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ABSTRACT

Living matter is often composed of microstructures which possess rotational
degrees of freedom, in addition to the translational degrees of freedom which
describe the point-like material particles of classical continuum mechanics. Lie
theory and Cartan’s method of moving frames provides a natural framework
in which both translational and rotational aspects of microstructured materials
can be treated in a unified manner. In this framework, the state of the material
is described by a collection of fields which take values in the special Euclidean
group and its Lie algebra. These fields are governed by Euler-Poincaré equa-
tions which enforce the local balance of linear and angular momentum. In
this dissertation, we develop theoretical and computational tools for modeling
these generalized continua. We then apply these methods to a number of
biophysical systems.

The twisting and writhing of a cell body and associated mechanical stresses
isan underappreciated constraint on microbial self-propulsion. Multi-flagellated
bacteria can even buckle and writhe under their own activity as they swim
through a viscous fluid. Modeling the cell body as a semi-flexible Kirchhoff
rod and coupling the mechanics to a dynamically evolving flagellar orientation
field, we derive reduced Euler-Poincaré equations governing dynamics of the
system, and rationalize experimental observations of buckling and writhing
of elongated swarmer cells of the bacterium Proteus mirabilis. Our analysis re-
veals a minimal stiffness required of a cell, below which its motility is severely
hampered.

Remodeling of biological membranes often involves interactions with biofil-
aments which polymerize on the membrane surface. Using a combination of
moving frame and level-set methods to describe membrane geometry, we de-
rive constrained Euler-Poincaré equations governing a surface-bound flexible
filament. We find that a membrane-bound filament can undergo growth-
induced buckling which results in highly localized forces and moments being
applied to the membrane. Our simulations also suggest that chirality may play
a role in a protein’s ability to sense membrane curvature.



1 INTRODUCTION

Lie theory is the language of symmetry and invariance. Its mathematical
foundations were laid down by Sophus Lie in his study of the symmetries of
differential equations [2]. In its original incarnation, a Lie group was a group
which was parameterized by a set of continuous variables, and each element
of the group was considered a transformation which mapped one solution of
the system of differential equations to another solution [[3]]. Lie’s fundamental
insight was that continuous groups can be generated by a much simpler set of
linear transformations, even when the groups themselves are highly nonlinear.
The space of such linear transformations is now called a Lie algebra.
Following Lie’s initial work with symmetry groups of differential equa-
tions, numerous applications of Lie groups quickly emerged. Chief among
these is the result of Emmy Noether that there is a one-to-one correspondence
between continuous symmetries of the an action functional and conserved
quantities of the associated Euler-Lagrange equations [4},5]]. The theories of
relativity and quantum mechanics, which form the bedrock of our current
understanding of physics, are likewise deeply intertwined with Lie theory.
The discovery that the equations of classical electrodynamics were invariant
under the action of the Lorentz group served as an impetus for development

of special relativity [[6-8], and work initiated by Eugene Wigner and Hermann



Weyl revealed a deep connection between the description of quantum me-
chanical phenomena and the representation theory of Lie groups and Lie
algebras [9H12]. Closely related to these quantum mechanical applications,
are the myriad of special functions which emerge as characters and matrix
elements of Lie group representations [[13]]. This thread continues to this day
with Lie groups appearing as gauge groups of standard model of particle
physics [14]. Outside of physics, the tools of Lie theory can be be found in
robotics and control theory [[15, [16], computer vision [[17], probability and
statistics [18]], information theory [[19], and a wide range of other fields [20].

In the modern conception of Lie theory, pioneered by Wilhelm Killing and
Elie Cartan, continuous group parameters are viewed as local coordinates
in smooth manifold and the Lie algebra is interpreted as the tangent space
at the identity element of the group [21]]. This geometrization of Lie theory
paved the way for many of the powerful, geometric techniques which permeate
much of modern mathematical physics [22-25]]. Cartan’s method of moving
frames [126],27]], in particular, will be used extensively throughout this work.
The method of moving frames is a technique which can be used to analyze
geometric properties of a manifold by studying transformation groups which
act upon it [28]. This provides a natural framework in which to model a

physical system whose state evolves under the action of a Lie group.



Euler-Lagrange equations for a system evolving under the action of a Lie
group, G, with Lie algebra, g, are equivalent to a set of differential equations
governing the G-valued evolution operator and an associated quasi-velocity,
or g-valued infinitesimal generator [29]. We call these equations the Euler-
Poincaré equations [[30]]. This formalism can be particularly useful when the
Lagrangian of the system satisfies certain symmetry requirements. Through
a process known as Euler-Poincaré reduction, the equations of motion can be
replaced by a reduced order system depending only on the g-valued infinites-
imal generator [I31]]. Solutions to the original variational problem can then
be recovered by integration of the generator. Euler-Poincaré reduction and
its Hamiltonian analogue, Lie-Poisson reduction, are now a classical tools of
geometric mechanics [132}33]].

The prototypical example of a system which can be described using a Lie
group-valued evolution operator is the rigid body [34]]. Each configuration of
the body is associated with the Euclidean transformation which maps a chosen
reference frame onto the body’s material frame. In this way, the configuration
space of the body can be identified with the special Euclidean group, SE(3),
and dynamics of the body can be described by Euler-Poincaré equations. The
Lie theoretic approach was beautifully demonstrated in the context of fluid

mechanics by Vladimir Arnold, who showed that the Euler equations for a



perfect fluid are equivalent to the reduced Euler-Poincaré equations on the
infinite-dimensional group of volume preserving diffeomorphisms of the
region occupied by the fluid [35]. Arnold’s approach has since been extended
and applied to complex fluids, plasmas, and many other continua [36-40]].
The Euler-Poincaré and Lie-Poisson formalisms have more recently been ex-
tended to a field-theoretic context [41-44]]. The time evolution operator of the
classical Euler-Poincaré system is replaced by a G-valued configuration field
over a base space parameterized by material coordinates and time. This con-
figuration field is related to a g-valued differential one-form, or gauge potential,
whose components are the infinitesimal generators associated with coordinate
translations in the base space [45]. The Euler-Poincaré equations for these sys-
tems can be recast as covariant field equations satisfied by the gauge potential.
In contrast with the classical case, these generalized Euler-Poincaré equations
are insufficient to reconstruct solutions of the original variational problem,
and must be augmented with a set of integrability conditions. In mathematical
terms, a solution to the Euler-Poincaré field equations defines a connection
on a principal bundle with structure group G. The integrability conditions,
often referred to as structure equations and Maurer-Cartan equations, state that
the curvature of this principal connection must be identically zero [25]. When

the base space is taken to be R and interpreted as time, the zero-curvature



condition is trivially satisfied and the field equations reduce to the classical
Euler-Poincaré equations on the structure group of the bundle [41]].

Here we are interested in applying this extended Euler-Poincaré framework
to model microstructured continua. The simplest continuum theories treat
matter as if it consists of identical point-like material particles. In reality, a
material may exhibit varying degrees of structure depending on the scale at
which the it is examined [46]]. When the minimum length scale set by mi-
crostructure is comparable to the length scale associated with applied stresses
or to the overall size of the medium, predictions of classical theories begin
to fail and it becomes necessary to consider the mechanical response of the
individual microstructures [47, 48]].

Microstructured materials are often composed of subunits which are effec-
tively indivisible at the energy scales under consideration. These microstruc-
tures may have internal degrees, in addition to the three translational degrees
of freedom which describe classical point-like material particles. A material
composed of rigid microstructures which are fully characterized by a posi-
tion and orientation is called a Cosserat medium [49]]. The state of a Cosserat
medium is given by assigning a Euclidean transformation to each microstruc-
ture, making it the field-theoretic analogue of the rigid body. The gauge

potential associated with this field of Euclidean transformations contains in-



formation about the medium’s local deformation and velocity. Cosserat media
encompass a large class of models for structured and oriented materials which
include rods [50} 51]], plates and shells [52]], flexible polymers [53], carbon
nano-tubes and graphene [54], lipid membranes [55]], bone [56], liquid crys-
tals [57], granular media [58]], continuum spin systems [59H62]], and certain
nonlinear sigma models [l63-65].

The remainder of this dissertation will be spent developing the theory of
Cosserat media within the Euler-Poincaré framework and investigating vari-
ous applications. A proper discussion of the ideas outlined above requires a
variety of techniques rooted in differential geometry and group theory which
will covered in chapter 2l We will examine Cosserat media through the lens of
Euler-Poincaré theory in chapter 3| beginning with the case of a single rigid
body. Chapter [ presents a model for an active flexible body at low Reynolds
number with applications to the biolocomotion of multi-flagellated microor-
ganisms. In chapter [5| we investigate the constrained dynamics of flexible
filaments, motivated primarily by biopolymers and their interactions with
cell membranes. We conclude with a discussion of possible future research

directions.



2 LIE THEORY

2.1 Introduction

In this chapter, we will introduce basic notation and terminology for discussing
Lie groups and Lie algebras. We begin by recalling some facts about manifolds
and differential forms, then we review the geometry and representation theory
of Lie groups and their Lie algebras. For a more thorough treatment of the
mathematical methods discussed in this chapter, we direct the reader to [21}66-

69].

2.2 Geometry

Consider a smooth manifold M. The space of smooth functions on M will
be denoted C*°(M), and the space real-valued functions which are smooth
at the point z € M by C°°(z). There are a number of equivalent intrinsic
definitions of the tangent space T, M at a point x € M, and the utility of
these definitions can vary greatly depending on the context. We will adopt
the view that elements of 7, M are either derivations on C*°(z), or germs of

smooth curves through the point . A derivation on C*°(x) is linear map



a(z) : C*(z) — R which satisfies the product rule,

a(x)(fg) = (a(z)f)g(z) + f(x)(a(x)g), (2.1)

forany f,g € C*°(z). A germ is an equivalence class of smooth curves through
x where curves are taken to be equivalent if there is some neighborhood of =
on which they agree. To simplify notation, we may drop the ‘z” in when it
can be understood from context. The set of partial derivative operators e; = 0;
with respect to any set of local coordinates x, or the corresponding germs,
provides a basis for 7, M. Unless otherwise stated, we will take repeated

indices to imply summation:
alej == Z a'e;. (2.2)
i

The cotangent space, T’; M, is defined to be the dual space of T;; M. An element
of T* M, called a covector, is a linear functional, a : 7, M — R, which maps
each vector v € T, M to a real number, which we will denote by (a|v) or a(v).
The differential d f of a real-valued function f can be interpreted as an element

of T* M by defining

(df o) = v(f) ="' (23)



Applying this definition to differentials of the coordinate functions results in a

basis, € = dz !, for the cotangent space which satisfies,

; 1 ifi=j
: ox’ i J
Op) = 55 =0} = (2.4)

0 ifisj

We define the tangent bundle TM = |J, ¢, T M and cotangent bundle T* M =
Uzen Ty M to be the collection all tangent and cotangent spaces, respectively.

Higher order tensor fields can be constructed by taking tensor products of
collections of vector and covector fields. We will be particularly interested in
covariant tensors. A pt order covariant tensor on M is a real-valued multilinear
map F : @ T, M — R defined on p copies of T, M. If F is a p™" order covariant

tensor field on ), its symmetric and antisymmetric parts, denoted S(F) and

A, respectively, can be defined by their action on p vectors (uy, ..., up):
1
S(F)(ulv"-vup) = Z F(uﬂ(l)v"-vuw(p))? (25)
p: TESp
1
A(F)(ul, cee ,up) = ]j Z sgn(ﬂ)F(uﬂ(l), oo ,uﬂ(p)), (26)
" TES

where S, is the permutation group on {1,...,p}. If F satisfies A(F) = F

we say that it is totally antisymmetric. Fields of these totally antisymmetric
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covariant tensors are known as differential forms. We will denote the space rank
p differential forms (p-forms) defined on M, by AP M. A one-form is simply a
covector field, and can be expressed in terms of the coordinate differentials,
a = a;dx . Higher order differential forms can be constructed using a bilinear,
associative operation called the wedge product. If a is a p-form and bisa

g-form, then their wedge product is the (p + ¢)-form defined by

@+QXM6 =

anb= ol @ b). (2.7)

For example, the wedge product of a pair of one forms, @ and b, is defined to

be twice the antisymmetric part of their tensor product,

aANb=aob-boa, (2.8)
and the three-fold wedge product of one forms, a, 5, and ¢, is
GANbNE=abRE+bRERA+ERARD
(2.9)

A basis for AP M can be constructed by taking wedge products of coordinate
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differentials,
By(M) = {da" A...Adal?|1<ii<...<i, <dim(M)},  (210)

and we can write a p-form as

a=aj.;,d" ®...@daz" (2.11)
= Y ai.;da" AL Ada (2.12)

11<...<ip

= L odai AL A dae (2.13)

- p! 1]...lp o v .

Having dealt with their algebraic properties, we now turn to the exterior
calculus of differential forms. The central object of exterior calculus is exterior
derivative, denoted d, which acts on p-forms to produce (p + 1)-forms. Given
a p-form, a = Z ai...j dz' A ... A d2?, its exterior derivative is,

i<...<j

da = Y Oa;.jda® Ada’ AL Adal (2.14)

1<...<J

Givenamap F': A — B from a manifold A into a manifold B, the pullback
F* and pushforward EI F, can be used to ‘pull’ certain quantities from F'(A) C

B back to A and ‘push’ certain quantities from A forward to F'(A) C B. In

Isometimes called the differential/derivative
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general, objects which are expressed in terms of vector fields can be pushed
forward, while real-valued functions and differential forms can be pulled back.
Given a function f in C*°(B), a vector a in T'A, and a covector bin T*B we
define a new function F* f, vector F,a, and covector F'* b, in C>(A), TB, and

T* A, respectively, by

F*f:=foF, (2.15)
(Fra)f == a(F*f), (2.16)
(Fbla) = (b|F.a). (2.17)

In the case that F' = y(z) and its inverse '~ = z(y) represent a transition
map between local coordinate charts in a manifold, the pushforward and
pullback just describe the classical transformation properties of covariant and

contravariant vectors,

o oy o
o7~ oul Oy (2.18)
. axi .
—1\* T 7
(F)*dz* = 7 dy’ . (2.19)

The “+" notation can be quite cumbersome, so, we will often simply write

expression like (2.18) and ([2.19) as 2, = ggﬁ Biyj and da? = g—z”l;dyj when it
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will not result in ambiguity.

The Lie derivative with respect to a vector field u, denoted L,,, is a gener-
alization of the directional derivative along the vector field. When applied to
a function f, it is equivalent to the standard directional derivative of f with
respect to u,

of
ozt

Lof =1 (2.20)

Its action on a vector field v, is given by the commutator of the differential

operators u and v,

O Ol
Lyv = [u,v] = ( 100 iOu > 0;. (2.21)

w— — V' ——
ox* ox*

This is essentially a local measure of the coherence or independence the two
vector fields. Further discussion of the Lie derivative in the context of Lie

groups and algebras can be found in sections
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2.3 Euclidean submanifolds

It is often the case that we are interested in the embedding,

r: M — R" (2.22)

of an m-dimensional manifold M into R". The prototypical examples are, of
course, embeddings of curves and surfaces in R3. Another important case
which we will encounter in section 2.5 involves the embedding of a Lie group
into the vector space of n-by-n matrices which can be identified with R"*. At
each point r(z) € R", the ambient tangent space T;.,)R" ~ R" splits into
an orthogonal direct sum of vectors tangent and normal to the embedded
manifold S := r(M). We denote these vector spaces by 7,.;)S and N,.(,,)S,
and define the tangent and normal bundles to be 7'S := U TrSand NS :=

reM

U Ny () S, respectively.
xeM
Suppose the vector fields b; = b70,, for 1 < i < m, form a basis for each

T, M. The pushforward of this basis by r,

or
i = Y s 2.2
ei = bl s (223)
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can always be extended to a basis for all of R”,

(e1,.. . €m,emi1-..€pn). (2.24)

Basis fields of the form are said to be adapted to M. We will continue with
adapted frames in section after our discussion of group theory and the

rigid body.

24 Groups

A Lie group G is a space that is simultaneously a manifold and group with

1

smooth composition (g, ) — gh and smooth inversion g — ¢~ operations. By

this we mean that for any g, h € G, there is a local coordinate chart containing

1

g, h, gh, and ¢g—*', in which the coordinates of gh are smooth functions of

L are smooth

the coordinates of g and h, and similarly, the coordinates of g~
functions of the coordinates of g. More explicitly, if we write g(z) for the
group element with coordinates x € R", then group composition can be
expressed in local coordinates by a smooth map m : R" x R" — R" which
satisfies g(m(x,y)) = g(x)g(y), and group inversion is described by a smooth

map f : R® — R" which satisfies g(f(z)) = g(x)~!. Demanding that the

group operations are smooth tightly constrains the local geometric structure
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of the group. We can answer many questions about the group as a whole by
examining a neighborhood of the identity 1 € G, and then mapping the results
to other regions by left translation, L,(h) = gh.

The Lie algebra g = 171G of the group G, defined as the tangent space at
the identity 1 € G, and its dual space g* = T} G contain basic information
about the structure of G, and will play a fundamental roll in what follows. We

can associate with each a € g, a vector field,

a(g) = Lg*a7 (2.25)

defined as the pushforward of a by the left translation map. Similarly, we can

associate with each 3 € g*, a one-form,

b(g) = L. (2.26)

defined as the pullback of 3 by the inverse left translation map. The fields
a and b are invariant under pushforward/pullback by the left translation

operator:

a(gh) = (Lg«a) (h), (2.27)

b(g) = (Lyb) (hg). (2.28)
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Objects which satisfy this condition are called left-invariant. Left-invariant
vector fields form a Lie subalgebra of the space of all vector fields on . That is,
the space of left-invariant vector fields is closed under the standard vector space
operations, as well as the Lie derivative, L,b = [a,b], defined in section
Then, given any two left-invariant vector fields a and b, we can produce a third

left-invariant vector field,

Ly [a,b] (h) = [a,b] (gh). (229)

The fact that left invariant vector fields are uniquely determined by their values

at the identity allows us to define the Lie bracket of o, 3 € g as,

[, 8] = Ly, [Lyect, Lyuf]. (2.30)

The tangent space at the identity, g = 771G, together with the bracket
is called the Lie algebra of the Lie group G. We note that some authors [21]]
define the Lie algebra of a Lie group to be the space of left-invariant invariant
vector fields. These two definitions are equivalent by the isomorphism given
in equation ([2.25)).

By choosing bases, 8; and 3¢, for g and g*, respectively, we can construct
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left invariant frame fields,

b; := Ly, (2.31)
which provide a basis for each TG, and left-invariant coframe fields,

b =L 3, (2.32)

which provide a basis for each T, G. Basic information about the structure of
G is contained in the structure constants, c§ » which are related to the (co)frame

fields by

, 1. .
db’ = =2 cjb A bk, (2.33)

[8i,8] = ¢Br. (2.34)

Many aspects of Lie theory can be essentially be reduced to the study of these
structure constants.
The Maurer-Cartan form is a left-invariant g-valued one-form on GG which

is central to the dynamics problems we will consider in later chapters. It is a



map which associates a g-valued field,

V(a) = L,1.a,

19

(2.35)

with each vector field a on G. In terms of the left-invariant frame (2.31]) and

coframe fields (2.32]), we can express the Maurer-Cartan form as,
w:@®w:(%q¢g®w
Then, by (2.33)), the Maurer-Cartan form satisfies,
sz—%%@@HAMz—%WMM@WAM
Equation (2.37) is commonly written in the coordinate-free form,
AV 4 WAV =0
by defining the bracket,

[© A @] (u,v) = [O(u), ®(v)]

(2.36)

(2.37)

(2.38)

(2.39)

for Lie algebra-valued one-forms, © and ¢, where u and v are vector fields. The



20

coordinate-free definition of the bracket can be extended to Lie algebra-valued

forms of higher degree, but this will be sufficient for our purposes.
Left/right-invariant vector fields and their integral curves are often en-

countered in the study of physical systems. Given an element @ € g we can

define a curve, g : R — G, as the solution to the initial value problem,

g=Lgax, ¢g(0)=1. (2.40)

This curve is the integral curve of the left-invariant vector field, a = Lg.a
which passes through the identity. The solution to (2.40)) is called the one-

parameter subgroup of G generated by o and will be written as,

g(t) = e, (241)

In the case that G is a linear group, this notation is consistent with the standard
exponential of a linear operator.

One-parameter subgroups can provide us with a simple, intuitive view of
many of concepts encountered in the study of Lie theory. The Lie bracket of
elements of the Lie algebra is one such example. In section 2.2} we introduced
the interpretation of a tangent vector as an equivalence class of curves. Under

this interpretation, a parameterized curve, g(t), can be viewed as a differential
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operator with its action on a real-valued function defined by,

g = S Fo(t) (242)

We can similarly define the action of a G-valued function, g(s, t), which de-

pends on multiple parameters by

2 82
g1 1= 50 (g(5,0)) = 5.5 F(9(5.) (243)

The product of one-parameter subgroups, e*®eBe=%c =8, viewed as a differ-

ential operator, can then be expanded in powers of s and ¢,
e®ePe=s@e™B = 1 4 st[a, B] + O(s?) + O(?). (2.44)

From this result, it is apparent that the Lie bracket encodes information about
non-commutativity of the group composition law.

The dynamics problems treated in this work will often require us to con-
sider integral curves generated by vector fields which lack the invariance
properties discussed above. When a vector field is not left-invariant, a(gh) #

Lg«a(h), it can no longer be expressed in terms of a constant element of g, but
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can still be associated with a g-valued field,

a(g) = (qu*a) (9)- (2.45)

The integral curve through 1 € G, generated by ([2.45)) is no longer simply
given by the exponential, but rather by the path-ordered exponential, or product

integral,

o) = Pexp| a(e)d. (2.46)

which is the formal solution to the nonhomogeneous differential equation,

The path-ordered exponential can be computed as the limit of an ordered
product of one-parameter subgroups,

b b
Pexp| a(f)dé = 1_[(30‘(5)(15 = lim eX(EALXE)AL  oal&n)AS (D 48)

n—oo

where A¢ = (b—a)/nand &, = a + EAE.
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2.5 Representations

Many Lie groups and algebras of physical interest can be represented by
linear transformations. The class of functions which associate elements of
Lie groups and their Lie algebras with linear transformations in a way that
preserves their algebraic structure are called representations. We begin this
section by constructing the prototypical examples of Lie group and Lie algebra
representations: the adjoint representations, Ad and ad. This is followed by a
general discussion of linear representations, and the geometry of linear groups.

Given a one-parameter subgroup, €'*, and a group element, g € G, we can

construct a new one-parameter subgroup,

LgRg_lem = getog™1, (2.49)

where L, and R -1 are left and right translation operators by g and g™, re-

spectively. We denote the generator of this new one-parameter subgroup

by

Adgari= TLgRy 1€ =Ly Rya (2.50)
t=0
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and denote the derivative of g — Ad, at g = 1 by

adaB = di Adgsefl,_y = (Adp.a) B. (2.51)
S

The maps, g — Ad,; and o — adq, are known as the adjoint representations

of G'and g, respectively. Expanding the expression,
e®ePe™ = 1 418 + st [a, B] + O(s%) + O(t?) (2.52)

to second order in s and ¢, and using the fact

d 02
Rl A s — sa t3 —sa 253
ds dese Bl 050t (e e ) 10 ’ ( )
we find that the action of ad,, is equivalent the Lie bracket,
adaf = [0, f]. (2.54)

In general, we define a representation EI of a Lie group G to be a smooth
homomorphism, IT : G — GL(V), from G onto a subgroup of GL(V), the

group of invertible linear operators acting on a vector space V. In the case of

*It is also common to refer to the vector space V' as the representation, rather than the map
II.
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the adjoint representation defined above the vector space is the Lie algebra,
V = g, of the group. The general linear group, and any subgroup of the general
linear group, can be viewed as a submanifold of the set of all linear operators
on V. Since this space is itself a vector space, we may apply the methods
of 2.3} with the representation II playing the role of the position vector. As the
tangent space of any vector space is naturally isomorphic to the space itself, it
is customary to simply define the Lie algebra gl(V) of the general linear group
to be the vector space of all linear transformations on V. The derivative of
the group representation at the identity, = := II;, : g — gl(V), defines a Lie
algebra representation which maps the Lie bracket in g to the commutator in

gl(V),

™ [l‘l’7’j]g = [ﬂ-l“‘l‘?ﬂ-’/]g[(‘/) . (255)

We call 7 the Lie algebra representation induced by II.
The general group GL(V) on an n-dimensional vector space V is an n?-

dimensional submanifold of the n?-dimensional vector space gl(V'). Choosing

a basis, e;, for V and dual basis, e/, for V* defines a basis, e;e’ := e; ® e, for
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gl(V'), and induces a coordinate system on GL(V),
aﬁé(g) = <ei‘gej> , (2.56)
with the property that,
z5(gh) = zj(9)25 (), (2.57)

holds for all g, € GL(V). If f is a real-valued function on GL(V), then,

writing % = % K the pushforward of the coordinate basis by L, satisfies
0 0
s f(h) = — h
_ Oxf(gh) 0

f(gh) (2.58)

B dz(h) 0z (gh)

0
= xf(g)mf(gh)-

Suppressing explicit dependence on g and h, and writing g¥ = 2%(g), we have

g (2.59)
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By a similar argument, R, satisfies

0

9% 35
8:1:j

0
=gl —. 2.60

R

It follows that the adjoint action of g € G on p = ué- a?ci is given by
Jlz=1
; 0
AdglJ/ = Lg*Rg—l* ,LLJ%
J
_ i[,-1) 2 2.61
= Ly« (uj {g Lm;;) (2.61)
_ kil -1 i
= gui|g Laxg

where we have written [g‘l]z = x(g~"). The left invariant vector field associ-

ated with g must be of the form

L 7 2.62
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so, the adjoint action of p on v = z/j. 8&- is given by
Jlz=1
aduv = [p,v]
= L} [Lywtt, Lost/]
, ozt 9 ort 0

-1 i k.n n L. n k k
= Lo <$kﬂ] Ym oz’ Oxf, In¥mkH; ozt 8m§> (2.63)
— Lfl (x’L Hmyn oyt Vmun> 9

T min Yj mYn Hj 81’;

We can take the embedding, g = 2’e;e’, of GL(V) into gl(V) to be the

operator-valued analogue of the position vector in Euclidean space. As dis-

7
J 636;.

cussed in section we can then identify each tangent vector, u = u

with

99 _ el (2.64)

dg (u) = u; oxt J
J

This identification allows us to make sense of expressions like gu or pv as
a product of matrices, or more generally, as composition of linear operators
acting on the same vector space, and facilitates the numerical computation of

many abstract geometric operations introduced in section For example,
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the pushforward by L, is simply given by,

Lyw = gw, (2.65)

and the adjoint representations are given by,

adyv = pv —vp, (2.66)

Adgp = gpg . (2.67)

Any representation II of a Lie group G can similarly be viewed as an
embedding of the group into gl(V'). In this context, a Lie algebra-valued
form is viewed as a matrix, © = @3 e;el, of ordinary differential forms on
G. For example, the Maurer-Cartan form can be expressed in terms of the

representation as,

v =11"1d11, (2.68)

where IT~! denotes the matrix inverse of the representation. We can now write

the product of gl(V')-valued forms in terms matrix multiplication by taking
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wedge products of matrix elements,
OND =0, APreel. (2.69)

The bracket of Lie algebra-valued forms, defined by equation ([2.39)), reduces

to

O AP = @; A &F [eiej,ekeq
(2.70)

=OND— (-1)PT1d A O,

where p and ¢ are of degrees of © and ®, respectively. In particular, for a Lie

algebra-valued one-form, like the Maurer-Cartan form, we have
WAV =20 AV, (2.71)

It follows that the Maurer-Cartan equation for a matrix group can be

reduced to

AV + WA W =0. (2.72)
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3  MECHANICS

3.1 Introduction

Motivated by the results of Castrillén Lépez, Gay-Balmaz, Boyer, Ellis, and
others [41-43, 52, 59]], we develop the theory of Cosserat media within the
Euler-Poincaré framework. The structure of this chapter is as follows. We
first examine in some detail the group of rotations SO(3) and the group of
rigid transformation SE(3) as applied to rigid body dynamics. Our examina-
tion of the rigid body motivates a discussion of variational principles on Lie
groups and the method of moving frames. The culmination of this chapter
is the derivation of generalized Euler-Poincaré equations governing the dy-
namics of an (n + 1)-dimensional Cosserat medium. Detailed discussion of

the background required for this chapter may be found in [32-34, 70, [71]].

3.2 Rigid bodies

We begin our discussion of mechanics by considering the case of a single rigid
body, the equivalent of a zero-dimensional Cosserat medium. The majority
of concepts which are required for the study of higher dimensional Cosserat
media will appear in the derivation of Euler-Poincaré equations for the rigid

body. First, suppose the rigid body has a fixed point p. By choosing an
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orthonormal frame, b; = b;(¢), affixed to the body at p, we can associate it’s
configuration with the orthogonal transformation, R = b;(t)e’, which maps
an inertial orthonormal frame, e;, to the body frame at the current time ¢. If

we identify the inertial frame vectors, e;, with the canonical basis for R3, and

T

the coframe vectors with e’ = e, we can view R as the transformation which
maps a coordinate vector measured in the body frame, v, to the coordinate
vector measured in the inertial frame v!) = Rv(P). After fixing b;(0), the
configuration space of the rigid body can be identified with the orthogonal

group on R?,

0(3) = {R e R¥?

R'R=1}. (3.1)

This group consists of two disconnected components, the special orthogonal

group,

SO(3) = { R € R?

RTR=1, det(R)=+1}, (3.2)

and its complement of orientation-reversing transformations. As we can al-
ways choose the initial body frame, b;(0), such that det(R) = +1, we will
restrict ourselves the special orthogonal group.

A common way of approaching the problem is to introduce a local coordi-
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nate system

z:U—R? (3.3)

which identifies some neighborhood U C SO(3) of the initial configuration
R(0) € U with a region z(U) C R3. A drawback of this method is that the
system may approach a state R(t) ~ @ ¢ U outside of the region in which
x is invertible. In this region of configuration space, small changes in the
coordinates can correspond to very large changes in the actual state of the
system, or vice versa, resulting in numerical difficulties. This is what occurs, for
example, during gimble lock (see Appendix[A.2)) when rotations are described
using Euler angles. This can be overcome, in part, by choosing a another local

coordinate system,

y:V — R, (3.4)

which is better behaved in a neighborhood V' of the current configuration R(t).
This approach requires the computation of transition functions, y o !, which
are often quite complicated, and highly nonlinear.

We will adopt an alternative approach which dispenses with local coor-

dinates entirely, and describe the evolution of the body using the framework
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which we developed in section 2.4 and Consider a trajectory R(t) which
passes through the identity element, R(0) = 1, with velocity, R(0), att = 0. By

differentiating the constraint RT (¢)R(t) = 1,

0= % (RTR)

= RTR+ RTRL L= RT0) + R0), (3.5)
t=0 =

we find that the Lie algebra so(3) = 7150(3) consists of antisymmetric matri-

ces:

50(3) = {GJ e R3*3

ol = —a} . (3.6)

We define the canonical basis for s0(3) to be

00 0 0 0 1 0 -1 0
é,é,é3=10 0 —-1|:|l0 o ol:-]1 0o of- (3.7)
01 0 100 0 0 0

With respect to this basis, the structure constants are given by the permutation
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symbol,

[éi,65] = cféx,

+1, i (4,5, k) = (1,2,3),(2,3,1),(3,1,2)
(3.8)

Gij = Cigk =\ =1, if (i,5,k) = (2,1,3),(3,2,1),(1,3,2)

0. otherwise

We note the similarity between the commutation relations[3.8/and the cross

products of the canonical basis vectors in R?,

€; X €5 = Eijk€f- (39)
In fact, the hat map,
T R3 — s0(3) (3.10)

defines a Lie algebra isomorphism between so(3) and R3 with the cross product

as its Lie bracket,

[ei,ej]R;; = e; X €. (3.12)
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Furthermore, the hat map relates the adjoint representation of SO(3),
Adr® = RORT, (3.13)
to the standard action of SO(3) on R?,
Adr@ = Rw. (3.14)
This can be shown by noting that for any vectors a and b,
ab=a x b, (3.15)
and using elementary properties of the cross product,
}?(;-ej = (Re;) xej =R (ei X (RTej)) = RéiRTej. (3.16)
If we define,

Ao L 7.
(G, @) g0 (3) 1= itr(aTw), (3.17)



37

then s0(3) is also isomorphic to R? as an inner product space,

(G, @) 003 = (O, W)ps = - w. (3.18)

By differentiating the identities, R R = 1 and RRT = 1, an arbitrary
trajectory, R(t), with instantaneous velocity R(t) = 9;R(t), can be naturally

associated with two so(3)-valued matrices,

©=R'R, & =RRT (3.19)

which are related by the adjoint action of SO(3),

&' = Adr& = RORT, (3.20)

and lead to two separate characterizations of the tangent space,

TrSO(3) = {R&|@ € s0(3)} = {&'R| &' € 50(3)}. (3.21)

This fact is more than just a mathematical curiosity, and has a concrete physical
interpretation related to the frame of reference in which velocities are measured.
For simplicity, we will choose the body frame, b;, to satisfy b;(0) = e;, so that

R(0) = 1. Consider the trajectory of a material point with coordinates :L‘Z(I) (t)
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(B)

and z;’ measured in the inertial and body frame, respectively, relative to the

center of rotation. The corresponding coordinate vectors, (/) = a:z([) (t)e; and

r(B) = xZ(B)ei, must be related by
r = ppB) (3.22)
Similarly, the linear and angular velocities in the two frames are related by
u) = Ru® | o) = Rw®), (3.23)
Taking a time derivative of the position vector,
uD = (RRT) rD =R (RTR) rB) = Ru®), (3.24)
and comparing to the kinematic relations,
ull) = W) 5 p(D - 4B) = B)  p(B) (3.25)
we find that

o) = RRT, &P = RTR. (3.26)
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We now consider a body which is free to translate, as well as rotate, and
must therefore expand our notion of a frame to include the point, o € E3, at
which the orthonormal triad, (e;, ez, e3), is located in Euclidean space. We
choose f = (o, €;) to be a frame located at the origin o, and identify the vectors,
e;, with the canonical basis for R3. The affine space E3 is distinguished from
the vector space R? in that it has neither a preferred origin, or a canonical set
of coordinate axes. Had we chosen a coordinate system induced by another
frame, f' = (0, e;) = (o+ 7, Re;), then coordinate vectors, z and 2/, of a point

p € 3 relative to the frames f and f’, respectively, would be related by

z=Rz +r. (3.27)

By fixing a reference frame, f, any other frame with similar orientation can
be defined relative to f by the pair, (R,r), with R € SO(3). These trans-
formations form a group, SE(3), called the special Euclidean group, with a
composition law given by (R,7)(R',r') = (RR', Rr’ 4+ r), and inverses by
(R,7)"' = (R}, —R'r).

While the transformation is affine rather than linear, SE(3) does

in fact have a faithful representation as a subgroup of GL(4). We choose to
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identify the special Euclidean group with this 4-by-4 matrix representation,

SE(3) = ReSO(3),reR?}. (3.28)

We can represent the transformation ([3.27)) by identifying E3 with an affine

subspace of R4,

z R »| |7
= . (3.29)
1 0 1 1
The Lie algebra representation induced by (3.28)),
w p
se(3) = &eso(3),uecR Y, (3.30)
0 0
is spanned by the six generators,
ér 0 é 0 és 0
0 0 0 0 0 0
(3.31)
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By a slight abuse of notation, we will often simply write the 4-by-4 matrices in
Eq. as é; and e; when it is clear that we are discussing elements of se(3)
rather than elements of so(3) or R?. The structure constants for s¢(3) are given
by the following commutation relations,

[éméb] =Eabcbc, [eaveb] =0

(3.32)

[émeb] = [eaaéb] = Eabc€c

The velocity, S = 9,S, tangent to any trajectory, S, through SE(3), is associ-

ated with an se(3)-valued field by left translation,
At = (:)t + M, S = SAtu (333)

where &; = R™!R and p; = R, are the linear and angular velocities mea-
sured in the body frame. We can endow SE(3) with a left-invariant Riemannian
metric by defining the inner product of tangent vectors, S = SA; and S’ = S'A;
to be the sum of inner products of their linear and angular components,

Y _1 ST/ OV Y A / !
<S,S>SE(3) = §tr(R R) + 77 = w; - wy + e - (3.34)

The basis is orthonormal with respect to this metric.
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Having dealt with kinematics, we now turn to dynamics of the rigid body

and seek solutions of the constrained variational problem,
5/$(S,At)dt —0, 95=SA. (3.35)

We introduce a real parameter, £, and write variations, 0S = 85‘&:0 and
oA = 855\,5’5:0, in terms of the fields satisfying, S o= S and At‘g:o = As.
The vector 85§ is tangent to SE(3) at the point S, s0, it is the left translate of an
se(3)-valued field, agé = gAf. Smoothness of S requires 8t8§§ — 6565’5:0 =0,
which places constraints on §A; and A := A; o A straightforward exercise

in linear algebra shows these constraints are given in terms of the adjoint

representation by,

ada,Ae = [A,A¢] = wmg +wp X pe — we X g, (3.36)

0A; = 8,5A§ + adAtAg, (337)

where @, and p¢ are the angular and linear parts of Ae = @¢ + ¢, respectively.
We note that this commutation relation is simply the pullback of Maurer-
Cartan equation, Eq. (2.38)), by S. This fact will be useful as we continue our
discussion of higher dimensional Cosserat media.

With expressions for the constrained field variations in hand, we find that
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the first variation of the action, 4 = ft * Zdt, is given by

0L
oa) s (2 s a

OAe + adAtA§> <‘5f‘SA5> dt (3.38)

.

where adj, denotes the coadjoint representation of se(3) acting on its dual

A
SA = <
t1 6At

- <5.,s,ﬂ
Sy \ 0A;

Y Y 5.5
" < —Oisp, Tadag, TlsTe 5>dt+<5At

t1

se*(3), and we have used the fact that Ls,As = SA¢ for a linear group. We

define the coadjoint action on 5 A € s¢*(3) by the equation

0.7 0.7
<adAt 5A, ‘Af > < 5A,

The existence of a Riemannian metric allows us to identify se*(3) ~ se(3),

adAtA§> (3.39)

or more generally, 7*SE(3) ~ T'SE(3). Under this identification, the variational

derivative gf is equivalent to a gradient in se(3),

0.8
v Verl +V . L, (3.40)

where V,, and V,, denote gradients with respect to the angular and linear

components of A;. The quantity % € T¢SE(3) can similarly be expressed as a
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vector in TsSE(3),

(i;sg = (bl X Vblg)R + V,«g, (341)

and its pullback as an element of se(3),

L;% =R b x Vp, L)R+R'V,.2, (3.42)

where R = b;e’, and gradients with respect to the body frame vectors, b;, and
position, r, are denoted Vj, and V., respectively. We can also now express the
coadjoint action on elements of s¢(3), rather than se*(3). For any B =  + v

and B = @' + v/ in se(3), we have
adiB = —0x0 —vxv —0x V. (3.43)

Combining the various expressions above, we find the Euler-Poincaré equa-

tions for the body to be

(O + W)V, L + e XV, L — R (b x Vp, L) =0 (3.44)

(O +wix) VL — RV, Z =0, (3.45)
17
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where the position and orientation of the body is given by the path-ordered

exponential defined by equation (2.48)),

t
S(t) = Pexp| A.dt (3.46)

to

3.3 Moving frames and Cosserat rods

Consider an immersion r : M — R3 of a manifold M into R3, and a map,

S: M — SE(3), (3.47)
R(s) (s

S(s) = (5) rle) , (3.48)
0 1

where the columns, b;, of the orthogonal matrix, R = b;e’, are adapted to M
in the sense discussed in section[2.3| We say that S is a moving frame adapted
to M, or a framing of M. For a curve, this means b; = T is the unit tangent
and by - T = b3 - T = 0. If M is a surface, then b3 = n is the unit normal and
(b1, b2) span the tangent space of the surface.

The Frenet-Serret frame, (T', N, B), may be viewed in this way by defining,

R=Te!'+ Ne? + Be?, (3.49)
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and the Frenet-Serret equation may be written,

TéL + Ké3 eq

0sS = SA;, Ag= , (3.50)
0 0
where s, k and 7 are the arclength, curvature, and torsion of the curve, respec-

tively. We will call the quantity,

Q= Qe; =Te; + kes, (351)

the curvature vector. Comparing with the analogous rigid body equations,
we see that the curvature vector is the spacelike analogue angular velocity.
Torsion and curvature represent rotation about the first, T' = Re;, and third,
B = Res, frame vectors, respectively, but the frame undergoes no rotation
about the second vector, N = Res. The vanishing of the second component of
the curvature vector, e; - Q = 0, can in fact be taken as the defining property of
the Frenet-Serret frame.

The Frenet-Serret frame is far from the only frame which can be adapted

to the curve. Any other frame which is related to Frenet-Serret frame by



47

continuously varying rotation about the tangent,

R(s) s ?@OTER(s) = R(s)e? (921, (3.52)

is also a perfectly valid choice. Under such a change of frame, the longitudinal

QH = 1 e; and transverse | = (ses + Q3e3 will transform as

Q” — Q” + 0s0eq (3.53)

Q, — e %1Q, = ksinfes + r cos fes (3.54)

Given the new frame and the new curvature vector, the quantities (x, 7, ) and

the Frenet-Serret frame can be recovered using,

T = Re, (3.55)

N =R(Q, xe1)/r (3.56)

B=RQ, /x (3.57)

k= 9], (3.58)

rog X0 (3.59)
2, [2

8(s) = 6y +/ 0 — 7ds. (3.60)
0
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An alternative to the Frenet-Serret frame, known as the Bishop frame [72]],

can be constructed by choosing ¢ such that

e - Q=0,0+71=0. (3.61)

The result is a frame which ‘rolls” along the curve, without any twisting about
the tangent. While the individual components of the curvature vector vary
under a change of adapted frame, the magnitude of its transverse part, [Q | | =
k, is invariant. Out of all frames adapted to a given curve, the frame with the
smallest curvature vector is the Bishop frame, since it’s curvature vector only
has a transverse part. Due to this fact, the Bishop frame is sometimes referred

to as the rotation minimizing frame [73]].

Figure 3.1: Illustration of a framed curve highlighting its centerline (green),
cross-sections (orange), and adapted frame (red).

Yet another option is to take the angle # to represent a genuine geometric
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degree of freedom, rather than simply a redundancy in our description of the
curve. Physically, we imagine the framed curve as being a thin filament or
ribbon, and the frame is interpreted as the material frame of the filament’s
cross-sections at each point along the curve. Then, the quantity 6(s2) — 6(s1)
measures the total angle through which the material frame rotates, relative to
a known reference frame, like the Frenet-Serret or Bishop frame, as it moves
moves along the curve from s; to ss.

If we are to model a physical system, such as a flexible filament, it makes
sense to take the material frame as fundamental, rather than defining it relative
to something unphysical like the Frenet-Serret frame of the filament’s center-
line. Components of the curvature vector, which describe physical twisting
and bending about the material frame vectors, can then be taken as funda-
mental dynamical variables. Up until now, we have considered only arclength
parameterized curves and adapted frames. This is equivalent to requiring the
filament satisfy the inextensibility and unshearbility constraints of a Kirchhoff

rod [74H76]],

0st = Re;. (3.62)

Relaxing this constraint results in a model which is able to account for the
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full range of deformations illustrated in Figure 8.2} This more general system
is known as a Cosserat rod. As we demonstrate in later sections, it is often
useful to treat a system using the full Cosserat model, even when we are only
interested in inextensible/unshearable case. This allows us to take advantage
of Euler-Poincaré variational methods, and the additional constraints are easily
accounted for through the introduction of Lagrange multipliers and constraint

forces.

Figure 3.2: The modes of deformation of a Cosserat rod include (a) twisting,
(b) bending, (c) shearing, (d) and stretching.

To study the dynamics of the Cosserat rod, we must consider a moving
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frame,

R(s, (s,
S(s,t) = (8:2) r(s1) ) (3.63)

which depends on time ¢, as well as the material coordinate s. The parameters

s and t are each associated with an se(3)-valued generator,

Ws s

0sS =SA;, As= , (3.64)
0 0
W

S =SA;, A:= . (3.65)
0 0

When the rod is allowed to be extensible/shearable, the frame may no longer
satisfy Eq. (3.62)), and the generator A; now contains information about ex-
tensile and shear deformations, pus = (b; - 9s7)e;, in addition to rotational
deformation described by w,. The timelike generator, A, can be physically
interpreted just as it was for the rigid body, with w; and u, representing the
angular and linear velocity of the material frame.

The generators A; and A; can be viewed as components of the se(3)-valued
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one-form, or gauge potential, defined by,

A=5"1dS = A,ds + Adt. (3.66)

The gauge potential associated with any smooth multi-parameter moving
frame must satisfy an integrability condition given by the Maurer-Cartan
equation ([2.38]). The Maurer-Cartan equation on SE(3) is equivalent to a pair

of vector equations,

(‘3th — 8Swt +wr X wg = O, (367)

Oiprs — Ospry + Wi X prg — ws X py = 0, (3.68)

which are sometimes referred to as Euclidean structure equations. Although
here we have interpreted s as a material coordinate and ¢ as time, this integra-
bility condition applies to any pair of parameters which a moving frame may
depend on. We have already seen another example of this in our derivation of
the Euler-Poincaré equations for the rigid body where we found that variations

of the body velocities were similarly constrained by the structure equations.
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3.4 Cosserat media

We now turn to the case of a general Cosserat medium. We formulate the
problem as a Lagrangian field theory on a base space, M C R""!, param-

eterized by n spacelike material coordinates and one timelike coordinate,

s = (st,...,s",s""1 = t). The state space of the medium consists of fields
over M,
R(s) 7(s)
S(s) = (3.69)
0 1

which take values in the special Euclidean group SE(3). Each field configu-
ration is associated with a gauge potential, A = A,ds“, whose components
describe local velocity and deformation, and take values in the special Eu-
clidean algebra, se(3). A choice of gauge is equivalent to a choice of frame
for each s € M in which to measure velocities and deformations. There are
two natural choices when it comes to fixing a gauge which are analogous to
the body-fixed frame and space-fixed, or inertial, frame used in classical rigid

body dynamics. The body-fixed gauge results in a potential,

AB) —s-14s (3.70)
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which is equivalent to the pullback of the left-invariant Maurer-Cartan on

SE(3) by the field S, while the space-fixed gauge results in a potential,

AD = 45571 (3.71)

which is equivalent to the pullback of the right-invariant Maurer-Cartan by S.
We will generally work in the body-fixed gauge, A = S~1dS, unless otherwise
specified.

The methods which we used in our derivation of the Euler-Poincaré equa-
tions for the rigid body can be used with only slight modifications to derive
equations governing the general Cosserat medium. Rather than repeating
the derivation we simply state the result. The Euler-Poincaré equations for

a system with Lagrangian density .2 = .Z(S, A) are given in the body-fixed

gauge by
0L 0L 0L
—d, A 4+ LE=— =N, 72
Do, T oA ga IS5 (3.72)
1
dA + 5 [AANA] =0, (3.73)
S ="Pexp/ A (3.74)

where adj = denotes the coadjoint representation of se(3), L$ denotes pullback
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by the left translation operator on SE(3), [A A A] is the bracket for Lie algebra-
valued differential forms, and N accounts for any non-variational stresses
applied to the system. Decomposing external stress as N = —rin — f, separating

into of angular and linear parts gives

(On + WaX) Vol + pto X Vo — R (b; x Vp, L) =m (3.75)

(O +waX)Vy L -~ R, L =f (3.76)
Oawp — 0gWa + Wa X wg =0 (3.77)
Oaltg — Ogpha + Wa X pg —wWg X o =0 (3.78)

where equations (3.75)),(3.76) are equivalent to equation (3.72)) and (3.77)),(3.78))

are equivalent to equation (3.73)). Natural boundary conditions associated

with the variational problem are given by

(We - Vool + e - Vo L) g = 0 (3.79)
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4  SWIMMING MICROORGANISMS

4.1 Introduction

Motility introduces a number of demands on the mechanical construction of
bacterial cells. Such constraints have been studied for motility organelles; slen-
der flagella can buckle below a critical bending stiffness or above a critical motor
torque [77,178]], and the same is true of the flexible flagellar hook [[79,/80]. The
shape and size of bacterial cells is influenced by numerous considerations [81-
84]], including efficient motility in liquids [85-87]. However, motile bacterial
cells are canonically presumed to be rod-shaped, non-deformable structures,
and cell stiffness, a feature normally provided by cell wall composition [I88-90]]
and turgor pressure [91]], is typically overlooked in studies of motility. Cell
wall stiffness regulation alters bacterial cell shape, influences motility, and
enables bacteria to adapt and survive [[92,93]].

The length of Proteus mirabilis (P. mirabilis) cells increases by up to 20-40x
when they are in a swarming state [[94]], and deformation in cell shape are
visibly clear in a swarm [[95,096]]. P. mirabilis swarmer cells have reduced cell
stiffness compared to normal vegetative cells [96]. Gene deletion has also been
used to artificially reduce cell stiffness [97]]. But the nature and organization

of any motility organelles is also important. A swarmer cell swims by rotating
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up to thousands of flagella which are distributed along its surface [98, [99]].
The flagellar motion drives active, wavelike surface features more often used
to describe ciliated organisms, which themselves are classically modeled as a
continuum of active stress [[100, [101]].

A wild-type P. mirabilis cell is stiff and rod-shaped and swims along a
straight trajectory, with its flagella oriented with their tips opposite the swim-
ming direction (Fig.[4.1e) [102]]. The fluid response to flagellar motion drives
the body forward, and induces a rotational velocity along the long axis as
dictated by the force- and torque-free nature of swimming in viscous fluids
[103]. Elongated swarmer cells, however, can express a wide range of intricate
and stunning dynamics. Figure |4.1|shows P. mirabilis cells which have buckled
under their own activity. The flagellar tips appear to be pointing away from the
direction of local body motion, suggestive that their orientation depends upon
local viscous stresses (Fig.[.Th-b). Strongly three-dimensional configurations
and dynamics are shown in Fig.[4.T, which includes a spinning motion about
the direction of swimming. An even more highly deformed state with multiple
self-crossings is shown in Fig. [£.1d.

Such active systems are particularly rich, as even passive slender bodies
driven by external forces [104] or flows [[105] continue to reveal new buckling

behaviors [106-111]]. The shapes and dynamics of elongated P. mirabilis cells
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Figure 4.1: (a-d) Swarmer P. mirabilis cells bend, rotate, and twist under
their own flagellar activity. Solid arrows indicate the direction of motion. (e)
Flagellar stresses are modeled as a continuous force density f(s,¢) and pro-
portional moment density m(s, t) which drives and rotates the body through
the fluid. (f) An active swimming Kirchhoff rod reproduces U-shaped swim-
ming, S-shaped rotation, and twisted, rotating swimming states found in
experiments. Dashed arrows indicate the direction of the local flagellar force
and moment densities. (g) Phase diagram illustrating periodic symmetric
dynamics in the absence of an active moment m(s,t) = 0. The centerline
curvature (s, t) = > =g ax(t)Px(s) is projected onto the first two even bihar-
monic modes (ag(t), az(t)) and trajectories in ag-as space are plotted against
Bf/ % where 8, = B, /(f*L?) is a dimensionless bending stiffness, with B |
the bending modulus, f* a characteristic active force density, and L the body
length. Bifurcations from straight filaments to swimming-U shapes, then to
periodic waving-U dynamics, then to periodic flapping-W dynamics are ob-
served as the bending stiffness is reduced. (h) A cross-section of the phase
diagram in (g) with 3, = 1.3x 10~* (waving-U dynamics). (i) A cross-section
of the phase diagram in (g) with 3, = 7.6 x 107 (flapping-W dynamics).
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share many similarities with active or externally forced filaments which exhibit
spontaneous symmetry breaking [[112-114/]. The U- and S-shaped configura-
tions in Fig. [#.Th-b have been observed numerically in related systems in two
dimensions [115]], as have spiral-shaped configurations [[116]]. The response
of semi-flexible polymers to molecular-motor-driven stress has seen tremen-
dous interest [117], particularly in the context of cytoskeletal networks and
interphase chromatin configurations [118-120]]. Flagellar propulsion, however,
introduces additional features, for instance a competition between twist/bend
elasticity and twist injection [74} 121} 122]], and a dynamic rearrangement
of flagellar stress. It is plausible that the highly nonlinear twist-bend cou-
pling [123, [124]] responsible for the emergence of writhing instabilities [[125]]
and chiral configurations [126]] in generic elastic filaments is also responsible
for the configurations seen in Fig. [£.Tc-d.

In this paper we explore numerically and analytically a Kirchhoff rod
model of a long, swimming cell which is driven by active forces and moments
associated with flagellar activity. The model reproduces both two- and three-
dimensional configurations (Fig.[4.If) and predicts microorganism buckling
and writhing under its own flagellar activity and viscous stress response.
Bifurcations in the shapes and dynamics appear as the cell body is made more

flexible, including buckling and torsional instabilities commonly observed
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in passive elastic systems, and new modes of motion are found upon the
introduction of the active moment.

The chapter is organized as follows. In we present the active Kirchhoff
rod model, in which the deformable body dynamics are described using the
Euler-Poincaré formalism [43} 52} 59]]. The numerical method used to explore
the system, which exploits the geometric structure of the Euclidean group
SE(3) and its Lie algebra se(3) to seamlessly and accurately incorporate kine-
matic constraints, is also presented. In §4.3we consider both analytically and
numerically the body configurations and dynamics which emerge from the
model equations. The case of a vanishing active moment is first explored,
resulting in planar dynamics. The results of a linear stability analysis are
shown to compare favorably with full numerical simulations, and associated
eigenfunctions provide a baseline from which to explore a sequence of shape
bifurcations in the fully nonlinear system. The fully three-dimensional dynam-
ics are then probed, which reveal buckling behaviors analogous to those found
in the planar setting, but which also involve a coupling between twisting and
bending modes of deformation and stress. A linear stability analysis is revis-
ited, which includes modifications to the predicted unstable wavenumbers

and growth rates in the case with no active moment.
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4.2 Active Kirchhoff rod model

The cell is assumed to have length L with uniform circular cross-section of
diameter a. Aspect ratios a/L of swarmers, typically on the order of 1072 to
5 x 1072 [96] [102]], are sufficiently small that extensile and shear deformations
are neglected [75]. Associated with each station of the filament in arclength s
and time ¢ is a moving frame (see §3.3))

R(s,t) 7(s,t)
S(s,t) = (4.1)

0 1
representing the Euclidean transformation which maps an inertial frame
(eo, e1, e2) located at the origin onto the body’s orthonormal material frame
(g0, 4q1,92) = (Reo, Rer, Rez) located at r. Velocities and deformations may
then be represented by the fields which take values in the special Euclidean

algebra se(3),

@ u

Ay =5"19,S = , (4.2)
0 0
QU

Ay =5719,5 = , (4.3)
0 0
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where we have defined the antisymmetric operators & := wx and  := Qx.
The field A; describes the body’s local linear velocity, u = R™19;r, and local
angular velocity, @ = R~19,R, as measured in the material frame, and the field
A, describes the body’s local deformation in the form of the twist/curvature
operator, Q = R19,R, and the centerline tangent vector U = R=10,r. We
choose to formulate dynamics of the body directly in terms of the fields (u,
@, U,Q), and apply the method of Euler-Poincaré reduction [39,59]. Body

configurations are written as path-ordered exponentials [127] (see §2.4)),

S(0,¢) = 5(0,0)Pexp Ot A(0,€)d¢ (4.4)

S(s,t) = S(0,t)Pexp| As(&,t)dE. (4.5)
0
The path-ordered exponential, or product integral, of a matrix-valued curve
X = X(&) is the limit of an ordered product of matrix exponentials,

b
Pexp| X(§)d¢ = lim E)AEXENAL X(&n)AL (4.6)

where A¢ = (b—a)/nand &, = a + EAE.

Deformation and velocity fields (As, A;) are components of an se(3)-valued
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one-form,
A=A,ds +A;dt =S1dS, (4.7)

where dS = 0;Sds + 9,Sdt is the exterior derivative of S, and (ds, dt ) are
one-forms dual to the coordinate basis (Js,0;). Integrability of the system

dS = SA requires A satisfy the Euclidean structure equation (see §2.4,§2.5),
dA +AAA=DO. (4.8)

where A is the wedge product for matrix-valued differential forms [71l]. This

gives the commutation relation,
(dA + A AA)(0s,01) = 0sAr — OtAs + [As,A¢] =0, (4.9)

where [Ag, A¢] := AsA: — AtAq is the matrix commutator. Separating its angular

and linear components using the fact that axb= [&, IA)} ,forany a,b € R?,

Ow — QA+ Q x w =0, (4.10)

Ot — U +Q xu—wxU=0, (4.11)
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we find the structure equations to be a generalization of the familiar compati-
bility relations for elastic rods [74,75]].

Viscous stresses, —¢ - u and —(,w| = — (U - w) U, are related to the local
body velocity through a local resistive force theory, where ¢ = {UU” +( (1—
UUT) with longitudinal ¢ | and transverse (| coefficients, and by a rotational
drag coefficient ¢, [121} [128]. Driving the system away from equilibrium
are active stresses arising from a distribution of flagella, modeled here as a
continuum providing an effective tangential force density fU and proportional
moment density mU := MLfU (Fig.[£.Te). To account for the tendency of

flagella to align with local flow, we consider f to evolve according to
rpouf = (/L) [1 = (F/ )] U - w+ Dso2f, (4.12)

with 0sf(—L/2) = 0sf(L/2) = 0. The force density tends toward a char-
acteristic magnitude f* with a relaxation time 7,(; L/f* depending on the
dimensionless parameter 7¢, and Dy is a diffusion constant.

The internal energy of the body is given by

L/2 1
E:/ SQ.BR+A-Uds (4.13)
—L/2 2

where A is a Lagrange multiplier which enforces inextensibility and unsheara-
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bility,
q = RU (4.14)

and B = B)UU" + B, (1-UUY) penalizes twisting and bending with moduli
Bj and B, respectively [75]. To obtain Euler-Poincaré equations for the
reduced system, we equate the structure preserving variation of E with the

virtual work done by active and viscous stresses (see §3.4)),

(N,A¢)ds, N= (4.15)

L/2 _<r<;JH —¢-u+ fU
W:—/
—L/2

0 0

where w|| = (U - w) U. This results in the following equations,

OA+QxA=C -u— fU, (4.16)

95 (BR) + 2 x B+ U x A = Gwj —mU, (4.17)

describing local force and moment balance along the body, subject to boundary

conditions,

A=0, =0 (4.18)
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ateither end of the body. The kinematic relations (4.4)), ([4.5]), (#.10), @.11)), (4.14),

the flagellar evolution law (4.12)), and the balance equations (4.16]),(4.17]) form

a closed system describing dynamics of the body and its flagellar distribution.
Evolution equations for the twist & = (U -Q)U, curvatures 2, =

(1 - UUT) 2, and tension A = U-A are obtained by first solving (4.14)), [@.16)), (4.17)

and the transverse part of ({.11)) for A; = (1 — UUT)A and the velocities

(w,u):

AL =Ux0,(B.Q)+ (B -B.)(U-9) QL (4.19)
u=C"1(OA+Qx A+ fU), (4.20)
w= Cl (05 (Bjy) +mU) + U x (dsu+ @ x w). (421)

Equations (4.19)),(4.20), and (4.21)) are then substituted into Eq. and the

longitudinal component of (4.11)). The resulting shape evolution equations

take the form

BL—By » B

oY +
S CJ_ r

92Q =G|, (4.22)

ﬂaﬁgL =G, (4.23)

o +
ST
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B
PN\ — ff?A + 7%93,@2 +0sf
¢ B
+ % (20020, — Rl — 29 - (2L x 0.0.])
¢ B
. U (521922 + 9 [ x 0:92.]) =0, (424)

where we have defined x? = |Q |2, and the vector-valued functions G| and
G | depend nonlinearly on spatial derivatives of €2, A, and f. Natural boundary
conditions require that Q, 2, 0,821, and )\ all vanish at both ends of the body.

Upon scaling by the length L, force density f*, and stiffness B , the system
is found to depend on six dimensionless groups: a relative bending modulus
81 = BL/(f*L?), twist modulus 8, = By /(f*L?), translational drag ratio
n = (1/(, rotational drag n, = ¢,/ (QHLQ), dimensionless active moment
M, and a dimensionless diffusion constant D = (| Dy/(f*L). Henceforth all
variables are understood to be dimensionless.

To estimate the scale of the active moment, M, we note that a helical flag-
ellum with pitch P ~ 2um, circumference C' ~ 1.5um, length ¢ = 10pm, and
diameter d ~ 20nm, upon rotation with speed w generates a force on an affixed
body F, ~ 2uC?lw/Pc, where 1 is the viscosity of water and ¢ = In(¢?/d?) — 1
[129]. Due to its chirality it also generates a torque L, ~ 2uC?(w/7?c. Using

a body length L ~ 107° =10 *m gives a range of biologically relevant active
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moments M = L,,/LF, ~ 1073 — 1072,

A principal advantage of this approach is that it naturally leads to numeri-
cal schemes which circumvent violations of inextensibility, unshearability, and
frame orthonormality, and do not require soft penalties or explicit parameteri-
zation of rotations by Euler angles or quaternions [51},[130-133]]. This is accom-
plished through the use of a structure-preserving numerical method [134]]

which performs timestepping and spatial integration of S,
S(s,t) — S(s,t + At), S(s,t) — S(s+ As,t), (4.25)

entirely in terms of the SE(3) composition composition law. First, we note that

equation (4.4)) is equivalent to
3
S(0,t+ &) = S(0,t)Pexp| Z(¢)d¢, (4.26)
0

with Z(§) := A(0,t + £). The ordered exponential can be expressed as
Pexpfog Z(&hde = X9, in terms of a new se(3)-valued field, X, related to

Z by the Magnus expansion [[135]]

x@ = [‘z@a 5 [ [z 2@ ag .. @)
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Then, writing

=T 108, (4.28)

we have

A0, + At) + A0, 1)

S(0,t + At) = S(0,t) exp(At 5

)+ O(At?).  (4.29)

By a similar argument involving A, rather than A;, we find

As(s + As,t) + As(s, t)

S(s+ As,t) = S(s,t) exp(As 5

)+ O(As?).  (4.30)

Matrix exponentials in (4.29)) and (4.30]) are computed using the closed form
expression for the exponential map on SE(3) (see B|for details). Given vectors

o and 3, we have

exp = , (4.31)

& sina ., 1—cos« 1 — cosa a—sina _,
where e® =1+ &+ 57— Q& 5 — O+ 3 &4, and
« « o «

a=|al.

Equations (4.12)), (4.22),(#.23), and ({4.24)) are discretized in space uni-
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formly using second-order accurate central difference approximations, and ad-
vanced in time using a second-order implicit backward-differentiation scheme
with a hybrid nonlinear solver applied at each timestep. Equations and
are solved using the explicit second-order accurate Magnus integrators
discussed above. Other approaches to this stiff numerical problem with differ-
ent treatments of the hydrodynamics have recently been developed [[136-145]].
The parameters (n, D, 7f) = (2,1073,1072), timestep size At = 1073, and
spatial gridspacing As = 1/64 are fixed for the duration unless otherwise

stated.

4.3 Body configurations and dynamics

No active moment: planar dynamics

In the case of no active moment, M = 0, the body configuration is fully
characterized by a single rotational strain, the (signed) centerline curvature

k = £|€2 | |. Restricting the shape evolution equations to two dimensions, the
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curvature, active force, and tension satisfy

Oks = —%a;*n + 71783 (KX) + 05 (K [OsX + f]) + %aﬁ (53) : (4.32)
Of = Df + (1= f2) (BLkOsk + DA + ), (4.33)
2
S WA W R Y GE P02, (4.34)
n 2 n

We note that the tension equation can also be reformulated as an integral
equation (see Appendix|C.1]).

To begin we consider shapes which are symmetric about the body midpoint
s = 0 (and active forces which are odd). To describe the geometry it is
convenient to use the eigenfunctions of 9? satisfying force- and moment-free
boundary conditions [[146] (the first three of which are shown in Fig.
as dashed red curves). The curvature is decomposed as a sum k(s,t) =
Yoo ak(t)dr(s). Figure shows a phase portrait for the dynamics of the
first two even biharmonic modes, (ap, az), for a range of bending stiffness 3
with M = 0. Values are plotted against [311/ 3, which is proportional to the
body length L.

Phases in Fig. are identified by examining the long time behaviour
of filaments initialized with a compressive active force density f(s,0) =

— tanh(10s). For B, > 9.1 x 1073, the stiff filament relaxes to a straight configu-
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ration, with the active stress eventually decaying due to diffusion via Eq. (4.12)).
At approximately 3, = 9 x 102 there is a bifurcation to steady state U-shaped
swimmers with a nonzero ag which dominates all other modes. Further de-
creases in stiffness lead to curvature oscillations (this cross-section of the phase
diagram is shown in Fig.[4.Th) and excitation of progressively higher modes.
At approximately 5, = 6.8 x 1075, another bifurcation is observed to unsteady,
periodic flapping dynamics which involve even larger excursions in the phase
plane (Fig.[4.Tji), and periodic changes in the swimming direction.
Susceptibility to buckling can be understood by exploring the stability of

a nearly straight body to generic (planar) perturbations. Upon defining the

_ 1/2
mean active force density f := fds, we find to first order in x (assumed
~1/2
small) that
S —
A= [ (=T, (4.35)
—1/2
_ Bioa 1o ¥
Ok = —785/1 + 585 (A&) + fOsk. (4.36)

Assuming a symmetric compressive force, f = 0, this yields an eigenvalue
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Figure 4.2: (a) Dominant eigenvalues p,, of the linearized curvature dynam-
ics with no active moment and a piecewise constant force density show the
emergence of multiple unstable modes at critical bending stiffnesses; the first

at 8, ~ 1.0 x 1072, or 8] '/* ~ 4.6.
(b) Growth rates of biharmonic eigenfunctions, ¢y, (s), in the fully nonlinear
system with M = 0 (solid lines) and M = 0.01 (dashed). (c) First three un-

stable modes of the linearized system (solid), and biharmonic eigenfunctions
(dashed).

problem,

_ Brg (e, L
L[k] = ; 03 (85/1 N )m) , w37)
L[k] = pk

Figure shows the (real part) of dominant eigenvalues p,, of Eq.

for a range of stiffness 3, . The unstable modes of the linear system are illus-



Figure 4.3: (a-d) New attractors emerge upon the addition of an active moment
(with body symmetry assumed). Top - snapshots of body configurations over
a half-period, bottom - trajectories of the first two bending (ao, a1) and the
first twisting (bp) mode coefficients suggests convergence to a fixed shape. (a)
(B, 8L, M) = (1 x107*,2.5 x 107*,6 x 103): a U-shaped swimmer with a
twist. (b) (B, 8L, M) = (1 x 107°,8 x 107°,1.35 x 1072?): reduced stiffness
and increased active moment introduces a limit cycle corresponding to waving
while twisting. (c) (8, 8L, M) = (1x1072,5.45x107°, 1 x 10~ 2): convergence
to a new twisted-S shape. (d) (8, 8., M) = (1 x 107,1.25 x 10,2 x 1072):
periodic flapping appears with further increases in M. (e) Swimming speed
across a range of active moments for 3| = 2.5 1074, for a stiffer (3, = 5x 1074,
squares) and softer (3, =5 x 1072, circles) body. (f) Swimming speed across
a range of bending stiffness for 5 = 2.5 x 10~* and active moments M = 0
(circles), M = 0.002 (squares), and M = 0.01 (triangles).

trated in Fig. @ by solid blue curves, along with the biharmonic eigenfunc-
tions for comparison. Growth rates o,, = dsa,(t)|,_, /an(0), computed using

the fully nonlinear system, Eqs. (4.32),(4.33)), and (#.34)), with a,,(0) = 1073

are shown in Fig.[4.2b.

Critical values of 5 := 3, at which different spatial modes become unstable
are associated with the emergence of nontrivial solutions to (4.37)) with p = 0.

With the piecewise constant active force, f(s) = 1 — 2H(s), with H(s) the
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Heaviside step function, the tension is given by

—(s+1/2) —-1/2<s<0,
As) =2sH(s)— (s+1/2) = (4.38)

s—1/2 0<s<1/2

After integrating twice we find

2k — ;)\/{ =c s+ct, (4.39)

for constants ¢~ and ¢*. When A(s) = A\(—s), Eq. is invariant under
k(s) — k(—s), so, we may assume eigenfunctions have definite parity. When
k(—s) = k(s), we find ¢~ = 0, and when x(—s) = —x(s) we find ¢t = 0.
Restricting to the half interval, —1/2 < s < 0 and introducing ¢ = B3N =

—(1+2s)/ (QB 1/ 3), we find & satisfies a nonhomogeneous Airy equation on

-1/ (283) < ¢ <,

Ok — &k = al + b, (4.40)

Kle—g s Ockle_g =0, (4.41)

where (a,b) = (—3"/3¢~, ¢t — ¢ /2). The solution to ([#40]) and (@41)) is given
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3 13
K(€) = — TAI(6) /O (az + b) Bi(z)dz + 7Bi(¢) /O (az + b) Ai(z)dz

=ma [Bi'(0)Ai(¢) — AI'(0)Bi(§) — 1/7]

+ b

Bi(¢) /05 Ai(z)dx — Ai(€) /0£ Bi(m)dx] ,
where

3

Ai(§) = /0 - cos( +€x)de (4.42)

<. z? —x3/3+¢x
/ Sm(? +&x)+e dx (4.43)
0

oy}
=@
o
I
3=

are Airy functions, and primes denote derivatives. Writing £* = —3-1/3/2,

parity conditions require (a, 9¢rl..) = (0,0), giving

13 3
K(€) = Bi(¢) /0 Ai(z)dz — Ai(€) /0 Bi(z)da, (4.44)

&* &*
Bi'(¢*) /0 Ai(z)dz — AT (€) /O Bi(z)dz =0, (4.45)
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and (b/a, kle.) = (=£*,0), giving

K(€) = Bi'(0)Ai(¢) — AT(0)Bi(¢) — 1/m

iy (Bi(g) /0 © Ai(z)dz — Ai(E) /0 ¢ Bi(x)dm), (4.46)

Bi'(0)Ai(¢*) — AT'(0)Bi(¢*) — 1/7

e (Bi(g*) ¢ Ai(z)dz — Ai(£Y) ¢ Bi(az)dx) =0, (447)

0 0

for even and odd eigenfunctions, respectively.

When compared to the first ten critical stiffnesses in the fully nonlinear
dynamics with regularized active force density, predictions of Egs. (4.45]) and
were found to differ by 0.5%-15%. The first bending stiffness below
which the filament becomes unstable from the full system is 3; = 1.0 x 1072,

whereas the linearized dynamics predict 3, = 1.1 x 1072

Inclusion of an active moment: three-dimensional dynamics

We turn now to the fully three-dimensional system, including the active mo-
ment contribution due to flagellar chirality (M # 0). Numerous dynamical

regimes appear as the result of rotational forcing, with transitions between
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newly emergent phases brought about by variations in any one of the twisting
stiffness, 8 I bending stiffness, 3, or active moment, M.

As with the 2D system, we seek a reduced order phase space in which to
study these bifurcations. To this end, we consider systems initialized with
the twist {2p and curvature (2, even about the midpoint, and the curvature
Qq odd. We show in that this is equivalent to the system possessing a
conserved 7-rotational symmetry, and, provided the initial active stress distri-
butions are odd functions of s about the midpoint, this symmetry is conserved.
Taking advantage of their conserved parity, the twist and curvatures may be
decomposed into sums of harmonic 2, and biharmonic { ¢, ¢or+1} functions

satisfying appropriate parity and boundary and conditions:

Qo(s,t) =Y baw(t)yar(s), (4.48)
k
D (s,t) = 3 al, (E)dorir (s), (4.49)
k
Qo(s,t) = 3 aSe) (£ dor(s). (4.50)
k

Figure[4.3p-d shows characteristic shapes of four observed phases (top), as
well as corresponding phase space trajectories of (bg, a1, ag) := (bo, agl), a(()2))

appearing in the decomposition of twist/curvatures for a range of initial con-

ditions (bottom). For 3 < 2.5 x 1074, 8, >75x107%, and M > 1.4 x 1072
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the body adopts a straight configuration. A bifurcation to a twisted-U shape
appears upon increasing (3, decreasing 3., or decreasing M (Fig. ). With
M < 1.8 x 1072, the twisted-U phase persists as 3, is decreased until approxi-
mately 3, = 2 x 10~4, at which point the system develops periodic oscillations
(Fig. ) Again with M < 1.8 x 1072, new S-shaped equilibria emerge for
B1 < 1x 107 (Fig.[4.3c). A fourth phase appears for M > 1.8 x 1072 and
B < 2.5 x 10~* with twist-curvature oscillations accompanied by periodic
changes in swimming direction (Fig.[4.3d).

Transitions between phases can lead to wide variations in swimming trajec-
tories, and in the swimming speed, defined as the magnitude of the average ve-
locity of the body’s midpoint in the lab frame, Ugyim (T') = ’foT R(0,t)u(0,t)dt ‘ /T.
The complicated relationship between bend and twist is further illustrated by
the nonmonotonic, and discontinuous, changes in swimming speed that arise
due to variations in bending stiffness 3, and active moment M. Figure
shows the swimming speed as a function of the active moment for two dif-
tferent bending stiffnesses. For the stiffer body the active moment induces
waving (from Fig. to Fig.[£.3b) but the swimming speed remains roughly
unchanged. For the softer body, however, which at M = 0 is in the dramatic
flapping-W state in two dimensions (Fig.[4.Tji), the introduction of the active

moment can stabilize the shape in three dimensions and result in a ballistic
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trajectory (Fig.[4.3). Further increases in M, however, then trigger another
phase transition to the three-dimensional flapping dynamics of Fig.[4.3d, re-
sulting in average speeds (but not instantaneous speeds) tending to zero. A
different view is offered by Fig.[4.3f, which shows the swimming speed across
a range of bending stiffnesses for three different active moments. A sufficiently
large active moment can delay the onset of flapping dynamics, and thereby
stabilize swimming trajectories over a larger range of stiffnesses.

At the lower bending stiffness typical of swarmer cells, rotational forcing
introduces a dynamical twist-bend instability. As shown in Fig. as dashed
lines for M = 0.01, the presence of an active moment can decrease the force
required to excite higher unstable modes. As described in relation to Fig.
above, this allows the system to access new energetically favorable out-of-plane
equilibria similar to the ‘locked curvature” configurations observed in model
cilia [[113, 118].

Though not explored in detail here, both of the low stiffness configura-
tions shown in Fig. ,d are generically unstable with respect to asymmetric
perturbations, which lead to non-periodic dynamics and trajectories which
depend sensitively upon the bending stiffness. The self-contact evident in
Fig. , and self intersections observed at low bending stiffness in the model,

suggest that steric interactions or nonlocal hydrodynamic effects are important
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for stabilizing body configurations of longer swarmer cells. Confinement by

neighboring cells in bacterial swarms may play a similar role.
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5 SURFACE-BOUND BIOPOLYMERS

5.1 Introduction

Geometrically constrained filaments can be found throughout the natural
world. In this chapter we examine the constrained dynamics of surface-bound
flexible filaments. Our primary motivation is the interaction between biomem-
branes and the biopolymers that polymerize on their surfaces. These interac-
tions are known to produce changes in the membrane curvature and topology
through a number of mechanical, chemical, and entropic mechanisms [[147]].
However, many questions about how exactly the polymer-membrane interac-
tions drive membrane remodeling remain open. We will focus on two classes
of polymer-membrane interactions: the purely mechanical coupling of semi-
flexible polymers to the membrane, and second, the dynamics of curvature
sensing proteins bound to the membrane.

Modeling interactions of the sort considered in this chapter typically in-
volves atomistic simulation and related techniques [[1,[148|[149]]. While insight
gained from these simulations has proven to be invaluable to our current un-
derstanding of polymer-membrane interactions, computational complexity
limits their ability to probe all but the shortest of length- and time-scales. Com-

putationally tractable continuum models provide an attractive alternative for
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modeling phenomena occurring at these longer length- and time-scales. We
investigate these systems from a continuum mechanics perspective, modeling
the proteins and biofilaments as Cosserat rods which are confined both in
position and orientation to the membrane surface. We introduce a model
for generic surface-bound filaments and derive constrained Euler-Poincaré
equations for the system. Analytic and numerical results are presented for

special cases, and a number of applications are discussed.

5.2 Filament kinematics and surface geometry

The state of the filament is identified with withamap S : Q@ — SE(3) froma
2-dimensional domain @@ C R?, parameterized by material coordinate s and

time ¢, into the Special Euclidean group. The matrix,

S(s,t) = ) (5.1)

€1,€e2,€3=101-1111:101: (52)
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located at the origin onto the body’s orthonormal material frame g;(s,t) =
R(s,t)e; located at 7 (s, t). The infinitesimal generators associated with s- and

t-translations in coordinate space,

R19,R R19,r QU

S719,S = = , (5.3)
0 0 0 0
R_latR R_lat’l" @w u

S719,S = = , (5.4)
0 0 0 0

are given in terms of the twist-curvature Q= Q x, linear strain U, angular
velocity @ = wX, and linear velocity u, each measured with respect to the
material frame. All together, these quantities define the components of an

se(3)-valued one-form, or gauge potential [127]],

A=A,ds + Adt (5.5)
QU @ u

A, = . A= , (5.6)
0 0 0 0

which describes how cross-sections of the filament vary with respect to coor-

dinate translations in the base space Q.

Given a path, y(§) = (s(£),t(§)), connecting points vy(§1) = (s1,¢1) and
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~v(&2) = (s2,t2) in @, we can construct an operator by computing the ordered

exponential [[150] (see (2.48))) of A along 7,

€2 ds dt
U(s1,t1;82,t2) = Pexp/ A= Pexp/ (AS + At) d¢. (5.7)
v ! dg dg

Operators of this form will generally depend on the choice of path [[151]],

however, requiring the gauge potential satisfy,
OiAs — 0sAr + [A, As] = 0, (5.8)
will ensure U is independent of . The angular and linear components of (5.8)),

O — 0w +wxN=0 (5.9)

U —0su+wxU—-Qxu=0 (5.10)

are often referred to as the Euclidean structure equations [228,71]]. With path
independence of U guaranteed by the structure equations, the instantaneous

states of microstructure with coordinates (s, ¢) and (s',t') are related by,

S(s',t") = S(s,t)U(s, t; 8, t). (5.11)
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Approximation of U by Magnus expansion [[130] forms the basis of the structure-
preserving numerical methods which we apply throughout this dissertation.
Unshearability /inextensibility constraints are satisfied by identifying the
tangent vector, J,r, with one of the orthonormal frame vectors, q;, or equiv-
alently, by requiring U = e;. The remaining strain measures correspond to
twisting about the tangent, 2, = e; -2, and bending, (22, Q3) = (e2- 2, e3-Q),
about g2 and g3, respectively. Under these assumptions, the structure equa-

tions become,

02 = 0w + 2 X w (5.12)

Osu+ Q2 Xu=wXej. (5.13)

We define the membrane, M = ¢~1(0), as the zero-level set of ¢ : R — R,
with ¢(z) < 0 inside the membrane and ¢(x) > 0 outside the membrane. We
denote the outward-pointing unit normal vector by, n = V¢/|V|. We will
assume the filament is confined to the surface in the sense that ¢(r) = 0 and
g3 = n(r). When taken in combination with previously discussed kinematic

constraints placed on the filament, these four scalar equations can be reduced
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to just two,

o(r)=0, gq2-n(r)=0. (5.14)

Membrane geometry is described by the first and second fundamental

forms [[66]], which can be written, respectively, as

I=1-nn', (5.15)

1-VVe-1

I=-1-Vn=-——"—.
Vol

(5.16)

The first fundamental form I is an orthogonal projection onto the tangent
bundle 7'M, and the second fundamental form I describes curvature of M.
Principal curvatures of the surface are given by the (nonzero) eigenvalues of
I. We denote the components of II in the basis (g1, g2) by K;;. The relation

between dynamical quantities and surface curvature can be summarized by
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the following,

M =-q-Vn-q = K, (5.17)
Q=q1-Vn q =—-Kun, (5.18)

w1 = —0r - Vn - qa = Kipug + Kagug, (5.19)
wy =0 -Vn-q1 = —Knu — Kioua, (5.20)
Koy = —(K+92)/Q0 = Qs + 2H (5.21)
H=-V-n/2 (5.22)

K= —te(f-Vn @ Vn)/2, (5.23)

where K and #H are the Gaussian and mean curvatures at . These equations,

together with the structure equations require,

8SU1 — Q3U2 =0 (5.24)
aSUQ + Q3U1 = w3 (525)
023 = Osws3 + Kus. (5.26)

We emphasize that equations (5.24), (5.25), and (5.26]) are purely a conse-

quence of kinematics and geometry. With the exception of the forces of con-

straint, they are independent of any applied stresses. A derivation and addi-
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tional discussion of these equations can be found in appendix[D.1}

5.3 Stress balance

Inextensibility and unshearbility will be incorporated into our variational
framework by introducing a vector-valued Lagrange multiplier, A = )\;e;, and
surface constraints will be accounted for with scalar Lagrange multipliers v
and x. We will assume steric effects are characterized by a pairwise interaction

energy [53]],

U= % / / Gr(s), r(s))ds’ ds, (5.27)

expressed in terms of a symmetric kernel, G(x,y) = G(y, ). The internal

energy of the filament be given by

o /&13 U (5.28)

1
52§(Q—0')TB(Q—O')+)\-U+V¢)/’V¢|-|—X(12'n (5.29)
B = Bieiel + Byesel + Bsesel, (5.30)

where B is the stiffness tensor that penalizes deviation from the filament’s

preferred shape, which we characterize by the intrinsic twist-curvature vector
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o = o;e;. We will consider a viscous moment density, Grwy, and force density,
¢juy + ¢Lu, characterized by separate drag coefficients for rotational, ¢, lon-
gitudinal, ¢, and transverse (; motion. The the full system of Euler-Poincaré
equations (3.75) and (3.76]), the structure equations, and surface constraints

are given by the following,

Osm+ Q2 xm+e; X XA—yer = (wieg (5.31)
I+ Q2 x A —ves — YRTVnRes + f = Cu (5.32)
0 = 0w + Q X w (5.33)

Osu+ QA Xxu=wxe (5.34)

dsR = RS, (5.35)

0sT = Rey, (5.36)

¢(r) =0 (5.37)

q2-n(r)=0 (5.38)

where the steric force is denoted f = f;e;

£(6) = = [ R ) 5 (o) () as

(5.39)

= fieia
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and internal moment density by, m = B (2 — o). After eliminating the La-
grange multipliers (see|D.2)) v, x, and A | = Azez + Aze3, we find that force

balance can be expressed,

u=MF (5.40)

in terms of an in-surface force density F' = (F} F»)T with components

Fi =9\ +Q-9,m+ fi (5.41)

Fy = — agmg, -+ ()\ — Kiomq — K22m2) Q3 — Kms

(5.42)
— 05 (K11ma + Kioma) — 10sma + K220sma + fo,
and effective mobility tensor
1 G+ GKY  —G KK
(5.43)

M p—
Gl + GG K3, + GG K
e R~ K9 Ko G+ G K

5.4 Shape equations

The system (5.24)), (5.25), (5.26)), and (5.40)) can be reduced to a set of shape

equations governing the centerline position 7, unit tangent q := g, geodesic
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curvature () := 3, and tension \ := ey - A,

O+ g(q,m)02Q = h(q, 7, \, 0\, 02X\, Q, ..., 92Q), (5.44)
0y [a(@, )0 — bla, 7, 0, BN = cla,, Q... 0%0),  (5.45)
0sq=Mmxq+(qg-Vn-q)n, 0sr=gq (5.46)

where (a, b, g) are given by

C2 + <TK222

— 47

¢ C1Co + GG K2, + GG KR (547)

B (1 + ¢ Kip) Q2 5 ( K12K290 5 48
_@@+Qg@ﬁ4mxg+S(Q@+@ﬂ@+@@&9’ (548)

706G+ OGRS + GG RY
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and (c, h) are nonlinear functions of the indicated variables. Boundary condi-

tions for a free are given by

ms3 = 0,
Osms + 2K19mo + (KH — K22) mp =0 (550)

A+ Kiagmy — Kiimg = 0,

while the conditions for a clamped end are

Fy =0, (5.51)

Mi20sF1 + Map0sF> = 0,

where Fi and F are given by (5.41)) and (5.42)). Explicit expressions for (c, h),
as well as discussion of boundary conditions and numerical methods can be

found in appendix D}

5.5 Applications

The endosomal sorting complex required for transport (ESCRT) mediates both
scission and sealing of membranes in a wide range of cellular processes [[152].

Components of ESCRT form spiral protein structures on the surface of mem-
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branes which are believed to play a role in reshaping membranes by applying
mechanical stresses [[153]]. While membrane-bound filaments resemble spirals,
atomistic simulations have shown that they will adopt a helical configuration,
illustrated in Fig.[5.1} when free of the membrane. The mismatch between the
surface curvature and the filament’s preferred shape should give rise to a com-
plex interplay between the geometries of the membrane and the filament. A
number of models for interactions mediated by similar semi-flexible polymers

have been developed [154H162]].

Figure 5.1: Equilibrated molecular dynamics simulation of an ESCRT fila-
ment illustrating spontaneous curvature and twist reproduced from [[1I]. (a)
Top view and (b) side view show preferred curvatures. (c) Close-up view
illustrates intrinsic twist.

As the filament continues to grow, global characteristics of the membrane
become significant, and the Gaussian curvature dependence of the membrane
energy [[163] presents a unique modeling challenge. Because the total Gaussian
curvature of a surface is entirely determined by its Euler characteristic [66]],
changes in topology can involve rapid energy perturbations. It has been pro-

posed that these topological transitions are due to the sudden release of elastic
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Figure 5.2: Growth of a biofilament on the surface of a lipid bilayer. (a) When
proteins are not bound to the membrane, both the membrane and proteins
attain their preferred curvatures and store no elastic energy. (b-c) The energy
required to bind each subunit of the filament to the membrane includes elastic
contributions from both the filament and the membrane. (d) A biofilament
composed of sufficiently stiff proteins forms a scaffold which is able to support
larger and larger membrane deformations as the filament continues to grow.
energy stored in surface-bound filaments [[164] 165]].

We model the ESCRT filament as a surface-bound filament with elastic mod-
uli, (B1, B2, B3), and spontaneous twist/curvature, (01, 02, 03), determined
by atomistic simulations [[I]]. Steric forces are computed using a regularized
Yukawa potential (see Appendix|D.6). Each ESCRT filament seems to grow
from a single, stationary nucleation site [[166], which we model as a clamped
end satisfying the boundary conditions (5.51)). Equations (5.44), (5.45)), and
(5.46]) are discretized in space using 2nd order central differences, and the
system is evolved in time using a 2nd order semi-implicit time stepping scheme

which performs the spatial integration of (g, ) using a 2nd order geometric

integrator (see Appendix|D.5]).
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As our simulated filament grows from its nucleation site, we observe
sudden sudden, rapid conformational changes at certain critical lengths which
were highly dependent on membrane geometry. During these buckling events
the localization of curvature and twist, illustrated in Figure results in

highly localized forces and moments being exerted on the membrane.

204

104

Figure 5.3: With time increasing from left to right, a membrane-bound filament
(colored by total energy density) grows from its nucleation site (white circle)
around the intercellular bridge connecting two daughter cells. As it reaches
the critical length required for buckling, the localization of twist & = § B3
and curvature (£, £3) = (3 B3, 5 B3Q3) energy results in large stresses being
applied to the membrane.

Next, we will consider the role of proteins as curvature sensors [[167-169]].
Curvature sensing proteins preferentially bind to membrane regions matching
their own equilibrium curvature. As the density of proteins increases their
role shifts from curvature sensor to curvature generator, and they begin to
produce the initial membrane curvature required for larger scale deformations
by other mechanisms [[170]]. Our focus will be the effect of intrinsic twist and

chirality on a protein’s ability to navigate the complex energy landscape of a
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surface with variable curvature.

We model each protein as a short surface-bound filament with nonzero
preferred curvature, oo # 0, which would correspond out-of-plane bending for
an un-bound filament. In-plane preferred curvature is taken to be zero, 03 = 0.
We assume both ends of the filament are free, with boundary conditions
described by (5.50)). While equations (5.44)), (5.45)), and are sufficient
to determine the evolution of a filament with one clamped and one free end,
this is no longer true when both ends are free. In this case, we must track the
position and orientation of a single distinguished cross-section, which we take

to be at s = 0. Using equations (5.40)), (5.20)), and (.25 to compute the linear

and angular velocity at s = 0, we solve

8tq’s:O = w3n X q— w2n’3207 (552)

o),y = u1g +uam x q|,_ , (5.53)

using the 1st order geometric integrator discussed in

To demonstrate the role of chirality, we performed pairs of simulations
initialized with 100 randomly located and oriented filaments, one simulation
with intrinsic twist o1 # 0 and one without o1 = 0. In each pair of simulations

the filaments were chosen to be either positive curvature sensing, o2 > 0, or
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negative curvature sensing, oo < 0. The results of these simulations are shown

) &

in Figures 5.4 and

t=0.0051

¢¢

t=0.2837 t=0.5642

Figure 5.4: Curvature sensing proteins, colored by elastic energy density, with
positive preferred curvature o, > 0begin to congregate near regions of positive
Gaussian curvature. Chiral proteins (bottom) quickly reach equilibria, while
achiral proteins (top) approach equilibria much more slowly.

) &

t=0.0051

¢¢
¢¢

t=0.0306 t=0.1056

Figure 5.5: Curvature sensing proteins, colored by elastic energy density,
with negative preferred curvature oo < 0 congregate near regions of negative
Gaussian curvature.



99

6 CONCLUDING REMARKS

In this dissertation we developed theoretical and computational tools for mod-
eling Cosserat media within the Euler-Poincaré variational framework. We de-
rived generalized Euler-Poincaré equations governing a Cosserat medium and
investigated a number biophysics-inspired systems. A recurring theme is the
fundamental role played by geometric structures and symmetries. Throughout
this work, we have demonstrated the practical benefits of structure-preserving
computational methods, particularly in the case of constrained systems. For ex-
ample, the numerically problematic inextensibility /unshearability constraints
of the Kirchhoff rod can be trivially satisfied in this framework, without the
need for ad hoc penalty methods or singularity-prone parametrization of
rotations which are common to alternative numerical schemes.

Our study of P. mirabilis swarmer cells in § ] demonstrates the utility of
Euler-Poincaré reduction in the modeling of flexible bodies at low Reynolds
number. We have shown that numerous behaviors of individual swimming P.
mirabilis swarmer cells are qualitatively captured by an active Kirchhoff rod
model. The relative bending stiffness 3, = B, /f*L?, relating the flagellar
stress to the cell’s material and geometric properties, is seen to play an outsized
role. Our analysis reveals a minimal value, approximately 5, = 1.01 x 1072, re-

quired of a cell below which its motility is severely hampered by self-buckling.
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For P. mirabilis swarmer cells, this corresponds to a critical bending stiffness
of B| = 2.6 x 1072’Nm? (see [C.2)), approximately one order of magnitude
lower than the experimentally determined stiffness of typical cells [96]. We
propose that this offers some evidence that cells may develop and maintain
mechanical properties to prevent excessive buckling during motility. That the
difference is not tighter may speak either to the approximations made in mod-
eling the highly complex surface array of flagella, and/or related to the larger
stresses that the organisms may experience inside of a swarm. This observation
may offer insight relevant to the evolutionary development of motility, bacte-
rial adaptation and survival, and potential mechanically-motivated medical
interventions.

Bifurcations in body shape produce significant changes in swimming tra-
jectories, as we have begun to explore, but are also expected to affect the ways
in which such bodies interact with one another. This likely has substantial
consequences for the collective motion of bacterial swarms. We have only
begun to scratch the surface of the high dimensional parameter space available
to a generic active Kirchhoff rod. Characterization of critical parameter values
which trigger bifurcations may provide novel experimental methods for quan-
tifying mechanical properties of active, flexible bodies. Such methods may

require a more detailed treatment of the hugely complex, flagellated surface,
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or a more elastic energy than we have assumed here. Our model is readily
generalizable to account for these additional complexities using and
(3.76]), which do not assume a particular form for the elastic energy, activity,
or viscous stress.

In §[5 we developed a theoretical model for a elastic filament confined in
both position and orientation to an arbitrary implicitly defined surface. We
then applied this model to describe the dynamics of membrane-bound pro-
teins and biopolymers. When the filament length length is comparable to the
characteristic length set by the membrane curvature, our simulations suggest
that membrane-bound biofilaments will undergo growth-induced buckling.
During this buckling process, the filament can apply highly localized forces
and moments to membrane. This lends support to the conjecture that buck-
ling of surface-bound polymers plays a role in overcoming energy barriers
which resist topological transitions during cell division and vesicle formation.
Next, we examined the curvature sensing abilities of chiral proteins, which
we modeled as short surface-bound filaments with a preferred curvature and
twist. We found that in some cases chirality can increase the robustness of cur-
vature sensing proteins, allowing them to more efficiently locate points on the
membrane which match their preferred curvature. The obvious extension of

the surface-bound filament model is to include membrane dynamics. The cou-
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pling of filament and membrane dynamics poses a formidable computational
challenge, but will likely be required to gain a comprehensive understanding

of these polymer-membrane interactions.
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A  APPENDIX: THE ORTHOGONAL GROUP

This appendix summarizes of results related to orthogonal group which are
discussed in various sections throughout the main text. The orthogonal group
O(3) is the group of linear transformations of three-dimensional space which
preserve the Euclidean norm |x|. We will identify the orthogonal group with

its faithful matrix representation on R3,

0(3) = {Re RS

RTR = 1}. (A1)

The orthogonal group consists of two disconnected components, the special

orthogonal group,

SO(3) = {R € >

RTR=1, det(R)=+1}, (A.2)

and its complement which consists of orientation reversing transformations.
We will focus on the special orthogonal group.

The Lie algebra of SO(3) consists of antisymmetric matrices:

50(3) = {Ca e R3*3

of = o). (A.3)

There are two possible so(3)-valued matrices which can be associated with
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each trajectory, R(¢), through SO(3)

AN\T .
RTR) = —RTR, (A4)

/N

N\ T .
(RRT)" = —RRT, (A.5)
which means there are two separate characterizations of the tangent space,

TRSO(3) = Rso(3) = {R@| & € s0(3)}, (A6)

TrSO(3) =s0(3)R={@R|® €50(3)}. (A7)

Elements of so(3) obtained by left translation, @(#) = R”R, and right trans-
lation, @) = RRT, represent angular velocities measured in the body frame
and the ambient inertial frame, respectively. The body and inertial velocities

are related by the adjoint action of SO(3),
oD = AdgoP) = ROPIRT. (A.8)
We can define a Riemannian metric on SO(3) by,

(alb) = %tr(aTb), (A.9)
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for a,b € TRSO(3). This metric is both left-, and right-invariant:

(a|b) = (Ra|Rb) = (aR[bR), (A.10)

for any R € SO(3). So, we can always push vectors a,b to the identity,
RTa,RTb € 50(3) and take their inner product in the Lie algebra.

In the canonical basis for so(3),

00 0 0 0 1 0 -1 0
é,é2,e3=10 0 -1l o o ol.]l1 o of- (A11)
01 0 100 0 0 0

the metric components of (A.9)) and the structure constants are given, respec-

tively, by
1, ifi=j
(&ilej) =dij = ; (A12)
0, ifi#j
+1, if (i,j, k) = (1,2,3), (2,3, 1), (3, 1,2)
(Eillej enl) = eije- =4 -1, if (1,4, k) = (2,1,3), (3,2,1),(1,3,2) (A13)

0, otherwise
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The hat map is a linear transformation,

TR — 50(3) (A.14)

e; — €&, (A.15)

which maps the canonical basis for R? to the canonical basis for so(3). Under

this association, so(3) with bracket,

[a,i)]so(g) — ab - ba (A.16)

and inner product ({A.9)), is isomorphic, as both a Lie algebra and inner product

space, to R3 with bracket,
la,blgs :=a x b, (A17)
and the standard dot product. The adjoint representation,

Ad : SO(3) — GL(s0(3)) (A.18)

Adr& = R&RT, (A.19)

is another faithful representation of SO(3). With the action of SO(3) on so(3)
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and R? given by the adjoint action and matrix multiplication, respectively. The

adjoint representation of so(3) is given by,

and the coadjoint action is defined by
(eladzb) = (adaclb).

By the fact that,

<adaéﬁ>:(axc)~b:—c~(a><b),

the coadjoint is given by

adi = —adg.

a= —

(A.20)

(A21)

(A.22)

(A.23)
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In summary, for all R € SO(3) and any a, b, ¢ € R? we have

ab=axb (A.24)
1 "TA
§tr(a b)=a-b (A.25)
RaRT < Ra (A.26)
é=ab—basc=axb (A.27)

A.1 The exponential map

The exponential of 6 € so(3),

ef =1+ A0 + BO?, (A.28)
sin 0 1 —cosf
A= B=— " A29
6’ 62 ( )
describes a rotation a rotation about an axis parallel to 8 € R3 by ¢ = |6

radians. If &; is a basis for s0(3) and 0 = 0,é;, then the map R(0) = ¢? defines a
local coordinate chart in some neighborhood of the identity 1 € SO(3). Given
a rotation matrix R € SO(3), the axis of rotation can be obtained by applying

the inverse hat map to the antisymmetric matrix R — R” and the angle can be



obtained using

tr(R) = 2cos(6) + 1.

Rotations about coordinate axes are given by

1 0

=10 cos(0)

0 sin(0)
cos(0)

= 0

— sin(0)

= | sin(0)

0

0
— sin(0)
cos(0)
0 sin(0)
1 0

0 cos(9)

cos(#) —sin(f) O

cos(d) 0

0 1

The logarithm of a rotation matrix is given by

log(R) =

6 = arccos(

0
~ 2sinf

(7 8),

tr(
2

R) — 1,
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(A.30)

(A31)

(A.32)

(A.33)

(A34)

(A.35)
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A.2 Euler angles

Ifa,b,é € s0(3) are nonzero antisymmetric 3-by-three matrices with [&, 5} #0
and [A

50
,é} # 0, then the function
R(a, B8,7) = eGehbere (A.36)

defines a local coordinate chart on some subset of SO(3). If @, b, and é are
linearly independent, then the chart is defined in some neighborhood of the
identity 1 € SO(3). The Euler angle parametrization [34]] is an example of this
type of chart. In this parametrization, the orientation of a rigid body is de-
scribed by a sequence of three rotations about body-fixed axes, or, equivalently,
by rotating about the corresponding space-fixed axes in the opposite order.
We assume the initial body-fixed frame is chosen to coincide with the the
space-fixed frame, e;, and denote the body-fixed frame vectors after the first

and second rotation by e; and e;», respectively. The three rotation operators
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are given by

R.(a) = %%, (A.37)

e =R.(a)e;, (A.38)

Ry (B) = 8 = 8z fag—a8s (A.39)

e = Ro(Pes, (A40)

Ruv(y) = €78 = 8=l 18 o= flapmals (AA41)

Then, their composition can be expressed in terms of body-fixed and space-

fixed frames as

R(O[, B, ’7) =Ry (V)Raz’ (B)Rz(a)

— e Pl abs

(A.42)

— eaéz 6/8éz e’}’éz

= R, ()R, (B)R:(7)

Gimbal lock occurs at values of («, 3, ) for which the derivative of R does not

have full rank,

rank(dR) < 3, (A.43)
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asamap dR : R® — TrSO(3). If we define the s0(3)-valued one-form,

@:=R'dR
(A44)
= dae % Plrg P18 | B e 828,78 + dy €,
then the associated R3-valued form is given by
w=dae %e e, 4 dBe 7% e, + dve,
da
(A.45)
= (e‘VéZe_ﬁéZez e 1éze, ez> dg
dy
It follows that ((A.43) is equivalent to
O - det (e_'yéz e_IBéﬂUez e_'yéz ex eZ>
_ det (e-ﬁez e | e eZ) (A46)

= —sin(§)
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More generally, with R(a, 3,7) = e*@¢e? 5675, the condition ([A.43)) is equivalent

to,
= det e—BBa b c) (A47)

A.3 Diagonalization

Choosing a coordinate system with e, = /6 the eigenvectors of R = ¢? are

given by

ey = e, (A.48)
e = —\2 (ex —iey), (A.49)
e = \}5 (er +iey), (A.50)

with corresponding eigenvalues given by

Re, = e, (A.51)
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The orthogonal transformation can them be written as
R= eweJref+ +e e el + eoe(TJ (A.52)

These eigenvectors are orthonormal with respect to the standard inner prod-
uct in C3, and the sign convention is chosen to be consistent with the Con-

don-Shortley phase convention for spherical harmonics,

1
r= Z 2\/§rYlmem. (A.53)

m=—1
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B APPENDIX: THE EUCLIDEAN GROUP

This appendix summarizes of results related to Euclidean group which are
discussed in various sections throughout the main text. The Special Euclidean
group SE(3) is the semi-direct product SO(3) x R? of the three-dimensional
Special Orthogonal group SO(3) with the three-dimensional translation group R3.
The composition law is given by (R, z)(R’,z’) = (RR’,Rz’ + ), and inverses
by (R,z)"! = (R}, —Rlz).

The special Euclidean group, and its Lie algebra, se(3), have faithful matrix

representations given by

R =

SE(3) = ReSO(3),z e R}, (B.1)
0 1
w p

se(3) = & €so(3),ueR (B.2)
0 0

Each tangent vector in T5sSE(3),

a= (B.3)
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is naturally associated with two elements of se(3), one given by left translation,

RIR Rz
S7la = (B.4)

and another by right translation,

RR™' & —RR 'z
aS™! = . (B.5)

We can endow SE(3) with a Riemannian metric which is only left-invariant as

follows. Given tangent vectors in TsSE(3),

R @

a= , (B.6)
0 0
P z

b= , (B.7)
0 O

we define their inner product to be,

(alb)gps) = <R\P>SO(3) + (@]2)gs = Str(RTP) + &2 (B.8)



The Lie algebra, se(3), is spanned by the six generators,
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(B.9)

which, by a slight abuse of notation, we will often simply write as é; and e;.

The structure constants are defined by the following commutation relations:

[éaaéb] = 6abcéc
[éaaeb] = EabcCc

[eq,ep] = 0.

With 6 = |6/, the exponential map can be expressed as

=1+ 40+ B, V=1+B0+CH

A=sin(0)/0, B= 1_;(235@

C=(1-A)/6%=(0—sin(9))/6°.

(B.10)
(B.11)

(B.12)

(B.13)

(B.14)
(B.15)

(B.16)



118

The logarithm is given by

R x logR V7lz
log = (B.17)
0 1 0 0
tr(R) — 1
0= arccos(L), (B.18)
d—logR— (R—RT) (B.19)
8T T sing ‘
1, 1 AN A
-1 _ 4 L A 2
V=1 20—1—92 (1 23)0 (B.20)

where A and B are defined as above. Expanding in powers of 6, we find,

5 an 5 =1/2+ 0% /12 4 70* /720 + 316° /30240 + O(6®) (B.21)

e (1
A= ]z_:o mw (B.22)
=1-6%/3+6%/5! —05/7 + O(6®) (B.23)

=1-62/6+6*/120 — 6%/540 + O(6%) (B.24)



= (=1
=j§% (2j+2)!92]

=1/2! — 6%/4! + 6* /6!

= 1/2 — 6%/24 + 6* /720 — 6°/40320 + O(6®)

_Z 2]+3

=1/3! —6%/5! 4+ 6*/7!

=1/6 — 62/120 4 6 /5040 — 6°/362880 + O(6®)

1
02

Given two elements of se(3),

— 6%/8!1+ O(6®)

—65/9! + O(6%)

(1 — ;};) =1/12 + 62 /720 + 6* /30240 + 6°/1209600 + O(6°%)

119

(B.25)

(B.26)

(B.27)

(B.28)

(B.29)

(B.30)

(B.31)

(B.32)



the adjoint and coadjoint action on se(3) can be expressed as

6.9] v~ an

adyy = :m+0xy—¢xu
0 0
[é,(fb}—l—;ﬂ\v ov o
adyy = — =-60x¢dp—pupxv—0xv

Witha =X +n,% =0+ u, v = ¢ + v, we have

(aladyy) =—x-(0x¢+pxv)—n-(0xv)
=@xx) ¢+ (O@xv—xxp)v

= (adyaly)
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(B.33)

(B.34)

(B.35)
(B.36)

(B.37)
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C APPENDIX: SWIMMING MICROORGANISMS

This appendix contains additional details, calculations, and derivations for §[4

C.1 Integral equation for tension

The tension differential equation (4.24) can be formulated as a Fredholm
integral equation. This section derives a perturbative series for the two di-
mensional case. Equation (4.34) for the 2d active filament is equivalent to the

integral equation

)\(S) = — éHZ(S) _ 1/2 G(S,SI)asff(S,)dS/ _ ﬁ/{?(s)
2 -1/2 2n
é 1/2 , o e 1 1/2 o / /
- 77/_1/2G(3,s)[85,/<;(3 )]7ds +77 _I/QG(s,s)m (s"A(s")ds

(C.1)

where G is the Dirichlet Green function for the Laplace equation on the interval

[1/2,1/2] with homogeneous boundary conditions,

(s —1/2)(s+1/2), fors<s
G(s,s') = (C.2)

(s+1/2)(s—1/2), fors> s

= (s = 1/2)(s +1/2)0(s' — 5) + (s' + 1/2)(s — 1/2)0(s — §'). (C.3)



To simplify notation, define the following:

1
e— =
n
B 1/2
(slgo) = go(s) = —5/‘62(8) - G(s,s")0s f(s")ds’
~1/2
B 1/2
(slg1) = g1(s) = —552(5) +5 G(s,s")[0xr(s")]*ds’
~1/2
/2 ,1/2
K= G(s,8)K*(s') |s) (s'| ds ds’ .
“172J-1)2

Equation ([C.1)) can then be written as

[A) = lg0) +€lg1) +eKI[A),

which has the solution

IA) = lgo) + > /K71 [Klgo) + |g1)] -
j=1

The first two terms in A = \g + e\; + €2y + ... are given by

B 2 1/2 / / /
Ao(s) = 3k (s) = G(s,8")0y f(s')ds
~1/2
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(C4)

(C.5)

(C.6)

(C.7)

(C.8)

(C.9)

(C.10)
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M) =— w2548 [ Gls o) own(sPds
~1/2
IB 1/2 / i / 1/2 1/2 1 201 1 / / / "
-= G(s,s)k"(s")ds —/ / G(s,s")k“(s")G(s",s)0s f(s')ds" ds
2 J-1/2 -1/2.J-1/2

(C.11)

C.2 Estimate of critical dimensional bending stiffness

Swarmers with lengths in the range L = 10 — 100 um were found to swim
with an average velocity u* = 13 um/s when placed in a motility buffer with
viscosity u = .001Pa-s [99]]. Using the critical dimensionless bending stiffness
B7 = .0101, a body diameter of a = 1 um, a longitudinal drag coefficient
(| = 2mp/ In(L/a), and characteristic force density f* = (|u*, we predict the
critical dimensional bending stiffness for swarmer cells to be in the range
B, =~ 3.6 x 1072° — 1.8 x 10722Nm?. Experimental measurements have
suggested an average swarmer cell bending stiffness of 5.5 x 10722 Nm? [96]].
Taking a characteristic body length of L = 50 ym results in a critical value of

B ~ 2.6 x 10723 Nm?2.

C.3 Evolution equations in an inertial frame

With primes denoting s-derivatives and dots denoting ¢-derivatives, we can

write u = R7'%, g = R™/, @, = R7'(v' x "), w, = R7Y(+' x #'). The
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structure equations and inextensibility /unshearability imply

Qo =wh+7"- (¢ x 1), (C.12)

=0, (C.13)
and the stress balance equations can be written in an inertial frame as

/
(BHQ()’I“/ + B r x r”) +7"' x A +mr’ — Guwor’ =0, (C.14)

A+ fr' — =0, (C.15)

where ¢ = ¢r'r'" + (L (1 — r'r'"). Eliminating wy and A | = (1 — rr' 1A, we

find
B 1
Iy '
wg=—8Q +—m C.16
0= St (C.16)
Ay =7 % (BQor' + Bur' x ¢ (C.17)
B 1

Qo ?” Q4 c T (7 x ) (C.18)

Sl Sl G BL

N — 2L@2A+ f'+ =B ()" + 2Lk%r (ByQo — B.7) + kK" =0
CL / 2 (") CL ( 1750 7 =4 ) CL
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where A\ = r’ - A. Torsion can be eliminated using

Qor’T = K*QF + Qoep - (2L x Q) (C.20)

pr — K212 = Q) - Q) — K203 — 200e0 - (21 x Q) (C.21)

to recover the tension equation given in the main manuscript.

C.4 Symmetries

This section contains a collection of results related to symmetries and conserved

quantities for the active filament model.

Curvature/torsion parity and rotational symmetry

Consider an arclength parameterized curve r(s) with Frenet-Serret frame

(T, N, B), curvature k, and torsion 7. Suppose the midpoint is at s = 0, and

define the following:
R r Tel + Nel + Bel r
S= = (C.22)
0 1 0 1
Q € Té() + Hég €\
A= = (C.23)
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Curvature and torsion are even functions of s if and only if the (Frenet-Serret)
framed curve is invariant under rotation by 7 about an axis which intersects
the curve at r(0) and which is perpendicular to T'(0). If the curvature is
nonvanishing at s = 0, then the axis of rotation is parallel to n = IN(0). This

is equivalent to saying that the equation

A(—s) = A(s) (C.24)

holds if and only if

S(—s) = SOGSgls(s)G*
eﬂN(O)R(S)eﬂ'él r(0) + e N(0) (r(s) — r(0)) (C.25)
0 1

where Sj := S(0) and G is given by

e 0 —epel +ejel —ezel 0
G= = (C.26)

0 1 0 1

Proof. We begin by proving the Sy = 1 case. If Sy = 1 then T'(0) = ey,
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N(0) = e, B(0) = ey, r(0) =0,

£=s .
S(s) = [] @9 =Pexp| A(€)de, (C.27)
£=0 0

and Eq. ((C.25)) reduces to

S(—s) = GS(s)G™*
ewél R(S)ewél 67”%17“(8) (C.ZS)

0 1

First, we suppose A(—s) = A(s) and show (C.24)=(C.28|). We find that S

transforms under s — —s as

E=—s §=s £=s
S(—s) = H AE)dE H e A=9dE H e~ A (C.29)
£=0 £=0 £=0



where the last equality uses A(—s) = A(s). Since A satisfies

emé1 (Téo + kéa) e~ e

GAG™! =
0

—Téo - K/éQ —€y

we have

E=s
S(*S) _ H eGA(&)G_ldﬁ
£=0

which proves ((C.24)=(C.2§).
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(C.30)

(C.31)

(C.32)

(C.33)

(C.34)

(C.35)

Now we assume ((C.28) and show (C.28)=(C.24)). Taking a derivative
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of (C28) and using GAG™! = —A, we find

—S(—5)A(—s) = GS(s)A(s)G !

= GS(s)G'GA(s)G™!
(C.36)

which proves (C.28)=(C.24)). To prove the general case, (C.25)) < (C.24)), just

apply the above argument to S := S;'S. O

Filaments with a circular cross-section

When representing a filament with circular cross-section by a framed curve,

R »r
S = ,A=571ds (C.37)
0 1
QU o u
A= ds + dt, (C.38)
0 0 0 0
U = e (C.39)

the initial direction for the transverse frame vectors g, = Req, gs = Regats =0

isarbitrary. The gauge group U (1) acts by rotating the frame at each point along
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the curve by a constant angle about the curve tangent gy = Reg = J,r. Gauge
invariants include the centerline r and all associated geometric quantities (e.g.
curvature, torsion, and Frenet-Serret frame), as well as the twist 2 = eq - (2.

Gauge transformations can be represented by SE(3)-valued matrices

efeo
G= (C.40)
0 1
whose action on S is defined by
Re~%% r
S+ SG =
0 1
(C41)
e PR
0 1

Under a change of gauge, A transforms as

A — GAG™ L. (C.42)
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Or, in terms of its components

Q — Qep + 720Q (C.43)

U—~U (C.44)
w — woeg + e’%0w | (C.45)
u — upep + ’%0u | (C.46)

Symmetries of the shape equations

The evolution equations of § [ are invariant under As a result,

solutions which differ only by a constant phase at ¢ = 0

A(s,0) = GA(s,0)G* (C.47)

will have the same relative phase at future times

A(s,t) = GA(s,t)G 1. (C.48)

Invariance of the evolution equations given in §E] can be seen as a consequence
of the fact that the energy, inextensibility /unshearability constraints, dissi-

pation function, and active stresses for the model, as well as the structure
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equations, are invariant under These invariance properties can also
be verified by direct examination of the structure and stress balance equations
(see and §C.3).

In statics problems, the phase difference between the Frenet-Serret and
material frames at s = 0 can always be eliminated through a proper choice of
gauge, however, this is generally not possible for dynamics problems. Excep-
tions can be found when certain symmetry conditions are met. When twist {2y

is an even function, the conditions listed below are equivalent
(1) Curvature  and torsion 7 are even functions of s

(2) The centerline 7(s) is invariant under rotation by 7 about an axis which

intersects the curve at s = 0

(3) There exists a gauge in which €; and € have definite and opposite
parity

If, in addition, the active stresses f, m are odd, then these symmetries, as well

as the phase difference between the Material and Frenet-Serret frames at s = 0,
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are conserved. That is, if 2y, 25 are even, and €4, f,m are odd att =0,

Qp(—s,0) = Qg(s,0)

01 (—s,0) = =04 (s,0)
Qa(—5,0) = Qa(s,0) (C.49)
f(=5,0) =—f(s,0)

m(—s,0) = —m(s,0)

then the parity of Qq, 21, 22, f, m, and X are conserved for all ¢t > 0,

Qo(—s, t) = QQ(S, t)

Ql(*s, t) == le(s, t)

Qa(—s,t) = Qa(s,t)
(C.50)

f(_‘S’ t) = —f(S,t)

m(—s,t) = —m(s,t)

A(=s,t) = A(s,t)

q1(0,t) is constant in time

q1 (07 t) =q (07 0)7 (CSl)
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the centerline remains invariant under rotation by 7 about an axis parallel to

q1(0,t) = q1(0,0) which intersects the centerline at (0, 0)

r(—s,t) = 7(0,0) 4+ ™10 (p(s, 1) — 7(0,0)), (C.52)

and both the linear and angular velocities are directed along the symmetry

axisats =0

U(O,t) = ul(O,t)el (C53)

w(0,t) = w1(0,t)eq (C.54)

Under the above symmetry assumptions, enforcing free boundary condi-

tions at s = +L/2 is equivalent to

96’5:0 =0 (C55)
Ql|s:0 =0, Q/1,|3:0 =0 (C56>
250 =0, 9|y =0 (C.57)

N| =0 (C.58)

S=
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Qols=rp =0 (C.59)
Dleeryo =0, Q,1|5:L/2 =0 (C.60)
Qals_r/o =0, Q’Q\SZL/Q =0 (C.61)

Als=r2 =0. (C.62)

Example of physically equivalent, but out of phase solutions are given by

the following. The system with initial conditions given by

M cosh(10s)

Q(s,0) = B log(~ - 5 ) (C.63)
0 (s,0) = =66 (s) sin(2s) (C.64)
Qa(s,0) = 6¢(s) cos(2ms) (C.65)

(s,0) = — tanh(10s) (C.66)
m(s,0) = —M tanh(10s) (C.67)
5(0,0) = 1, (C.68)

where ¢ is the first even eigenfunction of 92, satisfies the symmetry conditions

outlined in the above, so, the parity of g, 21, Q2, f, m, and X are conserved.
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Consider systems with initial conditions

Y (s,0) = Qo(s,0) (C.69)
F9(s,0) = f(s,0) (C.70)
mW(s,0) = mf(s,0) (C.71)
(s, 0) cos(2jm/3) —sin(2jm/3) | [ —6¢0(s)sin(2ms)
| = (C.72)
Y (s,0) cos(2jm/3)  sin(2jm/3) 6o (s) cos(2ms)
1 0 0 0
0 cos(2jm/3) sin(2j7/3) O

5W(0,0) = (C.73)
—sin(2j7/3) cos(2j7/3) 0

@)

0 0 0 1

for j = 0,1, 2. Gauge independence of the equations of motion implies the

relative phase of these systems systems is independent of time:

Q) (s.) = Q(s. 1) (C.74)
9 (s,8) = f(s,1) (C.75)

mY) (s, t) = m(s,t) (C.76)
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QW (s,1) | cos(2jm/3) —sin(2jn/3) | | is,1)
oY (s, 1) cos(2jm/3)  sin(2jm/3) | | Qa(s,t)

(C.77)
B cos(2jm/3)Q(s,t) — sin(2j7r/3)ﬂg(s,t))

sin(257/3)Q1 (s, t) + cos(2j7/3)Qa (s, t)

1 0 0 0

@)

SO(5,4) = S(s, 1 cos(2jm/3) sin(2j7/3) 0O (C78)

—sin(2j7/3) cos(2j7/3)

[an}
[an)

0 0 0 1
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D APPENDIX: SURFACE-BOUND BIOPOLYMERS

This appendix derives and discusses computational methods for solving the
equations governing tension A\ = e; - A, geodesic curvature Q2 := e3 - (2,
unit tangent q := g1, and centerline r of the surface-bound filament model
introduced in § | from the Euler-Poincaré equations, structure equations, and

surface constraints,

Osm—+Qxm—+U X X\—ye; = (wieg (D.1)
DA+ Q x A —ve3 — xRTVnRey + f = Cu (D.2)
0 = 0sw + Q X w (D.3)

Osu+ QA xu=0U+wxU (D4)

0sT = Rey (D.5)

P(r) =0 (D.6)

g2 -n(r) =0. (D.7)
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The following relations between the framed curve and surface geometries will

be used at various points throughout this appendix.

I=1-nn" =qq] +qq5

Kij:=—qi-Vn - gq;

K1 Ko —y
K = prg
K12 K22 Ql K22
Vn-n=0

Os7 - Vn =R (2 x e3)

n-or=e3-u=>0

MY =-q-Vn-q = K
Q=q -Vn-q =—-Ki1
w1 = —0r-Vn-q2 = Kijous + Kogus

wp =0 -Vn-q = —Kjjug — Kiaus

(D.8)

(D.9)

(D.10)

(D.11)
(D.12)

(D.13)

(D.14)
(D.15)
(D.16)

(D.17)
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Gaussian curvature C

K = det(K) = —%tr(ﬁ -Vn-n-Vn) (D.18)

vnl .7 Vn=Kn (D.19)
Mean curvature H

V-n=tr(Vn)=-2H (D.20)

D.1 Surface geometry and constraints

The following calculations are based purely on kinematic constraints associated
with of inextensibility /unshearbility U = e;, surface confinement, ¢(r) = 0
and g3 = n, the structure equations dA +AAA = 0, and the equation dS = SA.

By inextensibility /unshearability, the structure equations reduce to

02 = 0w+ 2 X w (D.21)

Osu + QX u=uwXej. (D.22)
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Using the fact that
ug=ez-u=mn-0r =0, (D.23)
we find just three independent scalar equations,

65’&1 - Q3U2 =0 (D24)

Osug + Q3u; = ws (D25)

0§23 = Osws + Q1wa — Nowy
(D.26)

= Osws + Kug,
where K is the Gaussian curvature of the surface. The first will give an equation
for the tension, and the second and third combine to give an evolution equation

for the geodesic curvature

003 = Osws + Qqwg — Qowy
= Osws3 + Kug
(D.27)
= 8S2u2 + 0sQ3u1 + Q305u1 + Kus

= aEUQ + (Qg + IC) ug + 05311
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D.2 The mobility tensor

Here we will derive the effective in-surface mobility tensor. First we eliminate
the Lagrange multipliers v, x, and A | . Crossing moment balance (D.1]) with

e and defining \ := e; - A gives

A=Xei+ e X (0sm+Qxm) (D.28)
)\2 = —85777,3 - leg + ngl (D29)
= —8sm3 — K11m1 — K12m2 (D30)

)\3 = 857712 + ngl - leg (D31)
= Osmsa + Q3mq — Ki9mg (D32)

The remaining e; component of moment balance gives

x=e1-(0sm+ Q2 xm)—(Guw (D.33)

=e1 - (Osm + Q xm) — (Kigur — (- Kaous (D.34)
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Then a miracle happens [[171]] and you get

O\ +Q-0m + fi G+ GKY  (KiaKo
€2 (OsA+ QX A) + Kaer - (0sm + Q2 xm) + fo GK12Ko G+ GK3,
(D.35)

where components of the steric force are given by

oG

f1(s) = —qu(s) - o (s) (r(s),r(s")ds' = —8S/G (r(s),r(s"))ds" (D.36)
hls) = ~aa(s) - [ 0 () m () (D37)

Define the effective mobility tensor
" 1 G4 K3y —G KoK (D.38)

- 2 2 :
et Grorfi oo Iy —GK12Kay (1 + G KTy

2

= Y Mjjee] (D.39)

i,j=1
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and force density

F = Fie1 + Fyes
N+ Q- 0em+ f
62'(83)\—|—Q x/\)+K2261-(83m—|—Q><m)+f2

OsA+ Q- 0sm + f1

Q)\—Feg-(asAJ_—i-QXAJ_)+K22€1-(35m—|—QXm)+f2

OsA + Q- dsm + f

Q3 + 02 — QA3 + K220smq — Koo K11ma — KooQlama + fo

(D.40)

where,
Fy =— 8§m3 + ()\ — Kiomq — K22m2) Q3 — Kms (D.41)
— 05 (K11my + Kioma) — Q10sma + K220sm1 + fo (D.42)

Multiplying (D.35]) by M, we find

u=MF. (D.43)
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D.3 Shape equations

Defining X and Y by,

OsA
MF = M +MY (D.44)
QA
OsA
- M +X, (D.45)
QA
we find that
up = Mq10sA + M12QM 4+ X7, (D46)
U9 = Mlgas)\ + MQQQ)\ + XQ. (D47)

When substituted into (D.24]), we find

sy — Quy =M110° X + O, M110s\ + M12QDs\ + 05 (M12Q) X
+ 05 X1 — M12Q0\ — MO\ — QX5

(D.48)
=M110°X 4 Os M1, 0\ + (35 (M;292) — M22QQ> A

+ 0. X1 — QXo
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or, equivalently

95 My s (M1292) — M Q° —0s (M1;Y;) + QMY
PN+ = O\ + A\ = Jty 2Y5 D49
’ My ° My M, ( )
where M1, = G2t K3, My = —CrKi2Kao Moy = Ci+¢r K3,

C1Ca+C1Gr Ky +Calr K2y C1C+C¢r Ky +Calr K2y

Y, = ﬂ~8sm+f1, and Yy = 62~(BSAJ_ + Q x AJ_)+K2261'(asm + Q x m)+f2.
The evolution equation for the geodesic curvature is obtained in a similar fash-
ion by substituting the above expressions for (u1, ug) into Eq. (D.27)).

D.4 Boundary conditions

Free end

The boundary term which appears in the first variation of the energy (5.28)),

is given by

W=m-0+X-v, (D.50)

where (0, v) are components of the generator of the variation (see §3)),

0 v R-16R R~ 14r
0S =SAs, Ag= = . (D.51)

C1Ca+C¢r Ky +Calr K2,
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For a free end, constraints require,

0=0p=0or-Vo=v-R Vo (D.52)

on = R(0 x e3) = Vnlér = VnTRv

(D.53)
= 0 = éRTVn Ro
Or, in components,
v =v1e1 + vrer (D.54)
0 = 01e1 + O2e5 + O3e3 (D55)
01 = K201 + Kogvg (D56)

0y = —Kq1v1 — Kq909. (D57)
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Applying D’Alembert’s principle,

oW = [A=Vn' - (es x m)| - v+ mgy
= [)\61—|-61 x (0sm + Q xm) —Vn' - (e3 x m)} v 4 mgfs
= [A+ Kigmi — Kiima] vy (D.58)
— [0sm3 + 2K19ma + (K11 — Kag) ma] va

+ m393
we find boundary conditions for the free end are given by,
mz =0 (D.59)

Osm3 + 2K19ma + (K11 — Koz2) m1 =0 (D.60)

A+ Kiomqp — Ki1mg = 0. (D61)
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Clamped end

Linear and angular velocities at the clamped end must be zero: u; = up =0
and wz = 0. Vanishing of u1, ug is equivalent to F' = M1y = 0.
OsA+ Q- 0sm + f
F = =0
Q3 + 02 — QA3 + Ka20,m1 — Koo K11m3 — KaQ3ma + fo

(D.62)

From the structure equation, we have w3 = dsus + Qu;. Together with

Fy = F» = 0, this implies the boundary conditions for a clamped end are given

by,

Fi=0 (D.63)
=0 (D.64)
Mi190sF1 + MooOsFy = 0. (D65)

D.5 Nwumerics

This section contains information about numerical methods for the simulation

of surface-bound polymers, and formulas used in implementation of geometric
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integration schemes on SE(3). Define the following

R=qel + (n x q)el + nel € SO(3) (D.66)
M= pier + ugses € R3 (D67)
0 = 01e1 + Ores + O3e3 € R3, 0 =6 (D.68)
. 1 — cos(0) 9 . 3
A =sin(0)/0, B = @ C=(1-A4)/6°= (0 —sin(0))/6° (D.69)
V =1+ B0+ CH. (D.70)
Then, we have

R r 0 pn Re® r+ RV

exp = , (D.71)
0 1 0 0 0 1

Refe; = R(e1 + A0 x e; + BO x (0 x e1))

1 — B(63 + 63%) (D7)

= (q n xq n) Afs + B0,

— A6y + B6105
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r+RVu=r+R(p+BO xpu+CO x (0 xpu))

[1 — C(@% + 9%)]#1 + (09192 — B03)/,[/2
=r+ <q n Xxq n) (CO102 + BO3)py + [1 — C(03 + 63)]u2
(CO103 — BOa) 1 + (CO263 + BO1) o

(D.73)

To speed up computations, and also avoid computational issues when 6 ~ 0,

we evaluate (A, B, C) by truncating the power series given in Appendix B}

Explicit 1st order geometric timestep

Taylor expansion shows
S(t + h) = S(t)e" D + O(h?). (D.74)

Since A;(t) can be computed as a function of the spatial derivatives of (€2, A, q, )
at the current time, this gives a first order explicit timestepping method for

(g,r). Take p = hu and 6 = hw in equations (D.72)) and (D.73]) above. Then,
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we have
q v—)Reéel
= R(81+A0 X e1 + BO x (0 X 81))
1 — B(63 + 63) (D75)
= (q n xq n) Abs + B6,162
—Afy + B6,65
r —=1r + hRVu

=r+hR(u+BO xu+CO x (0 xu))
[1— C(05 + 03)]us + (CO102 — BOs)uy
=r+h <q nxq n> (C0105 + Bb3)uy + [1 — C (62 + 62)]uy
(CO1605 — BOo)uy + (CHa03 + Bb)us
(D.76)

Implicit 2nd order geometric integration

Taylor expansion shows

S(s + h) = S(s)e2A(sHMFTA() L O(p3). (D.77)
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Take p and 0 from equations (D.72]) and (D.73)) to be the following

pn=he, 0=

| >

(s +h) +Q(s)) . (D.78)
We end up with a second order implicit method because,

0=0(s,s+h), V=V(s,s+h) (D.79)

A=A(s,s+h), B=DB(s,s+h), C=C(s,s+h) (D.80)

now depend on the spatial derivatives of (€2, A, ¢, r) at both s and s+h. Assum-

ing we know (2(s + h), A(s + h)), then (g(s + h),r(s + h)) are fixed points of

a(s + h) —R(s)e? 5t e,

=R(s)(e1 + A0 x e; + BO x (0 x e1))

1 — B(63 + 63) (D381)

= <q(s) n(s) x q(s) n(s)) Af3 + B0,

—Aby + B0103
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r(s+ h) —=r(s) + hR(s)V(s, s + h)ey
=7(s)+ hR(s) (e1 + BO x e1 + CO x (6 x 7))
1—C(63 + 63)
=r(s) +h (q(s) n(s) x q(s) n(s)) (€616 + BO;)
(C6105 — Bby)

(D.82)

and can be computed by iteration.

D.6 Yukawa potential

The Yukawa potential is the fundamental solution to the screened Poisson

equation,

[v2 —1 /a2] G(z) = —6(x) (D.83)



The solution to

with ¢(oc0) = 0is

Glz) = — ¢ lal/a

 4r|x|

e**dVv (k)

! / 1

-~ @m)3 ) |k]? +1/a?
1 o L sin(kr)
S 2n2r Jo k2+1/a?
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(D.84)

(D.85)

(D.86)

(D.87)

(D.88)

(D.89)
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