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abstract

Living matter is often composed of microstructures which possess rotational
degrees of freedom, in addition to the translational degrees of freedom which
describe the point-like material particles of classical continuum mechanics. Lie
theory and Cartan’s method of moving frames provides a natural framework
in which both translational and rotational aspects of microstructured materials
can be treated in a unified manner. In this framework, the state of the material
is described by a collection of fields which take values in the special Euclidean
group and its Lie algebra. These fields are governed by Euler-Poincaré equa-
tions which enforce the local balance of linear and angular momentum. In
this dissertation, we develop theoretical and computational tools for modeling
these generalized continua. We then apply these methods to a number of
biophysical systems.

The twisting and writhing of a cell body and associated mechanical stresses
is an underappreciated constraint on microbial self-propulsion. Multi-flagellated
bacteria can even buckle and writhe under their own activity as they swim
through a viscous fluid. Modeling the cell body as a semi-flexible Kirchhoff
rod and coupling the mechanics to a dynamically evolving flagellar orientation
field, we derive reduced Euler-Poincaré equations governing dynamics of the
system, and rationalize experimental observations of buckling and writhing
of elongated swarmer cells of the bacterium Proteus mirabilis. Our analysis re-
veals a minimal stiffness required of a cell, below which its motility is severely
hampered.

Remodeling of biological membranes often involves interactions with biofil-
aments which polymerize on the membrane surface. Using a combination of
moving frame and level-set methods to describe membrane geometry, we de-
rive constrained Euler-Poincaré equations governing a surface-bound flexible
filament. We find that a membrane-bound filament can undergo growth-
induced buckling which results in highly localized forces and moments being
applied to the membrane. Our simulations also suggest that chirality may play
a role in a protein’s ability to sense membrane curvature.
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1 introduction

Lie theory is the language of symmetry and invariance. Its mathematical

foundations were laid down by Sophus Lie in his study of the symmetries of

differential equations [2]. In its original incarnation, a Lie group was a group

which was parameterized by a set of continuous variables, and each element

of the group was considered a transformation which mapped one solution of

the system of differential equations to another solution [3]. Lie’s fundamental

insight was that continuous groups can be generated by a much simpler set of

linear transformations, even when the groups themselves are highly nonlinear.

The space of such linear transformations is now called a Lie algebra.

Following Lie’s initial work with symmetry groups of differential equa-

tions, numerous applications of Lie groups quickly emerged. Chief among

these is the result of Emmy Noether that there is a one-to-one correspondence

between continuous symmetries of the an action functional and conserved

quantities of the associated Euler-Lagrange equations [4, 5]. The theories of

relativity and quantum mechanics, which form the bedrock of our current

understanding of physics, are likewise deeply intertwined with Lie theory.

The discovery that the equations of classical electrodynamics were invariant

under the action of the Lorentz group served as an impetus for development

of special relativity [6–8], and work initiated by Eugene Wigner and Hermann
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Weyl revealed a deep connection between the description of quantum me-

chanical phenomena and the representation theory of Lie groups and Lie

algebras [9–12]. Closely related to these quantum mechanical applications,

are the myriad of special functions which emerge as characters and matrix

elements of Lie group representations [13]. This thread continues to this day

with Lie groups appearing as gauge groups of standard model of particle

physics [14]. Outside of physics, the tools of Lie theory can be be found in

robotics and control theory [15, 16], computer vision [17], probability and

statistics [18], information theory [19], and a wide range of other fields [20].

In the modern conception of Lie theory, pioneered by Wilhelm Killing and

Élie Cartan, continuous group parameters are viewed as local coordinates

in smooth manifold and the Lie algebra is interpreted as the tangent space

at the identity element of the group [21]. This geometrization of Lie theory

paved the way for many of the powerful, geometric techniques which permeate

much of modern mathematical physics [22–25]. Cartan’s method of moving

frames [26, 27], in particular, will be used extensively throughout this work.

The method of moving frames is a technique which can be used to analyze

geometric properties of a manifold by studying transformation groups which

act upon it [28]. This provides a natural framework in which to model a

physical system whose state evolves under the action of a Lie group.
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Euler-Lagrange equations for a system evolving under the action of a Lie

group, G, with Lie algebra, g, are equivalent to a set of differential equations

governing the G-valued evolution operator and an associated quasi-velocity,

or g-valued infinitesimal generator [29]. We call these equations the Euler-

Poincaré equations [30]. This formalism can be particularly useful when the

Lagrangian of the system satisfies certain symmetry requirements. Through

a process known as Euler-Poincaré reduction, the equations of motion can be

replaced by a reduced order system depending only on the g-valued infinites-

imal generator [31]. Solutions to the original variational problem can then

be recovered by integration of the generator. Euler-Poincaré reduction and

its Hamiltonian analogue, Lie-Poisson reduction, are now a classical tools of

geometric mechanics [32, 33].

The prototypical example of a system which can be described using a Lie

group-valued evolution operator is the rigid body [34]. Each configuration of

the body is associated with the Euclidean transformation which maps a chosen

reference frame onto the body’s material frame. In this way, the configuration

space of the body can be identified with the special Euclidean group, SE(3),

and dynamics of the body can be described by Euler-Poincaré equations. The

Lie theoretic approach was beautifully demonstrated in the context of fluid

mechanics by Vladimir Arnold, who showed that the Euler equations for a
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perfect fluid are equivalent to the reduced Euler-Poincaré equations on the

infinite-dimensional group of volume preserving diffeomorphisms of the

region occupied by the fluid [35]. Arnold’s approach has since been extended

and applied to complex fluids, plasmas, and many other continua [36–40].

The Euler-Poincaré and Lie-Poisson formalisms have more recently been ex-

tended to a field-theoretic context [41–44]. The time evolution operator of the

classical Euler-Poincaré system is replaced by a G-valued configuration field

over a base space parameterized by material coordinates and time. This con-

figuration field is related to a g-valued differential one-form, or gauge potential,

whose components are the infinitesimal generators associated with coordinate

translations in the base space [45]. The Euler-Poincaré equations for these sys-

tems can be recast as covariant field equations satisfied by the gauge potential.

In contrast with the classical case, these generalized Euler-Poincaré equations

are insufficient to reconstruct solutions of the original variational problem,

and must be augmented with a set of integrability conditions. In mathematical

terms, a solution to the Euler-Poincaré field equations defines a connection

on a principal bundle with structure group G. The integrability conditions,

often referred to as structure equations and Maurer-Cartan equations, state that

the curvature of this principal connection must be identically zero [25]. When

the base space is taken to be R and interpreted as time, the zero-curvature
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condition is trivially satisfied and the field equations reduce to the classical

Euler-Poincaré equations on the structure group of the bundle [41].

Here we are interested in applying this extended Euler-Poincaré framework

to model microstructured continua. The simplest continuum theories treat

matter as if it consists of identical point-like material particles. In reality, a

material may exhibit varying degrees of structure depending on the scale at

which the it is examined [46]. When the minimum length scale set by mi-

crostructure is comparable to the length scale associated with applied stresses

or to the overall size of the medium, predictions of classical theories begin

to fail and it becomes necessary to consider the mechanical response of the

individual microstructures [47, 48].

Microstructured materials are often composed of subunits which are effec-

tively indivisible at the energy scales under consideration. These microstruc-

tures may have internal degrees, in addition to the three translational degrees

of freedom which describe classical point-like material particles. A material

composed of rigid microstructures which are fully characterized by a posi-

tion and orientation is called a Cosserat medium [49]. The state of a Cosserat

medium is given by assigning a Euclidean transformation to each microstruc-

ture, making it the field-theoretic analogue of the rigid body. The gauge

potential associated with this field of Euclidean transformations contains in-
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formation about the medium’s local deformation and velocity. Cosserat media

encompass a large class of models for structured and oriented materials which

include rods [50, 51], plates and shells [52], flexible polymers [53], carbon

nano-tubes and graphene [54], lipid membranes [55], bone [56], liquid crys-

tals [57], granular media [58], continuum spin systems [59–62], and certain

nonlinear sigma models [63–65].

The remainder of this dissertation will be spent developing the theory of

Cosserat media within the Euler-Poincaré framework and investigating vari-

ous applications. A proper discussion of the ideas outlined above requires a

variety of techniques rooted in differential geometry and group theory which

will covered in chapter 2. We will examine Cosserat media through the lens of

Euler-Poincaré theory in chapter 3, beginning with the case of a single rigid

body. Chapter 4 presents a model for an active flexible body at low Reynolds

number with applications to the biolocomotion of multi-flagellated microor-

ganisms. In chapter 5 we investigate the constrained dynamics of flexible

filaments, motivated primarily by biopolymers and their interactions with

cell membranes. We conclude with a discussion of possible future research

directions.
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2 lie theory

2.1 Introduction

In this chapter, we will introduce basic notation and terminology for discussing

Lie groups and Lie algebras. We begin by recalling some facts about manifolds

and differential forms, then we review the geometry and representation theory

of Lie groups and their Lie algebras. For a more thorough treatment of the

mathematical methods discussed in this chapter, we direct the reader to [21, 66–

69].

2.2 Geometry

Consider a smooth manifold M . The space of smooth functions on M will

be denoted C∞(M), and the space real-valued functions which are smooth

at the point x ∈ M by C∞(x). There are a number of equivalent intrinsic

definitions of the tangent space TxM at a point x ∈ M , and the utility of

these definitions can vary greatly depending on the context. We will adopt

the view that elements of TxM are either derivations on C∞(x), or germs of

smooth curves through the point x. A derivation on C∞(x) is linear map
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a(x) : C∞(x) → R which satisfies the product rule,

a(x)(fg) = (a(x)f)g(x) + f(x)(a(x)g), (2.1)

for any f, g ∈ C∞(x). A germ is an equivalence class of smooth curves through

x where curves are taken to be equivalent if there is some neighborhood of x

on which they agree. To simplify notation, we may drop the ‘x’ in (2.1) when it

can be understood from context. The set of partial derivative operators ei = ∂i

with respect to any set of local coordinates xi, or the corresponding germs,

provides a basis for TxM . Unless otherwise stated, we will take repeated

indices to imply summation:

aiei :=
∑

i

aiei. (2.2)

The cotangent space, T ∗
x M , is defined to be the dual space of TxM . An element

of T ∗
x M , called a covector, is a linear functional, ã : TxM → R, which maps

each vector v ∈ TxM to a real number, which we will denote by ⟨ ã|v⟩ or ã(v).

The differential df of a real-valued function f can be interpreted as an element

of T ∗M by defining

⟨ df |v⟩ = v(f) = vi ∂f

∂xi
. (2.3)
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Applying this definition to differentials of the coordinate functions results in a

basis, ẽi = dx i, for the cotangent space which satisfies,

〈
dx i

∣∣∣∂j

〉
= ∂xi

∂xj
= δi

j =


1 if i = j

0 if i ̸= j

(2.4)

We define the tangent bundle TM =
⋃

x∈M TxM and cotangent bundle T ∗M =

⋃
x∈M T ∗

x M to be the collection all tangent and cotangent spaces, respectively.

Higher order tensor fields can be constructed by taking tensor products of

collections of vector and covector fields. We will be particularly interested in

covariant tensors. A pth order covariant tensor on M is a real-valued multilinear

map F :
⊗p TxM → R defined on p copies of TxM . If F is a pth order covariant

tensor field on M , its symmetric and antisymmetric parts, denoted S(F ) and

A, respectively, can be defined by their action on p vectors (u1, . . . ,up):

S(F )(u1, . . . ,up) = 1
p!
∑

π∈Sp

F (uπ(1), . . . ,uπ(p)), (2.5)

A(F )(u1, . . . ,up) = 1
p!
∑

π∈Sp

sgn(π)F (uπ(1), . . . ,uπ(p)), (2.6)

where Sp is the permutation group on {1, . . . , p}. If F satisfies A(F ) = F

we say that it is totally antisymmetric. Fields of these totally antisymmetric
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covariant tensors are known as differential forms. We will denote the space rank

p differential forms (p-forms) defined on M , by ΛpM . A one-form is simply a

covector field, and can be expressed in terms of the coordinate differentials,

ã = aidx i. Higher order differential forms can be constructed using a bilinear,

associative operation called the wedge product. If ã is a p-form and b̃ is a

q-form, then their wedge product is the (p + q)-form defined by

ã ∧ b̃ = (p + q)!
p!q! A(ã⊗ b̃). (2.7)

For example, the wedge product of a pair of one forms, ã and b̃, is defined to

be twice the antisymmetric part of their tensor product,

ã ∧ b̃ = ã⊗ b̃− b̃⊗ ã, (2.8)

and the three-fold wedge product of one forms, ã, b̃, and c̃, is

ã ∧ b̃ ∧ c̃ =ã⊗ b̃⊗ c̃+ b̃⊗ c̃⊗ ã+ c̃⊗ ã⊗ b̃

− ã⊗ c̃⊗ b̃− c̃⊗ b̃⊗ ã− b̃⊗ ã⊗ c̃.
(2.9)

A basis for ΛpM can be constructed by taking wedge products of coordinate
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differentials,

Bp(M) =
{

dxi1 ∧ . . . ∧ dxip

∣∣∣ 1 ≤ i1 < . . . < ip ≤ dim(M)
}

, (2.10)

and we can write a p-form as

ã = ai1...ip dxi1 ⊗ . . . ⊗ dxip (2.11)

=
∑

i1<...<ip

ai1...ip dxi1 ∧ . . . ∧ dxip (2.12)

= 1
p!ai1...ip dxi1 ∧ . . . ∧ dxip (2.13)

Having dealt with their algebraic properties, we now turn to the exterior

calculus of differential forms. The central object of exterior calculus is exterior

derivative, denoted d, which acts on p-forms to produce (p + 1)-forms. Given

a p-form, ã =
∑

i<...<j

ai...j dxi ∧ . . . ∧ dxj , its exterior derivative is,

dã =
∑

i<...<j

∂kai...j dxk ∧ dxi ∧ . . . ∧ dxj . (2.14)

Given a map F : A → B from a manifold A into a manifold B, the pullback

F ∗ and pushforward 1 F∗ can be used to ‘pull’ certain quantities from F (A) ⊂

B back to A and ‘push’ certain quantities from A forward to F (A) ⊂ B. In
1sometimes called the differential/derivative
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general, objects which are expressed in terms of vector fields can be pushed

forward, while real-valued functions and differential forms can be pulled back.

Given a function f in C∞(B), a vector a in TA, and a covector b̃ in T ∗B we

define a new function F ∗f , vector F∗a, and covector F ∗b̃, in C∞(A), TB, and

T ∗A, respectively, by

F ∗f := f ◦ F, (2.15)

(F∗a)f := a(F ∗f), (2.16)
〈

F ∗b̃
∣∣∣a〉 :=

〈
b̃
∣∣∣F∗a

〉
. (2.17)

In the case that F = y(x) and its inverse F −1 = x(y) represent a transition

map between local coordinate charts in a manifold, the pushforward and

pullback just describe the classical transformation properties of covariant and

contravariant vectors,

F∗
∂

∂xj
= ∂yj

∂xi

∂

∂yj
(2.18)

(F −1)∗dxi = ∂xi

∂yj
dyj . (2.19)

The ‘∗’ notation can be quite cumbersome, so, we will often simply write

expression like (2.18) and (2.19) as ∂
∂xj = ∂yj

∂xi
∂

∂yj and dxi = ∂xi

∂yj dyj when it
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will not result in ambiguity.

The Lie derivative with respect to a vector field u, denoted Lu, is a gener-

alization of the directional derivative along the vector field. When applied to

a function f , it is equivalent to the standard directional derivative of f with

respect to u,

Luf = ui ∂f

∂xi
. (2.20)

Its action on a vector field v, is given by the commutator of the differential

operators u and v,

Luv = [u,v] =
(

ui ∂vj

∂xi
− vi ∂uj

∂xi

)
∂j . (2.21)

This is essentially a local measure of the coherence or independence the two

vector fields. Further discussion of the Lie derivative in the context of Lie

groups and algebras can be found in sections 2.4- 2.5.
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2.3 Euclidean submanifolds

It is often the case that we are interested in the embedding,

r : M → Rn (2.22)

of an m-dimensional manifold M into Rn. The prototypical examples are, of

course, embeddings of curves and surfaces in R3. Another important case

which we will encounter in section 2.5 involves the embedding of a Lie group

into the vector space of n-by-n matrices which can be identified with Rn2 . At

each point r(x) ∈ Rn, the ambient tangent space Tr(x)Rn ≃ Rn splits into

an orthogonal direct sum of vectors tangent and normal to the embedded

manifold S := r(M). We denote these vector spaces by Tr(x)S and Nr(x)S,

and define the tangent and normal bundles to be TS :=
⋃

x∈M

Tr(x)S and NS :=⋃
x∈M

Nr(x)S, respectively.

Suppose the vector fields bi = bν
i ∂ν , for 1 ≤ i ≤ m, form a basis for each

TxM . The pushforward of this basis by r,

ei := bν
i

∂r

∂xν
, (2.23)
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can always be extended to a basis for all of Rn,

(e1, . . . , em, em+1 . . . en). (2.24)

Basis fields of the form 2.24 are said to be adapted to M . We will continue with

adapted frames in section 3.3, after our discussion of group theory and the

rigid body.

2.4 Groups

A Lie group G is a space that is simultaneously a manifold and group with

smooth composition (g, h) 7→ gh and smooth inversion g 7→ g−1 operations. By

this we mean that for any g, h ∈ G, there is a local coordinate chart containing

g, h, gh, and g−1, in which the coordinates of gh are smooth functions of

the coordinates of g and h, and similarly, the coordinates of g−1 are smooth

functions of the coordinates of g. More explicitly, if we write g(x) for the

group element with coordinates x ∈ Rn, then group composition can be

expressed in local coordinates by a smooth map m : Rn × Rn → Rn which

satisfies g(m(x, y)) = g(x)g(y), and group inversion is described by a smooth

map f : Rn → Rn which satisfies g(f(x)) = g(x)−1. Demanding that the

group operations are smooth tightly constrains the local geometric structure
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of the group. We can answer many questions about the group as a whole by

examining a neighborhood of the identity 1 ∈ G, and then mapping the results

to other regions by left translation, Lg(h) = gh.

The Lie algebra g = T1G of the group G, defined as the tangent space at

the identity 1 ∈ G, and its dual space g∗ = T ∗
1 G contain basic information

about the structure of G, and will play a fundamental roll in what follows. We

can associate with each α ∈ g, a vector field,

a(g) = Lg∗α, (2.25)

defined as the pushforward of α by the left translation map. Similarly, we can

associate with each β ∈ g∗, a one-form,

b(g) = L∗
g−1β. (2.26)

defined as the pullback of β by the inverse left translation map. The fields

a and b are invariant under pushforward/pullback by the left translation

operator:

a(gh) = (Lg∗a) (h), (2.27)

b(g) = (L∗
hb) (hg). (2.28)



17

Objects which satisfy this condition are called left-invariant. Left-invariant

vector fields form a Lie subalgebra of the space of all vector fields on G. That is,

the space of left-invariant vector fields is closed under the standard vector space

operations, as well as the Lie derivative, Lab = [a,b], defined in section 2.2.

Then, given any two left-invariant vector fields a and b, we can produce a third

left-invariant vector field,

Lg∗ [a,b] (h) = [a,b] (gh). (2.29)

The fact that left invariant vector fields are uniquely determined by their values

at the identity allows us to define the Lie bracket of α,β ∈ g as,

[α,β] := Lg−1∗ [Lg∗α,Lg∗β] . (2.30)

The tangent space at the identity, g = T1G, together with the bracket (2.30)

is called the Lie algebra of the Lie group G. We note that some authors [21]

define the Lie algebra of a Lie group to be the space of left-invariant invariant

vector fields. These two definitions are equivalent by the isomorphism given

in equation (2.25).

By choosing bases, βi and βi, for g and g∗, respectively, we can construct
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left invariant frame fields,

bi := Lg∗βi, (2.31)

which provide a basis for each TgG, and left-invariant coframe fields,

bi := L∗
g−1βi, (2.32)

which provide a basis for each T ∗
g G. Basic information about the structure of

G is contained in the structure constants, ci
jk, which are related to the (co)frame

fields by

dbi = −1
2ci

jkb
j ∧ bk, (2.33)

[βi,βj ] = ck
ijβk. (2.34)

Many aspects of Lie theory can be essentially be reduced to the study of these

structure constants.

The Maurer-Cartan form is a left-invariant g-valued one-form on G which

is central to the dynamics problems we will consider in later chapters. It is a
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map which associates a g-valued field,

Ψ(a) = Lg−1∗a, (2.35)

with each vector field a on G. In terms of the left-invariant frame (2.31) and

coframe fields (2.32), we can express the Maurer-Cartan form as,

Ψ = βi ⊗ bi =
(
Lg−1∗bi

)
⊗ bi (2.36)

Then, by (2.33), the Maurer-Cartan form satisfies,

dΨ = −1
2ci

jkβi ⊗ bj ∧ bk = −1
2 [βj ,βj ] ⊗ bj ∧ bk (2.37)

Equation (2.37) is commonly written in the coordinate-free form,

dΨ + 1
2 [Ψ ∧ Ψ] = 0 (2.38)

by defining the bracket,

[Θ ∧ Φ] (u,v) = [Θ(u),Φ(v)]g − [Θ(v),Φ(u)]g (2.39)

for Lie algebra-valued one-forms, Θ and Φ, whereu and v are vector fields. The
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coordinate-free definition of the bracket can be extended to Lie algebra-valued

forms of higher degree, but this will be sufficient for our purposes.

Left/right-invariant vector fields and their integral curves are often en-

countered in the study of physical systems. Given an element α ∈ g we can

define a curve, g : R → G, as the solution to the initial value problem,

ġ = Lg∗α, g(0) = 1. (2.40)

This curve is the integral curve of the left-invariant vector field, a = Lg∗α

which passes through the identity. The solution to (2.40) is called the one-

parameter subgroup of G generated by α and will be written as,

g(t) = etα. (2.41)

In the case that G is a linear group, this notation is consistent with the standard

exponential of a linear operator.

One-parameter subgroups can provide us with a simple, intuitive view of

many of concepts encountered in the study of Lie theory. The Lie bracket of

elements of the Lie algebra is one such example. In section 2.2, we introduced

the interpretation of a tangent vector as an equivalence class of curves. Under

this interpretation, a parameterized curve, g(t), can be viewed as a differential
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operator with its action on a real-valued function defined by,

g · f := d
dt

f(g(t)) (2.42)

We can similarly define the action of a G-valued function, g(s, t), which de-

pends on multiple parameters by

g · f := ∂2

∂s∂t
f(g(s, t)) = ∂2

∂t∂s
f(g(s, t)) (2.43)

The product of one-parameter subgroups, esαetβe−sαe−tβ, viewed as a differ-

ential operator, can then be expanded in powers of s and t,

esαetβe−sαe−tβ = 1 + st [α,β] + O(s2) + O(t2). (2.44)

From this result, it is apparent that the Lie bracket encodes information about

non-commutativity of the group composition law.

The dynamics problems treated in this work will often require us to con-

sider integral curves generated by vector fields which lack the invariance

properties discussed above. When a vector field is not left-invariant, a(gh) ̸=

Lg∗a(h), it can no longer be expressed in terms of a constant element of g, but
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can still be associated with a g-valued field,

α(g) :=
(
Lg−1∗a

)
(g). (2.45)

The integral curve through 1 ∈ G, generated by (2.45) is no longer simply

given by the exponential, but rather by the path-ordered exponential, or product

integral,

g(t) = Pexp
∫ t

0
α(ξ)dξ , (2.46)

which is the formal solution to the nonhomogeneous differential equation,

ġ(t) = Lg(t)∗α(t), g(0) = 1. (2.47)

The path-ordered exponential can be computed as the limit of an ordered

product of one-parameter subgroups,

Pexp
∫ b

a
α(ξ)dξ =

b∏
a

eα(ξ)dξ = lim
n→∞

eα(ξ0)∆ξeα(ξ1)∆ξ . . . eα(ξn)∆ξ, (2.48)

where ∆ξ = (b − a)/n and ξk = a + k∆ξ.
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2.5 Representations

Many Lie groups and algebras of physical interest can be represented by

linear transformations. The class of functions which associate elements of

Lie groups and their Lie algebras with linear transformations in a way that

preserves their algebraic structure are called representations. We begin this

section by constructing the prototypical examples of Lie group and Lie algebra

representations: the adjoint representations, Ad and ad. This is followed by a

general discussion of linear representations, and the geometry of linear groups.

Given a one-parameter subgroup, etα, and a group element, g ∈ G, we can

construct a new one-parameter subgroup,

LgRg−1etα = getαg−1, (2.49)

where Lg and Rg−1 are left and right translation operators by g and g−1, re-

spectively. We denote the generator of this new one-parameter subgroup

by

Adgα := d
dt

LgRg−1etα

∣∣∣∣
t=0

= Lg∗Rg−1∗α, (2.50)
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and denote the derivative of g 7→ Adg at g = 1 by

adαβ := d
ds

Adesαβ|s=0 = (Ad1∗α)β. (2.51)

The maps, g 7→ Adg and α 7→ adα, are known as the adjoint representations

of G and g, respectively. Expanding the expression,

esαetβe−tα = 1 + tβ + st [α,β] + O(s2) + O(t2) (2.52)

to second order in s and t, and using the fact

d
ds

Adesαβ|s=0 = ∂2

∂s∂t

(
esαetβe−sα

)∣∣∣∣∣
s,t=0

, (2.53)

we find that the action of adα is equivalent the Lie bracket,

adαβ = [α,β] . (2.54)

In general, we define a representation 2 of a Lie group G to be a smooth

homomorphism, Π : G → GL(V ), from G onto a subgroup of GL(V ), the

group of invertible linear operators acting on a vector space V . In the case of
2It is also common to refer to the vector space V as the representation, rather than the map

Π.
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the adjoint representation defined above the vector space is the Lie algebra,

V = g, of the group. The general linear group, and any subgroup of the general

linear group, can be viewed as a submanifold of the set of all linear operators

on V . Since this space is itself a vector space, we may apply the methods

of 2.3, with the representation Π playing the role of the position vector. As the

tangent space of any vector space is naturally isomorphic to the space itself, it

is customary to simply define the Lie algebra gl(V ) of the general linear group

to be the vector space of all linear transformations on V . The derivative of

the group representation at the identity, π := Π1∗ : g → gl(V ), defines a Lie

algebra representation which maps the Lie bracket in g to the commutator in

gl(V ),

π [µ,ν]g = [πµ,πν]gl(V ) . (2.55)

We call π the Lie algebra representation induced by Π.

The general group GL(V ) on an n-dimensional vector space V is an n2-

dimensional submanifold of the n2-dimensional vector space gl(V ). Choosing

a basis, ei, for V and dual basis, ej , for V ∗ defines a basis, eie
j := ei ⊗ ej , for
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gl(V ), and induces a coordinate system on GL(V ),

xi
j(g) =

〈
ei
∣∣∣gej

〉
, (2.56)

with the property that,

xi
j(gh) = xi

k(g)xk
j (h), (2.57)

holds for all g, h ∈ GL(V ). If f is a real-valued function on GL(V ), then,

writing ∂
∂xi

j(g) := ∂
∂xi

j

∣∣∣∣
g
, the pushforward of the coordinate basis by Lg satisfies

Lg∗
∂

∂xi
j(h)

f(h) = ∂

∂xi
j(h)

f(gh)

= ∂xk
ℓ (gh)

∂xi
j(h)

∂

∂xk
ℓ (gh)

f(gh)

= xk
i (g) ∂

∂xk
j (gh)

f(gh).

(2.58)

Suppressing explicit dependence on g and h, and writing gk
i = xk

i (g), we have

Lg∗
∂

∂xi
j

= gk
i

∂

∂xk
j

. (2.59)



27

By a similar argument, Rg satisfies

Rg∗
∂

∂xi
j

= gj
k

∂

∂xi
k

. (2.60)

It follows that the adjoint action of g ∈ G on µ = µi
j

∂
∂xi

j

∣∣∣∣
x=1

is given by

Adgµ = Lg∗Rg−1∗

(
µi

j

∂

∂xi
j

)

= Lg∗

(
µi

j

[
g−1

]j
ℓ

∂

∂xi
ℓ

)

= gk
i µi

j

[
g−1

]j
ℓ

∂

∂xk
ℓ

(2.61)

where we have written
[
g−1]i

j := xi
j(g−1). The left invariant vector field associ-

ated with µmust be of the form

Lx∗µ = xi
kµk

j

∂

∂xi
j

, (2.62)
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so, the adjoint action of µ on ν = νi
j

∂
∂xi

j

∣∣∣∣
x=1

is given by

adµν = [µ,ν]

= L−1
x∗ [Lx∗µ,Lx∗ν]

= L−1
x∗

(
xi

kµk
j νn

m

∂xℓ
n

∂xi
j

∂

∂xℓ
m

− xℓ
nνn

mµk
j

∂xi
k

∂xℓ
m

∂

∂xi
j

)

= L−1
x∗

(
xi

mµm
n νn

j − xi
mνm

n µn
j

) ∂

∂xi
j

=
(
µi

nνn
j − νi

nµn
j

) ∂

∂xi
j

.

(2.63)

We can take the embedding, g = xi
jeie

j , of GL(V ) into gl(V ) to be the

operator-valued analogue of the position vector in Euclidean space. As dis-

cussed in section 2.3, we can then identify each tangent vector, u = ui
j

∂
∂xi

j
,

with

dg (u) = ui
j

∂g

∂xi
j

= ui
jeie

j . (2.64)

This identification allows us to make sense of expressions like gµ or µν as

a product of matrices, or more generally, as composition of linear operators

acting on the same vector space, and facilitates the numerical computation of

many abstract geometric operations introduced in section 2.4. For example,
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the pushforward by Lg is simply given by,

Lg∗w = gw, (2.65)

and the adjoint representations are given by,

adµν = µν − νµ, (2.66)

Adgµ = gµg−1. (2.67)

Any representation Π of a Lie group G can similarly be viewed as an

embedding of the group into gl(V ). In this context, a Lie algebra-valued

form is viewed as a matrix, Θ = Θi
jeie

j , of ordinary differential forms on

G. For example, the Maurer-Cartan form can be expressed in terms of the

representation as,

Ψ = Π−1dΠ , (2.68)

where Π−1 denotes the matrix inverse of the representation. We can now write

the product of gl(V )-valued forms in terms matrix multiplication by taking
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wedge products of matrix elements,

Θ ∧ Φ = Θi
k ∧ Φk

jeie
j . (2.69)

The bracket of Lie algebra-valued forms, defined by equation (2.39), reduces

to

[Θ ∧ Φ] = Θi
j ∧ Φk

ℓ

[
eie

j ,eke
ℓ
]

= Θ ∧ Φ − (−1)p+qΦ ∧ Θ,

(2.70)

where p and q are of degrees of Θ and Φ, respectively. In particular, for a Lie

algebra-valued one-form, like the Maurer-Cartan form, we have

[Ψ ∧ Ψ] = 2Ψ ∧ Ψ. (2.71)

It follows that the Maurer-Cartan equation 2.38 for a matrix group can be

reduced to

dΨ + Ψ ∧ Ψ = 0. (2.72)
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3 mechanics

3.1 Introduction

Motivated by the results of Castrillón López, Gay-Balmaz, Boyer, Ellis, and

others [41–43, 52, 59], we develop the theory of Cosserat media within the

Euler-Poincaré framework. The structure of this chapter is as follows. We

first examine in some detail the group of rotations SO(3) and the group of

rigid transformation SE(3) as applied to rigid body dynamics. Our examina-

tion of the rigid body motivates a discussion of variational principles on Lie

groups and the method of moving frames. The culmination of this chapter

is the derivation of generalized Euler-Poincaré equations governing the dy-

namics of an (n + 1)-dimensional Cosserat medium. Detailed discussion of

the background required for this chapter may be found in [32–34, 70, 71].

3.2 Rigid bodies

We begin our discussion of mechanics by considering the case of a single rigid

body, the equivalent of a zero-dimensional Cosserat medium. The majority

of concepts which are required for the study of higher dimensional Cosserat

media will appear in the derivation of Euler-Poincaré equations for the rigid

body. First, suppose the rigid body has a fixed point p. By choosing an
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orthonormal frame, bi = bi(t), affixed to the body at p, we can associate it’s

configuration with the orthogonal transformation, R = bi(t)ei, which maps

an inertial orthonormal frame, ei, to the body frame at the current time t. If

we identify the inertial frame vectors, ei, with the canonical basis for R3, and

the coframe vectors with ei = eT
i , we can view R as the transformation which

maps a coordinate vector measured in the body frame, v(B), to the coordinate

vector measured in the inertial frame v(I) = Rv(B). After fixing bi(0), the

configuration space of the rigid body can be identified with the orthogonal

group on R3,

O(3) =
{

R ∈ R3×3
∣∣∣RT R = 1

}
. (3.1)

This group consists of two disconnected components, the special orthogonal

group,

SO(3) =
{

R ∈ R3×3
∣∣∣RT R = 1, det(R) = +1

}
, (3.2)

and its complement of orientation-reversing transformations. As we can al-

ways choose the initial body frame, bi(0), such that det(R) = +1, we will

restrict ourselves the special orthogonal group.

A common way of approaching the problem is to introduce a local coordi-
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nate system

x : U → R3 (3.3)

which identifies some neighborhood U ⊂ SO(3) of the initial configuration

R(0) ∈ U with a region x(U) ⊂ R3. A drawback of this method is that the

system may approach a state R(t) ≈ Q /∈ U outside of the region in which

x is invertible. In this region of configuration space, small changes in the

coordinates can correspond to very large changes in the actual state of the

system, or vice versa, resulting in numerical difficulties. This is what occurs, for

example, during gimble lock (see Appendix A.2) when rotations are described

using Euler angles. This can be overcome, in part, by choosing a another local

coordinate system,

y : V → R3, (3.4)

which is better behaved in a neighborhood V of the current configuration R(t).

This approach requires the computation of transition functions, y ◦ x−1, which

are often quite complicated, and highly nonlinear.

We will adopt an alternative approach which dispenses with local coor-

dinates entirely, and describe the evolution of the body using the framework
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which we developed in section 2.4 and 2.5. Consider a trajectory R(t) which

passes through the identity element, R(0) = 1, with velocity, Ṙ(0), at t = 0. By

differentiating the constraint RT (t)R(t) = 1,

0 = d
dt

(
RT R

)∣∣∣∣
t=0

= ṘT R + RT Ṙ
∣∣∣
t=0

= ṘT (0) + Ṙ(0), (3.5)

we find that the Lie algebra so(3) = T1SO(3) consists of antisymmetric matri-

ces:

so(3) =
{
ω̂ ∈ R3×3

∣∣∣ ω̂T = −ω̂
}

. (3.6)

We define the canonical basis for so(3) to be

ê1, ê2, ê3 =


0 0 0

0 0 −1

0 1 0


,


0 0 1

0 0 0

−1 0 0


,


0 −1 0

1 0 0

0 0 0


. (3.7)

With respect to this basis, the structure constants are given by the permutation
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symbol,

[êi, êj ] = ck
ij êk,

ck
ij = εijk =



+1, if (i, j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2)

−1, if (i, j, k) = (2, 1, 3), (3, 2, 1), (1, 3, 2)

0. otherwise

(3.8)

We note the similarity between the commutation relations 3.8 and the cross

products of the canonical basis vectors in R3,

ei × ej = εijkek. (3.9)

In fact, the hat map,

·̂ : R3 → so(3) (3.10)

ei 7→ êi, (3.11)

defines a Lie algebra isomorphism between so(3) andR3 with the cross product

as its Lie bracket,

[ei,ej ]R3 := ei × ej . (3.12)
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Furthermore, the hat map relates the adjoint representation of SO(3),

AdRω̂ = Rω̂RT , (3.13)

to the standard action of SO(3) on R3,

AdRω̂ = R̂ω. (3.14)

This can be shown by noting that for any vectors a and b,

âb = a× b, (3.15)

and using elementary properties of the cross product,

R̂eiej = (Rei) × ej = R
(
ei ×

(
RTej

))
= RêiR

Tej . (3.16)

If we define,

⟨α̂, ω̂⟩so(3) := 1
2tr(α̂T ω̂), (3.17)
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then so(3) is also isomorphic to R3 as an inner product space,

⟨α̂, ω̂⟩so(3) = ⟨α,ω⟩R3 = α · ω. (3.18)

By differentiating the identities, RT R = 1 and RRT = 1, an arbitrary

trajectory, R(t), with instantaneous velocity Ṙ(t) = ∂tR(t), can be naturally

associated with two so(3)-valued matrices,

ω̂ = RT Ṙ, ω̂′ = ṘRT (3.19)

which are related by the adjoint action of SO(3),

ω̂′ = AdRω̂ = Rω̂RT , (3.20)

and lead to two separate characterizations of the tangent space,

TRSO(3) = {Rω̂| ω̂ ∈ so(3)} =
{
ω̂′R

∣∣ ω̂′ ∈ so(3)
}

. (3.21)

This fact is more than just a mathematical curiosity, and has a concrete physical

interpretation related to the frame of reference in which velocities are measured.

For simplicity, we will choose the body frame, bi, to satisfy bi(0) = ei, so that

R(0) = 1. Consider the trajectory of a material point with coordinates x
(I)
i (t)
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and x
(B)
i measured in the inertial and body frame, respectively, relative to the

center of rotation. The corresponding coordinate vectors, r(I) = x
(I)
i (t)ei and

r(B) = x
(B)
i ei, must be related by

r(I) = Rr(B). (3.22)

Similarly, the linear and angular velocities in the two frames are related by

u(I) = Ru(B), ω(I) = Rω(B). (3.23)

Taking a time derivative of the position vector,

u(I) =
(
ṘRT

)
r(I) = R

(
RT Ṙ

)
r(B) = Ru(B), (3.24)

and comparing to the kinematic relations,

u(I) = ω(I) × r(I), u(B) = ω(B) × r(B), (3.25)

we find that

ω̂(I) = ṘRT , ω̂(B) = RT Ṙ. (3.26)
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We now consider a body which is free to translate, as well as rotate, and

must therefore expand our notion of a frame to include the point, o ∈ E3, at

which the orthonormal triad, (e1, e2, e3), is located in Euclidean space. We

choose f = (o, ei) to be a frame located at the origin o, and identify the vectors,

ei, with the canonical basis for R3. The affine space E3 is distinguished from

the vector space R3 in that it has neither a preferred origin, or a canonical set

of coordinate axes. Had we chosen a coordinate system induced by another

frame, f ′ = (o′, ei′) = (o +r, Rei), then coordinate vectors, z and z′, of a point

p ∈ E3 relative to the frames f and f ′, respectively, would be related by

z = Rz′ + r. (3.27)

By fixing a reference frame, f , any other frame with similar orientation can

be defined relative to f by the pair, (R, r), with R ∈ SO(3). These trans-

formations form a group, SE(3), called the special Euclidean group, with a

composition law given by (R, r)(R′, r′) = (RR′, Rr′ + r), and inverses by

(R, r)−1 = (R−1, −R−1r).

While the transformation (3.27) is affine rather than linear, SE(3) does

in fact have a faithful representation as a subgroup of GL(4). We choose to
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identify the special Euclidean group with this 4-by-4 matrix representation,

SE(3) =


R r

0 1


∣∣∣∣∣∣∣∣∣R ∈ SO(3), r ∈ R3

 . (3.28)

We can represent the transformation (3.27) by identifying E3 with an affine

subspace of R4,

z
1

 =

R r

0 1


z

′

1

 . (3.29)

The Lie algebra representation induced by (3.28),

se(3) =


ω̂ µ

0 0


∣∣∣∣∣∣∣∣∣ ω̂ ∈ so(3),µ ∈ R3

 , (3.30)

is spanned by the six generators,

ê1 0

0 0

 ,

ê2 0

0 0

 ,

ê3 0

0 0


0 e1

0 0

 ,

0 e2

0 0

 ,

0 e3

0 0

 ,

(3.31)
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By a slight abuse of notation, we will often simply write the 4-by-4 matrices in

Eq. (3.31) as êi and ei when it is clear that we are discussing elements of se(3)

rather than elements of so(3) or R3. The structure constants for se(3) are given

by the following commutation relations,

[êa, êb] =εabcêc, [ea,eb] = 0

[êa,eb] = [ea, êb] = εabcec

(3.32)

The velocity, Ṡ = ∂tS, tangent to any trajectory, S, through SE(3), is associ-

ated with an se(3)-valued field by left translation,

At = ω̂t + µt, Ṡ = SAt, (3.33)

where ω̂t = R−1Ṙ and µt = R−1ṙ, are the linear and angular velocities mea-

sured in the body frame. We can endow SE(3) with a left-invariant Riemannian

metric by defining the inner product of tangent vectors, Ṡ = SAt and Ṡ′ = S′A′
t

to be the sum of inner products of their linear and angular components,

〈
Ṡ, Ṡ′

〉
SE(3)

= 1
2tr(ṘT Ṙ′) + ṙT ṙ′ = ωt · ω′

t + µt · µ′
t (3.34)

The basis 3.31 is orthonormal with respect to this metric.
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Having dealt with kinematics, we now turn to dynamics of the rigid body

and seek solutions of the constrained variational problem,

δ

∫
L (S, At)dt = 0, ∂tS = SAt. (3.35)

We introduce a real parameter, ξ, and write variations, δS = ∂ξS̃
∣∣∣
ξ=0

and

δAt = ∂ξÃt

∣∣∣
ξ=0

, in terms of the fields satisfying, S̃
∣∣∣
ξ=0

= S and Ãt

∣∣∣
ξ=0

= At.

The vector ∂ξS̃ is tangent to SE(3) at the point S̃, so, it is the left translate of an

se(3)-valued field, ∂ξS̃ = S̃Ãξ . Smoothness of S̃ requires ∂t∂ξS̃ − ∂ξ∂tS̃
∣∣∣
ξ=0

= 0,

which places constraints on δAt and Aξ := Ãξ

∣∣∣
ξ=0

. A straightforward exercise

in linear algebra shows these constraints are given in terms of the adjoint

representation by,

adAtAξ = [At,Aξ] = ω̂t × ωξ + ωt × µξ − ωξ × µt, (3.36)

δAt = ∂tAξ + adAtAξ, (3.37)

where ω̂ξ and µξ are the angular and linear parts of Aξ = ω̂ξ +µξ , respectively.

We note that this commutation relation is simply the pullback of Maurer-

Cartan equation, Eq. (2.38), by S̃. This fact will be useful as we continue our

discussion of higher dimensional Cosserat media.

With expressions for the constrained field variations in hand, we find that
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the first variation of the action, A =
∫ t2

t1
L dt , is given by

δA =
∫ t2

t1

〈
δL

δAt

∣∣∣∣δAt

〉
+
〈

δL

δS

∣∣∣∣δS
〉

dt

=
∫ t2

t1

〈
δL

δAt

∣∣∣∣∂tAξ + adAtAξ

〉
+
〈

δL

δS

∣∣∣∣SAξ

〉
dt

=
∫ t2

t1

〈
−∂t

δL

δAt
+ ad∗

At

δL

δAt
+ L∗

S
δL

δS

∣∣∣∣Aξ

〉
dt +

〈
δL

δAt

∣∣∣∣Aξ

〉∣∣∣∣t2

t1

(3.38)

where ad∗
At

denotes the coadjoint representation of se(3) acting on its dual

se∗(3), and we have used the fact that LS∗Aξ = SAξ for a linear group. We

define the coadjoint action on δL
δAt

∈ se∗(3) by the equation

〈
ad∗

At

δL

δAt

∣∣∣∣Aξ

〉
:=
〈

δL

δAt

∣∣∣∣adAtAξ

〉
. (3.39)

The existence of a Riemannian metric 3.34 allows us to identify se∗(3) ≃ se(3),

or more generally, T ∗SE(3) ≃ TSE(3). Under this identification, the variational

derivative δL
δAt

is equivalent to a gradient in se(3),

δL

δAt
= ∇̂ωtL + ∇µtL , (3.40)

where ∇ωt and ∇µt denote gradients with respect to the angular and linear

components of At. The quantity δL
δS ∈ T ∗

S SE(3) can similarly be expressed as a
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vector in TSSE(3),

δL

δS = ¤�(bi × ∇bi
L )R + ∇rL , (3.41)

and its pullback as an element of se(3),

L∗
S

δL

δS = R−1 ¤�(bi × ∇bi
L )R + R−1∇rL , (3.42)

where R = bie
i, and gradients with respect to the body frame vectors, bi, and

position, r, are denoted ∇bi
and ∇r, respectively. We can also now express the

coadjoint action on elements of se(3), rather than se∗(3). For any B = θ̂ + ν

and B′ = θ̂′ + ν ′ in se(3), we have

ad∗
BB′ = −θ̂ × θ′ − ν̂ × ν ′ − θ × ν ′. (3.43)

Combining the various expressions above, we find the Euler-Poincaré equa-

tions for the body to be

(∂t + ωt×) ∇ωtL + µt × ∇µtL − R−1 (bi × ∇bi
L ) = 0 (3.44)

(∂t + ωt×) ∇µtL − R−1∇rL = 0, (3.45)



45

where the position and orientation of the body is given by the path-ordered

exponential defined by equation (2.48),

S(t) = Pexp
∫ t

t0
Atdt (3.46)

3.3 Moving frames and Cosserat rods

Consider an immersion r : M → R3 of a manifold M into R3, and a map,

S : M → SE(3), (3.47)

S(s) =

R(s) r(s)

0 1

 , (3.48)

where the columns, bi, of the orthogonal matrix, R = bie
i, are adapted to M

in the sense discussed in section 2.3. We say that S is a moving frame adapted

to M , or a framing of M . For a curve, this means b1 = T is the unit tangent

and b2 · T = b3 · T = 0. If M is a surface, then b3 = n is the unit normal and

(b1, b2) span the tangent space of the surface.

The Frenet-Serret frame, (T ,N ,B), may be viewed in this way by defining,

R = Te1 +Ne2 +Be3, (3.49)
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and the Frenet-Serret equation may be written,

∂sS = SAs, As =

τ ê1 + κê3 e1

0 0

 , (3.50)

where s, κ and τ are the arclength, curvature, and torsion of the curve, respec-

tively. We will call the quantity,

Ω = Ωiei = τe1 + κe3, (3.51)

the curvature vector. Comparing with the analogous rigid body equations,

we see that the curvature vector is the spacelike analogue angular velocity.

Torsion and curvature represent rotation about the first, T = Re1, and third,

B = Re3, frame vectors, respectively, but the frame undergoes no rotation

about the second vector,N = Re2. The vanishing of the second component of

the curvature vector, e2 · Ω = 0, can in fact be taken as the defining property of

the Frenet-Serret frame.

The Frenet-Serret frame is far from the only frame which can be adapted

to the curve. Any other frame which is related to Frenet-Serret frame by
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continuously varying rotation about the tangent,

R(s) 7→ eθ(s)T̂ (s)R(s) = R(s)eθ(s)ê1 , (3.52)

is also a perfectly valid choice. Under such a change of frame, the longitudinal

Ω∥ = Ω1e1 and transverse Ω⊥ = Ω2e2 + Ω3e3 will transform as

Ω∥ 7→ Ω∥ + ∂sθe1 (3.53)

Ω⊥ 7→ e−θê1Ω⊥ = κ sin θe2 + κ cos θe3 (3.54)

Given the new frame and the new curvature vector, the quantities (κ, τ, θ) and

the Frenet-Serret frame can be recovered using,

T = Re1 (3.55)

N = R (Ω⊥ × e1) /κ (3.56)

B = RΩ⊥/κ (3.57)

κ = |Ω⊥|, (3.58)

τ = Ω1 + e1 · (Ω⊥ × ∂sΩ⊥)
|Ω⊥|2

= Ω1 − ∂sθ (3.59)

θ(s) = θ0 +
∫ s

0
Ω1 − τ ds . (3.60)
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An alternative to the Frenet-Serret frame, known as the Bishop frame [72],

can be constructed by choosing θ such that

e1 · Ω = ∂sθ + τ = 0. (3.61)

The result is a frame which ‘rolls’ along the curve, without any twisting about

the tangent. While the individual components of the curvature vector vary

under a change of adapted frame, the magnitude of its transverse part, |Ω⊥| =

κ, is invariant. Out of all frames adapted to a given curve, the frame with the

smallest curvature vector is the Bishop frame, since it’s curvature vector only

has a transverse part. Due to this fact, the Bishop frame is sometimes referred

to as the rotation minimizing frame [73].

Figure 3.1: Illustration of a framed curve highlighting its centerline (green),
cross-sections (orange), and adapted frame (red).

Yet another option is to take the angle θ to represent a genuine geometric
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degree of freedom, rather than simply a redundancy in our description of the

curve. Physically, we imagine the framed curve as being a thin filament or

ribbon, and the frame is interpreted as the material frame of the filament’s

cross-sections at each point along the curve. Then, the quantity θ(s2) − θ(s1)

measures the total angle through which the material frame rotates, relative to

a known reference frame, like the Frenet-Serret or Bishop frame, as it moves

moves along the curve from s1 to s2.

If we are to model a physical system, such as a flexible filament, it makes

sense to take the material frame as fundamental, rather than defining it relative

to something unphysical like the Frenet-Serret frame of the filament’s center-

line. Components of the curvature vector, which describe physical twisting

and bending about the material frame vectors, can then be taken as funda-

mental dynamical variables. Up until now, we have considered only arclength

parameterized curves and adapted frames. This is equivalent to requiring the

filament satisfy the inextensibility and unshearbility constraints of a Kirchhoff

rod [74–76],

∂sr = Re1. (3.62)

Relaxing this constraint results in a model which is able to account for the
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full range of deformations illustrated in Figure 3.2. This more general system

is known as a Cosserat rod. As we demonstrate in later sections, it is often

useful to treat a system using the full Cosserat model, even when we are only

interested in inextensible/unshearable case. This allows us to take advantage

of Euler-Poincaré variational methods, and the additional constraints are easily

accounted for through the introduction of Lagrange multipliers and constraint

forces.

Figure 3.2: The modes of deformation of a Cosserat rod include (a) twisting,
(b) bending, (c) shearing, (d) and stretching.

To study the dynamics of the Cosserat rod, we must consider a moving
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frame,

S(s, t) =

R(s, t) r(s, t)

0 1

 , (3.63)

which depends on time t, as well as the material coordinate s. The parameters

s and t are each associated with an se(3)-valued generator,

∂sS = SAs, As =

ω̂s µs

0 0

 , (3.64)

∂tS = SAt, At =

ω̂t µt

0 0

 . (3.65)

When the rod is allowed to be extensible/shearable, the frame may no longer

satisfy Eq. (3.62), and the generator As now contains information about ex-

tensile and shear deformations, µs = (bi · ∂sr)ei, in addition to rotational

deformation described by ωs. The timelike generator, At, can be physically

interpreted just as it was for the rigid body, with ωt and ut representing the

angular and linear velocity of the material frame.

The generators As and At can be viewed as components of the se(3)-valued
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one-form, or gauge potential, defined by,

A = S−1dS = Asds + Atdt . (3.66)

The gauge potential associated with any smooth multi-parameter moving

frame must satisfy an integrability condition given by the Maurer-Cartan

equation (2.38). The Maurer-Cartan equation on SE(3) is equivalent to a pair

of vector equations,

∂tωs − ∂sωt + ωt × ωs = 0, (3.67)

∂tµs − ∂sµt + ωt × µs − ωs × µt = 0, (3.68)

which are sometimes referred to as Euclidean structure equations. Although

here we have interpreted s as a material coordinate and t as time, this integra-

bility condition applies to any pair of parameters which a moving frame may

depend on. We have already seen another example of this in our derivation of

the Euler-Poincaré equations for the rigid body where we found that variations

of the body velocities were similarly constrained by the structure equations.
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3.4 Cosserat media

We now turn to the case of a general Cosserat medium. We formulate the

problem as a Lagrangian field theory on a base space, M ⊂ Rn+1, param-

eterized by n spacelike material coordinates and one timelike coordinate,

s = (s1, . . . , sn, sn+1 = t). The state space of the medium consists of fields

over M ,

S(s) =

R(s) r(s)

0 1

 (3.69)

which take values in the special Euclidean group SE(3). Each field configu-

ration is associated with a gauge potential, A = Aαdsα , whose components

describe local velocity and deformation, and take values in the special Eu-

clidean algebra, se(3). A choice of gauge is equivalent to a choice of frame

for each s ∈ M in which to measure velocities and deformations. There are

two natural choices when it comes to fixing a gauge which are analogous to

the body-fixed frame and space-fixed, or inertial, frame used in classical rigid

body dynamics. The body-fixed gauge results in a potential,

A(B) = S−1dS , (3.70)
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which is equivalent to the pullback of the left-invariant Maurer-Cartan on

SE(3) by the field S, while the space-fixed gauge results in a potential,

A(I) = dS S−1, (3.71)

which is equivalent to the pullback of the right-invariant Maurer-Cartan by S.

We will generally work in the body-fixed gauge, A = S−1dS , unless otherwise

specified.

The methods which we used in our derivation of the Euler-Poincaré equa-

tions for the rigid body can be used with only slight modifications to derive

equations governing the general Cosserat medium. Rather than repeating

the derivation we simply state the result. The Euler-Poincaré equations for

a system with Lagrangian density L = L (S, A) are given in the body-fixed

gauge by

−∂α
δL

δAα
+ ad∗

Aα

δL

δAα
+ L∗

S
δL

δS = N, (3.72)

dA + 1
2 [A ∧ A] = 0, (3.73)

S = Pexp
∫

A (3.74)

where ad∗
Aα

denotes the coadjoint representation of se(3), L∗
S denotes pullback
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by the left translation operator on SE(3), [A ∧ A] is the bracket for Lie algebra-

valued differential forms, and N accounts for any non-variational stresses

applied to the system. Decomposing external stress as N = −m̂−f , separating

into of angular and linear parts gives

(∂α + ωα×) ∇ωαL + µα × ∇µαL − R−1 (bi × ∇bi
L ) = m (3.75)

(∂α + ωα×) ∇µαL − R−1∇rL = f (3.76)

∂αωβ − ∂βωα + ωα × ωβ = 0 (3.77)

∂αµβ − ∂βµα + ωα × µβ − ωβ × µα = 0 (3.78)

where equations (3.75),(3.76) are equivalent to equation (3.72) and (3.77),(3.78)

are equivalent to equation (3.73). Natural boundary conditions associated

with the variational problem are given by

(ωξ · ∇ωαL + µξ · ∇µαL )|∂S = 0 (3.79)
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4 swimming microorganisms

4.1 Introduction

Motility introduces a number of demands on the mechanical construction of

bacterial cells. Such constraints have been studied for motility organelles; slen-

der flagella can buckle below a critical bending stiffness or above a critical motor

torque [77, 78], and the same is true of the flexible flagellar hook [79, 80]. The

shape and size of bacterial cells is influenced by numerous considerations [81–

84], including efficient motility in liquids [85–87]. However, motile bacterial

cells are canonically presumed to be rod-shaped, non-deformable structures,

and cell stiffness, a feature normally provided by cell wall composition [88–90]

and turgor pressure [91], is typically overlooked in studies of motility. Cell

wall stiffness regulation alters bacterial cell shape, influences motility, and

enables bacteria to adapt and survive [92, 93].

The length of Proteus mirabilis (P. mirabilis) cells increases by up to 20-40x

when they are in a swarming state [94], and deformation in cell shape are

visibly clear in a swarm [95, 96]. P. mirabilis swarmer cells have reduced cell

stiffness compared to normal vegetative cells [96]. Gene deletion has also been

used to artificially reduce cell stiffness [97]. But the nature and organization

of any motility organelles is also important. A swarmer cell swims by rotating



57

up to thousands of flagella which are distributed along its surface [98, 99].

The flagellar motion drives active, wavelike surface features more often used

to describe ciliated organisms, which themselves are classically modeled as a

continuum of active stress [100, 101].

A wild-type P. mirabilis cell is stiff and rod-shaped and swims along a

straight trajectory, with its flagella oriented with their tips opposite the swim-

ming direction (Fig. 4.1e) [102]. The fluid response to flagellar motion drives

the body forward, and induces a rotational velocity along the long axis as

dictated by the force- and torque-free nature of swimming in viscous fluids

[103]. Elongated swarmer cells, however, can express a wide range of intricate

and stunning dynamics. Figure 4.1 shows P. mirabilis cells which have buckled

under their own activity. The flagellar tips appear to be pointing away from the

direction of local body motion, suggestive that their orientation depends upon

local viscous stresses (Fig. 4.1a-b). Strongly three-dimensional configurations

and dynamics are shown in Fig. 4.1c, which includes a spinning motion about

the direction of swimming. An even more highly deformed state with multiple

self-crossings is shown in Fig. 4.1d.

Such active systems are particularly rich, as even passive slender bodies

driven by external forces [104] or flows [105] continue to reveal new buckling

behaviors [106–111]. The shapes and dynamics of elongated P. mirabilis cells
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Figure 4.1: (a-d) Swarmer P. mirabilis cells bend, rotate, and twist under
their own flagellar activity. Solid arrows indicate the direction of motion. (e)
Flagellar stresses are modeled as a continuous force density f(s, t) and pro-
portional moment density m(s, t) which drives and rotates the body through
the fluid. (f) An active swimming Kirchhoff rod reproduces U-shaped swim-
ming, S-shaped rotation, and twisted, rotating swimming states found in
experiments. Dashed arrows indicate the direction of the local flagellar force
and moment densities. (g) Phase diagram illustrating periodic symmetric
dynamics in the absence of an active moment m(s, t) = 0. The centerline
curvature κ(s, t) =

∑∞
k=0 ak(t)ϕk(s) is projected onto the first two even bihar-

monic modes (a0(t), a2(t)) and trajectories in a0-a2 space are plotted against
β

−1/3
⊥ where β⊥ = B⊥/(f∗L3) is a dimensionless bending stiffness, with B⊥

the bending modulus, f∗ a characteristic active force density, and L the body
length. Bifurcations from straight filaments to swimming-U shapes, then to
periodic waving-U dynamics, then to periodic flapping-W dynamics are ob-
served as the bending stiffness is reduced. (h) A cross-section of the phase
diagram in (g) with β⊥ = 1.3×10−4 (waving-U dynamics). (i) A cross-section
of the phase diagram in (g) with β⊥ = 7.6 × 10−5 (flapping-W dynamics).
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share many similarities with active or externally forced filaments which exhibit

spontaneous symmetry breaking [112–114]. The U- and S-shaped configura-

tions in Fig. 4.1a-b have been observed numerically in related systems in two

dimensions [115], as have spiral-shaped configurations [116]. The response

of semi-flexible polymers to molecular-motor-driven stress has seen tremen-

dous interest [117], particularly in the context of cytoskeletal networks and

interphase chromatin configurations [118–120]. Flagellar propulsion, however,

introduces additional features, for instance a competition between twist/bend

elasticity and twist injection [74, 121, 122], and a dynamic rearrangement

of flagellar stress. It is plausible that the highly nonlinear twist-bend cou-

pling [123, 124] responsible for the emergence of writhing instabilities [125]

and chiral configurations [126] in generic elastic filaments is also responsible

for the configurations seen in Fig. 4.1c-d.

In this paper we explore numerically and analytically a Kirchhoff rod

model of a long, swimming cell which is driven by active forces and moments

associated with flagellar activity. The model reproduces both two- and three-

dimensional configurations (Fig. 4.1f) and predicts microorganism buckling

and writhing under its own flagellar activity and viscous stress response.

Bifurcations in the shapes and dynamics appear as the cell body is made more

flexible, including buckling and torsional instabilities commonly observed
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in passive elastic systems, and new modes of motion are found upon the

introduction of the active moment.

The chapter is organized as follows. In §4.2 we present the active Kirchhoff

rod model, in which the deformable body dynamics are described using the

Euler-Poincaré formalism [43, 52, 59]. The numerical method used to explore

the system, which exploits the geometric structure of the Euclidean group

SE(3) and its Lie algebra se(3) to seamlessly and accurately incorporate kine-

matic constraints, is also presented. In §4.3 we consider both analytically and

numerically the body configurations and dynamics which emerge from the

model equations. The case of a vanishing active moment is first explored,

resulting in planar dynamics. The results of a linear stability analysis are

shown to compare favorably with full numerical simulations, and associated

eigenfunctions provide a baseline from which to explore a sequence of shape

bifurcations in the fully nonlinear system. The fully three-dimensional dynam-

ics are then probed, which reveal buckling behaviors analogous to those found

in the planar setting, but which also involve a coupling between twisting and

bending modes of deformation and stress. A linear stability analysis is revis-

ited, which includes modifications to the predicted unstable wavenumbers

and growth rates in the case with no active moment.
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4.2 Active Kirchhoff rod model

The cell is assumed to have length L with uniform circular cross-section of

diameter a. Aspect ratios a/L of swarmers, typically on the order of 10−2 to

5 × 10−2 [96, 102], are sufficiently small that extensile and shear deformations

are neglected [75]. Associated with each station of the filament in arclength s

and time t is a moving frame (see §3.3)

S(s, t) =

R(s, t) r(s, t)

0 1

 (4.1)

representing the Euclidean transformation which maps an inertial frame

(e0, e1, e2) located at the origin onto the body’s orthonormal material frame

(q0, q1, q2) = (Re0, Re1, Re2) located at r. Velocities and deformations may

then be represented by the fields which take values in the special Euclidean

algebra se(3) ,

At = S−1∂tS =

ω̂ u

0 0

 , (4.2)

As = S−1∂sS =

Ω̂ U

0 0

 , (4.3)
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where we have defined the antisymmetric operators ω̂ := ω× and Ω̂ := Ω×.

The field At describes the body’s local linear velocity, u = R−1∂tr, and local

angular velocity, ω̂ = R−1∂tR, as measured in the material frame, and the field

As describes the body’s local deformation in the form of the twist/curvature

operator, Ω̂ = R−1∂sR, and the centerline tangent vector U = R−1∂sr. We

choose to formulate dynamics of the body directly in terms of the fields (u,

ω̂, U , Ω̂), and apply the method of Euler-Poincaré reduction [39, 59]. Body

configurations are written as path-ordered exponentials [127] (see §2.4),

S(0, t) = S(0, 0)Pexp
∫ t

0
At(0, ξ)dξ , (4.4)

S(s, t) = S(0, t)Pexp
∫ s

0
As(ξ, t)dξ . (4.5)

The path-ordered exponential, or product integral, of a matrix-valued curve

X = X(ξ) is the limit of an ordered product of matrix exponentials,

Pexp
∫ b

a
X(ξ)dξ = lim

n→∞
eX(ξ0)∆ξeX(ξ1)∆ξ . . . eX(ξn)∆ξ, (4.6)

where ∆ξ = (b − a)/n and ξk = a + k∆ξ.

Deformation and velocity fields (As, At) are components of an se(3)-valued



63

one-form,

A = Asds + Atdt = S−1dS , (4.7)

where dS = ∂sSds + ∂tSdt is the exterior derivative of S, and (ds , dt ) are

one-forms dual to the coordinate basis (∂s, ∂t). Integrability of the system

dS = SA requires A satisfy the Euclidean structure equation (see §2.4,§2.5),

dA + A ∧ A = 0. (4.8)

where ∧ is the wedge product for matrix-valued differential forms [71]. This

gives the commutation relation,

(dA + A ∧ A) (∂s, ∂t) = ∂sAt − ∂tAs + [As,At] = 0, (4.9)

where [As,At] := AsAt −AtAs is the matrix commutator. Separating its angular

and linear components using the fact that â× b =
[
â, b̂

]
, for any a, b ∈ R3,

∂sω − ∂tΩ + Ω × ω = 0, (4.10)

∂su− ∂tU + Ω × u− ω ×U = 0, (4.11)
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we find the structure equations to be a generalization of the familiar compati-

bility relations for elastic rods [74, 75].

Viscous stresses, −ζ · u and −ζrω∥ = − (U · ω)U , are related to the local

body velocity through a local resistive force theory, where ζ = ζ∥UU
T +ζ⊥(1−

UUT ) with longitudinal ζ∥ and transverse ζ⊥ coefficients, and by a rotational

drag coefficient ζr [121, 128]. Driving the system away from equilibrium

are active stresses arising from a distribution of flagella, modeled here as a

continuum providing an effective tangential force density fU and proportional

moment density mU := MLfU (Fig. 4.1e). To account for the tendency of

flagella to align with local flow, we consider f to evolve according to

τf ∂tf = (f∗/L)
[
1 − (f/f∗)2

]
U · u+ Df ∂2

s f, (4.12)

with ∂sf(−L/2) = ∂sf(L/2) = 0. The force density tends toward a char-

acteristic magnitude f∗ with a relaxation time τf ζ∥L/f∗ depending on the

dimensionless parameter τf , and Df is a diffusion constant.

The internal energy of the body is given by

E =
∫ L/2

−L/2

1
2Ω · BΩ + Λ ·U ds (4.13)

where Λ is a Lagrange multiplier which enforces inextensibility and unsheara-
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bility,

q0 = RU (4.14)

and B = B∥UU
T +B⊥(1−UUT ) penalizes twisting and bending with moduli

B∥ and B⊥, respectively [75]. To obtain Euler-Poincaré equations for the

reduced system, we equate the structure preserving variation of E with the

virtual work done by active and viscous stresses (see §3.4),

W = −
∫ L/2

−L/2
⟨N, Aξ⟩ ds , N =

−ζrω̂∥ −ζ · u+ fU

0 0

 (4.15)

where ω∥ = (U · ω)U . This results in the following equations,

∂sΛ + Ω × Λ = ζ · u− fU , (4.16)

∂s (BΩ) + Ω × BΩ +U × Λ = ζrω∥ − mU , (4.17)

describing local force and moment balance along the body, subject to boundary

conditions,

Λ = 0, Ω = 0 (4.18)
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at either end of the body. The kinematic relations (4.4),(4.5),(4.10),(4.11),(4.14),

the flagellar evolution law (4.12), and the balance equations (4.16),(4.17) form

a closed system describing dynamics of the body and its flagellar distribution.

Evolution equations for the twist Ω∥ = (U · Ω)U , curvatures Ω⊥ =(
1 −UUT

)
Ω, and tension λ = U ·Λ are obtained by first solving (4.14),(4.16),(4.17)

and the transverse part of (4.11) for Λ⊥ = (1 − UUT )Λ and the velocities

(ω,u):

Λ⊥ = U × ∂s (B⊥Ω⊥) +
(
B∥ − B⊥

) (
U · Ω∥

)
Ω⊥, (4.19)

u = ζ−1 (∂sΛ + Ω × Λ + fU) , (4.20)

ω = 1
ζr

(
∂s

(
B∥Ω∥

)
+ mU

)
+U × (∂su+ Ω × u) . (4.21)

Equations (4.19),(4.20), and (4.21) are then substituted into Eq. (4.10) and the

longitudinal component of (4.11). The resulting shape evolution equations

take the form

∂tΩ∥ +
[

B⊥ − B∥
ζ⊥

κ2 −
B∥
ζr

]
∂2

sΩ∥ = G∥, (4.22)

∂tΩ⊥ + B⊥
ζ⊥

∂4
sΩ⊥ = G⊥, (4.23)
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∂2
s λ −

ζ∥
ζ⊥

κ2λ + B⊥
2 ∂2

s κ2 + ∂sf

+
ζ∥B⊥

ζ⊥

(
Ω⊥ · ∂2

sΩ⊥ − κ2|Ω∥|2 − 2Ω∥ · [Ω⊥ × ∂sΩ⊥]
)

+
ζ∥B∥
ζ⊥

(
κ2|Ω∥|2 + Ω∥ · [Ω⊥ × ∂sΩ⊥]

)
= 0, (4.24)

where we have defined κ2 = |Ω⊥|2, and the vector-valued functionsG∥ and

G⊥ depend nonlinearly on spatial derivatives ofΩ, λ, and f . Natural boundary

conditions require that Ω∥,Ω⊥, ∂sΩ⊥, and λ all vanish at both ends of the body.

Upon scaling by the length L, force density f∗, and stiffness B⊥, the system

is found to depend on six dimensionless groups: a relative bending modulus

β⊥ = B⊥/(f∗L3), twist modulus β∥ = B∥/(f∗L3), translational drag ratio

η = ζ⊥/ζ∥, rotational drag ηr = ζr/(ζ∥L2), dimensionless active moment

M , and a dimensionless diffusion constant D = ζ∥Df /(f∗L). Henceforth all

variables are understood to be dimensionless.

To estimate the scale of the active moment, M , we note that a helical flag-

ellum with pitch P ≈ 2µm, circumference C ≈ 1.5µm, length ℓ = 10µm, and

diameter d ≈ 20nm, upon rotation with speed ω generates a force on an affixed

body Fν ≈ 2µC2ℓω/Pc, where µ is the viscosity of water and c = ln(ℓ2/d2) − 1

[129]. Due to its chirality it also generates a torque Lν ≈ 2µC2ℓω/π2c. Using

a body length L ≈ 10−5 − 10−4m gives a range of biologically relevant active
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moments M = Lν/LFν ≈ 10−3 − 10−2.

A principal advantage of this approach is that it naturally leads to numeri-

cal schemes which circumvent violations of inextensibility, unshearability, and

frame orthonormality, and do not require soft penalties or explicit parameteri-

zation of rotations by Euler angles or quaternions [51, 130–133]. This is accom-

plished through the use of a structure-preserving numerical method [134]

which performs timestepping and spatial integration of S,

S(s, t) 7→ S(s, t + ∆t), S(s, t) 7→ S(s + ∆s, t), (4.25)

entirely in terms of the SE(3) composition composition law. First, we note that

equation (4.4) is equivalent to

S(0, t + ξ) = S(0, t)Pexp
∫ ξ

0
Z(ξ′)dξ′ , (4.26)

with Z(ξ) := At(0, t + ξ). The ordered exponential can be expressed as

Pexp
∫ ξ

0 Z(ξ′)dξ′ = eX(ξ), in terms of a new se(3)-valued field, X, related to

Z by the Magnus expansion [135]

X(ξ) =
∫ ξ

0
Z(ξ)dξ − 1

2

∫ ξ

0

∫ ξ′

0

[
Z(ξ′′),Z(ξ′)

]
dξ′′ dξ′ + . . . (4.27)
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Then, writing

X(ξ) = ξ
Z(ξ) + Z(0)

2 + O(ξ3), (4.28)

we have

S(0, t + ∆t) = S(0, t) exp(∆t
At(0, t + ∆t) + At(0, t)

2 ) + O(∆t3). (4.29)

By a similar argument involving As rather than At, we find

S(s + ∆s, t) = S(s, t) exp(∆s
As(s + ∆s, t) + As(s, t)

2 ) + O(∆s3). (4.30)

Matrix exponentials in (4.29) and (4.30) are computed using the closed form

expression for the exponential map on SE(3) (see B for details). Given vectors

α and β, we have

exp

α̂ β

0 0

 =

eα̂ Vβ

0 1

 , (4.31)

where eα̂ = 1 + sin α

α
α̂+ 1 − cos α

α2 α̂2, V = 1 + 1 − cos α

α2 α̂+ α − sin α

α3 α̂2, and

α = |α|.

Equations (4.12), (4.22),(4.23), and (4.24) are discretized in space uni-
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formly using second-order accurate central difference approximations, and ad-

vanced in time using a second-order implicit backward-differentiation scheme

with a hybrid nonlinear solver applied at each timestep. Equations (4.4) and

(4.5) are solved using the explicit second-order accurate Magnus integrators

discussed above. Other approaches to this stiff numerical problem with differ-

ent treatments of the hydrodynamics have recently been developed [136–145].

The parameters (η, D, τf ) = (2, 10−3, 10−2), timestep size ∆t = 10−3, and

spatial gridspacing ∆s = 1/64 are fixed for the duration unless otherwise

stated.

4.3 Body configurations and dynamics

No active moment: planar dynamics

In the case of no active moment, M = 0, the body configuration is fully

characterized by a single rotational strain, the (signed) centerline curvature

κ = ±|Ω⊥|. Restricting the shape evolution equations to two dimensions, the
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curvature, active force, and tension satisfy

∂tκ = −β⊥
η

∂4
s κ + 1

η
∂2

s (κλ) + ∂s (κ [∂sλ + f ]) + β⊥
3 ∂2

s

(
κ3
)

, (4.32)

∂tf = D∂2
s f +

(
1 − f2

)
(β⊥κ∂sκ + ∂sλ + f) , (4.33)

∂2
s λ − κ2

η
λ = −∂sf − β⊥

2 ∂2
s

(
κ2
)

− β⊥
η

κ∂2
s κ. (4.34)

We note that the tension equation can also be reformulated as an integral

equation (see Appendix C.1).

To begin we consider shapes which are symmetric about the body midpoint

s = 0 (and active forces which are odd). To describe the geometry it is

convenient to use the eigenfunctions of ∂4
s satisfying force- and moment-free

boundary conditions [146] (the first three of which are shown in Fig. 4.2c

as dashed red curves). The curvature is decomposed as a sum κ(s, t) =

∑∞
k=0 ak(t)ϕk(s). Figure 4.1g shows a phase portrait for the dynamics of the

first two even biharmonic modes, (a0, a2), for a range of bending stiffness β⊥

with M = 0. Values are plotted against β
−1/3
⊥ , which is proportional to the

body length L.

Phases in Fig. 4.1g are identified by examining the long time behaviour

of filaments initialized with a compressive active force density f(s, 0) =

− tanh(10s). For β⊥ > 9.1×10−3, the stiff filament relaxes to a straight configu-
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ration, with the active stress eventually decaying due to diffusion via Eq. (4.12).

At approximately β⊥ = 9×10−3 there is a bifurcation to steady state U-shaped

swimmers with a nonzero a0 which dominates all other modes. Further de-

creases in stiffness lead to curvature oscillations (this cross-section of the phase

diagram is shown in Fig. 4.1h) and excitation of progressively higher modes.

At approximately β⊥ = 6.8×10−5, another bifurcation is observed to unsteady,

periodic flapping dynamics which involve even larger excursions in the phase

plane (Fig. 4.1i), and periodic changes in the swimming direction.

Susceptibility to buckling can be understood by exploring the stability of

a nearly straight body to generic (planar) perturbations. Upon defining the

mean active force density f :=
∫ 1/2

−1/2
f ds , we find to first order in κ (assumed

small) that

λ = −
∫ s

−1/2
(f − f)ds , (4.35)

∂tκ = −β⊥
η

∂4
s κ + 1

η
∂2

s (λκ) + f∂sκ. (4.36)

Assuming a symmetric compressive force, f = 0, this yields an eigenvalue
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Figure 4.2: (a) Dominant eigenvalues µn of the linearized curvature dynam-
ics with no active moment and a piecewise constant force density show the
emergence of multiple unstable modes at critical bending stiffnesses; the first
at β⊥ ≈ 1.0 × 10−2, or β

−1/3
⊥ ≈ 4.6.

(b) Growth rates of biharmonic eigenfunctions, ϕn(s), in the fully nonlinear
system with M = 0 (solid lines) and M = 0.01 (dashed). (c) First three un-
stable modes of the linearized system (solid), and biharmonic eigenfunctions
(dashed).

problem,

L[κ] = −β⊥
η

∂2
s

(
∂2

s κ − 1
β⊥

λκ

)
,

L[κ] = µκ.

(4.37)

Figure 4.2a shows the (real part) of dominant eigenvalues µn of Eq. (4.37)

for a range of stiffness β⊥. The unstable modes of the linear system are illus-
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Figure 4.3: (a-d) New attractors emerge upon the addition of an active moment
(with body symmetry assumed). Top - snapshots of body configurations over
a half-period, bottom - trajectories of the first two bending (a0, a1) and the
first twisting (b0) mode coefficients suggests convergence to a fixed shape. (a)
(β∥, β⊥, M) = (1 × 10−4, 2.5 × 10−4, 6 × 10−3): a U-shaped swimmer with a
twist. (b) (β∥, β⊥, M) = (1 × 10−5, 8 × 10−5, 1.35 × 10−2): reduced stiffness
and increased active moment introduces a limit cycle corresponding to waving
while twisting. (c) (β∥, β⊥, M) = (1×10−3, 5.45×10−5, 1×10−2): convergence
to a new twisted-S shape. (d) (β∥, β⊥, M) = (1 × 10−3, 1.25 × 10−4, 2 × 10−2):
periodic flapping appears with further increases in M . (e) Swimming speed
across a range of active moments for β∥ = 2.5×10−4, for a stiffer (β⊥ = 5×10−4,
squares) and softer (β⊥ = 5 × 10−5, circles) body. (f) Swimming speed across
a range of bending stiffness for β∥ = 2.5 × 10−4 and active moments M = 0
(circles), M = 0.002 (squares), and M = 0.01 (triangles).

trated in Fig. 4.2c by solid blue curves, along with the biharmonic eigenfunc-

tions for comparison. Growth rates σn = ∂tan(t)|t=0 /an(0), computed using

the fully nonlinear system, Eqs. (4.32),(4.33), and (4.34), with an(0) = 10−3

are shown in Fig. 4.2b.

Critical values of β := β⊥ at which different spatial modes become unstable

are associated with the emergence of nontrivial solutions to (4.37) with µ = 0.

With the piecewise constant active force, f(s) = 1 − 2H(s), with H(s) the
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Heaviside step function, the tension is given by

λ(s) = 2sH(s) − (s + 1/2) =


−(s + 1/2) −1/2 < s < 0,

s − 1/2 0 < s < 1/2.

(4.38)

After integrating (4.37) twice we find

∂2
s κ − 1

β
λκ = c−s + c+, (4.39)

for constants c− and c+. When λ(s) = λ(−s), Eq. (4.37) is invariant under

κ(s) 7→ κ(−s), so, we may assume eigenfunctions have definite parity. When

κ(−s) = κ(s), we find c− = 0, and when κ(−s) = −κ(s) we find c+ = 0.

Restricting to the half interval, −1/2 < s < 0 and introducing ξ = β−1/3λ =

−(1 + 2s)/
(
2β1/3

)
, we find κ satisfies a nonhomogeneous Airy equation on

−1/
(
2β1/3

)
< ξ < 0,

∂2
ξ κ − ξκ = aξ + b, (4.40)

κ|ξ=0 , ∂ξκ|ξ=0 = 0, (4.41)

where (a, b) = (−β1/3c−, c+ − c−/2). The solution to (4.40) and (4.41) is given
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by

κ(ξ) = − πAi(ξ)
∫ ξ

0
(ax + b) Bi(x)dx + πBi(ξ)

∫ ξ

0
(ax + b) Ai(x)dx

=πa
[
Bi′(0)Ai(ξ) − Ai′(0)Bi(ξ) − 1/π

]
+ πb

[
Bi(ξ)

∫ ξ

0
Ai(x)dx − Ai(ξ)

∫ ξ

0
Bi(x)dx

]
,

where

Ai(ξ) = 1
π

∫ ∞

0
cos(x3

3 + ξx)dx , (4.42)

Bi(ξ) = 1
π

∫ ∞

0
sin(x3

3 + ξx) + e−x3/3+ξxdx (4.43)

are Airy functions, and primes denote derivatives. Writing ξ∗ = −β−1/3/2,

parity conditions require (a, ∂ξκ|ξ∗) = (0, 0), giving

κ(ξ) = Bi(ξ)
∫ ξ

0
Ai(x)dx − Ai(ξ)

∫ ξ

0
Bi(x)dx , (4.44)

Bi′(ξ∗)
∫ ξ∗

0
Ai(x)dx − Ai′(ξ∗)

∫ ξ∗

0
Bi(x)dx = 0, (4.45)
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and (b/a, κ|ξ∗) = (−ξ∗, 0), giving

κ(ξ) = Bi′(0)Ai(ξ) − Ai′(0)Bi(ξ) − 1/π

− ξ∗
(

Bi(ξ)
∫ ξ

0
Ai(x)dx − Ai(ξ)

∫ ξ

0
Bi(x)dx

)
, (4.46)

Bi′(0)Ai(ξ∗) − Ai′(0)Bi(ξ∗) − 1/π

− ξ∗
(

Bi(ξ∗)
∫ ξ∗

0
Ai(x)dx − Ai(ξ∗)

∫ ξ∗

0
Bi(x)dx

)
= 0, (4.47)

for even and odd eigenfunctions, respectively.

When compared to the first ten critical stiffnesses in the fully nonlinear

dynamics with regularized active force density, predictions of Eqs. (4.45) and

(4.47) were found to differ by 0.5%-15%. The first bending stiffness below

which the filament becomes unstable from the full system is β⊥ = 1.0 × 10−2,

whereas the linearized dynamics predict β⊥ = 1.1 × 10−2.

Inclusion of an active moment: three-dimensional dynamics

We turn now to the fully three-dimensional system, including the active mo-

ment contribution due to flagellar chirality (M ̸= 0). Numerous dynamical

regimes appear as the result of rotational forcing, with transitions between
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newly emergent phases brought about by variations in any one of the twisting

stiffness, β∥, bending stiffness, β⊥, or active moment, M .

As with the 2D system, we seek a reduced order phase space in which to

study these bifurcations. To this end, we consider systems initialized with

the twist Ω0 and curvature Ω2 even about the midpoint, and the curvature

Ω1 odd. We show in §C.4 that this is equivalent to the system possessing a

conserved π-rotational symmetry, and, provided the initial active stress distri-

butions are odd functions of s about the midpoint, this symmetry is conserved.

Taking advantage of their conserved parity, the twist and curvatures may be

decomposed into sums of harmonic γ2k and biharmonic {ϕ2k, ϕ2k+1} functions

satisfying appropriate parity and boundary and conditions:

Ω0(s, t) =
∑

k

b2k(t)γ2k(s), (4.48)

Ω1(s, t) =
∑

k

a
(1)
2k+1(t)ϕ2k+1(s), (4.49)

Ω2(s, t) =
∑

k

a
(2)
2k (t)ϕ2k(s). (4.50)

Figure 4.3a-d shows characteristic shapes of four observed phases (top), as

well as corresponding phase space trajectories of (b0, a1, a0) := (b0, a
(1)
1 , a

(2)
0 )

appearing in the decomposition of twist/curvatures for a range of initial con-

ditions (bottom). For β∥ < 2.5 × 10−4, β⊥ > 7.5 × 10−4, and M > 1.4 × 10−2
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the body adopts a straight configuration. A bifurcation to a twisted-U shape

appears upon increasing β∥, decreasing β⊥, or decreasing M (Fig. 4.3a). With

M < 1.8 × 10−2, the twisted-U phase persists as β⊥ is decreased until approxi-

mately β⊥ = 2×10−4, at which point the system develops periodic oscillations

(Fig. 4.3b). Again with M < 1.8 × 10−2, new S-shaped equilibria emerge for

β⊥ < 1 × 10−4 (Fig. 4.3c). A fourth phase appears for M > 1.8 × 10−2 and

β⊥ < 2.5 × 10−4 with twist-curvature oscillations accompanied by periodic

changes in swimming direction (Fig. 4.3d).

Transitions between phases can lead to wide variations in swimming trajec-

tories, and in the swimming speed, defined as the magnitude of the average ve-

locity of the body’s midpoint in the lab frame, Uswim(T ) =
∣∣∣∫ T

0 R(0, t)u(0, t)dt
∣∣∣ /T .

The complicated relationship between bend and twist is further illustrated by

the nonmonotonic, and discontinuous, changes in swimming speed that arise

due to variations in bending stiffness β⊥ and active moment M . Figure 4.3e

shows the swimming speed as a function of the active moment for two dif-

ferent bending stiffnesses. For the stiffer body the active moment induces

waving (from Fig. 4.3a to Fig. 4.3b) but the swimming speed remains roughly

unchanged. For the softer body, however, which at M = 0 is in the dramatic

flapping-W state in two dimensions (Fig. 4.1i), the introduction of the active

moment can stabilize the shape in three dimensions and result in a ballistic
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trajectory (Fig. 4.3c). Further increases in M , however, then trigger another

phase transition to the three-dimensional flapping dynamics of Fig. 4.3d, re-

sulting in average speeds (but not instantaneous speeds) tending to zero. A

different view is offered by Fig. 4.3f, which shows the swimming speed across

a range of bending stiffnesses for three different active moments. A sufficiently

large active moment can delay the onset of flapping dynamics, and thereby

stabilize swimming trajectories over a larger range of stiffnesses.

At the lower bending stiffness typical of swarmer cells, rotational forcing

introduces a dynamical twist-bend instability. As shown in Fig. 4.2b as dashed

lines for M = 0.01, the presence of an active moment can decrease the force

required to excite higher unstable modes. As described in relation to Fig. 4.3e

above, this allows the system to access new energetically favorable out-of-plane

equilibria similar to the ‘locked curvature’ configurations observed in model

cilia [113, 118].

Though not explored in detail here, both of the low stiffness configura-

tions shown in Fig. 4.3c,d are generically unstable with respect to asymmetric

perturbations, which lead to non-periodic dynamics and trajectories which

depend sensitively upon the bending stiffness. The self-contact evident in

Fig. 4.1d, and self intersections observed at low bending stiffness in the model,

suggest that steric interactions or nonlocal hydrodynamic effects are important
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for stabilizing body configurations of longer swarmer cells. Confinement by

neighboring cells in bacterial swarms may play a similar role.
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5 surface-bound biopolymers

5.1 Introduction

Geometrically constrained filaments can be found throughout the natural

world. In this chapter we examine the constrained dynamics of surface-bound

flexible filaments. Our primary motivation is the interaction between biomem-

branes and the biopolymers that polymerize on their surfaces. These interac-

tions are known to produce changes in the membrane curvature and topology

through a number of mechanical, chemical, and entropic mechanisms [147].

However, many questions about how exactly the polymer-membrane interac-

tions drive membrane remodeling remain open. We will focus on two classes

of polymer-membrane interactions: the purely mechanical coupling of semi-

flexible polymers to the membrane, and second, the dynamics of curvature

sensing proteins bound to the membrane.

Modeling interactions of the sort considered in this chapter typically in-

volves atomistic simulation and related techniques [1, 148, 149]. While insight

gained from these simulations has proven to be invaluable to our current un-

derstanding of polymer-membrane interactions, computational complexity

limits their ability to probe all but the shortest of length- and time-scales. Com-

putationally tractable continuum models provide an attractive alternative for
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modeling phenomena occurring at these longer length- and time-scales. We

investigate these systems from a continuum mechanics perspective, modeling

the proteins and biofilaments as Cosserat rods which are confined both in

position and orientation to the membrane surface. We introduce a model

for generic surface-bound filaments and derive constrained Euler-Poincaré

equations for the system. Analytic and numerical results are presented for

special cases, and a number of applications are discussed.

5.2 Filament kinematics and surface geometry

The state of the filament is identified with with a map S : Q → SE(3) from a

2-dimensional domain Q ⊂ R2, parameterized by material coordinate s and

time t, into the Special Euclidean group. The matrix,

S(s, t) =

R(s, t) r(s, t)

0 1

 , (5.1)

represents the Euclidean transformation which maps an inertial frame,

e1, e2, e3 =


1

0

0


,


0

1

0


,


0

0

1


, (5.2)
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located at the origin onto the body’s orthonormal material frame qi(s, t) =

R(s, t)ei located at r(s, t). The infinitesimal generators associated with s- and

t-translations in coordinate space,

S−1∂sS =

R−1∂sR R−1∂sr

0 0

 =

Ω̂ U

0 0

 , (5.3)

S−1∂tS =

R−1∂tR R−1∂tr

0 0

 =

ω̂ u

0 0

 , (5.4)

are given in terms of the twist-curvature Ω̂ = Ω×, linear strain U , angular

velocity ω̂ = ω×, and linear velocity u, each measured with respect to the

material frame. All together, these quantities define the components of an

se(3)-valued one-form, or gauge potential [127],

A = Asds + Atdt (5.5)

As =

Ω̂ U

0 0

 , At =

ω̂ u

0 0

 , (5.6)

which describes how cross-sections of the filament vary with respect to coor-

dinate translations in the base space Q.

Given a path, γ(ξ) = (s(ξ), t(ξ)), connecting points γ(ξ1) = (s1, t1) and
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γ(ξ2) = (s2, t2) in Q, we can construct an operator by computing the ordered

exponential [150] (see (2.48)) of A along γ,

U(s1, t1; s2, t2) = Pexp
∫

γ
A = Pexp

∫ ξ2

ξ1

(
As

ds

dξ
+ At

dt

dξ

)
dξ . (5.7)

Operators of this form will generally depend on the choice of path [151],

however, requiring the gauge potential satisfy,

∂tAs − ∂sAt + [At,As] = 0, (5.8)

will ensure U is independent of γ. The angular and linear components of (5.8),

∂tΩ − ∂sω + ω × Ω = 0 (5.9)

∂tU − ∂su+ ω ×U − Ω × u = 0 (5.10)

are often referred to as the Euclidean structure equations [28, 71]. With path

independence of U guaranteed by the structure equations, the instantaneous

states of microstructure with coordinates (s, t) and (s′, t′) are related by,

S(s′, t′) = S(s, t)U(s, t; s′, t′). (5.11)
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Approximation of U by Magnus expansion [130] forms the basis of the structure-

preserving numerical methods which we apply throughout this dissertation.

Unshearability/inextensibility constraints are satisfied by identifying the

tangent vector, ∂sr, with one of the orthonormal frame vectors, q1, or equiv-

alently, by requiring U = e1. The remaining strain measures correspond to

twisting about the tangent, Ω1 = e1 ·Ω, and bending, (Ω2, Ω3) = (e2 ·Ω, e3 ·Ω),

about q2 and q3, respectively. Under these assumptions, the structure equa-

tions become,

∂tΩ = ∂sω + Ω × ω (5.12)

∂su+ Ω × u = ω × e1. (5.13)

We define the membrane, M = ϕ−1(0), as the zero-level set of ϕ : R3 → R,

with ϕ(x) < 0 inside the membrane and ϕ(x) > 0 outside the membrane. We

denote the outward-pointing unit normal vector by, n = ∇ϕ/|∇ϕ|. We will

assume the filament is confined to the surface in the sense that ϕ(r) = 0 and

q3 = n(r). When taken in combination with previously discussed kinematic

constraints placed on the filament, these four scalar equations can be reduced
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to just two,

ϕ(r) = 0, q2 · n(r) = 0. (5.14)

Membrane geometry is described by the first and second fundamental

forms [66], which can be written, respectively, as

I = 1 − nnT , (5.15)

II = −I · ∇n = − I · ∇∇ϕ · I
|∇ϕ|

. (5.16)

The first fundamental form I is an orthogonal projection onto the tangent

bundle TM , and the second fundamental form II describes curvature of M .

Principal curvatures of the surface are given by the (nonzero) eigenvalues of

II. We denote the components of II in the basis (q1, q2) by Kij . The relation

between dynamical quantities and surface curvature can be summarized by
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the following,

Ω1 = −q1 · ∇n · q2 = K12, (5.17)

Ω2 = q1 · ∇n · q1 = −K11, (5.18)

ω1 = −∂tr · ∇n · q2 = K12u1 + K22u2, (5.19)

ω2 = ∂tr · ∇n · q1 = −K11u1 − K12u2, (5.20)

K22 = −(K + Ω2
1)/Ω2 = Ω2 + 2H (5.21)

H = −∇ · n/2, (5.22)

K = −tr(n̂ · ∇n · n̂ · ∇n)/2, (5.23)

where K and H are the Gaussian and mean curvatures at r. These equations,

together with the structure equations require,

∂su1 − Ω3u2 = 0 (5.24)

∂su2 + Ω3u1 = ω3 (5.25)

∂tΩ3 = ∂sω3 + Ku2. (5.26)

We emphasize that equations (5.24), (5.25), and (5.26) are purely a conse-

quence of kinematics and geometry. With the exception of the forces of con-

straint, they are independent of any applied stresses. A derivation and addi-
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tional discussion of these equations can be found in appendix D.1.

5.3 Stress balance

Inextensibility and unshearbility will be incorporated into our variational

framework by introducing a vector-valued Lagrange multiplier, λ = λiei, and

surface constraints will be accounted for with scalar Lagrange multipliers ν

and χ. We will assume steric effects are characterized by a pairwise interaction

energy [53],

U = 1
2

∫ ∫
G(r(s), r(s′))ds′ ds , (5.27)

expressed in terms of a symmetric kernel, G(x,y) = G(y,x). The internal

energy of the filament be given by

E =
∫

E ds + U (5.28)

E = 1
2 (Ω − σ)T B (Ω − σ) + λ ·U + νϕ/|∇ϕ| + χq2 · n (5.29)

B = B1e1e
T
1 + B2e2e

T
2 + B3e3e

T
3 , (5.30)

where B is the stiffness tensor that penalizes deviation from the filament’s

preferred shape, which we characterize by the intrinsic twist-curvature vector
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σ = σiei. We will consider a viscous moment density, ζrω∥, and force density,

ζ∥u∥ + ζ⊥u⊥, characterized by separate drag coefficients for rotational, ζr, lon-

gitudinal, ζ∥, and transverse ζ⊥ motion. The the full system of Euler-Poincaré

equations (3.75) and (3.76), the structure equations, and surface constraints

are given by the following,

∂sm+ Ω ×m+ e1 × λ− χe1 = ζrω1e1 (5.31)

∂sλ+ Ω × λ− νe3 − χRT ∇nRe2 + f = ζu (5.32)

∂tΩ = ∂sω + Ω × ω (5.33)

∂su+ Ω × u = ω × e1 (5.34)

∂sR = RΩ̂, (5.35)

∂sr = Re1, (5.36)

ϕ(r) = 0 (5.37)

q2 · n(r) = 0 (5.38)

where the steric force is denoted f = fiei

f(s) = −
∫

RT (s) ∂G

∂r(s)(r(s), r(s′))ds′

= fiei,

(5.39)
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and internal moment density by, m = B (Ω − σ). After eliminating the La-

grange multipliers (see D.2) ν, χ, and λ⊥ = λ2e2 + λ3e3, we find that force

balance can be expressed,

u = MF (5.40)

in terms of an in-surface force density F = (F1 F2)T with components

F1 = ∂sλ + Ω · ∂sm+ f1 (5.41)

F2 = − ∂2
s m3 + (λ − K12m1 − K22m2) Ω3 − Km3

− ∂s (K11m1 + K12m2) − Ω1∂sm2 + K22∂sm1 + f2,

(5.42)

and effective mobility tensor

M = 1
ζ1ζ2 + ζ1ζrK2

22 + ζ2ζrK2
12

 ζ2 + ζrK2
22 −ζrK12K22

−ζrK12K22 ζ1 + ζrK2
12

 . (5.43)

5.4 Shape equations

The system (5.24), (5.25), (5.26), and (5.40) can be reduced to a set of shape

equations governing the centerline position r, unit tangent q := q1, geodesic
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curvature Ω := Ω3, and tension λ := e1 · λ,

∂tΩ + g(q, r)∂4
s Ω = h(q, r, λ, ∂sλ, ∂2

s λ, Ω, . . . , ∂3
s Ω), (5.44)

∂s [a(q, r)∂sλ] − b(q, r, Ω, ∂sΩ)λ = c(q, r, Ω, . . . , ∂3
s Ω), (5.45)

∂sq = Ωn× q + (q · ∇n · q)n, ∂sr = q (5.46)

where (a, b, g) are given by

a = ζ2 + ζrK2
22

ζ1ζ2 + ζ1ζrK2
22 + ζ2ζrK2

12
, (5.47)

b =
(
ζ1 + ζrK2

12
)

Ω2

ζ1ζ2 + ζ1ζrK2
22 + ζ2ζrK2

12
+ ∂s

(
ζrK12K22Ω

ζ1ζ2 + ζ1ζrK2
22 + ζ2ζrK2

12

)
, (5.48)

g = B3
(
ζ1 + ζrK2

12
)

ζ1ζ2 + ζ1ζrK2
22 + ζ2ζrK2

12
, (5.49)



93

and (c, h) are nonlinear functions of the indicated variables. Boundary condi-

tions for a free are given by

m3 = 0,

∂sm3 + 2K12m2 + (K11 − K22) m1 = 0

λ + K12m1 − K11m2 = 0,

(5.50)

while the conditions for a clamped end are

F1 = 0,

F2 = 0,

M12∂sF1 + M22∂sF2 = 0,

(5.51)

where F1 and F2 are given by (5.41) and (5.42). Explicit expressions for (c, h),

as well as discussion of boundary conditions and numerical methods can be

found in appendix D.

5.5 Applications

The endosomal sorting complex required for transport (ESCRT) mediates both

scission and sealing of membranes in a wide range of cellular processes [152].

Components of ESCRT form spiral protein structures on the surface of mem-
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branes which are believed to play a role in reshaping membranes by applying

mechanical stresses [153]. While membrane-bound filaments resemble spirals,

atomistic simulations have shown that they will adopt a helical configuration,

illustrated in Fig. 5.1, when free of the membrane. The mismatch between the

surface curvature and the filament’s preferred shape should give rise to a com-

plex interplay between the geometries of the membrane and the filament. A

number of models for interactions mediated by similar semi-flexible polymers

have been developed [154–162].

Figure 5.1: Equilibrated molecular dynamics simulation of an ESCRT fila-
ment illustrating spontaneous curvature and twist reproduced from [1]. (a)
Top view and (b) side view show preferred curvatures. (c) Close-up view
illustrates intrinsic twist.

As the filament continues to grow, global characteristics of the membrane

become significant, and the Gaussian curvature dependence of the membrane

energy [163] presents a unique modeling challenge. Because the total Gaussian

curvature of a surface is entirely determined by its Euler characteristic [66],

changes in topology can involve rapid energy perturbations. It has been pro-

posed that these topological transitions are due to the sudden release of elastic
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Figure 5.2: Growth of a biofilament on the surface of a lipid bilayer. (a) When
proteins are not bound to the membrane, both the membrane and proteins
attain their preferred curvatures and store no elastic energy. (b-c) The energy
required to bind each subunit of the filament to the membrane includes elastic
contributions from both the filament and the membrane. (d) A biofilament
composed of sufficiently stiff proteins forms a scaffold which is able to support
larger and larger membrane deformations as the filament continues to grow.

energy stored in surface-bound filaments [164, 165].

We model the ESCRT filament as a surface-bound filament with elastic mod-

uli, (B1, B2, B3), and spontaneous twist/curvature, (σ1, σ2, σ3), determined

by atomistic simulations [1]. Steric forces are computed using a regularized

Yukawa potential (see Appendix D.6). Each ESCRT filament seems to grow

from a single, stationary nucleation site [166], which we model as a clamped

end satisfying the boundary conditions (5.51). Equations (5.44), (5.45), and

(5.46) are discretized in space using 2nd order central differences, and the

system is evolved in time using a 2nd order semi-implicit time stepping scheme

which performs the spatial integration of (q, r) using a 2nd order geometric

integrator (see Appendix D.5).
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As our simulated filament grows from its nucleation site, we observe

sudden sudden, rapid conformational changes at certain critical lengths which

were highly dependent on membrane geometry. During these buckling events

the localization of curvature and twist, illustrated in Figure 5.3, results in

highly localized forces and moments being exerted on the membrane.

Figure 5.3: With time increasing from left to right, a membrane-bound filament
(colored by total energy density) grows from its nucleation site (white circle)
around the intercellular bridge connecting two daughter cells. As it reaches
the critical length required for buckling, the localization of twist E1 = 1

2B1Ω2
1

and curvature (E2, E3) = (1
2B2Ω2

2, 1
2B3Ω2

3) energy results in large stresses being
applied to the membrane.

Next, we will consider the role of proteins as curvature sensors [167–169].

Curvature sensing proteins preferentially bind to membrane regions matching

their own equilibrium curvature. As the density of proteins increases their

role shifts from curvature sensor to curvature generator, and they begin to

produce the initial membrane curvature required for larger scale deformations

by other mechanisms [170]. Our focus will be the effect of intrinsic twist and

chirality on a protein’s ability to navigate the complex energy landscape of a
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surface with variable curvature.

We model each protein as a short surface-bound filament with nonzero

preferred curvature, σ2 ̸= 0, which would correspond out-of-plane bending for

an un-bound filament. In-plane preferred curvature is taken to be zero, σ3 = 0.

We assume both ends of the filament are free, with boundary conditions

described by (5.50). While equations (5.44), (5.45), and (5.46) are sufficient

to determine the evolution of a filament with one clamped and one free end,

this is no longer true when both ends are free. In this case, we must track the

position and orientation of a single distinguished cross-section, which we take

to be at s = 0. Using equations (5.40), (5.20), and (5.25) to compute the linear

and angular velocity at s = 0, we solve

∂tq|s=0 = ω3n× q − ω2n|s=0 , (5.52)

∂tr|s=0 = u1q + u2n× q|s=0 , (5.53)

using the 1st order geometric integrator discussed in D.5.

To demonstrate the role of chirality, we performed pairs of simulations

initialized with 100 randomly located and oriented filaments, one simulation

with intrinsic twist σ1 ̸= 0 and one without σ1 = 0. In each pair of simulations

the filaments were chosen to be either positive curvature sensing, σ2 > 0, or
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negative curvature sensing, σ2 < 0. The results of these simulations are shown

in Figures 5.4 and 5.5.

Figure 5.4: Curvature sensing proteins, colored by elastic energy density, with
positive preferred curvature σ2 > 0 begin to congregate near regions of positive
Gaussian curvature. Chiral proteins (bottom) quickly reach equilibria, while
achiral proteins (top) approach equilibria much more slowly.

Figure 5.5: Curvature sensing proteins, colored by elastic energy density,
with negative preferred curvature σ2 < 0 congregate near regions of negative
Gaussian curvature.
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6 concluding remarks

In this dissertation we developed theoretical and computational tools for mod-

eling Cosserat media within the Euler-Poincaré variational framework. We de-

rived generalized Euler-Poincaré equations governing a Cosserat medium and

investigated a number biophysics-inspired systems. A recurring theme is the

fundamental role played by geometric structures and symmetries. Throughout

this work, we have demonstrated the practical benefits of structure-preserving

computational methods, particularly in the case of constrained systems. For ex-

ample, the numerically problematic inextensibility/unshearability constraints

of the Kirchhoff rod can be trivially satisfied in this framework, without the

need for ad hoc penalty methods or singularity-prone parametrization of

rotations which are common to alternative numerical schemes.

Our study of P. mirabilis swarmer cells in § 4 demonstrates the utility of

Euler-Poincaré reduction in the modeling of flexible bodies at low Reynolds

number. We have shown that numerous behaviors of individual swimming P.

mirabilis swarmer cells are qualitatively captured by an active Kirchhoff rod

model. The relative bending stiffness β⊥ = B⊥/f∗L3, relating the flagellar

stress to the cell’s material and geometric properties, is seen to play an outsized

role. Our analysis reveals a minimal value, approximately β⊥ = 1.01×10−2, re-

quired of a cell below which its motility is severely hampered by self-buckling.
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For P. mirabilis swarmer cells, this corresponds to a critical bending stiffness

of B⊥ = 2.6 × 10−23Nm2 (see C.2), approximately one order of magnitude

lower than the experimentally determined stiffness of typical cells [96]. We

propose that this offers some evidence that cells may develop and maintain

mechanical properties to prevent excessive buckling during motility. That the

difference is not tighter may speak either to the approximations made in mod-

eling the highly complex surface array of flagella, and/or related to the larger

stresses that the organisms may experience inside of a swarm. This observation

may offer insight relevant to the evolutionary development of motility, bacte-

rial adaptation and survival, and potential mechanically-motivated medical

interventions.

Bifurcations in body shape produce significant changes in swimming tra-

jectories, as we have begun to explore, but are also expected to affect the ways

in which such bodies interact with one another. This likely has substantial

consequences for the collective motion of bacterial swarms. We have only

begun to scratch the surface of the high dimensional parameter space available

to a generic active Kirchhoff rod. Characterization of critical parameter values

which trigger bifurcations may provide novel experimental methods for quan-

tifying mechanical properties of active, flexible bodies. Such methods may

require a more detailed treatment of the hugely complex, flagellated surface,



101

or a more elastic energy than we have assumed here. Our model is readily

generalizable to account for these additional complexities using (3.75) and

(3.76), which do not assume a particular form for the elastic energy, activity,

or viscous stress.

In § 5, we developed a theoretical model for a elastic filament confined in

both position and orientation to an arbitrary implicitly defined surface. We

then applied this model to describe the dynamics of membrane-bound pro-

teins and biopolymers. When the filament length length is comparable to the

characteristic length set by the membrane curvature, our simulations suggest

that membrane-bound biofilaments will undergo growth-induced buckling.

During this buckling process, the filament can apply highly localized forces

and moments to membrane. This lends support to the conjecture that buck-

ling of surface-bound polymers plays a role in overcoming energy barriers

which resist topological transitions during cell division and vesicle formation.

Next, we examined the curvature sensing abilities of chiral proteins, which

we modeled as short surface-bound filaments with a preferred curvature and

twist. We found that in some cases chirality can increase the robustness of cur-

vature sensing proteins, allowing them to more efficiently locate points on the

membrane which match their preferred curvature. The obvious extension of

the surface-bound filament model is to include membrane dynamics. The cou-
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pling of filament and membrane dynamics poses a formidable computational

challenge, but will likely be required to gain a comprehensive understanding

of these polymer-membrane interactions.
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a appendix: the orthogonal group

This appendix summarizes of results related to orthogonal group which are

discussed in various sections throughout the main text. The orthogonal group

O(3) is the group of linear transformations of three-dimensional space which

preserve the Euclidean norm |x|. We will identify the orthogonal group with

its faithful matrix representation on R3,

O(3) =
{

R ∈ R3×3
∣∣∣RT R = 1

}
. (A.1)

The orthogonal group consists of two disconnected components, the special

orthogonal group,

SO(3) =
{

R ∈ R3×3
∣∣∣RT R = 1, det(R) = +1

}
, (A.2)

and its complement which consists of orientation reversing transformations.

We will focus on the special orthogonal group.

The Lie algebra of SO(3) consists of antisymmetric matrices:

so(3) =
{
ω̂ ∈ R3×3

∣∣∣ ω̂T = −ω̂
}

. (A.3)

There are two possible so(3)-valued matrices which can be associated with
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each trajectory, R(t), through SO(3)

(
RT Ṙ

)T
= −RT Ṙ, (A.4)

(
ṘRT

)T
= −ṘRT , (A.5)

which means there are two separate characterizations of the tangent space,

TRSO(3) = Rso(3) = {Rω̂| ω̂ ∈ so(3)} , (A.6)

TRSO(3) = so(3)R = { ω̂R| ω̂ ∈ so(3)} . (A.7)

Elements of so(3) obtained by left translation, ω̂(B) = RT Ṙ, and right trans-

lation, ω̂(I) = ṘRT , represent angular velocities measured in the body frame

and the ambient inertial frame, respectively. The body and inertial velocities

are related by the adjoint action of SO(3),

ω̂(I) = AdRω̂
(B) = Rω̂(B)RT . (A.8)

We can define a Riemannian metric on SO(3) by,

⟨a|b⟩ = 1
2tr(aTb), (A.9)
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for a, b ∈ TRSO(3). This metric is both left-, and right-invariant:

⟨a|b⟩ = ⟨Ra|Rb⟩ = ⟨aR|bR⟩ , (A.10)

for any R ∈ SO(3). So, we can always push vectors a, b to the identity,

RTa, RTb ∈ so(3) and take their inner product in the Lie algebra.

In the canonical basis for so(3),

ê1, ê2, ê3 =


0 0 0

0 0 −1

0 1 0


,


0 0 1

0 0 0

−1 0 0


,


0 −1 0

1 0 0

0 0 0


. (A.11)

the metric components of (A.9) and the structure constants are given, respec-

tively, by

⟨ êi|êj⟩ = δij =


1, if i = j

0, if i ̸= j

, (A.12)

⟨ êi|[êj , êk]⟩ = εijk. =



+1, if (i, j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2)

−1, if (i, j, k) = (2, 1, 3), (3, 2, 1), (1, 3, 2)

0, otherwise

(A.13)



106

The hat map is a linear transformation,

·̂ : R3 → so(3) (A.14)

ei 7→ êi, (A.15)

which maps the canonical basis for R3 to the canonical basis for so(3). Under

this association, so(3) with bracket,

[
â, b̂

]
so(3)

= âb̂− b̂â (A.16)

and inner product (A.9), is isomorphic, as both a Lie algebra and inner product

space, to R3 with bracket,

[a,b]R3 := a× b, (A.17)

and the standard dot product. The adjoint representation,

Ad : SO(3) → GL(so(3)) (A.18)

AdRω̂ = Rω̂RT , (A.19)

is another faithful representation of SO(3). With the action of SO(3) on so(3)
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and R3 given by the adjoint action and matrix multiplication, respectively. The

adjoint representation of so(3) is given by,

adâb̂ =
[
â, b̂

]
, (A.20)

and the coadjoint action is defined by

〈
ĉ|ad∗

âb̂
〉

=
〈

adâĉ|̂b
〉

. (A.21)

By the fact that,

〈
adâĉ|̂b

〉
= (a× c) · b = −c · (a× b) , (A.22)

the coadjoint is given by

ad∗
â = −adâ. (A.23)
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In summary, for all R ∈ SO(3) and any a, b, c ∈ R3 we have

âb = a× b (A.24)

1
2tr(âT b̂) = a · b (A.25)

RâRT ⇔ Ra (A.26)

ĉ = âb̂− b̂â ⇔ c = a× b (A.27)

A.1 The exponential map

The exponential of θ̂ ∈ so(3),

eθ̂ = 1 + Aθ̂ + Bθ̂2, (A.28)

A = sin θ

θ
, B = 1 − cos θ

θ2 , (A.29)

describes a rotation a rotation about an axis parallel to θ ∈ R3 by θ = |θ|

radians. If êi is a basis for so(3) and θ̂ = θiêi, then the map R(θ) = eθ̂ defines a

local coordinate chart in some neighborhood of the identity 1 ∈ SO(3). Given

a rotation matrix R ∈ SO(3), the axis of rotation can be obtained by applying

the inverse hat map to the antisymmetric matrix R − RT and the angle can be
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obtained using

tr(R) = 2 cos(θ) + 1. (A.30)

Rotations about coordinate axes are given by

eθê1 =


1 0 0

0 cos(θ) − sin(θ)

0 sin(θ) cos(θ)


(A.31)

eθê2 =


cos(θ) 0 sin(θ)

0 1 0

− sin(θ) 0 cos(θ)


(A.32)

eθê3 =


cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1


(A.33)

The logarithm of a rotation matrix is given by

log(R) = θ

2 sin θ

(
R − RT

)
, (A.34)

θ = arccos(tr(R) − 1
2 ). (A.35)
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A.2 Euler angles

If â, b̂, ĉ ∈ so(3) are nonzero antisymmetric 3-by-three matrices with
[
â, b̂

]
̸= 0

and
[
b̂, ĉ
]

̸= 0, then the function

R(α, β, γ) = eαâeβb̂eγĉ (A.36)

defines a local coordinate chart on some subset of SO(3). If â, b̂, and ĉ are

linearly independent, then the chart is defined in some neighborhood of the

identity 1 ∈ SO(3). The Euler angle parametrization [34] is an example of this

type of chart. In this parametrization, the orientation of a rigid body is de-

scribed by a sequence of three rotations about body-fixed axes, or, equivalently,

by rotating about the corresponding space-fixed axes in the opposite order.

We assume the initial body-fixed frame is chosen to coincide with the the

space-fixed frame, ei, and denote the body-fixed frame vectors after the first

and second rotation by ei′ and ei′′ , respectively. The three rotation operators
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are given by

Rz(α) = eαêz , (A.37)

ei′ = Rz(α)ei, (A.38)

Rx′(β) = eβêx′ = eαêz eβêxe−αêz , (A.39)

ei′′ = Rx′(β)ei′ , (A.40)

Rz′′(γ) = eγêz′′ = eαêz eβêxeγêz e−βêxe−αêz . (A.41)

Then, their composition can be expressed in terms of body-fixed and space-

fixed frames as

R(α, β, γ) = Rz′′(γ)Rx′(β)Rz(α)

= eγêz′′ eβêx′ eαêz

= eαêz eβêxeγêz

= Rz(α)Rx(β)Rz(γ)

(A.42)

Gimbal lock occurs at values of (α, β, γ) for which the derivative of R does not

have full rank,

rank(dR ) < 3, (A.43)
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as a map dR : R3 → TRSO(3). If we define the so(3)-valued one-form,

ω̂ : = R−1dR

= dα e−γêz e−βêx êzeβêxeγêz + dβ e−γêz êxeγêz + dγ êz

(A.44)

then the associated R3-valued form is given by

ω = dα e−γêz e−βêxez + dβ e−γêzex + dγ ez

=
(

e−γêz e−βêxez e−γêzex ez

)


dα

dβ

dγ


.

(A.45)

It follows that (A.43) is equivalent to

0 = det
(

e−γêz e−βêxez e−γêzex ez

)

= det
(

e−βêxez ex ez

)

= − sin(β)

(A.46)
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More generally, with R(α, β, γ) = eαâeβb̂eγĉ, the condition (A.43) is equivalent

to,

0 = det
(

e−γĉe−βb̂a e−γĉb c

)

= det
(

e−βb̂a b c

)

=
(
e−βb̂a

)
· (b× c)

(A.47)

A.3 Diagonalization

Choosing a coordinate system with ez = θ/θ the eigenvectors of R = eθ̂ are

given by

e0 = ez, (A.48)

e+ = − 1√
2

(ex − iey) , (A.49)

e− = 1√
2

(ex + iey) , (A.50)

with corresponding eigenvalues given by

Rep = eipθep. (A.51)
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The orthogonal transformation can them be written as

R = eiθe+e
†
+ + e−iθe−e

†
− + e0e

†
0 (A.52)

These eigenvectors are orthonormal with respect to the standard inner prod-

uct in C3, and the sign convention is chosen to be consistent with the Con-

don–Shortley phase convention for spherical harmonics,

r =
1∑

m=−1
2
√

π

3 rY1mem. (A.53)
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b appendix: the euclidean group

This appendix summarizes of results related to Euclidean group which are

discussed in various sections throughout the main text. The Special Euclidean

group SE(3) is the semi-direct product SO(3) ⋉R3 of the three-dimensional

Special Orthogonal group SO(3) with the three-dimensional translation group R3.

The composition law is given by (R,x)(R′,x′) = (RR′, Rx′ + x), and inverses

by (R,x)−1 = (R−1, −R−1x).

The special Euclidean group, and its Lie algebra, se(3), have faithful matrix

representations given by

SE(3) =


R x

0 1


∣∣∣∣∣∣∣∣∣R ∈ SO(3),x ∈ R3

 , (B.1)

se(3) =


ω̂ µ

0 0


∣∣∣∣∣∣∣∣∣ ω̂ ∈ so(3),µ ∈ R3

 (B.2)

Each tangent vector in TSSE(3),

a =

Ṙ ẋ

0 0

 (B.3)
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is naturally associated with two elements of se(3), one given by left translation,

S−1a =

R−1Ṙ R−1ẋ

0 0

 (B.4)

and another by right translation,

aS−1 =

ṘR−1 ẋ− ṘR−1x

0 0

 . (B.5)

We can endow SE(3) with a Riemannian metric which is only left-invariant as

follows. Given tangent vectors in TSSE(3),

a =

Ṙ ẋ

0 0

 , (B.6)

b =

Ṗ ż

0 0

 , (B.7)

we define their inner product to be,

⟨a|b⟩SE(3) =
〈

Ṙ
∣∣∣Ṗ〉

SO(3)
+ ⟨ ẋ|ż⟩R3 = 1

2tr(ṘT Ṗ ) + ẋT ż (B.8)
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The Lie algebra, se(3), is spanned by the six generators,

ê1 0

0 0

 ,

ê2 0

0 0

 ,

ê3 0

0 0


0 e1

0 0

 ,

0 e2

0 0

 ,

0 e3

0 0

 ,

(B.9)

which, by a slight abuse of notation, we will often simply write as êi and ei.

The structure constants are defined by the following commutation relations:

[êa, êb] = εabcêc (B.10)

[êa,eb] = εabcec (B.11)

[ea,eb] = 0. (B.12)

With θ = |θ|, the exponential map can be expressed as

exp

θ̂ µ

0 0

 =

eθ̂ V µ

0 1

 , (B.13)

eθ̂ = 1 + Aθ̂ + Bθ̂2, V = 1 + Bθ̂ + Cθ̂2 (B.14)

A = sin(θ)/θ, B = 1 − cos(θ)
θ2 , (B.15)

C = (1 − A)/θ2 = (θ − sin(θ))/θ3. (B.16)
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The logarithm is given by

log

R x

0 1

 =

log R V −1x

0 0

 (B.17)

θ = arccos(tr(R) − 1
2 ), (B.18)

θ̂ = log R = θ

2 sin θ
(R − RT ) (B.19)

V −1 = 1 − 1
2 θ̂ + 1

θ2

(
1 − A

2B

)
θ̂2 (B.20)

where A and B are defined as above. Expanding in powers of θ, we find,

θ

2 sin θ
= 1/2 + θ2/12 + 7θ4/720 + 31θ6/30240 + O(θ8) (B.21)

A =
∞∑

j=0

(−1)j

(2j + 1)!θ
2j (B.22)

= 1 − θ2/3! + θ4/5! − θ6/7! + O(θ8) (B.23)

= 1 − θ2/6 + θ4/120 − θ6/540 + O(θ8) (B.24)
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B =
∞∑

j=0

(−1)j

(2j + 2)!θ
2j (B.25)

= 1/2! − θ2/4! + θ4/6! − θ6/8! + O(θ8) (B.26)

= 1/2 − θ2/24 + θ4/720 − θ6/40320 + O(θ8) (B.27)

C =
∞∑

j=0

(−1)j

(2j + 3)!θ
2j (B.28)

= 1/3! − θ2/5! + θ4/7! − θ6/9! + O(θ8) (B.29)

= 1/6 − θ2/120 + θ4/5040 − θ6/362880 + O(θ8) (B.30)

1
θ2

(
1 − A

2B

)
= 1/12 + θ2/720 + θ4/30240 + θ6/1209600 + O(θ8) (B.31)

Given two elements of se(3),

ψ =

θ̂ µ

0 0

 , γ =

ϕ̂ ν

0 0

 , (B.32)
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the adjoint and coadjoint action on se(3) can be expressed as

adψγ =


[
θ̂, ϕ̂

]
θ̂ν − ϕ̂µ

0 0

 = θ̂ × ϕ+ θ × ν − ϕ× µ (B.33)

ad∗
ψγ = −


[
θ̂, ϕ̂

]
+ µ̂× ν θ̂ν

0 0

 = −θ̂ × ϕ− µ̂× ν − θ × ν (B.34)

With α = χ̂+ η, ψ = θ̂ + µ, γ = ϕ̂+ ν, we have

〈
α|ad∗

ψγ
〉

= −χ · (θ × ϕ+ µ× ν) − η · (θ × ν) (B.35)

= (θ × χ) · ϕ+ (θ × ν − χ× µ) · ν (B.36)

= ⟨adψα|γ⟩ (B.37)
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c appendix: swimming microorganisms

This appendix contains additional details, calculations, and derivations for § 4.

C.1 Integral equation for tension

The tension differential equation (4.24) can be formulated as a Fredholm

integral equation. This section derives a perturbative series for the two di-

mensional case. Equation (4.34) for the 2d active filament is equivalent to the

integral equation

λ(s) = − β

2 κ2(s) −
∫ 1/2

−1/2
G(s, s′)∂s′f(s′)ds′ − β

2η
κ2(s)

+ β

η

∫ 1/2

−1/2
G(s, s′)[∂s′κ(s′)]2ds′ + 1

η

∫ 1/2

−1/2
G(s, s′)κ2(s′)λ(s′)ds′

(C.1)

where G is the Dirichlet Green function for the Laplace equation on the interval

[1/2, 1/2] with homogeneous boundary conditions,

G(s, s′) =


(s′ − 1/2)(s + 1/2), for s < s′

(s′ + 1/2)(s − 1/2), for s > s′

(C.2)

= (s′ − 1/2)(s + 1/2)Θ(s′ − s) + (s′ + 1/2)(s − 1/2)Θ(s − s′). (C.3)
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To simplify notation, define the following:

ε = 1
η

(C.4)

⟨s|g0⟩ = g0(s) = −β

2 κ2(s) −
∫ 1/2

−1/2
G(s, s′)∂s′f(s′)ds′ (C.5)

⟨s|g1⟩ = g1(s) = −β

2 κ2(s) + β

∫ 1/2

−1/2
G(s, s′)[∂s′κ(s′)]2ds′ (C.6)

K =
∫ 1/2

−1/2

∫ 1/2

−1/2
G(s, s′)κ2(s′) |s⟩

〈
s′∣∣ ds ds′ . (C.7)

Equation (C.1) can then be written as

|λ⟩ = |g0⟩ + ε |g1⟩ + εK |λ⟩ , (C.8)

which has the solution

|λ⟩ = |g0⟩ +
∑
j=1

εjKj−1 [K |g0⟩ + |g1⟩] . (C.9)

The first two terms in λ = λ0 + ελ1 + ε2λ2 + . . . are given by

λ0(s) = −β

2 κ2(s) −
∫ 1/2

−1/2
G(s, s′)∂s′f(s′)ds′ (C.10)
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λ1(s) = − β

2 κ2(s) + β

∫ 1/2

−1/2
G(s, s′)[∂s′κ(s′)]2ds′

− β

2

∫ 1/2

−1/2
G(s, s′)κ4(s′)ds′ −

∫ 1/2

−1/2

∫ 1/2

−1/2
G(s, s′′)κ2(s′′)G(s′′, s′)∂s′f(s′)ds′ ds′′

(C.11)

C.2 Estimate of critical dimensional bending stiffness

Swarmers with lengths in the range L = 10 − 100 µm were found to swim

with an average velocity u∗ = 13 µm/s when placed in a motility buffer with

viscosity µ = .001 Pa ·s [99]. Using the critical dimensionless bending stiffness

β∗
⊥ = .0101, a body diameter of a = 1 µm, a longitudinal drag coefficient

ζ∥ = 2πµ/ ln(L/a), and characteristic force density f∗ = ζ∥u∗, we predict the

critical dimensional bending stiffness for swarmer cells to be in the range

B⊥ ≈ 3.6 × 10−25 − 1.8 × 10−22 Nm2. Experimental measurements have

suggested an average swarmer cell bending stiffness of 5.5 × 10−22 Nm2 [96].

Taking a characteristic body length of L = 50 µm results in a critical value of

B⊥ ≈ 2.6 × 10−23 Nm2.

C.3 Evolution equations in an inertial frame

With primes denoting s-derivatives and dots denoting t-derivatives, we can

write u = R−1ṙ, e0 = R−1r′, Ω⊥ = R−1(r′ × r′′), ω⊥ = R−1(r′ × ṙ′). The
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structure equations and inextensibility/unshearability imply

Ω̇0 = ω′
0 + r′ ·

(
r′′ × ṙ′) , (C.12)

r′ · ṙ′ = 0, (C.13)

and the stress balance equations can be written in an inertial frame as

(
B∥Ω0r

′ + B⊥r
′ × r′′

)′
+ r′ × Λ + mr′ − ζrω0r

′ = 0, (C.14)

Λ′ + fr′ − ζṙ = 0, (C.15)

where ζ = ζ∥r
′r′T + ζ⊥(1 − r′r′T ). Eliminating ω0 and Λ⊥ = (1 − rr′T )Λ, we

find

ω0 =
B∥
ζr

Ω′
0 + 1

ζr
m′ (C.16)

Λ⊥ = r′ ×
(
B∥Ω0r

′ + B⊥r
′ × r′′

)′
(C.17)

Ω̇0 =
B∥
ζr

Ω′′
0 + 1

ζr
m′′ + r′ ·

(
r′′ × ṙ′) (C.18)

λ′′ −
ζ∥
ζ⊥

κ2λ + f ′ + 1
2B⊥(κ2)′′ +

ζ∥
ζ⊥

κ2τ
(
B∥Ω0 − B⊥τ

)
+

ζ∥B⊥

ζ⊥
κκ′′ = 0

(C.19)
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where λ = r′ · Λ. Torsion can be eliminated using

Ω0κ2τ = κ2Ω2
0 + Ω0e0 ·

(
Ω⊥ × Ω′

⊥
)

(C.20)

κκ′′ − κ2τ2 = Ω⊥ · Ω′′
⊥ − κ2Ω2

0 − 2Ω0e0 ·
(
Ω⊥ × Ω′

⊥
)

(C.21)

to recover the tension equation given in the main manuscript.

C.4 Symmetries

This section contains a collection of results related to symmetries and conserved

quantities for the active filament model.

Curvature/torsion parity and rotational symmetry

Consider an arclength parameterized curve r(s) with Frenet-Serret frame

(T ,N ,B), curvature κ, and torsion τ . Suppose the midpoint is at s = 0, and

define the following:

S =

R r

0 1

 =

Te
T
0 +NeT

1 +BeT
2 r

0 1

 (C.22)

A =

Ω̂ e0

0 0

 =

τ ê0 + κê2 e0

0 0

 (C.23)
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Curvature and torsion are even functions of s if and only if the (Frenet-Serret)

framed curve is invariant under rotation by π about an axis which intersects

the curve at r(0) and which is perpendicular to T (0). If the curvature is

nonvanishing at s = 0, then the axis of rotation is parallel to n = N(0). This

is equivalent to saying that the equation

A(−s) = A(s) (C.24)

holds if and only if

S(−s) = S0GS−1
0 S(s)G−1

=

eπN̂(0)R(s)eπê1 r(0) + eπN̂(0) (r(s) − r(0))

0 1


(C.25)

where S0 := S(0) and G is given by

G =

eπê1 0

0 1

 =

−e0e
T
0 + e1e

T
1 − e2e

T
2 0

0 1

 (C.26)

Proof. We begin by proving the S0 = 1 case. If S0 = 1 then T (0) = e0,
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N(0) = e1,B(0) = e2, r(0) = 0,

S(s) =
ξ=s∏
ξ=0

eA(ξ)dξ = Pexp
∫ s

0
A(ξ)dξ , (C.27)

and Eq. (C.25) reduces to

S(−s) = GS(s)G−1

=

eπê1R(s)eπê1 eπê1r(s)

0 1


(C.28)

First, we suppose A(−s) = A(s) and show (C.24)⇒(C.28). We find that S

transforms under s 7→ −s as

S(−s) =
ξ=−s∏
ξ=0

eA(ξ)dξ =
ξ=s∏
ξ=0

e−A(−ξ)dξ =
ξ=s∏
ξ=0

e−A(ξ)dξ , (C.29)
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where the last equality uses A(−s) = A(s). Since A satisfies

GAG−1 =

eπê1 (τ ê0 + κê2) e−πê1 eπê1e0

0 0

 (C.30)

=

−τ ê0 − κê2 −e0

0 0

 (C.31)

= −A, (C.32)

we have

S(−s) =
ξ=s∏
ξ=0

eGA(ξ)G−1 dξ (C.33)

= G

ξ=s∏
ξ=0

eA(ξ)dξ

G−1 (C.34)

= GS(s)G−1 (C.35)

which proves (C.24)⇒(C.28).

Now we assume (C.28) and show (C.28)⇒(C.24). Taking a derivative
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of (C.28) and using GAG−1 = −A, we find

−S(−s)A(−s) = GS(s)A(s)G−1

= GS(s)G−1GA(s)G−1

= S(−s)GA(s)G−1

= −S(−s)A(s)

(C.36)

which proves (C.28)⇒(C.24). To prove the general case, (C.25)⇔(C.24), just

apply the above argument to S̃ := S−1
0 S.

Filaments with a circular cross-section

When representing a filament with circular cross-section by a framed curve,

S =

R r

0 1

 , A = S−1dS (C.37)

A =

Ω̂ U

0 0

 ds +

ω̂ u

0 0

 dt , (C.38)

U = e0 (C.39)

the initial direction for the transverse frame vectors q1 = Re1, q2 = Re2 at s = 0

is arbitrary. The gauge group U(1) acts by rotating the frame at each point along
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the curve by a constant angle about the curve tangent q0 = Re0 = ∂sr. Gauge

invariants include the centerline r and all associated geometric quantities (e.g.

curvature, torsion, and Frenet-Serret frame), as well as the twist Ω0 = e0 · Ω.

Gauge transformations can be represented by SE(3)-valued matrices

G =

eθê0 0

0 1

 (C.40)

whose action on S is defined by

S 7→ SG−1 =

Re−θê0 r

0 1



=

e−θq̂0R r

0 1


(C.41)

Under a change of gauge, A transforms as

A 7→ GAG−1. (C.42)
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Or, in terms of its components

Ω 7→ Ω0e0 + eθê0Ω⊥ (C.43)

U 7→ U (C.44)

ω 7→ ω0e0 + eθê0ω⊥ (C.45)

u 7→ u0e0 + eθê0u⊥ (C.46)

Symmetries of the shape equations

The evolution equations of § 4 are invariant under C.41,C.42. As a result,

solutions which differ only by a constant phase at t = 0

Ã(s, 0) = GA(s, 0)G−1 (C.47)

will have the same relative phase at future times

Ã(s, t) = GA(s, t)G−1. (C.48)

Invariance of the evolution equations given in § 4 can be seen as a consequence

of the fact that the energy, inextensibility/unshearability constraints, dissi-

pation function, and active stresses for the model, as well as the structure
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equations, are invariant under C.41,C.42. These invariance properties can also

be verified by direct examination of the structure and stress balance equations

(see §3.3 and §C.3).

In statics problems, the phase difference between the Frenet-Serret and

material frames at s = 0 can always be eliminated through a proper choice of

gauge, however, this is generally not possible for dynamics problems. Excep-

tions can be found when certain symmetry conditions are met. When twist Ω0

is an even function, the conditions listed below are equivalent

(1) Curvature κ and torsion τ are even functions of s

(2) The centerline r(s) is invariant under rotation by π about an axis which

intersects the curve at s = 0

(3) There exists a gauge in which Ω1 and Ω2 have definite and opposite

parity

If, in addition, the active stresses f , m are odd, then these symmetries, as well

as the phase difference between the Material and Frenet-Serret frames at s = 0,
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are conserved. That is, if Ω0, Ω2 are even, and Ω1, f, m are odd at t = 0,

Ω0(−s, 0) = Ω0(s, 0)

Ω1(−s, 0) = −Ω1(s, 0)

Ω2(−s, 0) = Ω2(s, 0)

f(−s, 0) = −f(s, 0)

m(−s, 0) = −m(s, 0)

(C.49)

then the parity of Ω0, Ω1, Ω2, f , m, and λ are conserved for all t > 0,

Ω0(−s, t) = Ω0(s, t)

Ω1(−s, t) = −Ω1(s, t)

Ω2(−s, t) = Ω2(s, t)

f(−s, t) = −f(s, t)

m(−s, t) = −m(s, t)

λ(−s, t) = λ(s, t)

(C.50)

q1(0, t) is constant in time

q1(0, t) = q1(0, 0), (C.51)
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the centerline remains invariant under rotation by π about an axis parallel to

q1(0, t) = q1(0, 0) which intersects the centerline at r(0, 0)

r(−s, t) = r(0, 0) + eπq̂1(0,0) (r(s, t) − r(0, 0)) , (C.52)

and both the linear and angular velocities are directed along the symmetry

axis at s = 0

u(0, t) = u1(0, t)e1 (C.53)

ω(0, t) = ω1(0, t)e1 (C.54)

Under the above symmetry assumptions, enforcing free boundary condi-

tions at s = ±L/2 is equivalent to

Ω′
0
∣∣
s=0 = 0 (C.55)

Ω1|s=0 = 0, Ω′′
1
∣∣
s=0 = 0 (C.56)

Ω′
2
∣∣
s=0 = 0, Ω′′′

2
∣∣
s=0 = 0 (C.57)

λ′∣∣
s=0 = 0 (C.58)
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Ω0|s=L/2 = 0 (C.59)

Ω1|s=L/2 = 0, Ω′
1
∣∣
s=L/2 = 0 (C.60)

Ω2|s=L/2 = 0, Ω′
2
∣∣
s=L/2 = 0 (C.61)

λ|s=L/2 = 0. (C.62)

Example of physically equivalent, but out of phase solutions are given by

the following. The system with initial conditions given by

Ω0(s, 0) = M

B∥
log(cosh(10s)

cosh(5) ) (C.63)

Ω1(s, 0) = −6ϕ0(s) sin(2πs) (C.64)

Ω2(s, 0) = 6ϕ0(s) cos(2πs) (C.65)

f(s, 0) = − tanh(10s) (C.66)

m(s, 0) = −M tanh(10s) (C.67)

S(0, 0) = 1, (C.68)

where ϕ0 is the first even eigenfunction of ∂4
s , satisfies the symmetry conditions

outlined in the above, so, the parity of Ω0, Ω1, Ω2, f , m, and λ are conserved.
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Consider systems with initial conditions

Ω(j)
0 (s, 0) = Ω0(s, 0) (C.69)

f (j)(s, 0) = f(s, 0) (C.70)

m(j)(s, 0) = m(s, 0) (C.71)Ω(j)
1 (s, 0)

Ω(j)
2 (s, 0)

 =

cos(2jπ/3) − sin(2jπ/3)

cos(2jπ/3) sin(2jπ/3)


−6ϕ0(s) sin(2πs)

6ϕ0(s) cos(2πs)

 (C.72)

S(j)(0, 0) =



1 0 0 0

0 cos(2jπ/3) sin(2jπ/3) 0

0 − sin(2jπ/3) cos(2jπ/3) 0

0 0 0 1


(C.73)

for j = 0, 1, 2. Gauge independence of the equations of motion implies the

relative phase of these systems systems is independent of time:

Ω(j)
0 (s, t) = Ω0(s, t) (C.74)

f (j)(s, t) = f(s, t) (C.75)

m(j)(s, t) = m(s, t) (C.76)
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Ω(j)
1 (s, t)

Ω(j)
2 (s, t)

 =

cos(2jπ/3) − sin(2jπ/3)

cos(2jπ/3) sin(2jπ/3)


Ω1(s, t)

Ω2(s, t)



=

cos(2jπ/3)Ω1(s, t) − sin(2jπ/3)Ω2(s, t)

sin(2jπ/3)Ω1(s, t) + cos(2jπ/3)Ω2(s, t)


(C.77)

S(j)(s, t) = S(s, t)



1 0 0 0

0 cos(2jπ/3) sin(2jπ/3) 0

0 − sin(2jπ/3) cos(2jπ/3) 0

0 0 0 1


(C.78)
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d appendix: surface-bound biopolymers

This appendix derives and discusses computational methods for solving the

equations governing tension λ = e1 · λ, geodesic curvature Ω := e3 · Ω,

unit tangent q := q1, and centerline r of the surface-bound filament model

introduced in § 5 from the Euler-Poincaré equations, structure equations, and

surface constraints,

∂sm+ Ω ×m+U × λ− χe1 = ζrω1e1 (D.1)

∂sλ+ Ω × λ− νe3 − χRT ∇nRe2 + f = ζu (D.2)

∂tΩ = ∂sω + Ω × ω (D.3)

∂su+ Ω × u = ∂tU + ω ×U (D.4)

∂sr = Re1 (D.5)

ϕ(r) = 0 (D.6)

q2 · n(r) = 0. (D.7)
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The following relations between the framed curve and surface geometries will

be used at various points throughout this appendix.

I = 1 − nnT = q1q
T
1 + q2q

T
2 (D.8)

Kij := −qi · ∇n · qj (D.9)

K =

K11 K12

K12 K22

 =

−Ω2 Ω1

Ω1 K22

 (D.10)

∇n · n = 0 (D.11)

∂sr · ∇n = R (Ω × e3) (D.12)

n · ∂tr = e3 · u = 0 (D.13)

Ω1 = −q1 · ∇n · q2 = K12 (D.14)

Ω2 = q1 · ∇n · q1 = −K11 (D.15)

ω1 = −∂tr · ∇n · q2 = K12u1 + K22u2 (D.16)

ω2 = ∂tr · ∇n · q1 = −K11u1 − K12u2 (D.17)
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Gaussian curvature K

K = det(K) = −1
2tr(n̂ · ∇n · n̂ · ∇n) (D.18)

∇nT · n̂ · ∇n = Kn̂ (D.19)

Mean curvature H

∇ · n = tr(∇n) = −2H (D.20)

D.1 Surface geometry and constraints

The following calculations are based purely on kinematic constraints associated

with of inextensibility/unshearbility U = e1, surface confinement, ϕ(r) = 0

and q3 = n, the structure equations dA +A∧A = 0, and the equation dS = SA.

By inextensibility/unshearability, the structure equations reduce to

∂tΩ = ∂sω + Ω × ω (D.21)

∂su+ Ω × u = ω × e1. (D.22)
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Using the fact that

u3 = e3 · u = n · ∂tr = 0, (D.23)

we find just three independent scalar equations,

∂su1 − Ω3u2 = 0 (D.24)

∂su2 + Ω3u1 = ω3 (D.25)

∂tΩ3 = ∂sω3 + Ω1ω2 − Ω2ω1

= ∂sω3 + Ku2,

(D.26)

where K is the Gaussian curvature of the surface. The first will give an equation

for the tension, and the second and third combine to give an evolution equation

for the geodesic curvature

∂tΩ3 = ∂sω3 + Ω1ω2 − Ω2ω1

= ∂sω3 + Ku2

= ∂2
s u2 + ∂sΩ3u1 + Ω3∂su1 + Ku2

= ∂2
s u2 +

(
Ω2

3 + K
)

u2 + ∂sΩ3u1

(D.27)
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D.2 The mobility tensor

Here we will derive the effective in-surface mobility tensor. First we eliminate

the Lagrange multipliers ν, χ, and λ⊥. Crossing moment balance (D.1) with

e1 and defining λ := e1 · λ gives

λ = λe1 + e1 × (∂sm+ Ω ×m) (D.28)

λ2 = −∂sm3 − Ω1m2 + Ω2m1 (D.29)

= −∂sm3 − K11m1 − K12m2 (D.30)

λ3 = ∂sm2 + Ω3m1 − Ω1m3 (D.31)

= ∂sm2 + Ω3m1 − K12m3 (D.32)

The remaining e1 component of moment balance gives

χ = e1 · (∂sm+ Ω ×m) − ζrω1 (D.33)

= e1 · (∂sm+ Ω ×m) − ζrK12u1 − ζrK22u2 (D.34)
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Then a miracle happens [171] and you get

 ∂sλ + Ω · ∂sm+ f1

e2 · (∂sλ+ Ω × λ) + K22e1 · (∂sm+ Ω ×m) + f2

 =

ζ1 + ζrK2
12 ζrK12K22

ζrK12K22 ζ2 + ζrK2
22


u1

u2


(D.35)

where components of the steric force are given by

f1(s) = −q1(s) ·
∫

∂G

∂r(s)
(
r(s), r(s′)

)
ds′ = −∂s

∫
G
(
r(s), r(s′)

)
ds′ (D.36)

f2(s) = −q2(s) ·
∫

∂G

∂r(s)
(
r(s), r(s′)

)
ds′ (D.37)

Define the effective mobility tensor

M = 1
ζ1ζ2 + ζ1ζrK2

22 + ζ2ζrK2
12

 ζ2 + ζrK2
22 −ζrK12K22

−ζrK12K22 ζ1 + ζrK2
12

 (D.38)

=
2∑

i,j=1
Mijeie

T
j (D.39)
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and force density

F = F1e1 + F2e2

=

 ∂sλ + Ω · ∂sm+ f1

e2 · (∂sλ+ Ω × λ) + K22e1 · (∂sm+ Ω ×m) + f2



=

 ∂sλ + Ω · ∂sm+ f1

Ωλ + e2 · (∂sλ⊥ + Ω × λ⊥) + K22e1 · (∂sm+ Ω ×m) + f2



=

 ∂sλ + Ω · ∂sm+ f1

Ω3λ + ∂sλ2 − Ω1λ3 + K22∂sm1 − K22K11m3 − K22Ω3m2 + f2


(D.40)

where,

F2 = − ∂2
s m3 + (λ − K12m1 − K22m2) Ω3 − Km3 (D.41)

− ∂s (K11m1 + K12m2) − Ω1∂sm2 + K22∂sm1 + f2 (D.42)

Multiplying (D.35) by M, we find

u = MF . (D.43)
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D.3 Shape equations

Defining X and Y by,

MF = M

∂sλ

Ωλ

+ MY (D.44)

= M

∂sλ

Ωλ

+ X, (D.45)

we find that

u1 = M11∂sλ + M12Ωλ + X1, (D.46)

u2 = M12∂sλ + M22Ωλ + X2. (D.47)

When substituted into (D.24), we find

∂su1 − Ωu2 =M11∂2
s λ + ∂sM11∂sλ + M12Ω∂sλ + ∂s (M12Ω) λ

+ ∂sX1 − M12Ω∂sλ − M22Ω2λ − ΩX2

=M11∂2
s λ + ∂sM11∂sλ +

(
∂s (M12Ω) − M22Ω2

)
λ

+ ∂sX1 − ΩX2

(D.48)
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or, equivalently

∂2
s λ + ∂sM11

M11
∂sλ + ∂s (M12Ω) − M22Ω2

M11
λ = −∂s (M1jYj) + ΩMj2Yj

M11
(D.49)

where M11 = ζ2+ζrK2
22

ζ1ζ2+ζ1ζrK2
22+ζ2ζrK2

12
, M12 = −ζrK12K22

ζ1ζ2+ζ1ζrK2
22+ζ2ζrK2

12
, M22 = ζ1+ζrK2

12
ζ1ζ2+ζ1ζrK2

22+ζ2ζrK2
12

,

Y1 = Ω·∂sm+f1, and Y2 = e2 ·(∂sλ⊥ + Ω × λ⊥)+K22e1 ·(∂sm+ Ω ×m)+f2.

The evolution equation for the geodesic curvature is obtained in a similar fash-

ion by substituting the above expressions for (u1, u2) into Eq. (D.27).

D.4 Boundary conditions

Free end

The boundary term which appears in the first variation of the energy (5.28),

is given by

δW = m · θ + λ · v, (D.50)

where (θ,v) are components of the generator of the variation (see §3),

δS = SAξ, Aξ =

θ̂ v

0 0

 =

R−1δR R−1δr

0 0

 . (D.51)
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For a free end, constraints require,

0 = δϕ = δr · ∇ϕ = v · R−1∇ϕ (D.52)

δn = R(θ × e3) = ∇nT δr = ∇nT Rv

⇒ θ = ê3RT ∇nT Rv
(D.53)

Or, in components,

v = v1e1 + v2e2 (D.54)

θ = θ1e1 + θ2e2 + θ3e3 (D.55)

θ1 = K12v1 + K22v2 (D.56)

θ2 = −K11v1 − K12v2. (D.57)
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Applying D’Alembert’s principle,

δW =
[
λ− ∇nT · (e3 ×m)

]
· v + m3θ3

=
[
λe1 + e1 × (∂sm+ Ω ×m) − ∇nT · (e3 ×m)

]
· v + m3θ3

= [λ + K12m1 − K11m2] v1

− [∂sm3 + 2K12m2 + (K11 − K22) m1] v2

+ m3θ3

(D.58)

we find boundary conditions for the free end are given by,

m3 = 0 (D.59)

∂sm3 + 2K12m2 + (K11 − K22) m1 = 0 (D.60)

λ + K12m1 − K11m2 = 0. (D.61)
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Clamped end

Linear and angular velocities at the clamped end must be zero: u1 = u2 = 0

and ω3 = 0. Vanishing of u1, u2 is equivalent to F = M−1u = 0.

F =

 ∂sλ + Ω · ∂sm+ f1

Ω3λ + ∂sλ2 − Ω1λ3 + K22∂sm1 − K22K11m3 − K22Ω3m2 + f2

 = 0

(D.62)

From the structure equation, we have ω3 = ∂su2 + Ωu1. Together with

F1 = F2 = 0, this implies the boundary conditions for a clamped end are given

by,

F1 = 0 (D.63)

F2 = 0 (D.64)

M12∂sF1 + M22∂sF2 = 0. (D.65)

D.5 Numerics

This section contains information about numerical methods for the simulation

of surface-bound polymers, and formulas used in implementation of geometric
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integration schemes on SE(3). Define the following

R = qeT
1 + (n× q)eT

2 + neT
3 ∈ SO(3) (D.66)

µ = µ1e1 + µ2e2 ∈ R3 (D.67)

θ = θ1e1 + θ2e2 + θ3e3 ∈ R3, θ = |θ| (D.68)

A = sin(θ)/θ, B = 1 − cos(θ)
θ2 , C = (1 − A)/θ2 = (θ − sin(θ))/θ3 (D.69)

V = 1 + Bθ̂ + Cθ̂2. (D.70)

Then, we have

R r

0 1

 exp

θ̂ µ

0 0

 =

Reθ̂ r + RVµ

0 1

 , (D.71)

Reθ̂e1 = R (e1 + Aθ × e1 + Bθ × (θ × e1))

=
(
q n× q n

)


1 − B(θ2
2 + θ2

3)

Aθ3 + Bθ1θ2

−Aθ2 + Bθ1θ3


(D.72)
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r + RVµ = r + R (µ+ Bθ × µ+ Cθ × (θ × µ))

= r +
(
q n× q n

)


[1 − C(θ2
2 + θ2

3)]µ1 + (Cθ1θ2 − Bθ3)µ2

(Cθ1θ2 + Bθ3)µ1 + [1 − C(θ2
3 + θ2

1)]µ2

(Cθ1θ3 − Bθ2)µ1 + (Cθ2θ3 + Bθ1)µ2


(D.73)

To speed up computations, and also avoid computational issues when θ ≈ 0,

we evaluate (A, B, C) by truncating the power series given in Appendix B.

Explicit 1st order geometric timestep

Taylor expansion shows

S(t + h) = S(t)ehAt(t) + O(h2). (D.74)

Since At(t) can be computed as a function of the spatial derivatives of (Ω, λ, q, r)

at the current time, this gives a first order explicit timestepping method for

(q, r). Take µ = hu and θ = hω in equations (D.72) and (D.73) above. Then,
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we have

q 7→Reθ̂e1

= R (e1 + Aθ × e1 + Bθ × (θ × e1))

=
(
q n× q n

)


1 − B(θ2
2 + θ2

3)

Aθ3 + Bθ1θ2

−Aθ2 + Bθ1θ3



(D.75)

r 7→r + hRVu

= r + hR (u+ Bθ × u+ Cθ × (θ × u))

= r + h

(
q n× q n

)


[1 − C(θ2
2 + θ2

3)]u1 + (Cθ1θ2 − Bθ3)u2

(Cθ1θ2 + Bθ3)u1 + [1 − C(θ2
3 + θ2

1)]u2

(Cθ1θ3 − Bθ2)u1 + (Cθ2θ3 + Bθ1)u2


(D.76)

Implicit 2nd order geometric integration

Taylor expansion shows

S(s + h) = S(s)e
h
2 (As(s+h)+As(s)) + O(h3). (D.77)
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Take µ and θ from equations (D.72) and (D.73) to be the following

µ = he1, θ = h

2 (Ω(s + h) + Ω(s)) . (D.78)

We end up with a second order implicit method because,

θ = θ(s, s + h), V = V(s, s + h) (D.79)

A = A(s, s + h), B = B(s, s + h), C = C(s, s + h) (D.80)

now depend on the spatial derivatives of (Ω, λ, q, r) at both s and s+h. Assum-

ing we know (Ω(s + h), λ(s + h)), then (q(s + h), r(s + h)) are fixed points of

q(s + h) 7→R(s)eθ̂(s,s+h)e1

= R(s) (e1 + Aθ × e1 + Bθ × (θ × e1))

=
(
q(s) n(s) × q(s) n(s)

)


1 − B(θ2
2 + θ2

3)

Aθ3 + Bθ1θ2

−Aθ2 + Bθ1θ3



(D.81)
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r(s + h) 7→r(s) + hR(s)V(s, s + h)e1

= r(s) + hR(s) (e1 + Bθ × e1 + Cθ × (θ × e1))

= r(s) + h

(
q(s) n(s) × q(s) n(s)

)


1 − C(θ2
2 + θ2

3)

(Cθ1θ2 + Bθ3)

(Cθ1θ3 − Bθ2)


(D.82)

and can be computed by iteration.

D.6 Yukawa potential

The Yukawa potential is the fundamental solution to the screened Poisson

equation,

[
∇2 − 1/a2

]
G(x) = −δ(x) (D.83)
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G(x) = 1
4π|x|

e−|x|/a (D.84)

= 1
(2π)3

∫ 1
|k|2 + 1/a2 eik·xdV (k) (D.85)

= 1
2π2r

∫ ∞

0

k sin(kr)
k2 + 1/a2 dk (D.86)

−∇G(x) = (r + a)e−r/a

4πar3 x (D.87)

The solution to

[
∇2 − 1/a2

]
ϕ(x) = −ρ(x) (D.88)

with ϕ(∞) = 0 is

ϕ(x) =
∫

G(x− x′)ρ(x′)dV (x′) (D.89)
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