.¹⁰

Industrial Sands.—Consumption of industrial sands, including ground sand, totaled 19 million short tons in 1957, a decrease of about 1 million tons compared with 1956. Consumption of molding sand

was affected by the lower output of iron and steel.

With declines in automobile sales and housing construction, use of glass sand decreased slightly in 1957. The United States automobile industry reportedly spends \$350 million annually for glass.²⁰ New developments reported in the glass industry included the use of nearly 500 tons of glass beads on Pennsylvania roads to mark traffic lanes for improved visibility.21

Demand increased for coarse-grained, rounded silica sand for use in recovering oil and gas by pumping the material between the strata to increase flow. Several companies reported as licenses for the

process.

STOCKS

Stocks of sand and gravel are relatively small compared with output and are approximately constant from year to year; therefore, production and sales are virtually equivalent, and the terms are used interchangeably in this chapter.

¹³ Engineering News Record, Annual Forecast, Major River Use and Control Projects: Vol. 160, No. 7, February 1958, pp. 217-236.

14 Poe, Edgar, Washington Letter: Rock Products, vol. 60, No. 10, October 1957, p. 19.

15 Rock Products, In Southern California They're Turning a Gravel Dune Into a Long, Smooth Highway: Vol. 60, No. 2, February 1957, pp. 129-130, 132.

16 Gillson, J. L., Industrial Minerals: Min. Cong. Jour., vol. 44, No. 2, February 1958, p. 94.

17 Atkinson, L. J., and Kanwit, E. L., Economic Aspects of the New Highway Program: U. S. Dept. of Commerce, Construction Rev., vol. 3, No. 3, March 1957, pp. 7-15.

18 Stern, Edwin L., Material Requirements for the Expanded Highway Program, 1957-59: U. S. Dept. of Commerce, Construction Rev., vol. 2, No. 9, September 1956, pp. 5-7.

18 Pit and Quarry, The Highway Construction Picture: Vol. 49, No. 7, January 1957, pp. 134-137.

26 Gillson, J. L., Industrial Minerals: Min. Cong. Jour., vol. 44, No. 2, February 1958, p. 98.

27 Rock Products, vol. 60, No. 10, October 1957, p. 11.

PRICES

The average value of all sand and gravel shipped in 1957, both from commercial plants and from Government-and-contractor operations remained the same as in 1956. Unit value per ton for commercial operations was \$1.06 per ton compared with \$0.63 for Governmentand-contractor operations. The percentage change in average value of each class at the source are shown in table 1.

Prices are held in line by the ability of the larger contractors to produce their own aggregates if the established producer allows his price

to become too high.22

Total sales and profits of several large sand and gravel producers

were reported.23

The wholesale price for sand, f. o. b. plant, was reported by the Department of Labor to be \$1.302 in November 1957, compared with \$1.232 in November 1956. Gravel was sold for \$1.591 in November 1957 and \$1.517 in November 1956.²⁴ These prices are compiled from selected commercial producers and do not include prices of unprocessed materials.

FOREIGN TRADE 25

Sand and gravel remained a small factor in foreign trade in 1957. Shipments of ordinary sand and gravel were limited to border operations, but some sand was imported from Europe for glassmaking.

TABLE 12 .- Sand and gravel imported for consumption in the United States, 1948-52 (average) and 1953-57, by classes

		S	and					
Year	Glass	sand 12	Sand, n. crude facture	s. p. f., or manu- d	Gı	ravel	To	otal
	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value
1948–52 (average)	9, 574 5, 690 10, 329 170 478 683	\$37, 038 114, 000 93, 441 171, 973 393, 476 621, 065	306, 828 313, 176 271, 364 317, 947 332, 031 290, 280	\$301, 525 329, 612 \$ 298, 427 \$ 384, 637 \$ 454, 477 437, 114	124, 916 87, 028 2, 387 1, 680 179 14, 877	\$24, 715 9, 699 8 1, 685 8 100 2 405 21, 951	441, 318 405, 894 284, 080 319, 797 332, 688 305, 840	\$363, 278 453, 311 393, 553 556, 710 848, 358 1, 080, 130

[[]Bureau of the Census]

¹ Classification reads: "Sand containing 95 percent or more silica and not more than 0.6 percent oxide of fron and suitable for manufacturing glass."
² Consists mainly of synthetically prepared silica from West Germany for specialized uses and is not comparable in value to ordinary glass sand.
³ Owing to changes in tabulating procedures by the Bureau of the Census, data are not comparable with years before 1954.

²² Bell, Joseph N., Rock Products Forecast: Rock Products, vol. 60, No. 1, January 1957, pp. 68-79.
22 Mead, Edgar T., Jr., From a Grain of Sand: The Magazine of Wall Street and Business Analyst, vol. 100, No. 10, Aug. 3, 1957, pp. 576-579, 622-624.
24 Construction Review, vol. 4, No. 2, February 1958, p. 39.
25 Figures on imports and exports compiled by Mae B. Price and Elsie D. Jackson, Division of Foreign Activities, Bureau of Mines, from records of the Bureau of the Census, U. S. Department of Commerce.

WORLD REVIEW NORTH AMERICA

Canada.—Production of sand and gravel in Canada in 1956 was estimated at 151 million tons valued at \$102 million. Sand and gravel was the third largest mineral industry of Canada. Development of the St. Lawrence seaway continued to exert a predominating influence on aggregate production in eastern Ontario and Quebec. Owing to the depletion of suitable sand and gravel within easy reach of some markets, it became necessary to manufacture sand from stone.²⁶ Although sand and gravel deposits are widespread in Canada, suitable material is scarce in Saskatchewan and nearby parts of Alberta and Manitoba. In 1955 there were 430 principal producers in Canada, not including railway companies or Government agencies.

TECHNOLOGY

The modern sand and gravel plant requires a high degree of flexibility in productive capacity, as well as provision for future expansion. A Wisconsin operation was so planned that production could be increased from 200 to 425 cubic yards per hour with little additional

Because of more rigid specifications and a highly competitive market, emphasis on automation became more apparent at processing plants in 1957. A plant and dredge near Denver, Colo., included many labor-saving devices.²⁸ The nature of sand and gravel deposits in the Denver area presented production problems that resulted in unusual plants. Another new plant in the area began operating a dredge in a dragline-developed pond, from which the material was transported through pipeline to the complex processing plant.29

A new glass-sand operation in California used attrition mills and flotation cells as part of the complicated processing techniques required to produce a high-quality product.³⁰ Another California producer profited by frequent floods that brought more gravel to workedout areas in 1957. The firm used its natural advantages in an unusual and reportedly efficient manner. A high-capacity dragline and a fleet of bottom-dump trucks fed a double-duty belt. The belt delivered gravel to a splitter box at the top of the plant, which sent one fraction to the wet side of the plant and the other to the dry. Plus-1½-inch screen-sized rock from either side passed to a reduction crusher. The crushed material was then refed to the same belt that conveyed the pit-run gravel and carried again to the splitter box, where it was delivered to the dry side.³¹

Department of Mines and Technical Surveys, Sand, Gravel, and Crushed Stone in Canada, 1956 (Preliminary): Ottawa, No. 52, 4 pp.

Herod, Buren C., Design Flexibility With An Eye to the Future: Pit and Quarry, vol. 50, No. 5, November 1957, pp. 84-87, 89, 90.

Hack, A., and Tomlin W., Push-Button Control Produces Sand and Gravel: Rock Products, vol. 60, No. 7, July 1957, pp. 76-79, 120-122.

Transfer, Walter E., Inland's New Gravel Plant: Pit and Quarry, vol. 50, No. 3, September 1957, pp. 82-84 88.

<sup>22-84, 86, 87.

***</sup> Utley, Harry'F., High-Solids Conditioning and Flotation in Processing: Pit and Quarry, vol. 50, No. 4, October 1957, pp. 72-74, 100.

**I Lenhart, Walter B., Rampaging River Aids Gravel Plant: Rock Products, vol. 60, No. 11, November

In heavily populated and arid sections of California, three readymix firms found a solution for the common problem of scarce and expensive water and land. Water was reused, and space wasted on tailing ponds was saved by using liquid cyclones. 32 A highly advanced aggregate plant began operation in southern California. All finished materials were reclaimed, blended, transported, and weighed into trucks electronically.33

The first sink-float beneficiation plant in southern California began operation in 1957 after years of attempting to eliminate shale and chert by other methods.³⁴

Although the sand and gravel particles were clay coated and required several scrubbing and washing processes, a Nevada operation pro-

duced 140 tons per hour of high-grade aggregate.35

A new process for upgrading gravel was used in two commercial plants in Michigan. The process makes use of the difference between the elastic properties of soft, deleterious materials and hard, sound The gravel is dropped in a specified pattern on an inclined plate. The rebound of the stone is classified by allowing it to fall into 1 of 3 compartments.³⁶ In the latter part of the year two plants had incorporated this method.³⁷

The 10th in a series of plant operations designed by 1 producer incorporated the best features of the other 9 to meet the market

demand for various aggregates.38

Hydraulic Fracturing—a relatively new oil-well-completion technique, requiring sand to be pumped between the strata, is credited with increasing crude-petroleum output in a north Texas area by more than 1 million barrels during a recent 2-year period, according to a Bureau of Mines publication. The report presents information obtained from a lengthy study of 184 wells. The principal purpose of the Bureau's work was to determine whether hydraulic fracturing would increase the quantity of oil that could untimately be recovered by primary-production methods.

In tunnel construction under the Thames River a new technique was used to stabilize and solidify the riverbed gravels. Reportedly, this pretreatment maintained the pressure of compressed air and prevented the collapse of the riverbed gravel. A special mixture of cement and chemicals was injected into the gravel on each side of the This procedure developed dikes of impermeable gravel to contain the compressed air and formed a "box" through which the tunnel was driven. 40 The method might be useful for stabilizing sandfill.

Rock Products, Neighboring Sand Processors Decide Water Scarcity Can't Halt Production: Vol. 60, No. 11, November 1937, pp. 116, 118.

11 Utley, Harry F., Star Rock Concentrates on Processing Sand and Gravel: Pit and Quarry, vol. 49, No. 8, February 1957, pp. 73-44, 78-77.

12 Utley, Harry F., Sink-Float Beneficiation of Gravel Is Begun in Los Angeles Area: Pit and Quarry, vol. 50, No. 6, December 1957, pp. 132-134, 136.

13 Utley, Harry F., Clay Coating Removed From Sand by Attrition at Nevada Plant: Pit and Quarry, vol. 50, No. 3, September 1957, pp. 144, 145.

13 Engineering News-Record, Low-Grade Gravel is Given the Bounce: Vol. 159, No. 11, Sept. 12, 1957, pp. 87, 88.

pp. 87, 88.

** Herod, Buren C., Beneficiation By Bounce: Pit and Quarry, vol. 50, No. 4, October 1957, pp. 88-91,

¹⁷ Herod, Buren C., Beneikushon by Bounce. 112 and Quarry, vol. 50, No. 3, September 1957, pp. 123-125, 130.

18 Herod, Buren C., New Standard Materials Plant: Pit and Quarry, vol. 50, No. 3, September 1957, pp. 123-125, 130.

19 Garland, T. M., Elliott, W. C., Dolan, Pat, and Dobyns, R. P., Effects of Hydraulic Fracturing Upon Oil Recovery From the Strawn and Cisco Formations in North Texas: Bureau of Mines Rept. of Investigations 5371, November 1957, 33 pp.

48 Rock Products, vol. 60, No. 11, November 1957, p. 12.

An apparatus was patented for removing mud and clay balls from The wet, raw material is fed continuously to an inclined belt studded with spikes on its outer surface. The mud and clay balls are impaled, whereas the gravel drops into a bin. are cleaned by raking or washing at some stage of the belt's travel.41

A method was patented for controlling and consolidating loose sand when drilling through an unconsolidated formation. The formation is impregnated by pumping into it a mixture of Ottawa sand and oil, followed by Ottawa sand that has been coated with a resin and curing agent.42

A rotary apparatus for drying mineral aggregates was patented. It is said to have a large capacity and to be relatively simple and in-

expensive.43 A patent was issued on an apparatus for washing gravel that reportedly costs little, is efficient, and has a large capacity.44 Another patent was granted on an apparatus that automatically measures the fineness modulus of sand.45

A centrifuge was patented for recovering clean sand from gravelplant tailings, 46 and a device was invented to prevent "bridging" of particles when fed to conveyors.47

A centrifugal dewatering device was patented that is said to pro-

duce sand suitable for direct use in foundry molds.48

A reportedly improved method has been patented for heating screens so that damp particles will pass instead of clogging the interstices of

A method of beneficiating glass sand was patented. It is said to produce higher grade material and to require less reagent during

Two methods were patented for the manufacturing of silica brick.⁵¹ The Federal Geological Survey published a comprehensive bibliography on high-grade silica of the United States and Canada.52

⁴ Spence, P. Gravel Processing Means: U. S. Patent 2,788,895, Apr. 16, 1957.

4 Hower, W. F., and Knox, J. A. (assigned to Halliburton Oil Well Cementing Co., Duncan, Okla.),

Method of Controlling Loose Sand: U. S. Patent 2,815,815, Dec. 10, 1957.

4 Madsen, W. M., Aggregate Dryer: U. S. Patent 2,815,940, Dec. 10, 1957.

4 Gorman, H. C., Material Washing Machine: U. S. Patent 2,812,622, Nov. 12, 1957.

4 Saxe, W. E. (assigned to the Conveyor Co., Inc., Los Angeles, Calif.), Apparatus for Measuring Fineness Modulus: U. S. Patent 2,782,926, Feb. 26, 1957.

4 Harris, B. G., Apparatus for Recovering and Cleaning the Residual Sand Content From the Tailings of Gravel Washing Plants: U. S. Patent 2,779, 469, Jan. 29, 1957.

4 Borrowdale, O. J., Freely Swinging, Rotating, Antibridging Device for Bulk Material: U. S. Patent 2,803,445, Aug. 20, 1957.

4 Peck, N. O. (three-fourths assigned to William H. Peck, Tulsa, Okla.), Centrifugal Separators: U. S. Patent 2,796,990, June 25, 1957.

4 Kaufman, J. S., and Lepley, C. F. (assigned to the Marble Cliff Quarries Co., Columbus, Ohlo), Terminal Construction for Electrically Heated Screens of Material Separators: U. S. Patent 2,808,152, Oct. 1, 1957.

^{1957.}Brown, O. R. (assigned to American Cyanamid Co., New York, N. Y.), Froth Flotation Process:
U. S. Patent 2,806,598, Sept. 17, 1957.

West, H. F., and Veale, J. H. (assigned to the Illinois Clay Products Co., Joliet, Ill.), Chemically Bonded Silica Brick and Method of Making Phosphate Bonded Silica Refractory Body: U. S. Patents

^{2,802,749} and 2,802,750, Aug. 13, 1957. 12 Jaster, M. C., Selected Annotated Bibliography on High-Grade Silica of the United States and Canada Through December 1954: U. S. Geol. Survey Bull. 1019H, 1957, pp. 609–673.

Secondary Metals—Nonferrous

By Archie J. McDermid 12

THE CONTINUING decline in business activity, foreign competition, and overproduction of primary copper were major factors in the decrease in recovering secondary metal, compared with 1956. The decrease was greatest in secondary copper; recovery was 11 percent lower than in 1956. The decrease in copper recovery from scrap affected that of zinc, the alloying constituent most used in copper-base alloys.

Imports of copper and brass sheet and tubing continued to depress the brass-mill industry, and sharp decreases in the price of refined copper, caused by overproduction, increased the competitive difficulties of the brass-ingot makers whose raw material is chiefly copper scrap. There was also an oversupply of primary aluminum, but recovery of secondary aluminum increased 6 percent in 1957.

Monthly consumption of copper, lead, and zinc scrap was greater in the first half of 1957 than in the second half. After the low con-

TABLE 1.—Salient statistics of nonferrous secondary metals recovered from scrap processed in continental United States, 1956-57

	From n	ew scrap	From o	ld scrap	To	tal
Metal	Short tons	Value (thousand dollars)	Short tons	Value (thousand dollars)	Short tons	Value (thousand dollars)
Aluminum Antimony Copper Lead Magnesium Nickel Tin Zinc Total 1957	3, 119 462, 175 61, 239 5, 170 6, 344 13, 226	128, 686 2, 181 392, 849 19, 229 3, 505 8, 595 26, 785 56, 885 638, 715	19, 747 73, 746	34, 403 14, 678 398, 216 139, 892 3, 634 11, 537 39, 992 20, 206 662, 558	339, 768 24, 106 930, 664 506, 6755 10, 529 14, 860 32, 973 281, 355	
Aluminum Antimony Copper Lead Magnesium Nickel Tin Zinc Total	397, 395 57, 346 5, 597 5, 298	146, 995 1, 805 239, 232 16, 401 3, 946 8, 316 20, 523 44, 206	72, 459 19, 984 444, 492 431, 883 5, 061 6, 719 16, 504 76, 789	36, 809 13, 977 267, 584 123, 519 3, 568 10, 546 31, 744 18, 122	361, 819 22, 565 841, 887 489, 229 10, 658 12, 017 27, 174 264, 104	183, 804 15, 782 506, 816 139, 920 7, 514 18, 862 52, 267 62, 328 987, 293

¹ Commodity specialist.

The assistance of Ivy C. Roberts, statistical, is acknowledged.

sumption in July caused by employee vacations and shutdowns for equipment repairs, activity failed to rise to the level of the first half of the year. Aluminum scrap monthly consumption varied little in 1957.

TABLE 2.—Secondary metals recovered as unalloyed metal, in alloys, and in chemical compounds in the United States, 1948-52 (average) and 1953-57, in short tons

***	1948-52 (average)	1953	1954	1955	1956	1957
Aluminum Antimony Copper Lead Magnesium Nickel Tin Zinc	261, 667	368, 566	292, 041	335, 994	339, 768	361, 819
	21, 709	22, 360	22, 358	23, 702	24, 106	22, 565
	899, 730	958, 464	839, 907	989, 004	930, 664	841, 887
	476, 787	486, 737	480, 925	502, 051	506, 755	489, 229
	9, 199	11, 930	8, 250	10, 246	10, 529	10, 658
	7, 881	8, 352	8, 605	11, 540	14, 860	12, 017
	31, 440	30, 914	29, 334	31, 743	32, 973	27, 174
	302, 656	294, 678	271, 774	304, 775	281, 355	264, 104

Additional information on nonferrous secondary metals, listed in the foregoing tables, appears in the commodity chapters of this volume.

Nonferrous-scrap consumption declined in 1957, but the supply was not plentiful. Owing to low prices for both steel and nonferrous scrap, recovery of market scrap from junked automobiles was not profitable. Old automobiles are a source of iron and steel scrap and considerable zinc and aluminum die-cast scrap, as well as copper and lead scrap. One of the items least affected, however, was battery-plate scrap. Consumption of this item, by far the largest nonferrous-scrap type, declined 2 percent, whereas total lead-scrap consumption decreased 7 percent.

One reason for the relatively high consumption of battery-plate scrap was the wide distribution of the scrap and of the smelters for treating it. Two hundred and fifty-nine smelters, more than all other secondary smelters combined, reported consumption of lead and tin scrap in lead and tin products in 1957.

Figure 1 shows the aluminum, copper, lead, and zinc content of total nonferrous scrap consumed over a 10-year period, and figure 2, the relation of scrap consumption (metal content) to total consumption of primary metal and scrap.

The graphs in figure 1 show total consumption of scrap, including

new and old but not home scrap.

In preparing data for figure 2 total consumption was calculated as apparent primary metal consumption from foreign and domestic ores plus metal content of scrap consumed, as shown in figure 1. Total consumption of aluminum includes aluminum added to the National Stockpile. The approximate total consumption may be calculated from the figures by dividing the scrap consumption of a metal, as shown in figure 1, by the percentage of total consumption for that year, as shown in figure 2. The apparent primary consumption may be obtained by then subtracting the scrap consumption from the total consumption.

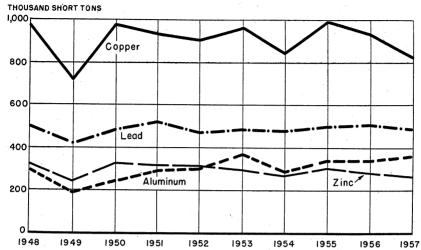


FIGURE 1.—Aluminum, copper, lead, and zinc content of total nonferrous scrap consumed in 1948-57.

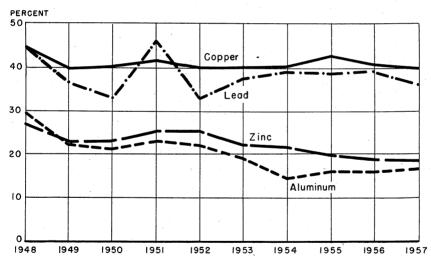


FIGURE 2.—Percentage of total consumption of aluminum, copper, lead, and zinc supplied by secondary metal in 1948-57.

The definitions for secondary metal products, as given in Minerals Yearbook, volume I, 1954, Secondary Metals—Nonferrous chapter, have been revised as follows:

Secondary metals.—Metals or alloys recovered from scrap and residues. The term "secondary" applies only to the source of the metal and has no relation to the type of product recovered as to quality, degree of purity, or physical characteristics.

Secondary metal production and secondary metal recovery.—Synonymous terms meaning the total quantity of metals recovered from a

TABLE 3.—Number and classification of plants in the United States reporting consumption of nonferrous scrap metals, refined copper, and copper-alloy ingots in 1957 ¹

		Type of mat	erials used	
Kind of plant	Aluminum scrap	Copper	Lead and tin scrap	Zine scrap
Primary plants Secondary smelters Secondary distillers	35 119	12 71	5 259	44 14
Primary distillers Chemical plants Brass mills	12	42 62		11 15
Wire millsFoundries and miscellaneous manufacturers	130	18 1,748	58	35

¹ Plants listed in each column used material of the metal heading the column in products of that metal; for example, 71 secondary smelters used copper materials in copper-base products.

scrap charge. Secondary production is usually not a separate physical item but is combined with alloying ingredients.

Total production.—Secondary metal recovery plus added alloying ingredients. Total production has a secondary metal content and

a content from other than scrap.

Secondary metal recoverable.—The recoverable metal content of scrap. This is obtained by first multiplying the gross weight of scrap consumed by the metallic-recovery percentage for the class of scrap consumed. The result is the metal recovered after allowing for melting loss. This metallic-recovery figure is then multiplied by composition percentages to obtain the quantities of the different metals recovered.

The definition for purchased scrap has been revised as follows:

Purchased scrap.—Scrap other than home scrap that has been purchased or transported from one plant to another. It includes new scrap, old scrap, toll scrap, and scrap generated at one plant and transferred to another plant of the same company for processing. Purchased scrap also includes wornout equipment such as is reclaimed in shipyard repair work and from line operations at railroad foundries although no definite financial transaction may have resulted.

TECHNOLOGY

The Federal Bureau of Mines completed an investigation on the recovery of tin from hardhead, a material generated in tin refining and composed primarily of tin-iron compounds. Tin was extracted from hardhead in a series of pressing and filtration operations based on the equilibrium diagram for the tin-iron system. The recovered impure tin was refined by a final filtration after ingredients were added to form solid compounds with impurities in the molten tin. Residues from the final filtration and the high-temperature pressings were returned to the process with new charges of hardhead. Information on recovery of zinc from brass-ingot makers' baghouse dust was also obtained in 1957.

Fundamental research by the Bureau in 1957 and in 1958 included studies to accelerate process-control analyses by combining spectrophotometric, polarographic, and controlled-potential electrolytic methods of analysis. Other basic research included measurement of activities and vapor pressures of nonferrous metals and alloys to supplement vacuum-distillation investigations. Rates of oxidation of nonferrous metals were being determined as part of the investiga-

tion of selective oxidation refining.

Experiments were continued in developing new or improved processes for recovering zinc from galvanizers' dross, zinc-base die-cast scrap, and other zinc scrap by distillation, mechanical separation, and electrolysis and for recovering tin from tin-base scrap by selective oxidation and amalgam electrolysis. Research was also under way in separating constituents from brass by chemical and electrolytic methods.

The Federal Bureau of Mines also continued laboratory-scale research on separating the constituents in scrapped S-816 high-temperature alloy. This alloy contains 43 percent cobalt, 20 percent chromium, 20 percent nickel, and smaller percentages of molybdenum, tungsten, columbium, iron, carbon, manganese, and silicon. Two effective methods were developed for solubilizing the cobalt, nickel, chromium, iron, and manganese in the alloy while obtaining the tungsten, molybdenum, columbium, carbon, and silicon in a sludge. Separation of the individual elements or their salts from the soluble and insoluble fractions is now the principal remaining problem. Separations obtained were not sharp enough to produce specification-grade products, but improvements were gained.

Increasing use of a shortcut to producing sheet metal from refined metal, ore, and scrap was indicated in 1957 by developing equipment for large-scale conversion of metal powders to strip. Two companies built machines of commercial capacity in which copper, brass, and nickel strip were successfully sinter-rolled from metal powders.³ Such alloys as nickel-cobalt, stainless steel, and tin bronzes were successfully rolled in laboratory-size equipment.⁴ The process eliminates melting

and slabbing operations.

The E. W. Bliss Co., of Salem, Ohio, introduced a production line in which the powder was first passed through horizontal compacting rolls, then successively through a sintering furnace, a 2-high hot-roll mill, as second sintering furnace, a second 2-high hot-roll mill, and an atmosphere-cooling chamber, after which the strip was coiled on a tension reel. All hot rolling and sintering were done in a protective atmosphere. The sizes made were 0.025 to 0.060 inch thick and up to 16 inches wide. The cost of the mechanical equipment, exclusive of electrical equipment, for a production line, with a capacity of 50 tons per 24 hours, was estimated at \$750,000.

Stanat Manufacturing Co., of Westbury, Long Island, developed a powder-rolling mill in which the compacting rolls were convertible to a 2-high or 4-high combination for hot- or cold-rolling the strip after sintering. It was proposed as especially suitable for research, development, and pilot-plant operation. The roll bearings had a maximum roll-separating strength of 350,000 pounds and could produce strip at about 25 feet per minute. Maximum sheet width was 11 inches and maximum thickness, over one-eighth of an inch. The machine weighed about 25,000 pounds and cost about \$35,000.

American Metal Market, Metal Powder Progress Signaled in Construction of Bigger Mills: Vol. 65, No. 17, Jan. 24, 1958, pp. 5, 8.

Iron Age, Strip From Powder Makes Gains: Vol. 181, No. 3, Jan. 16, 1958, p. 42.

Hydrometals, Inc., formerly Illinois Zinc Co., was reported planning construction of 5 plants, at an estimated cost of \$9.5 million each, to chemically reduce copper ore and copper-base scrap to copper powder and then to sinter-roll the powder to continuous copper strip. Chemetals Corp. was the exclusive licensing company in the United States for both the powder-producing and powder-rolling processes. Metal powders rolled to strip in 1957 were principally iron and copper base, but interest in applying the process to other metals was increasing.

In a process development completed in 1957 titanium and zirconium scrap were converted to platelets 1/6 to 1/8 inch square for use as scavengers in producing steel. 5 The platelets were also reduced to powder which, when mixed with 30 percent virgin metal powder, was compacted, then sintered, and hot-compacted to billets from which bars

and flats were rolled.

A development related to part of the Hawkridge process was the completion in 1957 by the Federal Bureau of Mines of research on electrorefining titanium metal. The electrolyte used was a fused salt, the anode was a combination of offgrade sponge and scrap, and the purified metal was collected at the cathode.

Manufacture and distribution of oxygen on a liquid tonnage basis was increasing in 1957. Its substitution for oxygen in gaseous form was expected to expedite separation of attached iron from nonferrous

scrap at dealers' yards.

A blast furnace equipped with inverted boshes in use at the Franklin Smelting Co., a secondary copper smelter at Philadelphia, was described.⁸ The plant specialized in treating low-grade copper scrap and residues, from which it produced black copper for sale to primary producers for further processing. Use of the inverted bosh at this plant was said to eliminate crusts and arches, to reduce coke consumption, and to lower temperatures of exhaust gases in operation of the The only other inverted bosh in use was at the El Segundo, Calif., plant of H. Kramer & Co.

It was reported that Handy & Harman, producers of precious-metal alloys, had recovered 1,477 troy ounces of silver from obsolete X-ray films, accumulated over a period of 7 months from use in inspecting aircraft parts by United Aircraft Corporation.9 As a result, investigation of the salvage of silver from the fixing solution used was conducted. Handy & Harman was extending the program to

include similar material in other plants.

American Metal Market, Hawkridge Has Salvage Process for Titanium and Zirconium: Vol. 65, No. 20

American Metal Market, Hawkridge Has Salvage Process for Titanium and Zirconium: Vol. 65, No. 20⁷ Jan. 29, 1958, p. 7.
 Nettle, J. R., Baker, D. H., Jr., and Wartman, F. S., Electrorefining Titanium Metal: Bureau of Mines Rept. of Investigations 5315, 43 pp.
 Loveman, S. Michael, New Types of Distribution for Liquid Oxygen: Waste Trade Jour., vol. 102, No. 16, Jan. 5, 1957, p. 38.
 Engineering and Mining Journal, How the Inverted-Bosh Blast Furnace Increases Smelting Capacity: Vol. 158, No. 8, August 1957, pp. 100, 101.
 Iron Age, X-Ray Silver Mine: Vol. 181, No. 7, Feb. 13, 1958, p. 79.

Silver

By J. P. Ryan and Kathleen M. McBreen

OTH DOMESTIC mine production and consumption of silver declined in 1957, but imports continued to rise sharply owing to lend-leaser eturns. Silver prices remained virtually unchanged. Mine output was 38.2 million ounces, 2 percent below the 1956 output, and consumption in the arts and industries was about 95.4 million ounces, 5 percent below the 1956 level.

Lower mine output of silver reflected the curtailment in production of base-metal ores yielding byproduct silver; lower demand for industrial silver resulted from the general decline in business activity in the latter part of the year. Free stocks of silver in the United States Treasury rose about 40 million ounces in 1957, and total Treasury stocks were 2,014 million ounces at the end of the year.

TABLE 1.—Salient statistics of silver in the United States, 1948-52 (average) and 1953-57

					* .	
	1948-52 (aver- age)	1953	1954	1955	1956	1957
United States:						
Mine productionthousand ounces Valuethousand dollars Ore (dry and siliceous) produced (thousand short tons):	38, 889 35, 197	37, 571 34, 004	36, 941 33, 434	37, 198 33, 666	38, 948 35, 250	38, 16 34, 54
Gold ore Gold silver ore Silver ore Percentage derived from—	3,033 404 494	2, 199 82 555	2, 249 46 680	2, 234 120 570	2, 255 245 687	2, 35 11 71
Dry and siliceous ores Base-metal ores Net consumption in industry and the	29 71	29 71	40 60	30 70	29 71	. 3
arts. thousand ounces. Imports 2. do. Exports 2 do. Monetary stocks (end of year)2	100, 958 89, 069 3, 458	106,000 81,510 1,023	86,000 90,897 1,703	101, 400 84, 519 4, 893	100,000 162,832 5,501	95, 406 206, 119 10, 299
Price, average, per fine troy ounce 4 World: Production (estimated)	\$0.905+	1, 926 \$0. 905+	1,935 \$0.905+	\$0.905+	1, 981 \$0. 905+	2, 01 \$0. 905-
thousand ounces	194, 900	§ 221, 800	\$ 214,300	§ 223, 700	* 224, 200	228, 70

¹ Includes Alaska.

Treasury buying price for newly mined silver.
Revised figure.

World production of silver rose 2 percent in 1957 to 229 million ounces, but world consumption in the arts and industries decreased slightly to 210 million ounces.3 North American countries con-

² Excludes coinage. 3 Owned by Treasury Department; privately held coinage not included.

¹ Commodity specialist. ² Statistical assistant.

Handy & Harman, The Silver Market in 1957; 42d Ann. Review, p. 25.

tributed more than half the world output of silver, Mexico being the leading producer. The United States was by far the leading consumer of silver, accounting for about half of the world consumption (including coinage) in 1957. Silver used for world coinage in 1957 was estimated at 79.2 million ounces—about 18.1 million ounces more than in 1956.

LEGISLATION AND GOVERNMENT PROGRAMS

Legislation to repeal existing silver purchase laws, similar to that introduced in 1956, was again introduced in the 84th Congress in 1957 (H. R. 448, H. R. 4562, S. 1201). These bills were referred to the Committee on Banking and Currency and the Ways and Means Committee of the House, and to the Committee on Banking and Currency of the Senate, respectively, but no further action was taken. The bills also provided for repeal of the 50-percent transfer tax on profits made in trading in silver.

DOMESTIC PRODUCTION

United States mine production of recoverable silver declined 2 percent in 1957, owing principally to lower output of base-metal ores

yielding silver as a byproduct.

Idaho continued to rank as the leading silver-producing State by a wide margin, followed by Utah, which regained second place (having displaced Montana). Montana was third, and Arizona was again fourth. These 4 States continued to supply about 84 percent of the domestic output of silver in 1957. About one-fourth of the domestic production was recovered from dry ores in Idaho in which silver was the principal product. Most of the remaining domestic output was recovered as a byproduct of ores mined principally for base metals or gold. In 1957, as in 1956, about 99 percent of domestic silver production was recovered by smelting ores and concentrates.

TABLE 2.—Silver produced in the United States, 1948-52 (average) and 1953-57, according to mine and mint returns, in fine ounces of recoverable metal

	1948-52 (average)	1953	1954	1955	1956	1957
Mine	38, 889, 452	37, 570, 838	36, 941, 383	37, 197, 742	38, 948, 121	38, 164, 915
	39, 245, 864	37, 735, 500	35, 584, 800	36, 469, 610	38, 739, 400	35, 043, 736

¹ Includes Alaska.

TABLE 3.—Mine production of silver in the United States 1 in 1957, by months

Month	Fine ounces	Month	Fine ounces
January	3, 303, 457 3, 155, 027 3, 474, 950 3, 502, 555 3, 427, 192 3, 242, 780 3, 224, 870	August September October November December Total	3, 105, 614 3, 106, 612 3, 084, 570 2, 744, 572 2, 792, 716 38, 164, 915

¹ Includes Alaska.

A detailed description of the units of measurement, methods of calculating production, ore classification, and methods of recovery is given in the Gold chapter of the 1954 Minerals Yearbook.

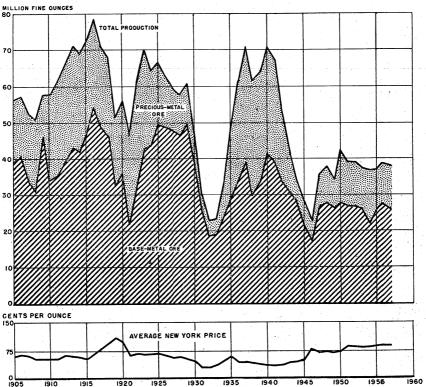


Figure 1.—Silver production in the United States and average price per ounce, 1905-57.

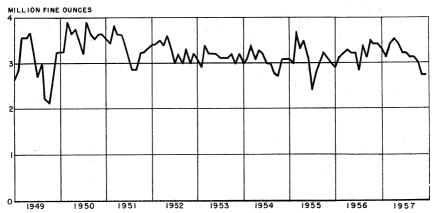


FIGURE 2.—Mine production of silver in the United States, 1949-57, by months, in terms of recoverable silver.

The leading silver-producing areas, in order of output, were: Coeur d'Alene region in Idaho, Summit Valley (Butte) district in Montana, and West Mountain (Bingham) district in Utah—an order unchanged since 1932. Nearly 63 percent of the domestic mine out-

put of silver in 1957 came from these 3 districts.

Of the 25 leading domestic silver-producing mines in 1957, only 4 depended chiefly on the value of silver in the ore. Ores mined chiefly for copper, lead, and zinc again supplied most of the silver output. The 10 leading mines—each producing over 1 million ounces of silver in 1956—supplied 56 percent of the United States production; the 25 leading mines together contributed 79 percent.

TABLE 4.—Mine production of recoverable silver in the United States, 1948-52 (average) and 1953-57, by districts and regions that produced 300,000 fine ounces or more during any year (1953-57), in thousand fine ounces

District or region	State	1948-52 (average)	1953	1954	1955	1956	1957
Coeur d'Alene region. Summit Valley (Butte) West Mountain (Bingham) Warren. Park City region Red Cliff (Battle Mountain). Big Bug Upper San Miguel. Copper Mountain. Pioneer. Ajo. Ferry County Upper Peninsula. California (Leadville). Pima. Flint Creek. Darwin (Coso) Warm Springs Elk Mountain Mineral Creek. Tintle. Southeastern. Robinson Ploche Silver Peak	Montana Utah Arizona Utah Colorado Arizona Colorado Arizona do do Washington Michigan Colorado Arizona Colorado Arizona Lolorado Arizona Montana Colorado Arizona Montana California Idaho Colorado Arizona Montana Utah Missouri Nevada do	5, 864 4, 817 1, 243 1, 142 413 585 644 596 485 457 (1) 174 77 (1) 475 6 117 915 235 159	13, 637 6, 289 5, 027 1, 266 802 802 1718 369 628 436 251 196 225 (1) 562 225 (2) 562 266 563 360 360 185 318 (1)	14, 899 4, 663 4, 109 1, 379 826 2, 112 579 677 403 634 390 2 273 138 755 332 (1) 554 208 933 353 1107 79 (1)	12, 984 5, 578 4, 409 1, 209 1, 613 696 454 454 634 488 2 363 478 98 1, 612 269 113 48 385	12, 663 6, 772 4, 541 1, 267 1, 198 581 800 (1) 802 492 2383 380 157 226 413 (1) 261 497 295 365 180 87	14, 398 5, 069 4, 443 1, 185 1, 164 1

Figure withheld to avoid disclosing individual company confidential data.

Chelan and Ferry Counties combined.
Combined with First Chance and Henderson districts in 1953.

TABLE 5.-Twenty-five leading silver-producing mines in the United States in 1957, in order of output

ilver	10 ores. es, e. ores, ores.
Source of silver	Silver ore. Do. Copper ore. Zinc ore. Zinc ore. Lead-zinc ore. Silver, lead, lead-zin Copper, lead-zinc or Copper ore. Lead-zinc ore. Copper, lead-zinc ore. Copper, lead-zinc ore. Copper, lead-zinc ore. Copper, lead-zinc ore. Copper ore. Copper ore. Copper ore. Copper ore. Copper ore. Copper ore. Copper ore. Copper ore. Copper ore. Copper ore. Copper ore. Lead-zinc ore. Copper ore. Lead-zinc ore. Copper ore. Lead-zinc ore. Copper ore. Lead-zinc ore. Copper ore. Lead-zinc ore. Copper ore. Lead-zinc ore. Copper ore. Lead-zinc ore. Copper ore. Copper ore. Copper ore. Copper ore. Copper ore. Copper ore. Copper ore. Copper ore. Copper ore. Copper ore.
Operator	Sunshine Mining Co. American Smelting & Refining Co. The Anaconda Co. The Bunker Hill Co. U. S. Smelting, Refining & Mining Co. The Anaconda Co. Phelips Dodge Corp. Phelips Dodge Corp. The Anaconda Co. The New Jersey Zinc Co. The New Jersey Zinc Co. The Anaconda Co. Phelips Dodge Corp. Phelips Dodge Corp. Phelips Dodge Corp. Phelips Dodge Corp. Phelips Dodge Corp. White Park City Mines Co. White Park City Mines Co. White Park City Mines Co. White Park City Mines Co. The Anaconda Co.
State	Idaho Totah Wontana Idaho Arizona Arizona Arizona Arizona Arizona Arizona Arizona Arizona Arizona Arizona Arizona Arizona Arizona Arizona Molichigan Idaho Michigan Idaho Montana Montana
District or region	Coeur d'Alene
Mine	Sunshine Galena Utah Copper Butte Hill Lead-Zine Mines Burker Hill Vinited States & Lark Kelley Copper Queen-Lavender Pit. Silver Summit Bargle. Butte Hill Copper Mines. Fassiny Tunnel-Black-Bear- Samgeler Unton. Morend. Lucky Friday. United Park City Mines. New Cornells White Pine. Page. Berkeley Pit. Enobylet Pine. Berkeley Pine.
Rank	

TABLE 6.—Mine production of recoverable silver in the United States, 1948-52 (average) and 1953-57, by States, in fine ounces

State	1948-52 (average)	1953	1954	1955	1956	1957
AlaskaArizona	44,009	35, 387	33, 697	33, 693	28, 360	28, 862
Arizona California	4, 991, 246 965, 089	4, 351, 429 1, 036, 372	4, 298, 811 309, 575	4, 634, 179 954, 181	5, 179, 185 938, 139	5, 279, 323 522, 288
ColoradoIdaho		2, 200, 317	3, 417, 072	2, 772, 073 13, 831, 458	2, 284, 701 13, 471, 916	2, 787, 892 15, 067, 420
Illinois	. 3, 284	14, 639, 740 2, 338	15, 867, 414 1, 160	3, 075	1,580	
Kentucky Michigan				478, 000	31 379, 990	430,000
Missouri	235, 146	359, 781	352, 971	268, 620	295, 111	183, 427 5, 558, 228
Montana Nevada		6, 689, 556 697, 086	5, 177, 942 560, 182	6, 080, 390 845, 397	7, 385, 908 1, 220, 473	958, 477
New Mexico New York	. 435, 939	205, 309 35, 398	109, 132 34, 576	251, 072 66, 162	392, 967 84, 158	309, 385 63, 880
North Carolina			438	181	753	12, 347
Oregon Pennsylvania	9, 922 11, 589	12, 259 6, 972	14, 335 8, 415	8, 815 10, 379	13, 542 (1)	15, 924 (2)
South Dakota Tennessee	123, 567	138, 642 68, 935	151, 407 60, 759	154, 092 66, 619	136, 118 64, 878	134, 737 54, 407
Texas	2,852		100	126		
Utah Vermont	7, 271, 758	6, 725, 807 43, 128	6, 179, 243 48, 572	6, 250, 565 50, 447	6, 572, 041 3 47, 800	6, 198, 464 36, 794
Virginia		1, 169 321, 202	1, 773 313, 735	1, 850 436, 348	1, 874 448, 442	1,745 4 521,133
Washington Wyoming		11	74	20	154	126
Total	5 38,889, 452	37, 570, 838	36, 941, 383	37, 197, 742	38, 948, 121	38, 164, 915

TABLE 7.—Ore, old tailings, etc., yielding silver, produced in the United States and average recoverable content, in fine ounces, of silver per ton in 1957 1

	Gold	i ore	Gold-si	lver ore	Silve	er ore	
State	Short tons	Average ounces of silver per ton	Short tons	Average ounces of silver per ton	Short tons	A verage ounces of silver per ton	
Alaska Arizona California Colorado Idaho Montana Nevada	11, 571 5, 059 126, 114 121, 398 2, 938 7, 980 161, 902 23	0.006 1.061 .433 .072 2.318 1.606 .039 .826	74, 870 43 4, 966 9 13, 791 1, 278 211	0. 176 1. 814 1. 776 127. 889 6. 117 21. 630 5. 649	33, 919 37 2, 208 403, 584 92, 023 4, 243 13, 434	0. 40 35. 75 5. 01 25. 57 4. 02 10. 43 . 36	
Oregon South Dakota Utah Washington 7 Wyoming Undistributed 8	2, 427 1, 778, 583 236 2, 000 138, 839	. 076 1. 042 . 046 3. 027	20, 852	2.918	162, 011	3.80	
Total	2, 359, 070	. 282	116, 020	1.700	711, 543	16.0	

See footnotes at end of table.

Included with Vermont.
 Included with Washington.
 Includes silver recovered from magnetite-pyrite-chalcopyrite ores in Pennsylvania.
 Includes production from Pennsylvania.
 Includes 1 ounce from Georgia.

TABLE 7.—Ore, old tailings, etc., yielding silver, produced in the United States and average recoverable content, in fine ounces, of silver per ton in 1957 1 —Con.

	Copp	per ore Lead ore			Zinc ore		
State	Short tons	Average ounces of silver per ton	Short tons	Average ounces of silver per ton	Short tons	A verage ounces of silver per ton	
AlaskaArizonaCalifornia	59, 621, 032 8, 242	² 0. 069 ² 16, 759	55 9, 920 1, 609	32. 018 4. 102 18. 823	7, 072	0. 19	
Colorado Idaho Montana	32, 138 282, 855 9, 576, 968	18. 660 . 064 . 259	27, 225 55, 903 7, 003	\$ 4.580 4.246 4.156	785 4 88, 427 5 1, 059, 177	2. 85 . 66 2. 11	
Nevada New Mexico Oregon	11, 514, 197 7, 618, 015	. 035	26, 740 35, 799	12. 329 . 157	1, 003 327, 591	1. 49 . 29	
Oregon South Dakota Utah Washington	30, 940, 383	. 093	35, 848	6. 321	6 25, 240	. 16	
Wyoming Undistributed 8	8, 801, 315	. 493 . 059	110	. 436	1, 961, 934		
Total	128, 395, 381	. 087	200, 212	5. 124	3, 471, 229	. 69	

	Zinc-lead, z lead-copper lead-copper	, and zinc-	Total ore	
State	Short tons	Average ounces of silver per ton	Short tons	A verage ounces of silver per ton
Alaska Arizona California Colorado Idaho Montana Nevada New Mexico Oregon	922, 172 1, 296, 785 33, 067 60, 471 82, 582	2. 406 4. 260 2. 204 2. 3. 409 10. 188 2. 323 1. 820	11, 626 60, 214, 343 204, 251 1, 110, 892 2, 130, 501 5 10, 790, 009 11, 769, 834 8, 077, 655 2, 594 1, 778, 583	0. 158 2 088 2 2. 522 3 2. 509 2 7. 072 . 515 . 081 . 038
South DakotaUtahWashington 7	543, 621	4. 450	6 31, 728, 191	. 195
Wyoming Undistributed ⁸	3, 883, 102	. 044	2, 069 9 14, 785, 384	. 061 9. 075
Total	7, 352, 477	1. 506	142, 605, 932	. 266

¹ Missouri excluded.
2 Includes gold recovered from tungsten ore.
3 Includes gold recovered from fluorspar ore.
4 Zinc slag.
5 Includes 51,888 tons of zinc slag.
6 Includes 25,200 tons of zinc slag.
7 Included in "Undistributed."
8 Includes Kentucky, Michigan, New York, North Carolina, Tennessee, Vermont, Virginia, and Washington.

8 Excludes magnetite-pyrite-chalcopyrite ore and silver therefrom in Pennsylvania.

TABLE 8.—Mine production of silver in the United States, 1 1948-52 (average) and 1953-57, by percent from sources and in total fine ounces

				I	l		
Year	Placers	Dry ore	Copper ore	Lead ore	Zinc ore	Zinc-lead, zinc-copper, lead-copper, and zinc-	Total fine ounces
						lead-copper ores	
1948-52 (average) 1953	0.2 .1	29. 4 29. 2	20. 4 24. 5	5. 4 5. 2	1.5	43. 1 40. 1	38, 889, 452 37, 570, 838
1954 1955 1956	.1 .1	39. 5 30. 4 29. 2	22. 0 30. 8 29. 6	3. 4 2. 7 3. 0	1.1 1.2 .6	33. 9 34. 8 37. 5	36, 941, 383 37, 197, 742 38, 948, 121
1957	.1	32. 1	29.3	3. 2	6.3	29.0	38, 164, 915

¹ Includes Alaska.

TABLE 9.—Mine and refinery production of silver in the United States in 1957, by States and sources, in fine ounces of recoverable metal

		-	M	Iine produ	ction	* 1.		
State	Placers	Dry ore	Copper	Lead ore	Zinc ore	Zinc-lead, zinc-cop- per, lead- copper, and zinc- lead-cop- per ores	Total	Refinery produc- tion ¹
Alaska Arizona California Colorado Idaho Illinois Kentucky Michigan Missouri Montana Nevada New Mexico New York North Carolina Oregon Pennsylvania South Dakota Tennessee Utah Vermont Virginia	777 115	32, 362 56, 059 28, 696 10, 331, 123 	24, 091, 973 2 138, 128 599, 688 18, 228 	30, 287 3 124, 691 237, 345 	1, 405 2, 237 59, 064 2, 243, 989 1, 498 95, 780	290,579 2,032,344 24,421,175 56 (4) 336,889 140,464 150,299 5 65,625 	3 2, 787, 892 215, 067, 420 430, 000 183, 427 5, 558, 228 958, 477 309, 385 5 66, 625 12, 347 15, 924 134, 737 54, 407 6, 198, 464 36, 794	5, 250, 000 525, 530 2, 800, 000 15, 000, 000 1, 360
Washington 7		92	8 52, 285 34 11, 190, 912		2, 408, 168	48, 858 11, 072, 622	8 521, 133 126 38, 164, 915	130

¹ U. S. Bureau of the Mint.
2 Includes gold recovered from tungsten ore.
3 Includes gold recovered from fluorspar ore.
4 Inttle silver recovered from lead-copper ore from 1 mine included with that from lead ore.
5 Production in New York and Virginia combined.
6 Productd with Washington.
7 Includes production from Pennsylvania.
8 Includes silver recovered from magnetite-pyrite-chalcopyrite ores in Pennsylvania.

TABLE 10.—Silver produced in the United States from ore and old tailings in 1957, by States and methods of recovery, in terms of recoverable metal 1

			Ore and	old tailin	gs to mills			
State	Total ore, old tail- ings, etc., treated	Recoverable in bullion Concentrates smelted and recoverable metal		Crude ore to smelters				
	(short tons)	Short tons	Amal- gama- tion (fine ounces)	Cyanidation (fine ounces)	Concentrates (short tons)	Fine ounces	Short tons	Fine ounces
Alaska Arizona California Colorado Idaho Montana Nevada New Mexico Oregon South Dakota Utah Washington Wyoming Undistributed James Alaska	11, 626 60, 214, 343 204, 251 1, 110, 892 2, 130, 501 210, 790, 009 11, 769, 834 8, 077, 655 2, 594 1, 778, 583 3 31, 728, 191 2, 069 6 14, 785, 384	59, 423, 329 194, 219 1, 069, 343 2, 005, 330 10, 623, 288 11, 647, 126 7, 974, 647 2, 371 1, 778, 583 31, 515, 590	17 4, 146 2, 920 518 10 138 2, 294 34 85, 516 47	41, 960 45, 299 6, 558 4, 825 5, 403	217, 882 585, 371 283, 008 286, 288 195 926, 537	368, 270 2, 125, 637 14, 872, 446 5, 056, 174 300, 701 297, 702 15, 526 5, 511, 807	791, 014 10, 032 41, 549 125, 171 2166, 721 122, 708 103, 008 223 212, 601	1, 053, 910 97, 338
Total	142, 605, 932	140, 963, 398	95, 809	250, 232	4, 955, 998	33, 725, 418	1, 642, 534	3, 874, 82

¹ Missouri excluded.

TABLE 11.—Silver produced at amalgamation and cyanidation mills in the United States and percentage of silver recoverable from all sources, 1948-52 (average) and 1953-57 1

Year	tates rec	nd precipi- overable unces)	Silver from all sources (percent)			
	Amalga- mation	Cyani- dation	Amalga- mation	Cyani- dation	Smelt- ing ²	Placers
1948-52 (average)	111, 879 98, 399 95, 941 90, 647 87, 879 95, 809	380, 576 129, 538 208, 581 643, 983 309, 158 250, 232	0.3 .3 .3 .2 .2	1.0 .3 .6 1.7 .8 .7	98. 5 99. 3 99. 0 97. 9 98. 9 99. 0	0.2 .1 .1 .1

Missouri excluded.
 Includes 51,888 tons of zinc slag.
 Includes 25,220 tons of zinc slag.
 Included in "Undistributed."
 Includes Kentucky, Michigan, New York, North Carolina, Pennsylvania, Tennessee, Vermont, Virginia, and Washington.
 Excludes magnetite-pyrite-chalcopyrite ore from Pennsylvania.

Includes Alaska.
 Both crude ores and concentrates.

TABLE 12.—Net industrial ¹ consumption of silver in the United States, 1948-52 (average) and 1953-57, in thousand fine ounces

[U. S.	Bureau	of the	Mint]
--------	--------	--------	-------

Year	Issued for industrial use	Returned from indus- trial use	Net indus- trial con- sumption
1948–52 (average)	133, 659	32, 701	100, 958
	125, 389	19, 389	106, 000
1954	104, 629	18, 629	86,000
1955	123, 535	22, 135	101,400
1956	130, 000	30, 000	100,000
1957	133, 742	38, 342	95,400

¹ Including the arts.

CONSUMPTION AND USES

Industry and the Arts.—The United States consumed nearly half the world supply of industrial silver. According to data compiled by the United States Bureau of the Mint, domestic consumption of silver in the arts and industries declined 5 percent in 1957 to 95.4 million ounces. Domestic consumption is measured by the net amount of material issued by Government Mints and assay offices and private refiners and dealers for industrial, professional, and artistic use after deduction of secondary materials returned to monetary use and old jewelry, plate, film, and other scrap. United States consumption of silver continued to exceed its production by a wide

margin

The quantity of silver used for plated ware and for industrial applications declined owing to the business recession and lower production of consumer durable goods. Leading consumers continued to be the silverware, photographic, and electroplating industries. Use of silver in the electrical, electronic, chemical, and metal-joining fields continued to expand. Manufactured materials included contacts, wire, brazing and soldering alloys, and silver-clad equipment. Substantial quantities of silver were used in such regulating equipment as telephone relays and fluorescent-lamp controls, in electromagnetic counters, and in protective devices for motors and refrigerator ther-Medical and dental supplies and equipment continued to absorb considerable silver. New uses for silver in advanced weapons and other defense applications increased. World consumption of silver in the arts and industries was estimated at 209.3 million ounces,4 about 13 million ounces less than world production.

Uses of silver in jewelry and the composition and mechanical properties of silver-jewelry alloys were described and tabulated in a

trade journal.5

General Electric Co. developed a new subminiature, solid-electrolyte, 95-volt battery with a silver bromide electrolyte and a silver anode for high voltage-to-volume requirements and long storage or standby service. The company reports that the battery, when properly mounted, will withstand a wide range of temperatures and extreme shock and vibration. The battery was expected to be used widely in electronic devices.

⁴ Work cited in footnote 3.
5 Atkinson, Ralph H., Alloys for Precious Metal Jewelry: Metal Progress, vol. 72, No. 5, November 1957, pp. 107-111.

Silver-plated aluminum bus bars were made available commercially in 1957 by a process developed by Reynolds Metals Co. bars provide substantial savings over equivalent copper bus bars and make connections practical by relatively simple soldering and brazing techniques, thus eliminating special contact surfaces ordinarily required for bolted connections.

Monetary.—A sharp rise of over 20 million ounces in silver used in United States coinage more than offset lower coinage requirements of Mexico and other countries except Canada. This rise accounted for virtually the entire increase in world coinage use, which in 1957 was estimated at 79.2 million ounces 6—an increase of 18.1 million ounces over 1956.

TABLE 13.—United States monetary silver, in million ounces 1

	1953	1954	1955	1956	1957
In Treasury:					
Securing silver certificates: Silver bullionSilver dollarsSubsidiary coin	1, 655. 7 215. 2 4. 6	1, 679. 2 207. 0 34. 5	1, 697. 2 196. 1 11. 3	1, 708. 4 182. 8 2. 0	1, 711. 5 169. 4 6. 0
Free silver bullion	49. 6 1, 925. 1	13. 6	1, 929. 5	87. 4 1, 980. 6	2, 014. 3
Coinage in circulation:					
Silver dollars Subsidiary coin	164. 9 877. 5	172. 5 898. 9	182. 0 928. 2	195. 1 968. 0	208. 3 1, 014. 5
Total	1, 042. 4	1, 071. 4	1, 110. 2	1, 163. 1	1, 222. 8

¹ Compiled from circulation statements issued by the Treasury Department.

STOCKS

United States Treasury stocks comprising bullion and coin increased for the third successive year. The gain in 1957 was about 33.7 million ounces, as increases in silver bullion, subsidiary coin, and free-silver bullion more than offset decreases in silver dollars. Again, as in the 2 preceding years, free-silver stocks rose sharply in 1957 owing to the return of lend-lease silver from foreign countries. Silver coinage outside the Treasury, comprising silver dollars and subsidiary coin, increased 59.7 million ounces to 1,222.8 million ounces.

The historical and traditional role that silver has played in the monetary systems of the world, its strategic importance, and the need for a realistic program for its future use were discussed at the National Western Mining Conference.⁷

PRICES

United States Treasury policy, under existing silver laws, continued to be the major stabilizing force in the world silver market. The Treasury buying price for domestically mined silver, fixed by act of Congress July 31, 1946, at 90.5+ cents per fine troy ounce, remained unchanged throughout 1957. The selling price to domestic consumers, established under the act at 91 cents an ounce for delivery at United States mints or assay offices, also remained unchanged. This price at the San Francisco Mint was equivalent to 91% cents at New York.

Work cited in footnote 3.
7 Groseclose, Elgin, A Look Ahead at Gold and Silver: Mines Mag., vol. 48, No. 8, August 1957, pp.

The average New York open-market price was virtually the same in 1957 as in 1956. Prices fluctuated between a high of 91% cents and a low of 89% cents a troy ounce, 0.999 fine, almost the same spread as in 1956. The New York price quotations represent the prices paid by Handy & Harman in settlement for silver in unrefined silver-bearing materials and are one-fourth cent below the market price of refined bullion. When the open-market price is higher than the Treasury buying price, producers sell on the open market; when it is lower, they sell to the Treasury. Similarly, domestic consumers buy on the open market when the price is lower than the Treasury selling price and buy from the Treasury when the open-market price is higher. In 1957 about 7.2 million ounces, or nearly one-fifth of the domestic mine production of silver, was sold to the Treasury; the remainder was sold on the open market. Treasury sales of silver to domestic industry during the year were about 3.8 million ounces.

The London market price of silver per troy ounce, 0.999 fine, ranged from a high of 80%d. in January to a low of 77%d. in December, equivalent to about 93.69 and 90.14 cents, respectively, in United States currency and a slightly wider spread than the corresponding New York prices. The higher London prices reflected the premium obtained for silver exported from New York during periods of short

supply as well as shipping charges.

FOREIGN TRADE®

Domestic imports of both refined and unrefined silver increased sharply for the second successive year, owing to lend-lease returns, which comprised about three-fourths of all imports. The return of lend-lease silver brought total imports, excluding United States and foreign coins, to 206.1 million ounces valued at \$157.7 million. Lendlease deliveries of approximately 152 million ounces left about 54 million ounces for market consumption—20 percent less than in 1956. Imports from Western Hemisphere countries, chiefly Canada, Mexico, Peru, and Bolivia, comprised over 90 percent of total imports outside of lend-lease returns. The value of net imports was 20 percent greater in 1957 than in 1956.

Exports of silver in 1957 increased 87 percent to 10.3 million ounces valued at \$9.5 million. Nearly two-thirds of all exports went to the United Kingdom and West Germany. In addition, foreign and United States coins valued at \$1.7 million were exported, chiefly

to Canada.

⁸ Figures on imports and exports compiled by Mae B. Price and Elsie D. Jackson, Division of Foreign Activities, Bureau of Mines, from records of the U. S. Department of Commerce, Bureau of the Census.

TABLE 14.—Value of silver imported into and exported from the United States, 1948-52 (average) and 1953-57, in thousand dollars

[Bureau of the Census]

	Year	Imports	Exports	Excess of imports over exports
1948-52 (average) 1953		 \$85, 044 95, 104	\$11, 135 8, 680	\$73, 909 86, 424
1954 1955		 79, 699 72, 932	4, 523 8, 331	75, 176 64, 601
1956 1957		 129, 068 158, 354	7, 049 11, 162	122, 019 147, 192

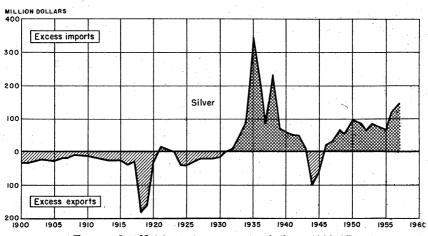


FIGURE 3.—Net imports or exports of silver, 1900-57.

TABLE 15.—Silver imported into the United States in 1957, by countries of origin [Bureau of the Census]

Country of origin	Ore an bul	d base lion	Bull refii	lion, ned	United States	Foreign coin
	Troy ounces	Value	Troy ounces	Value	coin (value)	(value)
North America:	1.15					
Bahamas					\$11,071	
Bermuda	7 409 075	\$6, 700, 716	10, 518, 385	#0 500 007	12,000 343,119	\$835
CanadaCuba	7, 483, 875 252, 728	219, 180		\$9, 520, 207	301, 400	\$000
Dominican Republic					17, 710	
El Salvador	156, 580	134, 229 201, 252				
Guatemala Honduras	251, 294 2, 187, 031	1, 979, 475				
Mexico	7, 157, 513	6. 341, 475	9, 336, 515	8, 476, 101		
Netherlands Antilles	5, 800	5, 500				
Nicaragua	224, 759	190, 179 1, 902				
Panama	2, 113	1, 902				
Total	17, 721, 693	15, 773, 908	19, 854, 900	18, 004, 308	685, 30 0	835
South America:						
Argentina	533, 048	498, 253				
Bolivia	3, 510, 746 787	3, 129, 315 746				
Brazil Chile	1, 346, 357	1, 174, 672				
Colombia	84, 763	75, 940				
Ecuador	53, 138	47, 552				
Peru	13, 064, 676	11, 719, 006				
Total	18, 593, 515	16, 645, 484				
Europe:						
Malta, Gozo, and Cyprus	25, 881	22, 775				
Netherlands	4, 677, 225	3, 326, 027				
Portugal United Kingdom	60, 534 38, 135	53, 145 34, 860	22, 283, 193	15, 845, 820	7, 505	
O inted Kingdom	00, 100	01,000	22, 200, 190	10, 040, 020	7,000	
Total	4, 801, 775	3, 436, 807	22, 283, 193	15, 845, 820	7, 505	
Asia:						
India	40, 227, 780	28, 606, 132	49, 276, 901	35, 041, 205		
Korea, Republic of Pakistan	22, 559 15, 519, 360	20, 330 11, 035, 817	14, 778, 000	10, 508, 636		
Philippines	285, 496	252, 290	11, 110, 000	10, 000, 000		
Turkey	35, 333	31, 801				
Total	56, 090, 528	39, 946, 370	64, 054, 901	45, 549, 841		
Africa:						
Rhodesia and Nyasaland.		1				
Federation of Union of South Africa	213, 873	193, 344				
Union of South Africa	847, 908	769, 208				
Total	1, 061, 781	962, 552				
Oceania: Australia	1, 656, 613	1, 495, 019				
Grand total	99, 925, 905	78, 260, 140	106, 192, 994	79, 399, 969	692, 805	835
			•		•	

SILVER 1033

TABLE 16.—Silver exported from the United States in 1957, by countries of destination

[Bureau of the Census]

	Ore and b	ase bullion	Bullion	, refined	United States	Foreign coin (value)
Country of destination	Troy ounces	Value	Troy ounces	Value	coin (value)	
North America:						
Bahamas					\$75,300	
Canada			1, 406, 541	\$1, 285, 725	6, 450	\$1,401,65
Cuba			29, 910	29, 067		5, 9
Guatemala					100	
Haiti					36,000	
Mexico	1, 280, 849	\$1, 162, 873	568	587		1, 7
Panama						1,77
Total	1, 280, 849	1, 162, 873	1, 437, 019	1, 315, 379	117, 850	1, 409, 38
South America:						
Brazil			97, 999	91, 934		
Chile			2, 245	2,023		
Colombia			320, 199	294, 974		
Venezuela			38, 453	36, 481		
Total			458, 896	425, 412		
Europe:						
			109, 083	99, 763		
Germany, West			2, 802, 126	2, 634, 000		
Ireland	l				25,000	
United Kingdom	91, 833	83, 140	3, 822, 095	3, 492, 275		
Total	91, 833	83, 140	6, 733, 304	6, 226, 038	25, 000	
Asia:						
Japan	1		16,067	14, 568		
Thailand			253, 188	231, 352		
Turkey			28, 200	25, 525		
Total			297, 455	271, 445		
Africa: Liberia					126, 000	
Grand total	1, 372, 682	1, 246, 013	8, 926, 674	8, 238, 274	268, 850	1, 409, 3

LEND-LEASE SILVER

Lend-lease agreements executed during World War II provided for the return of silver supplied to foreign countries within 5 years after the cessation of hostilities, the date of which was marked by the signing of the Japanese Peace Treaty on April 28, 1952. Accordingly, April 28, 1957, became the repayment date. Except for Saudi Arabia and Ethiopia, which obtained 2-year extensions, most countries completed repayments on schedule.

Of an original obligation of 410.8 million ounces, about 258.4 million cunces was repaid in 1957, bringing the total amount repaid to 383.1 million ounces. Parts of the obligations of India and Pakistan that were not delivered were made available to the United States Government in the form of demonetized silver coin of these two countries. The following table shows, in million ounces, the original amounts, returns, and balances of the countries that received lend-lease silver.

		1.12	Amount	
	Country	Original	Returned as of Dec. 31, 1957	Due on Dec. 31, 1957
37 (1 1 1		226. 0 1 88. 3 56. 7	226. 0 88. 3 56. 7	
Saudi Ārabia Australia Ethiopia		22.3 11.8 5.4	11.8	22. 3 5. 4
Total		410.8	383.1	27.7

¹ Includes 0.2 million ounces to Fiji.

WORLD REVIEW

World output of silver increased 2 percent in 1957 to 229 million ounces, the highest level of output since 1942. Production gains in Mexico, Peru, and Australia more than offset lower output in the United States, Canada, and Bolivia. Western Hemisphere countries furnished about two-thirds of the world output.

World consumption of silver in the arts and industry and for coinage continued to exceed production by a substantial margin in 1957, reaching a total of about 289 million ounces, a gain of 6 percent over 1956. For the third successive year increases in industrial consumption by West Germany and coinage requirements of the United States accounted for nearly all of the gain. In recent years demonetized coinage has furnished a substantial part of the world's supply of silver.

TABLE 17.—World production of silver, 1948-52 (average) and 1953-57, by countries, 1 in fine ounces 2

[Compiled b	v Amoneta	W Iann and	Boronico B	Mitchelll

Country	1948-52 (average)	1953	1954	1955	1956	1957
North America:	,					
Canada	21, 064, 192	28, 299, 335	31, 117, 949	27, 984, 204	28, 431, 847	28, 361, 873
Central America and West Indies:		, ,	, ,			20,002,000
Costa Rica 3	909				80	
Cuba	3 179, 987	³ 167, 895	164, 235	259, 440	284, 202	3 252, 728
Guatemala	220, 480		283, 811	343, 111		
Honduras			3, 432, 023	1, 797, 394	2, 030, 008	3 2, 187, 031
Nicaragua		252, 697	218, 148	268, 316	258, 521	230, 081
Panama 8	1,728	671		315	963	2, 113
_ Salvador	336, 035				161, 476	172, 305
Mexico	50, 053, 465			47, 957, 654	43, 078, 040	47, 165, 138
United States	39, 245, 864	37, 735, 500	35, 584, 800	36, 469, 610	38, 739, 400	38, 720, 200
Total	114, 700, 600	120, 776, 800	110, 954, 200	115, 310, 000	113, 517, 700	117, 619, 900
South America:						
Argentina	1, 183, 514	895, 474	1,639,688	1, 414, 633	1,671,838	1, 350, 331
Bolivia (exports)	6, 996, 001		5, 047, 666		7, 547, 304	5, 375, 089
Brazil	20, 580	211, 938	126, 449	140, 113	171, 524	
Chile	1,042,893					1, 555, 867
Colombia	116, 885			112, 037	110, 728	106, 494
Ecuador	171, 959				29, 479	28, 694
Peru	13, 322, 264				22, 972, 766	25, 310, 479
Total	22, 854, 100	28, 719, 800	28, 856, 400	32, 227, 800	34, 325, 600	33, 927, 000

See footnotes at end of table.

Work cited in footnote 3.

TABLE 17.—World production of silver, 1948-52 (average) and 1953-57, by countries, 1 in fine ounces 2—Continued

SILVER

and the second s						
Country	1948-52 (average)	1953	1954	1955	1956	1957
						100
Europe:	4 050		r 505	0.507	1 000	
Austria Czechoslovakia ⁴ Finland France	4,958	5, 144 1, 608, 000 235, 794	5, 787 1, 608, 000	3, 537 1, 608, 000	1, 286	1,350
Czecnoslovakia	1,606,400	1,008,000	1,008,000	1,008,000	1,608,000	1,608,000
Finiand	152, 412 642, 590	235, 794	239, 459	224, 573		373, 592
France	642, 590	675, 519	555, 951	628, 065	234, 695	307, 997
Germany:	0.011.000	4 501 100	4 500 000	4 700 000		
East 1	3, 311, 320 1, 580, 311	4, 501, 100 2, 319, 387 73, 272 64, 300 837, 784 115, 743 96, 500	4, 500, 000 2, 346, 843 85, 360 64, 300 887, 425 131, 818 96, 500 55, 299 643, 000 1 302, 401	4, 500, 000 2, 226, 375 77, 869	4, 500, 000 2, 197, 375 83, 592	4, 500, 000
West	1,580,311	2, 319, 387	2, 346, 843	2, 226, 375	2, 197, 375	2, 133, 973
Greece	33, 921	73, 272	85, 360	77,869	83, 592	80,000
Hungary .	44, 980	64, 300	64,300	64, 300 859, 904	64, 300	64, 300
italy	777, 456 172, 971 88, 180 55, 762	837, 784	887, 425	859, 904	1, 034, 129 64, 301	956, 420
Norway	172, 971	115, 743	131,818	71, 375 96, 500	64, 301	38, 580
Poland	88, 180	96, 500	96,500	96, 500	96,500	96, 500
Portugal	55, 762	1 09.447	55, 299	58, 900 643, 000	57, 550 643, 000	4 60,000
Rumania 4	569, 400		643,000	643,000	643,000	643, 000
Spain	612, 819	1, 209, 125	1, 302, 491	1, 473, 404	1, 402, 801	1, 345, 734
Sweden	612, 819 1, 379, 312 20, 800, 000	1 1,571,464	1, 302, 491 2, 215, 604 25, 000, 000	2, 397, 738	1, 402, 801 2, 562, 382 25, 000, 000	2, 511, 847 25, 000, 000
U. S. S. R.4	20, 800, 000	25, 000, 000	25,000,000	25, 000, 000	25, 000, 000	25, 000, 000
United Kingdom	21, 120 2, 283, 584	28, 914	26, 497	29, 706	27,878	4 30,000
Yugoslavia	2, 283, 584	25, 000, 000 28, 914 3, 048, 019	26, 497 2, 829, 394	1, 473, 404 2, 397, 738 25, 000, 000 29, 706 2, 983, 589	27, 878 2, 760, 013	2, 589, 742
Germany: East 4. West Greece. Hungary 4. Italy Norway Poland 4. Portugal. Rumania 4. Spain Sweden U. S. S. R.4. United Kingdom Yugoslavia						
Total 4	34, 140, 000	42, 100, 000	42,600,000	42, 900, 000	42, 700, 000	42, 300, 000
Asia:	405 100					
Burma	185, 430 240, 400	672, 403 320, 000	1, 278, 289	1, 537, 895	1, 365, 154	1, 526, 810
Burma	240, 400	320,000			320,000	320,000
India	14, 407	14,624	161, 185	153, 935 5, 948, 627	104, 604 6, 166, 962	125, 838
Japan	3, 765, 083	6, 028, 489	6, 162, 815	5, 948, 627	6, 166, 962	6, 526, 183
Korea, Republic of	17, 173	52, 213	50, 252	79, 605 502, 069	196, 409	6, 526, 183 277, 346
Philippines	310,713	572,046	527, 160	502, 069	541, 168	479, 216
Japan Korea, Republic of Philippines Saudi Arabia	99,052	150, 626	63, 681			
Taiwan	3, 765, 083 17, 173 310, 713 99, 052 18, 305	14, 624 6, 028, 489 52, 213 572, 046 150, 626 40, 639	520, 000 161, 185 6, 162, 815 50, 252 527, 160 63, 681 39, 160	63, 948	53, 894	82, 965
Madal (0.000.000	0 400 000
Total 4	4, 705, 000	7, 900, 000	8, 700, 000	8, 700, 000	8, 800, 000	9, 400, 000
Africa:						
	22, 261	48, 200	57, 900	61, 100	4 60,000	4 60,000
Algeria Bechuanaland	130	463	292	189	215	35
Relgian Congo	4, 267, 503	4, 961, 631	4 550 166	4, 076, 457	3, 791, 891	3, 044, 868
Ghana (evnorts)	45, 178	44, 949	48 214	39, 284	28, 592	25, 390
Belgian Congo	5, 503	21, 758	4, 550, 166 48, 214 1, 325 1, 906, 057	1 770	54, 689	23, 051
Morocco: Southern Zone	1, 107, 569	2, 054, 175	1 906 057	1, 770 2, 324, 000	2, 250, 000	2, 411, 250
Mozembiana	223	2,001,110	44	2, 021, 000	2, 200, 000	2, 111, 200
Mozambique Nigeria	1, 110	172	- 182	172	111	200
Rhodesia and Nyasaland, Fed-	1,110	112	- 102	112	111	200
eration of:				-1	1.	
Northern Rhodesia	180,749	492, 813	403, 661	412, 191	601, 985	569, 949
Southern Rhodesia	82, 507	84, 566	81,657	76, 837	76 970	74, 179
South-West Africa	780, 857	795, 702	779, 879	1, 279, 213	76, 870 1, 605, 460	1, 789, 323
Swaziland.	64	190,102	110,010	1, 410, 210	1,000,400	1, 100, 020
Tongonwike (ornorta)	31,050	41, 234	49 156	42 000	35, 020	20, 520
Tanganyika (exports) Tunisia	57, 498	39, 095	42, 156	43, 292 91, 726	86, 805	
Trando (amenta)	31,490	39,095	106, 097 85	91, 120	00,000	4 85, 000
Uganda (exports) Union of South Africa	1, 157, 696	1, 193, 152	1, 235, 418	1, 461, 336	1, 598, 278	1, 767, 472
Official of South Africa	1, 157, 090	1, 195, 152	1, 200, 410	1, 401, 550	1, 590, 210	1, 101, 412
Total	7, 739, 900	9, 780, 000	9, 213, 000	9, 868, 000	10, 190, 000	9, 871, 000
Oceania:						1 11-41-5
Australia New Guinea	10, 560, 418	12, 402, 963	13, 827, 038	14, 555, 412	14, 586, 197	15, 561, 098
Now Guinos	41,373	58, 693	48, 977	44, 459	42, 457 24, 302	38, 014
	29, 477	58, 693 19, 328	48, 977 17, 794	20, 421	24, 302	24, 946
Fiii		75, 888	33, 049	27, 930	950	1, 279
FijiNew Zealand		10,000				
Fiji New Zealand	169, 834	10,000				
Fiji			13, 927, 000		14, 654, 000	15, 625, 000
Fiji New Zealand	169, 834	12, 557, 000	13, 927, 000	14, 648, 000		15, 625, 000

Silver is also produced in Bulgaria, Cyprus, Hong Kong, Indonesia, Malaya, North Korea, Sarawak, and Slerra Leone, but production data are not available; estimates are included in total.
 This table incorporates a number of revisions of data published in previous Silver chapters. Data do not add exactly to totals shown because of rounding where estimated figures are included in the detail.
 Imports into the United States.
 Estimate.
 Recovery from an accumulation of refinery slimes.

Australia.—Silver output in Australia increased for the eighth consecutive year in 1957, gaining about 7 percent over 1956. Part of the gain was attributed to increased output of ore at Mount Isa Mines in Queensland and resulted from expansion of production facilities. The ore reserve at this property increased to 20.7 million tons of silver-lead-zinc ore averaging 6 ounces of silver per ton.

Bolivia.—Silver exports from Bolivia, most of which went to the United States, declined nearly 29 percent in 1957 (to 5.4 million ounces) as a result of lower output of silver-bearing, base-metal ores.

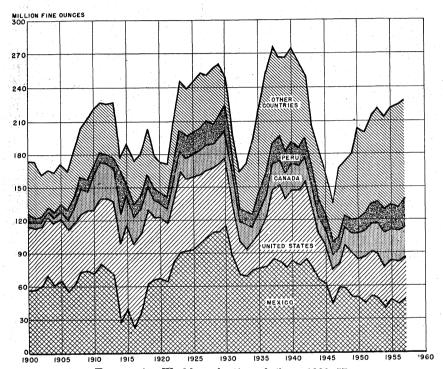


FIGURE 4.—World production of silver, 1900-57.

Canada.—Silver output in Canada, the third ranking producer, declined slightly in 1957 to 28.4 million ounces. Approximately 63 percent was exported to the United States during the year. About four-fifths percent of Canada's silver was recovered as a byproduct from smelting base-metal ores; silver and gold ores supplied, the remainder.

British Columbia, Ontario, and the Yukon, the leading producers, supply more than three-fourths of the total output, respectively. The leading silver-producing mines were: United Keno Hill Mines in the Yukon and the Sullivan and Torbit mines in British Columbia. Consumption of silver in the arts and industry and for coinage was estimated at 11.4 million ounces in 1957 compared with 7.7 million ounces in 1956. The gain was due chiefly to increased use in coinage.

¹⁶ Fraser, D. B., Silver in Canada—1957: Canadian Min. Jour., vol. 79, No. 2, February 1958, p. 143.

1037 SILVER

Mexico.—Silver production in Mexico increased nearly 10 percent in 1957 to 47.1 million ounces, and this country continued to maintain its rank as the world's leading silver producer by a substantial margin, Of 37 million ounces of silver exported, 49 percent went to the United

States and 39 percent to West Germany.

The Namiquipa silver-lead-zinc mines in Chihuahua have been worked intermittently since their discovery during the time of the Spaniards, but not until systematic diamond drilling was undertaken were large new ore bodies discovered and extensions of known ore bodies proved. Geology of the mineral deposits, ore development, and mining and milling methods were described and detailed engineering and cost data given in a recent technical journal.11

Peru.—Silver output in Peru, the leading silver-producing country in South America, increased for the ninth successive year in 1957 to an alltime high of 25.3 million ounces—a gain of 10 percent over 1956. Peru's silver was recovered chiefly as a coproduct or byproduct of base-metal ores. In 1957, 13.1 million ounces valued at \$11.7 million

was exported to the United States.

The Condoroma silver mine in southern Peru enlarged its milling capacity from 100 to 200 tons per day in June, 1957, thereby increasing the daily output of silver in Peru by about 2,000 ounces. San Juan de Lucanas, Cia. Minera Cailloma and Castrovirreyna Metal Mines Company continued to produce large quantities of silver. Cerro de Pasco was again the leading silver producing mine recovering about 50 percent of the country's total output of silver.

TECHNOLOGY

Excellent electrical and thermal properties, high resistance to corrosion, and ease of fabrication make silver very valuable for many uses. One author describes commercial grades, properties, and methods of fabricating fine silver. 12 A method of producing toughadherent coatings of silver on light metals, such as aluminum and magnesium and their alloys, was developed by National Research Development Corp. of Great Britain. The process, which is especially suitable for coating the internal surfaces of tubes and complex cavities, was described in a trade journal.13

The use of noble metals as construction materials in chemical engineering has been restricted by their high initial cost. Where the high rate of corrosion or contamination of base metals adversely affects the purity of a product, use of noble metals often is economically justified. A recent article 14 discusses the use of silver in construction materials and cites several examples of its use in chemical

equipment.

¹¹ Shefelbine, G. H., Silver-Lead-Zinc Mines at Namiquipa, Chihuahua, Mexico: Min. Eng., vol. 9, No. 10, October 1957, pp. 1090-1097.

12 Tietz, Edward E., Fine Silver: Materials and Methods, vol. 45, No. 1, January 1957, pp. 110-111.

13 Metals Industry (London), vol. 91, No. 22, Nov. 29, 1957, p. 462.

14 Warwick, I. J., Noble Metals in Chemical Engineering: Chem. Age (London), vol. 78, No. 1994, September 1957, pp. 501-502.

A patent was issued for a method of producing a silver catalyst 15 by applying ammoniacal silver nitrate solution to an inert carrier; the resulting catalyst contains 1.7 to 5.5 percent silver. A method of producing a silver catalyst by hot-spraying molten silver on copper fabric also was patented.16

A process for recovering silver from silver-bearing copper sulfide concentrate by treating the concentrate with ammonium carbonate and an oxygen-containing gas to separate a silver-rich fraction was patented. 17 Other significant articles pertaining to the technology

of silver were published during the year.18

¹⁵ Metzger, Floyd J., Silver Catalysts: U. S. Patent 2,805,207, Sept. 3, 1957.
16 Crum, John Patterson (assigned to D. Napler & Sons, Ltd., London, England), Method of Producing a Silver Catalyst: U. S. Patent 2,809,940, Oct. 15, 1957.
17 Abramson, Helmer A. (assigned to Calumet and Hecla, Inc.), Silver Recovery Method: U. S. Patent

^{2,807,533,} Sept. 24, 1957.

Mead, H. W., and Bischenall, C. E., Diffusion of Gold and Au-Ag Alloys: Jour. Metals, vol. 9, No. 7, July 1957, pp. 874-877.

Visnes, Norman, Sand Filling at the Galena Mine: Min. Eng., vol. 9, No. 1, January 1957, p. 49-52.

Slag—Iron-Blast-Furnace

By Wallace W. Key¹

CONTINUED demand by the construction industry resulted in another prosperous year for the iron-blast-furnace-slag industry in 1957. Increased activity in highway construction was reflected in the quantity of slag sold or used by processors. Development of the construction stage of the Federal Highway Program began to influence sales and offset to some extent the decline in home building.

The annual output of processed slag about equaled the total quantity of blast-furnace slag produced by the steel industry. Hence, the processing industry has reached the point where its output is limited by conditions in the steel industry. Concern was exhibited in the industry over the reduced quantity of slag produced per ton of iron, owing largely to use of higher grade blast-furnace feed. Increased importation of high-grade iron ore from South America and Labrador and expanding taconite-pellet production were contributing factors.

TABLE 1.—Iron-blast-furnace slag processed in the United States, 1948-52 (average) and 1953-57, by types

[National Slag Association]

			Air-co	oled			Granulated		Expanded		
	8	screened		Un	screened					Valu	18
Year		Value Value Short tons Value 1	Short tons		Aver-						
	Short tons	Total	Average per ton	Short tons	Total	Aver- age per ton	00113			Total	age per ton
1948-52 (aver- age) 1953 1954 1955 1956	19, 961, 382 24, 021, 624 22, 372, 472 24, 900, 883 25, 572, 388 25, 414, 327	31,228,295 36,131,615 38,476,208	1. 36 1. 40 1. 45 1. 50	808, 548	581,083 537,207 596,540 1,280,037	. 69 . 66 . 74 . 61	3, 358, 910 3, 455, 005 3, 835, 829 4, 634, 703	1, 250, 450 1, 512, 084 1, 618, 277 1, 642, 109	1, 659, 114 2, 285, 758 2, 599, 112 2, 891, 844 2, 990, 177 2, 941, 650	5,557,813 6,198,822 7,961,466 8,495,818	2.43 2.38 2.75 2.84

¹ Excludes value of slag used for hydraulic cement manufacture.

DOMESTIC PRODUCTION

Slag production in 1957 from iron blast furnaces remained at 39 million short tons, as in 1956. Processed slag for commercial use, as reported to the National Slag Association, also remained at 35 million short tons, about 90 percent of the total output in 1957.

¹ Commodity specialist.

Iron-blast-furnace slag was produced in 15 States; the bulk of it was processed in the steel centers of Pennsylvania, Ohio, and Alabama. Ohio continued to lead the other States in sales values, but Pennsylvania led in tonnage in 1957. California, Colorado, Illinois, Indiana, Kentucky, Maryland, Michigan, Minnesota, New York, Tennessee, Texas, and West Virginia continued to gain in total output.

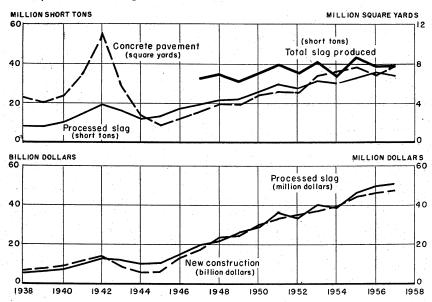


FIGURE 1.—Production of iron-blast-furnace slag compared with yards of concrete pavement (contract awards), monthly average, and value of new construction compared with value of processed slag, 1938-57.

TABLE 2.—Iron-blast-furnace slag processed in the United States, 1956-57, by States

	ĮN	ational Si	ag Association				
	Scree	ened, air-co	oled	All types			
	Quant	ity		Quant	ity	-	
	Short tons	Percent of total	Value	Short tons	Percent of total	Value	
1956 Alabama. Ohio. Pennsylvania. Other States ¹ . Total	4, 884, 371 6, 276, 941 5, 667, 320 8, 743, 756 25, 572, 388	19 25 22 34	\$6, 535, 053 10, 338, 396 8, 965, 090 12, 637, 669 38, 476, 208	5, 772, 135 8, 059, 041 8, 010, 187 13, 452, 384 35, 293, 747	16 23 23 23 38	\$8, 099, 533 13, 957, 713 11, 022, 324 16, 814, 602 49, 894, 172	
1957 Alabama Ohio Pennsylvania Other States ¹ Total	4, 067, 930 6, 182, 155 6, 015, 458 9, 148, 784 25, 414, 327	16 24 24 36	6, 025, 080 10, 715, 137 9, 875, 976 13, 586, 331 40, 202, 524	4, 849, 231 8, 122, 741 8, 232, 635 13, 636, 533 34, 841, 140	14 23 24 39	7, 397, 871 14, 201, 925 11, 799, 593 18, 261, 313 51, 660, 702	

[National Slag Association]

¹ California, Colorado, Illinois, Indiana, Kentucky, Maryland, Michigan, Minnesota, New York, Tennessee, Texas, and West Virginia.

The national average showed that slightly less than 1 ton of slag was produced for every 2 tons of iron. Forty-three companies operated 63 air-cooled plants, 19 granulating plants, and 21 expanded-slag plants in the United States in 1957. Two air-cooled-slag plants closed in 1957.

Recovery of Iron.—Recovery of iron by magnetic and handpicking methods for reuse in blast furnaces continued to be an important function of the slag industry. In 1957, 387,381 tons of iron slag (about 60 percent iron), representing more than 1 percent of the slag processed, was returned to the furnaces, a 6-percent decrease from 1956.

Employment.—In all, 2,068 plant and yard employees were reported by the slag industry in 1957 compared with 2,072 in 1956. The manhours worked in 1957 totaled 4,765,017, representing a slight decrease

under the number reported in 1956.

Methods of Transportation.—As in past years, virtually the entire tonnage of processed slag in 1957 was shipped by truck and rail. Waterways played a minor but locally important role. Truck shipments increased from 64 percent of the national total in 1956 to 66 percent in 1957.

TABLE 3.—Shipments of iron-blast-furnace slag in the United States, 1956-57, by method of transportation

is tanonarial	ag Association			
	1956	1957		
Method of transportation	Short tons	Percent of total	Short tons	Percent of total
Rail	11, 930, 598 22, 494, 740 868, 409	34 64 2	10, 528, 566 21, 682, 121 751, 791	32 66 2
Total shipmentsInterplant handling 1	35, 293, 747	100	32, 962, 478 1, 878, 662	100
Total processed	35, 293, 747		34, 841, 140	

1 Confined mainly to granulated slag used in manufacturing cement.

CONSUMPTION AND USES

Blast-furnace slag, when processed by crushing and selective screening, is a mineral aggregate that makes an important contribution to the special demands of the construction industry. Screened, air-cooled slag—the major type produced by the industry—constituted 73 percent of the total output of processed slag in 1957. The remainder was divided among the other types as follows: Unscreened, air-cooled, 6 percent; granulated, 12 percent; and expanded, 9 percent.

A new plant was scheduled to begin processing slag for roofing and

highway purposes in Virginia.

Screened, Air-Cooled Slag.—This product results when molten slag is deposited in pits or banks for solidification under atmospheric conditions. Screened, air-cooled slag consumed in 1957 decreased about 1 percent; it was used mainly as aggregate in portland and bituminous concrete, for highway and airport construction, and as railroad ballast. These uses consumed about 92 percent of the total tonnage. Its use as railroad ballast, sewage trickling filter medium,

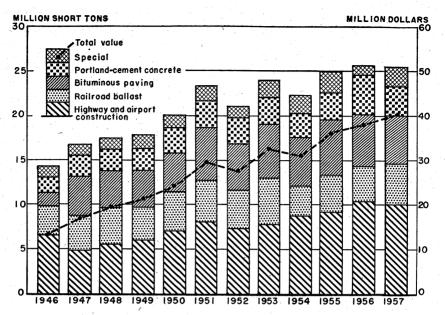


FIGURE 2.—Consumption and value of air-cooled, iron-blast-furnace slag sold or used in the United States, 1946-57.

and roofing granules substantially increased in 1957. Consumption decreased principally for use in manufacturing cement and as an aggregate in bituminous-concrete block. Other important uses for this material were in manufacturing mineral wool and glass and as road fill (parking lots and driveways).

Unscreened, Air-Cooled Slag.—In 1957 the quantity of unscreened, air-cooled slag processed totaled 2.2 million short tons valued at \$1 million, increases of 3 and 10 percent, respectively compared with 1956. About 61 percent of this material was used as aggregate in

highway and airport construction.

Granulated Slag.—The consumption of granulated slag in 1957 totaled 4 million short tons—a decrease of 7 percent under 1956. Of this quantity, 45 percent was used in base and insulating courses for highways and as fill; 43 percent was used in manufacturing hydraulic cement; and the remainder included slag for concrete-block manufacture, agricultural slag, and other purposes. Utilization of granulated slag decreased for all purposes except as base and subgrade aggregate in highway construction and miscellaneous uses.

Expanded Slag.—This cellular product results from applying a limited quantity of water to molten slag—less than that required for granulation. Several commercially successful methods of expanding slag are employed. Consumption of expanded slag totaled 3 million short tons valued at \$8 million, slight decreases in both tonnage and value compared with the 1956 figures. The bulk of this material was used for lightweight concrete block and aggregate in lightweight

concrete.

TABLE 4.—Air-cooled, iron-blast-furnace slag sold or used by processors in the United States, 1956-57, by uses

[National Slag Association]

Use	Scre	ened	Unscreened		
	Short tons	Value	Short tons	Value	
1956					
Aggregate in— Portland-cement concrete construction	3, 445, 351	\$5, 572, 435			
Bituminous construction (all types)		9, 451, 914			
Highway and airport construction 1	10, 283, 258	15, 557, 619	1, 261, 151	\$1,013,755	
Manufacture of concrete block	703, 744	1, 033, 091			
Railroad ballast		4, 484, 346			
Mineral wool		795, 431			
Roofing (cover material and granules)		891, 333			
Sewage trickling filter medium	39, 383	79, 176			
Agricultural slag, liming		10, 429	l		
Other uses	382, 680	600, 434	835, 328	266, 282	
Total	25, 572, 388	38, 476, 208	2, 096, 479	1, 280, 037	
1957					
Aggregate in—			1		
Portland-cement concrete construction		5, 712, 873			
Bituminous construction (all types)	. 5, 465, 121	9, 161, 592			
Highway and airport construction 1	10, 153, 593	16, 464, 868		1, 174, 991	
Manufacture of concrete block	632, 615	970, 561			
Railroad ballast		5, 243, 617			
Mineral wool		765, 448			
Roofing (cover material and granules)	421,645	1, 136, 181			
Sewage trickling filter medium	72,884	130, 912			
Agricultural slag, liming	6,651	11, 321	024 416	233, 42	
Other uses	352, 447	605, 151	834, 416	200, 421	
Total	25, 414, 327	40, 202, 524	2, 166, 678	1, 408, 412	

¹ Other than in portland-cement concrete and bituminous construction.

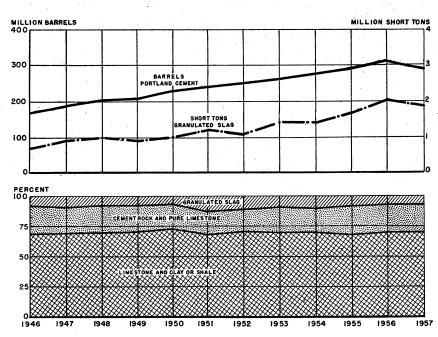


FIGURE 3.—Granulated slag used in manufacturing cement compared with barrels of portland-cement shipments and percentages of raw materials used in manufacturing portland cement, 1946-57.

TABLE 5.—Granulated and expanded iron-blast-furnace slag sold or used by processors in the United States, 1956-57, by uses

[National Slag Association]

Use	Gran	ulated	Expa	nded
	Short tons	Value	Short tons	Value
1956				
Highway construction (base and subgrade)	1,004,793 886,197 70,684	\$763, 090 313, 207 102, 313		
Aggregate for concrete-block manufacture Aggregate in lightweight concrete Other uses	372, 102	287, 532 107, 882 68, 085	2, 672, 189 95, 997 221, 991	\$7, 601, 940 280, 759 613, 119
Total	4, 634, 703	2 1, 642, 109	2, 990, 177	8, 495, 818
Highway construction (base and subgrade) Fill (road, etc.) Agricultural slag, liming	61, 992	930, 649 206, 384 95, 827		
Manufacture of hydraulic cement Aggregate for concrete-block manufacture Aggregate in lightweight concrete Other uses	169, 216	196, 419 185, 681	2, 825, 331 83, 538 32, 781	8, 048, 276 242, 859 143, 672
Total	4, 318, 485	2 1, 614, 960	2, 941, 650	8, 434, 807

¹ Data not available. ² Excludes value of slag used for hydraulic-cement manufacture.

PRICES

The average unit values of slag in 1957 varied from \$0.28 to \$4.38 per ton. Values for screened, air-cooled slag ranged from \$1.15 per

TABLE 6.—Average value per short ton of iron-blast-furnace slag sold or used by processors in the United States, 1956-57, by uses

[National Slag Association]

Use	Air-c	ooled	Granulated	Expanded
	Screened	Unscreened		
Aggregate in— Portland-cement concrete construction Bituminous construction (all types). Highway and airport construction ² Manufacture of concrete block Rallroad ballast. Mineral wool Roofing (cover material and granules) Sewage trickling filter medium Agricultural slag, liming Road fill, etc. Other uses	1. 60 1. 51 1. 47 1. 16 1. 52 2. 26 2. 01 1. 64	\$0.80	. 77 	
Aggregate in— Portland-cement concrete construction Bituminous construction (all types) Highway and airport construction 2 Manufacture of concrete block Railroad ballast. Mineral wool. Roofing (cover material and granules) Sewage trickling filter medium. Agricultural slag, liming Fill (road, etc.). Other uses	1. 53 1. 15 1. 61 2. 69 1. 80 1. 70	. 88	1, 16	

Lightweight concrete.
 Other than in portland-cement and bituminous construction.
 Highway construction for base and subgrade material.

short ton for railroad ballast to \$2.69 for slag used in the roofing industry; for most products the average values were slightly higher The average value of unscreened, air-cooled slag used in highway and airport construction was \$0.88 per short ton. Among the use classifications of granulated slag, the average value of slag used in concrete block increased from \$0.77 to \$1.16 per short ton; average values for other uses were irregularly a few cents higher or lower than in 1956.

Producers indicated that increases in price resulted from increases in wages, costs of equipment, supplies, and from market conditions.

TECHNOLOGY

In about half a century, through technology, iron-blast-furnace slag grew from a liability to a half-million-dollar yearly asset. 1957 technical and processing methods continued to develop.

Production Methods and Equipment.—A German article reviewed the various methods of slag production in Europe and the United States and the attributes and uses of the different products.²

The effect of crusher design on the quality of the crushed slag was discussed, and the interrelation of particle shape, density, and ability

to withstand pressure was mentioned in an article.3

Cements.—Results of experimentation on concrete made from blastfurnace slag and fly ash mixed in variable proportions were reported in a French publication.⁴ In France the influences of decreasing temperature on setting time of slag cements were studied.⁵

Steam-hardened concrete made from blast-furnace slag and fly ash

ground together was the subject of a patent.6

A Soviet publication reported producing ash-slag cements by wetgrinding a mixture of blast-furnace slags, boiler ash, and lime.

A method of producing an improved flue-dust sinter by adding

granulated slag was patented.8

A series of three articles indicates how the addition of activators, such as portland-cement clinker, to cement made from granulated

blast-furnace slag affects the hardness of the final product.

The U.S.S.R. has developed a process for enriching portlandcement clinker from blast-furnace slag by adding limestone to the molten slag. To insure thorough disintegration of the limestone particles and its mixing with the melt, the mixture is treated with ultrasonic waves.10

² Ruopp, Walter, [Production and Utilization of Expanded Slag]: Stahl u. Eisen (trans. from German publication by the Nat. Slag Assoc.), vol. 77, No. 1, 1957, p. 17.

² Kahlhofer, H., Send, A., and Kaiser, H., [Classification of Particle Shape in Washed and Crushed Blast-Furnace Slag]: Stahl u. Eisen, vol. 76, 1956, pp. 957-964; Ceram. Soc. Abs., vol. 40, No. 10, October

Blast-Furnace Slag]: Stahl u. Elsen, vol. 76, 1956, pp. 957-964; Ceram. Soc. Abs., vol. 40, No. 10, October 1957, p. 242.

4 Nicol, A. (Nat. School Mines, Paris), [The Mixture of Slag and Fly Ash High in Calcium Sulfate and Low in Lime]: Rev. mat. construc. et trav. pub., No. 501, 1957, pp. 157-164; Chem. Abs., vol. 51, No. 22, Nov. 25, 1957, p. 18536.

8 Blondiau, Leon, [Influence of Decreasing Temperature on the Setting Time of Cements, Especially on Slag-Base Cements]: Rev. mat. construc. et trav. pub., C, No. 500, 1957, pp. 141-146; Chem. Abs., vol. 51, No. 22, Nov. 25, 1957, p. 18536.

6 Carlsson, B. O., and Eisner, F. F. (assigned to Skovde Gasbetong Aktiebolag, Skovde, Sweden), Manufacture of Building Materials of the Concrete Type: U. S. Patent 2,803,556, Aug. 20, 1957.

7 Kristi, S., [Production of Ash-Slag Cements]: Prom. Kooperatsiya, No. 2, 1955, pp. 19-22; Chem. Abs., vol. 51, No. 22, Nov. 25, 1957, p. 18536.

8 Carney, D. J. (assigned to United States Steel Corp., a corporation of New Jersey), Flue-Dust Sinter and Method of Manufacture: U. S. Patent 2,780,536, Feb. 5, 1957.

9 Tanaka, Taro, From Blast-Furnace Slag to Cement: Rock Products, vol. 60, No. 3, March 1957, p. 100, 102, 104, 106; No. 4, April 1957, pp. 107, 111, 114, 117; No. 10, October 1957, pp. 163-164, 166, 196.

10 Orinskii, N. V., and others, [Portland-Cement Clinker From Enriched Moltan Blast-Furnace Slag] U. S. S. R., July 25, 1957, pp. 106, 149; Chem. Abs., vol. 51, No. 22, Nov. 25, 1957, p. 18542.

Controversy about the harmfulness of magnesia in slags used in cement blends continued. The maximum proportion of magnesia permitted in most instances has been 5 percent, but tests indicated that higher percentages may be used.¹¹

Poland experimented with the use of sodium chloride and blastfurnace slags in cements; salt is considered advisable when cement

must be set at low temperatures.12

Portland blast-furnace-slag cements, blast-furnace slags and the portland-cement clinkers used in their manufacture, from each cement mill using slag in the United States were analyzed by the United States Army Corps of Engineers. Results indicated that the then current Federal ASTM specifications provided adequate assurance of performance at least equal to type I portland cements by applicable specifications. Mortar-bar tests suggested that slag in the cement acted to keep expansion resulting from alkali-aggregate reaction from becoming excessive, even when a highly reactive aggregate is used.¹³

Metal Recovery.—An article described a magnetic separator and heavy-duty cleaning equipment that reportedly can handle 450 tons per hour and recover more iron than is possible with other types of

separators.14

Miscellaneous.—British scientists have developed a process of determining the quantity of red-hot molten slag by using radioactive isotopes of barium and lanthanum. The isotopes were added to the slag mass in known quantity and spread throughout the melt. a small sample was drawn off, the total mass was computed by measurable dilution of the radioisotope by the slag. To check their process, the researchers had a special run of about 30 tons of slag cooled, crushed, and weighed by machine. The isotope process showed an accuracy of plus or minus 1 percent. 15

It has been reported that, when slag is used as the main constituent in cement, the heat required for clinkering is reduced considerably.¹⁶

Blast-furnace slag was mentioned in two separate patents by the same inventors as suitable material for producing permeable concrete

for cementing oil wells.17

A patent was issued on a method for producing hydraulic cement. Granulated blast-furnace slag is wet-ground and quickly dried with hot carbon dioxide. Particles collected are ready for use with a mixture of portland cement. The powder may be stored for long periods without appreciable deterioration.¹⁸

The Seailles process for recovering alumina from blast-furnace slag was described. 19

¹¹ Rock Products, vol. 60, No. 10, October 1957, pp. 77, 80.
12 Roszak, Wojciech, [Pjastic Slag Cement]: Zement Wapno-Gips, vol. 13 (22), 1957, pp. 141-148; Chem. Abs., vol. 51, No. 21, Nov. 10, 1957, pp. 17, 133.
13 Mather, Bryant, Laboratory Tests of Portland Blast-Furnace-Slag Cements: Am. Concrete Inst. Jour., vol. 29, No. 3, September 1957, pp. 205-232.
14 Fritz, Lawrence J., Methods for Reclaiming and Processing Scrap From Steel-Plant Slags and Refuse: Iron and Steel Eng., vol. 34, No. 4, April 1957, pp. 95-97.
15 Rock Products, vol. 60, No. 11, November 1957, p. 11.
16 Eigne, Hans, [Use of Blast-Furnace Slag in Cement Manufacture]: Tonind.-Ztg. u. Keram, Rundschau, vol. 81 (3/4), 1957, pp. 39-40; Ceram. Soc. abs., vol. 40, No. 9, September 1957, p. 198.
17 Mangold, G. B., Dyer, J. A., and Hart, J. T. (assigned to Petroleum Engineering Associates, Inc., Passadena, Calif.), Well Completion With Permeable Concrete: U. S. Patent 2,786,531, Mar. 26, 1957; U. S. Patent 2,789,557, May 28, 1957.
18 Triel, V. (by C. O. E. Trief, as administratrix), Method for Producing a Hydraulic Binder in Powder Form: U. S. Patent 2,819,172, Jan. 7, 1958.
19 Vorwerk, O., Huttemann, O., Mintrop, R., and Roederer, G., [Recovery of Alumina From Blast-Furnace Slag for the Aluminum Industry]: Stahl u. Eisen, vol. 76, 1956, pp. 1628-1634; Ceram. Soc. Abs., vol. 40, No. 10, October 1957, p. 237.

An improved apparatus for recovering sulfur from blast-furnace slag was patented. Provision is made for a long contact time between

air and slag.20

Processing.—A method of regulating slag flow to an apparatus used to produce foamed blast-furnace slag was patented. The invention is reportedly an improvement on the slag-feed control described in the patentee's United States Patent 2,702,407. This process retains iron from the slag in a settling chamber.21

Aggregates.—A patent was issued for a method said to produce a "plaster aggregate" from blast-furnace slag that would be competitive

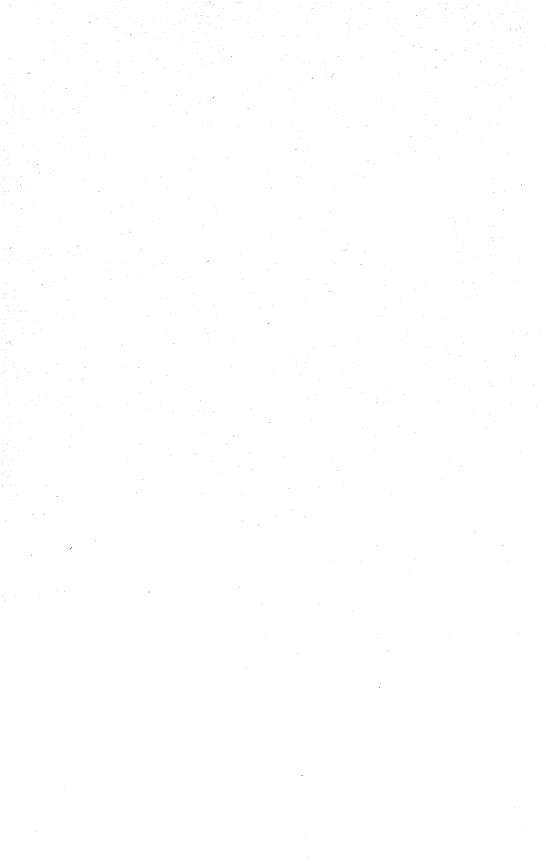
with vermiculite and perlite.22

A rapid method for determining frost resistance of slag and other aggregates was reported in a German article. Air is removed from the sample by immersion in ice water. The sample then is placed in brine at minus 6° F., and examined 2 hours later. It remains another 2 days in the wet frost if no damage becomes visible to the shape, surface, and structure.23

A Soviet publication reported test results of granulated blastfurnace slag used as an addition to natural fine-grained sand in

concrete.24

²⁰ Sconberger, F. P., Apparatus for Recovering Sulfur From Blast-Furnace Slag: U. S. Patent 2,794,712,


June 4, 1957.

21 Kinney, S. P., and Osborne, F., Iron Retention and Slag Regulating Pit: U. S. Patent 2,809,028, Oct.

²¹ Kinney, S. F., and Osborne, F., Alba Association of Foamed Slag and Like Material of Light Weight: U. S. Patent 2,778,160, Jan. 22, 1957.

²² Pfeifer, Heinrich, [Rapid Method for Determining Frost Resistance of Road Materials]: Strasse u. Autobahn, vol. 7, No. 6, June 1956, pp. 203-216.

²⁴ Leshchinskii, M. Yu, [Evaluation of Granulated Slag as an Enriching Addition to Natural Sands in Cement-Concrete]: Zavodskaya Laboratoriya (in Russian), vol. 22 (6), 1956, pp. 698-700; Jour. Iron and Steel Ind. (abs.), vol. 187, No. 1, September 1957, p. 61.

Slate

By D. O. Kennedy 1 and Nan C. Jensen 2

LATE PRODUCTION in the United States in 1957 decreased for the third consecutive year. Sales of slate millstock and flagstones increased 10 percent in value, but those of all other product groupings declined.

Crushed products (granules and flour) constituted 81 percent of the total slate sold in 1957, but the value of crushed products was

only 40 percent of the total value of sales.

TABLE 1.—Salient statistics of the slate industry in the United States, 1948-52 (average) and 1953-57

	1948-52 (average)	1953	1954	1955	1956	1957
Dimension slate:						
Thousand short tons	152	153	152	141	119	120
Value (thousand dollars)	7, 087	6, 685	6, 349	6,582	6, 802	6, 620
Thousand short tons	654	546	609	619	526	512
Value (thousand dollars) Total slate:	6, 380	5, 953	6,612	6, 332	4, 864	4, 409
Thousand short tons	806	699	761	760	645	632
Value (thousand dollars)	13, 467	12, 638	12, 961	12, 914	11,666	11, 029
Value (thousand dollars)	124	224	145	149	248	288
Exported:					-10	
Value (thousand dollars)	526	364	421	392	331	282

DOMESTIC PRODUCTION

Slate was produced in nine States during 1957. The production from 4 States—Pennsylvania, Vermont, Virginia, and New York—amounted to over 60 percent of the total quantity and 85 percent of the total value of slate produced in the United States.

The one operator in Maine produced electrical slate and flagging. Production in that State for 1957 decreased 23 percent in value com-

pared with 1956.

New York production consisted almost entirely of flagging, granules, and flour. Decreased production of granules and flour resulted in an overall decline of 9 percent in quantity for the State in 1957 compared with 1956, but value increased 2 percent. The number of operators increased from 10 to 14.

Production was reported in Pennsylvania from 15 operators in 1957 compared with 16 in 1956. Production declined 9 percent in quantity and 4 percent in value. Production consisted of roofing, flagging, and the full range of millstock; one operator shipped granules and flour

Assistant chief, Branch of Construction and Chemical Materials.
 Statistical assistant.

and another flour only. Production of roofing slate declined 18 percent, blackboards and bulletin boards 12, and billiard-table tops 19,

but electrical, structural, and sanitary products increased 8 percent.

Production in Vermont in 1957 declined 12 percent in value compared with 1956. Sales of millstock and flagging increased, but the

TABLE 2.—The slate industry in the United States, 1956-57

		1956	,			1957	* *.	
Domestic production (sales	Quantity			Quantity			Percent of change in—	
by producers)	Unit of measure- ment	Approximate short tons	Value	Unit of measurement Approximate short tons		Value	Quan- tity (unit as re- ported)	Value
Roofing slate	Squares 107, 054	40, 337	\$2, 588, 971	Squares 85, 086	32, 70 5	\$2, 002, 857	-21	-23
Millstock: Electrical, structural, and sanitary slate 1 Blackboards and bulletin	Sq. ft. 2, 024, 759	15, 916	2, 058, 604	Sq. ft. 2, 309, 531	18, 871	2, 147, 969	+14	+4
boards 2	1, 393, 240 98, 511	3, 493 742				1, 013, 595 65, 397		
Total millstockFlagstones, etc.3	3, 516, 510 10, 013, 736			3, 613, 520 11, 432, 395				+4 +26
Total slate as dimension stone. Granules, flour, and other 4		119, 030 526, 449			120, 366 511, 420			-3 -9
Grand total		645, 479	11, 665, 524		631, 786	11, 029, 044	-2	-5

TABLE 3.—Slate sold by producers in the United States, 1948-52 (average) and 1953-57, by States and uses

		Roo	fing	Mills	stock		,
	Opera- tors	Squares (100 square feet)	Value	Square feet	Value	Other uses (value) ¹	Total value
1948-52 (average)	81 68 57 55 55	189, 694 142, 292 117, 729 121, 480 107, 054	\$3, 969, 877 3, 005, 649 2, 401, 087 2, 568, 213 2, 588, 971	2, 871, 418 2, 940, 527 3, 195, 737 3, 376, 286 3, 516, 510	\$1, 927, 076 2, 220, 504 2, 378, 323 2, 747, 215 3, 114, 155	\$7, 569, 779 7, 412, 312 8, 181, 204 7, 598, 349 5, 962, 398	\$13, 466, 732 12, 638, 465 12, 960, 614 12, 913, 777 11, 665, 524
New York	14 15 17 5 9	32 46, 429 (2) (2) (2) 38, 625	2, 554 973, 767 (2) (2) (2) 1, 026, 536	2, 402, 168 (2) 1, 211, 352	2, 042, 798 (2) 1, 184, 163	958, 023 988, 809 (²) (²) 3, 852, 394	960, 577 4, 005, 374 3, 269, 370 1, 002, 470 1, 791, 253
Total	60	85, 086	2, 002, 857	3, 613, 520	3, 226, 961	5, 799, 226	11, 029, 044

Includes a small quantity of slate used for grave vaults and covers.
 Includes a small quantity of school slates.
 Includes slate used for walkways, stepping stones, and miscellaneous uses.
 Includes crushed slate used for lightweight aggregate.

Flagging and similar products, granules, flour, and aggregates.
 Included with "Other States" for this use.
 Includes the following States to avoid disclosing individual company confidential data: Maine and North Carolina, 1 operator each; Arkansas and Georgia, 2 operators each; and California, 3 operators.

TABLE 4.—Slate sold by producers in Pennsylvania, 1948-52 (average) and 1953-57, by uses

			Roofir	ng slate	Mill	lstoc k	
Year		Opera- tors	Squares (100 square	Value	Electrical, structural, and sanitary ¹		
			feet)		Square feet	Value	
1948-52 (average)	18 17	122, 278 86, 116 77, 819 72, 638 56, 924 46, 429	\$2, 371, 924 1, 688, 167 1, 487, 870 1, 458, 594 1, 217, 404 973, 767	1, 304, 549 1, 211, 381 1,093, 590 1, 423, 812 1, 019, 678 1, 102, 714	\$546, 215 709, 906 735, 172 1, 055, 195 950, 456 967, 747		
		Millstock	Continued	l			
Year		ds and bul- oards ³ Billiard-table tops			Other uses (value)	Total value	
	Square feet	Value	Square feet	Value			
1948–52 (average)	970, 716	\$656, 4 699, 6 808, 8 603, 2 985, 6 1, 013, 8	098 71, 851 372 116, 338 288 100, 939 502 94, 101	43, 316 72, 937 64, 406 64, 805	\$1, 452, 116 1, 279, 125 1, 314, 588 1, 239, 815 975, 292 988, 809	\$5, 130, 466 4, 419, 612 4, 419, 439 4, 421, 298 4, 193, 559 4, 005, 374	

Includes a small quantity of slate for vaults and covers.
 Includes a small quantity of school slates.

quantity of roofing slate, granules, and flour sold was 23 percent lower than in 1956. The number of operators remained 17.

As in previous years, the principal output of the Virginia quarries was roofing slate and granules. Total slate sales declined 3 percent

in value compared with 1956.

Production in California consisted of flagging, granules, and flour, but granules, flour, and crushed slate for asphalt filler and lightweight aggregates were produced in Arkansas and Georgia. The total production of these 3 States increased 8 percent in quantity but decreased

2 percent in value.

Because of the establishment of a slate-quarrying industry at Mount Gilead, Davidson County, North Carolina joined the ranks of slate-producing States. A dark, blue-gray, fine-grained slate was produced for walks, floors, stair treads, window sills, and other structural trim. In a mill equipped with a diamond saw the stone was cut to stock sizes or to special dimensions specified by the trade. Most of it had a split-face finish, but a sand-rubbed or hone finish was furnished if required.

CONSUMPTION AND USES

Consumption of roofing slate, slate billiard-table tops, granules, and flour declined in 1957. As indicated in figure 1, the decline in sales of roofing slate that has been in progress during recent years was accelerated by the continued recession in new residential building in 1957. Roofing

slate had strong competition from alternate roofing products. The consumption of total millstock slate increased moderately since non-residential building, the field in which millstock slate is most widely used, increased. This condition is also shown graphically in figure 1.

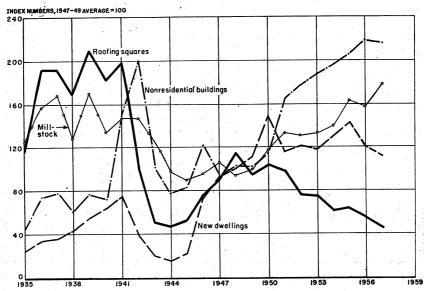


Figure 1.—Sales of roofing slate and millstock compared with number of new dwelling units, and value of certain new nonresidential construction, adjusted to 1947-49 prices, 1935-57. Data on number of new dwelling units in nonfarm areas from U. S. Department of Labor; data on nonresidential construction from U. S. Department of Commerce and U. S. Department of Labor.

TABLE 5.—Dimension slate sold by producers in the United States, 1948-52 (average) and 1953-57

	Roofing			Mil	lstock	Ot	her 1	Total	
Year	Squares	Approximate short tons	Value	Approximate short tons	Value	Approximate short tons	Value	Approximate short tons	Value
1948-52 (average) 1953 1954 1955 1956 1957	189, 694 142, 292 117, 729 121, 480 107, 054 85, 086	53, 470 43, 549 45, 611 40, 337	2, 401, 087 2, 568, 213 2, 588, 971	16, 995 17, 796 20, 732 20, 151	2, 378, 323 2, 747, 215 3, 114, 155	82, 438 90, 281 74, 478 58, 542	1, 569, 409 1, 266, 937 1, 098, 910	152, 903 151, 626 140, 821 119, 030	6, 348, 819 6, 582, 365 6, 802, 036

¹ Includes flagstones, walkways, stepping stones, and miscellaneous slate.

The consumption of granules declined both in quantity and value in 1957 compared with 1956. Figure 2 indicates that sales of roofing slate were only about 18 percent in value of the total sales of slate in 1957.

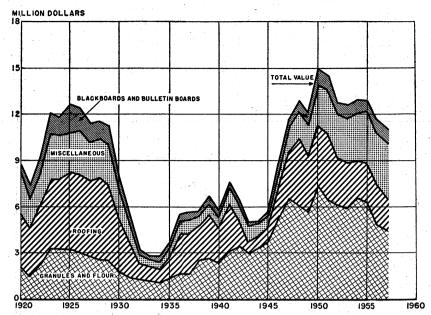


FIGURE 2.—Value of slate sold in the United States, 1920-57, by principal uses.

TABLE 6.—Crushed slate (granules and flour) sold by producers in the United States, 1948-52 (average) and 1953-57

Year	Gran	ules 1	Flo	u r	Total		
	Short tons	Value	Short tons	Value	Short tons	Value	
1948-52 (average)	502, 024 395, 881 474, 336 466, 604 397, 534 390, 294	\$5, 670, 611 5, 105, 429 5, 889, 062 5, 539, 315 4, 102, 505 3, 730, 824	152, 070 149, 805 134, 959 153, 015 128, 915 121, 126	\$709, 700 848, 232 722, 733 792, 097 760, 983 678, 692	654, 094 545, 686 609, 295 619, 619 526, 449 511, 420	\$6, 380, 311 5, 953, 661 6, 611, 795 6, 331, 412 4, 863, 488 4, 409, 516	

^{1 1954-57} includes crushed slate used for lightweight aggregate.

PRICES

The average price of all slate products at the quarries decreased from \$18.07 per ton in 1956 to \$17.46 in 1957.

Roofing Slates.—The average value per square of roofing slate decreased 3 percent in 1957 compared with 1956—from \$24.18 to \$23.54. Decreases occurred in Pennsylvania and Vermont but average value increased in Virginia.

Millstock.—The average value of millstock per square foot remained at 89 cents in 1957. Electrical slate declined in value per square foot from \$2.07 in 1956 to \$1.62 in 1957, and structural and sanitary products from 84 to 77 cents per square foot; blackboards and bulletin boards increased from 71 cents to 83 cents per square foot; and billiard-table tops increased from 71 cents per square foot in 1956 to 81 cents in 1957.

Flagstones.—The average sales value of flagstones at the quarry increased from 11 cents per square foot in 1956 to 12 cents in 1957.

Granules and Flour.—Granules (including crushed slate for aggregates) decreased in price per ton from \$10.32 in 1956 to \$9.56 in 1957; and flour declined from \$5.90 in 1956 to \$5.60 per ton in 1957.

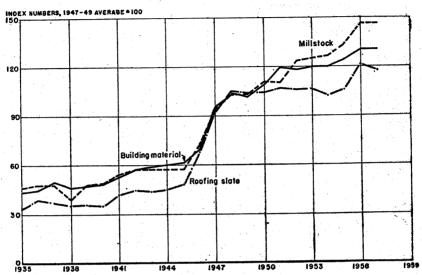


FIGURE 3.—Average selling price of slate compared with wholesale prices of building materials in general, 1935-57. Wholesale prices from U. S. Department of Labor.

FOREIGN TRADE³

Imports.—The value of slate imported into the United States increased 16 percent, from \$247,621 in 1956 to \$288,379 in 1957. Italy and Portugal accounted for 99 percent of the imports in 1957, and most of the remainder originated in West Germany. A small quantity same from the Union of South Africa.

Exports.—The value of slate exported from the United States, as reported by producers to the Bureau of Mines, declined 15 percent from \$331,313 in 1956 to \$282,345 in 1957. Exports consisted chiefly of blackboards, granules, and flour. Most of the exports were to Canada with small quantities to Latin American countries.

³ Figures on imports compiled by Mae B. Price and Elsie D. Jackson, Division of Foreign Activities, Bureau of Mines, from records of the U.S. Department of Commerce, Bureau of the Census.

TABLE 7.—Slate imported for consumption in the United States, 1948–52 (average) and 1953-57, by countries

Bureau of the Census

Country	1948-52 (aver- age)	1953	1954	1955 1	1956 1	1957 1
North America: Canada	\$3, 279 37	\$2,790		\$323		\$285
TotalSouth America: Brazil	3, 316 240	2, 790		323		285
Europe: Germany ² Italy Netherlands Norway Portugal Spain Switzerland United Kingdom	80, 958 44 195	35, 299 127, 076 	\$23, 013 74, 480 1, 996 45, 262	10, 886 75, 314 	\$21, 748 126, 266 98, 913	12, 828 132, 618 142, 076
Total	120, 351	221, 259	144, 751	147, 899	246, 927	287, 522
Asia: China Japan Total Africa: Union of South Africa Oceania: Australia	40 164 204	96		23 23 600	694	310 310 262
Grand total	124, 125	224, 145	144, 751	148, 845	247, 621	288, 379

Owing to changes in tabulating procedures by the Bureau of the Census, data known to be not comparable to years before 1954.
 West Germany, 1952-57.

TABLE 8.—Slate exported from the United States, 1948-52 (average) and 1953-57, by uses 1

Use	1948-52 (aver- age)	1953	1954	1955	1956	1957
Roofing School slate * Electrical Blackboards Billiard tables	\$10, 610 11, 366 10, 578 70, 376 71, 941	\$9, 132 1, 796 23, 225 89, 346 65, 129	\$17, 129 (3) 9, 085 3 91, 257 71, 961	\$12, 801 } 107, 566	\$6, 747 135, 516	\$6, 168 276, 177
Structural (including floors and walk- ways) and granules and flour	351, 138	175, 770	231, 312	271, 268	189, 050]
Total	526, 009	364, 398	420, 744	391, 635	331, 313	282, 345

Figures collected by the Bureau of Mines from shippers of products named.
 Includes slate used for pencils and educational toys.
 School slates included with blackboards.

WORLD REVIEW

United Kingdom.—North Wales production of roofing slates reached 210,000 squares in 1956, about 4 percent less than in 1955. At the end of 1956 there were 3,314 employees in the Welsh slate industry.

It was reported late in 1957 that in the Dorothea Slate Quarries, North Wales, the working staff had been considerably reduced because of a recession in the market for certain grades of slate.

TECHNOLOGY

The discharge of light powder charges in deep drill holes is a well-known method of making primary breaks in slate quarries; but large-scale blasting is unusual. A blast large enough to dislodge 50,000 tons of slate was discharged in the Broughton Moor Green Slate Quarries near Coniston, Lancashire, England. The mass to be broken was first separated by making a wire-saw cut between it and the adjoining mountain of slate. An adit was driven 40 feet directly in from the quarry face and then turned at right angles for another 120 feet. A charge of 4½ tons of explosives was distributed in 5 lots at evenly spaced points in the 120-foot section of the adit at the back of the mass to be dislodged. The charges were fired simultaneously, and the result was said to be highly satisfactory. Most of the broken slate was used for roofing, but an increasing market was developing for slate as building stone to face large buildings and shop fronts, as well as for steps, sills, and other millstock products. **

Taking a bank building with slabs 4 foot long and 1½ feet wide was

Facing a bank building with slabs 4 feet long and 1½ feet wide was the first recorded use of slate in Cornwall, England, as a building stone.

The slabs were chiseled to give a ribbed finish.5

A small plant was built near North Bangor, Pa., in 1955 to make lightweight aggregate from slate. Fine waste slate with addition of about 6 percent pulverized coal was calcined on a traveling grate. The plant operated for about 1 year and is said to have made a satisfactory product, but there has been no recent activity.

There was some prospect of using blocks of waste slate from the North Wales quarries in making seawalls. They had been used with

success in making a seawall 1 mile long at Portmadoc.

A patent was issued for a new type of roofing and siding composition, consisting of 35 to 50 percent slate flour, 25 to 35 percent portland cement, and 15 to 20 percent asbestos.⁶

<sup>Quarry Managers' Journal, World's Biggest Slate-Quarry Blast: Vol. 40, No. 10, April 1957, pp. 589-592.
Quarry Managers' Journal, New Bank With Slate Facing: Vol. 40, No. 10, April 1957, p. 574.
Blake, C. L., Cementitious Material Containing Slate Flour: U. S. Patent 2,785,987, Mar. 19, 1957.</sup>

Sodium and Sodium Compounds

By Robert T. MacMillan 1 and Annie L. Mattila 2

ODA-ASH production from natural deposits was about the same in 1957 as in 1956. On the other hand, production of manufactured soda ash declined 7 percent. Of the total soda ash sold or used in the United States, 13 percent was derived from natural sources in 1957 compared with 12 percent in 1956.

TABLE 1.—Manufactured sodium carbonate produced 1 and natural sodium carbonates sold or used by producers in the United States, 1948-52 (average) and 1953-57

Year	Manufac- tured soda ash (am- monia-soda	Natural sodium carbonates ³		
	process) ² (short tons)	Short tons	Value	
1948-52 (average)	4, 403, 809 4, 879, 396 4, 701, 364 4, 906, 971 4, 997, 579 4, 650, 588	4 302, 901 419, 206 527, 282 613, 594 652, 891 652, 717	4 \$6, 905, 367 10, 627, 460 13, 536, 345 15, 000, 966 17, 400, 347 17, 792, 301	

DOMESTIC PRODUCTION

Natural soda ash was produced in two States-California and Wyoming. In California American Potash & Chemical Corp. and West End Chemical Co. operated plants at Trona and Westend, respectively, on Searles Lake. Columbia Southern Chemical Corp., an affiliate of Pittsburgh Plate Glass Co., operated a plant near Bartlett on Owens Lake.

In Wyoming the Intermountain Chemical Co.—a subsidiary of Food Machinery & Chemical Corp.—mined a large deposit of trona in Sweetwater County near Westvaco. The deposit, which is at a depth of about 1,500 feet, was mined by the room-and-pillar method; continued expansion of output was expected.

Production of sodium sulfate (crude salt cake), including both manufactured and natural varieties, decreased about 5 percent in 1957; however, production from natural sources increased about 1

² In 1957 reported as total crude bicarbonate. Before January 1953 reported as total wet and dry (98-100 percent Na₂CO₃). Includes quantities consumed in manufacturing finished light and finished dense soda ash, caustic soda, and quantities consumed in manufacturing refined sodium bicarbonate.

³ Soda ash and trona (sesquicarbonate).

⁴ Exclusive of Wyoming in 1948-49.

⁴ Pralimpury forms.

⁵ Preliminary figures.

Commodity specialist.

² Statistical assistant.

percent and supplied nearly 31 percent of the sodium sulfate sold or used in the United States.

The following firms and individuals produced natural sodium sulfates in 1957: American Potash & Chemical Corp. and West End Chemical Co. continued production from brines of Searles Lake, in California; Ozark Mahoning Co. produced sodium sulfate from subterranean brines in Texas; and Wm. E. Pratt and Sweetwater Chemical Co. (formerly Iowa Soda Products Co.) worked natural deposits in Wyoming.

More salt cake was produced as byproduct or coproduct of various industries than was yielded by natural sources. Chief among the producers of sodium sulfate as a byproduct were the Mannheim hydrochloric-acid plants. Rayon and cellophane factories and plants producing sodium dichromate, phenol, boric acid, formic acid, and lithium salts also produced byproduct sodium sulfate.

Although the total supply of sodium sulfate was expected to remain ample, some shifting in the sources of supply resulted from decreased rayon production and developments in hydrochloric-acid production. Increased production from natural sources helped to offset the loss from these sources.

TABLE 2.—Sodium sulfate produced and sold or used, by producers in the United States, 1948-52 (average) and 1953-57

		on (manufact cural), short	Sold or used by pro- ducers (natural only)		
Year	Salt cake (crude)	Glauber's salt (100 percent Na ₂ SO ₄ . 10H ₂ O)	Anhydrous refined (100 percent Na ₂ SO ₄)	Short tons ²	Value
1948–52 (average) 1958 1954 1955 1955 1956	627, 449 737, 146 658, 638 737, 599 3 763, 274 4 727, 292	184, 975 204, 159 146, 992 149, 177 3 143, 300 4 117, 708	185, 205 219, 751 204, 668 256, 549 3 248, 039 4 292, 720	227, 849 248, 230 249, 701 284, 549 3 326, 760 325, 152	\$3, 144, 449 3, 340, 760 3, 890, 303 5, 381, 313 6, 327, 551 6, 432, 296

Production of metallic sodium was 132,977 short tons in 1957, according to the Bureau of the Census, United States Department of Commerce—a 2-percent decrease compared with the 1956 production of 136,017 tons. The metal was produced at 4 plants by the following 3 companies: National Distillers Chemical Co., with a plant at Ashtabula, Ohio; E. I. du Pont de Nemours & Co., Inc., with a plant at Niagara Falls, N. Y.; and Ethyl Corp., with plants at Baton Rouge, La., and Houston, Tex.

The interrelationship of soda ash and the chlor-alkali industry was discussed in the trade press.3 The continued increase in demand for chlorine threatened an oversupply of caustic soda, as the two are coproducts of salt electrolysis. Thus far, new uses and markets for caustic soda have kept pace with its production; however, the soda-

 $^{^1}$ U. S. Bureau of the Census. 2 Includes Glauber's salt converted to 100-percent Na₂SO₄ basis.

³ Revised figure. 4 Preliminary figure.

³ Clark, M. E., and Gerlock, C. F., The Interrelationship between Soda Ash and the Chlor-Alkali Industry: Chem. Eng. Prog., vol. 53, No. 11, 1957, pp. 537-540.

ash market has been considered to be a possible outlet for excess caustic soda if the barriers of price and traditional usage can be overcome. Many newer plants are designed for using either caustic soda or soda ash.

Much of the gain in electrolytic caustic-soda capacity has been at the expense of lime-soda caustic, although an estimated 8 percent of the total caustic produced in 1957 came from lime-soda plants. Eliminating all production of lime-soda caustic would delay but not solve the potential problem of caustic soda oversupply.

CONSUMPTION AND USES

Soda ash has a wide variety of uses. A report ⁴ on 1956 consumption disclosed that the glass industry, as in previous years, absorbed the largest tonnage. Other chemicals, metals processing, pulp and paper, caustic and bicarbonate, soap, other cleaners, and water treat ment also consumed important tonnages, as follows:

d use:	(short tons)
Glass	1, 590, 000
Caustic and bicarbonate	696, 000
Water treatment	120, 000
Other chemicals	1, 383, 000
Soap	80, 000
Other cleaners	160, 000
Pulp and paper	339, 000
Metals processing	614, 000
Exports and miscellaneous	672, 000
Total	5, 654, 000

The Kraft pulp industry continued to be the chief user of sodium sulfate, absorbing about three-fourths of the production. In 1957 the decline in pulp production was reflected in decreased demand for salt cake. Other uses of sodium sulfate were in glass manufacture, synthetic detergents, ceramics, stock feed, pharmaceuticals, textiles, and chemicals.

About 60 percent of the output of metallic sodium was consumed in making tetraethyl lead, a gasoline antiknock compound. The outlook was favorable for expanded sodium production, based on new and growing uses for the metal. Sodium metal, in addition to having physical properties that make it one of the most efficient heat-transfer substances, has chemical properties that are useful in producing sodium peroxide, hydride, amide, and cyanide.

Other important uses of sodium metal are in the reduction of titanium, zirconium, niobium, beryllium, and silicon. Metallic sodium also was used in borohydride production, which was important

in the field of high-energy fuels.5

PRICES

Prices for soda ash, salt cake, and the various grades of sodium sulfate were stable in 1957. According to Oil, Paint and Drug Reporter, domestic salt cake in bulk at the plant sold for \$28 per ton;

⁴ Work cited in footnote 3. ⁵ Chemical Age (London), Outlook Good for U. S. Sodium Producers: Vol. 78, No. 1999, Nov. 2, 1957, p. 730.

rayon- and detergent-grade sodium sulfate per ton was \$31 in bulk and \$34 in paper bags. Chemical grades of sodium sulfate (U. S. P. grade granular and crystalline and N. F. VII grade dried powder) sold for \$0.17½ per pound and \$0.22½ per pound, respectively.

Oil, Paint and Drug Reporter quoted prices for soda ash, dense, 58 percent Na₂O, carlots, works, per hundred pounds at \$1.60 in bulk and \$1.90 in paper bags. On the same basis, light soda ash was quoted at \$1.55 and \$1.85. The prices of soda ash were steady throughout

1957 and the last 3 months of 1956.

Prices of sodium metal quoted in Oil, Paint and Drug Reporter were substantially the same as those at the end of 1956. Sodium metal in tank cars, works, was quoted at \$0.17 per pound in 1957, an increase of 1 cent per pound over prices quoted on the same basis for most of 1956. In bricks, 14,000-pound lots or larger, the price was \$0.19\% per pound at the plant.

FOREIGN TRADE 6

Imports of sodium sulfate decreased nearly 27 percent in 1957 compared with 1956. The largest foreign suppliers were Canada, with 49 percent, and Belgium and Luxemburg, with 48 percent; the remainder was supplied by West Germany and the Netherlands.

TABLE 3.—Sodium sulfate imported for consumption in the United States, 1948-52 (average) and 1953-57

[Survive of the Company									
Crude (salt cake)			Crystallized (Glauber's salt)		Anhydrous		Total	
Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value		
48, 139 53, 468 116, 403 120, 795 98, 828	\$648, 660 875, 599 2, 062, 172 2, 412, 372 2, 046, 522	11	\$230	2, 964 7, 730 2, 109 3, 679 4, 421	\$70, 935 206, 645 78, 768 117, 411 127, 486	51, 114 61, 198 118, 512 124, 474 103, 249	\$719, 825 1, 082, 244 2, 140, 940 2, 529, 783 2, 174, 008 1, 511, 193		
	Short tons 48, 139 53, 468 116, 403 120, 795	Crude (salt cake) Short tons 48, 139 \$648, 660 53, 468 875, 599 116, 403 2, 062, 172 120, 795 2, 412, 372 98, 828 2, 046, 522	Crude (salt cake) Cryst (Glat sa Short tons Short tons Short tons 48, 139 \$648, 660 11 53, 468 875, 599 116, 403 2, 062, 172 120, 795 2, 412, 372 98, 828 2, 046, 522	Crude (salt cake) Crystallized (Glauber's salt) Short tons Value Short tons Value 48, 139	Crude (salt cake) Crystallized (Glauber's salt) Anhy Short tons Value Short tons Value Short tons 48, 139 \$648, 660 11 \$230 2, 964 53, 468 875, 599 7, 730 7, 730 116, 403 2, 062, 172 2, 109 110, 795 2, 412, 372 3, 679 3, 679 38, 828 2, 046, 522 4, 421	Crude (salt cake) Crystallized (Glauber's salt) Anhydrous Short tons Value Short tons Value 48, 139 \$648, 660 11 \$230 2, 964 \$70, 935 53, 468 875, 599 7, 730 206, 645 116, 403 2, 062, 172 2, 109 78, 768 120, 795 2, 412, 372 3, 679 117, 411 98, 828 2, 046, 522 4, 421 127, 486	Crude (salt cake) Crystallized (Glauber's salt) Anhydrous T Short tons Value Short tons Value Short tons 48, 139 \$648, 660 11 \$230 2, 964 \$70, 935 51, 114 53, 468 875, 599 7, 730 206, 645 61, 198 116, 403 2, 062, 172 2, 109 78, 768 118, 512 120, 795 2, 412, 372 3, 679 117, 411 124, 474 98, 828 2, 046, 522 4, 421 127, 486 103, 249		

Bureau of the Census!

TABLE 4.—Sodium carbonate and sodium sulfate exported from the United States, 1948-52 (average) and 1953-57 [Bureau of the Census]

Year	Sodium	carbonate	Sodium sulfate		
	Short tons	Value	Short tons	Value	
1948-52 (average) 1953. 1954. 1955. 1956. 1957.	121, 450 165, 405 163, 548 153, 257 241, 948 173, 756	\$5, 115, 900 5, 819, 304 5, 527, 442 4, 933, 040 2 8, 219, 095 6, 281, 929	(1) 28, 192 24, 965 24, 561 2 29, 933 23, 667	(1) \$804, 887 822, 684 870, 182 2 1, 037, 015 858, 545	

¹ Data not separately classified before 1949: 14,440 short tons (\$500,000) (revised figure); 1950: 16,834 short tons (\$422,263); 1951: 25,634 short tons (\$797,360); 1952: 27,909 short tons (\$781,582).

² Revised figure.

⁶ Figures on imports and exports compiled by Mae B. Price and Elsie D. Jackson, Division of Foreign Activities, Bureau of Mines, from records of the U. S. Department of Commerce, Bureau of the Census.

Imports were approximately 7 percent of the total salt cake produced

in the United States.

Exports of soda ash and salt cake decreased 28 and 21 percent in 1957 and were about 3 and 2 percent, respectively, of United States production of these commodities.

WORLD REVIEW

NORTH AMERICA

Canada.—A strike was reported at two sodium sulfate plants owned and operated by the Saskatchewan Provincial Government. One plant on strike was the Chaplin plant, the largest in Canada. This plant is valued at \$10 million and is capable of producing annually sodium sulfate worth \$5 million.7

SOUTH AMERICA

Venezuela.—A new chlorine and caustic soda plant was reported to have been opened by Petroquimica Nacional.8

EUROPE

Netherlands.—Dutch Soda Ash Co., Ltd., was expected to have its soda ash plant at Delfzil in production by the end of 1957. A causticsoda plant also was under construction, and a vacuum salt installation was planned as part of a large chemical industry.9

ASIA

India.—Output of soda ash totaled 77,272 long tons in 1955. meet increasing demand, a soda-ash plant was under construction at Porbander (Bombay State), and 2 others were planned-1 at Tuticorin (Madras State) and 1 at Dalmianagar (Bihar).10

Iraq.—A large-scale industrial development planned by the Government of Iraq included a chlorine caustic plant and allied chemical

plants.11

AFRICA

Kenya.—Output of soda ash in 1956 was 146,326 long tons compared with 124,744 tons in 1955—an increase of 17 percent. 12

TECHNOLOGY

The history, geology, and technology of salines in California were described in a publication of the State Department of Natural Resources. 13 The author described in detail the recovery of sodium carbonate, sodium sulfate, and other salts from the brines of Searles and Owens Lakes and included a map of the deposits, flowsheets, and product analyses.

 ⁷ Chemical Week, Saskatchewan Sulfate Strikes: Vol. 80, No. 14, Apr. 6, 1958, p. 69.
 ⁸ Chemical Age (London), Venezuelan Chlorine, Caustic Soda Plant: Vol. 77, No. 1962, Feb. 16, 1957,

p. 293.
Oil, Paint and Drug Reporter, Dutch Soda Ash Firm to Start Up New Plant: Vol. 172, No. 24, Dec. 9,

^{1957,} p. 5.

19 Bureau of Mines, Mineral Trade Notes: Vol. 44, No. 2, February 1957, pp. 31-32.

11 Foreign Commerce Weekly, vol. 58, No. 7, Aug. 12, 1957, p. 10.

12 Bureau of Mines, Mineral Trade Notes: Vol. 45, No. 1, July 1957, p. 42.

13 Ver Planck, W. E., Salines; chap, in Mineral Commodities of California: State of California, Dept. of Nat. Resources, Div. of Mines, Bull. 176, 1957, pp. 475-482.

Two patents were issued relating to the crystallization of products from deposits of trona. The first describes a procedure for crystallizing substantially pure sodium sesquicarbonate (Na₂CO₃.NaHCO₃. 2H2O) from a water solution of trona by maintaining in the pregnant solution a higher than normal ratio of Na₂CO₃ to NaHCO₃ and considerable NaCl.14

The second patent describes a process for producing soda ash from trona by dissolving the trona in a circulating aqueous mother liquor. from which sodium sesquicarbonate is crystallized and calcined to produce soda ash. The ratio of sodium carbonate to sodium bicarbonate in solution, needed to crystallize the sesquicarbonate, is maintained by recycling small quantities of Na₂CO₃ or adding CO₂ to the mother liquor. 15

Deposits of natural sodium sulfate along the shore of Great Salt Lake were described in a publication of the Bureau of Mines. 16 The beds range from 3 to 6 feet in thickness and are covered by 1 to 3 feet of sandy overburden. Prevailing winds over Great Salt Lake are believed to have formed the beds by piling floating crystals of sodium sulfate onto the beaches in winter.

About 95 percent of the output of metallic sodium in 1957 was reported to come from Downs cells by the electrolysis of a molten mixture of sodium and calcium chlorides. The calcium chloride is added to the electrolyte to reduce the melting temperature from 803° C. (for pure salt) to 505° C. for the eutectic mixture. On leaving the bath, the molten sodium metal and some calcium (about 2 percent) are cooled enough to precipitate the calcium alloy, which is returned to the bath, where it reacts to form more of the eutectic melt. Chlorine is produced at the anode as a coproduct of the cell.¹⁷

Metallic sodium is very active chemically, and its rate of reaction with moist air was found to be strongly catalyzed by the presence of small quantities of impurity in the metal. For example, high-purity distilled sodium had a much slower reaction rate with air than less pure, filtered sodium. The difference between the two rates decreased with increasing temperature, and at the melting point of the sodium (97.8° C.), the catalyzing effect of the impurities was no longer apparent.18

A new way to produce tetraethyl lead was described.¹⁹ different reactions are possible between nonhalide lead compounds and metalorganics, such as triethylaluminum, diethylzinc, or ethylsodium. Advantages claimed for the new process include low temperatures and pressures in the reacting zone, moderate to good reaction rates, and high yields. No plans for commercializing the new process were reported; the older process involving the reaction between sodium-lead alloy and ethyl chloride is firmly established.

¹⁴ Pike, R. D., Ray, K. B., and the Stamford Trust Co., executors of Pike, R. D. (deceased), Production of Sodium Sesquicarbonate: U. S. Patent 2,798,790, July 9, 1957.

15 Pike, R. D., Ray, K. B., and the Stamford Trust Co., executors of Pike, R. D. (deceased), Method of Producing Refined Soda Ash From Trona: U. S. Patent 2,792,282, May 14, 1957.

16 Wilson, S. R., and Wideman, F. L., Sodium Sulfate Deposits Along the Southeast Shore of Great Salt Lake, Salt Lake and Toocle Counties, Utah: Bureau of Mines Inf. Circ. 7773, 1957, 10 pp.

17 Sittig, M., Manufacture and Availability of the Alkali Metals: Chem. Eng. Prog., vol. 52, No. 8, August 1956, pp. 337-341.

18 Howland, W. H., and Epstein, L. F., Reaction Rate of Solid Sodium With Air: Ind. Eng. Chem., vol. 49, No. 11, November 1957, pp. 1931-1932.

19 Chemical and Engineering News, Ethyl Has New Way to TEL: Vol. 35, No. 16, Apr. 22, 1957, pp. 76-77.

Stone

By Wallace W. Key¹ and Nan C. Jensen²

	Page		Page	
Dimension stone	1067	Crushed and broken stone		
Granite		Size of plants	1088	
Basalt and related rocks (trap-		Transportation	1088	
rock)	1074	$Granite_{}$	1088	
Marble	1074	Basalt and related rocks (trap-		
Limestone	1075	rock)	1091	
Sandstone	1079	Marble	1093	
Miscellaneous stone	1081	Limestone	1093	
Foreign trade	1081	Sandstone, quartz, and quartzite_	1099	
World review	1082	Miscellaneous stone	1101	
Technology	1082	Foreign trade	1103	
		World review	1104	
		Technology	1105	

ONTINUED expansion of the domestic stone industries in 1957 resulted in another sales record, but output did not increase at the anticipated rate because of setbacks in private construction. The Interstate Highway Program remained in an early stage with design and land acquisition as predominant features.

TABLE 1.—Salient statistics of the stone industry in the United States, 1948-52 (average) and 1953-57

	1948-52 (average)	1953	1954	1955	1956	1957
Dimension stone: Thousand short tons Value (thousand dollars) Crushed stone: Thousand short tons Value (thousand dollars) Total sold or used by producers: Thousand short tons Value (thousand dollars) Imported for consumption: 2 Value (thousand dollars) Exported: Value (thousand dollars)	1, 761 54, 539 255, 876 337, 515 257, 637 392, 054 2, 937 4 902	1, 949 59, 311 304, 893 424, 018 306, 842 483, 329 5, 073 4, 333	2, 382 67, 097 409, 678 547, 437 412, 060 614, 534 3 5, 216 4, 514	2, 533 75, 993 467, 958 632, 302 470, 491 708, 295 3 5, 579 5, 491	2, 517 76, 123 503, 714 689, 219 506, 231 765, 342 3 7, 609 5, 602	2, 515 77, 424 536, 443 746, 279 538, 958 823, 703 3 8, 504 6, 003

Includes Territories of the United States, possessions, and other areas administered by the United States. Excludes slate. 1954-57 includes ground sandstone, quartz, and quartzite used for abrasives and other uses; shell for various uses; and limestone, cement rock, calcareous marl, and dolomite used in making cement, lime, and dead-burned dolomite. 1957 includes calcareous marl for agricultural use.
 Includes whiting.
 Owing to changes in tabulating procedures by the Bureau of the Census, data known not to be comparable with years before 1954.
 Excludes crushed, ground, or broken stone not separately classified before Jan. 1, 1952.

Commodity specialist.Supervisory statistical assistant.

TABLE 2.—Stone sold or used by producers in the United States, 1 1948-52 (average) and 1953-57, by kinds

	14	(41.02486	-,						
	Granite			Basalt and related rocks (traprock)		Marble		Limestone and dolomite	
Year	Thou- sand short tons	Value (thou- sand dollars)	Thou- sand short tons	Value (thou- sand dollars)	Thou- sand short tons	Value (thou- sand dollars)	Thou- sand short tons	Value (thou- sand dollars)	
1948–52 (average) 1953	19, 026 23, 485 23, 450 26, 079 29, 636 41, 636	46, 601 55, 110 56, 705 59, 581 65, 447 75, 985	24, 820 30, 098 30, 808 35, 851 38, 052 43, 147	36, 826 46, 480 49, 593 56, 141 63, 021 71, 616	255 454 538 1,092 947 1,423	11, 035 12, 190 13, 794 19, 786 18, 380 23, 707	186, 799 225, 126 2 316, 500 2 361, 524 2 380, 371 385, 426	257, 328 317, 972 2 423, 622 2 489, 002 2 515, 799 536, 304	
	Sand	stone	Other stone 3		er stone ³ Shell		То	tal	
Year	Thou- sand short tons	Value (thou- sand dollars)	Thou- sand short tons	Value (thou- sand dollars)	Thou- sand short tons	Value (thou- sand dollars)	Thou- sand short tons	Value (thou- sand dollars)	
1948-52 (average) 1953 1954 1955 1956 1957	8, 158 8, 655 12, 119 13, 108 13, 446 16, 294	22, 345 28, 271 35, 321 38, 624 46, 388 49, 102	18, 579 19, 024 16, 287 17, 706 23, 927 30, 606	17, 919 23, 306 20, 179 22, 531 27, 939 38, 417	(4) (4) 12, 358 15, 131 19, 852 18, 510	(4) (4) 15, 320 22, 630 28, 368 26, 768	257, 637 306, 842 412, 060 470, 491 506, 231 5 538, 958	392, 054 483, 329 614, 534 708, 295 765, 342 5 823, 703	

¹ Includes Territories of the United States, possessions, and other areas administered by the United States. 1954-57 includes ground sandstone, quartz, and quartzite used for abrasives and other uses; shell for various uses; and limestone, cement rock, calcareous marl, and dolomite used in making cement, lime, and dead-burned dolomite. 1957 includes calcareous marl for agricultural use.

² Includes calcareous marl used in making cement.
² Includes mics schist, conglomerate, argillite, various light-colored volcanic rocks, serpentine not used as marble, soapstone sold as dimension stone, etc.
² Data not available.
³ Also includes 1,916,000 tons of calcareous marl valued at \$1,804,000.

TABLE 3.—Stone sold or used by producers in the United States, 1956-57, by uses

		956	1957		
Use	Thou- sand short tons (unless other- wise stated)	Value (thou- sand dollars)	Thou- sand short tons (unless other- wise stated)	Value (thou- sand dollars)	
Dimension stone: Building stone: Rough construction Cut stone, slabs, and mill blocks 2 thousand cubic feet. Approximate equivalent in short tons. Rubble. Monumental stone 4	1, 257 470 2, 833 988 6 1, 462 1, 354 107 2, 517 13, 134 276, 269 15, 481 19, 864 19, 864 19, 864 19, 865 11, 495 11,	3, 228 47, 557 1, 588 18, 016 88 3, 551 2, 095 76, 123 15, 565 369, 883 16, 545 52, 486 11, 054 32, 087 91, 604 24, 028 75, 967	14, 462 302, 754 16, 581 39, 384 1, 734 \$ 19, 206 79, 944 17, 162 45, 216	1, 966 49, 321 1, 628 18, 942 84 3, 575 1,908 77, 424 17, 699 414, 114 18, 019 56, 113 11, 930 31, 556 84, 071 25, 780 86, 997	
Grand total	503, 714	689, 219 765, 342	536, 443 538, 958	746, 279 823, 703	

Includes Territories of the United States, possessions, and other areas administered by the United States.
 To avoid disclosing individual outputs, dimension stone for refractory use is included with building stone.
 Includes granite used for precision surface plates.
 Ganister (sandstone and quartzite) and dolomite.
 Limestone and calcareous marl.

TABLE 4.—Stone sold or used by noncommercial producers in the United States,1 1956-57, by uses

(Included in total production)

	19	56	1957		
Use	Thousand short tons	Value (thousand dollars)	Thousand short tons	Value (thousand dollars)	
Building stone	17 91 5, 435 24, 633 390 2, 510	112 78 5,908 27,040 551 1,416	18 12 6, 668 38, 740 358 9, 443	12: 13: 6, 18: 45, 63: 53: 5, 33:	
Total	33,076	35, 105	55, 239	57, 82	

¹ Includes Territories of the United States, possessions, and other areas administered by the United States.

TABLE 5.—Stone sold or used by producers in the United States, 1956-57, by States

	19	1957		
State				
	Thousand	Value	Thousand	Value
	short tons	(thousand	short tons	(thousand dollars)
		dollars)		donars)
1-1	1 12, 343	1 14, 702	1 9, 519	1 11, 97
labama	1, 623	2, 474	2, 101	2, 98
rkansas	6, 325	8, 113	7, 278	8, 37
Valifornia	32, 583	46, 109	41, 351	53, 59
bolorado	2, 250	5, 217	2,438	4, 16
Connecticut	1 4, 428	1 6, 590	6, 199	10, 04
Delaware	83	232	(2)	(2)
orida	18, 779	25, 183	(2) 21, 786	30, 40
leorgia.	1 9, 196	1 20, 714 2, 752	1 9, 0 65 1, 542	1 15, 8; 2, 7;
daho llinois	1, 791 31, 855	40, 859	31,861	41, 8
ndiana	14, 700	31, 575	14, 460	33, 0
OW8	14, 035	17, 256	15, 214	18, 70
Cansas	1 13, 433	1 15, 682	1 10, 412	1 11, 92
Kentucky	11, 553	15, 324	12,718	16, 71
ouisiana	4, 405	6, 674	4, 383	7, 1
Maine	942	2, 238	889	3, 0'
Maryland	6, 229	13, 305	6, 140	13, 3
Massachusetts	5, 442	13, 753	4, 877	13, 10
Michigan	33, 999	31,010	34, 495	34, 1
Minnesota	1 3, 084	1 7, 552 656	1 2, 968 1 60	¹ 8, 1
Mississippi	656 24, 578	33, 577	22,098	29.8
Missouri	1, 247	1,816	2, 567	3, 6
MontanaVebraska	3,063	4, 142	3,065	3, 7
Nevada	1,401	2, 281	925	1,5
New Hampshire	(2)	(2)	(2)	(2)
New Jersey	9.012	20, 825	8, 792	21. 2
New Mexico	1, 268	1, 272	1,348	1,6
New York	22, 805	36, 135	24, 265	43, 2
North Carolina	1 8, 352	1 11, 472	1 9, 455	1 12, 8
North Dakota	83	87	29	
Ohio	1 33, 418	1 50, 947	1 37, 451	1 61, 8
Oklahoma.	10, 547	12, 417	12, 016 10, 311	14, 0 11, 4
Oregon Pennsylvania	6, 098 1 44 , 913	7, 890 1 73, 831	43, 258	73, 0
Rhode Island	1 42	1 221	1 4	10,0
South Carolina	1 3, 304	1 4 285	1 3, 413	14.5
South Dakota	2, 200	5, 725	1, 718	5,0
Pennessee	1 15, 556	23,796	1 15, 354	1 24, 1
Pexas	32, 773	36, 350	30,660	35, 3
Utah	2, 322	3, 298	7, 854	8, 5
Vermont	621	11,622	557	11,4
Virginia	14, 082	23,076	1 14, 244	1 21, 1 10, 6
Washington	8,057	11,660	8, 454 6, 989	11, 9
West Virginia	6, 579 11, 126	10, 766 20, 402	12, 434	22, 4
Wisconsin Wyoming	1 223	2,076	1, 291	2, 2
Wyoming Undistributed	1, 333 5, 193	17, 266	10,067	28, 1
Total	499, 707	755, 205	528, 375	805, 6
A laska	195	595	528	1, 9
American Samoa	133	6	34	1
Canton Island	2	5		
Guam	341	311	1,034	1, 1
Hawaii	3, 494	6,076	2,585	1, 6
Midway Island	203	304	3, 875	6, 7
Panama Canal Zone	177	230	59	
Puerto Rico Virgin Islands	2,076	2, 556	2, 452	3, 5
Virgin Islands	12 22	32 22	11 5	
Wake Island	ļ			
Total	6, 524	10, 137	10, 583	18,0
	506, 231	765, 342	538, 958	823,

¹ To avoid disclosing individual company confidential data, certain State totals are incomplete, the part not included being combined with "Undistributed." The class of stone omitted from such State totals is noted in the State tables in the Statistical Summary chapter of this volume.

² Figure withheld to avoid disclosing individual company confidential data; included with "Undistributed."

STONE 1067

Actual road construction in 1957, although higher than in 1956, fell short of expectations. Cement and asphalt production dropped, and home building declined. Nevertheless, concrete and roadstone production increased 9.6 percent, mainly because of the quantity of stone needed for fill and road base. Total stone production reached 539 million tons, an increase of over 6 percent compared with record 1956.

Construction was somewhat uneven geographically in 1957, owing in part to the availability of funds to the various States.³ However, progress was made, and the industry anticipated that in 1958-68 construction in the United States would be at the highest rate in history and that the road program would have a tremendous effect on the stone output. In addition to 10 billion tons of aggregate needed for the 13-year Federal Highway Program, billions of tons will be needed for access roads, new plants, homes, schools, and other construction. School construction plans outlined in 1957 called for completion of 450,000 classrooms in the 3-year period 1958-61. The aggregate industry in 1957 found zoning problems difficult in some areas.

DIMENSION STONE

Sales of dimension stone decreased slightly in 1957 because of continued competition from manufactured products. The decline in home building did not materially affect the dimension-stone industry because it depended mainly on public-building construction and monumental use for its market.

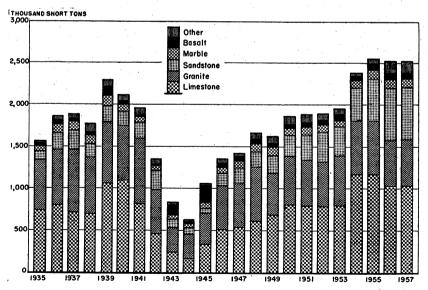


FIGURE 1.—Sales of dimension stone in the United States, by kinds, 1935-57.

² Engineering News-Record, Roadbuilders Dominate Scene: Vol. 160, No. 7, Feb. 14, 1958, pp. 155-200; Engineering News-Record, \$2.875 Billion Allocated for Highways: Vol. 159, No. 6, Aug. 8, 1957, p. 26.

Production (including slate) totaled 2.6 million short tons valued at \$84 million. Unit value increased slightly. The figures in table 6 include slate, but details of that branch of the industry appear in the

Slate chapter.

Quarries that produced dimension stone (excluding slate) were operated in 42 States, Hawaii, and Puerto Rico in 1957. Indiana led the other States in value of sales, followed by Vermont; Ohio, Georgia, and Massachusetts were also high in value of sales. Dimension slate was quarried in six States; Pennsylvania, Vermont, and Virginia led in value of production.

TABLE 6.—Dimension stone sold or used by producers in the United States, 1 1956-57, by kinds and uses

	1956	1957	Change from 1956, percent
Granite:			
Building stone:		07.000	07
Rough constructionshort tons	50, 711 \$481, 172	37, 260	-27 -18
Value	\$481, 172	\$395, 380 \$10. 61	
A verage per ton	\$9. 49 901, 025	1, 003, 807	$^{+12}_{+11}$
Cut stone, slabs, and mill blockscubic leet	\$6, 375, 753	\$7, 110, 928	∓ 11/12
ValueA verage per cubic foot	\$7.08	\$7, 110, 523	7.12
Rubble short tons	77, 683	73, 069	-6
Value	\$228,691	\$178, 455	-22
Monumental stonecubic feet	2, 575, 064	\$178, 455 2, 694, 548	+5
Value	\$14, 755, 609	\$15, 242, 758	+3
Average per cubic foot	\$5.73	\$5.66	1
Paving blocksnumber_	988, 309	400, 171	-60
Value	\$88, 361	\$83, 780 1, 439, 333	-5
Curbingcubic feet	1, 433, 223 \$3, 464, 905	1, 439, 333	
Value	\$3, 464, 905	\$3, 430, 891	-1
Total:	F40 000	120 100	1
Quantityapproximate short tons	540, 238 \$25, 394, 491	539, 186 \$26, 442, 192	+4
Value	\$25, 594, 491	\$20, 11 2, 192	Tz
Basalt and related rocks (traprock): Building stone (rough, dressed, and rubble) and monumental			
stoneshort tons_	72, 299	61, 216	-15
Value	\$330, 571	\$479, 512	+45
Average per ton	\$4,57	\$7.83	+71
11 of also per voltages and a second			
Total:			
Quantityshort tons	72, 299	61, 216	-15
Value	\$330, 571	\$479, 512	+45
Marble:	001 005	1 701 007	+56
Building stone (cut stone, slabs, and mill blocks) _cubic feet	981, 887	1, 531, 025	+17
Value	\$8, 837, 470 \$9.00	\$10, 373, 495 \$6, 78	-25
Average per cubic footcubic feet	257, 925	291, 688	+13
Value	\$3, 260, 527	\$3, 698, 862	+13
A verage per cubic foot	\$12.64	\$12.68	120
A verage per cubic loot	Ψ12. U1	412. 00	
Total:			1
Quantityapproximate short tons	105, 431	148, 946	+41 +16
Value	\$12, 097, 997	\$14,072,357	+16
Limestone:			-
Building stone:			1.007
Rough constructionshort tons	43, 708 \$164, 976	134, 067	+207
Value	\$164, 976	\$366, 027 \$2. 73	+122 -28
A verage per tonCut stone, slabs, and mill blockscubic feet	\$3.77 9.621,070	9, 915, 704	+3
Cut stone, slabs, and mill blocks		\$20, 056, 236	+2
Value Average per cubic foot	\$19, 608, 249 \$2. 04	\$20,030,230	—1
Rubble short tons	236, 599	216, 262	
Value	\$612, 191	\$570, 539	_7
Flaggingcubic feet_	389, 577	581, 662	+49
Value	\$310, 759	\$344, 406	+11
	1000,700		<u> </u>
			I
Total:	i		
Total: Quantityapproximate short tons	1, 028, 759 \$20, 696, 175	1, 131, 376 \$21, 337, 208	+10 +3

TABLE 6.—Dimension stone sold or used by producers in the United States, 1 1956-57, by kinds and uses—Continued

Kind and use	1956	1957	Change from 1956, percent	
Sandstone:				
Building stone: Rough constructionshort tons_ Value	166, 690	91, 736	-45	
	\$2, 259, 605	\$724, 559	-68	
A verage per ton	\$13.56	\$7.90	-42	
	4,559,620	4,054,477	-11	
	\$10.130.903	\$9,215,386	-9	
Average per cubic footshort tons	\$2. 22 41, 008 \$218, 932	\$2. 27 47, 815 \$289, 728	$^{+2}_{+17}$ $^{+32}$	
Valuecubic feet	29, 214	46, 517	+59	
	\$85, 576	\$144, 124	+68	
Flaggingcubic feet_	\$1, 711, 353	1, 326, 462	+50	
Value		\$1, 489, 867	-13	
Total: Quantityapproximate short tons_ Value	623, 826	555, 258	-11	
	\$14, 406, 369	\$11, 863; 664	-18	
Miscellaneous stone: 2 Building stonecubic feet Value	436, 031	442, 412	+1	
	\$2, 605, 008	\$2, 565, 622	-2	
Average per cubic footshort tons_	1 S519.295 I	\$5. 80 36, 014 \$589, 327	-3 -65 +13	
Flagging	78, 072	59, 682	-24	
	\$72, 972	\$74, 436	+2	
Total: Quantityapproximate short tons Value	146, 211	78, 697	-46	
	\$3, 197, 275	\$3, 229, 385	+1	
Total dimension stone, excluding slate: Quantityapproximate short tons Volum	2, 516, 764	2, 514, 679	+2	
	\$76, 122, 878	\$77, 424, 318	+1	
Value Slate as dimension stone 3 approximate short tons. Value	\$6, 802, 036	120, 366 \$6, 619, 528		
Total dimension stone, including slate: Quantityapproximate short tons Value	2, 635, 794 \$82, 924, 914	2, 635, 045 \$84, 043, 846		

the principal groups.

3 Details of production, by uses, are given in the Slate chapter of this volume.

Many continued to favor stone for use as ornamental veneer in constructing large dignified structures, but, as indicated in figure 2, the percentage of the total value of nonresidential construction attributed to stone continued to decline. Demand for house veneer appeared to be gaining favor in some sections of the country; demand was especially keen for stone that presented a rustic appearance, such as the flagstone of Tennessee and Virginia. Because of the weight of the product, transportation added greatly to the delivered price, and freight rates were important considerations in competitive marketing. Nevertheless, stone was shipped long distances to satisfy architectural demands for certain textures and colors. Competition from imported stone was a matter of some concern in 1957, as tariffs continued to be reduced on several products.

¹ Includes Hawaii and Puerto Rico. ² Includes soapstone, mica schist, volcanic rocks, argillite, and other varieties that cannot be classified in

TABLE 7.—Dimension stone sold or used by producers in the United States, 1 1943-57, by uses

							,					
	Building			Ru	bble	V	Monumental			Paving blocks		
Year	Thou- sand cubic feet	Thou- sand short tons	Value (thou- sand dollars)	Thou- sand short tons	Value (thou- sand dollars)	Thou- sand cubic feet	Thou- sand short tons	Value (thou- sand dollars)	Num- ber (thou- sand)	Thou- sand short tons	Value (thou- sand dollars)	
1948 1944 1945 1946 1947 1948 1948 1950 1951 1952 1963 1954 1955 1955 1956 1957	3, 917 2, 530 4, 914 9, 166 9, 621 11, 770 11, 890 15, 994 16, 101 15, 516 14, 966 20, 049 22, 009 20, 345 20, 892	318 200 382 707 739 904 916 1, 229 1, 287 1, 199 1, 148 1, 534 1, 657 1, 679	2, 807 2, 769 5, 485 13, 768 18, 610 24, 772 29, 910 36, 665 38, 827 35, 354 35, 354 35, 380 42, 729 51, 685 50, 785 51, 287	253 135 390 293 269 276 339 247 253 320 403 390 375 470 373	403 231 549 650 715 574 709 615 591 1, 126 904 1, 372 1, 588 1, 628	2, 541 2, 940 3, 039 3, 678 3, 778 3, 725 2, 878 2, 744 2, 673 3, 041 2, 842 2, 833 2, 986	210 243 251 300 312 307 258 237 226 221 251 235 234 235 247	9, 731 11, 361 17, 435 19, 815 20, 541 18, 758 17, 062 15, 971 16, 169 18, 995 18, 105 16, 843 18, 016 18, 942	652 655 213 579 684 392 276 348 431 683 348 348 208 1,054 988 400	77 44 22 55 53 22 4 4 3 22 22 1 6 6 6 4	45	
				Curbing			Flagging			Total		
	Year			Thou- sand cubic feet	Thou- sand short tons	Value (thou- sand dollars)	Thou- sand cubic feet	Thou- sand short tons	Value (thou- sand dollars)	Thou- sand short tons	Value (thou- sand dollars)	
1943 1944 1945 1946 1946 1947 1948 1949 1950 1951 1952 1951 1952 1953 1954 1958 1956 1956				148 207 158 375 635 769 738 950 1,006 1,055 1,016 1,555 1,469 1,462 1,486	12 16 13 31 52 63 59 78 83 86 83 128 121 120	172 194 204 544 1, 110 1, 382 1, 689 2, 430 2, 872 2, 576 2, 500 3, 408 3, 916 3, 551 3, 575	416 264 268 476 520 520 556 713 641 721 721 721 721 354 1, 968	32 21 21 38 42 41 45 57 51 58 62 94 110 107	187 219 228 525 586 652 878 977 1, 108 1, 270 1, 933 2, 050 2, 095 1, 908	832 619 1, 059 1, 374 1, 419 1, 594 1, 653 1, 853 1, 886 1, 949 2, 382 2, 517 2, 515	13, 367 14, 855 17, 849 32, 972 40, 892 47, 887 51, 746 57, 701 56, 072 59, 311 67, 097 75, 993 76, 123 77, 424	

¹ Includes Hawaii and Puerto Rico.

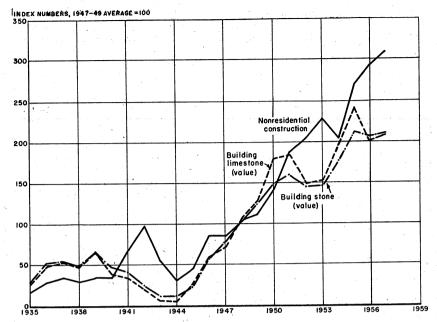


FIGURE 2.—Sales of all building stone, compared with sales of building limestone and value of all nonresidential construction, 1935-57.

(Data on nonresidential-building construction from Survey of Current Business, U. S. Department of Commerce.)

Portland and bituminous concretes have almost entirely replaced paving stones, but some were used in areas subjected to heavy traffic. Also, natural curbstones served particularly well for corner curbs

where wheel shock was especially intense.

Patios, walks, and gardens around small commercial buildings and residences used flagging for decoration, utility, and lawn protection. Use of precision surface plates made from granite and basalt continued to increase in plants where extremely hard and durable, nonwarping, rustproof, and corrosionproof plates were required. Marble and other ornamental stones were valuable for making table tops, lamp bases, book ends, ash trays, and various novelties.

Waste blocks, "rough-backs" (ends of blocks), and spalls or fines were sold in limited quantities as riprap or for crushed stone. Waste

limestone and marble rarely were used for lime manufacture.

TABLE 8.—Building stone sold or used by producers in the United States 1 in 1957, by kinds

				Ro	ugh	
Kind			Const	ruction	Archi	tectural
			Thousand cubic feet	Value (thousand dollars)	Thousand cubic feet	Value (thousand dollars)
GraniteBasalt			452 2 729	395 3 480	178	659
Marble			1, 587 1, 177	366 725	3, 984 3 1, 705	3, 607 3, 732 3 2, 732
Total			2 3, 945	2 1, 966	³ 6, 0 4 3	⁸ 7, 639
		Fini	shed		To	tal
Kind	Sax	wed	С	ut	Thousand	Value
	Thousand cubic feet	Value (thousand dollars)	Thousand cubic feet	Value (thousand dollars)	cubic feet	(thousand dollars)
Granite 4 Basalt	433	1, 819	393	4, 633	1, 456 729	7, 506
Marble Limestone Sandstone Miscellaneous	946 4, 445 3 1, 870 3 5 442	2, 743 7, 957 3 5, 370 3 5 2, 566	409 1, 487 479	6, 989 8, 492 1, 113	1, 531 11, 503 5, 231 442	10, 373 20, 422 9, 940 2, 566
Total	^{3 5} 8, 136	^{3 5} 20, 455	2, 768	21, 227	20, 892	51, 287

Includes Puerto Rico.
 Dressed basalt is included with rough stone. Basalt used for monuments, precision surface plates, and rubble also included to avoid disclosing individual company outputs.
 Includes stone for refractory use to avoid disclosing individual company outputs.
 Sawed stone corresponds to dressed stone for construction work (walls, foundations, bridges) and cut stone to architectural stone for high-class-buildings.
 Rough and cut miscellaneous stone included with sawed stone.

GRANITE

Granite sales remained about the same as in the preceding year, fluctuating somewhat among the various uses. The decline in building granite was offset by gains made by the monumental-granite in-Some of the increases in sales might be attributed to sales campaigns by the industry.

Dimension granite was quarried in 22 States. The average value for all uses of dimension granite increased \$2.03 a ton to \$49.04 in 1957 compared with 1956.

TABLE 9.—Granite (dimension stone) sold or used by producers in the United States in 1957, by States and uses

Total		Valuo		13, 579 \$1, 146, 603 1, 667 128, 346, 3, 321, 421 (1) (1) 57, 246, 3, 328, 235 2, 889 2, 27, 222, 227, 222, 227, 227, 227, 22	
	Short	tons (ap-	mate	13, 579 1, 667 1, 667 126, 346 3, 346 1, 10 1, 10 2, 888 1, 18 1, 497 1, 194 1, 104 1, 104	
oing		Value		(1) (2) (3) (4) (4) (5) (7) (7) (7) (8) 419, 706 (8) 8, 430, 891	
Curbing		Cubic		(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	119 131
blocks		Value		(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	
Paving blocks		Num-			3 833
	Dressed	Value		(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	
ental	Dre	Cubie	feet	(1) (1) (1) (1) (1) (2) (1) (2) (1) (2) (2) (1) (2) (3) (3) (4) (3) (4) (4) (4) (5) (4) (6) (7) (7) (7) (8) (8) (8) (8) (8) (8) (8) (8) (8) (8	47 833
Monumental	gh	Value		\$414,019 (4) 29,325 900 (1) 1,639,600 (1) 1,639,600 (1) 1,630,600 (1) 183,455 22,511 190,335 (1) 190,335 (2,445,602,325,510,140 (3,402,325,210,140 (8,800,900) 572,770	
	Rough	Cubie	feet	54,019 11,550 (1) 550 (1) 560 (2) 108 1, 365 (4) 117 (1) (1) (1) (1) (2) (310 (2) 310 (3) 611,535 5, 121,788 8, 121,788 8, 121,788	174, 759
	Rubble	Value	tons	(1) (1) (1) (2) (445) 14, 716 102, 274 18 19 19 19 19 19 19 19 19 19 19 19 19 19	
	Rul	Short	tons	20, 9918 \$11 20, 998 \$1 (4,455 1 (1) (
	Dressed	Value		(1) (1) (1) (2) (3) (4) (4) (4) (5) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	
Building	Dre	Cubic	feet	(1) (1) (1) (2) (3) (472 (472 (472 (472 (472 (472 (472 (472	68 217
Buil		ctural	Value	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	
	Rough	Architectural	Cubic feet	(c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	15.084
	Rot	Construction	Value	350 \$25,275 (1) 300 \$2,090 (1) 301 (1) (1) (1) 322 12,000 (1) 323 12,000 (1) 741 26,800 (1) 321 (1) (1)	
			Short	3, 369 309 309 200 (1) (1) 37, 741 37, 260 37, 260	9
	Active	plants		11.00 0 0 1 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2	
		State		California Colorado Colorado Colorado Colorado Colorado Colorado Mainescia Minescia Minescia Montana North Carolina Orkiahoma Orkiahoma Undistributed 1 Total Average unit Value.	Short tons (approximate)

¹ Included with "Undistributed" to avoid disclosing individual company confidential data.

§ Includes data indicated by footnote 1 and New Jersey and South Carolina, 1 plant each; New Hampshire and Texas, 2 plants each; Maryland and Pennsylvania, 3 plants each; and Vermont, 7 plants

§ 452,100 cubic feet (approximate).

BASALT AND RELATED ROCKS (TRAPROCK)

Basalt and related rocks were not used extensively as dimension stone because of their dark color. The basaltic-type rocks used for memorials, formerly classed in the trade as "black granite" and included with the figures for monumental granite, are incorporated in table 10.

Total sales decreased 15 percent compared with 1956, and the

number of plants decreased from 8 to 7.

A relatively recent application of dimension diabase has been in manufacturing precision surface plates for checking instruments, small assemblies, and engineering works requiring a smooth, flat surface.

Dark-colored, polished dimension stone for veneer appeared to be in greater demand. The dimension basalt used in larger memorials is included under building stone.

TABLE 10.—Basalt and related rocks (traprock) (dimension stone) 1 sold or used by producers in the United States, 1956–57

		Active		Va	lue
	Year	plants 2	Short tons	Total	Average per ton
1956 1957	 	 8 7	72, 299 61, 216	\$330, 571 479, 512	\$4. 57 7. 83

¹ Includes rough and dressed building stone, rubble, monumental stone, and stone used for precision plates.

MARBLE

Dimension marble used for construction and for monumental and memorial work increased 41 percent in quantity and 16 percent in value over 1956.

The average value of marble sold for memorial purposes was \$12.68 per cubic foot, and that of marble for building was \$6.78 per cubic foot in 1957.

The Colorado marble quarry, which was the source of stone used in building many notable structures such as the Lincoln Memorial and the Tomb of the Unknown Soldier, now produces crushed stone exclusively.⁴

In the stone industry the term "marble" was usually applied to any carbonate rock that would take a high polish. The classification of carbonate rock either as limestone or marble depended mainly on its ability to take a polish.

² Includes: 1956—1 plant each in California, Hawaii, Oregon, and Wisconsin; and 2 plants each in Massachusetts and Pennsylvania; 1957—1 plant each in California, Connecticut, and Oregon; and 4 plants in Pennsylvania.

⁴ Utley, H. F., Colorado White Marble Processed for Lime, Hydrate, Varied Products: Pit and Quarry, vol. 49, No. 12, June 1957, pp. 100-101, 137.

TABLE 11.—Marble (dimension stone) sold by producers in the United States, 1956-57, by uses

Use	15	956	19	57
	Cubic feet	Value	Cubic feet	Value
Building stone: Rough:				
Exterior Interior Finished:	134, 745	\$525, 633	41, 848	\$207, 863
	70, 106	209, 938	134, 450	434, 013
Exterior	444, 244	3, 173, 808	986, 992	4, 012, 60-
	332, 792	4, 928, 091	367, 735	5, 719, 01
Total exterior	578, 989	3, 699, 441	1, 028, 840	4, 220, 46
Total interior	402, 898	5, 138, 029	502, 185	6, 153, 02
Total building stone	981, 887	8, 837, 470	1, 531, 025	10, 373, 49
	257, 925	3, 260, 527	291, 688	3, 698, 86
Total building and monumentalApproximate short tons	1, 239, 812 105, 431	12, 097, 997	1, 822, 713 148, 946	14, 072, 35

TABLE 12.—Marble (dimension stone) sold by producers in the United States in 1957, by States and uses

		Bui	lding	Mon	umental		Total	
	Active					Quan	tity	
State	plants	Cubic feet	Value	Cubic feet	Value	Cubic feet	Short tons (ap- proxi- mate)	Value
ColoradoTennesseeUndistributed 2	3 13 14	7, 840 (1) 1, 523, 185	\$28, 692 (1) 10,344,803	11 291, 677	\$70 (1) 3, 698, 792	7, 851 632, 130 1, 182, 732	669 53, 624 94, 653	\$28, 762 3, 909, 953 10, 133, 642
Total	30	1, 531, 025	10,373,495	291, 688	3, 698, 862	1, 822, 713	148, 946	14, 072, 357
A verage unit value Short tons (approximate)		124, 421	\$6.78	24, 525	\$12.68			* \$7.72

Included with "Undistributed" to avoid disclosing individual company confidential data.
Includes data indicated by footnote 1 and Alabama, Georgia, Maryland, Missouri, North Carolina, and Vermont.

3 Average value per cubic foot.

LIMESTONE

Dimension-limestone production totaled over a million short tons, valued at more than \$21 million. Total tonnage and value increased over 1956, but the unit value per ton decreased. Limestone used as dimension stone was quarried in 1957 by 128 producers in 21 States and 2 Territories.

Limestone was the most widely used of all types of building stone in the United States. Although limestone production was reported from various sections of the country, the Bedford-Bloomington (Ind.) district maintained the lead in dimension-limestone output in 1957 as in previous years. Tables 14 and 15 show a breakdown of the limestone in the Indiana district. Many dimension-limestone producers in this area used scrap that resulted from block and slab production to supply local crushed-stone markets.

Sales of dimension limestone produced in the Carthage district, Missouri, are included in table 16.

Because of the increased potential for marketing crushed stone, some producers of dimension stone ventured further into that field.

TABLE 13.—Limestone (dimension stone) sold or used by producers in the United States in 1957, by States and uses

					Building	ling							•
	·		Ä	Rough		Finished (cut and	(eut and	Rubble	ole	Curbing and flagging	g and ing	Total	-8
State	Active plants	Construction	uction	Architectural	etural	sawed)	(p)					-	
		Short	Value	Cubic feet	Value	Cubic feet	Value	Short	Value	Cubic feet	Value	Short tons (approximate)	Value
Florida	4.0			©	(6)	(i)	Θ	1,214	\$9, 560	2,759	\$8,000	10, 533	\$322, 910 6, 780
Hawaii Illinois	3 cr 1	620	\$599	2. 936. 811	(1) \$2, 928, 327	(1) 4, 296, 833	(1)	(3.3)	8 EE	2 2	€€	3,030 594,932	680 66, 785 15, 236, 121
Iowa. Kansas	ကတ	1,080	27,000	6,982	4,877	165, 345	399, 570	(1) 4, 315	15,506	6,110 5,110	1,50 4	20,477 20,477	10,004 448,457 105,854
Minnesota	4 co ,	£	3E)	(1)	(i)	3.E.C	EE.2	(1) 49,263	140,881	2,916	2,488	24,084	1, 017, 955
Oklahoma Puerto Rico	- m	, 646 105, 150	3,876	602, 638	102, 107	17, 610	17, 382	21, 395	35, 675	5, 294 10, 000	18,000 000	2, 692 178, 619 430	24, 758 356, 132 351
Tennessee Texas Wisconsin	× ×	e, c, 900, 834, 836, 836,	36,000 15,741	221, 488 33, 146	200, 177	343, 250 726, 244	854, 034 1, 250, 427	500 10, 676	2, 500 32, 386	111,999	159, 185	82, 844 95, 844	1, 092, 711 1, 482, 176
	14	25 17, 232	61, 337	182, 556	346,841	349,981	1, 722, 045	122, 040	326, 071	443, 594	152, 229	68,837	946,487
Total	128	134, 067	366, 027	3, 983, 621	3, 606, 766	5, 932, 083	16, 449, 470	216, 262	\$2.64	581, 662	344, 406 \$0. 59	1, 131, 376	21, 337, 208 \$18.86
Average unit value Short tons (approximate)		(8)	47.10	296, 851	10.00	440, 272				43, 924			

¹ Included with "Undisbributed" to avoid disclosing individual company confidential data.
 ² Includes data indicated by footnote ¹ and Alabama, Connecticut, South Dakota, ¹ plant each; Nebraska and Ohio, ² plants each; California, ³ plants.
 ³ 1,587,300 cubic feet (approximate).

TABLE 14.—Limestone sold by producers in the Indiana colitic limestone district, 1948-52 (average) and 1953-57, by classes

				Const	ruction		
Year		Rough	blocks	Sawed and	semifinished	C	ut
	<u>-</u> 2	Thousand cubic feet	Value (thousand dollars)	Thousand cubic feet	Value (thousand dollars)	Thousand cubic feet	Value (thousand dollars)
1948-52 (average) . 1953		2, 155 2, 494	2, 195 2, 381 3, 141 3, 878 3, 378 2, 928	2, 660 3, 212 4, 059 4, 405 2, 801 3, 289	3, 820 4, 813 6, 381 7, 777 5, 626 6, 044	863 682 995 1, 142 812 1, 007	4, 417 3, 740 5, 046 6, 512 4, 921 6, 106
Year	Const	ruction—con Total	tinued	Othe	r uses	То	tal
	Thousand cubic feet	Thousand short tons (approxi- mate)	Value (thousand dollars)	Thousand short tons	Value (thousand dollars)	Thousand short tons (approxi- mate)	Value (thousand dollars)
1948-52 (average) _ 1953	5, 754 6, 049 7, 548 8, 807 6, 582 7, 233	417 439 547 639 477 524	10, 432 10, 934 14, 568 18, 167 13, 925 15, 078	165 154 136 201 163 161	306 284 408 575 452 388	582 593 683 840 640 685	10, 738 11, 218 14, 976 18, 742 14, 377 15, 466

TABLE 15.—Purchased Indiana limestone sold by mills in the Indiana colitic limestone district, 1948-52 (average) and 1953-57, by classes

	Sawed and	semifinished	σ	ut	To	tal
Year	Thousand	Value	Thousand	Value	Thousand	Value
	cubic	(thousand	cubic	(thousand	cubic	(thousand
	feet	dollars)	feet	dollars)	feet	dollars)
1948-52 (average)	180	254	838	4, 373	1, 018	4, 627
	174	308	606	3, 169	780	3, 477
	882	1, 568	1,029	5, 244	1, 911	6, 812
	786	1, 594	971	5, 590	1, 757	7, 184
	759	1, 761	1,006	6, 309	1, 765	8, 070
	610	1, 481	765	4, 601	1, 375	6, 082

TABLE 16.—Limestone and marble sold by producers in the Carthage district, Jasper County, Mo., 1948-52 (average) and 1953-57, by classes

Year	Thousand short tons	Value (thousand dollars)	Year	Thousand short tons	Value (thousand dollars)
1948–52 (average)	249	1, 239	1955	245	1, 533
1953	246	1, 169	1956	1 267	1 1, 495
1954	253	1, 265	1957	(2)	(2)

Includes dimension marble and crushed limestone only.
 Figure withheld to avoid disclosing individual company operations.

1079

SANDSTONE

The output of dimension sandstone, except for flagging, rubble, and curbing stone, decreased considerably in 1957. The average value decreased \$1.76 to \$21.37 per short ton, but there were some fluctua-

tions in unit prices for different uses.

Dimension sandstone was quarried in 28 States; Ohio furnished 28 percent of the total production and 52 percent of the value. Salient statistics for bluestone in 1957 are shown in table 18. This type of sandstone splits readily into thin, uniform sheets and was used for flagging, building, and curbing.

TABLE 17.—Sandstone (dimension stone) sold or used by producers in the United States in 1957, by States and uses

		,															
						Building	8u					Curbing	guj	Flagging	gul	To	Total
	Active	Rong	h con-	Rough architec-	rchitec-	-	Dressed	pes		Rubble	ble			-		Short	
State	plants	stru	struction	tural	la.	Sav	Sawed	3	Cut	Short	Value	Cubic Value	Value	Cubic	Value	tons (ap-	Value
		Short	Value	Cubic feet	Value	Cubic feet	Value	Cubic feet	Value	tons						mate)	
Alabama	67 -	1000	9	17, 628	\$19, 100			000 00	665 001					3,846	\$4, 200	1,675	\$23, 300
Arkansas	127	13,083	151, 910					202, 560	216, 453	46	\$6,324			102, 630	144, 700		374, 687
Colorado	400	16,804	178, 114	<u>9</u> 2	E	5,063	\$7,175	Θ	(1)	6,510	64, 781	265	\$812	150, 213	43, 285	44,319	462, 595
Judiana Kentucky	1104	Θ	ε	23, 400	32,	324, 936	626, 122	ε	æ	101	9, 100			3,144	3,800	(), 102 2, 222	35, 820
Massachusetts	 60-	970	8, 400	17, 219 4, 875	%, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,			1,738	3,000	5,034	26, 590			141, 951	28, 252	17,889	34, 438 70, 675
Nevada Norr Mexico	4 10 -			(3,5)	ÄΞ	9,846	29, 760	11,666	16, 425	3E	3E			2,4,e	-, 6, e	.294 294	62,350
New York (bluestone)	- 11	3, 490	71,800	9 483	3 483	(i)	(i)	50,056	309, 451	(3)	Ξ	385	1, 796	583, 472	638, 597	8,633	1, 281, 420
Ohio	120	1 18	1 176	575, 451	1, 284,	1, 430, 006	4, 398, 442	100	232, 068			44, 644 140, 712	40, 712	31, 450	86, 584	153, 113	
Pennsylvania 1	442	31, 271	210, 467	372, 801	178, 780	ε	(5)	3, 907	17,092	1	25, 754 148, 162	626	804	126, 106	251, 703	96,849	807, 008
Texas	0100	ε	Θ	(3	Ξ			2, 263	4, 325			>		1,263	4, 325 28, 350
Virginia Undistributed 3	13.2	212 25, 608	1, 696	125, 092	319, 927	ï	308, 648	308, 648 136, 665	250, 200	7,050	36, 426			(1) 106, 241	(1) 244, 752	(¹) 70, 774	(t) 1, 156, 196
Total	149	91, 736	724, 559 1,	1, 705, 209	705, 209 2, 731, 769 1	1,870,183	1, 870, 183 5, 370, 147 479, 085 1, 113, 470 47, 815	479, 085	1, 113, 470		289, 728	16, 517	44, 124 1,	289, 728 46, 517 144, 124 1, 326, 462 1, 489, 867 \$6, 06	1, 489, 867	555, 258	555, 258 11, 863, 664
Short tons (approximate)		(+)		129, 421		138, 493		36, 377	-			3, 390		107, 516	41.16		

¹ Included with "Undistributed" to avoid disclosing individual company confidential data.
² Includes 103,418 cubic feet of bluestone (approximately 8,739 tons) valued at \$167,166 sold for rubble and flagging.
³ Includes data indicated by footnote ¹ and Kansas, New Jersey, and Oregon, 1 plant each; West Virginia, 2 plants; Washington, 3 plants; and Wisconsin, 5 plants.
⁴ 1,176,100 cubic feet (approximate).

TABLE 18.—Bluestone (dimension stone) sold or used in the United States, 1948-52 (average) and 1953-57 1

Year	Thousand cubic feet	Value (thousand dollars)	Year	Thousand cubic feet	Value (thousand dollars)
1948–52 (average)	337	530	1955	583	1, 244
1953	322	602	1956	666	1, 412
1954	314	936	1957	856	1, 438

¹ New York and Pennsylvania were the only producing States.

MISCELLANEOUS STONE

Statistics on the types of stone not included in the major types discussed under other headings are incorporated in table 19. principal varieties are mica schist, argillite, soapstone, greenstone, and light-colored volcanic rocks. The total tonnage decreased in 1957, but the average unit value of \$41.04 per ton almost doubled the 1956 figures. The increase was mostly in building stone. The miscellaneous varieties of building stone averaged \$68.23 per ton.

TABLE 19. Miscellaneous varieties of stone (dimension stone) sold or used by producers in the United States in 1957, by States and uses

			Build	ing		Fla	gging	т	ota
State	Active plants	Rough ar	nd dressed	Ru	bble				
		Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value
California Oregon Undistributed 2	26 2 10	(¹) 1, 424 36, 181	(1) \$57, 375 2, 508, 247	(1) 400 35, 619	(1) \$2,000 587,327	756 150 4, 167	\$16, 383 9, 000 49, 053	37, 699 1, 974 39, 024	\$738, 314 68, 375 2, 422, 696
Total	38	³ 37, 605	2, 565, 622	36, 019	589, 327	4 5, 073	74, 436	78, 697	3, 229, 385
Average unit value			\$68.23		\$16.36		\$14.67		\$41.04

FOREIGN TRADE 5

Building- and ornamental-stone imports increased in total value, but the quantity used of the various types reported fluctuated compared with 1956. Most of the imports were marbles from Italy, Spain, France, Belgium, Portugal, and England. Granite, chiefly for memorials, was imported from Finland, Sweeth, from Marian. Travertine was imported from Italy and onyx marble from Mexico.

Exportation of building and monumental stone increased 21 percent in quantity and 19 percent in value compared with 1956. Crushed, ground, or broken stone combined decreased 22 percent in quantity but increased 2 percent in value compared with 1956. Other manufactures of stone rose 34 percent in value compared with the preceding

Included with "Undistributed" to avoid disclosing individual company confidential data.
 Includes data indicated by footnote 1 and Arizona and New Jersey, 1 plant each; Maryland and Virginia, 2 plants each; and Pennsylvania, 4 plants.
 Approximately 442, 412 cubic feet.
 Approximately 59,682 cubic feet.

Figures on imports and exports compiled by Mae B. Price and Elsie D. Jackson, Division of Foreign Activities, Bureau of Mines, from records of the U. S. Department of Commerce, Bureau of the Census.

WORLD REVIEW

North America

Canada.—The value of all varieties of dimension stone in 1956 totaled Can\$6.3 million, about the same as in 1955. Production of granite was higher but the value was lower compared with 1955. Most of the granite, marble, and limestone was produced in Quebec. Sandstone came from Ontario and Nova Scotia. Imports remained about the same as 1955; about 70 percent of the marble was imported from Italy, and the remainder came from the United States. ite was imported from the United States, Sweden, and Finland.6

Pakistan.—A plant was scheduled to begin dressing marble in Full production was anticipated by 1958, when Karachi in 1957. output of finished marble and marble blocks valued at PRs. 10 million a year is expected to be achieved.⁷

Africa

Algeria.—The Filfila marble quarry, 20 miles from Philippeville, resumed operations in mid-1956. The installations had been destroyed during the nationalist uprising in August 1955.8

Union of South Africa.—Sales of marble as building block increased about 15 percent to 23,000 cubic feet in 1956. In addition, marble chips and metallurgical applications supplied about 2,000 tons.9

TECHNOLOGY

Saws.—A new wet-cutting abrasive saw blade was developed. Reinforced with fiber glass, the 14-inch-diameter blade reportedly has a variety of modifications for cutting all types of masonry materials.10 Another wire stone-sawing machine was patented.11

A patent was issued on a gangsaw, with auxiliary movement of the saw frame, for cutting large blocks of stone. Also, a new saw blade was patented for use on gangsaws. The blade is relatively narrow with teeth inserts mounted below a wide backup blade of plate. The narrow blade can be stretched very tight to cut perfectly

A gangsaw was invented for cutting vertical grooves in stone, thus making it possible to cut long slabs suitable for use as columns.¹⁴

^{**}Canadian Department of Mines and Technical Surveys, Building and Ornamental Stone in Canada, 1956 (Preliminary): Ottawa, 7 pp.

7 Bureau of Mines, Mineral Trade Notes: Vol. 44, No. 2, February 1957, pp. 27-28.

8 Bureau of Mines, Mineral Trade Notes: Vol. 44, No. 5, May 1957, p. 30.

9 Bureau of Mines, Mineral Trade Notes: Vol. 45, No. 6, December 1957, p. 32.

10 Rock Products, vol. 60, No. 5, May 1957, p. 200.

11 Garrison, L. I. (assigned to the John Swenson Granite Co., Inc., Concord, N. H.), Wire Stone-Sawing Machine: U. S. Patent 2,795,222, June 11, 1957.

12 Blum, H. T. (assigned to the Briar Hill Stone Co., Glenmont, Ohio), Gang Saw Machine With Auxiliary Reciprocal Movement of Saw Frame: U. S. Patent 2,796,679, July 2, 1957.

13 Blum, H. T. (assigned to the Briar Hill Stone Co., Glenmont, Ohio), Saw Blade for Stone-Cutting Machine: U. S. Patent 2,798,473, July 9, 1957.

14 Woodward, W. W., Gang Saw Construction for Cutting Stone: U. S. Patent 2,815,745, Dec. 10, 1957.

Stone-Cutting Machines.—A dimension-stone cutting apparatus that recycles the cutting abrasive was invented,15 and another appa-

ratus was patented for cutting stone along a curved surface.16

A design for a dimension-stone cutting machine, using enclosed spring-loaded cams for operating each of the breaker knives independently, was patented. A lubricant was fed under pressure to the knives to prevent accumulation of cuttings.17 Another stone-cutting machine consists of rows of chisellike knives hydraulically actuated. 18

A machine, which reportedly improves the separation of stone into

uniform slabs, was patented.19

Artificial Stone.—Precast white artificial marble slabs were produced on a large scale for facing a 28-story bank building in Colorado.²⁰

Production was begun on another artificial dimension stone in

varying sizes and color schemes.21

Miscellaneous.—A modified coal cutter used for cutting out sandstone blocks in a sandstone quarry in Scotland was described.22

A magazine article outlined the principles of attaching stone veneer.23 A new glossary of terms for building stone in Great Britain was published.24

CRUSHED AND BROKEN STONE

Over 2,400 producers of crushed and broken stone operating in nearly every State sold over a half billion tons of crushed-stone products valued at almost three-quarters of a billion dollars. Thus, the 6-percent increase in tonnage maintained the upward trend that established crushed stone as one of the principal mineral commodities both in tonnage and value.

Either directly or indirectly, stone was required in virtually every phase of construction and in many industrial applications. Limestone, one of the most vital raw materials, was consumed in greater tonnages than any other stone, but large tonnages of granite, basalt, marble, and sandstone were also used in construction and industrial

applications.

Concrete and roadstone applications consumed about 56 percent of the total. In addition to this quantity, much of the stone reported under "other uses" actually went into road construction as fill and base-course materials.

¹³ Mackinson, C. (assigned to Terry Machinery Co., Ltd., St. Lauret, Quebec, Canada), Rock Sawing: U. S. Patent 2,808,821, Oct. 8, 1957.

¹⁵ Ghiglieri, A. (one-third each assigned to Frederick B. Cardova, Jr., South San Gabriel, Calif., and George Aspetti, Los Angeles, Calif.), Circular Cutting of Masonry Slabs: U. S. Patent 2,804,065, Aug. 27, 1957.

George Aspetti, Los Angoles, Cally, George Aspetti, Los Angoles, Cally, George Aspetti, Los Angoles, Cally, George Aspetti, Los Angoles, Cally, George Aspetting, Cally, Crowl, P. S., Stone-Cutting Machine:
18 Celapino, A. D. (assigned to R. R. Celapino and E. Ruffini, as executrices), Stone-Cutting Machine:
18 Celapino, A. D. (assigned to Agatan Stone & Machinery Co., East St. Louis, Ill.), Stone-Cutting
19 Nachine:
10 Van Hoose, N. C. (assigned to Agatan Stone & Machinery Co., East St. Louis, Ill.), Stone-Cutting
10 Nachine:
10 Nachine:
11 Nachine:
12 Nachine:
12 Nachine:
13 Nachine:
14 Nachine:
15 Nachine:
16 No. 5, 50 No. 5, 10 No. 5,

^{26-27.} 21 Nieberding, Velma, Color Stone—A Versatile New Concrete Product: Rock Products, vol. 60, No. 5,

²¹ Niederding, Veima, Color Stone—A versatue New Concrete Froduct: Rock Froducts, vol. 60, No. 5, May 1957, p. 188.

²² Mine and Quarry Engineering (London), Cutting Sandstone at Auchinlea Quarry: Vol. 23, No. 6, June 1957, pp. 230-237.

²³ Ritchie, T., Principles of Fixing Natural Stone Facings: Architecture and Building, vol. 32, No. 9, September 1957, pp. 363-364.

³⁴ British Standards Institute (London), Glossary of Terms for Stone Used in Building: BS2847, 1957, 28 pp.

TABLE 20.—Crushed and broken stone sold or used by producers in the United States, 1956-57, by principal uses

-		, , ,		ubob		
		1956			1957	
Use		Val	lue		Val	ue
	Thousand short tons	Total (thousand dollars)	A verage per ton	Thousand short tons	Total (thousand dollars)	A verage per ton
Concrete and roadstone Railroad ballast Portland and natural cement? Furnace flux (limestone) Agricultural limestone Lime and dead-burned dolomite 4. Riprap Alkali works Refractory 5. Asphalt filler Glass factories Calcium carbide works Sugar factories Paper mills Other uses Total	15, 481 86, 452 37, 789 19, 864 17, 495 13, 134 5, 723 1, 436 1, 613 987 1, 245	369, 883 16, 545 91, 604 52, 486 32, 087 24, 028 15, 565 5, 965 51, 054 3, 592 2, 928 1, 750 1, 454 59, 218	\$1. 34 1. 07 1. 06 1. 39 1. 62 1. 37 1. 19 1. 04 7. 70 2. 23 2. 97 . 85 2. 41 2. 80 2. 37	302, 754 16, 581 79, 944 39, 384 19, 206 17, 162 4, 899 1, 734 2, 054 1, 204 1, 204 34, 918	414, 114 18, 019 84, 071 56, 113 31, 556 25, 780 17, 699 4, 551 11, 930 5, 343 3, 589 1, 866 1, 356 69, 453	\$1. 37 1. 09 1. 05 1. 42 1. 64 1. 50 1. 22 . 93 6. 88 2. 60 2. 98 2. 39 2. 69 2. 39 2. 69
Asphaltic stoneSlate granules and flour 6	1, 459 526	4, 114 4, 863	2. 82 9. 24	1, 169 512	3, 221 4, 409	2. 76 8. 61

¹ Includes Territories of the United States, possessions, and other areas administered by the United States 2 Limestone, cement rock, shell, and calcareous marl.

* Limestone and calcareous marl.

Limestone and caracteristics and the Limestone, dolomite, and shell.

Ganister (sandstone and quartzite) and dolomite.

Includes a small quantity of crushed slate used for lightweight aggregate.

Despite a decline in home building in 1957, the crushed-stone industry increased production facilities, being bolstered to some extent by the construction phase of the Federal Highway Program, which was under way in some areas. Emphasis shifted from a record volume of private construction in 1956 to a record volume of public works in 1957. The 9-percent increase in public construction was the sharpest rise since 1952. Largest dollar gains during 1957 were in highways (8 percent) and school construction (11 percent).25

Several magazine articles predicted a long-range outlook for the

crushed-stone industry.26

The crushed-stone industry depends heavily on highway paving for Fortunately, highway construction showed a substantial upward trend that was expected to continue for many years under the present and anticipated highway construction programs.

U. S. Department of Commerce, Construction Review: Vol. 4, No. 2, February 1958, 57 pp.
 Pit and Quarry, The Highway Construction Picture: Vol. 49, No. 7, January 1957, pp. 134-137; Bell, J. N., Rock Products Forecast: Rock Products, vol. 60, No. 1, January 1957, pp. 68-79; American Road-builders' Association, The Highway Construction Industry in a Long-Range National Highway Program:

1085

TABLE 21.—Crushed and broken stone sold or used by producers in the United States, 1943-57, by uses

					~j ubob			
	Rij	prap		ete and Istone	Railroa	d ballast		ng stone estone)
Year	Thousand short tons	Value (thousand dollars)	Thousand short tons		Thousand short tons	Value (thousand dollars)	Thousand short tons	Value (thousand dollars)
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957	4, 011 4, 801 3, 848 5, 733 5, 707 7, 568 6, 898 6, 989 8, 779 7, 735 7, 642	4, 835 4, 948 5, 590 6, 514 7, 553 9, 830 7, 807 8, 438 11, 156 10, 053 10, 973 13, 680 15, 565 17, 699	82, 412 64, 796 64, 108 90, 359 107, 078 121, 619 124, 367 146, 496 168, 766 187, 114 189, 159 216, 614 254, 588 276, 269 302, 754	83, 398 66, 144 65, 536 97, 765 125, 753 150, 017 158, 358 191, 534 216, 418 245, 977 251, 515 289, 442 336, 260 369, 883 414, 114	17, 236 18, 285 21, 265 16, 908 16, 350 18, 181 17, 054 18, 614 21, 368 20, 778 15, 173 15, 871 16, 581	11, 346 12, 557 14, 894 13, 127 13, 567 16, 316 15, 377 17, 519 20, 337 20, 019 20, 533 14, 871 16, 758 16, 545 18, 019	31, 570 31, 080 27, 639 25, 158 32, 570 34, 902 30, 752 35, 970 39, 930 40, 881 33, 162 40, 068 37, 789 39, 384	24, 506 25, 130 22, 076 20, 792 28, 688 34, 250 32, 268 37, 932 45, 622 41, 119 53, 041 40, 934 52, 906 52, 486 56, 113
	Refra	ctory	Agric (limes	ulture stone)	Othe	r uses	To	otal
Year	Thousand short tons	Value (thousand dollars)	Thousand short tons	Value (thousand dollars)	Thousand short tons	Value (thousand dollars)	Thousand short tons	Value (thousand dollars)
1943	2, 708 2, 314 2, 527 2, 088 2, 704 2, 557 1, 828 2, 366 1, 931 1, 078 1, 169 1, 436 1, 734	4, 577 3, 922 4, 545 4, 157 6, 531 5, 764 5, 849 7, 810 7, 262 8, 079 5, 191 5, 778 11, 054 11, 930	14, 522 18, 941 17, 396 22, 782 22, 605 20, 942 21, 483 19, 401 21, 152 18, 428 18, 247 18, 360 19, 864 19, 206	19, 057 26, 316 25, 892 32, 483 35, 076 32, 035 33, 251 30, 393 31, 052 34, 464 30, 104 30, 199 29, 455 32, 087 31, 556	17, 113 15, 534 14, 610 16, 335 19, 096 20, 033 19, 356 20, 158 24, 869 24, 412 25, 975 2 117, 761 2 127, 616 2 139, 741 2 142, 322	23, 234 22, 770 22, 926 28, 033 33, 317 34, 396 34, 486 34, 49, 323 46, 982 48, 769 50, 693 2 155, 821 2 177, 465 2 191, 599 2 196, 848	170, 511 154, 961 152, 3 46 177, 478 206, 136 223, 941 222, 408 249, 643 283, 689 299, 700 304, 893 2 409, 678 2 467, 958 2 503, 714 2 3 536, 443	170, 953 160, 787 161, 459 201, 367 248, 452 281, 098 381, 357 376, 659 408, 766 424, 018 2 547, 437 2 632, 302 2 689, 219 2 3 746, 279

¹ Includes Territories of the United States, possessions, and other areas administered by the United States 1943-53 excludes ground sandstone, quartz, and quartzite used for abrasives and other uses; shell for various uses; and limestone, cement rock, calcareous marl, and dolomite used in making cement, lime, and dead-burned dolomite.

TABLE 22.—Crushed stone for concrete and roadstone and railroad ballast sold or used by producers in the United States, 1948-52 (average) and 1953-57

	Concrete an	d roadstone	Railroad	i ballast	To	tal
Year	Thousand short tons	Value (thousand dollars)	Thousand short tons	Value (thousand dollars)	Thousand short tons	Value (thousand dollars)
1948–52 (average)	149, 672 189, 159 216, 614 254, 588 276, 269 302, 754	192, 461 251, 515 289, 442 336, 260 369, 883 414, 114	19, 320 20, 778 15, 173 15, 871 15, 481 16, 581	17, 914 20, 533 14, 871 16, 758 16, 545 18, 019	168, 992 209, 937 231, 787 270, 459 291, 750 319, 335	210, 375 272, 048 304, 313 353, 018 386, 428 432, 113

¹ Includes Territories of the United States, possessions, and other areas administered by the United States.

² Includes the following quantities of limestone, cement rock, shell, calcareous marl, and dolomite used in making cement, lime, and dead-burned dolomite: 1954—88,796,000 tons valued at \$95,471,000; 1955—100,-618,000 tons, \$111,405,000; 1956—103,947,000 tons, \$115,632,000; 1957—97,106,000 tons, \$109,851,000. Also includes ground sandstone, quartz, quartzite, and shell used for miscellaneous purposes.

3 Includes calcareous marl for agricultural use.

TABLE 23.—Crushed stone for concrete and roadstone and railroad ballast sold or used by producers in the United States in 1957, by States

American Samoa 3, 197 7, 040 1, 567, 300 1, 567, 300 1, 677, 300 1, 677, 300 1, 677, 300 1, 677, 300 1, 677, 300 1, 677, 300 1, 677, 300 1, 677, 300 1, 677, 300 1, 620, 456 1, 620, 4	Concrete
Alaska. 349, 452	Short to
Alaseka	1 2, 625, 1
American Samoa 3,197 7,040 1255,700 18,112 1\$10,302 12,291,486 12,283,374 12,455,710 18,112 1\$10,302 12,291,486 17,786,122 177,786,122 172,409 184,870 15,639,662 177,786,122 172,409 184,870 15,639,662 17,786,122 177,786,122 172,409 184,870 15,639,662 17,786,122 177,780,122 177,803,	349, 4
Arkansas	3, 1
Colorado	1 567, 3
Solution Solution	12,283,3
15, 224, 197 18, 259, 183 22 11, 6, 620, 456 12, 630, 316 16, 620, 456 12, 630, 316 17, 114, 501 10, 126, 784 635, 589 777, 309 17, 750, 090 11, 630, 316 14, 4501, 175 11, 6320, 456 12, 2468, 364 44, 609, 175 12, 2468, 364 11, 043, 467 11, 805, 157 111, 043, 467 11, 805, 157 111, 043, 467 11, 805, 157 111, 043, 467 11, 805, 157 110, 143, 145, 167 113, 145, 167 114, 145, 145 114, 145, 145 114, 145, 145 114, 145, 145 114, 145, 145 114, 145, 145 114, 145, 145 114, 145, 145 114, 145, 145 114, 145, 145 114, 145, 145 114, 145,	
Florida	
17, 114, 501 10, 126, 784 635, 589 777, 309 17, 750, 90 14, 750, 91 18, 914, 980 635, 589 777, 309 17, 750, 90 18, 750, 916 18, 914, 980 635, 589 777, 309 17, 750, 90 18, 750, 916 19, 914, 980 635, 589 777, 309 17, 750, 90 18, 750, 916 19, 914, 980 635, 589 777, 309 17, 750, 90 18, 750, 916 19, 914, 920 14, 914, 914 19, 914, 914 19, 914, 914 19, 914, 914 19, 914, 914 19, 914	
Hawaii	
1, 043, 467 1, 043, 467 1, 805, 157 1, 093, 438 1, 373, 798 24, 174, 629 3, 10diana. 9, 062, 663 11, 383, 874 270, 857 326, 879 9, 333, 520 11, 1415, 716 13, 946, 187 11, 445, 716 13, 946, 187 11, 445, 716 13, 946, 187 12, 24, 174, 629 3, 385, 201 14, 42, 452 4, 452, 505 10, 838, 536 1, 14, 477, 580 1, 187, 929 1459, 050 187, 929 1459, 050 187, 929 1459, 050 187, 929 1459, 050 187, 929 1459, 050 187, 929 187,	630, 3
11, 415, 716	
11, 415, 716	
15, 924, 724	
Maine	1 5, 924, 7
Maine 1 187, 929 1 459, 050 1 6,884, 044 240, 371 401, 596 4,382, 823 Massachusetts 1 3,770, 725 6,884, 044 240, 371 401, 596 4,382, 823 M,082 M,082 M,082 M,083, 858 1 1,970, 530 6,131, 587 (2) (2) 1,490, 530 4,970, 530 6,700,000 1,983, 823 3,875,001	10, 285, 3
Michigan	1 187, 9
Michigan	4, 142, 4
Midwäy 3,875,001 6,700,000 1,366,001 1,3875,001 3,875,001 1,3875,001 1,3875,001 1,3875,001 1,386,393 12,321,223 1,231,200 1,386,176 1,295,200 1,388,211,203 1,21,200 2,000 1,170,138 12,045,818 1,18,664,323 1,21,200 2,000 1,21,200 2,000 2,000 1,21,200 2,000 2,000 1,22,200 2,000 1,221,200 2,000 1,221,200 2,000 1,221,200 2,000 1,221,200 2,000 1,221,200 2,000 1,221,200 2,000 1,221,200 2,000 1,221,200 2,000 1,221,200 2,000 1,221,200 2,000 1,221,200 2,000 1,221,200 2,000 1,221,200 2,000 1,221,200 2,000 1,221,200 2,000 1,221,200 2,000 1,221,200 2,000 1,221,200 1,201,341 1,322,683 1,74,437 1,68,503 1,667,51,556 3,1,262,387 1,500 1,64,400 1,221,200 1,10,772 1,61,588 1,20,200 1,221,200 1,10,772	1 3, 770, 7
Missouri	4,970,5
Missouri	3,875,074
Montama	
Nevada	
New Mexico	820, 9
New Mexico	28,7
New York	17, 283, 2
North Carolina	1, 116, 9
Oklahoma 9, 502, 936 10, 498, 530 1 866, 149 1 471, 159 1 0, 369, 085 1 0, 769, 787 Oregon 1 6, 607, 817 1 6, 360, 665 (2) (2) (3) 6, 501, 557 38, 925 74, 607 38, 925 1 77, 574, 333 12, 77, 744, 958 1, 166, 649 1, 915, 052 177, 574, 333 12, 77, 743, 938 1, 14, 154 1, 14, 154 1, 14, 14, 144 1, 14, 200 1, 14, 14, 144 1, 14, 200 1, 14, 14, 144 <td< td=""><td></td></td<>	
Oklahoma 9, 502, 936 10, 498, 530 1 886, 149 1 471, 159 1 0, 369, 085 1 0, 269, 085 1 0, 369, 085 1 0, 369, 085 1 0, 369, 085 1 1, 369, 085 1 1, 369, 085 1 1, 369, 085 1 1, 369, 085 1 1, 369, 085 1 1, 389, 225 1 1, 369, 085 1 1, 389, 225 1 1, 389, 225 1 17, 574, 333 1 2, 279, 434 1 1, 41, 54 1 1, 41, 54 1 1, 42, 200 1 1, 41, 41, 41, 42 1 1, 41, 42, 42, 876 225, 600 176, 300 1 3, 183, 170 1 1, 31, 490 1 1, 480, 700 20 1 13, 183, 170 1 1, 304, 989 1 13, 570, 606 755, 090 842, 262 112, 060, 079 1 12, 130, 900 1 130, 900 80, 600 20 20 1 130, 900 842, 262 1 12, 060, 079 1 12, 130, 900 <	16,910,8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9 502
Panama Canal Zone 38, 925 74, 607 38, 925 1, 166, 649 1, 915, 052 17, 74, 333 17, 74, 333 17, 925 1, 166, 649 1, 915, 052 17, 74, 333 17, 729, 434 1, 1515, 625 114, 166, 649 1, 915, 052 176, 300 13, 774, 333 17, 92, 434 14, 200 14, 166, 649 1, 915, 052 17, 374, 333 17, 92, 434 14, 200 14, 166, 649 1, 915, 052 176, 300 13, 183, 170 17, 92, 434 14, 200 14, 164 14, 200 176, 300 13, 183, 170 17, 931, 900 17, 42, 524, 876 225, 600 176, 300 13, 183, 170 17, 931, 900 17, 911, 900 17, 911, 900 17, 911, 900 17, 911, 900 17, 913, 900 17, 911, 900 17, 911, 900 17, 911, 900 17, 911, 900 17, 911, 900 17, 911, 900 17, 911, 900 17, 911, 900 17, 911, 900 17, 911, 900 17, 911, 900 17, 911, 900 17, 92, 92, 92 17, 92, 92 17, 92, 92 17, 93, 92 17, 93, 92 17, 93, 92 17, 93, 92 17, 93, 92 17, 93, 92 17, 93, 92 17, 93, 93 17, 93, 93 17, 93, 93 17, 93, 93 17, 93, 93 17, 93, 93, 93 17, 93, 93, 93 17, 9	1 5, 067, 8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	38,
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 16, 407, 6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	729,
South Dakota 1 931, 900 1, 460, 700 (2) (2) 1 931, 900 1 7 931, 900 1 7 900 1 7 931, 900 1 7 900 1 7 931, 900 1 7 900 1 9 900 1 9 900 1 9 900 1 9 900 1 9 900 1 9 900 1 9 900 1 9 900 1 9 900 1 9 900 1 9 900 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	14,5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 11 204
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 19 261
Virgin Islands 11, 300 31, 000 Wake Island 5, 000 6, 340 Washington 5, 852, 114 6, 144, 899 West Virginia 11, 719, 360 12, 939, 972 Wisconsin 8, 723, 893 8, 617, 756 1589, 309 1692, 181 19, 313, 202 Wyoming 17, 200 16, 400 1113, 000 1119, 000 1120, 200	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	11,
West Virginia 11,719,360 12,939,972 (2) (2) 11,719,360 1 Wisconsin 8,723,893 8,617,756 1589,309 1692,181 19,313,202 1 Wyoming 17,200 16,400 1113,000 1119,000 120,200	5,0
Wisconsin 8,723,893 8,617,756 1589,309 1692,181 19,313,202 1 Wyoming 17,200 16,400 1113,000 1119,000 1120,200	5, 852,
Wyoming 17, 200 16, 400 113, 000 119, 000 120, 200	1,719,3
	8, 723,
Uniting the contract of the co	14 274
Grand total 302, 753, 820 414, 113, 726 16, 581, 241 18, 018, 923 319, 335, 061 4	

¹ To avoid disclosing confidential information, total is incomplete; the part not included is combined with "Undistributed."

² Included with "Undistributed."

³ Includes data indicated by footnote ² and Delaware, Louisiana, New Hampshire, and Vermont.

TABLE 24.—Crushed stone for concrete and roadstone sold or used by commercial and noncommercial operators in the United States, 1948-52 (average) and 1953-57

(Figures for "noncommercial operations" represent tonnages reported by States, counties, municipalities, and other Government agencies, produced either by themselves or by contractors expressly for their consumption, often with publicly owned equipment; they do not include purchases from commercial producers. Figures for "commercial operations" represent tonnages reported by all other producers.)

	Cor	nmercial	operatio	ns	None	ommerci	al operat	ions	Tot	al
Year	Thousand short tons		Percent of change in quan- tity from preced- ing year	Per- cent of total quan- tity	Thousand short tons		Percent of change in quan- tity from preced- ing year	Per- cent of total quan- tity	Thousand short tons	
1948-52 (average) 1953 1954 1955 1956 1957	133, 589 169, 352 199, 157 223, 254 251, 636 264, 014	\$1. 29 1. 33 1. 35 1. 35 1. 36 1. 40	+1 +18 +12 +13 +5	89 90 92 88 91 87	16, 083 19, 807 17, 457 31, 334 24, 633 38, 740	\$1. 22 1. 29 1. 22 1. 14 1. 10 1. 18	+6 -12 +79 -21 +57	11 10 8 12 9	149, 672 189, 159 216, 614 254, 588 276, 269 302, 754	+1 +15 +18 +9 +10

¹ Includes Territories of the United States, possessions, and other areas administered by the United States.

Roofing-granule manufacture and sales were used as an indicator of building construction and maintenance. Manufacture of roofing materials, both the natural and artificially colored, declined in 1957, following the lag in home building. A new roofing-granule plant was erected near Charleston, S. C., to accommodate the firm's southeastern market. The \$2.5-million plant houses under one roof every phase of granule processing from crushing to firing in the kiln.27

TABLE 25.—Roofing granules 1 sold or used in the United States, 1948-52 (average) and 1953-57, by kinds

	Nat	ural	Artificiall	y colored 2	To	tal
Year	Thousand short tons	Value (thousand dollars)	Thousand short tons	Value (thousand dollars)	Thousand short tons	Value (thousand dollars)
1948-52 (average)	417 337 344 366 323 312	3, 659 3, 187 3, 208 3, 406 2, 873 3, 208	1, 156 1, 282 1, 362 1, 470 1, 361 1, 313	20, 032 24, 633 26, 877 30, 452 30, 854 31, 798	1, 573 1, 619 1, 706 1, 836 1, 684 1, 625	23, 691 27, 820 30, 085 33, 858 33, 727 35, 006

Manufactured from stone, slate, slag, and brick.
 A small quantity of brick granules is included with artificially colored granules.

²⁷ Herod, Buren C., Bird and Son's New Roofing Granule Plant: Pit and Quarcy, vol. 49, No. 12, June 1957, pp. 116-118, 138.

SIZE OF PLANTS

Over 2,400 plants crushed stone in the Nation in 1957. The number of plants and the percentage of total production in the larger sized groups remained fairly constant. The plants producing over 900,000 tons constituted only 3 percent of the total number but 25 percent of the tonnage. A thousand smaller plants produced only about 3 percent of the total output.

Portable plants, mounted on pneumatic-tired wheels, were reported to be increasing in number. Such plants were usually in places where freight costs on stone from permanent plants made the use of portable

plants more economical.

TABLE 26.—Number and production of commercial crushed-stone plants in the United States, 1956-57, by size of output

		19	56			19	57	
Size of output		Produc	ction	Cumula- tive total		Produ	ction	Cumula- tive
	Num- ber of plants	Thou- sand short tons	Per- cent of total	(thou- sand short tons)	Num- ber of plants	Thou- sand short tons	Per- cent of total	total (thou- sand short tons)
Less than 1,000 tons 1,000 to 25,000 25,000 to 50,000 25,000 to 50,000 25,000 to 75,000 25,000 to 100,000 25,000 to 100,000 25,000 to 100,000 200,000 to 300,000 200,000 to 300,000 200,000 to 500,000 25,000 to 500,000 25,000 to 600,000 25,000 to 600,000 25,000 to 600,000 to 600,000 25,000 to 800,000 25,000 to 900,000 25,000 25,000 25,000 25,000 to 900,000 25,	564 284 220 163 386 201 116 91 71 39 25	32 5, 378 10, 267 13, 489 15, 261 48, 596 40, 554 40, 899 39, 026 25, 162 19, 421 22, 015 135, 416	0. 01 1. 14 2. 18 2. 88 3. 24 11. 73 10. 32 8. 61 8. 69 8. 29 5. 34 4. 12 4. 68 28. 77	32 5, 410 15, 677 29, 166 44, 427 99, 658 148, 254 188, 808 229, 707 268, 733 293, 895 313, 316 335, 331 470, 747	76 640 285 219 174 409 205 126 97 61 42 30 24 75	33 6, 269 10, 222 13, 531 15, 050 57, 708 49, 962 43, 913 43, 305 26, 735 22, 645 20, 399 138, 386	0. 01 1. 30 2. 12 2. 81 3. 13 12. 00 10. 38 9. 12 9. 01 6. 86 5. 56 4. 70 4. 24 28. 76	33 6, 302 16, 524 30, 055 45, 105 102, 813 152, 775 196, 688 240, 064 273, 069 299, 804 322, 449 342, 848 481, 234
Total	2, 336	470, 747	100.00	470, 747	2, 463	481, 234	100.00	481, 234

¹ Includes Territories of the United States, possessions, and other areas administered by the United States.

TRANSPORTATION

The value of crushed stone is relatively low per ton, and transportation cost in some areas was over half the delivered price. Truck transportation increased and the use of portable plants shortens transportation distances. Restrictions on wheel loads did not permit the use on highways of the large trucks used in quarries. Water transport continued to be a factor of importance in some places, notably northern Michigan and near New York City.

Output on 1 quarry was increased 50 percent (to 4,800 tons per 8-hour day) by replacing the old 15-ton, road-type trucks with 300-horsepower diesel tractors and side-dump trailers that haul 40 tons of material from the guarry face to the primary graph on 28

of material from the quarry face to the primary crusher.²⁸

²⁸ Rock Products, Needed: More Rock Tonnage Solution—Larger Haulage Units: Vol. 60, No. 10, October 1957, pp. 172, 174, 176.

TABLE 27.—Crushed stone sold or used in the United States ¹ in 1957, by methods of transportation

Method of transportation	Comm operat		Commerc noncomn operat	ercial 2
	Thousand	Percent	Thousand	Percent
	short tons	of total	short tons	of total
Truck	270, 556	56	325, 765	61
	96, 562	20	96, 562	18
	56, 893	12	56, 893	10
	57, 223	12	57, 223	11
Total	481, 234	100	536, 443	100

 ¹ Includes Territories of the United States, possessions, and other areas administered by the United States.
 2 Entire output of noncommercial operations assumed to be moved by truck.

A high-speed conveyor-belt system carried aggregates nearly 2 miles to the wharf, and a fleet of barges on the Great Salt Lake hauled 2,000 cubic yards of the material each trip. A 13-mile fill will require about 32 million cubic yards of crushed stone and sand and gravel aggregates.²⁹

GRANITE

Production of granite increased considerably in both tonnage and value in 1957 compared with the preceding year, but the value per ton decreased 17 cents to \$1.21. California led in tonnage, followed by North Carolina, Georgia, and South Carolina. The major increases were in concrete and roadstone and other uses. Much of the granite reported under other uses was used for road construction as fill and base-course materials.

²⁹ Engineering News-Record, How Barges Are Building a Railroad Fill Over Salt Lake: Vol. 158, No. 23, June 6, 1957, pp. 34-36, 38, 42-44.

TABLE 28.—Granite (crushed and broken stone) sold or used by producers in the United States in 1957, by States and uses

										2002
State	Rij	Riprap	Concrete an	Concrete and roadstone	Railroac	Railroad ballast	Other uses	uses 1	Total	.es.
	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value
		\$13, 250	171, 887	\$417, 911			78,000	\$72,000		\$503 161
	16, 700	39, 500	3, 598, 420	4, 023, 651	e	(2)	8, 849, 546	5, 061, 904		9, 418, 319
dahodaho	99,	162, 419	6, 696, 753	9, 374, 194	594, 539	\$717,787	366, 137	278, 693		10, 533, 093
ts	වව	වව	(2)	2 002 659	1		(S)	€	110, 227	7,000 480,276
Michigan Minnesota		(s)	125,646	1,375	346, 921	336, 393	E 6	E (8)	700	(4) 1, 375 794 988
Montana	131, 465	103, 088		11					13, 465	4,371
New Hampshire.	1	1.881	1, 540				3,000	3,000	4, 540	4, 540
	ලෙල	Se:	504, 536 8, 910, 827	1, 082, 956 12, 208, 913	© €	€®	18,000 (3)	36,000	(3) (9) 454, 310	(3) (2) 12, 835, 698
Oklahoma South Carolina		8, 380 (s)	303,000	4,254,876	225.600	176.300	(6)	(8)	311,380	461,380
Virginia	, E	(3) 800	2, 124, 128	3, 072, 688	(3)	(2)			30,800	30, 800
Vyoming. Tridistributed 8	563, 087 9, 300 351, 235	1, 008, 032 14, 500 600, 064	(2) 7, 200 1, 380, 580	(2) 6,400 1,927,928	(2) 113,000 649,490	(2) 119, 000 597, 710	(3) 6, 100 744, 634	(2) 4, 700	698, 139 135, 600	1, 142, 182 1, 144, 600
TotalAverage unit value	1, 257, 055	2, 038, 185	27, 944, 059	39, 061, 158	1, 829, 550	1, 947, 190	10, 066, 260	6, 496, 508	41, 096, 924	49, 543, 041
		41.02		0#.1¢		\$1.06		\$0.65		\$1.21

Includes stone used for fill material, poultry grit, roofing granules, stone sand, and unspecified uses.
Included with "Undistributed" to avoid disclosing individual company confidential data.
Includes data indicated by footnote 2 and Arizona, Connecticut, Delaware, Maryland, Oregon, Rhode Island, Tennessee, Texas, Vermont, and Wisconsin.

BASALT AND RELATED ROCK (TRAPROCK)

Dark-colored igneous rocks, including basalt, gabbro, diorite, and diabase, were used widely for concrete and roadstone and railroad ballast. Traprock was also valued for riprap and roofing granules because of its blocky fracture and high resistance to abrasion. Output increased 13 percent in 1957, and the value per ton remained the same as in 1956. Production costs have been estimated to be substantially higher than for limestone because of its greater resistance to drilling and processing. The unit value of basalt and related rocks was over 25 percent higher than the unit value reported for limestone used in concrete and roadstone. Oregon was the leading producer, followed by New Jersey and Washington.

TABLE 29.—Basalt and related rocks (traprock) (crushed and broken stone) sold or used by producers in the United States in 1957, by States and uses

	Riprap	rap	Concrete and roadstone	1 roadstone	Railroad ballast	ballast	Other uses	1ses 1	Total	11
State	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value
Alaska American Samoa California	42,840 10,125 77,882	\$223, 560 18, 750 86, 799	70, 978 3, 002 1, 708, 216	\$482, 675 6, 927 2, 242, 078			166, 199 3, 500	\$1, 113 102, 809 65, 000	113, 818 13, 646 1, 952, 297 3, 500	\$706, 235 26, 790 2, 431, 686 65, 000
Colorado Connecticut Hawaii Idaho	48, 043 (2)	(3)	5, 424, 197 1, 461, 878 1, 023, 367	8, 259, 183 2, 961, 024 1, 781, 657	©	(g)	8.8	66	(2) 1, 547, 102 1, 089, 925 501, 654	(2) 3,046,383 1,835,981 1,085,250
setts		£	(2) 2, 618, 553 40, 593	(2) 4, 307, 975 60, 138	€® (⊙ €	9,705	32, 388	2, 867, 372 40, 593	4, 665, 388 60, 138 1, 421, 719
1 1 1	© ₁₈ ©	(3) 13, 435 (9)	(3)	(2) 15, 481, 367	201, 341	\$322, 683	€ €	(8)	7, 634, 425	13, 435 17, 344, 644 6, 100
New Mexico		(3) (4) 100	5,067,817	6, 360, 665	(a)	(s)			7, 663, 638	8, 022, 371 74, 897
	චච	<u>ee</u>	2, 226, 681	3, 785, 609 (3)	748, 013 (*)	1, 248, 583 (3)		(e)	973, 568 11, 500	1, 609, 120 31, 000
Virgin Islands Washington Undistributed	698, 755 3, 739, 543	828, 083 3, 876, 367	4, 683, 202 4, 194, 976	5, 098, 354 8, 357, 568	(2) 1, 297, 901	(*) 1, 773, 816	(2) 660, 640	3, 186, 010	5, 578, 608 11, 765, 904	6, 193, 603 22, 497, 161
Total Average unit value	4, 644, 857	5, 113, 672	35, 352, 640	59, 290, 827 \$1. 68	2, 247, 255	3, 345, 082 \$1. 49	840, 563	3, 387, 320 \$4. 03	43, 085, 315	71, 136, 901 \$1. 65

Includes stone sold for fill material, filter rock, roofing granules, stone sand, and unspecified uses.
 Included with "Undistributed" to avoid disclosing individual company confidential data.
 Includes data indicated by footnote 2 and Arizona, Minnesota, New York, North Carolina, Texas, and Wisconsin.

MARBLE

In some instances defective marble blocks at dimension-stone plants were crushed and sold for various purposes. In addition, several plants that formerly produced dimension stone crushed marble ex-Forty plants reported output of crushed marble in 1957. Marble of relatively high purity was interchangeable with high-calcium limestone for a variety of uses. It was used also as a roofing granule and as a major component in manufacturing artificial dimension stone. Colored varieties were highly prized as terrazzo, usually commanding a high price. Marble also was used to some extent in concrete, and as Because the characteristic fracture along crystal planes roadstone. tends to reduce the cohesive bond, marble is considered by some to be inferior for use as an aggregate in concrete. The average unit value for crushed and broken marble, f. o. b. plant, increased slightly over 1956 to \$7.56 per ton.

Marble reported for terrazzo, except in 1956, has been increasing in recent years; 377,000 short tons, valued at \$4.5 million, was reported

TABLE 30.—Marble (crushed and broken stone) sold by producers in the United States in 1957, by States 1

State	Active plants	Short tons	Value	State	Active plants	Short tons	Value
AlabamaAlaska	4	190, 682 200	\$1, 311, 915 6, 500	Other States 2	24	1, 063, 507	\$8, 030, 374
Arizona Colorado	1	1,700	29, 500 20	Total	40	1, 274, 004	9, 634, 379
Tennessee	9	17, 905	256, 070	Average unit value			\$7.56

¹ Includes stone used for agriculture, asphalt filler, concrete and roadstone, poultry grit, roofing, spalls, stucco, terrazzo, whiting (excluding marble whiting made by companies that purchase marble), and unspecified uses.

² Includes Maryland, Missouri, New Jersey, New York, North Carolina, Texas, and Virginia, 1 plant each; Vermont, 2 plants; California, 4 plants; Georgia, 5 plants; and Washington, 6 plants.

LIMESTONE

Limestone, one of the most vital raw materials produced in the United States, was consumed in greater tonnages than any other stone in 1957. It was used in virtually every phase of construction and in many industrial applications.

Tonnage in 1957 increased 1 percent, and value increased 4 percent compared with 1956. The increased sales of limestone for concrete and roadstone, flux, and railroad ballast offset the decline in sales for riprap and agricultural and other uses.

Considerably less limestone was used for soil treatment in 1957 than was deemed necessary to maintain the Nation's soil in proper fertility.30

The Federal Geological Survey published a bibliography of highcalcium limestone deposits in the United States.31

³⁰ Abbott, B. T., Ag-Lime: Why Isn't More of It Used: Rock Products, vol. 60, No. 4, April 1957, pp.

^{96-98, 156-158.}Koch, Robert M., The Soil Bank Program—What It Means to the Ag-Lime Industry: Rock Products, vol. 60, No. 4, April 1957, pp. 94-95, 146.

31 Casdik, G. C., and Tagg, K. M., Annotated Bibliography of High-Calcium Limestone Deposits in the United States, Including Alaska, to April 1956: Geol. Survey Bull. 1019-I, 1957, pp. 675-713.

The Internal Revenue Service ruled that limestone rock that has a magnesium carbonate content of 35 percent or more was to be designated as dolomite and allowed the flat rate of 10-percent depletion, irrespective of use. Before the adoption of this policy, the end use of the product governed its proper depletion allowance. The Internal Revenue Service modified its policy in this respect because of a 1957 ruling by the Tax Court of the United States involving a product of The Virginian Limestone Corp. The court ruled:

The term "dolomite" when used with reference to rock, is one of specific designation and has reference to a particular class of sedimentary rock, commonly known by that name, which is rich in magnesium carbonate; whereas, "stone" and "limestone" are terms of more general classification and may refer to rocks which contain little or no magnesium carbonate.³²

³² Internal Revenue Service, Revenue Ruling 57-288: Internal Revenue Bull. 1957-I, CB-518, p. 518.

102
use
nd
ses 8
Stal
py
957
ii 1
tes
Sta
ited
e Ur
ı the
rs ii
luce
proc
ρΔ
lsed
or 1
sold
1e)
sto
ken
bro
and
hed
rus
je (
ston
Sim
Ţ
ထ
ABLE 31.
B
H

TABLE OI.	orsaure.	פנסוום (כו מ	ciusiica am	TOROIG T	Stone) s	on to nto	en na br	rouncer	am m s	omited by	Diales III To	Tool, by De	praces and	raes
State	Rip	Riprap	Fluxing stone	s stone	Concrete and stone	and road- ne	Railroad ballast	ballast	Agriculture	ılture	Miscellaneous	aneous	Total	al
	Short	Value	Short	Value	Short	Value	Short	Value	Short	Value	Short	Value	Short	Value
Alabama		Θ	420	\$2, 711, 752	2, 625, 195	\$3, 298, 696	ε	ε	420, 643	\$620, 908	4, 170, 573	\$3,827,014	9, 292, 275	10, 566, 825
Arkansas	46, 556 94, 271	\$23, 278 88, 157) ()	; ; ;	1, 969, 000	2, 128, 619 1, 112, 229	8, 112	\$10,302	(1)	157, 074 (1)		£ 88.5		
Conocado Connecticut Florida		g E-		(1) (1)		22, 549, 865	41 050	667 07	(1) 588, 655	1, 684, 349			20, 271, 913	28, 130, 348
Hawaii		231,	363, 108	709, 422		412, 324 412, 324 31, 056, 816	11	1,373,798	1, 335 3, 236, 650 9, 290, 990	10, 266 4, 387, 019	21, 895 3, 902, 402 1, 851, 952	21, 895 4, 001, 783	857,	46,
Iowa	309, 365 344, 465	397, 433 313, 634	Ξ	E	11, 415, 716 5, 658, 525		EE	EE		1,508,908 256,034				758. 829.
Kentucky Maryland	<u>e</u> e	Œ	EEE	 EE:	278, 507,	13, 654, 894 5, 702, 910	(1)	(1)		1, 444, 770	1, 223, 291	3, 191, 913	8,2,2 8,2,5	213 23,5
Michigan	24, 715 29, 670	26, 463 20, 099	14,	15,	4, 929, 237 1, 848, 656	6, 070, 074 2, 170, 799	EE.	EΞ	586, 558 327, 747	740, 042		EEE		
Missouri Montana	1,530,212	1,518,813	€€	€€	10, 931, 656	14, 509, 494	(1)	(1)		2, 650, 786	6, 179, 910	7, 532, 662		4,08,8
Nebraska New Mexico	1, 158,	٠,) *	38	820, 900	1, 221, 200	ε	ε	99, 200	166, 200	(1)	(1)		
New York	127,	!	115,451	239, 420	14, 300, 919	25, 887, 836	530, 946		418,836	1, 200, 134		7, 793, 464		112,
Ohio Oklahoma	410,868	275,000 202,686	ω,	∞,	16, 852, 044 8, 866, 449	21, 436, 743 9, 836, 082	1, 451, 842	, ⁸ 8. €.	2, 125, 569 33, 834	3, 414, 108	10, 112, 701	660	36, 582, 446 10, 237, 730	50, 599, 497 12, 041, 047
Oregon Pennsylvania Puerto Rico	(1)	(1) 33, 150	8, 958, 591	16, 151, 026		19, 558, 660 1, 451, 277	291,856	11	12,000	36,900	967, 839 14, 913, 221 1, 519, 516	1, 224, 243 19, 652, 771 1, 564, 316	8. 8. 8. 8.	£. £. £. £. £.
South Dakota Tennessee Texas	8, 191	11,061	101,	151, 603	644, 800 11, 304, 989 12, 238, 309	955, 800 13, 870, 606 11, 401, 689	755, 090 501, 637	(1) 842, 262 416, 338	751, 395	1,002,832	2, 310, 491 5, 961, 022		1, 111, 600 15, 231, 909 19, 378, 944	1, 632, 600 18, 887, 865 19, 416, 146
UtahVirginia	(1), 900	#E		1,021,500 945,608	(1) 5, 325, 510	7, 451, 638		EE	585, 751	1, 131, 716	3, 678, 358	1, 276, 300 5, 103, 153	£2,8	200, 200, 200,
West Virginia	116,007	138, 670	2, 879, 26,		1, 719, 360 8, 319, 137	2, 939, 972 8, 251, 175	(1) 589, 309	(1) (892, 181	51, 694 1, 167, 538	125, 143 1, 587, 462	1, 762, 852 213, 190	3, 109, 500 294, 176		003, 001,
Wyoming Undistributed 2	373, 774	548,	6,	4, 123, 243	3, 206, 414	4, 403, 553	410	2, 811, 336	1, 516, 886	4, 904, 900	27, 660, 314	33, 509, 893		
TotalAverage unit value	5, 369, 544	5, 919, 455 \$1. 10	39, 384, 087	56, 113, 124 \$1.42	202, 312, 08	\$1.32	8, 364, 568	9, 965, 528	18, 941, 235	31, 397, 800 3	109,922, 956	109,922, 956 3 145,393, 069	384, 294, 474	514, 967, 160 \$1.34
													-	

¹ Included with "Undistributed" to avoid disclosing individual company confidential data.
² Includes data indicated by footnote 1 and Idaho, Maine, Nevada, New Jersey, Rhode Island, South Carolina, and Vermont.
⁸ Includes limestone, dolomite, and cement rock used in making cement, lime, and dead-burned dolomite; does not include shell.

TABLE 32.—Limestone (crushed and broken stone) sold or used by producers in the United States,1 for miscellaneous uses, 1956-57

	19	56	19	57
Use	Thousand short tons	Value (thousand dollars)	Thousand short tons	Value (thousand dollars)
Alkali works Calcium carbide works Calcium carbide works Cement-portland and natural Coal-mine dusting Filler (not whiting substitute): Asphalt Fertilizer Other Filter beds Glass factories Lime and dead-burned dolomite Limestone sand Limestone whiting ² Magnesia works (dolomite)² Mineral (rock) wool Paper mills Poultry grit Refractory (dolomite)	497 1, 613 406 506 95 954 16, 850 2, 560 711 248 443	5, 965 1, 060 85, 230 1, 955 3, 592 818 1, 884 161 2, 763 23, 338 6, 129 751 2, 651 17 1, 454 965 446	4, 899 857 73, 592 565 2, 054 345 541 120 1, 204 17, 162 2, 311 809 143 453 7 504 129 539	4,551 839 77,191 2,231 5,343 7,188 2,162 234 3,589 25,780 3,054 6,019 406 2,657 8 8 1,356 825 1,162
Road base		218 1, 750 4, 567 1, 704	130 780 1, 764 1, 015	130 1,866 3,784 1,488
Total	117, 626	150, 851	109, 923	145, 393

¹ Includes Hawaii and Puerto Rico.
² Includes stone for filler for calcimine, caulking compounds, ceramics, chewing gum, explosives, floor coverings, foundry compounds, glue, grease, insecticides, leather goods, paint, paper, phonograph records, picture-frame moldings, plastics, pottery, putty, roofing, rubber, toothpaste, wire coating, and unspecified uses. Excludes limestone whiting made by companies from purchased stone.
³ Includes stone for refractory magnesia.
⁴ Includes stone for acid neutralization, carbon dioxide, chemicals (unspecified), concrete blocks and pipes, dyes, electric products, fill material, litter and barn snow, oil-well drilling, patching plaster, rayons, rice milling, roofing granules, silicones, spalls, stucco, terrazzo, artificial stone, target sheets, and water treatment. treatment.

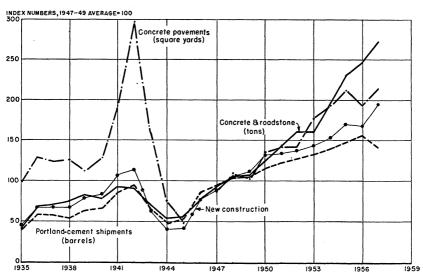


FIGURE 3.—Crushed-stone aggregates (concrete and roadstone) sold or used in the United States compared with shipments of portland cement, total new construction (value), and concrete pavements (contract awards, square yards),

(Data on construction from Construction and Costs and on pavements from Survey of Current Business, U. S. Department of Commerce. Construction value adjusted to 1947-49 prices.)

Most uses of dolomite were the same as for limestone, such as for concrete aggregates and roadstone. Raw dolomite of comparatively high quality was used for producing dead-burned dolomite, as a refractory material for patching furnace floors, and as a source of magnesium metal. Statistical data on dead-burned dolomite are in the Lime and Magnesium Compounds chapters of this volume. Sales of high-quality dolomite and dolomitic lime are shown by consuming industries in table 33.

Metallurgical uses of fluxing stone are indicated in table 34. The increased use of limestone as flux reflected the higher output of iron

and steel.

Production of shell, which has about the same composition as limestone, declined slightly in both tonnage and value, but nearly \$27 million was received from sales of shell, indicating the importance of shell as a component of the calcium carbonate materials. Texas was the leading producer, followed by Louisiana. Tables 35 and 36 show the States producing shell and its uses.

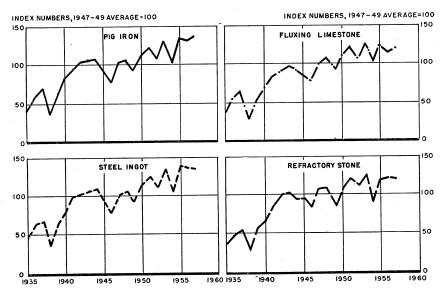


FIGURE 4.—Sales (tons) of fluxing limestone and refractory stone (including that used in making dead-burned dolomite) compared with production of steel ingot and pig iron, 1935-57.

(Statistics of steel-ingot production compiled by American Iron and Steel Institute.)

TABLE 33.—Dolomite and dolomitic lime sold or used by producers in the United States for specified purposes, 1956-57

	19	956	19	57
	Thousand short tons	Value (thousand dollars)	Thousand short tons	Value (thousand dollars)
Dolomite for— Basic magnesium carbonate 1 Refractory uses Dolomitic lime for— Refractory (dead-burned dolomite) Paper mills	248 266 2, 424 87	751 446 37, 740 1, 042	143 538 2, 251 73	406 1, 162 35, 871 875
Total (calculated as raw stone) 2	5, 536		5, 329	

TABLE 34.—Sales of fluxing limestone, 1948-52 (average) and 1953-57, by uses

	Blast f	urnaces		hearth nts	Other s	melters 1		netallur- al ²	To	otal
Year	Thou-	Value	Thou-	Value	Thou-	Value	Thou-	Value	Thou-	Value
	sand	(thou-	sand	(thou-	sand	(thou-	sand	(thou-	sand	(thou-
	short	sand	short	sand	short	sand	short	sand	short	sand
	tons	dollars)	tons	dollars)	tons	dollars)	tons	dollars)	tons	dollars)
1948-52 (average)	27, 735	29, 374	6, 629	7, 746	692	834	237	284	35, 293	38, 238
1953	32, 650	40, 555	7, 062	10, 977	944	1, 216	225	293	40, 881	53, 041
1954	26, 478	32, 395	5, 412	7, 031	1, 096	1, 289	176	219	33, 162	40, 934
1955	31, 674	40, 380	6, 578	9, 933	1, 423	2, 018	393	575	40, 068	52, 906
1956	28, 914	38, 939	7, 494	11, 488	1, 006	1, 329	375	730	37, 789	52, 486
1957	29, 352	41, 733	9, 012	12, 924	809	1, 086	211	370	39, 384	56, 113

Includes flux for copper, gold, lead, zinc, and unspecified smelters.
 Includes flux for foundries and for cupola and electric furnaces.

TABLE 35.—Shell sold or used by producers in the United States, 1956-57, by States

State	19	56 .	198	57
	Short tons	Value	Short tons	Value
Florida. Louisiana Pennsylvania. Texas. Virginia. Other States ² . Total.	(1) 4, 364, 067 (1) 12, 017, 878 (1) 3, 470, 062 19, 852, 007	\$6, 633, 385 (1) 15, 483, 005 (1) 6, 251, 446 28, 367, 836	1, 503, 964 4, 382, 947 552 9, 061, 761 19, 874 3, 541, 037 18, 510, 135	\$2, 013, 478 7, 152, 176 10, 941 11, 844, 231 215, 939 5, 530, 773 26, 767, 538

Includes dolomite for refractory magnesia.
 I ton of dolomitic lime is equivalent to 2 tons of raw stone.

¹ Included with "Other States" to avoid disclosing individual company confidential data.
²Includes States indicated by footnote 1 and Alabama, California (1957), Maryland, and New Jersey.

TABLE 36.—Shell sold or used by producers in the United States, 1956-57, by uses

	19	956	19	057
Use	Thousand short tons	Value (thou- sand dollars)	Thousand short tons	Value (thou- sand dollars)
Concrete and roadstone	9, 248 5, 444 645 376 4, 139	12, 733 6, 374 690 2, 111 6, 459 28, 367	11, 334 4, 701 735 438 1, 302 18, 510	16, 721 5, 234 852 2, 184 1, 777 26, 768

¹ Includes agriculture, alkali, asphalt filler, chemicals, filter beds, magnesium metal, mineral food, paper, railroad ballast, road base, road fill, and unspecified uses.

Calcareous marl is a statistical grouping of unconsolidated calcium carbonate materials some of which contain high percentages of impurities, mainly clay. These materials are used in manufacturing cement and in agricultural applications.

TABLE 37.—Calcareous marl sold or used by producers in the United States in 1957

	Short tons	Value
Indiana_ Michigan Wisconsin Other States ¹	103, 452 137, 020 10, 747 1, 665, 242	\$65, 011 70, 635 5, 276 1, 663, 330
Total 2	1, 916, 461	1, 804, 252

¹ Includes the following States: Minnesota, Mississippi, Nevada, Ohio, South Carolina, Virginia, and West Virginia.

SANDSTONE, QUARTZ, AND QUARTZITE

Production of crushed and broken sandstone, quartz, and quartzite increased in both quantity and value, for use mainly in concrete and roadstone, riprap, and miscellaneous uses.

Quartz heat lamps used for cooking moved beyond the research laboratory to the production line, as temperatures up to 1,500° F. were produced. Since quartz can withstand high temperatures the bulb can be made so small that it almost touches the incandescent filament inside.³³

High-quality silica that may supplant Brazilian rock quartz (laska) in ray-transmitting and optical glasses was produced in North Carolina 34

A new class of glass materials with ceramic properties was described. The process involved turning glass into a hard, nonporous crystalline material by addition of "nucleating agents." ³⁵

² Includes 264,841 short tons, valued at \$158,527, for agricultural use and 1,651,620 tons, \$1,645,725, used in manufacturing cement. To avoid disclosing individual company confidential data, a small quantity of marl used in manufacturing poultry and livestock feeds is included with cement.

Rock Products, vol. 60, No. 11, November 1957, p. 12.
 The Glass Industry, vol. 38, No. 10, October 1957, p. 560.
 Wall Street Journal, vol. 149, No. 102, May 24, 1957, p. 16.

TABLE 38,-Sandstone, quartz, and quartzite (crushed and broken stone) sold or used by producers in the United States in 1957, by States and uses

tal	Value	\$70,070 (-) 000 (-) 1,200,200 (-) 6,644.288 (-) 6,644.288 (-) 7,269 (-) 7,269 (-) 6,000 (-) 6,000 (-) 7,000 (-) 7,00	37, 238, 252 \$2. 37
Total	Short tons	34, 500 887, 600 887, 600 887, 600 177, 300 177, 300 185, 300 185, 300 186,	15, 738, 598
meous 1	Value	(3) \$885, 500 (4) 6(1) 200 (5) 47, 832 47, 832 (6) 249 (7) 266, 249 (7) 266, 249 (8) 266, 249 (9) 266, 249 (15, 600 (15, 600 (16, 600 (16, 600 (17, 600 (18,	10, 377, 959 \$4. 04
Miscellaneous	Short tons	(3) (2) (3) (4) (4) (4) (4) (4) (4) (5) (6) (7) (8) (8) (8) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9	2, 567, 562
l ballast	. Value	\$2, 168 (3) (4) 164, 700 214, 776 7, 658 175, 284	564, 586 \$1.36
Railroad ballast	Short tons	(2) (2) (3) (161, 600 126, 780 126, 780 8, 414 8, 414	416, 023
te and tone	Value	(3) 86,000 81,700 827,001 16,500 976,309 976,309 111,327 78,900 11,327 78,900 11,568,370 (3) (4) (6) (6) (7) (7) (8) (1) (8) (8) (1) (8) (8) (9) (8) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9	12, 165, 180 \$1. 30
Concrete and roadstone	Short tons	(3) 2,000 2,	9, 350, 674
rap	Value	289.00 (3.00) (3	3, 362, 991 \$1. 52
Riprap	Short tons	1, 035, 833 1, 035, 833 24, 000 2, 500 2, 500 4, 537 108, 391 252, 848 (2) 253 229, 800 (3) 450 (3) 180, 718	2, 208, 569
ry stone ster)	Value	(*) \$186,400 7,260 7,260 4,437,313 8,838,049 30,700 (*) 2,267,564	10, 767, 536 \$9. 00
Refractory stone (ganister)	Short tons	(*) (*) (*) (*) 51,300 726 349,523 12,000 (*) 80 (*) 80 (*)	1, 195, 770
<u>o</u>	2	Alabana Alaska Artansas Artansas California Colorado Idah Idaho Idah Idah Idah Idah Idah Idah Idah Idah	Average unit value

Includes stone for uses listed in table 39.
 Included with "Undistributed" to avoid disclosing individual company confidential data.
 Included with "Undistributed" to avoid disclosing individual company, Kansas, Maryland, Minnesota, Nebraska, New York, North Carolina, Tennessee, West Virginia, and Wisconsin.
 Wisconsin.

TABLE 39.—Sandstone, quartz, and quartzite (crushed and broken stone) ¹ sold or used by producers in the United States, 1956-57, for miscellaneous uses

	19	956	19	57
Use	Thousand short tons	Value (thousand dollars)	Thousand short tons	Value (thousand dollars)
A brasives. Ferrosilicon Filter Flux Foundry Glass Other uses \$.	24 247 10 464 116 33 1,094	128 826 41 852 350 165 5,014	77 133 32 505 562 221 1,038	387 503 92 1, 276 1, 307 529 6, 284
Total	1, 988	7, 376	2, 568	10, 378

¹ Includes ground sandstone, quartz, and quartzite. Friable sandstone is reported in the Sand and

Gravel chapter.

Includes cement, filler, fill material, pottery, porcelain, tile, road base, roofing granules, spalls, stone sand, and unspecified uses.

MISCELLANEOUS STONE

Light-colored volcanic rocks, schists, phyllites, serpentine, chats, chert, conglomerate, and other stone that could not logically be classified into any of the five principal types are grouped under miscellaneous stone. The average value of \$1.15 per ton was considerably lower than other rock types.

TABLE 40.—Miscellaneous varieties of stone (crushed and broken stone) sold or used by producers in the United States in 1957, by States and uses

State	Ri	Riprap	Concrete and roadstone	d roadstone	Railroad ballast	ballast	Other uses	uses 1	Total	al
	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value
Alaska American Samos	42,760	\$89,340	104, 587	\$637, 287			1, 965 19, 890	\$4, 585 10, 343	149, 312 20, 085	\$731, 212 10, 456
Arizona California Colorado	141, 121	233, 793	6, 099, 983	6, 264, 007	(3)	(3)	(6)	(3)	(3) (3) (3) (4) (4) (4) (5) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	(3) 2, 600
Guam Hawaii	©	(S)	630, 316 764, 890	914, 980 1, 135, 827			(2) 7, 350	(2) 4, 557	1, 033, 546	1, 131, 571 1, 140, 384
Idaho Kansas Mejaras	48, 300	34, 500	266, 199 4, 630	105, 986	1, 273, 875	\$541,889			1, 540, 074	647,875
Midway Island			3, 875, 001	6, 700, 000	609 400	170 138	3 177	81 643	3, 875, 001	6, 700, 000
Markov Newada Naw Markov	4,885	6,839	27, 223	35, 390	139, 830	147, 437	(S)	(e)	(3)	(3)
Oklahoma Oregon	4, 933	3, 933	280, 887	130, 548	866, 149	471, 159	890	604	1, 152, 859	606, 244
Panama Canal Zone Puerto Rico	20, 250	24, 000	48, 261	64, 348					20,250 48,261	24,000 64,348
Khode Island	10, 500	16,800	4, 7, 2,004,00	1,700			5, 996, 500	6, 006, 800	6, 007, 400	6, 025, 300 6, 340
wake tstattd	167,875	161, 702	(2), 000	145 581			(g)	(6)	1,047,020	997, 975
Visionships of the state of the	246, 084	289, 149	3, 639, 588	3, 996, 737	841, 591	865, 914	3, 331, 516	4, 919, 132	13, 532, 317	16, 144, 859
Total Average unit value	981,885	1, 265, 104 \$1. 29	16, 460, 302	20, 697, 967 \$1. 26	3, 723, 845	2, 196, 537 \$0. 59	9, 361, 288	11, 027, 664 \$1. 18	30, 527, 320	35, 187, 272 \$1. 15

¹ Includes stone for all material, flux, rock dust, roofing granules, spalls, and unspecified uses.
² Included with "Undistributed" to avoid disclosing individual company confidential data.
³ Includes data "Undistributed" to avoid disclosing individual company confidential data.
⁴ Includes data indicated by footnote 2 and Arkansas, Maryland, Montana, New York, Pennsylvania, South Dakota, Texas, Virginia, and Wyoming.

FOREIGN TRADE 36

Imports of crushed and broken stone were small. They consisted chiefly of quartzite from Canada and chalk and whiting from Europe. Exports were virtually limited to border shipments.

TABLE 41.—Stone and whiting imported for consumption in the United States, 1956-57, by classes

[Bureau of the Census]

Class	19	56	198	57
CALL	Quantity	Value	Quantity	Value
Marble, breccia, and onyx: Sawed or dressed, over 2 inches thickcubic feet_ In blocks, rough, etcdo Slabs or paving tilessuperficial feet_ All other manufactures	900 225, 449 1, 715, 452	1 \$10, 589 1 1, 189, 036 1 1, 232, 619 1 1, 989, 318 1 4, 421, 562	2, 305 216, 461 2, 029, 529	\$7, 432 1, 210, 567 1 1, 537, 328 1 2, 430, 440 1 5, 185, 767
Total		-4, 421, 302		= 0, 100, 101
Granite: Dresseddododo	169, 938 68, 028	¹ 1,090,126 ¹ 284,783	101, 965 64, 3 50	1 1, 071, 233 293, 916
number_	5, 168	115, 946	46, 671	53, 499
Totalshort tonsshort tonsravertine stone (unmanufactured)cubic feet	246, 613 87, 816	1 1, 490, 855 775, 750 241, 670	203, 201 92, 687	1 1, 418, 648 782, 791 268, 098
Stone (other):				
Dressed: Travertine, sandstone, limestone, etc. cubic feet	24, 490	38, 309	22,777	1 73, 528
Rough (monumental or building stone) cubic feet. Rough (other)short tons. Marble chip or granitodo Crushed or ground, n. s. p. f	3, 957 61, 589 23, 397	9, 485 1 199, 787 1 219, 457 18, 869	5, 255 100, 962 18, 491	14, 956 ¹ 265, 390 ¹ 228, 750 44, 395
Total		1 485, 907		1 627, 019
Whiting: Chalk or whiting, precipitatedshort tons Whiting, dry, ground, or bolteddo Whiting, ground in oil (putty)do	9,849	48, 417 1 144, 707 1 269	1, 266 8, 595	76, 649 1 144, 766
Total		1 193, 393		1 221, 415
Grand total		1 7, 609, 137		1 8, 503, 738

¹ Owing to changes in tabulating procedures by the Bureau of the Census, data are not comparable with years before 1954.

³⁶ Figures on imports and exports compiled by Mae B. Price and Elsie D. Jackson, Division of Foreign Activities, Bureau of Mines, from records of the U. S. Department of Commerce, Bureau of the Census.

TABLE 42.—Stone exported from the United States, 1948-52 (average) and 1953-57

[Bureau	of	the	Census]
---------	----	-----	---------

323	Building and monu- mental stone		Crushed, ground, or broken				Other
Year			Limestone		Other		manufac- tures of stone
	Cubic feet	Value	Short tons	Value	Short tons	Value	(value)
1948–52 (average) _ 1953 1954 1955 1956 1957 1957 1957 1957 1957 1957 1957 1957	241, 555 411, 196 466, 177 437, 644 344, 210 415, 903	\$544, 040 960, 468 1, 009, 313 1, 024, 299 975, 777 1, 157, 728	(1) 691, 811 570, 013 936, 766 1, 060, 560 1, 080, 460	(1) \$703, 833 702, 526 1, 148, 781 1, 358, 783 1, 639, 890	(1) 153, 105 142, 622 169, 074 175, 364 129, 559	\$2, 204, 139 2, 395, 903 2, 923, 813 2, 890, 139 2, 699, 023	\$358, 347 464, 692 406, 227 394, 228 377, 407 506, 180

¹ Not separately classified before Jan. 1, 1952.

WORLD REVIEW

North America

Canada.—In Canada output of aggregates from all sources was estimated to be 151 million short tons valued at Can\$102 million in 1956. Only about a third of the production was crushed stone. Most of the tonnage was sand and gravel.37 The record limestone production of 1956 (36 million tons) was an increase of almost 10 percent over the 1955 figure and included that used in cement and lime manufacture.38 Production of silica in Canada totaled 2 million tons in 1956, an increase of 13 percent over the 1955 record. Imports of silica, except for a small quantity from Belgium, came from the United States and totaled 850,000 tons at Can\$2.6 million. Export of 180,000 tons of quartzite, valued at Can\$564,000, was reported.39 Plans were completed to market silica from Black Island, Lake Winnipeg.40

Whiting-substitute production in Canada totaled 16,950 tons valued at Can\$172,520 in 1956, compared with 16,007 tons at Can. \$162,731 in 1955. No whiting produced from chalk or precipitated calcium carbonate was reported in 1956.41

Roofing granules consumed in manufacturing asphalt roofing and siding in 1956 totaled 133,691 tons valued at Can\$3,884,963; this slightly lower tonnage and value reflected the decline in residential construction. Domestic consumption increased and imports decreased, compared with 1955. Colored granules, comprising 92 percent igneous rocks and 8 percent slate, totaled 82 percent of the total imports. The remaining imports were of natural color. 42

High-grade limestone for cement was mined on the west coast of Newfoundland, and reserves were reported as adequate for many The Geological Survey of Newfoundland investigated other

³⁷ Canadian Department of Mines and Technical Surveys, Sand, Gravel and Crushed Stone in Canada,

^{1956 (}Preliminary): Ottawa, 4 pp.

38 Canadian Department of Mines and Technical Surveys, Limestone (General) in Canada, 1956 (Preliminary): Ottawa, 4 pp.

3 Canadian Department of Mines and Technical Surveys, Silica in Canada, 1956 (Preliminary): Ottawa,

⁷ pp.

6 Precambrian, Manitoba Metallics and Crude Oil Produced Near Double: Vol. 29, No. 2, February

^{1956,} p. 24.
41 Canadian Department of Mines and Technical Surveys, Whiting in Canada, 1956 (Preliminary): Ottawa, 3 pp.

42 Canadian Department of Mines and Technical Surveys, Roofing Granules in Canada, 1956 (Prelimin-

deposits of high-grade limestone, including one on the north coast,

that might be of future interest as an export item. 43

British West Indies (Bahama Islands).—The output of limestone in 1956 totaled 16,000 short tons valued at \$105,000. Most of the production was used for paving. Smaller quantities were used for lime and in building construction.⁴⁴ In Trinidad the output of limestone totaled 690,000 long tons valued at BWI\$730,000 in 1956.45 Diorite production in Trinidad totaled 4,000 long tons valued at BWI\$8,000. in 1956.46

Europe

Austria.—Output of quartzite totaled 54,736 metric tons in 1956 compared with 45,217 tons in 1955.47

Norway.—Output of dolomite in 1956 was estimated at 110,000

metric tons.48

Asia

India.—The State Geology and Mining Department of India estimated that limestone deposits near Rishikesk contained 35 million short tons.⁴⁹ An estimated reserve of 150 million tons was reported in the Macherla area of Guntur district.⁵⁰ The production of limestone in 1956 totaled 8 million tons compared with 7 million tons in 1955.51

Africa

Rhodesia and Nyasaland, Federation of.—The output of limestone in Northern Rhodesia in 1956 totaled 411,000 short tons valued at £372,000 compared with 305,000 tons at £333,000 in 1955. Southern Rhodesian production in 1956 totaled 786,000 short tons at £126,000 compared with 664,000 tons at £90,000. 52

Uganda.—A deposit of high-grade limestone estimated at 30 million short tons was found on the Hima River, as a result of 248 drill holes.⁵³

Union of South Africa.—Production of lime and limestone totaled 7.2 million short tons in 1956, about the same as in 1955.54

TECHNOLOGY

Drilling.—The Bureau of Mines conducted research on diamondbit performance in several different types of stone. One report was published during the year.55

Vacuum drilling was reportedly faster and more efficient than the

jackhammer for certain drilling operations.⁵⁶

⁴³ Western Miner and Oil Review, vol. 30, No. 8, August 1957, p. 36.

44 Bureau of Mines, Mineral Trade Notes: Vol. 45, No. 2, August 1957, p. 26.

45 Work cited in footnote 44, p. 26.

46 Work cited in footnote 44, p. 33.

47 Work cited in footnote 44, p. 33.

48 Bureau of Mines, Mineral Trade Notes: Vol. 44, No. 6, June 1957, p. 23.

49 Bureau of Mines, Mineral Trade Notes: Vol. 44, No. 4, April 1957, p. 30.

50 Bureau of Mines, Mineral Trade Notes: Vol. 44, No. 2, February 1957, p. 27.

51 Bureau of Mines, Mineral Trade Notes: Vol. 45, No. 3, September 1957, p. 28.

52 Work cited in footnote 44, pp. 26-27.

53 Bureau of Mines, Mineral Trade Notes: Vol. 45, No. 4, October 1957, p. 39.

54 Work cited in footnote 51, pp. 27-28.

55 Hansen, D. M., and Long, A. E., Diamond-Bit Performance in Schist: Bureau of Mines Rept. of Investigations 5291, 1957, 14 pp.

56 Rock Products, There's Something New In Drilling: Vol. 60, No. 4, April 1957, pp. 101-103, 188.

One limestone producer made a systematic study of drilling and blasting practices and discovered that by increasing the blast-hole size and expanding the drill pattern, fragmentation was improved.⁵⁷

Excavating.—Removing heavy overburden at lower cost has been made possible by continued improvements in earth-moving equipment. A company in Ohio ordered a new stripping shovel, having a dipper capacity of 11 cubic yards, for removing overburden to a depth of 130 feet.58

Blasting.—Blasting costs were reportedly reduced about 50 percent at one operation by using a patented ammonium nitrate-base explosive.59

The largest nonatomic blast ever fired produced 2 million yards of rock to be used for the 13-mile causeway across Great Salt Lake. 60

The Bureau of Mines carried on research on explosives, drilling, A Bureau of Mines publication presented experimental data on crater formation resulting from explosives in four rock types. Physical processes involved in breaking rock by explosives are deduced from analysis of these data.⁶¹

Plants.—Principles of automation were applied to three South Carolina plants. Conveyors and processing machinery were electrically interlocked so that when one operation was interrupted all movement behind it stopped.⁶²

A dense-medium plant was developed for easy assembly at the installation site and ready transportation from deposit to deposit. Capacity of the plant ranges from 25 tons per hour and more, depending upon the material to be separated.63

A compact layout in Virginia quarried limestone at the rate of Significant features were dust control and central-200 tons per hour. ized electrical-control systems. The nozzles at each crusher discharged a mixture of water and wetting agent through solenoid valves that opened only when the conveyor belts were fully loaded. 64

Disposal of dirty and seemingly unprofitable scalpings at a dolomite quarry became a problem. Special washing and screening methods were developed, and profitable recovery of 90 percent of the 80,000ton stockpile was achieved.65

Details were given in an article concerning a British crushing and screening plant designed for flexibility in meeting changing demands. The design was based largely on American and Belgian practices. 66

⁵⁷ Vonderau, John C., Effect of Changes in Drilling and Blasting Practices at Hillsville Limestone Quarry: Min. Cong. Jour., vol. 43, No. 9, September 1957, pp. 59-61.

58 Pit and Quarry, \$1,370,000 Electric Shovel Ordered by Marquette for Operation at Superior: Vol. 50.

No. 4, Octobert 957, p. 37.

59 Persons, Hubert C., Blasting—With Low-Cost Explosives: Rock Products, vol. 60, No. 3, March 1957, pp. 74-75, 135.

60 Construction Methods and Equipment, Giant Blast Shatters Cliff 200 Ft. High: Vol. 39, No. 9, September 1957, pp. 104-108

Construction Methods and Equipment, Giant Blast Shatters Cliff 200 Ft. High: Vol. 39, No. 9, September 1957, pp. 194-196.

Duvall, Wilbur I., and Atchison, Thomas C., Rock Breakage by Explosives: Bureau of Mines Rept. of Investigations 5356, 1957, 52 pp.

Persons, Hubert C., Here Are Three Complex Operations Where Efficient Engineering Paid Off: Rock Products, vol. 60, No. 7, July 1957, pp. 86, 88, 92, 118, 120.

Engineering News-Record, Heavy Media Separator Now Ready for Aggregates: Vol. 159, No. 17, Oct. 31, 1957, p. 54.

Gutschick, K. A., This Small Plant Uses Big Plant Ideas: Rock Products, vol. 60, No. 2, February 1957, pp. 92-93, 133, 138.

Binkley, H. M., and Jones, M. G., Waste Fines Reclaimed at a Profit: Pit and Quarry, vol. 49, No. 10, April 1957, pp. 130-131, 150.

Mine and Quarry Engineering (London), Enderby Warren Quarry: Vol. 56, No. 334, October 1957, pp. 419-428.

pp. 419-428.

Quartzite is an excellent aggregate, but the properties that make it a premium material also make it difficult to process. High production costs and competition from softer materials defeated operators in a Minnesota quartzite locality for over half a century. In 1956, a plant was installed, and many of the problems were overcome successfully.67

Two 100-ton screening and crushing plants of the type usually mounted on solid foundations were put on wheels. They followed

alongside construction of an airfield in North Dakota.68

Underground Operations —An Arkansas open-pit limestone quarry was converted to underground recently when surface mining became increasingly difficult and uneconomical. The mine was designed for

use of high-production machinery.69

The shift from block caving to large-scale room-and-pillar mining was successful at a California limestone mine. Mining costs, including depreciation and increased labor rates, were reportedly very close to the block-caving costs. A crawler-tread, jumbo drill used for drilling horizontally aided in cost reduction.⁷⁰

A Georgia dimension-marble producer began crushing stone. Unlike dimension-stone surface mining in the area, crushed stone was produced from three undergound quarries. Current technology was

The Bureau of Mines published a report on mining methods and

costs at an undergound limestone quarry in Virginia.72

A worked-out limestone mine in Missouri was converted into a warehouse—reportedly economical and radiation-proof. Each of the 6 rooms was approximately 55,000 square feet in area and 20 feet high and had 8-inch reinforced-concrete partitions, fireproof doors, asphalt flooring, and walls and ceilings painted white for maximum lighting. Large circular limestone pillars were left to support the mine roof and to prevent cave-ins. A 60-degree temperature was maintained. warehouse was equipped with automatic humidity control and a sprinkler system and exhaust fans to combat smoke or gas in case of A railroad spur led into the hillside to underground docks that could handle 15 freight cars at once. 73

Miscellaneous.—A patented hydraulic excavator developed by a Florida operator was used for removing detrital material from sinkholes in the rock surface. The irregularities of the holes had defied

previous methods of excavation.74

Research.—The National Crushed Stone Association was testing the soundness of rock by a method that will indicate performance in service, and that can be done in a reasonably short time. The method

June 1957, pp. 84-86.

⁶⁷ Meschter, Elwood, Producer Digs Out Some New Markets for Quartzite Rock: Rock Products, vol. 60, No. 10, October 1957, pp. 136, 138, 140, 142, 200.
68 Construction Methods and Equipment, Big Agg Plants Go Mobile: Vol. 39, No. 9, September 1957,

⁷⁶ Construction Methods and Equipment, Big Agg Plants Go Mobile: Vol. 39, No. 9, September 1957, pp. 98, 100-102, 105, 109-110.

8 Rock Products, Success—How One Company Achieved It: Vol. 60, No. 4, April 1957, pp. 130-131, 133-134, 192, 194.

8 Wightman, R. H., Nalle, P. B., and Chandler, C. D., Crestmore Makes a Change: Min. Eng., vol. 9, No. 4, April 1957, pp. 450-454.

8 Severinghaus, Jr., Nelson, Current Technology in the Georgia Marble Industry: Min. Eng., vol 9, No. 12, December 1957, pp. 1341-1343.

7 Evans, Thaddeus B., and Eilertsen, N. A., Mining Methods and Costs at the Sunbright Limestone Mine, Foote Mineral Co., Sunbright, Va.: Bureau of Mines Inf. Circ. 7793, July 1957, 44 pp.

7 Pit and Quarry, Former Limestone Mine of Southwest Lime Co. Doubles as Warehouse: Vol. 50, No. 1, July 1957, p. 40. July 1957, p. 40.

74 Pit and Quarry, Unique Excavator Solves Quarrying Problem of Florida Operator: Vol. 49, No. 12,

assumes that volume change or dilation of pore space is equidimensional, and therefore precise measurements of changes in length of test specimens after regular increments of freezing and thawing cycles are a measure of soundness.⁷⁵

A limestone quarry near Buxton, Derbyshire, England, was described—reportedly the largest quarry outside the United States. The working methods at a quarry and processing plant in Scotland were described. The working methods at a quarry and processing plant in Scotland were described.

⁷⁶ Gray, Joseph E., Rapid Method of Determining the Durability of Ledge Rock: Crushed Stone Jour., vol. 32, No. 3, September 1957, pp. 6-9, 14.

76 Mine and Quarry Engineering (London), Tunstead Quarry: Vol. 23, No. 11, November 1957, pp. 462-

while and Quarry Engineering (London), Tunstead Quarry: Vol. 23, No. 11, November 1957, pp. 46471.

"Mine and Quarry Engineering (London), Cruicks Quarry: Vol. 23, No. 5, May 1957, pp. 182-189.

Strontium

By Albert E. Schreck 1 and Anne M. Quinn 2

OMESTIC OUTPUT of strontium minerals in 1957 was considerably smaller than in 1956. Demand was again satisfied primarily by imports.

DOMESTIC PRODUCTION

Although deposits of strontium minerals are known to exist in many States, commercial production for the past decade has been restricted to California and Washington.

In 1957 two firms accounted for all the domestic output—Pan Chemical Co., Los Angeles, Calif., from a celestite deposit in San Diego County, Calif., and Manufacturers Mineral Co., Seattle,

Wash., from a deposit in Skagit County, Wash.

The following firms converted strontium minerals to various strontium compounds: Barium Products, Ltd., Modesto, Calif.; E. I. du Pont de Nemours & Co., Grasselli, N. J.; Foote Mineral Co., Philadelphia, Pa.; and Pan Chemical Co., Los Angeles, Calif.

A strontianite deposit a few miles north of Schoharie, N. Y., was described.3 Some material was mined from this deposit in the late

19th century and shipped to New York City for processing.

The strontium-mineral localities in California and the history of their production as well as general information on geology, uses, and markets of strontium minerals were discussed in a publication.4 A location map of the deposits accompanied the article.

CONSUMPTION AND USES

Most of the strontium minerals mined were converted to strontium compounds such as the carbonate, hydroxide, nitrate, oxalate, and peroxide. The latter three compounds are used chiefly in the fireworks and pyrotechnics industries because they impart a brilliant crimson color to a flame. Some of the products in which they were used were tracer bullets, highway and railway warning fusees, marine distress signals and rockets and tactical military signaling devices.

Strontium carbonate was used in ceramics, primarily frits and glazes, and in zinc refining. Other strontium compounds were used in greases, corrosion inhibitors, depilatories, medicines, plastics, and

luminous paints.

Strontium metal serves as a getter to remove traces of gas from vacuum tubes.

1109

¹ Commodity specialist.
2 Statistical clerk.
3 Gosse, Ralph C., Strontianite at Schoharie, N. Y.: Rocks and Minerals, vol. 32, Nos. 9 and 10, September-October 1957, pp. 462-463.
4 Ver Planck, William E., Strontium Minerals: Mineral Commodities of California, Bull. 176, Calif. Dept. of Nat. Res., Div. of Mines, December 1957, pp. 607-611.

Ground celestite and strontianite also are employed to purify caustic soda and to desulfurize steel.

The prices of various strontium compounds during 1957, as quoted in Oil, Paint and Drug Reporter, were as follows: Strontium sulfate, air-floated, 90 percent, 325-mesh, bags, works, \$56.70-\$66.15 per short ton. This price remained stable throughout the year. Strontium carbonate, pure, drums, 5-ton lots or more, works, 35 cents per pound; 1-ton lots, works, 37 cents per pound; Technical grade, drums, works, 19 cents per pound. Strontium nitrate, barrels, carlots, works, \$11 per 100 pounds; less than carlots, works, \$12 per 100 pounds.

FOREIGN TRADE 5

Strontium-mineral imports declined compared with 1956. as in the previous several years, the United Kingdom and Mexico were the principal sources of the imports; Italy, for the second consecutive year, supplied a small tonnage.

No imports of strontium chemicals were reported.

TABLE 1.—Strontium minerals 1 imported for consumption in the United States 1955-57, by countries, in short tons

[Bureau of	the Census	l			
19)55	19	56	19	57
Short tons	Value	Short tons	Value	Short tons	Value
2,072	\$27,400	2, 313	\$28, 225	1, 896	\$22, 911
4, 053	100, 781	7 7, 119	1, 646 161, 676	5 4, 624	1, 321 106, 499
4,053	100, 781	7, 126	163, 322	4, 629	107, 820
6, 125	128, 181	9, 439	191, 547	6, 525	130, 731
	Short tons 2,072 4,053 4,053	1955 Short tons Value 2,072 \$27,400 4,053 100,781 4,053 100,781	Short tons Value Short tons 2,072 \$27,400 2,313 7,119 4,053 100,781 7,126	1955 1956 Short tons Value tons Value tons	1955 1956 19 Short tons Value Short tons Value Short tons

WORLD REVIEW

The United Kingdom and Mexico continued to be the world's largest producers of strontium minerals. Pakistan and Germany also

probably were small producers.

In Pakistan celestite has been produced from the Thana Bula Khan, Badu district, by the Sind Minerals and Refractories Co. Hyesons Electric Co., Ltd., Karachi, has applied for a lease to mine celestite in the same area. It was also reported that a celestite deposit, estimated at 7,000 to 10,000 tons, occurs near Daudkhel in the Salt Range.6

¹ Strontianite or mineral strontium carbonate and celestite or mineral strontium sulfate.

⁵ Figures on imports compiled by Mae B. Price and Elvie D. Jackson, Division of Foreign Activities, Bureau of Mines, from records of the U. S. Department of Commerce, Bureau of the Census.

⁶ Bureau of Mines, Mineral Trade Notes: Spec. Suppl. No. 50 to vol. 45, No. 6, December 1957, p. 30.

TABLE 2.—World production of strontiun minerals by countries,1 1953-57, in short tons

[Compiled by Helen L. Hunt and Berenice B. Mitchell]

Country 1	1953	1954	1955	1956	1957
Argentina	43			401	² 441
Italy Mexico ³ Morocco: So. zone	2, 441	1,906	77 2, 072	2, 313	1, 226 1, 896 270
PakistanUnited KingdomUnited States	918 3, 321 50	391 2, 352 12	486 5, 320 177	246 10, 304 4, 022	956 (4) (5)
World total 1	6, 773	4, 661	8, 132	17, 520	2 10, 500

¹ In addition to countries listed, strontium minerals are produced in Germany, Poland, and U. S. S. R., but data on production are not available; no estimates are included in the total for these countries.

TECHNOLOGY

A patent was issued on the use of strontium nitrate in combination with boron in pyrotechnic mixtures. The mixture composed of 65 to 80 percent strontium nitrate and 35 to 20 percent boron could be used in flares and incendiary devices.7

A fluorescent material composed of strontium phosphate and up to 50 percent by weight of barium phosphate in a solid solution, with an activator of either divalent tin or a mixture of divalent tin and manganese, was patented.8

7 Jackson, L. D. (assigned to the United States of America as represented by the Secretary of the Navy)
Pyrotechnic Composition: U. S. Patent 2,796,339, June 18, 1957.

8 McKeag, Alfred H. (assigned to General Electric Co., a corporation of New York), Divalent Tin Activated Strontium and Strontium Barium Tetraphosphate Phosphors: U. S. Patent 2,809,167, Oct. 8, 1957.

United States imports.

Data not available; estimate by senior author of chapter included in total.

Production included in total; Bureau of Mines not at liberty to publish.

Sulfur and Pyrites

By Leonard P. Larson 1 and Annie L. Mattila 2

IGHLIGHTING the events in the sulfur industry in 1957 were the emergence of Mexico as a major producer and the increased competition for world and domestic markets that led to reduction in the price of Frasch sulfur.

TABLE 1.—Salient statistics of the sulfur industry in the United States, 1948-52 (average) and 1953-57, in long tons of sulfur content

	1948-52 (average)	1953	1954	1955	1956	1957
Production (all forms) Imports (pyrites and sulfur) Producers' stocks (Frasch and re-	5, 874, 061	6, 247, 971	6, 675, 200	7, 026, 778	7, 818, 112	7, 003, 888
	93, 078	92, 229	135, 128	206, 188	1 387, 455	664, 770
	2 2, 995, 960	3, 129, 830	3, 337, 086	3, 301, 465	4, 055, 896	4, 579, 623
	1, 377, 060	1, 271, 011	1, 675, 130	1, 635, 652	1, 675, 331	1, 579, 721
forms)	4, 631, 965	5, 049, 400	4, 912, 600	5, 625, 400	1 5, 744, 300	5, 563, 200

DOMESTIC PRODUCTION

Production of sulfur in all forms during 1957 totaled about 7 million tons, down 10 percent from 1956. Of this output 5.5 million tons (78 percent) was produced at Frasch-process mines.

NATIVE SULFUR

Production in the United States of native sulfur declined to a 4 year low in 1957 when it dropped 15 percent below the output recorded in 1956. The output of native sulfur from mines other than Frasch in California and Nevada increased by about 31 percent.

¹ Revised figure.
2 Frasch sulfur only before 1952.

¹ Commodity specialist.
² Statistical assistant.

TABLE 2.—Production of sulfur and sulfur-containing raw materials by producers in the United States, 1948-52 (average) and 1958-57, in long tons

)							
	1948–52 (1948-52 (average)	1953	53	1954	54	1955	92	1956	56	1957	2
	Gross weight	Sulfur	Gress weight	Sulfur content	Gross weight	Sulfur	Gross weight	Sulfur	Gross	Sulfur	Gross weight	Sulfur content
Native sulfur or sulfur ore: From Frasch-process mines From other mines 1	5, 075, 580	5, 075, 561 1, 455	5, 155, 342 151, 819	5, 155, 342 38, 257	5, 514, 640 214, 157	5, 514, 640 64, 333	5, 738, 978 199, 809	5, 738, 978 60, 902	6, 423, 883 212, 476	6, 423, 883 60, 402	5, 491, 212 276, 868	5, 491, 212 87, 313
Total native sulfur		5, 077, 016		5, 193, 599		5, 578, 973		5, 799, 380		6, 484, 285		5, 578, 525
Recovered elemental sulfur: Brimstone Paste.	133, 663 5, 442	133, 248 2, 519	342, 297 1, 723	340, 827 833	361, 107 284	359, 135 136	400, 754	398, 601 179	466,848	464, 629	511, 936 452	510, 307
Total recovered elemental sulfur		135, 767		341, 660		359, 271		398, 780		464, 758	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	510, 511
Pyrites (including coal brasses)	952, 039	402, 110	922, 647	379, 545	908, 715	405, 310	1,006,943	409, 826	1,069,904	431, 687	1,067,396	436, 012
percent) produced at Cu, Zn, and Pb plants. Other byproduct sulfur compounds 2	651, 390 53, 373	212, 804 46, 363	775, 069 92, 787	253, 000 80, 167	791, 049 85, 255	258, 600 73, 046	992, 903 106, 129	324, 580 93, 712	1, 064, 406 102, 300	347, 954 89, 428	1, 194, 230 102, 157	390, 394 88, 446
Total equivalent sulfur		5, 874, 060		6, 247, 971		6, 675, 200		7, 026, 778		7, 818, 112		7, 003, 888

¹ Sulfur content estimated for 1948-52.
1 Hydrogen sulfide and liquid sulfur dioxide. In addition, a quantity of acid sludge is converted to H₂SO, but is excluded from the above figures.

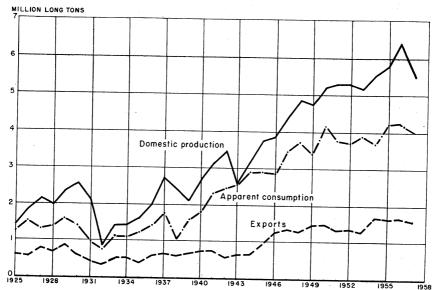


FIGURE 1.—Domestic production, apparent consumption, and exports of native sulfur, 1925-57.

Frasch Sulfur.—In 1957 the Frasch sulfur industry, which consisted of 5 companies operating a total of 13 mines, produced 5.5 million long tons. Texas contributed 61 percent of the ouptut and Louisiana 39 percent. Only 4 mines—3 in Louisiana and 1 in Texas—reported increased production; the output of all others declined and on a monthly basis was consistently lower than in 1956. Decreases ranged from 3 percent in March and May to 26 percent in July.

Production of sulfur by the Texas Gulf Sulphur Co. from its Boling, Spindletop, and Moss Bluff domes in Texas fell. Designed with a daily water capacity of 2 million gallons, the new Texas Gulf Sulphur Co. Frasch plant at the Fannett dome in Texas was tested, and production was scheduled to begin early in 1958. The company was also constructing new facilities at Spindletop dome to permit shipment of liquid sulfur by barges or larger vessels. The company announced that it had not found sulfur in commercial quantities on the six tracts of land obtained in the first sale of offshore sulfur leases by the State of Texas following passage of the Federal Submerged Land Act of 1953. Exploratory drilling of this property had proved the dome to be noncommercial, in view of the high cost of offshore construction and operation. Exploration was continued, however, at the company dome deposit 40 miles east of Galveston, Tex.

Freeport Sulphur Co. in 1957 produced sulfur from four Louisiana salt-dome deposits. The Grande Ecaille and Garden Island Bay mines accounted for most of its output, and Bay Ste. Elaine and Chacahoula for the balance. The total was, however, 16 percent lowe than in the preceding year. Construction and development at the company Lake Pelto and Grand Isle properties were continued. Lake Pelto had been drilled and the wells equipped for production.

TABLE 3.—Sulfur produced and shipped from Frasch mines in the United States, 1948-52 (average) and 1953-57

	Prod	luced (long to	ons)	Ship	ped
Year	Texas	Louisiana	Total	Long tons	Approxi- mate value
1948–52 (average) 1953 1954 1955 1956 1957	3, 835, 818 3, 514, 771 3, 505, 087 3, 657, 73 3, 994, 393 3, 366, 377	1, 239, 742 1, 640, 571 2, 009, 553 2, 081, 261 2, 429, 490 2, 124, 835	5, 075, 560 5, 155, 342 5, 514, 640 5, 738, 978 6, 423, 883 5, 491, 212	5, 080, 486 5, 224, 202 5, 328, 040 5, 839, 300 5, 675, 913 5, 035, 240	\$99, 605, 000 141, 054, 000 142, 014, 000 163, 156, 000 150, 356, 000 122, 915, 000

Preparation of the mining plant site continued. Upon completion of the mining operations at the company Bay Ste. Elaine property, the barge-mounted plant in operation there in 1957 was to be moved to

In accordance with the Leasing and Operating Regulations for the Submerged Lands of the Outer Continental Shelf (43 C. F. R. 201.61) the Secretary of the Interior approved transfer of development rights of the Grand Isle sulfur deposit from Humble Oil & Refining Co. to the Freeport Sulphur Co. Construction of facilities at Grand Isle, estimated to cost approximately \$30 million, was begun. Grand Isle, which will be the first offshore sulfur mine in the history of the industry, will have unusual design features to permit offshore mining. Production was expected to be underway in 1960.

Jefferson Lake Sulphur Co. produced sulfur at Long Point and

Clemens domes in Texas and Starks dome in Louisiana.

Duval Sulphur & Potash Co. produced sulfur at Orchard dome,

Fort Bend County, Tex.

Standard Sulphur Co. operated its property at Damon Mound in Texas until April when it was shut down.

TABLE 4.—Sulfur ore (10-70 percent S) produced and shipped in the United States, 1948-52 (average) and 1953-57, in long tons 1

2500002, 22 22			
V	Produced	Ship	ped
Year	(long tons)	Long tons	Value
1948-52 (average)	4, 664 151, 819 214, 157 199, 899 212, 476 276, 868	3, 794 152, 473 185, 085 199, 899 185, 532 172, 169	\$71, 849 769, 140 1, 507, 429 1, 697, 052 1, 577, 857 1, 521, 425

¹ California, Colorado (1948-49 only), Nevada (except 1954), Texas (1948 only), Utah (1952 only), and Wyoming (except 1948 and 1953-57).

RECOVERED ELEMENTAL SULFUR

Eight new plants to obtain sulfur from the purification of natural and other industrial gases were completed or under construction during 1957, and the productive capacity of three existing facilities was being expanded. Of the total added capacity (274,750 long tons), 264,250 tons or 96 percent was at oil refineries and 10,500 tons or 4 percent at natural-gas-cleaning plants.

Production data for recovered elemental sulfur are included in table 2. In December the annual rate of production of recovered sul-

fur in the United States was about 577,000 tons.

Notable among the new installations completed or under construction at oil refineries were: The Tidewater Oil Co. 340-ton-a-day plant at Delaware City, Del.; Anlin Co. of New Jersey 35-ton-a-day plant at Perth Amboy, N. J.; Allied Chemical & Dye Corp. 50-ton-a-day plant at Bayway, N. J.; American Oil Co. 60-ton-a-day plant at Yorktown, Va.; Pontiac Eastern Corp. 25-ton-a-day plant at Hattiesburg, Miss.; and Olin Mathieson Chemical Corp. new plant at Beaumont, Tex.

New installations for recovering elemental sulfur from sour gas completed in 1957 included the Pan American Petroleum Corp. 25-ton-aday plant at Worland, Wyo., and the Barnhart Hydrocarbon Co. plant in Reagan County, Tex. In addition, the following companies expanded capacity at existing facilities: Consolidated Chemical Industries at Baytown, Tex., Gulf Oil Co. at Port Arthur, Tex., and Wilshire Oil Co. at Norwalk, Calif.

PYRITES

Production of pyrites (ores and concentrates) in 1957 was slightly less than the record quantity mined in 1956. The sulfur content of the pyrites averaged 41 percent compared with 40 percent in 1956.

The quantity of pyrites (ores and concentrates) sold or consumed by the producing companies totaled 1,066,151 long tons compared with 1,102,721 tons in 1956.

TABLE 5.—Pyrites (ores and concentrates) produced in the United States, 1948–52 (average) and 1953–57, in long tons

	Quar	ıtity			Quar	ntity	
Year	Gross weight	Sulfur content	Value	Year	Gross weight	Sulfur content	Value
1948-52 (average) 1953 1954	952, 039 922, 647 908, 715	402, 066 379, 545 405, 310	\$4, 303, 200 5, 007, 000 7, 159, 000	1955 1956 1957	1, 006, 943 1, 069, 904 1, 067, 396		\$8, 391, 000 10, 062, 000 9, 087, 000

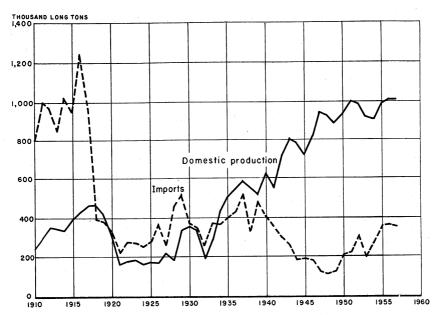


FIGURE 2.—Domestic production and imports of pyrites, 1910-57.

The output of pyrites in the Eastern United States came mainly from Tennessee, where the Tennessee Copper Co.—the largest producer—recovered it as a flotation concentrate in beneficiating copper ore from the Boyd, Burra, Calloway, Eureka, and Mary mines. The concentrate was roasted and the recovered gases converted to sulfuric acid and other products. General Chemical & Dye Corp. produced a substantial quantity of pyrites at the Cliffview mine in Carroll County. Bethlehem Steel Corp. recovered pyrites in Lebanon, Pa. Appalachian Sulphides, Inc., sold pyrites from the South Strafford mine, Orange County, Vt.

In the West a substantial quantity of pyrite was produced by the Mountain Copper Co., Ltd., at the Hornet mine in Shasta County, Calif. In Colorado pyrites was recovered by the Rico Argentine Mining Co. at the Mountain Springs mine, Dolores County, and by Climax Molybdenum Co. from its operations in Lake County. The Anaconda Co. produced pyrites from its Butte, Mont., mines.

In 1957 Tennessee was the largest producing State, followed by Virginia, California, Colorado, Montana, Arizona, Pennsylvania, and Vermont.

BYPRODUCT SULFURIC ACID

Output of byproduct sulfuric acid (100 percent H₂SO₄) at copper, lead, and zinc smelters increased 12 percent during the year from 1.2 million short tons in 1956 to 1.3 million short tons in 1957. Of this total, 855,357 tons (64 percent) was recovered at zinc plants and the balance at copper and lead smelters. Production at copper and lead plants increased 25 percent during the year and that at zinc plants 6 percent. The increased production of sulfuric acid within the past

several years can be attributed in part to the increased use of sulfuric acid in processing uranium ore in the Western States.

In 1957 byproduct acid was produced at 18 plants in California, Idaho, Illinois, Indiana, Kansas, Montana, Ohio, Oklahoma, Pennsylvania, Tennessee, Texas, Utah, Washington, and Arizona.

TABLE 6.—Byproduct sulfuric acid1 (basis, 100 percent) produced at copper, zinc, and lead plants in the United States, 1948-52 (average) and 1953-57, in short tons

	1948–52 (average)	1953	1954	1955	1956	1957
Copper plants ²	146, 228	231, 213	273, 725	329, 114	384, 659	482, 181
	583, 329	636, 864	612, 250	782, 938	807, 477	855, 357
	729, 557	868, 077	885, 975	1, 112, 052	1, 192, 136	1, 337, 538

¹ Includes acid from foreign materials.

TABLE 7.—Production of new sulfuric acid (100 percent H₂SO₄) by geographic divisions and States, 1953-57, in short tons

[U. S. I	Department	of Commerce			
Division and State	1953	1954 1	1955 1	1956 1	1957 1
New England 2	190, 456	169, 880	183, 698	201, 758	183, 092
Middle Atlantic: Pennsylvania New York and New Jersey	798, 484 1, 504, 408	713, 074 1, 441, 943	855, 913 1, 547, 113	815, 016 1, 577, 476	795, 929 1, 469, 591
Total Middle Atlantic	2, 302, 892	2, 155, 017	2, 403, 026	2, 392, 492	2, 265, 520
North Central: Illinois. Indiana. Michigan. Ohio. Other * Total North Central.	487, 892	1, 257, 759 440, 166 217, 888 656, 226 536, 234 3, 108, 273	1, 305, 576 562, 315 261, 493 745, 051 720, 435 3, 594, 870	1, 272, 453 519, 853 220, 604 714, 454 789, 369 3, 516, 733	1, 241, 474 493, 151 241, 587 713, 201 760, 127 3, 449, 540
South: Alabama Florida. Georgia. North Carolina. South Carolina. Virginia Kentucky and Tennessee. Texas. Delaware and Maryland Louislana Other 4. Total South	602, 858 437, 816 6, 425, 870	269, 576 1, 185, 883 212, 732 142, 048 163, 373 463, 897 944, 404 1, 212, 530 1, 203, 399 730, 021 467, 898 6, 995, 761	243, 024 1, 233, 281 256, 075 152, 159 160, 711 537, 095 974, 827 1, 477, 179 1, 353, 567 788, 311 459, 035 7, 635, 264	251, 314 1, 497, 155 339, 751 137, 127 146, 046 527, 257 1, 035, 739 1, 552, 202 1, 325, 004 782, 330 402, 121 7, 996, 046 1, 630, 319	314, 669 1, 738, 945 318, 325 120, 207 131, 933 488, 707 1, 605, 445 1, 094, 245 7, 963, 609 1, 834, 777
West 5	1, 051, 435	1, 127, 560			
Total United States	13, 026, 908	13, 556, 491	15, 319, 360	15, 737, 348	15, 696, 538

Includes acid produced at a lead smelter. Excludes acid made from pyrites concentrate in Montana and Tennessee.

³ Excludes acid made from native sulfur.

Includes information for Government-owned and privately operated plants.
 Includes data for plants in Maine, Rhode Island, Massachusetts, and Connecticut.
 Includes data for plants in Missouri, Wisconsin, Iowa, and Kansas.
 Includes data for plants in West Virginia, Mississippi, Arkansas, and Oklahoma.
 Includes data for plants in Arizona, California, Colorado, Idaho, Nevada (1956-57), New Mexico (1956-57), Montana, Utah, Washington, and Wyoming.

OTHER BYPRODUCT-SULFUR COMPOUNDS

In addition to the elemental sulfur recovered, a relatively small quantity of sulfur dioxide and hydrogen sulfide also was recovered from industrial gases. Almost all of the hydrogen sulfide was recovered at oil refineries, whereas the entire production of sulfur dioxide was obtained from smelter gases. In 1957 hydrogen sulfide and/or sulfur dioxide was produced in California, Tennessee, Pennsylvania, Louisiana, and New Jersey.

CONSUMPTION AND USES

Domestic consumption of sulfur in all forms declined 3 percent from the 5.7 million tons consumed in 1956. The decline in the use of sulfur reflected the decline of business in the major consuming industries, such as fertilizers, chemicals, steel, paper, pigments, and rayon. Nonacid uses decreased, although the demand for sulfuric acid for use in oil refining, uranium, and titanium-pigment products remained high.

TABLE 8.—Apparent consumption of native sulfur in the United States, 1948-52 (average) and 1953-57, in long tons

	1948-52 (average)	1953	1954	1955	1956	1957
Apparent sales to consumers 1_ Imports	5, 135, 996 1, 467	5, 201, 711 1, 229	2 5, 373, 439 1, 214	2 5, 846, 702 34, 627	² 5, 730, 800 ³ 212, 229	2 5, 090, 660 495, 668
Total	5, 137, 463	5, 202, 940	5, 374, 653	5, 881, 329	³ 5, 943, 029	5, 586, 328
Exports: Crude Refined	1, 345, 350 31, 710	1, 241, 536 29, 475	1, 645, 000 30, 130	1, 600, 951 34, 701	3 1, 651, 307 3 24, 024	1, 562, 301 17, 420
Total	1, 377, 060	1, 271, 011	1, 675, 130	1, 635, 652	1, 675, 331	1, 579, 721
Apparent consumption	3, 760, 403	3, 931, 929	3, 699, 523	4, 245, 677	⁸ 4, 267, 698	4, 006, 607

¹ Production adjusted for net change in stocks during the year.

TABLE 9.—Apparent consumption of sulfur in all forms in the United States, 1948-52 (average) and 1953-57, in long tons ¹

1948-52 (average)	1953	1954	1955	1956	1957
3, 760, 405 118, 700	3, 931, 900 313, 800	3, 699, 500 342, 300	4, 245, 700 380, 100	3 4, 267, 700 432, 300	4, 006, 600 472, 700
402, 120 91, 620	379, 500 91, 000	405, 300 133, 900	409, 800 171, 500	431, 700 175, 200	436, 000 169, 100
493, 740	470, 500	539, 200	581, 300	606, 900	605, 100
212, 760 46, 360	253, 000 80, 200	258, 600 73, 000	324, 600 93, 700	348, 000 89, 400	390, 400 88, 400
4, 631, 965	5, 049, 400	4, 912, 600	5, 625, 400	³ 5, 744, 300	5, 563, 200
	3, 760, 405 118, 700 402, 120 91, 620 493, 740 212, 760 46, 360	(average) 3,760,405 3,931,900 118,700 313,800 402,120 379,500 91,620 91,000 493,740 470,500 212,760 253,000 46,360 80,200	(average) 3,760,405 3,931,900 3,699,500 118,700 313,800 342,300 402,120 379,500 405,300 91,620 91,000 133,900 493,740 470,500 539,200 212,760 253,000 258,600 46,360 80,200 73,000	(average) 3,760,405 3,931,900 3,699,500 4,245,700 118,700 313,800 342,300 4,245,700 402,120 379,500 405,300 409,800 91,620 91,000 133,900 171,500 493,740 470,500 539,200 581,300 212,760 253,000 258,600 324,600 46,360 80,200 73,000 93,700	(average) 3,760,405 3,931,900 3,699,500 4,245,700 3 4,267,700 118,700 313,800 342,300 402,100 342,300 402,120 379,500 405,300 409,800 431,700 171,500 175,200 493,740 470,500 539,200 581,300 606,900 212,760 253,000 258,600 324,600 348,000 46,360 80,200 73,000 93,700 89,400

¹ Crude sulfur or sulfur content.

² Includes native sulfur from mines that do not use the Frasch process. A small quantity was consumed before 1954; however, this tonnage was not included in the above figures.
³ Revised figure.

² In addition, a small quantity of native sulfur from mines that do not use the Frasch process was consumed, however, this tonnage was not included in the above figures before 1954.

Revised figure. 4 1948-49, hydrogen sulfide; 1950-57, hydrogen sulfide and liquid sulfur dioxide. In addition, a quantity of acid sludge is converted to H₂SO₄ but is excluded from the above figures.

TABLE 10.—Estimates of principal nonacid uses of sulfur and pyrites (sulfur equivalent) in the United States, 1955-57, in thousand long tons

[Chemical Engineering]

Use	1955	1956	19571
Wood pulp ² . Carbon bisulfide. Other chemicals, dyes. Insecticides, fungicides. Rubber. Other.	425 300 125 125 80 195	450 275 130 130 80 175	450 270 130 130 80 160
Total	1, 250	1, 240	1, 220

1 Bureau of Mines estimate

TABLE 11.—Estimates of United States use of sulfuric acid 1 (basis, 100 percent), 1955-57, in thousand short tons

[Chemical Engineering]

Industry	1955	1956 ²	1957 3	Industry	1955	1956 2	19573
Fertilizers: SuperphosphateAmmenium sulfateChemicalsPetroleum refiningInorganic pigmentsRayon and film	4, 650 1, 650 4, 195 1, 800 1, 400 750	4, 650 1, 600 4, 350 1, 900 1, 450 850	4, 550 1, 600 4, 400 2, 000 1, 380 780	Iron and steel	1, 160 248 450 30 675	1, 265 265 475 30 675	1, 020 270 450 30 4640 17, 120

Recycled acid, including reused, concentrated, fortified, and reconstituted acid is estimated at about 2,024,000 short tons in 1955, 1,822,000 tons in 1956, and 1,700,000 (estimate) tons in 1957.
 Chemical Engineering estimate.
 Bureau of Mines estimate.
 Includes estimated total acid going into military explosives. About 36 goes into recycled acid later.

STOCKS

On December 31, 1957, producers' stocks of Frasch sulfur totaled 4,422,548 tons, up 12 percent from the end of 1956. Of this total 4,039,047 tons was held at the mines and 383,501 tons was elsewhere. Stocks of recovered sulfur totaled 157,075 tons at the end of 1957 compared with 119,446 tons at the end of 1956—a net gain of about 32 percent. Inventory statistics on pyrites are not available.

PRICES

During 1957 competition increased in both the domestic and foreign markets. In an effort to meet competition Texas Gulf Sulphur Co., on September 18, announced a price reduction of \$3 per ton on bright sulfur and \$2.50 per ton on dark sulfur to United States and Canadian consumers. Shortly thereafter Freeport Sulphur Co. announced a straight \$3-per-ton reduction on domestic, Canadian, and other exports. Texas Gulf then modified its prices accordingly. Other domestic producers followed with similar reductions. The new schedules of United States producers' prices thus pegged bright sulfur at \$23.50 per long ton f. o. b. mines and dark at \$22.50 per ton. Export prices were reduced to \$25 per ton for bright and \$24 per ton for dark f. o. b. port. Trade-journal quotations of Mexican prices dropped from \$25 to \$23 for bulk filtered crude, f. o. b. Coatzacoalcos in October, but in December Mexican sulfur was raised to \$24 per ton.

² Includes an estimated 10,000 tons of S equivalent in pyrites used in making sulfite liquor.

In December 1957 sulfur was quoted in E&MJ Metal and Mineral Markets at \$23.50 per long ton bright and \$22.50 per ton dark f. o. b. mines; for United States buyers f. o. b. vessel, Galveston, \$25 per long ton; for foreign buyers f. o. b. vessel, Galveston, \$25 to \$28 per long ton. Oil, Paint and Drug Reporter quoted crude domestic bright bulk f. o. b. cars, mines, \$23.50 per long ton; export f. o. b. vessel, Gulf ports, \$25 per long ton.

E&MJ Metal and Mineral Markets quoted domestic and Canadian pyrites per long ton nominal at \$9 to \$11 delivered to consumers' plants. Oil, Paint and Drug Reporter quoted pyrites, Canadian works, 48–50 percent sulfur, \$5 to \$6 per long ton. The f. o. b. mine valuation reported by domestic producers to the Bureau of Mines

ranged from \$3.19 to \$10.09 per long ton.

FOREIGN TRADE 3

Imports.—Imports of elemental sulfur into the United States increased from 212,229 tons in 1956 to 495,668 tons in 1957 as receipts

from Mexico rose sharply.

Exports.—Foreign demand for United States Frasch sulfur declined slightly below the 1.6 million tons that had prevailed several years. This decline in exports has been attributed to loss of market in United Kingdom, France, Australia, and New Zealand in the face of increased competition from Mexico and the availability of increased amounts of indigenous sulfur in the importing countries.

TABLE 12.—Sulfur imported into and exported from the United States, 1948-52 (average) and 1953-57

			լու	read of the C	ensus			
		In	aports			Expo	orts	
Year	0	re		ny form, n. e. s.	Cr	ıde [']	refined,	l, ground, sublimed, flowers
	Long tons	Value	Long tons	Value	Long tons	Value	Long tons	Value
1948-52 (average)	1, 342 525 110 24, 152 14, 750 14, 454	18, 456 2, 289 595, 485 358, 893	704 1, 104 10, 475 2 197, 479	264, 172	1, 241, 536 1, 645, 000 1, 600, 951 2 1, 651, 307	34, 553, 709 50, 361, 661 48, 707, 725 2 48, 305, 416	29, 475 30, 130 34, 701 2 24, 024	2, 019, 670 2, 161, 979 2, 453, 756 2 1, 776, 843

[Bureau of the Census]

Owing to changes in tabulating procedures by the Bureau of the Census data known to be not comparable with years before 1954.
 Revised figure.

³ Figures on imports and exports compiled by Mae B. Price and Elsie D. Jackson, Division of Foreign Activities, Bureau of Mines, from records of the U. S. Department of Commerce, Bureau of the Census.

TABLE 13.—Sulfur exported from the United States, 1956-57, by countries of destination

[Bureau of the Census]

		i.	ureau or	the Census	3]			
		Cru	de		Cr s	ushed, grou ublimed, a	ind, refined and flowers	d,
Country	19	956	1	957	19	56	19	57
	Long tons	Value	Long tons	Value	Pounds	Value	Pounds	Value
North America: Canada Central America. Mexico	406, 400 39	\$11, 938, 649 1, 861	347, 856	\$9, 920, 295 984	566, 461	\$278, 729 25, 258 37, 921	6, 072, 121 889, 759	\$282, 790 34, 220
West Indies	20, 703	581, 400	19, 591	529, 309		10, 968		16, 413
Total South America:	427, 142	12, 521, 910	367, 474	10, 450, 588	7, 519, 670	352, 876	7, 766, 087	370, 832
Argentina Bolivia	44, 495		45, 284 19	1, 284, 979 914			129, 775 50, 000	21, 954 2, 160 209, 281
Brazil Chile	87, 962	2, 540, 262	99, 335	2, 701, 415			2, 200	584
Colombia Ecuador Paraguay	132	4,026	97	3.028	1, 029, 831 77, 350 82, 700	48, 882 4, 020 3, 883	l	
Peru Uruguay	2, 739	80, 231	976 4, 420	3, 028 32, 205 123, 760	77, 350 82, 700 2, 129, 152 44, 000	52, 372 2, 400	485, 596	16, 792 5, 291 57, 941
Venezuela Total	1, 483	50, 987 4, 035, 149	1, 784 151, 915	59, 666 4, 205, 967	1, 292, 718 5, 313, 235	56, 068 234, 383	1, 127, 047	57, 941 355, 502
Europe:						201, 383	12, 201, 010	850, 502
Austria Belgium- Luxembourg	21, 216 55, 103	1		636, 050 2, 563, 513	i .	2, 100	85, 992	2, 765
FranceGermany, West_Greece	55, 103 147, 470 43, 700	2, 038, 169 4, 274, 560 1, 239, 000	84, 620 132, 092 67, 335	2, 563, 513 3, 647, 320 1, 928, 710	313, 500 21, 347, 232	58, 917 409, 658	43, 592 416, 950 213, 887	1, 240 80, 693 6, 488
Netherlands Norway			10, 800	287, 250	1 76,500	9, 950 2, 080	174, 500	
Portugal Sweden			11, 610	317, 730	80, 000 57, 200 36, 000	9, 235 7, 439 33, 738	174, 500 81, 400 91, 150	7, 522 12, 851 18, 929 22, 761
Switzerland United Kingdom	43, 213 323, 844	1, 249, 592 8, 989, 743	1 20 675	317, 730 810, 292 6, 467, 445	1 166 500	33, 738	113, 450	22, 761
Yugoslavia Other Europe	31, 344	972, 528	246, 405 2, 000 35, 088	6, 467, 445 85, 000 937, 155	72, 800	12, 812	64, 000	12, 902
TotalAsia:	665, 890	19, 548, 158	638, 975	17, 680, 465	22, 229, 732	545, 929	1, 284, 921	166, 151
India Indonesia	1 66, 063 6, 380 2, 973	¹ 1, 878, 268 186, 680 118, 634	102, 590 1, 781 14, 972	2, 790, 780 45, 735 537 334	112, 845, 021 381, 000	1 349, 945 25, 058	7, 429, 766 2, 649, 585	210, 421 85, 999
Iran Israel Japan Korea, Republic	23, 256	664, 112	49	1,862	118, 192	6, 513 7, 965	237, 036 76, 620	8, 668 15, 760
OI Lebanon	393	15, 920	596 1, 300	21, 242 32, 500	1, 720, 363 109, 480	40, 592 2, 481	3, 632, 174 218, 460	104, 339 4, 608
Pakistan Philippines	1, 151 1, 128	42, 318 54, 501	1, 986 7, 6 51	66, 613 211, 494			856, 707 407, 340	43, 704
Turkey					381, 877 1, 044, 336 18, 400 307, 712	20, 700 28, 123 4, 315		10, 355
Other Asia Total	3, 419 1 104, 763	1 118, 924 1 3, 079, 357	2, 197 133, 122	67, 330 3, 774, 890	116, 969, 381	7, 987 1 493, 679	774, 672 16, 282, 360	24, 933 508, 787
Africa:	19, 335	559, 380	16, 111	427, 588				
Morocco	3,048	110, 900	2, 617 7, 000	100, 873 196, 000	17, 100	2, 907		
Tunisia Union of South	12, 325 71, 500	351, 588	12, 743 80, 350	330, 575				
AfricaOther Africa	3,000	2, 075, 500 93, 000	7, 949	2, 218, 800 204, 012	936, 450	67, 670		33, 718
Total Oceania:	109, 208	3, 190, 368	126, 770	3, 477, 848	953, 550	70, 577	685, 135	33, 718
Australia New Zealand	121, 623 85, 870	3, 472, 039 2, 458, 435	80, 185 63, 860	2, 119, 440 1, 728, 367	153, 600 674, 779	34, 195 45, 204	299, 300 435, 191	56, 181 36, 767
Total	207, 493	5, 930, 474	144, 045	3, 847, 807	828, 379	79, 399	734, 491	92, 948
Grand total	¹ 1, 651, 3 07	¹ 48, 305, 416	1, 562, 301	43, 437, 565	153, 813, 947	¹ 1, 776, 843	39, 020, 670	1, 527, 938

¹ Revised figure.

TABLE 14.—Pyrites, containing more than 25 percent sulfur, imported for consumption in the United States, 1948-52 (average) and 1953-57, by countries

[Bureau of the Census]

Country	1948 (aver	1948-52 (average)	1953	83	19	1954	19	1955	19	1956	1957	13
	Long tons	Value	Long tons	Value	Long tons	Value 1	Long tons	Value	Long	Value 1	Long	Value
North America: Canada Cuba	181,846	\$423, 915	190, 227	\$662, 566		2 46, 649 2 \$292,025	2 80, 305	\$ \$519,756	173,278	2 73, 278 2 \$479,590	\$ 70,522 110	2 \$407, 838 504
Mexico			247	753								
Total	181, 846	423, 915	190, 474	663, 319	46, 649	292, 025	80,305	519, 756	73, 278	479, 590	70,632	408, 342
Europe: Germany, West	4	19	6	182								
Portugal Spain	46 9,030	3, 253 25, 265							18	360		
Total Total Oceania: Australia	9,080	28, 530 48	(9)	182		1 1			18	360		
Grand total	190, 930	452, 493	190, 474	663, 501	2 46, 649	1 46, 649 1 292, 025	2 80, 305	2 80, 305 2 519, 756	173, 296	173, 296 1 479, 950	2 70, 632	2 408, 342

Owing to changes in tabulating procedures by the Bureau of the Census data known to be not comparable with years before 1954.
In addition to data shown an estimated 232,920 long tons (\$627,620) was imported in 1954; 277,860 long tons (\$711,740) in 1955; 292,520 long tons (\$865,020) in 1956; and 282,400 long tons (\$885,010)
TABLE 15.—Pyrites, containing more than 25 percent sulfur, imported for consumption in the United States, 1948-52 (average) and 1953-57, by customs districts, in long tons

[Bureau	of	the	Census	1
---------	----	-----	--------	---

Customs district	1948-52 (aver- age)	1953	1954	1955	1956	1957
Buffalo Chicago	179, 767	172, 375	1 30, 594	1 38, 954	1 30, 214	1 40, 772
Connecticut Duluth and Superior	7				18	70
Michigan New York	1 54	(2)	260	24, 348	25, 188	20,744
Philadelphia Pittsburgh	11, 013					
Rochester	10			682	763	54 208
St. Lawrence Vermont	39	2, 656	7, 115	8, 973	10, 032	
Washington	23	15, 443	8, 680	7, 348	7, 063 18	8, 766 18
Total	190, 930	190, 474	1 46, 649	1 80, 305	1 73, 296	1 70, 632

¹ In addition to data shown an estimated 232,920 long tons was imported through Buffalo customs district in 1954; 277,020 long tons through Buffalo customs district and 840 long tons through Michigan customs district in 1955; 292,520 long tons through Buffalo customs district in 1956; and 282,400 long tons through Buffalo customs district in 1957.

2 Less than 1 ton.

WORLD REVIEW

NORTH AMERICA

Canada.—Prompted by the rapid expansion in the demand for natural gas as a fuel, the Canadian producers planned to increase sulfur-recovery capacity substantially. Before 1957 only three producers recovered sulfur from natural gases. These plants, capacities, and startup dates were: Shell Oil Co. 80-long-ton-per-day Jumping Pond (Alberta) plant (May 1951), Royalite Oil Co. 30-long-ton-per-day Turner Valley (Alberta) plant (1952), and Imperial Oil Co. 20-long-ton-per-day Redwater (Alberta) plant (1956).

On January 31, 1957, the British American Oil Co. began operating a sulfur recovery plant at Pincher Charles and Latelland.

On January 31, 1957, the British American Oil Co. began operating a sulfur-recovery plant at Pincher Creek near Lethbridge having a rated daily capacity of 225 long tons of sulfur; this plant tripled Canada's output of sulfur recovered from sour gases.

At the end of 1957 sulfur-recovery plants in operation, under construction, or planned for completion in 1958 had a combined annual capacity of nearly 800,000 short tons. These plants include those mentioned above and the following: Jefferson Lake Sulphur Co. projected 425-ton-per-day plant at Calgary, Shell Oil, Gulf, Devon Palmer 350-ton-per-day plant at Okotoks, and the 600-ton-per-day Jefferson Lake plant at Coleman.

TABLE 16.—World production of native sulfur, by countries, 1 1948-52 (average) and 1953-57, in long tons 2

[Compiled by	Helen L.	Hunt and	Berenice :	B. Mitchell]
--------------	----------	----------	------------	--------------

Country 1	1948-52 (average)	1953	1954	1955	1956	1957
North America:		¥ 000	FO. 40F	APP 407	750 A15	1 007 01
Mexico	8, 452	5, 900	52, 407	475, 487	758, 415	1,007,91
United States	5, 077, 016	5, 193, 599	5, 578, 973	5, 799, 880	6, 484, 285	5, 578, 52
South America:	0.005	16,000	17,000	17, 651	27, 298	28, 78
Argentina	9,865 5,197	2, 458	2, 565	3, 975	3, 418	78
Bolivia (exports)	23, 260	32, 275	43, 100	56, 338	37, 272	3 37, 00
ChileColombia	1,660	2,657	5, 118	5, 413	4, 921	3 5,00
Ecuador	537	100	64	1, 550	-, 02-	
Peru	2, 271	4, 916				
Europe:		_,,,,,				İ
France (content of ore)	9, 203	10,710				
Greece (content of ore)		1, 200	2, 507	3,600	1,200	³ 1, 20
Italy (crude)4	202, 067	224, 161	194,064	181, 629	170, 094	171, 73
Spain 3	5, 160	5, 100	5, 400	6, 500	5, 900	3,60
Asia:						0.50 50
Japan	101,890	186, 556	184, 745	199, 676	243, 312	253, 50
Philippines		1,089	761	3 3, 700		3 1, 30
Ryukyu Islands					254 7, 864	1,00 9,43
Taiwan	. 2,400	3, 423	5, 873	4,854	13, 681	12, 89
Turkey	5, 404	9, 626	9,862	11, 318	13, 081	12, 68
Total (estimate)12	5, 600, 000	5, 800, 000	6, 300, 000	7, 000, 000	8, 000, 000	7, 300, 00

Mexico.—Production of all forms of sulfur in Mexico during 1957 totaled 1,018,663 long tons, of which 990,122 tons was Frasch, 6,889 tons other native sulfur, and 21,652 tons recovered sulfur. Stocks of Frasch sulfur on hand on December 31, 1957, totaled 660,396 long

Pan American Sulphur Co., the world's third largest producer, mined 723,000 long tons of Frasch sulfur in 1957, equivalent to 72 percent of the total Mexican output. The company shipped 678,000 On December 31, 1957, the company stockpile was 538,000 tons. Construction of its second loading facility on the Coatzacoalcos River was completed in November and placed in operation, thus bringing the combined loading capacity to 1,500 tons per hour. Storage facilities at the port can accommodate approximately 50,000 tons. As construction during the year resulted in completion of Pan American's second relay and collection station to service an additional 10 wells, 20 wells may be operated simultaneously.5

¹ Native sulfur believed to be also produced in U. S. S. R., but complete data are not available, estimates by senior author of chapter are included in the total.
² This table incorporates a number of revisions of data published in previous Sulfur and Pyrites chapters. Data do not add to totals shown because of rounding where estimated figures are included in the detail.

Estimate 4 In addition, the following tonnages of ground sulfur rock (30 percent S) were produced and used as an insecticide: 1948-52 (average), 18,754 tons; 1953, 16,940 tons; 1954, 22,803 tons; 1955, 21,560 tons; 1956, 22,219 tons; 1957, 19,904 tons.

⁴ U. S. Embassy, Mexico City, Mexico, State Department Dispatch 1027: Apr. 22, 1957, 1 p.; State Department Dispatch 104: July 23, 1957, 2 pp.; State Department Dispatch 443: Oct. 23, 1957, 1 p.; State Department Dispatch 812: Jan. 30, 1958, 2 pp.

⁵ Pan American Sulphur Co., Annual Report, 1957.

TABLE 17.-World production of pyrites (including cupreous pyrites), by countries, 1948-52 (average) and 1953-57, in long tons 2

553, 571 16, 782 436, 012 11, 811 125,800 133,773 449,200 237,167 498,000 680,000 680,000 4 59,000 4 59,000 246,000 1,476 1,476 160,190 289, 458 217 4 6, 100 12, 401 22, 735 523,872 4 8, 400 155, 300 113, 876 52 7, 100, 000 Sulfur content 1957 2, 993, 701 17, 566 32, 746 47, 767 789 638 396 211 388, 216 239, 033 19,985 462 506 600 2226 0000 178 171 171 923 000 597 18, 503 6, 191 1,080,088 17,000,000 Gross weight 1, 106, 7 35, 6 1, 067, 3 49, 2 1, 444, 9 818, 1 4 167, 0 656, 7 4 492, 0 147, 596, 422, 861 31, 832 431, 687 14, 173 7,843 554 603 100 405 225 225 158 800 641 641 930 930 930 1, 295, 676 11, 122 4 9, 400 7, 300, 000 4 769, 700 507 163, 400 88, 137 Sulfur content 25, 253, 253, 364, 286, 286, 288, 288, 2, 1956 151, 600 634, 241 232, 274 233, 274 234, 384 827, 327 168, 000 659, 200 259, 373 485, 672 4, 207 888888 84 84 84 1,603,340 3,048,576 29, 194 18, 793 5,968 1,524 18,674 429, 964 187, 394 6,800,000 17,300,000 Gross weight 934, 1 65, 2 1, 069, 9 289, 4 151, 634, 232, 1, 349, 827, 4 168, 659, 2, 259, 485, 48, 200 206, 021 100, 000 592, 494 361, 776 55, 608 297, 071 110, 008 2, 165 116, 014 473 826 883 4 632, 800 4 300 1, 131, 034 13,600 10,700 4,8,100 9, 703 600 8, 933 137, 882 105, 837 Sulfur 8,2,6 206,00 1000,00 592,4 361,7 55,6 1110,0 955 784, 331 127, 497 1, 006, 943 742 796 1127 212 212 453 693 693 606 514 103 1, 318, 363 800 2, 692, 939 16, 300, 000 30, 296 28, 559 16, 137 21,268351, 650 223, 477 25.5 21, 326 1, 397 Gross weight 300,0 Compiled by Helen L. Huntl 146,300 1193,868 1190,200 5562,968 343,697 4,60,000 258,822 903,503 1193,563 4,71,800 277,820 56,690 405,310 2, 080 9, 543 16, 928 6, 200, 000 310 1, 106, 281 15,283 Sulfur content 529, 500 14,668 575 86,809 97,649 954 614, 221 118, 105 908, 715 635, 564 628 612 33, 012 1, 537 8 046 480 503 362 362 883 896 111 718 202 857 935 282 1, 103, 367 387 Gross weight 29,78 128, 556, 226, 231, 782, 150, 150, 150, 150, బ్రట్టణ్ణ 36, 225, 14, 700, ď 166, 651 4 24, 200 379, 545 4 41, 300 1180, 073 1102, 000 546, 827 332, 105 332, 105 4 52, 000 189, 178 4, 134 4, 134 477,000 4 120 963,938 4 350 680 8,961 4 11,300 15, 517 3838 36, 259 77, 812 915 5, 700, 000 Sulfur 477. Š 953 11, 800, 000 13, 600, 000 364, 515 4 50, 000 922, 647 375 375 576 072 095 309 374 848 848 244 271 994, 345 277 306, 260 765 1, 945 24, 892 22, 727 92, 362 167, 008 2982 36,086 Gross weight 117, 223, 215, 215, 773, 773, 10, ģ 311, 803 3 10, 000 952, 039 10, 097 196, 266 239, 294 472,800 458,370 97,558 913,410 715,962 87,240 646,250 669,295 113,223 113,223 1195,632 865, 175 6 1, 349 867, 841 148 3 29 7, 934 8 19, 045 1948–52 (average) gross weight 977 363 870 662 ģ South America: Venezuela... Europe: Austria. Poland.
Portugal
Spain
Spain
Sweden
United Kingdom Italy Norway Poland Japan Kores, Republic of Philippines Tunisia Union of South Africa Finland France Greece..... Yugoslavia Turkey Algeria. Morocco: Southern Zone. Rhodesia and Nyssaland, Federation of: ndis World total (estimate) 12_____ Southern Rhodesia.... Cuba United States Oyprus. Canada (sales) Country 1 Germany:

¹ In addition to countries listed, Brazil, China, Czechoslovakia, Kenya, North Korea, Rumania, and U. S. R., produce or have produced pyrites, but production data are not available, estimates by sentor author of chapter included in fotal.

² This table incorporates a number of revisions of data published in previous Sulfur and Pyrites chapters. Data do not add exactly to totals shown because of

rounding where estimated figures are included in the detail.

§ Average for 1 year only, as 1952 was first year of commercial production.

§ Average for 1951-52.

§ Average for 1948-56.

TABLE 18.—Exports of sulfur (Frasch) from Mexico, 1953-57, by countries of destination, in long tons 1

[Compiled by Corra A. Barry]

Country	1953	1954	1955	1956	1957
North America:					
Canada				1,018	
United States	529		30, 547	239, 146	489, 455
South America:			1 000	-	
Brazil			1,623		
Panama			5,000		
Europe:	1		E 001	9, 250	5, 783
Belgium			5, 001 11, 507	69, 586	105, 267
France		49	5, 951	7,922	10,723
Germany, West		40	14, 737	11,412	29,040
Netherlands			14, 101	11, 112	20,010
Spain			5,882	10, 105	
Sweden Switzerland			0,002	5, 479	
			28, 821	48, 063	80, 997
United Kingdom			20,021	20,000	0.,
Asia:	1			9, 102	
Indonesia			4, 401		
Israel			4,001		24, 036
Africa:			7,		
Union of South Africa			17,570	42, 303	29,719
Oceania:		İ			
Australia			42, 460	40,606	58,066
New Zealand					30, 261
11011 200000000000000000000000000000000					
Total	4,462	49	117, 501	493, 992	863, 347

¹ Compiled from Customs Returns of Mexico.

Central Minera S. A., the Mexican subsidiary of Texas International Sulphur Co., Houston, Tex., was constructing a \$3.5-million Frasch-sulfur plant on its 123,000-acre sulfur concession on the Isthmus of Tehuantepec in Mexico. Designed for a daily capacity of 1,000 tons of sulfur, the plant was scheduled for completion March 1, 1958.6

An agreement reportedly signed between Freeport Sulphur Co. of New York and Sulphur Exploration Co. of Houston, Tex., will permit Freeport to drill an additional 26 wells during 1958 on the Sulphur Exploration 29,000-acre concession on the Isthmus of Tehuan-

tepec, in return for a share of any profits yielded.⁷
The Mexican Gulf Sulphur San Cristobal Dome property was closed owing to depletion of reserves. The company was to continue

exploration of a nearby area.8

Cia. de Azufre Veracruz, a subsidiary of Gulf Sulphur Corp., increased its daily production capacity to 1,000 tons, with the addition of 5 new wells. Designed capacity was reached on November 4, when the output reached 1,023 tons.

Cia. Exploradora del Istmo, an affiliate of Texas Gulf Sulphur Co., increased the annual production rate at its Nopalapa dome property to 170,000 tons. The company, which was constructing new dock facilities, expected to begin shipments in 1958.9

<sup>Mining Congress Journal, Plans Mexican Sulphur Plant: Vol. 43, No. 3, March 1957, p. 94.
Oil, Paint and Drug Reporter, Sulfur Deposits in Mexico To Be Tapped by Freeport: Vol. 173, No. 1, Jan. 6, 1958, p. 5.
Chemical and Engineering News, vol. 35, No. 21, May 27, 1957, p. 11.
Sulphur, Sulphur in Mexico: British Sulphur Corp. (London), Quart. Bull. 19, December 1957, pp. 10.</sup>

SOUTH AMERICA

Brazil.—Iron pyrites from Ouro Preto mines will be used at a new 125-ton-per-day, 100-percent sulfuric acid plant to be built by the State-controlled company, Sociedad Industrial de Minerios e Acidos and Fertilisantes Minas Gerais S. A., at Belo Horizonte.10

Chile.—Braden Copper Co. at Sewell, O'Higgins Province, will use exit gases from the copper converter at its new 75-ton-per-day, 100-per The concentration cent contact sulfuric acid plant under construction.

of the gases varies between 4 and 6 percent SO₂.11

EUROPE

Eire.—Construction and mine development at the Avoca mine of the St. Patrick Copper Mines, Ltd., were progressing. pleted the facility was expected to have an annual production capacity

of 120,000 tons of pyrite concentrate.12

France.—Production of elemental sulfur from the sulfur-rich gases from the Lacq natural-gas field was begun on April 21, 1957, by the Société Nationale de Pétroles d'Aquitaine (S. N. P. A.). Natural gas obtained from this field is reported to contain approximately 15.3 percent H₂S., which is removed by the Girbotol system. Acid gases, containing 66 percent H2S, stripped from the amine solution is converted by the modified Claus process to elemental sulfur.13

Germany, West.—The output of sulfur in West Germany totaled 77,140 long tons; 20,861 tons was recovered from spent oxide with carbon disulfide and trichlorethylene, 15,143 tons was recovered in the wet purification of coke oven gases by Claus kiln treatment, and the balance came from hydrogen sulfide contained in oil-refinery gases extracted by the amine process and converted to elemental sulfur in

Claus kilns.14

Italy.—Legislation authorizing the Italian Sulphur Board (Ente Zolfi İtaliani) to subsidize Italian sulfur producers was approved by the Sicilian Parliament. The Italian Senate authorized the Ministry of Industry and Trade to spend 450 million lire a year for 2 years to offset the difference between Italian and world prices of sulfur used at Italian textile factories.¹⁵ The use of sulfur ores and concentrates was reported to be growing in importance on the Italian mainland. Increased production of sulfur from central Italy and the discovery of a 10-million-ton sulfur deposit near Pomezia were reported. A partnership of three companies—Olin Mathieson Chemical Corp., Societa Italiani Squibb, and Societa Rumianca—was formed to exploit this deposit.16

Prospecting work carried out by the Italian Sulfur Board (Ente Zolfi Italiani) was reported to have delineated 38 sulfur-bearing areas,

<sup>Chemical Week, vol. 80, No. 3, Jan. 19, 1957, p. 24.
Sulphur, British Sulphur Corp. (London), Quart. Bull. 17, June 1957, p. 44.
Work cited in footnote 11, p. 42.
Sulphur, Sulphur Recovery at Lacq: British Sulphur Corp. (London), Quart. Bull. 17, June 1957, pp. 18</sup>

<sup>22-25.

14</sup> Chemical Age (London), German Sulphur Production: Vol. 78, No. 2000, Nov. 9, 1957, p. 763.

15 Chemical Age (London), Assistance for Italian Sulphur Industry: Vol. 77, No. 1976, May 25, 1957, p. 885. 16 Sulphur, Sulphur in Italy: British Sulphur Corp. (London), Quart. Bull. 19, December 1957, pp. 27–30.

5 of which were surveyed in detail. Commercial sulfur beds were found at S. Rosalia Sinatra, Quattrofinaite, S. Gaetano Lavanche, and Bubbonia. Small beds were found at Palma Montechiaro and Contrada Gessi.17

Norway.—A proposal presented to the Council of State provided for reorganization of the Group Mining Concern and formation of The first objects were to be exploitation of the Als Groug Bergverk. pyrite deposits in the Gjersvik area, estimated to contain 1.4 million tons, and development of deposits in the Juma area estimated to contain 30 million tons.18

Poland.—Preliminary estimates of sulfur deposits in the region of Tarnobrzeg, Rzeszow Voivodship, and Piaseczno and Szydlow, Kielce Voivodship, indicated a reserve of 95 million tons of sulfur. Water-logging and large quantities of hydrogen sulfide gases are the main obstacles encountered in the development of these deposits. Scheduled production in 1958 was to be about 55,000 tons of crude and 10,000 tons of refined sulfur. In 1959-60 it was estimated that Poland would produce at an annual rate of 60,000 tons of sulfur.¹⁹

Sweden.—Sulfur was reportedly consumed in Sweden at the rate of 325,000 long tons annually in 1956, of which about 98,000 tons was in the form of brimstone, 217,000 tons in pyrites, and 7,000 tons in byproduct sulfuric acid. Slightly more than one-third of Sweden's requirements was imported; Norway was the chief source, supplying 39,357 tons of brimstone and 49,000 tons of sulfur in pyrites. Italy, Chile, and Mexico furnished 78,000 tons of brimstone in 1956. Domestic production of sulfur was reported to be stabilized at about 212,000 tons in pyrites, 30,000 tons of recovered sulfur, and 15,000 tons in byproduct sulfuric acid from Boliden's smelter gases. competitive position of Sweden's sulfur industry was assured by the fine quality of the Boliden pyrites, which yield a high-grade iron residue in great demand by blast-furnace operators, primarily in Germany.

The combined output by Sweden's two pyrite producers (Boliden's Gruv A/B and Stora Kopparbergs Bergslag A/B) has been fairly constant at about 394,000 tons of pyritic concentrates per year. annual output for the next 3 to 5 years is expected to total 413,000 to 443,000 tons of pyrite concentrate containing 197,000 to 221,000 tons of sulfur.20

ASIA

Japan.—A survey of Japan's resources disclosed that the estimated reserve of pyrites in 1956 was 136 million tons, compared with only 30 million tons in 1951. The 1956 reserves included 29.3 million tons of proved recoverable crude ore.21

The output from the Yanahara mine, operated by the Dowa Mining Co. in Okayama Prefecture, was to be increased.

¹⁷ Chemical Age (London), New Sulphur Beds Discovered in Sicily: Vol. 77, No. 1969, Apr. 6, 1957, p.

<sup>605.

18</sup> Chemical Trade Journal and Chemical Engineer, Sulphur Pyrites in Norway: Vol. 141, No. 3661, Mining Journal, vol. 248, No. 6347, Apr. 12, 1957, p. 289.

Mining Journal, vol. 248, No. 6347, Apr. 12, 1957, p. 462.

Sulphur, The Sulphur Industry of Sweden: British Sulphur Corp. (London), Quart. Bull. 16, March

 ^{1957,} pp. 3-12.
 21 U. S. Embassy, Tokyo, Japan, State Department Dispatch 1159: Mar. 30, 1957, Encl. No. 2.

body discovered in 1955 on the lower side of a major fault is believed to be an offset continuation of the deposit originally mined. opment in progress included sinking a 600-meter shaft equipped with a 1,100-horsepower hoist to mine the ore body, which lies at 400 meters depth. It was reported that, when development is completed in 1960, the output will be 720,000 tons of pyrite containing 48 percent sulfur, 36,000 tons of pyrrhotite with a sulfur content of 35 percent, and 24,000 tons of cupreous pyrite containing 42 percent sulfur. The ore reserve was estimated at 20 million tons. 22

South Korea.—The Korean Ministry of Commerce and Industry disclosed plans for constructing a sulfuric acid plant at the Chunghang smelter in Chungchong-Namdo Province. The plant, which will have a monthly capacity of 1,800 tons of 60° acid, will obtain raw material from the nearby gold, silver, copper, and lead smelter.23

Turkey .- Annual capacity for the newly constructed sulfuric acid plant attached to the copper refinery at Murgul, Turkey, was reported to be 70,000 tons of acid. An extension of the facilities was planned.24

OCEANIA

Australia.—The production capacity of Australia's sulfuric acid industry is reported to be 1,060,000 long tons per year, 95 percent of which was being used in 1956. Of the sulfuric acid produced, less than half was manufactured from indigenous materials and the balance from brimstone imported mainly from the United States. Sulfuric acid production in Australia during 1956 totaled 904,500 tons, of which 360,000 tons (40 percent) was made from domestic materials. Estimated production of sulfuric acid in 1957 was expected to total 977,600 tons, including 474,000 tons from Australian materials.

The Sulfuric Acid Bounty Bill 1957 was given its second reading.²⁵ The Electrolytic Refining & Smelting Co. (Pty.), Ltd., announced plans to modernize its smelter at Port Kembla through addition of an updraft Dwight-Lloyd sintering machine. A portion of the sulfur dioxide gas obtained at the sintering plant would be cleaned and used in manufacturing sulfuric acid.26

Simon Curves (Australia) Pty. began construction at Geelong, Victoria, of the first plant in Australia to produce sulfuric acid from oilrefinery gases. The plant was being built for Shell Refining (Aus-

tralia) Ptv.27

TECHNOLOGY

An article discussed the mechanism of the depression of pyrite by Gaudin's work on the use of ferro- and ferri-cyanides alkali cyanides. used as depressants was verified by contact-angle measurements on pyrite conditioned with ethyl xanthate and ferri-cyanides. Determinations were made on the rate of developing the contact angle of galena and pyrite in K-ethyl xanthate solution. Graphs showing

²² Mining World, vol. 19, No. 4, April 1957, p. 95; Sulphur, Japan—New Pyrites Ore Body Discovered: British Sulphur Corp. (London), Quart. Bull. 19, December 1957, p. 37.

²² Chemical Age (London), New Sulphuric Acid Plant for South Korea: Vol. 78, No. 1990, Aug. 31, 1957,

<sup>Chemical Age (London), Turkish Sulphuric Acid Plant: Vol. 77, No. 1956, Jan. 5, 1957, p. 14.
Chemical Age (London), Australian Sulphuric Acid: Vol. 78, No. 1991, Sept. 7, 1957, p. 356.
Mining World, vol. 19, No. 3, March 1957, p. 111.
Chemical Trade Journal and Chemical Engineer, vol. 141, No. 3661, Aug. 2, 1957, p. 268.</sup>

the "development of contact angle in galena and pyrite," and another showing the rate of decrease of contact angle of xanthate-treated

pyrite in water are included.28

A new oil-treated grade of sulfur was developed for use in rubber compounding. Fire hazards encountered in handling ordinary sulfur are reduced by this new grade, which has an extraordinarily low dust-The new oil-treated grade has the added advantage of dispersing more easily in rubber formulations.29

The equipment, experimental methods, and results of an investigation of sulfide roasting were described in an article in the trade press. Examination of partly roasted particles by micrographic, X-ray-diffraction, and chemical methods disclosed that a majority of the sulfide minerals investigated showed marked selectivity in oxidation of their

contained elements.30

Details on the monohydrate process of waste-pickle-liquor disposal recently commercialized in Europe were presented at the 12th Purdue Industrial Waste Conference, May 13-15, 1957, at Lafayette, Ind. The process, developed in this country by Dr. E. D. Martin and Joseph Shaw, was perfected for commercial practice by Zahn & Co. in Germany.³¹

Hewitt-Robins and Freeport engineers designed a new traveling shiploader, with a special telescoping chute for loading sulfur. chute was designed to rotate in either direction and discharge material in all positions. Material can be thrown 20 feet beyond the end of the chute. Danger of flash fires from static electricity is minimized.32

Basic operating principles and typical applications of impingement

baffle-plate scrubbers were described in an article.33

The effects of sulfur in sponge-base titanium, iodide-base titanium, and various commercial and experimental titanium alloys were reported in a paper presented at the 38th Annual Convention of the American Society for Metals. The study showed that additions of up to about 0.025 percent sulfur result in considerable strengthening of titanium, with a corresponding sharp decline in ductility. sharp increase in strength occurs before sulfides are encountered in the microstructure and appear to be caused by solid-solution hardening. Addition of 0.2 percent sulfur to titanium alloys containing molybdenum, vanadium, or aluminum plus vanadium cause a considerable increase in yield strength, with only a slight decline in ductility. This amount of sulfur was also sufficient to cause grain refinement in both the as-cast and wrought conditions.34

<sup>Majumdar, K. K., Depression of Pyrite by Cyanide Ions: Min. Mag. (London), vol. 97, No. 3, September 1957, pp. 137–139.
Chemical Engineering, Vulcanizing Agents: Vol. 64, No. 4, April 1957, pp. 182–184.
Thornhill, P. G., and Pidgeon, L. M., Micrographic Study of Sulfide Roasting: Jour. Metals (sec. 1), vol. 9, No. 7, July 1957, pp. 989–995.
Atwood, J. S., Joseph, J. S., and Hodge, W. W., Regeneration of Waste Pickle Liquor to Produce Ferrous Sulfate Monohydrate: Blast Furnace and Steel Plant, vol. 45, No. 9, September 1957, pp. 108–1123.
Chemical Engineering, Sulfur Sparks New Bulk Loading Ideas: Vol. 64, No. 6, June 1957, pp. 164, 166.
Chemical Engineering Progress, Impingement Baffle-Plate Scrubbers: Vol. 53, No. 9, September 1957, pp. 78. 86, 88.</sup> pp. 78, 86, 88.

Materials and Methods, Effects of Sulfur on Titanium Alloys: Vol. 45, No. 3, March 1957, pp. 204, 206.

Talc, Soapstone, and Pyrophyllite

By Donald R. Irving 1 and Betty Ann Brett 2

ECREASED demand for talc in ceramic products was the major cause of sharp declines in domestic mine production and sales of talc, soapstone,3 and pyrophyllite in 1957 from the record highs of 1956. The quantity of these commodities imported for consumption dropped to the 1948-52 average.

TABLE 1.—Salient statistics of the talc, soapstone, and pyrophyllite industries in the United States, 1948-52 (average) and 1953-57

(In thousand short tons and thousand dollars)

	1948-52 (average)	1953	1954	1955	1956	1957
United States: Mine production: Short tons	1 569	632	619	726	739	684
	(2)	3 \$3,524	3 \$3, 493	3 4 \$4,517	3 \$4,859	* \$4, 796
	1 566	609	600	719	735	692
	1 \$9,816	\$11,380	\$12, 634	\$15,225	\$15,026	\$14, 411
Short tons Value Exports: 7	20 \$642	23 \$717	22 \$678	29 \$986	\$749	20 \$701
Short tons	(2)	(2)	(2)	(2)	(2)	(2)
	\$2, 146	\$1, 994	\$1, 931	\$2, 206	\$2, 454	\$2, 587
	1, 502	1, 630	1, 590	1, 750	1, 935	1, 875

¹ Includes pinite for 1948.

DOMESTIC PRODUCTION

Mine production of talc, soapstone, and pyrophyllite decreased 7 percent in quantity and 1 percent in value in 1957 compared with 1956. The quantity of talc and soapstone produced was 8 percent less; that of pyrophyllite was 4 percent less.

New York, California, and North Carolina again ranked first, second, and third in the quantity and value of talc, soapstone, and pyrophyllite produced in 1957. North Carolina continued as the major pyrophyllite-producing State, followed by Pennsylvania (sericite schist) and California.

Data not available.
Partly estimated.
Revised figure.

Fincludes some crushed material.

Exclusive of "Manufactures, n. s. p. f. (not specially provided for), except toilet preparations."
Includes "Manufactures, n. e. s. (not elsewhere specified)."

Assistant chief, Branch of Ceramic and Fertilizer Materials.

^{*} Excludes soapstone sold in slabs and blocks, which is part of the stone industry.

TABLE 2.—Talc, soapstone, and pyrophyllite¹ sold by producers in the United States, 1948-52 (average) and 1953-57, by classes

		Crude		Sawed	and manufa	ctured
Year	Short tons	Value at poi		Short tons	Value at s poi	
		Total	Average		Total	Average
1948–52 (average)	17, 933 18, 423 19, 052 47, 032 42, 085 57, 382	\$182, 125 185, 184 190, 685 340, 243 265, 631 330, 131	\$10. 16 10. 05 10. 01 7. 23 6. 31 5. 75	887 935 1,012 1,311 1,052 1,212	\$295, 771 354, 847 290, 697 397, 476 441, 848 519, 664	\$333. 45 379. 52 287. 25 303. 19 420. 01 428. 77
		Ground 2			Total	
Year	Short tons	Value at s poir		Short tons Value at poi		
		Total	Average		Total	Average
1948-52 (average)	589, 516 579, 9 34	\$9, 338, 050 10, 840, 283 12, 152, 651 14, 487, 640 14, 318, 414 13, 561, 497	\$17. 06 18. 39 20. 96 21. 59 20. 70 21. 41	566, 121 608, 874 599, 998 719, 386 734, 798 691, 924	\$9, 815, 946 11, 380, 314 12, 634, 033 15, 225, 359 15, 025, 893 14, 411, 292	\$17. 34 18. 69 21. 06 21. 16 20. 45 20. 83

¹ Includes pinite, 1948.

TABLE 3.—Pyrophyllite 1 produced and sold by producers in the United States, 1948-52 (average) and 1953-57

				S	ales		
Year	Produc- tion	Crt	ıde	Gr	ound	т	otal
	(short tons)	Short tons	Value	Short tons	Value	Short tons	Value
1948-52 (average) 1953 1954 1955 1955 1956 1957	112, 226 123, 457 126, 702 158, 460 167, 756 160, 538	5, 192 2, 480 3, 015 19, 830 20, 847 26, 414	\$28, 187 15, 564 18, 552 124, 904 121, 497 127, 865	106, 274 119, 057 114, 998 2 135, 506 141, 143 135, 368	\$1, 424, 355 1, 581, 826 1, 644, 337 2, 005, 069 1, 808, 502 1, 925, 973	111, 466 121, 537 118, 013 155, 336 161, 990 161, 782	\$1, 452, 542 1, 597, 390 1, 662, 889 2, 129, 973 1, 929, 999 2, 053, 838

Total sales of crude, sawed and manufactured, and ground tale, soapstone, and pyrophyllite decreased 6 percent in quantity and 4 percent in value in 1957, compared with 1956. The average value of crude material continued to decline. It was 9 percent below 1956 and 43 percent below the 1948-52 average. The average values per ton of sawed and manufactured and ground material increased from 1956.

During 1957 the Virginia Division of Mineral Resources announced that field studies and geologic mapping of areas containing soapstone

² Includes some crushed material.

Includes sericite schist, 1953-57.
 Includes a small quantity of sawed material.

TABLE 4.—Crude talc, soapstone, and pyrophyllite produced in the United States. 1956-57, by States

State	19	56	1957	
	Short tons	Value ¹	Short tons	Value 1
Alabama California Georgia Maryland and Virginia Montana Nevada North Carolina Texas Washington Other States 3	2, 200 153, 710 57, 916 26, 574 22, 197 10, 540 125, 487 41, 332 (2) 299, 083	\$4,500 1,419,227 122,166 90,107 210,139 98,506 529,205 244,368 2,141,141 4,859,359	1, 600 133, 915 49, 372 24, 690 (2) 7, 467 120, 905 47, 780 4, 065 294, 659	\$3, 200 1, 525, 660 106, 000 100, 346 (2) 57, 162 557, 850 199, 387 24, 525 2, 222, 182

Partly estimated.
 Included with "Other States."
 Includes States indicated by footnote 2 and Arkansas, New York, Pennsylvania, and Vermont.

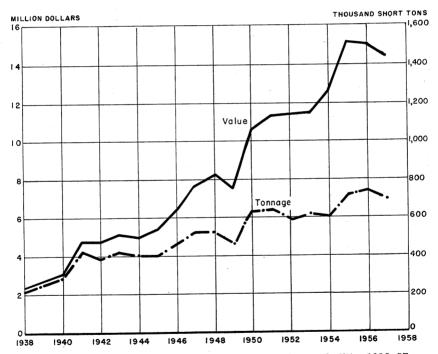


FIGURE 1.—Sales of domestic talc, soapstone, and pyrophyllite, 1938-57.

deposits were being initiated. Carolina Pyrophyllite Co. was constructing two water reservoirs in the Bowling Mountain area, near Stem, Granville County, N. C., preliminary to beginning pyrophyllite mining in the area. Long-range plans included a flotation plant to upgrade the ore.

TABLE 5.—Ground talc, soapstone, and pyrophyllite sold or used by grinders in the United States, 1956-57, by States

State	19	56	1957		
	Short tons	Value	Short tons	Value	
Alabama California Georgia Maryland and Virginia Montana North Carolina Texas Washington Other States ² Total	2, 200 140, 571 57, 521 23, 776 15, 365 100, 637 23, 076 (¹) 328, 515	\$39,600 3,542,920 577,475 234,198 453,681 1,501,467 318,362 (1) 7,650,711	1, 600 122, 367 49, 132 23, 631 (1) 97, 741 26, 364 2, 139 310, 356 633, 330	\$20,000 3,383,221 426,479 218,058 (1) 1,636,103 421,458 41,293 7,414,885	

1 Included with "Other States."

CONSUMPTION AND USES

Ceramics, paints, insecticides, roofing, rubber, asphalt filler, and paper consumed 84 percent of the talc and soapstone sold by producers in 1957, compared with 88 percent in 1956 and 87 percent in 1955. Sales reported for all of these major uses declined, except that for paper, which remained virtually unchanged.

Insecticides, ceramics, refractories, and paints consumed 64 percent of the pyrophyllite sold by producers in 1957, compared with 72 percent in 1956 and 85 percent in 1955. The largest decrease was for use in paints—49 percent.

TABLE 6.—Talc and soapstone sold or used by producers in the United States, 1955-57, by uses

	19)55	19)5 6	1957		
Use	Short tons	Percent of total	Short tons	Percent of total	Short tons	Percent of total	
Ceramics Paints Insecticides Roofing Rubber Asphalt filler Paper Toilet preparations Textiles Foundry facings Rice polish Crayons Other 2 Total	63, 472 60, 537 33, 272 22, 608 17, 339 9, 912 8, 286 9, 131 1 125	31 21 11 11 6 4 3 2 1 2 (1) 8	204, 261 128, 159 54, 793 45, 671 30, 253 21, 438 15, 931 9, 611 8, 647 8, 169 1, 676 792 43, 407	36 22 10 8 5 4 3 2 2 1 (1) 7	170, 326 119, 848 45, 184 39, 124 28, 532 19, 073 15, 980 10, 390 7, 393 7, 352 1, 785 712 64, 443	322 233 9 7 7 6 4 4 3 2 2 1 1 (¹) (¹)	

1 Less than 1 percent.

² Includes States indicated by footnote 1 and Arkansas, Nebraska, New York, Oregon, Pennsylvania, Utah, and Vermont.

² Includes cement admixture, composition floor and wall tile, export fertilizer, pipe-coating enamel, plaster, plastics, and stucco.

TABLE 7.—Pyrophyllite sold by producers in the United States, 1955-57, by uses

	1955		1956		1957	
Use	Short tons	Percent of total	Short tons	Percent of total	Short tons	Percent of total
Insecticides	54, 329 38, 460 23, 400 15, 752 5, 037 14, 778	35 25 15 10 3 10	43, 132 36, 468 23, 486 29, 199 5, 640 12, 200	27 23 14 18 3 8	42, 166 33, 722 21, 452 (1) (1) 6, 223 4, 766	26 21 13 (1) (1) 4 3
Other 2	3, 580	2	11,865	7	53, 453	33
Total	155, 336	100	161, 990	100	161, 782	100

¹ Figure included with "Other" to avoid disclosing individual company confidential data.

² Includes uses indicated by footnote 1 and heavy clay products, joint cement filler, stucco, and related products.

PRICES

The price quotations in trade journals for talc remained unchanged during the year. These quotations merely indicate the range of prices; actual prices are negotiated between buyer and seller on the basis of a wide range of specifications.

TABLE 8.—Prices quoted on ground tale, in bags, carlots, 1957, per short ton
[Oil. Paint and Drug Reporter]

2017 - 1111 - 1111 - 1111	
Grade	1957
Domestic, f. o. b. works:	
Ordinary: California	\$33,00-\$39.50
Vermont	19. 40
Fibrous (New York):	90.00
Off-color	28.00
325-mesh:	31.00
99.5 percent	38.00
Imported (Canadian), f. o. b. mines	20.00- 35.00

TABLE 9.—Prices quoted on talc, carlots, 1957, per short ton, f. o. b. works

[E&MJ Metal and Mineral Markets]

Grade ¹	1957
Georgia: 98 percent minus-200-mesh: Gray, packed in paper bags Whito, packed in paper bags New Jersey: Mineral pulp, ground, bags extra New York: Double air-floated, short fiber, 325-mesh Vermont: 100 percent through 200-mesh, extra white, bulk basis 2 99½ percent through 200-mesh, medium white, bulk basis 2 Virginia: 200-mesh 325-mesh Grude	18.00- 20.00

Containers included, unless otherwise specified.
 Packed in paper bags, \$1.75 per ton extra.

FOREIGN TRADE 4

Imports.—The quantity and value of unmanufactured "talc, steatite or soapstone, and French chalk" imported for consumption in the United States decreased 13 percent in quantity and 6 percent in

TABLE 10.—Talc, steatite or soapstone, and French chalk imported for consumption in the United States, by classes in 1948-52 (average) and 1953-55 (totals), and 1956-57, by countries

[Bureau of the Census]

Ground, washed. Manis-Crude and powdered, or Total unmanufactures, unground pulverized, Cut and sawed factured n. s. p. f., except toilet except Country preparations toilet preparations Short Value Short Value Short Value Short Value (value) tons tons tons tons 20, 050 22, 478 22, 076 28, 882 \$588, 168 641, 332 1 653, 850 1 936, 312 \$33, 900 39, 903 18, 149 29, 363 20, 303 22, 803 22, 157 29, 079 140 1948-52 (average) ... \$19,637 \$641,705 \$7,092 7,974 35, 474 6, 230 20, 300 1953_____ 198 127 716, 709 36 $\frac{45}{72}$ 1 678, 229 1954 11, 508 1251955..... 1 985, 975 1956 North America: Canada_____ 2, 123 30,051 2.123 30 051 903 Europe: France 89, 907 542, 650 250 90, 166 Italy.... 15, 622 4. 936 15, 636 14 547, 586 Total 20, 149 632, 557 15 5. 195 20, 164 637, 752 Asia: India..... 117 17, 555 856 22, 346 39 901 973 Japan..... $\bar{9}\bar{1}$ 41,566 91 41,566 Total 117 17,555 856 22, 346 91 41,566 1,064 81, 467 Africa: British East Africa_____ 257 Grand total... 1 684, 954 117 17, 555 23, 128 106 46, 761 23, 351 1 749, 270 1, 160 1957 North America: Canada.. 2, 119 261 27, 322 2, 119 27,322299 Mexico... 4, 722 4,722 Total_____ 2,380 32,044 2, 380 299 Europe: 75, 233 rance_ 3, 325 74.618 2 615 3, 327 Germany, West. ĩ 343 343 2,824 Italy..... Norway... 495, 906 13,572 495, 078 3 13, 575 7 1,344 1,344 354 United Kingdom. 522 16,897 569, 696 13 3, 130 16,910 572,826 3,700 Asia: India. 277 42, 265 20,732 1,032 62,997 Japan Malaya Vietnam, Laos, 73 33, 486 33, 486 561 and Cambodia 75 Total____ 42, 265 277 755 20,732 33, 486 1, 105 96, 483 636 Grand total.... 277 42, 265 20,032 622, 472 86 36, 616 20, 395 701, 353 4,635

¹ Owing to changes in tabulating procedures by the Bureau of the Census data known to be not comparable with years before 1954.

⁴ Figures on imports and exports compiled by Mae B. Price and Elsie D. Jackson, Division of Foreign Activities, Bureau of Mines, from records of the U. S. Department of Commerce, Bureau of the Census.

value in 1957, compared with 1956. Italy continued to be the major supplier, with 67 percent of the quantity and 71 percent of the value of total unmanufactured imports. Canada, France, and India again supplied most of the remainder. Imports of 261 short tons of ground talc were received from Mexico in 1957. Imports of manufactures, n. s. p. f. (not specifically provided for), except toilet preparations, increased in value from \$1,160 in 1956 to \$4,635 in 1957.

Exports.—In 1957, crude and ground talc, steatite, soapstone, and pyrophyllite exports declined 6 percent in quantity from the record high of 1956 but increased 12 percent in value to a new high. Manufactures, n. e. s. (not elsewhere specified), increased in both quantity and value; powders—talcum (in packages), face, and compact—de-.

creased slightly in value.

TABLE 11.—Talc, pyrophyllite, and talcum powders exported from the United States, 1948-52 (average) and 1953-57

[Bureau o	f the Cens	us]				
	Tale	Powders-				
Year	Crude a	nd ground	Manufactures, n. e. s.		talcum (in packages), face, and compact	
	Short tons	Value	Short tons	Value	(value)	
1948-52 (average)	19, 724 23, 071 23, 348 35, 230 42, 333 39, 985	\$538, 598 602, 454 744, 828 858, 755 1, 009, 315 1, 127, 157	(1) 159 259 135 69 291	(1) \$95, 778 110, 558 101, 571 73, 806 137, 536	\$1, 561, 376 1, 295, 533 1, 075, 592 1, 245, 993 1, 371, 120 1, 321, 868	

¹ Beginning Jan. 1, 1949, manufactures, n. e. s., 1 ton (\$455); 1950, 51 tons (\$25, 492); 1951, 106 tons (\$60,589); 1952, 265 tons (\$142,356).

WORLD REVIEW

The world production of tale, soapstone, and pyrophyllite decreased 3 percent in 1957 from the alltime high set in 1956 but was the second highest ever recorded.

Afghanistan.—Reserves of high-quality talc in eastern Afghanistan,

north of Safed Koh, were reported to exceed 10 million tons.

Austria.—West Germany and Poland received 76 percent of talc exports from Austria in 1957, compared with 64 percent in 1956. Exports for 1953-57, by countries of destination, are given in table 13.

Canada.—According to the official preliminary estimates, Canada produced 21,453 short tons of talc and pyrophyllite (value Can-\$268,401) and 11,600 tons of soapstone (value Can-\$165,000) in 1957. Imports of talc and soapstone in 1957 were given as 14,949 tons (value Can-\$536,189) and exports of talc as 2,353 tons (value Can-\$29,848). In 1957 the average value of the Canadian dollar was US\$1.04.

⁵ Canada, Department of Trade and Commerce, Dominion Bureau of Statistics, Preliminary Report on Mineral Production, 1957: P. 37. (Prepared in the Mineral Statistics Section of the Industry and Merchandising Division, Ottawa, Canada.)

TABLE 12.—World production of talc, soapstone, and pyrophyllite, by countries.1 1948-52 (average) and 1953-57, in short tons 2

[Compiled by Helen L. Hunt and Berenice B. Mitchell]

Country 1	1948-52 (average)	1953	1954	1955	1956	1957
North America:	07.407	07 400	00.140	07 100		00.000
Canada (shipments) United States	27, 637 568, 555	27, 408 631, 518	28, 143 618, 994	27, 160 725, 708	29, 326 739, 039	33, 053 684, 453
Total	596, 192	658, 926	647, 137	752, 868	768, 365	717, 506
South America: Argentina Brazil Chile	15, 645 15, 668	³ 16, 500 23, 466	⁸ 16, 500 21, 967	25, 353 27, 190	25, 478 30, 684	³ 27, 600 30, 069
Paraguay Peru Uruguay	120 4 141 1, 315	99	132 131 1, 167	3 100 3, 708 1, 249	³ 100 4, 031 1, 580	³ 100 ³ 3, 300 1, 566
Total	32, 889	³ 41, 000	3 39, 900	57, 600	61, 873	³ 62, 600
Europe:						
AustriaFinlandFranceGermany, West (market-	63, 462 360 108, 442	56, 477 4, 065 120, 693	68, 310 8, 197 132, 154	77, 905 5, 265 132, 683	72, 819 8, 146 145, 064	80, 915 9, 259 156, 528
able)	29, 997 2, 001 78, 715	32, 991 91, 049	36, 170 1, 275 94, 440	38, 889 2, 315 110, 292	3 38, 600 3 2, 200 105, 005	³ 33, 000 ³ 2, 200 102, 065
Norway Portugal Spain	69, 707 8 20, 779	67, 848 18 20, 720	80, 771 6 22, 896	88, 598 11 25, 168	3 127, 000 95 30, 405	³ 66, 000 ³ 90 32, 064
Sweden United Kingdom Yugoslavia	12, 998 2, 978	9, 806 4, 413	14, 689 4, 447	13, 695 5, 641 2, 922	14, 492 4, 270	12, 804 8 4, 400
Toral 13	407, 000	430, 000	485, 000	525, 000	570, 000	525, 000
Asia: Afghanistan	5 400	800	1, 200	700	899	* 770
India Japan Korea, Republic of	26, 699 332, 750 5, 981	32, 632 362, 193 26, 983	47, 405 246, 197 20, 965	47, 476 251, 479 12, 092	52, 478 345, 846 15, 719	44, 268 3 370, 000 12, 434
Taiwan	³ 1, 082	2, 001	7, 791	5, 807	6, 758	5, 938
Total 13	444, 000	480, 000	390, 000	395, 000	510, 000	545, 000
Africa: Egypt Kenya	5, 110 401	2, 509 173	2, 822 111	6, 878	7, 706	⁸ 6, 600
Kenya Union of South Africa	6, 305	7, 974	7, 974	1, 581	1,968	2, 315
Total	11, 816	10, 656	10, 907	8, 459	9, 674	³ 8, 915
Oceania: Australia	10, 109	11, 127	14, 699	14, 075	14, 979	15, 998
World total (esti- mate)12	1, 502, 000	1, 630, 000	1, 590, 000	1, 750, 000	1, 935, 000	1, 875, 000

The Canadian talc and soapstone industry in 1956 was described as follows:6

During 1956 the Canadian producers of talc, soapstone, pyrophyllite and steatite shipped 29,326 short tons valued at \$365,226 compared with 27,160 tons valued at \$338,967 in the preceding year. Production of pyrophyllite in Newfoundland was on a fairly regular basis during the latter half of the year. Quebec mines produced ground talc and steatite, also soapstone blocks and crayons.

¹ In addition to countries listed, tale or pyrophyllite is reported in China, Rumania, and U. S. S. R., but data are not available; estimates for these countries are included in total.

² This table incorporates a number of revisions of data published in previous Tale, Soapstone, and Pyrophyllite chapters. Data do not add to totals shown owing to rounding where estimated figures are included in the detail.

³ Estimate.

⁴ Average for 1951–52.

⁵ Average for 1949–52.

⁶ Canada, Department of Trade and Commerce, Dominion Bureau of Statistics, The Tale and Soapstone Industry, 1956: Ind. Merchandising Div., Mineral Statistics Section, Ottawa, 1957, 5 pp.

Tale of various particle sizes was shipped from the Madoc, Ontario, area. has been no production of talc or pyrophyllite from British Columbian properties in recent years.

The average number of persons employed in the industry was 67 to whom \$169,-120 were paid as salaries. Fuel cost \$6,790 and 1,261,206 kwh. of electricity were purchased for \$23,700. Containers and process supplies cost \$83,043.

Imports of tale and soapstone in 1956 amounted to 16,268 tons valued at \$496,-

001. Exported were 2,613 tons worth \$34,408.

TABLE 13.—Talc exported from Austria, 1953-57, by countries of destination, in short tons 1 2

1	Com	piled	hν	Corra	Α.	Barry]

Country	1953	1954	1955	1956	1957
Belgium-Luxembourg	1, 079 17 1, 002	1, 258 143 1, 242	1, 425 44 1, 554	2, 124 126 1, 115	2, 419 76 957
Germany: East	2, 546 15, 385 2, 183 295 715	2, 502 16, 577 3, 508 627 666	2, 177 17, 935 5, 563 1, 275 1, 109	2, 960 18, 496 6, 389 2, 392 1, 152	1, 431 17, 576 2, 003 2, 241 1, 048
Philippines Poland Saar Sweden	10, 558	19, 914	21, 074	16, 914 55	109 25, 082 89 50
Switzerland. Trieste. United Kingdom. Yugoslavia Other countries.	1, 808 17 864 17 3	2, 228 44 582 95 2	2, 039 505 62 71	2, 638 650 22 16	2,716 563 28 3
Total	36, 500	49, 402	54, 891	55, 049	56, 391

Compiled from Customs Returns of Austria.

TABLE 14.—Consumption of ground tale and soapstone in Canada, by uses, 1953-55, in short tons 1

							
Use	1953	1954	1955	Use	1953	1954	1955
Roofing Paints	8, 050 7, 838 8, 557 2, 164 1, 620 1 694 1, 510 424 321	7, 772 7, 240 9, 704 2, 345 1, 330 (2) 2, 195 814 455 352	9, 414 7, 872 5, 503 3, 302 1, 392 975 783 687 540 408	Electrical apparatus Miscellaneous nonmetal- lic mineral products Soaps and cleaning preparations Asbestos products Polishes and dressings Tanneries Total	490 82 81 11 5 31,849	598 146 106 1 13 2 33, 073	311 83 64 9 8 6 31,357

Source: Canada, Department of Trade and Commerce, Dominion Bureau of Statistics.
 Not reported separately.

France.—Exports of talc and soapstone declined 21 percent in 1956 from 1955 to virtually the 1954 figure. Only exports to Switzerland increased during 1956.

Italy.—In 1957 the United States, United Kingdom, and West Germany received 69 percent of the talc exported from Italy, compared with 73 percent in 1956 and 78 percent in 1955.

² This table incorporates a number of revisions of data published in the preceding Tale, Soapstone, and Pyrophyllite chapter.

TABLE 15.—Talc and soapstone exported from France, 1952-56, by countries of destination, in short tons ^{1 2}

[Compiled by Corra A. Barry]

Country	1952	1953	1954	1955	1956
Algeria Belgium-Luxembourg Finland Germany, West Morocco: Southern Zone Netherlands Sweden Switzerland	2, 112 3, 071 2, 222 1, 206 856 5, 909	1, 927 3, 133 893 2, 020 968 1, 842 5, 163 276	2, 030 3, 206 874 4, 011 1, 169 1, 643	3, 713 4, 145 857 5, 760 2, 140 1, 269	2, 006 3, 607 4, 942 867 1, 099
United Kingdom United States Other countries	6, 126 1, 579 2, 808	6, 023 2, 413 2, 534	7, 395 2, 066 3, 624	8, 298 4, 322 4, 325	5, 718 4, 160 3, 125
Total	25, 889	27, 192	32, 082	41, 156	32, 540

TABLE 16.—Talc exported from Italy, 1953-57, by countries of destination, in short tons 1 2

[Compiled by Corra A. Barry]

Country	1953	1954	1955	1956	1957
Austria	382	360	349	538	632
Belgium-LuxembourgCanada	435 1, 117	700 756	538 1, 130	464 1, 526	(3) (3)
FranceGermany:	966	763	1,079	1, 285	3,851
East West	110 3, 590	147 4, 251	70 5, 507	6, 317	(³) 6,812
Netherlands Portugal	988 269	691 284	988 290	656 190	(3)
Switzerland Union of South Africa	627 140	691 559	473 659	951 1, 361	(3)
United Kingdom	9, 150	7, 486	9, 246	9, 237	9,676
United StatesOther countries	15, 607 3, 156	13, 686 3,467	21, 117 4, 406	16, 329 4, 610	14, 071 9, 472
Total	36, 537	33, 841	45, 852	43, 464	44, 514
				1	

Pyrophyllite chapter.

3 Data not separately recorded

TABLE 17.—Talc and soapstone exported from Norway, 1952-56, by countries of destination, in short tons 1

[Compiled by Corra A. Parry]

Country	1952	1953	1954	1955	1956
Belgium-Luxembourg	3, 694	3, 277	3, 086	5, 033	4, 271
Denmark	4,902	5, 733	7, 882	9,091	7,372
Finland	2,744	393	2, 432	1,729	1,382
France	668	423	536	651	830
Germany:		168	83		
East West	4, 561	4, 326	6, 599	6,063	6, 368
Indonesia	2, 142	1, 499	1, 335	2,710	1, 506
Netherlands	6,099	7, 662	7, 454	9, 085	7, 896
Poland	226	510	328	0,000	617
Sweden	5.342	6, 816	8,604	8, 368	7, 304
Switzerland	148	98	79		
United Kingdom	12, 263	12,607	15, 764	17,065	18, 433
Other countries	1,653	1, 170	2,021	2, 242	1, 988
Total	44, 442	44, 682	56, 203	62, 037	57, 967

¹ Compiled from Customs Returns of Norway.

¹ Compiled from Customs Returns of France.

² This table incorporates a number of revisions of data published in the preceding Tale, Soapstone, and Pyrophyllite chapter.

¹ Compiled from Customs Returns of Italy.
³ This table incorporates a number of revisions of data published in the preceding Tale, Soapstone, and

Norway.—Talc and soapstone exported from Norway in 1956 decreased 7 percent over 1955. The United Kingdom remained

the major recipient.

Union of South Africa.—The quantity of "wonderstone," a massive pyrophyllite, produced in 1957 increased 124 percent over 1956; the quantity exported increased 139 percent.

TABLE 18.—Salient statistics of the pyrophyllite (wonderstone) industry in Union of South Africa, 1953-57 1

	1953	1954	1955	1956	1957
ProductionExports:	408	377	239	266	595
Quantity (short tons) Value (US\$) Local sales:	272 22, 408	174 16, 758	126 12, 110	232 22, 630	554 54, 544
Quantity (short tons)	116 8, 260	1, 158 10, 62 3	106 8, 036	6, 308	115 8,714

¹ U. S. Embassy, Johannesburg, Union of South Africa, State Department Dispatch 262: May 3, 1957, p. 3; Dispatch 292, June 14, 1957, p. 3; Dispatch 223, Mar. 10, 1958, p. 3.

TECHNOLOGY

The geology of talc, soapstone, and pyrophyllite deposits in California was described.⁷ The controls used in producing ceramic-grade talc and pyrophyllite were noted.⁸ The use of talc, soapstone, and pyrophyllite in ceramic bodies was discussed.9

Patents were issued during 1957 suggesting the use of talc in a wood-pulp suspension used to make yarn-carrying cones,10 a pressuresensitive adhesive tape capable of accepting pencil marks, 11 resistors, 12 an improved dimensionally stable sheet used for production drawings, ¹³ greaseproof floor tile, ¹⁴ packings, ¹⁵ and fireproofing and fire-extinguishing compositions. ¹⁶ A patent was issued on a ceramic composition with good plasticity, low shrinkage, high strength, and high resistance to thermal shock using fibrous talc in place of bentonite or other clays.17

⁷ Wright, L. A., Talc and Soapstone; chap. in Mineral Commodities of California: California Div. Mines Bull. 176, December 1957, pp. 623-634. Pyrophyllite: Pp. 455-458.

8 Treischel, C. C., Availability and Control of Ceramic-Grade Talc and Pyrophyllite: Bull. Am. Ceram. Soc., vol. 36, No. 5, May 15, 1957, pp. 177-178.

9 Bock, P., [Use of Talc and Soapstone in Ceramic Bodies]: Ber. deut. Keram. Gesell. (Bonn, Germany), vol. 34, No. 4, April 1957, pp. 92-97: Ceram. Abs., vol. 40, No. 1, Oct. 1, 1957, pp. 241.

Misra, M. L., Saxena, R. P., and Upadhyaya, V. G., Pyrophyllite: A New Raw Material for Ceramists: Ceram. Digest, vol. 1, 1957, pp. 450-454; Chem. Abs., vol. 51, No. 18, Sept. 25, 1957, p. 14229g.

Zapp, Friedrich, [Improving the Strength of Fire-Clay Bodies by the Addition of Soapstone]: Glas-Email-Keramo-Tech. (Hamburg, Germany), vol. 8, No. 6, June 1957, pp. 205-211; No. 7, July 1957, pp. 252-256; Ceram. Abs., vol. 41, No. 1, Jan. 1, 1958, p. 19.

10 Ednell, D. F., Method for Producing Cones From a Fibrous Pulp Suspension: U. S. Patent 2,777,367, Jan. 15, 1957.

Jan. 15, 1957.

France, V. R., and Steinhauser, A. H., Pressure-Sensitive Adhesive Marking Tape: U. S. Patent 2,785,087, Mar. 12, 1957.

Kahan, G. J. (assigned to Sprague Electric Co.), Metal Film Resistor: U. S. Patent 2,786,925, Mar. 26,

^{1957.}Smith, R. W., and Schwartzwalder, K. (assigned to General Motors Corp.), Resistor: U. S. Patent 2,786,819, Mar. 26, 1957.

Bichorn, A. (assigned to Screen Engineering Co.), Photographic Method for Making Templates: U. S. Patent 2,801,919, Aug. 6, 1957.

Lerch, R. L. (assigned to Armstrong Cork Co.), Resilient Tile: U. S. Patent 2,802,797, Aug. 13, 1957.

Zagorski, Johann, and Zagorski, Johann, Method for Preparing Self-Lubricating, Asbestos-Containing Stuffing-Box Packings: U. S. Patent 2,809,397, Oct. 15, 1957.

Hooks, R. M. (assigned to Southwestern Petroleum Co., Inc.), Method of Preserving and Fireproofing a Structural Member and Resultant Article: U. S. Patent 2,804,398, Aug. 27, 1957.

Warnook, W. R. (assigned to Ansul Chemical Co.), Foam-Compatible Fire-Extinguishing Composition: U. S. Patent 2,816,864, Dec. 17, 1957.

Methods of making artificial block talc from powdered talc, barium carbonate, and Florida kaolin 18 and of producing sterilized, free-flowing talc in micron sizes were patented. 19 Also, a patent was granted on a turntable device for feeding sticky materials from an open-end cylindrical bin. Fine powders, such as talc and clay, were said to be handled efficiently.20

¹⁸ Koch, W.J. (assigned to the U.S. Secretary of Commerce), Artificial Block Tale: U.S. Patent 2,781,273, Feb. 12, 1957.

19 Masci, J. N. (assigned to Johnson & Johnson), Sterilization of Crystalline Powders Using Epoxide: U.S. Patent 2,809,879, Oct. 15, 1957.

20 Isserlis, M. D., Material Feed Bin: U.S. Patent 2,786,609, Mar. 26, 1957.

Thorium

By James Paone 1

HORIUM-MAGNESIUM alloys consumed more thorium than all other nonenergy uses during 1957. Five major nuclear reactor

projects using thorium were underway during the year.

The major source of thorium for the United States and United Kingdom was Union of South Africa. Most domestic production came as a byproduct of placer deposits in South Carolina, Florida, and Idaho. Thorium was produced for the first time on a commercial basis from thorite mined near Cripple Creek, Colo., and from a thorium-uranium deposit on Hall Mountain, Idaho.

The refining installation opened during the previous year at Baltimore, Md., closed down, but another facility capable of processing thorium from concentrates to finished reactor-grade neaterial was

opened at Erwin, Tenn.

The thorium reserve of the Blind River area, Canada, was more accurately evaluated. The year marked the entrance of private firms into the production of high-purity thorium; at least six companies offered to supply thorium metal on a commercial basis.

Thorium in magnesium alloys played an important role in the fab-

rication of some guided missiles and supersonic aircraft.

Research on the nuclear use of thorium was underway at several laboratories in the United States. Details of a new process for manufacturing high-purity thorium were released during the year. Thorium deliveries to the Atomic Energy Commission (AEC) in the year ended June 30, 1957, totaled the equivalent of 223 tons of thorium metal in the form of thorium salts; nearly 450 tons was expected to be acquired in the following year ending June 30, 1958.

LEGISLATION AND GOVERNMENT PROGRAMS

Under the Defense Minerals Exploration Administration (DMEA), Government participation in exploration for thorium was reduced

from 75 percent to 50 during the year.

Thorium requirements of the AEC have been limited to relatively small quantities for research and development, particularly in nuclear applications. Research requirements and a stockpile for possible future needs have been met by purchases of thorium salts produced from monazite sands. Thorium deliveries in the year ended June 30, 1957, totaled an equivalent of 223 tons of thorium metal in the form of thorium salts; double that amount was expected to be acquired in the following year, ending June 30, 1958.²

Expenditures by the AEC for thorium-reactor research were about

\$4 million during the year.

¹ Commodity specialist. ² AEC, Progress in the Peaceful Uses of Atomic Energy: July-December 1957, pp. 146-147.

The AEC indicated that it would provide limited quantities of thorium for research, within its capability and in the absence of commercial thorium production. AEC requirements for thorium in Government programs were being met by its own facilities, and it did not anticipate purchases from private producers in the near future.³

TABLE 1.—Defense Minerals Exploration Administration contracts for thorium

Contractor and State	County	Date approved	Total amount of contract	
COLORADO				
Rare Earth Mining Co	Custer Fremont	Jan. 4, 1954 July 24, 1957	\$35, 638 2, 888 20, 760 18, 876	
Defense Metals, Inc	LemhiCuster	Aug. 8, 1952 Sept. 20, 1956	68, 265 26, 986	
William G. Reynolds	Hardin	Jan. 26, 1956	5, 620	
Elkhorn Mining Co	Beaver Head	Sept. 14, 1951	10, 215	
Total			\$189, 248	

Research on thorium applications in the atomic energy field were described in Metal Progress (vol. 7, No. 2, February 1957, p. 108).

DOMESTIC PRODUCTION

Exploration and Mine Production.—Exploration for and development of deposits containing thorium-bearing minerals continued in Colorado and Idaho. The first shipment of thorium ore from Colorado was made when Trail Mines, Inc., Colorado Springs, Colo., shipped over 40 tons of thorite ore from its mine near Cripple Creek. The average mill sample was reported to be about 10.5 percent thorium oxide. Northwest Prospecting & Development Co., Spokane, Wash., organized in 1956 to prospect for and develop thorium-uranium deposits on Hall Mountain near Porthill, Idaho, shipped its first ton of thorium concentrate. Exploration for thorium-bearing minerals continued in the Wet Mountain area, Colo.

Marine Minerals, Inc., a subsidiary of Heavy Minerals Co., Chattanooga, Tenn., continued to produce monazite sand from dredging in the Horse Creek area near Aiken, S. C. The monazite sand was shipped to the Heavy Minerals multimillion-dollar processing plant at Chattanooga, Tenn. Some production of monazite sand came from operations of the Rutile Mining Co. of Florida, Jacksonville, Fla., as a byproduct of the ilmenite-rutile-zircon deposit. Porter Bros. Corp. continued to dredge near Bear Valley, Idaho, about 95 miles north of Boise, principally to produce euxenite con-

³ Labowitz, Allan M., AEC Policy on Thorium; Metal Progress, vol. 7, No. 2, February 1957, p. 108. ⁴ The Mining Record (Denver), vol. 68, No. 47, Nov. 21, 1957, p. 5.

centrate. The operation included dredging of black sands, concentration by jigging, and separation by a combination of electrostatic and high-intensity electromagnetic separators producing euxenite concentrate, which was shipped to Mallinkrodt Chemical Works, St. Louis, Mo., for chemical separation. A byproduct monazite concentrate was recovered at the Bear Valley operation. Baumhoff-Marshall, Inc., Boise, Idaho, remained inactive, and its stockpile from previous operations included some monazite concentrates.

Refinery Production.—Thorium and thorium compounds were

produced by four firms, principally from monazite concentrate.

Monazite processors and estimated annual capacity	Estimated capacity, tons monazite
Company: Lindsay Chemical Co	12,000
Davison Chemical Co	1,000
Maywood Chemical Works	1,000
Heavy Minerals Co	1, 500
	15, 500

The Lindsay Chemical Co., West Chicago, Ill., remained the world's largest manufacturer of refined thorium compounds. tion was chiefly from monazite concentrate from the Unio. On The principal thorium salt of commerce was thorium nitrate; others of importance were thorium oxide, thorium chloride, thorium fluoride, and thorium sulfate. Davison Chemical Co., a Division of W. R. Grace and Company, Baltimore, Md., concluded its contract with the AEC after processing a portion of the Government stockpile of monazite into crude rare earths and thorium. The installation was inadequate to handle the wide variation in monazite quality encountered in the stockpile. The plant was converted to the cracking of thorite ores to produce feed for Davison's refining and metals plant in Erwin, Tenn., completed during the year. The Erwin operation includes the first commercial solvent-extraction facility in the United States for producing ultrapure nuclear-grade thorium oxide, as well as a plant for making thorium metal and thorium alloys. The solvent-extraction plant went on stream in September with a capacity of 1,000 pounds per day, and the metals plant was completed in December with a capacity of 500 pounds per day. Heavy Minerals Co., Chattanooga, Tenn.—the first firm to reduce monazite by the caustic soda process-maintained production of thorium hydroxide, rare-earth oxides, fluorides, and chlorides at the Chattanooga plant. Mallinckrodt Chemical Works, St. Louis, Mo., processed euxenite from Idaho to separate and recover columbium, thorium, uranium, and rare-earth compounds. Maywood Chemical Works, Maywood, N. J., processed some thorium and rareearth compounds, but during the year it had temporarily suspended operations. Wah Chang Corporation, New York, N. Y., milled thorite ore at Boulder, Colo., to produce concentrates running from 20 to 40 percent ThO2, at its research laboratory at Boulder. Chang investigated the upgrading of thorium-mineral concentrate beyond the milling state to a chemical product.

Metal Hydrides, Inc., Beverly, Mass., made its first shipment of

high-purity crystal-bar thorium, produced by the Van Arkel-de Boer iodide process developed by Metal Hydrides in cooperation with Battelle Memorial Institute.⁵ The Westinghouse Electric Corp., Lamp Division, Bloomfield, N. J., produced a small quantity of thorium metal. The AEC used thorium metal for research purposes from its Feed Materials Production Center at Fernald, Ohio, operated by National Lead Co. of Ohio. The Bureau of Mines continued investigating production methods and techniques for making ultrapure thorium.

Companies offering to supply thorium metal on a commercial basis included Davison Chemical Co., Horizons, Inc., National Research Corp., Sylvania-Corning Nuclear Corp., Nuclear Materials & Equipment Corp., and Vitro Corp. of America.

Specifications for uranium-233 (converted thorium) produced in private nuclear reactors in the United States were published in December.

CONSUMPTION AND USES

Nonenergy Uses.—Authorization from the AEC for the purchase of thorium, as prescribed in the Atomic Act of 1954, was required in The AEC authorizations revealed data from which consumption of thorium for 1956 and 1957 could be estimated and are shown in table 2.

TABLE 2.—Authorizations for thorium purchases by the Atomic Energy Commission for nonenergy purposes, in pounds of contained ThO2

Use	1952	1953	1954	1955	1 1956	1 1957
Magnesium alloys	25, 427 1, 157 11, 064 277	3, 600 8, 707 236 5, 179 1, 222	4, 647 9, 765 24 3, 738 2, 016	23, 944 44, 566 105 3, 898 926	50, 000 40, 000 200 4, 000 1, 000	100, 000 40, 000 4, 000 1, 000
Total	37, 925	18, 944	20, 190	73, 439	95, 200	145, 000

The increased use of thorium in magnesium alloys contributed to the 100-percent increase in consumption of thorium over 1956. newer alloy, HM215A, developed by Dow Chemical Co., is said to withstand the highest temperature of any metal of equal density used during 1957. The most widely used alloy, HK31, contained 3 percent thorium and 0.7 percent zirconium, with the remainder magnesium. Magnesium-thorium alloys were used in the Air Force Bomarc missile, the Navy satellite Vanguard launching vehicle, and in the Air Force supersonic bomber, the B-58 Hustler. The alloys were to be used in several missiles in the Intermediate Range Ballistic Missile or Intercontinental Ballistic Missile class. The alloys were found to be the least expensive airframe material that retained its strength at temperatures encountered above speeds of 1,500 miles per hour.6 Other advantages of magnesium-thorium alloys are weight-saving over aluminum in some jet-engine castings and excellent uniformity in castings.⁷

Chemical Engineering Progress, vol. 53, No. 3, March 1957, p. 96.
 American Metal Market, vol. 65, No. 22, Jan. 31, 1958, p. 14.
 Northern Miner (Toronto), vol. 43, No. 43, Jan. 16, 1958, p. 5.

THORIUM 1149

Use of thorium in manufacturing incandescent gas mantles remained nearly the same as in 1956. Used principally in portable light sources, gas mantles have provided a consistent rate of thorium consumption since 1955. Thorium metal also was utilized as a deoxidant in preparing molybdenum and its high alloys and in electronic tubes and lamps for controlling starting voltages and maintaining stability. Nonenergy uses of thorium were described in detail during the year. Thoria ceramics were investigated; results of research on thoria ceramics carried out at Armour Research Founda-

tion at the Argonne National Laboratory were published.9

Energy Uses.—Research on the nuclear use of thorium was underway at several United States laboratories. Argonne National Laboratory, Lemont, Ill., was investigating thorium metal and thorium oxide for use in boiling-water reactors; Atomics International, a subsidiary of North American Aviation, Canoga Park, Calif., was studying the feasibility of utilizing thorium metal in the SRE (sodium-reactor experiment reactor); the Oak Ridge National Laboratory, Oak Ridge, Tenn., was investigating a slurry of thorium oxide for use in a homogeneous reactor; the Brookhaven National Laboratory, Upton, N. Y., was engaged in basic studies on the use of a thorium-bismuth slurry in the LMFRE (liquid-metal-fueled reactor experiment); Babcock & Wilcox Co. continued tests at its Critical Experiment Laboratory, Lynchburg, Va., on the core of the power reactor being built for the Consolidated Edison Co. at Indian Point, N. Y. Application of thorium in power reactors was under active consideration by Power Reactor Development Company in Detroit and by Westinghouse-Pennsylvania Power & Light Company.

The Consolidated Edison Test Reactor (CETR) in New York is a pressurized water, thorium-converter, power reactor designed to operate with zircalloy-clad fuel plates of U-235 alloy and a zirconium-clad thorium blanket. The U-Zr alloy fuel element can be left in the reactor until at least 1 percent of all the atoms in the element have reacted; at this point about half of the U-235 will have fissioned, and enough U-233 will be formed in the thorium to equal nearly 1

percent of the thorium in the reactor.

The sodium-graphite reactor (SGR) was planned to operate with a

Th-U alloy clad in a sheath of Type 304 stainless steel. 10

In the liquid-metal-fueled reactors employing a thorium-containing bismuth slurry, fission products may be kept at low concentrations

by continuous chemical processing of the slurry.

An article reported that thorium could potentially contribute more energy in the world than the expected total from our fossil-fuel reserve. The growth of thorium for energy purposes would not be apparent until some time in the 1960's. Based on an estimate that 10 percent of the power produced in the United States will be nuclear by 1975, principally in 100,000-kw. reactors, and equal amounts of thorium in process and in reactors, it was predicted that about 11,000 tons of thorium would be required in 1975, with a replacement rate

Lilliendahl, W. C., Nonnuclear Uses of Thorium: Metal Progress, vol. 71, No. 2, February 1957, pp. 104-107.
 Arenberg, C. A., Rice, H. H., Schofield, H. Z., and Handwerk, J. H., Thoria Ceramics: Am. Ceram. Soc. Bull., vol. 36, No. 8, August 1957, pp. 302-306.
 Howe, John P., Thorium's Role in Atomic Power: Metal Progress, vol. 71, No. 2, February 1957, pp. 302-306.

of 2 to 4 tons per year. However, the outcome of research work on thorium as well as its future as a nuclear fuel had not been clearly established by the end of 1957.

PRICES

The price for 10-percent thorium concentrate was about \$1.75 per pound of ThO₂ content in thorite ores. Monazite quotations listed in E&MJ Metal and Mineral Markets remained steady during 1957 as follows:

	Price per pound, c.i.f. United States
Type and grade, rare-earth oxide including thoria, percent:	United States ports, cents
Massive; 55	13
Sand ; 55	15
Sand; 66	18
Sand; 68	20

Prices established by the AEC for nuclear materials remained in effect during the year. The price for high-purity thorium metal remained at \$43 per kilogram (\$19.55 per pound), f. o. b. Feed-Materials Production Center, Fernald, Ohio. The AEC established a "buy back" price for U-233 nitrate of \$15 per gram of uranium for the material produced abroad through the use of the fuel obtained from the Commission under agreements for cooperation.

A private commercial company that came into production in 1957 quoted the following prices per pound for nuclear-grade thorium

metal:

	Powder or pellets	Thoriu m ingot
Less than 10 lb	- \$50	\$54
10 to 100 lb	41	45
100 to 500 lb	34	38
500 to 2,000 lb	_ 26	30
Over 2,000 lb	_ 20	24

Thorium metal of Commercial grade (chief impurities—calcium, about 0.05 percent; iron, about 0.05 percent; thorium oxide, about 1.0 to 1.5 percent) was available in small lots during 1957 at the following prices per gram and in the following forms:

	200 grams	More than 200 grams
Powder	\$0.45	\$0, 35
Unsintered bars	. 50	. 40
Sintered bars	. 65	. 50

Principal thorium compounds were quoted by a leading producer in 1957 for 100-pound lots or more as follows:

m	ThO_2	
Thorium compound:	percent	Price per pound
Carbonate	80-85	¹ \$7, 25-8, 80
Chloride	50	7. 00
Fluoride	80	6. 50
Nitrate (mantle grade)	46	3. 00
Oxide	97-99	6. 50-8. 50
1 Variable, depending on rare-certh content	• •	

¹¹ Work cited in footnote 10.

THORIUM 1151

FOREIGN TRADE

Import-export data regarding thorium ore and concentrate, thorium compounds, and thorium metal were not available for publication. Union of South Africa and Australia provided a source of monazite, but India and Brazil retained their embargo on the export of source materials.

WORLD REVIEW

Monazite (the principal commercial mineral of thorium) from Union of South Africa continued to supply the Free World requirements for the commodity.

Intensive research on the nuclear applications of thorium in Great

Britain was underway during the year.

NORTH AMERICA

Canada.—Uranium deposits in the Blind River area were found to contain about one-half pound of thorium per ton. Potential thorium recovery per year is about 3 to 4 million pounds of ThO₂. Although the economics of the discovery had not been fully evaluated, considerable interest in byproduct thorium was noted. Rio Tinto Mining Co. of Canada and Dow Chemical Co. of Canada continued research on the recovery of thorium from waste liquors produced in the processing of uranium at Algom Uranium Mines' Quirke Lake operation. Pilot-plant results were expected to yield feasible methods of recovery of thorium and rare earths. Recovery units would be installed at other plants if the demand increased.

SOUTH AMERICA

Brazil.—Restriction of exports of source material continued in effect during 1957. Late in the year, it was expected that discussions would take place between the Governments of Brazil and the United Kingdom regarding an agreement on the exchange of British nuclear technology for supplies of Brazilian thorium, contained in the large reserves of monazite.

EUROPE

France.—Output of thorium products continued to rise. Produced principally by Société de Produits Chemiques des Terres Rares, La Rochelle, thorium-content material from France was said to exceed

quantities produced in any other country in the world.

United Kingdom.—Thorium as a nuclear fuel was undergoing study. Design work and construction of a zero-energy assembly for the experimental reactor were being done by General Electric Co. of Great Britain under contract to the British Atomic Energy Authority (AEA). Thorium was expected to play an important role in future British nuclear power developments.¹² A concentrated program of research into the application of thorium and thorium alloys in future British nuclear power stations was being carried out by the British Non-Ferrous Metals Research Association in collaboration with the AEA.

¹² Atomic Energy Newsletter, vol. 18, No. 2, Sept. 3, 1957, p. 4.

The principal applications would be in high-temperature, gas-cooled reactors.

Cevlon.—Monazite production in Cevlon continued to supply a

small quantity of thorium for Free World requirements.

India.—Results of preliminary surveys by the Indian Government indicated that there are large deposits in northeastern India. was estimated to be capable of producing about 330,000 tons of 10percent thorium concentrate, 10,000 tons of 0.3- to 0.4-percent uranium concentrate, and approximately 80 million tons of ilmenite. ¹³ The discovery was expected to overshadow the well-known beach-sand deposits of Travancore.

Korea, Republic of.—Production of thorium in South Korea also

contributed to world requirements for the commodity.

AFRICA

Madagascar.—Deposits in Madagascar, in the French Union, were reported to contain 1,000 tons of thorianite, which contains 10 to 20 percent uranium and 60 to 70 percent thorium.¹⁴ Results of the thorianite-pyroxenite under investigation in the Fort Dauphin-Mandrare River area had not been reported by the end of the year.

Nigeria.—Concentrations of thorite were found in certain Nigerian granites and the eluvial and placer deposits derived from them. Mechanical concentrates from operations in Nigeria usually contain, in addition to thorite and columbite, a number of other heavy minerals,

including zircon.

Union of South Africa.—Monazite from the Van Rhynsdorp deposit was mined, concentrated, and exported by the Monazite and Mineral Ventures (Pty.), Ltd. Since 1953 this monazite deposit has been the source of most of the rare-earth and thorium production in the United States and England. The Van Rhynsdorp district of Union of South Africa continued to supply the world market. Estimated reserves of the deposit, based on drilling and mining, totaled about 250,000 tons of monazite, containing 6 percent thorium and 45 percent rare-earth oxide.15

OCEANIA

Australia.—Monazite in the heavy black sands on the east coast of Australia was mined in 1957, and some material was exported to the United States or the United Kingdom. The Australian Minister for National Development announced in June that further exports of monazite would be prohibited because of Australia's limited monazite reserve and its potential importance as a source of thorium for nuclear The Government planned to purchase domestic production for stockpiling.

Surveys were made to determine the extent of a euxenite deposit on

the south coast of Western Australia, near Albany.

New Zealand.—Thorium was expected to be recovered from New Zealand's huge deposits of iron-bearing sands. Exploitation of the

¹³ South African Mining and Engineering Journal, vol. 68, pt. 1, No. 3355, May 31, 1957, p. 1053.
¹⁴ American Metal Market, vol. 64, No. 56, March 22, 1957, p. 1.
¹⁵ Kremers, H. E., Commercial Thorium Ores: Pres. at Annual Meeting, AIME, Feb. 19, 1958, New York, N. Y.

North Island ore was under the W. J. Scollay, New Zealand representative of Phillip Bros. Ore Corp. (New York) and of Darby & Co. (London).¹⁶

WORLD RESERVES

The investigation and evaluation of monazite resources in the United States conducted by the Bureau of Mines from the close of 1948 until 1955 resulted in estimate of an indicated and inferred reserve of 18,000 tons of thorium oxide. Assuming a 100-percent conversion ratio of thorium into uranium—233, this quantity of thorium could theoretically supply some 14 million thermal megawatt-hours.

The largest reserves in the world were in India. In the Kerala area the reserve was estimated to be 150,000 to 180,000 tons of ThO₂; additional deposits were known to occur on other beaches in India. Although the African deposit seemed adequate for years to come, the vast potential presented by the thorium in the Blind River area uranium deposits in Canada assured the world of ample supplies. New discoveries in India and Madagascar also contributed to increased reserves of thorium.

The most important potential source of thorium in North America is the Blind River area, Ontario, Canada. The uranium ore bodies under development contain about 1 part thorium to 2 parts uranium. The ratio indicated that the reserve included at least 25,000 tons of ThO₂.

Brazilian beach deposits containing well over 10,000 tons of thorium occur in the Baia, Rio de Janeiro, and Espirito Santo districts.

Thorium reserves were also known to exist in Nigeria, Malaya, Taiwan, Australia, Ceylon, Indonesia, Korea, New Zealand, Egypt, Senegal, Tasmania, Japan, and Norway.

TABLE 3.—World reserves of thorium

		Reserves		
	Country	Content (tons, ThO ₂)	Average grade (percent ThO ₂)	
India Canada United States Union of South Africa Brazil		180, 000 25 to 50, 000 18, 000 15, 000	8. 5 . 05 4. 5 to 6. 0 6. 0 6. 0	

TECHNOLOGY

Several thorium blanket systems for breeder reactors received serious consideration during the year.¹⁷ The blanket form found to be most adequate consisted of aluminum-jacketed metal slugs. Thorium oxide slurry in deuterium oxide also appeared promising. Thorium fuel cycles may prove to be cheaper than the uranium cycle.¹⁸

Chemical Week, vol. 81, No. 19, Nov. 9, 1957, p. 65.
 Lietzke, M. H., and Stoughton R. W., Feasible Chemical Forms for Thorium Breeder Blanket: Ind. Eng. Chem., vol. 49, No. 2, February 1957, pp. 202-207.
 Mattern, K. L., A Study of Fuel-Cycle Costs for SGR-Type Power Reactors: Document IDO-14363, Part II, Tech. Inf. Extension, Oak Ridge, Tenn., April 1956.

TABLE 4.—Thorium reactor types 1

	Solid fuel			nd fuel
	CETR	SGR	HRT (HRE-2)	LMFR
Purpose	Powerplant demon- stration.	Powerplant	Test of power breeder.	Test of power breeder
Fuel	Uranium-235 alloyed in Zirconium.	Uranium-235 alloyed with Th at start, converting to U- 233.	UO2SO4 in D2O.	U dissolved in mol- ten Bi.
Moderator Fertile material	H ₂ O at 1,500 p. s. i Thorium metal, Zir- conium clad.	Graphite Th metal	$\begin{array}{c} D_2O_{} \\ ThO_2 \text{ slurry in} \\ D_2O_{} \end{array}$	Graphite. Th₃Bi₅ suspended in molten Bi.
Heat exchange	Pressurized water to water and steam.	Na to NaK to water and steam.	Fuel solution to water-steam.	Bi-U to NaK to water-steam.
Thermal power Electrical power	500,000 kw	and steam. 2:0,000 kw 76,800 kw	About 10,000 kw_ 2,300 kw	550,000 kw., full scale. 210,000 kw.
Uranium required. Th in reactor Th consumption per year.		360 kg		175 kg. 21,000 kg. 180 kg.

¹ Howe, John P., Thorium's Role in Atomic Power: Metal Progress, vol. 71, No. 2, February 1957, pp. 97-103.

The process at the AEC Feed-Materials Facility at Fernald, Ohio, to make thorium ingots included the following steps:

(a) Dissolution of thorium nitrate tetrahydrate in water.

(b) Precipitation of thorium as thorium oxalate by oxalic acid.

(c) Predrying and calcination of the thorium oxalate to thorium dioxide.
(d) Hydrofluorination of the thorium dioxide to form thorium tetrafluoride.
(e) Thermite reduction of the thorium tetrafluoride with calcium in the presence of zinc chloride to a low-melting thorium-zinc alloy.

(f) Vacuum distillation of the thorium-zinc alloy to thorium-metal sponge.

(g) Arc melting of the metal sponge to produce thorium ingots.19

Thorium metal canned in aluminum was the only form of thorium successfully irradiated and processed for uranium-233. Isolation of U-233 includes dissolution of the slugs in aqueous solutions and a costly process of recasting the metal and refabricating the slugs.

Some details of a new process for manufacturing high-purity thorium were released by the AEC during the year. Under the new process thorium oxycarbonate is precipiated from a solution of the nitrate by adding sodium carbonate. The oxycarbonate is next ignited to the oxide, which is then mixed with finely divided carbon black and treated with chlorine at temperatures ranging from 1,350° to 1,400° F. The resultant tetrachloride (70 parts) is mixed with sodium chloride (30 parts) and the molten mixture used as an electrolyte in a cell lined with graphite, which constitutes the positive electrode. The electrolytic process produces metal of the required purity for nuclear use (99.9 percent) at a cost of \$2.00 per pound; hitherto, metallic thorium was made mainly by the Ames process at production costs ranging from \$15 to \$20 per pound.

The Van Rhynsdorp deposit in the Union of South Africa was mined through shafts extending to 300-feet depth. The ore was mined by room-and-pillar methods. In the mill, ore is crushed in jaw and cone crushers and then ground in a ball mill in closed circuit with a classi-

¹⁹ Atomic Energy Facts, A Summary of Atomic Activities of Interest to Industry: U. S. Atomic Energy Commission, September 1957, p. 72.

THORIUM 1155

fier. The overflow slurry is treated by flotation, in which pine oil and xanthates remove the sulfides. Monazite is next floated and the thorium product dried and bagged. As local water is unsuitable for the flotation process, water for the milling operations is trucked in 65 miles.²⁰

²⁰ Kremers, H. E., Commercial Thorium Ores: Pres. at Annual Meeting, AIME Feb. 19, 1958, New York, N. Y.

Tin

By J. W. Pennington 1 and John B. Umhau 2

HE PREDOMINANT factor in the world tin situation in 1957 was the International Tin Agreement. Actions sponsored by the Tin Council under the agreement included export controls restricting the flow of tin; the removal of 15,300 long tons of tin buffer stock from the market to regulate supply and demand; steps to maintain a floor price for tin at £730 per ton (91.25 cents a pound); and authorization to sell from the buffer stock at £780 per ton (97.50 cents a pound) to prevent excessive rise in prices.

Other outstanding features were the cessation of domestic tin smelting under Government sponsorship and the sale of the Longhorn

tin smelter at Texas City, Tex., to Wah Chang Corp.

In the United States, despite declining tin consumption, tinplate production rose to a new peak and aluminum cans were introduced.

Elsewhere, the British and Canadian Governments announced plans to sell 5,500 long tons of tin from their stockpiles; shipments of Soviet tin entered European markets; and Australia began producing tinplate.

TABLE 1.—Salient statistics of tin in the United States, 1948-52 (average) and 1953-57

	1948-52 (average)	1953	1954	1955	1956	1957
United States: Production: From domestic mines ¹_long tons From domestic smelters ²do From secondary sourcesdo Imports for consumption: Metal	70. 78 32, 062 28, 071 60, 211 31, 575 587 56, 085 30, 764	56. 0 37, 562 27, 600 74, 570 35, 973 203 53, 959 31, 681	204. 68 27, 407 26, 190 65, 599 22, 140 822 54, 427 28, 464	99. 24 22, 329 28, 340 64, 815 20, 112 1, 107 59, 828 30, 655	17, 631 29, 440 62, 590 16, 688 3 890 60, 470 29, 854	1, 564 24, 260 56, 183 94 1, 531 54, 429 28, 078
Secondarydododo		121. 50 78. 25 95. 77 189, 700 193, 200	101.00 84.25 91.81 189,400 196,700	110.00 85.75 94.73 190,700 191,700	113.75 92.88 101.26 192,300 193,000	103. 0 87. 1 96. 1 191, 50 185, 90

Includes Alaska.

3 Revised figure.

² Includes tin content of alloys made directly from ores.

Assistant chief, Branch of Base Metals.
Commodity-industry analyst.

LEGISLATION AND GOVERNMENT PROGRAMS

The Export Control Act of 1949, extended to June 30, 1958, governed shipments of tin by destinations. Exports were under general license to the Free World.

The foreign assets control regulations of the United States Treasury Department prohibited the entry of Chinese tin. Tin of U. S. S. R. origin could enter the United States but required a permit (none was issued) on the presumption it might be of Chinese origin. Entrance of alloys that might include Chinese and/or Soviet tin also was prohibited.

A Defense Minerals Exploration Administration (DMEA) tin exploration contract with Keenan Properties, Lawrence County, S. Dak., for \$48,931 (Government participation, 90 percent) continued in force. The contract had been made in 1951. Government participation in DMEA contracts for tin was reduced from 90 percent to 50 percent, effective October 22.

The real and personal property of the United States Tin Corp. was offered to the highest bidder at the United States Marshal's sale held at the mine office October 30, 1957. The sale was to satisfy a judgment in favor of the United States of America. No acceptable bid was submitted; therefore, the Government took possession of the property.

H. R. 2394, introduced January 10, would authorize a Federal purchase program for tin. The bill set a base price of \$1.35 per pound for tin in concentrate from lode mines and \$1.20 per pound for tin in concentrate from placer mines. Purchase was to be limited to 10,000 long tons of tin in concentrate or to receipts in a 10-year period, whichever was completed sooner; this concentrate was to have been produced in the United States, its Territories, or possessions.

DOMESTIC PRODUCTION

MINE OUTPUT

No tin ore or concentrate of marketable grade was produced in the United States in 1957. A small quantity of tin concentrate recovered from treating molybdenum ore during 1956 and 1957 was unsold.

A report was published³ on the tin-producing potential of the placer deposits in the Tofty area of the Hot Springs district, Central Alaska.

SMELTER OUTPUT

Domestic tin-smelter production was 1,564 long tons, compared with 17,631 tons in 1956. The entire output came from the Government-owned Longhorn smelter at Texas City, Tex. Production comprised 948 tons of Three Star grade, 449 tons of Two Star grade B, and 167 tons of Two Star grade C. In addition, 14 tons of Three Star (remelts) was recast, the remnants of lots produced before January 1957, and previously shown in the statistics. Production of tin at the smelter, which began in 1942 under Government sponsorship, ceased January 31, 1957. The plant was sold to Wah Chang Corp., which took title and possession February 15, 1957. Wah Chang Corp. rehabilitated much of the plant and storage area, reducing tin-producing facilities and sub-leasing some buildings to

¹ Thomas, Bruce I., Tin-Bearing Placer Deposits Near Tofty, Hot Springs District, Central Alaska: Bureau of Mines Rept. of Investigations 5373, 1957, 56 pp.

TIN 1159

other industries. During Government ownership the smelter had been managed by the Tin Processing Corp., a Delaware corporation, and a subsidiary of N. V. Billiton Maatshappij.

According to the 1958 Federal budget:4

Public Law 608, approved June 22, 1956, provided for operation of the tin smelter until January 31, 1957. It also authorizes and directs the Corporation (Federal Facilities Corp.) to take steps immediately to sell or lease the tin-producing facilities. Should no contract of sale or lease be affected by January 31, 1957, the tin smelter will be reported as excess property for transfer and disposal in accordance with the provisions of the Federal Property and Administration Services Act of 1949.

A report to the Congress on the liquidation of the Reconstruction Finance Corp. contains the following:⁵

After exhaustive negotiations, an agreement for the sale of the smelter was signed on January 3, 1957, with the Wah Chang Corp. The sale price was \$1,-350,000 with a 10-percent cash downpayment and the balance in annual installments over a period of 10 years. The purchaser also agreed to make additional payments up to \$2 million contingent upon the volume of tin metal, tin alloys, and tungsten produced.

Effective June 30, 1957, responsibility for liquidating the remnants of the Government's tin program passed from the Secretary of the Treasury to the Administrator of General Services in accord with the provisions of Executive Order 10720 (July 11, 1957). At that time, the remaining assets of the tin program consisted primarily of \$1,215,000 due on the purchase-money mortgage taken

in the sale of the smelter.

TABLE 2.—Longhorn-tin smelter production 1942-57, in long tons

Year	Long tons	Year	Long tons
1942	15, 696	1950	32, 136
1943	20, 727		30, 934
1944	30, 619		22, 592
1945	40, 591		37, 562
1946	43, 468		27, 002
1947	33, 292		22, 329
1947	36, 678		17, 631
1948	36, 053		1, 564

SECONDARY TIN 6

Domestic recovery of secondary tin in 1957 decreased about 18 percent in quantity and 22 percent in value from 1956. Of the total tin recovered, copper-base scrap furnished 43 percent; lead base, 33 percent; tin-base, 10 percent; and tinplate scrap, the remainder. Only 15 percent was recovered as unalloyed tin, reclaimed mostly at de-

tinning plants.

Treatment of tinplate clippings at detinning plants increased for the fifth successive year to a new high. Material treated totaled 649,000 long tons, compared with the previous peak of 630,000 tons in 1956. The average quantity of tin recovered per long ton of tinplate scrap treated was 11.45 pounds in 1957 against 11.93 pounds in 1956. The lower recovery (for the 11th consecutive year) continued to reflect treatment of a larger proportion of electrolytic tinplate carrying a thinner coating of tin.

⁴ Bureau of the Budget, The Budget of the United States Government for the Fiscal Year Ending June 30, 1958: Jan. 16, 1957, p. 919.

5 Department of the Treasury, Report to the Congress-Liquidation of Reconstruction Finance Corporation: Dec. 10, 1957, p. 13.

6 The assistance of Archie J. McDermid and Edith E. den Hartog is acknowledged.

TABLE 3.—Secondary tin recovered in the United States, 1948-52 (average) and 1953-57, in long tons

	Tin reco	Tin recovered at detinning plants Tin recovered from a			from all so	ources	
Year	As metal In chem-	In chemicals	Total	otal As metal	In alloys and		otal
					chemicals	Long tons	Value
1948-52 (average)	2, 974 2, 650 2, 660 2, 580 2, 700 2, 840	410 450 530 620 690 500	3, 384 3, 100 3, 190 3, 200 3, 390 3, 340	3, 209 2, 850 2, 930 2, 970 3, 260 3, 540	24, 862 24, 750 23, 260 25, 370 26, 180 20, 720	28, 071 27, 600 26, 190 28, 340 29, 440 24, 260	\$68, 628, 020 59, 212, 676 53, 863, 091 60, 140, 288 66, 776, 900 52, 266, 470

TABLE 4.—Tin recovered from scrap processed in the United States, by kind of scrap and form of recovery, 1956-57, in long tons

Kind of scrap	1956	1957	Form of recovery	1956	1957
New scrap: TimplateTin-baseLead-baseCopper-base	3, 350 1, 630 4, 130 2, 700	3, 310 1, 260 2, 800 2, 150	As metal: At detinning plants At other plants	2, 975 285	3, 100 440
Total	11, 810	9, 520	Total	3, 260	3, 540
Old scrap: Tin cans Tin-base Lead-base Copper-base	40 1, 590 6, 340 9, 660	30 1, 110 5, 200 8, 400	In solder	6, 260 625 745 4, 870 13, 680	5, 170 280 560 3, 480 11, 230
Total	17, 630	14, 740	Total	26, 180	20, 720
Grand total	29, 440	24, 260	Grand total	29, 440	24, 260

TABLE 5.—Secondary tin recovered from scrap processed at detinning plants in the United States, 1956-57

	1956	1957
Scrap treated:		
Člean tinplate clippings long tons Old tin-coated containers do	629, 097 6, 045	648, 343 4, 056
Totaldo	635, 142	652, 399
Tin recovered: From new tinplate clippings do	3, 350 40	3, 310 30
Totaldo	3, 390	3, 340
Form of recovery: As metal	2, 700 690	2, 840 500
Total 1do	3, 390	3, 340
Weight of tin compounds produceddoAverage quantity of tin recovered per long ton of clean tinplate scrap used	1, 125	1,020
Average quantity of tin recovered per long ton of old tin-coated containers used	11. 93	11.45
Average delivered cost of clean tinplate scrapper long ton_ Average delivered cost of old tin-coated containersdo	15. 47 \$44. 20 \$44. 37	15. 50 \$39. 20 \$42. 41

¹ Recovery from tinplate clippings and old containers only. In addition, detinners recovered 325 tons from these sources in 1956, and 315 tons of tin as metal and in compounds from tin-base scrap and residues in 1957.

TIN 1161

TABLE 6.—Stocks and consumption of new and old tin scrap in the United States in 1957, gross weight in long tons

	Stocks, begin-			Consumptio	n	Stocks.	
Class of consumer and type of scrap	ning of year 1	Receipts	New scrap	Old scrap	Total	end of year	
Smelters and refiners: Block-tin pipe, scrap, and foil No. 1 pewter	20 19 63 478	532 57 709 1, 986	2,009	529 53 629	529 53 629 2,009	23 23 143 455	
Total	580	3, 284	2, 009	1, 211	3, 220	644	
Foundries and other manufacturers: Block-tin pipe, scrap, and foil High-tin babbitt Drosses and residues	2 1 1	20 3		13 3	13 3	9 1 1	
Total	4	23		16	16	11	
Grand total: Block-tin pipe, scrap, and foil No. 1 pewter High-tin babbitt Drosses and residues Total	22 19 64 479 584	552 57 712 1, 986	2,009	542 53 632 	542 53 632 2,009 3,236	32 23 144 456 655	

¹ Revised figures.

CONSUMPTION BY USES

Total tin consumption in the United States declined 9 percent in 1957. Five items—tinplate, solder, bronze and brass, babbitt, and tinning—supplied 91 percent of the tin used in 1957, virtually unchanged from 1956 and 1955. Consumption of tin in tinplate (the leading use of primary, which took almost 60 percent of the annual totals for 1952–57) dropped 2,700 tons from 1956. Consumption increased 9 percent for electrolytic but decreased 36 percent for hot-dipped. In 1957, 74 percent of the tin used to make tinplate was for electrolytic and 26 percent for hot-dipped; use of solder ranked second, consuming 1,680 tons less; bronze, the largest use of secondary tin, decreased 2,285 tons; babbitt declined 285 tons, mainly in primary tin; and the quantity used in tinning was 430 tons smaller. Tin used for white metal (highest since 1941) advanced 7 percent; the tonnage going into britannia metal increased the most.

Tinplate production reached an alltime high of 5.7 million short tons. Of the total output, electrolytic furnished 87 percent compared with 81 percent in 1956, and the hot-dipped type only 13 percent compared with 19 percent in 1956. Hot-dipped-tinplate production

was the smallest since 1909.

The United States, the leading producer and consumer of tinplate, required about 50 percent of the world consumption of tin for tinplate. Of the nearly 90 percent of tinplate consumed in making cans, about 60 percent was used for food packing and 40 percent for nonfood products. During 1957 one company began processing tinplate directly from coils weighing up to 7½ tons in can plants.

The manufacture of aluminum cans for motor oil, grated cheese, and meat began in 1957. It was stated in the 1957 annual report of the Continental Can Co., Inc., however, that aluminum was not

TABLE 7.—Consumption of primary and secondary tin in the United States, 1948-52 (average) and 1953-57, in long tons

	1948–52 (average)	1953	1954	1955	1956	1957
Stocks on hand Jan, 1 1	26, 011	23, 105	24, 525	23, 326	27, 757	28, 446
Net receipts during year: Primary Secondary Terne	57, 370 2, 918 673 28, 952	57, 969 2, 582 604 29, 754	52, 673 2, 351 2 226 28, 601	64, 544 2, 191 30, 262	62, 099 2, 185 28, 999	59, 21t 2, 868 26, 758
Scrap Total receipts	89, 913	90, 909	83, 851	96, 997	93, 283	88, 841
AvailableStocks on hand Dec. 31 1	115, 924 25, 483	114, 014 24, 525	108, 376 23, 326	120, 323 27, 757	121, 040 28, 446	117, 287 32, 030
Total processed during yearIntercompany transactions in scrapTin consumed in manufactured products.	90, 441 2, 399 8 88, 042	89, 489 2, 566 3 86, 923	85, 050 2, 159 82, 891	92, 566 2, 083 90, 483	92, 594 2, 270 90, 324	85, 257 2, 750 82, 507
PrimarySecondary	56, 085 30, 764	53, 959 31, 681	54, 427 28, 464	59, 828 30, 655	60, 470 29, 854	54, 429 28, 07

Stocks shown exclude tin in transit or in other warehouses on Jan. 1, as follows: 1953, 525 tons; 1954, 240 tons; 1955, 1,340 tons; 1956, 2,005 tons; 1957, 1,815 tons; and 1958, 1,310 tons.
 January-June only, earlier reported as tin content of terne metal consumed in terneplate manufacturing. Beginning July 1954 reported as tin consumed in making terne metal.
 Includes tin losses in manufacturing.

considered a substitute for tinplate, but rather a means of extending the metal-container line of products.

The Tin Industry (Research and Development) Board of Malaya has announced ⁷ the availability of a special fund of M\$500,000 (U. S. \$166,666) for use to refute publicity in favor of tin-less cans.

Receipts of tin for industrial consumption totaled 88,840 long tons (5 percent less than 1956), of which 67 percent was primary tin, unchanged from 1956 and 1955. "Straits" brand comprised 70 percent of the primary receipts in 1957 and 1956.

TABLE 8.—Tin content of tinplate produced in the United States, 1948-52 (average) and 1953-57

	Total (all	tinpla forms)	te	Tinplate (hot-dipped)		Tinplate (electrolytic)			Tinplate waste- waste, strips, cobbles, etc.			
Year	Gross weight (short tons)	Tin content (long tons) ¹	Tin per short ton of plate (pounds)	Gross weight (short tons)	conte	Tin per short ton of plate (pounds)	Gross weight (short tons)	Tin content (long tons)	Tin per short ton of plate (pounds)	Gross weight (short tons)	Tin content (long tons)	Tin per short ton of plate (pounds)
1948-52 (average) 1953 1954 1955 1956 1957 1957 1957 1957 1957	4, 277, 244 5, 067, 010 5, 017, 227 5, 422, 444 5, 689, 061 5, 715, 384	31, 327 33, 026 33, 549 34, 761	13.9 14.7 13.9 13.7	1, 641, 312 1, 375, 606 1, 339, 611 1, 062, 850 1, 006, 196 686, 616	14, 807 15, 906 13, 395 13, 041	24, 1 26, 6 28, 2 29, 0	2, 437, 551 3, 331, 386 3, 526, 982 4, 002, 068 4, 305, 774 4, 593, 587	14, 605 16, 115 20, 154 21, 720	9, 8 10, 2 11, 3 11, 3	360, 018 2 150, 634 357, 526 377, 091	1, 192 1, 915 31, 005	11, 9

Includes small tonnage of secondary pig tin and tin acquired in chemicals.
 Not reported during January-June 1954; figures shown are for period July-December only.
 For period January-June only; thereafter not separately reported but included in above figures on tinplate.

⁷ Tin (London), August 1957, p. 177.

TABLE 9.—Consumption of tin in the United States, 1955-57, by finished products, in long tons of contained tin

		1955			1956			1957		
Product	Pri- mary	Second- ary 1	Total	Pri- mary	Second- ary 1	Total	Pri- mary	Second- ary 1	Total	
Tinplate		174 10, 167 1, 760 15, 508 78 45 74 1, 312 140 232 91 1, 047 27	233, 549 323 22, 230 4, 371 19, 712 923 2, 613 1, 579 486 1, 179 1, 692 183	2 34, 761 10, 555 2, 615 4, 815 928 2, 525 129 164 1, 317 288 1, 304 779	114 10,027 2,141 14,627 50 52 26 1,347 115 162 141 1,012	234, 761 289 20, 582 4, 756 19, 442 978 2, 577 1, 511 1, 432 450 1, 445 1, 791	2 32, 046 181 8, 987 2, 440 4, 274 765 2, 091 100 85 1, 070 271 1, 400 594 125	181 9, 917 2, 031 12, 883 53 53 24 1, 464 162 145 140 966 59	2 32, 046 362 18, 904 4, 471 17, 157 818 2, 144 1, 549 1, 232 416 1, 540 1, 560	
Total	59, 828	30, 655	90, 483	60, 470	29, 854	90, 324	54, 429	28. 078	82, 50	

Includes 2,765 long tons of tin contained in imported tin-base alloys in 1955; 2,167 in 1956; and 3,100 in 1957.
 Includes small tonnage of secondary pig tin and tin acquired in chemicals.

TABLE 10.—Tinplate shipments by market classifications, 1948-52 (average) and 1953-57, in thousand short tons

American Iron and Steel Institute Annual Report on Shipments of Steel Products, by Market Classifications, AISI 16]

Market classifications	1948-52 (average)	1953	1954	1955	1956	1957
Sanitary cans:						:
Hot dipElectrolytic	1, 100 1, 125	798 1, 446	716 1, 530	500 1, 978	425 2, 070	301 2, 070
Total	2, 225	2, 244	2, 246	2, 478	2, 495	2, 371
General-line cans: Hot dip Electrolytic	162 851	82 1, 280	118 1, 424	82 1, 606	78 1, 691	48 1, 773
Total	1,013	1, 362	1, 542	1, 688	1, 769	1, 821
Closure-crown caps and others: Hot dip Electrolytic	17 242	12 297	6 298	8 326	4 301	3 273
Total	259	309	304	334	305	276
Total cans and closures	3, 497	3, 915	4, 092	4, 500	4, 569	4, 468
Other uses: Hot dipElectrolytic	85 91	105 137	80 164	81 251	77 237	58 230
Total	176	242	244	332	314	288
Export: Hot dip Electrolytic	390 156	321 183	387 265	430 342	366 316	240 330
Total	546	504	652	772	682	570
Total: Hot dipElectrolytic	1, 754 2, 465	1, 318 3, 343	1, 307 3, 681	1, 101 4, 503	950 4, 615	650 4, 676
Grand total	4, 219	4, 661	4, 988	5, 604	5, 565	5, 326

TABLE 11.—Consumer receipts of primary tin, by brands, 1948-52 (average) and 1953-57, in long tons

Year	Banka	English	Katanga	Longhorn	Straits	Others	Total
1948–52 (average)	3, 604 1, 731 1, 216 3, 268 7, 190 6, 897	(1) 6, 798 4, 727 3, 873 3, 373 3, 726	5, 605 2, 826 5, 112 6, 744 6, 341 3, 154	15, 580 927 255 30	24, 978 42, 886 38, 784 47, 844 43, 468 41, 460	7, 603 2, 801 2, 579 2, 785 1, 727 3, 978	57, 370 57, 969 52, 673 64, 544 62, 099 59, 215

Included with "Others," not separately reported.

STOCKS

Tinplate mills, holding nearly 85 percent of plant stocks of pig tin in the United States, increased inventories 4,390 long tons. Tin in process at tin mills on December 31, 1957, was the highest quantity recorded. At the end of the year, pig-tin stocks at other industrial plants declined to the lowest point recorded.

Tin was among the materials on which all Government stockpile

objectives were reached.8

TABLE 12.—Industry tin stocks in the United States, Dec. 31, 1953-57, in long tons

	1953	1954	1955	1956	1957
At plants: Pig tin—virgin In process ¹	13, 680 10, 845	12, 162 11, 164	16, 205 11, 552	16, 290 12, 156	20, 126 11, 904
Total	24, 525	23, 326	27, 757	28, 446	32, 030
Other pig tin: In transit in United States. Jobbers-Importers. Afloat to United States.	240 260 2,700	1, 340 1, 200 5, 200	2, 005 260 5, 340	1, 815 620 5, 500	1, 310 660 1, 735
Total	3, 200	7, 740	7, 605	7, 935	3, 705
Grand total industry	27, 725	31,066	35, 362	36, 381	35, 735

¹ Includes secondary pig tin (long tons) as follows: 1953, 326; 1954, 277; 1955, 246; 1956, 304; and 1957, 327.

PRICES

Tin prices in 1957 were sustained by purchase of excess tin supplies for the international buffer stock. Following a steady decline from the 1956 high of 113.75 cents on November 1, 1956, the highest price quoted in 1957 was \$1.03 on January 31. The price moved steadily downward thereafter to 87.125 cents on November 22 and 25, 1957, the low for the year.

On the London market the cash price averaged £754.8 per long ton in 1957, compared with £787.7 in 1956. The highest price on the London Metal Exchange was £804 on January 23 and the lowest £730 on October 9, where it held virtually the rest of 1957 by buffer stock buying. The 3-months price which averaged £747.5 in 1957 (£774.4 in 1956) dropped from the high of £778.5 on March 25 to the low of £680.5 on November 22. A new feature of the London Metal Ex-

⁸ Office of Defense Mobilization, Stockpile Report to the Congress, July to December 1957: Pp. 4-5.

change was selling Soviet tin in the United Kingdom and on the Continent.

On the Singapore market the monthly price of Straits tin ex-works was £731.5 for 1957, compared with £760.2 for 1956. The highest price for the year was £765.3 on March 26 and the lowest, £636, on November 25.

TABLE 13.—Monthly prices of Straits tin for prompt delivery in New York, 1956-57, in cents per pound 1

		1956		1957		
Month	High	Low	Average	High	Low	Average
January February March April June June July August September October November December Total	98. 000 95. 375 100. 250	100, 750 98, 625 98, 500 98, 000 93, 750 93, 625 92, 875 98, 250 100, 125 102, 500 108, 125 99, 875	104. 82 100. 53 100. 57 99. 17 96. 88 94. 48 96. 16 98. 96 103. 57 105. 72 110. 26 104. 01	103. 000 102. 500 101. 875 100. 250 99. 125 98. 500 97. 875 95. 375 93. 875 93. 125 91. 000 93. 375	99. 250 97. 875 98. 250 98. 375 97. 750 97. 125 95. 625 92. 875 92. 750 90. 625 87. 125 90. 375	101. 35 100. 22 99. 48 99. 30 98. 32 96. 46 94. 15 93. 31 91. 84 89. 23 92. 32

¹ Compiled from quotations published in the American Metal Market.

FOREIGN TRADE®

The principal tin items in the foreign trade of the United States in 1957 were imports of metallic tin and 94-percent tin alloys and exports of tinplate and tin cans. Of less importance was the trade in tin scrap, including tin-alloy scrap, tinplate scrap, tinplate circles, cobbles, strip, scroll, etc. Significant quantities of tin ingot, miscellaneous tin manufactures, and tin compounds were exported. Tin contained in babbitt, solder, type metal, and bronze imported and exported is shown in the Lead and Copper chapters of this volume.

Imports of metallic tin declined in 1957 for the fifth successive year and fell 10 percent below 1956. This was the longest period of continuous downtrend recorded in metallic tin imports. Of the total imports, about 70 percent came from Malaya, the principal source; however, the quantity of tin received from Malaya was the smallest since 1951. The tin imported from Indonesia shown in table 16 is believed to have been smelted in the Netherlands.

Receipts of tin contained in concentrates were only 94 tons in 1957, the smallest since 1934. As there was no tin smelting in the United States after January, the concentrate was imported for other contained metals.

In addition, 4,800 long tons of alloys, with the chief value in tin was imported, mainly from Denmark in 94-percent tin alloys.

Exports of metallic tin (including ores and concentrates) in 1957 were 1,530 long tons (890 in 1956); Canada and the United Kingdom were the principal destinations. The gross weight of tin-alloy scrap

⁹ Figures on imports and exports compiled by Mae B. Price and Elsie D. Jackson, Division of Foreign Activities, Bureau of Mines, from records of the U. S. Department of Commerce, Bureau of the Census.

exported (mostly to the United Kingdom) was 9,400 long tons in

1957, compared with 4,300 tons in 1956.

The principal tin-export item of the United States, as usual, was tinplate. Tinplate exports declined 4 percent in tonnage and only slightly in value, compared with 1956. Tinplate was exported to South America, Europe, Asia, North America, Africa, and Oceania,

TABLE 14.—Foreign trade of the United States in tin concentrate and tin, 1948-52 (average) and 1953-57

Bureau	of th	e Census]
--------	-------	-----------

		Imp	orts		Exports				
Concentrate		Rore h	locks, pigs,	Ingots, pigs, bars, etc.					
Year		content)	grain, or granu- lated		Do	mestic	Foreign		
	Long tons	Value	Long tons	Value	Long tons	Value	Long tons	Value	
1948-52 (average)	31, 575 35, 973 22, 140 20, 112 16, 688 94	\$69, 051, 733 82, 713, 269 41, 724, 776 1 36, 773, 366 32, 316, 702 118, 416	60, 211 74, 570 65, 599 64, 815 62, 590 56, 183	\$136,028,522 175,950,269 133,185,565 131,605,569 136,412,171 121,310,541	201 128 271 254 2 439 1, 112	\$455, 665 297, 695 467, 029 503, 892 2 820, 578 1, 526, 091	386 75 551 853 451 419	\$1,070,292 141,901 1,125,003 1,748,36 1,018,41 919,16	

 ¹ Owing to changes in tabulating procedures by the Bureau of the Census, data known to be not comparable with other years.
 2 Revised figure.

TABLE 15.—Tin concentrate (tin content) imported for consumption in the United States, 1956-57, by countries

[Bureau of the Census] 1957 1956 Country Long tons Value Long tons Value North America: \$430, 898 205, 975 221 Canada___ 9 \$11,921 156 Mexico.... 9 11,921 377 636, 873 South America: 384 Argentina....Bolivia.... 11 5,839 8, 533 15, 652, 803 15, 652, 803 36, 730 11 6, 223 8, 533 25 Europe: United Kingdom..... 7, 451, 014 6, 351, 200 27, 488 3,548 .. Indonesia... 40 20,345 3, 144 16 Thailand. Vietnam, Laos, Cambodia..... 20, 345 40 13, 829, 702 6,708 1, 988, 234 969 Belgian Congo..... 34 79,927 1,988,234 172,360 34 79,927 969 Oceania: Australia 118, 416 94 16,688 32, 316, 702 Grand total

Less than 1 ton.

TABLE 16.—Tin 1 imported for consumption in the United States, 1956-57, by countries

[Bureau of the Census]

Country	1	956	1957		
	Long tons	Value	Long tons	Value	
South America: Bolivia	333	\$706, 722	214	\$407, 92	
Europe: Belgium-Luxembourg Germany, West Netherlands Portugal United Kingdom	439 7, 109	14, 081, 583 862, 618 15, 965, 499 191, 659 10, 333, 014 41, 434, 373	3, 730 263 6, 712 20 4, 913	8, 133, 886 561, 574 14, 459, 676 43, 000 10, 406, 530 33, 604, 676	
Asia: Indonesia Malaya	925 42, 479	2, 147, 107 91, 551, 930	1, 330 39, 001	3, 103, 64 84, 194, 29	
TotalAfrica: Belgian Congo	43, 404 240	93, 699, 037 572, 039	40, 331	87, 297, 936	
Grand total	62, 590	136, 412, 171	56, 183	121, 310, 541	

¹ Bars, blocks, pigs, grain, or granulated.

in that order. Electrolytic tinplate exports were 270,350 long tons valued at \$60 million. Exports of hot-dipped tinplate totaled 187,100 long tons valued at \$44 million. Exports of short ternes were 1,870 long tons in 1957 (2,240 in 1956).

According to the American Iron and Steel Institute, producers in 1957 shipped for export 570,000 short tons (682,000 in 1956) of tinplate; 330,000 tons was electrolytic (316,400 in 1956) and 240,000, hot-dipped (365,600 in 1956).

Tinplate scrap exported was 3,630 long tons in 1957 (3,380 in 1956), mostly to Japan through the customs district of Hawaii. Tinplate-scrap imports, mainly from Canada, were 31,400 long tons, compared with 29,200 in 1956.

TABLE 17.—Foreign trade of the United States in tinplate, taggers tin, and terneplate in various forms, 1948–52 (average) and 1953–57, in long tons

[Bureau of the Census] implate, taggers tin, and terne-plate Tinplate, Tinplate Ternecircles, plate Tinplate scrap Year strips, clippings cobbles, etc. scrap Imports Exports (exports) Imports Exports 1948-52 (average)__ 3,781 374 ¹ 540, 716 459, 639 635, 969 7, 237 159 43, 747 37, 582 11, 445 11, 831 14, 798 127 29, 214 28, 721 29, 137 944 40 747, 682 144 ² 648, 517 586 21,858 10 625, 641 19,531 31, 431

Owing to changes in classifications, data for 1948-51 not strictly comparable with other years.
 Revised figure.

TABLE 18.—Foreign trade of the United States in miscellaneous tin, tin manufactures, and tin compounds, 1948-52 (average) and 1953-57

[Bureau of the Census]

		Miscellaneous tin and manufactures						
		Imports			Exports			
Year	Tinfoil, tin powder, flitters, metallics, tin and tinplate manufac-	scrap, re	simmings, sidues, and , n. s. p. f.	es, and or unfinished tin-bearing			Imports (pounds)	Exports (pounds)
	tures, n. s. p. f. (value)	Pounds	Value	Long tons	Value	(value)		
1948-52 (average)	\$267, 600 605, 609 3 784, 511 3 558, 964 3 604, 531 560, 676	6,010,737 15,924,059 13,165,707 13,702,355 11,364,288 11,382,988	\$4, 516, 630 11, 894, 770 9, 358, 184 310, 383, 046 3 9, 429, 600 9, 488, 004	34, 256 29, 841 23, 878 26, 490 30, 502 30, 166	\$12, 562, 546 12, 916, 664 11, 022, 214 11, 516, 846 13, 245, 030 14, 308, 916	1\$1, 857, 798 2, 418, 061 3, 340, 533 2, 440, 829 4 2, 323, 865 3, 911, 036	38, 258 5, 115 2, 703 11, 350 22, 576 21, 809	(2) 183, 328 342, 146 311, 005 375, 021 489, 227

Owing to changes in classifications, data for 1948-51 not strictly comparable to later years.

Not separately classified 1948; 1949: 41,004 pounds; 1950: 122,716 pounds; 1951: 136,179 pounds; 1952:

Not separately classified 1925, 1935 pounds.

3 Owing to changes in tabulating procedures by the Bureau of the Census, data known to be not comparable with years before 1954.

4 Revised figure.

WORLD REVIEW

INTERNATIONAL TIN AGREEMENT

Tin control was exercised under the International Tin Agreement for the first full year in 1957. Producing countries contributed to the buffer stock, tin prices (under which the buffer stock manager operates) were revised, buffer stocks of tin were accumulated, percentages and votes of participating countries were reallocated, and export controls were established. By March 15 all the first contributions to the buffer stock were made in money and totaled £9.6 million—the equivalent of 15,000 tons of tin at £640 a ton. The International Tin Council held five meetings. Thailand formally deposited its instrument of ratification of the International Tin Agreement on March 18, 1957.

At the first meeting of the year, in March, the floor price of tin was raised from £640 per long ton (80 cents a pound) to £730 (91¼ cents The ceiling price of £880 (110 cents a pound) was left a pound).

unchanged.

Under the agreement, if the price is at or above the ceiling, the buffer-stock manager must offer any tin that he has for sale. the price is at or below the floor price, he must buy tin, if he has TIN 1169

money. The range between the floor and ceiling continues divided into three sections: In the lower range—£730 (91½ cents a pound) to £780 (97½ cents a pound)—the manager may buy tin; in the top range—£830 (103¾ cents a pound) to £880 (110 cents a pound)—he may sell; and in the middle range—£780 (97½ cents a pound) to £830 (103¾ cents a pound)—he abstains from selling or buying unless the Council decides otherwise.

At the June meeting in Brussels, Canada gave the Council 6 months' notice of its impending disposition of about 3,000 long tons of non-commercial stocks of tin (when the price reached £830 per ton).

At a July meeting in London the instrument of ratification of the International Tin Agreement by the Government of Austria was deposited and welcomed. The United Kingdom stated that the 2,500 tons of stock referred to at the December 1956 meeting would be sold over a period of time at prices (about £748-£750 per ton) that would not depress the market. Consumers' votes were reallocated on the basis of net imports and consumption for the 3 years, 1954-56. No tin was held in the buffer stock on March 31. The meeting was adjourned until October 23; no decision was reached on reallocation of producers' percentages. At the meeting, continued in London on October 23, new percentages and votes of the participating countries were approved.

At an October meeting cash and forward tin held by the buffer stock on June 30, 1957, was announced as equivalent to 3.915 long

tons.

On September 30 the buffer stock was 4,315 tons, and the stock rose to 10,000 long tons of tin by November 21. The Tin Council issued a communique November 27 stating that the chairman had informed contributing producing governments that the second contribution of 5,000 tons to the buffer stock was due. Delegates of producing countries unanimously recommended that their governments make prompt payment of the total in cash at £730 per long ton, which they

later agreed to pay by December 6.

Control of tin exports from the participating countries was decided at a December meeting. During the first control period—December 15, 1957, to March 14, 1958, inclusive—the total permissible export quantity was fixed at 27,000 long tons of tin. This was about 28½ percent below the total production rate in the 12 months ended September 30, 1957. To prevent a sharp price rise from this action, the buffer-stock manager was permitted to operate on the market, should the price reach the middle range. Consideration was also given to the third contribution of 5,000 tons, which would be due

when the buffer stock held 15,000 tons of metal. This was called up December 30, 1957, and most of it had been paid in cash in advance of the due date. On December 31, 1957, the buffer stock stood at 15.300 tons.

The International Tin Council assumed publication of tin statistics in April when the Tin Study Group ceased these activities on March 31, 1957.

TABLE 19.—International Tin Agreement voting power of consuming countries

Country	At first meeting	At second, third, fourth, and fifth meetings	At sixth and seventh meetings	At eighth meeting
Australia Austria Belgium Canada	39 32 105	32 38 77	29 13 38 71	29 13 38 71
Canada. Denmark Ecuador France India	22 5 159 78	79 5 165 75	85 5 167 74	(1) 168 75
Israel. Italy Netherlands Spain Turkey	102 19	56 52 14 20	58 53 13 17	58 53 13 17
United Kingdom	1,000	1,000	1,000	1,000

¹ Withdrew in November 1957.

TABLE 20.—International Tin Agreement export control—percentages, votes, and permissible export amount—first control period, Dec. 15, 1957, to Mar. 31, 1958

Producing country	Percentage 1	Votes allocated 1	Permissible export amount ² (long tons)
Belgian Congo and Ruanda-Urundi Bolivia Indonesia Malaya Migeria Thailand Total	8. 95	92	2, 416
	20. 43	203	5, 516
	20. 43	203	5, 516
	37. 50	369	10, 125
	5. 34	57	1, 442
	7. 35	76	1, 985

WORLD MINE PRODUCTION

World mine production of tin decreased 800 long tons in 1957. Six countries operating under the International Tin Agreement as producers, representing 80 percent of the total, decreased their output 2 percent. Among these, the tin fields of Malaya supplied 31 percent of the world total; Bolivia and Indonesia each, 15 percent; Belgian Congo and Thailand each, 7 percent; and Nigeria, 5 percent.

Established at October 1957 meeting.
 Fixed at December 1957 and January 1958 meetings.

TABLE 21.—World mine production of tin (content of ore), by countries, 1948-52 (average), and 1953-57, in long tons ¹

[Compiled by Augusta W. Jann and Berenice B. Mitchell]

Country	1948-52 (average)	1953	1954	1955	1956	1957
North America: Canada		287 476	149 349	220 605	338 500	
Total	661	819	703	99	838	748
South America: Argentina	=====	154	95	89	85	
Bolivia (exports) Brazil Peru [‡]	33, 551 223 54	34, 825 209	28, 824 167	27, 921 146	26, 843 2 180 2	181 27, 794 2 180
Total	34, 089	35, 188	29, 086	28, 156	27, 110	28, 155
Europe: Czechoslovakia 4. France	122	200 493 563 1, 367 1, 241 9, 400 1, 103	200 525 669 1, 283 1, 020 9, 800 940	200 450 669 1,445 822 10,300 1,034	200 433 660 1, 169 550 11, 800 1, 044	200 ² 450 ² 670 1, 144 ² 489 13, 000 1, 028
Total 2	11,000	14, 400	14, 400	14, 900	15, 900	17,000
Asia: Burma China 2 Indonesia Japan Laos Malaya Thailand Total 2	1, 490 6, 800 31, 524 340 73 54, 253 8, 280	1, 400 9, 600 33, 822 737 264 56, 254 10, 126	950 10,000 35,861 715 110 60,690 9,776	1, 130 11, 500 33, 368 896 253 61, 244 11, 023	1, 050 13, 000 30, 053 926 254 62, 295 12, 481	2 860 14, 500 27, 723 941 525 59, 293 13, 531
Africa:	=====	112, 200	118, 100	119, 400	120, 100	117, 400
Belgian Congo 6 British Somaliland	13, 645	15, 293	15, 084	15, 028	14, 764	14, 264 5
French Cameroon French West Africa Morocco: Southern Zone Mozambique	80 50 6 3	86 99 9	82 73 5	85 47 14	85 56 5	74 54 8
Rhodesia and Nyasaland, Federation of:	8, 633	8, 228	7, 926	8, 158	9, 067	9, 534
Northern Rhodesia Southern Rhodesia South-West Africa Swaziland Tanganyika (exports) Uganda (exports) Union of South Africa	5 62 103 31 83 148 653	7 30 210 36 47 92 1,360	1 14 412 34 37 83 1, 315	208 357 27 41 68 1, 283	329 475 29 15 33 1, 442	350 636 24 2 13 40 1,464
Total	23, 502	25, 497	25, 066	25, 316	26, 300	26, 466
Oceania: Australia	1,759	1, 553	2, 075	2,017	2, 078	2 1, 751
World total (estimate)	173, 800	189, 700	189, 400	190, 700	192, 300	191, 500

¹ This table incorporates a number of revisions of data published in previous Tin chapters. Data do not add to totals shown, owing to rounding where estimated figures are included in the detail.

2 Estimated by authors of the chapter and in a few instances from the Statistical Bulletin of the International Tin Council, London, England.

3 Minor constituent of other base-metal ores.

4 Estimate, according to the 44th annual issue of Metal Statistics (Metallgesellschaft) through 1956.

5 Excluding mixed concentrates.

6 Including Ruanda-Urundi.

WORLD SMELTER PRODUCTION

World smelter production of tin in 1957 decreased 4 percent. Government smelting activities at Texas City, Tex., ceased January 31, 1957. Bolivian concentrate, formerly smelted united States, was shifted to the United Kingdom, where output reached the highest point since 1942. The smelters in Malaya (the most important sources of metallic tin in the world) decreased their output 3 percent but supplied 38 percent of the total in 1957 and 1956.

TABLE 22.—World smelter production of tin, by countries, 1948-52 (average) and 1953-57, in long tons 1

[Compiled by Augusta W. Jann and Berenice B. Mitchell]

Country	1948–52 (average)	1953	1954	1955	1956	1957
North America:						
Canada	238					
Mexico	267	209	224	357	218	2 210
United States	32,062	37, 562	27, 407	22, 329	17, 631	1, 564
Total	32, 567	37, 771	27, 631	22, 686	17, 849	1,774
South America:						
Argentina	227	130	60	99	96	2 104
Bolivia (exports)	240	174	196	107	421	216
Brazil	142	553	1,850	1, 184	2 1, 200	² 1, 400
Peru 3	54				1	3
Total	663	857	2, 106	1,390	1,718	1,723
Europe:						
Belgium	9,584	9, 039	11, 377	10, 432	9,716	9, 714
Germany:	045	400	600	605	2 600	² 600
East	245	480 694	600	280	2 660	2 864
West	411 21, 113	26, 950	28, 442	26, 566	28, 197	29, 230
Netherlands	21, 113	471	664	1,018	1, 127	982
Portugal	736	823	676	608	576	2 714
Spain	8,000	9,400	9,800	10,300	11, 800	13,000
United Kingdom 5	29,011	28, 860	27, 475	27, 241	26, 434	34, 174
Total 2	69, 400	76, 700	79,000	77, 100	79, 100	89, 300
Asia:						
China 2	6,400	9,000	9,400	11,500	13,000	14,500
Indonesia	222	644	1,351	1,572	² 1, 500	2 600
Japan	389	805	813	1,030	1, 105	1, 259
Laos	. 7			==		
Malaya	61,987	62, 410	71, 166	70,632	73, 263	71, 289
Thailand	4					
Total 2	69,000	72, 900	82,700	84, 700	88, 900	87,600
A fuico						
Africa: Belgian Congo	3, 227	2,715	2,459	3,034	$^{2,772}_{^{2}12}$	2,651
Morocco: Southern Zone	3		8	8	2 12	2 8
Rhodesia and Nyasaland, Federa-			_			ļ
tion of:						
Southern Rhodesia	. 76	27	19	22	12	253
Union of South Africa		828	752	779	756	823
Total	4,037	3, 570	3, 238	3, 843	3, 552	3, 735
Oceania: Australia	1,803	1, 443	2,063	2,004	1,850	1,806
		102 200	106 700	191, 700	193,000	185, 900
World total (estimate)	177, 500	193, 200	196, 700	191, 100	199,000	100, 900

This table incorporates a number of revisions of data published in previous Tin chapters. Data do not add to totals shown owing to rounding where estimated figures are included in the detail.
 Estimated by authors of the chapter and in a few instances from Statistical Bulletin of the International Tin Council, London, England.
 Tin content of dross.
 Estimate, according to the 44th annual issue of Metal Statistics (Metallgesellschaft) through 1956.
 Abaltage production from imported scrap and residues refined on tall

⁵ Includes production from imported scrap and residues refined on toll.

Next in rank were United Kingdom, Netherlands, China, U.S.S.R., and Belgium. These 6 countries furnished 92 percent of the world tin in 1957.

REVIEW BY COUNTRIES

South America

Bolivia.—Tin in concentrate and ore exported from Bolivia was 27,800 long tons valued at \$57,377,000, a 4-percent increase in quantity, but a 3-percent decline in value compared with 1956. Shipments were greatly accelerated in December. Of the 1957 exports, 90 percent was treated in England, and the remainder mostly in Germany, Netherlands, Brazil, and Argentina. Some was smelted locally.

The permissible quota established December 15 by the International Tin Council reduced exports 31 percent beginning January 1, 1958. The Bolivian Government allocated the export quota 81 percent to the "nationalized mines," 8 percent to the "medium miners," and 11 per-

cent to the "small miners."

The contribution due the buffer stock from Bolivia under the International Tin Agreement was the equivalent of 5,484 long tons of tin amounting to £3,693,630. Several firms, including Consolidated Tin Smelters, Ltd., Williams, Harvey & Co., Ltd., and Capper Pass & Son, Ltd., made joint loans to help the Bolivian Government participate in this phase of the tin agreement. The loan is interest-bearing and is secured on the stock of cash and tin under control of the buffer pool. The loan is being recovered on behalf of the lenders in regular installments by deduction from the proceeds of tin ore bought from Bolivia by one of the participating companies.

Krupps of Germany made melting tests on Bolivian tin ores. Tests with the Waelz volatilization procedure appeared encouraging, making a high-grade dust from low-grade concentrates. Placer Development, Ltd., approached the government for permission to erect a tin concen-

trator which would treat the dumps at Catavi. 10

TABLE 23.—Tin production in Bolivia by nationalized mines, 1953–57, in long tons of contained tin

Mine	1953 1	1954 1	1955 ²	1956 ²	1957
Carocoles	330	447 8, 588 844 218	351 7,381 890 191 51	340 8, 109 561 171 60	561 7, 620 1, 737 (3) 4 80
Colquiri	5, 236 28 14	4, 240 4, 308 65 4	4, 775 3, 637 47	4, 440 3, 431 63	4, 083 2, 874 4 70
Morococala Ocuri Oploca-Santa Ana San Jose	659 1, 741	657 1,787 379	185 29 707 1,644 405	194 526 1,502	(5) 1, 352
Santa Fe Tasna Unificada Viloco Others	608 1, 192 2, 683 214 89	2,300 94 13	405 810 1,937 75	441 693 1, 897 81 125	(6) (5) 1,774 92 4 101
Total	30, 108	24, 776	23, 115	22, 634	21, 293

¹ Ministerio de Minas y Petroleo, La Paz, International Tin Study Group, 1956 Statistical Yearbook,

p. 92.

3 U. S. Embassy, La Paz, Bolivia, from data furnished by Corporacion Minera de Bolivia.

3 Included with Unificada.

4 Estimated.

5 Included with Chorolque.

6 Included with Morococala.

¹⁶ Mining World, Annual Catalog: Vol. 20, No. 5, Apr. 15, 1958, p. 124.

TABLE 24.—Tin exports from Bolivia by groups, 1952-57, in long tons of contained tin

ı	Departmento	aħ	Estadistica.	Ministeno	de	Mines v	Petroleol
1	Depar meno	ue	Tronactionica,	TATTITIES COTTO	uc	TATILITIES 3	1 0010100]

Group	1952	1953	1954	1955	1956	1957
Corporation Minera de Bolivia Banco Minero: Medium mines Small mines Oruro smelter (tin metal)	24, 846 4, 111 2, 745 257	30, 108 1, 782 2, 761 174	24, 776 1, 686 2, 166 196	23, 417 1, 957 2, 440 107	22, 478 } 3, 914 449	22, 032 5, 435 329
Total	31, 959	34, 825	28, 824	27, 921	26, 841	27, 796

Europe

France.—The only operative tin mine in France near Nosay north of Nantes, producing 450 tons (tin content) in 1957 was shut down in December. Deposits in this area were worked as early as Phoenician times. The latest period of mining activity began in December 1951 by the Société Nantaise des Minerais de l'Ouet (S. N. M. O.) and the Société J. Carnaud. Equipment for the mine was financed with Marshall Plan credits.

Tin consumption in France was about 11,200 long tons, compared with 10,400 in 1956. About 5,000 tons (4,360 in 1956) was used for tinplate.

Portugal.—From 1950 through 1957 Portugal was the leading

producer of tin-in-concentrate in Europe.

The alluvial reserves are decreasing steadily; the vein deposits appear to have a long life ahead. Beralt Tin and Wolfram, Ltd., operated a test mill with a capacity of up to 100 tons of ore per day on the Argimela property 27 miles from Panasqueira. It also had the Vale De Ermeda mine under development, looking toward large-scale mining. The Portuguese-American Tin Co., which dredged for tin on the Macainhas River, became the Portuguese-American Tin Co. Division of the Yuba Consolidated Industries, Inc.

Additional electric furnaces were reported to have been added to the tin smelter at Mangualda-Gar, which had a rated daily capacity of about 1 top

about 1 ton.

United Kingdom.—Mine production of about 1,000 long tons of tin was derived principally from 690 long tons of black tin (65 percent) produced by Geevor Tin Mines, Ltd., and 730 tons, by South Crofty, Ltd. In addition, Hydraulic Tin, Ltd., began treating tailing for recovering cassiterite at Truro, Cornwall. Minerals Recovery, Ltd., stopped processing beach sands for tin recovery at its plant near

Gwithian, Cornwall.

The United Kingdom ranked second as a world smelter of tin ore, as a consumer of pig tin, and as a producer of tinplate. Smelter production increased about 30 percent, owing mainly to treatment of a larger tonnage of Bolivian concentrate. Tinplate production gained for the 5th consecutive year and totaled 988,900 long tons, 15 percent more than 1956 and the largest on record. Of the 1957 output, 60 percent was hot-dipped, and 40 percent, electrolytic. About 44 percent of the tinplate, or 431,100 long tons was exported in 1957, the highest quantity since 1937. The principal foreign markets were Australia and Argentina.

Year-end stocks of tin-in-concentrates affoat to United Kingdom were 2,689 tons (3,893 at beginning of year). Metal afloat increased from 140 tons at the beginning to 2,680 tons at the end of 1957.

United Kingdom tin imports came principally from Malaya, Russia, Belgium, and Netherlands. Import controls on tin were removed on August 1, 1957. Exports of tin metal went mostly to the United States.

The large increase in stocks was the result of buffer-stock procurement.

TABLE 25.—United Kingdom tin consumption, 1953-57, primary and secondary refined tin, excluding tin scrap, in long tons 1

Use	1953	1954	1955	1956	1957
Tinplate	8, 911	9, 896	9, 847	10, 100	11,093
Copper wireSteel wire	405	493 113	527 112	484 100	539 99
OtherSolder	796 1,879	856 2, 345	802 2,877	831 2, 765	726 1, 910
Alloys: White metal	2,901	3, 581	3,741	2, 935	2,779
Bronze and gunmetalOther	2,001	2, 076 488	2, 508 479	2, 721 449	2, 396 390
Wrought tin: 2 Foil and sheets	255	319	338	290	263
Collapsible tubes Pipes, wire, and capsules	306 71	384 54	422 50	341 48	352 56
Chemicals 3Other uses 4	766 120	959 148	1,033 137	1, 048 120	1,082 102
Total	18, 882	21,712	22, 873	22, 232	21, 787

British Bureau of Non-ferrous Metal Statistics, World Non-Ferrous Metal Statistics: Bull., December 1957, vol. 10, No. 12, Feb. 11, 1958, p. 55.
 Includes compo and "B" metal.

TABLE 26.—Tin production, imports, exports, and stocks, United Kingdom, 1953-57, in long tons

[British Bureau of Non-ferrous Metal Statistics, World Non-ferrous Metal Statistics]

	1953	1954	1955	1956	1957
Production:					
Ores and concentrates (tin content)	1, 103	940	1,034	1,044	1,028
PrimarySecondary	28, 860 490	27, 475 525	27, 241 468	26, 434 402	34, 174 325
Imports: Ores and concentrates (tin content) Refined tin	28, 907 1, 039	27, 494 2, 406	27, 084 1, 227	26, 571 2, 226	39, 272 9, 834
Exports of refined tin	13, 759 685	8, 118 457	8, 456 472	7, 264 1, 107	7, 330 273
Total exports and reexportsStocks end of period:	14, 444	8, 575	8, 928	8, 371	7,603
Ores and concentrates (tin content)	2, 450	2, 473	2, 181	2, 393	3, 872
Refined tin: At consumers_ Official warehouse Other (smelters)	1, 478 807 800	1, 514 1, 933 900	1, 377 622 1, 000	1, 516 759 697	1, 587 12, 202 591
Total	3, 085	4, 347	2, 999	2, 972	14, 380

³ Mainly tin oxide.
4 Mainly powder.

Asia

Indonesia.—The tin output—27,723 long tons—was 8 percent less than in 1956 and the lowest since 1947. The islands of Bangka, Billiton, and Singkep furnished 62, 33, and 5 percent, respectively, of the total.

Exports of tin-in-concentrate were about 26,920 long tons; 25,500 tons went to the Netherlands and 1,420, to the United States. The tonnage to the United States was shipped in December for smelting

at Texas City, Tex., by the Wah Chang Corp.

The mining concessions in Indonesia of Billiton Joint Mining Co. were due to expire in February 1958. Political disturbances in the latter part of 1957 in Indonesia had no reported effect on the tin-producing areas.

Malaya.—Mine production of tin in Malaya decreased 5 percent to 59,290 long tons in 1957. The rate of production was highest during the last quarter; miners apparently produced as much tin as they could in December before buffer-stock collections and reduced exports

became effective.

Of the 1957 total, 57 percent came from European mines (mostly by dredges) and 41 percent from Asian mines (mostly by gravel pumps), including 2 percent from dulang washing. European mines supplied 6 percent less than 1956, the lowest since 1946. Asian mines decreased their output 4 percent, but their portion was the largest since 1931.

The 1957 export duty on tin in Malaya was £6.3 million, compared with £7 million in 1956. The duty furnished nearly 71 percent of the

Federation's total customs revenue in 1957.

Dredges in operation (mainly in Perak and Selangor) numbered 78 at the beginning and 76 at the end of 1957; gravel-pump units dropped from 633 to 597. The total number of active tin mines in 1957 was 743, compared with 784 in 1956. On December 31, 1957, in tin mines, 36,585 laborers were employed, compared with 39,459 on December

31, 1956.

Malaya's permitted exports of tin under the International Tin Agreement were fixed at 10,125 long tons of tin metal (equivalent to 226,196 piculs of concentrates at 75.2 percent tin) for the first quota period, December 15, 1957, to March 31, 1958, and 8,625 tons of metal for the quarter ending June 30, 1958. On the basis of production for the 5 years 1953–57, permissible export quotas were apportioned 58.66 percent to European mines, 39.55 percent to Asian mines, and 1.79 percent to dulang washers. Production, deliveries, and export of tin concentrate after December 15 were permitted only on the authority of certificates of production issued by deputy controllers. The first buffer-stock-collection period of 1 year terminated October 14, and a total of £3,589,950 was collected at the rate of M\$24 a picul (£47 per ton) of concentrates. The second collection period began December 15; and another January 1, 1958, at a lesser rate of M\$12 a picul of concentrate. The amount collected will be repaid on the partial or complete liquidation of the buffer stock.

The principal world source of tin metal continued to be the large plants of the Eastern Smelting Co., Ltd., on the island of Penang and the Straits Trading Co., Ltd., at Pulau Brani, Singapore, and Butter-

TABLE 27.—Federation of Malaya mine

			Total		56,838	60,689 61,244	62, 295 59, 292
r tons	Total		Euro- Asian 2 Total		024	24,431 831 831	195
many a marky a mine production of tin (content of ore), by methods of mining, 1952-57, in long tons			Euro-	1	814	37, 258 36, 413	962
,-57, i	Dulang wash-	9	Asian 2			1,082	
, 1952	ings		Total		145	294 294	200
nining	Small workings		Euro- Asian ² Total		144	284	298
s of r	Sm				01	27-5	3-
ethod	md		Euro- Asian ² Total		2, 226	2,2,2 2,2,2 2,2,2 3,2,2 3,2,2 3,2,2 3,2,2 3,2,2 3,2 4,2 4,2 4,2 4,2 4,2 4,2 4,2 4,2 4,2 4	2, 521
py m	Jnderground	-	Asian ²		252	248	88
ore),					1,974	1,994	1,838
ent of	gt	-	Total		1,264	1,133	1,258
(cont	Opencast		Euro- Asian ² Total pean		· 409		
of tin					377 743		
tion	king		Total		1, 605	1,346 1,469	1,629
roand	Hydraulicking	L	Asian 2		288	 348	∞ ——
auru	Ħ		Euro-		1,514	1,303	1,621
laya 1	sďu	_	Total		22,587 22,779 690		
77 747	Gravel pumps	L	Asian 2		20, 226 20, 564 21, 197		
TOTAL CASE	5	L	Euro-		1, 2361 1, 493	ښټ.	-
	-		Total		3,8,8 1,68 6,68 1,68 1,68 1,68 1,68 1,68	30,705 30,705	60, 110
	Dredges		pean Asian ' Total		29, 687 28, 638 31, 669		
		F	pean	2	18,83,83 18,83,83 18,83,83 18,83,83 18,83,83 18,83,83 18,83,83 18,83,83 18,83,83 18,83,83 18,83,83 18,83,83 18,83,83 18,83,83 18,83,83 18,	30,705	(27)
	Year			4050	1952 29, 587 1953 28, 638 1954 31, 669	1956	

¹ Federation of Malaya, Department of Statistics, Monthly Statistical Bulletin: January 1958, p. 51.

² Includes Chinese only for 1952.

worth, Province Wellesley. In addition, a small quantity of metal was produced by a Chinese smelter for local consumption. Total smelter production in 1957 was 71,290 long tons (73,260 in 1956). Concentrates treated were derived mostly from Malaya and Thailand. Receipts from Thailand in 1957 reached a post-World War II high point.

Shipments to the United States declined nearly 5,000 tons; the flow was small in December. Exports to the United Kingdom more

than trebled largely owing to buying for the buffer stock.

The smelter at Butterworth was strike-bound from January 10 to March 12; and, at the Penang smelter, a labor strike began as a "go slow" November 13 but was unsettled at the close of 1957, although a few men were reported as returning to work. It had been intended to transfer the bulk of the company smelting activity to the Butterworth smelter in Penang by the end of 1956 and eventually to close the obsolete Pulau Brani smelter. However, because of the labor strike at Butterworth, Straits Trading Co. resumed full production at Pulau Brani throughout 1957.

TABLE 28.—Tin-metal exports from Malaya in 1956-57 in long tons 1

Destination	1956	1957	Destination	1956	1957
United States Japan United Kingdom. Republic of India Argentina Italy France Netherlands Canada	41, 083 6, 889 1, 984 3, 758 118 2, 835 3, 578 4, 265 1, 630	36, 117 6, 745 6, 531 4, 223 2, 813 2, 520 2, 202 1, 762 1, 720	Australia-New Zealand	887 938 607 626 322 3, 755 73, 275	1, 483 753 516 132 388 2, 694 70, 599

¹Federation of Malaya, Department of Statistics, Monthly Statistical Bulletin: January 1958, p. 52.

TABLE 29.—Imports of tin-in-concentrate into Malaya in 1956 and 1957, in long tons

Country of origin	1956	1957	Country of origin	1956	1957
BurmaLaos and Viet NamThailand	773 178 9, 974	806 349 12,862	Other	10, 967	126 14, 143

Stocks of tin metal increased from 2,190 tons at the beginning to 2,830 at the end of 1957. Because of the labor strike at the smelter, tin-in-concentrates (including mine stocks) increased from 4,795 at the beginning to 6,960 at the end—the highest since 1939.

The Federation of Malaya attained independence within the British

Commonwealth on August 31, 1957.

Thailand.—Thailand ranked sixth among the world tin-producing

countries in 1957 as in 1956.

Aokim Tin, Ltd., off the island of Buhket, began producing early in 1957 by means of 2 deep grabs operating from a deep-sea grab dredge and capable of digging 120,000 cubic yards monthly. Values are below 60 to 70 feet of sea water. During the first 6 months of 1957 about 85 long tons of tin concentrate was produced.

TIN 1179

The instrument of ratification by Thailand of the International Tin Agreement was deposited on March 18, 1957. A ministerial regulation specifying the responsibilities of tin mine operators and tin dealers regarding contributions to the tin buffer stock, in accordance with the agreement, was promulgated on March 1, 1957.

TABLE 30.—Exports of tin-in-concentrate from Thailand, 1956-57, in long tons

Country	1956	1957	Country	1956	1957
Belgium Brazīl Chile Japan Malaya	615 21 191 9,883	42 292 243 12,696	Portugal United States Total	1,714 12,424	73 1 13,347

Africa

Belgian Congo.—Mine production of tin in Belgian Congo, including Ruanda-Urundi, was 14,264 long tons—a 3-percent decrease from 1956. December output increased to the highest for any month since December 1953. Smelting in Belgian Congo was about 5 percent below 1956. Exports of tin-in-concentrate, mostly to Belgium, totaling 12,370 long tons, reached a peak in December; lesser tonnages went to Brazil and United Kingdom. As usual, most of the tin metal exported in 1957 went to Belgium. However, the final destination of Belgian Congo tin was mainly the United States, either directly or via Belgium. Total stocks of tin in concentrates were 883 long tons at the end of the year.

Symétain Co., the principal producer, furnished over 25 percent of the tin output of Belgian Congo and Ruanda-Urundi since 1932. Production for 1957 was 5,420 long tons of cassiterite compared with 5,325 long tons in 1956. The deposits are in Maniema and extend over 400,000 hectares. Production came from 138 working places grouped in 23 camps. The company produced 4,000 tons of tin from 5,500 tons of concentrate recovered from 5 million cubic yards of ground. About 180 Europeans and 9,000 natives were employed. Output per man-day increased from 0.87 cubic meters of ground ex-

cavated in 1932 to 1.66 in 1938 and 6.6 in 1957.

The Géomines Co. produced 3,745 tons of cassiterite concentrate (3,940 tons in 1956); 1,856 tons came from altered pegmatite and 1,889 tons, from unaltered pegmatite. A new crushing plant at washery No. 5 at Kitotolo reached its normal output in January 1957. A washery was installed and was expected to begin producing in January 1958. A new high-capacity crushing and washing plant was planned at the old Kahungwe open-cut mine at Manono, which has a substantial reserve of stony pegmatite-type ore. The reserve in the weathered and altered pegmatites is near exhaustion; the deposit has been mined for 40 years. In the unaltered pegmatite the reserve is estimated to exceed 100,000 tons of cassiterite.¹²

French Equatorial Africa.—The Société MINETAIN du Congo-Francais was formed on June 21, 1957, to exploit a tin deposit dis-

¹¹ International Tin Council, Notes on Tin: No. 5, July-August 1957, p. 63.
12 International Tin Council, Notes on Tin (Source: Agence economique et financière No. 29-30, 1957: Report of Géomines—summarized), No. 8, November-December 1957, p. 125.

covered in 1956 in the northern part of the district of Madingou-Kayes, east of the lagoon M'Banie.¹³ The deposit was reported to be "modest in size but excellent in tenor." It is not known whether the deposit is alluvial or vein. MINETAIN was expected to begin extracting the ore at the rate of 4 to 5 tons per month by the end of 1957.

Nigeria.—In 1957 Nigeria produced 13,151 long tons of tin ore (12,507 in 1956) averaging 72.5 percent tin. The entire tin-ore exports, totaling 13,577 tons (13,364 in 1956), went to the United Kingdom. About half the world supply of columbium was produced as a

byproduct or coproduct of tin mining in Nigeria.

In the year ended March 31, 1957, Nigeria's largest tin producer—the Amalgamated Tin Mines of Nigeria, Ltd.—reported that 14 million cubic yards was treated by the company compared with 12.7 million in the preceding year. The value of the ground treated dropped from 0.75 pound to 0.62 pound of cassiterite per yard.

The output (in long tons) was obtained by the following methods:

	Cassiterite	Columbite
Gravel pumps	2, 122	203
Dragline with washing plants	864	124
Dredge	188	33
Dumpers and jig plants	88	5
Elevators, hand paddocks, tribute, and contract	690	52
Mill tailings	216	138
	4, 168	55 5

Rhodesia and Nyasaland, Federation of.—Tin production in Southern Rhodesia in 1957 remained virtually unchanged from 1956. Capacity of the plant of Kamativi Tin Mines, Ltd., (N. V. Billiton Maatschappij) at Bulawayo was increased late in 1957 from 600 to 1,000 tons of ore a day.

Oceania

Australia.—Mine production of tin in Australia was 1,750 long tons in 1957 or 16 percent below 1956. Smelter production was virtually unchanged. Imports of tin increased to meet expanded needs. Australia, one of the largest tinplate importers in the world, was supplied mostly by United Kingdom and the United States in 1957. Australia's first tinplate mill at Port Kembla, New South Wales, began producing August 5, 1957. Annual output was scheduled at 72,000 tons of hot-dipped tinplate. Production during December reached 4,250 tons. An electrolytic tinplate plant that is planned will make Australia self-sufficient in tinplate production by 1963.

Tableland Tin Dredging, N. L., Mount Garnet, North Queensland, the leading tin producer, began dredging new ground in 1953; yields were erratic. Grade improved in late 1957, but mine production (544 tons of tin oxide) was 244 tons less than in 1956. Ravenshoe Tin Dredging, Ltd., began producing in the same district in September on financial credit guaranteed by the Queensland Government. An annual output of 600 tons was expected from this company. The Queensland Government operated its customs milling plant for tin ore at Irvinebank. The Northern Territory Department of Mines ore-processing plant at Maranboy was inactive. The Australian Government operated its tin dredge at Dorset, Tasmania.

[&]quot;Arundale, Joseph C., American Counsul-Elisabethville, State Department Dispatch 12: Dec. 28, 1957.

TIN 1181

A document on the tin resources of Australia, including a selected list of literature references was published.14

TECHNOLOGY

Four possible methods 15 of recovering tin and tungsten from the slags at the Longhorn tin smelter were developed on a laboratory scale by the Federal Bureau of Mines. From slags averaging 1 to 1½ percent tin and ½ to 1 percent tungstic oxide, a recovery of 90

percent of the tin and tungsten was indicated.

Results of research on the recovery of tin from metallurgical slimes were published.16 Mixtures of hydrogen chloride and reducing gases such as hydrogen, carbon monoxide, hydrogen sulfide, ethane, propane, and butane were used to treat the slimes at elevated tempera-Over 95 percent of the tin was volatilized as a chloride. Optimum conditions were found to consist of a mixture of 3 to 1 of hydrogen and hydrogen chloride gases at 475° C.

An analytical procedure was reported 17 for determining low concentrations of tin. The method was based on using flavonol, which produced a bright blue fluorescence with quadrivalent tin in 0.5 to 0.1 normal sulfuric acid solution. Although water solution was satisfactory for qualitative determinations, 33 percent dimethylformamide was preferred for quantitative analyses. Interfering ions included

those of fluoride, phosphate, and zirconium.

A special aluminum-tin-bearing alloy, containing 21.1 percent tin, 1.83 percent copper, 0.15 percent silicon, 0.13 percent iron, and the remainder aluminum, provided encouraging results in evaluation The large proportions of tin in the bearing tested was believed to have prevented scoring of the shaft by allowing absorption

of small abrasive particles.

When iron was exposed to molten tin three layers were formed iron, tin, and FeSn₂. 19 Examination of these layers showed that the FeSn₂ layer was the hardest phase. In addition, the FeSn₂ was the most noble phase in acidified NaCl or dilute citric acid and in the same mediums, the corrosion rates of FeSn₂ were too low to be easily measurable. At low current densities, hydrogen overvoltage values for FeSn₂ were intermediate between values for iron and tin. predicted corrosion behavior of tinplate was related to these properties.

When highly purified tin was dissolved in highly purified germanium, the tin, present as a solid solution, did not significantly alter the electrical characteristics of the germanium.²⁰ This verified the theory that impurities with the same number of valence electrons as germanium would be neutral; the impurities would act neither as donors nor as acceptors.

¹⁴ Commonwealth of Australia, Bureau of Mineral Resources, Geology and Geophysics, Geology and Mineral Economics Sections: Mineral Resources of Australia, Summary Report No. 38, Tin, Commonwealth Government Printer, Canberra, 1958, 59 pp.

15 Kenworthy, H., Starliper, A. G., and Freeman, L. L., Recovery of Tin and Tungsten From Tin-Smelter Slags: Bureau of Mines Rept. of Investigations 5327, 1957, 12 pp.

16 Kershner, K. K., and Cochran, A. A., Volatilization of Tin Chlorides From Slime: Bureau of Mines Rept. of Investigations 5298, 1957, 10 pp.

17 Coyle, Charles F., and White, Charles E., Fluorometric Determination of Tin With Flavonol: Anal. Chem., vol. 29, No. 10, October 1957, pp. 1486–1488.

18 Automobile Engineer (London), Aluminum-Tim Bearings: Vol. 47, No. 1, January 1957, p. 9.

19 Covert, Roger A., and Uhlig, Herbert H., Chemical and Electrochemical Properties of FeSn; Jour. Electrochem. Soc., vol. 104, No. 9, September 1957, pp. 537–541.

20 Iron Age, Dissolves Tin in Germanium: Vol. 180, No. 13, Sept. 26, 1957, pp. 140–141.

As part of a long-range program to study the atomic bonding in alloys, a liquid-tin solution calorimeter was designed and operated at the University of California.²¹ The calorimeter permitted the determination of the heats of formation of alloy phases from the heats of solution of the alloys and of the pure component metals in liquid tin. Results indicated that the heats of formation of alloy phases may be determined with an average uncertainty of about ± 50

calories per gram. A study 22 of local corrosion of tin by dilute chloride solutions showed that special physical or chemical preparation of the metal surface or alloying additions to the metal did not prevent local corrosion indefinitely. Factors affecting corrosion were surface conditions, severity of attack, crevices, pH of solution, and electrical contact with a more noble metal. Local corrosion was prevented by adding sodium bicarbonate, carbonate, benzoate, chromate, phosphate, or to the chloride solutions. Aluminum anodes provided cathodic protection.

Although acid sulfate and alkali stannate baths are widely used for electroplating tin industrially, pyrophosphate solutions offered advantages because of high solubility, nonpoisonous nature, stability, and low metal-ion concentration due to complex formation.23 Good quality tin deposits over a wide range of experimental conditions are electroplated from the complex Sn₂P₂O₄ bath. The brightness of the

deposits was increased by adding agents such as dextrin-gelatin. Reports 24 were published describing new methods for the synthesis

of tin-carbon bonds, typical organotin compounds, and addition

The effectiveness of a recently developed organotin compound, bis tri-n-butyl tin oxide, as a slime-control agent was demonstrated under actual operations in both newsprint and boxboard production.25 Advantages of the new compound included less toxic effects, noncorrosive characteristics, efficiency in a wide range of pH conditions, and

its ability to protect pulp and finished paper against mildew.

The manufacture of organotin compounds is growing as these chemicals strengthen their holds on current applications.26 Uses include treating textiles, stabilizing rubber paints, polyvinyl chloride plastics, drugs, and biocides (fungicides, insecticides, herbicides). Researchers seeking new uses and new compounds found markets for organotins in veterinary medicine (anthelmintics), slime control, and catalysts for silicone polymerizations.

²¹ Orr, Raymond L., Golberg, Alfred, and Hultgren, Ralph, Liquid Tin Solution Calorimeter for Measuring Heats of Formation of Alloys: Rev. Sci. Instr., vol. 28, No. 10, October 1957, pp. 767-773.

22 Britton, S. C., and Michael, D. G., The Corrosion of Tin and Tinned Copper in Dilute Neutral Solutions: Jour. Appl. Chem., vol. 7, pt. 7, July 1957, pp. 349-356.

23 Vaid, J., Rama Char, T. L., Tin Plating From the Pyrophosphate Bath: Jour. Electrochem. Soc., vol. 104, No. 5, May 1957, pp. 282-287.

24 Van Der Kerk, G. J. M., Noltes, J. G., and Luijten, J. G. A., Investigations on Organo-Tin Compounds. VII. The Addition of Organo-Tin Hydrides to Oleofinic Double Bonds: Jour. Appl. Chem., vol. 7, pt. 7, July 1957, pp. 356-356.

— Investigations on Organo-Tin Compounds. VIII. Preparation of Some Organo-Tin Hydrides Jour. Appl. Chem., vol. 7, pt. 7, July 1957, pp. 366-369.

— Investigations on Organo-Tin Compounds. IX. The Preparation of Some Dialkyltin Compound With Long-Chain Alkyl Groups: Jour. Appl. Chem., vol. 7, pt. 7, July 1957, pp. 369-374.

26 Connolly, William J., A New Slime-Control Agent: Paper Trade Jour., vol. 141, No. 31, Aug. 5, 1957, pp. 46-47.

pp. 46-47.

20 Chemical Week, Organo-tins: The Little Slice With Big Hopes: Vol. 80, No. 27, July 6, 1957, pp. 50-51.

TIN 1183

The Tin Research Institute celebrated its twenty-fifth anniversary demonstrating techniques that have been developed or used at the Institute.²⁷ The exhibits included the continuous casting of bronze rods, bearings made from an alloy of aluminum and tin bonded to thin steel strip shell, improved methods of applying tin coatings to resist corrosion of steel, electroplating tin-alloy coatings, and organotin compounds for use as fungicides, wood preservatives, and slime-control agents.

A review ²⁸ of the industrial and engineering developments in tin since 1947 described research on solders, electrodeposition, compounds, bearings, tinplate, bronze, special alloys, physical properties of tincontaining materials, and miscellaneous applications. A detailed

bibliography listed publications of the research projects.

A new chemical treatment called the Hinac Process,²⁹ a substitute for tin in its leading use as tinplate consisted of an inorganic coating chiefly with chromium compounds, which equaled tinplate in economy and performance. It worked well on both ferrous and nonferrous metals—anywhere a surface with good corrosion resistance and paint-bonding qualities was required.

²º Chemistry and Industry, Twenty-Five Years of Tin Research: No. 31, Aug. 3, 1957, p. 1074.
2º MacIntosh, Robert M., Materials of Construction: Tin and Its Alloys: Ind. Eng. Chem., vol. 49, No. 9, part II, September 1957, pp. 1653–1657.
2º Iron Age, New Surface Treatment Substitutes for Tinplate: Vol. 179, No. 23, June 6, 1957, pp. 106–108.

Titanium

By John W. Stamper 1

THE RAPID growth since 1948 of the titanium-sponge-metal industry in the United States halted abruptly in mid-1957, owing to sharp cutbacks in military requirements for the metal. metal industry, as a whole, was operating at less than one-fifth of its estimated 28,000-ton-per-year capacity by the end of the year. In spite of this, sponge production for the entire year reached an alltime peak of 17,000 short tons. Ingot production decreased slightly from the preceding year, and producers increased efforts to promote civilian applications of the metal.

Other segments of the domestic titanium industry also declined. Rutile production was slightly lower than in 1956, and production and shipments of titanium pigments decreased 7 and 10 percent,

respectively.

Ilmenite production increased 11 percent despite the decline in

titanium pigments, the principal market for ilmenite.

The United States continued to be the world's leading producer and consumer of ilmenite and was also the principal consumer of rutile. Australia, Canada, and India still produced most of the titanium concentrates imported into the United States.

LEGISLATION AND GOVERNMENT PROGRAMS

In September 1957 the Business and Defense Services Administration (BDSA), United States Department of Commerce, issued Amendment 2 to BDSA Order M-107. The amendment reduced the required acceptance of defense-rated orders by producers from 90 percent of scheduled production to 75 percent. Moreover, in September titanium sponge was designated by the Office of Defense Mobilization as a Group II material in the Current List of Strategic and Critical Materials for Stockpiling. Materials in this group are acquired principally through transfer of Government-owned surpluses, pursuant to section 6 (a) of Public Law 520, 79th Congress, and were not under procurement.

DOMESTIC PRODUCTION

Concentrates.—Ilmenite production increased 11 percent over 1956 to a new peak of 757,000 short tons, but shipments increased only 5 percent. Production came from the following companies: American Cyanamid Co., Piney River, Va.; E. I. duPont de Nemours Co., Inc., Starke and Lawtey, Fla.; Marine Minerals, Inc., Bath, S. C.; National Lead Co., Tahawus, N. Y.; Rutile Mining Co. of Florida,

¹ Commodity specialist.

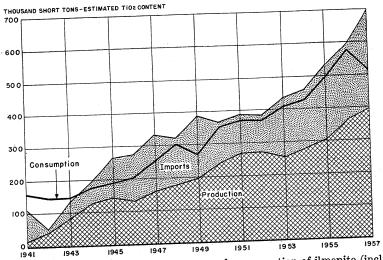


FIGURE 1.—Domestic production, imports, and consumption of ilmenite (includes titanium slag and a mixed product), 1941-57, in short tons.

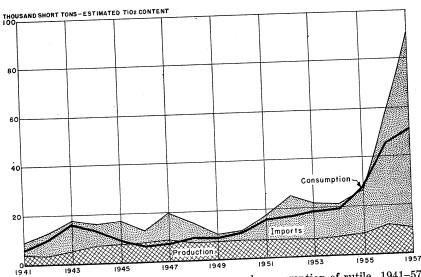


FIGURE 2.—Domestic production, imports, and consumption of rutile, 1941-57, in short tons.

Jacksonville, Fla.; Metal & Thermit Corp., Beaver Dam, Va.; and The Florida Minerals Co., Wabasso, Fla. Included in shipments was 28,400 short tons of ilmenite from stockpiles at Boise, Idaho.

Rutile production decreased 11 percent below the output of 1956, and shipments decreased 12 percent. A total production of 10,700 short tons of rutile was reported from the following companies: The Florida Minerals Co., Wabasso, Fla.; Marine Minerals, Inc., Bath,

TITANIUM 1187

S. C.; Metal & Thermit Corp, Beaver Dam, Va; and Rutile Mining Co. of Florida, Jacksonville, Fla.

TABLE 1.—Production and mine shipments of titanium concentrates from domestic ores in the United States, 1948-52 (average) and 1953-57, in short

V	Produc- tion	Shipments			
Year	(gross weight)	Gross weight	TiO ₂ content	Value	
ILMENITE 1	464, 760 513, 696 547, 711 583, 044 684, 956 757, 180 7, 247 6, 825 7, 411 8, 513 11, 997 10, 702	452, 289 512, 176 531, 895 573, 192 735, 388 782, 975 7, 991 6, 476 7, 305 9, 182 12, 065 10, 644	225, 321 258, 247 270, 651 297, 835 386, 498 407, 167 7, 443 6, 632 8, 617 11, 348 10, 025	\$6, 691, 280 7, 222, 641 10, 267, 647 14, 198, 947 17, 362, 176 524, 501 702, 791 122, 000 1, 748, 883 1, 543, 540	

¹ Includes a mixed product containing rutile, leucoxene, and altered ilmenite for 1949–56, inclusive.

Metal & Thermit Corp. began mining and processing rutile and ilmenite at its plant at Beaver Dam, Va., in November. Production at the plant, scheduled to be 5,000 tons of rutile annually was described.2

In April, Union Carbide & Carbon Corp., parent company of the Electro Metallurgical Co., a titanium-sponge producer, announced plans to mine a deposit of titanium minerals on Amelia Island off the northeast coast of Florida. The company owns about 3,000 acres on the island and planned to begin mining by bucket dredge in the spring of 1958.3

Discovery of ilmenite-containing sand in the coastal plain area of central New Jersey was reported by geologists of the New Jersey Geological Survey. Several firms engaged in titanium-pigment manufacturing have reportedly conducted investigations in the area.5

Metal.—The United States continued to be the leading Free World producer of titanium sponge, with a new peak production of 17,200 short tons in 1957. Sponge consumption was 25 percent below the preceding year. Much of the excess sponge metal was delivered to General Services Administration (GSA) under the terms of Government contracts. In 1957 deliveries to GSA totaled 10,577 short tons for a cumulative total of 19,821 short tons.

Commercial producers of titanium sponge in 1957 were as follows: Cramet, Inc., Chattanooga, Tenn.; Dow Chemical Co., Midland, Mich.; Electro Metallurgical Co., Ashtabula, Ohio; E. I. duPont de

² Engineering and Mining Journal, Virginia Heavy Minerals Plant Opens: Vol. 159, No. 1, January 1958,

Engineering and Mining Journal, Virginia fleavy Mining Frank Opens: Vol. 159, No. 1, January 1908, pp. 94-95.
 Mining Congress Journal, Union Carbide to Mine Titanium: Vol. 43, No. 6, June 1957, p. 119.
 Markewicz, F. J., Parrillo, D. G., and Johnson, M. E., The Titanium Sands of Southern New Jersey: Prepr. 5818A5, Soc. Min. Eng., AIME, 13 pp. (pres. at the annual meeting AIME, New York, N. Y., Feb. 16-20, 1958).
 Engineering and Mining Journal, Ilmenite in New Jersey: Vol. 158, No. 5, May 1957, p. 158.

Nemours & Co., Inc., Newport, Del.; and Titanium Metals Corp. of America, Henderson, Nev.

The Electro Metallurgical Co., a division of Union Carbide & Carbon Corp., was the only producer using the sodium process in reducing titanium tetrachloride to titanium metal. All other domestic producers used a magnesium-reduction process.

The following data represent activity in various branches of the

titanium-metal industry in 1956 and 1957 in short tons:

	1956	1957
Titanium tetrachloride consumption 1	66, 500	79,000
Sponge production	14,595	17,249
Sponge consumption	10, 936	8, 221
Scrap consumption	2,033	1,743
Ingot production 2	11, 688	10,009
Ingot consumption	10, 860	10, 428
Mill product production	5, 166	5, 658
Mill product production	•	•

¹ Estimated.2 Includes alloying constituents.

TABLE 2.—Salient statistics of the titanium-metal industry, 1948-57, in short tons

Year	Sponge- metal produc- tion	Sponge in revolving- fund stock- pile De- cember 31	Mill- shape produc- tion	Year	Sponge- metal produc- tion	Sponge in revolving- fund stock- pile De- cember 31	Mill- shape produc- tion
1948	1 10 1 25 1 75 495 1,075	303	(2) (2) (2) (2) 1 75 1 250	1953	2, 241 5, 370 7, 398 14, 595 17, 249	30 2, 894 6, 647 9, 289 19, 821	\$ 1, 114 \$ 1, 299 1, 898 5, 166 5, 653

¹ Estimate. 2 Data not available.

Plant expansions proposed and in progress in mid-1957 were either suspended or activity greatly reduced as military orders for titanium metal decreased. Titanium producers laid off workers toward the end of 1957, and in December the industry as a whole was operating at less than one-fifth its estimated yearly capacity of 28,000 tons.

Late in 1957 Mallory-Sharon Titanium Corp. combined with U. S. Industrial Chemical Co. (U. S. I.) a division of National Distillers & Chemical Corp., to form Mallory-Sharon Metals Corp. Mallory-Sharon Titanium Corp. has for many years melted titanium sponge and produced mill products at Niles, Ohio. During 1957 U. S. I. was constructing a 5,000-ton-per-year titanium-sponge plant in the same building with its zirconium plant at Ashtabula, Ohio. On November 12, 1957, Crucible Steel Co. of America announced

that, subject to Securities and Exchange Commission approval, it had acquired full ownership of Rem-Cru Titanium, Inc. The transfer was reportedly accomplished through exchange of 150,000 shares of Crucible common stock for the entire half interest owned by Remington Arms Co.6

⁸ Shipments.

American MetallMarket, Crucible Steel Now Full Owner of Rem-Cru Firm: Vol. 64, No. 218, Nov. 13, 1957, pp. 1, 3.

Titanium Metals Corp. of America (T. M. C. A.) began producing at its Toronto, Ohio, rolling plant in November. According to T. M. C. A., this is the first fully integrated plant in the world devoted to rolling and forging titanium. Billets and large rounds have been shipped, and rolling facilities for sheet were expected to be ready early in 1958.

The six titanium melters in 1957 were: Harvey Machine Co., Torrance, Calif.; Mallory-Sharon Metals Corp., Niles, Ohio; Oregon Metallurgical Corp., Albany, Oreg.; Rem-Cru Titanium, Inc., Midland, Pa.; Republic Steel Corp., Massillon and Canton, Ohio; and Titanium Metals Corp. of America, Henderson, Nev.

Oregon Metallurgical Corp. produced ingots and castings, and the other companies produced and processed ingots into mill products

such as sheet, strip, plate, forging billets, and bar.

Pigments.—In 1957 production and shipment of titanium dioxide pigments decreased 7 and 10 percent, respectively, below 1956. This was the first decrease in titanium pigments reported since 1952, when production and shipments were 4 and 11 percent, respectively, below 1951.

Titanium pigments were produced in the United States by the following companies: American Cyanamid Co., Piney River, Va., and Savannah, Ga.; E. I. duPont de Nemours & Co., Inc., Edge Moor, Del., and Baltimore, Md.; Glidden Co., Baltimore and Hawkins Point, Md.; National Lead Co., St. Louis, Mo., and Sayreville, N. J.;

and New Jersey Zinc Co., Gloucester City, N. J. Early in 1957 E. I. duPont de Nemours & Co., Inc., disclosed that it would build a 125-ton-per-day titanium dioxide pigment plant on a 1,500 acre site near New Johnsonville, Tenn. Pigments will be produced by the chloride route whereby titanium tetrachloride is converted to titanium dioxide rather than by the sulfate route used by all the other domestic producers. The plant is expected to be in operation by early 1959.

Welding-Rod Coatings.—A total of 266,300 short tons of welding rods containing titaniferous material in their coatings was produced This was a 6-percent decrease below the tonnage of weldin 1957.

ing rods similarly coated in the preceding year.

Of the total welding rods produced, 42 percent contained rutile only; 28 percent, ilmenite only; 13 percent, a mixture of rutile and manufactured titanium dioxide only; 12 percent, manufactured titanium dioxide only; and 5 percent, slag only.

CONSUMPTION AND USES

Concentrates.—During 1957 the consumption of ilmenite and titanium slag for making titanium pigment decreased 3 and 28 percent, respectively. This was reflected by a drop in titanium-pigment production of 7 percent. Consumption of rutile increased about 14 percent over 1956, owing partly to the slight increase in titanium-metal production. Of the 53,000 short tons of rutile used in the United States in 1957, 66 percent was used in making metal, and 27 percent was used in welding-rod coatings; the remainder went into alloys, carbides, ceramics, fiberglass, and other items.

TABLE 3.—Consumption of titanium concentrates in the United States, 1948-52 (average), 1953-55 total, and 1956-57, by products, in short tons

							
	Ilme	nite 1	Titanit	ım slag	Rutile		
Product	Gross weight	Estimated TiO ₂ content	Gross weight	Estimated TiO ₂ content	Gross weight	Estimated TiO2 content	
1948-52 (average) ²	630, 658 687, 075 679, 903 741, 450	328, 972 354, 470 353, 146 401, 146	³ 24, 236 73, 528 100, 825 134, 953	³ 16, 746 52, 511 71, 102 94, 522	13, 432 20, 170 20, 663 28, 762	12. 881 19, 033 19, 431 27, 192	
1956						-	
Pigments (mfg, TiO ₂) ⁴ Titanium metal. Welding-rod coatings. Alloys and carbide. Ceramics. Fiber/lass	9, 294	458, 814 (5) 589 4, 579 17	160, 228 (f) 1, 397 (f)	113, 538 (6) 1, 016 (6)	29, 809 13, 110 1, 195 2 381 1, 100	28, 407 12, 303 1, 138 2 357 1, 065	
Fiberglass Miscellaneous 7	19	10	809	594	2 1, 258	² 1, 183	
Total	865, 211	464, 009	162, 434	115, 148	² 46, 853	² 44, 453	
1957					1	-	
Pigments (mfg. TiO ₂) ⁴	1, 051 7, 280 22	429, 019 (5) 614 4, 423 12	114, 168 (6) 1, 460 (6)	80, 866 (6) 1, 066 (6)	36, 048 14, 490 604 353 1, 122	34, 488 13, 654 578 330 1, 091	
		9	837	613	776	729	
Total	840, 719	434, 077	116, 465	82, 545	53, 393	50, 870	

¹ Includes a mixed product containing rutile, leucoxene, and altered ilmenite used to make pigments and

TABLE 4.—Distribution of titanium-pigment shipments, by industries, 1948-52 (average) and 1953-57, percent of total

Industry	1948-52 (average)	1953	1954	1955	1956	1957
Distribution by gross weight: Paints, varnishes, and lacquers. Paper. Floor coverings (linoleum and felt base)	6. 2 4. 5 2. 8	67. 1 9. 7 4. 8 3. 4	64.3 10.1 4.5 3.1	65.3 10.1 4.6 3.4	65.3 10.3 4.2 3.4	64. 9 10. 9 4. 1 3. 6
Coated fabrics and textiles (oilcloth, shade cloth, artificial leather, etc.) Printing ink Other.	1.8 1.0	2.0 1.2 11.8	2. 4 1. 2 14. 4	2.7 1.3 12.6	2.8 1.3 12.7	3. 2 1. 4 11. 9
Total	100.0	100.0	100.0	100.0	100.0	100.0
Distribution by titanium dioxide content: Paints, varnishes, and lacquers Paper	9.1	58.8 14.1 5.4 4.5	55. 4 14. 1 5. 2 4. 0	58. 4 13. 5 5. 2 4. 4	58.3 13.6 4.9 4.4	57.7 14.2 5.0 4.6
Coated fabrics and textiles (oilcloth, shade cloth, artificial leather, etc.) Printing ink Other	1.5	2. 6 1. 6 13. 0	3. 2 1. 6 16. 5	3. 4 1. 7 13. 4	3. 6 1. 8 13. 4	4. 1 1. 9 12. 5
Total	100.0	100.0	100.0	100.0	100.0	100.0

^{**}Revised figures.

2 Revised figures.

3 1952 only.

4 "Pigments" include all manufactured titanium dioxide.

5 Included with pigments to prevent disclosing individual company confidential data.

5 Included in "Miscellaneous" to prevent disclosing individual company confidential data.

7 Includes consumption for chemicals and experimental purposes.

TITANIUM 1191

Metal.—The consumption of titanium mill products, using shipments as a gage, was 5,700 short tons in 1957 compared with 5,100 short tons reported in 1956. Most of the fabricated titanium metal went into defense applications, particularly, aircraft and missiles. Titanium compressor rotors for jet engines, such as the J-57, continued to be used ⁷ and other titanium aircraft parts, such as fasteners ⁸ and slat tracks, ⁹ gained wider acceptance by aircraft manufacturers.

Civilian applications of titanium metal increased considerably in 1957 owing to increasing familiarity with the properties of the metal and development of titanium alloys with improved workability and heat-treating properties. Cast-titanium shapes, such as gate valves, were tested for use in the chemical industry. One company received an order for nearly 7 miles of titanium tubing for use in heat exchangers

in process equipment for treating cobalt-nickel concentrate.10

Two experimental high-speed centrifuges, built in 1957, incorporated an alloy of titanium containing 6 percent aluminum and 4 percent vanadium. The machines can be operated 28 percent faster than stainless-steel machines for the same working stress in the rotating bowl, owing to titanium's low density, which is only 57 percent of the density of steel.¹¹

Titanium mill shapes were used in work holders for anodized alumi-

num workracks in the chromic acid anodizing process. 12

Titanium was used by one firm facing the problem of handling a highly corrosive acid solution of ferric chloride. Installation of a titanium pump reportedly paid for itself in the first 90 minutes of operation.¹³

STOCKS

Stocks of ilmenite, rutile, and titanium slag increased markedly in 1957. The largest increase was noted in rutile stocks, which increased 120 percent over the 1956 total. Ilmenite stocks increased 23 percent, and stocks of titanium slag increased 61 percent. At the 1957 rate of consumption the stocks of ilmenite, rutile, and slag (based on titanium dioxide content), represented about 1 year's supply.

Year-end stocks of titanium sponge held by producers and melters totaled 2,800 short tons, a slight decrease from the 3,000 tons held at the beginning of the year. An additional 19,821 tons was held in the revolving-fund stockpile. Industry stocks were enough for a 4-month

supply at 1957 consumption rates.

Stocks of titanium scrap held by melters increased from 1,700 short tons at the beginning of the year to 3,600 tons.

Sept. 4, 1957, pp. 1, 7.

11 Chemical Engineering, You Can Capitalize on Ti's Strength: Vol. 64, No. 4, April 1957, p. 146.

11 Light Metal Age, Titanium Work Holders Speed Anodizing Process: Vol. 15, Nos. 1 and 2, February 1957. p. 37.

¹ SAE Journal, Alloy Titanium in J-57 Turbojet Engine: Vol. 65, No. 5, April 1957, pp. 17-19.

⁸ American Metal Market, Sees Major Rise for Titanium Bolt Sales in '57: Vol. 64, No. 50, Mar. 14, 1957, pp. 7.

p. 7.

Materials and Methods, Titanium Used in Jet Slat Truck to Reduce Weight Inertia: Vol. 45, No. 5, May 1977, pp. 172-173.

Mamerican Metal Market, T. M. C. Books Large Order for Titanium Pressure Tubing: Vol. 64, No. 170,

^{1957,} p. 37.

13 American Metal Market, Titanium Aids Processing of Printed Circuits: Vol. 64, No. 74, Apr. 17, 1958, p. 7.

TABLE 5.—Stocks of titanium concentrates in the United States at the end of the year, 1956-57, in short tons

	Ilme	nite	Titaniu	ım slag	Rutile		
Stocks	Gross weight	Estimated TiO ₂ content	Gross weight	Estimated TiO ₂ content	Gross weight	Estimated TiO; content	
1958 Mine Distributors Consumers	64, 553 134 534, 940	29, 736 79 1 281, 395	112,047	79, 367	25 1, 673 25, 048	24 1, 598 23, 878	
Total stocks	599, 627	1 311, 210	112, 047	79, 367	26, 746	25, 497	
1957 Mine Distributors Consumers	38, 758 195 695, 794	18, 062 116 361, 475	180, 314	127, 620	83 3, 680 55, 205	7; 3, 51; 52, 59	
Total stocks	734, 747	379, 653	180, 314	127, 620	58, 968	56, 18	

¹ Revised figure.

PRICES

Concentrates.—Oversupply of rutile in 1957 was reflected in price reductions during the year. Nominal prices for rutile (94 percent TiO₂, f. o. b. Atlantic seaboard), as quoted by E&MJ Metal and Mineral Markets, decreased from \$190 to \$230 per short ton in January 1957 to \$120 to \$125 per short ton at the end of the year. Prices of ilmenite remained unchanged throughout the year at \$26.25 to \$30 per gross ton (59.5 percent TiO₂, f. o. b. Atlantic seaboard), according to E&MJ Metal and Mineral Markets.

Manufactured Titanium Dioxide.—On February 18, 1957, the prices of rutile and anatase grades of manufactured titanium dioxide were advanced \$0.01 per pound. The following prices were quoted in the Oil, Paint and Drug Reporter throughout the remainder of the year:

	Per pouna
Anatase, chalk-resistant, regular and ceramic, carlots, delivered	$$0.25\frac{1}{2}$
Less than carlots, delivered	.26½
Rutile, nonchalking, bags, carlots, delivered East	$.27\frac{1}{2}$
Rutile, nonchalking, bags, carlots, delivered East	$.28\frac{1}{2}$
Less than carlots, delivered East	
Titanium pigment, calcium-rutile base, bags, carlots, delivered	.00/4
Less than carlots, delivered	.09¾

Metal.—In 1957 only one price change occurred for titanium-sponge metal and mill products. On June 3, 1957, sponge-metal producers lowered the price of Grade A-1 sponge 18 percent and Grade A-2 sponge 20 percent. Price of titanium mill products was reduced about 10 percent at the same time. Prices per pound quoted for titanium sponge and mill products in 1957 were as follows:

	Jan. 1, 1957, through June 12, 1957	June 13, 1957, through Dec. 31, 1957
Titanium sponge, Grade A-1	\$2.75 1	\$2.25.
Titanium sponge, Grade A-2	\$2.50 2	\$2.00.
Sheet	\$11.60 to	\$10.10 to \$11.10.
DHOOLISIA	\$12.10.3	
Strip	\$11.00 to	\$9.50 to \$10.00.
Durp	\$11.50.3	
Plate	\$9.25 to \$9.75 3_	\$8.00 to \$8.75.
Wire	\$8.50 to \$9.00 3_	\$7.50 to \$8.00.
Forging billets	\$6.85 to \$7.10 3_	\$6.00 to \$6.25.
Hot-rolled bars	\$7.10 to \$7.35 3_	\$6.15 to \$6.40.
TION-TOHOW MATERIAL PROPERTY.	• • • • • • • • • • • • • • • • • • • •	

Maximum iron content of 0.20 percent, with a Brinell hardness of less than 125.
 Maximum iron content of 0.45 percent, with a Brinell hardness of less than 170.
 F. o. b. mill, commercially pure grades, in lots of 10,000 pounds and over.

Ferrotitanium.—In 1957 the price of low-carbon ferrotitanium quoted in E&MJ Metal and Mineral Markets remained unchanged. The price of high-carbon and medium-carbon ferrotitanium advanced on April 4, 1957. Nominal prices quoted in E&MJ Metal and Mineral Markets in 1957 were as follows:

Low-carbon: 1	Jan. 1, 1957, through Mar. 31, 1957	Apr. 1, 1957, through Dec. 31, 1957
Titanium, 40 percent; carbon, 0.10 percent maximum_	\$1. 35	Unchanged.
Titanium, 25 percent; carbon, 0.10 percent maximum.	1. 50	Unchanged.
1 tanium, 20 percent, carbon, 0.10 percent maximum.	245	\$290 to \$295.
Medium-carbon: 2 Titanium, 17 to 21 percent; carbon 3	240	Ψ230 00 Ψ230.
to 5 percent.	000	#040 + #04E
High-carbon: 2 Titanium, 15 to 19 percent; carbon, 6 to	220	\$240 to \$245.
8 percent.		

Price per pound in 1-ton lots or more, lump (1/2 inch, plus), packed; f. o. b. destination Northeastern United States

Price per net ton, carload lots, lump, packed; f. o. b. destination Northeastern United States.

FOREIGN TRADE 14

Imports.—The 460,000 short tons of ilmenite concentrate imported for consumption in 1957 was a new peak and a 28-percent increase over 1956. Over 99 percent of imports originated in Canada and Material from Canada was mostly titanium slag containing an average of 70 percent TiO₂. Ilmenite from India was a 60-percent TiO₂ concentrate from sand deposits. Imports of 2,300 short tons

of ilmenite from Malaya were less than 10 percent of those in 1956. Imports of rutile concentrate increased 74 percent over 1956 to a new peak of 84,800 short tons, almost entirely from Australia.

Imports for consumption of titanium metal during the year were 3,532 short tons, valued at \$17 million. Of this total, Japan supplied 3,418 short tons (this includes the 777 tons imported in 1956 under the barter contract with Japan and listed as general imports in 1956). The United Kingdom supplied 67 tons and Canada 47 tons.

is Figures on imports and exports compiled by Mae B. Price, and Elsie D. Jackson, Division of Foreign Activities, Bureau of Mines, from records of the U. S. Department of Commerce, Bureau of the Census.

TABLE 6.—Titanium concentrates 1 imported for consumption in the United States, 1948-52 (average) and 1953-57, by countries, in short tons

[Bureau of the Census]

Country of origin	1948-52 (average)	1953	1954	1955	1956	1957
II.MENITE						1,1
North America: Canada South America: Brazil	² 9, 729 1, 742	³ 139, 585	³ 107, 521	³ 166, 307	3 196, 660	\$ 217, 762
Europe: France Norway United Kingdom	(4) 20, 312					33
Total	20, 312				40	33
Asia: Ceylon India Malaya	(4) 198, 518 678	147, 005	167, 484	187, 044	133, 520 28, 864	240, 279 2, 279
TotalAfrica: EgyptOceania: Australia	199, 196 144 42	147, 005 54	167, 484	187, 044	162, 384	242, 558
Grand total Value	231, 165 \$1,847,596	286, 644 \$5, 463, 526	275, 005 5 \$4, 993, 402	353, 351 \$7, 031, 060	359, 281 5 \$9, 197, 835	460, 353 \$10, 316, 853
RUTILE						
North America: Mexico					50	
Europe: Norway Sweden	(4)				11	
TotalAfrica: French West	(4)				11	
Oceania: Australia	9, 140	16, 098	14, 965	19, 526	48, 845	94 84, 743
Total as reportedAustralia: In "zirconium ore" 6	9, 140 519	16, 098 84	14, 965 95	19, 526	48, 906	84, 837
Grand total Value of "as reported"	9, 659 \$627, 676	16, 182 \$1, 791, 494	15, 060 \$1, 323, 183	19, 526 \$1, 984, 431	48, 906 \$7, 147, 827	84, 837 \$11, 843, 295

1 Classified as "ore" by Bureau of the Census.

Includes titanium slag.
Chiefly all titanium slag averaging about 70 percent TiO₃.

Exports.—In 1957 the United States exported 53,000 short tons of titanium dioxide and pigments, a decline of 18 percent below 1956. Canada, as in the past, the destination for most of the titaniumpigment exports, received 22,800 short tons in 1957. Other countries that received 1,000 tons or more were as follows: Argentina, 1,300; Australia, 1,600; Belgium and Luxembourg, 1,300; Colombia, 1,400; Cuba, 1,600; France, 4,100; Italy, 1,800; Mexico, 3,300; Netherlands, 3,900; Philippines, 2,100; and Venezuela, 1,600.

Of the 2,000 short tons of titanium concentrates shipped in 1957, 1,300 tons went to Canada. The remainder was exported as follows: Argentina, 11 tons; Chile, 3 tons; Hong Kong, 11 tons; Mexico, 25 tons; Philippines, 42 tons; United Kingdom, 56 tons; and West

Germany, 112 tons.

Exports of titanium sponge and scrap increased considerably over 1956 but were still less than 100 tons. Canada and West Germany

Less than 1 ton.

Cowing to changes in tabulating procedures by the Bureau of the Census, data known to be not comparable with other years.

6 Rutile content of zirconium ore as reported to the Bureau of Mines by importers.

received about 25 tons each, the United Kingdom received 12 tons, and the remainder went to Sweden, Netherlands, Austria, Switzerland, and Portugal. Exports of titanium-metal products increased to 779 short tons in 1957, a 25-percent increase over 1956. received 774 tons, mostly as ingots. The United Kingdom received 3 tons of mill shapes and about I ton of ingot; the rest of the titanium products went to France, Sweden, Netherlands, Belgium and Luxembourg, West Germany, Japan, and Italy.

Canada received 266 short tons of the 367 tons of ferroalloys exported in 1957. Italy received 90 tons; the remainder went to Chile,

Brazil, Sweden, Turkey, Thailand, and Japan.

TABLE 7.—Exports of titanium products from the United States, 1948-52 (average) and 1953-57, by classes

				[Bureau	of the C	ensus]				
Year	Ore and concentrates Year		in cru	and alloys ide form scrap i		e. c. ²	Ferr	oalloys		le and pig- nents
	Short	Value	Short tons	Value	Short tons	Value	Short	Value	Short	Value
1948–52 (average) 1953 1954 1955 1956 1957	1, 015 1, 368 663 1, 143 1, 838 2, 019	\$112, 435 109, 878 85, 896 193, 752 312, 285 276, 472	(3) 2 48 10 14 71	(3) \$11, 858 1, 107, 582 36, 353 59, 992 77, 629	35 559	(4) \$798, 077 3, 587, 401 1, 211, 311 8, 304, 835 9, 404, 232	266 185 172 245 364 367	\$72, 583 48, 722 39, 885 65, 091 148, 459 130, 046	32, 797 39, 780 63, 802 54, 353 64, 766 52, 960	\$9, 606, 709 11, 715, 798 23, 281, 039 18, 332, 995 25, 136, 981 19, 687, 188

Beginning Jan. 1, 1955, classified as sponge and scrap.
 Beginning Jan. 1, 1955, classified as intermediate mill shapes and mill products, n.e.c.
 Not separately classified before 1952. 1952: 762 tons (\$31,134) believed to include material other than commercially pure titanium metal.
 Not separately classified before 1952. 1952: 3 tons (\$38,979).

WORLD REVIEW

Declining United States requirements for rutile in manufacturing titanium metal resulted in an oversupply. World rutile production increased 30 percent over 1956 to a new peak of 158,400 short tons. World ilmenite production continued to increase and reached a new peak of 1.9 million short tons. The United States was again the leading producer of ilmenite, supplying 39 percent of the total. Australia, the leading producer of rutile, supplied 93 percent of the total. tailment of tin production in Malaya was expected to decrease the ilmenite concentrate available for shipments.

The United States was the leading manufacturer of titanium-sponge metal; its output was 17,200 short tons. Japan was second, with a production of 3,400 short tons. Annual capacity in the United Kingdom was 1,700 short tons.

Australia.—The estimated 147,000 short tons of rutile concentrate produced in Australia was a 36-percent increase over 1956 and came from sand deposits in Queensland and New South Wales. Two new companies, Crescent Rutile N. L. at Kilcare and Kinumber, New South Wales, and Silver Valley Uranium N. L. at Evans Head, New South Wales, began production in 1957.

TABLE 8.—World production of titanium concentrates (ilmenite and rutile), by countries, 1948-52 (average) and 1953-57, in short tons ¹

[Compiled by Pearl J. Thompson and Berenice B. Mitchell]

Country	1948–52 (av- erage)	1953	1954	1955	1956	1957
ILMENITE						
Australia (sales) 2	³ 504		526	600	4, 787	4 49, 600
Brazil	1, 885 14, 375	151, 176	124, 502	164, 249	220, 885	269, 406
Canada 5 Egypt	1,063	2.787	2, 900	2, 694	4, 547	4 4, 400
Thinland		2, 787 3, 465	55, 765	93, 668	113, 444	116, 568
Gambia (exports)			1, 216			001 701
India	1 208,030 1	241, 091	269, 375	280, 867	376, 321 9, 634	331, 521 9, 055
Japan 6	7 661	3, 199 29, 758	2, 638 50, 114	5, 097 60, 340	136, 837	102, 742
Malaya (exports)	27, 639 114, 157	29, 758 141, 220	164, 448	173, 981	209, 990	231, 693
Norway Portugal	384	746	563	866	679	335
Senegal	4,706		13, 779	30, 424	21,716	4 40, 200
SpainThailand	700		1,397	7,388	5, 962 385	8, 929 4 385
Thailand				1, 917	385 1,855	3, 118
Union of South Africa United States 8	464 760	10 513, 696		583, 044	684, 956	757, 180
United States	404, 700	310, 000				
World total ilmenite						
(estimate) 1	899, 500	1, 095, 100	1, 234, 900	1, 405, 100	1, 792, 000	1, 925, 100
Australia	26, 794	42,604	50, 018	66, 767	107, 886	4 146, 600
Brazil			146	174	338	4 330
French Cameroon	310	58		110	168	4 60
French Equatorial Africa	9.2			166	606	530
India	.19	117	117	100	26	28
Norway	10 17	9		10	650	4 115
Norway Senegal United States	7, 247	6, 825	7, 411	8, 513		10, 702
World total rutile (esti- mate) 1	34, 500	49, 600	57, 700	75, 700	121, 700	158, 400

¹ This table incorporates a number of revisions of data published in previous Titanium chapters. Data do not add to totals shown owing to rounding where estimated figures are included in the detail.

2 Owing to high chromium content in the ore, sales are shown.

3 Average for 1950-52 only; previous years are not available on sales basis.

4 Estimate.

TABLE 9.—Exports of rutile concentrate from Australia, 1953-57, by countries of destination, in short tons 1

[Compiled by Corra A. Barry]

Country	1953	1954	1955	1956	1957 2
Belgium	521 2, 106 2, 144 1, 981 450 3, 504 2, 824 9, 701 15, 026 2, 148	1, 519 3, 852 4, 397 2, 289 1, 370 5, 190 1, 742 11, 078 16, 148 2, 162 49, 747	2,700 3,485 4,573 2,154 2,118 8,687 3,093 13,702 23,798 2,539 66,849	4, 797 4, 599 4, 042 3, 433 2, 335 9, 968 3, 591 13, 993 51, 754 2, 161	(3) (3) (3) (3) (3) (3) (10, 214 62, 599 33, 887 106, 700

Compiled from Customs Returns of Australia.
 January through September only.
 Data not separately recorded.

⁸ Beginning 1950, includes Ti slag containing approximately 70 percent TiO₂.

<sup>Beginning 1900, includes 11 siag containing approximately to beten 1202.
Represents titanium slag.
A verage for 1 year only, as 1952 was the first year of commercial production.
Includes a mixed product containing ilmenite, leucoxene, and rutile for 1949-57.
A verage for 1950-52.
A verage for 1951-52.</sup>

1197 TITANIUM

Ilmenite mining activity in Australia increased during the year. was reported that many companies had obtained leases to Western Australia's beaches, where sand is rich in high-quality ilmenite.

The combined estimated annual capacity of Western Titanium N. L., Capel, and Cable, Ltd., Bunbury, was over 100,000 tons of ilmenite concentrate. Westralian Oil, Ltd., announced plans to build a plant with a capacity of 100,000 tons of ilmenite concentrates per

year in the Capel and Yoganup districts.¹⁶

Canada.—The Quebec Iron & Titanium Corp. at Sorel, Quebec, continued to increase its output of titanium slag and reached a new peak of 258,900 short tons in 1957. The company operated at full capacity and began production from a new furnace in December. This raised the total number of furnaces to 6; 2 more are expected to be operating by the end of 1958.17

TABLE 10.—Quebec Iron & Titanium Corp. smelting operations, 1953-57, in short tons

Item	1953	1954	1955	1956	1957
Ore crushed Ore smelted Titanium slag produced Titanium slag shipped Estimated TiO ₂ content of slag produced Value of slag produced Desulfurized iron produced Desulfurized iron shipped	158, 218	308, 974	413, 149	636, 653	(1)
	(1)	268, 139	348, 578	470, 745	627, 255
	141, 883	122, 960	162, 784	218, 575	258, 920
	145, 402	119, 292	157, 378	213, 742	262, 879
	99, 318	88, 408	117, 042	150, 640	185, 360
	\$4, 206, 496	\$3, 841, 270	\$5, 192, 810	\$6, 688, 416	(1)
	106, 875	90, 562	121, 312	159, 874	187, 529
	94, 587	100, 509	118, 104	157, 048	189, 725

¹ Data not available.

A total of 10,500 short tons of ilmenite valued at \$54,600 was shipped in 1957 from the St. Urbain area, Quebec, by Baie St. Paul Titanic Iron Co., Ltd., and Continental Iron & Titanium Mining, Ltd., for use as heavy aggregate for concrete in atomic-energy plants in the United States and for manufacturing ferrotitanium. In 1956, 5,000 short tons valued at \$37,100 was shipped from the area for similar uses 18

The first titanium-pigment plant in Canada—that of Canadian Titanium Pigments, subsidiary of National Lead Co. of the United Stateswas officially opened at Varennes, Quebec, on September 11, 1957. Plant capacity was rated at 18,000 tons of titanium dioxide pigments a year. Titanium dioxide slag, crushed to minus-1/2-inch, containing about 70 percent titanium dioxide, was obtained from the Quebec Iron & Titanium Corp. smelter about 20 miles down the St. Lawrence River from Varennes. 19

Ceylon.—It was reported that the Government of Ceylon planned to develop the ilmenite sands at Pulmoddai. Foreign technical experts were reportedly obtained by the Government of Ceylon to design the plant and lend technologic assistance.²⁰

Finland.—Further details on the titaniferous iron-ore mine at Otanmaki, owned and operated by the Government of Finland, were pub-

Mine and Quarry Engineering, Western Australia Ilmenite: Vol. 23, No. 10, October 1957, p. 460.
 Industrial and Mining Standard, Tailings From the West: Vol. 112, No. 2831, Apr. 4, 1957, p. 17.
 Kennecott Copper Corporation, Forty-Third Annual Report, 1957: P. 16.
 Janes, T. H., Titanium in Canada, 1957: Canadian Dept. of Mines and Tech. Surveys, 10 pp.
 Janes, T. H., Titanium in Canada—1957: Canadian Min. Jour., vol. 79, No. 2, February 1958, p. 141.
 Chemical Age (London), Ceylon Ilmenite Project: Vol. 77, No. 1960, Feb. 2, 1957, p. 206.

lished during 1957.²¹ Through improved ore-dressing techniques, the Otanmaki Company was able to produce tonnages of ilmenite in excess of designed capacity. The mill began producing in 1954 after the processes involved had been extensively studied at the Mineral Dressing Laboratory of the State Institute for Technical Research in Helsinki.

Japan.—The output of titanium slag used for making titanium metal decreased slightly in 1957 from 9,600 short tons in 1956 to 9,000 tons. Output of the 4 major producers was as follows: Hokuetsu Electric Chemical Industrial Co., 2,716 short tons; Morioka Electric Chemical Co., 1,743 short tons; Nisso Steel Manufacturing Co., 2,622 short tons; and Osaka Titanium Co., Ltd., 1,916 short tons. The Tokyo Iron & Steel Co. produced 57 short tons in March and September.

The Nisso Steel Manufacturing Co. announced in July that production of titanium slag in its plant was halted because Osaka Titanium Co., its chief customer, was not accepting any more titanium slag or

other titanium raw materials.22

The titanium-sponge-metal industry increased output, but production rates at the end of 1957 were somewhat below capacity. Output during the year was 3,393 short tons—22.6 percent above the 1956 production.

TABLE 11.—Titanium-sponge production in Japan, 1952-57, in short tons

Company	1952	1953	1954	1955	1956	1957
Osaka Titanium Co., Ltd Toho Titanium Industry Co., Ltd	9	66	338 263	639 608	1, 146 1, 439	1, 664 1, 559
Nippon Soda Co., Ltd		(1)	37 28	115	183	170
Total	9	77	673	1,378	2, 768	3, 39

¹ Less than 1 ton.

Exports of titanium sponge in 1957 totaled 2,734 short tons, of which 2,689 short tons went to the United States and 45 tons to countries in Europe.

Production of titanium dioxide continued upward to 33,700 short tons, 33 percent over 1956. In July the Ishihara Industrial Co., Ltd., the leading titanium dioxide producer in Japan, completed an expansion program, which doubled its capacity from 1,000 tons to

TABLE 12.—Titanium dioxide production, exports, and stocks in Japan, 1953-57, in short tons

Year	Produc- tion	Exports	Stocks	Year	Produc- tion	Exports	Stocks
1953 1954 1955	6, 793 13, 820 19, 068	536 5, 218 8, 677	592 882 538	1956 1957	25, 269 36, 811	10, 208 16, 590	1, 174 2, 490

Mining World, How Otanmaki Floats Ilmenite From Finland's Titaniferous Magnetite: Vol. 19, No. 4, April 1957, pp. 49-55.
 Metal Bulletin (London), Japanese Slag Output Stops: No. 4212, July 19, 1957, p. 25.

TITANIUM 1199

2,000 tons monthly.²³ The plant is at Yokkaichi in Mie prefecture in southern Honshu and is designed to process rutile and anatase.

Malaya.—Ilmenite exports from Malaya in 1957 were down 25 percent compared with 1956. Ilmenite in Malaya was a byproduct of tin dredging. Curtailment of tin operations late in 1957 was expected to reduce the quantity of ilmenite available for export in 1958.

TABLE 13.—Exports of ilmenite from Malaya, 1953-57, by countries of destination, in short tons ¹

Country	1953	1954	1955	1956	1957
Australia Belgium France (including Corsica) Germany, West	3, 607 2, 576	51 8, 097	112 3, 371	7,316 3,388	2, 240 7, 030 3, 047
Genhady, Wedling Sardinia) Japan Netherlands United Kingdom United States Other countries	10, 527 1, 456 11, 592	15, 892 1, 591 24, 427 56	425 33, 799 30 22, 518	112 134 57, 896 1, 232 34, 048 32, 683 28	392 38, 478 560 50, 960
Total	29, 758	50, 114	60, 339	136, 837	102, 741

¹ Compiled from Customs Returns of Malaya.

Union of South Africa.—The Anglo American Corporation (South Africa) announced that Umgababa Minerals, Ltd., an associate company, would begin to produce titanium and zirconium concentrates by mid-1958 from a mine at Umgababa on the coast of Natal. This mine was formerly operated on a small scale by the Titanium Corp. of South Africa. Umgababa Minerals planned to construct additional facilities to raise capacity to 100,000 tons of ilmenite per year and to recover zircon and rutile at the rates of 10,000 and 7,000 tons per year, respectively.²⁴ Part of the production is expected to be utilized by a titanium dioxide-pigment plant at Umbogintwini planned by the British Titan Products Co., Ltd., and the African Explosives & Chemical Industries, Ltd.

United Kingdom.—Imperial Chemical Industries, Ltd. (I. C. I.), at Wilton, Yorkshire, continued to be the only commercial producer of titanium-sponge metal in the United Kingdom during 1957. The annual capacity in 1957 of the Wilton plant is estimated at 1,700 short tons. The company melting and fabricating plant at Witton compressed titanium granules produced by sodium reduction of titanium tetrachloride into pellets or bars, depending upon whether the metal was to be melted in a furnace employing consumable or nonconsumable electrodes. Construction of the I. C. I. new titanium-rolling plant at Waunarlwydd, near Swansea, South Wales, was expected to be completed by mid-1958. The fabrication facilities at Witton were expected to cease as the Waunarlwydd plant was com-

Mining World, Asia: Vol. 19, No. 8, July 1957, p. 100.
A merican Metal Market, Umgababa Will Start Ilmenite Zircon Mining: Vol. 64, No. 188, Sept. 28, 1957, pp. 1, 7.

pleted.²⁵ A 2,000-ton double-melting vacuum furnace, equipped with fully automatic, electronically controlled electrode feeder gears, and operated remotely, was being built in Hanau, West Germany, for the I. C. I. melting plant at Witton.²⁶

TECHNOLOGY

One of the most significant advances in titanium-metal technology in recent years was reported by the Federal Bureau of Mines in 1957.27 A laboratory process was developed for preparing high-purity titanium from scrap and offgrade sponge. By electrorefining the metal in a fused-salt bath, titanium containing relatively large amounts of iron, nitrogen, and oxygen and having a Brinell hardness of 314 was refined to a metal with a Brinell hardness of 78.

An arc-melting technique was reported 28 for preparing 25- to 30pound ingots of uncontaminated titanium, binary titanium-aluminum allows, and various ternary additions to the titanium-aluminum base. Extensive chemical and mechanical tests showed a high degree of uniformity in the ingots prepared and confirmed reports by other investigators of the high impact-strength potential of certain titanium-

aluminum alloys.

A constitution diagram for the system titanium-germanium up to 30 percent germanium was proposed.²⁹ Metallographic, X-ray, and resistivity studies indicated a eutectic composition of 19 percent germanium at 1,360° C. and a peritectic reaction at 905° C. with 4 percent germanium. Formation of a single compound, Ti₅Ge₃ was reported in the part of the system studied.

Corrosion rates of titanium and a variety of titanium alloys with manganese, chromium, iron, vanadium, and zirconium were studied in mineral acids, nitric acid, and chloride solutions by L. B. Golden and others.³⁰ Comparative tests were conducted on samples from arc-melted ingots and ingots prepared by powder-metallurgy tech-

niques.

Thermodynamic values at 298.15° and 1,600° K. for several titanium-oxygen interstitial compounds were determined in a cooperative undertaking between the Federal Bureau of Mines and the Office of Naval Research.³¹ Theoretical considerations were reported and calculated partial molal free energy-composition isotherms for 800° and 1,600° C. are presented for the composition range 0 to 2 weight-percent oxygen.

Submarginal deposits of titanium minerals were investigated and a method proposed for separating columbium and iron from these ores by a fractional distillation process following chlorination.³²

<sup>Metal Bulletin (London), Titanium Progress At Waunarlwydd: No. 4195, May 17, 1957, p. 23.
Metallurgia, Titanium-Melting-Plant Order: Vol. 55, No. 331, May 1957, p. 247.
Nettle, J. R., Baker, D. H., Jr., and Wartman, F. S., Electrorefining Titanium Metal: Bureau of Mines Rept. of Investigations 5315, 1957, 43 pp.
Huber, R. W., and Lane, I. R., Jr., Consumable-Electrode Arc Melting of Titanium and Its Alloys: Bureau of Mines Rept. of Investigations 5311, 1957, 36 pp.
Peterson, V. C., and Huber, R. W., The Titanium-Germanium System From 0 to 30 Percent Germanium: Bureau of Mines Rept. of Investigations 5365, 1957, 20 pp.
Golden, L. B., Ackerman, W. L., and Schlain, D., The Relative Corrosion Resistance of Titanium and Some of Its Alloys: Bureau of Mines Rept. of Investigations 5299, 1957, 25 pp.
Mah, A. D., and others, Thermodynamic Properties of Titanium-Oxygen Solutions and Compounds: Bureau of Mines Rept. of Investigations 5316, 1957, 33 pp.
Nieberlein, V. A., Low-Temperature Chlorination of Columbium-Bearing Titanium Minerals: Bureau of Mines Rept. of Investigations 5349, 1957, 15 pp.</sup>

TITANIUM 1201

A comprehensive study of the titanium industry from raw material to semifinished product was published.33 Extensive data on resources, geologic occurrence, prospecting, mining, beneficiation, and uses of titanium minerals as well as descriptions of processing techniques for manufacturing titanium metal, pigments, welding-rod coatings, and other miscellaneous products containing titanium, were reported.

A field method using simple, inexpensive equipment, for rapid evaluation of heavy-mineral-bearing sands was developed and has found application in expediting the work of field engineers studying

sand deposits.34

Gamma rays from radioactive cobalt were used at one company research laboratory to determine the level of the melt in a titaniumarc melting furnace.35 According to this laboratory, exact control of melting was maintained automatically by beaming the radiation through the furnace walls and the ingot inside.

Comparative physical-property data for titanium and other pure metals and a table of mediums in which titanium shows exceptional corrosion resistance were made available to design, materials, and production engineers interested in using titanium.³⁶

Chemical and physical data for a number of important titanium

alloys were reported.37

A literature survey was conducted ³⁸ covering production, fabrication, and mechanical and corrosion properties of titanium metal.

Development of the iodide process of refining titanium and zir-

conium was reviewed.39

Sodium reduction of titanium tetrachloride was described. 40

A laboratory process using ilmenite as a raw material and yielding a potassium chlorotitanate product, which can be thermally decomposed at 300° to 500° C. to titanium tetrachloride and potassium chloride, was reported in 1957.41 Production of pure titanium tetrachloride is claimed.

Mellgren and Opie studied equilibrium concentrations of multivalent titanium in a fused sodium chloride-strontium chloride bath

at various temperatures and concentrations. 42

A method was patented for direct reduction of titanium dioxide by aluminum metal, followed by a leach with molten magnesium metal to remove excess aluminum.43

³⁸ Miller, J. A., Titanium, A Materials Survey: Bureau of Mines Information Circ. 7791, 1957, 202 pp.
34 Clemmons, B. H., Stacy, R. H., and Browning, J. S., Heavy-Liquid Technique for Rapid Evaluation of Sands by Prospectors and Plant Operators: Bureau of Mines Rept. of Investigations 5340, 1957, 12 pp.
35 American Metal Market, Titanium Furnace is Controlled by Cobalt Radiations: Vol. 64, No. 76, Apr. 19, 1957, pp. 1, 7.
36 Industrial and Engineering Chemistry, Part I, Titanium: Vol. 49, No. 9, September 1957, pp. 133A.
37 Inglis, N. P., Titanium Research and Development: Metal Ind., vol. 90, No. 10, Mar. 8, 1957, pp. 185-188, 194.
38 Bomberger, H. B., Titanium: Ind. Eng. Chem. pt. II, vol. 49, No. 9, September 1957, pp. 1658-1662.
39 Shelton, R. A. J., The Development of the Iodide Process of Refining Titanium and Zirconium: Metalurgia, vol. 55, No. 331, May 1957, pp. 225-231.
46 Milton, John, Sodium Process Extracts Titanium in Commercial Tonnages: Iron Age, vol. 179, No. 19, May 1957, pp. 120-122.
41 Chemical Engineering Progress, New Process for Titanium: Vol. 53, No. 7, July 1957, p. 94.
42 Mellgren, S., and Opie, W., Equilibrium Between Titanium Metal, Titanium Dichloride, and Titanium Trichloride in Molten Sodium Chloride—Strontium Chloride Melts: Iron Age, vol. 9, No. 2, February 1957, pp. 266-269.
48 Mondolfo, L. F. (assigned to Illinois Institute of Technology), Method for Producing Easily Oxidized High-Melting-Point Metals and Their Alloys: U. S. Patent 2,803,536, Aug. 20, 1957.

In another patented method for producing titanium, titanium-bearing material is reacted with calcium chloride and an alkali metal such as sodium.44

A method of forming a porous titanium-metal diaphragm on a nickel-wire cloth placed between the anode and cathode in a fused

salt bath was patented.45

⁴⁴ Whaley, T. P. (assigned to Ethyl Corp.), Method of Producing Titanium: U. S. Patent 2,777,763, Jan. 15, 1957.

45 Kittelberger, W. W. (assigned to New Jersey Zinc Co.), Production of Titanium: U. S. Patent 2,789,943, Apr. 23, 1957.

Tungsten

By R. W. Holliday 1 and Mary J. Burke 2

HE TUNGSTEN-MINING industry ended 7 years of expansion in December 1956 when the Government suspended purchasing concentrate from domestic producers; throughout 1957, production

and prices declined.

From a domestic output of 2,896,000 pounds of contained tungsten in 1949, production had increased each year to a peak of 15,833,000 pounds in 1955 and nearly as much in 1956. The total world production during the same period increased from an estimated 31,445,000 pounds to an estimated 77,520,000 pounds in 1955 and nearly as much in 1956. Much of the increase, both domestic and foreign, went to United States Government stockpiles; United States industrial consumption was relatively stable, averaging 8,073,000 pounds for the years 1949–56. Virtually all Government acquisitions were purchased at above-market prices.

Therefore, after suspension of Government purchase from domestic sources, the available supply greatly exceeded demand; mines in the United States were capable of producing nearly twice the quantity required by industry; by the end of 1957, large stocks were held by producers and consumers; additional large quantities were available for import; and large Government stocks, though withdrawn from the

market, were available for emergency use.

TABLE 1.—Salient statistics of tungsten ore and concentrate in the United States, 1948-52 (average) and 1953-57, in thousand pounds of contained tungsten

	1948-52 (average)	1953	1954	1955	1956	1957
Mine production Mine shipments. General imports 2 Consumption Stocks:	4, 808	9, 259	13, 166	15, 833	14, 761	8, 032
	4, 855	9, 128	13, 030	15, 619	14, 027	5, 254
	9, 995	29, 130	23, 044	20, 789	21, 857	14, 186
	8, 090	7, 734	4, 037	8, 967	9, 061	8, 544
ProducersConsumers and dealers	410	363	362	523	1, 477	4, 326
	4, 297	4, 335	3, 913	3, 502	2, 980	4, 103
Total	4, 707	4, 698	4, 275	4, 025	4, 457	8, 429

¹ Includes Alaska.

² Ore and concentrate received in the United States; part went into consumption during the year, and the remainder entered bonded warehouses or Government stocks.

¹ Commodity specialist.

² Statistical clerk.

Although Government stocks exceeded minimum and long-term objectives, deliveries were being accepted from a few foreign producers under long-term contracts previously negotiated. Industry stocks nearly doubled during the year.

Tungsten-research emphasis was shifted largely from resources and beneficiation studies to the development of fundamental data as a

basis for new and expanded use of tungsten.

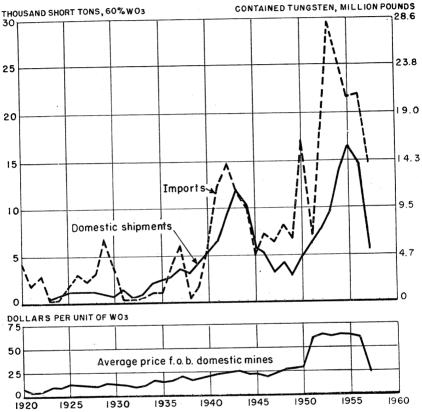


FIGURE 1.—Domestic shipments, imports, and average price of tungsten ore and concentrate, 1920-57.

LEGISLATION AND GOVERNMENT PROGRAMS

A report ³ of the Attorney General concluded that the Government program for defense expansion of tungsten supply "* * * displays no factors tending seriously toward concentration of economic power in this industry.

A report by the Tariff Commission in compliance with Senate Resolution 195, 85th Congress, adopted by the Senate August 28,

³ Report of the Attorney General, Pursuant to Section 708 (e) of the Defense Production Act of 1950, as amended: Nov. 8, 1957, 54 pp.

4 U. S. Tariff Commission, Tungsten Ores and Concentrates: Rept. to President on Investigation 120 Under Section 336, Title III, of the Tariff Act of 1930, February 1958, 29 pp.

1957, reviewed the Government purchase program, both domestic and foreign.

Government participation in Defense Minerals Exploration Administration (DMEA) tungsten exploration projects was reduced to 50 percent from 75 percent.⁵ A total of 477 tungsten applications was reported from inception of the program to December 31, 1957, an increase of 15 during the year. One hundred twenty-six contracts were executed; 15 remained in force at the end of the year. Certifications of discovery numbered 48. Maximum Government participation authorized to date was \$3,740,576, and total estimated costs of the projects was \$5,008,124.

TABLE 2.—Tungsten concentrate produced and shipped in the United States, 1956-57, by States ¹

		Prod	uced		Shipped from mines				
State	1956		1957		19	56	1957		
	Tungsten content (1,000 pounds)	Short ton units (WO ₃) ²	Tungsten content (1,000 pounds)	Short ton units (WO ₃) ²	Tungsten content (1,000 pounds)	Short ton units (WO ₃) ²	Tungsten content (1,000 pounds)	Short ton units (WO ₃) ²	
Alaska Arizona California Colorado Idaho Montana Nevada New Mexico North Carolina Oregon Utah Washington Wyoming	(3) 208 4,066 924 592 1,041 5,192 (3) 2,719 (3) 11 6 2	13, 088 256, 362 58, 227 37, 321 65, 609 327, 303 28 171, 451 2 680 347 113	(*) 20 2, 243 819 245 662 1, 866 2, 177 (*) (*)	31 1, 279 141, 389 51, 621 15, 407 41, 747 117, 640 137, 215 4 30 13	3, 539 831 554 1, 171 5, 140 (3) 2, 600 (3) 11 2	11, 143 223, 155 52, 375 34, 940 73, 810 324, 029 28 163, 913 2 680 135 113	1, 666 43 33 629 1, 138 1, 740 (3) (3)	316 105, 005 2, 684 2, 112 39, 646 71, 753 109, 675 4	
Total	14, 761	930, 586	8, 032	506, 376	14, 027	884, 323	5, 254	331, 208	

¹ Concentrate has been credited to State in which ore was mined, although subsequent beneficiation and sale may have been elsewhere.

For conversion to short tons of 60 percent WO₃, divide by 60.
 Less than 1,000 pounds.

DOMESTIC PRODUCTION

Domestic production of concentrate declined 46 percent in 1957 compared with 1956. Because of this diminished output and lower prices, the value decreased 84 percent.

In 1956, Public Law 733, 84th Congress, had authorized purchase by the Government of 1,250,000 short-ton units 6 of tungsten trioxide (WO₃) at \$55 per unit under a program scheduled to end in December 1958; but in December 1956, purchase was suspended for lack of funds. In the early months of 1957, there was uncertainty whether additional appropriations would be made to implement Public Law 733. Mine operators had to decide whether to close down and incur the cost of reopening, if purchase was resumed, or to carry the expense of operating without assurance of a market.

22, 1957; 8:56 a. m.).

A Short-ton unit equals 20 pounds of tungsten trioxide (WO₃) and contains 15.862 pounds of tungsten (W).

1 short ton of 60 percent WO₂ contains 951.72 pounds of tungsten.

⁵ DMEA Order 1, Revised, Oct. 18, 1957, Federal Register of Oct. 23, 1957 (F. R. Doc. 57-8717; Filed, Oct.

Although 84 producers reported output, only 4 mines produced continuously throughout 1957. The leading producer was the Hamme mine of Tungsten Mining Corp. in Vance County, N. C.; others in year-long operation were the Tungsten Group of Nevada-Massachusetts Co. in Pershing County, Nev.; the Pine Creek mine of Union Carbide Nuclear Co. in Inyo County, Calif.; and the Climax mine of Climax Molybdenum Co. in Lake County, Colo. (byproduct tungsten).

Square-set methods were used at the Hamme mine; shrinkage stopes and open-pit mining were used by Nevada-Massachusetts Co.; open stoping, with sublevel ring drilling and blasting, was used at the

TABLE 3.—Tungsten concentrate shipped from mines in the United States,1 1948-52 (average) and 1953-57

	Qua	antity	Reported value f. o. b. mines 2			
Year	Short ton units WO ₃	Tungsten content (pounds)	Total	Average per unit of WO ₃	Average per pound of tungsten	
1948-52 (average)	306, 059 575, 448 821, 463 984, 711 884, 323 331, 208	4, 854, 724 9, 127, 756 13, 030, 046 15, 619, 486 14, 027, 131 5, 253, 621	\$14, 169, 934 35, 943, 533 51, 433, 357 60, 841, 157 51, 200, 503 8 8, 186, 232	\$46. 29 62. 46 62. 61 61. 79 57. 90 24. 72	\$2.92 3.94 3.95 3.90 3.65 1.56	

¹ Includes Alaska.

Largely estimated by Bureau of Mines.

TABLE 4.—Shipments of tungsten ore and concentrate (60 percent WO₃ basis) by States, 1948-52 (average) and 1953-57, shipments for maximum year, and total shipments, 1900-57, in short tons 1

		imum ments		Shipments by years							Total shipments 1900-57	
State		Quan-	1948-52					19	57	Quan-	Percent	
	Year	tity	(aver- age)	1953	1954	1955	1956	Quan- tity	Percent of total	tity	of total	
Alaska	1916	47	6	3						211	0, 10	
Arizona	1936	489	21	134	132	181	186	5	0.09	4, 634	2.27	
California	1955	4, 383	2, 146	2,382	3,512	4, 383	3, 719	1,750	31.70	61, 162	29. 91	
Colorado	1917	2,707	317	817	927	1, 152	873	4 5	. 82	30,027	14.68	
Connecticut	1916	3								11	. 01	
Idaho.	1943	4, 648	217	441	471	642	582	35	. 63	18, 463	9.03	
Missouri	1940	13	1						11.97	37	.02 2.12	
Montana Nevada	1956 1955	1,230	1,325	14 3, 683	678 5, 331	1, 211	1, 230 5, 400	661 1,196	21.67	4, 340 64, 142	31. 37	
New Mexico	1935	6, 155 45	1, 525	3,083	(2)	6, 155	(2)	1,190	21.07	104	. 05	
North Carolina	1956	2,732	1,054	2,074	2,538	2,609	2,732	1,828	33.12	18, 254	8.93	
Oregon	1952	7,104	2,001	(2)	(2)	1 2,000	(2)	(2)		9	(3)	
South Dakota	1917	270	(2)	`´2	(2)					1,298	63	
Texas	1946	1								1	(3)	
Utah	1954	84	1	35	84	65	11			437	. 21	
Washington	1938	303	3	5	18	12	2	(2)		1,376	.67	
Wyoming	1956	2					2			2	(3)	
Total	1955	16, 412	5, 101	9, 590	13, 691	16, 412	14, 737	5, 520	100.00	204, 508	100.00	

¹ Shipments are credited to the State where final concentrate was produced, except for 1953, 1954, 1955, 1956, and 1957.

Less than 1 ton.

Less than 0.01 percent.

Pine Creek mine; and a large-scale-caving method was used at the

Climax mine.

Only 15 mines produced as much as 1,000 units during the year. The 5 largest mines supplied 75 percent of the total domestic output; the next 5 in size produced 21 percent; and the 15 largest mines together produced 99 percent. Mine production in the first half of 1957 was about double that in the second half.

Tungsten was produced in 11 States in 1957, but over 88 percent came from California, North Carolina, Nevada, and Colorado, in that order. Scheelite comprised 60 percent of production, and

wolframite-type ores 40 percent.

CONSUMPTION AND USES

Although consumption of tungsten concentrate in 1957 was 6 percent lower than in 1956, it exceeded the 1949-56 yearly average by 11 percent.

Concentrate was consumed in manufacturing hydrogen-reduced metal powder, carbon-reduced metal powder, chemicals, and ferro-

tungsten and by direct addition of scheelite to steel.

Hydrogen-reduced metal powder was consumed principally for cemented carbides and pure metal uses, and in alloys. Carbon-reduced metal powder was used in carbides and in alloys. Carbides were also manufactured directly from concentrate by one or more processes. Ferrotungsten was used as a means of introducing tungsten into high-speed and other alloy steels; scheelite, scrap, and certain other compositions also served the same purpose. Chemicals were used chiefly in pigments and dyes.

TABLE 5.—Distribution of tungsten concentrate consumed in 1957

	Tungsten content (pounds)	Short tons (60 percent WO ₃)	Percent of total
Manufacturers of steel ingots and ferrotungsten Manufacturers of hydrogen-reduced metal powder	2, 110, 000 3, 760, 000	2, 217 3, 951	25 44
Manufacturers of carbon-reduced metal powder and tungsten chemicals and consumption by firms making several products	2, 674, 000	2, 810	31
Total	8, 544, 000	8, 978	100

High-Speed and other tungsten-alloy steels, as well as cemented tungsten carbide, were used in tools, blanks, and dies for shaping and machining metal. Tungsten alloys and carbides also were variously employed as machine parts. Alloys or pure tungsten continued to be used as lamp and heating elements, contact points and switches, electronic valves, hard facing, welding rods, and electrodes. Tungsten was the principal constituent in "heavy metal" 7 that was used for counterweights, vibration damping, and radiation shielding and in dies and cutting tools. Carbides, in addition to their use for shaping metals, were used in rock bits, hard facing, flame plating,8 matrix

⁷ Dun's Review and Modern Industry, How You Can Use Industry's Heavyweight Champ; Heavy Metal: Vol. 69, No. 7, May 1957, pp. 92-93.

8 Carbide Engineering, Flame Plating for Wear Resistance: Vol. 9, No. 9, September 1957, pp. 20-21.

material for diamond drill bits, and abrasives and for shaping of various materials.9 Chemicals were used principally in manufacture of pigments and fluorescent powders.

TABLE 6.—Consumption of tungsten products in the United States, and stocks at plants of consumers in 1957

(Thousand pounds of contained tungsten)

Product	Con- sumption	Stocks Dec. 31	Product	Con- sumption	Stocks Dec. 31	
Tungsten-metal powder: ¹ Hydrogen reduced. Carbon reduced. Tungsten carbide powder. Chemicals.	1, 781 77 2, 819 334.	110 50 72 18	Scheelite (including synthetic) Scrap Other ² Total	1, 194 717 1, 208 8, 130	253 283 790	

TABLE 7.—Consumption of tungsten by class of manufacture in 1956-57 (Thousand pounds of contained tungsten)

Uses 1956 1957 Uses 1956 1957 Steel: Chemicals: High Speed..... Other tool steel... Fluorescent powders. 2,893 2,128 27 419 Pigments____ 93 92 298 Alloy steel (other than tool) 531 High-temperature nonferrous al-Bar. Miscellaneous 1_ 557 312 342 295 loys... Other nonferrous alloys ... 175 9,722 8, 130 Metal (wire, rod, and sheet)_____ Carbides: 1,242 1,106 Cemented or sintered____ 2, 113 3,426 1, 165

Most carbides were used as small inserts at points of wear, but a survey indicated that the use of solid tungsten carbide rotary cutting tools had increased more than 500 percent since 1954.10

Consumption of tungsten in steel declined 28 percent, compared with 1956. Consumption in metal (wire, rod, and sheet) declined 11 percent and in carbides 4 percent.

Consumption of concentrate centered in 2 general areas—72 percent in New Jersey, New York, and Pennsylvania and most of the remainder in Illinois, Indiana, and Ohio.

STOCKS

Stocks of tungsten concentrate held in the National Stockpile exceeded minimum and long-term objectives. Stocks held by industry on December 31 were nearly twice as large as those on January 1 and virtually equal to total consumption during 1957.

Does not include quantities consumed in manufacturing tungsten carbides.
 Includes ferrotungsten, cobalt-chromium-tungsten, melting base, and tungsten-alloy powder.

¹ Includes uses (not classified by reporting firms) in diamond-drill bits, electrical contact points, welding rods, etc.

Segal, Arthur R., Why Use Carbide Tools on Woodworking Operations?: Carbide Eng., vol. 9, No. 8'
 August 1957, pp. 18-20.
 Carbide Engineering, Solid Carbide Tools: Vol. 9, No. 11, November 1957, p. 26.

PRICES AND SPECIFICATIONS

The price of concentrate declined steadily throughout 1957. Government made no purchases from domestic sources and none from foreign sources beyond the quantities delivered under existing long-term contracts. Prices paid under these contracts were considerably higher than those quoted on the open market.

London prices declined throughout the year following a brief flurry in late 1956 after the Suez Canal was seized by the Egyptian Govern-

ment.

A paper on tungsten specifications for high-purity applications was delivered. 11 Specifications for the Government stockpile quoted in the Tungsten chapter of Minerals Yearbook, 1956.

TABLE 8.—Prices of tungsten concentrate in 1957 1

		short-ton unit of ports, duty extra ²	London market, per long- ton unit of WO ₃ , wolfram		
	Wolfram	Scheelite			
Jan. 3. Feb. 7. Mar. 7. Apr. 11. May 2. June 6. July 4. Aug. 1. Sept. 5. Oct. 3. Nov. 7. Dec. 5. Average.	25. 75 @ 26. 00 20. 25 @ 20. 75 20. 00 @ 20. 75 19. 25 @ 19. 75 18. 50 @ 18. 75 17. 00 @ 15. 00 13. 50 @ 14. 25 13. 50 @ 14. 25 13. 00 @ 14. 00 12. 75 @ 13. 25	\$27. 25 @ \$27. 75 25. 75 @ 26. 00 20. 25 @ 20. 75 19. 25 @ 19. 75 17. 50 @ 17. 75 15. 75 @ 16. 25 12. 75 @ 13. 25 12. 75 @ 13. 25 12. 75 @ 13. 25 12. 75 @ 13. 25 12. 00 @ 13. 00 11. 50 @ 12. 00	220s, bid, 225s, asked. 200s, bid, 206s, asked. 147s, 6d, bid, 152s, 6d, asked. 160s, bid, 165s, asked. 155s, bid, 165s, asked. 145s, bid, 160s, asked. 145s, bid, 135s, asked. 110s, bid, 135s, asked. 110s, bid, 117; 6d, asked. 112; 5s, bid, 117; 4s, asked. 113; 4s, bid, 118; asked. 106s, bid, 111s, asked.		
Duty		7. 93			
Average price duty paid	26. 13	25, 50			

Published price quotations (from E&MJ Metal and Mineral Markets).
 Known good analysis.

FOREIGN TRADE 12

General imports of tungsten concentrate declined 35 percent compared with 1956. Bolivia and Brazil each supplied more than 2 million pounds tungsten content and 5 other nations-Argentina, Canada, Republic of Korea, Australia, and Peru-in that order, each supplied more than 1.5 million pounds.

Exports and reexports of tungsten concentrate were 163 and 572 tons, respectively, gross weight, in 1957 compared with 117 and 349

tons, respectively, in 1956.

Imports for consumption of ferrotungsten were less than half the quantity imported in the preceding year and less than those in any year since 1949. The reported value was less than a third the value in 1956.

[&]quot;I Nelson, Russell C., Tungsten Utilization for High Purity Applications: (Pres. Nat. Western Min. Cong. Feb. 7-9, 1957, Denver, Colo.) Mines Magazine, vol. 67, No. 3, March 1957, pp. 68-72.

Prigures on imports and exports compiled by Mae B. Price and Elsie D. Jackson, Division of Foreign Activities, Bureau of Mines, from records of the U. S. Department of Commerce, Bureau of the Census.

Exports of ferrotungsten totaling 4,390 pounds, gross weight, and valued at \$10,092 went to Canada, Colombia, and Uruguay. There

were no reexports of ferrotungsten.

Imports of tungsten metal, tungsten carbide, and combinations containing tungsten or tungsten carbide in lumps, grains, or powder were 82,617 pounds, tungsten content, and value was listed at \$238,663.

Exports of tungsten powder were 142,293 pounds, valued at

\$893,061.

Imports for consumption of ferrochromium tungsten, chromium tungsten, chromium-cobalt tungsten, tungsten nickel, and other alloys of tungsten, not specifically provided for, were 66,955 pounds, tungsten content, valued at \$112,099.

Tungstic acid and other compounds of tungsten, not specifically provided for, were imported amounting to 11,433 pounds, tungsten

content, valued at \$34,005.

Exports of tungsten metal and alloys in crude form and scrap were 252,008 pounds, gross weight, valued at \$476,164; and reexports were 74,401 pounds, valued at \$42,320.

Semifabricated forms exported were 32,691 pounds, gross weight, valued at \$748,232. More than 70 percent of the total went to Canada.

TABLE 9.—Tungsten ore and concentrate imported into the United States, 1956-57, by countries

[Bureau	of:	the	Census

		Census				
	General	imports 1	Imports for consumption 2			
Country	Gross weight (pounds)	Tungsten content (pounds)	Gross weight (pounds)	Tungsten content (pounds)	Value	
1956						
North America: Canada Mexico		1, 703, 941 779, 540	3, 165, 989 1, 379, 353	1, 703, 782 667, 104	\$6, 040, 528 1, 451, 738	
Total	4, 777, 427	2, 483, 481	4, 545, 342	2, 370, 886	7, 492, 266	
South America: Argentina Bolivia 3 Brazīl Chile 3 Peru 3	8, 754, 756 3, 807, 621 491, 930	2, 163, 714 4, 320, 349 2, 081, 089 271, 019 912, 754	4, 112, 086 8, 098, 536 3, 853, 697 491, 930 1, 570, 734	2, 163, 714 4, 146, 450 2, 106, 809 271, 019 912, 754	6, 069, 456 13, 628, 069 5, 720, 993 1, 016, 386 3, 019, 897	
Total	18, 737, 127	9, 748, 925	18, 126, 983	9, 600, 746	29, 454, 801	
Europe: Finland France Netherlands Portugal Spain	30, 945 77, 452	28, 410 16, 468 42, 995 1, 395, 016 458, 617	110, 994 30, 945 56, 516 2, 356, 024 798, 184	59, 669 16, 468 32, 658 1, 341, 304 445, 612	106, 176 33, 873 62, 930 3, 180, 672 1, 109, 524	
Total	3, 455, 566	1, 941, 506	3, 352, 663	1, 895, 711	4, 493, 175	
Asia: Burma. Japan. Korea, Republic of. Malaya. Thalland	574, 957 89, 531 6, 526, 027 478, 528 871, 766	313, 318 51, 418 3, 632, 180 260, 968 490, 895	543, 475 44, 519 5, 477, 129 444, 236 809, 064	294, 660 25, 220 3, 081, 077 242, 964 450, 393	546, 958 , 46, 652 5, 493, 269 447, 476 874, 701	
Total	8, 540, 809	4, 748, 779	7, 318, 423	4, 094, 314	7, 409, 056	

See footnotes at end of table.

TABLE 9.—Tungsten ore and concentrate imported into the United States, 1956-57, by countries—Continued

	General i	imports 1	Imports for consumption 3			
Country	Gross weight (pounds)	Tungsten content (pounds)	Gross weight (pounds)	Tungsten content (pounds)	Value	
1956—Continued						
Africa: Belgian CongoEgypt	1, 056, 986	586, 902	1, 045, 846 15, 665	573, 888 5, 895	\$1, 314, 236 16, 250	
EgyptRhodesia and Nyasaland, Federation of	8, 977 840, 277	4, 445 443, 415	16, 031 865, 300	8, 412 455, 352	17, 435 1, 753, 339	
Union of South Africa	1, 906, 240	1, 034, 762	1, 942, 842	1, 043, 547	3, 101, 260	
Oceania:		=======================================	-, 0, 0			
Australia New Zealand	3, 619, 771 7, 994	1, 895, 590 4, 121	3, 540, 953 7, 994	1, 850, 407 4, 542	6, 052, 022 8, 131	
Total	3, 627, 765	1, 899, 711	3, 548, 947	1, 854, 949	6, 060, 153	
Grand total	41, 044, 934	21, 857, 164	38, 835, 200	20, 860, 153	4 58, 010, 711	
1957 North America: Canada	3, 187, 880 388, 045	1, 623, 897 199, 426	3, 187, 880 244, 758	1, 623, 897 124, 745	5, 629, 670 145, 743	
Total	3, 575, 925	1, 823, 323	3, 432, 638	1, 748, 642	5, 775, 413	
South America: Argentina Bolivia 3 Brazil Chile 3 Peru 3	3, 643, 569 4, 740, 358 3, 667, 568 153, 535 3, 410, 637	1, 910, 521 2, 335, 576 2, 051, 665 83, 564 1, 561, 583	3, 643, 569 5, 037, 267 3, 612, 453 153, 535 1, 991, 960	1, 910, 521 2, 440, 917 2, 011, 321 83, 564 1, 149, 333	5, 150, 110 5, 980, 339 3, 980, 387 310, 891 3, 436, 664	
Total	15, 615, 667	7, 942, 909	14, 438, 784	7, 595, 656	18, 858, 391	
Europe: Finland Netherlands Portugal Spain United Kingdom	22, 046 61, 931 1, 152, 192 154, 324 22, 400	12, 313 36, 505 652, 984 79, 548 16, 494	44, 481 1, 269, 801 263, 996	24, 578 721, 692 149, 950	28, 994 1, 655, 056 318, 981	
Total	1, 412, 893	797, 844	1, 578, 278	896, 220	2, 003, 031	
Asia: Burma Japan Korea, Republic of Malaya. Thailand	312, 592 2, 825, 155 112, 038 50, 386	177, 092 	267, 792 23, 081 3, 209, 687 235, 258 94, 921	149, 111 13, 037 1, 726, 991 129, 466 52, 585	201, 879 26, 419 2, 554, 381 207, 127 99, 482	
Total	3, 300, 171	1, 835, 038	3, 830, 739	2, 071, 190	3, 089, 288	
Africa: Belgian Congo	349, 303	204, 596	297, 373	163, 854	310, 828	
Oceania: Australia	2, 958, 539	1, 582, 069	2, 874, 601	1, 542, 578	4, 488, 495	
Grand total	27, 212, 498	14, 185, 779	26, 452, 413	14, 018, 140	4 34, 525, 446	

¹ Comprises ore and concentrate received in the United States; part went into consumption during year, and the remainder entered bonded warehouses.

² Comprises ore and concentrate withdrawn from bonded warehouses during year and receipts for con-

sumption.

3 Imports shown from Chile probably were mined in Bolivia or Peru and shipped from a port in Chile.

4 Owing to changes in tabulating procedures by the Bureau of the Census, data known to be not comparable with other years.

TABLE 10.—Ferrotungsten imported for consumption in the United States, 1956-57, by countries

[Bureau of the Census]

•		1956		1957		
Country	Gross weight (pounds)	Tungsten content (pounds)	Value	Gross weight (pounds)	Tungsten content (pounds)	Value
Europe: Austria Belgium-Luxembourg Germany, West Italy Netherlands	266, 355 22, 000 42, 121 11, 020 10, 582	213, 251 17, 311 33, 558 9, 258 8, 466	\$482, 229 42, 705 77, 948 21, 065 19, 895	81, 137 22, 046 70, 136	65, 257 17, 637 55, 427	\$123, 046 25, 600 94, 22
Portugal Sweden United Kingdom	315, 817 99, 218 113, 097	262, 340 84, 620 93, 837	531, 514 210, 339 221, 743	146, 837 132, 277 51, 930	120, 002 113, 688 42, 866	151, 541 202, 207 77, 749
Total Asia: Japan	880, 210 193, 019	722, 641 147, 980	1, 607, 438 337, 157	504, 363	414, 877	674, 364
Grand total	1, 073, 229	870, 621	1, 944, 595	504, 363	414, 877	674, 364

WORLD REVIEW

Free World production of tungsten concentrate (not including the United States) decreased about 10 percent in 1957 compared with 1956, chiefly because of lowered demand and prices. Major factors in the decline were United States Government curtailment of stockpile purchasing from foreign sources and suspension of purchasing from domestic sources.

An increasing tendency to process concentrate in the areas of origin was due in large part to the widespread surplus and search for new markets. New plants to process tungsten or plans for their construction were reported in several nations. The synthetic scheelite plant in the Republic of Korea, scheduled for completion in June of 1958, will represent a substantially increased foreign processing facility.

NORTH AMERICA

Canada.—Concentrate was produced in 1957 at the Salmo, British Columbia, operation of Canadian Exploration, Ltd. Output was sold to the United States Government under a contract requiring completion of deliveries early in 1958.

The Burnt Hill wolframite deposit was described. 13

Atlas Steels, Ltd., was by far the leading consumer of tungsten in Canada. Other consumers were Canadian General Electric Company, Ltd.; Shawinigan Chemicals, Ltd.; A. C. Wickman (Canada), Ltd.; Kennametal of Canada, Ltd.; Deloro Smelting and Refining Company, Ltd.; Wheel Trueing Tool Company of Canada, Ltd.; Boyles Bros. Drilling Company, Ltd.; Johnson, Matthey and Mallory, Ltd.; Canadian Westinghouse Company, Ltd.; and Dominion Colour Corporation, Ltd.

¹³ Victor, Iris, Burnt Hill Wolframite Deposit, New Brunswick, Canada: Econ. Geol., vol. 52, No. 2, March-April 1957, pp. 149-168.

TABLE 11. — World production of tungsten ore and concentrate (60 percent WO_3 basis), by countries, 1948-52 (average) and 1953-57, in short tons ¹

[Compiled by Pearl J. Thompson and Berenice B. Mitchell]

Country	1948-52 (average)	1953	1954	1955	1956	1957
North America: Canada	514 228 5, 101	2, 037 752 9, 591	1, 809 601 13, 691	1, 618 626 16, 412	1, 893 628 14, 737	1, 661 294 2 5, 520
Total	5, 843	12, 380	16, 101	18, 656	17, 258	7, 475
South America: Argentina Bolivia (exports) Brazil Peru	220 3, 072 3 1, 253 524	661 4, 216 3 2, 146 1, 001	873 4, 900 3 1, 513 849	1, 213 5, 935 3 1, 410 893	1, 293 5, 255 3 2, 017 1, 242	1, 435 4, 809 4 2, 156 1, 257
Total	5, 069	8,024	8, 135	9, 451	9, 807	9, 657
Europe: Austria						138
FinlandFrance	790 790 6	1, 443 30	139 1, 129 36	146 1, 520 30	1, 229 26	1, 034 22
Portugal Spain Sweden U, S. S. R. ⁵ United Kingdom. Yugoslavia	4, 095 2, 347 411 7, 400 71	5, 581 3, 252 485 8, 300 67 132	5, 076 2, 827 504 8, 300 101 5 110	5, 122 1, 728 510 8, 300 80 5 110	5, 506 1, 584 504 8, 300 68 5 110	4, 641 1, 132 534 8, 300 5 110 5 110
Total 5		19, 300	18, 200	17, 500	17, 400	16,000
Asia: Burma ⁶ China ⁵ Hong Kong India	1, 618 15, 200 7 71 6	2, 205 18, 700 165 17	1, 323 19, 800 33	2, 927 19, 800 28	2, 982 19, 800 30 2	2, 873 22, 000 42 2
Japan Korea:	154	805	860	990	1, 200	1, 121
North 5 Republic of Malaya Thailand	1, 190 2, 037 69 1, 334	1, 650 8, 929 162 1, 929	1, 650 4, 575 127 1, 323	1, 650 3, 757 138 1, 367	1, 650 4, 472 117 1, 411	2, 200 4, 580 63 1, 080
Total 5	21,700	34, 600	29, 700	30, 700	31, 700	34, 000
Africa: Algeria. Belgian Congo 8. Egypt. Morocco: Southern Zone. Nigeria. Rhodesia and Nyasaland, Federation	7 40 622 10 14 13	33 1, 403 15 13 20	1, 687 4 14 1	1,733 21	2, 142 3 4	1, 914
of: Southern Rhodesia	19 180	419 163 13 197	281 294 6 204	245 282 10 180	287 388 7 193	180 278 224
Union of South Africa	246	2,701	3, 166	3, 182	3,354	295 2, 891
Total	1,380	2, 101	9, 100	0, 102	0,004	2,331
AustraliaNew Zealand	1,744 40	2, 660 44	2, 563 33	2, 765 § 33	2, 954 33	2, 605 36
Total	1,784	2, 704	2, 596	2, 798	2, 987	2, 641
World total (estimate)	50, 900	79, 700	77, 900	82, 300	82, 500	72, 700

¹ This table incorporates a number of revisions of data published in previous Tungsten chapters. Data o not add to totals shown owing to rounding where estimated figures are included in the detail.

² Mine production was 8,439 short tons.

² Mme production was cyres sheet?
3 Exports.
4 United States imports.
5 Estimate.
5 Including W03 in tin-tungsten concentrates.
7 A verage for 1951-52.
3 Including Ruanda-Urundi.

SOUTH AMERICA

Argentina.—Tungsten-ore purchases during 1957 by Instituto Argentino para la Promocion de Intercambio (IAPI) were 716 short tons of wolframite and 606 tons of scheelite, compared with 606 and 529 tons, respectively, in 1956. The grade ranged between 65 and 70 percent WO₃. Completion of deliveries specified by the United States Government purchase contract was expected by mid-1958, at which time Argentine tungsten (and beryllium) will be released for unrestricted sale. IAPI, a Government buying monopoly, has been in liquidation since October 1955.

Bolivia.—The last United States Government purchase contract for Bolivian concentrate was virtually fulfilled in 1957. This factor and lack of demand from other world markets resulted in decreased

production, compared with 1956 output.

The most important tungsten mines of the Bolivian Mining Corporation (COMIBOL) included Viloco, Chorolque, Tasna, Bolsa Negra, Caracoles, and Kami and, to a smaller extent, Huanuni, Amimas. Cerro de Potosi, and San Jose.

W. R. Grace and Company continued to produce at its Choilla

tungsten mine.

Certain operations were permitted to reduce working forces in the interest of greater efficiency and lowered costs. It was reported that Bolsa Negra was to be closed as uneconomic and that Kami will

discontinue its output of tungsten and will produce tin only.

Brazil.—Scheelite production from the Barro Verde mine in Rio Grande do Norte was begun in April 1957 by Mineração Wah Chang. A 300-ton-per-day concentrating plant employed gravity methods, flotation, roasting, and magnetic separation. A second concentrating unit of equivalent capacity was being installed. Wah Chang continued operating at its Inhanjara mine near Jundiai, São Paulo.

Most tungsten producers in northeastern Brazil curtailed output

because of decline in world prices.

Peru.—The United States Government purchase contract for Peruvian concentrate was scheduled to end with completion of deliveries Fermin Málaga Santolalla in the Pasto Bueno district was the principal supplier of the 893 short tons of 60 percent WO3 equivalent concentrate exported in 1957; 886 short tons was destined for the United States.

EUROPE

Austria.—In 1957, the Österreichisch-Amerikanisch Magnesit A. G. began mining tungsten ore in Austria. Output was 122 short tons of concentrate containing 84 tons of WO₃.

France.—Although 4 mines were closed in late 1956 and in 1957 owing to declining prices, increased production at Montredon and Montmins provided about half the Nation's requirements.

Portugal.—Production in 1957 was curtailed 15 to 20 percent in quantity, and the value of concentrate declined about 50 percent

compared with 1956.

Major underground mining continued throughout the year (working only the higher grade sections) because of the high cost of closing, but output was greatly curtailed in the last quarter.

U. S. S. R.—According to a Soviet publication, ¹⁴ large reserves of tungsten ore have been "explored" in the U. S. S. R.

ASIA

Burma.—Agreement was reported late in 1957 between Mawchi Mines, Ld., and the President of the Union of Burma, on formation of a joint venture company to produce and market tin and wolfram concentrates.

The Government-financed Mineral Resources Development Corporation opened an ore-buying depot at Tavoy and also continued to

work the Yadana Pone wolframite mine in the Mergui district.

China.—Statistics are not available, but the productive capacity and ore reserves of Chinese tungsten mines are considered by far the largest in the world. According to a report issued by the Geological Bureau of the Chinese Ministry for Metallurgical Industry, a large new area of tungsten mineralization in eastern Kwangtung Province has been discovered.

Korea.—Because of limited demand, only 6 tungsten mines (compared with 120 in 1953) were active at end of the year, and production

for the year decreased to less than one-third of capacity.

A chemical plant installed at the Sangdong mine to improve the grade and increase the recovery of concentrate was expected to begin operating in June 1958. Utah Construction Company was acting as engineering consultant. A contract under negotiation at year end between the Korea Tungsten Mining Company, operator of the Sangdong and Dalsung mines, and Continental Ore Corp. of New York called for sales of 386 short tons of concentrate per month at a price of \$11 per short-ton unit of WO₃.

Thailand.—Production declined about 46 percent, although, in March 1957, the Government reduced the export royalty from 15 percent to 10 percent as partial compensation for lowered prices.

AFRICA

Tungsten production from Africa was about 7 percent of the Free World total; in most areas output declined because of low prices. Exports to the United States were 84 percent lower than in 1956 and comprised only 6 percent of the total African production. A contract under which the United Kingdom absorbed Unganda's output of wolfram expired in September, and production in the last quarter was greatly curtailed. Tungsten-ore reserves in Uganda were believed to be substantial.

OCEANIA

Australia.—The United States Government contract for purchase of concentrate from King Island Scheelite, Ltd., on King Island, Tasmania, was scheduled for completion early in 1958. This company, the major Australian producer, mined by open-pit methods a deposit with reserves estimated by the company at 2,723,000 tons

¹⁴ Achievements in 40 years of Soviet Power, in Figures, a statistical handbook, was published in Moscow in late 1957 by the Central Statistical Administration of the U. S. S. R. Counsel of Ministers. A translation of the article on Natural Resources of the handbook was published in Mineral Trade Notes, vol. 45, No. 6, December 1957, pp. 115-117.

averaging 0.48 percent WO₃. Total Australian production in 1957 was 12 percent below that in 1956, and exports to the United States declined 17 percent.

TECHNOLOGY

A primary aim of tungsten research in 1957 was developing alloys resistant to stress and oxidation for use at temperatures far above those currently feasible. 15 Tungsten has been employed in hightemperature applications, such as high-speed cutting tools, lamp filaments, and high-temperature alloys, because its melting point is The possibility of extending its higher than that of any other metal.

use to more rigorous operating conditions was studied.

A prediction was made ¹⁶ that within 12 to 15 years alloy development may increase "* * * the maximum temperature for strength from the 35 to 45 percent of melting point, for a pure metal, up to the 70- to 80-percent level * * * for alloys based on that metal." the use of tungsten-based alloys at temperatures above 4,100° F., compared with the 1957 temperature limitation of about 2,600° F. under the same conditions, was foreseen. Achievement of extreme purity and the resulting perfect crystals might increase strength; another possibility was believed to lie in dispersion of minute, hard particles in the crystals to prevent movement along grain boundaries. A discussion of heat-resistant alloys 17 cited the development several decades ago of a thoriated tungsten alloy possessing exceptionally high strength. This alloy has a very fine grain microstructure with finely dispersed particles of relatively insoluble thorium oxide (ThO₃) at the grain boundaries.

The effect of special impurity additions in tungsten was studied, 18 and certain additions were found capable of raising the recrystalliza-

tion temperature several hundred degrees.

In 1957 the Federal Bureau of Mines began research on the production and evaluation of ultrapure tungsten. Studies of the processing technology were in preliminary stages at the end of the calendar year; they included review and pioneering investigations of electrolysis, using fused salts and other electrolytes, preparation and reduction of tungsten halides, bomb reduction, purification of tungstenbearing solutions, precipitation of salts, and hydrogen reduction. Techniques for preventing contamination during processing received special attention.

Improved analytical procedures for determining trace impurities in ultrapure tungsten were sought for evaluating research results. Chemical, vacuum-fusion, spectrographic, polarographic, and radio-

¹⁵ Hiester, N. K., Ferguson, F. A., Fishman, N., Todays Frontiers in High Temperature Technology: Chem. Eng., vol. 64, No. 3, March 1957, pp. 237-251.

Thielemann, R. H., Are We Overlooking Tungsten?: Pres. at AIME convention, Feb. 26, 1957, New

Orleans, La., 11 pp.

16 Jalnke, L. P., The Future of High-Temperature Metallurgy: Metal Prog., vol. 72, No. 4, October 1957,

pp. 113-118.

17 Pugh, J. W., Refractory Metals, Tungsten, Tantalum, Columbium, and Rhenium: (AIME Paper pres, in Cleveland at Regional Conference on High-Temperature Materials, Apr. 17, 1957, 8 pp.)

18 Swalin, R. A., and Geisler, A. H., The Recrystallization Process in Tungsten as Influenced by Impurities: Jour. Inst. Metals, vol. 86, 1957-58, pp. 129-134.

activation methods of analysis were being investigated. Descriptions of a number of reports on analytical procedures were published.19

Two methods of purification were described—a zone-refining tech-

nique 20 and the iodide process.21

À paper on the properties of tungsten was presented.22 The preparation of polycrystalline tungsten samples to show both large- and small-angle grain boundaries 23 was described, and the structure of metal surfaces was studied.24

A process for coating heat-resistant alloys as protection against oxidation by a multiple-phase diffusion process and a metallographic

study were published.25

Various characteristics of tungsten alloys were described.26

A report on certain high-temperature properties of tungsten was

published.27

The manufacture, characteristics, and uses of cemented carbides 28 and the selection of carbide grades were described.29 The development of heavy metal as a die material for extrusion of titanium shapes 30 was reported. An electric resistance-type furnace, capable of melting samples of tungsten in 5 minutes was reported.31

Nararenko, V. A., [Analysis of Pure Metals]: Zavodskaya Laboratoria, vol. 23, No. 10, October 1957, pp. 1162-1167.

Oreenberg, P., Spectrophotometric Determination of Tungsten in Tantalum, Titanium, and Zirconium Using Dithiol: Anal. Chem., vol. 29, June 1957, pp. 896-898.
Cosgrove, J. F., and Morrison, G. H., Activation Analysis of Trace Impurities in Tungsten, Using Scintillation Spectrometry: Anal. Chem., vol. 29, July 1957, pp. 1017-1019.

Bricker, C. E. and Waterbury, G. R., Colorimetric Determination of Microgram Amounts of Tungsten in Uranium-Tantalum-Tungsten Alloys: Anal. Chem., vol. 29, July 1957, pp. 1033-1095.

Ocalverley, A., Davis, M., and Lever, R. F., The Floating-Zone Melting of Refractory Metals by Electron Bombardment: Jour. Sci. Instruments, vol. 34, April 1957, pp. 142-147.

Shelton, R. A. J., The Deposition of Metals Other Than Those of the Titanium Group by the Hot-Filament Technique: Metallurgia, vol. 56, No. 338, December 1957, pp. 283-289.

Pupik, J. W., Tensile and Creep Properties of Tungsten at Elevated Temperatures: ASTM, 60th ann. meeting, June 16-21, 1957 pp. 1-10.

Brock, E. G., Grain Boundaries for Field-Emission Microscopy: Jour. Appl Phys., vol. 28, No. 2, February 1957, pp. 241-244.

Mueller, E. W., Study of Atomic Structure of Metal Surfaces in Field Ion Microscope: Jour. Appl. Phys., vol. 28, No. 1, January 1957, pp. 1-6.

Brockle, H., Protection contre l'oxydation des alliages refractaires par le procédé de diffusion en phases multiples: Rev. métallurgie, vol. 54, No. 1, January 1957, pp. 16-22. Etude micrographique des alliages riches en Mo-Cr et en W-Cr des systems Mo-Cr-Fe et W-Cr-Ni: Rev. métallurgie, vol. 54, No. 1, January 1957, pp. 16-22. Etude micrographique des alliages riches en Mo-Cr et en W-Cr des systems Mo-Cr-Fe et W-Cr-Ni: Rev. métallurgie, vol. 54, No. 1, January 1957, pp. 16-22. Etude micrographique des alliages riches en Mo-Cr et en W-Cr des systems Mo-Cr-Fe et W-Cr-Ni: Rev. métallurgie, vol. 54, No. 1, January 1957, pp. 16-22.

Calea de de diffusion en

¹⁹ Nazarenko, V. A., [Analysis of Pure Metals]: Zavodskaya Laboratoria, vol. 23, No. 10, October 1957,

Beneficiation and analysis of tungsten ores at Canadian Exploration, Ltd., Salmo, British Columbia, 32 and a description of high-voltage and magnetic-separation methods were published.33

French gravitational washing plants and the mines 34 where they are installed and the deposits and treatment of ore in Belgian Congo

and Ruanda-Urundi were described.³⁵

The tungsten industry of California, including geology, localities, history, beneficiation, metallurgy, and utilization, was reviewed.36

Strip-mining steeply dipping hillside deposits in Nevada was reported.37

Two Federal Bureau of Mines reports related to tungsten.³⁸

³² Kipp, H. H., Development of Tungsten Ore-Dressing Practice: Canadian Min, and Met. Bull., vol. 50, No. 539, March 1957, pp. 134–136.

McLeod, R. J., Tungsten Milling and Current Metallurgy at Canadian Exploration Ltd.: Canadian Min. and Met. Bull., vol. 50, No. 539, March 1957, pp. 137–142.

Wilson, B., Rapid Analytical Techniques at Canadian Exploration Ltd.: Canadian Min. and Met. Bull., vol. 50, No. 539, March 1957, pp. 143–146.

32 Carpenter, J. Hall, High-Voltage and Magnetic Separation: Min. Cong. Jour., vol. 43, No. 3, March 1957, pp. 62–65.

38 Carpenter, J. Hall, High-Voltage and Magnetic Separation: Min. Cong. Jour., vol. 43, No. 3, March 1957, pp. 62-65.
34 Seyer, P., Les Laveries gravimetriques françaises et les mines qui les approvisionment: Ann. des mines, vol. 145, October 1956, pp. 3-32.
35 Prigogine, A., Concentration des minerais de wolfram et de niobium-tantale au Congo Belge et au Ruanda-Urundi: Echo des mines et métallurgie, No. 3493, June 1956, pp. 343-347.
36 Stewart, Richard M., Tungsten chapter: Min. Commodities of California, California Dept. Natural Res. Div. Mines, Bull. 176, December 1957, pp. 655-667.
37 Newman, William J., Mining Tungsten Deposits by Open-Pit Methods Pays at Getchell Mine: Eng. Min. Jour., vol. 158, No. 8, August 1957, pp. 90-93.
38 Berman, Joseph, and Campbell, William J., Relationship of Composition to Thermal Stability in the Hübnerite-Ferberite Series of Tungstates: Bureau of Mines Rept. of Investigations 5300, 1957, 14 pp. Kenworthy, H., Starliper, A. G., and Freeman, L. L., Recovery of Tin and Tungsten From Tin-Smelter Slags: Bureau of Mines Rept. of Investigations 5307, 1957, 12 pp.

Uranium

By James Paone 1

RANIUM-ORE production from domestic sources reached a new peak in 1957. At the end of the year plans in effect were expected to result in a record growth in industry capacity in 1958. The domestic-ore reserve was increased from 60 to 76 million tons

during 1957.

The first full-scale power reactor, the 60,000-kilowatt Pressurized-Water Reactor at Shippingport, Pa., was completed. Four other civilian power reactors produced electrical power in the United States during the year. Three nuclear-powered submarines were in operation, an Army package power reactor was operating successfully, and 16 additional nuclear submarines, an aircraft carrier, and a guided-missile cruiser were authorized.

Uranium-concentrate production from the Free World during the year was estimated at about 24,000 tons, produced chiefly by the United States, Canada, Union of South Africa, Belgian Congo, Australia, France, and Rhodesia. Production for 1959 was estimated at about 40,000 tons. Ore reserves continued to rise, and milling facilities were expanded in almost every uranium-producing country.

The market for uranium remained essentially military, but some

material was used for peaceful applications.

About 50 nations had organized special Government agencies to promote its use. The International Atomic Energy Agency came into existence during the latter part of 1957 and by the end of the year had a membership of 65 countries. The Agency's basic objective was to accelerate and enlarge the contribution of atomic energy to the well-being of the world.

Two important multilateral organizations were established to further peaceful objectives of the atom—the European Atomic Energy Community (Euratom) and the European Nuclear Energy Agency of the Organization of European Economic Cooperation (OEEC).

In November the Inter-American Nuclear Energy Commission, an organ within the framework of the Organization of American States

(OAS) was formed to survey the needs of members for research and training in atomic energy.

Nuclear-research reactors were operating in or were being planned by most countries in the world; at least five nations had or were soon to have power reactors in operation.

GOVERNMENT REGULATIONS

Contracts for uranium exploration under the Defense Minerals Exploration Administration (DMEA) program totaled \$1 million during

1957 compared with \$2 million in 1956; 34 contracts were executed. The Government has spent \$6 million on uranium exploration since the program began.

The Government regulated the prices of uranium ores and concen-

trates throughout 1957.

Legislation, which permitted holders of uraniferous lignite mining claims to delay assessment work on their claims until July 1, 1958, was passed. The bill was designed to protect claim holders while the AEC

TABLE 1.—Defense Minerals Exploration Administration contracts involving uranium executed or amended during 1957, by States

State and contractor	County	Total amount of contract 1
Alaska		
Southeastern Mining & Exploration Co., Inc	Juneau	\$18,000
COLORADO		-
Uranium Enterprises		11,700
Lisbon Uranium Corp	Saguache	29, 475
Universal victuals Co. Lisbon Uranium Corp. New Idria Mining & Chemical Co. D. & J. Uranium Exploration Co. Yellow Queen Uranium Co.	do	45, 572 53, 444
D. & J. Uranium Exploration Co	Saguache	44, 800
Yellow Queen Uranium Co.	Jefferson	44, 192
Cervi, Arthur A	do	17, 536
Climay Uranium Co	do	20, 256
	San Miguei	248, 380
MONTANA Midland Mining Co	Carbon	27, 008
		21,000
New Mexico	3.5 1	
New Jersey Zinc Co	McKinley	90, 890
Treasure Uranium & Resources	do	113, 244
	u0	25, 832
OREGON	_	
Timber Beast Mining Co	Harney	24, 772
SOUTH DAKOTA		
Anderson, Wesley, and others	Harding	6, 700
McAlester Fuel Co	Fall River	72, 136
TEXAS	·	
Briscoe County Uranium Co	Briscoe	11, 116
Utah		•
Bleak Uranium Co., Inc	San Juan	73, 603
Walter Duncan Mining Co	do	46, 608
Daimid Oil & Uranium, Inc.	do	25, 441
Vanedium Ousen Usenium Com	do	25, 441 13, 500
Four Corners Hrenium Corn	do	53, 872
Daubert Chemical Co	Emery	102, 592
Vanadium Queen Uranium Corp Four Corners Uranium Corp Daubert Chemical Co. Maxim Exploration Co.	ban Juan	26, 808
		103, 700
WASHINGTON		
Geo-Resource Corp	Stevens	45, 960
North Star Transum Inc	Spokane	9, 520
	do	2, 772
Wyoming		
Gaddis, W. H., and others	Fremont	64 704
Metals, Inc. (U & S)	Natrona	64, 784 31, 732
Modern Mines Development Co.	Big Horn.	40, 870
r-U Mining Corp.	Fremont	81, 200
Gaddis, W. H., and others. Metals, Inc. (U & S). Modern Mines Development Co. P-C Mining Corp. Little Mo Mining Co.	do	21, 120
Total		1, 655, 135
		-, 000, 100

¹ Government participation, 75 percent.

conducted studies on the extraction of uranium from lignite to deter-

mine the economic possibilities.

The AEC and Bureau of Land Management under a new regulation (10 CFR 60) would cooperate in issuing uranium-prospecting permits and mining leases on Government lands, where other Federal agencies lack authority. The regulation provided for a maximum area of 1,920 acres, a permit period of 2 years, a 2-year renewal on expiration, an annual rental fee of \$1.50 per acre, and a Government royalty of 10 percent of the gross; mining leases were for 5 years, with a 3-year extension.

Regulations developed by the AEC and in effect in 1957 were:

10 CFR Part 20—Standards for Protection Against Radiation, effective February 28, 1957.

10 CFR Part 30—Licensing of Byproduct Material, effective February 10, 1956. 10 CFR Part 40—Control of Source Material, effective March 31, 1947, with

amendments from time to time.

10 CFR Part 50—Licensing of Production and Utilization Facilities, effective February 18, 1956.

10 CFR Part 55—Operators' Licenses, effective February 3, 1956.
10 CFR Part 70—Special Nuclear Materials Regulations, effective March 4,

10 CFR Part 140—Financial Protection Requirements and Indemnity Agreements, effective September 11, 1957.

The two regulations issued in 1957 provided for (1) indemnification of persons found liable for nuclear accidents when the losses exceed the amount of private insurance available and for (2) standards for protection against radiation.

During 1957, the 44 applications for licenses to construct and operate research and test reactors and 1 power reactor were approved.

A new office to direct development of nuclear power for aircraft and guided missiles was created by the Department of Defense and the AEC.

DOMESTIC PRODUCTION

Mine Production.—The United States remained the world's leading The annual rate of production by the end of producer of uranium. the year was about 10,000 tons of uranium oxide (U₃O₈) and was expected to increase to 12,500 in 1958.

Uranium-ore receipts at all private plants and Government purchase depots totaled 3,676,000 dry short tons; ore fed to processing installations totaled 3,575,000 tons, with an average grade of 0.27 percent

Uranium ore was mined by 727 operators on 1,300 properties in Arizona, California, Colorado, Montana, Nevada, New Mexico, North Dakota, Oregon, South Dakota, Texas, Utah, Washington, and Production totaled 2 million tons during the latter half of 1957, as compared with about 1.7 million tons for the first half of 1957 and 1.66 million tons for the latter half of 1956. Anticipated mine production for 1958 was 5.5 million tons and for 1959, 7.2 million tons.

Exploration drilling for uranium by private industry totaled about 5.78 million feet as compared with 4.8 million in 1956 and 5.75 million

About 5,500 persons were estimated as engaged directly in uranium mining and about 3,000 persons in processing plants.

TABLE 2.—Uranium mine production in 1957, by States

State	Short tons	Average grade per- cent U ₃ O ₈	U ₃ O ₈ pounds	Total value
Arizona Colorado Montana New Mexico South Dakota Utah Wyoming Undistributed ¹ Total	 286, 042 740, 168 879 1, 187, 878 69, 632 1, 075, 789 275, 518 59, 572 3, 695, 478	0. 26 26 43 .22 .17 .35 .22	1, 510, 647 3, 830, 386 7, 644 5, 169, 221 231, 215 7, 510, 665 1, 192, 005 224, 692	\$6, 207, 111 16, 061, 646 33, 270 21, 263, 016 804, 946 32, 542, 617 4, 931, 772 782, 741 82, 627, 119

¹ Includes Alaska, California, Idaho, Nevada, Oregon, Texas, and Washington.

Almost 90 percent of the 727 producers in 1957 shipped uranium ore from mines producing less than 50 tons up to 5,000 tons a year; over 40 percent of the operators each shipped less than 50 tons annually; and 91.2 percent of the production was delivered by about 10 percent of the 727 producers. Further development of the large deposits in the Ambrosia Lake and Gas Hills areas will increase the percentage of output by the leading producers. The number of mine operators in 1957 was 727, compared with 843 in 1956, 748 in 1955, and 700 in 1954.

Mill Production.—Uranium-concentrate production (chiefly from 16 mills in operation by the end of the year) had reached 8,640 tons of $\rm U_3O_8$ and represented an increase of about 30 percent over production in 1956. This total included 146 tons, produced as a byproduct in the chemical processing of phosphate rock in Florida and Illinois, from treating Idaho euxenite at the St. Louis plant of Mallinckrodt Chemical Company, and from reprocessing refinery residues at the Vitro Corp. plant, Canonsburg, Pa.

There were 12 mills active in the Western United States at the beginning of 1957, and 4 others came into production during the year.

Domestic-uranium-concentrate purchases by the Commission were about \$171 million in 1957 compared with \$134 million in 1956. Purchases for 1958 are estimated at \$247 million and for 1959 at \$322 million, almost double those in 1957.

In October the AEC announced that uranium output would be limited to mill contracts under negotiation because the point had been reached where it no longer was to the interest of the Government to expand production of uranium concentrate. The way was left open for extending limited expansion in areas having no present milling facilities.³

The aggregate capacity of the 16 mills in operation at the end of the year was over 11,000 tons per day. All of the mills had sulfuric-acid leaching facilities; the acid leach was used only as a scavenger at two of the mills, which primarily used a sodium carbonate leach for recovering uranium and vanadium. Two other mills had both acid and carbonate circuits for processing a variety of ores, especially high-lime-content ores.

² Johnson, Jesse C., Developments in the Atomic Energy Commission's Program: Presented at National Western Mining Conference, Denver, Colo., Feb. 7, 1958.
³ Johnson, Jesse C., Uranium Production in the United States: Presented at the 4th Annual Conference of the Atomic Industrial Forum, New York, N. Y., Oct. 28, 1957.

TABLE 3.—Exploration drilling for uranium by industry in the United States and Alaska

				francis for minimum to the first	C		2			340		
	January Jun	January through June, 1955	July t Decem	July through December, 1955	January June	January through June, 1956	July t Decem	July through December, 1956	January June	January through June, 1957	July t Decemi	July through December, 1957
State or Territory	Number of oper- ators	Feet	Number of oper- ators	Feet	Number of oper- ators	Feet	Number of oper- ators	Feet	Number of oper- ators	Feet	Number of oper- ators	Feet
Alaska. Atrona. Colorado. Colorado. Montana. Montana. Montana. Montana. New York New York Ohly Ohly Pennsylvania Pennsylvania Renta Botta Pennsylvania Pennsylvania Washington Washington Utah	222 222 223 223 223 223 223 223 223 223	408,998 405,080 18,000 13,700 499,308 11,334 221,331 822,708 4,626 74,721	277 277 177 177 8 8 8 8 8 8 3 3 3 3 16 16 16 16 16 16 16 16 16 16 16 16 16	544,695 147,103 645,133 645,133 6,835 751,739 5,000 5,000 5,000 87,178 87,178 833,538 833,538 833,738	28 24 173 173 113 25 26 110 1111 113 113 113 113 113 113 114 115 116 117 117 117 117 117 117 117 117 117	2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	254 254 257 258 258 258 258 258 258 258 258 258 258	100, 883 471, 908 113, 319 5, 500 (1) (2) (2) (2) (3) (3) (4) (4) (4) (5) (4) (6) (7) (6) (7) (7) (8) (7) (8) (8) (7) (9) (7) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	188 154 154 157 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	814,666 814,666 567,555 1,555 3,230 897,570 (1) (1) (2) (3) (4) (1) (1) (1) (1) (2) (3) (4) (4) (5) (5) (6) (7) (7) (8) (1) (1) (1) (1) (1) (2) (3) (4) (4) (5) (5) (6) (7) (7) (8) (8) (9) (9) (9) (9) (9) (9) (1) (1) (1) (1) (1) (2) (3) (4) (4) (5) (6) (7) (7) (7) (8) (9) (9) (9) (9) (9) (9) (9) (9	1350 1350 1550 1550 1550 1550 1550 1550	383,2146 663,008 663,378 663,378 113,966 494,072 1188,770 11,899 11,899 11,089
Total	442	2, 458, 426	576	3, 292, 207	515	2, 697, 876	416	2, 109, 220	409	3, 366, 480	407	2, 416, 063

¹ Figure withheld to avoid disclosing individual company confidential data, included with "Undistributed."

TABLE 4.—Uranium mills in operation or under construction during 1957

Compan y	Location	Capacity (tons of ore per day)	Estimated cost of mill (thousand dollars)
OPERATING			
The Anaconda Co. Climax Uranium Co. Dawn Mining Co. Kerr-McGee Oil Industries, Inc. Mines Development, Inc. National Lead Co., Inc. Rare Metals Corp. of America. Texas-Zinc Minerals Co. Trace Elements Corp. Union Carbide Nuclear Co. Uranium Reduction Co. Vanadium Corp. of America. Vanadium Corp. of America. Vitro Uranium Co. Western Nuclear Corp.	Ford, Wash. Shiprock, N. Mex Edgemont, S. Dak. Monticello, Utah Tuba City, Ariz. Mexican Hat, Utah Maybell, Colo Uravan, Colo Rifie, Colo Moab, Utah Durango, Colo Naturita, Colo Salt Lake City. Utah	500 300 600 250 775 300 1,100 280 1,500 430	19, 358 3, 088 3, 100 3, 161 1, 900 5, 000 7, 000 2, 208 5, 000 1, 600 8, 250 813 1, 000 5, 500 3, 600
Fremont Minerals, Inc. Gunnison Mining Co. Homestake-New Mexico Partners. Homestake-Sapin Partners. Kermac Nuclear Fuels Corp. Lakeview Mining Co. Phillips Petroleum Co. Union Carbide Nuclear Co.	Gunnison, Colo. Grants, N. Mexdododododododo	3, 300 210	3, 500 2, 025 5, 325 9, 000 16, 000 2, 600 9, 500 8, 500

Based on information available to the Commission, current direct and indirect costs of milling uranium, exclusive of major replacements and amortization, range from \$8 to \$15 per ton for the smaller mills and \$7 to \$10 for the larger. Overall processing cost per ton would be increased \$5 to \$8 for mills recovering vanadium.

Acid consumption in leaching ranged from 40 to 400 pounds per ton and averaged about 180 pounds. Chemical costs for leach circuits ranged from \$2 to as high as \$7 per ton of ore treated and for a regenerative sodium-carbonate circuit normally ranged from \$1.50 to \$2.50

per ton of ore treated.

Uranium-ore-processing facilities in the United States ranged in cost from \$5,000 to \$10,000 for each ton of daily capacity, depending on the size of the operation. Amortization charge, based on a 5-year period, would be \$2.80 to \$5.50 per ton. Mills wholly or partly amortized under contracts executed with the AEC before March 31, 1962, could be required to reserve a reasonable percentage of mill capacity for treating purchased or custom ores. The total mill capacity available for custom ore in operating mills and those under construction would be about 4,300 tons per day, or 1,540,000 tons a year. In 1957 approximately 39 percent of all the ore milled was custom ore.

By the end of the year average processing costs were about half those in 1953. Average uranium recovery in 1957 exceeded 90 percent, compared with about 88 percent in 1956.

Refinery Production.—Uranium was refined and converted at three AEC Feed Materials Production Facilities. The refineries operated by private industry for the Commission in 1957 were:

Mallinckrodt Chemical Works, St. Louis, Mo. Mallinckrodt Chemical Works, Weldon Springs, Mo. National Lead Co. of Ohio, Fernald, Ohio.

The Weldon Springs, Mo., plant completed in 1957 and the St. Louis, Mo., plant produced high-purity uranium metal from uranium concentrates. In addition to producing metal, the Fernald, Ohio, facility rolled and machined fuels for production reactors. The three plants were operated under cost-plus-fixed-fee contracts. Feed materials were also recovered and processed at the AEC Hanford facilities at Richland, Wash., and at the Savannah River facilities at Aiken, S. C. Uranium hexafluoride was produced from high-purity uranium oxide at Commission plants at Oak Ridge, Tenn., and Paducah, Ky., both operated by Union Carbide Nuclear Co. A third plant, under construction at Portsmouth, Ohio, and scheduled for completion in early 1958, also was to convert high-grade oxide to hexafluoride.

General Chemical Division of Allied Chemicals & Dye Corp., New York, N. Y., continued constructing its facility at Metropolis, Ill., for producing uranium hexafluoride from concentrates. Uranium concentrate for the General Chemical conversion process can be either purchased from the AEC at \$10 per pound of $\dot{\rm U_3O_8}$ or leased at an annual charge of 4 percent of the \$10 value. Conversion of 5,000 tons of U₃O₈ to purified UF would add about \$10 million to the value of the material. The project was issued a certificate of necessity by The estimated cost of the installation was \$11 million.

Mallinckrodt Chemical plant at Hematite, Mo., continued producing uranium dioxide enriched in U-235. The plant maintains processes for making other forms of uranium compounds suitable

for use in atomic reactors.

During the year many tons of uranium was recovered from underground waste-storage tanks by General Electric Co., operator of the AEC Hanford plant. The man-made deposit, which represented one of the largest concentrations of uranium in the world, resulted from accumulations of irradiated uranium, from which the plutonium had been extracted.

The first batch of unirradiated commercial-enriched uranium scrap was processed in 1957 by Baker & Co., Newark, N. J. Other firms licensed to recover uranium scrap generated from manufacturing fuel elements include Nuclear Materials and Equipment Corp. and

Davison Chemical Co.

Production of Fissionable Material.—Enriched uranium (U-235) was produced in gaseous diffusion plants owned by the Commission. The Government-owned plants operated by private industry were:

Union Carbide Nuclear Corp., Oak Ridge, Tenn. Union Carbide Nuclear Corp., Paducah, Ky. Goodyear Atomic Corp., Portsmouth, Ohio.

Capital investment in the three plants was about \$3 billion. though the principal function of the plants was to provide material for national defense, they also supplied enriched uranium for research and power reactors.

Plutonium and other reactor products intended primarily for weapons use were produced by General Electric Co. at the Hanford Works, and by E. I. du Pont de Nemours & Co., Inc., at the Savannah River plant.

CONSUMPTION AND USES

Most of the uranium metal and compounds produced during the year were used in AEC programs. Demand for the material by private industry was growing. Uranium purchased by the Commission was distributed in one of the following ways:

"In-process" inventories.
 Plutonium, which is delivered to the weapons stockpile.
 Highly enriched U-235 produced in gaseous diffusion plants; also delivered

to the weapons stockpile.

4. Uranium of various enrichments of U-235, but generally less than 20 percent U-235, withdrawn from gaseous diffusion plants for research, for Government and private reactor fuel, and for distribution to foreign Governments under the atoms-for-peace program.

5. Depleted uranium, or tailings from gaseous diffusion, plants, of low U-235 assay, but quantitatively by far the greatest fraction of the total imput tonnage.

In-process inventories included the uranium in the 13 AEC production reactors at the Savannah River plant and at the Hanford A loading for one of the production reactors is several thousand fuel elements, each element containing several pounds of Another significant factor in the in-process inventory was the uranium undergoing treatment in the gaseous diffusion plants at Oak Ridge, Paducah, and Portsmouth. Each gaseous diffusion plant involves about 300,000 miles of piping, which is filled largely with gaseous uranium hexafluoride at all times.

Nuclear reactors active in the United States during the year included 14 high-temperature, power-producing reactors; 56 low-temperature, power-producing reactors; 56 low-temperature reactors, usually not useful for power generation and used principally for research, training, production of special nuclear materials, or testing; and 44 critical experiment facilities. In addition to the 114 reactors operated, 89 reactors were being built in this country, and 67 were

planned.

Production Reactors.—Production rates of special nuclear materials equaled or exceeded goals established by the AEC. Scheduled requirements for the military and civilian programs were met by production facilities. Plutonium from 8 production reactors at Hanford, Wash., and 5 production reactors at the Savannah River, Aiken, S.

C., plant, was delivered to the weapons stockpile.

Power Reactors.—Developments on nuclear-produced power during the year advanced significantly. The first full-scale nuclear powerplant in the United States went critical on December 2, 1957, at Shippingport, Pa. The Pressurized-Water Reactor (PWR) delivered, on a test basis, 60,000 kw. of electricity (the expected initial capacity of the plant) to the Duquesne Light Co. system serving the Pittsburgh area. At 60,000 kw. of output the PWR was producing more electricity than any other individual reactor in existence. This PWR was the world's first full-scale plant designed exclusively for producing civilian electric power.

In addition to the PWR, 7 experimental civilian power reactors of

6 different types operating for the AEC and the Army reactor operating at Fort Belvoir, Va., had direct civilian applications. Vallecito Boiling-Water Reactor, Pleasanton, Calif., was the first privately financed nuclear reactor to produce electrical power in the United States. The plant, built primarily to develop operational data applicable to the 180,000-kw. Dresden reactor, was producing 5,000 kw. of electricity for distribution over the Pacific Gas & Electric System. The Experimental Boiling-Water Reactor, Argonne National Laboratory, operated successfully throughout the year and was tested at 2½ times its design capacity (20 thermal megawatts). The first nonmilitary reactor to produce heat for power generation by a private utility was the Sodium Reactor Experiment, Santa Susana, Calif. At the National Reactor Testing Station, Idaho, the Organic Moderated-Reactor Experiment was operated, and at the Oak Ridge National Laboratory, Tenn., Homogeneous Reactor Experiment 2, producing 300 electrical kilowatts, became critical in the latter part of December.

Four full-scale power reactors were under construction. and their proposed reactor locations included: Commonwealth Edison Co., Dresden plant, near Joliet, Ill.; Consolidated Edison Co. of New York, Indian Point, N. Y.; Power Reactor Development Company, Enrico Fermi plant, Monroe, Mich.; and Yankee Atomic Electric Co.,

Rowe, Mass. (table 5).

Negotiations between AEC and Foster Wheeler Corp. to build a 100,000-kw. power reactor for Wolvering Electric Cooperative, Big Rapids, Mich., were deferred. Formal proposals under the Commission's Power Demonstration Reactor program were made by: Carolina-Virginia Nuclear Power Associates, Inc., Parr Shoals, S. C., for development, design, construction, and operation of a 17,000-electrical kilowatt, heavy water-cooled and -moderated reactor fueled with slightly enriched uranium; East Central and Florida West Coast Nuclear Groups for development, design, construction, and operation of a 50,000-electrical kilowatt, gas-cooled, heavy water-moderated reactor; and Pennsylvania Power & Light Co. for a 150,000-electrical kilowatt aqueous slurry homogeneous reactor.

Operation of power reactors during the year contributed toward identification of basic problems that affect the advent of economic nuclear power, such as reduction of capital, fuel, operating, and

maintenance costs.

Military Reactors.—The nuclear-powered submarines U. S. S. Nautilus and U. S. S. Seawolf traveled thousands of miles, more than half while fully submerged, and the U. S. S. Skate successfully completed sea trials. Sixteen additional nuclear submarines, an aircraft carrier, and a guided-missile cruiser were authorized through the fiscal year ending June 30, 1958. Three land-based naval prototype reactors were under construction. One package power reactor had been completed. Under the aircraft-reactors program, nuclear propulsion systems for manned aircraft, as well as reactors for nuclear-missile propulsion and auxiliary nuclear powerplants, would be studied.

Nuclear reactors were found to be suitable as a powerplant for military use because of various favorable characteristics, such as high heat production per unit rate of fuel consumption, production of heat

without oxygen, and infrequent fueling.

TABLE 5.—Power reactors in operation, under construction, contracted for, or under negotiation in 1957

Designation and operator	Date critical	Туре	Capacity (electrical kw.)	Location
OPERATING				
Pressurized-Water Reactor— AEC & Duquesne Light	December 1957	Pressurized water	60,000	Shippingport, Pa.
Co. Experimental Boiling-Water	December 1956	Boiling water	5,000	Lemont, Ill.
Reactor—AEC. Boiling Reactor Experiment No. 4—AEC.	December 1956	do	2, 400	National Reactor Testing Station, Idaho.
Sodium Reactor Experiment, AEC & North American	April 1957	Sodium graphite	6, 500	Santa Susana, Calif.
Aviation.	November 1957	Fast breeder	200	ARCO.
actor No. 1—AEC. Organic Moderated Reactor Experiment—AEC.	September 1957	Organic moderated	none	National Reactor Testing Station, Idaho
•	December 1957	Aqueous homogene-	300	Oak Ridge, Tenn.
Homogeneous Reactor Experiment No. 2—AEC. Army Package Power Re-	April 1957	ous. Pressurized water	1,855	Fort Belvoir, Va.
actor—AEC. Vallecitos Boiling-Water Re- actor—General Electric.	October 1957		5,000	Pleasanton, Calif.
UNDER CONSTRUCTION				
Power reactor-Common-	1960	do	180,000	Joliet, Ill.
wealth Edison Co. DoPower reactor—Power Re-	1960	Pressurized Fast breeder	163, 000 100, 000	Indian Point, N. Y. Monroe, Mich.
actor Development Co. Power reactor—Yankee Atomic Electric Co.	1	Pressurized	134, 000	Rowe, Mass.
CONTRACTED FOR				True Make
Power reactor—Consumers	1962	1	l .	
Public Power District. Northern States Power Company.	1962	Boiling water	_ 66,000	Sioux City, S. Dak.
UNDER NEGOTIATION				Allerbo
Chugach Electric Associa- tion & Nuclear Develop-	1962	Sodium, heavy water.	10,000	
ment Corp. of America. City of Piqua Rural Cooperation Power Assoc.	1961	Organic moderated Boiling water	12, 500 22, 000	

Research and Test Reactors.—Twenty-eight research and training reactors were operating in the United States on December 31, 1957; 20 were under construction; and 29 were planned. Two test reactors operated, 1 was being built, and 2 were planned during the year.

Radioisotopes.—Use of radioisotopes was estimated to have resulted in an annual saving of \$500 million to industrial concerns by accelerating manufacturing processes, improving products, and promoting savings through uniform quality. More than 100 commercial firms were supplying such items as radioactive phamaceuticals, labeled radioisotope compounds, and sealed sources of radioactivity to licensed purchasers for industrial and research purposes. The principal source of domestically produced radioisotopes was the Oak Ridge National Laboratory, Oak Ridge, Tenn. Some radioisotopes were produced in the Brookhaven Research Reactor, in the Materials

TABLE 6.—Military reactors 1

Designation and operator	Function	Type	Location
OPERATING			
Army Package Power Reactor (Army).	Power generation	Pressurized	Fort Belvoir.
Submarine Thermal Reactor (S1W) (Navy).	Propulsion prototype	Gas-cooled	National Reactor Test- ing Station, Idaho.
Submarine Thermal Reactor (S2W) (Navy)		1	U. S. S. Nautilus.
Submarine Thermal Reactor (Navy).			
Submarine Intermediate Re-		i	· ·
Heat-Transfer Reactor Exp. 1 (USAF).	Testing	Direct air cycle	National Reactor Test- ing Station, Idaho.
UNDER CONSTRUCTION			
Argonne Low-Power Reactor	Prototype	Pressurized	National Reactor Test-
Submarine Advanced Reactor (S3G) (Navy).	Propulsion prototype	do	ing Station, Idaho. West Milton, N. Y.
Small Submarine Reactor (S1C)	Propulsion	ł	
Large Ship Reactor (A1N)			National Reactor Test-
Guided-Missile Cruiser Project			ing Station, Idaho.
Low-Power Test Facility (USAF).	Testing	Critical experi-	National Reactor Test-
Aircraft Reactor Experiment		Fused salt	
CANEL (USAF)	do	Critical facility	Middletown, Conn.
PLANNED			
Gas-Cooled Reactor Experiment (Army)	Power prototype	Gas-cooled	National Reactor Test-
High-Speed Submarine Project (Navy).	Propulsion		ing Station, Idaho.
Destroyer Reactor (D1G)	· ·	ı	
Nuclear-powered rockets and ramjet engines (USAF).	do	Nuclear power	Los Alamos and Liver- more, Calif.

¹ Does not include the 18 nuclear-powered ships being built for the Navy.

Testing Reactor in Idaho, in the Savannah River Reactors, and in the Hanford Reactors.

The rate of use of isotopes continued to grow rapidly. The total amount of radioactivity shipped during the year was almost twice the amount shipped in the previous year. The gross income from sales of radioisotopes was \$2.7 million in 1957, compared with \$2.2 million in 1956 and \$1.2 million in 1954.

In addition to approximately 14,000 domestic shipments of radioisotopes; a total of 5,963 shipments had been distributed to 56 foreign countries.

Cobalt-60, produced by the AEC, was manufactured at a rate of 300,000 curies a year. The Commission licensed about 60 industrial and research firms to receive a total of 300 or more curies each of cobalt-60 for radiation research and development. Two private firms announced that they would engage in preparing sealed sources of large amounts of radioactivity. Nuclear Systems, a division of Budd Co., Philadelphia, Pa., would encapsulate Co-60 sources up to 50,000 curies, and Picker X-ray Co., Cleveland, Ohio, was designing a hot cell to handle Co-60 sources up to 1 million curies.

TABLE 7.—Research and test reactors operating, under construction, or being planned in 1957

Operator and designation	Type	Startup	Location
OPERATING			
Oak Ridge X-10 Area Reactor (AEC) X10-	Graphite	1943	Oak Ridge, Tenn.
100. Brookhaven Research Reactor (AEC) Low-Intensity Test Reactor (AEC) LITR Super Power Water Boiler (AEC) North American Aviation Water Boiler	Tank Homogeneous do	1950 1950 1951 1952	Upton, N. Y. Oak Ridge, Tenn. Los Alamos, N. Mex. Van Nuys, Calif.
Livermore Water Boiler (AEC)	do	1953 1957	Livermore, Calif. Raleigh, N. C.
search-Reactor). Argonne Research Reactor (AEC) CP-5 Pennsylvania State University. Armour Research Foundation. Battelle Memorial Institute Naval Research Reactor (USN). Omega West Reactor (AEC). U. S. Naval Post Graduate School AGN-	Heavy water	1954 1955 1956 1956 1956 1957 1956	Lemont, Ill. University Park, Pa. Chicago, Ill. West Jefferson, Ohio. Washington, D. C. Los Alamos, N. Mex. Monterey, Calif.
U. S. Naval Post Graduate School AGN- 201-100. Catholic University of America AGN-201-	Homogeneous sond	1950	Washington, D. C.
101. Oklahoma A&M College AGN-201-102 Aerojet-General Nucleonics AGN-201M-	do	1957 1957	Stillwater, Okla. San Ramon, Calif.
103. University of Akron ANG-201-104. National Naval Medical Center AGN-	do	1957 1957	Akron, Ohio. Bethesda, Md.
201M-105. Texas A&M College AGN-201-106 University of Utah ANG-201-107. Aerojet-General Nucleonics AGN-201-108. Colorado State University AGN-201-109. University of California AGN-201-112. Argonne Naught Power Reactor (Argonaut). Atomics International L-47. University of Michigan. Livermore Pool-Type Reactor (AEC)	dodododododoHomogeneousPooldo	1957 1957 1957 1957 1957 1957 1957 1957	College Station, Tex. Salt Lake City, Utah. Lemont, Ill. Fort Collins, Colo. Berkeley, Calif. Lemont, Ill. Canoga Park, Calif. Ann Arbor, Mich. Livermore, Calif.
UNDER CONSTRUCTION			
Oak Ridge Research Reactor (AEC) Brookhaven Medical Reactor (AEC) Massachusetts Institute of Technology	Tank do Heavy water	1958 1958 1958	Oak Ridge, Tenn. Upton, N. Y. Cambridge, Mass.
MITR. Industrial Research Laboratories, Inc Curtiss-Wright Corp. Aerojet General Nucleonics AGN201(113-	Pooldo Homogeneous solid	1958 1958 1958	Plainsboro, N. J. Quehanna, Pa. San Ramon, Calif.
120) 8 reactors. University of Wyoming AGN201-111 University of Virginia Watertwan Arsenal Union Carbide Nuclear Co American Radiator & Standard Sanitary Corp. UTR-1. Neutron Source Reactor (AEC) University of Florida	do Pooldo do Graphite/water	1958 1958 1958 1958 1958 1958	Laramie, Wyo. Charlottesville, Va. Watertown, Mass. Sterling Forest, N. Y. Mountain View, Calif. Upton, N. Y.
	Graphite/water	1958	Upton, N. Y. Gainesville, Fla.
PLANNED	_		Too America Colif
University of California, Los Angeles Medi- cal Reactor. State College of Washington	Homogeneous Pooldo Homogeneousdo Pool Homogeneous solid	1958 1958	Los Angeles, Calif. Pullman, Wash. Buffalo, N. Y. Norman, Okla. Houston, Texas. Mayaguez. San Diego, Calif.
namics. Aerojet-General Nucleonics AGN-211-100	Homogeneous solid	1958	San Ramon, Calif.
Isotope Production Reactor IRGAAerojet-General Nucleonics AGN-201M-	Homogeneous solid	1958 1958-59	San Diego, Calif. San Ramon, Calif.
(121-125). Aerojet-General Nucleonics AGN-201(126- 140).	do	1958-59	Do.

Weapons.—Production of atomic weapons continued and tests were conducted. Programs were directed toward developing small weapons for defensive purposes and designing weapons to reduce the radioactivity after detonation.

TABLE 8.—Radioisotopes shipped from Oak Ridge National Laboratory, by years, 1947-57

Period from July 1 to June 30	Number of shipments	Curies	Period from July 1 to June 30	Number of shipments	Curies
1947 1 1948 1949 1950 1951 1952 1953	1,070 2,743 4,665 6,860 8,935 10,187 11,150	21 73 153 776 2, 972 9, 679 5, 389	1954	12, 426 12, 775 13, 035 13, 754 97, 604	12, 34 40, 05 83, 00 149, 18 303, 64

¹ First shipment made Aug. 2, 1946.

A series of nuclear weapons tests designated as Operation Plumb Bob resulted in detonation of 24 nuclear devices and the conducting of 6 safety experiments. One of the tests, detonated underground, was believed to have potential peaceful uses in construction and mining.

Preparations were underway for a possible series of tests at the Eniwetok Proving Ground in the Pacific in 1958.

Weapons-production facilities at the Rocky Flats plant near Denver, Colo., at the Iowa Ordnance plant at Burlington, Iowa, and at the Pantex Ordnance plant near Amarillo, Tex., had been expanded and were in operation. The Buffalo, N. Y., plant was closed.

Nonenergy Uses.—One firm supplied uranium on a commercial

Nonenergy Uses.—One firm supplied uranium on a commercial basis for nonenergy uses. During the year about 4,000 pounds of uranium concentrate was used for nonenergy purposes, primarily by the glass, ceramic, and chemical industries.

PRICES AND SPECIFICATIONS

Uranium Ore.—Purchase prices for uranium ore, guaranteed by the AEC, remained in effect during 1957. Prices are given in AEC Domestic Uranium Program Circulars 2, 5 (revised), and 6, and published in Part 60, Title 10, of the Code of Federal Regulations and in the Uranium and Radium chapter of the 1954 Minerals Yearbook. Circular 5 (revised) which covers minimum price guarantees for the more common domestic ores is effective until March 31, 1962. Circular 6, which covers production bonuses, was extended from February 28, 1957, to March 31, 1962.

The new plan, which becomes effective in 1962, establishes a base price of \$8.00 per pound of U_3O_8 contained in concentrates meeting specifications. Under the new purchase plan, uranium concentrates or precipitates would be purchased from domestic mills.

Plutonium.—Prices paid by the Commission for plutonium produced by licensed power and research reactors in the United States were announced in May. Until July 1, 1962, prices would range from \$30 to \$45 per gram, depending on the plutonium—240 content of the material. For the year July 1, 1962, to June 30, 1963, a single price of \$30 per gram would be in effect. Prices for plutonium metal remained at \$12 per gram.

Domestic uranium concentrates were purchased in the fiscal year 1956 at an average price of \$11.60 per pound of U₃O₈ and in 1957, \$10.50. The estimated average purchase price in the fiscal year 1958 is \$9.60 and for 1959, \$9.30. The prices include a factor of amortization on a 5-year basis and were based upon an estimated normal grade of millfeed. Comparative prices paid by the Commission for foreign concentrates were \$10.90 per pound of U₃O₈ in the fiscal year 1956, and \$11.15 in 1957; the estimate for 1958 is \$11.15 and for 1959, \$10.70. Cobalt-60.—The AEC encouraged more widespread distribution

and use of cobalt-60 in industrial, medical, and research applications by reducing its prices \$2 to \$5 per curie based on the specific activity (number of curies per gram of material) and the quantity purchased. Previous prices for Co-60 were \$50 per curie for the first 2 curies or fraction thereof and ranged from \$2 to \$10 per curie for larger purchases.

Special Nuclear Materials.—Prices for uranium metal, uranium-235,

uranium hexafluoride (UF6), uranium-233, described in the uranium

chapter of Minerals Yearbook for 1956, remained in effect.

Specifications.—A set of approved measurement methods was being developed for source and special nuclear materials. Plans for providing uranium isotopic standards through the joint efforts of the AEC and the National Bureau of Standards, United States Department of Commerce, progressed satisfactorily.

FOREIGN TRADE

Uranium from foreign sources continued to supply a substantial part of the Nation's requirements for the atomic-energy program. The Combined Development Agency, comprised of members from the USAEC, Atomic Energy of Canada, Ltd., and the Atomic Energy Authority of England, continued to receive uranium at scheduled rates under contract from the Union of South Africa, Belgian Congo, Portugal, and Australia for delivery to the United States and the United Kingdom. The United States continued to receive uranium from Canadian production.

Increased quantities of uranium and other radioactive materials

were shipped to foreign countries in 1957.

TABLE 9.—Shipments of nuclear materials to foreign countries in 1957 1

	_				
	Uranium			Type of	
Country	Kg U-235	Percent U-235	Other materials	transaction	Purpose and remarks
ArgentinaAustralia	6. 00	20	Heavy water, 11	Lease Sale	Argentina Argonaut. Research.
Belgium			tons. Heavy water, 500	do	Do.
Do	. 085	(2)	pounds. Plutonium, 6.6 gm	do	Contained in 12 irradiated slugs for chemical research.
Do	. 45	90	Uranium oxide	do	Research uses by CEAN. Research.
Do	(3) (3)	90		Gift	Plated on Belgium gold foils for World Fair demonstra-
Do	(3)	90		Sale	tion. Uranyl sulfate crystals for gas loop experiment in Br1.
Do	(3)	.4		ldo	1 kg. metal for research.

See footnotes at end of table.

TABLE 9.—Shipments of nuclear materials to foreign countries in 1957 1—Con.

				· · · · · · · · · · · · · · · · · · ·	Journales III 1991 COII.
	Ur	anium		Type of	
Country	Kg U-235	Percent U-235	Other materials	transaction	Purpose and remarks
Brazil	- 5. 86	20		Lease	
Janada	-	-	Heavy water, 50	Sale	reactor. Reactor.
Do	- 3.3	20	tons.	do	Fuel element research.
Do		90		Gift Lease	Research quantity. PTR Chalk River research reactor fuel (total 6.357 kg
Do	.008	90		do	U235).
Do	- 63	90	Wooms motor 5	do	Do.
Do		-	Heavy water, 5tons.	Sale	
			Heavy water, 3.5 tons.	do	University of Toronto re- search reactor (subcritical assembly).
Do	1		Plutonium, 2 gm.	Exchange	Exchange for Canadian plu- tonium.
Do		-	Heavy water, 5 tons.	Sale	NRU reactor.
Denmark		20		Lease	Danish water boiler research reactor fuel.
Do Do	.001	20 90		- Saledo	Fission counters. For use in exploration in
Do	. 003	90		1	Greenland.
France	(3)	2.4		Gift	ers for use in reactor. Highly depleted uranium for
Do			Heavy water, 5.5	Sale	research
Do	(3)		tons. Highly depleted laboratory material.	Gift	1
Do	(8)	2.4		Sale	2 kg. for research use.
Do			Plutonium, 10 gm Heavy water, 5.5 tons.	do	For metallurgical research
Germany	1.8	20	tons.	Lease	For Frankfurt water boiler and fission tub.
Do	5. 93	20		do	Fuel elements in Munich
Japan	1. 98	20		do	research reactor. Tokai-Mura water boiler re-
Do Malaya	(3) (3)	20 Normal		Gift	search reactor fuel. Fission counters.
Netherlands	4, 69	20		Lease	Malaya.
Do Norway	(3)		Plutonium, 2 mg Heavy water, 17.6	LoanSale	Amsterdam Fair reactor fuel. Spectrographic research. Halden reactor.
Switzerland			tons. Heavy water, 9	do	1
Sweden			tons. Heavy water, 28.5	do	"Reactor, Ltd." research re- actor at Wuerenlingen.
1	4. 04	20	tons.	Lease	R-3 space heat reactor, Stock-holm.
Spain United Kingdom	(3)	20 2. 4		Exchange	Research reactor Espanola. Depleted uranium exchanged for columbium.
İ			Plutonium, 1 mg	Gift	Research discharge tube for
Do		101	Plutonium, 101 gm.	Exchange	spectrographic research. Metallurgical research.
Do	(8)	2.4		do	High-purity U trade for U. K. niobium.
Do	(2)		Depleted uranium metal 0.01.	Loan	Single crystal research.
Do	(2)	00	Depleted uranium metal, 250 gr.	do	Do.
Do	(2)	90 mg.	Heavy water, 11 tons.	GiftSale	Glass-wool research. Civilian power program.
			wns.		

USAEC, Progress in Peaceful Uses of Atomic Energy, July-December 1957, 461 pp.
 Depleted uranium, containing less than 0.71 percent of U-235.
 Less than 10 grams contained U-235.

WORLD REVIEW

The International Atomic Energy Agency, proposed by President Eisenhower in 1953 before the United Nations General Assembly, became a reality in 1957. Fifty-nine nations, including the United States, became charter members of the Agency during the year in an effort to accelerate and enlarge the contribution of atomic energy to the peace, health, and prosperity of the world. The Agency would (1) encourage and assist research, development, and the practical application of atomic energy, (2) make provision for materials (including nuclear materials), services, and related equipment for atomic energy programs, (3) foster exchange of scientific and technical information, (4) encourage exchange and training of scientists, and (5) establish and administer necessary safeguards to material and personnel.

Nine new agreements for cooperation between the United States and other nations in developing and advancing peaceful uses of atomic energy went into force in 1957, bringing the total to 39 in effect with 37 different nations and with West Germany.

On July 3, 1957, President Eisenhower announced that an additional 59,800 kilograms of uranium-235 would be made available, raising to 100,000 kilograms the total quantity for peaceful purposes; half was to be used in the United States and half for the Atoms-for-Peace program. By the end of the year 16 export licenses for research reactors valued at \$7.5 million were issued.

Foreign trade in the atomic-energy program was supported and assisted by the International Cooperation Administration, the Export-Import Bank, and the United States Information Agency.

South African, United States, and Canadian authorities discussed means of protecting the uranium-producing industry against price undercutting. A committee was to be set up to study the situation.4

NORTH AMERICA

Canada.—Uranium production in Canada totaled 6,687 tons of U_3O_8 valued at \$135,985,000, compared with 2,290 tons of U_3O_8 valued at \$45,732,145 in 1956. By the end of 1958 the production rate was expected to reach \$400 million. Some 13 new mines came into production, and 9 mills began processing, adding a total of 23,500 tons per day capacity to the industry.⁵ Total designed daily mill capacity at the end of the year reached 43,650 tons of ore.

Uranium held in fifth place the value of Canada's mineral production during the year. Last year uranium was eighth among metals produced in Canada, and by 1959 is expected to be the lead-

ing metal produced.

New mines and mills began producing in the Northwest Territories, Lake Athabasca, Blind River, and Bancroft areas. Additional pro-

duction facilities were scheduled for operation in 1958.

The rate of production was largest in the Blind River area in Ontario, followed by the Beaverlodge area in northern Saskatchewan, the Bancroft area in southeastern Ontario, and the Northwest Territory.

Metal Bulletin (London), No. 4253, Dec. 13, 1957, p. 22.
 Simpson, R. A., Uranium in Canada—1957: Canadian Min. Jour., vol. 79, No. 2, February 1958, pp. 146—

The United States continued to be the major market for Canadian uranium, but agreements were concluded to supply uranium to the United Kingdom, beginning in 1958. The United Kingdom agreed to buy uranium valued at \$115 million from Canada during the next 5 years. Japan purchased 10 tons of unprocessed uranium for experimental purposes. A bilateral agreement was concluded between Canada and West Germany under which the West German Government is to buy 500 tons of Canadian uranium over a 5-year period. A similar agreement was being firmed up between Canada and Switzerland.

The NRU reactor was completed and began operation in November. The Atomic Energy of Canada, Ltd., \$57 million reactor was to be used for research, to produce significant quantities of plutonium, to assist in developing electricity-producing nuclear power stations.

and to manufacture a wide variety of radioisotopes.6

Construction was temporarily suspended on the first atomic-power plant in Canada to permit incorporation of new technological advances in its design. Inclusion of major design changes in the plant was expected to increase the original cost estimate of \$14.5 million and to delay completion until 1960.

Scientists of the Saskatchewan Research Council were developing a new process for recovering uranium that may make the mining of the vast resources of low-grade uranium ore an economic proposition within the next few years. The council installed a pilot plant for processing low-grade ore by the new "flotation method."

Official estimate of Canadian reserves remained at 320 million tons with a uranium content of 384,000 tons, but firms in the Blind River

area maintained that the Blind River reserve alone exceeded 500 million tons of ore.

British Columbia.—British Columbia's first uranium-producing mine was scheduled to be Rexspar Uranium and Metals Mining Co. Crown-owned Eldorado Mining & Refining, Ltd., signed a \$21,557,812 contract with Rexspar for purchasing uranium concentrates to be delivered from March 31, 1958, to March 31, 1963. Construction of a 750-ton-per-day mill was underway. The ore reserve was esti-

mated at 1.5 million tons at 0.09 percent U₃O₈.

Northwest Territories.—Mining and milling continued at the Eldorado Mining and Refining, Ltd., Port Radium branch. The small but rich deposit, sometimes called the birthplace of the uranium industry in Canada, appeared to remain economically attractive. One-half of the millfeed came from mine production and one-half from a nearby old tailings dump. Rayrock Mines, Ltd., became the second uranium producer in the Northwest Territory during the year. By October all the feed for the 150-ton-per-day mill came from underground.

Ontario.—The Blind River area of northern Ontario was the largest uranium-producing area in Canada in 1957. Six new producers with a total rated daily capacity of 22,000 tons began treating ore. The producers and their daily milling capacities were: (1) Algom Uranium Mines, Ltd., Nordic mine, 3,000 tons; (2) Stanleigh Uranium Mining Corp., Ltd., 3,000 tons; (3) Consolidated Denison Mines, Ltd., 6,000

Chemical Age (London), vol. 78, No. 2002, Nov. 23, 1957, p. 853.
 American Metal Market, vol. 64, No. 78, Apr. 24, 1957, p. 1.

tons; (4) Northspan Uranium Mines, Ltd., Nordic mine, 4,000 tons; (5) Northspan Uranium Mines, Ltd., Panel mine, 3,000 tons; and (6)

Can-Met Explorations, Ltd., 3,000 tons.

Algom Uranium Mines, Ltd., Nordic mine reached design capacity in 1957, and the five remaining firms did not begin producing until late in the year. All of the mines in the Blind River area are expected to be in full production in 1958. Pronto Uranium Mines, Ltd., the first mine in the area to begin production, stepped up its yield to 1,500 tons of ore per day. The Algom Uranium Mines, Ltd., Quirke mine produced at the rate of 3,000 tons of ore per day. By the end of the year the rated capacity for all mines in production in the Blind River area reached 26,500 tons per day. When uranium oxide content was 2 pounds per ton, the area could produce some 53,000 pounds per day of U₃O₈. In addition several new mines are expected to begin producing in 1958.

TABLE 10.—Canadian uranium-ore-processing plants and uranium-ore-purchase contracts 1

	Purchase	Product	ion rate	Estimated capital	Estimated total	Approxi- mate dis-
Company	contracts (thousand Can\$)	Tons per day	Thou- sand Can\$2	expendi- ture (thou- sand Can\$)	operating costs per ton of ore	trict grade pounds U ₃ O ₃ per ton
Blind River:						
Algom: Nordic, & Quirke	206, 910	6,000	49, 300	47, 800	1)
Can-Met Explorations, Ltd	90,000	2,500	20,500	20,000	\$8.50	
Consolidation Denison	201, 895 94, 000	6,000 3,000	49, 300 24, 600	40,000 26,000		
Northspan (Spanish, Buckles,	94,000	3,000	24,000	20,000	,	1
Panel, Lake Nordic)	275,000	9,000	73, 900	75,000	h	
Pronto	55,000	1,500	12, 300	6,000	10.00	2 to 2.5
Stanleigh	90, 405	3,000	24,600	26,000	10.00	
Stanrock	95,000	3, 300	27, 100	24, 500	J)	
Total	1, 108, 210	34, 300	281, 600	265, 300		
Beaverlodge:						,
Eldorado	168, 500	2,000	31,000	35,000	h	h
Gunnar		1,650	24,000	19, 500	12.00	1
Lorado 3	64, 480	500	7, 300	9, 250]]	3.5 to 5
Total	309, 930	4, 150	62, 300	63, 750)
Bicroft:	25 005	1 000	0.100	10 000	,	
Bicroft Cavendish	35, 805 24, 192	1,000 750	9, 100 6, 800	12,000 6,000	II	1
Dyno		1,000	9, 100	7,500	10.00	11
Faraday	29, 754	750	6, 800	8,500	10.00	2 to 3
Greyhawk.		600	4,900	5,500	IJ	1
Total	141, 851	4, 100	36,700	39, 500)
Northwest Territories:			0.000	0.400	05.00	
Rayrock (Marian Lake)	15, 792	150	3,800	3,400	35.00	57
Eldorado (Port Radium)	33, 500	200	3,000		j	(4)
Total	49, 292	350	6, 800	3. 400		
British Columbia:						
Rexspar	21, 557	750	5,500	6,850		2
•	l			ļ		
Grand total	1,630,842	43,650	392, 900	5 378, 800		1
	1		1	1	1	

Source: South African Mining and Engineering Journal, Mar. 29, 1957, p. 565.
 Production rate in Can\$ per year is calculated on daily mill capacity and rounded to the nearest \$100,000.
 Lorado will treat ore shipped to it by Cayzor Athabaska (200,000 tons reserves 33 percent); Black Bay (100,000 tons reserves 0.22 percent); Lake Cinch (reserves not reported).

⁴ Not reported. ⁵ This estimated grand total for capital expenditure does not include Eldorado Port Radium project.

Blind River area companies that continued development activities but had not reached production included Northspan Uranium's Spanish American mine, Stanrock Uranium Mines, Ltd., and Milliken Lake Uranium Mines, Ltd.

The 11 large mines of the Blind River area will reach full production in 1958 and will probably produce about 70 percent of Canada's uranium in the following 5 years, at a value of over \$1.1 billion.

The Bancroft area of southeastern Ontario had a total rated daily production capacity of 2,700 tons of uranium ore. Faraday Uranium Mines, Ltd., began producing in April and was treating about 1,000 tons of ore per day from its mine and 200 tons per day from the adjacent mine of Greyhawk Uranium Mines, Ltd. Bicroft Uranium Mines, Ltd., increased production from 1,000 to 1,500 tons per day. Canadian Dyno Mines, Ltd., was expected to reach production soon

at a rate of about 1,000 tons of ore per day.

Saskatchewan.—The Lorado Uranium Mines, Ltd., custom mill in the Uranium City area of northern Saskatchewan was officially opened in August, although the mine and mill began production in May. The mill was processing about 400 tons daily in August. In addition to Lorado's mine production (150 tons of ore per day) the mill received 75 tons per day from the Lake Cinch Mines, Ltd., 150 tons per day from Cayzor Athabaska Mines, Ltd., and 25 tons per day from National Explorations, Ltd. The three private companies were delivering ore at a rate of about one-half their production ability. Lorado installed additional equipment for processing greater quantities of ore. The nature of the ore caused a shortage of acid thereby reducing throughput of the mill. The firm planned to install flotation equipment to separate the high-carbonate ore for a different type of treatment than that given to low-carbonate material. St. Michaels Uranium Mines, Ltd., and Black Bay Uranium, Ltd., holding contracts with Lorado, had not shipped ore during the year.

Processing capacities were increased at Gunnar Mines, Ltd., and at Eldorado Mining & Refining, Ltd. All production from Gunnar Mines came from its open pits, but preparations for underground mining continued. In 1958 underground production was expected to supplement that from the open pits. The company completed installing additional milling equipment and a second sulfuric-acid plant; this expansion allowed Gunnar to increase daily production from 1,250 tons to 1,650. Expanded plant facilities at Eldorado enabled the firm to handle over 2,000 tons of ore daily. Eldorado maintained the only carbonate leach process in Canada and also has a sulfuric-acid

circuit to treat sulfide ores.

Milling facilities in the Uranium City area could process about 4,100 tons of ore per day.8

A paper describing beneficiation of low-grade pegmatite ores from

northern Saskatchewan was published.9

Mexico.—Exploration for uranium in Mexico continued during the year. Under the National Nuclear Energy Commission, exploration for radioactive materials was conducted in the arid mountains of the States of Chihuahua and Sonora and in the mountainous jungles of

⁸ Work cited in footnote 5. ⁹ Crawford, L. W., Gunn, Brad, Cavers, S. D., and Van Cleave, A. B., Beneficiation of Low-Grade Saskatchewan Uranium Ores, IV: Canadian Jour. Chem. Eng., vol. 35, October 1957, pp. 99–104.

the State of Oaxaca. By the end of the year no commercial deposits had been found.

The director of Mexico's Nuclear Energy Commission indicated that exploration for radioactive minerals by private individuals would be encouraged, production would be controlled by the Government, and private prospectors locating deposits would be compensated.

SOUTH AMERICA

Argentina.—Concentration plants of the National Committee on Atomic Energy in Córdoba and Mendoza were processing uranium production from at least a dozen mines. Higher grade ore came from deposits in Santa Brigida and San Victorio, near Sanogasta in La Rioja Province, and lower grade ore was found in the large deposits of Papagayos Cerro Huemul, and Agua Batada in Mendoza.

The Government decree offering awards to prospectors for discovering uranium deposits resulted in a rush for uranium in Argentina. About 200 geiger counters owned by the Argentine Atomic Energy

Commission were made available to prospectors. 10

Argentina received the first United States shipment of uranium oxide, consisting of an 80-pound lot of uranium that contained 20percent U-235, on December 12. The uranium was scheduled for use by the Argentine Atomic Energy Commission in fabricating fuel elements for the Argonaut-type reactor that was under construction and expected to go critical early in 1958.

On October 14 the Argentine Atomic Energy Commission signed an agreement with the Government of Chubut authorizing the Commission to explore for and exploit nuclear minerals in Chubut Territory. Similar agreements were made with La Rioja Province and Santa Cruz Territory, since under the constitution mineral rights belong to the province rather than the nation.¹¹

Brazil.—The 5-thermal-megawatt, pool-type reactor of the University of São Paulo was the first reactor constructed in South America under the Atoms-For-Peace program. The United States supplied fuel for the reactor under a lease agreement and a grant for \$350,000.

The reactor became critical September 16.

A cooperative agreement between the United States and Brazil for uranium prospecting in Brazil was approved by both Governments in December and replaced an earlier one of August 3, 1955. The new agreement provided for a 2-year program for the continued cooperation of United States geologists with the Brazilian Government for discovering, appraising, and evaluating uranium resources in Brazil.¹²

Early in the year the São Paulo Technological Institute reported discovery of high-grade deposits in the Aguas da Prata region of the State of São Paulo near São João da Boa Vista. Metallurgical studies were made by the Departmente Producão Mineral on the gold-bearing ores of mines in the region of Canaviers de Dentro and Itapicuru to determine the uranium content of the gold-bearing ores.

The Brazilian Atomic Energy Commission was reported to have signed a contract with a French group for uranium from two treat-

ment plants processing ore from Pocos de Caldas.

Mining World, vol. 19, No. 4, April 1957, p. 90.
 U. S. Embassy, Buenos Aires, Argentina, Foreign Service Dispatch 549; Oct. 16, 1957, 1 p.
 U. S. Embassy, Rio de Janeiro, Brazil, State Department Telegram: Priority 719, Dec. 26, 1957, 1 p.

The State Government of São Paulo announced that an atomicpower station with 2 reactors producing 10,000 kw. each is to be installed in the vicinity of the hydro-electric station of Jurumirim on the Paranapanema River. The new source of energy would be connected with the transmission line that links the Paranapanema system with that of the São Paulo grid. Reports indicated that the plant is to be built by private enterprise, the State participating with a minority holding.¹³

British Guiana.—It was announced in Georgetown that two representatives from the United Kingdom Atomic Energy Authority were scheduled to visit British Guiana late in the year to determine whether it would be advisable to encourage prospecting for uranium in the colony. Surveys made to date have not revealed the presence of uranium ores in commercial quantities.¹⁴

Chile.—The Joint Uranium Prospecting Agreement between Chile and the United States was ratified by the Chilean Government. A new Institute of Geological Research, to be the equivalent of a geological survey service, was being organized, and it appeared likely that the two United States geologists to be assigned in Chile under the uranium prospecting program would be under the institute.

A fiscal corporation was formed by three Government agencies (the Mining Credit Bank, the Chilean RFC, and the Smelters Corporation) to exploit the few uranium deposits that had been found in Chile. Deposits were found at Carrizal Alto, Las Animas, Los Azules, Pampa Larga, Cabeza de Vaca, and Romeral. The grade of ore varies from

0.2 to 0.3 percent U_3O_8 . 15

Colombia.—Reports from Bogotá indicate that an organization, the Compania Minera de Uranio, had been formed to exploit uranium fields in the area of California in the Department of Santander and Cucutilla, Pamplonita, and Bochalena in the Department of Norte de Initial production was expected to be about 50 tons per Santander. month.

A report, RME-87, Preliminary Reconnaissance for Uranium in Colombia, was delivered by the USAEC to the Colombian authorities in August. The report describes work done by Commission geologists in Colombia early in 1956 and probably would be used as a base for study by ICAN to determine the feasibility of suggesting an arrangement with the United States for a complete and comprehensive survey of Colombia's mineral resources, especially of radioactive minerals. 16

Cuba.—No discoveries of commercial ore bodies or favorable indications of radioactive minerals were reported in Cuba during the year, although several news sources carried stories implying that significant discoveries had been made. 17

Cuban Standolind Oil Company, subsidiary of Standard Oil Company of Indiana, was prospecting for uranium on 25,000 acres

in Camaguey Province.

Ecuador.—An agreement with the United States for cooperation regarding the peaceful uses of nuclear energy was approved by the President of Ecuador.

U. S. Embassy, São Paulo, Brazil, State Department Dispatch 300: May 31, 1957, 1 p.
 U. S. Embassy, Georgetown, British Guiana, State Department Dispatch 47: Sept. 13, 1957, 1 p.
 Engineering and Mining Journal, vol. 158, No. 7, July 1957, p. 192.
 U. S. Embassy, Bogotá, Colombia, State Department Dispatch 853: May 28, 1957, p. 13.
 U. S. Embassy, Havana, Cuba, State Department Dispatch 10: July 2, 1957, 2 pp.

Peru.—USAEC geologists reported no significant findings of radio-

active material in Peru in 1956 or preceding years.

Venezuela.—Geologists reported discoveries of deposits of uranium near Los Teques. The Institute for Neurology and Brain Research was constructing a 3- to 5-thermal-megawatt pool reactor near Caracas. The project would receive a \$350,000 grant from the United States, and the reactor was scheduled to begin operation in 1958.

EUROPE

Euratom, the Community of six Western European countries, was established upon ratification of a treaty by Belgium, France, Republic of Germany, Italy, Luxembourg, and the Netherlands. Some 50 leading industrialists from Euratom countries visited the United States in July to study atomic-energy facilities that may be applicable

in the Euratom program for nuclear power.

A Euratom program providing for 15 million electrical kilowatts of nuclear-produced power within the next 10 years was proposed during the year. Euratom would pool its scientific and industrial resources, and the United States and Great Britain would be expected to supply fuel for the first nuclear plants and to process the spent fuel. Estimated total expenditure on nuclear fuels in the 10-year period approximates \$2 billion.

Austria.—Proposals submitted early in 1957 by the Austrian Study Company for Atomic Energy, calling for a research reactor with associated laboratory facilities and a training reactor, were formally

adopted by the Austrian Government in November.18

Belgium.—The Belgian Government contracted for an 11,500-electrical-kilowatt, pressurized-water, power reactor, planned for exhibition at the Brussels Fair in 1958; later the plan of construction was changed to Mol, the Belgian Government research center of Centre d'Études pour les Applications de l'Energie Nucleaire (CEAN). Also planned at Mol was erection of a high-flux materials-testing reactor and installation of a medical reactor to be used especially for research in radiobiology. A nuclear-fuel-reprocessing plant was to be constructed at Mol by Eurochemic, a joint company set up by 12 member countries of the Organization for European Economic Cooperation; the \$12 million plant is expected to produce plutonium from an annual charge of 100 tons of uranium by 1961. Countries taking part in the venture included West Germany, Austria, Belgium, Denmark, France, the Netherlands, Norway, Portugal, Sweden, Switzerland, Italy, and Turkey.

A metallurgical firm (Société Générale Métallurgique de Hoboken) in Hoboken began production of uranium oxide from concentrates from the Congo. Its production was expected to reach 1,600 tons annually. A month-long international conference on protection against atomic radiation, sponsored by World Health Organization, met in October at the Belgian atomic-energy center at Mol. An international conference on the industrial uses of atomic energy was scheduled for Brussels in May 1958. The conference was organized

¹⁸ Foreign Commerce Weekly, vol. 58, No. 23, Dec. 2, 1957, p. 26.
¹⁹ U. S. Embassy, Brussels, Belgium, State Department Dispatch 302: Sept. 12, 1957, p. 1.

by the International Forum of New York in collaboration with CEAN.20

Czechoslovakia.—Geological research revealed uranium deposits in Slovakia. Uranium was a main export to the Soviet Union. Construction was begun on a nuclear reactor; the U. S. S. R. assisted.²¹ The first phase in erecting Czechoslovakia's Institute of Nuclear Physics was completed in August. Work was being concentrated on installing a cyclotron and other equipment for starting up the reactor early in 1958.

Denmark.—The Danish Government planned an extensive search for uranium deposits in Greenland in mid-1958. Results of previous exploration were promising enough to warrant the expedition. Twenty tons of uranium-bearing ore mined in Greenland indicated that processing methods used in the United States could not be used to recover the uranium on a commercially profitable basis. A laboratory was being set up near the ore field at Narssaq to continue experimental extraction work.22

Denmark's first reactor, a zero-energy reactor for atomic research, arrived from the United States. A heavy water-moderated Plutotype research reactor, similar to the Pluto-type reactors being built at the British Atomic Energy centers at Harwell and Dounreay, was ordered by Denmark. It was to be erected at the Rico Atomic Research Center in Denmark.

Finland.—An Atomic Energy law for Finland passed its second reading in the Diet in October. The bill provided for regulation by the Ministry of Trade and Industry of production, sale, possession, and use and for the import or export of materials suitable for generating atomic energy. The law was not concerned with prospecting for and exploitation of deposits of uranium and thorium ores, inasmuch as such materials are covered under existing mining laws. The atomic-energy law also included establishing a commission to follow developments in atomic energy, to plan training, and to maintain relations with corresponding agencies abroad.23

The building of a graphite reactor for experimental purposes was being considered by a Finnish association, Voimayhoistys Ydin. The organization, formed by industry to study nuclear-energy problems, was negotiating with several countries about the purchase of about

3,300 pounds of uranium.24

France.—Estimated uranium production in France in 1957 was about 300 tons of metal. Production capacity between 1959 and 1961 was expected to reach 1,000 tons a year. With a uranium reserve of 100,000 tons at 0.2 percent U₃O₈, France continued its exploration for nuclear raw materials. The French Atomic Energy Authority was methodically prospecting all potential uranium-bearing Hercyian granitic terrains that cover half of France's total area. Major uranium-bearing districts in France were (1) the Puy-de-Dôme district, in Lachaux Province, (2) the Upper Vienne district, in La Crouzelle Province, (3) the Saône-et-Loire district in Grury Province, and (4) in Vendée Province. Promising uranium areas also included

<sup>U. S. Embassy, Brussels, Belgium, State Department Dispatch 514: Nov. 8, 1957.
Bureau of Mines, Mineral Trade Notes: Vol. 45, No. 3, September 1957, p. 19.
U. S. Embassy, Copenhagen, Denmark, State Department Dispatch 449: Dec. 30, 1957, 2 pp.
U. S. Embassy, Helsinki, Finland, State Department Dispatch 193: Oct. 10, 1957, p. 3.
Chemical Age (London), vol. 78, No. 2005, Dec. 14, 1957, p. 980.</sup>

the Morbihan district in Brittany, the Beaujolais, Aller, Creuse, and Discovery of three new uranium deposits were re-Lozère districts. ported in Trou-au-Diable, Schaentzed, and Tannenkirch in the Saint Hippolyte region, Alsace.

Intensive exploration for uranium continued in French territories

overseas.

Plants for concentrating uranium ore at Gueugnon in Grury Province and at Lachaux were shipping concentrates to the Bouchet plant in the Greater Paris area. Plants for processing uranium were under construction at L'Escarpeire, at Malvezy, and at Bessines. of recovery at uranium-processing plants were described.25

France planned to expand its electric-power industries by establishing plants using atomic energy through a 5-year program at an

estimated cost of \$1.1 billion.

A ceremony at Saclay on July 4 marked the starting up of pile EL3, the fourth pile to come into operation. The moderator employed is heavy water, but the fuel is uranium slightly enriched with The reactor was designed to produce a high neutron uranium-235. flux of about 1014n/cm.2/sec., which is 10 times greater than that of the previous pile EL2. Pile EL3 was to be used for investigating the resistance to radiation of materials intended for constructing industrial reactors, for producing radioisotopes, such as 60Co and 14C, and for extending research on neutron irradiation.

At Marcoule, in the Gard, between Pont-Saint-Esprit and Avignon, a representative of the press was invited to inspect reactors, G₂ and G₃, and the factory for extracting plutonium, which were under

construction.

Reactor G₁ has been in operation since January 1956. G₂ and G₃ will be similar to G₁ in using natural uranium as fuel and graphite as moderator. The heat produced by G1 is removed by means of air at a pressure not much greater than atmospheric; G2 and G₃ will be cooled by means of carbon dioxide at a pressure of 15 kg. By 1958 the entire installation should be completed, including the plutonium-producing factory, which was mainly designed by the Compagnie de Saint-Gobain. The power output of the electricalgenerating stations that operated in connection with reactors G1, G2, and G₃ was about 50,000 kw.

The Second French Atomic Plan also provides for constructing a factory to separate isotopes. The factory may be built in the Lacq district; or, if it is constructed under the Euratom plan, in the Rhine

Valley or northern Italy.²⁶

Construction of a prototype atomic-powered tanker of about 40,000 dead weight tons was being planned by the French AEC. Reactor types under study for the project included pressurized water, boiling water, and gas; all would use enriched uranium fuel.

France was reported beginning to manufacture atomic weapons

from plutonium produced from French reactors.27

Germany, East. East Germany claimed to be the leading uranium producer in Europe. The most important deposits were in the Ore Mountains (Ave), Thüringian Forest, and Harz Mountains. Uranium

²⁸ Moyal, Maurice, The Uranium Industry in France: Canadian Min. Jour., vol. 3, No. 78, March 1957, pp. 76-79.

²⁹ Prax, Yvonne, Atomic Energy: French Newsletter, Chem. and Ind., No. 35, Aug. 31, 1957, p. 1176.

²⁰ Northern Miner (Toronto), vol. 43, No. 38, Dec. 12, 1957, p. 23.

deposits were exploited by the Wismut Company, jointly owned by East Germany and U. S. S. R.; the output was exported to the U. S. S. R. Two reactors were under construction during the year. A 2-megawatt pool-type research reactor, built by the U. S. S. R. at the Central Institute for Nuclear Physics in Rossendorf near Dresden, was scheduled to begin operating late in 1957. The second reactor, a 70-megawatt (electrical) power reactor believed to be near the Stechlinsee in the Neubrandenburg district about 45 miles north of Berlin was to be in operation in 1961; the slightly enriched, heavywater power reactor would receive its fuel from U. S. S. R. The Warnow shipyard (at Warnemünde on the Baltic) was preparing to construct a nuclear-powered vessel.²⁸

Germany, West.—The Federal Republic of Germany purchased four United States research reactors. The pool reactor at Technische Hochschule München, Munich, went critical in October. By early 1958 a homogeneous reactor built for Farbwerke Höchst, A. G., Frankfurt, and a pool reactor for the Society for the Utilization of Nuclear Energy in Shipbuilding and Navigation, Inc., Hamburg, were scheduled to be in operation. A homogeneous reactor was under construction at the Institute for Nuclear Research in West Berlin. Several German companies had designs for projected large-scale, nuclear-power projects under active study. West Germany's most important uranium mine, operating since 1950 in Weissenstadt,

shut down because of high production costs.

Exploration for uranium in Bavaria continued. A German firm in Schwandorf was given a second Government license for prospecting in the area of Schwandorf. Uranium deposits in Bavaria included deposits (1) between the cities of Regensburg and Hof along the Czechoslovak border, (2) in Weissenstadt and Leupoldsdorf, (3) in Flossenburg, and (4) in the Wackersdorf coalfields. The West German Atomics Ministry set aside almost \$1 million for prospecting and processing uranium deposits.

Greece.—Greece and Yugoslavia laid the groundwork for future cooperation in the peaceful uses of atomic energy. A three-man delegation from the Yugoslav Atomic Energy Commission visited Greece in November to discuss mutual assistance, especially in

education and technology.

The Minister of Commerce and Industry in Greece was drafting a bill providing for uranium prospecting and for remunerating persons

discovering uranium deposits.

A nuclear research center was being established near Athens, and the Greek AEC had ordered a United States-built, pool-type reactor

that was scheduled for completion in 1958.

Hungary.—Uranium mines near Pécs were under study by more than 100 U. S. S. R. experts. Samples of the ore averaged 0.7 percent U₃O₈; the richest averaged about 3.0 percent U₃O₈. Some 25 tons of ore was estimated as being mined daily. Prerevolt agreements provided for a joint Hungarian-Soviet Union company; the U. S. S. R. was to pay Hungary the operational costs, plus 10 percent.²⁹

Italy.—Italy had no uranium-production facilities during 1957 but ore reserves in the Alps were estimated at 3 million tons at 0.2 percent

U. S. Mission, Berlin, Germany, State Department Dispatch 283; Oct. 28, 1957, 3 pp.
 Mining World, vol. 19, No. 3, March 1957, p. 107.

U₃O₈. Italy's most promising uranium discovery was being developed in the Preit district of Cuneo Province, Northern Italy, by SOMIREN, subsidiary of the Italian State Oil Agency, ENI. Results from exploration at Trentino (Val Daone and Val Redina) and Calabria were

encouraging.

Edisonvolta Co. of Milan planned to build a 134,000-electrickilowatt, pressurized-water reactor and Societa Italiana Meridionale Energia Atomica was considering a pressurized-water reactor of 125,000- to 150,000-electric-kilowatt capacity near Rome. In southern Italy the Societa Electro-nucleare Nazionale (SENN), subsidiary of Finnelettrica, was planning to construct a large-scale nuclear-power plant. In northern Italy, at Ispra, the National Committee for Nuclear Research was expected to have a heavy-water-moderated research reactor in operation in 1958. The Societa Ricerche Impeanti Nucleari and the Enrico Fermi Nuclear Study Center of Politechnico. both in Milan, had contracted for research reactors. The Italian and British Governments were negotiating for uranium to supply a natural-uranium, graphite-moderated, gas-cooled reactor that the Italian Government had ordered from Great Britain. The 200megawatt plant will cost about \$75 million.

Operation of one of Italy's proposed powerplants will require more than 2 tons of uranium, which would be supplied by the United States

at a cost of about \$80 million.

In Rome on December 28 the Italian Government and Great Britain signed an agreement that provides for extensive cooperation between the two countries in the field of nuclear research; under the agreement the United Kingdom would furnish enough fuel to keep British-supplied reactors in operation.

Luxembourg.—A study of the possibility of uranium deposits in Luxembourg revealed that the substratum of that country does not comprise rocks containing radioactive elements of practical

significance.30

Netherlands.—A pool reactor went into operation in June at the Amsterdam International Atomic Exhibition, where it operated at a power level of 10 kilowatts. Upon permanent relocation at the University of Delft it will operate at 100 kilowatts. The Netherlands Government ordered a 20-megawatt, high-flux pool research reactor to be built at Petten near The Hague. The United States approved a \$350,000 grant toward the cost of the project.

Norway.—Norway and the United States signed an agreement on February 25 for cooperation in the peaceful uses of atomic energy. The agreement provided for an exchange of unclassified information on research and power reactors and authorized the sale by the United States to Norway of uranium for reactor fuel. The terms permit the sale to Norway of up to 500 kilograms of contained uranium-235 in uranium enriched up to a maximum of 20 percent of uranium-235. The uranium was expected to be used as fuel for a 20-megawatt-power demonstration reactor under construction at Halden, where nuclear steam production and nuclear ship propulsion are to be studied, and for two prototype power reactors. Also, under the agreement the United States AEC could sell up to 6 kilograms of uranium-235 enriched up to 90 percent for use in a material-testing reactor.

²⁰ U. S. Embassy, Luxembourg, Luxembourg, State Department Dispatch 206: Mar. 1, 1957, 1 p.

The United Kingdom AEA and the Norwegian Institute for Atomic Energy completed an agreement for cooperation in establishing the Norwegian Halden Reactor project. The United Kingdom would supply the initial fuel charge and cooperate in research to develop suitable fuel elements for later charges for the reactor.³¹

The Norwegian Atom Insurance Pool was formed in October for protection against damage or loss occurring in or caused by atomic-

energy plants.

Poland.—Construction continued on Poland's first atomic reactor at the nuclear-research center at Swierk near Warsaw. The 2-mega-

watt reactor is scheduled for operation in 1958.

As Poland lacked processing facilities for uranium, all ore mineral was sold to the U. S. S. R.; however, plans were made for developing

uranium-treatment plants.

Portugal.—Uranium ore mined at the Urgeicera mine was shipped to the United States and Great Britain through the Combined Development Agency. Many thousand square miles of dry, rocky hills in southeast Portugal were being explored by more than 300 prospectors to determine the extent of what is believed to be one of the largest uranium deposits in Western Europe.

The Junta da Energia Nuclear was negotiating with AMF Atomics, New York, N. Y., for the purchase of a swimming-pool-type reactor for research and instruction purposes. The United States would contribute \$350,000 toward the cost of the project, which was due

to be completed near Lisbon in 1959.

Rumania.—U. S. S. R. sold its half ownership of Rumania's extensive uranium mines back to Rumania. The deposits are in the Baita district, Transylvania, and in the Derna-Tatros district. Ore was first shipped to the Soviet Union and later processed in Rumania. Apparently the processed uranium will continue to be exported to Russia.

Spain.—A 3-megawatt pool-type research reactor, under construction for the Spanish AEC near Madrid, was Spain's first nuclear project. The United States was to contribute \$350,000 toward the

reactor project.

TECNATOM, a newly formed company engaged in the study, development, and application of nuclear energy in Spain, was created by seven prominent Spanish companies. The company was interested in exploring power-reactor potentialities, radioisotope applications, and nuclear raw-material processing.

Sweden.—The nuclear plant under construction in Farsta, suburb of Stockholm, and a similar plant in Vasteras about 60 miles north-

west of Stockholm were expected to begin operating in 1960.

The Aktiebolaget Atomenergi planned to install a United States

tank-type reactor at Studsvik.

Uranium was extracted from the shale deposits of central Sweden. Two plants were built to handle uranium ores. The first plant, in central Sweden, produced a concentrate with a uranium content of 10 percent; the second, in Stockholm, reprocessed the concentrate and recovered pure uranium. Sweden's uranium requirements were

³¹ Chemical Trade Journal and Chemical Engineer (London), vol. 141, No. 3664, Aug. 23, 1957, p. 436.

estimated at 20 tons a year by 1960, rising to more than 200 tons by 1970.32

Atomic experts in Sweden were studying the technical aspects of plutonium production for use in nuclear weapons.³³

Switzerland.—The Swiss Government was negotiating a contract to purchase about 5 tons of uranium from the Canadian Government.

Nine tons of heavy water, shipped from the United States, arrived at the Reaktor A. G. plant at Würenlingen in November. Construction of a second nuclear-research installation at Würenlingen was expected to begin in 1958.

A Swiss firm was formed to erect an atomic-power reactor having an

electric-power capacity of 5,000 kw.

U. S. S. R.—Soviet Russia's major sources of uranium were (1) the Satellite countries, (2) the Ferghana region of the Central Asian Republics, (3) Northern Siberia, (4) Southern Siberia, and (5) Central Kamchatka. The most important source during the year was the Ferghana field, where the carnotite deposits closely resemble those of the Colorado Plateau in the United States. At least half of the

current Soviet production is believed to be from Ferghana.

The fields in Northern and Southern Siberia and Central Kamchatka are less known to the western world, although much can be inferred from the geology. Main occurrences of uranium are in two geological regions in belts of ancient Precambrian rocks and in widespread areas of permeable sediments (such as the Ferghana field). Such rocks indicate either the existence or potential source of uranium. Two vast areas of Precambrian rocks exist in the U. S. S. R.—the Angara shield of Northern Siberia, and the whole of Southern Siberia and the Mongolian Peoples' Republic. Scientists of the Free World are convinced that considerable mining is being done in these areas and consider that by 1960 the Angara shield deposits and the Ukhta reserves of North Russian might well be producing 2,000 tons of metal a year.

Another 2,000 tons of metal a year may be mined in Southern Siberia by 1960; in addition to 1,000 tons from the Mongolian-North China field. Mining was most intensive in the Lake Baikal area of Southern Siberia. At Slyudyanka, at the southern end of the lake, betafite deposits, containing uranium, calcium, columbium, and tantalum were mined. East of the lake uranium deposits were worked at Ulan Ude and at Vitim, 300 miles farther northeast on the Lena river. On the Yenisei River and about 1,000 miles west of Lake

Baikal, 2 other fields are known—Yeniseisk and Minusinsk.

Within the next 2 years possibly, the extensive Kamchatka area, northeast Soviet Russian, may be yielding some 1,000 tons annually. Another 800 tons may come from the Satellite countries—half from East Germany and Czechoslovakia and the remainder from Rumania, Bulgaria, and Hungary.

East Germany was the principal producer among the Satellite

countries.

Increased interest in atomic energy brought about appeals from the Soviet Government for amateur prospectors to boost the Soviet output of atomic fuel.

Mining Journal (London), vol. 249, No. 6373, Oct. 11, 1957, p. 423.
 Washington Post and Times Herald, Dec. 29, 1957, p. A5.

The U. S. S. R. planned to build six nuclear plants, having a total capacity of 995,000 kilowatts. One experimental atomic 5,000kilowatt powerplant was operating near Moscow.

The Soviet Union offered to give 50 kilograms of uranium-235 to the Atoms-for-Peace pool of the new International Atomic Energy

The first USAEC-approved shipment of radioisotopes to the Soviet Union for use in cancer research was made in March.

Atomic weapons continued during the year to be produced and

developed.

United Kingdom.—Uranium was imported from South Africa, Australia, and Belgian Congo. An order was placed by the United Kingdom for \$115 million of uranium from Canada to be delivered before 1962. The United Kingdom Atomic Energy Authority also planned to buy 500 short tons of uranium oxide annually from existing or future mines in Kenya, Uganda, Tanganyika, Swaziland, and British Guiana.34

The uranium refinery at Springfields continued to make nuclear fuel for the atomic reactors at Calder Hall, Chapel Cross, Windscale, and other places. The plant also recovered plutonium and other byproducts of irradiated fuel. A new and larger plant at Springfields was being built adjoining the existing one. The new plant would use more continuous unit operations to cope with the increasing nuclear-power program, and magnesium instead of calcium reduction would be employed.35

Atomic power being fed into the national grid by October was about 70,000 kilowatts. In addition to the British reactors listed in the Uranium chapter, Minerals Yearbook 1956, a 500-megawatt electrical-output nuclear-power station was announced. The plant, at Hinkley Point, Somerset, will have two reactors of the gas-cooled, graphite-moderated type, and its cost is estimated at between \$168 and \$196 million. Operation was scheduled for late 1959 or early

1960.

In October the Windscale plutonium plant had the world's worst nuclear reactor accident to date. An overheated fuel element permitted the escape of volatile fission products, mainly radioiodine, through the plant's chimney filters, contaminating large areas of the

surrounding countryside.36

The chemistry of the Dounreay experimental fast breeder reactor was described.³⁷ Two plants process irradiated fuel elements from the fast reactor and the materials-testing reactor, separating uranium and plutonium from waste fission products; a third plant prepares uranium metal from the nitrate. In addition, an evaporation plant concentrates highly radioactive wastes from the separation plants.

At Harwell research was continuing on methods of obtaining power The object was from controlled thermonuclear or fusion reactions. to heat isotopes of hydrogen to temperatures of about 100 million °C., at which the nuclei fuse to form heavier nuclei, releasing energy in the process. Many problems remained to be solved, including heating

<sup>Chemical Age, vol. 78, No. 1992, Sept. 14, 1957, p. 402.
Chemical Age, vol. 78, No. 1987, Aug. 10, 1957, p. 221.
Chemical Age (London), Windscale Post-Mortem: Vol. 78, No. 2001, Nov. 16, 1957, pp. 799-800.
Chemical Age (London), Chemical Operations at Dounreay: Vol. 77, No. 1975, May 18, 1957, pp.</sup>

the hydrogen to the required temperature, isolating the hot gas from the walls of its container, and maintaining it at a temperature long enough for the heat energy released in fusion to exceed that needed to heat the fuel.

An atomic power station in Northern Ireland, probably in the Lough Neagh vicinity of Ulster, was being planned. The plant, estimated to cost \$70 million, would be established and operated by the Northern Ireland Electricity Boar, and was expected to have a generating capacity of 150,000 kilowatts; operation was expected by 1963-64.

Construction of a 320-megawatt nuclear-power station at Hunterston, Ayrshire, Scotland, was announced by the Secretary of State for Scotland.

ASIA

Burma.—Plans were underway for developing a nuclear-energy program, including a research reactor at an early date and a power reactor by 1965.³⁹

reactor by 1965.³⁹
China.—Reports indicated that uranium was being mined in an unspecified region in China and that the Chinese Academy of Science had obtained satisfactory results on extracting uranium from domestic ore.⁴⁰

India.—Deposits of radioactive minerals, claimed to be the world's largest, were found in northeast India near Ranchi, Bihar. Reports said that the deposits contained over 3.3 million tons of ore; comprising 300,000 tons of thorium concentrate (10 percent thoria) and 10,000 tons of uranium at a concentration of 0.13 to 0.4 percent U_3O_8 . Further exploration was expected to lead to doubling present estimates.⁴¹

The plant at Alwaye continued to refine thorium- and uranium-containing monazite sands of the Kerala coast. A new uranium-processing plant was to be built at Trombay, suburb of Bombay. A plant to produce uranium metal, under construction near Bombay, was scheduled to be completed by mid-1958.

The Indian Atomic Energy Commission indicated that plans for a power-generating atomic reactor would be ready by the end of 1958; and, if finances permitted and the plan was approved, the reactor could be ready by 1962. By the end of 1958 India expected to have two additional swimming-pool-type reactors. During the year India's atomic reactor had been used for research in neutron physics, irradiating biological and agricultural materials, and producing isotopes.

Iraq.—Iraq was scheduled to get up to 13.2 pounds of U-235 for reactor fuel from the United States Atomic Energy Commission. Under a cooperative agreement between the two countries Iraq could also receive limited quantities of highly enriched U-235, plutonium, and U-233 for research.

Israel.—Production of uranium from the phosphate rocks of the Negev was reported to be starting. Equipment was assembled, and technologists reported a feasible extraction method; the uranium

Foreign Commerce Weekly, vol. 57, No. 14, Apr. 8, 1957, p. 34.
 U. S. Embassy, Rangoon, Burma, State Department Dispatch 151: Aug. 22, 1957, 14 pp.
 Metal Bulletin (London), No. 4206, June 28, 1957, p. 23.
 Bureau of Mines, Mineral Trade Notes: Vol. 44, No. 4, April 1957, p. 18.

would be recovered as a byproduct in manufacturing superphosphates and phosphoric acids in the Haifa plant of Fertilisers & Chemicals,

Japan.—Several new uranium discoveries were reported in Tottori, Okayama, and Fukuoka Prefectures. The Tottori find joins the known uranium deposits of the Kurayoshi mine. The Fukuoka discoveries in the Shimomazaki area in Kawasaki were reported to contain deposits estimated at 117,000 tons at a maximum grade of 0.8 percent U₃O₈. A high-grade deposit was reported in the southeastern part of Iwate Prefecture.

Japan's first nuclear reactor was started during the year. at Japan's new nuclear research center, some 70 miles from Tokyo, the 50-kilowatt, solution-type reactor would be used in nuclear engineering and physics studies, to make radioisotopes, and for varied research. Fuel for the reactor was supplied by Mallinckrodt Chemical Works. The AEC announced plans to issue a license for the export of a 10,000-thermal-kilowatt research reactor to Japan.

The Atomic Fuel Public Corp. was expected to begin experimental

production of uranium metal.

Jordan.—First concessions for uranium mining were reported to be granted by the Jordan Government. The concession was said to cover a 300-square-mile area in the Araba region in the southern part of the country.

Korea.—Assistance from the United States in building an atomic

powerplant was requested by the South Korean Government.

Pakistan.—An extensive exploration for radioactive minerals was planned. A research reactor was planned for fundamental research education and production of radioisotopes for West Pakistan; a power reactor was to be installed in East Pakistan.

Thailand.—The ban on exporting radioactive ores continued, but indications were that Japan would be permitted to mine uranium for

the Thai Government.

AFRICA

Belgian Congo.—Union Minière du Haut-Katanga continued to mine and to concentrate rich uranium ores for shipment to the United States and Great Britain. Belgian Congo production figures were not available, but it was known that Congo milling facilities had a capacity of 25,000 tons of ore a month and could produce 1,000 to 3,000 tons of concentrate a year.

Mozambique.—A plan of the Portuguese Government to encourage prospecting for radioactive minerals in Mozambique was announced.43 Uranium production in 1956 was about 42 tons of davidite, which was

probably shipped to France.

Rhodesia and Nyasaland, Federation of.—A 5-year plan to boost the mining of uranium in the Federation was announced by the United Kingdom Atomic Energy Authority. A special "Bonsella" price of 55s. per pound of uranium oxide will be paid by the Authority until March 31, 1962, for the first 5 tons of uranium oxide contained in acceptable ore delivered from each new mine. A substantial refund of rail charges also will be made.

⁴² Metal Bulletin (London), No. 4181, Mar. 26, 1957, p. 26.
42 U. S. Embassy, Lourenco Marques, Mozambique, State Department Dispatch 242; May 31, 1957, 1 p.

Apart from the special offer the Authority will be prepared to purchase until March 31, 1964, in any 1 year, suitable ores containing up to 100 tons of uranium oxide and will accept small consignments not less than a quarter of a ton of oxide. The offer is primarily directed to stimulate the small miner and prospector. The Authority offered to set up a uranium-processing plant if large deposits are found.

Survey maps of parts of Southern Rhodesia indicating areas of

radioactivity were published.44

Federation of Rhodesia and Nyasaland exported uranium oxide for Production of calcined uranium oxide began in May the first time. 1957, when a recovery plant for treating uranium-bearing ore from Northern Rhodesia's Nkana mine came into operation. For the period ended June 30, 1957, Nkana produced 9,703 pounds of uranium oxide containing 7,257 pounds of U_3O_8 .

South-West Africa.—Anglo American Corp. of South Africa, Ltd., was reported to have discovered uranium in the Namib Desert. 45

Tanganyika.—The United Kingdom Atomic Energy Authority established an office in Dodoma, Tanganyika, to encourage exploration for radioactive minerals. Apparently radioactive minerals could be licensed for export from Tanganyika to the United States under certain conditions.

Anglo American Corp. of South Africa and Newmont Mining Corp.

were cooperatively exploring for uranium in Tanganyika.

Union of South Africa.—Uranium was being produced from 29 gold-uranium mines with 17 mills at a rate of about 20 million tons of ore per year. Concentrate production in 1957 was estimated at 5,500 tons and was sold to the United States and Great Britain through the Combined Development Agency. Ore reserves remained at 1.1 million tons, with a content of 0.03 percent U₃O₈.46

Chemical concentration methods and techniques were published

during the year.47

OCEANIA

Australia.—Uranium was produced by the Government-owned mill at Rum Jungle and the South Australia State mill at Radium Hill. The Rio Tinto mill at Mary Kathleen was scheduled for operation in 1958.

The Rum Jungle mill capacity was 10,000 tons per month; it produced an estimated 595,000 pounds of concentrate. The Radium Hill mill, with a capacity of 37,500 tons of ore per month, produced about 450,000 pounds of concentrate. Total production from Australia was about 522 tons of uranium concentrate. Annual production was expected to increase to 1,000 tons when the Mary Kathleen mill begins.

The reserve of the Rum Jungle area was 335,000 tons at 0.3 percent $\mathrm{U_3O_8}.$

⁴⁴ U. S. Embassy, Salisbury, Southern Rhodesia, State Department Dispatch 91: Sept. 6, 1957, 3 pp. 45 Mining World, vol. 20, No. 1, Jan. 1958, p. 93. 46 Bureau of Mines, Mineral Trade Notes: Vol. 44, No. 1, January 1957, p. 15. 47 Mining Engineering, South Africa as a Leading Uranium Producer: Vol. 9, No. 11, November 1957, pp. 1211, 1213. 48 Waspe, L. A., South African Uranium Leach Plants: Min. Mag. (London), vol. 95, No. 6, December 1956, pp. 332-341. 48 Mining Magazine (London), Uranium Precipitation at Randfontein: Vol. 96, No. 6, June 1957, pp. 373-374. Holz, Peter, South Africa in the Nuclear Age: Canadian Min. Jour., vol. 78, No. 8, August 1957, pp. 87-92.

Geologists of Mount Isa Mines investigated what appeared to be an important new uranium field, 200 miles northeast of Mount Isa, Economic aspects of the Mount Isa Mines proposal for Queensland. an atomic-power reactor to supply power and light for the company mining and processing activities were being studied by the Commonwealth Atomic Energy Commission. The South Australian Government was considering installing an atomic powerplant at Mount Gambier in southeast South Australia near the border of Victoria. 48

A major symposium on the Peaceful Uses of Atomic Energy, with specific reference to research and applications in Australia, was sched-

uled to be held in Sydney on June 2-6, 1958.49

New Zealand.—Exploration for radioactive minerals continued in New Zealand, particularly in Buller Gorge area. The Geological Survey Branch of the Department of Scientific and Industrial Research carried out mineralogical studies of the area.

A bill to encourage exploration for uranium was introduced in the House of Representatives of New Zealand. It provided for grants to persons discovering materials related to atomic-energy production.⁵⁰

WORLD RESERVES

Free World reserves of developed or partly developed commercial uranium ore contain over 1 million tons of uranium. Further development of known occurrences and adjacent areas was expected to result in a Free World reserve of 2 million tons of uranium. The domestic known and inferred reserve at the end of 1957 was estimated at nearly 76 million tons, averaging about 5 pounds of uranium oxide per ton. In 1956 the reserve had been about 60 million tons; in 1955, 25 million; in 1954, 10 million; and in 1953, 5 million. Most of the domestic reserve was in deposits ranging from several hundred thousand to several

Ore reserves by countries of the Free World at the end of 1957 were as follows:

Country	Thousand tons (ore)	Grade (percent U ₃ O ₈)	Tons U ₃ O ₈
United States	75, 800 320, 000 1, 100, 000 335	0. 27 . 12 . 034 . 30	205, 500 380, 000 370, 000 1, 000 500, 000–100, 000

Data on reserves from Portugal, other areas in Australia, the Soviet Bloc, and other countries were not available.

The basis for estimating reserves in foreign countries was not defined; the domestic reserves were calculated from engineering and geologic data in compliance with definitions for measured, indicated, and inferred ore used by the Bureau of Mines and the Geological Survey.

[#] Foreign Commerce Weekly, vol. 57, No. 14, Apr. 8, 1957, p. 35.
Chemistry and Industry, No. 52, Dec. 28, 1957, p. 1675.
U. S. Embassy, Wellington, New Zealand, State Department Dispatch 23: July 12, 1957, 2 pp.

TECHNOLOGY

Exploration.—In the United States, small contractors used from 1 to 3 combination rigs for exploration drilling of uranium; they supplemented the large, heavy drills with smaller rigs for core-drilling and for hole maintenance. Drillers usually specialized in one type of drilling and subcontracted for other types of drilling when necessary.

The major types of drills used were the rotary rock, wagon, and churn drill. Truck-mounted rotary drills equipped with mud pumps and air compressors probably supplied over 75 percent of the drilling for uranium on the Colorado Plateau. The mud supported the walls of the hole, removed the cuttings as they were made, and cooled the cutting edges of the drill bit. Compressed air was the simplest method of cleaning the hole and was generally used until such depths were reached as to require use of drilling mud to remove the restrictions in the hole that could not be removed with air. Wagon drills usually consisted of a multiple-axle-drive army-surplus truck, upon which were mounted both a compressor and a mast to support a long-change feed pneumatic drifter machine, a heavy-duty hoist, and a dust sampler. Generally the wagon drill was limited to areas in which the drilling depth was less than 200 feet and the ground fairly stable and relatively dry. The churn drill commonly used to drill water wells was used in plug drilling when the ground was loose, caving, or too hard for rotary or core drills to function economically. Churn drills were used principally to drill ventilation holes.

Mining.—Mining costs from five of the largest uranium-mining districts prepared by the AEC are shown in table 11. The Uravan Mineral Belt, with reserves estimated at 3.5 million tons at an average grade of mined ore of 0.28 percent U₃O₈ and 1.00 to 1.25 percent V₂O₅, contains thin, discontinuous deposits averaging about 3 feet thick. Mining was done at depths ranging from a few feet to as much as 600.

The White Canyon Monument Valley deposits, containing 1.9 million tons of ore at 0.32 percent U₃O₈ content, average 4 feet in thickness, are more continuous than the Uravan deposits, and require only occasional ground support. Mining depth varied from a few feet to 200. Estimated grade of ore mined was 0.25 percent U₃O₈. The Big Indian Wash, with reserves estimated at 3.8 million tons of 0.43 percent uranium, has deposits ranging from 4 to 20 feet in thickness and averaging 6 feet. The depth of mining averaged 550 feet. The estimated average grade of mined ore was 0.35 percent U₃O₈. The

TABLE 11.—Uranium mining costs in 1957

	Uravan Mineral Belt.	White Can- yon Monu- ment Val-		Greater Grants area.	Gas Hil pit-st	ls, Wyo. ripping r	-Open- atios
	Utah- Colorado	ley, Utah- Colorado	Utah	New Mexico	5-1	8-1	12-1
Exploration Development Depreciation (plant and equipment) Direct mining Indirect mining Total	\$2.00 3.00 2.00 11.00 2.00	\$2.00 1.50 2.00 8.50 2.00	\$1.00 1.00 1.00 6.00 2.00	\$0.50 1.50 1.00 7.50 1.50	\$0. 30 2. 00 . 50 1. 25 . 75	\$0. 50 3. 20 . 50 1. 25 . 75	\$0.70 4.80 .50 1.25 .75

1253 URANIUM

Ambrosia Lake area in the Greater Grants district in northwest New

Mexico was the most important uranium area developed.

Reserves in the Greater Grants area were estimated to total 51.4 million tons, with an average grade of 0.26 percent U₃O₈. Ambrosia Lake deposits average about 8 feet in thickness, varying locally up to 100 feet. Mining depths varied from 350 to 800 feet. Workings above the water table required only occasional supports, but those below the water table presented problems of rock stability and required considerable ground support. The average grade of mined ore was estimated at 0.25 percent U_3O_8 . The Gas Hills area contains some 7.2 million tons of ore averaging 0.26 percent U₃O₈. Ore was mined principally from open pits; it ranged from surface outcrops to 300 feet in depth. The thickness of deposits averages 6 feet. Unconsolidated ground can be broken by rippers, keeping blasting operations at a minimum. estimated average grade of ore mined was 0.225 percent U₃O₈.

Mining expenses, presented in table 11, include exploration and development costs, direct and indirect operating costs, and deprecia-

Basic systems used in mining uranium included (1) open stoping, (2) room-and-pillar, and (3) retreat mining with induced caving. Open stoping was used where the individual ore pods and lenses were small and back conditions were good. Room-and-pillar methods were employed in the larger, continuous ore bodies. Production per man-shift increased when large trackless equipment was used in room-and-pillar systems. Some miners found that retreat mining systems were successful where back conditions were poor. trend toward better understanding and study of mining methods was apparent.52

Ventilation in underground workings received increased attention over previous years as uranium miners learned more about the radiation

hazard in uranium mines.

The Ambrosia Lake district of New Mexico probably will have the largest domestic underground mines. The ore will be mined from shafts ranging from 350 to 1,000 feet or more in depth. Plans indicate a daily mine-production rate of about 8,000 tons, and individual units will produce about 500 to 1,000 tons daily. The Ambrosia Lake mines were in the development stage, and certain mining problems had not been fully evaluated.

Three Bureau of Mines reports on uranium mining methods and

costs were published.⁵³

Milling.—All domestic uranium mills operating in 1957 had sulfuric-acid leaching facilities for uranium recovery. Two mills used sodium carbonate as the principal leaching medium and the acid leach as a scavenger operation. Two mills had both acid and carbonate as separate operations to process a variety of ores, especially the high-lime-content ore. Two mills used a fusion step for purification;

^{**}Si Youngbery, Elton A., Uranium-Ore Reserves and Ore Production: Address at the Future Markets for Uranium Symposium, Denver, Colo., Dec. 16-17, 1957.

**Delicate, Donald T., Underground Uranium-Mining Methods: Min. Cong. Jour., vol. 43, No. 5, May 1957, pp. 36-40.

**Dare, W. L., Mining Methods and Costs, Continental Uranium, Inc., Continental No. 1 Mine, San Juan County, Utah: Bureau of Mines Inf. Circ. 7801, 1957, 20 pp.

Dare, W. L., and Delicate, D. T., Mining Methods and Costs.—La Sal Mining & Development Co., La Sal Uranium Mine, San Juan County, Utah: Bureau of Mines Inf. Circ. 7803, 1957, 48 pp.

Dare, W. L., Mining Methods and Costs, Calyx Nos. 3 and 8 Uranium Mines, Temple Mountain District, Emery County, Utah: Bureau of Mines Inf. Circ. 7811, 1957, 36 pp.

3 mills used column ion exchange; 6 had basket-type resin-in-pulp ion-exchange circuits, and 3 employed liquid-liquid solvent extraction.

Milling costs, based on current direct and indirect milling costs, exclusive of major replacements and amortization, ranged from \$8.00 to \$15.00 per ton for the smaller mills and \$7.00 to \$10.00 for the larger. Overall processing costs per ton were increased an additional

\$5.00 to \$8.00 if vanadium was recovered.

Uranium recovery by ion exchange furnished 73 percent of the Free World production of uranium. In the United States production processes were primarily by ion exchange; 48 percent used the resinin-pulp process and 13 percent, the column ion exchange. Twenty-one percent of the production was by acid-chemical precipitation, 10 percent by carbonate leach, and 8 percent by solvent extraction. The solvent-extraction process for uranium recovery, developed principally by the Bureau of Mines at its Salt Lake City laboratories, will supply about 50 percent of domestic production when mills under construction begin operations in 1958.

Milling in the Ambrosia Lake area, New Mexico was described.⁵⁵ The paper detailed processing methods and presented flowsheets of Anaconda's Bluewater mill and of the mills being built by the Homestake New Mexico Partners, the Homestake-Sapin Partners, the Phillips Petroleum Co., and the Kermac Nuclear Fuels, Inc.

Solvent extraction as a unit operation in metallurgy was defined

nd evaluated during the year.56

Uranium-concentrate specifications were reviewed by the AEC. Specifications depend upon: (1) Impurities that complex with the uranium and prevent it from being extracted by the solvent in the refining process, (2) impurities that carry through the solventextraction process and contaminate the final product, and (3) impurities that do not affect the chemistry of the process but do create other operating problems, such as foaming, corrosion, and scaling. These specifications were adopted for uranium concentrate: (1) A minimum U₃O₈ content of 75.0 percent; (2) a maximum V₂O₅ content of 2.0 percent of the U₃O₈ content; (3) a maximum phosphate (PO₄) content not to exceed the sum of 1.31 times the iron (Fe) content plus 2.0 percent of the U₃O₈ content, provided the total phosphate content shall not exceed 6.0 percent of the U₃O₈ content; (4) a maximum molybdenum content of 0.60 percent of the U₃O₈ content; (5) a maximum boron content of 0.030 percent of the U₃O₈ content, (6) a maximum halogen (Cl, Br, and I, expressed as Cl) content of 0.10 percent of the U₃O₈ content; (7) a maximum fluorine (F) content of 0.10 percent of the U₃O₈ content; (8) a maximum copper (Cu) content of 1.70 percent of the U₃O₈ content; (9) a maximum arsenic (As) content of 0.80 percent of the U₃O₈ content; (10) a maximum carbonate (CO₃) content of 1 percent of the U₃O₈ content; (11) a maximum sulfate (SO₄) content of 15 percent of the U₃O₈ content; (12) a maximum moisture content of 10 percent; (13) all uranium concentrates passing through a 1/4-inch screen; (14) a maximum thorium content of 2.00 percent of the U₃O₈ content; (15) a maximum rare-earth content of

<sup>Kennedy, R. H., Uranium Ore Processing: Mines Mag., vol. 47, No. 9, September 1957, pp. 22-25.
Osborn, C. E., Milling Uranium Ores of the Ambrosia Lake Area, New Mexico, Present and Future: Address at the annual meeting of the New Mexico Mining Association, El Paso, Tex., Nov. 8, 1957.
Rosenbaum, J. B., and Clemmer, J. B., Metallurgical Applications of Solvent Extraction: Paper presented at Sixtieth National Western Mining Conference, Denver, Colo., Feb. 7, 8, and 9, 1957.</sup>

URANIUM 1255

0.2 percent of the U₃O₈ content; and (16) a maximum organic content

of 0.10 percent of the U₃O₈ content.⁵⁷

A new solvent-extraction process for making UF₆, announced at the American Mining Congress at Salt Lake City in September 1957 and developed by Dow Chemical Company, extracts uranium chloride anion complex from high-chloride liquors; hydrofluoric acid is added to the solvent phase to precipitate UF₄ or green salt.

A 5-day international symposium at Amsterdam was conducted in April 1957. The various methods of separating isotopes were debated, with Netherlands and German scientists favoring the ultracentrifuge

over the diffusion process.

Research at the Reactor Centrum Nederland, the Netherlands Institute for the Development of Nuclear Science for Peaceful Purposes, indicated that an ultracentrifuge operating at very high speeds could be used to separate uranium-235 from natural uranium. Preliminary experiments suggested that this may be a considerably cheaper method of concentrating uranium-235, present in the proportion of 1 part in each 140 parts in natural uranium, than the gaseous diffusion process used in the United Kingdom and the United States. In the gaseous diffusion process considerable power is required in pumping uranium (as gaseous uranium hexafluoride) through a series of thousands of permeable plastic membranes through which the light uranium-235 atoms pass more easily than the heavier uranium-238 atoms, which are present in greater quantity. In the ultracentrifuge process the heavier uranium-238 atoms are stated to be thrown outward more readily than the lighter uranium-235 atoms. latter can be collected as a residue after prolonged centrifuging. As relatively few centrifuge units are required, considerably less power is required.58

Lennemann W. L., Uranium Concentrate Specifications: Paper presented at the National Western Mining Conference of the Colorado Mining Association, Denver, Colo., Feb. 8, 1958.
 Chemical Age (London), vol. 78, No. 2005, pp. 979–980, Dec. 14, 1957.

Vanadium

By Phillip M. Busch 1 and Kathleen W. McNulty 2

HE DOMESTIC vanadium industry in 1957 was characterized by an increase in the output of vanadium in ore and concentrate, decreases in the production of vanadium pentoxide and ferrovanadium, and reductions in consumption and exports. World production of vanadium in 1957 reached a new high, with increased production in Finland and Africa.

The Vanadium Corp. of America and the Electro Metallurgical Co., a division of Union Carbide & Carbon Corp., were acquitted by a United States District Court on a charge of conspiring to monopolize the vanadium industry and to fix prices between 1933 and 1946.3

TABLE 1 .- Salient statistics of the vanadium industry in the United States, 1948-52 (average) and 1953-57, pounds of contained vanadium

	1948-52 (average)	1953	1954	1955	1956	1957
Production (domestic): Ore and concentrate processed		6, 114, 851 5, 012, 448	6, 051, 784 6, 302, 912 395, 287	6, 571, 655 7, 338, 668 184, 737 439, 457		7, 382, 638 7, 218, 841

Measured by receipts at mills

On June 5, 1957, the Atomic Energy Commission (AEC) invited bids on 4\% million pounds of fused vanadium pentoxide (V₂O₅), which was determined to be surplus to the Government needs. As originally planned, the vanadium pentoxide was to be sold in 6 offerings. Bids on the first offerings were received at Grand Junction, Colo., July 5, 1957. The AEC, in cooperation with the Defense Services Administration and the United States Department of Commerce, determined the quantity of V₂O₅ to be sold periodically, making such adjustments in sales as might be in the best interest of the Government and create the minimum impact on industry.

² Classified as ferrovanadium, 1948-52. 3 Revised figure. 4 Classified as "Ore and concentrate," 1948-52, but probably included vanadium pentoxide.

¹ Commodity specialist.

Metal Bulletin (London), Vanadium: No. 4207, July 2, 1957, p. 28.

DOMESTIC PRODUCTION

ORE

Southwestern Colorado, northwestern New Mexico, northeastern Arizona, and southeastern Utah—the "Four Corners" area of the Colorado Plateau—continued to be the center of vanadium-ore mining in the United States; a small quantity of ore was also produced in Wyoming and Montana. Vanadium from these six States was a byproduct or coproduct of uranium production.

Production of vanadium in ore and concentrate increased about

29 percent over 1956.

TABLE 2.—Recoverable vanadium in ore and concentrate produced in the United States, 1948-52 (average) and 1953-57, by States, pounds of contained vanadium

State	1948-52 (average)	1953	1954	1955	1956	1957
Colorado	2, 424, 237	4, 530, 612	4, 528, 472	4, 595, 359	5, 582, 484	6, 264, 012
	215, 442	385, 038	575, 884	995, 873	1, 098, 802	1, 016, 851
	621, 856	1, 199, 201	947, 428	980, 423	1, 053, 802	101, 775
	3, 261, 535	6, 114, 851	6, 051, 784	6, 571, 655	7, 735, 088	7, 382, 638

¹ Includes Idaho, 1948-54; Montana, 1957; New Mexico, 1948, 1950-54, 1956-57; South Dakota, 1954; and Wyoming, 1954, 1956-57.

TABLE 3.—Vanadium and recoverable vanadium in ore and concentrate produced in the United States, 1948-52 (average) and 1953-57, in pounds

Year	Mine produc- tion ¹	Recover- able vana- dium	Year	Mine produc- tion 1	Recover- able vana- dium
1948–52 (average)	4, 560, 434 9, 285, 898 9, 860, 028	3, 261, 536 6, 114, 851 6, 051, 784	1955	9, 965, 205 11, 270, 919 14, 588, 088	6, 571, 655 7, 735, 088 7, 382, 638

¹ Measured by receipts at mills.

Colorado continued to be the leading vanadium-ore-producing State, and its output of recoverable vanadium was 12 percent larger than in 1956. In 1957 ore-processing mills were operated by Climax Uranium Corp. at Grand Junction, Union Carbide Nuclear Co. at Rifle and Uravan, and Vanadium Corp. of America at Durango and Naturita.

Production of recoverable vanadium in ore and concentrate in Utah decreased about 7 percent over 1956.

OXIDE

Vanadium pentoxide, containing 85 to 92 percent V_2O_5 , is the first vanadium product from mills processing uranium-vanadium-bearing ore. The vanadium oxide output in 1957 was consumed largely in manufacturing ferrovanadium, which averages 53 to 55 percent vanadium. Production of vanadium pentoxide decreased about 8 percent

in 1957 from the record high of 1956. Vanadium pentoxide from domestic ores was produced at 6 plants in 1957 and 5 plants in 1956. The figures in table 4 include the vanadium pentoxide produced as a byproduct of foreign chromite ores, 1948–57; vanadium pentoxide produced from Peruvian concentrate, 1948–55; and vanadium oxide recovered as a byproduct of domestic phosphate rock, 1948–54.

TABLE 4.—Production of vanadium pentoxide in the United States, 1948-52 (average) and 1953-57, in pounds ¹

Year	Gross weight	V ₂ O ₅ content	Year	Gross weight	V ₂ O ₅ content
1948-52 (average)	6, 694, 400	5, 936, 200	1955	14, 851, 000	13, 104, 800
	10, 140, 900	8, 950, 800	1956	15, 925, 900	14, 060, 000
	12, 735, 000	11, 255, 200	1957	14, 431, 800	12, 886, 200

¹ Includes a relatively small quantity recovered as a byproduct of Peruvian concentrate and foreign chrome ore.

FERROVANADIUM

Ferrovanadium was produced in the United States in 1957 by two companies—Vanadium Corp. of America and Electro Metallurgical Co. Production was about 35 percent smaller in 1957 than in 1956.

CONSUMPTION AND USES

ORE AND CONCENTRATE

The quantity of domestic and foreign ore and concentrate consumed at domestic plants in making vanadium pentoxide and ferrovanadium again established a new record of over 14 million pounds (vanadium content), about a 28-percent increase over 1956.

VANADIUM PRODUCTS

Of the total consumption reported in 1957, approximately 77 percent was in the form of ferrovanadium. Consumption of vanadium by uses indicates that about 79 percent was used in high-speed and other alloy steel.

TABLE 5.—Vanadium consumed and in stock in the United States in 1957, by forms, in pounds of vanadium

Form	Stocks at consumers' plants Dec. 31, 1956	Consump- tion	Stocks at consumers' plants Dec. 31, 1957
FerrovanadiumOxideAmmonium metavanadateOther	534, 012 34, 482 30, 570 133, 232	2, 748, 012 264, 158 199, 807 367, 912	435, 343 23, 663 26, 578 141, 316
Total	732, 296	1 3, 579, 889	626, 900

¹ Represents approximately 90 percent of total consumption of 3.9 million pounds.

TABLE 6.—Vanadium consumed in the United States in 1957, by uses

Use	Vanadium, pounds	Use	Vanadium, pounds
High-speed steel	790, 894 2, 045, 374 49, 184 367, 546	Chemicals Other Total	205, 336 121, 555 1 3, 579, 889

¹ Represents approximately 90 percent of total consumption (3.9 million pounds).

Ferrovanadium was used in making tool steels, high-strength structural steels, high-temperature alloys, and wear-resistant cast irons. Ferrovanadium was also used as a deoxidizer for low-carbon steel and in permanent-magnet alloys. Vanadium oxide was used as an additive to steel under special conditions and for coating welding-rod electrodes. Ammonium metavanadate and vanadium oxide were used as catalysts, in ceramics, and in research. Vanadium metal, excluding the high-purity product, was used for remelting or alloying purposes. The high-purity product was employed primarily for

research purposes.

Vanadium was used primarily for its grain-refining and alloying effects in steel and to increase the strength of cast iron. For these purposes, only small quantities are needed. The vanadium content of high-speed steels ranged from approximately 0.50 to 2.50 percent, but higher percentages were occasionally employed. In tool steels other than high-speed, the vanadium content varied from 0.20 to 1.00 The vanadium content of engineering steel was 0.01 to 0.25 percent. Most steels containing over 0.50 percent vanadium were for special applications. Vanadium, with chromium, nickel, tungsten, manganese, and boron, was used in a variety of engineering and structural steels. Aluminum alloyed with 2.5 to 40 percent vanadium controlled thermal expansion, electrical resistivity, and grain size of aluminum alloys. An alloy containing 80 to 85 percent vanadium with 13 to 17 percent aluminum was employed in producing titanium metal alloys. Another alloy containing aluminum, titanium, and boron, with 25 percent vanadium, was employed to increase the hardenability and improve the physical properties of steels. This alloy improved the hot-working characteristics of wrought stainless and heat-resisting steels and reduced heat checking of castings composed of these steels.

STOCKS

Stocks of various forms of vanadium held at consumers' plants December 31, 1957, decreased about 14 percent from those on December 31, 1956.

PRICES

From March 8, 1951, through 1957 vanadium oxide (V₂O₅) contained in ore has been quoted at 31 cents per pound. This quotation, however, disregards penalties based on the grade of ore or the presence of objectionable impurities, such as lime, which are important to

the refiners, since impurities vitally affect recoveries.

Quoted prices on vanadium pentoxide (Technical grade) varied from \$1.28 to \$1.38 a pound of V₂O₅; the price of ferrovanadium ranged from \$3.20 to \$3.40 a pound of contained vanadium (depending upon the grade of alloy). Vanadium metal, in 100-pound lots, advanced 20 cents a pound from \$3.45 to \$3.65 in July 1957.

FOREIGN TRADE 4

No vanadium ore or concentrate was imported in 1957. During the year 7 pounds (gross weight) of vanadium carbide valued at \$280 was imported from West Germany. In addition, 20,406 pounds (gross weight) of vanadic acid, anhydride, salts and compounds and mixtures of vanadium valued at \$22,523 was imported from Switzerland, and 400 pounds (gross weight) of chromium nickel and chromium-vanadium valued at \$1,692 was imported from West Germany.

Exports of vanadium in various forms in 1957 were about 36 percent less than in 1956. Exports of vanadium ore, concentrate, vanadic acid, vanadium oxide, and vanadates were about 46 percent less than in 1956; those of ferrovanadium and other vanadium alloying materials declined about 4 percent; and exports of vanadium-bearing flue dust and other waste materials were about 4.1 times greater in 1957 than in 1956. Eight countries (Japan, France, West Germany, Austria, Sweden, Italy, the Netherlands, and Switzerland) were the main foreign markets for vanadium pentoxide, vanadic oxide, vanadium oxide, and vanadates in 1957, taking 98 percent of the total exports for these commodities. Canada and West Germany were the main markets for ferrovanadium and other alloying material containing over 6 percent vanadium, taking a total of 99 percent. Exports of vanadium-bearing flue dust went to the Netherlands, Italy, and West Germany.

⁴ Figures on imports and exports compiled by Mae B. Price and Elsie D. Jackson, Division of Foreign Activities, Bureau of Mines, from records of the U. S. Department of Commerce, Bureau of the Census.

TABLE 7.—Vanadium ores or concentrate, vanadium-bearing flue dust, and ferrovanadium imported for consumption in the United States, 1948-52 (average) and 1953-57

[Bureau of the Census]	[Bureau	of	the	Census
------------------------	---------	----	-----	--------

	Vanadium	ores and cor	centrate	Vanad	ium-bear dust	Ferrovanadium		
	Pou	ınds		Pot	ınds		Pounds	
	Gross weight	Vanadium content	Value	Gross weight	Vana- dium content	Value	(gross weight)	Value
1948-52 (average) 1953 1954 1955 1956-57	3, 881, 290 2, 959, 600 1, 183, 961 2 582, 536	1, 017, 339 716, 977 395, 287 2 184, 737	\$528, 290 421, 091 238, 222 2 104, 230	4, 372 9, 822	349 1,010	\$980 2, 237	54, 894 17, 364	\$42, 717 12, 584

¹ In addition to data shown "vanadic acid, anhydride, salts and compounds, and mixtures of vanadium" imported as follows: 1953, 3,090 pounds (gross weight), \$2,368; 1954, 4,000 pounds (gross weight), \$2,934; 1957, 20,406 pounds (gross weight), \$22,523. Vanadium carbide imported 1957, 7 pounds (gross weight), \$280. Chromium nickel and chromium vanadium imported 1957, 400 pounds (gross weight), \$1,692.

3 Includes 92,594 pounds of concentrates containing 29,804 pounds of vanadium, valued at \$16,811, received but not reported by the Bureau of the Census until 1956.

TABLE 8.—Exports of vanadium from the United States, 1948-52 (average) and 1953-57, by classes

[Bureau of the Census]

Year	trates, v ide, vana and van	ore, concen- ranadic ox- dium oxide, adates (ex- nically pure		over 6	metal,	dium alloys, scrap	Vanadium- bearing flue dust and other waste materials		
Pound (vanadi conten		Value	Pounds (gross weight)	Value	Pounds (gross weight)	Value	Pounds (vana- dium con- tent)	Value	
1948–52 (average) 1953 1954 1955 1956 1957	30, 091 12, 319 42, 935 1, 729, 103 4 1, 856, 594 1, 000, 340	\$69, 588 32, 141 120, 311 3, 768, 358 4, 046, 100 2, 114, 700	186, 287 156, 952 140, 510 439, 457 4 278, 674 267, 988	\$328, 800 296, 157 237, 333 991, 955 4 650, 955 519, 955	22, 842 (3) (3) (3) (3) (3) (3)	\$10, 238 (3) (3) (3) (3) (3) (3)	(2) 54, 211 23, 953 86, 519 28, 545 116, 160	(2) \$31, 285 13, 609 66, 472 27, 185 118, 894	

Classified as ferrovanadium, 1948-52.
 Not separately classified before Jan. 1, 1953.
 Beginning Jan. 1, 1953, not separately classified.
 Revised figure.

TABLE 9.—Exports of vanadium from the United States, 1956-57, by countries. in pounds

[Bureau of the Census]

<u> </u>							
Country	and of dium mater taining perce	anadium ther vana- alloying ials con- g over 6 nt vana- (gross)	vanadic dium oxi a d a t e s	ore, con- s, pentoxide, oxide, vana- ide and van- (except ally pure (vanadium	Vanadium flue dust and other vana- dium waste ma- terials (vanadium content)		
	1956	1957	1956	1957	1956	1957	
North America: Canada. Mexico.	159, 018	204, 878	3, 360 1, 680	4, 846 1, 214			
Total	159, 018	204, 878	5, 040	6,060			
South America: Argentina. Bolivia. Brazil. Uruguay	2, 205	880	700	568 896 2, 122			
Total	2, 205	880	700	3, 586			
Europe: Austria Belgium-Luxembourg France Germany, West Italy Netherlands	(¹) 	1, 000 59, 570	2 609, 749 2, 105 265, 376 456, 617 78, 620 49, 694	96, 343 3, 333 158, 524 135, 927 48, 522 33, 486	2, 895 16, 276 9, 374	24, 690 39, 528 51, 942	
Norway. Spain. Sweden. Switzerland United Kingdom. Yugoslavia.	13, 400 	560	65, 019 1, 232	632 62, 974 11, 089 5, 765			
Total	² 116, 951	61, 130	² 1, 528, 412	556, 595	28, 545	116, 160	
Asia: India	500	1, 100 1, 100	322, 442	283 433, 816 434, 099			
Grand total	2 278, 674	267, 988	² 1, 856, 594	1, 000, 340	28, 545	116, 160	

¹ Revised to none.
2 Revised figure.

WORLD REVIEW

EUROPE

United Kingdom.—A Key Industry Duty on fused vanadium pentoxide for non-Commonwealth material placed special steel and ferroalloy producers in England at a disadvantage in respect to this commodity compared with certain Continental nations.⁵ Radical alteration of this situation may be anticipated when supplies from a newly developed source in the Transvaal of the Union of South Africa become available. New supplies from the Transvaal may well compete with United States material, which was exported in considerable quantity since 1955.

⁵ Metal Bulletin (London), Vanadium, Supplies Improving: No. 4213, July 23, 1957, p. 29.

Sweden.—Vanadium was reported present in the oil shale at Skåne. Västergötland, Närke, and Östergötland and in deposits of apatite in Grängesberg and Norrbotten. Since the vanadium content of these deposits is small, it is retrieved as a byproduct. Production figures have not been available, but it was thought that vanadium was produced by Domnarvets Järnverk from apatite ore from Grängesberg and possibly by the Norrbottens Järnverk from Kiruna and Luossavaara ores. Vanadium may also be produced by the Kvarntorps Skifferolieverk (Kvarntorp oil-shale plant) in Närke.

AFRICA

South-West Africa.—Control of the South-West Africa Co., Ltd., was acquired by a British mining group consisting of New Consolidated Goldfields, Anglo American Corp. of South Africa, and the British South Africa Co.⁷ The Abenab West mine controlled by this group has been the sole source of vanadium from South-West Africa.

Union of South Africa.—Two United States companies—Minerals Engineering Co. and Rockefeller Center, Inc.—and an English concern—High Speed Steel Alloys, Ltd., of Lancashire, England—undertook a joint venture to construct a vanadium mill in the Transvaal, Union of South Africa. Vanadium is contained in titaniferous magnetite. The annual capacity of the mill was reported as 3 million pounds of vanadium concentrate. Open-pit mining of the new company, called the Minerals Engineering Co. of South Africa, Ltd., will supply ore for the new mill. Production from the new mill, situated

TABLE 10.—World production of vanadium in ores and concentrates, 1948-57, in short tons 1 [Compiled by Pearl J. Thompson and Berenice B. Mitchell]

[Complet by 1 c	GILLO.	Homp	BOH WIL	a Doro	1100 15	. 1.11001	1011			
Country	1948	1949	1950	1951	1952	1953	1954	1955	1956	1957
North America: United States (recoverable vanadium) South America: Argentina Peru (content of concentrate) Europe: Finland Africa:	² 670 (3) 563	(3)	1	² 2, 126 (3) 495	(3)	(3)	² 3, 026 (³) 195		(3)	3, 691 (³)
Angola. Rhodesia and Nyasaland, Federa- ation of: Northern Rhodesia (recovered vanadium). South-West Africa (recoverable vanadium).	191 206			96 583		596	633	632	308	4 330
World total (estimate) ⁵	1, 630	2, 040	2, 405	3, 300	3, 788	4,002	3, 854	3, 996	4, 230	4, 312

¹ This table incorporates a number of revisions of data published in previous Vanadium chapters.

Includes vanadium recovered as a byproduct of phosphate-rock mining, 1948-54.
 Negligible.

⁴ Estimate.

⁵ Total represents data only for countries shown in table and excludes vanadium in ores produced in Belgian Congo, Morocco, Spain, Union of South Africa (Transvaal), and U. S. S. R., for which figures are not available; the table also excludes quantities of vanadium recovered as byproducts from other ores and raw materials.

⁶ U. S. Embassy, Stockholm, Sweden, State Department Dispatch 251: Aug. 28, 1957.

⁷ Mining Journal (London), Vanadium: Annual Review, 1957, May 1957, p. 43.

⁸ Wall Street Journal, Three Concerns Plan to Build South African Vanadium Mill: Vol. 149, No. 105, May 29, 1957, p. 13.

VANADIUM 1265

near Pretoria, was scheduled for September. Vanadium-ore deposits available for development reportedly contain over 50 million pounds of recoverable V₂O₅.¹⁰

TECHNOLOGY

Research on vanadium was centered primarily upon development of methods to produce a high-purity metal and the development of vanadium alloys. Substantial effort continued on determining the effect of vanadium in special steels and in new applications, and in the chemical and related industries.

The Bureau of Mines vanadium-research program was concerned with developing methods of making a ductile metal of consistent purity and properties, developing vanadium alloys, and testing and de-

termining the properties of vanadium metal and alloys.

Vanadium metal was indicated to resist attack by aerated salt water, as well as dilute HCl and H₂SO₄.¹¹ It cannot withstand dilute or concentrated nitric acid. Against certain liquid metals it has good resistance to corrosion.

For vanadium alloys three possible applications were suggested, including: A formable, weldable high-hot-strength sheet alloy for airframe service up to 1,200° F.; a fuel-element cladding for fast reactors in which hot strength, thermal conductivity, and interdiffusion are important considerations; and a diffusion barrier between titanium and steel.

According to researchers of a major automobile firm, vanadium pentoxide catalyst eliminated about four-fifths of the unused hydrocarbons in exhaust gases of single-cylinder engine. 12 Tests indicated that vanadium pentoxide for this purpose does not have as long a life as desired. Future refinements may provide a curb on smog produced by automobile exhaust gases.

Studies on the use of vanadium salts capable of preventing heart attacks were conducted by research teams at the University of Kansas Medical School.¹³ According to the theory advanced, vanadium salts tend to reduce deposits of cholesterol (which blocks arteries) and dis-

courages its production in the body.

Patents were issued for uranium-vanadium recovery and separation by phosphate precipitation 14 and recovery from carbonate solutions

by reduction-precipitation. 15

Other patents were issued for a vanadium-carbon-iron alloy, 16 for high-strength vanadium alloys, 17 and for the electrocleaning of vanadium.18

Mining World, vol. 19, No. 8, July 1957, p. 43.

Mining World, vol. 19, No. 8, July 1957, p. 43.

Mining Journal (London), Gleaning From the Reactive Metals Conference: Vol. 248, No. 6367, June 21, 1957, p. 793.

No. 24, Sept. 5, 1957, p. 10.

No. 24, Sept. 5, 1957, p. 10.

No. 24, Sept. 5, 1957, p. 10.

No. 24, Sept. 5, 1957, p. 10.

No. 24, Sept. 5, 1957, p. 10.

No. 24, Sept. 5, 1957, p. 10.

No. 24, Sept. 5, 1957, p. 10.

No. 24, Sept. 5, 1957, p. 10.

No. 24, Sept. 5, 1957, p. 10.

No. 24, Sept. 5, 1957, p. 10.

No. 24, Sept. 5, 1957, p. 10.

No. 24, Sept. 5, 1957, p. 10.

No. 24, Sept. 5, 1957, p. 10.

No. 24, Sept. 5, 1957, p. 10.

No. 24, Sept. 5, 1957, p. 10.

No. 24, Sept. 5, 1957, p. 10.

No. 24, Sept. 5, 1957, p. 10.

No. 24, Sept. 5, 1957, p. 10.

No. 24, Sept. 5, 1957, p. 10.

No. 24, Sept. 5, 1957, p. 10.

No. 24, Sept. 5, 1957, p. 10.

No. 24, Sept. 5, 1957, p. 10.

No. 24, Sept. 5, 1957, p. 10.

No. 24, Sept. 5, 1957, p. 10.

No. 24, Sept. 5, 1957, p. 10.

No. 24, Sept. 5, 1957, p. 10.

No. 24, Sept. 5, 1957, p. 10.

No. 24, Sept. 5, 1957, p. 10.

No. 24, Sept. 5, 1957, p. 10.

No. 24, Sept. 5, 1957, p. 10.

No. 24, Sept. 5, 1957, p. 10.

No. 24, Sept. 5, 1957, p. 10.

No. 24, Sept. 5, 1957, p. 10.

No. 24, Sept. 5, 1957, p. 10.

No. 24, Sept. 5, 1957, p. 10.

No. 24, Sept. 5, 1957, p. 10.

No. 24, Sept. 5, 1957, p. 10.

No. 24, Sept. 5, 1957, p. 10.

No. 24, Sept. 5, 1957, p. 10.

No. 24, Sept. 5, 1957, p. 10.

No. 24, Sept. 5, 1957, p. 10.

No. 24, Sept. 5, 1957, p. 10.

No. 24, Sept. 5, 1957, p. 10.

No. 24, Sept. 5, 1957, p. 10.

No. 24, Sept. 5, 1957, p. 10.

No. 24, Sept. 5, 1957, p. 10.

No. 24, Sept. 5, 1957, p. 10.

No. 24, Sept. 5, 1957, p. 10.

No. 24, Sept. 5, 1957, p. 10.

No. 24, Sept. 5, 1957, p. 10.

No. 24, Sept. 5, 1957, p. 10.

No. 24, Sept. 5, 1957, p. 10.

No. 24, Sept. 5, 1957, p. 10.

No. 24, Sept. 5, 1957, p. 10.

No. 24, Sept. 5, 1957, p. 10.

No. 24, Sept. 5, 1957, p. 10.

No. 24, Sept. 5, 1957, p. 10.

No. 24, Sept. 5, 1957, p. 10.

No. 24, Sept. 5, 1957, p. 10.

No.

Vermiculite

By L. M. Otis¹, Nan C. Jensen²

ERMICULITE consumption remained fairly constant in 1957. conforming to the pattern prevalent since 1950. The Union of South Africa continued to be an important factor in the market, as about 4 percent of the vermiculite sold or used in the United States was imported from that source.

DOMESTIC PRODUCTION

Crude Vermiculite.—Four domestic operators mined vermiculite in 1957, producing a total of 184,000 short tons valued at \$2.6 million. Montana and South Carolina were the only producing States; most of the output came from Montana.

TABLE 1.—Salient statistics of vermiculite production, 1948-52 (average) and 1953-57, in thousand short tons

	1948-52 (average)	1953	1954	1955	1956	1957
United States: Crude Average value per ton. Exfoliated Average value per ton. World: Crude.	187	190	196	204	193	184
	\$11. 28	\$12.90	\$12.98	\$13. 24	\$13. 20	\$14. 15
	(1)	(1)	145	158	159	161
	(1)	(1)	\$74.55	\$63. 31	\$60. 93	\$61. 47
	218	(224	242	263	255	249

¹ Data not available.

TABLE 2.—Screened and cleaned domestic crude vermiculite sold or used by producers in the United States, 1948-52 (average) and 1953-57

Year	Short tons	Value	Year	Short tons	Value
1948-52 (average)	186, 693	\$2, 106, 611	1955	204, 040	\$2, 702, 225
1953-	189, 535	2, 445, 381		192, 628	2, 542, 467
1954	195, 538	2, 537, 577		183, 987	2, 602, 548

Exfoliated Vermiculite.—In 1957, 24 companies operated 54 exfoliating plants in 34 States and Hawaii, compared with 25 companies with 55 plants in 32 States and Hawaii in 1956. Texas had 4 exfoliating plants; 7 States each had 3; 2 States each had 2; and all other States with vermiculite-exfoliating facilities had 1 plant each.

Total production in 1957 was 161,000 short tons valued at \$9.9 million, a 2-percent increase in both quantity and value compared with 1956.

¹ Commodity specialist. ² Statistical assistant.

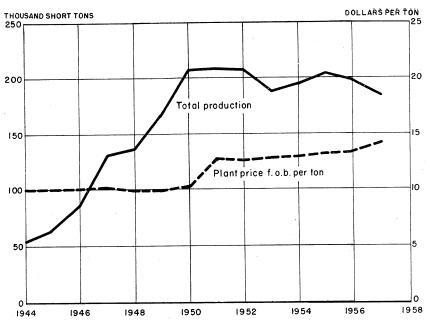


FIGURE 1.—Screened and cleaned crude vermiculite sold or used by producers in the United States and average value per ton, at their plants, 1944-57.

TABLE 3.—Exfoliated vermiculite sold or used by producers in the United States, 1 1954-57

			-	Value		
Year	Operators	Plants	Short tons	Total	Average per ton	
1954 1955 1956 1967	27 24 25 24	50 54 55 54	144, 964 157, 952 158, 787 161, 200	\$10, 807, 023 9, 999, 634 9, 674, 350 9, 909, 509	\$74. 55 63. 31 60. 93 61. 47	

¹Includes Hawaii.

CONSUMPTION AND USES

The building-plaster, lightweight-concrete, and loose-fill-insulation markets continued to consume most of the exfoliated vermiculite. Development of machine application of vermiculite plasters has widened its use.

The Vermiculite Institute reported that, of the production by its members, the quantity of vermiculite used as aggregates for precast products increased 71 percent from 1953 to 1957 and that sales for all vermiculite-aggregate uses increased 50 percent in the same period.

A recent survey disclosed a growing use was insulation of hollow-core concrete blocks. The Vermiculite Institute claimed that this doubles the insulating value of a wall, regardless of the type of aggregate used in making the block.

Other uses of vermiculite included soil conditioning, carriers for herbicides, insecticides, fungicides and fumigants, hatchery litter, seed propagation, transportation of hot steel ingots, and refractory fire brick.

PRICES

The E&MJ Metal and Mineral Markets in November 1957 quoted crude vermiculite: Per short ton, f. o. b. mines, Montana, \$9.50 to \$18; South African, \$30 to \$32, c. i. f. Atlantic ports.

The average mine value of all crude reported to the Bureau of Mines as having been sold or used in 1957 was \$14.15 per short ton,

compared with \$13.20 in 1956.

The exfoliated material so reported, f. o. b. processors' plants, was \$61.47 per ton, 1 percent higher than in 1956.

FOREIGN TRADE

Crude vermiculite is imported into the United States duty free. The Union of South Africa continued to be the only substantial source

of imports.

Official data on exports are not maintained. Due to the bulky nature of exfoliated vermiculite, exports in this form were insignificant. Canadian-industry statistics show that 78 percent of the dollar value of crude vermiculite exfoliated there in 1956 came from the United States and was valued at Can\$291,198. At the same unit price as the United States average value for 1956, this would amount to 22,000 short tons. Crude is also exported to Cuba and Venezuela in substantial quantities.

WORLD REVIEW NORTH AMERICA

Canada.3—Canadian imports of crude vermiculite during the first

half of 1957 were valued at Can\$146,215.

Starting in 1938 Canada used imported vermiculite for exfoliating and from 1938 to 1957 has shown a continuous increase in volume of output. In 1956 mining of crude vermiculite was begun by Northern Vermiculite, Ltd., near Stanleyville, 8 miles southwest of Perth, Lanark County, Ontario, for local exfoliation. Production figures have not been published.

All other Canadian exfoliators use crude from the United States

or Union of South Africa.

Crude vermiculite imports and exfoliated production, 1955-56

	19	1955	
Imports, crude: United States Uniton of South Africa	Cubic feet	Can\$ 291, 198 82, 609	Can\$ 284, 152 71, 259
United Kingdom Products produced	5, 721, 000	109 1, 154, 000	1, 369, 000

³ Canada Department of Mines and Technical Surveys, Ottawa, Vermiculite in Canada: Bull. 57, 1956, 2 pp.

Five companies exfoliated vermiculite in 10 Canadian plants

during 1956.

Canada reported a price range in 1956 for exfoliated vermiculite, f. o. b. plant, of Can\$0.20 to \$0.35 per cubic foot, packed in 4-cubicfoot bags.

TABLE 4.—World production of crude vermiculite, by countries, 1948-52 (average) and 1953-57, in short tons 2

[Compiled by Helen L. Hunt and Berenice B. Mitchell]

Country 1	1948-52 (average)	1953	1954	1955	1956	1957
Argentina	123 4 385	32 3 100		551	1, 323 1	³ 1, 100
Egypt	\$ 115 2	82	3 807	138 380	1,038 497	³ 1, 100 33 147
Rhodesia and Nyasaland, Federation of: Southern Rhodesia Union of South Africa United States (sold or used by producers)	483 30, 174 186, 693	33, 844 189, 535	45, 633 195, 538	57, 482 204, 040	305 58, 717 192, 628	460 62, 619 183, 987
World total 1 2	217, 975	223, 593	241, 981	262, 591	254, 509	249, 446

In addition to countries listed, vermiculite is produced in Brazil and U. S. S. R., but data are not available, and no estimates of their production are included in the total.
 This table incorporates a number of revisions of data published in previous Vermiculite chapters.
 Estimate.

ASIA

India.—Substantial reserves of vermiculite have been reported in Mysore State and prospected by the Mysore Government Geological Department at Bageshpura in Bangalore district and Chennarayapatna in Hassan district. **AFRICA**

Rhodesia and Nyasaland, Federation of.—The production of crude vermiculite in 1956 was 305 short tons, valued at \$1,980. Bell Asbestos and Engineering (Rhodesia), Ltd., acquired the Industrial Corp. of Rhodesia (Pvt.), Ltd., of Bulawayo. Among the latter's interests was the production of exfoliated vermiculite in Africa, Australia, and England. Insulation products and acoustical plaster were made in a new plant in Bulawayo opened in March 1957.

Union of South Africa.—The output of crude vermiculite in 1956 increased 2 percent over 1955.

Output, local sales, and exports of crude vermiculite from Union of South Africa, 1955-56

**	Output	Local sales		Exports	
Year	Short tons	Short tons	Value	Short tons	Value
1955	57, 482 58, 717	3, 064 2, 847	\$57,000 56,800	44, 840 52, 775	\$786, 000 971, 000

Average for 1951-52.

Average for 1950-52.

TABLE 5 .- Exports of crude vermiculite from Union of South Africa, 1953-57, by countries of destination, in short tons 1

[Compiled by Corra A. Barry]

Country	1953	1954	1955	1956	1957
North America:					
Canada	2,820	4 079	0.100	1 440	0.100
Cuba	- 2,820	4,873	3, 168	4, 440	3, 192
United States		-	349		491
South America:	- 6,615	7, 553	10, 637	8,083	6, 483
Chile.	1	10	1	1	I
Uruguay	-	. 48	19		
Venezuela	- 120		. 181	358	54
Europe:	-	. 130	197	251	
		l	1		
Belgium	274	391	280	286	619
Denmark		2,832	1, 439	3, 181	1,395
Finland	. 5		. 88	110	82
France		5, 209	4, 341	5, 162	6, 889
Germany, West		2,668	2, 926	5, 703	3, 154
Italy	3, 169	5, 036	5, 748	5, 715	3, 170
Netherlands	. 1, 482	1, 163	1,024	2, 260	1, 638
Norway	214		50	56	
Sweden	. 353	756	366	230	173
Switzerland		116	55	357	
United Kingdom	9, 381	8, 710	11, 711	11,879	8, 889
Asia:	, ,	, .,		12,000	0,000
Iraq	.	1	197	165	
Israel				134	396
Japan	293	186	88	632	282
Lebanon	60	101	1	89	. 202
Malava	29	56	59	188	
Saudi Arabia	167	52	28	419	10
Africa:		0.2	20	419	10
Egypt	1	70	130	171	
French West Africa	139	54	159	1/1	149
Morocco	112	114	382		
Rhodesia and Nyasaland, Federation of	437	354	304	349	56
Oceania:	101	1 001	304	949	373
Australia	436	578	685	1.051	000
New Zealand	123	204	57	1,951	869
Other countries	120	204		125	76
, moi countito			172	481	366
Total	32, 887	41.054	44.040	50 555	
Total value 3		41, 254	44, 840	52, 775	38, 806
Average value	\$556, 405	\$712, 570	\$785, 651	\$970,804	\$758,082
TEACTOR ACTIO	\$16.92	\$17. 27	\$17.52	\$18.40	\$19.54

¹ Compiled from Customs Returns of Union of South Africa.

TECHNOLOGY

At the annual meeting of the Vermiculite Institute progress in developing some possible large-volume new uses was reviewed. Tests were conducted to demonstrate the adequacy of vermiculite concrete as a horizontal safety diaphragm for buildings in earthquake zones. Procedures were developed for sampling and testing poured vermiculite concrete for roof fills, roof decks, and floors; precast insulating roof slabs and fill; insulation for underground heating conduit in military structures; and built-up roofing over vermiculite roof decks This research was sponsored by the institute and tests were carried out by industry and the National Bureau of Standards.4

Four years of plant research and 2 years of commercial application of nutriculture and mist propagation, using vermiculite, were reported.⁵ Polyethylene bags with holes in the bottom were filled with

² January through September, inclusive.

³ Converted to U. S. currency at the rate of SA£—US\$2.8021 (1953); US\$2.7982 (1954); US\$2.7809 (1955); US\$2.7852 (1956); and US\$2.7828 (1957).

Rock Products, Vermiculite Institute Explores New Markets at Annual Meeting: Vol. 60, No. 6, June

^{1957,} pp. 184-186.

§ Vanderbrook, Clarence, Mist Spray Growing and Nutriculture: American Nurseryman (rept. from Terra Lite Division, Zonolite Co., 135 South LaSalle St., Chicago 3, Ill.), Nov. 1, 1955.

exfoliated, sized, vermiculite; plant cuttings were inserted and placed in gravel beds to secure proper drainage. Water with nutrients was then forced under pressure through pipes with many small holes to produce a spray mist. This system reportedly gives a high percentage of rooting, high-quality plants, decreased nursery costs, and increased production and speeds plant maturity.

A 1-inch thickness of vermiculite plaster was applied to the underside of a reinforced-concrete slab for a fire-rating test sponsored by industry and conducted by the Fire Research Station of the British Department of Scientific and Industrial Research. Without the vermiculite plaster the slab fire rating was 1/2 hour, but the plaster increased the rating performance to 4 hours.⁶

Patents.—Ground peat moss and exfoliated vermiculite are used

to retain moisture in a patented plant receptacle.7

A patented growth medium for propagating plants consists of a mixture of exfoliated vermiculite, a water insoluble phosphate, and ammonium nitrate.8

A patented method for reducing sprouting time and improving the flowering of plants utilizes soaking of the seeds in solution before bedding them in moist, exfoliated vermiculite at low temperature.9

A patented exhaust silencer for internal-combustion engines uses exfoliated vermiculite to deaden the sound and absorb heat from the

An oil-well concrete was patented having relatively high permeability to liquids. It is made from a slurry of portland cement, a pozzolan, and a mixture of lightweight aggregate, such as vermiculite. having a range of particle sizes.11

Artificial, fire-resistant, fireplace logs made of magnesium oxide,

asbestos fiber, silex, and exfoliated vermiculite were patented.12

A machine was patented for blending and mixing fibrous and ground materials, such as exfoliated vermiculite, for thermal and acoustical insulation and fireproofing.13

Exfoliated vermiculite was impregnated with fertilizing agents to produce a patented combination soil conditioner and fertilizer carrier.14

A unitary seed-carrying package was patented, consisting of exfoliated vermiculite and pumice mixed with plant foods and an organic water-soluble binder. The seeds are placed in indentations in the package, covered with another layer of the mixture, embedded in soil, and allowed to germinate.15

A fire-retardant roofing and shingle material was patented, using a conventional, asphalt-saturated felt base, coated on 1 side with 2 layers of an asphalt-asbestos mixture. The two layers were separated by a layer of unexfoliated vermiculite granules. In case of fire, the

^{*} Engineering News-Record, Vermiculite-Treated Slab Gets 4-Hour Fire Rating: Vol. 158, No. 12, Mar. 21, 1957, pp. 89-90.

* Hawkins, W. L., Plant Receptacle: U. S. Patent 2,814,161, Nov. 26, 1957.

* Schmitz, G. W., and Rothfelder, R. E. (assigned to Zonolite Co., Chicago, Ill.), Plant-Propagating Medium: U. S. Patent 2,816,825, Dec. 17, 1957.

* Leopold, A. C., and Guernsey, F. S. (assigned to Research Corp., New York, N. Y.), Method of Accelerating and Increasing Flowering and Fruittulness in Plants: U. S. Patent 2,802,306, Aug. 13, 1957.

** Fisher, J. C., Jr., Exhaust Silencer: U. S. Patent 2,793,569, July 9, 1957.

** Mangold, G. B., Dyer, J. A., and Hart, J. T. (assigned to Petroleum Engineering Associates, Inc., Pasadena, Calif.), Permeable Concrete: U. S. Patent 2,793,77, May 28, 1957.

** Nielsen, H., Simulated-Log Fireplace Heater: U. S. Patent 2,793,697, May 28, 1957.

** Rice, R. W., Method of Impregnating Exfoliated Vermiculite: U. S. Patent 2,791,496, May 7, 1957.

** Clawson, C. D. (assigned to Ferro Corp., Cleveland, Ohio), Seed Planting Package: U. S. Patent 2,785,969, Mar. 19, 1957.

vermiculite particles exfoliate to form a nonflammable porous mass.16

A deodorant using vermiculite as a carrier was patented. A vaporizable deodorant was adsorbed into exfoliated vermiculite particles and placed where odors are to be neutralized.17

A cigarette filter tip was patented which uses exfoliated vermiculite granules loosely packed between the smoking section of the tobacco and a shorter section of tobacco held in the smoker's lips.¹⁸

A method and apparatus for the continuous, large-scale manufacture of lightweight, reinforced, insulating concrete roof and floor slabs were patented. Exfoliated vermiculite may be used as one of the suitable lightweight aggregates.19

An insulating wall structure was patented and formed by applying to a metal or plastic screen a composition of sodium silicate, aluminum powder, and an insulating mineral aggregate, such as exfoliated vermiculite. The composition foams after emplacement, leaving air spaces.20

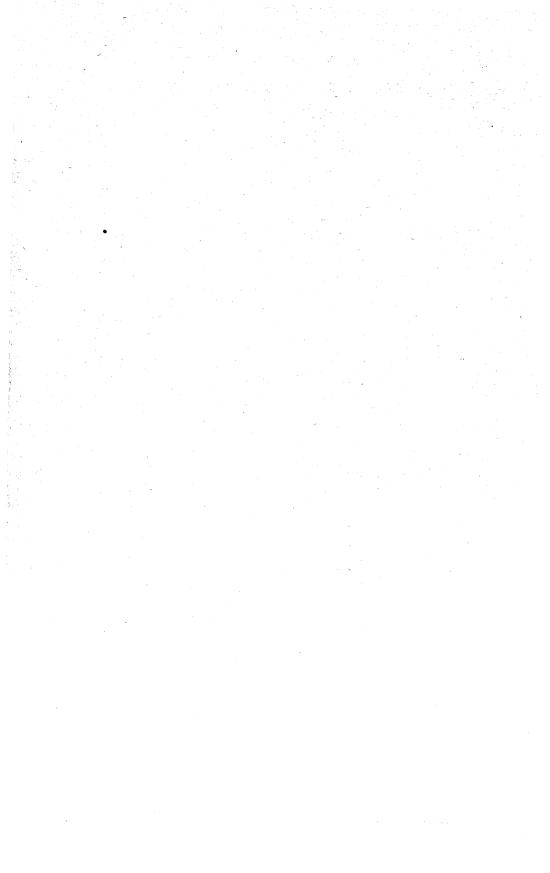
A patented formula for producing a permeable concrete for cementing oil wells specifies exfoliated vermiculite as a suitable aggregate. This is mixed with a calcined, ground, oil-impregnated

diatomite as a pozzolan, together with a hydraulic cement.21

A method of impregnating exfoliated vermiculite with various substances was patented. While exfoliated vermiculite granules were heated to between 350° and 600° F., they were exposed to a fine mist containing the ingredients to be adsorbed in the cells of the vermiculite, such as soil conditioners and fertilizers.22

¹⁶ Donegan, J. W. (assigned to Allied Chemical and Dye Corp., New York, N. Y.), Fire-Retardant Coated Roofing Sheet and Process for Preparing: U. S. Patent 2,782,129, Feb. 19, 1957.

19 Buslik, D., Granular Vermiculite Deodorants: U. S. Patent 2,778,774, Jan. 22, 1957.


19 Graybeal, K. W., Cigarettes: U. S. Patent 2,786,471, Mar. 26, 1957.

10 Sterrett, R. W. (assigned to Southern Zonolite Co., Atlanta, Ga.), Manufacture of Roofing Slabs and the Like: U. S. Patent 2,778,088, Jan. 22, 1957.

20 Rasmussen, P. D. (assigned to Invention Development Corp., a corporation of Illinois), Insulating Structure: U. S. Patent 2,780,090, Feb. 5, 1957.

21 Mangold, G. B., Dyer, J. A., and Hart, J. T. (assigned to Petroleum Engineering Associates, Inc., 19 Mangold, Well Completion With Permeable Concrete: U. S. Patent 2,786,531, Mar. 26, 1957.

22 Rice, R. W., Encampment, Wyo., Method of Impregnating Exfoliated Vermiculite: U. S. Patent 2,791,496, May 7, 1957.

Water

By Robert T. MacMillan 1

ATER PROBLEMS in many areas were eased by drought-breaking rains in 1957; but long-range supply problems, resulting from population growth, higher per capita consumption, and pollution, received increasing attention from both industry and Government.³

DOMESTIC SUPPLY

The water supply of the Nation is related directly to precipitation, which is reflected in the flow of water in streams and rivers. In 1957 stream runoff was in the median range for three-quarters of the Nation; the remaining quarter was divided about equally between excessive and deficient runoff. Water supply was more favorable than for any year since 1938; only one-eighth of the Nation was deficient.

Most of the area of deficiency was in New England and parts of

Most of the area of deficiency was in New England and parts of the Southeastern and Southwestern States. Precipitation was above normal in the central and southern Great Plains, where drought had

persisted since 1952.4

The flows of the Mississippi River at Vicksburg, Miss., and the Ohio River at Metropolis, Ill., were 102 and 108 percent of median, respectively, in 1957, a substantial increase for the former compared with the 3 years, 1954–56. At Herman, Mo., the Missouri River flowed at 67 percent of median, also an increase compared with 1956. In the West, the Colorado River flowed at 130 percent of median and the Columbia at 111 percent. The annual flow of the St. Lawrence below Lake Ontario was 105 percent of median and was the lowest in 15 years.⁵

The quantity of water stored in the major power, municipal, and industrial reservoirs in the Northeast was below average at the year's end due to drought in that area. Most water storage facilities in other parts of the Nation were above or well above average. Lakes Mead and Mohave on the Colorado River were up to 116 percent of average, and Shasta Reservoir in northern California was 130 percent of average. Owing to the continued drought in Southern California, municipal reservoirs of San Diego, which are not supplied by Colorado River water, held only about 3 percent of normal capacity and were lower than in 1956.

Ground water levels had been below average in many areas, particularly in the southern half of the Nation, but rose because of the combination of excessive rainfall and decreased pumping; the result

Commodity specialist.
 Engineering News Record, Three More States Study Water: Vol. 158, No. 5, Jan. 31, 1957, p. 26.
 Chemical Week, New Water Measures: Vol. 80, No. 7, Feb. 16, 1957, pp. 24, 25.
 U. S. Department of Commerce, Climatological Data: National Summary, vol. 8, No. 13, Annual 1957,

⁴ U. S. Department of Commerce, Climatological Data: National Summary, vol. 8, No. 13, Annual 1957, 138 pp.
⁵ Geological Survey (in collaboration with Canada Department of Northern Affairs and Natural Resources), Water Resources Review: Ann. Summary, Water Year 1957, Oct. 17, 1957, 16 pp.

was that deficiencies of several years were either replenished or substantially improved in 1957. Many exceptions were noted owing to extremely irregular precipitation and increased pumping in certain areas. In many areas of New England and the Northern Middle Atlantic States, the summer drought caused ground water levels to fall well below average. Several observation wells in Rhode Island were dry, and others in surrounding States were at record low levels.

Owing to previous droughts ground water in parts of the north central plains continued below average, despite more than average precipitation. Of the total water used in the United States, about

one-fourth is ground water.

CONSUMPTION AND USES

Water uses that require withdrawal from streams, lakes, or aquifers may be classified under the following headings: Irrigation, self-supplied industrial, public supplies, and rural. Water for generating hydroelectric power is not included because this use of water seldom affects its properties and permits reuse without treatment. Nonwithdrawal uses include navigation, recreation, waste disposal, and conservation of wildlife.

The leading uses of water were for irrigation and industry; it was estimated that more than 90 percent of the total water withdrawn in

1957 was for these purposes.

Withdrawal use, exclusive of water used for hydroelectric power, has increased enormously since the turn of the century. From about 40 billion gallons per day (bgd.) in 1900, total water use in the United States had climbed to an estimated 240 bgd. in 1955. By extrapolating this growth curve a total of 280 bgd. was estimated for 1957 and 597 bgd. in 1980. The latter figure includes some saline water used by industry for cooling and is not strictly comparable with the 1955 estimate, which covers fresh water only.

Use of industrial water has grown most rapidly, nearly equaling that used for irrigation, historically the leading user. It was estimated

that by 1980 industry will take two-thirds of all water used.

Although usually not appearing in the finished product, water is used in virtually all processing. Table 1 shows the quantity of water used by various industry groups in 1954. Specific information was obtained only from the groups requiring 20 million or more gallons; estimates were made for the smaller users.

Another method of expressing water use by industry was in gallons per unit of product. Table 2 shows the average quantity of water used in producing a unit, usually 1 ton, of various commodities. The minimum water required is also shown in some instances and indicates the large differences that exist between the average use and the minimum. For example, the average use per ton of steel is 50 times greater than the minimum required.

The mineral industry was a principal user of water in mining and processing ores and minerals. Both the quality and quantity of water required for certain metallurgical processes were being studied by

MacKichan, K. A., Estimated Use of Water in the United States, 1955: Geol. Survey Circ. 398, 1957, 18 pp.
 Woodward, D. R., Availability of Water in the United States, With Special Reference to Industrial Needs by 1980: Ind. College of the Armed Forces Thesis 143, Apr. 10, 1957, 74 pp.

TABLE 1.—Industrial water use by industry groups, 1954, in billion gallons 1

Industry group	Intake of arger users 2	Total intake
Food and kindred products	590	67
Pobacco manufacturers	2	
Textile and mill products	273	28
Apparel and related products		1
Lumber and wood products.	133	16
Furniture and fixtures.	207	1 61
Pulp, paper, and products	1,607	1, 61
Printing and publishing	2, 810	2, 82
Publicate and coal products	1, 516	1, 51
Rubber products.	113	711
Leather and leather goods	20	2
Stone, clay, and glass products	267	28
Primary metal industries	3, 641	3, 65
Fabricated-metal products	196	22
Machinery, except electrical	120 118	143 120
Electrical machinery	253	259
Instruments and related products	19	20
Miscellaneous manufactures.	59	7
Total	11, 757	12, 07

 $^{^1}$ U. S. Department of Commerce, Industrial Water Use: 1954 Census of Manufactures, Bull. MC-209, 1957, p. 52. 2 20 million gallons and over.

TABLE 2.—Water used per unit of product in certain typical industries

Industry	Unit	Typical use (gallons)	Minimum required (gallons)
SteelPaper from wood	Tondo	65, 000 38, 000	1, 300
ExplosivesAluminaAluminum from alumina	do do	184, 000 200, 000 2, 200 32, 000	560 2, 500
Administration adminis Thermoelectricity Rayon fiber Carbon black:	1,000 kwhrs	80, 000 220, 000	10,000
Contact processFurnace process	do	2, 000 6, 900 730, 000	
Coal hydrogenationOxygen	100 bbl	1, 100 2, 000	

Bureau of Mines engineers. Preliminary results indicated that certain flotation separations required water of relatively high purity.

In 1957 the quantity of water used in the secondary recovery of oil by waterflooding was estimated to be 105 billion gallons. This was a 25-percent increase over the quantity used in 1956. Oil recovered by injecting water into the oil-bearing strata was estimated to be 180 million barrels—a 15-percent increase over that recovered the previous year. Most of the water injected was brine; only 25 percent was fresh water. These figures do not include pressure maintenance.

PRICES

The prices paid for water ranged widely, depending on the availability of suitable water and the treatment required. For small quantities of municipal water delivered at the tap a median price of 35 cents per thousand gallons was estimated for 1957. Larger quantities usually were sold at lower rates.

Water used by industry was mostly self-supplied, and costs depended upon the quality required and the expense of development, treatment, and distribution. The cost was usually considerably below municipal rates.

Irrigation water was usually less expensive than that used by industry, ranged up to 13 cents per thousand gallons. The median cost was under 2 cents per thousand gallons.

Heavy water, D₂O, was available from the Atomic Energy Commission at \$28 per pound in 125- and 500-pound stainless-steel drums.

In many instances municipal water rates were too low to provide for adequate expansion and maintenance of facilities. Several factors aggravated this situation: Unprecedented growth of urban and suburban population; larger lots resulting in greater lawn area and less revenue per mile of distribution system; higher per capita use of water; growth and decentralization of industry, small units of which may obtain water from public waterworks, necessity of providing for high peak loads that may be many times the average load; and widespread use of air conditioning without providing for conservation of the cooling water. These increasing demands created a need for enlarged facilities; but revenues from existing water rates were often inadequate to finance the required improvements.⁸

TECHNOLOGY

The technical problems of water were related largely to its quality. Dissolved and suspended substances, both mineral and organic, make water unfit for many uses. Much research work was directed

toward removing or neutralizing these substances.

Because streams are used both for waste disposal and water supply, the pollution problem has become acute in many areas. Industry, a leading user of water, was a leading waste producer. Pollution abatement received increasing attention, not only from the standpoint of aesthetics and public health but also as a means of recovering important values from the waste material. Phosphate miners in Florida developed a subsidiary industry from the uranium found in small quantities in their ore. A fertilizer industry was based on waste sulfur recovered from gas scrubbers. Anthracite fines were successfully recovered from culm, a coal-mine-waste material and stream contaminant.

In combating stream pollution, industry was urged to minimize waste volume, to search for recoverable values in its wastes, and to

select proper predisposal treatment.9

Liquid cyclones were used to solve the water problem of several sand processors in California. By recirculating process water through the cyclones, the water was desilted, potential stream pollution was eliminated, fine sand production was increased, and water requirements were reduced.¹⁰

The conversion of salt water to fresh water was viewed as a potentially large industry, providing costs are reduced. Sea-water-conversion costs in 1957 ranged from \$100 to \$1,000 per acre-foot

⁸ Learned, A. P., Determination of Municipal Water Rates: Jour. Am. Water Works Assoc., vol. 49, No. 2, February 1957, pp. 165-173.

⁹ Berk, A. A., Utilizing and Disposing of Waterborne Industrial Wastes: Min. Eng., vol. 9, No. 7, July 1957, pp. 780-783.

¹⁰ Rock Products, Water Scarcity Can't Halt Production: Vol. 60, No. 11, November 1957, pp. 116, 118.

1279 WATER

and were too high for large-scale, economic conversion. If costs were lowered to \$40 per acre-foot, the water-deficient areas of California and Texas could use 10 million acre-feet per year to replace present usage and 11 million of additional supply. 11

The Office of Saline Water continued to study and evaluate a number of processes for producing fresh, potable water from saltwater sources. 12 Through laboratory and economic studies the Office consolidated 20 or more possible processes for saline water conversion into 5 broad groups: (1) Distillation through artificial heat, (2) solar heat distillation, (3) membrane processes of 2 or more kinds, (4) freezing processes, and (5) other chemical or electrical methods, including solvent extraction. Several projects were being studied by contractors in each of these fields.

Sudden dramatic advances in technology that would bring about substantially lowered conversion costs are improbable but reduction of cost through improved efficiency of known processes, and smaller capital outlay, and reduced operating expenses is more likely.

Two modified distillation processes were tested on pilot-plant scale One based on the vapor compression principle was designed to produce 25,000 gallons of fresh water per day from sea water, using an unconventional rotary-evaporator design. A second distillation unit employed long-tube vertical evaporators of conventional design, with improvements to gain maximum heat transfer and minimum scale formation. The tests were being evaluated at the end of 1957

Solar distillation studies were concerned largely with cost studies and the development of tough, strong, wettable plastic films for use in constructing solar stills. Cost surveys indicated that in the United States solar stills were not likely to compete with conversion processes using fuel. In areas of the world, notably Australia, where fuel was more expensive and the climate was favorable, solar stills were finding increasing application for producing small quantities of

potable water from saline sources.

Membrane processes became more feasible as more durable membrane became available at lower costs. Membrane processes have an advantage in that the salt is removed from the brine instead of removing the water from the brine as in distillation processes. In electrodialysis positive and negative salt ions under the influence of an electric current are caused to migrate through membranes that are permeable only to ions of similar charge. Thus, anions flowed toward the anode and cations toward the cathode leaving desalted water behind. Brackish water, containing less salt than sea water, required less energy and was therefore, less expensive to convert

Other membrane processes using ionic, osmotic, and mechanical forces to replace the electric current were in the development stage.

Freezing processes require less energy than distillation, but the resulting ice and brine are difficult to separate. Improvements in ice-washing techniques and the development of a combination freezing and evaporation process were notable achievements in 1957.

¹¹ Chemical Engineering, What Price Fresh Water From the Sea?: Vol. 45, No. 1, January 1957, pp. 215-216.

12 Secretary of the Interior, Saline-Water Conversion: Annual Report, 1957, 128 pp.

A symposium on Saline Water Conversion was sponsored jointly by the National Academy of Sciences—National Research Council and the Office of Saline Water. Scientists and engineers from the United States and many foreign countries met in Washington in November 1957, presented technical papers, and discussed salinewater conversion. In addition to projects classifiable under the five groups previously mentioned, other subjects discussed included the role of nuclear energy in conversion processes, the use of salt-accumulating algae, and the thermodynamic properties of saline water. Of the 39 papers presented, 32 were written in the United States. Other papers included work done in Australia, the Union of South Africa, Algeria, the Netherlands, France, and England.

The use of water in oil production was discussed in an article in the technical press.¹³ In the secondary-recovery and pressure-maintenance operations in Texas oilfields it was estimated that between 10 and 15 volumes of water was required for each volume of oil produced. Special treatment of the injected water was usually required to prevent clogging the pores in the oil-bearing strata. This treatment included precipitation, coagulation, and settling to remove certain suspended and dissolved substances and chlorination to control bacterial growth. Highly acidic brines were found to inhibit swelling of clay particles but also caused corrosion of metal structures. Chemical inhibitors and protective coatings were used to control corrosion.

¹³ Torrey, P. D., Needs and Uses of Water in Oil Production: Mines Magazine, vol. 47, No. 1, January 1957, pp. 23-25, 54.

Zinc

By O. M. Bishop¹ and Esther B. Miller²

	Page	Page	;
Legislation and government programs Defense Minerals Exploration Administration Government barter program General Services Administration Domestic production Mine production Smeller and refinery production Slab zinc	1283 1284 1285 1285 1285 1292	tion—Con. Byproduct sulfuric acid	3
		Prices 1305 Foreign trade 1305 World review 1305 World reserves 132 Technology 1321))

ORLD mine production and smelter output of zinc attained record levels in 1957 despite falling demand. In the United States the zinc industry was characterized by peak smelter output of slab zinc, an alltime high in zinc imports, a substantial increase in stocks, a moderate decline in consumption, and sharp reductions in price. Slab zinc imported or smelted in the United States from foreign ores totaled 715,000 tons, and that smelted from domestic ores and scrap totaled 612,000 tons—a grand total of 1,327,000 tons. Of that quantity, 936,000 tons was consumed domestically, 11,000 tons was exported, and 380,000 tons was added to industry and Government stocks.

Prime Western grade zinc was quoted at 13.5 cents a pound, East St. Louis, throughout the early part of the year. Late in April the Commodity Credit Corporation announced its decision to modify the barter program under which large quantities of foreign metals (185,000 tons of zinc in the first 4 months of 1957) had been obtained. Other Government announcements indicated that strategic stocks of zinc were nearing objective levels and that buying for the long-term stockpile would soon cease. These announcements, coupled with excess supplies, caused the price to drop from 13.5 to 10.0 cents a pound between May 6 and July 1 and to remain 10 cents through the remainder of the year.

Domestic mines, which had produced at an annual rate of 591,000 tons in the first quarter of the year, reduced output by 22 percent in the last quarter and produced a total of 532,000 tons of recoverable zinc in the year. Numerous zinc and zinc-lead mines closed, and

Commodity specialist.

Statistical assistant.

others curtailed output. By October 1957 virtually all mines in the Tri-State district, about 30 percent of those in the Western States, and a few of those in States east of the Mississippi River were inactive. Employees at domestic lead and zinc mines and mills in October 1957 totaled 12,800, compared with an average 16,800 in 1956 and 24,300 in 1952.

Smelter output of 1,058,000 tons of slab zinc comprised 986,000 tons of primary zinc (45 percent from imported ores) and 72,000 tons of redistilled or secondary zinc. In addition to slab zinc, primary and secondary smelters and chemical plants processed ore and scrap to produce zinc oxide, lithopone, zinc dust, chemicals, and various alloys containing about 192,000 tons of zinc.

Imports of 269,000 tons of slab zinc and 526,000 tons of zinc in ores and concentrates totaled 795,000 tons, exceeding by 25,000 tons

the record established in 1956.

Consumption of zinc totaled 1,232,000 tons—936,000 tons of slab zinc, 110,000 tons of ore for pigments and salts, and 186,000 tons of secondary zinc for various products.

Despite falling prices and minor cutbacks, foreign mine and smelter production of zinc rose to record levels in 1957, greatly exceeding commercial requirements. Much of the excess was shipped to the United States for sale on the open market and under barter contracts

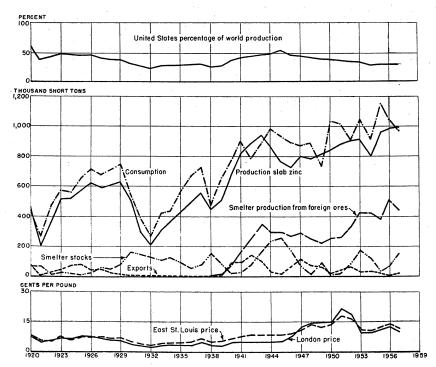


FIGURE 1.—Trends in the zinc industry in the United States, 1920-57. sumption figures represent primary slab zinc plus zinc contained in pigments made directly from ore.

in which payment was in agricultural commodities. Deliveries under these contracts totaled 194,000 tons in 1957.

An interesting event in 1957 was the export of about 50,000 tons of Soviet and Polish zinc to western European markets.

TABLE 1.—Salient statistics of the zinc industry in the United States, 1948-52 (average) and 1953-57

	1948-52 (average)	1953	1954	1955	1956	1957
Production of slab zinc: By sources: From domestic ores						
From foreign oresdo	583, 073 263, 352	495, 436 420, 669	380, 312 422, 113	582, 913 380, 591	470, 093 513, 517	5 3 9, 699 44 6, 104
Total primarydo From scrapdo	846, 425 57, 620	916, 105 52, 875	802, 4 25 68, 013	963, 504 66, 042	983, 610 72, 127	985, 796 72, 481
Total productiondo Stocks on hand at producers' plants:	904, 045	968, 980	870, 438	1, 029, 546	1, 055, 737	1, 058, 277
At primary plantsshort tons At secondary plantsdo	44, 105 2, 086	176, 725 3, 268	121, 847 1, 549	37, 322 1, 942	64, 794 2, 081	153, 338 2, 495
Total Imports (general):	46, 191	179, 993	123, 396	39, 264	66, 875	155, 833
Ores (zinc content) short tons Slab zinc Mine production of recoverable zinc	307, 274 115, 976	513, 724 234, 576	455, 427 156, 858	478, 044 195, 696	525, 350 244, 978	525, 730 269, 034
short tons	638, 749	5 47, 43 0	473, 471	514, 671	542, 340	531, 73
Slab zincshort tons Ores (recoverable zinc content)	856, 69 3	985, 927	884, 299	1, 119, 812	1,008,790	935, 620
short tons Zinc-base scrap 2 (recoverable	119, 669	118, 244	99, 247	118, 1 3 5	113, 388	1 110, 31
zinc content)short tons	84, 243	73, 936	62, 166	74, 547	70,871	72, 084
Copper-base scrap (recoverable zinc content)short tonsAluminum and magnesium-base scrap (recoverable zinc content)	151, 509	160, 499	132, 051	149, 630	125, 535	108, 832
short tons	897	3, 783	2, 929	6, 956	4, 438	4, 746
Total do Exports: Slab zinc do Price, Prime Western grade:	1, 213, 011 46, 277	1, 342, 389 17, 969	1, 180, 692 24, 994	1, 469, 080 18, 069	1, 323, 022 8, 813	1, 231, 598 10, 785
East St. Louis cents per pound London do World mine production short tons World smelter production do	14. 76 16. 73 2, 410, 000 2, 188, 000	10. 86 9. 47 2, 940, 000 2, 600, 000	10. 69 9. 78 2, 930, 000 2, 700, 000		13. 49 12. 19 33, 360, 000 33, 120, 000	11. 40 10. 18 3, 420, 000 3, 230, 000

8 Revised figure.

LEGISLATION AND GOVERNMENT PROGRAMS

Provisions of the Defense Production Act of 1950, as amended, with respect to exploration continued to be carried out by the Defense Minerals Exploration Administration (DMEA) and those with respect to procurement by the General Services Administration (GSA). The Office of Minerals Mobilization in the United States Department of the Interior was responsible for evaluating metal and mineral supply requirements and developing mobilization programs based on them.

DEFENSE MINERALS EXPLORATION ADMINISTRATION

The Defense Minerals Exploration Administration (DMEA) continued its program to encourage exploration and increase domestic reserves of strategic and critical minerals and metals. On exploration contracts for zinc and lead DMEA provided 50 percent of the

Includes ore used directly in galvanizing.
 Excludes redistilled slab and zinc produced by remelting.

approved cost of the projects. During 1957, 15 new contracts were executed for lead and zinc exploration. From the beginning of the program in 1951 through December 1957, 257 contracts involving lead and zinc authorized Government participation of \$12 million and combined total expenditures (Government and private capital) of \$25 million. Of the 257 exploration projects undertaken, 78 were certified as ore discoveries that ranged from several hundred tons of ore to 35 million tons or more at the project in eastern Tennessee.

TABLE 2.—Defense Minerals Exploration Administration contracts involving lead and zinc executed in 1957, by States

State and contractor	Property	County	Date approved	Total amount 1
COLORADO				
General Minerals Corp Leadville Lead & Uranium Corp	Summitville Hilltop		July 15 Aug. 21	\$149, 380 99, 418
IDAHO				
American Smelting & Refining Co Clayton Silver Mines	East Page mine Clayton mines		Sept. 18 July 19	660, 206 130, 840
MISSOURI				
St. Joseph Lead Co Do Do	Czar Knob Project Courtois area Viburnum area	Crawford Washington Iron	Feb. 26 Mar. 18 Apr. 3	119, 950 258, 560 277, 860
NEVADA				
John H. Uhalde	Aladdin mine	Elko	Apr. 29	62, 610
TENNESSEE				·
National Lead Co	Puncheon Camp Creek	Grainger	May 20	170, 125
New Jersey Zinc Co	Cedar Springs area, Copper Ridge Belt.	do	Mar. 29	105, 950
UTAH				
Western Resources, Inc	Sunbeam mine	Juab	Apr. 25	33, 268
New Jersey Zinc Co	Bondurant area Williams property Valzinco mine Hunter area	Wythe Spottsylvania	June 26 July 19	8, 370 42, 200 12, 770 18, 680
Net increases by amendment executed during 1957.				2, 150, 187 1, 094, 657
Total contracts plus amendments, 1957.				3, 244, 844

¹ Government participation was 50 percent in exploration projects for lead and zinc in 1957.

GOVERNMENT BARTER PROGRAM

Under authority of Public Law 480 (1954) and the Office of Defense Mobilization authorization of May 1956, the Department of Agriculture, through its agent, the Commodity Credit Corporation (CCC), continued to trade perishable surplus agricultural products for zinc and other commodities of foreign origin. In 1957 the CCC contracted for 109,584 tons of zinc (147,182 tons in 1956) to be added to the

ZINC 1285

Government's supplemental stockpile. On April 30 the Department of Agriculture ceased making new barter agreements pending an evaluation of the program. On May 28 the program was resumed with restrictions providing that agricultural commodities traded were in addition to marketings that otherwise would have taken place. Relatively few barter contracts were made after April 30 under the modified program.

GENERAL SERVICES ADMINISTRATION

The General Services Administration (GSA) continued to be responsible for stockpile procurement and administration, procurement under foreign-aid programs as agent of the International Cooperation Administration and administration of Defense Production Act programs, including domestic purchase programs. Purchases of zinc produced from domestic ores were made against the long-term stockpile objective for this metal throughout 1957. Such purchases are included in the 179,500 tons reported by the American Zinc Institute as shipped by domestic producers.

Foreign zinc received at GSA warehouses under barter agreements during the year totaled 193,929 tons (60,162 in 1956). Such zinc was placed in the supplemental stockpile and cannot be removed

except by consent of Congress.

DOMESTIC PRODUCTION

Statistics on domestic production of zinc are compiled for both mine and smelter output. Mine output is the sum of the zinc recovered from all domestic primary ores, ore residues, mill tailings, and slags; the recovery at each smelter or other processing plant is the ratio of total zinc content of the products to total zinc input. Recovery at plants processing primary materials approximated 91.5 percent in 1957. Smelter production of slab zinc from domestic ores differs from mine recovery because there is a time lag in smelting and because more than 100,000 tons of zinc in ore and concentrate form are used annually in the direct manufacture of zinc pigments and chemicals and in galvanizing (Bethanizing). Secondary zinc recovered at smelters treating zinc-bearing scrap metals constitutes a large part of the domestic production of zinc in all forms.

MINE PRODUCTION

Mines in the United States produced 532,000 tons of recoverable zinc in 1957 compared with 542,000 tons in 1956. Under the stimulus of the 13.5-cent Prime Western price that was in effect until May 6, 1957, mine production increased, and the rate of output for the first 4 months of the year was 13 percent above the average rate for 1956. Thereafter, zinc prices fell, and mine production in the last quarter of 1957 was 19 percent below that in the last quarter of 1956. Table 4 shows ore production by States and the recoverable zinc and lead by major ore groups.

TABLE 3.—Mine production of recoverable zinc in the United States, 1948-52 (average) and 1953-57, by States, in short tons

State	1948-52 (average)	1953	1954	1955	1956	1957
Western States and Alaska:						
AlaskaArizona						
California	57, 152	27, 530	21, 461	22,684	25, 580	33, 905
Colorado	7, 821	5, 358	1, 415	6, 836	8, 049	2, 969
Tdoba		37, 809	35, 150	35, 350	40, 246	47,000
Idaho	80, 630	72, 153	61, 528	53, 314	49, 561	57, 831
Montana	69, 741	80, 271	60, 952	68, 588	70, 520	50, 520
Nevada		5, 812	1, 035	2,670	7, 488	5, 292
New Mexico	39, 301	13, 373	. 6	15, 277	35, 010	32, 680
Oregon						
South Dakota	6					
Texas	5					
Utah	36, 221	29, 184	34, 031	43, 556	42, 374	40, 846
Washington	15, 295	32,786	22, 304	29, 536	25, 609	24,000
Total.	374, 723	304, 276	237, 882	277, 811	304. 437	295, 043
West Central States:						
Arkansas	23				1	
Kansas	29, 314	15. 515	19, 110	27, 611	28, 665	15, 859
Missouri	9, 205	9, 981	5, 210	4, 476	4, 380	2.951
Oklahoma	48, 592	33, 413	43, 171	41, 543	27, 515	14, 951
Total.	87, 134	58, 909	67, 491	73, 630	60, 560	33, 761
States east of the Mississippi River:						
Illinois	19, 742	14, 556	14, 427	21,700	94 020	00 105
Kentucky	1.808	489	458	21, 700	24, 039 417	22, 185
New Jersey	60, 891	45, 700	37, 416	11.643	4. 667	837
New York	36, 710	51, 529	53, 199	53, 016		12, 530
North Carolina	00,710	01, 029	00, 199	. 55,010	59, 111	64, 659
Tennessee	34, 259	38, 465	30, 326	40, 216	46, 023	50.000
Virginia	12, 437	16, 676	16, 738	18, 329	19, 196	58, 063 23, 080
Wisconsin	11, 045	16, 830	15, 534	18, 329	23, 890	23, 080 21, 575
Total	176, 892	184, 245	168, 098	163, 230	177, 343	202, 931
Grand total	638, 749	547, 430	473, 471	514, 671	542, 340	531, 735

Western States.—Mines in the Western States yielded 55 percent of the total domestic mine output of zinc—essentially the same proportion as in 1956; however, the 295,000 tons produced in 1957 was 9,000 tons less than the output in 1956. Sharp declines in Montana, California, and New Mexico and small decreases in several other States more than offset substantial increases in Arizona, Colorado, and Idaho.

Idaho was the largest producer in the Western States and third largest in the Nation. Total mine production of zinc in Idaho in 1957 was 57,800 tons, nearly 17 percent more than in 1956. In order of output, the three largest producers were Star mine of The Bunker Hill Co., Bunker Hill mine of The Bunker Hill Co., and Page mine of American Smelting & Refining Co., all in Shoshone County. In May the 1,000-ton concentrator of the Morning mine of American Smelting & Refining Co. was destroyed by fire; thereafter the ore, exclusively from development headings, was processed at the Golconda mill.

Montana was the second largest zinc-producing State in the West and fourth largest in the United States. Although the State ranked first in the Nation in 1956, zinc production decreased 28 percent in 1957 owing to sharp curtailment of output from The Anaconda Co. units at Butte. The Anaconda Co. Lexington mine, usually a large zinc producer, was closed in 1957. Much of the zinc mined at Butte

TABLE 4.—Ores yielding lead and zinc in the United States in 1957, in short tons 1

1			892 8892 8892 8992 8915 8915 8911 1117 1117 865 865 865 865 865 865 865 865 865 865	99
		Zinc	86.47.43.00.00.00.00.00.00.00.00.00.00.00.00.00	507, 766
	Total	Lead	22 22 22 24 24 4 4 4 4 4 4 4 4 4 4 4 4	325, 318
		Gross weight of ore	479 9948,993,33 9948,993,33 993,33 995,33	21, 561, 325
	Copper-lead, copper-zinc, and copper-lead-zinc ores	Zinc	8,784 113,284 3,401	25, 417
		Lead	196 8, 625 6, 761 2	15, 477
	Copper-lea	Gross weight	91,059 489,562 22 22 4 354,764 83 1,394,020	2, 339, 504
		Zinc	23, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25	275, 667
	Lead-zinc ore	Lead	10, 667 1, 667 1, 667 1, 667 1, 667 1, 667 1, 667 1, 667 1, 667 1, 667 1, 667 1, 667	170, 032
		Gross weight	371,412 48,153 422,610 1,157,206 399,944 523,005 52,904 60,438 82,562 568,779 1,189,578 8,518 568,779 1,189,578 8,518	6, 690, 678
	Lead ore	Zinc	114 147 1148 1148 114 114 118 118 118 118 118 1	3, 448
		Lead	1, 722 386 1, 255 2, 825 2, 825 674 107, 276 3, 666 1, 480 2, 897 72	123, 353
	Le	Gross weight	9, 765 1, 609 25, 985 25, 887 1, 588 2, 607 2, 005 23, 055 92, 607 34, 680	7, 520, 783
***************************************	Zinc ore	Zinc	1, 464 1, 464 10, 012 22, 705 5, 246 5, 246 5, 246 5, 246 5, 246 11, 689 11, 689 12, 580 13, 580	203, 234
		Lead	1, 021 1, 522 1, 522 1, 152 1, 665 1, 722 1, 865 1, 808	16, 456
	īZ	Gross weight	7, 072 7, 072 785 631, 089 831, 008 2, 900 632, 397 1, 714, 582 1, 714, 582 719, 324	6, 010, 360
		State	Alaska Arizona Colifornia Colorado Idaho. Ildaho. Ildaho. Missouri Montana Novada Novada Tennessee Tennessee Utah Washington Washington Washington Washington Washington Washington Washington Wissousia	Total

Does not include lead or zinc recovered from other ores, tailings, slags, dumps, etc., tons except where exclusion was impossible.
 Data partly combined to avoid disclosing individual company confidential data.

*Includes 1,271,684 tons of tailings containing 7,247 tons of recoverable lead and 788 tons of recoverable zinc.

*Includes some copper concentrate yielding 38 tons of recoverable lead.

came from the manganese-rich ores of the Anselmo and Emma mines. Unfavorable demand caused Anaconda to postpone its Northwest project, which was scheduled to develop high-zinc deposits in the northwestern Butte area. Smaller producing mines in other areas included the Trout-Algonquin and Scratch Awl mines in Granite

County and the Jack Waite mine in Sanders County.

Mine production in Colorado rose to 47,000 tons of recoverable zinc in 1957, a 17-percent gain over 1956. Increased output by larger producers more than offset shutdowns due to depressed zinc prices during the second half of 1957. Mines that closed included American Smelting & Refining Co. Keystone unit, the Rico Argentine Mining Co. Rico group, and the Resurrection Mining Co. Leadville properties. The Eagle unit of New Jersey Zinc Co. and the mines of Idarado Mining Co. continued to be the largest zinc producers in Colorado.

Utah mines produced 4 percent less zinc in 1957 than in 1956 owing to the closing of the Eagle-Blue Bell, Chief No. 1, and Plutus mines in June and the Mayflower-Park Galena (New Park) mine in September. The United States & Lark mine continued to be the

largest zinc producer in the State.

A 33-percent increase in zinc output was reported by Arizona mines in 1957 despite the closing of several mines. The San Xavier mine suspended operations in June, the Athletic mine in July, the Coronado Copper-Zinc Co. Johnson Camp unit in August, and the Trench group in October. The Iron King mine of the Shattuck Denn Corp., the principal producer in the State, operated throughout the year.

Mines in New Mexico yielded 7 percent less zinc in 1957 than in 1956. The decrease was due mainly to closing of the Kearney mine of the Peru Mining Co. in April, the Ground Hog mine of American Smelting & Refining Co. in July, and their custom mills at Deming.

Zinc output in Washington declined 6 percent in 1957. The Van Stone open pit of American Smelting & Refining Co. closed July 15. Other large zinc producers in the State were the Grandview and Pend Oreille mines.

Mine production in California and Nevada declined sharply in 1957. The Anaconda Co. closed its Darwin and Shoshone mine groups in California about midyear, and Combined Metals Reduction

Co. shut down its mines at Pioche, Nev., in August.

West Central States.—Mine production of recoverable zinc from Kansas, Missouri, and Oklahoma dropped from 60,600 tons in 1956 to 33,800 tons in 1957—a 44-percent decline. In the Tri-State district, The Eagle-Picher Co. operated its mines and Central custom mill intermittently. Largest single mine producer in the Tri-State district was the Ballard mine of National Lead Co. Mine output from the district was the lowest since the 1880's.

The southeast Missouri lead belt produced zinc concentrates as a byproduct from lead ores and old tailings treated at mills of the St. Joseph Lead Co. Recoverable zinc produced in 1957 was approxi-

mately 3,000 tons.

States East of the Mississippi River.—Eight States east of the Mississippi mined zinc ore in 1957. Output totaled 203,000 tons of recoverable zinc. Substantial increases in New Jersey, New York,

zinc 1289

Tennessee, and Virginia were only slightly offset by declines in Illinois and Wisconsin. The net result was a 14-percent increase in 1957

A 9-percent increase in zinc production from the Balmat and Edwards mines of the St. Joseph Lead Co. in St. Lawrence County raised New York's output to a record high of 64,700 tons in 1957. New York became the leading mine producer of zinc in the United States, and the Balmat became the principal zinc-producing mine. St. Joseph Lead Co. was deepening the Balmat No. 2 shaft below the 1,900-foot level in 1957, and at the end of the year the shaft was

2,100 feet deep.

Mines of Tennessee yielded 58,100 tons of zinc in 1957, 26 percent The State ranked second only to New York in more than in 1956. The increased output came partly from ore total mine output. bodies discovered or delineated with the assistance of the Defense Minerals Exploration Administration. The New Jefferson City mine of New Jersey Zinc Co. in Jefferson County operated throughout 1957. The company's announced results were excellent, and increased ore reserves permitted plans to double the mining rate. Development of New Jersey Zinc Co. Flat Gap mine near Treadway neared completion in 1957, but the company anticipated no production from the 1,000ton-per-day unit until zinc prices increased. American Zinc Co. Mascot No. 2, North Friends Station, and Young mines were operated at capacity during 1957. Its Grasselli mine was shut down the end of December pending higher zinc prices. The Coy mine, the newly developed American Zinc Co. mine in Tennessee, was under development in 1957, and small tonnages of development ore were milled at Mascot. Tennessee Coal and Iron Division of United States Steel reduced its Davis-Bible mine at Jefferson City to a 4-day week in mid-July. In Polk County zinc concentrate was recovered by the Tennessee Copper Co. from iron-copper-zinc sulfide ores. Exploration for new zinc ore bodies continued at a high level in the carbonate rocks of the East Tennessee Valley.

Ore mined in Virginia in 1957 yielded 23,100 tons of zinc. The major producer was the Austinville mine, in Wythe County, owned by New Jersey Zinc Co. The company announced that production of ore from the recently developed Ivanhoe mine began late in September; the ore was transported through the 13,000-foot tunnel to the Austinville shaft. Ore from the Ivanhoe mine was milled at the Austinville plant. New Jersey Zinc Co. continued exploration at the Arminius mine in Louisa County to establish the economics of its anticipated operation. Tri-State Zinc, Inc., began production from

its newly developed Timberville mine in April.

Mines of northern Illinois and Wisconsin produced approximately 1,000 tons less zinc in 1957. Among other mine shutdowns during the year were Eagle-Picher Co. Linden-Wisconsin mine and mill unit and the mines and mill of Vinegar Hill Division of American Zinc, Lead & Smelting Co. The major producers in 1957 were the Eagle-Picher Co. and Tri-State Zinc, Inc.

Although zinc production in New Jersey was considerably higher in 1957 than in 1956, it remained lower than normal because of the shutdown of the Sterling mine of the New Jersey Zinc Co. in Sussex

County on August 16.

Kentucky's zinc output comes from concentrates produced in milling fluorspar-zinc-lead ores of western Kentucky.

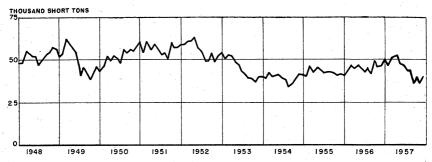


FIGURE 2.—Mine production of recoverable zinc in the United States, 1948-57 by months.

TABLE 5.—Mine production of recoverable zinc in the United States, 1956-57, by months

Month	1956	1957	Month	1956	1957
January February March April May June July May	41, 082 42, 703 47, 745 44, 971 47, 286 45, 141 43, 152	50, 406 46, 344 51, 040 52, 367 47, 791 46, 154 43, 345	August September October November December Total	45, 532 42, 513 49, 600 46, 170 46, 445 542, 340	43, 090 35, 514 39, 746 36, 043 39, 895 531, 735

The 25 leading zinc-producing mines in the United States in 1956, listed in table 6, yielded 71 percent of the total domestic output of zinc. The 3 leading mines supplied 23 percent, and the first 6 mines contributed 34 percent.

TABLE 6.—Twenty-five leading zinc-producing mines ¹ in the United States in 1956, in order of output

Rank	Mine	District	State	Operator	Type of ore
1	Balmat	St. Lawrence County.	New York	St. Joseph Lead Co	Lead-zinc.
2 3	Butte Mines The United States & Lark.	Summit Valley West Moun- tain (Bing- ham).	Montana Utah	The Anaconda Co United States Smelting, Refining & Mining Co.	Zinc. Lead-zinc.
4	Eagle	Red Cliff (Bat- tle Moun- tain).	Colorado	The New Jersey Zinc Co	Do.
5 6	Austinville Iron King	Austinville Big Bug	Virginia Arizona	do	Do. Do.
7 8	Star Davis-Bible Group.	Coeur d'Alene Eastern Ten- nessee.	Idaho Tennessee	Co. The Bunker Hill Co. United States Steel Corp., Tennessee Coal & Iron Division.	Do. Zinc.
9 10	Sterling Hill Jefferson City	New Jersey Eastern Ten-	New Jersey Tennessee	The New Jersey Zinc Cododo	Do. Do.
11	Mascot No. 2	nessee.	do	American Zinc Co. of Ten-	Do.
12	Edwards	St. Lawrence County.	New York	nessee. St. Joseph Lead Co	Do.

See footnote at end of table.

TABLE 6.—Twenty-five leading zinc-producing mines 1 in the United States in 1956, in order of output—Continued

Rank	Mine	District	State	Operator	Type of ore
13	Treasury Tunnel- Black Bear- Smuggler Union.	Upper San Miguel.	Colorado	Idarado Mining Co	Copper-lead- zinc.
14	Bunker Hill	Coeur d'Alene	Idaho	The Bunker Hill Co	Lead-zinc.
15	Hanover	Central	New Mexico	The New Jersey Zinc Co	Zinc.
16	Pend Oreille	Metaline	Washington		Lead-zinc.
17	Page	Coeur d'Alene	Idaho	American Smelting & Refining Co.	Do.
18	Bayard	Central	New Mexico	United Smelting, Refining & Mining Co.	Zinc.
19	Gray	Upper Missis- sippi Valley.	Illinois	Tri-State Zinc Co., Inc	Do.
20	Young		Tennessee	American Zinc Co. of Ten- nessee.	Do.
21	Shullsburg		Wisconsin	The Eagle-Picher Co	Do.
22	Ground Hog Unit.	Central	New Mexico	American Smelting & Refining Co.	Lead-zinc.
23	United Park City Mines.	Park City Region.	Utah	United Park City Mines Co.	Do.
24	Graham-Snyder- Spillane- Feehan.	Upper Missis- sippi Valley.	Illinois	The Eagle-Picher Co	Zinc.
25	Grandview	Metaline	Washington	American Zinc, Lead & Smelting Co.	Lead-zinc.

¹ Excludes old slag dump of the Bunker Hill Co., Kellogg, Idaho.

TABLE 7.—Mine production of zinc in the principal districts ¹ of the United States, 1948-52 (average) and 1953-57, in terms of recoverable zinc, in short tons

District	State	1948-52 (average)	1953	1954	1955	1956	1957
St. Lawrence County	New York	36, 709	51, 529	53, 199	53, 016	59, 111	64, 659
Eastern Tennessee 2			38, 465	30, 326	40, 216	46, 023	58, 063
Coeur d'Alene	Idaho		68, 650	58, 736	50, 527	46,738	54, 825
Summit Valley (Butte)	Montana	64, 117	75, 170	53, 527	62, 588	63, 375	43, 169
Upper Mississippi Valley	Northern Illinois, Iowa, Wisconsin.	24, 964	26, 286	25, 441	31, 411	38, 498	37, 490
Tri-State (Joplin region)	Kansas, southwestern Missouri, Okla- homa.	85, 218	55, 729	64, 322	69, 696	57, 215	30, 895
Central	New Mexico	35, 668	12, 743		15, 104	33, 631	30, 623
West Mountain (Bing-	Utah	19, 838	19, 669	20, 489	21, 864	24, 310	24, 953
ham). Red Cliff (Battle Moun-	Colorado	21, 792	16, 850	18, 604	21, 322	19, 766	24, 105
tain). Metaline	Washington	10, 135	(4)	(4)	(4)	(4)	17, 244
	New Jersey	60, 890	45, 700	37, 416	11, 643	4,667	12, 530
New Jersey	Ttob		4,848	6, 650	12, 295	10, 983	12, 322
Park City region Upper San Miguel	Utah Colorado	7, 482	10. 414	7, 899	6, 532	(4)	11, 571
Kentucky-Southern Illinois.	Kentucky-Southern	7,631	5, 589	4, 978	8, 615	9,848	7, 107
California (Leadville)	Illinois. Colorado	7, 241	3,945	2, 437	1,621	2, 128	6, 568
Morthport	Washington	2.826	14.944	13, 296	17, 667	12, 725	6, 181
Firmaka (Ragdad)	Arizona	2, 425	2, 594	1, 126	444	3	5, 924
Cochise	do	2.004	3, 893	3,566	3, 295	2,795	2, 510
Magdalana	New Mexico	2.039	512		98	1,031	1,991
Creede	Colorado	709	858	1, 111	745	927	1,819
Flint Creek	Montana	326	(4)	1,290	1,400	2,046	1,619
Silver Bell	Arizona	89	1, 324	441	93	328	1, 454
Pima (Sierritas, Papago,	do	5, 525	111		1, 310	2, 786	1, 288
Warm Springs	Idaho	1,684	3,026	2, 584	1,833	1,388	1, 208
Onhin	A rizona	635	692	753	734	671	1,043
Aravaina	do	1, 104	1,732	1,366	1,670	1, 185	696
Aravaipa	Idaho	372	264	(4) 4, 335	790	1, 203	630
Tintic	Utah	4, 431	2, 433	4, 335	4,018	1, 119	481
Tintie			1, 528	1, 738	1, 434	1,622	396
Breckinridge	Colorado	389	1, 200	1, 186	615	830	383

See footnotes at end of table.

TABLE 7.—Mine production of zinc in the principal districts 1 of the United States, 1948-52 (average) and 1953-57, in terms of recoverable zinc, in short tons-Continued

District	State	1948-52 (average)	1953	1954	1955	1956	1957
Yellow Pine (Goodsprings) - Pioneer (Rico)	Nevada Colorado Arizona	864 2, 232 18, 614	2, 634 1, 182	2, 896	716 (4)	1, 603 (4)	107
Austinville 5 Big Bug 5 Coso 5 Elk Mountain 5	VirginiaArizonaCaliforniaColorado	12, 437 9, 119 4, 799 126	16, 676 10, 476 (4) (4)	16, 738 10, 453 (4) (4)	18, 329 11, 234 (4)	19, 156 13, 934 (4)	(f)
Harshaw ⁵ Pioche ⁵ Smelter (Lewis and Clark County). ⁵	Arizona Nevada Montana	3.603 16,752 2,495	4, 186 (4) 2, 924	4, 193 (4) 5, 301	(4) (4) (4) 4,077	(4) (4) (4) 4,361	(4) (4)
Smelter (Salt Lake County).	Utah	20			3, 148	(4)	(4)

Districts producing 1,000 short tons or more in any year of the period 1953-57.
 Includes zinc recovered from copper-zinc-pyrite ore in Polk County.
 No production in Iowa since 1917.
 Figure withheld to avoid disclosing individual company confidential data.

This district not listed in order of 1957 output.

SMELTER AND REFINERY PRODUCTION

The zinc smelting and refining industry in 1957 comprised 19 primary and 11 secondary plants producing slab zinc, zinc pigments, zinc dust, zinc salts, and zinc alloys for consuming industries. Manufacturers of chemicals, pigments, die-casting alloys, rolled zinc, and brass also produced secondary zinc.

Primary Smelters and Electrolytic Plants.—The primary reduction plants processed zinc ore and concentrate, zinc fume from Waelz and slag-fuming plants, other primary zinc-bearing materials, and about a third of all zinc-base scrap.

Collectively, primary zinc plants reported production of 1,021,000 tons of slab zinc, of which 35,200 tons was redistilled secondary zinc. Some of the primary plants also produced zinc oxide, zinc dust, and lithopone.

Primary Capacity.—Primary-plant capacity for slab zinc at the end of 1957 was reported to be 1,162,600 tons. The 5 electrolytic plants reported 3,178 of their 4,072 electrolytic cells in use at the end of the year and an output of 409,500 tons or 85 percent of the reported 479,500 tons of capacity. The 9 horizontal-retort plants reported 41,828 of their 54,640 retorts in use at the end of the year. One plant, that of the United States Steel Corp. at Donora, Pa., was closed November 23, 1957. The 5 remaining primary smelters were the continuous-distilling vertical-retort plants at Meadowbrook, W. Va., Depue, Ill., Palmerton, Pa., Josephtown, Pa., and Herculaneum, Mo.; the first 3 used New Jersey Zinc Co. externally gas-fired vertical retorts, and the last 2 used electrothermic distillation retorts developed by St. Joseph Lead Co. The Herculaneum plant recovers zinc directly from Herculaneum lead smelter slags and differs from slagfuming plants in the Western States in that the zinc is condensed and tapped as Prime Western metal rather than being produced as a densified fume containing about 70 percent zinc. Combined horizontal- and vertical-retort production of 576,300 tons was only 84 percent of the reported capacity of 683,100 tons.

TABLE 8.—United States primary zinc smelters, their location and group capacity for slab zinc in 1957

Type of plant	Plant location	Slab-zinc capacity (short tons)
rimary plants:		
Electrolytic plants:		
American Smelting & Refining Co	Corpus Christi, Tex	n
American Zinc Co. of Illinois	Monsanto, Ill	11
The Anaconda Co	Anaconda, Mont	479, 500
Do	Great Falls, Mont	
The Bunker Hill Co	Kellogg, Idaho	J.
Horizontal-retort plants:		
American Smelting & Refining Co	Amarillo, Tex	1)
American Zinc Co. of Illinois	Dumas, Tex	
Do 1	Fairmont City, Ill	
Athletic Mining & Smelting Co	Fort Smith, Ark	
Blackwell Zinc Co	Blackwell, Okla	li
The Eagle-Picher Co	Henryetta, Okla	H
Matthiessen & Hegeler Zinc Co	LaSalle, Ill	602.00
National Zine Co United States Steel Corp.2	Bartlesville, Okla	683, 00
United States Steel Corp.4	Donora, Pa	1
Vertical-retort plants:	Meadowbrook, W. Va	
Matthiessen & Hegeler Zinc Co	Depue, Ill	
The New Jersey Zinc Co. The New Jersey Zinc Co. (of Pennsylvania)	Palmerton, Pa.	l l
St. Joseph Lead Co.	Josephtown, Pa	
Do	Herculaneum, Mo	1

Waelz Kilns.—Six Waelz kilns in 1957 processed and concentrated the zinc content of horizontal-retort residues and similar plant scrap. One Waelz plant, that of Zinc Nacional at Monterrey, Mexico, was used for pyrometallurgical concentration of oxidized zinc ores for shipment to the United States. Plants operated in the United States were as follows:

Illinois:

Fairmont City—American Zinc Co. of Illinois.3

LaSalle—Matthiessen & Hegeler Zinc Co. Kansas: Cherryvale—National Zinc Co., Inc.³ Oklahoma: Henryetta—The Eagle-Picher Co.

Pennsylvania:

Donora—United States Steel Corp., American Steel and Wire Division.

Palmerton—The New Jersey Zinc Co. West Virginia: Moundsville—St. Joseph Lead Co.⁴

Slag-Fuming Plants.—Many lead ores and concentrates smelted throughout the world contain considerable zinc that accumulates in lead blast-furnace slags. Such slags, commonly containing 7½ to 12½ percent zinc, were treated to extract zinc and remaining lead at the following plants in 1957:

California: Selby—American Smelting & Refining Co. Idaho: Kellogg—The Bunker Hill Co. Montana: East Helena—The Anaconda Co. Texas: El Paso—American Smelting & Refining Co. Utah: Tooele—International Smelting & Refining Co

These 5 plants treated 867,100 tons of hot and cold slag (including some crude ore at the Tooele plant), which yielded 159,300 tons of oxide fume containing 105,200 tons of recoverable zinc. Corre-

¹ Furnaces idle entire year. ² Plant closed November 23, 1957—to be dismantled.

<sup>Plant idle entire year.
Plant closed in second quarter 1957.</sup>

sponding figures for 1956 were 799,000, 145,900, and 97,100 tons,

respectively.

Secondary Zinc Smelters.—Zinc-base scrap—a term that includes skimmings and drosses, die-cast alloys, old zinc, engravers' plates, new clippings, and chemical residues—was smelted chiefly at 11 secondary smelters, although about a third usually is reduced at primary smelters and much of the sal ammoniac skimmings is processed at chemical plants. Secondary smelters depend mostly on the galvanizers and dealers for their supply of the various types of scrap materials.

TABLE 9.—United States secondary zinc smelters, their location and capacity for slab zinc in 1957

Type of plant	Plant location	Slab zinc capacity (short tons)
Secondary plants: American Smelting & Refining Co American Smelting & Refining Co., Federated Metals Division. American Zinc Co. of Illinois. Arco Die Cast Metals Co W. J. Bullock, Inc General Smelting Co Gulf Reduction Co Pacific Smelting Co Sandoval Zinc Co Superior Zinc Corp Wheeling Steel Corp	Beckemeyer, Ill. Los Angeles, Calif. Hillsboro, Ill. Detroit, Mich. Fairfield, Ala Bristol, Pa. Houston, Tex Torrance, Calif. Sandoval, Ill. Bristol, Pa. Martins Ferry, Ohio.	61, 100

Primary and secondary smelting plants that treated zinc-base scrap in 1957 produced 72,500 tons of redistilled zinc, 6,400 tons of remelt zinc, and 26,700 tons of zinc dust. The zinc content of these products totaled 104,700 tons.

Details of consumption and stocks of zinc-base scrap, output of secondary zinc and zinc-alloy products, and zinc recovered from

scrap by kind of scrap are given in tables 10, 11, and 12.

Additional details on 108,800 tons of zinc recovered in processing copper-base scrap (table 12) may be obtained in the Secondary section of the Copper chapter of this volume.

SLAB ZINC

Domestic smelters produced a record output of 1,058,300 tons of slab zinc in 1957, about 2,500 tons more than in 1956, the previous record year. Of the output, 985,800 tons or 93 percent was primary metal and 72,500 tons was redistilled secondary zinc. The primary production was 55 percent domestic and 45 percent foreign, and 58 percent was distilled and 42 percent electrolytic slab zinc as in 1956. The output of redistilled secondary zinc at primary plants increased again and accounted for 35,200 of the 72,500 tons of redistilled secondary zinc.

Prime Western zinc, which comprised 41 percent of the total (38 percent in 1956), was the principal grade produced in 1957. Special

TABLE 10.—Stocks and consumption of new and old zinc scrap in the United States in 1957, gross weight in short tons

	Stocks.		`	consumption	ш	Stocks.
Class of consumer and type of scrap	beginning of year	Receipts	New scrap	Old scrap	Total	end of year
melters and distillers:				`		
New clippings	219	2, 232	2,309		2, 309	142
Old zinc	519	3, 642		3, 789	3, 789	372
Engravers' plates	870	2,672		3, 085	3, 085	457
Skimmings and ashes	6, 494	28, 449	31, 582		31, 582	3, 361
Sal skimmings	497	196	264		264	429
Die-cast skimmings	1,809	11, 848	11, 403		11, 403	2, 254
Galvanizers' dross		55, 141	59, 542		59, 542	4, 354
Die castings		36, 053			36, 767	4,028
Rod and die scrap	954	8, 892		8, 268	8, 268	1,578
Flue dust Chemical residues	155 1, 326	7,088	7, 057		7, 057	186
Chemical residues	1, 320	7, 743	8, 667		8, 667	402
Total	26, 340	163, 956	120, 824	51, 909	172, 733	17, 563
Chemical plants, foundries, and other						
manufacturers:	1 1		l			
New clippings	36	400	423		423	13
Old zinc	. 16	67		69	69	14
Engravers' plates		135		135	135	
Skimmings and ashes	2,070	2, 447	2, 281		2, 281	2, 236
Sal skimmings	10, 982	18, 340	21, 768	l	21, 768	7, 554
Galvanizers' dross	18	117	53		53	82
Die castings	48	1,029	832	213	1,045	32
Rod and die scrap	36	36		66	66	6
Flue dust	270	170	340		340	100
Chemical residues	1, 346	14, 314	14, 268		14, 268	1, 392
Total	14, 822	37, 055	39, 965	483	40, 448	11, 429
Frand total:						
New clippings	255	2,632	2,732		2,732	155
Old zinc	535	3,709		3, 858	3, 858	386
Engravers' plates	870	2,807		3, 220	3, 220	457
Skimmings and ashes		30, 896	33, 863		33, 863	5, 597
Sal skimmings		18, 536	22, 032		22, 032	7, 983
Die-cast skimmings	1,809	11, 848	11, 403		11, 403	2, 254
Galvanizers' dross	8, 773 4, 790	55, 258 37, 082	59, 595 832	90 000	59, 595	4, 436
Die castings Rod and die scrap	4,790	8, 928	832	36, 980 8, 334	37, 812 8, 334	4,060
Flue dust		7, 258	7, 397	0,004	7, 397	1, 584 286
Chemical residues	2, 672	22, 057	22, 935		22, 935	1,794
Total		201. 011	160, 789	52, 392	213, 181	28, 992

TABLE 11.—Production of secondary zinc and zinc-alloy products in the United States, 1948–52 (average) and 1953–57, gross weight in short tons

Products	1948-52 (average)	1953	1954	1955	1956	1957
Redistilled slab zinc Zinc dust ¹ Remelt spelter Remelt die-cast slab Zinc-die and die-casting alloys Galvanizing stocks. Rolled zinc Secondary zinc in chemical products	57, 620	52, 875	1 68, 013	1 66, 042	1 72, 127	1 72, 481
	28, 145	25, 297	26, 714	30, 118	28, 048	26, 715
	5, 747	2, 938	4, 456	5, 019	7, 900	6, 404
	8, 830	5, 695	9, 418	12, 729	12, 900	10, 328
	4, 160	3, 411	4, 037	6, 377	4, 306	6, 440
	348	107	186	325	369	240
	3, 113	3, 132	2, 701	2, 915	2, 179	185
	40, 415	34, 680	26, 078	28, 917	30, 675	33, 361

Includes redistilled slab made from remelt die-cast slab.
 Includes zinc dust produced from other than scrap.

TABLE 12.—Zinc recovered from scrap processed in the United States, by kind of scrap and form of recovery, 1956-57, in short tons

Kind of scrap	1956	1957	Form of recovery	1956	1957
New scrap:			As metal:		
Zinc-base	116, 198	108, 319	By distillation:		
Copper-base	88, 623	75, 933	Slab zine 1	71, 420	71, 737
Aluminum-base	2,728	3,004	Zinc dust 1	27, 415	26, 255
Magnesium-base	60	59	By remelting	9, 091	6, 705
Total	207, 609	187, 315	Total	107, 926	104, 697
Old scrap:			In zinc-base alloys	15, 972	15, 640
Zinc-base	35, 184	42, 207	In brass and bronze	122, 204	105, 437
Copper-base	36, 912	32, 899	In aluminum-base alloys	4, 413	4,758
Aluminum-base	1,545	1, 585	In magnesium-base alloys	165	157
Magnesium-base	105	98	In chemical products:		
			Zinc oxide (lead-free)	10, 076	15, 729
Total	73,746	76, 789	Zinc sulfate	4,780	5, 322
			Zinc chloride	11, 139	11, 407
Grand total	281, 355	264, 104	Lithopone	4,034	(3)
			Miscellaneous	646	957
	•		Total	173, 429	159. 407
			Grand total	281, 355	264, 104

Includes zinc content of redistilled slab made from remelt die-cast slab.
 Includes zinc content of dust made from other than scrap.
 Included under "Miscellaneous."

High Grade constituted 34 percent of all grades (34 percent in 1956), High Grade 14 percent (15 percent in 1956), Brass Special 8 percent (9), Intermediate 3 percent (4), and Select a small fraction of 1 percent in both 1957 and 1956.

In 1957 Pennsylvania ranked first among the States in production of primary slab zinc; Montana ranked second and Texas third. slab-zinc output of Pennsylvania, West Virginia, Oklahoma, and Arkansas was distilled, that of Montana and Idaho was electrolytic, and part of that of Illinois and Texas was distilled and part electrolytic.

TABLE 13.—Primary and redistilled secondary slab zinc produced in the United States, 1948-52 (average) and 1953-57 in short tons

		Primary		Total (ex-	
Year	From domestic ores	From foreign ores	Total	Redistilled secondary	recovered by remelt- ing)
1948-52 (average)	583, 073 1 495, 436 1 380, 312 582, 913 1 470, 093 539, 692	263, 352 1 420, 669 1 422, 113 1 380, 591 1 513, 517 446, 104	846, 425 916, 105 802, 425 963, 504 983, 610 985, 796	57, 620 52, 875 68, 013 66, 042 72, 127 72, 481	904, 045 968, 980 870, 438 1, 029, 546 1, 055, 737 1, 058, 277

1 Includes a small tonnage of slab zinc further refined into high-grade metal.

TABLE 14.—Distilled and electrolytic zinc, primary and secondary, produced in the United States, 1948-52 (average) and 1953-57, in short tons

CLASSIFIED ACCORDING TO METHOD OF REDUCTION

Year	Electro- lytic pri- mary	Distilled	At primary smelters	At secondary smelters	Total
1948–52 (average)	333, 581	512, 844	22, 875	34, 745	904, 045
	370, 870	545, 235	17, 645	35, 230	968, 980
	311, 237	491, 188	31, 658	36, 355	870, 438
	389, 891	573, 613	24, 747	41, 295	1, 029, 546
	410, 417	573, 193	30, 221	41, 906	1, 055, 73,
	409, 483	576, 313	35, 215	37, 266	1, 058, 277

CLASSIFIED ACCORDING TO GRADE

	Grad	Grade A		Grades C and D		Grade E	1 74
Year	Special High Grade (99.99% Zn)	High Grade (Ordinary)	(Inter- mediate)	Brass Special	Select	(Prime Western)	Total
1948–52 (average) 1953 1954 1955 1956 1956	265, 595 312, 810 270, 159 378, 215 356, 756 854, 042	190, 566 180, 188 132, 980 138, 597 162, 467 152, 317	24, 123 14, 720 19, 284 23, 792 37, 691 32, 262	51, 678 56, 219 52, 662 80, 209 96, 291 84, 291	7, 682 1, 930 1, 233 3, 904 2, 400 1, 150	364, 401 403, 113 394, 120 404, 829 400, 132 434, 215	904, 045 968, 980 870, 438 1, 029, 546 1, 055, 737 1, 058, 277

TABLE 15.—Primary slab zinc produced in the United States, by States where smelted, 1948-52 (average) and 1953-57, in short tons

	Arkan-			Mon-	Okla-	Pennsyl-	Texas	7	rotal	
Year	sas	Idaho	Illinois	tana	homa	vania	and West Virginia ¹	Short tons	Value	
1948-52 (average)	19, 362 20, 379 8, 576 21, 481 27, 651 23, 080	49, 330 54, 037 47, 404 56, 625 57, 799 68, 831	102, 446 129, 904 92, 262 102, 808 101, 826 2107, 294	212, 772 222, 354 154, 024 207, 366 214, 755 198, 036	152, 620 134, 918 153, 846 160, 961 166, 173 157, 633	174, 744 192, 279 180, 706 218, 469 198, 968 3 247, 836	135, 151 162, 234 165, 607 195, 794 216, 438 4183, 086	846, 425 916, 105 802, 425 963, 504 983, 610 985, 796	\$254, 950, 464 210, 154, 487 173, 805, 255 236, 829, 283 270, 099, 306 229, 493, 309	

¹ Includes Missouri, 1948-53, 1955, 1956. 2 Includes Missouri. 3 Includes West Virginia. 4 Texas only.

BYPRODUCT SULFURIC ACID

Sulfuric acid was made from sulfur dioxide gases produced in roasting zinc sulfide concentrate at zinc smelters, where demand for

sulfuric acid warranted the plant investment and operation. At several such plants elemental sulfur also was burned to increase acid-making capacity.

TABLE 16.—Sulfuric acid (basis, 100 percent) made at zinc sulfide roasting plants in the United States, 1948-52 (average) and 1953-57

	Made from zinc sulfide ¹			om native ılfur	Total 1			
Year	Short	-	Short		Short	Value ²		
	tons	Value 2	tons	Value ²	tons	Total	Average per ton	
1948-52 (average) 1953 1954 1955 1956 1957	583, 329 636, 864 612, 250 782, 938 807, 477 855, 357	\$8, 966, 777 11, 397, 458 11, 642, 763 14, 687, 012 15, 272, 091 15, 450, 832	218, 642 229, 951 156, 984 153, 622 136, 749 135, 843	\$3, 347, 842 4, 115, 262 2, 985, 268 2, 881, 771 2, 586, 380 2, 453, 805	801, 971 866, 815 769, 234 936, 560 944, 226 991, 200	\$12, 314, 619 15, 512, 720 14, 628, 031 17, 568, 783 17, 858, 471 17, 904, 637	\$11. 89 13. 90 14. 77 14. 57 14. 69 14. 03	

¹ Includes acid from foreign zinc sulfide.

ZINC DUST

The zinc dust included in data shown in tables 11, 12, and 17 is restricted to commercial grades that comply with close specifications as to percentage of unoxidized metal, evenness of grading, and fineness of particles and does not include zinc powder and blue powder. The zinc content of the dust produced in 1957 ranged from 95 to 99.8 percent and averaged 98.3 percent. Shipments of zinc dust totaled 26,200 tons, of which 500 tons was shipped abroad. Producers' stocks of dust rose from 2,100 tons on January 1 to 2,300 tons on December 31.

The bulk of the production of dust was from zinc scrap (mostly galvanizers' dross), but some was recovered from zinc ore and as a byproduct of zinc refining.

TABLE 17.—Zinc dust ¹ produced in the United States, 1948-52 (average) and 1953-57

		Value					Val	ue
Year	Short tons	Total	Average per pound	Year	Short tons	Total	Average per pound	
1948-52 (average) 1953 1954	28, 145 25, 297 26, 714	\$9, 816, 326 6, 729, 002 7, 266, 208	\$0, 174 . 133 . 136	1955 1956 1957	30, 118 28, 048 26, 715	\$9, 216, 108 9, 368, 032 7, 859, 553	\$0. 153 . 167 . 147	

¹ All produced by distillation.

ZINC PIGMENTS AND SALTS

The principal zinc pigments were zinc oxide and lithopone, and the principal salts were zinc chloride and zinc sulfate. These products were manufactured from various zinc-bearing materials, including ore, metal, scrap, and residues. In 1957, 164,000 tons of zinc was

² At average of sales of 60° B. acid.

consumed in producing 152,700 tons of zinc oxide, 26,400 tons of leaded zinc oxide, 61,200 tons of zinc chloride (50° B.), 33,800 tons of zinc sulfate, and an undisclosed quantity of lithopone. The recoverable zinc content of raw material consumed in making these products (excluding lithopone and zinc sulfate) was 96,600 tons of ore, 19,400 tons of slab zinc, and 36,000 tons of zinc scrap. Details on production and shipments of zinc pigments and salts are given in the Lead and Zinc Pigments and Zinc Salts chapter of this volume.

CONSUMPTION AND USES

Consumption of slab zinc in 1957, as reported by approximately 750 consumers, totaled 936,000 tons. Consumption was the fifth highest on record but was 16 percent below the peak consumption of 1955 and 7 percent below that of 1956.

Zinc used in zinc-base alloys increased 4 percent over 1956 and for the first year exceeded slab zinc used in galvanizing. Zinc consumed in galvanizing declined about 16 percent, largely owing to decreased demand and sales of galvanized steel products.

TABLE 18.—Consumption of slab zinc in the United States, 1948-52 (average) and 1953-57, by industries, in short tons

- A		•				
Industry and product	1948-52 (average)	1953	1954	1955	1956	1957
Galvanizing: 2						
Sheet and strip	149, 178	164, 601	181, 558	200, 403	203, 713	168, 221
Wire and wire rope	47, 378	44, 100	44, 882	48, 171	42, 937	36, 468
Tubes and pipe	82,609	88, 428	76, 891	98, 206	86, 277	70, 463
Fittings Other Oth	14,605	10, 330	10, 513	10, 586	10,652	9,965
Other	94, 530	99, 529	89, 619	93, 775	3 95, 567	³ 82, 640
Total galvanizing	388, 300	406, 988	403, 463	451, 141	439, 146	367, 757
Brass products:						
Brass products: Sheet, strip, and plate	60, 645	94,826	52, 284	67, 550	56, 207	52, 873
Rod and wire	39,005	47, 312	30, 899	46, 830	39, 413	33, 711
Tube	15, 815	18, 136	12,097	15, 363	13, 666	11, 915
Castings and billets	5,076	8, 145	5, 499	7, 518	6, 337	5, 818
Copper-base ingots Other copper-base products	4,859	7,659	6, 594	8,062	7, 197	7, 286
Other copper-base products	1, 189	2, 104	895	920	1, 184	787
Total brass products	126, 589	178, 182	108, 268	146, 243	124, 004	112, 390
Zinc-base allov:						
Die eastings	244, 874	297, 280	279, 676	417, 333	349, 200	363, 830
Die castingsAlloy dies and rod	5, 699	7, 140	8,857	11, 754	9, 322	10, 149
Slush and sand castings	1, 319	3, 025	2, 313	1,720	1, 985	2,060
Total zinc-base alloy	251, 892	307, 445	290, 846	430, 807	360, 507	376, 039
Rolled zinc	63, 144	54, 649	47, 486	51, 589	47, 359	41, 269
Zinc oxide	15, 913	20, 675	18, 701	22, 433	19, 160	20, 428
041						
Other uses: Wet batteries	1, 480	1 417	1, 264	1 400	1 245	1 220
Desilverizing lead	2, 521	1, 417 2, 425	2,740	1, 420 2, 676	1, 345 2, 939	1, 336 2, 808
Light-metal alloys	1, 988	5, 939	3, 526	3, 484	5, 830	4, 958
Other 4	4,866	8, 207	8,005	10, 019	8,500	8, 635
Total other uses		17, 988	15, 535	17, 599	18, 614	17, 737
					10,011	21, 101
Total consumption 5	856, 693	985, 927	884, 299	1, 119, 812	1, 008, 790	935, 620

Includes zinc used in electropal vanizing and electroplating, but excludes sherardizing.
 Includes 27,760 tons used in job galvanizing in 1956 and 28,286 tons in 1957.
 Includes zinc used in making zinc dust, bronze powder, alloys, chemicals, castings, and miscellaneous

uses not elsewhere mentioned.

§ Includes 3,710 tons of remelt zinc in 1953, 3,589 tons in 1954, 2,997 tons in 1955, 5,230 tons in 1956, and 6,805 tons in 1957.

Increased use of zinc die castings in automobiles and electrical appliances brought the total so used to 376,000 tons, or 40 percent of the total consumption of slab zinc. Galvanizing used 39 percent and brass products 12 percent. The major consuming industries accounted for 91 percent in 1957, compared with 92 percent in 1956. In addition to slab zinc, the brassmaking industry used 108,800 tons of secondary zinc in copper-base scrap for making brass and bronze ingots at secondary smelters.

Rolling mills used 41,300 tons of slab zinc in 1957 and remelted and rerolled 12,700 tons of metallic scrap produced in fabricating plants operated in connection with the rolling mills. In addition, 400 tons of purchased scrap (new clippings and old zinc) were melted and rolled.

Total output of rolled zinc declined 17 percent to 39,700 tons. Stocks of rolled zinc increased from 2,200 tons on January 1 to 2,400 tons on December 31, 1957. In addition to shipments of 24,900 tons of rolled zinc, the rolling mills consumed 27,400 tons of rolled zinc in manufacturing 12,200 tons of semifabricated and finished products.

TABLE 19.—Rolled zinc produced and quantity available for consumption in the United States, 1956-57

		1956			1957			
	Short	Val	ue	Short	Value			
	tons	Total	Average per pound	tons	Total	Average per pound		
Production: Sheet zinc not over 0.1 inch thick. Boiler plate and sheets over 0.1 inch thick. Strip and ribbon zinc 1. Foil, rod, and wire.	11, 929 1, 205 32, 780 2, 024	\$7, 302, 484 567, 170 12, 640, 543 1, 152, 748	\$0.306 .235 .193 .285	11, 317 614 25, 904 1, 897	\$7, 077, 606 265, 022 9, 568, 389 1, 091, 456	\$0.313 .216 .185 .288		
Total rolled zine	47, 938	21, 662, 945	. 226	39, 732	18, 002, 473	. 227		
Imports Exports A vailable for consumption	454 3, 043 45, 173	171, 960 1, 718, 187	. 189	732 2, 677 38, 388	244, 722 1, 534, 800	.167		
Value of slab zinc (all grades) Value added by rolling			. 137			.116		

¹ Figures represent net production. In addition, 7,906 tons of strip and ribbon zinc in 1956 and 12,686 tons in 1957 were rerolled from scrap originating in fabricating plants operating in connection with zinc rolling mills.

TABLE 20.—Consumption of slab zinc in the United States in 1957, by grades and industries, in short tons

	Special High Grade	High Grade	Inter- mediate	Brass Special	Select	Prime Western	Remelt	Total
Galvanizers_ Brass mills ¹ Die casters ² . Zinc rolling mills Oxide plants. Other	15, 414 25, 442 373, 157 7, 555 179 6, 136	12, 546 59, 872 451 7, 962 1, 718 1, 177	5, 306 1, 393 33 9, 834	54, 147 7, 304 14, 164 306 407	36 1, 381 1 1, 725	276, 866 15, 817 820 29 18, 225 9, 037	3, 442 1, 181 1, 577 	367, 757 112, 390 376, 039 41, 269 20, 428 17, 737
Total	427, 883	83, 726	16, 941	76, 328	3, 143	320, 794	6, 805	935, 620

¹ Includes brass mills, brass ingotmakers, and brass foundries.

² Includes producers of zinc-base die castings, zinc-alloy dies, and zinc-alloy rods.

1301 ZINC

Of the commercial grades of slab zinc used, Special High Grade comprised 46 percent of the total, Prime Western 34 percent, High Grade 9, Brass Special 8, Intermediate 2 and Select and Remelt combined 1 percent. All grades of slab zinc were used in galvanizing and in brass products. Consumption of Special High Grade zinc increased slightly, owing mainly to greater use of zinc in die castings in automobiles and appliances.

CONSUMPTION OF SLAB ZINC BY GEOGRAPHIC AREAS

Table 21 shows the distribution of slab-zinc consumption by geographic areas.

TABLE 21.—Consumption of slab zinc in the United States in 1957, by industries and States, in short tons

	Galv anizers	Brass mills 1	Die casters 2	Other 8	Total
Alabama	23, 543 (4)	(4)		(4) (4) (4)	24, 756 (4)
Arizona	(-)			1 3	(4)
Arkansas	20, 875	1, 763	19, 803	930	43, 371
California		1, 100	10,000	550	(4)
Colorado	(4) 2, 794	(4) 37, 253		(4)	43, 566
Connecticut	2, 194	37, 203	(4) (4)	()	(4)
Delaware	,	(4)	(9)		(4)
District of Columbia		(*)			(4)
Florida	(4) (4)				(4)
Georgia	(*)	(4)			X
Idaho			68, 539	(4) 21, 028	
Illinois	46, 312	15, 039		21,028	150, 918
Indiana	39, 510	(4)	21, 537	(4) (4) (4)	77, 658
Iowa	482				3, 402
Kansas		(4) (4)		(*)	(4) *** (4) ***
Kentucky	(4) (4)	(*)	(4)		(*)
Louisiana	(*)			(1)	991
Maine	(4)	(4) (4)			(4)
Maryland	29, 707	(*)		(4) (4)	30, 105
Massachusetts	4,075	(4)		(*)	7, 489
Michigan	4, 436	10, 489	87, 284	81	102, 290
Minnesota	2,054	(4)		(4)	2, 106
Mississippi	(4)				(4)
Missouri	2, 928	(4)	8, 686	(4)	12,764
Montana				(4) (4) (4)	(4)
Nebraska	· (4)		(4)	(*)	2,035
New Hampshire		(4)			(4)
New Jersey	4,608	5, 490	16, 189	1, 107	27, 394
New York	(4)	8, 796	48, 592	(4)	69, 303
North Carolina	(4)		(4)		(4)
Ohio	70, 077	8, 516	73, 246	995	152, 834
Oklahoma	(4)			(4)	2, 152
Oregon	456	(4)	(4)	(4)	1,860
Pennsylvania	63, 352	6, 647	16, 353	29, 950	116, 302
Rhode Island	517	(4)	(4)´	(4)	603
South Carolina	(4)				(4)
Tennessee	`´ 959		(4) (4)	(4)	1, 729
Texas	9, 370	(4)	(1)	(4)	11, 698
Utah	(4)	9		(4) (4)	(4)
Virginia	(4)	(4)			463
Washington	1, 272		(4)	(4)	1, 910
West Virginia	(4)	(4)			11, 571
Wisconsin	1,990	5, 383	4, 483		11, 856
II IOOOIII	2,000				
Total 4	364, 315	111, 209	374, 462	78, 829	928, 815
T Utal *	002,040	,	0.1,102	.0,000	V=0, 010

Consumption of Slab Zinc for Galvanizing.—Among the 36 States consuming zinc for galvanizing, Ohio, Pennsylvania, Illinois, and Indiana were again the leading States. These 4 States used 60 per-

Includes brass mills, brass ingotmakers and brass foundries.
 Includes producers of zinc-base die castings, zinc-alloy dies, and zinc-alloy rods.
 Includes slab zinc used in rolled-zinc products and in zinc oxide.
 Figure withheld to avoid disclosing individual company confidential data.
 Includes States not individually shown.

cent of the total in 1957. The iron and steel industry used zinc to galvanize steel sheets, wire, tube, pipe, cable, chain, bolts, railwaysignal equipment, building and poleline hardware, and many other items. Shipments of galvanized steel sheets in 1957, as reported by the Iron and Steel Institute, totaled 2,393,000 tons, a decline of 19 percent from the 1956 record of 2,958,000 tons. Zinc consumed in galvanizing steel sheet and strip averaged 1 ton per 14.2 tons of these products shipped in 1957. The ratios for 1955 and 1956 were, respectively, 1 to 14.3 and 1 to 14.5 tons.

Consumption of Slab Zinc for Brass Products.—Connecticut, with 33 percent of the total, again ranked first in the use of zinc in brassmaking. Of the other 28 States that alloy zinc with copper to produce brass, Illinois, Michigan, New York, and Ohio ranked second, third,

fourth, and fifth, respectively.

Consumption of Slab Zinc for Zinc-Base Alloys.—Increased use of zinc die castings in the automobile industry and in manufacturing home appliances, office machines, builders' hardware, and scientific, communications, and photographic equipment contributed to the 4-percent increase in slab zinc used in alloys. Michigan, Ohio, Illinois, New York, and Indiana, in order of use, accounted for 80

percent of the total slab zinc used in zinc-base alloys.

Consumption of Slab Zinc for Rolled Zinc.—Slab zinc used by rolling mills to make sheet, strip, ribbon, foil, plate, rod, and wire fotaled 41,300 tons, 13 percent less than in 1956. Rolled zinc has many uses. The major American use is for dry-cell battery cases and similar extruded cases for radio condensers and tube shields. Weather stripping, roof flashing, photoengraving plates, and household electric fuses are other uses. Illinois ranked first in production of rolled zinc in 1957, followed in order by Indiana, Pennsylvania, and New York.

Consumption of Slab Zinc for Other Uses.—Other uses included slab zinc consumed in slush castings, wet batteries, desilverizing lead, light-metal alloys, zinc dust, chemicals, bronze powders, zinc oxide,

and part of the zinc used for cathodic protection.

STOCKS

National Stockpile. Under authority of the Strategic and Critical Materials Stockpiling Act of 1946 and supplemental legislation and in accordance with directives of the Office of Defense Mobilization, monthly purchases of domestic zinc and lead continued throughout 1957. As the minimum stockpile objective for zinc was virtually fulfilled by mid-1954 and as inventories in 1957 equaled or exceeded the minimum objective, all acquisitions of domestic zinc were directed toward the long-term objective. By May industry offers of zinc exceeded quantities for which General Services Administration had Office of Defense Mobilization directives. In July ODM announced the long-term objectives for zinc were nearing completion, but monthly acquisitions were continued through December. Deliveries of both zinc and lead also were made to the stockpile to repay International Cooperation Administration (ICA) advances under several contracts.

⁵ Office of Defense Mobilization, Stockpile Report to the Congress, Jan.-June 1957 and July-Dec. 1957, 16 pp.

GSA 6 received 193,929 tons of foreign zinc in 1957 (60,162 tons in 1956), which was acquired under barter contracts authorized under the Agricultural Trade Development and Assistance Act of 1954 and amendments. All strategic materials acquired under this program were placed in the supplemental stockpile and were in addition to the minimum and long-term objectives.

Producers' Stocks.—Smelter stocks of slab zinc were at a low of 66,900 tons on January 1, 1957. During the year inventories rose constantly; by the end of June producers' stocks of slab zinc were

about 133,500 tons, and by the end of the year 155,800 tons.

TABLE 22.—Stocks of zinc at zinc-reduction plants in the United States at end of year, 1953-57, in short tons

	1953	1954	1955	1956	1957
At primary reduction plants	176, 725 3, 268	121,847 1,549	37, 322 1, 942	64, 794 2, 081	153, 338 2, 495
Total	179, 993	123, 396	39, 264	66, 875	155, 833

Consumers' Stocks.—Stocks of slab zinc at consumers' plants declined nearly 16,000 tons during 1957. At the average monthly rate of consumption in 1957, stocks on hand at the end of the year plus 6,200 tons of metal in transit to consumers' plants represented about a 5-week supply.

TABLE 23 .- Consumers' stocks of slab zinc at plants at the beginning and end of 1956, by industries, in short tons

	Galva- nizers	Brass mills ¹	Zinc die casters 2	Zine roll- mills	Oxide plants	Other	Total
Dec. 31, 1956 3	55, 932	12, 425	29, 393	4, 195	388	1, 761	4 104, 094
	40, 462	12, 117	29, 664	4, 062	231	1, 652	4 88, 188

PRICES

The average quoted price for Prime Western slab zinc, East St. Louis, was 13.50 cents per pound at the beginning of 1957. On May 6 the price dropped to 12.00 cents, on May 13 to 11.50 cents, on June 4 to 11.00 cents, and on June 19 to 10.50 cents. On July 1 another ½-cent decline brought the price to 10.00 cents, where it remained for the rest of the year.

Average monthly zinc quotations 7 on the London Metal Exchange in 1957 ranged from £103.256 per long ton in January (equivalent to 12.91 cents a pound computed at the exchange rate recorded by the Federal Reserve Board) to a low of £62.794 per long ton (7.85 cents

Includes brass mills, brass ingotmakers, and foundries.
 Includes producers of zinc-base die castings, zinc-alloy dies, and zinc-alloy rods.
 Revised figures.

⁴ Stocks on Dec. 31, 1956 and 1957, exclude 578 tons (revised figure) and 488 tons, respectively, of remelt

⁶ United States Tariff Commission, Lead and Zinc—Report to the President on Escape-Clause Investigation No. 65 Under the Provisions of Section 7 of the Trade Agreements Extension Act of 1951 as Amended: April 1958, table 9.
⁷ Monthly mean of buyers' and sellers' quotations at the close of morning sessions.

per pound) in December. The average for 1957 was £81.62 (10.18

cents a pound).

Prices for zinc scrap varied with market quotations for slab zinc. Sales of clean new zinc clippings and trimmings and engravers' or lithographers' plates averaged 7.11 cents a pound in January, when the price of Prime Western was 13.50 cents; in the last half of the year sales averaged 4.25 cents a pound. Sales of old zinc scrap and new die-cast scrap in the same periods averaged 4.75 cents and 3.12 cents a pound.

TABLE 24.—Price of zinc concentrate and zinc, 1953-57

	1953	1954	1955	1956	1957
Joplin 60-percent zinc concentrate: Price per short ton_dollars	64. 65 10. 86 11. 53 9. 47 91 84 138	65. 72 10. 69 11. 19 9. 78 88 88 142	77. 50 12. 30 12. 80 11. 30 101 94 177	2 83. 89 13. 49 13. 99 12. 19 111 100 199	76, 94 11, 40 11, 90 10, 18 94 91 144
Straits tin (New York) Nonferrous metals 4 All commodities 4.	103 125 110	100 124 110	103 143 111	110 156 114	105 137 118

¹ Metal Statistics, 1958.

² Corrected figure. E&MJ Metal and Mineral Markets English quotations converted into American money on basis of average rates of exchange recorded by Federal Reserve Board.
 Based upon price indexes of U. S. Department of Labor.

TABLE 25.—Average monthly quoted prices of 60-percent zinc concentrate at Joplin, and of common zinc (prompt delivery or spot), St. Louis and London, 1956-57 1

		1956		1957			
\mathbf{Month}	60-percent zinc con- centrates		inc (cents ound)	60-percent zinc con- centrates	Metallic zinc (cents per pound)		
	in the Jop- lin region (dollars per ton)	St. Louis	London 23	in the Jop- lin region (dollars per ton)	St. Louis	London 23	
January February March April May June July August September October November	84. 00 84. 00 84. 00 84. 00 84. 00 84. 00 84. 00 84. 00 84. 00 84. 00	13. 44 13. 50 13. 50 13. 50 13. 50 13. 50 13. 50 13. 50 13. 50 13. 50 13. 50	12. 60 12. 55 12. 70 12. 28 11. 85 11. 75 11. 69 11. 95 11. 87 12. 50 12. 57	84. 00 84. 00 84. 00 71. 90 63. 04 56. 00 56. 00 56. 00 56. 00 56. 00	13. 50 13. 50 13. 50 11. 92 10. 84 10. 00 10. 00 10. 00 10. 00 10. 00 10. 00	12. 91 12. 43 12. 08 12. 30 10. 72 9. 29 9. 32 9. 16 9. 06 8. 65 8. 44 7. 85	
Average for year	83.89	13.49	12.19	76.94	11. 40	10. 1	

¹ Joplin: Metal Statistics, 1958, p. 585. St. Louis: Metal Statistics, 1958, p. 583. London: E&MJ Metal

and Mineral Markets.

2 Conversion of English quotations into American money based on average rates of exchange recorded by Federal Reserve Board.

3 Average of daily mean of bid and asked quotations at morning session of London Metal Exchange.

TABLE 26.—Average price received by producers of zinc, 1953-57, by grades, in cents per pound

Grade	1953	1954	1955	1956	1957
Grade A: Special High Grade	11. 81	11. 46	12. 79	14. 26	12. 13
	11. 40	11. 05	12. 59	13. 98	11. 70
	11. 38	11. 36	12. 30	14. 06	11. 69
	11. 72	10. 93	12. 21	13. 71	11. 31
	11. 59	10. 02	11. 13	13. 41	10. 56
	11. 21	10. 39	11. 74	13. 13	11. 24
	11. 47	10. 83	12. 29	13. 73	11. 64
	10. 86	10. 69	12. 30	13. 49	11. 40

¹ Metal Statistics, 1958, p. 583.

FOREIGN TRADE⁸

Imports.—General imports of zinc rose 25,000 tons above the previous record in 1956 to 795,000 tons in 1957. Imports of zinc in ore and concentrate (zinc content) were 525,700 tons, essentially the same figure as in 1956, but imports of slab zinc increased 10 percent to 269,000 tons. Of the zinc in ores, Mexico supplied 37 percent, Canada 30 percent, Peru 22 percent, other Latin American countries 4 percent, Union of South Africa 4 percent, and other countries the remainder.

Of the slab-zinc imports, 39 percent came from Canada, 13 percent from Belgium-Luxembourg, 12 percent from Belgian Congo, 9 percent from Mexico, and 9 percent from Peru; Yugoslavia, Italy, Australia, and Germany each supplied about 4 percent.

TABLE 27.—Zinc imported into the United States, in ores, blocks, pigs, or slabs, by countries, 1948-52 (average) and 1953-57, in short tons ¹

[Bureau of the Census]										
Country	1948–52 (average)	1953	1954	1955	1956	1957				
Ores (zinc content): North America: Canada-Newfoundland-Labrador Cuba Guatemala. Honduras. Mexico Other North America. Total	90, 007 46 3, 257 164 157, 187 12 250, 673	165, 910 	156, 830 3, 755 792 175, 692 (2) 337, 069	173, 157 3, 704 8, 353 1, 433 186, 461	177, 087 1, 155 11, 433 2, 288 193, 007 4 384, 974	158, 220 1, 209 9, 262 2, 589 192, 519 (2) 363, 799				
South America: Argentina Bolivia	1, 247 6, 860 232 25, 559 266 34, 164	22, 528 3, 247 84, 365 389 110, 529	11, 440 1, 797 93, 216 31 106, 484	1,833 4,858 83,915 142 90,748	7, 294 346 98, 541 212 106, 395	7, 633 1, 400 118, 771 8 127, 977				

See footnotes at end of table.

⁸ Figures on imports and exports compiled by Mae B. Price and Elsie D. Jackson, Division of Foreign Activities, Bureau of Mines, from reports of the U. S. Department of Commerce, Bureau of the Census.

TABLE 27.—Zinc imported into the United States, in ores, blocks, pigs, or slabs, by countries, 1948-52 (average) and 1953-57, in short tons —Continued

[Bureau of the Census]

Country	1948-52 (average)	1953	1954	1955	1956	1957
Europe:						
Belgium-Luxembourg Italy	2, 258	8,738	-	1, 546	861	
Malta, Gozo, and Cyprus Netherlands		3,009	-	-	1,062	1, 11
Spain United Kingdom	10, 552	8, 617		1, 497		19
Yugoslavia Other Europe	854	10,820	4, 871 15			9
Total	13, 664	31, 185	4, 886	3, 043	1, 923	1,39
Asia:				======	=====	1,00
Korea, Republic of Philippines Other Asia.	358 1, 359	2, 104 778	444	465	66 828	2 77 5
Total	2, 131	2, 882	444	465	894	85
Africa: Algeria		9 004				
Union of South Africa Other Africa	3, 994 40	2, 804 13, 356	4, 183	5, 050	13, 400	21, 048 1, 896
TotalOceania: Australia	4, 034 2, 608	16, 160 10, 820	4, 183 2, 361	5, 050 5, 630	13, 400 17, 764	22, 944 8, 756
Grand total: Ores	307, 274	513, 724	455, 427	478, 044	525, 350	525, 73
Blocks, pigs, or slabs: North America: Canada	00.000	400 000				
Mexico	90, 229 13, 134	107, 925 33, 878	105, 154 9, 726	113, 402 19, 480	116, 875 17, 153	103, 964 23, 536
TotalSouth America: Peru	103, 363 566	141, 803 8, 406	114, 880 6, 757	132, 882 9, 767	134, 028 6, 590	127, 500 22, 947
Europe: Austria						
Belgium-Luxembourg	2,832	21, 549	7 540	17 748	2, 296 32, 353	1, 020 34, 191
Germany 3	1,851	13, 906	7, 540 3, 109	17, 748 6, 642	15, 285	8, 772
Italy	1,664	23, 972	5, 285	6, 190	13, 486	10, 010
Netherlands	1, 247 2, 426	4, 338 6, 323	1, 461	1,079	5, 965	2, 504
Norway United Kingdom	2, 420	6, 317	717	504 79		
Yugoslavia	655	1,900		19	611 500	1, 790 10, 909
Yugoslavia Other Europe	149	165			110	
Total	10, 935	78, 470	18, 134	32, 242	70, 606	69, 196
Asia:						
Japan Other Asia	982 6				4,883	2, 887
Total	988				4,883	2, 887
Africa: Belgian Congo		000	40.44			
Morocco	88	882	13, 895	15, 228	17, 782	33, 007
Mozambique Rhodesia and Nyasaland, Fed-			112	1, 264	(4)	1, 230
eration of Union of South Africa		⁸ 1, 064		280	6 3, 808 (4)	2, 744
TotalOceania: Australia	88	1, 946	14, 007	16, 772	21, 590	36, 981
Grand total: Blocks, pigs, or	36	3, 951	3, 080	4, 033	7, 281	9, 523
slabs	115, 976	234, 576	156, 858	195, 696	244, 978	269, 034

Data include zinc imported for immediate consumption plus material entering country under bond.
 Less than 1 ton.
 West Germany, 1952-57.
 Revised to none.
 Northern Rhodesia.
 Revised figure.

TABLE 28.—Zinc imported for consumption in the United States, 1948-52 (average) and 1953-57, by classes 1

[Bureau of the Census]

	[-	Janear or one	Contract				
Year	Ore (zinc	content)	Blocks, p	oigs, slabs	She	ets	
I ear	Short tons	Value	Short tons	Value	Short tons	Value	
1948–52 (average) 1953 1954 1955 1955 1956 1957	449, 732 480, 918 384, 648	\$36, 054, 350 47, 918, 150 452, 481, 723 36, 810, 856 49, 230, 965 88, 491, 227	114, 897 227, 654 160, 138 195, 059 244, 726 268, 852	\$32, 068, 081 50, 281, 745 433, 714, 309 46, 452, 269 65, 033, 834 4 64,056, 938	112 196 259 431 454 732	\$48, 296 76, 507 88, 010 4 148, 389 171, 960 244, 722	
Year	Old, dross, and skim- mings ²			dust	Total value ³		
1621		Short tons	Value	Short tons	Value		
1948-52 (average)		5,915 1,087 284 602	\$928, 592 556, 592 103, 486 31, 529 97, 360 89, 030	163 1, 045 72 72 72 112	\$40, 725 161, 612 17, 994 4 17, 709 4 28, 236	\$69, 140, 044 98, 994, 606 4 86, 387, 528 4 83, 461, 037 4 114,551, 828 4 152,910, 153	

¹ Excludes imports for manufacture in bond and export, which are classified as "imports for consumpby Bureau of the Census.

years before 1954.

Exports.—Exports of zinc in ore and concentrate, in scrap, and as metal and dust totaled 20,900 tons valued at \$6,520,400 in 1957, compared with 29,400 tons valued at \$7,335,300 in 1956. In addition to export items listed in tables 33 and 34, considerable zinc was exported in brass, pigments, chemicals, and die-cast alloy and as zinc coatings on steel products. Export data on zinc pigments and chemicals are given in the Lead and Zinc Pigments and Zinc Salts chapter.

Of the 11,000 tons of slab zinc exported in 1957, the United Kingdom received 60 percent, Belgium-Luxembourg 10 percent, and the Republic of Korea 8 percent. India, Mexico, Netherlands, and West Germany received most of the remainder.

Tariff.—The duty on slab zinc remained at 0.7 cent per pound, that on zinc contained in ore and concentrate at 0.6 cent per pound, and that on zinc scrap at 0.75 cent per pound throughout 1957. The rates of duty imposed on zinc articles under the Tariff Act of 1930, in specific years, 1930-54, are given in the 1953 Minerals Yearbook zinc chapter. The rates were not changed in 1955-56.

In May Secretary Seaton, United States Department of the Interior, presented to Congress a program for legislation to give longrange support to the domestic mining industry. Recommendations included a graduated excise tax on entries of foreign lead and zinc. The sliding-scale adjustment was designed to discourage excessive

tion'' by Bureau of the Census.
² Includes dross and skimmings as follows: 1948–52 (average)—4,402 tons (\$405,498); 1953—2,925 tons (\$250,544); 1954—316 tons (\$33,181); 1955—108 tons (\$3,060); 1956—417 tons (\$61,264); 1957—363 tons (\$57,061).
³ In addition, manufactures of zinc were imported as follows: 1948–52 (average)—\$44,885; 1953—\$5,855; 1954—\$41,454; 1955—4 \$190,076; 1956—4 \$227,361; 1957—4 \$264,348.
⁴ Owing to changes in tabulating procedures by the Bureau of the Census, data are not comparable with

TABLE 29.—Slab and sheet zinc exported from the United States, by destinations, 1954-57, in short tons

[Bureau of the Census]

				,				
Destination	SI	Slabs, pigs, and blocks			Sheets, plates, strips, or other forms, n. e. s.			
	1954	1955	1956	1957	1954	1955	1956	1957
North America: Canada Cuba Mexico. Other North America	517	8 11 961 4	8 86 839 21	13 31 513 58	1,704 96 637 58	2,062 132 583 43	2, 596 105 716 90	2, 581 123 315 40
Total	526	984	954	615	2, 495	2, 820	3, 507	3, 059
South America: Argentina. Brazil Chile. Colombia. Venezuela Other South America.	230	6, 062 35 6 2 14	49 96 1 7	6 17 40 55	952 9 219 70 49	9 71 8 270 50 26	61 7 344 97 37	69 37 408 72 21
Total	5, 349	6, 119	153	121	1, 299	434	546	607
Europe: Belgium-Luxembourg. Denmark. Germany, West. Italy Netherlands. Switzerland. United Kingdom Other Europe.	3, 136 	2, 883 84 	1,428 279 44 448 5,040 25	1,064 336 476 6,504	10 22 17 34 3	30 12 12 30 50 72	34 46 14 9 34 30 10	5 64 34 7 22 26 11 40
Total	17, 982	10, 808	7, 264	8,380	86	208	177	209
Asia: India. Korea, Republic of. Philippines. Other Asia.	112 948 16 61	132 7 17	433 7	672 912 8 77	49 6 67 29	38 1 84 29	68 85 40	53 53 24
Total	1, 137	156	442	1,669	151	152	193	130
Africa: Union of South Africa Other Africa		2			14	38	21	51
TotalOceania		2			14	38 5	21	51
Grand total	24, 994	18,069	8,813	10, 785	4, 045	3, 657	4, 444	4, 056

¹ Less than 1 ton.

imports but to permit unhampered entry of lead and zinc needed to supplement the domestic supply. Congress adjourned without decisive action on the measure.

In September the Emergency Lead and Zinc Committee, representing domestic mining groups, petitioned the Tariff Commission for regulation of imports, claiming that concessions made by the United States under the Trade Agreements Act had caused serious injury

1309 ZINC

to the domestic industry. Formal hearings were held by the Tariff Commission in November, and a study of the facts was in progress at the end of 1957.

TABLE 30.—Zinc ore and manufactures of zinc exported from the United States, 1948-52 (average) and 1953-57

[Bureau	of	$_{ m the}$	Census]
---------	----	-------------	---------

Year	centra dros	ore, con- tes, and s (zinc tent)	Slabs b	Slabs, pigs, or blocks		Sheets, plates, strips, or other forms, n. e. s.		Zinc scrap (zinc content)		Zinc dust	
	Short tons	Value	Short	Value	Short tons	Value	Short tons	Value	Short tons	Value	
1948-52 (average) ¹ 1953 ¹ 1954 ¹ 1955 ¹ 1966 ¹	2 2, 814 2 2, 953 854 7		17, 969 24, 994 18, 069	5, 393, 938 4, 175, 451 2, 465, 173	4, 628 4, 045 3, 657 4, 444	\$3, 286, 037 2, 637, 240 2, 183, 170 2, 192, 882 3, 031, 215 2, 949, 693	1,000 16,689 21,612 14,921	(3) \$169, 517 2, 023, 493 2, 249, 583 1, 540, 404 822, 009	509 445 372	136, 096	

 $^{^1}$ Effective Jan. 1, 1952, zinc and zinc-alloy semifabricated forms, n. e. s., were exported as follows: 1952—\$191,746 (quantity not available); 1953—286 tons (\$151,496); 1954—543 tons (\$257,316); 1955—651 tons (\$295,685); 1956—582 tons (\$301,230); 1957—485 tons (\$246,527). 2 Effective Jan. 1, 1949, "dross" included with "scrap." 2 Classification established Jan. 1, 1949. Not included in 1948–52 averages; 1949—1, 570 tons (\$224,291); 1950—6,212 tons (\$674,235); 1951—4,613 tons (\$871,302); 1952—972 tons (\$282,316). 4 Not included in 1948–52 averages; 1948—691 tons (\$299,494); 1949—690 tons (\$261,484); 1950—506 tons (\$186,557); 1951—723 tons (\$400,656); 1952 included with "scrap."

WORLD REVIEW

World mine production of zinc in 1957, estimated at 3.42 million short tons (3.36 million in 1956), was at an alltime peak. The output of North and South America declined; that of Africa remained the same; and that of Europe, Asia, and Oceania increased. The United States was again the leading zinc-producing country, exceeding the output of Canada, the second highest producer, by 30 percent. The Western Hemisphere accounted for 43 percent of world output and Iron Curtain areas for approximately 20 percent. Among the principal producing countries gains were reported in the U. S. S. R., Australia, Japan, Italy, and Poland and decreases in the United States, Canada, Mexico, Peru, Belgian Congo, and Spain.

World smelter production of zinc increased in 1957 for the 12th consecutive year, totaling 3.23 million tons, or 4 percent more than in 1956 and 48 percent more than the 1948-52 average. Substantial gains were reported in the U.S.S.R., Peru, France, Belgian Congo, Poland, and Australia and smaller gains in Belgium, the United States, Japan, Bulgaria, and several other countries. No significant

declines were reported.

Although figures on world consumption of zinc are not compiled, the growth in known world stocks suggests that mine and smelter production in 1957 exceeded consumer requirements by 350,000 to 450,000 tons.

TABLE 31.—World mine production of zinc (content of ore), by countries, 1948-52 (average) and 1953-57, in short tons 3

[Compiled by Augusta W. Jann and Berenice B. Mitchell]

Country 2	1948-52 (average)	1953	1954	1955	1956	1957
North America:					-	-
Canada 4	318, 367	401, 762	376, 491	433, 357	422, 633	400 500
Cuba	.	101,102	010, 101	1, 134	1, 638	409, 528 752
(treenland 5	1				6,050	9, 350
Guatemala	6 5, 224	6,700	4, 400 791	10, 400	12,000	10, 300
Honduras 7 Mexico		636	791	1, 433	2, 288	2, 589 267, 891
United States 4	217, 905 638, 749	249, 715 547, 430	246, 441 473, 471	296, 961 514, 671	274, 351 542, 340	267, 891 531, 735
Total		1, 206, 243	1, 101, 594	1, 257, 956	1, 261, 300	1, 232, 145
South America:		-,-00,-10	2,101,001	1, 201, 300	1, 201, 300	1, 202, 140
Argentina	14, 700	17, 735	5 22,000	23, 260	26, 100	32, 570
Bolivia (exports)	27, 451	26, 427	22, 403	23, 509	18, 818	21, 678
Chile	27, 451 6 1, 464	3, 500	5 1, 650	3, 200	2,969	5 3, 300
Peru	98, 916	153, 334	174, 784	183, 074	193, 037	173, 571
Total	142, 531	200, 996	5 220, 840	233, 043	240, 924	5 231, 120
Europe:						
Austria	1,579	4,826	5, 140	5, 787	5, 868	6, 334
Finland	3,770	3, 500	5,000	23, 300	43,000	47, 400
France	12, 274	14,600	12, 500	12, 100	13, 800	13, 200
Germany, West Greece	71, 166	100, 581	103, 867	101, 558	101,803	104, 013
Ireland	5,025 61,241	8,300	7, 900	13, 500	22, 300	5 17, 600
Ireland Italy Norway Poland Spain Spain	98, 883	1, 819 117, 102	1,719 129,707	2,769	2, 127 134, 912	1,792
Norway	6, 543	5, 661	5, 917	131, 891 7, 411	7 055	144, 623
Poland 5	8 119, 000	130, 000	129,000	139,000	7, 055 138, 000	7, 606 143, 000
Spain	70, 800	92,000	97, 000	102,000	96,000	87,000
Sweden_ U. S. S. R. ⁵⁸	40,677	49, 706	64, 407	64, 810	72, 796	74, 524
U. S. S. R. 58	157, 000	241,000	258,000	300,000	351,000	386, 000
United Kingdom	392	3, 187	3, 905	3, 167	1,563	1, 085
Yugoslavia	45, 879	66, 106	63, 052	65, 800	63, 400	64,000
Total 2 5	648, 900	869, 000	931, 000	1, 017, 000	1, 103, 000	1, 170, 000
Asia:						
Burma	485	4, 300	6, 400	9, 100	8,000	10, 100
India	6 1, 378	2,900	2,600	2, 900	4, 200	4,600
Iran 9	10 9, 370	6, 200	5, 800	6, 300	5, 200	5,000
Japan	62,046	106, 507	120, 581	119, 787	135, 585	149, 322
Japan Korea, Republic of Philippines	159	22			440	311
Theiland	10 965 301	830			1,050	330
Thailand Turkey 5	880	2,000 4,400	3,000	3, 200	2, 400	1,820
			6, 100	770	1,090	1, 910
Total 25	78, 200	138, 800	159, 900	160, 200	179, 500	197, 100
Africa:	0.011					
Algeria	9, 311 10 215	20, 470	31, 538	35, 982	33, 665	31, 483
Angola Belgian Congo	80, 350	110			3	
Egynt.	658	138, 661 282	94, 015	74, 700	124, 125	118, 176
French Equatorial Africa	344	282	262	757	692	⁵ 660
Morocco: Southern zone	14, 051	38, 895	37, 908	47, 686	43, 567	53, 864
Nigeria	107	71	01,000	11,000	40, 007	33, 804
Rhodesia and Nyasaland, Federation of: North- thern Rhodesia						
thern Rhodesia	8 25, 361	43, 353	38, 672	38, 070	38, 134	40.959
South-West Africa	8 25, 361 14, 330	4 17, 400	4 22, 000	19, 500	20, 458	40, 353 16, 663
Tunisia	3, 470	4,020	5, 707	6, 311	5, 200	3, 915
Total	148, 197	263, 262	230, 102	223, 006	265, 844	265, 114
Oceania: Australia	214, 115	265, 481	282, 978	287, 352	311, 452	326, 523
World total (estimate)2_	2, 410, 000	2, 940, 000	2, 930, 000	3, 180, 000	3, 360, 000	3, 420, 000
					, ,	-,, 000

¹ Data derived in part from the Yearbook of the American Bureau of Metal Statistics, the United Nations Statistical Yearbook, and the Statistical Summary of the Mineral Industry (Colonial Geological Surveys, London).

2 In addition to countries listed, Bulgaria, Czechoslovakia, East Germany, Rumania, China, and North Korea also produce zinc, but production data are not available; estimates by senior author of chapter included in total.

3 This table incorporates a number of revisions of data published in previous Zinc chapters. Data do not add exactly to totals shown because of rounding where estimated figures are included in the detail.

4 Recoverable.

5 Smelter production.

9 Year ended March 21 of year following that stated.

10 Average for 1951–52.

TABLE 32.—World smelter production of zinc by countries, 1948-52 (average) and 1953-57, in short tons 12

[Compiled by Augusta W. Jann and Berenice B. Mitchell]

Country	1948-52 (average)	1953	1954	1955	1956	1957
North America:						
Canada	209, 553	250, 961	253, 365	256, 542	255, 564	247, 351
Mexico	58, 301	³ 58, 481	3 60, 477	³ 61, 878	3 62, 136	3 62, 353
United States	846, 425	916, 105	802, 425	963, 504	983, 610	985, 796
Total	1, 114, 279	1, 225, 547	1, 116, 267	1, 281, 924	1, 301, 310	1, 295, 500
South America:						
Argentina	7, 145	12,787	4 12,000	14, 881	16, 200	16, 150
Peru	2, 221	9, 819	16, 935	18, 801	10, 415	32, 482
Total	9, 366	22, 606	4 29, 000	33, 682	26, 615	48, 632
						
Europe:						
Austria				1, 493	7, 932	10, 291
Belgium 5	197, 425	213, 217	234, 897	233, 625	254, 289	259, 755
Bulgaria Czechoslovakia				1, 497	6, 435	8, 282
Czechoslovakia	4 2, 930	(6)	(6)	(6)	(6)	(6)
France	75, 095	89, 219	122, 249	123, 624	124.106	143, 918
Germany West	118, 811	163, 430	184, 804	197, 026	204, 964	202, 548
Ttoly	42, 590	66, 214	74, 356	77, 761	81,086	81, 192
Netherlands	21, 487	27, 780	28, 702	31, 347	31, 980	33, 085
	45, 486		49,010	50, 176	53, 171	52, 789
Norway		42, 767				177 000
Poland 4	119, 000	152, 600	156, 600	172, 200	169,000	175,000
Rumania	4 3, 220	(6)	(6)	(6)	(6)	(6)
Spain	23, 087	25, 490	25, 652	26, 291	25, 381	21, 751
U. S. S. R.4	157, 000	241,000	258, 000	300,000	351,000	386,000
United Kingdom	77, 243	81, 433	90, 989	91, 108	91, 247	86, 111
Yugoslavia	12, 177	16, 038	15,040	15, 176	21, 890	32, 473
•						
Total 4	896, 000	1, 127, 000	1, 249, 000	1, 330, 000	1, 430, 000	1, 501, 000
Asia:						
China 4	v 230	400	5 13, 800	5 16, 500	5 19, 800	5 20,000
Japan	50, 441	87, 261	112, 296	124, 075	150, 169	152, 835
Total 4	50, 670	87, 700	126, 100	140, 600	170, 000	173, 000
Africa: Belgian CongoRhodesia and Nyasaland,		8, 599	35, 274	37, 443	46, 390	54, 227
Federation of: North- ern Rhodesia	25, 361	28, 370	29, 736	31, 248	32, 396	33, 040
Total	25, 361	36, 969	65, 010	68, 691	78, 786	87, 267
Oceania: Australia	91, 923	100, 999	117, 066	113, 220	117, 592	123, 589
World total (estimate)	2, 188, 000	2, 600, 000	2, 700, 000	2, 970, 000	3, 120, 000	3, 230, 000

NORTH AMERICA

Canada.—Mine production of recoverable zinc in Canada was 410,000 tons—3 percent less than in 1956. The zinc-producing provinces were British Columbia, Quebec, Saskatchewan, Manitoba, Newfoundland, New Brunswick, Yukon, Nova Scotia, and Ontario. Smelter output of slab zinc from domestic and foreign ores totaled 247,000 tons compared with 256,000 tons in 1956. All slab zinc was produced by the electrolytic process at Consolidated Mining and

¹ Data derived in part from the Yearbook of the American Bureau of Metal Statistics, the United Nations Monthly Bulletin and Statistical Yearbook, and the Statistical Summary of the Mineral Industry (Colonial Geological Surveys, London).

² This table incorporates a number of revisions of data published in previous Zinc chapters. Data do not add exactly to totals shown because of rounding where estimated figures are included in the detail.

³ In addition, other zinc-bearing materials totaling 30,288 tons in 1953, 18,545 in 1954, 37,442 in 1955, 39,554 in 1956, and 30,504 in 1957.

⁴ Estimate.

⁵ Includes production from reclaimed scrap.

<sup>Includes production from reclaimed scrap.
Data not available; estimate by senior author of chapter included in total.</sup>

Smelting Co. Trail (British Columbia) plant and Hudson Bay Mining

& Smelting Co. Flin Flon (Manitoba) plant.

Consumption of slab zinc in Canada was 50,700 short tons, considerably below the 59,200 consumed in 1956. Exports of refined zinc and zinc in concentrates were 202,000 and 187,000 tons, respectively. Of these quantities, 105,000 tons of slab zinc and 148,000 tons of zinc in concentrates were exported to the United States, or about 40 percent of the total.

The Consolidated Mining and Smelting Co. of Canada, Ltd., continued to be the largest producer in Canada, operating the Sullivan, H. B., Bluebell, and Tulsequah mines in British Columbia and the largest zinc-reduction plant in the world at Trail, British Columbia. In 1957 the company's mills processed 3,274,000 tons of ore (3,661,000 The decrease was the result of closing the open-pit unit of the Sullivan mine in May and the Tulsequah mines at the end of August. Zinc and lead concentrates produced at the 4 mills were smelted with purchased ores at the company's zinc and lead smelters at Trail to yield 189,300 tons of electrolytic zinc (193,000 in 1956). 144,000 tons of refined lead (149,300 in 1956), 95,400 ounces of gold (97,400 in 1956), 10,877,500 ounces of silver (11,584,000 in 1956), 900 tons of cadmium (900 in 1956), 73 tons of bismuth (78 in 1956), 800 tons of antimony (1,100 in 1956), and 400 tons of tin (300 in 1956). Other British Columbia producers included Reeves McDonald Mines. Ltd., at Remac; Sheep Creek Mines, Ltd., at Nelson; and Yale Lead & Zinc Mines, Ltd., at Ainsworth.

The second largest zinc producer in Canada was the Hudson Bay Mining & Smelting Co., operating the Flin Flon copper-zinc-gold-silver property on the Manitoba-Saskatchewan boundary and other nearby properties in Manitoba. A total of 1,644,300 tons was mined from 5 mines; 1,377,800 tons came from the Flin Flon mine and the balance from the Schist Lake, North Star, Don Jon, and Birch Lake mines. The milling plant processed 1,644,400 tons of ore in 1957 (1,653,800 in 1956). Concentrate 9 was processed in the company's copper reverberatory furnaces to produce copper matte and a slag containing about 8 percent zinc. The zinc-rich slag was charged to two 8- by 21-foot coal-fired fuming furnaces, and the zinc was recovered as zinc oxide fume in the baghouse. The fume was treated in the electrolytic-

zinc plant to recover slab zinc.

During 1957 the copper-zinc plant produced 58,800 tons of zinc (63,300 in 1956), 44,300 tons of copper (46,300 in 1956), 113 tons of cadmium (78 in 1956), 49 tons of selenium (54 in 1956), 97,500 ounces of gold (104,900 in 1956), and 1,528,300 ounces of silver (1,586,900 in 1956). About 88 percent of the zinc content of the slag was recovered, but additional dust-collecting equipment being installed in 1957 will increase recovery of zinc, lead, and other metals.

Geco Mines, Ltd., at Manitouwadge, Ontario, began operating early in September after an investment of \$24 million, and by the end of 1957 the plant was treating 3,500 tons of ore daily to produce 280 to 350 tons of copper concentrate and about 70 tons of zinc concentrate. The ore reserve was reported to be 15 million tons containing 1.76 percent of copper, 3.38 percent of zinc, and 1.77 ounces of silver.

⁹ Mast, R. E., and Kent, G. H., How Hudson Bay Fumes Reverb Slags: Eng. and Min. Jour., vol. 158, No. 6, June 1957, pp. 82-88.

zinc 1313

Another new mine in the Manitouwadge area—Willroy Mines, Ltd.—began producing in July 1957 at a daily rate of 400 tons, which was increased to more than 800 tons by October, when 25,300 tons of ore containing 1.17 percent of copper, 10.38 percent of zinc, 0.43 percent of lead, and 2.87 ounces of silver was treated. The operating cost was reported to be less than \$5.50 per ton, and zinc recovery was 85.7 percent.

Barvue Mines, Ltd., Quebec's major producer of zinc concentrate, which opened November 1952, was shut down in October 1957. Other Quebec producers of zinc concentrate included Normetal Mining Corp., Ltd., which treated 378,000 tons of ore to produce 37,700 tons of 21.60-percent copper concentrate and 31,000 tons of 51.63-percent zinc concentrate; Waite Amulet Mines, Ltd., which milled 290,000 tons of ore to yield 9,939 tons of copper and 8,400 tons of zinc in concentrates; and Quemont Mining Corp., Ltd., which milled 837,000 tons of ore to recover 11,300 tons of copper and 16,200 tons of zinc in concentrates.

In New Brunswick, Heath Steele Mines, Ltd. (subsidiary of American Metal Climax, Inc.) completed installation of mining, milling, and related facilities in 1957, and during the latter part of the year the 22-mile railway spur to the mine was completed. By April the mill began operating on a tuneup basis. Mine development and stope preparation was continued, and a long incline was started at No. 2 shaft to permit trucking ore from the stope faces.

Brunswick Mining and Smelting Corp., Ltd., continued mine development and intensive studies in ore dressing and concentrate

treatment. Test results were favorable.

Greenland.—The Mestersvig mine of the Nordic Mining Co., Ltd., which began producing in February 1956, shipped 13,650 tons of zinc concentrate and 8,750 tons of lead concentrate to Belgium and West Germany in the 1957 shipping season. The shipments resulted from treating about 80,000 tons of ore containing 8.4 percent zinc and 8.1 percent lead over the 10-month period July 1956 to July 1957, exclusive of December and January when the mine was closed. Solution to the many problems of mining at a latitude of 72° N. were described in an article. 10

Guatemala.—Compañía Minera de Guatemala operated its Caquipec mine near Coban throughout 1957, producing zinc and lead con-

centrates.

Mexico.—Mine production of zinc was 267,900 short tons in 1957, a small decline from the 274,400 tons produced in 1956. Smelter production of slab zinc (62,400 tons) remained at near capacity level. As domestic consumption was about 16,800 tons, most of Mexico's production was exported. The United States, with imports of 23,500 tons of slab zinc and 192,500 tons of zinc in concentrates, was the principal recipient.

American Smelting & Refining Co. Mexican operations were conducted on a normal basis throughout 1957, except for the closing of the leased Aurora-Xichu mine. Mines operated in 1957 by the company included the Charcas unit at Charcas, San Luis Potosi; Nuestra Senora at Cosala, Sinaloa; the Parral, Santa Barbara; and

Astlind, Bertil, and Fahlstrom, P. H., Greenland Lead-Zinc Mine Beats Elements With Underground Mill: Min. World, vol. 19, No. 12, November 1957, pp. 46-50.
 American Smelting & Refining Co., Annual Report, 1957, 32 pp.

Santa Eulalia, units, Chihuahua; and Taxco, Guerrero. Operating mines leased or owned in part and managed by American Smelting were the Aurora-Xichu unit, Guanajuanto; Cía. Metalurgica Mexicana mines; Montezuma Lead Co. mines at Santa Barbara; and Plomosas unit at Picachos, Chihuahua. Smelting and refining plants operated by American Smelting & Refining Co. were the Chihuahua plant (lead smelting and zinc fuming); Monterrey (lead refining); San Luis Potosi (copper smelting and converting, arsenic refining, and lead smelting); and Rosita, Coahuila (zinc retort smelting).

American Metal Climax, Inc. (formerly The American Metal Co.), through its Mexican subsidiary, Cía. Minera de Penoles, S. A., produced 43,300 tons of zinc concentrate and 31,300 tons of lead concentrate from 325,000 tons of company ore and small quantities of

custom ore.

The Avalos unit at Avalos (Zacatecas), the Calabaza unit at Etzatlan (Jalisco), and the Topia unit at Topia (Durango) produced both zinc and lead concentrates; the Ocampo unit at Boquillas, Coahuila, produced lead concentrate. The company zinc concentrate was shipped to the Blackwell (Okla.) smelter of the Blackwell Zinc Co. (subsidiary of American Metal Climax Co.), but the lead concentrate was smelted at the company smelter at Torreon, Coahuila, in Mexico.

The San Francisco Mines of Mexico, at San Francisco del Oro, Chihuahua, in which American Metal Climax Co. has an interest, during the year ended September 30, 1957, milled 878,000 short tons to produce concentrate containing 56,900 short tons of zinc, 38,300 tons of lead, about 4,500 tons of copper, and considerable gold and silver.

The El Potosi Mining Co. (subsidiary of Howe Sound Co.) operated its El Potosi mine in the Santa Eulalia district and El Carmen mine at Batophilas, both in Chihuahua, to produce both lead and zinc

concentrates.

Fresnillo Co. continued to operate its lead-zinc mines at Fresnillo in Zacatecas and its Naica mine in Chihuahua. In the year ending June 30, 1957, the company mined and milled 1,036,000 tons of ore to produce 39,000 tons of zinc and 36,900 tons of lead in concentrates, as well as values in copper, gold, and silver.

The Minas de Iguala, S. A., subsidiary of the Eagle-Picher Co., operated its zinc-lead-copper mine and concentration mill at Parral,

Chihuahua.

SOUTH AMERICA

Argentina.—The Aguilar mine of Cía. Minera Aguilar, S. A., a subsidiary of St. Joseph Lead Co., operating in the Province of Jujuy, produced zinc and lead concentrates containing 26,300 tons each of lead and zinc, or about 80 percent of the national totals. The zinc concentrate was roasted at the plant of Sulfacid, S. A., at Borghi and partly reduced to slab zinc at an electrothermic zinc smelter, Comodoro Rivadavia, owned by Cía. Metalúrgica Austral-Argentine, S. A., of which St. Joseph Lead with its Aguilar subsidiary owned 43.3 percent. The smelter produced about 9,700 short tons of slab zinc. Sulfacid, S. A., operated an electrolytic pilot plant in

1315ZINC

1957 and was considering a commercial installation with capacity of

18 metric tons of electrolytic zinc per day.

Bolivia.—Pulcayo & Animas, the nationalized mine-mill zinc units, produced 39,100 short tons of concentrate containing 21,700 tons of No zinc was produced from privately owned mines in Bolivia The entire output was exported mostly to Belgium, the

Netherlands, and the United States.

Peru.—Mine output of zinc in 1957 was 173,600 tons—virtually unchanged from 1956. Cerro de Pasco Corp. continued to be the largest producer; its copper-lead-zinc mines at Casapalca, Cerro de Pasco, Morococha, San Cristobal, and Yauricocha produced 2,115,840 tons of crude ore. Smelter production at La Oroya, 12 including company and purchased ores, yielded 32,540 tons of zinc, 45,345 tons of copper, 75,900 tons of lead, 12,735,000 ounces of silver, and 42,000 ounces of gold. Peak production of electrolytic zinc and sales of concentrate permitted a significant reduction in stocks of low-grade zinc concentrate.

Other significant zinc producers in Peru during 1957 were Volcan Mines Co., Cía. Minera Atacocha, Cie des Mines de Huaron, and Northern Peru Mining Co.

Many lead and zinc mines had closed or curtailed production by midyear, owing to declining metal prices. Among them were Volcan, Venturosa, Huaron, Yauli, and Atacocha.¹³

Cía. Minerales Santander was engaged in stripping the ore body in 1957 and building a mill at Chancay River, Peru. 14 Consideration was being given to preparing the mine for production but leaving it on a standby basis, pending higher metal prices.

Of the 166,000 tons of zinc exported from Peru, 75 percent was shipped to the United States, 17 percent to Belgium, and the remaining

8 percent to many European countries and Japan.

EUROPE

Austria.—The lead-zinc mine of Bleiberger Bergwerks Union, a nationalized company, produced about 200,000 tons of lead-zinc The ore was concentrated by flotation to yield lead and zinc The electrolytic plant of Bleiberger Bergwerks Union concentrates. at Gailitz produced 10,287 tons of zinc. Consumption of slab zinc

by Austrian industry was 12,700 tons.

Belgium and France.—No zinc mine was operated in Belgium in French mines produced 13,200 tons of zinc. Belgian and French smelters together produced 404,000 tons of zinc, a 7-percent increase over 1956. Zinc concentrates were imported from Belgian Congo, North Africa, Sweden, Australia, Spain, and Peru. Société Anonyme des Mines and Fonderies de Zinc de la Vielle-Montagne continued to be the largest zinc-producing company. The company's electrolytic plants at Balen, Belgium, and Viviez Aveyron, France, yielded 115,000 tons of zinc. Eleven retort plants in Belgium and France operated at near capacity in 1957.

¹² Cerro de Pasco Corp., Annual Report, 1957, 24 pp.
¹³ American Metal Market, vol. 64, No. 144, July 27, 1957, p. 23, Metal Bulletin (London), No. 4215, July 30, 1957.
¹⁴ St. Joseph Lead Co., Annual Report, 1957, 24 pp.

Bulgaria.—According to Comtel-Reuter reports from Vienna, prospecting in Bulgaria revealed 37 zinc-lead ore bodies having reserves of 15 million tons in Harmanti, Sivilengrad, and Ivailovograd. Annual production of 330,000 tons of ore and 50,000 tons of zinc

concentrate was planned and work was begun.

Germany, West.—West German mines produced 104,000 tons of zinc in 1957. Zinc was mined in the Harz Mountains and from Stolberger properties in the Rhineland. Six active zinc smelters produced 202,500 tons of slab zinc. A large volume of imports was necessary to equal West German consumption of approximately 250.000 tons in 1957.

Italy.—Mine output of zinc, mostly from the island of Sardinia, was 144,600 tons, a gain of 7 percent over 1956. The principal producers were the Montevecchio and Monteponi mines. Italy exported 38,300 short tons of zinc in concentrates to European refiners. Most of the remainder was processed in 3 Italian electrolytic plants and 1 retort smelter that together produced 81,192 tons of zinc. Estimated Italian consumption in 1957 was 75,000 tons.

Norway.—Mine production of zinc in 1957 totaled 7,600 tons. Bleikvassli mines in the Rana district of northern Norway began developing a sulfide deposit containing pyrite, lead, and zinc. Ore output was anticipated to be 100,000 tons annually. The ore reserve was reported to be 2 to 3 million tons. Development of the nearby Mofjelletsand zinc and lead mine was nearly finished at the end of 1957. The electrolytic zinc plant of Det Norske Zinkkompani, A. S., reported an output of 52,800 tons of refined zinc. Estimated Norwegian consumption of zinc in 1957 was 15,800 tons.

Poland.—Zinc mines of Upper Silesia have long been mjaor contributors to the Polish economy. In 1957 they produced 2,146,000 tons of ore containing an estimated 143,000 tons of zinc metal. Poland also imported zinc concentrate in 1957. Smelters and refineries produced 175,000 tons of zinc, of which approximately

65,000 tons was electrolytic and 110,000 tons fire-refined zinc.

Spain.—The Real Compañía Asturiana de Minas continued to be the largest producer of zinc concentrate and the only producer of slab zinc in 1957. The company operated the Reocin and Arditurri mines near the north coast and the Arnao zinc-retort smelter near Aviles The output of the Arnao plant was 21,750 tons of slab. The Penarroya zinc smelter in Cordoba Province of southern Spain remained idle. Concentrates in excess of Arnao plant capacity were shipped to other European countries for processing. In 1957 the Spanish Government authorized the Spanish banks, Herrew and Banco Espanol jointly to set up a company for producing electrolytic zinc under the name of Austuriana de Zinc, S. A. The Belgian-owned enterprise Real Compañía Austriana de Minas was participating to a maximum of 40 percent, although foreign participation normally is limited to 25 percent.

Sweden.—Zinc was mined in Sweden at Ammeberg between Narke and Ostergitland and at Kopparbergs Bergslags mines. A small quantity also was mined at Kaveltorp, Ryllshyttan, Saxberger, Garpenberg, and Slollberg. The Swedish subsidiary of Vieille-Montagne Zinc Co. of Belgium celebrated 100 years of ownership of the Ammeberg mines, which produced 34,000 tons of zinc concentrate zinc 1317

(54 percent zinc) in 1957. Boliden Mining Co. mined three large pyrite-copper-lead-zinc bodies in northern Sweden. Boliden reported ore production at Langselegruvan in 1957 totaling 2,240,000 tons of zinciferous pyrite. The ore was transported by standard-gage railway underground to the central works at Boliden. The company's Akulla mine was abandoned owing to exhaustion of ore. Mine production of Boliden Mining Co. in 1957 totaled 40,532 tons of zinc. Sweden's zinc concentrates were shipped to European smelters, and

refined zinc was reshipped to Sweden for internal use.

United Kingdom.—Ores mined in England yielded 1,100 tons of zinc in 1957. The National Smelting Co., Ltd., at Avonmouth, operating near capacity on imported concentrates, produced 85,500 tons of refined zinc in 1957. The Imperial Smelting Corp., parent to National Smelting Co., announced the successful development of a blast-furnace process for smelting complex zinc ores. Two furnaces having a combined daily capacity of about 80 tons of zinc were operated in 1957. Experience indicated that the process is applicable to high- or low-grade zinc concentrates or mixed lead-zinc concentrates. Imports by the United Kingdom included 207,244 tons of zinc ore and 148,350 tons of cast shapes. Consumption in 1957 was 316,400 long tons, of which 231,020 was new zinc and 85,386 long tons scrap. In August the British Government announced plans to sell 27,000 long tons of zinc from its stockpile. Accordingly, 3,000 long tons a month were released from September through December. Similar releases were planned in first half of 1958.

U. S. S. R.—Official data on zinc production in the U. S. S. R. in 1957 are not available, but estimates indicate a smelter output of 386,000 tons, all from mines within the Soviet Union. Exploration continued at a high level in 1957. New zinc ore bodies were discovered in regions of Kazakhstan, Ukraine, and Transcaucasus. Pravda announced that lead and zinc production in Kyzl-Ordinskaya furnaces will be 50 percent greater in 1961 than in 1955. The first

slag-treating plant in Russia began producing in 1957.

Yugoslavia.—In 1957 Yugoslavian mines produced about 1,750,000 tons of lead-zinc ore containing 64,000 tons of zinc. The leading zinc and lead mining areas are nearby in Serbia, Macedonia, and Slovenia. The Trepca mines in Serbia continued to be the largest producer. New discoveries of lead-zinc deposits were reported in the Sasa-Toranica Basin. Total refined-zinc output was 32,500 tons, of which three-fourths came from the retort smelter at Celje, Slovenia.

ASIA

Burma.—The Burma Corp., Ltd., continued to operate the Bawdwin lead-zinc-silver mine in the Shan States of northern Burma. For the year ended June 30, 1957, output was 131,200 tons of crude ore. The zinc content of Burmese concentrate received by West Germany, the United Kingdom, and Belgium during 1957 was 15,400 short tons.

India.—Mine output of zinc in India in 1957 came from the Zawar lead-zinc mine of the Metal Corp. of India, Ltd., near Udaipur in

<sup>Mining Journal (London), Annual Review, May 1958, 328 pp.
Morgan, S. W. K., The Production of Zinc in a Blast Furnace: Bull. Inst. Min. and Met., August 1957, No. 609; Trans., vol. 66, pt. 11, 1956-57, pp. 553-565.
British Bureau of Non-Ferrous Metal Statistics.
Mining Journal (London), Annual Review, May 1958, 328 pp.</sup>

Rajasthan. The zinc concentrate produced was sent to Japan for smelting. Estimated output of zinc concentrate in 1957 was 8,800 tons containing 4,600 tons of zinc. Indian internal annual require-

ments of zinc were estimated to be about 53,000 tons.

Japan.—The principal zinc producers in Japan in 1957 were Mitsui Mining & Smelting Co., Ltd.; Mitsubishi Metal Mining Co., Ltd.; Toho Aen Kogyo, K. K.; Nihon Soda K. K.; and Mikkaichi Smelting Co. Output of electrolytic zinc rose 3 percent to 94,300 short tons in 1957, and production of refined zinc totaled 152,800 tons. Japanese consumption of zinc in 1957 was estimated at 142,500 tons.

AFRICA

Algeria.—Most of Algeria's output of zinc continued to come from deposits near the Moroccan border south of Oudja, Morocco, and adjacent to the Bou Beker lead-zinc mines in Morocco. The larger zinc producers in Algeria included the mines of the Société Nord Africaine du Plomb and Société Algerienne du Zinc. 19 Combined mine output of the two companies was 226,000 short tons of ore containing 13.4 percent zinc and 2.0 percent lead. Operations were suspended from December 11, 1956, to February 14, 1957, owing to

political unrest.

Belgian Congo.—The large Prince Leopold copper-zinc mine of the Union Minière du Haut Katanga at Kipushi, near Elisabethville, was the only zinc producer in the Congo. According to the company's annual report, the mine output was 1,117,000 tons of crude ore in 1957. The Kipushi concentrator treated 1,280,000 tons during the year and extracted 207,400 tons of 56.97-percent zinc concentrate and 279,770 tons of 26.62-percent copper concentrate. A large part of the zinc concentrate was roasted in the Sogechem works at Jadotville to produce sulfuric acid. Some calcined concentrate was sold to the Metalkat electrolytic zinc plant at Kolwezi, and some was shipped to Belgium for smelting. Exports of zinc in concentrate in 1957 totaled 71,580 tons and exports of refined metal, 40,766 tons.

Morocco.—In 1957 production of zinc concentrate was 87,000 short tons containing 45,600 tons of metal. Virtually all of the zinc concentrate was exported to France. The Bou Beker mines of the Société des Mines de Zellidja continued to be the largest Moroccan producer of zinc. The Touisitt properties of the Compagnie Royale Asturienne des Mines ranked second. Both mines are in eastern Morocco 25 miles south of Oudja on the Algerian border. A third large producer

was the Aouli Mibladen near Midelt.

Rhodesia and Nyasaland, Federation of.—The Rhodesian Broken Hill Development Co., Ltd., 20 hoisted 182,600 short tons of ore in 1957 (161,400 in 1956), of which 31,700 tons was silicate ore sent directly to the zinc leaching plant. The sulfide flotation plant processed 136,600 short tons of ore containing 19.7 percent lead and 29.1 percent zinc to produce 28,200 tons of lead concentrate assaying 64.4 percent lead and 40,606 tons of zinc concentrate assaying 59.4 percent zinc. Silicate ores and calcined sulfide concentrate were processed in the company's electrolytic plant to yield 36,200 short tons of zinc. Byproduct cadmium totaled 112 tons. The lead smelter produced

Newmont Mining Corp., Annual Report 1957, 20 pp.
 Annual Report of December 31, 1957, 20 pp.

ZINC 1319

16,800 tons of refined lead and retort bullion containing 117,400 ounces of silver. Ore reserves were reported to be 4,160,000 tons containing

28.4 percent zinc and 14.4 percent lead.

South-West Africa.—Tsumeb Corp., Ltd.,²¹ mined and milled 638,000 tons of complex lead-copper-zinc ore containing economic quantities of germanium, cadmium, and silver. Assured ore reserves were estimated to total 9,490,000 tons, averaging 14.17 percent lead, 5.38 percent copper, 4.5 percent zinc, and 0.017 percent germanium. Rail transport to the seaport at Walvis Bay remained inadequate and was supplemented by truck haulage, which reduced the accumulation of zinc concentrate at the mine by one-third. The company announced plans to replace the narrow-gage rail section with standard South African gage.

Tunisia.—Tunisian mines produced 6,600 tons of zinc concentrate containing 3,620 tons of zinc. No refined zinc was produced in Tunisia in 1957. The mines also produced lead concentrate con-

taining 26,300 tons of lead.

OCEANIA

Australia.—The Broken Hill district of New South Wales was by far the leading Australian zinc-producing area. Mining companies operating in 1957 were New Broken Hill Consolidated, Ltd.; Zinc Corp., Ltd.; Broken Hill South, Ltd.; and North Broken Hill, Ltd. An estimate of output in the Broken Hill district was 2,220,000 tons of crude ore that yielded zinc and lead concentrates containing about 250,000 short tons of zinc, 280,000 tons of lead, and 10 million ounces of silver.

During the fiscal year ended June 30, 1957, Mount Isa Mines, Ltd., processed 1,573,400 tons of lead-zinc-copper ore from the Cloncurry district in Queensland. The ore yielded 50,600 tons of lead bullion, 32,340 tons of blister copper, and 39,650 tons of zinc concentrate.²² The company planned to install a new 4,500-hp. hoist made by the British General Electric Co. designed to increase monthly capacity from 100,000 to 180,000 tons of ore per month. Exploration and development increased reserves of both silver-lead-zinc and copper ore substantially.

The Lake George Mining Corp., Ltd., in the year ended June 30, 1957, milled 189,900 tons of ore to produce 29,600 tons of zinc concentrate, 14,900 tons of lead concentrate, and 34,900 tons of copper concentrate from ores mined in the Captain's Flat district of New South Wales.²³ The company expressed disappointment at failure to

extend ore reserves significantly in 1957.

For the fiscal year ended June 30, 1957, the mines of the Electrolytic Zinc Company of Australasia, Ltd., in the Read-Rosebery district produced 191,238 tons of ore that yielded 56,279 tons of zinc concentrate, 9,300 tons of lead concentrate, and 6,000 tons of copper concentrate. The zinc concentrate was processed at the company's Risdon electrolytic plant. The Risdon plant again produced a record output of 123,600 short tons of zinc, compared with 117,600 tons in the preceding year. Plans were made to expand capacity to 140,000

<sup>American Metal Climax, Inc., 1957 Annual Report, 52 pp.
American Smelting & Refining Co., Annual Report, 1957, 32 pp.
Lake George Mining Corp., Ltd., Annual Report, 1957, 18 pp.</sup>

tons a year. In addition to company concentrates from the Read-Rosebery district mines, the plant treats a large tonnage of zinc concentrates from the Broken Hill district.

The British company, Consolidated Zinc Corp., Ltd., commenced building a new smelter at Cockle Creek, New South Wales. The smelter will be the new blast-furnace type.²⁴ Production was scheduled to begin in 1960, and capacity output of 52,000 short tons annually was anticipated by 1963.

WORLD RESERVES

The term "zinc reserves" refers only to zinc ores that have been inventoried and are economic at the time of inventory. It does not include material that requires new technologies or more favorable prices; neither does it include estimates for undiscovered ores. Ore reserves listed in table 33 include measured and indicated reserves but not inferred ore. Definitions of these classes of reserves follow:

Measured ore is ore for which tonnage is computed from dimensions revealed in outcrops, trenches, workings, and drill holes and for which the grade is computed from the results of detailed sampling. The sites for inspection, sampling, and measurement are so closely spaced and the geologic character is so well defined that the size, shape, and mineral content are well established. The computed tonnage and grade are judged to be accurate within limits which are stated, and no such limit is judged to differ from the computed tonnage or grade by more than 20 percent.

Indicated ore is ore for which tonnage and grade are computed partly from specific measurements, samples, or production data and partly from projection for a reasonable distance on geologic evidence. The sites available for inspection, measurement, and sampling are too widely or otherwise inappropriately spaced to outline the ore completely or to establish its grade throughout.

Inferred ore is ore for which quantitative estimates are based largely on broad knowledge of the geologic character of the deposit and for which there are few, if any, samples or measurements. The estimates are based on an assumed continuity or repetition for which there is geologic evidence; this evidence may include comparison with deposits of similar type. Bodies that are completely concealed may be included if there is specific geologic evidence of their presence. Estimates of inferred ore should include a statement of the spacial limits within which the inferred ore may lie.

TABLE 33.—Estimate of world reserve of zinc in measured and indicated ore, January 1957

	Zinc con- tent, short tons	Percent of total		Zinc con- tent, short tons	Percent of total
North America: Canada ¹ Mexico ² United States ³ Other South America: Argentina, Bolivia, Peru, and Chile Europe: Eastern Europe Western Europe	16, 691, 000 6, 650, 000 13, 485, 000 175, 000 6, 000, 000 11, 000, 000 11, 000, 000	19. 8 7. 9 16. 0 . 2 7. 1 13. 0 13. 0	Africa: Algeria, Belgian Congo, Morocco, Northern Rhode- sia, Southwest Africa, and Tunisia Asia: Burma, China, India, Iran, and Japan Australia	4, 000, 000 4, 500, 000 11, 000, 000 84, 501, 000	4. 7 5. 3 13. 0 100. 0

¹ Source: Canada Department of Mines and Technical Surveys, Mines Branch, Memo. Ser. 137.

² Estimate by Bureau of Mines.
3 Survey made by Bureau of Mines in 1957.

²⁴ Work sited in footnote 16.

1321 ZINC

TECHNOLOGY

Numerous technologic advances in the zinc industry in 1957 were reported in trade journals and the reports of private and governmental

The Federal Bureau of Mines 25 and the Federal Geological Survey 26

published results of several investigations relating to zinc.

A significant paper 27 described a process developed by the Imperial Smelting Corp., Ltd., at Swansea, Wales. More than 70,000 long tons of zinc was produced by the process in 2 furnaces, which in 1957 had a combined capacity of 70 long tons per day. The blast furnaces are charged with a mixture of sintered zinc or zinc-lead concentrate and preheated coke. Furnace gases containing 5 to 6 percent zinc as vapor are withdrawn from above the furnace charge at a temperature higher than that required for zinc reoxidation. The gases pass to condensers, where they are shock-cooled by series showers of molten lead to about 450° C. Approximately 95 percent of the zinc condenses in the lead bath before oxidation. Uncondensed zinc leaving the condensers in furnace gas is recovered by scrubbing and filtration and is added to the sinter feed and recycled to the blast furnace.

The lead-zinc metal mix is cooled in a water-cooled launder and passes to a separation bath, whence the zinc overflows to a bath for reheating with sodium to remove arsenic before casting. produced was Prime Western grade containing 1.2 percent lead, 0.024 percent iron, 0.07 percent cadmium, and 0.001 percent arsenic. lead is present in the blast-furnace feed, the lead is smelted with the zinc and the bullion tapped periodically from the furnace bottom. Carbon consumption is reported to be about 104 percent of the weight The zinc content of the slag has been approxiof the volatilized zinc. mately 2 to 3 percent.

An article describing American Smelting & Refining Co.'s new electrolytic zinc plant at Corpus Christi, Tex., appeared in 1957.28 Zinc is deposited at 82 amperes per square foot per cell in 196 cells arranged 14 cells to a bank in 14 parallel rows. The cells are made of concrete surfaced with asphalt and plastic, and lined with 1.25-inch acidproof brick. Each cell holds 750 gallons of zinc solution and is equipped with 29 silver-lead anodes and 28 aluminum cathodes; the cathodes are stripped of zinc after 16 hours. Each cell uses a closed system of circulation for continuous flow of electrolyte in the cell.

²⁵ Peyton, A. L., Examination of Copper-Lead-Zine Deposits, Cabarrus and Union Counties, N. C.: Bureau of Mines Rept. of Investigation 5313, 1957, 13 pp.
Cole, W. A., Mining and Milling Methods and Costs, Tri-State Zine, Inc., Jo Daviess County, Ill.: Bureau of Mines Information Circ. 7780, 1957, 19 pp.
Olds, E. B., and Parsons, E. W., Methods and Costs of Deepening the Crescent Shaft, Bunker Hill & Sullivan Mining & Concentrating Co., Shoshone County, Idaho: Bureau of Mines Information Circ. 7783, 1057, 10 pp.

Sullivan Mining & Concentrating Co., Shoshone County, Idahō: Bureau of Mines Information Circ. 7783, 1957, 19 pp.
Hardwick, W. R., and Sierakoski, Joe, Mining Methods and Practices at the Johnson Camp Copper-Zinc Mine, Coronado Copper & Zinc Co., Cochise County, Ariz.: Bureau of Mines Information Circ. 7788, June 1957, 27 pp.

*** Kinkel, A. R., Hall, W. E., and Albers, J. P., Geology and Base-Metal Deposits of West Shasta Copper-Zinc District, Shasta County, Calif.: Geol. Survey Prof. Paper 285, 1956, 156 pp.
McClelland, Dings G., and Robinson, C. S., Geology and Ore Deposits of the Garfield Quadrangle, Colorado: Geol. Survey Prof. Paper 289, 1957, 110 pp.
Bodenlos, A. J., and Straczek, J. A., Base-Metal Deposits of the Cordillera Negra, Departmento de Ancash, Peru: U. S. Geol. Survey Bull. 1040, 1957, 165 pp.
Brown, C. Ervin, Whitlow, J. W., and Corsby, Percy, Geology and Zinc-Lead Deposits in the Catfish Creek Area, Dubuque County, Iowa: Geol. Survey Field Study Map MF-116, 1957.

**Work sited in footnote 16, p.37.

** Jephson, A. C., and Allen, R. E., Asarco's New Electrolytic Plant at Corpus Christi, Tex.: Jour. Metals, vol. 9, No. 10, October 1957, pp. 1381-1384.

American Zinc Co. of Tennessee drilled a 66-inch-diameter ventila-

tion shaft at its Young mine near New Market, Tenn.²⁹
The Dnepropetrovsk Institute of Chemistry and Technology of the U. S. S. R.³⁰ claimed development of a method for continuous electrolytic production of zinc. The process is said to produce zinc 12 to 15 times faster than the usual method in a continuous ribbon 0.2 to 0.5 mm. thick that is stripped automatically from drum-shaped cathodes.

A solder 31 composed of zinc with a little aluminum and magnesium was developed by Bell Telephone Laboratories to bond aluminum without flux and without the vigorous abrasion usually needed. The solder is said to wet the aluminum even if rolling-mill oils and surface oxide have not been removed.

A new process, 32 involving the use of zinc as the first layer under copper-, nickel-, and chromium-plated bumpers and other plated parts of automobiles, may prevent rusting. The zinc is applied to the base metal in such a manner that it does not blend with a coating of

copper applied over the zinc.

A novel use of zinc as galvanic anodes at the Trail plant of Consolidated Mining & Smelting Co. of Canada, Ltd., was described.33 Zinc bars attached to steel rake arms of leaching-plant thickeners gave the arms 100 percent cathodic protection from corrosion. It was reported that the zinc anodes were consumed by corrosion at the rate of 1 pound per day (for a 40-foot thickener), or about 2 pounds per square foot of protected steel surface per year.

²⁹ Mining World, American Zinc Revives Old Art to Drill 66-Inch Hole: Vol. 19, No. 10, September

Mining World, American Zinc Revives On Art to Dim of their Hole.
 70. 10, 100 - 100

Zirconium and Hafnium

By F. W. Wessel 1

THE INCREASED PACE of construction of private nuclear powerplants and power reactors for naval vessels required increasingly large quantities of zirconium. This activity, however, also extended the use of stainless steel in direct competition with zirconium, particularly in reactors using highly enriched fuels.

To provide the Atomic Energy Commission (AEC) with an additional 5,500 tons of Reactor-grade zirconium over a 5-year period, contracts were placed with 3 domestic companies, each of which built a new plant. The new plants have a total capacity in excess

of AEC requirements.

All hafnium produced in zirconium plants was assigned to the AEC for allocation. The Commission is interested in constructing a central plant of 75,000 pounds capacity to recover hafnium metal

from the refinery wastes of all zirconium producers.

Zircon demand, active at the beginning of the year, had dropped sharply by the end of the year. The decline was ascribed to reduced demand by foundries in the United States. Australian zircon was a coproduct of rutile, which also suffered a depressed market during the year; early in January informed sources warned of overproduction of both minerals. In spite of this warning, the more recently established titanium companies in Western Australia progressed toward the marketing of coproduct zircon; at least one new company was formed to work beach sands in New South Wales, and others began production or expanded output. By midyear the price of zircon had dropped, and many producers suspended operations late in the the year.

Although prices remained constant in the United States, the same decline in demand was apparent. Most producers operated throughout the year, but curtailment was imminent. In the United States, where the bulk of the output comes from captive mines, the decline in demand was expected to have less effect than in Australia. Deposits in Georgia, Nevada, and Tennessee were discovered or ex-

amined during the year.

DOMESTIC PRODUCTION

Mine Production.—Florida again was the principal, but not the only, domestic producer of zircon. In 1957, 56,802 tons of concentrate was produced at 3 operations in Florida—an increase of 29 percent over output in 1956. The estimated value, however, decreased 9 percent—from \$2,159,540 to \$1,975,700. In addition, some

¹ Physical scientist.

zircon was mined and marketed in South Carolina. In Idaho and elsewhere in the West freight costs again prohibited marketing, and no production was recorded. Baddelevite, which occurs in this

country only in Montana, was not mined in 1957.

Metal Production.—Five-year contracts, placed with 3 companies by the AEC in 1956, called for delivery of 1,100 tons of Reactor-grade sponge per year. Carborundum Metals Co., Inc., agreed to deliver 250 tons of metal at \$7.72 per pound, U. S. Industrial Chemicals Co. 500 tons at \$4.53, and Columbia-National Corp. 350 tons at \$6.50. As a result of these contracts, Carborundum Metals Co., Inc., built a second plant at Parkersburg, W. Va., with a capacity of 600 tons annually; U. S. Industrial Chemicals Co. equipped a plant at Ashtabula, Ohio, with an annual capacity of 1,000 tons; and Columbia-National Corp., jointly controlled by Columbia Southern Chemical Co. and National Research Corp., built a plant at Milton, Fla., with an annual capacity of 750 tons.

Carborundum Metals continued to produce zirconium at the full capacity of its plant at Akron, N. Y. The plant at Parkersburg, W. Va., began production by midyear, and at the end of 1957 its

annual rate of output was 500,000 pounds.

U. S. Industrial Chemicals Co. (which late in the year became a division of Mallory-Sharon Metals Corp.) remodeled the plant purchased from Lake City Malleable Co. at Ashtabula, Ohio, but reported no shipments in 1957. The plant of the Columbia-National

Corp. produced and shipped its first metal late in the year.

The Wah Chang Corp. operated leased facilities at Albany, Oreg., throughout the year at above nominal capacity while constructing its own plant in the same area. The new plant was producing at full capacity by the end of the year, and the total annual production rate of the 2 plants was 900,000 pounds. Construction and testing continued at the Bedford (Ohio) plant of Kennecott Titanium Development Corp., where an electrolytic process was used under license from Horizons Titanium Corp., Princeton, N. J.

Melting capacity for zirconium sponge in the United States was estimated at 5,630,000 pounds annually—far more than the production of sponge. Leaders in the field were Allegheny Ludlum Steel Corp., Firth Sterling, Inc., Oregon Metallurgical Corp., and Reactive Metals, Inc. Firth Sterling, Inc., was awarded a contract to melt and fabricate Zircaloy mill products worth nearly \$5 million; this material will be used for fuel-element cladding and structural parts in nuclear reactors. The Oregon Metallurgical Corp. at the end of 1957 had begun to deliver 350,000 pounds of ingot on a \$4 million melting contract; Wah Chang Corp. supplied the sponge.

CONSUMPTION AND USES

Consumption of zircon in the United States in 1957 is estimated at 85,000 tons. A preliminary estimate of distribution indicates that 7 percent went into metals and alloys, about 85 percent into refractory and foundry use (refractory use being slightly larger than foundry use), and the remaining 8 percent into ceramics, abrasives, paints, and miscellaneous uses. The small quantity of baddeleyite was consumed in manufacturing alloys and refractories.

Nonnuclear uses of zirconium metal were as valves, valve stems, pipes, and reaction vessels to withstand corrosive conditions, including exposure to sea water. Minor uses of zirconium metal were as a "getter" in vacuum tubes and elsewhere in the electronics industry, in photographic flashbulbs, as surgical plate and mesh for bone repair to replace tantalum, in nonferrous master alloys, and in naval ordnance. Zirconium sulfate began to be used as a paint component, zirconium fluorides were used in preparing metallic coatings, and the acetate was used as a filler in textiles. Zirconia refractories were used extensively by the glass industry, and stabilized-zirconia laboratory ware was marketed. Sintered zircon and zirconia refractories were being studied.

Zirconium tubing for reactor use was made by Superior Tube Co., Wolverine Tube Division of Calumet & Hecla, Inc., and Bridgeport Brass Co. in 1957. Fittings of zirconium were made by National Cylinder Gas Co. for welding use. The Sylvania Electric Products Corp. produced a photographic flashbulb containing zirconium foil instead of magnesium. A new melting furnace, developed by Titanium Metals Corp., Allegheny Ludlum Steel Corp., and McGraw Edison

Co., was placed on the market by the last-named firm.

Developments, not yet on commercial scale, indicated possible use of zirconium boride, carbide, and nitride in the high-temperature field. The boride was said to resist temperatures of 3,300° C.

STOCKS

Dealers' stocks of zircon concentrate increased during the year from 3,109 tons (revised figure) to 5,950 tons. In addition, an estimated 12,750 tons was in consumers' stockpiles at the end of 1957. Stocks of baddeleyite decreased sharply and probably did not exceed 350 tons on December 31, 1957.

PRICES AND SPECIFICATIONS

The price of domestic zircon concentrate remained constant in 1957 at \$50 (Jacksonville) and \$55 (Starke) per short ton, f. o. b. mines. Quotations in E&MJ Metal and Mineral Markets of \$64 to \$68 per long ton, c. i. f. Atlantic ports, set on September 13, 1956, were reduced to \$55 to \$60 on July 25, \$54 to \$57 on August 15, and \$50 to \$51 on October 3, 1957. The October price was maintained until the end of the year.

AEC specifications for zirconium and hafnium metal delivered by

contractors are as follows:

contractors are as follows.	Maximum limit, p. p. m.	
	Zi rconium	Hafn i u m
Iron	1500	1500
Oxygen	1400	1400
Oxygen	1300	600
Chlorine	600	600
Magnesium	500	
Carbon Chromium	200	
Hafnium	100	
Hatnium	100	
LeadPhosphorus	100	

	Maximum limit, p. p. m.		
CON.	Zirconium	Hafnium	
Silicon	100	· •	
Zine	100		
Aluminum	75	200	
Nickel	70	200	
Copper	50		
Manganese	50		
Molybdenum	50 50		
Nitrogen	50 50	50	
Sodium		50	
Titanium	50		
Tungsten	50	200	
Vanadium	50		
Calcium	50		
	30		
Cobalt	20		
Rare earths (total)	15		
7	1		
Boron	0. 5		
Cadmium	0. 5		

Zirconium sponge is required to be at least 99.6 percent pure, and hafnium must be 95 percent pure, with a minimum of 99.3 percent hafnium plus zirconium.

These standards have been in effect since April 27, 1956.

U. S. Industrial Chemicals Co. quoted Reactor-grade zirconium platelets at \$7 to \$14 per pound and Commercial-grade platelets at It is not known whether any metal was sold at these prices. On November 14 Carborundum Metals Co. reduced prices to \$7.50 to \$10 per pound for Reactor-grade sponge and \$5 to \$7 for Commercialgrade sponge. The company simultaneously announced prices of \$10.50 to \$12.50 per pound for Reactor-grade zirconium or Zircaloy-2 ingot and \$7.75 to \$9.75 for Commercial-grade ingot.

Prices for powder (flash-grade) and mill shapes closed the year at

\$4 and \$25-\$35 per pound, respectively.

The Electro Metallurgical Co., in a schedule issued December 1, 1957, quoted the following prices for zirconium-bearing ferroalloys:

Zirconium ferrosilicon:	Price per pound of ferroalloy			
12-15 percent Zrcents_ 35-40 percent Zrdo	9.25	to	13.00	
Nickel-zirconium	\$1.80	to	32.75 \$1.90	

FOREIGN TRADE 2

Imports of zircon totaled 41,692 short tons in 1957, an increase of 34 percent over 1956 and about the same proportion of the total supply (imports plus production less exports) as in 1956. Value of imports increased 44 percent to \$1.1 million.

Japan shipped to the United States 93,397 pounds of Reactor-grade zirconium sponge, valued at \$1,043,504, or \$11.17 per pound. was received by the Commodity Credit Corporation on behalf of AEC.

Exports of zircon in 1957 totaled 3,160 tons; 2,729 tons went to Canada, 265 tons to Mexico, 103 tons to South American countries, and 63 tons to other nations. Total value of these shipments was

² Figures on imports and exports compiled by Mae B. Price and Elsie D. Jackson, Division of Foreign Activities, Bureau of Mines, from records of the Bureau of Census, U. S. Department of Commerce.

TABLE 1.—Zirconium ore (concentrate) 1 imported for consumption in the United States, 1948-52 (average) and 1953-57, by countries, in short tons

[Bureau of the Census]

Country	1948-52 (aver- age)	1953	1954	1955	1956	1957
North America: CanadaSouth America: BrazilEurope: United Kingdom	28 2, 060	1, 206	1, 408	1,549	303 331 155	14 <u>1</u> 9
Asia: IndiaOceania: Australia2	56 19, 258	23, 461	17, 249	27, 542	30, 351	41, 659
Total: Short tonsValue	21, 402 \$586, 757	24, 667 \$571, 783	18, 657 3 \$486, 555	29, 091 \$813, 448	31, 140 \$791, 612	41, 692 \$1, 142, 472

¹ Concentrate from Australia is zircon or mixed zircon-rutile-ilmenite, and that from Brazil is baddeleyite

1 Concentrate from Australia is zircon or mixed zircon-rutile-limente, and that noin Brazil is badderly the or zircon. All other imports were zircon.

2 Imports of zircon, rutile, and ilmenite from Australia until early 1948 were largely in the form of mixed concentrate. This mixed concentrate is classified by the Bureau of the Census arbitrarily as "zirconium ore," "grutile," or "dimenite." Total zircon content of the "zirconium ore" (as shown in this table) and of the "grutile" and "ilmenite" concentrate (see Titanium chapter) is estimated as follows: 1949, 14,623 tons; 1950, 15,098 tons; 1951, 24,577 tons; 1952, 21,500 tons; 1953, 22,200 tons; 1954; 16,300 tons; 1955, 27,542 tons; 1956, 30,351 tons; and 1957, 41,659 tons.

3 Owing to changes in tabulating procedures by the Bureau of the Census, data are not comparable with those of other years.

those of other years.

\$315,378, or about \$100 per ton, indicating that most of the exported material was ground and sized zircon, probably for foundry and ceramic uses.

Reexports of 3,290 tons of zircon were shipped to Canada.

Exports of approximately 33 tons of crude metal, alloy, and scrap were distributed as follows: To Canada, 30,304 pounds; France, 14,-861 pounds; Mexico, 7,173 pounds; the United Kingdom, 7,127 pounds; Japan, 4,410 pounds; and other nations, 1,758 pounds. As values per pound ranged from \$0.32 to \$12.91, commodities of widely differing zirconium content probably were included. Total value of these exports was \$359,204.

Semifabricated forms valued at \$24,385 were exported to several

countries; shipments totaled 1,151 pounds.

WORLD REVIEW

NORTH AMERICA

Canada.—Dominion Magnesium, Ltd., continued experimental production of zirconium metal.

SOUTH AMERICA

Brazil.—The Brazilian Government's regulation against exporting any material containing over 0.2 percent HfO2 was still in effect. As most Brazilian zirconium ore exceeds this percentage, little, if any, Brazilian ore entered the United States in 1957.

EUROPE

Sweden.—Experimental quantities of zirconium were produced. United Kingdom.—Associated Lead Manufacturers, Ltd., expanded its facilities for preparing zirconium compounds. Murex, Ltd., produced some zirconium sponge.

India.—Although production of titanium minerals from black sands

continued, zircon was no longer recovered.

Japan.—The Toyo Zirconium Co. made barter contracts with the United States Government to deliver 400,000 pounds of Reactor-grade zirconium at an average price of \$10.50. To the end of 1957, 93,000 pounds had been delivered. Australian zircon concentrate was used. Late in the year a fire seriously disrupted production and shipments.

Taiwan.—A proposal was made to produce titanium and zirconium tetrachlorides, using available excess chlorine, but action probably will be deferred, pending better market conditions.

TABLE 2.—World production of zirconium ore and concentrate, by countries, 1 1948-52 (average) and 1953-57, in short tons ²

[Compiled by Augusta W. Jann and Berenice B. Mitchell]

Country 1	1948-52 (average)	1953	1954	1955	1956	1957
Australia 3	30, 438 3, 709 97 151 6 5	30, 081 3, 409 263 1, 047	45, 830 4, 173 1, 109 1, 012	53, 994 3, 312 126	80, 382 2, 829 402 1, 268	92, 000 5 3, 000 5 400 5 2, 000
Malaya United States	7 26, 985	23, 904	16, 322	28, 110	51 44, 174	(8)

In addition to the countries listed, zirconium was also produced in India; however, production data are not available for publication.
 This table incorporates a number of revisions of data published in previous tables.
 Estimated zircon content of all zircon-bearing concentrate.
 Chiefly baddeleyite.
 Estimate.

One year only, as 1952 was the first year of commercial production.
 Average for 1952-53; previous years not available for publication.
 Figure withheld to avoid disclosing individual company confidential data.

AFRICA

Egypt.—The Société Egyptienne des Produits du Sable Noir-RAMLAH, S. A. E., and the Société Générale d'Ilmenite, S. A. E. (an Egyptian Government corporation), were formed to exploit blacksand deposits in the Nile Delta.3

Nigeria.—Production of zircon concentrate (5 percent HfO2, 3

percent ThO₂) continued, but shipments were suspended.

Union of South Africa. - Anglo-American Corp. purchased the black-sand property at Umgababa, Natal, and did extensive metallurgical testing. The plant machinery was on order and, when installed, was expected to produce 7,000 tons of zircon annually.4

OCEANIA

Australia.—Estimated production of zircon in 1957 exceeded 90,000 tons 5—all from east coast mines. The mines in Western Australia produced titanium minerals, and at the beginning of the last quarter one mine was reported to be about to produce zircon.6 All zircon

Bureau of Mines, Mineral Trade Notes: Vol. 45, No. 4, October 1957, p. 42.
 Bureau of Mines, Mineral Trade Notes: Vol. 45, No. 5, November 1957, p. 17.
 United States Consulate, Pretoria, Union of South Africa, State Department Dispatch 127: Oct. 9, 1957,

pp. 4, 5. E&MJ Metal and Mineral Markets, vol. 28, No. 52, Dec. 26, 1957, p. 4. Mining Magazine (London), vol. 112, No. 2334, May 16, 1957, p. 15.

was exported; about half went to the United States. Most producers shut down during the last half of the year, owing to the reduced overseas demand for rutile and zircon.

WORLD RESERVES

A moderately detailed study gives the estimated reserves as shown in tables 3 and 4.

TABLE 3.—Reserves of zircon in the United States, by States, in short tons of 66 percent ZrO₂ concentrate

State	Thousand short tons	State	Thousand short tons
Florida (operating properties)	5, 920 1, 520 1, 500 1, 275	North Carolina, Georgia, and other Florida properties	352 120 90 10,777

Deposits of zircon in Virginia, Washington, Colorado, Montana, and several other States have not yet been quantitatively examined.

TABLE 4.—World reserves of zirconium mineral, by countries, in short tons of concentrate 1

Country	Concen- trate, thousand short tons	Grade, percent ZrO ₂	Country	Concentrate, thousand short tons	Grade, percent ZrO ₂
United States Australia India and Malaya	10, 777 10, 000 7, 500	66 65 65	BrazilAfrica 3	2, 000 365	70-75 65

¹ Exclusive of the U. S. S. R., data for which are not available.
² Includes Union of South Africa, Egypt, Nigeria, and French West Africa.

Zirconium deposits having commercial potential exist in Western Australia, Canada, eastern Africa, Ceylon, Thailand, Norway, and Sweden.

TECHNOLOGY

Carborundum Metals' new plant at Parkersburg, W. Va., used the Kroll process, with modifications suggested by the company's experience at Akron, N. Y. Wah Chang Corp. also used a standard Kroll process at both their plants; purchased raw ZrCl₄ was the initial material.

The plant built by the U. S. Industrial Chemical Co. at Ashtabula, Ohio, was planned to use metallic sodium as a reductant rather than magnesium. It was thought that the sponge would be contaminated with sodium chloride rather than magnesium chloride and that the chloride could be removed by an aqueous leach, thus eliminating expensive vacuum distillation. This process has not yet proved satisfactory on a plant scale. A drip-melting process was used at the Ashtabula plant. Molten zirconium was dripped onto a spinning

plate, forming disklike platelets, ½ to 1 inch in diameter. Compared with sponge, the platelets are nonpyrophoric, and handling economies are effected thereby; however, it is said that they do not compress into a consumable electrode as well as sponge. During 1957 the company purchased rights to a process developed in Australia by I. E. Newnham, in which hafnium and other impurities are separated from raw ZrCl₄ by disproportionation. This process is cyclical, using reactions between various chlorides of zirconium, and gives promise of reducing the cost of purification. The company has been gradually perfecting operations, and at the end of 1957 it was stated that shipment of Reactor-grade metal was not more than 6 months away.

The Columbia-National operation differs from the original Kroll flowsheet in that (1) the zircon concentrate is fused with caustic soda to form soluble sodium zirconate, and (2) after the sodium zirconate is converted to zirconyl nitrate the hafnium is removed by solvent extraction with tributyl phosphate. The purified zirconyl nitrate is then converted to oxide, chlorinated, and reduced by the standard

Kroll process.

In January Titanium Alloy Mfg. Division of National Lead Co. announced plans to expand its facilities for ground zircon and zirconium oxide. In March Stauffer Chemical Co. announced plans to expand by 40 percent its facilities for preparing ZrCl₄ at Niagara Falls in order to keep pace with demand.

In 1957 research on zirconium and hafnium, based on published papers and patents, centered around alloys. Corrosion, fabrication, improvement of production methods, and analytical chemistry also

were studied.

Data on a silver-cadmium-indium alloy indicated that this alloy may partly replace hafnium as a control-rod material.

⁷ Newnham, I. E., Zirconium for Nuclear Reactors: Research, vol. 10, No. 11, November 1957, pp. 424-428.

Minor Metals

By C. T. Baroch, William R. Barton, Donald E. Eilertsen, Frank L. Fisher,² James Paone,² and H. Austin Tucker²

	Page		Page
Cesium and rubidium	1331	Rhenium	1342
		Selenium	1342
Germanium	1333	Silicon	1344
Indium	1335	Tellurium	1346
Radium	1335	Thallium	1347
Rare-earth minerals and metals	1336		

CESIUM AND RUBIDIUM 4

ESIUM gained attention in 1957 as the ion source for an ionpropulsion rocket motor.

Domestic Production.—Production of pure cesium and rubidium compounds or metals from ore increased severalfold in 1957. Companies reporting production were: American Potash & Chemical Corp., Los Angeles, Calif.; Dow Chemical Co., Midland, Mich.; Fairmont Chemical Co., Inc., Newark, N. J.; Rocky Mountain Research, Inc., Denver, Colo.; and Var-Lac-Oid Chemical Co., New York, N. Y. In addition to metals, the following cesium and rubidium compounds were produced: Acetate, bromide, carbonate, chloride, chromate, dichromate, fluoride, hydroxide, iodide, nitrate, phosphate, sulfate, and disulfate.

A new \$750,000 plant was completed in March by San Antonio Chemicals, San Antonio, Tex., to produce mixed potassium-rubidiumcesium carbonates from alkali-rich end liquors from a lithium hydrox-The product, called ALKARB contained several hundred ide plant. tons of rubidium and cesium. Most of the 1957 output was shipped to glass manufacturers, and minor quantities were converted to pure separated compounds by American Potash & Chemical Corp.

Cesium and rubidium radioisotopes were produced by Union Carbide Nuclear Co. at Oak Ridge National Laboratory, Oak Ridge, Tenn.

Consumption and Uses.—Consumption of cesium and rubidium compounds increased moderately in 1957. Less than 10 tons of pollucite was estimated to have been consumed in manufacturing metals and com-Cesium-rubidium-potassium carbonate was consumed in glass manufacture, where the cesium and rubidium served as a

¹ Chief, Branch of Rare and Precious Metals.
2 Commodity specialist.
2 Unless otherwise noted, figures on imports compiled by Mae B. Price and Elsie D. Jackson, Division of Foreign Activities, Bureau of Mines, from records of the U. S. Department of Commerce, Bureau of Prepared by William R. Barton.

potassium equivalent. Cesium or its compounds were used in photoelectric cells; as scavengers of gases and other undesirable substances in chemical processes; in purifying other metals; in specialty glass, spectrographic instruments, scintillation counters, radio and television tubes, X-ray equipment, microchemical reagents, and catalysts; for medicinal purposes; and in infrared signaling devices. closely resembles cesium and was used for similar purposes.

Prices.—Pollucite ore (25 to 30 percent Cs₂O) was quoted at approximately \$0.50-\$0.84 per pound in 1957. Cesium metal was quoted at \$1.95-\$4.00 per gram and rubidium metal at \$3.25-\$6.00 per gram, depending upon quantity and packaging. Cesium and rubidium compounds ranged in price from \$59 to \$136 per pound until December, when American Potash & Chemical Corp. announced prices ranging from \$13 to \$27.50 per pound. Cesium-137 radioisotope was priced at \$0.10 per millicurie for the first curie, \$25 per curie for 1 to 500 curies, and \$10 for each curie over 500.

World Review.—No pollucite was produced in South-West Africa in 1957. The output in 1956 was 147,300 pounds. Shipments in 1957 totaled 23,895 pounds, all to West Germany. In 1956, 22,220 pounds was shipped to the United States and 2,800 pounds to the United Kingdom.

Technology.—Considerable interest was shown in 1957 on the possibilities of ionic propulsion for space ships, using cesium as a propellent. One system, described in detail, would require a propellent mass of 51.2 tons for a 1-year trip. North American Aviation. Inc., was studying the feasibility of ion rocket engines.⁶

The chemistry of the alkali metals, including cesium and rubidium,

was discussed in detail in a recent book.7

One author reviewed briefly the properties, uses, ores, and metal-

lurgy of cesium.8

A report on methods of converting cesium zinc ferrocyanide to cesium chloride included descriptions and flowsheets for several techniques.9

Procedures were investigated for recovering cesium-137 from

radioactive wastes by leaching.10

GALLIUM 11

Gallium melts in the palm of the hand and remains liquid up to

1.950° C.

Domestic Production.—Three firms produced gallium in 1957: The Aluminum Company of America, East St. Louis, Ill.; The Anaconda Co., Great Falls, Mont.; and the Eagle-Picher Co., Joplin, Mo. Output exceeded that in 1956.

⁵ Stuhlinger, Ernst, Design and Performance Data of Space Ships With Ionic Propulsion Systems: Presented under the auspices of Am. Rocket Soc. at 8th Internat. Astronaut, Cong., Barcelona, Spain, Oct.

North American Aviation, Inc., Prelude to Outer Space: Ann. Rept., 1957, p. 17.
 Suttle, J. F., The Alkali Metals—Comprehensive Inorganic Chemistry: Vol. 6, pt. I, D. Van Nostrand Co., Inc., Princeton, N. J., 1957, 182 pp.
 Strod, Arvid J., Cesium—a New Industrial Metal: Am. Ceram. Soc. Bull., vol. 36, No. 6, June 1957,

pp. 212-213.

⁹ Hepworth, J. L., McClanahan, E. D. Jr., and Moore, R. L., Cesium Packaging Studies—Conversion of Cesium Zinc Ferrocyanide to a Cesium Chloride Product: AEC Hanford Works Rept. 48832, June 5,

¹⁰ Abriss, A., Reilly, J. J., and Tutbill, E. J., Separation of Cesium and Strontium from Calcined Metal Oxides as a Process in Disposal of High-Level Wastes: AEC Brookhaven Nat. Lab. Rept. 453, April 1957, 12 pp.
11 Prepared by Donald E. Eilertsen.

Uses.—Gallium has numerous uses, but they require only small quantities of the metal. The element was used to seal glass joints in vacuum equipment, in backing material for optical mirrors, and in dental and low-melting alloys. Potential uses for gallium arsenide are in high-temperature transistors and in solar batteries.

Prices.—Throughout 1957 E&MJ Metal and Mineral Markets quoted gallium at \$3 per gram in 1,000-gram lots and \$3.25 per gram

in smaller lots.

Technology.—Studies were made on the use of gallium to replace part of the iron in yttrium-iron garnets (YIGS) that are used in place of ferrites in microwave devices. 12

Gallium arsenide was one of many compounds evaluated for use as

a new semiconductor material.13

Data were published on the toxicity, fire and explosion hazards, storage, and handling of many gallium materials.14

GERMANIUM 15

Production of germanium diodes, transistors, and power rectifiers reached an alltime peak in 1957, owing to continuing demand for more semiconductor devices by the electronic and electric industries. Domestic production plus imports appeared ample to fulfill requirements. In general, the price of metal and dioxide decreased. Advances in technology, especially in zone refining and single-crystal growth, enabled manufacturers in 1957 to introduce germanium semiconductor devices for wider use.

Domestic Production.—All primary domestic germanium output was a byproduct of zinc production from the Tri-State district of Missouri-Kentucky-Oklahoma and the Illinois-Kentucky zinc-fluorspar district. Producers were the American Zinc Co. of Illinois, Fairmont City, Ill.; The Eagle-Picher Co., Miami, Okla.; and Sylvania

Electric Products, Inc., Towarda, Pa.

Consumption and Uses.—Based on an estimated world production of 90,000 pounds and assuming that the United States consumed three-fourths of the available supply, domestic consumption of germanium in 1957 approximated 70,000 pounds. Virtually all of this germanium was used in manufacturing semiconductor devices; about 40 million germanium diodes, transistors, and power rectifiers were manufactured in 1957. The largest advance was in the use of germanium in power rectifiers, as many industrial consumers of power adopted the germanium rectifier for converting alternating to direct current.16

The development of tiny germanium transistors as an integral part of printed circuits was announced in November by research scientists

of the United States Army.17

The use of germanium outside the electronic and electrical industries was negligible in 1957. Germanium has a potential use in special

Chemical Engineering News, YIGS Are Hot: Vol. 35, No. 49, Dec. 9, 1957, p. 62.
 Willardson, R. K., New Semiconductor Materials: Battelle Tech. Rev., vol. 6, No. 8, August 1957,

pp. 8-14.

14 Sax, N. Irving, Dangerous Properties of Industrial Materials: Reinhold Pub. Co., New York, N. Y.,
1957, pp. 731-734.

15 Prepared by Frank L. Fisher.
16 Burton, L. W., and Thurell, J. R., Germanium Rectifiers: The Sky's the Limit: Power, vol. 101, No. 7,
101y 1957, pp. 73-76.

17 American Metal Market, Transistors Made by Printed Circuit: Vol. 64, No. 224, Nov. 21, 1957, p. 2.

types of glass. Uses for alloys of germanium have been studied, but

the comparative high price of germanium limits its use.

Prices.—Domestic germanium dioxide was quoted at 27½ cents a gram throughout 1957. The quoted price of foreign dioxide ranged from 24 to 30 cents a gram during the year. The price of germanium decreased on January 3, May 16, and June 6. Quoted prices for foreign germanium are on a delivered basis. Domestic germanium is quoted f. o. b. shipping point. The price basing system for germanium metal was changed on June 6; throughout the rest of the year, quotations, in cents per gram, delivered and f. o. b. shipping point. were as follows:

First re	duction	Intrinsic quality		
1,000-	10,000-	1,000-	10,000-	Pricing point
gram	gram	gram	gram	
lots	lots	lots	lots	
40	38	44½	$45\frac{1}{2}$ $42\frac{1}{2}$	Delivered.
43½	42½	48½		F. o. b. shipping point.

Foreign Trade.—Germanium import data are not available. Exports were negligible. The three major foreign germanium producers were represented in the United States in 1957 by the African Metals Corp., American Metal Climax, Inc., and Harmon, Lichtenstein & Co., all of New York. Virtually all foreign germanium was produced in of New York. Belgium from concentrate from Africa.

World Review.—Belgian Congo.—The Prince Leopold mine of the Union Minière du Haut-Katanga continued to be a major source of germanium recovered as a chemical concentrate from flue dust at the

Kolwezi smelter.

Belgium.—The Olen plant of the Société Générale Métallurgique de Hoboken produced germanium metal and dioxide from chemical concentrate from the Belgian Congo and South-West Africa (on toll). The plant had a capacity of about 75,000 pounds of dioxide (65 percent Ge).

South-West Africa.—The Tsumeb mine in the northern part of the Otavi Mountains produced a germanium concentrate in conjunction with its base-metal operations. Two studies on the geochemistry of the germanium in the deposit were published during the year.18

Technology.—Germanium technology in 1957 centered on zone melting and research and a study of germanium single crystals. Work on the production of germanium from coal in Great Britain was reviewed during the year, 19 and a study was made of the germanium content of coals in Australia.20

There were major technological developments in the production of germanium for use in semiconductor devices in 1957. A paper by

¹³ Frondel, C., and Ito, J., Geochemistry of Germanium in the Oxidized Zone of the Tsumeb Mine, South-West Africa: Am. Mineral., vol. 42, 1957, pp. 743-753.

18 Sclar, G. B., and Geier, B. H., The Paragenetic Relationships of Germanite and Renierite from Tsumeb, South-West Africa: Econ. Geol., vol. 52, No. 6, September-October 1957, pp. 612-631.

NOTE.—Germanium Research Study Group, Germanium From Coal; a Review: Dept. Sc. and Ind. Res., Charles House, 5-11 Regent St., London S. W. 1, April 1957, 26 pp.

29 Pilkington, E. S., A Survey of Some Australian Sources of Germanium: Australian Jour. Appl. Sci. (Melbourne), vol. 8, No. 2, June 1957, pp. 98-111.

Pfann reviewed developments in zone melting since he introduced the technique in 1952.21

Dacey and Thurmond described the technology and theory of

germanium in semiconductors.22

Bureau of Mines research continued in 1957 on the recovery of cadmium, germanium, and lead from zinc concentrate by a continuous volatilization treatment. A report on the titanium-germanium alloy system was published.²³

INDIUM 24

Indium occurs spasmodically in about 50 minerals; some ores,

particularly zinc, contain as much as 0.1 percent indium.

Domestic Production.—The American Smelting & Refining Co., Perth Amboy, N. J. produced indium metal, chloride, and sulfate; and The Anaconda Co., Great Falls, Mont., produced indium metal. More indium was produced in 1957 than in 1956. The Anaconda Co. reported an output of 87,600 troy ounces of indium in 1956.

Uses.—Indium was used to form p-n junctions with germanium in the production of semiconductor devices, such as diodes, transistors, The element also was used in sleeve bearings in airand rectifiers. craft, diesel, and automobile engines; in low-melting alloys for surgical casts and fusible safety plugs or links; in foundry patterns; in gold dental alloys; and as an additive to gasoline.

Potential uses for indium phosphide are in high-temperature transistors and solar batteries and for indium antimonide and indium arsenide in low-temperature transistors, Hall-effect devices, thermis-

tors, and optical devices.

Prices.—Throughout 1957 E&MJ Metal and Mineral Markets

quoted 99.9-percent-pure indium at \$2.25 per troy ounce.

World Review.—Canada—The Dominion Bureau of Statistics, Ottawa, estimated Canada's indium production in 1957 at 385,000 troy ounces valued at \$847,000. Indium production in 1954 had been only 477 troy ounces valued at \$1,278.

Germany, East.—Construction was begun on a plant in Muldenhütten near Freiburg to extract rare metals, including indium and

germanium.25

Technology.—Data were published on toxicity, fire and explosion hazards, storage, and handling of indium materials.26

RADIUM 27

Consumption of radium and radium salts increased in the United States in 1957, and imports were nearly double those in 1956. Important demands for radium came from industry and the medical profession.

²¹ Pfann, W. G., Zone Melting, Metallurgical Reviews: Inst. Metals (London), vol. 2, No. 5, 1957, pp.

Plann, W. G., Zone Fletting, Incoming to Not No. 220-76.

Plann, W. G., Zone Fletting, Incoming to No. 220-76.

Dacey, G. C., and Thurmond, C. D., P-N Junctions in Silicon and Germanium—Principles, Metallurgy, and Applications: Metall. Rev. (London), vol. 2, No. 6, 1957, pp. 157-193.

Peterson, V. C., and Huber, R. W., The Titanium-Germanium System From 0 to 30 Percent Germanium: Bureau of Mines Rept. of Investigations 5365, 1957, 20 pp.
Prepared by Donald E. Ellertsen.

Metal Industry (London), Rare-Metal Plant: Vol. 90, No. 22, May 31, 1957, p. 471.

Sax, N. Irving, Dangerous Properties of Industrial Materials: Reinhold Pub. Co., New York, N. Y., 1967, pp. 780-783.

Prepared by James Paone.

Domestic Production.—No domestic output of radium was reported in 1957. The Canadian Radium & Uranium Corp. refinery at Mount Kisco, N. Y., was maintained primarily for secondary refining of

radium and radium products.

Radium, its derivatives, and related compounds were distributed in the United States by the Canadian Radium & Uranium Corp., New York, N. Y.; Radium Chemical Co., Inc., New York, N. Y., sales representative for Union Minière du Haut Katanga; and United

States Radium Corp., Morristown, N. J.

Consumption and Uses.—Radium and radium salts were used primarily by industry generally and by the nuclear-energy industry in the form of a radium-beryllium mixture (a source of neutrons) and by the medical profession in telecurietherapy to treat cancer by radium's radioactive emissive properties. Radium was also used in industrial radiography for nondestructive testing of materials, in zinc sulfide compounds to make self-activated luminescent paint, and in radium foil, which was used as an ionizing agent in static-elimination equipment.

Prices.—Throughout 1957 the price of radium was quoted by E&MJ Metal and Mineral Markets at \$16 to \$21.50 per milligram of

radium content, dependent on quantity.

Foreign Trade.—Radium salts were imported for consumption in the United States from Union Minière du Haut Katanga, Belgium.

World Review.—The principal producer of radium continued to be Union Minière du Haut Katanga, Brussels, Belgium. Union Minière processed high-grade pitchblende and other radium-bearing materials from its uranium mines in Belgium Congo in the refinery at Oolen, Belgium.

TABLE 1.—Radium salts and radioactive substitutes imported for consumption in the United States, 1948–52 (average) and 1953–57

[Bureau of the Census]

[Date of v	no consus;			
Year	Radium	Val	Radioactive substitutes (value)	
	content, milligrams	Total	Average per gram	
1948-52 (average)	103, 907 85, 055 57. 879 65. 545 43, 221 76, 206	\$1, 687, 951 1, 474, 625 856, 822 974, 982 633, 195 1, 060, 505	\$16, 245 17, 337 14, 804 14, 875 14, 650 13, 916	\$20, 799 169, 762 149, 759 188, 729 12 514, 471 843, 994

Owing to changes in tabulating procedures by the Bureau of the Census, data known to be not comparable with earlier years.
 Revised figure.

RARE-EARTH MINERALS AND METALS 28

Mine shipments of domestic rare-earth concentrates and ores in 1957 were three-fourths greater than in 1956, reversing a downward trend prevalent since 1953. However, the Union of South Africa continued to be the principal source of supply of monazite concentrate. Demand for thorium (produced from the monazite) to fill Government

²⁸ Prepared by C. T. Baroch.

contracts and increasing nonenergy uses of thorium resulted in a continuing surplus of the lighter rare-earth elements.

Domestic Production.-Mine shipments of rare-earth concentrates and ores aggregated about 2,900 short tons containing an estimated 1,385 tons of rare-earth oxides (REO), a 76-percent increase over 1956.

Monazite was produced by Heavy Minerals Co., Clearwater, S. C.; Humphreys Gold Corp., Jacksonville, Fla.; and Porter Bros. Corp., Boise, Idaho.²⁹ Heavy Minerals Co. (a subsidiary of Crane Co., Vitro Corp., and the French Pechiney interests) took over the mining operations of Marine Minerals, Inc., near Aiken, S. C. Porter Bros. Corp.

also produced euxenite concentrate.

The Molybdenum Corp. of America continued to mine bastnaesite at its Mountain Pass (Calif.) property and to produce both a flotation concentrate and a higher grade, leached, rare-earth oxide. Small but increasing quantities of euxenite, yttrofluorite, and gadolinite were produced from several properties in Colorado to supply a growing demand for yttrium and the heavy yttrium subgroup of the rare-earth

The principal processors of rare-earth concentrates were Davison Chemical Co., Pompton Plains, N. J.; Heavy Minerals Co., Chattanooga, Tenn.; Lindsay Chemical Co. and Michigan Chemical Co., St. Louis, Mich.; Molybdenum Corp. of America, Pittsburgh, Pa.; and St. Eloi Corp., Newtown, Ohio. Mallinckrodt Chemical Works, St. Louis, Mo., under subcontract from Porter Bros. Corp., continued to process euxenite concentrate from Idaho. Columbium, thorium, and a rare-earth residue were recovered for the General Services Administration for stockpiling, and the associated uranium went to the Atomic Energy Commission (AEC).

Davison Chemical Co., a subsidiary of W. R. Grace & Co., terminated its contract for processing stockpiled monazite for the AEC at its Curtis Bay (Md.) plant. The company stated that the installation was inadequate to handle the wide variation in quality of monazite in the Government stockpile. Production of individual rare-earth oxides

was continued at the Davison plant, Pompton Plains, N. J.

Heavy Minerals Co. completed a processing plant at Chattanooga, Tenn., and began producing rare-earth oxides, fluorides, and chlorides, in addition to thorium hydroxide. The company planned to expand operations to separate the rare-earth elements, particularly neodymium, praseodymium, samarium, europium, gadolinium, and yttrium salts. Lindsay Chemical Co. also expanded its ion-exchange facilities for separating the individual rare-earth elements. Michigan Chemical Co. announced the production of gadolinium, dysprosium, erbium, and yttrium metals in commercial quantities—the first such announcement in the industry; previously these metals were available only in gram lots for experimental purposes. St. Eloi Corp. announced that it was ready to supply high-purity rare-earth metals and oxides, processed principally from Colorado ores.

Research Chemicals Inc., Burbank, Calif., a subsidiary of Nuclear Corp. of America, Inc., produced purified rare-earth oxides and salts

and experimental quantities of the rare-earth metals.

Rare-earth metals were also produced by Lunex Co., Pleasant Valley, Iowa.

²⁸ See the Titanium and Thorium chapters in this volume.

Production of misch metal was continued by Cerium Metals Corp., Niagara Falls, N. Y.; Mallinckrodt Chemical Works, St. Louis, Mo.; New Process Metals, Inc., Newark, N. J.; General Cerium Corp., Edgewater, N. J.; and American Metallurgical Products Co., Pittsburgh, Pa.

Consumption and Uses.—It is estimated that about 2,000 short tons of rare-earth oxides was consumed in 1957—about the same quantity as in 1956. A slight increase in demand for new uses was offset by a decreased demand for metallurgical uses, caused by smaller

output of iron and steel.

Uses for the unseparated rare-earth elements and those separated only roughly into subgroups accounted for the bulk of the output, but demand for the separated rare-earth materials continued an upward trend. Purified lanthanum and cerium salts were made commercially for many years before 1957, and moderately pure neodymium compounds were available. Until about 1955 other pure rare-earth compounds were produced for experimental use only, and prices were very high. The installation of ion-exchange separation facilities enabled several companies to make pure rare-earth compounds available in reasonable quantities in 1957. Competition resulted in improved techniques, and advertising was beginning to dispell the fallacy that these materials are as scarce as the term "rare earths" would indicate. Production of purified rare-earth metals and compounds probably did not exceed 100,000 pounds, but the value of the output probably was nearly 1 million dollars. Most of the demand was for experimental use, principally by Government agencies (particularly the AEC).

Many new uses were developed in 1957, but none created a demand for large quantities of rare-earth compounds. Among the most important new commercial uses were: (1) Mixed rare-earth compounds for flame-sprayed oxide coatings; (2) samarium, europium, dysprosium, and gadolinium as neutron-control rods in nuclear reactors; and (3) gadolinium, erbium, and yttrium in ferrimagnetic garnets for micro-

wave and other electronic applications.

Late in 1957 a long-range research program at Battelle Memorial Institute was sponsored by seven rare-earth processing companies. The principal objective was to develop uses for rare-earth metals and

compounds.

Prices.—Monazite prices were quoted nominally by E&MJ Metal and Mineral Markets throughout 1957 at the same prices as in 1956: Total rare-earth oxides, including thoria, per pound, c. i. f. U. S. ports, 55-percent grade, massive, 13 cents, and sand, 15 cents, and 68-percent grade material, 20 cents. Prices noted elsewhere ³⁰ for monazite delivered in large contract tonnages averaged about \$250 per net short ton of concentrate containing 45 percent rare-earth oxides and 6 percent ThO₂. Small lots of monazite sand were sold on the basis of their thoria content for prices as low as \$25 per short ton unit of ThO₂ content.

Rare-earth oxide produced from bastnaesite continued to sell at \$1

per pound.

Prices of misch metal ranged from \$3.50 to \$4.00 per pound until May 9, 1957, when Mallinckrodt Chemical Works lowered prices to

³⁶ Kremers, Howard E., Rare Earths: Eng. and Min. Jour., vol. 159, No. 2, February 1957, pp. 145-146.

\$3.15 to \$3.50 per pound, depending on the quantity purchased. New Process Metals, Inc., quoted Metallurgical-grade ferrocerium at \$3.00 per pound and lighter flints at \$7.50 per pound and (together with Cerium Metals Corp.) cerium metal, 98 percent pure, at \$25.00

per pound.

In 1957 producers reduced the prices of individual rare-earth and yttrium oxides 40 to 90 percent below 1956 quotations. The lower prices were attributed to decreased production costs caused by increases in demand, efficiency, and scale of operation. Table 2 lists prices of the better grade oxides, usually 99.9 percent pure, as released by Lindsay Chemical Co. on December 1, 1957. Prices of lower grade oxides, usually 99 percent pure, were about 15 percent lower.

TABLE 2.—Small-lot prices, December 1957, of rare-earth and yttrium oxides

Oxide	Purity, percent	Price per gram (100-gram lots)	Price per pound	Oxide	Purity, percent	Price per gram (100-gram lots)	Price per pound
Lanthanum Cerium Neodymium Praseodymium Samarium Yttrium Gadolinium Dysprosium	99. 99 99. 9+ 99. 9 99. 9 99. 9 99. 9 99. 9	\$0, 20 . 25 . 25 . 40 . 55 . 95	\$10. 50 6. 75 54. 00 60. 00 60. 00 120. 00 162. 00 275. 00	Erbium	99. 9 99. 9 99. 9 99. 8 99. 9 99. 9	\$1.00 1.65 1.00 9.00 5.00 10.00	\$300.00 480.00 300.00 2,700.00 1,500.00 3,000.00

Foreign Trade.—Imports of cerium metal, ferrocerium, and misch metal totaled 8,057 pounds valued at \$27,653. Of this quantity, Austria contributed 56 percent and West Germany 33 percent; Japan, the United Kingdom, and France shipped the balance. Imports of cerium compounds totaled 135,329 pounds valued at \$17,164 and came mostly from India; 200 pounds was received from France.

Monazite concentrate was imported from Union of South Africa. Exports of cerium ores, metals, and alloys totaled 13,270 pounds valued at \$32,792, of which 92 percent went to Canada and the balance to Japan. A total of 3,372 pounds of lighter flints valued at \$23,862 was exported to Canada, Colombia, Mexico, Philippines,

Venezuela, Cuba, and the Canal Zone.

Tariff rates were unchanged. Late in 1957 the London Board of Trade gave notice that it was considering increasing the protective

duty on lighter flints imported into the United Kingdom.

World Review.³¹—Australia.—The Department of External Affairs advised that exportation of monazite, local production of which was relatively small, has been prohibited. Domestic production will be purchased by the Australian Atomic Energy Commission and stockpiled.

Brazil.—Late in 1957 the Brazilian and United Kingdom Governments were reported to be discussing arrangements for exchanging Brazilian monazite for British atomic-energy instruction and training of Brazilian scientists. Brazil has prohibited exportation of monazite since 1951 because of the possible use of thorium as a nuclear fuel.

²¹ See also the Titanium and Thorium chapters in this volume.

Ceylon.—The Ministry of Industries announced expansion and improvement of its beneficiating plant at Kalutara, south of Colombo. In 1957, 134 long tons of monazite was produced. Rutile also was produced, and a new magnetic separator was installed to prepare better grades of both minerals.

Egypt.—The Egyptian Government entered into a participating (20 percent) agreement for the mining, collection, and exploitation

of black sands. 32

India.—A division of the French Pechiney interests, Société de Produits Chemiques des Terres Rares, continued operating a plant at Alwaye, Travancore. In 1946 India placed a strict export embargo on monazite because of its thorium content. The French firm has an agreement to process the monazite, turning the thorium over to the Indian Government and retaining most of the rare-earth compounds

for export.

Union of South Africa.—A recent report describes the events that led to the establishment of and geological data on the monazite mine near Van Rhynsdorp.³³ The property began operating in 1953 and by 1954 had become the largest producer of monazite in the world. Furthermore, it was the only known deposit of monazite in place that was rich enough to be mined economically. The ore occurs in a vein ranging from 1 foot to 5 feet in width. Originally some ore was shipped after being prepared only by hand cobbing; however, a mill was erected in 1953 and the monazite recovered by flotation.

Technology.—Studies of catalytic properties at the Illinois Institute of Technology disclosed that neodymium and samarium oxides are useful for dehydrogenating various alcohols, such as cyclohexane which can be dehydrogenated to benzene at 545° C. At 525° C. these rare-earth oxides dehydrogenate paraffins but not cycloparaffins; thus they are selective catalysts for dehydrogenating paraffins in

natural hydrocarbon mixtures.34

Studies of the fundamental properties of the rare-earth elements continued at the Ames Laboratory, Institute for Atomic Research, Iowa State College. Efforts of one group centered on the electrical resistivities and phase transformations of several rare-earth elements. 35 Another group determined new data on the elastic properties of yttrium and 11 rare-earth elements.36 Details and specifications were given of a method of separating individual rare-earth elements developed at the Ames Laboratory.³⁷ The mixed rare-earth elements are absorbed from solution on a cation-exchange resin. loaded resin is contacted with an aqueous solution of ethylenediamine tetraacetic acid (EDTA). By using insufficient EDTA to complex the rare-earth elements, the heavier rare-earth elements are preferentially complexed and removed. This method can be used to separate

Bureau of Mines, Mineral Trade Notes: Vol. 45, No. 4, October 1957, p. 42.

33 MacConachie, H., Mining Rare Metals in the Namaqualand Desert: Optima (Anglo American Corp. of South Africa, Ltd., Johannesburg, Union of South Africa), vol. 7, No. 2, June 1957, pp. 95-100; Min. Mag. (London), vol. 97, No. 1, July 1957, pp. 53-54.

34 Komarewsky, V. I., Catalytic Properties of Rare Earths: Ind. Eng. Chem., vol. 49, No. 2, February 1957, pp. 264-265.

35 Spedding, F. H., Doane, A. H., and Hermann, K. W., Electrical Resistivities and Phase Transformations of Lanthanum, Cerium, Praseodymium, and Neodymium: Trans. AIME, Jour. Metals, vol. 9, No. 7, July 1957, pp. 895-897.

36 Smith, J. F., Carlson, C. E., and Spedding, F. H., Elastic Properties of Yttrium and Eleven of the Rare Earth Elements: Trans. AIME, Jour. Metals, vol. 9, No. 10, October 1957, pp. 1212-1213.

37 Spedding, Frank H., Wheelwright, Earl J., and Powell, Jack E. (assigned to the United States of America as represented by the Atomic Energy Commission), Method of Separating Rare Earths: U. S. Patent 2,798,789, July 9, 1957.

a mixture of rare-earth elements into fractions that contain virtually

only one element.

A patent was issued on the caustic-treatment method of processing monazite, as incorporated in the Heavy Minerals Co. plant at Chattanooga, Tenn. 38 The finely ground monazite is treated with a strong caustic (NaOH) solution above 55° C. to convert the phosphate of the monazite into soluble sodium phosphate, which can be separated from the residue of insoluble hydroxides of the rare-earth elements and thorium. Then hydroxide residue can be dissolved readily in weak acid and treated to separate thorium from the rare-earth

A process was patented for chemically beneficiating bastnaesite concentrate.³⁹ The ore or concentrate is oxidized above 850° C. in the presence of an alkali reagent, such as soda ash. The rare-earth elements are converted to simple oxides, whereas fluorine and sulfate (from any barite present) are converted to water-soluble alkali compounds that can be removed by leaching. The residue can be beneficated further by acid leaching to remove lime and baryta, yielding a relatively high grade rare-earth oxide product.

An alloy of magnesium containing about 4 percent of rare-earth metals was developed in Switzerland.⁴⁰ A master alloy of rare-earth metals, with zirconium, titanium, hafnium, and another compatible

metal, was patented.41

Research progressed rapidly in 1957 on ferrimagnetic materials made from various rare-earth oxides. These were called ferrites because they contain iron and are magnetic, garnets because they have the typical garnet crystal form, or YIGS for yttrium-iron garnet.⁴² Some favorable types have compositions similar to Y₃Fe₅O₁₂ and are formed by solid-state reaction between the rareearth oxide and iron oxide, heated as high as 1,400° C. gadolinium, erbium, and yttrium offered the most promise. The transparency or direction of transparency of a ferrite to microwave energy can be controlled by a magnetic field. This characteristic can be used in microwave modulators or isolators in radar and other signal systems. Ferrites also transfer microwave energy with exceptionally low loss and are excellent for wave guides in the microwave region. As a result, electronic devices are possible that heretofore were considered unattainable. One such application, termed "Maser" (meaning microwave amplification by stimulated emission of radiation), promises to extend the use of radar and television far beyond the horizon.

A rapid and reliable method of analyzing rare earths, using X-ray emission spectrographic methods, was devised by the Federal Bureau of Mines. 43 An oxide sample may be prepared and completely analyzed in 35 minutes, and 2 persons using an X-ray machine can analyze about 40 samples per day for 7 elements each.

³⁸ de Rohden, Charles, and Peltier, Maurice (assigned to Société de Produits Chemiques des Terres Rares, Parls, France), Treatment of Monazite: U. S. Patent 2,783,125, Feb. 26, 1957.

38 Kasey, John Bryant, Process for Recovering Rare-Earth Oxides: U. S. Patent 2,905,928, Sept. 10, 1957.

48 Lucien, René, and Tetart, Emile (assigned to Société d'Inventions Aeronautiques et Mechaniques S. I. A. M., Fribourg, Switzerland), Alloys of Magnesium and Rare Earths: U. S. Patent 2,801,166, July 30, 1957.

48 Bolkom, Wilbur T., and Knapp, William E. (assigned to American Metallurgical Products Co., Pittsburgh, Pa.), Master Alloys Containing Rare-Earth Metals: U. S. Patent 2,810,640, Oct. 22, 1957.

49 Work cited in footnote 12, p. 3.

40 Lytle, Farrel W., Botsford, James I., and Heller, Henry A., X-Ray Emission Spectrographic Analysis of Bastnaesite Rare Earths: Bureau of Mines Rept. of Investigations 5378, 1957, 16 pp.

Another phase of the Bureau's work, performed under contract for the AEC, Oak Ridge National Laboratory, was described.44 The report outlined briefly gadolinium metallurgy and its application in reactor control rods, including separation of the metal from its oxide and preparation and fabrication of various gadolinium alloys.

A 2-year research program to find new uses for rare-earth metals and compounds was begun at Battelle Memorial Institute, Columbus, Ohio. The study was initiated by Davison Chemical Co., Electro-Metallurgical Co., Heavy Minerals Co., Lindsay Chemical Co., Mallinckrodt Chemical Works, Michigan Chemical Corp., and Molybdenum Corp. of America.

A bibliography of references to September 1954 on thorium and rare-earth deposits was published as a contribution to the bibliography of mineral resources.45

RHENIUM 46

Rhenium is the second highest melting metal and the third highest

melting element.

Domestic Production.—Rhenium was produced by Chase Brass & Copper Co., a subsidiary of Kennecott Copper Corp., Waterbury, Conn., and by the Department of Chemistry, University of Tennessee, Knoxville, Tenn.

Prices.—The University of Tennessee quoted the following prices of rhenium metal: Less than 100 grams, \$2.50 per gram; in lots of

100 or 1,000 grams, \$1.75 per gram.

Uses.—Little is known about uses for rhenium, but the metal has high potential for electrical contacts, electronics, and other high-

temperature applications.

Technology.—The Bureau of Mines continued a project on rhenium sources and recovery methods. Mill and smelter samples were analyzed for rhenium, and methods were explored for extracting the

Data were published on toxicity, fire and explosion hazards, storage, and handling of rhenium materials.47

SELENIUM 48

Selenium production in 1957 exceeded 1 million pounds for the second successive year. The near-record production was accompanied by a sharp drop in consumption, a decline in imports, and a steady

increase in producers' stocks to an alltime high.

Legislation and Government Programs.—Selenium was in group I of the national stockpile List of Critical and Strategic Materials through-The Office of Defense Mobilization included selenium out the year. among minerals eligible for Government financial participation up to 75 percent in Defense Minerals Exploration Administration projects. Domestic Production.—Production of selenium in 1957 totaled

⁴⁴ Leitten, C. F., Jr., Trip to the Bureau of Mines, Albany, Oreg., Regarding Rare-Earth Alloy Development: Rept. on Contract W-7405-eng-28, Nov. 5, 1956, 5 pp.; declassified Mar. 13, 1957; photostatic or microfilm copies available from Office of Technical Services.

45 Buck, Katharine L., Selected Annotated Bibliography of Thorium and Rare-Earth Deposits in the United States, Including Alaska: Geol. Survey Bull. 1019-F, 1957, pp. 517-541.

46 Prepared by Donald E. Ellertsen.

47 Sax, N. Irving, Dangerous Properties of Industrial Materials: Reinhold Pub. Có., New York, N. Y., 1957, pp. 1080-1081.

1,061,000 pounds compared with 1,117,000 pounds in 1956, a decrease of 3.5 percent. The 1957 supply, comprising production plus imports, totaled 1,234,000 pounds—9.3 percent less than in 1956. Approximately 15 percent of the production came from secondary sources, principally burned-out rectifier units and spent catalysts. Most of the primary selenium was produced as a byproduct of electrolytic copper refining. The production data included selenium contained in

lead flue dusts from Mexico.

こうかん あれる こうこうかいか 教になる

The five major selenium-producing companies in 1957 were: American Metal Climax, Inc., Carteret, N. J.; American Smelting and Refining Co., Baltimore, Md.; International Smelting & Refining Co., Perth Amboy, N. J.; Kawecki Chemical Co., Boyertown, Pa.; and Kennecott Copper Corp., Garfield, Utah. All five companies produced commercial-grade metal in 1957. Only American Smelting and Refining Co., Kawecki Chemical Co., and Kennecott Copper Corp. produced high-purity selenium. American Metal Climax, Inc., American Smelting and Refining Co., and Kawecki Chemical Co. were the only producers of ferroselenium and selenium compounds in 1957.

Consumption and Uses.—Apparent domestic consumption ⁴⁹ of selenium decreased from 1,243,000 pounds in 1956 to 789,000 pounds in 1957. The 38-percent drop in consumption caused a sharp increase in producers' stocks. The abnormally high price at the beginning of the year and the sharp inroads of competitive materials into the major consumer outlets were partly responsible for the decreased consumption. Germanium and silicon were substituted for selenium in rectifiers. Tellurium replaced some selenium in the rubber industry, in stainless-steel manufacture, and in other metallurgical uses. Mercury and cadmium were substituted for selenium in the glass and pigment industries.

Manufacture of electronic and electrical equipment, mainly rectifiers, consumed nearly half of the available supply. Other users, in order of importance, were the pigment, glass and ceramic, metallurgical, and pharmaceutical industries. Nickel-selenium and chromium-selenium were introduced into the stainless-steel industry in 1957. Self-adjusting movie cameras with a selenium photoelectric

cell were placed on the market during the year.

Stocks.—Producers' stocks of selenium metal increased 240 percent—from 191,000 pounds at the beginning of 1957 to 651,000 pounds at the end of the year. The continuing high rate of production of selenium as a byproduct of electrolytically refined copper in 1957 and a sharp drop in demand accounted for the large accumulation of stocks of selenium.

Prices.—Commercial-grade selenium was quoted at \$12 a pound effective January 1, 1957. The price decreased to \$10.50 a pound on May 28, 1957, and to \$7.50 a pound on November 18, 1957, where it remained for the rest of the year. High-purity selenium sold for \$3 a pound more than the Commercial grade throughout 1957.

Foreign Trade.—Imports of selenium in 1957 were 172,700 pounds valued at \$1,903,700 compared with 235,000 pounds valued at \$3,452,000 in 1956, a decrease of 36 percent. Imports from Canada totaled

⁴⁹ Producers domestic shipments to consumers plus consumer imports. Exports were negligible.

137,200 pounds in 1957 compared with 227,000 pounds in 1956. Other imports came from Sweden (225 pounds), West Germany (66 pounds), and Japan (10,091 pounds). The Netherlands and Northern Rhodesia exported selenium concentrate to the United States that contained 7,071 pounds of selenium. Imports from Mexico during the last quarter of 1957 totaled 17,211 pounds of selenium contained in selenium-lead flue dust.

World Review.—Canada.—Production of selenium in Canada was 353,000 pounds in 1957 compared with 330,000 pounds in 1956. duction of refined selenium, including scrap, totaled 342,700 pounds in 1957, compared with 355,000 pounds in 1956. In 1957 Canadian exports were 228,100 pounds of selenium valued at Can\$2,739,000 compared with 409,700 pounds valued at Can\$6,343,000 in 1956. Canadian consumption dropped from 31,700 pounds of selenium in 1956 to 15,600 pounds in 1957.50

Finland.—Production of selenium in Finland increased from the 8,370 pounds in 1956 to 9,220 pounds in 1957. Selenium was pro-

duced as a byproduct of copper from Outokumpu Oy at Pori.

Japan.—Japanese production of selenium dropped from 163,000 pounds in 1956 to 156,100 pounds in 1957. The selenium was produced as a byproduct at several copper refineries, a gold refinery, and two ammonia sulfate plants.

Mexico.—In 1957 Mexico produced 176,000 pounds of seleniumbearing byproducts compared with 203,000 pounds in 1956.

of the output came from lead flue dusts.

Peru.—Peru produced 6,870 pounds of selenium in 1957.

Rhodesia.—The copper belt of Northern Rhodesia yielded 25,100 pounds of selenium concentrate in 1957, which averaged 48.5 percent selenium.

Technology.—Selenium technology entered a state of transition in The rapid change from short supply to a sizable surplus resulted in a drop in procurement pressure, and efforts were discontinued to seek selenium from hitherto unobtainable sources. opments in the search for new outlets for selenium, especially highpurity metal, were insufficient in 1957 to warrant publication of the results.

SILICON 51 52

In 1957 the use of high-purity silicon for diodes, rectifiers, transistors, and other solid-state electronic devices continued to expand. It is estimated that twice as much high-purity silicon was made, sold, and used by the electronics industry in 1957 as in 1956. Although germanium and selenium were still the principal commodities employed in semiconductors, increasing quantities of silicon were used.

Domestic Production.—An estimated 20,000 to 30,000 pounds of high-purity silicon was produced in 1957, compared with 10,000 to 20,000 pounds in 1956. In 1957, as in 1956, E. I. duPont de Nemours & Co. Inc., produced at its Newport (Del.) plant most of the high-purity silicon sold to the electronics industry. Three grades of

ob Jones, R. J., Selenium in Canada, 1957, Review 20: Miner. Res. Div., Dept. Mines and Tech. Surveys, Ottawa, Canada, February 1958, 4 pp.

10 Data on lower grades of silicon, such as those used for alloying aluminum and copper and producing silicones and silicon tetrachloride, are included in the Ferroalloys chapter.

10 Prepared by H. Austin Tucker.

high-purity and one grade of slightly lower quality silicon were made.

All were supplied in either needle or densified form.

The Eagle-Picher Co., Miami, Okla., and Texas Instruments, Inc., Dallas, Tex., joined E. I. duPont de Nemours & Co., Inc., and Sylvania Electric Products, Inc., Towanda, Pa., in commercial production of high-purity silicon. Merck Chemical Co. began a \$5-million addition to its Cherokee plant at Danville, Pa., in 1957; International Metalloids, Inc., controlled by W. R. Grace & Co., began constructing a plant at Toa Alta, Puerto Rico; and duPont nearly completed its new plant at Brevard, N. C. These new plants will add an estimated productive capacity of 110,000 pounds of high-purity silicon to the estimated 1957 capacity of 30,000 pounds.

Sylvania Electric Products, Inc., Texas Instruments, Inc., and Westinghouse Electric Co. produced much of the high-purity silicon they used in fabricating electronic devices for commercial equipment. These companies accounted for an estimated 35 percent of the high-

purity silicon produced in 1957.

To illustrate the trend in the trade, duPont introduced three semiconductor grades of high-purity silicon based on boron content in April 1957, and in October it added a resistivity specification to define silicon quality more closely (see table 3).

TABLE 3.—Price and purity data of ultrapure silicon produced commercially in 1957

	Plant location and year started	Price per	Boron level (parts	Resistivity (ohm-cm.)		
Producer	Started		per billion)	P-type	N-type	
E. I. duPont de Nemours & Co., Inc.	Newport, Del.; 1951	\$360 250 160	3 6 11	100 50 25	25 15 5	
Sylvania Electric Products, Inc.	Towanda, Pa.; 1956	359 250	(1)	100 40	40 15	
Texas Instruments, Inc	Dallas, Tex.; 1957	750 400	2123	200 100		
Eagle-Picher Co	Miami, Okla.; 1957	240 360 250	2 5 2 6	10 100 40	10 40 15	

Consumption and Uses .- Domestic consumption of high-purity silicon in 1957 was estimated at 25,000 pounds valued at \$8 million. Nearly 90 percent 53 of this quantity was lost in purification and fabrication, mostly because of imperfect crystal development. Thus, only 2,500 pounds was fabricated into an estimated 3 million transistors, valued at \$40 million, and 13 million diodes and rectifiers, valued at \$35 million. Approximately 8 times as many transistors were made of germanium as of silicon in 1957, compared with 12 times as many in 1956.54 Sales of germanium and silicon transistors in 1957 totaled \$69.7 million, compared with \$37.4 million in 1956.55 The value of sales of silicon semi-conductor devices in 1957 was 18.2

¹ Not yet specified.
² Total impurities; boron level below 1 part per billion.

⁵³ Chemical Engineering, vol. 65, No. 5, Mar. 10, 1958, p. 102.

See footnote 53, p. 104.
 American Metal Market, vol. 65, No. 101, May 24, 1958, p. 1.

percent of that of vacuum tubes, which was reported to be \$384 million for 500 million units.

Prices.—Table 3 56 gives most of the available price and purity data

for high-purity silicon.

Technology.—The key to successful production of high-purity silicon is ability to reduce the boron content as low as possible. The methods used by each producer to remove boron and other impurities from silicon are proprietary. The impurity content is measured indirectly in ohm-centimeters, from which the ratio of impurities to silicon can be calculated. Impurities are measured in parts per billion. After silicon is purified as much as possible, specific quantities of particular impurities are added to make it a better conductor for use in electronic devices, such as diodes, rectifiers, transistors, and solar cells.

An improvement in the chemical refining of silicon reported in 1957 was the use of sodium as a reducing agent.⁵⁷ Sodium reduced the boron content to 2 parts per billion and gave electrical resistivities as

high as 400 to 500 ohm-cm.

The floating-zone method of refining was developed and widely adopted in 1957.⁵⁸ Unlike boat refining, no container touches the rod of silicon being refined. The floating zone exists in the molten state with no side support, as a function of the diameter of the rod and the surface tension and specific gravity of the metal.

TELLURIUM 59

Production of tellurium reached an alltime high in 1957, as demand for the metal continued to increase. The price advantage of tellurium over selenium and the ease with which tellurium can be substituted for selenium accounted for much of the gain in consumption. The use of ferrotellurium in making stainless steels and in the rubber industry were the major outlets.

Domestic Production.—Domestic production of primary tellurium increased 34 percent from 190,700 pounds in 1956 to 254,900 pounds in 1957. Tellurium producers in 1957, as in 1956, were American Smelting & Refining Co., International Smelting & Refining Co., United States Smelting & Refining Co., and American Metal Climax, Inc. Again, most of the tellurium was obtained as a byproduct of

lead and copper refining.

Consumption and Uses.—Total shipments of tellurium increased 19 percent—from 143,700 pounds in 1956 to 170,300 in 1957. Consumption by producers totaled an additional 43,400 pounds in 1957. The rubber and metallurgical industries were the major consumers. The growth in use of tellurium in these industries was due partly to the introduction of safeguards to overcome problems arising from the disagreeable odor and toxicity of tellurium. Tellurium's ease of substitution and price advantage over selenium encouraged larger consumption. In the ferrous metallurgical industry in 1957 tellurium was used for degasifying and improving the machinability of stainless steels, in producing ductile cast iron, and to control the depth of chill in hard-

Chemical Week, vol. 82, No. 3, Jan. 18, 1958, p. 58.
 American Metal Market, vol. 64, No. 136, July 17, 1957, p. 1.
 American Metal Market, vol. 64, No. 149, Aug. 3, 1957, pp. 1-4.
 Prepared by Frank L. Fisher.

chilled iron castings. In the nonferrous metal industry telliurum was alloyed with copper to improve machinability without serious effect upon the conductivity and with lead to improve work-hardening and fatigue resistance. Tellurium was used in the rubber industry as a secondary vulcanizing agent to natural and GR-S (synthetic) rubber to increase the rate of vulcanization and resistance to abrasion and heat and to improve the aging and mechanical properties. Tellurium was also used in photography, medicine, glass, and ceramics. In 1957, tellurium rectifiers and other electronic devices were introduced on an experimental scale, using the tellurides of lead, cadmium, bismuth, and mercury.

Stocks.—Stocks of refined tellurium held by producers in 1957 increased 33 percent—from 125,200 pounds in 1956 to 166,400 in 1957.

Raw-material stocks decreased slightly in 1957.

Prices.—The price of refined tellurium increased from \$1.50-\$1.75 per pound at the beginning of the year to \$1.65 on January 17, 1957. On May 16, the price increased to \$.165 @ \$1.75 and on December 5, 1957, to \$.165-\$1.75 per pound.⁶⁰ Ferrotellurium (50-58 percent tellurium) was quoted at \$2.00 per pound of contained tellurium throughout 1957.

Foreign Trade.—Total imports in 1957 were 2,205 pounds of tellurium compounds valued at \$2,051, all from West Germany. There

were no exports.

World Review.—Canada.—Preliminary estimates of Canadian production of tellurium are 34,500 pounds valued at Can\$63,980 in 1957, compared with 7,867 pounds valued at Can\$13,780 in 1956.61

Technology.—The rubber industry was engaged in extensive research on the use of tellurium in rubber products. Other technologic research was done by the glass, electronic, and metallurgical industries.

Research was conducted on the use of tellurium in thermoelectric

devices.

THALLIUM 62

The quoted price of thallium metal was reduced 40 percent.

Domestic Production.—American Smelting and Refining Co., Denver, Colo., was the only domestic producer of thallium. thallium and thallium compounds were produced in 1957 than in 1956.

Uses.—Thallium was used as a fungicide and rodent and insect poison. Some special glasses contained thallium, and thallium was used to produce thallium-activated sodium-iodide crystals for electronic purposes.

Prices.—American Metal Market quoted the price of thallium at \$12.50 per pound until December 12, 1957, when the price was reduced

to \$7.50 per pound.

Technology.—Data were published 63 on toxicity, fire and explosion

hazards, storage, and handling of many thallium materials.

A 32-pound thallium chloride crystal 6 inches in diameter and 7 feet in length was grown for measuring high-energy electrons for X-rays, and for other experimental uses.64

⁶⁰ E&MJ Metal and Mineral Markets, vol. 28, No. 1-52, 1957.
61 Jones, R. J., Tellurium in Canada, 1957, Review 22: Miner. Res. Div., Dept. Mines and Tech. Surveys,
Ottawa, Canada, 1958, 3 pp.
62 Prepared by Donald E. Ellertsen.
63 Sax, N. Irving, Dangerous Properties of Industrial Materials: Reinhold Pub. Co., New York, N. Y.,
1957, pp. 1173-1173.
64 Journal of the Franklin Institute, Fort Belvoir Labs Grow 32-Pound Crystal: Vol. 264, No. 1, July 1957,
1957, 1957, 1957, 1958.

Minor Nonmetals

By D. O. Kennedy, Albert E. Schreck, H. E. Stipp, James M. Foley

GREENSAND

REENSAND (glauconite) output in 1957 continued to decline. The Kaylorite Corp., Dunkirk, Md., and the Inversand Co., Sewell, N. J., were the only firms that reported production of this mineral commodity. Output came from open pits in Calvert County, Md., and Gloucester County, N. J.

The major part of production was used as a water-softening agent; the remainder was used in soil conditioners as a source of potassium.

Prices for greensand, f. o. b. mine, ranged from \$23 to \$69 per short ton.

TABLE 1.—Greensand marl sold or used by producers in the United States, 1948-52 (average) and 1953-57

Year	Short tons	Value	Year	Short tons	Value
1948-52 (average)	5, 400 6, 821 2, 838	\$283, 127 193, 494 198, 909	1955 1956–57	5, 704 (¹)	\$217, 671 (1)

¹ Figures withheld to avoid disclosing individual company confidential data.

MEERSCHAUM

Meerschaum, the mineral sepiolite, is used chiefly in manufacturing smokers' accessories, such as cigar and cigarette holders and pipe Consumers continued to rely upon foreign sources for their raw-material supplies, as no domestic production of this mineral has been reported since about 1914.

Turkey has been the world's principal supplier of meerschaum for many years; however, production has also been reported in Austria,

Italy, Kenya, Tanganyika, and the Union of South Africa.

Meerschaum was produced in Kenya in 1956 for the first full year and totaled 30 short tons.4

Assistant chief, Branch of Construction and Chemical Materials.
 Commodity specialist.
 Supervisory statistical assistant.
 Bureau of Mines, Mineral Trade Notes: Vol. 45, No. 1, July 1957, p. 34.

Meerschaum was discovered in Tanganyika in 1953 in the Masai district, Northern Province, near the Kenya border.⁵ Production has increased from 2 tons in 1954 to almost 7 short tons in 1956.

Imports into the United States in 1957 decreased when compared with 1956. Turkey was again the major source.

TABLE 2.—Meerschaum imported for consumption in the United States, 1948-52 (average) and 1953-57 1

Year	Pounds	Value	Year	Pounds	Value
1948–52 (average)	8, 047	\$13, 649	1955	5, 102	\$15, 285
1953	8, 568	12, 600	1956	13, 140	2 21, 770
1954	12, 068	26, 357	1957	10, 538	20, 046

1 1948-52: Turkey, 8,039 pounds, \$13,617; Italy, 4 pounds, \$24; Austria, 4 pounds, \$8; 1953: Turkey, 8,168 pounds, \$11,911; Union of South Africa, 400 pounds, \$889; 1954-56: All from Turkey; 1957: Turkey, 10,426 pounds, \$19,649; Union of South Africa, 112 pounds, \$397.

2 Owing to changes in tabulating procedures by the Bureau of the Census, data known to be not com-

parable with years before 1954.

MINERAL WOOL

The output of mineral wool produced from rock, slag, and glass in the United States doubled in total value from 1949 to 1955, according to the Bureau of the Census, and remained at about \$200 million per year through 1957. Statistics on the use of mineral wool are not available for 1957, but the most recent report of the Bureau of the Census gave the following percentages for the broad classifications of its uses: Structural insulation, 56 percent; equipment insulation, 23; industrial insulation, 17; and unspecified 4.

The average number of people employed in the mineral-wool industry has been about 11,000, and the number of production workers has been about 9,000.

Exports of mineral-wool products from the United States were

valued at about \$5 million annually for 1955 through 1957.

The American Rock Wool Corp., which operated eight plants in the United States, installed a new bulk-handling system at its Hudson, N. Y., plant. Substantial savings in costs were reported by company officials. 6

Several patents were issued in 1957 covering types of equipment for manufacturing and cleaning mineral wool.7

⁸ Bureau of Mines, Mineral Trade Notes: Vol. 45, No. 4, October 1957, p. 40.
9 Peck, Roy L., American Rock Wool Bulk System Pays Off in Lower Handling Costs: Pit and Quarry, vol. 49, No. 8, February 1957, pp. 71, 72, 90.
7 Barnett, I. (assigned to Johns-Manville Corp.), Fiber Opener and Cleaner: U. S. Patent 2,789,319, Apr. 23, 1957.
Hills, L. H. (assigned to The Garlock Packing Co.), Mineral Wool Depelletizing Apparatus: U. S. Patent 2,789,694, Apr. 23, 1957.
Stalego, C. J. (assigned to Owens-Corning Fiberglass Corp.), Apparatus for Handling and Processing Materials Having High Fusing Temperatures: U. S. Patent 2,790,019, Apr. 23, 1957.
Richardson, C. D. (assigned to Charles Richardson Corp.), Apparatus for Forming Mineral Wool: U. S. Patent 2,793,395, May 28, 1957.
Hedges, L. M. (assigned to Johns-Manville Corp.), Apparatus for Forming Fibers: U. S. Patent 2,807,048, Sept. 24, 1957.
Baldasarre, E. C., and Gennari, A. P., Mineral Wool Spinning Wheel: U. S. Patent 2,808,616, Oct. 8, 1957.

Baldasarre, E. C., and Gennari, A. P., Mineral Wool Spinning Wheel: U. S. Patent 2,808,616, Oct. 8, 1957. Fisher, E. J., Cleaning Mineral Wool or Rock Wool: U. S. Patent 2,808,929, Oct. 8, 1957. Smout, W. C. P., Process and Apparatus for the Production of Mineral and Slag Wool: U. S. Patent 2.810,158, Oct. 22, 1957.

STAUROLITE

Production of staurolite has increased steadily since 1953 and established a new high in 1957. Staurolite was recovered as a byproduct of ilmenite and rutile production by two companies in 1957; the Humphreys Gold Corp., which operated the Highland and Trail Ridge plants in Clay County, Florida, for E. I. du Pont de Nemours and Co., Inc., and the Marine Minerals Co. of Clearwater, S. C., also recovered staurolite in 1957. The recovered mineral was used as a raw material in the manufacture of portland cement in Florida and for sand blasting.

WOLLASTONITE

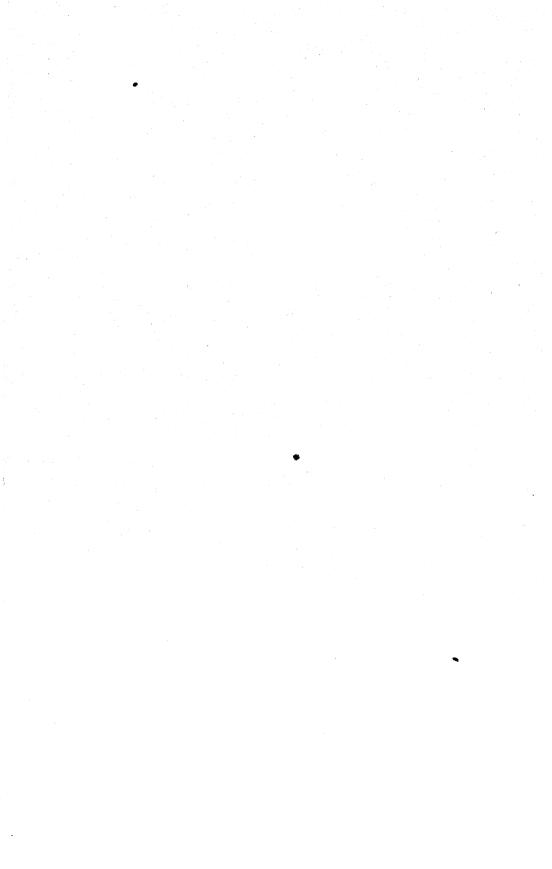
Output of wollastonite increased 41 percent over the preceding year.

The Cabot Carbon Co. continued to produce wollastonite from its

Fox Knoll mine, Essex County, N. Y.

Several firms shipped wollastonite float from talus deposits near Blythe, Riverside County, Calif. This material was used as an interior and exterior ornamental stone, favored largely because of its resemblance to driftwood.

An article describing the wollastonite occurrences in California was published.⁸ The physical properties and uses of this mineral, as well as mining methods and a brief description of the more important California deposits, are discussed. Geologic maps are included in the


article.

Oil, Paint and Drug Reporter quoted the following prices on wollastonite: Fine, bags, carlots, works, \$39.50 per ton; less than carlots, ex warehouse, \$56 per ton; medium, bags, carlots, works, \$27 per ton; less than carlots, ex warehouse, \$44 per ton. These prices have remained unchanged since December 1954.

Wollastonite has found use in the ceramics industry in floor and wall tiles, porcelain fixtures, electrical insulators and frits; in welding-

rod coatings, as a paint extender, and as a filler in asphalt tile.

⁸ Troxel, Bennie W., Wollastonite; Mineral Commodities of California: California Dept. of Nat. Resources, Div. of Mines, Bull. 176, 1957, pp. 693-697.

The index consists of two parts, a commodity index and a world review index. Because nearly all commodity chapters in Minerals Yearbook, volume I, follow a standard outline (Introductory Summary, Domestic Production, Consumption and Uses, Prices (and specifications), Foreign Trade, World Review and Technology), references to such data have been omitted under the various headings.

Readers wanting information on mine production for States, Territories, or possessions should refer to tables in the Statistical Summary chapter, starting on page 69. These tables show the commodities produced in each area, thus guiding the reader to the appropriate commodity chapters. The reader should refer to volume III, however, for complete area information.

Commodity Index

	Page		Page
A brasive Materials chanter	145	Beryl. See Beryllium chapter	257
See also	123	Beryllium chapter	257
See also	1219	Bismuth chapter	265
Agstone 1093	-1095	Black ash	228
Alabaster. See Gypsum chapter	563	Black ashBlack copper. See Copper chapter	417
Alaskite	478	Blanc fixe	231
Alum. See Bauxite chapter	237	Blast-furnace sinter. See Review of Metallur-	
Alumina. See Abrasive Materials chapter	145	gical Technology chapter	41
Bauxite chapter	237	Blast-furnace slag 315	2, 313
Aluminum chapter	165	Bluestone	1081
See Bauxite chapter	237	Blue vitrol	449
Secondary Metals—Nonferrous chapter	1013	Boron and boron compounds chapter	271
Aluminum compounds. See Bauxite chapter.	237	Bort	2-154
Aluminum oxide. See Alumina.		Brass. See Copper chapter	417
Amblygonite. See Lithium chapter	765	Zinc chapter	1281
Ammonia. See Nitrogen Compounds chapter.	897	Brass scrap. See Secondary Metals-Nonfer-	
Ammonium borate. See Boron chapter	271	rous chapter	1013
Ammonium bromide. See Bromine chapter	281	Brimstone. See Sulfur and Pyrites chapter	1113
Ammonium compounds. See Nitrogen Com-		Brine, natural and artificial. See Salt chapter-	979
pounds chapter	897	See also 29	3, 294
Ammonium iodine. See Iodine chapter	577	Bromine chapter	281
Amorphous graphite. See Graphite chapter	551	Bronze. See Copper chapter	417
Amosite. See Asbestos chapter	209	Brown ore. See Iron Ore chapter	583
Amphibole asbestos. See Asbestos chapter	209	Brucite, raw. See Magnesium Compounds	
Andalusite. See Kyanite and Related Miner-		chapter	783
als chapter	687	Burrstones	162
Anthophyllite asbestos	218	Cadmium and cadmium compounds chapter_ Calcareous marl752	285
Anthracite31	3, 314	Calcareous marl	, 1099
Antimony chapter	191	Calcined magnesite. See Magnesium Com-	•
Antimony chapter	1013	nounds chapter	783
Apatite	927	Calcium cyanamide. See Nitrogen Com-	
Aplite. See Feldspar, Nepheline Syenite, and	1	pounds chapter	897
Aplite chapter	477	Calcium and calcium compounds chapter	293
Arsenic chapter	203	Calcium arsenate	204
Asbestos chapter	209	Calcium nitrate. See Nitrogen Compounds	
See also	123	chapter	897
Asphalt	123	Calcium sulfate. See Gypsum.	
Babbitt. See Tin chapter	1157	Carbonate (synthetic)	228
See also	713	Carbonatite	411
Baddeleyite. See Zirconium and Hafnium		Carnotite. See Uranium chapter	1219
chapter	1323	Vanadium chapter	1257
Ball clay. See Clays chapter	363	Cassiterite. See Tin chapter	1157
Barite chapter	223	Celestite. See Strontium chapter	1109
See also	123	Cement chapter	301
Barium and barium compounds. See Barite		See Clays chapter	363
chapter	223	Slag—Iron-Blast-Furnace chapter	1039
Barium sulfate. See Barite chapter	223	Stone chapter	1063
Basalt. See Stone chapter	1063	See also 126, 129, 59	2, 595
Bastnaesite. See Minor Metals chapter	1331	Cement rock. See Cement chapter	301
Bauxite chapter	237	Clays chapter	363
Bentonite. See Clays chapter	363	Ceramics73	4-736

	Page		Pag
Cerium and rare earths. See Minor Metals		Ferrotantalum-columbium. See Columbium	
chapter Cerium oxide	161	and Tantalum chapter Ferroalloys chapter	40 48
Cesium. See Minor Metals chapter	1331	Ferrotellurium 1346	
Chalk	. 1103	Ferrotitanium. See Ferroalloys chapter	48
China clay. See Clays chapter	363 228	Ferrotungsten. See Ferroalloys chapter	48 48
Chloride Chromite. See Chromium chapter	347	Vanadium chapter	125
Chromium and chromium compounds chapter.	347	Ferrozirconium. See Ferroalloys chapter Zirconium and Hafnium chapter	48
See Ferroalloys chapter Chrysotile. See Asbestos chapter	487 209	Fire clay. See Clays chapter.	132 36
Cinder (volcanic). See Pumice chapter	965	Flagstone. See Slate chapter	104
Cinnabar. See Mercury.	040	Fluorine and fluorine compounds. See Flu-	
Clays chapter	363	orspar and Cryolite chapter Fluorspar. See Fluorspar and Cryolite chap-	499
See Employment and Injuries chapter	12, 313	ter	499
Coal. See Review of Mining Technology		See also	123
chapter	47	Forsterite French chalk	377 1138
Cobalt and cobalt compounds chapter	389	Fuller's earth. See Clays chapter	363
See Nickel chapter	879	Gadolinite	1337
See also208, 46	619	Galena. See Lead chapter Gallium. See Minor Metals chapter	691 1331
Columbite. See Columbium and Tantalum	010	Garnet. See Abrasive Materials chapter	145
chapter	403	Gem Stones chapter	517
Columbium. See Columbium and Tantalum chapter	403	Gem Stones chapter Germanium. See Minor Metals chapter	517 1331
Review of Metallurgical Technology chapter	41	Glisonite Glauber's salt. See Sodium and Sodium Com-	53
Concrete. See Cement chapter	301	Glauber's salt. See Sodium and Sodium Com-	1055
Slag—Iron-Blast-Furnace chapter Copper chapter	1039 417	pounds chapter Glauconite. See Minor Nonmetals chapter	1057 1349
See Cobalt chapter	389	Gold chapter	529
Employment and Injuries chapter	119	See Employment and Injuries chapter	119
Gold chapter	529 691	Copper chapterPlatinum-Group Metals chapter	417 931
Lead chapterNickel chapter	879	Silver chapter	1019
Secondary Metals—Nonferrous chapter	1013 1019	Granite. See Stone chapter	1063
Silver chapter Zinc chapter	1281	See also Granules. See Slate chapter	127 1049
See also 203, 86	8, 93 3	Graphite chapter	551
Copper alloys. See Copper chapter	417 481	Gravel. See Sand and Gravel chapter	991
Cornwall stone 14		Greenstone Greenstone Greenstone	1349 1081
Crocidolite. See Asbestos chapter	209	Greenstone Grinding Pebbles. See Abrasive Materials	
Cryolite. See Fluorspar and Cryolite chapter. Crystalline graphite. See Graphite chapter.	499 551	chapterGrindstones. See Abrasive Materials chap-	145
Diamond (gem). See Gem Stones chapter	517	ter	145
Diamond (industrial). See Abrasive Mate-	-,,,,	Gross Almerode clay 363	3, 364
rials chapter Diatomaceous earth. See Diatomite chapter.	145	Guano. See Phosphate Rock chapter	913 563
Diatomite chapter	471	See also	
Dolomite. See Magnesium Compounds chap-	783	Hafnium. See Zirconium and Hafnium chap-	1202
ter Stone chapter	1063	ter Hematite. See Iron Ore chapter	1323 583
Dolomite (dead-burned). See Lime chapter	743	Iron and Steel chapter	613
Magnesium Compounds chapter	783 1063	HönesHübnerite, See Tungsten chapter	162 1203
Stone chapter Dumortierite. See Kyanite and Related	1000	Hydraulic cements. See Cement chapter	301
Minerals chapter Emery. See Abrasive Materials chapter	687	Hydraulic lime. See Cement chapter	301
Emery. See Abrasive Materials chapter Epsom salts. See Magnesium Compounds	145	Hydrogen sulfide Hydroxide	$\frac{1120}{228}$
chapter	783	Ilmenite. See Titanium chapter	1185
Ethylene dibromideEuxenite. See Columbium and Tantalum	282	Indian kyanite. See Kyanite and Related Minerals chapter	687
chanter	403	Indium. See Minor Metals chapter	1331
Feberite. See Tungsten chapter	1203	Iodine and iodine compounds chapter	577
Feldspar. See Feldspar, Nepheline Syenite,	477	Iridium. See Platinum-Group Metals chap- ter	931
and Aplite chapter	123	Iron and Steel chapter	613
See alsoFerroalloys chapter	487	Iron and Steel Scrap chapter	645
See alsoFerroboron. See Boron chapter	661 271	See Employment and Injuries chapter	583 119
Ferroalloys chapter	487	Iron and Steel chapter	645
Ferrochromium. See Chromium chapter	347	See also Iron oxide. See Iron Oxide Pigments chap-	313
Ferroalloys chapterFerrocolumbium. See Columbium and Tan-	487	ter	675
talum chapter	403	Iron Oxide Pigments chapter	675
Ferroallovs chapter	487	Isotopes. See Uranium chapter	1219
Ferromanganese. See Ferroalloys chapter Manganese chapter	487 797	Jewel Bearings chapter Kaolin. See Clays chapter	683 363
Ferromolybdenum. See Ferroalloys chapter.	487	See also	313
Molybdenum chapter Ferronickel. See Ferroalloys chapter	867	Kernite	271
rerronickel. See Ferroalloys chapter	487 879	Kyanite and Related Minerals chapter	687
Nickel chapter Ferrophosphorus. See Ferroalloys chapter Phosphate Rock chapter	487	Langbeinite	950
Phosphate Rock chapter	913	Lanthanum	1339
Ferrosilicon. See Ferroalloys chapter	487	Lapilli	965

Pag	ge		Page
		Nepheline syenite. See Feldspar, Nepheline	
See Conner chanter 4	117	Syenite, and Aplite chapter	477
Employment and Injuries chapter	19	Nickel and nickel compounds chapter	879 389
Lead and Zine Figurents and Zine Saits	729	See Cobalt chapter	417
Secondary Metals-Nonferrous chapter 10	13	Ferroalloys chapter	487
Silver chapter)19	Ferroalloys chapter Secondary Metals—Nonferrous chapter	1013
Zine	281	See also	943
See also 203, 2	268	Nickel alloys. See Nickel chapter	879
Lead and Zinc Pigments and Zinc Salts chap-	729	Niobium. See Columbium and Tantalum chapter	403
	391	Nitrogen Compounds chapter	897
Zinc chapter 12	281	Ocher. See Iron Oxide Pigments chapter	675
Lead, antimonial. See Antimony chapter 1	191	Oil	3, 314
Lood shorter f	691	Oilstone	147
Lead arsenate 204, 7 Lepidolite. See Lithium chapter 7 Leucoxene. See Titanium chapter 11	765	Olivine. See Magnesium Compounds chap- ter	783
Lepidonie. See Litinum chapter 11	185	Orange mineral. See Lead and Zine Pigments	
Lightweight aggregate. See Clays chapter	363	and Zinc Salts chapter	729
Perlite chapter	907	Osmiridium. See Platinum-Group Metals	
Pumice chapter	965	chapter Garage Garage Metals about	931
Slag—Iron-Blast-Furnace chapter10	039	Osmium. See Platinum-Group Metals chap- ter	931
Slage - Front - Flast - Fundage Chapter	743	Oystershell. See Stone chapter	1063
See Stone chapter 10	063	See also 31	2, 313
See also 127, 129, 2	293	Palladium. See Platinum-Group Metals	
Limestone. See Stone chapter10	063	cnapter	931
See also128, 129, 312, 3	313	Paris green Periclase. See Magnesium Compounds chap-	207
Zinc Salts chapter	729	ter	783
Lithium chanter	765	Perlite chapter	907
Lithopone. See Lead and Zinc Pigments and	.	Petalite. See Lithium chapter	765
Zinc Salts chapter	729	Phlogopite. See Mica chapter	841
Barite chapter	223	Phosphate Rock chapter	913
Magnesia. See Magnesium Compounds chap-	783	See also5 Phosphorus. See Phosphate Rock chapter	913
ter Magnesite. See Magnesium Compounds		Pig iron. See Iron and Steel chapter	613
CHADICI	783	Iron and Steel Scrap chapter	645
Mornogium chanter	773	Pinite. See Talc, Soapstone, and Pyrophyllite	1100
See Secondary Metals-Nonferrous chapter 10	013 773	chapterPitchblende. See Uranium chapter	1133 1219
	145	Platinum-Group Metals chapter	931
Magnesium-base scrap	283	Plutonium. See Uranium chapter	1219
Magnesium Compounds chapter	783	Pollucite	1332
Magnetite Nee Iron Ore chanter	583	Portland cement. See Cement chapter	301
See also123, Manganese and Manganese Compounds chap-	390	Lime chapterSlag—Iron-Blast-Furnace chapter	743 1039
ter	783	Potash chapter	949
See Iron Ore chanter	583	See also	123
Iron and Steel chapter	613	Potassium bromide. See Bromine chapter	281
Manganese alloys. See Manganese chapter.	783	Potassium cyanide Potassium iodine. See Iodine chapter	955 577
Ferroalloys chapter Manganese ore. See Iron and Steel chapter	487 613	Potassium nitrate. See Nitrogen Compounds	311
Manganiferous zinc residuum	799	chapter	897
Marble. See Stone chapter1	063	chapterPotasium salts. See Potash chapter	949
Marble. See Stone chapter 128,	129	Powellite Pozzolan cement, See Cement chapter	868
Marl	313	Pulpstones. See Abrasive Materials chapter	301 145
Masonry cement. See Cement chapter Meerschaum. See Minor Nonmetals chap-	301	Pumice chanter	965
ter1	349	Pyrite cinder (sinter). See Iron Ore chapter	583
	821	Pyrites. See Sultur and Pyrites chapter	1113
	281	See also 30	37, 398 411
Mica cnapter	841 123	Pyrochlore Pyrophyllite. See Talc, Soapstone, and Pyro-	411
	841	pnymite chapter	1133
See also1	.064	Quartz. See Abrasive Materials chapter	145
See also Millstones. See Abrasive Materials chapter	145	Stone chapter	1063
Mineral black. See from Oxide Figurents	075	See alsoQuartz Crystal (Electronic Grade) chapter	. 123 973
chapter Mineral pigments. See Lead and Zinc Pig-	675	Quartzite. See Stone chapter	1063
ments and Zinc Salts chapter	729	Quicklime. See Lime chapter	743
Iron Oxide Pigments chapter	675	Quicksilver. See Mercury chapter	821
Titanium chapter I	185	Radioisotopes. See Uranium chapter	1219
Mineral wool. See Minor Nonmetals chapter.	349	Radium. See Minor Metals chapter Rare-earth metals and compounds. See Minor	1331
Minor Metals chapter 1 Misch metal. See Minor Metals chapter 1	331 331	Metals chapter	1331
Molybdenite. See Molybdenum chapter	867	Red lead. See Litharge.	
Molybdenum and molybdenum compounds	l	Refractories. See Clays chapter	363
chanter	867	Review of Metallurgical Technology chapter	41
Monazite. See Minor Metals chapter	331 145	Review of the Mineral Industries chapter Review of Mining Technology chapter	47
	884	Rhenium. See Minor Metals chapter	1331
Mullite, See Kvanite and Related Minerals		Rhodium. See Platinum-Group Metals chap-	
chapter	687	ter	931
Muriate. See Potash chapter	949	Rock salt. See Salt chapter	979 1063
Muscovite. See Mica chapter	841 314	Roofing granules. See Stone chapter	146
14strat Rep 019	312		

	Page		Page
Rubidium. See Minor Metals chapter	1331	Stoneware clay. See Clays chapter Strontianite. See Strontium chapter	363
Ruby. See Gem Stones chapter	517	Strontianite. See Strontium chapter	. 1109
Jewel Bearings chapter Ruthenium. See Platinum-Group Metals	683	Strontium chapter————————————————————————————————————	. 1109
chanter	931	Sulfur. See Sulfur and Pyrites chapter	. 228
Rutile. See Titanium chapter	1185		
Sait chapter	979	Sulfur dioxide. See Sulfur and Pyrites chap-	•
See Sodium and Sodium Compounds chap-		Sulfuric acid. See Sulfur and Pyrites chapter	1113
ter See also	123	Sulfur mud	. 1113 . 676
Samarium 133	7-1339	Sylvinite. See potash.	
Sand and Gravel chapter	991	Sylvite. See Potash.	
Sand and sandstone (ground). See Abrasive	313	Synthetic cryolite. See Fluorspar and Cryo-	
Materials chapter	145	Taconite. See Iron Ore chapter	499 583
Sand, industrial. See Sand and Gravel chap-		Talc. See Talc, Soapstone, and Pyrophyllite	
		chapter	1133
Sandstone. See Stone chapter 128, 129, 1	1063	Tale, Soapstone, and Pyrophyllite chapter	1133
Sapphire. See Gem Stones chapter	517	See also Tantalite. See Columbium and Tantalum	123
Jewel Bearings chapter	683	chapter	403
Scheelite. See Tungsten chapter	1203	Tantalum. See Columbium and Tantalum	
Scoria. See Pumice chapter	965	chapter	403
Sea water	281	Thorium chapter	1145 1331
nor Metals chapter	1331	Tellurium. See Minor Metals chapter Terneplate. See Tin chapter	1157
Sericite. See Mica chapter	841	See also	670
Talc, Soapstone, and Pyrophyllite chapter.	1133	Terrazzo	1093
Serpentine 89 Shale, See Clays chapter 89	4, 1064	Thallium. See Minor Metals chapter	1331
Shale. See Clays chapter Stone chapter	1063	Thorite. See Thorium chapter.	1145 1145
Sharpening stones. See Abrasive Materials	1000	Thorium chapter	1157
chapter	145	See Secondary Metals—Nonferrous chapter.	1013
Sienna. See Iron Oxide Pigments chapter	675	l Titanium chapter	1185
Silica. See Sand and Gravel chapter	991	See Ferroalloys chapter Titanium dioxide pigments. See Titanium	487
See alsoSilicomanganese. See Manganese chapter	53, 313 797	chapter see Titanium	1105
Silicon. See Minor Metals chapter	1331	Chapter Traprock. See Stone chapter	1185 1063
See also	45	See also	
Silicon carbide. See Abrasive Materials chap-		Travertine	1103
ter	145	Tripoli. See Abrasive Materials chapter	145
Sillimanite. See Kyanite. Silspar	478	Trona. See Sodium and Sodium Compounds	1057
Silver chapter	1019	Tube-mill liners. See Abrasive Materials	1007
See Copper chapter	417	chapter	145
Employment and Injuries chapter	119	Chapter Tungsten chapter	1203
Gold chapter	529 691	See Ferroalloys chapter	487
Lead chapter	1281	See also Ulexite. See Boron.	868
Silvery pig iron. See Ferroalloys chapter	487	Umber. See Iron Oxide Pigments chapter	675
Sinter. See Iron Ore chapter	583	Uranium chapter	1219
See also	624	See Review of Metallurgical Technology	
Slag—Iron-Blast-Furnace chapter	1039 301	chapter Vanadium chapter	41 1257
Slag-lime cement. See Cement chapter	1040	Vandyke brown. See Iron Oxide Pigments	1207
See also12	28, 129	chapter	675
See also. 12 Silp clay. See Clays chapter. 12 Silp clay. See Clays chapter. 12 Lite chapter. 12 Lite chapter. 12	363	Venetian red. See Iron Oxide Pigments	
Soapstone. See Talc, Soapstone, and Pyrophyl-	1100	chapter	675
See also	1064	Vermiculite chapter Volcanic cinder. See Pumice chapter	1267 965
Soda ash. See Sodium and Sodium Com-		Water chapter	1275
pounds chapter	1057	White lead. See Lead and Zinc Pigments and	
See also 98	0-982	Zinc Salts chapter	729
Sodium aluminate. See Bauxite chapter	237	wniting	1093
Sodium and Sodium Compounds chapter	1057 207	Witherite. See Barite chapter. Wolframite. See Tungsten chapter.	$\frac{223}{1203}$
Sodium bromide. See Bromine chapter	281	Wollastonite. See Minor Nonmetals chap-	1200
Sodium bromide. See Bromine chapter	577	ter	1349
sodium nitrate. See Nitrogen Compounds		Wolman salts	204
chapter S. Managanasa shantan	897	Wonderstone	1143
Spiegeleisen. See Manganese chapter Spodumene. See Lithium chapter	797 765	Yttrium	-1339
Steatite. See Talc, Soapstone, and Pyrophyl-	.00	Zinc chapter	1281
lite chapter	1133	See Employment and Injuries chapter	119
Steel. See Iron and Steel chapter	613	Copper chapter	417 529
Iron Ore chapter	583 797	Gold chapter Lead chapter	691
Review of Metallurgical Technology chap-	191	Lead and Zinc Pigments and Zinc Salts	
ter	41	chapter	729
Tungsten chapter	1203	Silver enapter	1019
Steel scrap. See Iron and Steel Scrap chapter	645	Zircon. See Zirconium and Hafnium chapter.	1323
Stibnite. See Antimony.	1063	Zirconium. See Zirconium and Hafnium	1323
/ UUII	TOOO .	VII. O V V V V V V V V V V V V V V V V V V	1040

World Review Index

Page	Page
Aden: Salt 987	Australia—Continued
Afghanistan: 261	Arsenic 207 Asbestos 217
Beryl	Barite 232, 234
Salt 987	Bauxite 249, 255
Talc, soapstone, and pyrophyllite 1139, 1140	Beryl
Albania:	Codmium 291
Cement 336 Chromium 357	Cement 337, 342
Algeria:	Chromium357
Antimony 200	Cobalt 397 Columbium and tantalum 410, 411
Barite 232	Copper 451, 452, 464, 465
Cement 337 Copper 451	Corundum 150
Diatomite 473, 474	Diamond
Gypsum 574	Feldspar 482
Iron ore 607 Lead 716, 723	Feldspar 482 Fluorspar 511
VIERCITY	Gem stones 525 Gold 545, 547
Phosphate rock 925, 928	Graphite 556
Pyrites	Gyngum 573 574
Salt	Iron ore
Stone 1082	Iron and steel
Tungsten1213	Lime 759
Zinc 1310, 1318 Appaur Island: Phosphate rock 925	Magnesite 791, 795
Angaur Island: Phosphate rock 925 Angola:	Manganese ore
Coment 337, 341	Mica
Copper 451, 452	Monazite 1339
Diamond 151, 524	Nitrogen compounds 902
Gold 546 Gypsum 574	Phosphate rock 925, 927, 928
Manganese ore 811	Phosphate rock
Mica	Pyrites 1127, 1131
Nitrogen compounds 905 Salt 988	Salt988
Vanadium 1264	
Zinc 1310	Thorium 1152
Argentina:	Thorium 1152 Tin 1171, 1172, 1180, 1181 Titanium 1195–1197
Antimony 200 Asbestos 217	Titanium 1193-1197 Tungsten 1213, 1215, 1216
Barite	Uranium 1250
Beryl 262	Vermiculite 1270
Bismuth 268 Boron 276	Zinc
Cement336	Austria:
Columbium and tantalum 410	
Corundum 150 Diatomite 474	Antimony 200 Barite 232
Feldspar 482	Bauxite 248
Fluorspar 511, 512	Cadmium291
Gold 546 Graphite 556	Clays 336
Graphite	Clays379 Copper451, 452
Iron ore 606	Diatomite 474
Iron and steel 632, 633	Feldspar 482
Iron oxide pigments 681 Lead 715, 717, 720	Graphite
Manganese ore 810	Iron ore 606
Mica	Iron and steel
Pumice 970 Salt 986	Lead 715, 717, 721 Magnesite 790-793
Silver1034	Mercury 832
Strontium1111	Mica 860
Sulfur1126 Tale, soapstone, and pyrophyllite1140	Molybdenum 874
Tin 1171. 1172	Nitrogen compounds 902, 903 Pumice 970
Tin	Pyrites 1127
Uranium 1238	Salt987
Vanadium 1264 Vermiculite 1270	Silver 1035 Stone 1105
Vermiculite 1270 Zinc 1310, 1311, 1314, 1315	Stone 1105 Talc, soapstone, and pyrophyllite 1139-1141
Australia:	171ngsten 1213, 1214
Aluminum 182 Antimony 200	Uranium 1240 Zine 1310, 1311, 1315
Antimony	
	1957

	Page		Pa	ag
Bahamas:		Brazil—Continued		-
SaltStone	986 1105	Manganese ore		81 86
Bechuanaland:	1100	Nickel 88		
Asbestos	217	Monazite	1	133
GoldSilver	546 1035	Nitrogen compounds	24	90
Belgian Congo:		Pyrites	٠ <u>٠</u> ,	$11\overline{2}$
Aluminum.	187	PyritesQuartz crystal		97
BismuthCadmium	268 291	SaltSilver	1	98
Cement	337	Talc, soapstone, and pyrophyllite	î	14
Cobalt	97-399 30 461	Thorium	- 1	115
Diamond	524	Tin 1171		117
Germanium	1334	Tungsten	3, 1	21
Gypsum Lead	574 716	Uranium 1238 Zirconium 1327	3, 1	.23
Lime	758	British Borneo: Sarawak: Phosphate rock		92
Manganese ore	811	British Guiana:		
Salt	945	Bauxite 24 Columbium and tantalum		25. 410
Silver	1035	Diamond	:	15
Uranium	1249	Gold Mongonese ore		546 813
Zinc	, 1010	Manganese ore Uranium		239
Beryl	262	British Somaliland:		
Columbium and tantalum Diamond	410 151	Beryl		26: 17:
Gold	546	Tin British West Indies: Lime		750
Tin 1171, 1172		Bulgaria:		041
TungstenBelgium:	1213	Asbestos Cement		21′3 330
Arsenic	207	Iron ore	٠ (600
CadmiumCement	291 336	Iron and steel 63		
Fluorspar	511	Lead 715, 71 Manganese ore		810
Germanium	1334	Salt	- 9	98
Iron ore Iron and steel 68	606	Zine 1311 Burma:	, 1	310
Lead	717	Antimony		200
LimeNitrogen compounds	758	Cement		337
Phosphate rock	902 925	Gold Iron ore		546 607
Tin	1172	Lead 716, 71	7,	722
Uranium 1240 Zinc 1311	1315	Manganese ore		81(
Belgium-Luxembourg:	, 1010	Salt	1	987
Antimony	199	Silver		03
SeleniumBolivia:	1386	Tin		$\frac{171}{21!}$
Antimony 19		Uranium	1:	248
AsbestosBismuth.	217 268	Zinc1310 Cambodia: Gold	, 13	317 546
Cement	336	Canada:	١	010
Columbium and tantalum	410 451	Aluminum 18		
Fluorspar	511	AntimonyArsenic		$\frac{200}{207}$
Gold	546	Asbestos 21	6-2	218
Lead 71 Mercury 71	5, 720 832	Barite23 Bauxite23		233 249
Nickel	888	Bismuth 26	8, 5	269
Silver 1034 Sulfur		Cadmium	0. 2	291
Tin1171	1126 -1174	Calcium and calcium compounds 29 Cement 335, 33	6.	298 338
Tungsten 1213	, 1214	Chromium 35	7, 3	358
Zinc1310 Borneo:	, 1315	Clays		
Bauxite	254	Columbium and tantalum 40	9,	410
Diamond	151	Copper 45	1-4	456
Aluminum	2. 184	Diatomite47 Feldspar and nepheline syenite482, 48	3, 4 3, 4	179 48:
Arsenic	207	Fluorspar 51	0−!	512
AsbestosBarite	217 232	Gem stones		523
Bauxite	248	Gold 54 Graphite 54	ე−; !	556
Beryl	262	Gypsum 57	2, 8	573
Cement 33	o, 339 357	Indium Iron ore 60	18 1-6	ბან ჩია
Chromium 41	0, 411	Iron ore 60 Iron and steel 63 Lead 715, 71	ž-6	634
Diamond	151	Lead	7-7	719
Feldspar 51	$\frac{482}{1,512}$	Lime	7	108 769
Gold	546	Magnesium 77	8, 7	779
Graphite 55	6, 557 573	Magnesite Manganese ore		791 810
Iron ore 60	6,608	Mica 86	n_5	262
Iron and steel 63	2, 633	Molybdenum 87	4, 8	875
Lead	1, 120 0, 791	Molybdenum 87 Nickel 88 Nitrogen compounds	გ–გ ე	891 902

Page	Page
Canada—Continued	Colombia—Continued
Perlite 910	Nitrogen compounds 903
Phosphate rock 924	Platinum-group metals 944, 945 Salt 986
Platinum-group metals 943–945 Potash 959, 960	Salt 986 Silver 1034
Salt986	Sulfur 1126
Sand and gravel 1010	Uranium 1239
Selenium 1344	Costa Rica: Cement 338
Silver 1034, 1036 Sodium and sodium compounds 1061	Diatomite 473, 474
Stone 1082, 1104, 1105	Gold
Strontium	Manganese ore 811
Sulfur and pyrites 1125, 1127 Tale, soapstone, and pyrophyllite 1139-1141	Salt 986 Silver 1034
Tale, soapstone, and pyrophymie 1139-1141 Tellurium 1347	Cuba:
Thorium	Barite 232, 233
Tin 1171, 1172	Cement
Titanium 1196, 1197 Tungsten 1212, 1213	Cobalt398
Uranium 1234–1237	Copper451
Vermiculite1269	Diamond523
Zinc 1310-1313	Gold 546 Gypsum 573
Zirconium 1327 Canary Islands: Salt 988	Iron ore 606
Cape Verde Islands: Salt	Lead 715
Ceylon:	Manganese ore 810-812
Cement 337 Graphite 556, 557	Nickel 888, 891, 892 Pyrites 1127
Gypsum574	Salt 986
Mica 860	Silver1034
Monazite 1340	Uranium 1239 Zinc 1310
Nitrogen compounds 902 Salt 987	Cyprus:
Thorium 1152	Asbestos
Titanium1197	Chromium 357, 358 Copper 451, 459
Chile: Asbestos	Gypsum
Barite 232	Iron oxide pigments 681
Boron276	Magnesite 790
Cement 336 Copper 451, 452, 456, 457	Pyrites 1127 Salt 987
Diatomite 474	Czechoslovakia:
Feldspar 482	Aluminum 182
Gold546	Antimony 200 Cement 336
Gypsum 573 Iodine 579	Graphite 556
Iron ore 606	Iron ore 606
Iron and steel 632-633	Iron and steel 632, 633
Lead	Lead 715, 717 Magnesite 790, 791
Mercury 832	Mercury 832
Molybdenum 874, 875	Salt987
Nitrogen compounds 902, 903 Phosphate rock 925	Silver
Potash 960	Uranium 1241
Salt 986	Zinc
Silver 1034	Denmark; Cement
Sulfur 1126, 1129 Talc, soapstone, and pyrophyllite 1140	Diatomite474
Uranium 1239	Iron and steel 632, 633
Zinc	Nitrogen compounds 902 Salt 988
China: Aluminum	Uranium 1241
Antimony 199, 200	Dominican Republic:
Bismuth 268	Bauxite 249 Cement 336
Cement 337 Copper 451, 452	Gold 546
Gold	Gypsum573
Gypsum574	Iron ore 606
Iron ore 607	Nickel 892 Salt 986
Iron and steel	Ecuador:
Magnesium 779	C
Mercury 832	Copper 451
Nitrogen compounds 904 Phosphate rock 925	Gold
Salt 987	Salt
Silver 1035	Silver 1034
Tin1171, 1172	Sulfur 1126
Tungsten 1213, 1215 Uranium 1248	Uranium 1239 Egypt:
Zinc	Asbestos217
Zinc. 1311 Christmas Island: Phosphate rock. 925, 928	Barite
Colombia: Barite 232	Cement 337
Cement 336, 339	Chromium 357 Diatomite 474
Gold	Fluorspar 513
Gypsum 573	Gold
Iron ore 606 Iron and steel 632, 633	Graphite 556, 557 Gypsum 574
Mercury 832	Iron ore 607

Egypt—Continued	Fage
Lead716	France—Continued Uranium 1241, 1242
Magnesite 791	Uranium 1241, 1242 Zinc 1310, 1311, 1315
Manganese ore 811.815	French Cameroon:
Nitrogen compounds 902 Phosphate rock 925, 926	Aluminum 182
Phosphate rock 925, 926	Gold
Pumice 970 Salt 988	Tin 1171
Gtaal egg	Titanium 1196 French Africa:
Talc, soapstone, and pyrophyllite 1140	Aluminum 187, 188
11631111111 1190	Bauxite254, 255
Tungsten 1213	Bauxite 254, 255 French Equatorial Africa:
Vermiculite 1270	Columbium and tantalum 410
Zine 1310 Zirconium 1328	Diamond 151
Eire: Pyrites 1129	Gold 547 Lead 716, 723
Eritrea:	Manganese ore 816
Feldspar 482	Phosphate rock 926
Gold	Potash
Potash 960	Salt 988
Salt	Titanium 1196
Ethiopia: Cement	Zinc
Gold 546	Columbium and tantalum 410
Platinum-group metals 945	Gold 546
Salt988	Iron ore 607
Fiji Islands:	French Somaliland: Salt 988, 989
Bauxite 255	French West Africa:
Gold 547 Manganese ore 811	Aluminum 187, 188
Silver 1035	Bauxite
Finland:	Cement 337 Copper 451
Asbestos 217	Copper 451 Diamond 151, 524
Cement 336	Gold
Cobalt398	Manganese ore 816
Copper 451, 452	Phosphate rock 925, 926
Diatomite 474 Feldspar 482	Salt 988 Tin 1171
Gold 546	Tin
Gypsum574	Gambia: Titanium 1196
Iron ore 606	Germany, East:
Iron and steel 632, 633	Aluminum 182
Lead 715	Barite 232
Nickel 888, 892 Nitrogen compounds 902	Cement 336 Copper 451, 452
Pyrites 1127	Fluorspar 511
Selenium 1344	Indium 1335
Cilvon 1025	Iron ore 606
Talc, soapstone, and pyrophyllite 1140	Iron and steel
Titanium 1190-1198	Lead 715, 717
Tungsten 1213 Uranium 1241	Nitrogen compounds 902 Potash 960, 961
Vanadium 1264	Pyrites1127
Zinc	Pyrites
France:	Tin1171, 1172
Aluminum 182, 184	Uranium
Antimony 200	Germany, West: Aluminum182, 184, 185
Arsenic 207	Aluminum 182, 184, 185
Asbestos217	Arsenic
Barite 232 Bauxite 248, 252	Bauxite 248, 252, 253
Bismuth 268, 269	Cadmium 291
Boron 276	Cement
Bromine 283	Clays 381, 382
Cadmium 291	Cobalt 398
Cement 336	Columbium and tantalum 410
Copper	Copper
Feldspar 482	Feldspar 482
Fluorspar	Fluorspar 511-513
Gold	Gold 546, 548
Gynsum 574	Graphite 556
Iron ore606, 609	Gypsum 574
Iron and steel 632, 633 Iron and steel scrap 671	Iron ore
Lead	Iron and steel scrap 671, 672
Magnesium 779	Iron and steel scrap 671, 672 Lead 715, 717, 721
Manganese ore 813	Magnesium 779
Nickel 892	Magnesite790
Nitrogen compounds 902, 903	Nitrogen compounds 902-904
Phognhata rook 925	Phosphate rock 924 Potash 960–962
Potash 960, 961 Pumice 970	Potash 960–962 Pumice 970
Salt 987	Salt 987
0:1 1025	Gilver 103
Sulfur and pyrites 1126, 1127, 1129 Tale, soapstone, and pyrophyllite 1140-1142	Silver 1033 Silver 1037 Sulfur and pyrites 1127, 1127 Talc, soapstone, and pyrophyllite 1147
Talc, soapstone, and pyrophyllite 1140-1142	Talc, soapstone, and pyrophyllite 1140
Thorium 1151	Tin 1173 Uranium 1243
Thorium	Uranium 1243 Zinc 1310, 131
1 11 12 SIMIL 1210, 1214	1010, 101.

	Page	Pa	ıge
Ghana:	249	India—Continued Columbium and tantalum	411
Bauxite Diamond	151	Copper451,	452
Gold	547	Corundum.	TOO
Manganese ore 81	11,816	Diamond	151
Salt	988		482
Silver	1035		523 546
Greece:			556
Aluminum	185		574
Antimony	200 207	Iron ore 607,	
Arsenic 2		Iron and steel 632, 633,	636
Barite	32 234	Iron oxide pigments	681
Bauxite 2	48, 253	V venite 689.	690
Cement	336	T.ood 716.717.	722
Chromium.	357	Magnesite 190.	190
Gold	546		
Gvpsum	574	M10a 800, 802,	900
Iron ore	606	Monazite1	340
Iron and steel	633	Nitrogen compounds 902,	925
Lead 7	15, 717		127
Magnesite 790, 7	95, 794	Pyrites1 Salt987,	988
Manganese ore 8	10, 810	Silver1	035
Nickel 888, 8 Nitrogen compounds 888, 8	902		061
Pumice9		Stone	105
Salt	987	Talc, soapstone, and pyrophyllite1	140
Silver	1035	Thorium	152
Steel	633	Titanium1	196
Sulfur and pyrites 112	6 1127	Tungsten 1	213
Talc. soapstone, and pyrophyllite	1140		248
Uranium	1243	Vermiculite 1 Zinc 1310, 1317, 1	270
Zinc	1310		1328
Greenland:	F1 F	Indonesia:	.020
Cryolite	515	Bauxite	254
Lead	0 1313	Cement 337,	340
Guatemala:	0, 1010	Gold	546
Antimony	200	Manganese ore 810, 814,	815
Cadmium	291		902
Cement3	36, 338		925
Chromium	357		987
Diatomite	474	Tin 1171, 1172, 1	.170
Gem stones	523	Iran: Antimony	200
Gold	546	Arsenic	207
Gypsum	573 606	Asbestos	217
Iron ore6		Cement 337,	340
Lead 715, 7	17 719	Chromium 35%.	358
Salt	986	Gem stones	523
Silver	1034	Gypsum	574
Zinc	0, 1313	I Iron ore	607
Haiti:		Iron oxide pigments	681
Bauxite	49, 250	Lead 716,	810
Salt	986		888
Honduras:	338	Salt	987
Cement	546	Zinc1	1310
GoldLead	715	Iraq:	
Mercury	832	Cement 337,	340
Salt.		Gypsum	574
Silver	1034	Nitrogen compounds	904
Zinc	1310	Salt	987
Hong Kong:			1061
Cement	337		1248
Clays	382	Ireland: Barite 232,	92/
Graphite	556	Barite 232, Cement	336
Iron ore	607 716	Gypsum	574
Lead		Tron and steel	633
MolybdenumTungsten	1213	Lead715,	721
	1210	Zinc	1310
Hungary: Aluminum	182	Tsrael:	
Bauxite		Bromine	283
Cement	336	Cement	337
Copper		Clays	382
Iron ore	606	Diamond	524
Iron and steel 6	32, 633	Gypsum	574
Manganese ore	810	Nitrogen compounds	905
Silver	1035	Phosphate rock 925,	920
Iceland: Pumice	970	Potash960,	987
India:	00.10=	Salt	1240
Aluminum 1	82, 187	Italian Somaliland: Salt	988
AsbestosBarite	217 232	Italy:	
BauxiteBauxite_	249	Aluminum 182,	18
Bervl	262	Antimony	200
Cement3		Arsenic	207
Chromium 3	57, 358	Asbestos 217,	218
Clays	382	Barite	232

Lago	Page
Italy—Continued	Kenya—Continued
Bauxite 248	
Boron	
Cadmium 291	Feldspar 482
Cement 336, 339	Gold 547
Copper 451, 452	
Diatomite 474	Gypsum 574
Feldspar 482	Kyanite 690
Fluorspar 511, 513	Magnesite 791
Gold 546	Mica 860
Graphite 556	Pumice 970
Gypsum 574	Salt 988
Iodine 580	Silver 1035
Iron ore 606	Sodium and sodium compounds 1061
Iron and steel	Talc, soapstone, and pyrophyllite 1140
Iron oxide pigments 681	Vermiculite1270
Lead 715, 717	Korea:
Magnesium 779	North:
Magnesite 790	Aluminum 182
Manganese ore	Cement 337, 341
Mercury 832, 833	Copper 452
Mica 860	Gold
Molybdenum 875	Iron and steel 632, 633
Nitrogen compounds 902	Lead
Potash	Tungsten 1213
Pumice	Republic of:
Salt	Asbestos 217
Silver1035	Barite 232
Strontium 1111	Beryl 262
Sulfur and pyrites 1196 1197 1190	Rismuth 000 000
Sulfur and pyrites1126, 1127, 1129 Talc, soapstone and pyrophyllite1140, 1142	Bismuth 268, 269 Cement 337, 341
Tungsten	
Uranium 1243, 1244	Copper 451
Zinc	Diatomite 474
Jamaica:	Fluorspar 511, 513
Bauxite 248, 250	Gold 546
Cement 336, 338	Graphite
Gypsum572, 573	Iron ore 607
	Iron and steel 633
Phosphate rock 925 Japan:	Lead 716, 717
Aluminum 182, 187	Magnesite 790
	Manganese ore 810
	Molybdenum 874
	Nitrogen compounds 902
	Pyrites
	Salt 987
Bismuth	Silver 1035
Cadmium 291 Cement 337, 340	Talc, soapstone, and pyrophyllite 1140
	Thorium 1152
Chromium 357	Tungsten 1213, 1215
Copper 451, 452	Uranium 1249
Feldspar 482	Zinc1310
Fluorspar 511	Laos: Tin 1171, 1172
Gem stones	Lebanon:
Gold 546	Cement 337
Graphite 556	Iron ore 607
Gypsum 574	Salt987
Iodine580	Leeward Islands: Salt
Iron ore607, 610 Iron and steel632, 633, 636, 637	Liberia:
Trop and steel 032, 033, 030, 037	Diamond 524
Iron and steel scrap	Gold 547
Lead 716, 717, 722	_ Iron ore 607, 610
Magnesium 779	Libya: Salt 988
Manganese ore 810	Luxembourg:
Mercury 832	Cement 336
Molybdenum 874-876	Gypsum 574
Nickel 893	Iron ore 606
Nitrogen compounds 902, 905	Iron and steel 632, 633
Platinum-group metals 945	Uranium 1244
Potash	See also Belgium-Luxembourg.
Salt987	Madagascar:
Selenium1344	Asbestos 217
Silver 1035	Beryl
Sulfur and pyrites	Cement 337
Talc, soapstone, and pyrophyllite 1140	Columbium and tantalum 410 Corundum 150
Tin 1171, 1172	Corundum. 150
'11tanium 1196, 1198	Feldspar 482
Tungsten 1912	Gold 547
Uranium 1249	Graphite 556, 558
Uranium 1249 Zinc 1310, 1311, 1318	Mica
Zirconium 1328	Phosphate rock 925
fordan:	Quartz crystal 976
Coment	Thorium 1152
Phosphate rock 925, 926	Zirconium 1328
Potash 964	Makatea Island: Phosphate rock 925, 928, 929
Salt	
Uranium 1249	Malaya:
Kenya:	Bauxite 249, 254
Asbestos 217	Cement 337, 341 Columbium and tantalum 410
Beryl	Commodum and tantalum 410
Cement 337, 342	Corundum 150
001, 042	Gold

Pag	e _I Page
Malaya—Continued	Netherlands—Continued
Iron ore607, 61 Tin1171, 1172, 1176–117	0 1 1111
Titanium 1196, 119	9 Zinc
Tungsten 121	3 Netherlands Antilles:
Zirconium	6 I Hospitato rock
Mauritius: Salt 98	8 New Caledonia:
Mexico:	Chromium 357 0 Gypsum 574
Antimony 199, 20 Arsenic 207, 20	
Barita 23	2 Mongonese ore 811
Bismuth 268, 26	
Cadmium 29 Cement 33	6 Cold 547
Cohalt 39	7 Platinum-group metals 945
Copper 451, 46 Fluorspar 511, 5	Silver1055
Gem stones 52	New Zealand: Antimony
Gold 54	Arsenic 207
Graphite 556, 55	Ol Achostos 217
Iron and steel 632, 63	O Distamite 474
Lead 715,717,71	9 Gold 547
Manganese ore 810, 8 Mercury 832, 8	2 Magnesite 791, 795
Molyhdeniim87	4 Dhambata mask 027 029
Nitrogen compounds 90	C. Platinum-group metals 945
Phosphate rock 9: Salt 9:	2 Pilmice 970
Selenium 13	1035
Silver 1034, 103	?' Thorium 1152, 1153
Strontium11 Sulfur1126, 11:	Tungsten 1213
Tin1171, 117	2 Clamani
Tungsten 12	3 Micaragua.
Uranium 1237, 12: Zine 1310, 1311, 1313, 13:	Gold 546
Antimony2	0
Aspestos	Columbium and tantalum 410
Bervl 2	52 Gold 547
Cement3	
Cobalt 397, 3 Copper 451, 4	52 Silver 1035
Fluorspar 5	11 Thorium 1152
Gold	7 Tin
	74 Zine 1310
Iron ore 6	07 Zirconium 1328
	81 Norway: 23 Aluminum 182, 185, 186
Lead	16 Cadmium 291
Mica 8	60 Cement 336
	88 Columbium and tantalum 410 25 Copper 451, 45
Phosphate rock 9 Pyrites 11	27 Feldspar 482
Salt9	88 Fluorspar 511
Silver 10 Strontlum 11	
Strontlum11 Tin1171,11	72 Iron and steel 632, 633
Tungsten 12	13 Lead 713
Vermiculite	
Mozambique:	Magnesite 790
Asbestos 2	17 Manganese ore
	49 Mica 866 62 Molybdenum 874, 876
Bismuth 2	68 Nickel 893
Cement 337, 3	42 Nitrogen compounds 90
Columbiam and tantaraments	10 Pyrites 1127, 1136 50 Silver 1038
	47 Stone
Graphite5	Talc, soapstone, and pyrophyllite 1140, 1142, 114
	60 Titanium 119688 Tungsten 121
Silver10	35 Uranium 1244, 1245
Tin11	71 Zinc 1310, 1311, 1310
Uranium 12	49 Ocean Island: Phosphate rock 92
Nauru Island: Phosphate rock 9 Netherlands:	25 Pakistan: Bauxite
Cadmium	91 Cement 337, 34
Cement 336, 3 Iron and steel 632, 6	39 Chromium
Iron and steel 632, 6	33 Columbium and tantalum
Lead 7 Magnesia 7	
Magnesia 7 Nitrogen compounds 902, 9	04 Mica 86
Salt	87 Salt 98 61 Stone 108
Domini and Someth Compounds	VI . MANTA TANK

	Page	P	ag
Pakistan—Continued		Portugal—Continued	-
Strontium	1111	Beryl	26
Uranium	1249	Cement	33
Panama:		Chromium	35
Bauxite	250	Columbium and tantalum	41
Cement	336	Copper	45
Gold	546	Diatomite	47
Manganese ore	810	Feldspar	48
Salt	986	Gold	54
SilverPapua:	1034	Gypsum	57
Gold		Iron ore	60
Manganaga ara	547	Lead	, 71
Manganese ore Platinum-group metals	811	Manganese ore 810,	81
Paraguay:	945	Molybdenum Nitrogen compounds 902,	87
Cement	336	Nitrogen compounds	90
Talc, soapstone, and pyrophyllite	1140	Pyrites1	112
Peru:	1140	Salt	98
Antimony	200	Silver1	103
Arsenic	207	Talc, soapstone, and pyrophyllite1 Tin1171, 1172, 1	140
Barite	2 233		119
Bismuth 26	8. 269	Tungsten 1213, 1	191
Cadmium	201	Uranium 1	24
Cement 33	6. 339	Portuguese India:	.271
Clave	200	Tron ore	607
Copper451, 452, 45	7, 458	Manganese ore 810,	81
Diatomite	474	Salt	987
Feldspar	482	Rhodesia and Nyasaland, Federation of:	201
Gold	546	Antimony	200
Gypsum	573	Arsenic	207
Iron ore 60		Asbestos 217,	
Iron and steel scrap	671	Barite	232
Iron oxide pigments	681	Beryl	262
Lead 715, 71		Cadmium	291
Lime	758	Cement 337,	342
Manganese ore 810		Chromium 357, Cobalt 397,	359
Mercury Molybdenum	832	Cobalt 397,	399
Nitrogen compounds 90	874	Columbium and tantalum 410,	411
Phosphate rock		Copper 451, 452, 461-	
Salt	925 986		150
Selenium	1344		482
Silver1034,	1037	Fluorspar 524,	511
Sulfur	1126		547
Sulfur Tale, soapstone, and pyrophyllite	1140		607
Tin 1171.	1172	Iron and steel 632,	633
Tungsten 1213.	1214	Lead 716, 717,	723
Uranium	1240	Lime	759
Vanadium	1264		768
Zine1310, 1311,	1315		791
Philippines:		Manganese ore 811, 8	816
Barite	232	Mica	861
Cement 33	7,341	Molybdenum	876
Chromium 35	, 358	Nickel 888, Phosphate rock 888,	893
Copper 451, 456 Gold 546	, 400	Phosphate rock	
Gypsum	574	Pyrites1	127
Iron ore	607		344
Iron and steel	633	Silver 10)35
Lead	716	Stone 11 Tin 1171, 1172, 11	105
Lime	758		
Manganese ore 810	, 815	Uranium 1249, 12	213 250
Mercury	2.834	Vanadium 19	264
Nitrogen compounds 902	905	Vermiculite	270
Phosphate rock	925	Vermiculite 12 Zinc 1310, 1311, 1318, 13	:10
Salt	987	Rumania:	.10
Silver	1035	Aluminum	182
Sulfur and pyrites1126,		Bauxite 2	248
Zinc	1310	Cement	336
Poland:	1	Iron ore	306
Aluminum	182	Iron and steel 632, 6	33
Bauxite	253	Lead	$^{\prime 17}$
Cadmium	291	Manganese ore 810, 8	313
Cement	336	Salt	987
Copper451			35
Gypsum	574	Uranium 12	45
Iron ore632	1 659	Zinc	311
Lead715	717	Ryukyu Islands:	10=
Potash	962		87
Salt	987	Saar:	26
	1035		36
Sulfur and pyrites1127,		Iron and steel 632, 6	33
	1245	Salvador:	
Zinc1310, 1311,			36
Portugal:		Gold	46
Antimony	200	Lead 7	15
Arsenic	207	Salt	86
Asbestos	217	Silver 10	
Barite	232	Sarawak: Gold	40

Page	
Saudi Arabia: Gold546	Swaziland: Asbestos
Gold 546 Silver 1035	
Senegal: Titanium 1196	Columbium and tantalum 410
Seychelles Islands: Phosphate rock 925	Gold 547 Silver 1036
Sierra Leone: Chromium357	1
Columbium and tantalum 410	Sweden:
Diamond	Aluminum 183
Gold	
Iron ore 607 Molybdenum 876	
Platinum-group metals 945	Cement 336
Solomon Islands: Phosphate rock 929	Columbium and tantalum
South-West Africa:	Distamite 47/
Beryl	Feldspar 482
Cadmium 291	Fluorspar
Columbium and tantalum 410	Crombite EEG EEG EEG
Copper	Iron ore 607, 609
Diamond	Tood 715 717 791
Fluorspar 511, 513	' Time 756
Germanium 1334 Gold 547	Mica 860
Graphite	Molybdenum 872
Lead 716, 723	Phosphata rook 025
Lime	Silver 103/
Manganese ore	
Mica 861	
Phosphate rock 92: Salt 988	1 Thomas 1946 1946
Silver1038	Vanadium 1264
Tin 1171	Zinc
Tungsten 1213	Switzerland:
Uranium 1250 Vanadium 1264	Alummum
Zine	Boron 276 Cement 336
Spain:	Gypeum 574
Aluminum 182, 186 Antimony 200	
Arsenic 207	Magnesium 770
Asbestos 217	Nitrogen compounds 909
Barite 232 Bauxite 248	Salt 987
Bismuth 268, 269	Svria
Cadmium 291 Cement 336, 339	Cement
Columbium and tantalum 410	1 Gypsum 0/3
Copper 451, 452	Salt 985
Diatomite 474	Taiwan:
Feldspar 482 Fluorspar 511	Alummum
Gold	Ranvite 240
Graphite 556	Cement 337, 341
Gypsum 574 Iron ore 600	1 CODDEL 401, 402
Iron and steel 632, 633	Granhita 556
Lead 715, 717	Gypsum 574
Magnesite 790 Manganese ore 810	1 11011 3110 51661
Mercury	Mice 966
Mica 860	Nitrogen compounds 902
Nitrogen compounds 902, 904 Phosphate rock 925	
Potash 960, 963	Sulfur and porites 1126 1127
Pumice	Talc, soapstone, and pyrophyllite
Salt	Zirconium1328
Sulfur and pyrites 1126, 1127 Talc, soapstone, and pyrophyllite 1140	Tanganyika: Columbium and tantalum411
Talc, soapstone, and pyrophyllite 1140	Copper 451
Tin	
Tungsten 1213	'i (}ranhite 556.550
Uranium 1245 Zinc 1310, 1311, 1316	Gypsum573, 574
Zinc 1310, 1311, 1316 Sudan:	Lead 716, 723
Gold	Lime
Gypsum 574	Mica
Manganese ore	Salt988, 989
Sait Surinam:	Silver
Aluminum 184	Tungsten 1213
Bauxite 248, 251, 252	
Beryl 262 Columbium and tantalum 411	! Theiland.
Diamond	Antimony 200
Gold	Cement

Pa	ige		P	age
Thailand—Continued		Union of South Africa—Continued		
	574 607	Magnesite Manganese ore	791,	795
Iron and steel 632,	633	Mica	861.	863
Lead	716	Monazite]	134 0
	810	Nickel	888,	893
Salt	987	Nitrogen compounds Phosphate rock	902,	905
	196	Platinum-group metals	920,	046
Tungsten 1213, 1	215	Pyrites		1127
Uranium1	249	Salt		988
Zinc 1	310	Silver	1	1035
	336	Stone Talc, soapstone, and pyrophyllite	_ 1082, 1	105
Tunisia: Barite	232	Taic, soapstone, and pyrophymite	_ 1140, 1	145
	337	Thorium Tin	1171 1	172
Fluorspar	511	Titanium	1196, 1	199
	574	Tungatan		213
Iron ore	607	Uranium Vonedium]	250
Lead 716, 717, 7	723 832	Vanadium Vermiculite	1	264
Phosphate rock 925,	027	Zirconium	1210, 1	328
Pyrites1	127	U. S. S. R.:		
Salt	988	Aluminum		
	035	Asbestos		217
Zinc 1310, 13	319	Barite Bauxite	040	232
Turkey: Antimony	200	Boron		276
	217	Cadmium		291
Boron	276 l	Cement.		336
Cement 337, Chromium 357,	341	Chromium		357
Chromium357,	359	Columbium and tantalum		411
Copper451,	452 511	Copper Diamond	151	40Z
	607	Fluorspar		511
Iron and steel 632, 633, 6		Gold		546
Lead	716	Graphite		556
	790	Gypsum	572,	574
Manganese ore 810, 8	815 332	Iron ore	007, 632 6 33	625
	876	Lead	715. 717.	722
Salt	987	Lithium		768
Salt	131	Magnesium		779
Zinc	310 J	Manganese ore		
	986	Mercury Nitrogen compounds		832 904
Uganda: Asbestos	217	Phosphate rock.	924.	925
	262	Platinum-group metals		945
Bismuth	268	Potash		960
Cement 337,	342	Salt		987
Cobalt & Columbium and tantalum 410, 4	399	SilverTin	1	$035 \\ 172$
Copper452,	454	Tungsten	1213. 1	$\tilde{2}1\tilde{5}$
Gold	547	Tungsten Uranium Zinc 131	_ 1246, 1	247
Lead	716		0, 1311, 1	317
	759	United Kingdom:	100	100
Mica 8 Phosphate rock 925,	861	Aluminum	182,	186 199
Salt	988	AntimonyBarite	232	
	035	Beryllium		261
Stone 11	105	Bismuth		269
	171	Boron		276
	213	Cadmium	290,	291 298
Union of South Africa: Antimony	I	Calcium and calcium compounds Cement	336	
Arsenic	207	Columbium and tantalum		411
Asbestos 217-2		Copper	458,	459
Barite 232, 2	234	Diatomite		474
	262	Fluorspar	511,	513
	268	Graphîte Gypsum	579	559 574
Cement 337, 3	360	Iodine	012,	580
Chromium 357, Columbium and tantalum 357,	410	Iron ore		607
Copper 451, 452, 4	464	Iron and steel	632,	633
Corundum	150	Lead	716, 717,	722
Diamond 151,	525	Lime Magnesite		758 793
	474 482	Magnesium		779
Fluorspar 511.5		Mercury	834.	835
Diamond	525 I	Mercury Nitrogen compounds	902,	904
Gold 547-5	549	Potash		963
Granhite	5561	Pyrites		127
Gypsum573,	307	SaltSilver		987 1035
Iron orde pigments 632, 6	333	Slate		055
Iron oxide pigments	81	Strontium		111
Kvanite	ן טעכ	Strontium Talc, soapstone, and pyrophyllite	1	140
Lead 716, 7	723	Thorium		151
Lime7	759	Tin	2, 1174, 1 1199, 1	200

Page	Page
Inited Kingdom—Continued	Uruguay:
Tungsten	Cement336
Uranium 1247, 1248	Feldspar 482
Vanadium 1263	Mica860 Talc, soapstone, and pyrophyllite1140
Zinc	Talc, soapstone, and pyrophyllite 1140
Zirconium1327	Venezuela:
Inited States:	Asbestos 217
Aluminum182	Cement
Antimony 200	Diamond 151, 523
Arsenic207	Gold 546
Asbestos	Gypsum 573
Barite232	Iron ore 606, 608, 609
Bauxite 248	Magnesite 790
Beryl 262	Manganese ore
Bismuth 268	Phosphate rock 924, 925
Cadmium291	Pyrites 1127
Cement	Salt 986
Chromium357	Sodium and sodium compounds 1061
Cobalt 397	Steel 634
Columbium and tantalum 410	Uranium 1240
Copper 451, 452	Viet-Nam:
Diatomite 474	Cement337
Feldspar 482	Salt 987
Fluorspar 511	Yemen: Salt 987
Gold (incl. Alaska) 546	Yugoslavia:
Graphite 556	Aluminum 182, 186, 187
Gypsum 573	Antimony 199, 200
Iron ore 606	Asbestos
Iron and steel 632, 633	Barite232
Lead 715, 716	Bauxite 248, 253, 254
Magnesite 790	Bismuth 268, 270
Magnesium 779	Cement 336
Manganese ore 810	Chromium357
Mercury 832	Copper 451, 452, 459
Mica 860	Diatomite 474
Molybdenum 874	Gold
Nickel 888	Graphite556
Nitrogen compounds 902	Gypsum574
Phosphate rock 925	Iron ore607
Platinum-group metals945	Iron and steel 632, 633
Potash	Lead 716, 717, 722
Pumice970	Magnesite 790
Salt986	Manganese ore 810
Silver1034	Mercury 832, 835
Strontium 1111	Molybdenum 874
Sulfur and pyrites1126, 1127	Nitrogen compounds 902, 904
Tale, soapstone, and pyrophyllite 1140	
Tin1171, 1172	Pyrites1127
Titanium 1196	Salt987
Tungsten	Silver 1035
Vanadium 1264 Vermiculite 1270	Talc, soapstone, and pyrophyllite 1140
	Tungsten1213
Zinc	Zinc1310, 1311, 1317
ZHCOHUH 1940	21110 1010, 1011, 1011

