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ABSTRACT

A set of algorithms are proposed for traffic signal recognition (TSR) on challenging videos.
During the method development, minimal to no assumptions were made about the uniformity of
cameras, the accessibility of advanced controls (e.g., shutter speed), the availability of camera-
dependent sample data, the environmental lighting conditions, or the distance to the traffic lights.
Such openness of input requires the algorithms to be relatively generic and adaptable to various

devices and scenarios.

The proposed methodology consists of two major subsets: 1) image based traffic light
detection and classification and 2) spatiotemporal information based coordination. At the core of
the methodology is a candidate traffic light detection method based on the concept of conspicuity,
which involves lightness, color saturation, and contrast. Detected candidates are then classified
based on robust relative color similarity. When processing a video, spatiotemporal information
(i.e., GPS based camera position and frame timestamp) is used to effectively narrow down the

temporal search range and coordinate TSR across frames.

Naturalistic driving videos were tested against these algorithms to analyze the performance
and reveal challenges. The proposed detection method outperformed two other generic detection
algorithms in nearly all lighting-distance scenarios, although the absolute recall rates (around 50%)
were low due to the compromised data quality. Classification achieved nearly 95% accuracy even
with strong color variation in the data. The spatiotemporal coordination effectively reduced the
data and helped to reach ideal temporal accuracy of TSR through persistent tracking. Challenge

wise, sunny daytime was found undesirable due to strong ambient light and a single set of



i
parameters in the detection model was not optimal for all lighting conditions. Nevertheless,

intuitive rules were found for tuning the model towards different lighting conditions.

In summary, this study contributes to the state of knowledge in TSR by proposing a set of
novel algorithms and analyzing their performance on unprecedented naturalistic driving data.
These algorithms are expected to be more suitable than existing methods for processing videos

acquired by a diverse camera set under various lighting conditions.
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CHAPTER 1

INTRODUCTION

1.1 Background

Vision based traffic signal recognition (TSR) systems are crucial components of intelligent
transportation systems (ITS) and advanced driving assistance systems (ADAS). Roadside video
cameras have been used to identify the traffic signal state along with the vehicle trajectories to
capture red-light-runners (1). Onboard video cameras with traffic signal recognition back-ends
found even wider applications such as infrastructure inventory, signal state and approaching speed
advisory, and autonomous driving (2-5). Because video cameras possess sensing advantages such
as high data frequency, rich colors, nonintrusive (or passive) interface, long and reliable distance
range, and inexpensive infrastructure investment, they remain an economic and reliable choice

over other sensing technologies such as radar, LIDAR, and telecommunication for TSR.

However, image formation process, environmental condition, and camera pose and
orientation can jointly introduce challenging target appearance. Severe color variation, such as
distorted color, underexposure, and overexposure, is one of such challenges. Since most existing
systems relied on color segmentation for initial signal detection, the ability to accommodate color
variation and effectively separate traffic signal pixels from the background became a fundamental
requirement in their system designs. The general solution is to calibrate (or trained) a color
classifier. Previous studies based their calibration process either on training images or on local
traffic signal design standards. The standards based methods were inherently camera independent,
but their effectiveness has not been validated over a wide variety of camera settings and their

transferability to other geographical regions could be limited. The training images based methods
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relied on using the same camera setting in both calibration and testing. Porting any of these

methods to a different camera setup is therefore non-trivial, because new training images need to
be resampled. In addition, some of these systems used special camera exposure controls to alleviate

color variation, making adoption on other less controllable devices impossible.

While the data acquisition systems can always be calibrated to achieve optimal data quality
for TSR, there are cases when the data are generic and with far less perfect quality. One of such
situations is extracting traffic signal states from general purpose driving videos. The extracted
information can be critical in assessing traffic violations and driver behavior, such as red-light-
running. A robust TSR system that accommodates generic data source will lead to efficient and
innovative workflows in law enforcement agencies, auto insurance companies, and the general
traffic safety research community. Such research need is recently boosted with the availability of

massive video data collected by naturalistic driving studies (NDS).

NDS are gaining popularity for traffic safety investigations. As people have long realized,
human errors are a key contributor to traffic crashes. Both highway design and traffic controls
need to take into account human’s physical and mental capabilities (6, 7). So far, researchers’
primary source of evidence of human errors are historical crash reports. These empirical
observations have revealed valuable insights into problems such as aggressive driving, impaired
driving, drowsy driving, distracted driving, and confusion, among others (8). However, crash
reports can only recover loosely connected pieces of information, sometimes biased, and are not
capable of providing a continuous spatial-temporal account for analyzing deeper aspects of driver
behaviors. In addition, crashes are not the only consequences caused by human errors. Near misses
and traffic violations are also hazardous events attributing to driver performance but normally

underrepresented. Therefore, a more comprehensive way of collecting continuous driving data that
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cover more events of interests has been pressingly needed. NDS meets such research need by

providing honest on-board video recordings of the driver and the roadway environment, in addition
to the vehicle’s position and kinematics (9, 10). A typical NDS data acquisition system (DAS) was
illustrated by Antin et al. and copied in Figure 1-1 (11). Data collection runs continuously and
unobtrusively over a relatively long study period (e.g., one year) whenever the instrumented
vehicle is driven (12, 13). Pioneering researches using NDS data have reported novel findings
about lane departures on rural two-lane curves, offset left-turn lanes, rear-end crashes on congested
freeways, and driver inattention and crash risk (14-16). More researches are expected to be

supported by NDS data for decades to come.
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Figure 1-1 Hlustration of the DAS of 100-Car and SHRP 2 NDS (11).

Unfortunately, the unparalleled temporal and spatial coverage of NDS data come at the
expense of aggressive data compression for reduced but still enormously large data size. Two
renowned NDS studies on passenger cars, for example, are the 100-Car study and the Second
Strategic Highway Research Program (SHRP 2) NDS (17). The 100-Car study collected nearly
43,000 hours of driving data over an 18 month period with 241 primary and secondary participant

drivers. A total of 82 crashes, 761 near misses, and 8,295 other types of interesting events were
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identified (12). Extreme behaviors such as severe fatigue, impairment, judgment error, risk taking,

willingness to engage in secondary tasks, aggressive driving, and traffic violations were reported
(18). SHRP 2 NDS used an updated DAS on over 3,300 vehicles participated at six study sites in
different states, providing a wider range of geography, weather, state laws, and road features. Over
a period of nearly three years, more than two million hours of driving data were collected, which
captured 1,465 crashes and 2,710 near misses among other events (13, 19). The total video data
size is over two petabytes. Before being transferred to a data center, all video data and other sensor
data of individual vehicles were stored on their on-board storage units (the “DAS main unit” in
Figure 1-2). Such system design imposed a requirement for aggressive data compression,
particularly on the video data. A demonstration given by Antin et al. (11) is copied in Figure 1-2
to show four views of video being composited into one image frame during data collection. The
pixel resolution of the front-view video is 350-by-480, which is not generous for an 83-degree

field of view (FOV) being covered.

zateme

- | i\ - ——
Figure 1-2 Snapshot of compressed SHRP 2 videos (11).



1.2 Problem Statement

Both the compromised quality and the massive size of naturalistic driving videos are
unaddressed challenges to all existing TSR systems. Imprecise camera imaging process, varying
lighting conditions, and changing distance can lead to severely inconsistent appearance of traffic
lights. No prior studies have looked into such extreme data setting. In addition, scaling existing
systems to million hours of videos is not only a problem of improving per-frame recognition speed,
but also a challenge to the spatiotemporal framework that coordinates the TSR. In order to address

the above challenges, several research questions need to be answered:

e What features of a traffic light are most invariant to various lighting conditions and
pixel resolutions and how can these features be modeled and used in detection?

e How can the robustness be improved on traffic signal color classification when the
training color samples do not closely match the testing data?

e What spatiotemporal information is useful in extracting relevant frame ranges for TSR?
How can such spatiotemporal information be used to coordinate TSR so more reliable

results can be achieved?

1.3 Research Objectives

The proposed study should achieve the following objectives:

e Provide an up-to-date literature review on vision based TSR systems with
comprehensive understanding about their application scenarios, detection and
classification methods, and spatiotemporal coordination approaches. Identify

limitations of the existing methods for improvement.
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Explain in a scientific way how traffic signals can be distinguished in a road scene and

model this process mathematically. Implement this process in a computer program as
a generic traffic signal detector.

Develop a classifier that gives soft classification to detected traffic signal candidates
while maintaining the ability of reflecting the true signal color with high confidence
measures.

Establish a spatiotemporal framework that effectively identifies relevant frames for
TSR processing and coordinates TSR with temporal tracking in a way that increases
the stability of recognition results.

Collect detailed ground truth data from naturalistic driving videos with various lighting
conditions and test the above three TSR related components on these videos with
analyses of the performance.

Recommend applications of the developed methodology.

1.4 Research Scope

The current research is under the following scope restriction:

In terms of video data, this study only considers videos taken by an on-board camera
that faces the direction of travel. The field of view captures the front roadway and
should be able to include the overhead signal faces when the vehicle is in the middle
of the intersection.

This study focuses on offline data reduction for driving context and driver behavior
analysis rather than real time vehicle navigation. However, it might be possible to port
the proposed methodologies to real time applications with certain modification and

computational speed improvement.
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e Although pedestrian signals are also important for behavioral analysis, the only

command for drivers are from vehicular traffic signals. So, traffic signal state only
refers to vehicular traffic signals at highway intersections. Ramp metering is also
excluded from this study.

e Arrow shape traffic signals are currently not separately considered in this study. Due
to low pixel resolution and light diffusion, the arrow shape signals are not expected to
be clearly outlined. Distinction between arrow and circle has also been found

unnoticeable beyond 50 m (20).
1.5 Contributions
This research will contribute to the state of knowledge by:

e Developing a collection of generic traffic signal recognition algorithms that can be
applied on a wide range of video data without device dependent calibration. Yet, the
algorithms allow intuitive control to accommodate various physical scenarios.

e Providing an unprecedented insights into the challenges of traffic signal recognition

using videos with compromised quality and difficult lighting conditions.
1.6 Thesis Organization

The rest of this thesis is organized into five chapters. Chapter 2 gives a comprehensive
review on TSR related research. Topics include TSR applications, detection methods,
classification methods, and spatiotemporal coordination. Chapter 3 explained the proposed
methodologies. First, the conspicuity based detection model is explained with comprehensive
formulation. Then, a histogram similarity based signal classifier is proposed. Both the detector and

the classifier form the core of TSR and are embedded in a spatiotemporal framework. Key stages
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of the framework are described, including map projection, vicinity calculation, movement

classification, short range initialization, and long range tracked recognition. Chapter 4 describes
the data collection effort. Chapter 5 tested the detector and the classifier both separately on
individual frames and under the spatiotemporal framework. Performance results are given and

analyzed. Chapter 6 concludes this study with discussions.



CHAPTER 2

LITERATURE REVIEW

2.1 Overview

In general, TSR is composed of two major stages: detection and classification. During the
detection stage, traffic signal candidates (individual lenses or whole signal faces) are extracted
from the image as separate regions. In the classification stage, the detected candidates are tested
against other criteria to determine their signal state (i.e., red, green, or yellow) and/or shape (i.e.,
arrow or circle). Although TSR can be performed on individual images separately, a more common
circumstance is working with videos where the temporal information can facilitate successive
detections and prune candidates. Physical information such as camera calibration, position, and
orientation and traffic signal maps are also helpful for eliminating irrelevant frames or narrowing

the ROIs in the image.

Depending on the actual application, TSR can be implemented or extended differently
according to the underlying data acquisition systems (i.e., data variety, format, and quality),
expected environmental conditions, workflows, and other problem settings. A thorough review of
the existing systems is provided in this chapter as a knowledge foundation. Past studies are first
summarized by application domain. Then, techniques used in detection, classification, and

spatiotemporal analysis are reviewed in separate sections.
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2.2 Applications

Automatic TSR has been employed in both real-time navigation systems and offline data
analysis systems. In real-time systems, TSR serves as an additional eye of the system user as they
approach and negotiate a signalized intersection. In offline systems, TSR provides additional

horsepower for information extraction.
2.2.1 Real-Time Applications

Intelligent driving (both ADAS and AVS) and pedestrian assistance are two major real-
time TSR applications. For intelligent driving, recognized traffic signals are used to reinforce
driver perception, provide navigation and speed advisory, or directly control the car (3-5, 20-41).
For pedestrian assistance, the system is typically embedded in a mobile device to aid visual

deficient to cross streets (42—48). Some examples of real-time applications are given below.

Intelligent Driving

ADAS prototypes have been proposed to assist vision deficient drivers or provide driving
advisory. Almagambetov et al. used a windshield mounted camera to assess traffic signal colors
for drivers with color-vision deficiency (21). In order to minimize color transmission errors, a
camera that encoded colors natively in the Y UV color space was used. Color ranges based on
traffic signal design standards were used as a reference for color classification. Koukoumidis et al.
proposed a coordinated ecofriendly driving advisory system for approaching signalized
intersections (3). Their system featured a windshield mounted smartphone running an application
that exchange the recognized traffic signal state with other smartphones in the application network
to predict future signal state. Based on the prediction, a safe and emission minimized speed control

advisory was given. Camera exposure time was fixed on the smartphone to facilitate detection and
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GPS sensor was used to trigger the application when the vehicle was in a 50 meter range of a

signalized intersection.

Several groups aimed at fully autonomous driving. An initial attempt of TSR for
autonomous vehicles was proposed and implemented by Lindner et al. in the IVI-Edmap research
project (41, 49). They employed both color-based and gray value based detectors for TSR,
supported by a HDR camera and a VGA camera, respectively. In addition, differential GPS,
enhanced digital maps, and structure-from-motion (SFM) techniques were mentioned as important
aids to the TSR process. Shen et al. implemented their TSR system on an OSU-ACT autonomous
vehicle platform using a commodity camera (37). Similar studies were also conducted by Xu et al.
and Guo et al. to accommodate complex urban scenarios in China (20, 33). Fairfield and Urmson
proposed their TSR system as a core component behind Google’s autonomous driving car project
(4). Their system used a prior 3D map of traffic signal heads constructed during a trial run.
Detection essentially became projecting the 3D target position onto the captured image according
to the camera position, orientation, and intrinsic parameters. Images acquired using a fixed-
exposure camera was primarily used to assess the signal color within the projected traffic signal
head regions. Levinson et al. refined this approach but providing a probabilistic method to

accommodate the 3D to 2D projection error due to data acquisition accuracy (5).

Pedestrian Crossing

Mobile devices were exploited to assist vision deficient pedestrians to cross streets
controlled by pedestrian signals. Shioyama et al. were among the earliest attempts (48). Their
system recognized pedestrian signals on the far end of the crosswalk and estimated the length of
the crosswalk based on the pavement marking pattern and camera calibration parameters. However,

they did not implemented the system on an actual mobile device. Eddowes and Krahe looked into
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daytime and nighttime pedestrian signal recognition and implemented the system on a portable

digital assistant (PDA) (47). However, their method did not work well in daytime due to the failure
of RGB based simple color segmentation. More reliable and real-time systems have been proposed
by Roter et al. and Ivanchenko et al. using Nokia N95 mobile phones, but only daytime scenarios
were considered (44, 45). Mascetti et al. used more recent Android device to deploy their system
which required advanced controls over the camera’s ISO, aperture, and shutter speed according to
the environmental light level (42). Angin et al. considered using server side computation to
improve the image processing speed of their cascade classifier based recognition system, which

relied on the continuous availability of internet access for data transmission (46).

2.2.2 Offline Analyses

Traffic surveillance, inventory, and safety investigation could also be facilitated by a TSR

system (1, 2, 4, 5, 50, 51). A few key studies in the literature are briefly listed below.

Surveillance

Surveillance, specifically red-light-running detection, has been the major offline
application of TSR. Videos collected for this purpose were primarily recorded by a stationary
camera mounted on the upstream roadside aiming at the traffic signals and the approaching traffic.
Yung and Lai proposed a system that integrated the detection of traffic signal state and the
estimation of vehicle movements at the stop bar to identify red-light-runners during daytime (1).
Chung et al. proposed to incorporate fuzzy logic in the detection stage and used average

background extraction to constantly monitor and adapt to illumination changes (50).
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Inventory

On-board video or sparse photo sequence based highway inventory is a common practice
in the United States. Photo logs or video logs have been used by states to geocode highway
infrastructure such as traffic signs and guardrails and monitor pavement conditions. Tu and Li
were among the first to propose using TSR for mapping traffic signals (2). They used color and
gradient histograms to detect traffic signal heads of four major perception angles. However, their
system was focused on estimating the spatial relationship between the camera and the detected
traffic signal heads and was not capable of classifying the traffic signal state. Fairfield and Urmson
and Levinson et al. also constructed a 3D map of traffic signal heads using video data so such prior
map could be used to facilitate real-time TSR in autonomous vehicles (4, 5). However,

constructing the 3D map involved a considerable amount of human efforts.

Incident Investigation

Responsibilities in traffic incidents need to be verified by solid evidence. Agencies such as
insurance companies even offer rewarding driving trackers to their customers in order to collect
actual driving data. In addition, with affordable dashboard cameras that are sometimes integrated
with GPS navigation systems, drivers can also proactively monitor their daily commutes in
preparation for incidents. Front-view videos collected under such circumstances become strong
evidence during incident investigation. At signalized intersections, the traffic signal states can be
the key of judging whether the driver was violating the traffic law. Yelal et al. proposed a
recognition and tracking system to log traffic signal state from on-board videos for after crash
investigation (51). Unfortunately, their system was very preliminary and no performance measure

was reported.
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2.2.3 Summary

Examples of TSR applications in different domains are given and a more exhaustive list is
summarized in Table 2-1. In addition to this list, there are other more general TSR studies focusing
on experimenting specific methods on certain TSR stages rather than developing a complete
system. They will be covered in later sections of this chapter where related. Among all these
existing studies, TSR for incident investigation or more generally, evaluation of driving videos, is

very limited. There are two potential reasons.

The first is that the analysis periods are short and could gain little benefit from a TSR
program compared to manual reviewing. For example, in incident investigation, the video only
needs to be analyzed within a short timeframe of the incident and human reviewers are typically
sufficient and reliable. However, this might no longer be the case with the increasing availability
of lengthy driving videos and the need to identify events without reported timestamps (e.g., near-
misses). Manual review could be infeasible and need to be assisted, if not fully replaced, by an

automatic procedure.

Another more fundamental reason of limited research into applying TSR on general
purpose driving videos is the generic feature of the data and the recognition difficulty it raises. In
other applications, like ADAS, the system typically had control over the camera in order to obtain
data tailored to the need of TSR, such as calibrating the exposure time according to the traffic
signal’s light emission pattern so the target appeared consistently in various illumination
conditions. Even when controls over the camera were not available, a considerable amount of
sample data could be collected in advance using the same camera so calibration against the device
could be done, such as finding the camera-dependent color ranges of various traffic signals (see

Section 2.3.1). However, for a more generic data source, where neither the control over the camera
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is possible nor the camera-specific sample data are available or sufficient, the above systems may

fail to set up properly. Additionally, with videos collected using different cameras, the appearance
of traffic signals can be extremely inconsistent, especially the color. Unpredicted illumination
conditions and visibility of the environment can add to the complexity. As a result, traditional
traffic signal detection features such as color ranges used in most existing studies can be too variant
to calibrate or use. Low resolutions should also be expected from a generic data source. General
purpose driving monitoring data are primarily aimed to provide human recognizable visual
evidence rather than high definition images. Therefore, videos can come at relatively low pixel
resolutions and even with motion blurs, which would render detection inaccurate. Previous TSR
methods using edge-based shape detection may fail in such situation (see Section 2.3.2). Therefore,
more generic detection features are needed. In the rest of this chapter, legacy methods for traffic

signal detection, classification, and spatiotemporal analyses are reviewed.



Table 2-1 Overview of Major Existing Systems

Max.
Environmental Sensing Signal Colors

Researchers Camera Other Data Condition Range and/or Shapes

Intelligent Driving

Almagambetov et al. (21) Y’UV camera / Day/night/dawn/dusk 122 m Green/red/yellow
Res. = 640x480 Sunny/cloudy Circular/arrow

Guo et al. (20) Res. = 1000x1000 Position Morning/afternoon/night 120 m Green/red

Heading Circular/arrow
(optional)

Diaz-Cabrera et al. (52) CMOS camera GPS position Day/night 115 m Green/red/yellow
Res. = 752x480 (optional) Sunny/snowy Circular
f=8mm
Fixed shutter speed

Jang et al. (22) High speed camera / / 50 m Green/red
Max. FR =100 FPS Circular/arrow
Res. = 640x480
Alternating
exposure times

John et al. (23) [unspecified] GPS position Afternoon/dusk 100 m Green/red

Traffic signal Circular
locations and
headings

Wang et al. (25) Res. = 1292x964 / Morning/afternoon 90m Green/red
f=85mm Sunny/cloudy Circular/arrow

Kim et al. (26) Res. = 620x480 / Night / Green/red

Circular

Koukoumidis et al. (3) Smartphone camera Smartphone / 50 m Green/red/yellow

Fixed exposure time GPS reading Circular/arrow

97



Table 2-1 Overview of Major Existing Systems (continued)

Max.
Environmental Sensing Signal Colors
Researchers Camera Other Data Condition Range and/or Shapes
Intelligent Driving
Cai et al. (53) Res. = 1392x1040 / Sunny/cloudy / Green/red/yellow
f=25mm Direct Arrow
FOV =20.4 deg. sunlight/backlighting
Fixed gain
Fixe shutter speed
Siogkas et al. (28) Res. = 640x480 / Day/night / Green/red
f=12mm Circular
Fairfield and Urmson (4) Res. = 2040x1080 3D prior signal map  Morning/afternoon/night 200 m Green/red/yellow
FOV =30 deg. constructed during a Circular/arrow
Fixed gain mapping trial
Fixed shutter speed
Levinson et al. (5) Res. = 1280x1024 3D prior signal map  Noon/sunset/night 140 m Green/red/yellow
Fixed gain constructed during a Circular
Fixed shutter speed mapping trial
Kim et al. (29) HDR CMOS camera / Day / Green/red
Res. = 620x480 Circular
Gong et al. (30) Res. = 780x580 / Day / Green/red/yellow
f=15mm Circular
Yuetal. (31) Res. = 680x480 / Day/dusk/nigh / Green/red/yellow
Circular/arrow
Nienhuser et al. (32) Res. = 512x384 / Day / Green/red/yellow
Circular
Xu et al. (33) Res. = 640x480 / Day / Green/red/yellow

Circular

LT



Table 2-1 Overview of Major Existing Systems (continued)

Max.
Environmental Sensing Signal Colors
Researchers Camera Other Data Condition Range and/or Shapes
Intelligent Driving
Charette and Nashashibi (34)  [unspecified] / Day / [unspecified]
Park and Jeong (36) CCD camera / Day / Green/red
Res. = 320x240 Cloudy Circular
Shen et al. (37) Res. = 640x480 GPS reading Day 70m Green/red/yellow
IMU reading Circular
Joo et al. (38) Res. = 640x480 / Morning/noon 140 m Green/red
afternoon/dusk Circular
Kim et al. (39) [unspecified] / Day/night 100 m Green/red/yellow
Cloudy Circular
Hwang et al. (40) Res. = 720x480 GPS reading Day 130 m Green/red-yellow
Circular
Lindner et al. (41) HDR and VGA cameras  Differential GPS / / Green/red/yellow
f =16 mm (color) position and heading Circular/arrow
f=12 mm (gray) (1 mand 1 deg.
accuracy)
Mobile Pedestrian Guide
Mascetti et al. (42) Android mobile camera  Accelerometer / / Green/red/yellow
Res. = 2448x3264 and Gyroscope
Fixed ISO reading
Fixed aperture
Fixed shutter speed
Ying et al. (43) [unspecified] / Day/dusk / Green/red/yellow

Round

8T



Table 2-1 Overview of Major Existing Systems (continued)

Max.
Environmental Sensing Signal Colors
Researchers Camera Other Data Condition Range and/or Shapes
Mobile Pedestrian Guide
Roters et al. (44) Nokia N95 / Day / Green/red
Autofocus Camera Pedestrian
Res. = 320x240
Ivanchenko et al. (45) Nokia N95 / Day / White
Res. = 640x480 Pedestrian
Shioyama et al. (48) Res. = 640x480 / Day / Green/red
f=59mm Pedestrian
Surveillance
Chung et al. (50) Stationary camera / Day/night / Green/red/yellow
Res. = 320x240 Circular
Yung and Lai (1) Stationary camera / Day / Green/red/yellow
Res. = 640x480 Circular
Inventory
Tuand Li (2) Res. = 720x400 / Day / Only detect whole
signal heads
Crash Investigation
Yelal et al. (51) Res. = 720x480 / Day / /

6T
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2.3 Detection

Detection is the most fundamental and essential step of all TSR systems. Although certain
prior knowledge, such as a 3D map of traffic signals and camera calibration data, have been used
to directly locate traffic signals in the image without image processing (4), such advantage is not

commonly available in most cases. This section is focused on summarizing image based TSD.

2.3.1 Color Segmentation

Color segmentation was the most commonly used method in extracting image regions that
are likely to contain target traffic signals and was often combined with other detection methods to
locate traffic signal candidates. The general idea of color segmentation is to check for each pixel
in the input image whether its color value falls into an empirical region in a chosen color space. A
pixel can be labeled with a particular signal color during this process or it can be assigned a fuzzy
membership score for each possible signal color. Figure 2-1 demonstrates this concept with an
example image being filtered by three color histograms. Each histogram shows the 2D distribution
of saturation and hue values of all sample pixels from a particular traffic signal color. For a traffic
signal color, each bin’s value of its 2D histogram is back projected onto the input image pixels
whose saturation and hue values fall into that bin, forming a color membership score map where

brighter regions are more likely to contain target traffic signals.
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Input frame

H-S histograms of
different signal colors

Color score maps
- of different signals

Figure 2-1 Demonstration of color segmentation based TSD.

In the literature, a number of variants of the color segmentation approach have been

proposed. The major difference between these variants is the color coordinates being used.

RGB and Related Transformations

RGB values are the native color coordinates in most image data and were used by several
past studies. Some studies calibrated the camera according to the traffic light emission pattern so
direct RGB values were sufficient to distinguish traffic signals from the background and each other
(3,4, 27, 54). However, camera control is not always possible and uncontrolled exposure can cause
significant variation of the target’s RGB values, resulting in less stable color ranges for
segmentation. In order to overcome this issue, some researchers looked into transformations of the
RGB coordinates. Joo et al. applied rotated principle component analysis on RGB and the gray
scale values and used the first and second principle component images for segmentation (38).
However, their method lacked physical meaning and did not report good robustness. Roters, et al.

also applied principle component analysis on sample RGB point cloud (44). They found three
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principle dimensions and trained thresholds to distinguish three signal colors and dark background

color under the principle dimensions. However, their detection recall rates were low. In general,
RGB based color segmentation is subject to color variation problems introduced by environmental

illumination changes and needs camera exposure controls to mitigate the challenge.

HSV and Cylindrical Color Coordinates

The HSV color coordinates rearrange the RGB values in a cylindrical manner so chromatic
information, i.e., saturation and hue, can be separated from the luminance, providing a more
reliable way to compare colors without considering the lighting change. As a result, HSV has
attracted some TSR researchers. Gong et al. trained statistical curves on all HSV coordinates based
on samples with various lighting, background, and brightness conditions (30). Wang, et al. applied
principle component analysis on the 3D sample pixel cloud in the HSV space to find 2D principle
components to distinguish green signals and red signals (25). Under the principle component
coordinates, the shortest distance from a testing pixel to sample pixels of a signal color was
calculated and compared to a maximum threshold to decide whether the pixel belonged to the
signal color. Jang et al. used a high speed camera with per-frame alternating exposure to capture
both normal exposure and low exposure images, practically allowing any instance of a scene to
have a two-level dynamic range (22). Then static thresholds on all three HSV coordinates were
trained using the low exposure images. Mascetti et al. used a fixed-exposure camera and trained
empirical ranges on HSV values, among which only the hue channel showed different ranges for
different signal colors and with the red signal range and yellow signal range overlapping (42). To
distinguish yellow and red, they compared the pixel counts of yellow and red in each candidate
region. The signal color with the most pixel count won. Guo et al. trained the hue range assuming

it followed a Gaussian distribution and combined the trained hue range with fixed minimum
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thresholds of saturation and value to extract candidate pixels (20). Similar to HSV are other

cylindrical color coordinate systems such as HSL, IHSL, and HSI, they have also been used by
some researchers in traffic signal detection (37, 40, 50, 55-57). Although cylindrical color
coordinates provide good separation between luminance and chromatic information, they are
essentially linear transformations of the RGB color coordinates and do not provide additional

power in separating colors with subtle difference but sensitive to human vision.

CIE Based Color Spaces

Color spaces defined based on the International Commission on Illumination (CIE)
measurements are aimed to provide device independent color matching that approximates human
color perception and were used in some of the previous TSR studies. These color spaces also
separate luminance from chromatic information, except that the chromatic plane is not a radial
model of the hue and the saturation as in HSV, but are measurements of the relationship to certain
color primitives. For example, in the CIELab space, the “L” represents the lightness value (i.e.,
luminance) and the “a” and “b” coordinates correspond to the relative positions of a color between
two pairs of opponent color primitives, respectively. Siogkas et al. multiplied “L” to the summation
of “a” and “b” to form a feature map (28). Fast radial symmetry transform was used to locate peaks
corresponding to green and red traffic signals using this map. Similarly, John et al. used a
multiplication of the gray scale value, the “a” value, and the saturation value of HSV as a feature
map (23). Since the “a” value contained a sign, positive pixels on this map became indications of
red traffic signals and the negative pixels implied the possible regions of green traffic signals. Tu
and Li constructed three-dimensional color histograms using the CIE 1976 (L*,u*,v*) color space
for both template signal head images and test image patches (2). The similarity between the color

histograms was used in conjunction with the similarity of edge gradient histograms to generate a
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similarity map. However, their templates were signal heads with yellow backplates perceived from

front, sides, and back with no active signal lights, so the color feature was related primarily to the
signal head rather than individual lenses, and could not be used to classify traffic signal state. Other
CIE XYZ color space variants, such as the YCrCb color space and the Farnsworth’s perceptually
uniform color system (UCS), have also been employed (29, 48). However, transformation from
RGB color values to the above color spaces requires a reference white color, because RGB is
device dependent. In addition, transformation to these color spaces may still retain RGB color
encoding errors. A recent study by Almagambetov et al. reported state-of-the-art detection
performance by using natively captured YUV color space values and corresponding U-V plane
regions defined according to the Institute of Transportation Engineers (TIE) and the British
Standards Institute (BSI) standards (21). Unfortunately, they relied on the minimized color coding

errors of an YUV camera, which is not commonly available in most TSR systems.

In general, color segmentation is an efficient way to identify candidate signal regions, but
its performance can be sensitive to the empirical parameters, whose reliability depends on both the
quantity and quality of sample data. As a result, other researchers tried to explore camera

independent features for traffic signal detection.
2.3.2 Texture and Shape Detection

Texture and shape are geometric features that are independent of camera’s color formation
process and provide a more generic way for detection. In the literature, edge based shape detection,
template matching, and structure element based morphological operations are typical approaches

towards texture or shape recognition.
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Edge Based Detection

Traffic signal lenses are often assumed to preserve their round shapes in the image with
their edge pixels closely following the circumference of a circle. Under this assumption, edge
pixels are first extracted based on pixel gradients. Various edge detection methods, such as the
Canny edge detector, the Sobel edge detector, and the Laplace edge detector, have been used by
previous researchers (3, 41, 56, 58). In order to find circles that are well represented by the edges,
the Hough transform was often used (3, 41, 58). Chiang et al. proposed an ellipse detection method
based on genetic algorithms to generalize circle detection in the presence of perspective distortion
(56). Unfortunately, the above studies in fact performed edge detections on the color segmented
image rather than the original image, which inherently includes the problems faced by color
segmentation. In a slightly different way, Gomez et al. applied border following algorithms on
edge pixels of the original image to find rectangular regions corresponding to traffic signal faces
(59). Issues were found with false detections on other rectangular areas such as the spacing

between roadside trees.

Edge based shape detection can be the most color independent approach, given the edges
are extracted from the original image rather than a color segmented map. However, without the
gauge of color segments, the edges in the image can be extremely noisy and can trigger a
considerable amount of false circle detections, simply because the edge pixels of different objects
happen to align on most part of a circle’s circumference. Also, for true circular objects, when the
pixel resolution is not sufficient, the circular geometric pattern of the edge can be corrupted,
resulting in false negatives. In summary, edge based shape detection needs clean edge data with
decent resolution to work properly, while the shape detection algorithms are also computationally

intensive.
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Template Matching

The texture of the traffic signal face, e.g., a dark horizontal or vertical rectangular region
with a bright circular area in one of several key positions, is distinct to human drivers and useful
for detection. Linder et al. employed the AdaBoost framework to train a cascade classifier for
different states of a three section vertically arranged signal face and used it to detect traffic signal
heads in gray scale images (41). However, since the texture is the reflection of the traffic signal
section arrangement, one classifier should be trained for each arrangement type to cover all
possible cases. In addition, such machine learning framework was found to introduce little
detection improvement compared to image processing while increasing the computational load
(34). The texture based approach has two other major theoretical issues. The first is the nighttime
condition when the rectangular backplate region merged into the dark background. The second is
partial occlusion to the signal face while the signal light itself is visible. In this case, the texture is
incomplete. Partial occlusion can occur by blockage from other objects or because part of the
signal face is out of the view (e.g., exceeds the top edge of the image as the vehicle drives under

and traffic signal).

Spot-Light Detection

So far, the spot-light detection based approach is arguably the state-of-the-art generic
detection algorithm for traffic signals. Charette and Nashashibi was among the first to propose
using spot-light detection in natural driving environment for traffic signal recognition (34, 35).
Spot lights were detected using a morphological white top-hat algorithm on gray scale images to
identify signal lenses. A fixed size (11-by-11 pixels) structure element was used in the top-hat
operation. This approach, assisted with their adaptive template classification framework, was

reported to match a machine learning based alternative. However, their fixed structure element
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size prevented them from accommodating various sizes of target and the gray scale image does

not provide color saturation information which could be very helpful in distinguishing signal lights

from other white lights, as will be incorporated in the proposed methodology.
2.3.3 Summary

Various detection methods were surveyed in the literature, covering both 1) color
segmentation based methods that depend on camera-dependent empirical parameters and 2) texture
or shape detection based methods that are more camera independent. The color segmentation
methods heavily rely on the quality and quantity of sample data to properly train their empirical
parameters. When a different camera is used, these methods need to be recalibrated. In addition,
variation in lighting conditions can affect the reliability of the empirical parameters, which would
require exposure control on the camera to compensate. Texture and shape based methods are more
independent of cameras. Edge based shape detection methods solely rely on the geometric
information of edges, but are prone to edge noise and compromised target resolution. Texture
based template matching incorporates shape information in a more robust way, but is vulnerable
to nighttime conditions and partial occlusion. Spot-light detection is arguably the state-of-the-art
generic algorithm for locating traffic signals. However, existing implementations used fixed-scale
morphological top-hat operations on gray scale images to identify spot-lights, which could not
accommaodate various target sizes and could theoretically lead to confusion between traffic signal

lights and other non-colorful light sources.
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2.4 Classification

Detection produces a list of candidate regions that will be classified to a particular traffic
signal color or even a none-traffic-signal. Note, in some studies, classification also included the
decision of the signal’s shape (i.e., arrow or circle), which is out of the scope of this study and will
not be further discussed below. Classification is only performed within each candidate region, at
most with a buffered margin included to bring a relevant neighborhood context. In other words,
classification is a local operation to label a patch of the input image. Color and position are the

two major clues for classification.
2.4.1 Color Based

When properly calibrated, empirical color ranges not only provide an efficient filter for
traffic signal detection, but also reliably classify the traffic signal color on the fly. Classification
was inherently done during detection in most of the studies that performed color segmentation (1,
3,25, 27, 28, 31, 36, 37, 39, 40, 44, 48, 50, 52, 55, 58, 60). Some studies followed texture or shape

based detection methods with color based classification (43, 59).

Simple thresholds are sometimes not sufficient to distinguish between similar traffic signal
colors and additional decision rules are needed. For example, red and yellow traffic signals have
been noticed easily confused in certain color coordinates (42). Gomez et al. compared the numbers
of pixels belonging to the overlapping yellow and red signal color ranges to decide which signal
color was more likely to be true (59). Almagambetov et al. used sequential rules that separated
green from other signal colors by the value coordinate of HSV and then separated red from yellow

by the hue coordinate of HSV (21).
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While color based classification is the most effective approach, it may be unreliable when

the empirical parameters are not properly established, as in the detection stage. With that concerns,
some researchers explored the relationship between signal colors and their relative positions in the

signal face to determine the color, which applied also on gray scale images.

2.4.2 Position Based

When a detected candidate region represents a signal lens, a common approach of position
based classification is to assume the candidate at different positions of a particular face
arrangement and check for the best hypothesis. Under a position hypothesis, the expected whole
signal face region is cropped out and tested regarding its texture. Some researchers trained a
support vector machine to classify the texture according to the image patch’s histogram of
gradients (HOG) (22, 32). Cascade classifiers trained using AdaBoost on Haar features have also
been used to classify the texture (30, 34). Lindner et al. employed a feed-forward neural network
to test the position hypotheses (41). When the whole signal face instead of the active lens is

detected, the position check becomes more straightforward (43).

Although position based classification is robust against color distortion or variation, it
needs to consider various signal face arrangements to be comprehensive. Even when all possible
arrangements are considered, confusions can still occur when the mapping relationship between
position and color is not one-to-one. For example, in Figure 2-2, two 4-section vertical arranges
that are commonly used in the United States present different colors at the second and the third
positions. In addition, nighttime, low resolution, partial occlusion, and perspective deformation

could affect the perception of the entire signal face and hence the accuracy of position estimate.
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Figure 2-2 Two 4-section vertical arrangements with different color positions.

2.4.3 Aggregated Features

Due to the respective limitations of color and position based classifications, some
researchers resort to holistic aggregation of both. Charette and Nashashibi proposed an adaptive
template that modeled the entire 2D traffic signal structure as hierarchical components, each of
which contributed to the final classification score (34). This template allowed programmers to
specify the contributions of color, shape, and position of each component using their weights.
However, establishing such a template can be complicated and one template can only cover a
particular signal face arrangement. Convolutional neural network (CNN) in fact provides a way of
classifying different signal face arrangements in a uniform framework. However, it has only been
used for traffic signal classification by John et al. on color features (23). There are other reasons
why CNN based traffic signal classification is rarely visited. First, traffic signals are feature poor.
Color, shape, and contrast almost exhaust the feature list of a traffic signal head and none of these
features are extremely unique to traffic signals. The power of CNN is its capability of automatically
identifying distinct and consistent features of a target object out of a large training sample set.
With limited and inconsistent features and the easy resemblance by other road objects, traffic
signals may benefit little classification advantage from CNN compared to a knowledge based

approach. In addition to the possible marginal gain, the requirement of large and representative
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training data introduces considerably higher cost of using CNN. Further, a CNN classifier is a

black-box model whose explanatory ability is weak. It is hard to explain what contribute to the
recognition process based on weights given to nodes in each neural network layer. Last but not

least, the training process of CNN is slow. This makes model recalibration time consuming.

2.4.4 Summary

Classification of traffic signal colors can be based on color information, relative lens
position, or both. Color based classification is efficient but sensitive to the color variation and
empirical parameter quality. Position based classification is robust against color variation but
requires decent perception of the entire traffic signal face. When both are used, they compensate
each other’s limitations but at the same time raise the question of which contributes more to the
final classification score. Solutions have been proposed by hierarchically organizing traffic signal
components into an adaptive template and manually assigning weights on each component for
their color, shape, and position. However, this approach is inflexible to adapt to various signal face
arrangements. CNN in another alternative for classification using aggregated features, but the
trained model is black-boxed and its transferability between datasets is hard to justify. In addition,

CNN normally requires large training data to reach a stable model.
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2.5 Spatiotemporal Coordination

Spatiotemporal information can facilitate traffic signal recognition in many ways for video
analysis. First of all, with a lengthy video in which signalized intersections were passed
occasionally, a majority of the frames do not even capture any traffic signal and most of these
frames can be effectively excluded with spatial information such as GPS data and a map of
signalized intersections. Second, the positions of a traffic signal in successive frames are not
independent from each other and are generally close to each other. Accordingly, if the traffic signal
is detected in one frame, its position in the next frame can be roughly bounded, which will help to
narrow down the detection region. Last but not least, the change of traffic signal color follows a
fixed sequence and can be used to prune the classification results across multiple frames. Some

existing methodologies related to spatiotemporal coordination are reviewed.
2.5.1 Activation Range

Distance to a signalized intersection is a common trigger for traffic signal recognition
systems. Shen et al. used GPS and IMU to estimate rough distance to a signalized intersection and
initiated detection at about 70 m upstream of the intersection (37). Levinson et al. and Fairfield
and Urmson used similar equipment to initiate detection up to 140 m and 200 m upstream,
respectively to account for normal driver stopping sight distance (4, 5). A kd-tree search algorithm
was employed by Fairfield and Urmson to quickly find the closest intersection (not necessarily a
signalized intersection) to the current position of the vehicle and camera before a prior 3D map of
individual traffic signals were built (4). Koukoumidis et al. used the smartphone GPS to initiate
their system within 50 m of a signalized intersection (3). To the best of the author’s knowledge,
the spatial information has not been used in offline traffic signal recognition involving lengthy

videos. More efficient search algorithms can be applied with the simultaneous availability of all
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frames’ positions (in contrast to sequential availability in real-time applications) and detection can

start from a downstream location backward with close frames serving as a more reliable starting

point.
2.5.2 Candidate Association

Associating or tracking candidates was found to be effective in filling a small amount of
detection gaps and suppressing a considerable number of false detections (41). Association can be
done purely on the 2D image plane or can be facilitated by 3D data when available. In a 3D space,
when the position and orientation of the camera is available, target signal positions can be more
reliably predicted on the next frame (4, 5, 32, 52). However, 3D information is not always available.
In the absence of 3D data, tracking can only be done based on 2D image data. Fortunately, a good
range of tracking methods are available. Roters et al. applied Kanade—Lucas—Tomasi (KLT)
feature tracking for pedestrian signal detection (44). However, for traffic signals, whose shapes
are much simpler than a pedestrian signal, KLT features are limited. Other researchers applied the
continuously adaptive mean shift (CAMShift) algorithm to track candidates based on their color
histogram (5, 30). This approach works under the assumption that the color distribution of the
tracked candidate changes slowly. It will fail when the signal color suddenly changes from one
color to another. Some researchers looked into using the Kalman filter to stabilize tracking even
in face of occlusion, but the linear motion model they used did not correctly reflect how traffic
signals moved in the image as the vehicle approached (21). Sudden signal color change (and hence
position change) will also be missed by a Kalman filter. In contrast to the above point or region
trackers, dense optical flow, which describes the pixel-wise motion between two images, has never
been used in the literature for traffic signal tracking. The advantage of dense optical flow is that it

can be done on gray scale images with robustness to color variation and when occlusion or sudden
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disappearance happens to a region, the movement of its neighborhood can still be reliably

estimated and used as a reference to justify the occluded region’s movement. Also, multiple

regions are tracked simultaneously in one flow calculation.
2.5.3 Pruning

The Hidden Markov Model (HMM) has been used by researchers to assist current
classification by considering classification history (32). The actual signal color was considered a
hidden state in the HMM process and the initial classification was considered a measurement of
that state. The hidden state was estimated based on the measurement and the consideration of the
classification history and the fixed signal color rotation order. However, the study assumed a
reliable tracking of the candidate. When the tracking is uncertain, the HMM smoothing will

adversely introduce addition complexity to the temporal analysis.
2.5.4 Summary

Spatiotemporal information has been used in different ways to facilitate traffic signal
recognition. Distances between frames and traffic signals are effective filters for candidate frames.
However, the past studies only used distances as an activation range in online applications. For
offline data extraction, the distance information can be retrieved in a faster way and used to
coordinate TSR in a manner that maximizes the recognition possibility without following the
sequential time order. No past study has looked into that opportunity. When tracking is considered
to facilitate TSR, existing studies used methods that rely on either rich geometric features or stable
color features to associate detected candidates across frames. These methods are either not
sufficient to traffic signals or may fail in case of signal color change between frames. A more
robust tracking approach should be explored, especially in case of multiple traffic signals

appearing at the same time. Last but not least, traffic signal sequence could be pruned according
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to the color change order and the confidence of candidate classification. Past studies reported

positive effects of certain smoothing methods, but assuming that the candidates were already
associated in a track. No study investigated how the color change order and classification
confidence could be cleanly integrated into the association process to improve the accuracy of

tracking.
2.6 Summary

This chapter surveys past studies on vision based TSR from different perspectives and
identifies several research gaps. From the application point of view, research using TSR for
massive driving data reduction has never been reported. Possible reasons include the absence of
massive driving videos and hence the need for automatic data reduction and the difficulty
introduced by uncontrolled data quality and scene complexity. As naturalistic driving studies are
gaining popularity and producing millions of hours of video data, the first reason no longer holds.
Consequentially, it introduces the need and opportunity to explore methods that accommodate the
data quality and scene complexity. With such application setting, many preconditions required by
past TSR systems are invalidated, such as the accessibility to camera controls, the availability of
sizable device dependent training data, comprehensive prior knowledge of the scenes, high

resolution videos, etc. As a result, the following research gaps need to be filled:

e In terms of traffic signal detection, many previous methods would fail without proper
training data or detailed texture information in the image. Spot-light detection on gray
scale images is more generic, but its lack of consideration of the color saturation effect
could theoretically lead to confusion between traffic signal lights and other non-
colorful light sources. A generic detection method that makes better utilization of

information rather than grayscale values is needed.
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In terms of classification, the color based approach makes the best tradeoff between

computational cost, classification accuracy, and robustness. However, with empirical
range based hard classification, the result can be sensitive to the representativeness of
the training data. A color classifier that makes decision based on the relative similarities
of a candidate to three possible signal colors is theoretically more robust and needs to
be investigated.

As an offline application, spatiotemporal information can be retrieved and used in
innovative ways to facilitate TSR. Past studies sequentially processed frames in an
online workflow after a distance range was reached. In an offline setting, the distance
information can be calculated faster without the constraint of sequential order, which
is worth investigation. Also, with the flexibility of processing frames in any order, it is
more intuitive to start TSR on frames within a more reliable distance range and use the
stabilized results to facilitate TSR in distant frames.

Past studies using temporal tracking and pruning to facilitate TSR reported positive
outcomes. However, their tracking methods may fail in the presence of low resolution
data or instant signal color change. Existing tracking methods are also confusable in
the presence of multiple resembling traffic signals. Dense optical flow provides a more
robust tracking feature in the above situations and is worth exploiting for tracking
traffic signal candidates. In relation, a clean way of integrating the constraint of signal

color change order and classification confidence into the tracking process is needed.
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CHAPTER 3

PROPOSED METHODOLOGY

3.1 Overview

A conspicuity based generic traffic signal detector is proposed together with a color
histogram based signal color classifier, composing a TSR module for processing individual images
or video frames. The conspicuity based detector is the core of the methodology. Conspicuity is
defined and modeled according to a scientific hypothesis about why humans can easily perceive
traffic lights from images without reliance on precise color information. It assesses each pixel’s
likelihood of being the center of a traffic signal lens. Conspicuity is modeled as a weighted
geometric mean of multiple convolutional features and gives an invariant ranking to all pixels with
respect to any value scale change in these features. A candidate localization algorithm is developed
to extract traffic signal candidates with proper positions and sizes using the conspicuity map. The
color classifier trained a 2D histogram of the “a” and the “b” channels of the CIELab color space
for each traffic signal color. For a detected candidate, the same type of histogram is calculated and
compared to the trained histograms. A similarity score is defined as the normalized complement
of the hyper angle between the candidate’s histogram and a trained histogram, giving a measure

of the classification confidence.

In the situation of processing lengthy driving videos, a spatiotemporal framework is
proposed (Figure 3-1). The framework uses the GPS position data of the frames in the video and
a map of signalized intersections. In practice, the frame positions are normally interpolated using
relatively sparse GPS readings. OpenStreetMap™ is selected as an on-demand mapping of

signalized intersections. The framework first checks the vicinity of each frame to a signalized
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intersection and recognizes clips of frames corresponding to actual traversals through a signalized

intersection. In addition, the vehicle movement in each clip (i.e., left-turn, thru, or right-turn) can
be classified based on the deflection of the frame trajectory. A key frame, called anchor frame, is
defined as the closest frame to a signalized intersection and, with reference to this frame, a two-
stage temporal TSR coordination is performed. At the short range initialization stage, TSR is
separately conducted on frames within a short trajectory distance from the anchor frame. Also,
candidates in the current frame are associated with temporal tracks in the history. Stable tracks are
selected and pruned. At the long range tracked recognition stage, frames beyond the short range
are processed, but detection is restricted in an estimated region of interests (ROI) predicted by each
of the pruned tracks. Both stages rely on a dense optical flow based method to predict the position
and size of each candidate in an adjacent frame. The employed dense optical flow engine is robust
against the change of signal color and is able to accommodate the situation when the candidate

crosses the image boundary and disappears from the view.
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3.2 Candidate Detection

In this section, the concept of conspicuity is defined for each pixel of the input image (or a
region of interest in it) in order to reveal the areas where active traffic signal lenses can be. A set
of localization procedures are then used on this conspicuity map to extract traffic signal candidates.
Several filtering criteria are applied on each candidate to exclude false positives. Resulted

candidates are further classified for their signal color with color information (Section 3.3).
3.2.1 Conspicuity Map

Human eyes can easily identify active traffic lights from videos even when signal colors
are distorted. Our brains’ ability in structuring the roadway scene and restricting target search in
relevant regions is certainly a major contributor. For example, in Figure 3-2, the image on the right
is a shuffled version of the image on the left. Traffic signals can be easily identified in the original
image. However, it may take more time and focus to find the same lights in the shuffled image,
because the structure of the scene is destroyed and the targets can be anywhere in the image. Even
with the state-of-the-art semantic segmentation methods (e.g., (61)), the efficiency and accuracy
of analyzing the scene structure by human are not yet fully transferable to computers, not to

mention the added expensive computational overheads.

Figure 3-2 Illustration of traffic signal identification with and without scene structure.
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Nevertheless, traffic lights are distinct road elements that catch human’s attention even in

adverse conditions when the structure of the scene is ambiguous (e.g., in raining or snowy days),
leading to the proposal of the concept of conspicuity in this study. Consider an example traffic
light illustrated in Figure 3-3 with limited resolution and noisy color appearance. If we define a
disk area Al centered at p(i, j) with a radius of r pixels roughly over the lens region and a border
area A2 between Al and A1’s bounding box, the most attractive feature to human eyes is arguably
the high brightness of Al as well as its contrast to that of A2. Such attractive property is considered

the conspicuity.

5]

= p(i)

Figure 3-3 Illustration of the basic conspicuity concept.

According to color science research, human’s perception of brightness is not only related
to how much light the observed surface emits and/or reflects (luminance) but is also related to the
purity of the surface color in contrast to white (saturation) (62). This is called the Helmholtz-
Kohlrausch (HK) effect. According to this effect, even if a light meter measures the same amount
of luminance from both a color surface and a white surface, the color surface will still appear
brighter to normal human vision than the white surface does. Similarly, a surface with more color
saturation appears brighter under the same lighting condition. An example of this effect is
illustrated in Figure 3-4. In the left patch, the red tile may look much brighter than its neighbor tile

of another color. However, when both tiles are converted to grayscale on the right to roughly
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present their luminance, the brighter looking red tile becomes darker than the other tile. Therefore,

when modeling the brightness of digital image pixels, both color luminance and saturation should

be considered to approximate human vision.

Figure 3-4 lllustration of the Helmholtz-Kohlrausch effect.

A model of conspicuity is proposed in Equations 3.1 - 3.2 to simulate how traffic lights in
an image are perceived by a human reviewer. Equation 3.1 defines the conspicuity value of a
particular pixel in a given image, assuming that it is the center of a potential signal lens with a
radius of r pixels. Basically, this equation calculates the weighted geometric mean of three features.
The first and the second features are based on pixel lightness and account for the effect of
luminance. The third feature, which is in itself a maximum of two sub features, accounts for the
effect of saturation. Details of each feature will be explained in the following subsections. While
the brightness is jointly measured by the first and the third features, the brightness contrast is only
measured in the second feature. The reason for not including saturation in the contrast measure is
that the border area A2 is not necessarily low in saturation in situations like nighttime (light
diffusion and “halo” effect) or yellow signal boxes. Equation 3.2 aggregates conspicuity values

across a range of radii to account for target size variation.
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where,

Cij|~ = The conspicuity of pixel p(i, j) corresponding to a potential lens radius of r,

LD;j , = theaverage lightnessin Al,

LC;j |, = the contrast of average lightness between Al and A2,

SD;;r = the average color saturation in Al,

SA;;r = theaverage color saturation in an annulus area centered at p(i, j) with an inner
radius of r pixels and an outer radius of 2r pixels. This accounts for the “halo”
effect in nighttime and will be explained later,

w;, = apositive weight of conspicuity contribution from LD; ; |,
wic = apositive weight of conspicuity contribution from LC; ;| ,
ws = apositive weight of conspicuity contribution from SD; ;| and SA; |,

C;; = the maximum conspicuity of p(i, j) among a set of potential lens radii,

RAD = aset of potential lens radii.

An argument should be made about favoring a weighted geometric mean over a weighted
arithmetic mean in the model of Equation 3.1. The first and most intuitive motivation is that the
geometric mean reflects an “and” relationship between the averaged variables more accurately
than the arithmetic mean does. For example, when one of the three features in Equation 3.1 is zero,
the resulting conspicuity is suppressed to zero, which is desired. If an arithmetic mean was used,
the resulting conspicuity would have been less suppressed. A second and probably more important
reason for using the geometric mean is that the ratio between conspicuities of any two pixels is
invariant to any value scale change of the underlying variables. A proof is given in Appendix A.
Such ratio invariant is important because it means, regardless of what value scale each variable
chooses, the relative conspicuity between pixels will remain the same. Conspicuity peaks are
always peaks in spite of any changes to their absolute values. Another advantage of using
geometric mean is that the contribution to conspicuity of each feature is insensitive to the absolute

value of its weight (or exponent), but to how its weight compares to that of the other features. If
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all weights are the same, all features contribute the same; a feature with a larger weight always

contributes more than one with a smaller weight does. This provides an intuitive control over the
contributions of each feature. In the contrary, in an arithmetic mean model, two features with the
same weights but different value scales contribute differently. In spite of the above advantages of
using a geometric mean model, regression (or weight training) is less convenient for geometric
mean due to its nonlinear form. Luckily, this can be easily overcome by applying a logarithm

operation on both sides of Equation 3.1 and transform it into a linear model.

Before each feature is further explained, sample conspicuity maps are demonstrated in
Figure 3-5 for different signal states. Note the coexistence of multiple traffic lights with varying
distances. The centers of active signal lights are always among the bright spots in the conspicuity
map, if not the brightest. Since a conspicuity map is a soft voting of candidate centers of traffic
signals, the conspicuity value decreases as the distance from the actual center increases. In addition,
other objects in the scene that resemble traffic signal sections in terms of brightness and contrast
are also given high conspicuity values, such as the holes between tree leaves and vehicle headlights,
but normally not as high as those around the actual center pixels of traffic lights. In Section 3.2.2,

denoising and localization procedures will be introduced.
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Original Image Conspicuity Map

Figure 3-5 Demonstration of the conspicuity maps on sample images.

Average Lightness

The average lightness, LD; ;| is the arithmetic mean of lightness of all pixels within a
distance of r from the subject pixel p(i, j) (see Equations 3.3 — 3.4 and Figure 3-7). Many color
models offer a channel that measures lightness, such as CIELab, HSL, and HSV. The L channel
of CIELab is chosen for measuring the lightness and scaled to [0, 1]. The reason of choosing
CIELab is because the lightness is independent from saturation under this color model and prevents
the resulting LD; j |, from being affected by the saturation attribute. Such independence is
illustrated in Figure 3-6 with comparison to HSL and HSV. Colors covered by a RGB model are

converted to HSL, HSV, and CIELab in this figure. As can be seen, HSL and HSV embed bilinear
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and linear relationships between lightness and saturation, respectively. In contrast, every lightness

level in CIELab (imagine a plane perpendicular to the lightness axis) can cover the whole range of

saturation for a set of colors.

20'1-/‘]-/ |7 X Lil‘jl
LDyjr = S (33 )
L, if lpG D p0L ) ST
— 3.4
o {0, otherwise ( )
where,

LD;j , = theaverage lightnessin Al,
Ly = the lightness value of pixel p(i’, j),

oy = theflag indicating whether pixel p(i’, j) is in Al.

Lightness
Lightness

Lightness

Saturation Saturation

Saturation
HSL HSV ClELab
(Lightness is (Lightness is (Use HSL for saturation
the L channel) the V channel.) and hue. Similar plot

when HSV is used)
Figure 3-6 Comparison of HSL, HSV, and CIELab.
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Lightness Contrast

The lightness contrast, LC; ; |, is the difference of average lightness between Al in A2 in
Figure 3-3. However, inspired by the directional template used by Lindner et al. (41), the actual
calculation is slightly more sophisticate to enforce a good contrast in all four quadrants, as
formulated Equations 3.5 — 3.9 and illustrated in Figure 3-7. In Figure 3-7, each quadrant area is
bounded by a red bounding box and the four quadrants overlap on the row or the column of the

subject pixel p(i, j). Any negative difference in a quadrant is rounded up to zero.

LCijr = max(LCyj -k | k €{1,2,3,4}) ( 35 )

LCij 1y 1k =max(0,LD; |y — LBij|r ) ( 36 )
Yo i + |o;r X L:r

LDij 7k = Ot it o irid) x Lo, (37 )

(w1t o)
LB _X(owririe = low i pel) X Loy
Ljlrilk —
o S(owrie = lowrie])
1, if lp(i,)),p('",j) <randp(i',j') is in quadrant k
o jinirik=19 0 if p(i',j)is out of quadrant k (39 )
-1, if lp(i,)),p(',j)| >randp(i',j") is in quadrant k

(38 )

where,
LC;j |, = the lightness contrast of p(i, j) assuming a potential target lens of radius r,
Ly ;= the lightness value of p(i, j),
LC;j |k = thelightness contrast of p(i, j) in quadrant k,
LD; i+ = theaverage lightness in quadrant k of Al,
LB; |-k = theaverage lightness in quadrant k of A2,
oy - = theflagindicating whether where p(i’;’) resides.
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Figure 3-7 Hlustration of quadrants.

Average Saturation

The last feature in Equation 3.1 is the average saturation, which is the maximum of the
average saturations in Al and in an annulus area, A3, as illustrated in Figure 3-8. The annulus area
has an inner radius of r and an outer radius of 2r. The reason of including the saturation in A3 is
to adapt to nighttime scenarios when the color information is lost due to the pixels in Al being
overexposed to nearly white and the diffusion of light forms a halo with the desired color
information around the lens. Using the maximum in Al and A3 automates the adaptation to both

scenarios. Mathematical formulation is given in Equations 3.10 — 3.12.
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( 311 )

where,
SD;;r = theaverage color saturation in Al,

SAij|r the average color saturation in A3,
oi i1k = theflagindicating where p(i’;’) resides.
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Figure 3-8 lllustration of the annulus area.

Similar to lightness, saturation can also be measured in a family of cylindrical color models,
among which HSV and HSL are most commonly used. The S channel of HSV is used in this study
to measure saturation, reasons being that it gives low saturations to white pixels. This is an
important property in both daytime and nighttime detection. In nighttime, the lens area of both
traffic lights and street lights can both be overexposed into white, making them undistinguishable

by saturation. Therefore, the saturation of white pixels should be suppressed to give more attention
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to the annulus area of the lights. In daytime, especially in sunny days, it is similarly important to

suppress the saturation of the background sky as well as other overexposed objects due to reflection
of the strong sun light. Figure 3-9 gives an illustration of the above situations. Another advantage
of using HSV in nighttime is that it enforces delineation between the lens area and the halo area in

terms of saturation, which is helpful to more accurate localization.

Nighttime Daytime
L

——

Original Image

8. Saturation - o X

aturation using HSV
(preferred)

|| &3 Saturation - o X

Saturation using HSL
(not preferred)
Figure 3-9 Saturation difference between HSV and HSL in nighttime.
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3.2.2 Localization

A conspicuity map highlights the potential centers of traffic signal lenses but is not a direct
binary mask of where the lenses are. In Figure 3-5, there are other conspicuous regions that do not
belong to a traffic lights. Fortunately, locating candidate lenses can be done in several simple and
effective steps, based on the fundamental assumption that the traffic lights exist in the scene and
are among the most conspicuous objects. Of course, such assumption can be violated in many
cases, such as when the image contains not traffic lights, when the traffic lights were viewed from
a sharp angle, or simply when there are other brighter objects competing in the scene. These cases
are arguably universal difficulties for all purely image based approaches. However, with the
localization procedures proposed below, even some of the above difficulties can be automatically

sensed and correctly responded to.

Overview

Figure 3-10 gives an overview of the localization procedures. In the flowchart, several
abbreviations are used to make the diagram concise. The full descriptions are as following and

details are explained in later paragraphs:

e CM — Conspicuity map (multi-radius aggregated version, see Equation 3.2)
e WCM — Working conspicuity map

e PPM — Peak pixel mask

e Cj— Connected component set at iteration i

e Sj— Traffic signal candidate set at iteration i

e S —Overall traffic signal candidate set

e Niop — The number of top conspicuity candidates to locate for the image

e Npi— The maximum number of new candidates expected per iteration
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In general, the procedures go through multiple iterations to extract candidates at various

levels of peaks. In each iteration, the working conspicuity map are normalized to have a maximum
value of 1 (step 1.1). Then, the pixels whose normalized conspicuity values are above a pre-defined
threshold, namely the peak pixels, are flagged to form a peak pixel mask (step 1.2). Since this peak
pixel mask can be noisy, a morphological opening operation is performed to reduce noise (step
1.3). A connected component analysis is performed on the denoised peak pixel mask so peak pixels
connected to each other are grouped into separate components (or blobs) (step 2.1). At this points,
each component region is considered a good approximation of a candidate. However, recall that
the conspicuity value represents the likelihood of a pixel being the center of a signal lens, the pixels
in each components are likely to cover only a small center portion of an actual signal lens.
Therefore, a local refined search using an extended mean shift algorithm is used to find the
conspicuity mass center as the candidate center and the corresponding r for that center pixel is
used as the radius of the candidate (step 2.3). The refined candidate regions are typically larger
than the initial component region. Note, between step 2.1 and step 2.3, there is a preliminary
filtering step 2.2, which filters out components that are unlikely to be related to a candidate. The
filtering is based on the aspect ratio and the pixel density of each component’s bounding box. After
step 2.3, if new candidates are detected, they will be reduced to make sure no two candidates
intersect or touch each other. The larger candidate is kept if any intersection occurs. The new
candidates are then added to a cumulative set of candidates if several checks are passed (step 4.2).
The checks are to make sure in every iteration, the amount of new candidates is reasonable (will

be further explained shortly).

Besides detecting new candidates, the working conspicuity map should be updated

accordingly so it can be used in the next iteration. The idea of updating is to turn pixels covered
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by the peak pixel mask (before denoising) and by the new candidate regions to zero so these

regions will not be repeatedly considered in future iterations (steps 3.1 and 3.2). Following this
routine, the theoretical behavior of the iteration is to find out local maximum regions in a
descending order of conspicuity level. An analog to this process is to imagine the conspicuity map
as a terrain where the value corresponds to the height. In an ideal scenario, we expect a few tall
mountains representing the actual traffic lights and the rest majority being small hills or plain.
Each iteration removes the existing tallest areas (and more precisely, drilling wells in those areas)
as new candidates. Actual traffic lenses are expected to be captured by the first one or two iterations.

The further down the iteration, the noisier candidates are likely to be detected at a larger amount.

As briefly mentioned earlier, there are checks between steps 4.1 and 4.2. The first check
after step 4.1 is to assess how relevant the new candidate set is according to its size. When the size
exceeds a certain threshold, it physically means none of these candidates stand out among their
peers and hence are irrelevant detections. Such condition will not only happen at a late iteration
when only low conspicuity regions remain, but also will happen in the first iteration with a
challenging scene containing many objects that are equivalently conspicuous as actual traffic lights.
In the first case, the algorithm stops correctly to avoid further iterations. In the second case, the
algorithm halts reasonably because it automatically senses the violation of the fundamental
assumption that traffic lights are the most conspicuous. The check immediately before step 4.2 is
similar but in a relative manner. The idea is, if the number of candidates detected in a later iteration,
and hence with lower conspicuity, is larger than the total number of existing high conspicuity
candidates, the new candidate set is unlikely to be relevant. These checks can help the algorithm

to exit effectively with only a few iterations.

Some implementation details are given below for certain steps.
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Peak Pixel Mask

Equations 3.13 — 3.15 are used in normalization (step 1.1), binarization (step 1.2), and
denoising (step 1.3) to generate the peak pixel mask, respectively. In Equation 3.14, the threshold
provides a control of the strictness of peak selection during each iteration. The closer the threshold
isto 1, the fewer peaks are selected and the iteration moves down the conspicuity level more slowly.
In Equation 3.15, the morphological opening consists of an erosion and a dilation of the peak pixel
mask. Erosion assigns the minimum value of a pixel’s neighborhood to that pixel and dilation
assigns the maximum value instead. The neighborhood is defined in a structure element, i.e., a
template matrix whose center element represents the pixel being calculated and the other elements
flagging neighborhood pixels by the value of 1. After erosion, regions in the peak pixel mask will
shrink and some small regions may disappear depending on how large the neighborhood is. After
dilation, remaining regions will be inflated back to the original size. As a result, small regions

(typically noises) are removed while large regions are reserved at the same size.

WCM; ;

WCM; ; « ———2— | max(WCM; ;) > 0 3.13
Y max(weM,) | (wem,) ( )
1 J M; ;
PPM,; = { r Y WEM; > Rpear (314 )
’ 0, otherwise
PPM;; < fopening(PPM; j, se) ( 315 )
where,
WCM;; = the normalized conspicuity value of pixel p(i, j) in the working conspicuity
map,
PPM;; = the pixel p(i, j) in the peak pixel mask,

hyear = @ threshold of normalized conspicuity value in the range of [0,1]. Typically
chosen as 0.9,
fopening(") = the morphological opening function,
se = A structure element for morphological opening, typically chosen as a disk
neighborhood of radius 1.
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Candidate Extraction

In step 2.1, 8-connectivity is used for the connected component analysis. One pixel is
considered connected to another if it is in any of the eight immediate neighborhood positions of
the other pixel. The result of step 2.1 is a list of pixel groups, called components. Each component

gives an estimated region of where the center of a candidate lens should be.

In order to more accurately locate the final center of each candidate and determine its size
(i.e., lens radius), a dynamic radius mean shift (DRMShift) algorithm is proposed (step 2.3). The
basic mean shift algorithm is an iterative approach to find the center position of a region with a
fixed size over a set of weighted points. The resulting position minimizes the distance between the
centroid and the mass center of the points enclosed in that region. When applied on the conspicuity
map, the points are the pixels and the weights are the conspicuity values. However, because each
pixel in the conspicuity map (Equation 3.2) is associated with an optimal radius (r) that yields the
optimal conspicuity value, moving the center of the search region also implies changing the
optimal radius accordingly. Therefore, the proposed DRMShift algorithm extends the basic mean
shift by allowing the size of the search region to change during the iterative search. A segment of
pseudo code is given in Algorithm 3-1 for DRMShift. Range checking for pixel indices is not

reflected in this code so it conveys the main idea in a concise manner.



Algorithm 3-1

DRMShift
Inputs:
* Initial center pixel position [io,Jo]
* Conspicuity map CM
* Radius map RM
* Converge threshold he
* Maximum number of iteration nmax
Steps
1 i = 1ig;
2 3 = Jo;
3 d = he;
4 while nNmax > 0 and d >= hc
5 Nmax € Nmax — 1;
6 moo = 0;
7 mo1 = 0
8 mo = 0;
9 r = RM[i,j];
10 for i’ =i - r to i + r
11 for 3 =jJ - r to j + r
12 if |p(i,3), PG ,37)] <=«
13 moo €< moo + CM[i’,3'];
14 mo1 € mo1 + i’ * CM[i’,3j'];
15 mo € mio + j° * CM[i’,3"1]1;
16 end if
17 end for

18 end for
19 if mog > O

20 iwmp = 1i;

21 jtmp = j;

22 i = moi1/moo;

23 j = mio/moo;

24 d = |p(1rj)l P(itmp,jtmp) | ;
25 end if

26 end while

Outputs:

* Final center pixel position [i,]]
* Final region radius, r
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Between step 2.1 and step 2.3 in Figure 3-10, there is an optional preliminary filtering step

(2.2) which checks the geometric properties of each component before they can be considered for
refined candidate extraction. Two properties, the aspect ratio (asp) and the pixel density (pd) of
the bounding box of the component are checked. The aspect ratio is defined as the ratio of the short
edge to the long edge and the pixel density is defined as the number of peak pixels as a ratio of the
total number of pixels (including non-peak pixels) enclosed in the bounding box. The minimum
thresholds for both the aspect ratio and the pixel density are by default 0.6 to be forgiving to

imperfect image quality.

3.3 State Classification

A 2D histogram matching approach is employed for classifying the state (color) of each
detected candidate. This approach is essentially a simple learning approach, which at the first
thought is against the generic design principle that requires little dependency on training data
collected with the same camera used in testing. However, since candidates are detected and
assumed to be true traffic signal lenses, the primary functionality of the classifier is to make a
choice among three possible traffic signal colors. Therefore, the training data do not need to be
highly representative for the test data. As long as the training data capture a good delineation
between the three traffic signal colors. In other words, the training data can be images collected

using cameras other than the one used for collecting the test data.

More specifically, a 2D histogram of the “a” channel and the “b” channel from the CIELab
space is calculated as the matching feature. Equations 3.16 — 3.18 formulate the calculation of the
histogram. In fact, there are two histograms that should be calculated for each candidate, one for
the pixels in the disk (lens) area (A1) and another for the pixels in the annulus area (A3), so color

information in the nighttime when “halo effect” occurred could be captured. With a training sample,
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only one of this histograms is calculated because the area containing the color is known already

during the manual annotation. For a particular signal color, a trained histogram is calculated as the
average of histograms of all the training samples. Example trained histograms are illustrated in

Figure 3-11.

ZO'il .7 X E-I .7
,Jj | mode i, |kl
Hk,l|mode = ( 316 )

Oi'j" | mode

1, if mode =Aland |p(i,)),p(i',j)| <7

0itj" imoge =1, if mode = A3 andr < |p(i,j),p(i",j)| < 2r (317 )
0, otherwise
. . a : b
:Bi’j’|kl:{1’ if ayj 'EBlTLk and by j» € Bin ( 318 )
v 0, otherwise
where,
Hy 1 |moqe = the value of the histogram at bin (k, I) under the specified mode,

mode Al for histogram in the disk area and A2 for the histogram in the annulus area,
the flag indicating whether p(i’, ;) falls in to the specified area of p(i, j),
the flag indicating whether the “a” value and the “b” value of p(i’, ;) fall in to

the k' bin of “a” (Bin%) and I bin of “b” (Bin?).

0y’ i" | mode
Bir j'| k1

Geen signal histogram Red signal histogram Yellow signal histogram

a channel bins
a channel bins
a channel bins

b channel bins b channel bins b channel bins

Figure 3-11 Example trained a-b histograms.

When testing, the two histograms of each candidate’s lens and annulus areas are calculated
and compared to each signal color’s trained histogram to derive a similarity score. The similarity
score is calculated using Equations 3.19 — 3.20. The signal color with the highest similarity score

is chosen as the state of the candidate.
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SCcand | color = max (SC(Hcand | mode’Hcolor)) | mode € {Al,A3} ( 3.19 )
/ Hy, X Hy,
2 X acos 2 Higy kol ( 320 )
\\/Z Hyy X Hyy X [ X Hy X Hy .
sc(HH)=1-
T
where,

SCcand | color = the similarity score of a candidate as a particular signal color,

= the histogram of the candidate. When the average saturation in Al is higher
than in A3, mode = Al; otherwise mode = A3,

the trained histogram of a signal color.

H cand | mode

H color

3.4 Spatiotemporal Framework

In this section, key stages of the spatiotemporal framework are given with details. The
implementation of map projection is first explained as a fundamental stage of going from spherical
coordinates to plane coordinates so distance can be calculated conveniently. Although GPS
positions of the frames and signalized intersections are required, the method only asks for two
relaxed quality criteria: 1) the position data should be available at an adequate frequency and
within the borders of the traveled highway and 2) the traffic signal locations should be mapped no
farther than 5 meters outside of the intersection area between two highways. With projected
coordinates, vicinity calculation methods are explained regarding finding the closest signalized
intersection for each frame. An extended kd-tree search algorithm is proposed to optimize the
vicinity calculation speed. A third section describes the classification of movements at each
signalized intersection according to the trajectory data. The last two sections give comprehensive

descriptions of the temporal coordination of TSR as each signalized intersection.
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3.4.1 Map Projection
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earth surface

The point mapped to latitude/longitude coordinates under a
Geographic Coordinate System (GCS). A GCS is defined by a
spheroid (semimajor and semiminor axes) and its relation to the earth,
called datum (e.g., the center of the spheroid is mapped to the mass
center of earth in the WGS84).

[
The point projected on to a 2D map coordinate system, or Projected Coordinate
System (PCS). Different PCSs preserve different sets of geometric features
(e.g., area, distance). In this study, the Mercator projection is used.

Figure 3-12 lllustration of position data conversion.

Raw spatial data (of video frames and signalized intersections) are assumed to be presented
in latitudes and longitudes under the World Geodetic System 1984 (WGCB84), unless otherwise
specified. WGC84 is an ellipsoid geographic coordinate system (GCS) that does not directly
support planar geometric calculation on local regions of the earth surface. In order to conduct
planar spatial analyses, such as distance calculation and moving direction judgement, latitudes and
longitudes need to be projected onto a 2D projected coordinate system (PCS). Figure 3-12
illustrates the pipeline of a point on the earth surface being transferred to a GCS and then to a PCS.

In this thesis, the Mercator projection, a cylindrical map projection, is chosen.



61
Actual implementation of the Mercator projection follows Equations 3.21 - 3.23. The basic

idea of the projection is to map a point on the GCS spheroid to a point on the cylinder wrapped

around the spheroid.

[, Y] = Rearen X l/l, In <tan <% + %))l ( 321 )
@)\ 7
T 1 —ecc *sin(g)\ 2 T
X = 2atan| tan (E + Z) X (1 T sin((p)) 5 ( 322 )
T
4, @] =llon, lat]x o ( 323 )
where,
x = the projected x coordinate, in meters,
y = the projected y coordinate, in meters,
R..ren = the average radius of the earth (default = 6378137), in meters,
A = longitude, in radians,
¢ = latitude, in radians,
lon = longitude, in degrees,
lat = latitude, in degrees,
y = conformal latitude, in radians,
ecc = eccentricity of the GCS spheroid (default = 0.081819190842621486 for

WGS84), no unit.

The Mercator projection is known to introduce increasing geometric distortion as the
projected point goes further from the default projection origin at [latitude = 0, longitude = 0]. In
order to overcome this issue, a new origin of projection should be chosen so it is relatively centered
in the region of analysis. In this study, the new origin is chosen as the centroid of the positions of
all frames. Accordingly, the longitude and the conformal latitude (in radians) are transformed using

Equations 3.24 - 3.28 before they can be plugged in Equation 3.21.
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Ycart| = | cos(y) X sin(4) ( 324 )

'xcm] cos(y) X cos(4)
| Zcart sin()()

"Xcart R cos(xo) X cos(dy)  cos(yxo) X sin(4y)  sin(y,) Xeart
)’Cart_R] = —sin(4,) cos(4y) 0 X yCart] ( 325 )
[ Zcart R —sin(y,) X cos(4y) —sin(yy) X sin(4y) cos(xy) Zcart
h = \/ cart R + ycar _R ( 3.26 )
Yeart
( = R) if Xcare r 2 0
xcartR
Ag = {a (y ) 7, if Xeare.r < 0and Yeare g = 0 (1327 )
cartR
:VcartR .
T, lf Xcartg < 0and Ycartg <0
cartR
Z
XR = atan( w;:tR ( 3.28 )
where,
Xcqre — Cartesian x coordinate, no unit,
Yeare = Cartesiany coordinate, no unit,
Z.qre = Cartesian z coordinate, no unit,
A = longitude, in radians,
x = conformal latitude, in radians,

Xcare g = rotated Cartesian x coordinate, no unit,
Yeart g = rotated Cartesian y coordinate, no unit,

Zeare g = rotated Cartesian z coordinate, no unit,
Ao = longitude of the new projection origin, in radians,
Xo = conformal latitude of the new projection origin, in radians,
Ar = rotated longitude, in radians,
xr = rotated conformal latitude, in radians,

3.4.2 Vicinity Calculation

A frame is likely to contain a traffic signal only when the vehicle was close to a signalized
intersection. Therefore, by calculating the distance from the vehicle position of each frame (or
“frame position” for short) to its nearest signalized intersection, a traffic signal vicinity profile can
be generated (e.g., Figure 3-13). By setting a vicinity threshold (e.g., 50 m as indicated by the

horizontal red line in Figure 3-13), a series of profile valleys can be isolated, representing candidate
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batches of frames that might have passed a signalized intersection. The valley bottom indicates the

nearest frame to the intersection (but not necessarily the traffic signal) and is called the anchor
frame (indicated by a red box) in the following discussion. When the valley bottom is flat, the
latest bottom frame is chosen as the anchor frame. Frames before this anchor frame are called
upstream frames while those after the anchor frame are called downstream frames. Intuitively,
traffic signals are expected to be captured in most upstream frames (up to a certain distance) and
a few of immediate downstream frames, if not none. Detailed algorithms regarding the temporal
coordination of TSR starting from each anchor frame will be explained in Sections 3.4.4 and 3.4.5.
The position data of the signalized intersections are requested from the OpenStreetMap ™ server

within a buffered bounding box around all frame positions (see Section 4.4 for details).

Note, constructing the vicinity profile is a classical nearest neighbor problem in a low
dimensional space (e.g., 2D). A slightly more formal definition of the problem is, given two finite
sets of points T < R? (target points) and Q < R? (query points), find for each query point g; € Q
the nearest target point ¢; € T so that dist(q;, t;) < dist(q;, tx) ¥ t, € T. Solving this problem
with a naive all-pair distances algorithm has a time complexity of O(N,, x N;), where N, and Ny
are the numbers of points in Q and T, respectively. In our case, the query points are frame positions

and the target points are signalized intersections, so Ny > Nr.
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Figure 3-13 Illustration of a traffic signal vicinity profile.

Basic KD-Tree Method

An efficient and commonly used algorithm is based on a kd-tree indexing of the target
points (63). A kd-tree is a multidimensional binary tree whose tree nodes are the points being
indexed. In the following discussion, nodes and points are used interchangeably. Each non-leaf
node has a left child node and a right child node, serving as the roots of the left and the right
subtrees, respectively. The key property of a kd-tree is that for each non-leaf node, the nodes in
the left subtree is to one side of the node and those in the right subtree is to the other side of the
node in a chosen dimension. The dividing dimension is typically selected to balance the numbers

of nodes in the two subtrees. The amortized time complexity of constructing a kd-tree is
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O(N; % log(N7)) and that of querying the nearest target of a given point is 0(log(N)). Therefore,

the overall time complexity of constructing the vicinity profile can be reduced to
0 ((NT + NQ) X log(NT)). This approach has been effectively employed by Fairfield and Urmson

in their real-time application (4).

Extended KD-Tree Method

In fact, for offline analysis, additional speed improvement can be made by changing the
order of query and assuming some spatiotemporal characteristics of the frame positions and the
signalized intersections. The basic idea is, if two frames have the same nearest signalized
intersection and the time between these two frames was shorter than a threshold value t,,;,, all

frames in between would have the same nearest signalized intersection (Condition 3-1).

It is convenient to borrow the concept of VVoronoi diagram to explain the physical meaning
of Condition 3-1 and determine how t,,;,, should be chosen. A Voronoi diagram is a division of
the space into connecting regions according to a given set of points in that space, called sites. Each
site is associated with one resulting region so that the site is the nearest site to any point in that
region. Imagine the signalized intersections as the sites. A frame is nearest to a signalized
intersection if and only if it falls in the VVoronoi region of that signalized intersection. The only
case when a frame can be nearest to more than one signalized intersection is when it falls on the
boundary between two or more VVoronoi regions. Therefore, if two frames have the same nearest
signalized intersection, they must be in the same Voronoi region (boundary inclusive). The only
possible case for any frame in between having a different nearest signalized intersection is when
the vehicle exited the current Voronoi region and reentered during the time between the two frames.

When the time is adequately short, this case is mostly impossible. In order to define this time
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threshold, the minimum time a vehicle would have stayed in the VVoronoi region of any signalized

intersection is set as the t,,;,. A conservative and practical value of t,,;,, can be chosen as 1.5

seconds, corresponding to about 20 frames with a frame rate of 14 FPS.

Therefore, rather than searching the nearest signalized intersection for each frame position
using the kd-tree, we can recursively search for the nearest signalized intersection of the two end
frames of a batch of frames. If Condition 3-1 is met, all frame in between will be populated with
the same nearest signalized intersection without kd-tree search; otherwise, the nearest signalized

intersection is searched using the kd-tree for the frame in the middle and the batch is divided into

two sub batches for recursion. The time complexity of this algorithm is O <(NT + F(:’Q )) X
min

log(NT)>, where F(t,,;,) denotes the number of frames corresponding to the chosen t,,;,. It

should be noted, since N, is large and presents the efficiency bottleneck of the calculation, scaling

Ngq

it down to
F(Tmin)

is a significant speed improvement in practice.

3.4.3 Movement Classification

An additional piece of useful information that can be derived for each clip of candidate
frames is the movement of the vehicle, i.e., left turn, thru, or right turn. Specifically, the angle
between two vectors is used to classify the movement. The first vector (vi) goes from the first
upstream frame (Fstart) to a turning point frame (Fyp) and the second vector (v2) goes from Fy, to the
last downstream frame (Fend). Ftp is defined as the frame with the maximum perpendicular distance
to the baseline vector (vb) between Fstart and Feng. If the angle, 0, between vi and vz is no larger
than a threshold Bmin, the movement is classified as a thru movement. If 0 is larger than Omin and

measured counterclockwise from v to vz, the movement is classified as a left turn. Otherwise, the
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movement is classified as a right turn. Mathematically, Equation 3.29 is used for movement

classification. Examples are given in Figure 3-14. The Omin used in this study is 20 degrees, which

yielded 100% accuracy for all testing data.

Uyt Uy 180
lodll = llvoll =
Veross = V1 X V5
right turn, if 6 > O, and Voppss(3) >0
k movement = < through, if 6 < Opin
left turn, if 6 > O and V,,0s5(3) <0

1

0 = cos”

( 329 )

where,
v, = the 2D vector from Fstart to Fyp,
v, = the 2D vector from Fip to Fend,
@ = the angle between vi and vz, in degrees,
v, - v, = the dot product between vi and vz,
|[v1/2]| = the length of vi (or v2),
Vi, = the homogeneous 3D coordinates of vi (or v2), i.e., Vi = [Vi2(1), v112(2), 1],
V..0ss = thecross product between V1 and V2, also a 3D vector,
Omin = the minimum angle to be recognized as a turning movement, in degrees.
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Figure 3-14 Determination of intersection movements.
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3.4.4 Short Range Initialization

In addition to locating candidate frames for TSR, another motivation of the spatiotemporal
framework is to utilize the temporal relationship between frames to improve the recognition results.
A good strategy that is unique to offline analysis is to start detection in near frames and use stable
detection results to assist tracked detection for distant frames. As will be shown in Section 5.2,
detection performance can be affected by the target size in the image. The closer to the traffic
signals, the larger the targets are and more accurately the detector works. Therefore, for each
intersection traversal, an ideal starting point for TSR is the closest frame where traffic signals are
still visible. However, as explained previously, the relaxed accuracy requirement of the traffic
signal map and the GPS positions of frames would not support a precise calculation of the distance
between a frame and the target traffic signals. The vicinity profile only gives a rough estimation
of the closeness to a signalized intersection and the anchor frames are not necessarily the ideal
starting points. As a result, rather than seeking for a perfect starting frame, a short range of frames
are proposed to be used as an initialization set. For each of the frames in this short range,
independent detection and classification are perform for the whole frame (or within a general

region of interests). Candidates are associated using a dense optical flow based tracking algorithm.

Determine Short Range

The short range for initialization is defined based on the anchor frame. A number of
upstream frames and downstream frames from the anchor frame are extracted as the short range
based on their cumulative trajectory distances from the anchor frame. The cumulative distance
between two frames is defined as the sum of straight line distances between all pairs of successive
frames within these two frames. The straight line distance is the Euclidean distance in the projected

[x, y] coordinate system (see Section 3.4.1). By default, frames within a trajectory distance of 10



69
m upstream or 5 m downstream from the anchor frame are extracted. These trajectory distance

ranges can be adjusted to make a tradeoff between coverage and computational cost. By increasing
the ranges, more frames will be considered for initialization and the chance of obtaining stable
tracks of candidates is theoretically increased, but more computation efforts are needed as for each

of these frames a whole frame detection at a wide range of radius scales will be performed.

Initial detection in this short range is a two-pass process. Both passes and the later long
range tracked recognition stage are based on a dense optical flow (DOF) algorithm that estimates
the movements of pixels from one image to another, enabling the projection of a candidate from
one frame onto another frame as a position and size reference. A brief overview of the DOF based

projection is given below before explaining the two-pass initialization process.

Dense Optical Flow Based Projection

A good range of DOF algorithms exist and the Farneback’s method was chosen for its
accommodation to camera vibrations (64). The basic idea of the Farneback’s method is to compare
the similarity of pixel neighborhood in two grayscale images and the pixel neighborhood is
modeled using polynomial expansion. Detailed explanation of this method is out of the focus of
this research and readers of interests are advised to study the original paper (64). In this section,

some examples are shown to give a sense of how Farneback’s method is used.

Figure 3-15 and Figure 3-16 illustrate the two-way projections of the same pair of
successive frames using the Farneback DOF. In both projections, the resulting traffic signal

positions and sizes closely match the actual positions and sizes in the target frame.

When signal colors change between frames, as shown in Figure 3-17 and Figure 3-18, the

projected signal lenses are still reasonably preserved in the correct relative position in the projected
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signal faces. However, the projection is more accurate in daytime (Figure 3-17) than in nighttime

(Figure 3-18), because the optical flow is calculated using grayscale images and the image texture
is richer in daytime to provide a better pixel neighborhood constraint. As can be seen in Figure
3-18, the green traffic lights are actually projected on the positions of the actual red lights, since
in grayscale images, lights at both positions look almost identical. Nevertheless, the projected

positions are still within a reasonable range of the ground truth positions for tracking purposes.

When the target leaves the view from one frame to another (Figure 3-19), the DOF also
indicates such fact by giving negative (red) y flow to the disappearing target as it moves out of the

upper bound of the image.

frame i flow-derived frame i+1 frame i+1

| (o)

4

Figure 3-15 DOF based projection in normal forward motion (Frames 00053-338 to 339).
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frame i flow-derived frame i-1 frame i-1

—1—F , —5—3 y

Figure 3-16 DOF based projection in normal backward motion (Frames: 00053-339 to 338).

frame i flow-derived frame i+1 frame i+1

Figure 3-17 DOF based projection with change of signal states in daytime
(Frames: 00053-21070 to 21069)
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frame i flow-derived frame i+1 frame i+1

Figure 3-18 DOF based projection with change of signal states in nighttime
(Frames: 00041-449 to 448)

framei flow-derived frame i+1 frame i+1

Figure 3-19 DOF based projection with target leaving the view
(Frames: 00041-540 to 541)
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In general, the Farneback DOF provides a robust motion estimate for the purpose of

tracking traffic signal candidates, even in the case of signal color change and target disappearance.
For candidate level projection (in contrast to pixel level), given a candidate in frame j and the
optical flow from frame j to frame i, the projection of the candidate in frame i is calculated using
Equations 3.30 — 3.34. It is possible for the projected candidate to be partially or entirely out of
the image frame, especially during forward motion as illustrated Figure 3-19. These out of

boundary projections can be checked against the dimension of the image and properly flagged.

_ min(x;) + max(x;)

cx; = > ( 330 )
= max[max(x;) — mm(le-),max(yi) — min(y;)] ( 332 )
X; = x] + flOWx|j—>i ( 3.33 )
Yi = yj + flowy;; ( 334 )
where,
cx; = the x position of projected candidate center in frame i,
cy; = they position of projected candidate center in frame i,
r; = the radius of project candidate in frame i,
x; = the x coordinate of a point in the projected candidate in frame i,
y; = they coordinate of a point in the projected candidate in frame i,
x; = the x coordinate of a point in the original candidate in frame j,
y; = they coordinate of a point in the original candidate in frame j,

flow,;-; = the optical flow in the x direction from frame j to frame i,
flowy,j; the optical flow in the y direction from frame j to frame i,

First Pass - Detect and Associate

In the first pass of the short range initialization, the algorithm starts from the downstream
frame of the short range and goes backward until the upstream frame. In this pass, not only will
candidates be independently detected (and classified) in each individual frame, but also will

candidates be associated in tracks across frames. A segment of pseudo code is given in Algorithm
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3-2. The general idea is, after detecting and classifying a set of candidates in the current frame,

each of these candidates is associated with either 1) an existing track in the history or 2) a new
track starting from this candidate. For each existing track, a projected candidate based on DOF is
tentatively set as the track’s candidate (with the flag “DOF”) for the current frame. If a detected
candidate can be associated with this track, the detected candidate replaces the DOF based tentative
candidate. The result of the first pass is a set of tracks. Each track contains candidates associated
across all or an upstream portion of the short range frames. For each covered frame, the candidate
in the track can be either a detected candidate or a DOF based candidate. A DOF based candidate
may be out of the image view, simply acting as a dummy node in the track. A visualization of the
first pass result is given in Figure 3-20, where each row presents a track and the frame indices
increase as the tracks move downstream. A solid circle represents a detected candidate and a halo

circle represents a DOF based candidate.

i

Track Number

0 1 1 1 1 1 1 1 1 J
470 475 480 485 490 495 500 505 510 515
Frame Index

Figure 3-20 Demonstration of the first pass results of short range initialization.
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Algorithm 3-2

First Pass of Short Range Initialization

Inputs:

Steps:

1 initialize a track set T to {};

2 for frame index i = igq to iu

3 CD €& detected and classified candidates in frame i;
4 if T is not empty

5 CT < {};

6 for T¢ in T

7 candiji+1 € Ti¢’s candidate for frame i+1;

8 candy|i € projection of candgji+1 in frame i using DOF;
9 add candi); to CT;

10 end for

11 S € a matrix of score zeros;

12 for CDgq in CD

13 for CT¢ in CT

14 Sqa,t € association score between CDg and CDt;
15 end for

16 end for

17 for Sq,t in S

18 if S4,t is not the maximum in S.,t

19 Sgq,t = 0;

20 end if

21 end for

22 for Sq,e in S

23 if S4q,t is the maximum in S4,: and S4,t != 0

24 set CDg as Tt¢’s candidate for frame i;

25 take CDg out of CD;

26 end if

27 end for

28 for T¢ in T

29 if T+ has no candidate for frame i yet

30 set CTt as T¢'s candidate for frame i with flag “dof”;
31 end if

32 end for

33 end if

34 for CDg in CD

35 create a new track Thpew in T;

36 set CDgq as Tnew’ s candidate for frame i;

37 end for

38 end if

Outputs:

* Upstream frame index iu
* Downstream frame index ig

* Track set T
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In line 14 of the pseudo code, an association score is calculated between a detected

candidate and a DOF based candidate. Such association considers both the state machine of traffic
signals and the distance between these two candidates in the image coordinate system. Precise
calculation is formulated in Equations 3.35 — 3.38. In these equations, all possible colors of a
candidate are considered, weighted by their corresponding classification scores. The first candidate
is the one related to an earlier state of signal color and the second candidate is the later. In the case
of backward DOF, the DOF based candidate represents the state of a later (downstream) frame,
although its position is projected onto the current frame using DOF. So, the first candidate in the
equations is the detected candidate and the second candidate is the DOF based candidate. When
the DOF based candidate is projected from an upstream frame, as will be the case in the second
pass and later long range downstream tracked detection, the first candidate is the DOF based

candidate and the second candidate is the detected candidate.

as = max(ascolcl) | c0,c1 € {red, green, yellow,unknown} ( 335 )

ascoc1 = Max(peseg 1, 0) X eCCScoct ( 336 )

( 1-—npc, ifc0 = cl € {red, green, yellow}

1—pc/3, if c0—cl € {green — yellow, yellow — red}
and pc, < 0 and pc, <0

PCScoc1 =14 _ pc/6,  if c0 - cl =red — green (1337)
and pc, = 0 and pc,, = 0
\ 0, otherwise
CCSco,c1 = +/CSco X CS¢q ( 338 )
where,
as = the final association score between two candidates,
c0 = the assumed color state of the first candidate,
c1 = the assumed color state of the second candidate,
as.oc1 = the association score assuming the color change c0 - cl,,
pcscoc1 = the position change score assuming the color change c0 - cl,
ccsqoc1 = the color state change score assuming the color change c0 - cl,
pc = the distance between the centers of the two candidates divided by the minimal
radius of the two candidates,
CSco the color classification score for color state cO of the first candidate,

CSco the color classification score for color state c1 of the second candidate.
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Second Pass - Select and Prune

After the first pass, a specified number of tracks are selected and pruned in the second pass.
In terms of selecting the tracks, a stability score is defined for each track as the sum of the highest
color classification scores of its detected candidates (i.e., excluding DOF based candidates). Such
stability score accounts for both the persistence of detection history and the detection reliability.
The tracks with the top N (default to 5) stability scores are selected for further pruning. In the
pruning process, the algorithm started from the upstream frame and goes forward until the
downstream frame. For each track, the algorithm tries to replace each DOF based candidate with
a new detection within a restricted region around that DOF based candidate. When the most
downstream candidate in a track is met, the algorithm attempts to use forward DOF to further track
and detect new candidates if the end of the short range is not reached. This attempt stops once no
more detection is reported in the next frame. A segment of pseudo code is given in the following.

Results are shown in Figure 3-21, with the selected and pruned tracks highlighted in red.

25

20 -

=
[$2]
T

Track Number
IS
T

®

ogoy J

808808

o000 00e

ogey, gegesae, o J

sgen o o o o sog )

o000 0000880

Opoatatabababy o L0o0a0ababy S0 o S0a0y J

Oo-O0-0-0-00000000000000ee0e

o000 0000 0000000000000 ee

OO0 000 000000000000 0Ceeeee

O0-0-0-0-0-0-0-0-0-000-0C000000000ee

la a a o s o o o a o o s a8 n s n & 8 &

O0-0-0-0-0-0-0-0-0-000-000000000000000eeee

e-8-90-80-0-80 808880808888l 00808eeeeeeeeees

la a aa abe o o s o o o o o s o o o & o & & & s & s & s & s o s e o o

e-0-8-0-0-0-0-8-0-0-e-0-0-0-e-e-8-0-e-8-0 00088000008 00000e

o-0-0-0-0-0-0-0 00000000000 0000000 0000000000000

OO0 0000000000000 00000000000 0000000 0eeoee

o-0-0-0-0-0-0 0000000000000 0000000000000 0e00ee

o000 0000000000000 00000000 00000000 ee e

[Oa0,0,0,0,0, L0, S0, 0,0,0,0,0,0L o o o o o a n o o o abe o oo o o o n o o

o000 00 0000000000000 0000000000000 0000000e

la o o o o o o o o 8 o B s o o & o & B B o B B m a a & m B aa o a a s s a u o
1 1 1 1 1 1 1 1

0 J

470 475 480 485 490 495 500 505 510 515
Frame Index

Figure 3-21 Demonstration of the second pass result of short range initialization.
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Algorithm 3-3
Second Pass of Short Range Initialization

Inputs:
* Upstream frame index iu
* Downstream frame index ig
* Track set T from the first pass

Steps:

1 Reduce T with up to N top tracks left;

2 for frame index i = iy to iag

3 for T¢ in T

4 if T+ has a candidate for frame i

5 candii € Ti¢'s candidate for frame i;

6 else if T¢ has a candidate for frame i-1;

7 candi|i-1 € Ti¢'s candidate for frame i-1;

8 candy|i € projection of candgji-1 in frame i using DOF;

9 flag candg); with “DOF”;

10 end if

11 if candtji is not null and flagged “DOF”

12 CD <& detected and classified candidates in frame i within
a region co-centered with cand¢); but with twice
of radius;

13 QSmax = 07

14 Admax = -1;

15 for CDg in CD

16 as = association score between CDg and candg)i;

17 if as > aSmax

18 QSmax = as;

19 dmax = d;

20 end if

21 end for

22 if asmax > O

23 set CDdmax as Tt’'s candidate for frame i;

24 end if

25 end if

26 end for

end for
Outputs:

* Track set T
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3.4.5 Long Range Tracked Recognition

With pruned tracks, frame ranges further upstream and downstream out of the short range
will be processed in a tracked manner. For each track, long range downstream tracked recognition
only takes place when the head of the track reaches the downstream end of the short range. As the
tracked recognition goes backward and forward on both ends, new DOF based candidates are
projected on the fly to provide a tracked region for detection. The long range recognition stops if
no detection in the tracked region can be found. Detailed algorithm is given in Algorithm 3-4.
Figure 3-22 gives an example of the long range tracked result. The blue portions of the selected

red tracks correspond to long range recognition results upstream and downstream of the short range.
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Figure 3-22 Demonstration of the long range tracked recognition result.
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Algorithm 3-4
Long Range Tracked Recognition

Inputs:
* Upstream frame index iu
* Downstream frame index ig
* Track set T from the short range initialization

Steps:

1 I = {iu, ia};

2 steps = {-1, 1};

3 for dir = 0 to 1 % assuming O-indexing

4 halt = false;

5 while not halt

6 halt = true;

7 prei = Tagir;

8 curi = Igir + stepsgir;

9 Iasir € curi;

10 for T¢ in T

11 if T+ has a candidate for frame prei

12 candi|prei € T¢’s candidate for frame prei;

13 candt|curi € DOF Dbased projection of candgjprei in

frame curi;

14 CD & detected and classified candidates 1in frame
curi within a region co-centered with candt|curi
but with twice of radius;

15 QSmax = 07

16 dmax = -1;

17 for CDg in CD

18 as = association score between CDg and candt|curi;

19 if as > asmax

20 QSmax = as;

21 dnax = d;

22 end if

23 end for

24 if asmax > O

25 set CDdmax as Tt’s candidate for frame curi;

26 halt = false;

27 end if

28 end if

29 end for

30 end while

31 end for

Outputs:

* Track set T
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3.5 Summary

A comprehensive methodology is proposed in this chapter, highlighting a generic TSR
module that works on individual frames and a sophisticated spatiotemporal framework that
considers efficient and reliable TSR in the processing of a lengthy video. The proposed detector
relies on no empirical parameters from training data, but is still controllable in an intuitive way
according to the expected effects of various features of conspicuity. The proposed color classifier
uses sample data to train histograms for different signal colors, but the classification decision is
made in a relative way between three expected colors, so the sample data can be totally
independent of the testing data in terms of the cameras being used. The spatiotemporal framework
helps to zoom into relevant frames in a lengthy video and allow temporally coordinated TSR. The
framework does not rely on highly accurate position data, because the temporal coordination
considers a buffered short range for initialization. Long range tracked recognition is expected to
be fast and reliable based on stable detection tracks obtained from the short range initialization.

The next chapter describes data collection for testing the proposed methodology.
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CHAPTER 4

DATA DESCRIPTION

4.1 Overview

A total of 21 videos are used to evaluate the proposed methodology. These videos were
collected as part of a Head Pose Validation (HPV) data set by the SHRP 2 data collection team
and shared via Oak Ridge National Laboratory (ORNL) as sample data for this research. All videos
were recorded through traveling an identical route in different days and times. The route was 18
miles long and nearly half of the mileage was on freeway (US Highway 460, Blacksburg, Virginia).
Figure 4-1 gives a map visualization of this route alongside a rectified sample frame of
approaching a signalized intersection. Each traversal of the route was around 30 minutes and
encountered 7 signalized intersections for 8 times (i.e., one intersection was passed twice in
different directions). As a result, a total of 168 navigations through signalized intersections were
recorded, covering different types of movements and lighting conditions (Figure 4-2). For each
video, a log file with other channels of sensor data was also provided. This log file contains GPS
based latitude, longitude, and speed readings, 3D vehicle acceleration rates, and ambient exterior

light level. Further details of these data and data reductions are given in the rest of this Chapter.

/
!
J

® Trip Trajectory

Figure 4-1 T/he HPV trial route and a sample frame.
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Figure 4-2 Signalized intersection navigations and light conditions.

The five lighting conditions in Figure 4-2 were manually accessed by human reviewers. A

quantitative summary of the frames labeled under these five lighting conditions is shown as

average lightness histograms in Figure 4-3. The lightness was measured using the L channel of the

CIELab color model.
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Figure 4-3 Average whole-frame lightness histograms of various lighting conditions.

4.2 Videos

The videos were recorded by a camera behind the windshield near the rare-view mirror.

Colors were coded in RGB channels. The camera frame rate was 14 fps and the size of frame is

480x356 (width by height) pixels. An original field of view (FOV) was 83 degrees with the use of

a fisheye lens, which introduced significant radial distortions to objects in the view. Camera

calibration parameters were used to rectify the videos. Figure 4-4 demonstrates the conversion

from an original distorted frame to a rectified frame. After rectification, a portion of the outer
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pixels are warped out of the original frame and trimmed. As a result, the rectified frame has a

slightly reduced FOV (around 70 degrees) with the same frame size. Note, rectification may not
be possible in some cases when camera calibration information is not retrievable. For the proposed
traffic signal recognition method, rectification is not a hard requirement, although it provides

various image processing advantages, such as preservation of straightness of lines.

A Distorted Frame The Rectified Frame
Figure 4-4 Radial distortion with a relatively wide field of view.

It is worth highlighting two major challenges presented by these videos. The first challenge
is related to low pixel resolution. Recall the 480x356 frame size with a rectified FOV of about 70
degrees. Such combination implies a relatively zoomed out view in which, even at a near distance,
an object may still look far and small. In addition, the borders of objects are relatively blurred.
Figure 4-5 illustrates the typical size and appearance of traffic signal lens at different upstream
distance level. Not only is the number of pixels of the target objects limited, but also is the object
outline unclearly defined. Another challenge comes from the wide range of lighting conditions.
One of the artifacts caused by extreme environmental lights is color oversaturation. As illustrated
in Figure 4-6, oversaturation can occur in many cases. In bright sunny days (Figure 4-6a), the
photons emitted by the traffic signal lenses plus the ambient photons would surpass the upper

intensity threshold of the camera’s sensor range and cause white-out pixels. The condition is worse
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at sunrise or sunset when the sun was behind the traffic signals along the camera’s optical axis,

creating a severe backlighting effect (Figure 4-6b). At night, the “halo” or “blooming” effect
occurred where the pixels of a traffic signal lens were oversaturated, leaving recognizable colors
only in the surroundings (Figure 4-6¢). Cloudy daytime and similar light conditions, in contrast,
are desired situations where the oversaturation problem was minimized. Besides oversaturation,
variable lighting conditions also introduced wild variation of perceivable traffic signal colors. All
the above challenges make the videos suitable for testing the robustness of any traffic signal

recognition algorithms.
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(b) ©

Figure 4-6 Oversaturated pixels of the lenses.
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4.3 Log File and Position Data

The log file associated with each video contains data from other sensors synchronized by
millisecond timestamps. Table 4-1 summarizes the list of data channels as well as their
approximate data frequencies. Among these data, only the GPS latitude and longitude readings
(under the WGS84 coordinate system) are used as inputs to the proposed geo-filtering method.
GPS data were reported less frequently than the other sensor data, because a GPS receiver needs
to process signals from visible satellites and estimate the current position over a short course of
time. The GPS receiver used in the SHRP 2 NDS study was a Fastrax UP500 (65). This model of
GPS receiver uses two satellite-based GPS augmentation systems, the Wide Area Augmentation
System (WAAS) and the European Geostationary Navigation Overlay Service (EGNOS), to
improve positioning accuracy. However, the accuracy of the GPS receiver could vary due to
different factors, such as the number of visible satellites and the angles from the receiver to the
satellites. According to the WASS specification, the position accuracy should be no worse than
7.6 meters (25 feet) at least 95% of the time and field measurements have shown horizontal
accuracy better than 1 meter (3 feet 3 inches) and vertical accuracy better than 1.5 meters (4 feet

11 inches) (66, 67). EGNOS was found to provide a similar range of accuracy (68).

Table 4-1 Data Entries and Frequencies in the Log File
Sensor Data entries Approximate Data frequency
Inertial accelerate sensorLongitudinal (x) acceleration rate 10 Hz

Lateral (y) acceleration rate

Vertical (z) acceleration rate

Gyroscopic sensor Angular velocity around the vertical axis 10 Hz
GPS receiver Speed 1 Hz
Heading
Longitude
Latitude

3D Positional dilution of precision
Ambient light sensor ~ Ambient exterior light 5 Hz
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In order to populate the latitude and longitude coordinates to all frames, timestamps were

first snapped to their nearest frame numbers and linear interpolation was performed to fill frames
without direct GPS readings. More specifically, the GPS reading at timestamp T was assigned to

frame N according to the following equation:

T
N 41
N l1000*FRJJr1 ( )
where,

N the number of the frame to be snapped to,

T = the timestamp, milliseconds,
FR = the video frame rate, FPS,
[-] = the floor function, e.g., |3.7] = 3.

Because the video frame rate was larger than the GPS reading frequency, only a relatively
equally spaced fraction of the frames were assigned a GPS reading. In order to populate the frames
without direct assignment, linear interpolation with respect to time (i.e., frame number) was used
to derive latitude and longitude coordinates between every successive pair of directly assigned

frames (Equation 4.2).

(1 — Ik
! N
lat; = (1 — ay) * lat;, + ay * lat;, | (42 )
lon; = (1 —ay) *lon;, + ap=*lon,, .
where,
I, = theindex of the k™ frame with direct GPS reading,
L., = theindex of the k+1™ frame with direct GPS reading,
i = the index of the i frame, subject to I, < i < I;41,
a, = The relative time progress from frame I« to frame i,
latij .., = the latitude of the i/li/lks™ frame,
lon /1 1,.,, = the longitude of the i/li/Ik+1"™ frame.

Figure 4-7 illustrates the interpolation procedure. Although no additional smoothness is

achieved by linear interpolation, the density of the direct GPS readings can approximate the
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curvatures of vehicle trajectories reasonably well. Also, a smoother interpolation is not necessarily

more accurate and may even exaggerate GPS errors.
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P ¢ interpolated frame coordinates
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Linear interpolatiorD

Figure 4-7 Interpolation of GPS coordinates.

4.4 Traffic Signal Map

OpenStreetMap™ (OSM) was chosen as a mapping data source. The OSM data consist of
three prime elements: nodes, ways, and relations. Nodes are individual points to mark locations,
e.g. intersections. Ways are a series of line segments connecting several nodes. Ways are used to
create roads, paths, rivers, etc. An area can be represented by a closed way. Relations are groupings
of ways or areas based on their logical relationship. These data can be queried over the internet
using OSM’s uniform resource locator (URL) based API. A query URL returns data within a
latitude-longitude defined bounding box in the XML file format. In this study, the initial bounding

box around the entire route of the video is resized by a factor of two in both dimensions to form
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an expanded bounding box to query OSM data. The buffered bounding box can prevent missing

data that are slightly outside the borders of the original bounding box.

Traffic signals are tagged as nodes with their “highway” attribute having the value of
“traffic_signals” (69). According to the OSM documentation, “the mapping of traffic signals is an
abstraction that the particular junction or way is regulated by traffic lights.” Therefore, a traffic
signal node is not conceptually related to a particular traffic control device. For example, in Figure
4-8a, a signalized intersection is represented as a node connecting four ways in OSM. This node
is tagged as the only traffic signal node for that intersection, even though there are four sets of
overhead traffic signals on the far side of the intersection for each approach. When multiple nodes
are used to represent a more complicated highway intersection (e.g., Figure 4-8b), all nodes could
be tagged as traffic signal nodes but their positions do not correspond to the actual traffic signals.
Therefore, the OSM traffic signal nodes should not be used to locate actual traffic signals, rather,
they should be used as a rough estimation of the intersection as a whole. Typically, when multiple
traffic signal nodes are closer to each other than a certain distance (e.g., 50 m), their average

position can be used as an approximation of the center of the intersection.
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Figure 4-8 Illustration of OpenStreetMap ™ traffic signal nodes.

For the purpose of verifying the accuracy of the OSM data, key points of the seven
traversed intersections were manually located using satellite images on Google Maps™. Detail
information is given in Table C-2 and Table C-3 in Appendix C. For each intersection, the
manually extracted intersection center (Table C-3) and the average location of the OSM traffic
signal nodes (Table 4-2) are compared. Figure 4-9 shows the comparison results. The OSM based
estimations provide relatively good accuracy of less than 5 meters away from the manually coded

positions, which is acceptable for a rough estimation of intersection vicinity from each video frame.



Table 4-2 OSM Traffic Signal Nodes of Traversed Signalized Intersections
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Intersection

Traffic Signal Node ID Latitude Longitude

[1] [274633606] 37.197725 -80.401337
S Main Street
@ Professional Park Drive [726778899] 37.197687 -80.401243
21 [216434379] 37.209364 -80.399353
S Main Street
@ Hubbard/Ellett Road [721834927] 37.209383 -80.399213
[3]
. [216441656] 37.217342 -80.419160
Southgate Drive
@ Beamer Way/Research Center Drive
[4]
. [721757100] 37.216285 -80.423660
Southgate Drive
@ Duck Pond/Dairy Drive
(5] [216459765] 37.213135 -80.431888
. [726771247] 37.213092 -80.432138
Southgate Drive
@ Huckleberry Trail [1468455063] 37.213234 -80.432009
(6] [726671503] 37.191650 -80.403763
US 460 5B Exit Ramp
@ S Main Street [726672094] 37.191697 -80.403894
(7] [721834758] 37.193972 -80.402747
S Main Street
@ Industrial Park Road [721834885] 37.194042 -80.402874
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Figure 4-9 Accuracy of intersection center estimate based on OSM traffic signal nodes.

4.5 Signal State Ground Truth

Annotating traffic signals in each frame is the most critical data reduction effort. Resulting
annotations will be used to evaluate the accuracy of the proposed methodology. Also, sampled
annotations can be used as training data for some compared methods that require device dependent

training samples.

In each frame, every active traffic signal lens (excluding pedestrian signals) facing the
subject approach was annotated by a rectangular bounding box. The bounding box was drawn to
enclose the lens area only. However, due to image quality (e.g., oversaturation), there was a certain
degree of uncertainty when drawing the bounding box. Such uncertainty was inevitable, but was
mitigated by enforcing a rule that the bounding box of the same signal lens should not increase in
size as the annotation started from a nearest non-void frame and progress backwards. Starting from

the nearest frame gave the annotator the largest and clearest target objects and, as the annotation
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progressed backwards, the bounding boxes of the previous frame became a helpful gauge of the

bounding boxes in the current frame. Annotation stopped when all signals were too small to locate
or when an upstream distance was exceeded, whichever happened first. Occlusion and flashing
mode could result in discontinued appearance of the same signal lens. In such cases, the bounding

box was only drawn for frames when the lens was visible or lit.

In addition to the bounding box, each signal lens was also annotated with its signal color
and an identification number corresponding to the signal head it belonged to (referred to as the
signal head id hereafter). The signal head id is local to each approaching instance. Numbering of
the signal head ids started from the critical signal head, defined as the signal head that regulated
the traveled lane and movement of the subject vehicle. The critical signal head was given an id 0.
After that, the id of every next signal head to the left and to the right of the critical signal head was
decreased and increased by 1, respectively. For example, given four signal heads among which the
second from the left is the critical signal head, their id sequence will be [-1, 0, 1, 2] starting from
the left. Therefore, even in the same approach to the same intersection, if two approaching
instances were in different lanes, the two resulting signal head id sequences would be differed by
an integer. The advantage of such identification schema is the convenience of locating the critical
signal head when movement specific analysis is needed. With the signal head id, bounding boxes

across frames can be associated even when a signal state change happened.

In order to facilitate the extraction of the ground truth, an interactive computer program
was written in Matlab™ to provide both visual control and text input functions. As illustrated in
Figure 4-10, the interface provides a guiding box (dashed-line) that moves with the mouse cursor
so the user is always aware of the current mouse position and the bounding box size. The user can

change the width, the height, or both of the guiding box by certain combinations of keyboard
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strokes and mouse scroll. The user can also zoom into the region of interest to get a focused view

of the signal lens, which is very useful when the traffic signal was far away and only occupies a
very small amount of pixels. When the guiding box correctly locate a signal lens, the user can
simply left-click the mouse to confirm the annotation, which will bring up a text input dialog for
the user to type in the traffic signal state and the signal head id. The confirmed ground truth will
appear as a still solid-line box on the frame with information displayed beneath it. If a mistake is
made, the user can delete the mistake by positioning the mouse cursor in the box and right clicking
the mouse with the Ctrl key pressed. Considering the situation when the vehicle was stopping for
the red light or yielding to conflicting traffic under the permissive mode, a large amount of frames
may look almost the same. Therefore, a linear interpolation mode was given to the program to
provide a certain level of automation. With this mode, the user only need to annotate two end

frames and let the program interpolate annotations in between.

80 200 220 260

Figure 4-10 Visual interface for ground truth signal state extraction.
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Table 4-3 summarizes the statistics of the extracted ground truth and Figure 4-11 visualizes

the counts of annotations in different cross classifications in terms of instant signal state, in image

size, and the lighting condition.

Table 4-3 Overview of Annotation Results

Statistic name Statistic value
Total number of annotated frames 30529
Total number of annotations®™ 82528
Number of annotations by instant signal state®®
Red 28588
Green 51076
Yellow 2864
Number of annotations by radius of the maximum bounded circle (in pixels)
1 7
1.5 1594
2 16633
2.5 19547
3 18160
35 14237
4 6403
4.5 3300
5 1440
55 466
6 305
6.5 210
7 102
7.5 67
8 39
8.5 12
9 6
Number of annotations by lighting conditions
Sunny 25463
Cloudy 17121
Dawn/dusk 14141
Dark lit 23598
Dark unlit 2205

(1) An annotation is a bounding box around a traffic signal lens in one video frame with related
information. One frame may contain multiple annotations and one physical traffic signal lens
may correspond to a set of annotations across multiple frames.

(2) Instant signal state refers to the traffic signal color at the instant of the frame. For solid traffic
signals (e.g., ordinary green, red, or yellow), the instant signal state during the corresponding
interval is consistent. For flashing traffic signals, such as flashing yellow arrow, the instant
signal state changes at a certain frequency during that interval. A flashing lens was only
annotated in the frames when it was lit, resulting in non-continuous annotations.
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Figure 4-11 Annotation results by cross classification.
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CHAPTER 5

EXPERIMENTS AND ANALYSES

5.1 Overview

Experiments were conducted on a 64-bit Windows 10 desktop machine. This machine was
equipped with a 2.33-GHz Intel® Core™ 2 Quad CPU (Q8200) and 6 Gigabytes of random access
memory (RAM). Also, this machine was constantly connected to the internet, which allowed on-
the-fly data acquisition from the OSM servers during the experiment with the spatiotemporal
framework. Algorithms were prototyped in the C++ programming language with reference to the
OpenCV library for fundamental vision functions. Matlab™ wrapper functions (i.e., mex functions)
were written so they could be executed and the results (intermediate and final) could be analyzed
in the Matlab™ environment (version R2016a). Direct builds to Windows command line
executables are also provided for production purposes. Algorithm parameters could be controlled

with a configuration text file that follows the YAML data serialization standards.
5.2 Detection Performance

Since detection is the foundation of the entire recognition pipeline, experiments were
performed to assess its accuracy and gain insights to calibrating parameters (e.g., the weights of
conspicuity features). A baseline performance measure was given by running the detection
algorithm with default parameters over all 30,529 annotated frames. Accuracy and recall are
evaluated for various lighting and distance (in terms of target size) categories. Qualitative
inspections into sample frames in low performance categories revealed helpful rules for tuning
parameters. The baseline performance was also compared to two other closely related methods

and the results reveal the robustness of the proposed algorithm.
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5.2.1 Baseline Test

In order to gain a baseline assessment of the detector’s performance, default parameters
listed in Table 5-1 were used to run tests on all 30,529 annotated frames. The tests took over 40
hours to finish, averaging to a processing time of nearly 5 seconds per frame. However, this
processing time included loading and saving intermediate data from and to computer hard drives

to facilitate later tuned tests, which can be avoided in production.

Table 5-1 Default Parameters for Baseline Test

Parameter Value
{wy, wic, we} {1,1,1}
RAD {112a314a516a718a9110}
(the r range)

m 0

(the A2 margin width)

peak 0.9

Ntop 10

Ny 20
aSPmin 0.6
pdmin 0

Detected candidates were compared to manual annotations so true positives and false
positives could be separated. A true positive is defined as a candidate whose center pixel resides
in the minimum enclosed circle of any annotation box of the same frame. At this point, no color
state was considered because the detection algorithm does not provide a state classification. The

assessment of state classification will be addressed in Section 5.3.

Detection performance should be evaluated on a per-frame basis and under various lighting
and distance categories. Because the theoretical behavior of the conspicuity based detection is to
find the most conspicuous regions in the given frame, it makes little sense to evaluate whether

individual traffic signal lenses were detected or not by considering them separately from the frame



100
context. For example, a traffic signal lens can be missed not because its absolute conspicuity value

(which is in itself meaningless) is low but because it is lower than those of other regions in the
frame. In other words, the detection performance should be an assessment of how many of the
present traffic signals in a given frame can be correctly detected (i.e., the recall) as well as how
many false objects are reported among all detections (i.e., the false positive rate = 1 - precision).
In different lighting and distance (in terms of the size of the targets) conditions (refer to Figure 4-1
and Figure 4-11), the relative conspicuity of the target traffic signals can be affected differently.
For example, in sunny days when the traffic signals are far away, the conspicuity of the targets can
be compromised by pixel resolution and overwhelmed by near-by roadside object or the
background sky. In some of these cases, finding the exact location of a traffic signal could be
extremely ambiguous even to human reviewers (based on data reduction experience). Therefore,

frames were evaluated under different scenario categories.

Table 5-2 summarizes the baseline test result in terms of frame counts under various
scenario categories and performance ranges. Note, the header of each recall rate column states the
exact number of true positives over all annotated signals in the frame, except for zero and full
recalls (0 and 1, respectively). The precision columns are corresponding to lower bound precisions.
For example, a frame under the 30% precision column is one on which the detection achieved a

30% or more precision.



Table 5-2 Frame Counts of Various Performance Ranges in Different Scene Categories

Light Condition Recall Rate Precision
- Max Target Radius 0o 1/4 1/3 12 2/4 2/3  3/a 1 0%  10% 15% 20% 25% 30% 35% 40% 50% 55% 60% 65% 75% 80% 100%  Total
Cloudy 2434 228 934 884 152 557 69 1088 2434 56 19 48 120 220 10 84 344 1 55 251 8 1 2620 6346
2 564 54 270 113 30 145 3 138 564 3 4 13 22 55 2 20 9 12 4 20 461 1317
3 872 128 491 260 80 314 39 404 872 16 6 17 42 102 8 45 167 1 34 114 52 1 111 2588
4 955 40 121 446 35 77 25 47;2 95 37 9 15 54 54 19 77 9 8 8 850 2171
5 25 6 29 23 4 9 102 25 1 2 1 2 1 86 118
6 1 9 28 3 4 1 2 1 1 3 1 31 62 82
7 5 8§ 13 4 14 5 1 3 1 11 2 a4
8 2 2 1 2 5 2 11 1 1 6 12
9 4 2 8 1 1 12 14
Darklit ~ 2008 375 1168 763 385 1453 203 2035 2008 88 88 167 389 831 27 378 1343 6 234 896 281 7 1647 8390
2 9 17 8 1 9 3 3 4 s 6 1 2 1 1 35
3 469 180 518 89 180 819 58 704 469 31 34 57 164 304 6 169 495 3 144 286 163 2 690 3017
4 798 97 493 335 174 516 129 1001 798 34 30 62 147 370 16 168 530 3 58 478 8 5 759 3543
5 581 93 113 303 22 9% 12 283 581 18 17 39 65 135 4 32 286 31 116 30 149 1503
6 79 4 17 24 8 1 4 35 79 1 3 4 5 1. 6 24 1 12 3 33 182
7 47 1 8 9 1 3 9 7 1 1 1 3 5 1 6 3 10 78
8 25 2 3 2 25 1 1 5 32
9
Dark unlit 172 137 1 278 155 72 8 9 15 21 51 2 19 €0 11 39 40 296 743
2
3 74 3 45 15 74 2 5 7 11 2 4 27 4 7 4 1 177
4 61 54 220 136 60 4 4 2 4 23 2 13 23 7 30 34 264 471
5 15 33 1 8 3 15 1 5 6 4 1 9 2 1 16 60
6 10 2 2 1 10 1 1 1 2 15
7 5 4 2 5 1 1 1 3 1
8 7 1 1 7 1 1 9
9
Dawn/dusk 3185 57 565 468 30 318 9 510 3185 26 19 52 138 251 7 67 643 39 341 25 349 5142
2 698 12 356 16 7 232 3 9 698 20 13 35 8 110 6 18 200 37 68 21 1 1418
3 1956 38 170 47 13 66 4 2 1956 3 2 6 21 54 1 14 144 % 3 88 2318
4 482 4 25 375 8 13 1 378 482 3 4 11 31 84 33 280 1 243 1 113 1286
5 34 3 9 27 1 5 1 9 34 5 2 1 17 1 2 27 89
6 13 5 1 1 2 5 13 1 1 2 2 8 27
7 2 2 2 2 4
8
9
Sunny 8977 2 309 443 84 93 8977 44 25 83 98 114 24 226 31 286 9908
2 2946 3 14 2946 2 4 2 4 3 2 2963
3 5362 2 262 215 64 62 532 32 17 53 65 66 17 138 24 193 5967
4 520 34 179 15 14 520 9 7 24 24 33 5 64 4 72 762
5 78 7 2 3 5 7 1 1 2 5 9 1 1 2 8 119
6 51 2 7 2 5 51 2 2 1 6 1 4 67
7 19 1 2 5 19 2 6 27
8 1 2 1 1 1 3
9
Total 16776 662 3113 2559 567 2690 281 3881 16776 222 160 365 766 1467 46 572 2616 7 339 1558 429 8 5198 30529

T0T
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In order to perceive trends of the results in Table 5-2, a plot of recall versus false positive

rate (FPR = 1 — precision) was generated and showed in Figure 5-1. In this plot, each subplot
belongs to a cross-category of lighting condition and target size, corresponding to each row in
Table 5-2. The total number of frames in each category is printed as “N = *** in gray color. In
each subplot, the x-axis is the FPR and the y-axis is the recall. Each circle on the subplot
correspond to all frames with the same performance, while the area of the circle are proportional
to the percentage of frames with that performance in that category. Circles are colored more blue
as they are closer to the left and upper borders (i.e., FPR = 0% and recall = 100%) and more red
as they tend towards the other direction. Therefore, bluish circles corresponds to frames with
desired performance while reddish circles are frames that reveal the inadequacy of the baseline

setting.

Several trends can be observed in Figure 5-1. First, in almost all scenarios, the frames with
at least one target being detected (recall > 0) are always near or above 50%. This implies that over
50% of frames in most scenarios fully or partially satisfy the assumption that the target traffic
lights are among the most conspicuous objects in the scene. Second, there is little correlation
between the recall and the precision. This complies well with the randomness of the scene
complexity and hence of the satisfaction to the conspicuity assumption. When the conspicuity
assumption is fully satisfied, the targets can be detected at a perfect recall (= 1) with zero false
positives. As the satisfaction of the assumption decreases in various ways, the performance can be
roughly anywhere in the plot area. When the assumption is fully violated, both recall and precision
drop down to zero. Nevertheless, performance differs among different scenarios. In terms of
lighting condition, cloudy days present the most detectable environment and as the target size

increases, the total misses are constantly decreasing. This is intuitive because the cloudy days
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introduce weak ambient light and help the traffic lights to stand out in the scene. In dawn/dusk,

dark lit, and dark unlit conditions, the ambient lights are even weaker than in cloudy days, but due
to the sudden increased uses of vehicle headlights and streetlights, the conspicuity of target traffic
lights face more competition from these other light sources, even from the highly reflective
surfaces such as traffic signs. Sunny days present the most challenging condition with constantly
high percentage of total miss frames. In sunny days, the strong ambient light can interfere with the
digital imaging of the lightness and even color saturation of traffic lights, such as overexposure.
The conspicuity of reflective pavement markings and colorful roadside objects can also be elevated
by the ambient light to confuse the algorithm. Though, due to the consideration of contrast in the
conspicuity model, traffic lights could still be detected in a decent percentage of frames in

challenging sunny conditions.

Without additional knowledge about the scene or spatiotemporal constraints for detection,
the conspicuity model is maintaining a balanced accommodation to a wild randomness of scenarios.
Further detection improvement can be attempted by adjusting the weights in the model to adapt to
certain scenarios better (see Section 5.2.3) or by introducing constraints in a spatiotemporal
framework (see Section 0). In order to reveal the advantage of the proposed method, two other

detection approaches that also aimed at generic accommodation were compared in the next section.
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Figure 5-1 Recall v.s. false positive rate (= 1 - precision) of the proposed algorithm.
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5.2.2 Comparison to Other Approaches

The two alternative approaches chosen for comparison are based on Siogkas et al. and
Charette and Nashashibi (28, 35). Siogkas et al. multiplied the “L” channel to the sum of the “a”
and “b” channels of the CIELab space to create an initial feature map. Then, a fast radial symmetry
transform was performed on this feature map to generate a heat map of local symmetry
(corresponding to the circular shape of signal lenses). Binarization and connected component
analysis were used on this heat map to locate the top five dark spots (corresponding to green lights)
and the top five bright spots (corresponding to red lights). Charette and Nashashibi converted the
input image to a grayscale image and applied the white top-hat transform (difference between an
image and its morphological opening) on this grayscale image to highlight spotlights in the scene.
Connected component analysis was used to locate the candidate regions. For conciseness, the
approach based on Siogkas et al. is denoted as LAB-FRST and that based on Charette and

Nashshibi is denoted as GRAY-TOPHAT.

The implementations of the above two methods are as following. For LAB-FRST, the fast
radial symmetry transform (FRST) is based on the original implementation by the inventor (70).
The positive and negative parts of the CIELab based feature map are transformed separately. The
radius range is chosen as 1 to 10 pixels, with 1 pixel step. The alpha parameter of the FRST
algorithm is chosen to be 3 and the orientation flag is set to be true. Binarization is based on half
of the maximum value in the transformed map and 8-connectivity component analysis is used to
locate candidates and determine their sizes. For GRAY-TOPHAT, the implementation is in fact
identical to the proposed algorithm, except that the conspicuity value is replaced by the top-hat

value calculated on a grayscale image.
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Figure 5-2 and Figure 5-3 show the recall versus FPR plots for LAB-FRST and GRAY -

TOPHAT, respectively. For comparison, Figure 5-4 plots the average performance of each method
under different categories. The proposed method has a higher average recall/lower average FPR
than the other two methods do in most cases. For sunny condition, the performances are similar
for all methods, again, confirming the challenge of sunny condition. However, as the target size
increases, the proposed method and GRAY-TOPHAT show faster improvement in recall than
LAB-FRST, while the proposed method also shows reduced FPR. In cloudy conditions, the
proposed method constantly outperform the other two methods and the advantage becomes more
significant as the targets get closer. In dawn/dusk, the proposed method is beaten by the GRAY-
TOPHAT only when the target size is at 7 pixel in radius, but the sample size associated with that
category is only 4, which does not grant statistically significant conclusion. In dark lit and unlit
conditions, the proposed method always performs better than the other two methods, although the

performance does not increase as the target becomes larger.
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Figure 5-2 Recall v.s. false positive rate (= 1 - precision) of the LAB-FRST algorithm.
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Figure 5-3 Recall v.s. false positive rate (= 1 - precision) of the GRAY-TOPHAT algorithm.

80T



Sunny
Recall

Dawn/dusk Cloudy
Recall

Dark lit

Dark unlit

Recall

Recall

Recall

0.5

0.5

0.5

0.5

O Proposed A LAB-FRST V GRAY-TOPHAT
1 1 1 1

1 1
ov
0.5 0.5 0.5 0.5 0.5 0.5 0.5
% .
N = 2963 N=5067 A N = 762 ¥ N =119 R n-67 & N =27 N=3
X 0 0 0 0 0 0 0
0.5 1 0 0.5 10 0.5 1 0.5 10 0.5 10 0.5 10 0.5 10 0.5 1
1 1 1 1 1 1 1
O
m] m] o
0.5 0.5 05| - 0.5 v 0.5 0.5 0.5
O O v
v v A v v
N = 1317 o N=2588 A o LN=2171 v o N=118 A GN=82 Al [N-44 A o IN=12 A o LN=14 S
0.5 10 0.5 10 0.5 1 0.5 10 0.5 10 0.5 10 0.5 1.0 0.5 1
1 1 1 1 1
v
05 0.5 . 05 0.5 0.5
] O
v O
N=1418 Y [N=2318 N=1285 3 [N=89 A o= A oLN=4
0.5 10 0.5 10 0.5 1 0.5 10 0.5 10 0.5 1
1 1 1 1 1
0.5 H 0.5 o 0.5 0.5 0.5
O O
O
N=35 N = 3017 N = 3543 N = 1503 N =182 N=78 N=32 O
57 0 M, 0 AvA 0 7 0 7 0
0.5 1 0 0.5 10 0.5 1 0.5 10 0.5 10 0.5 10 0.5 10 0.5 1
1 1 1 1 1 1
O
0.5 0.5 0.5 0.5 0.5 0.5
O
A O
N = 471 N = 60 N=15 N =11 N=9 O
X7 0 v & 0 M = % 0
10 05 1 05 10 05 10 0.5 10 0.5 10 0.5 1
FPR FPR FPR FPR FPR FPR
r =4 r =5 r =6 r =7 r =8 r =

max

max

max

max

Figure 5-4 Comparison between different methods.
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5.2.3 General Tuning Rules

Visual inspection was conducted on select frames to derive helpful tuning rules. Focuses
were given to frames with target radius between 3 and 4 pixels with zero recall (as well as

precision). All lighting conditions were considered for visual inspection.

In general, in all lighting conditions but sunny, low recalls and high false positive rates
were found majorly related to the competitions from other light sources. Examples are given in
Figure 5-5 - Figure 5-11, with the conspicuity map and the original image shown side by side. The
original image is overlaid with the detected candidates (blue circles) and the annotated ground
truths (red squares). Figure 5-5 and Figure 5-6 show two examples in dark lit conditions. The target
traffic lights showed relatively high conspicuities in the image, but not as high as some of the other
light sources. In fact, among the false positives, some are actually secondary traffic lights (Figure
5-5) and traffic lights for the cross street (Figure 5-6). In Figure 5-5, even the reflection of the
target traffic lights on the hood cover were detected. Therefore, the algorithm was working in an
expected way, but the complexity of the scene prevented the desired traffic lights to stand out.
Without structural understanding of the scene, it is also hard for human to decide which light
source is the subject signal control. Nevertheless, by tuning up the weight triplets to [1, 1, 4] and
[1, 1, 2] (increasing the weight of average saturation) for the two images, respectively, all target
traffic lights were picked up with reduced false reports on roadside street lights. This is implies an
important rule of parameter tuning, that during diming conditions where only light sources show
up with high lightness, the major distinction between traffic lights and some of the other light
sources is the color saturation, so the weight of average saturation should be increased to achieve
better performance. In dark unlit conditions like Figure 5-7, the major distraction could be

introduced by traffic lights for the cross street and other highly reflective surfaces (road pavement



111
or signs). The rule of increasing the saturation weight also worked for this example. However,

since the traffic lights for the cross street also have high saturation, only when the weight triplets
were set to [1, 1, 2] were two out of three target red lights were detected. Further increasing the
saturation weight to 3 gave higher conspicuity back to the green lights. In another dark unlit

example in Figure 5-8, a weight triplet of [1, 1, 4] made the middle green light detectable.

However, increasing saturation weight is a general rule rather than a guaranteed remedy,
because the scene complexity could violate the conspicuity assumption to an unknown extent. For
example, in Figure 5-8 and Figure 5-9, the motion blur of the traffic lights breaks the assumption
of the average or contrast areas (Al, A2, and A3). In Figure 5-10 (dawn/dusk), the color saturation
of the target lights were actually underrepresented and an improved detection was achieved by
increasing the weight of lightness contrast (i.e., [1, 2, 1]). In Figure 5-11, increasing the saturation
weight detected only one of the two lights, but when combined with the adjustment of the lightness

contrast weight (i.e., [1, 2, 4]) both lights were detected.

»
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Figure 5-5 Dark lit example 1 (Frame ID: 00041-803.
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Figure 5-6 Dark lit example 2 (Frame ID: 00041-25891

Figure 5-7 Dark unlit example 1 (Frame 1D: 00041-7545).

Figure 5-8 Dark unlit example 2 (Frame ID: 0041-22856). 7
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Figure 5-9 Dawn/dusk example 1 (Frame ID: 00105-22284).

Figure 5-10 Dawn/dusk example 2 (Frame ID: 00137-5704).

Figure 5-11 Cloudy example 1 (Frame ID: 00053-21007).
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Lightness contrast showed more detection powers in sunny daytime. For example, as

shown in Figure 5-12, the roadside objects and pavement markings has equivalent conspicuity as
the target traffic light with equal weights between the three components of the conspicuity model.
If the weight triplet is changed to [1, 3, 1] to increase the effect of lightness contrast, the middle

traffic light will be detected.

Figure 5-12 Sunny example 1 (Framé ID: 00153-6185).



115
5.3 Classification Performance

Classification was tested on all true positive candidates from the base line detection result.
In order to evaluate the sensitivity of the classifier, two sets of test were run with different training
datasets. In the first test, the training data only contained 15 images randomly downloaded from
the web. Among these images, five green lenses, six red lenses, and four yellow lenses were
annotated and used to train histograms. The average radius of these lenses was about 18 pixels. In
the second test, 26 sample frames from the HPV data were used, with ten green lenses, ten red
lenses, and six yellow lenses. These frames were chosen from videos with cloudy condition so the
color appearance was optimized. The average radius was about seven pixels. The classification
results are given in Figure 5-13 and Figure 5-14 for these two tests, respectively. Similarly, the
outputs are plotted in different combinations of lighting condition and target radius. The numbers
of ground truth annotations for each signal color are given. The green triangle, red circle, and
yellow triangle indicate the accuracy measures of green, red, and yellow, respectively

classification results, respectively.

In Figure 5-13, a nearly ideal classification of green signals can be observed in all lighting
conditions except sunny. Even in sunny days, the recall rates of green signals are generally high
and no other signal colors were misclassified as green. In sunny days, both red and green signals
can be confused with yellow signals, resulting in generally high FPR of yellow classifications. In
cloudy days and dawn/dusk, confusion primarily happened between yellow signals and red signals.
In dark lit condition, a major amount of yellow signals were misclassified as green signals, while
red signals were well classified. This is intuitive because in dark lit conditions red signal lights are

more distinguishable by color. In dark unlit conditions, the classification worked ideally for all
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three signal colors. Overall, the classifier achieved 94.4% correct classifications for all tested

candidates.

In Figure 5-14, when training was done using the samples in cloudy conditions from the
HPV dataset itself, different performance changes happened in different lighting conditions. In
sunny days, both green and red signals were easily misclassified as yellow signals. In cloudy
conditions, red signals were easily misclassified as yellow signals. The overall performance
improved in both dawn/dusk and dark lit conditions while the performance in dark unlit conditions

almost remained the same.
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Figure 5-13 Classification using sample data from web images.
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Assessment of the classification performance based on web training images were also

conducted with respect to the classification confidence and the discriminative ratio. As shown in
the left plot of Figure 5-15, the misclassification rate shows a general decreasing trend as the
confidence increases, suggesting a positive correlation between the confidence and the
classification accuracy. Though, the correlation is relatively weak, because the decision of
classification is not based on the absolute value of the confidence, but based on the relative ranks
of the confidences of three signal colors. Therefore, the misclassification rate is also plotted against
the discriminative ratio (the right plot of Figure 8). Discriminative ratio is defined as 1 — (the
minimum confidence / the maximum confidence). A small discriminative ratio implies that all
signal colors have similar confidences and the chosen color only wins by a small amount. A large
discriminative ratio implies that one signal color stands out. Decision made with a larger
discriminative ratio is considered more reliable. In the right plot of Figure 8, this hypothesis is
visually verified. When the discriminative ratio is above 0.7, the misclassification rate is constantly

low.
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Figure 5-15 Assessments of the misclassification rate.
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In summary, the classifier gave consistently good recall rates for green signals with

different training datasets, except when the light condition was sunny. Sunny condition turns out
to be a challenging condition for both detection and classification. This complies with the intuition
that strong ambient light can significantly reduce the visibility and clarity of traffic signals even
for human. In cloudy conditions, both training datasets led to confusion between red signals and
yellow signals. Using sample data from the HPV dataset, the trained classifier showed better
performance in dawn/dusk and dark lit conditions. In dark unlit conditions, the classifier performed
ideally with either training dataset. Classification accuracy was found positively related to the
absolute confidence and the relative confidence (i.e., the discriminative ratio above), with the latter
showing more obvious trend. Therefore, the reliability of a classification can be effectively

assessed by these two measures.

5.4 Spatiotemporal Framework Evaluation

Experiments on the spatiotemporal framework were conducted using the baseline detection
setting and the sample from the HPV dataset was used for training the classifier. In addition, a
general region of interests was set as the upper 60% of the frame. For the short range initialization,
the upstream and downstream maximum trajectory distances were 10 m and 5 m, respectively. In
the pruning pass, up to five tracks were selected. All 168 instances of signalized intersection
traversal were correctly identified by the vicinity profile screening. A total number of 825 tracks
were generated. Figure 5-16 shows all 825 resulting tracks aligned relative their clips’ anchor
frames. The blue portion is upstream of the anchor frame and the red portion is downstream of the
anchor frame. The position is measured in cumulative trajectory distance (on the left) and in frame

counts (equivalent to time duration). As shown, candidates could be tracked on average up to
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around 500 feet or about 300 frames (about 20 seconds) upstream of the anchor frame. A few

number of extremely long tracks were found false tracks.

| J LA AT T T

-3000 -2500 -2000 -1500 -1000 -500 0 500 1000 -1200 -1000 -800 -600 -400 -200 0 200 400
Relative position in feet Relative frame index
(0 is the anchor frame, negative upstream and positive downstream) (0 is the anchor frame, negative upstream and positive downstream)

Figure 5-16 Tracks aligned relative to the anchor frame: left) position measured in feet and
right) position measured in frame count (equivalent to time).

Detection results under the spatiotemporal framework are compared to those of the baseline
detection in Figure 5-17. The comparison shows that in all lighting conditions except dark unlit,
the spatiotemporal framework performed worse than the baseline detection. Such performance
difference is counterintuitive at the first thought, because the spatiotemporal framework was
designed to increase the reliability of detection. However, by carefully examining the theoretical
behavior of the spatiotemporal framework, reasonable explanation can be derived. First of all, the
track selection process in the pruning pass of the short range initialization stage could have
excluded less stable tracks that in fact corresponded to true positive detections. Second, by
selecting a track that was related to a non-traffic-signal, the program could have boosted additional
false positives during the pruning and long range tracked recognition. For the sunny condition,
which is challenging even for the baseline detection, both tests show similar results in general,

especially in terms of recall rate. As the target size increased, the spatiotemporal framework could
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have introduced more false positives along false tracks. In cloudy, dawn/dusk, and dark lit

conditions, both the exclusion of true tracks and the inclusion of false tracks might play equivalent
roles in degrading the detection performance, since both the recall rates and the false positive rates
are lower with the spatiotemporal framework. In the dark unlit condition, the spatiotemporal
framework outperformed the baseline detection. This reversion further confirms the above
hypotheses because in dark unlit condition the actual traffic signals were the most conspicuous

objects and were more likely to form stable tracks for long range recognition.

Color classification performance of the true positive detections under the spatiotemporal
framework are illustrated in Figure 5-18. By comparing Figure 5-18 to Figure 5-14, similar
patterns are observed. Because the spatiotemporal framework only provides hints for detection and
tracking using classification results and does not alter the classification results, such similar

performance patterns should be expected.
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A natural question to ask is whether tracks with longer duration, in general, correspond to

temporally more accurate traffic signal state. A theoretical answer is yes because the pruning stage
and the long range tracked recognition stage are expected to fill in recognition gaps. In order to
test this hypothesis, the temporal accuracy signal state of the tracks belonging to true detections is
plotted against the duration of track (Figure 5-19). Temporal accuracy is defined as the ratio of the
number of candidates that are correctly classified over the number of all candidates in a track. As
shown in Figure 5-19, temporal accuracy converges towards 1 as the track length increases. Even
with a short track length (below 150 frames), a descent number of tracks also show ideal temporal

accuracy.
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5.5 Summary

In this chapter, experimental results are shown and analyzed. A baseline detection using
default parameters yielded an initial assessment of the accuracy performance of the conspicuity
based detector in different scenarios of lighting condition and target size. In general, the algorithm
was able to adapt to various scenarios with at least one target correctly located in a majority of
frames. Sunny condition is found to be the most challenging situation due to strong ambient light.
Cloudy condition is among the most desirable scenario for detection and the detection accuracy
increases as the target size increases. Reasonable performance was observed in dawn/dusk, dark
lit, and dark unlit conditions, although the increase of target size did not introduce more detection
benefits. In order to show the advantage of the proposed method, two other generic traffic signal
detection algorithms were compared to. Results indicate that the proposed method consistently
outperformed the other methods in all scenarios except sunny days. In sunny condition, all methods
performed equivalently, further confirming the difficulty of traffic signal detection under strong
sun lights. Visual inspections of a sample of poorly processed frames allow deeper insights into
several misdetection issues. In general, properly tuning the weights of conspicuity components can
effectively improve detection. Color saturation is recommended with a higher weight in dim
environment and lightness contrast is more recommended for bright environment. There were
issues that could not be addressed by the proposed algorithm, such as motion blur. These issues

are considered limitations of the automatic TSR in general.

Tests on the classifier using different training datasets show that the histogram based
approach is robust for green light classification. Sunny condition is still challenging for correct
classification. Using a more representative training dataset could improve the performance in

dawn/dusk and dark lit conditions. Dark unlit condition is the most desirable lighting environment
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for classification with almost ideal classification accuracy. Yellow and red signals were easily

confused with each other in cloudy condition. Absolute and relative confidences were both found
to be reasonable predicates of the reliability of a classification, with the relative confidence being

more positively related to the classification accuracy.

Experiments on the spatiotemporal framework reveal important insights into its theoretical
behavior. Detection accuracy can be degraded when 1) the track of an actual traffic signal lacks
stability and is excluded or when 2) the track of a non-signal gets selected due to its persistence in
the detection history. The former situation could decrease the recall rate and the latter situation
would increase the false positive rate. The spatiotemporal framework showed little effect on the
classification results, which is expected because the framework does not alter any classification
steps. Temporarily, tracks with longer durations showed more accurate temporal profile of traffic

signal state.
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CHAPTER 6

CONCLUSIONS AND DISCUSSION

A set of comprehensive TSR related algorithms are proposed in this thesis for road
information extraction from massive video data source. The algorithms consist of two major
subsets: 1) image based traffic signal detection and classification algorithms and 2) spatiotemporal
information based preprocessing and coordination framework. In the development of these
algorithms, minimal to no assumptions were made about the uniformity of the source cameras, the
accessibility of camera exposure controls, the availability of camera-dependent sample data, the
lighting condition of the road environment, or the target size in the image. Such openness of input
sets a high requirement for these algorithms to be generic. Though, with the ubiquitous color
cameras, the vision algorithms do assume RGB based color input. Additionally, when GPS
readings of camera position are available, the spatiotemporal framework only requires a relaxed
accuracy and density of the position data as long as linear interpolation can result in no more than

5 m of deviation from the actual position.

6.1 Detection and Classification Remarks

An innovative concept of conspicuity was developed to model the likelihood of a pixel
being the center of a traffic signal lens. The concept is based on how traffic signal lights in the
image appear distinctly to human eyes, more specifically their brightness as a result of both
luminance and color saturation and the brightness contrast against their bounding boxes.
According to this concept, conspicuity is modeled as a weighted geometric mean of three
convolutional features: the average lightness of the lens area, the contrast of lightness between the

lens area and the border area, and the maximum average saturation of the lens area and the annulus



129
area. The first two features are related to CIELab color space based lightness and the third related

to HSV color coordinates based saturation. The convolutions take into consideration of both
daytime and nighttime scenarios, especially with accommodation to the situation when light color
diffuses to the halo surrounding of a traffic light in the dark. Also, multiple scale convolutions
allow the final conspicuity value to adapt to any potential target size. Due to the use of geometric
mean, the relative ratios of conspicuity among pixels are invariant to the choice of value range of
any of its convolutional components. This is an important property in that it 1) gives a consistent
shape of the resulting normalized conspicuity map, 2) allows each component to be calculated in
any computational efficient numerical data types, and 3) purifies the control of weights as a control

of each component’s contribution rather than a mix with value scale adjustment.

An iterative localization algorithm was developed to locate the center and size of candidate
traffic signal lens. The algorithm works on the normalized conspicuity map generated by the
conspicuity model. It iteratively looks for peaks at different conspicuity levels. During the position
search, a proposed DRMShift algorithm is used to allow a traditional peak finding mean shift

algorithm to work in the case of dynamic radius.

Candidate traffic signal lens are classified using a proposed histogram similarity based
color classifier. The classifier trains a 2D histogram of the “a” and “b” coordinates of the CIELab
space for each traffic signal color based on sample training images. The same type of histogram is
calculated for each candidate and compared to the trained histograms to give a soft classification
of the candidate’s signal color, i.e., with a score for the candidate to be any of the three possible
signal colors. Although the requirement for training data seems to defy the design principle for
generic algorithms, the histogram similarity based soft classification theoretically reduces the

training data’s dependency of camera. In other words, training data from one camera are expected
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to work reasonably well on testing data from other cameras, because the algorithm is looking for

the relative likelihoods of three possible colors rather than drawing a hard categorization using

fixed thresholds.

Experiments were conducted on over 30,000 frames with various lighting conditions and
target sizes with default detector parameters. For 50% or more frames in each combination of
lighting condition and target size, the detection algorithm worked reasonably well in terms of
correctly identifying at least one out of three to four active traffic signals presented at the same
time. In a major portion of these detectable frames, the detected signals are over two and even up
to three or four. False positives occurred at a considerable amount. Rather than denying the
effectiveness of the detector, these false positives in fact reasonably reflect the theoretical behavior
of the detector, which is based on the model of conspicuity. Most false positives are conspicuous
objects in the scene, including street lights, vehicle tail lights, other non-target traffic signal lights,
and even the target traffic signal lights’ reflection on the camera-mounted vehicle’s hood. These
false positives are strong resemblance or even actual instances of traffic signals. Without other
prior knowledge or sophisticated scene analyzing ability like a human has, the algorithm is
reaching its limit in terms of finding the best candidates. In relation, because of these competitive
false candidates, when only a specified number of top candidates are to be extracted, the true
candidates may lose the competition and lead to reduced recall rates. A major portion of the non-

detectable frames belong to such case.

In order to justify the detection performance, two other algorithms that were used in the
literature as the state-of-the-art generic detectors were implemented, tested, and compared to.
These algorithms possess similar conspicuity concept as the proposed detector, but they either

underrepresent the contribution of color saturation or insufficiently reflect the lightness contrast.
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As expected, the proposed algorithm outperformed the other two algorithms in all scenarios except

one when one of the previous algorithms showed a better precision but an equal recall rate. The
results suggest that the consideration of lightness, contrast, and saturation are a more

comprehensive set of conspicuity features.

With the controllable weights of the conspicuity components, visual inspections to a
sample set of non-detectable frames were conducted to investigate how weight changing would
affect the detection performance. The inspected samples did reveal truly difficult frames that even
human may find it imprecise to annotate the target traffic signals. There were other frames, where
the targets were decent for detection but none was detected. For these frames, manual adjustment
of the weights helped. Two general adjustment rules were derived. First, in dim environments,
color saturation gives more distinction of traffic lights from other light source and the
corresponding weight should be higher than the lightness based components to improve detection.
Second, in daytime, the contrast plays an important role in differentiating the traffic signals from
bright background and should be given more weight. However, these tuning rules cannot be too
exact about the optimal ratios between weights for different scenarios, because the randomness of
the scene can be too wild and the optimal ratio for one image may become suboptimal or even

adverse for a similar image.

Sunny daytime turned out to be a challenging situation for all algorithms, because the
strong ambient light can even prevent human observers to correctly locate the traffic signals. In
cloudy days, a useful increasing trend of recall rate was observed as the target size increased, in
other words, as the vehicle approached the signalized intersection. This observation provides a
good evidence that detection is more reliable in short distance range, which complies with the

assumption used in the design of the spatiotemporal framework.
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Classification were tested on the true detections. Both camera-dependent and independent

samples were used to train and compared. Regardless of what training samples were used, the
classifier consistently showed ideal classification of green traffic signals, except in sunny days
when the color information was almost undistinguishable. However, red and yellow traffic signals
were easily confused, especially in cloudy or dawn/dusk conditions. Using different training data
introduced subtle difference. Dark unlit condition was among the most preferable classification
scenario in which all colors were ideally classified. Thinking in the application of behavior
monitoring, such as red-light-running, the classifier is indeed conservative even though red and
yellow signals can be confused. By reporting all recognized yellow lights indifferently with red
lights, all actual red-light-runners should be captured, although with potential yellow-light-runners

that may be of interests as well. Overall, the classifier could achieve a 94.4% accuracy.
6.2 Spatiotemporal Framework Remarks

A spatiotemporal framework is proposed to integrate the TSR into a production pipeline
where input videos are lengthy and most of the time do not capture any traffic signals. In general,
the framework uses position information to roughly extract instances of passing a signalized
intersection. For each of the instances, a temporally coordinated TSR is performed to increase the
efficiency and reliability of detection. There are several novel designs in this spatiotemporal
framework compared to other related systems. A governing assumption leading to these design is
that the data are processed offline in contrast to at real time. In an offline workflow, the position
data of all frames are available all at once rather than being sequentially generated. Searching for
the nearest signalized intersection can be performed at a sparser interval of frames and utilize
spatial and motion constraints to fill in the interval gap without additional search. This idea was

implemented as an extended kd-tree search that could speed up the vicinity calculation at a
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controllable factor. Recalling the observation of potentially better detection rate at near distances,

the offline workflow also allows the development of a temporal coordination that initiates the TSR
on frames that are within a short range of trajectory distance from an anchor frame determined by
the vicinity calculation. During this short range initialization, detected candidates are associated
into tracks so their temporal persistence can be assessed and used to prune the detection results.
With chosen and pruned tracks from the short range frames, long range frames, especially upstream
frames, are being processed in a tracked manner. In other words, TSR is only performed in more
restricted regions of interests in these frames based on track prediction. With the consideration of
the presence of multiple traffic signals and the signal color change, the temporal coordination
employed the Farneback dense optical flow algorithm to trace candidate footprints across frames

in a robust way.

Experiments were conducted on the 21 30-minute long videos among which 168 instances
of passing a signalized intersection were automatically identified and processed. Compared to TSR
without the temporal coordination, lower recall rates and higher false positive rates were found.
Such performance downgrade of using the spatiotemporal framework seems counterintuitive and
discouraging at first, but it reveals important insights into the theoretical behavior of the temporal
coordination process. The temporal coordination does not report all detection at the end, instead,
only those detections associated with a top number of stable tracks are reported. When a track is
less stable but contain true positive detections, these true positives are suppressed by the exclusion
of the track. On the other hand, if a stable track with false positives is included and pruned, more
false positives will be reported. A more reasonable way to assess the effect of temporal
coordination is to see how temporal accuracy can be affected by the length (and hence stableness)

of a track. By comparing the actual temporal profiles with the recognized temporal profiles of
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target traffic signals, a clear trend was found that as the duration of the track increases, the average

accuracy converges to 100%. Such increase of accuracy happened abruptly at around 150 frames.
In terms of classification, the spatiotemporal framework introduced little impact because the
algorithms used in the spatiotemporal framework do not alter the input to or the decision of the

classifier.
6.3 Potential Applications

The proposed algorithms can find applications in existing and future projects. Currently,
the Federal Highway Administration (FHWA) is constructing a data center to provide useful safety
information that from massive SHRP2 naturalistic driving videos as mentioned in the introduction.
Red-light-running events are of particular interests to the FHWA and capturing these events
requires the traffic signal state information. The proposed algorithms work seamlessly with such
system setting and are expected to efficiently generate instructive clues for red-light-running
detection. The generic feature of the algorithms in fact gives them a wider adaptiveness to more
video data sources. For example, people are becoming more prepared nowadays and many have
bought a dash cam to monitor their driving environment during daily commute to collect evidence
in case accidents happen. Even without a dash cam, drivers can also easily record the scene with
their smartphones mounted behind the windshield. Imagine, when all these videos can be uploaded
onto the internet cloud as the input to a peer-law-enforcing system, how important would it be for
the system to have a robust functionality to automatically extract roadway information. With the
proposed algorithms working with other computer vision technologies, such as vehicle detection,
such system can automatically generate instances of potential traffic violations and identify the

violator or witnesses based on the video data source. Because the proposed algorithms are generic,
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they impose no requirement for the videos to be collected by the same type of camera, which would

defy the concept of crowd sourcing.
6.4 Suggested Future Works

A most direct future work would be to test the algorithms on data other than the samples
provided by the SHRP2 project. Data quality of the naturalistic driving data may undermine the
potential of the proposed algorithms, especially by introducing complex scenarios that violate the
assumptions of the proposed algorithms. By testing video data of higher quality, such as dynamic
range to avoid overexposure, the capability of the proposed algorithms is possible to be fully

revealed.

Although data quality presents a major challenge, the generic requirement of the algorithms
has prevented them from employing advanced machine learning techniques, which rely on sizable
training data that are preferably device or quality consistent with the testing data. Therefore, a
natural next step is to integrate the conspicuity model into an ensemble model and/or machine
learning framework (e.g., AdaBoost and convolutional neural network). Under such framework,
more features can be added to the conspicuity model and weights of features can be trained. Recall
that different lighting conditions have different optimal weights, the learning framework can train
the weights based on information such as the whole frame lightness histogram, so the resulting

conspicuity map optimally highlights the target traffic lights.

Another potential future works would be to incorporate latest advance in semantic

segmentation to guide the detection.
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APPENDIX A

RATIO INVARIANCE OF GEOMETRIC MEAN TO VARIABLES’ SCALES

Given a weighted geometric mean,
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APPENDIX B

A BRIEF SUMMARY OF TRAFFIC SIGNAL FACE DESIGN

Traffic signals, according to the modern standards, are illuminated lights with dedicated
colors and shapes for commanding particular movements (7). The term signal section is used to
refer to the region of a single traffic signal lens (illuminated or not) and its bounding box. Multiple
signal sections are arranged together to form a signal face to control one or more traffic movements
from a single approach. More than one signal face can be given to one approach, corresponding to
different movements. Generally, a signal face can only contain three, four, or five signal sections,
except when a one-section signal face is used to give constant green to a conflict-free movement.
Typical signal face arrangements are horizontal or vertical in a line; the relative positions of signal
sections shall follow the orders shown in Table B-1 (7). In a vertical arrangement, optionally, tow
signal sections with the same color of indications can be placed horizontally to each other and
form a cluster. Signal faces placed over the traffic lanes are called overhead signal faces. Signal

faces on the roadside are called pole-mounted signal faces.

Table B-1 Orders of Signal Sections

Vertical: Top to Bottom Horizontal: Left to Right
e CIRCULAR RED 2 o RS
@) . < Steadyand/or flashing left-turn RED .[,»I,]DO
R ARROW o ¢ CIRCULAR RED
"'~ *  Steady and/or flashing right-turn RED e  Steady and/or flashing left-turn RED ARROW
ARROW e Steady and/or flashing right-turn RED ARROW
e CIRCULAR YELLOW e CIRCULAR YELLOW
@ ° CIRCULARGREEN o Steady left-turn YELLOW ARROW
@ ° Straight-thru GREEN ARROW e Flashing left-turm YELLOW ARROW
5= o Steady left-turn YELLOW ARROW e Left-turn GREEN ARROW
5 « Flashing left-turn YELLOW ARROW e CIRCULAR GREEN
& - Leftum GREEN ARROW e Straight-thru GREEN ARROW
@ . Stead_y rlght-turn YELLOW ARROW o  Steady right-turn YELLOW ARROW
f? . Fl_ashlng right-turn YELLOW ARROW e Flashing right-tum YELLOW ARROW
Q e Right-turn GREEN ARROW e Right-turn GREEN ARROW
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APPENDIX C

DETAILS OF TRAVERSED SIGNALIZED INTERSECTIONS

For the purpose of checking the accuracy of the OSM data as well as for the analysis of
experimental results, detailed information of the signalized intersections being traversed in the
HPV dataset were manually extracted using the satellite view of Google Maps™. Figure C-1 gives
an illustration of the terminologies. For each approach, the lanes are numbered from left to right,
starting at 1 and increasing by 1. The same numbering scheme also applies to the signal heads.
The number of lanes does not necessarily equal the number of signal heads in the same approach,
although they are commonly equivalent. Although overhead signals and roadside pole-mounted
signals are both common deployments, of the 7 traversed intersections, only overhead traffic

signals are used as the primary signals.

/

i-‘
Signals 1,2, 3, &4

Y/ d/0

'.—. Flared right-turn entrance

o
%

. .

Aligned stop bars

Figure C-1 lllustration of key point extraction terminologies.
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For each intersection approach, the positions (in latitude and longitude) of stop bar key

points and signal heads were extracted (Table C-2 and Table C-3). In addition, for each intersection,
the approximate intersection center was also located as the intersection between highway
centerlines (Table C-3). In Table C-2 and Table C-3, latitude and longitude coordinates are
arranged in two rows. Note, stop bars are considered on a per-lane basis and the key points of each
is the left end point and the right end point. Therefore, for a four-lane approach, the total number
of stop bar key points is eight. In Table C-2, the left and right end points are to the left and right
of the word “to”, respectively. When stop bars are longitudinally aligned, some key points overlap
with each other, for example, the right end point of lane 1 and the left end point of lane 2 of the
NB approach of S Main Street @ Professional Park Drive. There are also cases when stop bars are
offset by lane group (see Figure C-1). A stop bar normally lies within the width of its lane. An
exception is when a flare right turn entry is used to provide a larger turning radius. In this case, the
stop bar extends to the curb of the corner (see Figure C-1). Because of this, when calculating
distance from an upstream point to the stop bar, the line between the upstream point and the
midpoint of the stop bar is not a good reference. Instead, one should find the perpendicular line to
the stop bar that goes through the upstream point. The distance between the upstream point and

the intersection between the perpendicular line and the stop bar is the desired upstream distance.

Approaches traversed in the HPV dataset are highlighted in blue in both Table C-2 and
Table C-3. The order in which these approaches were traversed in each video is identical to their
row order in these two tables, except for intersection number 5, the WB approach was traversed

before the EB approach.
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Table C-2 Stop Bar Key Points

Intersection Stop Bars
ID and Name Dir Lane 1 Lane 2 Lane 3 Lane 4
B 37.197575 |~ 37.197561f 37.197561 = 37.197551| 37.197551 = 37.19753§| 37.197538 = 37.197526
1] -80.401362 -80.401332| -80.401332 -80.401293| -80.401293 -80.401254| -80.401254 -80.401211
. 37.197820 | = 37.197796| 37.197776 = 37197730
S Main Street -80.401539 -80.401553| -80.401487 -80.401509
@ Professional Park <B 37.197886 | =~ 37.197898| 37.197898 = 37.197908| 37.197908 = 37.197920| 37.197920 = 37.197932
brive -80.401212 -80.401261| -80.401261 -80.401292| -80.401292 -80.401331| -80.401331 -80.401374
we 37.197661 | = 37.197687| 37.209227 = 37.209233
-80.401053 -80.401042| -80.399182 -80.399139
. 37.200154 |  37.209157| 37.209157 = 37.209168| 37.209227 = 37.209233
-80.399249 -80.399214| -80.399214 -80.399171| -80.399182 -80.399139
[2] . 37.209372 | = 37.209340| 37.200348 = 37.209311
-80.399520 -80.399515| -80.399476 -80.399469
S Main Street S8 37.209534 | 37.209528| 37.209510 = 37.209505| 37.209505 = 37.209498
@ Hubbard/Ellett Road -80.399306 -80.399346| -80.399344 -80.399380| -80.399380 -80.399428
W8 37.200418 |~ 37.209446| 37.209444 = 37.209485
-80.399056 -80.399053| -80.399123 -80.399125
NB 37.217238 | 37.217246| 37.17262 | = 37217269
[3] -80.419116 -80.419076| -80.419079 -80.419034
. 37.217351 | 37.17317| 3717317 | 37.217277
Southgate Drive -80.419320 -80.419308| -80.419308 -80.419295
@ Beamer . 37217522 | = 37.217510| 37.2174% = 37.217436
Way/Research Center -80.419197 -80.419241| -80.419237 -80.419283
Drive R 37.217383 | 37.217425| 37.17425 | = 37217448
-80.418985 -80.418988| -80.418988 -80.419007
NB 37.216226 | 37.216271
(4] -80.423631 -80.423500
. 37.216242 | = 37.216215| 37.216233 = 37.216206
Southgate Drive -80.423893 -80.423879| -80.423827 -80.423811
@ Duck Pond/Dairy S8 37.216428 |~ 37.216418| 37.216390 = 37.216379
Drive -80.423741 -80.423778| -80.423766 -80.423805
o 37.216364 |~ 37.216400| 37.216387 = 37.216422
-80.423440 -80.423458| -80.423509 -80.423525
NB 37.213063 | = 37.213106 37.213106 = 37.213140
[5] -80.431868 -80.431805| -80.431805 -80.431695
- 37.213238 | 37.213209| 37.213209 = 37.213192| 37.213192 = 37.213170
Southgate Drive -80.432174 -80.432207| -80.432207 -80.432235| -80.432235 -80.432263
@ Huckleberry Trail R 37213252 | 37.213282| 37.213282 = 37.213303| 37.213292 = 37.213338
-80.431869 -80.431888| -80.431888 -80.431901| -80.431937 -80.431969
NB 37.191481 | 37.191467| 37.191467 = 37191453
(6] -80.403927 -80.403895| -80.403895 -80.403859
- 37.191791 | 37.191726
US 460 5B Exit Ramp -80.404010 -80.404045
@ S Main Street s8 37.191845 | 37.1918%6| 37.19185 =~ 37.191870
-80.403807 -80.403842| -80.403842 -80.403876
N 37.193838 | = 37.193829| 37.193829 | = 37.193816| 37.193816 = 37.193803| 37.193822 37.193802
-80.402929 -80.402896| -80.402896 -80.402857| -80.402857 -80.402815| -80.402806 -80.402758
(7] . 37.194102 |~ 37.194080| 37.194068 = 37.194043
-80.402995 -80.403016| -80.403000 -80.403026
S Main Street S8 37.194281 | 37.194289| 37.194289 = 37.194299| 37.194299 = 37.194312| 37.194263 = 37.194274
@ Industrial Park Road -80.402714 -80.402751| -80.402751 -80.402789| -80.402789 -80.402828| -80.402847 -80.402889
37.193922 37.193955| 37.193955 37.193987| 37.194008 37.194069
WB to to to

-80.402575 -80.402562| -80.402562 -80.402551| -80.402630 -80.402602
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Table C-3 Signal Head Positions

Intersection Intersecti Signals
ID and Name Dir on Center 1 2 3 4
NB 37.197871| 37.197858| 37.197848| 37.197836
1] -80.401252| -80.401214| -80.401176| -80.401139
EB 37.197687( 37.197666( 37.197645
S Main Street 37.197734| -80.401108| -80.401112| -80.401120
@ Professional Park B -80.401270| 37.197639| 37.197650( 37.197660( 37.197672
Drive -80.401362( -80.401403( -80.401441| -80.401481
WB 37.197794( 37.197816| 37.197840
-80.401498| -80.401492| -80.401484
NB 37.209527( 37.209534( 37.209540
-80.399323( -80.399280( -80.399246
[2] £B 37.209386( 37.209363
37.209401( -80.399103( -80.399097
S Main Street B -80.399293( 37.209285| 37.209280| 37.209275
@ Hubbard/Ellett Road -80.399315( -80.399343( -80.399375
W8 37.209389| 37.209406
-80.399517| -80.399519
NB 37.217463( 37.217471
[3] -80.419153| -80.419126
£B 37.217391| 37.217372| 37.217355
Southgate Drive 37.217366| -80.418986| -80.418979| -80.418973
@ Beamer 8 -80.419160( 37.217260| 37.217253
Way/Research Center -80.419096| -80.419140
Drive WB 37.217358( 37.217389
-80.419272| -80.419284
NB 37.216433| 37.216440
4] -80.423717| -80.423691
£B 37.216349( 37.216330( 37.216311
X 37.216298( -80.423536| -80.423527| -80.423519
Southgate Drive
@ Duck Pond/Dairy B -80.423681| 37.216179| 37.216171| 37.216165
Drive -80.423620( -80.423647| -80.423669
WB 37.216258( 37.216279| 37.216294
-80.423831| -80.423846| -80.423856
NB 37.213303( 37.213322| 37.213333
[5] -80.432098( -80.432060( -80.432022
B 37.213178( 37.212976( 37.212960( 37.212944
Southgate Drive -80.432032( -80.431924| -80.431964| -80.432000
@ Huckleberry Trail WB 37.213090( 37.213111| 37.213132
-80.432304( -80.432327| -80.432346
NB 37.191615| 37.191603
[6] -80.403863| -80.403837
£B 37.191712| 37.191694| 37.191676
US 460 5B Exit Ramp -80.403842| -80.403868| -80.403883
@ S Main Street B 37.191568( 37.191581
-80.403998| -80.404028
NB 37.194132| 37.194123| 37.194111| 37.194101
-80.402799| -80.402766| -80.402726| -80.402689
[7] EB 37.193865( 37.193847| 37.193828
37.194029( -80.402649| -80.402659| -80.402673
S Main Street s8 -80.402838| 37.193943| 37.193959| 37.193973( 37.193982
@ Industrial Park Road -80.402909( -80.402947| -80.402979| -80.403005
WB 37.194103( 37.194134| 37.194166
-80.403093( -80.403080| -80.403069




