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Categorical Enumerative Invariants of Elliptic Curves

Yunfan He

Abstract

Categorical enumerative invariants (CEI) constitute a specific class of invariants associated
with a smooth, proper, and cyclic A8-algebra and a splitting of its non-commutative
Hodge filtration. It is conjectured that they encompass all currently known enumerative
invariants in both symplectic and complex geometry.

Each project in this thesis is centered around the exploration of CEI, with a particular
focus on elliptic curves.

The first project concerns a conjecture regarding the Taylor expansion of the j-function
around the hexagonal and square points.

In the second project we address a crucial property of Gromov-Witten invariants: the
holomorphic anomaly equation. In this project, we demonstrate that, under certain mod-
ularity assumptions, this equation is also satisfied by CEI invariants.

The third project studies the degeneration of the Hodge to de Rham spectral sequence
of the nodal cubic curve. Within this project we classify all liftable Hochschild classes.
This classification is important in the computation of the p2, 1q-CEI invariant of the nodal
cubic curve.
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Chapter 1

Introduction

1.1 Descendent Gromov-Witten invariants

1.1.1. The genus g Gromov-Witten invariants of a smooth symplectic manifold X̌ are

numerical invariants constructed via the moduli space/stack Mg,npX̌, βq of stable maps

into X̌. In essence, they are designed to count the “number” of pseudo-holomorphic curves

intersecting n chosen submanifolds within X̌.

These invariants are defined by constructing the moduli spaceMg,npX̌, βq, parameterizing

stable maps f from curves C of genus g with n marked points p1, . . . , pn to X̌, satisfying

f˚rCs “ β P H2pX̌q:

Mg,npX̌, βq “
␣

f : pC, p1, . . . , pnq Ñ X̌
(

.

This space naturally maps via a forgetful map π to Mg,n which forgets the map f ; it also

maps via evaluation maps evi to X, sending f to fppiq:

Mg,npX̌, βq X

Mg,n

evi

π
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Next one can construct a virtual fundamental class rMg,npX̌, βqsvir P H˚pMg,npX̌, βqq

for this moduli space and compute integrals on it. Specifically, one defines the genus g

descendent Gromov-Witten invariant by the formula:

xτk1pγ1q . . . τknpγnqyX̌,βg,n :“

ż

rMg,npX̌,βqsvir

n
ź

i“1

ev˚
i pγiq ¨ π˚pψkii q P Q.

Here, γi P H˚pX̌,Λq represent cohomology classes, and ψi P H2pMg,nq denote cotangent

line classes, where Λ is an appropriate Novikov field.

1.1.2. We begin by introducing some notations to facilitate the packaging of the afore-

mentioned invariants into a single invariant.

Let u be a formal variable of homological degree ´2, utilized for tracking ψ-class insertions.

We denote H´, H`, and HTate as the graded vector spaces

H´ “ Hru´1s, H` “ Hrruss, HTate “ Hppuqq,

associated to the graded vector space H “ H˚pX̌,Λq. We define the residue pairing

x´,´yres : HTate bHTate Ñ Λ as follows:

xx ¨ uk, y ¨ ulyres “

$

’

’

&

’

’

%

p´1qlxx, yyPoincare if k ` l “ 0

0 otherwise.

For a fixed pair pg, nq, the descendant invariants mentioned earlier are consolidated into

a single invariant F X̌g,n P SymnpH´q defined by the requirement:

xF X̌g,n, pγ1u
k1q ¨ ¨ ¨ pγnu

knqyres “

8
ÿ

d“0

xτk1pγ1q . . . τknpγnqyX̌,dg,n .

Additionally, we sometimes employ the notation:

F X̌g,npγ1u
k1 , . . . , γnu

knq :“ xF X̌g,n, pγ1u
k1q ¨ ¨ ¨ pγnu

knqyres
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to represent the pairing with insertions.

1.1.3. One noteworthy feature of Gromov-Witten invariants is their characterization as

(real) symplectic deformation invariants. This means that although a specific almost

complex structure is required for their computation, the outcome remains independent of

this choice. Moreover, these invariants establish a link to algebraic geometry through the

concept of mirror symmetry.

1.2 Mirror symmetry

The initial formulation of enumerative mirror symmetry, as proposed in [COGP91], intro-

duced a groundbreaking conjecture. It conjectured that the genus-zero Gromov-Witten

invariants of a quintic threefold X̌ could be determined by solving a differential equation

linked to the variation of Hodge structure associated with another space known as the

mirror quintic X. Subsequently physicists discovered additional mirror pairs pX, X̌q, all

of which exhibited similar connections between the genus-zero Gromov-Witten invariants

of X̌ and the variation of Hodge structure of X. Notably, these connections relied solely

on the symplectic structure of X̌ and the complex structure of X.

A broader conceptualization of enumerative mirror symmetry was proposed by Kontsevich

in his work [Kon95]. In this generalization, he conjectured a deeper connection between the

spaces X and X̌ within a mirror pair. Specifically, he suggested the existence of a derived

equivalence of categories between the derived category Db
cohpXq of coherent sheaves and

the Fukaya category FukpX̌q. This assertion is famously known as homological mirror

symmetry.

1.3 Categorical enumerative invariants

1.3.1. Kontsevich’s proposal implied that enumerative mirror symmetry should follow

from homological mirror symmetry. To achieve this, he conjectured the existence of some

invariants which are now known as categorical enumerative invariants. These invariants



4

are associated with an enriched triangulated category C and possess the property that when

the Fukaya category FukpX̌q is used as input, they are expected to recover the Gromov-

Witten invariants of X̌. Similarly, when the derived category Db
cohpXq of a Calabi-Yau

variety X is provided as input, they should yield a new set of invariants associated with

X, known as the B-model Gromov-Witten invariants.

It’s worth noting that these invariants are defined for all genera, not just genus zero.

However, it is expected that the genus zero B-model Gromov-Witten invariants will align

with the invariants obtained from the variation of Hodge structures. Consequently, when

pX, X̌q forms a mirror pair, the B-model invariants of X correspond to the Gromov-Witten

invariants of X̌, thereby implying classical enumerative mirror symmetry.

1.3.2. Let’s now explore the historical context surrounding the development of categorical

enumerative invariants. In genus zero, categorical Gromov-Witten invariants satisfying

the aforementioned properties were first introduced by Ganatra, Perutz, and Sheridan

in their work [GPS15]. Their approach built upon the insights of Saito [Sai83a; Sai83b]

and Barannikov-Kontsevich [Bar01; BK98]. However, it’s important to note that their

construction does not extend to higher genera. Separately Costello [Cos09] introduced a

definition of categorical invariants for arbitrary genera, drawing inspiration from the work

of Kontsevich and Soibelman [KS09]. Nevertheless, computing explicit examples using

Cestello’s definition remains exceptionally challenging.

1.3.3. In a subsequent development, Căldăraru and Tu [CT20] successfully computed B-

model categorical invariants for the case where g “ 1 and n “ 1 on an elliptic curve

Eτ . They accomplished this computation by employing Costello’s definition and using the

explicit A8-model of Db
cohpEτ q provided by Polishchuk [Pol11] as their input. In their

later work [CT24], Căldăraru and Tu provided explicit and computable formulas for B-

model invariants associated with an arbitrary cyclic A8-algebra A and a splitting of the

Hodge filtration s on its cyclic homology. These invariants are referred to as categorical

enumerative invariants (CEI).
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More precisely, given a pair pA, sq with A being a smooth proper and cyclic A8-algebra

and s : HH˚pAq Ñ HC´
˚ pAq a splitting of its Hodge filtration, they constructed categorical

enumerative invariants

FA,sg,n P SymnpHH˚pAqru´1sq,

for pairs pg, nq satisfying g ě 0, n ě 1, 2g´2`n ą 0. These CEI invariants are defined by

explicit Feynman sums over a specific type of graphs, known as partially directed stable

graphs. The CEI invariants FA,sg,n are expected to play a role in the non-commutative

setting similar to that of the invariants FXg,n in Gromov-Witten theory. In particular,

basic CEI invariants with insertions γ1, . . . , γn P HH˚pAq can be defined from FA,sg,n by

xτk1pγ1q, . . . , τknpγnqyA,sg “ xFA,sg,n , pγ1u
i1q ¨ ¨ ¨ pγnu

inqyres P C,

where the residue pairing is defined on Hoschschild homology of A using the Mukai pairing.

1.3.4. It’s important to note that, as of now, the conjecture asserting the equality of cate-

gorical enumerative invariants and classical Gromov-Witten invariants remains unproved.

Nonetheless, existing evidence overwhelmingly suggests that when the algebra A is Morita

equivalent to the Fukaya category FukpX̌q of a symplectic manifold X̌, these invariants

do align: the CEI potential FA,sg,n recovers the GW potential F X̌g,n via a specific procedure.

Here s is a specific splitting that is naturally attached to a Fukaya category.

For instance, in the case where A “ C corresponds to the ground field, Tu proved in [Tu21]

that the categorical enumerative invariants coincide with the Gromov-Witten invariants

of a point.

1.4 A (1,1)-calculation for elliptic curves

1.4.1. In this section, we review the calculation of p1, 1q Gromov-Witten invariants and

CEI invariants of elliptic curves. The details are explained in [CT20].

1.4.2. Consider the mirror pair pX, X̌q of a two-torus X̌ and the family of elliptic curves
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X “ Eτ around the cusp τ “ i8. A well-known result shows that the p1, 1q Gromov-

Witten invariant of degree d ě 1, with the insertion the Poincaré dual class rptsPD of a

point (with no ψ-class), corresponds to the number of isogeny classes of degree d of a fixed

elliptic curve. Explicitly, it is given by

xrptsPDy
X̌,d
1,1 “

ÿ

k|d

k,

hence the generating series of these invariants (including d “ 0 case) is

F X̌1,1prptsPDq “ xF X̌1,1, rpts
PDyres “ ´

1

24
`

ÿ

dě1

¨

˝

ÿ

k|d

k

˛

‚Qd “ ´
1

24
E2pQq, (1.1)

where E2 is the holomorphic quasi-modular Eisenstein form of weight two.

1.4.3. On the B-side, for an elliptic curve X “ Eτ , the A8-algebra we choose is a holo-

morphic modification of Polishchuk’s A8-model Aτ [Pol11]. This algebra is still Morita

equivalent toDb
cohpXq, but its structure constants vary holomorphically with τ . See [CT20]

for details.

The splitting of the Hodge filtration on negative cyclic homology HC´
˚ pAτ q “ HC´

˚ pEτ q

can be described geometrically as a splitting of the following short exact sequence

0 Ñ H0pΩEτ q Ñ H1
dRpEτ q Ñ H1pOEτ q Ñ 0. (1.2)

Here H0pΩEτ q is generated by the class rdzs, and H1pOEτ q is generated by a class rξs. We

use the splitting that sends rξs to 1
τ´τ prdzs ´ rdzsq. This splitting is invariant under the

monodromy obtained from the Gauss-Manin connection around the cusp τ “ i8. Hence

we will denote it as sMI.

With this A8-algebra Aτ and this specific monodromy invariant splitting sMI as input,

one can compute the B-model potential FAτ ,sMI

1,1 . It depends on the choice of τ , hence if

we denote q “ expp2πiτq, and let q vary in a neighbourhood of q “ 0, the main result of
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[CT20] is that

FAτ ,sMI

1,1 prξsq “ xFAτ ,sMI

1,1 , prξsqyres “ ´
1

24
E2pqq.

This result matches with the classical p1, 1q Gromov-Witten invariants in the sense that

we describe in 1.5.4.

1.5 Flat Coordinates

1.5.1. Historically, after computation of Gromov-Witten invariants F X̌g,n for a given sym-

plectic manifold X̌, researchers found a method to package these invariants at all genera

into a single comprehensive generating series DX̌ , known as the total descendant Gromov-

Witten potential or the A-model potential [Giv01a; Coa08]. This allows one to consider

the Gromov-Witten invariants as the Taylor coefficients of the formal function DX̌ defined

on the so called Kähler moduli space. The formal variable used (typically denoted as Q)

gives a coordinate on this moduli space.

1.5.2. In a parallel manner, for a family of complex manifolds Xq, one can construct a

Hodge-theoretic function (referred to as the period), derived from the variation of Hodge

structures over the moduli space of complex structures M cx. However, this construction

is well-defined only for genus 0. For higher genera, we will use the CEI potentials FA,sg,n in

a manner analogous to the GW invariants. In this way one packages CEI potentials FA,sg,n

of all genera into a single generating series DA,s, called the total descendant CEI potential

or the B-model potential.

1.5.3. It’s crucial to emphasize that the two potentials are expressed in different coordi-

nates: the A-model potential employs a formal variable Q, while the B-model potential

is formulated in terms of a flat coordinate q. To obtain a meaningful comparison be-

tween these two potentials, the variables q and Q are identified through an invertible map

denoted as the mirror map ψ.

In physics the formal coordinate Q is viewed as a flat coordinate on the complexified
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Kähler moduli space MKäh (a concept not mathematically rigorously defined), and the

mirror map is interpreted as an isomorphism

ψ :M cx Ñ MKäh

between germs ofM cx andMKäh around specific points. Traditionally, these special points

are the large volume and the large complex structure limit points, respectively.

1.5.4. In section 1.4, for the explicit computation for elliptic curves, we implicitly used

two facts:

1. q “ expp2πiτq is the flat coordinate around the cusp on the moduli space of elliptic

curves,

2. the mirror map ψ for elliptic curves identifies q with Q.

The frist results of this thesis, joint with Căldăraru and Huang, involve a conjecture re-

garding the potential flat coordinates around hexagonal or square points. This conjecture,

in turn, led to the surprising Conjecture 2.1.6 predicting the so-called elliptic expansion

of the j-function around these hexagonal and square points. Remarkably, this conjecture

has been later proved in the work [HMOZ22].

1.6 Holomorphic Anomaly Equation for CEI

Starting from now we will focus exclusively on the case where the mirror pair consists of

a two-torus X̌ and an elliptic curve X.

1.6.1. One important property of the Gromov-Witten potentials is that they are quasi-

modular forms. To be more precise, the genus g Gromov-Witten potential F X̌g,1pαq of

the two-torus with one appropriate insertion α is a holomorphic quasi-modular Eisenstein

modular form of weight 2g´2`deg α. Hence by a theorem of Zagier [Zag08], F X̌g,1 belongs

to the degree p2g ´ 2 ` deg αq part of the grade vector space CrE2pQq, E4pQq, E6pQqs.



9

As an example, we have seen in Equation 1.1 that the g “ 1 Gromov-Witten poten-

tial of the two-torus with one insertion being the Poincaré dual class of a point yields

F X̌1,1prptsPDqpQq “ ´ 1
24E2pQq, which is a holomorphic quasi-modular form of weight 2.

1.6.2. The holomorphic anomaly equation, as introduced by Bershadsky, Cecotti, Ooguri,

and Vafa [BCOV94], and proved by Oberdieck and Pixton [OP18] in the case of GW in-

variants of elliptic curves, describes part of F X̌g,npγ1u
k1 , . . . , γnu

knqpQq that includes E2pQq.

Specifically, their theorem states that

Theorem 1.6.3. Let Cgpγ1, . . . , γnq be the generating series of Gromov-Witten classes,

and regard it as a cycle-valued quasimodular form, i.e., a polynomial in C2, C4, C6 with

coefficients in H˚pMg,nq, we have

d

dC2
Cgpγ1, . . . , γnq “ι˚Cg´1pγ1, . . . , γn, 1, 1q

`
ÿ

g“g1`g2
t1,...,nu“S1\S2

j˚pCg1pγS1 , 1q b Cg2pγS2 , 1qq

´ 2
n
ÿ

i“1

ˆ
ż

E
γi

˙

ψi ¨ Cgpγ1, . . . , γi´1, 1, γi`1, . . . , γnq,

(1.3)

where γSi “ pγkqkPSi
and 1 P H˚pEq is the unit.

On the B-model side the analogous conjecture is the following statement:

Conjecture 1.6.4. The CEI invariants FAτ ,sMI

g,n pγ1u
k1 , . . . , γnu

knqpqq of the family tEqu of

elliptic curves for Im q " 0, with appropriate insertions γiu
ki P HH˚pAτ qrruss are holomor-

phic quasi-modular forms, i.e., they belong to the polynomial ring CrE2pqq, E4pqq, E6pqqs.

To prove this conjecture, we would need to show that CEI invariants satisfy the following

three properties:

1. FAτ ,sMI

g,n pγ1u
k1 , . . . , γnu

knqpqq is holomorphic.

2. FAτ ,sMI

g,n pγ1u
k1 , . . . , γnu

knqpqq behaves well with respect to the SL2pZq-action.

3. FAτ ,sMI

g,n pγ1u
k1 , . . . , γnu

knqpqq has finite limit at q “ 0.
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Unfortunately we could not prove the last property in general, so Conejcture 1.6.4 remains

open.

However, if we assume this conjecture is true, then we can prove the following result

(Theorem 3.5.6) for CEI, which is a direct analogues of Theorem 1.6.3 of Oberdieck-

Pixton.

Theorem 1.6.5. If Conjecture 1.6.4 is valid, then the B-model potential

FAτ ,sMI

g,n pγ1u
k1 , . . . , γnu

knqpqq

satisfies the holomorphic anomaly equation.

The key idea of the proof is to study the so-called Givental group action [Giv01a; Giv01b;

Giv04] on CEI potentials. We briefly review it here.

1.6.6. Given a vector space H with a nondegenerate symmetric bilinear form x´,´y we

constructed vector spaces HTate “ Hppuqq (endowed with the residue pairing x´,´yres) and

H` “ Hrruss.

The Givental group Giv associated to this data is the subgroup of the group of auto-

morphisms of the symplectic vector space pHTate, x´,´yresq preserving the Lagrangian

subspace H` and acting as identity on H. Explicitly, an element of Giv is of the form

σ “ id` σ1 ¨ u` σ2 ¨ u2 ` ¨ ¨ ¨

with each σj P EndpHq, and σ is required to satisfy

xσ ¨ x, σ ¨ yyres “ xx, yyres for any x, y P HTate.

In the CEI setting, for an A8-algebra A, we will let H be HH˚pAq, and x´,´y be the

Mukai pairing.

1.6.7. When A is smooth and proper, the set of splittings of the non-commutative Hodge
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filtration is nonempty, and it is a left torsor over the Givental group, by letting an element

σ act on a splitting s : H` “ HH˚pAq Ñ HC´
˚ pAq via pre-composing with σ´1:

σ ¨ s : H`
σ´1

ÝÝÑ H`
s

ÝÑ HC´
˚ pAq.

1.6.8. So far we have only been using one splitting sMI when computing the CEI invariants

of the family of elliptic curves. However, there exists another interesting splitting sCC,

called the complex conjugate splitting. Explicitly, it is given by the splitting of the short

exact sequence

0 Ñ H0pΩEτ q Ñ H1
dRpEτ q Ñ H1pOEτ q Ñ 0,

that sends rξs P H1pOEτ q to 1
τ´τ rdzs.

Since the set of splittings is a torsor over Giv, there exists a Givental group element σ that

sends the splitting sMI to the splitting sCC, i.e.,

σ ¨ sMI “ sCC.

The detailed construction of σ can be found in Section 3.4.

1.6.9. The Givental group acts on the set of splittings, hence in turn it acts on the total

descendent potential DA,s. This is described in the work of Cădăraru and Tu [CT24]. The

action on potentials of an element σ P Giv will be denoted by σ̂:

DA,σ¨s “ σ̂pDA,sq.

This action can be described using the combinatorial model of stable graphs, as explained

in Givental [Giv01a] and Pandharipande-Pixton-Zvonkine [PPZ15]. Explicitly, one can

compute σ̂pFA,sg,n q using
!

FA,sg,n

)

as follows:

σ̂pFA,sg,n q “
ÿ

G stable of type pg,nq

1

|AutpGq|
ź

Contpvq
ź

Contpeq
ź

Contplq,
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where each vertex v is decorated by FA,sg,n ’s, each edge e is decorated by an operator Hσ

that is constructed from σ, and each leg l is decorated by σ. Here the decorations Hσ and

σ will be explained in Section 3.4.

The key idea of the proof of Theorem 1.6.5 is to analyse the difference between σ̂pFAτ ,sMI

g,n q

and FAτ ,sMI

g,n in two different ways: one is the action of the Givental group, another is the

Kaneko-Zagier operator applied to the potential FAτ ,sMI

g,n .

1.6.10. Theorem 1.6.5 holds significant importance in the computation of the categorical

enumerative invariants for elliptic curves, as it reduces the computation of these invariants

for any elliptic curve, when g ď 5, to a computation of the invariants for a single elliptic

curve target. Since FAτ ,sMI

g,n are expanded around the cusp, we would like to choose the

nodal cubic curve (at cusp τ “ i8) as the special point. However the nodal cubic is

singular, hence it does not admit a splitting of Hodge filtration. We will explain how to

deal with this problem in Section 1.7 and Chapter 4.

1.7 Liftable Hochschild classes

1.7.1. In the influential work of Deligne and Illusie [DI87], they proved that for a smooth

projective variety Y over a field of characteristic 0, the Hodge to de Rham (HdR) spectral

sequence 1Ep,qY “ HppY,ΩqY q ùñ Hp`q
dR pY q degenerates at first page.

1.7.2. The groups on both sides of the HdR spectral sequence are related to Hochschild

homology and negative cyclic homology. Therefore, the HdR spectral sequence can be

generalized to the world of non-commutative geometry. The resulting spectral sequence

HH˚pAqrruss ùñ HC´
˚ pAq

is called the Hochschild to cyclic spectral sequence. Kontsevich and Soibelman [KS09]

conjectured that for any smooth and properA8-algebra A the Hochschild to cyclic spectral

sequence also degenerates at 1E. This was later proved by Kaledin [Kal08; Kal17].
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1.7.3. By contract, the spectral sequence does not need to degenerate at 1E for proper

but not smooth varieties. We study a specific singular case in Chapter 4, where X is the

projective nodal cubic curve over C. There is a similar derived Hodge to de Rham spectral

sequence

1Ep,qX “ HppX,

q
ľ

L‚
Xq ùñ Hp`q

dR pXq, (1.4)

where L‚
X is the cotangent complex of X. Our main result (Theorem 4.3.4) is

Theorem 1.7.4. The above spectral sequence (1.4) degenerates at the second page.

Our proof relies on comparison with the affine nodal cubic curve and the projective reso-

lution of singularities. Moreover, our result of the nodal cubic implies the Hochschild to

cyclic spectral sequence also degenerates on the second page.

1.7.5. In the smooth case, the degeneration of Hochschild to cyclic spectral sequence on

the first page implies that all Hochschild classes can be lifted to negative cyclic homology,

i.e., the natural map HC´
n pXq Ñ HHnpXq is surjective for all n. This fails to be true in the

singular case in general, as we have already seen that the HdR spectral sequence for nodal

cubic curve X degenerates only on the second page. Nevertheless, in Section 4.5, we study

the map HC´
n pXq Ñ HHnpXq. We prove that it is an isomorphism for n P 2NY t´1u and

it is 0 for other n.

In particular, the generator rξs of HH´1pXq lifts to HC´
´1pXq uniquely. This is crucial for

the definition of the p2, 1q CEI invariant for the nodal cubic curve. The current definition

of CEI requires the A8-algebra to be smooth and proper, hence can not be applied to

the case of nodal curve directly. However, since rξs is mirror to the class rptsPD, it is the

only class that yields nontrivial calculations. The liftablity of rξs guarantees that we can

insert the class rξsu2 into the computation of the p2, 1q CEI invariant. Furthermore, in

the calculation process of FAτ ,sMI

2,1 prξsu2q, non-liftable Hochschild classes are expected not

to arise. This enables us to fully compute the p2, 1q CEI invariant.
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1.8 Summary

In this section, we explain a potential application uniting the three different projects under

a common theme: the computation of the p2, 1q CEI invariant FAτ ,sMI

2,1 . We summarize our

approach as follows:

1. The only insertion that yields nontrivial computation is rξsu2. Assuming the re-

sulting invariant extends to the cusp1, we can prove that the resulting CEI is a

holomorphic quasi-modular form of weight 4. Hence it is of the form

FAτ ,sMI

2,1 prξsu2q “ aE2
2pqq ` bE4pqq.

2. The coefficient a is determined by the holomorphic anomaly equation.

3. To determine the coefficient b, we only need to evaluate FAτ ,sMI

2,1 prξsu2q at one specific

value of q. Our choice is q “ 0.

4. The CEI invariants are not completely defined for proper but non-smooth A8-

algebras. However, we conjecture that when the insertions are liftable Hochschild

classes, then we can perform the computations in the same way as before. In partic-

ular, the class rξs does lift to HC´
˚ from our study of the degeneration of Hochschild

to cyclic spectral sequence for the nodal cubic curve. Thus we are able to compute

the p2, 1q CEI at cusp, which corresponds to q “ 0. This determines the coefficient

b.

1.9 Outline

In Chapter 2 we discuss the work in [CHH21] which describes our the conjecture about

the elliptic expansion of the j-function around special points in M1,1.

In Chapter 3 we discuss the work in [CHT] about holomorphic anomaly equation. We show

1During a private conversation with Andrei Căldăraru, he claimed that he is able to prove this.
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that with certain assumptions, CEI invariants satisfy the holomorphic anomaly equation.

In Chapter 4 we discuss the work in [He23] about the degeneration of the Hodge to de

Rham spectral sequence for the nodal cubic curve. Moreover, we classify all the liftable

Hochschild classes.

In Chapter 5 we discuss some open questions and further directions.
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Chapter 2

Moonshine at Landau-Ginzburg

points

2.1 The conjecture

2.1.1. The Monstrous Moonshine conjecture describes a surprising relationship, discovered

in the late 1970s, between the coefficients of the Fourier expansion of Klein’s j-function

around the cusp

jpτq “
1

q
` 744 ` 196884q ` 21493760q2 ` 864299970q3 ` 20235856256q4 ` ¨ ¨ ¨

and dimensions of irreducible representations of the Monster group. Fourier expansions

of other modular forms around the cusp are critically important in number theory and

algebraic geometry. In particular such expansions appear directly in computations of

Gromov-Witten invariants of elliptic curves [Dij95].

2.1.2. In this note we study the elliptic expansion of the j-function around the hexagonal

point j “ 0 and the square point j “ 1728, instead of around the cusp j “ 8. At j “ 0

the elliptic curve is the Fermat cubic, cut out in P2 by x3 ` y3 ` z3 “ 0, while at j “ 1728
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it is given by x4 ` y4 ` z2 “ 0 in the weighted projective space P2
1,1,2.

From an enumerative geometry perspective the fact that we work around the hexagonal

and square points instead of around the cusp suggests that we are working with Fan-

Jarvis-Ruan-Witten (FJRW) invariants instead of Gromov-Witten invariants. See (2.2.7)

for details.

2.1.3. Let H and D denote the upper half plane and the unit disk in the complex plane,

respectively. Fix τ˚ “ eπi{3 or τ˚ “ i as the points∗ in H around which to carry out the

expansion.

The uniformizing map S around τ˚ is the map

S : H Ñ D, Spτq “
τ ´ τ˚

τ ´ τ̄˚

,

with inverse

S´1 : D Ñ H, S´1pwq “
τ˚ ´ τ̄˚w

1 ´ w
.

The elliptic expansion of j around τ˚ is simply the Taylor expansion of j ˝ S´1 around

w “ 0. Its coefficients are closely related [Zag08, Proposition 17] to the values of the

higher modular derivatives Bnjpτ˚q,

j
`

S´1pwq
˘

“

8
ÿ

n“0

p4πImτ˚qnBnjpτ˚q

n!
wn.

2.1.4. The values of the higher modular derivatives of j can be computed term-by-term

by a well-known recursive procedure. The results are rational multiples of products of

powers of the Chowla-Selberg period† Ω and of π.

Let spwq “ 2πΩ2 ¨ Spwq denote the rescaling of S by the factor 2πΩ2. Then around

∗Any other point in the SLp2,Zq orbit of τ˚ works equally well, with only minor changes in the constants
below.

†The exact value of Ω is unimportant, but in this case Ω “ 1{
?
6π pΓp1{3q{Γp2{3qq

3{2 for the hexagonal
point and Ω “ 1{

?
8π pΓp1{4q{Γp3{4qq for the square point.
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τ˚ “ exppπi{3q we have

j
`

s´1pwq
˘

“ 13824w3 ´ 39744w6 `
1920024

35
w9 ´

1736613

35
w12 ` ¨ ¨ ¨ ,

while around τ˚ “ i we have

j
`

s´1pwq
˘

“ 1728 ` 20736w2 ` 105984w4 `
1594112

5
w6 `

3398656

5
w8 ` ¨ ¨ ¨ .

2.1.5. The following power series have been introduced independently by Shen-Zhou

[SZ18, (3.41), (3.45)] in their study of the LG/CY correspondence for elliptic curves,

and by Tu [Tu21, Section 4] in his study of categorical Saito theory of Fermat cubics:

gptq “

8
ÿ

n“0

p´1qn
pp3n´ 2q!!!q3

p3nq!
t3n,

hptq “

8
ÿ

n“0

p´1qn
pp3n´ 1q!!!q3

p3n` 1q!
t3n`1.

In both cases it was argued that the ratio hptq{gptq gives a flat coordinate on the moduli

space of versal deformations x3 ` y3 ` z3 ` 3txyz “ 0 of the Fermat cubic.

Similarly, for the elliptic quartic we introduce the two power series below

gptq “

8
ÿ

n“0

pp4n´ 3q!!!!q2

p2nq!
t2n,

hptq “

8
ÿ

n“0

pp4n´ 1q!!!!q2

p2n` 1q!
t2n`1.

Even though the notation g, h appears overloaded, it should be evident from context which

power series we refer to.

Our main result is the following conjecture.

Conjecture 2.1.6. (a) Around the hexagonal point the elliptic expansion of the j-function
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satisfies

j

ˆ

s´1

ˆ

hptq

gptq

˙˙

“ 27t3
ˆ

8 ´ t3

1 ` t3

˙3

“ 13824t3 ´ 46656t6 ` 99144t9 ´ 171315t12 ` 263169t15 ´ ¨ ¨ ¨ .

(b) Around the square point the elliptic expansion of the j-function satisfies

j

ˆ

s´1

ˆ

hptq

gptq

˙˙

“ p192 ` 256t2q

ˆ

3 ` 4t2

1 ´ 4t2

˙2

“ 1728 ` 20736t2 ` 147456t4 ` 851968t6 ` 4456448t8 ` ¨ ¨ ¨ .

2.1.7. Notes. It is remarkable that the coefficients in the above power series are all

integers, despite jps´1pwqq only having rational coefficients. (For the expansion at the

hexagonal point the integrality of the coefficients follows from [SZ18].) Our attempts to

find other modular forms with this integrality property, using other combinations of the

Eisenstein modular forms E2, E4, and E6 have been unsuccessful.

The validity of the formulas above has been verified by computer up to t24. A recent proof

of Conjecture 2.1.6 was announced, after our paper was made public, in [HMOZ22].

2.2 Mirror symmetry origin of the conjecture

2.2.1. The original statement of mirror symmetry is formulated as the equality of two

power series associated with a pair pX, X̌q of mirror symmetric families of Calabi-Yau

varieties. These two power series are

(a) the generating series, in a formal variable Q, of the enumerative invariants of the

family X (the A-model potential);

(b) the Taylor expansion of a Hodge-theoretic function (the period) on the moduli space

of complex structures M cx of the mirror family X̌, with respect to a flat coordinate
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q on this moduli space (the B-model potential).

In order to compare the two power series, the variables q and Q are identified via an

invertible map ψ called the mirror map.

In physics, the formal variable Q is viewed as a flat coordinate on the (ill-defined mathe-

matically) complexified Kähler moduli space MKäh, and the mirror map is interpreted as

an isomorphism

ψ :M cx Ñ MKäh

between germs of M cx and MKäh around special points. Traditionally these special points

are the large complex limit point and the large volume point, respectively.

2.2.2. The original mirror symmetry computation of [COGP91] follows this pattern. It

predicts a formula for the generating series of genus zero Gromov-Witten invariants of

the quintic X, by equating it to the expansion of a period (solution of the Picard-Fuchs

equation) for the family of mirror quintics X̌. The equality of the two sides allows one

to calculate the genus zero Gromov-Witten invariants, by expanding the period map of

the family X̌ with respect to a certain flat coordinate on the moduli space of complex

structures of mirror quintics.

As another example consider a two-torus X (elliptic curve with arbitrary choice of complex

structure). The g “ 1, n “ 1 Gromov-Witten invariant of degree d ě 1 with insertion the

Poincaré dual class of a point counts in this case the number of isogenies of degree d to a

fixed elliptic curve. As such it satisfies

xrptsPDy
X,d
1,1 “

ÿ

k|d

k “ σ1pdq,

and hence the generating series of these invariants (including the d “ 0 case) is ´ 1
24E2pQq

where E2 denotes the quasi-modular Eisenstein form of weight two (see [Dij95] for the the

original derivation of this calculation). The main result of ([CT20]) is that this equals

the expansion in q “ expp2πiτq, around q “ 0, of the function of categorical enumerative
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p1, 1q invariants for the corresponding family X̌ of mirror elliptic curves.

2.2.3. Implicit in the above calculation for elliptic curves are the two facts that

(a) q is the flat coordinate, around the cusp, on the moduli space of elliptic curves;

(b) the mirror map ψ for elliptic curves identifies q with Q.

The main intuition behind Conjecture 2.1.6 is a similar set of assumptions but for the

flat coordinates around the hexagonal or square points instead of around the cusp. Below

we will give precise conjectural descriptions of the flat coordinates q and Q around the

hexagonal point F̌ P M cx and its mirror F P MKäh. The analysis for the square point is

entirely similar.

2.2.4. To understand these flat coordinates we need good descriptions of MKäh and M cx

around F and F̌ . We will review first the classical situation (around the cusp) described

in the work of Polishchuk-Zaslow [PZ98].

Polishchuk-Zaslow takes the space MKäh on a two-torus to be the quotient of H, with

coordinate ρ, by ρ „ ρ` 1. For each ρ P MKäh they construct a Fukaya category F0pXρq

on the two-torus Xρ endowed with this structure. The quotient above is precisely the

same as the neighborhood of the cusp on the moduli space M cx of complex structures on

a two-torus‡. For Polishchuk-Zaslow the mirror map is simply the identity τ Ø ρ: the

complex elliptic curve X̌τ with modular parameter τ corresponds to the two-torus Xρ

with complexified Kähler structure ρ “ τ .

2.2.5. Even without explicitly constructing MKäh as a moduli space of geometric objects,

we could have understood its structure around the large volume limit point through mirror

symmetry. Indeed, we could have simply taken MKäh to be the neighborhood of the large

complex structure limit point in M cx, a space we understand. With this point of view,

the mirror map is always the identity.

2.2.6. We would like to understand a similar picture around the hexagonal point F̌ P M cx.

‡We ignore the stack structure of M cx, which only adds an extra Z{2Z stabilizer.
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Even though the results of Polishchuk-Zaslow do not extend to F̌ , we can still conjecture

that there is a larger moduli spaceMKäh of “extended Kähler structures” (which no longer

parametrizes just classical Kähler classes as before) and a point F P MKäh such that F

corresponds under mirror symmetry to F̌ . Then the point of view in (2.2.5) allows us to

understand the local structure of MKäh around F : it should be the same as M cx around

F̌ .

The germ of M cx around F̌ is the quotient of H by

τ „
τ ´ 1

τ
,

exhibiting the germ of H around τ˚ as a triple cover ofM cx branched over F̌ . We will define

the germ of MKäh around F to be the quotient of H (with coordinate ρ) by ρ „ pρ´ 1q{ρ.

We think of ρ P H as giving an (extended type) “complexified Kähler class” on the two

torus, and write Xρ for this (fictitious) symplectic geometry object. We emphasize that

we do not attempt to give a rigorous mathematical definition of Xρ, though it would be

natural to suggest that the non-commutative geometric object associated to it should be

the Fukaya-Seidel category one sees at this point. Despite this, the mirror map is, as

before, τ Ø ρ.

2.2.7. The natural question is then what is the flat coordinate onMKäh (as defined above)

around F . We conjecture that this flat coordinate is Q “ spρq3. The justification for this

comes from work of Li-Shen-Zhou [LSZ23], where the authors suggest that the natural

way to interpret the generating series of FJRW invariants for two-tori as a function of ρ

is via the map s (with a different rescaling from ours). It would be natural to guess from

their work that spρq is the flat coordinate. However, since ρ is only defined up to the

equivalence ρ „ pρ´ 1q{ρ, the equality

s

ˆ

ρ´ 1

ρ

˙3

“ spρq3
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implies that Q descends§ to a coordinate on MKäh, which we conjecture to be the flat

coordinate around F .

2.2.8. In the B-model we have seen ([SZ18], [Tu21]) that hptq{gptq gives a flat coordinate

on the base A1
t of the Hesse pencil of elliptic curves,

Et : x3 ` y3 ` z3 ` 3txyz “ 0.

In particular, Tu’s work was motivated by a study of categories of graded matrix factoriza-

tions, but via Orlov’s correspondence [Orl06] these are equivalent to the derived categories

of the above elliptic curves.

Again, hptq{gptq does not give a coordinate on M cx because locally A1
t is a branched triple

cover of M cx around F̌ . Its replacement q “ phptq{gptqq
3 does descend to a coordinate on

M cx around F̌ , and we conjecture it is flat.

2.2.9. By our construction of MKäh the mirror map ψ is the identity, so the mirror

of the complex curve X̌τ with modular parameter τ is the symplectic object Xρ with

ρ “ ψpτq “ τ . (Despite being equal we prefer to keep ρ and τ distinct since they represent

different geometric objects.)

Flat coordinates are unique up to multiplication by a scalar when the moduli spacesMKäh

and M cx are one-dimensional. (The rescaling factor 2πΩ2 in (2.1.4) was chosen so that

this constant equals one.) It follows that the flat coordinates of Xρ and X̌τ are equal for

ρ “ τ .

Consider a Hesse elliptic curve Et for some value of t. It can be written as X̌τ for some

(non-unique) modular parameter τ P H. The mirror of this curve is Xρ for ρ “ τ . (We

think of ρ P MKäh, so the ambiguity in τ disappears.) It follows that

ˆ

hptq

gptq

˙3

“ qpX̌τ q “ QpXρq “ spρq3,

§This is not the only modification of spτq that descends to a coordinate on MKäh, which in general will
not be flat. The same issue appears in the B-model.
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or, using the fact that s is invertible,

s´1

ˆ

hptq

gptq

˙

„ ρ

where „ is the equivalence relation used to define M cx in (2.2.5). Applying the j-function

to both sides and noting that it is „-invariant we get

j

ˆ

s´1

ˆ

hptq

gptq

˙˙

“ jpρq “ jpEtq.

For the Hesse pencil the j-function can be computed easily [AD09] and the result is

jpEtq “ 27t3
ˆ

8 ´ t3

1 ` t3

˙3

.

This is the statement of the conjecture.
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Chapter 3

The holomorphic anomaly

equation for categorical

enumerative invariants of elliptic

curves

3.1 Introduction

3.1.1. An important aspect of Gromov-Witten theory is the fact that generating series of

these invariants yield (quasi) modular forms. Classically, modular forms arise as counting

functions for points, representing zero-dimensional objects. However, in Gromov-Witten

theory, the generating function serves as a counting mechanism for the virtual number of

holomorphic curves, which are one-dimensional objects. Hence it is natural to speculate

whether modular forms also play a role in this context. One might attempt to compute

these forms explicitly and hope that the results can be organized as modular forms. This

approach has been successfully applied to elliptic curves [OP06] and the reduced Gromov-

Witten theory of K3 surfaces [MPT10]. However, it’s important to note that both steps in
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this strategy require significant effort and expertise. Computing Gromov-Witten invariants

is generally a challenging task, and even when computations are feasible, organizing them

into modular forms remains a challenge. Unlike the case of counting points, where patterns

can often be discerned by examining a large number of coefficients, the organization of

Gromov-Witten invariants into modular forms is not straightforward.

The idea of resolving this issue originates from mirror symmetry.

3.1.2. The classical mirror symmetry for g “ 0 asserts that counting rational curves in a

Calabi-Yau threefold X̌ (A-model) is equivalent to studying variation of Hodge structures

of its mirror Calabi-Yau threefold X (B-model). Higher genus mirror symmetry extends

this equivalence to counting higher genus curves in a Calabi–Yau threefold. While Gro-

mov–Witten theory provides a rigorous mathematical framework for counting curves of

any genus and thus naturally extends to higher genus A-models, the corresponding higher

genus B-model, which generalizes the theory of variation of Hodge structures, has been

far more enigmatic.

A potential candidate for the higher genus B-model was proposed by Bershadsky, Cecotti,

Ooguri, and Vafa in seminal papers [BCOV93; BCOV94] (BCOV theory). By explor-

ing this physical B-model of Gromov-Witten theory, BCOV conjectured boldly that the

Gromov-Witten generating functions for any Calabi-Yau manifolds are, in fact, quasi-

modular forms. A central concept in [BCOV94] is that a natural B-model Gromov-

Witten potential should exhibit modularity but be non-holomorphic. Moreover, its anti-

holomorphic dependence should be governed by an equation known as the holomorphic

anomaly equations. Over the past decade, Klemm and collaborators have produced a

series of papers aimed at solving the holomorphic anomaly equations [ABK08; HKQ09].

Mathematically, some of this work has been understood in recent years in the work of

Guo, Janda and Ruan [GJR18]. One significant outcome has been the remarkable predic-

tion of Gromov-Witten invariants for the quintic 3-fold up to genus 51. This represents

a significant achievement, given that for the quintic mathematicians can only compute
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Gromov-Witten invariants for genus zero and one.

For elliptic curves, building on this physical insight, Milano, Ruan, and Shen [MRS18]

proved the modularity and holomorphic anomaly equation for elliptic orbifolds, leaving

the case of elliptic curves as a conjecture. This conjecture was later proved by Oberdieck

and Pixton [OP18].

3.1.3. However, another candidate for the higher genus B-model emerged from the work

of Căldăraru and Tu in their paper [CT24]. They offered explicit and computable formulas

for certain types of invariants associated with a (smooth, proper and cyclic) A8-algebra

A and a splitting of the Hodge filtration s on its cyclic homology. These invariants are

known as categorical enumerative invariants (CEI).

The major conjecture in this area posits that when the Fukaya category FukpX̌q of a space

X is inputted, these CEI invariants coincide with classical Gromov-Witten invariants.

Consequently, when the derived category Db
cohpXq of coherent sheaves on the mirror space

X is inputted, these CEI invariants are expected to provide the B-model Gromov-Witten

invariants.

Naturally, one might expect these CEI invariants to satisfy the holomorphic anomaly

equation. In this chapter, we focus on the case of elliptic curves.

3.2 Convention

In this section, we fix some notations.

3.2.1. Let A be a smooth unital A8-algebra of Calabi-Yau dimension d with a cyclic

pairing x´,´y. Denote L its shifted reduced Hochschild chains pC˚pAqrds, bq, where b is

the differential.

3.2.2. L admits a circle action, which is given by the Connes’ operator B. Associated to
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this chain complex with the circle action, one can set

LTate “ pLppuqq, b` uBq,

L` “ pLrruss, b` uBq,

L´ “ pLru´1s, b` uBq,

where u is a formal variable of degree ´2.

3.2.3. L also admits a chain-level Mukai pairing

x´,´yMuk : Lb L Ñ C,

such that B is self-adjoint, i.e.,

xBx, yyMuk “ p´1q|x|xx,ByyMuk for all x, y P L.

This paring induces a higher residue pairing on the associated Tate complex, with value

in Cppuqq, defined as

xx, yyhres “ x
ÿ

k

xk ¨ uk,
ÿ

l

yl ¨ ulyhres :“
ÿ

k,l

p´1qlxxk, ylyMuk ¨ uk`l.

3.2.4. Denote by

H :“ H˚pLq “ HH˚pAqrds

the shifted Hochschild homology of A. Similar as above, one can set

HTate “ H˚pLTateq “ Hppuqq,

H` “ H˚pL`q “ Hrruss,

H´ “ H˚pL´q “ Hru´1s.
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3.3 Two infinity models and two splittings

3.3.1. In [CCT20; CT20], Căldăraru, Cestello and Tu proposed a construction of categor-

ical enumerative invariant associated to a pair pA, sq consisting of a smooth, proper and

cyclic A8-algebra A of Calabi-Yau dimension d, and a splitting s : HH˚pAq Ñ HC´
˚ pAq of

the Hodge filtration on its cyclic homology. From this data they defined the categorical

enumerative potential

FA,sg,n P SymnpH´q,

for any pair pg, nq satisfying 2g´ 2`n ą 0, n ą 0. Additionally, in [CT24] Căldăraru and

Tu provided an explicitly computable formula for the image ῑpFA,sg,n q under the embedding

ῑ : Symn
`

H´q Ñ HompH`,Sym
n´1pH´q

˘

.

Since ῑ is injective, ῑpFA,sg,n q uniquely determines FA,sg,n .

3.3.2. Some explicit results have been obtained for small g, n. In [CT20], the authors com-

puted the p1, 1q-invariant F
Ahol

τ ,sMI

1,1 of pAhol
τ , sMIq, where Ahol

τ is the holomorphic A8-algebra

model for the derived category DbcohpEτ q of an elliptic curve Eτ (which is slightly differ-

ent from the A8-model Amod
τ constructed by Polishchuk [Pol11]), and sMI : HH˚pEτ q Ñ

HC´
˚ pEτ q is the monodromy invariant splitting of the non-commutative Hodge filtration.

The data of such a splitting is equivalent to a splitting of the short exact sequence

0 Ñ HH1pEτ q Ñ H1
dRpEτ q Ñ HH´1pEτ q Ñ 0,

and the monodromy invariant splitting is the one that sends the generator rξs P HH´1pEτ q »

H1pEτ ,OEτ q to 1
τ´τ̄ prdz̄s ´ rdzsq P H1

dRpEτ q. The result of their computation is

ῑ
´

F
Ahol

τ ,sMI

1,1

¯

prξsq “ ´
1

24
E2pqq.

Here we regard ῑ
´

F
Ahol

τ ,sMI

1,1

¯

prξsq as a function on q “ expp2πiτq in the neighborhood of
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τ “ i8.

3.3.3. In the same paper, the authors proved that if we use Polishchuk’s original model

Amod
τ whose structure constants vary in a modular fashion with q, and replace the splitting

by the complex conjugate splitting sCC, which maps rξs to 1
τ´τ̄ rdz̄s, then the categorical

enumerative invariant one gets is

ῑ
´

F
Amod

τ ,sCC

1,1

¯

prξsq “ ´
1

24
E˚

2 pτq,

where E˚
2 pτq is the modular completion of E2pτq, defined as

E˚
2 pτq “ E2pτq ´

3

π2
2πi

τ ´ τ̄
.

3.3.4. We will only use the splitting sMI for the holomorphic model and the splitting sCC

for Polishchuk’s model, and we will just use F hol
g,npτq to denote FA

hol,sMI

τ
g,n and Fmod

g,n pτq to

denote F
Amod

τ ,sCC

g,n , as it won’t make confusion.

3.3.5. We would like to generalize the above two computations to arbitrary pg, nq-invariants

for elliptic curves. Before stating the result, we first summarize some useful facts from the

theory of quasi-modular holomorphic forms and almost holomorphic modular forms.

3.3.6. Denote by M̃pΓq “ CrC2, C4, C6s the ring of quasi-modular holomorphic forms for

the group Γ “ SLp2,Zq. Denote by M̂pΓq “ CrC˚
2 , C4, C6s the ring of almost holomorphic

modular forms. (See [KZ95] for definition of these.)

In terms of q “ e2πiτ , these are defined by explicit formulas:

Ckpqq “ ´
Bk
k ¨ k!

`
2

k!

ÿ

ně1

ÿ

d|n

dk´1qn “ ´
Bk
k ¨ k!

Ekpqq,

where Bk are the Bernoulli numbers. In particular,

C2pqq “ ´
1

24
E2pτq, C˚

2 pqq “ ´
1

24
E˚

2 pτq.
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M̃pΓq and M̂pΓq are closed under the differential operators Bτ and B̂τ “ Bτ ` wt
τ´τ̄ respec-

tively. There is a differential ring isomorphism KZ : M̃pΓq Ñ M̂pΓq called the Kaneko-

Zagier map, defined as

KZ : M̃pΓq Ñ M̂pΓq,

C2 ÞÑ C˚
2

C4 ÞÑ C4

C6 ÞÑ C6.

Conjecture 3.3.7. The invariants F hol
g,npτq and Fmod

g,n pτq with appropriate insertions belong

to M̃pΓq and M̂pΓq respectively.

To prove this conjecture, we would need to show that CEI satisfy the following three

properties:

1. F hol
g,npτq is holomorphic.

2. F hol
g,npτq behaves well with respect to the SL2pZq-action.

3. F hol
g,npτq has finite limit at τ “ i8.

Conditions 1 and 2 are easy to prove, as they follow from the fact that all the structures

involved in the computations are holomorphic, respectively modular. However, condition

3 is difficult to prove and we were unable to prove it.

If we assume this conjecture to be true, then we can prove that the two categorical enu-

merative potentials are related by the this Kaneko-Zagier map as follows:

Lemma 3.3.8. Assume Conjecture 3.3.7 is valid. Then for any g, n ě 0,

Fmod
g,n pτq “ KZpF hol

g,npτqq.

Proof. We briefly review how the categorical enumerative invariants are defined. In [CT24,
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Theorem 9.1], Căldăraru and Tu defined ῑpFA,sg,n q as a Feynman sum over partially directed

stable graphs

ῑpFA,sg,n q “
ÿ

mě1

ÿ

GPΓ
´

pg, 1, n´ 1q
¯

m

p´1qm´1 wtpGq

|AutpGq|
ź

vPVG

Contpvq
ź

ePEG

Contpeq
ź

lPLG

Contplq.

Here, Γppg, 1, n´ 1qqm denotes partially directly stable graphs with genus g, 1 input leg,

n´ 1 output legs, and m vertices (as defined in [CT24]).

The vertex contributions Contpvq are given by the tensors β̂Ag,k,l “ ρApV̂comb
g,k,l q obtained

from the combinatorial string vertices depending only on A. The contribution of edges

and leaves involve the choice of the splitting s, and the weight wtpGq is some rational

number.

We prove the lemma by showing that the contributions of each partially directed stable

graph are related by the Kaneko-Zagier map.

First we review the comparison of the two A8-models Ahol
τ and Amod

τ . They have the

same underlying vector space and the same basis. The coefficients of nontrivial higher

multiplications are related by Kaneko-Zagier map, see [CT20, p. 5.12] for details and see

[Pol11, Theorem 2.5.1] for a complete list of nontrivial higher multiplications. Hence it

makes sense to denote Amod
τ “ KZpAhol

τ q.

Then consider the following diagram

ĝ ĥhol

ĥmod

ρ̂A
hol

ρ̂A
mod

KZ

where

ĝ “

˜

à

g,kě1,l

C˚pM fr
g,k,l, sgnqhS

¸

rrℏ, λssr2s, pdefined in [CT24, Section 5.3]q
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ĥhol and ĥmod are

ĥ “

˜

à

kě1,l

HomcpSymkpL`r1sq, SymlpL´qqhS

¸

rrℏ, λss, pdefined in [CT24, Section 4.2]q

associated to Lhol “ C˚pAhol
τ qrds and Lmod “ C˚pAmod

τ qrds respectively. The vertical arrow

KZ is defined as replacing every C2 by C˚
2 in the computation.

It is worth noting that the definition of the map ρ̂A only involves the A8-algebra structure,

it dose not depend on the splittings. Since the two algebras satisfy Amod
τ “ KZpAhol

τ q,

we conclude that the above diagram commutes. In particular, for the decoration string

vertices V̂comb
g,k,l , we get

ρ̂A
mod

pV̂comb
g,k,l q “ KZpρ̂A

hol
pV̂comb
g,k,l qq.

This implies that the contribution of vertices are related by the Kaneko-Zagier map as we

expected.

Next we show that the contributions of edges and leaves are related by the Kaneko-Zagier

map as well. In [CT24, Theorem 9.1], the authors proved that the incoming leaves are

decorated by S and the outgoing leaves are decorated by R, where S : pL, bq Ñ pL`, b`uBq

is a chain level lift of the splitting s : H˚pLq Ñ H˚pL`q of the form

S “ id ` S1u` S2u
2 ` ¨ ¨ ¨ , Sj P EndpLq.

In the elliptic curve case, the class rΩs P HH1pAτ q has a canonical lift to cyclic homology,

therefore to specify the above chain map is equivalent to choosing a lift rSpξqs P HC´
´1pAτ q

of the class rξs P HH´1pAτ q. Such a lift is of the form

Spξq “ ξ ` α1 ¨ u` α2 ¨ u2 ` ¨ ¨ ¨ .

In [CT20, Section 9], the authors proved that for elliptic curves, it is enough to determine
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α1, which satisfies the set of two equations

$

’

’

&

’

’

%

bpα1q “ ´1 b ξ

b1|1pBτµ
˚ | α1q “ 0.

Here, b1|1 is the operator defined in [She19, Section 3.14]. The higher liftings α2, α3, . . . are

uniquely determined by α1 up to homology. Using the two A8-models with corresponding

splittings, we obtain two liftings Sholpξq and Smodpξq of ξ. (Recall that the basis of Ahol
τ

and Amod
τ are the same, so we use the same ξ to denote the class in HH´1pAhol

τ q and

HH´1pAmod
τ q.) Their first-order terms αhol

1 and αmod
1 are characterized by the following

two sets of equations:

$

’

’

&

’

’

%

bholpαhol
1 q “ ´1 b ξ

b1|1,holpBτµ
˚,hol | αhol

1 q “ 0,

$

’

’

&

’

’

%

bmodpαmod
1 q “ ´1 b ξ

b1|1,modpB̂τµ
˚,mod | αmod

1 q “ 0.

Here, B̂τ “ Bτ ` wt
τ´τ̄ is the modular differential appearing in section 3.3.6. These two sets

of equations are two large systems of linear equations, applying Kaneko-Zagier map to the

holomorphic one will give the modular one, as KZ maps bhol to bmod, b1|1,hol to b1|1,mod,

µ˚,hol to µ˚,mod, Bτ to B̂τ , and ξ P HH´1pAhol
τ q to ξ P HH´1pAmod

τ q. So KZ also maps the

solution αhol
1 of the first system to the solution αmod

1 of the second system. As the higer

liftings are determined by α1 up to homology, we have shown that the edge contributions

are related by the Kaneko-Zagier map as wanted.

Combining with the argument above about the vertices contribution, we conclude that for

any partially directed stable graph G, the contributions are related by the Kaneko-Zagier

map. So summing over all the graphs, we proved Fmod
g,n pτq “ KZpF hol

g,npτqq.

Remark 3.3.9. It’s worth noting that the two A8-algebras Ahol
τ and Amod

τ are quasi-

isomorphic. Furthermore, our construction of categorical enumerative invariants is Morita

invariant. Therefore, the two different potentials F hol and Fmod depend solely on their cor-
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responding splittings. This underscores the importance of understanding the relationship

between these splittings in determining the resulting invariants.

Corollary 3.3.10. Assuming the Conjecture 3.3.7, we have

Fmod
g,n pτq ´ F hol

g,npτq “ ´
1

2

1

2πi

dF hol
g,npτq

dC2
¨

1

τ ´ τ̄
`O

ˆ

1

pτ ´ τ̄q2

˙

.

Proof. This can be proved by induction on the weight of F hol
g,npτq and direct calculation.

This corollary implies that to study
dF hol

g,npτq

dC2
, it suffices to analyze the difference on the left-

hand side, focusing on the terms that do not contain higher powers of 1
τ´τ̄ . Understanding

this difference hinges on the concept of Givental group action.

3.4 Givental group action

3.4.1. Given a vector space H with a nondegenerate symmetric bilinear form x´,´y we

constructed the vector spaces HTate “ Hppuqq (endowed with the residue pairing x´,´yres)

and H` “ Hrruss.

The Givental group Giv associated to this data is the subgroup of the group of auto-

morphisms of the symplectic vector space pHTate, x´,´yresq preserving the Lagrangian

subspace H` and acting as identity on H. Explicitly, an element of Giv is of the form

σ “ id` σ1 ¨ u` σ2 ¨ u2 ` ¨ ¨ ¨

with each σj P EndpHq, and σ is required to satisfy

xσ ¨ x, σ ¨ yyres “ xx, yyres for any x, y P HTate.

In the CEI of elliptic curves setting, for the A8-algebra Aτ , we will let H be HH˚pAτ q,

and x´,´y be the Mukai pairing.
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3.4.2. Given any two splittings s1 and s2 of the noncommutative Hodge filtration on

HC´
˚ pEτ q, there exists an element σ in the Givental group Giv that maps s1 to s2. To

define σ, we first extend si u-linearly to get a map s̃i : HH˚pEτ qrruss Ñ HC´
˚ pEτ q. Since

Eτ is smooth, the Hochschild to cyclic spectral sequence degenerates at the first page,

making s̃i an isomorphism. We then define σ as

σ :“ s̃´1
1 ˝ s̃2 : HH˚pEτ qrruss Ñ HH˚pEτ qrruss.

By definition, σ ¨ s̃1 “ s̃2. Since σ is u-linear, we can restrict σ to HH˚pEτ q and write it

explicitly as

σ “ σ0 ` σ1 ¨ u` σ2 ¨ u2 ` . . . ,

where each σi is a map HH˚pEτ q Ñ HH˚pEτ q.

Lemma 3.4.3. σ1 “ s21 ´ s11, where s11 and s21 are the u1-part of the splittings,

s1 “ id ` s11 ¨ u` s12 ¨ u2 ` . . .

s2 “ id ` s21 ¨ u` s22 ¨ u2 ` . . .

Proof. By direct calculation, s´1
1 “ id ´ s11 ¨ u ` Opu2q, then σ “ s´1

1 ˝ s2 “ id ` ps21 ´

s11q ¨ u`Opu2q.

3.4.4. In [CT24, Lemma 7.4], it is demonstrated that for any splitting s : H˚pLq Ñ

H˚pL`q at the homology level, there exists a corresponding chain-level splitting S : L Ñ

L`, given by a map of the form

S “ id ` S1 ¨ u` S2 ¨ u2 ` . . . ,

where Si P EndpLq, such that the induced map on homology is precisely s.

3.4.5. Given a chain-level splitting S, similar to before, extend it by linearity to obtain a
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quasi-isomorphism S : pL`, bq Ñ pL`, b ` uBq. As the u0 component of S is the identity,

we can express its inverse R as

R “ id `R1 ¨ u`R2 ¨ u2 ` . . . .

Using R and S, we define maps (see [CT24] for details)

Hi,j : u
´iLb u´jL Ñ C, u´ixb u´jy ÞÑ xp´1qj

j
ÿ

l“0

SlRi`j`1´lx, yy,

associated with the chain-level splitting S : L Ñ L`.

In the case of A “ Ahol
τ , for degree reasons, the only nontrivial Hi,j is given by

H0,0 : Lb L Ñ C, xb y ÞÑ xx,R1yy.

3.4.6. Similarly, we define maps Hσ
i,j : u´iH b u´jH Ñ C associated with a Givental

group element σ. For degree reasons again, the only nontrivial Hσ
i,j is

Hσ
0,0 : H bH Ñ C, α b β ÞÑ xα, σ1βy.

Then Lemma 3.4.3 implies

Lemma 3.4.7. Consider the two splittings s1 “ sMI and s2 “ sCC. Let σ be the Givental

group element that maps s1 to s2, and define the maps Hσ
i,j as above. Then

Hσ
i,jpα, βq “ 0,

unless i “ j “ 0 and α, β are constant multiples of rξs. In this case

Hσ
0,0prξs, rξsq “

1

2πi

1

τ ´ τ̄
.



38

Proof. If Hσ
i,jpu

´iα, u´jβq ‰ 0, then degpu´iαq ` degpu´jβq “ ´2, so degpαq ` degpβq “

´2pi ` j ` 1q. However, for elliptic curves, degpαq ě ´1, degpβq ě ´1. So the only

nontrivial case is i “ j “ 0, and degpαq “ degpβq “ ´1. Hence α, β P HH´1pEτ q, so they

are constant multiple of rξs.

Moreover, by a direct computation, we have

Hσ
0,0prξs, rξsq “ xrξs, σ1prξsqy

“ xrξs, αmod
1 ´ αhol

1 y

“ xrξs,
1

2πi

1

τ ´ τ̄
rΩsy

“
1

2πi

1

τ ´ τ̄

where the third equality is obtained from [CT20, Proposition 10.15].

3.5 Holomorphic anomaly equation

3.5.1. One important property of classical Gromov-Witten invariants is that they are

conjectured to satisfy the holomorphic anomaly equation. In [MRS18], Milanov, Ruan,

and Shen proved a holomorphic anomaly equation for some elliptic orbifolds, such as P1,

which are stack quotients of an elliptic curve by a nontrivial finite group. However, the

specific case of the elliptic curve was left as a conjecture. This conjecture was later proved

by Oberdieck and Pixton [OP18], who actually established a more general result about

Gromov-Witten classes.

3.5.2. We briefly revisit the case of the elliptic curve Eτ . Consider the generating series

of Gromov-Witten classes:

Cgpγ1, . . . , γnq “

8
ÿ

d“0

Cg,dpγ1, . . . , γnqqd

where the cohomology classes γi P H˚pEτ q, and Cg,dpγ1, . . . , γnq are cohomology classes of
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the moduli space Mg,n. Hence this series can be regarded as an element in H˚pMg,nq b

Qrrqss.

Remark 3.5.3. When integrating against the cotangent line classes ψi P H2pMg,nq, we

recover the Gromov-Witten invariants:

8
ÿ

d“0

xτk1pγ1q, . . . , τknpγnqy
Eτ
g,dq

d “

ż

Mg,n

ψk1 ¨ ¨ ¨ψkn ¨ Cgpγ1, . . . , γnq.

One of the main result of [OP18] is the following analogue of Conjecture 3.3.7.

Proposition 3.5.4. For any γ1, . . . , γn P H˚pEτ q, the series Cgpγ1, . . . , γnq is a cycle-

valued quasimodular form:

Cgpγ1, . . . , γnq P H˚pMg,nq b M̃pΓq.

We now introduce two maps that are needed to state the holomorphic anomaly equation.

Let ι : Mg´1,n`2 Ñ Mg,n be the gluing map along the last two marked points, and for

any g “ g1 ` g2 and t1, . . . , nu “ S1 \ S2, let

j :Mg1,S1\t‚u ˆMg2,S2\t‚u Ñ Mg,n

be the gluing map along the marked points t‚u, whereMgi,Si is the moduli space of stable

curves with marking in the set Si.

Theorem 3.5.5. Considering Cgpγ1, . . . , γnq as a polynomial in C2, C4, C6 with coefficients
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in H˚pMg,nq, we have

d

dC2
Cgpγ1, . . . , γnq “ι˚Cg´1pγ1, . . . , γn, 1, 1q

`
ÿ

g“g1`g2
t1,...,nu“S1\S2

j˚pCg1pγS1 , 1q b Cg2pγS2 , 1qq

´ 2
n
ÿ

i“1

ˆ
ż

E
γi

˙

ψi ¨ Cgpγ1, . . . , γi´1, 1, γi`1, . . . , γnq,

(3.1)

where γSi “ pγkqkPSi
and 1 P H˚pEq is the unit.

Roughly speaking, equation 3.1 measures the dependence of the modular completion of

Cgp. . . q on the non-holomorphic parameter and is thus called a holomorphic anomaly equa-

tion. Practically, it determines the quasi-modular form from lower weight data up to a

purely modular part (involving only C4 and C6).

Our main theorem is

Theorem 3.5.6. Assuming Conjecture 3.3.7, then the categorical enumerative potential

F hol
g,npτq of an elliptic curve Eτ satisfies the holomorphic anomaly equation

d

dC2
F hol
g,npτq “∆F hol

g´1,n`2pτq

`
ÿ

g“g1`g2
n“n1`n2

1

2

!

F hol
g1,n1`1pτq, F hol

g2,n2`1pτq

)

` F hol
g,npτq ⌟ Ξ,

(3.2)

where

∆ : C˚pMg,nq Ñ C˚`1pMg,n`2q

is the self twist-sewing operator,

t´,´u : C˚pMg1,n1q b C˚pMg2,n2q Ñ C˚`1pMg1`g2,n1`n2´2q
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is the twist-sewing operator,

Ξ : H´ Ñ H´ is a map defined as x ÞÑ xx, rξsyres ¨ u´1rξs,

and ⌟ is the truncation operator, defined as

α1 b ¨ ¨ ¨αn ⌟ β :“
n
ÿ

i“1

α1 b ¨ ¨ ¨ b αi´1 b βpαiq b αi`1 b ¨ ¨ ¨αn.

Remark 3.5.7. It is easier to understand those operators in equation 3.2 using ribbon

graphs. Recall that F hol
g,npτq can be expressed as a sum of ribbon graphs. Then ∆ corre-

sponds to gluing two output legs of a ribbon graph. ´,´ corresponds to gluing one output

of two different ribbon graphs together to form a single ribbon graph.

Proof. The key idea of the proof is to study the Givental group action on CEI potentials

Fg,n. Given a group element σ and a splitting s, suppose we have computed FA,sg,n for all

g and n. Then we can compute FA,σ¨s
g,n using

!

FA,sg,n

)

as follows:

FA,σ¨s
g,n “

ÿ

G stable of type pg,nq

1

|AutpGq|
ź

Contpvq
ź

Contpeq
ź

Contplq,

where each vertex v is decorated by FA,sgpvq,npvq
, each edge e is decorated by Hσ, and each

leg l is decorated by σ.

In the elliptic curve case, let s “ sMI be the monodromy invariant splitting, and σ be

the group element such that σ ¨ s “ sCC. Consequently, we have FAτ ,s
g,n “ F hol

g,npτq and

FAτ ,σ¨s
g,n “ Fmod

g,n pτq. Furthermore, according to Corollary 3.3.10, computing d
dC2

F hol
g,npτq

involves studying the difference Fmod
g,n pτq ´F hol

g,npτq, and focusing on terms with coefficients

of the first order, specifically those with 1
τ´τ̄ .

Lemma 3.4.7 reveals that the only nonzero Hσ is Hσ
0,0prξs, rξsq “ 1

2πi
1

τ´τ̄ , already possesses

a factor of 1
τ´τ̄ . Consequently, terms of the first order cannot contain more than one edge.

Hence, our analysis will concentrate on graphs with either no edges or with precisely one
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edge.

• Consider the graphs G without edges. They must have exactly one vertex, denoted

by v. This single vertex is decorated by F hol
g,n, while each of the n legs is decorated

by σ. Since F hol
g,n is multi-linear in its outputs, and σ “ id ` σ1 ¨ u is linear, we can

express the graph G as a sum of three types of graphs.

Firstly, let’s denote the first type as G0, where all legs are decorated by id. Secondly,

we have the second type, denoted as G1, featuring exactly one leg decorated by uσ1.

Finally, there’s the third type, labeled by G2, characterized by having more than

one leg decorated by uσ1.

F hol
g,n

G

σ σ. . . σ “

F hol
g,n

G0

id id. . . id `

F hol
g,n

G1

id ¨¨
uσ1

¨¨ id ` . . .

Let’s examine the contributions from each type of graph in more detail. Firstly,

consider G0, which corresponds to the term F hol
g,npτq. This represents the base con-

tribution of the CEI potential without any additional factors introduced by the

Givental group action.

Moving on to G1, we observe that it generates terms with exactly one factor of 1
τ´τ̄ .

This is due to the fact that the only non-zero term in σ1 is σ1prξsq “ 1
2πi

1
τ´τ̄ rΩs.

Remarkably, graphs of type G1 precisely correspond to the third part of the right-

hand side in equation 3.2.

As for G2, since it contributes higher powers of 1
τ´τ̄ , we can disregard these terms.

• Let’s analyze the graphs with exactly one edge, distinguishing between the scenarios

where the edge is a loop and where it is not.

In the case where the edge is a loop, the graph G has a single vertex v of type
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pg´1, n`2q, with all legs decorated by σ. Leveraging the same approach as previously

outlined, we decompose σ into σ “ id ` uσ1. Notably, since the decoration Hσ
0,0 on

the loop edge e already introduces a factor of 1
τ´τ̄ , we do not need σ1 on the legs.

Consequently, we can simplify graph G to a type pg´1, n`2q graph G0 with all legs

decorated by id, followed by the twist-sewing of two legs. This simplification yields

the first part on the right-hand side of equation 3.2.

F hol
g,n

G

Hσ

σσ. . . “

F hol
g,n`2

G0

¨¨ id

Hσ

id ` . . .

In the case where the edge e is not a loop, the graph G consists of two vertices v1

and v2, of types pg1, n1q and pg2, n2q, respectively. These vertices satisfy g1 ` g2 “ g

and n1 ` n2 “ n` 2. Again, we focus on the simplified graph G0, where all legs are

decorated by id. This simplification corresponds to the second part on the right-hand

side of equation 3.2.

F hol
g1,n1

F hol
g2,n2

G

σ . . . σ
Hσ

σ . . . σ “

F hol
g1,n1`1 F hol

g2,n2`1

G0

id . . . . . . id

Hσ

` . . .

Summing these simplified graphs results in the expression on the right-hand side of equa-

tion 3.2. This completes the analysis of the different graphs contributing to the holomor-

phic anomaly equation.
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Chapter 4

Hodge to de Rham degeneration

for the nodal cubic curve

4.1 Introduction

4.1.1. The study of algebraic de Rham cohomology goes back to Grothendieck. In [Gro66],

he shows that for a smooth scheme X over C there is an associated complex of sheaves

of differentials Ω‚
X whose hypercohomology H˚

dRpXq :“ H˚pΩ‚
Xq computes the singular

cohomology of the analytification of X. This complex is known as the algebraic de Rham

complex. Furthermore, the algebraic de Rham complex admits a filtration by naive trun-

cations, which leads to a spectral sequence 1Ep,q “ HppX,ΩqXq ùñ Hp`q
dR pXq. This

spectral sequence is called the Hodge to de Rham (HdR) spectral sequence. Grothendieck

also shows that when X is smooth over C, this spectral sequence degenerates at first page.

Deligne and Illusie [DI87] generalize this degeneration result to the case when X is smooth

and proper over any field k of characteristic 0, using the method of reduction to positive

characteristic.

4.1.2. The groups on both sides of the HdR spectral sequence are related to Hochschild

homology and negative cyclic homology, thus the HdR spectral sequence can be gen-
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eralized to the world of noncommutative geometry. The resulting spectral sequence

HH˚pXqrruss ùñ HC´
˚ pXq is called the Hochschild to cyclic spectral sequence. This can be

further generalized to a spectral sequence associated to any A8-algebra A. Konstevich

and Soibelman [KS09] conjectured that for any smooth and proper A8-algebra A over a

field of characteristic 0, the Hochschild to cyclic spectral sequence also degenerates at 1E.

This was later proved by Kaledin [Kal08; Kal17].

In this paper we study what happens when X is not smooth. In particular we investigate

the projective nodal cubic curve. Our main theorem is

Theorem 4.1.3. The Hodge to de Rham spectral sequence of the projective nodal cubic

curve degenerates at 2E.

The key to proving this theorem is in comparing the HdR spectral sequence for the projec-

tive nodal cubic with the ones for the affine nodal cubic as well as for the desingularization

P1 of the nodal cubic.

4.1.4. In the smooth projective case, the Hochschild to cyclic spectral sequence degener-

ates at 1E, so every Hochschild homology class can be lifted to negative cyclic homology,

i.e., the map HC´
n Ñ HHn is surjective for any n. This no longer holds for singular X.

However, by computing HH˚pXq and HC´
˚ pXq, we can prove that the Hochschild to cyclic

spectral sequence for nodal curve also degenerates at 2E. This enables us to classify those

Hochschild classes which lift, and to understand the map HC´
˚ pXq Ñ HH˚pXq.

4.1.5. This liftability of Hochschild classes, especially the class in HH´1pXq, is crucial

in the computation of categorical enumerative invariants [CT24]. We will discuss this in

section 4.5.

4.1.6. In Section 4.2 we will compute the Hochschild homology HH˚pXq of the nodal

curve X. In Section 4.3 we study the degeneration of the HdR spectral sequence of X.

In Section 4.4 we compute the negative cyclic homology HC´
˚ pXq of X. In Section 4.5

we characterize all the liftable Hochschild classes. Finally, in Section 4.6 we include some

results for the cuspidal curve case.
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4.2 Hochschild homology

Let X Ă P2 be the nodal cubic curve. Explicitly, X is cut out by the equation y2z “

x3 ´ x2z. In this section we will compute HH˚pXq.

Let LX denote the cotangent sheaf of X.

Lemma 4.2.1. There are two descriptions of LX .

1. LX admits a resolution 0 Ñ OXp´3q Ñ Ω1
P2 |X Ñ LX Ñ 0,

2. LX fits into a nontrivial extension 0 Ñ OP Ñ LX Ñ IP Ñ 0, here P “ r0 : 0 : 1s is

the node in X, and IP is the ideal sheaf.

Proof. The first part follows directly from the fact that X Ă P2 is a local complete

intersection, and the conormal sheaf is IX{I2
X – OP2p´3q|X – OXp´3q.

To prove the second part, recall that for any coherent sheaf F , there is a short exact

sequence

0 Ñ T Ñ F Ñ G Ñ 0,

where T is a torsion subsheaf of F and G is torsion free. In the case F “ LX , a local

calculation will show that T “ OP and G is locally isomorphic to IP . So G “ IP b K for

some line bundle K onX. Then using part (1), it’s easy to compute the Euler characteristic

χpX,LXq “ 0, thus the line bundle K – OX . Hence G – IP , and LX fits into a short

exact sequence

0 Ñ OP Ñ LX Ñ IP Ñ 0.

Remark 4.2.2. We will call the two term complex OXp´3q Ñ Ω1
P2

with amplitude r´1, 0s

the cotangent complex of X, and denote it L‚
X . Because X is a complete intersection, this

is a valid description of the cotangent complex of X in the sense of Illusie.

With these two descriptions of LX , we have
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Corollary 4.2.3. The cohomology of LX is given by

H ipX,LXq “

$

’

’

&

’

’

%

C i “ 0, 1

0 otherwise

.

Proof. We have computed the Euler characteristic χpX,LXq “ 0. Combining with the long

exact sequence of cohomology obtained from the second description, we get the result.

Lemma 4.2.4. The hypercohomology of
Ź2 L‚

X is given by

HipX,
2
ľ

L‚
Xq “

$

’

’

&

’

’

%

C i “ 0,´1

0 otherwise

.

(Here by
Ź2 we mean the derived exterior product.)

Proof. A direct calculation shows that

2
ľ

L‚
X “ Sym2pL‚

Xr1sqr´2s »

´

0 Ñ OXp´6q Ñ Ω1
P2 |Xp´3q Ñ OXp´3q Ñ 0

¯

r0s

» OXp´3q b

´

0 Ñ OXp´3q Ñ Ω1
P2 |X Ñ OX Ñ 0

¯

r0s.

If we reduce to an affine open subset Dpzq X X, the above short exact sequence 0 Ñ

OXp´3q Ñ Ω1
P2 |X Ñ OX Ñ 0 becomes

0 R R‘2 R 0

1

¨

˚

˝

3x2 ` 2x

´2y

˛

‹

‚

¨

˚

˝

f

g

˛

‹

‚

2yf ` p3x2 ` 2xqg
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where R “ Crx, ys{px3 ` x2 ´ y2q. By direct algebraic calculation we find that H0 “ C

generated by 1, and H´1 “ C generated by

¨

˚

˝

p3x` 2qy

2px2 ` xq

˛

‹

‚

. Notice that

¨

˚

˝

p3x` 2qy

2px2 ` xq

˛

‹

‚

is

annihilated by x, y, hence the p´1q cohomology sheaf is supported at the node P . So

0 Ñ OXp´3q Ñ Ω1
P2 |X Ñ OX Ñ 0 is quasi-isomorphic to 0 Ñ 0 Ñ OP Ñ OP Ñ 0.

Twisting this complex by OXp´3q will not affect hypercohomology.

With Lemma 4.2.4, it is easy to compute hypercohomology of higher exterior powers of

L‚
X .

Corollary 4.2.5. The hypercohomology of
Źk L‚

X is given by

Hip

k
ľ

L‚
Xq “

$

’

’

&

’

’

%

C, if i “ ´k ` 2,´k ` 1

0, otherwise

.

Proof. A direct calculation gives

k
ľ

L‚
X “

´

0 Ñ OXp´3kq Ñ Ω1
P2 |Xp´3k ` 3q Ñ OXp´3k ` 3q Ñ 0

¯

rk ´ 2s

» OXp´3k ` 3q b

´

0 Ñ OXp´3q Ñ Ω1
P2 |X Ñ OX Ñ 0

¯

rk ´ 2s

» OXp´3k ` 3q b

´

0 Ñ 0 Ñ OP Ñ OP Ñ 0
¯

rk ´ 2s

The rest of the argument is the same as in Lemma 4.2.4.

Combining the above calculations we have

Theorem 4.2.6. The Hochschild homology for the projective nodal cubic curve is given

by

HHnpXq “

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

C if n “ ´1

C2 if n “ 0

C if n ě 1

0 otherwise.
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Proof. The key idea we are going to use is from the work [BF08], where the authors prove

that there exists a decomposition of the Hochschild complex

HX{Y “ Sym‚pL‚
X{Y r1sq –

à

n

p

n
ľ

L‚
X{Y qrns.

We apply to our case for HX “ HX{k “ Sym‚pL‚
Xr1sq, and take hypercohomology to obtain

HH´˚pXq :“ R˚ΓpSym‚
OX

pL‚
Xr1sqq. Then the theorem follows from above calculation and

the fact that H0pX,OXq “ H1pX,OXq “ C.

4.3 Hodge to de Rham spectral sequence

4.3.1. Recall that for a smooth projective variety Y of dimension n there exists a de Rham

complex of sheaves

0 Ñ OY Ñ Ω1
Y Ñ Ω2

Y Ñ Ω3
Y Ñ ¨ ¨ ¨ Ñ ΩnY Ñ 0,

where ΩiY is the sheaf of Kähler differential i-forms on Y .

4.3.2. For a singular variety X (in particular when X is the nodal cubic curve), there is

an analogous derived de Rham complex

d̂R
‚
: 0 Ñ OX Ñ L‚

X Ñ

2
ľ

L‚
X Ñ

3
ľ

L‚
X Ñ . . . .

Notice that this derived de Rham complex is usually unbounded for singular varieties. In

general, we must consider completion, but this is not necessary for the nodal cubic curve

X, as L‚
X is bounded.

4.3.3. Using the Hodge filtration on d̂R
‚
(the filtration by powers of L‚

X) we obtain a

spectral sequence whose first page is

1Ep,q “ Rp`qΓpd̂R
p
r´psq “ RqΓpd̂R

p
q “ HqpX,

p
ľ

L‚
Xq.
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This spectral sequence converges to Hp`qpX, d̂R
‚
q “ Hp`q

sing pX,Cq, see [Bha12]. We will

call this spectral sequence the Hodge to de Rham spectral sequence. Our main theorem is

the following:

Theorem 4.3.4. The Hodge to de Rham spectral sequence for X degenerates at page 2E.

Before the proof, we can write down a few terms in the first page, given explicitly as

1 H1pOXq H1pLXq

0 H0pOXq H0pLXq H0p
2
Ź

L‚
Xq

´1 H´1p
2
Ź

L‚
Xq H´1p

3
Ź

L‚
Xq

´2 H´2p
3
Ź

L‚
Xq H´2p

4
Ź

L‚
Xq

...
. . .

. . .

σ

α γ

β1

β2

Notice that from our calculation in last section, all these terms are 1-dimensional.

We outline our proof in four steps, established in a series of lemmas.

• Step 1: α “ 0, Lemma 4.3.5.

• Step 2: βk is an isomorphism for all k ě 1, Lemma 4.3.6.

• Step 3: γ is an isomorphism, Lemma 4.3.7.

• Step 4: σ “ 0, Lemma 4.3.8.

Lemma 4.3.5. The map α : H0pOXq Ñ H0pLXq is 0.

Proof. This is trivial, since H0pOXq is the only nontrivial term in the 0-diagonal, and the

spectral sequence converges to the singular homology with H0pX,Cq “ C, hence it must

survive until the 8E-page.

Lemma 4.3.6. The maps βk : H´kp
Źk`1 L‚

Xq Ñ H´kp
Źk`2 L‚

Xq are all isomorphisms

for k ě 1.
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Proof. First observation is that
Źk`1 L‚

X is supported at the node when k ě 1, so the

computation of the maps βk is local. Thus we can use a local affine model around the

node, i.e., the affine nodal curve Y .

Let V “ Cxex, ey, eϵy be a graded C-vector space with deg ex “ deg ey “ 0 and deg eϵ “ ´1.

Then S :“ Sym˚V – Crx, ys b Crϵs{pϵ2q forms a graded C-algebra with deg x “ deg y “

0, deg ϵ “ ´1. When endowing it with a Crx, ys-linear differential δ on S as follows:

Crx, ys ¨ ϵ
δ:ϵ ÞÑx3`x2´y2
ÝÝÝÝÝÝÝÝÝÑ Crx, ys,

pS, δq forms a differential graded algebra that is quasi-isomorphic to R “ Crx, ys{px3 `

x2 ´y2q, i.e., S is a differential graded resolution of R. Thus to compute
Źk L‚

X –
Źk L‚

Y

when k ě 2, we can use the dg model
Źk LS{C.

Recall that LS{C – SbC V is a Crx, ys-module. We claim that there is a way to construct

a Crx, ys-linear differential ∆ such that pLS{k,∆q forms a differential graded S-module.

Explicitly, pLS{C,∆q is defined as follows:

Crx, ys ¨ ϵb dϵ

Crx, ys ¨ 1 b dϵ

‘

Crx, ys ¨ ϵb dx

‘

Crx, ys ¨ ϵb dy

Crx, ys ¨ 1 b dx

‘

Crx, ys ¨ 1 b dy

∆2 ∆1

Here we use dx, dy, dϵ to denote ex, ey, eϵ respectively. The differentials ∆1,∆2 are defined

as:

∆2pϵb dϵq :“ px3 ` x2 ´ y2q ¨ 1 b dϵ´ p3x2 ` 2xq ¨ ϵb dx` 2y ¨ ϵb dy,

∆1p1 b dϵq :“ p3x2 ` 2xq ¨ 1 b dx´ 2y ¨ 1 b dy,

∆1pϵb dxq :“ ϵ ¨ 1 b dx,
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∆1pϵb dyq :“ ϵ ¨ 1 b dy.

With the above definitions it is easy to check that pLS{C,∆q is a differential graded pS, δq-

module and there exists a naturally defined chain map ddR : S Ñ LS{C (the de Rham

differential) as follows:

Crx, ys ¨ ϵ Crx, ys

Crx, ys ¨ ϵb dϵ

Crx, ys ¨ 1 b dϵ

‘

Crx, ys ¨ ϵb dx

‘

Crx, ys ¨ ϵb dy

Crx, ys ¨ 1 b dx

‘

Crx, ys ¨ 1 b dy

δ

ddR1
ddR0

∆2 ∆1

Here,

ddR0 pfq :“
Bf

Bx
¨ 1 b dx`

Bf

By
¨ 1 b dy,

and

ddR1 pg ¨ ϵq :“ g ¨ 1 b dϵ`
Bg

Bx
¨ ϵb dx`

Bg

By
¨ ϵb dy.

With the above definition of pLS{C,∆q one can compute higher exterior powers
Źk LS{C,

and they will still be dg S-modules. One can extend the definition of ddR to higher exterior

powers to form the de Rham complex p
Ź‚ LS{C, d

dRq.

For our purpose it will be enough to show that the maps H´kp
k`1
Ź

LS{Cq Ñ H´kp
k`2
Ź

LS{Cq

are surjective. However, it is actually enough to prove this just for k “ 1, since
Źk`1 LS{C

is basically a shift of
Ź2 LS{C when k ě 1.

When k “ 1 we only need to consider the degree -1 part of the morphism ddR :
Ź2 LS{C Ñ
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Ź3 LS{C. By an explicit calculation we have

Crx, ys ¨ 1 b pdxb dϵq

‘

Crx, ys ¨ 1 b pdy b dϵq

‘

Crx, ys ¨ ϵb pdx^ dyq

Crx, ys ¨ 1 b pdx^ dyq

Crx, ys ¨ 1 b pdx^ dyq b dϵ

∆^2
1

ddR

Here we use ∆^2 to denote the differential in
Ź2 LS{C. In matrix form it can be written

as ∆^2
1 “

ˆ

´2y ´3x2 ´ 2x x3 ` x2 ´ y2
˙

. The de Rham differential is given as

ddR :

¨

˚

˚

˚

˚

˝

f

g

h

˛

‹

‹

‹

‹

‚

ÞÑ

ˆ

Bg

Bx
´

Bf

By
` h

˙

¨ 1 b pdx^ dyq b dϵ.

In particular,

¨

˚

˚

˚

˚

˝

´3xy ´ 2y

2x2 ` 2x

6x` 4

˛

‹

‹

‹

‹

‚

P kerp∆^2
1 q and ddRp

¨

˚

˚

˚

˚

˝

´3xy ´ 2y

2x2 ` 2x

6x` 4

˛

‹

‹

‹

‹

‚

q “ p13x ` 8q ¨ 1 b pdx ^

dyq bdϵ is a generator for H´1p
Ź3 LS{Cq – C ¨ 1b pdx^dyq bdϵ. Thus H´1p

Ź2 LS{Cq Ñ

H´1p
Ź3 LS{Cq is surjective, and the same holds for H´1p

Ź2 L‚
Xq Ñ H´1p

Ź3 L‚
Xq.

Lemma 4.3.7. The map γ : H0pLXq Ñ H0p
Ź2 L‚

Xq is an isomorphism.

Proof. It suffices to show that γ is surjective. Recall our second description of the cotan-

gent sheaf LX : it is a coherent sheaf that fits into a short exact sequence 0 Ñ OP Ñ

LX Ñ IP Ñ 0, where P is the node, and OP is the skyscraper sheaf and IP is the ideal

sheaf. Notice that dimH0pOP q “ dimH0pLXq “ 1, so they are isomorphic. Meanwhile,
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there exists a commutative diagram

H0pOP q H0pLXq H0p
Ź2 L‚

Xq

H0pOP q H0pLX |U q H0p
Ź2 L‚

X |U q

H0pOP q H0pLZ |V q H0p
Ź2 L‚

Z |V q

H0pOP q H0pLZq H0p
Ź2 L‚

Zq

γ

»

» »
»

where Z is the affine scheme Spec Crx, ys{pxyq, U and V are the formal neighborhoods of

the node P in X and Z respectively. Notice that since
Ź2 L‚

X is supported at the node P ,

restricting to the formal neighborhood U will induce an isomorphism on global sections.

The only nontrivial isomorphism in the diagram is H0pLX |U q » H0pLZ |V q, which can be

obtained by LX |U » LU » LV » LZ |V , see [Pér16, Proposition 3.9].

To show that the two maps in the first row compose to an isomorphism, it suffices to show

the same holds for the last row, which is easy by direct calculation. Similar to LX , LZ

also admits a resolution

0 Ñ T
1ÞÑxdy`ydx
ÝÝÝÝÝÝÝÑ T ¨ dx‘ T ¨ dy Ñ LZ Ñ 0,

where T “ Crx, ys{pxyq. Hence the last row can be written as

T {px, yq
T ¨dx‘T ¨dy
xdy`ydx T {px, yq ¨ dx^ dy

1 xdy 1 ¨ dx^ dy

This shows H0pOP q Ñ H0pLZq Ñ H0p
Ź2 L‚

Zq is an isomorphism, and the same holds for

X. So γ : H0pLXq Ñ H0p
Ź2 L‚

Xq is surjective, thus an isomorphism.

Lemma 4.3.8. The map σ : H1pOXq Ñ H1pLXq is 0.
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Proof. The key idea, due to Benjamin Antieau, is to compare the spectral sequence to the

spectral sequence associated to the normalization X̃ of X. More explicitly, consider the

resolution of singularities π : X̃ Ñ X, where X̃ is isomorphic to P1. Then consider the

Hodge to de Rham spectral sequence associated to X̃, where the first page is given by

1Ep,q
X̃

:“ HqpX̃,Ωp
X̃

q. The map π induces a morphism EX Ñ EX̃ of spectral sequences.

In particular, we obtain a commutative diagram

H1pX,OXq H1pX,LXq

H1pX̃,OX̃q H1pX̃,Ω1
X̃

q

σ

(4.1)

Since X̃ is isomorphic to P1, we know H1pX̃,OX̃q “ 0, so to show σ is 0, it suffices to

show that the right vertical map H1pX,LXq Ñ H1pX̃,Ω1
X̃

q is an isomorphism. This map

factors through

H1pX,LXq
φ

ÝÝÑ H1pX̃, π˚LXq
ψ

ÝÝÑ H1pX̃,Ω1
X̃

q,

where φ is induced from the unit LX Ñ π˚π
˚LX . (These functors are derived functors.)

We know H1pX,LXq – C, and H1pX̃,Ω1
X̃

q – C as X̃ – P1. We will show that the middle

term H1pX̃, π˚LXq is also C by first investigating the derived pullback of cotangent sheaf

π˚LX .

Notice that LX Ñ π˚π
˚LX is an isomorphism outside of the node, hence the computation

of π˚LX is a local computation. So we can take an open neighborhood around the node

and use the local model, i.e., a crossing of two lines for X. Then the local model for X̃ is

just a disjoint union of two lines, and T “ Crx, ys{pxyq is the coordinate ring for X. Then

LX “ T ă dx, dy ą {pxdy ` ydxq and LX admits a resolution

0 Ñ T

1ÞÑ

¨

˚

˚

˚

˝

y

x

˛

‹

‹

‹

‚

ÝÝÝÝÝÑ T 2

¨

˚

˚

˚

˝

f

g

˛

‹

‹

‹

‚

ÞÑf`g

ÝÝÝÝÝÝÝÑ LX Ñ 0.
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The pullback of this exact sequence to X̃ gives

0 Ñ T 1

1ÞÑ

¨

˚

˚

˚

˝

px, 0q

p0, yq

˛

‹

‹

‹

‚

ÝÝÝÝÝÝÝÝÑ T 12 Ñ π˚LX Ñ 0,

where T 1 “ Crxs ‘ Crys, and the map X̃ Ñ X corresponds to the map of C-algebras

T
f ÞÑpf{y,f{xq
ÝÝÝÝÝÝÝÝÑ T 1. By direct calculation, we see that π˚LX – C2 ‘ T 1.

The above local calculation implies that

π˚LX – OP1paq ‘ Op ‘ Oq,

with p, q corresponding to the preimages of the node P . In order to determine the degree

of the line bundle OP1paq we compute the Euler characteristic χpπ˚LXq.

Notice that the resolution of singularities morphism π can be written explicitly as factoring

through the twisted cubic C Ă P3,

P1 “ X̃ C P3

X P2

–

π
.

Then it is easy to see that π has degree 3, hence π˚OXp´3q “ OP1p´9q. Now consider

the Euler exact sequence on P2:

0 Ñ Ω1
P2 Ñ OP2p´1q‘3 Ñ OP2 Ñ 0.

Restricting to X and pulling back to X̃ under the map π, we obtain a short exact sequence

0 Ñ π˚Ω1
P2 |X Ñ OP1p´3q‘3 Ñ OP1 Ñ 0.
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It is still exact since all terms are locally free. So

χpπ˚Ω1
P2 |Xq “ 3χpOP1p´3qq ´ χpOP 1q “ ´7.

Since LX admits a resolution by 0 Ñ OP2p´3q|X Ñ Ω1
P2 |X Ñ LX Ñ 0, π˚LX admits a

resolution by 0 Ñ OP1p´9q Ñ π˚Ω1
P2 |X Ñ π˚LX Ñ 0. Hence

χpπ˚LXq “ χpπ˚Ω1
P2 |Xq ´ χpOP1p´9qq “ 1.

So χpOP1paqq “ χpπ˚LXq ´ χpOp ‘ Oqq “ ´1, hence a “ ´2, and we conclude that

π˚LX – OP1p´2q ‘ Op ‘ Oq. In particular, this shows that H1pX̃, π˚LXq “ C.

Lastly, we show that the two maps φ,ψ in

H1pX,L‚
Xq

φ
ÝÑ H1pX,π˚π

˚L‚
Xq “ H1pX̃, π˚L‚

Xq
ψ
ÝÑ H1pX̃,Ω1

X̃
q

are both isomorphisms.

• For the first map φ, notice that using derived projection formula, π˚π
˚LX can be

written as

π˚π
˚LX – π˚pπ˚LX bOX̃

OX̃q – LX bOX
π˚OX̃ .

Since OX and π˚OX̃ are isomorphic except at the node P , they fit into a short exact

sequence

0 Ñ OX Ñ π˚OX̃ Ñ OP Ñ 0.

Tensoring with LX produces a right exact sequence:

LX b OX Ñ LX b π˚OX̃ Ñ LX b OP Ñ 0.

Denoting the kernel of the first map by K, we obtain a long exact sequence

0 Ñ K Ñ LX b OX Ñ LX b π˚OX̃ Ñ LX b OP Ñ 0.
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It splits into two short exact sequences

0 K LX b OX LX b π˚OX̃ LX b OP 0

G

0 0

Since OX and π˚OX̃ are isomorphic except at node, we know K and LX b OP

are supported at the node P , so the long exact sequence of cohomology gives

H1pX,LXq – H1pX,Gq and H1pX,Gq ↠ H1pX,LX b π˚OX̃q “ H1pX,π˚π
˚LXq.

Combined with the above computation that H1pX,LXq and H1pX,π˚π
˚LXq are

both isomorphic to C, we know that φ is an isomorphism.

• For the morphism ψ, notice that it is induced from the natural pullback differential

map π˚LX Ñ Ω1
X̃
, i.e., a map of sheaves OP1p´2q ‘ Op ‘ Oq Ñ OP1p´2q. Since

ψ is a map on H1, the Op ‘ Oq part is not important here. So this is actually a

map OP1p´2q Ñ OP1p´2q, thus to show ψ is an isomorphism, it suffices to show

the map OP1p´2q Ñ OP1p´2q is nonzero, which can be checked along any affine

open subset. Since π : X̃ Ñ X is an isomorphism outside of the node, the pullback

differential map is an isomorphism outside of the node, which shows that the map

OP1p´2q Ñ OP1p´2q is nonzero as desired.

Hence the right vertical map in diagram 4.1 is an isomorphism, and the map σ : H1pOXq Ñ

H1pL‚
Xq is 0.

4.3.9. Combining Lemmas 4.3.5, 4.3.6, 4.3.7 and 4.3.8 we obtain a proof of Theorem 4.3.4.
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Explicitly the first page looks like

H1pOXq H1pL‚q

H0pOXq H0pL‚q H0p
Ź2 L‚q

H´1p
Ź2 L‚q H´1p

Ź3 L‚q

H´2p
Ź3 L‚q H´2p

Ź4 L‚q

. . .
. . .

0

0 »

»

»

(4.2)

where the three boxed terms H1pOXq, H1pL‚
Xq and H0pOXq remain unchanged till page

8E.

4.4 Negative cyclic homology

With Theorem 4.3.4 we are able to compute the negative cyclic homology HC´
˚ pXq.

In [Ant19], Antieau proves that there is a decreasing filtration on HC´
˚ pXq with graded

pieces given by

grnHC´
´˚pXq – R˚ΓpX,FnH d̂R

‚
r2nsq,

where F‚
H d̂R

‚
is the Hodge filtration (stupid filtration) of the derived de Rham complex

d̂R
‚
. Thus we can compute HC´

˚ pXq in two steps:

1. when n “ 0, F0
H d̂R

‚
r0s – d̂R

‚
. Hence from [Bha12], we know

gr0HC´
´˚pXq “ R˚Γpd̂R

‚
q – H˚pX,Cq.

This can be generalized to any n ă 0 with a shift of degree by 2n.

2. when n “ 1, we need to compute the hypercohomology of the truncated complex

F1
Hpd̂R

‚
r2sq. However the Hodge filtration on F1

Hpd̂R
‚
q also induces a spectral se-

quence, whose first page is just the first page of Hodge to de Rham spectral sequence

4.2 for X, but only has columns ě 1. Moreover, the differentials on this spectral
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sequence are also the same as in 4.2. Thus it is easy to see that the only nontrivial

cohomology is in degree 2, so

gr1HC´
´˚pXq “

$

’

’

&

’

’

%

C in degree 0

0 in other degrees

.

This can be generalized to any n ě 2, noticing that every FnH d̂R
‚
only has nontrivial

cohomology in degree 2, and we only need to take care of the 2n shifting of degrees.

To summarize, we have the following chart of dimensions of vector spaces

* -4 -3 -2 -1 0 1 2 3 4 5 6

gr´2HC´
´˚ 1 1 1

gr´1HC´
´˚ 1 1 1

gr0HC´
´˚ 1 1 1

gr1HC´
´˚ 1

gr2HC´
´˚ 1

gr3HC´
´˚ 1

Here the first row ˚ is the cohomological degree. After switching to homological degree,

we conclude that

Theorem 4.4.1. The negative cyclic homology for projective nodal cubic curve X is given

by

HC´
n pXq “

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

C2 if n ď 0 and even

C if n ď 0 and odd

C if n ą 0 and even

0 otherwise.

4.5 Liftable classes

In this section we will study the natural map HC´
˚ pXq Ñ HH˚pXq. Before this, let’s

introduce the Hochschild to cyclic spectral sequence. Recall for any variety Y there exists
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a spectral sequence whose first page is given by

...
...

...

¨ ¨ ¨ 0 HH´1 uHH0 ¨ ¨ ¨

¨ ¨ ¨ 0 HH0 uHH1 ¨ ¨ ¨

¨ ¨ ¨ 0 HH1 uHH2 ¨ ¨ ¨

...
...

...

uB uB

uB uB

uB uB

where u is a formal variable of homological degree ´2, and B is Connes’ operator. It

converges to the negative cyclic homology HC´
˚ pY q at 8E.

Theorem 4.5.1. The Hochschild to cyclic spectral sequence for the nodal cubic curve X

degenerates at page 2E.

Proof. The proof is straightforward once we apply the Hochschild-Kostant-Rosenberg

(HKR) isomorphism to the terms in the first page.

Recall we have the HKR isomorphism [BF08]

HHkpXq »
ź

q´p“k

HppX,

q
ľ

L‚
Xq.

Moreover the map uB :
ś

q´p“k

HppX,
Źq L‚

Xq Ñ
ś

q´p“k

HppX,
Źq`1 L‚

Xq is induced from

the de Rham differential d :
Źq L‚

X Ñ
Źq`1 L‚

X , i.e, the map is a direct product of maps
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HppX,
Źq L‚

Xq Ñ HppX,
Źq`1 L‚

Xq. Thus we can rewrite the first page as

...
...

...

¨ ¨ ¨ 0 H1pOq u

ˆ

H0pOq
‘

H1pLq

˙

u2H0pLq ¨ ¨ ¨

¨ ¨ ¨ 0
H0pOq

‘

H1pLq
uH0pLq u2H0p

Ź2 L‚
Xq ¨ ¨ ¨

¨ ¨ ¨ 0 H0pLq uH0p
Ź2 L‚q u2H´1p

Ź2 L‚q ¨ ¨ ¨

¨ ¨ ¨ 0 H0p
Ź2 L‚q uH´1p

Ź2 L‚q u2H´1p
Ź3 L‚q ¨ ¨ ¨

...
...

...

0 0 »

0 » 0

» 0 »

0 » 0

where the information of differentials in this page comes from our study of HdR spectral

sequence. Thus the 2E page looks like

...
...

...

¨ ¨ ¨ 0 H1pOq u

ˆ

H0pOq
‘

H1pLq

˙

0 ¨ ¨ ¨

¨ ¨ ¨ 0
H0pOq

‘

H1pLq
0 0 ¨ ¨ ¨

¨ ¨ ¨ 0 0 0 0 ¨ ¨ ¨

¨ ¨ ¨ 0 H0p
Ź2 L‚q 0 0 ¨ ¨ ¨

...
...

...

It is easy to see that this spectral sequence already degenerates.

Corollary 4.5.2. The natural map HC´
n pXq Ñ HHnpXq is

• an isomorphism, if n “ ´1 or n ě 0 and even.
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• 0, otherwise.

Proof. This follows directly from the above spectral sequence, since in pages 2E “ 8E,

along the n-th diagonal we should get a filtration of HC´
n pXq. But this filtration is either

0, or it only contains one term, that is HC´
n pXq – HHnpXq.

Classifying all the liftable Hochschild classes is important for computations of categorical

enumerative invariants [CT24]. Roughly speaking, CEI are invariants associated to an

A8-algebra A and extra data (usually given as a splitting of the Hodge filtration). Given

Hochschild classes of HH˚pAq as input, a CEI computation outputs complex numbers.

Originally, such computations were only defined for smooth and proper A8-algebras, so

we can’t use that formalism to compute CEI of the nodal cubic curve. However, Căldăraru

and Tu conjecture that for a nonsmooth but proper A8-algebra A, one should be able to

perform such computations as well, provided that the inserted classes are all liftable to

HC´
˚ pAq.

In particular, our Corollary 4.5.2 implies that we should be able to compute CEI of the

nodal cubic curve, with insertion classes in HH´1pXq. Combining with our observation

that CEIs satisfy holomorphic anomaly equation, we should be able to reduce computation

of genus ď 5 CEIs for any elliptic curves to genus ď 5 CEIs for the special nodal cubic

curve, which are more approachable from a numerical computation point of view.

Remark 4.5.3. We have tried to apply the same method to study what happens for the

degenerate quintic x0x1 ¨ ¨ ¨x4 “ 0 in P4, which is also interesting for computation of CEI.

However its Hodge to de Rham spectral sequence does not degenerate at 2E.

4.6 Appendix: cuspidal curve

Our study of the nodal cubic curve has a strong motivation from enumerative geometry,

but we can apply the same ideas to study the projective cuspidal curve C. The proof will

be easier than the nodal curve case. We just outline some of the results we get, and sketch
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the proofs.

Theorem 4.6.1. For the cuspidal curve C,

1. its Hochschild homology is given by

HHnpCq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

C n “ ´1

C3 n “ 0

C2 n ą 0

2. its Hodge to de Rham spectral sequence degenerates at page 2E;

3. its negative cyclic homology is given by

HC´
n pCq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

C3 n “ 0

C2 n ‰ 0 and even

0 otherwise

4. The natural map HC´
n pCq Ñ HHnpCq is

• an isomorphism, if n ě 0 and even,

• 0, otherwise.

Proof. As before the cotangent sheaf LC also admits a resolution

0 Ñ OCp´3q Ñ Ω1
P2 |C Ñ LC Ñ 0.

We can still compute the derived exterior powers of L‚
C , for example

2
ľ

L‚
C “ OCp´3q b

`

0 Ñ OCp´3q Ñ Ω1
P2 |C Ñ OC Ñ 0

˘

r0s,

and this will be a local calculation since
Ź2 L‚

C supports at the singular point. Us-
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ing the affine local model, we can compute the cohomology of the above chain complex

H0p
Ź2 L‚

Cq “ H´1p
Ź2 L‚

Cq “ C2. Then the remaining computations are similar to the

nodal curve case.
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Chapter 5

Open questions and further

direction

In this chapter we list some open questions suggested by our work.

1. This is already stated as Conjecture 1.6.4 in Chapter 1: we would like to prove

that the CEI invariants of nodal cubic have finite limit at cusp (hence they are

quasi-modular forms).

2. Currently, the CEI invariants are only defined for smooth and proper A8-algebras.

However, Gromov-Witten invariants are well-defined for non-smooth varieties. If

we believe homological mirror symmetry, then there should exists a version of CEI

invariants that is indeed defined for non-smooth A8-algebras. So we would like to

extend the current definition to non-smooth but proper A8-algebras.

3. In some sense, a non-smooth but proper A8-algebra and a non-proper but smooth

A8-algebra are dual to each other. We would like to know if there is any “dual”

version of CEI invariants that is well-defined for non-proper but smoothA8-algebras.

4. There are other special points other than the cusp on moduli space of elliptic curves.

In particular, there is the hexagonal point, corresponding to τ “ expp2πi{3q. Around
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it, one can define the so called FJRW invariants [FJR11; FJR13] of the Fermat cubic

W “ x3 ` y3 ` z3.

Meanwhile, the natural A-model category associated to a point near the hexagonal

point is the wrapped Fukaya category. We conjecture that using this category as

input of CEI construction, one should recover FJRW invariants. On the other hand,

on the B-side, one could use the matrix factorization category MFpX,W q as input.

It is derived equivalent to the wrapped Fukaya category by homological mirror sym-

metry conjecture. Hence if we believe homological mirror symmetry, using matrix

factorization category as input of CEI will allow us to construct the so called higher

genus B-model FJRW invariants.

5. We would like to know how the Hodge to de Rham spectral sequence degenerates

at the large complex structure limit point in some other moduli spaces, such as the

degenerate quintic threefold in the moduli of quintics. In particular, we would like

to classify all the liftable Hochschild classes for the mirror quintic.

6. Comparing the nodal cubic curve X and the cuspidal curve C, they have different

singularity types, but their Hodge to de Rham spectral sequences degenerate at the

same page. This suggests that the degeneration of HdR spectral sequence can not

distinguish different singularity types. However, the liftable classes in HH˚pXq and

HH˚pCq are different. In particular, the class of HH´1pXq is liftable while the class

of HH´1pCq is not. We would like to know if this observation can be generalized,

namely if we could distinguish different singularity type by studying their liftable

Hochschild classes.
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[CHT] Andrei Căldăraru, Yunfan He, and Junwu Tu. Holomorphic anomaly equation
for categorical enumerative invariants of elliptic curves. (to appear) (cit. on
p. 14).

https://doi.org/10.1007/s00220-007-0383-3
https://doi.org/10.4171/LEM/55-3-3
https://doi.org/10.4171/LEM/55-3-3
https://doi.org/10.2140/akt.2019.4.505
https://doi.org/10.2140/akt.2019.4.505
https://doi.org/10.1155/S1073792801000599
https://doi.org/10.1016/0550-3213(93)90548-4
https://doi.org/10.1016/j.aim.2007.06.013
https://doi.org/10.1016/j.aim.2007.06.013
https://arxiv.org/abs/1207.6193
https://doi.org/10.1155/S1073792898000166
https://arxiv.org/abs/2009.06673
https://arxiv.org/abs/2107.12405


69

[Coa08] Tom Coates. “Givental’s Lagrangian cone and S1-equivariant Gromov-Witten
theory”. In:Math. Res. Lett. 15.1 (2008), pp. 15–31. doi: 10.4310/MRL.2008.
v15.n1.a2 (cit. on p. 7).

[COGP91] Philip Candelas, Xenia C. de la Ossa, Paul S. Green, and Linda Parkes. “A
pair of Calabi-Yau manifolds as an exactly soluble superconformal theory”.
In: Nuclear Phys. B 359.1 (1991), pp. 21–74. doi: 10.1016/0550-3213(91)
90292-6 (cit. on pp. 3, 20).

[Cos09] Kevin Costello. “The partition function of a topological field theory”. In: J.
Topol. 2.4 (2009), pp. 779–822. doi: 10.1112/jtopol/jtp030 (cit. on p. 4).
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