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Around Smyth’s Conjecture
A Study of Smyth’s Conjecture over Q and a Proof of a Function Field Analogue

Will Hardt

Abstract In 1986, Smyth conjectured an elegant classification of the tuples of coefficients
(ay,...ax) € ZF that appear in a linear relation Zle a;7y; = 0 among Galois conjugates
Y1, - .. over Q. Thirty-seven years later, the conjecture remains open with little direct
progress made on it. This thesis compiles evidence in favor of the conjecture, including a

proof of a function field analogue and a proposed number field generalization. Additionally,

we establish a surprising connection between the conjecture and the recent notion of slice
rank from additive combinatorics, via Strassen’s asymptotic spectrum. We show that
Smyth’s Conjecture would be implied by certain “Smyth tensors” having full asymptotic
slice rank, and we prove that the Smyth tensors do have full slice rank. We discuss the
obstacle to extending this argument to asymptotic slice rank. Finally, we provide a
counterexample to an old conjecture of Brualdi and Csima regarding the support patterns
of stochastic tensors.
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List of Notation

(a,b,c) (potential) Smyth triple

(a1,...ax) (potential) Smyth tuple, where k£ > 3 is not necessarily fixed
[r,s] {r,r+1,...,s}

[s] {1,2,...,s}

®upe  The set {(x,y,2) € S3:ax+ by +ca =0}

wben Donnegative tensors indexed by [—n,n|, with entries in the field IF, and whose support is

contained in {(z,y, 2) : ax + by + cz = 0}
supp(T) {(i,j,k): tijx # 0}
Ten(m, m,m) R™ @ R™ @ R™
dﬁ The density of A as a subset of B
Tupe  The 0-1 tensor with supp(T') = Pype
[m]  Theset {1,2,...,m}; equivalent to the notation [1,m]
I; x Iy x I3 The index set of a 3-tensor
N Equal to 2n+1, the size of S
n Equal to the product abc
S The integer interval [-n,n]

SR(T) The slice-rank of T



Chapter 1

An Introduction to Smyth’s

Conjecture

1.1 The Conjecture and an Equivalence

In 1986, Smyth asked which coefficients (a1, ...,a;) € QF arise in linear relations Zle a;iyi = 0
among Galois conjugates 71, ..., 7, algebraic over Q [Smy86]. We will call such an (ai,...ax) a
Smyth tuple. Notice that we may normalize this problem by assuming that (aq,...,ax) is a coprime
integer tuple, because for any nonzero a € QQ, we have Zle aiy; =0 < Zle(aai)% = 0; thus
(a1,...ax) is a Smyth tuple if and only if (aay, ... aag) is.

Smyth proved that the following conditions on (aq,...,ax) are necessary for being a Smyth

tuple, and conjectured that they are jointly sufficient.

Definition 1.1.1. A coprime integer tuple (ay,...,a;) € 7ZF is said to satisfy the absolute value

criteria if
1. Jail <3254 laj| for alli, where | - | denotes the usual archimedean absolute value, and
2. Every prime p divides at most k — 2 of the a;.

We will call (aq,...,ax) satisfying the absolute value criteria potential Smyth tuples.
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Theorem 1.1.2. [Smy86] If a coprime integer tuple (a1, ...,ax) € ZF is a Smyth tuple, then it

satisfies the absolute value criteria.

Conjecture 1.1.3 (Smyth’s Conjecture). [Smy86/ If an integer tuple (ay, ...,ax) € Z" satisfies the

absolute value criteria, then it is a Smyth tuple.

Smyth also proved another characterization of Smyth tuples involving multisets of solutions to

the integral equations Zle a;z; = 0.

Definition 1.1.4. Let (ay,...a;) € ZF be a coprime integer tuple. A balanced multiset with re-
spect to (ai,...,a) is a finite multiset {(x;1, ..., zix) € ZE}M | of integral solutions to the equation

Zle a;z; = 0 such that the multiset {x;; : i =1,...,m} is independent of j.

Theorem 1.1.5. [Smy86] A coprime integer tuple (a1, ...,ax) € ZF is a Smyth tuple if and only if

there exists a balanced multiset with respect to (ay, ..., ax).

We illustrate the notion of balanced multisets with an example.

Example 1.1.6. Consider the coprime integer triple (a,b,c) = (3,4,5). Consider the 8-element

(multi)set of solutions to the equation 3z + 4y + 5z =0

- S \
(3, 4, -5),
(=3, —4, 5),
(4, -3, 0),
S=4q(-4, 3, 0),
(5, 0, =3),
(=5, 0, 3),
(0, 5, —4),
| (0, =5, 4) ]

Notice that the multiset of entries in each of the x,y, and z columns is the same: {+3,+4,£5,0,0}.
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Thus S is a balanced set with respect to (3,4,5), and it follows from Thearem that (3,4,5) is

a Smyth triple.

Thus one can approach Smyth’s Conjecture as follows; for each (a, b, ¢) satisfying the absolute
value criteria, fix an integer n := n(a,b,c), and then for each triple (x,y,2) € [-n,n] N Z3 such
that ax 4+ by + cz = 0, prescribe how many times to include (z,y, z) in a multiset. This approach

is successful if the resulting multisets are balanced in the sense of Definition [1.1.4]

1.2 A Heuristic

In this section, we give a heuristic that predicts the existence of balanced sets (in fact, 1-factors)
with high probability, regardless of the potential Smyth tuple. The heuristic is sharp enough to
not falsely predict abundant Smyth pairs (i.e. Smyth tuples when k£ = 2) but is blunt enough to
not see the necessity of the local conditions for k£ > 3.

To set up the heuristic, we need a slight change of perspective, which we will describe after

the following proposition.
Proposition 1.2.1. Let K be any global field. The following are equivalent for coprime (a1, ..., a) €
z*.

1. (a1,...,ax) is a Smyth tuple.

2. There exists a balanced multiset of tuples with respect to (ay,...,ax).

3. There exist permutation matrices X1, ..., Xy such that det(Zf:1 a; X;) = 0.

Proof. Smyth [Smy86, Thm. 2] proved (1) <= (2); this was our Theorem [1.1.5

(2) = (3): Let T'= {(wi1, zi2, ..., xix) }/~, be a balanced multiset of tuples of size m. For
Jj:1 <5<k, letvj = (x45), be the vector in Q™ obtained by taking the 4t entry from each tuple
in 7. By definition of balanced multiset, there exist (not necessarily unique) m x m permutation
matrices Xi,..., X such that X;v, = v; for all i. Thus (Zle a; X;)v, = Zle a;v; = 0, so

Zle a;X; has nontrivial kernel.
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(3) = (2): Reverse the previous argument as follows. Let vy be any nonzero vector in the
kernel of Zle a; X; and let v; := X;v; for 1 <4 < k. Then the coordinates of the vectors vy, ..., v

give a balanced multiset of tuples as above. O

The setting of Smyth’s Conjecture involves fixing a tuple (a, ... a) and asking for a balanced
multiset 7 = {(@;1,...24) € Z*}™, with respect to the tuple. The heuristic involves fixing a
particular vector v, € R?"*! for each positive integer n, and asking for the probability, under a

certain assumption of randomness, that there exist X1, ... Xy € Sa,11 such that (Zle a; X;)v, = 0.

Heuristic 1.2.2. Fiz a positive integer n and the vector v, = (—n,—n +1,...0,...,n — 1,n)T.
Let N =2n+1 and let X;, = I be the N x N identity matriz. Then choose random permutations
Xi,...,Xk_1 € G C Sy and assume that for each j : 1 < j < ¢V, the sum Sy iUy =1 () takes

values in [-An, An] uniformly and independently at random, where A := Zle a;.

The result of this heuristic is as follows. For a fixed coprime tuple (ay, .. .a) € Z¥ and a fixed n,
the probability of there not existing permutation matrices X1, ... Xx_1 such that (Zle a; X;)vp, =0

is

(o)

This probabillity goes to zero as n — oc0, hence this heuristic says that with high probability,

(a1,...,ar) has a 1-factor.

As mentioned, a weakness of this heuristic is that it does not notice the necessary local condi-

tions on the a;.

1.3 The Tensor Perspective

Before proceeding, we need some additional notation. Given integers r < s, we will write [r, s] for

the set of integers {r,7 + 1,...,s}, and when r = 1, we will just write [s].

This thesis will be concerned almost exclusively with Smyth’s Conjecture for triples, i.e. the
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case where k = 3. Suppose that we’ve fixed a potential Smyth triple (a, b, c) and a positive integer
n, and we're looking for a balanced multiset {(z;,y;,2:) € [-n,n]>}™, with respect to (a,b, c).
A multiset of solutions (z,y,2) to ax + by + cz = 0 can be conveniently represented as a 3d-
array T = [t;ji|}; -, Where t;;; represents the number of times that the triple (¢, j, k) occurs in
our multiset. This means in particular that the support of T' (the set of (i, j, k) for which ¢;;; # 0)

must be contained in the zero locus of ai + by + ck = 0.

It will eventually be useful to view T not just as a 3d array, but as a tensor sitting in the
vector space V = R2"t1 @ R2"t1 @ R2"t1, Specifically we identify T with the tensor that shares
the coefficients of T" in the standard basis for V, i.e. T = sz,szn tijke; ® e; ® eg. Viewing T' as
a tensor will allow us to leverage algebraic tools, specifically Strassen’s asymptotic spectrum and

slice rank, to understand our combinatorial questions about 7.

The “balanced” property of a balanced multiset manifests in the corresponding tensor as
follows. A tensor T is balanced if its vector of co-dimension one slices is the same in each direction,

that is if for all a € [—n,n], we have

n n n
Z ti,j,a: Z ti,a,k: Z ta,j,k (131)

1,j=—n i,k=—n Jk=—n

If all of these sums are equal to 1, then we will say that T is stochastic.

Thus Smyth’s Conjecture (for triples) is equivalent to the following.

Conjecture 1.3.1. Given any potential Smyth triple (a,b,c) € Z3, there erists a positive integer

n and a nonnegative integer tensor T indexed by [—n,n]® whose support supp(T) is contained in

{(z,y,2) : ax + by + cz = 0}, and whose entries satisfy|1.5.1|.

Notice that the existence of such tensors would be an immediate consequence of elementary

linear algebra without the nonnegativity requirement on the entries of 7. We can, however, relax

F

the requirement that the entries are integers, as we now show. We will write S, , .

n to denote the
set of nonnegative tensors indexed by [—n,n]3, with entries in the field F, and whose support is

contained in {(z,y, z) : ax + by + cz = 0}.
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Lemma 1.3.2. Let m,n be positive integers and V = ker(A) C R™ where A = (a;5) € Q™ ™. If

V N (RZO™ £ 0, then V N (QZ%)"™ £ 0.

Proof. Fix a basis B = {b; };cs for R as a Q-vector space. Let 0 # (rq,...,7,) € VN (RZ%)". Then

we can write
r; = Z Cz'jbij
1€l
for finite subsets I; C I, where b;; € B and ¢;; € Q.

Now re-label the b;; as by, ba, ..., by; then there exist k;; € Q (each one equal to some ¢y or

to 0) such that
N N
ajl(z kl]bl) + ...+ ajn(z k”bz) =0, forj=1,2,...,m
=1 =1

Now fix an index ¢ so that k;; # 0 for some j. By linear independence of the b’s, and the fact that
b; # 0, we have

ajlkil—i-ajgkig—i-...—i-ajnkm:OfOI‘j: 1,2,....m

Thus, 0 # (ki1 - .. kin)T € ker(A) N (Q=")", as desired. O

We are now ready to show that Smyth’s Conjecture can be formulated in terms of the existence

of real balanced tensors.

Proposition 1.3.3. Let (a,b,c) be a potential Smyth triple and N € Z*. If SEI),C;N # (0 then

ng N 7D

Proof. Note that a real (resp. rational) nonnegative N x N x N tensor 7" with support contained in
{(z,y,2) : ax + by + cz = 0} lies in S]zlf,b,c;N (resp. Sgb,c;N) if and only if its entries satisfy a system
of linear equations dictating that it is balanced. We will call the corresponding coefficient matrix

AEb,c; ~ (resp. Agb, e ~)- So if we vectorize T as ¢ in an appropriate way, the balanced condition
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becomes A]f,b,c;Nf: 0 (resp. Agb,c;NF: 0). Note that the entries of AI(%’b’C;N and A;Qibyc;N are exactly

the same; we write superscripts here only to indicate the field where the entries of ¢ must lie.

It now follows from Lemma that there exists a tensor in Sf by if and only if there exists

: Q
one in Sa7b7c;N. O

The shift to constructing real balanced tensors opens up some new avenues. In particular, it
would be enough to find a sequence of nonnegative tensors with rational entries which, in the limit,

is balanced.

1.4 Related Work

The question of how prevalent linear relations among Galois conjugates are has been studied from
multiple angles. In [Ber+04, Thm. 14(ii)] it is shown that for any global field K of characteristic
not equal to 2 and all but finitely many nonnegative integers n, there exists o € K of degree 2"n!
whose conjugates span a vector space of dimension n. In these cases, the dimension of relations
between conjugates is 2"n! —n, and so in this sense, linear relations among conjugates are plentiful.

On the other hand, there are results constraining the supply of linear relations among Galois
conjugates. Dixon |[Dix97, Thm. 1’] showed that if K is any subfield of C (e.g. a number field) and
f(z) € K[x] is an irreducible polynomial whose Galois group acts 2-transitively on its set of roots,

then there are no nontrivial K-linear relations among the roots of f(x).

1.5 The Structure of this Thesis

The structure of this thesis is as follows. In Chapter 1, we’ve introduced the statement of Smyth’s
Conjecture and seen equivalent formulations in terms of balanced multisets and balanced tensors.
We also introduced a heuristic and explained how it predicts a positive resolution to Smyth’s

Conjecture.

Chapter 2, which has been published jointly with John Yin [HY21], examines analogues of
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Smyth’s Conjecture. In particular we prove a function field analogue and formulate a number
field analogue, which is not a straightforward generalization due to a subtlety occurring at the

Archimedean places.

Chapter 3 explores the surprising connection between Smyth’s Conjecture and the slice rank
of tensors. The chapter begins with an introduction to stochastic patterns, Strassen’s asymptotic
spectrum, slice rank, and related concepts. Next we prove that Smyth’s Conjecture would be
implied by certain “Smyth tensors” having full asymptotic slice rank. We go on to prove that these
tensors have full (non-asymptotic) slice rank. In the penultimate section of the chapter, we discuss
the difficulties of extending this approach to show full asymptotic slice rank, which leads us into
a high-dimensional sumset problem. Finally, we provide a computer-verified counterexample to an

old conjecture of Brualdi and Csima regarding stochastic patterns.



Chapter 2

Analogues of Smyth’s Conjecture

2.1 A Proof of a Function Field Analogue

Global fields are central objects in number theory, and come in two varieties — number fields
and function fields. There is a strong parallel between number fields and function fields, and in
particular between Q and Fy(t). In each field, the ring of integers is a Principal Ideal Domain, and
many important number theoretic theorems over QQ have analogies that are also true in Fy(¢). For

details of this analogy, see |[Ell14] and [Poo06].

Despite these similarities, the relationship between Q and F,(t) is somewhat asymmetrical;
while F,(t) carries a similar structure to Q, it often exhibits less complexity. Most critically for
our purposes, the “scales” in F,(t) are well preserved by addition (the sum of two polynomials of

degree < d also has degree < d), but there is no such separation of scales in Q.

With this context in mind, we now turn toward the proof of the main result of this section,

Theorem which will follow essentially as a corollary from Proposition [2.1.3

First, we lay out some more conventions. The height of a coprime tuple (a1,...,a;) € Fy[t]*

is max; deg(a;). Let Vp C Fy[t] be the set of polynomials of degree < D for any positive integer m.

Throughout this thesis, we will use the standard normalizations of absolute values over global

fields. Namely, the absolute values over Q are given by the usual archimedean one |- | and
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lal, = p~°"%(@) for each positive prime p. For the function field F,(t) and g € F,(t), we take

the normalizations |g|; = ¢~ 9°8()°rds(9) for irreducible polynomials f € F,(t) and |g|e = ¢q8(9).

These normalizations extend uniquely to any global field.
To set up the function field analogue we will prove, we recall the absolute value criteria,
A natural way to generalize (1) and (2) to any global field K is as follows.

Definition 2.1.1. A tuple (ay,...,a;) € K* satisfies the absolute value criteria over K if
(1) For any archimedean absolute value |- | of K, we have |a;| < 3, ; |a;| for all i.
(2°) For any nonarchimedean absolute value | - | of K, we have |a;| < max;z; |aj| for all i.

When the field K is clear from context we may omit it from our terminology.
Thus, the most natural function field analogue of Smyth’s Conjecture is:

Theorem 2.1.2 (Smyth’s Conjecture Over Fy(t)). Let k > 3 be an integer. A coprime tuple
(at,...,a;) € Fy[t]¥ is a Smyth tuple if and only if (ay,...,ax) satisfies the absolute value criteria

over Fy(t).

We will show that, surprisingly, for any coprime (a1,...,a;) € Fy[t]* satisfying the absolute
value criteria and any D > d := height(ay, ..., ax), the set of all solutions (x1,...,xx) € VE to the

equation Zle a;x; = 0 is a balanced set.

Proposition 2.1.3. Let k > 3 be an integer. Let (ay,...,ar) € Fy[t]* of height d be a coprime
tuple satisfying the absolute value criteria. Let D > d be an integer and let j be an integer so that
1 <j<k. Fixxz; € Vp. Then the number of tuples (x1,...,2j-1,Zj41,...Tk) € VDk_1 satisfying

Zle aiz; = 0 is P =2=d_ In particular, this count does not depend on 7j.

Proof. Without loss of generality, we let j = 1. By the absolute value criteria, the maximum degree
of a1,...,ay is achieved at least twice. Hence, some a; with ¢ # 1 has degree d; without loss of

generality, assume that ap does. Let ¢ = ajx1. Define

k
8 ={(w2,mn) €V et D agm =0}
=2
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Our goal is to compute #S. To do so, we will project onto Fy[t]/ay, so we define

T
L

S ={(72,...,751) € (Fy[t]/ar)* % :c+

i

s Ly — 0}.

[|
N

Reducing modulo aj, in each coordinate and throwing out the last coordinate gives a surjective

qP=D*k=2)_t6-1 map S — S; the pre-image of any (Ta,...,Tp_1) €S is

{(962 + hoag, ... Tp—1 + hip—1ak, — (m Zaz z)) thi € VD—d}y

where z; is the unique polynomial of degree < d equal to T; mod ag. Thus, we have #S5 =

(P-DE-2 45

So we want to count the number of solutions (Za, ... Z_1) € (F4[t]/(ax))* 2 toc+ 25;21 a;T; =
0. Let ar, =[] pjj be the prime factorization of aj. Let R; := Fy[t]/ (pjj ); by the Chinese Remainder

Theorem, it will suffice to count the number of solutions in R; for each j.

Specifically, let S; = {(zz,...,ZTk-1) € R;?_Q 1c+ Zf;; a;z; = 0}; then the Chinese Remainder
Theorem implies that #S =[] j #5S,;.

We now compute #Ej. Recall that by the absolute value criteria, for all j, there are at least
two a; that are not divisible by p;. Of course a;, is divisible by all p;; hence, for all j, there is at

least one a;, with 1 < i < k, such that p; { a;, in which case @; is a unit in R;. Thus, we can write

— _ CHD s 01 BT

K3 a;

unique choice of ;. There are #R; = qlee i) choices for each Ty, so #S; = qlee 77 )k=3) - Thuys,

, and so any collection of choices of Ty for £ € {2,...,k — 1} \ {i}, will give a

since ), deg(pjj) = deg(ay) = d, we have

48 = g(D-)=2) T g8 =) = g(D-d)(k=2) dh=3) _ (DDA 5 desired.
J

Now Theorem follows easily.
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Proof of Theorem[2.1.3. (=): Smyth proved this statement over Q [Smy86, Cor. 2| (and we
recorded this as Theorem [1.1.2)), and his proof is valid over any global field K.

(«): Without loss of generality, we assume (a1,...,ax) is a coprime tuple in F,[]*. Let
Tp be the set of all tuples (z1,...,2) € VDk satisfying Zle a;x; = 0 and enumerate Tp =
{(zi1,...,z)}_, where t = |Tp|. In Proposition we showed that for every x € Vp and all
i :1 < i< n,the number of tuples (z1,...,2) in Tp with x; = z is ¢P*=2)=d  This means that

D(k—2)—d

for each j : 1 < j < k, the multiset {(z;;)}_, is precisely ¢ copies of Vp. Thus, Tp is a

balanced (multi)set of tuples. So by Proposition [1.2.1] (a1, ...,ax) is a Smyth tuple. O

Remark 2.1.4. By setting D =d and k = 3 in PToposition we see that if (a,b, c) is a Smyth
triple, then Ty is a “I-factor,” to borrow a term from (hyper)graph theory. That is, if one considers
the hypergraph H = (V, E) with V = [—n,n]? and edges E = {(x,y, 2) : ax + by + cz = 0}, then Ty
is a 1-reqular subgraph of H, as each integer in [—n,n] appears in each of the x,y, and z positions

i Ty exactly once.

2.2 The General Number Field Case

Recall that in any global field, the absolute value criteria are necessary conditions for being a Smyth
tuple [Smy86, Cor. 2]. We showed in Theorem that these criteria are sufficient for being a

Smyth tuple over F,(t), and Smyth conjectured the same over Q (Conjecture |1.1.3)).

However, an example presented by David Speyer [Spe| in a MathOverflow post shows that
the absolute value criteria are not sufficient for being a Smyth tuple in a general number field. In
particular, the triple (1,1, Lrv=ls V2_15) satisfies the absolute value criteria, but is not a Smyth triple.

Note that this triple achieves equality in the archimedean absolute value inequalities.

Speyer showed in the same post that for triples of the form (1,1, a3), if one amends the absolute
value criteria to be strict inequalities for the archimedean absolute values, then they become a
sufficient condition for being a Smyth triple. On the other hand, examples such as (2,3, —5) show

that we cannot simply amend the archimedean absolute value criteria to be strict inequalities, as
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(2,3, —5) trivially is a Smyth triple. Instead, if some analogue of Smyth’s Conjecture is true in
number fields, it must be a little more sensitive to the cases in which there is equality in one of the

archimedean absolute value criteria.

In order to formulate what we think the right conjecture is, we define the strong absolute value

criteria over a number field K as follows.

(1) For any archimedean absolute value | - | of K, we have |a;| < >, |a;| for all 4.

(27) For any nonarchimedean absolute value | - | of K, we have |a;| < max;; |a;| for all 4.

The strong absolute value criteria are obtained from the absolute value criteria by making the

archimedean inequalities strict.

We are now ready to formulate our generalization of Conjecture

Conjecture 2.2.1 (Smyth’s Conjecture over Number Fields). Let K be a number field and Ok
its ring of integers. Then (a1,...,axr) € O% is a Smyth tuple if and only if (ay,...,ax) satisfy the
strong absolute value criteria over K or there exist roots of unity wi,...,wk in some extension of

K such that Zle a;w; = 0.

Remark 2.2.2. The K = Q case of Conjecture 2.2.1] is equivalent to Conjecture|1.1.5

We will show in Proposition [2.2.6] that Conjecture 2.2.1] correctly deals with the tuples in which
equality is achieved in one of the archimedean absolute value criteria. In particular, if (aq,...,ax)
is a tuple such that equality holds in one of the archimedean absolute value criteria, then any tuple
in a balanced multiset with respect to (ai,...,ax), if one exists, is a scalar multiple of a tuple of

roots of unity.

But first we need two lemmas, the first of which shows that the property of being a Smyth

tuple is preserved by multiplying the coordinates by (possibly different) roots of unity.

Lemma 2.2.3. Let K be a number field and Of its ring of integers. Let (ay,...,a5) € Ok
If wi,...,wi are roots of unity in some extension of K and (ay,...,ax) is a Smyth tuple, then

(wiai, ... ,wrag) is a Smyth tuple in Ollg((m,.-v,wk)'
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Proof. Without loss of generality we may assume that wy = -+ = wy = 1, as we can make the
following argument about each coordinate in turn. Denote w := wy and L := K(w). Suppose that
w" = 1.
Let {(zi,...,7;) € K¥}_, be a balanced multiset with respect to (ai,...,ax). Then
U?@:_Ol{(wj_lwil,wjx@, Wiz ) € LFY™ is a balanced multiset with respect to (wai, az, . . ., az,).

O]

Remark 2.2.4. In particular, Lemma [2.2.3| shows that if there are roots of unity w1, ...,w; such
that Zle a;w; = 0, then (ay,...,ax) is a Smyth tuple. Linear relations among roots of unity
are a well-studied topic, going back at least to the 1960s. There are several results constraining
the prevalence of such relations, indicating that such coefficients represent quite a small subset of
Smyth tuples. A survey of some of these results is given in [Zan95|. For instance, when aq, ..., a
are rational, a result of Mann [Man65| gives an explicit upper bound depending only on n for the
order of the roots of unity w; occurring in a minimal relation Zle a;w; = 0. (Here minimality
means that no nonempty proper sub-sum vanishes, and that the equation is normalized so that

w1 = 1)

Lemma 2.2.5. Let K be a number field and Ok its ring of integers. Let (ai,...,a) € O’;(. Suppose
that there exists an archimedean absolute value | - |, of K and some i for which |a;|, = 3, ; |a;lo-
If there exists a balanced multiset with respect to (a1, ...,ay), then there exists a balanced multiset

{(yi1, - -, yir) € KF}™ | with respect to (ay, ..., a;) whose coordinates y;; all satisfy |yij|, = 1.

Proof. Without loss of generality assume that |a1, = >, [a;lv. Let S = {(zi1, ..., 2) € Kkym,
be a balanced multiset with respect to (ai,...,ar). Let X = {x;; : 1 <i <m,1 < j <k} be the
set of all coordinates appearing in S. Write M = max,cx |z|,. Any reference to “absolute value”

in this proof refers to | - |,.

We claim that if a tuple in S has a coordinate of absolute value M, then all coordinates of that
tuple have absolute value M. To see this, first suppose that |z;,1| = M for some iy. Along with

the assumptions that ij:l a;jzip; = 0 and |aily = 3.5 |a;ly, this implies that |z;y;[, = M for all
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7 =1,...,n. What we’ve shown so far is that if the first coordinate in a tuple in S has absolute

value M, then all coordinates in that tuple do.

But S is balanced, which means that the multiset of first coordinates is the same as the
multiset of j*" coordinates for every j = 1,2,...,k. In particular, each of these multisets has the
same number of elements of absolute value M, with the same multiplicities. Therefore coordinates
of absolute value M can only occur in tuples whose first coordinate has absolute value M, and the

claim is proved.

Thus the tuples whose coordinates have absolute value M form a balanced sub-multiset of S,
and dividing all of these coordinates by an element of K of absolute value M, we obtain the desired

balanced multiset. O

Proposition 2.2.6. Let K be a number field and O its ring of integers. Let (ay,...,a) € (’)’;(.
Suppose that there exists an archimedean absolute value | - |, of K and some i for which |a;|, =
Z#i lajly. Then (a1,...,ar) is a Smyth tuple if and only if there exist roots of unity wi,...,wy

(not necessarily in K ) such that Zle a;jw; = 0.

Proof. («<): By assumption, (wyaq, . ..,wgak) is a Smyth tuple. The result now follows from Lemma

223l

(=): Let ¢ : K — C be an embedding corresponding to the archimedean absolute value | - |,
and let 1) : Q — C be an embedding of the algebraic closure of Q which extends ¢. We will write

| - | for the standard absolute value of complex numbers. Without loss of generality assume that
|p(ar)| = Zj>1 |p(ay)l-
By Lemma m there exists a balanced multiset S = {(z;1,..., %) € K*}¥ | with respect

to (ai1,...,ax) such that all |z;;|, = 1. By definition of balanced multiset, we have
k
Zajxij =0. (2.2.1)
j=1

Now (2.2.1) along with |p(a1)| = >_;.; |¢(a;)| and the assumption that [¢(z;;)| = 1 implies
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that

arg ¢(ajz;j) = ™+ arg ¢(a1z;1)(mod 2), for all ¢, j with j > 1. (2.2.2)

In words, (2.2.2)) is saying that given a fixed i, the ¢(a;z;;) all “point in the same direction”

for j > 1, and ¢(ajx;1) “points in the opposite direction.”

The rest of the argument is most easily expressed in polar coordinates. For all j, let ¢(a;) = r;6;
where r; € R=Y and |6;] = 1. Fix any 4o € {1,2,..,m} and any j € {2,...,k}. Then by and
the fact that all |¢(z;;)] = 1, we have ¢(z,;) = —%¢(xi01).

By balancedness, there is some 7; so that x;;1 = x;,;, so repeating the above argument, we
get o(x;,;) = —%¢(xi11) = —g—j¢(a:i0j) = (—%)2¢(aﬂi01). Iterating, this argument shows that

(_%)m¢($iol) € {¢(x) : x € X} for all m € Z, implying that —g—; is a root of unity.

Now let wy = 1 and w; = _% for 7 > 1. Dividing the equation (2.2.1) with ¢ = i9 by ;1

and applying ¢ to both sides, we have Zle $(a;)w; = 0. Finally, letting p; = ¢~ (w;), we see that
¢(Zf:1 aip;) = Z?Zl ¢(a;)w; = 0, and hence Zle a;p; = 0. O
The above work, along with the known necessity of the absolute value criteria, reduces Con-
jecture 2.2.1] to the following.
Conjecture 2.2.7. Let K be a number field and Ok its ring of integers. If (a1,...,ax) € (9][2
satisfies the strong absolute value criteria, then (a1, ...,ax) is a Smyth tuple.
Speyer [Spe| gives a proof of Conjecture in the case where k = 3 and a1 = as.

Speyer’s argument works for general k and a; = -+ = ap_; with minimal modification; this

result is our final proposition of the section.

Proposition 2.2.8. Let k > 3 be an integer. Let K be a number field and O its ring of integers.
Let o € O so that every archimedean absolute value of cv is less than k—1. Then (1,1,...,1,a) €

(’)’f( is a Smyth tuple.

Proof. By Lemma[2.2.3 it suffices to show (1,1,...,1, —a) is a Smyth tuple. By Proposition [1.2.1]
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it suffices for us to show that there are permutation matrices X; so that Z,’f;ll X; has a as an

eigenvalue.

We will follow the argument from [Spe|, starting with a slight generalization of Speyer’s Step

1, which we write out in full for the sake of clarity.

Step 1: There is a nonnegative integer matrix C, with eigenvalue «, all of whose row sums are
k—1

Consider the lattice A = Z]a] and the vector space V = A ®z R. Since «a is an algebraic
integer, A is a discrete full sublattice of V. We take the norm ), |z|2, where the sum runs over all
archimedean places. Let ¢ = max, |a|,. By hypothesis, ¢ < k — 1. Denote by Bp the closed ball of

radius R around O.

Let M be large enough so that any ball of radius M around any point in V' contains a point in

A. Take R large enough so that .5 R+ (k —2)M < R. Now, for any z € AN Bg, let 21 € ANDBg

be the closest point to ;%5 . Let 20 = az — (k — 2)2;. Now,

oz 4] oz
E—1 k—1

|<M+-——R<R.

< —
|21] < |21 1

Similarly,

k—1

2| = oz — (k — 2)21| < |az — az| + (k—2)\% x| < —"R+(k-2)M<R.

“ k-1

Thus, for any z € AN Bg, we can find 21,29 € AN Bp so that (k — 2)z; + 22 = z. Enumerate the
elements of AN Bp as z1, 29, ..., 2. Then, we can form an [ x [ matrix C with the following entries.
For the t-th row, consider z;. As before, we may write (k — 2)z, + z5 = 2 for some 1 <r,s <[. In
the t-th row, put k — 2 in the r-th column and 1 in the s-th column if r # s; if r = s, put an k — 1
in the r** column. Every row sum of the matrix C' is equal to k — 1. By construction, it has « as

an eigenvalue with right eigenvector (z1, 22, . .., )T

The rest of Speyer’s argument can now be applied with virtually no modification; using the

Perron-Frobenius theorem, one obtains a matrix D from C which is the sum of k — 1 permutation



matrices and still has « as an eigenvalue.
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Chapter 3

The Slice Rank Approach to Smyth’s
Conjecture: Stochastic Patterns and

Strassen’s Asymptotic Spectrum

This chapter connects Smyth’s Conjecture for triples to recent work in additive combinatorics
around slice rank and less recent work from multi-linear algebra concerning asymptotic spectra.
The first section of this chapter introduces preliminaries about tensors, the main objects of focus
in this chapter. Next we introduce stochastic tensors/patterns and describe how they relate to
balanced tensors. We then introduce the notions of asymptotic spectra and Strassen’s support
functionals, and explain how work in these areas provide a path towards proving Smyth’s Con-
jecture via asymptotic slice rank. In particular, Smyth’s Conjecture would follow from certain
“Smyth tensors” having full asymptotic slice rank. (Along the way, we discuss matrix multipli-
cation algorithms, which were the original motivation for Strassen’s work.) Once this context is
set, we are ready to prove the main result of this chapter, Theorem which says that Smyth
tensors have full slice rank. We go on to discuss the obstacle to extending our argument about slice
rank to asymptotic slice rank. Finally, we conclude the section by presenting a computer-verified

counterexample to an old conjecture of Brualdi and Csima regarding stochastic patterns.
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3.1 Tensor Preliminaries

This chapter will focus on real 3-tensors T € V1 ® Vo ® V3, where Vi = V5 = V3 = R™ for some
m. We will write Ten(m,m,m) for the set of such tensors. Due to the combinatorial nature
of this chapter, much of the section will treat these tensors as 3-d arrays of real numbers, with
the basis for each tensor leg being the standard basis. That is, when we refer to the “entries”
of a tensor, or otherwise are presuming certain bases, we are (implicitly or explicitly) expanding
T = Z?fj’k:l tijxe; ® e; @ ey, and identifying T" with the 3-d array of coefficients [tijk]zz',k:l‘ The
support of T" is supp(T’) = {(4, 4, k) : tiji # 0}.

This chapter will at times be concerned with tensor powers, by which we mean the following.
A tensor T € V1 ® V5 ® V3, can be thought of as a multilinear map 7T : V; x V5 x V3 — R. The
d* tensor power T®? of T corresponds to the multilinear map T%% : Vl®d X V2®d X V3®d — R given
by (21 ® @23, 11 @ R Yg, 21 Q-+ D zq) —> H?Zl T(x,yi,2i). Thus the coefficients of T®d
with respect to the standard bases are all d-fold products of the corresponding coefficients of T,

the support supp(7T®9) is the d-fold Cartesian product supp(T’) x - - - x supp(T).

We will use the notation (n,n,n) to refer to the 0-1 diagonal n x n x n tensor, Zle ei®e;®e;.

3.2 Stochastic Patterns

Recall that by Proposition Smyth’s Conjecture (for triples) is equivalent to: for each potential
Smyth triple (a,b,c), there exists a nonnegative real balanced tensor with support contained in
{(z,y,2) € Z3 : ax + by + cz = 0}. Let us fix a potential Smyth triple (a,b,c) and as before, set
n = abc, and N = 2n+1. Let S = [-n,n], @ope = {(7,y,2) € S3 : ar+by+cz = 0}, and write Tpp. €
(RNV)®3 for the 0-1 tensor with support supp(Type) = Pape; that is, Tupe = D (i) €Dy, (€1 D) D ER).

A nonnegative 3-tensor T'= ) t;jre; ® e; ® ey, is said to be stochastic if its plane sums are all
1, i.e. if for every fixed k, Zi’j tijr = 1, and similarly Zj,k tijr = 1 and Zi,k tijr = 1 for any fixed i
and j respectively. A pattern in our context is any subset of S3, and a pattern is stochastic if there

exists a tensor which is stochastic and has support contained in the pattern. Similarly, we will say
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a pattern is balanced if there exists a balanced tensor with support contained in the pattern.

Let A = {(s,s,5) : s € S} denote the main diagonal of S®; we will say a pattern P is non-
diagonally stochastic if there exists a stochastic tensor 1" whose support is contained in P, but is

not equal to A.

To prove Smyth’s Conjecture, it would certainly be sufficient to show that ®4,. is a stochas-
tic pattern; the following proposition explains more precisely the relationship between balanced

patterns and stochastic patterns.

Proposition 3.2.1. Let P C S3 be a pattern. P is balanced if and only if PUA is non-diagonally

stochastic.

Proof. (=): Suppose that P is balanced; let 7" be a balanced tensor with support contained in P.
Then the plane sums of T form the same vector v = {v; };cs in each direction. Let m = max;cg v;;
then the scaled tensor %T is balanced and has plane sums between 0 and 1. For each ¢ € S, let
d; = 1 —v;. Adding d; to the i*" diagonal entry of %T yields a stochastic tensor, which is not

diagonal since balanced tensors are by definition nonzero.

(«<): If T is a non-diagonal stochastic tensor with support contained in P, then setting the
entries of T" along A equal to 0 yields a tensor which is still balanced, and now has support contained

in P. O

This proposition has utility for algorithmic approaches to Smyth’s Conjecture. There is some
work on algorithms [Bur+18| for finding stochastic tensors with a given support (or support con-
tained in a certain set) and this proposition means one can extend these algorithms to look for
balanced tensors by first adding the diagonal to the input tensor’s support, running the algorithm,
and then zeroing out the diagonal. If the algorithm found a non-diagonal stochastic tensor, the

end result will be a nonzero balanced tensor with appropriate support.

At first glance, Proposition gives the impression that we can dispose of balanced tensors
and instead pursue an equivalent problem involving the better-studied stochastic tensors. However,

this is not quite the approach we will take. We will turn our attention to stochastic tensors, but our
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specific approach — which will eventually be studying the asymptotic slice rank of Smyth tensors
— will discourage enlarging the support of Smyth tensors. So, over the course of the rest of this

chapter, we will end up trying, and failing, to show that the Smyth pattern itself is stochastic.

3.3 Strassen’s Asymptotic Spectrum

This section builds towards Corollary which gives a criterion for certain patterns — including
Smyth patterns — to be stochastic. We arrive at this result via the theory of asymptotic spectra
developed principally by Volker Strassen starting in the 1980s. To set the scene, we begin by

discussing his initial motivation.

3.3.1 DMatrix Multiplication Algorithms

The problem of finding the fastest algorithms for matrix multiplication has been of great interest for
a long time, particularly recently with the increasingly widespread deployment of machine learning
algorithms built out of matrix multiplications. The definitional algorithm requires n? arithmetic
operations to multiply two n X n matrices, but Volker Strassen showed in 1969 that one can
multiply 2 x 2 matrices using only 7 arithmetic operations [Str69]. (The algorithm appears quite
unilluminating and has largely resisted attempts to extract meaning, although recently Grochow
and Moore gave a convincing conceptual justification for the existence of a 7-operation algorithm
[GM17]. T am not aware, however, of any illumination of why Strassen’s 7 operations in particular
work.) This improvement in the 2 x 2 case automatically extends to general n x n matrices, by

treating an n X n matrix as a 2 x 2 block matrix.

The exponent of matrix multiplication w is defined to be the minimum real number such
that the multiplication of n x n matrices can be done in O(n“*+°(1)) arithmetic operations. The
definitional algorithm means that w < 3. Strassen’s algorithm proved that w < logy 7 = 2.807....
The tightest bounds currently known are 2 < w < 2.37286. (The lower bound is simply due to the

algorithm outputting n? entries.)
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The multiplication of m x n and n X p matrices is a bilinear map between vector spaces
R™*™ x R™*P — R™*P_and hence is represented by a single tensor (m,n,p) with respect to the
standard bases. It has been shown that w can alternatively be defined as w = {inf 5 : R({(n,n,n)) =
O(n”)}. Thus the asymptotic complexity of matrix multiplication is controlled by the tensor ranks
of the tensors (n,n,n).

In his Ph.D. thesis, Garterberg generalized the notion of the exponent of matrix multiplica-
tion as follows. |Gar85] Noting that the d'* tensor power (n,n,n)®? = (n?, nd,n?), one can define
the asymptotic (tensor) rank of a tensor T as R(T) = limg oo (R(T®%)/4; this limit is guaran-

teed to exist. Thus w = log,,(R({n,n,n))), for any integer n > 1, and the complexity of matrix

multiplication is determined by the asymptotic rank of a single tensor (2,2,2).

3.3.2 The Asymptotic Restriction Problem

Strassen, motivated to understand the complexity of matrix multiplication, began to study the

asymptotic restriction problem, which is as follows.

Given multilinear maps f,g : R™ x R"2 x R™ — R, one says that f restricts to g (written
f > g) if there are linear maps (r1,72,73) such that g = f o (r1,79,73). Moreover, f asymptotically
restricts to g (written f 2 g) if there exists a sequence of natural numbers ag € o(d) such that

fedtaa > ¢®d The asymptotic restriction problem asks, given f and g, whether f > g.

One way to prove a negative answer to this question would be to identify a family of tensors
X containing f and ¢ and produce a map ¢ : X — RZ? such that ¢(f) < ¢(g), and such that ¢

also has the following general properties.
1. monotone under restriction >
2. multiplicative under tensor product ®

3. additive under direct sum @

Note that by Property 2, ¢(f®?) < ¢(g®?) for any d; and for large enough d depending on ag,

P(fEIraa) < p(g®4). By Property 1, it follows that f does not asymptotically restrict to g.
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Strassen called such maps ¢ spectral points. He normalized them by assuming additionally
that ¢((n)) = n. He then showed that, remarkably, spectral points are the only obstacles to f 2> g.
[Str88| In particular, one can study the asymptotic restriction problem for all pairs of maps f,g €
X by determining the spectral points ¢ of X. Then, given particular f and g, one compares each
of the spectral points evaluated at f and g. If ¢(f) > ¢(g) for all spectral point ¢, then f 2> g;

otherwise f does not asymptotically restrict to g.

It has since been of great interest to construct spectral points for interesting families of tensors.
Strassen himself constructed “support functionals” which are spectral points for the family of
oblique tensors. (As the name suggests, support functionals depend only on the support of the
tensors.) We'll define oblique tensors a little later; for now, suffice it to say that Smyth tensors are

oblique.

More recently, Cristandl, Vrana, and Zuiddam constrcuted the first nontrivial spectral points
for the family of all complex tensors (“universal spectral points”) [CVZ18|. They also used
Strassen’s support functionals to prove a formula for the asymptotic slice rank of tight tensors,
a refinement of oblique tensors. It is this result that directly applies to our situation, so we will

now introduce the relevant notions — slice rank, oblique tensors, and tight tensors.

3.3.3 Introduction to Slice Rank and Asymptotic Slice Rank

Our main attempt to prove Smyth’s Conjecture interrogates the slice rank of the Smyth tensors
and their tensor powers. The notion of slice rank arose from Tao’s reformulation [Taol6] of the
work of Croot, Lev, Pach, Ellenberg, and Gijswijt that resolved the cap set conjecture. [EG17]
[CLP17]

A tensor T : V1 ® ... ® Vi — R has slice rank one if it can be written as T'(x1,...,z,) =
flx)g(xr,...xi—1,2i41, ... 2k) for some index i and some functions f and g.

More generally, the slice rank of T is the minimal r such that T can be written as the sum
of r slice-rank-one tensors (note that the index i in the above form does not have to be the same

for each slice-rank-one tensor in the decomposition; if it did, the definition would reduce to the
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minimum matrix rank of the “flattenings” of T"). Slice rank has the following notable properties.

Slice rank is in invariant under the action of Hle GL(V;).

Slice rank is a generalization of the ordinary notion of rank of matrices. That is, the slice

rank of a 2-tensor is its rank as a matrix.

Given T € Ten(ny,...,ng), we have SR(T) < min; n;, as can be seen for each i by flattening

T along its i*" coordinate.

The slice rank of a “diagonal tensor” equals its number of nonzero entries. That is, given

T=5%",¢ce®...¢ € Ten(n,...,n), we have SR(T) = #{i : ¢; # 0}. [Taol6)

This last bullet point was key in Tao’s reformulated proof of the cap set conjecture. We are
going to make use of a generalization of this result, which was jointly proved by Tao and Sawin

(we will only state it in the generality we need).
Proposition 3.3.1. [T'S16, Prop. 4] For each 1 < j < 3, let (vjs)ses be a linearly independent
subset of V; = R? indexed by some finite subset S;. Let I' be a nonempty subset of S1 x S2 x S3.

Suppose further that there are total orderings <; on S; such that I is an anti-chain (i.e. every

element of I" is mazximal).

Let v = 2(51,52,53)er Cs1,50,53V1,51 @ V2 s, @ V3 5, where the coefficients cg, s, s, are nonzero and

lie in R.

Then we have

SR@)= _min |m(D)]+ [ma(D)] + na(T)]

where the minimum ranges over all coverings of I' by sets 'y, I'9, 'y and m; : S1 X S x S5 — S;

are the projection maps.

A tensor T is said to be oblique if its support is an anti-chain in the sense described in

the statement of Proposition [3.3.1] Thus Proposition [3.3.1] is saying that given a tensor T €
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Ten(n,n,n) which is oblique, computing the slice-rank of 7' is equivalent to the combinatorial
problem of determining the size of the minimum covering of the support of T by axis-parallel
“slices.” Note that in particular, for oblique tensors, slice-rank depends only on the tensor’s support.

Hence we can refer to the slice rank of a tensor’s support, when it is oblique, without ambiguity.

Moreover, a 3-tensor T' € Ten(Iy, I3, I3) is tight if there are injective functions u; : I; — R such
that 2?21 ui(a) = 0 for all @ = (a1, a9, a3) € supp(T). By definition, Smyth tensors Ty, and

their tensor powers, are tight.
We can see that tight tensors are oblique as follows.

Proposition 3.3.2. Tight tensors are oblique.

Proof. Let T be a tight k-tensor indexed by Iy X --- X I. Let uy,...,u; be the corresponding
injective maps. For each ¢, let <; be the ordering determined by pulling back the real ordering

along u;, i.e. for v,y € I; 2 <; y <= ui(x) < u;(y).

Now if @ = (a,...ax) and 8 = (B1,...,0k) € supp(T) with «; <; §; for all i, then also
Zle ui(oy) =0 = Zle u;(B;). Therefore each inequality w;(a;) < u;(/5;) must be an equality and

since the maps are injective, it follows that o = 3. O

The previous two propositions show that computing the slice rank of tensor powers ng of
Smyth tensors is equivalent to the combinatorial problem of determining the size of the minimum
covering of the support of T®¢ by axis-parallel slices. We will now see how this relates to the

question of whether or not the Smyth support ®,. is stochastic.

First, we need a little more terminology /notation. We will write Iy, I2, I3 for the index sets of
our tensor legs. Given a subset ® C I1 x Iy x I3, we'll write Z2(®) denote the set of all probability
distributions supported on ®. We will also need the notion of entropy of a probability distribution
P. Entropy can be thought of as a measure of the expected information gain of observing a sample

from P. When P is a discrete random variable on a set X, the entropy of P is given by the formula

H(P) = — Y P(a)logy(x)

zeX
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In this context, log, 0 is understood to be 0.

The following theorem gives a formula relating entropy of probability distributions supported
on ® to asymptotic slice rank, written SR. Recall that in the case of tight/oblique tensors, slice

rank depend only on the support ®.

Theorem 3.3.3. (CVZ18, Thm 4.4, Cor 5.10] Let ® C Iy x I x I3 be tight. We will write P; to

denote the it" marginal of a probability distribution P.

Then

SR(®) = max min{2f ") 2H(P2) oH(Ps)y
- Pcp(d) ’

Corollary 3.3.4. A tight pattern ® C S® is stochastic if and only if SR(®) = N.

Proof. This follows from some basic properties of entropy, namely that H : Z(N) — R achieves

its unique maximum, which is logy(/V), on the uniform distribution. Therefore, given a pattern

P C S8,
® is stochastic <= IP € P () : H(F;) = logy(N) for all 4
<— N = max min{QH(Pl) 2H(P2) 2H(P3)},
Pe(®) 3 )
By Theorem [3.3.3], this latter quantity equals SR(®) if ® is additionally tight. O

To recap: since Smyth patterns @, are tight, proving that they are stochastic is equivalent
to proving that T,p. has full asymptotic slice rank, which is equivalent to proving that one needs
to use 100% of the slices {x = s: s € S} U{y =5:5€ S} U{z =s:5 € 59} to cover the support

®d
of T . as d — 0.
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3.4 Smyth Tensors Have Full Slice Rank

The purpose of this section is to prove Theorem but first, we need a couple of lemmas. In

this section we will make use of the following notation. Given two finite sets A, B, we will write

dﬁ to mean VElB', i.e. the density of A in B. Once B has been made clear in a certain context we

may omit it from subsequent occurrences of the notation.

Lemma 3.4.1. [TV06] Let A,B C Z. Then |A+ B| > |A|+ |B| —1

Proof. This is a fundamental result in additive combinatorics with a short proof:

Order the elements of each set A = {a1,...,a,} and B = {b1,...bs} under the standard real
ordering <. Then a1+ b1 <as+b1 <---<a,+by<a,+by<a,+b3<---<a,+bsarer+s—1

distinct elements of A + B. O

Lemma 3.4.2. Let P, Q be arithmetic progressions in Z with the same step size, and let R C (P+Q)
such that |R| > max(|P|,|Q|). Then for any subsets A C P,B C Q, we have d%, 5 > d; + dg - 1.

(Furthermore, equality holds if and only if A= P and B =Q.)

Proof. We have that

[((A+B)NR|>|A+B|—|(P+Q)\R|, since (A+B) C (P+Q)
=|A+B|—(|P+ Q| —|R]|), since R C (P + Q)
> |4+ Bl = 1= (|P+QI) + |Rl, by Lemma BT
= |A|+|B|—-1—(|P|+|Q| — 1) + |R|, since P, are APs with the same step size

=[Al+ B[ - [P| - |Q] +|R|

Therefore,

- ((A+B)NR[ _ |A[+|B[+|R] - |P| Q|
’ |R| - R
_ 4 AEIBI 1P~ Q)
|R|
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So it will suffice to show that

14l 1Bl A+ B[ - [P ]Q] _,
Pl Q| |R| a
Indeed, viewing P, @, and R as fixed, the quantity on the LHS is increasing in both |A| and |B]|

over their whole mutual domain, and hence is maximized when A = P and B = (), at which point

we have equality.

Thus we have shown the desired inequality. We have also shown that equality can only hold if

A =P and B = Q. It is straightforward to see that equality does in fact hold in this case. O

Lemma 3.4.3. For any subsets X, Y C S, the quantity dgﬁ-by — d§< — dgq/ 15 a weighted average

of the quantities d((f)i)j_]b‘;ﬁj - d}q{ - df,;” as i,7 range over [b] and [a] respectively.

7

Proof. For each i € [b],j € [a], let wj; := dgﬂ (these will be the weights in the weighted average).

N+ab—1 g

“Nap ¢ 1=7=0
Thus Wij; =

]]\\f,;bl , otherwise.

Note that the wj; satisfy the following properties.
® Wj; = Whj ai for all 7 € [b],] S [a]
o wj; = d?fs)j-i» for all i € [b],j € [al.

e For any fixed j € [a], 3 e wji = dgj”, and for any fixed i € [b], > ;e wji = dgm.
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Putting these properties together with definitions, we see that

|(aX +0Y)NeS| | X|  |Y]

cS S S
a —dsy —dy = eS|
X+by — aX 5] R
_ Z [(aXi +bYj) eS| X |YJ|>
i€[t],j€la) eS| alS| blS]|
S~ 18l l0Xi 4 0Y5) 0 (S sl = 3141 1Y
i€[b]j€la] 5] |55sis]
_ |(CLX +bY) (Cs)bj;ai;‘ ’X7,| ’Y']’
S IR
i€[b],j€[al |( S)bj 1ai; ’ a’Sj;i| b’SjJ‘
- Y |(aXi +bYj) N (eS)pjaic] | Xil |Yj|)
ilb].jelal J |(C )bj sai; ’ ‘S,z,’ |S”|
CS ai; S';;
= Z Wis (ng)j-]bY *d de )
1€[b],j€al

To verify the second-last line, we compute the coefficient of |X;| in the second-last line. This

coefficient is

. wﬂ _ ’SJ7Z,| _ L
Z S, Z |1S11S3s] S|

Jj€lal

This matches the coefficient of |X;| in the previous line. A similar argument shows that the
coeflicient of |Yj| in the second- and third-last lines match too. This completes the proof of the

lemma.

O]

We are now ready to prove the main theorem of this section. The reader is invited to refer to

the example following the proof for concreteness.

Theorem 3.4.4. If (a,b,c) be a potential Smyth triple then SR(Tap.) = N.

Proof. First recall from Proposition that Smyth tensors are oblique, and so Proposition [3.3.1

applies.
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By Proposition SR(T) = N is equivalent to the following: given any subsets X,Y,Z C S
such that 0 ¢ aX + bY + ¢Z, we have

|X| + Y|+ |Z] < 2N, or equivalently, that

ds +dy +dy < 2.
And this in turn is equivalent to showing that for any subsets X,Y C S we have
S S S
axtby = dx +dy — 1.

For each i € [b], let X; = {x € X : = i (mod b)}, and similarly for each j € [a], let
Yi={yeY :y=j(moda)}. We will decompose aX + bY into mod-ab residue classes; this

decomposition can be written as the disjoint union

aX +bY = l—lie[b},je[a](aXi + b}/])

We now fix i € [b] and j € [a]. In what follows we will write S;.;., to denote elements of S
congruent to ¢ mod a, j mod b, and £ mod c. When we only wish to specify one or two residue
values, we will leave empty spaces for 7, j or k, but will still write the semi-colons (e.g. S.;, denotes
the subset of elements congruent to j mod b). Notice that the elements of aX; 4 bY; are congruent
to ai mod b and bj mod a. Thus (aX; + bY;) N (cS)y.jr, can be nonempty only if i = bj (mod a)
and j' = ai (mod b).

By Lemma it will suffice to show that

(€9)bj3ai; Sii; S
daXiJ:byj —dy - de > —1.
Towards showing this, we will now consider each set modulo c. First, let f : [c] — [c] denote

the bijection such that ak + bf(k) =0 (mod c) for all k € [c].
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For each r € [c], let X;; = {x € X; : = k (mod c)}, and similarly YV, = {y € Y; : y =
k (mod c)}. Now fix a k for which di‘: + dfﬁf{:;“) is maximal among all k& € [c]. Notice that it
t J

Siik St (k) Sii; Sisi Sii; Sisi s : Siir Syt (r)
follows that qug +def(k) > dy’+d -~ since dy, —l—dyj is a weighted average of dy.” +def(r> over

all r € [¢]. (The weights are nearly uniform, but the 0 residue class is slightly over-represented.)

Our proof is to show the following.
(Cs)b';ai; (cs)b‘;ai;
daXHr]ij = daXisz)ij

Siisk Sisf (k)
2 dyy Ty —1

S.i: S.i..
> 325 735
dXZ' + de 1

The last line holds by choice of k, as just described; and the first line is clear since X;; C X; and
Yirm © Y5

To complete the proof, we will explain how the middle line follows from Lemma [3.4.2] with
A=aXik, B="bYjru), P=aS;k, Q=0S.ru), and R = (cS)pj;ai;-

We just need to confirm that the hypotheses of the lemma are satisfied. The sets aS.;,; and
bS;..r are each arithmetic progressions with step size abc. The set containments aX;;, C aS.;, and
bY¢(k) C bSj.r(x) are by definition.

Additionally,

20 if bj # 0 (mod a) or ai # 0 (mod b)
’(Cs)bj;ai;‘ =
% + 1, else

The cardinalities [aS;;x| and [bS}..f1)| are computed similarly. Now notice that M —2c>2+1=
2n 1 1, thus showing that |(cS)yjas;| > max(|aSxl, [bS;..sx))-

It remains to establish that (c¢S)pj.ai C @Sk + 0Sj;px)- This is where the Archimedean
absolute value criterion (triangle inequality) is required. First, observe that both sets (¢S)j.a; and
aSi.k + bSj,. p(r) arve arithmetic progressions with step size abc. Additionally, every element of both

sets is congruent to bj mod a; a¢ mod b; and 0 mod ¢. So we just need to show that the maximum
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and minimum of S, +bS;;, () are more extreme than those of (¢S)p;iqi;- First notice that we have
max S,;.r > n—>bc+1, and similarly, max Sj.., > n—ac+1. Next, observe that the maximum element
of (¢S)pj.as; lies in the range [(c — 1)n + 1,cn] (recalling that n = abc). So in order to show that
max(aS;k + 0Sj, p(k)) = max(cS)pjias;, it will suffice to show that max S,k + bSj..px) > (c — 1)n,

since the two progressions occupy the same mod-n residue class. Indeed,

max(aS;;x + bSj; (k) = a(n —bc+1) +b(n —ac+1)
=(a+bn—2abc+a+b
=(a+b—2)n+a+bd
>(c—=1n+a+d

> (c—1)n

An analogous argument shows that min aS,; + bSj;. p(x) < min(cS)p;iai;- d

Before proceeding to discuss the obstacle to extending this argument to higher dimensions, we

walk through an example to make things more concrete.

Example 3.4.5. Consider the Smyth triple (a,b,c) = (3,4,5). Thenn =3-4-5 =060 and S =

[—60,60]. Leti=j=1. The sets X1 = {—59,—55,...,—-3,1,5,...,57} and Yy, = {—59,-56,...,—2,1,4,...

All elements of 3X1 + 4Y1 are congruent to 3 mod 4, and 1 mod 3. Let k = 2. Then f(k) =
1, as3-24+1-4 =0 (mod 5). We now have X19 = {—43,-23,-3,17,37,57} and Y11 =
{—59, —44,—-29,—14,1,16,31,46}. The sumset 3X12+4Y11 = {—365,—-305,...,295,355}. Mean-
while, (¢S)pjiai; = (55)1;3; = {—245,—185,...,235,295}.

3.5 The Obstacle to Full Asymptotic Slice Rank

The problem of showing that a Smyth tensor power T®¢ has full slice-rank for d > 2 (which may
not be necessary, as we only need to show T has full asymptotic slice rank) is in many ways

similar to showing full slice rank for 7T itself. The tensor 7%¢ is indexed by S, with support

58}
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{(m,y,z) TL,Y, % € Sd and am—}—by—}—cz = O}

Nearly everything from Section holds in an analogous way. The support of T®¢ is still
tight and oblique, and so the slice rank problem connects to sumsets in the same way. And we
can similarly decompose subsets X,Y C S? into mod-ab residue classes (in this case, there are
(ab)? of them), and then into mod-c residue classes. It again would be sufficient to show that
dic;):i‘g;gk > df{: + d%f{’::) — 1, for a k chosen in the same way as in the one-dimensional case.
However, this bound is not true in general, as we’ll now see.

The obstacle lies in establishing a higher-dimensional analogue of Lemma This lemma
was written in a general fashion, but we can be a little more specific about our situation. Recall
that P = aS;k, Q = bSj..f(x), and R = (¢S)pj,ai; Were each arithmetic progression is of step size
n = abc. Notice that P has exactly one element p* in the interval [-%, §); and similarly @ has one
element ¢* € (=%, §]. Let r* := p* 4+ ¢* € (—n,n); by construction, r* € R. Now translating and

dilating the sets P,Q,R by P = %(P ), Q=2Q—-¢"), R= %(R — 1), we get that

n

( (
[—a,a — 1], if p* >0 [—b,b— 1], ifg* >0
P=<1(a—1),d] ifp*<0 Q=1S[-(b-1),b ifg* <0
[—a,al, ifp*=0 [—b,b], ifg*=0
\
)
[—c,e—1], ifr*>0
R=141-(c—1),d ifr<0-
[—e, ¢, ifr*=0
(

These transformations are sum-preserving in the sense that p+qg=r <= p+q =7, where”

represents the image of each element under their respective translation/dilation.

Example 3.5.1. We continue from Example m Given (a,b,c) and X12,Y11, and (55)13; as be-

fore, we have P = 3X19 = {—129,—69, —9,51,111,171}, Q = 4Y1; = {—236,—176, —116, —56, 4,64, 124, 184},
and R = (58)1.3, = {—245, 185,125, —65, —5, 55, 115,175,225, 285}. In this case p* = —9,

¢ =4, and sor* = —9+4=—5. Then P = [—2,3], Q= [—4,3], and R= [—4,5].

Whenever p*, ¢*, r* # 0, the intervals P.(Q, and R are asymmetric — their averages are :l:% -
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and we have avg(P) + avg Q # avg(R). This observation gives rise to a simple proof that there

exist mod-ab residue classes where the inequality fails.

Proposition 3.5.2. For large enough d > 0, the following holds.

Leti = (i,i,...,i) € (Z/bZ), 7= (4, 4,...,7) € (Z/aZ)?. Then for any k = (k1,ka, ..., kq) €
(Z)cZ)? with all k; # 0, there exist subsets aXy, C P = a8, bYjr C Q = bSj, p(x), such that
df;?;f‘_‘glyjk < diz: + df’jf{;:)k) — 1. (Thus, we cannot have a high dimensional analogue of Lemma

FZ3)

Proof. We describe the sets aX;;, and bY; by their images under the maps ¢p and ¢g. We will let

o : R — R denote the homomorphism which averages coordinates, i.e. (z1,...,2q) %.
Given a finite subset A C R?, we will write o(A) to denote W, the average value of o on A.

By choice of 4, j, k, the sets P, Q, R are each centered at j:%, as discussed above, and therefore

0(P) +(Q) — o(R)| > L. Let e = & and let aXy, = {w € P: |o(z) — o(P)| < ¢}. Similarly define

J

bflaC ={y € Q:|o(y) — o(Q)| < €}. By the Central Limit Theorem, dek — 1 and dg; — 1 as

d — oo. Also, since o is a homomorphism, we have that |o(z 4+ y) — o(R)| > € for all z € aXo,
Yy € bfﬁg So the Central Limit Theorem also says that k. s — 0as d— oo. From this, it
aX;p+bYjp

easily follows that for large enough d,

dé < dl'5

Q. _
aXik+bYik aXp, +d 1.

bYjk
Finally, pulling these sets back by the bijections ¢r, ¢p, and ¢g, we get the desired inequality. [

What we have shown in this section is that, for general d, unlike for d = 1, one cannot use a

single mod-c residue class of the sumset aX; + bY; to show that df;f}fb% > diz + df,; 1.

3.6 A Counterexample to a Conjecture of Brualdi and Csima

In this final section, we give a counterexample to a conjecture of Brualdi and Csima regarding the

support patterns of stochastic 3-tensors [BC75|.



36
We begin by introducing some additional terminology. A plane of a 3-tensor T is a 2-
dimensional pattern obtained by fixing one of the coordinates of [n]3. A plane section of a pattern

P is the intersection of P with a plane.

Given a plane section I' of a pattern P, the associated characteristic function is h : P — R

1 ifpel
given by h(p) =

0 otherwise.
Csima [Csi69] gave a characterization of stochastic patterns involving these characteristic func-

tions.

Theorem 3.6.1. [Csi6Y] Let P C [n]? be a pattern. Let hy, ..., hs, be the characteristic functions
of the plane sections of P. Then P is stochastic if and only if for all (c1,...,c3n) € Z3" such that
2321 ¢; = 0, the function 2?21 c;hi is either identically zero or assumes both positive and negative

values.

Brualdi and Csima [BC75] then conjectured that this statement still holds if the ¢; are restricted

to the set {—1,0,1}.

Conjecture 3.6.2. [BC75] Let S C [n]3 be a pattern. Let hy, ..., h3, be the characteristic functions
of the plane sections of S. Then S is stochastic if for all (e1,...,e3,) € {—1,0,1}3" such that
Z‘?Zl €; = 0, the function Z‘?Zl eih; is either identically zero or assumes both positive and negative

values.

In the same paper, Brualdi and Csima proved [BC75, Theorem 2.7] the matrix analogue of

Conjecture [3.6.2

Our counterexample to Conjecture [3.6.2]is a 5 x 5 x 5 pattern, which we present as a subset
of [—2,2]? instead of [5]? for notational convenience. We will write z;,v;, 2 (i = —2,—1,0,1,2) to
denote the characteristic functions of the plane sections in the z,y, and z directions respectively.
Define the function L = Y2 ,i(x; 4+ yi + 2), and let T = NSupp(L) := {(z,y,2) € [-2,2]? :
L(z,y,z) > 0} be the nonnegative support of L. Thus T is the set of integral points in the cube

[—2,2]% whose coordinates have nonnegative sum.
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By Theorem [3.6.1] and construction of T, T is not a stochastic pattern. However, we have
verified by exhaustive computer search that every {—1, 0, 1}-linear combination of the characteristic
functions x;, y;, z; with coefficients summing to zero is either identically zero on 1" or assumes both

positive and negative values, in violation of Conjecture Our code can be found at [HY23].
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