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Abstract

In the first chapter, a recommendation platform sequentially collects information on a new

product revealed from past consumer trials and uses it to better guide later consumers. Because

consumers do not internalize the value of information they bring to others, their incentive for

trying out the product can be socially insufficient. Given such a challenge, I study how the

platform can maximize the total social surplus generated on it by designing its recommendation

policy. In a model with binary product quality and general trial-generated signals, I show

that the optimal design features a sequence of time-specific thresholds, which vary in a U-

shaped pattern over the product’s life. At any time, the platform should recommend the

product if, based on its current belief, the probability of the product’s quality being high is

above the current threshold. This characterization allows me to provide predictions about the

optimal recommendation dynamic and study comparative statics regarding the recommendation

standards. My analysis also illustrates the potential usefulness of a Lagrangian duality approach

for dynamic information design.

The second chapter studies optimal information provision by a search goods seller. While the

seller controls a consumer’s pre-search information, he cannot control post-search information

because the consumer will inevitably learn the product’s match after search. A relaxed prob-

lem approach is developed to solve the optimal design, which accommodates both continuous

value distributions and ex-ante heterogeneous consumers with privately known outside options.

The optimal design is shown to crucially depend on the outside option value distribution, and

can be implemented by a simple upper-censorship signal under certain regularity conditions.

Several applications are provided, including comparing information designs of search goods and

experience goods, and studying the effect of competition with a large number of sellers.

The third chapter studies optimal disclosure regulation for entrepreneur public financing

with a post-financing moral hazard problem. I show that partial disclosure can improve social
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welfare over full disclosure through reducing efficiency loss caused by the moral hazard problem.

As a result, a properly designed partial disclosure rule would be optimal without assuming any

disclosure cost. This remains true after allowing for endogenous entrepreneur types with adverse

selection concerns. With (constrained) Bayesian persuasion tools, the optimal disclosure rule

is fully characterized. Although the paper is developed mainly around entrepreneur equity

financing, its intuition can be more generally applicable. For instance, I also adapt the basic

model to debt financing and provide an application to banking system disclosure.
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Chapter 1

Information Design for Social

Learning on a Recommendation

Platform

1.1 Introduction

Recommendation platforms are quite popular in our daily lives. For examples, people rely on

Netflix for what to watch, Yelp for where to eat, and TripAdvisor for where to travel.1 To

provide better recommendations, a common practice of these platforms is to induce a kind

of social learning for new products. Namely, they collect information generated from early

consumers’ trials of a product (e.g., via rating and reviews), and use it to better guide later

consumers’ decisions. In this process, however, because individual consumers do not internalize

the value of information they bring to others, their incentive for trying out the product is

typically insufficient. This handicaps learning and can hinder the platform from making better-

informed recommendations.

In this paper, I study how a platform facing the above challenge should design its recom-

mendation policy in a dynamic manner, which can potentially “persuade” consumers towards

more socially desirable trials of new products. In the model, consumers arrive sequentially over

the (finite) lifetime of a product with unknown quality, which can be either high or low, and

1For some non-commercial examples, consider FDA for drug uses and Medicare Advantage Star Ratings for
Medicare plan choices in the US.
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decide whether to consume it. Whenever a consumer consumes the product, a signal about its

quality will be generated and privately observed by the platform.2 Unlike some existing studies

surveyed later, I allow such consumption-generated signals to be general and non-conclusive.

In each period, based on the signals previously received, the platform can guide the current

consumer’s choice by providing a recommendation message. Knowing the message and her own

arrival time, the consumer then makes her consumption decision in a Bayes-rational way. The

platform’s design problem is to find a dynamic recommendation policy, to which it can commit

ex-ante, in order to maximize the total social surplus generated on it.

Ideally, the platform should recommend the product for trial as long as this is socially

desirable, even if consumption is suboptimal for the current consumer based on the current

information. With such a policy, however, the expected quality of some recommendations

may be too low for the consumers to follow, which renders the design ineffective. An optimal

policy therefore must choose when to recommend socially desirable but individually suboptimal

consumption most efficiently, subject to the requirement that the consumer in each period will

be willing to follow the recommendation. As my results will show, this incentive concern is the

central force that shapes the optimal design.

The need to convince consumers to follow the recommendations induces a sequence of

incentive-compatibility (abbr., IC) constraints – one for each consumer – in the dynamic design

problem, which makes it a constrained Markov decision process. Solving such a problem is

challenging because the standard dynamic programming technique cannot directly handle those

constraints. To overcome the difficulty, I deploy a Lagrangian duality approach. It allows me to

partially characterize the shadow values of the IC constraints and finally solve the optimal de-

sign. To the best of my knowledge, this is the first paper solving a (non-degenerate) constrained

Markov decision process that naturally arises from a dynamic information design problem.

I show that the optimal design features a sequence of time-specific thresholds, which gen-

erally vary in a U-shaped pattern over the product’s life. At any time, the platform should

recommend the product if, based on its current information, the probability of the product’s

quality being high is above the current threshold. This suggests that the platform should set

time-varying standards for recommending the product, which first decrease and then increase

as the product ages. Underlying this time-pattern is a tension between the platform’s desire

2The platform also receives an initial signal about the product before any consumption, which reflects its
internal research or data on the previous performance of similar products.
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to create information value for future consumers and its need to fulfill the current consumer’s

IC constraint. When the product is very young, the information value is high due to a long

remaining product lifespan, while consumers are “skeptical” about following recommendations

because they know that even the platform has not acquired much information about the product

yet. This implies a binding IC constraint and necessitates a picky censorship regarding when to

recommend the product. As time passes, consumers become easier to convince as they expect

that the platform may have gotten better informed by previous signals. The recommendation

standard can hence be lowered.3 This continues until the standard has become sufficiently low

such that trials with beliefs further below it are no longer worthwhile. Thereafter, the opti-

mal threshold gradually goes up because the information value of consumption dwindles as the

product approaches its end of life.

The results above implies an interesting prediction about the optimal recommendation dy-

namic – it can feature temporary recommendation suspensions following negative consumer

feedback for young products. Specifically, following a negative feedback, the platform’s belief of

high quality can drop below the recommendation threshold, which suspends the recommenda-

tion and learning. However, if we are in the early phase of the product’s life where the threshold

is declining, the threshold can fall below the belief again a few periods later, which restarts rec-

ommendation. In practice, it is well-known that temporary suspension or deprioritization of

recommendation is often used for punishing the misconduct of a seller or content provider.4

My finding here suggests another motivation for taking such action, which is to enhance social

learning on new products given the inadequacy of individual consumers’ incentive.

My characterization of the optimal design also enables a couple of comparative statics.

The first analysis considers how the design should be adjusted when consumption becomes

more likely to yield non-neutral signals about the product quality (e.g., due to better feedback

elicitation designs). I show that the recommendation standards should be lowered uniformly

over time when this happens. The second analysis incorporates random consumer arrivals. I

show that when we have a thicker market where consumers arrive more frequently, the optimal

policy should become more generous in recommending the product.

I note that the binary quality assumption will be relaxed in an extension of my main model.

Although a full characterization for the optimal design is not available there, my duality ap-

3See Section 1.4.1 for a more concrete intuition behind this.
4For a list of real-world examples, see Table 1 in Liang et al. (2020).
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proach still helps to reveal certain properties of it. In particular, I show that the optimal

policy features a partial-order monotone structure, which can be considered as a generaliza-

tion of the threshold structure. I will discuss implications of this general result for algorithmic

recommendation design following the extension.

The paper is organized as follows. The rest of Section 1 reviews the literature. Section 1.2

presents the main model. Section 1.3 derives the optimal design. Section 1.4 explores dynamic

properties of the optimal design. Section 1.5 considers comparative statics. Section 1.6 provides

additional discussions. Section 1.7 concludes with some methodological remarks. Appendix 1.A

considers the extension with general quality support. All proofs are provided in Appendix 1.B.

Related literature – My study closely relates to Kremer et al. (2014) and Che & Hörner (2018),

who also study the optimal recommendation design when early consumption has informational

externality to later consumers.5 These papers have focused on special classes of consumption-

generated signals. Specifically, the main model in Kremer et al. (2014) considers fully revealing

signals, i.e., the underlying quality will be fully revealed after a single trial. This allows them

to reduce the design problem into a decision problem about when to induce the first trial based

on the platform’s initial information.6 Che & Hörner (2018) considers a Poisson learning en-

vironment with binary quality levels in continuous time. They assume that the platform has

either received no news, or has received conclusive news that fully reveals the product’s quality.

The design problem then boils down to a deterministic control problem about recommendation

intensity following the history without news arrival. Unlike these papers, my study accommo-

dates general non-conclusive signals. My characterization of the optimal design is thus about

whether to recommend the product in each period based on any current belief of the platform,

which goes beyond timing of the first trial or recommendation intensity without previous news.

This allows me to interpret my results as regarding the time-varying recommendation standards

and necessitates the more general formulation of the problem.

An extension in Kremer et al. (2014) and a strand of subsequent algorithm-oriented re-

search have studied environments more general than in the main model of Kremer et al. (2014),

5Lorecchio & Monte (2021) also considers a setting where the designer records previous agents’ feedbacks to
guide later agents’ decisions. However, their designer has state-independent payoff, rely on restricted commu-
nication rules, and only focuses on the long-run stationary equilibrium, which makes their paper distinct from
mine.

6More precisely, the initial information in their paper is about an alternative consumption option, which is
always tried by the first consumer with its quality fully revealed since then.
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which do allow for non-conclusive consumption-generated signals (Papanastasiou et al., 2018;

Mansour et al., 2020).7 The goal of this literature is to propose algorithms that can achieve

better asymptotic performance as the number of consumers coming in sequence goes to infinity,

which is often measured by the decay rate of per-consumer welfare loss compared to the full-

information first-best benchmark. While such measurement reflects an important aspect of the

design performance, it does not take into account the design’s finite horizon behavior and can

be insensitive to multiplicative changes in the welfare loss.8 Hence, for the algorithms proposed

in the above literature, little is known about their finite-horizon efficiency, and little has been

done to improve their finite-horizon performance. My paper complements the literature by

solving the finite-horizon optimal design in a stylized setting, which may serve as a short-run

performance benchmark for evaluating any algorithm and help to inspire new algorithms with

a non-asymptotic focus.9

Another growing literature also considers the optimal information provision by a platform

to a sequence of short-lived agents (Glazer et al., 2021; Komiyama & Noda, 2021; Küçükgül et

al., 2022). In these papers, the agents are either endowed with or are able to acquire private

signals, and a central task for the platform is to infer these private signals from the agents’

decisions. These papers thus consider very different information sources for the platform and

explore design concerns distinct from mine.

More generally, my paper belongs to the broad literature on information design, beginning

with Kamenica & Gentzkow (2011) and Rayo & Segal (2010), and especially studies on dynamic

designs (e.g., Ely, 2017; Renault et al., 2017; Smolin, 2021; Ely & Szydlowski, 2020; Ball,

2019; Orlov et al., 2020; Lorecchio, 2021). One difference between many of the studies in this

literature and mine is that I consider a designer whose private information flow is controlled by

the receivers’ decisions, rather than being exogenous. My analysis illustrates how such a setting

naturally leads to a constrained Markov decision process after simplification with the revelation

7Also see, for examples, Bahar et al. (2015), Mansour et al. (2016), Chen et al. (2018), Immorlica et al. (2019)
and Bahar et al. (2021) for a variety of extensions.

8To see this, notice that an average loss function L(t) is considered to have the same decay rate in t as αL(t)
for any α > 0.

9Papanastasiou et al. (2018) does investigate finite-horizon design in a particular setting, but in that setting
the initial information is such that either no exploration can ever happen or consumer IC constraints are never
binding, which makes the optimal design obvious. They also propose to formulate the designer’s problem as a
constrained Markov decision process in a more general setting, but concluded it to be computationally infeasible,
and did not derive analytical results from it except for giving a bound on how many belief states need to involve
randomization in an optimal design.
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principle (Myerson, 1986), and how the Lagrangian duality approach can be useful for solving

it.10

1.2 The Model

I first describe the model, and then discuss several underlying assumptions in Section 1.2.2.

1.2.1 The Setting and the Design Problem

The model features a platform, a sequence of short-lived Bayes-rational consumers and a prod-

uct. The product is launched in period 1 and will remain available for consumption over T <∞

discrete time periods. In each period t = 1, ..., T , a consumer arrives at the platform and de-

cides whether to consume the product. I denote the consumer’s decision as at ∈ {0, 1} with

at = 1 meaning consumption occurs. Without consuming the product, the consumer will re-

ceive her outside option value, which is normalized to zero. If she consumes the product, the

consumer’s utility will be equal to θ̃, which is a random variable taking values in {θL, θH}, with

θL < 0 < θH .11 This θ̃ measures the underlying quality of the product, which is fixed over time

but initially unknown. I assume that the platform and the consumers share a common prior for

it.

At the beginning of period 1, the platform receives a signal s0 about θ̃, which reflects

the platform’s initial information based on, for example, its internal research or data about

past performance of similar products. Subsequently, an additional signal will be generated for

the platform whenever a consumer consumes the product. Let si denote the signal from the

i’th consumption of the product. Conditional on θ̃, I assume that s1, s2, ... are i.i.d. and are

independent from s0.

In every period, the platform can compute its posterior belief about the product quality

based on the previous signals received. I use pt to denote the platform’s belief about θ̃ = θH

at the beginning of period t. Let µ1 denote the distribution of p1 = P(θ̃ = θH |s0); let G(·|·)

10Beutler & Ross (1985) and Beutler & Ross (1986) were the first to use a Lagrangian approach to study
constrained Markov decision processes. The method is subsequently developed and applied in many mathematical
and engineering papers (see, e.g., Section 1.2 of Altman (1999) for a brief survey). These studies typically only
involve a few aggregate constraints corresponding to different design criteria. In contrast, my problem features
one constraint for each period, which leads to a novel dynamic aspect of the problem.

11As usual, one can interpret θ̃ as the consumer’s expected utility from consumption given the product’s true
quality, and the actually realized utility can involve an ex-post idiosyncratic shock.
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denote the transition kernel of (pt)
T
t=1 following one’s consumption; let D(·|p) denote the Dirac

measure at p. The process of (pt)
T
t=1 then follows the following rule:

p1 ∼ µ1 (1.1)

pt+1|pt, at ∼ atG(·|pt) + (1− at)D(·|pt) (1.2)

For later analyses, I define u(p) := pθH + (1 − p)θL, and define p̄ to be the indifference belief

for consumers, i.e., u(p̄) = 0.

Before the realization of s0, the platform can commit to an information transmission policy

that decides what message to convey to the coming consumer in each period based on the

information available at that time. I assume that the consumer can neither observe previous

messages, nor observe decisions of earlier consumers. She just observes her arrival time and her

own message, and then decides whether to consume the product.

The timeline of the environment is summarized as follows:

1. Before period 1, the platform (publicly) commits to an information transmission policy,

and the product quality θ̃ is secretly realized. Then, the platform privately receives its

initial signal s0 about θ̃.

2. At the beginning of each period t = 1, ..., T , a consumer arrives and receives a message

from the platform, which is generated according to the information transmission policy.

She then decides whether to consume the product. If she is the n’th consumer who

consumes the product, signal sn will be generated for the platform. The economy then

enters into the next period.

The Designer’s Problem: I look for the information transmission policy that maximizes the

total consumer surplus generated on the platform over the product’s lifetime (i.e.,
∑T

t=1 E[atθ̃]).

By the revelation principle (Myerson, 1986), it suffices to consider incentive-compatible rec-

ommendation policies, which just decide whether to recommend the product for consumption

in every period, subject to the requirement that a Bayes-rational consumer will like to fol-

low the recommendation. Since the belief pt summarizes all the payoff-relevant information of

the platform in period t, standard argument implies that I can further focus on randomized

Markov policies with respect to the process of (pt)
T
t=1.

12 Formally, a randomized Markov rec-

12A formal proof for this is available upon request.
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ommendation policy is a sequence of measurable mappings ϕ := (ϕt : t = 1, ..., T ), where each

ϕt : [0, 1] → [0, 1] decides the probability of recommending the product at time t given any

pt ∈ [0, 1]. For the rest of the paper, by “policy” I will be referring to a policy of this type.

I impose the following assumption on consumption-generated signals throughout:

Assumption 1.2.1. (i) P(E[θ̃|s0] > 0) > 0;

(ii) For any i ≥ 0, we have P(si ∈ A|θ̃ = θL) < P(si ∈ A|θ̃ = θH) for some (measurable) set A

in the realization space of si;

(iii) For any i ≥ 0, we have P(si ∈ A|θ̃ = θL) > 0 ⇔ P(si ∈ A|θ̃ = θH) > 0 for any (measurable)

set A in the realization space of si.

Condition (i) implies that, given a certain realization of the platform’s initial information,

it is optimal for the first consumer to consume.13 Without such a condition, the first consumer

may never want to consume, knowing which the second consumer will never consume either.

Induction would then imply that no consumption can ever happen under any design. Condition

(i) rules out such a trivial scenario. Condition (ii) simply guarantees that the signals are indeed

informative about θ̃. Condition (iii) implies that no signal realization can conclusively reveal

the quality level. It helps to simplify the exposition of certain proof, but is not essential for

results in the paper.

1.2.2 Discussion on Model Assumptions

1. Information v.s. monetary incentive. The model assumes that the platform cannot

directly pay early consumers for trying out the new product. While it can work well in some

applications, the use of monetary incentive may be problematic in others. In particular, if

consumers are only attracted by the monetary incentive instead of the product itself, they

may just pretend to consume the product and leave some artificial feedback, especially when

the product’s pecuniary price is zero (e.g., digital contents on a subscribed platform).14 I

thus focus on the design of information in this paper, which can convince consumers to truly

try the product.

13To guarantee this, one may instead impose the slightly weaker condition P(E[θ̃|s0] ≥ 0) > 0. I impose the
stronger condition for a technical reason when deriving the duality result.

14For example, one may play a movie at background without watching it, and then fabricate some feedback to
earn the money.
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2. Consumer information on product launch time. An important assumption of the

model is that each consumer can observe when the product was launched. This is reasonable

for many products like TV-series, video games, restaurants or amusement parks, which typi-

cally have a public release or opening time. For some other products, however, the consumer

may only have a rough idea about the launch time. In such cases, my design setting can be

considered as being robust to uncertainty in the exact consumer information. Indeed, un-

der the assumption that consumers perfectly observe the product launch time, the optimal

design I derive will be incentive-compatible no matter what information consumers actually

have about the product’s launch time. It thus provides the best guaranteed performance.

3. Consumer information on early consumer arrivals. The model above has a feature

that each consumer perfectly knows how many consumers have arrived before her, which

is unrealistic. Fortunately, this is not truly a concern because my framework can be easily

extended to incorporate random consumer arrivals. In such an extension, each consumer can

infer how many consumers have arrived earlier based on her own arrival time, but cannot

know the number exactly. All of my results will still hold. To ease notation, however, I do

not explicitly introduce random consumer arrival until Section 1.5.2, where I will examine

how the arrival rate affects the optimal design.

1.3 Characterization for the Optimal Design

1.3.1 The Constrained Markov Decision Process

Let Φ denote the set of all (measurable) policies. Given any ϕ ∈ Φ, I use Pϕ to denote the

probability measure over events of
(
(at)

T
t=1, (pt)

T
t=1

)
provided that consumers follow the recom-

mendations, and use Eϕ to denote the corresponding expectation operator. Then, the incentive

compatibility (IC) constraint for a time-t consumer can be written as:15

Pϕ(at = 1) > 0 ⇒ Eϕ[u(pt)|at = 1] ≥ 0 (1.3)

Pϕ(at = 0) > 0 ⇒ Eϕ[u(pt)|at = 0] ≤ 0 (1.4)

These respectively guarantee that the consumer will follow the recommendation when the prod-

uct is recommended (at = 1) and when it is not (at = 0). Since one’s consumption of the

15Notice Eϕ[θ̃|at] = Eϕ

[
Eϕ[θ̃|pt]|at

]
= Eϕ[u(pt)|at] since at is measurable w.r.t. pt.
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product generally benefits later consumers by yielding information, the designer will never want

to recommend at = 0 when consumption is optimal for the current consumer. This implies

that the second constraint above is non-restrictive for the designer and can thus be omitted.

For the first constraint, we can more compactly write it as Eϕ[u(pt)|at = 1]Pϕ(at = 1) ≥ 0,

which is equivalent to Eϕ[atu(pt)] ≥ 0. Notice Eϕ[atu(pt)] is the expected surplus of the time-t

consumer when she follows the recommendation under ϕ. The designer’s problem can hence be

formulated as:16

max
ϕ∈Φ

{ T∑
t=1

Eϕ[atu(pt)]
}

(1.5)

s.t. Eϕ[atu(pt)] ≥ 0 ∀t = 1, ..., T (1.6)

Due to the presence of the expectation operator, each constraint in (1.6) is not just restricting

the recommendation decision given a particular realization of pt, but involves integration over

the entire distribution of pt at a particular time. Such an aggregated constraint arises here

because the payoff-relevant process (pt)
T
t=1 is privately monitored by the platform, and hence the

consumer must integrate over its equilibrium distribution when forming her posterior belief given

any recommendation message. The presence of such constraints makes the problem a constrained

Markov decision process, which cannot be directly handled by dynamic programming with pt

being the state variable.17 To overcome this difficulty, I will provide a dual characterization for it

using Lagrangian duality, which allows me to partially reduce the problem to an unconstrained

one.

The following lemma reveals the key properties of the belief process needed for later analyses.

Lemma 1.3.1. The belief process (1.1) – (1.2) satisfies the following conditions:

(P1) G(·|p) as a measure-valued function of p is weakly continuous.

(P2)
∫
p′ u(p

′)G(dp′|p) = u(p).

(P3) G(·|p) increases in p in terms of first-order stochastic dominance.

(P4) G
(
[0, p)|p

)
and G

(
(p, 1]|p

)
are strictly positive for any p ∈ (0, 1).

(P5) µ1
(
(p̄, 1]

)
> 0.

16Papanastasiou et al. (2018) first proposed the constrained Markov decision process formulation for this kind
of design problem. However, they do not pursue much further analysis with it. See footnote 9 for details.

17See Altman (1999) for a textbook treatment to constrained Markov decision processes.
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Property (P1) means that small changes in the prior can only lead to small changes in

the posterior, which is a technical result that guarantees the existence of the optimal design.

Property (P2) is implied by the standard law of iterated expectation. Property (P3) is an inertia

property of the belief process, which roughly says that a product looking more promising today

is also more likely to look promising tomorrow. It will be important for showing the threshold

structure of the optimal policy later. Property (P4) is directly implied by the assumption that

signals are informative, which guarantees that the belief process will not stay constant for sure

following consumption. Property (P5) is directly implied by Assumption 1.2.1(i), which allows

consumption, and hence learning, to occur in period 1. I note that these five properties are all

that one needs to know about the belief process for later analyses, which abstract away from

other details of the learning process.

The following result guarantees that the designer’s problem is well defined.

Proposition 1.3.1. There exists an optimal solution to the designer’s problem (1.5) – (1.6).

1.3.2 The Dual Characterization

Given any vector of Lagrangian multipliers λ ∈ RT
+ associated to the IC constraints, I define

the Lagrangian function for the designer’s problem as:

L(ϕ;λ) =
T∑
t=1

Eϕ[(1 + λt)atu(pt)] (1.7)

Then, we have the following strong-duality result.

Lemma 1.3.2. Let w∗ denote the optimal value of the designer’s problem. Then,

w∗ = min
λ∈RT

+

sup
ϕ∈Φ

L(ϕ;λ) (1.8)

where the minimum is achieved by some λ∗. Given any such λ∗, a policy ϕ∗ is optimal for the

designer’s problem if and only if:

(i) ϕ∗ ∈ argmaxϕ∈Φ L(ϕ;λ∗)

(ii) λ∗tEϕ∗ [atu(pt)] = 0, ∀t = 1, ..., T

(iii) Eϕ∗ [atu(pt)] ≥ 0, ∀t = 1, ..., T

To see how this result is helpful, notice that once we know a solution λ∗ to the dual problem
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(1.8), which intuitively measures the “shadow values” of the IC constraints, the lemma implies

that any optimal policy must solve maxϕ∈Φ L(ϕ;λ∗), which is an unconstrained problem. The

optimal design can then be characterized by studying this unconstrained problem with the

standard dynamic programming approach.

The problem here, however, is that the value of λ∗ is not available. Generally, deriving

it requires one to either solve the min-max problem in (1.8) or solve the fixed-point problem

defined by conditions (i) – (iii) jointly for (λ∗, ϕ∗), both of which are difficult. Fortunately, as

I show below, a property of λ∗ can be directly derived from the dual problem, which turns out

to suffice for a sharp characterization of the optimal policy.

1.3.3 Main Structures of the Optimal Design

The following lemma is a key result derived from the dual problem (1.8).

Lemma 1.3.3. There exists λ∗ ∈ argminλ∈RT
+
supϕ∈Φ L(ϕ;λ) such that λ∗t ≥ λ∗t+1 for all t =

1, ..., T − 1.

To see an intuition behind this result, assume that the dual problem has a unique solution λ∗.

As usual, we can interpret λ∗t as the shadow value of marginally relaxing the time-t IC constraint

for the designer’s problem. As time passes, two changes happen in the designer’s problem. First,

as information accumulates over time, we are able to have better selections over the products

for recommendation. This makes it possible to obey the consumer’s IC constraint with less

sacrifice for socially desirable consumption. Second, as the remaining lifetime of the product

gets shorter, the dynamic value from having additional myopically suboptimal consumption

drops. These both suggest that relaxing later IC constraints is less helpful than relaxing the

earlier ones. Hence, the associated shadow values should decrease over time.

Although the argument above is intuitive, it is hard to formalize it into a concrete proof.

For the lemma’s proof, I directly examine the dual problem and develop an “inter-change”

argument. In particular, given any λ∗ solving the dual problem, I show that if two adjacent

components of it violate the time pattern, then interchanging them will lead to a new solution

to the dual problem. Starting with any solution to the dual problem, one can hence construct

a new solution satisfying the time pattern by making such interchanges repeatedly.

One immediate implication of Lemma 1.3.3 is that the optimal design will generally feature

a two-phase structure. In the first phase, λ∗t > 0 and the IC constraints are binding; in the
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second phase, λ∗t = 0 and the IC constraints are essentially non-restrictive.18 As I will show

later, the optimal recommendations corresponding to these two phases exhibit very different

dynamic patterns.

The time-pattern of λ∗ found in Lemma 1.3.3 also turns out to induce a simple solution

structure for the Lagrangian function optimization maxϕ∈Φ L(ϕ;λ∗). To state the result, I

define threshold policies as follows:

Definition 1.3.1. A time-t policy ϕt : [0, 1] → [0, 1] is called a threshold time-t policy if there

exists threshold ηt ∈ [0, 1] such that p > ηt ⇒ ϕt(p) = 1 and p < ηt ⇒ ϕt(p) = 0. A policy ϕ is

called a threshold policy if ϕt is a threshold time-t policy for every t.

Namely, a threshold policy will recommend the product when the current quality belief of

θ̃ = θH is above a threshold, and will not recommend it when the belief is below the threshold.

It can also involve arbitrary randomization at the threshold. By applying backward induction

on the dynamic programming of maxϕ∈Φ L(ϕ;λ), I show the following result:

Lemma 1.3.4. Given any non-increasing sequence of (λt)
T
t=1, any solution to maxϕ∈Φ L(ϕ;λ)

is almost surely equivalent to a threshold policy. Moreover, pt > p̄ ⇒ at = 1 a.s. under such a

policy.19

Together with Lemma 1.3.3 and the dual characterization for the optimal design, this directly

implies the threshold structure of the optimal design:

Corollary 1.3.1. Any optimal policy is almost surely equivalent to a threshold policy. Moreover,

pt > p̄⇒ at = 1 a.s. under it for any t.20

I note that although threshold policies are intuitively appealing, their optimality is not

obvious in my setting. While the myopic value of consumption always increases in pt, the

dynamic informational value of it does not. Given the presence of IC constraints, even measuring

such dynamic value is not straightforward, as one not only needs to consider the direct benefit

to later consumers, but also needs to consider how better information may help to relax the

18It is easy to see that the second phase includes at least the last period, since the optimal policy there will be
myopically optimal. The first phase is non-empty as long as the prior on θ̃ is not sufficiently favorable to support
first-best learning.

19By saying A ⇒ B almost surely (a.s.), I mean that the event in which A happens but B does not happen is
of zero probability.

20The second statement implies that the product is always recommended when consumption is optimal for the
current consumer. Hence the IC constraint (1.4) I ignored before is indeed satisfied.
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IC constraints of later consumers, and thereby facilitate more information generation from

them. The duality approach I take partly resolves such difficulty by characterizing the shadow

values of those IC constraints. Given the monotonicity property of (λ∗t )
T
t=1, I show that when pt

increases, the positive change in the myopic consumption value always dominates the potentially

indeterminate change in the dynamic value of consumption, as is measured in the continuation

problem of maxϕ∈Φ L(ϕ;λ∗). The total value of consumption is thus always increasing in pt,

which implies the threshold structure of the optimal design.

Lemma 1.3.4 above also helps to characterize the dictator’s optimal policy, where by “dic-

tator” I mean a social planner who can dictate consumers’ decisions without obeying their IC

constraints. Notice that if λt = 0 for all t, the Lagrangian optimization maxϕ∈Φ L(ϕ;λ) is

reduced to the dictator’s problem. Lemma 1.3.4 then implies that the dictator’s problem also

features a threshold solution. This solution will be used in the construction of the optimal

design below.

1.3.4 The Optimal Policy

Notation: For any vector indexed by time, I will use subscription “≥ t” to indicate the sub-

vector corresponding to time no earlier than t. For example, ϕ≥t will denote the continuation

policy since time t. Notations like ϕ>t and ϕ<t are similarly defined.

Based on the two-phase structure of the optimal design implied by Lemma 1.3.3 and the

threshold structure stated in Corollary 1.3.1, one can explicitly construct the optimal design

using a forward induction algorithm. To do so, I define ϕd to be the “most conservative”

optimal policy for the dictator’s problem (i.e., the designer’s problem without IC constraints),

whose details are provided in Appendix 1.B.5. When the dictator’s problem admits multiple

solutions, ϕd is the most conservative in the sense that it always breaks ties in favor of non-

recommendation, and hence it is in favor of the current consumer’s surplus.

A candidate optimal threshold policy ϕo, together with a cutoff time point t̂, can be induc-

tively defined as follows.

Definition 1.3.2. A policy ϕo, a sequence of distributions (µot )
T
t=1 over [0, 1] and a time point

t̂ ∈ {1, ..., T} are defined with the following algorithm.21

21I note that the algorithm must eventually stop in step 1 because
∫
p
ϕd
t (p)u(p)µ

o
t (dp) ≥ 0 holds for t = T ,

since ϕd
T is myopically optimal. This implies that t̂ is well-defined.
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Starting with t = 1 and µo1 = µ1:

� Step 1: If
∫
p[ϕ

d
t (p)u(p)]µ

o
t (dp) ≥ 0, let t̂ = t, ϕo≥t = ϕd≥t, and (µos)s>t be the (marginal)

distributions of (ps)s>t under ϕ
d
≥t given pt ∼ µot . Otherwise, go to the next step.

� Step 2: Let ϕot be a threshold time-t policy such that

(i) ϕot (p) = 1 for all p > p̄;

(ii)
∫
p[ϕ

o
t (p)u(p)]µ

o
t (dp) = 0.

(See Appendix 1.B.5 for details.) Also let µot+1 be the distribution of pt+1 under ϕot given

pt ∼ µot . Then go back to step 1 for time t+ 1.

Intuitively, ϕo in its early phase is a threshold policy just “picky” enough to fulfill the IC

constraints. This continues until a time point t̂, at which even the dictator’s optimal continua-

tion policy ϕd≥t̂
will not be too generous to be incentive-compatible. Then ϕo just resumes with

ϕd≥t̂
later on. The following proposition shows that ϕo is indeed an optimal policy and fully

characterizes any optimal design.

Proposition 1.3.2. Any policy ϕ∗ is optimal for the designer’s problem (1.5) – (1.6) if and

only if: (i) ϕ∗
<t̂

agrees with ϕo
<t̂

almost surely; (ii) given pt̂ ∼ µo
t̂
, ϕ∗≥t̂

satisfies IC constraints

for all t ≥ t̂ and is optimal for the dictator’s continuation problem starting from time t̂. In

particular, ϕo is optimal.

The characterization in Proposition 1.3.2 makes it convenient to explore dynamic features

of the optimal design and to study how it should be adjusted with changes in market details. I

pursue these in the following sections.

1.4 Dynamic Properties of the Optimal Design

1.4.1 Time Pattern of the Recommendation Standards

Threshold policies can be naturally interpreted as policies setting the minimum age-specific

standards for a product to qualify for recommendations. Given the dynamic nature of the

problem, it is conceivable that such a minimum standard should evolve over the product’s life.

I explore this time pattern below.

For ease of exposition, I impose the following full-support and atomless assumption on the

belief process.
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Assumption 1.4.1. The signals (s0 and {sn}n≥1) are such that the marginal distributions of

p1, ..., pT are atomless and have full support over [0, 1] under any policy.22

The atomless assumption renders randomization at the threshold irrelevant, so we can solely

focus on the thresholds themselves. The full-support assumption guarantees that any deviation

in the recommendation threshold matters, which avoids the need to discuss off-path indetermi-

nacy of the optimal policy.

Recall that t̂ is defined by the algorithm in Definition 1.3.2. I have the following result.

Proposition 1.4.1. Under Assumption 1.4.1, the thresholds (η∗t )
T
t=1 of any optimal threshold

policy satisfies: (a) η∗t > η∗t+1 for t ≤ t̂− 2; (b) η∗t < η∗t+1 for t ≥ t̂. Moreover, η∗t ≤ p̄ for all t.

Intuitively, the optimal recommendation standard should first decrease and then increase

over the product’s life, which correspond to the two phases with binding and non-binding IC

constraints respectively. Underlying this result is the tension between our desire to create

dynamic informational value for future consumers and the need to fulfill the current consumer’s

IC constraint. In the early phase, the dynamic value is generally high with a long future to

go, while consumers are more “skeptical” about following recommendations, as they know that

even the platform has not acquired much information yet. This implies a binding IC constraint

and necessitates a picky censorship over the beliefs eligible for recommendations. As time

proceeds, consumers become easier to convince and the recommendation criterion can thus be

relaxed. This continues until the standard is already sufficiently low such that consumption with

beliefs further below it is no longer worthwhile given the remaining time of the product. The

IC constraint then turns non-restrictive. Thereafter, the optimal standard gradually goes up,

because the dynamic value from myopically suboptimal consumption dwindles as the product

approaches its end of life.

Figure 1.1 explains why the optimal threshold drops before time t̂ in more detail. The

two dots on the left represent two possible realizations of pt, and the blue bar between them

represents the optimal threshold for period t. Since the green dot is above the threshold, it is

associated with a recommendation and will hence split in a mean-preserving spread manner,

which leads to realizations of pt+1 represented by the two new green dots in period t+ 1. This

22The assumption holds, in particular, if the log-likelihood ratios of the signals are continuous random variables
with full support over R. That is, for both i = 0 and i ≥ 1, si admits density functions fL

i and fH
i conditional

on θ̃ = θL and θ̃ = θH respectively such that log
( fH

i (si)

fL
i (si)

)
is a continuous random variable with full support over

R.
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Figure 1.1: Explanation for decreasing recommendation thresholds before time t̂. The dots

represent possible realizations of pt or pt+1. The arrows indicate the evolution of these beliefs.

The blue bars represent the optimal recommendation thresholds.

reflects the new information generated by consumption. The black-dot belief in period t does

not qualify for a recommendation and is thus carried over into period t + 1. Now, suppose

the designer keeps the threshold unchanged over the two periods. Then in period t + 1, only

the upper green dot (green dot 2) would qualify for a recommendation. Since this belief is

more favorable than its predecessor (green dot 1), the consumer’s IC constraint in period t+ 1

would turn slack. Intuitively, the better information in period t+1 would have induced a more

favorable selection for the consumer if the threshold were kept the same as before. This leaves

room for the designer to also include the black dot into the recommendation region. When

t+1 < t̂, the designer indeed wants to do so since my previous characterization has shown that

the consumer’s IC constraint should keep binding before time t̂. This implies a lower threshold

in period t+ 1.

The U-shaped pattern of recommendation thresholds has interesting implications for the

optimal recommendation and learning dynamics, which I turn to in the next subsection.

1.4.2 Optimal Recommendation Dynamic

Figure 1.2 demonstrates an example path of realized recommendations under the optimal pol-

icy.23 The sequence of blue bars represents the age-specific thresholds of the optimal policy,

which form a “U” shape by Proposition 1.4.1. The series of crosses and circles tracks a realized

path of (pt)
T
t=1, where green circles mean that the belief is above the current threshold and the

23The figure presents a case where recommendation is eventually abandoned, which is more likely to happen
when the product quality is low. However, the property discussed below does not rely on this.
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Figure 1.2: A realized path of recommendations under the optimal design. Blue bars represent

the thresholds of the optimal policy. The crosses and circles track the platform’s belief of θ̂ = θH ,

where green circles mean that recommendation is made and red crosses mean the opposite. As

defined earlier, p̄ is the myopically optimal threshold.

product is hence recommended, while red crosses mean the opposite.

The figure highlights an interesting property of the optimal recommendation dynamic –

recommendation and learning can be temporarily suspended following negative feedback from

the last consumption. Such suspension is beneficial because it allows us to support exploration

on products looking more promising at the same age without violating the IC constraint. How-

ever, the suspension may not last forever when further exploration is still socially desirable. As

soon as the threshold for recommendation drops below the current belief, trials for the product

will resume. Of course, such restart of recommendations can only happen in the early phase

of the product’s life, where the IC constraints are binding and the recommendation threshold

decreases over time. In the later phase, the threshold goes up, and thus any suspension of

recommendation will be permanent.

In practice, temporary recommendation suspension (or deprioritization) following negative

consumer feedback is often used for punishing misconduct of the product supplier (e.g., a seller or

content provider).24 My finding here suggests another motivation for taking such action, which

is to induce social exploration in a more efficient way given the inadequacy of consumer incentive.

Compared to punishing supplier misconduct, the temporary recommendation suspensions in my

24See, e.g., Table 1 in Liang et al. (2020) for a list of examples.
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model have two distinct features. First, they can happen following negative feedback regarding

the product’s innate features instead of unsatisfactory behavior of the supplier. Second, they

mainly happen for young products. Presuming that platforms are in practice indeed trying

to enhance social learning about new products by tailoring their recommender systems, these

may serve as concrete predictions of the model that can be tested with real data on platform

recommendations.

1.5 Comparative Statics

In this section, I provide two comparative static analyses regarding the optimal recommendation

standards.

1.5.1 Information Generation Rate

In many applications, having someone try out a product is not guaranteed to generate mean-

ingful information about the product’s quality. The consumer may not leave feedback,25 or

may give feedback that is too cursory to be authenticated.26 These will lead to little post-

consumption information generation.

How should the optimal design be adjusted when consumption becomes more likely to yield

information, such as with better feedback elicitation designs? To study this, I introduce an infor-

mation generation rate into my model. Specifically, I assume that following one’s consumption,

the signal si being generated will be a compounded signal. It has probability α ∈ (0, 1) to be an

informative signal and has probability 1−α to be uninformative, and the platform can tell which

type the signal is.27 Let GI(·|·) denote the transition kernel for the platform’s belief following

an informative signal. Given any α, the transition kernel for pt following one’s consumption

25I note that non-feedback is not necessarily uninformative. It will be if there is little self-selection bias, so
that the feedback probability is uncorrelated with the product quality, which may be reasonable to assume for
some applications.

26In particular, platforms like Amazon or Yelp often rely on textual analysis to filter out fake reviews. If a
review is not material enough to pass such a test, it will be disregarded or attached with little weight in any
recommendation algorithm. This is important to deter fake reviews, which is a topic beyond the scope of this
paper.

27This compounded signal satisfies requirements in Assumption 1.2.1 as long as the informative component is
non-conclusive and indeed informative.
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then becomes:

G(·|p) = αGI(·|p) + (1− α)D(·|p) (1.9)

The following proposition provides the comparative statics result with respect to α. For sim-

plicity, I still impose the full-support and atomless assumption in Section 1.4.1.

Proposition 1.5.1. Assume Assumption 1.4.1 holds.28 Given any α, let (η∗t (α))
T
t=1 denote the

thresholds of the optimal threshold policy. Then η∗t (α) weakly decreases in α for all t.

The proposition suggests that after the information generation rate improves, the optimal

recommendation standard should be lowered for all product ages. There are two forces behind

this change. First, a higher α implies greater informational value from one’s consumption, which

motivates more exploration. Second, with a higher α, information from past consumption is

accumulated at a faster rate. This enables better-informed recommendations at any time, which

makes consumers more willing to follow the recommendations ceteris paribus. We thus have

room to lower the recommendation standards without violating the IC constraints. Together,

these lead to looser recommendation criteria in the optimal design.

The formal proof of the proposition is technically involved because it requires comparison

between two controlled Markov processes corresponding to different α. Central to the proof is a

coupling argument, where I explicitly construct the belief processes under the optimal designs

corresponding to different α in the same probability space. This allows a direct comparison

between them. I refer interested readers to Claim (d) in Appendix 1.B.7.

1.5.2 Random Consumer Arrivals

As is mentioned earlier, my framework easily accommodates random consumer arrivals. I for-

mally illustrate this below and examine how the optimal design should depend on the consumer

arrival rate.

I now assume that a consumer arrives in each period with probability ρ ∈ (0, 1). The

arrivals are independent over time and independent from other random objects in the model.

Accordingly, I reinterpret at as the consumption decision (or the platform’s recommendation)

28This holds, in particular, if the log-likelihood ratios of s0 and subsequent informative signals are continuous
random variables, and the log-likelihood ratio of s0 has full support over R.



21

conditional on the consumer’s arrival. Then, a signal of quality (i.e., si) will be generated

following period t if and only if a consumer arrives in that period and at = 1. The transition

rule of the belief process (pt)
T
t=1 then becomes:

pt+1|pt, at ∼ at
[
ρG(·|pt) + (1− ρ)D(·|pt)

]
+ (1− at)D(·|pt) (1.10)

Compared to the transition rule in (1.2), the change is that G(·|·) is now replaced by ρG(·|·) +

(1− ρ)D(·|·). This will be the only change in the design environment.

Another change is needed for the designer’s problem. In particular, we should now replace

u(·) in the designer’s objective function (1.5) with ρu(·), which reflects the fact that a consumer

arrives only with probability ρ. This does not matter for the optimization, however, since it

only multiplies the objective function with a strictly positive scalar.

Because Lemma 1.3.1 still holds with G(·|·) replaced by ρG(·|·) + (1 − ρ)D(·|·), all of my

previous characterizations for the optimal design will remain valid. The following proposition

reveals how the consumer arrival frequency matters for the optimal design.

Proposition 1.5.2. Assume Assumption 1.4.1 holds.29 Given any arrival rate ρ, let (η∗t (ρ))
T
t=1

denote the thresholds of the optimal threshold policy. Then η∗t (ρ) weakly decreases in ρ for all

t.

The proposition suggests that when we have a thicker market where consumers arrive more

frequently, the recommendation criterion for any product age should be lower. The intuition

is again twofold. First, a higher arrival rate means more consumers are likely to come in the

future. This increases the informational value from early consumption. Second, with a higher

arrival rate, we will in expectation have more consumption and hence more signals accumulated

before any given period. This supports more generous recommendations while obeying the IC

constraints.

29This still holds, in particular, under the conditions in footnote 22, but now there is no need to require

log
( fH

i (si)

fL
i (si)

)
(i ≥ 1) to have full support over R.
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1.6 Additional Discussion

1.6.1 Platform’s incentive to maximize total consumer surplus

The designer’s objective in my model is to maximize the total consumer surplus. One may

wonder whether this is in line with a commercial platform’s interest. I believe so in at least two

scenarios. In the first one, the platform can directly extract consumer surplus by charging a sub-

scription fee (e.g., Netflix). In the second one, the platform does not directly charge consumers,

but wants to maximize the user base attracted by its recommendation service. For example,

ads-financed search engines want to maximize the quality of their organic recommendations so

that more people will use them and see their sponsored ads. In both scenarios, the platform’s

profit will be increasing in the total consumer surplus generated on it, maximizing which should

thus be the primary concern in their recommendation algorithm design.

1.6.2 Non-binary Quality Levels

One restrictive assumption in my main model is that the product quality can only take binary

values. As in many other papers on information design or social learning, this allows one to

represent the evolving belief with a single-dimensional variable, which significantly simplifies

the analysis.30

In Appendix 1.A, I extend the model to allow general quality support. Although a full

characterization is not available, the duality approach does help to extend certain structures of

the optimal design to that general setting. In particular, I show that the optimal design still

features the two-phase structure implied by Lemma 1.3.3. Moreover, the optimal policy is more

inclined to recommend the product when the platform’s current belief about quality is higher in

the likelihood-ratio order. This extends the threshold structure to a case with multi-dimensional

belief. I will discuss how this result can be helpful for algorithmic recommendation design in

the appendix.

1.6.3 Comparison to Previous Studies

As has been mentioned in the introduction, my study is closely related to Kremer et al. (2014)

and Che & Hörner (2018), who also study how platform recommendations can improve social

30See, e.g., section 2 in Hörner & Skrzypacz (2017) for papers on social experimentation.
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learning efficiency when early consumption produces information for later consumers through

the platform. Similarly to my paper, they also reveal how past information accrued to the

platform enables it to persuade more consumers into socially desirable explorations in the future.

Despite this high-level commonality, the three papers yield very different characterizations of

the optimal design.

Because Kremer et al. (2014) assumes fully revealing consumption-generated signals, their

optimal design is mainly about when to induce the first trial of the product.31 The main result

is that a product that looks better based on the platform’s initial information (in its quality

relative to an alternative option) should receive the first trial earlier. Che & Hörner (2018)

assumes that the platform learns from conclusive news that fully reveals the product quality

upon its arrival. The design in their paper is thus about “how much” to recommend the product

without news arrival. They show that myopically suboptimal recommendation, given no news

arrival, should gain increasing intensity as the product ages until being ceased at some point. In

contrast, my study accommodates general non-conclusive consumption-generated signals. My

prediction of the optimal design is therefore about whether to recommend the product in each

period based on any current belief of the platform. My results suggest that the optimal design

features threshold policies with respect to the evolving belief, and the recommendation standard

should vary in a U-shaped pattern as the product ages.32

Allowing non-conclusive signals also enables richer predictions about the optimal recom-

mendation dynamic. In particular, the phenomenon of temporary recommendation suspensions

following negative consumer feedback in Section 1.4.2 cannot exist with conclusive signals, since

conclusive negative feedback should necessarily stop recommendation forever. Moreover, both

of the previous papers suggest that exploration (i.e., myopically suboptimal trials) should stop

after some middle age of the product. With general consumption-generated signals, however,

Proposition 1.4.1 implies that exploration can happen until the last period of the product’s life,

although the belief region for exploration gradually shrinks after some point.

Finally, my study has also provided a couple of comparative statics regarding the optimal

recommendation standards in Section 1.5, which do not have counterparts in the previous

papers.

31After the first trial, quality is fully revealed and recommendations should simply be myopically optimal.
32With binary product quality, my result nests that in Kremer et al. (2014) as a special case.
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1.7 Conclusion and Methodological Remarks

In this paper, I have studied the optimal design for platform recommendations when early con-

sumption of a product yields informational externality to later consumers through the platform.

The optimal design is shown to feature simple threshold policies, and the optimal recommenda-

tion standard should vary in a U-shaped pattern over the product’s life. An interesting impli-

cation about the optimal recommendation dynamic is that recommendation can be temporarily

suspended following negative consumer feedback for young products, while such suspension

will be permanent for older products. My characterization also enables comparative statics

with respect to market details. In particular, I have shown that the recommendation standard

should be lowered for all product ages when consumption is more likely to generate informative

feedback or when consumers arrive more frequently over time.

My model accommodates non-conclusive consumption-generated signals. Consequently,

compared to the literature, it requires the more general formulation of the designer’s prob-

lem as a constrained Markov decision process. I argue that such mathematical formulation can

naturally arise in dynamic information design problems when the designer’s private information

flow is controlled by the receivers’ decisions. In such a scenario, if one focuses on direct mecha-

nisms, which are without much loss of generality by the revelation principle, the design problem

can be treated as a Markov decision process where the designer decides the receivers’ actions

and thereby controls his own information flow subject to the receivers’ IC constraints. Since

the receivers do not observe the designer’s information, their IC constraints will involve taking

expectations over it. This leads to the aggregated constraints that cannot be directly handled

in dynamic programming. I expect that such problem formulation and the Lagrangian duality

approach I take will also find applications in other dynamic information design problems with

the aforementioned feature.
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Appendix

1.A Non-binary Quality Levels

In this appendix, I extend the model to allow for non-binary product quality and generalize

certain characterizations of the optimal design.

1.A.1 The General Setting

Consider the same setting as in Section 1.2.1 except that the support of θ̃ can now be an

arbitrary set Θ ⊂ R. I assume that the joint distribution of θ̃ and the signals (s0, s1, ...) is

such that the platform’s posterior belief is always within a family of distributions {Qz}z∈Z ,

where Z ⊂ Rn is a countable parameter set.33 I assume that {Qz}z∈Z admits density functions

{qz}z∈Z with respect to some common dominating measure over R, and qz(·) > 0 on Θ for all

z ∈ Z. Moreover, I impose the following assumption:

Assumption 1.A.1. (i) P(E[θ̃|s0] > 0) > 0;

(ii) For any i ≥ 1, si takes values in some set S ⊂ R. Its distribution conditional on θ̃ admits a

conditional density function ℓ(·|·) (w.r.t. some dominating measure over R) such that: ℓ(s|θ) > 0

for all s ∈ S and θ ∈ Θ; ℓ(·|θ) increases in θ in the likelihood-ratio order.

Condition (i) plays the same role as its counterpart in Assumption 1.2.1. Condition (ii)

implies that higher realizations of si suggest that the product is more likely to be of higher

quality. This framework is general enough to incorporate many parametric learning models

with congruent prior and signals (e.g., the Beta-Binomial model). Moreover, it accommodates

any learning model with finite support of θ̃ that satisfies Assumption 1.A.1.

Let zt ∈ Z denote the platform’s belief parameter at the beginning of period t. Since

zt (or Qzt) summarizes all information available to the platform at time t, we can focus on

(randomized) Markov recommendation policies w.r.t. (zt)
T
t=1. Formally, any policy of this type

is a sequence of measurable mappings ϕ := (ϕt : t = 1, ..., T ), where each ϕt : Z → [0, 1] decides

the probability of recommending the product at time t given any belief parameter zt.

As in Section 1.5.2, I also allow i.i.d. random consumer arrivals and use ρ to denote the

arrival probability.

33I assume Z to be countable to avoid certain measurability issues about the optimal policy.
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1.A.2 Characterizations

Following similar arguments as those in Section 1.3.1 and Section 1.5.2, the designer’s problem

can be formulated as follows:

max
ϕ∈Φ

{ T∑
t=1

Eϕ[atu(zt)]
}

s.t. Eϕ[atu(zt)] ≥ 0 ∀t = 1, ..., T

zt+1|zt, at ∼ at
[
ρG(·; zt) + (1− ρ)D(·; zt)

]
+ (1− at)D(·; zt)

z1 ∼ µ1

where u(zt) :=
∫
θ∈Θ θQzt(dθ) (i.e., the expected consumption surplus given belief Qzt), G(·; ·)

is the transition kernel for zt following one’s consumption, and µ1 is the distribution of z1.

Compared to the main model, the process of (zt)
T
t=1 now replaces the role of (pt)

T
t=1. I define

the Lagrangian function and the dual problem similarly as those for the main model. The

following lemma follows easily from my assumptions and the definition of (zt)
T
t=1.

Lemma 1.A.1. The belief (parameter) process has the following properties

(P1’)
[
ρG(·; z) + (1− ρ)D(·; z)

]
as a measure-valued function of z is weakly continuous.34

(P2’)
∫
z′ u(z

′)
[
ρG(dz′; z) + (1− ρ)D(dz′; z)

]
= u(z).

(P5’) µ1
(
{z : u(z) > 0}

)
> 0.

These properties are the counterparts to properties (P1), (P2) and (P5) in Lemma 1.3.1.

Because Lemmas 1.3.2 and 1.3.3 for my main model only rely on these properties in Lemma 1.3.1,

they still hold in the current setting.35 In particular, we still have the following time pattern of

Lagrangian multipliers derived from the dual problem:

Lemma 1.A.2. There exists λ∗ ∈ argminλ∈RT
+
supϕ∈Φ L(ϕ;λ) such that λ∗t ≥ λ∗t+1 for all

t = 1, ..., T − 1.

One particular implication of this lemma is that the multiplier will stay at zero once dropping

to it. As in the main model, this implies that any optimal design features a two-phase structure.

In the first phase, IC constraints are binding, and hence the recommendation policy is just

34This is trivially true as Z is countable.
35The proofs for them remain the same as before except that the role of (pt)

T
t=1 is now replaced by (zt)

T
t=1.
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picky enough for the consumers to follow; in the second phase, the IC constraints become

non-restrictive, and the optimal design follows the optimal continuation policy of the dictator.

While I cannot fully pin down the optimal design, the proposition below reveals an important

structure of it. Let ≥LR denote dominance in the likelihood-ratio order.

Proposition 1.A.1. Assume the consumer arrival rate ρ ∈ (0, 1).36 Any optimal policy is

almost surely equivalent to some policy ϕ∗ such that for all t: if Qz′ ≥LR Qz and
∫
θ θdQz′(θ) >∫

θ θdQz(θ), then ϕ
∗
t (z) > 0 ⇒ ϕ∗t (z

′) = 1.

Intuitively, the proposition roughly suggests that any optimal policy should be more inclined

to recommend the product when the current belief of quality is higher in the likelihood-ratio

order. This naturally extends the threshold structure of the optimal design in my main model

to the current setting, where the platform’s belief is in a multi-dimensional space endowed only

with a partial order.

Although the aforementioned property is intuitively appealing, it is actually violated by

many recommendation algorithms proposed in papers that only focus on the asymptotic perfor-

mance of the design. For example, the algorithm in Mansour et al. (2020) introduces randomized

exploration to fulfill the consumers’ IC constraints, which necessarily violates the property.37

My result suggests that modifying their algorithm to be more consistent with this property may

help to improve the algorithm’s finite-horizon performance. This may be an interesting topic

for future algorithm-oriented research.

1.B Proofs

1.B.1 Proof for Lemma 1.3.1

Proof. Property (P2) is implied by the law of iterated expectation; property (P4) is obvious

given Assumption 1.2.1(ii) (i.e., the signals are not completely uninformative); property (P5) is

directly implied by Assumption 1.2.1(i). I show (P1) and (P3) below.

Fix any i ≥ 1. Let S denote the signal realization space of si. Let fL(·) and fH(·) denote

si’s conditional density functions conditional on θ̃ = θL and θ̃ = θH respectively, with respect

36Although I conjecture that the result should also hold with ρ = 1, my current proof requires ρ < 1 to avoid
some technical subtly.

37The algorithm in Mansour et al. (2020) is not Markovian. Hence, more precisely, it is the randomized Markov
policy equivalent to their algorithm that does not satisfy the property.
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to some dominating measure m over S. Without loss of generality, we can choose m s.t. fL(s)

and fH(s) are not both equal to zero m-a.s. Since I assume no signal realization fully reveals

the value of θ̃ (i.e., Assumption 1.2.1(iii)), we also have fL(s) ̸= 0 ⇔ fH(s) ̸= 0 m-a.s. Thus

fL(s) and fH(s) are non-zero m-a.s. Define the log-likelihood ratio ℓi = log
(
fH(si)/fL(si)

)
,

and let JL and JH denote its distribution given θ̃ = θL and θ̃ = θH respectively.38

We have the following observation:

Claim (a). For any a, JH(a) =
∫
ℓ≤a e

ℓdJL(ℓ).

Proof for Claim (a). The following equalities hold:

∫
ℓ≤a

eℓdJL(ℓ)
1O
= E[1{ℓi≤a}e

ℓi |θ̃ = θL]
2O
= E

[
1{

log
fH (si)

fL(si)
≤a

} fH(si)

fL(si)

∣∣∣θ̃ = θL

]
3O
=

∫
1{

log
fH (s)

fL(s)
≤a

} fH(s)

fL(s)
fL(s)m(ds)

4O
=

∫
1{

log
fH (s)

fL(s)
≤a

}fH(s)m(ds)

5O
= E[1{ℓi≤a}|θ̃ = θH ]

6O
= JH(a)

where the first and the last equalities hold by the definitions of JL and JH respectively; the

second equality holds by the definition of ℓi; the third and the fifth equalities hold by the

definitions of fL and fH respectively; the fourth equality is a trivial identity. □

Now, given any prior belief p about θ̃ = θH , let p̃ denote the posterior belief given si. Then

by the Bayes rule we have: log p̃
1−p̃ = log p

1−p + ℓi. Let Pp denote the probability measure given

prior p. This then implies that

Pp(p̃ ≤ x) = Pp

(
ℓi ≤ log

x

1− x
− log

p

1− p

)
(1.11)

= pJH
(
log

x

1− x
− log

p

1− p

)
+ (1− p)JL

(
log

x

1− x
− log

p

1− p

)
(1.12)

=

∫
ℓ≤log x

1−x
−log p

1−p

[peℓ + (1− p)]dJL(ℓ) (1.13)

where the last equality holds by Claim (a) above. Now, pick any p∗ ∈ R and a sequence of

(pn)n → p∗. When expression (1.13) is continuous in x at x = x0 given p = p∗, obviously we

must have JL(ℓ) being continuous at ℓ = log x0
1−x0

− log p∗

1−p∗ , which further implies that the

expression (1.13) is continuous in p at p = p∗ given x = x0. Thus Pp∗(p̃ ≤ x) being continuous

38Such log-likelihood ratio representation of a signal has been previously used in Smith & Tian (2018).
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in x at x = x0 implies Ppn(p̃ ≤ x0) → Pp∗(p̃ ≤ x0) as n → ∞. Therefore, the distribution of p̃

given prior p is weakly continuous in p. This proves the weak continuity condition for G(·|p) in

(P1).

To check property (P3), we need the following observation:

Claim (b). For any a,
∫
ℓ≤a e

ℓdJL(ℓ) ≤
∫
ℓ≤a dJL(ℓ).

Proof for Claim (b). Notice by Claim (a) above, eℓdJL(ℓ) just equals to dJH(ℓ). We can thus

treat both eℓdJL(ℓ) and dJL(ℓ) as probability measures over R, with densities eℓ and 1 respec-

tively w.r.t. the dominating measure dJL(ℓ). Since e
ℓ is increasing in ℓ, we then have eℓdJL(ℓ)

dominating dJL(ℓ) in the likelihood-ratio order.39 This further implies dominance in first-order

stochastic dominance and thus
∫
ℓ≤a e

ℓdJL(ℓ) ≤
∫
ℓ≤a dJL(ℓ). □

Now, pick any pa and pb s.t. pa < pb, we have

∫
ℓ≤log x

1−x
−log

pb
1−pb

[pbe
ℓ + (1− pb)]dJL(ℓ) ≤

∫
ℓ≤log x

1−x
−log pa

1−pa

[pbe
ℓ + (1− pb)]dJL(ℓ)

≤
∫
ℓ≤log x

1−x
−log pa

1−pa

[pae
ℓ + (1− pa)]dJL(ℓ)

where the second inequality holds due to Claim (b). Together with equations (1.11)–(1.13), this

implies that Pp(p̃ ≤ x) is weakly decreasing in p for any x. Thus we have the property of (P3).

Q.E.D.

1.B.2 Proof for Proposition 1.3.1

Proof. The proof basically applies Lemma 1(iv) in Feinberg & Piunovskiy (2000) to my setting.

Specifically, define

V =
{
v ∈ RT+1 : ∃ϕ ∈ Φ s.t. vt = Eϕ[atu(pt)]∀t = 1, ...T and vT+1 =

T∑
t=1

Eϕ[atu(pt)]
}

Notice for each admissible policy ϕ, the first T arguments of the corresponding vector v are the

values of the IC constraints and the (T + 1)’th argument of v is just the total surplus in the

designer’s objective. Lemma 1(iv) in Feinberg & Piunovskiy (2000) implies that V is a compact

39See, e.g., section 1.4 in Müller & Stoyan (2002) for an introduction to such order.
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set. This further implies that the set V ∩ {v ∈ RT+1 : vt ≥ 0 ∀t = 1, ...T} is compact, and thus

when we maximize over its (T +1)’th dimension, the supremum is achievable. By the definition

of V, this is equivalent to that the designer’s problem has its supremum achieved by some ϕ.

Now, it suffices to check that the four conditions of Lemma 1 in Feinberg & Piunovskiy

(2000) are indeed satisfied in my setting. Condition 1 holds because my state space [0, 1] is

closed, and the set of feasible actions A = {0, 1} is finite and does not vary in time and state.

Conditions 2 and 4 hold because the flow payoffs in my setting are bounded and continuous in

the pair of action and state, and is non-zero for only finitely many periods. For Condition 3,

we just need to show the transition probability aG(·|p) + (1− a)D(·|p) is weakly-continuous in

(a, p) ∈ {0, 1}× [0, 1]. With {0, 1} endowed with the discrete topology, it suffices to check weak

continuity in p when a = 1 and a = 0 separately. These are respectively implied by the weak

continuity of G(·|p) (Property (P1) in Lemma 1.3.1) and D(·|p) in p.40

Q.E.D.

1.B.3 Proof for Lemma 1.3.2

Proof. To use the Lagrangian duality theorem, I first transform the designer’s problem into

a linear program. Throughout, I fix the initial belief state distribution µ1. Given any policy

ϕ ∈ Φ, let mϕ
t denote the distribution of (at, pt) under it.

41

Let M denote the set of all sequences of such distributions under some ϕ, i.e., M =

{(mϕ
t )

T
t=1 : ϕ ∈ Φ}. A (standard) characterization for this set is that (mt)

T
t=1 ∈ M if and

only if:

m1({0, 1} ×B) = µ1(B) (1.14)

mt+1({0, 1} ×B) =

∫
p∈[0,1]

∑
a∈{0,1}

[aG(B|p) + (1− a)D(B|p)]mt(a, dp) ∀t = 1, ..., T − 1 (1.15)

for any B ∈ B[0,1] (Borel σ-field of [0, 1]). I use M̂ to denote the set of (mt)
T
t=1 satisfying these

conditions. The fact that M ⊂ M̂ is obvious since any (mϕ
t )

T
t=1 must be consistent with µ1 and

40To see D(·|p) is weakly-continuous in p, notice its cdf is just 1{x≥p}. Given any sequence (pn)n → p∗, we
have 1{x≥pn} → 1{x≥p∗} for any x ̸= p∗. The weak-continuity is thus implied (see, e.g., Section 3.2 in Durrett
(2019) for conditions of weak-continuity).

41As is standard, we can construct the underlying measurable space for the process as ({0, 1}× [0, 1])T with the
Borel σ-field, and treat the corresponding random variables as identity mappings ({0, 1} × [0, 1])T → ({0, 1} ×
[0, 1])T . Thus we can treat any distribution for those random variables equivalently as a measure over the
underlying measurable space, which is typically how I interpret those distributions.
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the transition probabilities, and thus satisfies (1.14) and (1.15).

To see M̂ ⊂ M, pick any (m∗
t )

T
t=1 ∈ M̂. Let ϕ∗ be a (randomized) Markov policy such that

ϕ∗t is just the conditional probability mass function of at given pt under m
∗
t . Formally, for any

mt, treat mt(a, dp) (a = 1, 2) as a measure over [0, 1] s.t. mt(a,B) = mt({a} ×B), ∀B ∈ B[0,1].

Then ϕ∗ is defined as (an arbitrary version of) the Radon-Nikodym derivative ofm∗
t (1, dp) w.r.t.

m∗
t (0, dp)+m

∗
t (1, dp). (Notice m

∗
t (0, dp)+m

∗
t (1, dp) is just the marginal distribution of m∗

t over

[0, 1] and the Radon-Nikodym derivative is by definition measurable.) Then, we can show ϕ∗

implements (m∗
t )

T
t=1 by induction in t. Let mϕ∗

t denote the joint distribution of (at, pt) under

ϕ∗ for any t. For t = 1, we have for all B ∈ B[0,1]:

mϕ∗

1 ({1} ×B) =

∫
p∈B

ϕ∗1(p)µ1(dp) =

∫
p∈B

ϕ∗1(p)[m
∗
1(0, dp) +m∗

1(1, dp)]

=

∫
p∈B

m∗
1(1, dp) = m∗

1({1} ×B)

where the second equality holds by condition (1.14) and the third equality holds by the definition

of ϕ∗. Since mϕ∗

1 ({1} × B) +mϕ∗

1 ({0} × B) = µ1(B) = m∗
1({1} × B) +m∗

1({0} × B), we also

have mϕ∗

1 ({0} ×B) = m∗
1({0} ×B). Thus mϕ∗

1 = m∗
1.

Now, assume mϕ∗

t = m∗
t and consider the result for t+1. Because condition (1.15) holds for

m∗
t+1, we know that the marginal distribution over [0, 1] under m∗

t+1 given m∗
t is determined by

the same rule as that determines the marginal distribution over [0, 1] under mϕ∗

t+1 given mϕ∗

t .

Thus m∗
t = mϕ∗

t implies m∗
t+1({0, 1}×B) = mϕ∗

t+1({0, 1}×B), ∀B ∈ B[0,1]. This further implies:

mϕ∗

t+1({1} ×B) =

∫
p∈B

ϕ∗t+1(p)[m
ϕ∗

t+1(0, dp) +mϕ∗

t+1(1, dp)]

=

∫
p∈B

ϕ∗t+1(p)[m
∗
t+1(0, dp) +m∗

t+1(1, dp)] = m∗
t+1({1} ×B)

where the second equality holds because the two measures are equal as mentioned right above

and the third equality holds by the definition of ϕ∗. Together with m∗
t+1({0, 1} × B) =

mϕ∗

t+1({0, 1} ×B), this also implies mϕ∗

t+1({0} ×B) = m∗
t+1({0} ×B). Therefore, m∗

t+1 = mϕ∗

t+1.

This completes the induction proof for showing that m∗ is implemented with ϕ∗.
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The above discussion has shown M = M̂. We can thus rewrite the designer’s problem as

max
(mt)Tt=1∈M̂

{ T∑
t=1

[ ∫
p∈[0,1]

∑
a∈{0,1}

au(p)mt(a, dp)
]}

s.t.

∫
p∈[0,1]

∑
a∈{0,1}

au(p)mt(a, dp) ≥ 0 ∀t = 1, ..., T

Since conditions (1.14) and (1.15) are affine in (mt)
T
t=1, the set M̂ is a convex subset of{

signed Borel measures on {0, 1} × [0, 1]
}T

. The optimization above is thus a linear program

over this convex set M̂.

Let L̂((mt)
T
t=1;λ) :=

∑T
t=1(1 + λt)

[ ∫
p∈[0,1]

∑
a∈{0,1} au(p)mt(a, dp)

]
, i.e., the Lagrangian

function associated to the linear program. Since u(·) is bounded by Lemma 1.3.1 and T < ∞,

the optimal value w∗ is finite. Standard Lagrangian duality (e.g., Theorem 1 in Section 8.6 of

Luenberger (1997)) then implies:42

w∗ = min
λ∈RT

+

sup
(mt)Tt=1∈M̂

L̂((mt)
T
t=1;λ)

where the minimum is achieved by some non-negative λ∗. Given any such λ∗, (m∗
t )

T
t=1 ∈ M̂

solves the linear program if and only if:

(i) (m∗
t )

T
t=1 ∈ argmax

(mt)Tt=1∈M̂
L̂((mt)

T
t=1;λ

∗)

(ii) λ∗t
∫
p∈[0,1]

∑
a∈{0,1} au(p)m

∗
t (a, dp) = 0, ∀t = 1, ..., T

(iii)
∫
p∈[0,1]

∑
a∈{0,1} au(p)m

∗
t (a, dp) ≥ 0, ∀t = 1, ..., T

To check the corresponding Slater’s condition, notice by properties (P2) and (P5) in Lemma 1.3.1,

the consumer’s surplus will be strictly positive at all t under the myopically optimal policy, and

thus all IC constraints can hold strictly.

Finally, notice M = M̂ just means that (mt)
T
t=1 ∈ M̂ if and only if it is induced by some

ϕ ∈ Φ. Thus the above results are equivalent to the statements in the lemma. Q.E.D.

42Theorem 1 in Section 8.6 of Luenberger (1997) does not directly state the sufficiency of conditions (i)
– (iii) for optimality. However, this is obvious as those conditions together imply (m∗

t )
T
t=1 is feasible and∑T

t=1

[ ∫
p∈[0,1]

∑
a∈{0,1} au(p)m

∗
t (a, dp)

]
=

∑T
t=1(1 + λt)

[ ∫
p∈[0,1]

∑
a∈{0,1} au(p)m

∗
t (a, dp)

]
= w∗.
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1.B.4 Analyses and Proofs for Section 1.3.3

Preliminaries

Towards using the duality result, I start with examining the Lagrangian function optimization

maxϕ∈Φ L(ϕ;λ) given any generic multiplier λ ∈ RT
+. For this unconstrained Markov decision

problem, let Vλ(·, t) be the value function at time t, which is inductively defined with the

Bellman equation:

Vλ(·, T + 1) ≡ 0 (1.16)

Vλ(p, t) = max
{
(1 + λt)u(p) +

∫
p′
Vλ(p

′, t+ 1)G(dp′|p), Vλ(p, t+ 1)
}
∀t = 1, ..., T (1.17)

where the two arguments in the maximization correspond to the values with and without time-t

consumption of the product respectively. I define Hλ(p, t) to be the difference between these

two values, i.e.,

Hλ(p, t) := (1 + λt)u(p) +

∫
p′
Vλ(p

′, t+ 1)G(dp′|p)− Vλ(p, t+ 1) ∀t = 1, ..., T (1.18)

Intuitively, Vλ(p, t) is the continuation value for the Lagrangian optimization at time t given

pt = p; Hλ(p, t) measures the net benefit from inducing the time-t consumption of the product

given pt = p. A preliminary result needed later is that Hλ(·, t) is continuous.

Lemma 1.B.1. Hλ(·, t) is continuous for any t.

Proof. Since u(·) is continuous by definition, we just need to show Vλ(p, t+1) and
∫
p′ Vλ(p

′, t+

1)G(dp′|p) are continuous in p. When t = T , these hold by the definition of Vλ(·, T +1). Given

that they hold for time t, by the Bellman equation we know Vλ(p, t) is also continuous in p.

Furthermore, because G(dp′|p) is weakly continuous in p and Vλ(p, t) is bounded due to the

boundedness of u(·), this also implies the continuity of
∫
p′ Vλ(p

′, t)G(dp′|p) in p.43 The proof is

thus completed by (backward) induction in t. Q.E.D.

We have the standard dynamic programming result:

Lemma 1.B.2. Given any multiplier λ and initial belief state distribution µ1, we have:

43Pick any (pn)n → p∗, the weak continuity implies G(dp′|pn)
w→ G(dp′|p∗), which further implies∫

f(p′)G(dp′|pn) →
∫
f(p′)G(dp′|p∗) for any bounded and continuous function f .
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(a) maxϕ∈Φ L(ϕ;λ) =
∫
p Vλ(p, 1)µ1(dp);

(b) A policy ϕλ ∈ argmaxϕ∈Φ L(ϕ;λ) if and only if Hλ(pt, t) > 0 ⇒ at = 1 and Hλ(pt, t) <

0 ⇒ at = 0 almost surely under it.

Proof. Pick any ϕ ∈ Φ. Notice that by the definition of Vλ, we have

Vλ(pt, t) ≥ ϕt(pt)
[
(1 + λt)u(pt) +

∫
p′
Vλ(p

′, t+ 1)G(dp′|pt)
]
+
(
1− ϕt(pt)

)
Vλ(pt, t+ 1)

a.s.
= Eϕ[(1 + λt)atu(pt)|pt] + Eϕ[Vλ(pt+1, t+ 1)|pt] (1.19)

where the inequality holds as equality if and only if Hλ(pt, t) > 0 ⇒ ϕt(pt) = 1 and Hλ(pt, t) <

0 ⇒ ϕt(pt) = 0.

Using this repeatedly, we have:

∫
p
Vλ(p, 1)µ1(dp) = Eϕ[Vλ(p1, 1)] ≥ Eϕ[(1 + λ1)a1u(p1)] + Eϕ[Vλ(p2, 2)]

≥ Eϕ[(1 + λ1)a1u(p1)] + Eϕ[(1 + λ2)a2u(p2)] + Eϕ[Vλ(p3, 3)]

... ≥ Eϕ[(1 + λ1)a1u(p1)] + ...+ Eϕ[(1 + λT )aTu(pT )] + Eϕ[Vλ(pT+1, T + 1)]︸ ︷︷ ︸
=0

Notice the last line is just L(ϕ;λ). This shows
∫
p Vλ(p, 1)µ1(dp) ≥ supϕ∈Φ L(ϕ;λ). Moreover,

notice that all these inequalities hold as equalities if and only if the inequality in (1.19) holds as

equality for all t almost surely under ϕ. As is mentioned earlier, this is equivalent to Hλ(pt, t) >

0 ⇒ ϕt(pt) = 1 and Hλ(pt, t) < 0 ⇒ ϕt(pt) = 0 almost surely under ϕ. If there is indeed a

measurable ϕ satisfying these properties, then we have
∫
p Vλ(p, 1)µ1(dp) = supϕ∈Φ L(ϕ;λ), the

supremum is achieved by such policy, and any other admissible policy is optimal if and only if

it also satisfies these properties. Therefore, to prove the lemma, it now suffices to show that

there is indeed a measurable policy satisfying Hλ(pt, t) > 0 ⇒ ϕt(pt) = 1 and Hλ(pt, t) < 0 ⇒

ϕt(pt) = 0 almost surely. We can construct such policy by defining ϕt(p) = 1{Hλ(p,t)≥0}, where

1 is the indicator function. It is indeed measurable since Hλ(·, t) is continuous by Lemma 1.B.1.

Q.E.D.

I now provide some basic properties for the value function Vλ.

Lemma 1.B.3. Given any λ ∈ RT
+, we have: (a) Vλ(p, t) is (weakly) increasing in p; (b)∫

p′ Vλ(p
′, t)G(dp′|p) ≥ Vλ(p, t) for any pair of (p, t).
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Proof. The results can be shown by backward induction in t using the Bellman equation. Since

Vλ(·, T + 1) ≡ 0, both properties hold trivially for t = T + 1.

Now, assume property (a) holds for Vλ(·, t+1). Then property (P3) in Lemma 1.3.1 implies

that
∫
p′ Vλ(p

′, t+1)G(dp′|p) increases in p. Together with the monotonicity of u(·) and the fact

that λt ≥ 0, we know the RHS of the Bellman equation (1.17) is increasing in p. This shows

property (a) also holds for Vλ(·, t) and concludes the proof for part (a).

For property (b), assume it holds for all periods later than t and I show
∫
p′ Vλ(p

′, t)G(dp′|p) ≥

Vλ(p, t). Substituting the Bellman equation in, we know this is equivalent to:

∫
p′
max

{
(1 + λt)u(p

′) +

∫
p′′
Vλ(p

′′, t+ 1)G(dp′′|p′), Vλ(p′, t+ 1)
}
G(dp′|p)

≥ max
{
(1 + λt)u(p) +

∫
p′
Vλ(p

′, t+ 1)G(dp′|p), Vλ(p, t+ 1)
}

It then suffices to check:

∫
p′

(
(1 + λt)u(p

′) +

∫
p′′
Vλ(p

′′, t+ 1)G(dp′′|p′)
)
G(dp′|p)

≥ (1 + λt)u(p) +

∫
p′
Vλ(p

′, t+ 1)G(dp′|p)

and

∫
p′
Vλ(p

′, t+ 1)G(dp′|p) ≥ Vλ(p, t+ 1)

The second of these inequalities is directly implied by the induction hypothesis. To check the

first one, notice by property (P2) in Lemma 1.3.1, we have
∫
p′(1+λt)u(p

′)G(dp′|p) = (1+λt)u(p).

Moreover, by the induction hypothesis we have
∫
p′′ Vλ(p

′′, t+1)G(dp′′|p′) ≥ Vλ(p
′, t+1) for any

p′, and thus
∫
p′

∫
p′′ Vλ(p

′′, t + 1)G(dp′′|p′)G(dp′|p) ≥
∫
p′ Vλ(p

′, t + 1)G(dp′|p). These together

imply the first inequality above. Thus property (b) holds for period t. This completes the proof

by induction.

Q.E.D.

Proof for Lemma 1.3.3

Proof. Pick any λ′ ∈ RT
+ such that λ′τ < λ′τ+1 for some τ . Define λ′′ to be equal to λ′ except

for terms of time τ and τ + 1, which are defined as: λ′′τ = λ′τ+1 and λ′′τ+1 = λ′τ . The key to the

proof is the following observation:

Claim. Let λ′ and λ′′ be defined as above. Then supϕ∈Φ L(ϕ;λ′) ≥ supϕ∈Φ L(ϕ;λ′′).
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Proof for the Claim. Since λ′ and λ′′ agree for t < τ , any policy will lead to the same flow payoffs

for periods before τ for both L(ϕ;λ′) and L(ϕ;λ′′). It thus suffices to show Vλ′(p, τ) ≥ Vλ′′(p, τ)

given any p.

Since λ′ and λ′′ also agree for t ≥ τ + 2, we have Vλ′(·, τ + 2) = Vλ′′(·, τ + 2). I can thus let

V∗(·, τ + 2) to denote both of them, i.e., V∗(·, τ + 2) := Vλ′(·, τ + 2) (= Vλ′′(·, τ + 2)). Also let

(y1, y2) := (λ′τ , λ
′
τ+1). Then y1 < y2 and (λ′′τ , λ

′′
τ+1) = (y2, y1). By the Bellman equation (1.17),

we have:

Vλ′′(p, τ) = max
{
(1 + y2)u(p) +

∫
p′
Vλ′′(p′, τ + 1)G(dp′|p), Vλ′′(p, τ + 1)

}
(1.20)

Consider the following two cases:

� Case 1: the maximum in equation (1.20) is achieved with aτ = 0 (i.e., no consumption).

In this case, we have:

Vλ′′(p, τ) =Vλ′′(p, τ + 1)

=max
{
(1 + y1)u(p) +

∫
p′
V∗(p

′, τ + 2)G(dp′|p), V∗(p, τ + 2)
}

≤max
{
(1 + y1)u(p) +

∫
p′
Vλ′(p′, τ + 1)G(dp′|p), Vλ′(p, τ + 1)

}
=Vλ′(p, τ)

where the second equality holds by the Bellman equation for Vλ′′(p, τ + 1); the inequality

holds because the Bellman equation for Vλ′(p, τ + 1) implies that V∗(p, τ + 2) ≤ Vλ′(p, τ + 1)

for any p; the last equality is just the Bellman equation for Vλ′(p, τ).

� Case 2: the maximum in equation (1.20) is achieved with aτ = 1.

In this case, we have:

Vλ′′(p, τ) =(1 + y2)u(p) +

∫
p′
Vλ′′(p′, τ + 1)G(dp′|p) (1.21)

≤(1 + y1)u(p) +

∫
p′

[
(y2 − y1)u(p

′) + Vλ′′(p′, τ + 1)︸ ︷︷ ︸
=:M(p′)

]
G(dp′|p) (1.22)

where the inequality holds because y2 > y1 and u(p) =
∫
p′ u(p

′)G(dp′|p) by property (P2)

in Lemma 1.3.1. Using the Bellman equation for Vλ′′(p′, τ + 1), we know the term M(p′)
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satisfies:

M(p′) =(y2 − y1)u(p
′) + max

{
(1 + y1)u(p

′) +

∫
p′′
V∗(p

′′, τ + 2)G(dp′′|p′), V∗(p′, τ + 2)
}

=max
{
(1 + y2)u(p

′) +

∫
p′′
V∗(p

′′, τ + 2)G(dp′′|p′), V∗(p′, τ + 2) + (y2 − y1)u(p
′)
}

(1.23)

Now, consider properties of M(p′) in two different scenarios about p′:

– Scenario 1: u(p′) > 0.

Notice Lemma 1.B.3(b) implies
∫
p′′ V∗(p

′′, τ+2)G(dp′′|p′) ≥ V∗(p
′, τ+2). When u(p′) > 0,

we thus have (1 + y2)u(p
′) +

∫
p′′ V∗(p

′′, τ + 2)G(dp′′|p′) ≥ V∗(p
′, τ + 2) + (y2 − y1)u(p

′).

Therefore, (1.23) implies:

M(p′) = (1 + y2)u(p
′) +

∫
p′′
V∗(p

′′, τ + 2)G(dp′′|p′)

= max
{
(1 + y2)u(p

′) +

∫
p′′
V∗(p

′′, τ + 2)G(dp′′|p′), V∗(p′, τ + 2)
}

= Vλ′(p′, τ + 1)

where the second equality holds since the first argument in the bracket is larger when∫
p′′ V∗(p

′′, τ + 2)G(dp′′|p′) ≥ V∗(p
′, τ + 2) and u(p′) > 0.

– Scenario 2: u(p′) ≤ 0.

In this case, we have (y2 − y1)u(p
′) ≤ 0. (1.23) thus implies:

M(p′) ≤max
{
(1 + y2)u(p

′) +

∫
p′′
V∗(p

′′, τ + 2)G(dp′′|p′), V∗(p′, τ + 2)
}

= Vλ′(p′, τ + 1)

where the equality holds by the Bellman equation.

In both scenarios, we always have M(p′) ≤ Vλ′(p′, τ + 1). Together with inequality (1.22),

this implies that Vλ′′(p, τ) ≤ (1 + y1)u(p) +
∫
p′ Vλ′(p′, τ + 1)G(dp′|p) ≤ Vλ′(p, τ), where the

second inequality is due to the Bellman equation for Vλ′(p, τ).

In sum, Vλ′′(p, τ) ≤ Vλ′(p, τ) in both cases, which completes the proof for the claim.

□
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I now go back to the main proof for Lemma 1.3.3. Pick any λ0 ∈ argminλ∈RT
+
supϕ∈Φ L(ϕ;λ)

(whose existence is guaranteed by Lemma 1.3.2). If λ0t is already non-increasing in t, we are

done; if λ0t < λ0t+1 for some t, then the claim above implies that by interchanging terms λ0t and

λ0t+1, we will get a new multiplier still in argminλ∈RT
+
supϕ∈Φ L(ϕ;λ). By repeatedly making

such interchanges, we can then derive a multiplier λ∗ ∈ argminλ∈RT
+
supϕ∈Φ L(ϕ;λ) such that

λ∗t ≥ λ∗t+1, ∀t.44

Q.E.D.

Properties of Hλ

Next, I provide some properties of Hλ, which are key to the proof for Lemma 1.3.4.

Lemma 1.B.4. Hλ satisfies the following properties:

(a) p > p̄⇒ Hλ(p, t) > 0, ∀t;

(b) If λt is non-increasing in t, then Hλ(p, t) is (weakly) increasing in p for any t;

(c) If λt is non-increasing in t, then for any x, y s.t. x < y and Hλ(y, t) ≤ 0, we have

Hλ(x, t) < Hλ(y, t) (thus Hλ(·, t) = 0 has at most one root);

(d) If λt = λt+1, then Hλ(p, t) ≤ 0 ⇒ Hλ(p, t+ 1) < 0.

Proof. Part (a): Because
∫
p′ Vλ(p

′, t+1)G(dp′|p)−Vλ(p, t+1) ≥ 0 according to Lemma 1.B.3,

part (a) is directly implied by the definition of Hλ.

Part (b): I prove (b) by backward induction in t. By definition, Hλ(p, T ) = (1 + λT )u(p) is

strictly increasing in p and thus the monotonicity property holds for Hλ(p, T ). Now, assuming

44More specifically, starting with n = 0, we can run the following algorithm:
1. Let τn = inf{t : λn

t < λn
t+1}. If τn = +∞, end the algorithm and out-put λn; otherwise, go to the next

step.
2. Let s = max

{
0, sup{t < τn : λn

t ≥ λn
τn+1}

}
and define

λn+1
t =


λn
τn+1 if t = s+ 1;

λn
t−1 if t = s+ 2, ..., τn + 1;

λn
t elsewhere

Then, repeat the procedures with n replaced by n+ 1.
Intuitively, in step 2 of the algorithm we advance the first term in λn greater than its predecessor to an earlier
position such that the first τn+1 terms will be in descending order. It is then easy to see that this algorithm will
end in finite time and the vector it delivers will be non-increasing over t. Moreover, to derive λn+1 from λn in
step 2, one can just interchange the (τn +1)’th term with the τn’th term, then interchange the (new) τn’th term
with the (τn − 1)’th term,..., and finally interchange the (new) (s+ 2)’th term with the (s+ 1)’th term. In each
of these steps, we interchange two adjacent terms with the latter greater than the former. By the claim proved
above, this keeps each of the (intermediate) vector within argminλ∈RT

+
supϕ∈Φ L(ϕ;λ). Thus the multiplier we

derive in the end remains in argminλ∈RT
+
supϕ∈Φ L(ϕ;λ). This completes the proof.
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it holds for Hλ(p, t+ 1), I show it also holds for Hλ(p, t). Notice the following equations hold:

Hλ(p, t) =(1 + λt)u(p) +

∫
p′
Vλ(p

′, t+ 1)G(dp′|p)− Vλ(p, t+ 1)

=(1 + λt)u(p) +

∫
p′

(
max{Hλ(p

′, t+ 1), 0}+ Vλ(p
′, t+ 2)

)
G(dp′|p)

−
(
max{Hλ(p, t+ 1), 0}+ Vλ(p, t+ 2)

)
=(1 + λt)u(p) +

∫
p′
Vλ(p

′, t+ 2)G(dp′|p)− Vλ(p, t+ 2)

+

∫
p′
max{Hλ(p

′, t+ 1), 0}G(dp′|p)−max{Hλ(p, t+ 1), 0}

=(1 + λt)u(p)− (1 + λt+1)u(p) +Hλ(p, t+ 1)

+

∫
p′
max{Hλ(p

′, t+ 1), 0}G(dp′|p)−max{Hλ(p, t+ 1), 0}

=(λt − λt+1)u(p) + min{Hλ(p, t+ 1), 0}+
∫
p′
max{Hλ(p

′, t+ 1), 0}G(dp′|p) (1.24)

where the second equality is because Vλ(p, t+1) = max{Hλ(p, t+1), 0}+Vλ(p, t+2) according

to the Bellman equation (1.17); the first and the fourth equalities are directly implied by the

definition of Hλ; the other two are just trivial identities. Recall that: λt ≥ λt+1 by assumption;

Hλ(p, t+1) weakly increases in p by the induction hypothesis; and G(·|p) increases in first-order

stochastic dominance in p by property (P3) of Lemma 1.3.1. These imply that all of the three

terms in the last expression are (weakly) increasing in p. Thus Hλ(p, t) is (weakly) increasing

in p. This completes the proof for (b).

Part (c): I still prove by induction. The result holds obviously for Hλ(p, T ) = (1 + λT )u(p).

Now, assuming it holds for period t + 1, I show it also holds for period t. In particular, with

any x < y in [0, 1], we want to show Hλ(y, t) ≤ 0 ⇒ Hλ(x, t) < Hλ(y, t). Given result (b)

and equation (1.24) derived above, Hλ(x, t) < Hλ(y, t) obviously holds when λt > λt+1, since

u(p) = θHp+ θL(1− p) is strictly increasing in p. It thus suffices to assume λt = λt+1. In this

case, I have the following observation:

Claim. If λt = λt+1 and Hλ(y, t) ≤ 0, then Hλ(y, t+ 1) ≤ 0.

Proof for the claim. Given λt = λt+1 and Hλ(y, t) ≤ 0, suppose Hλ(y, t+1) > 0. Then equation

(1.24) implies that
∫
p′ max{Hλ(p

′, t + 1), 0}G(dp′|y) = Hλ(y, t) ≤ 0. However, by the law of

iterated expectation condition on the belief process (property (P2) in Lemma 1.3.1), we must

have G
(
[y, 1]|y

)
> 0. Moreover, by the monotonicity of Hλ(·, t+1) proved in part (b), we know
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Hλ(p
′, t + 1) ≥ Hλ(y, t + 1) for any p′ ≥ y. Together with the hypothesis Hλ(y, t + 1) > 0,

these then imply
∫
p′ max{Hλ(p

′, t + 1), 0}G(dp′|y) > 0, which contradicts with the previous

conclusion. Thus we must have Hλ(y, t+ 1) ≤ 0. □

Now, go back to the main proof for part (c). Notice when λt = λt+1 and Hλ(y, t) ≤ 0, the

following holds:

Hλ(y, t) = min{Hλ(y, t+ 1), 0}+
∫
p′
max{Hλ(p

′, t+ 1), 0}G(dp′|y)

= Hλ(y, t+ 1) +

∫
p′
max{Hλ(p

′, t+ 1), 0}G(dp′|y)

> Hλ(x, t+ 1) +

∫
p′
max{Hλ(p

′, t+ 1), 0}G(dp′|x) = Hλ(x, t)

The first equality is just by equation (1.24) with λt = λt+1. The second equality holds because

the claim proved above implies Hλ(y, t+1) ≤ 0. The strict inequality holds because: Hλ(y, t+

1) ≤ 0 further implies Hλ(x, t + 1) < Hλ(y, t + 1) by the induction hypothesis; G(·|y) first

order stochastic dominates G(·|x); and Hλ(·, t+ 1) is increasing by part (b). The last equality

holds also by equation (1.24) and the fact that Hλ(x, t + 1) < 0. This completes the proof by

induction.

Part (d): Suppose λt = λt+1, Hλ(p, t) ≤ 0, but Hλ(p, t+ 1) ≥ 0. Equation 1.24 would imply

Hλ(p, t) =

∫
p′
max{Hλ(p

′, t+ 1), 0}G(dp′|p)

I now argue that the RHS above must be strictly positive. Notice Hλ(p, t) ≤ 0 obviously imply

p < 1. Property (P4) in Lemma 1.3.1 then implies that G((p, 1]|p) > 0. Moreover, since

Hλ(p, t+ 1) ≥ 0, parts (b) and (c) proved earlier imply Hλ(p
′, t+ 1) > 0 for any p′ > p. These

together imply
∫
p′ max{Hλ(p

′, t + 1), 0}G(dp′|p) > 0. This contradicts with Hλ(p, t) ≤ 0 given

the equation above. Thus the result in part (d) holds.

Q.E.D.

Proof for Lemma 1.3.4

The proof for Lemma 1.3.4 easily follows from Lemma 1.B.4.

Proof. For each t, I construct the threshold ηt as follows:
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� Case 1: {p : Hλ(p, t) = 0} = ∅.

In this case, define ηt = inf{p : Hλ(p, t) > 0}.

� Case 2: {p : Hλ(p, t) = 0} ≠ ∅.

In this case, Lemma 1.B.4(c) implies that {p : Hλ(p, t) = 0} contains a single element.

Define ηt to be this element.

By the monotonicity property of Hλ(·, t) in Lemma 1.B.4(b), in both cases we have pt > ηt ⇒

Hλ(pt, t) > 0 and pt < ηt ⇒ Hλ(pt, t) < 0. Together with Lemma 1.B.2(b), this implies that

under any solution to maxϕ∈Φ L(ϕ;λ), we have pt > ηt ⇒ at = 1 a.s. and pt < ηt ⇒ at = 0

a.s. Hence any solution is almost surely equivalent to a threshold policy with thresholds being

(ηt)
T
t=1.

Moreover, notice Lemma 1.B.4(a) implies u(pt) > 0 ⇒ Hλ(pt, t) > 0. Together with

Lemma 1.B.2(b), this then implies u(pt) > 0 ⇒ at = 1 a.s. under any optimal solution to

maxϕ∈Φ L(ϕ;λ).

Q.E.D.

1.B.5 Proofs for Section 1.3.4

Definition of ϕd

As is mentioned in the main text, I define ϕd as the “most conservative” optimal policy for the

dictator’s problem. Formally, for any t = 1, ..., T :

ϕdt (p) :=


1 if H0(p, t) > 0;

0 otherwise

(1.25)

where H0 is as defined in (1.18) in Appendix 1.B.4 with λ = 0. By Lemma 1.B.2, it is easy

to see that we not only have ϕd being optimal for the dictator’s problem, but also have ϕd≥t to

be optimal for the dictator’s continuation problem starting from time t regardless of the belief

distribution at t. Moreover, ϕd (or ϕd≥t) is conservative in the sense that it breaks any tie in

favor of non-recommendation (i.e., H0(p, t) = 0 ⇒ ϕdt (p) = 0). This makes it most favorable to

the current consumer among all dictator’s optimal (continuation) policies.
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Details in the Construction of ϕo and a Uniqueness Property

I first construct a threshold time-t policy ϕot satisfying the requirements in step 2 of the algorithm

in Definition 1.3.2. Given µot , define the policy’s threshold as

ηot = inf{x ∈ [0, 1] :

∫
p>x

u(p)µot (dp) > 0}

and define the recommendation probability at the threshold as

ϕot (η
o
t ) = −

∫
p>ηot

u(p)µot (dp)

u(ηot )µ
o
t ({ηot })

When the denominator above is zero, I define ϕot (η
o
t ) = 0 for simplicity. Now, I check the ϕot

such defined indeed satisfies the desired properties.

Claim. ϕot above is well-defined and satisfies the properties in step 2 of the algorithm.

Proof. First notice properties (P2) and (P5) in Lemma 1.3.1 together imply µot ((p̄, 1]) > 0 and

thus
∫
p>p̄ u(p)µ

o
t (dp) > 0. This implies ηot ≤ p̄ and thus the first property is satisfied.

Now, I argue that
∫
p>ηot

u(p)µot (dp) ≥ 0. To see this, notice by the definition of ηot , there

exists a sequence {xn} ↓ ηot such that
∫
p>xn

u(p)µot (dp) > 0 for all n. Since 1{p>xn} → 1{p>ηot }

and u(·) is bounded, we must have
∫
p>ηot

u(p)µot (dp) ≥ 0 by the dominated convergence theorem.

Next, I argue that
∫
p≥ηot

u(p)µot (dp) ≤ 0. As the algorithm has not been ended in step 1,

we must have
∫
p∈[0,1] u(p)µ

o
t (dp) < 0.45 Thus the argument is true when ηot = 0. When ηot > 0,

notice by the definition of ηot , there exists a sequence {xn} ↑ ηot such that
∫
p>xn

u(p)µot (dp) ≤ 0

for all n. Since 1{p>xn} → 1{p≥ηot }, by the dominated convergence theorem we then must have∫
p≥ηot

u(p)µot (dp) ≤ 0.

Now, consider two cases:

� Case 1: µot ({ηot }) = 0. In this case, the above arguments imply
∫
p>ηot

u(p)µot (dp) = 0.

Therefore the second property is satisfied.

� Case 2: µot ({ηot }) > 0. In this case, the above arguments imply
∫
p>ηot

u(p)µot (dp) ≥ 0 and∫
p>ηot

u(p)µot (dp) + u(ηot )µ
o
t ({ηot }) ≤ 0. These imply 0 ≥

∫
p>ηot

u(p)µo
t (dp)

u(ηot )µ
o
t ({ηot })

≥ −1 whenever

u(ηot )µ
o
t ({ηot }) ̸= 0. Thus ϕot (η

o
t ) defined above is a valid probability. By the definition of

ϕot (η
o
t ), we have

∫
p ϕ

o
t (p)u(p)µ

o
t (dp) =

∫
p>ηot

u(p)µot (dp) + ϕot (η
o
t )u(η

o
t )µ

o
t ({ηot }) = 0. Thus

45Notice ϕd
t (p) = 1 for any p > p̄ by the definition of ϕd and Lemma 1.B.4(a).
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ϕot satisfies the second desired property.

Q.E.D.

Due to the possible existence of off-path belief states, there can also be other forms of ϕt

satisfying the desired properties in step 2 of the algorithm. However, the following lemma

implies that any such policy must µot -a.e. agree with ϕot .

Lemma 1.B.5. Given any probability measure µ over [0, 1] such that µ((p̄, 1]) > 0,46 any

threshold time-t policies satisfying p > p̄⇒ ϕt(p) = 1 (µ-a.e. ) and
∫
p ϕt(p)u(p)µ(dp) = 0 must

agree µ-a.e.

Proof. For i = 1, 2, let ϕit be a threshold time-t policy with threshold ηit, which satisfies∫
p ϕ

i
t(p)u(p)µ(dp) = 0 and p > p̄ ⇒ ϕit(p) = 1 (µ-a.e. ). Without loss of generality, assume

η1 ≤ η2. Notice under the assumption µ((p̄, 1]) > 0,
∫
p ϕ

i
t(p)u(p)µ(dp) = 0 implies that we must

have ϕit(p) > 0 for some p with u(p) < 0. Thus the threshold structure implies ϕit(p) = 1 for all

p such that u(p) ≥ 0, which holds for both i = 1, 2. Now, notice we have:

0 =

∫
p
ϕ1t (p)u(p)µ(dp)−

∫
p
ϕ2t (p)u(p)µ(dp) =

∫
p:u(p)<0

(
ϕ1t (p)− ϕ2t (p)

)
u(p)µ(dp)

If η1 < η2, then ϕ1t (p) ≥ ϕ2t (p) for all p because of the threshold structure. Supposing the

policies do not agree µ-a.e. , which can only happen when u(p) < 0, then ϕ1t (p) > ϕ2t (p) for a

positive µ-measure set of p with u(p) < 0. This implies that the last expression above is strictly

negative, which is a contradiction.

If η1 = η2 =: η, then the two policies can only differ at p = η with u(η) < 0. Supposing

they do not agree µ-a.e, we must have µ({η}) > 0 and ϕ1t (η) ̸= ϕ2t (η). These imply that the

last expression above equals to [ϕ1t (η) − ϕ2t (η)]u(η)µ({η}) ̸= 0, which is a contradiction. Thus

the policies must agree µ-a.e. Q.E.D.

Proof for Proposition 1.3.2 and Related Results

We need to first prove some properties of ϕd.

Lemma 1.B.6. Set {p : ϕdt (p) = 1} shrinks in set inclusion order as t increases.

46Notice properties (P2) and (P5) in Lemma 1.3.1 together imply that this holds for time-t belief distribution
µt under any policy.
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Proof. Since by construction ϕdt (p) = 1 if and only if H0(p, t) > 0, the result is directly implied

by Lemma 1.B.4(d) in Section 1.B.4. Q.E.D.

This observation leads to the following result:

Lemma 1.B.7. Given any time-t belief µt, we have
∫
p ϕ

d
t (p)u(p)µt(dp) ≤

∫
p ϕ

d
t+1(p)u(p)µt+1(dp),

where µt+1 is the period t + 1 belief distribution under ϕdt given µt. (That is, the consumer’s

expected payoff is weakly higher in period t+ 1 than in period t under ϕd.)

Proof. The result is proved by the following arguments:

∫
p′
ϕdt (p

′)u(p′)µt(dp
′)

=

∫
p

∫
p′
u(p′)ϕdt+1(p

′)[ϕdt (p)G(dp
′|p) + (1− ϕdt (p))D(dp′|p)]µt(dp)

=

∫
p

∫
p′
u(p′)ϕdt+1(p

′)G(dp′|p)ϕdt (p)µt(dp) ≥
∫
p
u(p)ϕdt (p)µt(dp)

The first equality holds by the transition rule for p. The second equality holds because

ϕdt (p) = 0 ⇒ ϕdt+1(p) = 0 by Lemma 1.B.6, and thus
∫
p′ u(p

′)ϕdt+1(p
′)(1 − ϕdt (p))D(dp′|p) =

u(p)ϕdt+1(p)(1− ϕdt (p)) = 0. The last inequality holds because∫
p′ u(p

′)ϕdt+1(p
′)G(dp′|p) ≥

∫
p′ u(p

′)G(dp′|p) = u(p), where the “≥” is due to u(p′) > 0 ⇒

ϕdt+1(p
′) = 1 and the “=” is implied by property (P2) in Lemma 1.3.1.

Q.E.D.

To ease notation, let ICt denote the IC constraint for time-t consumer. Repeated use of

Lemma 1.B.7 implies that given any µt, if ϕ
d
≥t satisfies ICt, then it satisfies all later IC’s. We

are now ready to prove the proposition.

Proof for Proposition 1.3.2. First consider the “only if” part. Let ϕopt be any optimal

policy for the designer and let µoptt be the distribution of pt under it for any t. Due to Corollary

1.3.1, I can assume ϕopt is a threshold policy without loss of generality. Let λ∗ be a Lagrangian

multiplier solving the dual problem that is non-increasing over t (which exists by Lemma 1.3.3).

I first check condition (i):

Claim (a). ϕopt
<t̂

agrees with ϕo
<t̂

a.s.

Proof for Claim (a). I check by forward induction in t for t < t̂. For t = 1, t < t̂ implies that ϕd1

violates IC1 given the initial state distribution µ1. In this case, we must have λ∗1 > 0 and thus
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IC1 is binding under ϕopt. (Suppose not. Then λ∗t = 0 for all t ≥ 1 since it is non-increasing in

t, and thus the Lagrangian problem maxL(ϕ;λ∗) would coincide with the dictator’s problem.

By Lemma 1.3.2, this implies that ϕopt must also solve the dictator’s problem. However, by

construction ϕd provides the highest time-1 expected consumer surplus given µ1 among all

optimal policies for the dictator’s problem. Thus when ϕd1 violates IC1, so does ϕopt1 , which is a

contradiction.) Also notice the optimality of ϕopt implies p > p̄ ⇒ ϕopt1 (p) = 1 (µ1-a.e. ). Thus

ϕopt1 satisfies the properties of ϕo1 in step 2 of the algorithm. By Lemma 1.B.5, we then must

have ϕopt1 and ϕo1 agree µ1-a.e.

Now, assume ϕopt and ϕo agree a.s. for all periods before t and t < t̂. Then, they induce the

same distribution for pt, which is just µot constructed in the algorithm. I want to show ϕopt must

also satisfy p > p̄ ⇒ ϕoptt (p) = 1 µot -a.s. and
∫
p ϕ

opt
t (p)u(p)µot (dp) = 0. The former is directly

implied by the optimality of ϕopt. For the latter, notice t < t̂ implies that ϕd violates ICt given

pt ∼ µot . We then must have λ∗t > 0 and thus ICt is binding under ϕopt. (Suppose not. Then

λ∗t′ = 0 for all t′ ≥ t, and thus the continuation Lagrangian problem starting with time t coincides

with the corresponding dictator’s continuation problem. The optimality of ϕopt then implies

that ϕopt≥t must be optimal for this dictator’s continuation problem given pt ∼ µot . However,

among all such policies, ϕd≥t delivers the highest time-t expected consumer surplus. Thus when

ϕdt violates ICt, so does ϕoptt , which is a contradiction.) Thus
∫
p ϕ

opt
t (p)u(p)µot (dp) = 0. Again

by Lemma 1.B.5, we must have ϕoptt and ϕot agree µot -a.e. The proof is then completed by

induction. □

Now, since ϕopt
<t̂

and ϕo
<t̂

agree almost surely, they lead to the same distribution for pt̂, which

is just µo
t̂
. Hence ϕopt≥t̂

must satisfy all IC constraints after time t̂ given pt̂ ∼ µo
t̂
. The following

claim checks the rest of condition (ii) in the proposition.

Claim (b). ϕopt≥t̂
is optimal for the dictator’s continuation problem since time t̂ given pt̂ ∼ µo

t̂
.

Proof for Claim (b). By the definition of t̂, ϕd
t̂
satisfies ICt̂ given pt̂ ∼ µo

t̂
and thus ϕd≥t̂

satisfies

all later IC constraints by Lemma 1.B.7 given pt̂ ∼ µo
t̂
. This implies that if we deviate from

ϕopt≥t̂
to ϕd≥t̂

since period t̂, no IC constraint will be violated. Also notice such deviation can only

improve the total surplus since ϕd≥t̂
is optimal for the dictator’s continuation problem, which is

more relaxed than the original continuation problem. For such deviation to be unprofitable, we

then need ϕopt≥t̂
to achieve the same value as ϕd≥t̂

for that continuation problem and thus ϕopt≥t̂
is

also optimal for it. □
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Now, I turn to the “if” part. Given the existence of optimal policy (guaranteed by Proposi-

tion 1.3.1), it suffices to see that all policies satisfying the two conditions (i) and (ii) are feasible

and yield the same total payoff for the designer. For the total payoff, this is obviously true

since: for periods before t̂, all such policies agree a.s. and lead to pt̂ ∼ µo
t̂
; for periods t ≥ t̂, all

such policies achieve the same total payoff as that under ϕd≥t̂
given pt̂ ∼ µo

t̂
. For feasibility, it

suffices to check ϕo
<t̂

is feasible. This is true since ϕo
<t̂

satisfies all IC constraints for t < t̂ as

equalities by construction. This completes the proof for the “if” part.

Finally, notice by construction ϕo does satisfy conditions (i) and (ii). In particular, Lemma

1.B.7 implies that ϕd≥t̂
satisfies all IC constraints after time t̂ given pt̂ ∼ µo

t̂
, which implies the

feasibility of ϕo following time t̂. Thus ϕo is optimal.

Q.E.D.

1.B.6 Proof for Proposition 1.4.1

Proof. Let ϕ∗ denote an optimal policy, let (η∗t )
T
t=1 denote its thresholds, and let µ∗t denote the

distribution of pt under it. Notice that under the full support condition in Assumption 1.4.1,

Corollary 1.3.1 implies that we must have η∗t ≤ p̄ for all t. (Recall that p̄ is the myopic threshold,

i.e., u(p̄) = 0.) Moreover, under the atomless condition in Assumption 1.4.1, randomization at

the thresholds does not matter.

For part (a), I first show the following observation:

Claim. For any η ∈ (0, p̄], we have
∫
p≥η

[ ∫
p′≥η u(p

′)G(dp′|p)
]
µ∗t (dp) >

∫
p≥η u(p)µ

∗
t (dp).

Proof for the claim. Given any η ∈ (0, p̄], recall that property (P4) in Lemma 1.3.1 implies

G([0, η)|η) > 0. By the weak continuity of G(·|p) on p (i.e., property (P1) in Lemma 1.3.1),

this further implies that there exists δ > 0 s.t. G([0, η)|p) > 0∀p ∈ [η, η + δ].47 Together

with the full support assumption on µ∗t , we then have
∫
p≥η G

(
[0, η)|p

)
µ∗t (dp) > 0. Since

η ≤ p̄, u(p) < 0 for all p < η. Thus
∫
p≥η

∫
p′<η u(p

′)G(dp′|p)µ∗t (dp) < 0. This then im-

plies
∫
p≥η

∫
p′≥η u(p

′)G(dp′|p)µ∗t (dp) >
∫
p≥η

∫
p′ u(p

′)G(dp′|p)µ∗t (dp) =
∫
p≥η u(p)µ

∗
t (dp), where

the equality holds by property (P2) in Lemma 1.3.1. □

47See Theorem 3.2.11 in Durrett (2019) (equivalence between conditions (i) and (ii)).
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Now, I argue that the following holds given any t ≤ t̂− 2:

∫
p≥η∗t

u(p)µ∗t+1(dp)

=

∫
p

∫
p′≥η∗t

u(p′)
[
1{p≥η∗t }G(dp

′|p) + 1{p<η∗t }D(dp′|p)
]
µ∗t (dp)

=

∫
p≥η∗t

[ ∫
p′≥η∗t

u(p′)G(dp′|p)
]
µ∗t (dp) +

∫
p≥η∗t

1{p<η∗t }u(p)µ
∗
t (dp)

=

∫
p≥η∗t

[ ∫
p′≥η∗t

u(p′)G(dp′|p)
]
µ∗t (dp)

>

∫
p≥η∗t

u(p)µ∗t (dp) = 0

The first equality holds by the transition rule of pt; the second equality is trivial identity; the

third equality holds because the second term in line 3 is obviously zero; the last expression

equals to zero because the IC constraint is binding for any t < t̂ by Proposition 1.3.2. To see

the inequality holds, notice that t ≤ t̂− 2 necessarily implies η∗t > 0, since otherwise ϕdt would

be feasible at time t and the algorithm in Definition 1.3.2 would have stopped in step 1 at time

t. The desired inequality is then directly implied by the claim proved above.

For part (b), notice under the atomless assumption in Assumption 1.4.1, Lemma 1.B.4(c)

(see Appendix 1.B.4) implies that H0(pt, t) is non-zero almost surely under any policy. Lemma

1.B.2(b) then implies that any optimal policy for the dictator must almost surely agree with ϕd.

By Proposition 1.3.2, this further implies that ϕ∗≥t̂
must almost surely agree with ϕd≥t̂

(given

pt ∼ µ∗
t̂
). Under the full support assumption in Assumption 1.4.1, this then requires that ϕ∗≥t̂

and ϕd≥t̂
share the same thresholds. It thus suffices to prove the desired property for ϕd.

Let (ηdt )
T
t=1 denote the sequence of thresholds of ϕd. Recall that ϕdt (p) = 1{H0(p,t)>0} (as

is defined in Appendix 1.B.5). By the continuity of H0(·, t) (Lemma 1.B.1), we then have

H0(η
d
t , t) = 0 for any t.48 By Lemma 1.B.4(d), this further implies H0(η

d
t , t + 1) < 0. Since

H0(·, t + 1) is increasing (Lemma 1.B.4(b)), we thus must have ηdt+1 > ηdt for any t. This

completes the proof for part (b).

Finally, η∗t ≤ p̄ for all t is directly implied by Corollary 1.3.1 under the full support assump-

tion in Assumption 1.4.1.

Q.E.D.

48Notice it is easy to see that H0(0, t) < 0 and H0(1, t) > 0.
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1.B.7 Proof for Proposition 1.5.1

Proof. The designer’s problem is formally written as:

max
ϕ∈Φ

{ T∑
t=1

Eϕ[atu(pt)]
}

s.t. Eϕ[atu(pt)] ≥ 0 ∀t = 1, ..., T

pt+1|pt, at ∼ at
[
αGI(·|pt) + (1− α)D(·|pt)

]
+ (1− at)D(·|pt)

p1 ∼ µ1

Pick αa and αb with αa < αb. Corresponding to these two information generation rates respec-

tively, let Ga and Gb be the transition kernels of pt following one’s consumption, as is defined

in equation (1.9); let V a
0 and V b

0 be the value functions for the dictator’s problem (i.e., with

λ = 0), as is defined in Section 1.B.4; let Ha
0 and Hb

0 be the associated H-functions (with λ = 0)

as in equation (1.18); let t̂a and t̂b denote the critical time points defined in Definition 1.3.2; let

ϕa and ϕb be the optimal threshold policies and denote their sequences of thresholds as (ηat )
T
t=1

and (ηbt )
T
t=1. I show ηat ≥ ηbt for all t with a sequence of claims below.

First, since higher α is beneficial, we have the following non-surprising result for V a
0 and V b

0 :

Claim (a). V b
0 (p, t) ≥ V a

0 (p, t) for any pair of (p, t).

Proof for Claim (a). I show by backward induction on t. For t = T+1, the result holds trivially.

Assuming it holds for all t′ > t, I now consider time t.

By the Bellman equation, we have:

V b
0 (p, t)− V a

0 (p, t) =max
{
u(p) +

∫
p′
V b
0 (p

′, t+ 1)Gb(dp′|p), V b
0 (p, t+ 1)

}
−max

{
u(p) +

∫
p′
V a
0 (p

′, t+ 1)Ga(dp′|p), V a
0 (p, t+ 1)

}

By the induction hypothesis, we know V b
0 (p, t + 1) ≥ V a

0 (p, t + 1). It thus suffices to check
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p′ V

b
0 (p

′, t+ 1)Gb(dp′|p) ≥
∫
p′ V

a
0 (p

′, t+ 1)Ga(dp′|p). Notice the following relations hold:

∫
p′
V b
0 (p

′, t+ 1)Gb(dp′|p)−
∫
p′
V a
0 (p

′, t+ 1)Ga(dp′|p)

=αb

∫
p′
V b
0 (p

′, t+ 1)GI(dp′|p) + (1− αb)V
b
0 (p, t+ 1)

− αa

∫
p′
V a
0 (p

′, t+ 1)GI(dp′|p)− (1− αa)V
a
0 (p, t+ 1)

≥αa

∫
p′
V b
0 (p

′, t+ 1)GI(dp′|p) + (1− αa)V
b
0 (p, t+ 1)

− αa

∫
p′
V a
0 (p

′, t+ 1)GI(dp′|p)− (1− αa)V
a
0 (p, t+ 1)

where the equality is by the definition of Ga and Gb. To see the inequality holds, recall

that Lemma 1.B.3(b) implies
∫
p′ V

b
0 (p

′, t + 1)Gb(dp′|p) ≥ V b
0 (p, t + 1), which further implies∫

p′ V
b
0 (p

′, t+1)GI(dp′|p) ≥ V b
0 (p, t+1) since Gb(·|p) is a weighted average of GI(·|p) and D(·|p).

The above inequality thus holds given αb > αa. Now, notice the induction hypothesis implies

that the last expression above is indeed non-negative. We thus have the desired result. □

An important implication of the above claim is:

Claim (b). Hb
0(p, t) ≤ 0 ⇒ Ha

0(p, t) ≤ 0 for all pairs of (p, t).

Proof for Claim (b). When Hb
0(p, t) ≤ 0, by Lemma 1.B.4(d) we know Hb

0(p, t
′) ≤ 0 for all

t′ > t. With α = αb, it is thus optimal for the dictator to stop recommendation from time t

on given pt = p, which leads to the optimal continuation value being zero. Hence V b
0 (p, t) = 0.

By Claim (a), this implies V a
0 (p, t) ≤ 0 and it is thus also optimal for the dictator to stop

recommendation at (p, t) given α = αa. This then implies Ha
0(p, t) ≤ 0. □

With Claim (b), we can now prove the desired result for t ≥ t̂b.

Claim (c). ηat ≥ ηbt for all t ≥ t̂b.

Proof for Claim (c). By Proposition 1.3.2, we know that ϕb≥t̂b
is optimal for the dictator’s con-

tinuation problem with α = αb given the distribution of pt̂b under ϕb. Under Assumption 1.4.1,

this together with Lemma 1.B.2(b) implies that Hb
0(p, t) ≤ 0 for Lebesgue-a.e. p < ηbt for all

t ≥ t̂b.

Now, suppose t ≥ t̂b but ηat < ηbt . Then the above conclusion together with Claim (b) implies

that Ha
0(p, t) ≤ 0 for Lebesgue-a.e. p ∈ (ηat , η

b
t ). By Lemma 1.B.4, we know Ha

0(·, t) is weakly
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increasing and has at most one zero point. Thus we must have Ha
0(p, t) < 0 for all p ∈ (ηat , η

b
t ).

The above result further implies that given α = αa, the most conservative optimal policy

for the dictator (i.e., ϕd as is defined in Section 1.3.4) has a threshold larger than ηat at time t

and it is hence incentive compatible at time t provided that we have been following ϕa before.

By the algorithm in Definition 1.3.2 and Proposition 1.3.2, we then must have t ≥ t̂a. This

in turn implies the optimality of ϕa≥t for the dictator’s continuation problem given α = αa

and hence under Assumption 1.4.1 we must have Ha
0(p, t) < 0 ⇒ p < ηat (Lebesgue-a.e. ) by

Lemma 1.B.2(b). This contradicts with the result Ha
0(p, t) < 0 for all p ∈ (ηat , η

b
t ) above. Thus

we must have ηat ≥ ηbt when t ≥ t̂b. □

Now it suffices to show ηat ≥ ηbt for t < t̂b. For k = a, b, let F k
t denote the cdf of pt under

ϕk for any t given α = αk. Under Assumption 1.4.1, notice that F a
t and F b

t are continuous and

have full support over [0, 1] for any t. The following observation is the key part of the proof.

Claim (d). Let τ be any fixed time. If ηat ≥ ηbt for all t < τ , then F b
τ is a mean-preserving

spread of F a
τ and F a

τ (p) ≤ F b
τ (p) for any p ≤ mint<τ{ηbt}.

Proof for Claim (d). To prove the claim, I construct two belief processes (truncated at time

τ) (pat )
τ
t=1 and (pbt)

τ
t=1 on the same probability space, where (pat )

τ
t=1 follows the transition rule

decided by ϕa given αa and (pbt)
τ
t=1 follows the transition rule decided by ϕb given αb.

Specifically, fix a probability space on which a Markov process (xn)
∞
n=0 and a sequence of

i.i.d. random variables (ξt)
τ
t=1 with ξt ∼ Uniform[0, 1] are defined. (xn)

∞
n=0 is independent from

(ξt)
τ
t=1 and satisfies:

x0 ∼ µ1

xn+1|xn ∼ GI(·|xn), ∀n

Intuitively, one can interpret xn as the value that the platform’s belief will take after receiving

the n’th informative signal from consumers; ξt will serve as a randomization device deciding

whether an informative signal will be generated after consumption at time t. I define a filtration

of σ-fields (Fn)
∞
n=0 such that Fn = σ((ξt)

τ
t=1, x0, ..., xn) for all n. Then obviously (xn)

∞
n=0 is a

martingale w.r.t. (Fn)
∞
n=0.

For k = a, b, I now define process (pkt )
τ
t=1 together with an auxiliary process (nkt )

τ
t=1 by the
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following rule:

nk1 = 0; pk1 = x0

nkt+1 = nkt + 1{pkt>ηkt }
1{ξt<αk}; pkt+1 = xnk

t+1
∀t

Intuitively, under the scenario with (αk, ϕ
k), nkt tracks how many informative signals have been

recorded at the beginning of time t. It is added by 1 after each period if and only if consumption

has been made in that period (i.e., pkt > ηkt ) and an informative signal is generated (which is

assumed to happen when ξt < αk).49 Given that nkt informative signals have been received, pkt

just equals to xnk
t
, which reflects the posterior belief given those signals. It is easy to check that

(pkt )
τ
t=1 indeed satisfy the initial distribution and the transition rule of the belief process under

policy ϕk given response rate αk and thus pkt ∼ F k
t for all t ≤ τ .

Now, I notice that nkτ is a bounded stopping time w.r.t. (Fn)
∞
n=0. The boundedness is obvious

since nkτ < τ . To show it is a stopping time, notice by the construction of (nkt )
τ
t=1, whether

{nkτ ≤ n} happens is solely determined by (x0, ..., xn) together with (ξt)
τ
t=1. (With (x0, ..., xn)

and (ξt)
τ
t=1, we can perfectly predict when the (n + 1)’th informative signal will come.) Thus

{nkτ ≤ n} ∈ Fn and nkτ is a stopping time w.r.t. (Fn)
∞
n=0 by definition. Moreover, since ηat ≥ ηbt

for all t < τ and αb > αa, it is easy to see that nbτ ≥ naτ for sure.50 By the Doob’s optional

sampling theorem, we then have E[xnb
τ
|Fna

τ
] = xna

τ
and thus E[xnb

τ
|xna

τ
] = xna

τ
.51 This further

implies E[pbτ |paτ ] = paτ and therefore F b
τ is a mean-preserving spread of F a

τ .

Now, pick any p ≤ mint<τ{ηbt}. Notice that because p ≤ ηbt ≤ ηat for all t < τ , by construction

the processes of (pat )
τ
t=1 and (pbt)

τ
t=1 will stop once they fall into [0, p]. Thus when pbτ > p, we

must have xn > p for all n ≤ nbτ . Because naτ ≤ nbτ , we then must have paτ = xna
τ
> p. This

implies pbτ > p⇒ paτ > p for sure and therefore F a
τ (p) ≤ F b

τ (p).

□

We are now ready to complete the last piece of the proof:

Claim (e). ηat ≥ ηbt for all t < t̂b.

Proof for Claim (e). It suffices to assume t̂b > 1, otherwise the result is vacuous. I prove the

49Under Assumption 1.4.1, what happens when pkt = ηk
t does not matter since it has zero probability to occur.

50By construction, whenever nb
t = na

t , we have pbt = pat and hence na
t+1 = na

t + 1 ⇒ nb
t+1 = nb

t + 1. Thus the
sequence of (na

t )t can never surpass (nb
t)t.

51See, for example, theorem 10.11 in Klenke (2020) (third edition).
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claim by induction in t = 1, ..., t̂b. For t = 1, t < t̂b implies that
∫
p≥ηb1

u(p)µ1(dp) = 0 (by

Proposition 1.3.2). Feasibility of ϕa also implies
∫
p≥ηa1

u(p)µ1(dp) ≥ 0. Since ηa1 , η
b
1 ≤ p̄ by the

optimality of ϕa and ϕb, these obviously imply ηa1 ≤ ηb1 under Assumption 1.4.1.

Now, assuming the result holds for all periods t < τ , I show it for period τ . First, notice

τ < t̂b implies that ηbt has been decreasing over time up to time τ by Proposition 1.4.1. Thus

if ηaτ > ηbt for some t < τ , we must have ηaτ > ηbτ to hold. Therefore, it suffices to consider the

case where ηaτ ≤ mint<τ η
b
t . In this case, I argue that the following holds:

∫ 1

ηaτ

u(p)dF b
τ (p) = u(1)− u(ηaτ )F

b
τ (η

a
τ )− (uH − uL)

∫ 1

ηaτ

F b
τ (p)dp

≥ u(1)− u(ηaτ )F
a
τ (η

a
τ )− (uH − uL)

∫ 1

ηaτ

F a
τ (p)dp

=

∫ 1

ηaτ

u(p)dF a
τ (p) ≥ 0

where the two equalities are just by integration by parts,52 and the last inequality is due to the

incentive compatibility of ϕa. To check the first inequality, notice under the induction hypothesis

and the assumption that ηaτ ≤ mint<τ η
b
t , Claim (d) implies F b

τ (η
a
τ ) ≥ F a

τ (η
a
τ ) and F b

τ is a

mean-preserving spread of F a
τ , the latter of which further implies

∫ 1
ηaτ
F b
τ (p)dp ≤

∫ 1
ηaτ
F a
τ (p)dp.
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Together with the fact that u(ηaτ ) ≤ 0,54 these imply the desired inequality.

The above discussion has shown
∫ 1
ηaτ
u(p)dF b

τ (p) ≥ 0. Since τ < t̂b, by Proposition 1.3.2

we also know
∫ 1
ηbτ
u(p)dF b

τ (p) = 0. Thus we must have ηbτ ≤ ηaτ under Assumption 1.4.1. This

completes the proof by induction.

□

Q.E.D.

52Notice u(p) = uL + (uH − uL)p in the current application, and F a
τ and F b

τ are continuous under Assumption
1.4.1.

53See, e.g., Theorem 3.A.1(a) in Shaked & Shanthikumar (2007). In their notation, we have F b
τ ≥cx F a

τ . The
theorem implies

∫∞
ηa
τ
[1−F b

τ (p)]dp ≥
∫∞
ηa
τ
[1−F a

τ (p)]dp, which implies my result since F a
τ (p) = F b

τ (p) = 1 for p > 1.

54Otherwise, there would be a non-empty interval of p in which p > p̄ but p < ηa
τ . This would violate the

optimality of ϕa under Assumption 1.4.1.
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1.B.8 Proof for Proposition 1.5.2

Proof. Based on my discussion in the main text, the designer’s problem is equivalent to:

max
ϕ∈Φ

{ T∑
t=1

Eϕ[atu(pt)]
}

s.t. Eϕ[atu(pt)] ≥ 0 ∀t = 1, ..., T

pt+1|pt, at ∼ at
[
ρG(·|pt) + (1− ρ)D(·|pt)

]
+ (1− at)D(·|pt)

p1 ∼ µ1

With ρ replaced by α and G replaced by GI , this is equivalent to the designer’s problem studied

in Appendix 1.B.7. Thus the effect of an increment in ρ here is equivalent to the effect of an

increment in α there. The result is hence directly implied by Proposition 1.5.1. Q.E.D.

1.B.9 Proof for Proposition 1.A.1

In the following proof, I assume {Qz}z∈Z and the conditional distributions of si (i ≥ 1) con-

ditional on θ̃ are all continuous distributions, so the dominating measure for their densities is

chosen as the Lebesgue measure. In the general case, the proof remains the same with Lebesgue

measure replaced by proper dominating measures on R (e.g., counting measure for discrete

distributions).

Proof. For any z ∈ Z and s ∈ S, I define ψ(z,s) as a probability density over R such that

ψ(z,s)(θ) =
qz(θ)ℓ(s|θ)∫
qz(θ)ℓ(s|θ)dθ

That is, ψ(z,s) is the density function of the posterior about θ̃ computed from Bayes rule given

prior Qz and post-consumption signal realization s.

Claim (a). For any x, y ∈ Z and sa, sb ∈ S, we have Qy ≥LR Qx and sb ≥ sa together imply

ψ(y,sb) ≥LR ψ(x,sa).

Proof for Claim (a). Assume Qy ≥LR Qx and sb ≥ sa. By the definition of ψ, we have:

ψ(y,sb)(θ)

ψ(x,sa)(θ)
=
qy(θ)

qx(θ)
· ℓ(sb|θ)
ℓ(sa|θ)
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Since Qy ≥LR Qx and ℓ(·|θ) increases in likelihood-ratio order in θ, both fractions on the

right-hand-side are increasing in θ. Thus ψ(y,sb) ≥LR ψ(x,sa). □

Now, I show the following observation:

Claim (b). Assume λt is non-increasing over t. Then, for any x, y ∈ Z, we have Qy ≥LR Qx ⇒

Hλ(y, t) ≥ Hλ(x, t) for all t.

Proof for Claim (b). I show by backward induction in t. The result holds with t = T since

Hλ(z, T ) = (1 + λT )
∫
θdQz(θ). Now, assuming the result holds for all periods since time t+ 1,

I show it for period t. Recall that equation (1.24) derived in Section 1.B.4 implies

Hλ(z, t) =(λt − λt+1)u(z) + min{Hλ(z, t+ 1), 0}

+

∫
z′∈Z

max{Hλ(z
′, t+ 1), 0}[ρG(dz′; z) + (1− ρ)D(dz′; z)]

=(λt − λt+1)u(z) + ρmin{Hλ(z, t+ 1), 0}+ (1− ρ)Hλ(z, t+ 1)

+ ρ

∫
z′∈Z

max{Hλ(z
′, t+ 1), 0}G(dz′; z)

(Since we have random consumer arrivals with arrival rate ρ, the transition kernel G in equation

(1.24) is replaced with ρG+ (1− ρ)D.)

Pick any x, y ∈ Z s.t. Qy ≥LR Qx. We obviously have (λt − λt+1)u(y) ≥ (λt − λt+1)u(x)

given the assumption that λt is non-increasing in t. Moreover, the induction hypothesis implies

min{Hλ(y, t + 1), 0} ≥ min{Hλ(x, t + 1), 0} and (1 − ρ)Hλ(y, t + 1) ≥ (1 − ρ)Hλ(x, t + 1). It

then suffices to show
∫
z′∈Z max{Hλ(z

′, t+1), 0}G(dz′; y) ≥
∫
z′∈Z max{Hλ(z

′, t+1), 0}G(dz′;x)

below.

Notice in the current setting, state z matters only through the belief it represents. With

slight abuse of notation, I write Hλ(qz, t+ 1) = Hλ(z, t+ 1). Then, we have:

∫
z′∈Z

max{Hλ(z
′, t+ 1), 0}G(dz′; y) =

∫
θ

[ ∫
s
max{Hλ(ψ(y,s), t+ 1), 0}ℓ(s|θ)ds

]
qy(θ)dθ

≥
∫
θ

[ ∫
s
max{Hλ(ψ(x,s), t+ 1), 0}ℓ(s|θ)ds

]
qy(θ)dθ

≥
∫
θ

[ ∫
s
max{Hλ(ψ(x,s), t+ 1), 0}ℓ(s|θ)ds

]
qx(θ)dθ

=

∫
z′∈Z

max{Hλ(z
′, t+ 1), 0}G(dz′;x)

where the two equalities hold by the definition of ψ(z,s). The first inequality holds due to the
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induction hypothesis and that Claim (a) above implies ψ(y,s) ≥LR ψ(x,s). To see the second

inequality, notice Claim (a) implies that ψ(x,s) increases in likelihood-ratio order in s. Together

with the induction hypothesis, this implies that max{Hλ(ψ(x,s), t+ 1), 0} increases in s, which

further implies that
∫
smax{Hλ(ψ(x,s), t + 1), 0}ℓ(s|θ)ds increases in θ since ℓ(·|θ) increases in

likelihood-ratio order in θ. The inequality is hence implied by qy ≥LR qx. □

Now, I slightly strengthen both the condition and the conclusion in Claim (b).

Claim (c). Assume λt is non-increasing over t. Then, for any x, y ∈ Z, we have Qy ≥LR Qx

and
∫
θ θdQy(θ) >

∫
θ θdQx(θ) together imply Hλ(y, t) > Hλ(x, t) for all t.

Proof for Claim (c). I show by backward induction in t. The result holds with t = T since

Hλ(z, T ) = (1 + λT )
∫
θdQz(θ). Now, assuming the result holds for all periods since time t+ 1,

I show it for period t. By the same argument as in the proof of Claim (b), we have

Hλ(z, t) =(λt − λt+1)u(z) + ρmin{Hλ(z, t+ 1), 0}+ (1− ρ)Hλ(z, t+ 1)

+ ρ

∫
z′∈Z

max{Hλ(z
′, t+ 1), 0}G(dz′; z)

and that for any x and y satisfying the conditions in the claim: (i) (λt − λt+1)u(y) ≥ (λt −

λt+1)u(x); (ii) min{Hλ(y, t+1), 0} ≥ min{Hλ(x, t+1), 0}; (iii)
∫
z′∈Z max{Hλ(z

′, t+1), 0}G(dz′; y)

≥
∫
z′∈Z max{Hλ(z

′, t+ 1), 0}G(dz′;x). Moreover, the induction hypothesis directly imply that

(1− ρ)Hλ(y, t+1) > (1− ρ)Hλ(x, t+1) for ρ < 1. These together imply Hλ(y, t) > Hλ(x, t) as

is desired. □

Now, define functions Vλ and Hλ in the same way as in Appendix 1.B.4, but with pt replaced

with zt. Then the dynamic programming result – Lemma 1.B.2 – still applies to the current

setting, because its proof only relies on property (P1) in Lemma 1.3.1, which has its counterpart

in Lemma 1.A.1. Given the result of Claim (c) and Lemma 1.A.2, Lemma 1.B.2(b) implies that

any solution to the Lagrangian optimization maxϕ L(ϕ;λ∗) (with λ∗ solves the dual problem) is

almost surely equivalent to some ϕ∗ satisfying the property specified in Proposition 1.A.1. The

proposition hence holds by the duality result in Lemma 1.3.2.

Q.E.D.
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Chapter 2

Information Design for Selling

Search Goods and the Effect of

Competition

2.1 Introduction

Modern information technology has significantly improved firms’ ability in communicating prod-

uct information with potential customers. For examples, they can provide virtual demonstra-

tions online, make personalized recommendations to individual customers (e.g., via targeted

email ads or mobile pushes), or have key opinion leaders evaluate their products for specific

consumer groups. Given this ease and flexibility of information provision, what and how much

information to provide has become an important design question for firms.

Most existing studies on consumer information design have focused on experience goods,

which are products whose matches cannot be uncovered by consumers on their own before

purchase. For this type of products, consumers have to make purchase decisions solely based

on the information provided by the seller. However, many products in practice are better

understood as search goods, whose match values are naturally revealed to consumers after a

search step before purchase.1 Classical examples include clothing, home supplies and furniture,

for which a consumer can easily tell how she likes the product upon visiting the seller. More

generally, a product that allows returns may also be better understood as a search good because

1These concepts on goods classification are introduced by Nelson (1970).
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its consumers can almost learn their match values before committing on purchase. Treating a

search good as an experience good ignores the post-search information revealing and may thus

exaggerate the seller’s control over consumer information.

The consumer’s ability in learning her true match value before purchase seems to make the

seller’s information design irrelevant. In many situations, however, the search step required

before one can learn the product’s match incurs a search cost. This can include the cost of

visiting a local store in off-line shopping or non-refundable shipping costs in online shopping.

Although a search goods seller’s information is irrelevant after search, it decides whether the

consumer will search the product in the first place. By providing proper pre-search information,

the seller can attract as many as possible consumers who will purchase once having sunk their

search costs into searching.

In this paper, I study optimal pre-search information provision by search goods sellers. In

the main model, a monopoly seller of a search good can design a general pre-search signal (à

la Bayesian persuasion) for a representative consumer on her match with the product, based

on which the consumer decides whether to search the product.2 After search, the consumer

will fully learn her match value and then decide whether to make a purchase. Since in practice

a consumer often knows her best alternative to the product, which is unknown to the seller,

I allow the consumer to have private information on her outside option. This induces a more

general model with richer applications.

The post-search revelation of product match, as the identifying property of search goods,

significantly complicates the seller’s information design problem compared to that for experience

goods. In particular, the first moment of the consumer’s posterior belief on match value no longer

suffices for determining the purchase outcome.3 Together with the existence of the consumer’s

private information on her outside option, this makes it difficult to derive the optimal design

with existing tools.4 To overcome this challenge, I propose a relaxed problem of the seller.

Despite being much simpler than the original problem, this relaxed problem turns out to be

sufficient for solving the optimal design under certain regularity conditions.

When the consumer’s outside option value is unimodal (i.e., has a quasi-concave density),

2Section 2.2.2 provides some concrete interpretations for the seller’s information provision.
3If the product’s match value has a chance to be really high, even if its mean is low, it can still be optimal

for the consumer to search and learn the actual match. This suggests that higher moments of the consumer’s
posterior belief must matter.

4A discussion about the existing tools is provided in Appendix 2.A.1.
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I show that it is optimal for the seller to provide an upper-censorship signal, which is the

unique optimal signal up to outcome-irrelevant modifications when the unimodality is strict.

Under this signal, consumers with match values below a threshold will be fully informed of

their matches, while others will only learn that their match values are above the threshold.

The characterization also shows that the optimal design crucially depends on the curvature of

the consumer’s outside option value distribution. In particular, when the distribution is convex

over a relevant region, the optimal signal will be fully revealing; when it is concave, the optimal

signal will be completely uninformative.

Besides solving the optimal design, my relaxed problem approach also enables a straight-

forward comparison between the information design problems of search goods and experience

goods. Specifically, the search goods seller’s relaxed problem can be treated as the experience

goods seller’s problem with just one more constraint. On one hand, the additional constraint

formalizes the intuition that the seller’s control over consumer information is weaker with search

goods than with experience goods, which is critical in shaping the optimal information provi-

sion. On the other hand, despite being more constrained, the relaxed problem does share an

important structure with the design problem of experience goods. This explains analogies be-

tween many results of these two types of goods and has enabled me to extend results from one

to the other.

My characterization of the optimal design enables several applications. The first one studies

the effect of policies turning experience goods into search goods.5 It is shown that while these

policies directly benefit consumers by forcing post-search information revealing, under certain

conditions they may reduce the seller’s incentive in providing pre-search information and thereby

lead to more inefficient searches. The overall effect on consumer welfare can be negative. This

suggests that for such policies to benefit consumers, additional efforts may be needed to maintain

sellers’ incentives in providing better pre-search information.

In the second application, I consider the possibility that the seller can partially observe

consumers’ outside option values and tailor information accordingly. I show that the seller

optimally provides better information to those who are expected to have higher outside option

values, which forms a kind of discrimination in information provision. This discrimination

affects different consumers heterogeneously and its effect on total consumer welfare is generally

5Examples of such policies include product labeling laws and regulations forcing sellers to accept product
returns. See my discussion in Section 2.4 for more details.
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indeterminate. This highlights a non-price discrimination channel through which the design of

consumer privacy can influence consumer welfare.

In the third application, I examine the effect of changes in the search cost. When the product

price is exogenously fixed,6 the model predicts that the consumer welfare will unambiguously

increase when the search cost decreases, although this gain will be partially offset by coarser

pre-search information provided by the seller. This holds not only for overall consumer welfare,

but also for each individual consumer given her realized outside option value.

My last application is to study the effect of competition among multiple sellers with hor-

izontally differentiated products. Although I am not able to solve the equilibrium in general,

my approach suffices for pinning down an equilibrium when the number of sellers is sufficiently

large under certain regularity conditions. In particular, I show that as competition becomes

stronger, there is a sequence of equilibria with pre-search information converging to full infor-

mation. This extends the corresponding result in Hwang et al. (2019) from experience goods to

search goods.

Related literature – Possibly due to its technical difficulty, the economic literature on information

design for search goods is relatively scarce. To the best of my knowledge, the only major study

on seller’s information provision for search goods is Anderson & Renault (2006).7 They consider

a similar setting as mine, but the consumers in their paper are ex-ante homogeneous without

private information. In Section 2.7.1, I will compare their optimal design with mine and explain

how their result is partially extended in my setting. I note that most of my findings in the

applications above cannot be made in their setting because the consumer’s private information

plays important roles in those findings.

My paper also relates to several other strands of literature. The first strand studies sellers’

provision of real product information without consumer search (e.g., Meurer & Stahl II, 1994;

Lewis & Sappington, 1994; Johnson & Myatt, 2006; Ivanov, 2013; Boleslavsky et al., 2017;

Hwang et al., 2019). Most relatedly, Ivanov (2013) and Hwang et al. (2019) consider competitive

sellers and show that the equilibrium information converges to full information when the number

of sellers goes to infinity. In particular, the equilibrium characterization in Hwang et al. (2019)

6This mainly applies when the seller is a salesperson or information intermediary, who does not set price but
just tries to induce purchase via providing match information.

7Also see Anderson & Renault (2013), which extends Anderson & Renault (2006) to also encompass vertical
information.
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also plays a key role in my analysis. As mentioned earlier, the corresponding result of mine

extends their results from experience goods to search goods.

The second strand of literature studies various information design questions in consumer

search environments. Unlike mine, most of these papers focus on post-search information de-

sign instead of pre-search information design (Bar-Isaac et al., 2012; Board & Lu, 2018; Dogan &

Hu, 2018; Au, 2018; Whitmeyer, 2018; Whitmeyer, 2020). Since their consumers cannot receive

additional information than that provided by the seller, these papers can still be considered as

being about experience goods. Two exceptions are Choi et al. (2019) and Hinnosaar & Kawai

(2020). Choi et al. (2019) studies the consumer-optimal pre-search information; Hinnosaar &

Kawai (2020) studies the seller-worst pre-search information in a robust mechanism design prob-

lem. Unlike these papers, I study the seller-optimal pre-search information provision. Another

difference is that I allow continuous value distributions, while the two papers above assume

binary values.

More closely related, Wang (2017) considers an environment where consumers can engage

in costly search for additional information after receiving the seller’s signal. With ex-ante

homogeneous consumers, the paper concludes that the seller’s optimal signal should deter the

consumer from searching for more information. Matyskova (2018) also derives a similar result

in a more abstract Bayesian persuasion setting. Importantly, while search is optional in these

papers, it is necessary for making purchase in my model. Thus their main topic of search

deterrence is not relevant in my study. Moreover, their analyses heavily rely on the ex-ante

homogeneity of consumers (as in Anderson & Renault (2006)). In contrast, I allow ex-ante

heterogeneous consumers with privately known outside option values.

My paper greatly benefits from recent developments in the consumer search literature. In

particular, I draw upon a characterization for the consumer’s purchase outcome given any

belief on the product match value, which is discovered in several papers (Kleinberg et al., 2016;

Armstrong, 2017; Choi et al., 2018).

Finally, the paper relates to the general Bayesian persuasion literature (Rayo & Segal, 2010;

Kamenica & Gentzkow, 2011). In particular, the relaxed problem I propose is analogous to the

optimization in Dworczak & Martini (2019) and Section 4.3 of Kolotilin (2018), but features one

more constraint. The optimality conditions I provide essentially extend Theorem 1 in Dworczak

& Martini (2019) to accommodate that additional constraint. Kolotilin et al. (2017) and Guo &
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Shmaya (2019) also consider a receiver with private information. However, they do not consider

the design for selling search goods, whose complexity motivates my relaxed problem approach.

The paper is organized as follows: Section 2.2 introduces the main model; Section 2.3

develops the relaxed problem and characterizes the optimal design; Section 2.4 compares the

designs of search goods and experience goods; Section 2.5 considers comparative statics and

related applications; Section 2.6 considers information provision by competing sellers; Section

2.7 provides further discussions. All proofs are provided in the appendix.

2.2 The Model

2.2.1 The Setup

The model features a seller, a representative consumer and a single product. The consumer’s

match value with the product is denoted as U , which is initially unknown to both agents and has

a continuous distribution FU with finite mean and compact support [
¯
u, ū]. At the beginning of

the game, the seller can design a pre-search signal (statistical experiment) to provide information

about U to the consumer. Following Anderson & Renault (2006) and the Bayesian persuasion

literature, I do not make any restriction on the signal structure.8 I use S to denote the signal’s

realization, and use ϕ(·;S) to denote the consumer’s posterior belief on U given S.

If the consumer does not consume the product, she will consume her outside option, whose

value is the consumer’s private information and is denoted as U0. I assume U0 is drawn from a

distribution J , and is independent from U .

I will consider two kinds of sellers. A non-pricing seller treats the product’s price as exoge-

nous, and just wants to maximize the consumer’s purchase probability by providing informa-

tion;9 a pricing seller also sets the product’s price p, and tries to maximize the expected profit.

I normalize the seller’s marginal cost to zero.

The game goes as follows:

1. The seller designs the pre-search signal about U . A pricing seller also chooses the product’s

8Formally, a signal consists of a measurable realization space S and a transition kernel π : [
¯
u, ū] → ∆(S) that

maps any realized match value to a probability distribution over S, according to which the signal realization S
will be drawn.

9In practice, non-pricing sellers can be salesmen, brokers or information intermediaries, who typically do not
set price but just try to induce purchase by providing information.
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price p. These are observed by the consumer.10

2. The match value U is (secretly) realized, and the pre-search signal realization S is gener-

ated to the consumer.

3. After learning S and her outside option value U0, the consumer decides whether to search

the product. If not, she consumes the outside option and receives utility U0.

4. If the consumer chooses to search, she will incur a search cost c > 0 and learn U . She then

makes her purchase decision. With purchase, her final utility will be U − p − c; without

purchase, her final utility will be U0 − c.

The assumption that the consumer can fully learn her match value after search is the iden-

tifying property of search goods. Formally, I adopt the following dichotomy in Nelson (1970).

Definition 2.2.1. A product is a search good (abbr., SG) if its match value will be fully revealed

to the consumer after search; it is an experience good (abbr., EG) if the consumer cannot learn

additional information after search before purchase.

Notice that I assume search is a necessary step towards purchase even if the product is an

experience good. This ensures the two types of goods have the same total purchase cost so that

they are comparable. I will call the seller in the model described above an SG seller, and call a

seller EG seller if he faces the same problem except that the consumer will learn no additional

information after search. In Section 2.4, I will compare the information design problems of these

two types of sellers, and highlight the key similarity and dissimilarity between them.

2.2.2 Interpretations for the Seller’s Information Provision

The seller’s information provision admits two general interpretations.

In the first interpretation, which is adopted by Anderson & Renault (2006), the seller has

a single product and faces a large population of potential consumers, whose matches with

the product are independently drawn. To provide pre-search information, the seller advertises

selected product characteristics to all consumers.11 With these characteristics, each consumer

can privately update her belief about the product’s match value based on her own taste. By

10I assume that the price set by a pricing seller is observed before search, which avoids the hold-up problem in
the Diamond’s Paradox (Diamond, 1971). This is innocuous as long as the seller can provide price information
along with the pre-search match information.

11Only horizontally differentiating characteristics are considered here, which better informs a consumer of her
individual match without vertically shifting the aggregate demand.
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selecting different characteristics to advertise, the seller then imparts different information to

the consumers.12

In the second interpretation, which is more popular in the Bayesian persuasion literature,

the seller interacts with each individual consumer repeatedly over time. Each time, the seller

offers one issue of his product, whose match with the consumer is drawn independently from

those of the other issues. Knowing both features of the product issues and the consumer’s

preference (e.g., revealed by demographics and browsing history), the seller can predict the

consumer’s match with each issue and provide information about it (e.g., via recommendation

messages). Since the seller repeatedly interacts with the consumer, it is conceivable that he

is able to commit on a particular information provision rule to maximize the long-run profit,

and the consumer can correctly interpret the messages she receives.13 This justifies the seller’s

commitment power over the signal structure being used.14

2.3 Solving the Seller’s Optimal Design

I first consider a non-pricing seller with exogenous price p, and focus on the information design

problem. The pricing seller’s problem will be studied in Section 2.3.4.

2.3.1 Preliminaries

To characterize the consumer’s optimal search behavior, given any posterior belief ϕ on U , let

zϕ denote the corresponding Pandora’s index.15

That is, zϕ solves:

∫
[(x− zϕ)+ − c]ϕ(dx) = 0 (2.1)

where (y)+ := max{y, 0}. Given any pre-search signal, I define the random variable Z as

12In this interpretation, the seller’s flexibility in designing information is limited by the richness of the available
product characteristics. See Section III and Appendix A in Anderson & Renault (2006).

13Several recent papers have studied how repeated interaction can support commitment in strategic communi-
cation. See, e.g., Mathevet et al. (2019) and Best & Quigley (2020).

14I note that for this second interpretation to fit the model with a pricing seller, the seller cannot price-
discriminate the consumer based on her realized match values over time. In practice, this can be reasonable for
multiple reasons. First, consumers typically have different match values with the same issue and it may be difficult
to set personalized prices for them. Second, as is argued in Ichihashi (2020), committing to non-discrimination
can relax consumers’ privacy concerns and encourages them to share preferences with the seller.

15This index is called “reservation price” in the original paper of Weitzman (1979). It is easy to show its
existence and uniqueness when c > 0.
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the Pandora’s index of the consumer’s posterior belief conditional on the pre-search signal

realization, i.e., Z := zϕ(·;S). Then, according to the Pandora’s rule in Weitzman (1979), the

consumer will search the product if and only if Z ≥ U0 + p. Since the consumer will purchase

after search if and only if the revealed U ≥ U0+ p, the product will be finally sold if and only if

U ∧ Z ≥ U0 + p, where x ∧ y is a shorthand for min{x, y}.16 I will call this key statistic U ∧ Z

the product’s effective-search-value.17

Let G denote the CDF of U ∧ Z induced by the pre-search signal. Let Jp denote the

CDF of U0 + p, i.e., Jp(x) := J(x − p). The consumer’s purchase probability then equals to

P(U0 + p ≤ U ∧ Z) = E[Jp(U ∧ Z)] =
∫
Jp(x)dG(x). The non-pricing seller’s problem can then

be formulated as:

max
G

∫
Jp(x)dG(x) (2.2)

s.t. G is a feasible distribution of U ∧ Z (2.3)

Unfortunately, I cannot handle this optimization directly because a full characterization

of its feasible set will be too complicated to handle in such an optimization. To get things

simplified, I will hence propose a relaxed problem of it, which is based on two lemmas below.

Given any search cost c, I will call U − c the consumer’s net-match-utility and let FU−c

denote its CDF. The following lemma provides a key necessary condition for the constraint

(2.3) to hold.

Lemma 2.3.1. Given FU and c, the distribution of U∧Z under any signal is a mean-preserving

contraction (MPC) of FU−c. As a special case, U ∧Z = U − c under the fully revealing signal.

The lemma suggests that we can relax the seller’s problem by replacing constraint (2.3) with

the constraint that G is a MPC of FU−c. However, this will lead to an optimization that is often

too relaxed for its solution to be feasible for the seller. Actually, as I will discuss in Section

2.4, such an optimization is equivalent to one faced by an EG seller, with which the difference

between the two types of goods will be neglected. Therefore, to derive a more useful relaxed

problem, some additional characterization for the constraint (2.3) is needed. The next lemma

provides such a result.

16I assume the consumer will search and buy the product when being indifferent.
17This characterization of the consumer’s purchase outcome has been proposed by several papers (Kleinberg

et al., 2016; Armstrong, 2017; Choi et al., 2018).
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Lemma 2.3.2. Under any signal, U ∧ Z ≤ U and thus the distribution of U ∧ Z is first-order

stochastic dominated by FU .

While being obvious, the lemma highlights an important restriction faced by an SG seller.

Namely, no matter what pre-search information is provided, the consumer’s effective-search-

value U ∧ Z is always bounded by the true match value U . This limits the seller’s ability in

manipulating the consumer’s purchase behavior through inducing mean-preserving contraction

of G by withholding information.

2.3.2 A Relaxed Problem

Let ⪯MPS denote the mean-preserving spread order and let ⪯FOD denote the first-order stochas-

tic dominance order. Based on Lemmas 2.3.1 and 2.3.2, a Relaxed Problem of optimization (2.2)

– (2.3) can be formulated as:

max
G

∫
Jp(x)dG(x) (2.4)

s.t. G ⪯MPS FU−c (2.5)

G ⪯FOD FU (2.6)

For any distribution F , I denote its support as supp{F}. The following theorem provides the

optimality conditions for solving the linear program above. It extends Theorem 1 in Dworczak

& Martini (2019) to accommodate constraint (2.6).

Theorem 2.3.1. A distribution G solves problem (2.4) – (2.6) if there exists functions v(·) and

ρ(·) such that:

(C1) v(·) is convex over [
¯
u− c, ū− c] and ρ(·) is weakly increasing over [

¯
u− c, ū].

(C2) v(x) + ρ(x) ≥ Jp(x) for all x ∈ [
¯
u− c, ū− c], with equality holding for any x ∈ supp{G}.

(C3)
∫
v(x)dG(x) =

∫
v(x)dFU−c(x);

∫
ρ(x)dG(x) =

∫
ρ(x)dFU (x).

(C4) G satisfies constraints (2.5) and (2.6).

Moreover, if there exist G, v(·) and ρ(·) satisfying the above conditions, then another distribution

Ĝ also solves the problem if and only if it satisfies conditions (C1) – (C4) with the same v(·)

and ρ(·).

In general, the Relaxed Problem does not necessarily admit a solution that is feasible for
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the seller to induce. However, as I will show in the next subsection, it does under some mild

conditions on the outside option value distribution.

2.3.3 The Optimal Signal with Unimodal Outside Option

I impose the following unimodal assumption on the distribution of U0 + p.

Assumption 2.3.1 (Unimodal Jp). Jp admits a continuous quasi-concave density over [
¯
u −

c, ū− c].

Let jp denote the density of Jp. The assumption simply requires that over the support of U − c,

jp is first increasing and then decreasing, which implies Jp to be first convex and then concave. It

is weaker than requiring U0 to admit a log-concave density, which is satisfied by many common

distributions.18 Under the assumption, I will use [rmin
p , rmax

p ] to denote the mode (interval) of

Jp, i.e.,

[rmin
p , rmax

p ] := argmax
x∈[

¯
u−c,ū−c]

jp(x) (2.7)

Following Kolotilin et al. (2021), I define an upper-censorship signal as follows:

Definition 2.3.1. A signal is an upper-censorship signal if there is a threshold η ∈ [
¯
u− c, ū− c]

such that the signal fully reveals any net-match-utility U − c below η, and pools all net-match-

utilities above η together.

Given any upper-censorship signal with threshold η, I will use Gη to denote the distribution

of U ∧ Z it induces, and use z(η) to denote the Pandora’s index of the consumer’s posterior

belief after learning U − c ≥ η.19 It is easy to see that z(η) ≥ η and is strictly increasing

in η. Figure 2.1 illustrates how U − c maps to U ∧ Z under an upper-censorship signal. We

can see that compared to the full revelation case, where U ∧ Z always equals to U − c, upper-

censorship leads to a contraction for U ∧Z over the region above η, which by Lemma 2.3.1 must

be mean-preserving. In particular, consumers with U − c ∈ (η, z(η)) will have their effective-

search-values increased to either U or z(η), whichever is smaller; those with U − c > z(η) will

have their effective-search-values decreased to z(η).

18For a list of distributions with log-concave density, see Bagnoli & Bergstrom (2005) Table 1.
19I provide detailed properties of z(·) and the formula of Gη in Appendix 2.B.3.
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U − c
¯
u− c η z(η) ū− c

U − c U∧z(η) (>U− c) z(η) (<U− c)

Figure 2.1: Values of U ∧ Z given different values of U − c under an upper-censorship signal

with threshold η. The axis represents different values of U − c and the expressions above the

brackets indicate the value of U ∧Z given U − c in each region. We can see that U ∧Z > U − c

when U − c ∈
(
η, z(η)

)
and U ∧ Z < U − c when U − c > z(η).

To state the main result below, given any Jp satisfying the unimodal assumption, I define:

η0 := inf{η ∈ [
¯
u− c, ū− c] : z(η) ≥ rmin

p } (2.8)

Γ(η) :=
Jp
(
(η + c)∧z(η)

)
− Jp(η)

(η + c)∧z(η)− η
− jp

(
z(η)

)
, ∀η ∈ [

¯
u− c, ū− c) (2.9)

Intuitively, η0 is the smallest η such that z(η) will fall in the region where Jp(·) is concave; Γ(η)

measures the difference between the average slope of Jp(·) over [η, (η + c) ∧ z(η)] and its slope

at z(η). An optimal signal is characterized by the following proposition.

Proposition 2.3.1. Under Assumption 2.3.1, for a non-pricing seller:

(a) If rmax
p = ū− c, the upper-censorship signal with threshold η∗ = ū− c (i.e., full disclosure)

is optimal.

(b) If rmax
p < ū − c, there exists η∗ ∈ [η0, r

max
p ] such that either of the following conditions

hold:

(i) η∗ >
¯
u− c and Γ(η∗) = 0;

(ii) η∗ =
¯
u− c and Γ(η∗) ≥ 0.

For any such η∗, the upper-censorship signal with threshold η∗ is optimal. Moreover, Gη∗

solves the Relaxed Problem (2.4) – (2.6).

To gain some intuition about why upper-censorship is optimal under the unimodal as-

sumption, consider two events with equal probabilities: in event A, U − c = a; in event B,

U − c = b > a. If they are separately revealed, then U ∧ Z = U − c in both events. Now,

suppose the seller instead pools these events. Then the benefit for him is that U ∧ Z will be

raised to some a′ > a in event A, which increases the sale probability by
Jp(a′)−Jp(a)

2 ; the cost

is that U ∧ Z will be decreased to some b′ < b in event B, which decreases the sale probabil-
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xη∗ z(η∗)
¯
u− c ū− c

Jp

(a) Case 1: z(η∗) ≤ η∗ + c

x
¯
u− c ū− cη∗ η∗+c z(η∗)

Jp

(b) Case 2: z(η∗) > η∗ + c

Figure 2.2: Graphical illustration for the optimality condition Γ(η∗) = 0. The red curve is Jp(·).

The condition implies that the secant of Jp(·) over [η∗, (η∗+ c)∧z(η∗)] is parallel to the tangent

of Jp(·) at z(η∗).

ity by
Jp(b)−Jp(b′)

2 . Notice the mean-preserving condition implies a′−a
2 = b−b′

2 . We thus must

have
Jp(a′)−Jp(a)

2 to be less (resp., greater) than
Jp(b)−Jp(b′)

2 when Jp is convex (resp., concave)

over [a, b]. This suggests that the optimal signal should reveal better information over a region

where Jp is convex, and tends to withhold information over a region where Jp is concave. Under

Assumption 2.3.1, this is right in accordance with upper-censorship.20

In part (b) of Proposition 2.3.1, an interior optimal threshold can be pinned down by the

condition Γ(η∗) = 0. Graphically, this means that the secant of Jp over [η∗, (η∗+ c)∧ z(η∗)] has

the same slope as Jp at z(η∗) (see Figure 2.2). To understand this condition, suppose that the

seller adds some additional consumers with U − c right below η∗ to the pooling region, whose

total mass is dm. The benefit is that these consumers will have their U ∧Z increased from η∗ to

(η∗+ c)∧ z(η∗), which increases the total sale probability by
[
Jp
(
(η∗+ c)∧ z(η∗)

)
− Jp(η

∗)
]
dm.

The cost is that consumers originally with U ∧ Z = z(η∗), I denote whose mass as M , will

have their effective-search-values marginally decreased from z(η∗) by some |dz| to obey the

mean-preserving condition. This decreases the total sale probability by J ′
p

(
z(η∗))|dz|M . The

seller’s net benefit thus equals to
[
Jp
(
(η∗ + c)∧ z(η∗)

)
− Jp(η

∗)
]
dm− J ′

p

(
z(η∗))|dz|M , which is

proportional to:

[
Jp
(
(η∗ + c) ∧ z(η∗)

)
− Jp(η

∗)
]

|dz|M
/
dm

− J ′
p

(
z(η∗))

20This does not imply that the optimal threshold coincides with the mode of Jp, since Jp(a
′)/2 − Jp(a)/2 >

Jp(b)/2 − Jp(b
′)/2 can also hold when Jp is first convex and then concave over [a, b], in which case pooling is

more profitable. Proposition 2.3.1 only implies η∗ ≤ rmax
p .
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By the mean-preserving condition, we must have [(η∗ + c) ∧ z(η∗) − η∗]dm = |dz|M . The

above expression is thus equal to Γ(η∗). Therefore, the graphical condition guarantees that any

marginal deviation from η∗ will not be profitable for the seller.21

Proposition 2.3.1 suggests that the seller’s optimal design crucially depends on the curvature

of the consumer’s outside option value distribution. The following corollary of it illustrates this

with the extreme cases.

Corollary 2.3.1. For a non-pricing seller, we have:

(a) If Jp(·) is convex over [
¯
u− c, ū− c], then the fully revealing signal is optimal.

(b) If Jp(·) is concave over [
¯
u− c, ū− c], then the fully pooling signal is optimal.

In general, the seller’s optimal design is not unique. For example, suppose an optimal

upper-censorship signal is fully revealing for U − c ∈ [a, b] and Jp is affine over this region.

Then another signal pooling over this region (otherwise identical to the original signal) will also

be optimal. However, under a strict version of the unimodal assumption on Jp, we do have a

uniqueness result.

Assumption 2.3.2 (Strictly Unimodal Jp). Assumption 2.3.1 holds with jp being strictly

quasi-concave over [
¯
u− c, ū− c].

The assumption implies that jp is first strictly increasing and then strictly decreasing over

[
¯
u − c, ū − c]. When it holds, I will use rp to denote the unique mode of Jp, i.e., rp =

argmaxx∈[
¯
u−c,ū−c] jp(x).

Proposition 2.3.2. Under Assumption 2.3.2, all optimal signals induce the same joint distri-

bution of (U,Z), and the optimal upper-censorship signal is unique.

Notice that the pair of (U,Z) determines a consumer’s search and purchase decisions as well

as her ex-post utility given any U0. Thus the proposition implies that under Assumption 2.3.2,

the equilibrium search-purchase outcome and consumer surplus are both unique. This makes it

convenient to study any comparative statics.

2.3.4 The Optimal Design for a Pricing Seller

Given the results for a non-pricing seller, characterizing the optimal design for a pricing seller

is straightforward. By the same argument as in Section 2.3.1, the pricing seller’s problem can

21For corner solution η∗ =
¯
u−c, the threshold cannot be further lowered, so we only need to rule out profitable

upward deviations from it. Therefore, we only need to require Γ(η∗) ≥ 0.
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be written as:

max
G, p

{p
∫
J(x− p)dG(x)} (2.10)

s.t. G is a feasible distribution of U ∧ Z (2.11)

The following assumption allows me to use the simple characterization of the non-pricing

seller’s optimal design in Section 2.3.3.

Assumption 2.3.3 (Unimodal J). J admits a continuous quasi-concave density.

The assumption guarantees that for any price p, the distribution of U0 + p (i.e., Jp) satisfies

Assumption 2.3.1 and hence there exists an optimal upper-censorship signal. Since an upper-

censorship signal is solely pinned down by its threshold η, we can transform the pricing seller’s

problem into an optimization over (p, η), which leads to the following result.

Proposition 2.3.3. Under Assumption 2.3.3, a price p∗ and an upper-censorship signal with

threshold η∗ are optimal for the pricing seller if and only if:

(p∗, η∗) ∈ argmax
p≥0; η∈[

¯
u−c,ū−c]

{p
∫
J(x− p)dGη}

where the formula of Gη is given by equation (2.23) in Appendix 2.B.3. Moreover, if J(·) is

log-concave, then an optimal pair of (p∗, η∗) exists.

Proposition 2.3.3 has simplified the original infinite-dimensional optimization (2.10) – (2.11)

into a two-dimensional problem. It will allow me to study several applications of the model in

later sections.

2.4 Search Goods vs. Experience Goods

In practice, whether a product is a search good (SG) or an experience good (EG) not only

depends on its own property, but also depends on the shopping environment and related con-

sumer protection policies. For examples, product labeling laws require sellers to provide detailed

product information on packages, which enables consumers to learn product characteristics (e.g.,

food nutrition) that they would otherwise not know before (or even after) purchase; consumer

protection laws in many countries require online sellers to accept returns without any reason
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within certain time period.22 These policies allow consumers to better learn their matches with a

product after some search step but before committing on purchase, and can thus approximately

transform experience goods into search goods.23

In this section, I investigate how such policies can change the equilibrium outcomes and

compare the two types of goods from an information design perspective. For simplicity, I

will focus on non-pricing sellers with exogenous product price unless otherwise stated. Some

numerical analyses will be provided in Appendix 2.A.2 for the case of pricing sellers.

2.4.1 Comparison between the Design Problems

When the product is an experience goods, the consumer will receive no additional information

after the search step. She will hence buy the product if and only if her posterior mean net-

match-utility E[U−c|S] exceeds U0+p. The statistic E[U−c|S] thus replaces the role of U∧Z in

determining the purchase outcome. Let H denote the distribution of E[U − c|S] to be induced.

It is well known that H is feasible if and only if it is a MPC of FU−c.
24 A non-pricing EG

seller’s problem can thus be written as:

max
H

∫
Jp(x)dH(x) (2.12)

s.t. H ⪯MPS FU−c (2.13)

This kind of optimization has been well studied in the Bayesian persuasion literature (e.g.,

Kolotilin (2018) and Dworczak & Kolotilin (2019)).

Comparing optimization (2.12) – (2.13) with optimization (2.4) – (2.6), one can see some

key similarity and dissimilarity between the problems of the two types of goods. In terms of

similarity, both problems involve the same MPC constraint. This roots from the fact that both

U ∧ Z and E[U − c|S] must be a MPC of the true net-match-utility U − c. This commonality

22For instances, China requires online sellers to fully refund no-reason returns (except for special products)
within 7 days of the sale, excluding any shipping cost; European Union has a similar policy with the cooling
period being 14 days and the refund there includes initial (standard) shipping charges. See http://lawinfochina
.com/display.aspx?id=23187&lib=law and https://europa.eu/youreurope/citizens/consumers/shopping/

guarantees-returns.
23To interpret the search goods model in the situation of online shopping with returnable products, one should

consider c to also include any return cost of the consumer, and consider U to be the product’s consumption utility
plus the return cost. Then the consumer’s final utility with search without purchase is indeed U0 − c, and her
utility with purchase is indeed U − c− p.

24See, e.g., Proposition 2 in Kolotilin (2018).

http://lawinfochina.com/display.aspx?id=23187&lib=law
http://lawinfochina.com/display.aspx?id=23187&lib=law
https://europa.eu/youreurope/citizens/consumers/shopping/guarantees-returns
https://europa.eu/youreurope/citizens/consumers/shopping/guarantees-returns
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allows many results to be carried over between the two types of goods. In particular, under the

unimodal assumption on Jp, the optimal design of an EG seller also features upper-censorship

signals. Moreover, the results in Corollary 2.3.1 equally hold for both types of goods.

The key difference between the two problems is that an SG seller faces the additional con-

straint (2.6) requiring G ⪯FOD FU , which is absent in the EG seller’s problem. This is because

U ∧Z must be bounded by U , but E[U − c|S] needs not be. In this sense, it is harder to induce

MPC for U ∧ Z by withholding information than for E[U − c|S], which makes the SG seller’s

problem more “constrained”. An obvious implication of this is the following, which holds for

both pricing and non-pricing sellers.

Proposition 2.4.1. The seller’s profit is (weakly) lower when the product is a search good than

when it is an experience good.

In the following subsections, I will further compare the two types of goods in terms of the

equilibrium information provision and consumer welfare. For convenience, I first present a useful

lemma here.

Lemma 2.4.1. For any belief ϕ on U , we have zϕ ≥ EU∼ϕ[U − c], which holds as equality if

and only if inf(supp{ϕ}) ≥ EU∼ϕ[U − c].

The lemma implies that given any posterior belief ϕ of the consumer, the corresponding

Pandora’s index zϕ is no less than the posterior mean of U − c. This is intuitive since even if

the consumer always ignores the post-search information, it is optimal for her to search when

U0 + p ≤ EU∼ϕ[U − c]. Thus zϕ must be no less than EU∼ϕ[U − c] for the Pandora’s rule to

be optimal. The lemma also implies that these two values are equal when c is sufficiently large

such that even the smallest value in the support of ϕ is greater than EU∼ϕ[U − c]. Intuitively,

when the search cost is very large, the post-search information will not make a difference to

the consumer’s decisions because it comes only after the consumer has sunk a significant cost.

The range of U0 that makes it optimal for the consumer to search should hence be the same

regardless of the product’s type, which implies zϕ = EU∼ϕ[U − c].
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2.4.2 Comparison for the Equilibrium Information Provision

I first define some notations. Let µ(η) := E[U − c|U − c ≥ η] and

ΓE(η) :=
Jp
(
µ(η)

)
− Jp(η)

µ(η)− η
− jp

(
µ(η)

)
, ∀η ∈ [

¯
u− c, ū− c) (2.14)

Intuitively, µ(η) is the posterior mean of U − c after observing the pooling signal realization of

an upper-censorship signal with threshold η; ΓE(η) measures the difference between the average

slope of Jp over [η, µ(η)] and its slope at µ(η). I note that these functions are fully determined

by Jp and FU−c. They do not separately depend on the search cost c once the distribution of

U − c is fixed.

I will focus my analysis on the case where the following assumption holds.

Assumption 2.4.1. Jp satisfies Assumption 2.3.2 with rp < ū− c and ΓE(
¯
u− c) < 0.

Here, the conditions rp < ū− c and ΓE(
¯
u− c) < 0 guarantee that the EG seller’s optimal signal

is neither fully revealing nor fully pooling. These are not essential for the analysis, but avoid

separate discussions of “corner” solutions. Under Assumption 2.4.1, the EG seller’s optimal

signal is characterized by Kolotilin et al. (2021). For convenience, I summarize its properties in

the following proposition.

Proposition 2.4.2. Assume Assumption 2.4.1 holds. For a non-pricing EG seller, an upper-

censorship signal with threshold η∗E is optimal, where η∗E is the unique solution to ΓE(η) = 0.

Moreover, all optimal signals are outcome-equivalent to it.

The optimality condition ΓE(η∗E) = 0 implies that the secant of Jp over [η∗E , µ(η
∗
E)] is tangent

to Jp at µ(η∗E) (see Figure 2.3). Like the optimality condition Γ(η∗) = 0 for search goods, this

condition guarantees that a marginal deviation of the threshold is not profitable for the seller.

For search goods and experience goods respectively, let η∗S and η∗E denote the thresholds of

the non-pricing seller’s optimal upper-censorship signals. Under Assumption 2.4.1, comparing

the equilibrium information provisions boils down to comparing these two thresholds. Notice

that by Proposition 2.4.2, η∗E can be equivalently defined as the unique solution to ΓE(η) = 0.

Given the value of it, the following proposition provides conditions for comparing η∗S with η∗E :

Proposition 2.4.3. Assume Assumption 2.4.1 holds. We have:
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x
η∗E µ (η∗E)

Jp

J2
p

J1
p

J3
p

z (η∗E)η∗E + c

Figure 2.3: An illustration for the cases in Proposition 2.4.3(b). The red curves represent three

versions of Jp. Regardless of the version, the solid black line is tangent to Jp, which implies

ΓE(η∗E) = 0 and thus η∗E is the EG seller’s optimal threshold. The two dashed black segments

are parallel, which implies Γ(η∗E) = 0 when Jp = J2
p . As Jp shifts from J1

p to J3
p , its slope at

z(η∗E) decreases, and hence Γ(η∗E) shifts from negative to positive.

(a) If c ≥ µ(η∗E) − η∗E, then η∗S = η∗E and the equilibrium outcomes of the two types of goods

are the same.

(b) If c < µ(η∗E) − η∗E, then we have: (i) Γ(η∗E) < 0 ⇒ η∗S > η∗E; (ii) Γ(η∗E) = 0 ⇒ η∗S = η∗E;

(iii) Γ(η∗E) > 0 ⇒ η∗S < η∗E.

Since µ(·) and ΓE(·) depend on c only through FU−c, so does µ(η∗E) − η∗E . Thus given any

fixed FU−c, part (a) of the proposition applies when c is sufficiently large, while part (b) applies

otherwise.

Part (a) of Proposition 2.4.3 implies that if c is sufficiently large, then the equilibrium

outcome will be the same for the two types of goods. This is intuitive since when c is large, the

post-search information revealing will make no difference to the consumer’s optimal decisions as

I have discussed below Lemma 2.4.1. The discrepancy between the two types of goods should

hence disappear.

When c < µ(η∗E)− η∗E , the post-search information revealing does make a difference. In this

case, part (b) of Proposition 2.4.3 shows that the order between η∗S and η∗E is decided by the sign

of Γ(η∗E). To understand this, notice that according to my discussion in Section 2.3.3, Γ(η∗E)

reflects the SG seller’s profit from marginally changing the threshold from η∗E . If Γ(η∗E) > 0, a

decrease will be profitable; if Γ(η∗E) < 0, an increase will be profitable. The proof of Proposition

2.4.3(b) shows that this local analysis can be extended globally, which implies the result.

Figure 2.3 illustrates each case of Proposition 2.4.3(b). Notice when c < µ(η∗E)−η∗E , Lemma
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2.4.1 implies z(η∗E) > µ(η∗E) > η∗E + c.25 Thus Γ(η∗E) equals to the difference between the slope

of the secant of Jp over [η∗E , η
∗
E + c] and the slope of Jp at z(η∗E), which generally differs from

ΓE(η∗E) (= 0). In the figure, we can see that if Jp shifts from J1
p to J2

p and then to J3
p , Γ(η

∗
E)

will change from negative to zero and then to positive, which correspond to the three cases in

Proposition 2.4.3(b). This in particular suggests that given the portion of Jp over [η∗E , µ(η
∗
E)]

fixed, if its slope (density) turns low sufficiently fast after µ(η∗E), then we will have η∗S < η∗E . In

this case, the post-search information revealing of a search good will “crowd out” the seller’s

pre-search information provision.

2.4.3 Comparison for the Consumer Welfare

Above analyses have illustrated that the pre-search information in equilibrium may get either

better or worse after an experience good is turned into a search good. If it gets better (i.e.,

η∗S > η∗E), all consumers will certainly be better-off due to better information both before and

after search. If it gets worse (i.e., η∗S < η∗E), however, the welfare impact is unclear.

When Assumption 2.4.1 holds and η∗S < η∗E , Figure 2.4 illustrates that consumers with

different outside option values will be heterogeneously affected when we change an experience

good into a search good. It shows that consumers with relatively large U0, including those

with U0 + p ∈
[
µ(η∗E), z(η

∗
S)
)
, will be better-off.26 However, the opposite is true for those with

relatively small U0, including those with U0 + p ∈ (η∗S , η
∗
E + c]. For these consumers, the poorer

pre-search information will lead to too many additional inefficient searches, which makes them

worse-off despite the better post-search information available.

Now, a natural question to ask is whether it is possible for the total consumer welfare to

decrease when the product is turned into a search good. Proposition 2.4.4 below provides a

sufficient condition for this to happen. For tractability, I still focus on strictly unimodal Jp and

use rp to denote its mode over [
¯
u−c, ū−c]. I also assume the model primitives (FU , c, rp) satisfy

the following assumption.

Assumption 2.4.2. (FU , c, rp) satisfy:

(1) FU has a log-concave density fU over [
¯
u, ū].

25Under the EG seller’s optimal signal, the lowest value of U leading to the pooling signal realization is η∗
E + c,

which is strictly less than µ(η∗
E) here. Thus z(η

∗
E) > µ(η∗

E) by Lemma 2.4.1.
26I note that in the current situation, although η∗

S < η∗
E , we must have z(η∗

S) > µ(η∗
E) for the seller’s design

to be optimal. This means that search given the pooling signal realization must be more attractive when the
product is a search good. Its formal proof is provided in Appendix 2.C.4.
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η∗S

η∗E + cη∗E

µ (η∗E) z (η∗S) U0 + p

∆cs|U0

Figure 2.4: When Assumption 2.4.1 holds and η∗S < η∗E , the red curve represents the surplus

change of consumers with different U0 + p when the product is turned from an EG to an SG.

See Appendix 2.C.4 for the proof of its main qualitative properties.

(2) c < µ(rp)− rp.

(3) z(
¯
u− c) < rp < ū− c

Condition (1) is a mild condition on FU that is satisfied by many common distributions.

Condition (2) rules out the case of Proposition 2.4.3(a) so that the discrepancy between the

two types of goods truly matters. Condition (3) simplifies the discussion by ruling out corner

solutions for η∗E and η∗S .

Let csE and csS denote the equilibrium consumer surplus with experience goods and search

goods respectively. Given any (Fu, c, rp) satisfying Assumption 2.4.2, the following proposition

provides a condition regarding Jp’s behavior on the two sides of its mode rp that guarantees

csS < csE . As before, I define η0 as the smallest η such that z(η) surpasses rp, i.e., η0 :=

inf{η ∈ [
¯
u− c, ū− c] : z(η) ≥ rp}.

Proposition 2.4.4. For any (Fu, c, rp) satisfying Assumption 2.4.2 and constant κ > 0, there

exists ν > 0 such that: csS < csE if Jp satisfies Assumption 2.3.2 with its mode being rp and

(i) jp(rp + ν) < jp(η0); (ii) jp(η0) > κ
Jp(ū−c)−Jp(

¯
u−c)

ū−
¯
u .

The proposition implies that given any (Fu, c, rp) satisfying Assumption 2.4.2, we can find a

pair of κ and ν such that csS < csE as long as Jp is strictly unimodal and satisfies conditions (i)

and (ii). To understand these conditions, notice η0 < rp < rp+ν. Thus condition (i) holds when

jp drops sufficiently fast to the right of rp versus to the left of rp. This guarantees that the shape

of Jp is more aligned with J3
p in Figure 2.3 than with J1

p , which leads to η∗S < η∗E . Actually,

when ν is chosen to be small enough, the condition ensures that η∗S will be considerably less than

η∗E , which makes the deterioration of pre-search information significant. Condition (ii) holds

when jp is sufficiently “fat” to the left of its mode. It guarantees that there will be a significant
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¯
u− c ū− c x

jp

rp

Figure 2.5: Shape of jp tending to induce csS < csE .

proportion of consumers with U0+p lying in the region of [η∗S , η
∗
E+c]. As I have shown in Figure

2.4, such consumers have a net loss when the product changes into a search good. We thus have

csS < csE when their proportion is large. Overall, Proposition 2.4.4 suggests that the total

consumer surplus tends to be lower in the search goods case when jp has a moderately sloped

“left-hillside” and a steep “right-hillside” relative to its mode, as is illustrated in Figure 2.5.

My analyses have shown that policies turning experience goods into search goods may crowd

out the seller’s pre-search information provision and unintentionally reduce the total consumer

welfare. For such policies to truly benefit consumers, we may thus need to provide extra

incentives to sellers for offering pre-search information. In the context of online shopping,

for example, one possibility is to require the sellers to afford some shipping cost for returned

products.27 This makes wasteful searches also costly for the sellers and can thus incentivize

them to provide better pre-search information.

2.5 Comparative Statics

2.5.1 Discriminatory Information Provision

In this subsection, I consider comparative statics about the seller’s optimal information provision

with respect to the consumer’s outside option value distribution. The analysis reveals how the

seller may want to tailor different pre-search signals to different consumer groups, which forms

a kind of discriminatory information provision. Because I will maintain the strictly unimodal

assumption on the distribution of U0, Proposition 2.3.2 implies that I can focus on comparative

statics regarding the threshold of the seller’s optimal upper-censorship signal, which I denote

as η∗. The following proposition provides such a result for a non-pricing seller.

Proposition 2.5.1. Consider a non-pricing seller and assume Jp remains in the family of

27European Union indeed has such a policy (see footnote 22).
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distributions satisfying Assumption 2.3.2. Then η∗ (weakly) increases when Jp increases in the

likelihood-ratio order.

The proposition suggests that it is optimal for a non-pricing seller to provide better pre-

search information when the distribution of U0 + p is higher (in the likelihood-ratio order). If

the seller can distinguish consumers or consumer groups with different outside option value

distributions, this implies that he tends to impart different information to them accordingly.28

The analysis can also be extended to pricing sellers in a more concrete setting. Specifically,

assume that the consumer’s outside option value now consists of two parts: U0 =W + ϵ, where

W and ϵ are independent random variables. Let fW and fϵ denote the densities of W and ϵ

respectively. If the seller can observeW and tailor pre-search information and price accordingly,

then we have the following result on the seller’s discriminatory information provision:

Proposition 2.5.2. Assume fϵ is strictly log-concave. For both pricing and non-pricing sellers,

if he can observe W , then η∗ (weakly) increases in W .29

The proposition suggests that it is optimal for the seller to provide better information to

consumers with higher average outside option value. For an intuition on this, notice that

conditional on higher W + p, the distribution of U0 + p is located more to the right and is

thus convex over a larger portion of [
¯
u − c, ū − c], which makes the trade-off mentioned below

Proposition 2.3.1 favor a higher η∗. This implies the stated result for a non-pricing seller. For a

pricing seller, the proof shows that although the seller may want to charge a lower p when W is

higher, optimality requires W + p to be increasing in W . We thus also have η∗ to be increasing

in W .

The corollary below shows how discriminatory information provision affects consumer wel-

fare. For simplicity, it only considers the case of a non-pricing seller. This shuts down the

traditional effect of price discrimination and allows us to solely focus on informational discrim-

ination.

Corollary 2.5.1. Consider a non-pricing seller and assume:

(A1) fW is log-concave and fϵ is strictly log-concave;

28Another implication of Proposition 2.5.1 is that a non-pricing seller tends to provide better information when
p is higher. Formally, if U0 has a log-concave density, then U0 + p will increase in p in the likelihood-ratio order.
The proposition then implies η∗ to be increasing in p.

29This is in the strong set order if we have a pricing seller and the optimal design is not unique.
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(A2) argmaxx{
∫
fW (x− y)fϵ(y)dy} is a singleton.30

Then there exists w∗ such that when the seller can discriminate based on W , all consumers

with W < w∗ becomes (weakly) worse-off and all consumers with W > w∗ becomes (weakly)

better-off, compared to the case without discrimination.

The corollary suggests that the interests of consumers with different W are generally not

aligned. Those with higher W are more likely to benefit from discriminatory information pro-

vision, while the opposite is true for those with lower W . A particular implication of this is

that a consumer with high W may have incentive to voluntarily share it with the seller (e.g.,

by choosing a low privacy setting). Since this will help the seller to also identify those with

lower W , it can lead to unraveling of W and harm consumers with lower average outside option

values.31

As the discriminatory information provision has different welfare implications for different

consumers, a natural question is then what its effect on total consumer welfare is. The answer

to this is ambiguous and generally depends on the curvatures of the value distributions. If

the CDF of W + ϵ is convex over the support of U − c, the seller will provide full information

without discrimination. Hence allowing discrimination will merely harm consumers with low

W . If the CDF of W + ϵ is concave over [
¯
u − c, ū − c], the seller will provide no information

without discrimination. Then discrimination will only help by allowing some consumers with

high W to receive better information.

I conclude this subsection with a note on the related literature. Since higher outside option

value is equivalent to lower inside option value, the result in Proposition 2.5.2 can also be inter-

preted as that a seller with lower product quality tends to provide better pre-search information.

Anderson & Renault (2013) draw a similar lesson in their Appendix B.32 My result extends and

refines theirs in two ways. First, I allow for ex-ante heterogeneous consumers; second, I provide

a detailed comparative statics on the optimal signal threshold, while they only concern whether

any threshold information will be provided.

30These are satisfied, for example, when W and ϵ are normally distributed.
31Such an effect is well-recognized for price discrimination (e.g., Acquisti et al. (2016) page 453).
32Also related are earlier papers including Lewis & Sappington (1994), Sun (2011) and Bar-Isaac et al. (2010).

These papers only consider experience goods and restricted information structures.
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2.5.2 The Effect of Changing Search Cost

Technological developments can significantly reduce a consumer’s cost in accessing products.

For examples, modern means of transportation make it easier to visit physical stores; advanced

logistics systems make product shipping cheaper in online shopping; faster internet connection

reduces the time needed for loading digital contents. These all help to reduce a consumer’s

search cost in various contexts.

The following proposition describes the effect of changing search cost with a non-pricing

seller.

Proposition 2.5.3. Consider a non-pricing seller and assume the following:

(A1) Jp admits a continuous density that is strictly quasi-concave over (−∞, ū].33

(A2) 1− Fu is log-concave.

Then, when the search cost c decreases, we have:

(a) The seller’s optimal upper-censorship signal will become less informative.

(b) A consumer with any outside option value will become better-off.

When the product price is fixed and the regularity conditions hold, the proposition shows

that the consumer welfare will unambiguously increase when the search cost drops, although

this gain from lower search cost will be partially offset by coarser pre-search information. This

holds not only for consumers as a whole, but also for each individual consumer given her realized

outside option value.

A natural question is how the result will change if we have a pricing seller who can adjust

his price accordingly when the search cost changes. The general answer to this is ambiguous,

which depends on the range of search cost being considered and the detailed shapes of the value

distributions. In particular, lower search cost may lead to better pre-search information but

lower total consumer welfare because the seller charges a higher price.34

33If one considers search costs less than some value c̄, this only needs to hold over [
¯
u− c̄, ū].

34As has been noticed by Anderson & Renault (2006), when the search cost decreases, the seller’s optimal
price can increase faster than how the search cost changes. With ex-ante heterogeneous consumers in my setting,
this especially hurts the “infra-marginal” consumers with low outside option values and can thus lead to lower
consumer surplus. A concrete example is available upon request.
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2.6 Information Provision by Competing Sellers

In this section, I turn to consider multiple sellers and study the effect of competition on equi-

librium information provision.

2.6.1 The Model

Consider a discrete choice model with horizontally differentiated products. There are N sellers,

each of whom sells a product with zero marginal cost. I call the product sold by seller i as

product i. There is a (representative) consumer, whose match value with product i is denoted

as Ui. Assume that {Ui}Ni=1 are independently drawn from a common distribution FU with

compact support [
¯
u, ū]. The consumer can consume one product and is assumed to have no

outside option for simplicity.

Because it is not harder to consider pricing sellers than non-pricing sellers, I will assume all

sellers are pricing sellers. The analysis for non-pricing sellers is analogous and will lead to the

same qualitative result. The game proceeds as follows:

1. Each seller i decides his price pi and designs a pre-search signal about Ui. These are done

by all sellers simultaneously and observed by the consumer.

2. {Ui}Ni=1 are (secretly) realized and the pre-search signal realizations {Si}Ni=1 are generated

to the consumer.

3. After observing {Si}Ni=1, the consumer starts a sequential search process as in Weitzman

(1979). Specifically, at any time she decides whether to keep searching. If so, she chooses

one of the products to search, pay the search cost c, and then learns the product’s match

value. If not, she chooses one of the products that have been searched before for purchase,

and the game ends.35

I will call the setting above the SG-environment. As in Definition 2.2.1, I will say a product

is an experience good (EG) if the consumer will receive no additional information after searching

it. The environment is an EG-environment if all products are experience goods and everything

else is the same as above. In particular, the consumer still needs to pay the search cost c in

order to buy any product.

35As is standard in the literature, I assume that a product must be searched before purchase and it is free for
the consumer to recall an earlier searched product for purchase.
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2.6.2 Equilibrium Definitions

For any i, I use Zi to denote the Pandora’s index of the consumer’s posterior belief on Ui after

observing Si. The following lemma characterizes the consumer’s consumption outcome, where

part (a) has been discovered in several papers (Kleinberg et al., 2016; Armstrong, 2017; Choi

et al., 2018) and part (b) is trivial to see.

Lemma 2.6.1. We have the following results:

(a) In the SG-environment, the consumer will buy from a seller with the highest Ui ∧Zi − pi.

Her expected surplus is E[maxi{Ui ∧ Zi − pi}].

(b) In the EG-environment, the consumer will buy from a seller with the highest E[Ui−c|Si]−

pi. Her expected surplus is E[maxi{E[Ui − c|Si]− pi}].

Let Gi and Hi denote the distributions of Ui ∧Zi and E[Ui − c|Si] respectively. The lemma

implies that in the SG-environment (resp., EG-environment), {(Gi, pi)}Ni=1 (resp., {(Hi, pi)}Ni=1)

is sufficient in determining the equilibrium outcomes. We can thus equivalently consider each

seller i’s decision as choosing the pair of (Gi, pi) in the SG case and choosing (Hi, pi) in the EG

case.

Given {(Gk, pk)}k ̸=i with {Gk : k ̸= i} being continuous, seller i’s best response problem in

the SG-environment can be written as:

max
Gi, pi

{pi
∫ ∏

k ̸=i

Gk(x− pi + pk)dGi(x)} (2.15)

s.t. Gi is a feasible distribution of Ui ∧ Zi (2.16)

Notice the integration in the objective function measures P(Ui ∧ Zi − pi ≥ Uk ∧ Zk − pk, ∀k),

which equals to the sale probability of seller i by Lemma 2.6.1.

Similarly, given {(Hk, pk)}k ̸=i with {Hk : k ̸= i} being continuous, seller i’s best response

problem in the EG-environment can be written as:

max
Hi, pi

{pi
∫ ∏

k ̸=i

Hk(x− pi + pk)dHi(x)} (2.17)

s.t. Hi ⪯MPS FU−c (2.18)

I define the equilibria with the two types of goods as follows.
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Definition 2.6.1 (SG-equilibrium). A pair of (G∗, p∗) is a symmetric SG-equilibrium if G∗

is continuous and (G∗, p∗) solves optimization (2.15) – (2.16) given (Gk, pk) = (G∗, p∗) for all

k ̸= i.

Definition 2.6.2 (EG-equilibrium). A pair of (H∗, p∗) is a symmetric EG-equilibrium if H∗

is continuous and (H∗, p∗) solves optimization (2.17) – (2.18) given (Hk, pk) = (H∗, p∗) for all

k ̸= i.

I note that in the above definitions, I have focused on equilibria whereG∗ orH∗ is continuous.

This avoids the discussion of ties in the consumer’s choices, and also suffices for presenting my

results below.36

2.6.3 Equilibrium with a Large Number of Sellers

I assume the following regularity condition holds:

Assumption 2.6.1. FU admits a log-concave density fU , which is continuously differentiable

with bounded derivative over [
¯
u, ū]. Moreover, fU is strictly positive over [

¯
u, ū].37

Under Assumption 2.6.1, Theorem 3 in Hwang et al. (2019) shows that there is a unique

symmetric EG-equilibrium. Given any number of competing sellers N , I denote this equilibrium

as (Hex
N , pexN ). My main result in this section is the following:

Proposition 2.6.1. Under Assumption 2.6.1, there exists N∗ < ∞ such that for all N ≥ N∗,

(G∗, p∗) = (Hex
N , pexN ) is a symmetric SG-equilibrium when there are N competing sellers.

The proposition suggests that when the number of competing sellers is sufficiently large, the

distribution of Ui∧Zi in the SG-environment will be the same as the distribution of E[Ui−c|Si]

in the EG-environment, and the product prices in the two environments will also be the same.

By Lemma 2.6.1, this implies that the purchase outcome, sellers’ profits and consumer welfare

will all be the same in the two environments. Actually, the proposition’s proof shows that when

N is large, any equilibrium profile of signals in the EG-environment also serves as an equilibrium

profile of signals in the SG-environment. Under these signals, Zi ≤ Ui almost surely for all i,

36Requiring H∗ to be continuous in the EG-equilibrium is actually without loss of generality because Hwang
et al. (2019) shows that it holds in any symmetric equilibrium with EG.

37The assumption that fU is strictly positive over [
¯
u, ū] is not crucial for my results. However, it allows me to

directly refer to certain results in Hwang et al. (2019), who make such kind of assumption. Details on this are
available upon request.
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and thus the consumer will always purchase from the first seller being searched by the Pandora’s

rule. The discrepancy between the two types of environments therefore vanishes when there is

sufficient competition among sellers.

In the EG-environment, Hwang et al. (2019) shows that the equilibrium information will

converge to full information when the number of competing sellers goes to infinity. The following

corollary of Proposition 2.6.1 extends this result to the SG-environment.

Corollary 2.6.1. Assume Assumption 2.6.1 holds. For any ϵ > 0, there exists Nϵ < ∞ such

that for all N ≥ Nϵ: there exists a symmetric SG-equilibrium in which G∗(x) = FU−c(x) for all

x ≤ ū− c− ϵ.

The corollary implies that when the number of competing sellers goes to infinity, the equi-

librium distribution of Ui ∧ Zi will converge to FU−c and hence the equilibrium pre-search

information will converge to full information. This suggests that strong competition leads to

informational efficiency also for search goods.

I note that Proposition 2.6.1 and Corollary 2.6.1 only consider one symmetric equilibrium

for search goods. Although I conjecture that the symmetric equilibrium will be unique when N

is large, showing this formally is beyond the scope of this paper.38 The main difficulty is that

without a complete and simple characterization for the feasible set of Gi, it is hard to derive

meaningful necessary optimality conditions for the best response problem (2.15) – (2.16), which

are needed to establish the equilibrium uniqueness.

2.6.4 Discussion: Equilibrium with a Small Number of Sellers

I have studied the case with a monopoly seller and the case with a large number of competing

sellers. The remaining question is what will happen with a small number of sellers. One may

guess that the equilibrium signal informativeness will be in the middle of the two extreme cases.

Unfortunately, however, a formal analysis for this is difficult.

Similar to what has been done in the proof of Proposition 2.6.1, one tentative approach is to

first consider a “relaxed game”, where each seller chooses Gi only subject to the two constraints

in the Relaxed Problem (2.4) – (2.6). After deriving the equilibrium for this relaxed game, one

can check whether the equilibrium Gi can be induced by some signal. If so, this will indeed

38I have the conjecture because of the similarity between the two types of goods and that we do have equilibrium
uniqueness in the EG-environment.
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be an equilibrium of the original game. The main difficulty is that there is no easy sufficient

condition to show a distribution is inducible for Ui ∧ Zi. Throughout the paper, I have been

showing this by explicitly constructing the underlying signal. However, such a construction

is typically difficult when Gi has a degree of complexity that one must face in the competing

environment. I thus leave this analysis for future studies.

2.7 Additional Discussions

2.7.1 Comparison with Anderson & Renault (2006)

As is mentioned in the introduction, Anderson & Renault (2006) studies a similar setting as

mine while assuming that the consumers are ex-ante homogeneous without private information.

Under this assumption, they solve the optimal signal and show that it suffices for the seller

to provide threshold information, which just informs the consumer whether her match value is

above certain threshold.

My analyses in Section 2.3 partially extend their result that the optimal design involves

threshold information to the situation where the consumers’ outside option values are private

and admit a unimodal distribution. Unlike in Anderson & Renault (2006), however, the optimal

signal in my setting typically also requires fully revealing match values below the threshold,

especially when the distribution of U0 is strictly unimodal. To understand this discrepancy,

let U∗ denote the threshold match value under the optimal design. In Anderson & Renault

(2006), U0 is common for all consumers and we have U0 > U∗ − c − p for sure. Thus once a

consumer has learned her match value is below U∗, she will not search the product anyway.

Providing additional below-threshold information is therefore useless. In my setting, however,

U0 has a non-degenerate distribution and typically some consumers will have U0 < U∗ − c− p.

Providing additional below-threshold information allows these consumers to tell how far their

match values are below U∗, and can thereby alter their decisions. If the CDF of U0 is strictly

convex below U∗−c−p, which is always the case under the strict unimodal assumption on U0, this

will indeed increase these consumers’ total purchase probability in light of my discussion right

below Proposition 2.3.1. Thus finer below-threshold information can attract more consumers

with relatively low outside option values into purchase.
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2.7.2 Incentive for Multi-Stage Information Provision

I have been studying situations where the seller controls the consumer’s pre-search information,

while many earlier studies reviewed in the introduction have focused on cases where the seller

controls the consumer’s post-search information. A natural question is then what if the seller

can control information at both stages.

There is a simple answer to this question: the seller never benefits from multi-stage infor-

mation provision. As is mentioned in Section 2.4, an SG seller’s pre-search design problem is

more constrained than the EG seller’s. This implies that the seller is weakly better-off when the

consumer cannot receive additional information after search. Thus even if the seller can control

both pre-search and post-search information, it is optimal for him to only provide information

at the pre-search stage. The equilibrium outcome will hence be identical to that with an EG

seller.

2.7.3 Incentive to Subsidize Search

I have been assuming that the seller cannot incentivize consumer search by directly subsidizing

it. An interesting question is how the equilibrium outcome may change if we allow such subsi-

dization. When the distribution of outside option value is unimodal and the seller is a pricing

seller, a short answer to this is available: the seller has no incentive to subsidize search, and

thus the equilibrium outcome will remain unchanged. A detailed analysis for this is provided

in Appendix 2.A.3.

2.7.4 Multimodal Outside Option

Most of my analyses have relied on the unimodal assumption on the consumer’s outside option

value distribution. What if we go beyond this assumption? Although my relaxed problem

approach is not guaranteed to find the seller’s optimal design in that case, one can still try the

following procedure: (1) solving the Relaxed Problem (2.4) – (2.6); (2) constructing a signal

that implements the Relaxed Problem’s solution. If the second step is feasible, then the signal

constructed will be optimal. In Appendix 2.A.4, I discuss when this procedure works and

provide an analytical example. It is shown that the optimal signal can involve multiple pooling

and revealing intervals, which is more complex than under the unimodal assumption.
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2.8 Concluding Remarks

In this paper, I have examined the optimal pre-search information provision by seller(s) for

search goods. The fact that the consumer can inevitably learn her match value after search

significantly complicates the design problem compared to its experience goods counterpart. To

overcome the challenge, a relaxed problem approach has been developed, which not only solves

the optimal design under certain regularity conditions while allowing for ex-ante heterogeneous

consumers, but also brings out the key similarity and dissimilarity between information designs

for the two types of goods.

The optimal design is fully characterized when the consumer’s outside option value distri-

bution is unimodal, which features a simple upper-censorship structure. This partially extends

the result in Anderson & Renault (2006) that the optimal design involves threshold informa-

tion, but also contrasts with it by showing that the optimal design typically also requires fully

revealing below-threshold information. Based on the main characterization, several applications

are further considered. These include studies on (1) comparison between search goods and ex-

perience goods, (2) discriminatory information provision, (3) the effect of reduction in search

cost and (4) competition by multiple sellers. In some of these applications, my approach has

allowed existing results of experience goods to be qualitatively extended to search goods.

Many research questions still remain open. Examples include how to solve the optimal

design with multimodal outside option in general, and how to characterize the equilibrium

with a small number of competing sellers. These probably require sharper characterizations for

the feasible set of the effective-search-value distribution. My lemmas in Section 2.3.1 and the

relaxed problem approach can be considered as the starting point for this more general research

agenda.

The paper’s setting can also be generally understood as having a sender persuading a receiver

to take certain action that involves two costly steps, after the first of which the receiver will

inevitably learn additional information and can choose to quit. This kind of environment is very

common in practice. For example, one can consider an entrepreneur persuading an investor to

finance a project involving two phases, before the second of which the investor can choose

whether to continue funding based on the information revealed in the first phase. One may find

my approach also useful in such applications.



88

Appendix

2.A Additional Results and Discussions

2.A.1 Tentative existing approaches to the seller’s problem

As is mentioned in the introduction, the first moment of the consumer’s posterior belief does not

suffice for deciding the purchase outcome. In fact, with continuous U0, the sender’s objective

function must depend on infinitely many moments of the posterior belief. This makes the

approaches in Dworczak & Martini (2019) and Dworczak & Kolotilin (2019) hard to apply.

Another tentative approach is the concavification method in Kamenica & Gentzkow (2011). As

is well known, this method is hardly tractable unless U takes no more than three values, which

is very restrictive in the current context. In particular, the clean signal structures derived in

this paper and Anderson & Renault (2006), like the threshold structure, would not be available

if U only takes a few discrete values. A third approach is the linear programming approach

in Kolotilin (2018), which handles receiver private information. With this approach, one will

have to consider an optimization over the joint distribution of (U,Z), which turns out to be

very challenging. A fourth approach is to draw upon a result in Guo & Shmaya (2019) and

transform the problem into a nonlinear optimization over some thresholds as in their Section 4.

Unless one assumes U0 takes only finite values, the optimization will be over infinite-dimensional

functions. Even if U0 takes finite values, it is still hard to derive semi-analytical solution for

such a non-linear optimization.

2.A.2 SG vs. EG with a Pricing Seller

In Section 2.4, I have shown that with a non-pricing seller, turning an experience good into

a search good may unintentionally crowd-out the seller’s pre-search information provision and

decrease the total consumer welfare. With a numerical example, I show that these can also

happen with a pricing seller below.

Assume c = 0.1, U ∼ Uniform[0, 1] and U0 has an approximate skew-normal distribution

(Ashour & Abdel-hameed, 2010). Specifically, U0 has density:

j(x) = 2ϕ
(x− ξ

0.3

)
F
(
− 8× x− ξ

0.3

)
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Figure 2.6: j(·) in the example of Appendix 2.A.2.

Product type η∗ Equilibrium Price Consumer Surplus
Experience Goods 0.284 0.387 0.0400
Search Goods 0.273 0.414 0.0366
% Change -3.89 6.93 -8.33

Table 2.1: Equilibrium outcomes in the example of Appendix 2.A.2.

where ϕ is the standard normal density; F is defined in equation (2.1) in Ashour & Abdel-

hameed (2010); ξ is chosen such that the mean of U0 is normalized to zero. The density of U0

is plotted in Figure 2.6.

The comparison for equilibrium outcomes of the two types of goods is summarized in Table

2.1. As one can see, when the product turns into a search good, the threshold of the seller’s

optimal upper-censorship signal (η∗) and the total consumer surplus both drop. Moreover,

the consumer welfare decreases due to not only poorer pre-search information, but also higher

product price.

2.A.3 Incentive for Subsidizing Search

In this appendix, I show a pricing seller has no incentive to subsidize the consumer’s search.

Given any original product price, consider two strategies of the seller:

A. Offer a subsidy y > 0 per search.

B. Give no search subsidy, but offer a price discount y for the product.
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Without loss of generality, assume y is less than the original product price. Then, we have the

following observation:

Proposition 2.A.1. Assume J is unimodal (i.e., Assumption 2.3.3 holds). A pricing seller’s

maximal profit under strategy A is lower than that under strategy B.39

The proposition implies that subsidizing for search is always an inferior option for the seller

than directly lowering the product price. Two intuitions are underlying this result. First,

given any purchase probability, strategy A is more costly to implement than strategy B since it

offers subsidy not only to those who purchase, but also to those who search without purchase.

Second, by making search cheaper, strategy A weakens a consumer’s reliance on pre-search

information. This makes it less effective to manipulate consumer behavior by controlling the

pre-search information and thus decreases the maximal purchase probability.

2.A.4 Multimodal Outside Option

When Jp is multimodal over [
¯
u−c, ū−c], my results about the seller’s optimal design in Section

2.3.3 does not apply. In this case, one can try the following approach for solving the non-pricing

seller’s optimal signal: (1) solving the Relaxed Problem (2.4) – (2.6); (2) constructing a signal

that implements the Relaxed Problem’s solution. If the second step is possible, then the signal

constructed will be optimal.

Let G∗
RP denote a solution to the Relaxed Problem. Let ẑ(a, b) be the Pandora’s index of

the posterior belief on U after learning U − c ∈ [a, b]. An important case where the above

procedure works is when G∗
RP features a monotone-partitionable structure.

Definition 2.A.1. Distribution G is called monotone-partitionable if there exists ({si}ni=0,

{ηi}ni=0) such that
¯
u− c = s0 < ... < sn = ū− c; si ≤ ηi ≤ si+1 ∀i; and

G(x) =



FU−c(x) si ≤ x < ηi

FU−c(ηi) ηi ≤ x < (ηi + c) ∧ ẑ(ηi, si+1)

FU (x) (ηi + c) ≤ x < ẑ(ηi, si+1)

FU−c(si+1) ẑ(ηi, si+1) ≤ x ≤ si+1

(2.19)

39This holds strictly as long as there will be some search without purchase under strategy A.
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With a similar argument as in the proof of Lemma 2.B.2 (in Appendix 2.B.3), it is easy

to see that if G∗
RP is monotone-partitionable, it can be induced by a monotone-partitioning

signal that fully reveals U − c ∈ [si, ηi] ∀i, and pools U − c ∈ [ηi, si+1] separately for each i.

Intuitively, such a signal first partitions net-match-utilities into subintervals {[si, si+1]}ni=1, and

then imposes an upper-censorship signal on each of these subintervals. Thus, if the Relaxed

Problem turns out to have a monotone-partitionable solution, one can conclude that it is indeed

inducible and the optimal signal can be the monotone-partitioning signal described above.

In the rest of this appendix, I consider a particular situation where the Relaxed Problem

indeed features a monotone-partitionable solution. This both illustrates how the procedure

above works and shows that when Jp is not unimodal, the optimal signal can involve more

complicated structure than upper-censorship.40

Assume the following assumption holds:

Assumption 2.A.1. Jp admits a continuous density jp over [
¯
u− c, ū− c]. There exist r1 and

r2 (r1 < r2) in (
¯
u − c, ū − c) such that jp(·) is strictly increasing on [

¯
u − c, r1] and [r2, ū − c],

and is strictly decreasing on [r1, r2].

Further assume for now that there exists η∗ ∈ [
¯
u − c, r1] and ξ∗ ∈ [r2, ū − c] such that

ẑ(η∗, ξ∗) ∈ [r1, r2] and:

Jp
(
(η∗ + c) ∧ ẑ(η∗, ξ∗)

)
− Jp(η

∗)

(η∗ + c) ∧ ẑ(η∗, ξ∗)− η∗
= jp

(
ẑ(η∗, ξ∗)

)
=
Jp(ξ

∗)− Jp(ẑ(η
∗, ξ∗))

ξ∗ − ẑ(η∗, ξ∗)
(2.20)

Figure 2.7 plots Jp satisfying Assumption 2.A.1 with (η∗, ξ∗) satisfying condition (2.20). Intu-

itively, the condition requires that the two black secants of Jp plotted in the graph have the

same slope, which is equal to the slope of Jp at ẑ(η∗, ξ∗).

Then a solution to the Relaxed Problem (G∗
RP ) turns out to be monotone-partitionable as

in Definition 2.A.1, with n = 2, s0 =
¯
u − c, η1 = η∗, s1 = ξ∗ and η2 = s2 = ū − c. As the

discussion earlier suggests, this G∗
RP can be induced by a monotone-partitioning signal that

fully reveals net-match-utilities in [
¯
u− c, η∗]∪ [ξ∗, ū− c] and pools the rest in the middle. Thus

G∗
RP is indeed feasible for the seller, and the signal inducing it is optimal.

To check that G∗
RP suggested above indeed solves the Relaxed Problem, one can apply

Theorem 2.3.1. Namely, one can find a convex function v(·) and an increasing function ρ(·)

40More examples are available upon request.
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Jp

xū−cξ∗ẑ(η∗, ξ∗)η∗
¯
u−c

(a) Case 1: ẑ(η∗, ξ∗) ≤ η∗ + c

¯
u−c η∗ η∗+c ẑ(η∗, ξ∗) ξ∗ ū−c x

Jp

(b) Case 2: ẑ(η∗, ξ∗) > η∗ + c

Figure 2.7: Jp(·) satisfying Assumption 2.A.1 with (η∗, ξ∗) satisfying (2.20). The red curve is

Jp; the black segments are secants of Jp with common slope jp(ẑ(η
∗, ξ∗)).

¯
u−c η∗ ẑ(η∗, ξ∗) ξ∗ ū−c x

Jp, v, v + ρ

(a) Case 1: ẑ(η∗, ξ∗) ≤ η∗ + c

Jp, v, v + ρ

xū−cξ∗ẑ(η∗, ξ∗)η∗+cη∗
¯
u−c

(b) Case 2: ẑ(η∗, ξ∗) > η∗ + c

Figure 2.8: Graphical Check of Optimality Conditions for (G∗
RP , v, ρ). The red curve is Jp; the

solid blue curve is v + ρ; the dashed blue curve is v; the orange area on x-axis is the support

for G∗
RP .

such that (G∗
RP , v, ρ) satisfies conditions (C1) – (C4) in Theorem 2.3.1. Figure 2.8 gives a

graphical illustration for this. The fact that conditions (C1) and (C2) hold is evident from the

graph (notice ρ(·) is represented by the difference between the solid blue curve and the dotted

blue curve). (C4) holds since G∗
RP is indeed inducible and thus satisfies the constraints. To

check (C3), notice that: (1) over regions where v(·) is strictly convex, G∗
RP equals to FU−c; (2)

over the region where ρ(·) is strictly increasing, G∗
RP equals to FU . Given that G∗

RP satisfies

the constraints, these imply that (C3) indeed holds. (A detailed proof for this is similar to that

for Proposition 2.3.1. See Observation (4) in Appendix 2.B.3 (Step 3).)

Up to now, I have been assuming the existence of (η∗, ξ∗) such that ẑ(η∗, ξ∗) ∈ [r1, r2] and

(2.20) holds. Actually, when such η∗ and ξ∗ do not exist, one can still derive the optimal signal

by solving the Relaxed Problem, but just ends up with a simpler signal structure, which can

be thought of as a corner solution. In particular, the optimal signal can feature either upper-
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censorship or lower-censorship (i.e., it pools values below a threshold and fully reveals values

above the threshold). In general, as long as Assumption 2.A.1 holds, the Relaxed Problem

always has a monotone-partitionable solution, and the seller’s optimal signal can be found with

the above procedure.

2.B Proofs for Section 2.3

2.B.1 Proof for Lemma 2.3.1

Proof. First notice by the definition of Pandora’s index (2.1), we have E[(U − Z)+ − c|S] = 0

for any signal realization S. Since (U − Z)+ = U − U ∧ Z, we have E[U − c|S] = E[U ∧ Z|S]

(i.e., the posterior mean of net-match-utility and the effective-search-value are equal).41

Next, I show that conditioning on any signal realization S, the conditional distribution of

U ∧Z single crosses that of U − c from below. To see this, given any S, let zS be the Pandora’s

index of posterior belief ϕ(·;S). Then, for any u < zS , we have:

P(U ∧ Z ≤ u|S) = P(U ∧ zS ≤ u|S) = P(U ≤ u|S) ≤ P(U − c ≤ u|S)

For any u ≥ zS , we have:

P(U ∧ Z ≤ u|S) = P(U ∧ zS ≤ u|S) = 1 ≥ P(U − c ≤ u|S)

Together with the observation E[U − c|S] = E[U ∧ Z|S] above, this single crossing property

implies that U ∧ Z is MPC of U − c conditional on S. Then the result that U ∧ Z is MPC of

U − c follows because MPC is preserved under mixture. (To see this, just notice for any convex

function v(·), E[v(U ∧ Z)|S] ≤ E[v(U − c)|S] ⇒ E[v(U ∧ Z)] ≤ E[v(U − c)].)

To see U ∧ Z = U − c under fully revealing signal, take ϕ = δU into (2.1), where δU is the

Dirac measure at U . It is easy to derive zδU = U − c then. Q.E.D.

2.B.2 Proof for Theorem 2.3.1

Proof. For the first claim (the part before ”Moreover”), let distribution G, convex function v

and increasing function ρ satisfy all the conditions. Let Ĝ be another distribution that satisfies

41Throughout my proofs, the (in)equalities involving conditional expectation or Z are understood as holding
almost surely when appropriate.
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constraints (2.5) and (2.6). We have:

∫
Jp(x)dG(x)

=

∫
[Jp(x)− v(x)− ρ(x)]dG(x) +

∫
v(x)dG(x) +

∫
ρ(x)dG(x)

=

∫
[Jp(x)− v(x)− ρ(x)]dG(x) +

∫
v(x)dFU−c(x) +

∫
ρ(x)dFU (x)

≥
∫
[Jp(x)− v(x)− ρ(x)]dĜ(x) +

∫
v(x)dĜ(x) +

∫
ρ(x)dĜ(x)

=

∫
Jp(x)dĜ(x)

The second equality is because G satisfies the complementary-slackness condition (C3). For the

inequality in fourth line, notice it holds for each term on the two sides. Specifically,

(1) Since Ĝ is MPC of FU−c, its support is a subset of [
¯
u − c, ū − c]. Then by condition

(C2), we know
∫
[Jp(x)− v(x)− ρ(x)]dĜ(x) ≤ 0 =

∫
[Jp(x)− v(x)− ρ(x)]dG(x).

(2) v being convex over [
¯
u − c, ū − c] and Ĝ ⪯MPS FU−c imply that

∫
v(x)dFU−c(x) ≥∫

v(x)dĜ(x).

(3) ρ being increasing on [
¯
u−c, ū] and Ĝ ⪯FOD FU imply that

∫
ρ(x)dFU (x) ≥

∫
ρ(x)dĜ(x).

Thus, the inequality above holds. Since Ĝ is an arbitrary feasible distribution, I conclude

that G is optimal.

For the second claim (the part after ”Moreover”), notice for Ĝ to be another optimal solution,

we need the inequality above to hold as equality. Based on observations (1) – (3) above, this

requires equality to hold for each term. Specifically, we need:

First,
∫
[Jp(x)− v(x)− ρ(x)]dĜ(x) =

∫
[Jp(x)− v(x)− ρ(x)]dG(x) = 0. Since Jp(x)− v(x)−

ρ(x) ≤ 0 on the support of Ĝ, this implies condition (C2) holds for Ĝ.

Second,
∫
v(x)dĜ(x) =

∫
v(x)dFU−c(x) and

∫
ρ(x)dĜ(x) =

∫
ρ(x)dFU (x). This means that

condition (C3) holds for Ĝ.

Thus, the triple (Ĝ, v, ρ) satisfies (C1) – (C4). Q.E.D.

2.B.3 Proof for Proposition 2.3.1

Since rmax
p = ū− c implies that Jp(·) is convex over [

¯
u− c, ū− c], part (a) is directly implied by

Lemma 2.3.1. I prove part (b) with the following three steps.
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Step 1: preliminaries

First, we need the following lemma regarding z(·):

Lemma 2.B.1. (a) ū− c > z(η) > η for η ∈ [
¯
u− c, ū− c); z(η) = η = ū− c for η = ū− c.

(b) z(·) is continuous and strictly increasing on [
¯
u− c, ū− c].

Proof. (a) The result for η = ū− c holds obviously by the definition of the Pandora’s index.

When η < ū − c, the definition of the Pandora’s index implies E[(U − z)+ − c|U − c ≥

η]|z=z(η) = 0. In contrast, E[(U − z)+ − c|U − c ≥ η]|z=η = E[(U − η)+|U − η ≥ c]− c =

E[U − η|U − η ≥ c]− c > 0, where the inequality is strict because P[U − η > c] > 0;

E[(U − z)+ − c|U − c ≥ η]|z=ū−c = E[(U − (ū− c))+ − c|U − c ≥ η] < E[(ū− (ū− c))+ −

c|U − c ≥ η] = 0, where the inequality is strict because P(ū > U ≥ η + c) > 0. Since

E[(U − z)+ − c|U − c ≥ η] is decreasing in z, these imply ū− c > z(η) > η.

(b) Suppose η1, η2 ∈ [
¯
u− c, ū− c] are such that η1 < η2 but z(η1) ≥ z(η2). Then by the result

of (a), we must have η1 < η2 < z(η2) ≤ z(η1) < ū− c. By the definition of the Pandora’s

index, we have:

E[(U − z(η1))+ − c|U − c ≥ η1] = 0 (2.21)

E[(U − z(η2))+ − c|U − c ≥ η2] = 0 (2.22)

The later implies that E[
(
(U − z(η2))+ − c

)
1{U−c≥η2}] = 0, where 1 denotes the indicator

function. This further implies that E[
(
(U − z(η2))+ − c

)
1{U−c≥η1}] < 0 because the event

{η2 > U − c > η1} has strictly positive probability and (U − z(η2))+ − c < 0 on it. Thus,

we have E[
(
(U − z(η2))+ − c

)
|U − c ≥ η1] < 0. Since z(η2) ≤ z(η1), this further implies

E[
(
(U − z(η1))+ − c

)
|U − c ≥ η1] < 0, which contradicts with (2.21). Therefore, we must

have η1 < η2 ⇒ z(η1) < z(η2).

To show the continuity of z(·), define ψ(z; η) :=
∫ ū
η+c[(x − z)+ − c]dFU (x). Then by the

definition of z(·), we must have ψ(z(η); η) = 0. Moreover, it is easy to see that the value

of z satisfying ψ(z; η) = 0 is unique when η < ū− c. Thus,

z(η) = argmax
z∈[

¯
u−c,ū−c]

−(ψ(z; η))2

for any η < ū− c. Because ψ(z, η) is continuous in (z, η) due to the assumption that FU is
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continuous, this implies that z(·) is continuous at any η ∈ [
¯
u− c, ū− c) by the Maximum

Theorem. To show it is also continuous at η = ū− c, just notice the results in (a) implies

limη↗ū−c z(η) = ū− c = z(ū− c).

Q.E.D.

Next, I provide the detailed formula of Gη, the distribution of U ∧ Z under an upper-

censorship signal with threshold η.

Lemma 2.B.2.

Gη(x) =



FU−c(x) x < η

FU−c(η) η ≤ x < (η + c) ∧ z(η)

FU (x) (η + c) ≤ x < z(η)

1 z(η) ≤ x

(2.23)

(The third piece vanishes if η + c ≥ z(η).)

Proof. Under the upper-censorship signal with threshold η, all match values with U − c < η

are fully revealed while the others are pooled together. Therefore, when U − c < η, we have

Z = U − c and thus U ∧ Z = U − c;42 when U − c ≥ η, we have Z = z(η) and thus U ∧ Z =

U ∧ z(η) ≥ (η + c) ∧ z(η). Therefore, we have:

� For x < η, U ∧ Z ≤ x if and only if U − c ≤ x. Thus Gη(x) = FU−c(x).

� For x ∈
[
η, (η + c) ∧ z(η)

)
, U ∧ Z ≤ x if and only if U − c ≤ η. Thus Gη(x) = FU−c(η).

� For x ∈
[
η + c, z(η)

)
, U ∧ Z ≤ x if and only if either U − c < η or U ∧ z(η) ≤ x. Since

z(η) > x ≥ η + c here, this is equivalent to having U ≤ x. Thus Gη(x) = FU (x).

� For x ≥ z(η), obviously U ∧ Z ≤ x for sure. Thus Gη(x) = 1.

Q.E.D.

Step 2: existence of such η∗ in Proposition 2.3.1(b)

Lemma 2.B.3. Under the assumptions in Proposition 2.3.1(b), there exists η∗ ∈ [η0, r
max
p ]

such that one of conditions (i) and (ii) is satisfied. Moreover, z(η∗) ≥ rmin
p for any such η∗.

Proof. I first show some basic properties of the function Γ and the set [η0, r
max
p ].

42To check this, notice z = u− c solves equation (2.1) when ϕ places probability 1 at u.
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By definition, Γ(η) =
Jp
(
(η+c)∧z(η)

)
−Jp(η)

(η+c)∧z(η)−η − jp
(
z(η)

)
. Since Jp(·), jp(·) and z(·) are all

continuous and z(η) > η (thus the denominator is non-zero) for any η < ū − c (by Lemma

2.B.1(a)), Γ(·) is continuous on [
¯
u− c, rmax

p ].

By definition, η0 = inf{η ∈ [
¯
u − c, ū − c] : z(η) ≥ rmin

p }. Because Lemma 2.B.1(a) implies

z(rmin
p ) ≥ rmin

p , we have η0 ≤ rmin
p and thus the set [η0, r

max
p ] is non-empty. Moreover, since

z(·) is continuous and increasing (Lemma 2.B.1 (b)), we have z(η) ≥ rmin
p for any η ≥ η0. This

verifies that the desired η∗ must satisfy z(η∗) ≥ rmin
p .

Now, I assume that no η∗ ∈ [η0, r
max
p ] satisfies condition (ii) and show that there then

must exist η∗ ∈ [η0, r
max
p ] satisfying condition (i). For this purpose, I show Γ(η0) ≤ 0 and

Γ(rmax
p ) > 0.

� Check Γ(η0) ≤ 0:

If η0 =
¯
u − c, then the assumption that no η∗ ∈ [η0, r

max
p ] satisfies condition (ii) directly

implies that Γ(η0) < 0.

If η0 >
¯
u − c, then by the continuity of z(·) we must have z(η0) = rmin

p and thus Jp is

convex over [η0, z(η0)]. This convexity implies Γ(η0) ≤ 0.43

� Check Γ(rmax
p ) > 0:

Since rmax
p < (rmax

p + c) ∧ z(rmax
p ) ≤ z(rmax

p ) by Lemma 2.B.1(a), Γ(rmax
p ) > 0 is implied

by the concavity of Jp(·) over [rmax
p , ū−c] and the strict concavity of it over [rmax

p , rmax
p +ϵ]

for some ϵ > 0.

These observations together with the continuity of Γ(·) imply that there exists η∗ ∈ [η0, r
max
p ]

s.t. Γ(η) = 0 by the Intermediate Value Theorem. Since condition (ii) does not hold for this η∗

by my assumption earlier, it must satisfy condition (i). Q.E.D.

Step 3: optimality of upper-censorship signal with threshold η∗

Proof. Pick any η∗ ∈ [η0, r
max
p ] satisfying one of the conditions (i) and (ii) in the proposition

(existence has been shown in Step 2). Then Γ(η∗) ≥ 0, where the inequality is strict only if

η∗ = η0 =
¯
u− c. It suffices to show Gη∗ solves the Relaxed Problem (2.4) – (2.6).

To ease notation, fixing an η∗, I denote z(η∗) as z∗ for short. Moreover, I use ℓ( · ; b, (x0, y0))

to denote an affine function with slope b passing point (x0, y0).

43To see this, notice Γ(η0) =
∫ (η0+c)∧z(η0)

η0
j(x)dx/

(
(η0 + c) ∧ z(η0) − η0

)
− j

(
z(η0)

)
≤∫ (η0+c)∧z(η0)

η0
j
(
z(η0)

)
dx/

(
(η0 + c)∧ z(η0)− η0

)
− j

(
z(η0)

)
= 0, where the inequality is because j(x) is increasing

on [η0, z(η0)].
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Define

v(x) =


Jp(x) x < η∗

ℓ
(
x; jp

(
z∗
)
,
(
(η∗ + c) ∧ z∗, Jp((η∗ + c) ∧ z∗)

))
x ≥ η∗

By construction, v follows Jp when x < η∗, is affine with slope jp(z
∗) when x ≥ η∗, and intersects

with Jp at x = (η∗ + c) ∧ z∗.

Define

ρ(x) =


0 x < (η∗ + c) ∧ z∗

Jp(x)− v(x) (η∗ + c) ∧ z∗ ≤ x ≤ z∗

Jp(z
∗)− v(z∗) x > z∗

Notice if η∗ + c ≥ z∗, then the second piece vanishes and ρ ≡ 0 (Jp(z
∗)− v(z∗) = 0 in this case

by definition of v). If η∗ + c < z∗, ρ equals to the difference between Jp and v over interval

[η∗ + c, z∗], and is constantly extended to regions above z∗ or below η∗ + c.

Now, it suffices to check that Gη∗ (whose formula is given in Lemma 2.B.2), v and ρ satisfy

the optimality conditions in Theorem 2.3.1. This is done by showing four observations below.

While the detailed proofs are abstract and tedious, I plot the key functions in Figure 2.9, which

serves as a graphical check for the optimality conditions. I highlight that by construction and

the conclusion in Lemma 2.B.3, we have η∗ ≤ rmax
p and z∗ ≥ rmin

p (i.e., η∗ is always on the

convex portion of Jp and z
∗ is always on the concave portion of Jp). This fact is used repeatedly

below.

Observation (1). v is convex over [
¯
u−c, ū−c]. Moreover, v(η∗) ≥ Jp(η

∗), which holds as equality

if η∗ >
¯
u− c.

Subproof. To show v(η∗) ≥ Jp(η
∗), just notice that

v(η∗) =ℓ
(
η∗; jp

(
z∗
)
,
(
(η∗ + c) ∧ z∗, Jp((η∗ + c) ∧ z∗)

))
=Jp((η

∗ + c) ∧ z∗)− jp
(
z∗
)(
(η∗ + c) ∧ z∗ − η∗

)
≥Jp((η∗ + c) ∧ z∗)−

(
Jp((η

∗ + c) ∧ z∗)− Jp(η
∗)
)
= Jp(η

∗)

where the inequality holds due to the condition
Jp
(
(η∗+c)∧z∗

)
−Jp(η∗)

(η∗+c)∧z∗−η∗ ≥ jp
(
z∗
)
, which is implied

by either of condition (i) and condition (ii). If η∗ >
¯
u−c, it must hold as equality (i.e., condition

(i) holds) and thus v(η∗) = Jp(η
∗).
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Jp, v, v + ρ

¯
u− c z(η∗) ū− c x

(a) η∗ =
¯
u− c and z(η∗) ≤ η∗ + c

Jp, v, v + ρ

¯
u− c z(η∗) ū− c xη∗

(b) η∗ =
¯
u− c and z(η∗) > η∗ + c

η∗+c

Jp, v, v + ρ

¯
u− c z(η∗) ū− c x

(c) η∗ >
¯
u− c and z(η∗) ≤ η∗ + c

Jp, v, v + ρ

¯
u− c z(η∗) ū− c xη∗ η∗+c

(d) η∗ >
¯
u− c and z(η∗) > η∗ + c

Figure 2.9: Graphical Check of Optimality Conditions for (Gη∗ , v, ρ). The red curve is Jp; the

solid blue curve is v + ρ; the dashed blue curve is v; the orange area on x-axis is the support

for Gη∗ .

Now I show convexity of v. If η∗ =
¯
u − c, convexity trivially holds since v is affine then.

Thus we only need to consider the case where η∗ >
¯
u−c and condition (i) holds (i.e., Γ(η∗) = 0)

. In this case, notice that both pieces of v are separately convex, and that v(η∗) = Jp(η
∗) shown

above implies continuity of v at η∗. Thus it suffices to show convexity around η∗. Specifically, we

need to show v′+(η
∗) ≥ v′−(η

∗), where v′+ and v′− denote v’s right and left derivatives respectively.

Consider two cases:

� (η∗+c)∧z∗ ≤ rmax
p . In this case, notice v′+(η

∗) = jp
(
z∗
)
=

Jp
(
(η∗+c)∧z∗

)
−Jp(η∗)

(η∗+c)∧z∗−η∗ ≥ jp(η
∗) =

v′−(η
∗), where the inequality is by convexity of Jp over [

¯
u− c, rmax

p ].

� (η∗ + c) ∧ z∗ > rmax
p . In this case, v′(x) = jp(z

∗) ≤ jp(x) ∀x ∈ [rmax
p , z∗) due to the

concavity of Jp over [rmax
p , z∗]. Since the affine part of v intersects Jp at (η∗ + c) ∧ z∗

by construction, this implies that v(x) ≥ Jp(x) for all x ∈ [rmax
p , (η∗ + c) ∧ z∗) and, in

particular, v(rmax
p ) ≥ Jp(r

max
p ).44 Since it has been shown that v(η∗) = Jp(η

∗), this

implies that v′+(η
∗) ≥ Jp(rmax

p )−Jp(η∗)

rmax
p −η∗ ≥ jp(η

∗) = v′−(η
∗), where the second inequality is

due to convexity of Jp over [
¯
u− c, rmax

p ].

44If Jp is strictly concave over [rmax
p , ū− c], then the inequalities hold strictly.
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□

Observation (2). ρ is (weakly) increasing.

Subproof. It suffices to consider the case η∗+c < z∗ and show that ρ is increasing over [η∗+c, z∗].

Notice for all x ∈
[
max{rmin

p , (η∗ + c)}, z∗
]
, we have

ρ′(x) = jp(x)− v′(x) = jp(x)− jp(z
∗) ≥ 0

where the inequality holds because Jp is concave over this region. Moreover, for all x ∈ [η∗ +

c, rmin
p ] (supposing rmin

p > η∗ + c), we have

jp(x) ≥
Jp
(
η∗ + c

)
− Jp(η

∗)

c
≥ jp(z

∗) = v′(x)

where the first inequality is due to convexity of Jp over [
¯
u− c, rmin

p ] and the second inequality

holds because Γ(η∗) ≥ 0 (recall that in the current case z∗ > η∗ + c). In sum, ρ′ = jp − v′ is

non-negative over [η∗ + c, z∗], and thus ρ is increasing.45 □

Observation (3). v(x)+ρ(x) ≥ Jp(x) over [
¯
u− c, ū− c], where equality holds for x ∈ [

¯
u− c, η∗)∪

[(η∗ + c) ∧ z∗, z∗]. If η∗ >
¯
u− c, equality also holds for x = η∗.

Subproof. The fact that equality holds when x ∈ [
¯
u − c, η∗) ∪ [(η∗ + c) ∧ z∗, z∗] is obvious by

construction of v and ρ. If η∗ >
¯
u − c, we also have v(η∗) + ρ(η∗) = Jp(η

∗) because ρ(η∗) = 0

and v(η∗) = Jp(η
∗) by Observation (1).

For x > z∗, by construction we have v(x) + ρ(x) = v(x) + Jp(z
∗)− v(z∗) = jp(z

∗)(x− z∗) +

Jp(z
∗) ≥ Jp(x), where the last inequality is due to concavity of Jp over [rmin

p , ū− c].46

For x ∈
[
η∗, (η∗ + c) ∧ z∗

)
, ρ(x) = 0 and thus it suffices to show v(x) ≥ Jp(x) over this

interval. v(η∗) ≥ Jp(η
∗) has been shown in Observation (1). Thus it suffices to consider

x ∈
(
η∗, (η∗ + c) ∧ z∗

)
. Consider two possibilities:47

� (η∗ + c) ∧ z∗ ≤ rmax
p . In this case, Jp is convex and v is affine over the interval. Thus the

desired result is implied by v(η∗) ≥ Jp(η
∗) and v

(
(η∗ + c) ∧ z∗

)
= Jp

(
(η∗ + c) ∧ z∗

)
.

45If Jp is strictly convex over [
¯
u − c, rmin

p ] and is strictly concave over [rmin
p , ū − c], then the corresponding

inequalities hold strictly and thus ρ is strictly increasing over [η∗ + c, z∗].
46The last inequality holds strictly if Jp is strictly concave over [rmin

p , ū− c].
47In both cases, if Jp is strictly convex over [

¯
u − c, rmax

p ] and is strictly concave over [rmax
p , ū − c], then the

same argument shows v(x) > Jp(x) over
(
η∗, (η∗ + c)∧ z∗

)
. When referring to the proof of Observation (1), also

refer to footnote 44.
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� (η∗ + c) ∧ z∗ > rmax
p . In this case, for x ∈ [rmax

p , (η∗ + c) ∧ z∗), it has been shown that

v(x) ≥ Jp(x) (see the last paragraph in the proof of Observation (1)). For x ∈ (η∗, rmax
p ),

the result holds because Jp is convex over [η∗, rmax
p ], v(η∗) ≥ J(η∗) and v(rmax

p ) ≥ J(rmax
p ).

□

Observation (4). Gη∗ , v and ρ satisfy condition (C3) in Theorem 2.3.1.

Subproof. �

∫
v(x)dGη∗(x) =

∫
v(x)dFU−c(x) holds because Gη∗ agree with FU−c over [

¯
u−

c, η∗) (see Lemma 2.B.2) and v is affine over [η∗, ū− c]. (Recall that Gη∗ ⪯MPS FU−c.)

� When η∗ + c ≥ z∗,
∫
ρ(x)dGη∗(x) =

∫
ρ(x)dFU (x) holds trivially since ρ ≡ 0. When

η∗ + c < z∗, we have:

∫
ρ(x)dGη∗(x)−

∫
ρ(x)dFU (x)

=

∫
[z∗,ū]

ρ(x)dGη∗(x)−
∫
[z∗,ū]

ρ(x)dFU (x)

=
(
Jp(z

∗)− v(z∗)
)((

1− lim
x↗z∗

Gη∗(x)
)
−
(
1− lim

x↗z∗
FU (x)

))
= 0

where the first equality holds because ρ(x) ≡ 0 for x ≤ η∗ + c and Gη∗ agrees with FU

over (η∗ + c, z∗); the second equality is because ρ(x) ≡ Jp(z
∗) − v(z∗) when x ≥ z∗; the

last line equals to zero because Gη∗ = FU on a left neighborhood of z∗ when η∗ + c < z∗

(see Lemma 2.B.2).

□

To sum up, we have:

� (v, ρ) satisfies (C1) by Observations (1) and (2);

� Gη∗ supports within [
¯
u − c, η∗] ∪ [(η∗ + c) ∧ z∗, z∗] when η∗ >

¯
u − c and supports within

[(η∗ + c) ∧ z∗, z∗] when η∗ =
¯
u − c (see Lemma 2.B.2). Thus (Gη∗ , v, ρ) satisfies (C2) by

Observation (3).

� (Gη∗ , v, ρ) satisfies (C3) by Observation (4).

� G∗
η satisfies (C4) since it is induced by a particular feasible signal (upper-censorship signal

with threshold η∗).

Thus, Gη∗ is indeed optimal for the Relaxed Problem, and the corresponding upper-censorship

signal is optimal.

Q.E.D.



102

2.B.4 Proof for Corollary 2.3.1

Proof. Part (a) is equivalent to Proposition 2.3.1(a). For part (b), if rmax
p = ū− c, then Jp is

also convex and thus affine on [
¯
u− c, ū− c]. Then the result is directly implied by Lemma 2.3.1.

If rmax
p < ū−c, it suffices to check that η∗ =

¯
u−c satisfies the conditions in Proposition 2.3.1(b).

Indeed, concavity of Jp implies rmin
p =

¯
u− c and thus η0 =

¯
u− c, so

¯
u− c is within [η0, r

max
p ].

Moreover, concavity of Jp directly implies Γ(
¯
u− c) ≥ 0 and thus condition (ii) holds. Q.E.D.

2.B.5 Proof for Proposition 2.3.2

Part 1: uniqueness of the optimal distribution of U ∧ Z and the optimal upper-

censorship signal

Proof.

Case 1: rp = ū− c

In this case, jp is strictly increasing over [
¯
u − c, ū − c] and G = FU−c is optimal for the

Relaxed Problem. Then, for any optimal distribution G∗ of the effective-search-value, we must

have:

0 =

∫
(
¯
u−c,ū−c]

Jp(x)dG
∗(x)−

∫
(
¯
u−c,ū−c]

Jp(x)dFU−c(x)

=
[
Jp(x)

(
G∗(x)− FU−c(x)

)]∣∣∣ū−c

¯
u−c

−
∫ ū−c

¯
u−c

[G∗(x)− FU−c(x)]jp(x)dx

= −
∫ ū−c

¯
u−c

[G∗(x)− FU−c(x)]jp(x)dx

= −
[( ∫ x

¯
u−c

[G∗(t)− FU−c(t)]dt
)
jp(x)

]∣∣∣ū−c

¯
u−c

+

∫
(
¯
u−c,ū−c]

(∫ x

¯
u−c

[G∗(t)− FU−c(t)]dt
)
djp(x)

=

∫
(
¯
u−c,ū−c]

(∫ x

¯
u−c

[G∗(t)− FU−c(t)]dt
)
djp(x)

(For any function h, h(x)|ba := h(b) − h(a).) In the first equality, point
¯
u − c is omitted from

the integrals because FU−c is atom-less and because of this, G∗ also puts zero probability at

¯
u − c to be a MPC of FU−c. The 2nd and 4th equalities are by integration by parts.48 The

3rd equality holds because G∗ ⪯MPS FU−c ⇒ supp{G∗} ⊂ supp{FU−c} and thus G∗(x) =

FU−c(x) for x =
¯
u − c or ū − c. The 5th equality holds because G∗ ⪯MPS FU−c implies that

48Integration by parts holds in the two equalities respectively because Jp(x) and
∫ x

¯
u−c

[G∗(t) − FU−c(t)]dt are

continuous in x. See Folland (1999) Theorem 3.36.
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¯
u−c[G

∗(t)− FU−c(t)]dt = 0 for x = ū− c.

Now, notice term
∫ x

¯
u−c[G

∗(t) − FU−c(t)]dt ≤ 0 for all x since G∗ ⪯MPS FU−c. As jp is

increasing, djp is a positive measure over (
¯
u− c, ū− c] and the above result implies

∫ x

¯
u−c[G

∗(t)−

FU−c(t)]dt = 0 for djp − a.e. x in (
¯
u− c, ū− c].

Suppose G∗(t0) > FU−c(t0) for some t0 ∈ [
¯
u − c, ū − c). Then by right-continuity we have

G∗(t) > FU−c(t) over some right-neighborhood of t0, denoted as I. Then over interval I,∫ x

¯
u−c[G

∗(t)−FU−c(t)]dt is strictly increasing in x. This implies that
∫ x

¯
u−c[G

∗(t)−FU−c(t)]dt ̸= 0

over some subinterval I ′ ⊂ I. Then we must have jp constant over I ′, which violates the

assumption that jp is strictly increasing. Similar argument also rules out the possibility that

G∗(t0) < FU−c(t0). Thus G
∗(t) = FU−c(t) for all t ∈ [

¯
u−c, ū−c). We also have G∗(ū−c) = 1 =

FU−c(ū − c) since supp{G∗} ⊂ supp{FU−c}. In conclusion, G∗ = FU−c is the unique optimal

solution.

Case 2: rp < ū− c

Let η∗ be an optimal threshold characterized in Proposition 2.3.1(b), and let v and ρ be the

corresponding functions defined in Section 2.B.3 (Step 3). I have shown that (Gη∗ , v, ρ) satisfies

all conditions in Theorem 2.3.1. Thus, by Theorem 2.3.1, if another distribution G∗ also solves

the Relaxed Problem (which is now necessary for it to be optimal), then (G∗, v, ρ) must also

satisfy all optimality conditions in Theorem 2.3.1. Then we have following observations:

Observation (1). G∗ has zero probability over
(
η∗, (η∗ + c) ∧ z∗

)
and (z∗, ū− c].

Subproof. By condition (C2) in Theorem 2.3.1, it suffices to show that v(x) + ρ(x) > Jp(x) for

x ∈
(
η∗, (η∗+c)∧z∗

)
∪ (z∗, ū−c]. This is proved by slightly modifying the proof of Observation

(3) in the proof of Proposition 2.3.1 (Step 3 in Appendix 2.B.3). See footnotes 46 and 47 for

details. (Notice that rmin
p = rmax

p = rp now under Assumption 2.3.2.) □

Observation (2). G∗(x) = FU−c(x) for x ∈ [
¯
u− c, η∗].

Subproof. Since G∗ ⪯MPS FU−c, we must have G∗(
¯
u − c) = FU−c(

¯
u − c) = 0 (by assumption,

FU−c is atomless). Thus it suffices to show the result assuming η∗ >
¯
u− c.

By condition (C3) in Theorem 2.3.1, we must have
∫
v(x)dG∗(x) =

∫
v(x)dFU−c(x). By two

steps of integration by parts (similar to the procedure in Case 1), this implies that

∫
(
¯
u−c,ū−c]

(∫ x

¯
u−c

[G∗(t)− FU−c(t)]dt
)
dv′(x) = 0
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and we thus have
∫ x

¯
u−c[G

∗(t) − FU−c(t)]dt = 0 for dv′ − a.e. x, where v′ denotes the right-

continuous (almost everywhere) derivative of convex function v, and dv′ is the positive measure

induced by it. As v(x) = Jp(x) for x ∈ [
¯
u − c, η∗], v′(x) = jp(x) is strictly increasing over

[
¯
u−c, η∗). Thus by similar argument as in Case 1, we have G∗(t) = FU−c(t) for all t ∈ [

¯
u−c, η∗).

Finally, consider the point η∗. Notice G∗(t) = FU−c(t)∀t ∈ [
¯
u − c, η∗) and FU−c being

continuous at η∗ imply that G∗(η∗) ≥ FU−c(η
∗) (otherwise G∗ must jump down at η∗, violating

its monotonicity). Suppose G∗(η∗) > FU−c(η
∗). Then by right-continuity G∗(x) > FU−c(x)

over a right-neighborhood of η∗. This implies that
∫ x

¯
u−c[G

∗(t)−FU−c(t)]dt > 0 for some x > η∗,

violating G∗ ⪯MPS FU−c. Thus G
∗(η∗) = FU−c(η

∗). □

Observation (3). If z∗ > η∗ + c, then G∗(x) = FU (x) for x ∈ [η∗ + c, z∗).

Subproof. Condition (C3) in Theorem 2.3.1 requires that
∫
ρ(x)dG∗(x) =

∫
ρ(x)dFU (x). This

implies that

0 =

∫
ρ(x)dG∗(x)−

∫
ρ(x)dFU (x)

= ρ(x)(G∗(x)− FU (x))
∣∣∣ū
¯
u−c

−
∫ ū

¯
u−c

[G∗(x)− FU (x)]dρ(x)

= −
∫ ū

¯
u−c

[G∗(x)− FU (x)]dρ(x)

where the integration by parts formula for the 2nd equality is valid because ρ is continuous by

construction. Since G∗(x) ≥ FU (x) by FOSD and ρ is increasing, we must have G∗(x) = FU (x)

for dρ − a.e. x in [
¯
u − c, ū]. By footnote 45, we know ρ is strictly increasing over [η∗ + c, z∗].

Thus G∗(x) = FU (x) for all x ∈ [η∗ + c, z∗) (using right-continuity of CDF). □

Together with the requirement that supp{G∗} ⊂ [
¯
u − c, ū − c] (since G∗ ⪯MPS FU−c), the

above observations pin down a unique formula for G∗, which is the same as Gη∗ . Finally, notice

that two upper-censorship signals with different thresholds necessarily lead to different G. Thus

the optimal upper-censorship signal is unique under Assumption 2.3.2. Q.E.D.

Part 2: uniqueness of the optimal joint distribution of (U,Z)

Proof. I first need a simple observation:
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Observation (4). Under any signal, we have: (i) E[U − c − U ∧ Z|Z] = 0 a.s.; (ii) P(U ∧ Z =

Z|Z) > 0 a.s.

Subproof. By definition of Z, we have E[U − c−U ∧Z|S] = E[(U −Z)+− c|S] = 0. This implies

(i) since Z is measurable w.r.t. S. Suppose (ii) does not hold. Then with positive probability

P(U ∧ Z = U |Z) = 1 and thus E[U − c− U ∧ Z|Z] = −c, which contradicts with (i). □

Given any signal inducing Gη∗ , I show two claims below.

Claim 1: On the event {U−c ≤ η∗}, Z = U−c almost surely (i.e., P(U−c ≤ η∗, Z ̸= U−c) = 0).

Notice under any signal inducing Gη∗ , for any t ≤ η∗ we have:

E[(U − c− t)1{U − c ≤ t}]

=E[(U ∧ Z − t)1{U ∧ Z ≤ t}]

=E[(U ∧ Z − t)
(
1{Z ≤ t}+ 1{Z > t ≥ U}

)
]

≥E[(U ∧ Z − t)1{Z ≤ t}] + E[(U − c− t)1{Z > t ≥ U}]

=E[(U − c− t)1{Z ≤ t}] + E[(U − c− t)1{Z > t ≥ U}]

=E[(U − c− t)1{U ∧ Z ≤ t}]

where the first equality holds because Gη∗(x) = FU−c(x) for x ≤ η∗; the inequality in the fourth

row holds because U ∧ Z = U > U − c when Z > U ; the equality in the 5th row holds because

of result (i) in Observation (4) above. This result further implies:

0 =E[(U − c− t)
(
1{U − c ≤ t} − 1{U ∧ Z ≤ t}

)
]

=E[(U − c− t)
(
1{U − c ≤ t;U ∧ Z > t}

)
]− E[(U − c− t)

(
1{U − c > t;U ∧ Z ≤ t}

)
]

Notice that in the second line, the first term is non-positive and the second term is non-negative.

Thus they must both be zero. This implies that P(U − c < t;U ∧ Z > t) = P(U − c >

t;U ∧ Z ≤ t) = 0. Since this holds for arbitrary t ≤ η∗, we have for any t1 < t2 ≤ η∗,

P(U − c ∈ (t1, t2), U ∧ Z /∈ [t1, t2]) = 0. Since U is continuous, we have a stronger result that

P(U − c ∈ [t1, t2], U ∧ Z /∈ [t1, t2]) = 0.

Now, notice that whenever U − c ≤ η∗ and U − c ̸= U ∧ Z, we can always find t1, t2 ∈ Q
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such that t1 < t2 ≤ η∗, U − c ∈ [t1, t2] and U ∧ Z /∈ [t1, t2]. Thus

P(U − c ≤ η∗;U − c ̸= U ∧ Z) ≤
∑

t1,t2∈Q: t1<t2≤η∗

P(U − c ∈ [t1, t2];U ∧ Z /∈ [t1, t2])

The conclusion above implies the RHS equals to 0. Thus P(U − c ≤ η∗;Z ̸= U − c) = P(U − c ≤

η∗;U − c ̸= U ∧ Z) = 0.

Claim 2: On the event {U − c > η∗}, Z = z(η∗) a.s. (i.e., P(U − c > η∗;Z ̸= z(η∗)) = 0.)

First notice that Observation (4)(ii) implies that the support of Z is a subset of the support

of U ∧Z.49 Thus we have supp{Z} ⊂ [
¯
u− c, η∗]∪ [(η∗+ c)∧ z(η∗), z(η∗)]. Also recall that in the

proof of Claim 1, I have shown P(U − c > t;U ∧ Z ≤ t) = 0, ∀t ≤ η∗. With t = η∗, this implies

P(U−c > η∗;Z ≤ η∗) = 0. So, on the event {U−c > η∗} we have Z ∈ [(η∗+c)∧z(η∗), z(η∗)] a.s.

Therefore, when η∗ + c ≥ z(η∗), Claim 2 has been proved; when η∗ + c < z(η∗), it suffices to

show P
(
Z ∈

[
η∗ + c, z(η∗)

))
= 0.

Now, assume η∗ + c < z(η∗). We have:

E[(U∧Z)1{U ≥ η∗ + c}] = E[(U∧Z)1{U∧Z ≥ η∗ + c}]

= E
[(
U∧z(η∗)

)
1{U∧z(η∗) ≥ η∗ + c}

]
= E

[(
U∧z(η∗)

)
1{U ≥ η∗ + c}

]
where the first equality holds because almost surely U ≥ η∗ + c ⇒ Z ≥ η∗ + c as shown above

(the event {U = η∗+c} has zero probability and thus can be ignored); the second equality holds

because Gη∗ agrees with the distribution of U ∧ z(η∗) over [η∗ + c,+∞). Since Z ≤ z(η∗) a.s.,

U ∧ Z ≤ U ∧ z(η∗) a.s. and thus the above result implies U ∧ Z = U ∧ z(η∗) a.s. on the event

{U − c > η∗}.

Notice that Claim 1 implies almost surely Z > η∗ ⇒ U − c > η∗. Thus we have Z ∈[
η∗+ c, z(η∗)

)
⇒ U ∧Z = U ∧ z(η∗) a.s. Also notice when Z < z(η∗), U ∧Z = U ∧ z(η∗) only if

U < Z. This further implies that almost surely Z ∈
[
η∗+ c, z(η∗)

)
⇒ U < Z. Since Obervation

(4)(ii) implies P(Z ≤ U |Z) > 0 a.s., we must have P
(
Z ∈

[
η∗ + c, z(η∗)

))
= 0. This completes

the proof for Claim 2.

The two claims above pin down a unique distribution of Z conditional on U . Thus the

optimal joint distribution of (U,Z) is unique. Q.E.D.

49Otherwise, there exists set B s.t. P(Z ∈ B) > 0 but P(U ∧ Z ∈ B) = 0. This implies E[P(U ∧ Z = Z|Z)|Z ∈
B] = P(U ∧ Z = Z|Z ∈ B) = P(U ∧ Z = Z;Z ∈ B)/P(Z ∈ B) = 0, which contradicts with Observation (4)(ii).
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2.B.6 Proof for Proposition 2.3.3

Proof. I show the existence of optimal (p∗, η∗) when J(·) is log-concave below. The other part

of the proposition is evident from the discussion in the main text. W.l.g., I assume J(ū−c) > 0.

If this does not hold, profit is always 0 for any p > 0 and thus every policy is trivially optimal.

Notice that by continuity of J , J(ū − c) > 0 implies that the probability of sale is strictly

positive for some p > 0 under fully revealing signal. Thus the seller’s maximal expected profit

is strictly positive.

Taking the formula of Gη (equation (2.23)) into the optimization in the proposition, we get:

max
p≥0

η∈[
¯
u−c,ū−c]

{
p
[ ∫ η

¯
u−c

J(x− p)dFU−c(x) +

∫ z(η)

(η+c)∧z(η)
J(x− p)dFU (x)

+ J
(
z(η)−p

)(
1− FU

(
max{η + c, z(η)}

)) ]}

Because FU is continuous, the integrals are continuous in their limits. Due to the continuity

of z(·) (Lemma 2.B.1(b)) and J(·), the objective function is continuous in (p, η). Thus, by the

Maximum Theorem, the solution exists if we can show that any sufficiently large p is suboptimal

(so that the feasible set can be shrunk to be compact).

To show this, notice that the seller’s profit is always bounded by Π(p) := pJ(ū − c − p)

given any p. Since J is log-concave, log(J(ū− c− p)) is concave in p and thus ∂ log(J(ū−c−p))
∂p is

decreasing in p. Because J is a CDF, ∂ log(J(ū−c−p))
∂p is strictly negative for some p. Thus there

exists ϵ > 0 such that ∂ log(J(ū−c−p))
∂p < −ϵ when p is large enough.

Now, notice that ∂ log(Π(p))
∂p = 1/p + ∂ log(J(ū−c−p))

∂p . The above result then implies that

∂ log(Π(p))
∂p < −ϵ/2 for p large enough. This implies that limp→+∞ log(Π(p)) = −∞ and thus

limp→+∞Π(p) = 0. Therefore, any p that is sufficiently large is suboptimal.

Q.E.D.
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2.C Proofs for Section 2.4

2.C.1 Proof for Lemma 2.4.1

Proof. Notice:

∫ [(
x− EU∼ϕ[U − c]

)
+
− c

]
ϕ(dx) ≥

∫ [
x− EU∼ϕ[U − c]− c

]
ϕ(dx)

=

∫
(x− c)ϕ(dx)− EU∼ϕ[U − c] = 0 =

∫
[(x− zϕ)+ − c]ϕ(dx)

where the last equality holds by the definition of zϕ. This implies that EU∼ϕ[U − c] ≤ zϕ.

Moreover, notice that the inequality above holds as equality if and only if x−EU∼ϕ[U − c] ≥ 0

for ϕ-a.e. x. Thus EU∼ϕ[U − c] = zϕ if and only if inf(supp{ϕ}) ≥ EU∼ϕ[U − c]. Q.E.D.

2.C.2 Proof for Proposition 2.4.2

The proposition can be proved by applying Theorem 1 in Dworczak & Martini (2019) to the

optimization (2.12) – (2.13). Because it is analogous to (but simpler than) the proofs for the

search goods case, the details are omitted. An alternative proof, which treats the proposition

as a special case of the results for search goods, is also available upon request.

2.C.3 Proof for Proposition 2.4.3

The proof requires a sequence of lemmas that are also useful in some other proofs later. I first

show a technical one:

Lemma 2.C.1. A continuously differentiable function Υ(·) is strictly convex over [a, t] and

strictly concave over [t, b]. Pick any x, y, w, x′, y′ ∈ [a, b] such that x < y ≤ w, x′ < y′, x′ ≤ x,

y′ ≤ y and (x′, y′) ̸= (x, y). Then we have Υ(y)−Υ(x)
y−x ≤ Υ′(w) ⇒ Υ(y′)−Υ(x′)

y′−x′ < Υ(y)−Υ(x)
y−x .

Proof. Assume x, y, w, x′ and y′ are picked as in the lemma and Υ(y)−Υ(x)
y−x ≤ Υ′(w). Notice

by the strict concavity of Υ over [t, b], Υ(y)−Υ(x)
y−x ≤ Υ′(w) ⇒ x < t. Moreover, if y ≤ t, then the

result is directly implied by the strict convexity of Υ over [a, t]. Thus we only need to consider

the case where x < t < y.

For any s1 < s2, let Υ′(s1, s2) denote the average slope of Υ over [s1, s2], i.e., Υ′(s1, s2) :=

Υ(s2)−Υ(s1)
s2−s1

. Then we have Υ′(x, y) ≤ Υ′(w) and want to show Υ′(x′, y′) < Υ′(x, y).
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First, we can show x′ < x ⇒ Υ′(x′, x) < Υ′(x, y). To see this, notice that by the strict

concavity of Υ over [t, b], we have Υ′(t, y) > Υ′(w). Thus Υ′(x, y) ≤ Υ′(w) ⇒ Υ′(x, t) < Υ′(x, y)

since Υ′(x, y) is a weighted average of Υ′(x, t) and Υ′(t, y). By the convexity of Υ over [a, t],

we have x′ < x⇒ Υ′(x′, x) ≤ Υ′(x, t). These together imply x′ < x⇒ Υ′(x′, x) < Υ′(x, y).

If y′ ≤ x, then the above result directly imply Υ′(x′, y′) < Υ′(x, y) since Υ′(x′, y′) ≤ Υ′(x′, x)

in this case by the convexity of Υ over [a, t]. Thus it remains to consider the case where y′ > x.

When y′ > x, we can prove y′ < y ⇒ Υ′(x, y′) < Υ′(x, y). Since Υ′(x, ·) is increasing over

(x, t] by the convexity of Υ over that region, it suffices to prove this when y > y′ ≥ t. In this

case, by the strict concavity of Υ over [t, b], we have Υ′(y′, y) > Υ′(w). Thus our assumption

Υ′(x, y) ≤ Υ′(w) implies Υ′(x, y′) < Υ′(x, y) since Υ′(x, y) is a weighted average of Υ′(x, y′)

and Υ′(y′, y). This concludes the proof for y′ < y ⇒ Υ′(x, y′) < Υ′(x, y). Together with the

earlier conclusion x′ < x⇒ Υ′(x′, x) < Υ′(x, y), this further implies Υ′(x′, y′) < Υ′(x, y).

Q.E.D.

Next, I show an important property of the function Γ.

Lemma 2.C.2. Under Assumption 2.3.2, Γ(·) single-crosses zero from below over [
¯
u−c, ū−c),

i.e., Γ(η1) ≥ (>)0 ⇒ Γ(η2) ≥ (>)0 for any η2 > η1 in [
¯
u− c, ū− c).

Proof. I prove the contrapositive for this: for any η1, η2 ∈ [
¯
u − c, ū − c) s.t. η2 > η1, I show

Γ(η2) ≤ (<)0 ⇒ Γ(η1) ≤ (<)0. Notice that if z(η1) < rp, the strict convexity of Jp over [
¯
u−c, rp]

would directly imply Γ(η1) < 0. Thus it suffices to assume z(η1) ≥ rp.

Notice the definition of Γ implies

Γ(η1)− Γ(η2) =
Jp
(
(η1 + c) ∧ z(η1)

)
− Jp(η1)

(η1 + c) ∧ z(η1)︸ ︷︷ ︸
=A

−
Jp
(
(η2 + c) ∧ z(η2)

)
− Jp(η2)

(η2 + c) ∧ z(η2)− η2︸ ︷︷ ︸
=B

+
(
jp(z(η2))− jp(z(η1))

)

Since z(η1) ≥ rp, we have η2 > η1 ⇒ z(η2) ≥ z(η1) ⇒ jp(z(η2)) ≤ jp(z(η1)). Thus, it now

suffices to show that Γ(η2) ≤ 0 ⇒ A ≤ B, which then implies Γ(η1) ≤ Γ(η2). This is directly

implied by Lemma 2.C.1 with Υ = Jp, a =
¯
u− c, b = ū− c, t = rp, x = η2, y = (η2 + c)∧ z(η2),

w = z(η2), x
′ = η1 and y′ = (η1 + c) ∧ z(η1). Q.E.D.

With Lemma 2.C.2, the following lemma is almost immediate, which is key to the proof of
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Proposition 2.4.3(b).

Lemma 2.C.3. Assume Assumption 2.3.2 holds. Let η∗S be the (unique) optimal upper-censorship

signal threshold of the non-pricing seller for search goods. For any x ∈ [
¯
u− c, ū− c):

(a) If Γ(x) < 0, then η∗S > x.

(b) If Γ(x) > 0, then η∗S ≤ x, where the inequality is strict unless x =
¯
u− c.

(c) If Γ(x) = 0, then η∗S = x.

Proof. If rp = ū− c, then Jp is strictly convex over [
¯
u− c, ū− c]. Thus η∗ = ū− c and Γ(x) < 0

for all x ∈ [
¯
u− c, ū− c). So the results trivially hold. If rp < ū− c, η∗ (as the unique optimal

threshold) must satisfy the condition in Proposition 2.3.1(b). For result (a), notice Γ(x) < 0

implies Γ(x′) < 0 for all x′ ≤ x by Lemma 2.C.2, so η∗ > x. For result (b), notice Γ(x) > 0

implies Γ(x′) > 0 for all x′ ≥ x by Lemma 2.C.2, so either η∗ < x or η∗ =
¯
u − c ≤ x. For

result (c), notice that under Assumption 2.3.2, Γ(x) = 0 also guarantees x ∈ [η0, rp]. Indeed,

if x ∈ (rp, ū − c), then the strict concavity of Γ over [rp, ū − c] would imply Γ(x) > 0; if

x ∈ [
¯
u − c, η0) and thus z(x) < rp, then the strict convexity of Γ over [

¯
u − c, rp] would imply

Γ(x) < 0. Given this observation, the desired result is directly implied by Proposition 2.3.1(b).

(Notice rmin
p = rmax

p = rp here under Assumption 2.3.2.) Q.E.D.

Now, we are ready to prove Proposition 2.4.3.

Proof for Proposition 2.4.3. When c ≥ µ(η∗E)− η∗E , Lemma 2.4.1 implies z(η∗E) = µ(η∗E) ≤

η∗E + c. Thus under the EG seller’s optimal signal, U ∧ Z ≡ E[U − c|S] and their common

distribution solves the EG seller’s problem (2.12) – (2.13). Since the SG seller’s problem (2.2)

– (2.3) is more constrained, the same distribution also solves it. Thus the same signal is

also optimal for the SG seller and we have η∗S = η∗E . Moreover, because z(η∗E) = µ(η∗E), the

consumer’s search decision will be the same in equilibrium regardless of the product’s type;

because z(η∗E) ≤ η∗E+c, we have U0 < z(η∗E) ⇒ U0 < η∗E+c and thus no one will search without

purchase even when the product is a search good. Thus the equilibrium outcomes of the two

types of goods are the same. This proves part (a).

For part (b), notice that under Assumption 2.4.1 we have ΓE(η∗E) = 0 ⇒ η∗E ∈ (
¯
u− c, ū− c).

The results are then directly implied by Lemma 2.C.3.

Q.E.D.
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2.C.4 Proof for Properties of Figure 2.4

When Assumption 2.4.1 holds and η∗S < η∗E , I prove the properties of Figure 2.4 below. I first

show a lemma that is also useful somewhere else:

Lemma 2.C.4. Assume Assumption 2.4.1 holds and µ(η∗E) > η∗E + c. Then we have z(η∗S) >

µ(η∗E).

Proof. Suppose z(η∗S) ≤ µ(η∗E). Notice by Lemma 2.4.1, we have µ(η∗E) > η∗E + c ⇒ z(η∗E) >

µ(η∗E). Thus z(η
∗
S) ≤ µ(η∗E) implies η∗S < η∗E .

Notice Proposition 2.4.2 implies ΓE(η∗E) = 0, i.e.,
Jp(µ(η∗E))−Jp(η∗E)

µ(η∗E)−η∗E
= jp(µ(η

∗
E)). Invoking

Lemma 2.C.1 with Υ = Jp, [a, b] = [
¯
u − c, ū − c], t = rp, (x, y) =

(
η∗E , µ(η

∗
E)

)
, w = µ(η∗E),

(x′, y′) =
(
η∗S , (η

∗
S + c) ∧ z(η∗S)

)
, we then have

Jp
(
(η∗S+c)∧z(η∗S)

)
−Jp(η∗S)

(η∗S+c)∧z(η∗S)−η∗S
<

Jp(µ(η∗E))−Jp(η∗E)

µ(η∗E)−η∗E
=

jp(µ(η
∗
E)). Notice by Proposition 2.3.1(b), we must have z(η∗S) ≥ rp and

Jp
(
(η∗S+c)∧z(η∗S)

)
−Jp(η∗S)

(η∗S+c)∧z(η∗S)−η∗S
≥

jp(z(η
∗
S)) (i.e., Γ(η

∗
S) ≥ 0). These together imply jp(µ(η

∗
E)) > jp(z(η

∗
S)) but µ(η

∗
E) ≥ z(η∗S) ≥ rp,

which contradicts with the strict concavity of Jp over [rp, ū − c]. Thus we must have z(η∗S) >

µ(η∗E).

Q.E.D.

Notice when Assumption 2.4.1 holds and η∗S < η∗E , Proposition 2.4.3 implies that we must

have µ(η∗E) > η∗E + c. The above lemma then implies z(η∗S) > µ(η∗E). Thus we have z(η∗S) >

µ(η∗E) > η∗E + c as is indicated in the figure.

Now, I turn to show the monotonicity properties of red curve, which represents the con-

sumer’s surplus change given U0 + p when the product changes from an EG to an SG. For this,

we need a way to compute the consumer’s surplus. The following lemma serves this role:

Lemma 2.C.5. Under any pre-search signal, let G and H respectively denote the distributions of

U∧Z and E[U−c|S]. Then given any outside option value u0 and product price p, the consumer’s

expected utility is EX∼G[max{X,u0+ p}]− p if the product is an SG and is EX∼H [max{X,u0+

p}]− p if the product is an EG.

Proof. When the product is an EG, the consumer will search and buy the product if and only

if E[U − c|S] − p ≥ u0. Thus her expected utility is obviously E
[
max{E[U − c|S] − p, u0}

]
=

E
[
max{E[U − c|S], u0 + p}

]
− p. When the product is an SG, several recent papers (Kleinberg

et al., 2016; Armstrong, 2017; Choi et al., 2018) have shown that the consumer surplus can be
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computed in a similar way with E[U − c|S] replaced by U ∧ Z. In particular, Corollary 1 in

Choi et al. (2018) implies the desired result.

Q.E.D.

Recall that Gη is defined as the distribution of U ∧Z under the upper-censorship signal with

threshold η; similarly, I define Hη as the distribution of E[U − c|S] under such a signal. Then

Lemma 2.C.5 implies that given U0 = u0, the consumer’s surplus change when the product

changes from an EG to an SG will be:

∫
max{u0 + p, x}[Gη∗S

(dx)−Hη∗E
(dx)] =

∫
max{u0 + p− x, 0}[Gη∗S

(dx)−Hη∗E
(dx)]

=

∫ u0+p

¯
u−c

(u0 + p− x)[Gη∗S
(dx)−Hη∗E

(dx)] =

∫ u0+p

¯
u−c

(Gη∗S
(x)−Hη∗E

(x))dx (2.24)

where the first equality holds because
∫
x[Gη∗S

(dx) − Hη∗E
(dx)] = 0 by the mean-preserving

property; the second equality holds even if u0 + p <
¯
u− c because both Gη∗S

and Hη∗E
support

within [
¯
u− c, ū− c]; the third equality holds by integration-by-parts. The derivative of the last

expression above w.r.t. u0 + p is Gη∗S
(u0 + p)−Hη∗E

(u0 + p).

Recall that the formula of Gη is provided in Lemma 2.B.2. The formula of Hη is easily seen

to be:

Hη(x) =


FU−c(x) x < η

FU−c(η) η ≤ x < µ(η)

1 µ(η) ≤ x

(2.25)

When η∗S < η∗E < η∗E + c < µ(η∗E) < z(η∗S), the relative patterns of Gη∗S
and Hη∗S

are illustrated

in Figure 2.10. In particular, we can see Gη∗S
(x) − Hη∗E

(x) is strictly negative over (η∗S , η
∗
E +

c)∪ (µ(η∗E), z(η
∗
S)), is strictly positive over (η∗E + c, µ(η∗E)), and is zero elsewhere. Thus we have

the monotonicity of the surplus change as a function of u0 + p in each of these intervals as is

depicted in Figure 2.4.

2.C.5 Proof for Proposition 2.4.4

Given any (FU , c, rp) satisfying Assumption 2.4.2 and κ > 0, I define δ := µ(rp) − rp − c and

A := minη∈[
¯
u−c,rp]

∫ η+c+δ
η+c (η + c + δ − x)fU (x)dx, where the minimum is achievable by the
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η∗S η∗E + cη∗E µ (η∗E) z (η∗S)
x

y

follow FU−c

follow FU

Figure 2.10: Comparison between Gη∗S
and Hη∗E

. The black curve represents Hη∗E
and the red

curve represents Gη∗S
. For clarity, I have picked FU to be a uniform distribution.

Weierstrass Theorem. By condition (2) in Assumption 2.4.2, we have δ > 0. Since fU−c has

full support on [
¯
u− c, ū− c], this further implies A > 0. Also define Mf := supx∈[

¯
u,ū] fU (x). It

is finite since fU is log-concave by Assumption 2.4.2.

Now, I choose ν to be the largest strictly positive number satisfying:

κc

2(ū−
¯
u)

(
A− [1− FU (rp)]ν −

1

2
Mfν

2
)
− [1− FU (rp)]ν ≥ 0 (2.26)

Notice that the LHS is continuous and decreasing in ν, and is strictly positive when ν = 0.

Thus such a ν exists.

Now, to prove Proposition 2.4.4, it suffices to show the following result:

Proposition 2.C.1. Given (Fu, c, rp) satisfying Assumption 2.4.2 and κ > 0, let ν be chosen

as above. Assume Jp satisfies Assumption 2.3.2 with its mode being rp and (i) j(rp+ν) < j(η0);

(ii) j(η0) > κ
Jp(ū−c)−Jp(

¯
u−c)

ū−
¯
u . Then we have csS < csE.

Proof. I first note that under the current assumptions, Assumption 2.4.1 holds.50 By Propo-

sition 2.4.2, this implies that the equilibrium outcome with experience goods is unique and

ΓE(η∗E) = 0. Due to the strict convexity-concavity of Jp, Γ
E(η∗E) = 0 further implies η∗E < rp

and µ(η∗E) > rp.

Moreover, under the strictly unimodality of Jp and condition (3) in Assumption 2.4.2, Propo-

sitions 2.3.1 and 2.3.2 imply that the equilibrium outcome with search goods is also unique with

η∗S ∈ [η0, rp] and Γ(η∗S) = 0. To see this, notice condition (3) in Assumption 2.4.1 states that

50The only non-trivial part for checking this is to show ΓE(
¯
u − c) < 0. For this, notice that z(

¯
u − c) < rp by

condition (3) in Assumption 2.4.1. Since Lemma 2.4.1 implies µ(
¯
u− c) ≤ z(

¯
u− c), we then have µ(

¯
u− c) < rp.

The strict convexity of Jp over [
¯
u− c, rp] then implies ΓE(

¯
u− c) < 0.
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rp < ū− c and z(
¯
u− c) < rp. The former of these implies that η∗S must satisfy the conditions in

Proposition 2.3.1(b); the latter of these, together with the continuity of z(·) (see Lemma 2.B.1),

implies η0 >
¯
u− c and thus rules out the possibility of η∗S =

¯
u− c.

I now show the following properties regarding η∗E and η∗S :

Observation (1). We have η0 ≤ η∗S < η∗E < η∗E + c < µ(η∗E) < z(η∗S) ≤ µ(η∗E) + ν and FU (η
∗
E +

c)− FU (η
∗
S + c) ≥

(
A− [1− FU (rp)]ν − 1

2Mfν
2
)/
c.

Subproof. The proof consists of several parts.

• Part 1: µ(η∗E)− (η∗E + c) > δ.

By definition, δ = µ(rp) − (rp + c), which is > 0 by Assumption 2.4.2. Since η∗E < rp as

mentioned earlier, it suffices to show µ(η)− η = E[U − c− η|U − c− η ≥ 0] is decreasing in η.

Notice the log-concavity of fU implies that fU (x+(c+η)) is log-supermodular in
(
x,−(c+η)

)
.51

Thus fU−c−η(x) = fU (x+ (c+ η)) decreases in the likelihood-ratio order when c+ η increases.

This implies that we indeed have E[U − c− η|U − c− η ≥ 0] decreasing in η.52

• Part 2: z(η∗S) > η∗S + c.

By Proposition 2.3.1, we have η∗S ≤ rp. The similar proof as in Part 1 then implies µ(η∗S)−

(η∗S + c) > δ. Since z(η∗S) ≥ µ(η∗S) by Lemma 2.4.1, we have z(η∗S) > η∗S + c.

• Part 3: 0 < z(η∗S)− µ(η∗E) < ν.

Given the conclusion in Part 1 and that Assumption 2.4.1 holds here as I mentioned earlier,

the result z(η∗S)− µ(η∗E) > 0 is directly implied by Lemma 2.C.4.

Now, suppose z(η∗S)−µ(η∗E) ≥ ν. Since ΓE(η∗E) = 0 ⇒ µ(η∗E) > rp due to the strict convexity

of Jp over [
¯
u− c, rp], we will then have z(η∗S) > rp+ ν. The condition j(rp+ ν) < j(η0) together

with the strict quasi-concavity of j(·) then implies that j
(
z(η∗S)

)
< j(x) for all x ∈

[
η0, z(η

∗
S)
)
.

Since η∗S ≥ η0 as is mentioned earlier, we then must have Γ(η∗S) =
Jp((η∗S+c)∧z(η∗S))−Jp(η∗S)

(η∗S+c)∧z(η∗S)−η∗S
−

j(z(η∗S)) > 0, which contradicts with my earlier conclusion of Γ(η∗S) = 0. Therefore, we must

have z(η∗S)− µ(η∗E) < ν.

• Part 4: FU (η
∗
E + c)− FU (η

∗
S + c) ≥

(
A− [1− FU (rp)]ν − 1

2Mfν
2
)/
c.

By the definitions of z(·) and µ(·), we have:

∫ ū

η∗S+c

[(
x− z(η∗S)

)
+
− c

]
Fu(dx) = 0;

∫ ū

η∗E+c
[x− µ(η∗E)− c]Fu(dx) = 0

51See, for example, Lemma 2.6.2(b) in Topkis (1998). Apply it to log
(
fU (·)

)
.

52See, e.g., Theorem 1.4.6 in Müller & Stoyan (2002).
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Taking difference of these two equations, we get:

∫ η∗E+c

η∗S+c
cFU (dx) =

∫ ū

η∗S+c

(
x− z(η∗S)

)
+
Fu(dx)−

∫ ū

η∗E+c
[x− µ(η∗E)]Fu(dx) (2.27)

The LHS above equals to c[FU (η
∗
E + c) − FU (η

∗
S + c)]. Notice

∫ ū
η∗S+c

(
x − z(η∗S)

)
+
Fu(dx) =∫ ū

z(η∗S)
[x− z(η∗S)]Fu(dx) because z(η

∗
S) > η∗S + c as shown in Part 2. Thus the RHS equals to

∫ ū

z(η∗S)
[µ(η∗E)− z(η∗S)]FU (dx) +

∫ z(η∗S)

µ(η∗E)
[µ(η∗E)− x]FU (dx) +

∫ µ(η∗E)

η∗E+c
[µ(η∗E)− x]FU (dx)

Because z(η∗S) ≥ rp and z(η∗S) − µ(η∗E) < ν, the first term above is greater than −[1 −

FU (rp)]ν. For the second term, we have
∫ z(η∗S)

µ(η∗E) [µ(η
∗
E) − x]FU (dx) ≥

∫ z(η∗S)

µ(η∗E) [µ(η
∗
E) − x]Mfdx ≥∫ µ(η∗E)+v

µ(η∗E) [µ(η∗E) − x]Mfdx = −Mfν
2/2, where the second inequality is again due to z(η∗S) −

µ(η∗E) < ν. For the third term, we have
∫ µ(η∗E)

η∗E+c [µ(η
∗
E) − x]FU (dx) ≥

∫ η∗E+c+δ

η∗E+c [η∗E + c + δ −

x]FU (dx) ≥ A, where the first inequality is because µ(η∗E) − (η∗E + c) > δ as proved in Part 1,

and the second inequality is due to the definition of A and that η∗E ∈ [
¯
u− c, rp]. These together

imply that the RHS of equation (2.27) is greater than A−
(
1−FU (rp)

)
ν− 1

2Mfν
2. The desired

inequality is thus implied by equation (2.27).

• Part 5: η∗E > η∗S ≥ η0.

Since ν > 0 satisfies condition (2.26), we must have A−
(
1− FU (rp)

)
ν − 1

2Mfν
2 > 0. Thus

η∗E > η∗S is directly implied by the result of Part 4. Moreover, η∗S ≥ η0 since η∗S ∈ [η0, rp], as I

have mentioned in the main proof. □

Recall that I have defined Gη and Hη as the distributions of U ∧ Z and E[U − c|S] under

the upper-censorship signal with threshold η respectively (see expressions (2.23) and (2.25)).

In Appendix 2.C.4, I have shown that given U0 = u0, a consumer’s surplus change when the

product changes from an EG to an SG will be
∫ u0+p

¯
u−c (Gη∗S

(x)−Hη∗E
(x))dx, where the patterns

of Gη∗S
and Hη∗E

are illustrated in Figure 2.10 when η∗S < η∗E < η∗E + c < µ(η∗E) < z(η∗S). This

implies csS − csE =
∫
[
∫ y

¯
u−c(Gη∗S

(x)−Hη∗E
(x))dx]jp(y)dy. To show this is negative, I prove two

more observations below.

Observation (2).
∫ η∗E+c

η∗E
[
∫ y

¯
u−c(Hη∗E

(x)−Gη∗S
(x))dx]jp(y)dy ≥ 1

2jp(η0)c
(
A−[1−FU (rp)]ν−1

2Mfν
2
)
.

Subproof. First, one can show
∫ η∗E+c

¯
u−c (Hη∗E

(x)−Gη∗S
(x))dx = [FU (η

∗
E + c)−FU (η

∗
S + c)]c. To see

this, notice that the integral represents the space of the gray area in Figure 2.10. The area’s
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height is FU (η
∗
E + c)−FU (η

∗
S + c) at any x, and its width is c at any y. Thus the integral equals

to [FU (η
∗
E + c)− FU (η

∗
S + c)]c.53

Next, notice that over the region [η∗E , η
∗
E + c], we have Hη∗E

(x) − Gη∗S
(x) ≤ FU (η

∗
E + c) −

FU (η
∗
S + c). This implies that for any y ∈ [η∗E , η

∗
E + c], we have

∫ η∗E+c
y (Hη∗E

(x) − Gη∗S
(x))dx ≤

[FU (η
∗
E+c)−FU (η

∗
S+c)](η

∗
E+c−y). Together with the conclusion

∫ η∗E+c

¯
u−c (Hη∗E

(x)−Gη∗S
(x))dx =

[FU (η
∗
E + c) − FU (η

∗
S + c)]c above, this implies that for any y ∈ [η∗E , η

∗
E + c],

∫ y

¯
u−c(Hη∗E

(x) −

Gη∗S
(x))dx ≥ [FU (η

∗
E + c) − FU (η

∗
S + c)](y − η∗E). This further implies

∫ η∗E+c

η∗E
[
∫ y

¯
u−c(Hη∗E

(x) −

Gη∗S
(x))dx]jp(y)dy ≥

∫ η∗E+c

η∗E
[FU (η

∗
E + c)− FU (η

∗
S + c)](y − η∗E)jp(y)dy.

Now, it suffices to show the RHS of the last inequality is greater than 1
2jp(η0)c

(
A − [1 −

FU (rp)]ν− 1
2Mfν

2
)
. Since η0 < η∗E < rp, we have jp(η

∗
E) > jp(η0). Moreover, because ΓE(η∗E) =

0, we must have jp(µ(η
∗
E)) ≥ jp(η

∗
E). By the strict quasi-concavity of jp, these together imply

jp(y) > jp(η0) for all y ∈ [η∗E , µ
∗(η∗E)]. Thus we have

∫ η∗E+c

η∗E
[FU (η

∗
E + c) − FU (η

∗
S + c)](y −

η∗E)jp(y)dy ≥ [FU (η
∗
E + c)−FU (η

∗
S + c)]jp(η0)

∫ η∗E+c

η∗E
(y− η∗E)dy = 1

2jp(η0)[FU (η
∗
E + c)−FU (η

∗
S +

c)]c2 ≥ 1
2jp(η0)c

(
A−[1−FU (rp)]ν− 1

2Mfν
2
)
, where the last inequality is implied by Observation

(1). □

Observation (3).
∫ y

¯
u−c(Gη∗S

(x)−Hη∗E
(x))dx ≤ [1− FU (rp)]ν for any y ∈ [

¯
u− c, ū− c].

Subproof. As is illustrated in Figure 2.4,
∫ y

¯
u−c(Gη∗S

(x) − Hη∗E
(x))dx achieves its maximum at

y = µ(η∗E). It thus suffices to show
∫ µ(η∗E)

¯
u−c (Gη∗S

(x)−Hη∗E
(x))dx ≤ [1− FU (rp)]ν. By the mean-

preserving condition, we have
∫ z(η∗S)

¯
u−c (Gη∗S

(x)−Hη∗E
(x))dx = 0 (notice Gη∗S

(x) = Hη∗E
(x) = 1 for

x > z(η∗S)). Since µ(η
∗
E) > rp, we have Gη∗S

(x)−Hη∗E
(x) > FU (rp)− 1 for all x ≥ µ(η∗E). Since

z(η∗S)−µ(η∗E) ≤ ν by Observation (1), this implies
∫ z(η∗S)

µ(η∗E)(Gη∗S
(x)−Hη∗E

(x))dx ≥ (FU (rp)−1)ν.

Together with the condition
∫ z(η∗S)

¯
u−c (Gη∗S

(x)−Hη∗E
(x))dx = 0, this further implies

∫ y

¯
u−c(Gη∗S

(x)−

Hη∗E
(x))dx ≤ [1− FU (rp)]ν. □

Observation (2), together with condition jp(η0) > κ
Jp(ū−c)−Jp(

¯
u−c)

ū−
¯
u , imply

∫ η∗E+c

η∗E
[
∫ y

¯
u−c(Hη∗E

(x)

−Gη∗S
(x))dx]jp(y)dy >

1
2κ

Jp(ū−c)−Jp(
¯
u−c)

ū−
¯
u c

(
A− [1−FU (rp)]ν− 1

2Mfν
2
)
. Observation (3) implies∫

[
¯
u−c,ū−c]\(η∗E ,η∗E+c)[

∫ y

¯
u−c(Gη∗S

(x) − Hη∗E
(x))dx]jp(y)dy ≤ [1 − FU (rp)]ν[Jp(ū − c) − Jp(

¯
u − c)].

53Notice this argument does not require the left and right sides of the area to be linear. We only need them to
be parallel, which is true because Hη∗

E
follows FU−c over [η∗

S , η
∗
E ] and Gη∗

S
follows FU over [η∗

S + c, η∗
E + c].
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Combining these inequalities, we know
∫
[
∫ y

¯
u−c(Gη∗S

(x)−Hη∗E
(x))dx]jp(y)dy is less than

[
[1− FU (rp)]ν −

κc

2(ū−
¯
u)

(
A− [1− FU (rp)]ν −

1

2
Mfν

2
)]
[Jp(ū− c)− Jp(

¯
u− c)]

which is strictly negative as ν satisfies condition (2.26) by construction. Thus we indeed have

csS − csE < 0.

Q.E.D.

2.D Proofs for Section 2.5

2.D.1 Proof for Proposition 2.5.1

Proof. Assume J2
p2 dominates J1

p1 in likelihood ratio order (abbr. J1
p1 ⪯LRD J2

p2). This means

that for any x < y, we have j1p1(x)j
2
p2(y) ≥ j1p1(y)j

2
p2(x). Let r1p1 and r2p2 denote the modes of

j1p1 and j2p2 over [
¯
u− c, ū− c] respectively. Let (η10,Γ1) and (η20,Γ2) be the pair of (η0,Γ) defined

in Section 2.3.3 given distributions J1
p1 and J2

p2 respectively. Notice J1
p1 ⪯LRD J2

p2 implies

r1p1 ≤ r2p2 . By the definition of η0, This further implies η10 ≤ η20 because z(·) is increasing.

Let η∗1 and η
∗
2 denote the thresholds of the optimal upper-censorship signals given J1

p1 and J
2
p2

respectively. Under Assumption 2.3.2, they are fully characterized by conditions in Proposition

2.3.1 (given J1
p1 and J2

p2 respectively). Consider following cases:

Case 1: r1p1 = ū− c.

In this case, r2p2 also equals to ū− c since r2p2 ≥ r1p1 . Thus η
∗
2 = ū− c ≥ η∗1.

Case 2: r1p1 < ū− c.

According to Proposition 2.3.1(b), in this case we must have either (i) Γ1(η
∗
1) = 0 or (ii)

Γ1(η
∗
1) ≥ 0 and η∗1 =

¯
u − c. If (ii) holds, then η∗1 ≤ η∗2 trivially. Thus I assume w.l.g. that (i)

holds. I then have the following observation:

Observation. Γ1(η
∗
1) = 0 ⇒ Γ2(η

∗
1) ≤ 0.
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Subproof. Notice if j1p1(z(η
∗
1)) and j

2
p2(z(η

∗
1)) are non-zero, we have:

Γ1(η
∗
1) = 0 ⇔

∫ (η∗1+c)∧z(η∗1)

η∗1

[
j1p1(t)− j1p1(z(η

∗
1))

]
dt = 0

⇔
∫ (η∗1+c)∧z(η∗1)

η∗1

[ j1p1(t)

j1p1(z(η
∗
1))

− 1
]
dt = 0

⇒
∫ (η∗1+c)∧z(η∗1)

η∗1

[ j2p2(t)

j2p2(z(η
∗
1))

− 1
]
dt ≤ 0

⇔
(∫ (η∗1+c)∧z(η∗1)

η∗1

[
j2p2(t)− j2p2(z(η

∗
1))

]
dt
)
≤ 0 ⇔ Γ2(η

∗
1) ≤ 0

where the third row uses J1
p1 ⪯LRD J2

p2 ⇒ j1p1 (t)

j1p1 (z(η
∗
1))

≥ j2p2 (t)

j2p2 (z(η
∗
1))

for t ≤ z(η∗1).

Now, it suffices to consider either j1p1(z(η
∗
1)) or j

2
p2(z(η

∗
1)) being zero. Let I1 and I2 denote

the supports of j1 and j2 within [
¯
u− c, ū− c] respectively. Notice the unimodality assumption

implies that these supports are intervals.

� Suppose j1p1(z(η
∗
1)) = 0. Then Γ1(η

∗
1) = 0 implies that j1p1 ≡ 0 on [η∗1, (η

∗
1 + c) ∧ z(η∗1)].

Notice that since η∗1 ≤ r1p1 , this interval must be to the left of I1. Since J1
p1 ⪯LRD J2

p2

implies inf I1 ≤ inf I2, we must have j2p2 ≡ 0 on [η∗1, (η
∗
1 + c) ∧ z(η∗1)] too. This further

implies Γ2(η
∗
1) ≤ 0.

� Suppose j2p2(z(η
∗
1)) = 0. If z(η∗1) is to the left of I2, then j2p2(x) = 0 for all x ≤ z(η∗1)

and thus Γ2(η
∗
1) = 0. If z(η∗1) is to the right of I2, then because J1

p1 ⪯LRD J2
p2 implies

sup I1 ≤ sup I2, we must also have j1p1(z(η
∗
1)) = 0. This implies Γ2(η

∗
1) ≤ 0 as has been

shown above.

□

By the observation, we have Γ2(η
∗
1) ≤ 0. Lemma 2.C.3 in Appendix 2.C.3 then implies

η∗2 ≥ η∗1.

Q.E.D.

2.D.2 Proof for Proposition 2.5.2

Proof. Let Fϵ and fϵ denote the CDF and PDF of ϵ respectively. For any p, let JW
p be the

conditional distribution of U0 + p conditioning on W . Then, JW
p (x) = Fϵ(x− (p+W )). Notice

the log-concavity of fϵ implies that fϵ(x − (p +W )) is log-supermodular in (x, p +W ),54 and

54See, for example, Topkis (1998) Lemma 2.6.2(b). Apply it to log
(
fϵ(·)

)
.
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thus JW
p (x) = Fϵ(x−(p+W )) increases in the likelihood-ratio order when p+W increases. Also

notice fϵ being strictly log-concave implies that JW
p satisfies Assumption 2.3.2. The optimal

η∗ is thus unique and all optimal signals are outcome-equivalent. The desired result for a

non-pricing seller is directly implied by Proposition 2.5.1.

For a pricing seller, I prove the result with two steps:

� Step 1. Given any p and realized W , the seller’s problem is just the non-pricing seller’s

optimization (2.2) – (2.3) with Jp(x) replaced by JW
p (x) = Fϵ(x− (p+W )). Notice this

optimization depends on (p,W ) only through ℓ := p+W . Given any ℓ, let Q∗(ℓ) denote

the optimal value and let η∗(ℓ) denote the threshold of the optimal upper-censorship

signal. Then, the argument above for a non-pricing seller implies η∗(ℓ) is a singleton and

increases in ℓ. Moreover, Q∗(ℓ) decreases in ℓ since the objective function decreases in ℓ.

� Step 2. Given Q∗(·), the optimization over p can be written as:

max
p

{pQ∗(p+W )} ⇐⇒ max
ℓ

{(ℓ−W )Q∗(ℓ)}

Since Q∗(ℓ) is decreasing in ℓ, the objective function has increasing differences in (ℓ,W ).

Thus the optimal ℓ increases (in the strong set order) in W . The desired result is then

implied by η∗(ℓ) being increasing in ℓ.55

Q.E.D.

2.D.3 Proof for Corollary 2.5.1

Proof. Without discrimination based on W , the setting is the same as in Section 2.3. Since

log-concavity is preserved under convolution, condition (A1) implies that U0 (and thus U0 + p)

admits a log-concave density. The strict log-concavity of fϵ and condition (A2) further imply

that U0 has full support over R and has a single mode. Together with the log-concavity, these

imply that the density of U0+p satisfies Assumption 2.3.2. Thus, without discrimination, there

is a unique optimal upper-censorship signal for the seller and all optimal signals are outcome

equivalent. Let η∗nd denote the threshold of this optimal upper-censorship signal.

With discrimination, as is shown in the proof of Proposition 2.5.2, for any W there is a

unique optimal upper-censorship signal and all optimal signals are outcome-equivalent. Let

55Notice that the log-concavity of fϵ implies log-concavity of Fϵ(·−W ) given any realized W . Thus the existence
of optimal solution is guaranteed by Proposition 2.3.3.
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η∗(W ) denote the threshold of the optimal upper-censorship signal.

By Proposition 2.5.2, η∗(W ) is (weakly) increasing in W . Let w∗ = inf{W : η∗(W ) ≥ η∗nd}.

Then we have W > w∗ ⇒ η∗(W ) ≥ η∗nd and W < w∗ ⇒ η∗(W ) < η∗nd. This implies that

for W > w∗, the pre-search signal is more informative with discrimination; for W < w∗, the

pre-search signal is less informative with discrimination. Thus we have the conclusion in the

corollary. Q.E.D.

2.D.4 Proof for Proposition 2.5.3

Proof. Given any search cost c, let z(η; c) equal to the z(η) defined in Section 2.3.3; let Γ(η; c)

equal to the Γ(η) defined in equation (2.9); let rp(c) denote the maximum point of jp over

[
¯
u− c, ū− c]. Let t∗ ∈ [−∞, ū] be the maximum point of jp over (−∞, ū]. Notice that rp(c) = t∗

if and only if t∗ ∈ [
¯
u− c, ū− c].

Pick any search costs c1 and c2. Let η1 and η2 denote the thresholds of optimal upper-

censorship signals given these two search costs respectively, which are unique under condition

(A1) (by Proposition 2.3.2) and are characterized by Proposition 2.3.1. Let z1 := z(η1; c1) and

z2 := z(η2; c2). We have the following observation:

Observation (1). If η1 < η2 and η1 + c1 < η2 + c2, then z1 ≥ z2.

Subproof. Since
¯
u ≤ ηi+ ci ≤ ū (i = 1, 2), condition η1+ c1 < η2+ c2 further implies

¯
u < η2+ c2

and η1 + c1 < ū. Consider two cases:

� Case 1: η2 + c2 = ū.

In this case, full disclosure is optimal under search cost c2 (since η2 = ū − c2) but is not

optimal under search cost c1 (since η1 < ū − c1). Thus Jp is convex over [
¯
u − c2, ū − c2]

but is not convex over [
¯
u− c1, ū− c1]. This implies that ū− c2 ≤ t∗ < ū− c1.

Now, suppose z1 < z2. Since z2 ≤ ū− c2 (see Lemma 2.B.1(a)), we have:

¯
u− c1 ≤ z1 < z2 ≤ ū− c2 ≤ t∗ < ū− c1

Notice
¯
u−c1 < t∗ < ū−c1 implies rp(c1) = t∗ < ū−c1 and thus η1 is characterized by the

condition in Proposition 2.3.1(b). Then, by Lemma 2.B.3, we must have z1 ≥ rp(c1) = t∗.

This contradicts with the fact z1 < t∗ derived above. Thus z1 ≥ z2.

� Case 2: η2 + c2 < ū.
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In this case, full disclosure is suboptimal given both search costs c1 and c2, and thus Jp

is not convex over either [
¯
u− c1, ū− c1] or [

¯
u− c2, ū− c2]. This implies that the optimal

signals are characterized by the condition in Proposition 2.3.1(b) under both search costs.

Thus Γ(ηi; ci) ≥ 0 for i = 1, 2. Moreover, since η2 + c2 >
¯
u as is shown earlier, we further

have Γ(η2; c2) = 0.

Then, it can be shown that:

jp(z1) ≤
Jp
(
(η1 + c1) ∧ z1

)
− Jp(η1)

(η1 + c1) ∧ z1 − η1
≤
Jp
(
(η2 + c2) ∧ z2

)
− Jp(η2)

(η2 + c2) ∧ z2 − η2
= jp(z2)

The first inequality is equivalent to Γ(η1; c1) ≥ 0. The last equality is equivalent to

Γ(η2; c2) = 0. Given the last equality, the second inequality is implied by Lemma 2.C.1

in Appendix 2.C.3 with Υ = Jp, a = min{
¯
u − c1,

¯
u − c2}, b = ū, t = t∗, x = η2,

y = (η2 + c2) ∧ z2, w = z2, x
′ = η1 and y′ = (η1 + c1) ∧ z1.

By Lemma 2.B.3, we know that z1 ≥ rp(c1) and z2 ≥ rp(c2). As is mentioned above, Jp

is not convex over either [
¯
u− c1, ū− c1] or [

¯
u− c2, ū− c2]. These together imply that z1

and z2 lie in the region where Jp is strictly concave and jp is strictly decreasing. Thus the

fact jp(z1) ≤ jp(z2) derived above implies z1 ≥ z2.

□

Now, I show part (a) and part (b) of the proposition in sequence.

Part (a): c1 < c2 ⇒ η1 + c1 ≤ η2 + c2.
56

Suppose c1 < c2 but η1+c1 > η2+c2. Then we must have η1 > η2. According to Observation

(1) above, conditions η1 > η2 and η1+c1 > η2+c2 imply z1 ≤ z2. (When using the observation,

interchange the positions of (c1, η1, z1) and (c2, η2, z2).)

However, because η1 + c1 > η2 + c2, the posterior belief on U after learning U − c1 ≥ η1

is superior to that after learning U − c2 ≥ η2 (in terms of first-order stochastic dominance).

Together with the assumption that c1 < c2, it is easy to see that z1 > z2. This contradicts with

the result z1 ≤ z2 above. Thus c1 < c2 must imply η1 + c1 ≤ η2 + c2.

Part (b): Given any realized U0, the consumer surplus is decreasing in c.

Assume c1 < c2. I first show z1 ≥ z2 by considering the following two cases.

� Case 1: η1 < η2.

56Recall that ηi is a threshold on U − ci according to Definition 2.3.1. Thus ηi + ci is the corresponding
threshold on U and the signal is more informative on U if ηi + ci is larger.



122

In this case, c1 < c2 further implies η1 + c1 < η2 + c2. Then by Observation (1) above, we

have z1 ≥ z2.

� Case 2: η1 ≥ η2.

Suppose z1 < z2. We have:

0 =E[(U − z1)+ − c1|U − c1 ≥ η1]

≥E[
(
(U − c1) + c1 − z1

)
+
− c1|U − c1 ≥ η2]

≥E[
(
(U − c1) + c2 − z1

)
+
− c2|U − c1 ≥ η2]

≥E[
(
(U − c2) + c2 − z1

)
+
− c2|U − c2 ≥ η2]

=E[(U − z1)+ − c2|U − c2 ≥ η2]

≥E[(U − z2)+ − c2|U − c2 ≥ η2] = 0

The first equality and the last equality hold by the definition of z1 and z2. The first

inequality holds because η1 ≥ η2. The second inequality holds because c1 < c2 and the

term
(
(U − c1) + x − z1

)
+
− x is (weakly) decreasing in x. To show the third inequality

holds, notice under assumption (A2) of the proposition, c1 < c2 implies that U − c1

dominates U − c2 in the hazard rate order.57 This further implies U − c1 | {U − c1 ≥ η2}

first-order stochastic dominates U − c2 | {U − c2 ≥ η2} and thus the inequality holds.58

The last inequality holds since z1 < z2 as is supposed.

The above result implies E[(U − z1)+ − c2|U − c2 ≥ η2] = 0 and thus z1 = z2. This

contradicts with what I supposed (i.e., z1 < z2). Thus we must have z1 ≥ z2.

Now, for i = 1, 2, let Zi denote the Pandora’s index for the realized posterior belief given

search cost ci and the corresponding equilibrium signal. Then we have:

Zi =


U − ci if U ≤ ηi + ci (full disclosure region)

zi if U > ηi + ci (pooling region)

Recall that I have shown η1+c1 ≤ η2+c2 (part (a) of the proposition) and z1 ≥ z2 above. These

57See Section 1.3 in Müller & Stoyan (2002) for the definition and properties of hazard rate order. Formally,
assumption (A2) implies that FU has increasing hazard rate and thus for any x s.t. FU (x + c2) < 1, we have

fU (x+c1)
1−FU (x+c1)

≤ fU (x+c2)
1−FU (x+c2)

, which is equivalent to
fU−c1

(x)

1−FU−c1
(x)

≤ fU−c2
(x)

1−FU−c2
(x)

. This implies that U − c1 dominates

U − c2 in the hazard rate order by Theorem 1.3.3 in Müller & Stoyan (2002).
58This follows from the discussion in Müller & Stoyan (2002) right above their Definition 1.3.2.
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imply that Z1 ≥ Z2. (When U ≤ η1+c1, Z1 = U−c1 > U−c2 = Z2; when η1+c1 < U ≤ η2+c2,

Z1 = z1 ≥ z2 ≥ η2 ≥ U − c2 = Z2; when U > η2 + c2, Z1 = z1 ≥ z2 = Z2. ) Thus we have

U ∧ Z1 ≥ U ∧ Z2.

When c = ci, as I discussed in Section 2.5.1, the consumer’s expected surplus would be

U0 + E[max{U ∧ Zi − p − U0, 0}] given any realized U0.
59 Thus U ∧ Z1 ≥ U ∧ Z2 implies that

the consumer surplus is higher when c = c1 compared to that when c = c2. This concludes the

proof for part (b). Q.E.D.

2.E Proofs for Section 2.6

2.E.1 Proof for Proposition 2.6.1

Proof. By the definition of SG-equilibrium, it suffices to show:

(Hex
N , pexN ) ∈ argmax

(Gi, pi)
{pi

∫ [
Hex

N (x− pi + pexN )
]N−1

dGi(x)} (2.28)

s.t. Gi is a feasible distribution for Ui ∧ Zi

Since (Hex
N , pexN ) is an EG-equilibrium, we know:

(Hex
N , pexN ) ∈ argmax

(Hi, pi)
{pi

∫ [
Hex

N (x− pi + pexN )
]N−1

dHi(x)} (2.29)

s.t. Hi ⪯MPS FU−c

Crucially, Lemma 2.3.1 implies that the optimization in (2.28) is more constrained than that in

(2.29). Thus, to show condition (2.28) holds, it suffices to check that Hex
N is indeed a feasible

distribution for Ui∧Zi when N is large enough. For this purpose, I need the following property

of Hex
N :

Observation (1). For any ϵ > 0, there exists Nϵ < ∞ such that whenever N ≥ Nϵ, we have

Hex
N (x) = FU−c(x) for all x ≤ ū− c− ϵ.

Subproof. This observation is directly implied by Proposition 2 and footnote 17 in Hwang et al.

(2019) (June 5th version). When referring to Hwang et al. (2019), one need to notice that the

59See, for example, Corollary 1 in Choi et al. (2018).
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consumer’s value for a product in their paper is corresponding to the net-match-utility Ui − c

in my paper, so their range for product value [
¯
v, v̄] is corresponding to [

¯
u − c, ū − c] in my

model. □

According to the observation, we can find N∗ such that N ≥ N∗ ⇒ Hex
N (x) = FU−c(x), ∀x ≤

ū−2c. Now, fix any N ≥ N∗. Let (Si, πi) be a particular signal under which E[Ui−c|Si] ∼ Hex
N .

Since Hex
N (x) = FU−c(x) for all x ≤ ū− 2c, this signal fully reveals Ui − c less than ū− 2c, and

thus Ui − c ≤ ū − 2c ⇒ Zi = Ui − c < Ui.
60 Since Zi ≤ ū − c under any signal, we also have

Ui − c > ū− 2c⇒ Zi ≤ Ui. Combining these facts, we always have Zi ≤ Ui under (Si, πi). This

further implies:

0 = E[(Ui − Zi)+ − c|Si] = E[Ui − Zi − c|Si] = E[Ui − c|Si]− Zi

where the first equality holds by the definition of Zi and the second equality holds because

Zi ≤ Ui. Thus E[Ui − c|Si] = Zi = Ui ∧Zi under (Si, πi). Therefore, under (Si, πi) we also have

Ui ∧ Zi ∼ Hex
N . This shows that Hex

N is indeed a feasible distribution for Ui ∧ Zi. Q.E.D.

2.E.2 Proof for Corollary 2.6.1

Proof. This is directly implied by Proposition 2.6.1 and Observation (1) in the proof of Propo-

sition 2.6.1 above. Q.E.D.

2.F Other Proofs

Proof for Proposition 2.A.1. I first enlarge the model to accommodate search subsidy and

price discount. Let c† denote the objective search cost (without deducting any search subsidy)

and let U † denote the product’s (uncertain) consumption utility. Let b and d denote the search

subsidy and price discount respectively. Let p denote the original product price without any

discount.

Given any search subsidy b and price discount d, let c := c† − b and U := U † + d. Then the

consumer’s behavior is characterized in the same way as in the baseline model. In particular,

the consumer would search if Z ≥ U0 + p and would purchase if U ∧ Z ≥ U0 + p, where Z is

60A formal proof for this is similar to that for Claim 1 in part 2 of the proof for Proposition 2.3.2.
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defined identically as in Section 2.3 (with respect to the U and c define here).61 I still use G to

denote the distribution of U ∧ Z under any signal and use J to denote the distribution of U0.

Under strategy A, we have (b, d) = (y, 0) and the seller’s maximal expected profit given any

original price p is:

max{pP(purchase)− yP(search)} (2.30)

≤max{(p− y)P(purchase)} (2.31)

=
max
G

{(p− y)

∫
J(x− p)dG(x)}

s.t. G ⪯MPS FU−c (= FU†−c†+y); G ⪯FOD FU (= FU†)

(2.32)

where the maximizations in the first two lines are over all pre-search signals. The inequality holds

because P(purchase) ≤ P(search); the equality holds because under the unimodality assumption

of J , the seller’s optimization over purchase probability (given any (p, b, d)) is fully characterized

by the Relaxed Problem.

Under strategy B, we have (b, d) = (0, y) and the seller’s maximal expected profit given p

is:

max{(p− y)P(purchase)} (2.33)

=
max
G

{(p− y)

∫
J(x− p)dG(x)}

s.t. G ⪯MPS FU−c (= FU†−c†+y); G ⪯FOD FU (= FU†+y)

(2.34)

Comparing optimization (2.34) with optimization (2.32), one can see that they are the same

except that the second constraint in (2.34) is less restrictive. Thus the maximal profit under

strategy B is larger than that under strategy A. Also notice that the inequality in the line of

(2.31) holds strictly when P(purchase) > 0. Thus strategy A is strictly dominated as long as

there would be some search without purchase under it.

Q.E.D.

61Notice all U , c and Z here depend on the underlying (b, d). I suppress this dependence to ease the notations.
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Chapter 3

Optimal Disclosure Regulation for

Entrepreneur Financing with

Ex-Post Moral Hazard

3.1 Introduction

What is the optimal level of disclosure regulation for entrepreneur public financing? This

question has become increasingly important in recent years, as many countries experienced

significant regulatory reforms and various new entrepreneur financing channels were introduced

(e.g., security-based crowdfunding).1 An important feature of these new financing channels

is that they impose much lighter disclosure requirements than traditional approaches (e.g.,

IPO).2 Given the conventional view that rigorous disclosure standard is important for investor

protection and efficient capital allocation, it is not surprising that this looseness of disclosure

regulation has brought lots of controversy.

The main argument supporting light disclosure regulation in practice is that disclosure can

be costly for firms and lighter regulation makes public financing more affordable to them. This

particularly applies to small businesses and startups, who have little financial resource and

expertise to comply sophisticated disclosure requirements. However, is lower cost the only

1See Hornuf & Schwienbacher (2017), for example, for a detailed introduction to regulation reforms in several
countries on equity crowdfunding.

2For example, the JOBS Act in the US passed in 2012 introduced several new financing channels for small busi-
nesses, all of which feature looser disclosure requirement than that in traditional IPO. In particular, Regulation
Crowdfunding bears the least disclosure burden among them.
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reason for looser regulation, or is there any intrinsic benefit from it? Different answers to this

question have completely different policy implications. If lower cost is the only reason for lighter

regulation, the government should focus on lowering disclosing cost with better technology and

institutional design, and gradually enhance disclosure standard as its cost gets lower. If there are

intrinsic benefits from less disclosure, on the other hand, the regulator may want to deliberately

avoid full disclosure even if it can be achieved in a costless way.

This paper contributes to the above discussion with a novel story supporting the view

that less information disclosure has its intrinsic benefit. Specifically, I study socially optimal

disclosure in a simple model of public equity financing with consideration of the entrepreneur’s

post-financing moral hazard problem. While the moral hazard problem causes efficiency loss

under full disclosure, this paper shows partial disclosure can help to mitigate it. As a result, a

properly designed partial disclosure rule is shown to be socially optimal, although no exogenous

disclosure cost has been assumed.

While this implication about the optimal disclosure may be surprising, the moral hazard

problem I consider is quite stylized in entrepreneurial finance. After getting funded, the en-

trepreneur can choose to honestly develop the project or to divert the fund for other uses.3

Although numerous studies have proposed different mechanisms to solve this problem, most

of them took mechanism design approaches and focused on how to use better monitoring or

contracting devices to provide post-financing incentives. In contrast, this paper takes an infor-

mation design approach and, to my best knowledge, is the first to show how a properly designed

disclosure rule in the financing campaign can help to alleviate it.

The possibility that less information can improve social welfare has been broadly explored in

the literature (e.g., Morris & Shin, 2002; Angeletos & Pavan, 2007; Amador & Weill, 2010). In

particular, a growing literature surveyed below has proposed various stories on why restricted

information releasing in financial market can be beneficial. Although this paper also derives

sub-optimality for full information, the mechanism explored is new to the literature. While

existing studies have focused on frictions in the financial market, this paper first shows how

an agency problem within the firms makes partial information socially optimal in financing

3This type of moral hazard can be particularly important in some recently legalized public financing channels
for small businesses, like equity crowdfunding. Besides standard features of small businesses, a particular reason
for this is that investors investing via these channels typically only contribute a small fund to each project,
which endows them little monitoring incentive. For example, on Wefunder, the largest Regulation Crowdfunding
platform in the US, an investor can invest as little as 100 dollars in a project.
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campaigns.

In the basic model, I consider two types of entrepreneurs with low value and high value

projects respectively. Both types of projects are assumed to have positive net value and thus

are socially optimal to develop. Due to the moral hazard problem above, however, the low

types will not be able to get financed when types are fully disclosed under certain conditions.

Intuitively, for an entrepreneur to behave after financing, she must receive enough incentive

rent from developing the project. This is not possible for the low type projects when their net

values, although positive, are lower than the incentive rent needed.

To see how partial disclosure can help to mitigate this efficiency loss, notice from investors’

perspective, partial disclosure essentially pools some low type entrepreneurs with high types.

When this is done properly, we can reduce the financing costs (in terms of shares sold) of pooled

low type entrepreneurs such that they receive enough incentive rents to carry out their projects.

Although this induces higher financing costs for the high types, enough incentive can still be

kept for them. In the end, some low type projects together with all the high type projects would

be developed, which generates higher social surplus than the full disclosure case.

With Bayesian persuasion tools, the optimal rule is derived explicitly. Notice although

pooling is beneficial, certain degree of disclosure is necessary when the high type projects are

not abundant. Intuitively, if too many low types are pooled with high types, their financing

costs will not be low enough to get them incentivized. As a result, the low types would choose

to run away once funded and the entire market would have frozen at the beginning.

Like most Bayesian persuasion papers, I have assumed exogenous type distribution in my ba-

sic model. However, since the disclosure rule affects different types’ expected payoffs, it changes

the relative incentive for entrepreneurs to acquire a high value project versus to acquire a low

value one. Thus, disclosure regulation may change the type distribution in turn. Especially, ad-

verse selection could arise with naively designed partial disclosure. Indeed, a standard opposing

argument against loose disclosure regulation is that project qualities would deteriorate when

low value projects are not well distinguished from high value ones.4 To deal with this, I extend

the basic model to endogenize project types and consider the designer’s problem as choosing a

disclosure rule and a target type distribution simultaneously, where the type distribution must

be incentivized properly. It is shown that the socially optimal disclosure is still partial disclosure

4The fact that poor disclosure leads to inefficient pre-financing investments by firms is well understood in the
literature (e.g., Fishman & Hagerty, 1989).
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under certain assumptions.

Interestingly, with endogenous type distribution, the optimal disclosure rule may use one

more signal realization to facilitate better information revealing compared to the case where

the designer can fix the target type distribution without incentivizing for it. In particular,

the optimal rule can simultaneously involve a realization fully identifying a low type and a

realization fully identifying a high type, which never happens in the basic model. Intuitively,

with endogenous types, certain degree of disclosure is needed not only to provide sufficient

post-financing incentives for pooled low types, but also to seize adverse selection and maintain

desired proportion of high types in the market.

In Appendix 3.A, I further extend the model to allow high type entrepreneurs to privately

disclose their types with a cost. I show that any optimal disclosure rule should not induce

the entrepreneurs to use private disclosures. It turns out that the optimal rule is still partial

disclosure and is similar to that in the main text, but fewer low types would be pooled unless

the private disclosing cost is sufficiently high. Interestingly, the costliness of private disclosure

is beneficial here, as it prevents unraveling (Milgrom, 1981) and thus makes partial disclosure

implementable.

Although the paper just considers a simple moral hazard problem, the intuition explored may

still be useful when one replaces it with some general contracting or mechanism design problem

following the financing campaign. If the firms’ post-financing incentive constraints depend on

their financing costs, then the paper suggests partial disclosure in the financing campaigns may

help to relax some types’ incentive constraints via transferring potential surplus among different

types. In this way, outcomes infeasible under full disclosure may be achieved.

In Appendix 3.B, I also adapt the basic model to debt financing and apply it to regulation

for banking system disclosure. Alvarez & Barlevy (2015) illustrates with an example that given

post-financing moral hazard, full disclosure can outperform non-disclosure even if the bank

financing market does not freeze without disclosure, which is in contrast with Goldstein &

Leitner (2018). However, their paper does not consider partial disclosure rules. By using a

concavification graph, I intuitively show that under certain conditions, although full disclosure

dominates non-disclosure, partial disclosure is typically optimal.

Related literature – This paper directly relates to the literature on optimal disclosure in finan-

cial market. Although inefficiency caused by asymmetric information has been well recognized
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since Akerlof (1970), several strands of literature have shown full disclosure is not guaranteed

optimal in financial market. One strand exploits the Hirshleifer effect in Hirshleifer (1971) (e.g.,

Andolfatto et al., 2014; Dang et al., 2017; Monnet & Quintin, 2017b; Goldstein & Leitner,

2018). In these papers, restricted information disclosure helps to maintain risk sharing oppor-

tunity either between the security issuer and investors, or among investors in the secondary

market, which thus improves efficiency. Another strand considers crowding-out effect of public

information disclosure (e.g., Gao & Liang, 2013; Colombo et al., 2014). Basically, better public

information may reduce investors’ private incentives to gather information and thus decrease

aggregate information available to decision makers.5 Yet another strand of literature considers

the possibility that more information disclosure can actually exacerbate information asymmetry

when investors are heterogeneous in their ability of interpreting information (Pagano & Volpin,

2012; Monnet & Quintin, 2017a).

This paper complements the above literature with a new story on why partial disclosure can

improve welfare over full disclosure. While the studies above focus on frictions in the financial

market, this paper focuses on an agency issue within the firm. Indeed, the post-financing moral

hazard problem is critical in my story, absent which full disclosure would be optimal. This

interplay between disclosure in financing campaigns and corporate governance also relates the

paper to a broad literature on corporate finance (e.g., Zingales, 1995; Shleifer & Wolfenzon,

2002).

Several recent papers also highlight the role of moral hazard in information design prob-

lems (Rodina, 2016; Georgiadis & Szentes, 2018; Boleslavsky & Kim, 2018). Besides apparent

differences in the questions studied, these papers focus on an agency problem before Bayesian

persuasion on the outcome of the agent’s work, while the moral hazard problem considered in

my model is after Bayesian persuasion and they are related only through the entrepreneur’s

financing cost (shares sold). Thus the mechanism explored in my model is completely different

from theirs. This also easily distinguishes this paper from the literature on contract design with

information revealing (e.g., Fuchs, 2007; Fu & Trigilia, 2019).6

5See Goldstein & Yang (2017) for a nice review on this issue.
6Another paper, Alexander & Isakin (2015), does consider post-financing moral hazard after disclosure by

a credit rating agent, but the incentive problem in their model favors full disclosure. The credit rater chooses
partial disclosure in their paper because of an ad hoc assumption that she wants to send as many good ratings
as possible.
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From practical perspective, the paper relates to a surging literature on crowdfunding.7 In

particular, several recent papers study how properly designed crowdfunding mechanisms help

to solve the entrepreneur’s post-financing moral hazard problem (Chang, 2016; Strausz, 2017;

Chemla & Tinn, 2018). However, none of them have considered the information design problem

studied in this paper.

From methodological perspective, the paper relates to the Bayesian persuasion literature

(Aumann et al., 1995; Rayo & Segal, 2010; Kamenica & Gentzkow, 2011). Especially, the con-

strained concavification method I use in Section 4 is from Boleslavsky & Kim (2018). Rosar

(2017) also uses a similar Lagrangian concavification method in a constrained Bayesian persua-

sion problem.

The paper is organized as follows: Section 2 introduces the moral hazard problem and

motivates partial disclosure; Section 3 and Section 4 study optimal disclosure with exogenous

and endogenous type distributions respectively; Section 5 provides some practical discussions;

Section 6 concludes. In addition to the main text, Appendix 3.A (online) extends the model

to allow costly private disclosure and Appendix 3.B (online) extends the basic model to debt

financing with an application to banking system disclosure.

3.2 Moral Hazard and Efficiency Loss under Full Disclosure

In this section, I introduce the economic agents and the post-financing moral hazard problem. I

then show how moral hazard causes efficiency loss under full disclosure and intuitively illustrate

the motivation for partial disclosure. For simplicity, I assume all agents in the economy are risk

neutral and the discounting factor is normalized to 1.

3.2.1 Entrepreneurs and Moral Hazard Problem

Consider a continuum of entrepreneurs, each of whom has one project to develop. There are two

types of projects (thus two types of entrepreneurs) denoted by v ∈ {vL, vH} (vH > vL), where v

indicates the project’s expected value in date 1 if developed. Each project requires investment

K in date 0. Assume vL > K, so both types of projects are socially optimal to develop.8

7For recent studies on security-based crowdfunding, see Hornuf & Schwienbacher (2018), Brown & Davies
(2018), Signori & Vismara (2018), and Walthoff-Borm et al. (2018).

8Notice low type projects are not bad projects since they have positive net expected values. Actually, they
can be highly valuable projects with low probability of success ex-ante. Many boldly innovative projects can be
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Develop

Run-away

((1− α)v, αv)

((1− β)K, 0)

Figure 3.1: Entrepreneur’s Moral Hazard Problem

Assume each entrepreneur needs to finance his entire investment K through equity-based

public financing (e.g. equity crowdfunding). Specifically, the entrepreneur needs to offer a share

of the firm’s equity to a representative investor in exchange for funding. Let α ∈ [0, 1] denote

the share of equity she offers. If the investor accepts it, he contributes investment K (in cash)

to the firm and receives α share of the firm’s future cash flow; otherwise, the project remains

not financed and the entrepreneur gets outside payoff 0.

Once a project is financed, the entrepreneur can decide whether to honestly develop it. If

not, she can “run away” with the funded money K by paying a cost βK, where β ∈ [0, 1].9 This

causes a moral hazard problem and the parameter β governs how serious it is. With larger β, the

cost of running away is higher and the moral hazard problem is thus less severe. In particular,

if β = 1, the entrepreneur gets nothing by running away and there is no moral hazard problem.

The entrepreneur’s post-financing decision problem is summarized in Figure 3.1, where the

first payoff in each bracket is for the entrepreneur and the second payoff is for the investor.

One implicit assumption here is that the entrepreneur cannot divert her project’s value, so the

expected payoffs to the entrepreneur and the investor are just (1−α)v and αv respectively after

the project is developed. This assumption is reasonable because the project’s value is typically

only captured when the project is completed and finally goes public with IPO or gets acquired

by other firms, which are easily observable events. Thus it is hard to divert a project’s value

after development. In contrast, diverting cash raised in the financing campaign is much easier

and technically feasible for the entrepreneur.

By the entrepreneur’s moral hazard problem, a project is developed if and only if the fol-

in this category.
9One can think of this literally as running-away with βK being the cost of hiding. Alternatively, one can think

of it as a situation where the entrepreneur pretends to carry out the project with investment βK and diverts the
remaining money for personal purposes.
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lowing incentive constraint holds10:

(1− α)v ≥ (1− β)K (3.1)

For the constraint to be satisfied, we need v to be large enough relative to K and α to be small.

This implies that the entrepreneur must hold enough share of the firm to be incentivized to

develop the project.

3.2.2 Investors

There is a representative investor representing a potentially large group of small homogeneous

investors. By risk-neutrality,11 he accepts the entrepreneur’s offer if and only if the expected pay-

off from investing exceeds his current investment, which means the following condition holds12:

K ≤ E[αv1{a(v, α) = Develop}|I] (3.2)

where 1 is the indicator function, a(v, α) denotes the entrepreneur’s post-financing choice and

I denotes the investor’s information when making his decision.

3.2.3 Full Disclosure and Efficiency Loss

Now, suppose the project types are fully disclosed to the investor. Then, condition (3.2) implies

that the investor would invest in a type v project if and only if αv ≥ K and the incentive

constraint (3.1) for a type v entrepreneur is satisfied. Formally, a type v project is invested and

carried out if and only if:

∃α ∈ [0, 1] s.t. (1− α)v ≥ (1− β)K and αv ≥ K

which is equivalent to v ≥ (2− β)K.

10I assume the entrepreneur will develop the project when being indifferent. This guarantees the existence of
a minimal posterior belief that can sustain each class of equilibria discussed later.

11Risk neutrality of the investor is actually not needed for results in this paper, because any risk induced by
partial disclosure is idiosyncratic and a risk averse investor can simply hold a large portfolio to diversify it away.
This is particularly applicable to the crowdfunding context, where the minimal investment required for each
project is typically small and thus each investor can build a large portfolio with moderate amount of money.

12For the same reason as stated in footnote 10, I assume the investor would invest when being indifferent.
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Now, assume

vH > (2− β)K > vL > K (3.3)

Then, with full disclosure, only the high type projects are financed and developed, which causes

an efficiency loss since both types of projects have positive net value. Intuitively, incentivizing

an entrepreneur to develop the project requires an incentive rent at least (1 − β)K. However,

the total surplus of a low type project is vL − K < (1 − β)K. Thus when projects are fairly

priced with full information, it is not possible to provide enough incentive to the low type

entrepreneurs.

To improve efficiency, we have to increase the low type entrepreneurs’ incentive rents through

lowering their financing costs (in terms of α). It turns out that this can be achieved with partial

disclosure under certain condition. By pooling some low type projects with high types, the

expected project values conceived by the investor can be high enough for him to accept a lower

α, which in turn provides sufficient incentives for the low type entrepreneurs to behave in the

moral hazard problem. As to be shown later, this is possible if the following condition holds:

(
1− K

vH

)
vL > (1− β)K (3.4)

Notice if a project is believed to be of high type, K/vH will be the smallest possible share sold

for financing capital K (since we need αvH ≥ K). Thus the above condition is saying if a low

type project is evaluated as high type, the financing cost (in terms of α) could be low enough to

satisfy the entrepreneur’s incentive constraint. We need the condition holds as strict inequality

because it is impossible to make a Bayesian investor believe a low type project is high type with

probability 1. Thus a room is needed here. If this condition is violated, there would be no way

to get the low type projects developed and partial disclosure cannot be helpful.

Throughout the paper, conditions (3.3) and (3.4) are the maintaining assumptions imposed

on the fundamental parameters.

Assumption 3.2.1. Parameters K, vL, vH and β ∈ [0, 1] satisfy conditions (3.3) and (3.4).

A numerical example satisfying the assumption is: K = 1, vH = 2, vL = 1.6 with β ∈

(0.2, 0.4).
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3.3 Basic model: Optimal Disclosure with Exogenous Types

In this section, I introduce a simple model of equity-based public financing with disclosure

regulation and design the optimal disclosure rule given exogenous entrepreneur type distribution.

As discussed in the introduction, the exogeneity of type distribution is a strong assumption,

which I will relax in Section 4. I first focus on this simplified case for two reasons: (1) the

problem is much easier to solve and can already illustrate important intuitions about the optimal

disclosure; (2) the solution derived will be needed for the endogenous types case later.

3.3.1 Financing Campaign and Designer’s Problem

As stated in Section 2.1, there are two types’ of entrepreneurs seeking for public equity financing.

Let pH denote the proportion of high types, which is exogenous in this section. Before a financing

campaign, the regulator can examine the entrepreneur’s project and learn its type v. Then,

she sends a signal on v to the (representative) investor according to a pre-determined disclosure

rule. After the signal is publicly observed, the entrepreneur makes an equity offer α to the

investor, who then decides whether to accept it. If a project is successfully financed, the moral

hazard problem specified in Section 2 follows.

In accordance with the Bayesian persuasion literature (e.g., Kamenica & Gentzkow, 2011),

a regulator’s disclosure rule is defined as:

Definition 3.3.1. A disclosure rule D consists of a finite signal realization space S and a family

of probability distributions {Γ(·|vL),Γ(·|vH)} on S.

Essentially, a disclosure rule defines the conditional distribution of signal realization given

each project type v. The disclosure rule is assumed to be publicly announced at the very

beginning, so the Bayesian inference from each signal realization is commonly understood by

all agents.

Given a disclosure rule, the game’s timeline is summarized as following:

–1. An entrepreneur learns her type v ∈ {vL, vH}, with probability pH for vH .

–2. A signal s ∈ S about v is realized according to the pre-announced disclosure rule and

publicly observed.

–3. The entrepreneur makes equity offer α ∈ [0, 1] in exchange for investment K.



136

–4. The investor decides whether to invest in the project according to condition (3.2), where

the information set I = {s, α}.

–5. If the campaign succeeds, the entrepreneur chooses action a ∈ {Develop,

Run-away} by solving the decision problem in Figure 3.1 and the final payoffs are corre-

spondingly realized. If the campaign fails, the entrepreneur gets payoff 0 and the investor

keeps his fund K.

Notice Stages 3 – 4 formally form a signaling game and the signal s disclosed in Stage 2 decides

the initial belief13 of that signaling game.

Designer’s problem The designer’s problem is to find a disclosure rule that maximizes ex-

ante total social surplus. Notice in terms of deciding the social outcome, only the posterior belief

distribution induced by the disclosure rule (given pH) matters. Let πH denote the posterior

belief on v = vH after a signal realizes. Then by Kamenica & Gentzkow (2011), given prior

pH , a disclosure rule is equivalent to a distribution µ of posterior πH which satisfies Bayesian

feasibility condition Eµ[πH ] = pH . Thus the designer’s problem can be equivalently stated as

finding a posterior distribution µ with Eµ[πH ] = pH that maximizes ex-ante social welfare.

This allows one to solve the problem using the concavification method (Aumann et al., 1995;

Kamenica & Gentzkow, 2011).

One concern here is that in the signaling game starting from Stage 3, the offer α can

potentially serve as another signal conveying information about the project’s type. If we have

a separating equilibrium in this signaling game (two types offer different α), then the outcome

will not depend on the initial belief induced by s, which makes the information design problem

irrelevant. As we will see in Section 3.2, however, except for trivial cases where no project gets

financed, only pooling equilibria exist in this signaling game. The intuition is simple. If a low

type entrepreneur is identified, she cannot be financed and gets payoff 0. Since being financed

is always better than not (at least one can run away with the money), a low type would always

want to mimic the high type to raise some fund if possible.14

As the offer α can convey no additional information, an alternative way to model the financ-

ing campaign is to let the investor move first and make an offer. Letting the less informed side

13I save the word “prior belief” to refer to pH .
14This intuition and result remain valid even if one allows the entrepreneurs to offer more sophisticated financing

contracts.
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move first can save us from discussing multiple equilibria typically associated with a signaling

game and is often employed in the literature. However, in this paper I stick to the natural

timing above and formally show that the offer cannot convey additional information. I will

specify equilibrium selection rules in the next subsection to pin down a unique equilibrium.

3.3.2 The Equilibrium

Given any belief πH induced by the signal realization in Stage 2, I solve here the (weak se-

quential) equilibria for Stages 3 – 5. Since things are trivial when πH ∈ {0, 1}, with which the

outcome has been discussed in Section 2.3, I focus on the case where πH ∈ (0, 1). All proofs are

provided in Appendix 3.C.1 (online).

First, as mentioned above, we have the following observation:

Observation 3.3.1. Any equilibrium in which some projects are financed is a pure strategy

pooling equilibrium.

Notice by Observation 3.3.1, if some projects are financed, all projects must be financed

with the same offer. Thus there may be three classes of equilibria:

� Class 1: Both types of projects are financed and developed.

� Class 2: Both types are financed, but only high type projects are developed.15

� Class 3: No project is financed.

To ease notations, define constants:

A :=
K

vH − (1− β)K
; B :=

[ K

vL − (1− β)K
− 1

] vL
vH − vL

Notice A,B ∈ (0, 1) by Assumption 3.2.1 and either of them can be bigger than the other. The

following lemma characterizes equilibrium outcomes.

Lemma 3.3.1. Class 1 equilibria exist if and only if πH ≥ B; Class 2 equilibria exist if and only

if πH ≥ A; only Class 3 equilibria exist if πH < min{A,B}. Moreover, there can be multiple

equilibrium α within each class.16

By Lemma 3.3.1, there are two kinds of equilibrium multiplicity in the model. One is

the co-existence of several equilibrium classes with some initial belief πH . This multiplicity is

15Notice it cannot be the case where low types are develop while high types are not since vH > vL.
16In the proof, I show that all these equilibria survive the intuitive criterion in Cho & Kreps (1987).
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largely fundamental and comes from a kind of self-fulfilling belief, which is similar to that in a

self-fulfilling debt crisis (e.g., Cole & Kehoe (1996)). Intuitively, if the investor believes a low

type entrepreneur will run away, he would require a higher α for compensation, which in turn

makes the low types indeed choose to run away. For this multiplicity, I assume the designer

is free to choose the most efficient equilibria. Notice Class 1 equilibria are more efficient than

Class 2 equilibria, which are yet more efficient than Class 3 equilibria, so I impose the following

selection rule:

Equilibrium Selection Rule 3.3.1. Select Class 1 equilibria if they exist; otherwise, select

Class 2 equilibria if they exist. If no Class 1 or Class 2 equilibrium exists, select Class 3

equilibria.

Another multiplicity is about multiple equilibria within each class, which is due to the

arbitrariness of off-path belief in weak sequential equilibria. For all results in the current

section, this kind of multiplicity is innocuous because we only care about social efficiency and

all equilibria within the same class produce the same social surplus. The specific equilibrium

result matters only in deciding the surplus split between the entrepreneur and the investor.

However, I will endogenize type distribution in Section 4, in which entrepreneurs’ perceived

expected payoffs before financing would be important. Thus I need to pin down a unique

equilibrium from each class that specifies the entrepreneur’s share of surplus. As shown in the

proof of Lemma 3.3.1, intuitive criterion does not help here, so I adopt the following ad-hoc

selection rule:

Equilibrium Selection Rule 3.3.2. Within each class of equilibria, select the one with lowest

α. (Note: This is not needed for results in this section.)

The main motivation for this rule is that in many entrepreneur public financing campaigns

(e.g., equity crowdfunding), the entrepreneur makes a “take or leave” offer to a large crowd of

investors. Thus it is reasonable to give full bargaining power to the entrepreneur. By selecting

the equilibrium with lowest α, I leave the investor just indifferent and give full surplus to the

entrepreneur. This is also consistent with models assuming the investor moves first to bid a

fairly valued offer, as is often seen in the literature.

That being said, it is actually not hard to extend analysis to scenarios with other well-

behaved equilibrium selection rules. However, if the investor obtains part of the surplus, in the
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endogenous types model studied in Section 4, acquiring a high value project (v.s. a low value

one) by the entrepreneur would have positive externality to the investor, which adds another

source of inefficiency. My selection rule here avoids this complication to allow us to solely focus

on the friction caused by moral hazard.

Combining the two equilibrium selection rules with Lemma 1, we have:

Proposition 3.3.1. When πH ≥ B, both types are financed and developed with equity offer

α = K
πHvH+(1−πH)vL

; when B > πH ≥ A, both types are financed with α = K
πHvH

, but only the

high type projects are developed; when πH < min{A,B}, no project is financed. (Notice the

second case may happen only when B > A.)

3.3.3 Optimal Disclosure Rule

For a project with type v and posterior belief πH induced by the regulator’s disclosure, Propo-

sition 3.3.1 implies that the ex-post social surplus from this project is:

w(v, πH) :=
[
(vH −K)1{v = vH}+ (vL −K)1{v = vL}

]
1{πH ≥ B}

+
[
(vH −K)1{v = vH} − βK1{v = vL}

]
1{B > πH ≥ A}

The first line is corresponding to the case of πH ≥ B, where both types of projects are

developed; the second line is corresponding to the case of B > πH ≥ A, where a high type

project is developed while a low type project’s entrepreneur runs away with cost βK. Notice

when πH < min{A,B}, no project is financed and thus social surplus is 0.

In order to use concavification method to design the optimal disclosure rule, we need to

derive an indirect social welfare function on the posterior πH , taking expectation of which

delivers the ex-ante social welfare. This is done by taking expectation of the ex-post welfare

function conditional on πH . Specifically, define indirect social welfare function as:

W (πH) :=E[w(v, πH)|πH ] (3.5)

=[(vH −K)πH + (vL −K)(1− πH)]1{πH ≥ B}

+ [(vH −K)πH − βK(1− πH)]1{B > πH ≥ A}

where the second equality comes from the fact that P[v = vH |πH ] = πH and P[v = vL|πH ] =
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1 − πH since πH is just the posterior probability for v = vH . Then the ex-ante total social

welfare is obtained as E[W (πH)], in which the distribution of πH is induced by the disclosure

rule given prior pH . Following Kamenica & Gentzkow (2011), the designer’s problem is then

formulated as:

V0(pH) := max
µ∈∆([0,1])

Eµ[W (πH)] (3.6)

s.t. Eµ(πH) = pH (3.7)

where ∆([0, 1]) denotes the set of all distributions over [0, 1] (in which πH takes values) and

V0(·) denotes the value function of this optimization problem.

The solution can be easily derived by concavification and is provided in the following propo-

sition:

Proposition 3.3.2. Given exogenous high type proportion pH , we have:

(i) If pH < B, the optimal distribution of posteriors supports on {0, B} with µ(B) = pH/B

and µ(0) = 1− pH/B.

(ii) If pH ≥ B, any distribution of posteriors supporting on a subset of [B, 1] with Eµ[πH ] = pH

is optimal.

Moreover, the value function is:

V0(pH) =


(vH −K)pH + (vL −K) (1−B)pH

B if pH < B

(vH −K)pH + (vL −K)(1− pH) if pH ≥ B

Proof Sketch. The concavification graphs for the case B > A and the case B ≤ A are pro-

vided in Figure 3.2. The blue curve plots function W (·) and the red dashed curve shows its

concavification. See Appendix 3.C.1 for details. Q.E.D.

To see the intuition behind this optimal disclosure rule, recall that B is the smallest posterior

belief on v = vH that can sustain Class 1 equilibria, where the low type projects are developed.

Therefore, ideally we want as many low types as possible to receive posterior πH higher than

B. When pH < B, we do not have enough high type projects in the sense that it is not possible

to pool all low types with the high types while keeping πH higher than B, so certain degree of
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0
A B−βK

vL −K

1

W (πH)

πH

(a) Case 1: B > A

0
B

vL −K

1

W (πH)

πH

(b) Case 2: B ≤ A

Figure 3.2: Concavification for W (·) (with exogenous pH)

disclosure is necessary. In this case, the proposition shows that the optimal signal is binary, in

which one realization pools some low types with high types to just induce πH = B and the other

fully reveals a low type. In this way, maximum amount of low types can be developed. When

pH ≥ B, on the other hand, the prior is already high enough to sustain Class 1 equilibria, so all

projects can be developed without any disclosure. In this case, it is never desirable to disclose

a project as low type (or with posterior πH < B) since that will just prevent the project from

developing.

A desirable feature of this optimal disclosure rule is that there will be no running away by

low type entrepreneurs. This is true even if β = 0 (with Assumption 3.2.1 still being held), in

which case there is no direct social loss from running away.17 Intuitively, there is no benefit to

get a project financed when we know the entrepreneur is not going to develop it, but there is

a cost with it, which is making the investor reluctant to finance other pooled projects without

larger compensation. Therefore, if low types are going to run away with a signal realization

(with πH ∈ [A,B)), it is better to reveal types for some of them such that the financing costs

become low enough for the rest of them to develop their projects.

A direct implication of Proposition 3.3.2 is:

Corollary 3.3.1. Full disclosure is not optimal with exogenous type distribution (under As-

sumption 3.2.1).

For later use, given any exogenous pH , I specify a particular optimal disclosure rule in the

form of that in Definition 3.3.1:

17When β = 0, the segment of W (·) corresponding to [A,B) interval in Figure 3.2a is still lower than the
concavification function and thus the result does not change.
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Definition 3.3.2. Given any pH , define disclosure rule Du(pH) as follows:

� If pH < B, Du(pH) has two signal realizations generating posterior beliefs πH = 0 and B

respectively.

� If pH > B, Du(pH) has two signal realizations generating posterior beliefs πH = B and 1

respectively.

� If pH = B, Du(pH) has only one signal realization with posterior πH = B.

For reason that will be clear later, I will call Du(pH) the unconstrained optimal rule given

pH . This special disclosure rule is going to be useful in characterizing the range of potentially

optimal target pH when entrepreneur types are endogenous in Section 4.

3.3.4 Social Benefit from Increasing pH

It is interesting to compare the marginal social benefit from increasing pH (upgrading some low

types to high types) under the optimal disclosure with that under full disclosure or in the first

best. In the first best, all projects are developed, so the marginal benefit of increasing pH is

the difference between a high type’s value and a low type’s value, which is MBfb = vH − vL.

With full disclosure, only high type projects are developed, so the marginal benefit of increasing

pH is just the net value of a high type project, which is MBfd = vH −K. Under the optimal

disclosure rule in Proposition 3.3.2, the marginal benefit of increasing pH is measured by the

derivative of the value function:

V ′
0(pH) =


(vH −K) + (vL −K)1−B

B if pH < B

vH − vL if pH > B

It is easy to see:

when pH < B, V ′
0(pH) > MBfd > MBfb

when pH > B, MBfd > V ′
0(pH) =MBfb

Intuitively, when high type projects are scarce (pH < B), increasing pH under the optimal

disclosure rule not only increases the number of high type projects, which are all to be developed,

but also helps to get more low types developed through pooling. In other words, with optimal

disclosure the high types are valuable not only in their own values, but also in mitigating
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the efficiency loss caused by low types’ post-financing moral hazard problem. Therefore, the

marginal benefit exceeds a high type’s own net value and is thus higher than that under full

disclosure or in the first best. On the other hand, when high types are abundant (pH > B), all

low types can already be developed under optimal disclosure, so the trade-off with raising pH

is the same as that in the first best. Therefore, the marginal benefit under optimal disclosure

just equals to MBfb when pH > B.

3.4 Optimal Disclosure with Endogenous Types

One important limitation of the basic model above is that the type distribution is treated as

fixed. This can be problematic because when designing the disclosure rule, we are changing

financing costs faced by the two types of entrepreneurs, which then affects their ex-ante en-

trepreneuring incentives. For instance, suppose we start with full disclosure and observe the

proportion of high types being pH < B. After imposing the disclosure rule in Proposition

3.3.2, the financing cost for high types will increase and that for low types will decrease, which

lowers the incentive of becoming a high type relative to becoming a low type. As a result, the

proportion of high types may drop below pH . This deterioration of quality due to asymmetric

information has been well recognized since Akerlof (1970). After the investors realize this, the

signal realization intended to induce πH = B will only induce a posterior belief lower than B,

which then makes the market freeze with all projects unfunded. This destroys the entire design.

To deal with this issue, I extend the basic model to endogenize project types and design

the optimal disclosure rule while taking the change in type distribution into consideration. All

proofs in this section are provided in Appendix 3.C.2 (online).

3.4.1 Pre-Financing Upgrading and Designer’s Problem

Consider a unit measure of entrepreneurs indexed by x with uniform distribution over [0, 1], each

of whom is initially endowed with a low type project. Entrepreneur x can choose to upgrade

her project to high type by paying an upgrading cost Ψ(x), where Ψ(·) is an (weakly) increasing

function on [0, 1].18 Assume the regulator’s disclosure rule is publicly announced before the

upgrading decisions. Then an entrepreneur would upgrade to high type only if her upgrading

18Notice we can induce any probability distribution for upgrading costs by just letting Ψ be the generalized
inverse cdf of that distribution.
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cost is weakly less than the difference between two types’ expected payoffs under the disclosure

rule. The high type proportion pH is therefore endogenously decided by the disclosure rule now.

Throughout this section, I assume:

Assumption 3.4.1. (1) Ψ(0) = 0; (2) Ψ(1) > vH −K; (3) Ψ(·) is continuous.

Given (3), conditions (1) and (2) guarantee that we would always have both high type

projects and low type projects in the end (i.e., pH ∈ (0, 1)). They are not essential but help

to avoid trivial cases and ease the discussion. Condition (3) guarantees each pH ∈ (0, 1) can

be induced by just one value of expected upgrading benefit, which is equal to Ψ(pH) (i.e., the

marginal entrepreneur must be indifferent). This also simplifies the analysis.

Notice this setup is quite general in the sense that Ψ(·) can be any increasing function

that satisfies Assumption 3.4.1. Thus the framework can (approximately) capture any positive

dependence of high type proportion on the entrepreneurs’ perceived benefit from upgrading.

The only requirement is that the designer knows this dependence when designing the disclosure

rule.

The model’s full timeline is given by replacing Stage 1 in the basic model with the en-

trepreneur’s upgrading problem:

–1. Each entrepreneur decides whether to upgrade to high type given her upgrading cost Ψ(x).

The project type v is then decided correspondingly.

(Stages 2 – 5 remain the same as in the basic model.)

Designer’s problem Let D denote a disclosure rule (as defined in Definition 3.3.1) and pH

still denote the proportion of high type projects. The designer’s problem is to choose a pair

of (pH ,D) such that the expected social welfare is maximized and pH is indeed an equilibrium

high type proportion given D.

It is instructive to first consider optimal disclosure without moral hazard (β = 1) in this

setup. Since all projects are to be developed in that case, the efficient level of pH satisfies

Ψ(pH) = vH − vL, which means the marginal cost of upgrading equals to its marginal social

benefit. Notice the required upgrading incentive vH − vL is provided to the entrepreneurs only

under full disclosure (since both types get developed), so full disclosure would be the unique

optimal disclosure rule without moral hazard.
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πH ≥ B B > πH ≥ A πH < min{A,B}

v = vH (1− K
πHvH+(1−πH)vL

)vH (1− K
πHvH

)vH 0

v = vL (1− K
πHvH+(1−πH)vL

)vL (1− β)K 0

Table 3.1: Ex-post Project Payoff u(πH ; v)

3.4.2 Equilibrium Condition for pH

To solve the designer’s problem, I first derive the equilibrium condition for pH . For language

simplicity, I will use the term “project payoff” to refer to an entrepreneur’s payoff without

deducting her upgrading cost.

Let u(πH ; v) denote the project payoff for a type v entrepreneur when posterior belief πH is

realized. According to Proposition 3.3.1, values for u(πH ; v) are as listed in Table 3.1.19 Given

any pH , the disclosure rule decides the joint distribution over πH and v. Thus for any pair of

(pH ,D), the expected project payoffs for a high type and a low type are respectively:

uH(D; pH) := E(pH ,D)[u(πH ; vH)|v = vH ]; uL(D; pH) := E(pH ,D)[u(πH ; vL)|v = vL]

where the subscripts to the expectation signs indicate the probability measure is induced by

(pH ,D). Notice the expected benefit from upgrading perceived by each entrepreneur is just

the difference between these two terms. Thus the equilibrium condition for a proportion pH of

entrepreneurs to upgrade in Stage 1 is then:

uH(D; pH)− uL(D; pH) = Ψ(pH) (3.8)

which guarantees the marginal entrepreneur is just indifferent between upgrading and not up-

grading, taking aggregate pH as given. When and only when this condition holds, pH is an

equilibrium proportion of high types and I will say the disclosure rule D incentivizes pH .20

Notice in general, given a disclosure rule D, there may be multiple pH that satisfy the

19Proposition 3.3.1 still applies since the signaling game starting from Stage 3 is the same as that in the basic
model.

20The necessity of this condition is guaranteed by Assumption 3.4.1. To see this, notice: first, continuity of
Ψ(·) guarantees the marginal entrepreneur must be indifferent when pH ∈ (0, 1); second, condition (2) in the
assumption implies equilibrium pH < 1 since upgrading benefit cannot exceeds a high type’s net value; third,
pH = 0 requires the upgrading benefit to be weakly less than Ψ(0) = 0, which trivially implies them to be equal
since upgrading benefit is non-negative.
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condition and thus can be incentivized. When this multiplicity exists, I assume the designer

has freedom to pick her target pH . Actually, one can show that if a disclosure rule can incentivize

multiple pH , the designer will always pick the largest one in optimum.21

To use constrained Bayesian persuasion tools later, I need to rewrite the LHS of (3.8) as an

expectation of some function on the posterior belief πH . Define

h(πH ; pH) :=



(
1− K

πHvH+(1−πH)vL

)(
πHvH
pH

− (1−πH)vL
1−pH

)
if πH ≥ B(

1− K
πHvH

)
πHvH
pH

− 1−πH
1−pH

(1− β)K if B > πH ≥ A

0 otherwise

(3.9)

Then, condition (3.8) is equivalent to

E(pH ,D)[h(πH ; pH)] = Ψ(pH) (3.10)

(The derivation is provided in Appendix 3.C.2.)

3.4.3 Solution to Designer’s Problem

The designer’s problem can be solved in two steps. First, given any target pH , I derive the

optimal disclosure rule with condition (3.10) satisfied using the constrained concavification

method (Boleslavsky & Kim, 2018). Second, I compute backwardly to characterize the optimal

target pH .

Constrained Bayesian persuasion targeting on pH

Notice the indirect welfare function on πH (taking expectation of which gives total social surplus

without deducting upgrading costs) is the same as that in the basic model, so the designer’s

21Also notice the LHS of (3.8) is typically not continuous in pH due to selection among multiple equilibria.
Thus it is possible that there is no equilibrium pH given some disclosure rules. Such rules are not considered
potentially optimal in my analysis.
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constrained Bayesian persuasion problem given target pH is:

V (pH) := max
µ∈∆([0,1])

Eµ[W (πH)] (3.11)

s.t. Eµ(πH) = pH (3.12)

Eµ[h(πH ; pH)] = Ψ(pH) (3.13)

where W (·) is as defined in (3.5). Compared to the problem in Section 3, the key difference

here is the inclusion of incentive constraint (3.13), which is just condition (3.10) with subscript

(pH ,D) replaced by the induced posterior belief distribution µ. This constraint guarantees the

derived disclosure rule can indeed incentivize target pH . Notice without constraint (3.13), the

problem just becomes optimization (3.6) – (3.7) and the unconstrained optimal rule Du(pH)

defined in Definition 3.3.2 (with its induced posterior distribution) would be optimal.

Before solving the problem, I first characterize a range for potentially optimal target pH ,

which eases the discussion when applying the constrained concavification method. Define:

ρ(pH) := uH(Du(pH); pH)− uL(Du(pH); pH) (3.14)

Then, ρ(pH) is the difference between two types’ expected project payoffs (thus the expected

benefit from upgrading) under Du(pH) given that the equilibrium high type proportion is indeed

pH . Thus if target pH satisfies ρ(pH) < Ψ(pH), to incentivize it we must deviate from Du(pH)

to induce higher upgrading incentive. If ρ(pH) > Ψ(pH), exactly the opposite needs to be done.

If ρ(pH) = Ψ(pH), the unconstrained optimal rule Du(pH) can just incentivize pH and is thus

also optimal for the constrained problem.

The range for potentially optimal target pH is provided in the following lemma:

Lemma 3.4.1. Define constants:

p0H := sup{p ∈ [0, 1] : ρ(p) ≥ Ψ(p)} (3.15)

p1H := sup{p ∈ [0, 1] : Ψ(p) ≤ vH −K} (3.16)

Then, the optimal target pH is in interval [p0H , p
1
H ]. Moreover, we have 1 > p1H > p0H > 0 with

ρ(p0H) = Ψ(p0H) and Ψ(p1H) = vH −K.
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Most importantly, the lemma says any optimal pH ≥ p0H . By the definition of p0H , this

implies that for any potentially optimal pH , we never need to induce lower upgrading incentive

than that under Du(pH), which suggests that constraint (3.13) is restrictive only in one direction

for any potentially optimal pH .22 This effectively simplifies the discussion needed when applying

the constrained concavification method. The lemma also provides an upper bound p1H for the

optimal target pH . This upper bound is somewhat trivial because p1H is the overall highest pH

one can ever incentivize, since upgrading benefit never exceeds the high type net value vH −K.

It is useful to provide an explicit expression for function ρ(·), because pieces of it appear in

the main proposition below.

ρ(pH) =


ρL(pH) := y1(B)− (1−B)pH

B(1−pH)y2(B) if pH < B

ρR(pH) := B(1−pH)
(1−B)pH

y1(B)− y2(B) + pH−B
(1−B)pH

(vH −K) if pH ≥ B

(3.17)

where y1(B) := (1− K
BvH+(1−B)vL

)vH and y2(B) := (1− K
BvH+(1−B)vL

)vL. (See Appendix 3.C.2

for the derivation and more properties of this function.)

Now, by Lemma 3.4.1, I only need to solve problem (3.11) – (3.13) for pH ∈ [p0H , p
1
H ]. The

result is as follows:

Proposition 3.4.1. For target pH ∈ [p0H , p
1
H ], the solution to designer’s problem (3.11) – (3.13)

supports on a subset of {0, B, 1} with:

µ(0) =
Ψ(pH)− ρR(pH)

vH −K − ρL(pH)
· (1−B)pH

B
; µ(B) =

vH −K −Ψ(pH)

vH −K − ρL(pH)
· pH
B

;

µ(1) =
Ψ(pH)− ρL(pH)

vH −K − ρL(pH)
· pH

where ρL(·) and ρR(·) are as defined in (3.17). Moreover, the value function is: V (pH) =

(vH −K)pH + (vL −K)(1−B)µ(B).

It is easy to check that when target pH = p0H , the optimal rule just becomes Du(p0H).23

22Boleslavsky & Kim (2018) also proves a similar result that any optimal target agent effort in their model
is weakly higher than the effort readily incentivized by the unconstrained optimal rule. However, their result’s
logic is much simpler because the designer in their model does not care about the agent’s cost in making effort.
In contrast, the designer in my model takes the entrepreneurs’ upgrading costs into consideration, so the result is
much less trivial. A rough intuition here is: because of pooling, one’s upgrading always exerts positive externality
on other entrepreneurs under any partial disclosure rule, so it is never desirable to induce a low pH when a higher
one can be incentivized without distorting from the unconstrained optimal rule.

23To see this, notice either Ψ(p0H) = ρL(p
0
H) or Ψ(p0H) = ρR(p

0
H) (or both) depending on whether p0H ≤ B or

p0H ≥ B (or both).
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When target pH satisfies Ψ(pH) = vH −K, we have µ(B) = 0 and thus the optimal rule is full

disclosure. Except for these two cases, the optimal µ has full support on {0, B, 1} and three

signal realizations would be needed accordingly.24 For later references, I will call these three

signal realizations as low signal (with πH = 0), pooling signal (with πH = B) and high signal

(with πH = 1) respectively.

The potential use of a third signal realization when target pH > p0H is an important feature

of the optimal disclosure with endogenous types. The realization(s) additional to those in

Du(pH) helps to enhance the entrepreneurs’ upgrading incentives, so that the target pH can

be incentivized. For instance, when pH ∈ (p0H , B), while Du(pH) only sends low and pooling

signals, the optimal disclosure here also involves the high signal to encourage upgrading through

lowering high types’ expected financing costs; when pH > max{p0H , B}, while Du(pH) only sends

pooling and high signals, the optimal rule also uses the low signal to spur upgrading by leaving

some low type projects not financed. Overall, the need to incentivize for target pH > p0H requires

more informative disclosure than Du(pH). Notice full disclosure is not used, however, unless

one wants to induce a highest possible pH that satisfies Ψ(pH) = vH −K.

It is also instructive to understand Proposition 3.4.1 as a result about what posterior πH

should not be induced under optimal disclosure. First, as in Proposition 3.3.2, we should never

induce πH ∈ (0, B), since those posteriors cannot get the pooled low types developed and thus

do not help to alleviate the moral hazard problem. Second, any πH ∈ (B, 1) should not be

induced either, even if target pH ∈ (B, 1), which is in contrast with the result in Proposition

3.3.2. Intuitively, when target pH > p0H ,25 we need to provide higher upgrading incentive

than that under Du(pH). This makes it valuable to be able to enhance upgrading incentive

without preventing pooled low types from developing. Thus, if some πH ∈ (B, 1) was initially

induced, we should split it into two posteriors B and 1 with more disclosure, which then provides

higher upgrading incentive while keeping all projects receiving those posteriors developed. As a

conclusion, any information that does not hinder low types from developing should be disclosed.

24In general, Boleslavsky & Kim (2018) shows with two states (types) and one incentive constraint, optimality
can be achieved with no more than three signal realizations. This cardinality bound is tight in this case.

25When pH = p0H , the implication is trivial since p0H is just induced by Du(p0H) and by design, Du(p0H) provides
the highest upgrading incentive among all optimal rules in the basic model given exogenous pH = p0H , which does
not induce any πH ∈ (B, 1).
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Optimization over pH

Proposition 3.4.1 derives the value function V (·), which gives the maximal social surplus when

targeting on pH ∈ [p0H , p
1
H ] without deducting the upgrading costs. Computing backwards, the

designer’s optimization problem over pH is:

max
pH∈[p0H ,p1H ]

{V (pH)−
∫ pH

0
Ψ(x)dx} (3.18)

where the integration computes total upgrading cost by integrating over the individual en-

trepreneurs’ upgrading costs. Since Ψ(·) is assumed to be continuous, it is easy to see that the

objective function is continuous. Thus the solution exists by Weierstrass Theorem. Solving this

problem then delivers the optimal target pH . Formally,

Proposition 3.4.2. A pair of (pH ,D) solves the designer’s problem if and only if pH solves

optimization (3.18) and the posterior belief distribution induced by (pH ,D) is as given in Propo-

sition 3.4.1.

To better understand the trade-off underlying optimization (3.18), consider the derivative

of its objective function (assuming differentiability):

[vH −K −Ψ(pH)] + (vL −K)(1−B)
dµB
dpH

where µB := µ(B) in Proposition 3.4.1. By FOC, this derivative should be non-positive at any

optimal pH (a careful examination of the function shows this holds trivially when pH = p1H).

Notice vH − K − Ψ(pH) ≥ 0 for any pH ≤ p1H . Thus, at any optimal pH , we must have

dµB
dpH

≤ 0. This highlights the key trade-off in the optimization around any optimum: by

marginally increasing pH , one obtains more high type projects, but would have fewer low type

projects being developed (whose mass is (1−B)µB).

Why increasing target pH may require reducing the number of low types to be developed?

There are two possible forces behind it. To see them intuitively, we can consider increasing

target pH marginally by dpH and hypothetically decompose the change in the optimal posterior

distribution into two steps. First, we increase µ(1) by dpH so that all the new high types are

incorporated into the high signal. If initial µ(0) = 0, we have to source these upgradings by

reducing a mass dpH of low types currently receiving the pooling signal. This acts as a direct
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force to reduce the number of low types being developed. I call it replacement effect. If initial

µ(0) > 0, on the other hand, we can source the upgradings from those who are receiving the

low signal. In this case, µ(B) is not changed and the replacement effect is zero. After this

first step, the posterior distribution gets consistent with the new pH , but upgrading incentive is

typically not just right for incentivizing it. Thus in the second step, we need to further change

the posterior distribution in a mean preserving way to achieve the right upgrading incentive. I

call the impact of this on the number of pooled low types incentivizing effect. If the upgrading

incentive after the first step is inadequate, we must provide higher incentive by supplying more

information (i.e., making a mean preserving spread on the posterior distribution). Then the

incentivizing effect would be negative.26

Proposition 3.4.2 characterizes the optimal (pH ,D) in two steps. Given the structure of the

optimal posterior support in Proposition 3.4.1, it is also possible to characterize it with a single

optimization problem:

Corollary 3.4.1. A pair of (pH ,D) solves the designer’s problem if and only if the posterior

belief distribution µ induced by it supports on a subset of {0, B, 1} and (pH , µ(B)) solves:

max
(pH ,µB)

{(vH −K)pH + (vL −K)(1−B)µB −
∫ pH

0
Ψ(x)dx} (3.19)

s.t. 1− pH − (1−B)µB ≥ 0

µB ≥ 0

pH −BµB ≥ 0[
1− K

BvH + (1−B)vL

][BvH
pH

− (1−B)vL
1− pH

]
µB

+
vH −K

pH
(pH −BµB) = Ψ(pH)

This characterization does not require solving p0H and is useful in proving several features

of the optimal rule below.

3.4.4 Structure of Optimal Disclosure

Proposition 3.4.2 shows the optimal posterior distribution supports on a subset of {0, B, 1},

which still leaves the structure of the optimal disclosure rule indeterminate. Especially, full

26Notice if the optimal pH satisfies Ψ(pH) < vH −K (which is true under a very weak condition as to be shown
later), the FOC implies that one of these effects must be strictly negative around the optimum.
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disclosure (µ supporting on {0, 1}) has not been ruled out. In this section, I provide further

characterizations on the structure of the optimal rule. In particular, I show: (i) Full disclosure

is not optimal under a weak condition on Ψ(·); (ii) Under a slightly stronger condition, each of

{0, B}, {B, 1} and {0, B, 1} can be the support of the optimal posterior distribution for some

set of parameters. Moreover, a comparative statics result with respect to the moral hazard

parameter β is also provided. To simplify the analysis, I assume:

Assumption 3.4.2. Ψ(·) is continuously differentiable.27

Then, we have the following conclusion:

Proposition 3.4.3. If Ψ′(p1H) > 0, then the optimal pH is strictly less than p1H and full disclo-

sure is not optimal.

The proposition states that as long as the individual upgrading cost Ψ(·) is increasing in

first order at p1H , full disclosure would be suboptimal. Intuitively, when pH increases to p1H ,

the marginal benefit from having more high types developed net of upgrading costs vanishes

(since Ψ(pH) approaches to the high type net value vH −K), while the condition Ψ′(p1H) > 0

guarantees the loss from reducing pooling that is needed to incentivize higher pH (negative

incentivizing effect) remains first order. Thus it is not optimal to induce p1H , which is the only

pH requiring full disclosure to incentivize given condition Ψ′(p1H) > 0. Therefore, full disclosure

is not optimal. Also notice the proposition’s condition is sufficient but not necessary. Indeed,

even if Ψ′(p1H) = 0, it is still a special case for the optimal pH to require full disclosure to

incentivize.

Proposition 3.4.3 implies that even with endogenous types and adverse selection concerns,

it is still a rare case for full disclosure to be optimal. As long as the designer understands

how the type distribution endogenously changes in upgrading incentive, she is able to design a

proper partial disclosure rule to alleviate welfare loss caused by moral hazard while sustaining

the target type distribution.

To introduce further characterizations on the optimal rule, fix a set of parameters (K, vL, vH)

and define

¯
β := 1− (

1

K
− 1

vH
)vL; β̄ := 2− vL

K

27This guarantees the objective function in optimization (3.18) is continuously differentiable, so standard
analytical tools are applicable.
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Then, β (together with the other parameters) satisfies Assumption 3.2.1 if and only if β ∈

(
¯
β, β̄) ∩ [0, 1]. To ease discussion and focus on the most interesting case, I assume

¯
β ≥ 0 from

now on.28

For some intuition on how β affects the optimal disclosure, notice when β → β̄, the moral

hazard problem gets less serious and the supporting point B → 0; when β →
¯
β, the problem

gets more serious and B → 1. It is easy to see (by Proposition 3.4.1) that in both cases, the

optimal disclosure rule converges to full disclosure. However, in the former case, the social

outcome converges to the first best with pH satisfying Ψ(pH) = vH −vL, which is not surprising

as the moral hazard friction vanishes; while in the latter case, the social outcome converges to a

situation where only high types are developed and pH = p1H (supposing Ψ′(p1H) > 0). For later

references, I denote the first best pH as pfb and notice p1H > pfb.

Since B and p0H depend on β by their definitions, I denote them as B(β) and p0H(β) re-

spectively to highlight the dependences. One characterization for the optimal disclosure is as

follows:

Proposition 3.4.4. If there exists δ > 0 s.t. Ψ′(pH) ≥ δ ∀pH , then:

(a) There exists a > 0 s.t. for all β ∈ (β̄−a, β̄), we have: the optimal pH is unique and equals

to p0H(β); the optimal µ supports on {B(β), 1}.

(b) There exists b > 0 s.t. for all β ∈ (
¯
β,

¯
β+ b), we have: the optimal pH is unique and equals

to p0H(β); the optimal µ supports on {0, B(β)}.

Under the condition on Ψ(·), the proposition says when the moral hazard problem is suffi-

ciently mild or sufficiently serious, the optimal disclosure rule coincides with the unconstrained

optimal rule (given the optimal target pH) and just uses two signal realizations. In particular,

when the problem is mild enough, the optimal disclosure only sends pooling and high signals,

so all low types are pooled and developed; when the problem is serious enough, the optimal

disclosure only sends pooling and low signals, so all high types are pooled while some low types

are left not financed.

A simple result implied by Proposition 3.4.4 is:

Corollary 3.4.2. Under the condition of Proposition 3.4.4, we have:

(a) There exists a > 0 s.t. the optimal pH is unique and increases in β when β ∈ (β̄ − a, β̄).

28For example, (K, vH , vL) = (1, 2, 1.6) satisfies Assumption 3.2.1 with (
¯
β, β̄) = (0.2, 0.4).
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(b) There exists b > 0 s.t. the optimal pH is unique and decreases in β when β ∈ (
¯
β,

¯
β + b).

Corollary 3.4.2 implies that (under its condition) the optimal pH eventually increases to

pfb as β → β̄ and eventually increases to p1H as β →
¯
β. (More comparative statics results are

provided in Proposition 3.4.6 below.)

While Proposition 3.4.4 shows (under its condition) only two signal realizations are needed

for extreme values of β, the next proposition shows that the optimal disclosure may indeed

require a third signal realization for some intermediate values of β. Define ν(p) := (1 −
K

pvH+(1−p)vL
)(vH − vL). Then, we have:

Proposition 3.4.5. Assume the condition in Proposition 3.4.3 holds. Suppose Ψ(p) = ν(p) ⇒

Ψ′(p) < H(p), where H(·) is a positive function provided in the proof. Then there exists a

non-degenerate interval I s.t. for all β ∈ I, the optimal pH is strictly bigger than p0H(β) and

the optimal µ has full support on {0, B(β), 1}.

The proposition is easiest to understand when the result in Proposition 3.4.4 holds (although

it does not require so). Roughly speaking, the technical condition in the proposition guarantees

that the optimal µ never solely supports on the singleton {B(β)}. Thus when its support

transits from {0, B(β)} to {B(β), 1} as β increases, it must pass the full support case for some

interval of β by a continuity result shown in the proof (Lemma 3.C.2 in Appendix 3.C.2). For

these intermediate values of β, the optimal disclosure simultaneously involves a low signal and

a high signal, which never happens in the basic model with exogenous pH .

Figure 3.3 provides a numerical example and plots the optimal target pH and posterior

distribution support for different values of β. As suggested by Proposition 3.4.4 and Proposition

3.4.5, the optimal posterior distribution supports on {0, B(β)} or {B(β), 1} when β is sufficiently

small or large respectively, and has full support {0, B(β), 1} for intermediate values of β.

Moreover, two additional features of the graph deserve highlighting. First, the optimal

disclosure rule does not use the low signal (i.e., 0 /∈ supp{µ}) if and only if β is higher than a

threshold (β = 0.376). Second, the optimal pH changes in a U-shape when β evolves, with its

minimum achieved at that threshold. These comparative statics patterns turn out to hold more

generally, which are explored in the next proposition.

For simplicity, I only focus on the case where the optimal pH is always unique, which tends

to hold when Ψ(·) increases fast or is sufficiently convex (not very concave) in the relevant



155

Figure 3.3: p∗H and supp{µ∗} for different β (with vH = 2, vL = 1.6, K = 1 and Ψ(x) has

distribution Normal(0.5, 0.3) truncated for the positive part).

region. For any β, let p∗H(β) and µ∗(·;β) denote the corresponding optimal pH and posterior

distribution µ(·). We have:

Proposition 3.4.6. Assume the condition in Proposition 3.4.3 holds. Suppose for all β ∈

(
¯
β, β̄), the optimal pH is unique and the objective function in optimization (3.18) is piecewise

monotone on [0, p1H ].29 Then, there exists βc ∈ (
¯
β, β̄) ∪ {+∞} s.t.

(a) µ∗(·;β) supports on {B(β), 1} or {B(β)} if and only if β ≥ βc. (Singleton {B(β)} may

be the support only when β = βc.)

(b) p∗H(·) is decreasing when β ≤ βc and strictly increasing when β ≥ βc.

Moreover, βc can be defined as inf{β ∈ (
¯
β, β̄) : p∗H(β) = p0H(β) ≥ B(β)}.

To interpret the results, recall that higher β implies less severe moral hazard problem. Part

(a) says there is a threshold βc such that the optimal disclosure does not use the low signal if

and only if β ≥ βc (i.e., moral hazard is milder than a threshold), in which case all projects can

be developed. Part (b) says that the optimal pH as a function of β is globally U-shaped, which

achieves its minimum at βc (if βc < +∞). Thus as moral hazard problem gets milder from the

29Piecewise monotonicity is a rather weak condition that rules out functions oscillating violently. See the proof
for its definition.
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most serious scenario, the optimal target pH first decreases from p1H to its global minimum and

then increases to pfb (as seen in Figure 3.3). Notice if βc = +∞, the set of β ≥ βc is empty, so

the low signal is always used and the optimal pH is globally decreasing in β. However, I note

that it is more common for βc to be finite, which is the case, for example, under the condition

of Proposition 3.4.4.

Notice the fact that all projects are developed when β ≥ βc does not imply first best

welfare is achieved then, since part (b) implies p∗H(β) would be too little compared to pfb when

β ∈ (βc, β̄). Intuitively, given all projects are developed when β ∈ (βc, β̄), certain degree of

pooling needed to overcome the moral hazard problem necessarily makes upgrading incentive

lower than that in the first best, so distortion in pH compared to the first best is inevitable.

This is in contrast to the exogenous types case, where first best welfare can be achieved as long

as β is large enough such that B(β) is smaller than the exogenous pH .

To gain better intuition behind the U-shape relation between the optimal pH and β, we need

to consider the two ranges separately. When β ≥ βc, as β increases, the incentive rent needed for

low types in the moral hazard problem decreases, so higher upgrading incentive can be provided

while keeping all projects developed. Therefore, the optimal pH , which equals to p0H(β) in this

case, naturally increases. When β < βc, the intuition is more subtle. First notice in this case,

the optimal posterior distribution has µ(0) > 0 by part (a), so the replacement effect around

p∗H(β) is zero, which implies that the key cost of increasing target pH around p∗H(β) comes from

the negative incentivizing effect. After β increases, the incentive rent paid to each pooled low

type entrepreneur under any optimal disclosure decreases (since B decreases). Thus to increase

upgrading incentive by the same amount, more low types must be expelled from pooling and

become undeveloped now. This implies that with higher β, the incentivizing effect around the

original optimal pH becomes more negative. Therefore, the trade-off aforementioned in Section

4.3.2 favors lower pH after β increases.

Finally, I note that even if the optimal pH is not globally unique, the proposition’s results

still hold for any subinterval of β where it is unique. For example, if uniqueness holds when

β ∈ (β1, β2), then we can find βc such that p∗H(·) is decreasing on (β1, βc] and increasing on

[βc, β2), where βc can be defined in the same manner as in the proposition with (
¯
β, β̄) replaced

by (β1, β2).
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3.5 Discussion

In this section, I provide more discussions regarding implementation of the optimal disclosure

rule characterized above from a practical perspective.

3.5.1 Negative Value Projects

When interpreting this paper’s results, it is important to notice that both types of projects

in the model are socially optimal to carry out. The low type projects are problematic only

because they cannot get financed and developed on their own given the moral hazard problem.

In this case, the paper shows that it is efficiency-improving to get some low types financed

and developed through pooling them with high types in the financing campaigns. In practice,

however, some projects are of zero or negative net values (e.g., fraudulences). For those projects,

there is certainly no benefit to finance them and the regulator should just eliminate them from

the market by disclosing their values whenever possible. The partial disclosure rule designed in

this paper should only be applied to the remaining projects with positive net values.

3.5.2 Implementing Optimal Disclosure with Random Inspection

The Bayesian persuasion technique used in this paper is powerful in characterizing the optimal

information structure in an abstract (probabilistic) way. However, one may wonder how it

can be implemented in practice, especially how the signals leading to different posterior beliefs

can be generated in the entrepreneur financing context. For sure, the real world information

environment is far more complicated than my parsimonious model. But in the model’s stylized

two-types setup, a simple random inspection approach can be used to implement the optimal

rule (p∗H , µ
∗) in Proposition 3.4.2.

Specifically, suppose there are N projects in the market seeking for financing. The regulator

can randomly select N ·max{ µ∗(0)
1−p∗H

, µ
∗(1)
p∗H

} of them to investigate.30 This may involve sending

experts to examine the projects or requiring the entrepreneurs to provide supplemental materials

to justify their project values. When N is large, in equilibrium, proportion 1 − p∗H of these

selected projects would be low types and the rest of them would be high types. Then, a simple

calculation shows that after the investigation, at least µ∗(0)N projects can be deemed as low

30It can be shown that this is the minimal number of projects that we need to investigate to implement the
information structure.
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types and at least µ∗(1)N projects can be deemed as high types. With these results, we can

disclose exactly µ∗(0)N low types and µ∗(1)N high types to the public. For the rest of projects,

the regulator can just keep silent and let them go for financing directly. This then nicely induces

the desired posterior distribution µ∗. The key here is that we need to maintain the posterior

belief πH just high enough for those with null disclosure, so that they can get financed and

developed.

This kind of random sampling is widely used by governments to examine and control the

quality of physical products (e.g., foods). The discussion above suggests it may also be useful

for financial products, although the motivation here is different. In usual contexts, people use

random sampling instead of censoring mainly to lower cost. But in our context, it is desired

also for inducing partial disclosure.

3.5.3 Cost of Disclosure

It is hard to incorporate disclosure cost in the current framework. There are two reasons: first, it

is not clear how to measure the costs for different disclosure rules, which is more of an empirical

question; second, the concavification method can only deal with a particular kind of disclosure

cost (written as expectation of a function on the posterior beliefs), which may not be reasonable

in the current context.

However, it is safe to say that the partial disclosure rule designed in this paper should cost

less than full disclosure. As can be seen in the random inspection approach, only some of the

projects need to be investigated for partial disclosure. Thus given the presence of disclosure cost,

the designer would be more willing to use partial disclosure and probably even less information

should be disclosed.

3.5.4 Information Gathering by Investors

One concern about implementing the optimal disclosure rule in practice is that the investors

may be able to collect information themselves, which makes it hard to pool different types

in the end. However, I argue that in many recently legalized public financing channels for

entrepreneurs, the individual investors’ incentive and ability in collecting information are very

limited.

Taking equity crowdfunding for example, the crowd investors typically do not have exper-
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tise in the business field, which limits their ability in collecting and interpreting information.

Moreover, in each crowdfunding campaign, the total number of investors is often large and each

of them only contributes a small amount of fund. As the total capital raised for a project is

usually publicly observable during the funding process, each investor has strong incentive to free

ride on others’ information and has little incentive to collect information himself. Given these

frictions, it is unlikely for voluntary information gathering by investors to generate substantial

information on project values. Therefore, the regulator’s due-diligence and disclosure would be

critical in shaping the information environment, which makes it possible for her to implement

pooling results with partial disclosure.

3.5.5 Private Disclosure by Entrepreneurs

Another concern on implementing partial disclosure rules is that the entrepreneurs may have

access to private signaling devices. For example, an entrepreneur can hire professionals to certify

her business plan or invite potential investors to try the firm’s prototype products. If the high

types are going to use these signaling devices, we may not be able to pool them with the low

types in the end. On this issue, two things can be said.

First, private signals can be too costly to send for small businesses, especially startups.

Many small firms have little amount of cash when they go for financing, which makes it hard

for them to afford the certification needed for credible signals. This is in remarkable contrast

with big firms in IPO, who can hire accounting companies to audit financial statements and hire

investment banks to certify their value through underwriting. These means are typically unaf-

fordable for small firms. Moreover, many innovative startups are reluctant to release detailed

information about their technology and business pattern to avoid imitation by competitors.

Actually, one important praise for the current Regulation Crowdfunding in the United States is

that it significantly reduces the disclosure burden of small firms and thus lowers their financing

costs. This suggests that, at least within some relevant range, disclosure regulation is binding

for small businesses in the sense that they do not voluntarily disclose more than required.

Second, in some cases, sending private signals is costly but not infeasible. When this is true,

we can explicitly take it into consideration when designing the optimal disclosure rule. This is

studied in Appendix 3.A. It is shown that optimal disclosure would not induce the high types

to use private signals and a properly designed partial disclosure rule still improves efficiency
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over full disclosure.

3.5.6 Application to Banking System Disclosure

While the paper has been focused on entrepreneur public equity financing, its basic intuition is

more widely applicable. In Appendix 3.B, I extend the basic model to debt financing and apply

it to optimal disclosure regulation for banking system. Alvarez & Barlevy (2015) illustrates

with an example that given post-financing moral hazard, full disclosure for the banks can

outperform non-disclosure even if the bank financing market does not freeze without disclosure.

However, their paper does not consider partial disclosure rules. By using a concavification

graph, I intuitively show that under certain conditions, although full disclosure dominates non-

disclosure, partial disclosure is typically optimal.

3.6 Conclusion

This paper has studied optimal disclosure regulation for entrepreneur public financing while

taking a post-financing moral hazard problem into consideration. It is shown that partial dis-

closure can help to alleviate efficiency loss caused by the moral hazard problem and thus improve

efficiency over full disclosure, even when full disclosure would be costless. This remains true

after allowing entrepreneurs’ type distribution to be endogenously influenced by the disclosure

rule.

With constrained Bayesian persuasion tools, the optimal disclosure rule with endogenous

type distribution is fully characterized. Most notably, three features of the optimal disclosure

with endogenous types are highlighted. First, it is never optimal to induce a pooling posterior

that cannot get the pooled low types developed. In particular, this rules out any post-financing

running away by the low types. Second, with the need to incentivize target type distribution, any

information that does not prevent pooled low types from developing should be disclosed. Third,

to incentivize the optimal target type distribution, more information may need to be disclosed

compared to the case where the designer can fix target type distribution without incentivizing

for it. Especially, optimal disclosure may simultaneously involve a signal realization that fully

identifies a low type and a realization that fully identifies a high type, which never happens

with exogenous type distribution.

While the paper has focused on a simple model of entrepreneur equity financing, I believe



161

the main intuition that partial disclosure can help to (partly) solve post-financing moral hazard

problem is more generally applicable. In particular, two extensions of the paper may deserve

further explorations. One is to apply the model to other financing environments with similar

policy concerns. This is pursued as a preliminary attempt in Appendix 3.B, where I adapt the

basic model to debt financing and apply it to banking system disclosure regulation. Another

possible extension is to replace the moral hazard problem in the model with a more complex

mechanism or contract design problem, in which the entrepreneurs’ incentive constraints depend

on their financing costs and thus can be affected by the disclosure rule in financing campaigns.

In practice, such models can be useful to venture capitalists, for example, who may need to

reveal information on a bunch of startups they hold in subsequent financing rounds with post-

financing incentive concerns. I leave this kind of exercises for future studies.

Appendix

3.A Private Disclosure by High Types

In this section, I extend the analysis by allowing high type entrepreneurs to privately disclose

their types to investors after the public signal is realized. A crucial assumption is that this

private disclosure is costly, so the high types will not use it if posterior belief πH induced by

the public signal is already above certain threshold. Under this assumption, it is still feasible

for the designer to pool some low types with high types without unraveling.31

Specifically, assume all high type entrepreneurs have access to a costly certification service

that can perfectly reveal their types. Let ξ denote the certification cost and assume ξ < vH −K

(otherwise, the certification is never used). Then, given a posterior πH induced by the public

signal, a high type entrepreneur will not pursue certification if ξ exceeds the benefit from raising

the investor’s belief on v = vH from πH to 1, i.e., if πH satisfies:

(
1− K

πHvH + (1− πH)vL

)
vH ≥ vH −K − ξ for πH ≥ B (3.20)(

1− K

πHvH

)
vH ≥ vH −K − ξ for B > πH ≥ A (3.21)

To guarantee the existence of solution to designer’s problem, I assume high types will not use

31All proofs are put into Appendix 3.C.3.
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the certification service when being indifferent.

In this environment, it is actually without loss of generality to focus on public disclosure

rules that do not induce high type entrepreneurs to use the costly certification service. With

exogenous pH (basic model), this is obvious since the designer can induce any (Bayesian feasible)

information structure for the economy by just using public disclosure. If a high type is going to

use the private certification, the designer can simply induce posterior πH = 1 for her with public

signal and achieve the same social outcome except for saving the entrepreneur’s certification

cost. With endogenous pH , however, this is not obvious because the potential certification cost

affects entrepreneurs’ upgrading incentives and thus influences pH . Therefore, I formally prove

the following lemma:

Lemma 3.A.1. Any disclosure rule that causes some high type entrepreneurs to use the certi-

fication service is not optimal.

By Lemma 3.A.1, it suffices to consider disclosure rules which only induce posterior beliefs

that satisfy condition (3.20) or (3.21). This implies that, to find the optimal disclosure rule, we

just need to add an additional constraint on the range of posterior belief πH when solving the

(constrained) Bayesian persuasion problem. Notice condition (3.20) is equivalent to:

πH ≥ max
{
1− ξvH

(K + ξ)(vH − vL)
, B

}
(3.22)

If 1− ξvH
(K+ξ)(vH−vL)

≤ B, then πH = B satisfies the condition and thus high type entrepreneurs

will not use the certification when πH ≥ B is realized for them. In this case, we do not need

to change the optimal rule found in the main text, since the certification is not used under it.

Therefore, I only focus on the case where:

B < 1− ξvH
(K + ξ)(vH − vL)

(3.23)

In this case, conditions (3.20) and (3.21) lead to the following observation:

Observation 3.A.1. Given (3.23), costly certification is not used if and only if posterior belief

πH ∈ {0} ∪ [
¯
π, 1], where

¯
π = 1− ξvH

(K+ξ)(vH−vL)
.

By Lemma 3.A.1 and Observation 3.A.1, the access to private disclosure just imposes an

additional constraint that πH ∈ {0}∪ [
¯
π, 1] under any optimal disclosure rule. This can be easily



163

handled with the concavification methods used in the main text by ignoring the interval (0,
¯
π)

for πH or, equivalently, by assuming the indirect welfare function W (·) takes negative infinity

over that posterior range. In the next two subsections, I characterize the optimal disclosure

rules with exogenous pH and endogenous pH respectively.

3.A.1 Exogenous pH

The following proposition is analogous to Proposition 3.3.2.

Proposition 3.A.1. Given exogenous high type proportion pH ,

(i) If pH <
¯
π, the optimal distribution of posteriors supports on {0,

¯
π} with µ(

¯
π) = pH/

¯
π and

µ(0) = 1− pH/
¯
π.

(ii) If pH ≥
¯
π, any distribution of posteriors supporting on a subset of [

¯
π, 1] with Eµ[πH ] = pH

is optimal.

It is easy to see as long as ξ > 0,
¯
π is smaller than 1 and the optimal disclosure rule is partial

disclosure. Intuitively, as long as the certification is not free, the designer can still pool some

low types with high types without invoking a high type’s self-certificating. This intuition and

the optimality of partial disclosure remain valid even if some high type entrepreneurs can get

certification with no cost. In that case, these costless certifications are always used, but we can

still pool certain amount of low types with the rest of high types whose certifications are costly.

The existence of private signaling cost prevents unraveling from happening when the disclosure

rule is properly designed.

3.A.2 Endogenous pH

With endogenous pH , I first derive the optimal disclosure rule given any target pH . By Lemma

3.A.1 and Observation 3.A.1, we simply need to add the additional constraint on posterior belief

to problem (3.11) – (3.13), which becomes

V (pH ; ξ) := max
µ∈∆([0,1])

Eµ[W (πH)] (3.24)

s.t. Eµ(πH) = pH (3.25)

Eµ[h(πH ; pH)] = Ψ(pH) (3.26)

µ
(
(0,

¯
π)
)
= 0 (3.27)
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Notice the access to costly certification does not affect functions W (·) and h(·; pH) as long as

(3.27) holds so that the certification is never used.

To solve this problem, one can just follow the same procedures as those for optimization

(3.11) – (3.13). Because the proofs are tedious and basically the same as their counterparts in

Section 4, I omit them and directly present the main results.

Define function ρ(·) similar to that in (3.17) but with B replaced by
¯
π:

ρ(pH ; ξ) :=


ρL(pH ; ξ) := y1(

¯
π)− (1−

¯
π)pH

¯
π(1−pH)y2(¯

π) if pH <
¯
π

ρR(pH ; ξ) := ¯
π(1−pH)
(1−

¯
π)pH

y1(
¯
π)− y2(

¯
π) +

pH−
¯
π

(1−
¯
π)pH

(vH −K) if pH ≥
¯
π

(3.28)

where y1(
¯
π) := (1− K

¯
πvH+(1−

¯
π)vL

)vH and y2(
¯
π) := (1− K

¯
πvH+(1−

¯
π)vL

)vL. The following result is

analogous to Lemma 3.4.1 and Proposition 3.4.1:

Proposition 3.A.2. Given ξ > 0, define:

p0H := sup{p ∈ [0, 1] : Ψ(p) ≤ ρ(p; ξ)}; p1H := sup{p ∈ [0, 1] : Ψ(p) ≤ vH −K}

Then, the optimal target pH ∈ [p0H , p
1
H ]. Moreover, for any target pH ∈ [p0H , p

1
H ], the solution to

designer’s problem (3.24) – (3.27) supports on a subset of {0,
¯
π, 1} with:

µ(0) =
Ψ(pH)− ρR(pH ; ξ)

vH −K − ρL(pH ; ξ)
· (1− ¯

π)pH

¯
π

; µ(
¯
π) =

vH −K −Ψ(pH)

vH −K − ρL(pH ; ξ)
· pH

¯
π

;

µ(1) =
Ψ(pH)− ρL(pH ; ξ)

vH −K − ρL(pH ; ξ)
· pH

Thus the optimal disclosure rule given any potentially optimal target pH is just similar to

that in Proposition 3.4.1, but with B replaced by
¯
π.

Finally, I extend Proposition 3.4.3 to the current setup:

Proposition 3.A.3. With Assumptions 1 – 3 (in the main text) and ξ > 0, if Ψ′(p1H) > 0,

then full disclosure is not optimal.

In conclusion, although high types’ access to costly certification limits the designer’s pool-

ing ability as
¯
π > B under condition (3.23), a properly designed partial disclosure rule can

still dominate full disclosure. Again, costliness of private disclosure prevents unraveling from

happening and thus allows the designer to implement certain degree of partial disclosure.
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3.B Debt Financing and Application to Banking System

In this section, I extend the basic model to debt financing and apply it to (socially) optimal

disclosure for banking system.

In Alvarez & Barlevy (2015), the authors give an example where banks are facing post-

financing moral hazard problem. They show that full disclosure improves welfare over non-

disclosure even if the market does not freeze without disclosure, which is in contrast with

Goldstein & Leitner (2018). The main intuition is that without disclosure, the low types can

get financed but will misbehave afterwards, which causes a social loss. Imposing full disclosure

can prevent these low types from getting financed and thus save this loss. However, their paper

does not consider partial disclosure. A key lesson from my model is that partial disclosure

can help to incentivize some of the low types in the moral hazard problem to behave and thus

improves efficiency over full disclosure. Therefore, as to be shown, a properly designed partial

disclosure can dominate full disclosure in social welfare.

I first adapt the setup in Section 3 to debt financing and motivate partial disclosure under

certain assumptions. Then, I solve the model’s equilibria and derive the optimal disclosure

rule. Throughout this section, I assume every agent is risk neutral and the discounting factor is

normalized to 1. All assumptions on fundamental parameters are summarized in Assumption

3.B.1. All proofs are put into Appendix 3.C.4.

3.B.1 Model Setup

Agents and the moral hazard problem

There is a bank with two possible initial equity levels in period 0, denoted as e ∈ {eL, eH}

(eH > eL).
32 I refer to e as the bank’s type and assume the probability of high type (eH) is

pH ∈ (0, 1). The bank has a project that delivers random payoff z ∼ F in period 1 if developed,

where F is the cdf for z. A unit investment (K = 1) is required for the project to be developed

and the bank must finance it through issuing debt in period 0 (equity is assumed to be illiquid

in period 0). Assume E(z) > 1, so it is socially optimal to develop the project.

There is a representative investor, who forms belief about the bank’s type based on public

information available in the market. The investor can either offer the bank a standard debt

32As usual, one can interpret the model as having a continuum of banks.
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Borrow

Not Borrow

(
e, 1

)

Develop

Divert

(
max{z + e−R, 0},min{R, z + e}

)
(z is random with cdf F )

(
m, 0

)
Figure 3.4: Bank’s decision problem after being offered with gross interest rate R in date 0.

(First payoff is for the bank; second payoff is for the investor.)

contract to borrow for its investment, or just save his money in a risk free asset which pays zero

interest rate.

Suppose an offer is made to the bank with R being the gross interest rate. Then, the bank

can decide whether to borrow with that offer. If not, the bank just keeps its current equity

without developing the project and the investor saves his fund in the risk-free asset; if yes, after

getting financed, the bank can decide whether to honestly develop the project, or to divert the

fund for other uses (e.g., engaging in high risk adventures). For simplicity, assume that if the

bank diverts the fund, it will get final payoff m and the investor will get payoff 0. The fact that

these payoffs do not depend on e or R is certainly not without loss of generality, but can ease

the discussion significantly. If the bank develops the project, payoffs are realized according to

the standard debt contract.

The bank’s decision problem is as summarized in Figure 3.4, where the first elements in

the parentheses are payoffs for the bank and the second elements are payoffs for the investor.

(Notice z is random for both agents, while e is known by the bank but not by the investor.)

There are several implicit assumptions underlying these payoffs. First, the bank has limited

liability; second, the bank’s equity is assumed to be liquid in period 1, so it can be used to

repay the debt; third, the new debt holder investing in period 0 is junior to any existing debt

holders. These assumptions together imply that the bank’s payoff is always non-negative and

the investor’s payoff is limited by z + e after investing.
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Bank’s incentive

To keep things simple and interesting, I assume:

eL < m < min{eH , eL + 1} (3.29)

This leads to three features for the model. First, the low type bank always chooses to borrow

once it gets an offer, since it can at least divert the fund and m > eL. Second, the high type

never chooses to divert the fund since m < eH , so it either develops the project or chooses not

to borrow. These reasonably reflect general firm behaviors in reality. Firms with little equities

are often eager to borrow at whatever interest rate and have severe moral hazard problem, while

those in solid financial status are less willing to issue high-yield debt and less likely to exploit

the debt holders. Third, there is a social loss from diverting the fund, as m < eL + 1.

Define S(e,R) := E[max{z + e−R, 0}|e]. Then, by the decision problem in Figure 3.4 and

the discussions above, we can see that a high type bank borrows if and only if S(eH , R) ≥ eH

and a low type bank develops the project if and only if S(eL, R) ≥ m.33 Because S(e,R) is

decreasing in R, we can conveniently express these observations as the following:

Observation 3.B.1. Let R1, R2 > 0 be such that S(eL, R1) = m and S(eH , R2) = eH . Then,

R1 and R2 are uniquely defined. Moreover, when the investor offers with gross interest rate R,

we have:

� A low type bank will borrow and develop its project if R ≤ R1; otherwise, it will accept the

offer but divert the fund.

� A high type bank will borrow and develop its project if R ≤ R2; otherwise, it will not

borrow.

To focus on the most interesting case and compare to Alvarez & Barlevy (2015), I shall

assume R2 > R1. Notice otherwise, the low type can never divert the fund in equilibrium.34

33When being indifferent, the bank is assumed to behave in favor of social efficiency.
34Suppose R1 ≥ R2. For the low type to divert the fund, we must have R > R1 ≥ R2. But with this R, only

the low type borrows. Thus the investor would not lend anticipating the low type to divert the fund.
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Investor’s incentive

For the investor, let B(e,R) := E[min{R, z + e}|e]. Then, the investor would like to offer the

bank with interest rate R if and only if:

E
[
B(e,R)1{a(e,R) = Borrow and Develop}+ 1{a(e,R) = Not Borrow}|I

]
≥ 1 (3.30)

where a(e,R) denotes the bank’s choice in Figure 3.4 and I denotes the investor’s information

when making the decision. Notice the investor is not optimizing over R, as he potentially

represents a large group of investors. The exact value of R decides how the investors would

split surplus with the bank, which depends on the detailed market structure. For example, if

there are many investors who competitively bid their offers, then all surplus goes to the bank

and equilibrium R should satisfy (3.30) with equality. For my purpose here, however, exact

value of R is not needed and it suffices to know that any equilibrium R satisfies the inequality

and if such an R exists, the bank will receive an offer.

Full disclosure and efficiency loss

Under full disclosure, the investor knows the bank’s type. With Observation 3.B.1, condition

(3.30) is simplified to:

(B(eH , R)− 1)1{R ≤ R2} ≥ 0 when the bank is of high type (3.31)

B(eL, R)1{R ≤ R1} − 1 ≥ 0 when the bank is of low type (3.32)

Assume B(eL, R1) < 1 < B(eH , R2). Then, one can see B(eL, R)1{R ≤ R1} < 1 for all R

(notice B(e, ·) is increasing in R). Thus the low types can not get financed, which causes an

efficiency loss compared to the first best. To mitigate this loss, we may use partial disclosure to

reduce the low type’s financing cost, so as to provide enough incentive for it to behave in the

moral hazard problem. This turns out to require the following condition to hold:

B(eH , R1) > 1 (3.33)
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which is reminiscent of condition (3.4).35

The following assumption summarizes all assumptions I made on the parameters and dis-

tribution of z.

Assumption 3.B.1. eL, eH , m and distribution of z satisfies:

(a) E[z] > 1;

(b) eL < m < min{eH , eL + 1};

(c) B(eL, R1) < 1 < B(eH , R1);

(d) R2 > R1.

(Recall R1 and R2 are defined by S(eL, R1) = m and S(eH , R2) = eH .)

According to discussions above, (c) is the most important assumption we need. The other

assumptions are only for simplification or for keeping the question interesting. I will show that

under Assumption 3.B.1, partial disclosure can improve welfare over full disclosure. An example

that satisfies the assumption is: eL = 0.34, eH = 1.5, m = 0.9 and z ∼ Uniform[0, 3].

Timeline and the designer’s problem

At the beginning of period 0, the bank’s type is realized and is learned by the regulator (e.g.,

through stress tests). Then, the regulator sends a signal on it to the market according to a

pre-announced disclosure rule. A disclosure rule is defined as:

Definition 3.B.1. A disclosure rule consists of a finite signal realization space S and a family

of distributions {Γ(·|eL),Γ(·|eH)} on S.

After the signal is realized, the investor makes a debt offer to the bank with gross interest

rate R satisfying condition (3.30) if such an R exists. Then, the bank decides whether to accept

the offer and if yes, whether to develop the project.

Given a disclosure rule, the game’s timeline is summarized as the following:

–1. The bank learns its type e ∈ {eL, eH} with probability pH for eH .

–2. A signal realization s on e is disclosed according to the pre-announced disclosure rule.

–3. The investor makes a debt offer with gross interest rate R that satisfies condition (3.30)

if such an R exists, where the information set is I = {s}. If no such R exists, the bank

remains not financed and the game ends.

35Intuitively, this guarantees the low type’s financing cost can get sufficiently low when it is recognized as a
high type by the investor.
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–4. When offered with R, the bank solves the decision problem in Figure 3.4. Payoffs then

realize accordingly.

Compared to the setup of financing game in Section 3, a difference here is that I assume the

investor is to make the offer. This saves us from dealing with the signaling game and simplifies

the analysis. However, one can also let the bank make the offer and follow the procedures in

Section 3 to show only pooling equilibria exist in the signaling game. Thus the equilibrium

outcomes of these two setups are going to be identical.

The designer’s problem is to design a disclosure rule to maximize the total social surplus.

Notice for any signal realization s, the investor forms a belief on the bank’s type, which then

decides the equilibrium outcome in Stages 3 – 4. Let πH denote the belief on e = eH induced by

the signal. Given any πH , the (subgame perfect) equilibrium is solved in the next subsection.

3.B.2 Equilibrium given πH

Just like the financing game in Section 3, there can be three classes of equilibria:

� Class 1: R ≤ R1, so both types borrow and develop the project.

� Class 2: R1 < R ≤ R2, so both types borrow but the low type diverts the fund.

� Class 3: no offer is made by the investor.

(Notice the investor never offers R > R2, since only the low type would accept it and the

fund will be diverted.)

Define constants:

C1 :=
1−B(eL, R1)

B(eH , R1)−B(eL, R1)
; C2 :=

1

B(eH , R2)

By Assumption 3.B.1, it is easy to see C1, C2 ∈ (0, 1).36 Then, the basic result is the following:

Lemma 3.B.1. Class 1 equilibria exist if πH ≥ C1; Class 2 equilibria exist if πH ≥ C2; only

Class 3 equilibria exist if πH < min{C1, C2}.

When multiple classes of equilibria exist, I select the one that is most efficient. Notice by

Assumption 3.B.1, E(z) > 1 and m < eL + 1, so each developed project delivers a positive

(expected) social surplus and diverting causes a social loss. Therefore, the selection rule is:

select Class 1 equilibria if they exist; otherwise, select Class 2 equilibria if they exist; otherwise,

36Notice it is not sure whether C1 > C2 or C1 ≤ C2. Both cases can happen in general.
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select Class 3 equilibria. This selection rule allows us to focus on the informational problem

here, instead of equilibrium multiplicity in debt financing.37

According to the selection rule, the equilibrium outcome is:

Proposition 3.B.1. When πH ≥ C1, both types develop the project; when C2 ≤ πH < C1, the

high type develops the project and the low type diverts the fund; when πH < min{C1, C2}, no

bank is financed.

3.B.3 Optimal Disclosure

To use Bayesian persuasion tools, I first derive the indirect social welfare function. Let b denote

the expected net surplus from each developed project, i.e., b := E[z]− 1. Let ℓ denote the loss

from a low type’s diverting, i.e., ℓ := 1+ eL −m. Then, according to the equilibrium outcomes

in Proposition 3.B.1, the social surplus given bank type e and posterior belief πH is:

w(e, πH) :=b
[
1{πH ≥ C1}+ 1{C1 > πH ≥ C2}1{e = eH}

]
− ℓ1{C1 > πH ≥ C2}1{e = eL}

Taking expectation conditional on πH leads to the indirect social welfare function:

W (πH) := E[w(e, πH)|πH ] =


b if πH ≥ C1

bπH − ℓ(1− πH) if C1 > πH ≥ C2

0 otherwise

Then, the Bayesian persuasion problem of the designer is:

max
µ∈∆([0,1])

Eµ[W (πH)] (3.34)

s.t. Eµ(πH) = pH

The following proposition provides the solution to it.

Proposition 3.B.2. If pH < C1, the optimal distribution of posteriors supports on {0, C1}, with

µ(C1) = pH/C1 and µ(0) = 1 − pH/C1; if pH ≥ C1, any distribution of posteriors supporting

37For my purpose here, I don’t need to specify which equilibrium to select within a class.
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Figure 3.5: Comparison for Disclosure Rules

Note: The blue curve is function W (πH); the red dotted curve is the concavification boundary.

on a subset of [C1, 1] with Eµ[πH ] = pH is optimal.

In particular, the proposition implies full disclosure is never optimal (under Assumption

3.B.1). In the next subsection, I compare this result with that in Alvarez & Barlevy (2015).

3.B.4 Discussion

Alvarez & Barlevy (2015) proposes an example, in which without any disclosure, the market

does not freeze but a low type diverts the fund once getting financed. In my model, this

is corresponding to the case of C2 ≤ pH < C1, in which Class 2 equilibria realize without

disclosure. Similar to the result in Alvarez & Barlevy (2015), my model also predicts that full

disclosure improves welfare over non-disclosure in this case. The novel implication of my model,

however, is that partial disclosure further dominates full disclosure when properly designed.

These insights are intuitively illustrated with Figure 3.5.

Specifically, Figure 3.5 plots the indirect welfare function W (·) together with its concav-

ification for the case C2 ≤ pH < C1. Without any disclosure, the social welfare is given by

W (·) evaluated at pH , which is represented by point Q1. With full disclosure, the social welfare

is the convex combination of W (0) and W (1) with the weight on W (1) being pH , which is

represented by point Q2. Under the optimal disclosure, the social welfare is the concavification

curve evaluated at pH , which is given by point Q3. It is easy to see although Q2 is better than

Q1, Q3 strictly dominates both of them.

Intuitively, full disclosure outperforms non-disclosure in that it prevents low type banks

from ever diverting the fund. However, when doing so, it necessarily leaves all low types not
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financed. In contrast, the optimal disclosure rule in Proposition 3.B.2 is able to make some low

types develop their projects while keeping the rest of them not financed. In the end, there is

still no loss from diverting, but we can enjoy higher surplus from more projects being developed.

3.C Proofs

3.C.1 Proofs in Section 3

Proof for Observation 3.3.1

Proof. The proof has 3 steps:

� Step 1: Either all on-path offers are financed or all on-path offers are not financed.

Suppose in an equilibrium there are two offers α1 and α2, where α1 is financed but α2 is

not. The entrepreneur playing α2 currently gets payoff 0, so she can profitably deviate to

α1 to be financed and receive positive payoff (at least she can run away with the fund).

Thus we cannot be in equilibrium.

� Step 2: If some projects are financed, there is no on-path offer that is only played by the

low type.

Otherwise, the low type is recognized with that offer and cannot get financed due to the

discussion in Section 2.3. This violates the result in step 1.

� Step 3: If some projects are financed, there is only one on-path offer.

Due to step 2, all on-path offers are used by the high type with positive probability.

Suppose there are two on-path offers α1 and α2 (α2 > α1). By step 1, both offers are

financed. This implies the high type is going to develop her project with both offers.

(Otherwise, both types will divert with at least one of the offers and that offer cannot be

financed in equilibrium then.) Since α2 > α1 ⇒ (1− α2)vH < (1− α1)vH , the high type

strictly prefers α1 to α2, so they cannot both be on equilibrium path.

Q.E.D.

Proof for Lemma 3.3.1

Proof. Consider the three classes of equilibria one by one:

� Class 1: Both types of projects are financed and developed.

By Observation 3.3.1, this kind of equilibrium must be pure strategy pooling equilibrium.
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Let α denote the equilibrium offer. We must have that incentive condition (3.1) holds for

both types and condition (3.2) holds so that the investor would like to accept the offer.

Specifically, we need:

(1− α)vH ≥ (1− β)K (3.35)

(1− α)vL ≥ (1− β)K (3.36)

α[πHvH + (1− πH)vL] ≥ K (3.37)

where the third condition is from condition (3.2) with the expectation computed given

initial belief πH (since we are considering pooling equilibria). Since vH > vL, the first

condition is redundant. Combining (3.36) and (3.37) we obtain:

1− (1− β)
K

vL
≥ α ≥ K

πHvH + (1− πH)vL
(3.38)

There exists an α satisfying the condition if and only if the upper bound is higher than

the lower bound, which is equivalent to

πH ≥
[ K

vL − (1− β)K
− 1

] vL
vH − vL

= B (3.39)

Notice Assumption 3.2.1 guarantees the RHS is in (0, 1).

The above analysis shows the necessity of condition (3.39). For sufficiency, notice when

condition (3.39) is satisfied, for any α∗ that satisfies (3.38), we have a weak sequential equi-

librium: both types offer share α∗; the investor invests if and only if the offer is α∗ (with

on-path belief P(v = vH) = πH and off-path belief, e.g., P(v = vH) = 0); the entrepreneur

develops her project when (3.35) or (3.36) holds for the two types respectively. As α∗

satisfies both types’ incentive constraints, both types are developed in this equilibrium.

To check this is indeed an equilibrium, notice α∗ satisfying condition (3.37) guarantees

the investor will not deviate from investing. Moreover, the off-path belief guarantees any

offer other than α∗ will not be financed and thus the entrepreneurs will not deviate to

other offers.

(These equilibria satisfy the intuitive criterion (Cho & Kreps, 1987). For any α > α∗, no

type wants to deviate to it since it just increases the entrepreneur’s financing cost even if
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she still gets financed; for any α < α∗ satisfying αvH ≥ K, both types would be better off

when deviating to it if they can be recognized as a high type and thus get financed with

less equity sold; for any α < α∗ satisfying αvH < K, no type wants to deviate to it as it

is never accepted by the investor.)

� Class 2: Both types are financed, but only high type projects are developed.

By Observation 3.3.1 again, we only need to consider pure strategy pooling equilibria. Let

α be the equilibrium offer. We have conditions:

(1− α)vH ≥ (1− β)K > (1− α)vL (3.40)

αvHπH ≥ K (3.41)

where the first condition guarantees the high type will develop the project and the low

type will run away after getting funded; the second condition guarantees the investor does

invest despite anticipating a low type entrepreneur to run away, which is derived from

condition (3.2) with on-path belief πH .

There exists an α that satisfies both conditions if and only if:

πH ≥ K

vH − (1− β)K
= A (3.42)

Notice the RHS is always between 0 and 1 since vH ≥ (2− β)K by Assumption 3.2.1.

When (3.42) holds, for any α∗ that satisfies (3.40) and (3.41), we have the following

equilibrium: both types offer α∗ in the campaign; the investor invests in the project if and

only if the offer is α∗ (with on-path belief the same as initial belief πH and off-path belief

chosen as P(v = vH) = 0); after getting funded, the entrepreneur’s choice is governed

by the incentive condition (3.1). Since α∗ satisfies (3.40), only the high type project is

developed in this equilibrium. To check this is indeed an equilibrium, notice condition

(3.41) guarantees the investor will accept offer α∗; the off-path belief guarantees any other

offer is not accepted and thus the entrepreneurs will not deviate from α∗.

(Any such equilibrium also survives intuitive criterion. The argument is exactly the same

as that for Class 1 equilibria.)

� Class 3: No project is financed.

This class of equilibria always exists. For example, we can let both types offer α = 0 and
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set all off-equilibrium beliefs to P[v = vH ] = 0. This kind of equilibrium also survives

intuitive criterion since both types are receiving the lowest possible payoffs for them.

Q.E.D.

Proof for Proposition 3.3.1

Proof. The only thing requiring clarification here is the equilibrium α in the first two cases.

In the case of πH ≥ B, it comes from the lower bound in condition (3.38) for Class 1 equilibria.

In the case of B > πH ≥ A, by conditions (3.40) and (3.41), we need an α from a Class 2

equilibrium to satisfy:

α > 1− (1− β)
K

vL
and α ≥ K

πHvH

Notice when πH < B, we have (3.39) violated, so

1− (1− β)
K

vL
<

K

πHvH + (1− πH)vL
<

K

πHvH

Therefore, the smallest α selected from Class 2 equilibria is K
πHvH

. Q.E.D.

Proof for Proposition 3.3.2

Proof. � Case 1: B > A

After some simplifications, the indirect social welfare function becomes:

W (πH) =


(vH − vL)πH + vL −K if πH ≥ B(
vH − (1− β)K

)
πH − βK if B > πH ≥ A

0 if πH < A

The indirect welfare function together with its concavification is drawn in Figure 3.2a

(main text). It is easy to see the second piece of W (·) is below the segment joining (0, 0)

and (B,W (B)). The red dashed curve then represents the concavification function, whose

graph consists of two segments: (0, 0) → (B,W (B)) and (B,W (B)) → (1,W (1)).

Therefore, when pH < B, the optimal µ supports on {0, B}. By Bayesian feasibility, µ(0)×

0 + µ(B)B = pH ⇒ µ(B) = pH/B. When pH ≥ B, any µ supporting on [B, 1] satisfying

Bayesian feasibility condition is optimal, since the second piece of the concavification
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function coincides with W (·).

� Case 2: B ≤ A

In this case, we simply do not have the second piece of W (·), so the concavification graph

is as given in Figure 3.2b. We have the same expression for the concavification as in Case

1 above, except that now there is no segment corresponding to interval [A,B). Thus the

same result as in Case 1 is obtained.

Under the optimal rule, when pH ≥ B, all projects are developed, so the social welfare is

(vH −K)pH + (vL −K)(1 − pH); when pH < B, all high types and those low types receiving

posterior πH = B are developed, so the social welfare is (vH−K)pH+(vL−K) (1−B)pH
B . (Notice

the measure of low types receiving πH = B is (1−B)µ(B) = (1−B)pH
B .) Combining these gives

the expression for the value function. Q.E.D.

3.C.2 Proofs in Section 3.4

Derivation of the incentive condition (3.10)

We want to show uH(D; pH)− uL(D; pH) = E(pH ,D)[h(πH ; pH)], where

h(πH ; pH) :=



(
1− K

πHvH+(1−πH)vL

)(
πHvH
pH

− (1−πH)vL
1−pH

)
if πH ≥ B

(1− K
πHvH

)πHvH
pH

− 1−πH
1−pH

(1− β)K if B > πH ≥ A

0 otherwise
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Notice:

uH(D; pH) =E(pH ,D)

[
(1− K

πHvH + (1− πH)vL
)vH1{πH ≥ B}

+ (1− K

πHvH
)vH1{B > πH ≥ A}

∣∣∣v = vH

]
=E(pH ,D)

[
(1− K

πHvH + (1− πH)vL
)vH1{πH ≥ B}1{v = vH}

+ (1− K

πHvH
)vH1{B > πH ≥ A}1{v = vH}

]/
P(pH ,D)[v = vH ]

=
1

pH
E(pH ,D)

[
E(pH ,D)

[
(1− K

πHvH + (1− πH)vL
)vH1{πH ≥ B}1{v = vH}

+ (1− K

πHvH
)vH1{B > πH ≥ A}1{v = vH}

∣∣∣πH]]
=

1

pH
E(pH ,D)

[
(1− K

πHvH + (1− πH)vL
)πHvH1{πH ≥ B}

+ (1− K

πHvH
)πHvH1{B > πH ≥ A}

]

The first equality is by definition; the second equality is by elementary definition of conditional

expectation; the third equality is by Law of Iterated Expectation; the last equality is by the

fact that E(1{v = vH}|πH) = P(v = vH |πH) = πH , since πH itself is the posterior belief on

v = vH .

Similarly, we have:

uL(D; pH) =E(pH ,D)

[
(1− K

πHvH + (1− πH)vL
)vL1{πH ≥ B}

+ (1− β)K1{B > πH ≥ A}
∣∣∣v = vL

]
=E(pH ,D)

[
(1− K

πHvH + (1− πH)vL
)vL1{πH ≥ B}1{v = vL}

+ (1− β)K1{B > πH ≥ A}1{v = vL}
]/

P(pH ,D)[v = vL]

=
1

1− pH
E(pH ,D)

[
E(pH ,D)

[
(1− K

πHvH + (1− πH)vL
)vL1{πH ≥ B}1{v = vL}

+ (1− β)K1{B > πH ≥ A}1{v = vL}
∣∣∣πH]]

=
1

1− pH
E(pH ,D)

[
(1− K

πHvH + (1− πH)vL
)(1− πH)vL1{πH ≥ B}

+ (1− β)K(1− πH)1{B > πH ≥ A}
]

In the last step, I use E(1{v = vL}|πH) = P(v = vL|πH) = 1− πH .
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We obtain the result by taking difference and rearranging terms according to πH ≥ B or

B > πH ≥ A.

Characterization for function ρ(·) in equation (3.17)

The following observation characterizes function ρ(·) as defined in equation (3.14).

Observation 3.C.1.

ρ(pH) =


ρL(pH) := y1(B)− (1−B)pH

B(1−pH)y2(B) if pH < B

ρR(pH) := B(1−pH)
(1−B)pH

y1(B)− y2(B) + pH−B
(1−B)pH

(vH −K) if pH ≥ B

where y1(B) := (1− K
BvH+(1−B)vL

)vH and y2(B) := (1− K
BvH+(1−B)vL

)vL.

(For later references, also notice y1(B) = (1 − β) K
vL
vH and y2(B) = (1 − β)K by definition of

B.)

Moreover, ρ(·) is continuous, decreasing on [0, B] and increasing on [B, 1], with ρ(0) =

y1(B), ρ(B) = y1(B)− y2(B) and ρ(1) = vH −K − y2(B).

Proof. Part 1: pH < B

Under Du(pH), all high projects are developed with α∗ = K
BvH+(1−B)vL

, so

uH(Du(pH); pH) = (1− K

BvH + (1−B)vL
)vH = y1(B)

A low type entrepreneur gets positive project payoff if and only if she receives posterior

πH = B, in which case her project payoff is (1− K
BvH+(1−B)vL

)vL = y2(B). We know the mass

of low types getting this posterior is (1−B)µ(B) = (1−B)pHB and the total mass of low types

is 1− pH , so the probability for a low type to have posterior B is (1−B)pH
B(1−pH) . Therefore,

uL(Du(pH); pH) =
(1−B)pH
B(1− pH)

y2(B)

Taking difference, we obtain the expression of ρL(·). It is obvious to see the function is decreas-

ing.

Part 2: pH ≥ B

In this case, Du(pH) induces posteriors in {B, 1} by definition, so all low types get posterior B
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Figure 3.6: ρ(·) with different β (vH = 2, vL = 1.6 and K = 1).

under Du(pH) and thus

uL(Du(pH); pH) = y2(B)

The mass of high types getting posterior B is µ(B)B = (1−pH)B
1−B (notice µ(B)B+1−µ(B) = pH

by Bayesian feasibility) and the total mass of high types is pH . When a high type gets posterior

1, she can get all the surplus from the project, which is vH −K. Therefore,

uH(Du(pH); pH) =
B(1− pH)

(1−B)pH
y1(B) +

[
1− B(1− pH)

(1−B)pH

]
(vH −K)

Taking difference, we obtain the expression of ρR(·).

Notice y1(B) = (1 − K
BvH+(1−B)vL

)vH ≤ (vH −K) and the weight B(1−pH)
(1−B)pH

is decreasing in

pH , so uH(Du(pH); pH) is increasing in pH when pH ≥ B. Thus, ρR(·) is increasing.

Finally, the special values are straightforward to compute. For continuity, just notice the

expressions of the two pieces of ρ(·) coincide at pH = B. Q.E.D.

Figure (3.6) plots the ρ(·) function for different moral hazard parameters β. This “two

wings” shape and how it shifts when β changes are important for some proofs in Section 4.4.
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Proof for Lemma 3.4.1:

Proof. By conditions (1) and (2) in Assumption 3.4.1, Ψ(0) = 0 < ρ(0) and Ψ(1) > vH −K >

ρ(1). By the continuity of Ψ(·) and ρ(·), we know p0H is in (0, 1) with Ψ(p0H) = ρ(p0H). Similarly,

we have p1H ∈ (0, 1) and Ψ(p1H) = vH − K. Because Ψ(·) is increasing and it is easy to see

ρ(·) < vH −K by Observation 3.C.1, we have p1H > p0H .

For the range of potentially optimal pH , first notice it is not possible to incentivize pH > p1H

since the highest possible incentive of upgrading is vH −K, which is achieved only under full

disclosure. Thus the optimal pH ≤ p1H .

To show any pH < p0H is suboptimal, notice V0(pH) ≥ V (pH) for any pH since the optimiza-

tion problem with V0(·) does not involve the incentive constraint (3.13). Therefore,

V (pH)−
∫ pH

0
Ψ(x)dx ≤ V0(pH)−

∫ pH

0
Ψ(x)dx ∀pH

Denote the RHS as V0(pH). By Proposition 3.3.2, V0(·) is continuous on [0, 1] and differentiable

on (0, B) ∪ (B, 1) and so is V0(pH). Taking derivative we have:

V ′
0(pH) =


(vH −K) + (vL −K)1−B

B −Ψ(pH) for pH ∈ (0, B)

(vH − vL)−Ψ(pH) for pH ∈ (B, 1)

If p0H < B, it is easy to see V ′
0(pH) > 0 for all pH ≤ p0H , since Ψ(pH) ≤ vH − K for all

pH ≤ p1H implies the first piece of V ′
0(·) is positive for pH ≤ p0H < p1H .

If p0H ≥ B, for any pH ≤ p0H we have Ψ(pH) ≤ Ψ(p0H) = ρ(p0H) ≤ ρ(1) = vH −K − y2(B) =

vH − (2− β)K < vH − vL, where the second inequality is for ρ(·) is increasing on [B, 1] and the

last inequality is by condition (3.3). Thus V ′
0(·) > 0 on both (0, B) and (B, p0H ].

Therefore, in either case we have V0(·) is strictly increasing on [0, p0H ]. Thus,

V (pH)−
∫ pH

0
Ψ(x)dx ≤ V0(pH)

< V0(p
0
H)

= V (p0H)−
∫ p0H

0
Ψ(x)dx ∀pH ≤ p0H

where the last equality holds because ρ(p0H) = Ψ(p0H) implies the incentive constraint (3.13)
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automatically holds under the unconstrained optimal rule Du(p0H) and thus the optimal values

are equal for the two problems: V (p0H) = V0(p
0
H).

In conclusion, any pH < p0H is suboptimal. Q.E.D.

Proof for Proposition 3.4.1

I first introduce the following theorem by Boleslavsky & Kim (2018) (adapted to my problem):

Theorem 3.C.1. (Boleslavsky and Kim (2018) Proposition 3.3) A distribution µ over posteri-

ors (with finite support) is a solution to the optimization problem (3.11) – (3.13) if and only if

it satisfies the constraints (3.12) and (3.13), and there exist coefficients λ, a and b such that:

L(πH ;λ) :=W (πH) + λh(πH) ≤ a+ bπH ∀πH ∈ [0, 1]

which holds as equality for all πH with µ(πH) > 0.

This theorem provides a practical method to solve the constrained Bayesian persuasion prob-

lem. First, one plots the Lagrangian function L with some multiplier λ and its concavification.

Second, one can find an affine function (a line) supporting the concavification function from

above at πH = pH . Then, the points at which the affine function equals to L would be the

candidate supporting points for the optimal posterior distribution. Finally, the optimal µ over

these supporting points can be computed by making the two constraints hold.

One difficulty here is that to start the procedure, we need to properly guess a range for λ,

which decides the shape of Lagrangian function. This can be tricky and in general may involve

discussion for several cases. Moreover, it is not clear from the theorem whether we may get

multiple solutions from multiple supporting lines. If yes, then we need to consider all possible

λ values to find all the solutions. Fortunately, this is not the case. Specifically, I propose the

following result:

Theorem 3.C.2. Suppose there are two sets of coefficients (a1, b1, λ1) and (a2, b2, λ2) with which

we find solutions µ1 and µ2 respectively satisfying the conditions in Theorem 3.C.1. Then, for

any πH ∈ supp{µ2}, we have W (πH) + λ1h(πH) = a1 + b1πH . (Thus πH can also be found as

a candidate supporting point with the first set of coefficients (a1, b1, λ1).)
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Proof. First, because both µ1 and µ2 are optimal solutions, we have

Eµk
[W (πH)] = V (pH)

Eµk
[h(πH)] = Ψ(pH)

Eµk
[πH ] = pH

for k ∈ {1, 2}.

Since µ1 satisfies the conditions in Theorem 3.C.1 with (a1, b1, λ1), all supporting points of

µ1 satisfy the inequality in Theorem 3.C.1 with equality and thus we have:

Eµ1 [W (πH)] + λEµ1 [h(πH)] = a1 + b1Eµ1 [πH ]

Therefore,

V (pH) + λ1Ψ(pH) = a1 + b1pH

Suppose the conclusion does not hold, there exists π∗H ∈ supp{µ2} s.t. W (π∗H)+λ1h(π
∗
H) <

a1 + b1π
∗
H . Moreover, for any other πH ∈ supp{µ2}, we have W (πH) + λ1h(πH) ≤ a1 + b1πH .

Therefore,

∑
πH∈supp{µ2}

µ2(πH)[W (πH) + λ1h(πH)] < a1 + b1
∑

πH∈supp{µ2}

µ2(πH)πH

⇒Eµ2 [W (πH)] + λ1Eµ2 [h(πH)] < a1 + b1Eµ2 [πH ]

⇒V (pH) + λ1Ψ(pH) < a1 + b1pH

which leads to a contradiction. Q.E.D.

This theorem implies that it suffices to find only one set of coefficients that satisfies the

conditions in Theorem 3.C.1 to identify all possible supporting points of the optimal posterior

distribution(s). Therefore, once a solution is found, there is no need to consider other possible

values for λ, which can significantly simplify the discussion. This simple result can also be

useful for other applications using constrained Bayesian persuasion. It is also straightforward

to extend the theorem to higher dimensional cases with more types and incentive constraints.

Now, it is ready to prove Proposition 3.4.1.
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Proof for Proposition 3.4.1. To ease notation, I suppress the dependence of h(·; pH) on pH .

Case 1: A < B Define function L(πH) := W (πH) + λh(πH) and assume λ > 0. Then the

shape of function L(·) is as shown in Figure 3.7a (solid blue curve), although we do not know

whether the three points corresponding to πH = 0, B and 1 are necessarily on the same line for

now. (L(B) may even be negative for some λ.) Two important features of L(·) captured in the

figure are proved in the following lemma:

Lemma. (i) The graph of L(·) on [A,B) is below the segment between (0,L(0)) and (B,L(B));

(ii) L(·) is strictly convex on [B, 1].

Subproof. For part (i), notice the graph of W (·) on [A,B) is below the segment between

(0,W (0)) and (B,W (B)) by the proof of Proposition 3.3.2. Since λ > 0, it then suffices to

show the same holds for function h(·).

By the definition of h(·), when B > πH ≥ A we have

h(πH) = (1− K

πHvH
)
πHvH
pH

− 1− πH
1− pH

(1− β)K =
πHvH
pH

− K

pH
− 1− πH

1− pH
(1− β)K

Notice this piece of h(·) is linear in πH , so if we define the last expression on the RHS as ĥ(πH)

for all πH ∈ [0, B], it then suffices to show ĥ(B) < h(B) and ĥ(0) < h(0).

It is easy to see:

h(B) =
B

pH
y1(B)− 1−B

1− pH
y2(B) =

B

pH
y1(B)− 1−B

1− pH
(1− β)K

(See Observation 3.C.1 for the expressions of y1(B) and y2(B), and the fact that y2(B) =

(1− β)K.) Thus we have:

h(B)− ĥ(B) =
B

pH
y1(B)− B

pH
(1− K

BvH
)vH > 0

since y1(B) =
(
1− K

BvH+(1−B)vL

)
vH > (1− K

BvH
)vH . Moreover, ĥ(0) = − K

pH
− 1

1−pH
(1− β)K <

0 = h(0). This completes the proof for part (i).

For part (ii), notice W (·) is affine on [B, 1], so it suffices to show h(·) is convex on the range.
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0
A B 1

L(πH)

πH

L(B)

(a) Case 1: B > A

0
B 1

L(πH)

πH

L(B)

(b) Case 2: B ≤ A

Figure 3.7: Lagrangian concavification for the constrained problem

One can check:

h′′(πH) =
2KvHvL(vH − vL)

(1− pH)pH [vL + (vH − vL)πH ]3
> 0 ∀πH > B

Thus h(·) is strictly convex on [B, 1]. □

The lemma together with the facts that L(1) > 0 and L = 0 on [0, A) implies the candidate

supporting points for the optimal µ are {0, B, 1}.

Now, for any optimal µ, by the two constraints we must have: µ(B)B + µ(1) = pH ;

µ(B)h(B) + µ(1)h(1) = Ψ(pH). Solving the system gives:

µ(B) =
h(1)pH −Ψ(pH)

Bh(1)− h(B)
=

vH −K −Ψ(pH)

[vH −K − ρL(pH)] B
pH

µ(1) =
BΨ(pH)− pHh(B)

Bh(1)− h(B)
=

B[Ψ(pH)− ρL(pH)]

[vH −K − ρL(pH)] B
pH

and

µ(0) = 1− µ(B)− µ(1) =
(1−B)[Ψ(pH)− ρR(pH)]

[vH −K − ρL(pH)] B
pH

(To check the final expressions, notice h(1) = vH−K
pH

and h(B) = B
pH
y1(B)− 1−B

1−pH
y2(B).)

To verify this is indeed a solution, we need to check all three probabilities are positive. First,

notice by the results in Observation 3.C.1, ρL(pH) ≤ ρL(1) < vH −K, so the denominators are

all positive. Moreover, pH ≤ p1H implies Ψ(pH) ≤ vH −K, so we have µ(B) ≥ 0.

To check µ(0) and µ(1) are positive, consider two scenarios:
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- Scenario (i): pH ≤ B

Since pH ≥ p0H , we have Ψ(pH) ≥ ρ(pH) = ρL(pH) and thus µ(1) ≥ 0.

Now, since µ(B) ≥ 0, µ(1) ≥ 0 and the probabilities sum up to 1, by Bayesian feasibility

condition we must have µ(0) ≥ 0 as pH ≤ B.

- Scenario (ii): pH > B

Since pH ≥ p0H , we have Ψ(pH) ≥ ρ(pH) = ρR(pH) and thus µ(0) ≥ 0.

Now, since µ(0) ≥ 0, µ(B) ≥ 0 and the probabilities sum up to 1, by Bayesian feasibility

condition we must have µ(1) ≥ 0 as pH > B.

Finally, what is remaining to show is that there is indeed a λ > 0 that makes the three

points on the graph of L(·) corresponding to πH = 0, B and 1 on the same line. Those points

are on the same line if and only if:

W (B) + λh(B)

B
=
W (1) + λh(1)

1
⇐⇒ λ =

W (B)−BW (1)

Bh(1)− h(B)

The denominator is equal to [vH − K − ρL(pH)] B
pH

> 0 as shown above. For the numerator,

notice W (B)−BW (1) = (vL −K)(1−B) > 0. Thus such λ is indeed positive.

By Theorem 3.C.1, we can conclude the µ we found is indeed a solution. The concavification

for L(·) is depicted by the red dashed line in Figure 3.7a. By Theorem 3.C.2, the set {0, B, 1}

includes all possible supporting points in any optimal solution and thus the solution given above

is the unique solution. (Thus we do not need to consider λ ≤ 0.)

Case 2: A ≥ B The proof for this case is exactly the same as that in Case 1, except that we

do not need to consider the interval [A,B) now. Thus exactly the same solution is obtained.

The concavification graph is as shown in Figure 3.7b.

To derive the value function V (·), notice under the optimal µ, all high types are developed

and the low types receiving posterior belief B are developed. Therefore, the value function is

V (pH) = (vH −K)pH + (vL −K)(1−B)µ(B)

where (1−B)µ(B) is the measure of low types who receive posterior B. Q.E.D.
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Proof for Corollary 3.4.1

Proof. By Proposition 3.4.1, any optimal posterior belief distribution µ supports on a subset

of {0, B, 1}. Thus (pH ,D) is optimal if and only if the induced posterior distribution µ supports

on a subset of {0, B, 1} and (pH , µ(0), µ(B), µ(1)) maximizes expected net social surplus while

satisfying Bayesian feasibility and incentive constraint for pH .

Notice given (pH , µ(B)), µ(0) and µ(1) are pinned down by Bayesian feasibility and proba-

bilities summing up to one as µ(0) = 1− pH − (1− B)µ(B) and µ(1) = pH − Bµ(B). Thus it

suffices to consider the control variables as (pH , µ(B)).

It is easy to see that the first three constraints in optimization (3.19) are equivalent to

that µ (with µ(B) = µB) is a valid probability distribution and is Bayesian feasible given pH ;

the last constraint is the incentive constraint (3.13) evaluated with µ supporting on (a subset

of) {0, B, 1}, which then guarantees pH is incentivized given µ(B) = µB. For the objective

function, notice projects are developed with posterior believes above B, so all high types and

mass µB(1−B) of low types would be developed. Thus, the objective function indeed measures

expected net social surplus.

Overall, optimization (3.19) captures the designer’s problem after restricting the posterior

distribution support according to Proposition 3.4.1. Q.E.D.

Proof for Proposition 3.4.3

Proof. Suppose p1H is optimal. We have FOC for optimization (3.18):

V ′(p1H)−Ψ(p1H) ≥ 0

By the expression of V (·), we have:

V ′(p1H) = (vH −K) + (vL −K)
1−B

B
R(p1H) + (vL −K)

1−B

B
p1HR

′(p1H)

where R(pH) := vH−K−Ψ(pH)
vH−K−ρL(pH) . Since Ψ(p1H) = vH −K and thus R(p1H) = 0, the FOC becomes:

(vL −K)
1−B

B
p1HR

′(p1H) ≥ 0 ⇔ R′(p1H) ≥ 0



188

However, it is easy to see

R′(p1H) =
−Ψ′(p1H)

vH −K − ρL(p1H)
< 0

since ρL(·) < vH −K and Ψ′(p1H) > 0 by assumption. This gives a contradiction. Thus optimal

pH is less than p1H .

Notice under the condition Ψ′(p1H) > 0, p1H is the unique pH that satisfies Ψ(p1H) = vH −K.

As the optimal pH < p1H , the upgrading incentive required by any optimal pH is strictly smaller

than vH −K, so full disclosure is not optimal. Q.E.D.

Proof for Proposition 3.4.4

The proof uses the characterization of the optimal pH with optimization (3.18), as stated in

Proposition 3.4.2. Before going to the main proof, it is useful to provide an equivalent expression

for the value function V (·) in Proposition 3.4.1. Specifically, it is easy to check:

V (pH) =


(vH −K)pH + (vL −K) (1−B)pH

B Q(pH) if p0H ≤ pH < B

(vH −K)pH + (vL −K)(1− pH)Q(pH) if B ≤ pH ≤ p1H

(3.43)

where Q(pH) = vH−K−Ψ(pH)
vH−K−ρ(pH) . Notice when B > p1H , only the first case matters and when

B ≤ p0H , only the second case matters.

By Observation 3.C.1, we know ρ(·) is nonnegative and is decreasing on [0, B] and increasing

on [B, 1], with ρ(0) = y1(B) < vH − K and ρ(1) = vH − K − y2(B) < vH − vL. Moreover,

function ρ(·) varies with β in a particular pattern as illustrated in Figure 3.6. These facts are

frequently used below. In particular, Lemma (i) and Lemma (ii) below just formalize some

patterns in Figure 3.6. Readers convinced by the figure may skip their proofs.

Proof for Proposition 3.4.4. Notice by definition, B is strictly decreasing in β with

limβ↓
¯
β B(β) = 1 and limβ↑β̄ B(β) = 0, so β → β̄ is equivalent to B → 0 and β →

¯
β is equivalent

to B → 1. To ease notations, however, I suppress the dependences of B, ρ(·) and V (·) on β,

but one should keep in mind that B changes in β as specified above.

Part (a): Since Ψ(0) = 0, Ψ(p1H) = vH −K and Ψ(·) is continuous, there exists p̂ ∈ (0, p1H)

s.t. Ψ(p̂) = vH−vL
2 . Since we are thinking about β being large enough and correspondingly B

being close to 0, it is w.l.g. to assume B < p̂.
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First, we need a lemma:

Lemma (i). When β is large enough, p0H(β) > p̂. Moreover, as β → β̄: (1) ρ(·) uniformly

converges to vH − vL on [p̂, p1H ]; (2) ρ′(·) ≥ 0 and uniformly converges to 0 on [p̂, p1H ].

Subproof. For any pH ≥ p̂, we have:

ρ(pH) =
B(1− pH)

(1−B)pH
y1(B)− y2(B) +

pH −B

(1−B)pH
(vH −K)

As β → β̄, we have B → 0, y1(B) → (1− K
vL
)vH and y2(B) → vL −K, so ρ(pH) → vH − vL

as β → β̄ for all pH ∈ [p̂, p1H ]. Since Ψ(p̂) = vH−vL
2 < vH − vL, when β is large enough we have

Ψ(p̂) < ρ(p̂) and therefore p0H(β) > p̂. Moreover, because ρ(·) is increasing but always less than

vH −vL when pH > B, its uniform convergence on [p̂, p1H ] is implied by the convergence at point

pH = p̂.

For the uniform convergence of ρ′(·) on [p̂, p1H ], notice when pH > B

ρ′(pH) =
B

(1−B)p2H
(vH −K − y1(B))

which is decreasing and pointwisely converges to 0 from above as B → 0. Thus the uniform

convergence is implied by the convergence at point pH = p̂. □

By the lemma, we assume β is large enough such that p0H(β) > p̂ > B. Moreover, from the

uniform convergences of ρ(·) and ρ′(·), we have:

lim
β↑β̄

ρ(p0H(β)) = vH − vL (3.44)

lim
β↑β̄

( sup
pH∈[p̂,p1H ]

{ρ′(pH)}) = 0 (3.45)

To show statement (a), it suffices to show when β is large enough, V ′(pH)−Ψ(pH) < 0, ∀pH >

p0H(β), so that the objective in optimization (3.18) is strictly decreasing on the feasible set,

which implies p0H(β) is uniquely optimal. Since B < p0H(β) when β is large enough, this then

implies that the optimal µ supports on {B(β), 1} by the discussion right below Proposition

3.4.1.
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From expression (3.43), we have for pH ≥ p0H(β):

V ′(pH)−Ψ(pH) = (vH −K)− (vL −K)Q(pH)−Ψ(pH)︸ ︷︷ ︸
term 1

+(vL −K)(1− pH)Q′(pH)︸ ︷︷ ︸
term 2

(recall we assume p0H(β) > p̂ > B w.l.g.)

For term 1, notice for any pH ≥ p0H(β), we have:

(vH −K)− (vL −K)Q(pH)−Ψ(pH)

=(vH −K)− (vL −K)
vH −K −Ψ(pH)

vH −K − ρ(pH)
−Ψ(pH)

=(vH −K)− [vH − vL − ρ(pH)]Ψ(pH) + (vL −K)(vH −K)

vH −K − ρ(pH)

≤(vH −K)− (vL −K)(vH −K)

vH −K − ρ(pH)

≤(vH −K)− (vL −K)(vH −K)

vH −K − ρ(p0H(β))

where the second last inequality is because ρ(pH) < vH − vL for all pH > B and the last

inequality is because ρ(·) is increasing when pH > B. Notice by (3.44), the last line converges

to 0 as β → β̄. Thus,

lim sup
β↑β̄

sup
pH∈[p0H(β),p1H ]

{(vH −K)− (vL −K)Q(pH)−Ψ(pH)} ≤ 0 (3.46)

For term 2, notice for any pH ∈ [p0H(β), p1H ], we have

Q′(pH) = − Ψ′(pH)

vH −K − ρ(pH)
+

[vH −K −Ψ(pH)]ρ′(pH)

[vH −K − ρ(pH)]2

≤ − Ψ′(pH)

vH −K − ρ(p0H(β))
+

[vH −K −Ψ(pH)]ρ′(pH)

[vH −K − ρ(pH)]2

≤ − δ

vH −K − ρ(p0H(β))
+

vH −K

(vL −K)2
sup

pH∈[p̂,p1H ]

{ρ′(pH)}

The first inequality is because ρ(·) is increasing on [B, 1]. The second inequality is because:

Ψ′(·) ≤ δ by assumption; Ψ(·) ≥ 0; and ρ(pH) < vH − vL when pH > B for any β. By (3.44)
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and (3.45), the last line converges to − δ
vL−K < 0 as β → β̄. Thus,

lim sup
β↑β̄

sup
pH∈[p0H(β),p1H ]

{(vL −K)(1− pH)Q′(pH)} ≤ −δ(1− p1H) (3.47)

Combining (3.46) and (3.47), we have

lim sup
β↑β̄

sup
pH∈[p0H(β),p1H ]

[V ′(pH)−Ψ(pH)] ≤ −δ(1− p1H) < 0

Thus there exists a > 0 such that

sup
pH∈[p0H(β),p1H ]

[V ′(pH)−Ψ(pH)] ≤ −
δ(1− p1H)

2
, ∀β ∈ (β̄ − a, β̄)

Therefore, V ′(pH) − Ψ(pH) < 0 ∀pH > p0H(β) and thus p0H(β) is (uniquely) optimal when

β > β̄ − a.

Part (b): Since Ψ(0) = 0, Ψ(p1H) = vH −K and Ψ(·) is continuous, there exists p̂ ∈ (0, p1H)

s.t. Ψ(p̂) = vH−K
2 . Since we are thinking about β being small enough and thus B being close

to 1, it is w.l.g. to assume B > p1H . First, we need two lemmas:

Lemma (ii). When β is small enough, p0H(β) > p̂ and ρ(pH) uniformly converges to vH −K on

[0, p1H ] as β →
¯
β.

Subproof. When pH ≤ p1H < B, we have:

ρ(pH) = y1(B)− (1−B)pH
B(1− pH)

y2(B)

As β →
¯
β, we have B → 1 and y1(B) → vH −K, so ρ(pH) → vH −K pointwisely on [0, p1H ].

Notice ρ(·) is decreasing and is always smaller than vH − K when pH < B, so the uniform

convergence of ρ(·) is implied by convergence at point pH = p1H .

Moreover, since Ψ(p̂) = (vH −K)/2 < vH −K, we have Ψ(p̂) < ρ(p̂) and thus p0H(β) > p̂ when

β is small enough. □

By the lemma, we assume β is small enough such that B > p1H > p0H(β) > p̂ without loss of
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generality. Moreover, the lemma implies:

lim
β↓

¯
β
Ψ(p0H(β)) = lim

β↓
¯
β
ρ(p0H(β)) = vH −K (3.48)

Another lemma we need is:

Lemma (iii). There exists a constant c > 0 s.t.

c ≤ lim inf
β↓

¯
β

inf
pH∈[p0H(β),p1H ]

[
1−B

vH −K − ρ(pH)
]

Subproof. Since ρ(·) is decreasing on [0, B], we have 1−B
vH−K−ρ(p1H)

≤ 1−B
vH−K−ρ(pH) for pH ≤ p1H

(< B). Thus,

inf
pH∈[p0H(β),p1H ]

[
1−B

vH −K − ρ(pH)
] ≥ 1−B

vH −K − ρ(p1H)
=

1
vH−K−y1(B)

1−B +
p1H

B(1−p1H)
y2(B)

Notice

lim
β↓

¯
β

vH −K − y1(B)

1−B
= lim

B→1

K(vH − vL)vH
(BvH + (1−B)vL)2

=
K(vH − vL)

vH

where I used the L’Hospital’s rule. Moreover, as β →
¯
β, B → 1 and y2(B) → (1− K

vH
)vL. Thus,

0 <
1

K(vH−vL)
vH

+
p1H

(1−p1H)
(1− K

vH
)vL

≤ lim inf
β↓

¯
β

inf
pH∈[p0H(β),p1H ]

[
1−B

vH −K − ρ(pH)
]

□

To show statement (b), it suffices to show when β is small enough, V ′(pH) − Ψ(pH) <

0, ∀pH > p0H(β), which implies p0H(β) is uniquely optimal. Since B > p0H(β) when β is small

enough, the optimal µ then supports on {0, B(β)} by the discussion right below Proposition

3.4.1.

Recall that w.l.g., we assume β is small enough such that B > p1H > p0H(β) > p̂. By (3.43),
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we have for pH ∈ [p0H(β), p1H ]:

V ′(pH)−Ψ(pH)

=vH −K −Ψ(pH) + (vL −K)
1−B

B
Q(pH) + (vL −K)

1−B

B
pHQ

′(pH)

=vH −K −Ψ(pH) + (vL −K)
1−B

B
Q(pH)− (vL −K)

(1−B)pHΨ′(pH)

B[vH −K − ρ(pH)]

+
(1−B)[vH −K −Ψ(pH)]ρ′(pH)

B[vH −K − ρ(pH)]2
(vL −K)pH

≤vH −K −Ψ(p0H(β)) + (vL −K)
1−B

B
Q(pH)− (vL −K)

(1−B)pHΨ′(pH)

B[vH −K − ρ(pH)]

≤vH −K −Ψ(p0H(β)) + (vL −K)
1−B

B
− (vL −K)

(1−B)pHΨ′(pH)

B[vH −K − ρ(pH)]

The 3rd line is by computing Q′(·). The 4th line is because ρ′(pH) < 0 when pH < B and

Ψ(·) is increasing. The 5th line is because Q(·) is decreasing on [0, B] and Q(p0H) = 1 since

ρ(p0H) = Ψ(p0H).

Notice for any pH ∈ [p0H(β), p1H ], the last term

−(vL −K)
(1−B)pHΨ′(pH)

B[vH −K − ρ(pH)]
≤ −(vL −K)

(1−B)pHδ

B[vH −K − ρ(pH)]

≤ −δ(vL −K)p̂ inf
pH∈[p0H(β),p1H ]

1−B

vH −K − ρ(pH)

where I used Ψ′(·) ≥ δ (be assumption), p0H(β) > p̂ and B < 1. Thus,

sup
pH∈[p0H(β),p1H ]

[V ′(pH)−Ψ(pH)] ≤vH −K −Ψ(p0H(β))

+ (vL −K)
1−B

B

− δ(vL −K)p̂ inf
pH∈[p0H(β),p1H ]

[ 1−B

vH −K − ρ(pH)

]

When β →
¯
β, the first line of the RHS goes to 0 by (3.48); the second line goes to 0 as B → 1.

Therefore,

lim sup
β↓

¯
β

sup
pH∈[p0H(β),p1H ]

[V ′(pH)−Ψ(pH)]

≤− δ(vL −K)p̂ lim inf
β↓

¯
β

inf
pH∈[p0H(β),p1H ]

[ 1−B

vH −K − ρ(pH)

]
≤ −cδ(vL −K)p̂ < 0
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where c is as found in Lemma (iii). Thus there exists b > 0 such that

sup
pH∈[p0H(β),p1H ]

[V ′(pH)−Ψ(pH)] ≤ −cδ(vL −K)p̂

2
< 0, ∀β ∈ (

¯
β,

¯
β + b)

and thus p0H(β) is the (unique) optimal solution when β ∈ (
¯
β,

¯
β + b). Q.E.D.

Proof for Corollary 3.4.2

First, the following observation is useful both here and later on. Although the proof is somewhat

tedious, its intuition fully comes from the fact that as β increases, the “left wing” of function

ρ(·, β) shifts downwards and the “right wing” of it shifts upwards. (See Figure 3.6).

Lemma 3.C.1. If β0 satisfies p0H(β0) ≥ B(β0), then p0H(·) is strictly increasing on [β0, β̄); If

β0 satisfies p0H(β0) ≤ B(β0), then p
0
H(·) is strictly decreasing on (

¯
β, β0].

Proof. For the first part, pick any β0 such that p0H(β0) ≥ B(β0) and pick any β2 > β1 > β0.

Since B(β) decreases in β, B(β2) < B(β1) < B(β0) ≤ p0H(β0). Thus as long as we can show

p0H(β1) > p0H(β0), the fact that p0H(β1) > B(β1) further implies p0H(β2) > p0H(β1) in the same

way. Therefore, it suffices to show p0H(β1) > p0H(β0).

It is easy to check p0H(β0) ≥ B(β0) ⇒ ρ(p0H(β0), β1) > ρ(p0H(β0);β0). (Intuitively, the

”right wing” of function ρ(·;β) shifts up when β increases, as shown in Figure 3.6.) Since

ρ(p0H(β0);β0) = Ψ(p0H(β0)), we know ρ(p0H(β0), β1) > Ψ(p0H(β0)) and thus p0H(β1) > p0H(β0) by

definition of p0H .

For the second part, pick any β0 such that p0H(β0) ≤ B(β0) and pick any β2 < β1 < β0.

Then, B(β2) > B(β1) > B(β0) ≥ p0H(β0). We can show p0H(β1) ≤ B(β1). Supposing not, then

p0H(β1) > B(β1) > B(β0) and we have Ψ(p0H(β1)) = ρ(p0H(β1), β1) < ρ(p0H(β1);β0) (since the

”right wing” of function ρ(·;β) shifts up when β increases). This implies p0H(β0) > p0H(β1) >

B(β1) – contradiction!

Now, as p0H(β0) ≤ B(β0) ⇒ p0H(β1) ≤ B(β1), it suffices to show p0H(β1) > p0H(β0). Then,

p0H(β2) > p0H(β1) follows in the same way.

It is easy to check ρ(p0H(β0);β0) < ρ(p0H(β0);β1). (Intuitively, the ”left wing” of function

ρ(·) shifts down when β increases.) Therefore, ρ(p0H(β0), β1) > Ψ(p0H(β0)) and thus p0H(β1) >

p0H(β0). Q.E.D.
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Proof for Corollary 3.4.2. By Proposition 3.4.4, the optimal pH = p0H(β) when β is large

enough or small enough. Also notice when β is small enough, B(β) is close to 1 and thus larger

than p0H(β); when β is large enough, B(β) is close to 0 and thus smaller than p0H(β), which is

bounded away from zero (see Lemma (i) in the proof for Proposition 3.4.4). Thus the result

follows from Lemma 3.C.1. Q.E.D.

Proof for Proposition 3.4.5

Before proving the proposition, I first introduce an important lemma that is useful both here

and later. Let V ∗ denote the optimal value of the designer’s problem (solved by optimization

(3.18) or (3.19)). We have:

Lemma 3.C.2. V ∗ is continuous in the moral hazard parameter β. Moreover, the set of optimal

(pH , µ(B)) is compact and upper hemi-continuous in β.

Proof. We use the characterization of (3.19). Denote the objective function in (3.19) as

Ω(pH , µB;B). Since there is a homeomorphism between β and B, it is equivalent to con-

sider the continuous dependences on B for B ∈ (0, 1).

First, the following lemma shows we can relax the incentive constraint of optimization (3.19) in

one direction.

Lemma. Optimization (3.19) is equivalent to the following optimization:

V ∗ = max
pH ,µB

{(vH −K)pH + (vL −K)(1−B)µB −
∫ pH

0
Ψ(x)dx} (3.49)

s.t. 1− pH − (1−B)µB ≥ 0 (3.50)

µB ≥ 0 (3.51)

pH −BµB ≥ 0 (3.52)[
1− K

BvH + (1−B)vL

][BvH
pH

− (1−B)vL
1− pH

]
µB

+
vH −K

pH
(pH −BµB) ≥ Ψ(pH) (3.53)

Subproof. It suffices to show (3.53) is always binding in optimum. Supposing not, let (p∗H , µ
∗
B)

be a solution with (3.53) being slack. Notice p∗H ≤ p1H < 1 by Lemma 3.4.1. Consider two cases:

Case 1: (3.50) is slack at (p∗H , µ
∗
B)
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Notice the LHS of (3.53) measures an entrepreneur’s upgrading incentive, which is easily

shown to be ≤ vH−K, so (3.53) being slack at (p∗H , µ
∗
B) implies ∂Ω

∂pH
|(p∗H ,µ∗

B) = vH−K−Ψ(p∗H) >

0. Since the functions in all of the constraints are continuous, we can increase pH a little bit

(while keeping µB constant) without violating any constraint. This improves the objective

function’s value and thus leads to a contradiction.

Case 2: (3.50) is binding at (p∗H , µ
∗
B)

We can increase pH and decrease µB in a particular way such that (3.50) keeps binding.

Specifically, let µ̂B(pH) := 1−pH
1−B . Then, initially we are at (p∗H , µ̂B(p

∗
H)), where all constraints

are satisfied. Notice: (1) By design, (pH , µ̂B(pH)) satisfies (3.50) and (3.51) for all pH ; (2)

(p∗H , µ̂B(p
∗
H)) satisfying (3.52) implies (pH , µ̂B(pH)) satisfies the condition for all pH > p∗H ;

(3) (3.53) being slack initially together with its continuity implies we can increase pH a little

bit from p∗H while keeping the constraint satisfied for (pH , µ̂B(pH)). These together implies

(pH , µ̂B(pH)) is feasible for any pH higher than but close enough to p∗H .

Now, it is easy to compute:

dΩ(pH , µ̂B(pH);B)

dpH
= vH − vL −Ψ(pH)

Notice (3.53) being slack and (3.50) being binding at the beginning implies Ψ(p∗H) < (vH −

K) − (vL −K) = vH − vL. (Intuitively, when (3.50) is binding, all projects are developed, so

a low type’s expected project payoff is > vL − K and a high type’s expected project payoff

is < vH − K.) Therefore, dΩ(pH ,µ̂B(pH);B)
dpH

|pH=p∗H
> 0, which means marginally increasing pH

from p∗H (while keeping µB = µ̂B(pH)) increases the objective function’s value. This leads to a

contradiction since such deviation is feasible as shown above. □

By the lemma, it suffices to focus on optimization (3.49) – (3.53). To avoid worrying about

pH → 0 or 1, we can further restrict the range of pH . By Lemma 3.4.1, we can w.l.g. restrict

pH ≤ p1H < 1. Moreover, it is easy to see the minimum value of function ρ(·) given B is

y1(B)− y2(B) > (1− K
vL
)(vH − vL) > 0. Since Ψ(0) = 0, there exists a > 0 s.t. p0H(β) ≥ a for

any β. Thus by Lemma 3.4.1, we can w.l.g. restrict pH ∈ [a, p1H ].

Now, for any B, let G(B) denote the feasible set (after restricting pH ∈ [a, p1H ]). It is easy

to see G(B) is a subset of [0, 1]2 and thus bounded. It is also closed because all the functions in

the constraints are continuous. Therefore, G is compact-valued. Since the objective function is



197

continuous, by Maximum Theorem, it suffices to show G(B) is a continuous correspondence on

B ∈ (0, 1).

(1) Upper hemi-continuity of G

Pick any B̂ ∈ (0, 1) and any sequence {Bi} such that limBi = B̂. For each i, arbitrarily

pick (piH , µ
i
B) ∈ G(Bi). Then, it suffices to show {(piH , µiB)} has a subsequence that

converges to some point in G(B̂) (see, for example, Proposition 9.8 in Sundaram (1996)).

Since {(piH , µiB)} ⊂ [0, 1]2, it has a converging subsequence, say {(pikH , µ
ik
B )}∞k=1. Let

(p̂H , µ̂B) denotes its limit. Then (pikH , µ
ik
B , Bik) satisfies the constraints (3.50) – (3.53)

for all k implies (p̂H , µ̂B, B̂) also satisfies them by the continuity of functions in the

constraints. Therefore, (p̂H , µ̂B) ∈ G(B̂).

(2) Lower hemi-continuity of G

For any B̂ ∈ (0, 1), pick any (p̂H , µ̂B) ∈ G(B̂). We want to show for any ϵ > 0, there exists

δ > 0 s.t. when B ∈ Bδ(B̂), there exists (pH , µB) ∈ G(B) ∩ Bϵ((p̂H , µ̂B)).
38 Consider two

cases:

Case 1: µ̂B = 0

In this case, holding µB = 0, any pH ∈ [a, p1H ] satisfies all the constraints for all B since

they don’t depend on B. Thus the claim holds as (p̂H , µ̂B) remains feasible for all B.

Case 2: µ̂B > 0

We can rewrite the constraints (3.50), (3.52) and (3.53) into:

µB ≤ 1− pH
1−B

µB ≤ pH
B

µB ≤ vH −K −Ψ(pH)
B
pH

[vH −K − y1(B)] + 1−B
1−pH

y2(B)

where y1(B) and y2(B) are as given in Observation 3.C.1. Notice all the RHS’s are

continuous in B, so when B deviates from B̂ but keeps close enough to it, holding pH = p̂H ,

the changes in the RHS’s are all within ϵ. Thus, there exists µB ∈ Bϵ(µ̂B) s.t. (µB, p̂H)

satisfies all the constraints. Therefore, there exists δ > 0 s.t. for all B ∈ Bδ(B̂) there

exists µB satisfying (p̂H , µB) ∈ G(B) and (p̂H , µB) ∈ Bϵ((p̂H , µ̂B)).

Therefore, G is a continuous correspondence on B and thus the lemma is true by Maximum

38Bϵ(x) denotes ϵ open ball around x.
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Theorem. Q.E.D.

Now, we can go to prove Proposition 3.4.5.

Proof for Proposition 3.4.5. The function H(·) is defined as:

H(p) :=
[vH −K − y1(p) + y2(p)]

2

(1− p)(vL −K)
+
vH −K − y1(p) + y2(p)

p
− y2(p)

p(1− p)
(3.54)

where y1(·) and y2(·) are as defined in Observation 3.C.1. As y1(p) − y2(p) < vH − vL for any

p, one can verify H(p) > vH−K−y1(p)
p(1−p) > 0.

In the following proof, to highlight the functions ρ(·) and ρL(·) depend on β, I will denote

them as ρ(·;β) and ρL(·;β) respectively. Let p∗H(β) denote the smallest optimal pH given any

β (which exists because the solution set is compact as shown in Lemma 3.C.2). The following

lemma illustrates the implication needed from the proposition’s condition:

Lemma (i). If β0 satisfies Ψ(B(β0)) = ν(B(β0)), then under the proposition’s condition we have

p∗H(β0) > B(β0).

Subproof. To ease notation, let B0 := B(β0). By the definition of ν(·), it is easy to check

Ψ(B0) = ν(B0) ⇒ Ψ(B0) = ρ(B0;β0) = ρL(B0;β0), so p
0
H(β0) ≥ B0. If p

0
H(β0) > B0, the result

trivially holds. If p0H(β0) = B0, then one can check:

V ′(B0;β0)−Ψ(B0) =
(1−B0)(vL −K)

vH −K − y1(B0) + y2(B0)
[H(B0)−Ψ′(B0)]

(To check this, use the facts: (i) ρL(B0;β0) = Ψ(B0); (ii) ρL(B0;β0) = y1(B0) − y2(B0); (iii)

ρ′L(B0;β0) = − y2(B0)
(1−B)B .) Notice the LHS is just the derivative at pH = B0 of the objective

function in optimization (3.18) given that B = B0, so the condition H(B0) > Ψ′(B0) implies

the FOC for optimization (3.18) does not hold at B0. Thus p
∗
H(β0) > B0. □

Define β∗ = inf{β ∈ (
¯
β, β̄) : p0H(β) ≥ B(β)}. It’s easy to see β∗ < β̄, since as β → β̄,

we have B(β) → 0 but p0H(β) is bounded by a positive number from below (see Lemma (i) in

the proof of Proposition 3.4.4). It’s also easy to see β∗ >
¯
β, since as β →

¯
β, B(β) → 1 but

p0H(β) < p1H < 1.

We have:

Lemma (ii). p0H(β∗) ≥ B(β∗).
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Subproof. Suppose p0H(β∗) < B(β∗) and pick a ∈ (p0H(β∗), B(β∗)). Define

τ(β) := max
pH∈[a,1]

{ρ(pH ;β)−Ψ(pH)}

(max is achieved by continuity and compactness of [a, 1]). Then, p0H(β∗) < a implies τ(β∗) < 0,

since Ψ(·) must be above ρ(·;β) after p0H(β).

Since ρ(·; ·) and Ψ(·) are continuous, the Maximum Theorem implies τ(·) is continuous.

Since B(β) is also continuous in β, there exists ϵ > 0 s.t. for all β ∈ (β∗, β∗ + ϵ) we have

τ(β) < 0 and B(β) > a, which implies p0H(β) ≤ a < B(β). This contradicts with the definition

of β∗, so p0H(β∗) ≥ B(β∗).

□

If p0H(β∗) > B(β∗), then p∗H(β∗) > B(β∗) trivially. If p0H(β∗) = B(β∗), then Ψ(·) intersects

ρ(·;β∗) at B(β∗), which implies Ψ(B(β∗)) = ν(B(β∗)). Then, by Lemma (i), we also have

p∗H(β∗) > B(β∗). Therefore, p∗H(β∗) > B(β∗) anyways.

Let z := [p∗H(β∗) +B(β∗)]/2. Since B(β) is continuously decreasing in β, when β is smaller

than but close enough to β∗, we have B(β) < z. Moreover, by the definition of β∗, we have

p0H(β) < B(β) ∀β < β∗. Combining these, there exists ϵ1 > 0 s.t. p0H(β) < z for all β ∈

(β∗ − ϵ1, β
∗).

Now, suppose for any ϵ ∈ (0, ϵ1), there exists β ∈ (β∗ − ϵ, β∗) s.t. p0H(β) is optimal given

β. Then, we can pick a sequence {βi}∞i=1 ⊂ (β∗ − ϵ1, β
∗) s.t. limβi = β∗ and p0H(βi) is optimal

given βi for all i. But because p0H(β) < z for all β ∈ (β∗ − ϵ1, β
∗), we know p∗H(β∗)− p0H(βi) ≥

p∗H(β∗) − z > 0 for all i. Since p∗H(β∗) is the smallest optimal pH given β∗, this implies that

the sequence {p0H(βi)} is bounded away from the optimal set of pH given β∗, which violates the

optimal set of pH being upper hemi-continuous.

Therefore, there exists ϵ > 0 s.t. for any β ∈ (β∗ − ϵ, β∗), p0H(β) is not optimal and thus

p∗H(β) > p0H(β). Since Proposition 3.4.3 has ruled out the optimality of full disclosure, the

optimal µ then has full support on {0, B(β), 1} for all such β according to the discussion right

below Proposition 3.4.1. Q.E.D.
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Proof for Proposition 3.4.6

First, I explain the technical condition of piecewise monotonicity. Formally, I say a continuous

function f is piecewise monotone on [a, b] if there exists a finite partition a = t0 < t1 < ... <

tn = b s.t. f is monotone on each subinterval [ti, ti + 1] for 0 ≤ i ≤ n − 1. Indeed, this is a

rather weak condition and almost all continuous functions one commonly sees satisfy it on any

bounded domain.

The condition is useful for the following (almost obvious) observation: if continuous function

f is piecewise monotone on [a, b], then for any local maximum of it, say x∗, there exists ϵ > 0 s.t.

f is increasing on (x∗−ϵ, x∗]∩ [a, b] and decreasing on [x∗, x∗+ϵ)∩ [a, b]. (For an example where

this conclusion fails when f is C1 but not piecewise monotone, consider f(x) = x4(sin( 1x)− 1)

with f(0) := 0 around local maximum x = 0.)

Now, I go to the main proof:

Proof. The central part is the following lemma, which shows a local version of decreasing

differences property for the objective function in optimization (3.18).

Lemma (i). Let Υ(pH , β) denote the objective function in optimization (3.18) given β. Then,

for any β0 ∈ (
¯
β, β̄), there exist βl, βu, p1 and p2 s.t. (p∗H(β0), β0) ∈ (p1, p2) × (βl, βh) and

∂2Υ
∂pH∂β < 0 on (p1, p2)× (βl, βh).

Subproof. Define function

γ(pH , β) :=
[
(1− β)KpH − [(2− β)K − vL](1− pH)

]
[vH −K −Ψ(pH)]

+ [(2− β)K − vL](1− pH)pHΨ′(pH) + (1− pH)p2H(vL −K)Ψ′(pH)

Then, one can check (maybe with a computer) that: sign( ∂2Υ
∂pH∂β ) = −sign(γ(pH , β)).

Now, for any β0 ∈ (
¯
β, β̄), by FOC we have:

vH −K −Ψ(p∗H(β0)) +
1−B

B
(vL −K)

∂[pHR(pH ;β)]

∂pH
|(p∗H(β0),β0) ≤ 0

Since vH −K −Ψ(p∗H(β0)) > 0 by Proposition 3.4.3,39 we have ∂[pHR(pH ;β)]
∂pH

|(p∗H(β0),β0) < 0.

One can check (maybe with a computer) that: sign(∂[pHR(pH ;β)]
∂pH

) = −sign
(
γ(pH , β)+pH(1−

39Recall a pH with vH −K −Ψ(pH) = 0 is induced only under full disclosure.
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pH)(vL −K)[Ψ(pH)− (vH −K)]
)
. Thus,

∂[pHR(pH ;β)]

∂pH
|(p∗H(β0),β0) < 0 ⇒ γ(p∗H(β0), β0) > 0 ⇒ ∂2Υ

∂pH∂β
|(p∗H(β0),β0) < 0

where I used vH −K − Ψ(p∗H(β0)) > 0 again in the first step. Finally, the result holds by the

continuity of the cross partial derivative under Assumption 3. □

As mentioned in the proposition, define βc := inf
{
β ∈ (

¯
β, β̄) : p∗H(β) = p0H(β) ≥ B(β)

}
.

Notice when β is close to
¯
β, B(β) > p1H > p0H(β), so βc >

¯
β. Thus βc ∈ (

¯
β, β̄) when the set is

non-empty and βc = +∞ otherwise.

Part (a): First notice p∗H(β) = p0H(β) ≥ B(β) is equivalent to that µ∗(;β) supports on

{B(β), 1} or {B(β)}, so the “only if” part is trivial. For the “if” part, if βc = +∞, the

conclusion is also trivial, so it suffices to assume βc < β̄.

By continuity proved in Lemma 3.C.2, we know when β = βc, the optimal µ(0) = 0 and

thus the optimal µ supports on {B(β)} or {B(β), 1}, which implies p∗H(βc) = p0H(βc) ≥ B(βc).

Notice p0H(βc) ≥ B(βc) further implies p0H(β) is increasing in β when β ≥ βc (Lemma 3.C.1),

so p0H(β) > B(β) for all β > βc (recall B decreases in β). Therefore, it suffices to show

p∗H(β) = p0H(β) for all β > βc.

Now, suppose this is not true (i.e., p∗H(β) > p0H(β) for some β > βc). Define β∗ = inf{β ∈

[βc, β̄) : p
∗
H(β) > p0H(β)}. Then, β∗ < β̄.

If β∗ = βc, we have p∗H(β∗) = p0H(β∗). If β∗ > βc, then for any β ∈ (βc, β
∗), we have

p∗H(β) = p0H(β). By continuity of p∗H(·), we have p∗H(β∗) = limβ↑β∗(p∗H(β)) = limβ↑β∗(p0H(β)) ≤

p0H(β∗) (where the last inequality is by Lemma 3.C.1). This again implies p∗H(β∗) = p0H(β∗).

Thus in either case, p∗H(β∗) = p0H(β∗).

However, we have the following lemma:

Lemma (ii). If β0 satisfies p
∗
H(β0) = p0H(β0) ≥ B(β0), then there exists ϵ > 0 s.t. p∗H(β) = p0H(β)

for all β ∈ (β0, β0 + ϵ).

Subproof. Let β0 satisfies the lemma’s condition. By Lemma (i), there exist βl, βu, p1 and p2 s.t.

(p∗H(β0), β0) ∈ (p1, p2)× (βl, βh) and
∂2Υ

∂pH∂β < 0 on (p1, p2)× (βl, βh). Since p
∗
H(β0) is the unique

optimal pH given β0, the technical condition that Υ(·;β) is piecewise monotone implies Υ(·;β0)

is decreasing on [p∗H(β0), p
∗
H(β0) + δ) for some δ > 0. Thus we can w.l.g. assume p2 is small
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enough s.t. Υ(·;β0) is decreasing on [p∗H(β0), p2). Then, the decreasing differences condition

∂2Υ
∂pH∂β < 0 implies Υ(·;β) is decreasing on [p∗H(β0), p2) for all β ∈ [β0, βh).

Since p0H(β0) ≥ B(β0), p
0
H(β) is increasing in β on [β0, β̄) (Lemma 3.C.1). Thus, p0H(β) ≥

p0H(β0) = p∗H(β0) for any β > β0. By the local monotonicity of Υ(·;β), we know for any

β ∈ (β0, βh), it cannot be the case that p0H(β) < p∗H(β) < p2. Therefore, either p
∗
H(β) = p0H(β)

or p∗H(β) ≥ p2 (or both). However, by the continuity of p∗H(·), as β ↓ β0, p∗H(β) → p∗H(β0) < p2.

Thus, when β is close to β0 enough, we must have p∗H(β) = p0H(β), which is the lemma’s

conclusion. □

Now, since p∗H(β∗) = p0H(β∗) ≥ B(β∗), the lemma implies that there exists ϵ > 0 s.t.

p∗H(β) = p0H(β) for all β ∈ (β∗, β∗ + ϵ). This contradicts with the definition of β∗, so the result

in part (a) holds. (As a side note, p0H(β) > B(β) for all β > βc implies that the optimal µ may

support on {B} only when β = βc.)

Part (b): First notice for β ∈ [βc, β̄), part (a) implies p∗H(β) = p0H(β), so the increasing result

is implied by the fact that p0H(·) is strictly increasing on [βc, β̄) as mentioned above. For p∗H(·)

being decreasing on (
¯
β, βc), we show the following result:

Lemma (iii). For any β0 ∈ (
¯
β, βc), there exists ϵ > 0 s.t. p∗H(β) ≥ p∗H(β0) for all β ∈ (β0−ϵ, β0).

Subproof. We consider two cases:

Case 1: p0H(β0) ≤ B(β0).

By Lemma 3.C.1, we know p0H(·) is decreasing on (
¯
β, β0], so if p∗H(β0) = p0H(β0), then the

result is trivial since for all β < β0, we have p∗H(β) ≥ p0H(β) > p0H(β0).

If p∗H(β0) > p0H(β0), then there exists ϵ > 0 s.t. Υ(pH ;β0) is increasing on (p∗H(β0)−ϵ, p∗H(β0)]

by the piecewise monotonicity. Moreover, by Lemma (i), there exist βl, βu, p1 and p2 s.t.

(p∗H(β0), β0) ∈ (p1, p2)× (βl, βh) and
∂2Υ

∂pH∂β < 0 on (p1, p2)× (βl, βh). We can assume p1 is large

enough s.t. p1 > p∗H(β0) − ϵ. Then, the decreasing differences condition implies Υ(pH ;β) is

increasing on (p1, p
∗
H(β0)] for all β ∈ (βl, β0]. Therefore, for all β ∈ (βl, β0], either p

∗
H(β) ≤ p1

or p∗H(β) ≥ p∗H(β0) (notice if p∗H(β) < p∗H(β0), p
∗
H(β0) is feasible). However, by continuity

p∗H(β) → p∗H(β0) as β ↑ β0, so when β is close enough to β0, we must have p∗H(β) > p1.

Therefore, p∗H(β) ≥ p∗H(β0) when β < β0 but close enough to it, which is the lemma’s conclusion.

Case 2: p0H(β0) > B(β0).
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In this case, part (a) implies p∗H(β0) > p0H(β0), otherwise µ
∗(;β0) would support on {B(β0), 1}

or {B(β0)}. Then, the argument is exactly the same as the second paragraph in Case 1. □

Finally, the proof is completed by the following simple fact:

Lemma (iv). If a continuous function f : (a, b) → R satisfies for any x0 ∈ (a, b), there exists

ϵ > 0 s.t. f(x) ≥ f(x0) for all x ∈ (x0 − ϵ, x0), then f is decreasing on (a, b).

Subproof. Supposing not, there exist x1 and x2 s.t. a < x1 < x2 < b and f(x2) > f(x1). By

continuity of f , argmaxx∈[x1,x2]{f(x)} is compact. Let xm be its minimum element. Then,

xm > x1 since f(x1) < f(x2). This implies that f(xm) > f(x) for all x ∈ (x1, xm), which

contradicts the lemma’s assumption. □

Combining Lemma (iii) and Lemma (iv), we conclude p∗H(·) is decreasing on (
¯
β, βc) Q.E.D.

3.C.3 Proofs in Appendix 3.A

Proof for Lemma 3.A.1

Proof. It suffices to prove this for the endogenous pH case.

First notice condition (3.20) is equivalent to:

πH ≥ max{1− ξvH
(K + ξ)(vH − vL)

, B}

Define the RHS as π∗. Then, the high types will not use costly certification when πH ≥ π∗.

Now, let (paH ,D) be a pair of target pH and disclosure rule that induces some high type

entrepreneurs to use the certification service. Let S be the set of signal realizations of D and

Γ be its family of conditional distribution (so D = {S,Γ}). Then, there must be some signal

realizations in S inducing πH < π∗ given paH . Let T ⊂ S be the subset including all these kind

of signal realizations.

Now, suppose the designer can fix pH at paH , but design a new disclosure rule D′, which is

the same as D except that whenever signals in T are realized under D, a full disclosure signal



204

is realized under D′. Specifically, D′ = {S′,Γ′} s.t.

S′ = (S \ T ) ∪ {s0, s1}

Γ′(s|v) = Γ(s|v) ∀s ∈ S \ T, ∀v

Γ′(s0|vL) = Γ(T |vL), Γ′(s1|vL) = 0, Γ′(s0|vH) = 0, Γ′(s1|vH) = Γ(T |vH)

where Γ(T |v) denotes the sum of probabilities of signal realizations in T given type v under rule

D.

Notice under D, any signal realization in T causes a high type to be developed (at least the

entrepreneur can use certification) and causes a low type not to be developed (due to πH < B

or high types identify themselves by certification). Then, it’s obvious that the pair (paH ,D′)

dominates the pair (paH ,D) in welfare because all projects that are developed under D are still

developed under D′ (given paH), while the high types don’t need to pay the certification costs.

Moreover, all low types used to receive s ∈ T under D get payoff 0 under D′ (by receiving s0)

and all high types used to receive s ∈ T under D get payoff vH − K under D′ (by receiving

s1). Thus the upgrading incentive under (paH ,D′) is higher than that under (paH ,D) (strictly

so since high types don’t need to pay certification costs under D′). Although paH is no longer

incentivized by D′, we have the following lemma:

Lemma (i). There exists pbH > paH s.t. pbH is incentivized by D′.

Subproof. Since D′ does not induce any non-zero posterior πH < π∗ given paH , so is true for D′

given any pH ≥ paH . Also since π∗ ≥ B, we have for all pH ≥ paH :

uH(D′; pH) =E(pH ,D′)

[
(1− K

πHvH + (1− πH)vL
)vH1{πH > 0}

]
=

∑
s∈Ŝ′

[
(1− K

π(s; pH)vH + (1− π(s; pH))vL
)vHΓ′(s|vH)

]
uL(D′; pH) =E(pH ,D′)

[
(1− K

πHvH + (1− πH)vL
)vL1{πH > 0}

]
=

∑
s∈Ŝ′

[
(1− K

π(s; pH)vH + (1− π(s; pH))vL
)vLΓ

′(s|vL)
]

where Ŝ′ := {s ∈ S′ : Γ′(s|vH) > 0} is the set of signal realizations in S′ that induce non-zero

posterior πH (which then must be≥ π∗ given pH ≥ paH); and π(s; pH) := Γ′(s|vH)pH
Γ′(s|vH)pH+Γ′(s|vL)(1−pH)
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is the posterior πH induced by s ∈ D′ given pH . It’s easy to see π(·; pH) is continuous in pH

and thus uH(D′; pH)− uL(D′; pH) is continuous in pH .

As shown above, upgrading incentive under (paH ,D′) is strictly higher than that under

(paH ,D), so we have:

uH(D′; paH)− uL(D′; paH) > uH(D; paH)− uL(D; paH) = Ψ(paH)

Since uH(D′; paH) − uL(D′; paH) ≤ vH − K < Ψ(1), by continuity of [uH(D′; pH) − uL(D′; pH)]

and Ψ(pH) in pH , there exists pbH > paH s.t.

uH(D′; pbH)− uL(D′; pbH) = Ψ(pbH)

which means pbH is incentivized by D′. □

Now, it suffices to show (pbH ,D′) (weakly) dominates (paH ,D′) in welfare, which then domi-

nates (paH ,D). Let W1 denote the net social surplus under (paH ,D′) and W2 denote that under

(pbH ,D′). Then,

W2 −W1 = (pbH − paH)[(vH −K)− (vL −K)Γ′(Ŝ′|vL)]−
∫ pbH

paH

Ψ(x)dx

=

∫ pbH

paH

[(vH −K)− (vL −K)Γ′(Ŝ′|vL)−Ψ(x)]dx

where Γ′(Ŝ′|vL) is the probability for a low type to get s ∈ Ŝ′ under D′ and thus get financed

and developed given pH ≥ paH . Notice the expected project payoff for high type entrepreneurs

is always smaller than vH −K and the expected project payoff for low type entrepreneurs under

(pbH ,D′) is higher than (1− β)KΓ′(Ŝ′|vL) ≥ (vL −K)Γ′(Ŝ′|vL). Therefore,

(vH −K)− (vL −K)Γ′(Ŝ′|vL) ≥ uH(D′; pbH)− uL(D′; pbH)

= Ψ(pbH) ≥ Ψ(pH) ∀pH ∈ [paH , p
b
H ]

so the integrand above is positive and thus W2 −W1 ≥ 0. Q.E.D.
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Figure 3.8: Cancavification with costly certification

Proof for Observation 3.A.1

Proof. The range includes πH = 0 since it can only be induced for low types. For πH ≥ B,

notice condition (3.23) says
¯
π > B, so (3.22) is equivalent to πH ≥

¯
π. Therefore, certification

is not used when πH ∈ [
¯
π, 1] and is used when πH ∈ [B,

¯
π]. For πH ∈ (0, B), we have (1 −

K
πHvH

)vH ≤ (1− K
πHvH+(1−πH)vL

)vH ≤ (1− K
BvH+(1−B)vL

)vH < (1− K

¯
πvH+(1−

¯
π)vL

)vH = vH−K−ξ,

where the last inequality is because B <
¯
π by (3.23). Thus certification is used with πH ∈

(0, B). Q.E.D.

Proof for Proposition 3.A.1

Proof. The proof is basically the same as that for Proposition 3.3.2 with B replaced by
¯
π.

The graph for concavification is in Figure 3.8a. The solid blue curve is for W (·) on domain

{0} ∪ [
¯
π, 1] and the dotted red curve is the concavification. Q.E.D.

Proofs for Proposition 3.A.2 and Proposition 3.A.3

The proofs are largely the same as those in Section 3.C.2, with B replaced by
¯
π and function ρ(·)

redefined correspondingly. The concavification graph for the constrained Bayesian persuasion

problem is presented in Figure 3.8b.
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3.C.4 Proofs in Appendix 3.B

Proof for Observation 3.B.1

Proof. We mainly need to show R1 and R2 are well defined. Notice it is easy to see S(e,R)

is continuous and decreasing in R, which is strictly decreasing on {R : P(z > R − e) > 0}.

Moreover, notice:

(1) S(eL, 0) = E[max{z + eL, 0}] ≥ max{E(z + eL), 0} > eL + 1 > m;

(2) S(eH , 0) = E[max{z + eH , 0}] ≥ max{E(z + eH), 0} > eH + 1 > eH ;

(3) limR→∞ S(e,R) = 0 for any e.

Thus by continuity, there exist R1, R2 > 0 s.t. S(eL, R1) = m and S(eH , R2) = eH .

For uniqueness, take R1 for example. Suppose there exists R′
1 > R1 s.t. S(eL, R

′
1) =

S(eL, R1) = m. Then, S(eL, ·) is constant on [R1, R
′
1], which implies P (z > R − eL) = 0 ⇒

S(eL, R) = 0 for R ∈ (R1, R
′
1). This contradicts with S(eL, R

′
1) = m. Similarly, R2 is also

unique.

Finally, by monotonicity of S(e,R) in R, we have S(eH , R) ≥ eH ⇔ R ≤ R2 and S(eL, R) ≥

m⇔ R ≤ R1. Thus we have the bank’s behaviors as given in the observation. Q.E.D.

Proof for Lemma 3.B.1

Proof. � Class 1: R ≤ R1

When R ≤ R1, both types accept the offer and develop the project. Then, investor’s

condition (3.30) implies this kind of equilibria exist if and only if:

∃R ≤ R1, s.t. πHB(eH , R) + (1− πH)B(eL, R) ≥ 1

Since B(e,R) is increasing in R, this is equivalent to:

πHB(eH , R1) + (1− πH)B(eL, R1) ≥ 1

By definition of C1, this is equivalent to πH ≥ C1.

� Class 2: R1 < R ≤ R2

In this case, both types accept the debt offer, but only the high type carries out the project

while the low type diverts. Thus the investor’s condition (3.30) is satisfied for this case if
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0
C2 C1−ℓ 1

W (πH)

πH

Figure 3.9: Concavification for W (πH) in (3.34)

Note: Blue curve is function W (πH); Red dotted curve is the concavification boundary.

and only if:

∃R ∈ (R1, R2], s.t. πHB(eH , R) ≥ 1

Since B(e,R) is increasing in R, this is equivalent to πH ≥ 1
B(eH ,R2)

= C2.

� Class 3: no debt offer is made by the investor

This happens when πH < min{C1, C2}, so no R can make condition (3.30) satisfied.

(Notice the investor never offers R > R2 since only the low type accepts it, who is going

to divert with it.)

Q.E.D.

Proof for Proposition 3.B.2

Proof. Case 1: C1 ≥ C2

The indirect welfare function together with its concavification is drawn in Figure 3.9. The

red dashed line is the concavification ofW (·). It consists of two segments: (0, 0) → (C1,W (C1))

and (C1,W (C1)) → (1,W (1)).

Thus, when pH < C1, the optimal µ supports on {0, C1}. By Bayesian feasibility, µ(0) ×

0 + µ(C1)C1 = pH ⇒ µ(C1) = pH/C1. When pH ≥ C1, any µ supporting on [C1, 1] satisfying

Bayesian feasibility condition is optimal.

Case 2: C1 < C2

In this case, we simply don’t have the second piece for indirect welfare function, so the

concavification is the same as that in Case 1, expect that there is no segment corresponding to
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interval [C2, C1]. Therefore, the result is the same as in Case 1. Q.E.D.
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