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ABSTRACT 

A set of algorithms are proposed for traffic signal recognition (TSR) on challenging videos. 

During the method development, minimal to no assumptions were made about the uniformity of 

cameras, the accessibility of advanced controls (e.g., shutter speed), the availability of camera-

dependent sample data, the environmental lighting conditions, or the distance to the traffic lights. 

Such openness of input requires the algorithms to be relatively generic and adaptable to various 

devices and scenarios. 

The proposed methodology consists of two major subsets: 1) image based traffic light 

detection and classification and 2) spatiotemporal information based coordination. At the core of 

the methodology is a candidate traffic light detection method based on the concept of conspicuity, 

which involves lightness, color saturation, and contrast. Detected candidates are then classified 

based on robust relative color similarity. When processing a video, spatiotemporal information 

(i.e., GPS based camera position and frame timestamp) is used to effectively narrow down the 

temporal search range and coordinate TSR across frames. 

Naturalistic driving videos were tested against these algorithms to analyze the performance 

and reveal challenges. The proposed detection method outperformed two other generic detection 

algorithms in nearly all lighting-distance scenarios, although the absolute recall rates (around 50%) 

were low due to the compromised data quality. Classification achieved nearly 95% accuracy even 

with strong color variation in the data. The spatiotemporal coordination effectively reduced the 

data and helped to reach ideal temporal accuracy of TSR through persistent tracking. Challenge 

wise, sunny daytime was found undesirable due to strong ambient light and a single set of 
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parameters in the detection model was not optimal for all lighting conditions. Nevertheless, 

intuitive rules were found for tuning the model towards different lighting conditions. 

In summary, this study contributes to the state of knowledge in TSR by proposing a set of 

novel algorithms and analyzing their performance on unprecedented naturalistic driving data. 

These algorithms are expected to be more suitable than existing methods for processing videos 

acquired by a diverse camera set under various lighting conditions. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Vision based traffic signal recognition (TSR) systems are crucial components of intelligent 

transportation systems (ITS) and advanced driving assistance systems (ADAS). Roadside video 

cameras have been used to identify the traffic signal state along with the vehicle trajectories to 

capture red-light-runners (1). Onboard video cameras with traffic signal recognition back-ends 

found even wider applications such as infrastructure inventory, signal state and approaching speed 

advisory, and autonomous driving (2–5). Because video cameras possess sensing advantages such 

as high data frequency, rich colors, nonintrusive (or passive) interface, long and reliable distance 

range, and inexpensive infrastructure investment, they remain an economic and reliable choice 

over other sensing technologies such as radar, LiDAR, and telecommunication for TSR. 

However, image formation process, environmental condition, and camera pose and 

orientation can jointly introduce challenging target appearance. Severe color variation, such as 

distorted color, underexposure, and overexposure, is one of such challenges. Since most existing 

systems relied on color segmentation for initial signal detection, the ability to accommodate color 

variation and effectively separate traffic signal pixels from the background became a fundamental 

requirement in their system designs. The general solution is to calibrate (or trained) a color 

classifier. Previous studies based their calibration process either on training images or on local 

traffic signal design standards. The standards based methods were inherently camera independent, 

but their effectiveness has not been validated over a wide variety of camera settings and their 

transferability to other geographical regions could be limited. The training images based methods 
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relied on using the same camera setting in both calibration and testing. Porting any of these 

methods to a different camera setup is therefore non-trivial, because new training images need to 

be resampled. In addition, some of these systems used special camera exposure controls to alleviate 

color variation, making adoption on other less controllable devices impossible. 

While the data acquisition systems can always be calibrated to achieve optimal data quality 

for TSR, there are cases when the data are generic and with far less perfect quality. One of such 

situations is extracting traffic signal states from general purpose driving videos. The extracted 

information can be critical in assessing traffic violations and driver behavior, such as red-light-

running. A robust TSR system that accommodates generic data source will lead to efficient and 

innovative workflows in law enforcement agencies, auto insurance companies, and the general 

traffic safety research community. Such research need is recently boosted with the availability of 

massive video data collected by naturalistic driving studies (NDS). 

NDS are gaining popularity for traffic safety investigations. As people have long realized, 

human errors are a key contributor to traffic crashes. Both highway design and traffic controls 

need to take into account human’s physical and mental capabilities (6, 7). So far, researchers’ 

primary source of evidence of human errors are historical crash reports. These empirical 

observations have revealed valuable insights into problems such as aggressive driving, impaired 

driving, drowsy driving, distracted driving, and confusion, among others (8). However, crash 

reports can only recover loosely connected pieces of information, sometimes biased, and are not 

capable of providing a continuous spatial-temporal account for analyzing deeper aspects of driver 

behaviors. In addition, crashes are not the only consequences caused by human errors. Near misses 

and traffic violations are also hazardous events attributing to driver performance but normally 

underrepresented. Therefore, a more comprehensive way of collecting continuous driving data that 
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cover more events of interests has been pressingly needed. NDS meets such research need by 

providing honest on-board video recordings of the driver and the roadway environment, in addition 

to the vehicle’s position and kinematics (9, 10). A typical NDS data acquisition system (DAS) was 

illustrated by Antin et al. and copied in Figure 1-1 (11). Data collection runs continuously and 

unobtrusively over a relatively long study period (e.g., one year) whenever the instrumented 

vehicle is driven (12, 13). Pioneering researches using NDS data have reported novel findings 

about lane departures on rural two-lane curves, offset left-turn lanes, rear-end crashes on congested 

freeways, and driver inattention and crash risk (14–16). More researches are expected to be 

supported by NDS data for decades to come. 

 
Figure 1-1 Illustration of the DAS of 100-Car and SHRP 2 NDS (11). 

 

Unfortunately, the unparalleled temporal and spatial coverage of NDS data come at the 

expense of aggressive data compression for reduced but still enormously large data size. Two 

renowned NDS studies on passenger cars, for example, are the 100-Car study and the Second 

Strategic Highway Research Program (SHRP 2) NDS (17). The 100-Car study collected nearly 

43,000 hours of driving data over an 18 month period with 241 primary and secondary participant 

drivers. A total of 82 crashes, 761 near misses, and 8,295 other types of interesting events were 
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identified (12). Extreme behaviors such as severe fatigue, impairment, judgment error, risk taking, 

willingness to engage in secondary tasks, aggressive driving, and traffic violations were reported 

(18). SHRP 2 NDS used an updated DAS on over 3,300 vehicles participated at six study sites in 

different states, providing a wider range of geography, weather, state laws, and road features. Over 

a period of nearly three years, more than two million hours of driving data were collected, which 

captured 1,465 crashes and 2,710 near misses among other events (13, 19). The total video data 

size is over two petabytes. Before being transferred to a data center, all video data and other sensor 

data of individual vehicles were stored on their on-board storage units (the “DAS main unit” in 

Figure 1-2). Such system design imposed a requirement for aggressive data compression, 

particularly on the video data. A demonstration given by Antin et al. (11) is copied in Figure 1-2 

to show four views of video being composited into one image frame during data collection. The 

pixel resolution of the front-view video is 350-by-480, which is not generous for an 83-degree 

field of view (FOV) being covered. 

 
Figure 1-2 Snapshot of compressed SHRP 2 videos (11). 
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1.2 Problem Statement 

Both the compromised quality and the massive size of naturalistic driving videos are 

unaddressed challenges to all existing TSR systems. Imprecise camera imaging process, varying 

lighting conditions, and changing distance can lead to severely inconsistent appearance of traffic 

lights. No prior studies have looked into such extreme data setting. In addition, scaling existing 

systems to million hours of videos is not only a problem of improving per-frame recognition speed, 

but also a challenge to the spatiotemporal framework that coordinates the TSR. In order to address 

the above challenges, several research questions need to be answered: 

 What features of a traffic light are most invariant to various lighting conditions and 

pixel resolutions and how can these features be modeled and used in detection? 

 How can the robustness be improved on traffic signal color classification when the 

training color samples do not closely match the testing data? 

 What spatiotemporal information is useful in extracting relevant frame ranges for TSR? 

How can such spatiotemporal information be used to coordinate TSR so more reliable 

results can be achieved? 

  

1.3 Research Objectives 

The proposed study should achieve the following objectives: 

 Provide an up-to-date literature review on vision based TSR systems with 

comprehensive understanding about their application scenarios, detection and 

classification methods, and spatiotemporal coordination approaches. Identify 

limitations of the existing methods for improvement. 
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 Explain in a scientific way how traffic signals can be distinguished in a road scene and 

model this process mathematically. Implement this process in a computer program as 

a generic traffic signal detector. 

 Develop a classifier that gives soft classification to detected traffic signal candidates 

while maintaining the ability of reflecting the true signal color with high confidence 

measures. 

 Establish a spatiotemporal framework that effectively identifies relevant frames for 

TSR processing and coordinates TSR with temporal tracking in a way that increases 

the stability of recognition results. 

 Collect detailed ground truth data from naturalistic driving videos with various lighting 

conditions and test the above three TSR related components on these videos with 

analyses of the performance. 

 Recommend applications of the developed methodology. 

1.4 Research Scope 

The current research is under the following scope restriction: 

 In terms of video data, this study only considers videos taken by an on-board camera 

that faces the direction of travel. The field of view captures the front roadway and 

should be able to include the overhead signal faces when the vehicle is in the middle 

of the intersection. 

 This study focuses on offline data reduction for driving context and driver behavior 

analysis rather than real time vehicle navigation. However, it might be possible to port 

the proposed methodologies to real time applications with certain modification and 

computational speed improvement. 
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 Although pedestrian signals are also important for behavioral analysis, the only 

command for drivers are from vehicular traffic signals. So, traffic signal state only 

refers to vehicular traffic signals at highway intersections. Ramp metering is also 

excluded from this study. 

 Arrow shape traffic signals are currently not separately considered in this study. Due 

to low pixel resolution and light diffusion, the arrow shape signals are not expected to 

be clearly outlined. Distinction between arrow and circle has also been found 

unnoticeable beyond 50 m (20). 

1.5 Contributions 

This research will contribute to the state of knowledge by: 

 Developing a collection of generic traffic signal recognition algorithms that can be 

applied on a wide range of video data without device dependent calibration. Yet, the 

algorithms allow intuitive control to accommodate various physical scenarios. 

 Providing an unprecedented insights into the challenges of traffic signal recognition 

using videos with compromised quality and difficult lighting conditions. 

1.6 Thesis Organization 

The rest of this thesis is organized into five chapters. Chapter 2 gives a comprehensive 

review on TSR related research. Topics include TSR applications, detection methods, 

classification methods, and spatiotemporal coordination. Chapter 3 explained the proposed 

methodologies. First, the conspicuity based detection model is explained with comprehensive 

formulation. Then, a histogram similarity based signal classifier is proposed. Both the detector and 

the classifier form the core of TSR and are embedded in a spatiotemporal framework. Key stages 
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of the framework are described, including map projection, vicinity calculation, movement 

classification, short range initialization, and long range tracked recognition. Chapter 4 describes 

the data collection effort. Chapter 5 tested the detector and the classifier both separately on 

individual frames and under the spatiotemporal framework. Performance results are given and 

analyzed. Chapter 6 concludes this study with discussions. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Overview 

In general, TSR is composed of two major stages: detection and classification. During the 

detection stage, traffic signal candidates (individual lenses or whole signal faces) are extracted 

from the image as separate regions. In the classification stage, the detected candidates are tested 

against other criteria to determine their signal state (i.e., red, green, or yellow) and/or shape (i.e., 

arrow or circle). Although TSR can be performed on individual images separately, a more common 

circumstance is working with videos where the temporal information can facilitate successive 

detections and prune candidates. Physical information such as camera calibration, position, and 

orientation and traffic signal maps are also helpful for eliminating irrelevant frames or narrowing 

the ROIs in the image. 

Depending on the actual application, TSR can be implemented or extended differently 

according to the underlying data acquisition systems (i.e., data variety, format, and quality), 

expected environmental conditions, workflows, and other problem settings. A thorough review of 

the existing systems is provided in this chapter as a knowledge foundation. Past studies are first 

summarized by application domain. Then, techniques used in detection, classification, and 

spatiotemporal analysis are reviewed in separate sections. 
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2.2 Applications 

Automatic TSR has been employed in both real-time navigation systems and offline data 

analysis systems. In real-time systems, TSR serves as an additional eye of the system user as they 

approach and negotiate a signalized intersection. In offline systems, TSR provides additional 

horsepower for information extraction. 

2.2.1 Real-Time Applications 

Intelligent driving (both ADAS and AVS) and pedestrian assistance are two major real-

time TSR applications. For intelligent driving, recognized traffic signals are used to reinforce 

driver perception, provide navigation and speed advisory, or directly control the car (3–5, 20–41). 

For pedestrian assistance, the system is typically embedded in a mobile device to aid visual 

deficient to cross streets (42–48). Some examples of real-time applications are given below. 

Intelligent Driving 

ADAS prototypes have been proposed to assist vision deficient drivers or provide driving 

advisory. Almagambetov et al. used a windshield mounted camera to assess traffic signal colors 

for drivers with color-vision deficiency (21). In order to minimize color transmission errors, a 

camera that encoded colors natively in the Y’UV color space was used. Color ranges based on 

traffic signal design standards were used as a reference for color classification. Koukoumidis et al. 

proposed a coordinated ecofriendly driving advisory system for approaching signalized 

intersections (3). Their system featured a windshield mounted smartphone running an application 

that exchange the recognized traffic signal state with other smartphones in the application network 

to predict future signal state. Based on the prediction, a safe and emission minimized speed control 

advisory was given. Camera exposure time was fixed on the smartphone to facilitate detection and 
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GPS sensor was used to trigger the application when the vehicle was in a 50 meter range of a 

signalized intersection. 

Several groups aimed at fully autonomous driving. An initial attempt of TSR for 

autonomous vehicles was proposed and implemented by Lindner et al. in the IVI-Edmap research 

project (41, 49). They employed both color-based and gray value based detectors for TSR, 

supported by a HDR camera and a VGA camera, respectively. In addition, differential GPS, 

enhanced digital maps, and structure-from-motion (SFM) techniques were mentioned as important 

aids to the TSR process. Shen et al. implemented their TSR system on an OSU-ACT autonomous 

vehicle platform using a commodity camera (37). Similar studies were also conducted by Xu et al. 

and Guo et al. to accommodate complex urban scenarios in China (20, 33). Fairfield and Urmson 

proposed their TSR system as a core component behind Google’s autonomous driving car project 

(4). Their system used a prior 3D map of traffic signal heads constructed during a trial run. 

Detection essentially became projecting the 3D target position onto the captured image according 

to the camera position, orientation, and intrinsic parameters. Images acquired using a fixed-

exposure camera was primarily used to assess the signal color within the projected traffic signal 

head regions. Levinson et al. refined this approach but providing a probabilistic method to 

accommodate the 3D to 2D projection error due to data acquisition accuracy (5). 

Pedestrian Crossing 

Mobile devices were exploited to assist vision deficient pedestrians to cross streets 

controlled by pedestrian signals. Shioyama et al. were among the earliest attempts (48). Their 

system recognized pedestrian signals on the far end of the crosswalk and estimated the length of 

the crosswalk based on the pavement marking pattern and camera calibration parameters. However, 

they did not implemented the system on an actual mobile device. Eddowes and Krahe looked into 



 

 

12 

daytime and nighttime pedestrian signal recognition and implemented the system on a portable 

digital assistant (PDA) (47). However, their method did not work well in daytime due to the failure 

of RGB based simple color segmentation. More reliable and real-time systems have been proposed 

by Roter et al. and Ivanchenko et al. using Nokia N95 mobile phones, but only daytime scenarios 

were considered (44, 45). Mascetti et al. used more recent Android device to deploy their system 

which required advanced controls over the camera’s ISO, aperture, and shutter speed according to 

the environmental light level (42). Angin et al. considered using server side computation to 

improve the image processing speed of their cascade classifier based recognition system, which 

relied on the continuous availability of internet access for data transmission (46). 

2.2.2 Offline Analyses 

Traffic surveillance, inventory, and safety investigation could also be facilitated by a TSR 

system (1, 2, 4, 5, 50, 51). A few key studies in the literature are briefly listed below. 

Surveillance 

Surveillance, specifically red-light-running detection, has been the major offline 

application of TSR. Videos collected for this purpose were primarily recorded by a stationary 

camera mounted on the upstream roadside aiming at the traffic signals and the approaching traffic. 

Yung and Lai proposed a system that integrated the detection of traffic signal state and the 

estimation of vehicle movements at the stop bar to identify red-light-runners during daytime (1). 

Chung et al. proposed to incorporate fuzzy logic in the detection stage and used average 

background extraction to constantly monitor and adapt to illumination changes (50). 
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Inventory 

On-board video or sparse photo sequence based highway inventory is a common practice 

in the United States.  Photo logs or video logs have been used by states to geocode highway 

infrastructure such as traffic signs and guardrails and monitor pavement conditions. Tu and Li 

were among the first to propose using TSR for mapping traffic signals (2). They used color and 

gradient histograms to detect traffic signal heads of four major perception angles. However, their 

system was focused on estimating the spatial relationship between the camera and the detected 

traffic signal heads and was not capable of classifying the traffic signal state. Fairfield and Urmson 

and Levinson et al. also constructed a 3D map of traffic signal heads using video data so such prior 

map could be used to facilitate real-time TSR in autonomous vehicles (4, 5). However, 

constructing the 3D map involved a considerable amount of human efforts. 

Incident Investigation 

Responsibilities in traffic incidents need to be verified by solid evidence. Agencies such as 

insurance companies even offer rewarding driving trackers to their customers in order to collect 

actual driving data. In addition, with affordable dashboard cameras that are sometimes integrated 

with GPS navigation systems, drivers can also proactively monitor their daily commutes in 

preparation for incidents. Front-view videos collected under such circumstances become strong 

evidence during incident investigation. At signalized intersections, the traffic signal states can be 

the key of judging whether the driver was violating the traffic law. Yelal et al. proposed a 

recognition and tracking system to log traffic signal state from on-board videos for after crash 

investigation (51). Unfortunately, their system was very preliminary and no performance measure 

was reported. 
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2.2.3 Summary 

Examples of TSR applications in different domains are given and a more exhaustive list is 

summarized in Table 2-1. In addition to this list, there are other more general TSR studies focusing 

on experimenting specific methods on certain TSR stages rather than developing a complete 

system. They will be covered in later sections of this chapter where related. Among all these 

existing studies, TSR for incident investigation or more generally, evaluation of driving videos, is 

very limited. There are two potential reasons. 

The first is that the analysis periods are short and could gain little benefit from a TSR 

program compared to manual reviewing. For example, in incident investigation, the video only 

needs to be analyzed within a short timeframe of the incident and human reviewers are typically 

sufficient and reliable. However, this might no longer be the case with the increasing availability 

of lengthy driving videos and the need to identify events without reported timestamps (e.g., near-

misses). Manual review could be infeasible and need to be assisted, if not fully replaced, by an 

automatic procedure. 

Another more fundamental reason of limited research into applying TSR on general 

purpose driving videos is the generic feature of the data and the recognition difficulty it raises. In 

other applications, like ADAS, the system typically had control over the camera in order to obtain 

data tailored to the need of TSR, such as calibrating the exposure time according to the traffic 

signal’s light emission pattern so the target appeared consistently in various illumination 

conditions. Even when controls over the camera were not available, a considerable amount of 

sample data could be collected in advance using the same camera so calibration against the device 

could be done, such as finding the camera-dependent color ranges of various traffic signals (see 

Section 2.3.1). However, for a more generic data source, where neither the control over the camera 
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is possible nor the camera-specific sample data are available or sufficient, the above systems may 

fail to set up properly. Additionally, with videos collected using different cameras, the appearance 

of traffic signals can be extremely inconsistent, especially the color. Unpredicted illumination 

conditions and visibility of the environment can add to the complexity. As a result, traditional 

traffic signal detection features such as color ranges used in most existing studies can be too variant 

to calibrate or use. Low resolutions should also be expected from a generic data source. General 

purpose driving monitoring data are primarily aimed to provide human recognizable visual 

evidence rather than high definition images. Therefore, videos can come at relatively low pixel 

resolutions and even with motion blurs, which would render detection inaccurate. Previous TSR 

methods using edge-based shape detection may fail in such situation (see Section 2.3.2). Therefore, 

more generic detection features are needed. In the rest of this chapter, legacy methods for traffic 

signal detection, classification, and spatiotemporal analyses are reviewed. 
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Table 2-1 Overview of Major Existing Systems (continued)    

Researchers Camera Other Data 

Environmental 

Condition 

Max. 

Sensing 

Range 

Signal Colors 

and/or Shapes 

Intelligent Driving 

Almagambetov et al. (21) Y’UV camera 

Res. = 640x480 

/ Day/night/dawn/dusk 

Sunny/cloudy 

122 m Green/red/yellow 

Circular/arrow 

Guo et al. (20) Res. = 1000x1000 Position 

Heading 

(optional) 

Morning/afternoon/night 120 m Green/red 

Circular/arrow 

Diaz-Cabrera et al. (52) CMOS camera 

Res. = 752x480 

f = 8 mm 

Fixed shutter speed 

GPS position 

(optional) 

Day/night 

Sunny/snowy 

115 m Green/red/yellow 

Circular 

Jang et al. (22) High speed camera 

Max. FR = 100 FPS 

Res. = 640x480 

Alternating 

exposure times 

/ / 50 m Green/red 

Circular/arrow 

John et al. (23) [unspecified] GPS position 

Traffic signal 

locations and 

headings 

Afternoon/dusk 100 m Green/red 

Circular 

Wang et al. (25) Res. = 1292x964 

f = 8.5 mm 

/ Morning/afternoon 

Sunny/cloudy 

90 m Green/red 

Circular/arrow 

Kim et al. (26) Res. = 620x480 / Night / Green/red 

Circular 

Koukoumidis et al. (3) Smartphone camera 

Fixed exposure time 

Smartphone 

GPS reading 

/ 50 m Green/red/yellow 

Circular/arrow 
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Table 2-1 Overview of Major Existing Systems (continued)    

Researchers Camera Other Data 

Environmental 

Condition 

Max. 

Sensing 

Range 

Signal Colors 

and/or Shapes 

Intelligent Driving 

Cai et al. (53) Res. = 1392x1040 

f = 25 mm 

FOV = 20.4 deg. 

Fixed gain 

Fixe shutter speed 

/ Sunny/cloudy 

Direct 

sunlight/backlighting 

/ Green/red/yellow 

Arrow 

Siogkas et al. (28) Res. = 640x480 

f = 12 mm 

/ Day/night / Green/red 

Circular 

Fairfield and Urmson (4) Res. = 2040x1080 

FOV = 30 deg. 

Fixed gain 

Fixed shutter speed 

3D prior signal map 

constructed during a 

mapping trial 

Morning/afternoon/night 200 m Green/red/yellow 

Circular/arrow 

Levinson et al. (5) Res. = 1280x1024 

Fixed gain 

Fixed shutter speed 

3D prior signal map 

constructed during a 

mapping trial 

Noon/sunset/night 140 m Green/red/yellow 

Circular 

Kim et al. (29) HDR CMOS camera 

Res. = 620x480 

/ Day / Green/red 

Circular 

Gong et al. (30) Res. = 780x580 

f = 15 mm 

/ Day / Green/red/yellow 

Circular 

Yu et al. (31) Res. = 680x480 / Day/dusk/nigh / Green/red/yellow 

Circular/arrow 

Nienhuser et al. (32) Res. = 512x384 / Day / Green/red/yellow 

Circular 

Xu et al. (33) Res. = 640x480 / Day / Green/red/yellow 

Circular 
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Table 2-1 Overview of Major Existing Systems (continued)    

Researchers Camera Other Data 

Environmental 

Condition 

Max. 

Sensing 

Range 

Signal Colors 

and/or Shapes 

Intelligent Driving 

Charette and Nashashibi (34)  [unspecified] / Day / [unspecified] 

Park and Jeong (36) CCD camera 

Res. = 320x240 

/ Day 

Cloudy 

/ Green/red 

Circular 

Shen et al. (37) Res. = 640x480 GPS reading 

IMU reading 

Day 70 m Green/red/yellow 

Circular 

Joo et al. (38) Res. = 640x480 / Morning/noon 

afternoon/dusk 

140 m Green/red 

Circular 

Kim et al. (39) [unspecified] / Day/night 

Cloudy 

100 m Green/red/yellow 

Circular 

Hwang et al. (40) Res. = 720x480 GPS reading Day 130 m Green/red-yellow 

Circular 

Lindner et al. (41) HDR and VGA cameras 

f = 16 mm (color) 

f = 12 mm (gray) 

Differential GPS 

position and heading 

(1 m and 1 deg. 

accuracy) 

/ / Green/red/yellow 

Circular/arrow 

Mobile Pedestrian Guide 

Mascetti et al. (42) Android mobile camera 

Res. = 2448x3264 

Fixed ISO 

Fixed aperture 

Fixed shutter speed 

Accelerometer 

and Gyroscope 

reading 

/ / Green/red/yellow 

Ying et al. (43) [unspecified] / Day/dusk / Green/red/yellow 

Round 
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Table 2-1 Overview of Major Existing Systems (continued)    

Researchers Camera Other Data 

Environmental 

Condition 

Max. 

Sensing 

Range 

Signal Colors 

and/or Shapes 

Mobile Pedestrian Guide 

Roters et al. (44) Nokia N95 

Autofocus Camera 

Res. = 320x240 

/ Day / Green/red 

Pedestrian 

      

Ivanchenko et al. (45) Nokia N95 

Res. = 640x480 

/ Day / White 

Pedestrian 

Shioyama et al. (48) Res. = 640x480 

f = 5.9 mm 

/ Day / Green/red 

Pedestrian 

Surveillance 

Chung et al. (50) Stationary camera 

Res. = 320x240 

/ Day/night / Green/red/yellow 

Circular 

Yung and Lai (1) Stationary camera 

Res. = 640x480 

/ Day / Green/red/yellow 

Circular 

Inventory 

Tu and Li (2) Res. =  720x400 / Day / Only detect whole 

signal heads 

Crash Investigation 

Yelal et al. (51) Res. = 720x480 / Day / / 
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2.3 Detection 

Detection is the most fundamental and essential step of all TSR systems. Although certain 

prior knowledge, such as a 3D map of traffic signals and camera calibration data, have been used 

to directly locate traffic signals in the image without image processing (4), such advantage is not 

commonly available in most cases. This section is focused on summarizing image based TSD. 

2.3.1 Color Segmentation 

Color segmentation was the most commonly used method in extracting image regions that 

are likely to contain target traffic signals and was often combined with other detection methods to 

locate traffic signal candidates. The general idea of color segmentation is to check for each pixel 

in the input image whether its color value falls into an empirical region in a chosen color space. A 

pixel can be labeled with a particular signal color during this process or it can be assigned a fuzzy 

membership score for each possible signal color. Figure 2-1 demonstrates this concept with an 

example image being filtered by three color histograms. Each histogram shows the 2D distribution 

of saturation and hue values of all sample pixels from a particular traffic signal color. For a traffic 

signal color, each bin’s value of its 2D histogram is back projected onto the input image pixels 

whose saturation and hue values fall into that bin, forming a color membership score map where 

brighter regions are more likely to contain target traffic signals. 
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Figure 2-1 Demonstration of color segmentation based TSD. 

 

In the literature, a number of variants of the color segmentation approach have been 

proposed. The major difference between these variants is the color coordinates being used.  

RGB and Related Transformations 

RGB values are the native color coordinates in most image data and were used by several 

past studies. Some studies calibrated the camera according to the traffic light emission pattern so 

direct RGB values were sufficient to distinguish traffic signals from the background and each other 

(3, 4, 27, 54). However, camera control is not always possible and uncontrolled exposure can cause 

significant variation of the target’s RGB values, resulting in less stable color ranges for 

segmentation. In order to overcome this issue, some researchers looked into transformations of the 

RGB coordinates. Joo et al. applied rotated principle component analysis on RGB and the gray 

scale values and used the first and second principle component images for segmentation (38). 

However, their method lacked physical meaning and did not report good robustness. Roters, et al. 

also applied principle component analysis on sample RGB point cloud (44). They found three 

Input frame

H-S histograms of 
different signal colors

Color score maps
of different signals
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principle dimensions and trained thresholds to distinguish three signal colors and dark background 

color under the principle dimensions. However, their detection recall rates were low. In general, 

RGB based color segmentation is subject to color variation problems introduced by environmental 

illumination changes and needs camera exposure controls to mitigate the challenge. 

HSV and Cylindrical Color Coordinates 

The HSV color coordinates rearrange the RGB values in a cylindrical manner so chromatic 

information, i.e., saturation and hue, can be separated from the luminance, providing a more 

reliable way to compare colors without considering the lighting change. As a result, HSV has 

attracted some TSR researchers. Gong et al. trained statistical curves on all HSV coordinates based 

on samples with various lighting, background, and brightness conditions (30). Wang, et al. applied 

principle component analysis on the 3D sample pixel cloud in the HSV space to find 2D principle 

components to distinguish green signals and red signals (25). Under the principle component 

coordinates, the shortest distance from a testing pixel to sample pixels of a signal color was 

calculated and compared to a maximum threshold to decide whether the pixel belonged to the 

signal color. Jang et al. used a high speed camera with per-frame alternating exposure to capture 

both normal exposure and low exposure images, practically allowing any instance of a scene to 

have a two-level dynamic range (22). Then static thresholds on all three HSV coordinates were 

trained using the low exposure images. Mascetti et al. used a fixed-exposure camera and trained 

empirical ranges on HSV values, among which only the hue channel showed different ranges for 

different signal colors and with the red signal range and yellow signal range overlapping (42). To 

distinguish yellow and red, they compared the pixel counts of yellow and red in each candidate 

region. The signal color with the most pixel count won. Guo et al. trained the hue range assuming 

it followed a Gaussian distribution and combined the trained hue range with fixed minimum 
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thresholds of saturation and value to extract candidate pixels (20). Similar to HSV are other 

cylindrical color coordinate systems such as HSL, IHSL, and HSI, they have also been used by 

some researchers in traffic signal detection (37, 40, 50, 55–57). Although cylindrical color 

coordinates provide good separation between luminance and chromatic information, they are 

essentially linear transformations of the RGB color coordinates and do not provide additional 

power in separating colors with subtle difference but sensitive to human vision. 

CIE Based Color Spaces 

Color spaces defined based on the International Commission on Illumination (CIE) 

measurements are aimed to provide device independent color matching that approximates human 

color perception and were used in some of the previous TSR studies. These color spaces also 

separate luminance from chromatic information, except that the chromatic plane is not a radial 

model of the hue and the saturation as in HSV, but are measurements of the relationship to certain 

color primitives. For example, in the CIELab space, the “L” represents the lightness value (i.e., 

luminance) and the “a” and “b” coordinates correspond to the relative positions of a color between 

two pairs of opponent color primitives, respectively. Siogkas et al. multiplied “L” to the summation 

of “a” and “b” to form a feature map (28). Fast radial symmetry transform was used to locate peaks 

corresponding to green and red traffic signals using this map. Similarly, John et al. used a 

multiplication of the gray scale value, the “a” value, and the saturation value of HSV as a feature 

map (23). Since the “a” value contained a sign, positive pixels on this map became indications of 

red traffic signals and the negative pixels implied the possible regions of green traffic signals. Tu 

and Li constructed three-dimensional color histograms using the CIE 1976 (L*,u*,v*) color space 

for both template signal head images and test image patches (2). The similarity between the color 

histograms was used in conjunction with the similarity of edge gradient histograms to generate a 
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similarity map. However, their templates were signal heads with yellow backplates perceived from 

front, sides, and back with no active signal lights, so the color feature was related primarily to the 

signal head rather than individual lenses, and could not be used to classify traffic signal state. Other 

CIE XYZ color space variants, such as the YCrCb color space and the Farnsworth’s perceptually 

uniform color system (UCS), have also been employed (29, 48). However, transformation from 

RGB color values to the above color spaces requires a reference white color, because RGB is 

device dependent. In addition, transformation to these color spaces may still retain RGB color 

encoding errors. A recent study by Almagambetov et al. reported state-of-the-art detection 

performance by using natively captured Y’UV color space values and corresponding U-V plane 

regions defined according to the Institute of Transportation Engineers (TIE) and the British 

Standards Institute (BSI) standards (21). Unfortunately, they relied on the minimized color coding 

errors of an Y’UV camera, which is not commonly available in most TSR systems. 

 In general, color segmentation is an efficient way to identify candidate signal regions, but 

its performance can be sensitive to the empirical parameters, whose reliability depends on both the 

quantity and quality of sample data. As a result, other researchers tried to explore camera 

independent features for traffic signal detection. 

2.3.2 Texture and Shape Detection 

Texture and shape are geometric features that are independent of camera’s color formation 

process and provide a more generic way for detection. In the literature, edge based shape detection, 

template matching, and structure element based morphological operations are typical approaches 

towards texture or shape recognition. 
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Edge Based Detection 

Traffic signal lenses are often assumed to preserve their round shapes in the image with 

their edge pixels closely following the circumference of a circle. Under this assumption, edge 

pixels are first extracted based on pixel gradients. Various edge detection methods, such as the 

Canny edge detector, the Sobel edge detector, and the Laplace edge detector, have been used by 

previous researchers (3, 41, 56, 58). In order to find circles that are well represented by the edges, 

the Hough transform was often used (3, 41, 58). Chiang et al. proposed an ellipse detection method 

based on genetic algorithms to generalize circle detection in the presence of perspective distortion 

(56). Unfortunately, the above studies in fact performed edge detections on the color segmented 

image rather than the original image, which inherently includes the problems faced by color 

segmentation. In a slightly different way, Gomez et al. applied border following algorithms on 

edge pixels of the original image to find rectangular regions corresponding to traffic signal faces 

(59). Issues were found with false detections on other rectangular areas such as the spacing 

between roadside trees. 

Edge based shape detection can be the most color independent approach, given the edges 

are extracted from the original image rather than a color segmented map. However, without the 

gauge of color segments, the edges in the image can be extremely noisy and can trigger a 

considerable amount of false circle detections, simply because the edge pixels of different objects 

happen to align on most part of a circle’s circumference. Also, for true circular objects, when the 

pixel resolution is not sufficient, the circular geometric pattern of the edge can be corrupted, 

resulting in false negatives. In summary, edge based shape detection needs clean edge data with 

decent resolution to work properly, while the shape detection algorithms are also computationally 

intensive. 
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Template Matching 

The texture of the traffic signal face, e.g., a dark horizontal or vertical rectangular region 

with a bright circular area in one of several key positions, is distinct to human drivers and useful 

for detection. Linder et al. employed the AdaBoost framework to train a cascade classifier for 

different states of a three section vertically arranged signal face and used it to detect traffic signal 

heads in gray scale images (41). However, since the texture is the reflection of the traffic signal 

section arrangement, one classifier should be trained for each arrangement type to cover all 

possible cases. In addition, such machine learning framework was found to introduce little 

detection improvement compared to image processing while increasing the computational load 

(34). The texture based approach has two other major theoretical issues. The first is the nighttime 

condition when the rectangular backplate region merged into the dark background. The second is 

partial occlusion to the signal face while the signal light itself is visible. In this case, the texture is 

incomplete. Partial occlusion can occur by blockage from other objects or because part of the 

signal face is out of the view (e.g., exceeds the top edge of the image as the vehicle drives under 

and traffic signal). 

Spot-Light Detection 

So far, the spot-light detection based approach is arguably the state-of-the-art generic 

detection algorithm for traffic signals. Charette and Nashashibi was among the first to propose 

using spot-light detection in natural driving environment for traffic signal recognition (34, 35). 

Spot lights were detected using a morphological white top-hat algorithm on gray scale images to 

identify signal lenses. A fixed size (11-by-11 pixels) structure element was used in the top-hat 

operation. This approach, assisted with their adaptive template classification framework, was 

reported to match a machine learning based alternative. However, their fixed structure element 
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size prevented them from accommodating various sizes of target and the gray scale image does 

not provide color saturation information which could be very helpful in distinguishing signal lights 

from other white lights, as will be incorporated in the proposed methodology. 

2.3.3 Summary 

Various detection methods were surveyed in the literature, covering both 1) color 

segmentation based methods that depend on camera-dependent empirical parameters and 2) texture 

or shape detection based methods that are more camera independent. The color segmentation 

methods heavily rely on the quality and quantity of sample data to properly train their empirical 

parameters. When a different camera is used, these methods need to be recalibrated. In addition, 

variation in lighting conditions can affect the reliability of the empirical parameters, which would 

require exposure control on the camera to compensate. Texture and shape based methods are more 

independent of cameras. Edge based shape detection methods solely rely on the geometric 

information of edges, but are prone to edge noise and compromised target resolution. Texture 

based template matching incorporates shape information in a more robust way, but is vulnerable 

to nighttime conditions and partial occlusion. Spot-light detection is arguably the state-of-the-art 

generic algorithm for locating traffic signals. However, existing implementations used fixed-scale 

morphological top-hat operations on gray scale images to identify spot-lights, which could not 

accommodate various target sizes and could theoretically lead to confusion between traffic signal 

lights and other non-colorful light sources. 
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2.4 Classification 

Detection produces a list of candidate regions that will be classified to a particular traffic 

signal color or even a none-traffic-signal. Note, in some studies, classification also included the 

decision of the signal’s shape (i.e., arrow or circle), which is out of the scope of this study and will 

not be further discussed below. Classification is only performed within each candidate region, at 

most with a buffered margin included to bring a relevant neighborhood context. In other words, 

classification is a local operation to label a patch of the input image. Color and position are the 

two major clues for classification. 

2.4.1 Color Based 

When properly calibrated, empirical color ranges not only provide an efficient filter for 

traffic signal detection, but also reliably classify the traffic signal color on the fly. Classification 

was inherently done during detection in most of the studies that performed color segmentation (1, 

3, 25, 27, 28, 31, 36, 37, 39, 40, 44, 48, 50, 52, 55, 58, 60). Some studies followed texture or shape 

based detection methods with color based classification (43, 59). 

Simple thresholds are sometimes not sufficient to distinguish between similar traffic signal 

colors and additional decision rules are needed. For example, red and yellow traffic signals have 

been noticed easily confused in certain color coordinates (42). Gomez et al. compared the numbers 

of pixels belonging to the overlapping yellow and red signal color ranges to decide which signal 

color was more likely to be true (59). Almagambetov et al. used sequential rules that separated 

green from other signal colors by the value coordinate of HSV and then separated red from yellow 

by the hue coordinate of HSV (21). 
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 While color based classification is the most effective approach, it may be unreliable when 

the empirical parameters are not properly established, as in the detection stage. With that concerns, 

some researchers explored the relationship between signal colors and their relative positions in the 

signal face to determine the color, which applied also on gray scale images. 

2.4.2 Position Based 

When a detected candidate region represents a signal lens, a common approach of position 

based classification is to assume the candidate at different positions of a particular face 

arrangement and check for the best hypothesis. Under a position hypothesis, the expected whole 

signal face region is cropped out and tested regarding its texture. Some researchers trained a 

support vector machine to classify the texture according to the image patch’s histogram of 

gradients (HOG) (22, 32). Cascade classifiers trained using AdaBoost on Haar features have also 

been used to classify the texture (30, 34). Lindner et al. employed a feed-forward neural network 

to test the position hypotheses (41). When the whole signal face instead of the active lens is 

detected, the position check becomes more straightforward (43). 

Although position based classification is robust against color distortion or variation, it 

needs to consider various signal face arrangements to be comprehensive. Even when all possible 

arrangements are considered, confusions can still occur when the mapping relationship between 

position and color is not one-to-one. For example, in Figure 2-2, two 4-section vertical arranges 

that are commonly used in the United States present different colors at the second and the third 

positions. In addition, nighttime, low resolution, partial occlusion, and perspective deformation 

could affect the perception of the entire signal face and hence the accuracy of position estimate. 
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Figure 2-2 Two 4-section vertical arrangements with different color positions. 

 

2.4.3 Aggregated Features 

Due to the respective limitations of color and position based classifications, some 

researchers resort to holistic aggregation of both. Charette and Nashashibi proposed an adaptive 

template that modeled the entire 2D traffic signal structure as hierarchical components, each of 

which contributed to the final classification score (34). This template allowed programmers to 

specify the contributions of color, shape, and position of each component using their weights. 

However, establishing such a template can be complicated and one template can only cover a 

particular signal face arrangement. Convolutional neural network (CNN) in fact provides a way of 

classifying different signal face arrangements in a uniform framework. However, it has only been 

used for traffic signal classification by John et al. on color features (23). There are other reasons 

why CNN based traffic signal classification is rarely visited. First, traffic signals are feature poor. 

Color, shape, and contrast almost exhaust the feature list of a traffic signal head and none of these 

features are extremely unique to traffic signals. The power of CNN is its capability of automatically 

identifying distinct and consistent features of a target object out of a large training sample set. 

With limited and inconsistent features and the easy resemblance by other road objects, traffic 

signals may benefit little classification advantage from CNN compared to a knowledge based 

approach. In addition to the possible marginal gain, the requirement of large and representative 
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training data introduces considerably higher cost of using CNN. Further, a CNN classifier is a 

black-box model whose explanatory ability is weak. It is hard to explain what contribute to the 

recognition process based on weights given to nodes in each neural network layer. Last but not 

least, the training process of CNN is slow. This makes model recalibration time consuming. 

2.4.4 Summary 

Classification of traffic signal colors can be based on color information, relative lens 

position, or both. Color based classification is efficient but sensitive to the color variation and 

empirical parameter quality. Position based classification is robust against color variation but 

requires decent perception of the entire traffic signal face. When both are used, they compensate 

each other’s limitations but at the same time raise the question of which contributes more to the 

final classification score. Solutions have been proposed by hierarchically organizing traffic signal 

components into an adaptive template and manually assigning weights on each component for 

their color, shape, and position. However, this approach is inflexible to adapt to various signal face 

arrangements. CNN in another alternative for classification using aggregated features, but the 

trained model is black-boxed and its transferability between datasets is hard to justify. In addition, 

CNN normally requires large training data to reach a stable model. 
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2.5 Spatiotemporal Coordination 

Spatiotemporal information can facilitate traffic signal recognition in many ways for video 

analysis. First of all, with a lengthy video in which signalized intersections were passed 

occasionally, a majority of the frames do not even capture any traffic signal and most of these 

frames can be effectively excluded with spatial information such as GPS data and a map of 

signalized intersections. Second, the positions of a traffic signal in successive frames are not 

independent from each other and are generally close to each other. Accordingly, if the traffic signal 

is detected in one frame, its position in the next frame can be roughly bounded, which will help to 

narrow down the detection region. Last but not least, the change of traffic signal color follows a 

fixed sequence and can be used to prune the classification results across multiple frames. Some 

existing methodologies related to spatiotemporal coordination are reviewed. 

2.5.1 Activation Range 

Distance to a signalized intersection is a common trigger for traffic signal recognition 

systems. Shen et al. used GPS and IMU to estimate rough distance to a signalized intersection and 

initiated detection at about 70 m upstream of the intersection (37). Levinson et al. and Fairfield 

and Urmson used similar equipment to initiate detection up to 140 m and 200 m upstream, 

respectively to account for normal driver stopping sight distance (4, 5). A kd-tree search algorithm 

was employed by Fairfield and Urmson to quickly find the closest intersection (not necessarily a 

signalized intersection) to the current position of the vehicle and camera before a prior 3D map of 

individual traffic signals were built (4). Koukoumidis et al. used the smartphone GPS to initiate 

their system within 50 m of a signalized intersection (3). To the best of the author’s knowledge, 

the spatial information has not been used in offline traffic signal recognition involving lengthy 

videos. More efficient search algorithms can be applied with the simultaneous availability of all 
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frames’ positions (in contrast to sequential availability in real-time applications) and detection can 

start from a downstream location backward with close frames serving as a more reliable starting 

point. 

2.5.2 Candidate Association 

Associating or tracking candidates was found to be effective in filling a small amount of 

detection gaps and suppressing a considerable number of false detections (41). Association can be 

done purely on the 2D image plane or can be facilitated by 3D data when available. In a 3D space, 

when the position and orientation of the camera is available, target signal positions can be more 

reliably predicted on the next frame (4, 5, 32, 52). However, 3D information is not always available. 

In the absence of 3D data, tracking can only be done based on 2D image data. Fortunately, a good 

range of tracking methods are available. Roters et al. applied Kanade–Lucas–Tomasi (KLT) 

feature tracking for pedestrian signal detection (44). However, for traffic signals, whose shapes 

are much simpler than a pedestrian signal, KLT features are limited. Other researchers applied the 

continuously adaptive mean shift (CAMShift) algorithm to track candidates based on their color 

histogram (5, 30). This approach works under the assumption that the color distribution of the 

tracked candidate changes slowly. It will fail when the signal color suddenly changes from one 

color to another. Some researchers looked into using the Kalman filter to stabilize tracking even 

in face of occlusion, but the linear motion model they used did not correctly reflect how traffic 

signals moved in the image as the vehicle approached (21). Sudden signal color change (and hence 

position change) will also be missed by a Kalman filter. In contrast to the above point or region 

trackers, dense optical flow, which describes the pixel-wise motion between two images, has never 

been used in the literature for traffic signal tracking. The advantage of dense optical flow is that it 

can be done on gray scale images with robustness to color variation and when occlusion or sudden 
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disappearance happens to a region, the movement of its neighborhood can still be reliably 

estimated and used as a reference to justify the occluded region’s movement. Also, multiple 

regions are tracked simultaneously in one flow calculation. 

2.5.3 Pruning 

The Hidden Markov Model (HMM) has been used by researchers to assist current 

classification by considering classification history (32). The actual signal color was considered a 

hidden state in the HMM process and the initial classification was considered a measurement of 

that state. The hidden state was estimated based on the measurement and the consideration of the 

classification history and the fixed signal color rotation order. However, the study assumed a 

reliable tracking of the candidate. When the tracking is uncertain, the HMM smoothing will 

adversely introduce addition complexity to the temporal analysis. 

2.5.4 Summary 

Spatiotemporal information has been used in different ways to facilitate traffic signal 

recognition. Distances between frames and traffic signals are effective filters for candidate frames. 

However, the past studies only used distances as an activation range in online applications. For 

offline data extraction, the distance information can be retrieved in a faster way and used to 

coordinate TSR in a manner that maximizes the recognition possibility without following the 

sequential time order. No past study has looked into that opportunity. When tracking is considered 

to facilitate TSR, existing studies used methods that rely on either rich geometric features or stable 

color features to associate detected candidates across frames. These methods are either not 

sufficient to traffic signals or may fail in case of signal color change between frames. A more 

robust tracking approach should be explored, especially in case of multiple traffic signals 

appearing at the same time. Last but not least, traffic signal sequence could be pruned according 
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to the color change order and the confidence of candidate classification. Past studies reported 

positive effects of certain smoothing methods, but assuming that the candidates were already 

associated in a track. No study investigated how the color change order and classification 

confidence could be cleanly integrated into the association process to improve the accuracy of 

tracking. 

2.6 Summary 

This chapter surveys past studies on vision based TSR from different perspectives and 

identifies several research gaps. From the application point of view, research using TSR for 

massive driving data reduction has never been reported. Possible reasons include the absence of 

massive driving videos and hence the need for automatic data reduction and the difficulty 

introduced by uncontrolled data quality and scene complexity. As naturalistic driving studies are 

gaining popularity and producing millions of hours of video data, the first reason no longer holds. 

Consequentially, it introduces the need and opportunity to explore methods that accommodate the 

data quality and scene complexity. With such application setting, many preconditions required by 

past TSR systems are invalidated, such as the accessibility to camera controls, the availability of 

sizable device dependent training data, comprehensive prior knowledge of the scenes, high 

resolution videos, etc. As a result, the following research gaps need to be filled: 

 In terms of traffic signal detection, many previous methods would fail without proper 

training data or detailed texture information in the image. Spot-light detection on gray 

scale images is more generic, but its lack of consideration of the color saturation effect 

could theoretically lead to confusion between traffic signal lights and other non-

colorful light sources. A generic detection method that makes better utilization of 

information rather than grayscale values is needed. 
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 In terms of classification, the color based approach makes the best tradeoff between 

computational cost, classification accuracy, and robustness. However, with empirical 

range based hard classification, the result can be sensitive to the representativeness of 

the training data. A color classifier that makes decision based on the relative similarities 

of a candidate to three possible signal colors is theoretically more robust and needs to 

be investigated. 

 As an offline application, spatiotemporal information can be retrieved and used in 

innovative ways to facilitate TSR. Past studies sequentially processed frames in an 

online workflow after a distance range was reached. In an offline setting, the distance 

information can be calculated faster without the constraint of sequential order, which 

is worth investigation. Also, with the flexibility of processing frames in any order, it is 

more intuitive to start TSR on frames within a more reliable distance range and use the 

stabilized results to facilitate TSR in distant frames. 

 Past studies using temporal tracking and pruning to facilitate TSR reported positive 

outcomes. However, their tracking methods may fail in the presence of low resolution 

data or instant signal color change. Existing tracking methods are also confusable in 

the presence of multiple resembling traffic signals. Dense optical flow provides a more 

robust tracking feature in the above situations and is worth exploiting for tracking 

traffic signal candidates.  In relation, a clean way of integrating the constraint of signal 

color change order and classification confidence into the tracking process is needed. 
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CHAPTER 3 

PROPOSED METHODOLOGY 

3.1 Overview 

A conspicuity based generic traffic signal detector is proposed together with a color 

histogram based signal color classifier, composing a TSR module for processing individual images 

or video frames. The conspicuity based detector is the core of the methodology. Conspicuity is 

defined and modeled according to a scientific hypothesis about why humans can easily perceive 

traffic lights from images without reliance on precise color information. It assesses each pixel’s 

likelihood of being the center of a traffic signal lens. Conspicuity is modeled as a weighted 

geometric mean of multiple convolutional features and gives an invariant ranking to all pixels with 

respect to any value scale change in these features. A candidate localization algorithm is developed 

to extract traffic signal candidates with proper positions and sizes using the conspicuity map. The 

color classifier trained a 2D histogram of the “a” and the “b” channels of the CIELab color space 

for each traffic signal color. For a detected candidate, the same type of histogram is calculated and 

compared to the trained histograms. A similarity score is defined as the normalized complement 

of the hyper angle between the candidate’s histogram and a trained histogram, giving a measure 

of the classification confidence. 

In the situation of processing lengthy driving videos, a spatiotemporal framework is 

proposed (Figure 3-1). The framework uses the GPS position data of the frames in the video and 

a map of signalized intersections. In practice, the frame positions are normally interpolated using 

relatively sparse GPS readings. OpenStreetMapTM is selected as an on-demand mapping of 

signalized intersections. The framework first checks the vicinity of each frame to a signalized 
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intersection and recognizes clips of frames corresponding to actual traversals through a signalized 

intersection. In addition, the vehicle movement in each clip (i.e., left-turn, thru, or right-turn) can 

be classified based on the deflection of the frame trajectory. A key frame, called anchor frame, is 

defined as the closest frame to a signalized intersection and, with reference to this frame, a two-

stage temporal TSR coordination is performed. At the short range initialization stage, TSR is 

separately conducted on frames within a short trajectory distance from the anchor frame. Also, 

candidates in the current frame are associated with temporal tracks in the history. Stable tracks are 

selected and pruned. At the long range tracked recognition stage, frames beyond the short range 

are processed, but detection is restricted in an estimated region of interests (ROI) predicted by each 

of the pruned tracks. Both stages rely on a dense optical flow based method to predict the position 

and size of each candidate in an adjacent frame. The employed dense optical flow engine is robust 

against the change of signal color and is able to accommodate the situation when the candidate 

crosses the image boundary and disappears from the view. 

The Spatiotemporal Framework
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Figure 3-1 Methodology overview. 
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3.2 Candidate Detection 

In this section, the concept of conspicuity is defined for each pixel of the input image (or a 

region of interest in it) in order to reveal the areas where active traffic signal lenses can be. A set 

of localization procedures are then used on this conspicuity map to extract traffic signal candidates. 

Several filtering criteria are applied on each candidate to exclude false positives. Resulted 

candidates are further classified for their signal color with color information (Section 3.3). 

3.2.1 Conspicuity Map 

Human eyes can easily identify active traffic lights from videos even when signal colors 

are distorted. Our brains’ ability in structuring the roadway scene and restricting target search in 

relevant regions is certainly a major contributor. For example, in Figure 3-2, the image on the right 

is a shuffled version of the image on the left. Traffic signals can be easily identified in the original 

image. However, it may take more time and focus to find the same lights in the shuffled image, 

because the structure of the scene is destroyed and the targets can be anywhere in the image. Even 

with the state-of-the-art semantic segmentation methods (e.g., (61)), the efficiency and accuracy 

of analyzing the scene structure by human are not yet fully transferable to computers, not to 

mention the added expensive computational overheads. 

 
Figure 3-2 Illustration of traffic signal identification with and without scene structure. 

 



 

 

40 

Nevertheless, traffic lights are distinct road elements that catch human’s attention even in 

adverse conditions when the structure of the scene is ambiguous (e.g., in raining or snowy days), 

leading to the proposal of the concept of conspicuity in this study. Consider an example traffic 

light illustrated in Figure 3-3 with limited resolution and noisy color appearance. If we define a 

disk area A1 centered at p(i, j) with a radius of r pixels roughly over the lens region and a border 

area A2 between A1 and A1’s bounding box, the most attractive feature to human eyes is arguably 

the high brightness of A1 as well as its contrast to that of A2. Such attractive property is considered 

the conspicuity. 

 
Figure 3-3 Illustration of the basic conspicuity concept. 

 

According to color science research, human’s perception of brightness is not only related 

to how much light the observed surface emits and/or reflects (luminance) but is also related to the 

purity of the surface color in contrast to white (saturation) (62). This is called the Helmholtz-

Kohlrausch (HK) effect. According to this effect, even if a light meter measures the same amount 

of luminance from both a color surface and a white surface, the color surface will still appear 

brighter to normal human vision than the white surface does. Similarly, a surface with more color 

saturation appears brighter under the same lighting condition. An example of this effect is 

illustrated in Figure 3-4. In the left patch, the red tile may look much brighter than its neighbor tile 

of another color. However, when both tiles are converted to grayscale on the right to roughly 

A1 
A2 

p(i,j) 

r 

m 



 

 

41 

present their luminance, the brighter looking red tile becomes darker than the other tile. Therefore, 

when modeling the brightness of digital image pixels, both color luminance and saturation should 

be considered to approximate human vision. 

 
Figure 3-4 Illustration of the Helmholtz-Kohlrausch effect. 

 

A model of conspicuity is proposed in Equations 3.1 - 3.2 to simulate how traffic lights in 

an image are perceived by a human reviewer. Equation 3.1 defines the conspicuity value of a 

particular pixel in a given image, assuming that it is the center of a potential signal lens with a 

radius of r pixels. Basically, this equation calculates the weighted geometric mean of three features. 

The first and the second features are based on pixel lightness and account for the effect of 

luminance. The third feature, which is in itself a maximum of two sub features, accounts for the 

effect of saturation. Details of each feature will be explained in the following subsections. While 

the brightness is jointly measured by the first and the third features, the brightness contrast is only 

measured in the second feature. The reason for not including saturation in the contrast measure is 

that the border area A2 is not necessarily low in saturation in situations like nighttime (light 

diffusion and “halo” effect) or yellow signal boxes. Equation 3.2 aggregates conspicuity values 

across a range of radii to account for target size variation. 
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𝐶𝑖,𝑗 | 𝑟 = √𝐿𝐷𝑖,𝑗 | 𝑟

𝑤𝐿 × 𝐿𝐶𝑖,𝑗 | 𝑟
𝑤𝐿𝐶 ×max(𝑆𝐷𝑖,𝑗 | 𝑟 , 𝑆𝐴𝑖,𝑗 | 𝑟)

𝑤𝑆𝑤𝐿+𝑤𝐿𝐶+𝑤𝑆
 ( 3.1 ) 

 𝐶𝑖,𝑗 = max(𝐶𝑖,𝑗 | 𝑟 | 𝑟 ∈ 𝑅𝐴𝐷) ( 3.2 ) 

where, 

𝐶𝑖,𝑗 | 𝑟 = The conspicuity of pixel p(i, j) corresponding to a potential lens radius of r, 

𝐿𝐷𝑖,𝑗 | 𝑟 = the average lightness in A1, 

𝐿𝐶𝑖,𝑗 | 𝑟 = the contrast of average lightness between A1 and A2, 

𝑆𝐷𝑖,𝑗 | 𝑟 = the average color saturation in A1, 

𝑆𝐴𝑖,𝑗 | 𝑟 = the average color saturation in an annulus area centered at p(i, j) with an inner 

radius of r pixels and an outer radius of 2r pixels. This accounts for the “halo” 

effect in nighttime and will be explained later, 

𝑤𝐿 = a positive weight of conspicuity contribution from 𝐿𝐷𝑖,𝑗 | 𝑟 

𝑤𝐿𝐶 = a positive weight of conspicuity contribution from 𝐿𝐶𝑖,𝑗 | 𝑟 

𝑤𝑆 = a positive weight of conspicuity contribution from 𝑆𝐷𝑖,𝑗 | 𝑟 and 𝑆𝐴𝑖,𝑗 | 𝑟 

𝐶𝑖,𝑗 = the maximum conspicuity of p(i, j) among a set of potential lens radii, 

𝑅𝐴𝐷 = a set of potential lens radii. 

  

An argument should be made about favoring a weighted geometric mean over a weighted 

arithmetic mean in the model of Equation 3.1. The first and most intuitive motivation is that the 

geometric mean reflects an “and” relationship between the averaged variables more accurately 

than the arithmetic mean does. For example, when one of the three features in Equation 3.1 is zero, 

the resulting conspicuity is suppressed to zero, which is desired. If an arithmetic mean was used, 

the resulting conspicuity would have been less suppressed. A second and probably more important 

reason for using the geometric mean is that the ratio between conspicuities of any two pixels is 

invariant to any value scale change of the underlying variables. A proof is given in Appendix A. 

Such ratio invariant is important because it means, regardless of what value scale each variable 

chooses, the relative conspicuity between pixels will remain the same. Conspicuity peaks are 

always peaks in spite of any changes to their absolute values. Another advantage of using 

geometric mean is that the contribution to conspicuity of each feature is insensitive to the absolute 

value of its weight (or exponent), but to how its weight compares to that of the other features. If 
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all weights are the same, all features contribute the same; a feature with a larger weight always 

contributes more than one with a smaller weight does. This provides an intuitive control over the 

contributions of each feature. In the contrary, in an arithmetic mean model, two features with the 

same weights but different value scales contribute differently. In spite of the above advantages of 

using a geometric mean model, regression (or weight training) is less convenient for geometric 

mean due to its nonlinear form. Luckily, this can be easily overcome by applying a logarithm 

operation on both sides of Equation 3.1 and transform it into a linear model. 

Before each feature is further explained, sample conspicuity maps are demonstrated in 

Figure 3-5 for different signal states. Note the coexistence of multiple traffic lights with varying 

distances. The centers of active signal lights are always among the bright spots in the conspicuity 

map, if not the brightest. Since a conspicuity map is a soft voting of candidate centers of traffic 

signals, the conspicuity value decreases as the distance from the actual center increases. In addition, 

other objects in the scene that resemble traffic signal sections in terms of brightness and contrast 

are also given high conspicuity values, such as the holes between tree leaves and vehicle headlights, 

but normally not as high as those around the actual center pixels of traffic lights. In Section 3.2.2, 

denoising and localization procedures will be introduced. 
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Figure 3-5 Demonstration of the conspicuity maps on sample images. 

 

Average Lightness 

 The average lightness, 𝐿𝐷𝑖,𝑗 | 𝑟, is the arithmetic mean of lightness of all pixels within a 

distance of r from the subject pixel p(i, j) (see Equations 3.3 – 3.4 and Figure 3-7). Many color 

models offer a channel that measures lightness, such as CIELab, HSL, and HSV. The L channel 

of CIELab is chosen for measuring the lightness and scaled to [0, 1]. The reason of choosing 

CIELab is because the lightness is independent from saturation under this color model and prevents 

the resulting 𝐿𝐷𝑖,𝑗 | 𝑟  from being affected by the saturation attribute. Such independence is 

illustrated in Figure 3-6 with comparison to HSL and HSV. Colors covered by a RGB model are 

converted to HSL, HSV, and CIELab in this figure. As can be seen, HSL and HSV embed bilinear 

Original Image Conspicuity Map 
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and linear relationships between lightness and saturation, respectively. In contrast, every lightness 

level in CIELab (imagine a plane perpendicular to the lightness axis) can cover the whole range of 

saturation for a set of colors. 

 

 
Figure 3-6 Comparison of HSL, HSV, and CIELab. 

 

 

 
𝐿𝐷𝑖,𝑗 | 𝑟 =

∑𝜎𝑖′,𝑗′ | 𝑟 × 𝐿𝑖′,𝑗′

∑𝜎𝑖′,𝑗′ | 𝑟
 ( 3.3 ) 

 
𝜎𝑖′,𝑗′ | 𝑟 = {

1, 𝑖𝑓 |𝑝(𝑖, 𝑗), 𝑝(𝑖′, 𝑗′)| ≤ 𝑟
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                       

 ( 3.4 ) 

where, 

𝐿𝐷𝑖,𝑗 | 𝑟 = the average lightness in A1, 

𝐿𝑖′,𝑗′ = the lightness value of pixel p(i’, j’), 

𝜎𝑖′,𝑗′ | 𝑟 = the flag indicating whether pixel p(i’, j’) is in A1. 
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Saturation 
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Saturation 
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Lightness Contrast 

 The lightness contrast, 𝐿𝐶𝑖,𝑗 | 𝑟, is the difference of average lightness between A1 in A2 in 

Figure 3-3. However, inspired by the directional template used by Lindner et al. (41), the actual 

calculation is slightly more sophisticate to enforce a good contrast in all four quadrants, as 

formulated Equations 3.5 – 3.9 and illustrated in Figure 3-7. In Figure 3-7, each quadrant area is 

bounded by a red bounding box and the four quadrants overlap on the row or the column of the 

subject pixel p(i, j). Any negative difference in a quadrant is rounded up to zero. 

 𝐿𝐶𝑖,𝑗 | 𝑟 = max(𝐿𝐶𝑖,𝑗 | 𝑟 | 𝑘 | 𝑘 ∈ {1, 2, 3, 4}) ( 3.5 ) 

 𝐿𝐶𝑖,𝑗 | 𝑟 | 𝑘 = max(0, 𝐿𝐷𝑖,𝑗 | 𝑟 |𝑘 − 𝐿𝐵𝑖,𝑗 | 𝑟 |𝑘) ( 3.6 ) 

 
𝐿𝐷𝑖,𝑗 | 𝑟 |𝑘 =

∑(𝜎𝑖′,𝑗′ | 𝑟 | 𝑘 + |𝜎𝑖′,𝑗′ | 𝑟 | 𝑘|) × 𝐿𝑖′,𝑗′

∑(𝜎𝑖′,𝑗′ | 𝑟 | 𝑘 + |𝜎𝑖′,𝑗′ | 𝑟 | 𝑘|)
 ( 3.7 ) 

 
𝐿𝐵𝑖,𝑗 | 𝑟 |𝑘 =

∑(𝜎𝑖′,𝑗′ | 𝑟 | 𝑘 − |𝜎𝑖′,𝑗′ | 𝑟 | 𝑘|) × 𝐿𝑖′,𝑗′

∑(𝜎𝑖′,𝑗′ | 𝑟 | 𝑘 − |𝜎𝑖′,𝑗′ | 𝑟 | 𝑘|)
 ( 3.8 ) 

 

𝜎𝑖′,𝑗′ | 𝑟 | 𝑘 = {

  1, 𝑖𝑓 |𝑝(𝑖, 𝑗), 𝑝(𝑖′, 𝑗′)| ≤ 𝑟 𝑎𝑛𝑑 𝑝(𝑖′, 𝑗′) 𝑖𝑠 𝑖𝑛 𝑞𝑢𝑎𝑑𝑟𝑎𝑛𝑡 𝑘

0, 𝑖𝑓 𝑝(𝑖′, 𝑗′)𝑖𝑠 𝑜𝑢𝑡 𝑜𝑓 𝑞𝑢𝑎𝑑𝑟𝑎𝑛𝑡 𝑘                                      

−1, 𝑖𝑓 |𝑝(𝑖, 𝑗), 𝑝(𝑖′, 𝑗′)| > 𝑟 𝑎𝑛𝑑 𝑝(𝑖′, 𝑗′) 𝑖𝑠 𝑖𝑛 𝑞𝑢𝑎𝑑𝑟𝑎𝑛𝑡 𝑘

 ( 3.9 ) 

where, 

𝐿𝐶𝑖,𝑗 | 𝑟 = the lightness contrast of p(i, j) assuming a potential target lens of radius r, 

𝐿𝑖′,𝑗′ = the lightness value of p(i, j), 

𝐿𝐶𝑖,𝑗 | 𝑟 | 𝑘 = the lightness contrast of p(i, j) in quadrant k, 

𝐿𝐷𝑖,𝑗 | 𝑟 |𝑘 = the average lightness in quadrant k of A1, 

𝐿𝐵𝑖,𝑗 | 𝑟 |𝑘 = the average lightness in quadrant k of A2, 

𝜎𝑖′,𝑗′ | 𝑟 | 𝑘 = the flag indicating whether where p(i’,j’) resides. 
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Figure 3-7 Illustration of quadrants. 

 

Average Saturation 

The last feature in Equation 3.1 is the average saturation, which is the maximum of the 

average saturations in A1 and in an annulus area, A3, as illustrated in Figure 3-8. The annulus area 

has an inner radius of r and an outer radius of 2r. The reason of including the saturation in A3 is 

to adapt to nighttime scenarios when the color information is lost due to the pixels in A1 being 

overexposed to nearly white and the diffusion of light forms a halo with the desired color 

information around the lens. Using the maximum in A1 and A3 automates the adaptation to both 

scenarios. Mathematical formulation is given in Equations 3.10 – 3.12. 

Quadrant 1 

Quadrant 2 Quadrant 3 Quadrant 4 

m 

r 

p(i, j) 

p(i', j’) 
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𝑆𝐷𝑖,𝑗 | 𝑟 =

∑(𝜎𝑖′,𝑗′ | 𝑟 | 𝑘 + |𝜎𝑖′,𝑗′ | 𝑟 | 𝑘|) × 𝑆𝑖′,𝑗′

∑(𝜎𝑖′,𝑗′ | 𝑟 | 𝑘 + |𝜎𝑖′,𝑗′ | 𝑟 | 𝑘|)
 ( 3.10 ) 

 
𝑆𝐴𝑖,𝑗 | 𝑟 =

∑(𝜎𝑖′,𝑗′ | 𝑟 | 𝑘 − |𝜎𝑖′,𝑗′ | 𝑟 | 𝑘|) × 𝑆𝑖′,𝑗′

∑(𝜎𝑖′,𝑗′ | 𝑟 | 𝑘 − |𝜎𝑖′,𝑗′ | 𝑟 | 𝑘|)
 ( 3.11 ) 

 

𝜎𝑖′,𝑗′ | 𝑟 | 𝑘 = {

1, 𝑖𝑓|𝑝(𝑖, 𝑗), 𝑝(𝑖′, 𝑗′)| ≤ 𝑟                                                

0, 𝑖𝑓|𝑝(𝑖, 𝑗), 𝑝(𝑖′, 𝑗′)| > 2𝑟                                              

−1, 𝑖𝑓 |𝑝(𝑖, 𝑗), 𝑝(𝑖′, 𝑗′)| > 𝑟 𝑎𝑛𝑑 |𝑝(𝑖, 𝑗), 𝑝(𝑖′, 𝑗′)| ≤ 2𝑟

 ( 3.12 ) 

where, 

𝑆𝐷𝑖,𝑗 | 𝑟 = the average color saturation in A1, 

𝑆𝐴𝑖,𝑗 | 𝑟 = the average color saturation in A3, 

𝜎𝑖′,𝑗′ | 𝑟 | 𝑘 = the flag indicating where p(i’,j’) resides. 

 

 
Figure 3-8 Illustration of the annulus area. 

 

Similar to lightness, saturation can also be measured in a family of cylindrical color models, 

among which HSV and HSL are most commonly used. The S channel of HSV is used in this study 

to measure saturation, reasons being that it gives low saturations to white pixels. This is an 

important property in both daytime and nighttime detection. In nighttime, the lens area of both 

traffic lights and street lights can both be overexposed into white, making them undistinguishable 

by saturation. Therefore, the saturation of white pixels should be suppressed to give more attention 

r 

r 

p(i, j) 

p(i', j’) 

J 

I 

A1 

A3 
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to the annulus area of the lights. In daytime, especially in sunny days, it is similarly important to 

suppress the saturation of the background sky as well as other overexposed objects due to reflection 

of the strong sun light. Figure 3-9 gives an illustration of the above situations. Another advantage 

of using HSV in nighttime is that it enforces delineation between the lens area and the halo area in 

terms of saturation, which is helpful to more accurate localization. 

 
Figure 3-9 Saturation difference between HSV and HSL in nighttime. 

 

Nighttime Daytime 

  
Original Image 

  
Saturation using HSV 

(preferred) 

  
Saturation using HSL 

(not preferred) 
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3.2.2  Localization 

A conspicuity map highlights the potential centers of traffic signal lenses but is not a direct 

binary mask of where the lenses are. In Figure 3-5, there are other conspicuous regions that do not 

belong to a traffic lights. Fortunately, locating candidate lenses can be done in several simple and 

effective steps, based on the fundamental assumption that the traffic lights exist in the scene and 

are among the most conspicuous objects. Of course, such assumption can be violated in many 

cases, such as when the image contains not traffic lights, when the traffic lights were viewed from 

a sharp angle, or simply when there are other brighter objects competing in the scene. These cases 

are arguably universal difficulties for all purely image based approaches. However, with the 

localization procedures proposed below, even some of the above difficulties can be automatically 

sensed and correctly responded to. 

Overview 

Figure 3-10 gives an overview of the localization procedures. In the flowchart, several 

abbreviations are used to make the diagram concise. The full descriptions are as following and 

details are explained in later paragraphs: 

 CM – Conspicuity map (multi-radius aggregated version, see Equation 3.2) 

 WCM – Working conspicuity map 

 PPM – Peak pixel mask 

 Ci – Connected component set at iteration i 

 Si – Traffic signal candidate set at iteration i 

 S – Overall traffic signal candidate set 

 Ntop – The number of top conspicuity candidates to locate for the image 

 Npi – The maximum number of new candidates expected per iteration 
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Figure 3-10 Flowchart of the localization procedures. 
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 In general, the procedures go through multiple iterations to extract candidates at various 

levels of peaks. In each iteration, the working conspicuity map are normalized to have a maximum 

value of 1 (step 1.1). Then, the pixels whose normalized conspicuity values are above a pre-defined 

threshold, namely the peak pixels, are flagged to form a peak pixel mask (step 1.2). Since this peak 

pixel mask can be noisy, a morphological opening operation is performed to reduce noise (step 

1.3). A connected component analysis is performed on the denoised peak pixel mask so peak pixels 

connected to each other are grouped into separate components (or blobs) (step 2.1). At this points, 

each component region is considered a good approximation of a candidate. However, recall that 

the conspicuity value represents the likelihood of a pixel being the center of a signal lens, the pixels 

in each components are likely to cover only a small center portion of an actual signal lens. 

Therefore, a local refined search using an extended mean shift algorithm is used to find the 

conspicuity mass center as the candidate center and the corresponding r for that center pixel is 

used as the radius of the candidate (step 2.3). The refined candidate regions are typically larger 

than the initial component region. Note, between step 2.1 and step 2.3, there is a preliminary 

filtering step 2.2, which filters out components that are unlikely to be related to a candidate. The 

filtering is based on the aspect ratio and the pixel density of each component’s bounding box. After 

step 2.3, if new candidates are detected, they will be reduced to make sure no two candidates 

intersect or touch each other. The larger candidate is kept if any intersection occurs. The new 

candidates are then added to a cumulative set of candidates if several checks are passed (step 4.2). 

The checks are to make sure in every iteration, the amount of new candidates is reasonable (will 

be further explained shortly). 

Besides detecting new candidates, the working conspicuity map should be updated 

accordingly so it can be used in the next iteration. The idea of updating is to turn pixels covered 
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by the peak pixel mask (before denoising) and by the new candidate regions to zero so these 

regions will not be repeatedly considered in future iterations (steps 3.1 and 3.2). Following this 

routine, the theoretical behavior of the iteration is to find out local maximum regions in a 

descending order of conspicuity level. An analog to this process is to imagine the conspicuity map 

as a terrain where the value corresponds to the height. In an ideal scenario, we expect a few tall 

mountains representing the actual traffic lights and the rest majority being small hills or plain. 

Each iteration removes the existing tallest areas (and more precisely, drilling wells in those areas) 

as new candidates. Actual traffic lenses are expected to be captured by the first one or two iterations. 

The further down the iteration, the noisier candidates are likely to be detected at a larger amount.  

As briefly mentioned earlier, there are checks between steps 4.1 and 4.2. The first check 

after step 4.1 is to assess how relevant the new candidate set is according to its size. When the size 

exceeds a certain threshold, it physically means none of these candidates stand out among their 

peers and hence are irrelevant detections. Such condition will not only happen at a late iteration 

when only low conspicuity regions remain, but also will happen in the first iteration with a 

challenging scene containing many objects that are equivalently conspicuous as actual traffic lights. 

In the first case, the algorithm stops correctly to avoid further iterations. In the second case, the 

algorithm halts reasonably because it automatically senses the violation of the fundamental 

assumption that traffic lights are the most conspicuous. The check immediately before step 4.2 is 

similar but in a relative manner. The idea is, if the number of candidates detected in a later iteration, 

and hence with lower conspicuity, is larger than the total number of existing high conspicuity 

candidates, the new candidate set is unlikely to be relevant. These checks can help the algorithm 

to exit effectively with only a few iterations. 

 Some implementation details are given below for certain steps.  
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Peak Pixel Mask 

Equations 3.13 – 3.15 are used in normalization (step 1.1), binarization (step 1.2), and 

denoising (step 1.3) to generate the peak pixel mask, respectively. In Equation 3.14, the threshold 

provides a control of the strictness of peak selection during each iteration. The closer the threshold 

is to 1, the fewer peaks are selected and the iteration moves down the conspicuity level more slowly. 

In Equation 3.15, the morphological opening consists of an erosion and a dilation of the peak pixel 

mask. Erosion assigns the minimum value of a pixel’s neighborhood to that pixel and dilation 

assigns the maximum value instead. The neighborhood is defined in a structure element, i.e., a 

template matrix whose center element represents the pixel being calculated and the other elements 

flagging neighborhood pixels by the value of 1. After erosion, regions in the peak pixel mask will 

shrink and some small regions may disappear depending on how large the neighborhood is. After 

dilation, remaining regions will be inflated back to the original size. As a result, small regions 

(typically noises) are removed while large regions are reserved at the same size. 

 
𝑊𝐶𝑀𝑖,𝑗 ←

𝑊𝐶𝑀𝑖,𝑗

max(𝑊𝐶𝑀𝑖,𝑗)
 |max(𝑊𝐶𝑀𝑖,𝑗) > 0 ( 3.13 ) 

 
𝑃𝑃𝑀𝑖,𝑗 = {

1, 𝑖𝑓 𝑊𝐶𝑀𝑖,𝑗 > ℎ𝑝𝑒𝑎𝑘
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒               

 ( 3.14 ) 

 𝑃𝑃𝑀𝑖,𝑗 ← 𝑓𝑜𝑝𝑒𝑛𝑖𝑛𝑔(𝑃𝑃𝑀𝑖,𝑗, 𝑠𝑒) ( 3.15 ) 

where, 

𝑊𝐶𝑀𝑖,𝑗 = the normalized conspicuity value of pixel p(i, j) in the working conspicuity 

map, 

𝑃𝑃𝑀𝑖,𝑗 = the pixel p(i, j) in the peak pixel mask, 

ℎ𝑝𝑒𝑎𝑘 = a threshold of normalized conspicuity value in the range of [0,1]. Typically 

chosen as 0.9, 

𝑓𝑜𝑝𝑒𝑛𝑖𝑛𝑔(∙) = the morphological opening function, 

𝑠𝑒 = A structure element for morphological opening, typically chosen as a disk 

neighborhood of radius 1. 
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Candidate Extraction 

In step 2.1, 8-connectivity is used for the connected component analysis. One pixel is 

considered connected to another if it is in any of the eight immediate neighborhood positions of 

the other pixel. The result of step 2.1 is a list of pixel groups, called components. Each component 

gives an estimated region of where the center of a candidate lens should be. 

In order to more accurately locate the final center of each candidate and determine its size 

(i.e., lens radius), a dynamic radius mean shift (DRMShift) algorithm is proposed (step 2.3). The 

basic mean shift algorithm is an iterative approach to find the center position of a region with a 

fixed size over a set of weighted points. The resulting position minimizes the distance between the 

centroid and the mass center of the points enclosed in that region. When applied on the conspicuity 

map, the points are the pixels and the weights are the conspicuity values. However, because each 

pixel in the conspicuity map (Equation 3.2) is associated with an optimal radius (r) that yields the 

optimal conspicuity value, moving the center of the search region also implies changing the 

optimal radius accordingly. Therefore, the proposed DRMShift algorithm extends the basic mean 

shift by allowing the size of the search region to change during the iterative search. A segment of 

pseudo code is given in Algorithm 3-1 for DRMShift. Range checking for pixel indices is not 

reflected in this code so it conveys the main idea in a concise manner. 
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Algorithm 3-1 

DRMShift 

Inputs: 

 * Initial center pixel position [i0,j0] 

* Conspicuity map CM 

* Radius map RM 

* Converge threshold hc 

* Maximum number of iteration nmax 

Steps: 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

i = i0; 

j = j0; 

d = hc; 

while nmax > 0 and d >= hc 

nmax  nmax – 1; 

m00 = 0; 

m01 = 0; 

m10 = 0; 

r = RM[i,j]; 

for i’ = i – r to i + r 

    for j’ = j – r to j + r 

        if |p(i,j), p(i’,j’)| <= r 

            m00  m00 + CM[i’,j’]; 

            m01  m01 + i’ * CM[i’,j’]; 

            m10  m10 + j’ * CM[i’,j’]; 

        end if 

    end for 

end for 

if m00 > 0 

    itmp = i; 

    jtmp = j; 

    i = m01/m00; 

    j = m10/m00; 

    d = |p(i,j), p(itmp,jtmp)|; 

end if 

end while 
Outputs: 

 * Final center pixel position [i,j] 

* Final region radius, r 
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 Between step 2.1 and step 2.3 in Figure 3-10, there is an optional preliminary filtering step 

(2.2) which checks the geometric properties of each component before they can be considered for 

refined candidate extraction. Two properties, the aspect ratio (asp) and the pixel density (pd) of 

the bounding box of the component are checked. The aspect ratio is defined as the ratio of the short 

edge to the long edge and the pixel density is defined as the number of peak pixels as a ratio of the 

total number of pixels (including non-peak pixels) enclosed in the bounding box. The minimum 

thresholds for both the aspect ratio and the pixel density are by default 0.6 to be forgiving to 

imperfect image quality. 

3.3 State Classification 

A 2D histogram matching approach is employed for classifying the state (color) of each 

detected candidate. This approach is essentially a simple learning approach, which at the first 

thought is against the generic design principle that requires little dependency on training data 

collected with the same camera used in testing. However, since candidates are detected and 

assumed to be true traffic signal lenses, the primary functionality of the classifier is to make a 

choice among three possible traffic signal colors. Therefore, the training data do not need to be 

highly representative for the test data. As long as the training data capture a good delineation 

between the three traffic signal colors. In other words, the training data can be images collected 

using cameras other than the one used for collecting the test data. 

More specifically, a 2D histogram of the “a” channel and the “b” channel from the CIELab 

space is calculated as the matching feature. Equations 3.16 – 3.18 formulate the calculation of the 

histogram. In fact, there are two histograms that should be calculated for each candidate, one for 

the pixels in the disk (lens) area (A1) and another for the pixels in the annulus area (A3), so color 

information in the nighttime when “halo effect” occurred could be captured. With a training sample, 
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only one of this histograms is calculated because the area containing the color is known already 

during the manual annotation. For a particular signal color, a trained histogram is calculated as the 

average of histograms of all the training samples. Example trained histograms are illustrated in 

Figure 3-11. 

 
𝐻𝑘,𝑙 | 𝑚𝑜𝑑𝑒 =

∑𝜎𝑖′,𝑗′ | 𝑚𝑜𝑑𝑒 × 𝛽𝑖′,𝑗′| 𝑘,𝑙

𝜎𝑖′,𝑗′ | 𝑚𝑜𝑑𝑒
 ( 3.16 ) 

 

𝜎𝑖′,𝑗′ | 𝑚𝑜𝑑𝑒 = {
1, 𝑖𝑓 𝑚𝑜𝑑𝑒 = 𝐴1 𝑎𝑛𝑑 |𝑝(𝑖, 𝑗), 𝑝(𝑖′, 𝑗′)| ≤ 𝑟          

1, 𝑖𝑓 𝑚𝑜𝑑𝑒 = 𝐴3 𝑎𝑛𝑑 𝑟 < |𝑝(𝑖, 𝑗), 𝑝(𝑖′, 𝑗′)| ≤ 2𝑟
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                  

 ( 3.17 ) 

 
𝛽𝑖′,𝑗′| 𝑘,𝑙 = {

1, 𝑖𝑓 𝑎𝑖′,𝑗′ ∈ 𝐵𝑖𝑛𝑘
𝑎 𝑎𝑛𝑑 𝑏𝑖′,𝑗′ ∈ 𝐵𝑖𝑛𝑙

𝑏

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                          
 ( 3.18 ) 

where, 

𝐻𝑘,𝑙 | 𝑚𝑜𝑑𝑒 = the value of the histogram at bin (k, l) under the specified mode, 

𝑚𝑜𝑑𝑒 = A1 for histogram in the disk area and A2 for the histogram in the annulus area, 

𝜎𝑖′,𝑗′ | 𝑚𝑜𝑑𝑒 = the flag indicating whether p(i’, j’) falls in to the specified area of p(i, j), 

𝛽𝑖′,𝑗′| 𝑘,𝑙 = the flag indicating whether the “a” value and the “b” value of p(i’, j’) fall in to 

the kth bin of “a” (𝐵𝑖𝑛𝑘
𝑎) and lth bin of “b” (𝐵𝑖𝑛𝑙

𝑏). 

 

 
Figure 3-11 Example trained a-b histograms. 

 

When testing, the two histograms of each candidate’s lens and annulus areas are calculated 

and compared to each signal color’s trained histogram to derive a similarity score. The similarity 

score is calculated using Equations 3.19 – 3.20. The signal color with the highest similarity score 

is chosen as the state of the candidate. 
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 𝑠𝑐𝑐𝑎𝑛𝑑 | 𝑐𝑜𝑙𝑜𝑟 = max (𝑠𝑐(𝐻𝑐𝑎𝑛𝑑 | 𝑚𝑜𝑑𝑒 , 𝐻𝑐𝑜𝑙𝑜𝑟)) | 𝑚𝑜𝑑𝑒 ∈ {𝐴1, 𝐴3} ( 3.19 ) 

 

𝑠𝑐(𝐻,𝐻′) = 1 −

2 × acos

(

 
∑𝐻𝑘,𝑙 ×𝐻𝑘,𝑙

′

√∑𝐻𝑘,𝑙 × 𝐻𝑘,𝑙 ×√∑𝐻𝑘,𝑙
′ × 𝐻𝑘,𝑙

′

)

 

𝜋
 

( 3.20 ) 

where, 

𝑠𝑐𝑐𝑎𝑛𝑑 | 𝑐𝑜𝑙𝑜𝑟 = the similarity score of a candidate as a particular signal color, 

𝐻𝑐𝑎𝑛𝑑 | 𝑚𝑜𝑑𝑒 = the histogram of the candidate. When the average saturation in A1 is higher 

than in A3, mode = A1; otherwise mode = A3, 

𝐻𝑐𝑜𝑙𝑜𝑟 = the trained histogram of a signal color. 

  

3.4 Spatiotemporal Framework 

In this section, key stages of the spatiotemporal framework are given with details. The 

implementation of map projection is first explained as a fundamental stage of going from spherical 

coordinates to plane coordinates so distance can be calculated conveniently. Although GPS 

positions of the frames and signalized intersections are required, the method only asks for two 

relaxed quality criteria: 1) the position data should be available at an adequate frequency and 

within the borders of the traveled highway and 2) the traffic signal locations should be mapped no 

farther than 5 meters outside of the intersection area between two highways. With projected 

coordinates, vicinity calculation methods are explained regarding finding the closest signalized 

intersection for each frame. An extended kd-tree search algorithm is proposed to optimize the 

vicinity calculation speed. A third section describes the classification of movements at each 

signalized intersection according to the trajectory data. The last two sections give comprehensive 

descriptions of the temporal coordination of TSR as each signalized intersection. 
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3.4.1 Map Projection 

 
Figure 3-12 Illustration of position data conversion. 

 

Raw spatial data (of video frames and signalized intersections) are assumed to be presented 

in latitudes and longitudes under the World Geodetic System 1984 (WGC84), unless otherwise 

specified. WGC84 is an ellipsoid geographic coordinate system (GCS) that does not directly 

support planar geometric calculation on local regions of the earth surface. In order to conduct 

planar spatial analyses, such as distance calculation and moving direction judgement, latitudes and 

longitudes need to be projected onto a 2D projected coordinate system (PCS). Figure 3-12 

illustrates the pipeline of a point on the earth surface being transferred to a GCS and then to a PCS. 

In this thesis, the Mercator projection, a cylindrical map projection, is chosen. 

A point on the 

earth surface 

The point mapped to latitude/longitude coordinates under a 

Geographic Coordinate System (GCS). A GCS is defined by a 

spheroid (semimajor and semiminor axes) and its relation to the earth, 

called datum (e.g., the center of the spheroid is mapped to the mass 

center of earth in the WGS84). 

The point projected on to a 2D map coordinate system, or Projected Coordinate 

System (PCS). Different PCSs preserve different sets of geometric features 

(e.g., area, distance). In this study, the Mercator projection is used. 
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Actual implementation of the Mercator projection follows Equations 3.21 - 3.23. The basic 

idea of the projection is to map a point on the GCS spheroid to a point on the cylinder wrapped 

around the spheroid. 

 
[𝑥, 𝑦] = 𝑅𝑒𝑎𝑟𝑡ℎ × [𝜆, ln (tan(

𝜋

4
+
|𝜒|

2
))] ( 3.21 ) 

 

𝜒 = 2 atan(tan (
𝜑

2
+
𝜋

4
) × (

1 − 𝑒𝑐𝑐 ∗ sin(𝜑)

1 + 𝑒𝑐𝑐 ∗ sin(𝜑)
)

𝑒𝑐𝑐
2

) −
𝜋

2
 ( 3.22 ) 

 [𝜆, 𝜑] = [𝑙𝑜𝑛, 𝑙𝑎𝑡] ×
𝜋

180
 ( 3.23 ) 

where, 

𝑥 = the projected x coordinate, in meters, 

𝑦 = the projected y coordinate, in meters, 

𝑅𝑒𝑎𝑟𝑡ℎ = the average radius of the earth (default = 6378137), in meters, 

𝜆 = longitude, in radians, 

𝜑 = latitude, in radians, 

𝑙𝑜𝑛 = longitude, in degrees, 

𝑙𝑎𝑡 = latitude, in degrees, 

𝜒 = conformal latitude, in radians, 

𝑒𝑐𝑐 = eccentricity of the GCS spheroid (default = 0.081819190842621486 for 

WGS84), no unit. 

 

The Mercator projection is known to introduce increasing geometric distortion as the 

projected point goes further from the default projection origin at [latitude = 0, longitude = 0]. In 

order to overcome this issue, a new origin of projection should be chosen so it is relatively centered 

in the region of analysis. In this study, the new origin is chosen as the centroid of the positions of 

all frames. Accordingly, the longitude and the conformal latitude (in radians) are transformed using 

Equations 3.24 - 3.28 before they can be plugged in Equation 3.21. 
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[

𝑥𝑐𝑎𝑟𝑡
𝑦𝐶𝑎𝑟𝑡
𝑧𝑐𝑎𝑟𝑡

] = [

cos(𝜒) × cos(𝜆)

cos(𝜒) × sin(𝜆)

sin(𝜒)
] ( 3.24 ) 

 

[

𝑥𝑐𝑎𝑟𝑡_𝑅
𝑦𝐶𝑎𝑟𝑡_𝑅
𝑧𝑐𝑎𝑟𝑡_𝑅

] = [

cos(𝜒0) × cos(𝜆0) cos(𝜒0) × sin(𝜆0) sin(𝜒0)

− sin(𝜆0) cos(𝜆0) 0

− sin(𝜒0) × cos(𝜆0) − sin(𝜒0) × sin(𝜆0) cos(𝜒0)
] × [

𝑥𝑐𝑎𝑟𝑡
𝑦𝐶𝑎𝑟𝑡
𝑧𝑐𝑎𝑟𝑡

] ( 3.25 ) 

 
ℎ = √𝑥𝑐𝑎𝑟𝑡_𝑅

2 + 𝑦𝑐𝑎𝑟𝑡_𝑅
2  ( 3.26 ) 

 

𝜆𝑅 = 

{
 
 
 

 
 
 atan(

𝑦𝑐𝑎𝑟𝑡𝑅
𝑥𝑐𝑎𝑟𝑡𝑅

) ,   𝑖𝑓 𝑥𝑐𝑎𝑟𝑡_𝑅 ≥ 0                                       

atan (
𝑦𝑐𝑎𝑟𝑡𝑅
𝑥𝑐𝑎𝑟𝑡𝑅

) + 𝜋,    𝑖𝑓 𝑥𝑐𝑎𝑟𝑡_𝑅 < 0 𝑎𝑛𝑑 𝑦𝑐𝑎𝑟𝑡_𝑅 ≥ 0

atan(
𝑦𝑐𝑎𝑟𝑡𝑅
𝑥𝑐𝑎𝑟𝑡𝑅

) − 𝜋,   𝑖𝑓 𝑥𝑐𝑎𝑟𝑡𝑅 < 0 𝑎𝑛𝑑 𝑦𝑐𝑎𝑟𝑡𝑅 < 0   

 ( 3.27 ) 

 𝜒𝑅 = atan (
𝑧𝑐𝑎𝑟𝑡𝑅
ℎ

) ( 3.28 ) 

where, 

𝑥𝑐𝑎𝑟𝑡 = Cartesian x coordinate, no unit, 

𝑦𝑐𝑎𝑟𝑡 = Cartesian y coordinate, no unit, 

𝑧𝑐𝑎𝑟𝑡 = Cartesian z coordinate, no unit, 

𝜆 = longitude, in radians, 

𝜒 = conformal latitude, in radians, 

𝑥𝑐𝑎𝑟𝑡_𝑅 = rotated Cartesian x coordinate, no unit, 

𝑦𝑐𝑎𝑟𝑡_𝑅 = rotated Cartesian y coordinate, no unit, 

𝑧𝑐𝑎𝑟𝑡_𝑅 = rotated Cartesian z coordinate, no unit, 

𝜆0 = longitude of the new projection origin, in radians, 

𝜒0 = conformal latitude of the new projection origin, in radians, 

𝜆𝑅 = rotated longitude, in radians, 

𝜒𝑅 = rotated conformal latitude, in radians, 

 

3.4.2 Vicinity Calculation 

A frame is likely to contain a traffic signal only when the vehicle was close to a signalized 

intersection. Therefore, by calculating the distance from the vehicle position of each frame (or 

“frame position” for short) to its nearest signalized intersection, a traffic signal vicinity profile can 

be generated (e.g., Figure 3-13). By setting a vicinity threshold (e.g., 50 m as indicated by the 

horizontal red line in Figure 3-13), a series of profile valleys can be isolated, representing candidate 
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batches of frames that might have passed a signalized intersection. The valley bottom indicates the 

nearest frame to the intersection (but not necessarily the traffic signal) and is called the anchor 

frame (indicated by a red box) in the following discussion. When the valley bottom is flat, the 

latest bottom frame is chosen as the anchor frame. Frames before this anchor frame are called 

upstream frames while those after the anchor frame are called downstream frames. Intuitively, 

traffic signals are expected to be captured in most upstream frames (up to a certain distance) and 

a few of immediate downstream frames, if not none. Detailed algorithms regarding the temporal 

coordination of TSR starting from each anchor frame will be explained in Sections 3.4.4 and 3.4.5. 

The position data of the signalized intersections are requested from the OpenStreetMapTM server 

within a buffered bounding box around all frame positions (see Section 4.4 for details). 

Note, constructing the vicinity profile is a classical nearest neighbor problem in a low 

dimensional space (e.g., 2D). A slightly more formal definition of the problem is, given two finite 

sets of points 𝑇 ⊂ 𝑅2 (target points) and 𝑄 ⊂ 𝑅2 (query points), find for each query point 𝑞𝑖 ∈ 𝑄 

the nearest target point 𝑡𝑗 ∈ 𝑇 so that 𝑑𝑖𝑠𝑡(𝑞𝑖, 𝑡𝑗) ≤ 𝑑𝑖𝑠𝑡(𝑞𝑖, 𝑡𝑘) ∀ 𝑡𝑘 ∈ 𝑇. Solving this problem 

with a naïve all-pair distances algorithm has a time complexity of O(𝑁𝑄 × 𝑁𝑇), where 𝑁𝑄 and 𝑁𝑇 

are the numbers of points in 𝑄 and 𝑇, respectively. In our case, the query points are frame positions 

and the target points are signalized intersections, so 𝑁𝑄 ≫ 𝑁𝑇. 
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Figure 3-13 Illustration of a traffic signal vicinity profile. 

 

Basic KD-Tree Method 

An efficient and commonly used algorithm is based on a kd-tree indexing of the target 

points (63). A kd-tree is a multidimensional binary tree whose tree nodes are the points being 

indexed. In the following discussion, nodes and points are used interchangeably. Each non-leaf 

node has a left child node and a right child node, serving as the roots of the left and the right 

subtrees, respectively. The key property of a kd-tree is that for each non-leaf node, the nodes in 

the left subtree is to one side of the node and those in the right subtree is to the other side of the 

node in a chosen dimension. The dividing dimension is typically selected to balance the numbers 

of nodes in the two subtrees. The amortized time complexity of constructing a kd-tree is 
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O(𝑁𝑇 × log(𝑁𝑇)) and that of querying the nearest target of a given point is O(log(𝑁𝑇)). Therefore, 

the overall time complexity of constructing the vicinity profile can be reduced to 

O((𝑁𝑇 + 𝑁𝑄) × log(𝑁𝑇)). This approach has been effectively employed by Fairfield and Urmson 

in their real-time application (4). 

Extended KD-Tree Method 

In fact, for offline analysis, additional speed improvement can be made by changing the 

order of query and assuming some spatiotemporal characteristics of the frame positions and the 

signalized intersections. The basic idea is, if two frames have the same nearest signalized 

intersection and the time between these two frames was shorter than a threshold value 𝜏𝑚𝑖𝑛, all 

frames in between would have the same nearest signalized intersection (Condition 3-1). 

It is convenient to borrow the concept of Voronoi diagram to explain the physical meaning 

of Condition 3-1 and determine how 𝜏𝑚𝑖𝑛 should be chosen. A Voronoi diagram is a division of 

the space into connecting regions according to a given set of points in that space, called sites. Each 

site is associated with one resulting region so that the site is the nearest site to any point in that 

region. Imagine the signalized intersections as the sites. A frame is nearest to a signalized 

intersection if and only if it falls in the Voronoi region of that signalized intersection. The only 

case when a frame can be nearest to more than one signalized intersection is when it falls on the 

boundary between two or more Voronoi regions. Therefore, if two frames have the same nearest 

signalized intersection, they must be in the same Voronoi region (boundary inclusive). The only 

possible case for any frame in between having a different nearest signalized intersection is when 

the vehicle exited the current Voronoi region and reentered during the time between the two frames. 

When the time is adequately short, this case is mostly impossible. In order to define this time 
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threshold, the minimum time a vehicle would have stayed in the Voronoi region of any signalized 

intersection is set as the 𝜏𝑚𝑖𝑛. A conservative and practical value of 𝜏𝑚𝑖𝑛 can be chosen as 1.5 

seconds, corresponding to about 20 frames with a frame rate of 14 FPS. 

Therefore, rather than searching the nearest signalized intersection for each frame position 

using the kd-tree, we can recursively search for the nearest signalized intersection of the two end 

frames of a batch of frames. If Condition 3-1 is met, all frame in between will be populated with 

the same nearest signalized intersection without kd-tree search; otherwise, the nearest signalized 

intersection is searched using the kd-tree for the frame in the middle and the batch is divided into 

two sub batches for recursion. The time complexity of this algorithm is O((𝑁𝑇 +
𝑁𝑄

𝐹(𝜏𝑚𝑖𝑛)
) ×

log(𝑁𝑇)), where 𝐹(𝜏𝑚𝑖𝑛) denotes the number of frames corresponding to the chosen 𝜏𝑚𝑖𝑛 . It 

should be noted, since 𝑁𝑄 is large and presents the efficiency bottleneck of the calculation, scaling 

it down to 
𝑁𝑄

𝐹(𝜏𝑚𝑖𝑛)
 is a significant speed improvement in practice. 

3.4.3 Movement Classification 

An additional piece of useful information that can be derived for each clip of candidate 

frames is the movement of the vehicle, i.e., left turn, thru, or right turn. Specifically, the angle 

between two vectors is used to classify the movement. The first vector (v1) goes from the first 

upstream frame (Fstart) to a turning point frame (Ftp) and the second vector (v2) goes from Ftp to the 

last downstream frame (Fend). Ftp is defined as the frame with the maximum perpendicular distance 

to the baseline vector (vb) between Fstart and Fend. If the angle, θ, between v1 and v2 is no larger 

than a threshold θmin, the movement is classified as a thru movement. If θ is larger than θmin and 

measured counterclockwise from v1 to v2, the movement is classified as a left turn. Otherwise, the 
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movement is classified as a right turn. Mathematically, Equation 3.29 is used for movement 

classification. Examples are given in Figure 3-14. The θmin used in this study is 20 degrees, which 

yielded 100% accuracy for all testing data. 

{
 
 

 
 

 

𝜃 =  cos−1
𝑣1 ∙ 𝑣2

‖𝑣1‖ ∗ ‖𝑣2‖
∗
180

𝜋
 

𝑉𝑐𝑟𝑜𝑠𝑠 = 𝑉1 × 𝑉2 

𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 =  {

𝑟𝑖𝑔ℎ𝑡 𝑡𝑢𝑟𝑛,   𝑖𝑓 𝜃 > 𝜃𝑚𝑖𝑛 𝑎𝑛𝑑 𝑉𝑐𝑟𝑜𝑠𝑠(3) > 0
𝑡ℎ𝑟𝑜𝑢𝑔ℎ,    𝑖𝑓 𝜃 ≤ 𝜃𝑚𝑖𝑛                                     

𝑙𝑒𝑓𝑡 𝑡𝑢𝑟𝑛,   𝑖𝑓 𝜃 > 𝜃𝑚𝑖𝑛 𝑎𝑛𝑑 𝑉𝑐𝑟𝑜𝑠𝑠(3) < 0
 

( 3.29 ) 

where, 

𝑣1 = the 2D vector from Fstart to Ftp, 

𝑣2 = the 2D vector from Ftp to Fend, 

𝜃 = the angle between v1 and v2, in degrees, 

𝑣1 ∙ 𝑣2 = the dot product between v1 and v2, 

‖𝑣1/2‖ = the length of v1 (or v2), 

𝑉1/2 = the homogeneous 3D coordinates of v1 (or v2), i.e., V1/2 = [v1/2(1), v1/2(2), 1], 

𝑉𝑐𝑟𝑜𝑠𝑠 = the cross product between V1 and V2, also a 3D vector, 

𝜃𝑚𝑖𝑛 = the minimum angle to be recognized as a turning movement, in degrees. 

 

 
Figure 3-14 Determination of intersection movements. 
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3.4.4 Short Range Initialization 

In addition to locating candidate frames for TSR, another motivation of the spatiotemporal 

framework is to utilize the temporal relationship between frames to improve the recognition results. 

A good strategy that is unique to offline analysis is to start detection in near frames and use stable 

detection results to assist tracked detection for distant frames. As will be shown in Section 5.2, 

detection performance can be affected by the target size in the image. The closer to the traffic 

signals, the larger the targets are and more accurately the detector works. Therefore, for each 

intersection traversal, an ideal starting point for TSR is the closest frame where traffic signals are 

still visible. However, as explained previously, the relaxed accuracy requirement of the traffic 

signal map and the GPS positions of frames would not support a precise calculation of the distance 

between a frame and the target traffic signals. The vicinity profile only gives a rough estimation 

of the closeness to a signalized intersection and the anchor frames are not necessarily the ideal 

starting points. As a result, rather than seeking for a perfect starting frame, a short range of frames 

are proposed to be used as an initialization set. For each of the frames in this short range, 

independent detection and classification are perform for the whole frame (or within a general 

region of interests). Candidates are associated using a dense optical flow based tracking algorithm. 

Determine Short Range 

The short range for initialization is defined based on the anchor frame. A number of 

upstream frames and downstream frames from the anchor frame are extracted as the short range 

based on their cumulative trajectory distances from the anchor frame. The cumulative distance 

between two frames is defined as the sum of straight line distances between all pairs of successive 

frames within these two frames. The straight line distance is the Euclidean distance in the projected 

[x, y] coordinate system (see Section 3.4.1). By default, frames within a trajectory distance of 10 
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m upstream or 5 m downstream from the anchor frame are extracted. These trajectory distance 

ranges can be adjusted to make a tradeoff between coverage and computational cost. By increasing 

the ranges, more frames will be considered for initialization and the chance of obtaining stable 

tracks of candidates is theoretically increased, but more computation efforts are needed as for each 

of these frames a whole frame detection at a wide range of radius scales will be performed. 

Initial detection in this short range is a two-pass process. Both passes and the later long 

range tracked recognition stage are based on a dense optical flow (DOF) algorithm that estimates 

the movements of pixels from one image to another, enabling the projection of a candidate from 

one frame onto another frame as a position and size reference. A brief overview of the DOF based 

projection is given below before explaining the two-pass initialization process. 

Dense Optical Flow Based Projection 

 A good range of DOF algorithms exist and the Farneback’s method was chosen for its 

accommodation to camera vibrations (64). The basic idea of the Farneback’s method is to compare 

the similarity of pixel neighborhood in two grayscale images and the pixel neighborhood is 

modeled using polynomial expansion. Detailed explanation of this method is out of the focus of 

this research and readers of interests are advised to study the original paper (64). In this section, 

some examples are shown to give a sense of how Farneback’s method is used. 

 Figure 3-15 and Figure 3-16 illustrate the two-way projections of the same pair of 

successive frames using the Farneback DOF. In both projections, the resulting traffic signal 

positions and sizes closely match the actual positions and sizes in the target frame. 

 When signal colors change between frames, as shown in Figure 3-17 and Figure 3-18, the 

projected signal lenses are still reasonably preserved in the correct relative position in the projected 
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signal faces. However, the projection is more accurate in daytime (Figure 3-17) than in nighttime 

(Figure 3-18), because the optical flow is calculated using grayscale images and the image texture 

is richer in daytime to provide a better pixel neighborhood constraint. As can be seen in Figure 

3-18, the green traffic lights are actually projected on the positions of the actual red lights, since 

in grayscale images, lights at both positions look almost identical. Nevertheless, the projected 

positions are still within a reasonable range of the ground truth positions for tracking purposes. 

 When the target leaves the view from one frame to another (Figure 3-19), the DOF also 

indicates such fact by giving negative (red) y flow to the disappearing target as it moves out of the 

upper bound of the image. 

 
Figure 3-15 DOF based projection in normal forward motion (Frames 00053-338 to 339). 

 



 

 

71 

 
Figure 3-16 DOF based projection in normal backward motion (Frames: 00053-339 to 338). 

 

 
Figure 3-17 DOF based projection with change of signal states in daytime 

(Frames: 00053-21070 to 21069) 
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Figure 3-18 DOF based projection with change of signal states in nighttime 

(Frames: 00041-449 to 448) 

 

 
Figure 3-19 DOF based projection with target leaving the view 

(Frames: 00041-540 to 541) 
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 In general, the Farneback DOF provides a robust motion estimate for the purpose of 

tracking traffic signal candidates, even in the case of signal color change and target disappearance. 

For candidate level projection (in contrast to pixel level), given a candidate in frame j and the 

optical flow from frame j to frame i, the projection of the candidate in frame i is calculated using 

Equations 3.30 – 3.34. It is possible for the projected candidate to be partially or entirely out of 

the image frame, especially during forward motion as illustrated Figure 3-19. These out of 

boundary projections can be checked against the dimension of the image and properly flagged. 

 
𝑐𝑥𝑖 =

min(𝑥𝑖) + max(𝑥𝑖)

2
 ( 3.30 ) 

 
𝑐𝑦𝑖 =

min(𝑦𝑖) + max(𝑦𝑖)

2
 ( 3.31 ) 

 
𝑟𝑖 =

max[max(𝑥𝑖) − min(𝑥𝑖) ,max(𝑦𝑖) − min(𝑦𝑖)]

2
 ( 3.32 ) 

 𝑥𝑖 = 𝑥𝑗 + 𝑓𝑙𝑜𝑤𝑥|𝑗→𝑖 ( 3.33 ) 

 𝑦𝑖 = 𝑦𝑗 + 𝑓𝑙𝑜𝑤𝑦|𝑗→𝑖 ( 3.34 ) 

where, 

𝑐𝑥𝑖 = the x position of projected candidate center in frame i, 

𝑐𝑦𝑖 = the y position of projected candidate center in frame i, 

𝑟𝑖 = the radius of project candidate in frame i, 

𝑥𝑖 = the x coordinate of a point in the projected candidate in frame i, 

𝑦𝑖 = the y coordinate of a point in the projected candidate in frame i, 

𝑥𝑗 = the x coordinate of a point in the original candidate in frame j, 

𝑦𝑗 = the y coordinate of a point in the original candidate in frame j, 

𝑓𝑙𝑜𝑤𝑥|𝑗→𝑖 = the optical flow in the x direction from frame j to frame i, 

𝑓𝑙𝑜𝑤𝑦|𝑗→𝑖 = the optical flow in the y direction from frame j to frame i, 

 

First Pass – Detect and Associate 

 In the first pass of the short range initialization, the algorithm starts from the downstream 

frame of the short range and goes backward until the upstream frame. In this pass, not only will 

candidates be independently detected (and classified) in each individual frame, but also will 

candidates be associated in tracks across frames. A segment of pseudo code is given in Algorithm 
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3-2. The general idea is, after detecting and classifying a set of candidates in the current frame, 

each of these candidates is associated with either 1) an existing track in the history or 2) a new 

track starting from this candidate. For each existing track, a projected candidate based on DOF is 

tentatively set as the track’s candidate (with the flag “DOF”) for the current frame. If a detected 

candidate can be associated with this track, the detected candidate replaces the DOF based tentative 

candidate. The result of the first pass is a set of tracks. Each track contains candidates associated 

across all or an upstream portion of the short range frames. For each covered frame, the candidate 

in the track can be either a detected candidate or a DOF based candidate. A DOF based candidate 

may be out of the image view, simply acting as a dummy node in the track. A visualization of the 

first pass result is given in Figure 3-20, where each row presents a track and the frame indices 

increase as the tracks move downstream. A solid circle represents a detected candidate and a halo 

circle represents a DOF based candidate. 

 
Figure 3-20 Demonstration of the first pass results of short range initialization. 
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Algorithm 3-2 

First Pass of Short Range Initialization 

Inputs: 

 * Upstream frame index iu 

* Downstream frame index id 

Steps: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

initialize a track set T to {}; 

for frame index i = id to iu 

  CD  detected and classified candidates in frame i; 

  if T is not empty 

    CT  {}; 

for Tt in T 

  candt|i+1  Tt’s candidate for frame i+1; 

  candt|i  projection of candt|i+1 in frame i using DOF; 

  add candt|i to CT; 

end for 

S  a matrix of score zeros; 

for CDd in CD 

      for CTt in CT 

        Sd,t  association score between CDd and CDt; 

      end for 

    end for 

for Sd,t in S 

  if Sd,t is not the maximum in S:,t 

    Sd,t = 0; 

  end if 

end for 

for Sd,t in S 

  if Sd,t is the maximum in Sd,: and Sd,t != 0 

    set CDd as Tt’s candidate for frame i; 

    take CDd out of CD; 

  end if 

end for 

for Tt in T 

  if Tt has no candidate for frame i yet 

    set CTt as Tt’s candidate for frame i with flag “dof”; 

  end if 

end for 

  end if 

  for CDd in CD 

create a new track Tnew in T; 

set CDd as Tnew’s candidate for frame i; 

  end for 

end if 

Outputs: 

 * Track set T 
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In line 14 of the pseudo code, an association score is calculated between a detected 

candidate and a DOF based candidate. Such association considers both the state machine of traffic 

signals and the distance between these two candidates in the image coordinate system. Precise 

calculation is formulated in Equations 3.35 – 3.38. In these equations, all possible colors of a 

candidate are considered, weighted by their corresponding classification scores. The first candidate 

is the one related to an earlier state of signal color and the second candidate is the later. In the case 

of backward DOF, the DOF based candidate represents the state of a later (downstream) frame, 

although its position is projected onto the current frame using DOF. So, the first candidate in the 

equations is the detected candidate and the second candidate is the DOF based candidate. When 

the DOF based candidate is projected from an upstream frame, as will be the case in the second 

pass and later long range downstream tracked detection, the first candidate is the DOF based 

candidate and the second candidate is the detected candidate. 

 𝑎𝑠 = max(𝑎𝑠𝑐0,𝑐1) | 𝑐0, 𝑐1 ∈ {𝑟𝑒𝑑, 𝑔𝑟𝑒𝑒𝑛, 𝑦𝑒𝑙𝑙𝑜𝑤, 𝑢𝑛𝑘𝑛𝑜𝑤𝑛} ( 3.35 ) 

 𝑎𝑠𝑐0,𝑐1 = max(𝑝𝑐𝑠𝑐0,𝑐1, 0) × 𝑒
𝑐𝑐𝑠𝑐0,𝑐1 ( 3.36 ) 

 

𝑝𝑐𝑠𝑐0,𝑐1 =

{
  
 

  
 

1 − 𝑝𝑐, 𝑖𝑓𝑐0 = 𝑐1 ∈ {𝑟𝑒𝑑, 𝑔𝑟𝑒𝑒𝑛, 𝑦𝑒𝑙𝑙𝑜𝑤}                      

1 − 𝑝𝑐/3, 𝑖𝑓 𝑐0 → 𝑐1 ∈ {𝑔𝑟𝑒𝑒𝑛 → 𝑦𝑒𝑙𝑙𝑜𝑤, 𝑦𝑒𝑙𝑙𝑜𝑤 → 𝑟𝑒𝑑}

𝑎𝑛𝑑 𝑝𝑐𝑥 ≤ 0 𝑎𝑛𝑑 𝑝𝑐𝑦 ≤ 0               

1 − 𝑝𝑐/6, 𝑖𝑓 𝑐0 → 𝑐1 = 𝑟𝑒𝑑 → 𝑔𝑟𝑒𝑒𝑛                                       
𝑎𝑛𝑑 𝑝𝑐𝑥 ≥ 0 𝑎𝑛𝑑 𝑝𝑐𝑦 ≥ 0                

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                        

 ( 3.37 ) 

 𝑐𝑐𝑠𝑐0,𝑐1 = √𝑐𝑠𝑐0 × 𝑐𝑠𝑐1 ( 3.38 ) 

where, 

𝑎𝑠 = the final association score between two candidates, 

𝑐0 = the assumed color state of the first candidate, 

𝑐1 = the assumed color state of the second candidate, 

𝑎𝑠𝑐0,𝑐1 = the association score assuming the color change c0  c1,, 

𝑝𝑐𝑠𝑐0,𝑐1 = the position change score assuming the color change c0  c1, 

𝑐𝑐𝑠𝑐0,𝑐1 = the color state change score assuming the color change c0  c1, 

𝑝𝑐 = the distance between the centers of the two candidates divided by the minimal 

radius of the two candidates, 

𝑐𝑠𝑐0 = the color classification score for color state c0 of the first candidate, 

𝑐𝑠𝑐0 = the color classification score for color state c1 of the second candidate. 
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Second Pass – Select and Prune 

 After the first pass, a specified number of tracks are selected and pruned in the second pass. 

In terms of selecting the tracks, a stability score is defined for each track as the sum of the highest 

color classification scores of its detected candidates (i.e., excluding DOF based candidates). Such 

stability score accounts for both the persistence of detection history and the detection reliability. 

The tracks with the top N (default to 5) stability scores are selected for further pruning. In the 

pruning process, the algorithm started from the upstream frame and goes forward until the 

downstream frame. For each track, the algorithm tries to replace each DOF based candidate with 

a new detection within a restricted region around that DOF based candidate. When the most 

downstream candidate in a track is met, the algorithm attempts to use forward DOF to further track 

and detect new candidates if the end of the short range is not reached. This attempt stops once no 

more detection is reported in the next frame. A segment of pseudo code is given in the following. 

Results are shown in Figure 3-21, with the selected and pruned tracks highlighted in red. 

 
Figure 3-21 Demonstration of the second pass result of short range initialization. 
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Algorithm 3-3 

Second Pass of Short Range Initialization 

Inputs: 

 * Upstream frame index iu 

* Downstream frame index id 

* Track set T from the first pass 

Steps: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

 

 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

Reduce T with up to N top tracks left; 

for frame index i = iu to id 

  for Tt in T 

if Tt has a candidate for frame i 

  candt|i  Tt’s candidate for frame i; 

else if Tt has a candidate for frame i-1; 

  candt|i-1  Tt’s candidate for frame i-1; 

  candt|i  projection of candt|i-1 in frame i using DOF; 

  flag candt|i with “DOF”; 

end if 

if candt|i is not null and flagged “DOF” 

  CD  detected and classified candidates in frame i within 

           a region co-centered with candt|i but with twice 

           of radius; 

  asmax = 0; 

  dmax = -1; 

  for CDd in CD 

    as = association score between CDd and candt|i; 

    if as > asmax 

      asmax = as; 

      dmax = d; 

    end if 

  end for 

  if asmax > 0 

    set CDdmax as Tt’s candidate for frame i; 

  end if 

end if 

  end for 

end for 

Outputs: 

 * Track set T 
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3.4.5 Long Range Tracked Recognition 

With pruned tracks, frame ranges further upstream and downstream out of the short range 

will be processed in a tracked manner. For each track, long range downstream tracked recognition 

only takes place when the head of the track reaches the downstream end of the short range. As the 

tracked recognition goes backward and forward on both ends, new DOF based candidates are 

projected on the fly to provide a tracked region for detection. The long range recognition stops if 

no detection in the tracked region can be found. Detailed algorithm is given in Algorithm 3-4. 

Figure 3-22 gives an example of the long range tracked result. The blue portions of the selected 

red tracks correspond to long range recognition results upstream and downstream of the short range. 

 
Figure 3-22 Demonstration of the long range tracked recognition result. 
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Algorithm 3-4 

Long Range Tracked Recognition 

Inputs: 

 * Upstream frame index iu 

* Downstream frame index id 

* Track set T from the short range initialization 

Steps: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

 

14 

 

 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

I = {iu, id}; 

steps = {-1, 1}; 

for dir = 0 to 1 % assuming 0-indexing 

  halt = false; 

  while not halt 

halt = true; 

prei = Idir; 

curi = Idir + stepsdir;  

Idir  curi; 

for Tt in T 

  if Tt has a candidate for frame prei 

    candt|prei  Tt’s candidate for frame prei; 

    candt|curi  DOF based projection of candt|prei in  

                      frame curi; 

    CD  detected and classified candidates in frame 

               curi within a region co-centered with candt|curi  

               but with twice of radius; 

    asmax = 0; 

    dmax = -1; 

    for CDd in CD 

      as = association score between CDd and candt|curi; 

      if as > asmax 

        asmax = as; 

        dmax = d; 

      end if 

    end for 

    if asmax > 0 

      set CDdmax as Tt’s candidate for frame curi; 

      halt = false; 

    end if 

  end if 

end for 

  end while 

end for 

Outputs: 

 * Track set T 
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3.5 Summary 

A comprehensive methodology is proposed in this chapter, highlighting a generic TSR 

module that works on individual frames and a sophisticated spatiotemporal framework that 

considers efficient and reliable TSR in the processing of a lengthy video. The proposed detector 

relies on no empirical parameters from training data, but is still controllable in an intuitive way 

according to the expected effects of various features of conspicuity. The proposed color classifier 

uses sample data to train histograms for different signal colors, but the classification decision is 

made in a relative way between three expected colors, so the sample data can be totally 

independent of the testing data in terms of the cameras being used. The spatiotemporal framework 

helps to zoom into relevant frames in a lengthy video and allow temporally coordinated TSR. The 

framework does not rely on highly accurate position data, because the temporal coordination 

considers a buffered short range for initialization. Long range tracked recognition is expected to 

be fast and reliable based on stable detection tracks obtained from the short range initialization. 

The next chapter describes data collection for testing the proposed methodology. 
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CHAPTER 4 

DATA DESCRIPTION 

4.1 Overview 

A total of 21 videos are used to evaluate the proposed methodology. These videos were 

collected as part of a Head Pose Validation (HPV) data set by the SHRP 2 data collection team 

and shared via Oak Ridge National Laboratory (ORNL) as sample data for this research. All videos 

were recorded through traveling an identical route in different days and times. The route was 18 

miles long and nearly half of the mileage was on freeway (US Highway 460, Blacksburg, Virginia). 

Figure 4-1 gives a map visualization of this route alongside a rectified sample frame of 

approaching a signalized intersection. Each traversal of the route was around 30 minutes and 

encountered 7 signalized intersections for 8 times (i.e., one intersection was passed twice in 

different directions). As a result, a total of 168 navigations through signalized intersections were 

recorded, covering different types of movements and lighting conditions (Figure 4-2). For each 

video, a log file with other channels of sensor data was also provided. This log file contains GPS 

based latitude, longitude, and speed readings, 3D vehicle acceleration rates, and ambient exterior 

light level. Further details of these data and data reductions are given in the rest of this Chapter. 

 
Figure 4-1 The HPV trial route and a sample frame. 
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Figure 4-2 Signalized intersection navigations and light conditions. 

  

 The five lighting conditions in Figure 4-2 were manually accessed by human reviewers. A 

quantitative summary of the frames labeled under these five lighting conditions is shown as 

average lightness histograms in Figure 4-3. The lightness was measured using the L channel of the 

CIELab color model. 
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Figure 4-3 Average whole-frame lightness histograms of various lighting conditions. 

 

4.2 Videos 

The videos were recorded by a camera behind the windshield near the rare-view mirror. 

Colors were coded in RGB channels. The camera frame rate was 14 fps and the size of frame is 

480x356 (width by height) pixels. An original field of view (FOV) was 83 degrees with the use of 

a fisheye lens, which introduced significant radial distortions to objects in the view. Camera 

calibration parameters were used to rectify the videos. Figure 4-4 demonstrates the conversion 

from an original distorted frame to a rectified frame. After rectification, a portion of the outer 



 

 

85 

pixels are warped out of the original frame and trimmed. As a result, the rectified frame has a 

slightly reduced FOV (around 70 degrees) with the same frame size. Note, rectification may not 

be possible in some cases when camera calibration information is not retrievable. For the proposed 

traffic signal recognition method, rectification is not a hard requirement, although it provides 

various image processing advantages, such as preservation of straightness of lines. 

 
Figure 4-4 Radial distortion with a relatively wide field of view. 

 

It is worth highlighting two major challenges presented by these videos. The first challenge 

is related to low pixel resolution. Recall the 480x356 frame size with a rectified FOV of about 70 

degrees. Such combination implies a relatively zoomed out view in which, even at a near distance, 

an object may still look far and small. In addition, the borders of objects are relatively blurred. 

Figure 4-5 illustrates the typical size and appearance of traffic signal lens at different upstream 

distance level. Not only is the number of pixels of the target objects limited, but also is the object 

outline unclearly defined. Another challenge comes from the wide range of lighting conditions. 

One of the artifacts caused by extreme environmental lights is color oversaturation. As illustrated 

in Figure 4-6, oversaturation can occur in many cases. In bright sunny days (Figure 4-6a), the 

photons emitted by the traffic signal lenses plus the ambient photons would surpass the upper 

intensity threshold of the camera’s sensor range and cause white-out pixels. The condition is worse 

A Distorted Frame The Rectified Frame 
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at sunrise or sunset when the sun was behind the traffic signals along the camera’s optical axis, 

creating a severe backlighting effect (Figure 4-6b). At night, the “halo” or “blooming” effect 

occurred where the pixels of a traffic signal lens were oversaturated, leaving recognizable colors 

only in the surroundings (Figure 4-6c). Cloudy daytime and similar light conditions, in contrast, 

are desired situations where the oversaturation problem was minimized. Besides oversaturation, 

variable lighting conditions also introduced wild variation of perceivable traffic signal colors. All 

the above challenges make the videos suitable for testing the robustness of any traffic signal 

recognition algorithms. 

 
Figure 4-5 Amount of pixels of the signal lens as a function of the upstream distance. 

 

   
(a) (b) (c) 

   

Figure 4-6 Oversaturated pixels of the lenses. 
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4.3 Log File and Position Data 

The log file associated with each video contains data from other sensors synchronized by 

millisecond timestamps. Table 4-1 summarizes the list of data channels as well as their 

approximate data frequencies. Among these data, only the GPS latitude and longitude readings 

(under the WGS84 coordinate system) are used as inputs to the proposed geo-filtering method. 

GPS data were reported less frequently than the other sensor data, because a GPS receiver needs 

to process signals from visible satellites and estimate the current position over a short course of 

time. The GPS receiver used in the SHRP 2 NDS study was a Fastrax UP500 (65). This model of 

GPS receiver uses two satellite-based GPS augmentation systems, the Wide Area Augmentation 

System (WAAS) and the European Geostationary Navigation Overlay Service (EGNOS), to 

improve positioning accuracy. However, the accuracy of the GPS receiver could vary due to 

different factors, such as the number of visible satellites and the angles from the receiver to the 

satellites. According to the WASS specification, the position accuracy should be no worse than 

7.6 meters (25 feet) at least 95% of the time and field measurements have shown horizontal 

accuracy better than 1 meter (3 feet 3 inches) and vertical accuracy better than 1.5 meters (4 feet 

11 inches) (66, 67). EGNOS was found to provide a similar range of accuracy (68). 

Table 4-1 Data Entries and Frequencies in the Log File 

Sensor Data entries Approximate Data frequency 

Inertial accelerate sensor Longitudinal (x) acceleration rate 

Lateral (y) acceleration rate 

Vertical (z) acceleration rate 

10 Hz 

Gyroscopic sensor Angular velocity around the vertical axis 10 Hz 

GPS receiver Speed 

Heading 

Longitude 

Latitude 

3D Positional dilution of precision 

1 Hz 

Ambient light sensor Ambient exterior light 5 Hz 
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In order to populate the latitude and longitude coordinates to all frames, timestamps were 

first snapped to their nearest frame numbers and linear interpolation was performed to fill frames 

without direct GPS readings. More specifically, the GPS reading at timestamp T was assigned to 

frame N according to the following equation: 

 
𝑁 = ⌊

𝑇

1000
∗ 𝐹𝑅⌋ + 1 ( 4.1 ) 

where, 

𝑁 = the number of the frame to be snapped to, 

𝑇 = the timestamp, milliseconds, 

𝐹𝑅 = the video frame rate, FPS, 

⌊∙⌋ = the floor function, e.g., ⌊3.7⌋ = 3. 

  

Because the video frame rate was larger than the GPS reading frequency, only a relatively 

equally spaced fraction of the frames were assigned a GPS reading. In order to populate the frames 

without direct assignment, linear interpolation with respect to time (i.e., frame number) was used 

to derive latitude and longitude coordinates between every successive pair of directly assigned 

frames (Equation 4.2). 

{
 
 

 
 

 

𝛼∆ =
𝐼𝑘+1 − 𝐼𝑘
𝑖 − 𝐼𝑘

 

𝑙𝑎𝑡𝑖 = (1 − 𝛼∆) ∗ 𝑙𝑎𝑡𝐼𝑘 + 𝛼∆ ∗ 𝑙𝑎𝑡𝐼𝑘+1 

𝑙𝑜𝑛𝑖 = (1 − 𝛼∆) ∗ 𝑙𝑜𝑛𝐼𝑘 + 𝛼∆ ∗ 𝑙𝑜𝑛𝐼𝑘+1 

( 4.2 ) 

where, 

𝐼𝑘 = the index of the kth frame with direct GPS reading, 

𝐼𝑘+1 = the index of the k+1th frame with direct GPS reading, 

𝑖 = the index of the ith frame, subject to 𝐼𝑘 < 𝑖 < 𝐼𝑘+1, 

𝛼∆ = The relative time progress from frame Ik to frame i, 

𝑙𝑎𝑡𝑖/𝐼𝑘/𝐼𝑘+1 = the latitude of the i/Ik/Ik+1
th frame, 

𝑙𝑜𝑛𝑖/𝐼𝑘/𝐼𝑘+1 = the longitude of the i/Ik/Ik+1
th frame. 

 

Figure 4-7 illustrates the interpolation procedure. Although no additional smoothness is 

achieved by linear interpolation, the density of the direct GPS readings can approximate the 



 

 

89 

curvatures of vehicle trajectories reasonably well. Also, a smoother interpolation is not necessarily 

more accurate and may even exaggerate GPS errors. 

 

Figure 4-7 Interpolation of GPS coordinates. 

 

4.4 Traffic Signal Map 

OpenStreetMapTM (OSM) was chosen as a mapping data source. The OSM data consist of 

three prime elements: nodes, ways, and relations. Nodes are individual points to mark locations, 

e.g. intersections. Ways are a series of line segments connecting several nodes. Ways are used to 

create roads, paths, rivers, etc. An area can be represented by a closed way. Relations are groupings 

of ways or areas based on their logical relationship. These data can be queried over the internet 

using OSM’s uniform resource locator (URL) based API. A query URL returns data within a 

latitude-longitude defined bounding box in the XML file format. In this study, the initial bounding 

box around the entire route of the video is resized by a factor of two in both dimensions to form 

Linear interpolation 

Legend

!( assigned frame coordinates

!( interpolated frame coordinates
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an expanded bounding box to query OSM data. The buffered bounding box can prevent missing 

data that are slightly outside the borders of the original bounding box. 

Traffic signals are tagged as nodes with their “highway” attribute having the value of 

“traffic_signals” (69). According to the OSM documentation, “the mapping of traffic signals is an 

abstraction that the particular junction or way is regulated by traffic lights.” Therefore, a traffic 

signal node is not conceptually related to a particular traffic control device. For example, in Figure 

4-8a, a signalized intersection is represented as a node connecting four ways in OSM. This node 

is tagged as the only traffic signal node for that intersection, even though there are four sets of 

overhead traffic signals on the far side of the intersection for each approach. When multiple nodes 

are used to represent a more complicated highway intersection (e.g., Figure 4-8b), all nodes could 

be tagged as traffic signal nodes but their positions do not correspond to the actual traffic signals. 

Therefore, the OSM traffic signal nodes should not be used to locate actual traffic signals, rather, 

they should be used as a rough estimation of the intersection as a whole. Typically, when multiple 

traffic signal nodes are closer to each other than a certain distance (e.g., 50 m), their average 

position can be used as an approximation of the center of the intersection. 

 

 

 



 

 

91 

 
                 satellite image                                         OSM data model 

(a) 

 
                 satellite image                                         OSM data model 

(b) 

 

Figure 4-8 Illustration of OpenStreetMapTM traffic signal nodes. 

 

For the purpose of verifying the accuracy of the OSM data, key points of the seven 

traversed intersections were manually located using satellite images on Google MapsTM. Detail 

information is given in Table C-2 and Table C-3 in Appendix C. For each intersection, the 

manually extracted intersection center (Table C-3) and the average location of the OSM traffic 

signal nodes (Table 4-2) are compared. Figure 4-9 shows the comparison results. The OSM based 

estimations provide relatively good accuracy of less than 5 meters away from the manually coded 

positions, which is acceptable for a rough estimation of intersection vicinity from each video frame. 
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Table 4-2 OSM Traffic Signal Nodes of Traversed Signalized Intersections 

 

Intersection Traffic Signal Node ID Latitude Longitude

[274633606] 37.197725 -80.401337

[726778899] 37.197687 -80.401243

[216434379] 37.209364 -80.399353

[721834927] 37.209383 -80.399213

[3]

Southgate Drive

@ Beamer Way/Research Center Drive

[216441656] 37.217342 -80.419160

[4]

Southgate Drive

@ Duck Pond/Dairy Drive

[721757100] 37.216285 -80.423660

[216459765] 37.213135 -80.431888

[726771247] 37.213092 -80.432138

[1468455063] 37.213234 -80.432009

[726671503] 37.191650 -80.403763

[726672094] 37.191697 -80.403894

[721834758] 37.193972 -80.402747

[721834885] 37.194042 -80.402874

[1]

S Main Street

@ Professional Park Drive

[2]

S Main Street

@ Hubbard/Ellett Road

[5]

Southgate Drive

@ Huckleberry Trail

[6]

US 460 5B Exit Ramp

@ S Main Street

[7]

S Main Street

@ Industrial Park Road
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Figure 4-9 Accuracy of intersection center estimate based on OSM traffic signal nodes. 

 

4.5 Signal State Ground Truth 

Annotating traffic signals in each frame is the most critical data reduction effort. Resulting 

annotations will be used to evaluate the accuracy of the proposed methodology. Also, sampled 

annotations can be used as training data for some compared methods that require device dependent 

training samples. 

In each frame, every active traffic signal lens (excluding pedestrian signals) facing the 

subject approach was annotated by a rectangular bounding box. The bounding box was drawn to 

enclose the lens area only. However, due to image quality (e.g., oversaturation), there was a certain 

degree of uncertainty when drawing the bounding box. Such uncertainty was inevitable, but was 

mitigated by enforcing a rule that the bounding box of the same signal lens should not increase in 

size as the annotation started from a nearest non-void frame and progress backwards. Starting from 

the nearest frame gave the annotator the largest and clearest target objects and, as the annotation 
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progressed backwards, the bounding boxes of the previous frame became a helpful gauge of the 

bounding boxes in the current frame. Annotation stopped when all signals were too small to locate 

or when an upstream distance was exceeded, whichever happened first. Occlusion and flashing 

mode could result in discontinued appearance of the same signal lens. In such cases, the bounding 

box was only drawn for frames when the lens was visible or lit. 

In addition to the bounding box, each signal lens was also annotated with its signal color 

and an identification number corresponding to the signal head it belonged to (referred to as the 

signal head id hereafter). The signal head id is local to each approaching instance. Numbering of 

the signal head ids started from the critical signal head, defined as the signal head that regulated 

the traveled lane and movement of the subject vehicle.  The critical signal head was given an id 0. 

After that, the id of every next signal head to the left and to the right of the critical signal head was 

decreased and increased by 1, respectively. For example, given four signal heads among which the 

second from the left is the critical signal head, their id sequence will be [-1, 0, 1, 2] starting from 

the left. Therefore, even in the same approach to the same intersection, if two approaching 

instances were in different lanes, the two resulting signal head id sequences would be differed by 

an integer. The advantage of such identification schema is the convenience of locating the critical 

signal head when movement specific analysis is needed. With the signal head id, bounding boxes 

across frames can be associated even when a signal state change happened. 

In order to facilitate the extraction of the ground truth, an interactive computer program 

was written in MatlabTM to provide both visual control and text input functions. As illustrated in 

Figure 4-10, the interface provides a guiding box (dashed-line) that moves with the mouse cursor 

so the user is always aware of the current mouse position and the bounding box size. The user can 

change the width, the height, or both of the guiding box by certain combinations of keyboard 
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strokes and mouse scroll. The user can also zoom into the region of interest to get a focused view 

of the signal lens, which is very useful when the traffic signal was far away and only occupies a 

very small amount of pixels. When the guiding box correctly locate a signal lens, the user can 

simply left-click the mouse to confirm the annotation, which will bring up a text input dialog for 

the user to type in the traffic signal state and the signal head id. The confirmed ground truth will 

appear as a still solid-line box on the frame with information displayed beneath it. If a mistake is 

made, the user can delete the mistake by positioning the mouse cursor in the box and right clicking 

the mouse with the Ctrl key pressed. Considering the situation when the vehicle was stopping for 

the red light or yielding to conflicting traffic under the permissive mode, a large amount of frames 

may look almost the same. Therefore, a linear interpolation mode was given to the program to 

provide a certain level of automation. With this mode, the user only need to annotate two end 

frames and let the program interpolate annotations in between. 

 
Figure 4-10 Visual interface for ground truth signal state extraction. 
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Table 4-3 summarizes the statistics of the extracted ground truth and Figure 4-11 visualizes 

the counts of annotations in different cross classifications in terms of instant signal state, in image 

size, and the lighting condition. 

Table 4-3 Overview of Annotation Results 

Statistic name Statistic value 

Total number of annotated frames 30529 

Total number of annotations(1) 82528 

Number of annotations by instant signal state(2) 

 Red 28588 

 Green 51076 

 Yellow 2864 

Number of annotations by radius of the maximum bounded circle (in pixels) 

 1 7 

 1.5 1594 

 2 16633 

 2.5 19547 

 3 18160 

 3.5 14237 

 4 6403 

 4.5 3300 

 5 1440 

 5.5 466 

 6 305 

 6.5 210 

 7 102 

 7.5 67 

 8 39 

 8.5 12 

 9 6 

Number of annotations by lighting conditions 

 Sunny 25463 

 Cloudy 17121 

 Dawn/dusk 14141 

 Dark lit 23598 

 Dark unlit 2205 

(1) An annotation is a bounding box around a traffic signal lens in one video frame with related 

information. One frame may contain multiple annotations and one physical traffic signal lens 

may correspond to a set of annotations across multiple frames. 

(2) Instant signal state refers to the traffic signal color at the instant of the frame. For solid traffic 

signals (e.g., ordinary green, red, or yellow), the instant signal state during the corresponding 

interval is consistent. For flashing traffic signals, such as flashing yellow arrow, the instant 

signal state changes at a certain frequency during that interval. A flashing lens was only 

annotated in the frames when it was lit, resulting in non-continuous annotations. 
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Figure 4-11 Annotation results by cross classification. 
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CHAPTER 5 

EXPERIMENTS AND ANALYSES 

5.1 Overview 

Experiments were conducted on a 64-bit Windows 10 desktop machine. This machine was 

equipped with a 2.33-GHz Intel® Core™ 2 Quad CPU (Q8200) and 6 Gigabytes of random access 

memory (RAM). Also, this machine was constantly connected to the internet, which allowed on-

the-fly data acquisition from the OSM servers during the experiment with the spatiotemporal 

framework. Algorithms were prototyped in the C++ programming language with reference to the 

OpenCV library for fundamental vision functions. MatlabTM wrapper functions (i.e., mex functions) 

were written so they could be executed and the results (intermediate and final) could be analyzed 

in the MatlabTM environment (version R2016a). Direct builds to Windows command line 

executables are also provided for production purposes. Algorithm parameters could be controlled 

with a configuration text file that follows the YAML data serialization standards. 

5.2 Detection Performance 

Since detection is the foundation of the entire recognition pipeline, experiments were 

performed to assess its accuracy and gain insights to calibrating parameters (e.g., the weights of 

conspicuity features). A baseline performance measure was given by running the detection 

algorithm with default parameters over all 30,529 annotated frames. Accuracy and recall are 

evaluated for various lighting and distance (in terms of target size) categories. Qualitative 

inspections into sample frames in low performance categories revealed helpful rules for tuning 

parameters. The baseline performance was also compared to two other closely related methods 

and the results reveal the robustness of the proposed algorithm. 
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5.2.1 Baseline Test 

In order to gain a baseline assessment of the detector’s performance, default parameters 

listed in Table 5-1 were used to run tests on all 30,529 annotated frames. The tests took over 40 

hours to finish, averaging to a processing time of nearly 5 seconds per frame. However, this 

processing time included loading and saving intermediate data from and to computer hard drives 

to facilitate later tuned tests, which can be avoided in production. 

Table 5-1 Default Parameters for Baseline Test 

Parameter Value 

{𝑤𝐿 , 𝑤𝐿𝐶 , 𝑤𝑆} {1, 1, 1} 

𝑅𝐴𝐷 
(the r range) 

{1,2,3,4,5,6,7,8,9,10} 

m 
(the A2 margin width) 

0 

ℎ𝑝𝑒𝑎𝑘 0.9 

𝑁𝑡𝑜𝑝 10 

𝑁𝑝𝑖 20 

𝑎𝑠𝑝𝑚𝑖𝑛 0.6 

𝑝𝑑𝑚𝑖𝑛 0 

  

 Detected candidates were compared to manual annotations so true positives and false 

positives could be separated. A true positive is defined as a candidate whose center pixel resides 

in the minimum enclosed circle of any annotation box of the same frame. At this point, no color 

state was considered because the detection algorithm does not provide a state classification. The 

assessment of state classification will be addressed in Section 5.3. 

Detection performance should be evaluated on a per-frame basis and under various lighting 

and distance categories. Because the theoretical behavior of the conspicuity based detection is to 

find the most conspicuous regions in the given frame, it makes little sense to evaluate whether 

individual traffic signal lenses were detected or not by considering them separately from the frame 
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context. For example, a traffic signal lens can be missed not because its absolute conspicuity value 

(which is in itself meaningless) is low but because it is lower than those of other regions in the 

frame. In other words, the detection performance should be an assessment of how many of the 

present traffic signals in a given frame can be correctly detected (i.e., the recall) as well as how 

many false objects are reported among all detections (i.e., the false positive rate = 1 - precision). 

In different lighting and distance (in terms of the size of the targets) conditions (refer to Figure 4-1 

and Figure 4-11), the relative conspicuity of the target traffic signals can be affected differently. 

For example, in sunny days when the traffic signals are far away, the conspicuity of the targets can 

be compromised by pixel resolution and overwhelmed by near-by roadside object or the 

background sky. In some of these cases, finding the exact location of a traffic signal could be 

extremely ambiguous even to human reviewers (based on data reduction experience). Therefore, 

frames were evaluated under different scenario categories. 

Table 5-2 summarizes the baseline test result in terms of frame counts under various 

scenario categories and performance ranges. Note, the header of each recall rate column states the 

exact number of true positives over all annotated signals in the frame, except for zero and full 

recalls (0 and 1, respectively). The precision columns are corresponding to lower bound precisions. 

For example, a frame under the 30% precision column is one on which the detection achieved a 

30% or more precision.  
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Table 5-2 Frame Counts of Various Performance Ranges in Different Scene Categories 

 

0 1/4 1/3 1/2 2/4 2/3 3/4 1 0% 10% 15% 20% 25% 30% 35% 40% 50% 55% 60% 65% 75% 80% 100% Total

Cloudy 2434 228 934 884 152 557 69 1088 2434 56 19 48 120 220 10 84 344 1 55 251 83 1 2620 6346

2 564 54 270 113 30 145 3 138 564 3 4 13 22 55 2 20 95 12 46 20 461 1317

3 872 128 491 260 80 314 39 404 872 16 6 17 42 102 8 45 167 1 34 114 52 1 1111 2588

4 955 40 121 446 35 77 25 472 955 37 9 15 54 54 19 77 9 84 8 850 2171

5 25 6 29 23 4 9 1 21 25 1 2 1 2 1 86 118

6 11 9 28 3 4 1 26 11 1 3 1 3 1 62 82

7 5 8 13 4 14 5 1 3 1 1 1 32 44

8 2 2 1 2 5 2 1 1 1 1 6 12

9 4 2 8 1 1 12 14

Dark lit 2008 375 1168 763 385 1453 203 2035 2008 88 88 167 389 831 27 378 1343 6 234 896 281 7 1647 8390

2 9 17 8 1 9 3 3 4 5 6 1 2 1 1 35

3 469 180 518 89 180 819 58 704 469 31 34 57 164 304 6 169 495 3 144 286 163 2 690 3017

4 798 97 493 335 174 516 129 1001 798 34 30 62 147 370 16 168 530 3 58 478 85 5 759 3543

5 581 93 113 303 22 96 12 283 581 18 17 39 65 135 4 32 286 31 116 30 149 1503

6 79 4 17 24 8 11 4 35 79 1 3 4 5 11 6 24 1 12 3 33 182

7 47 1 8 9 1 3 9 47 1 1 1 3 5 1 6 3 10 78

8 25 2 3 2 25 1 1 5 32

9

Dark unlit 172 137 1 278 155 172 8 9 15 21 51 2 19 60 11 39 40 296 743

2

3 74 43 45 15 74 2 5 7 11 21 4 27 4 7 4 11 177

4 61 54 220 136 61 4 4 2 4 23 2 13 23 7 30 34 264 471

5 15 33 1 8 3 15 1 5 6 4 1 9 2 1 16 60

6 10 2 2 1 10 1 1 1 2 15

7 5 4 2 5 1 1 1 3 11

8 7 1 1 7 1 1 9

9

Dawn/dusk 3185 57 565 468 30 318 9 510 3185 26 19 52 138 251 7 67 643 39 341 25 349 5142

2 698 12 356 16 7 232 3 94 698 20 13 35 81 110 6 18 200 37 68 21 111 1418

3 1956 38 170 47 13 66 4 24 1956 3 2 6 21 54 1 14 144 26 3 88 2318

4 482 4 25 375 8 13 1 378 482 3 4 11 31 84 33 280 1 243 1 113 1286

5 34 3 9 27 1 5 1 9 34 5 2 1 17 1 2 27 89

6 13 5 1 1 2 5 13 1 1 2 2 8 27

7 2 2 2 2 4

8

9

Sunny 8977 2 309 443 84 93 8977 44 25 83 98 114 24 226 31 286 9908

2 2946 3 14 2946 2 4 2 4 3 2 2963

3 5362 2 262 215 64 62 5362 32 17 53 65 66 17 138 24 193 5967

4 520 34 179 15 14 520 9 7 24 24 33 5 64 4 72 762

5 78 7 26 3 5 78 1 1 2 5 9 1 12 2 8 119

6 51 2 7 2 5 51 2 2 1 6 1 4 67

7 19 1 2 5 19 2 6 27

8 1 2 1 1 1 3

9

Total 16776 662 3113 2559 567 2690 281 3881 16776 222 160 365 766 1467 46 572 2616 7 339 1558 429 8 5198 30529

Recall RateLight Condition

- Max Target Radius
Precision
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 In order to perceive trends of the results in Table 5-2, a plot of recall versus false positive 

rate (FPR = 1 – precision) was generated and showed in Figure 5-1. In this plot, each subplot 

belongs to a cross-category of lighting condition and target size, corresponding to each row in 

Table 5-2. The total number of frames in each category is printed as “N = ***” in gray color. In 

each subplot, the x-axis is the FPR and the y-axis is the recall. Each circle on the subplot 

correspond to all frames with the same performance, while the area of the circle are proportional 

to the percentage of frames with that performance in that category. Circles are colored more blue 

as they are closer to the left and upper borders (i.e., FPR = 0% and recall = 100%) and more red 

as they tend towards the other direction. Therefore, bluish circles corresponds to frames with 

desired performance while reddish circles are frames that reveal the inadequacy of the baseline 

setting. 

 Several trends can be observed in Figure 5-1. First, in almost all scenarios, the frames with 

at least one target being detected (recall > 0) are always near or above 50%.  This implies that over 

50% of frames in most scenarios fully or partially satisfy the assumption that the target traffic 

lights are among the most conspicuous objects in the scene. Second, there is little correlation 

between the recall and the precision. This complies well with the randomness of the scene 

complexity and hence of the satisfaction to the conspicuity assumption. When the conspicuity 

assumption is fully satisfied, the targets can be detected at a perfect recall (= 1) with zero false 

positives. As the satisfaction of the assumption decreases in various ways, the performance can be 

roughly anywhere in the plot area. When the assumption is fully violated, both recall and precision 

drop down to zero. Nevertheless, performance differs among different scenarios. In terms of 

lighting condition, cloudy days present the most detectable environment and as the target size 

increases, the total misses are constantly decreasing. This is intuitive because the cloudy days 
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introduce weak ambient light and help the traffic lights to stand out in the scene. In dawn/dusk, 

dark lit, and dark unlit conditions, the ambient lights are even weaker than in cloudy days, but due 

to the sudden increased uses of vehicle headlights and streetlights, the conspicuity of target traffic 

lights face more competition from these other light sources, even from the highly reflective 

surfaces such as traffic signs. Sunny days present the most challenging condition with constantly 

high percentage of total miss frames. In sunny days, the strong ambient light can interfere with the 

digital imaging of the lightness and even color saturation of traffic lights, such as overexposure. 

The conspicuity of reflective pavement markings and colorful roadside objects can also be elevated 

by the ambient light to confuse the algorithm. Though, due to the consideration of contrast in the 

conspicuity model, traffic lights could still be detected in a decent percentage of frames in 

challenging sunny conditions. 

 Without additional knowledge about the scene or spatiotemporal constraints for detection, 

the conspicuity model is maintaining a balanced accommodation to a wild randomness of scenarios. 

Further detection improvement can be attempted by adjusting the weights in the model to adapt to 

certain scenarios better (see Section 5.2.3) or by introducing constraints in a spatiotemporal 

framework (see Section 0). In order to reveal the advantage of the proposed method, two other 

detection approaches that also aimed at generic accommodation were compared in the next section. 
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Figure 5-1 Recall v.s. false positive rate (= 1 - precision) of the proposed algorithm. 
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5.2.2 Comparison to Other Approaches 

The two alternative approaches chosen for comparison are based on Siogkas et al. and 

Charette and Nashashibi (28, 35). Siogkas et al. multiplied the “L” channel to the sum of the “a” 

and “b” channels of the CIELab space to create an initial feature map. Then, a fast radial symmetry 

transform was performed on this feature map to generate a heat map of local symmetry 

(corresponding to the circular shape of signal lenses). Binarization and connected component 

analysis were used on this heat map to locate the top five dark spots (corresponding to green lights) 

and the top five bright spots (corresponding to red lights). Charette and Nashashibi converted the 

input image to a grayscale image and applied the white top-hat transform (difference between an 

image and its morphological opening) on this grayscale image to highlight spotlights in the scene. 

Connected component analysis was used to locate the candidate regions. For conciseness, the 

approach based on Siogkas et al. is denoted as LAB-FRST and that based on Charette and 

Nashshibi is denoted as GRAY-TOPHAT. 

The implementations of the above two methods are as following. For LAB-FRST, the fast 

radial symmetry transform (FRST) is based on the original implementation by the inventor (70). 

The positive and negative parts of the CIELab based feature map are transformed separately. The 

radius range is chosen as 1 to 10 pixels, with 1 pixel step. The alpha parameter of the FRST 

algorithm is chosen to be 3 and the orientation flag is set to be true. Binarization is based on half 

of the maximum value in the transformed map and 8-connectivity component analysis is used to 

locate candidates and determine their sizes. For GRAY-TOPHAT, the implementation is in fact 

identical to the proposed algorithm, except that the conspicuity value is replaced by the top-hat 

value calculated on a grayscale image.  
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Figure 5-2 and Figure 5-3 show the recall versus FPR plots for LAB-FRST and GRAY-

TOPHAT, respectively. For comparison, Figure 5-4 plots the average performance of each method 

under different categories. The proposed method has a higher average recall/lower average FPR 

than the other two methods do in most cases. For sunny condition, the performances are similar 

for all methods, again, confirming the challenge of sunny condition. However, as the target size 

increases, the proposed method and GRAY-TOPHAT show faster improvement in recall than 

LAB-FRST, while the proposed method also shows reduced FPR. In cloudy conditions, the 

proposed method constantly outperform the other two methods and the advantage becomes more 

significant as the targets get closer. In dawn/dusk, the proposed method is beaten by the GRAY-

TOPHAT only when the target size is at 7 pixel in radius, but the sample size associated with that 

category is only 4, which does not grant statistically significant conclusion. In dark lit and unlit 

conditions, the proposed method always performs better than the other two methods, although the 

performance does not increase as the target becomes larger. 
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Figure 5-2 Recall v.s. false positive rate (= 1 - precision) of the LAB-FRST algorithm. 
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Figure 5-3 Recall v.s. false positive rate (= 1 - precision) of the GRAY-TOPHAT algorithm. 
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Figure 5-4 Comparison between different methods. 

Proposed LAB-FRST GRAY-TOPHAT 
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5.2.3 General Tuning Rules 

Visual inspection was conducted on select frames to derive helpful tuning rules. Focuses 

were given to frames with target radius between 3 and 4 pixels with zero recall (as well as 

precision). All lighting conditions were considered for visual inspection. 

In general, in all lighting conditions but sunny, low recalls and high false positive rates 

were found majorly related to the competitions from other light sources. Examples are given in 

Figure 5-5 - Figure 5-11, with the conspicuity map and the original image shown side by side. The 

original image is overlaid with the detected candidates (blue circles) and the annotated ground 

truths (red squares). Figure 5-5 and Figure 5-6 show two examples in dark lit conditions. The target 

traffic lights showed relatively high conspicuities in the image, but not as high as some of the other 

light sources. In fact, among the false positives, some are actually secondary traffic lights (Figure 

5-5) and traffic lights for the cross street (Figure 5-6). In Figure 5-5, even the reflection of the 

target traffic lights on the hood cover were detected. Therefore, the algorithm was working in an 

expected way, but the complexity of the scene prevented the desired traffic lights to stand out. 

Without structural understanding of the scene, it is also hard for human to decide which light 

source is the subject signal control. Nevertheless, by tuning up the weight triplets to [1, 1, 4] and 

[1, 1, 2] (increasing the weight of average saturation) for the two images, respectively, all target 

traffic lights were picked up with reduced false reports on roadside street lights. This is implies an 

important rule of parameter tuning, that during diming conditions where only light sources show 

up with high lightness, the major distinction between traffic lights and some of the other light 

sources is the color saturation, so the weight of average saturation should be increased to achieve 

better performance. In dark unlit conditions like Figure 5-7, the major distraction could be 

introduced by traffic lights for the cross street and other highly reflective surfaces (road pavement 
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or signs). The rule of increasing the saturation weight also worked for this example. However, 

since the traffic lights for the cross street also have high saturation, only when the weight triplets 

were set to [1, 1, 2] were two out of three target red lights were detected. Further increasing the 

saturation weight to 3 gave higher conspicuity back to the green lights. In another dark unlit 

example in Figure 5-8, a weight triplet of [1, 1, 4] made the middle green light detectable. 

However, increasing saturation weight is a general rule rather than a guaranteed remedy, 

because the scene complexity could violate the conspicuity assumption to an unknown extent. For 

example, in Figure 5-8 and Figure 5-9, the motion blur of the traffic lights breaks the assumption 

of the average or contrast areas (A1, A2, and A3). In Figure 5-10 (dawn/dusk), the color saturation 

of the target lights were actually underrepresented and an improved detection was achieved by 

increasing the weight of lightness contrast (i.e., [1, 2, 1]). In Figure 5-11, increasing the saturation 

weight detected only one of the two lights, but when combined with the adjustment of the lightness 

contrast weight (i.e., [1, 2, 4]) both lights were detected. 

 
Figure 5-5 Dark lit example 1 (Frame ID: 00041-1803). 
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Figure 5-6 Dark lit example 2 (Frame ID: 00041-25891 

 

 
Figure 5-7 Dark unlit example 1 (Frame ID: 00041-7545). 

 

 
Figure 5-8 Dark unlit example 2 (Frame ID: 00041-22856). 
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Figure 5-9 Dawn/dusk example 1 (Frame ID: 00105-22284). 

 

 
Figure 5-10 Dawn/dusk example 2 (Frame ID: 00137-5704). 

 

 
Figure 5-11 Cloudy example 1 (Frame ID: 00053-21007). 
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Lightness contrast showed more detection powers in sunny daytime. For example, as 

shown in Figure 5-12, the roadside objects and pavement markings has equivalent conspicuity as 

the target traffic light with equal weights between the three components of the conspicuity model. 

If the weight triplet is changed to [1, 3, 1] to increase the effect of lightness contrast, the middle 

traffic light will be detected. 

 
Figure 5-12 Sunny example 1 (Frame ID: 00153-6185). 
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5.3 Classification Performance 

Classification was tested on all true positive candidates from the base line detection result.  

In order to evaluate the sensitivity of the classifier, two sets of test were run with different training 

datasets. In the first test, the training data only contained 15 images randomly downloaded from 

the web. Among these images, five green lenses, six red lenses, and four yellow lenses were 

annotated and used to train histograms. The average radius of these lenses was about 18 pixels. In 

the second test, 26 sample frames from the HPV data were used, with ten green lenses, ten red 

lenses, and six yellow lenses. These frames were chosen from videos with cloudy condition so the 

color appearance was optimized. The average radius was about seven pixels. The classification 

results are given in Figure 5-13 and Figure 5-14 for these two tests, respectively. Similarly, the 

outputs are plotted in different combinations of lighting condition and target radius. The numbers 

of ground truth annotations for each signal color are given. The green triangle, red circle, and 

yellow triangle indicate the accuracy measures of green, red, and yellow, respectively 

classification results, respectively. 

In Figure 5-13, a nearly ideal classification of green signals can be observed in all lighting 

conditions except sunny. Even in sunny days, the recall rates of green signals are generally high 

and no other signal colors were misclassified as green. In sunny days, both red and green signals 

can be confused with yellow signals, resulting in generally high FPR of yellow classifications. In 

cloudy days and dawn/dusk, confusion primarily happened between yellow signals and red signals. 

In dark lit condition, a major amount of yellow signals were misclassified as green signals, while 

red signals were well classified. This is intuitive because in dark lit conditions red signal lights are 

more distinguishable by color. In dark unlit conditions, the classification worked ideally for all 
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three signal colors. Overall, the classifier achieved 94.4% correct classifications for all tested 

candidates.  

In Figure 5-14, when training was done using the samples in cloudy conditions from the 

HPV dataset itself, different performance changes happened in different lighting conditions. In 

sunny days, both green and red signals were easily misclassified as yellow signals. In cloudy 

conditions, red signals were easily misclassified as yellow signals. The overall performance 

improved in both dawn/dusk and dark lit conditions while the performance in dark unlit conditions 

almost remained the same. 
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Figure 5-13 Classification using sample data from web images. 
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Figure 5-14 Classification using sample data from the HPV data set. 
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 Assessment of the classification performance based on web training images were also 

conducted with respect to the classification confidence and the discriminative ratio. As shown in 

the left plot of Figure 5-15, the misclassification rate shows a general decreasing trend as the 

confidence increases, suggesting a positive correlation between the confidence and the 

classification accuracy. Though, the correlation is relatively weak, because the decision of 

classification is not based on the absolute value of the confidence, but based on the relative ranks 

of the confidences of three signal colors. Therefore, the misclassification rate is also plotted against 

the discriminative ratio (the right plot of Figure 8). Discriminative ratio is defined as 1 – (the 

minimum confidence / the maximum confidence). A small discriminative ratio implies that all 

signal colors have similar confidences and the chosen color only wins by a small amount. A large 

discriminative ratio implies that one signal color stands out. Decision made with a larger 

discriminative ratio is considered more reliable. In the right plot of Figure 8, this hypothesis is 

visually verified. When the discriminative ratio is above 0.7, the misclassification rate is constantly 

low. 

 

Figure 5-15 Assessments of the misclassification rate. 
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In summary, the classifier gave consistently good recall rates for green signals with 

different training datasets, except when the light condition was sunny. Sunny condition turns out 

to be a challenging condition for both detection and classification. This complies with the intuition 

that strong ambient light can significantly reduce the visibility and clarity of traffic signals even 

for human. In cloudy conditions, both training datasets led to confusion between red signals and 

yellow signals. Using sample data from the HPV dataset, the trained classifier showed better 

performance in dawn/dusk and dark lit conditions. In dark unlit conditions, the classifier performed 

ideally with either training dataset. Classification accuracy was found positively related to the 

absolute confidence and the relative confidence (i.e., the discriminative ratio above), with the latter 

showing more obvious trend. Therefore, the reliability of a classification can be effectively 

assessed by these two measures. 

 

5.4 Spatiotemporal Framework Evaluation 

Experiments on the spatiotemporal framework were conducted using the baseline detection 

setting and the sample from the HPV dataset was used for training the classifier. In addition, a 

general region of interests was set as the upper 60% of the frame. For the short range initialization, 

the upstream and downstream maximum trajectory distances were 10 m and 5 m, respectively. In 

the pruning pass, up to five tracks were selected. All 168 instances of signalized intersection 

traversal were correctly identified by the vicinity profile screening. A total number of 825 tracks 

were generated. Figure 5-16 shows all 825 resulting tracks aligned relative their clips’ anchor 

frames. The blue portion is upstream of the anchor frame and the red portion is downstream of the 

anchor frame. The position is measured in cumulative trajectory distance (on the left) and in frame 

counts (equivalent to time duration). As shown, candidates could be tracked on average up to 
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around 500 feet or about 300 frames (about 20 seconds) upstream of the anchor frame. A few 

number of extremely long tracks were found false tracks. 

   
Figure 5-16 Tracks aligned relative to the anchor frame: left) position measured in feet and 

right) position measured in frame count (equivalent to time). 

 

 Detection results under the spatiotemporal framework are compared to those of the baseline 

detection in Figure 5-17. The comparison shows that in all lighting conditions except dark unlit, 

the spatiotemporal framework performed worse than the baseline detection. Such performance 

difference is counterintuitive at the first thought, because the spatiotemporal framework was 

designed to increase the reliability of detection. However, by carefully examining the theoretical 

behavior of the spatiotemporal framework, reasonable explanation can be derived. First of all, the 

track selection process in the pruning pass of the short range initialization stage could have 

excluded less stable tracks that in fact corresponded to true positive detections. Second, by 

selecting a track that was related to a non-traffic-signal, the program could have boosted additional 

false positives during the pruning and long range tracked recognition. For the sunny condition, 

which is challenging even for the baseline detection, both tests show similar results in general, 

especially in terms of recall rate. As the target size increased, the spatiotemporal framework could 
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have introduced more false positives along false tracks. In cloudy, dawn/dusk, and dark lit 

conditions, both the exclusion of true tracks and the inclusion of false tracks might play equivalent 

roles in degrading the detection performance, since both the recall rates and the false positive rates 

are lower with the spatiotemporal framework. In the dark unlit condition, the spatiotemporal 

framework outperformed the baseline detection. This reversion further confirms the above 

hypotheses because in dark unlit condition the actual traffic signals were the most conspicuous 

objects and were more likely to form stable tracks for long range recognition. 

 Color classification performance of the true positive detections under the spatiotemporal 

framework are illustrated in Figure 5-18. By comparing Figure 5-18 to Figure 5-14, similar 

patterns are observed. Because the spatiotemporal framework only provides hints for detection and 

tracking using classification results and does not alter the classification results, such similar 

performance patterns should be expected. 
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Figure 5-17 Comparison between base line detection and using spatiotemporal framework. 

With spatiotemporal framework Baseline detections 
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Figure 5-18 Color classification results of true positive detections under the spatiotemporal framework. 
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 A natural question to ask is whether tracks with longer duration, in general, correspond to 

temporally more accurate traffic signal state. A theoretical answer is yes because the pruning stage 

and the long range tracked recognition stage are expected to fill in recognition gaps. In order to 

test this hypothesis, the temporal accuracy signal state of the tracks belonging to true detections is 

plotted against the duration of track (Figure 5-19). Temporal accuracy is defined as the ratio of the 

number of candidates that are correctly classified over the number of all candidates in a track. As 

shown in Figure 5-19, temporal accuracy converges towards 1 as the track length increases. Even 

with a short track length (below 150 frames), a descent number of tracks also show ideal temporal 

accuracy. 

 
Figure 5-19 Relationship between temporal accuracy and track length. 
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5.5 Summary 

In this chapter, experimental results are shown and analyzed. A baseline detection using 

default parameters yielded an initial assessment of the accuracy performance of the conspicuity 

based detector in different scenarios of lighting condition and target size. In general, the algorithm 

was able to adapt to various scenarios with at least one target correctly located in a majority of 

frames. Sunny condition is found to be the most challenging situation due to strong ambient light. 

Cloudy condition is among the most desirable scenario for detection and the detection accuracy 

increases as the target size increases. Reasonable performance was observed in dawn/dusk, dark 

lit, and dark unlit conditions, although the increase of target size did not introduce more detection 

benefits. In order to show the advantage of the proposed method, two other generic traffic signal 

detection algorithms were compared to. Results indicate that the proposed method consistently 

outperformed the other methods in all scenarios except sunny days. In sunny condition, all methods 

performed equivalently, further confirming the difficulty of traffic signal detection under strong 

sun lights. Visual inspections of a sample of poorly processed frames allow deeper insights into 

several misdetection issues. In general, properly tuning the weights of conspicuity components can 

effectively improve detection. Color saturation is recommended with a higher weight in dim 

environment and lightness contrast is more recommended for bright environment. There were 

issues that could not be addressed by the proposed algorithm, such as motion blur. These issues 

are considered limitations of the automatic TSR in general. 

Tests on the classifier using different training datasets show that the histogram based 

approach is robust for green light classification. Sunny condition is still challenging for correct 

classification. Using a more representative training dataset could improve the performance in 

dawn/dusk and dark lit conditions. Dark unlit condition is the most desirable lighting environment 
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for classification with almost ideal classification accuracy. Yellow and red signals were easily 

confused with each other in cloudy condition. Absolute and relative confidences were both found 

to be reasonable predicates of the reliability of a classification, with the relative confidence being 

more positively related to the classification accuracy. 

Experiments on the spatiotemporal framework reveal important insights into its theoretical 

behavior. Detection accuracy can be degraded when 1) the track of an actual traffic signal lacks 

stability and is excluded or when 2) the track of a non-signal gets selected due to its persistence in 

the detection history. The former situation could decrease the recall rate and the latter situation 

would increase the false positive rate. The spatiotemporal framework showed little effect on the 

classification results, which is expected because the framework does not alter any classification 

steps. Temporarily, tracks with longer durations showed more accurate temporal profile of traffic 

signal state. 
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CHAPTER 6 

CONCLUSIONS AND DISCUSSION 

A set of comprehensive TSR related algorithms are proposed in this thesis for road 

information extraction from massive video data source. The algorithms consist of two major 

subsets: 1) image based traffic signal detection and classification algorithms and 2) spatiotemporal 

information based preprocessing and coordination framework. In the development of these 

algorithms, minimal to no assumptions were made about the uniformity of the source cameras, the 

accessibility of camera exposure controls, the availability of camera-dependent sample data, the 

lighting condition of the road environment, or the target size in the image. Such openness of input 

sets a high requirement for these algorithms to be generic. Though, with the ubiquitous color 

cameras, the vision algorithms do assume RGB based color input. Additionally, when GPS 

readings of camera position are available, the spatiotemporal framework only requires a relaxed 

accuracy and density of the position data as long as linear interpolation can result in no more than 

5 m of deviation from the actual position. 

6.1 Detection and Classification Remarks 

An innovative concept of conspicuity was developed to model the likelihood of a pixel 

being the center of a traffic signal lens. The concept is based on how traffic signal lights in the 

image appear distinctly to human eyes, more specifically their brightness as a result of both 

luminance and color saturation and the brightness contrast against their bounding boxes. 

According to this concept, conspicuity is modeled as a weighted geometric mean of three 

convolutional features: the average lightness of the lens area, the contrast of lightness between the 

lens area and the border area, and the maximum average saturation of the lens area and the annulus 
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area. The first two features are related to CIELab color space based lightness and the third related 

to HSV color coordinates based saturation. The convolutions take into consideration of both 

daytime and nighttime scenarios, especially with accommodation to the situation when light color 

diffuses to the halo surrounding of a traffic light in the dark. Also, multiple scale convolutions 

allow the final conspicuity value to adapt to any potential target size. Due to the use of geometric 

mean, the relative ratios of conspicuity among pixels are invariant to the choice of value range of 

any of its convolutional components. This is an important property in that it 1) gives a consistent 

shape of the resulting normalized conspicuity map, 2) allows each component to be calculated in 

any computational efficient numerical data types, and 3) purifies the control of weights as a control 

of each component’s contribution rather than a mix with value scale adjustment. 

An iterative localization algorithm was developed to locate the center and size of candidate 

traffic signal lens. The algorithm works on the normalized conspicuity map generated by the 

conspicuity model. It iteratively looks for peaks at different conspicuity levels. During the position 

search, a proposed DRMShift algorithm is used to allow a traditional peak finding mean shift 

algorithm to work in the case of dynamic radius. 

Candidate traffic signal lens are classified using a proposed histogram similarity based 

color classifier. The classifier trains a 2D histogram of the “a” and “b” coordinates of the CIELab 

space for each traffic signal color based on sample training images. The same type of histogram is 

calculated for each candidate and compared to the trained histograms to give a soft classification 

of the candidate’s signal color, i.e., with a score for the candidate to be any of the three possible 

signal colors. Although the requirement for training data seems to defy the design principle for 

generic algorithms, the histogram similarity based soft classification theoretically reduces the 

training data’s dependency of camera. In other words, training data from one camera are expected 
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to work reasonably well on testing data from other cameras, because the algorithm is looking for 

the relative likelihoods of three possible colors rather than drawing a hard categorization using 

fixed thresholds. 

Experiments were conducted on over 30,000 frames with various lighting conditions and 

target sizes with default detector parameters. For 50% or more frames in each combination of 

lighting condition and target size, the detection algorithm worked reasonably well in terms of 

correctly identifying at least one out of three to four active traffic signals presented at the same 

time. In a major portion of these detectable frames, the detected signals are over two and even up 

to three or four. False positives occurred at a considerable amount. Rather than denying the 

effectiveness of the detector, these false positives in fact reasonably reflect the theoretical behavior 

of the detector, which is based on the model of conspicuity. Most false positives are conspicuous 

objects in the scene, including street lights, vehicle tail lights, other non-target traffic signal lights, 

and even the target traffic signal lights’ reflection on the camera-mounted vehicle’s hood. These 

false positives are strong resemblance or even actual instances of traffic signals. Without other 

prior knowledge or sophisticated scene analyzing ability like a human has, the algorithm is 

reaching its limit in terms of finding the best candidates. In relation, because of these competitive 

false candidates, when only a specified number of top candidates are to be extracted, the true 

candidates may lose the competition and lead to reduced recall rates. A major portion of the non-

detectable frames belong to such case.  

In order to justify the detection performance, two other algorithms that were used in the 

literature as the state-of-the-art generic detectors were implemented, tested, and compared to. 

These algorithms possess similar conspicuity concept as the proposed detector, but they either 

underrepresent the contribution of color saturation or insufficiently reflect the lightness contrast. 
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As expected, the proposed algorithm outperformed the other two algorithms in all scenarios except 

one when one of the previous algorithms showed a better precision but an equal recall rate. The 

results suggest that the consideration of lightness, contrast, and saturation are a more 

comprehensive set of conspicuity features. 

With the controllable weights of the conspicuity components, visual inspections to a 

sample set of non-detectable frames were conducted to investigate how weight changing would 

affect the detection performance. The inspected samples did reveal truly difficult frames that even 

human may find it imprecise to annotate the target traffic signals. There were other frames, where 

the targets were decent for detection but none was detected. For these frames, manual adjustment 

of the weights helped. Two general adjustment rules were derived. First, in dim environments, 

color saturation gives more distinction of traffic lights from other light source and the 

corresponding weight should be higher than the lightness based components to improve detection. 

Second, in daytime, the contrast plays an important role in differentiating the traffic signals from 

bright background and should be given more weight. However, these tuning rules cannot be too 

exact about the optimal ratios between weights for different scenarios, because the randomness of 

the scene can be too wild and the optimal ratio for one image may become suboptimal or even 

adverse for a similar image. 

Sunny daytime turned out to be a challenging situation for all algorithms, because the 

strong ambient light can even prevent human observers to correctly locate the traffic signals. In 

cloudy days, a useful increasing trend of recall rate was observed as the target size increased, in 

other words, as the vehicle approached the signalized intersection. This observation provides a 

good evidence that detection is more reliable in short distance range, which complies with the 

assumption used in the design of the spatiotemporal framework. 
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Classification were tested on the true detections. Both camera-dependent and independent 

samples were used to train and compared. Regardless of what training samples were used, the 

classifier consistently showed ideal classification of green traffic signals, except in sunny days 

when the color information was almost undistinguishable. However, red and yellow traffic signals 

were easily confused, especially in cloudy or dawn/dusk conditions. Using different training data 

introduced subtle difference. Dark unlit condition was among the most preferable classification 

scenario in which all colors were ideally classified. Thinking in the application of behavior 

monitoring, such as red-light-running, the classifier is indeed conservative even though red and 

yellow signals can be confused. By reporting all recognized yellow lights indifferently with red 

lights, all actual red-light-runners should be captured, although with potential yellow-light-runners 

that may be of interests as well. Overall, the classifier could achieve a 94.4% accuracy. 

6.2 Spatiotemporal Framework Remarks 

A spatiotemporal framework is proposed to integrate the TSR into a production pipeline 

where input videos are lengthy and most of the time do not capture any traffic signals. In general, 

the framework uses position information to roughly extract instances of passing a signalized 

intersection. For each of the instances, a temporally coordinated TSR is performed to increase the 

efficiency and reliability of detection. There are several novel designs in this spatiotemporal 

framework compared to other related systems. A governing assumption leading to these design is 

that the data are processed offline in contrast to at real time. In an offline workflow, the position 

data of all frames are available all at once rather than being sequentially generated. Searching for 

the nearest signalized intersection can be performed at a sparser interval of frames and utilize 

spatial and motion constraints to fill in the interval gap without additional search. This idea was 

implemented as an extended kd-tree search that could speed up the vicinity calculation at a 
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controllable factor. Recalling the observation of potentially better detection rate at near distances, 

the offline workflow also allows the development of a temporal coordination that initiates the TSR 

on frames that are within a short range of trajectory distance from an anchor frame determined by 

the vicinity calculation. During this short range initialization, detected candidates are associated 

into tracks so their temporal persistence can be assessed and used to prune the detection results. 

With chosen and pruned tracks from the short range frames, long range frames, especially upstream 

frames, are being processed in a tracked manner. In other words, TSR is only performed in more 

restricted regions of interests in these frames based on track prediction. With the consideration of 

the presence of multiple traffic signals and the signal color change, the temporal coordination 

employed the Farneback dense optical flow algorithm to trace candidate footprints across frames 

in a robust way. 

Experiments were conducted on the 21 30-minute long videos among which 168 instances 

of passing a signalized intersection were automatically identified and processed. Compared to TSR 

without the temporal coordination, lower recall rates and higher false positive rates were found. 

Such performance downgrade of using the spatiotemporal framework seems counterintuitive and 

discouraging at first, but it reveals important insights into the theoretical behavior of the temporal 

coordination process. The temporal coordination does not report all detection at the end, instead, 

only those detections associated with a top number of stable tracks are reported. When a track is 

less stable but contain true positive detections, these true positives are suppressed by the exclusion 

of the track. On the other hand, if a stable track with false positives is included and pruned, more 

false positives will be reported. A more reasonable way to assess the effect of temporal 

coordination is to see how temporal accuracy can be affected by the length (and hence stableness) 

of a track. By comparing the actual temporal profiles with the recognized temporal profiles of 
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target traffic signals, a clear trend was found that as the duration of the track increases, the average 

accuracy converges to 100%. Such increase of accuracy happened abruptly at around 150 frames. 

In terms of classification, the spatiotemporal framework introduced little impact because the 

algorithms used in the spatiotemporal framework do not alter the input to or the decision of the 

classifier. 

6.3 Potential Applications 

The proposed algorithms can find applications in existing and future projects. Currently, 

the Federal Highway Administration (FHWA) is constructing a data center to provide useful safety 

information that from massive SHRP2 naturalistic driving videos as mentioned in the introduction. 

Red-light-running events are of particular interests to the FHWA and capturing these events 

requires the traffic signal state information. The proposed algorithms work seamlessly with such 

system setting and are expected to efficiently generate instructive clues for red-light-running 

detection. The generic feature of the algorithms in fact gives them a wider adaptiveness to more 

video data sources. For example, people are becoming more prepared nowadays and many have 

bought a dash cam to monitor their driving environment during daily commute to collect evidence 

in case accidents happen. Even without a dash cam, drivers can also easily record the scene with 

their smartphones mounted behind the windshield. Imagine, when all these videos can be uploaded 

onto the internet cloud as the input to a peer-law-enforcing system, how important would it be for 

the system to have a robust functionality to automatically extract roadway information. With the 

proposed algorithms working with other computer vision technologies, such as vehicle detection, 

such system can automatically generate instances of potential traffic violations and identify the 

violator or witnesses based on the video data source. Because the proposed algorithms are generic, 
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they impose no requirement for the videos to be collected by the same type of camera, which would 

defy the concept of crowd sourcing. 

6.4 Suggested Future Works 

A most direct future work would be to test the algorithms on data other than the samples 

provided by the SHRP2 project. Data quality of the naturalistic driving data may undermine the 

potential of the proposed algorithms, especially by introducing complex scenarios that violate the 

assumptions of the proposed algorithms. By testing video data of higher quality, such as dynamic 

range to avoid overexposure, the capability of the proposed algorithms is possible to be fully 

revealed. 

Although data quality presents a major challenge, the generic requirement of the algorithms 

has prevented them from employing advanced machine learning techniques, which rely on sizable 

training data that are preferably device or quality consistent with the testing data. Therefore, a 

natural next step is to integrate the conspicuity model into an ensemble model and/or machine 

learning framework (e.g., AdaBoost and convolutional neural network). Under such framework, 

more features can be added to the conspicuity model and weights of features can be trained. Recall 

that different lighting conditions have different optimal weights, the learning framework can train 

the weights based on information such as the whole frame lightness histogram, so the resulting 

conspicuity map optimally highlights the target traffic lights. 

Another potential future works would be to incorporate latest advance in semantic 

segmentation to guide the detection. 
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APPENDIX A 

RATIO INVARIANCE OF GEOMETRIC MEAN TO VARIABLES’ SCALES 

Given a weighted geometric mean, 

𝑦𝑖 = √ ∏ (𝑠𝑘 × 𝑥𝑖,𝑘)
𝑤𝑘𝑁
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Proof that 
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 remains constant with respect to changes in any of the non-negative scales, 𝑠𝑘. 

The Proof: 

Assume that 𝑠𝑘 changes to 𝑠𝑘
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𝑘=1

  

 
𝑦𝑖
′

𝑦𝑗
′ =

√ ∏ 𝑥𝑖,𝑘
𝑤𝑘𝑁

𝑘=1

∑ 𝑤𝑘
𝑁
𝑘=1

× √ ∏ 𝑠𝑘
′𝑤𝑘𝑁

𝑘=1

∑ 𝑤𝑘
𝑁
𝑘=1

√ ∏ 𝑥𝑗,𝑘
𝑤𝑘𝑁

𝑘=1

∑ 𝑤𝑘
𝑁
𝑘=1

× √ ∏ 𝑠𝑘
′𝑤𝑘𝑁

𝑘=1

∑ 𝑤𝑘
𝑁
𝑘=1

 

 
𝑦𝑖
′

𝑦𝑗
′ =

√ ∏ 𝑥𝑖,𝑘
𝑤𝑘𝑁

𝑘=1

∑ 𝑤𝑘
𝑁
𝑘=1

× √ ∏ 𝑠𝑘
′𝑤𝑘𝑁

𝑘=1

∑ 𝑤𝑘
𝑁
𝑘=1

√ ∏ 𝑥𝑗,𝑘
𝑤𝑘𝑁

𝑘=1

∑ 𝑤𝑘
𝑁
𝑘=1

× √ ∏ 𝑠𝑘
′𝑤𝑘𝑁

𝑘=1

∑ 𝑤𝑘
𝑁
𝑘=1

 

 
𝑦𝑖
′

𝑦𝑗
′ =

√ ∏ 𝑥𝑖,𝑘
𝑤𝑘𝑁

𝑘=1

∑ 𝑤𝑘
𝑁
𝑘=1

√ ∏ 𝑥𝑗,𝑘
𝑤𝑘𝑁

𝑘=1

∑ 𝑤𝑘
𝑁
𝑘=1

 

 
𝑦𝑖
′

𝑦𝑗
′ =

√ ∏ 𝑥𝑖,𝑘
𝑤𝑘𝑁

𝑘=1

∑ 𝑤𝑘
𝑁
𝑘=1

× √ ∏ 𝑠
𝑘

𝑤𝑘𝑁
𝑘=1

∑ 𝑤𝑘
𝑁
𝑘=1

√ ∏ 𝑥𝑗,𝑘
𝑤𝑘𝑁

𝑘=1

∑ 𝑤𝑘
𝑁
𝑘=1

× √ ∏ 𝑠𝑘
𝑤𝑘𝑁

𝑘=1

∑ 𝑤𝑘
𝑁
𝑘=1

 

 
𝑦𝑖
′

𝑦𝑗
′ =

√ ∏ (𝑠𝑘×𝑥𝑖,𝑘)
𝑤𝑘𝑁

𝑘=1

∑ 𝑤𝑘
𝑁
𝑘=1

√ ∏ (𝑠𝑘×𝑥𝑗,𝑘)
𝑤𝑘𝑁

𝑘=1

∑ 𝑤𝑘
𝑁
𝑘=1

=
𝑦𝑖

𝑦𝑗
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APPENDIX B 

A BRIEF SUMMARY OF TRAFFIC SIGNAL FACE DESIGN 

Traffic signals, according to the modern standards, are illuminated lights with dedicated 

colors and shapes for commanding particular movements (7). The term signal section is used to 

refer to the region of a single traffic signal lens (illuminated or not) and its bounding box. Multiple 

signal sections are arranged together to form a signal face to control one or more traffic movements 

from a single approach. More than one signal face can be given to one approach, corresponding to 

different movements. Generally, a signal face can only contain three, four, or five signal sections, 

except when a one-section signal face is used to give constant green to a conflict-free movement. 

Typical signal face arrangements are horizontal or vertical in a line; the relative positions of signal 

sections shall follow the orders shown in Table B-1 (7). In a vertical arrangement, optionally, tow 

signal sections with the same color of indications can be placed horizontally to each other and 

form a cluster. Signal faces placed over the traffic lanes are called overhead signal faces. Signal 

faces on the roadside are called pole-mounted signal faces. 

Table B-1 Orders of Signal Sections 

Vertical: Top to Bottom Horizontal: Left to Right 

 

 CIRCULAR RED 

 Steady and/or flashing left-turn RED 

ARROW 

 Steady and/or flashing right-turn RED 

ARROW 

 CIRCULAR YELLOW 

 CIRCULAR GREEN 

 Straight-thru GREEN ARROW 

 Steady left-turn YELLOW ARROW 

 Flashing left-turn YELLOW ARROW 

 Left-turn GREEN ARROW 

 Steady right-turn YELLOW ARROW 

 Flashing right-turn YELLOW ARROW 

 Right-turn GREEN ARROW 

 
 CIRCULAR RED 

 Steady and/or flashing left-turn RED ARROW 

 Steady and/or flashing right-turn RED ARROW 

 CIRCULAR YELLOW 

 Steady left-turn YELLOW ARROW 

 Flashing left-turn YELLOW ARROW 

 Left-turn GREEN ARROW 

 CIRCULAR GREEN 

 Straight-thru GREEN ARROW 

 Steady right-turn YELLOW ARROW 

 Flashing right-turn YELLOW ARROW 

 Right-turn GREEN ARROW 
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APPENDIX C 

DETAILS OF TRAVERSED SIGNALIZED INTERSECTIONS 

For the purpose of checking the accuracy of the OSM data as well as for the analysis of 

experimental results, detailed information of the signalized intersections being traversed in the 

HPV dataset were manually extracted using the satellite view of Google MapsTM. Figure C-1 gives 

an illustration of the terminologies. For each approach, the lanes are numbered from left to right, 

starting at 1 and increasing by 1. The same numbering scheme also applies to the signal heads. 

The number of lanes does not necessarily equal the number of signal heads in the same approach, 

although they are commonly equivalent. Although overhead signals and roadside pole-mounted 

signals are both common deployments, of the 7 traversed intersections, only overhead traffic 

signals are used as the primary signals. 

 

Figure C-1 Illustration of key point extraction terminologies. 

Offset stop bars 

Aligned stop bars 

NB 

Signals 1, 2, 3, & 4 

Flared right-turn entrance 

NB 

Lanes1, 2, 3, & 4 
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For each intersection approach, the positions (in latitude and longitude) of stop bar key 

points and signal heads were extracted (Table C-2 and Table C-3). In addition, for each intersection, 

the approximate intersection center was also located as the intersection between highway 

centerlines (Table C-3). In Table C-2 and Table C-3, latitude and longitude coordinates are 

arranged in two rows. Note, stop bars are considered on a per-lane basis and the key points of each 

is the left end point and the right end point. Therefore, for a four-lane approach, the total number 

of stop bar key points is eight. In Table C-2, the left and right end points are to the left and right 

of the word “to”, respectively. When stop bars are longitudinally aligned, some key points overlap 

with each other, for example, the right end point of lane 1 and the left end point of lane 2 of the 

NB approach of S Main Street @ Professional Park Drive. There are also cases when stop bars are 

offset by lane group (see Figure C-1). A stop bar normally lies within the width of its lane. An 

exception is when a flare right turn entry is used to provide a larger turning radius. In this case, the 

stop bar extends to the curb of the corner (see Figure C-1). Because of this, when calculating 

distance from an upstream point to the stop bar, the line between the upstream point and the 

midpoint of the stop bar is not a good reference. Instead, one should find the perpendicular line to 

the stop bar that goes through the upstream point. The distance between the upstream point and 

the intersection between the perpendicular line and the stop bar is the desired upstream distance. 

Approaches traversed in the HPV dataset are highlighted in blue in both Table C-2 and 

Table C-3. The order in which these approaches were traversed in each video is identical to their 

row order in these two tables, except for intersection number 5, the WB approach was traversed 

before the EB approach. 
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Table C-2 Stop Bar Key Points 

 

 

ID and Name Dir
37.197575 37.197561 37.197561 37.197551 37.197551 37.197538 37.197538 37.197526

-80.401362 -80.401332 -80.401332 -80.401293 -80.401293 -80.401254 -80.401254 -80.401211

37.197820 37.197796 37.197776 37.197730

-80.401539 -80.401553 -80.401487 -80.401509

37.197886 37.197898 37.197898 37.197908 37.197908 37.197920 37.197920 37.197932

-80.401212 -80.401261 -80.401261 -80.401292 -80.401292 -80.401331 -80.401331 -80.401374

37.197661 37.197687 37.209227 37.209233

-80.401053 -80.401042 -80.399182 -80.399139

37.209154 37.209157 37.209157 37.209168 37.209227 37.209233

-80.399249 -80.399214 -80.399214 -80.399171 -80.399182 -80.399139

37.209372 37.209340 37.209348 37.209311

-80.399520 -80.399515 -80.399476 -80.399469

37.209534 37.209528 37.209510 37.209505 37.209505 37.209498

-80.399306 -80.399346 -80.399344 -80.399380 -80.399380 -80.399428

37.209418 37.209446 37.209444 37.209485

-80.399056 -80.399053 -80.399123 -80.399125

37.217238 37.217246 37.217262 37.217269

-80.419116 -80.419076 -80.419079 -80.419034

37.217351 37.217317 37.217317 37.217277

-80.419320 -80.419308 -80.419308 -80.419295

37.217522 37.217510 37.217496 37.217486

-80.419197 -80.419241 -80.419237 -80.419283

37.217383 37.217425 37.217425 37.217448

-80.418985 -80.418988 -80.418988 -80.419007

37.216226 37.216271

-80.423631 -80.423500

37.216242 37.216215 37.216233 37.216206

-80.423893 -80.423879 -80.423827 -80.423811

37.216428 37.216418 37.216390 37.216379

-80.423741 -80.423778 -80.423766 -80.423805

37.216364 37.216400 37.216387 37.216422

-80.423440 -80.423458 -80.423509 -80.423525

37.213063 37.213106 37.213106 37.213140

-80.431868 -80.431805 -80.431805 -80.431695

37.213238 37.213209 37.213209 37.213192 37.213192 37.213170

-80.432174 -80.432207 -80.432207 -80.432235 -80.432235 -80.432263

37.213252 37.213282 37.213282 37.213303 37.213292 37.213338

-80.431869 -80.431888 -80.431888 -80.431901 -80.431937 -80.431969

37.191481 37.191467 37.191467 37.191453

-80.403927 -80.403895 -80.403895 -80.403859

37.191791 37.191726

-80.404010 -80.404045

37.191845 37.191856 37.191856 37.191870

-80.403807 -80.403842 -80.403842 -80.403876

37.193838 37.193829 37.193829 37.193816 37.193816 37.193803 37.193822 37.193802

-80.402929 -80.402896 -80.402896 -80.402857 -80.402857 -80.402815 -80.402806 -80.402758

37.194102 37.194080 37.194068 37.194043

-80.402995 -80.403016 -80.403000 -80.403026

37.194281 37.194289 37.194289 37.194299 37.194299 37.194312 37.194263 37.194274

-80.402714 -80.402751 -80.402751 -80.402789 -80.402789 -80.402828 -80.402847 -80.402889

37.193922 37.193955 37.193955 37.193987 37.194008 37.194069

-80.402575 -80.402562 -80.402562 -80.402551 -80.402630 -80.402602

[3]

Southgate Drive

@ Beamer 

Way/Research Center 

Drive

to

to

to

toWB

to

to

Lane 4

to

to

Stop Bars

NB

EB

SB

Intersection

[1]

S Main Street

@ Professional Park 

Drive

Lane 3

to

to

WB to to

Lane 1

to

to

to

to

to

Lane 2

[2]

S Main Street

@ Hubbard/Ellett Road

NB to to

EB to to

SB to

EB to to

NB to to

WB to to

SB to to

[4]

Southgate Drive

@ Duck Pond/Dairy 

Drive

NB to

SB to to

EB to to

WB to to

[5]

Southgate Drive

@ Huckleberry Trail

NB to to

SB to to to

WB to to to

[6]

US 460 5B Exit Ramp

@ S Main Street

NB to to

SB to to

EB to

[7]

S Main Street

@ Industrial Park Road

NB to to to

SB to to to

WB to to to

to

EB to to

to
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Table C-3 Signal Head Positions 

 

 

ID and Name Dir 1 2 3 4
37.197871 37.197858 37.197848 37.197836

-80.401252 -80.401214 -80.401176 -80.401139

37.197687 37.197666 37.197645

-80.401108 -80.401112 -80.401120

37.197639 37.197650 37.197660 37.197672

-80.401362 -80.401403 -80.401441 -80.401481

37.197794 37.197816 37.197840

-80.401498 -80.401492 -80.401484

37.209527 37.209534 37.209540

-80.399323 -80.399280 -80.399246

37.209386 37.209363

-80.399103 -80.399097

37.209285 37.209280 37.209275

-80.399315 -80.399343 -80.399375

37.209389 37.209406

-80.399517 -80.399519

37.217463 37.217471

-80.419153 -80.419126

37.217391 37.217372 37.217355

-80.418986 -80.418979 -80.418973

37.217260 37.217253

-80.419096 -80.419140

37.217358 37.217389

-80.419272 -80.419284

37.216433 37.216440

-80.423717 -80.423691

37.216349 37.216330 37.216311

-80.423536 -80.423527 -80.423519

37.216179 37.216171 37.216165

-80.423620 -80.423647 -80.423669

37.216258 37.216279 37.216294

-80.423831 -80.423846 -80.423856

37.213303 37.213322 37.213333

-80.432098 -80.432060 -80.432022

37.212976 37.212960 37.212944

-80.431924 -80.431964 -80.432000

37.213090 37.213111 37.213132

-80.432304 -80.432327 -80.432346

37.191615 37.191603

-80.403863 -80.403837

37.191694 37.191676

-80.403868 -80.403883

37.191568 37.191581

-80.403998 -80.404028

37.194132 37.194123 37.194111 37.194101

-80.402799 -80.402766 -80.402726 -80.402689

37.193865 37.193847 37.193828

-80.402649 -80.402659 -80.402673

37.193943 37.193959 37.193973 37.193982

-80.402909 -80.402947 -80.402979 -80.403005

37.194103 37.194134 37.194166

-80.403093 -80.403080 -80.403069

37.216298

-80.423681

37.213178

-80.432032

37.191712

-80.403842

37.194029

-80.402838

[3]

Southgate Drive

@ Beamer 

Way/Research Center 

Drive

Intersecti

on Center

37.197734

-80.401270

37.209401

-80.399293

37.217366

-80.419160

WB

Signals

NB

EB

SB

Intersection

[1]

S Main Street

@ Professional Park 

Drive

WB

[2]

S Main Street

@ Hubbard/Ellett Road

NB

EB

SB

EB

NB

WB

SB

[4]

Southgate Drive

@ Duck Pond/Dairy 

Drive

NB

SB

EB

WB

[5]

Southgate Drive

@ Huckleberry Trail

NB

SB

WB

[6]

US 460 5B Exit Ramp

@ S Main Street

NB

SB

EB

[7]

S Main Street

@ Industrial Park Road

NB

SB

WB

EB


