
 

A systems biology framework to identify microbial strain-
level interactions in engineered ecosystems 

 
 

 
By 

Francisco Moya-Flores  
 

 
 

A dissertation submitted in partial fulfillment of the  
requirements for the degree of  

 
 
 

Doctor of Philosophy 
(Civil and Environmental Engineering) 

 
 

 
 
 
 

at the 
UNIVERSITY OF WISCONSIN- MADISON 

2019 
 

 
 
 
Date of final oral examination: January 16th, 2019 
 
The dissertation is approved by the following members of the Final Oral Committee:  
Katherine D. McMahon, Professor, Civil and Environmental Engineering  
Daniel R. Noguera, Professor, Civil and Environmental Engineering  
Gregory Harrington, Professor, Civil and Environmental Engineering  
Timothy J. Donohue, Professor, Bacteriology 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© Copyright by Francisco Moya-Flores 2019  
All Rights Reserved.



 
 

i 

Acknowledgments 

I would like to express my gratitude to all the people that helped me to conceive 

this research and provided me with thoughtful discussions during the course of my 

research here in UW-Madison. Especial thanks to my mentor, Dr. Katherine 

McMahon, who gave me the opportunity to join UW-Madison, inspired me and 

walked me through developing a rational story for my research, and taught me a 

path that has become my career as an Environmental Engineer. I cannot be more 

grateful for her kindness and understanding.  

Thanks to Dr. Daniel Noguera, Dr. Greg Harrington and Dr. Timothy Donohue for 

serving on my Ph.D. committee. Their willingness to help to develop my curriculum 

in UW-Madison encouraged me to pursue this investigation. Their excellence in 

research and teaching has profoundly impacted my formation in academia. I would 

like to acknowledge Dr. Noguera, who received me as a participant on his laboratory 

meetings, generously invested his time and genuinely provided me with deep 

insights into my research. 

I would also like to thank my fellow lab-mates of the McMahon Lab and Noguera 

Lab group for their kindness, advice, and support. This includes Sarah Stevens, 

Robin Rohwer, Travis Korosh, Andrew Dutcher, Joshua Hamilton, Shaomei He, 

Cristina Herren, Christopher Lawson, Ben Peterson, Alexandra Linz, Pamela 

Camejo, Natalie Keene, Ben Oyserman, Matthew Scarborough, among others. 

Especial thanks to Ben Oyserman. Without his support and collaboration, this 

research would not have been possible. He not only helped me get started, but was 



 
 

ii 

consistently available to discuss my research, provide his advice, and share his 

expertise in order to help this project be successful. Many thanks to Jacqueline 

(Jackie) Bastyr Cooper for her assistance in the lab with training, protocols, and 

equipment. The maintenance of the reactors, sampling, data collection and 

interpretation would not have been possible without the help of more than a dozen 

undergraduate students. This includes Aldo Ventura, Douglas Chalmers, Daniel 

Vigil, Tenzin Khangkar, Char'Lee King, Coty Weathersby, Claudia Santana, Kyle 

Winkler, Brandon Nutley, Frances Palmer, Shelby Sample, Diana Mendez, Michael 

Eng Khor, and Matthew Kizaric. 

Special thanks to Becas Chile Scholarship for the funding provided to my graduate 

studies, as well as the National Science Foundation, for their accessibility to 

continuous funding in research, and the Joint Genome Institute and UW-Madison 

Biotechnology Center for DNA sequencing services provided for this study. 

I would also like to express my greatest regards to my family. My parents, for their 

hope and unconditional support. They gave me even what was beyond their means 

to help me become a professional. To my brother, from whom I learned that effort 

returns priceless rewards. And to my wife, Pamela Camejo, I dedicate this work. Her 

support and perseverance were key in succeeding in my journey in graduate school.  



 
 

iii 

Table of Contents 

Acknowledgments .................................................................................................... i 

Table of Contents ................................................................................................... iii 

List of Figures ........................................................................................................ viii 

List of Tables ........................................................................................................... x 

Chapter 1: Introduction ......................................................................................... 1 

Overview of wastewater treatment ...................................................................... 1 

Enhanced Biological Phosphorus Removal ........................................................... 2 

Accumulibacter .................................................................................................... 3 

Genome-scale metabolic reconstruction and constraint-based modeling. .......... 5 

Bacteriophages and their role in ecosystem fitness ............................................ 6 

Accumulibacter defense mechanisms against phage predation .......................... 7 

Thesis outline ....................................................................................................... 9 

Chapter 2: Uncovering the driving force of bacteriophages within the diversity 

of Accumulibacter phosphatis through CRISPR-Cas ....................................... 12 

Abstract ............................................................................................................. 13 

Main ................................................................................................................... 14 

Methods ............................................................................................................. 17 

2.1 Reactor operation and sample preparation ............................................... 17 

2.2 Accumulibacter clades quantification ....................................................... 17 

2.3 Library preparation and DNA sequencing ................................................. 18 

2.4 Raw read processing and de novo assembly of metagenomic reads ....... 18 



 
 

iv 

2.5 CRISPR amplicon sequencing ................................................................... 20 

2.5.1 Construction and Sequencing of Custom Amplicon Libraries ................ 20 

2.6 Locus architecture characterization ......................................................... 22 

2.7 CRISPR immune structure ......................................................................... 22 

2.8 EPV1 phage quantification ........................................................................ 23 

Results ............................................................................................................... 25 

Metagenomic-based evidence for differential acquisition of CRISPR spacers at 

the leader end ................................................................................................. 26 

CRISPR loci dynamics reveal intraspecies diversity ........................................ 26 

Discussion .......................................................................................................... 29 

Acknowledgements ............................................................................................ 33 

Figure descriptions ............................................................................................ 34 

Figures ............................................................................................................... 36 

Supplementary Text ........................................................................................... 39 

Supplementary Materials ................................................................................... 40 

Supplementary Figures ................................................................................... 40 

Supplementary Tables .................................................................................... 41 

Chapter 3: Metabolic plasticity of two co-occurring Accumulibacter strains 

revealed through metatranscriptomics ............................................................. 54 

Abstract ............................................................................................................. 55 

Main ................................................................................................................... 56 

Methods ............................................................................................................. 60 

3.1 Bioreactor operation ................................................................................. 60 

3.2 Experimental design ................................................................................. 60 

3.3 DNA and RNA extractions ......................................................................... 61 

3.4 Accumulibacter clades quantification ....................................................... 61 



 
 

v 

3.5 Library preparation and DNA sequencing ................................................. 62 

3.6 Construction of Prokaryotic Illumina RNA Libraries .................................. 62 

3.7 Raw read processing and de novo assembly of metagenomic reads ....... 63 

3.8 Genome annotation and metabolic reconstruction ................................... 64 

3.9 Identification of orthologous genes .......................................................... 64 

3.10 Definition of functional gene sets ........................................................... 65 

3.11 Metatranscriptomics analysis .................................................................. 65 

3.12 Differential gene expression calculations ............................................... 65 

Results ............................................................................................................... 67 

Metagenomic sequencing and binning of Accumulibacter genomes .............. 67 

Metatranscriptomics profiling of Accumulibacter clades under classical EBPR 

conditions ....................................................................................................... 68 

Acetate conversion/transport and PHB synthesis........................................... 70 

Anaerobic TCA operation ................................................................................ 72 

Respiration ...................................................................................................... 73 

Denitrification capabilities .............................................................................. 74 

Discussion .......................................................................................................... 76 

Clade-specific responses to anaerobic carbon uptake ................................... 77 

Importance of substrate concentration during polymer storage .................... 79 

Concluding remarks ........................................................................................ 79 

Acknowledgements ............................................................................................ 81 

Figures Descriptions .......................................................................................... 82 

Figures ............................................................................................................... 84 

Tables ................................................................................................................ 89 

Supplementary Materials ................................................................................... 90 

Supplementary Figures ................................................................................... 90 

Supplementary Tables .................................................................................... 92 



 
 

vi 

Chapter 4: iCAP366: A genome-scale metabolic network reconstruction of the 

archetypal PAO Accumulibacter phosphatis.................................................... 101 

Abstract ........................................................................................................... 102 

Main ................................................................................................................. 103 

Accumulibacter ............................................................................................. 104 

Lack of consensus on Phenotypic Potentials ................................................ 105 

Current State of EBPR Modeling ................................................................... 106 

Motivation ..................................................................................................... 106 

Methods ........................................................................................................... 108 

4.1 Computational refinement ....................................................................... 108 

4.2 COBRApy Model Creation ....................................................................... 108 

4.3 Defining Anaerobic Constraints and Objectives ..................................... 109 

4.4 Simulation of the Acetate and Glycogen flux ratio .................................. 109 

4.5 Comparison of Measured and Simulated Data ......................................... 110 

4.6 Estimated PHA and Pi Stoichiometry ....................................................... 110 

Results .............................................................................................................. 111 

Creation of a standard anaerobic model ........................................................ 112 

Simulation of Anaerobic Carbon Utilization ................................................... 112 

Resolution of FBA results and its validation ................................................... 114 

Estimation of stochiometric constants ........................................................... 114 

Discussion ......................................................................................................... 115 

Lack of Evidence for an Active Calvin Cycle During Acetate Uptake ............. 115 

Hydrogen Production Expands PHA Production Space ................................. 116 

A Complete Anaerobic TCA Cycle Could Be a Feasible Phenotype ............... 117 

Future Directions ............................................................................................... 118 

Acknowledgements .......................................................................................... 120 

Figures Descriptions ......................................................................................... 121 



 
 

vii 

Figures ............................................................................................................. 122 

Tables .............................................................................................................. 126 

Supplementary Material ................................................................................... 129 

Chapter 5: Recommendations for Future Research ......................................... 131 

Use of metatranscriptomics constraints in genome-scale modeling ................ 131 

Transcriptional Regulatory Networks ............................................................... 134 

References cited ................................................................................................. 135 

  



viii 

List of Figures 

Chapter 1 

Figure 1 | A summary of the significant features of the biochemical models for 

PAO. ........................................................................................................................ 3 

Figure 2 | Maximum likelihood tree of ppk1 genes from the Accumulibacter 

lineage. .................................................................................................................... 4 

Chapter 2 

Figure 1 | Metagenomic-based evidence for differential acquisition of CRISPR 

spacers at the leader end. ..................................................................................... 36 

Figure 2 | CRISPR loci dynamics reveal an intraspecies diversity. ......................... 37 

Figure 3 | Fitness consequences of generating spacer diversity. ......................... 38 

Chapter 3 

Figure 1 | Accumulibacter Pan-transcriptome in response to classic feast and 

famine conditions. ................................................................................................. 84 

Figure 2 | Functional differences of gene expression at the clade level. ............... 85 

Figure 3 | Gene expression dynamics across the EBPR cycle. .............................. 86 

Figure 4 | Presence and expression of denitrification genes across Accumulibacter 

Clades IA-UW3 and IIC-UW6. ............................................................................... 87 

Figure 5 | Proposed mode of operation for anaerobic acetate uptake and 

conversion to PHB in Accumulibacter. .................................................................. 88 

Supplementary Figure S1 | Time-series EBPR data. .............................................. 90 



ix 

Supplementary Figure S2 | ANI vs Percent Alingment of several Accumulibacter 

genomes. ............................................................................................................... 91 

Supplementary Data Table S4 (next 6 pages) | Gene expression dynamics 

analyzed under this study. .................................................................................... 93 

Chapter 4 

Figure 1 | Simulation of Accumulibacter’s phenotypic response to varying glycogen 

to acetate flux ratios under “standard” constraints. ............................................ 122 

Figure 2 | Flux profiles of proposed anaerobic mechanisms. ............................... 123 

Figure 3 | Resolution of FBA simulations with previously obtained results. .......... 124 

Figure 4 | Model estimated PHA production and Pi release per 1 Cmmol of acetate.

 ............................................................................................................................. 125 



 
 

x 

List of Tables 

Chapter 2 

Supplementary Table S1. Metagenomic sequencing statistics .............................. 41 

Supplementary Table S2. Reference sequences used in this study ...................... 41 

Chapter 3 

Table 1 | Metagenome-assembled genomes (MAGs) of Accumulibacter obtained 

from lab-scale reactors in 2016. ............................................................................ 89 

Supplementary Table S1 | Metatranscriptomics reads analysis. ............................ 92 

Supplementary Table S2 | Accumulibacter Pan-transcriptome information. ......... 92 

Supplementary Table S3 | mRNA reads mapped to all four Accumulibacter clades 

present in the chemostat. ...................................................................................... 93 

Chapter 4 

Table 1 | Summary of iCAP366 GEM. .................................................................. 126 

Table 2 | Pathways constraints used during this study. ...................................... 127 

Table 3 | All possible scenarios defined by combining the selected phenotypes 

and selected constraints. .................................................................................... 128 

Supplementary Table S1 | Maximum Polymer and Pi fluxes obtained for each 

simulation. ........................................................................................................... 129 



 
 
 

1 

Chapter 1: Introduction 

Overview of wastewater treatment 

Culture-independent methods available for probing mixed microbial communities 

have drastically increased our ability to gather comprehensive molecular-level 

information on an ever-growing number of microorganisms. These communities 

contribute to diverse aspects of the environment, varying from nutrient cycling to 

engineered ecosystem processes. Bioreactors designed to simulate the activated 

sludge process are ideal for investigations on the system biology principles in 

natural ecosystems due to the high microbial density and the discrete operational 

parameters that may be monitored over long periods 1. These systems employ 

uncultivated microbial communities to efficiently remediate wastewater streams 

before being discharged to the aquatic environment. A central idea in the activated 

sludge process is that microbially-mediated processes for the removal of C, N, and 

P are hierarchically organized and that this structure plays an essential role in the 

system’s dynamics. These communities display unique characteristics that have 

been primarily exploited during the past decades and their specialized role during 

wastewater treatment can be classified by substrate specificity. However, despite 

the widespread usage of this biotechnology, process performance can be 

transiently or chronically poor, presumably because of unstable microbial 

community structure or activity 2. 
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Enhanced Biological Phosphorus Removal 

Enhanced Biological Phosphorus Removal (EBPR) is a variant of the activated 

sludge wastewater treatment process; the most widely used environmental 

biotechnology system worldwide. EBPR is a biochemically complex process 

achieved through enrichment of a group of bacteria known as Polyphosphate 

Accumulating Organisms (PAO) in activated sludge employing alternating anaerobic 

and aerobic conditions. Under anaerobic conditions, PAO take up volatile fatty acids 

(VFAs) and convert them to polyhydroxyalkanoates (PHA), using energy obtained 

from the hydrolysis of two internally stored polymers, polyphosphate (poly-P) and 

glycogen. Poly-P is hydrolyzed to orthophosphate and released from PAO cells, 

while glycogen is converted to PHA and CO2. Aerobically, PAO oxidize PHA to gain 

energy for growth, glycogen replenishment and phosphorus uptake 3–5. Phosphorus 

removal is achieved through the wastage of excess sludge with high poly-P content. 
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Figure 1 | A summary of the significant features of the biochemical models for PAO.  

In the anaerobic phase, acetate is stored as PHA. PHA production requires energy (ATP) and 

reducing power (NAD(P)H). ATP (in red) is supplied by polyphosphate degradation and glycogen 

degradation. In the aerobic phase, when oxygen is available for respiration, the PHA reserves of 

PAO ensures their dominance in the SBR microbial ecosystem. The restoration of polyphosphate 

reserves via ATP depletes the water of Pi, thus giving rise to EBPR. 

Accumulibacter 

In wastewater treatment plants as well as in lab-scale acetate-fed EBPR reactors, 

the dominant organism is a member of the Betaproteobacteria in the Rhodocyclus 

group, named Candidatus Accumulibacter phosphatis (hereafter referred to as 

Accumulibacter) 6,7. No pure culture of this organism is yet available, though 

culture-independent molecular techniques are providing much of the essential 

information that historically could only be obtained using pure cultures 8,9. These 

studies have revealed that Accumulibacter is subdivided into two main Types (I and 

II), each of which contains several coherent clades (Figure 2) 8,10,11. With the 

identification of these clades within the Accumulibacter lineage, questions have 

arisen as to whether these clades play distinct roles in EBPR. 
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Figure 2 | Maximum likelihood tree of ppk1 genes from the Accumulibacter lineage.  

Accumulibacter is comprised of two Types (I and II indicated by brackets), each consisting of many 

of monophyletic clades. Clades in black are exclusively derived from EBPR systems and 

environmental samples collected near EBPR treatment plants. Clades in grey contain sequences 

from both EBPR systems and natural habitats not associated with EBPR treatment plants. Clades in 

white exclusively consist of environmental samples, particularly from an estuary sediment 8,10,11. 

 

Several researchers have investigated kinetics and substrate specificity of 

Accumulibacter, but these studies did not discriminate between clades, which 

appear to have ecologically distinct characteristics. Preliminary data obtained from 

our laboratory indicate that clade IA has higher acetate uptake rates and higher 

phosphate release rates, and that clade IA can reduce nitrate while clade IIA cannot 

12. These results suggest that Accumulibacter clades inhabit different niches in 

EBPR ecosystems, each providing an essential role in ecosystem function, and their 

differences could offer a competitive advantage to one clade over another, in a 
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mixed community, depending on the operating conditions. Moreover, the genomic 

architecture that underlies ecological divergence and speciation with gene flow is 

still unidentified for Accumulibacter, encouraging us to study significant differences 

in gene content for both clades. 

Genome-scale metabolic reconstruction and constraint-based modeling.  

Two decades ago, a constraint-based model (CBM) was used to study EBPR in a 

laboratory scale Sequencing batch reactor (SBR). The model could make 

predictions that were in reasonable numerical agreement with experimental 

observations. A much more accurate metabolic model can now be constructed 

using the Accumulibacter clade genomes and expression profile easily accessible 

due to the advent of metagenomics, metatranscriptomics, and metaproteomics 

approaches, with each iteration building on previous work while incorporating new 

knowledge. The ability to sequence whole genomes has made possible to formulate 

CBMs at the genome-scale and allowed representation of the complete metabolic 

gene content in the assessment of phenotypic functions. As the generation of omics 

data became cheaper and as larger data sets appeared, researchers began to 

incorporate these data sets into CBMs. Flux balance analysis (FBA) is a form of CBM 

adapted by the systems biology community and it has been established as a leading 

approach for studying cellular metabolism, enabling the explicit and quantitative 

description of metabolic network and imposes mass balance as the canonic 

constraint. 
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Bacteriophages and their role in ecosystem fitness 

Natural phage communities are reservoirs of the greatest uncharacterized genetic 

diversity on Earth 13, and therefore, phage-host interactions represent one of the 

most dominant biological interactions. Phages primarily act as a predator, entering 

host cells to replicate and lysing them to propagate new phage particles. The critical 

role of phage in structuring microbial communities was first recognized in the 

oceans, where they appear to influence biogeochemical cycles globally, provide and 

regulate microbial biodiversity, cycle carbon through marine food webs, and to 

control bacterial population explosions 14. 

Comparative genomics and bioinformatics serve as useful tools for identifying 

phage-bacteria in the activated sludge process. For example, previous studies 

showed the presence of viral elements in EBPR reactors, likely belonging to phages 

infecting at least one member of the Accumulibacter lineage 15. This phage-host 

interaction is thought to recreate the 'kill the winner' hypothesis, in which hosts that 

become abundant due to uptake efficiency become targets of viral attack 16,17. This 

interaction results in boom-bust cycles of phage and host abundance, in which 

uninfected host populations grow until they are infected and lysed, with associated 

exponential growth and collapse of phage abundance. 

Identification of a lysogenic bacteriophage capable of infecting and transducing 

genetic information into the Accumulibacter lineage could represent a significant 

contribution to the field. However, to date, no phage capable of infecting members 

of this group has been confirmed. The factors responsible for determining which 
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species-like clade dominates the sludge are unknown but could include phage-

mediated population crashes. Here, phages can impart frequency-dependent 

selection on bacteria that succeed in having higher population densities, which are 

also those most susceptible to phage attack, both due to the higher frequencies 

and because of trade-offs those bacteria may have made regarding phage 

susceptibility to grow to these higher densities 18. 

Accumulibacter defense mechanisms against phage predation 

A primary tool employed by microbes to avoid predation is to prevent phage 

infection by the production of extracellular polymeric substances (EPS). EPS can 

provide a first line of defense against phage predation by masking attachment sites 

on the cell surface19. The observed redundancy and variability of EPS gene 

cassettes in both Accumulibacter genomes may impede strain-specific targeting of 

EPS by phage 20. A recently discovered adaptive immune mechanism in bacteria and 

archaea are Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) 

associated with Cas genes. The CRISPR-Cas system functions as a prokaryotic 

immune system conferring resistance to foreign genetic elements such as plasmids 

and phages, by storing segments of previously confronted phage or other external 

DNA as spacers that are surrounded by repeat sequences adjacent to a series of 

Cas genes 21,22. Previous research has also revealed the presence of CRISPR-Cas 

systems in Accumulibacter 15,20. Further, the analysis of these elements on both 

clades suggested their immunity to phage was unequal, due to differences on their 

CRISPR spacer elements. These elements could affect genome stability and 
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population dynamics and as such are likely to be relevant for species survival, 

biological activity, and diversity, and eventually also for the performance of 

phosphorus removal. 
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Thesis outline 

Little is known about the biological factors that affect genome stability in EBPR 

populations or how these perturbations may, in turn, affect biological fitness and 

species dynamics during phosphorus removal. In this thesis, I describe the 

Accumulibacter lineage from a ‘systems biology’ approach. This work is divided into 

three principal manuscripts, and they are aimed to tackle the most controversial 

features of Accumulibacter at the genome level. These manuscripts are described 

below. 

Chapter 2: The purpose of this investigation was aimed to solve the following 

questions: Are there patterns in how interactions differ in the selection pressures 

that they take place on bacterial species and their infecting phages? Are there 

patterns in how these interactions change over evolutionary time? And, are some 

interactions and ecological conditions more likely to lead to coevolution than 

others? Host-parasite coevolution plays an essential role in shaping genotypic, 

phenotypic and community-level diversity 23. In this study, I evidenced host 

adaptation to phage as well as its adaptation to host in enriched communities 

performing phosphorus removal. Here I developed a novel DNA sequencing 

application to determine the micro-diversity of Accumulibacter spp. IA-UW3 by 

studying CRISPR spacer dynamics from a bioreactor continuously operating for over 

a decade. Relatively few experimental coevolution studies have attempted to 

increase community complexity beyond pairwise interactions.  
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Chapter 3: One of the discoveries brought by the comparative genomics study 

performed on Accumulibacter is the prediction of significant lateral gene transfer 

occurred in the past 15,24,25. In this chapter, I assembled several genomes from 

Accumulibacter to reveal the dynamic patterns between members of the 

community. A comprehensive metatranscriptomics profiling was analyzed to 

discover differences at the gene expression levels across the canonical feast-

famine conditions of the EBPR cycle between two Accumulibacter strains. 

Chapter 4: In this work, we ran FBA to simulate the metabolic capabilities of 

Accumulibacter phosphatis under the regular EBPR cycle. We employed omics data 

integration as constraints to create, validate, calibrate and improve the predictive 

powers of metabolic models of Accumulibacter. 
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Chapter 2: Uncovering the driving force of bacteriophages within 1 

the diversity of Accumulibacter phosphatis through CRISPR-Cas 2 

Francisco Moya-Flores, Ted Kim, Daniel R. Noguera, Rachel Whitaker and 3 
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Abstract 16 

Bacteria have evolved sophisticated phage defenses, given the abundance of 17 

viruses and their ability to attack abundant bacterial populations. One such 18 

mechanism involves adaptive immunity in bacteria and archaea mediated by the 19 

CRISPR-Cas system. Although the molecular mechanisms of this process have been 20 

extensively studied in pure cultures, little is known about the extent or role of 21 

coevolution in mixed microbial populations, in which strain diversity limits the ability 22 

to develop robust coevolutionary models in the context of the CRISPR-Cas system. 23 

Here we show that a self-assembled community can form a complex structure 24 

where the host can overcome viral predation as a result of immunity conferred by 25 

diversified CRISPR repeat-spacer alleles. As a population these diversified alleles 26 

prevent virus invasion and stabilize the host diversity. We suggest that CRISPR 27 

diversity may be maintained within the bacterial population due to distributed 28 

immunity among individuals that have independently acquired spacers in their 29 

CRISPR loci. Finally, we discuss the evolutionary impacts of distributed immunity in 30 

a natural population.  31 

  32 
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Main 33 

Bacterial viruses, or phages, are highly abundant among microbial communities and 34 

act in a density-dependent manner. The underlying processes governing 35 

prokaryotic interference against the invasive nucleic acids introduced by phages 36 

and the corresponding evolution of phage defenses are unresolved questions in 37 

microbial ecology. One defense mechanism in bacteria and archaea is adaptive 38 

immunity, which is associated with Clustered Regularly Interspaced Short 39 

Palindromic Repeats (CRISPR) linked to CRISPR associated (Cas) genes. The 40 

CRISPR-Cas system confers resistance to foreign genetic elements by storing 41 

segments of DNA from previously confronted phages as spacers between arrays of 42 

repeat sequences 21,22. The acquisition and incorporation of spacers of viral DNA 43 

into the host protect them from subsequent infection. Conversely, viruses evade 44 

host CRISPR-mediated immunity through mutation in homologous protospacers 45 

(phage DNA sequences that match CRISPR-spacers) or protospacer-adjacent 46 

motifs (PAMs) 26,27 and by carrying sophisticated anti-CRISPR mechanisms to 47 

overcome CRISPR-Cas 28.  48 

The dynamics and consequences of coevolution between phage and their hosts 49 

have been extensively studied with pure cultures 29–32. Similarly, there is a plethora 50 

of studies that model CRISPR-Cas diversity via computational simulations 33–36. 51 

However, little is known about the extent or role of host-phage coevolution in mixed 52 

microbial populations. Recent metagenomic studies of bacteria, archaea, and their 53 

viruses provide compelling support that CRISPR-Cas systems play an active role in 54 
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the population dynamics and coevolution of these organisms in natural communities 55 

26,32,37,38. Bioreactors designed to simulate wastewater treatment are ideal for 56 

investigating coevolution due to the high microbial density of their enriched 57 

communities and the discrete operational parameters that may be monitored over 58 

long periods of time.39  59 

Enhanced Biological Phosphorus Removal (EBPR), a variant of the activated sludge 60 

wastewater treatment process, has been used as a model for studying phage- 61 

bacteria interactions 20,39–41. EBPR is a biochemically complex process achieved 62 

through enrichment of a bacterial group known as Polyphosphate Accumulating 63 

Organisms (PAO) employing alternating anaerobic and aerobic conditions 4,6. The 64 

dominant organism in many of these enrichments is a member of the 65 

Betaproteobacteria in the Rhodocyclaceae family, named Candidatus 66 

Accumulibacter phosphatis 6,7. No pure culture of this organism is yet available, 67 

though culture-independent molecular techniques provide much of the essential 68 

information that traditionally has been obtained using pure cultures 8,9,15,25,42–45.  69 

In a previous comparative genomic analysis from the same bioreactor used in this 70 

study, Flowers et al.15 revealed the extensive presence of elements derived from 71 

phages, plasmids and mosaic mobile genetic elements. Specifically, a nearly 72 

complete phage genome was found in a metagenomic assembly 5. The same phage 73 

genotype was assembled from a supernatant-derived metagenome and named 74 

EPV140.Thus, the phage is inferred to display a lytic lifestyle, infecting at least one 75 
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member of the Accumulibacter lineage. Flowers et al.15 also found diverging CRISPR 76 

profiles in two Accumulibacter genomes assembled from metagenomic samples. 77 

Furthermore, by comparing the CRISPR spacer sequences across both genomes, 78 

they concluded that their immunities to phages and plasmids were unequal, despite 79 

the fact that these two Accumulibacter strains are closely related and perform the 80 

same function in the bioreactor. Adaptation of Accumulibacter spp. across 81 

geographically separated bioreactors was earlier investigated by metagenomic 82 

sequencing 20. Despite evidence for high dispersal among the sites and relatively 83 

little divergence between bacterial genotypes, the CRISPR sequences appeared to 84 

be rapidly diverging. These results, which support a model of local phage-mediated 85 

selection, suggest that natural bacterial host populations can respond to phage 86 

selection through evolved adaptive immunity. 87 

With the evidence obtained from previous metagenomics efforts and the interest to 88 

evaluate Accumulibacter’s diversity in response to interactions with phages, we 89 

analyzed Accumulibacter’s CRISPR immune structure by sequencing DNA samples 90 

collected from our bioreactor community longitudinally during nine years of 91 

continuous operation. Using a combination of whole genome sequencing, CRISPR- 92 

targeted amplicon sequencing, quantitative PCR, and fluorescence in situ 93 

hybridization (FISH), we demonstrate  temporal virus-host dynamics in this 94 

engineered community.  95 
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Methods 96 

2.1 Reactor operation and sample preparation 97 

A laboratory-scale sequencing batch reactor (SBR) was seeded with activated 98 

sludge from the Nine Springs Wastewater Treatment Plant located in Madison, 99 

Wisconsin. The SBR was operated in four daily cycles of 6 hours with a hydraulic 100 

residence time (HRT) and solids residence time (SRT) of 12 hours and four days, 101 

respectively, as previously described 1,5,12. The reactor was operated for 3636 days, 102 

or 909 generations (calculated from the bioreactor’s SRT), from inoculation through 103 

to the end of the current study. Biomass samples for DNA analysis were collected 104 

by centrifuging 2 ml of mixed liquor at 8,000 x g for 3 min, and the resulting pellets 105 

were transferred to a -80°C freezer immediately for long-term storage. DNA was 106 

extracted from previously frozen biomass using the PowerSoil DNA Extraction Kit 107 

(MoBio, Carlsbad, CA) following the manufacturer's instructions.  108 

2.2 Accumulibacter clades quantification 109 

To determine the relative proportions of two Accumulibacter clades that were 110 

simultaneously enriched in the bioreactor (Clade IA-UW3 and IIA-UW11), we used 111 

quantitative Polymerase Chain Reaction (qPCR) using clade-specific primers 112 

targeting the polyphosphate kinase (ppk1) gene and protocols as described by 113 

Camejo et al.45 We selected nine DNA samples for metagenomic sequencing based 114 

on their enrichment in either Accumulibacter clade IA or IIA. A phenol-chloroform 115 

bead-beating extraction method 5 was performed to obtain total genomic DNA from 116 
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the biomass in preparation for either shotgun metagenomic sequencing or CRISPR- 117 

amplicon sequencing. 118 

2.3 Library preparation and DNA sequencing  119 

Metagenomic DNA sequencing on the nine chosen samples was performed at the 120 

Department of Energy Joint Genome Institute (Walnut Creek, CA, USA). Briefly, 100 121 

ng of DNA was sheared to 300 bp using the Covaris LE220 (Covaris) and size 122 

selected using SPRI beads (Beckman Coulter). The fragments were treated with 123 

end-repair, A- tailing, and ligation of Illumina compatible adapters (IDT, Inc) using 124 

the KAPA-Illumina library creation kit (KAPA Biosystems). The libraries were 125 

quantified using KAPA Biosystem’s next-generation sequencing library qPCR kit 126 

and run on a Roche Light Cycler 480 real-time PCR instrument. The quantified 127 

libraries were then prepared for sequencing on the Illumina HiSeq sequencing 128 

platform utilizing a TruSeq paired-end cluster kit, v4, and Illumina’s cBot instrument 129 

to generate a clustered flow cell for sequencing. Sequencing of the flow cell was 130 

performed on the Illumina HiSeq2500 sequencer using TruSeq SBS sequencing kits, 131 

following a 2x150 indexed run recipe. Raw data for this study consisted of ~100 132 

million 150-bp Illumina HiSeq reads with about ~15 Gpb per sample (Table 1 – 133 

supplementary material).  134 

2.4 Raw read processing and de novo assembly of metagenomic reads 135 

For the nine metagenomes obtained from the sequencing effort described above, 136 

FASTQ files were quality filtered and read-trimmed using the Sickle software v1.33 137 
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(https://github.com/najoshi/sickle). Reads were merged with FLASH v1.0.3 46 with a 138 

mismatch value of ≤0.25 and a minimum of ten overlapping bases from paired 139 

sequences, resulting in merged read lengths of 150 to 290 bp. FASTQ files were 140 

then converted to FASTA format using the Seqtk software v1.0 141 

(https://github.com/lh3/seqtk). Quality-filtered, trimmed and merged metagenomic 142 

reads were assembled using the Velvet assembler 47 with a k-mer size of 65, a 143 

minimum contig length of 200 bp, and a paired-end insert size of 300 bp. 144 

Metavelvet 48, an extension of Velvet assembler to de novo metagenome assembly 145 

from short sequence reads, was used to improve the assembly generated by Velvet.  146 

Genome binning was performed using Maxbin, an automated binning method to 147 

recover individual draft genomes from metagenomes using an expectation- 148 

maximization algorithm after the assembly of metagenomic sequencing reads49. 149 

Genome completeness for the resulting bins was estimated using CheckM, an 150 

automated method for assessing the quality of a genome using a broader set of 151 

marker genes specific to the position of a genome within a reference genome tree 152 

and information about the co-location of these genes 50. From day 3537 of 153 

operation, a metagenome-assembled genome (MAG) was retrieved and 154 

taxonomically assigned to Accumulibacter clade IA via both ANI comparisons and 155 

ppk1 phylogenetic assignments. Contigs were scaffolded using Medusa 51, manually 156 

inspected for short contigs removal and decontaminated using the JGI tool Prodege 157 

52 and anvi’o 53. 158 
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2.5 CRISPR amplicon sequencing  159 

All obtained metagenomic reads were mapped against the CRISPR-Cas locus from 160 

the Accumulibacter clade IA reference genome using bbmap  161 

(https://sourceforge.net/projects/bbmap/). Coverage was visualized using a 162 

custom R script available in GitHub (https://github.com/McMahonLab/). We used 163 

this approach to identify the hypervariable region within all loci. This region was 164 

represented by a decrease in coverage or inconsistency on reads mapping to the 165 

reference CRISPR locus. We then designed primers to capture this region in depth 166 

by following a custom amplicon-sequencing strategy. The primer set 167 

CRISPR_CAPIA-leader (5’-CGTTTGCATGCCGTTTCGTT), and CRISPR_CAPIA- 168 

leader R (5’- CGGGGAACGCAGACTCAAG) and Illumina adapter sequences were 169 

synthesized. Metagenomic libraries were generated by multiplexing 106 DNA 170 

samples retrieved once a month during a 10-yr timespan and sequenced on the 171 

Illumina MiSeq platform following a 2x300 indexed run recipe. 172 

2.5.1 Construction and Sequencing of Custom Amplicon Libraries 173 

Purified CRISPR DNA amplicons were submitted to the University of Wisconsin- 174 

Madison Biotechnology Center.  DNA concentration was verified fluorometrically 175 

using either the Qubit® dsDNA HS Assay Kit or Quant-iT™ PicoGreen® dsDNA 176 

Assay Kit (Thermo Fisher Scientific, Waltham, MA, USA).  Samples were prepared 177 

in a similar process to the one described in Illumina’s 16S Metagenomic Sequencing 178 

Library Preparation Protocol, Part #15044223 Rev. B (Illumina Inc., San Diego, 179 

California, USA) with the following modifications: We used the metagenomic- 180 
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assembled CRISPR locus obtained during 5/13/2013 to identify the hypervariable 181 

region within all loci. This region was represented by a decrease in coverage or 182 

inconsistency on reads mapping to the reference CRISPR locus. The CAPIA CRISPR 183 

hypervariable region was amplified with fusion primers (forward primer: 5’- 184 

ACACTCTTTCCCTACACGACGCTCTTCCGATCTCGTTTGCATGCCGTTTCGTT-3’, 185 

reverse primer: 5’- 186 

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTCGGGGAACGCAGACTCAAG- 187 

3’). Region-specific primers were modified to add Illumina adapter overhang 188 

nucleotide sequences to the region-specific sequences. Following initial 189 

amplification, reactions were cleaned using a 0.7x volume of AxyPrep Mag PCR 190 

clean-up beads (Axygen Biosciences, Union City, CA).  Using the initial amplification 191 

products as template, a second PCR was performed with primers that contain 192 

Illumina dual indexes and Sequencing adapters (Forward primer: 5’- 193 

AATGATACGGCGACCACCGAGATCTACAC[55555555]ACACTCTTTCCCTACACGA 194 

CGCTCTTCCGATCT-3’, Reverse Primer:  5’- 195 

CAAGCAGAAGACGGCATACGAGAT[77777777]GTGACTGGAGTTCAGACGTGTGCT 196 

CTTCCGATCT -3’, where bracketed sequences are equivalent to the Illumina Dual 197 

Index adapters D501-D508 and D701-D712, N716, N718-N724, N726-N729). 198 

Following PCR, reactions were cleaned using a 0.7x volume of AxyPrep Mag PCR 199 

clean-up beads (Axygen Biosciences). Quality and quantity of the finished libraries 200 

were assessed using an Agilent High Sensitivity DNA Kit (Agilent Technologies, 201 

Santa Clara, CA) and Qubit® dsDNA HS Assay Kit (Thermo Fisher Scientific), 202 
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respectively. Libraries were pooled in an equimolar fashion and appropriately 203 

diluted before sequencing.  Paired-end, 300 bp sequencing was performed using 204 

the Illumina MiSeq Sequencer and a MiSeq 600 bp (v3) sequencing cartridge.  205 

Images were analyzed using the standard Illumina Pipeline, version 1.8.2. 206 

2.6 Locus architecture characterization 207 

An in-house python script was developed to extract spacers from amplified CRISPR 208 

loci. Spacers were mapped along loci using repeat locations, identified using 209 

BLASTN with a e-value cutoff of 0.01 and window size of 7. Spacers were extracted 210 

with the blast+ package blastdbcmd54. A custom script was used to bin spacers 3 211 

SNPs apart to correct for sequencing error or mutation. Spacer collections were 212 

split, binned separately using pairwise comparisons through multithreading to lower 213 

computational time, and split bins were combined at the end. These binned spacers 214 

were mapped to loci amplicons and loci were binned according to unique patterns 215 

of spacers through multithreaded pairwise comparison. Any incomplete loci (due to 216 

trimming of amplicons) were consolidated to the largest related locus bin to 217 

compute abundance. 218 

2.7 CRISPR immune structure 219 

As the number of CRISPR loci in each sample varied, the dataset was rarified using 220 

the script sinlge_rarefaction.py script from QIIME v.1 with a subsample depth equal 221 

to the minimum number of architectures (defined in section 2.6) per sample 222 

(min=313) for all samples included in each subgroup before alpha-diversity 223 
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calculations. The expected heterozygosity index (HEXP), a proxy for allele diversity, 224 

was calculated using the RAM Package v1.2.1.3 (https://cran.r- 225 

project.org/package=RAM). 226 

2.8 EPV1 phage quantification 227 

To determine the abundance of EPV140 in our time series dataset, we carried out 228 

targeted qPCR on DNA samples taken from our chemostat on a monthly basis during 229 

years five to eight using the following strategy: A metagenomic-based analysis was 230 

first performed to identify conserved regions within the EPV1 genome published by 231 

Skennerton et al.40 by mapping sequenced DNA reads from days 496 and 1692 of 232 

operation against the reference phage genome. From there, we generated an 233 

optimal DNA primer set targeting 150-200 bp conserved regions using the Primer3 234 

software and the following concentration settings: Monovalent 50mM, Divalent 1.5 235 

mM, Oligo 50 nM, and dNTPs 0.6 nM. The selected primer set (EPV1-38198F: 5’- 236 

ACCTCGTATTCTTTGCCGGG-3’, EPV1-38417R: 5’-GGCGACATATCAGGACCTGG- 237 

3’) targeted the histone-like nucleoid structuring (hns) gene, which we also 238 

synthesized (IDT Technologies) and cloned using a TOPO TA cloning kit (Invitrogen, 239 

CA) according to the manufacturer’s instructions. We also determined the optimal 240 

melting temperature by running a gradient PCR from 57-63 °C and corroborated 241 

product specificity using DNA obtained from selected hns-carrying colonies and 242 

samples retrieved from the chemostat. 243 

All qPCR reactions were run in a BioRad iCycler thermocycler (BioRad Laboratories, 244 

Hercules, CA). Each reaction volume was 20 uL and contained 10 uL iQ™ SYBR® 245 
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Green Supermix (BioRAD Laboratories, Hercules, CA), 1 uL each of 10 mM forward 246 

and reverse primer, 7 mL nuclease-free water and 1 uL of sample. Templates for 247 

hns-based qPCR were obtained from clones carrying the synthesized hns gene, as 248 

described above. Ten-fold serial dilutions of the template (ranging from 101 to 107 249 

copies per reaction) were used to generate qPCR calibration curves. The thermal 250 

cycling protocol for EPV1-hns quantification was as follows: initial denaturation at 251 

95 °C for 30 s, followed by 45 cycles of denaturation at 95 °C for 30 s, annealing 252 

at °60, and extension at 72 °C for 30 s. All samples were processed in replicates, 253 

and each reaction plate contained non-template controls and standards.  254 
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Results 255 

A laboratory-scale bioreactor was operated continuously for nine years to examine 256 

a wastewater treatment process that relies on phosphorus sequestration inside 257 

cells to remove it from the water. The bioreactor community was enriched in the 258 

genus Candidatus Accumulibacter, which typically constituted more than 80% of 259 

the total bacterial cells in the bioreactor, as measured using quantitative FISH 44. 260 

The operation of this reactor and its associated microbial community has been 261 

previously described in detail 1,5,12,15,55,56. Generally, two Accumulibacter clades (IA 262 

and IIA) dominated the microbial community, though the proportion of each clade 263 

relative to the total Accumulibacter abundance changed over time (Supplementary 264 

Tables 3 and 4). In earlier research, the distribution of CRISPR spacers from 265 

Accumulibacter clade IA against EPV1 phage in this bioreactor was found to be 266 

uneven,15 leading us to hypothesize that host-phage coevolution dynamics are 267 

actively occurring in the bioreactor. Additionally, CRISPR spacers in Accumulibacter 268 

clade IA did not match any of the other phage genomes previously found in this 269 

bioreactor 15,40, nor Accumulibacter clade IIA genome CRISPR-spacers had any 270 

protospacer matching EPV1 protospacers. Therefore, the evaluation of host-phage 271 

coevolution dynamics in this manuscript, by metagenomic associations, will be 272 

specifically focused on the Accumulibacter clade IA / EPV1 phage pair. 273 

  274 
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Metagenomic-based evidence for differential acquisition of CRISPR spacers at 275 

the leader end 276 

Based on clade-specific enrichment followed by shifts in the community, we 277 

selected nine samples for shotgun metagenomics sequencing (black arrows 278 

depicted in Fig. 1A). We found an uneven distribution of reads aligning to the leader- 279 

end of the array (Figure 1B). Based on this observation, we performed CRISPR- 280 

targeted amplicon DNA sequencing in 106 samples taken on a monthly basis from 281 

our bioreactors. From 2,881,846 quality-filtered DNA reads, we recovered a total of 282 

253,737 unique CRISPR loci, different by at least one spacer. These loci contain 283 

12,141,875 spacers in total, from which 5,224,410 spacers align to their infecting 284 

EPV1 phage (e-value < 0.01). These results show that EPV1 has been continuously 285 

interacting with its host during an extended timespan and that the susceptible host 286 

actively acquires spacers in response to phage infection events. We were unable to 287 

identify any other clear interaction between the host and other phages recovered 288 

earlier from this bioreactor,40 although we could not rule out the possibility that a 289 

majority of the non-EPV1 spacers might correspond to either modified or acquired 290 

DNA sequences from the same virus 40. 291 

CRISPR loci dynamics reveal intraspecies diversity 292 

To uncover the effect of strain-based heterogeneity in the context of CRISPR- 293 

adapted immunity, we organized the unique CRISPR loci obtained from our 294 

targeted-DNA sequencing results and plotted the top 100 most abundant ones over 295 

time. We then clustered loci based on their abundance pattern (hierarchical cluster 296 
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analysis, hclust, Fig. 2c). We discovered the presence of coalitions of CRISPR loci 297 

that coincide with the variation in relative abundance of Accumulibacter over time, 298 

as observed from the quantitative PCR results in Figure 2a. We define these as 299 

“related array groups” which cluster together not only by their abundance pattern 300 

but also by their spacer, as observed in the right-side panel in Fig. 2c-d.  301 

A combined analysis of the results shown in the time series heatmap from Fig. 2 302 

reveals an abrupt decrease in the host’s abundance followed by a significant loss 303 

in its diversity (HEXP) during year six of reactor operation. This shift in the dynamics 304 

also changed the structure of the related array groups, where some of these groups 305 

were no longer present after this transition and others increased in frequency 306 

immediately after. More specifically, two cases, such as year six and mid-year 307 

seven, denote different diversity patterns as observed by a continuous decrease in 308 

the expected heterozygosity index HEXP (Fig. 3a), regardless of the host’s 309 

abundance. We hypothesize that an population bottleneck driven by either phage 310 

predation and/or an operational bioreactor failure gave rise to a less complex 311 

community and such loss in diversity could potentially affect host dynamics.  312 

To interpret how CRISPR-enabled heterogeneity could translate into enhanced 313 

immunity (or lack thereof) within Accumulibacter during years five and eight of 314 

operation, we traced both the EPV1 phage and host abundances and compared that 315 

with the calculated CRISPR-allele diversity, as seen in Fig. 3. These results are 316 

divided into three phases based on relative abundance and diversity: (i) both high 317 
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host’s abundance and CRISPR-allele diversity; (ii) low host’s abundance and 318 

increased CRISPR-allele diversity and (iii) high host’s abundance and low CRISPR- 319 

allele diversity. In detail, during periods of high diversity (i phase) we observe high 320 

host’s abundance, which was maintained until an operational crash in the chemostat 321 

occurred (loss of phosphorus-removal efficiency, supplementary Table S3). Based 322 

on EPV1’s decreasing abundance, we cannot explain this fluctuation by phage 323 

predation, but instead as a result of competition within the Accumulibacter lineage 324 

for the same resources (dynamics of the two competing Accumulibacter clades 325 

depicted in Supplementary Table S4 and described in detail elsewhere1). Next, while 326 

the host’s abundance was at its lowest levels (ii phase), their CRISPR-loci became 327 

highly diverse until one or few host’s alleles emerged in the system (middle of iii 328 

phase), which drives to excess viral abundance until the host’s population size is 329 

reduced to a minimum at the end of the operational period, following a catastrophic 330 

community crash, wiping out most of the reactor biomass (TSS and VSS values 331 

highlighted during day 2949 of Supplementary Table S3). These contrasting 332 

observations can help explain the consequences of generating spacer diversity.  333 
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Discussion 334 

CRISPR Diversity constitutes an important trait of the bacterial immune system, 335 

which is critical protection against viral specialization 57. In light of the bacteria- 336 

phage arms race dynamics, a host community can develop a structure where 337 

diverse genotypes are immune to viruses because of the inherent diversity of 338 

CRISPR loci 34. When triggering this response, CRISPR-active microorganisms have 339 

the potential to shift phage-host coevolution dynamics, where the host population 340 

is diverse and stable while the viral community is prone to extinction. These 341 

dynamics cannot be captured by a “kill-the-winner” model, because CRISPR- 342 

mediated diversity prevents a virus-susceptible “winner” from emerging 34.  343 

We hypothesize that a disparate spacer insertion mechanism might enable various 344 

host genotypes to prevent their extinction due to a possible phage infection event 345 

58, and we expect that co-existence between spacer-adding CRISPR alleles would 346 

allow them to emerge within a host population at the same time, to promote and 347 

preserve heterogeneity. Childs et al.34 reported an eco-evolutionary model in which 348 

CRISPR diversity may be maintained within the host population due to clonal 349 

interference, i.e., competition among beneficially mutant clones that have 350 

independently acquired spacers in their CRISPR loci 34. Different clones, each with 351 

different CRISPR spacers to the same virus, coexist and therefore prevent a sweep 352 

that would purge diversity from the bacterial community. This diversity is 353 

exclusively generated within the CRISPR locus, and thus, this mechanism does not 354 

usually provide benefits in the absence of pathogens 57. Our results agree with this 355 
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theoretical model and experimental studies where Pseudomonas aeruginosa was 356 

challenged against its infecting DMS3vir phage.59 Their results show that while the 357 

host population with low initial spacer diversity led to phage survival and escape 358 

from CRISPR immunity, phage became extinct in those populations with high spacer 359 

diversity. Although our study does not focus on EPV1-phage strategies to overcome 360 

CRISPR immunity in Accumulibacter, phage-bacteria coexistence experiments 361 

between Streptococcus thermophilus and its lytic phage 2972 reported viral 362 

genome rearrangements and escape mutations as the main strategies to promote 363 

phage persistence, supporting CRISPR as one of the fundamental drivers of phage 364 

evolution 60. We interpret these results as support for the hypothesis that CRISPR- 365 

Cas systems can readily provide their progeny with a tool to prevent future phage 366 

invasions and to enable this progeny to establish and persist in a community 367 

associated with phages. This assumption can ultimately promote an equilibrium 368 

between phage and bacteria and keep a significant amount of diversity in nature. 369 

Eco-evolutionary implications 370 

Coevolution can involve the development of patterns in phylogeny and in the 371 

evolution of host specificity or specialization on prey 61. Interpretation of these 372 

results remains to be seen under a bacterial evolutionary scope and will constitute 373 

a study on its own. What is clear about our findings is that diversification of bacteria 374 

in response to phage predation is a possible explanation for the observed 375 

distributed immunity. The result can be a pattern that varies as the Accumulibacter 376 
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populations evolve and change in their distributions. CRISPR diversity promotes 377 

adaptation in dynamic environments, increasing the probability of a pre-existing 378 

genotype being fit to altered conditions 62. Within a community ecology context, 379 

phages hold potential to mediate coexistence among bacterial species, in which 380 

population growth by otherwise clonal bacterial species is hampered by phage 381 

infection 16. This analysis shows that viral activity might induce changes in the 382 

relative abundance of taxonomic units within an important functional group in an 383 

activated sludge community and that phage abundance, infection and immunity are 384 

previously unrecognized but important factors determining the stability of microbial 385 

communities. 386 

Consequences and future perspectives 387 

While the protective effect of intra-population diversity could be dramatically lost 388 

when a phage variant escapes multiple CRISPR spacers, this new phage variant is 389 

limited by the higher bacterial heterogeneity which leads to reduced population 390 

numbers of that genotype. Therefore, we propose that the additional benefit 391 

represented by CRISPR-associated distributed immunity could lead a host 392 

population to predominate under recurrent phage infection conditions under the so- 393 

called “Red Queen Hypothesis” 63. The implications of this observation have a 394 

significant negative impact in biotechnological and medical applications, i.e. where 395 

phages serve as biocontrol agents in the food industry as a non-thermal 396 

intervention to reduce pathogen loads 64 and in medicine in the form of phage 397 
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therapy, without necessarily considering the effect of bacterial strain multiplicity 398 

and their CRISPR-associated defense mechanisms. In this case, appropriate 399 

experimental evolution protocols should be often necessary for producing more 400 

effective phage preparations that could overcome the effects of CRISPR diversity 401 

65. Likewise, greater attention must be paid to monoculture-based bacterial 402 

production at large scale, where hosts are often exposed to phage suppression. For 403 

instance, in the dairy industry, persistent phages of S. thermophilus present a 404 

significant threat to the production of many fermented dairy products by reducing 405 

acidification rates or even complete loss of fermentate  66. Similarly, phage activity 406 

displays a more central role in wastewater treatment systems than previously 407 

suggested 39,67, maintaining the microbial diversity necessary for functional 408 

redundancy in these ecosystems. Increasing the host’s allele diversity would, 409 

therefore, tend to reduce the risk of phage spread, providing considerable 410 

economic consequences to the industry.  411 
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Figure descriptions 423 

Figure 1 | Metagenomic-based evidence for differential acquisition of CRISPR 424 

spacers at the leader end.  425 

(a) qPCR-based Accumulibacter dynamics using clade-specific ppk1 genes. Black 426 

arrows depict nine samples selected for shotgun DNA sequencing. (b) 427 

Metagenomic reads aligned to the CRISPR locus belonging to the reference 428 

Accumulibacter clade IA UW-3 genome reveal hypervariable region (represented 429 

by a drop in coverage) within the host's locus. 430 

Figure 2 | CRISPR loci dynamics reveal an intraspecies diversity.  431 

(a, b), host's abundance (ppk1 gene copies/ng DNA, (a) and its expected 432 

heterozygosity index (HEXP, b) calculated from rarefied CRISPR-architectures 433 

obtained from the time series dataset. (c, d), CRISPR-loci distribution and 434 

architectures of the top 100 most abundant alleles over time. The lateral panel 435 

represents the shape of the spacer organization within such loci. (d) CRISPR- 436 

related array groups and spacer identities (small subsample dataset retrieved from 437 

(c)).  438 

Figure 3 | Fitness consequences of generating spacer diversity.  439 

EPV1-phage and host abundances are depicted in (a) and (b), respectively. (a) The 440 

CRISPR-allele diversity (HEXP) is represented by white triangles. Host-diversity 441 

phases are highlighted in shades of gray: (i) both increased host’s abundance and 442 

CRISPR-allele diversity; (ii) decreased host’s abundance and increased CRISPR- 443 

allele diversity and (iii) increased host’s abundance and decreased CRISPR-allele 444 
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diversity. Operational crashes (loss of p-uptake, from supplementary table S3) are 445

highlighted in red. 446

447

448
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Supplementary Text 

Samples taken when one of the two Accumulibacter clades dominated the PAO 

community in the SBR were selected for metagenomic sequencing (Supplementary 

table S1). Figure S1 describes heterogeneity within Accumulibacter clade IA-UW3 

represented by ANI calculations. Metagenomic reads recruitment and ANI provide 

a reliable means for assessing sequence-discrete populations and determining the 

level of intra-population genetic diversity 68. Typically, sequence-discrete 

populations share > 99% nucleotide identity to reference genomes 69 and tend to 

display smaller gene-content differences among themselves.  Therefore, the ANI 

distribution leads us to discriminate the level of heterogeneity between 

Accumulibacter-closely related populations at any given time in the dataset. From 

the metagenomic dataset we found that Accumulibacter clade IA intra-population 

genetic diversity accounts for less than 1% in terms of ANI distribution. 
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Supplementary Materials 

Supplementary Figures 

 

 

 

Figure S1. Average Nucleotide Identity (ANI) of metagenomic reads mapped 

against Accumulibacter clade IA reference genome. 
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Supplementary Tables 

Table S1. Metagenomic sequencing statistics 

Metagenome 
sample date 

Generation 
(SRT) 

Total reads 
(millions) 

Metagenome 
size (Gbp) 

5/13/2013 884 97 14.5 
1/23/2012 765 91 13.7 
1/10/2011 671 102 15.3 
10/4/2010 646 92 13.9 
7/15/2010 626 89 13.3 
2/2/2009 494 93 14.0 
4/24/2008 423 99 14.9 
9/17/2007 368 97 14.6 
1/14/2005 124 100 15.0 

 

Table S2. Reference sequences used in this study  

Genome Name Accession No. Genome Size (†Mbp or 
*Kbp)  

CAP clade IA UW2 2100351004 4.5 † 
CAP clade IA UW3 Ga0131788 4.3  
EBPR Podovirus 1 JF412294.1 36.1 * 
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Table S3. Summary of Accumulibacter clade dynamics and operational parameters measured in the 
SBR.  

Date Oper. 
time (d) 

Gen. 
(SRT) 

P 
release 
(mg/L) 

P uptake 
(mg/L) 

TSS 
(mg/L) 

VSS 
(mg/L) 

VSS/TSS 
(%) TP 

9/6/03 0 0 -  - - - - 
6/30/04 298 75       

6/6/05 639 160 59.42 0.00 1036.00 625.33 60.36  

9/13/05 738 185       

2/9/06 887 222 58.96 0.21 1056.00 626.67 59.34  

5/20/06 987 247   1097.33 598.67 54.56  

7/17/06 1045 261       

8/3/06 1062 266 41.49 3.05 1132.00 737.33 65.14 67.30 
8/10/06 1069 267 45.08 1.12 1113.33 625.33 56.17 61.11 
8/21/06 1080 270       

9/19/06 1109 277 55.61 3.09 814.67 438.67 53.85 101.16 
10/2/06 1122 281       

11/3/06 1154 289 55.38 0.20 937.33 537.33 57.33 129.23 
11/4/06 1155 289       

11/10/06 1161 290       

11/16/06 1167 292 45.31 0.11 1090.67 612.00 56.11  

11/30/06 1181 295 58.62 0.04 1410.67 857.33 60.78 142.86 
12/4/06 1185 296       

12/9/06 1190 298       

12/14/06 1195 299       

12/21/06 1202 301       

12/29/06 1210 303       

1/4/07 1216 304 26.57 0.00     

1/8/07 1220 305 26.22 0.08     

1/10/07 1222 306 38.49 0.01     

1/12/07 1224 306 36.17 0.00 650.67 436.00 67.01  

1/16/07 1228 307       

1/31/07 1243 311 25.29 0.08 577.33 270.67 46.88  

2/16/07 1259 315 60.93 1.63 1058.67 752.00 71.03 131.30 
2/28/07 1271 318 55.73 0.15 1092.00 588.00 53.85  

3/12/07 1283 321       

4/24/07 1326 332 45.89 1.36 688.00 342.67 49.81  

5/1/07 1333 333 59.89 0.48 1100.00 564.00 51.27 145.33 
5/14/07 1346 337       

5/18/07 1350 338       

5/22/07 1354 339 69.03 0.00     

5/24/07 1356 339 65.10 0.00 697.33 384.00 55.07  

5/29/07 1361 340 89.40 1.22 1001.33 574.67 57.39 101.98 
6/1/07 1364 341 91.83 0.00 1045.33 624.00 59.69  

6/11/07 1374 344       
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Table S3 (continued). Summary of Accumulibacter clade dynamics and operational parameters 
measured in the SBR.  

Date Oper. 
time (d) 

Gen. 
(SRT) 

P 
release 
(mg/L) 

P uptake 
(mg/L) 

TSS 
(mg/L) 

VSS 
(mg/L) 

VSS/TSS 
(%) TP 

6/13/07 1376 344       

6/14/07 1377 344 62.90 0.55 786.67 493.33 62.71 69.78 
6/17/07 1380 345       

6/21/07 1384 346 65.68 0.01 1233.33 820.00 66.49 90.42 
6/27/07 1390 348       

7/10/07 1403 351 62.21 1.87 881.33 506.67 57.49 86.71 
7/18/07 1411 353 40.45 0.04 745.33 510.67 68.52 52.85 
8/24/07 1448 362 55.73 0.27 744.00 497.33 66.85 60.28 
8/31/07 1455 364 61.51 0.00 981.33 664.00 67.66 92.07 
9/7/07 1462 366 62.32 0.69 1338.67 876.00 65.44 106.52 
9/14/07 1469 367 60.82 0.04 1092.00 689.33 63.13 109.00 
9/23/07 1478 370       

10/1/07 1486 372 56.07 0.29 1092.00 746.67 68.38 91.66 
10/8/07 1493 373 48.67 0.20 1272.00 878.67 69.08 94.96 
10/15/07 1500 375 51.44 0.04 1236.00 868.00 70.23 108.59 
10/22/07 1507 377 51.21 0.00 1005.33 725.33 72.15 89.60 
10/29/07 1514 379 52.02 0.15 956.00 670.67 70.15 78.03 
11/5/07 1521 380 46.58 0.06 1129.33 846.67 74.97 67.71 
11/9/07 1525 381 57.81 0.08 989.33 700.00 70.75 71.02 
11/12/07 1528 382 57.69 0.00 1145.33 836.00 72.99 117.26 
11/19/07 1535 384 52.37 0.64 964.00 690.67 71.65 70.60 
11/26/07 1542 386 58.27 0.08 928.00 597.33 64.37 96.20 
11/30/07 1546 387 57.11 0.00 876.00 558.67 63.77 87.94 
12/3/07 1549 387 39.18 0.06 534.67 332.00 62.09 58.63 
12/7/07 1553 388 46.58 0.29 1065.33 585.33 54.94 161.02 
12/10/07 1556 389 55.15 0.00 1034.67 602.67 58.25 151.94 
12/14/07 1560 390 56.88 0.15 850.67 472.00 55.49 125.10 
12/18/07 1564 391 39.06 0.06 966.67 542.67 56.14 124.28 
12/20/07 1566 392       

12/26/07 1572 393 50.87 0.00 704.00 370.67 52.65 98.27 
1/2/08 1579 395 52.83 0.00     

1/7/08 1584 396       

1/10/08 1587 397 60.47 0.00 821.33 486.67 59.25 76.80 
1/13/08 1590 398       

1/17/08 1594 399       

1/21/08 1598 400 58.04 0.34 861.33 510.67 59.29 88.77 
1/28/08 1605 401       

1/30/08 1607 402       

2/7/08 1615 404 57.00 1.66 598.67 389.33 65.03  

2/14/08 1622 406 55.61 0.43 860.00 548.00 63.72 37.57 
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Table S3 (continued). Summary of Accumulibacter clade dynamics and operational parameters 
measured in the SBR.  

Date Oper. 
time (d) 

Gen. 
(SRT) 

P 
release 
(mg/L) 

P uptake 
(mg/L) 

TSS 
(mg/L) 

VSS 
(mg/L) 

VSS/TSS 
(%) TP 

2/21/08 1629 407 58.62 0.11 813.33 506.67 62.30 75.14 
2/28/08 1636 409 49.71 0.13 800.00 534.00 66.75 60.69 
3/11/08 1648 412 0.00 
3/13/08 1650 413 52.49 0.11 76.38 
3/21/08 1658 415 53.64 0.08 796.00 504.00 63.32 87.12 
3/27/08 1664 416 46.82 0.04 724.00 432.00 59.67 93.31 
4/3/08 1671 418 49.59 0.50 726.67 474.67 65.32 74.73 
4/7/08 1675 419 53.99 0.36 824.00 514.67 62.46 
4/7/08 1675 419 53.99 0.36 824.00 514.67 62.46 
4/10/08 1678 420 54.57 0.11 696.00 408.00 58.62 88.77 
4/22/08 1690 423 0.00 
6/12/08 1741 435 63.71 0.15 894.67 538.67 60.21 95.79 
6/15/08 1744 436 0.00 
6/19/08 1748 437 45.31 0.08 945.33 621.33 65.73 81.34 
6/25/08 1754 439 58.04 0.11 878.67 572.00 65.10 85.88 
7/4/08 1763 441 65.91 0.01 
7/10/08 1769 442 63.36 0.04 953.33 576.00 60.42 99.92 
7/17/08 1776 444 62.99 0.00 1022.67 649.33 63.49 105.99 
7/24/08 1783 446 61.12 0.00 940.00 624.00 66.38 96.01 
7/31/08 1790 448 52.87 0.08 870.67 610.67 70.14 83.42 
8/7/08 1797 449 48.50 0.00 914.67 569.33 62.24 
8/14/08 1804 451 61.74 0.00 908.00 564.00 62.11 
8/21/08 1811 453 54.24 0.00 980.00 597.33 60.95 99.48 
8/28/08 1818 455 65.86 0.00 785.33 469.33 59.76 81.25 
9/8/08 1829 457 70.73 0.00 996.00 597.33 59.97 109.90 
9/15/08 1836 459 67.24 0.00 1088.00 665.33 61.15 112.07 
9/22/08 1843 461 67.49 0.00 1024.00 592.00 57.81 118.14 
9/29/08 1850 463 60.49 0.00 997.33 606.67 60.83 115.97 
10/6/08 1857 464 67.49 0.00 988.00 596.00 60.32 111.63 
10/13/08 1864 466 61.24 0.00 1013.33 606.67 59.87 111.63 
10/20/08 1871 468 66.74 0.00 1082.67 620.00 57.27 127.69 
10/27/08 1878 470 89.60 0.00 1221.33 740.00 60.59 134.64 
11/10/08 1892 473 70.48 0.00 1072.00 665.33 62.06 123.78 
11/24/08 1906 477 82.73 0.00 1008.00 633.33 62.83 121.18 
12/1/08 1913 478 70.36 0.00 986.67 606.67 61.49 112.93 
12/8/08 1920 480 69.86 1.23 1000.00 626.67 62.67 116.84 
12/15/08 1927 482 73.98 0.00 1201.33 716.00 59.60 138.54 
12/22/08 1934 484 65.86 0.00 1078.67 682.67 63.29 148.96 
12/30/08 1942 486 71.11 5.05 718.67 538.67 74.95 106.42 
1/19/09 1962 491 73.23 0.05 873.33 573.33 65.65 
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Table S3 (continued). Summary of Accumulibacter clade dynamics and operational parameters 
measured in the SBR.  

Date Oper. 
time (d) 

Gen. 
(SRT) 

P 
release 
(mg/L) 

P uptake 
(mg/L) 

TSS 
(mg/L) 

VSS 
(mg/L) 

VSS/TSS 
(%) TP 

1/26/09 1969 492 72.48 0.00 1022.67 577.33 56.45 117.27 
2/2/09 1976 494 88.10 3.10 1118.67 637.33 56.97 112.07 
2/5/09 1979 495 70.36 0.00     

2/9/09 1983 496 72.98 0.00     

2/13/09 1987 497 74.73 0.00     

2/16/09 1990 498 74.61 0.00     

2/20/09 1994 499 77.48 0.00     

2/23/09 1997 499 85.48 9.52     

2/26/09 2000 500 69.24 0.13     

3/2/09 2004 501 71.98 0.00     

3/5/09 2007 502 70.73 0.00     

3/9/09 2011 503 69.61 0.00     

3/12/09 2014 504 62.49 0.00     

3/16/09 2018 505 75.36 0.00     

3/19/09 2021 505 80.85 0.00     

3/23/09 2025 506 69.86 0.30     

3/26/09 2028 507 62.36 0.00     

3/30/09 2032 508 54.74 0.13     

4/2/09 2035 509 46.87 0.38     

4/6/09 2039 510 51.12 0.00     

4/9/09 2042 511 60.74 0.00     

4/13/09 2046 512 55.37 0.00     

4/16/09 2049 512 60.74 0.00     

4/20/09 2053 513 66.86 0.00     

4/23/09 2056 514 62.61 0.10     

4/27/09 2060 515 75.48 0.00     

4/30/09 2063 516 68.99 0.00     

5/4/09 2067 517 74.73 0.00     

5/7/09 2070 518 69.74 0.00     

5/11/09 2074 519 65.74 1.70     

5/15/09 2078 520 79.48 1.20     

5/18/09 2081 520 79.73 0.88     

5/21/09 2084 521 84.10 0.38     

5/26/09 2089 522 65.86 1.08     

5/28/09 2091 523 51.50 35.98     

6/1/09 2095 524 68.61 0.00     

6/4/09 2098 525 76.73 0.00     

6/9/09 2103 526 62.74 0.00     

6/11/09 2105 526 68.49 0.10     
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Table S3 (continued). Summary of Accumulibacter clade dynamics and operational parameters 
measured in the SBR.  

Date Oper. 
time (d) 

Gen. 
(SRT) 

P 
release 
(mg/L) 

P uptake 
(mg/L) 

TSS 
(mg/L) 

VSS 
(mg/L) 

VSS/TSS 
(%) TP 

6/16/09 2110 528 62.24 0.18     

6/18/09 2112 528 74.86 0.25     

6/22/09 2116 529 79.98 0.00     

6/25/09 2119 530 79.98 0.40     

6/29/09 2123 531 69.36 0.00     

7/1/09 2125 531 70.11 0.08     

7/9/09 2133 533 67.11 0.70     

7/13/09 2137 534 56.74 0.08     

7/16/09 2140 535 54.99 0.00     

7/20/09 2144 536 51.75 0.00     

7/23/09 2147 537 85.48 0.43     

7/27/09 2151 538 98.09 0.05     

8/3/09 2158 540 72.23 0.00     

8/6/09 2161 540 74.36 0.00     

8/10/09 2165 541 80.73 1.30     

8/13/09 2168 542 68.61 0.00     

8/17/09 2172 543 72.73 0.00     

8/20/09 2175 544 85.10 0.00     

8/24/09 2179 545 62.11 0.33     

8/27/09 2182 546 34.76 0.88     

8/31/09 2186 547 36.75 0.29     

9/3/09 2189 547 73.98 0.08     

9/8/09 2194 549 73.61 0.48     

9/10/09 2196 549 77.73 1.08     

9/14/09 2200 550 76.73 0.00     

9/17/09 2203 551 83.35 0.00     

9/21/09 2207 552 77.73 0.00     

9/24/09 2210 553 74.61 0.00     

9/28/09 2214 554 78.11 0.00     

10/1/09 2217 554 68.24 0.00     

10/5/09 2221 555 65.74 0.00     

10/8/09 2224 556 74.11 0.05     

10/12/09 2228 557 74.98 0.08     

10/15/09 2231 558 56.74 0.00     

10/19/09 2235 559 70.73 0.00     

10/22/09 2238 560 74.36 0.00     

10/26/09 2242 561 72.73 0.00     

10/30/09 2246 562 74.11 0.68     

11/2/09 2249 562 72.36 0.00     
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Table S3 (continued). Summary of Accumulibacter clade dynamics and operational parameters 
measured in the SBR.  

Date Oper. 
time (d) 

Gen. 
(SRT) 

P 
release 
(mg/L) 

P uptake 
(mg/L) 

TSS 
(mg/L) 

VSS 
(mg/L) 

VSS/TSS 
(%) TP 

11/5/09 2252 563 81.98 0.50     

11/9/09 2256 564 42.63 0.00     

11/13/09 2260 565 69.24 0.93     

11/16/09 2263 566 73.23 0.28     

11/20/09 2267 567 88.72 0.00     

11/24/09 2271 568 75.61 1.28     

12/1/09 2278 570 67.61 0.00     

12/3/09 2280 570 75.23 0.00     

12/7/09 2284 571 56.24 0.00     

12/10/09 2287 572 68.49 0.00     

12/14/09 2291 573 73.48 0.00     

12/18/09 2295 574 77.48 2.08     

12/21/09 2298 575 66.11 7.77     

12/28/09 2305 576 85.10 0.00     

1/4/10 2312 578 72.23 0.98     

1/11/10 2319 580 22.26 17.14     

1/14/10 2322 581 35.00 1.55     

1/18/10 2326 582 49.75 0.00     

1/21/10 2329 582 58.24 0.60     

1/25/10 2333 583 60.87 0.00     

1/28/10 2336 584 37.25 0.00     

2/1/10 2340 585 45.37 0.00     

2/4/10 2343 586 62.24 0.00     

2/8/10 2347 587 61.49 0.00     

2/11/10 2350 588 38.25 0.00     

2/15/10 2354 589 56.62 0.13     

2/18/10 2357 589 54.99 0.05     

2/22/10 2361 590 51.12 0.20     

2/25/10 2364 591 46.12 0.15     

3/2/10 2369 592 53.99 0.10     

3/4/10 2371 593 55.99 0.15     

3/9/10 2376 594 43.50 0.00     

3/12/10 2379 595 47.87 0.08     

3/16/10 2383 596 41.13 0.20     

3/18/10 2385 596 41.50 0.08     

3/23/10 2390 598 55.99 0.38     

3/25/10 2392 598 41.50 0.10     

3/30/10 2397 599 64.36 1.43     

4/6/10 2404 601 N/A 0.35     
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Table S3 (continued). Summary of Accumulibacter clade dynamics and operational parameters 
measured in the SBR.  

Date Oper. 
time (d) 

Gen. 
(SRT) 

P 
release 
(mg/L) 

P uptake 
(mg/L) 

TSS 
(mg/L) 

VSS 
(mg/L) 

VSS/TSS 
(%) TP 

4/8/10 2406 602 65.86 0.23     

4/13/10 2411 603 56.62 0.00     

4/15/10 2413 603 64.24 0.00     

4/20/10 2418 605 56.99 0.00     

4/22/10 2420 605 36.25 0.28     

4/27/10 2425 606 74.48 0.08     

4/29/10 2427 607 73.11 0.00     

5/4/10 2432 608 71.23 0.00     

5/6/10 2434 609 68.61 0.00     

5/11/10 2439 610 72.61 0.25     

5/13/10 2441 610 58.12 0.03     

5/20/10 2448 612 71.11 0.00     

5/25/10 2453 613 55.87 1.00     

6/1/10 2460 615 66.74 0.00     

6/3/10 2462 616 64.49 0.03     

6/8/10 2467 617 66.36 0.13     

6/10/10 2469 617 64.24 0.00     

6/15/10 2474 619 52.99 1.05     

9/7/10 2558 640 23.39 0.45 361.33 249.33 69.00  

9/13/10 2564 641 36.13 0.00 489.33 397.33 81.20  

9/20/10 2571 643 63.49 0.33 613.33 324.00 52.83  

10/1/10 2582 646 51.12 0.00 770.67 416.00 53.98  

10/11/10 2592 648 53.74 0.05 729.33 381.33 52.29  

10/22/10 2603 651 52.99 1.80 836.00 481.33 57.58  

11/8/10 2620 655 47.87 0.00 620.00 410.67 66.24  

11/16/10 2628 657 36.75 0.00 589.33 441.33 74.89  

11/23/10 2635 659 49.62 0.00 664.00 493.33 74.30  

12/3/10 2645 661 10.77 2.15 206.67 170.67 82.58  

12/16/10 2658 665 4.52 3.60 337.33 356.00 105.53  

12/23/10 2665 666 13.02 9.62 334.67 282.67 84.46  

12/31/10 2673 668 30.13 0.00 464.00 257.33 55.46  

1/7/11 2680 670 47.37 0.00 177.33 -94.67 -53.38  

1/13/11 2686 672 49.50 0.00 506.67 242.67 47.89  

2/7/11 2711 678 57.99 0.03 1209.33 762.67 63.07  

3/5/11 2737 684 73.36 1.73 966.67 602.67 62.34  

3/29/11 2761 690 60.49 2.18 832.00 452.00 54.33  

5/19/11 2812 703 66.74 0.35 486.67 278.67 57.26  

6/9/11 2833 708 64.74 0.00 1244.00 697.33 56.06  

7/5/11 2859 715 42.13 0.00 842.67 392.00 46.52  

7/29/11 2883 721 23.01 26.66 402.67 238.67 59.27  

8/4/11 2889 722 60.74 0.15 1016.00 604.00 59.45  

8/12/11 2897 724 59.24 0.13 792.00 402.67 50.84  
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Table S3 (continued). Summary of Accumulibacter clade dynamics and operational parameters 
measured in the SBR.  

Date Oper. 
time (d) 

Gen. 
(SRT) 

P 
release 
(mg/L) 

P uptake 
(mg/L) 

TSS 
(mg/L) 

VSS 
(mg/L) 

VSS/TSS 
(%) TP 

8/18/11 2903 726 60.12 0.00     

8/25/11 2910 728 56.74 0.13 800.00 474.67 59.33  

9/2/11 2918 730 52.25 0.10 1081.33 572.00 52.90  

9/9/11 2925 731 51.62 0.00 716.00 396.00 55.31  

9/15/11 2931 733 73.11 0.00 940.00 530.67 56.45  

9/23/11 2939 735 75.98 0.00 950.67 557.33 58.63  

10/3/11 2949 737 23.51 6.25 393.33 321.33 81.69  

10/14/11 2960 740 49.37 0.00 684.00 474.67 69.40  

10/31/11 2977 744 61.36 0.00 732.00 458.67 62.66  

11/28/11 3005 751 25.26 4.85 628.00 525.33 83.65  

1/23/12 3061 765 54.99 0.00 1204.00 713.33 59.25  

2/17/12 3086 772 64.61 0.23 890.67 450.67 50.60  

3/12/12 3110 778 71.86 0.00 1008.00 573.33 56.88  

3/30/12 3128 782 60.74 0.00 960.00 553.33 57.64  

4/5/12 3134 784 62.24 0.00 937.33 558.67 59.60  
4/13/12 3142 786 58.62 0.00 957.33 633.33 66.16  
4/19/12 3148 787 55.49 0.00 820.00 609.33 74.31  
4/27/12 3156 789 62.24 0.00 744.00 514.67 69.18  
5/4/12 3163 791 68.11 3.70 894.67 497.33 55.59  
5/11/12 3170 793 59.62 0.10 1013.33 601.33 59.34  
5/18/12 3177 794 57.12 0.13 1277.33 776.00 60.75  
5/25/12 3184 796       
5/31/12 3190 798 64.24 0.00 1050.67 630.67 60.03  
6/28/12 3218 805 66.36 0.08 701.33 617.33 88.02  
7/30/12 3250 813 53.37 0.03 506.67 509.33 100.53  
8/27/12 3278 820 7.40 0.13 905.33 601.33 66.42  
9/20/12 3302 826 8.77 0.00 550.67 404.00 73.37  
10/8/12 3320 830 49.12 0.00 1742.67 1134.67 65.11  
11/1/12 3344 836 100.59 0.58 1046.67 998.67 95.41  
11/29/12 3372 843 51.87 0.20 465.33 402.67 86.53  
1/21/13 3425 856 58.99 0.00 756.00 465.33 61.55  
3/8/13 3471 868 52.50 0.28 722.67 452.00 62.55  
4/8/13 3502 876       
4/15/13 3509 877 59.87 0.00 685.33 430.67 62.84  
4/29/13 3523 881       
5/6/13 3530 883       
5/21/13 3545 886       
5/28/13 3552 888 0.00 6.98 556.00 550.67 99.04  
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Table S4. Accumulibacter clade dynamics targeting the ppk1 gene (Camejo, et al. 
(2016)) 

Date Oper. time (d) Generation 
(SRT) 

Acc. Clade IA 
(copies/ng 

DNA) 

Acc. Clade IIA 
(copies/ng 

DNA) 
2/3/05 516 129 5.94E+05 4.33E+06 
3/7/05 548 137 2.48E+06 1.11E+07 
4/5/05 577 144 2.42E+06 5.01E+06 
5/3/05 605 151 1.13E+06 8.09E+05 
6/2/05 635 159 4.14E+06 6.15E+06 
7/5/05 668 167 3.75E+06 9.46E+06 
8/2/05 696 174 1.34E+06 4.74E+06 
9/1/05 726 182 5.96E+05 1.39E+06 
10/6/05 761 190 1.32E+06 2.77E+05 
12/8/05 824 206 1.94E+06 1.22E+05 
1/24/06 871 218 7.54E+06 1.60E+06 
2/2/06 880 220 1.20E+07 2.93E+06 
3/2/06 908 227 6.91E+06 5.29E+06 
4/6/06 943 236 1.04E+07 2.39E+06 
5/4/06 971 243 9.98E+06 2.29E+05 
6/3/06 1001 250 3.74E+06 5.37E+04 
6/14/06 1012 253 3.32E+05 5.96E+05 
7/6/06 1034 259 9.92E+05 8.77E+05 
8/3/06 1062 266 5.53E+06 1.02E+06 
9/7/06 1097 274 3.00E+06 4.84E+05 
10/3/06 1123 281 4.38E+06 7.84E+05 
11/14/06 1165 291 2.17E+06 3.50E+05 
12/5/06 1186 297 2.66E+05 6.46E+04 
1/8/07 1220 305 2.88E+06 1.18E+06 
2/2/07 1245 311 3.84E+06 2.01E+06 
3/1/07 1272 318 9.90E+06 7.77E+05 
4/4/07 1306 327 7.97E+06 3.37E+05 
5/1/07 1333 333 1.20E+07 1.11E+06 
6/1/07 1364 341 1.12E+07 7.66E+05 
7/10/07 1403 351 8.86E+06 5.22E+05 
8/1/07 1425 356 3.29E+06 1.96E+05 
9/10/07 1465 366 9.63E+06 5.40E+03 
10/5/07 1490 373 1.23E+07 1.35E+04 
11/2/07 1518 380 1.02E+07 2.28E+04 
12/7/07 1553 388 6.66E+06 9.24E+05 
1/4/08 1581 395 6.68E+06 6.64E+05 
2/4/08 1612 403 9.72E+06 2.43E+05 
3/3/08 1640 410 7.91E+06 2.02E+06 
4/1/08 1669 417 3.11E+06 1.49E+06 
5/5/08 1703 426 7.90E+06 2.08E+06 
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Table S4 (cont.). Accumulibacter clade dynamics targeting the ppk1 gene (Camejo, 
2016) 

Date Oper. time (d) Gen. (SRT) 
Acc. Clade IA 
(copies/ng 

DNA) 

Acc. Clade IIA 
(copies/ng 

DNA) 
7/1/08 1760 440 7.25E+06 2.81E+06 
6/2/08 1731 433 8.37E+06 2.43E+06 
8/4/08 1794 449 6.49E+06 1.82E+06 
9/2/08 1823 456 5.35E+06 9.20E+05 
10/3/08 1854 464 8.11E+06 7.72E+05 
11/7/08 1889 472 4.43E+06 5.78E+05 
12/12/08 1924 481 7.22E+06 1.04E+06 
1/2/09 1945 486 5.06E+06 1.03E+06 
2/5/09 1979 495 5.41E+06 5.77E+05 
3/2/09 2004 501 5.95E+06 9.66E+05 
4/6/09 2039 510 1.38E+07 1.20E+06 
5/4/09 2067 517 1.16E+07 9.24E+05 
6/1/09 2095 524 1.27E+07 6.67E+05 
7/1/09 2125 531 9.35E+06 5.17E+05 
8/3/09 2158 540 6.70E+06 2.44E+05 
9/8/09 2194 549 7.79E+06 1.31E+05 
10/5/09 2221 555 1.05E+07 1.56E+05 
11/2/09 2249 562 8.46E+06 1.49E+05 
12/1/09 2278 570 1.06E+07 5.88E+04 
1/8/10 2316 579 9.12E+06 2.51E+04 
2/1/10 2340 585 2.99E+06 3.75E+06 
3/9/10 2376 594 3.52E+04 8.08E+06 
4/8/10 2406 602 1.75E+04 4.96E+06 
5/4/10 2432 608 2.08E+04 3.49E+06 
6/3/10 2462 616 5.11E+04 4.45E+06 
7/1/10 2490 623 3.44E+05 7.81E+06 
8/5/10 2525 631 9.06E+05 8.20E+06 
9/2/10 2553 638 1.15E+06 3.49E+06 
10/8/10 2589 647 4.95E+06 5.83E+05 
11/1/10 2613 653 3.54E+06 3.43E+05 
12/6/10 2648 662 7.36E+05 1.04E+05 
1/4/11 2677 669 1.06E+07 6.45E+04 
2/4/11 2708 677 8.06E+06 5.88E+04 
3/8/11 2740 685 3.89E+06 2.96E+05 
4/5/11 2768 692 3.65E+06 2.37E+06 
5/6/11 2799 700 4.62E+06 1.47E+06 
6/3/11 2827 707 8.55E+06 4.78E+05 
7/1/11 2855 714 1.30E+07 2.76E+05 
8/1/11 2886 722 1.20E+07 2.17E+05 
9/6/11 2922 731 1.21E+07 4.02E+05 
10/7/11 2953 738 3.86E+06 4.34E+05 
11/7/11 2984 746 2.01E+05 4.18E+06 
12/2/11 3009 752 5.75E+05 5.93E+06 
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Table S4 (cont.). Accumulibacter clade dynamics targeting the ppk1 gene (Camejo, 
2016) 

Date Oper. time (d) Gen. (SRT) 
Acc. Clade IA 
(copies/ng 

DNA) 

Acc. Clade IIA 
(copies/ng 

DNA) 
1/8/12 3046 762 7.03E+06 6.82E+05 
1/6/12 3044 761 2.78E+05 1.76E+06 
2/3/12 3072 768 3.75E+06 1.13E+07 
3/5/12 3103 776 3.18E+05 3.68E+06 
4/2/12 3131 783 3.43E+06 6.62E+06 
5/4/12 3163 791 6.39E+06 5.28E+06 
6/4/12 3194 799 7.34E+06 2.12E+06 
7/1/12 3221 805 6.68E+06 5.74E+05 
8/3/12 3254 814 4.28E+06 2.23E+06 
9/3/12 3285 821 4.80E+06 3.27E+06 
10/5/12 3317 829 4.79E+06 1.86E+06 
11/6/12 3349 837 3.86E+06 2.92E+06 
12/4/12 3377 844 5.78E+06 2.23E+06 
2/8/13 3443 861 6.06E+06 1.41E+06 
3/8/13 3471 868 7.31E+06 2.45E+06 
4/5/13 3499 875 6.11E+06 1.43E+06 
5/3/13 3527 882 5.24E+06 2.21E+06 
6/3/13 3558 890 1.87E+06 1.37E+06 
7/1/13 3586 897 1.62E+04 1.51E+06 
9/23/13 3670 918 3.35E+04 2.09E+06 
10/2/13 3679 920 3.70E+04 6.56E+05 
11/1/13 3709 927 4.95E+04 1.35E+06 
11/16/13 3724 931 9.59E+04 6.79E+06 
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Abstract 

The activated sludge process has been recently used as a model ecosystem to 

understand microbial interactions and performance in both laboratory and full-scale 

systems. This microbial community is enriched in the uncultured Polyphosphate 

Accumulating Organism (PAO) Candidatus Accumulibacter phosphatis. 

Accumulibacter constantly adapts its global physiological response across biphasic 

cycles of feast and famine conditions by simultaneously cycling multiple 

intracellular biopolymers. Storage polymer cycling ultimately allows Accumulibacter 

to sequester carbon under anaerobic conditions for use in subsequent aerobic 

conditions, resulting in its numerically and functionally significant abundance in the 

EBPR process. Recent investigations have suggested that Accumulibacter clades 

are niche-specific and their differences could offer a competitive advantage for 

specific clades in a mixed community, depending on the operating conditions. 

However, no study has shown differences in transcriptional profiles amongst two or 

more Accumulibacter clades, and never before in the clade IA strain. Here we use 

comparative metatranscriptomics to characterize the molecular response of two 

co-existing Accumulibacter clades exposed to the same environmental stimuli. A 

combination of metagenomic and RNA sequencing was used to identify 

differentially expressed genes between Accumulibacter clade IA and IIC across the 

EBPR cycle. Our study shows that Accumulibacter's inter-clade differentiation may 

have important implications for process performance. 
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Main 

Activated sludge wastewater treatment processes are ubiquitous for the removal of 

organic matter and nutrients from municipal and industrial wastewater. These 

systems employ complex microbial communities to efficiently remediate 

wastewater streams prior to being discharged into the environment. When 

phosphorus removal is the desired outcome of activated sludge wastewater 

treatment, Enhanced Biological Phosphorus Removal (EBPR) is implemented by 

selectively enriching Polyphosphate Accumulating Organisms (PAO) in alternating 

anaerobic and aerobic conditions 4,70,71. These alternating conditions create feast-

famine cycles that seem to promote biopolymer cycling for subsequent utilization, 

probably associated to a stress-response mechanism. Under anaerobic conditions, 

PAOs take up volatile fatty acids (VFAs) and convert them into 

polyhydroxyalkanoates (PHA). PHA production requires energy (ATP) and reducing 

power. Current metabolic models assume that ATP is supplied by polyphosphate 

degradation and, to a lesser degree, glycogen degradation 5,70,72–74. Reducing power 

is provided by glycogen degradation and the TCA cycle. In the aerobic phase, when 

oxygen is available for respiration, VFAs are not present in the medium for other 

species and the PHA reserves of PAOs ensure their dominance in the microbial 

ecosystem. The restoration of polyphosphate reserves via ATP, depletes the water 

of ortho-Phosphate, thus achieving treatment goals 4,5.  

In most EBPR processes, the dominant PAO is a member of the Betaproteobacteria 

in the Rhodocyclus group, named Candidatus Accumulibacter phosphatis 70,75. 
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Accumulibacter is subdivided into two main types (I and II). These types may be 

further subdivided into several clades which demonstratively have different 

ecotypes and thus inhabit different niches within the EBPR ecosystems 8,10–12. 

Several researchers have investigated kinetics and substrate specificity of 

Accumulibacter clades, which appear to have ecologically distinct characteristics. 

Preliminary research indicates that Accumulibacter clade IA has higher acetate 

uptake rates and higher phosphate release rates, and that this clade can reduce 

nitrate while Accumulibacter clade IIA cannot 12,76. It has also been shown that 

Accumulibacter Type II is able to switch to partial glycogen degradation more 

quickly than Type I, thus enabling Type II cells to fuel VFA uptake when 

polyphosphate (poly-P) becomes limiting 77. Welles et al. demonstrated that the two 

Accumulibacter clades may use different metabolic pathways for anaerobic 

conversions, with phosphate availability being a key factor affecting their 

competition and thus influencing the anaerobic stoichiometry 78. Specifically, VFA 

uptake rates for Accumulibacter type I are greater than of type II when the 

concentration of polyphosphate in the bulk liquid is high. The opposite occurs when 

polyphosphate concentration is low. This seems to be due to differences in the two 

clades’ ability to shift between a polyphosphate-accumulating and a glycogen-

accumulating metabolism. These results suggest that Accumulibacter clades are 

niche-specific and their differences could offer a competitive advantage for specific 

clades in a mixed community, depending on the operating conditions. This inter-

clade differentiation may have important implications for process performance. 
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New bioinformatics tools have enabled researchers to search for explanations to 

population abundance and bioreactor performance variability at the molecular level 

55. For instance, Flowers et al. compared the gene content between strains of 

Accumulibacter Clades IA and IIA enriched in a lab-scale bioreactor 15. Although 

core genome-level differences were not detected between the two clades, 

Accumulibacter Clade IIA had the potential to fix carbon and nitrogen and contained 

an overrepresentation of a protein complex which may allow for it to operate either 

a reductive or complete TCA cycle anaerobically 15. Another comparative genomic 

analysis revealed a substantial number of clade-specific genes, where the main 

differences across those clades were the type of nitrate reductase encoded and the 

capacity to perform subsequent steps in denitrification 25. Similarly, the advent of 

next-generation sequencing has enabled numerous transcriptional investigations 

focused on various aspects of Accumulibacter metabolism 55,79–81. A time series 

metatranscriptome generated from enrichment cultures of Accumulibacter clade IIA 

was used to gain insight into anaerobic/aerobic metabolism and regulatory 

mechanisms within an EBPR cycle 44. Co-expressed gene clusters were identified, 

displaying ecologically relevant trends consistent with batch cycle phases. Some of 

the debatable features of Accumulibacter’s anaerobic operation were confirmed 

under these approaches, alleviating most of the questions that wastewater 

researchers have explored over the past two decades. However, due to the 

phenotypic differences discussed above, a characterization of Accumulibacter’s 

immediate response to the shifts in oxygen availability, at the lineage level, remains 

to be discovered. Likewise, no study has shown differences in transcriptional 
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profiles amongst two or more Accumulibacter clades, and never before in the clade 

IA strain. Here, we use comparative metatranscriptomics to characterize the 

molecular response of two co-existing Accumulibacter clades, enriched in a lab-

scale bioreactor performing P-removal. A combination of metagenomic and RNA 

sequencing was used to identify differentially expressed genes between 

Accumulibacter clade IA and IIC across the EBPR cycle.  
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Methods 

3.1 Bioreactor operation 

A laboratory-scale sequence batch reactor (SBR) was seeded with activated sludge 

from the Madison Metropolitan Sewerage District (Madison WI, USA) during August 

2015, and the enrichment was operated as described by Garcia-Martin et al.3. The 

bioreactor community was enriched in the genus Accumulibacter, which typically 

constituted more than 80% of the total bacterial cells in the reactor, as measured 

using Fluorescence in situ Hybridization (data not shown). The biphasic feast-

famine cycle of the SBR is depicted in Supplementary Figure 1, as the average 

profile of the reactor during two consecutive years of operation. The SBR was 

operated with the established biphasic feast-famine conditions: a 6 h cycle 

consisted of the anaerobic phase, 110 min; aerobic, 180 min; settle, 30 min; draw 

and feed with an acetate-containing synthetic wastewater feed solution, 40 min. A 

reactor hydraulic residence time (HRT) of 12 h was maintained by withdrawing 50% 

of the reactor contents after the settling phase, then filling the reactor with fresh 

nutrient feed; a mean Solids Retention Time (SRT) of 4 d was maintained by 

manually withdrawing 25% of the mixed reactor contents each day immediately 

prior to a settling phase. 

3.2 Experimental design 

Samples for gene expression analyses were collected at different time points during 

typical transitions across a single cycle, following the same sampling strategy 
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followed by Oyserman et al. 44: (1) Anaerobic, no carbon contact, (2) Anaerobic, 

early carbon contact, (3) Anaerobic, late carbon contact, (4) Early aerobic, high 

phosphorus, (5) Mid-aerobic, (6) Late aerobic, low phosphorus. These samples 

were flash-frozen on liquid nitrogen immediately after centrifuging and discarding 

the supernatant. Standard measures of phosphorus and carbon dynamics were 

performed at the same times. 

3.3 DNA and RNA extractions 

Samples were subject to TRIzol-based RNA extraction (Thermo Fisher Scientific, 

Waltham, MA) followed by phenol-chloroform separation and RNA precipitation. 

RNA was purified following an on-column DNAse digestion using the RNase-Free 

DNase Set (Qiagen, Venlo, Netherlands) and cleaned up with the RNeasy Mini Kit 

(Qiagen, Venlo, Netherlands). A phenol-chloroform bead-beating extraction 

method was performed to obtain total genomic DNA from the biomass in 

preparation for shotgun metagenomic sequencing (details in section 2.1). 

3.4 Accumulibacter clades quantification 

To determine the relative proportions of the enriched Accumulibacter clades within 

the bioreactor microbial community, we used quantitative Polymerase Chain 

Reaction (qPCR) using clade-specific primers targeting the polyphosphate kinase 

(ppk1) gene as described Camejo et al. 45.  



 
62 

3.5 Library preparation and DNA sequencing 

Metagenomic sequencing of the SBR was performed in collaboration with the UW-

Biotechnology Center (three samples per Illumina HiSeq lane). Briefly, microbial 

DNA was size-selected by targeting 550 bp long products. The products were 

treated with end-repair, A-tailing, and ligation of Illumina compatible adapters (IDT, 

Inc) using the KAPA-Illumina library creation kit (KAPA Biosystems). The libraries 

were quantified using KAPA Biosystem’s next-generation sequencing library qPCR 

kit and run on a Roche Light Cycler 480 real-time PCR instrument. The quantified 

libraries were then prepared for sequencing on the Illumina HiSeq sequencing 

platform utilizing a TruSeq paired-end cluster kit, v4, and Illumina’s cBot instrument 

to generate a clustered flow cell for sequencing. Sequencing of the flow cell was 

performed on the Illumina HiSeq2500 sequencer using TruSeq SBS sequencing kits, 

following a 2x150 indexed run recipe. Raw data for this study consisted of 219.4 

million 300-bp Illumina HiSeq reads with about 3.9 Gpb per sample (Table 1 – 

supplementary material). 

3.6 Construction of Prokaryotic Illumina RNA Libraries 

Total RNA submitted to the University of Wisconsin-Madison Biotechnology Center 

was verified for purity and integrity using a NanoDrop 2000 Spectrophotometer and 

an Agilent 2100 BioAnalyzer, respectively.  RNA-Seq paired end libraries were 

prepared using the TruSeq RNA Library Prep Kit v2 (Illumina, San Diego, CA). Each 

sample was processed for ribosomal depletion, using the Ribo-Zero™ rRNA 

Removal kit (Bacteria). mRNA was purified from total RNA using paramagnetic 
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beads (Agencourt RNAClean XP Beads, Beckman Coulter Inc., Brea, CA) and 

fragmented by heating in the presence of a divalent cation. The fragmented RNA 

was then converted to cDNA with reverse transcriptase using SuperScript II Reverse 

Transcriptase (Invitrogen, Carlsbad, California, USA) with random hexamer priming 

and the resultant double stranded cDNA was purified. cDNA ends were repaired, 

adenylated at the 3’ ends, and then ligated to Illumina adapter sequences. Quality 

and quantity of the DNA were assessed using an Agilent DNA 1000 series chip assay 

and Thermo Fisher Qubit dsDNA HS Assay Kit.  Libraries were diluted to 2nM, 

pooled in an equimolar ratio, and sequenced on an Illumina HiSeq 2500, using a 

single lane of paired-end, 100 bp sequencing, and v2 Rapid SBS chemistry. FASTQ 

files were generated using Casava 1.8.2. 

3.7 Raw read processing and de novo assembly of metagenomic reads 

Illumina unmerged reads were quality filtered and trimmed using the Sickle software 

v1.33 82. Reads were merged with FLASH v1.0.3 22 83, with a mismatch value of  

≤0.25 and a minimum of ten overlapping bases from paired sequences, resulting in 

merged read lengths of 150 to 290 bp. FASTQ files were then converted to FASTA 

format using the Seqtk software v1.0 84. Metagenomic reads were then co-

assembled using the Velvet assembler 47 with a k-mer size of 65 bp, a minimum 

contig length of 200 bp, and a paired-end insert size of 300 bp. Metavelvet 85 was 

used to improve the assembly generated by Velvet. 

Genome binning from the metagenomic assembly was performed using Maxbin 49. 

Genome completeness and redundancy was estimated was estimated using 
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CheckM 50. Contigs were scaffolded using Medusa 86, manually inspected for short 

contigs removal and decontaminated using the JGI tool Prodege 52 and Anvi’o 87. 

Further scaffolding was performed on the MAGs using Nanopore long-reads and 

the LINKS algorithm 88. Gapcloser was used for additional gap filling. 

3.8 Genome annotation and metabolic reconstruction 

Metabolic reconstruction of the recovered draft genomes was performed using the 

JGI pipeline 89. Annotated genomes were then used to reconstruct the metabolic 

network of each organism using Pathway Tools 90 and the MetaCyc database 91. 

Pathway/Genome Databases were created for each genome, where pathway 

inference was based on a set of rules used by the Pathway Tools prediction 

algorithm Pathologic, including the presence of all key reactions and the 

completeness of the reconstructed pathway. All inferred pathways were then 

manually curated to verify predictions. 

3.9 Identification of orthologous genes  

We used reciprocal best BLAST hits 92 to identify a set of core genes representing 

the Accumulibacter pangenome. Sequence information for Accumulibacter spp. IA-

UW3 and IIC-UW6 were based on the Flowers et al. 15 and our assemblies, 

respectively. In the case of multiple gene copies matching to a single ortholog, we 

used the one with the highest percent identity, resulting in 1,294 one-to-one 

ortholog pairs. 
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3.10 Definition of functional gene sets 

Functional KEGG categories were downloaded from 

https://www.genome.jp/kegg/ko.html. Assignment of genes from Accumulibacter to 

KO terms was automatically performed by KEGG. We developed an in-house R 

script to extend the KO terms to include parent levels (category, sub-category, and 

ontology). All subcategories that contained at least ten ontologies were considered 

for functional analyses. 

3.11 Metatranscriptomics analysis 

RNA reads were quality filtered and trimmed with Sickle and forward and reverse 

reads were merged using FLASH (v. 1.2.11) 83. Ribosomal RNA sequences were 

removed with SortMeRNA using six built in databases for bacterial, archaeal and 

eukaryotic small and large subunits 93. Resulting non-rRNA reads were mapped to 

all assembled metagenomic contigs using BBSplit, a tool for mapping to multiple 

references simultaneously, from BBMap (v35.92) 94, with minimal identity of  95%. 

Read counts were calculated for each predicted ORF using htseq-count v0.6.0 and 

normalized by sequencing depth and expressed as transcript per million (TPM) 

values using a custom R script 81. 

3.12 Differential gene expression calculations 

Identification of significant changes in transcript abundance was carried out using 

the RNAentropy software 95. This program identifies genes or transcripts with a 

significant variation of expression across all conditions studied, by performing a 
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statistical tests that assess if and how much the expression of a gene across any 

number of different samples diverges from a given background.  
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Results  

Metagenomic sequencing and binning of Accumulibacter genomes 

Metagenomic sequencing of SBR biomass was performed in collaboration with the 

UW-Biotechnology Center. We assembled four highly complete draft genomes 

initially classified in the Rhodocyclaceae family based on phylogenetic analyses of 

specific marker genes 8. The estimated completeness and contamination of these 

genomes (Table 1) suggest that three correspond to high quality metagenome-

assembled genomes (MAGs), and one to a medium quality MAG 96. Neighbor-joining 

phylogenetic tree analysis of the ppk1 gene revealed that these genomes belonged 

to Accumulibacter clades IA, IIA, IIC, and IIF (data not shown). Average Nucleotide 

Identity (ANI) comparisons between these clades and a collection of existing 

Accumulibacter genomes revealed above 90% ANI and >68% of aligned fraction 

with other Accumulibacter genomes, confirming species identification within the 

Accumulibacter lineage (Supplementary Figure S2). Remarkably, MAGs IA-UW4 and 

IIA-UW5 assembled in this study had a high ANI of 99.3% and 99.8%, respectively 

(alignment fractions of 0.768 0.933, respectively), with genomes of these clades 

assembled ten years ago from the same source of the reactors’ inoculum, 

suggesting little temporal divergence of their genotypes. 

All four MAGs were submitted to the Joint Genome Institute for automatic Open 

Reading Frame (ORF) prediction and gene annotation using their standard pipelines 

89 . We were unable to obtain a high-quality draft genome for Accumulibacter clade 

IA-UW4 (85.01% completeness and 3.41% redundancy), possibly due to a high 
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strain heterogeneity within such clade. As a result, we used the Accumulibacter IA-

UW3 genome 15 as a reference for our analysis, since it shared the highest ANI 

(99.67%) with the recovered MAG. Metabolic pathways were then curated for each 

of the MAGs, using Pathways tools 90 and compared against JGI’s predictions. 

Metatranscriptomics profiling of Accumulibacter clades under classical EBPR 

conditions 

RNA sequencing from seven samples extracted over the course of the EBPR cycle 

yielded a total of 186.1 million reads, after quality filtering (Supplementary Table 

S1). Approximately, 55% of those reads corresponded to mRNA and 8.6% and 

27.6% of them mapped to the Accumulibacter clade IA-UW3 and IIC-UW6 reference 

genomes, respectively (Supplementary Table S3). This proportion of alignment 

indicates that, overall, Accumulibacter accounts for a considerable amount of the 

transcriptomic activity in the chemostat. The other two Accumulibacter strains 

present in the reactor (Accumulibacter IIA-UW5 and Accumulibacter IIF-UW7) only 

retrieved 1.02% of the total mRNA reads, and therefore, were not included in the 

following analysis. 

Identification of genes showing a significant variation of expression within the seven 

RNA-Seq samples was done using entropy calculations 95. Transcripts showing a 

significant variation (local p-value > 0.01) across all time points studied were 

considered to be dynamic, or differentially expressed (DE). The expression patterns 

of each gene were stored in a trinary logic table, where each gene was assigned a 

-1, 0, or 1 for each time point, where -1 corresponds to gene downregulation, 0 to 
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basal expression, and 1 to upregulation. This data was subsequently used to 

compare transcription between both genomes.  

To compare broad patterns in DE, we performed a reciprocal BLASTP analysis of 

genomes Accumulibacter IA-UW3 and IIC-UW6. We identified 2,376 orthologous 

genes present in both genomes (core genome), and 1,477 and 2,522 genes unique 

to Accumulibacter IA-UW3 and IIC-UW6, respectively (flexible genome). Combining 

this orthologous analysis with  transcriptional data, we constructed a double-

layered Venn diagram depicting Accumulibacter’s pan-transcriptome to evidence 

unique and common transcriptomic traits associated to the same condition (Figure 

1 and Supplementary Table S2). Several categories were identified using this 

strategy:  

• Core-DE: Set of core orthologous genes that were differentially expressed in 

both Accumulibacter genomes. 

• Core, DE, one Accumulibacter Clade only: Set of core orthologous genes 

that were differentially expressed in only one of the two Accumulibacter 

genomes. 

• Flexible genome, DE: Genes unique to one of the two genomes that were 

differentially expressed. 

We found an overrepresentation of core genes that were differentially expressed 

only in Accumulibacter Clade IA (46%) versus IIC (33.8%). The latter’s flexible 

genome accounted for 25.6% of the differentially expressed genes, and the former 

for only 17%; which might be the results of both genome streamlining and niche-

specialization.  
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To determine functional differences in Accumulibacter’s gene expression, 

orthologous genes were classified using the KEGG database (Figure 2). Using this 

approach, in Accumulibacter Clade IA-UWC, we identified an overrepresentation of 

DE genes corresponding to the pathways Oxidative phosphorylation 

(PATH:ko00190), Glyoxylate and dicarboxylate metabolism (PATH:ko00630), 

Glycolysis / Gluconeogenesis (PATH:ko00010), Pyruvate metabolism 

(PATH:ko00620), Starch and sucrose metabolism (PATH:ko00500), Transcription 

factors (BR:ko03000), Protein folding and associated processing and Folate 

biosynthesis (PATH:ko00790). Most of these pathways belong to carbohydrate 

metabolism, indicating a clear preference of this clade towards substrate 

conversion and utilization. On the other hand, the majority of Accumulibacter Clade 

IIC-UW6 DE genes, were classified as part of: Purine metabolism (PATH:Ko00230), 

Ribosome biogenesis (BR:ko03009), Energy metabolism, two-component system 

(PATH:ko02020), Porphyrin and chlorophyll metabolism (PATH:ko00860), Protein 

kinases (BR:ko01001) and Amino sugar and nucleotide sugar metabolism 

(PATH:ko00520).  

Acetate conversion/transport and PHB synthesis 

In Accumulibacter, acetate is first taken up by active transport and activated to 

acetyl-CoA by low and high-affinity routes. Two acetyl-CoA molecules are then 

condensed into acetoacetyl-CoA and subsequently reduced to poly-"-

hydroxybutyrate 97,98. We examined the expression patterns of key genes involved 

in PHB synthesis: phosphate acetyltransferase (pta), acetate kinase (ack), and 
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acetyl coenzyme A synthetase (acs). We also examined the polyhydroxyalkanoate 

(pha) genes in the Accumulibacter genomes which are involved in 

polyhydroxybutyrate generation. Interestingly, both clades repressed the 

expression of the high-affinity acs gene, while favoring the low-affinity, acetyl-

phosphate producing, ack/pta route (Figure 3). These results differ with previous 

observations 81,97, where Accumulibacter clades IIA-UW1 and ICLDO exhibited 

upregulation of genes associated to both low and high-affinity routes. We attribute 

this discrepancy to their slow-feeding strategy (60 min vs. 20 minutes of acetate 

addition in Oyserman et al. 2016  and Camejo et al. 2018 studies), which might favor 

acetate assimilation via the high-affinity route when cells are scavenging for small 

amounts of environmental acetate. 

Next, in both genomes, we identified several of genes encoding PHA synthesis: 

phaA, phaB, and phaC with two, four and three paralogs, respectively. Additionally, 

we detected single copies of phaE and phaR in both Accumulibacter genomes. 

Except for one phaC copy in each genome, all phaABC genes were upregulated 

early upon acetate contact, with instant repression in the middle of the acetate 

feeding phase, potentially indicating a rapid substrate concentration-dependent 

gene activation in Accumulibacter. Notably, such repressed phaC gene followed the 

same repression pattern of a phaE gene. To understand such inconsistencies in 

transcription, we investigated the nature of all phaC genes by running a conserved 

protein domain analysis using the CDD/SPARCLE tool 99. This analysis revealed that 

these three paralogs encode two Class I and one III , enzymes with differential 

subunit composition and substrate specificity. Class III PHA synthase requires two 
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different types of subunits (phaE and phaC) and Class I is a single subunit-

containing enzyme 100. Oyserman et al.97 reported the same results for 

Accumulibacter Clade IIA-UW1. These observations are intriguing since, to date, no 

other bacterium containing two different PHA synthase classes has been identified, 

suggesting not only a redundant mechanism in Accumulibacter but also a versatile 

one. 

Anaerobic TCA operation 

In Accumulibacter IA-UW3, most TCA-related genes (except for 2-oxoglutarate 

dehydrogenase) were upregulated during early acetate contact and repressed 

before the end of the anaerobic phase. Instead, the activity of 2-oxoglutarate 

dehydrogenase was replaced by a 2-oxoglutarate:ferredoxin oxidoreductase 

(KFOR), in which expression was basal. In contrast, Accumulibacter IIC-UW6 

repressed KFOR immediately after acetate addition. In turn, the classical 2-

oxoglutarate dehydrogenase gene was early upregulated in the anaerobic phase 

and subsequently downregulated aerobically. Furthermore, from the two citrate 

synthase (cs) copies encoded by Accumulibacter IIC-UW6, one was repressed after 

acetate contact whereas the other showed no change in expression during that 

stage. This may be due to a high concentration of reducing equivalents in the form 

of NAD(P)H that inhibit cs to ensure the availability of acetyl-CoA for phaB activity 

101. 

We further evaluated the activity of the glyoxylate cycle (Figure 3) and observed 

upregulation of the malate synthase and isocitrate lyase genes in Accumulibacter 
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IA-UW3 during the anaerobic phase, with subsequent aerobic repression. 

Contrastingly, we did not find any evidence of the anaerobic operation of the 

glyoxylate cycle in Accumulibacter IIC-UW6, where malate synthase was repressed, 

and isocitrate lyase did not show any differential expression across the entire cycle. 

Respiration 

To understand the response of aerobic respiration pathways to shifts in oxygen 

availability, we examined four protein complexes related to aerobic respiration: the 

respiratory chain supercomplex I-III-IV (formed by NADH dehydrogenase, 

Ubiquinol-cytochrome C reductase and low (aa3) and high (cbb3) -affinity 

cytochrome C oxidases) and complex II (Fumarate reductase / Succinate 

dehydrogenase). For both Accumulibacter genomes, respiratory complexes I and III 

were upregulated upon acetate contact during the anaerobic phase in a similar 

fashion. Complex IV, represented by the terminal oxidases aa3 and cbb3, exhibited 

distinct transcriptional profiles, where the high-affinity cytochrome oxidase was 

upregulated after acetate contact in the anaerobic phase and the aa3-type 

cytochrome oxidase was only expressed after the redox transition, suggesting that 

these two complexes might undergo transcriptional regulation based on oxygen 

availability 81.  

Similarly, two succinate dehydrogenase/fumarate reductase complexes exhibited 

divergent expression patterns when carbon or oxygen was fed in the chemostat. 

Further analysis of the conserved domains of these gene clusters 99, revealed that 

they corresponded to the QFR (quinol:fumarate reductase) and SQR 
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(succinate:quinone reductase) families. QFR is known to participate in anaerobic 

respiration with fumarate as a terminal electron acceptor, and SQR is involved in 

aerobic metabolism as part of the TCA cycle and the aerobic chain. Surprisingly, 

SQR was upregulated during anaerobic acetate contact, suggesting anaerobic TCA 

activity, whereas QFR was repressed during the later anaerobic stage. We further 

explored a previous Accumulibacter UW1 transcriptomics dataset 97, in which we 

observed the same trends for SQR and QFR activity, i.e., anaerobic repression of 

the fumarate reductase complex and upregulation of the succinate dehydrogenase 

upon anaerobic acetate contact. It has been hypothesized that electrons from 

FADH2 generated by SQR are transferred to NAD(P) by the novel cytochrome b/b6 

(cyb/b6), which consists on a fusion of one gene with a cytochrome b/b6 domain 

and another gene with soluble ferredoxin, NAD(P)- and flavin-binding domains 

15,102,103. We identified paralogs of such genes in both Accumulibacter genomes; 

however, only the one found in Accumulibacter clade IA was anaerobically 

expressed. In fact, upon anaerobic acetate contact, the copy encoded by 

Accumulibacter clade IIC was repressed. Interestingly, we did not find a flavin-

binding domain in this gene, as opposed to Accumulibacter IA, suggesting an 

alternative to a full anaerobic TCA cycle in this genome. 

Denitrification capabilities  

We scrutinized the potential of both genomes to fully at the genome and 

transcriptomic levels. Results of differential expression throughout the cycle are 

depicted in Figure 4. In agreement with previous observations 25 for other clade IIC 
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genomes, Accumulibacter IIC-UW6 encodes a respiratory nitrate reductase (nar), a 

trait that could potentially enable its dominance under anoxic conditions. Our 

results indicate of the narGHIJ operon during the anaerobic phase. Conversely, a 

nitrite reductase (nirS) gene was also present in the genome and upregulated during 

early anaerobic . On the other hand, Accumulibacter IA-UW3 does encode for most 

of the genes required for anaerobic respiration when nitrate is available 15,25,81. A 

periplasmic nitrate reductase napADFGH operon, a ferredoxin-type napGH operon 

and a cytochrome c-type napC gene were all upregulated upon anaerobic acetate 

contact, probably due to transcriptional regulation as nitrate was not present during 

that phase. It is noteworthy to mention that the gene napF was not previously 

identified in the Accumulibacter IA-UW3 genome15, and we provide evidence of its 

presence, probably due to updated gene annotation tools. Likewise, one copy of a 

nitrite reductase (nirS) and nitrous oxide reductase (nosZ) genes were upregulated 

anaerobically when carbon was available. Camejo, et al. reported the absence of a 

nitric oxide reductase, q-NOR-like (norZ) gene in this genome81, suggesting that 

either Accumulibacter IA-UW3 encodes for an alternative route to nitric oxide 

reduction or an incomplete denitrification pathway. Instead, we identified cNOR 

(cytochrome c dependent nitric oxide reductase) subunits D and Q present in this 

genome and upregulated during the late aerobic phase.   
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Discussion 

Using a combination of metagenomics and metatranscriptomics, we retrieved 

several high-quality Accumulibacter genomes from a laboratory-scale EBPR 

bioreactor, accounting for 37% of the total mRNA reads in the chemostat 

(Supplementary table S3). Our work presents the first study to understand both the 

genomic and transcriptomics differences of two simultaneously-enriched 

Accumulibacter strains (spp. IA and IIC), which are thought to occupy different 

niches in the activated sludge process 12,81,98. Remarkably, the Accumulibacter clade 

IA MAG recovered from our chemostat was almost identical to the Accumulibacter 

IA-UW3 genome published by Flowers et al.15, suggesting that its ecotype can 

indeed be maintained throughout space and time. 

Our analysis framework included normalization of transcripts per million data using 

htseq and the identification of differentially regulated genes using a statistical 

significance test based on RNentropy calculations. The amplitude of changes in 

mRNA levels was disregarded, largely because such changes are subject to the 

magnitude of the perturbations both in intensity and duration. We discretized the 

regulation of differentially expressed genes into three levels; upregulated (+1), 

downregulated (-1) and constitutively expressed (0), to avoid biases by the 

contribution of individual experiments. We interpret an increase in the mRNA levels 

to imply the operation of a related biochemical pathway at that time, acknowledging 

that genes can be up-or down-regulated in response to specific environmental 

signals, making a protein or pathway available for a subsequent phase. We also 
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acknowledge that anaerobic upregulation does not necessarily mean that the 

protein is essential for anaerobic EBPR activity. However, we follow the most 

parsimonious interpretation, i.e., expression causes activity in that phase 56.  

Further examination of the Accumulibacter transcriptome shows that a large 

number of genes were differentially expressed under the regular EBPR conditions. 

We identified 1,294 genes that exhibit consistent differential regulation in both 

Accumulibacter strains, and we designate these genes collectively as the core 

transcriptional response (CRT) in Accumulibacter. However, the only group of 

genes that had an statistically significant correlation at the CRT level corresponded 

to those belonging to KEGG orthologies bacterial motility proteins and oxidative 

phosphorylation (Pearson product-moment correlation coefficient at p>0.1). We 

found most of these orthologous grouped in operons across both Accumulibacter 

genomes (data not shown), which explains a regulatory response to the conditions 

studied.  

Clade-specific responses to anaerobic carbon uptake 

A central feature of Accumulibacter physiology is the rapid uptake and 

sequestration of acetate in the form of PHA. Past studies have demonstrated that 

NAD(P)H production via glycogen degradation is not sufficient to explain the 

observed levels of PHA in acetate-fed systems 70. It is currently accepted that 

different versions of the TCA cycle operate in the anaerobic phase to provide the 

extra reducing power needed to balance PHA storage and PAO survival across 

variable redox zones in the EBPR cycle 10,102. However, it is still unclear which 
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conditions trigger different modes of TCA operation 70,103–105. Therefore, we 

investigated all genes related to the proposed anaerobic TCA types of operation, 

namely: the full, partial (bypass through the glyoxylate shunt) and split modes 

(right, or the oxidative arm of the TCA cycle running forward and left, or the 

reductive arm operating backward through the succinate–propionate pathway). Our 

results show that, although these two genomes encode for all genes related to a 

full anaerobic TCA operation, they have unique expression patterns, which seem to 

be regulated upon different environmental and physiological cues. For instance, (1) 

the upregulation of the full glyoxylate cycle only in Accumulibacter Clade IA-UW3, 

(2) clade-specific regulation of KFOR vs 2-oxoglutarate dehydrogenase, and (3) 

contrasting regulation of the two citrate synthase genes, explain inconsistencies 

amongst early investigations. Therefore, the existence of multiple Accumulibacter 

clades in those studies could provide insight on the debate concerning this 

intriguing aspect of Accumulibacter’s physiology. 

Nitrogen metabolism is also inferred to drive ecological differences between 

Accumulibacter clades  and there is an ongoing debate to determine to which extent 

members of the Accumulibacter lineage can transform nitrate to nitrogen gas 

12,25,106,107. Recent genomic investigations revealed full denitrification capabilities of 

one member of the Accumulibacter lineage acclimated to micro-aerobic conditions 

(Accumulibacter Clade IC-UWLDO 81), and here we present additional evidence for 

this phenotype in another Accumulibacter clade. Our results reveal that the anoxic 

respiration machinery is activated during the anaerobic phase, implying that 

Accumulibacter IA-UW3 is fully prepared to use electron acceptors different than 
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oxygen likely due to the transcriptional factors that control these pathways, which 

has been previously reported 81. 

Importance of substrate concentration during polymer storage 

We also paid close attention to all genes related to acetate conversion and its 

further transformation into PHB. Many authors have overlooked at the specific 

conditions which activate the low- versus high-affinity acetate uptake routes, which 

might have repercussions in further molecule signaling and regulation via Acetyl-P 

production 108. Acetyl-P is known to act as a global signal in E. coli, and it is 

considered as an ideal global molecule due to its relatively small size, both low 

energy-cost and half-life and capability of effecting the coordinated regulation of 

diverse cellular processes 109. It has been also shown that post-translational control 

by acetyl phosphate regulates PHB synthase 110, the last step in PHB synthesis in 

Accumulibacter. Thus, we propose a simple mechanism (Figure 5) that can help 

readers understand the consequences of acetate availability and its concentration 

with the goal of better process design principles. 

Concluding remarks 

Transcriptomics experiments can reveal large-scale differences in the immediate 

response of closely-related microorganisms to equal environmental conditions. 

However, the impact of such variations in gene expression on the phenotypes of 

Accumulibacter is not yet understood. A bottom-up analysis of changes in fine-
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tuned cellular processes and coordination among transcriptional programs in 

Accumulibacter is of great importance to help to solve this challenge. 
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Figures Descriptions 

Figure 1 | Accumulibacter Pan-transcriptome in response to classic feast and 

famine conditions.  

Double-layered Venn diagram depicting orthology and differential gene expression 

(DE) for both Accumulibacter clades enriched under this study. In red, 

Accumulibacter Clade IA-UW3 features. In blue, Accumulibacter Clade IIC-UW6 

features. “Core” genes represent those that share orthology, based on reciprocal 

best BLAST hits. All the non-core genes are described as “Flexible” genes. See 

results for more details.  

Figure 2 | Functional differences of gene expression at the clade level. 

Accumulibacter-core genes and their expression patterns based on functional 

KEGG classification. We selected orthologous genes that had functional categories 

associated to them and compared their gene expression profile (i.e. whether those 

were differentially expressed) and average correlation score across each functional 

group (Pearson product correlation at p>0.1). 

Figure 3 | Gene expression dynamics across the EBPR cycle. 

Selection of central-carbon metabolism related genes and their expression pattern 

over time. Gene expression was normalized based on entropy patterns and depicted 

as downregulated (blue), constitutively expressed (light and dark gray), and 

upregulated (green). Genes present in a single clade (flexible) are shaded in white. 

Figure 4 | Presence and expression of denitrification genes across 

Accumulibacter Clades IA-UW3 and IIC-UW6. 

Colored arrows denote the phase at which differential gene expression was 

observed for all enzyme subunits in the cycle. 

Figure 5 | Proposed mode of operation for anaerobic acetate uptake and 

conversion to PHB in Accumulibacter. 
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Genes colored in blue represent upregulation, and those in red were downregulated 

during anaerobic acetate addition. Dashed arrows denote activation (>) or 

repression (|) of an specific gene, upon metabolites’ concentration. 



84 

Figures 

Figure 1 



85 

Figure 2



Figure 3 

86



87 

Figure 4 
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Tables 

Table 1 | Metagenome-assembled genomes (MAGs) of Accumulibacter 
obtained from lab-scale reactors in 2016. 

Bin Id Completeness 
(%) 

Redundancy 
(%) 

Genome 
size (bp) 

# 
scaffolds # contigs N50 

(scaffolds) 
N50 

(contigs) 

CAP IA-UW4 84.98 4.25 4,291,275 150 441 2,834,893 27,333 

CAP IIA-UW5 98.99 5.24 4,882,958 1 68 4,882,958 124,608 

CAP IIC-UW6 98.57 2.46 5,179,050 1 1 5,179,050 5,178,808 

CAP IIF-UW7 93.98 0.66 4,901,359 377 1,067 31,147 9,538 
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Supplementary Materials 

Supplementary Figures 

 

Supplementary Figure S1 | Time-series EBPR data. 

Averaged data of P (red) and acetate (blue) profiles of Accumulibacter-enriched 
reactors from its seeding in 2015 to the end of 2016, normalized by VSS, with 
error bars. White and gray shading represents anaerobic and aerobic phases, 

respectively. 
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Supplementary Figure S2 | ANI vs Percent Alingment of several 

Accumulibacter genomes. 

Heatmap showing the average nucleotide identity (lower diagonal) and alignment 
fraction (upper diagonal) for a collection of Accumulibacter genomes with known 

phylogeny and the ones obtained in this study (UW4-UW7). 
  



 92 

Supplementary Tables 

Supplementary Table S1 | Metatranscriptomics reads analysis. 

  FASTQ FASTA - post QC 

Sample time Phase in cycle Reads Reads rRNA mRNA FASTQ 
norm 

FASTA 
norm 

10:45:00 AM Early anaerobic 25,667,164 18,193,544 8,039,709 10,153,835 1.480 1.551 

11:16:00 AM Ana. acetate contact 32,437,715 23,015,194 10,430,238 12,584,956 1.171 1.252 

11:55:00 AM Ana. acetate contact 35,549,288 24,565,614 10,939,385 13,626,229 1.069 1.156 

12:40:00 PM Aerobic 37,988,595 25,499,475 9,748,766 15,750,709 1.000 1.000 

1:15:00 PM Aerobic 31,364,122 21,774,407 10,500,524 11,273,883 1.211 1.397 

1:55:00 PM Aerobic 28,344,123 20,259,579 8,372,740 11,886,839 1.340 1.325 

2:55:00 PM Aerobic 28,016,344 18,383,083 9,853,738 8,529,345 1.356 1.847 

 
 
Supplementary Table S2 | Accumulibacter Pan-transcriptome information. 

 Total 
genes 

Flexible, 
non-DE 

Flexible, 
DE 

Core, clade-
specific DE 

Core, other 
clade DE 

Core, 
DE 

Core, non-
DE 

Accumulibacter 
IA-UW3 3853 21.4% 17.0% 12.4% 9.4% 33.6% 6.3% 

Accumulibacter 
IIC-UW6 4898 25.8% 25.6% 7.4% 9.8% 26.4% 4.9% 
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Supplementary Table S3 | mRNA reads mapped to all four Accumulibacter clades present in the chemostat. 
Phase in cycle / 
Accumulibacter 

clade  

Early 
anaerobic 

Ana. acetate 
contact t1 

Ana. acetate 
contact t2 Aerobic t1 Aerobic t2 Aerobic t3 Aerobic  t4 ∑ mRNA reads % 

mRNA 

IA-UW3 955,920 1,455,359 1,496,778 2,057,294 1,210,289 1,014,083 633,204 8,822,927 8.60% 
IIA-UW5 63,551 99,767 96,019 103,715 68,022 72,487 54,058 557,619 0.58% 

IIC-UW6 3,254,129 3,670,084 4,147,908 4,595,586 2,976,412 4,329,626 2,272,117 25,245,862 27.57% 

IIF-UW7 22,762 69,999 91,649 99,793 43,705 36,854 20,951 385,713 0.44% 
∑ 

Accumulibacter 
reads 

37.20% 

Supplementary Data Table S4 (next 6 pages) | Gene expression dynamics analyzed under this study. 

Genes and their expression pattern over time. Gene expression was normalized based on entropy patterns and 

depicted as downregulated (-1), constitutively expressed (0), and upregulated (1). N/A genes did not present 

orthologs in one of the two genomes analyzed. 
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Genes/Pathways
Aerobic Respiration I (cytochrome C) Acc type IA UW3 (Ga0131788) Acc type IIC UW6 (Ga0248264)

Succinate to fumarate
Fumarate Reductase / Succinate dehydrogenase Locus tag Locus tag
Subunits Ga0131788_111667 succinate dehydrogenase subunit A 1 0 -1 0 0 1 1 Ga0248264_111802 succinate dehydrogenase subunit A 1 -1 -1 0 0 1 1

Ga0131788_111668 fumarate reductase iron-sulfur subunit 1 0 0 1 -1 0 -1 Ga0248264_111803 succinate dehydrogenase subunit B 1 0 0 0 -1 0 0
Ga0131788_111669 fumarate reductase subunit C 0 0 -1 0 -1 1 1 Ga0248264_111987 fumarate reductase subunit C 1 1 -1 0 -1 1 0
Ga0131788_111670 succinate dehydrogenase subunit D 1 -1 -1 1 -1 0 0 Ga0248264_111986 succinate dehydrogenase subunit D 0 1 -1 0 0 0 0
Ga0131788_12494 succinate dehydrogenase subunit B -1 1 1 1 -1 -1 -1 Ga0248264_112031 succinate dehydrogenase subunit B -1 -1 -1 1 0 1 1
Ga0131788_12495 succinate dehydrogenase subunit A -1 1 1 1 -1 -1 -1 Ga0248264_112032 succinate dehydrogenase subunit A -1 1 1 1 -1 -1 -1
Ga0131788_12496 succinate dehydrogenase subunit D 0 1 1 1 -1 -1 -1 Ga0248264_112033 succinate dehydrogenase subunit D -1 1 1 1 -1 -1 -1
Ga0131788_12497 succinate dehydrogenase subunit C -1 1 1 0 -1 -1 -1 Ga0248264_112034 succinate dehydrogenase subunit C 0 1 0 1 -1 -1 -1

NADH to NAD
NADH dehydrogenase
Subunits Ga0131788_11347 NADH dehydrogenase subunit N -1 0 0 1 0 0 0 Ga0248264_11885 NADH dehydrogenase subunit N -1 0 0 0 0 0 0

Ga0131788_11348 NADH dehydrogenase subunit M -1 0 1 0 0 0 0 Ga0248264_11884 NADH dehydrogenase subunit M 0 0 0 0 0 0 0
Ga0131788_11349 NADH dehydrogenase subunit L -1 0 1 1 0 0 -1 Ga0248264_11883 NADH dehydrogenase subunit L 0 0 0 0 0 0 0
Ga0131788_11350 NADH dehydrogenase subunit K -1 1 1 -1 -1 0 0 Ga0248264_11882 NADH dehydrogenase subunit K -1 1 0 0 0 0 0
Ga0131788_11351 NADH dehydrogenase subunit J -1 0 1 1 1 0 -1 Ga0248264_11881 NADH dehydrogenase subunit J 0 0 -1 0 0 0 0
Ga0131788_11352 NADH dehydrogenase subunit I 0 -1 0 1 1 0 0 Ga0248264_11880 NADH dehydrogenase subunit I -1 1 0 0 0 0 0
Ga0131788_11353 NADH dehydrogenase subunit H -1 1 1 0 0 0 -1 Ga0248264_11879 NADH dehydrogenase subunit H -1 1 1 0 -1 0 -1
Ga0131788_11354 NADH dehydrogenase subunit G -1 1 1 0 -1 -1 -1 Ga0248264_11878 NADH dehydrogenase subunit G -1 1 1 1 -1 -1 -1
Ga0131788_11355 NADH dehydrogenase subunit F -1 1 1 1 -1 -1 -1 Ga0248264_11877 NADH dehydrogenase subunit F -1 1 1 1 -1 -1 -1
Ga0131788_11356 NADH dehydrogenase subunit E -1 1 1 1 0 -1 -1 Ga0248264_11876 NADH dehydrogenase subunit E -1 0 0 1 0 0 -1
Ga0131788_11357 NADH dehydrogenase subunit D -1 1 1 1 -1 -1 -1 Ga0248264_11875 NADH dehydrogenase subunit D -1 1 1 1 -1 -1 -1
Ga0131788_11358 NADH dehydrogenase subunit C -1 1 0 1 -1 -1 -1 Ga0248264_11874 NADH dehydrogenase subunit C 0 1 0 1 -1 -1 -1
Ga0131788_11359 NADH dehydrogenase subunit B -1 1 1 1 -1 -1 -1 Ga0248264_11873 NADH dehydrogenase subunit B 1 0 -1 1 0 1 -1
Ga0131788_11360 NADH dehydrogenase subunit A -1 1 1 1 -1 -1 -1 Ga0248264_11872 NADH dehydrogenase subunit A 0 1 0 1 -1 -1 -1
Ga0131788_11501 NADH dehydrogenase subunit M 0 0 0 0 0 0 0 Ga0248264_111638 NADH dehydrogenase subunit M 0 0 0 0 0 0 0
Ga0131788_11504 NADH dehydrogenase subunit M 0 0 0 0 0 0 0 Ga0248264_111635 NADH dehydrogenase subunit M 0 0 0 0 0 0 0
Ga0131788_11505 NADH dehydrogenase subunit M 0 0 0 0 0 0 0 Ga0248264_111634 NADH dehydrogenase subunit M 1 0 0 0 -1 0 1

Cytochrome reduction
Ubiquinol-cytochrome C reductase
Subunits Ga0131788_11946 ubiquinol-cytochrome c reductase cytochrome b subunit0 1 -1 1 -1 -1 -1 Ga0248264_114009 ubiquinol-cytochrome c reductase cytochrome b subunit0 0 0 0 0 0 0

Ga0131788_11948 ubiquinol-cytochrome c reductase cytochrome c1 subunit-1 1 1 1 -1 -1 -1 Ga0248264_114008 ubiquinol-cytochrome c reductase cytochrome c1 subunit0 0 0 0 0 0 0
Ga0131788_11945 ubiquinol-cytochrome c reductase iron-sulfur subunit-1 1 -1 1 -1 -1 -1 Ga0248264_114010 ubiquinol-cytochrome c reductase iron-sulfur subunit0 1 0 0 -1 -1 0

Ga0248264_113744 ubiquinol-cytochrome c reductase iron-sulfur subunit1 0 -1 0 -1 0 0

Cytochrome oxidation
Cytochrome C oxidase, low affinity
Subunits Ga0131788_11742 cytochrome c oxidase subunit 3 1 0 -1 -1 0 1 1 Ga0248264_11569 cytochrome c oxidase subunit 3 1 -1 -1 -1 0 1 1

Ga0131788_11746 cytochrome c oxidase subunit 1 0 0 -1 1 0 1 -1 Ga0248264_11573 cytochrome c oxidase subunit 1 0 0 -1 1 0 1 0
Ga0131788_11747 cytochrome c oxidase subunit 2 0 1 -1 1 0 0 -1 Ga0248264_11574 cytochrome c oxidase subunit 2 1 -1 -1 1 1 1 -1
Ga0131788_12643 cytochrome c oxidase subunit 2 1 1 -1 -1 -1 -1 -1 N/A N/A
Ga0131788_12644 cytochrome c oxidase subunit 1 -1 1 1 -1 -1 -1 -1 Ga0248264_112711 cytochrome c oxidase subunit 1 0 0 0 -1 0 0 1

Cytochrome C oxidase, high affinity (cbb3)
Subunits Ga0131788_11786 cbb3-type cytochrome c oxidase subunit III0 0 -1 0 -1 0 1 Ga0248264_113108 mono/diheme cytochrome c family protein0 0 0 0 0 0 0

Ga0131788_111180 cbb3-type cytochrome c oxidase subunit III1 0 0 0 -1 0 0 N/A N/A
Ga0131788_112380 cytochrome c oxidase cbb3-type subunit 10 0 -1 0 0 1 0 Ga0248264_111826 cytochrome c oxidase cbb3-type subunit 10 0 -1 0 0 0 1
Ga0131788_112381 cytochrome c oxidase cbb3-type subunit 2-1 1 1 -1 -1 -1 -1 Ga0248264_111827 cytochrome c oxidase cbb3-type subunit 2-1 1 1 -1 -1 -1 -1
Ga0131788_112383 cytochrome c oxidase cbb3-type subunit 3-1 1 1 1 -1 -1 -1 Ga0248264_111829 cytochrome c oxidase cbb3-type subunit 30 0 1 1 -1 -1 0
Ga0131788_112382 cytochrome c oxidase cbb3-type subunit 4-1 1 1 0 -1 -1 -1 Ga0248264_111828 cytochrome c oxidase cbb3-type subunit 4-1 0 1 0 -1 -1 -1
Ga0131788_11947 cytochrome b/b6/petD-like protein -1 1 -1 1 0 -1 -1 Ga0248264_114009 ubiquinol-cytochrome c reductase cytochrome b subunit0 0 0 0 0 0 0

Novel cytochrome Ga0131788_12650 NAD(P)H-flavin reductase 0 1 0 0 0 0 0 Ga0248264_112717 quinol-cytochrome oxidoreductase complex cytochrome b subunit0 0 -1 -1 0 0 1
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Genes/Pathways Acc type IA UW3 (Ga0131788) Acc type IIC UW6 (Ga0248264)

Anaerobic Respiration (Glycerol-3-phosphate to 
fumarate electron transfer)

Fumarate to succinate
Fumarate reductase / succinate dehydrogenase Locus tag Locus tag
Subunits Ga0131788_111667 succinate dehydrogenase subunit A 1 0 -1 0 0 1 1 Ga0248264_111802 succinate dehydrogenase subunit A 1 -1 -1 0 0 1 1

Ga0131788_111668 fumarate reductase iron-sulfur subunit 1 0 0 1 -1 0 -1 Ga0248264_111803 succinate dehydrogenase subunit B 1 0 0 0 -1 0 0
Ga0131788_111669 fumarate reductase subunit C 0 0 -1 0 -1 1 1 Ga0248264_111987 fumarate reductase subunit C 1 1 -1 0 -1 1 0
Ga0131788_12494 succinate dehydrogenase subunit B -1 1 1 1 -1 -1 -1 Ga0248264_112031 succinate dehydrogenase subunit B -1 -1 -1 1 0 1 1
Ga0131788_12495 succinate dehydrogenase subunit A -1 1 1 1 -1 -1 -1 Ga0248264_112032 succinate dehydrogenase subunit A -1 1 1 1 -1 -1 -1

Anaerobic Respiration (Hydrogen to fumarate electron 

Menaquinol to menaquinone
Hydrogenase
Subunits: Ga0131788_13188 nickel-dependent hydrogenase 0 1 1 -1 -1 -1 -1 N/A N/A

Ga0131788_112212 hydrogenase large subunit 0 0 0 0 0 0 0 Ga0248264_112100 hydrogenase large subunit 0 0 0 0 0 0 0
Ga0131788_112215 hydrogenase small subunit 0 0 0 0 0 0 0 Ga0248264_112103 hydrogenase small subunit 0 0 0 0 0 0 0
Ga0131788_111369 NAD(P)-dependent nickel-iron dehydrogenase catalytic subunit-1 1 1 -1 -1 -1 -1 Ga0248264_113465 nickel-dependent hydrogenase 0 1 -1 1 0 -1 -1
N/A N/A Ga0248264_113521 nickel-dependent hydrogenase 1 0 0 0 0 0 0

Fumarate to succinate
Fumarate reductase / succinate dehydrogenase
Subunits: Ga0131788_111668 fumarate reductase iron-sulfur subunit 1 0 0 1 -1 0 -1 Ga0248264_111803 succinate dehydrogenase subunit B 1 0 0 0 -1 0 0

Ga0131788_111669 fumarate reductase subunit C 0 0 -1 0 -1 1 1 Ga0248264_111987 fumarate reductase subunit C 1 1 -1 0 -1 1 0
Ga0131788_12495 succinate dehydrogenase subunit A -1 1 1 1 -1 -1 -1 Ga0248264_112032 succinate dehydrogenase subunit A -1 1 1 1 -1 -1 -1
Ga0131788_111667 succinate dehydrogenase subunit A 1 0 -1 0 0 1 1 Ga0248264_111802 succinate dehydrogenase subunit A 1 -1 -1 0 0 1 1
Ga0131788_12494 succinate dehydrogenase subunit B -1 1 1 1 -1 -1 -1 Ga0248264_112031 succinate dehydrogenase subunit B -1 -1 -1 1 0 1 1

2-oxoglutarate decarboxylation to succinyl-CoA (NADH-

Hydrogen production (NADH dependent)
Subunits Ga0131788_111367 [NiFe] hydrogenase diaphorase moiety small subunit-1 1 1 -1 -1 -1 -1 Ga0248264_113295 [NiFe] hydrogenase diaphorase moiety small subunit0 0 0 0 0 0 0

Ga0131788_111368 NAD-reducing hydrogenase small subunit-1 1 1 -1 -1 -1 -1 N/A N/A
Ga0131788_111369 NAD(P)-dependent nickel-iron dehydrogenase catalytic subunit-1 1 1 -1 -1 -1 -1 Ga0248264_113465 nickel-dependent hydrogenase 0 1 -1 1 0 -1 -1
Ga0131788_111366 NAD(P)-dependent nickel-iron dehydrogenase flavin-containing subunit0 1 1 0 -1 -1 -1 Ga0248264_113294 NAD(P)-dependent nickel-iron dehydrogenase flavin-containing subunit0 0 0
Ga0131788_111370 hydrogenase maturation protease -1 1 1 1 -1 -1 -1 Ga0248264_113464 hydrogenase maturation protease 1 1 -1 1 1 0 -1
Ga0131788_13182 hydrogenase expression/formation protein HypE0 0 0 0 0 0 0 Ga0248264_113496 hydrogenase expression/formation protein HypE0 0 -1 0 0 0 0
Ga0131788_13184 hydrogenase expression/formation protein HypC0 0 1 1 -1 -1 0 Ga0248264_113517 hydrogenase expression/formation protein HypC1 -1 -1 0 0 1 1
Ga0131788_13185 hydrogenase maturation protein HypF 0 0 1 0 -1 -1 -1 Ga0248264_113518 hydrogenase maturation protein HypF 1 0 0 1 -1 0 -1

ATP synthesis
ATP Synthase Ga0131788_11850 ATP synthase F0 subcomplex C subunit-1 1 1 1 -1 -1 -1 Ga0248264_11364 ATP synthase F0 subcomplex C subunit-1 1 1 -1 -1 -1 -1
Subunits Ga0131788_11847 ATP synthase F1 subcomplex alpha subunit-1 1 1 1 -1 -1 -1 Ga0248264_11367 ATP synthase F1 subcomplex alpha subunit-1 1 1 1 -1 -1 -1

Ga0131788_11845 ATP synthase F1 subcomplex beta subunit-1 1 1 1 -1 -1 -1 Ga0248264_11369 ATP synthase F1 subcomplex beta subunit-1 1 1 1 -1 -1 -1
Ga0131788_11848 ATP synthase F1 subcomplex delta subunit-1 1 1 1 -1 -1 -1 Ga0248264_11366 ATP synthase F1 subcomplex delta subunit-1 1 1 0 -1 -1 -1
Ga0131788_11844 ATP synthase F1 subcomplex epsilon subunit-1 1 1 0 -1 -1 -1 Ga0248264_11370 ATP synthase F1 subcomplex epsilon subunit-1 0 1 0 -1 -1 -1
Ga0131788_11846 ATP synthase F1 subcomplex gamma subunit-1 1 1 1 -1 -1 -1 Ga0248264_11368 ATP synthase F1 subcomplex gamma subunit-1 1 1 1 -1 -1 -1
Ga0131788_11852 ATP synthase protein I -1 -1 -1 1 1 -1 -1 Ga0248264_11362 ATP synthase protein I -1 1 -1 1 0 0 -1
Ga0131788_112438 F-type H+-transporting ATPase subunit beta1 0 0 0 0 0 -1 N/A N/A
Ga0131788_111607 flagellum-specific ATP synthase 1 0 0 0 0 0 -1 Ga0248264_11849 flagellum-specific ATP synthase 0 0 0 0 0 0 0
Ga0131788_111841 H+-transporting ATPase 0 0 0 0 -1 0 -1 N/A N/A
Ga0131788_11851 F-type H+-transporting ATPase subunit a-1 1 -1 1 -1 -1 -1 Ga0248264_11363 F-type H+-transporting ATPase subunit a-1 1 1 0 -1 -1 -1
Ga0131788_11849 F-type H+-transporting ATPase subunit b-1 1 1 1 -1 -1 -1 Ga0248264_11365 F-type H+-transporting ATPase subunit b-1 1 1 1 -1 -1 -1
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Acetate conversion / transport
Acetyl-CoA synthetase Locus tag Locus tag
Subunits Ga0131788_111520 acetyl-CoA synthetase 1 0 -1 0 -1 0 1 Ga0248264_113037 acetyl-CoA synthetase 0 0 0 0 0 0 0

Ga0131788_11333 acetyl-coenzyme A synthetase 1 -1 -1 -1 -1 1 1 Ga0248264_11705 acetyl-coenzyme A synthetase 1 -1 -1 -1 -1 1 1

Acetate kinase Ga0131788_12393 acetate kinase 0 0 0 0 0 0 -1 Ga0248264_112852 acetate kinase -1 1 1 1 -1 -1 -1

Phosphate acetyltransferase
Ga0131788_12398 phosphate acetyltransferase 0 1 0 1 -1 0 -1 Ga0248264_112851 phosphate butyryltransferase -1 1 1 0 -1 -1 -1
Ga0131788_111365 phosphate acetyltransferase 1 0 0 1 -1 -1 -1 Ga0248264_113293 phosphate butyryltransferase 1 0 -1 0 -1 0 0

Propionate CoA-transferase Ga0131788_12582 propionate CoA-transferase 1 0 0 0 -1 0 0 Ga0248264_113623 propionate CoA-transferase 0 0 0 0 0 0 0
Ga0131788_11216 propionate CoA-transferase 1 0 -1 0 -1 0 0 N/A N/A

Phosphate butyryltransferase

HpcH/Hpal aldolase/citrate lyase family protein Ga0131788_112409 HpcH/HpaI aldolase/citrate lyase family protein0 0 0 0 -1 0 0 Ga0248264_111886 HpcH/HpaI aldolase/citrate lyase family protein1 0 1 0 -1 -1 0

Acyl phosphatase

PHB Synthesis - degradation

Ga0131788_112218 poly(hydroxyalkanoate) depolymerase family esterase1 0 0 0 0 -1 0 Ga0248264_114047 poly(hydroxyalkanoate) depolymerase family esterase0 1 1 0 -1 -1 -1
Ga0131788_112466 poly(hydroxyalkanoate) granule-associated protein1 0 0 0 -1 0 0 N/A N/A
Ga0131788_1489 poly(hydroxyalkanoate) granule-associated protein1 1 -1 -1 -1 0 1 Ga0248264_111237 poly(hydroxyalkanoate) granule-associated protein1 -1 -1 0 0 1 1

PHA synthesis repressor PhaR Ga0131788_112187 polyhydroxyalkanoate synthesis repressor PhaR-1 1 1 -1 -1 -1 -1 Ga0248264_11760 polyhydroxyalkanoate synthesis repressor PhaR-1 1 1 -1 -1 -1 0

b-oxidation Ga0131788_112045 acetyl-CoA acyltransferase 1 0 0 0 0 0 -1 Ga0248264_111988 acetyl-CoA acyltransferase 1 -1 -1 0 0 1 1
Ga0131788_12452 acetyl-CoA acyltransferase 0 -1 -1 0 0 0 0 Ga0248264_111200 acetyl-CoA acetyltransferase family protein0 -1 -1 0 0 0 1

phaA Ga0131788_112231 acetyl-CoA C-acetyltransferase 0 1 -1 0 -1 1 -1 Ga0248264_111320 acetyl-CoA C-acetyltransferase 1 0 -1 1 -1 1 1
Ga0131788_12249 acetyl-CoA C-acetyltransferase 0 1 1 -1 -1 -1 -1 Ga0248264_112315 acetyl-CoA C-acetyltransferase 0 0 0 0 0 0 0

phaB Ga0131788_112044 3-hydroxyacyl-CoA dehydrogenase 1 1 -1 -1 -1 -1 -1 Ga0248264_111208 3-hydroxyacyl-CoA dehydrogenase 0 0 -1 0 0 0 1
Ga0131788_112042 3-hydroxyacyl-CoA dehydrogenase/enoyl-CoA hydratase/3-hydroxybutyryl-CoA epimerase1 0 0 0 0 0 0 Ga0248264_111189 3-hydroxyacyl-CoA dehydrogenase/enoyl-CoA hydratase/3-hydroxybutyryl-CoA epimerase0 0 -1 1 0 0 0
Ga0131788_112044 3-hydroxyacyl-CoA dehydrogenase 1 1 -1 -1 -1 -1 -1 Ga0248264_111212 3-hydroxyacyl-CoA dehydrogenase 1 0 -1 0 -1 0 1
Ga0131788_112186 3-oxoacyl-[acyl-carrier-protein] reductase -1 1 1 1 -1 -1 -1 Ga0248264_11759 3-oxoacyl-[acyl-carrier-protein] reductase /acetoacetyl-CoA reductase -1 1 1 -1 -1 -1 -1

phaC Ga0131788_112220 hypothetical protein -1 0 1 1 -1 -1 -1 Ga0248264_111315 poly(3-hydroxyalkanoate) synthetase -1 -1 1 -1 -1 1 1
Ga0131788_112235 polyhydroxyalkanoate synthase 1 -1 -1 -1 -1 1 1 Ga0248264_111324 polyhydroxyalkanoate synthase 0 0 -1 0 -1 1 1
Ga0131788_112223 polyhydroxyalkanoate synthase -1 1 1 0 -1 -1 -1 Ga0248264_111317 polyhydroxyalkanoate synthase -1 1 1 -1 -1 -1 -1

Ga0131788_112234 class III poly(R)-hydroxyalkanoic acid synthase PhaE subunit1 0 -1 -1 -1 1 1 Ga0248264_111323 class III poly(R)-hydroxyalkanoic acid synthase PhaE subunit1 -1 -1 1 0 1 -1

Phosphate Transport / Conversion 

Ga0131788_111284 PiT family inorganic phosphate transporter1 0 -1 1 0 0 -1 Ga0248264_11862 PiT family inorganic phosphate transporter0 -1 1 1 -1 -1 -1
Ga0131788_112168 PiT family inorganic phosphate transporter-1 1 1 1 -1 -1 -1 Ga0248264_11865 PiT family inorganic phosphate transporter0 0 -1 0 0 0 1
Ga0131788_11313 PiT family inorganic phosphate transporter1 -1 -1 -1 1 1 1 Ga0248264_112435 PiT family inorganic phosphate transporter1 1 1 1 -1 -1 -1
Ga0131788_12325 PiT family inorganic phosphate transporter1 1 0 0 0 0 -1 N/A N/A

Ga0131788_11181 polyphosphate kinase 1 1 0 1 -1 -1 -1 Ga0248264_112421 polyphosphate kinase 0 1 1 0 -1 -1 0
Ga0131788_1171 polyphosphate kinase 2 1 0 -1 -1 -1 1 0 Ga0248264_111084 polyphosphate kinase 2 1 -1 -1 -1 0 1 1
Ga0131788_12103 polyphosphate kinase 2 1 1 0 0 -1 -1 -1 Ga0248264_11940 polyphosphate kinase 2 1 -1 0 1 -1 0 0
Ga0131788_12386 polyphosphate kinase 2 0 0 -1 -1 0 1 1 Ga0248264_112849 polyphosphate kinase 2 1 1 1 0 -1 -1 0
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TCA cycle: Partial TCA cycle 
Locus tag Locus tag

Citrate synthase Ga0131788_12492 citrate synthase -1 1 0 0 -1 1 1 Ga0248264_112029 citrate synthase 1 -1 -1 1 -1 1 1
Citrate synthase Ga0131788_111178 citrate synthase 1 1 -1 -1 -1 0 1 Ga0248264_113730 citrate synthase 1 0 0 0 -1 0 0
Aconitase Ga0131788_13107 aconitase Ga0248264_111436 aconitase 0 0 0 0 0 0 0
Aconitase Ga0131788_1222 aconitase -1 1 1 1 -1 -1 -1 Ga0248264_112069 aconitase 0 1 0 0 -1 -1 -1
Isocitrate dehydrogenase (NADP) Ga0131788_13268 isocitrate dehydrogenase (NADP) 1 1 -1 1 -1 -1 -1 Ga0248264_112843 isocitrate dehydrogenase (NADP) -1 1 -1 0 0 0 1
Glutamate synthase (NADH) large subunit Ga0131788_111333 glutamate synthase (NADH) large subunit1 0 -1 0 -1 1 0 Ga0248264_11515 glutamate synthase (NADH) large subunit-1 1 0 0 -1 -1 -1
Glutamate synthase (NADPH/NADH) small chain Ga0131788_111335 glutamate synthase (NADPH/NADH) small chain-1 0 1 0 0 0 0 Ga0248264_11516 glutamate synthase (NADH) small subunit0 1 1 -1 -1 -1 -1
Phosphoenolpyruvate carboxylase Ga0131788_1174 phosphoenolpyruvate carboxylase type 1 0 0 0 0 -1 0 0 Ga0248264_111765 phosphoenolpyruvate carboxylase type 1 0 0 0 0 0 0 0
Malate dehydrogenase (NAD) Ga0131788_12499 malate dehydrogenase (NAD) -1 1 1 1 -1 -1 -1 Ga0248264_111563 malate dehydrogenase (NAD) -1 1 1 1 -1 -1 0
Fumarase Ga0131788_11335 homodimeric fumarase (class I) 1 1 -1 1 -1 -1 -1 Ga0248264_11703 homodimeric fumarase (class I) 1 0 -1 1 -1 0 -1
Fumarase Ga0131788_112217 fumarase class II Ga0248264_111932 fumarase hydratase-like protein 0 0 0 0 0 0 0
Succinate dehydrogenase subunit A Ga0131788_12494 succinate dehydrogenase subunit B -1 1 1 1 -1 -1 -1 Ga0248264_112031 succinate dehydrogenase subunit B -1 -1 -1 1 0 1 1
Succinate dehydrogenase subunit A Ga0131788_12495 succinate dehydrogenase subunit A -1 1 1 1 -1 -1 -1 Ga0248264_112032 succinate dehydrogenase subunit A -1 1 1 1 -1 -1 -1
Succinate dehydrogenase subunit B Ga0131788_111667 succinate dehydrogenase subunit A 1 0 -1 0 0 1 1 Ga0248264_111802 succinate dehydrogenase subunit A 1 -1 -1 0 0 1 1
Fumarate reductase Ga0131788_111668 fumarate reductase iron-sulfur subunit 1 0 0 1 -1 0 -1 Ga0248264_111803 succinate dehydrogenase subunit B 1 0 0 0 -1 0 0
Succinyl-CoA synthetase (ADP forming) subunit A Ga0131788_111630 succinyl-CoA synthetase (ADP-forming) alpha subunit1 1 -1 1 -1 -1 -1 Ga0248264_113615 succinyl-CoA synthetase (ADP-forming) alpha subunit0 0 0 0 0 0 0
Succinyl-CoA synthetase (ADP forming) subunit B Ga0131788_111629 succinyl-CoA synthetase (ADP-forming) beta subunit1 1 0 1 -1 -1 -1 Ga0248264_113616 succinyl-CoA synthetase (ADP-forming) beta subunit0 0 0 0 0 0 0

Ga0131788_111669 fumarate reductase subunit C 0 0 -1 0 -1 1 1 Ga0248264_111987 fumarate reductase subunit C 1 1 -1 0 -1 1 0
Ga0131788_111630 succinyl-CoA synthetase (ADP-forming) alpha subunit1 1 -1 1 -1 -1 -1 Ga0248264_113638 succinyl-CoA synthetase (ADP-forming) alpha subunit0 0 0 0 0 0 0
Ga0131788_111629 succinyl-CoA synthetase (ADP-forming) beta subunit1 1 0 1 -1 -1 -1 Ga0248264_113639 succinyl-CoA synthetase (ADP-forming) beta subunit1 0 0 0 -1 0 0
Ga0131788_111784 malate dehydrogenase (oxaloacetate-decarboxylating)(NADP+)1 1 1 1 -1 -1 -1 Ga0248264_113410 malate dehydrogenase (oxaloacetate-decarboxylating)(NADP+)1 1 -1 -1 -1 -1 0
Ga0131788_111009 allosteric NADP-dependent malic enzyme 0 0 -1 1 0 1 -1 Ga0248264_11540 malate dehydrogenase (oxaloacetate-decarboxylating)(NADP+)0 0 -1 1 0 1 0

TCA cycle V (2-oxoglutarate:ferredoxin 

Right branch:
Malate dehydrogenase (NAD) Ga0131788_12499 malate dehydrogenase (NAD) -1 1 1 1 -1 -1 -1 Ga0248264_111563 malate dehydrogenase (NAD) -1 1 1 1 -1 -1 0
Citrate synthase Ga0131788_12492 citrate synthase -1 1 0 0 -1 1 1 Ga0248264_112029 citrate synthase 1 -1 -1 1 -1 1 1
Citrate synthase Ga0131788_111178 citrate synthase 1 1 -1 -1 -1 0 1 Ga0248264_113730 citrate synthase 1 0 0 0 -1 0 0
Aconitase Ga0131788_13107 aconitase 0 0 0 0 0 0 0 Ga0248264_111436 aconitase 0 0 0 0 0 0 0
Aconitase Ga0131788_1222 aconitase -1 1 1 1 -1 -1 -1 Ga0248264_112069 aconitase 0 1 0 0 -1 -1 -1
Isocitrate lyase Ga0131788_11293 isocitrate lyase -1 1 1 1 -1 -1 -1 Ga0248264_112494 isocitrate lyase 0 0 0 0 0 0 0
Isocitrate lyase Ga0131788_1194 cytochrome c553 1 -1 -1 0 -1 1 1 N/A N/A
Malate synthase Ga0131788_11298 malate synthase -1 0 1 0 -1 1 -1 Ga0248264_11809 malate synthase -1 -1 -1 -1 -1 1 1
Isocitrate dehydrogenase (NADP) Ga0131788_13268 isocitrate dehydrogenase (NADP) 1 1 -1 1 -1 -1 -1 Ga0248264_112843 isocitrate dehydrogenase (NADP) -1 1 -1 0 0 0 1

Left Branch:
Oxoglutarate ferredoxin oxidoreductase subunit A Ga0131788_1216 2-oxoglutarate ferredoxin oxidoreductase subunit alpha1 0 0 1 -1 -1 0 Ga0248264_111754 2-oxoglutarate ferredoxin oxidoreductase subunit alpha1 -1 -1 0 -1 0 0
Oxoglutarate ferredoxin oxidoreductase subunit B Ga0131788_1215 2-oxoglutarate ferredoxin oxidoreductase subunit beta1 0 0 0 -1 0 0 Ga0248264_111753 2-oxoglutarate ferredoxin oxidoreductase subunit beta0 -1 -1 -1 -1 1 1
Succinil-CoA synthetase (ADP forming) subunit A Ga0131788_111629 succinyl-CoA synthetase (ADP-forming) beta subunit1 1 0 1 -1 -1 -1 Ga0248264_113616 succinyl-CoA synthetase (ADP-forming) beta subunit0 0 0 0 0 0 0
Succinil-CoA synthetase (ADP forming) subunit B Ga0131788_111630 succinyl-CoA synthetase (ADP-forming) alpha subunit1 1 -1 1 -1 -1 -1 Ga0248264_113615 succinyl-CoA synthetase (ADP-forming) alpha subunit0 0 0 0 0 0 0

Succinate dehydrogenase subunit A Ga0131788_111667 succinate dehydrogenase subunit A 1 0 -1 0 0 1 1 Ga0248264_111802 succinate dehydrogenase subunit A 1 -1 -1 0 0 1 1
Succinate dehydrogenase subunit B Ga0131788_111670 succinate dehydrogenase subunit D 1 -1 -1 1 -1 0 0 Ga0248264_111986 succinate dehydrogenase subunit D 0 1 -1 0 0 0 0
Succinate dehydrogenase subunit D Ga0131788_12494 succinate dehydrogenase subunit B -1 1 1 1 -1 -1 -1 Ga0248264_112031 succinate dehydrogenase subunit B -1 -1 -1 1 0 1 1
Succinate dehydrogenase subunit C Ga0131788_12495 succinate dehydrogenase subunit A -1 1 1 1 -1 -1 -1 Ga0248264_112032 succinate dehydrogenase subunit A -1 1 1 1 -1 -1 -1
Succinate dehydrogenase subunit A Ga0131788_12496 succinate dehydrogenase subunit D 0 1 1 1 -1 -1 -1 Ga0248264_112033 succinate dehydrogenase subunit D -1 1 1 1 -1 -1 -1
Succinate dehydrogenase subunit D Ga0131788_12497 succinate dehydrogenase subunit C -1 1 1 0 -1 -1 -1 Ga0248264_112034 succinate dehydrogenase subunit C 0 1 0 1 -1 -1 -1
Fumarase Ga0131788_11335 homodimeric fumarase (class I) 1 1 -1 1 -1 -1 -1 Ga0248264_11703 homodimeric fumarase (class I) 1 0 -1 1 -1 0 -1
Fumarase Ga0131788_112217 fumarase class II 0 0 0 0 0 0 0 Ga0248264_111932 fumarase hydratase-like protein 0 0 0 0 0 0 0

Ga0131788_111630 succinyl-CoA synthetase (ADP-forming) alpha subunit1 1 -1 1 -1 -1 -1 Ga0248264_113638 succinyl-CoA synthetase (ADP-forming) alpha subunit0 0 0 0 0 0 0
Ga0131788_111629 succinyl-CoA synthetase (ADP-forming) beta subunit1 1 0 1 -1 -1 -1 Ga0248264_113639 succinyl-CoA synthetase (ADP-forming) beta subunit1 0 0 0 -1 0 0
Ga0131788_111668 fumarate reductase iron-sulfur subunit 1 0 0 1 -1 0 -1 Ga0248264_111803 succinate dehydrogenase subunit B 1 0 0 0 -1 0 0
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TCA cycle (2-oxoglutarate dehydrogenase) Locus tag Locus tag

Ga0131788_12490 2-oxoglutarate dehydrogenase E2 component0 0 0 0 0 0 0 Ga0248264_112027 2-oxoglutarate dehydrogenase E2 component1 0 -1 -1 -1 1 1
Ga0131788_12491 2-oxoglutarate dehydrogenase E1 component0 -1 -1 1 0 1 1 Ga0248264_112028 2-oxoglutarate dehydrogenase E1 component0 1 -1 0 -1 1 0

Glyoxylate cycle

Ga0131788_11298 malate synthase -1 0 1 0 -1 1 -1 Ga0248264_11809 malate synthase -1 -1 -1 -1 -1 1 1
Ga0131788_12499 malate dehydrogenase (NAD) -1 1 1 1 -1 -1 -1 Ga0248264_111563 malate dehydrogenase (NAD) -1 1 1 1 -1 -1 0
Ga0131788_12492 citrate synthase -1 1 0 0 -1 1 1 Ga0248264_112029 citrate synthase 1 -1 -1 1 -1 1 1
Ga0131788_111178 citrate synthase 1 1 -1 -1 -1 0 1 Ga0248264_113730 citrate synthase 1 0 0 0 -1 0 0
Ga0131788_13107 aconitase 0 0 0 0 0 0 0 Ga0248264_111436 aconitase 0 0 0 0 0 0 0
Ga0131788_1222 aconitase -1 1 1 1 -1 -1 -1 Ga0248264_112069 aconitase 0 1 0 0 -1 -1 -1
Ga0131788_11294 isocitrate lyase -1 1 1 1 -1 -1 -1 Ga0248264_112494 isocitrate lyase 0 0 0 0 0 0 0
Ga0131788_11293 isocitrate lyase -1 1 1 1 -1 -1 -1 Ga0248264_112494 isocitrate lyase 0 0 0 0 0 0 0

NAD(P)H production
Ga0131788_11267 NAD(P)H dehydrogenase (quinone) 1 0 0 0 -1 0 0 Ga0248264_11621 NAD(P)H dehydrogenase (quinone) 0 0 0 0 0 0 0
Ga0131788_1279 ferredoxin--NADP+ reductase -1 -1 0 1 -1 1 1 Ga0248264_111097 ferredoxin--NADP+ reductase -1 -1 -1 0 0 1 1
Ga0131788_112417 N/A 1 0 -1 -1 -1 0 1 N/A N/A

Denitrification
NapH Ga0131788_12416 ferredoxin-type protein NapH 0 1 1 0 -1 0 0 N/A N/A
NapG Ga0131788_12417 ferredoxin-type protein NapG 0 1 1 0 -1 -1 -1 N/A N/A
Cytochrome C553 Ga0131788_12420 cytochrome c553 -1 1 1 -1 -1 -1 -1 Ga0248264_113752 cytochrome c553 0 0 -1 0 0 0 1
Cytochrome C Ga0131788_12421 cytochrome c -1 1 1 0 -1 -1 -1 N/A N/A
Nitrous oxide reductase Ga0131788_12422 nitrous oxide reductase apoprotein -1 1 1 -1 -1 -1 -1 N/A N/A
NapC Ga0131788_13199 cytochrome c-type protein NapC 0 1 0 -1 -1 0 1 N/A N/A
NapF Ga0131788_111915 ferredoxin-type protein NapF 1 0 0 0 0 0 0 N/A N/A
NapH Ga0131788_111918 ferredoxin-type protein NapH -1 1 1 1 -1 -1 -1 N/A N/A
NapG Ga0131788_111919 ferredoxin-type protein NapG -1 1 1 1 -1 -1 -1 N/A N/A
NapA Ga0131788_111920 periplasmic nitrate reductase subunit NapA apoprotein -1 1 1 0 -1 -1 -1 N/A N/A
NapD Ga0131788_111921 periplasmic nitrate reductase chaperone NapD-1 1 1 -1 -1 -1 -1 N/A N/A
NorQ Ga0131788_111835 nitric oxide reductase NorQ protein 0 -1 -1 -1 -1 1 1 Ga0248264_113068 nitric oxide reductase NorQ protein 0 1 0 0 0 0 -1

Ga0131788_111836 nitric oxide reductase NorD protein 1 -1 0 -1 -1 1 1 Ga0248264_113067 nitric oxide reductase NorD protein 0 1 0 0 -1 0 -1
Dissimilatory nitrite reductase Ga0131788_112448 dissimilatory nitrite reductase (NO-forming) cytochrome cd1 type apoprotein 1 -1 -1 -1 -1 1 1 Ga0248264_114768 dissimilatory nitrite reductase (NO-forming) cytochrome cd1 type apoprotein 1 0 -1 0 0 0 0
Dissimilatory nitrite reductase Ga0131788_12235 dissimilatory nitrite reductase (NO-forming) cytochrome cd1 type apoprotein -1 1 1 -1 -1 -1 -1 N/A N/A

Ga0131788_12378 nitrite reductase/ring-hydroxylating ferredoxin subunit0 -1 -1 0 0 0 1 Ga0248264_114025 nitrite reductase/ring-hydroxylating ferredoxin subunit0 0 -1 0 0 0 0
N/A N/A Ga0248264_114773 Respiratory nitrate reductase 0 -1 -1 0 0 0 1
N/A N/A Ga0248264_114772 Respiratory nitrate reductase 0 0 0 0 -1 0 1
N/A N/A Ga0248264_114770 Respiratory nitrate reductase 0 0 0 0 0 0 0

Iron Transport

Ga0131788_11638 ferrous iron transport protein A -1 -1 -1 -1 1 1 1 Ga0248264_113926 ferrous iron transport protein A 0 0 0 0 0 0 0
Ga0131788_11639 ferrous iron transport protein B 0 -1 -1 0 1 0 -1 Ga0248264_113927 ferrous iron transport protein B 0 0 0 0 0 0 0
Ga0131788_112072 FeS assembly protein IscX 0 -1 -1 -1 -1 1 1 Ga0248264_112010 FeS assembly protein IscX 0 0 -1 -1 0 1 1
Ga0131788_112067 FeS assembly scaffold apoprotein IscU-1 -1 -1 -1 -1 1 1 Ga0248264_112015 FeS assembly scaffold apoprotein IscU-1 1 -1 -1 0 1 1
Ga0131788_12614 iron complex outermembrane receptor protein0 0 1 0 -1 -1 -1 Ga0248264_111593 iron complex outermembrane receptor protein0 0 0 0 0 0 0
Ga0131788_111928 iron complex transport system ATP-binding protein0 0 0 0 0 0 -1 Ga0248264_112405 iron complex transport system ATP-binding protein0 0 0 0 0 0 0
Ga0131788_111927 iron complex transport system permease protein-1 1 -1 1 1 0 -1 Ga0248264_112406 iron complex transport system permease protein0 0 0 0 0 0 0
Ga0131788_112567 iron-binding CDGSH zinc finger protein0 -1 -1 -1 -1 1 1 N/A N/A
Ga0131788_112068 iron-sulfur cluster assembly protein 0 -1 -1 -1 -1 1 1 Ga0248264_112014 iron-sulfur cluster assembly protein -1 -1 -1 -1 1 1 1
Ga0131788_1385 iron-sulfur cluster insertion protein -1 -1 -1 -1 -1 1 1 Ga0248264_112709 iron-sulfur cluster insertion protein -1 0 0 0 -1 0 1
Ga0131788_12608 iron(III) transport system permease protein0 -1 -1 0 1 1 -1 Ga0248264_11461 iron(III) transport system permease protein1 0 0 1 0 -1 -1
Ga0131788_12609 iron(III) transport system substrate-binding protein-1 -1 -1 -1 1 1 0 Ga0248264_11460 iron(III) transport system substrate-binding protein0 -1 -1 1 1 -1 -1
Ga0131788_12607 iron(III) transport system ATP-binding protein0 0 0 0 0 0 0 Ga0248264_11462 iron(III) transport system ATP-binding protein1 0 0 0 0 0 -1
Ga0131788_111730 iron complex transport system substrate-binding protein0 0 0 0 0 0 0 Ga0248264_112371 iron complex transport system substrate-binding protein0 -1 -1 -1 0 1 1
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Oxidative Stress Locus tag Locus tag

Ga0131788_111044 Fe-Mn family superoxide dismutase 0 -1 -1 -1 0 1 1 Ga0248264_11787 Fe-Mn family superoxide dismutase 0 -1 -1 1 -1 1 1
Ga0131788_111084 thioredoxin 1 0 -1 -1 -1 0 1 Ga0248264_11919 thioredoxin 0 -1 -1 0 -1 0 1
Ga0131788_111140 peroxiredoxin 0 -1 -1 -1 0 1 1 N/A N/A
Ga0131788_111794 AhpD family alkylhydroperoxidase -1 1 -1 -1 0 1 0 N/A N/A
Ga0131788_11187 Cu-Zn family superoxide dismutase 1 -1 -1 0 0 0 0 N/A N/A
Ga0131788_111880 glutathione S-transferase 0 -1 -1 -1 0 0 1 N/A N/A
Ga0131788_112206 thiol-disulfide isomerase/thioredoxin 0 0 0 1 0 0 -1 Ga0248264_114199 peroxiredoxin 0 0 -1 0 0 1 1
Ga0131788_112392 glutathione S-transferase 1 0 0 0 -1 0 0 Ga0248264_111836 glutathione S-transferase 0 1 0 -1 -1 0 0
Ga0131788_11412 peroxiredoxin 1 1 -1 -1 -1 -1 1 N/A N/A
Ga0131788_11438 AhpC/TSA family protein 1 0 -1 1 0 0 -1 Ga0248264_11718 AhpC/TSA family protein 1 1 -1 0 -1 -1 -1
Ga0131788_11629 glutathione S-transferase 1 0 0 0 -1 0 0 N/A N/A
Ga0131788_11857 peroxiredoxin (alkyl hydroperoxide reductase subunit C)1 0 -1 -1 -1 1 1 Ga0248264_11357 peroxiredoxin (alkyl hydroperoxide reductase subunit C)1 -1 -1 -1 1 1 1
Ga0131788_11858 alkyl hydroperoxide reductase subunit F0 0 0 0 0 0 0 Ga0248264_11356 alkyl hydroperoxide reductase subunit F0 0 -1 0 0 1 0
Ga0131788_12113 thioredoxin reductase (NADPH) 1 0 0 0 0 0 0 Ga0248264_112131 thioredoxin reductase (NADPH) 0 0 0 0 0 0 0
Ga0131788_12189 thioredoxin 1 1 -1 0 1 0 -1 0 Ga0248264_112845 thioredoxin 1 0 0 0 0 0 0 1
Ga0131788_12272 SOS-response transcriptional repressor LexA 1 1 0 0 -1 -1 -1 Ga0248264_112358 SOS-response transcriptional repressor LexA -1 0 1 1 -1 0 0
Ga0131788_12273 peroxiredoxin Q/BCP 1 -1 -1 0 0 1 1 Ga0248264_111910 peroxiredoxin Q/BCP 1 0 -1 0 -1 0 1
Ga0131788_12361 thioredoxin reductase (NADPH) -1 1 1 -1 -1 1 0 Ga0248264_112836 glutaredoxin-like protein DUF836 0 0 1 0 -1 0 0
Ga0131788_12400 thioredoxin -1 0 0 -1 -1 1 1 N/A N/A
Ga0131788_12412 peroxiredoxin 0 -1 0 1 0 0 0 N/A N/A
Ga0131788_12472 glutathione S-transferase 1 0 0 -1 -1 -1 1 N/A N/A
Ga0131788_12507 glutathione S-transferase 0 0 0 -1 -1 0 0 N/A N/A
Ga0131788_13246 glutathione synthase 1 0 0 0 0 -1 0 Ga0248264_113575 glutathione synthase 1 0 1 1 -1 -1 -1
Ga0131788_14124 glutathione peroxidase 1 0 -1 0 -1 0 1 Ga0248264_112547 glutathione peroxidase 1 0 0 0 -1 0 0
Ga0131788_14133 alkyl hydroperoxide reductase subunit AhpC1 -1 -1 -1 -1 1 1 Ga0248264_11989 alkyl hydroperoxide reductase subunit AhpC1 -1 -1 -1 0 1 1
Ga0131788_1463 peroxiredoxin Q/BCP 1 0 -1 -1 0 1 1 N/A N/A
Ga0131788_1475 thioredoxin 1 0 -1 1 0 1 0 Ga0248264_111239 thioredoxin -1 1 -1 1 1 0 0
N/A N/A Ga0248264_114046 glutathione S-transferase/GST-like protein-1 1 1 -1 -1 -1 -1
N/A N/A Ga0248264_112380 catalase-peroxidase 1 0 0 1 0 0 -1
N/A N/A Ga0248264_111894 cytochrome c peroxidase 1 -1 -1 1 1 0 1

Other

Ga0131788_1337 pyruvate dehydrogenase E1 component1 -1 -1 -1 -1 1 1 Ga0248264_112673 pyruvate dehydrogenase E1 component0 0 0 0 0 0 0
Ga0131788_1336 pyruvate dehydrogenase E2 component (dihydrolipoamide acetyltransferase)1 -1 -1 -1 -1 1 1 Ga0248264_112672 pyruvate dehydrogenase E2 component (dihydrolipoamide acetyltransferase)0 0 0 0 0 0 0
Ga0131788_112403 pyruvate ferredoxin oxidoreductase alpha subunit1 0 -1 -1 -1 0 0 Ga0248264_111877 pyruvate ferredoxin oxidoreductase alpha subunit1 0 0 1 -1 0 -1
Ga0131788_112402 pyruvate ferredoxin oxidoreductase beta subunit1 1 0 -1 -1 0 0 Ga0248264_111876 pyruvate ferredoxin oxidoreductase beta subunit1 -1 0 0 0 0 0
Ga0131788_112404 pyruvate ferredoxin oxidoreductase gamma subunit1 1 -1 0 -1 0 0 Ga0248264_111878 pyruvate ferredoxin oxidoreductase gamma subunit1 0 0 1 -1 0 -1
Ga0131788_1474 ferredoxin 1 1 -1 1 -1 -1 -1 Ga0248264_111240 ferredoxin 1 -1 -1 1 0 0 0
Ga0131788_112417 ferredoxin--NADP+ reductase 1 0 -1 -1 -1 0 1 N/A N/A
Ga0131788_1279 ferredoxin--NADP+ reductase -1 -1 0 1 -1 1 1 Ga0248264_111097 ferredoxin--NADP+ reductase -1 -1 -1 0 0 1 1
Ga0131788_111830 pyruvate kinase 1 0 0 1 -1 0 0 Ga0248264_113073 pyruvate kinase 1 0 -1 -1 -1 -1 1
Ga0131788_12331 pyruvate kinase 0 0 -1 1 0 0 0 Ga0248264_113202 pyruvate kinase 0 0 0 0 0 0 0
Ga0131788_12114 CRP/FNR family cyclic AMP-dependent transcriptional regulator0 1 -1 1 -1 0 0 Ga0248264_112132 CRP/FNR family cyclic AMP-dependent transcriptional regulator0 0 0 0 -1 0 0
Ga0131788_111824 CRP/FNR family transcriptional regulator1 0 0 0 -1 -1 0 N/A N/A
Ga0131788_12259 CRP/FNR family transcriptional regulator1 -1 -1 -1 -1 0 1 Ga0248264_112325 CRP/FNR family transcriptional regulator0 0 0 0 0 0 0
Ga0131788_111015 phasin family protein 1 1 1 -1 -1 -1 1 Ga0248264_111898 phasin family protein 0 0 0 0 0 0 0
Ga0131788_111147 phasin family protein -1 1 1 1 -1 -1 -1 Ga0248264_113667 phasin family protein 0 0 -1 0 0 1 0
Ga0131788_111148 phasin family protein -1 1 1 1 -1 -1 -1 Ga0248264_113668 phasin family protein 0 1 0 0 -1 0 0
Ga0131788_112134 phasin protein 1 0 0 0 -1 0 0 N/A N/A
Ga0131788_12162 phasin protein 1 -1 -1 -1 -1 0 1 N/A N/A
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Abstract 

Self-assembled communities that simulate activated sludge performing enhanced 

biological phosphorus removal (EBPR) have been largely used as a model 

ecosystem to understand microbial interactions and process performance. This 

ecosystem is enriched in the uncultured Polyphosphate Accumulating Organism 

Candidatus Accumulibacter phosphatis. This microorganism constantly adapts its 

global physiological response across biphasic cycles of feast and famine conditions 

within a diverse microbial community, by simultaneously cycling polyphosphate, 

polyhydroxyalkanoates, and glycogen. While metabolic models have become a 

powerful tool to connect Accumulibacter's genotype to its phenotype, progress 

towards metabolic modeling of this microorganism has been slow due to several 

challenges such as the integration of large-scale genomic data and its 

interpretation. In this study, we present iCAP366, a manually curated genome-scale 

metabolic reconstruction for Accumulibacter phosphatis clade IIA-UW1. The 

reconstruction includes 458 genes, covering 14.23% of the protein-coding genes 

with function prediction in the genome. Here, Flux Balance Analysis was used to 

predict metabolic fluxes at different glycogen reserves to acetate uptake ratios 

under anaerobic conditions. iCAP366 was also used to predict metabolic flux 

distributions through key pathways including CO2 fixation, reductive TCA cycle, 

and H2 production. Overall, iCAP366 shows qualitative and quantitative agreement 

with experimental observations. Thus, iCAP366 provides concepts and a basis for 

extensive future studies of this bacterium and other related bacteria. 
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Main 

The biotechnological potential of a biological system can be inferred from its 

metagenome, and can be represented as genome-scale metabolic network 

reconstructions that serve as a knowledge base of all the biochemical information 

about an organism. Integrating this information in a structured fashion has enabled 

its translation into computational models that can be used to calculate metabolic 

phenotypes. Reconstruction of metabolic models is an iterative and labor intensive 

process, which involves constructing a draft model with a preliminary set of 

reactions, genes, metabolites and constraints. The metabolic network 

reconstruction process is at an advanced stage of development and has been 

translated into a 96-step standard operating procedure 111. Briefly, genome-scale 

metabolic networks contain curated and systematized information about all known 

biochemical metabolites and reactions of a cell’s metabolism encoded on its 

genome and described in experimental literature. The stoichiometric matrix (S) is a 

mathematical description of a genome-scale metabolic network, where each 

column corresponds to a metabolite and each row corresponds to a reaction. This 

matrix can be queried by many available modeling methods. These models and the 

calculated reaction fluxes are typically studied under a steady-state assumption. A 

steady-state mass balance constraint is imposed by the equation [Sv = 0], where v 

is a vector containing the fluxes through each reaction in the network.  

Constraint based models can address a quantitative and mechanistic genotype-

phenotype relationship. Constraint-based reconstruction and analysis (COBRA) 
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methods help us analyze the allowable phenotypic states on a genome-scale and 

depend on the generation of the genome-scale network reconstruction and the 

subsequent application of constraints to these reconstructions to form the 

corresponding genome-scale model (GEM) in silico 112. The COBRA methods rely on 

optimization methods (such as linear-quadratic programming, mixed integer linear 

programing and non-linear programing) that have been developed and are available 

as accessible software. 

Accumulibacter 

Activated sludge wastewater treatment processes are ubiquitous for the removal of 

organic matter and nutrients from municipal and industrial wastewaters. These 

systems employ uncultivated microbial communities to efficiently remediate 

wastewater streams prior to being discharged to the aquatic environment. 

Enhanced Biological Phosphorus Removal (EBPR), a variant of the activated sludge 

wastewater treatment process, is a biochemically complex process achieved 

through enrichment of a group of bacteria known as Polyphosphate Accumulating 

Organisms (PAO) employing alternating anaerobic and aerobic conditions 4,6. In the 

EBPR process, the dominant organism is a member of the Betaproteobacteria in the 

Rhodocyclus group, named Candidatus Accumulibacter phosphatis 6,7. No pure 

culture of this organism is yet available, though culture-independent molecular 

techniques provide much of the essential information that traditionally has been 

obtained using pure cultures 5,8,15,25,42–45.  
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Lack of consensus on Phenotypic Potentials 

Though Accumulibacter has been studied for years, there is still a lack of consensus 

on the phenotypic potentials that the organism can express 4. One debated topic is 

whether Accumulibacter can perform full TCA cycling anaerobically or is limited to 

a split reductive TCA. Several metagenomics, metatranscriptomics and proteomics 

studies have attempted to explore this area of EBPR research; however, a 

consensus on the issue has yet to be resolved 5,44,72,103,113. Martin, et. al 9 suggested 

genomic evidence for a novel cytochrome that would allow for full TCA operation 

anaerobically. Proteomic data 16 has contradicted this claim though, and many 

previous models of Accumulibacter only consider a reductive TCA cycle 112,114. 

However, metatranscriptomics data has suggested a large expression of both 

Fumarate Reductase and Succinate Dehydrogenase 44,55. Another more recent 

discovery was hydrogen production associated with anaerobic acetate uptake 44. 

As there are only limited studies done on this phenomenon, it has not been widely 

accepted, but it could explain how Accumulibacter is able to balance redox in an 

anaerobic environment. Also, briefly mentioned in 44  is the activation of genes 

involved in carbon fixation via the Calvin Cycle. Carbon fixation though anaplerotic 

routes are accepted in most EBPR literature, due to an activation of the glyoxylate 

cycle, but CO2 fixation though the Calvin Cycle could provide another route to 

replacing lost carbon from oxidation of glucose and acetate. 
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Current State of EBPR Modeling 

Many attempts have been used to model the EBPR phenotype in a quantitative way. 

A simplistic stoichiometric model that incorporates minimal biochemical 

transformations and community dynamics to simulate a EBPR system was early 

theorized 114. Flux Balance Analysis (FBA) models have also been proposed 115,116. 

Pramanik, et al. used hypothesized pathways with little to no genomic evidence to 

develop a robust FBA model 115 and Silva, et al. simplified the carbon transformations 

and electron balancing of TCA and glycolysis to obtain an accurate albeit simple 

model 116. Due to a wider availability of high quality Accumulibacter genomes and 

multi-omics datasets, a genome scale model has the potential to provide a way to 

tie recent advances in EBPR research together and act as a tool to study previously 

unexplored areas of a diverse Accumulibacter physiology. 

Motivation 

We employed omics data integration as constraints to create, validate, calibrate and 

improve the predictive powers of metabolic models of Accumulibacter. Here we 

present iCAP366, a manually curated genome-scale metabolic reconstruction for 

Candidatus Accumulibacter phosphatis strain UW1 consisting of 366 

transformation reactions (100 reversible and 266 irreversible) and 7 transport 

reactions. The reconstruction includes 458 genes, covering 14.23% of the protein 

coding genes with function prediction in the genome. Here, FBA was used to predict 

metabolic fluxes at different glycogen reserves to acetate uptake ratios under 

anaerobic conditions. iCAP366 was also used to predict metabolic flux distributions 
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through key pathways including CO2 fixation, reductive TCA cycle and H2 

production. Overall, iCAP366 shows good qualitative and quantitative agreement 

with experimental observations. Thus, iCAP366 provides concepts and a basis for 

extensive future studies of this bacterium and other related bacteria.  
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Methods 

4.1 Computational refinement 

A tier 3 Biocyc Pathway/Genome Database (PGDB) was generated using Pathway 

Tools software version 18.5 from the RefSeq annotation of Candidatus 

Accumulibacter phosphatis clade IIA str. UW-1 (NCBI:txid522306). Pathways were 

scored using Pathologic 91 with a default cutoff score of 0.15 and taxonomic pruning 

enabled. 191 known pathways were selected, 37 of 42 new pathways were added, 

30 of 43 were pruned after failing the scoring. Gap filling was then done, and 18 

inferred transport reactions were added. (Supplementary Data 1 - 3). 

4.2 COBRApy Model Creation 

The PGDB was imported as a COBRApy 117 model. For simplicity, only two cellular 

compartments were defined; compartment “e”, the extracellular matrix, and 

compartment “c”, the cytosol. Known Accumulibacter pathways were then selected 

to analyze via FBA. The pathways selected incorporated central carbon metabolism 

through the EMP and TCA cycle and polyhydroxyalkanoate (PHA) production. For 

amino acids, nucleic acids, and cofactor metabolism, pathways were added based 

on genome-scale prototrophies. The Calvin cycle was added after the genome 

displayed a nearly full carbon fixation pathway through RuBisco 5,44. Lipid catabolism 

and anabolism reactions were added to assist in the linear solving methods. Further 

reactions that had strong transcriptional and literary evidence supporting their 

existence were added as well. Variants of traditional Accumulibacter pathways were 
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added if their genes were contained in the annotated genome. Pathways that exist 

in similar Accumulibacter clades such as denitrification were added to the model; 

however, they were constrained to be inactive for the core phenotypic model. 

4.3 Defining Anaerobic Constraints and Objectives 

A standard set of constraints for anaerobic Accumulibacter physiology was created 

so the effects of more diverse phenotypic potentials could be compared. Using the 

model provided by Silva, et al. 116, the general genome scale model from above was 

constrained to conduct a reductive TCA cycle, no hydrogen production, and no 

Calvin cycle activity. Other constraints were added to fully represent anaerobic 

conditions, prevent cycles or loops in the solution, and to help bound the solution 

to a reasonable space. The three aforementioned reactions were chosen to 

represent hypothesized phenotypes that have little or conflicting omics data. A set 

of simulations were defined by all possible combinations of these reactions (Table 

3). A simple objective was picked where the model attempts to maximize PHA in the 

form of both PHB (Polyhydroxybutyrate) and PHV (Polyhydroxyvalerate) 

production. 

4.4 Simulation of the Acetate and Glycogen flux ratio 

To better understand the repercussions of modifying certain reactions during 

acetate uptake, the fraction of carbon flux from acetate and glycogen was fixed 

over ratios from 0 to 1. This was done to simulate how various Accumulibacter 

phenotypes that consume acetate and glycogen at different rates yield different 
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PHA production results. During each iteration, the total carbon flux from acetate 

and glycogen was kept constant. Flux balance analysis was run with these fixed 

carbon ratios to estimate the fluxes of each reaction in the optimal solution. This 

was done for each different hypothesized phenotype using the modified constraints 

from above. PHA and Pi fluxes were then graphed and compared with the results 

from the standard model. 

4.5 Comparison of Measured and Simulated Data 

For each simulation, the maximum fluxes of PHB or PHV production were recorded 

for each ratio of carbon flux. Though not explicitly tested, the area below this max 

flux line was assumed to be the feasible solution space of the simulation. PHA data 

from several EBPR studies that were aggregated by Silva, et al. 116 were normalized 

by total carbon flux coming from Acetate feed and intracellular glycogen reserves. 

Unlike the referenced study, no reconciliation was done during our simulations, as 

our model could have fixed carbon dioxide or balanced redox using mechanisms not 

considered in Silva, et al. 114. This could have increased the feasible solution space 

to capture more data points without the need for reconciliation. All datasets that 

came from PAO enrichments (43 out of 55) were selected and plotted against the 

simulated solution spaces for comparison. 

4.6 Estimated PHA and Pi Stoichiometry 

To provide an example for how this FBA model could be used to predict anaerobic 

PHA production and Pi release, an estimation of metabolite stoichiometry was 
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computed. First, the average and standard deviation of glycogen/acetate ratios 

were calculated from the measured data discussed above. The fluxes of PHB, PHV 

production, glycogen utilization, acetate uptake and Pi release were then 

considered for each proposed phenotype at a glycogen/acetate ratio equaling the 

measured dataset’s average. For error reconciliation, fluxes for the polymers and Pi 

were also recorded at the average plus one standard deviation, and the average 

minus one standard deviation. The time taken to uptake one mmol of acetate was 

computed from the acetate uptake rate (assuming a constant uptake rate), was 

used to calculate the concentration change of PHA species and Pi per unit of 

acetate consumed. This was repeated for the upper and lower error bounds and 

across all simulations.  

Results 

EBPR is a complex dynamic process, and many kinetic parameters are required for 

solution of a dynamic model. Here, the anaerobic EBPR phase was considered 

independently using a flux-based steady-state model. In this framework, metabolite 

fluxes were constrained by mass conservation, thermodynamics (reaction 

directionality), and an assumption of pseudo steady state. More specific to the 

EBPR process, by controlling the source of carbon flux into the Accumulibacter 

metabolism,  poly-P and PHA synthesis/degradation, acetate uptake, Pi release and 

CO2 fixation were all able to be critically examined and compared with in-vivo 

experiments.  
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Creation of a standard anaerobic model 

A set of constraints and objective functions were created to closely resemble the 

known phenotypic response of Accumulibacter under the anaerobic phase of an 

EBPR cycle. Numerous studies have shown that PHA synthesis occurs during this 

phase, as well as phosphorus release in the system. As Accumulibacter is mainly 

acetate-fed under laboratory conditions, PHB is assumed to be the dominant PHA 

synthesized, thus our standard model attempts to maximize PHB production when 

acetate is present. Additionally, it is assumed that Accumulibacter will minimize 

carbon dioxide release and glycogen degradation as the latter represents wasted 

carbon resources and the former would lead to a reduction in valuable internal 

carbon reserves. The constraints of the standard model represent an acetate-fed, 

non-denitrifying, anaerobic phase with no net growth for the organism at a constant 

pH. Certain phenotypes that are not well characterized, such as the Calvin Cycle, 

full TCA activity via succinate dehydrogenase (SDH), and hydrogen production 

were also constrained to be initially inactive. However, in subsequent simulations 

some of these constraints were changed to test the feasibility and change in PHA 

production that occurs when the phenotypes are active. 

Simulation of Anaerobic Carbon Utilization 

Figure 1 corroborates the results from the standard model described in the previous 

FBA study 116. From a carbon source ratio of 0 to 0.3386, the model predicts 

generation of reducing power (in the form of NADH) from the glyoxylate cycle, thus 

the PHA production is a mix of both PHV and PHB. At the maximum PHA flux, all 
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PHA production is in the form of PHB, as the reducing power generated from 

glycolysis equals the required NADH for PHB creation. From a ratio of 0.339 to 

0.737, the model increases PHV flux and the reductive TCA cycle is used to balance 

redox. After a ratio of 0.737, a constrained CO2 fixation via PEP-Carboxylase causes 

PHV flux to stabilize and thus total PHA flux to decrease.  

Figure 2 shows the fluxes of PHA production and Pi release per unit of Cmmol 

utilization (1 Cmmol coming from a mix of glycogen and acetate) for each of the 8 

simulations. Similar phases were observed here, however, the activation of other 

pathways allowed for differences in PHA fluxes. This also depicts the max flux 

achieved for each of the simulations, and the glycogen to acetate ratio where the 

maximum was observed. In the FBA runs where the Calvin Cycle was activated, the 

decline in PHB production in the simulations seemed to shift to the right (more of 

the total carbon originating from glycogen). In addition, a near maximum PHB flux 

was able to be achieved for a larger portion of the simulation when the Calvin Cycle 

was active. The simulations with an active TCA cycle seemed to only allow small 

values of PHV production with a small glycogen to acetate ratio, whereas 

simulations with only a reductive TCA cycle allowed for larger PHV production when 

most of the carbon came from acetate. Hydrogen production restricted the amount 

of PHV that could be created in the higher ranges of glycogen to acetate ratios. 

Additionally, a larger maximum value of Pi release was seen when H2 production 

was allowed.  
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Resolution of FBA results and its validation 

A total of 86 observed flux data points retrieved from Silva, et. Al 116 were considered 

for comparison to the simulation’s output. Of them, the simulations with a fully 

active TCA cycle had solution spaces in which most of the measured PHB data could 

fit; however the solution space of these simulations for measured PHV contained 

barely any measured data (Figure 3). Of the simulations, the standard model with 

hydrogen production (simulation 6) captured the greatest number of data points for 

PHA production under its solution space (56 out of 86 total data points being within 

its potential space). Both simulations 1 and 3 had the lowest number of points due 

to no PHV data points within the viable area. Other simulations had similar results 

ranging in at nearly half of total data points measured.  

Estimation of stochiometric constants 

Figure 4 shows the estimates of total PHA’s produced and Pi released given one 

Cmmol of acetate uptaken for each of the eight conditions explored. Additionally, 

the estimated amount of glycogen to be degraded was calculated to be 0.253 

Cmmol, with an error ranging from 0.368 to 0.0575 across all simulations (data not 

shown). Both PHB creation and Pi release had similar stoichiometric constants 

among all simulations. However, for PHB there was a smaller range of error between 

the reductive TCA cycle compared to the FBA runs with a full TCA cycle. PHV was 

inconsistent between most scenarios, with some predicting no PHV production and 

increased error ranges (Figure 4). 
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Discussion 

With the large influx of high-throughput omics studies in the EBPR research, there 

are several hypothesized phenotypic potentials under active discussion. However, 

it is still somehow difficult for metabolic and kinetic experimentation to understand 

results from whole microbiome studies. Thus a model can provide a framework for 

researchers to test how different constraints on an EBPR system can result in a wide 

variety of observed data. As all the constraints discussed in our work have genomic 

evidence, this study was intended to suggest what types of kinetic and metabolic 

data would support the inclusion of these reactions into a standard EBPR metabolic 

model. Varying the ratio of carbon flux from glycogen and acetate was done to 

simulate the wide variety of kinetic data surrounding glycogen degradation, acetate 

uptake, and PHA production. By constraining several key reactions, the model was 

able to show how a handful of reactions can change the expressed phenotype 

drastically. Furthermore, these simulations can help find kinetic points of interest, 

such as maximum PHA production, maximum Pi release, and fluxes where certain 

phenotypes are not expressed. 

Lack of Evidence for an Active Calvin Cycle During Acetate Uptake 

Though some studies acknowledge the presence of carbon fixation genes in 

Accumulibacter 5,44, very little kinetic studies have explored the implication of these 

genes being active. Our model predicted carbon fixation through the Calvin Cycle 

immediately following the maximum points of PHA production. This suggests that if 

the Calvin Cycle were to be active during acetate uptake, there would a large range 
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of acetate uptake rates that gave near optimal PHB synthesis. Looking into the 

metabolic reasoning behind this, is the fact that at carbon flux ratios larger than the 

maximum point of PHA production, a reductive TCA cycle is active in all models. 

This allows for extra reducing potential to be used in PHV formation to help balance 

redox. In the models where the Calvin cycle is active, the extra CO2 fixed provides 

more carbon for reduction into PHB, delaying the need for a reductive TCA until 

Rubisco reached an imposed upper bound of 0.1 flux (Table 2, Supplementary data 

1). 

Though the biology behind this is interesting to consider, when compared to the 

aggregated data from in-vivo studies116, there is little evidence to support that this 

occurs. From Figure 3, the simulations with an active Calvin Cycle had a large area 

in the mid-range of ratios tested where no PHV was created. This decrease in PHV 

flux directly contradicted the measured PHV where most values were in this 

“valley”. Other evidence can be found in the estimated stochiometric values in 

Figure 4, with only the simulations lacking Calvin Cycle activity had a clear PHV 

value. These values corresponded with roughly a 5% PHV composition of total 

polymer, which is close to reported values in numerous studies.  

Hydrogen Production Expands PHA Production Space 

Accumulibacter encodes for both NADH- and ferredoxin-dependent hydrogenases 

5. In the model, we found that they had distinct flux profiles; where the NADH-

dependent hydrogenase was expressed at high ratios, whereas the ferredoxin-

dependent variant was active when the major carbon source was acetate (data not 
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shown). NADH-dependent hydrogen production caused PHB to have greater flux 

values in the high ratio ranges for each scenario analyzed. This is likely due to better 

redox balancing leading to an increased PHB flux during high glycolysis flux.  

In the ferredoxin-dependent case, the ferredoxins are reduced by a 2-oxoglutarate 

ferredoxin oxidoreductase, an enzyme in the TCA cycle that replaces 2-

oxoglutarate dehydrogenase. This helps balance redox by removing one reaction in 

the TCA cycle that produces NADH. In the full TCA cycle, this leads to a greater 

PHB flux since less acetate needs to be converted to PHV to balance redox. In the 

reductive TCA examples, the maximum flux of PHV synthesis occurs at lower 

Glycogen/Acetate flux ratios, because 2-oxoglutarate ferredoxin allows for a 

balanced path through the lower part of the TCA cycle to propynyl-CoA. The total 

solution space of PHA production is increased in both cases. 

A Complete Anaerobic TCA Cycle Could Be a Feasible Phenotype 

It has been a well debated and hypothesized topic that Accumulibacter may be able 

to have a full anaerobic TCA cycle, but generally there is no consensus on how the 

quinol from succinate dehydrogenase could be re-oxidized. Our FBA approach did 

observe a complete anaerobic TCA activation in ranges varying from 0 to 0.498 

glycogen to acetate ratios in simulations 1 and 3, and from 0 to 0.3286 in 

simulations 2 and 4. At these points, ATPase flips from creating a proton motive 

force (pmf) to using a pmf for ATP synthesis (data not shown). The creation of the 

proton motive force could allow for a NADH or NADPH to oxidize the quinols created 
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from the TCA cycle. The model was able to balance redox cofactors with a quinol 

reducing NAD at the expense of 4 protons in the pmf.  

However, it is important to note that FBA modeling considers limited 

thermodynamic information. Little information is known about the ATP synthase 

complex and electron transport chain in Accumulibacter 116. Studies on the role of 

pmf have shown that membrane potential has a larger impact on acetate uptake 

than a concentration gradient 118,119. Membrane potential is dependent on numerous 

factors, and with an organism that is known to have very active transport of ions 

across a membrane, pmf maintenance is likely a highly coordinated system in-vivo 

that cannot be modeled with FBA alone. Additionally, Burow, et al. showed evidence 

that inhibition of fumarate reductase complex does not affect acetate uptake 

though the generation of a pmf, but did not comment on activity of the succinate 

dehydrogenase’s impact on pmf 118. Regardless, the observation of a feasible 

oxidative TCA cycle suggests that Accumulibacter’s physiology is quite diverse and 

may have many hidden phenotypes to be explored.  

Future Directions 

Our proposed model is meant to be used as an exploratory tool in assisting EBPR 

researchers to direct further endeavors. There are several immediate technical 

areas where improvements could be made. First and foremost, an updated 

constraint dictionary could drastically change in-silico phenotypes. For example, in 

this study an arbitrary ceiling of 0.1 mmol*L-1*hr-1*gDW-1 was set for both carbon 

fixation reactions (RuBisCo and PEP-Carboxylase). This was done to minimize the 
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amount of incoming carbon flux that could come from inorganic CO2 as previous 

calibration without an upper bound would lead to run-away carbon fixation. As these 

reactions are considered slow, the constraint was set without knowing the enzyme 

kinetics of Accumulibacter’s RuBisCo or PEP-Carboxylase. There are many 

reactions in the central carbon cycle that could drastically change the shape of 

hypothesized flux profiles, however, enzyme kinetic data is poor for 

Accumulibacter, making accurate constraints difficult to judge. 

Furthermore, there are many more anaerobic conditions that could be explored, 

such as the use of alternative carbon sources, the potential for denitrification, cell 

growth, etc. All these conditions have evidence of feasibility from genomics, 

metatranscriptomics data, or experimental results, thus it would be interesting to 

see how the model behaves under varying constraints, and if it corresponds to in-

vivo data.   

Lastly, while the analysis that were done in this study focused on anaerobic 

phenotypes, the reactions are all present for predicting aerobic conditions are 

included in the model. The FBA analysis of aerobic conditions were ignored to focus 

on topics that are more discussed in the field; however, understanding how 

phosphate is re-uptaken, glycogen synthesized, and Accumulibacter grows is vital 

to designing more resilient EBPR systems. 
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Figures Descriptions 

Figure 1 | Simulation of Accumulibacter’s phenotypic response to varying 

glycogen to acetate flux ratios under “standard” constraints. 

Allowable solution spaces for PHA production and Pi release under a reductive TCA 

cycle, no hydrogen production, and no Calvin cycle activity during anaerobic 

acetate uptake. For each point, the fraction of carbon flux from acetate and 

glycogen was fixed over ratios from 0 to 1.  

Figure 2 | Flux profiles of proposed anaerobic mechanisms. 

Flux profiles of PHA production and Pi release per unit of Cmmol utilization for each 

of the eight simulations analyzed under this study. As described above, the 

glycogen to acetate flux ratio was varied from 0 to 1 and the optimal solution was 

found under each proposed mechanism. See Table 3 for all possible scenarios 

defined by combining the selected constraints.  

Figure 3 | Resolution of FBA simulations with previously obtained results. 

For each simulation in Figure 2, the maximum fluxes of PHB or PHV production were 

recorded for each ratio of carbon flux. PHA data from several EBPR studies that 

were aggregated by Silva, et al. 116 were normalized by total carbon flux coming from 

acetate feed and intracellular glycogen reserves. All datasets that came from PAO 

enrichments were selected and plotted against the simulated solution spaces for 

comparison. 

Figure 4 | Model estimated PHA production and Pi release per 1 Cmmol of 

acetate. 

Using aggregated literature data116, iCAP366 was able to estimate the total 

production of commonly studied metabolites per Cmmol of acetate uptaken for 

every hypothesized phenotype. 
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Tables 

Table 1 | Summary of iCAP366 GEM.  

Total Reactions 366 
Reversible 100 
Non-reversible 266 
Boundary Reactions 80 
Transport Reactions 7 
Mapping Reactions 2 
Total Genes  458 
Reactions with known genes 273 
Enzymatic reactions w/o genes 5 
Pathways Added 63 
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Table 2 | Pathways constraints used during this study. 

Phenotype Reaction 
Default constraint 
(upper bound, 
lower bound) 

Modified 
constraint 

Full TCA Fum + QH2 --> Succ + Q (0, 1000) (-1000, 1000) 
H2 Production H2 <-->  (0,0) (0, 0.7) 
Active Calvin Ribulose-1,5-P + CO2 + H2O --> 2 G3P + 2 H+ (0,0) (0, 0.1) 
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Table 3 | All possible scenarios defined by combining the 
selected phenotypes and selected constraints.  

Simulation 
Number Full TCA H2 

Production 
Active 
Calvin 

1 Modified Modified Modified 
2 Modified Modified Default 
3 Modified Default Modified 
4 Modified Default Default 
5 Default Modified Modified 
6 Default Modified Default 
7 Default Default Modified 
8 Default Default Default 
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Supplementary Material 

Supplementary table S1 | Maximum Polymer and Pi fluxes obtained for each simulation. 

Sim. # Full TCA H2 
Production 

Active 
Calvin 

PHB PHV PHA Pi 

Max Value 
mol/(L*gDW
*hr*Cmol

util.)

Gly/A
cet 

Cmol/
Cmol 

Max Value 
mol/(L*gDW
*hr*Cmol

util.)

Gly/A
cet 

Cmol/
Cmol 

Max Value 
mol/(L*gDW
*hr*Cmol

util.)

Gly/A
cet 

Cmol/
Cmol 

Max Value 
mol/(L*gDW
*hr*Cmol

util.)

Gly/A
cet 

Cmol/
Cmol 

1 Modified Modified Modified 0.888 0.219 0.250 0.827 0.888 0.219 0.517 0.010 
2 Modified Modified Default 0.888 0.219 0.500 0.737 0.888 0.219 0.517 0.010 
3 Modified Default Modified 0.888 0.219 0.500 0.936 0.888 0.219 0.371 0.189 
4 Modified Default Default 0.888 0.219 0.500 0.737 0.888 0.219 0.371 0.189 
5 Default Modified Modified 0.888 0.339 0.797 0.100 0.888 0.339 0.578 0.100 
6 Default Modified Default 0.880 0.339 0.797 0.100 0.887 0.339 0.578 0.100 
7 Default Default Modified 0.888 0.339 0.500 0.936 0.888 0.339 0.398 0.199 
8 Default Default Default 0.880 0.339 0.500 0.737 0.887 0.339 0.398 0.199 
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Chapter 5: Recommendations for Future Research 

Use of metatranscriptomics constraints in genome-scale modeling 

Although genomics data provides a broad overview of the metabolic potential of a 

species, it does not convey information regarding the specificity of a metabolic 

process or its activation under different physiological or environmental conditions 

120. To address this problem, general approaches that can suggest experimentally

testable hypotheses to reconcile inconsistencies between simulation and 

experimental data continue to be needed. The integration of cellular processes, 

supported by high-throughput data types into a single mathematical model, allow 

us to more accurately compute complex phenotypes and will guide the discovery of 

unknown aspects of cellular functions beyond metabolism.  

Reconstruction of metabolic models using transcriptomics data has been 

successfully used and tested in prokaryotic systems and has been extensively 

reviewed 121. It considers the dynamic state of mRNA levels and has been linked to 

metabolism through “coupling constraints” to improve prediction accuracy. 

Transcriptomics also suggests regulatory mechanisms under different conditions, 

and differential and comparative network analysis approaches may give useful 

information about key regulators controlling common biological processes among 

organisms. Moreover, RNA-Seq has served as preferred choice as it does not need 

prior genome information, thus enabling transcriptome profiling for uncultivated 

organisms, such as Accumulibacter. 
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Analysis of the discrepancies between model predictions and experimental data 

allows targeted experimentation that leads to better refinement of the genotype-

phenotype relationships. However, there is limited information available on the 

genome-wide transcriptional analysis for Accumulibacter under conditions different 

to the regular EBPR cycle and a few regulatory mechanisms involved 80,81. Therefore, 

to further build a comprehensive model that properly accounts for unanticipated 

constraints, it will be necessary to uncouple environmental signals that occur 

simultaneously during the cycle. The use of gene expression constraints under 

normal and perturbed conditions together would lead to a better prediction of 

Accumulibacter flux remodeling. The perturbation conditions can be designed to 

reflect actual disturbances or undesirable operating conditions experienced in full-

scale biological nutrient removal facilities.  These might include, but are not limited 

to: 

Acetate/Oxygen contact: In the typical cycle of Accumulibacter cultures, exposure 

to acetate only occurs during anaerobic conditions. It is generally accepted that 

good EBPR activity requires physical/temporal separation of electron donor and 

acceptor, and EBPR performance deterioration in full-scale wastewater treatment 

plants had been associated to the presence of oxygen within the anaerobic zone 1. 

To our current understanding, Accumulibacter needs to experience bottlenecks in 

energy and reducing equivalent demands when taking up and storing carbon. 

Therefore, by adding oxygen to the medium in the middle of the anaerobic phase to 

study the transcriptome in response to the aerobic exposure to acetate, one could 

expect the oxygen to relieve those bottlenecks and disrupt the usual response. 
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Decoupling PHA degradation to P-uptake: A second perturbation experiment can 

be conducted by eliminating acetate addition during the cycle, and adding acetate 

in the aerobic phase of the cycle. This can help answer whether the role of the 

anaerobic conditions in EBPR is necessary to flux acetyl-CoA to PHA formation 

coupled with polyP metabolism, or just as a selective force to eliminate organisms 

that cannot uptake acetate anaerobically. The main difference between this 

experiment and the previously stated is that there would not be any fraction of the 

acetate metabolized in the anaerobic zone, thus we could solely investigate the 

transcriptional pattern of acetate conversion under aerobic conditions.  

Using data obtained from these and other metatranscriptomics profiles, we could 

start building context-specific models for Accumulibacter, by identifying a flux 

distribution that is consistent with biological objectives and minimizing the 

utilization of reactions classified as inactive. We suggest using algorithms such as 

Gene Inactivity Moderated by Metabolism and Expression (GIMME), which uses 

binary gene expression data and genome-scale metabolic networks to generate 

context-specific reconstructions 122. These transcriptome datasets can be then 

used as experimental soft-constraints to obtain corresponding Accumulibacter-

specific metabolic models. Combining Dynamic Flux Balance Analysis (DFBA) 123 and 

GIMME can help to predict time-course flux profiles based on temporal gene 

expression patterns in the EBPR cycle. 
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Transcriptional Regulatory Networks 

It is unlikely that genome-scale modeling alone can elucidate the physiological 

response of versatile bacteria such as Accumulibacter given any environmental 

condition. Indeed, Accumulibacter has evolved regulatory networks to integrate 

environmental signals or acquired differentiated states that result in modulation of 

gene expression 80. Therefore, it is believed that specific gene expression triggers 

the PAO phenotype depending on the environmental constraints. Future work 

should focus on comparing a larger amount of Accumulibacter clades 

transcriptional programs at different organizational levels, ranging from the co-

expression patterns between genes to higher-order relationships between 

functional attributes. Only once deciphering the underlying transcriptional 

mechanisms that explain Accumulibacter’s behavior, implementing a combined 

analysis of both metabolic and regulatory networks can be applied to genome-scale 

models, such as the one developed under Chapter 4 of this thesis work. 

Systematically obtained time- and space-resolved omics datasets across multiple 

environmental scenarios combined with the power of metabolic modeling can allow 

deconvolution of structure-function relationships by identifying key genes involved 

in the EBPR phenotype and their functions. Such knowledge has the potential to 

form the foundation for discovering novel attributes of Accumulibacter on a much 

larger scale compared with previous efforts.  
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