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Around Smyth’s Conjecture

A Study of Smyth’s Conjecture over Q and a Proof of a Function Field Analogue

Will Hardt

Abstract In 1986, Smyth conjectured an elegant classification of the tuples of coefficients

(a1, . . . ak) ∈ Zk that appear in a linear relation
∑k

i=1 aiγi = 0 among Galois conjugates

γ1, . . . γk over Q. Thirty-seven years later, the conjecture remains open with little direct

progress made on it. This thesis compiles evidence in favor of the conjecture, including a

proof of a function field analogue and a proposed number field generalization. Additionally,

we establish a surprising connection between the conjecture and the recent notion of slice

rank from additive combinatorics, via Strassen’s asymptotic spectrum. We show that

Smyth’s Conjecture would be implied by certain “Smyth tensors” having full asymptotic

slice rank, and we prove that the Smyth tensors do have full slice rank. We discuss the

obstacle to extending this argument to asymptotic slice rank. Finally, we provide a

counterexample to an old conjecture of Brualdi and Csima regarding the support patterns

of stochastic tensors.
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List of Notation

(a, b, c) (potential) Smyth triple

(a1, . . . ak) (potential) Smyth tuple, where k ≥ 3 is not necessarily fixed

[r, s] {r, r + 1, . . . , s}

[s] {1, 2, . . . , s}

Φabc The set {(x, y, z) ∈ S3 : ax+ by + ca = 0}

SFa,b,c,N nonnegative tensors indexed by [−n, n], with entries in the field F, and whose support is

contained in {(x, y, z) : ax+ by + cz = 0}

supp(T ) {(i,j,k): tijk ̸= 0}

Ten(m,m,m) Rm ⊗ Rm ⊗ Rm

dBA The density of A as a subset of B

Tabc The 0-1 tensor with supp(T ) = Φabc

[m] The set {1, 2, . . . ,m}; equivalent to the notation [1,m]

I1 × I2 × I3 The index set of a 3-tensor

N Equal to 2n+1, the size of S

n Equal to the product abc

S The integer interval [-n,n]

SR(T) The slice-rank of T
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Chapter 1

An Introduction to Smyth’s

Conjecture

1.1 The Conjecture and an Equivalence

In 1986, Smyth asked which coefficients (a1, ..., ak) ∈ Qk arise in linear relations
∑k

i=1 aiγi = 0

among Galois conjugates γ1, ..., γk algebraic over Q [Smy86]. We will call such an (a1, . . . ak) a

Smyth tuple. Notice that we may normalize this problem by assuming that (a1, . . . , ak) is a coprime

integer tuple, because for any nonzero α ∈ Q, we have
∑k

i=1 aiγi = 0 ⇐⇒
∑k

i=1(αai)γi = 0; thus

(a1, . . . ak) is a Smyth tuple if and only if (αa1, . . . αak) is.

Smyth proved that the following conditions on (a1, . . . , ak) are necessary for being a Smyth

tuple, and conjectured that they are jointly sufficient.

Definition 1.1.1. A coprime integer tuple (a1, . . . , ak) ∈ Zk is said to satisfy the absolute value

criteria if

1. |ai| ≤
∑

j ̸=i |aj | for all i, where | · | denotes the usual archimedean absolute value, and

2. Every prime p divides at most k − 2 of the ai.

We will call (a1, . . . , ak) satisfying the absolute value criteria potential Smyth tuples.
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Theorem 1.1.2. [Smy86] If a coprime integer tuple (a1, ..., ak) ∈ Zk is a Smyth tuple, then it

satisfies the absolute value criteria.

Conjecture 1.1.3 (Smyth’s Conjecture). [Smy86] If an integer tuple (a1, ..., ak) ∈ Zn satisfies the

absolute value criteria, then it is a Smyth tuple.

Smyth also proved another characterization of Smyth tuples involving multisets of solutions to

the integral equations
∑k

i=1 aixi = 0.

Definition 1.1.4. Let (a1, . . . ak) ∈ Zk be a coprime integer tuple. A balanced multiset with re-

spect to (a1, . . . , ak) is a finite multiset {(xi1, ..., xik) ∈ Zk}mi=1 of integral solutions to the equation∑k
i=1 aixi = 0 such that the multiset {xij : i = 1, . . . ,m} is independent of j.

Theorem 1.1.5. [Smy86] A coprime integer tuple (a1, ..., ak) ∈ Zk is a Smyth tuple if and only if

there exists a balanced multiset with respect to (a1, ..., ak).

We illustrate the notion of balanced multisets with an example.

Example 1.1.6. Consider the coprime integer triple (a, b, c) = (3, 4, 5). Consider the 8-element

(multi)set of solutions to the equation 3x+ 4y + 5z = 0

S =



x y z

(3, 4, −5),

(−3, −4, 5),

(4, −3, 0),

(−4, 3, 0),

(5, 0, −3),

(−5, 0, 3),

(0, 5, −4),

(0, −5, 4)


Notice that the multiset of entries in each of the x, y, and z columns is the same: {±3,±4,±5, 0, 0}.
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Thus S is a balanced set with respect to (3, 4, 5), and it follows from Theorem 1.1.5 that (3, 4, 5) is

a Smyth triple.

Thus one can approach Smyth’s Conjecture as follows; for each (a, b, c) satisfying the absolute

value criteria, fix an integer n := n(a, b, c), and then for each triple (x, y, z) ∈ [−n, n] ∩ Z3 such

that ax+ by + cz = 0, prescribe how many times to include (x, y, z) in a multiset. This approach

is successful if the resulting multisets are balanced in the sense of Definition 1.1.4.

1.2 A Heuristic

In this section, we give a heuristic that predicts the existence of balanced sets (in fact, 1-factors)

with high probability, regardless of the potential Smyth tuple. The heuristic is sharp enough to

not falsely predict abundant Smyth pairs (i.e. Smyth tuples when k = 2) but is blunt enough to

not see the necessity of the local conditions for k ≥ 3.

To set up the heuristic, we need a slight change of perspective, which we will describe after

the following proposition.

Proposition 1.2.1. Let K be any global field. The following are equivalent for coprime (a1, . . . , ak) ∈

Zk.

1. (a1, . . . , ak) is a Smyth tuple.

2. There exists a balanced multiset of tuples with respect to (a1, . . . , ak).

3. There exist permutation matrices X1, . . . , Xk such that det(
∑k

i=1 aiXi) = 0.

Proof. Smyth [Smy86, Thm. 2] proved (1) ⇐⇒ (2); this was our Theorem 1.1.5.

(2) =⇒ (3): Let T = {(xi1, xi2, . . . , xik)}mi=1 be a balanced multiset of tuples of size m. For

j : 1 ≤ j ≤ k, let vj = (xij)
m
i=1 be the vector in Qm obtained by taking the jth entry from each tuple

in T . By definition of balanced multiset, there exist (not necessarily unique) m ×m permutation

matrices X1, . . . , Xk such that Xivk = vi for all i. Thus (
∑k

i=1 aiXi)vk =
∑k

i=1 aivi = 0, so∑k
i=1 aiXi has nontrivial kernel.
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(3) =⇒ (2): Reverse the previous argument as follows. Let vk be any nonzero vector in the

kernel of
∑k

i=1 aiXi and let vi := Xivk for 1 ≤ i ≤ k. Then the coordinates of the vectors v1, . . . , vk

give a balanced multiset of tuples as above.

The setting of Smyth’s Conjecture involves fixing a tuple (a1, . . . ak) and asking for a balanced

multiset T = {(xi1, . . . xik) ∈ Zk}mi=1 with respect to the tuple. The heuristic involves fixing a

particular vector vn ∈ R2n+1 for each positive integer n, and asking for the probability, under a

certain assumption of randomness, that there existX1, . . . Xk ∈ S2n+1 such that (
∑k

i=1 aiXi)vn = 0.

Heuristic 1.2.2. Fix a positive integer n and the vector vn = (−n,−n + 1, . . . 0, . . . , n − 1, n)T .

Let N = 2n+ 1 and let Xk = I be the N ×N identity matrix. Then choose random permutations

X1, . . . , Xk−1 ∈ G ⊂ SN and assume that for each j : 1 ≤ j ≤ qN , the sum
∑n

i=1 aivX−1
i (j) takes

values in [-An, An] uniformly and independently at random, where A :=
∑k

i=1 ai.

The result of this heuristic is as follows. For a fixed coprime tuple (a1, . . . ak) ∈ Zk and a fixed n,

the probability of there not existing permutation matricesX1, . . . Xk−1 such that (
∑k

i=1 aiXi)vn = 0

is

(
1− 1

2An+ 1

)(k−1)N !

This probabillity goes to zero as n → ∞, hence this heuristic says that with high probability,

(a1, . . . , ak) has a 1-factor.

As mentioned, a weakness of this heuristic is that it does not notice the necessary local condi-

tions on the ai.

1.3 The Tensor Perspective

Before proceeding, we need some additional notation. Given integers r < s, we will write [r, s] for

the set of integers {r, r + 1, . . . , s}, and when r = 1, we will just write [s].

This thesis will be concerned almost exclusively with Smyth’s Conjecture for triples, i.e. the
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case where k = 3. Suppose that we’ve fixed a potential Smyth triple (a, b, c) and a positive integer

n, and we’re looking for a balanced multiset {(xi, yi, zi) ∈ [−n, n]3}mi=1 with respect to (a, b, c).

A multiset of solutions (x, y, z) to ax + by + cz = 0 can be conveniently represented as a 3d-

array T = [tijk]
n
i,j,k=−n, where tijk represents the number of times that the triple (i, j, k) occurs in

our multiset. This means in particular that the support of T (the set of (i, j, k) for which tijk ̸= 0)

must be contained in the zero locus of ai+ by + ck = 0.

It will eventually be useful to view T not just as a 3d array, but as a tensor sitting in the

vector space V = R2n+1 ⊗ R2n+1 ⊗ R2n+1. Specifically we identify T with the tensor that shares

the coefficients of T in the standard basis for V , i.e. T =
∑n

i,j,k=−n tijkei ⊗ ej ⊗ ek. Viewing T as

a tensor will allow us to leverage algebraic tools, specifically Strassen’s asymptotic spectrum and

slice rank, to understand our combinatorial questions about T .

The “balanced” property of a balanced multiset manifests in the corresponding tensor as

follows. A tensor T is balanced if its vector of co-dimension one slices is the same in each direction,

that is if for all α ∈ [−n, n], we have

n∑
i,j=−n

ti,j,α =

n∑
i,k=−n

ti,α,k =

n∑
j,k=−n

tα,j,k (1.3.1)

If all of these sums are equal to 1, then we will say that T is stochastic.

Thus Smyth’s Conjecture (for triples) is equivalent to the following.

Conjecture 1.3.1. Given any potential Smyth triple (a, b, c) ∈ Z3, there exists a positive integer

n and a nonnegative integer tensor T indexed by [−n, n]3 whose support supp(T ) is contained in

{(x, y, z) : ax+ by + cz = 0}, and whose entries satisfy 1.3.1.

Notice that the existence of such tensors would be an immediate consequence of elementary

linear algebra without the nonnegativity requirement on the entries of T . We can, however, relax

the requirement that the entries are integers, as we now show. We will write SFa,b,c,N to denote the

set of nonnegative tensors indexed by [−n, n]3, with entries in the field F, and whose support is

contained in {(x, y, z) : ax+ by + cz = 0}.
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Lemma 1.3.2. Let m,n be positive integers and V = ker(A) ⊂ Rn where A = (aij) ∈ Qm×n. If

V ∩ (R≥0)n ̸= 0, then V ∩ (Q≥0)n ̸= 0.

Proof. Fix a basis B = {bi}i∈I for R as a Q-vector space. Let 0 ̸= (r1, . . . , rn) ∈ V ∩ (R≥0)n. Then

we can write

rj =
∑
i∈Ij

cijbij

for finite subsets Ij ⊂ I, where bij ∈ B and cij ∈ Q.

Now re-label the bij as b1, b2, . . . , bN ; then there exist kij ∈ Q (each one equal to some ci′j′ or

to 0) such that

aj1(
N∑
i=1

kijbi) + . . .+ ajn(
N∑
i=1

kijbi) = 0, for j = 1, 2, . . . ,m

Now fix an index i so that kij ̸= 0 for some j. By linear independence of the b’s, and the fact that

bi ̸= 0, we have

aj1ki1 + aj2ki2 + . . .+ ajnkin = 0 for j = 1, 2, . . . ,m

Thus, 0 ̸= (ki1 . . . kin)
T ∈ ker(A) ∩ (Q≥0)n, as desired.

We are now ready to show that Smyth’s Conjecture can be formulated in terms of the existence

of real balanced tensors.

Proposition 1.3.3. Let (a, b, c) be a potential Smyth triple and N ∈ Z+. If SRa,b,c;N ̸= ∅ then

SQa,b,c;N ̸= ∅.

Proof. Note that a real (resp. rational) nonnegative N×N×N tensor T with support contained in

{(x, y, z) : ax+ by + cz = 0} lies in SRa,b,c;N (resp. SQa,b,c;N ) if and only if its entries satisfy a system

of linear equations dictating that it is balanced. We will call the corresponding coefficient matrix

AR
a,b,c;N (resp. AQ

a,b,c;N ). So if we vectorize T as t⃗ in an appropriate way, the balanced condition
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becomes AR
a,b,c;N t⃗ = 0 (resp. AQ

a,b,c;N t⃗ = 0). Note that the entries of AR
a,b,c;N and AQ

a,b,c;N are exactly

the same; we write superscripts here only to indicate the field where the entries of t⃗ must lie.

It now follows from Lemma 1.3.2 that there exists a tensor in SRa,b,c;N if and only if there exists

one in SQa,b,c;N .

The shift to constructing real balanced tensors opens up some new avenues. In particular, it

would be enough to find a sequence of nonnegative tensors with rational entries which, in the limit,

is balanced.

1.4 Related Work

The question of how prevalent linear relations among Galois conjugates are has been studied from

multiple angles. In [Ber+04, Thm. 14(ii)] it is shown that for any global field K of characteristic

not equal to 2 and all but finitely many nonnegative integers n, there exists α ∈ K of degree 2nn!

whose conjugates span a vector space of dimension n. In these cases, the dimension of relations

between conjugates is 2nn!−n, and so in this sense, linear relations among conjugates are plentiful.

On the other hand, there are results constraining the supply of linear relations among Galois

conjugates. Dixon [Dix97, Thm. 1’] showed that if K is any subfield of C (e.g. a number field) and

f(x) ∈ K[x] is an irreducible polynomial whose Galois group acts 2-transitively on its set of roots,

then there are no nontrivial K-linear relations among the roots of f(x).

1.5 The Structure of this Thesis

The structure of this thesis is as follows. In Chapter 1, we’ve introduced the statement of Smyth’s

Conjecture and seen equivalent formulations in terms of balanced multisets and balanced tensors.

We also introduced a heuristic and explained how it predicts a positive resolution to Smyth’s

Conjecture.

Chapter 2, which has been published jointly with John Yin [HY21], examines analogues of
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Smyth’s Conjecture. In particular we prove a function field analogue and formulate a number

field analogue, which is not a straightforward generalization due to a subtlety occurring at the

Archimedean places.

Chapter 3 explores the surprising connection between Smyth’s Conjecture and the slice rank

of tensors. The chapter begins with an introduction to stochastic patterns, Strassen’s asymptotic

spectrum, slice rank, and related concepts. Next we prove that Smyth’s Conjecture would be

implied by certain “Smyth tensors” having full asymptotic slice rank. We go on to prove that these

tensors have full (non-asymptotic) slice rank. In the penultimate section of the chapter, we discuss

the difficulties of extending this approach to show full asymptotic slice rank, which leads us into

a high-dimensional sumset problem. Finally, we provide a computer-verified counterexample to an

old conjecture of Brualdi and Csima regarding stochastic patterns.
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Chapter 2

Analogues of Smyth’s Conjecture

2.1 A Proof of a Function Field Analogue

Global fields are central objects in number theory, and come in two varieties – number fields

and function fields. There is a strong parallel between number fields and function fields, and in

particular between Q and Fq(t). In each field, the ring of integers is a Principal Ideal Domain, and

many important number theoretic theorems over Q have analogies that are also true in Fq(t). For

details of this analogy, see [Ell14] and [Poo06].

Despite these similarities, the relationship between Q and Fq(t) is somewhat asymmetrical;

while Fq(t) carries a similar structure to Q, it often exhibits less complexity. Most critically for

our purposes, the “scales” in Fq(t) are well preserved by addition (the sum of two polynomials of

degree ≤ d also has degree ≤ d), but there is no such separation of scales in Q.

With this context in mind, we now turn toward the proof of the main result of this section,

Theorem 2.1.2, which will follow essentially as a corollary from Proposition 2.1.3.

First, we lay out some more conventions. The height of a coprime tuple (a1, . . . , ak) ∈ Fq[t]
k

is maxi deg(ai). Let VD ⊂ Fq[t] be the set of polynomials of degree < D for any positive integer m.

Throughout this thesis, we will use the standard normalizations of absolute values over global

fields. Namely, the absolute values over Q are given by the usual archimedean one | · | and
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|a|p = p−ordp(a) for each positive prime p. For the function field Fq(t) and g ∈ Fq(t), we take

the normalizations |g|f = q− deg(f)ordf (g) for irreducible polynomials f ∈ Fq(t) and |g|∞ = qdeg(g).

These normalizations extend uniquely to any global field.

To set up the function field analogue we will prove, we recall the absolute value criteria,

A natural way to generalize (1) and (2) to any global field K is as follows.

Definition 2.1.1. A tuple (a1, . . . , ak) ∈ Kk satisfies the absolute value criteria over K if

(1’) For any archimedean absolute value | · | of K, we have |ai| ≤
∑

j ̸=i |aj | for all i.

(2’) For any nonarchimedean absolute value | · | of K, we have |ai| ≤ maxj ̸=i |aj | for all i.

When the field K is clear from context we may omit it from our terminology.

Thus, the most natural function field analogue of Smyth’s Conjecture is:

Theorem 2.1.2 (Smyth’s Conjecture Over Fq(t)). Let k ≥ 3 be an integer. A coprime tuple

(a1, . . . , ak) ∈ Fq[t]
k is a Smyth tuple if and only if (a1, . . . , ak) satisfies the absolute value criteria

over Fq(t).

We will show that, surprisingly, for any coprime (a1, . . . , ak) ∈ Fq[t]
k satisfying the absolute

value criteria and any D ≥ d := height(a1, . . . , ak), the set of all solutions (x1, . . . , xk) ∈ V k
D to the

equation
∑k

i=1 aixi = 0 is a balanced set.

Proposition 2.1.3. Let k ≥ 3 be an integer. Let (a1, . . . , ak) ∈ Fq[t]
k of height d be a coprime

tuple satisfying the absolute value criteria. Let D ≥ d be an integer and let j be an integer so that

1 ≤ j ≤ k. Fix xj ∈ VD. Then the number of tuples (x1, . . . , xj−1, xj+1, . . . xk) ∈ V k−1
D satisfying∑k

i=1 aixi = 0 is qD(k−2)−d. In particular, this count does not depend on j.

Proof. Without loss of generality, we let j = 1. By the absolute value criteria, the maximum degree

of a1, . . . , ak is achieved at least twice. Hence, some ai with i ̸= 1 has degree d; without loss of

generality, assume that ak does. Let c = a1x1. Define

S = {(x2, . . . , xk) ∈ V k−1
D : c+

k∑
i=2

aixi = 0}.
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Our goal is to compute #S. To do so, we will project onto Fq[t]/ak, so we define

S = {(x2, . . . , xk−1) ∈ (Fq[t]/ak)
k−2 : c+

k−1∑
i=2

aixi = 0}.

Reducing modulo ak in each coordinate and throwing out the last coordinate gives a surjective

q(D−d)(k−2)-to-1 map S → S; the pre-image of any (x2, . . . , xk−1) ∈ S is

{(
x2 + h2ak, . . . , xk−1 + hk−1ak,−

(
c+

∑k−1
i=2 aixi
ak

+
k−1∑
i=2

aihi

))
: hi ∈ VD−d

}
,

where xi is the unique polynomial of degree < d equal to xi mod ak. Thus, we have #S =

q(D−d)(k−2)#S.

So we want to count the number of solutions (x2, . . . xk−1) ∈ (Fq[t]/(ak))
k−2 to c+

∑k−1
i=2 aixi =

0. Let ak =
∏
p
ej
j be the prime factorization of ak. Let Rj := Fq[t]/(p

ej
j ); by the Chinese Remainder

Theorem, it will suffice to count the number of solutions in Rj for each j.

Specifically, let Sj = {(x2, . . . , xk−1) ∈ Rk−2
j : c̄+

∑k−1
i=2 aixi = 0}; then the Chinese Remainder

Theorem implies that #S =
∏

j #Sj .

We now compute #Sj . Recall that by the absolute value criteria, for all j, there are at least

two ai that are not divisible by pj . Of course ak is divisible by all pj ; hence, for all j, there is at

least one ai, with 1 < i < k, such that pj ∤ ai, in which case ai is a unit in Rj . Thus, we can write

xi =
c+

∑
ℓ ̸=i,ℓ̸=1 aℓxℓ

ai
, and so any collection of choices of xℓ for ℓ ∈ {2, . . . , k − 1} \ {i}, will give a

unique choice of xi. There are #Rj = qdeg(p
ej
j ) choices for each xℓ, so #Sj = qdeg(p

ej
j )(k−3). Thus,

since
∑

j deg(p
ej
j ) = deg(ak) = d, we have

#S = q(D−d)(k−2)
∏
j

qdeg(p
ej
j )(k−3) = q(D−d)(k−2)qd(k−3) = qD(k−2)−d, as desired.

Now Theorem 2.1.2 follows easily.
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Proof of Theorem 2.1.2. (⇒): Smyth proved this statement over Q [Smy86, Cor. 2] (and we

recorded this as Theorem 1.1.2), and his proof is valid over any global field K.

(⇐): Without loss of generality, we assume (a1, . . . , ak) is a coprime tuple in Fq[t]
k. Let

TD be the set of all tuples (x1, . . . , xk) ∈ V k
D satisfying

∑k
i=1 aixi = 0 and enumerate TD =

{(xi1, . . . , xik)}ti=1 where t = |TD|. In Proposition 2.1.3 we showed that for every x ∈ VD and all

i : 1 ≤ i ≤ n, the number of tuples (x1, . . . , xk) in TD with xi = x is qD(k−2)−d. This means that

for each j : 1 ≤ j ≤ k, the multiset {(xij)}ti=1 is precisely qD(k−2)−d copies of VD. Thus, TD is a

balanced (multi)set of tuples. So by Proposition 1.2.1, (a1, . . . , ak) is a Smyth tuple.

Remark 2.1.4. By setting D = d and k = 3 in Proposition 2.1.3, we see that if (a, b, c) is a Smyth

triple, then Td is a “1-factor,” to borrow a term from (hyper)graph theory. That is, if one considers

the hypergraph H = (V,E) with V = [−n, n]3 and edges E = {(x, y, z) : ax+ by + cz = 0}, then Td

is a 1-regular subgraph of H, as each integer in [−n, n] appears in each of the x,y, and z positions

in Td exactly once.

2.2 The General Number Field Case

Recall that in any global field, the absolute value criteria are necessary conditions for being a Smyth

tuple [Smy86, Cor. 2]. We showed in Theorem 2.1.2 that these criteria are sufficient for being a

Smyth tuple over Fq(t), and Smyth conjectured the same over Q (Conjecture 1.1.3).

However, an example presented by David Speyer [Spe] in a MathOverflow post shows that

the absolute value criteria are not sufficient for being a Smyth tuple in a general number field. In

particular, the triple (1, 1, 1+
√
−15
2 ) satisfies the absolute value criteria, but is not a Smyth triple.

Note that this triple achieves equality in the archimedean absolute value inequalities.

Speyer showed in the same post that for triples of the form (1, 1, a3), if one amends the absolute

value criteria to be strict inequalities for the archimedean absolute values, then they become a

sufficient condition for being a Smyth triple. On the other hand, examples such as (2, 3,−5) show

that we cannot simply amend the archimedean absolute value criteria to be strict inequalities, as
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(2, 3,−5) trivially is a Smyth triple. Instead, if some analogue of Smyth’s Conjecture is true in

number fields, it must be a little more sensitive to the cases in which there is equality in one of the

archimedean absolute value criteria.

In order to formulate what we think the right conjecture is, we define the strong absolute value

criteria over a number field K as follows.

(1”) For any archimedean absolute value | · | of K, we have |ai| <
∑

j ̸=i |aj | for all i.

(2”) For any nonarchimedean absolute value | · | of K, we have |ai| ≤ maxj ̸=i |aj | for all i.

The strong absolute value criteria are obtained from the absolute value criteria by making the

archimedean inequalities strict.

We are now ready to formulate our generalization of Conjecture 1.1.3.

Conjecture 2.2.1 (Smyth’s Conjecture over Number Fields). Let K be a number field and OK

its ring of integers. Then (a1, . . . , ak) ∈ Ok
K is a Smyth tuple if and only if (a1, . . . , ak) satisfy the

strong absolute value criteria over K or there exist roots of unity ω1, . . . , ωk in some extension of

K such that
∑k

i=1 aiωi = 0.

Remark 2.2.2. The K = Q case of Conjecture 2.2.1 is equivalent to Conjecture 1.1.3.

We will show in Proposition 2.2.6 that Conjecture 2.2.1 correctly deals with the tuples in which

equality is achieved in one of the archimedean absolute value criteria. In particular, if (a1, . . . , ak)

is a tuple such that equality holds in one of the archimedean absolute value criteria, then any tuple

in a balanced multiset with respect to (a1, . . . , ak), if one exists, is a scalar multiple of a tuple of

roots of unity.

But first we need two lemmas, the first of which shows that the property of being a Smyth

tuple is preserved by multiplying the coordinates by (possibly different) roots of unity.

Lemma 2.2.3. Let K be a number field and OK its ring of integers. Let (a1, . . . , ak) ∈ Ok
K .

If ω1, . . . , ωk are roots of unity in some extension of K and (a1, . . . , ak) is a Smyth tuple, then

(ω1a1, . . . , ωkak) is a Smyth tuple in Ok
K(ω1,...,ωk)

.
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Proof. Without loss of generality we may assume that ω2 = · · · = ωk = 1, as we can make the

following argument about each coordinate in turn. Denote ω := ω1 and L := K(ω). Suppose that

ωr = 1.

Let {(xi1 , . . . , xik) ∈ Kk}ri=1 be a balanced multiset with respect to (a1, . . . , ak). Then⋃m−1
j=0 {(ωj−1xi1 , ω

jxi2 , . . . , ω
jxik) ∈ Lk}mi=1 is a balanced multiset with respect to (ωa1, a2, . . . , ak).

Remark 2.2.4. In particular, Lemma 2.2.3 shows that if there are roots of unity ω1, . . . , ωk such

that
∑k

i=1 aiωi = 0, then (a1, . . . , ak) is a Smyth tuple. Linear relations among roots of unity

are a well-studied topic, going back at least to the 1960s. There are several results constraining

the prevalence of such relations, indicating that such coefficients represent quite a small subset of

Smyth tuples. A survey of some of these results is given in [Zan95]. For instance, when a1, . . . , ak

are rational, a result of Mann [Man65] gives an explicit upper bound depending only on n for the

order of the roots of unity ωi occurring in a minimal relation
∑k

i=1 aiωi = 0. (Here minimality

means that no nonempty proper sub-sum vanishes, and that the equation is normalized so that

ω1 = 1.)

Lemma 2.2.5. Let K be a number field and OK its ring of integers. Let (a1, . . . , ak) ∈ Ok
K . Suppose

that there exists an archimedean absolute value | · |ν of K and some i for which |ai|ν =
∑

j ̸=i |aj |ν .

If there exists a balanced multiset with respect to (a1, . . . , ak), then there exists a balanced multiset

{(yi1, . . . , yik) ∈ Kk}mi=1 with respect to (a1, . . . , ak) whose coordinates yij all satisfy |yij |ν = 1.

Proof. Without loss of generality assume that |a1|ν =
∑

j>1 |aj |ν . Let S = {(xi1, . . . , xik) ∈ Kk}mi=1

be a balanced multiset with respect to (a1, . . . , ak). Let X = {xij : 1 ≤ i ≤ m, 1 ≤ j ≤ k} be the

set of all coordinates appearing in S. Write M = maxx∈X |x|ν . Any reference to “absolute value”

in this proof refers to | · |ν .

We claim that if a tuple in S has a coordinate of absolute valueM , then all coordinates of that

tuple have absolute value M . To see this, first suppose that |xi01| = M for some i0. Along with

the assumptions that
∑k

j=1 ajxi0j = 0 and |a1|ν =
∑

j>2 |aj |ν , this implies that |xi0j |ν =M for all



15

j = 1, . . . , n. What we’ve shown so far is that if the first coordinate in a tuple in S has absolute

value M , then all coordinates in that tuple do.

But S is balanced, which means that the multiset of first coordinates is the same as the

multiset of jth coordinates for every j = 1, 2, . . . , k. In particular, each of these multisets has the

same number of elements of absolute value M , with the same multiplicities. Therefore coordinates

of absolute value M can only occur in tuples whose first coordinate has absolute value M , and the

claim is proved.

Thus the tuples whose coordinates have absolute value M form a balanced sub-multiset of S,

and dividing all of these coordinates by an element of K of absolute valueM , we obtain the desired

balanced multiset.

Proposition 2.2.6. Let K be a number field and OK its ring of integers. Let (a1, . . . , ak) ∈ Ok
K .

Suppose that there exists an archimedean absolute value | · |ν of K and some i for which |ai|ν =∑
j ̸=i |aj |ν . Then (a1, . . . , ak) is a Smyth tuple if and only if there exist roots of unity ω1, . . . , ωk

(not necessarily in K) such that
∑k

i=1 aiωi = 0.

Proof. (⇐): By assumption, (ω1a1, . . . , ωkak) is a Smyth tuple. The result now follows from Lemma

2.2.3.

(⇒): Let ϕ : K ↪→ C be an embedding corresponding to the archimedean absolute value | · |ν

and let ψ : Q ↪→ C be an embedding of the algebraic closure of Q which extends ϕ. We will write

| · | for the standard absolute value of complex numbers. Without loss of generality assume that

|ϕ(a1)| =
∑

j>1 |ϕ(aj)|.

By Lemma 2.2.5, there exists a balanced multiset S = {(xi1, . . . , xik) ∈ Kk}ki=1 with respect

to (a1, . . . , ak) such that all |xij |ν = 1. By definition of balanced multiset, we have

k∑
j=1

ajxij = 0. (2.2.1)

Now (2.2.1) along with |ϕ(a1)| =
∑

j>1 |ϕ(aj)| and the assumption that |ϕ(xij)| = 1 implies
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that

arg ϕ(ajxij) = π + arg ϕ(a1xi1)(mod 2π), for all i, j with j > 1. (2.2.2)

In words, (2.2.2) is saying that given a fixed i, the ϕ(ajxij) all “point in the same direction”

for j > 1, and ϕ(a1xi1) “points in the opposite direction.”

The rest of the argument is most easily expressed in polar coordinates. For all j, let ϕ(aj) = rjθj

where rj ∈ R≥0 and |θj | = 1. Fix any i0 ∈ {1, 2, ..,m} and any j ∈ {2, . . . , k}. Then by (2.2.2) and

the fact that all |ϕ(xij)| = 1, we have ϕ(xi0j) = − θ1
θj
ϕ(xi01).

By balancedness, there is some i1 so that xi11 = xi0j , so repeating the above argument, we

get ϕ(xi1j) = − θ1
θj
ϕ(xi11) = − θ1

θj
ϕ(xi0j) = (− θ1

θj
)2ϕ(xi01). Iterating, this argument shows that

(− θ1
θj
)mϕ(xi01) ∈ {ϕ(x) : x ∈ X} for all m ∈ Z, implying that − θ1

θj
is a root of unity.

Now let ω1 = 1 and ωj = − θ1
θj

for j > 1. Dividing the equation (2.2.1) with i = i0 by xi01

and applying ϕ to both sides, we have
∑k

i=1 ϕ(ai)ωi = 0. Finally, letting ρi = ψ−1(ωi), we see that

ψ(
∑k

i=1 aiρi) =
∑k

i=1 ϕ(ai)ωi = 0, and hence
∑k

i=1 aiρi = 0.

The above work, along with the known necessity of the absolute value criteria, reduces Con-

jecture 2.2.1 to the following.

Conjecture 2.2.7. Let K be a number field and OK its ring of integers. If (a1, . . . , ak) ∈ Ok
K

satisfies the strong absolute value criteria, then (a1, . . . , ak) is a Smyth tuple.

Speyer [Spe] gives a proof of Conjecture 2.2.7 in the case where k = 3 and a1 = a2.

Speyer’s argument works for general k and a1 = · · · = ak−1 with minimal modification; this

result is our final proposition of the section.

Proposition 2.2.8. Let k ≥ 3 be an integer. Let K be a number field and OK its ring of integers.

Let α ∈ OK so that every archimedean absolute value of α is less than k−1. Then (1, 1, . . . , 1, α) ∈

Ok
K is a Smyth tuple.

Proof. By Lemma 2.2.3, it suffices to show (1, 1, . . . , 1,−α) is a Smyth tuple. By Proposition 1.2.1,
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it suffices for us to show that there are permutation matrices Xi so that
∑k−1

i=1 Xi has α as an

eigenvalue.

We will follow the argument from [Spe], starting with a slight generalization of Speyer’s Step

1, which we write out in full for the sake of clarity.

Step 1: There is a nonnegative integer matrix C, with eigenvalue α, all of whose row sums are

k − 1.

Consider the lattice A = Z[α] and the vector space V = A ⊗Z R. Since α is an algebraic

integer, A is a discrete full sublattice of V . We take the norm
∑

ν |x|2ν , where the sum runs over all

archimedean places. Let c = maxν |α|ν . By hypothesis, c < k− 1. Denote by BR the closed ball of

radius R around 0.

Let M be large enough so that any ball of radius M around any point in V contains a point in

A. Take R large enough so that c
k−1R+ (k− 2)M < R. Now, for any z ∈ A∩BR, let z1 ∈ A∩BR

be the closest point to αz
k−1 . Let z2 = αz − (k − 2)z1. Now,

|z1| ≤ |z1 −
αz

k − 1
|+ | αz

k − 1
| ≤M +

c

k − 1
R < R.

Similarly,

|z2| = |αz − (k − 2)z1| ≤ |αz − k − 2

k − 1
αz|+ (k − 2)| αz

k − 1
− z1| ≤

c

k − 1
R+ (k − 2)M < R.

Thus, for any z ∈ A ∩BR, we can find z1, z2 ∈ A ∩BR so that (k − 2)z1 + z2 = z. Enumerate the

elements of A∩BR as z1, z2, . . . , zl. Then, we can form an l× l matrix C with the following entries.

For the t-th row, consider zt. As before, we may write (k − 2)zr + zs = zt for some 1 ≤ r, s ≤ l. In

the t-th row, put k − 2 in the r-th column and 1 in the s-th column if r ̸= s; if r = s, put an k − 1

in the rth column. Every row sum of the matrix C is equal to k − 1. By construction, it has α as

an eigenvalue with right eigenvector (z1, z2, . . . , zl)
T .

The rest of Speyer’s argument can now be applied with virtually no modification; using the

Perron-Frobenius theorem, one obtains a matrix D from C which is the sum of k − 1 permutation



18

matrices and still has α as an eigenvalue.
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Chapter 3

The Slice Rank Approach to Smyth’s

Conjecture: Stochastic Patterns and

Strassen’s Asymptotic Spectrum

This chapter connects Smyth’s Conjecture for triples to recent work in additive combinatorics

around slice rank and less recent work from multi-linear algebra concerning asymptotic spectra.

The first section of this chapter introduces preliminaries about tensors, the main objects of focus

in this chapter. Next we introduce stochastic tensors/patterns and describe how they relate to

balanced tensors. We then introduce the notions of asymptotic spectra and Strassen’s support

functionals, and explain how work in these areas provide a path towards proving Smyth’s Con-

jecture via asymptotic slice rank. In particular, Smyth’s Conjecture would follow from certain

“Smyth tensors” having full asymptotic slice rank. (Along the way, we discuss matrix multipli-

cation algorithms, which were the original motivation for Strassen’s work.) Once this context is

set, we are ready to prove the main result of this chapter, Theorem 3.4.4, which says that Smyth

tensors have full slice rank. We go on to discuss the obstacle to extending our argument about slice

rank to asymptotic slice rank. Finally, we conclude the section by presenting a computer-verified

counterexample to an old conjecture of Brualdi and Csima regarding stochastic patterns.
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3.1 Tensor Preliminaries

This chapter will focus on real 3-tensors T ∈ V1 ⊗ V2 ⊗ V3, where V1 = V2 = V3 = Rm for some

m. We will write Ten(m,m,m) for the set of such tensors. Due to the combinatorial nature

of this chapter, much of the section will treat these tensors as 3-d arrays of real numbers, with

the basis for each tensor leg being the standard basis. That is, when we refer to the “entries”

of a tensor, or otherwise are presuming certain bases, we are (implicitly or explicitly) expanding

T =
∑m

i,j,k=1 tijkei ⊗ ej ⊗ ek, and identifying T with the 3-d array of coefficients [tijk]
m
i,j,k=1. The

support of T is supp(T ) = {(i, j, k) : tijk ̸= 0}.

This chapter will at times be concerned with tensor powers, by which we mean the following.

A tensor T ∈ V1 ⊗ V2 ⊗ V3, can be thought of as a multilinear map T : V1 × V2 × V3 → R. The

dth tensor power T⊗d of T corresponds to the multilinear map T⊗d : V ⊗d
1 × V ⊗d

2 × V ⊗d
3 → R given

by (x1 ⊗ · · · ⊗ xd, y1 ⊗ · · · ⊗ yd, z1 ⊗ · · · ⊗ zd) 7→
∏d

i=1 T (xi, yi, zi). Thus the coefficients of T⊗d

with respect to the standard bases are all d-fold products of the corresponding coefficients of T ,

the support supp(T⊗d) is the d-fold Cartesian product supp(T )× · · · × supp(T ).

We will use the notation ⟨n, n, n⟩ to refer to the 0-1 diagonal n×n×n tensor,
∑d

i=1 ei⊗ei⊗ei.

3.2 Stochastic Patterns

Recall that by Proposition 1.3.3, Smyth’s Conjecture (for triples) is equivalent to: for each potential

Smyth triple (a, b, c), there exists a nonnegative real balanced tensor with support contained in

{(x, y, z) ∈ Z3 : ax + by + cz = 0}. Let us fix a potential Smyth triple (a, b, c) and as before, set

n = abc, andN = 2n+1. Let S = [−n, n], Φabc = {(x, y, z) ∈ S3 : ax+by+cz = 0}, and write Tabc ∈

(RN )⊗3 for the 0-1 tensor with support supp(Tabc) = Φabc; that is, Tabc =
∑

(i,j,k)∈Φabc
(ei⊗ej ⊗ek).

A nonnegative 3-tensor T =
∑
tijkei ⊗ ej ⊗ ek is said to be stochastic if its plane sums are all

1, i.e. if for every fixed k,
∑

i,j tijk = 1, and similarly
∑

j,k tijk = 1 and
∑

i,k tijk = 1 for any fixed i

and j respectively. A pattern in our context is any subset of S3, and a pattern is stochastic if there

exists a tensor which is stochastic and has support contained in the pattern. Similarly, we will say
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a pattern is balanced if there exists a balanced tensor with support contained in the pattern.

Let ∆ = {(s, s, s) : s ∈ S} denote the main diagonal of S3; we will say a pattern P is non-

diagonally stochastic if there exists a stochastic tensor T whose support is contained in P , but is

not equal to ∆.

To prove Smyth’s Conjecture, it would certainly be sufficient to show that Φabc is a stochas-

tic pattern; the following proposition explains more precisely the relationship between balanced

patterns and stochastic patterns.

Proposition 3.2.1. Let P ⊂ S3 be a pattern. P is balanced if and only if P ∪∆ is non-diagonally

stochastic.

Proof. (⇒): Suppose that P is balanced; let T be a balanced tensor with support contained in P .

Then the plane sums of T form the same vector v = {vi}i∈S in each direction. Let m = maxi∈S vi;

then the scaled tensor 1
mT is balanced and has plane sums between 0 and 1. For each i ∈ S, let

di = 1 − vi. Adding di to the ith diagonal entry of 1
mT yields a stochastic tensor, which is not

diagonal since balanced tensors are by definition nonzero.

(⇐): If T is a non-diagonal stochastic tensor with support contained in P , then setting the

entries of T along ∆ equal to 0 yields a tensor which is still balanced, and now has support contained

in P .

This proposition has utility for algorithmic approaches to Smyth’s Conjecture. There is some

work on algorithms [Bur+18] for finding stochastic tensors with a given support (or support con-

tained in a certain set) and this proposition means one can extend these algorithms to look for

balanced tensors by first adding the diagonal to the input tensor’s support, running the algorithm,

and then zeroing out the diagonal. If the algorithm found a non-diagonal stochastic tensor, the

end result will be a nonzero balanced tensor with appropriate support.

At first glance, Proposition 3.2.1 gives the impression that we can dispose of balanced tensors

and instead pursue an equivalent problem involving the better-studied stochastic tensors. However,

this is not quite the approach we will take. We will turn our attention to stochastic tensors, but our
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specific approach – which will eventually be studying the asymptotic slice rank of Smyth tensors

– will discourage enlarging the support of Smyth tensors. So, over the course of the rest of this

chapter, we will end up trying, and failing, to show that the Smyth pattern itself is stochastic.

3.3 Strassen’s Asymptotic Spectrum

This section builds towards Corollary 3.3.4, which gives a criterion for certain patterns – including

Smyth patterns – to be stochastic. We arrive at this result via the theory of asymptotic spectra

developed principally by Volker Strassen starting in the 1980s. To set the scene, we begin by

discussing his initial motivation.

3.3.1 Matrix Multiplication Algorithms

The problem of finding the fastest algorithms for matrix multiplication has been of great interest for

a long time, particularly recently with the increasingly widespread deployment of machine learning

algorithms built out of matrix multiplications. The definitional algorithm requires n3 arithmetic

operations to multiply two n × n matrices, but Volker Strassen showed in 1969 that one can

multiply 2 × 2 matrices using only 7 arithmetic operations [Str69]. (The algorithm appears quite

unilluminating and has largely resisted attempts to extract meaning, although recently Grochow

and Moore gave a convincing conceptual justification for the existence of a 7-operation algorithm

[GM17]. I am not aware, however, of any illumination of why Strassen’s 7 operations in particular

work.) This improvement in the 2 × 2 case automatically extends to general n × n matrices, by

treating an n× n matrix as a 2× 2 block matrix.

The exponent of matrix multiplication ω is defined to be the minimum real number such

that the multiplication of n × n matrices can be done in O(nω+o(1)) arithmetic operations. The

definitional algorithm means that ω ≤ 3. Strassen’s algorithm proved that ω ≤ log2 7 = 2.807....

The tightest bounds currently known are 2 ≤ ω ≤ 2.37286. (The lower bound is simply due to the

algorithm outputting n2 entries.)
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The multiplication of m × n and n × p matrices is a bilinear map between vector spaces

Rm×n × Rn×p → Rm×p, and hence is represented by a single tensor ⟨m,n, p⟩ with respect to the

standard bases. It has been shown that ω can alternatively be defined as ω = {inf β : R(⟨n, n, n⟩) =

O(nβ)}. Thus the asymptotic complexity of matrix multiplication is controlled by the tensor ranks

of the tensors ⟨n, n, n⟩.

In his Ph.D. thesis, Garterberg generalized the notion of the exponent of matrix multiplica-

tion as follows. [Gar85] Noting that the dth tensor power ⟨n, n, n⟩⊗d = ⟨nd, nd, nd⟩, one can define

the asymptotic (tensor) rank of a tensor T as R
˜
(T ) = limd→∞(R(T⊗d)1/d; this limit is guaran-

teed to exist. Thus ω = logn(R
˜
(⟨n, n, n⟩)), for any integer n > 1, and the complexity of matrix

multiplication is determined by the asymptotic rank of a single tensor ⟨2, 2, 2⟩.

3.3.2 The Asymptotic Restriction Problem

Strassen, motivated to understand the complexity of matrix multiplication, began to study the

asymptotic restriction problem, which is as follows.

Given multilinear maps f, g : Rn1 × Rn2 × Rn3 → R, one says that f restricts to g (written

f ≥ g) if there are linear maps (r1, r2, r3) such that g = f ◦ (r1, r2, r3). Moreover, f asymptotically

restricts to g (written f ≳ g) if there exists a sequence of natural numbers ad ∈ o(d) such that

f⊗d+ad ≥ g⊗d. The asymptotic restriction problem asks, given f and g, whether f ≳ g.

One way to prove a negative answer to this question would be to identify a family of tensors

X containing f and g and produce a map ϕ : X → R≥0 such that ϕ(f) < ϕ(g), and such that ϕ

also has the following general properties.

1. monotone under restriction ≥

2. multiplicative under tensor product ⊗

3. additive under direct sum ⊕

Note that by Property 2, ϕ(f⊗d) < ϕ(g⊗d) for any d; and for large enough d depending on ad,

ϕ(f⊗d+ad) < ϕ(g⊗d). By Property 1, it follows that f does not asymptotically restrict to g.
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Strassen called such maps ϕ spectral points. He normalized them by assuming additionally

that ϕ(⟨n⟩) = n. He then showed that, remarkably, spectral points are the only obstacles to f ≳ g.

[Str88] In particular, one can study the asymptotic restriction problem for all pairs of maps f, g ∈

X by determining the spectral points ϕ of X . Then, given particular f and g, one compares each

of the spectral points evaluated at f and g. If ϕ(f) ≥ ϕ(g) for all spectral point ϕ, then f ≳ g;

otherwise f does not asymptotically restrict to g.

It has since been of great interest to construct spectral points for interesting families of tensors.

Strassen himself constructed “support functionals” which are spectral points for the family of

oblique tensors. (As the name suggests, support functionals depend only on the support of the

tensors.) We’ll define oblique tensors a little later; for now, suffice it to say that Smyth tensors are

oblique.

More recently, Cristandl, Vrana, and Zuiddam constrcuted the first nontrivial spectral points

for the family of all complex tensors (“universal spectral points”) [CVZ18]. They also used

Strassen’s support functionals to prove a formula for the asymptotic slice rank of tight tensors,

a refinement of oblique tensors. It is this result that directly applies to our situation, so we will

now introduce the relevant notions – slice rank, oblique tensors, and tight tensors.

3.3.3 Introduction to Slice Rank and Asymptotic Slice Rank

Our main attempt to prove Smyth’s Conjecture interrogates the slice rank of the Smyth tensors

and their tensor powers. The notion of slice rank arose from Tao’s reformulation [Tao16] of the

work of Croot, Lev, Pach, Ellenberg, and Gijswijt that resolved the cap set conjecture. [EG17]

[CLP17]

A tensor T : V1 ⊗ . . . ⊗ Vk → R has slice rank one if it can be written as T (x1, . . . , xk) =

f(xi)g(x1, . . . xi−1, xi+1, . . . xk) for some index i and some functions f and g.

More generally, the slice rank of T is the minimal r such that T can be written as the sum

of r slice-rank-one tensors (note that the index i in the above form does not have to be the same

for each slice-rank-one tensor in the decomposition; if it did, the definition would reduce to the
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minimum matrix rank of the “flattenings” of T ). Slice rank has the following notable properties.

• Slice rank is in invariant under the action of
∏k

i=1GL(Vi).

• Slice rank is a generalization of the ordinary notion of rank of matrices. That is, the slice

rank of a 2-tensor is its rank as a matrix.

• Given T ∈ Ten(n1, . . . , nk), we have SR(T ) ≤ mini ni, as can be seen for each i by flattening

T along its ith coordinate.

• The slice rank of a “diagonal tensor” equals its number of nonzero entries. That is, given

T =
∑n

i=1 ciei ⊗ . . . ei ∈ Ten(n, . . . , n), we have SR(T ) = #{i : ci ̸= 0}. [Tao16]

This last bullet point was key in Tao’s reformulated proof of the cap set conjecture. We are

going to make use of a generalization of this result, which was jointly proved by Tao and Sawin

(we will only state it in the generality we need).

Proposition 3.3.1. [TS16, Prop. 4] For each 1 ≤ j ≤ 3, let (vj,s)s∈S be a linearly independent

subset of Vj = Rd indexed by some finite subset Sj. Let Γ be a nonempty subset of S1 × S2 × S3.

Suppose further that there are total orderings ≤i on Si such that Γ is an anti-chain (i.e. every

element of Γ is maximal).

Let v =
∑

(s1,s2,s3)∈Γ cs1,s2,s3v1,s1 ⊗ v2,s2 ⊗ v3,s3, where the coefficients cs1,s2,s3 are nonzero and

lie in R.

Then we have

SR(v) = min
Γ=Γ1⊔Γ2⊔Γ3

|π1(Γ)|+ |π2(Γ)|+ |π3(Γ)|,

where the minimum ranges over all coverings of Γ by sets Γ1′ ,Γ2′ ,Γ3′ and πi : S1 × S2 × S3 → Si

are the projection maps.

A tensor T is said to be oblique if its support is an anti-chain in the sense described in

the statement of Proposition 3.3.1. Thus Proposition 3.3.1 is saying that given a tensor T ∈
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Ten(n, n, n) which is oblique, computing the slice-rank of T is equivalent to the combinatorial

problem of determining the size of the minimum covering of the support of T by axis-parallel

“slices.” Note that in particular, for oblique tensors, slice-rank depends only on the tensor’s support.

Hence we can refer to the slice rank of a tensor’s support, when it is oblique, without ambiguity.

Moreover, a 3-tensor T ∈ Ten(I1, I2, I3) is tight if there are injective functions ui : Ii → R such

that
∑3

i=1 ui(αi) = 0 for all α = (α1, α2, α3) ∈ supp(T ). By definition, Smyth tensors Tabc, and

their tensor powers, are tight.

We can see that tight tensors are oblique as follows.

Proposition 3.3.2. Tight tensors are oblique.

Proof. Let T be a tight k-tensor indexed by I1 × · · · × Ik. Let u1, . . . , uk be the corresponding

injective maps. For each i, let ≤i be the ordering determined by pulling back the real ordering

along ui, i.e. for x, y ∈ Ii x ≤i y ⇐⇒ ui(x) ≤ ui(y).

Now if α = (α1, . . . αk) and β = (β1, . . . , βk) ∈ supp(T ) with αi ≤i βi for all i, then also∑k
i=1 ui(αi) = 0 =

∑k
i=1 ui(βi). Therefore each inequality ui(αi) ≤ ui(βi) must be an equality and

since the maps are injective, it follows that α = β.

The previous two propositions show that computing the slice rank of tensor powers T⊗d
abc of

Smyth tensors is equivalent to the combinatorial problem of determining the size of the minimum

covering of the support of T⊗d by axis-parallel slices. We will now see how this relates to the

question of whether or not the Smyth support Φabc is stochastic.

First, we need a little more terminology/notation. We will write I1, I2, I3 for the index sets of

our tensor legs. Given a subset Φ ⊂ I1 × I2 × I3, we’ll write P(Φ) denote the set of all probability

distributions supported on Φ. We will also need the notion of entropy of a probability distribution

P . Entropy can be thought of as a measure of the expected information gain of observing a sample

from P . When P is a discrete random variable on a set X, the entropy of P is given by the formula

H(P ) = −
∑
x∈X

P (x) log2(x)
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In this context, log2 0 is understood to be 0.

The following theorem gives a formula relating entropy of probability distributions supported

on Φ to asymptotic slice rank, written SR
˜
. Recall that in the case of tight/oblique tensors, slice

rank depend only on the support Φ.

Theorem 3.3.3. [CVZ18, Thm 4.4, Cor 5.10] Let Φ ⊂ I1 × I2 × I3 be tight. We will write Pi to

denote the ith marginal of a probability distribution P .

Then

SR
˜
(Φ) = max

P∈P(Φ)
min{2H(P1), 2H(P2), 2H(P3)}

Corollary 3.3.4. A tight pattern Φ ⊂ S3 is stochastic if and only if SR
˜
(Φ) = N .

Proof. This follows from some basic properties of entropy, namely that H : P(N) → R achieves

its unique maximum, which is log2(N), on the uniform distribution. Therefore, given a pattern

Φ ⊂ S3,

Φ is stochastic ⇐⇒ ∃P ∈ P(Φ) : H(Pi) = log2(N) for all i

⇐⇒ N = max
P∈P(Φ)

min{2H(P1), 2H(P2), 2H(P3)}.

By Theorem 3.3.3, this latter quantity equals SR
˜
(Φ) if Φ is additionally tight.

To recap: since Smyth patterns Φabc are tight, proving that they are stochastic is equivalent

to proving that Tabc has full asymptotic slice rank, which is equivalent to proving that one needs

to use 100% of the slices {x = s : s ∈ Sd}∪ {y = s : s ∈ Sd}∪ {z = s : s ∈ Sd} to cover the support

of T⊗d
abc as d→ ∞.
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3.4 Smyth Tensors Have Full Slice Rank

The purpose of this section is to prove Theorem 3.4.4, but first, we need a couple of lemmas. In

this section we will make use of the following notation. Given two finite sets A,B, we will write

dBA to mean |A∩B|
|B| , i.e. the density of A in B. Once B has been made clear in a certain context we

may omit it from subsequent occurrences of the notation.

Lemma 3.4.1. [TV06] Let A,B ⊂ Z. Then |A+B| ≥ |A|+ |B| − 1

Proof. This is a fundamental result in additive combinatorics with a short proof:

Order the elements of each set A = {a1, . . . , ar} and B = {b1, . . . bs} under the standard real

ordering ≤. Then a1 + b1 < a2 + b1 < · · · < ar + b1 < ar + b2 < ar + b3 < · · · < ar + bs are r+ s− 1

distinct elements of A+B.

Lemma 3.4.2. Let P,Q be arithmetic progressions in Z with the same step size, and let R ⊂ (P+Q)

such that |R| > max(|P |, |Q|). Then for any subsets A ⊂ P,B ⊂ Q, we have dRA+B ≥ dPA + dQB − 1.

(Furthermore, equality holds if and only if A = P and B = Q.)

Proof. We have that

|(A+B) ∩R| ≥ |A+B| − |(P +Q) \R|, since (A+B) ⊂ (P +Q)

= |A+B| − (|P +Q| − |R|), since R ⊂ (P +Q)

≥ |A|+ |B| − 1− (|P +Q|) + |R|, by Lemma 3.4.1

= |A|+ |B| − 1− (|P |+ |Q| − 1) + |R|, since P,Q are APs with the same step size

= |A|+ |B| − |P | − |Q|+ |R|

Therefore,

dRA+B =
|(A+B) ∩R|

|R|
≥ |A|+ |B|+ |R| − |P | − |Q|

|R|

= 1 +
|A|+ |B| − |P | − |Q|

|R|
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So it will suffice to show that

|A|
|P |

+
|B|
|Q|

− |A|+ |B| − |P | − |Q|
|R|

≤ 2

Indeed, viewing P,Q, and R as fixed, the quantity on the LHS is increasing in both |A| and |B|

over their whole mutual domain, and hence is maximized when A = P and B = Q, at which point

we have equality.

Thus we have shown the desired inequality. We have also shown that equality can only hold if

A = P and B = Q. It is straightforward to see that equality does in fact hold in this case.

Lemma 3.4.3. For any subsets X,Y ⊂ S, the quantity dcSaX+bY − dSX − dSY is a weighted average

of the quantities d
(cS)bj;ai;
aXi+bYj

− d
S;i;

Xi
− d

Sj;;

Yj
as i, j range over [b] and [a] respectively.

Proof. For each i ∈ [b], j ∈ [a], let wji := dSSj;i;
(these will be the weights in the weighted average).

Thus wji =


N+ab−1

Nab , i = j = 0

N−1
Nab , otherwise.

Note that the wji satisfy the following properties.

• wji = wbj ai for all i ∈ [b], j ∈ [a].

• wji = dcS(cS)j;i; for all i ∈ [b], j ∈ [a].

• For any fixed j ∈ [a],
∑

i∈[b]wji = dSSj;;
, and for any fixed i ∈ [b],

∑
j∈[a]wji = dSS;i;

.
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Putting these properties together with definitions, we see that

dcSaX+bY − dSX − dSY =
|(aX + bY ) ∩ cS|

|cS|
− |X|

|S|
− |Y |

|S|

=
∑

i∈[b],j∈[a]

( |(aXi + bYj) ∩ cS|
|cS|

− |Xi|
a|S|

− |Yj |
b|S|

)
=

∑
i∈[b],j∈[a]

|Sj;i;|
|S|

|(aXi + bYj) ∩ (cS)bj;ai;| − 1
a |Xi| − 1

b |Yj |
|Sj;i;|

=
∑

i∈[b],j∈[a]

wji

( |(aXi + bYj) ∩ (cS)bj;ai;|
|(cS)bj;ai;|

− |Xi|
a|Sj;i|

− |Yj |
b|Sj;i|

)
=

∑
i∈[b],j∈[a]

wji

( |(aXi + bYj) ∩ (cS)bj;ai;|
|(cS)bj;ai;|

− |Xi|
|S;i;|

− |Yj |
|Sj;;|

)
=

∑
i∈[b],j∈[a]

wji

(
d
(cS)bj;ai;
aXi+bYj

− d
S;i;

Xi
− d

Sj;;

Yj

)

To verify the second-last line, we compute the coefficient of |Xi| in the second-last line. This

coefficient is

−
∑
j∈[a]

wji

|S;i;|
= −

∑
j∈[a]

−|Sj;i;|
|S||S;i;|

= − 1

|S|
.

This matches the coefficient of |Xi| in the previous line. A similar argument shows that the

coefficient of |Yj | in the second- and third-last lines match too. This completes the proof of the

lemma.

We are now ready to prove the main theorem of this section. The reader is invited to refer to

the example following the proof for concreteness.

Theorem 3.4.4. If (a, b, c) be a potential Smyth triple then SR(Tabc) = N .

Proof. First recall from Proposition 3.3.2 that Smyth tensors are oblique, and so Proposition 3.3.1

applies.
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By Proposition 3.3.1, SR(T ) = N is equivalent to the following: given any subsets X,Y, Z ⊂ S

such that 0 /∈ aX + bY + cZ, we have

|X|+ |Y |+ |Z| ≤ 2N, or equivalently, that

dSX + dSY + dSZ ≤ 2.

And this in turn is equivalent to showing that for any subsets X,Y ⊂ S we have

d cS
aX+bY ≥ dSX + dSY − 1.

For each i ∈ [b], let Xi = {x ∈ X : x ≡ i (mod b)}, and similarly for each j ∈ [a], let

Yj = {y ∈ Y : y ≡ j (mod a)}. We will decompose aX + bY into mod-ab residue classes; this

decomposition can be written as the disjoint union

aX + bY = ⊔i∈[b],j∈[a](aXi + bYj).

We now fix i ∈ [b] and j ∈ [a]. In what follows we will write Si;j;k to denote elements of S

congruent to i mod a, j mod b, and k mod c. When we only wish to specify one or two residue

values, we will leave empty spaces for i, j or k, but will still write the semi-colons (e.g. S;j; denotes

the subset of elements congruent to j mod b). Notice that the elements of aXi+ bYj are congruent

to ai mod b and bj mod a. Thus (aXi + bYj) ∩ (cS)i′;j′; can be nonempty only if i′ ≡ bj (mod a)

and j′ ≡ ai (mod b).

By Lemma 3.4.3, it will suffice to show that

d
(cS)bj;ai;
aXi+bYj

− d
S;i;

Xi
− d

Sj;;

Yj
≥ −1.

Towards showing this, we will now consider each set modulo c. First, let f : [c] → [c] denote

the bijection such that ak + bf(k) ≡ 0 (mod c) for all k ∈ [c].
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For each r ∈ [c], let Xik = {x ∈ Xi : x ≡ k (mod c)}, and similarly Yjk = {y ∈ Yj : y ≡

k (mod c)}. Now fix a k for which d
S;i;k

Xik
+ d

Sj;;f(k)

Yjf(k)
is maximal among all k ∈ [c]. Notice that it

follows that d
S;i;k

Xik
+d

Sj;;f(k)

Yjf(k)
≥ d

S;i;

Xi
+d

Sj;;

Yj
, since d

S;i;

Xi
+d

Sj;;

Yj
is a weighted average of d

S;i;r

Xir
+d

Sj;;f(r)

Yjf(r)
over

all r ∈ [c]. (The weights are nearly uniform, but the 0 residue class is slightly over-represented.)

Our proof is to show the following.

d
(cS)bj;ai;
aXi+bYj

≥ d
(cS)bj;ai;
aXik+bYjk

≥ d
S;i;k

Xik
+ d

Sj;;f(k)

Yjf(k)
− 1

≥ d
S;i;

Xi
+ d

Sj;;

Yj
− 1

The last line holds by choice of k, as just described; and the first line is clear since Xik ⊂ Xi and

Yjf(k) ⊂ Yj .

To complete the proof, we will explain how the middle line follows from Lemma 3.4.2, with

A = aXik, B = bYjf(k), P = aS;i;k, Q = bSj;;f(k), and R = (cS)bj;ai;.

We just need to confirm that the hypotheses of the lemma are satisfied. The sets aS;i;k and

bSj;;k are each arithmetic progressions with step size abc. The set containments aXik ⊂ aS;i;k and

bYjf(k) ⊂ bSj;;f(k) are by definition.

Additionally,

|(cS)bj;ai;| =


2n
ab , if bj ̸= 0 (mod a) or ai ̸= 0 (mod b)

2n
ab + 1, else

The cardinalities |aS;i;k| and |bSj;;f(k)| are computed similarly. Now notice that 2n
ab = 2c > 2b+1 =

2n
ac + 1, thus showing that |(cS)bj;ai;| > max(|aS;i;k|, |bSj;;f(k)|).

It remains to establish that (cS)bj;ai ⊂ aS;i;k + bSj;;f(k). This is where the Archimedean

absolute value criterion (triangle inequality) is required. First, observe that both sets (cS)bj;ai and

aS;i;k + bSj;;f(k) are arithmetic progressions with step size abc. Additionally, every element of both

sets is congruent to bj mod a; ai mod b; and 0 mod c. So we just need to show that the maximum
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and minimum of aS;i;k+bSj;;f(k) are more extreme than those of (cS)bj;ai;. First notice that we have

maxS;i;k ≥ n−bc+1, and similarly, maxSj;;k ≥ n−ac+1. Next, observe that the maximum element

of (cS)bj;ai; lies in the range [(c − 1)n + 1, cn] (recalling that n = abc). So in order to show that

max(aS;i;k + bSj;;f(k)) ≥ max(cS)bj;ai;, it will suffice to show that max aS;i;k + bSj;;f(k) > (c− 1)n,

since the two progressions occupy the same mod-n residue class. Indeed,

max(aS;i;k + bSj;;f(k)) ≥ a(n− bc+ 1) + b(n− ac+ 1)

= (a+ b)n− 2abc+ a+ b

= (a+ b− 2)n+ a+ b

≥ (c− 1)n+ a+ b

> (c− 1)n

An analogous argument shows that min aS;i;k + bSj;;f(k) ≤ min(cS)bj;ai;.

Before proceeding to discuss the obstacle to extending this argument to higher dimensions, we

walk through an example to make things more concrete.

Example 3.4.5. Consider the Smyth triple (a, b, c) = (3, 4, 5). Then n = 3 · 4 · 5 = 60 and S =

[−60, 60]. Let i = j = 1. The sets X1 = {−59,−55, . . . ,−3, 1, 5, . . . , 57} and Y1 = {−59,−56, . . . ,−2, 1, 4, . . . , 58}.

All elements of 3X1 + 4Y1 are congruent to 3 mod 4, and 1 mod 3. Let k = 2. Then f(k) =

1, as 3 · 2 + 1 · 4 = 0 (mod 5). We now have X1 2 = {−43,−23,−3, 17, 37, 57} and Y1 1 =

{−59,−44,−29,−14, 1, 16, 31, 46}. The sumset 3X1 2 +4Y1 1 = {−365,−305, . . . , 295, 355}. Mean-

while, (cS)bj;ai; = (5S)1;3; = {−245,−185, . . . , 235, 295}.

3.5 The Obstacle to Full Asymptotic Slice Rank

The problem of showing that a Smyth tensor power T⊗d has full slice-rank for d ≥ 2 (which may

not be necessary, as we only need to show T has full asymptotic slice rank) is in many ways

similar to showing full slice rank for T itself. The tensor T⊗d is indexed by S3d, with support
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{(x, y, z) : x, y, z ∈ Sd and ax+ by + cz = 0}.

Nearly everything from Section 3.4 holds in an analogous way. The support of T⊗d is still

tight and oblique, and so the slice rank problem connects to sumsets in the same way. And we

can similarly decompose subsets X,Y ⊂ Sd into mod-ab residue classes (in this case, there are

(ab)d of them), and then into mod-c residue classes. It again would be sufficient to show that

d
(cS)bj;ai;
aXik+bYjk

≥ d
S;i;k

Xik
+ d

Sj;;f(k)

Yjf(k)
− 1, for a k chosen in the same way as in the one-dimensional case.

However, this bound is not true in general, as we’ll now see.

The obstacle lies in establishing a higher-dimensional analogue of Lemma 3.4.2. This lemma

was written in a general fashion, but we can be a little more specific about our situation. Recall

that P = aS;i;k, Q = bSj;;f(k), and R = (cS)bj;ai; were each arithmetic progression is of step size

n = abc. Notice that P has exactly one element p∗ in the interval [−n
2 ,

n
2 ); and similarly Q has one

element q∗ ∈ (−n
2 ,

n
2 ]. Let r∗ := p∗ + q∗ ∈ (−n, n); by construction, r∗ ∈ R. Now translating and

dilating the sets P,Q,R by P̃ = 1
n(P − p∗), Q̃ = 1

n(Q− q∗), R̃ = 1
n(R− r∗), we get that

P̃ =


[−a, a− 1], if p∗ > 0

[−(a− 1), a] if p∗ < 0

[−a, a], if p∗ = 0

Q̃ =


[−b, b− 1], if q∗ > 0

[−(b− 1), b] if q∗ < 0

[−b, b], if q∗ = 0

R̃ =


[−c, c− 1], if r∗ > 0

[−(c− 1), c] if r∗ < 0

[−c, c], if r∗ = 0

.

These transformations are sum-preserving in the sense that p+ q = r ⇐⇒ p̃+ q̃ = r̃, where .̃

represents the image of each element under their respective translation/dilation.

Example 3.5.1. We continue from Example 3.4.5. Given (a, b, c) and X12, Y11, and (5S)1;3; as be-

fore, we have P = 3X12 = {−129,−69,−9, 51, 111, 171}, Q = 4Y11 = {−236,−176,−116,−56, 4, 64, 124, 184},

and R = (5S)1;3; = {−245,−185,−125,−65,−5, 55, 115, 175, 225, 285}. In this case p∗ = −9,

q∗ = 4, and so r∗ = −9 + 4 = −5. Then P̃ = [−2, 3], Q̃ = [−4, 3], and R̃ = [−4, 5].

Whenever p∗, q∗, r∗ ̸= 0, the intervals P̃ , Q̃, and R̃ are asymmetric – their averages are ±1
2 –
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and we have avg(P̃ ) + avg Q̃ ̸= avg(R̃). This observation gives rise to a simple proof that there

exist mod-ab residue classes where the inequality fails.

Proposition 3.5.2. For large enough d > 0, the following holds.

Let ī = (i, i, . . . , i) ∈ (Z/bZ)d, j̄ = (j, j, . . . , j) ∈ (Z/aZ)d. Then for any k = (k1, k2, . . . , kd) ∈

(Z/cZ)d with all ki ̸= 0, there exist subsets aXik ⊂ P = aS;i;k, bYjk ⊂ Q = bSj;;f(k), such that

d
(cS)bj;ai;
aXik+bYjk

< d
S;i;k

Xik
+ d

Sj;;f(k)

Yjf(k)
− 1. (Thus, we cannot have a high dimensional analogue of Lemma

3.4.3.)

Proof. We describe the sets aXik and bYjk by their images under the maps ϕP and ϕQ. We will let

σ : Rd → R denote the homomorphism which averages coordinates, i.e. (x1, . . . , xd) 7→ x1+···+xd
d .

Given a finite subset A ⊂ Rd, we will write σ(A) to denote
∑

a∈A σ(a)

|A| , the average value of σ on A.

By choice of i, j, k, the sets P̃ , Q̃, R̃ are each centered at ±1
2 , as discussed above, and therefore

|σ(P̃ ) + σ(Q̃)− σ(R̃)| ≥ 1
2 . Let ϵ =

1
6 and let ãXik = {x ∈ P̃ : |σ(x)− σ(P̃ )| < ϵ}. Similarly define

b̃Yjk = {y ∈ Q̃ : |σ(y) − σ(Q̃)| < ϵ}. By the Central Limit Theorem, dP̃ ˜aXik
→ 1 and dQ̃˜bYjk

→ 1 as

d → ∞. Also, since σ is a homomorphism, we have that |σ(x + y) − σ(R)| > ϵ for all x ∈ ãXik,

y ∈ b̃Yjk. So the Central Limit Theorem also says that dR̃˜aXik+ ˜bYjk
→ 0 as d → ∞. From this, it

easily follows that for large enough d,

dR̃˜aXik+ ˜bYjk
< dP̃ ˜aXik

+ dQ̃˜bYjk
− 1.

Finally, pulling these sets back by the bijections ϕR, ϕP , and ϕQ, we get the desired inequality.

What we have shown in this section is that, for general d, unlike for d = 1, one cannot use a

single mod-c residue class of the sumset aXi + bYj to show that d
(cS)bj;ai;
aXi+bYj

≥ d
S;i;

Xi
+ d

Sj;;

Yj
− 1.

3.6 A Counterexample to a Conjecture of Brualdi and Csima

In this final section, we give a counterexample to a conjecture of Brualdi and Csima regarding the

support patterns of stochastic 3-tensors [BC75].
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We begin by introducing some additional terminology. A plane of a 3-tensor T is a 2-

dimensional pattern obtained by fixing one of the coordinates of [n]3. A plane section of a pattern

P is the intersection of P with a plane.

Given a plane section Γ of a pattern P , the associated characteristic function is h : P → R

given by h(p) =


1 if p ∈ Γ

0 otherwise.

Csima [Csi69] gave a characterization of stochastic patterns involving these characteristic func-

tions.

Theorem 3.6.1. [Csi69] Let P ⊂ [n]3 be a pattern. Let h1, ..., h3n be the characteristic functions

of the plane sections of P . Then P is stochastic if and only if for all (c1, ..., c3n) ∈ Z3n such that∑3n
i=1 ci = 0, the function

∑3n
i=1 cihi is either identically zero or assumes both positive and negative

values.

Brualdi and Csima [BC75] then conjectured that this statement still holds if the ci are restricted

to the set {−1, 0, 1}.

Conjecture 3.6.2. [BC75] Let S ⊂ [n]3 be a pattern. Let h1, ..., h3n be the characteristic functions

of the plane sections of S. Then S is stochastic if for all (ϵ1, ..., ϵ3n) ∈ {−1, 0, 1}3n such that∑3n
i=1 ϵi = 0, the function

∑3n
i=1 ϵihi is either identically zero or assumes both positive and negative

values.

In the same paper, Brualdi and Csima proved [BC75, Theorem 2.7] the matrix analogue of

Conjecture 3.6.2.

Our counterexample to Conjecture 3.6.2 is a 5 × 5 × 5 pattern, which we present as a subset

of [−2, 2]3 instead of [5]3 for notational convenience. We will write xi, yi, zi (i = −2,−1, 0, 1, 2) to

denote the characteristic functions of the plane sections in the x, y, and z directions respectively.

Define the function L =
∑2

i=−2 i(xi + yi + zi), and let T = NSupp(L) := {(x, y, z) ∈ [−2, 2]3 :

L(x, y, z) ≥ 0} be the nonnegative support of L. Thus T is the set of integral points in the cube

[−2, 2]3 whose coordinates have nonnegative sum.
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By Theorem 3.6.1 and construction of T , T is not a stochastic pattern. However, we have

verified by exhaustive computer search that every {−1, 0, 1}-linear combination of the characteristic

functions xi, yi, zi with coefficients summing to zero is either identically zero on T or assumes both

positive and negative values, in violation of Conjecture 3.6.2. Our code can be found at [HY23].
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