
REPRESENTATIONS, TOOLS AND INTERFACES FOR IMPROVING EXPERT
DESIGN OF COLLABORATIVE HUMAN-ROBOT INTERACTIONS

by

Andrew J. Schoen

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN–MADISON

2023

Date of final oral examination: 12/19/23

The dissertation is approved by the following members of the Final Oral Committee:

• Bilge Mutlu, Professor, Computer Science, University of Wisconsin-Madison

• Aws Albarghouthi, Professor, Computer Science, University of Wisconsin-Madison

• Robert Radwin, Professor, Engineering, University of Wisconsin-Madison

• Allison Sauppé, Associate Professor, Computer Science, University of Wisconsin-La
Crosse

© Copyright by Andrew J. Schoen 2023
All Rights Reserved

i

For Luna.

ii

acknowledgments

If I were to list the individuals who helped me to get me where I am today, these
acknowledgements may exceed the length of the following document. In lieu of an
exhaustive list, I would like to highlight the following individuals who have made
a significant impact on my life and career.

A collossal thanks goes to my advisor, Dr. Bilge Mutlu. It took some time for
me to find my research path, but you had the patience and trust that I could figure
it out when I didn’t. You accepted me into this research community, and helped me
grow into the researcher I am today. I am forever grateful for your guidance and
support. Thanks also to Dr. Aws Albarghouthi, whose patience and constructive
feedback showed me invaluable ways of problem solving. Another thanks goes to
Dr. Allison Sauppé, whose work in many ways laid the trail for my own, and who
brought thoughtful perspectives in our discussions. Finally, I would like to thank
Dr. Robert Radwin, whose helpful and at time contrasting perspectives made our
work better.

I would like to thank someone that encouraged me to start making software
in research, Dr. David Perlman. I learned the basics of programming from you,
and in so doing gave form to a passion I never realized was there all along. Dr.
Stacey Schaefer similarly deserves recognition for letting me explore this passion in
a neuroscience lab setting. I hope something I made still has some use. Another
thanks goes to Dr. Nagesh Adluru, who had faith that I could be a computer
scientist. Finally, I would like to thank Carolyn Zahn-Waxler and Morris Waxler,
whose care, empathy, and thoughtfulness made me a better person and scholar.

My colleagues, mentees, and friends made an immeasurable impact on my Ph.D.
journey. This work has been a collaborative effort, and I would not be here with-
out individuals like Nathan White, Curt Henrichs, Daniel Rakita, Anna Konstant,
Dakota Sullivan, and Amanda Siebert-Evenstone, who served as key collaborators
on these projects. I would also like to thank the many undergraduate students
who worked with me on this research, especially Ze Dong Zhang and Mathias
Strohkirch. I hope I was able to teach you something useful, and that you enjoyed

iii

the experience. Finally, a special thanks goes out to all my peers and friends that
while not directly involved in this research were nevertheless a source of feedback,
support, and encouragement. A special call-out to David Porfirio, who has been
a true friend and colleague since the beginning of my Ph.D. journey, as well as
Pragathi Praveena, whose advice and perspective is always valued.

Thanks to my sister, Alissa, who was always someone I could look up to. Grat-
itude also goes to Bryan, Adelyn, and Everly, whose addition to the family have
brought us all so much joy. Finally, I would like to thank my parents, Amy and
Mark, who have been the embodiment of unconditional support and love, as well
as an unwavering source of encouragement as I pursued my education and career.

iv

author’s statement

The research within this dissertation was funded through National Science Foun-
dation (NSF) awards 1426824, 1651129, 1822872 and 1925043.

The research within this dissertation represents the author’s own work. How-
ever, the author frequently collaborated with other individuals — Nathan White,
Curt Henrichs, Anna Konstant, Daniel Rakita, Dakota Sullivan, Ze Dong Zhang,
Mathias Strohkirch, Amanda Siebert-Evenstone, Robert Radwin, David Shaffer,
and Bilge Mutlu — who made substantial contributions. The contributions of these
individuals are noted where relevant in the dissertation body. Especially substantial
contributions with other researchers are elaborated upon here.

• Curt Henrichs has contributed significantly to the implementation and design
of the Authr system, particularly with regards to the backend motion planning
and server. He also contributed significantly to the original design of the
CoFrame system, described in Chapter 4.

• Nathan White has contributed significantly to the design and implementation
of the CoFrame system, described in Chapter 4, as well as the reinforcement
learning implementation of Allocobot, described in Chapter 7.

Various components of this dissertation have already been published by the
author in the following works: Schoen et al. (2020), Schoen et al. (2022), Schoen
et al. (2023), and Schoen and Mutlu (2024).

v

contents

Contents iv

List of Figures vii

Abstract xiii

1 Introduction 1
1.1 Motivation 1
1.2 Thesis Statement 3
1.3 Methodology 3
1.4 Users and Stakeholders 4
1.5 Contributions 9
1.6 Dissertation Overview 10

2 Background 13
2.1 Collaborative Robot Deployment 13
2.2 Program Requirements of Collaborative Robotics 15
2.3 Proximal Development and Scaffolding 18
2.4 Representations of Collaborative Interactions 19

3 Authr 22
3.1 Background 24
3.2 Technical Approach 26
3.3 Evaluation 41
3.4 Discussion 58
3.5 Chapter Summary 61

4 CoFrame 63
4.1 Background 65
4.2 Expert Model 69

vi

4.3 System Design & Implementation 72
4.4 Case Studies 82
4.5 Chapter Summary 84

5 Lively 87
5.1 Background 91
5.2 System Design & Implementation 95
5.3 Case Studies 106
5.4 Chapter Summary 110

6 OpenVP 112
6.1 System Design & Implementation 115
6.2 Source Code and Usage 122
6.3 Chapter Summary 122

7 Allocobot 124
7.1 Background 127
7.2 System Design & Implementation 129
7.3 Future Work 145
7.4 Chapter Summary 147

8 General Discussion 148

References158

vii

list of figures

1.1 A table of the target user profiles and stakeholders considered in this
dissertation. Images for target users and stakeholders are generated
with AI. 11

1.2 A graphical representation of the systems presented in this dissertation,
as well as their main approach in addressing the skills gap challenge for
specifying collaborative robot behavior. This skills gap is represented as
a chasm by which the designer/programmer must cross. Some systems
reduce this gap by supporting their current models of work and knowl-
edge, allowing for proximal advancement. Other systems aim to reduce
this gap by providing tools that support the creation of more complex
programs, thereby lowering the barrier for entry. 12

3.1 A description of the Therbligs implemented in Authr, including parame-
ters, pre-conditions, and post-conditions. 32

3.2 For the technical evaluation, we constructed three manufacturing tasks:
Kitting, Assembly, and Repair. For Kitting, top, a toy (cylinder) and a
battery pack (cube) were moved to each container. In Assembly, middle,
screws (grey cylinders) are placed in each of the four corners of a PCB
and rotated, while two cables (pink cubes) are placed in the center.
Finally Repair, bottom, features two faulty components (red cubes) being
removed and replaced with new parts (green cubes). 35

3.3 We evaluated the Authr Allocation and Parallelization algorithms (blue)
versus a MO-DaE planner (grey) with three different Plans (Kitting,
Assembly, and Repair) on 4 different metrics (Compute Time, Overall Plan
Score, Overall Plan Time, and Overall Plan Cost). Lower scores for all
metrics are desirable. 37

viii

3.4 The three modes in Authr. In setup, users first configure the workspace;
Destinations are able to be added, deleted, and modified, and each Agent
and Thing gets assigned an initial location in the scene. Moving into
planning in the Plan Tab, Tasks are represented as containers for Therbligs
and are ordered from left to right. Within each Task, Therbligs are ordered
from top to bottom. Therbligs and Tasks are also configured. In simulate,
after designing an interaction, users can simulate the actions of human
and robot Agents. 38

3.5 Participants viewed a video of an actor performing a simple kitting task
and used Authr to translate it to a human-robot task. 43

3.6 USE and SUS scores from Evaluation 1. 46
3.7 For Evaluation 2, we constructed 2 comparable tasks, Cluster Sort and

Ordered Sort. For Cluster Sort, top, participants organized blocks into
clusters by type, and in Ordered Sort, bottom, participants organized
blocks into a grid. 47

3.8 Codes generated using system states and nCoder. 51
3.9 Resulting Overall Plan Cost, Time, and Scores for Automatic and Manual

procedures. Cost refers to the objective corresponding to effort or wear
(depending on Agent), and Score refers to the overall score, based on
the weighted Time and Cost. Lower scores for all measures are more
desirable. 52

3.10 A comparison of the activity networks for Automatic Allocation (red)
versus Manual (blue) conditions. Each network is displayed as both a
network graph and box, indicating the mean and confidence intervals
of the networks within the projected space. 57

4.1 In this chapter, we describe a system called CoFrame that integrates a
set of Expert Frames in collaborative robotics, focusing on Safety Con-
cerns, Program Quality, Robot Performance, and Business Objectives, to train
operators in using, programming, and troubleshooting cobot applications. 64

ix

4.2 The mapping of the themes from the Expert Model (Siebert-Evenstone
et al., 2021) into each of the four Expert Frames: Safety Concerns (pink),
Program Quality (blue), Robot Performance (yellow), and Business Objec-
tives (green). Figure adapted from Siebert-Evenstone et al. (Siebert-
Evenstone et al., 2021). 70

4.3 The four Expert Frames of CoFrame, and the relationships between them.
As operators address concerns in each frame, they unlock other con-
siderations. For example, only after addressing whether a Location or
Waypoint is reachable (Robot Performance), do they address issues with
the pose of the end effector. 73

4.4 The layout of the CoFrame interface. Operators can use the Program
Editor tile (G) to construct their program, and can visualize the results
in the Simulator tile (B). The Expert Frames tile (A) allows them to
swap between different Expert Frames and view issues in each frame.
When not viewing issues, the Contextual Information tile (C) shows
relevant frame-related information, and when viewing issues also pro-
vides detailed information about the issue and suggestions for changes.
Within the Program Editor (G) operators can drag blocks from the Block
Drawer (D) into the Program Canvas (E). The Program Canvas contains
the program (F) along with implemented skills. 74

x

4.5 Three case studies showing the process of evaluating feedback from
the system and informing adjustments to the operator’s program. The
gradient background of the figure denotes the switching between Expert
Frames by the operator, from Safety Concerns (pink), Program Quality
(blue), Robot Performance (orange), and Business Objectives (green). In
Case Study 1, the operator begins by addressing a missing trajectory
block (A), followed by filling in its parameters (B). The operator then
addresses reachability concerns (C). They finish by addressing issues
with robot collision (D). In Case Study 2, the operator begins by address-
ing joint speed issues and visualizes the speed (E). They transition to
solving pinch point issues (F). They finish by addressing issues with the
robot’s space usage (H). In Case Study 3, the operator begins by solving
issues with uninitialized machine logic (I), then addressing problems
with thing movement (J). They return to addressing a machine logic
for a non-stopped machine (K). The operator finishes by viewing the
robot’s cycle time (L). 81

5.1 We present Lively for real-time motion generation that balances task
and communicative goals while maintaining feasibility. We provide
three levels of interfaces to address varying use cases. The Design Level
enables programming robots using a state-based approach. The Develop
Level is configurable and portable, usable in applications such as ROS-
based control and web-based simulation. The Extend Level supports
the addition of new characteristics and goal specifications for greater
customizability and extendability. 88

5.2 An early version of LivelyStudio that received feedback from animators
and roboticists, which led to a redesigned 3D environment, more explicit
state-based design process (states as graph nodes), and bundling of
behavior attributes with specific goals and weights. 97

xi

5.3 The layout of the LivelyStudio interface. From left to right, a Simulator
window shows the robot in the currently selected state; the Block Picker
allows dragging structural blocks like States or Behavior Properties like
Position Bounding; the State Editor canvas that allows for states to be
dragged around and modified. At the top-right, a menu that reveals a
Transition Widget, which lists transitions from the current state, and a
settings button that reveals a full URDF editor. 98

5.4 LivelyStudio’s set of Behavior Properties that match Objective Functions
within Lively. Note, Velocity Minimization, Acceleration, and Jerk Mini-
mization come in both joint-based and robot root variants, and while
usable separately, are included within the Smoothness macro property. . 100

5.5 Solve times for the UR3e, Panda, and Pepper robots, with randomized
locations of environmental colliders. Of note, speed is largely unaffected
by shape count. 102

6.1 An example flow-based programming system designed with OpenVP,
illustrating a simple logic about how a robot should behave if a patron
enters a store. 112

6.2 Overview of OpenVP’s Environment layout, highlighting the four main
sections: the Drawer Selector, where the active drawer can be set, the
Block Drawer, where blocks in the current set can be selected from, the
Tab Selector, where individual tabs can be added, removed, hidden, and
edited, and finally the Program Canvas, where the program is visualized
and edited. Full customization of the theme is possible, as shown in the
light/dark modes. 113

6.3 Overview of block customization via their associated TypeSpec data.
For brevity, some variants are not included, notably non-block FieldInfo
structs, (e.g. NumberFieldInfo, StringFieldInfo, etc.). Also not shown is
the Extra and ConnectSpec fields, discussed elsewhere. 117

xii

6.4 An example of a Documentation section generated for an example Func-
tion block. The documentation automatically curates how that block
is used in other blocks, and what blocks it uses. Additionally, the De-
scription tab will render the textual markdown description from the
TypeSpec. 119

6.5 A small example flow-based program, illustrating the ability to draw
connections between canvas-based nodes. Connectivity is configured
within BlockSpec structs. 120

7.1 A mapping of the current components within Allocobot’s representation.
Note, Carry, Move, Travel, and Reach Primitives are used internally within
the algorithm, but are not specified explicitly, and therefore not shown.
Overarching types are depicted as cards, where the solid header indi-
cates the type. Any properties general across all types are listed first.
Directly under outlined sub-type names are properties specific to that
type or types. Rating is a simple Low/Medium/High categorical value. 132

7.2 A graphic showing the flow of the Allocobot process, highlighting the
questions specific to each phase. The first phase is specifications, and
are inputs that the stakeholder or integrator might provide to detail the
job. The second and third phases reflect the two decision types (meta-
parameters and simulation). The fourth phase represents the types of
questions that can be answered after the process. 136

7.3 A description of the primitives utilized in the algorithm and the mapping
onto different ergonomic models. Primitives in gray are used internally
within the algorithm. 139

xiii

abstract

Collaborative robots (cobots) are a relatively new class of robots meant to be true
collaborators with their human coworkers. This is in comparison to standard
industrial robots, which due to safety considerations, must be sequestered away in
cages from humans to avoid injuring them. Collaborative robots’ promise is in their
ability to assist human workers in tasks, thereby making the workers’ jobs more
efficient, enjoyable, and comfortable. However, despite this promise and a great deal
of technical capability, cobots are not being utilized to their full potential. In cases
where they don’t get placed in storage, they frequently work independently away
from any human coworkers, much like standard robots but without the protective
cages around them.

This is partly due to a discrepancy between the requirements of true collabora-
tive interaction design and the skill sets of the individuals who may be tasked with
programming or designing their behaviors; the design of truly collaborative robot
interactions is a fundamentally different challenge than the automation of conven-
tional robots, incorporating aspects like resource dependencies, task allocation,
motion design, human ergonomics, and more. However, many automation experts
are familiar with traditional automation, but not interaction design. In contrast,
individuals like motion designers and animators may provide useful guidance on
behaviors like gesture and motion, but lack other skills that allow their applicable
skills to translate easily to this domain.

The goal of this dissertation is to explore how to better support the effective
adoption of cobots by developers. Put another way, how can we make it easier for
developers accustomed to conventional robot programming - or otherwise relevant
domains - to design behaviors and programs for true collaborative robot interactions
that are beneficial, safe, and effective?

I propose that the answer to this question lies to some extent in the development
of new tools and systems, which combined with the right program and behavior
representations, as well as relevant feedback, optimization, verification, and syn-
thesis techniques. These tools and systems can help developers by growing and

xiv

translating their domain knowledge into the interactive robot domain, while also
improving and restructuring the programs they produce to better suit collabora-
tive work. I consider multiple aspects of cobot programming, such as allocation,
ergonomics, and motion. Finally, I conceptualize, design, and implement systems
and tools meant to support these developer in each of these areas with the goal of
empowering them to utilize collaborative robots more effectively.

1

1 introduction

1.1 Motivation
Robots possess the potential to be effective collaborative partners in a variety of
applications, and while they appear to have the capability to significantly improve
the quality of human work (Pearce et al., 2018; Liu et al., 2022) and while they have
been used successfully in certain situations (Alvarez-de-los Mozos and Renteria,
2017; Sauppé and Mutlu, 2015), a number of hurdles currently exist that prevent
them from being used in both an effective and widespread manner, leading to a
sizeable gap between the potential utility that collaborative robots (cobots) can
theoretically provide, and which they demonstrate in research-based applications,
and the types of usage seen in real-life scenarios (El Zaatari et al., 2019; Michaelis
et al., 2020). Specifically, applications involving purportedly collaborative robots
are often not collaborative at all, and instead involve the robot performing a task
while the human is either not present or is performing a different task (Michaelis
et al., 2020). This means that the current space of robotic usage is typically a binary
one: either the robot is performing a task, or the human is performing a task, but
rarely are they performing a task together. In other words, if the robot is capable
of performing the task in isolation, this is typically handled as strict automation,
and if the robot is not capable of this, it is relegated to a human-only task. Such
a dichotomy prevents collaborative robots from providing a number of possible
benefits, such as reduced ergonomic strain, increased productivity, or a wider range
of suitable workers.

So why is this the case? Why are collaborative robots not being used in a
collaborative manner? The answer, according to Michaelis et al. (2020) is that the
engineers and programmers for these robots are not equipped with the knowledge
to design these collaborative interactions. This is not to say that they are not capable
of designing these interactions, but rather that they are not equipped with the
knowledge and support to do so. The complex nature of the interaction that needs
to be specified is not one that strict automation experts are accustomed to handling,

2

and the tools that are available to them are not designed to support them in doing
so, being also designed with strict automation in mind.

As a term, "collaborative robotics" refers to interactions between humans and
machines in service of achieving tasks in a shared space (Vicentini, 2021). Despite
the utilitarian description, collaborative robotics very much sits at the intersection of
task-focused application development and social robotics, the latter being another
umbrella term encompassing interactions between humans and robots designed to
interact in a social manner with the goal of achieving a variety of goals, including
entertainment and and the improvement of quality of life (Breazeal et al., 2016).

Truly dynamic collaborative interactions will likely depend on some degree
of signalling and communication for both humanoid (Riek et al., 2010) and non-
humanoid robots (Cha et al., 2016). Much like social interactions, they will involve a
back-and-forth between agents, where signalling and coordination strategies can be
deployed effectively to improve the result of the process (Mutlu et al., 2013; Huang
et al., 2015; Andrist et al., 2018). Indeed, collaborative robots in manufacturing
contexts have been shown to have a social impact (Sauppé and Mutlu, 2015). Thus,
it is important to take a wide perspective on the creation of these interactions,
including but expanding on low-level details such as grasp planning (Marturi et al.,
2019) to include more social aspects like gesture (Sauppé and Mutlu, 2015), and
high-level sub-task organization (Pearce et al., 2018). Furthermore, these types of
interactions are likely to become more common in both the workplace (Galin and
Meshcheryakov, 2019) and home (Wilson et al., 2019), and will require thoughtful
design at all levels.

Therefore, unlike standard robot programming, collaborative design involves
a back-and-forth between one or more agents, and involves differing capabilities,
timings, sensory awareness, and communication styles between agents. While do-
main experts may have the knowledge of how to implement some of these different
factors in a context-specific manner, this may not translate into an ability to coa-
lesce this information into an effective human-robot collaborative program. What
is needed going forward are two mutually dependent developments: tools that
support domain cobot experts in the design of truly collaborative interactions, and

3

representations of tasks, behaviors, and activities that are well-matched for the men-
tal models that these experts may use, while also being amenable to transformation
and reformulation by the aforementioned tools that utilize them.

1.2 Thesis Statement
My thesis is as follows: Tools and systems which support domain experts during
the programming process through the use of task and program representations,
transformation, and relevant feedback can support the design of collaborative
robot behaviors. This dissertation aims to provide partial support to this thesis
through a mixture of empirically validated systems and research-motivated systems.
The precise representations and methods used herein are varied, but all place some
degree of focus on considerations such as motion and space, program logic and
interaction flow, and the valuation of tradeoffs during the design process. The
approaches to these designs follow one of two paths: either the design focuses
on the creation of a tool which, though the use of these aforementioned custom
representations and methods provide a lower barrier to entry for the existing level
of expertise of robot programmers, or the design focuses on the application of
similar concepts in a design that supports learning and improvement of robot
programmers’ skills.

1.3 Methodology
To explore this thesis, I utilize a variety of approaches, generally including an initial
exploration of the problem space, followed by the design and implementation of a
system, and finally an evaluation of the system, in either a summative or formative
manner. Evaluations may also include an exploration of case studies.

The first stage of this process is to explore the problem space. In some cases, this
involves consulting existing literature, previous work, or performing on-site visits,
and generally involves identifying a specific challenge faced by companies con-
sidering collaborative robots and brainstorming techniques that could be applied.

4

During this open-ended initial phase, these different challenges may be considered
with a variety of possible solutions, factoring in metrics like suitability, feasibility,
and utility.

The second stage involves the design and implementation of a candidate solution.
This may involve the creation of an algorithm, specification (e.g., a Domain-Specific
Language), an interface or system, or most likely, a combination of all three. This
stage is generally iterative, and may involve a number of prototypes, possibly
involving the use of formative evaluations which guide development.

Finally, these systems may be evaluated using a mixture of approaches. In some
cases, the algorithms designed can be evaluated using concrete metrics, such as
algorithmic performance or output quality. In other cases, the systems are evaluated
using a more qualitative approach, such as a user study or case study. In either case,
the goal is to evaluate the system in a manner that is appropriate for the system
itself, and to provide insight into the strengths and weaknesses of the system, as
well as places with potential for future work.

As a final note, this dissertation utilizes the term “representation”, which in this
context we define as both the set of elements that are used to describe a program,
as well as the way in which these elements can be combined. This is inherently
connected to the the concept of a user’s mental model, but is not necessarily the
same. The extent to which the representation facilitates an effective mental model,
or one conducive to the task at hand, is a key consideration in the designs we
consider. Additionally, it is highly related to the concept of a Domain-Specific
Language (DSL), but with at times relaxed definitions.

1.4 Users and Stakeholders
An important consideration in this space of collaborative robot programing is the
specific target users we are focused on, since whatever tools, representations, and
algorithms are used need to be designed for these individuals. In this dissertation,
we define our overarching target user profile as a domain expert. A domain expert
is someone who is highly knowledgeable in a certain field or subject matter. Further-

5

more, we refine this set of individuals to ones that are focused on the development
of behaviors relevant to the design of collaborative robot behaviors. We can assume
that the users of such systems are skilled, and motivated to engage in the program-
ming experience in a professional capacity. What we don’t assume, however, is that
these are necessarily experts in collaborative robotics. In fact, given the current lack
of expertise in this specific arena, we assume that these users are in fact not experts
in collaborative robotics, but instead experts in fields for which their expertise
provides unique value to the collaborative robotics space. Additionally, we are not
targeting individuals like workers who interact with robots programmed by these
experts as formal users, instead considering them stakeholders in such systems.
In the section below, I outline a collection of user profiles that we consider in the
following chapters and discuss the motivation for their inclusion. As a point of
contrast, I also discuss various stakeholders - like workers - and discuss how these
may overlap and differ from the set of target users. These profiles and stakeholders
are summarized in Figure 1.1. As a final note, I do not explicitly refer to our target
users as "end-users," like the ones described by Lieberman et al. (2006), due to the
complex relationships between various stakeholders and users in this space, and
the fact that the users we consider are not necessarily the end-users of the systems
they create.

User Profile: Automation Expert

Automation experts are conventionally trained in domains such as industrial or
mechanical engineering. They may have either an associate’s degree or a bachelor’s
degree. Sufficiently large companies may hire such individuals internally to assist
in automation, while smaller companies may contract this work out to “integrator”
companies with automation experts on staff. Automation experts provide the initial
implementation and maintenance of automation solutions within a company. This
may involve converting current human-centric processes into automated ones, or
modifying existing automation solutions for performance or quality improvement,
or as needs or products change. In terms of technical skill, these individuals may

6

be familiar with rule-based automation systems, like ladder logic in Programmable
Logic Controllers (PLCs), as well with more general-purpose programming lan-
guages like Python or C++. In the area of collaborative robotics, these experts
may be attempting to increase automation in a task that is difficult to fully automate,
likely due to some skill or knowledge needed, and which the worker provides.
They therefore have the immediate goal of restructuring the process, such that the
worker is still able to provide that skill, while the robot manages the rest. While
simple low-interaction implementations are more easily accomplished, higher-level
interactions involve more complex rules than something like ladder logic provides,
and the interactivity and concurrency becomes more challenging in a strictly proce-
dural or imperative form. Furthermore, these experts may not be familiar with the
components of the interaction like safety, signaling, synchronization, and commu-
nication that were not critical in traditional automation. In this dissertation, we
explore systems focused on this profile of user in Chapters 3, 4, and 7.

User Profile: Ergonomics Specialist

Ergonomics specialists are typically trained in domains such as human factors, and
are generally trained in the analysis and improvement of workflows and processes
in manufacturing and industrial settings, so as to improve the health and safety
of workers. Sufficiently large companies may hire such individuals to continually
monitor and improve the ergonomics of their processes, adapting to changes in
products and assembly lines. They are familiar with varying methods of model-
ing human work, and analyzing workflows within these models for metrics like
ergonomic strain, suggesting changes when necessary. If collaborative robots are
introduced, such individuals may be asked to provide feedback about whether a
given solution is within acceptable ergonomic and safety limits.

While these specialists have a highly technical background in the modeling and
analysis of human work, and generally have deep knowledge about the nature of
the work being done, they are generally not familiar with the specifics of robot
programming, and therefore lack the technical knowledge to directly contribute to

7

the programming process. Methods for which they can leverage this ergonomic
and task knowledge in assisting roboticists and automation experts is therefore of
interest. In this dissertation, we explore systems focused on this profile of user in
Chapters 3 and 7.

User Profile: Motion Designer

Unlike the previous two user profiles, this type of user is not necessarily tied to the
field of manufacturing or robotics. Instead, these types of users may be trained in
design and art, such as animation, game character design, or even dance, working in
places like the entertainment or game industry. While education levels vary, these
individuals bring with them a deep practical knowledge and artistic perspective
on how motion can be used to convey information, intention, and more. Technical
expertise may also vary, but many in animation and game design are familiar with
tools like Maya (Autodesk, 2023), Blender (Blender Foundation, 2023), and/or
game engines like Unreal (Epic Games, 2023). Animation systems generally employ
a timeline and keyframe-based approach, whereby the positions and configurations
of joints on character skeletons are specified at points in time, and the system
interpolates between these points to create a smooth animation. Game engines
can also be used, and generally provide more infrastructure to handle swapping
between different animations, as well as interaction between these animations and
physics-based environments. Such individuals may be asked to contribute to the
design of certain robotics applications, and will be essential going forward to make
collaborative robotics more acceptable and natural for their human partners.

However, despite their applicable knowledge and experience, there don’t cur-
rently exist many avenues by which these individuals can contribute to the im-
provement of collaborative robot interactions. Additionally, while their knowledge
of movement and motion is relevant, there exist certain differences and constraints
in the way that robots function, versus the way characters may be animated. For
example, in a digital medium, animation may employ a variety of techniques such
as squash and stretch which can violate rules of rigid robotics, depending on the

8

specifics of the impementation. Furthermore, even game animations can take cer-
tain liberties with physics when transitioning between different animations, which
may not be possible in a physical robot. In robotics, these motions may be more
tightly coupled with real-time sensing and perception, which may be unfamiliar to
animators. Therefore, methods by which their valuable insight can be incorporated,
while also respecting the particulars of collaborative robotics, are needed.

In this dissertation, we explore a system focused on this profile of user in Chapter
5.

Stakeholders

In the interest of comparison, it is useful to consider how the above set of users may
differ from the types of individuals who may benefit or find of interest the systems
presented in this dissertation. In Figure 1.1 I present a set of three such stakeholders
(business leads, workers, and roboticists), which I will briefly summarize here.

The first stakeholder we consider is the business lead, who may be a manager,
director, or other individual who is responsible for the business decisions of a
company. They may be trained or have experience in business and analytics, and in
this context, may have interest in utilizing collaborative robots in order to improve
process efficiency, product quality, reduce costs, or improve worker safety. However,
these individuals need clear metrics and evidence that collaborative robots will
provide these benefits in order to justify the investment. We consider a system in
Chapter 7 which may be of interest to these stakeholders.

Workers are a natural stakeholder in the introduction of collaborative robots,
as they are the ones who will be working alongside them. While they may not
have the technical knowledge to contribute to the programming process, they may
have valuable insight into the nature of the work, and what portions they would
most like improved. After the introduction of a collaborative robot, these are the
individuals who would benefit from an effective application, and suffer from a poor
one. On the other hand, they may have concerns about the introduction of robots,
and how it may affect their job security. Given the importance of this stakeholder,

9

and the multifaceted nature of their involvement, Chapters 3, 4, 5, and 7 all may be
of interest to these stakeholders.

The final stakeholder we consider is a roboticist. This is a broad term, and not
exclusive from the automation experts in the set of user profiles. Depending on
the system and their role, they may also serve as stakeholders. This may occur in
cases where the target user comes from a design background, and the result of their
work is a specification that needs to be implemented. Therefore, this role serves
as a reminder that in various circumstances, the identities of stakeholders and
users can be more complex and nuanced. Roboticists can come from backgrounds
such as computer science and engineering, and working in either industry or
academic settings. Their jobs may involve the technical implementation of robotic
systems, including the design of sub-systems, as well as the integration of these
subsystems within architectures such as ROS (Robot Operating System) (Quigley
et al., 2009). As such, clear descriptions of what the intended systems may be, how
those descriptions translate to implementation, as well as the ability to organize
these systems in coherent ways, are necessary. Chapters 5, 6, and 7 may be of
interest to these stakeholders.

1.5 Contributions
The contributions of this dissertation include the design of algorithms and program
representations that operate upon them for the specification of collaborative robotic
programming, as well as the implementation of systems that utilize these repre-
sentations and algorithms to support the design of collaborative robotic programs
by a variety of domain experts. The overarching goal in supporting this design
process is to address the current gap between the capabilities that collaborative
robots have, and the ability of domain experts (e.g. automation experts) to utilize
them effectively.

In some cases, this involves designing representations, like DSLs, that are well-
suited for the domain experts’ current mental models in order to support knowledge
gain. In other cases, this involves considering how to make more complex represen-

10

tations more accessible to these experts at their current levels through feedback and
automated processing. Usually, elements of both are present. Addressing these
approaches are systems like CoFrame, which uses a variety of education-focused
methods to improve the the types of collaborative programs that current engineers
can produce. Lively, another tool created for non-robotics experts, focuses on a
method of motion specification that prioritizes a workflow adjacent to the current
workflows of animators, while incorporating specific improvements meant to sup-
port dynamic, collaborative activities. Authr is a system which by using specific
action primitives, supports the creation of more complex collaborative programs,
while maintaining simplified program representations. Finally, Allocobot is an in-
progress system which improves on Authr’s approach by considering a greater
range of action primitives, and by incorporating a more robust transformative
process.

1.6 Dissertation Overview
This dissertation is organized as follows: Chapter 2 provides a background on
collaborative robotics, including a discussion of current collaborative robot deploy-
ment, program design in this space, proximal development, and representations
for collaborative interactions. Chapters 3-6 include the systems and tools that were
designed as part of the work within this dissertation by myself and collaborators.
Chapter 7 introduces ongoing work, Allocobot, that will build on many of these
prior works. Finally, Chapter 8 concludes the dissertation with a discussion of the
contributions of this work, as well as a discussion of future work.

11

Trained in domains
such as industrial or
mechanical
engineering with an
associate s̓ degree or a
bachelor s̓ degree. May
be direct employees or
contracted.

Translate human-only
processes into
collaborative
interactions, balancing
contributions of humans
and robots, and
managing tradeoffs.

Higher-level interactions
require more flexible
logic, more subsystems,
and management of
concurrency and
synchronization, as well
as domain knowledge
outside their own.

Lack the technical know-
how to practically
implement robotic
behaviors, infrastructure
not present to allow their
input in the
programming process.

Experience with real-
time systems, and how
they may execute on
physical robots is
limited. May not have
formal programming
experience.

Authr
CoFrame

CoFrame

Allocobot

Authr
Allocobot

Lively

May serve as a
consultant that
addresses areas for
improvement in human
processes, possibly
through the introduction
of collaborative robots.

Improve the quality of
interaction, as well as
reception of robot by
workers, through motion
design.

Trained in domains
such as human factors.
Familiar with the
analysis of workflows
for their physical
impact on human
workers.

Trained in domains
such as animation, and
game character design.
Familiar with tools for
specifying keyframe-
based behavior, and
know about motion
legibility and use.

Stakeholder Profiles

User Profiles

Description Goals Challenges Projects

Trained in business and
analytics, and focused
on improvements to
product value, process
efficiency, and worker
satisfaction and safety.

Making decisions and
business plans about
whether and how to
introduce collaborative
robots in their
companies. Seek clear
metrics illustrating
value.

Tradeoffs for product
production and quality,
worker recruitment,
retention, and liability are
complex and mutually
dependent. Cobot value
may not be clear until late
in development.

Poor implementations of
interactions may be
unsafe or ineffective.
Traditional automation
may displace jobs.

Systems are constructed
as amalgamations of
subsystems, which may
need synthesis and
organization for effective
use. Clear descriptions of
intended systems are also
needed.

Allocobot

Authr

Allocobot

Allocobot

Lively
OpenVP

Lively

Vested interest in
maintaining occupation,
but may desire
improvements to
workflows that benefit
them.

Tasked with the
technical challenge of
implementing behaviors
within robotics
technologies such as
ROS (Robot Operating
System).

May be highly skilled in
particular processes
and workflows, but not
necessarily through
formal education.

May have backgrounds
in computer science
and/or engineering,
focused on robotics.
May be working in an
academic or industry
setting.

Description Goals Challenges Projects

Ergonomics
Specialist

Automation
Expert

Motion
Designer

Worker

Roboticist

Business
Lead

Figure 1.1: A table of the target user profiles and stakeholders considered in this
dissertation. Images for target users and stakeholders are generated with AI.

12

AuthrSequential
Programming

CoFrameBlock-Based

State-Based

API

Optimization/
Verification

Motion Planning

Motion Synthesis

Reinforcement
Learning

Action Primitives

Content/Structure
Feedback

Flow-Based
Programming

Action Primitives

Lively

Allocobot

Program
Augmentation

User
Assistance Tool Design

Authr

Project

CoFrame

Allocobot

Knowledge/Skills Gap

Current
Status

Ideal
Usage

User
Assistance

Program
Augmentation

Lively

Figure 1.2: A graphical representation of the systems presented in this dissertation,
as well as their main approach in addressing the skills gap challenge for specifying
collaborative robot behavior. This skills gap is represented as a chasm by which the
designer/programmer must cross. Some systems reduce this gap by supporting
their current models of work and knowledge, allowing for proximal advancement.
Other systems aim to reduce this gap by providing tools that support the creation
of more complex programs, thereby lowering the barrier for entry.

13

2 background

2.1 Collaborative Robot Deployment
Collaborative robots, commonly called “cobots”, are a class of robots focused on
providing assistance to human workers in a shared workspace as full coworkers
(Fanuc, 2023; Kuka, 2023; Universal Robots, 2023). Features such as sensing, com-
pliance, a smaller form-factor, and safety mechanisms that allow them to work
in close proximity to humans usually separate these types of robots from their
non-collaborative peers, and are intended to work alongside humans, rather than
in isolation (Javaid et al., 2022). The premise therefore is to provide assistance to
humans in a way that is safe and comfortable. According to Grand View Research
(2023), they are also growing in popularity, with the cobot market expected to
expand at a compound annual rate of 29.9% in the U.S. and 32.0% between 2023
and 2030 globally. They reflect a push in industry referred to as "Industry 4.0,"
characterized by an increased usage of technology and automation, as well as fea-
tures like artificial intelligence (AI) and the Internet of Things (IoT), and of course,
robotics (Ortiz, 2020; Le et al., 2020).

Physically, most archetypical cobots are single-arm manipulators, intended to
be mounted onto either a mobile base or a fixed structure. Such robots include
devices such as Universal Robots’ UR-Series (Universal Robots, 2023), KUKA’s
LBR-Series (Kuka, 2023), and FANUC’s CRX-Series (Fanuc, 2023). These robots
are typically designed to be used in a wide variety of applications, and are often
used in manufacturing (especially in small and midsize enterprises), logistics, and
healthcare (Universal Robots, 2023; Kuka, 2023; Fanuc, 2023). However, interest
in more humanoid robots is also growing, such as Agility’s “Digit” robot (Agility
Robotics, 2023) and Sanctuary AI’s “Phoenix” robot (Sanctuary AI, 2023), where
the goal is to produce robots that are more capable of performing human-like tasks
in more human-like manners. Other solutions blur the line between humanoid
or animal-like robots and collaborative robots, such as Rethink’s “Sawyer”, which
features a screen with facial features (Rethink Robotics, 2023), and Boston Dynamics’

14

“Spot” robot, which features a quadrupedal design and manipulator arm (Boston
Dynamics, 2023). While these and the humanoid robots represent a class of robots
less clearly aligned with the term “cobot”, they nevertheless feature many of the
same characteristics and design goals.

Cobots are primarily meant to be deployed in places like Small-Medium En-
terprises (SMEs) and manufacturing settings (Schnell, 2021; Ortiz, 2020; Le et al.,
2020). For example, current cobot usage includes tasks such as palletization (as-
sembling groups of items from other groups), pick-and-place (retrieving objects
and delivering them to a certain area), and applications of glues, adhesives, and
coatings (Kakade et al., 2023).

However, their deployment lags behind their potential (Michaelis et al., 2020;
Berger and Armstrong, 2022). To this point, Berger and Armstrong (2022) compare
the capabilities of cobots to their non-collaborative peers. These non-collaborative
robots are generally inflexible, focused on single, predictable tasks. They are gener-
ally regarded as considered unsafe, and therefore must be sequestered behind safety
cages. That being said, it is relatively straightforward for integrators to program
certain tasks, after which only routine maintenance and minor updates may be
needed. In contrast, cobots are designed to be safe around people, and are sold as
flexible solutions. Despite this, as Michaelis et al. (2020) notes, cobots are often
used in the same way as their non-collaborative peers. Berger and Armstrong (2022)
and Michaelis et al. (2020) attribute this to the fact that the selling point of cobots
– their flexibility and collaborative potential – makes their usage more complex.
Reprogramming in diverse product mix environments requires not just an initial
programming, but likely routine reprogramming and adjustments. Furthermore,
as Berger and Armstrong (2022) note, many companies are reluctant to welcome
integrators into their companies on such a regular basis, on account of fears that
this may lead to a loss of proprietary information. In such cases, this leaves the
task of programming cobots to inside talent, which do not typically have the level
of expertise to design and implement complex cobot programs. To understand
why this is the case, we must also understand why cobot programming is not as
straightforward as their non-collaborative counterparts.

15

2.2 Program Requirements of Collaborative Robotics
Collaborative robots present unique challenges to programming and behavior
specification. These challenges are rooted in the fact that cobots are designed to
work alongside humans, and therefore must be able to adapt to the dynamic and
unpredictable nature of human behavior. This is in contrast to non-collaborative
robots, which are typically designed to work in isolation, and therefore can be
programmed to perform a single task in a predictable environment.

To begin, all collaborations are not the same. A variety of different metrics
have been used to categorize collaborative work, such as the scheme defined by
Phillips et al. (2016). This scheme defines three different levels of collaborative
interdependence, specifically Pooled Interdependence, Sequential Interdependence, and
Reciprocal Interdependence. In Pooled Interdependence, each individual works inde-
pendently with minimal direct interaction between them. The example given in
their paper is the work of a robotic vacuum, which independently performs its task
with only minimal intervention (e.g. in cases where the robot gets stuck). These
types of interdependence are present in manufacturing contexts as well, where
one worker may perform some aspect of work while a colleague works nearby. In
Sequential Interdependence, each individual works on a task in sequence, and the out-
put of one individual can serve as the input for the next. While disruptions to one
individual’s subprocess may have downstream effects, the pre-defined structure
of the task avoids many ambiguities about coordination strategies. Examples of
sequential interdependence include cases like assembly lines. Finally, in Reciprocal
Interdependence, each individual contributes to a task simultaneously, usually with
an assignment of specific aspects of the collaborative work, and a high level of
cooperative behaviors and signalling. Tasks such as this could include collaborative
assembly, where one worker holds an object while the other performs some action
on it. Another method of categorizing collaborative robot interactions was created
by Christiernin (2017), which instead grouped these interactions into four increas-
ing levels of interaction ranging from Level 0, featuring no interaction, to Level 3,
featuring a high level of interaction and use of joint activities. Regardless of the

16

specific method of classification, these distinctions are important, both because they
differ in the complexity of their design, but also because they differ in how they
impact the individuals performing them. For example, Zhao et al. (2020) found
that higher levels of interdependence were associated with less physiologically-
measured stress for the human worker, and improved perceptions that they were
working with another collaborator.

If greater collaboration and interdependence have such benefit, then why not
have more? The issue is that doing so requires both a deep understanding of the
task to be performed, as well as the ability to create behaviors for the cobot that
adequately communicate intent, attention, and understanding. For example, the
use of gaze and joint attention has been shown to improve task performance and
perceptions (Huang and Thomaz, 2011; Andrist et al., 2017). At a practical level,
however, the implementation of such a system requires apparatus to track the
attention of the human worker, detect the focus of the attention, and then allow the
robot to reason about how that attention relates to its knowledge of the process
being completed.

Similarly, the relation between the physical motions that the cobot makes and
their temporal and spatial relation to the human worker is also important. For
example, robots that are too slow to respond to human actions such as handovers
negatively impact both their perceptions of the robot and the task efficiency. Ideally,
such systems are able to detect and adapt to these timings (Huang et al., 2015;
Huang and Mutlu, 2016). This also extends to the framing that the actions take,
where user-centric approaches can promote actions better suited for the specific
human worker (Wang et al., 2020).

This isn’t the only manner in which a cobot may need to adapt in real time,
however. Safety is a major concern in collaborative robotics(Siebert-Evenstone et al.,
2021). Despite their safety features, it is still possible to program unsafe actions,
or incorrectly handle unexpected human behaviors. The difficulty in managing
this unpredictability is in part due to the complex nature of what defines an unsafe
action, since the same behavior executed at a different speed, or in a different
location, while carrying a different object, may be designated as safe or unsafe.

17

Compounding this issue is that robotic motions, especially ones that involve robots
with sufficiently high degrees of freedom, are the product of multiple joint states,
which can be difficult to reason about. If the human worker is poorly modeled, and
their current positions poorly estimated, this makes the aforementioned challenges
even more difficult. The challenge in resolving these ambiguities has made it a
major hurdle to the successful integration of cobots into the workplace (Tian et al.,
2023).

Coordination and collaboration is not simply timing and motion. While gaze
and attention are important, they represent only a portion of the types of social
behaviors that contribute to the overall experience. Whether intended or not, cobots
are generally received by their collaborators as social entities (Sauppé and Mutlu,
2015), and their acceptance by these collaborators is in large part dependent on
how well they make use of these social cues. For example, gesture cues and lifelike
motion have been shown to improve the perceptions of cobots (Elprama et al.,
2016; Cuijpers and Knops, 2015; Terzioğlu et al., 2020). It is why Fischer (2019)
argues that collaborative robots should embrace this social and emotional aspect of
collaboration.

The logic of the collaborative program requires consideration as well. Whereas
traditional robotics could in large part utilize non-branching logic methods given
their cyclical and repeated behavior, many sequential and most reciprocal collabo-
rative tasks require architectures more amenable to the handling of control flow
and events, like the ones mentioned above. This has led to the interest in represen-
tations which support this type of framing. These vary from imperative approaches
(Huang et al., 2016; Huang and Cakmak, 2017) to trigger-based approaches (Senft
et al., 2021b) to flow-based (Alexandrova et al., 2015). Regardless of structure,
it is important to note that these programs are not the syntax alone, but also the
physical representation of the program, given that the behaviors specified in these
programs are meant to be executed by an embodied physical agent working in a
physical space. As such, Ajaykumar and Huang (2020) emphasize the importance
of visualizing and communicating this information to the program specifier.

18

2.3 Proximal Development and Scaffolding
As seen, collaborative robotics represents a diverse set of challenges, given the
complexity of the tasks, and all the different aspects of the implementation that
must be considered. A contributing cause of their relatively limited deployment
thus far (considering their potential) is that the individuals tasked with condensing
all the necessary factors into programs are trained in standard robot programming.
They lack the background and perspective to consider these interdependencies
and interactions because they were irrelevant to the domain they were trained in.
Alternatively, individuals who may provide these perspectives might not have the
technical expertise or access to the tools needed to contribute to the programming
process.

So how then do we bridge this gap? The domain of education suggests that this
can be accomplished in part by scaffolding (Berk and Winsler, 1995; Gonulal and
Loewen, 2018). This idea, predominantly discussed in the concept of childhood
education, comes from the theory of the Zone of Proximal Development by Lev
Vygotsky. Specifically, it suggests that when an individual is learning something
new, there exists a gap between what they currently know, and what they are trying
to learn. The challenge is that at their current level of understanding, the individual
may not be able to fully grasp the full scope of the new concept all at once. Instead,
intermediate steps within this zone of proximal development are needed that allow
the individual to gradually build up their understanding of the concept.

This can be applied to the context in which individuals learn to program. Young
(1981) suggests that programmers develop a mental model of the program while
doing development work, and Mayer (1981) suggests facilitating approaches by
which the current knowledge of the programmer can be connected to the novel
information they have yet to learn. All this motivates the idea that part of the
solution to bridging this gap is to create methods by which the programmer or
contributor can be introduced to these concepts, while still allowing them to leverage
their existing domain expertise.

This is only part of the solution, however. Even with scaffolding and highly

19

effective representations, the problem remains difficult. Therefore, any solution
also needs to consider how feedback and program augmentation can be used to
supplement the capabilities of the programmers. Porfirio and colleagues have done
this in the context of social robotics, creating systems which improved the quality
of robot programs through verification and support (Porfirio et al., 2018, 2020). To
fully realize the potential of collaborative robotics, solutions must consider how to
frame these problems in a way that is accessible to the programmer, and how to
provide feedback and support that allows them to create programs that improve
the quality of the resulting programs.

2.4 Representations of Collaborative Interactions
To understand what types of representations are used, and how they may need to
adapt for collaborative robots, let us first consider many of the methods by which
cobots are currently being programmed.

In terms of current usage, the most common method of programming is through
the use of imperative or sequential programming approaches (Michaelis et al.,
2020), frequently through the use of systems like Universal Robots’ Polyscope soft-
ware(Universal Robots, 2023), which feature a hierarchically-organized sequence
of behaviors. While these systems can be extended with custom scripting, the core
assumption of sequentiality remains, much like in conventional robotics.

These behaviors can be either manually scripted, or taught through methods
like Programming by Demonstration (PbD) and Kinesthetic Teaching, where the
robot is guided physically by the programmer through a series of actions which
demonstrate the desired behavior (Billard et al., 2008; Akgun et al., 2012; Skoglund
et al., 2007). While having the benefit of leveraging the physical embodiment of
the robot within the space, and being generally easy to use, these methods can
be limited in their generalizability, since in the simplest cases, the only feature
recorded is the sequence of keyframes, thereby lacking higher-level understanding
of the intended task. Additionally, during a demonstration there may be aspects
of the demonstration which are intended, while others may be unintended or

20

superficial. Some methods have been developed to address these limitations by
specifying multiple demonstrations and prioritizing certain demonstrations over
others Sakr et al. (2022) or incorporating a labelling process (Ravichandar et al.,
2020). While the implementation details differ, these methods attempt to use
these demonstrations and labels to infer higher-level representations of the task,
independent of specific demonstrations. In the end, however, the result of these
methods is a specific skill, possibly parameterizable, which can be executed from
within a larger context.

A high-level approach to programming cobots involves planning. In this ap-
proach, the programmer specifies a set of valid actions, which include rules about
when their usage is valid, and what the expected outcomes of performing them
are. A planner algorithm takes this specification, along with a the current state of
the world and the goal state, generating the set of actions needed to arrive at the
intended goal state. A common representation for these planning specifications
is the Planning Domain Description Language (PDDL), for which a variety of
versions exist with varying flexibility and capability of expression (Fox and Long,
2003). It has also been extended to the Hierarchical Domain Definition Language,
which allows for the hierarchical specification of skills (Höller et al., 2020). To
be clear, PDDL and HDDL refer to the representation of the specification, not the
algorithm used to generate the plan. A variety of algorithms exist for this purpose,
each with differing capabilities and performance characteristics. If executed once,
the output of these solvers is a static plan that could be executed from start to finish.
Since the plans themselves don’t adapt to changes in the environment that occur
during the planning or execution process, a common approach is to use replanning
algorithms, by which the solver will periodically recompute a plan, usually when a
discrepancy is detected between the expected state and the observed world state.

This type of planning is not meant to be confused with motion and trajectory
planning, which similarly involves the specification of a current and goal state,
but instead focuses on the lower-level challenge of finding the sequence of joint
or motor commands that move the robot between them. A variety of algorithms
to perform this function exist, such as OMPL (Şucan et al., 2012) and TrajOpt

21

(Schulman et al., 2013). Like standard planners, replanning is frequently combined
with these methods, usually to handle safety and incorporate collision avoidance
(Palleschi et al., 2021).

There exist a variety of different state-based or flow-based programming ap-
proaches for specifying higher-level behaviors. These include behavior trees (e.g.,
CoSTAR (Paxton et al., 2017)), and flow diagrams (Fogli et al., 2022). With these
approaches, tradeoffs exist between high expressivity and ease of use, as shown
with CoSTAR, which allows for the specification of complex behaviors, but requires
a high level of expertise to use.

Finally, given the success of Large Language Models in program generation,
interest has grown in using these methods to generate robot and cobot programs.
In some cases, these methods can be used as alternatives within the approaches
outlined above, such as in PDDL planning (Silver et al., 2022), or more standalone
vision-language-action systems (Brohan et al., 2023). While these methods are
intriguing and promising in many ways, certain concerns currently remain, such
as the forgetfulness with which these systems can generate programs (Chen and
Huang, 2023).

In short, the methods by which cobots are programmed are diverse, and tend to
focus on varying levels of the task specification. For example, some approaches may
focus on the high-level structure of the task or the overall plan, while others focus on
the low-level details of the motion. This impacts the work within this dissertation.
At times, this means borrowing from higher-level approaches described here, or
ones which are more analogous to the sequential structures of traditional robotics.
Through strategic application of analysis, synthesis, and optimization methods to
these representations within specialized tools and systems, we look to improve the
effectiveness of cobot programmers.

22

3 authr

The work presented in this chapter concerns the rationale, design, and imple-
mentation of Authr, a system for authoring human-robot collaborative plans from
specifications of agent-agnostic ones. Prior to this work, there had been research
considering the process of allocating work between humans and robots as optimiza-
tions meant to minimize cycle time and ergonomic strain (Pearce et al., 2018), but
little that considered how such systems would be made accessible and usable to
the individuals (e.g. engineers) who could use them.

This is an overlooked, but essential consideration. As discussed, there is cur-
rently a disconnect between the theoretical capabilities, or promise, of cobots, com-
pared to their current usage (Michaelis et al., 2020). Despite their capability and
demonstrated utility in certain instances, their usage is comparatively low (Berger
and Armstrong, 2022), and the reason is that the key benefit of cobots (as opposed
to automation) – collaboration – is made difficult by the lack of straightforward
ways to reprogram, reconfigure, and integrate into existing systems. Contributing
to this challenge is the lack of skills and knowledge of the individuals who would
be responsible for such integration (Michaelis et al., 2020; Berger and Armstrong,
2022).

Therefore, the challenge of adding a collaborative robot, and understanding how
it should be utilized, is an essential stage in facilitating this adoption. Moreover, any
such solution needs to be accessible to the individuals who would be responsible for
the integration. Authr attempts to address this challenge by providing a system that
allows users to specify tasks in a way that is familiar to them, and then automatically
generates a collaborative plan that can be executed by a robot.

The work in this chapter addresses four key technical challenges involved in
human-robot teaming: (1) representation: representing work for both human inter-
pretation and robot execution; (2) task-skill matching: creating human-robot plans
that match task elements with worker skills while achieving task goals; (3) robot
programming: implementing task elements for collaborative robots in a way that

23

supports exploration of task plans across robot platforms; and (4) authoring pipeline:
facilitating intuitive and effective translation of manual work into human-robot
plans1. Building on methods and tools from ergonomics, robotics, and human-
computer interaction, we address these challenges by (a) formalizing a task- and
action-level representation that is human-interpretable and robot-executable, (b)
utilizing a multi-agent allocation algorithm that generates plans that match worker
skills to task elements within task constraints, (c) developing a software stack
which converts plans into robot-executable actions built on an extendable Robot
Operating System (ROS) (Quigley et al., 2009) infrastructure, and (d) designing an
intuitive software environment that enables users to effectively create human-robot
plans.

In the remainder of the chapter, we discuss these technical challenges in more
detail, describe our solutions for each challenge, present the system design and
implementation of Authr, describe two user studies that evaluated different facets of
human-robot teaming using Authr, and discuss our findings and their implications
for the design of tools which support the authoring of human-robot collaborative
plans. The contributions of this work include:

• A novel workflow to translate manual human tasks to human-robot tasks;

• Novel representations and formalizations for modeling, planning, simulation,
and implementation;

• The design of an authoring environment that supports users in following this
approach;

• An open-source implementation of the environment for public use and further
development;2

1The research discussed in this chapter is derived from published work by myself and Curt
Henrichs, Mathias Strohkirch, and Dr. Bilge Mutlu. All authors contributed significantly to the
conceptualization, design, implementation, evaluation, analysis, and/or the writing of the original
manuscript.

2https://github.com/Wisc-HCI/authr

https://github.com/Wisc-HCI/authr

24

• Empirical evaluations of the approach and the authoring environment through
a series of user studies.

Target Users

In this work, the design of Authr was meant to target individuals like automation
experts and ergonomics specialists. Given the potential overlap between these two
fields, or the likelihood that individuals in each group may collaborate towards
automation goals, a key consideration was to design a system which was intelligible
to both users. For this reason, representations like Therbligs were chosen, as they are
commonly used in ergonomics and human factors research. Process representations
like Hierarchical Task Analysis (HTA) (Stanton, 2006) were also utilized, as they
may also appear in both fields. In line with our understanding of both groups, we
sought to design a system that through these familiar starting points and beneficial
feedback and assistance would allow users to create and iteratively explore the
design of collaborative robot plans.

Research Questions

Authr represents the first and most rigorously empirical exploration of customized
authoring tools for human-robot collaboration this dissertation. Importantly, we
consider whether certain representations are both effective and understandable by
the target users, the effects that providing assistance like automated agent allocation
have on the overall quality of a human-robot plan, and what the impact of such
capability - or lack thereof - has on the user experience.

3.1 Background
A great deal of prior work has focused on the development of visual programming
environments (VPEs) to enable easy programming of tasks. A primary example
is the student-oriented Scratch interface, which uses a block design to indicate

25

conventional programming constructs (Maloney et al., 2010). This approach has
inspired a number of VPEs such as Hammer, a robotics-focused, android-based
programming tool allowing novice users to design programs for robot arm move-
ment and tool use (Mateo et al., 2014), and Code3, a drag-and-drop system built
for the PR2 robot (Huang, 2017), among others. Another influential VPE, LEGO
Mindstorms NXT Programming Environment, focused on education and robotics (Kim
and Jeon, 2007; Klassner and Anderson, 2003). Flow designs have also been investi-
gated: Roboflow embeds pre- and post-conditions into flow structures, focusing
on a low-level specification of behaviors for robotics (Alexandrova et al., 2015);
and ROSco (ROS Commander), a tool created for the PR2 Robot, uses hierarchical
finite state machines and low-level building blocks to specify spatially situated
actions (Nguyen et al., 2013). While all these interfaces contributed substantially
in a variety of ways, they generally focused on specifying robot behavior, as opposed
to human-robot collaboration.

The space of human-robot collaboration specification is still quite new. The
ROBO-PARTNER project has helped by articulating the needs and requirements of
such systems, namely user-friendly interfaces, planners that allow the creation of
efficient human-robot collaboration task plans, robot instruction libraries that allow
for easy generation and modification of robot programs, and continual attention to
safety concerns (Michalos et al., 2014, 2015). In an attempt to begin addressing these
requirements, the CoSTAR system was developed, which integrates perception and
reasoning into behavior trees (Paxton et al., 2017, 2018). While the interface was
successful in allowing users to specify complex programs, users had difficulties
understanding the types and intentions of the robots’ actions. RAZER was designed
for task-level programming to allow shop-floor operators to leverage lower-level
actions developed by experts, and it was later extended to support programming
by demonstration (Steinmetz et al., 2018, 2019). They compared their solution with
systems such as CoSTAR and Scratch, finding RAZER to be easier to understand by
non-experts. Graphical representation of the workspace to assist users in creating
task graphs have also been explored Riedelbauch and Henrich (2018).

In an effort to improve the efficiency of human-robot plans, research into multi-

26

agent task planning has been explored with works such as Tercio Gombolay et al.
(2018) and multi-abstraction search approach (MASA) (Zhang and Shah, 2016). Tercio
takes inspiration from real-time processor scheduling for multi-robot hierarchical
problems. The objective is to assign tasks to agents and schedule tasks with the
goal of minimizing change in agent assignment and minimize number of spatial
interfaces between tasks assigned to different robots. MASA uses a multi-level
optimization approach with three phases: finding an initial solution for agent
placement, hill-climbing to minimize maximum make-span, and finally refinement
to the solution. While both approaches work well for optimizing agent allocation,
there is a relatively high planning time. Another consideration is prioritization of
various goals such as maximal efficiency and minimal strain, as shown by Pearce
et al. (2018). They found that tasks that benefited most from the goal of minimizing
time and ergonomic strain were ones which enabled parallel work, were repetitive,
and utilized robot-performable actions.

Researchers have started to address how to leverage agent allocation in human-
robot-collaborative authoring environments with systems such as Sharedo (Kato
et al., 2014) and WeBuild (Fraser et al., 2017). Sharedo functions as a structured
to-do list for daily tasks where multiple agents (human, robots, virtual-assistants)
coordinate based on their capabilities. WeBuild provides allocation of tasks for
multiple humans with varying capabilities in order to offload group coordination.
Our work, drawing from the related literature, addresses the challenges of authoring
human-robot collaboration within the manufacturing context.

3.2 Technical Approach
Translating manual tasks into human-robot task plans involves a number of techni-
cal challenges. We discuss these challenges in this section and detail our solutions
in the next section.

27

1. Representing tasks for humans and robots

Translating tasks that are currently performed manually by human workers into
human-robot plans requires representing them in a way that is both interpretable
by a human, so that they can be trained on the task and their performance can be
assessed, and executable by a robot. Tasks describing manual work in manufactur-
ing settings are generally represented as written natural-language lists of mid-level
descriptions of task actions. Although this representation is human-interpretable,
implementing tasks into robots based on these descriptions is challenging (Paxton
et al., 2018). Furthermore, users without the necessary experience in developing
collaborative applications may generate implementations which are not generaliz-
able across robot platforms and are ill-suited for task-level analysis of plan efficiency
or safety. Therefore, we need a representation that enables the user to capture task
elements from natural-language descriptions or from qualitative observations of
the task and to specify task elements for humans and robots to perform.

2. Matching task elements with worker skills

Answering the question of which aspects of the task that robots and humans should
perform is critical to realizing the promise of human-robot teaming for improved
productivity and worker safety. This requires effectively matching human and
robot skills to elements of the task, considering the cost of the human or the robot
performing the elements. Furthermore, while a simple matching can determine
whether a specific task element can be performed by a human or a robot, it does
not help the user determine whether it should be performed by a human or a robot
given specific task expectations and requirements, such as speed (a robot that can
perform a task element may be too slow) and ergonomic safety (a task element that
a human worker can perform much more efficiently may be ergonomically unsafe
for the human worker). Hence, there is a need to match task elements to the skills
and capabilities of human workers while considering outcomes such as efficiency
and safety at a task level.

28

3. Supporting exploration across robot platforms

When engineers in industry are considering converting a manual process into one
involving a collaborative robot, either as automation performed by the robot or
collaboration between the robot and a human operator, they are faced with the
decision of using manufacturer-provided software environments (e.g., Universal
Robots Polyscope3), utilizing third-party tools (e.g., Artiminds4), or developing
a custom software solution built on top of low-level APIs. Compounding the
problem of making an informed choice is a potential lack of experience in developing
collaborative human-robot teaming applications (Michaelis et al., 2020). Therefore,
we need to provide a tool that enables users to quickly and easily evaluate their tasks
for multiple robot platforms before purchasing a particular robot. For example,
an engineer interested in understanding whether a Universal Robots UR5 robot
or a Franka Emika Panda robot would better fit into a given task would likely
have to implement the same task for both robots using different programming
tools or setups, as highlighted by the creators of the CoSTAR robot programming
environment (Guerin et al., 2015). Furthermore, if the engineer is interested in
seeing alternative task plans in action to further refine them, the user must program
each plan individually. Users should be provided visual or demonstration-based
robot programming tools in order to easily program robots and integrated planning
tools to easily handle skill-based task allocation. Thus we need to enable the user
to quickly and easily develop, deploy, view, and modify task plans for end-to-end
exploration across multiple collaborative robot platforms.

4. Developing an intuitive and effective authoring pipeline

A final technical challenge is to enable users to rapidly and iteratively capture
task models for manual work, explore human-robot task plans, and deploy the
created plans on robot platforms for assessment, refinement, and training. Although
users might have prior experience with robot programming tools, such as the

3https://www.universal-robots.com/
4https://www.artiminds.com/

https://www.universal-robots.com/
https://www.artiminds.com/

29

demonstration or visual-programming tools that are commonly used to program
collaborative robots, we must create intuitive software tools that users can quickly
learn and use in order to effectively facilitate the complex process of human-robot
teaming.

1. Creating a shared representation for human-robot work

The goal of our representation is to facilitate the translation of natural-language
task descriptions to a formal representation that remains interpretable to human
collaborators, yet robots can understand and perform without having to update
their underlying implementation. The tasks being translated are generally in the
form of written natural-language lists composed of task specific actions or tasks
that can be observed by an engineer as they are being performed by an operator.
Although examples of translating task-specific actions into robot action primitives
exist in various domains (e.g., cooking (Bollini et al., 2013) and route-navigation
(Bugmann et al., 2004)), these solutions tend to be highly contextual or robot-
specific. One promising solution is Therbligs, as proposed by Gilbreth and Gilbreth
(1924), which address the issue of defining operational action primitives for human
work. Researchers have since applied Therbligs to modeling or specifying robot
behavior in various contexts (Lin and Chiang, 2015; Jun et al., 2012; Pearce et al.,
2018; Akrout et al., 2013).

Our representation builds on Therbligs and is further inspired by the work of
Pearce et al. (2018) where they modeled human-robot tasks using Hierarchical
Task Analysis (HTA) with lowest-level sub-tasks allocated between humans and
robots. In work analysis literature, HTA decomposes tasks into nested sub-tasks
until sufficient detail is achieved to perform work actions (Stanton, 2006). Our rep-
resentation adopts this approach with two important changes. First, our approach
only considers three levels in HTA, operationalized as the Plan, Task, and Therblig,
where Therbligs function as sub-tasks. Second, Therbligs have both high- and low-
level parameters. High-level parameters include Agents, Things, Destinations, while
low-level parameters include numerical values, such as gripper effort, time, and

30

cost.
Agents, Things, and Destinations—In our representation, Agents. Things, and

Destinations are used to fully specify the high-level behaviors of Therbligs. Consider
the action of a robot placing an item, such as a mug, in a container for shipping. In
this case, we can think of the transport action as the Therblig. High-level parameters,
such as Agents, Things, and Destinations serve to characterize these therbligs and
more clearly define their behavior. Thus, in the mug packing example, the Therblig is
specified by the Agent performing it (the robot), the Thing being moved (the mug),
and the Destination it is moved to (the shipping container). Thus, the combination
of high-level parameters and the Therbligs serve to symbolically define the action to
the engineer. In Authr, we consider an Agent to be any physical actor in the work
environment that performs a relevant action within the context of the Plan and has a
type (human or robot). Things are regarded as objects within the environment that
are manipulated by Agents in the Plan. Destinations are operationalized to combine
semantic labels, such as the described location (e.g., the “shipping container” in the
example above) with a concrete position and orientation that a robot could act on.
Due to this representation, Authr enforces a strict set of spatial expectations on the
workspace, meaning real-time dynamics and variability are not considered in the
current version of the system. As such, this solution works well for clearly defined
workspaces (e.g., kitting), but not for ones with variable Thing counts or positions
(e.g., bin-picking).

Plan, Tasks, and Therbligs—At the highest level of our HTA approach is the Plan,
which in Authr reflects the entirety of the human-robot collaborative work being
designed. The Plan is composed of Tasks, which represent high-level descriptions of
behaviors used to achieve specific processes in the Plan. Tasks, in turn, are composed
of Therbligs. The full set of 18 Therbligs includes physical actions, cognitive processes,
and behaviors that are both physical and cognitive (Gilbreth and Gilbreth, 1924).
For the current implementation of Authr, we focus on physical actions, resulting in
the following list of Therbligs: (1) Transport Empty, (2) Transport Loaded, (3) Grasp,
(4) Release, (5) Rest, and (6) Hold. These Therbligs are also listed in Figure 3.1 along
with their descriptions. By focusing exclusively on physical Therbligs, our task

31

space is generally constrained to pick-and-place-type tasks (e.g., kitting, assembly,
palletization). Some limited tool use can be created in an ad hoc manner (e.g.,
grasping a screwdriver and defining screwing rotation through multiple Transport
Loaded Therbligs), but tasks requiring cognitive evaluation (e.g., force-sensed peg-in-
hole or component inspection) are currently not addressed in our representation.
Further work is needed to operationalize cognitive and mixed cognitive-physical
Therbligs.

Setting an Agent for the high-level parameter of a Therblig has the effect of
allocating it to that Agent, and leaving it empty prompts automated allocation.
Other high-level parameters, such as Things and Destinations are required. These
high-level parameters are used to generate pre- and post-conditions of each therblig,
which serve to describe when the Therblig can be performed and what the effect on
the workspace will be. In the mug packaging example from above, given that the
action was configured with the robot, the mug, and the shipping container, we can
say that for this action to be performed, the robot must be both holding the mug,
and the space for the mug in the container must be empty. At the end of the action,
both the mug and the robot will be positioned at the container. The full breakdown
of parameters, pre-conditions, and post-conditions for our Therbligs are shown in
Figure 3.1.

Alongside high-level parameters (Agent, Things, and Destinations), we need a
way to standardize and compare the quality of Therbligs to sufficiently allow for
shared representation of these collaborative tasks. Low-level parameters support
this reasoning by providing low-level information required to execute an action by
the robot, but may not be required by the human (e.g., gripping effort). In this way,
if a robot can theoretically perform the task, and if it is allocated the Therblig, it has
the necessary information to perform the task. Low-level parameters also provide
comparative power to Therbligs allocated to separate Agents. Time to complete
an action can be simulated by the robot, but knowing the time for the human to
perform the task would be necessary for determining which Agent is fastest at
performing it. Likewise, if a task is hard for a human but easy for the robot (or
vice versa), being able to weigh these values is necessary for thoughtful allocation

32

of tasks. One common metric of difficulty is ergonomic strain, and being able to
flexibly define this cost for a given Therblig and Agent can empower the engineer to
construct programs that provide robotic assistance where it is needed most.

Therblig Parameters Pre-/Post-Conditions
Transport Empty

Transport Loaded

Release

Grasp

Rest

Hold

Reaching for a thing with an
empty hand or gripper

Moving a thing with a hand or
gripper to a destination

Letting go of a thing from
a hand or gripper

Grabbing a thing with a hand
or gripper

An inactive period or pause
at a destination

An inactive period while
holding a thing

Agent

Agent

Agent

Agent

Agent

Agent

Destination

Destination

¬gripping()pre

location()=post

gripping() location()=location()pre

location()= location()=post

gripping() location()=location()pre

post

post

¬gripping() location()=pre

gripping()pre

¬gripping()post

¬gripping() location()=location()pre

gripping()post

Duration

Effort

Duration

Destination

Thing

Thing

Thing

Thing

Figure 3.1: A description of the Therbligs implemented in Authr, including parame-
ters, pre-conditions, and post-conditions.

2. Enabling effective task allocation in human-robot teams

A critical challenge in authoring human-robot collaborative tasks is the gap be-
tween engineers’ ability to construct single-agent programs and the know-how of
designing interactive tasks. Even if some tasks or sub-tasks are only executable by
one Agent, the rest of the interaction needs to be planned in a way that incorporates
those restrictions on agent allocation. Since many engineers from the manufac-
turing domain have access to task specifications (albeit non-interactive, manual
ones), we sought a representation that translates this type of non-agent focused
representation into an interactive plan. Our operationalization of Therbligs, along

33

with the parameters we specify, allows for a direct translation from their task spec-
ifications to the shared Therblig representation, from which the interactive Plan
is constructed. This construction process requires any non-specified Agents to be
allocated to a given task, all while accommodating specified (i.e., parameterized)
Agents and considering cost and time estimates.

Our proposed allocation process is performed in a series of steps. First, the Plan
is checked using the SMT solver Z3 (De Moura and Bjørner, 2008), in which the
pre- and post-conditions of each therblig are translated into first-order logic and
verified. This same algorithm is used continuously during plan construction to
provide feedback about program correctness to the user. Next, the Plan is further
checked that all needed parameters are defined, since not all parameters need to be
set for verification to succeed. Following this parameter check, the Plan proceeds
to allocation. For this purpose, a breadth-first search through the interaction is
utilized, resulting in a set of possible interaction traces. In the worst case, the state
size upon applying each Therblig tn of t1, t2, ..., tn has an upper bound of 2n for
two agents. However, we observe that users typically chain together consecutive
Therbligs for an Agent into individual Tasks (e.g., pick-and-place: Transport Empty →
Grasp → Transport Loaded → Release). Due to the pre- and post-constraints, Things
act as tokens constraining the growth of the state space, and the state space grows
instead with 2m where m is the number of Tasks. Since these traces are modeled as
a single sequence of consecutive actions (for computational efficiency), the Plan is
then parallelized such that allocated Therbligs are performed as soon as possible
while maintaining first-order logic. The resulting traces are compared for overall
time and cost, using the provided time and cost weights, and the optimal interactive
Plan is returned.

The method described above was chosen because it most closely matched the
formulation of the Plansas provided by the users, namely an initial state and a set of
non-allocated Therbligs to perform. With some additional work, and some caveats,
the Plans can be converted into standard planning-based problems. The first caveat
is that due to the nature of our approach, the ordering of Therbligs is constrained for
a given Agent. Combined with the token-like nature of Things, this means that users

34

can specify sequences of Transport Loaded Therbligs, thereby creating waypoints,
with certainty of the ordering that the Agent will visit them. Additionally, if some
intermediate placement of an Agent or Thing is required, but not captured in the
final state, a coarse planning will not result in this configuration, unless segmented
into multiple planning problems or supplying additional explicit goals.

While the allocation and parallelization algorithms specified were sufficient
for the complexity and size of Plans considered in this study, it is important to
consider how such methods compare to more conventional planning approaches.
To this effect, we ran benchmarks with our process and a Multi-Objective Divide-and-
Evolve (MO-DaE) algorithm, which is an evolutionary algorithm which supports
multi-objective planning (Dréo et al., 2011; Khouadjia et al., 2013). Since interactive
design is a key component in the user’s workflow, we needed any algorithm to be
sufficiently fast. Thus, we capped the maximum compute time at 90 seconds for
quick user feedback. As input, we modeled three Plans (shown in Figure 3.2) in
Authr based on real-world manufacturing tasks. Each Plan was evaluated five times
with each algorithm. Our algorithm was deterministic, so there was no variation
other than slight differences in compute time.

The first Plan models a kitting task (assembling objects into containers or kits)
in which there is a grouping of four toys and four batteries on the left side of the
workspace. The goal of this Plan is to move one toy and one battery into four separate
boxes, located to the right. The second Plan models a circuit board assembly task.
The initial state of this Plan consists of a group of four nuts located to the right of a
PCB, and two cables positioned above the board. To complete this assembly process,
one nut must be screwed onto each corner of the circuit board, and each of the two
cables connected to the circuit board. The third Plan models a repair task in which
two faulty components are replaced by new components on a circuit board. The two
components are functionally different, with one requiring considerable cost for the
human to place but not remove. This repair task starts with the two distinct faulty
components attached to the circuit board and the two distinct new components off
to the side. The goal of this Plan is to remove both faulty components, placing them
to the right, and replace them with the new components of the same type, located

35

Re
pa

ir

Initial Goal

Toys
Boxes

As
se

m
bl

y

Initial Goal

Plugs

Screws

Ki
tt

in
g

Initial Goal

Toys

Batteries

Boxes

Robot End-Effector

Human Hand

Figure 3.2: For the technical evaluation, we constructed three manufacturing tasks:
Kitting, Assembly, and Repair. For Kitting, top, a toy (cylinder) and a battery
pack (cube) were moved to each container. In Assembly, middle, screws (grey
cylinders) are placed in each of the four corners of a PCB and rotated, while two
cables (pink cubes) are placed in the center. Finally Repair, bottom, features two
faulty components (red cubes) being removed and replaced with new parts (green
cubes).

36

to the left.
In order to estimate the Therblig times for the human Agent, we set up a physical

representation of each task and recorded the amount of time it took for a human to
perform each Therblig.

For each of the three Plans we evaluated, we targeted different time and cost
metrics. In the first Plan (kitting), the objective was focused on minimizing time,
so the optimization weights for time and cost were set to 0.6 and 0.4, respectively.
In the second Plan (assembly), the objective was to minimize cost, so time and cost
weights were configured at 0.05 and 0.95, respectively. Of concern in this Plan was
the ergonomic strain for humans in screwing in the nuts. Thus, the cost of this
action was configured to be higher for human than robots (0.9 vs 0.2). In the third
Plan (repair), we set the cost weight to 0.6 and the time weight to 0.4. In this Plan,
we were interested in the effect of a high cost related to a single action and Agent,
as opposed to a class of actions.

Results of both methods (Authr Allocation versus MO-DaE) for the three differ-
ent Plan types are shown in Figure 3.3. This evaluation showed that while the two
methods were roughly comparable for optimizing in Plan time, cost, and overall
score, the compute time for these similar metrics was less for our implementation.
Since a focus of Authr is to enable the exploration of Plans, especially through
iterative refinement, we chose to utilize the simpler implementation outlined above
for further testing. However, we note that while this method was sufficient for
these purposes, alternative methods may be superior with Plans of different size or
complexity.

3. Implementing task plans into a collaborative robot.

Authr connects to a server developed for Robot Operating System (ROS) (Quigley
et al., 2009), running on Ubuntu. We chose to develop our system in ROS to enable
future integration with physical robots. For robot trajectory planning, estimating
Therblig action time, and simulation, our implementation uses MoveIt (Chitta et al.,
2012), specifically using Open Motion Planning Library (OMPL) (Şucan et al.,

37

0
20
40
60
80

100
Co

m
pu

te
 T

im
e

0
5

10
15
20
25

Ov
er

al
l P

la
n

Sc
or

e

Kitting Assembly Repair

Kitting Assembly Repair Kitting Assembly Repair

0

10

20

30

40

Ov
er

al
l P

la
n

Ti
m

e

Kitting Assembly Repair
0

10

20

30

Ov
er

al
l P

la
n

Co
st

Figure 3.3: We evaluated the Authr Allocation and Parallelization algorithms (blue)
versus a MO-DaE planner (grey) with three different Plans (Kitting, Assembly, and
Repair) on 4 different metrics (Compute Time, Overall Plan Score, Overall Plan Time,
and Overall Plan Cost). Lower scores for all metrics are desirable.

2012). Because MoveIt is freely available and configurations are easily made, this
choice makes adding additional robots to Authr straightforward. While the current
implementation allows the user to choose from the Franka Emika Panda or Universal
Robots’ UR3, UR5, and UR10, any robot with a MoveIt configuration could be added.
Utilizing a standard inverse-kinematics and motion-planning tool enables us to
achieve our goal of a shared representation by converting our spatial-semantic
representations to robot-specific control. Thus, Therblig behavior implemented on
top the motion planner achieves Agent-agnostic functionality.

38

Setup Workspace

Simulate Result

Create Task

Add Therbligs

Parameterize & Review

Se
tu

p
Pl

an
Si

m
ul

at
e

Figure 3.4: The three modes in Authr. In setup, users first configure the workspace;
Destinations are able to be added, deleted, and modified, and each Agent and Thing
gets assigned an initial location in the scene. Moving into planning in the Plan Tab,
Tasks are represented as containers for Therbligs and are ordered from left to right.
Within each Task, Therbligs are ordered from top to bottom. Therbligs and Tasks are
also configured. In simulate, after designing an interaction, users can simulate the
actions of human and robot Agents.

39

4. Facilitating the exploration of human-robot task plans.

Authr integrates the above representations and technologies into a visual program-
ming environment. This environment is built using the Angular web framework
(Google, 2019) as a browser-based application, which connects to a ROS-based
server using Robot Web Tools (Toris et al., 2015). Authr has three modes, setup,
plan, and simulate , which a user works through in five main steps, (1) setting up
the workspace, (2) creating tasks, (3) adding therbligs, (4) parameterizing, and (5)
simulating the result (Figure 3.4). The first step is for a user to set up a workspace,
as the Agents, Things, and Destinations created in this step will be needed for the
following steps. Next, the user can create a Task and a set of Therbligs that will be
performed in this Task by dragging them from a library and dropping them in the
Task container. The user can then parameterize the Therbligs and review any errors
identified by Authr. Based on these errors and the remainder of the Plan, the user
can either decide to create another Task or continue adding Therbligs to an existing
Task. At this point, the user can also navigate to the simulation view to see the plan
played out. After reviewing the simulation, the user can create another Task to add
to their Plan if desired. Below, we detail how users would perform each step.

Workspace Setup—This phase lets users set plan-level parameters and configure
Agents, Things, and Destinations. One or two Agents (one human and/or one robot)
must be defined. Users also specify Things, which include cubes, spheres, cylinders,
and containers and can be customized with size and color. When Agents or Things
are created, Destinations that specify their initial locations are automatically created.
Additionally, users can specify new, unpaired Destinations as waypoints or goals.
While configuring Destinations, users can inspect the robot action times for all
possible Destination pairs in a table generated by the motion planner. If a Destination
is unreachable, the robot time entry is marked invalid, prompting adjustment from
the user. Users are able to adjust the placement of Agents, Things, and Destinations
within a 3D simulation view or, alternatively, through manual entry.

Creating Tasks—Users develop their collaborative plans through a drag-and-drop
mechanism. Users can create any number of Tasks, which will be executed from left

40

to right. As users are developing their Tasks, they may find that they are repeatedly
creating Tasks containing the same sequence of Therbligs. Users create macros by
exporting a Tasks as a template of parameterized Therbligs. When a user then drops
a macro into a Task container, the macro expands back into a sequence of those
parameterized Therbligs.

Adding Therbligs—Users can drag Therbligs from the source drawer and drop
them into Task containers. Therbligs can be rearranged within and across Tasks.

Parameterizing—While the user is developing the task structure they may open
a contextual menu by clicking on an element. If the element is a Therblig in the
source drawer, then the contextual menu provides an informational description of
the Therblig. Selecting a macro from the source drawer displays the sequence of
parameterized Therbligs saved within. Clicking on a Task brings up the ability to
export it as a macro. Finally, selecting a Therblig contained within a Task provides
access to its parameters.

The Therblig contextual menu affords configuration of both high- and low-level
parameters. High-level parameters (Agents, Things, and Destinations) are presented
as icons with a drop-down list for configuration. All Therbligs request an Agent
parameter and may also request Thing and/or Destination parameters. Unique to
Agent parameterization is an option to defer to the allocation algorithm, presented
as an optimize option in the Agents drop-down list. Low-level Therblig-specific
parameters (e.g., time, cost, effort) are presented when applicable. For time and
cost, when a user provides a human as the parameterized Agent, the contextual
menu simply requests the time parameter. However, when the Agent is deferred
to allocation, both time and cost for the human Agent and cost for the robot Agent
need to be specified.

The parameter view also provides the user with feedback on any errors associ-
ated with that Therblig. In addition to identifying missing parameters, the same
Z3-based verification algorithm used in the allocation process is executed upon
plan updates, and provides helpful error messages, e.g., “Agent must not be grip-
ping.” As a visual shorthand, the interface also indicates the presence of errors for
a Therblig with a red notification icon within its tile.

41

Simulating—Users enter the simulation phase to evaluate their resulting Plan.
On entry of this phase, Authr runs the Agent allocation algorithm on the designed
Plan. With successful allocation, the user may start, pause, stop, and reset the
simulation in real-time. Robot simulation is handled through MoveIt, and human
simulation is simply linear interpolation between Destinations. Also shown in the
simulation view is a timeline for each Agent’s allocated Therbligs. The timeline
representation, a lá Interaction Blocks (Sauppé and Mutlu, 2014), was chosen due to
the inherent temporality that it affords. Clicking on a Therblig within the timeline
will expand a context menu displaying its duration and cost. While simulating
the Plan, the Therblig being performed in the 3D simulation by an Agent is also
highlighted within the timeline.

If the user enters simulation with an invalid plan, the view is replaced with a list
of errors detected. While the user is simulating the Plan, they may find that their
Therblig sequence is not performing as they intended (e.g., they forgot to indicate a
Transport Loaded to a way-point Destination). The user may then switch to either the
setup or planning phase to fix the error or refine their plan.

3.3 Evaluation
To gauge the ability of our technical solutions to support the creation of task plans for
human-robot teams, we carried out two evaluation studies. The first study focused
on our solution to the first technical challenge, creating a shared representation, and
assessed the extent to which Authr provided users with an appropriate vocabulary to
model tasks. The second evaluation focused on our solution to the second technical
challenge, translating task models into human-robot task plans, and evaluated
Authr’s ability to effectively allocate task steps to human and robot Agents. Both
evaluations also measured the general usability of and user experience with Authr.

42

Evaluation 1: Shared Task Representation

The first evaluation aimed to assess the ability of our HTA- and Therblig-based
framework to support the modeling of manual tasks as well as the general usability
of the software. To achieve this goal, we asked engineers and engineering students
to implement a simple kitting task using Authr. This evaluation used a version
of Authr without the Simulate Mode and was constrained to manual allocation
of Therbligs. This version provided a simulation view in setup where users could
move the robotic arm for virtual kinesthetic teaching.

Participants

A total of eight participants were recruited from a university campus. All partic-
ipants (5 males, 3 females) were native English speakers with an average age of
27.63 (SD = 21.61). They either held or were pursuing a degree in either industrial
engineering or mechanical engineering.

Procedure

After providing informed consent, participants interacted with an early version of
Authr, which lacked the simulation and optimization components considered in the
later evaluation. Participants were shown a short 9-minute video explaining how
to use the software and the different types of Therbligs they could use. This video
walked users through designing a simple pick-and-place task with a single Thing.
Next, participants watched a video of a human actor, see Figure 3.5, performing
a kitting process with three different types of Things, and were then asked to
implement that process as a Plan in Authr that was performed by a robot. While
full simulation was not present in this version, participants were able to utilize a
simulated robot (Universal Robots’ UR5) for defining the locations of Agents, Things,
and Destinations. After completing the task, participants received compensation at
rate of $12/hour.

43

Figure 3.5: Participants viewed a video of an actor performing a simple kitting task
and used Authr to translate it to a human-robot task.

Measures

Participants were given as much time as they needed to design their Plans and
were asked to verbalize their thoughts in a think-aloud procedure (Ericsson and
Simon, 1998; Van Someren et al., 1994). After the task, users completed the System
Usability Scale (SUS) (Brooke, 1996; Bangor et al., 2008), USE (Lund, 2001), and a
short demographic survey.

Results

Video data was transcribed and coded for emergent themes. These themes are
discussed below.

Theme 1: Planning and Strategy—All eight participants created generally similar
Plans, with a few differences. Only one chose to group all their Therbligs into a
single Task. The remainder chose to group their Therbligs into separate Tasks, based
on the item being moved.

One participant switched from a single Task design to a three-Task design after
setting up the first group of Therbligs in a Task. At the time, the singular Task

44

contained (Transport Empty, Grasp, Transport Loaded, and Release), as well as an
additional Transport Empty which returned the robot back to its initial position to
prepare for the next sequence:

So I suppose I could do 3 Tasks—that’d probably be pretty easy. Grasp,
Transport Loaded, Release, go back to neutral position. I suppose that kind
of makes “Only Task” [Name of the one Task] not make much sense.
Let’s grab Transport Empty, Grasp, Transport Loaded…So that kinda makes
this Transport Empty not make any sense to do, because then all I am
going to do is say Transport Empty again right at the start of this [The
next Task]. (P05)

In this excerpt, the participant made two adjustments. The first was the afore-
mentioned switch to three Tasks, instead of one. In so doing, the participant also
realized that the Transport Empty they were performing, which returned the robot
back to its initial location, was actually unnecessary, as it was immediately followed
by the first Transport Empty of the next Task.

When structuring their Tasks in this way, participants also tended to notice
parallels between the Tasks they created, prompting many to comment or request
some way to either loop through or copy Tasks:

It seems like I am doing the same actions over and over, so it would
be nice if I could use the same Task. (P02)

Exporting Tasks as copy-ready macros had been planned but not implemented
by the time of these evaluation sessions. These comments provided justification for
adding this in the next evaluation.

Theme 2: Destination Configuration—The most commonly cited difficulty par-
ticipants mentioned centered not around Therbligs, but rather the specification of
Destinations in the 3D workspace. The challenge was that to move a Destination or
Thing in the workspace, users had to click and drag various toggles around the
entities. This challenge could be due to lacking a metaphor that they were familiar

45

with (Wingrave and LaViola, 2010). The controls were not immediately intuitive to
users:

I am going to move…how do I…Oh that’s not it. Um oh I see, OK. I
didn’t know how to move it at first, and now I see that you have to move
it like mutually orthogonal in either of the 3 Cartesian directions. (P05)

In order to constrain the space of Destinations to the smaller set of valid Destina-
tions for a given robot arm, we used a procedure in which users moved a marker
around the scene, and the arm attempted to match that pose. Setting the position
and orientation would copy the robot pose to the Destination, as a direct parallel
to kinesthetic guidance (Muxfeldt et al., 2014) which could be used in a physical
workspace to specify locations to the robot. However, this approach did not seem
intuitive to users in this context, as suggested by the following excerpt:

But it is hard to know what moves what. I got it eventually. And then
the robot it isn’t super clear like where the base is and the where the
head starts, and then you have to move the robot to set the Destination,
which…And then like checking how far it can go—that didn’t really
make sense to me. (P03)

To address this confusion, for the final evaluated version of our tool, each Desti-
nation was manipulated directly, and an indicator showed when it was reachable
by the robot Agent. However, for future versions of Authr, this capability may be
added back in, for when users have a physical robot on the scene and wish to use
the physical robot to configure the destinations and object locations more easily,
much like interfaces such as Polyscope and RAZER (Steinmetz et al., 2019).

Theme 3: Simulation—A common comment by participants was that upon com-
pletion, many wished to confirm the accuracy of their Plans by seeing it in action
through simulation:

OK, it looks like it is all good, but I do not know how to test it. (P06)

46

Indeed, one such participant made an error in their Plan that likely would have
been discovered through simulation. In specifying the goal Destinations for the
Transport Loaded Therbligs, they incorrectly used the initial locations of the objects
as Destinations, instead of the goal location specified. This does not create an error,
since a Transport Loaded to the same Destination is valid, albeit non-useful. The
resulting Plan would have shown no movement of items in the scene to the goal
location. This provided further justification for supporting iterative refinement
through the design of Authr.

The quantitative data from the measures of usability and user experience can
be seen in Figure 3.6. The sub-scales of USE had the following scores: Usefulness
(M = 4.56, SD = 1.35), Ease (M = 4.63, SD = 0.856), Learning (M = 5.81,
SD = 0.579), and Satisfaction (M = 4.29, SD = 0.990). The average SUS score was
67.3, (SD = 14.1).

USE Usefulness USE Ease USE Learning USE Satisfaction

1

2

3

4

5

6

7

Su
bs
ca
le
Sc
or
e

SUS

0

20

40

60

80

100

Sc
or
e

Figure 3.6: USE and SUS scores from Evaluation 1.

Evaluation 2: Agent Allocation

For the second evaluation, we turned our focus toward automatic Agent alloca-
tion. Specifically, we studied the ease to which participants author manual Agent
allocation Plans in comparison to authoring automatic Agent allocation Plans. To

47

Initial Goal

Initial Goal

Figure 3.7: For Evaluation 2, we constructed 2 comparable tasks, Cluster Sort and
Ordered Sort. For Cluster Sort, top, participants organized blocks into clusters by
type, and in Ordered Sort, bottom, participants organized blocks into a grid.

understand how engineers may use Authr to perform these tasks, we started partic-
ipants with a more complex sorting Plan where Agents, Things and Destinations are
already defined. We then asked them to implement the Tasks necessary to complete
the Plan. Once completed, the experimenter would load in a different sorting Plan
and repeat the experiment with a different allocation type. The four conditions in

48

the experiment were counter-balanced.

Participants

Another eight participants (6 males, 2 females), aged 21 on average (SD = 0.93),
were recruited for Evaluation 2. All participants were native English speakers and
either held or were pursuing degrees in industrial or mechanical engineering.

Procedure

After providing informed consent, participants interacted with the next version of
Authr, which added full simulation, verification, automatic Agent allocation, and
the adjustments to the interface based on feedback from Evaluation 1. The version
of Authr described in the Technical Approach section was used in this evaluation. A
Universal Robots’ UR5 was used for simulation and design. As in Evaluation 1,
participants were first shown a short eight-minute video explaining how to use the
software, and the different types of Therbligs they could use. This video walked
users through designing a different basic pick-and-place task from Evaluation 1.
Next, participants were instructed on how to view the robot action time table and
use macros by the experimenter. The experimenter worked through one example,
and the macro was deleted after demonstration. Two different sorting tasks, see
Figure 3.7, were provided each with nine Things (three cubes, three cylinders, and
three spheres) that needed to be moved to their goal state according to the condition.
The Things had initial positions off to the right side of the simulated workspace.
In both cases the initial positions of Things were identical. In the Cluster Sort,
participants were asked to move the Things from the unsorted cluster into three
sets of clusters, based on type. Similarly, in the Ordered Sort, participants were
asked to move the Things into a grid formation.

To start the task, participants were provided a reference document containing the
task description with the sorting objective, defined Plan workspace, a time estimate
table for human actions, and cost tables for both Agents. Time and cost tables were
the same between Plans except for robot timing due to differences in Destination

49

positions and orientations. When constructing a Plan in the manual allocation
condition, the participant was asked to explicitly define the Agents without the
allocation algorithm. The experimenter also provided the participant with scratch
paper and a calculator, and instructed the participant to solve the allocation to the
best of their ability. When constructing a Plan in the automatic allocation condition,
the participants were instructed to only use the automatic allocation. For both
allocation conditions, participants were given as much time as they needed to work
through the Plan. Participants were also allowed to use simulation throughout
their design process. Once they felt that their Plan was finished they were given a
series of questionnaires assessing their experience with the tool, after which they
would move onto the second case. Except for the sorting objective and method of
Agent allocation, the procedure for the second Plan was the same as the first. After
the participant completed the second Plan and the associated questionnaire, they
received compensation at rate of $12/hour.

Measures and Analysis

Participants were given as much time as they needed to design their Plans. As in
Evaluation 1, participants were asked to verbalize their thoughts in a think-aloud
procedure. After completing the task, users completed the SUS (Brooke, 1996;
Bangor et al., 2008), USE (Lund, 2001), and NASA Task Load Index (TLX) (Hart
and Staveland, 1988), as well as a short demographic survey.

To gain a more complete view of how users navigated the system, we also uti-
lized a quantitative ethnographic data analysis approach called Epistemic Network
Analysis (ENA) (Shaffer, 2017; Shaffer et al., 2016; Shaffer and Ruis, 2017) to analyze
the usage data, particularly the sequence of actions and utterances by the engineers.
ENA models the structure of connections in data and has a number of requirements,
namely that (1) the data can be structured into meaningful features (Codes), (2)
that the data has a local, or temporal structure, and (3) that the connections between
these codes within that local or time-sensitive frame is important. ENA produces a
weighted network of co-occurrences, along with associated visualizations for each

50

unit of analysis in the data. Critically, ENA analyzes all of the networks simul-
taneously, resulting in a set of networks that can be compared both visually and
statistically.

While originally built to address challenges in understanding learning analytics,
ENA has since been used in a variety of different contexts, such as gaze coordination
during collaborative work (Andrist et al., 2015), and communication among health
care teams (Sullivan et al., 2018). ENA is therefore an appropriate technique for
any context in which the structure of connections between relevant information
is meaningful. ENA is thus a useful in this domain because it can model the
relationships among user actions and utterances as they utilize Authr, allowing us
to better understand how engineers navigate Authr in the various conditions.

We started the epistemic network analysis by coding transcripts and user activi-
ties to generate a set of five informative codes, shown in Figure 3.8. One, Planning,
was generated from transcript data, through the use of the nCoder online tool
(Shaffer et al., 2015). During this process, an automated coder was trained until
a κ = 0.92 was achieved between the human and automated coder. For the re-
maining codes, interface actions and states were utilized. Using these codes, we
then applied Epistemic Network Analysis (Shaffer, 2017; Shaffer et al., 2016; Shaffer
and Ruis, 2017) to our data using the ENA 1.6.0 web tool (Marquart et al., 2018).
Units were all lines of data associated with either condition (Manual or Automated
Allocation) for each participant. The ENA algorithm uses a moving window to
construct a network model for each line in the data, showing how codes in the
current line are connected to codes that occur within the recent temporal context
(Siebert-Evenstone et al., 2017). A moving window was chosen at four lines (each
line plus the previous three lines).

The ENA model normalized the networks for all units of analysis before they
were subjected to a dimensional reduction, which accounts for the fact that different
units of analysis may have different amounts of coded lines in the data. For the
dimensionality reduction, we used a singular value decomposition (SVD), which
produces orthogonal dimensions that maximize the variance explained by each
dimension (see Shaffer et al. (2016) for a technical explanation of the method).

51

Code Definition Examples

Building
Adding to and constructing the plan. This
includes adding tasks and subtasks, as well
as configuration and weight-setting.

- Assigning agents to Therbligs
- ConfiguringTherblings withThings
- SettingTherblig duration or effort

- “So for transport empty probably
just want to use the robot because it
costs less and it seems like it takes
the same amount of time.”

- Viewing the plan specification
requirements

- Using a calculator or notepad

- Viewing Agent information
- ViewingThing locations
- Looking up TOFs

- Switching from External Reference
to the Plan tab

- Switching from the Plan tab to Setup

Verbal articulation by the engineer of their
thoughts as they consider the problem
space or devise strategies.

The action of switching to any external
resource other than the Authr interface.

Referencing information generated or
defined in the Authr interface.

Engineer switches between tabs or screens
as they construct their plan.

Planning

ContextSwitch

ExternalReference

InternalReference

Figure 3.8: Codes generated using system states and nCoder.

Networks were visualized using network graphs where nodes correspond to the
codes in the model, and edges reflect the relative frequency of connections between
the codes. This visualization results in two related representations for each unit
of analysis, the first being a plotted point representing the location of each unit’s
network in the low-dimensional projected space, and the second being a weighted
network graph. The positions of the network graph nodes are determined by an
optimization routine that minimizes the difference between the plotted points and
their corresponding network centroids and then fixed. Since all network graphs are
co-registered in the projected space, the positions of the network graph nodes, and
the connections they define, can be used to interpret the dimensions of the projected
space and explain the positions of plotted points in the space. Our model had co-
registration Pearson correlations of 0.99 for the first dimension and co-registration
Pearson correlations of 0.97 for the second, indicating that there is a strong goodness
of fit between the visualization and the original model.

52

Results

Automated Manual
0

10

20

30

40

50

60

O
ve
ra
ll
Pl
an

Ti
m
e

Automated Manual
0.0

0.5

1.0

1.5

2.0

2.5

O
ve
ra
ll
Pl
an

C
os
t

Automated Manual
0

5

10

15

20

25

30

O
ve
ra
ll
Pl
an

Sc
or
e

Figure 3.9: Resulting Overall Plan Cost, Time, and Scores for Automatic and Manual
procedures. Cost refers to the objective corresponding to effort or wear (depending
on Agent), and Score refers to the overall score, based on the weighted Time and
Cost. Lower scores for all measures are more desirable.

Outcome measures were computed for each produced Plan: Plan Time, Plan
Cost, and Plan Score. Plan Score reflects the weighted average of Plan Time and
Plan Cost that the participants attempted to minimize. Additionally, scores for
the SUS, USE sub-scales, and the NASA TLX sub-scales were computed. Each
outcome measure was analyzed with a repeated measures one-way Analysis of
Covariance (ANCOVA), modeling allocation method while controlling for Plan type
(Sorting or Ordering). Plan Time, F(1, 6) = 6.8274, p = .0400; and Plan Score, F(1,
6) = 6.9791, p = .0384, were found to be significant, where Automatic procedures
outperformed Manual in these cases. No other measures were significant. We note
that these results are based on a small sample and require further validation and
contextualization within qualitative findings.

Video data were transcribed and coded for emergent themes for each Plan
implemented by the participants. Given the complexity of the Plans compared
to Evaluation 1, engineers constructed Plans that showed greater variation. This
included both boundaries for where the Plans were divided up into Tasks, and when

53

manually allocating Agents, how they chose to handle prioritizing duration and cost.
Frequently, participants would express distaste for the workload when performing
manual allocation. These themes are discussed below.

Theme 1: Workload—When performing allocation manually, many participants,
after fully understanding the problem space, articulated negative attitude or frus-
tration with the process. One such participant stated that they did not want to
perform all the necessary calculations:

Okay. I don’t really want to do all the calculations for figuring out
exactly which ones. …So many different possibilities. (P15)

This apprehension towards the problem resulted in a variety of approximation
strategies, detailed below. Others expressed distaste for the work required to
compare charts of times. In the following excerpt, a participant who first performed
the automated allocation procedure remarks about how it differed from the manual
process:

It’s definitely less frustrating calculating the cost than it is trying
to figure out the quickest path going through the the chart the first
way…Cause like quick mental math, I personally liked that better than
trying to stare at the chart…(P10)

When using automated allocation, participants simply had to provide accurate
times for the human, and costs for the robot and human. While this certainly
amounted to some tedious calculation of effort and data entry, as seen here, partici-
pants tended to prefer this to the complex considerations of the manual approach.
We will discuss options for reducing this potentially tedious activity in the future
directions.

That is not to say that the automatic method was without its difficulties. A small
number of participants did initially have some trouble orienting to the more abstract
representation of the task. This problem of representing these more abstracted,
agent-agnostic actions is therefore in need of further research.

54

Theme 2: Strategies—Due to the workload required in the manual allocation pro-
cedure, most participants developed various heuristics or algorithms to determine
the best allocation.

Some participants chose to approximate by looking at trends. In the following
excerpt, one participant averaged rows in the robot times, to get a rough expected
duration. This was compared to the human times:

…and with the sphere, all of the robot numbers look like they’re kind
of a little bit higher than three for where they’re moving it to. Um, if
they like start at the sphere and like move to it. So I was gonna make
the human do that one. (P10)

Others took a more conditional approach, looking for cases where patterns held
or did not hold:

What’s the cost of moving the robot? The cost of moving the robot
is always cheaper. Wait…If it’s always cheaper... Yeah. Then if time
is cheaper than cost should be cheaper for the robot. We should only
consider it when…Since we’re only working with these four and the
robot’s cost is lower than these. So anyway…yeah. Only if the human
time is shorter then we take cost into consideration. (P16)

Heuristics weren’t the only way to approach the problem, however. Other
participants opted to iterate on a Plan, moving Agents from Task to Task. In some
cases, participants would leverage the simulation to assist with this process.

Theme 3: Mistakes and Errors—As seen above, most participants, when manually
allocating Agents, developed various heuristics to determine the best allocation.
Unfortunately, not all these heuristics were valid, or consistently applied.

The excerpt from the discussion of workload also illustrates this line of thinking:

So I’m just going to put these as the robot because it seemed cheap-
er…Yeah. I’m just going to give the robot two of them. Sure. We’ll say
that’s good. (P15)

55

This a common error seen in these heuristics. When participants used less
concrete heuristics, they tended to place a higher-than-necessary emphasis on cost
than described in the instructions. While cost was almost always lower for the robot
(the exception was Rest), the cost was usually small compared to duration, while
weights were equal.

Yet, even larger errors were sometimes made. In the following case, the partici-
pant incorrectly opted to assign all Therbligs to the robot, in order to minimize the
overall cost, but forgot to consider benefits of concurrency:

I feel like I’m not going to use the human at all. I feel like the time
that it’s using—like the 0.66 seconds—will offset the cost of 0.2 versus
0.05 for the transport. That’s my…I know…I’m going to go forward with
moving only the robot. Cost seems like a better benefit. (P10)

This error resulted in a nearly two-fold increase in total Plan score (38.6) when
compared to their automatically-allocated Plan (20.2). This illustrates the large
potential for errors when dealing with such complex allocation tasks in a completely
manual manner.

Theme 4: Modified Workflow— In addition to the differences in the tactics of
problem solving, participants appeared to display a more streamlined reference →
calculate → configure process in the automated condition and a more fragmented
approach in the manual one. This was shown in the results of our ENA. In ENA,
networks can be compared using network difference graphs, which are calculated
by subtracting the weight of each connection in one network from the corresponding
connections in another, visualized in Figure 3.10. To test the significance of the
difference between graphs along the X axis, a two-sample t-test assuming unequal
variance showed that the Automated Allocation condition (M = −0.55, SD = 0.47)
was significantly different from the Manual Condition (M = 0.55, SD = 0.79;
t(11.42) = 3.36,p = 0.01). There were no differences in the Y axis.

The differences in these network graphs illustrate the differences between the
two conditions. As users constructed their plans manually, they had to assemble
information from a number of sources (internally and externally) and use it to

56

construct a program that satisfied the requirements of the specification, while
considering how their choices affected the time and cost of the program. Thus, there
were strong connections in the network between InternalReference, ExternalReference,
and Planning, as well as a stronger connection between Planning and Building. The
relative importance of Planning in this network is important, as it corresponds to the
cognitively demanding aspect of the design process, while Building corresponded
to the actual process of articulating those choices in the program. In contrast, the
network for the Automated Allocation condition is much more localized to a dyad of
Building, External Reference, with ContextSwitch representing the action of switching
between them. As such, engineers using this method were better able to directly
translate the program specification into the implementation, without cognitively
demanding overhead.

Qualitatively, we can consider the following process for P16 as they configured
a series of therbligs:

The participant begins by creating a series of empty Therbligs. P16
then considers the scene from the Setup tab, decides to work on the
second cylinder first based on its location, and then tentatively proceeds
by assigning the robot, choosing to alter the plan later if desired. P16
switches to consult the reference document (on a separate browser
tab), but then needs to check where the robot arm would be. Next,
the participant needs to check the table of robot times to see the time
estimate based on that information and then switch back to the reference
to calculate the expected time and cost parameters:

“What are we working with... the cylinder. Four seconds.”
Finally getting the information, P16 switches back to the Plan view

and enters the information. Throughout the process, the participant
performs multiple context switches to reference different information
from different sources (some internal to the Authr tool and some ex-
ternal), which requires the participant to frequently verbally re-situate
after each context switch.

57

SVD

MR

ExternalReference

InternalReference

Planning

Building

Automated

Manual

ContextSwitch

Figure 3.10: A comparison of the activity networks for Automatic Allocation (red)
versus Manual (blue) conditions. Each network is displayed as both a network
graph and box, indicating the mean and confidence intervals of the networks within
the projected space.

Compare this pattern with the same participant configuring a plan using the
automated process as follows:

The participant creates a series of Therbligs in a Task, configuring the
high-level parameters for Things and Destinations. P16 then switches to
the reference document in the separate tab. The participant obtains the
estimated time and cost parameters and returns to the Plan tab to enter
the information.

Because the automated process utilizes its own information (i.e., robot time
estimates) in the allocation, participants did not need to reference, handle, or utilize
this information, reducing the need to reference internal data. While the participant
had to perform some additional calculations, as seen in the themes above, this

58

process was preferred over the manual approach. This preference was likely in part
because of the more streamlined reference → calculate → configure process of the
automated method.

3.4 Discussion
Our evaluation studies provided us with a better understanding of the extent to
which the technical solution we have developed enabled users to create human-
robot task plans. Our findings from Evaluation 1 indicate that the shared task
representation that incorporated ideas from HTA and work modeling served as
an appropriate framework to model tasks that users observed from video. The
representation not only provided an effective set of building blocks to construct
plans, but it also helped users identify Therbligs that were unnecessary in achieving
the task goal. The evaluation also identified a number of usability issues, specifi-
cally in positioning and assigning Destinations for Therbligs, which informed the
improvements we made in Authr prior to Evaluation 2. Finally, participants re-
peatedly expressed a desire to simulate the actions they were modeling, providing
evidence that simulation is a critical component of any task-planning approach or
environment.

The second evaluation, which focused on assessing the effectiveness of our
technical solutions in enabling engineers to allocate task steps to a human-robot
team, revealed that automated methods for such allocation is critical. Participants
in our study were overwhelmed by the combinatorial complexity when consid-
ering the conjunction of task step ordering, cost, time, and Agent allocation. To
handle this complexity, many participants developed heuristics to simplify the
allocation problem, but these heuristics were ineffective or detrimental when they
were not applied consistently or correctly. Finally, we found that designers using
the automated approach showed a more streamlined workflow for designing and
configuring their plans.Overall, our findings indicate that automated methods that
handle the complex computational process of task assignment to multiple Agents
are essential for any task-planning environment.

59

Limitations and Future Directions

Authr offers a novel approach to the design of collaborative robotic programs, but it
does have certain limitations that motivate a number of future research directions.

First, our solution to the shared task representation problem only focused on
physical manipulation tasks, although real-world tasks will require additional
capabilities such as perception and tool use. The original set of Therbligs that
informed the development of our solution proposed a set of cognitive Therbligs
such as Search and Inspect as well as a set of cognitive and physical Therbligs such
as Use (Gilbreth and Gilbreth, 1924). In our future work, we plan to extend the
current set of Therbligs with the ability to perform cognitive actions and tool use.
The Use Therblig in particular is worth exploring as it can potentially handle a
large number of tools and be applicable outside of manipulation-type tasks. The
challenge with operationalizing Use in an agent-agnostic manner is that a semantic
description of tool use is generally enough for humans to act but is insufficient for
robot instrumentation. That is, the tool’s behavior would need to be algorithmically
defined. We suggest two potential ways to approach the operationalization of Use.
In the first approach, Authr’s high-level parameters could be extended with Tools.
With well-defined behaviors, the Use Therblig may be sufficiently descriptive as
it could utilize the capabilities each tool defines. An alternative approach is to
decompose Use into a larger number of Therblig-like actions (e.g., Use-Screwdriver),
each addressing a different behavior.

We designed Authr on the extendable infrastructure called ROS. While our
current solution does not directly connect to physical robot devices, a minor con-
figuration change and the inclusion of an additional (usually standard) driver
would allow for this capability, since the control is based on inverse kinematics
and simply publishes joint instructions. Our evaluations have thus far not tested
this implementation, but in future work we plan to test the inclusion of a physical
device as a component in the Authr task creation and evaluation processes. This
plan includes the potential to use the physical robot as an input device for object
and goal specification via PbD, as well as a more grounded output for simulation.

60

PbD could also be investigated as a way of simultaneously accumulating data on hu-
man activity time and effort, potentially reducing the amount of parameterization
required.

Our solution also does not address the complexities of variations in object at-
tributes, positions, and counts that would be encountered in complex, real-world
tasks. Some of these problems could be modeled by extending our simulation pro-
cess to account for variance, resulting in more robust time estimates. Furthermore,
future work should incorporate computer vision and sensing capabilities to respond
to this variation and the movements by the human collaborator in real-time.

Low-level parameterization of Therbligs is also currently limited to manual entry
of values except robot action time. Several options to provide sensible default
values instead of relying on user entry could be explored. First, Things can provide
relevant information such as grip-effort based on their intrinsic properties. Second,
a human simulation could be used to generate time estimates similar to the current
approach for robot Agents. Lastly, Authr could allow users to specify cost functions
algorithmically, taking into consideration time, weight, grip effort, and so on, pro-
viding engineers with flexibility to define their own metric without the burden of
manual entry.

A shop-floor human-collaborator mode for Authr should also be explored. Cur-
rently, Authr generates a static plan in simulation with the assumption that human
Agents can follow it precisely. Future work should investigate methods of inform-
ing workers on their current goals, tasks, and future robot-collaborators actions.
How human collaborator’s task performance and cognitive load are affected while
performing Plans developed in Authr alongside a physical robot should also be
studied. Achieving these would require Authr’s representation to handle both hu-
man synchronization and errors not addressed with the static programs currently
generated. This behavior can potentially be exposed to engineers using either
cognitive Therbligs or introducing more general programming control flow. Authr
should also be extended to provide safety awareness such as minimum separation
monitoring during execution and considered when allocating Agents.

Finally, our user evaluations modeled simple tasks (ordering and sorting) that

61

may not represent the complexities of real-world tasks, e.g., an assembly task. Our
technical evaluation of the Agent allocation algorithm used tasks derived from
more realistic situations (kitting, assembly, and repair), demonstrating greater
representational capability. In the future, we plan to carry out evaluations of Authr
with engineers from the local industry in their own environments (instead of our
laboratory) and ask them to create human-robot plans for the tasks that their
organizations perform. We expect such evaluations to provide us with guidance
on how to extend Authr’s capabilities to further support complex real-world tasks.

3.5 Chapter Summary
The Authr tool presented in this chapter represents our first attempt to take the
concept of human-robot task allocation algorithms and translate them into a tool
that can be used by engineers to create human-robot task plans. As shown in this
reasearch, a major issue is that in any design process, a multitude of features and
metrics must be managed in the task specification (authoring) process. This is
partially a matter of knowledge, as seen in the ways that users had to frequently
reference materials or respond to errors identified by the verification engine. It is
also a workload issue, where individuals failed in their attempts to create reliable
heuristics for balancing multiple competing objectives.

These challenges motivate the type of solution we presented, which leveraged
an approach to optimization-based allocation based heavily on that of Pearce et al.
(2018) and Therbligs (Gilbreth and Gilbreth, 1924). This solution was a new tool
aimed at improving the types of collaborative plans that engineers could produce,
providing end-to-end support for human-robot task teaming. To better understand
this process, we have evaluated Authr with engineering students across two user
studies. Our findings from these evaluations indicated that the shared task rep-
resentation that we developed served as an appropriate framework for modeling
existing tasks, and our automated agent-allocation approach facilitated the trans-
lation of these task models into plans that humans and robots can collaboratively
perform, offloading the complexity of various logical constraints, as well as the

62

multi-objective balancing, thereby improving the workflow for users, as well as the
quality of the output.

Whereas Authr sought to improve the workflows for engineers, and improve
the overall process for creating human-robot task plans, the next chapter will focus
on improving both the knowledge of the user through scaffolding, and the quality
of the interaction with rich feedback through the use of a combined programming-
learning environment called CoFrame.

63

4 coframe

More than a third of the facilities that use robotic technology employ collaborative
robots (cobots) (Miller, 2021) and cobots deployed within the manufacturing
context are expected to continue to grow in market share. Industry seeks to mitigate
labor shortages (Autor, 2021) while improving work-cell performance and reducing
human worker’s health risks. To this end, a new generation of manufacturing robots
designed to work in a shared space alongside human operators as collaborators
are replacing conventional caged robots. Work traditionally done by a human can
be parceled into tasks that consider the skill-sets uniquely brought by humans
and cobots (Pearce et al., 2018). Although much research and engineering effort
has been done to bring these robots into the work-cell, the training-procedures,
tools, and practices to support human operators have lagged behind (Michaelis
et al., 2020). This lag results in a “skills gap” for operators working alongside
cobots without the knowledge and skills to customize the robot’s behavior to better
accomplish the task (Wingard and Farrugia, 2021).

Research has identified specific occupations such as craft work, where the skills
gap in utilizing robotic technology is most pronounced (Holm et al., 2021), and
how individuals differ in their specific skills and preferences regarding the use
of cobots (Giannopoulou et al., 2021). Other research has sought to better un-
derstand this skills gap, specifically to address the question, “what do workers
need to know in order to effectively utilize these systems?” Siebert-Evenstone et al.
(2021) interviewed experts in collaborative robotics—including engineers, imple-
menters, and trainers—to identify the skills, tools, and perspectives they utilize
in troubleshooting and programming cobots, developing an “expert model” of
collaborative robotics. Such models serve as opportunities to develop training,
programming, and control interfaces for HRI research. In order to address the skills
gap in collaborative robotics, we developed a digital training environment called
CoFrame that aims to prepare traditional and non-traditional students as operators
of cobots. In this chapter, we present the model of expert skills and knowledge that

64

Business
Objectives

Robot
Performance

Program
Quality

Safety
Concerns

Figure 4.1: In this chapter, we describe a system called CoFrame that integrates a
set of Expert Frames in collaborative robotics, focusing on Safety Concerns, Program
Quality, Robot Performance, and Business Objectives, to train operators in using, pro-
gramming, and troubleshooting cobot applications.

serves as the basis of our automated expert feedback system illustrated through
several system capability case studies.

The contributions described within this chapter include1:

• An operationalization of the Safety First expert model as Expert Frames to
address the cobot skills gap;

• Design and implementation of a design-learning environment that incorpo-
rates the Expert Frames 2;

• A set of case studies demonstrating system behavior and how it provides
feedback during authoring/learning.

1The research discussed in this chapter is derived from published work by myself and Nathan
White, Curt Henrichs, Dr. Amanda Siebert-Evenstone, Dr. David Shaffer, and Dr. Bilge Mutlu.
All authors contributed significantly to the conceptualization, design, implementation, evaluation,
analysis, and/or the writing of the original manuscript.

2Code available at https://github.com/Wisc-HCI/CoFrame

65

Target Users

In this work, the design of CoFrame was meant to more specifically target users
classified as automation experts, who have experience in traditional robotics, but
not necessarily in collaborative robotics. As stated above, these individuals have
many skills that are required in this adjacent domain, but would benefit from
additional training and support to better bridge this gap as they work to implement
collaborative robotics in their workspaces.

Research Questions

CoFrame, unlike Authr takes a different approach to addressing its research questions.
While work on Authr focused on specific assessments that evaluated the effectiveness
of representations and systems, work on CoFrame focused on the question of how
one might translation an empirically defined model of expert knowledge into a
functional training and programming system with rich feedback and assistance.
It also considers what processes might be involved in its use through a set of
hypothetical case studies. In line with its limitations, it does not evaluate the
effectiveness of the system as a whole, which instead is left to future work.

4.1 Background
In this section, we review related work on recent developments in collaborative
robotics, the skills gap that results from the introduction of these technologies into
workplaces, interfaces for cobot authoring and programming, and the state of the
art in cobot training systems.

The Emerging Field of Industrial Collaborative Robotics

Since their introduction to the market in late 2000s, cobots have found widespread
adoption across industries, including manufacturing (Simões et al., 2020), logistics
(Lappalainen, 2019), and medicine (Ernst and Jonasson, 2020). Research in the last

66

decade has investigated the safety and ergonomics of the use of cobots (Matthias
et al., 2011; Fryman and Matthias, 2012; Gualtieri et al., 2021), how work can be
structured to enable humans and robots to work together (Shi et al., 2012; Pearce
et al., 2018), and how cobots can be integrated into production lines (Wojtynek
et al., 2019; Horst et al., 2021). Key insights for the success of cobots from this
body of work include the promise of cobots to improve both the efficiency and
ergonomics of some manual processes (Pearce et al., 2018) (mostly in medium-
sized production volumes (Fast-Berglund et al., 2016)); the need for establishing
well-defined levels of collaboration (Christiernin, 2017; Shi et al., 2012) and forms of
task interdependence (Zhao et al., 2020); and the importance of employee-centered
factors such as the fear of job loss and ensuring an appropriate level of trust in
the robot (Kopp et al., 2021). Overall, this is a rapidly emerging field involving
the development of new technology to enable the integration of robots into work
environments; study their safety, ergonomics, and effectiveness; and work toward
understanding of how they affect human workers.

The Emerging Worker Skills Gap

Cobots offer many benefits across several industries, including productivity benefits
to organizations and health and safety benefits to human workers, but the intro-
duction of advanced technologies, particularly technologies involving automation,
robotics, and advanced interfaces, into workplaces is creating a “skills gap”—a
gap between the skills necessary to utilize these technologies and the skills of the
existing workforce (Ras et al., 2017; Michaelis et al., 2020; Wingard and Farrugia,
2021). In the U.S., nearly half of the job openings, totaling 2.2 million positions, in
manufacturing remain open due to a shortage of workers with the skills necessary
to effectively utilize such technologies (Giffi et al., 2018). In the context of robotic
technologies, the skills gap exists at all levels, from robot operators to researchers
(Shmatko and Volkova, 2020). Although education and training have been pro-
posed as the primary means of closing this gap (Chrisinger, 2019), a recent analysis
of existing educational programs found a lack of emphasis on critical technical and

67

non-technical, or “soft,” skills in these programs (Andrew et al., 2020). Despite
showing that industry lacks the appropriate means, including curricula, materials,
and knowledge, to offer such training, this analysis also highlights the importance of
work-based, hands-on training and apprenticeships. Our work aims to capitalize on
this promise by creating a training system that situates the learning in a real-world
or simulated work environment.

Robot Programming Tools and Environments

An area of collaborative robotics where the skills gap is significant is the program-
ming of cobots for new tasks (El Zaatari et al., 2019). Existing approaches to
addressing this gap primarily involve the development of intuitive and ease-to-use
robot programming that borrow ideas and concepts from end-user programming,
such as the RoboFlow and Code3 visual programming languages (Alexandrova
et al., 2015; Huang and Cakmak, 2017), and the application of these approaches to
the programming of industrial robots (Weintrop et al., 2017). Evaluations of the
effectiveness of these approaches to enable adult novices to program cobot applica-
tions show them to be more effective, usable, learnable, and satisfactory compared
to the existing cobot programming interfaces (Weintrop et al., 2018). Research into
end-user programming tools also include highly advanced robot programming
tools that enable semantic skill demonstrations (Steinmetz et al., 2018, 2019), task
allocations to human-robot teams (Schoen et al., 2020), and AR-based interfaces
that leverage workspaces as augmented programming surfaces (Perzylo et al., 2016;
Gao and Huang, 2019; Senft et al., 2021b,a). However, these systems target intuitive
and rapid programming of robots and do not address the skills gap by advancing
the skills of the user in programming and troubleshooting cobot applications.

Robotics Training Systems and Programs

Prior approaches to addressing the skills gap in robotics highlighted the unique
challenges of working with robotic systems, including manipulating real-world
entities using software programs and situating these skills into real-world problems.

68

For example, Dagdilelis et al. (2005) developed a program that integrated visual
programming to teach robot programming concepts to high-school students. Cobot
systems have also been explored as a medium to teach students at the college level
engineering design (Ziaeefard et al., 2017). To address the challenge of situating
learned skills in real-world problems through hands-on learning, prior work has
proposed the concept of a “Teaching Factory” that offers a factory-like classroom
environment (Mavrikios et al., 2013; Chryssolouris et al., 2016). These environ-
ments offer trainees genuine systems, constraints, and problems to work on and
opportunities to interact with both instructors and practitioners. Prior research
in situating learning in genuine environments also includes the development of
virtual- and augmented-reality based learning environments that enable trainees
to perform work tasks and processes (Matsas and Vosniakos, 2017), although these
systems aim to train workers in collaborating with robots rather than providing the
skills necessary to program and troubleshoot them. Cobot manufacturers provide
training programs targeting specific skills necessary to utilize their products, e.g.,
Universal Robots Academy (Universal Robots, 2021). These programs are used
in vocational training (Słowikowski et al., 2018), although effectiveness of these
resources to address the skills gap is unknown, and experiences of early adopters
of cobot systems indicate that they are not sufficient (Michaelis et al., 2020). Some
research has explored methods for translating expert knowledge to robot operators
(Fantini et al., 2017), although these methods have not been applied in training
systems.

We previously discussed opportunities and challenges in collaborative robotics,
particularly the need to address the skills gap that has become a bottleneck in
the widespread adoption and utilization of cobots. Although the growing body
of research in end-user programming tools can make it easier for workers to use
cobots, addressing the skills gap requires new training programs and technologies
that can help workers obtain expert problem-solving skills and apply them in real-
world settings. Our training system, CoFrame, aims to address this need for cobot
operators.

69

4.2 Expert Model

Collaborative Expert Model

Our implementation of the Expert Model relies on the findings of an ethnographic
study by Siebert-Evenstone et al. (2021) regarding how experts think about cobot
application design. They found that expert thinking falls into a Safety + structure.
Specifically experts keep Safety concerns (collaborative/shared space collisions,
pinch-points, risk-assessment, force sensing, tool/part manipulation) in mind while
considering other aspects of the program, such as Performance Objectives (cycle-time,
speed, payload), Business Objectives (robot wear-and-tear, cost, ROI, efficiency),
and the Application (problem-solving, flexibility/adaptability, robot reach, human
interaction, positioning).

Experts bring a deep systematic understanding to their application design to
balance a variety of critical safety points with concerns of cost and flexibility, and
usability. They examine the use case to determine if a cobot is preferable over a
traditional robot, which specific robot(s) to deploy, what sensors and integrations
are needed, the process sturcture, and how that impacts safety. Traditional manu-
facturing robots are either physically caged or use sensors to detect entry into an
exclusion zone, but cobots are designed to safely work around the human operator
with appropriate programming, provided the integrated end-effector tooling and
workspace are also safe.

In designing the application, experts weigh the cost of the engineering challenge
for a robot to manufacture the part versus having a human operator perform the
activity. Experts typically deploy operators in low interaction roles such as setup,
starting robot, inspection, and ending the process; and emphasize that they should
avoid getting in the way of the robot. Experts consider where the human operator
is within the workspace, their role, and how they are trained to perform it. They
design their applications to make use of external sensors (vision systems) and tools
(conveyors, CNC mills). When an error occurs they have knowledge of what it
means and are able to reason about appropriate solutions.

70

Performance
Factors

Safety

Integration

Programming

Application

Trajectory

Business
Objectives

Robot
Performance

Safety
Concerns

Program
Quality

Reliability
Operator

Figure 4.2: The mapping of the themes from the Expert Model (Siebert-Evenstone
et al., 2021) into each of the four Expert Frames: Safety Concerns (pink), Program
Quality (blue), Robot Performance (yellow), and Business Objectives (green). Figure
adapted from Siebert-Evenstone et al. (Siebert-Evenstone et al., 2021).

To translate the Expert Model developed by Siebert-Evenstone et al. (2021) into
a form compatible with learning outcomes, we reorganized these concepts into
four Expert Frames: Safety Concerns, Program Quality, Robot Performance, and Business
Objectives. This mapping can be seen in Figure 4.2. Each of these frames represent
a lens with which to assess the robot collaboration.

71

Expert Frames

Safety Concerns This frame is heavily based on the safety theme from the Expert
Model but incorporates aspects of the operator and trajectory themes. The Expert
Model focuses on safety, going so far as to place it above the others in terms of
importance. One expert indicated that “I could buy a collaborative robot, but if
I’m moving around steak knives, it’s no longer collaborative, so there’s no point to
using a collaborative robot” (Siebert-Evenstone et al., 2021). Thus, the collaboration
incorporates the orientation and safety of the robot’s tool, the safety of the individual
objects that the robot may be carrying, whether the robot’s trajectories include
possible pinch points or collisions, the robot’s space usage during the program,
and how that interacts with the human’ collaborator’s space. Key to this frame is
providing clear and concrete feedback about the safety of the resulting program; as
individuals with less cobot programming experience may not design a task to be
safe, unaware that they are violating certain safety heuristics (Siebert-Evenstone
et al., 2021).

Program Quality Several themes from the Expert Model, including programming,
integration, application, and operator combine to create this crucial and practical
feedback frame. Many other frames depend on proper specification of the program
to provide meaningful feedback. This frame includes simple program attributes,
such as the parameter satisfaction, and more complex ones, such as how the robot
must adapt to the duration of various machine processes. Specifically, we evaluate
the program based on missing parameters and code blocks, unused skills and
features, empty code blocks, and any logical issues regarding integration with
machines.

Robot Performance With a focus on robot execution quality and ability to perform
actions, this frame includes aspects of performance factors, reliability, and trajectory
from the Expert Model. In many cases, these performance metrics relate to the other
frames, especially Safety Concerns and Business Objectives, and include qualities such
as reachability, the speed of the joints and end-effector tool, payload, and space use.

72

Business Objectives These outcome-oriented feedback metrics guide the design
by enabling operators to consider how their changes to the program affect the
profitability of the robot, or how wear-and-tear might be impacted. This frame
is informed by the performance factors, application, and integration themes from the
Expert Model, and focuses specifically on cycle and idle times of the robot, and the
return on investment.

Frame Relationships

In addition to specifying themes commonly discussed by cobot experts, the Expert
Model describes the relationships among them. As already noted, expertise is
usually identified not so much by the knowledge of isolated facts or heuristics,
rather by a deep and complex understanding of the relationships between them
within a domain (Chi et al., 1981; Council, 2000; diSessa, 1988). We operationalized
these relationships by linking the individual sections for frames to other sections
within or outside the parent frame. In some cases, these section relationships are
practical. For example, a coherently defined program with regards to machine
logic (Program Quality) enables calculation of total cycle time (Business Objectives).
In other cases, they reflect the logical sequences of expert concerns. For example,
determining whether a certain robot pose could introduce pinch points (Safety
Concerns) is only relevant after considering whether the robot can reach the pose
(Robot Performance).

In our Expert Frames, we use these dependencies and relationships to guide
the operator to work through the logical dependencies whilst developing the con-
nections and associations between them. A full list of dependencies between the
sections of each of the frames can be seen in Figure 4.3.

4.3 System Design & Implementation
We developed CoFrame using the React framework that communicates with a back-
end running a PyBullet (Coumans and Bai, 2016) simulation. Visualizations are

73

Collisions

Pinch Points

Occupancy

Thing Movement

End Effector Pose

Safety
Concerns

Missing Blocks

Missing Parameters

Machine Logic

Unused Skills

Unused Features

Empty Blocks

Program
Quality

Reachability

Joint Speed

End Effector Speed

Payload

Space Usage

Robot
Performance

Cycle Time

Idle Time

Return on Investment

Business
Objectives

Figure 4.3: The four Expert Frames of CoFrame, and the relationships between them.
As operators address concerns in each frame, they unlock other considerations. For
example, only after addressing whether a Location or Waypoint is reachable (Robot
Performance), do they address issues with the pose of the end effector.

rendered in Three.js. Our system is designed around four “tiles” as shown in Figure
4.4: the Program Editor tile (G), the Simulation tile (B), the Contextual Information
tile (C), and the Expert Frames tile (A).

Programs and Program Editor

We implemented a block-based visual programming language for operators to build
their programs, heavily inspired by other commonly used tools like Blockly (Fraser,
2015) and Scratch (Resnick et al., 2009).

Code Block Design

We utilized a drag-and-drop mechanism that allows an operator to easily construct
viable programs (Fig. 4.4 F) and visualize the connections between different blocks.
This is accomplished by dragging blocks from the block drawer (Fig. 4.4 D) into
the canvas (Fig. 4.4 E). Each block type is given a distinct color and icon in order
to assist in this visualization process. As operators build their program, they can

74

D E
F

A

B

GC
Figure 4.4: The layout of the CoFrame interface. Operators can use the Program
Editor tile (G) to construct their program, and can visualize the results in the Sim-
ulator tile (B). The Expert Frames tile (A) allows them to swap between different
Expert Frames and view issues in each frame. When not viewing issues, the Con-
textual Information tile (C) shows relevant frame-related information, and when
viewing issues also provides detailed information about the issue and suggestions
for changes. Within the Program Editor (G) operators can drag blocks from the
Block Drawer (D) into the Program Canvas (E). The Program Canvas contains the
program (F) along with implemented skills.

highlight blocks in the program editor to receive more information in the Contextual
Information tile, as well as visualize the action in the Simulation tile if fully specified.

Block Types

There are two main categories of blocks—item and executable. Item blocks refer
to objects in the workspace (e.g., things, trajectories, machines, locations, and
waypoints). These item blocks are used to parameterize the executable blocks,
such as actions like “Move Gripper” (accepts the thing being gripped or released
by the tool), “Move Trajectory” (accepts a trajectory item block), or “Machine

75

Start” (accepts the machine to start). Some actions take additional numerical or
configuration parameters, such as movement speed or gripper position (e.g., in the
“Move Gripper” action).

Machines are item blocks that create and modify things (parts and materials the
robot interacts with) within the program. In our simulation, these machines are
the 3D printer, conveyors, and the assembly jig. They specify recipes with inputs,
outputs, and processing times. Things are objects that can be produced as output of
machines, consumed as inputs, and moved by the robot. They also specify various
properties, such as weight and safety (e.g.,, a blade is unsafe to carry unsheathed).

Locations and waypoints are positions in 3D space that represent where the user
may want the end effector to be, both in terms of translation and rotation. Locations
are presented to the operator as places where the robot would start and stop its
movements, such as the end of the conveyor machines or the assembly jig, and are
used in trajectories. Waypoints are used to specify intermediate positions between
locations, usually to guide the robot to perform more desirable motions. Trajectory
blocks accept parameter item blocks (locations and waypoints). They represent the
motion the robot will execute; beginning at the start location, navigating through
the an ordered list of waypoints, and stopping at the end location. They are also
parameterized with movement speed and interpolation type (inverse-kinematic or
joint-based).

Executable blocks within CoFrame fall into three categories: actions, groups, or
skills. Actions, the smallest indivisible units of code, accept various parameters
specifying their behavior. Actions that affect robot state can be simulated when
selected in the program editor and fully parameterized.

The “Delay” action stalls the program for an adjustable amount of time, allowing
the operator to explicitly specify a time that the robot is inactive, e.g., to allow the
human to perform a task. Similarly, “Breakpoint” actions are a debugging action
that stops the execution of the program at that block.

The “Machine Initialize, -Start, -Stop, and -Wait” actions all take in a machine
parameter. “Machine Initialize” is equivalent to turning on the machine, and needs
to be performed before any other machine actions. “Machine Start” begins the

76

associated recipe with any matching things required. “Machine Stop” indicates that
a machine has completed but cannot be executed until after processing from the
paired “Machine Start” ends. When completed, the output things are available to
be interacted with. “Machine Wait” allows the operator to specify that the robot
waits for whatever time remains on a machine process and guarantees that the
“Machine Stop” does not occur before the minimum processing time of the machine
has completed.

Regarding robot control, operators have access to the “Move Gripper”, “Move
Trajectory”, and “Move Unplanned” actions. “Move Gripper” allows the user to
manipulate the gripper to either grasp or release a specified target thing. It takes
additional parameters for the desired final distance between the gripper fingers,
and its movement speed. “Move Trajectory” takes in a trajectory parameter for
the robot to execute, and moves the robot along the specified motion. “Move
Unplanned” takes in a location parameter and is a way for the operator to specify
starting locations or human-driven operation.

“Group” blocks are action blocks that function as a container for other actions,
allowing the operator to group actions into coherent code blocks. These can be
collapsed to reduce visual clutter and be previewed in the simulator when fully
specified.

“Skill” blocks behave similar to functions in other programming languages,
defining a set of parameters, a context of use for them, and action blocks that are
executed. “Skill Call” blocks are generated for each “Skill” block in the operator’s
program. Like other action blocks, these blocks accept item parameters and pass
them along to the paired “Skill” blocks.

Simulation

The Simulation tile visualizes the robot; its movements, actions, the environment;
and frame-based or issue-based feedback. At the onset, the simulation visualizes
the robot going through the execution of the program. The simulation also connects
with the Expert Frame tile to provide any extra visual information while showing

77

the relevant robot animation.

Contextual Information

The Contextual Information tile provides operators with frame-specific feedback
and suggestions about selected blocks and items. The displayed information
changes based on what they select and interact with in the Simulation, the Program
Editor, and the Expert Frame tile. This includes definitions for terms and phrases
novice operators are exposed to, frame dependant information, as well as various
graphs for selected issues. Definitions are provided for words that are commonly
used by experts and within robotics programs as well as explanations for how they
relate to other terms.

Based on the selected frame, the Contextual Information tile provides additional
prompts to help the user think about the concepts within each frame. For example,
when adding waypoints to trajectories with the Safety Concerns frame selected, it
will show, “Pay special attention to placing waypoints around the occupancy zone
of the human, since this is more likely to result in undesirable conflicts between the
human and the robot.”

Expert Frames

Prior work highlighted the need for programming environments to provide users
with a comprehensive list of issues and to automatically collect and display infor-
mation about program execution (Ko and Myers, 2005). The design of the Expert
Frame tile (Fig. 4.4 A) builds on these guidelines, automatically providing feed-
back about the operator’s program through issues. Each issue represents a unit
of feedback regarding an expert concern for a particular element of the program,
and is complimented with textual or visual data to give information about how
the program was executed. For example, when viewing issues about pinch points,
the corresponding “Move Trajectory” block in the program editor is highlighted,
and the operator is presented a simulation view of the robot moving through a
trajectory that highlights the pinch points to draw attention to the issue.

78

Issues are marked as either warnings or errors. When marked as warnings, they
are displayed in the Expert Frames tile with gray icons. When marked as an error,
they are displayed in red. Warnings and errors also differ functionally, as warnings
can be manually marked as fixed, allowing the operator to address other issues in
the Expert Frames tile, while errors require the operator to make adjustments to
their program.

Safety Concerns

End effector pose issues refer to cases where the gripper moves quickly in the
direction of its fingers. Each trajectory timestep is scored and shown as a graph in
the Contextual Information tile when the issue is selected. The simulation displays
an animation of the robot moving through the trajectory along a line marking
gripper trajectory, which is colored to visually indicate the ratings of the different
portions of the trajectory. Operators are first required to address any reachability
issues before addressing end effector pose.

Thing movement issues represent cases where the robot moves potentially
unsafe objects through the space. While progressing through the program, checks
are made for whether gripping the thing is possible given the orientations of both
the gripper and thing. If in the program the robot executes a “Move Trajectory”
action whilst carrying an unsafe object, it is flagged with an error and visualized in
the 3D scene.

Each valid trajectory is analyzed with PyBullet collision detection (Coumans
and Bai, 2016) to detect potential pinch points. These are visualized as moving
dynamic spheres placed around the robot as it moves along the trajectory, such that
larger, darker spheres are higher priority.

Collision issues occur when a trajectory causes the robot to collide either with
itself or the environment. When selected, the corresponding trajectory is highlighted
in the program editor, a graph depicting the robots proximity to itself and the closest
object in the environment, and the simulation displays an animation of the robot
moving through the trajectory along with lines marking the path each of the robot’s

79

linkages take. Darker colors along the lines indicate closer proximity.
Occupancy issues refer to instances where a robot trajectory overlaps with

the human occupancy zone and share the same visual cues as collisions issues.
Occupancy issues have a dependency on space usage, as the higher space usage
correlates with an increased likelihood of entering the occupancy zones.

Program Quality

Missing block issues identify cases where the operator has failed to supply a neces-
sary block where needed, such as in a “Move Trajectory” action. Similarly, missing
parameters refers to instances where the code block does not have all the required
parameters.

Machine logic issues identify where the program specifies invalid interactions
with machines, for example when a machine is stopped before it finishes processing.
Before an operator can address machine logic issues, they must first address any
missing parameters.

Unused features help operators identify cases of unused item blocks. Similarly,
unused skills refer to operator-defined skills that are not called in the executed
program. When these types of issue are selected, the corresponding unused block
is highlighted in the program editor.

Empty blocks refer to instances where either the program, a group, or a skill
does not contain any actions. Selecting this type of issue highlights the empty block
in the program editor.

Robot Performance

Reachability issues refers to instances where the robot is not able to move to a given
waypoint or location because a solution cannot be found, or the position is out of the
robot’s reach. When selected, the corresponding waypoint or location is highlighted
in both the simulation and program editor, and a window opens allowing the
operator to adjust the waypoint or location’s position in the environment.

80

Joint speed issues are instances where the robot’s joints exceeding a threshold
value for a trajectory. When selected, the corresponding trajectory in the program
will be highlighted, a graph of each joint’s speed over time is displayed in the
Contextual Information tile, and an animation of the robot executing the trajectory
with lines for each of the joints colored by their speed is shown in the simulation.
Before operators are able to address these issues, they are required to first fix any
issues with reachability, as the execution of trajectories is dependent on reaching
the locations and waypoints along the way. End effector issues function similarly
to joint speed, instead showing the speed of the end effector. When selected, it
shows similar visuals to joint speed issues, with a graph and animation of the end
effector. For similar reasons to joint speed, operators must first fix any issues with
reachability.

Payload issues occur when the robot lifts things that approach or exceed its
carrying capacity. If such a violation occurs in a "Move Trajectory," it is highlighted
in the program editor and simulation. Payload issues require operators to first
address issues with thing movement to fix other non-safe manipulations.

Space usage issues refers to the percentage of the robot’s workspace utilized at
any point during a given trajectory. When selected, the program editor highlights
the corresponding trajectory; the Contextual Information tile displays a graph of
how the utilization changes over the course of the trajectory; and the simulation
shows a convex hull of the trajectory.

Business Objectives

Cycle and idle time issues are always generated and are encoded as persistent
warnings. Cycle time refers to the total time that it takes for the robot to complete
the operator’s program once, while idle time refers to just the amount of time a
robot is spent idling during program execution. Similarly, return on investment
(ROI) issues are always generated and refer to the ratio of product value to total cost
building the product, including the cost of robot wear-and-tear - which is based on
the robot’s acceleration. When these issues are selected, the Contextual Information

81

C
as
e
S
tu
dy
1 A B C D

C
as
e
S
tu
dy
2 GFE

I J K L

C
as
e
S
tu
dy
3

Figure 4.5: Three case studies showing the process of evaluating feedback from
the system and informing adjustments to the operator’s program. The gradient
background of the figure denotes the switching between Expert Frames by the
operator, from Safety Concerns (pink), Program Quality (blue), Robot Performance
(orange), and Business Objectives (green). In Case Study 1, the operator begins by
addressing a missing trajectory block (A), followed by filling in its parameters (B).
The operator then addresses reachability concerns (C). They finish by addressing
issues with robot collision (D). In Case Study 2, the operator begins by addressing
joint speed issues and visualizes the speed (E). They transition to solving pinch
point issues (F). They finish by addressing issues with the robot’s space usage
(H). In Case Study 3, the operator begins by solving issues with uninitialized
machine logic (I), then addressing problems with thing movement (J). They return
to addressing a machine logic for a non-stopped machine (K). The operator finishes
by viewing the robot’s cycle time (L).

82

tile displays a graph showing how the time changes as the operator adjusts their
program. ROI issues require operators to first address both cycle and idle times
issues, as ROI is dependent on them.

4.4 Case Studies
To demonstrate the behavior of CoFrame as a learning-programming environment,
we developed three case studies that illustrate how it detects and responds to issues
generated by the operator to support learning. To accomplish this, we specifically
designed a task to prompt certain issues that the operator will have to address.
The task is based on an expert’s comments (Siebert-Evenstone et al., 2021) and has
the robot assembling a knife from a set of components, namely a blade and two
halves of the handle. The knife itself is unsafe to carry and the system will notify
the operator if attempted. They will instead have to use a safety transport jig that
covers the blade making it safe to carry. Blades arrive from a conveyor, handles are
produced with a 3D printer, parts are assembled in a jig, and the finished knife is
deposited on another conveyor. Figure 4.5 depicts each of the case studies detailed
below.

Case Study 1: Defining a trajectory

One of the first substantive actions an operator will attempt is creating a trajectory to
move the robot. They would likely start by considering the 3D scene and inspecting
each machine to observe where the robot needs to move first. They will see that they
need to move to the blade receiver, which catches the blades as they arrive from
the conveyor. Then they open the program editor’s block drawer and drag a “Move
Trajectory” block into the program. They click on the “Refresh” button in the Expert
Frames tile refreshing the program, showing a number of errors. They realize the
action requires a “Trajectory” block. They refresh the feedback and are prompted
to parameterize the trajectory with a start and end location. Unfortunately their
end location is unreachable. They click on the issue to bring up the location for

83

editing and notice the robot got stuck in a joint state preventing it from reaching
the location. The operator adjusts the location. CoFrame then displays the new joint
state that aligns the gripper with the location. At this point, the operator refreshes.
They see the trajectory has been fully specified. However, the trajectory causes
collisions with both the environment and itself. They add a waypoint, guiding
the robot above the table and avoid colliding with itself. After a last refresh, the
collision issues have been downgraded to warnings.

Case Study 2: Debugging a movement

After specifying a syntactically valid trajectory, an operator may want to evaluate
its performance. They click the Robot Performance frame showing active issues on
joint and end effector speeds. Clicking the joint speed issue plots lines for each joint
position through time in the 3D scene. The operator also clicks the end effector
issue and observes the graph in the information section. The operator tweaks
the speed parameter to resolve the issue. They switch back to the Safety frame to
address pinch point violations. The operator adds a waypoint to better coax the
robot to a joint state that prevents the issue. After adding a waypoint, they click
the feedback “Refresh” button to update the trajectory visualization. The operator
is now prompted to address robot space usage for the trajectory. They notice that
the robot extends out into the workspace more than necessary so they again tweak
the waypoints; iterating over speed, collision, and pinch point concerns.

Case Study 3: Working with machines

The operator revisits the scene to consider the machines’ operations. They click on
the blade conveyor and see that it “produces blades,” which they want to move to
the assembly jig. They open the block drawer and place a “Machine Start” action
after their trajectory; parameterizing the action with the machine’s item block. They
then place a “Machine Wait” action. Refreshing the feedback, they see an error that
the machine needs to be initialized before use. The operator adds the necessary
action block, then adds a “Move Gripper” action parameterized with the blade,

84

followed by a second “Move Trajectory” action. They iterate over the new trajectory
in a similar fashion to the first one, though they add and adjust waypoints before
seeking frame feedback.

After refreshing the feedback, they encounter a thing movement issue called
“Grasping unsafe object.” Realizing the issue is with the blade being grasped, the op-
erator focuses on the simulation to find the blade receiver machine, which converts
a blade and a transport jig into a safe blade with transport jig thing. They then add
a new set of machine actions (initialize, start, and wait) to the program. Refreshing
feedback, they find an error “Machine never stopped” for both the conveyor and
receiver. They add the necessary actions and inspect program operation. Curious
about the Business Objectives frame, they toggle the frame and inspect the cycle time.
The operator views the graph in the Contextual Information tile, and decides to find
a more optimal program. They tweak the order of the blade conveyor “Machine
Start” to happen before moving the robot to the blade receiver, reducing cycle time.

4.5 Chapter Summary
Multiple industries currently face a skills gap in effectively utilizing cobots in the
workplace. Designing cobot applications requires considerable expertise that few
workers currently have, presenting difficulties for companies looking to incorpo-
rate cobots alongside their human workers. Critically, workers generally lack the
expertise to effectively construct, adapt, and debug cobot programs. However, this
situation also presents opportunities for job creation if effective instruction methods
can be created which narrow this skills gap.

To better understand what content these methods must communicate and teach,
research by Siebert-Evenstone et al. (2021) identified a set of themes that form a
Safety First Expert Model of cobot expertise. We translated this model into a set of
Expert Frames that can be used to instruct novice cobot programmers in the content
and relationships of the Expert Model. Next, we presented an implementation of a
combined learning-programming environment that provides interactive textual
and visual feedback for operators’ programs in accordance with the Expert Frames.

85

Finally, we provided a set of case studies that illustrate the pathways through these
Expert Frames that operators may trace, thereby creating and reinforcing associations
of content within the Expert Model.

The process of performing this translation and development was informative
as well. While the majority of relationships between the content of each frames
is derived from the Expert Model, a number of others arose naturally from the
design of the system and the requirements of providing feedback. For example, a
number of Program Quality attributes (e.g. full parameterization) are required as a
necessity of deriving higher-level feedback on things like Machine Logic and Cycle
Time. Furthermore, designing frame-based feedback at multiple levels of detail and
at various levels of program completion requires clear, concrete, and data-driven
outcome measures.

At a high level, while the Authr project focused on the organization of work, and
worked to support decision-making by the cobot programmer, CoFrame focuses
on the design of the program itself. The CoFrame system supports the operator
in the construction of their program, with special attention to the overall safety,
efficiency, and quality of the interaction. Recognizing that automated planning
algorithms may not be fully sufficient to balance all these needs, it aims to build
the skills of these cobot programmers, so that when hand-crafted behaviors need
to be implemented or analyzed, they develop the intuition and expertise to do so.

In the time since the original publication of this work, the algorithms used by
CoFramehave been improved, aiming to address some of the limitations discussed in
the original paper. For example, improvements have been made to the underlying
behavior compilation algorithm to both improve speed and portability, but also
robustness with regards to consecutive trajectory movements. Whereas the original
algorithm could fail when using variables in trajectory endpoints, the new algorithm
can handle these cases by tracking the dependencies and changes of individual code
blocks, selectively refreshing those in need of it. The portability of the system has
also been improved, removing the requirement of a ROS server backend, thereby
making the system easier for individuals to initialize and use. This change was
made possible by the development of a new motion synthesis algorithm built for

86

both web-based and server-based systems, called Lively, which will be discussed in
the next chapter.

Other limitations still persist, however. The system still does not address issues
like slip and uncertainty related to gripping real-world objects, nor does it integrate
with physical robot systems. The latter was a choice made to balance the intended
motivation of the system with the gain in functionality. Building support for physi-
cal robots, while certainly increasing the utility of the system, presents a significant
amount of additional work and complexity, given the variety of robot models and
control methods. Focusing on usage with physical robots also presents certain
accessibility issues as well, since not everyone may have a robot with which to do
this testing and development, or individuals may want to test certain types of robots
before purchasing them. Given the focus on learning and skills development, we
felt that the benefits of a web-based system outweighed the benefits of a physically
situated system at this time. Future work, however, could always revisit this feature
set.

87

5 lively

As robots increasingly work in human environments, they will need to execute a
wide range of highly configurable behaviors while communicating effectively with
their users. A worker collaborating with a robotic arm may have preferences for
how the robot positions itself when they are nearby (Lasota and Shah, 2015). A
collaborative robot assisting a person unloading the dishwasher might use slight
movements of its gripper to communicate that it is ready to pick up or receive
items (Strabala et al., 2013). A social robot may display idle motion with its body
to indicate that it is active and lifelike (Michalowski et al., 2006). When conversing,
a robot may look away to signal that it is thinking (Andrist et al., 2014). Prior
research in human-robot interaction has found such “lifelike” motions to improve
perceptions of the robot (Terzioğlu et al., 2020; Sauer et al., 2021). Thus, lifelike
motion or configuration of a robot’s links and joints are key design elements for
robots utilized in human environments. Successful execution of combined tasks
and social actions requires balancing these types of goals with practical concerns,
such as avoiding collisions and maintaining smooth motion.

In this chapter, we explore how Lively can support the generation of lifelike but
feasible task motions for collaborative and social robots.

Since physical task-based activities are frequently spatially rooted in the workspace,
robot control requires converting these Cartesian goals into joint-space instructions.
For example, the ability of a robot’s arm to deliver an object to a collaborator de-
pends on its ability to first reach the position of the object, and then travel to the
person’s outstretched hand. Similarly, a social robot may point in a certain direction
using referential gestures by changing the position and orientation of its hand or
gaze. This conversion is commonly achieved with an approach known as Inverse
Kinematics (IK). Conventional IK approaches structure this conversion as a search
in joint-space constrained by the position and orientation of the robot’s gripper.
This approach encourages solutions exhibiting desired position and orientation
goals on the gripper, but cannot guarantee finding a solution in all cases.

88

Lively

Develop Level

Extend Level

Design Level

Figure 5.1: We present Lively for real-time motion generation that balances task
and communicative goals while maintaining feasibility. We provide three levels
of interfaces to address varying use cases. The Design Level enables programming
robots using a state-based approach. The Develop Level is configurable and portable,
usable in applications such as ROS-based control and web-based simulation. The
Extend Level supports the addition of new characteristics and goal specifications for
greater customizability and extendability.

89

To communicate certain attitudes or states with physical motion, such as the
human-robot interaction scenarios discussed above, the entire kinematic chain may
be required, so simply considering the position and orientation of the gripper is
insufficient.

Combining these social and task-based goals into functional robot motion re-
quires not only knowledge of how motion is interpreted but also the technical
ability to translate those qualities onto robot platforms. While robotics application
developers may possess skills in both areas, domain experts may not have the same
level of technical ability to bring their vision to fruition. An interface that is intuitive
to both roboticists and other experts, such as animators, artists, or designers, can
bridge this divide. Additionally, novel approaches to designing and implementing
robot motion may be needed as robot capabilities evolve. Therefore, a design system
with the flexibility to grow with these new approaches is required.

We present a new motion specification and generation framework, called Lively,
that combines task-based and social goals while maintaining kinematic stability in
real time (Figure 5.1). The framework leverages Perlin noise (Perlin, 1985, 2002) and
integrates an existing per-instant pose optimization tool called RelaxedIK (Rakita
et al., 2017) to achieve both primary and secondary motion goals in real-time. To
support robot-application designers and developers, we developed three levels that
expose the capabilities of Lively to users with different needs and levels of expertise.
At the first level, LivelyStudio provides users with less technical ability an accessible,
interactive, visual interface to design primary and secondary motions and control
modalities used with the robot. At the second level, we present a development-
and execution-focused framework, and at the final level, we provide an architecture
that supports extendability and customizability.

The contributions of our work are summarized as follows1:

• A visual interface called LivelyStudio that allows designers to interactively
1The research discussed in this chapter is derived from published work by myself and Dakota

Sullivan, Ze Dong Zhang, Dr. Daniel Rakita, and Dr. Bilge Mutlu. All authors contributed signifi-
cantly to the conceptualization, design, implementation, evaluation, analysis, and/or the writing of
the original manuscript.

90

construct state-based robot programs 2;

• An open-source robot-agnostic library that can be used by developers to specify
real-time robot behavior that combines goal-oriented joint-space or Cartesian
control with motion quality attributes in a feasible manner3;

• A modular software architecture that supports straightforward augmentation
and contribution for custom control.

In the remainder of the chapter, we review previous approaches to this problem,
contrasting them with Lively. We discuss the implementation of Lively and outline its
cases for use along three different levels of programmatic accessibility, including the
design of a tool called LivelyStudio, iteratively designed with a formative evaluation
with roboticists and animators.

Target Users

In contrast to the Authr and CoFrame systems, the design of Lively and LivelyStudio
was instead meant to address a different set of target users, namely those with expe-
rience in motion design, such as individuals from the fields of animation, gaming,
and even dance. While perhaps not as familiar with the technical aspects of robotics,
these individuals nevertheless have a great deal of relevant expertise that can be
of use in this domain. That being said, a key feature of the Lively system is that it
operates at multiple levels of accessibility, thereby allowing similar representations
and models to be used by individuals with different levels of expertise. One could
imagine scenarios in which a designer might use LivelyStudio to create a set of
motions, and then a developer or roboticist might use the Lively library to integrate
those motions into a larger system and applications.

2Code available at https://github.com/Wisc-HCI/LivelyStudio
3Code/Documentation available at https://github.com/Wisc-HCI/lively

91

Research Questions

The evolution of the Lively and LivelyStudio systems was an iterative one, notably
a key formative evaluation featuring a set of experts from the fields of animation,
gaming, and robotics. This formative evaluation asked the question of how to
best balance the goals of matching the needs and expectations of these target
users, while also conveying the capabilities the underlying system and the design
considerations specific to real-time robotics applications. Like CoFrame, formal
summative evaluations represent future work. Due to the proximity of this design
space to art, an important consideration is also how summative evaluations may be
performed on such systems in general. For example, what is the crucial outcome,
the process for the user, or the quality of their result? Is a discrepancy between
their vision and the result a result of the system, or the limitations of the more
structured and rigid robotics environment? While these questions for evaluation
are not answered in this chapter, they underscore the need for more discussion
within this space.

5.1 Background
In this section, we review related work on expressive and functional motion includ-
ing lifelike motion, inverse kinematics, and the operationalization of each.

Lifelike Motion

Whereas primary motion is an intentionally performed behavior, such as the process
of handing a letter to a friend, standing in place, or looking to the right, secondary
motion is defined as activity resulting from that primary motion (Johnston and
Thomas, 1981). Secondary motion covers a wide range, such as the rippling or
creasing of one’s shirt as the arm is outstretched, the idle shifting of posture while
standing, or slight movements of the pupils.

Secondary motion is known to be highly important to how humans interpret
animated or robotic characters. In their paper, Heider and Simmel animated a

92

set of shapes to perform choreographed motions, such as following one another
and moving into boxes while exhibiting additional subtle affine and rotational
movements (Heider and Simmel, 1944). Most participants viewing the animation
described the behavior of the simple shapes in human or anthropomorphic terms.
Similarly, work with puppets has informed our understanding of how small motions
and characteristics can influence viewers (Duffy, 2003; Duffy and Zawieska, 2012).
The effectiveness of secondary motion motivated its inclusion in the principles of
3D animation by Lasseter (1987).

Animation utilizes many principles for secondary motion and lifelike behavior,
initially requiring hand-drawn or hand-animated specification of behaviors. How-
ever, a growing number of methods make this process less demanding. Witkin
and Popovic (1995) proposed a method to warp a keyframe animation to match
new spatio-temporal constraints by systematically mapping underlying motion
curves. This allows an animator to adjust a character’s posture from happy to sad
throughout an animation using only a sparse set of inputs instead of enumerat-
ing keyframes. Gleicher (1998) presented a method that maps motion from one
articulated figure to another, even if they have vastly different scales or geometries.
The method uses non-linear constrained optimization to minimally displace an
input motion (e.g., motion capture data) to match the specifications of the new
articulated figure. Additionally, motion has been added to computer generated
characters using Principal Components Analysis (Egges et al., 2004), and tradition-
ally animated characters have been augmented with secondary motion through a
3D intermediate process (Jain et al., 2010). However, these solutions all represent
post-hoc methods of adjusting input motions, and are allowed certain freedoms
given their virtual, non-rigid context.

Considerable work has also focused on effective ways of augmenting agents
and characters with secondary motion in a generative manner. The most com-
mon method to do this was created by Ken Perlin (Perlin, 1985, 2002). Originally
designed for texture generation, Perlin noise was quickly adopted for motion as
a way of creating personality in animated characters (Perlin, 1995; Bodenheimer
et al., 1999). Perlin noise is particularly well-suited for this domain, being a non-

93

repeating, but smoothly changing generative method. Furthermore, by modifying
the speed at which the input value (usually a function of time) changes, animators
can predictably control the characteristics of the noise function. By using smooth
noise, such as Perlin noise, as a function of time, offsets from static or dynamic
configurations (i.e., character joints) can be calculated, thus augmenting these char-
acters with subtle motion. This process was extended by Improv, which featured a
method for incorporating smooth noise into animated characters’ behaviors (Perlin
and Goldberg, 1996). Studies in robotics have shown smooth noise to improve a
variety of outcomes in robotics, including likeability and presence (Cuijpers and
Knops, 2015; Terzioğlu et al., 2020). Many commercially available collaborative
and social robots do not have fully articulated faces with which to communicate
social-emotional states, so it is particularly important that there be alternative ways
for modeling them.

Specific characteristics of motion, such as “jerkiness” or “velocity,” have been
outlined as important for the recognition of certain emotional states in humanoid
robots (Beck et al., 2013b,a). When viewed by individuals, faster speed in robots
was interpreted as greater excitement or arousal (Sial et al., 2016). Originating in
dance theory, Laban Movement Analysis (LMA) (Von Laban and Lange, 1975) and
the component of motion shape have since been validated as informative for affect
detection in humans and used in animation (De Meijer, 1989; Melzer et al., 2019;
Truong et al., 2016; Chi et al., 2000). While not motivated by LMA, the directionality
of a simple robot was shown to have a strong emotional impact (Harris and Sharlin,
2011), and has been used to generate profiles of expression movement in mobile
robots (Knight and Simmons, 2014).

Smooth, lifelike motion can also function as a signalling mechanism for system
states (Ishiguro and Minato, 2005; Belpaeme et al., 2013). For example, if the robot
is on but not moving, secondary motion may serve as an indicator to users that
the robot is merely idle, while also preventing surprise when the robot moves.
Idle behaviors have also been extracted from human ethnographic work (Song
et al., 2009), and have been shown to improve aspects of child-robot interactions
(Asselborn et al., 2017).

94

While smooth joint noise can improve the liveliness of agents, it does not capture
the full range of expressivity. According to LMA, many features of movement, such
as shape directionality, are not relevant in the joint-space of the robot, but rather the
pose (e.g., Cartesian space) of the robot, making applying these types of features
difficult if operating in joint space. Other informative features, such as speed or
jerkiness, may be obscured if joint-based noise causes varying speed or jerkiness in
Cartesian space.

Similarly, the addition of smooth noise for secondary motion in joint-space can
result in problematic configurations or collisions, even if joint limits are respected.
For humanoid or bipedal robots, simply adding offsets to individual joints on the
lower limbs quickly results in unstable posture, and even falls.

Solutions to Lifelike Motion in Robotics

One solution to these challenges is to simply pre-record or define keyframes for
specific motions and interpolate between them as needed. This approach has been
employed in prior research (Terzioğlu et al., 2020) and in proprietary software
(e.g., Softbank Robotics’ NaoQi Autonomous Life (Softbank Robotics, 2022)). As
an alternative to manually generating activities, Geppetto utilized a user interface
to enumerate and visualize possibilities for expressive gestures with the goal of
allowing more productive exploration of the potential behavior set (Desai et al.,
2019). For bipedal robots, motion on limbs presents an additional challenge due
to instability caused by uncoordinated joint movements. As a result, motion is
typically either disabled from the waist down, entirely pre-defined, or the issue
is avoided by adopting a sitting position and focusing activity on the upper body
(Beck et al., 2013b,a). While sufficient for short interactions, pre-scripting these
behaviors can have a number of issues. First, without enough keyframes, the
behavior can quickly become repetitive, which breaks the illusion of autonomy
(Duffy, 2008). Second, when combining activities, conflicts between joints and
kinematics might arise. This makes interleaving existing motion with novel, real-
time instructions difficult. For example, an early approach attempted to resolve

95

these conflicts between activities and motions through a hierarchical model (Snibbe
et al., 1999). While effective at interleaving the behaviors with motion, the system
was not fast enough to run in real-time. These cases illustrate the limitations of
previous efforts to balance lifelike motion with task-goals.

Inverse Kinematics

In contrast to specifying the gripper pose indirectly through the setting of joint
angles, Inverse Kinematics (IK) solvers attempt to directly specify the gripper pose,
and solve for the joint configuration that satisfies that pose. IK solvers, while more
easily interpretable in Cartesian space than joint-space methods, can encounter
issues such as kinematic singularities. These joint-space issues occur when the
robot loses the ability to instantaneously move its gripper in some translational or
rotational dimension, because (1) not all poses in the robot’s area can be reached
through a combination of joint states, and (2) a movement in Cartesian space may
not be possible as a smooth interpolation of joint-space values.

A method that utilizes an IK solver is ERIK, which uses a pass-based approach
to integrate joint movements with end-effector goals (Ribeiro and Paiva, 2017).
RelaxedIK is another IK solver with a different approach. Using an optimization-
based method, RelaxedIK places importance on both accuracy of the motion (e.g.,
matching the pose of the gripper), as well as the feasibility of motion (e.g., avoiding
self-collisions or kinematic singularities) (Rakita et al., 2017). It is generalizable
such that additional objectives can be added, e.g., handling dual-robot systems
where one arm controls a camera, optimizing the location and orientation of the
camera such that a remote user has a clear view of the task being performed by the
other robot arm (Rakita et al., 2018).

5.2 System Design & Implementation
Lively inherits its philosophy from RelaxedIK (Rakita et al., 2017) by framing the goal
of the joint-space calculation as an objective, but generalizing its implementation

96

across a greater set of objective types and attributes of the robot’s state. Furthermore,
while RelaxedIK assumed a position and rotation goal on the gripper of each robot
arm, and a set of joint smoothness objectives, Lively makes fewer assumptions with
its à la carte approach, giving the programmer greater ability to compose these goals
in creative ways for behavior generation.

To explore the capabilities of the system, we will consider three main levels of
possible interaction with the system: the Design Level, the Development Level, and
the Extension Level.

Design Level

The outermost interaction level is the Designer Level, and is the least technical way
to explore and utilize the system. We designed LivelyStudio as a method inspired
by conversations with a set of experts across the fields of animation and robotics. It
is meant to support and illustrate many of the capabilities of the Lively framework,
while maintaining its accessibility. This is done by using a state-based approach,
wherein users can compose combinations of social, task-based, or functional be-
haviors, called Behavior Properties, and specify how transitions may occur between
these states.

Design Iteration

Our current version of LivelyStudio builds upon previous iterations through a small
formative evaluation with four professional roboticists and animators involving a
mixture of system overview, think aloud, and semi-structured interview, lasting
60 to 90 minutes. The initial design, shown in Figure 5.2, featured a simulator and
configuration window, where users could independently curate a set of Behavior
Properties, a set of states (called modes), and goals (task-based instructions). While
states were supported through modes, there was no clear relationship between
them, and animators in particular had difficulty translating their keyframe-focused
experience to this design: “It’s hard to see how poses would be created so separate
from the animation (P3).” More generally, how specific goals could be combined

97

with the Behavior Properties was unclear. Additionally, certain interface elements,
such as the standard 3D viewer did not have the affordances desired by animators,
or had minor usability issues. This feedback was used to create a more effective
and intuitive version of LivelyStudio for users of varied backgrounds and levels of
experience through a more explicitly state-based configuration process, and use of
a new custom 3D viewer and updated components.

Figure 5.2: An early version of LivelyStudio that received feedback from animators
and roboticists, which led to a redesigned 3D environment, more explicit state-
based design process (states as graph nodes), and bundling of behavior attributes
with specific goals and weights.

LivelyStudio Interface

The results of our formative evaluation suggested that a state-based visual pro-
gramming environment that allows users to develop series of states similar to
keyframing would be the most intuitive approach to the design. The state-based
approach shares similarities with many other programming environments (Porfirio
et al., 2018; Pot et al., 2009; Datta et al., 2012; Glas et al., 2016), which may be familiar
to roboticists, but also enables an intuitive design approach for users who are less
familiar with typical programming environments like animators, digital artists, or

98

Simulator
Block
Picker

State
Editor

URDF
Editor

Transition
Widget

Figure 5.3: The layout of the LivelyStudio interface. From left to right, a Simulator
window shows the robot in the currently selected state; the Block Picker allows
dragging structural blocks like States or Behavior Properties like Position Bounding;
the State Editor canvas that allows for states to be dragged around and modified. At
the top-right, a menu that reveals a Transition Widget, which lists transitions from
the current state, and a settings button that reveals a full URDF editor.

other types of designers. LivelyStudio’s programming environment contains three
primary parts: (1) a selection of state and behavior property nodes, (2) a state-
based programming window, and (3) a robot scene. By defining states, and adding
Behavior Properties, designers can define how a robot will move, or the position it
should take in each (Figure 5.3). Improving on the early version of LivelyStudio,
specific goals and Behavior Properties are merged for clarity, and weights are inferred
from their relative ordering within states and through usage of priority groups.
Designers can specify arbitrary Universal Robot Description Files (URDFs), but
visualization of meshes is limited to a discrete set that could be expanded in the
future.

Behavior Properties

LivelyStudio allows for a wide range of robot Behavior Properties with which users
program robot motion. These 24 properties, which serve as building blocks for

99

defining the behavior and motion of the robot, fit into six categories:

• Basic behavior properties revolve around the fluidity of robot motion by limiting
rapid changes and considering possible collisions between the links of the
robot.

• Bounding behavior properties limit the space within which joints can assume
angles and links can move or be oriented.

• Matching behavior properties specify exact positions and orientations of links or
angles of joints.

• Mirroring behavior properties allow users to mirror the current state of a link’s
position or orientation in a different link, or the current angle of one joint in
another.

• Liveliness behavior properties allow the addition of smooth, coordinated motion
to joint angles or link poses.

• Force behavior properties simulate the effects of physical forces acting upon the
robot.

The function of each Behavior Property is visualized in Figure 5.4.

States and Transitions

The state-based programming window starts with a power-on (i.e., initial) state,
and a power-off (i.e., final) state. Users can add additional state nodes to their
program and populate them with Behavior Properties. For example, one state may
contain a property that sets the gripper of a robot arm in a pick-up area, while
another state sets the gripper position to be near a drop-off area. Once a series of
states is created, the user can define how the power-on, power-off, and custom states
are connected by dragging transitions from one state to another. These connections
can also be given timers, which act as triggers to automatically begin a transition
from one node to the next. In this way, a state can function both conventionally,

100

Joint Limits Collision Avoidance GravityMotion Smoothness

Position Match Orientation Match Joint Match Distance Match

Position Bounding Orientation Bounding Joint Bounding

Position Mirroring Orientation Mirroring Joint Mirroring

Relative Motion LivelinessPosition Liveliness Orientation Liveliness Joint Liveliness

Basic Matching Bounding Mirroring Liveliness Forces

Figure 5.4: LivelyStudio’s set of Behavior Properties that match Objective Functions
within Lively. Note, Velocity Minimization, Acceleration, and Jerk Minimization
come in both joint-based and robot root variants, and while usable separately, are
included within the Smoothness macro property.

101

defining a set of characteristics the robot will exhibit for an unspecified amount of
time, but also as a single keyframe in a timed series. States can have any number
of both timed and nominal transitions (simulating event triggers, e.g., a person
approaches), and the program will transition states given the first simulated event
triggered or timer that expires, whichever occurs first. Of note, while this does
simulate how the robot could respond to events, LivelyStudio does not currently
interface with physical robots, or listen to external events.

Develop Level

For robot programmers desiring greater control over the robot than that afforded
by the previously described LivelyStudio interface, or looking to control a robot in a
more conventional ROS-based approach by creating a control node that publishes
joint values, the Development Level allows for direct control using Lively.

Design & Usage

Lively is written in Rust (Matsakis and Klock, 2014), and accessible as a crate, with
bindings in both JavaScript through WebAssembly (Haas et al., 2017) and Python
(Sanner and others, 1999). To use Lively, a Solver is imported and constructed
with any valid URDF, persistent scene objects, objectives, and other solver settings.
Execution of the solve method, which accepts the current goals, weights, time,
and real-time collision data, returns a robot state that best satisfies those goals
given the current weightings and previous robot state. This approach allows for
Lively to be used in a variety of contexts, including ROS (Quigley et al., 2009), web
or simulation, and directly on hardware. Solve times with randomly arranged
colliders are shown in Figure 5.5.

Objectives, Goals, & Weights

To achieve a high degree of customization and dynamic control, we introduce
the concepts of objectives, goals, and weights. Whereas LivelyStudio abstracted
away these features as Behavior Properties for the purpose of accessibility, the core

102

UR3e

Pepper
Panda

0 10 20 30 40 50 60
Number of Environmental Shapes

0

2

4

6

8

10
Ti
m
e
(m
s)

Solve Time by Robot and Environment Complexity

Figure 5.5: Solve times for the UR3e, Panda, and Pepper robots, with randomized
locations of environmental colliders. Of note, speed is largely unaffected by shape
count.

framework allows for more direct control. The identities of the individual objectives
match with the set of Behavior Properties enumerated in Figure 5.4, and goals are
summarized in 5.1. Importantly, while Behavior Properties encoded the discrete goals
(e.g., the position for Position Match, or the scalar for Joint Match) associated with
each Behavior Property, and the weights are inferred by the ordered ranking within
states, these are separated at the framework level. Thus, the previously mentioned
position goal can be determined in real time through external means, such as
sensing, and passed as an update within each iteration of the solver. Similarly, the
developer in real time can adjust other goals, such as a position bounding ellipsoid
(Position Bounding), joint values (Joint Match), or size (for Position Liveliness), and
weights, allowing for prioritization of certain goals or the deactivation of others,
based on the current development needs. Because objectives are organized by key,
and atomic updates are possible for goals and weights, only the needed changes
must to be included each round.

103

Objective Configuration

The complete set of objectives feature a wide range of configurable attributes,
beyond simply their goals and weights. The simplest objectives focus on safe and
smooth motion, corresponding to the set of Basic Behavior Properties, and do not
accept additional parameters. Those corresponding to Matching, Bounding, and
Gravity Behavior Properties are configured with the joint or link with which they are
paired. Mirroring Behavior Properties, defining relationships between pairs of links
and joints, accept a pair of each. Finally, Liveliness Behavior Properties feature an
additional field, frequency. This value functions as a temporal scaling value that
increases or decreases the rate of change in the Perlin noise generator functions
for that objective. Combined with the goal values passed into liveliness objectives,
developers can access a wide range of motion profiles. Importantly, because the
formulation of the liveliness objectives is not dependent on having a concrete goal
attached to the same link or joint, it is possible to add movement to otherwise
uncontrolled parts of the robot.

Collision Avoidance

Lively implements the PROXIMA collision detection algorithm, which allows for
time-efficient collision and proximity detection for robots (Rakita et al., 2022). The

Table 5.1: Goal Types

Entry Description

Translation A 3-vector representing coordinates
Rotation A Quaternion representing rotation
Scalar A float value
Size A 3-vector representing scale of a 3D shape
Ellipse A structure designating a rotated ellipsoid, with Translation,

Rotation, and Size components
RotationRange A structure including a center Rotation, as well as a float value

indicating allowed delta in radians from that rotation.
ScalarRange A structure including a center float value, and float value repre-

senting allowed delta from that value.

104

Collision Avoidance objective serves to utilize the data generated from this collision
detection algorithm to prevent collisions. Lively employs a three-fold approach to
handling modeling collision objects. The first is input from the URDF during the
initialization of the solver, which supports default shapes like boxes and cylinders as
parts of the collision model when parsed. For cross-platform and web-based reasons,
mesh-based colliders are ignored during URDF import. Additional colliders can be
specified during solver initialization, including basic shapes and convex hulls, and
can be attached to the world or any link in the robot. Finally, as an optional input to
the solve method, developers can provide real-time updates to the collision model,
adding, deleting, and moving colliders.

Extend Level

For robotics developers seeking to modify the behavior of the existing Lively objec-
tives, or wanting to increase functionality by creating completely new objectives,
Lively has a modular and configurable approach to supporting the Extension Level.

State Model

As discussed, RelaxedIK utilizes an optimization approach, with the robot state SR

being represented as a vector in the joint space SJ of the robot internally. Lively takes
a similar approach, but an additional six dimensions representing the transform
of the root link are added to create the optimized vector x. However, this vector
representation is not always the most natural way to evaluate the state, and to
ease the computation each objective performs, this vector is converted into a more
comprehensive state representation containing joint states, link transforms, and
proximity information, described in Table 5.2. This state, as well as previous states,
are provided in each call to objectives.

This formulation of the state allows for straightforward creation of additional
objectives. It is also possible that additional features of state may be needed for the
creation of certain new objectives. The Robot Model handles the generation of new
robot states from the vector x. For example, if a force-based objective was desired,

105

Table 5.2: State Properties

Entry Description

Frames A lookup table of each link’s position in both world and local
coordinates

Joints A lookup table of each joint’s value
Origin The transform of the root link. This data is also included in

frames
Proximity A vector of data representing pairwise proximity between the

robot’s links and other robot parts and the environment. Each
entry contains distance, as well as the closest points between
the pair of colliders

Center of Mass A 3-vector representing the center of mass of the robot in the
world frame

Table 5.3: Objective Description

Entry Description

update Function, accepts the current timestep and performs any updates
to its internals that are necessary, as in the case of Perlin noise-
based objectives

set goal Function, accepts the goal value supplied by the user. Each
objective accepts a specific goal type

set weight Function, accepts a new weight value, if updated by the user
weight Float, indicates the scaling value for the objective cost value
call Function, accepts a State and Variable data object, returning a

numerical cost value. The Variable object contains a record of
previous states and information about the robot

the robot model would have to be extended to output a state that provides the data
the objective would have to operate on.

Objective Formulation

Similar to robot state, each objective adheres to a well-defined convention that can
be used to extend the capabilities of Lively, as shown in Table 5.3. As previously
discussed, each objective is paired with a specific goal type (e.g., Position Bounding

106

with Ellipse, and Position Liveliness with Size), and the goals are enumerated in
Table 5.1. Additional goal types can also be added to support new objectives and
functionality, as long as they have a predictable structure (e.g., a pointcloud goal
could be an array of any length with structure [{x : f64,y : f64, z : f64}, ...]).

5.3 Case Studies

Design Level

Users of a wide range of experience levels can engage with our system using
LivelyStudio. Artists, character designers, and animators, who may not be familiar
with traditional programming tools, may particularly benefit from LivelyStudio’s
accessible user interface.

Kiosk Robot

Suppose a user is creating a program for a social robot providing general assistance
in a public area. Here, the robot may have states such as idle, greeting, or thinking.
The user can begin by creating state nodes within the state editor. One such state
could be labeled “Idle” to represent the idle status of the robot within the overall
program. From here the user can begin adding Behavior Properties to the state.
First, the user may apply the Position Liveliness property to the torso of Pepper as a
visual indication that it is powered-on and functioning. Next, the user may add the
Joint Liveliness property, and configure it to “Head Yaw” to make the robot’s head
sway from left to right and signify that it is looking around for people to assist.
Finally, the user can select the Smoothness Macro property to ensure that the robot’s
motion remains smooth and natural, and the Collision Avoidance property to prevent
collisions. The user may also create a "Greeting" state, which directs the robot’s
gaze toward a nearby person. Once these states are generated, the user can create a
connection between them and add a label to identify a triggering condition. The
user may want Pepper to transition from the "Idle" state to a "Greeting" state when
a person approaches. During this transition, Pepper can reduce head sway from

107

the "Idle" state, direct gaze toward the user in the "Greeting" state, and maintain
the liveliness motion included in both states. This process can be repeated with
any number of states and complex transition patterns.

Cobot Keyframing

In another example, a user may want to create a program for a robotic arm such
as the Panda robot that functions as a series of states, similar to keyframing. The
user can create an initial state, add the Position Match property, and configure a
specific position for the gripper. The user can complete this process to define
all waypoints for the gripper of the Panda robot as separate states. Given space
constraints in the deployment environment, the user may also want to design their
program to limit the space in which certain links will move. Thus, the user may
apply the Position Bounding property to specific links so that the robot limits its
spatial footprint while moving. Finally, the user may need the robot to interact
with an object from a specific grasp point. Therefore, adding the Orientation Match
property to the gripper enables it to manipulate an object from a reasonable angle.
Once all the states are created, the user can create timed connections between states,
such that transitions will occur automatically.

Develop Level

While all users may find use in LivelyStudio, those with substantive experience
programming and planning robot motion will be able to leverage the capabilities of
Lively directly. We consider two example use cases to explore how Lively may be
used.

Real-Time Robot Control

Using a UR3-e series robotic arm, a developer seeks to devise a system that, on
button-press, scans the area using a camera attached to the last robot link, and finds
any of a set of items. Any item it finds is picked up and placed in a nearby box.
The developer creates a ROS-based setup with two nodes. One node receives a

108

camera feed and transform data from the robot, while publishing all valid items
and their transforms that it detects. A second, Lively-focused control node listens
to this set of items, and publishes transforms of the robot to be consumed by the
first node. The control node defines a Lively solver, configured with the robot
description, and an additional camera collider that is attached to the last link. The
solver is configured with Position Match and Orientation Match objectives on the
final link, and a Position Liveliness objective on the forearm link. Finally, the set
of objectives is completed with Smoothness, Joint Limits, and Collision Avoidance
objectives. On button press, a preset collection of positions and orientations are
sequentially passed to the corresponding objectives in the solve method, along
with instructions to turn the liveliness weight to zero. The resulting state is parsed
and converted into TF messages, which are passed via a topic to the data parsing
node. Upon calculation and communication of scene items to the control node,
the node selects the first item to move, passing the position and orientation to the
solver, followed by the goal position of the items, then repeating until no items
remain. Once complete, the position and orientation goals are moved to a neutral
pose, and the weights relaxed, while the liveliness objective weight is increased.

Browser-Based WOZ

A developer wants to create a ROS-based wizard-of-oz GUI interface that allows
actions to be selected and executed on a robot in real time, but also want the robot
to respond to potential collision objects in the environment and exhibit certain
lifelike motions. The robot, Pepper, has two arms, wheels, and a head, and the
developer already has an existing library of joint-based trajectories. However, they
want to include additional liveliness in orientation space around the head and
position liveliness (a swaying motion) on the torso. Objectives for each controlled
joint are created, as well as some basic objectives. The developer’s GUI initializes
a web-based version of the solver. A web-based ROS connection is formed to the
robot, starting a subscription to sensor data, and a publisher that sends real-time
joint instructions to the robot. Selecting an action updates the goals for each joint,

109

and the set of all potential colliders that the robot gets from the sensors are updated
each invocation of the solve method. Joint instructions from the result are passed
to the robot after each solution is found. To accommodate all goals simultaneously,
the system will attempt to reach the specified joint values, while adding in liveliness
and avoiding collisions.

Extend Level

The current functionality of Lively and LivelyStudio address most user needs when
programming robot motion. However, if additional functionality is desired, a
developer could easily extend our system’s capabilities by defining new objectives
and goals. We outline two examples of extensions that would be feasible within
Lively.

Center of Mass Objective

Lively can be greatly extended through the development of additional objectives.
Because the robot state already includes a vector representing the center-of-mass of
the robot, it is straightforward to create a new objective, implementing the methods
defined in Table 5.3, that operates on it, which could be useful in cases where
the robot’s balance must be maintained, or as a way to center the robot near its
base. The specified objective would accept a Translation goal, and use the default
implementation of update. The call method would be implemented by calculating
the distance between the goal value and the center-of-mass vector in the robot state,
returning a cost that grows with distance. Finally, the objective is added to the
set of Objectives. The resulting objective would attempt to produce poses that are
centered as much as possible on the goal vector provided.

Perspective Noise

While the Position Match and Orientation Match objectives together are capable of
creating a lifelike appearance, a developer may desire to create a lifelike behavior
that exhibits positional and rotational motion around an offset focal point, as if

110

inspecting the properties of an object located there. Doing so requires the addition
of an new goal type, which would encode the focal length to maintain the position
of the focus, and the amount of rotational/translational movement allowed. The
objective’s call method would use these goals and a Perlin noise generator function
to project the needed position and orientation in space to achieve the specified
rotation around the focus at a given time and compute the radial and translational
distance from those values, returning a cost value. The resulting objective would
attempt to produce poses that adhered to this dynamic pattern as a function of
time.

5.4 Chapter Summary
In this chapter, we presented Lively, a system for generating smooth, lifelike, and
customizable secondary motion in a variety of robotic applications by formulating
them as goals in an optimization framework. Because of this optimization-based
approach, and a Cartesian space representation, we can produce robotic motions
that have the potential to be more easily readable by viewers, without sacrificing
task-based goals or guards against collisions or singularities. We also presented
LivelyStudio, a state-based visual programming and configuration environment
that allows for exploration and design. Developers can utilize Lively directly in
multiple programming and execution environments, in applications ranging from
traditional keyframe-based to real-time control.

In many ways, the goals of Lively and LivelyStudio are similar to those of CoFrame,
being interested in allowing more novice individuals to still contribute to the design
space of mixed social-collaborative robots. However, they differ in their approach
and primary focus. Whereas CoFrame was meant as a complete programming-
learning environment, and mostly focused on the overall safety, quality, and ef-
ficiency of the cobot program, Lively is primarily a library that can be integrated
into other systems, focused exclusively on motion specification. Despite the nar-
rower focus, it is nevertheless integral to the quality of the overall cobot program.
Both high-level and low-level attributes (e.g., CoFrame and Lively, respectively) are

111

needed for a complete system, and indeed, new versions of CoFrame utilize Lively
for its motion specification.

LivelyStudio bridges this gap in a way. Being a state-based visual programming
environment, it lowers the barrier for entry, prioritizing immediate feedback about
the configuration of certain robot motion behaviors. The formative evaluations
of the LivelyStudio interface demonstrated a disconnect between the keyframe-
based approach of animators and the real-time or procedural needs of more dy-
namic social-collaborative robots. The solution explored in subsequent versions of
LivelyStudio was to support a blending of these two approaches in the state-based
design, thereby allowing the designer to switch between keyframe-based specifica-
tion and states incorporating real-time procedural behaviors. This is accomplished
by conceptualizing each state as a collection of composable behaviors, both static
and procedural, made possible by the flexibility of the Lively framework.

That being said, future work could improve the state-based representation used
by LivelyStudio by exploring the right representation for how arcs are triggered.
LivelyStudio only handled timed and keyword-based transitions, which while useful
for LivelyStudio’s goals of supporting exploration and design with the Lively system,
it is not sufficiently robust for full cobot programs. State machines which allow for
a greater specification of these constraints could be explored, including options like
Petri Nets (Peterson, 1977), which are discussed more extensively in the Allocobot
chapter.

As related note, the design of LivelyStudio, as well as the improvements made
to CoFrame in the time since the original publication, have motivated the design of
a tool for designing visual representations of the programs themselves. This tool,
called OpenVP, is discussed in the next chapter.

112

6 openvp

Visual programming is a common approach for the specification of programs in
robotics. These programs can come in many forms, including more traditional im-
perative programs, state machines, or even behavior trees. Existing well-established
and ubiquitous tools like Blockly (Fraser, 2015), and Scratch (Resnick et al., 2009)
do suffer in their limited interoperability within the context of larger applications
and relatively poor flexibility in usage.

Figure 6.1: An example flow-based programming system designed with OpenVP,
illustrating a simple logic about how a robot should behave if a patron enters a
store.

Even in the context of greater emphasis on voice-based or chat-based design of
programs, there will still be a place for visual programming systems. For example,
after designing an entirely voice-based prototype system, Porfirio and colleagues
found that while spoken language had benefits, it was generally inefficient or
poorly suited for complex specifications, leading the team to ultimately construct a
multi-modal system instead (Porfirio et al., 2023).

In the process of designing various tools such as CoFrame and LivelyStudio in the
robotics space, we have iterated and improved on a component library for easily
specifying highly customized and tightly integrated web-based visual programming

113

Drawer Selector Block Drawer Tab Selector Program Canvas

Figure 6.2: Overview of OpenVP’s Environment layout, highlighting the four main
sections: the Drawer Selector, where the active drawer can be set, the Block Drawer,
where blocks in the current set can be selected from, the Tab Selector, where individ-
ual tabs can be added, removed, hidden, and edited, and finally the Program Canvas,
where the program is visualized and edited. Full customization of the theme is
possible, as shown in the light/dark modes.

environments within larger applications. This system, called OpenVP, is a React
component library that can easily be integrated into robot programming systems.
It provides a common block-based programming environment suitable for a range
of program designs, such as imperative programming and flow-based or state
machine programs.

OpenVP has been designed with multiple goals in mind1. These include:

• A high degree of straightforward configurablity;

• Serializable and portable program representations;

• Tight integration with the rest of the interface;
1The research discussed in this chapter is derived from published work by myself and Dr. Bilge

Mutlu. All authors contributed significantly to the conceptualization, design, implementation,
evaluation, analysis, and/or the writing of the original manuscript. In addition, due to OpenVP’s
relationship to the development of CoFrame, Nathan White assisted with specific logic for block
deletion handling.

114

• Abstraction of basic interaction details;

OpenVP addresses these goals by creating a system by which a clearly defined
Program Specification can be used to define the functionality of the intended visual
programming experience, and interoperability with the rest of the greater interface
is key to its architecture. In the following sections we will articulate some of
the characteristics of this system, and how it can be customized for a variety of
applications.

Target Users

The design of OpenVP was was driven in many ways by the needs of the CoFrame
and LivelyStudio systems. These two systems, while differing considerably in their
intended target users, shared a common need for a visual programming environ-
ment that could be tightly integrated into the rest of the interface. The OpenVP
library is in many ways a meta-level library, built for roboticists, researchers, and
developers like ourselves to support us in creating the types of systems we need in
order to support other users.

Research Questions

In creating OpenVP, we consider a number of questions about the design of visual
systems for collaborative robotics. First, what are the unique affordances that visual
programming systems should provide when focusing on robotics applications?
Second, and largely hypothetical, is the question of how higher-level abstractions
around the design of such robotics-focused visual programming systems might
bootstrap the design and exploration of future systems and paradigms. The answer
to that question will only be known in time, but we hope that OpenVP can serve as
a catalyst.

115

6.1 System Design & Implementation
OpenVP has been designed both for usability by end-users, but also to balance the
usability by developers with its capability. This results in a number of high-level
characteristics that guide its design.

Overview

The focus of the OpenVP library is the Environment component, which serves as a
single entry-point to using the system. The Environment itself contains a number
of other built-in elements, shown in Figure 6.2. Central to the environment is the
Programming Canvas, where the entire program can be visualized on an infinite
canvas. Users can pan and zoom this canvas to see a high-level overview of their
program, or focus on a particular block. The canvas also features a mini-map and
canvas navigation widget. To support editing, a number of other elements are
present. The first on the left is a Drawer Selector. Activating drawers exposes the
corresponding Block Drawer, which features a filterable list of blocks that can be
dragged onto the canvas. Finally, a navigational Tab Selector at the top allows for
the creation, editing, and removal of tabs.

Block Types

A key feature of OpenVP is the customizability of the system for a variety of possi-
ble programming paradigms or applications. As such, it is important to support
configurability of the various block types that can be used in each instance. As
such, OpenVP uses a two-part approach to configuring blocks, separating out the
program data model, which aims to be serializable for server-based applications,
from the program representation data, for which configurablity benefits from the
introduction of full javascript functionality. We call these two components the
ProgramData and ProgramSpec, respectively. Within the ProgramSpec is contained in-
formation about the drawers provided in the interface, as well as all types available
to the users.

116

Each type specification inherits from one of two primitive types, either object or
functions, and their specifications include information about the properties of each,
as well as customizable rendering information for their instance and reference blocks
(for objects), and declarations and calls (for functions). For example, it is possible
to create three different object types (e.g. a ProgramType for the top-level entry-
point, an OperationType to represent some behavior, and a TargetType to represent
something for the OperationType to act upon). If allowed, each of these types could
include separate visuals for how instances and references are rendered. Similarly, it
is possible to generate multiple types of the primitive functions, if needed. Note,
the configurability of functions is still driven to a large part by the end-user, since a
key feature of entries inheriting from the function primitive is that arguments can
be added and removed to the declaration itself from the interface.

Drag and Drop

Drag and Drop is central to the design of OpenVP, borrowing from similar tools
such as Blockly (Fraser, 2015) and Scratch (Resnick et al., 2009). In OpenVP, users
can select and drag blocks from the drawer into the canvas. Depending on the
needs of the application, some block variants can be designated as canvas blocks,
meaning that they can be dragged directly onto the canvas and organized on the 2D
grid. Other blocks can be limited to non-canvas blocks, meaning that they are only
applicable as children to canvas blocks, or other non-canvas blocks. When dragging
a block, valid drop points are highlighted in the interface, giving a visual reminder
of where they can be deposited. Upon hovering the block onto a valid drop zone, a
preview of that block in the specified location is shown. Hovering over drop zones
without a held block provides a tool-tip that visually shows which blocks are valid
at that location.

As mentioned before, types inheriting from the function primitive allow editing
of their arguments. Function arguments can be seen in the header of the correspond-
ing function declaration. As would be expected, arguments within a function’s
context can be dragged anywhere within that function, but are not available to be

117

TypeSpec FunctionTypeSpecObjectTypeSpec

ObjectTypeSpec

BlockSpec

BlockFieldInfo

name string

primitiveType OBJECT

description string

instanceBlock BlockSpec

referenceBlock BlockSpec

properties Map<string, FieldInfo >

id string

type BLOCK

name string

accepts string[]

default any

isList boolean

fullWidth boolean

name string

primitiveType FUNCTION

description string

functionBlock BlockSpec

callBlock BlockSpec

properties { [string]: FieldInfo }

color string

icon Component

onCanvas string

connections { [side]: ConnectSpec }

extras Extra

hideNewPrefix boolean

minified boolean

style CSS

FieldInfo BooleanFieldInfo

NumberFieldInfo StringFieldInfo

OptionsFieldInfo Vector3FieldInfo

MetadataFieldInfo

BlockFieldInfo

Extra DocToggle

CollapseToggle DebugToggle

DeleteButton CopyButton

CutButton Divider

AddArgument AddArgumentGroup

Dropdown FunctionButton

Indicator

SelectionToggle

FunctionTypeSpec

ConnectSpec accepts string[]

direction IN | OUT

Figure 6.3: Overview of block customization via their associated TypeSpec data. For
brevity, some variants are not included, notably non-block FieldInfo structs, (e.g.
NumberFieldInfo, StringFieldInfo, etc.). Also not shown is the Extra and ConnectSpec
fields, discussed elsewhere.

dropped outside that context. Conversely, block references from outside that context
can still be dragged in and used within a function.

118

Block Design

Blocks are highly customizable, with their appearance and behavior specified within
the ProgramSpec. An overview of configuration of a block’s TypeSpec can be found
in table 6.3. Breaking down this specification, each variant (ObjectTypeSpec and
FunctionTypeSpec) includes a set of two BlockSpec entries. Each of these entries can
independently specify the color of the block, the icon, whether it appears on the
canvas, any connections it can make with other blocks, menu items, whether newly
spawned items have the a "New" prefix attached to the name (e.g. "New Operation"
or "New Robot Function"), whether it features a compact design, or any other CSS
style overrides that are desired.

Parameters

Considering the two TypeSpec variants, each block can specify the parameters of
that block, included though the inclusion of FieldInfo data. These structs come in a
variety of forms, including BlockFieldInfo, NumberFieldInfo, StringFieldInfo, Option-
FieldInfo, BooleanFieldInfo, Vector3FieldInfo, and MetadataFieldInfo. The contents of the
BlockFieldInfo data structure is shown in Figure 6.3, which dictates how other blocks
can be dropped into that block, either as a list of blocks or singular parameters.

Menus and Documentation

Menus for each block can be configured separately for each BlockSpec entry, and
include a set of basic, prescribed functionality like selection, deletion, documentation,
copying, and cutting, as well as more customized cases like adding arguments to
functions and custom javascript functionality.

The TypeSpec can also provide a description, which is a markdown-flavored text
string, which can be used in the in-editor documentation. This markdown supports
major features, as well as a customized link usage such that links to valid types will
create a hyperlink to that type’s documentation.

119

Figure 6.4: An example of a Documentation section generated for an example
Function block. The documentation automatically curates how that block is used in
other blocks, and what blocks it uses. Additionally, the Description tab will render
the textual markdown description from the TypeSpec.

Connections

For each of a TypeSpec’s BlockSpec structures, it is possible to configure how that
block can connect to other canvas-based blocks. This data structure is relatively
straightforward, including a set of block types that are allowed to connect, and
whether that connection is incoming or outgoing. With this capability, it is possible
to design flow-based programs, in addition to imperative ones. An example of such
a design can be seen in Figure 6.5.

120

Figure 6.5: A small example flow-based program, illustrating the ability to draw
connections between canvas-based nodes. Connectivity is configured within Block-
Spec structs.

121

Integration

OpenVP was built with the understanding that it needs to operate within the context
of a larger design application. This type of capability is essential if, for example,
it is desired that when an error is found and selected, the corresponding block
highlights. Alternatively, perhaps it is desired that while the actual process is
running, the current progress of a given block could be updated. OpenVP solves
this by making the internal data model, including both the ProgramSpec and
ProgramData, accessible or editable from outside the component.

Data Store

The above functionality is achieved through the use of a flexible data store model
called (Kato and Henschel, 2019). All the behavior for the store, including the
internal actions, are contained within this store, which is provided in the library.
If you want access to the internals, substitute your own version of this store as a
property of the Environment component. Full information on how to configure this
in applications will be provided in documentation.

External Blocks

Suppose a designer wishes to provide a visualization of a certain block from the
Environment, but outside the Environment itself. For this purpose, we provide an
ExternalBlock component, which when connected to the correct data store, renders
a full block, minus the Environment.

Execution Progress

Robotics generally involves a number of long-running processes, and it can some-
times be useful to receive feedback about these processes within the interface itself.
A part of the store is reserved for configuring the progress of any blocks in the
Environment. This is done as a simple lookup of block ids to either numbers, or
clock-sensitive javascript functions.

122

6.2 Source Code and Usage
The source code for OpenVP is provided freely on Github2, and can be added to
existing projects via the node package manager (NPM). Documentation is hosted
on github3.

OpenVP uses a MIT license. As a high-level library itself, it makes use of many
other libraries, such as ReactFlow (Webkid GmbH, 2019) and Zustand (Kato and
Henschel, 2019). The former provides a fee-based Pro tier for usage by commercial
entities (it is free for research and academic purposes), so all commercial usage of
OpenVP should abide by those rules as well.

In conclusion, OpenVP seeks to provide an extensible, configurable, and forward-
facing tool for visually specifying programs common in robotics applications. Early
versions of this library have already been used in widely different robotics pro-
gramming applications, such as CoFrame and LivelyStudio. It is our hope that by
making this software available more widely, others can benefit from and contribute
to its further development.

6.3 Chapter Summary
OpenVP grew out of a need to create a flexible, configurable, and extensible visual
programming library for use in a variety of robotics applications. The two systems
it was specifically utilized in, and which guided its design, were CoFrame and
LivelyStudio. A commonality between these systems is obviously the VPE aspect,
but also the integration of that VPE in the larger interface to support feedback,
concept linkage, and other contextual mapping. For example, with CoFrame, we
wanted to be able to highlight specific areas of the program that produced certain
errors, and in LivelyStudio we wanted connect the program and visual representation
of Behavior Properties. In both, this was bi-directional communication. Selecting
nodes or blocks could cause elements in the system to focus, or vice versa.

2https://github.com/Wisc-HCI/open-vp
3https://Wisc-HCI.github.io/open-vp

123

CoFrame and LivelyStudio differ significantly in their program representation,
however. CoFrame features an imperative style of programming, where the program
is a list of instructions that are executed in order. LivelyStudio on the other hand,
features a flow-based programming style, where the program is a graph of nodes
that are executed in parallel. OpenVP was designed to support both of these styles
under a single umbrella. It should be noted that OpenVP is not itself a visual
programming language itself, but rather a single architecture for representing the
appearance and behavior of custom domain-specific languages, which themselves
serve as high-level specifications for the underlying robot program and lower-level
systems. For example, an interface like LivelyStudio would transfer its program to
server or backend, which converts the nodes and Behavior Properties into a set of
Lively objectives. These objectives would be used in the Lively Solver to determine
the joint angles at a given time, which would in turn be sent to a control node on
the robot, translating the joint angles into motor commands.

While OpenVP arguably transcends the specifics of collaborative robotics into
general visual programming, the design decisions were motivated by these types of
usage patterns. Features like durative execution feedback and program serialization
were all motivated by the needs of these systems.

We hope that OpenVP can grow to become a robust ecosystem for the design of
robot-specific visual programming environments. As part of this, we would like
to further explore how an even greater set of state-based program representations
might be supported, such as Petri Nets, much like that of the final chapter regarding
Allocobot.

124

7 allocobot

Cobots are made to provide assistance to human workers in a shared workspace
as full coworkers (Fanuc, 2023; Kuka, 2023; Universal Robots, 2023). Frequently,
these robots are distinguished by features such as sensing, compliance, and safety
mechanisms. These features are intended to allow cobots to work alongside humans,
rather than in isolation, and to provide assistance to humans in a way that is safe
and comfortable. According to Grand View Research (2023), they are also growing
in popularity, with the cobot market expected to expand at a compound annual
rate of 29.9% in the U.S. and 32.0% between 2023 and 2030.

However, despite the growing popularity of cobots, there are still many chal-
lenges to be addressed before they can be widely adopted effectively. One such
challenge is the allocation of cobots to tasks, and the resulting reorganization of
work entailed. In this context, allocation refers to the process of assigning cobots
to tasks in a way that is safe, efficient, and effective. This process is challenging
because it requires consideration of many factors, including the capabilities of the
cobots, the capabilities of the humans, the physical layout of the workspace, and
the nature of the tasks themselves.

Even using a relatively high-level approach, it has been shown by Liu et al.
(2022) that the impact of a cobot on the ergonomics of a task for the human is highly
dependent on the nature and characteristics of the job itself. Using data from the
O*NET database (National Center for O*NET Development, 2023), along with cobot
expert-derived evaluation cobot capability, they predicted the impact that inserting
a cobot into process would have on the human from an ergonomics perspective.
This analysis showed that while some jobs did indeed predict improvements, other
jobs showed either no improvement, or even detriment to the human workers. This
work underscores the difficulty in introducing collaborative robots into workflows,
since this variability in outcomes is likely more varied in individual cases, and more
dependent on individual implementations. That fact, as well as practical challenges
in the development of true interactive systems, helps to explain why cobots are

125

mostly used in isolation, rather than in true collaboration with humans (Michaelis
et al., 2020).

During this growth of cobot interest we must develop tools and methods that can
assist in the effective allocation of cobots to tasks. These tools and methods should
be able to assist in the allocation process by providing a way to model the work that
humans do, and to analyze the impact of cobots on that work. They should use a
range of perspectives, including those of ergonomics, engineers, human factors,
economists, and human-robot interaction. Importantly, this must simultaneously
be done in a manner that is still accessible to a wide variety of users, including
those with little to no experience in some of these domains, because the various
stakeholders may not have all the expertise needed at hand Michaelis et al. (2020).
This modeling and analysis should also be able to be performed in a way that is
flexible and extensible, so that it can be applied to a wide variety of tasks and
situations. Possible allocations should be easily inspected, but also flexible, so that
they can adjust and adapt depending on minor deviations that workers may make
from the "optimal" allocation. Finally, these tools should provide a clear set of
guidelines for how a cobot program could be generated.

The focus of this ongoing research is the design of one such system, combining
perspectives like ergonomists, economists, human factors engineers, and cobot
experts to provide a pipeline that supports the analysis, restructuring, and analysis
of human work as cobots are introduced. This pipeline, called Allocobot, will take as
input a description of human-only work, translate this work into a representation
capable of being reconfigured as a human-robot interaction, and then determine the
set of choices (e.g., the robot model selection, robot allocations, and arrangement of
work) that would be most effective for the task. The result of this pipeline will be a
policy indicating these choices, being flexible enough to handle certain deviations
by the human workers, while also concrete enough to provide clear guidelines for
implementation as a robot program.

Within this chapter, I will outline the current state of the art with regards to
task allocation and specification, the status of the Allocobot project, and discuss the

126

future work that is planned1.

Target Users

Allocobot, like the Authr and CoFrame systems, was meant to target users like au-
tomation experts and ergonomics specialists. This is evident in their aligned goals
and perspectives, even if their methods and approaches differ. What we hope is
that with Allocobot, we can provide a more holistic, principled approach than that
of Authr, while producing a more usable output for practical development and
decision-making. Of note, the set of stakeholders for Allocobot is also greater, given
this interest in the decision-making process, which is useful for individuals in the
business and management side of the organization. While such individuals may
not be the users of a system like Allocobot, they are nevertheless involved in the
process of considering whether and how to introduce collaborative robots, and
therefore a key consideration in the design of the system.

Research Questions

Allocobot is ongoing work that asks important questions about how to facilitate
productive exploration by automation experts and ergonomics specialists of the
impact of cobots on human work. Specifically, we ask whether a novel primitive
set may provide the benefits of existing ones like Therbligs, while also being more
amenable to joint human-robot work. We also consider whether a Petri Net-based
representation can provide a more flexible and extensible representation of human-
robot collaborative work, and whether algorithms built around them can both
generate reasonable, useful feedback, and also do so in a timeframe that is amenable
to the types of workflows desired by these users and stakeholders. Finally, we will

1The research discussed in this chapter represents unpublished work currently helmed by myself,
Nathan White, Anna Konstant, Dr. Robert Radwin, and Dr. Bilge Mutlu. All authors contributed
significantly to the conceptualization, design, implementation, evaluation, analysis, and/or the
writing of the original manuscript, but this set of authors is subject to change. Additionally, we thank
Dr. Aws Albarghouthi, Dr. Josiah Hannah, and Dr. Dieter van Malkebeek for early discussions
about satisfiability, reinforcement learning, and complexity.

127

consider whether the algorithms, when provided with real descriptions of work, can
correctly identify places for improvement through the introduction of collaborative
robots and the reorganization of workflows.

7.1 Background
Interest in providing automated or semi-automated allocation methods are grow-
ing, using a mixture of approaches. One such approach was utilized by Pearce
et al. (2018) to combine ergonomics and make-span estimates with optimization to
generate concrete schedules of human and robot work, minimizing human worker
physical stress along with overall task length. This method is broadly representative
of similar work that uses optimization, along with a variety of metrics, to incorpo-
rate robots into human work (Huang et al., 2023; Calzavara et al., 2023; Monguzzi
et al., 2022; Battini et al., 2016). Especially within the context of ergonomics analy-
sis, these methods appear to offer a good fit, given that ergonomics metrics and
computation techniques, such as the Strain Index (SI) (Garg et al., 2007, 2017),
energy expenditure (EE) (Garg, 1976), and the Revised NIOSH Lifting Equation
(Waters et al., 1994) generally feature some degree of non-summative computation,
meaning that to understand the ergonomics of a task, the entire task - performed
over the course of an entire day’s of work - must be considered, rather than individ-
ual components. These holistic metrics can be represented as objectives, optimizing
over complete variations or candidate allocations.

To understand how these allocations may work, we must first understand the
fundamental activities that comprise jobs. One of the first formal representations
of actions was therbligs, (Gilbreth and Gilbreth, 1924), used to model human work
by reducing work activities to their most basic components. The combination of
these basic motions represent a manual job, and can be utilized to study manual
human work across a variety of tasks. Motion studies were then developed to
analyze these primitive elements of manual work and create time estimates for
these actions. Several predetermined time systems were created, but some of the
most common include Methods-Time Measurement (MTM) (Maynard et al., 1948),

128

Modular Arrangement of Predetermined Time Standards (MODAPTS) (Carey
et al., 2001), and Maynard Operation Sequence Time (MOST) (Zandin, 1990).
These time systems estimate the time of a certain human work element based off
common factors including distance, weight, and type of control. The tools are used
prescriptively, helping to model the manual work in order to identify areas for
improvement. In this way, primitives like Therbligs can be used to describe tasks,
which can then be allocated to individual agents (either human or robot), and the
results can be analyzed using a variety of ergonomics metrics. This is the approach
used by Pearce et al. (2018), who used Therbligs and SI with an optimization-based
approach to allocate various activities between humans and cobots.

However, the results of the work by Pearce et al. (2018) showed that the tasks
most suitable for cobots were those that were conducive to parallel work, were
repetitive, and featured activities that the cobot could easily do. This last point
makes sense, given that the more capability the robot had, the greater it approxi-
mated a full worker. Furthermore, the rationale for the disproportionate benefit of
parallel work follows from the fact that the addition of another, complete worker to
a job with limited dependencies means at best a doubling of efficiency. However,
this finding raises certain flags for the efficacy of cobots. As discussed previously,
the promise of cobots, as opposed to automation in general, is that they can work to
improve quality, performance, or the experience of workers through collaborative
transformations of existing tasks. Simply having them work side-by-side without
interaction avoids this type of collaborative potential, and the benefits that might
be gained from it.

However, it is also possible that this finding is in part a logical consequence of
the existing work representations and allocation approaches currently available,
where entire primitives (e.g., therbligs) are allocated wholesale to individual humans
and robots according to any dependencies between them. Dependencies effectively
serve as constraints on this optimization, limiting how movable and flexible the
primitives may be within the overall process, and therefore serving only as limits
for how much benefit might be gained. To understand how true collaboration
may benefit human workers, a novel method of considering action primitives and

129

allocation is needed.
Collaborative interactions are inherently concurrent, but many feature specific

situations where orderings or dependencies are enforced. For this type of logic,
a model commonly used is the Petri Net, a directed bipartite graph consisting of
two node types (Places and Transitions) Peterson (1977). In a Petri Net, tokens travel
between Places via Transitions, such that incoming Transition arcs indicate depen-
dencies of that Transition for execution, and the outgoing edges indicate which
tokens are produced in which Places. Petri Nets have been used frequently to model
concurrent workflows, and multiple varieties have been developed that include rep-
resentations of time and more nuanced dependencies (Zuberek, 1991; Van der Aalst,
1998). For example, Workflow (WF) Nets are a variety of Petri Net that features a
more concise representation of logical dependencies, as well as the concept of sink
and source Places, where resources appear or disappear (Van der Aalst, 1998). Petri
Nets are also being used to model and even allocate tasks between combinations
of humans and robots, due to their innate concurrent modeling (Casalino et al.,
2019; Hu and Chen, 2017; Ziparo et al., 2011). However, many of these approaches
are limited by their level of detail about the features of the processes themselves,
and usually focus on a single aspect relevant to collaboration, such as deadlocking.
Our goal is to provide a unified task and action representation informed by primi-
tives such as Therbligs, Energy Expenditure, and Methods-Time Measurement with a
Petri Net-based implementation to support a robust, straightforward approach to
collaborative task allocations between humans and robots.

7.2 System Design & Implementation
In this section, we will outline both the high-level design of the Allocobot system, as
well as the specific implementation details of the current prototype.

130

Approach

As discussed, a limitation of current primitive representations is that they are
not conducive for reasoning about joint human-robot collaborative work. While
drawing inspiration from these previous techniques, Allocobot departs from them
in several key ways in order to better represent dependencies, joint actions, and the
characteristics of collaborative work. To begin, work is structured hierarchically, but
allocations can occur at various levels, resulting in varying levels of collaboration.
For example, entire tasks may be allocated to one agent, while in other cases a
single task may be restructured as a joint activity. Dependencies like resources also
follow this hierarchy, but collaborative allocations may be cross-sections of this
hierarchy, as opposed to strict sub-trees. In other words, dependencies in a true
collaborative task describe a set of partial orderings, frequently involving the state
or identities of various components or parts. So long as these partial orderings
are respected within cycles, the absolute ordering of activities in a collaborative
task can deviate from their order in the original specification. While embracing
this partial order representation for dependencies offers flexibility and realism, it
also presents challenges, given that any truly collaborative process has a nontrivial
chance of deviating at least slightly from an original specification from cycle to
cycle. Indeed, flexibility in aspects like timing are known to show benefits for the
overall experience of human users in tasks like handovers (Huang et al., 2015).
This, along with the inherent unpredictability that comes with collaborative human
work, makes it is important to consider more than just fixed schedules. Failing to do
this means that these static plans may not be representative of the task in practice,
and may therefore be fragile to minor perturbations from the optimal result.

To address these characteristics, we propose a holistic method of collaborative
task allocation, Allocobot, that includes both a novel primitive representation, specif-
ically made for compatibility with both joint and singular activities by robots and
human workers, as well as a method by which these primitives can be organized
and allocated.

131

Data and Representations

First, we consider the top-level collection of actions to be the Job. The Job includes
a set of Tasks, which themselves include a set of concurrent Primitives which are
executed during the Task. Whereas therbligs are meant to be indivisible, yet complete
representations of actions, our Primitives do not have the latter restriction. In other
words, Allocobot’s primitives recreate the functionality of other representations’
primitives through composition. For example, Allocobot’s Force Primitive could be
combined with its Position and Use Primitives to produce what would be considered
a therblig Use, where a worker positions and uses a tool while applying force.
Primitives are organized into Tasks, but can still be independently allocated, with
the caveat that they remain coordinated temporally and spatially. Thus, in the Use
example, if the Force component were particularly problematic to the human, but
possible by the robot, a joint action could occur where the robot provides force
assistance while the human worker guides the tool.

Unlike other representations that organize dependencies as simple partial order
relationships between entire sub-tasks, Allocobot aims for a more granular approach,
considering the parts that an individual Task requires and produces, as well as
spatial and agent availability considerations. These parts are called Targets, and
include Precursors (parts coming in from prior processes), Intermediates (parts
produced during, but which aren’t outputs of the job), Products (outputs of the
job), and Reusables (parts like tools that persist across cycles). Allocobot spatially
situates activities, such that individual Tasks can specify specific areas where the
worker or robot may use their hands or gripper, respectively. These areas, or Points
of Interest (POIs), also include standing locations, so that reachability to these hand
POIs can be approximated. Finally, the agents themselves are represented as classes
of potential workers or robots. For example, it is possible to consider the relative
impact of varying types of skilled workers or models of robots. For a breakdown of
each of these concepts, and their properties, see Figure 7.1.

132

Job

Set of Agents

TasksSet of

Set of Targets

Set of POIs

Task

Set of

Set of dependencies ,CountTarget

Set of outputs ,CountTarget

(Optional) Set of valid POIs

Primitives

Primitives

Target

(No Unique Parameters)

Target

Skill RatingMagnitude newtons

Force Selection Inspect

Hold Position Use

Targets

Handleability Rating

Size

Weight

meters

kilograms

Intermediates

Products Reusables

Precursors

POIs

Location

Displacement

Variability

Structure

Rating

Rating

Vector3 meters

Vector3 meters

Hand Standing

Payload

Agility Rating

Sensing Rating

Speed

Agent

meters / second

Precision meters

Mobile Speed meters / second

kilogramsAge

Acromial Height

Height

Skill Rating

Reach

years

meters

meters

meters

Weight kilograms

Human Robot

Figure 7.1: A mapping of the current components within Allocobot’s representation.
Note, Carry, Move, Travel, and Reach Primitives are used internally within the algo-
rithm, but are not specified explicitly, and therefore not shown. Overarching types
are depicted as cards, where the solid header indicates the type. Any properties
general across all types are listed first. Directly under outlined sub-type names are
properties specific to that type or types. Rating is a simple Low/Medium/High
categorical value.

Reformulation and Simulation

The above specification is performed by the user, after which the automated pro-
cessing phase begins. For a complete overview of this workflow and the questions

133

asked in each phase, see Figure 7.2. The user-specified Jobs are then processed into
an alternate Petri Net-based formulation Peterson (1977). Specifically, we use a
modified Timed-transition Petri Net Zuberek (1991). This state machine represen-
tation is commonly used in representing manufacturing and workflow processes,
and their emphasis on resource availability and timing is particularly suited for
this type of modeling.

During this reformulation, the target dependencies are translated into tokens
that must flow through the Petri Net. Similarly, Agents (both human workers and
robots) are translated to tokens. Tasks are translated into Transitions, which consume
and move these tokens around the state space, thereby representing the concurrent
activities in the interaction. For example, if a given Task requires a certain Precursor
and a given Agent, the Transition specifying that Task will have incoming arcs de-
picting those two requirements. If the Task produces an Intermediate, the outgoing
arcs from the Transition would show both the Agent and the Intermediate, where
they could be utilized in a later step.

This ability of tokens to both traverse the network while serving as constraints
for actions allow for the network to encode two main decision types within the
formulated Petri Nets, and both involve the execution of certain cost-inducing
Transitions. The first represents the initial configuration or meta-parameters. These
decisions include whether to add a given Agent type, which tasks certain agents can
perform, and whether these are joint actions or solitary. These decisions are decided
by the firing of certain irreversible Transitions, which serve to place Agent tokens
in the simulation and enable other task Transitions. For example, hiring a worker,
or purchasing a robot would be represented as a Transition which incurs a cost
proportional to each option’s monetary value, while depositing that Agent’s token
into the network for use. If the Agent is not added, the Transitions which would
require it are effectively disabled, since the Agent resource token required to execute
it is not present in the network. Conversely, if the Agent is added, those activities are
enabled. These activities themselves constitute the second set of decisions, namely
the timing and flow of the interaction itself. Based on the layout of the space, as
well as the decisions within the aforementioned meta-parameter selection, Agents

134

and Targets will move throughout the space, producing the specified output.
The second set of Transitions, like those discussed before, also incur costs, but are

more focused on the quality of the interaction, ergonomics, and production speed.
A variety of methods have been combined to approximate and aggregate these
ergonomics and collaborative-focused costs. The first, which we call one-time costs
involves ones analogous to those mentioned previously. Each time a given Task is
performed, some amount of penalty is applied. For humans, this cost is inspired by
strain, and for robots, an assessment of robot capability matching. However, a great
deal of ergonomic cost estimation involves the carryover effects of performing tasks
repeatedly (e.g. fatigue), which these cost methods do not capture. To track how
a given choice may impact these more temporally framed metrics, we introduce
another method of cost estimation we call exposure. For these costs, we estimate the
amount of strain induced for the hands, arms, and whole body. These estimates
are translated to a corresponding number of tokens which are placed in designated
Agent/type-specific Place bins. Each time the human Agent rests, or doesn’t incur
these costs, some number of tokens are removed from the bins. When assessed by
the reinforcement learning algorithm, higher numbers of tokens in these bins are
disincentivized. In this way, repeated activity by the human Agent without rest is
avoided.

Once the Petri Net has been created, it serves as the scaffold for a process of
Deep Reinforcement Learning (RL). Conceptually, this is achieved by simulating
traces through the interaction, exploring various action possibilities and evaluating
their impact on the overall performance of the agents in the task. Through this
simulation, an RL agent representing the union of all user-specified Agents learns
a policy that maps individual states to actions. In other words, at any moment
in time, there exists a state vector equivalent to the marking, or layout, of tokens
in the Petri Net. There are also a set of Transition actions that any of the included
Agents can perform, based on the satisfiability of their input arcs. The combined
set of actions that all Agents can perform at any time is the action vector, which are
masked according to arc-token requirements. Concurrently executed actions are
simply denoted by the presence of more than one threshold-satisfying entries in

135

this combined action vector.
The training of this deep network is done in two phases. The first shorter phase

only serves to train the network to avoid deadlocks, as done by Hu et al. 2020. For
a Petri Net, a deadlock occurs when for a given marking of tokens in the network,
there are no valid Transitions that can fire. This initial training serves to train the
RL agent to make choices that minimize these impasses. After this initial training
phase, the second phase begins, in which the aforementioned costs specified by the
Petri Net are utilized to refine the model to prioritize more effective, ergonomic,
and efficient choices.

Analysis

After the learning phase is complete, the workflow returns to the user, where the
model can be interrogated to answer questions like the overall cost (both monetary
and ergonomic), and which allocations of work are most effective. Given the
nature of the RL agent as the union of all Agents, the learned policy represents the
preferred action for all Agents to perform given a current marking of the Petri Net.
By executing the preferred actions at each time step, and feeding the result back
into the RL agent, an "optimal" trace can be produced, documenting the state of
the interaction at each moment, and the actions that each agent should perform.
This trace can then be analyzed using conventional ergonomics approaches, or
inspected for best-case efficiency. This is therefore analogous to the types of results
an optimization-based approach might produce. However, the policy also allows
for both greater realism since it inherently handles variation that might be caused
by the human worker. By allowing the RL agent to select actions by the human
Agents that are known to be less preferred, a variety of traces can be produced, other
than the best-case scenario. Like the "optimal" trace, these too can be analyzed for
ergonomic concerns, efficiency, and collaborative quality, therefore providing a
distribution of outcomes.

136

Which agents to
consider using?

What are the
tasks?

What are the points
of interest?

Which agents
to select?

Where should
agents start?

How to segment tasks into
primitives for joint actions?

Which agents to
assign to which tasks?

In which POIs should
certain targets appear?

When should an agent
move to a given POI?

When should an agent prioritize
one task over another?

When should an agent
rest or pause?

When should agents
retrieve certain targets?

What are the
targets and parts?

What primitives
are in each task?

Specification Decisions made by stakeholders and implementers
which dictate the structure of the task and agent
selection

Decisions representing key decisions, and which
dictate major capabilities and limits in a given
round of simulation

Decisions made while simulating, such as timing,
movement, and space usage

Meta-Parameters

Simulation

Given a human agent
configuration, what should

robot agents do?

What combination
of agents is best for

this job?

What is the
ergonomic cost for a

human agent?

Results from the output of the learning algorithm. Provides
both best-case and sub-optimal outcomes.Analysis

Petri N
et

U
ser

U
ser

Figure 7.2: A graphic showing the flow of the Allocobot process, highlighting the
questions specific to each phase. The first phase is specifications, and are inputs that
the stakeholder or integrator might provide to detail the job. The second and third
phases reflect the two decision types (meta-parameters and simulation). The fourth
phase represents the types of questions that can be answered after the process.

137

Implementation

In this section, we describe in greater detail the specifics of our implementation of
the aforementioned approach, with particular attention to the Petri Net, ergonomic
estimation, and reinforcement learning.

Petri Net

A standard Petri Net can be defined theoretically as a four-tuple N = (P, T , F,M0),
where N is the network, P and T are each disjoint finite sets representing the Places
and Transitions, respectively, and F ⊆ (P × T) ∪ (T × P), or the set of directed,
weighted arcs between P and T , and T and P Peterson (1977); Murata (1989). The
initial marking, M0, or layout of tokens in P, is also commonly included, when
present.

Petri nets have been extended in a variety of ways, including timing and al-
ternative place representations. Timing can be implemented in one of two ways,
Timed-Transition Petri Nets, and Timed-Place Petri Nets, which differ in the locus of
time integration. In the former, each Transition takes a specified amount time, while
in the latter, tokens must spend a certain amount of time in each Place. To better
match the representation of the Tasks in the input representation, Allocobot utilizes
a Timed-Transition Petri Net. Other extensions of Petri Nets include expanding the
varieties and interpretations of various Places in the net Der Jeng (1997); Van der
Aalst (1998). In Allocobot, we too specify a collection of Places, inspired by these
varieties and the characteristics of our data representation:

• Source Places for Agent and Precursor Target tokens. For Precursor Target tokens,
these effectively have a token count of infinity.

• Sink Places for Agent and Product Target tokens. These effectively have a token
count of negative infinity.

• Exposure Places (Hand, Arm, and Whole Body variants), where exposure
tokens are deposited following execution of human Transitions and consumed
via rest or inactivity.

138

In addition to the above, we also utilize standard Places without unique func-
tionality, which can encode various features, such as the presence of specific Agents
and Targets at certain POIs, or the result of some previous choice (e.g., adding a
robot Agent).

We also support a slight relaxation on some Transition guard functions, such
that ranges of token consumption can vary within a specified range. These are
useful in representing the ergonomic exposure tokens rest functionality. With this
relaxed constraint, Task Transitions not contributing a certain type of exposure can
serve as implicit rests by consuming those exposures from the exposure Places. This
functionality is explored further in the Ergonomic Cost Modeling section.

Lastly, while the Petri Net model used by Allocobot is technically a non-colored
Petri Net, each Place and Transition nevertheless encodes a rich amount of semantic
information, such as the associated Task, Targets, Primitive assignments, POIs, and
more. This semantic information is encoded as meta-data, which is used to assist
in interpretation and training in later stages.

Ergonomic Cost Modeling

We utilized two methods of integrating human ergonomics costs into the Allocobot
workflow. These two methods are a one-time ergonomic cost and an accumulating
exposure cost.

Reinforcement learning conventionally enforces a cost on executing actions, such
that the RL agent learns to be more efficient and choose efficient behaviors. This
concept is used to provide the first method of integrating ergonomic considerations
into the workflow. We call this a “one-time cost”, since it is incurred each time a
given Task Transition is performed by an individual agent. This cost is estimated
using a simplified fatigue method incorporating force and time. Worker character-
istics such as strength are conventionally incorporated in these types of metrics by
normalizing the cost to the amount of force needed, versus what can be supplied
by the worker.

For the purpose of comparison, we consider how Allocobot’s primitives map

139

onto alternative representations. For a given model, some of these mappings are
direct, while others are partial mappings. This mapping is shown in part within
Figure 7.3.

MTM
Representation

EE
Representation

Therblig
Representation

DefinitionPrimitives

NAHold at arms length
or at waist

Grasp + Hold +
Release

Supporting the
weight of a Target

Hold

NALight or heavy hand
work

UseThe process of using a
tool (Reusable Target)

Tool Use

TurnHeavy/light hand or
arm work

PositionTurning or rotating a
Target

Position

Apply Pressure (+) or
Disengage (-)

Pushing or PullingNAApplication of forceForce

Grasp + Bend/Arise +
Walk obstructed or
with weight +
Release

Carry at arms length
or at waist

Transport
Loaded

An Agent moves
standing locations
(POI) while holding a
Target

Carry

Walk unobstructedWalkingTransport
Empty

An Agent moves from
one standing location
(POI) to another

Travel

Reach to fixed,
slightly variable, or
variable location

Forward movement
of arms, standing

Transport
Empty

An Agent moves their
hands/gripper only

Reach

Grasp +
Move (approximate
or exact) +
Release

Forward arm
movement

Transport
LoadedAn Agent moves a

Target in its hands/
gripper

Move
(horizontal
displacement)

Grasp + Bend/Arise +
Move (approximate
or exact) +
Release

Semi squat
lift/lower

Transport
LoadedAn Agent moves a

Target in its hands/
gripper

Move (vertical
displacement)

Figure 7.3: A description of the primitives utilized in the algorithm and the mapping
onto different ergonomic models. Primitives in gray are used internally within the
algorithm.

An important aspect for ergonomics analysis is the proportion of work to rest.
This feature is why optimization-based approaches have historically been natural fits
for allocation problems, since an assessment of the entire workflow is possible for a

140

given allocation. Petri Nets are memory-less, meaning that this type of computation
is less directly translatable. The answer to this, however, is the creation of what
we refer to as “exposure” cost places. Conceptually, these places serve as gauges
on the combined magnitude and frequency of work that has been done recently
by various parts of the body (hands, arms, and whole-body). The exposure places
accumulate tokens from outgoing Task Transitions proportional to the fatigue that
would be generated from that activity in that part of the body. When other Task
Transitions are executed which don’t employ that part of the body, or the human
Agent explicitly rests, these tokens are reduced. Therefore, if the human Agent
repeatedly executes demanding tasks using some part of their body, the tokens in
this place increase, while repeatedly resting or swapping the predominant body
part will reduce them. To determine the appropriate body region breakdowns
and corresponding token computation methods, traditional ergonomic models
were considered, such as Strain Index (Garg et al., 2007, 2017), Garg Metabolic
Prediction Model (EE) (Garg et al., 1978), NIOSH Lifting Index (Waters et al., 1994),
Hand Activity Level (American Conference of Governmental Industrial Hygienists,
2018), Shoulder and Upper Extremity Threshold Limit Value (TLV) (American
Conference of Governmental Industrial Hygienists, 2022), and Rohmert Curves
(Rohmert, 1960). While the specific equations for computing each Task Transition’s
contribution to the exposure places are not yet decided, it will likely focus on the
usage of force both for its presence in many of these models, and as a complement
to the one-time costs.

As mentioned, it is useful to segment which part of the body each exposure
metric might be situated. A variety of different partition methods are possible, but
given the fidelity of our spatial modeling, the segmentation which most effectively
uses this geometry while providing useful distinctions is one of hands, arms/shoul-
ders, and whole-body. More specifically, hands work refers to cases where the
predominant activity involves small manipulation using the digits and precision
work. Arm and Shoulder exertions include reaching in awkward postures, over-
head work, carrying or manipulating heavy parts. Whole body exertions include
lifting/lowering, carrying, holding objects, or moving objects. It should be stated

141

that this distinction is not exclusive, since individual Tasks can activate any number
of these regions. This classification is based on the representation of MODAPTS
Carey et al. (2001), incorporating information about the relationships between
hand POIs, standing POIs, Agent metrics, and Primitives. After the exertions are
classified, the token value is calculated based on the same values.

As the exposure Places can accumulate tokens, rest or localized inactivity can
also reduce the tokens. Therefore, by giving rest to the human and reducing the
tokens in the bins, the algorithm was rewarded. Rest was determined by using a
scaled time metric.

Time Estimation

Given the timed nature of our representation, and the fact that many Task Transitions
are not actually observed in the original workflow, a critical stage in the algorithm is
the estimation of a given Task Transition, by an Agent or Agents. For this problem, we
utilized Methods-Time Measurement (MTM) by Barnes (1980), a predetermined
time system tool used to analyze the basic motions in a job, task, or subtask. In
ergonomic analysis, MTM is used to determine where there are ergonomic strains
based on time (Barnes, 1980). MTM-1 is the most basic MTM system and consists
of 9 basic elements: reach, move, turn, apply pressure, grasp, position, release,
disengage, eye times (focus and travel), and body, leg, and foot motions. Within
each basic motion, there are different classes, types, and features that determine
how much time a basic motion will take (Barnes, 1980). For example, a turn motion
includes features such as weight, size of object, and degrees. MTM has been used
in HRC to describe the basic motions of both the human and the robot Bänziger
et al. (2017); Malik and Bilberg (2019); Teiwes et al. (2016).Teiwes et al. used MTM
to describe the manual work and automation potential seen in a Volkswagen plant,
where a score of the potential, duration, and movement was created to evaluate
the different workstations. Bänziger et al. (2017) created skills based on the basic
motions defined in Teiwes et al. (2016) to include physical interaction between the
human and robot. However, no task features were included in the skills.

142

The primitives defined in Figure 7.3 are mapped to the MTM-1 motions, similar
to the mapping of the primitives in the ergonomic cost modeling. The mapping
allow standard times to be calculated for each task within a job, given the nature of
their Primitives. MTM-1 times are presented as tables with different times based
on task characteristics (i.e. class of motion, weight and size of object). In order to
efficiently implement MTM-1 into our algorithm, we created regression equations
based off the tables in Barnes (1980) when equations were not provided. For
these regressions, we estimated power curve relationships for short distances and
linear relationships for longer distances. The regression analysis was conducted in
Microsoft Excel. All estimated regression equations had an R Square value above
0.99, which is expected because the MTM-1 tables themselves were created based
off of linear regression equations.

Reinforcement Learning

To find a suitable policy for navigating through the Petri net according to the various
time and cost metrics discussed, we use reinforcement learning (RL) to explore and
reinforce optimal choices within the network. We accomplish this using Proximal
Policy Optimization (PPO) Schulman et al. (2017) combined with action masking
Huang and Ontañón (2020) to speed up the process of finding a viable solution.
PPO is a policy gradient reinforcement learning method that makes small and
iterative step sizes to learn the optimal policy for a given problem. Action masking
is a technique that allows us to constrain the Transition space of the Petri Net at each
time step to only those that are possible, i.e. if the prerequisites of a given Transition
are not met, then it is not considered as a possible Transition for that state. This
removes the requirement of first training the network to avoid invalid Transitions,
thereby focusing on valid options for a given state.

While training the RL agent, each time step must produce a selection of Tran-
sitions for all Agents. Each selected Transition induces a negative reward (cost) to
the overall RL agent. Producing the Product(s) associated with the Job results in a
large positive reward, but failing to do so before the any cycle time limit induces a

143

large negative reward. The cost associated with each Transition is the combination
of the one-time ergonomic cost associated with the Transition itself, the evaluation
of exposure cost tokens in the exposure Places, as described in Section 7.2, as well
as any cost-related metrics from the meta-parameter selection. Ergonomic costs are
additive, such that the cost associated with exposure is added to the one-time cost
of the Transition.

We utilized the implementation of PPO action masking from Stable-Baselines3
Raffin et al. (2021) contribution repository. Using this, we created two custom gym
environments for the agent to train in. The first custom environment provides initial
training against deadlock situations, similar to Hu et al. (2020), providing the agent
with no reward for any Transition it takes, and severely penalizing Transitions that
result in no viable Transitions in the subsequent state. Deadlock checking is checked
through the action mask, determining if there are any possible Transitions that can
be taken, ignoring silent actions such as rests which don’t progress the state of the
interaction. If no valid Transitions are present, the RL agent is penalized and the
training session is ended.

The action mask is based on the outgoing arcs for each place in the Petri Net
as well as the time associated with the Transitions they connect to. This is done to
ensure a lightweight masking function, so as to not heavily impact training times.
The first step of the action mask is to mark all currently firing Transitions as invalid,
as they are in progress. From this reduced set of viable Transitions, we look at the
outgoing arcs of each place that connects to these Transitions, as these are the arcs
that reduce the token count for a given place. Since a place cannot have a negative
amount of tokens, as this would mean, for example, we would have a negative
amount of parts or individuals, we mark all Transitions that would create negative
counts of tokens as invalid. The remaining set of Transitions is marked valid and
considered for the current step of training.

After training the RL agent in deadlock avoidance, the second round of training
begins, focusing on the full process. In this environment, each Transition taken
incurs some cost to the RL agent based on the aforementioned factors, adding a
one-to-one cost of the number of tokens in each ergo bin to the cost of executing the

144

Transition. This cost results in the RL agent accumulating an increasingly negative
reward, which it’s trying to minimize. The RL agent is only rewarded positively once
it reaches the goal state, which is marked as the final product or state represented
in the human-only process, i.e., when the collaboration is considered complete. In
both training environments, the RL agent records an observation of the current
state of the Petri Net as a vector, i.e., the number of tokens in each place, as well as
the amount of time left for each Transition that is in progress.

To use the Petri Net within the PPO algorithm, we represent the change to the
network as a matrix, with rows acting as the Places in the Petri Net and columns
being the Transitions. Each indexij in the matrix represents the net change in tokens
at placei for Transitionj. For example, if Transitionj consumes 1 token from placei

and then produces 1 token for placei, indexij is 0. Because each Transition has
a time associated with its execution, we split this matrix into two, one for token
consumption input and one for token production output. This allows us to first
consume tokens, wait for the Transition to finish, and then produce the associated
tokens. At each step of the training process, we get a new observation of the Petri
Net by multiplying this matrix with the previous observation.

However, as each Transition takes some amount of time t to fire, we produce
the new observation by multiplying the input matrix by the old observation, to
represent the consumption of tokens from the prerequisite Places in the Petri Net.
Then after time t has passed, the new observation is the result of multiplying
the output matrix by the current observation, which may be different than the
observation produced by multiplying the input matrix. The step of applying
the output matrix represents the change in the Petri Net that occurs from the
Transition producing tokens to the outgoing Places. This time t is tracked in the
observation vector, where each Transition has an associated timer indicating whether
it is available or currently firing.

Assuming a maximum firing of the Petri Net at each time step, meaning that
all possible agents are performing an action, we update the timer of the firing
Transitions by the minimum amount between them. For example, if the max firing
has the human agent engaged with TransitionA for 25 seconds and the robot agent

145

with TransitionB for 30 seconds, the simulation advances by 25 seconds for the next
time step, leaving 5 seconds remaining on the robot’s TransitionB. At this point, the
human agent would be free to perform a new task, but the robot agent remains
busy.

This second round of training produces a policy network that we apply to the
problem space and determine the preferred sequence of tasks to complete the
collaborative job. This network allows us to iteratively step through the problem
space and identify the changes to the exposure costs over time, Task allocations,
timing of activities, and hiring or purchasing decisions, and more. The result of
this stepping process is a timeline or trace. Just like the preferred action set can be
used, it is also possible to introduce variability into the trace by having the RL agent
select human actions that are not the preferred action, likely proportional to their
relative preference in the policy. This allows us to explore the space of possible
solutions and identify the impact of different decisions on the overall cost of the
process as a distribution.

7.3 Future Work
While most of the implementation of the above has been completed, a number of
components still need to be finished. First, the ergonomic cost modeling, especially
the exposure cost, is still in progress. Currently, a force-sensitive fatigue metric
is being used in both one-time costs and exposure costs, but additional metrics
may be incorporated, such as Hand Activity Level (HAL) (American Conference
of Governmental Industrial Hygienists, 2018) and Shoulder and Upper Extremity
Threshold Limit Value (TLV) (American Conference of Governmental Industrial
Hygienists, 2022).

With regards to economic and business-related decisions, more work needs
to be done to incorporate the cost of hiring and purchasing decisions. Currently,
the cost of hiring a worker or purchasing a robot is a one-time cost, but a greater
level of consideration needs to be taken to scale the relative benefits and costs of
these decisions, as well as to events such as producing product and consuming

146

precursors. Likely, this will take the form of converting the ergonomic metrics
into a monetary value, using estimation of the cost for injury and worker retention
challenges. This will provide a singular metric for the scaling of relative costs and
benefits, as well as a clear outcome value for stakeholders to understand.

The process of reinforcement learning using the Petri Net task models has
been completed on example tasks, but more work needs to be done to evaluate the
effectiveness and efficiency of the approach in fully realistic scenarios. This includes
multiple levels of testing. The first of these is an efficiency consideration, focusing
on the speed of the algorithm and the ability to scale to larger problems. Our
goal in the system is to provide useful feedback about the process in a reasonable
amount of time, so that stakeholders can make informed decisions about the process.
Second is an modeling test, focusing on the ability of the algorithm as a whole
to reason about the aspects like ergonomics and logic. This is relevant because
despite using multiple ergonomic models and robust knowledge of collaborative
robotics and business, the behavior of the system is highly dependent on the synergy
between these models and the functionality of the Petri net model and RL method.
This type of test therefore ensures that the indeed the algorithm appears to be
prioritizing the correct aspects of the problem, such as low ergonomic burden and
efficient production. This can be accomplished by comparing the trace results of the
algorithm without additional agents to current workflows using standard domain
metrics. If the algorithm is indeed prioritizing the correct aspects of the interaction,
then the results should be similar or better than the current workflow.

Lastly, we want to evaluate the algorithm in the manner it is intended to be used.
To do this, we would conduct a series of tests on real-world tasks, looking to deter-
mine the quality of the solutions provided when introducing collaborative robots,
comparing the result of the algorithm to the current workflow. This evaluation
could also include consultation with the organizations from which these real-world
tasks are drawn, in order to better understand the quality of the feedback and the
understandability and actionability of the results.

147

7.4 Chapter Summary
The Allocobot project grew directly out of interviews with and observations of
individuals working in manufacturing, and the challenges they face in integrat-
ing collaborative robots into their processes. Specifically, we observed how even
with a system like CoFrame, which provides a unique method of supporting the
design of high-quality and safe collaborative robot programs, the stakeholders
and engineers that would be tasked with using it lacked a prerequisite, namely
a clear understanding of what they wanted to achieve. Compounding this issue
was the multi-faceted nature of how to arrive at that answer, which includes con-
siderations such as robot capability, human ergonomics, collaboration quality and
safety, and efficiency. This complexity meant that it was difficult to find individuals
who could provide all these perspectives, let alone integrate them into a single
solution with clearly articulated metrics for relevant stakeholders tasked with the
decision-making process. Allocobot also grew from our own motivation to improve
on the Authr system. Despite the clear benefits of Authr’s approach, we desired a
better match between the task representation for both agents, a more robust method
of evaluating ergonomics and costs, and a more realistic output that respects the
variable nature of human behavior.

Therefore, in this chapter, we presented Allocobot, a novel approach to the
problem of collaborative robot allocation. We first presented the motivation for the
work, specifically the need for a more holistic approach to the problem of integrating
cobots into manufacturing processes that includes a process representation suited
for the analysis and generation of robust human-robot collaborative work designs.
We then presented the Allocobot workflow, which is a novel combination of a user-
specified task representation, a Petri Net-based reformulation, and reinforcement
learning. We then described the implementation of the approach, including the Petri
Net representation, ergonomic cost modeling, and reinforcement learning. Lastly,
we discussed the future work that needs to be done to complete the implementation
and evaluate the approach.

148

8 general discussion

Summary and Significance of Work

The preceding work, including both technical and empirical contributions, has
been in service of demonstrating partial support for my thesis statement stating
that tools and systems which support domain experts during the programming
process through the use of task and program representations, transformation,
and relevant feedback can support the design of collaborative robot behaviors.
As discussed, the nature of collaborative robot interaction design is multi-faceted
and complex, and system design can be challenging with regards to time, effort,
and resources, which means that a thorough proof of this thesis will involve the
work of more than just a dissertation. Within the work described within this disser-
tation, we aim to provide this partial support in a two-pronged approach, by using
this strategic combination of representation, transformation, and feedback to both
elevate the understanding and knowledge of the individuals using them, as well as
produce collaborative robot programs which incorporate beneficial improvements
or increased collaborative potential. With Authr, we adapted a representation of
human work called Therbligs into a set of action primitives that could be utilized in
a linear sequence of processes, much like the engineers or work specialists would be
familiar with. By combining these primitives with verification and limited synthesis,
individuals were able to construct collaborative programs which better balanced
ergonomic cost and time through allocation of work. CoFrame leaned more heavily
into improving the knowledge of the users, focusing on the development of a joint
programming-learning platform which through the use of visual feedback and
guidance based on a model of cobot expertise aims to assist users in developing the
skills needed to program cobots. The programming approach used within CoFrame
is deliberately made to complement the approach familiar to roboticists, while intro-
ducing concepts such as synchronization and dependency. The optimization-based
Lively framework and LivelyStudio system focused on the specification of robotic
motion, which is a domain simultaneously visual and mathematical. With this

149

approach, we aim to provide a more intuitive and accessible way to specify robotic
motion that supports both joint-based and Cartesian motion, as well as precise
goals and procedural motion. By allowing the arbitration of these various behavior
objectives to be handled within an optimization, the goal was to allow less technical,
but highly knowledgeable individuals to focus on the qualitative aspects of motion
design, as opposed to the technical mathematics. This approach was evaluated
with a formative evaluation, which was used to improve the design approach to
better support the both the current workflows of roboticists and animators, as
well as the capabilities and requirements of real-time robot motion. Stepping back
from the design of complete systems and tools, OpenVP was developed as a frame-
work for the development of visual programming languages for robotics. Robotics
presents certain unique challenges, such as the need for rich feedback and tight
integration with external systems (like visualizations), logic and flow paradigms,
and customizable primitives. The design of OpenVP was informed by the design
of both CoFrame and LivelyStudio, and aims to allow tool creators to focus on the
design of the representations used, instead of low-level details about interactivity,
visualization, serialization, and implementation. The goal in such a system is that
by abstracting away these details under a single framework, more research can
be done which focuses on the varying affordances and capabilities of different
representations at different levels of the cobot programming process. Finally, we
discuss Allocobot, a project in progress which is highly informed by both our own
observations at site visits, and a survey of current literature and industry trends.
The challenge we have seen is that even in systems like CoFrame, which aim to make
the cobot programming process more accessible, the individuals at these companies
lack the ability to conceptualize the program objective. In other words, even if tools
like CoFrameand Authr can assist programmers in developing programs, they still
need to know what to program. Allocobot aims to address this by building on the
concepts presented in Authr to develop a richer specification and representation
for tasks and human work, leveraging Petri Nets and reinforcement learning to
generate suggestions for task structure, robot selection, and allocation of work that
can be used to inform both stakeholders and programmers in decision-making.

150

As stated, however, this work only represents a partial support for this thesis.
This is due to many factors, which will be discussed in the following sections.
However, broadly, this is due to two main factors. First, the work presented here
represents solutions that address only a subset of the challenges and considerations
that are relevant to the design of truly collaborative robot interactions. As discussed,
the design of such systems is complex and highly interconnected, featuring systems
for sensing, gesture, reasoning, planning, motion, and more. Given that this work
primarily concerns itself with the challenges of motion design, task design, and
work allocation, it represents only a portion of the required work to prove this
thesis in full. Second, many of the projects outlined within this dissertation are still
ongoing, with research being done by myself and colleagues, for example in the
case of CoFrame, Lively, and Allocobot.

That being said, the work presented here together represent our approaches to
begin bridging the current knowledge and skills gap preventing the effective use
of collaborative robots. Demonstrating this, we have conducted summative and
technical evaluations, formative evaluations, case studies, and research-motivated
design. We have designed highly functional, standalone systems and tools, and we
hope they represent the beginning of a larger body of work that will continue to
address the challenges of collaborative robot interaction design.

Challenges and Limitations

While limitations of the various works have been discussed within their respective
chapters, it is still useful to consider how these fit within the larger set of challenges
and limitations of the body of work.

Evaluation Challenges

Systems for programming robots present challenges in designing effective means
of evaluating them, since there are a multitude of metrics that are relevant. Like
any system evaluation, this may include self-reported metrics such as usability
or satisfaction. Performance-based metrics can also be used, such as the time it

151

takes to program something, or whether some goal was achieved. However, what
matters more in many cases is not whether a goal was strictly achieved, but the
quality with which it was done. Moreover, in the realm of collaborative robotics, the
simple detection of errors is not sufficient, since the distinction between desireable
behavior and undesirable behavior exists not as a discrete, consistent boundary,
but rather a somewhat subjective and highly conditional spectrum. For example,
a robot may be programmed to move to a location, but the quality of that motion
may be poor, or the motion may be unsafe. In such a case, the robot may still be
able to achieve the goal, but the quality of the motion may be poor. In such a
case, the evaluation of the system should not be based on whether the robot was
able to achieve the goal, but rather the quality of the motion. Furthermore, it is
somewhat dependent on the expertise of the programmer. Suppose the individual
is a is an expert in animation, and they have the benefit of knowing the type of
motion desired in a specific situation. While the behavior may be suboptimal in
certain circumstances, there may be good rationale for its creation, and thus the
evaluation should consider not just the motion itself, but whether the creator was
able to successfully execute on their vision.

Adding complexity to this is that in many systems, the ones in this dissertation
being no exception, the goal of the system is not necessarily to create a full end-
to-end robot infrastructure, but rather move the needle in some way by extending
functionality. To what extent do evaluations focus on the specific contribution of the
system, versus the system as a whole? Furthermore, given the extremely diverse
range of approaches and layers of cobot programming, what is the right comparison
for a given system? Is it one from research, or the one most commonly used in
practice by the intended users? In CoFrame, is the comparison a current system
like Polyscope (Universal Robots, 2023) that is used commonly, but which suffers
from clear usability issues, their online video-based learning platform (Universal
Robots, 2021), or some other research-focused robot programming system such
as CoSTAR (Paxton et al., 2017) which was designed for a different purpose than
CoFrame. What if the approach is novel, transcending architectural layers, like in
the case of Lively and LivelyStudio? These are important questions for which there

152

are not always clear answers. In this work, we have attempted to balance the need
to evaluate the systems as a whole, without losing sight of the design process and
motivations that led to their creation. Combined with development challenges
(discussed below), this has led to a staggered approach to evaluation, such that the
evaluations of these systems sometimes take place some time after the development
has concluded, with different individuals leading the charge. For example, an
evaluation of the CoFrame system is ongoing, but being led by another student
Nathan White, and is therefore not discussed explicitly in this body of work. As
such, the CoFrame system must rest on the strength of its research-motivated design,
the quality of its implementation and features, and the assessment of reviewers
familiar with the domain. That is not to say that there are no evaluations of these
systems. Authr was evaluated with both technical and user evaluations, while Lively
was evaluated with a formative evaluation and benchmarks.

Development Challenges

As mentioned, systems for programming robots are complex and multifaceted.
Any research-focused system exists in a balance between the demonstration of
some novel concept and the development of a system that is usable and useful.
Going too far in the direction of illustrating the concept, even a beneficial feature
may be hidden by a lack of general usability of the system. Going too far in the
other direction can result in highly usable systems, but which lack clear research
contributions. This is a challenge that is not unique to robotics, but is especially
challenging in robotics due to the complexity of the systems involved. For example,
tools like Authr, CoFrame, and LivelyStudio includes the front-facing interfaces, as
well as the infrastructure that supports it, including components like data storage,
program verification and optimization, trajectory planning, and more. The interface
itself represents significant work, requiring implementation of components for visu-
alizing 3D scenes, data entry, navigation, drag-and-drop, and handling interactivity
between components. This complexity requires a sizeable investment of time and
effort, and consequently individuals that can contribute to the development of the

153

system. In practice, this means assembling a team of fellow graduate students, as
well as highly capable undergraduate students. Producing the work demonstrated
in this dissertation was by necessity a group effort, and the success we have had is
a testament to the capabilities and tenacity of my fellow collaborators.

Even with a highly capable team, the development of these systems takes a
considerable amount of time, requiring strategic reuse and generalization of various
subsystems. For example, development of both CoFrame and LivelyStudio required
significant development in terms of reusable components for 3D visualization and
visual programming, the latter becoming the OpenVP library.

Research-related limitations served as another constraint on the design of these
systems. Research-focused systems in general suffer when they cannot be executed
and tested by other researchers, and this is particularly true when systems are tightly
coupled to specific hardware or server behaviors. For example, if the functionality
of the system is dependent on querying a third-party API, or even a locally run
server, if the third party changes their API, or research funds dry up to maintain
the server, the system may be completely broken. In the interest of producing
systems which survive beyond the duration of a single research project, many of
these systems were designed to be as self-contained as possible. While this assists in
longevity, it also places certain constraints on the computational resources available,
and the types of functionality that can be supported.

Breadth Limitations

The vast number of considerations for practical, fully functional cobot systems
presents a vast breadth of potential improvement. Within the work presented here,
attention is primarily devoted to the understanding of mutual dependencies, sub-
task allocation, and motion specification, given their importance in the transition
from standard manufacturing robotics to cobots. However, this reflects only a small
part of the overall picture, which includes considerations such as object and gesture
recognition, environment modeling, grasping and manipulation, communication,
and error recovery. Any sufficiently complete method for supporting cobot pro-

154

gramming should consider these aspects in addition to the ones of focus within
this dissertation. It is our hope that the approaches presented here can extend or
remain compatible with future work in these areas. For example, the composability
and extendability of Lively should allow for future expansion to handle improved
specification that supports grasp-focused collision masking, or even higher-level
abstractions of posture. CoFrame, partly driven by its usage of OpenVP has been
built with extendability in mind, such that new actions and functionality can be
supported.

Future Work

The limitations regarding breadth imply a certain type of future work, by which
additional components and considerations of the cobot programming process
can be addressed. How does a system like CoFrame function when modeling
unpredictability of the human more explicitly? If object sensing is required, what
is the most effective manner with which this physical and visual information is
incorporated into the programming process?

Certain directions for future work focus more on digging deeper into the func-
tionality and capabilities of the systems themselves, and I see a number of oppor-
tunities in this form. There is always a tradeoff in the usage of physical robots
during the programming process itself. While it has clear benefits in grounding
the movements of the robot in the real world, it comes with it the requirements
of having that device available. This places constraints on the accessibility of the
system to newcomers (such as in the education space) and care should be taken to
ensure that educational resources are not tied explicitly to the use of sometimes
costly equipment. Thus, a natural direction for future work is to explore instances
where the benefits of such physical systems could be attained through alternative
technologies, such as AR/VR and higher-fidelity simulation. In cases where the
physical robot is truly necessary, how can that functionality best be incorporated
into more explicitly programmed architectures?

The allocation of tasks, as discussed in the Authr and Allocobot chapters, is

155

a complex process that involves considerations about ergonomics, workforce re-
quirements, cobot capability, the physical environment, and more. While Allocobot
attempts to extend to more of these features than Authr, it is still limited in its
ability to model them in a way that is both high-fidelity and sufficiently feasible
computationally to be useful. In part this is by design; there is generally a certain
degree of uncertainty in both the workspace and human behavior that makes at-
tempting to over-fit to a specific model ill-advised. However, improvements to
human modeling, as well as effective use of fuzzy logic and uncertainty – while
managing the complexity of the system and computation – may represent ways of
attaining both goals.

Given the emphasis on safety, predictability, and efficiency for companies look-
ing to add cobots, it is important to consider also the tradeoffs between "creative"
problem-solving processes, such as real-time planning and error recovery, and
more explicit, hard-coded solutions that behave in predictable ways. In some ways,
the ideal cobot sits at the intersection of being highly capable of recovering from
error and assisting the human worker in ways that are adaptive, while also being
well-vetted and predictable such that potential injuries are exceedingly rare. This is
an exceedingly difficult balance to strike, especially given the need for high-fidelity
input and sensing needed for the former. This is one of the reasons why at the
current moment, despite recent advances in the field of Large Language Models
(LLMs), there is very little interest from the industrial manufacturing community.
For them, the risk of injury if the robot behaves in an unexpected way is just too
high to justify the possible benefit of a more capable, adaptive robot. However, as
the capabilities of these models improve, as well as the ability to regulate, constrain,
and categorize their output, this balance may change.

The challenge then becomes how to best incorporate these models into the
programming process itself. Do action primitives still make sense as a way of
categorizing certain behaviors? Regarding the higher-level considerations of task
allocation, ergonomics and capability, how do these emerging technologies fit into
the picture? Ergonomics itself is a complex field that considers multiple factors in its
models and estimates. It is unlikely that LLMs will immediately obtain the level of

156

fidelity needed to completely replace these methods completely within the program
architecture, but there are still places where they may be useful. For example, in
the Allocobot process, part of the success of this algorithm is on the ability to specify
both the current setup, but also brainstorm potential future setups. This ideation,
which provides inputs into these more computationally heavy systems, may be an
effective way of incorporating these technologies into the programming process.

Conclusion

This final section serves as a final summary of the points within my dissertation. In
these collected works by myself and my colleagues we have developed customized
representations (e.g., primitives, architectures, and domain-specific languages)
and paired them with augmentation and feedback methods in order to reduce the
gap between what current cobot programmers can currently achieve, and what
they need to be able for them to become more effective and useful. Authr borrows
from a set of human action definitions called Therbligs, combining them with a
verification and synthesis approach which determines how allocations of those
actions can produce programs that are efficient and ergonomic. CoFrame leans
on an empirical model of cobot expertise to create a programming environment
that provides feedback based on this model to assist users in developing their
knowledge and understanding of the domain. Lively and LivelyStudio focus on
the specification of robotic motion, taking a composable representation under an
optimization-based framework that allows for a more design-focused approach.
OpenVP provides a new architecture for visual programming languages in robotics,
and Allocobotrepresents ongoing research meant to unify a diverse range of design
considerations into a method for assisting in the allocation and decision-making
process.

In many ways, I see this work as a stepping back from the current space of cobot
programming and attempting to address why despite the existence of many highly
capable subsystems and algorithms in the domain, the adoption and utility of
cobots remains low. It is not enough for these new technologies to be more capable,

157

or pass certain benchmarks. This is certainly important, but not the entire picture.
We need to consider not just the technology, but the individuals who have to piece
them all together, and ask ourselves if we are handing them a challenge that is
beyond their current capabilities. To truly produce meaningful societal impact, we
must address the abstractions and representations for these methods, and how
they exist within the larger program model and relate to the users’ mental models
and current understanding. Sometimes this involves considering their current
approaches and workflows, and producing systems which incrementally move
the needle towards more capable systems, but in a way that through feedback
improves their understanding. Other times, it means creating novel representations
which can be combined with various algorithms and methods to generate more
comprehensive collaborative programs.

While the work presented here represents a large amount of time, it is by no
means complete or comprehensive. There are a multitude of ways by which the
current work can be further studied, extended, and modified. I hope that by
presenting this material in this way, I motivate others to consider the ways in which
they can contribute to this space, and help to bridge the gap between the current
state of cobot programming and the future we envision.

158

references

Van der Aalst, Wil MP. 1998. The application of petri nets to workflow management.
Journal of circuits, systems, and computers 8(01):21–66.

Agility Robotics. 2023. Agility Robotics. https://agilityrobotics.com.

Ajaykumar, Gopika, and Chien-Ming Huang. 2020. User needs and design op-
portunities in end-user robot programming. In Companion of the 2020 acm/ieee
international conference on human-robot interaction, 93–95.

Akgun, Baris, Maya Cakmak, Jae Wook Yoo, and Andrea Lockerd Thomaz. 2012.
Trajectories and keyframes for kinesthetic teaching: A human-robot interaction
perspective. In Proceedings of the seventh annual acm/ieee international conference on
human-robot interaction, 391–398.

Akrout, H., D. Anson, G. Bianchini, A. Neveur, C. Trinel, M. Farnsworth, and
T. Tomiyama. 2013. Maintenance Task Classification: Towards Automated Robotic
Maintenance for Industry. Procedia CIRP 11:367 – 372.

Alexandrova, Sonya, Zachary Tatlock, and Maya Cakmak. 2015. Roboflow: A
Flow-Based Visual Programming Language for Mobile Manipulation Tasks. In
2015 IEEE International Conference on Robotics and Automation (ICRA), 5537–5544.
IEEE.

American Conference of Governmental Industrial Hygienists, ed. 2018. Hand
activity: TLV physical agents 7th edition.

———. 2022. Upper limb localized fatigue: TLV physical agents 7th edition.

Andrew, Megan, Timothy Marler, Jesse Lastunen, Hannah Acheson-Field, and
Steven W Popper. 2020. An Analysis of Education and Training Programs in Advanced
Manufacturing Using Robotics. RAND.

https://agilityrobotics.com

159

Andrist, Sean, Wesley Collier, Michael Gleicher, Bilge Mutlu, and David Shaffer.
2015. Look together: Analyzing gaze coordination with epistemic network analysis.
Frontiers in psychology 6:1016.

Andrist, Sean, Michael Gleicher, and Bilge Mutlu. 2017. Looking coordinated:
Bidirectional gaze mechanisms for collaborative interaction with virtual characters.
In Proceedings of the 2017 chi conference on human factors in computing systems, 2571–
2582.

Andrist, Sean, Andrew R Ruis, and David Williamson Shaffer. 2018. A network
analytic approach to gaze coordination during a collaborative task. Computers in
Human Behavior 89:339–348. Publisher: Elsevier.

Andrist, Sean, Xiang Zhi Tan, Michael Gleicher, and Bilge Mutlu. 2014. Conver-
sational gaze aversion for humanlike robots. In 2014 9th ACM/IEEE International
Conf. on Human-Robot Interaction (HRI), 25–32. IEEE.

Asselborn, T., W. Johal, and P. Dillenbourg. 2017. Keep on moving! Exploring
anthropomorphic effects of motion during idle moments. In 2017 26th IEEE
International Symp. on Robot and Human Interactive Communication (RO-MAN),
897–902.

Autodesk. 2023. Autodesk Maya. https://www.autodesk.com/products/maya/
overview.

Autor, David. 2021. Good News: There’s a Labor Shortage. The New York Times.

Bangor, Aaron, Philip Kortum, and James Miller. 2008. An Empirical Evaluation
of the System Usability Scale. Intl. Journal of Human–Computer Interaction 24(6):
574–594. Publisher: Taylor & Francis.

Bänziger, Timo, Andreas Kunz, and Konrad Wegener. 2017. A library of skills
and behaviors for smart mobile assistant robots in automotive assembly lines. In
Proceedings of the companion of the 2017 acm/ieee international conference on human-
robot interaction, 77–78.

https://www.autodesk.com/products/maya/overview
https://www.autodesk.com/products/maya/overview

160

Barnes, R.M. 1980. Motion and time study: Design and measurement of work. 7th ed.
John Wiley & Sons.

Battini, Daria, Xavier Delorme, Alexandre Dolgui, Alessandro Persona, and Fabio
Sgarbossa. 2016. Ergonomics in assembly line balancing based on energy expen-
diture: a multi-objective model. International Journal of Production Research 54(3):
824–845.

Beck, Aryel, Lola Cañamero, Antoine Hiolle, Luisa Damiano, Piero Cosi, Fabio
Tesser, and Giacomo Sommavilla. 2013a. Interpretation of emotional body lan-
guage displayed by a humanoid robot: A case study with children. International
Journal of Social Robotics 5(3):325–334. Publisher: Springer.

Beck, Aryel, Antoine Hiolle, and Lola Cañamero. 2013b. Using Perlin Noise to
Generate Emotional Expressions in a Robot. CogSci.

Belpaeme, Tony, Paul E Baxter, Robin Read, Rachel Wood, Heriberto Cuayáhuitl,
Bernd Kiefer, Stefania Racioppa, Ivana Kruijff-Korbayová, Georgios Athanasopou-
los, Valentin Enescu, Rosemarijn Looije, Mark Neerincx, Yiannis Demiris, Raquel
Ros-Espinoza, Aryel Beck, Lola Cañamero, Antione Hiolle, Matthew Lewis, Ilaria
Baroni, Marco Nalin, Piero Cosi, Giulio Paci, Fabio Tesser, Giacomo Sommavilla,
and Remi Humbert. 2013. Multimodal Child-Robot Interaction: Building Social
Bonds. Journal of Human-Robot Interaction 1(2):1–21.

Berger, Suzanne, and Benjamin Armstrong. 2022. The puzzle of the missing robots.

Berk, Laura E, and Adam Winsler. 1995. Scaffolding children’s learning: Vygotsky and
early childhood education. naeyc research into practice series. volume 7. ERIC.

Billard, Aude, Sylvain Calinon, Ruediger Dillmann, and Stefan Schaal. 2008. Sur-
vey: Robot programming by demonstration. Tech. Rep., Springrer.

Blender Foundation. 2023. Blender. https://www.blender.org.

https://www.blender.org

161

Bodenheimer, Bobby, Anna V Shleyfman, and Jessica K Hodgins. 1999. The effects
of noise on the perception of animated human running. In Computer Animation
and Simulation’99, 53–63. Springer.

Bollini, Mario, Stefanie Tellex, Tyler Thompson, Nicholas Roy, and Daniela Rus.
2013. Interpreting and Executing Recipes with a Cooking Robot. In Experimental
Robotics, 481–495. Springer.

Boston Dynamics. 2023. Boston Dynamics. https://bostondynamics.com.

Breazeal, Cynthia, Kerstin Dautenhahn, and Takayuki Kanda. 2016. Social robotics.
Springer handbook of robotics 1935–1972. Publisher: Springer.

Brohan, Anthony, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen,
Krzysztof Choromanski, Tianli Ding, Danny Driess, Avinava Dubey, Chelsea
Finn, et al. 2023. Rt-2: Vision-language-action models transfer web knowledge to
robotic control. arXiv preprint arXiv:2307.15818.

Brooke, John. 1996. SUS-A Quick and Dirty Usability Scale. Usability Evaluation in
Industry 189(194):4–7. Publisher: London.

Bugmann, Guido, Ewan Klein, Stanislao Lauria, and Theocharis Kyriacou. 2004.
Corpus-Based Robotics: A Route Instruction Example. In Proceedings of Intelligent
Autonomous Systems, 96–103.

Calzavara, Martina, Maurizio Faccio, and Irene Granata. 2023. Multi-objective task
allocation for collaborative robot systems with an industry 5.0 human-centered
perspective. The International Journal of Advanced Manufacturing Technology 128(1-2):
297–314.

Carey, P, J Farrell, M Hui, and B Sullivan. 2001. Heyde’s modapts: A language of work.
Heyde Dynamics Pty Ltd.

Casalino, Andrea, Andrea Maria Zanchettin, Luigi Piroddi, and Paolo Rocco. 2019.
Optimal scheduling of human–robot collaborative assembly operations with time
petri nets. IEEE Transactions on Automation Science and Engineering 18(1):70–84.

https://bostondynamics.com

162

Cha, Elizabeth, Maja Matarić, and Terrence Fong. 2016. Nonverbal signaling for
non-humanoid robots during human-robot collaboration. In 2016 11th ACM/IEEE
International Conference on Human-Robot Interaction (HRI), 601–602.

Chen, Juo-Tung, and Chien-Ming Huang. 2023. Forgetful large language mod-
els: Lessons learned from using llms in robot programming. arXiv preprint
arXiv:2310.06646.

Chi, Diane, Monica Costa, Liwei Zhao, and Norman Badler. 2000. The EMOTE
model for effort and shape. In Proceedings of the 27th annual Conf. on Computer
graphics and interactive techniques, 173–182.

Chi, Michelene TH, Paul J Feltovich, and Robert Glaser. 1981. Categorization and
representation of physics problems by experts and novices. Cognitive science 5(2):
121–152. Publisher: Elsevier.

Chitta, Sachin, Ioan Sucan, and Steve Cousins. 2012. Moveit![ros topics]. IEEE
Robotics & Automation Magazine 19(1):18–19. Publisher: IEEE.

Chrisinger, David. 2019. The solution lies in education: artificial intelligence & the
skills gap. On the Horizon. Publisher: Emerald Publishing Limited.

Christiernin, Linn Gustavsson. 2017. How to describe interaction with a collabo-
rative robot. In Proceedings of the Companion of the 2017 ACM/IEEE International
Conference on Human-Robot Interaction, 93–94.

Chryssolouris, G, D Mavrikios, and L Rentzos. 2016. The teaching factory: A
manufacturing education paradigm. Procedia Cirp 57:44–48. Publisher: Elsevier.

Coumans, Erwin, and Yunfei Bai. 2016. PyBullet, a Python module for physics
simulation for games, robotics and machine learning.

Council, National Research. 2000. How people learn: Brain, mind, experience, and
school: Expanded edition. Washington, DC: The National Academies Press.

163

Cuijpers, Raymond H, and Marco AMH Knops. 2015. Motions of robots matter!
the social effects of idle and meaningful motions. In International Conference on
Social Robotics, 174–183. Springer.

Dagdilelis, Vassilios, Maya Sartatzemi, and Katerina Kagani. 2005. Teaching (with)
robots in secondary schools: some new and not-so-new pedagogical problems. In
Fifth IEEE International Conference on Advanced Learning Technologies (ICALT’05),
757–761. IEEE.

Datta, Chandan, Chandimal Jayawardena, I Han Kuo, and Bruce A MacDonald.
2012. RoboStudio: A visual programming environment for rapid authoring and
customization of complex services on a personal service robot. In 2012 IEEE/RSJ
International Conf. on Intelligent Robots and Systems, 2352–2357. IEEE.

De Meijer, Marco. 1989. The contribution of general features of body movement to
the attribution of emotions. Journal of Nonverbal behavior 13(4):247–268. Publisher:
Springer.

De Moura, Leonardo, and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In
International Conference on Tools and Algorithms for the Construction and Analysis of
Systems, 337–340. Springer.

Der Jeng, Mu. 1997. A petri net synthesis theory for modeling flexible manufactur-
ing systems. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)
27(2):169–183.

Desai, Ruta, Fraser Anderson, Justin Matejka, Stelian Coros, James McCann,
George Fitzmaurice, and Tovi Grossman. 2019. Geppetto: Enabling semantic
design of expressive robot behaviors. In Proceedings of the 2019 CHI Conference on
Human Factors in Computing Systems, 1–14.

diSessa, Andrea A. 1988. Knowledge in pieces. In Constructivism in the computer age.,
49–70. The Jean Piaget symposium series., Hillsdale, NJ, US: Lawrence Erlbaum
Associates, Inc.

164

Dréo, Johann, Pierre Savéant, Marc Schoenauer, and Vincent Vidal. 2011. Divide-
and-Evolve: The Marriage of Descartes and Darwin. Proceedings of the 7th Interna-
tional Planning Competition (IPC). Freiburg, Germany 91:155.

Duffy, Brian R. 2003. Anthropomorphism and the social robot. Robotics and
Autonomous Systems 42(3-4):177–190.

———. 2008. Fundamental Issues in Affective Intelligent Social Machiness. The
Open Artificial Intelligence Journal 2(1).

Duffy, Brian R, and Karolina Zawieska. 2012. Suspension of disbelief in social
robotics. In 2012 RO-MAN: The 21st IEEE International Symp. on Robot and Human
Interactive Communication, 484–489. IEEE.

Egges, A., T. Molet, and N. Magnenat-Thalmann. 2004. Personalised real-time idle
motion synthesis. In 12th Pacific Conf. on Computer Graphics and Applications, 2004.
PG 2004. Proceedings., 121–130.

El Zaatari, Shirine, Mohamed Marei, Weidong Li, and Zahid Usman. 2019. Cobot
Programming for Collaborative Industrial Tasks: An Overview. Robotics and
Autonomous Systems 116:162–180. Publisher: Elsevier.

Elprama, BVSA, Ilias El Makrini, and A Jacobs. 2016. Acceptance of collaborative
robots by factory workers: a pilot study on the importance of social cues of an-
thropomorphic robots. In International symposium on robot and human interactive
communication, vol. 7.

Epic Games. 2023. Unreal Engine. https://www.unrealengine.com/en-US.

Ericsson, K. Anders, and Herbert Simon. 1998. How to Study Thinking in Everyday
Life: Contrasting Think-Aloud Protocols with Descriptions and Explanations of
Thinking. Mind, Culture, and Activity 5(3):178–186. Publisher: Taylor & Francis.

Ernst, Jette, and Charlotte Jonasson. 2020. Serving robots?–Exploring human and
robot social dynamics in everyday hospital work. In 36th EGOS Colloquium 2020:
Organizing for a Sustainable Future: Responsibility, Renewal & Resistance.

https://www.unrealengine.com/en-US

165

Fantini, Paola, Marta Pinzone, Franco Sella, and Marco Taisch. 2017. Collaborative
robots and new product introduction: capturing and transferring human expert
knowledge to the operators. In International Conference on Applied Human Factors
and Ergonomics, 259–268. Springer.

Fanuc. 2023. Fanuc. https://www.fanucamerica.com.

Fast-Berglund, Åsa, Filip Palmkvist, Per Nyqvist, Sven Ekered, and Magnus Åk-
erman. 2016. Evaluating cobots for final assembly. Procedia CIRP 44:175–180.
Publisher: Elsevier.

Fischer, Kerstin. 2019. Why collaborative robots must be social (and even emo-
tional) actors. Techne: Research in Philosophy & Technology 23(3).

Fogli, Daniela, Luigi Gargioni, Giovanni Guida, and Fabio Tampalini. 2022. A
hybrid approach to user-oriented programming of collaborative robots. Robotics
and Computer-Integrated Manufacturing 73:102234.

Fox, Maria, and Derek Long. 2003. Pddl2. 1: An extension to pddl for expressing
temporal planning domains. Journal of artificial intelligence research 20:61–124.

Fraser, C. Ailie, Tovi Grossman, and George Fitzmaurice. 2017. WeBuild: Auto-
matically Distributing Assembly Tasks Among Collocated Workers to Improve
Coordination. In Proceedings of the 2017 CHI Conference on Human Factors in Comput-
ing Systems, 1817–1830. CHI ’17, New York, NY, USA: ACM. Event-place: Denver,
Colorado, USA.

Fraser, Neil. 2015. Ten things we’ve learned from Blockly. In 2015 IEEE Blocks and
Beyond Workshop (Blocks and Beyond), 49–50. IEEE.

Fryman, Jeff, and Bjoern Matthias. 2012. Safety of industrial robots: From conven-
tional to collaborative applications. In ROBOTIK 2012; 7th German Conference on
Robotics, 1–5. VDE.

https://www.fanucamerica.com

166

Galin, Rinat, and Roman Meshcheryakov. 2019. Automation and robotics in the
context of Industry 4.0: the shift to collaborative robots. In IOP Conference Series:
Materials Science and Engineering, vol. 537, 032073. IOP Publishing. Issue: 3.

Gao, Yuxiang, and Chien-Ming Huang. 2019. PATI: a Projection-Based Augmented
Table-Top Interface for Robot Programming. In Proceedings of the 24th International
Conference on Intelligent User Interfaces, 345–355.

Garg, Arun. 1976. A metabolic rate prediction model for manual materials han-
dling jobs. Ph.D. thesis, University of Michigan. Copyright - Database copyright
ProQuest LLC; ProQuest does not claim copyright in the individual underlying
works; Last updated - 2023-07-26.

Garg, Arun, Don B. Chaffin, and Gary D. Herrin. 1978. Prediction of metabolic
rates for manual materials handling jobs. American Industrial Hygiene Association
Journal 39(8):661–674.

Garg, Arun, J Steven Moore, and Jay M Kapellusch. 2007. The strain index to
analyze jobs for risk of distal upper extremity disorders: Model validation. In
2007 ieee international conference on industrial engineering and engineering management,
497–499. IEEE.

———. 2017. The revised strain index: an improved upper extremity exposure
assessment model. Ergonomics 60(7):912–922.

Giannopoulou, Georgia, Elsi-Mari Borrelli, and Fiona McMaster. 2021. "
Programming-It’s not for Normal People": A Qualitative Study on User-
Empowering Interfaces for Programming Collaborative Robots. In 2021 30th IEEE
International Conference on Robot & Human Interactive Communication (RO-MAN),
37–44. IEEE.

Giffi, Craig, Paul Wellener, Ben Dollar, Heather Ashton Manolian, Luke Monck,
and Chad Moutray. 2018. Deloitte and The Manufacturing Institute skills gap and
future of work study. Deloitte Insights.

167

Gilbreth, Frank, and Lilian Gilbreth. 1924. Classifying the Elements of Work.
Management and Administration 8(2):151–154.

Glas, Dylan F, Takayuki Kanda, and Hiroshi Ishiguro. 2016. Human-robot interac-
tion design using interaction composer eight years of lessons learned. In 2016 11th
ACM/IEEE International Conf. on Human-Robot Interaction (HRI), 303–310. IEEE.

Gleicher, Michael. 1998. Retargetting motion to new characters. In Proceedings of
the 25th annual conference on Computer graphics and interactive techniques, 33–42.

Gombolay, Matthew, Ronald Wilcox, and Julie Shah. 2018. Fast Scheduling of Robot
Teams Performing Tasks With Temporospatial Constraints. IEEE Transactions on
Robotics 34(1):220–239.

Gonulal, Talip, and Shawn Loewen. 2018. Scaffolding technique. The TESOL
encyclopedia of English language teaching 1–5.

Google. 2019. Angular. Version Number: 7.2.0.

Grand View Research. 2023. Collaborative robots market size, share & trends
analysis report by payload capacity, by application (assembly, handling, packaging,
quality testing), by vertical, by region, and segment forecasts, 2023 - 2030. Tech.
Rep. GVR-1-68038-371-3, Grand View Research.

Gualtieri, Luca, Erwin Rauch, and Renato Vidoni. 2021. Emerging research fields
in safety and ergonomics in industrial collaborative robotics: A systematic litera-
ture review. Robotics and Computer-Integrated Manufacturing 67:101998. Publisher:
Elsevier.

Guerin, Kelleher, Colin Lea, Chris Paxton, and Gregory Hager. 2015. A Framework
for End-User Instruction of a Robot Assistant for Manufacturing. In Robotics and
Automation (ICRA), 2015 IEEE International Conference on, 6167–6174. IEEE.

Haas, Andreas, Andreas Rossberg, Derek L Schuff, Ben L Titzer, Michael Holman,
Dan Gohman, Luke Wagner, Alon Zakai, and JF Bastien. 2017. Bringing the web

168

up to speed with WebAssembly. In Proceedings of the 38th ACM SIGPLAN Conf. on
Programming Language Design and Implementation, 185–200.

Harris, J., and E. Sharlin. 2011. Exploring the affect of abstract motion in social
human-robot interaction. In 2011 RO-MAN, 441–448.

Hart, Sandra, and Lowell Staveland. 1988. Development of NASA-TLX (Task Load
Index): Results of Empirical and Theoretical Research. In Advances in Psychology,
vol. 52, 139–183. Elsevier.

Heider, Fritz, and Marianne Simmel. 1944. An experimental study of apparent
behavior. The American journal of psychology 57(2):243–259. Publisher: JSTOR.

Höller, Daniel, Gregor Behnke, Pascal Bercher, Susanne Biundo, Humbert Fiorino,
Damien Pellier, and Ron Alford. 2020. Hddl: An extension to pddl for expressing
hierarchical planning problems. In Proceedings of the aaai conference on artificial
intelligence, vol. 34, 9883–9891.

Holm, Jacob Rubæk, Edward Lorenz, and Jørgen Stamhus. 2021. The impact
of robots and AI/ML on skills and work organisation. In Globalisation, New and
Emerging Technologies, and Sustainable Development, 149–168. Routledge.

Horst, John, Elena Messina, Jeremy Marvel, and others. 2021. Best Practices for
the Integration of Collaborative Robots into Workcells Within Small and Medium-
Sized Manufacturing Operations. National Institute of Standards and Technology
Advanced Manufacturing Series 100-41 21 pages. Publisher: Advanced Manufactur-
ing Series (NIST AMS), National Institute of Standards.

Hu, Bin, and Jing Chen. 2017. Optimal task allocation for human–machine col-
laborative manufacturing systems. IEEE Robotics and Automation Letters 2(4):
1933–1940.

Hu, Liang, Zhenyu Liu, Weifei Hu, Yueyang Wang, Jianrong Tan, and Fei Wu. 2020.
Petri-net-based dynamic scheduling of flexible manufacturing system via deep

169

reinforcement learning with graph convolutional network. Journal of Manufacturing
Systems 55:1–14.

Huang, Chien-Ming, Maya Cakmak, and Bilge Mutlu. 2015. Adaptive Coordination
Strategies for Human-Robot Handovers. In Robotics: science and systems, vol. 11.
Rome, Italy.

Huang, Chien-Ming, and Bilge Mutlu. 2016. Anticipatory robot control for efficient
human-robot collaboration. In 2016 11th ACM/IEEE International Conference on
Human-Robot Interaction (HRI), 83–90.

Huang, Chien-Ming, and Andrea L Thomaz. 2011. Effects of responding to,
initiating and ensuring joint attention in human-robot interaction. In 2011 ro-man,
65–71. IEEE.

Huang, Congfang, Shiyu Zhou, Jingshan Li, and Robert G Radwin. 2023. Al-
locating robots/cobots to production systems for productivity and ergonomics
optimization. IEEE Transactions on Automation Science and Engineering.

Huang, Justin. 2017. Enabling Rapid End-to-End Programming of Mobile Ma-
nipulators. In Proceedings of the Companion of the 2017 ACM/IEEE International
Conference on Human-Robot Interaction, 343–344. ACM.

Huang, Justin, and Maya Cakmak. 2017. Code3: A system for end-to-end pro-
gramming of mobile manipulator robots for novices and experts. In 2017 12th
ACM/IEEE International Conference on Human-Robot Interaction (HRI, 453–462. IEEE.

Huang, Justin, Tessa Lau, and Maya Cakmak. 2016. Design and evaluation of a
rapid programming system for service robots. In 2016 11th acm/ieee international
conference on human-robot interaction (hri), 295–302. IEEE.

Huang, Shengyi, and Santiago Ontañón. 2020. A closer look at invalid action
masking in policy gradient algorithms. arXiv preprint arXiv:2006.14171.

Ishiguro, Hiroshi, and T Minato. 2005. Development of androids for studying on
human-robot interaction. In International Symp. on Robotics, vol. 36, 5.

170

Jain, Eakta, Yaser Sheikh, Moshe Mahler, and Jessica Hodgins. 2010. Augmenting
Hand Animation with Three-Dimensional Secondary Motion. In Proceedings of the
2010 ACM SIGGRAPH/Eurographics Symp. on Computer Animation, 93–102. SCA
’10, Goslar, DEU: Eurographics Association. Event-place: Madrid, Spain.

Javaid, Mohd, Abid Haleem, Ravi Pratap Singh, Shanay Rab, and Rajiv Suman.
2022. Significant applications of cobots in the field of manufacturing. Cognitive
Robotics 2:222–233.

Johnston, Ollie, and Frank Thomas. 1981. The illusion of life: Disney animation.
Disney Editions New York.

Jun, Seung-kook, Pankaj Singhal, Madusudanan Sathianarayanan, Sudha
Garimella, Abeer Eddib, and Venkat Krovi. 2012. Evaluation of Robotic Mini-
mally Invasive Surgical Skills Using Motion Studies. In Proceedings of the Workshop
on Performance Metrics for Intelligent Systems, 198–205. ACM.

Kakade, Siddhant, Bhumeshwar Patle, and Ashish Umbarkar. 2023. Applications
of collaborative robots in agile manufacturing: a review. Robotic Systems and
Applications 3(1):59–83.

Kato, Daishi, and Paul Henschel. 2019. Zustand: Bear necessities for state manage-
ment in react. https://docs.pmnd.rs/zustand/.

Kato, Jun, Daisuke Sakamoto, Takeo Igarashi, and Masataka Goto. 2014. Sharedo:
To-do List Interface for Human-agent Task Sharing. In Proceedings of the Second
International Conference on Human-agent Interaction, 345–351. HAI ’14, New York,
NY, USA: ACM. Event-place: Tsukuba, Japan.

Khouadjia, Mostepha, Marc Schoenauer, Vincent Vidal, Johann Dréo, and Pierre
Savéant. 2013. Pareto-Based Multiobjective AI Planning. In International Joint
Conference on Artificial Intelligence. AAAI.

171

Kim, Seung Han, and Jae Wook Jeon. 2007. Programming LEGO Mindstorms NXT
with Visual Programming. In 2007 International Conference on Control, Automation
and Systems, 2468–2472.

Klassner, Frank, and Scott Anderson. 2003. LEGO MindStorms: Not Just for K-12
Anymore. IEEE Robotics Automation Magazine 10(2):12–18.

Knight, Heather, and Reid Simmons. 2014. Expressive motion with x, y and theta:
Laban effort features for mobile robots. In The 23rd IEEE Iinternational Symp. on
Robot and Human Interactive Communication, 267–273. IEEE.

Ko, Andrew J, and Brad A Myers. 2005. Human factors affecting dependability
in end-user programming. In Proceedings of the first workshop on end-user software
engineering, 1–4.

Kopp, Tobias, Marco Baumgartner, and Steffen Kinkel. 2021. Success factors for
introducing industrial human-robot interaction in practice: an empirically driven
framework. The International Journal of Advanced Manufacturing Technology 112(3):
685–704. Publisher: Springer.

Kuka. 2023. Kuka. https://www.kuka.com.

Lappalainen, Inka. 2019. Logistics Robots as an enabler of hospital service system
renewal? In The 10 years Naples Forum on Service. Service Dominant Logic, Network
and Systems Theory and Service Science: Integrating three Perspectives for a New Service
Agenda. Ischia, Italy.

Lasota, Przemyslaw A, and Julie A Shah. 2015. Analyzing the effects of human-
aware motion planning on close-proximity human–robot collaboration. Human
factors 57(1):21–33. Publisher: Sage Publications Sage CA: Los Angeles, CA.

Lasseter, John. 1987. Principles of traditional animation applied to 3D computer
animation. In Proceedings of the 14th annual conference on Computer graphics and
interactive techniques, 35–44.

https://www.kuka.com

172

Le, Chi Hieu, Dang Thang Le, Daniel Arey, Popan Gheorghe, Anh My Chu,
Xuan Bien Duong, Trung Thanh Nguyen, Trong Toai Truong, Chander Prakash,
Shi-Tian Zhao, et al. 2020. Challenges and conceptual framework to develop heavy-
load manipulators for smart factories. International Journal of Mechatronics and
Applied Mechanics 8(2):209–216.

Lieberman, Henry, Fabio Paternò, Markus Klann, and Volker Wulf. 2006. End-user
development: An emerging paradigm. In End user development, 1–8. Springer.

Lin, Hsien-I, and YP Chiang. 2015. Understanding Human Hand Gestures for
Learning Robot Pick-and-Place Tasks. International Journal of Advanced Robotic
Systems 12(5):49. Publisher: SAGE Publications Sage UK: London, England.

Liu, Li, Andrew J Schoen, Curt Henrichs, Jingshan Li, Bilge Mutlu, Yajun Zhang,
and Robert G Radwin. 2022. Human robot collaboration for enhancing work
activities. Human Factors 00187208221077722.

Lund, Arnold. 2001. Measuring Usability with the USE Questionnaire. Usability
Interface 8(2):3–6.

Malik, Ali Ahmad, and Arne Bilberg. 2019. Complexity-based task allocation in
human-robot collaborative assembly. Industrial Robot: the international journal of
robotics research and application 46(4):471–480.

Maloney, John, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Evelyn East-
mond. 2010. The Scratch Programming Language and Environment. ACM Trans-
actions on Computing Education (TOCE) 10(4):16. Publisher: ACM.

Marquart, C. L., C. Hinojosa, Z. Swiecki, B. Eagan, and D. W. Shaffer. 2018. Epis-
temic network analysis. http://app.epistemicnetwork.org.

Marturi, Naresh, Marek Kopicki, Alireza Rastegarpanah, Vijaykumar Rajasekaran,
Maxime Adjigble, Rustam Stolkin, Aleš Leonardis, and Yasemin Bekiroglu. 2019.
Dynamic grasp and trajectory planning for moving objects. Autonomous Robots
43(5):1241–1256. Publisher: Springer.

http://app.epistemicnetwork.org

173

Mateo, Carlos, Alberto Brunete, Ernesto Gambao, and Miguel Hernando. 2014.
Hammer: An Android Based Application for End-User Industrial Robot Pro-
gramming. In 2014 IEEE/ASME 10th International Conference on Mechatronic and
Embedded Systems and Applications (MESA), 1–6. IEEE.

Matsakis, Nicholas D, and Felix S Klock. 2014. The rust language. ACM SIGAda
Ada Letters 34(3):103–104. Publisher: ACM New York, NY, USA.

Matsas, Elias, and George-Christopher Vosniakos. 2017. Design of a virtual reality
training system for human–robot collaboration in manufacturing tasks. Inter-
national Journal on Interactive Design and Manufacturing (IJIDeM) 11(2):139–153.
Publisher: Springer.

Matthias, Bjoern, Soenke Kock, Henrik Jerregard, Mats Källman, and Ivan Lund-
berg. 2011. Safety of Collaborative Industrial Robots: Certification Possibilities for
a Collaborative Assembly Robot Concept. In Assembly and Manufacturing (ISAM),
2011 IEEE International Symposium on, 1–6. IEEE.

Mavrikios, Dimitris, Nikolaos Papakostas, Dimitris Mourtzis, and George Chrys-
solouris. 2013. On industrial learning and training for the factories of the future: a
conceptual, cognitive and technology framework. Journal of Intelligent Manufactur-
ing 24(3):473–485. Publisher: Springer.

Mayer, Richard E. 1981. The psychology of how novices learn computer program-
ming. ACM Computing Surveys (CSUR) 13(1):121–141.

Maynard, Harold B, Gustave James Stegemerten, and John L Schwab. 1948.
Methods-time measurement.

Melzer, Ayelet, Tal Shafir, and Rachelle Palnick Tsachor. 2019. How Do We Rec-
ognize Emotion From Movement? Specific Motor Components Contribute to the
Recognition of Each Emotion. Frontiers in Psychology 10:1389.

Michaelis, Joseph, Amanda Siebert-Evenstone, David Shaffer, and Bilge Mutlu.
2020. Collaborative or Simply Uncaged? Understanding Human-Cobot Interac-

174

tions in Automation. In Proceedings of the 2020 CHI Conference on Human Factors in
Computing Systems, 1–12. CHI ’20. Place: Honolulu, HI, USA.

Michalos, George, Sotiris Makris, Jason Spiliotopoulos, Ioannis Misios, Panagiota
Tsarouchi, and George Chryssolouris. 2014. ROBO-PARTNER: Seamless Human-
Robot Cooperation for Intelligent, Flexible and Safe Operations in the Assembly
Factories of the Future. Procedia CIRP 23:71–76. Publisher: Elsevier.

Michalos, George, Sotiris Makris, Panagiota Tsarouchi, Toni Guasch, Dimitris
Kontovrakis, and George Chryssolouris. 2015. Design Considerations for Safe
Human-Robot Collaborative Workplaces. Procedia CIRP 37:248–253. Publisher:
Elsevier.

Michalowski, Marek P, Selma Sabanovic, and Reid Simmons. 2006. A spatial model
of engagement for a social robot. In 9th IEEE International Workshop on Advanced
Motion Control, 2006., 762–767. IEEE.

Miller, David. 2021. Robotics Adoption Survey Finds Ups, Downs, and a Few
Surprises. Publication Title: Automation World.

Monguzzi, Andrea, Mahmoud Badawi, Andrea Maria Zanchettin, and Paolo
Rocco. 2022. A mixed capability-based and optimization methodology for human-
robot task allocation and scheduling. In 2022 31st ieee international conference on
robot and human interactive communication (ro-man), 1271–1276. IEEE.

Alvarez-de-los Mozos, Esther, and Arantxa Renteria. 2017. Collaborative robots in
e-waste management. Procedia Manufacturing 11:55–62. Publisher: Elsevier.

Murata, Tadao. 1989. Petri nets: Properties, analysis and applications. Proceedings
of the IEEE 77(4):541–580.

Mutlu, Bilge, Allison Terrell, and Chien-Ming Huang. 2013. Coordination mecha-
nisms in human-robot collaboration. In Proceedings of the Workshop on Collaborative
Manipulation, 8th ACM/IEEE International Conference on Human-Robot Interaction,
1–6. Citeseer.

175

Muxfeldt, Arne, Jan-Henrik Kluth, and Daniel Kubus. 2014. Kinesthetic Teaching
in Assembly Operations–A User Study. In International Conference on Simulation,
Modeling, and Programming for Autonomous Robots, 533–544. Springer.

National Center for O*NET Development. 2023. O*NET Online National Center
for O*NET Development, Accessed at: www.onetonline.org/. Accessed 16 October
2023.

Nguyen, Hai, Matei Ciocarlie, Kaijen Hsiao, and Charles Kemp. 2013. ROS Com-
mander (ROSCO): Behavior Creation for Home Robots. In 2013 IEEE International
Conference on Robotics and Automation, 467–474. IEEE.

Ortiz, Jesús Hamilton. 2020. Industry 4.0: Current status and future trends.

Palleschi, Alessandro, Mazin Hamad, Saeed Abdolshah, Manolo Garabini, Sami
Haddadin, and Lucia Pallottino. 2021. Fast and safe trajectory planning: Solving
the cobot performance/safety trade-off in human-robot shared environments. IEEE
Robotics and Automation Letters 6(3):5445–5452.

Paxton, Chris, Andrew Hundt, Felix Jonathan, Kelleher Guerin, and Gregory
Hager. 2017. CoSTAR: Instructing Collaborative Robots with Behavior Trees and
Vision. In Robotics and Automation (ICRA), 2017 IEEE International Conference on,
564–571. IEEE.

Paxton, Chris, Felix Jonathan, Andrew Hundt, Bilge Mutlu, and Gregory D Hager.
2018. Evaluating Methods for End-User Creation of Robot Task Plans. In 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 6086–
6092. IEEE.

Pearce, Margaret, Bilge Mutlu, Julie Shah, and Robert Radwin. 2018. Optimizing
makespan and ergonomics in integrating collaborative robots into manufacturing
processes. IEEE transactions on automation science and engineering 15(4):1772–1784.

Perlin, Ken. 1985. An image synthesizer, vol. 19. ACM.

176

———. 1995. Real time responsive animation with personality. IEEE transactions
on visualization and Computer Graphics 1(1):5–15. Publisher: IEEE.

———. 2002. Improving noise. In ACM Transactions on Graphics (TOG), vol. 21,
681–682. ACM. Issue: 3.

Perlin, Ken, and Athomas Goldberg. 1996. Improv: A system for scripting inter-
active actors in virtual worlds. In Proceedings of the 23rd annual Conf. on Computer
graphics and interactive techniques, 205–216.

Perzylo, Alexander, Nikhil Somani, Stefan Profanter, Ingmar Kessler, Markus
Rickert, and Alois Knoll. 2016. Intuitive instruction of industrial robots: Semantic
process descriptions for small lot production. In 2016 ieee/rsj international conference
on intelligent robots and systems (iros), 2293–2300. IEEE.

Peterson, James L. 1977. Petri nets. ACM Computing Surveys (CSUR) 9(3):223–252.

Phillips, Elizabeth, Kristin E Schaefer, Deborah R Billings, Florian Jentsch, and
Peter A Hancock. 2016. Human-animal teams as an analog for future human-robot
teams: Influencing design and fostering trust. Journal of Human-Robot Interaction
5(1):100–125.

Porfirio, David, Allison Sauppé, Aws Albarghouthi, and Bilge Mutlu. 2020. Trans-
forming robot programs based on social context. In Proceedings of the 2020 chi
conference on human factors in computing systems, 1–12.

Porfirio, David, Allison Sauppé, Aws Albarghouthi, and Bilge Mutlu. 2018. Au-
thoring and verifying human-robot interactions. In Proceedings of the 31st Annual
ACM Symposium on User Interface Software and Technology, 75–86.

Porfirio, David, Laura Stegner, Maya Cakmak, Allison Sauppé, Aws Albarghouthi,
and Bilge Mutlu. 2023. Sketching robot programs on the fly. In Proceedings of the
2023 acm/ieee international conference on human-robot interaction, 584–593.

Pot, Emmanuel, Jérôme Monceaux, Rodolphe Gelin, and Bruno Maisonnier. 2009.
Choregraphe: a graphical tool for humanoid robot programming. In RO-MAN

177

2009-The 18th IEEE International Symposium on Robot and Human Interactive Commu-
nication, 46–51. IEEE.

Quigley, Morgan, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs,
Rob Wheeler, and Andrew Y Ng. 2009. ROS: An Open-Source Robot Operating
System. In ICRA Workshop on Open Source Software, vol. 3, 5. Kobe, Japan. Issue:
3.2.

Raffin, Antonin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernes-
tus, and Noah Dormann. 2021. Stable-baselines3: Reliable reinforcement learning
implementations. Journal of Machine Learning Research 22(268):1–8.

Rakita, Daniel, Bilge Mutlu, and Michael Gleicher. 2017. A motion retargeting
method for effective mimicry-based teleoperation of robot arms. In Proceedings of
the 2017 ACM/IEEE International Conf. on Human-Robot Interaction, 361–370. ACM.

———. 2018. RelaxedIK: Real-time synthesis of accurate and feasible robot arm
motion. In Robotics: Science and systems, vol. 14, 26–30. Pittsburgh, PA.

———. 2022. PROXIMA: An Approach for Time or Accuracy Budgeted Collision
Proximity Queries. In Proceedings of Robotics: Science and Systems (RSS).

Ras, Eric, Fridolin Wild, Christoph Stahl, and Alexandre Baudet. 2017. Bridging
the skills gap of workers in Industry 4.0 by human performance augmentation
tools: Challenges and roadmap. In Proceedings of the 10th International Conference
on PErvasive Technologies Related to Assistive Environments, 428–432.

Ravichandar, Harish, Athanasios S Polydoros, Sonia Chernova, and Aude Billard.
2020. Recent advances in robot learning from demonstration. Annual review of
control, robotics, and autonomous systems 3:297–330.

Resnick, Mitchel, John Maloney, Andrés Monroy-Hernández, Natalie Rusk, Evelyn
Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Silver, Brian
Silverman, and others. 2009. Scratch: programming for all. Communications of the
ACM 52(11):60–67. Publisher: ACM New York, NY, USA.

178

Rethink Robotics. 2023. Rethink Robotics. https://www.rethinkrobotics.com.

Ribeiro, Tiago, and Ana Paiva. 2017. Animating the Adelino Robot with ERIK: The
Expressive Robotics Inverse Kinematics. In Proceedings of the 19th ACM International
Conf. on Multimodal Interaction, 388–396. ICMI ’17, New York, NY, USA: Association
for Computing Machinery. Event-place: Glasgow, UK.

Riedelbauch, Dominik, and Dominik Henrich. 2018. Fast Graphical Task Modelling
for Flexible Human-Robot Teaming. In ISR 2018; 50th International Symposium on
Robotics, 1–6.

Riek, Laurel D, Tal-Chen Rabinowitch, Paul Bremner, Anthony G Pipe, Mike Fraser,
and Peter Robinson. 2010. Cooperative gestures: Effective signaling for humanoid
robots. In 2010 5th ACM/IEEE International Conference on Human-Robot Interaction
(HRI), 61–68. IEEE.

Rohmert, W. 1960. Determination of the recovery pause for static work of man.
Internationale Zeitschrift Fur Angewandte Physiologie, Einschliesslich Arbeitsphysiologie
18:123–164.

Sakr, Maram, Zexi Jesse Li, HF Machiel Van der Loos, Dana Kulić, and Eliza-
beth A Croft. 2022. Quantifying demonstration quality for robot learning and
generalization. IEEE Robotics and Automation Letters 7(4):9659–9666.

Sanctuary AI. 2023. Sanctuary AI. https://sanctuary.ai.

Sanner, Michel F, and others. 1999. Python: a programming language for software
integration and development. J Mol Graph Model 17(1):57–61.

Sauer, Vanessa, Axel Sauer, and Alexander Mertens. 2021. Zoomorphic gestures for
communicating cobot states. IEEE Robotics and Automation Letters 6(2):2179–2185.
Publisher: IEEE.

Sauppé, Allison, and Bilge Mutlu. 2015. The social impact of a robot co-worker in
industrial settings. In Proceedings of the 33rd annual acm conference on human factors
in computing systems, 3613–3622.

https://www.rethinkrobotics.com
https://sanctuary.ai

179

Sauppé, Allison, and Bilge Mutlu. 2014. Design Patterns for Exploring and Proto-
typing Human-robot Interactions. In Proceedings of the 32nd Annual ACM Conference
on Human Factors in Computing Systems, 1439–1448. CHI ’14, New York, NY, USA:
ACM. Event-place: Toronto, Ontario, Canada.

Schnell, Marie. 2021. Challenges when introducing collaborative robots in sme
manufacturing industry.

Schoen, Andrew, Curt Henrichs, Mathias Strohkirch, and Bilge Mutlu. 2020. Authr:
A Task Authoring Environment for Human-Robot Teams. In Proceedings of the 33rd
Annual ACM Symposium on User Interface Software and Technology, 1194–1208.

Schoen, Andrew, and Bilge Mutlu. 2024. OpenVP: A Customizable Visual Program-
ming Environment for Robotics Applications. In Proceedings of the 2024 ACM/IEEE
International Conference on Human-Robot Interaction (in press).

Schoen, Andrew, Dakota Sullivan, Ze Dong Zhang, Daniel Rakita, and Bilge
Mutlu. 2023. Lively: Enabling multimodal, lifelike, and extensible real-time robot
motion. In Proceedings of the 2023 ACM/IEEE International Conference on Human-
Robot Interaction, 594–602.

Schoen, Andrew, Nathan White, Curt Henrichs, Amanda Siebert-Evenstone, David
Shaffer, and Bilge Mutlu. 2022. Coframe: A system for training novice cobot pro-
grammers. In 2022 17th acm/ieee international conference on human-robot interaction
(hri), 185–194. IEEE.

Schulman, John, Jonathan Ho, Alex X Lee, Ibrahim Awwal, Henry Bradlow, and
Pieter Abbeel. 2013. Finding locally optimal, collision-free trajectories with se-
quential convex optimization. In Robotics: science and systems, vol. 9, 1–10. Berlin,
Germany.

Schulman, John, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347.

180

Senft, Emmanuel, Michael Hagenow, Robert Radwin, Michael Zinn, Michael
Gleicher, and Bilge Mutlu. 2021a. Situated Live Programming for Human-Robot
Collaboration. In ACM Symposium on User Interface and Software Technology.

Senft, Emmanuel, Michael Hagenow, Kevin Welsh, Robert Radwin, Michael Zinn,
Michael Gleicher, and Bilge Mutlu. 2021b. Task-Level Authoring for Remote Robot
Teleoperation. Frontiers in Robotics & AI.

Shaffer, D, and A Ruis. 2017. Epistemic network analysis: A worked example of
theory-based learning analytics. Handbook of learning analytics.

Shaffer, David Williamson. 2017. Quantitative ethnography. Cathcart Press.

Shaffer, David Williamson, Wesley Collier, and Andrew R Ruis. 2016. A tutorial on
epistemic network analysis: Analyzing the structure of connections in cognitive,
social, and interaction data. Journal of Learning Analytics 3(3):9–45.

Shaffer, DW, F Borden, A Srinivasan, J Saucerman, G Arastoopour, W Collier,
AR Ruis, and KA Frank. 2015. The ncoder: A technique for improving the utility of
inter-rater reliability statistics. Games and Professional Simulations Technical Report 1.

Shi, Jane, Glenn Jimmerson, Tom Pearson, and Roland Menassa. 2012. Levels of
human and robot collaboration for automotive manufacturing. In Proceedings of
the Workshop on Performance Metrics for Intelligent Systems, 95–100.

Shmatko, Natalia, and Galina Volkova. 2020. Bridging the Skill Gap in Robotics:
Global and National Environment. SAGE Open 10(3):2158244020958736. Publisher:
SAGE Publications Sage CA: Los Angeles, CA.

Sial, Sara Baber, Muhammad Baber Sial, Yasar Ayaz, Syed Irtiza Ali Shah, and
Aleksandar Zivanovic. 2016. Interaction of robot with humans by communicating
simulated emotional states through expressive movements. Intelligent Service
Robotics 9(3):231–255. Publisher: Springer.

181

Siebert-Evenstone, Amanda, Joseph E Michaelis, David Williamson Shaffer, and
Bilge Mutlu. 2021. Safety First: Developing a Model of Expertise in Collaborative
Robotics. In International Conference on Quantitative Ethnography, 304–318. Springer.

Siebert-Evenstone, Amanda L, Golnaz Arastoopour Irgens, Wesley Collier, Zachari
Swiecki, Andrew R Ruis, and David Williamson Shaffer. 2017. In search of conver-
sational grain size: Modelling semantic structure using moving stanza windows.
Journal of Learning Analytics 4(3):123–139.

Silver, Tom, Varun Hariprasad, Reece S Shuttleworth, Nishanth Kumar, Tomás
Lozano-Pérez, and Leslie Pack Kaelbling. 2022. Pddl planning with pretrained
large language models. In Neurips 2022 foundation models for decision making work-
shop.

Simões, Ana Correia, António Lucas Soares, and Ana Cristina Barros. 2020. Factors
influencing the intention of managers to adopt collaborative robots (cobots) in
manufacturing organizations. Journal of Engineering and Technology Management 57:
101574. Publisher: Elsevier.

Skoglund, Alexander, Boyko Iliev, Bourhane Kadmiry, and Rainer Palm. 2007. Pro-
gramming by Demonstration of Pick-and-Place Tasks for Industrial Manipulators
using Task Primitives. In 2007 International Symposium on Computational Intelligence
in Robotics and Automation, 368–373. IEEE.

Słowikowski, Marcin, Zbigniew Pilat, Michał Smater, and Jacek Zieliński. 2018.
Collaborative learning environment in vocational education. In AIP Conference
Proceedings, vol. 2029, 020070. AIP Publishing LLC. Issue: 1.

Snibbe, S, M Scheeff, and K Rahardja. 1999. A layered architecture for lifelike
robotic motion. Proceedings of the International Conf. on Advanced Robotics.

Softbank Robotics. 2022. Autonomous Life. http://doc.aldebaran.com/2-8/
family/nao_user_guide/nao_life.html.

http://doc.aldebaran.com/2-8/family/nao_user_guide/nao_life.html
http://doc.aldebaran.com/2-8/family/nao_user_guide/nao_life.html

182

Song, H., M. J. Kim, S. Jeong, H. Suk, and D. Kwon. 2009. Design of idle motions for
service robot via video ethnography. In RO-MAN 2009 - The 18th IEEE International
Symp. on Robot and Human Interactive Communication, 195–199.

Stanton, Neville. 2006. Hierarchical Task Analysis: Developments, Applications,
and Extensions. Applied Ergonomics 37(1):55–79. Publisher: Elsevier.

Steinmetz, Frank, Verena Nitsch, and Freek Stulp. 2019. Intuitive Task-Level Pro-
gramming by Demonstration Through Semantic Skill Recognition. IEEE Robotics
and Automation Letters 4(4):3742–3749.

Steinmetz, Frank, Annika Wollschläger, and Roman Weitschat. 2018. RAZER-A
HRI for Visual Task-Level Programming and Intuitive Skill Parameterization. IEEE
Robotics and Automation Letters 3(3):1362–1369.

Strabala, Kyle, Min Kyung Lee, Anca Dragan, Jodi Forlizzi, Siddhartha S Srini-
vasa, Maya Cakmak, and Vincenzo Micelli. 2013. Toward seamless human-robot
handovers. Journal of Human-Robot Interaction 2(1):112–132. Publisher: Journal of
Human-Robot Interaction Steering Committee.

Şucan, Ioan A., Mark Moll, and Lydia E. Kavraki. 2012. The Open Motion
Planning Library. IEEE Robotics & Automation Magazine 19(4):72–82. https:
//ompl.kavrakilab.org.

Sullivan, Sarah, Charles Warner-Hillard, Brendan Eagan, Ryan J Thompson, An-
drew R Ruis, Krista Haines, Carla M Pugh, David Williamson Shaffer, and Hee Soo
Jung. 2018. Using epistemic network analysis to identify targets for educational
interventions in trauma team communication. Surgery 163(4):938–943.

Teiwes, Johannes, Timo Bänziger, Andreas Kunz, and Konrad Wegener. 2016.
Identifying the potential of human-robot collaboration in automotive assembly
lines using a standardised work description. In 2016 22nd international conference
on automation and computing (icac), 78–83. IEEE.

https://ompl.kavrakilab.org
https://ompl.kavrakilab.org

183

Terzioğlu, Yunus, Bilge Mutlu, and Erol Şahin. 2020. Designing social cues for
collaborative robots: the role of gaze and breathing in human-robot collabora-
tion. In Proceedings of the 2020 ACM/IEEE International Conference on Human-Robot
Interaction, 343–357.

Tian, Bo, Mukund Janardhanan, and Marina Marinelli. 2023. A systematic investi-
gation of the barriers to effective implementation of human-robot assembly line:
an integrated multi-criteria decision-making approach. International Journal of
Computer Integrated Manufacturing 1–26.

Toris, Russell, Julius Kammerl, David Lu, Jihoon Lee, Odest Chadwicke Jenkins,
Sarah Osentoski, Mitchell Wills, and Sonia Chernova. 2015. Robot Web Tools:
Efficient Messaging for Cloud Robotics. In 2015 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 4530–4537. IEEE.

Truong, Arthur, Hugo Boujut, and Titus Zaharia. 2016. Laban descriptors for ges-
ture recognition and emotional analysis. The visual computer 32(1):83–98. Publisher:
Springer.

Universal Robots. 2021. Universal Robots Academy. https://academy.
universal-robots.com.

———. 2023. Universal Robots. https://www.universal-robots.com.

Van Someren, Maartin, Yvonne Barnard, and Jacobijn Sandberg. 1994. The Think
Aloud Method : A Practical Guide to Modelling Cognitive Processes. In London:
AcademicPress.

Vicentini, Federico. 2021. Collaborative robotics: a survey. Journal of Mechanical
Design 143(4):040802. Publisher: American Society of Mechanical Engineers.

Von Laban, Rudolf, and Roderyk Lange. 1975. Laban’s principles of dance and
movement notation. Princeton Book Co Pub.

Wang, Yeping, Gopika Ajaykumar, and Chien-Ming Huang. 2020. See what i see:
Enabling user-centric robotic assistance using first-person demonstrations. In

https://academy.universal-robots.com
https://academy.universal-robots.com
https://www.universal-robots.com

184

Proceedings of the 2020 acm/ieee international conference on human-robot interaction,
639–648.

Waters, TR, V Putz-Anderson, and A Garg. 1994. Applications manual for the
revised niosh lifting equation. Tech. Rep., National Institue for Occupational Safety
and Health, DHHS (NIOSH).

Webkid GmbH. 2019. Reactflow: Build better node-based uis with react flow.
https://reactflow.dev.

Weintrop, David, Afsoon Afzal, Jean Salac, Patrick Francis, Boyang Li, David C
Shepherd, and Diana Franklin. 2018. Evaluating CoBlox: A comparative study of
robotics programming environments for adult novices. In Proceedings of the 2018
CHI Conference on Human Factors in Computing Systems, 1–12.

Weintrop, David, David C Shepherd, Patrick Francis, and Diana Franklin. 2017.
Blockly goes to work: Block-based programming for industrial robots. In 2017
IEEE Blocks and Beyond Workshop (B&B), 29–36. IEEE.

Wilson, Garrett, Christopher Pereyda, Nisha Raghunath, Gabriel de la Cruz,
Shivam Goel, Sepehr Nesaei, Bryan Minor, Maureen Schmitter-Edgecombe,
Matthew E Taylor, and Diane J Cook. 2019. Robot-enabled support of daily activi-
ties in smart home environments. Cognitive Systems Research 54:258–272. Publisher:
Elsevier.

Wingard, Jason, and Christine Farrugia. 2021. The Great Skills Gap: Optimizing
Talent for the Future of Work. Stanford University Press.

Wingrave, Chadwick, and Joseph LaViola. 2010. Reflecting on the Design and
Implementation Issues of Virtual Environments. Presence 19(2):179–195.

Witkin, Andrew, and Zoran Popovic. 1995. Motion warping. In Proceedings of the
22nd annual Conf. on Computer graphics and interactive techniques, 105–108.

185

Wojtynek, Michael, Jochen Jakob Steil, and Sebastian Wrede. 2019. Plug, plan and
produce as enabler for easy workcell setup and collaborative robot programming
in smart factories. KI-Künstliche Intelligenz 33(2):151–161. Publisher: Springer.

Young, Richard M. 1981. The machine inside the machine: Users’ models of pocket
calculators. International Journal of Man-Machine Studies 15(1):51–85.

Zandin, Kjell. 1990. Most work measurement systems: Basic most, mini most, maxi most.
Marcel Dekker Inc.

Zhang, Chongjie, and Julie Shah. 2016. Co-optimizating Multi-agent Placement
with Task Assignment and Scheduling. In Proceedings of the Twenty-Fifth Interna-
tional Joint Conference on Artificial Intelligence, 3308–3314. IJCAI’16, AAAI Press.
Place: New York, New York, USA.

Zhao, Fangyun, Curt Henrichs, and Bilge Mutlu. 2020. Task Interdependence in
Human-Robot Teaming. In 2020 29th IEEE International Conference on Robot and
Human Interactive Communication (RO-MAN), 1143–1149. IEEE.

Ziaeefard, Saeedeh, Michele H Miller, Mo Rastgaar, and Nina Mahmoudian. 2017.
Co-robotics hands-on activities: A gateway to engineering design and STEM
learning. Robotics and Autonomous Systems 97:40–50. Publisher: Elsevier.

Ziparo, Vittorio A, Luca Iocchi, Pedro U Lima, Daniele Nardi, and Pier Francesco
Palamara. 2011. Petri net plans: A framework for collaboration and coordination
in multi-robot systems. Autonomous Agents and Multi-Agent Systems 23:344–383.

Zuberek, Wlodek M. 1991. Timed petri nets definitions, properties, and applica-
tions. Microelectronics Reliability 31(4):627–644.

Şucan, Ioan, Mark Moll, and Lydia Kavraki. 2012. The Open Motion Planning
Library. IEEE Robotics & Automation Magazine 19(4):72–82.

	Contents
	List of Figures
	Abstract
	Introduction
	Motivation
	Thesis Statement
	Methodology
	Users and Stakeholders
	Contributions
	Dissertation Overview

	Background
	Collaborative Robot Deployment
	Program Requirements of Collaborative Robotics
	Proximal Development and Scaffolding
	Representations of Collaborative Interactions

	Authr
	Background
	Technical Approach
	Evaluation
	Discussion
	Chapter Summary

	CoFrame
	Background
	Expert Model
	System Design & Implementation
	Case Studies
	Chapter Summary

	Lively
	Background
	System Design & Implementation
	Case Studies
	Chapter Summary

	OpenVP
	System Design & Implementation
	Source Code and Usage
	Chapter Summary

	Allocobot
	Background
	System Design & Implementation
	Future Work
	Chapter Summary

	General Discussion
	References

