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Abstract

Primary care, the backbone of the nation’s health care system, is at a grave risk of

collapse and facing a confluence of factors that could spell disaster. Patients are dissat-

isfied and have difficulty of getting timely access while physicians are unhappy with their

jobs by facing insurmountable tasks. There exists a strong call for improving patients’

accessibility to care and enhancing providers’ operational efficiency.

Analyzing patient flow plays an important role in improving the performance of

health care delivery systems. Patient’s length of visit (LOV), which characterizes the

duration of an episode of hospital or clinic stay, is an extensively used measure to

quantify the system performance. For traditional primary care visits, the care delivery

services featuring multiple tasks accomplished by a limited number of care providers,

comprise the majority of patient’s LOV. It is critical for scientifically sound and valid

methods to be developed and employed to capture the complexity of health care delivery

systems and evaluate patient’s LOV. However, few analytical work exists to study such

processes with necessary details when surveying the literature. Thus, developing effective

analytical models to study care delivery processes inside clinics is an objective of this

research.

Meanwhile, the rapid development of information technology has introduced substan-

tial opportunities and challenges in redesigning primary care. The advances in internet

and mobile devices have made delivery of care over a distance possible. Many health

care organizations have introduced online programs, referred to as “e-visits” (or “e-

service”, “e-portal”, etc.), to provide patient-physician communication through securing
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messages. A spate of qualitative studies have investigated electronic messaging as a way

to improve efficiency by decreasing the number of office visits. To better understand

and implement e-visits, a mathematical model of primary care clinics with e-visits can

provide a fresh look at the care delivery process from an integrated systems engineering

perspective. Yet, few quantitative model is available in the current literature addressing

e-visits in primary care. Therefore, another goal in this study is to establish an ana-

lytical framework for modeling primary care delivery with e-visits and investigate the

impact of e-visits on care provider’s productivity and patient’s accessibility.

To achieve these goals, we start with modeling care service operations within patient

rooms. A stochastic modeling framework is introduced to describe the workflow in

outpatient clinics such as primary care and pediatric clinics, Gastroenterology (GI)

clinics, and is also applicable to model hospital emergency departments and urgent care

units. Furthermore, to resolve the dimensionality issue when extending the modeling

scope to large-scale systems with shared resources, an iterative method, referred to as the

shared resource iteration is proposed. Services within one exam room are modeled using

the aforementioned approach and a convergent iterative method is applied to analyze

the systems with two or more exam rooms.

On the other hand, to investigate e-visits’ impact on primary care delivery, a queueing

framework to study primary care physicians’ operations coordinating patients’ office

visits, e-visits, and other non-direct care tasks is established. Analytical formulas to

evaluate the average patient lengths of visit and their variances for both office visits and

e-visits are derived. System monotonic properties are investigated and the conditions of

when e-visits can lead to an improved access are identified.

Finally, to illustrate the applicability of the modeling scheme, case studies at the
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GI clinic of the University of Wisconsin Health Digestive Health Center (DHC) and the

Breast Imaging Center of the University of Wisconsin Medical Foundation (UWMF)

are presented. Ways to improve the operational efficiency and to accommodate the

rising patient demand are identified. The rigorous models and methods introduced in

this dissertation provide quantitative tools for care providers to apprehend care delivery

operations and design effective care delivery policies.
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Chapter 1

Introduction

1.1 Research Motivation

The primary care delivery system is under tremendous strain. Due to population growth

and aging, and the expanded health care insurance coverage, demand for primary care

services has increased substantially in the past years. More patients need access to

primary care but less medical students are choosing to enter the field. The recent studies

show that 62 million people nationwide have no or inadequate access to primary care

[1, 2] while only 13% of the final-year medical students are planning on primary care

careers [3]. The implementation of the Affordable Care Act (ACA) will likely exacerbate

the overcrowding in primary care clinics and the shortage of physicians [4]. Therefore,

improving patients’ accessibility to care and enhancing physicians’ operational efficiency

is of significant importance.

Analyzing patient flow in hospitals and clinics has been one of the key activities

in the operations management of care delivery to improve system efficiency and patient

satisfaction. A substantial amount of research has been devoted to studying patient flow

to reduce delays in hospitals and clinics and facilitate the redesign of care delivery [5, 6].

Care delivery systems possess the complex, variable, dynamic and multidimensional

nature. A spate of mathematical methods emerged; however, most of those methods only

adopt deterministic models, which are inadequate because of the necessity for models
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to reflect the system dynamics. Meanwhile, an accurate and reliable stochastic model

of patient flow would enable hospital and clinic managers to understand the system

behaviors. Consequently, it can be useful in improving system functionality, such as

predicting the future activity’s impact on the wards and accommodating forthcoming

demand variations.

To characterize the patient flow in clinics and hospitals, discrete-event simulation

(DES) has acted as a prevailing approach for quantitative studies (e.g., reviews [7, 8, 9]

and papers [10, 11, 12, 13, 14, 15, 16, 17, 18, 19]). Although simulations can provide

a detailed and sometimes graphical representation, most of the simulation studies are

case based. In other words, even if specific recommendations may be provided, system

properties may not be unveiled. In addition, simulations typically require substantial

details of data inputs and take a long time for model development. Moreover, in order to

obtain statistically significant results, multiple replications are necessary and extended

simulation time is ineluctable. These facts have limited the applicability of simulations.

Analytical models, although less detailed compared to simulations, if with an appropri-

ate level of simplification and abstraction, can provide a deft analysis of different system

variations, and have the potential to uncover the insights and nature of the system.

Therefore, analytical models are pursued in this dissertation to study the patient flow

in health care delivery systems in an efficient and effective way. The following three

subsections address the research motivations for primary care delivery system model-

ing, including modeling care activities within patient rooms, care delivery with shared

resource, and systems incorporating e-visits.
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1.1.1 Care Delivery within Patient Rooms

Care services within patient rooms are the most critical and time-consuming processes

in primary care delivery, as well as other care delivery practices such as emergency de-

partments. Most of the existing analytical methods to analyze patient flow use queueing

theory models (e.g., review [20] and papers [21, 22, 23, 24]). Typically, such models

use single or multiple servers to represent hospital or clinic operations at a very high

level, without considering the details and complexities involved in the operations. For

example, the specific activities within patient rooms during care delivery are typically

ignored or aggregated into one operation using one server. Clearly, all the dynamics

and behaviors within a patient room and their correlations with doctors and nurses are

missing when they are represented by a single server. Therefore, lack of sophistication

and fidelity constrains the application of using simple queueing theory models to char-

acterize primary care delivery systems. To the best of our knowledge, few analytical

models are available to describe the primary care services in detail. To fill the void

in this area, Chapter 3 focuses on modeling care delivery services such as rooming, di-

agnosis, injection and immunization, and education within patient rooms. A Markov

chain model featuring a closed, parallel, and reentrant network with limited resources is

built to characterize the in-room care delivery process. Formulas to evaluate the patient

length of visit and staff utilizations are developed, and the extension to non-Markovian

scenarios is also investigated.

1.1.2 Care Delivery with Shared Resources

Although the method for modeling care delivery within patient rooms provides an ap-

proach to studying detailed care activities, substantial difficulties may arise when the
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resources (e.g. care providers, supportive staff) are shared among multiple activities.

For instance, in primary clinics, laboratory test and diagnostic imaging centers, and

some hospital units, the systems under study might be of large-scale, including multiple

exam rooms and having complex staffing configurations. In addition, hospital units or

clinics might not be able to invest sufficient capacity because of cost pressures, regula-

tory constraints, or a shortage of appropriate personnel. As a resolution, cross-trained

staff with potentially increased service flexibility are adopted. However, although one

supportive staff taking care of multiple exam rooms and patients could be capacity-wise

saving, it also introduces availability issues among resources which could incur excessive

waiting among patients.

Various care delivery systems share such identities and are desperate for effective

methods to coordinate and improve care providers’ operations. However, enormous

challenges are encountered when shooting for a high fidelity model to capture complex

system interactions. When characterizing a typical outpatient clinic using stochastic

models, by just adding one room to the system, the size of the state space increases

substantially, and the transitions are not easy to be unambiguously identified as they

are subjected to the resource constraints. All these factors evince the plight in mod-

eling complicated health care systems efficiently and effectively. Therefore, to resolve

the dimensionality issue when modeling care delivery systems with resource sharing, an

iterative method, referred to as the shared resource iteration, is introduced to character-

ize systems with one or several care providers taking care of multiple exam rooms and

patients. In Chapter 4, a system-theoretic approach based on Markov chain models to

study the patient flow of systems with resource sharing is introduced. The experimental

results manifest that such a method results in an accurate performance estimation.
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1.1.3 Care Delivery through Electronic Visits

The ever-evolving information technology has aroused substantial transformations in

care delivery. The advances in internet and mobile devices have empowered patients to

access care virtually. Electronic visits (or “e-visits”, “e-portal”, “e-service”, etc.), where

patient-physician communication is provided through securing messages, have attracted

extensive attention from health professionals [4, 25, 26, 27, 28, 29, 30, 31, 32, 33]. Re-

cent studies have demonstrated that significant savings can be obtained with improved

access to care, increased provider efficiency and patient satisfaction, and lower costs by

introducing e-visits, compared to traditional office visits [26, 33]. Electronic communi-

cation between patients and physicians can reduce health plan spending on physicians’

office and laboratory services [34], and patients and physicians alike indicate satisfaction

with electronic messaging [35, 36, 37]. However, the implementation of billable e-visits

progresses slowly. Physicians hesitate to adopt e-visits for fears of being overburdened

by electronic communication, and also the improper use of electronic communication

by patients [28]. Many pilot studies on e-visits have been conducted through observa-

tions, interviews, and survey analyses. To better understand and implement e-visits,

a mathematical model characterizing primary care delivery with e-visits can provide a

fresh perspective of the care delivery process from an integrated systems engineering’s

point of view. As indicated in the 2014 Report to the President by Presidents Council

of Advisors on Science and Technology [38], and the 2009 Agency for Healthcare Re-

search and Quality (AHRQ) and National Science Foundation (NSF) workshop [39], such

systematic approaches can lead to a breakthrough towards a new era of care delivery

modeling.

To implement e-visits to increase care accessibility, a major issue is to understand how

patient’s access to care can be impacted by having more care options such as e-visits [25].
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Specifically, questions such as how is the workflow in primary care clinics affected by the

use of e-visits, and what is the impact on resources necessary to deliver proper care arise

naturally. To answer these questions, evaluating the efficiency of primary care operations

with e-visits, and determining the optimal scheduling policies coordinating office and e-

visits are aspired. Unfortunately, the current literature lacks effective methods to address

these problems. To bridge the gap, Chapters 5 and 6 are devoted to establishing an

analytical framework for modeling the primary care operations with e-visits and using

it to resolve the accessibility issue in primary care.

1.2 Organization of the Document

The rest of this document is organized as follows. Chapter 2 reviews the related lit-

erature on primary care redesign and the modeling techniques and methods applied in

health care systems. Chapter 3 presents the analytical modeling of in-room care services.

Formulas for performance evaluation are derived and system properties are examined.

In Chapter 4, to address the dimensionality issue when modeling systems with multiple

exam rooms and shared resources, an iterative method is introduced. The convergence

of the method is justified analytically. This Markov chain based modeling framework

generates accurate system performance estimates. To incorporate e-visits in primary

care, Chapter 5 introduces a queueing framework to model physicians’ operations coor-

dinating e-visits and office visits, as well as physicians’ non-direct care activities. The

impact of e-visits on patient access to primary care is discussed in Chapter 6. Further-

more, to elucidate the applicability of the proposed modeling framework, a case study

at the Gastroenterology clinic of the University of Wisconsin Health Digestive Health

Center, and a case study of mammography testing process at the Breast Imaging Center
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of the University of Wisconsin Medical Foundation are introduced in Chapter 7. Finally,

the summary and future work are presented in Chapter 8. All the proofs and derivations

can be found in the Appendix.
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Chapter 2

Literature Review

The goal of this research is to develop rigorous engineering approaches to model primary

care delivery systems to improve patient accessibility and provider efficiency. Thus, the

literature review focuses on the following aspects: Section 2.1 highlights the research

efforts on redesigning primary care. Section 2.2 reviews the care activity modeling,

the modeling methods and techniques and the applications in health care systems. The

existing research on e-visits are summarized in Section 2.3. Finally, Section 2.4 illustrates

the perspective of the current study.

2.1 Primary Care Redesign

In the face of the diminishing government subsidies, fierce competition, and the influence

of care reform, health care organizations are rife with pressures to change [40, 41]. The

primary care redesign initiative aims to provide easy and timely access to care, which is

culturally sensitive, quality-driven, and maximizes the use of education and community

resources based on patient needs. To make such a care delivery model successful, it

is essential to create a sustainable environment, in which team members work to their

highest level of licensure with excellence at all levels of the system of care, and make

full use of existing and emerging technologies [42].
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Redesigning primary care has attracted substantial research efforts (see white pa-

per [43], and reviews [41, 44, 45, 46]). The national conundrums in primary care have

been outlined by Bodenheimer [45], where a confluence of factors could lead to disasters,

such as excessive demands, uneven quality of care, unhappiness with jobs, and inade-

quate reimbursement. To address these challenges, actions on primary care practices

(microsystem improvement) and larger health care systems (macrosystem reform) are

desired. Furthermore, Bodenheimer and Pham [46] review the state of primary care in

the US and have conducted a thorough discussion on the feature and landscape of pri-

mary care practices. The difficulties accessing primary care are due to multiple factors,

including shortage in the primary care practitioner workforce, geographic maldistribu-

tion, and organizational issues within primary care practices. Issues such as teamwork,

electronic health records (EHRs) and information systems, medical homes, payment sys-

tems, as well as advanced access are of primary interests by researchers. To provide a

general picture of primary care redesign, these studies are reviewed in Subsections 2.1.1

- 2.1.5, correspondingly.

2.1.1 Teamwork

Teamwork in primary care practice has proven benefits in achieving better outcomes.

Lemieux-Charles and McGuire [47] provide a review of health care team effectiveness

from 1985 to 2004 by comparing teams with usual (nonteam) care, examining the im-

pact of team design on effectiveness, and exploring relationships between team context,

structure, processes, and outcomes. Through observational studies, Bower et al. [48]

discuss team practice structure, process (climate), and outcome (quality of care) in pri-

mary care. The results indicate that there exist important relationships between team
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structure, process, and outcome that may be of relevance to quality improvement ini-

tiatives in primary care. More studies on teamwork in primary care can be found in

[49, 50, 51, 52, 53].

2.1.2 Electronic Health Records

Data in electronic health records plays a central role in care delivery, quality control,

clinical governance, and provider practices. The adoption of EHR system has been

a worldwide trend in care practice. Lusignan and Weel [54] review the opportunities

of using routinely collected data in primary care research, such as handling growing

volumes, improving data quality, facilitating technological progress for processing, and

bridging clinical and genetic data, as well as establishing the body of know-how within

health informatics community. A comprehensive review of the literature on the current

state of the implementation of health information system in primary care is carried out

by Ludwick and Doucette [55]. It highlights the factors that affect EHR implementation

outcomes, which include the graphical user interface design quality, feature functionality,

project management, procurement and users’ previous experience. In addition, the data

quality in electronic patient records (EPRs) in primary care is reviewed by Thiru et

al. [56] based on publications in 1980 to 2001. Hillestad et al. [57] investigate the

impact of electronic medical record (EMR) systems on transforming primary care, and

the potential health benefits, savings, and costs. From a human-factors engineering

perspective, Beasley et al. [58] discuss the concept of information chaos in primary care

and explores the implications and impacts on physician performance and patient safety.

More studies related to data and information systems in primary care are discussed in

papers [59, 60, 61, 62].
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2.1.3 Medical Home

The concept of medical home is defined as having a regular doctor or place of care,

doctor/staff knowing information about patient’s health history, the place being easy to

contact by phone, and the doctor/staff coordinating care received from other doctors

or source of care [63]. Rosenthal [64] reviews the literature and programs on medical

homes to assess the usefulness of the model based on several principles, such as team-

directed medical practice, personal physician, whole-person orientation, coordinated and

integrated care across the health care domain, as well as quality and safety. By arguing

that the specialist-dominated US health care system results in mediocre quality care

with the excessive use of costly service but little marginal health benefit, Landon et al.

[65] further claim that the patient-centered medical home has become a policy shorthand

for rebuilding US primary care capacity. Papers [66, 67, 68, 69] provide more references

addressing medical homes in primary care practice.

2.1.4 Payment System

Davis et al. [44] argue that a new primary care payment system to blend monthly

patient panel fees, traditional fee-for-service, and new incentives for patient-centered

care performance is desirable. As performance-based payments are increasingly common

in primary care, Friedberg et al. [70] suggest that pay-for-performance programs should

monitor and address the potential impact of performance-based payments on health care

disparities. To improve the ability of primary care to play its essential role in the care

delivery system, Porter et al. [71] offer a framework based on value for patients to sustain

and improve primary care practice. It states that payment should be modified to bundle

reimbursement for each subgroup and reward value improvement. Extensive studies in
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payment related issues in primary care have been introduced in papers [72, 73, 74, 75].

2.1.5 Advanced Access

The advanced access, also known as open access or same-day scheduling, in which pa-

tients calling to schedule a physician visit are offered an appointment on the same day,

has manifested its helpfulness to reduce waiting times in primary care. Murray et al.

[76, 77] summarize six elements of advanced access that make it sustainable: balanc-

ing supply and demand, reducing backlogs, reducing the variety of appointment types,

developing contingency plans for unusual circumstances, working to adjust demand pro-

files, and increasing the availability of bottleneck resources. Surveys in papers [78, 79]

also show that patients are seen more quickly in advanced access practices, but with less

flexibility in the choice of appointment. Thus, appointment systems should be flexible

to accommodate different needs of disparate patient groups. Additional papers studying

advanced access in primary care can be found in [80, 81].

In addition to the five aspects discussed above, other reform strategies are also

proposed to address the problems of estimating panel size, increasing capacity, and

mitigating geographic maldistribution. Other recommendations include standardizing

reimbursement levels to reduce insurance-linked refusal, increasing after-hour access,

implementing open access for same-day scheduling, introducing e-mail and telephone

visits, and forming primary care teams with nonprofessional team members.
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2.2 Care Operations Modeling

In response to the primary care redesign initiative, many health care organizations have

made drastic changes yet resulted in slightly increased patient access without any sig-

nificant reductions in cost. Moreover, improved clinical outcomes and service quality

are increasingly demanded by payers and patients. All these factors combined with the

complex and dynamic system nature make care delivery systems the area for the devel-

opment and use of OR/MS methods and frameworks to help identify capacity needs and

system bottlenecks. The scope of this review is to bring together the recent developments

that are related to patient flow and care delivery operations modeling. Specifically, com-

puter simulations and analytic models are the prevailing OR/MS methods and will be

elaborated in Subsections 2.2.1 and 2.2.2, respectively.

2.2.1 Discrete-Event Simulation in Care Operations Modeling

Operational inefficiencies have their roots in the improper benchmarking and unac-

counted dynamics. It is important for health systems to react to redesign on an ad

hoc basis. Many health systems use “small tests of change” to iteratively improve

processes. However, when contemplating major changes in systems of care, such as ap-

pointment scheduling and staffing, the use of the plan-do-check-act (PDCA) model is

not appropriate for being disruptive and time-consuming. Meanwhile, simulation offers

an alternative method to “test” changes in practice and to evaluate the impact of those

changes on patients and staff. In recent years, discrete-event simulation dominates the

quantitative studies in care delivery research (see reviews [8, 82, 83]). The booming in-

formation technology and data analytics have substantially enhanced and extended the

functions of simulation tools. Through modeling complex facilities, sophisticated logics,
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and dynamic schedules, simulation has become the very aid for decision making and

operations improvement. In particular, simulation models are widely used for assessing

system efficacy, carrying out what-if analysis to evaluate the system design, studying the

impact of potential changes, and investigating the complex relationships among system

variables. A comprehensive review of discrete-event simulation in health care is present-

ed by Jacobson et al. [8]. In this review, simulation studies of single or multi-facility

healthcare organizations including outpatient clinics, emergency departments, surgical

centers, orthopedic departments, and pharmacies are reviewed. Similar reviews have

been provided in [82, 83, 84]. For instance, Gunal and Pidd [82] classify the papers of

discrete-event simulation for performance modeling in health care according to the areas

of applications. They indicate that there is a lack of generality and explain the rationale

why generic approaches are rare and specificity dominates. In addition, by reviewing

the legacies of simulation modeling in health care, Eldabi et al. [83] propose future

opportunities to use simulation as a problem-solving technique in health care settings.

Eldabi et al. point out that a major challenge lies in persuading service providers that

simulation can make a critical contribution, and from the perspective of the modeling

community, the most pressing need is to join up different modeling methods. Moreover,

Wiler et al. [84] focus on the emergency department (ED) and categorize the modeling

approach of patient flow in emergency departments into five categories: formula-based,

regression-based, time series analysis, queueing models, and discrete-event simulations.

As ED is one of the most critical departments in a hospital, and ED overcrowding has

become a national crisis ([85, 86]), a substantial amount of simulation studies have been

devoted to ED to reduce crowding (see reviews [84, 87]). Additional simulation studies

in EDs have been reported in papers [13, 14, 15, 88, 89, 90]. In addition to simulations

of EDs, other hospital departments are also studied extensively. Simulation studies on
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different hospital units (e.g., critical care, intensive care, surgical, pharmacy, medical,

etc.) can be found in [91, 92, 93, 94, 95, 96]. In addition, simulations have been used to

inspect and improve the scheduling and appointment systems in outpatient clinics, see

papers [97, 98, 99, 100, 101]. More simulation studies on outpatient clinics are described

in [102, 103, 104, 105, 106].

2.2.2 Analytical Methods in Care Operations Modeling

While simulations are extensively applied and can provide detailed analysis, the majority

of them are case study based and may suffer from long model development and simulation

time. The increasing variance has also brought a mounting awareness of the limitations

of conventional simulation techniques. Meanwhile, analytical tools, such as queueing

theory models, can provide a quick analysis and have the potential to dig deeper into

system properties. Compared with simulation models, analytical models have been used

much less frequently to study primary care operations. Reviews of such models can

be found in [20, 84, 107]. Fomundam and Herrmann [20] summarize queueing theory

applications in health care, such as waiting time and utilization analysis, system design,

and appointment systems comparisons at different scales, from individual departments

(or units) to healthcare facilities and regional health care systems. Green et al. [21]

introduce an M/M/s queueing model to estimate the number of providers needed in an

emergency department. To determine bed capacity of maternity facilities in a perinatal

network, a queueing theory model is used by Pehlivan et al. [108] to evaluate the refused

admission probability. Such a model is embedded into a multi-period mixed-integer

optimization algorithm for estimating the necessary capacity. Approximating generating

function analysis is presented by Au-Yeung et al. [22] to study patient response time.

Through using a queueing model, where the nodes represent assessment and treatment
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stages, patient completion times are analyzed by Mayhew and Smith [23]. Similarly,

a queueing network model is described by Jiang and Giachetti [24] to investigate the

impact of parallelization of care on patient cycle times. Dobson and Lee [109] develop

a stochastic model of an ICU with patient bumping under differing capacity and arrival

patterns. Abraham et al. [110] compare several models for forecasting daily emergency

inpatient admissions and occupancy.

In addition to queueing models, other analytical methods have been introduced to

conduct flexible analysis and gain insights. For example, a three-level strategy model

to design a hospital department is presented by Fanti et al. [111] with three basic

elements: 1) modeling module, 2) optimization module, and 3) simulation and decision

module. Augusto and Xie [112] introduce a new modeling methodology to address

organization problems of health care systems using Petri-nets based metamodels. The

issues of outpatient appointment scheduling are studied in [113, 114, 115] using mixed-

integer programming models.

Markov models are often used to represent stochastic processes which are formalized

by a set of states to which the system may belong, and probabilistic laws that govern

the movement between the states. Such models assume the probabilistic behavior of

patients moving around the system and therefore, gives a realistic representation of the

actual system. In an early paper, Irvine et al. [116] describe the development of a contin-

uous time stochastic model of patient flow. Essentially, it is a two-stage continuous-time

Markov model that describes the movement of patients through geriatric hospitals. Fur-

ther, McClean et al. [117] extend stochastic Markov modeling to three stages and attach

different costs to each of the three stages. Such a model can facilitate planning of health

and social services for the elderly while taking cost into account. Taylor et al. [118] use

a continuous time Markov model and apply it to a four compartmental model where
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the four stages are acute, long-stay, community, and dead. Then Taylor et al. [119]

extend these models to contain six stages to determine the interactions between hospital

geriatric medical services and community care. In Wang et al. [120], a Markov chain

model is developed to analyze the workflow and staffing level in a CT division of the

UWMF. In the study of the rapid response process to improve patient safety in acute

care, the response process is modeled as a complex network with split, merge, and par-

allel structures and an analytical method is developed to evaluate the decision time and

its variability [121, 122].

2.3 Electronic Visits in Primary Care

Amid the redesigned primary care, e-visits, as a novel alternative to the traditional of-

fice visits, starts to attract growing attention in recent years. Widespread efforts to

improve health care quality, safety, and efficiency focus on using information technolo-

gies including electronic health records, patient registries, computerized physician order

entry, and embedded decision supports. Among them, e-visits, involving the usage of

patient portals where patients can access their medical records and communicate with

their primary care providers by secure messaging, has been viewed as a promising tech-

nology to improve the quality and efficiency of care [123]. This innovative channel of

care delivery has received considerable attention in the US. Many health care organi-

zations, including Henry Ford Health System, Mayo Clinic, Kaiser Permanente Health

Plan, and the University of Pittsburgh Medical Center have initiated e-visit programs

[4, 25, 26, 31, 32, 33]. According to a survey by Manhattan Research (Wall Street Jour-

nal 2012 [124]), the percentage of physicians who say they use secure messaging, e-mail,

instant messaging or video conferring with their patients has increased from below 25%
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in 2005 to about 40% in 2011. Primary care providers eager for patients to adopt e-visits

as the technology holds promise to reduce the physician workload on office visits and

telephone visits on top of improving patient health. Most of the existing e-visit studies

focus on investigating the effectiveness and patient/provider experiences of implement-

ing e-visits. It is found that the quality of care and patient outcomes using e-visits are

equivalent to those achieved with office visits [31, 32].

Implementing e-visits can free up extra office appointments for the patients with

urgent and complicated issues, reduce urgent care and emergency room visits and inpa-

tient hospital admissions, improve care for senior population with chronic diseases, and

substantially reduce the cost of care [25, 26, 31, 32, 33]. However, there are mixed conclu-

sions drawn regarding the substitutability of e-visits with traditional forms of physician

contact. Specifically, Katz et al. [125, 126] suggest that e-visits have no discernible effect

on reducing physician workload, and e-mails generated through a triage-based system

did not appear to substitute for phone communication or to reduce visit no-shows in

a primary care setting. In addition to that, other studies investigate billing and reim-

bursement issues, information system structures, legal and regulatory issues, financial

return, and system implementation and training [4]. The empirical evaluation of e-visits

is challenging and, therefore, quantitative models to study e-visits and its impact on pri-

mary care delivery systems are pursued. As a quantitative analysis of e-visits, a patient

health dynamics model is developed in [127] under alternative primary care delivery

modes, including the usage of e-visits and non-physician providers. This study quanti-

fies the overall impact of adopting e-visits on physician’s choices and expected earnings

and patients’ expected health outcomes. In a follow-up study based upon these results,

it is argued that e-visits provide a gateway for traditional forms of primary care delivery
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[128]. In spite of these efforts, no analytical study on patient flow and operations man-

agement has been carried out for primary care delivery through e-visits. Moreover, all

the existing studies do not consider the detailed workflow design for physicians to handle

the increasing amount of e-visits, and often overlook the scenario that the providers may

not be available for clinical service due to other obligations.

2.4 Perspectives

Health care providers are increasingly aware of the need to use their resources as effi-

ciently as possible to improve patients’ ability to receive the most appropriate care in

a timely fashion. As this chapter has attempted to demonstrate, effective engineering

approaches are critical to this objective and have achieved cheerful accomplishments.

Yet, complexities which feature various types of patients, time-varying demands, and

the often disparate perspectives of administrators, physicians, nurses, and patients are

embedded in care delivery systems. These pervasive challenges affect the ability and per-

formance of the existing methods to improve the quality of care delivery. Care providers

are still longing for effective methods to gain managerial insights and make decisions.

The urge for analytical tools to study patient flow and enhance operations management

for redesigning primary care is eminence, and our work intends to contribute to this

end. In close, modeling patient flow in health care systems can assist in the overall

understanding of the system activities and be useful in improving the system perfor-

mance and functionality. The success of modeling care operations would contribute to

the interdisciplinary research in redesigning primary care.
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Chapter 3

Modeling of Care Delivery

Operations within Patient Rooms

3.1 Introduction

In this chapter, we introduce a Markov chain model featuring a closed, parallel, and

reentrant network with limited resources to investigate the in-room care delivery process.

The system under study is described in Section 3.2. Formulas to evaluate the patient

length of visit and staff utilizations are developed in Section 3.3. The extension to non-

Markovian scenarios is investigated and approximation formulas are presented in Section

3.4.

3.2 System Description and Problem Formulation

3.2.1 System Description

The patient flow in an outpatient clinic typically includes the following processes: reg-

istration/triage, waiting for room assignment, in-room care services (physician visit,

medical assistant visit, nurse education, intravenous (IV) administration, medical as-

sistant warp-up, etc.), and finally check-out. Among those activities, the care services
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delivered within patient rooms are extremely critical since the majority of the value-

added time is spent here. In addition, most of the resources or capacity of the clinic,

such as physicians (MDs), medical assistants (MAs), nurses (RNs), technicians, and

exam rooms contribute to this part. Therefore, accurate quantitative analysis of the

patient flow and care delivery services within patient rooms is compelling.

By considering the services a patient may receive within the patient room, the patient

flow in a typical outpatient clinic are described in Figure 3.1, where the circles represent

the care services and the solid lines characterize the patient flow in terms of receiving

these services. Each line represents an individual patient room and the corresponding

care operations in the room. As exhibited in Figure 3.1, a patient starts with rooming

with medical assistant, then physician diagnosis, and then nurse administering IV if

necessary, physician revisit if necessary, and finally, medical assistant warp-up.
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Figure 3.1: In-room patient flow in outpatient clinics

In addition to the general patient flow described above, it’s possible that patients may

not need IV administration and will exit directly. There are also cases that patients do

not need to visit physicians or MAs for the second time. Therefore, the basic patient flow
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in the patient room can be represented by a closed re-entrant process with splits. The

“re-entrant” characterizes repeated visits of physicians and MAs, the “splits” describes

disparate patient flows (i.e., who may skip IVs and the subsequent services), and the

patient room (or bed) represents the “closed” nature, i.e., the room can be viewed

as a carrier to undergo all the services with the patient, and will be available to the

next patient after the current one leaves. Typically, there could be multiple patients

presented in multiple rooms simultaneously. Therefore, it is a complex system with

multiple, parallel, and re-entrant processes with splits. Moreover, the resources (such as

physicians, MAs, nurses, or equipment) are limited.

Remark 3.1 Note that the flow described in Figure 3.1 represents the care delivery

services for patients during their stays. A patient may not physically present in the

patient room throughout their visits. In some occasions, a patient might need to leave

the room for other tests, but the room is typically reserved for the patient before check-

out. In particular, in emergency departments, new patients will not be admitted into

the room until the current one is discharged. Therefore, it is equivalent that the room

“goes through” all the services with the patient.

3.2.2 Structural Modeling

Clearly, the system described in Figure 3.1 is too complex to solve directly. In order to

reduce the complexity of the process and make it analytically tractable, we aggregate the

split patient routes into one. In other words, assuming the patients who do not need IV

administration and follow-up visits by physicians and MAs still follow the general flow

of nurse-physician-MA, but with minimum (or zero) service times, we obtain a unified

care delivery process in a patient room.
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Nevertheless, the closed and re-entrant characteristics still remain and to further

reduce the complexity, some special system features should be utilized. Notably, there is

only one patient in each patient room (or bed) at one time. It implies that the population

within a closed re-entrant process is normally one. In addition, upon finishing the service,

the care provider will be released from this activity and the patient will wait for the next

service (e.g., the MA leaves after carrying out the initial inquiry, and the patient needs

to wait for the physician). This is equivalent to the patient waiting in a buffer for the

next “operation.” Therefore, such a closed re-entrant process can be represented by a

closed serial line with population one, see Figure 3.2.

Remark 3.2 The serial processes characterize the sequential care services provided to

patients during his/her stays. In some cases, patients may be served by physicians and

MAs more than two times, and additional tests or other care services may be provided.

Then, an equivalent serial process with multiple visits (more than twice) by physicians,

MAs, or nurses can be constructed. Although consisting of more services and variations,

similar approaches can be applied to processes of this type.

��
��
��
��

��
��
��
��

��
��
��
��

����

����

MA MD RN MD MA

Figure 3.2: Equivalent parallel-serial processes of multiple patient rooms
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3.2.3 Assumptions

To analyze the system as described in Subsection 3.2.1, the following assumptions are

introduced to address the services, providers (resources), and their interactions.

(i) There are M patient rooms (or beds) available in an outpatient clinic, where each

room (or bed) can accommodate one patient only.

(ii) The patient arrival is unconstrained. In other words, the patient room will be im-

mediately occupied by a new patient right after the previous one is discharged. The

unconstrained arrival assumption can be relaxed to general arrival distributions.

Remark 3.3 Ideally, patients should arrive at the clinic based on their appoint-

ment time. In reality, variations such as early or late arrival or even no-show

cannot be overlooked. Poisson arrival, where the inter-arrival time of the incoming

patients follows an exponential distribution are prevailingly used to describe the

patient arrival process [129]. The method to handle more general arrival distribu-

tions will be discussed in Chapter 4. However, when the patient demand is high,

there will always be patients ready to be roomed. The unconstrained arrival can

be assumed.

(iii) There are N services, including physician’s first and second visits, MA’s initial

visit and medication or wrap-up, nurse administering IV, etc. We assume that all

patient rooms are identical, such that for each service (for example, MA’s initial

visit), the processing times are identical among all patient rooms, described by an

exponential distribution with a mean processing time τi, i = 1, . . . , N . Then, the

processing rate of service i is ci =
1
τi
, i = 1, . . . , N .



25

Remark 3.4 The services are carried out by the same group of providers. When

patients have an equal probability to be assigned to any available room, the as-

sumption of the identical processing time among all patient rooms is valid.

Remark 3.5 The exponential service time is introduced to make the analysis

tractable. In Section 3.4, such an assumption will be relaxed and non-exponential

service time distributions can be addressed.

(iv) There are R types of resources in the system, including physicians, MAs, nurses,

etc. The quantity of each resource is defined by rj ∈ {1, 2, . . . ,M}, j = 1, . . . , R.

(v) Each care service can only be carried out when the required resource (e.g., the

physician visit requires one physician) is available. Parameters θi ∈ {1, 2, . . . , R},

i = 1, . . . , N , define the type of resource for service i, and θi = j indicates that

resource type j is needed for service i.

Remark 3.6 To avoid messy notations, for the service that does not need any

resource, we still assume the existence of a virtual resource, but with a quantity

equal to the number of rooms M . This is equivalent to having available resources

anytime.

(vi) In some cases, two or more services may require the same type of resource (e.g.,

both MA’s initial visit and wrap-up need an MA as the resource). The priority of

a service to grab the resource is defined by parameters pi ∈ [0, 1], i = 1, . . . , N ,

where pi = 1 represents the highest priority, and 0 the lowest. For simplicity, we

assume none of these services have the same priority.
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(vii) The services are delivered by their designated resources. When multiple services

request the same resource at the same time, the resource will select the service

based on the rank of priority.

3.2.4 Problem Formulation

In an appropriately defined state space, the system under assumptions (i)-(vii) formu-

lates a stationary random process. Let Ts denote the patient length of visit in the patient

room. In the framework of (i)-(vii), Ts is a function of all system parameters:

Ts = ft(C,P,R,Θ,M), (3.1)

where

C = [c1, c2, . . . , cN ],

P = [p1, p2, . . . , pN ],

R = [r1, r2, . . . , rR],

Θ = [θ1, θ2, . . . , θN ].

Similarly, the utilization of resources (care providers and equipment), denoted as ρk,

k = 1, . . . , R, is also a function of all parameters,

ρk = fρ(C,P,R,Θ,M), k = 1, . . . , R. (3.2)

The problem to be addressed is: Under assumptions (i)-(vii), develop a method to

evaluate the patient length of visit within patient rooms and staff utilization as functions

of the system parameters.
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3.3 Performance Analysis

3.3.1 State Space

The states of the system can be represented by S = (n1, n2, . . . , nN), where ni represents

the number of patients in service i, and ni ∈ {0, 1, 2, . . . ,M}, i = 1, . . . , N . Since at

most one patient is allowed in each patient room, and due to the unconstrained arrival

assumption, there’re always M patients in the system:

N∑
i=1

ni = M. (3.3)

With constraint (3.3), the effective or available states are reduced dramatically. To

find the effective state space, let fM(m, j) denote the number of states in a M -room

system if there are m patients in the first service and there are j services in each room.

If all M patients are undertaking the first service, then all other services will have no

patient, resulting in one state S = (M, 0, . . . , 0). Moreover, if there are m patients

(m < M) in the first service, then the remaining M − m patients are distributed in

j − 1 services. This implies that there will be M −m− k patients in j − 2 services if k

patients are in the second service. By repeating this argument, we have fM(m, j) being

calculated as follows:

fM(m, 1) = 0, m = 0, 1, · · · ,M − 1,

fM(M, j) = 1, j = 1, 2, · · · , N,

fM(m, j) =
M−m∑
k=0

fM−1(M −m− k, j − 1), (3.4)

m = 0, 1, · · · ,M ; j = 2, · · · , N.

An example of fM(m, j) for a five-room four-service (i.e., M = 5, N = 4) system is

shown in Table 3.1.
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Table 3.1: fM(m, j) for five patient rooms with four services in each room

f(m, j)
m

0 1 2 3 4 5

j

2 1 1 1 1 1 1

3 6 5 4 3 2 1

4 21 15 10 6 3 1

Therefore, for a system with N services in each patient room, the total number of

effective states K will be:

K =
M∑

m=0

fM(m,N). (3.5)

Then, effective states are denoted as Sl = (nl
1, n

l
2, . . . , n

l
N), and their steady state

probabilities are Pl = P (nl
1, n

l
2, . . . , n

l
N), l = 1, . . . , K.

3.3.2 Allocation of Resources to a State

As discussed in Subsection 3.3.1, there areK effective states in the system. For each state

Sl, define Al as the resource availability, Al = (al1, a
l
2, . . . , a

l
N), where ali, i = 1, . . . , N ,

denote the number of resources available for service i for a given state Sl. For example,

assume r1 MAs are available for both the initial service and the wrap-up. In addition, if

two of them are working with patients on wrapping-up which has a higher priority than

the initial service, then the number of available MAs for the initial service will be r1−2.

Therefore, ali represents the difference between the quantity of resources for service i

and the number of the same resources assigned to a higher priority service, which can



29

be calculated as follows:

ali = rθi −
N∑
k=1

αl
k,i · nl

k, (3.6)

where αl
k,i is an index function of whether there exists another service k having a higher

priority than service i for the same resource rθi , and αk,i can be calculated from

αl
k,i =

 1, if θk = θi and pk > pi,

0, otherwise.
(3.7)

3.3.3 State Transitions

Define βl
i, i = 1, . . . , N , l = 1 . . . , K, as the out-going transition rate for service i in state

Sl (note that here the self-loop transition rate is ignored). Based on the availability of

resources,

βl
i =

 cin
l
i, if nl

i ≤ ali,

cia
l
i, if nl

i > ali.
(3.8)

For a given state Sl, let k
l
i denote the index number corresponding to states (nl

1, . . . , n
l
i+

1, nl
i+1 − 1, . . . , nl

N), i = 1, . . . , N − 1, and kl
N for the state (nl

1 − 1, nl
2, . . . , n

l
N +1). The

out-going transition probabilities of the current state will be equal to the incoming prob-

abilities from all other states. Then, the following transition equation can be obtained:

N∑
i=1

βl
iP (nl

1, n
l
2, . . . , n

l
N) =

N−1∑
j=1

β
klj
j P (nl

1, . . . , n
l
j + 1, nl

j+1 − 1, . . . , nl
N)

+ β
klN
N P (nl

1 − 1, nl
2, . . . , n

l
N + 1). (3.9)

Next, introduce a matrix Φ, where for l = 1, . . . , K,

Φ(kl
i, l) =

 −β
kli
i , if Pkli

> 0,

0, if Pkli
= 0,

(3.10)
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and

Φ(l, l) =
N∑
i=1

βl
i, i ̸= l, l = 1, 2, · · · , K. (3.11)

Thus, a transition matrix Φ with the dimension K ×K and rank K − 1 is obtained.

By taking the first K − 1 rows of Φ and adding a normalization condition

K∑
l=1

Pl = 1, (3.12)

we construct a new matrix Γ, where

Γ(l, j) = Φ(l, j), l = 1, . . . , K − 1, j = 1, . . . , K, (3.13)

Γ(K, j) = 1, j = 1, . . . , K. (3.14)

Then introduce vectors X and Y , such that

X = [P1, P2, . . . , PK ]
T , (3.15)

Y = [0, . . . , 0, 1]T . (3.16)

We obtain the balance equations as

ΓX = Y. (3.17)

Therefore, the steady state probabilities can be obtained by solving the equation

X = Γ−1Y. (3.18)

Since we consider an irreducible Markov chain with finite number of states, there always

exists a unique steady state solution.
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3.3.4 Length of Visit and Staff Utilization

To obtain the average patient length of visit, first we evaluate the throughput of the

system. Define TP as the rate of patients leaving from the last service, then we have

TP =
K∑
l=1

βl
NPl, (3.19)

where Pl is calculated by solving (3.18).

Since there are M rooms in the system, and each room constantly holds one patient,

then, the length of visit can be obtained from Little’s Law.

Theorem 3.1 Under assumptions (i)-(vii), the patient length of visit Ts can be calcu-

lated as

Ts =
M

TP
=

M∑K
l=1 β

l
NPl

, (3.20)

where Pl is an element of vector X, solved from (3.18) and Γ and Y are defined in

(3.13)-(3.16).

In addition to the length of visit, the resource utilizations can also be obtained. For

a given resource j, assume its quantity is rj. Let ϵi represent that type j resource is

requested by service i and ηi indicate that type j resource is assigned to service i. Define

ρj as the utilization of type j resource, i.e., the long-run percentage of time that type j

resource is working. Then we have Theorem 3.2.

Theorem 3.2 Under assumptions (i)-(vii), the utilization of type j resource can be

calculated as

ρj =
1

rj

K∑
l=1

(
Pl

N∑
i=1

ϵiη
l
i

)
. (3.21)
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where

ϵi =

 1, if θi = j,

0, otherwise,
(3.22)

and

ηli =

 1, if βl
i > 0,

0, otherwise.
(3.23)

3.4 Discussions

Theorem 3.1 and 3.2 provide a method to evaluate the patient length of visit and staff

utilizations in patient rooms, using which the efficiency of care services can be analyzed

and the outcome for various values of system parameters can be predicted. In particular,

in order to improve the system performance (such as reducing length of visit), under-

standing the monotonic properties is of importance, which can help us determine which

variable to adjust that leads to an improvement of the system performance.

To illustrate the method introduced in Section 3.3, consider the following scenario,

where there are three patient rooms, and the care services include nurse’s initial check,

doctor’s visit, and nurse’s medication and wrap-up (discharge). This is typical for out-

patient clinics and fast track divisions for low acuity patients in EDs. Assume there are

two nurses and one doctor, and nurse medication and discharge has a higher priority

than the initial check. Then, we have

M = 3, N = 3, R = 2, (3.24)

R = [2, 1], Θ = [1, 2, 1], P = [0.1, 0.2, 0.3].

Note that the priority P can be assigned to any values that ensure p3 > p1. Next,
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we study the system with parameters defined in (3.24) as an example to illustrate the

monotonic properties.

3.4.1 Monotonicity with respect to Service Time

Assume the means of cycle times τ1 to τ3 are increasing from 5 to 50 minutes. As

one can see from Figure 3.3, when any service time is increased, the patient LOV is

increasing as well. A shorter service time leads to a reduced flow time of patients, which

agrees with our intuition. Similarly, the monotonicity of care provider’s utilization with

respect to service time exists as well. With the increase of service time of one provider

(such as nurse), her/his utilization is increasing, while the utilization of the other one

(respectively, doctor) is decreasing, since less throughput is obtained.

3.4.2 Monotonicity with respect to Care Provider Quantity

Next we consider the monotonicity with respect to resource quantity. Alter the numbers

of nurses and doctors and change from one to four, respectively. Note that for the sake

of completeness, we allow the number of providers to go beyond the room number. As

illustrated in Figure 3.4, when the numbers of care providers increase, the patient LOV

decreases. Specifically, when the number of nurses is increasing from one to two, there

is a dramatic decrease in LOV. When the nurse quantity is increased to three, such drop

is modest. Further increase of nurse quantity does not lead to any change in LOV since

now each room is already assigned one nurse. Similar observations are obtained when

the number of doctors is increased. When the quantities of staff exceed the number of

patient rooms, the LOV will no longer be reduced. In addition, increasing the quantity

of one provider (e.g., nurse), their utilization is decreased, while the utilization of the
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(c) Monotonicity with respect to τ3

Figure 3.3: Monotonicity of LOV and utilization w.r.t. service times
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other provider (respectively, doctor) is increasing due to a higher throughput. However,

there is a diminishing return of the increasing utilization, because when the number of

nurses (respectively, doctors) reaches three, the maximum throughput has been achieved

(since each room only allows one patient). Therefore, the utilization (of doctor) will not

increase anymore.
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(a) Monotonicity with respect to number of nurses
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(b) Monotonicity with respect to number of doctors

Figure 3.4: Monotonicity of LOV and utilization w.r.t. number of care providers

3.4.3 Monotonicity with respect to Patient Room Quantity

Now we investigate the monotonicity as a function of number of patient rooms. As

shown in Figure 3.5, increasing the number of patient rooms from three to ten, the
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Figure 3.5: Monotonicity of LOV and utilization w.r.t. number of patient rooms

patient LOV exhibits an almost linearly increasing trend. In addition, the doctor’s

utilization is increased to almost 100% when more patient rooms are added. However,

the nurse’s utilization keeps flat since now the doctor is the bottleneck of the system,

which limits the patient throughput.

3.4.4 Two-Room Two-Service Case

In the case of two patient rooms with each having two services, some of the system-

theoretic properties can be proved analytically.

Closed-form expressions

For the two-room two-service case, closed-form expressions for length of visit and staff

utilizations are available. Such cases represent the scenarios that low-acuity patients

receive express services in EDs and outpatient clinics (e.g., only nurse visit and doctor

diagnosis are needed). In this case, we obtain Corollary 3.1.

Corollary 3.1 Under assumption (i)-(vii) with M = 2, N = 2 and r1 = r2 = 1, the
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patient length of visit Ts and resource utilization ρi can be calculated as

Ts =
2(τ 21 + τ 22 + τ1τ2)

τ1 + τ2
, (3.25)

ρ1 =
τ1(τ1 + τ2)

τ 21 + τ 22 + τ1τ2
, (3.26)

ρ2 =
τ2(τ1 + τ2)

τ 21 + τ 22 + τ1τ2
. (3.27)

Proof: See the Appendix.

Monotonic properties

Corollary 3.2 Under assumptions (i)-(vii) with M = 2, N = 2 and r1 = r2 = 1, the

patient length of visit is monotonically increasing with respect to service time, i.e., Ts is

strictly increasing with respect to τ1 or τ2.

Proof: See the Appendix.

Corollary 3.3 Under assumptions (i)-(vii) with M = 2, N = 2 and r1 = r2 = 1,

the staff utilization is monotonically increasing with respect to its own service time, but

decreasing with the other service time, i.e., ρi is strictly increasing with respect to τi, but

strictly decreasing with respect to τj, j ̸= i.

Proof: See the Appendix.

Corollary 3.2 and 3.3 are consistent with the results obtained in Subsection 3.4.1.
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Bottleneck service

A service is referred to as the most impeding service (or bottleneck service) if its im-

provement can lead to the most significant improvement in system performance (e.g.,

length of visit). To determine which service may have the largest impact on patient

length of visit, compare ∂Ts

∂τ1
and ∂Ts

∂τ2
. Then the following results are obtained:

Corollary 3.4 Under assumptions (i)-(vii) with M = 2, N = 2 and r1 = r2 = 1, the

service with the longer service time is the more impeding service (i.e., bottleneck).

Proof: See the Appendix.

Identifying bottlenecks and eliminating them are the most effective way to improve

the operational efficiency in manufacturing systems ([130]). In healthcare systems, such

an approach has also demonstrated its effectiveness to improve patient flow and reduce

patient length of visit (see, for instance, [17], [19]). The results obtained here for the

two-room two-service case also match our intuition. However, for more complicated

cases, i.e., M > 2, N > 2, and r1 ̸= r2, direct comparison among service times may

not lead to the precise identification of bottleneck services. Therefore, developing an

appropriate and effective method to identify the service bottlenecks is of importance

and will be investigated in future work.

Service allocation

In many cases, it is of interest to investigate the principle for assigning workload to

nurses and doctors more efficiently. If with well trained nurses, some of the services can

be assigned to either a nurse or a doctor, then, the most efficient way to minimize patient

length of visit is to balance the work between the doctor and nurse (if it is possible). In
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other words, given the constraint that the total service time is a constant, we obtain:

Corollary 3.5 Under assumptions (i)-(vii) with M = 2, N = 2 and r1 = r2 = 1, under

the constraint of τ1 + τ2 = constant, the optimal allocation of services is τ ∗1 = τ ∗2 .

Proof: See the Appendix.

Notably, workload assignment will be constrained by the nature of work, staff capa-

bilities, and other factors. However, the results obtained here indicate that an effort to

balance the workload will be beneficial in reducing patient length of visit. More in-depth

analysis is desired in future work for larger systems.

Joint service

The method introduced in this chapter can be extended to model the scenario of joint

service, where more than one providers are needed to carry out the service. For instance,

the doctor may need the nurse’s help to carry out certain treatments, or the resident

doctor may need the supervision of the attending physician. In these scenarios, the states

of the system need modification – number of states is reduced due to joint service. As an

illustration of this, consider a two-room two-service (e.g., nurse visit, and nurse/doctor

joint service) system, with one nurse and one doctor. Assume that the joint service has

a higher priority than the nurse’s initial visit. In this case, it is easy to show that:

Corollary 3.6 Under assumptions (i)-(vii) with M = 2, N = 2 and r1 = r2 = 1, and

assume the second service needs both providers, then the patient length of visit Ts and
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resource utilization ρi can be calculated as

Ts = 2(τ1 + τ2), (3.28)

ρ1 = 100%, (3.29)

ρ2 =
τ2

τ1 + τ2
. (3.30)

Proof: See the Appendix.

Comparing with Corollary 3.1, the length of visit is longer due to the fact that only

one patient can be served at any time. In other words, the first provider (nurse) is always

busy serving patients, and the second provider (doctor) will be idle when the nurse is

rooming the patient. The monotonicity still holds, i.e., Ts is monotonically increasing

with respect to τ1 and τ2, and ρ2 is monotonically increasing with respect to τ2, and

decreasing with respect to τ1.

3.5 Extensions to Non-Exponential Scenarios

The analysis presented in Sections 3.3 and 3.4 assumes exponential service times. In

practice, assumptions of this type may not hold. Therefore, in this section, we extend

the study to incorporate the scenarios of non-exponential service times.

3.5.1 Dependency on Distribution Type

To study the case of the non-exponential service time, the following two questions need

to be answered. First, is the system performance dependent on the distribution type of

the service time or not? If it is dependent, then it implies that a formula or an approach

is needed for each distribution type, which makes the analysis intractable. If it is the
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Table 3.2: Types of mixed distributions

Mix 1 Mix 2 Mix 3 Mix 4

Uni, Ln, ga Ln, Uni, Ga Ln, Ga, Uni Ga, Tri, Uni

(a) System 1

Mix 5 Mix 6 Mix 7 Mix 8

Ln, Ga, Tri Ga, Tri, Uni Ga, Uni, Tri Tri, Uni, Ln

(b) System 2

opposite, then whether or not there exists an empirical or approximation formula for

performance evaluation?

To answer these two questions, extensive simulation experiments have been carried

out. Dozens of examples have been selected randomly to compare the lengths of visit

under several commonly used service time distributions such as uniform (Uni), triangular

(Tri), lognormal (Ln), and gamma (Ga) distributions, and a mix of them. Identical mean

and coefficient of variation (CV) are assumed for each distribution.

In all the examples we have tested, the differences in length of visit are very limited

(typically within 2%). This indicates that, practically, the length of visit is independent

of higher distribution moments (such as the third distribution moment and above),

but mainly depends on the mean and CV. Table 3.3 illustrates this property observed

from two four-room three-service systems with service times under uniform, triangular,

lognormal, gamma, and mixed distributions (denoted as System 1 and System 2, and

CV = 0.4 and 0.55 in Systems 1 and 2, respectively). The mixed distributions are

summarized in Table 3.2, meaning that the probability distribution for each of the three

services is randomly selected from the aforementioned distributions.
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Table 3.3: Impact of distribution type

Distribution i Uni Tri Ln Ga

Ts,i 364.2 364.2 362.4 362.6

Distribution i Mix 1 Mix 2 Mix 3 Mix 4

Ts,i 360.3 362.7 364.25 363.7

(a) System 1

Distribution i Uni Tri Ln Ga

Ts,i 373.3 373.3 367 371

Distribution i Mix 5 Mix 6 Mix 7 Mix 8

Ts,i 372.75 372.3 372.2 370.26

(b) System 2
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Define δ to quantify the maximum relative difference among lengths of visit Ts,i under

distribution i, i ∈ {Uni, Tri, Ln, Ga, Mix 1, . . ., Mix 4},

δ =
maxi Ts,i −mini Ts,i

1
8

∑
i Ts,i

· 100%.

For Systems 1 and 2, δ = 1.1% and 1.7%, which are negligible.

The above results indicate that the patient length of visit is practically independent

of the higher distribution moments of the service time, but mainly dependent on the

mean and coefficient of variation of the service time. This result is also consistent with

the conclusion obtained by Reynolds et al. [18]. Note that here we focus on 0 < CV < 1,

since for most services, the longer time the service has been carried out, the more likely

the service will be finished, which leads to CV < 1 [131].

3.5.2 Empirical Formula

To evaluate the length of visit, an empirical formula is pursued. First, define an effective

CV 2 which is a weighted average of all service CV squares:

CV 2
eff =

∑M
i=1 τicv

2
i∑M

i=1 τi
. (3.31)

In Table 3.4, the first two columns present the CV 2
eff’s and the corresponding estimates

of the length of visit by simulating two empirical systems (denoted as System 3 and

System 4). As one can see, the length of visit increases with CV 2
eff approximately linearly.

This is also observed in all the empirical studies we’ve conducted. Therefore, it can be

hypothesized that the length of visit for any CVs between 0 and 1, T non−exp
s , can be

evaluated through the following empirical formula:

T non−exp
s = T 0

s + (T exp
s − T 0

s )CV 2
eff, (3.32)
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where T exp
s can be calculated using Theorem 3.1, and

T 0
s = max

{
M · max

j=1,...,R

( ∑
i = 1, . . . , N

s.t. θi = j

τi
rj

)
,

N∑
i=1

τi

}
, (3.33)

where M , N , R are the number of rooms, number of services in each room, and provider

types, respectively; ri is the number of type i providers, and θi defines the type of

provider assigned to service i. Basically, T 0
s intends to approximate the length of visit

when there is no variability in service time in an ideal case, i.e., the utilization of a

provider is maximized. Then T 0
s is determined by the total time for a patient going

through all the services, or the time needed by one provider type to visit all the patient

rooms, whichever is longer.

Based on extensive simulation experiments, we have observed that the empirical

formula (3.32) provides an accurate estimate of the length of visit in most practical

cases. In all the examples we randomly generated, the maximum relative difference

between the simulation and analytical models is less than 2%. In Table 3.4, the third

column presents the lengths of visit obtained by the empirical formula, and the fourth

column illustrates the accuracy of using the empirical formula (3.32) for evaluating the

two systems (System 3 and System 4) compared with simulation. ϵ is the relative

difference, defined as

ϵ =
T empirical
s − T sim

s

T sim
s

· 100%. (3.34)

In Table 3.4, all ϵ’s are very small. It can be concluded that the empirical formulas

(3.32) provide accurate estimates of patient length of visit within patient rooms. In

addition, the utilization of care providers can be evaluated based on the time percentage

of services for a provider in a given time period. It can be derived from the average
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Table 3.4: Accuracy of the empirical formula

CV 2
eff T sim

s T empirical
s ϵ

0.0025 360 360.1 0.03%

0.0225 359.9 361.2 0.33%

0.0625 359.9 363.2 0.92%

0.1225 361.2 366.3 1.42%

0.2025 365.4 370.4 1.39%

0.3025 371 375.6 1.25%

0.4225 379.2 381.8 0.71%

0.5625 387.7 389.1 0.35%

0.7225 397.2 397.4 0.06%

0.9025 406.7 406.7 0.01%

(a) System 3

CV 2
eff T sim

s T empirical
s ϵ

0.0025 390 390.2 0.06%

0.0225 390 391.7 0.46%

0.0625 391.3 394.8 0.91%

0.1225 396.6 399.4 0.74%

0.2025 404.6 405.6 0.26%

0.3025 415.2 413.4 -0.43%

0.4225 428 422.7 -1.24%

0.5625 439.6 433.5 -1.39%

0.7225 453.3 445.8 -1.63%

0.9025 465.5 459.8 -1.22%

(b) System 4
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number of patients in the period (calculated from T non−exp
s ) and the average service

time for each patient, i.e.,

ρi =
M

T non−exp
s

∑
j = 1, . . . , N

s.t.θj = i

τj. (3.35)

3.6 Conclusions

In this chapter, an analytical framework is introduced to model care delivery operations

within patient rooms. Critical performance measurements such as patient average length

of visit and staff utilizations can be evaluated. The extension to non-Markovian scenarios

makes the model applicable for more generalized systems. Using the proposed model,

health care professionals can evaluate different design options corresponding to capacity

planning, workforce configuration, and service delivery, etc.
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Chapter 4

Modeling of Care Delivery

Operations with Shared Resources

4.1 Introduction

The analytical model introduced in Chapter 3 provides a viable method for evaluating

care delivery operations within patient rooms. However, like all other Markovian models,

such an approach may experience the curse of dimensionality when multiple non-identical

rooms, and in particular, with shared resources, are considered. Therefore, in this

chapter, we introduce a system-theoretic approach based on the Markov chain analysis to

model the care delivery system with shared resources. The care delivery system featuring

multiple exam rooms and limited resources is described in Section 4.2. A Markov chain

model of the patient flow in a single exam room is developed using the same modeling

framework as described in Chapter 3. In Section 4.3, a converging iterative method,

referred to as the shared resource iteration for evaluating the scenario of two or more

non-identical exam rooms is introduced. The convergence of the recursive procedure is

justified. The approximation formulas for evaluating the non-Markovian scenarios are

sketched.



48

4.2 System Description and Modeling

4.2.1 Process Description

Care delivery systems are highly stochastic and interdependent. They usually consist

of multiple exam rooms and complex staff configurations, and provide a variety of care

services. Typically, care is offered by a team which comprises of physicians, nurses, and

medical assistants, or technologists and technologist assistants in diagnostic imaging and

laboratory test centers. The capacity of these resources varies according to practice and

facility sizes, demands, and purposes. Besides, it is often the case that supportive staff

are shared among chief care providers. For example, in primary care clinics, medical

assistants can be shared by several physicians within one pod of the clinic. Similarly,

during a testing procedure, technologist assistants take care of patients belonging to

different technologists.

As described in Chapter 3, within each exam room, only one patient is permitted

at a time and the care services are carried out sequentially. However, although each

chief care provider works independently, the supportive staff are shared among all the

exam rooms, which may introduce an availability issue and cause additional delay. To

model the process described in this subsection, the notations, assumptions and problem

formulation are introduced in Subsection 4.2.2.

4.2.2 Notations, Assumptions and Problem Formulation

In this subsection, we consider a care provider team consists of several chief care providers

and one supportive staff. The following notations are introduced to address the services,

resources, and their interactions.
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• The workflow of the care delivery process follows steps 1 to 4 sequentially:

(1) patient checking in,

(2) supportive staff rooming the patient,

(3) chief care provider serving the patient (diagnose or conduct test),

(4) patient checking out.

• The number of exam rooms in the system is denoted as M . Each room can only

accommodate one patient.

• A patient needs to wait in the lobby (waiting room) if he/she arrives early and is

blocked by previous patients, or the supportive staff is not available. The maxi-

mum capacity of waiting for each exam room is denoted as Qi, i = 1, 2, . . . ,M .

Without loss of generality, we start with Qi = 5 and extend to larger numbers as

appropriate.

• The number of chief care providers is defined as r1, and the number of supportive

staff is denoted as r2.

In addition, the following assumptions regarding the arrival and services are intro-

duced:

1) The inter-arrival time of the incoming patients for each room follows the exponential

distribution with arrival rate λi, i = 1, 2, . . . ,M .

2) The four processes each patient has to complete, i.e., patient check-in, supportive

staff rooming, chief care provider diagnosis and patient check-out, are denoted as

services 1, 2, 3 and 4, respectively. The service time for service j in exam room i is

exponentially distributed with mean processing time τj,i, j = 1, . . . , 4, i = 1, 2, . . . ,M .
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Then, the corresponding processing rate is cj,i =
1
τj,i

. Notably, non-identical service

times are assumed for different patient rooms. The identical service time is a special

case of this assumption.

3) The resource cannot be released until the service in progress finishes. An ongoing

service cannot be disrupted before completion, i.e., if the resource is busy, the next

patient has to wait until the current service is completed.

4) In the current system, each chief care provider is dedicated to one exam room, and

the supportive staff is shared for all rooms, and thus, r1 = M and r2 = 1.

Instead of modeling the system directly, we start with each room individually, denot-

ed as the subsystem. In an appropriately defined state space, the subsystem satisfying

assumptions 1)-4) is a stationary random process. Let Ti , i = 1, 2, . . . ,M , denote the

patient length of visit for each exam room in the subsystem. In the framework of 1)-4),

Ti is a function of all system parameters:

Ti = fT (Qi, c1,i, c2,i, c3,i, c4,i, λi). (4.1)

Denote the staff utilizations as ρ1,i and ρ2,i, for the care provider and supportive staff

in room i, respectively, which are also functions of all system parameters:

ρr,i = fρ(Qi, c1,i, c2,i, c3,i, c4,i, λi), r = 1, 2. (4.2)

Then, the problem to be addressed is: Under assumptions 1)-4), develop a method

to evaluate the patient length of visit Ti, and staff utilizations ρ1,i and ρ2,i as functions

of system parameters.

Solutions to the problem are presented in Section 4.2.3.
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4.2.3 Performance Analysis

Let S = {s1, s2, s3, s4} denote the states of the subsystem, where si represents the

number of patients in stage i, i = 1, . . . , 4. For example, s2 = m indicates that there are

m patients in process 2 (supportive staff rooming), either being served by the supportive

staff or waiting to be served by the chief care provider. The feasible states satisfy the

following constraints:

• sj ≥ 0, j = 1, . . . , 4,

• s1 ≤ Q1, queue length constraint,

• s2 + s3 ≤ 2, resource constraint,

• s4 ≤ 1, resource constraint.

The total number of feasible states is denoted as K. It is a function of the queue length

and the possible allocations of patients in the subsystem. When the queue length is

zero, we have twelve states: (0,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1), (0,1,1,0), (0,0,1,1),

(0,1,0,1), (0,0,2,0), (0,2,0,0), (0,0,2,1), (0,2,0,1), (0,1,1,1). If the queue length is Q1, then

we have (Q1 + 1)× 12 states. In the subsystem model, Q1 = 5, so there are 72 feasible

states. Then the steady state probability for a feasible state Sk, k = 1, . . . , K, is defined

as

Pk = P (sk1, s
k
2, s

k
3, s

k
4), k = 1, 2, . . . , K.

The state transition can be triggered by one of the following events: (1) patient

arrival; (2) patient check-in; (3) supportive staff finishing rooming; (4) care service com-

pletion; and (5) patient check-out. Note that these events cannot occur simultaneously.

To illustrate the transition, for a state Sk = {sk1, sk2, sk3, sk4}, the following events can

occur.
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• When a patient arrives, if the waiting room is full (although unlikely), i.e., sk1 = Q,

then the patient is lost due to space limit, and no transition will occur. Otherwise,

the current state goes to state {sk1 + 1, sk2, s
k
3, s

k
4} with arrival rate λ.

• When a patient checks in, if the exam room is occupied or there is a patient

waiting for rooming already, i.e., sk2 + sk3 = 2, then no transition will occur and

the patient remains waiting in the lobby. Otherwise, the patient goes to a sub-

waiting room after checking-in, and the state Sk has a rate c1 to transit to state

{sk1 −1, sk2 +1, sk3, s
k
4}. Note that such an event occurs only when there is a patient

ready to check in, i.e., sk1 ≥ 1.

• With the completion of rooming, the patient leaves the sub-waiting room and

either starts or waits for diagnosis with rate c2. Thus, the state Sk transits to

state {sk1, sk2 − 1, sk3 + 1, sk4} with rate c2 when sk2 ≥ 1.

• After all care services being delivered, if sk4 = 1, then the patient waits for checking

out and no transition occurs. Otherwise, he/she goes to check out and Sk transits

to state {sk1, sk2, sk3 − 1, sk4 + 1} with rate c3 and sk3 ≥ 1.

• Finally, when the patient checks out, Sk moves to state {sk1, sk2, sk3, sk4 − 1} with

rate c4. Again, such an event occurs only when there is a patient ready to check

out, i.e., sk4 ≥ 1.

Let Φ(k, l) define the transition rate from state Sk to Sl, k, l = 1, . . . , K, k ̸= l, which

takes one of the values of c1, c2, c3, c4, or λ. In addition,

Φ(l, l) = −
K∑
j=1

Φ(l, j), j ̸= l, l = 1, 2, . . . , K. (4.3)

Thus, a transition matrix Φ with the dimension K × K and rank K − 1 is obtained.

Similar to the derivation described in Section 3.3.3, the steady state probability can be
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calculated.

Define TPi as the throughput rate of subsystem i, i.e., the rate patient leaving from

the last service in room i, and define WIPi as the average number of patients in the

subsystem. According to Little’s Law, the average patient length of visit in room i, Ti,

can be obtained and the evaluation formulas are articulated in Theorem 4.1.

Theorem 4.1 Under assumptions 1)-4) with exam room i,

Ti =
WIPi

TPi

=

∑K
l=1

(
Pl,i

∑4
j=1 s

l
j,i

)
c4,i
∑K

l=1 Pl,isl4,i
, (4.4)

where Pl,i is solved using the same approach introduced in Section 3.3.3 and

TPi = c4,i

K∑
l=1

Pl,is
l
4,i, (4.5)

WIPi =
K∑
l=1

(
Pl,i

4∑
j=1

slj,i

)
. (4.6)

In addition to the patient length of visit, the staff utilizations can be calculated as

Theorem 4.2 Under assumptions 1)-4) with exam room i,

ρ1,i =
K∑
l=1

Pl,i · I{sl3,i>0}, (4.7)

ρ2,i =
K∑
l=1

Pl,i · I{sl2,i>0}. (4.8)

Remark 4.1 The utilization of the supportive staff and the chief care provider only

captures the time percentage they spend directly encountering patients. Typically they

have multiple job duties, which are not included in the current model.
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4.3 Shared Resource Iteration

4.3.1 Two Non-Identical Rooms

The results obtained in Subsection 4.2.3 only consider one exam room by assuming that

the supportive staff is always available. However, when the system consists of two or

more exam rooms, which are not necessarily identical, the supportive staff will be shared

by all exam rooms. In the case of two exam rooms, a sample workflow is illustrated in

Figure 4.1, where the rectangles represent the processes and the dash rectangle indicates

that the rooming processes share the same resource.

Figure 4.1: Patient flow model: two exam rooms

Remark 4.2 Note that although all the patients check in at the same reception desk,

the registration time is short and the receptionists are typically available when an indi-

vidual patient arrives, so we do not view it as a process with resource constraint.

By just adding one exam room, the complexity of the system increases enormously.

The size of the state space increases significantly and the transitions are subject to

resource constraints. Therefore, to evade the efforts of expanding the Markov chain

model and provide the possibility for the further extension to more exam rooms, an

iterative approach, nominated as the shared resource iteration, is introduced. First,
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let pi, i = 1, 2, be the time percentage the supportive staff spends in room i during a

patient’s visit. Assume the initial time percentage is known, denoted as p
(0)
1 , p

(0)
2 , where

the subscript indicates the room number, and the superscript represents the iteration

number (0 refers to the initial value). By cause of sharing, the transition rate of the

supportive staff’s service in room 1 is decreased to accommodate the extra waiting due

to supportive staff’s service in room 2. Thus, in the first iteration, we have

c
(1)
2,1 = c2,1(1− p

(0)
2 ).

Then the average length of visit for a patient in room 1 can be calculated using Propo-

sition 4.1, denoted as function fT (·).

T
(1)
1 = fT (Q1, c1,1, c

(1)
2,1, c3,1, c4,1, λ1).

Also obtained is the time percentage the supportive staff spends in room 1,

p
(1)
1 =

1

c2,1T
(1)
1

.

Using this new time percentage, we analyze another subsystem room 2. The transition

rate for room 2 is updated as

c
(1)
2,2 = c2,2(1− p

(1)
1 ).

Similarly, the length of visit and supportive staff’s time percentage in room 2 can be

calculated:

T
(1)
2 = fT (Q2, c1,2, c

(1)
2,2, c3,2, c4,2, λ2),

p
(1)
2 =

1

c2,2T
(1)
2

.

This finishes the first iteration. In the next iteration, using the updated probabilities

p
(1)
i , i = 1, 2, we repeat the procedure to obtain a new set of estimates p

(2)
i , and continue.
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The iteration terminates when all the differences between pki and pk+1
i are sufficiently

small. Then, the corresponding T
(k)
1 and T

(k)
2 are the estimated average lengths of visit

for the two exam rooms, obtained through Proposition 4.1. Such a process can be

represented by the procedure below:

Procedure 4.1

c
(k)
2,1 = c2,1(1− p

(k−1)
2 ),

T
(k)
1 = fT (Q1, c1,1, c

(k)
2,1, c3,1, c4,1, λ1),

p
(k)
1 =

1

c2,1T
(k)
1

, (4.9)

c
(k)
2,2 = c2,2(1− p

(k)
1 ),

T
(k)
2 = fT (Q2, c1,2, c

(k)
2,2, c3,2, c4,2, λ2),

p
(k)
2 =

1

c2,2T
(k)
2

, (4.10)

k = 1, 2, . . . ,

with the initial condition

p
(0)
2 = 0.

The convergence of the procedure has been investigated.

Proposition 4.1 Under assumptions 1)-4), Procedure 4.1 is convergent and

T exp
i = lim

k→∞
T

(k)
i , i = 1, 2. (4.11)

where T exp
i represents the patient length of visit at room i under exponential assumptions

of service and inter-arrival times, denoted by the superscript ‘exp’.

Proof: See the Appendix.
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Note that the initial condition p
(0)
2 = 0 is introduced for the proof of convergence. By

randomly selecting values of p
(0)
2 ∈ (0, 1) during tests, it is observed that the procedure

always leads to the same convergent value. In addition, it usually takes three to five

iterations for Procedure 4.1 to converge.

4.3.2 Extensions to Multiple Non-Identical Rooms

Next, we evaluate more general scenarios where systems have more than two exam rooms.

The workflow is illustrated in Figure 4.2. Directly developing a Markov chain model of

the entire system is impossible, and may face a state space explosion when the number

of subsystems is large or the interaction among subsystems is complex. Therefore, an

extension of the iterative method is desired.

Figure 4.2: Patient flow model: multiple exam rooms

The recursive procedure for more than two exam rooms is similar to that of the

system with two exam rooms. The main difference is that when the transition rate is

updated for each exam room, the cases that the supportive staff is serving in any exam

room need to be considered. Such a modification iterates among all exam rooms. The

procedure is presented as follows:
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Procedure 4.2

c
(k)
2,i = c2,i

(
1−

i−1∑
j=1

p
(k)
j −

M∑
j=i+1

p
(k−1)
j

)
,

T
(k)
i = fT (Qi, c1,i, c

(k)
2,i , c3,i, c4,i, λi),

p
(k)
i =

1

c2,iT
(k)
i

, (4.12)

i = 1, 2, . . . ,M

k = 1, 2, . . . ,

with the initial conditions

p
(0)
i ∈ [0, 1), and

M∑
i=1

p
(0)
i < 1, i = 1, 2, . . . ,M.

The convergence property of such systems still holds and is verified through extensive

numerical tests using empirical data. We randomly select the number of exam rooms

M , service rates cj,i (1/min), and arrival rates λi (1/min) from the following sets which

represent the typical range of the parameters.

M ∈ {2, 3, 4, 5},

cj,i ∈ (0.025, 0.1), j = 1, 2, 3, 4, i = 1, . . . ,M,

λi ∈ (0.01, 0.03), i = 1, . . . ,M. (4.13)

The convergence criterion is met when the differences in pi between two iterations are

small.

|p(k)i − p
(k+1)
i | < 10−5, i = 1, . . . ,M.

In all the cases we have tested, the convergence of pi and Ti is observed. Thus, we

conclude that Procedure 4.2 is convergent and the following limits exist:

T exp
i = lim

k→∞
T

(k)
i , i = 1, 2, . . . ,M. (4.14)



59

To illustrate the convergence property, the iterations of pi (i.e., the inverse of Ti

divided by the service rate) are shown in Figure 4.3, for three identical rooms and four

non-identical rooms scenarios. In Figure 4.3 (a), the time percentages the supportive

staff spent in rooms 1-3 are denoted as broken lines with square, diamond, and circle,

respectively. The horizontal axis is slotted by iterations. Thus, the dynamic of pi

during each iteration is exhibited in the figure. As one can see, all pi’s converge after

roughly three iterations and they all converge to the same value since the three rooms are

identical. In Figure 4.3 (b), broken lines with square, diamond, and circle represent p1

to p3 in rooms 1-3, respectively, and the solid line illustrates p4. Again all pi’s converge

after about three iterations. However, since all rooms are not identical, these pi’s are

not the same. In summary, the convergence of pi can be observed only after several

iterations.

Remark 4.3 This iterative method could be conveniently extended to the system with

multiple number of shared resources scenario. For instance, it can be the case that

two tech assistants are shared by three technologists. To simplify the analysis, assume

each shared resource (e.g., supportive staff) is identical and independent. Similar to the

single shared resource case, a transition can fail due to that all the resources are working

with other patients. Then the probability that all resources are not available can be

represented by (q(k))s, where s is the number of shared resources (such as the number

of supportive staff), and q(k) denotes the probability that the resource is not available

as the only shared resource, during the k-th iteration. For patient room i,

q
(k)
i =

i−1∑
j=1

p
(k)
j +

M∑
j=i+1

p
(k−1)
j . (4.15)

Then the processing rate c2,i in Procedure 4.2 should be updated as

c
(k)
2,i = c2,i(1− (q

(k)
i )s). (4.16)
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Figure 4.3: Convergence of pi
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The other formulas in Procedure 4.2 will remain the same. To investigate the accuracy of

this iterative method, extensive experiments have been conducted. It has been demon-

strated that the performance of this algorithm is similar to that of a single resource for

sharing.

4.3.3 Extensions to Non-Exponential Scenarios

The analysis in Subsections 4.3.1 and 4.3.2 assumes exponential inter-arrival and service

times. However, the exponential assumption may not hold in practice. Similar to what

has been discussed in Section 3.5, the modeling framework developed in this chapter is

also extended to non-exponential scenarios. The derivations are skipped and only the

empirical formulas are provided.

Empirical formula

If the scheduled inter-arrival time is long enough (longer than the sum of the average

service times, which is typical in most clinical settings), and there is no variability in

service time (i.e., CVi = 0), then the patient length of visit can be calculated by summing

up all the service times (since there is no resource availability issue). Consequently, we

define such a length of visit as

T fix
i =

4∑
j=1

1

cj,i
. (4.17)

Then, the length of visit under non-exponential assumptions can be adjusted based on

T fix
i by the CVs of service and inter-arrival times. Based on the results of extensive

numerical studies, define an effective CV square, CV 2
eff,i, for room i:

CV 2
eff,i =

∑4
j=1

CV 2
j,i

ci∑4
j=1

1
cj,i

. (4.18)
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Then, the length of visit can be adjusted based on T fix
i , T exp

i , and CV 2
eff,i using an

empirical formula. Specifically, we hypothesize that there exists a linear relationship of

lengths of visit between CV = 0 and 1 based on numerical investigations. We propose

empirical formulas to approximate the patient length of visit in the system, T non−exp
i ,

when inter-arrival time and service times are non-exponential:

T non−exp
i = CV 2

arrival,i(T
cv
i − T fix

i ) + T fix
i , (4.19)

where

T cv
i = CV 2

eff,i(T
exp
i − T fix

i ) + T fix
i , (4.20)

and CVarrival,i is the CV of the patient inter-arrival time for exam room i.

Accuracy

Following the proposed method, the patient length of visit in the system with general

probability distributions can be estimated. To evaluate the accuracy of the empirical

formulas, dozens of simulation experiments have been carried out. Define T sims
i and

T non−exp
i as the length of visit obtained by simulations and the empirical formula, re-

spectively. Let ϵ be the relative difference, defined as

ϵ =
T non−exp
i − T sims

i

T sims
i

· 100%.

From all the randomly generated scenarios, the average of the absolute difference

|ϵ| is less than 3%, with the largest one being within 10%. In Table 4.1 and Figure

4.4, two systems of three-identical exam rooms are highlighted. The mean service and

inter-arrival times are fixed throughout the tests. The CVs of the service and arrival
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distributions are chosen from [0,1] in an ascending sequence from tests 1 through 9 for

each system. In both figures, the results from simulations and the empirical formulas

are represented by red crosses and blue squares, respectively. As one can see, the differ-

ences in lengths of visit between the results obtained from simulations and the empirical

formulas are within 5%, and T non−exp is within the 95% confidence interval of T sims in

most of the cases. Therefore, we conclude that the empirical formulas (4.17 ) - (4.20)

provide an accurate estimate of the length of visit in most cases when CVs take value

within 0 to 1.

4.4 Conclusions

In this chapter, based on the analytical modeling framework introduced in Chapter 3,

an iterative method is proposed to address the dimensionality issue for the care delivery

system with shared resources. An accurate estimation of the patient length of visit is

achieved. The model introduced in this chapter can be applied to study various care de-

livery systems that share similar characteristics such as multi-stages of services, limited

care providers, and multiple patient rooms. The model provides hospital/clinic profes-

sionals a quantitative tool to evaluate the current system performance, investigate the

effects of different configurations, and predict the operational efficiency for future plans,

which is critical for improving the decision making in healthcare operations management.
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Table 4.1: Accuracy of the empirical formula for estimating LOV

(a) System 1

test T non−exp T sims 95% CI ϵ (%)

1 62.14 62.01 (61.91, 62.11) 0.21

2 63.46 63.46 (63.21, 63.72) -0.00

3 68.69 70.26 (69.54, 70.99) -2.23

4 74.12 76.34 (75.36, 77.33) -2.92

5 82.37 83.93 (82.61, 85.25) -1.87

6 87.81 88.64 (87.19, 90.09) -0.94

7 94.28 94.58 (92.51, 96.64) -0.31

8 101.92 100.96 (98.69, 103.23) 0.95

9 110.84 109.22 (106.17, 112.26) 1.48

(b) System 2

test T non−exp T sims 95% CI ϵ (%)

1 52.18 52.10 (52.03, 52.17) 0.14

2 53.77 54.55 (54.33, 54.76) -1.43

3 59.95 62.57 (61.86, 63.26) -4.17

4 66.34 69.42 (68.32, 70.51) -4.43

5 76.03 77.45 (76.12, 78.77) -1.82

6 82.42 82.79 (81.35, 84.22) -0.44

7 90.02 89.43 (87.27, 91.58) 0.65

8 98.97 96.80 (94.25, 99.34) 2.23

9 109.42 106.37 (101.47,111.27) 2.86
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Figure 4.4: LOV comparison between simulation and empirical estimation
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Chapter 5

Modeling of Primary Care Delivery

with E-Visits

5.1 Introduction

Many healthcare organizations have initiated e-visit programs to provide patient-physician

communications through securing messages. In this chapter, we introduce a quantitative

model to study primary care delivery with e-visits. In Section 5.2, system descriptions

and the structural modeling are introduced. In Section 5.3, analytical formulas to e-

valuate the average patient length of visit and its variance in primary care clinics with

e-visits are derived. System-theoretic properties are investigated and different operating

policies coordinating office and e-visits are compared in Section 5.4.

5.2 System Description and Modeling

As depicted in Figure 5.1, care delivery process is essentially a service network and

patients can get access to care through different venues: web service, which is usually

for patients to inquire some standard questions about simple diseases through an online

questionnaire program; e-visits, mainly for the patients with low-acuity complaints and

ongoing care of chronic diseases to communicate with physicians; office visits, traditional
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face-to-face encounters; urgent care, for after hour visits or walk-in for a quick treatment,

where scheduling is not required; emergency department, for night and emergent visits.

After completing the online programs, a patient may still seek communication with

his/her primary care physician through e-visit if the online evaluation is not sufficient

or satisfactory. In addition, the support staff will review the web service results and, if

needed, forward those complex inquiries to patient’s primary care physician for a follow-

up e-visit. Therefore, patients can transfer from web service to e-visit. Similarly, after

e-visit, a patient might still need an office visit according to his/her health status and the

complication of the disease. In the case of long queues or extended waiting time for office

visits, or during after hours, patients may seek care services through other channels such

as urgent care units, and if not available, emergency departments for prompt treatment.

Urgent Care Office Visit e-Visit Web Service
Emergency
Department

Wait?Available?

Figure 5.1: Patient flow in care delivery systems

As the focus of this chapter is on studying e-visit and its impact on primary care

physicians’ operations, only web service, e-visit and office visit are considered (see Figure

5.2). The majority of patients in primary care clinics are associated with their primary

care physicians. Therefore, due to physician-patient match, we consider a model with

all the services linked with one physician. Assumptions below address the patients, the

services, and their interactions.
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Figure 5.2: Network model for primary care patient flow

1) The patients associated with the same primary care physician access care services

with the following Poisson arrival rates: λws for web services, λev for e-visits, and λov

for office visits.

2) The primary care physician’s service times for e-visits and office visits are described

by probability distributions with service rates µev and µov, coefficients of variation

(CVs) cvev and cvov, as well as the the third moments (skewness) E(S3
ev) and E(S3

ov),

correspondingly.

3) After web service, a patient has the probability βev to seek an e-visit for further

inquiries. After e-visit, a patient may need to go for an office visit with the probability

βov.

4) The physician also deals with billings and documentations intermediately between

patient visits. When no patient is waiting, he/she works on non-direct care related

tasks, and the duration of tasks follows a probability distribution with the vacation
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rate µv, the CV cvv, and third moment E(S3
v). The physician will return to serve

patients only after finishing an ongoing activity.

5) The following scheduling policies for coordinating office and e-visits are proposed:

(a) non-preemptive, i.e., an ongoing e-visit service will not be interrupted even if an

office visit patient arrives; (b) preemptive-resume, i.e., the current e-visit service can

be interrupted if an office visit patient arrives, and the e-visit will resume afterward

(in both policies, office visit has a higher priority); (c) first come first serve, i.e., the

service will be carried out without priority but only based on who comes earlier.

In an appropriately defined state space, the system described by i)-v) forms a sta-

tionary random process. To quantify the system performance, currently we only focus

on time-related measurements and do not consider other factors. Intuitively, an efficient

system will lead to a shorter cycle time and less waiting for patients and, therefore, it’s

natural to use cycle time (or patient length of visit) to evaluate the operational efficien-

cy of the system. However, a desired mean time performance alone cannot guarantee

patient satisfaction. If the system variation is large, patients may wait for an extremely

long time even the mean waiting time is moderate, and the unexpected variation may

also impact the clinical outcome and patient safety. Therefore, evaluating the variability

of the patient length of visit is also important. Let Ti and Vari denote the mean and

variance of patient length of visit for the type i service, and i = ev, ov, representing e-

visits and office visits. In the framework of i)-v), Ti and Vari are functions of all system

parameters

Ti = fT,i(L,M,B,CV), i = ev, ov, (5.1)

Vari = fVar,i(L,M,B,CV,E), i = ev, ov, (5.2)
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where

L = [λws, λev, λov],

M = [µev, µov, µv],

B = [βev, βov],

CV = [cvev, cvov, cvv],

E = [E(S3
ev), E(S3

ov), E(S3
v)].

Remark 5.1 In addition to serving office and e-visit patients, physicians work on other

tasks which are not directly encountering patients, such as documentation, paperwork,

and dealing with insurance and billings. Assumption iv) implies that the physician works

on these activities whenever no patients are waiting. When a new patient arrive, he/she

will go back to serve that patient after finishing the current activity.

The problem addressed in this chapter is: Under assumptions i)-v), develop a method

to evaluate the mean and variance of patient length of visit, and investigate system

properties and the impact of different scheduling policies between the office and the e-

visits.

The solutions to this problem are presented in Sections 5.3- 5.4.

5.3 Performance Evaluation

5.3.1 Average Length of Visit

Consider the primary care physician’s operations described in Section 5.2. For e-visit

patients, the arrival includes patients directly seeking e-visits and those coming to e-

visits after web services, which is characterized by the transition probability βev. Thus,
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the effective arrival rate for e-visits is

λ′
ev = λev + βevλws. (5.3)

Similarly, the actual arrival rate for office visits also includes the patients who directly

request office visits and those seeking face-to-face encounters after e-visits, which has

the probability βov. Thus

λ′
ov = λov + βovλ

′
ev. (5.4)

Remark 5.2 Note that, here, we assume the web service patients who require additional

care will first seek e-visits then, if needed, office visits. Clearly, there exists the possibility

that they may directly go for office visits. Then, (5.4) can be adjusted as follows:

λ′
ov = λov + βovλ

′
ev + β′

ovλws,

where β′
ov is the referral ratio from the web service to office visits.

Since we focus on one physician and his/her patients, we can model the physician’s

activities as a single server working on two types of patients: office and e-visits. The

non-direct care activities carried out by the physician when no patients are waiting can

be modeled as “vacations” with random vacation time. In addition, as the primary

care physician offers both office and e-visit services, it is quite common that he/she

may expect both types of patients waiting to be served. Then how he/she schedules

the work is of interest. Here, we consider three scheduling policies (assumption (v)):

non-preemptive, preemptive-resume, and first come first serve.

To derive the patient length of visit under non-preemptive and preemptive-resume

policies, we first consider the case without vacations to obtain the patient waiting time

as a function of the residual time serving each type of patients. Then, to incorporate

vacations, the residual time is modified by accounting for vacations when the server is
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idle. In this way, the adjusted waiting time is obtained and the patient length of visit

can be calculated. In the case of the first come first serve policy, a new probability

distribution can be constructed to model the physician’s services. Similar approaches

are applied to calculate the residual time and the waiting time.

To simplify the derivation and expressions, we introduce the following notations:

ρi =
λ′
i

µi

, i = ev, ov, (5.5)

ρ = ρev + ρov, (5.6)

δi =
1 + cv2i

2
, i = ev, ov, v, (5.7)

τi =
1

µi

, i = ev, ov, v, (5.8)

ωi = τiδi =
E(S2

i )

2E(Si)
, i = ev, ov, v, (5.9)

where ρ and ρi’s characterize the server utilization; and for service type i, δi indicates

the variability, τi represents the average time, and ωi is a function of both the mean and

the variability. In fact, ωi represents the ratio between the second and the first moments,

multiplied by a factor of 0.5. In the case of the exponential distribution, ωi = τi, this

variable can be explicitly explained by the mean service/vacation time.

Adopting these notations, as well as λ′
ev and λ′

ov introduced in (5.3) and (5.4), Theo-

rem 5.1 provides the formulas to evaluate the average length of visit for office and e-visit

patients with random service and vacation times.

Theorem 5.1 Under assumptions i)-v), patient average lengths of visit for office and
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e-visit encounters can be calculated as follows:

Tev =



ρovωov+ρevωev+(1−ρ)ωv

(1−ρov)(1−ρ)
+ τev,

non-preemptive policy,

ρovωov+ρevωev+(1−ρ)ωv

(1−ρov)(1−ρ)
+ τev

1−ρov
,

preemptive-resume policy,

ρovωov+ρevωev

1−ρ
+ ωv + τev,

first come first serve policy,

(5.10)

Tov =



ρovωov+ρevωev+(1−ρ)ωv

1−ρov
+ τov,

non-preemptive policy,

ρovωov+(1−ρ)ωv

1−ρov
+ τov,

preemptive-resume policy,

ρovωov+ρevωev

1−ρ
+ ωv + τov,

first come first serve policy.

(5.11)

Proof: See the Appendix.

When the service time and vacation time are exponentially distributed, all the values of

cvi’s are equal to 1. The expressions for office and e-visit patients’ average lengths of

visit can be simplified.



74

Corollary 5.1 Under assumptions 1)-5) with exponential service and vacation time dis-

tributions, patients’ average lengths of visit for office and e-visit encounters can be cal-

culated as

T exp
ev =



ρovτov+[1−ρov(2−ρ)]τev+(1−ρ)τv
(1−ρov)(1−ρ)

,

non-preemptive policy,

ρovτov+(1−ρov)τev+(1−ρ)τv
(1−ρov)(1−ρ)

,

preemptive-resume policy,

ρovτov+(1−ρov)τev
1−ρ

+ τv,

first come first serve policy,

(5.12)

T exp
ov =



τov+ρevτev+(1−ρ)τv
1−ρov

,

non-preemptive policy,

τov+(1−ρ)τv
1−ρov

,

preemptive-resume policy,

(1−ρev)τov+ρevτev
1−ρ

+ τv.

first come first serve policy.

(5.13)

Proof: By plugging in ωi =
1
µi

= τi, i = ev, ov, v, the expressions in (5.12) and (5.13)

are obtained after several steps of algebraic operations.

Theorem 5.1 and Corollary 5.1 provide formulas to evaluate the length of visit for office

and e-visit patients under different scheduling policies.

5.3.2 Variance of Length of Visit

In this subsection, the variances of office and e-visit patients’ lengths of visit under the

three scheduling policies introduced in assumption 5) are evaluated.
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Theorem 5.2 Under assumptions 1)-5), the variance of patient length of visit can be

calculated as follows:

• non-preemptive policy

Varov =
2δov − 1

µ2
ov

+
ρ2ovω

2
ov − [(1− ρ)ωv + ρevωev]

2

(1− ρov)2

+
(1− ρ)E(S3

v)µv + λ′
ovE(S3

ov) + λ′
evE(S3

ev)

3(1− ρov)
, (5.14)

Varev =
2δev − 1

µ2
ev

+
(1− ρ)ωv + ρovωov + ρevωev

(1− ρov)2(1− ρ)
·
(2ρovωov

1− ρov
+

ρovωov + ρevωev

1− ρ
− ωv

)
+

(1− ρ)E(S3
v)µv + λ′

ovE(S3
ov) + λ′

evE(S3
ev)

3(1− ρov)2(1− ρ)
; (5.15)

• preemptive-resume policy

Varov =
2δov − 1

µ2
ov

+
ρ2ovω

2
ov − (1− ρ)2ω2

v

(1− ρov)2

+
(1− ρ)E(S3

v)µv + λ′
ovE(S3

ov)

3(1− ρov)
, (5.16)

Varev =
2δev − 1

µ2
ev(1− ρov)2

+
(1− ρ)ωv + ρovωov + ρevωev

(1− ρov)2(1− ρ)
·
(2ρovωov

1− ρov
+

ρovωov + ρevωev

1− ρ
− ωv

)
+

(1− ρ)E(S3
v)µv + λ′

ovE(S3
ov) + λ′

evE(S3
ev)

3(1− ρov)2(1− ρ)
; (5.17)

• first come first serve policy

Varj =
2δj − 1

µ2
j

+
(ρovωov + ρevωev)

2

(1− ρ)2
− ω2

v +
µv

3
E(S3

v)

+
λ′
ovE(S3

ov) + λ′
evE(S3

ev)

3(1− ρ)
, j = ev, ov. (5.18)

Proof: See the Appendix.

As one can see, in addition to the mean and CV of service and vacation times,

the third moments play a role in determining system performance variations. When
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exponential service and vacation time distributions are assumed, all CVs are equal to

1 and the expressions for the third moments can be explicitly expressed by parameter

µj’s.

Corollary 5.2 Under assumptions 1)-5), the variance of patient length of visit under

exponential service and vacation time distributions can be calculated as:

• non-preemptive policy

Varexpov =
1

µ2
ov

− ρ2ev
(1− ρov)2µ2

ev

+
ρ2ov

(1− ρov)2µ2
ov

+
(1− ρ)(1 + ρev − ρov)

(1− ρov)2µ2
v

+
2ρov

(1− ρov)µ2
ov

+
2ρev

(1− ρov)µ2
ev

− 2ρev(1− ρ)

(1− ρov)2µevµv
, (5.19)

Varexpev =
1

µ2
v(1− ρov)2

+
ρ2ev

µ2
ev(1− ρ)2(1− ρov)2

+
2ρev

µ2
ev(1− ρ)(1− ρov)2

+
ρ2ov(3− 2ρ− ρov)

µ2
ov(1− ρ)2(1− ρov)3

+
2ρov

µvµov(1− ρov)3
+

2ρov
µ2
ov(1− ρ)(1− ρov)2

+
2ρovρev(2− ρov − ρ)

µovµev(1− ρ)2(1− ρov)3
+

1

µ2
ev

; (5.20)

• preemptive-resume policy

Varexpov =
ρ2ov

µ2
ov(1− ρov)2

+
(1− ρ)(1 + ρev − ρov)

µ2
v(1− ρov)2

+
2ρov

µ2
ov(1− ρov)

+
1

µ2
ov

, (5.21)

Varexpev =
1

µ2
v(1− ρov)2

+
ρ2ev

µ2
ev(1− ρ)2(1− ρov)2

+
2ρev

µ2
ev(1− ρ)(1− ρov)2

+
ρ2ov(3− 2ρ− ρov)

µ2
ov(1− ρ)2(1− ρov)3

+
2ρov

µvµov(1− ρov)3
+

2ρov
µ2
ov(1− ρ)(1− ρov)2

+
2ρovρev(2− ρov − ρ)

µovµev(1− ρ)2(1− ρov)3
+

1

(1− ρov)2µ2
ev

; (5.22)

• first come first serve policy
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Varexpj =
1

µ2
j

+
1

µ2
v

+
2( ρov

µ2
ov

+ ρev
µ2
ev
)

(1− ρ)
+

( ρovµov
+ ρev

µev
)2

(1− ρ)2
,

j = ov, ev. (5.23)

Proof: By plugging in δi = 1, ωi =
1
µi
, E(S3

i ) =
6
µ3
i
, i = ev, ov, v, the above expressions

can be obtained after several steps of algebraic operations.

Building upon these system performance evaluation formulas, system properties like

monotonicity can be studied. Then, questions such as how do system parameters impact

performance measures and what are the directions to improve system performance can

be answered. In the Sections 5.4-5.6, the properties of the mean and variance of length

of visit are discussed, and different scheduling policies are compared.

5.4 System Properties

5.4.1 Property of Average Length of Visit

In this section, we investigate the impact of routing probabilities on e-visit and office visit

patients’ average lengths of visit. Since βev and βov are the probabilities that patients

continue to seek e-visits and office visits after web service and e-visits, respectively, the

monotonicity of Ti, i = ev, ov, with respect to them could provide insights on how e-visits

impact patient access to primary care.
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Monotonicity of Tov with respect to βov

Proposition 5.1 Under assumptions 1)-5), Tov is monotonically increasing with respect

to βov, i.e.,
∂Tov

∂βov
> 0, if and only if

ωov > (ωv − ωev)ρev, non-preemptive policy,

ωov > ωvρev, preemptive-resume policy,

without condition, first come first serve policy.

Proof: See the Appendix.

Intuitively, if the routing probability of seeking office visits after e-visits, βov, is

increasing, the physician’s workload with office visit patients is increasing. Under the

non-preemptive policy, when ωov > (ωv −ωev)ρev, the office visit patient’s length of visit

will increase with respect to βov, and will be non-increasing vice versa. Such a condition

suggests that, roughly, the moment ratio of the office service is larger than that of the

difference between vacation and e-visit.

In practice, this type of condition typically holds, since both e-visits and vacations

have lower priority than office visits and usually take a shorter time compared with office

visits. The difference will be even smaller considering the discount factor ρev < 1. In

particular, when service and vacation times are exponentially distributed, this condition

is simplified to τov > (τv − τev)ρev, which again holds most of the time.

Under the preemptive-resume policy, the condition becomes more strict, where ωov >

ωvρev (in the exponential case, τov > τvρev) is required. The reason is that under

the preemptive-resume policy, the physician will stop working on e-visit patient and

immediately serve an incoming office visit patient. Then, the service time and the

variability of e-visits will not play a significant role in the waiting time of office visit
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patients compared with the non-preemptive case, where the physician has to finish any

ongoing e-visit service before moving to office visit patients. However, since vacations

usually take a shorter time and ρev < 1, this condition is typically satisfied, so that the

monotone increasing property holds.

An illustration of such monotonicity property in exponential scenarios is exhibited

in Figure 5.3, in which the parameters are selected as follows:

βov ∈ [0, 0.5), βev = 0.5, (5.24)

Case A: τv = 30τev = 10τov, (5.25)

Case B: τv = τev =
τov
3
. (5.26)

The reason to include the seldom occurring Case A is to show the decreasing monotonic-

ity. As one can see, when office visits take a longer time, which meets the requirement

in Proposition 5.1, Tov is increasing with respect to βov (Case B). However, if vacation

(or non-direct care) takes an extremely longer time than office and e-visits, Tov could

decrease with respect to βov (Case A). In a sense, waiting for short office visits is better

than for long vacations.

When the first come first serve policy is applied, the office visit patient’s length of

visit is monotonically increasing with respect to βov without any condition. In this case,

both office and e-visits are treated with equal priority. Increasing physician’s workload

(ρov and ρ in (5.11) and (5.13)) will lead to a longer patient length of visit.

Therefore, in most of the practical cases, if more patients need to seek additional

office visits after e-visits, the accessibility to office visits can be further impaired. Thus,

planning e-visits properly to limit this routing probability is of importance, and will be

part of future work.
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Figure 5.3: Monotonicity of Tov w.r.t. βov
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Monotonicity of Tov with respect to βev

Proposition 5.2 Under assumptions 1)-5), Tov is monotonically increasing with respect

to βev, i.e.,
∂Tov

∂βev
> 0, if and only if

βovµevωov > (µov − λov)(ωv − ωev),

non-preemptive policy,

βovµevωov > (µov − λov)ωv,

preemptive-resume policy,

without condition, first come first serve policy.

Proof: See the Appendix.

Again, the increasing monotonicity exists without any condition under the first come

first serve policy. For non-preemptive and preemptive-resume policies, the necessary and

sufficient conditions become more complex.

When βev is increasing, i.e., more patients continue to seek e-visits after web services,

which leads to an increase in the number of patients to further come to the office visit

(as βov > 0 and is kept constant). Since βev mainly affects the arrival of e-visits, only

when βov is large enough, the increase of follow-up office visits can exert a significant

effect (which explains the conditions with the factor βov on the left-hand side of the

inequalities in Proposition 5.2, required for both the policies).

For the non-preemptive policy, if the physician spends more time, which also has a

higher variability on office and e-visits than vacation, a longer length of visit can be ob-

served (which explains the condition regarding the ωov and ωv−ωev factors in Proposition

5.2 for the non-preemptive policy). For the preemptive-resume policy, additional e-visit

patients will not significantly impact office visits, since the physician will stop working
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on any e-visit and immediately work on the coming office visit patient. Thus, the con-

dition in Proposition 5.2 for the preemptive-resume policy becomes stricter, where the

ωv − ωev term changes to ωv.

Note that these conditions are necessary and sufficient, which indicates that if these

conditions are not met, Tov will be monotone non-increasing with respect to βev. Figure

5.4 illustrates such properties in exponential cases. System parameters are selected as

in (5.25) and (5.26), but (5.24) is replaced by (5.27) to represent the scenario that web

service has a higher referral ratio than e-visits

βev ∈ [0, 0.95), βov = 0.1. (5.27)

As exhibited in Figure 5.4, when vacation time is much longer, waiting for more office

visits could be even beneficial, so that the decreasing monotonicity can be observed.

Monotonicity of Tev

Unlike Tov, the monotonicity of Tev is consistent for the non-preemptive, preemptive-

resume and first come first serve policies.

Proposition 5.3 Under assumptions 1)-5), Tev is monotonically increasing with respect

to βev and βov, i.e.,
∂Tev

∂βi
> 0, i = ov, ev.

Proof: See the Appendix.

Proposition 5.3 articulates that the length of visit of e-visit patients is always mono-

tonically increasing with respect to βev and βov, no matter which policy is implemented.

Larger βov and βev increase the effective arrivals, resulting in more patients waiting in

line. Under all the policies, a newly arrived e-visit patient needs to wait until all types of

patients in line are finished. Thus, the increase of average length of visit can be foreseen.



83

0 0.2 0.4
2.3

2.4

2.5

2.6

2.7

β
ev

T
ov

Case A: Non−Prempt Policy

0 0.2 0.4
0.6

0.61

0.62

0.63

β
ev

T
ov

Case B: Non−Prempt Policy

0 0.2 0.4
2.3

2.4

2.5

2.6

2.7

β
ev

T
ov

Case A: Prempt−Resume Policy

0 0.2 0.4
0.59

0.595

0.6

0.605

β
ev

T
ov

Case B: Prempt−Resume Policy

Figure 5.4: Monotonicity of Tov w.r.t. βev
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Discussions

The scheduling policies introduced in this study can be categorized into two groups,

based on whether the arriving patients are with or without priority. For the first come

first policy, patient types are not differentiated, and increasing either βov or βev increases

the total patient arrivals, so does the server intensity ρov, ρev, and ρ. In addition, the

effect of vacation on patient length of visit is independent of sever intensity, which is

elucidated in (5.10) and (5.11) (where the terms related to ωv or τv are independent of

ρev, ρov and ρ). Therefore, it is straightforward that the increasing monotonicity holds

for lengths of visit of both office and e-visit patients unconditionally.

For the policies with priorities, the results differ for office and e-visit patients. As the

e-visit patients have a lower priority, their waiting incorporates the waiting for all the

patients in line and the waiting for the physician to return from a vacation. Larger βev or

βov increases the overall patient arrival, and thus the overall number of patients waiting

in line. Therefore, the monotonicity of their length of visit holds naturally without

conditions.

On the other hand, office visit patients are mainly waiting for office patients in line

and the physician returning from a vacation. There exists a tradeoff between waiting

for more office and e-visits due to the increase of βov or βev and waiting for potentially

fewer vacations. Therefore, conditions are required to ensure the monotone increasing

of length of visit for office visits. In extreme cases, if vacations are very long or suffer

large variations (ωv ≫ ωev or ωv ≫ ωov), then having more office and e-visit arrivals

could be beneficial (i.e., Tov is monotonically decreasing with respect to βov and βev).

Moreover, for Tov to be monotonically increasing with βev, as βev mainly affects e-visits

and its impact on office visit is through βov, additional conditions on βov are required.

The conditions for the preemptive-resume policy are always stricter than that for the
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non-preemptive policy. In the former case, physicians will stop the ongoing e-visit, and

thus, only significant changes in e-visits will impose effects on office visits, while in the

latter case, physicians will finish the current e-visit service, and any change in e-visits

may immediately impact office visits.

In summary, in practical cases, office visits have higher a demand and take a longer

time, and then both Tov and Tev are monotonically increasing with respect to βov and

βev.

5.4.2 Property of Variance of Length of Visit

Monotonicity of Varov

First, we investigate the monotonicity of variance of length of visit Varov with respect to

βov. The increasing monotonicity holds under a sufficient but not necessary condition.

Proposition 5.4 Under assumptions 1)-5), Varov is monotonically increasing with re-

spect to βov, i.e.,
∂Varov
∂βov

> 0, if

ωov ≥ ρev|ωv − ωev| and

µovE(S3
ov) + λ′

evE(S3
ev) ≥ ρevµvE(S3

v),

non-preemptive policy,

ωov ≥ ρevωv and µovE(S3
ov) ≥ ρevµvE(S3

v),

preemptive-resume policy,

without condition, first come first serve policy.

Proof: See the Appendix.
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The sufficient conditions for variance of length of visit are much more complex com-

pared to that of the average length of visit, since the third moments are involved. These

conditions indicate that when the office visit has a longer service time and a larger vari-

ance, and the vacation (i.e., non-direct care activity) has a smaller moment ratio, then

more patients seeking office visits after e-visits will lead to larger variability in the pa-

tient flow. Similar to the Tov case, the sufficient conditions under the preemptive-resume

policy are stricter than those under the non-preemptive policy. Under the first come first

serve policy, fortunately, the monotonicity is straightforward that the variance of length

of visit for office visit patients is always increasing when more patients shift to office

visits.

It can be noticed that the characteristic of vacation plays an important role in decid-

ing the monotonicity of the mean and variance of patient cycle time. The monotonicity

still holds as long as all the three moments of vacation are small enough. One other

observation is that the length of visit variation is affected by multiple factors comprising

the first, second, and third moments. Therefore, the effect of each factor on determining

the holistic system performance weakens. Inference can be drawn that the increase of

referral ratio escalates the variation of the system, but not in a strong manner as it

impacts the mean time performance. Similar properties are witnessed for the variance

with respect to βev.

These sufficient conditions are less complicated under the exponential assumption.
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Corollary 5.3 Under assumptions 1)-5) with exponential service and vacation time dis-

tributions, ∂Varexpov

∂βov
> 0, if

τov ≥ ρev|τv − τev| and

τ 2ov ≥ ρev(τ
2
v − τ 2ev),

non-preemptive policy,

τ 2ov ≥ ρevτ
2
v ,

preemptive-resume policy.

Proof: By plugging in δi = 1, ωi =
1
µi
, and E(S3

i ) =
6
µ3
i
, i = ev, ov, v, and eliminate the

redundant conditions, the expressions are obtained.

Conditions described above are typically met, since the office visit usually takes

a longer time than e-visits and vacations, and ρev < 1. Illustrations are depicted in

Figure 5.5, where the same parameter settings (5.24)-(5.26) matching the conditions in

Corollary 5.3 are used. When office visits take a longer time, Varov increasing with βov

is observed (Case B). However, when the vacation is abnormally long, the decreasing

phenomenon can be observed (Case A).

Next we study the monotonicity of Varov with respect to βev. Similar to Tov’s case, the

sufficient conditions become more strict under non-preemptive and preemptive-resume

policies, but no condition is demanded under the first come first policy.
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Figure 5.5: Monotonicity of Varov w.r.t. βov

Proposition 5.5 Under assumptions 1)-5), Varov is monotonically increasing with re-

spect to βev, i.e.,
∂Varov
∂βev

> 0 if

βovµevωov > (µov − λov)|ωev − ωv|

and µevE(S3
ev) ≥ µvE(S3

v),

non-preemptive policy,

βovµevωov > (µov − λov)ωv

and βovµovµevE(S3
ov) ≥ (µov − λov)µvE(S3

v),

preemptive-resume policy,

without condition, first come first serve policy.

Proof: See the Appendix.
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The sufficient conditions in Proposition 5.5 contain the necessary and sufficient con-

ditions presented in Proposition 5.2. In addition to that, conditions regarding the third

moments are required. Likewise, the conditions are more rigid for the preemptive-resume

policy compared with the non-preemptive policy. The increasing monotonicity always

holds for the first come first serve policy.

In exponential cases, conditions are simplified. Figure 5.6 illustrates the trend that

variance changes with referral ratio βev under exponential settings.

Corollary 5.4 Under assumptions 1)-5) with exponential service and vacation time dis-

tributions, ∂Varexpov

∂βev
> 0 if

βovµevτov > (µov − λov)|τev − τv|

and τ 2ev ≥ τ 2v

non-preemptive policy,

βovµevτov > (µov − λov)τv

and βovµevτ
2
ov ≥ (µov − λov)τ

2
v ,

preemptive-resume policy.

Proof: By plugging in δi = 1, ωi =
1
µi
, and E(S3

i ) =
6
µ3
i
, i = ev, ov, v, above expressions

can be obtained.

Monotonicity of Varev

First, we consider non-preemptive and preemptive-resume policies. The monotonicity

conditions for Varev to increase with respect to βov and βev become much more compli-

cated. Thus, only the sufficient conditions are pursued. Under both the policies, the



90

0 0.1 0.2 0.3 0.4
6

6.1

6.2

6.3

β
ev

V
ar

ov

Case A: Non−Prempt Policy

0 0.1 0.2 0.3 0.4

0.29

0.3

0.31

β
ev

V
ar

ov

Case B: Non−Prempt Policy

0 0.1 0.2 0.3 0.4
6

6.2

6.4

6.6

β
ev

V
ar

ov

Case A: Prempt−Resume Policy

0 0.1 0.2 0.3 0.4

0.29

0.3

0.31

β
ev

V
ar

ov

Case B: Prempt−Resume Policy

Figure 5.6: Monotonicity of Varov w.r.t. βev
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same sufficient condition for Varev to be monotonically increasing with respect to βov

and βev has been derived.

Proposition 5.6 Under assumptions 1)-5) with non-preemptive and preemptive-resume

policies, if ωov ≥ ωv

2
then ∂Varev

∂βi
> 0, i = ev, ov, i.e., Varev is monotonically increasing

with respect to βov and βev.

Proof: See the Appendix.

Since office visits normally take a longer time and have a larger variability compared

with vacations, ωov ≥ ωv

2
usually holds and the sufficient condition is satisfied. For the

first come first serve policy, monotonic properties with respect to both βov and βev hold

unconditionally.

Proposition 5.7 Under the assumptions 1)-5) with the first come first serve policy,

Varev is monotonically increasing with respect to βov and βev, i.e.,

∂Varev
∂βov

> 0,
∂Varev
∂βev

> 0.

Proof: See the Appendix.

Discussions

For the first come first serve policy, similar to the property of the average length of visit,

the terms (the first, second, and third moments) related to vacations are independent of

the patient arrival (see (5.18)). Thus, vacations would not affect the system monotonic-

ity property regarding arrival, which is the only term that links to routing probabilities.

For the non-preemptive and preemptive-resume policies, the sign of the term ωv is neg-

ative, and the monotonicity of the coefficient of ωv with respect to βov or βev is not
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clear (see (5.14)-(5.17)). Therefore, the property of vacation plays an important role in

determining the monotonicity of variation for office and e-visits.

In summary, the monotone increasing property of variance requires a shorter vacation

time, less vacation variations, and a small third moment of vacation. In most practical

cases, the variances Varov and Varev are monotonically increasing with respect to βov

and βev, as long as office visits need a longer time and have high variability.

5.5 Comparison of Scheduling Policies

5.5.1 Average Length of Visit

To improve physicians’ operations and design an efficient daily workflow, this subsection

is dedicated to identifying the optimal scheduling policy and its conditions. By consid-

ering all the patients who need physicians’ services, the overall patient average length of

visit can be obtained, which is a weighted average length of visit of both the office and

e-visit patients:

T = pevTev + povTov, (5.28)

pi =
λ′
i

λ′
ev + λ′

ov

, i = ev, ov. (5.29)

Comparing the three scheduling policies, we have Proposition 5.8.

Proposition 5.8 Under assumptions 1)-5), assume µov < µev, then

TNon-Preemp > TFCFS,

and in addition, if cvev < 1,

TPreemp > TNon-Preemp,
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where TPreemp, TNon-Preemp, and TFCFS are the weighted average lengths of visit under the

preemptive-resume, non-preemptive and first come first serve policies, respectively.

Proof: See the Appendix.

The second inequality in Proposition 5.8 indicates that it is always preferable to finish

the current e-visit without interruption of the ongoing work, and then start working on

office visit patients. The rationale behind this is that the preemptive-resume policy

implies that the physician needs to restart the interrupted e-visit after finishing the

office visits, which creates more variations for e-visits that can lead to a longer length of

visit. In practice, office visits usually take a longer time than e-visits (µov < µev), and

along with the second inequality, it is justified that the first come first serve policy leads

to the highest system productivity, i.e., the shortest average length of visit.

5.5.2 Variance of Length of Visit

The above analysis manifests that the non-preemptive policy is superior to the preemptive-

resume policy in terms of mean time performance. To compare the variances of length

of visit under different scheduling policies, define the weighted variance of length of visit

of both the office and e-visit patients as

Var = pevVarev + povVarov. (5.30)

Then, the following necessary and sufficient condition is obtained.

Proposition 5.9 Under assumptions 1)-5), if and only if

E(S3
ev) <

1

(1− ρov)µovµ2
ev

(3ρov − 6 + µev[12− 6ρov + 6(1− ρ)µovωv]ωev

+ 3λ′
evµovω

2
ev),
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then

VarNon-Preemp < VarPreemp,

where VarPreemp and VarNon-Preemp are the variances of length of visit under the preemptive-

resume and non-preemptive policies, respectively.

Proof: See the Appendix.

As one can see, if the third moment E(S3
ev) is small enough, then VarNon-Preemp is

smaller than VarPreemp. Numerical experiments have demonstrated that such a condition

is typically met, so that the non-preemptive policy’s superiority holds. In particular,

when the exponential service and vacation time distributions are assumed, this conclu-

sion is always valid.

Corollary 5.5 Under assumptions 1)-5) with exponential service and vacation time dis-

tributions, assume µov < µev,

VarexpNon-Preemp < VarexpPreemp.

Proof: See the Appendix.

The comparison of variances of length of visit between the first come first serve and

non-preemptive policies is intricate, even in the exponential case. Although a comparison

formula can be derived (see the proof of Proposition 5.9), no simple relationship has been

identified. Based on extensive numerical studies, it’s observed that the first come first

serve policy yields a smaller variance compared with the non-preemptive policy when all

the parameters are chosen within the typically range in practice. In particular, under the

exponential assumption of service and vacation time distributions, select λ′
ov

λ′
ev

∈ (1, 11),
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and µov

µev
∈ (0.1, 1). In addition, let ρov+ρev < 1. A total of 10,000 examples are randomly

generated to evaluate the variance. Without a single exception, in all the experiments

carried out, it’s always the case that

VarexpFCFS ≤ VarexpNon-Preemp.

Therefore, we recommend the first come first serve policy, which generally leads to a

smaller mean and variance of patient length of visit.

5.6 Conclusions

In this chapter, an analytical model of primary care delivery with e-visits has been devel-

oped. Formulas to evaluate the mean and variance of office and e-visit patients’ average

lengths of stay are derived. Three commonly used scheduling policies coordinating office

and e-visits are compared and the first come first serve policy is recommended. Such a

model builds up a foundation for the further investigation of e-visits’ impact on patient

access to care.
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Chapter 6

Impact of E-Visits on Patient

Access to Primary Care

6.1 Introduction

In this chapter, we evaluate the effect of e-visit adoption on patient’s accessibility to

care. Specifically, we are interested in the conditions under which e-visits should be

adopted and, in addition, if e-visits is implemented, how do physicians manage e-visits

to improve patient access to primary care. To answer these questions, in Section 6.2, the

comparison between systems with and without e-visits is carried out and the criteria for

implementing e-visits are identified. In Section 6.3, physician’s capacity and the optimal

patient diversion to e-visits are investigated. Conclusions are presented in Section 6.4.

For the care delivery system with e-visits, the system performance is evaluated based

on the first come first serve policy, which outperforms the other two policies (non-

preemptive and preemptive-resume) and generally leads to a smaller mean and variance

of patient length of visit. Besides, we mainly focus on the impact of e-visits, and there-

fore, we do not differentiate direct e-visits and patients seeking e-visits after web services

and consequently, λ′
ev = λev. This change won’t affect the conclusions drawn from the

previous chapter.
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6.2 Comparison between Systems with/without E-

Visits

6.2.1 System without E-Visits

Primary care patients typically have different complaints that are of various levels of

severity and acuity. Prior to introducing e-visits, no matter with simple care needs or

complex complaints, all non-urgent care patients schedule office appointments with their

primary care physicians. Here we do not consider patients’ urgent care and emergency

department visits since they typically are not associated with patients’ primary care

physicians. Such a unified patient flow is highlighted on the left-hand side of Figure 6.1.

Figure 6.1: Patient flow of systems with and without e-visits

Given a panel which generates patient arrivals with rate λ, the care operations asso-

ciated with the physician following assumptions described in Chapter 5 can be modeled

as a single server queue with server vacations. The physician’s utilization (or traffic

intensity) on office visits is computed as

ρt =
λ

µov

. (6.1)
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Then, we obtain the office visit cycle time Tt under the traditional care delivery model.

Tt =
ρtωov

1− ρt
+ ωv +

1

µov

. (6.2)

6.2.2 System with E-Visits

If e-visits is introduced, the new patient flow is illustrated on the right-hand side of

Figure 6.1. E-visits function as a diversion for patients with acute non-urgent care

needs and patients with chronic disease who need follow-ups. For comparison purposes,

we assume the patient panel does not change and the demand remains the same. Since

a proportion of patients might be suitable for e-visits, we denote this percentage as α

(0 < α < 1) and let those patients seek e-visits directly. Then, the arrival rate for e-visits

is λev = αλ. The rest of patients go for office visits with arrival rate λov = (1− α)λ. In

addition, some of the e-visit patients might need follow-up office visits. We denote this

transition as referral with ratio βov. Then, the effective arrival rate for office visits λ′
ov

satisfies

λ′
ov = λov + βovλev = (1− α + αβov)λ. (6.3)

To simplify the expressions, we introduce another variable γ, which is the service rate

ratio between office and e-visits, µov = γµev, and γ < 1, which implies that e-visits take

a shorter service time on average. Besides, the CV of e-visits is no larger than that of

office visits, δev ≤ δov.

Recall that ρt =
λ

µov
is the physician utilization when all patients go for office visits

(i.e., α = 0). When α ̸= 0, define:

ρov = λ′
ov/µov = (1− α + αβov)ρt,

ρev = λev/µev = αγρt,

ρ = ρov + ρev = (1− α(1− γ − βov))ρt, (6.4)
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representing physician’s utilization on office visits, e-visits, and a total of them, respec-

tively. Considering physician’s capacity and to ensure a system that can reach stationary,

the physician’s utilization satisfies

ρt < 1 <=> λ < γµev,

ρ < 1 <=> (1− α(1− γ − βov))λ < γµev. (6.5)

Under the same assumptions presented in Section 5.2, for the first come first serve policy,

patient average lengths of visit for office and e-visit encounters can be calculated:

Tev = (ρov
δov
µov

+ ρev
δev
µev

)
1

(1− ρ)
+ ωv +

1

µev

,

Tov = (ρov
δov
µov

+ ρev
δev
µev

)
1

(1− ρ)
+ ωv +

1

µov

. (6.6)

6.2.3 System Comparison

To determine whether the service model with e-visits can outperform the other, we

fix the total external arrival rate λ and e-visit diversion factor α. The demand and

utilization of provider services are typically shaped by the patient population’s age, sex,

race, disease burden, etc., which are factors determined by the characteristics of panel

patients, but not related to physician’s operations.

Many physicians hesitate to adopt e-visits for fear of being overloaded by e-visits as

they already bear heavy workload managing office visits. Therefore, the first comparison

is regarding physician utilization, which can be captured by “traffic intensity,” a measure

of how busy the system is.

Proposition 6.1 Comparing physician’s operations before and after the implementation

of e-visits, under the condition 1− γ − βov > 0, ρ− ρt < 0, i.e., adopting e-visits could

reduce the physician utilization.
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Proof: See the Appendix.

Note that 1 − γ = µev−µov

µev
, which is the relative service rate difference between office

and e-visits. Proposition 6.1 indicates that when patients start using e-visits and the

referral ratio is smaller than the relative service rate difference, the physician’s workload

on serving patients can be reduced. Although being a trivial comparison, the condition

identified in Proposition 6.1 is insightful and affects the system performance in other

aspects, which will be further discussed in this paper.

Meanwhile, from patients’ perspective, for those patients who only receive office

visits, we compare the change in cycle time Tov − Tt and conclude that:

Proposition 6.2 Comparing physician’s operations before and after the implementation

of e-visits, under the condition 1−γ−βov ≥ 0, Tov −Tt < 0, i.e., adopting e-visits could

reduce office visit cycle time.

Proof: See the Appendix.

Furthermore, for those patients who only receive e-visits, we have Corollary 6.1.

Corollary 6.1 If 1− γ− βov ≥ 0, then, Tev − Tt < 0, i.e., patients experience a shorter

cycle time using e-visits compared to e-visit is not offered.

Proposition 6.2 and Corollary 6.1 suggest that if the efficiency gained from e-visits

outweighs the extra workload due to ineffective e-visit usage, although physicians serving

office and e-visit patients simultaneously, both office and e-visit cycle times are reduced

compared to e-visit is not offered. Note that Tev < Tov, since e-visits have a larger service

rate. Thus, a sufficient but not necessary condition for Tev−Tt < 0 is also 1−γ−βov ≥ 0.

However, it should be noticed that there’s a proportion of patients receiving both

e-visits and office visits. To further assess whether the whole panel can benefit from

e-visit usage, we investigate the overall cycle time for all types of patient visits – a
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weighted cycle time where the weight is determined by arrival rates. This index is able

to incorporate the scenario that some of the e-visit patients still receive office visits

afterwards, and therefore, consume more time and resource.

For the system without e-visits, we denote the index as ϕw/o (without e-visits):

ϕw/o = λTt = λ(
ρtωov

1− ρt
+ ωv +

1

µov

). (6.7)

For the system with e-visits, the index is defined as ϕw (with e-visits):

ϕw = (1− βov)λevTev + βλev(Tev + Tov) + λovTov. (6.8)

Note that λ = (1− βov)λev + βovλev + λov, a redistribution of the total external arrival.

Then, apply (6.6) to calculate ϕw:

ϕw = ρ+ (ρovωov + ρevωev + (1− ρ)ωv)
(1 + αβov)λ

1− ρ
. (6.9)

Furthermore, define the system comparison index as Φ = ϕw/o − ϕw. If the system

with e-visits is more efficient, ϕw < ϕw/o and Φ > 0. Otherwise, the system without

e-visits is preferred and Φ < 0.

Proposition 6.3 Comparing physician’s operations before and after the implementation

of e-visits, if 1 − γ − βov ≥ 0, and the other nondirect care tasks’ variation factor ωv

satisfies

ωv <
λ[(−1 + 2γ + (1− γ)γα)δov − γ2(1 + (1− γ)α)δev]

γ(1− γ)µev(−λ+ γµev)
, (6.10)

then Φ > 0, i.e., adopting e-visits would decrease the overall cycle time.

Proof: See the Appendix.

Proposition 6.3 provides a sufficient but not necessary condition for Φ > 0. It highlights
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that for care delivery with e-visits to be more efficient, not only the first moment con-

dition regarding physician’s operations is requested, but the variabilities – the relative

values among the service time variation factors δov and δev, and the “vacation” variation

factor ωv all matter. Considering the second moments, we find a criterion opposing

e-visit implementation.

Corollary 6.2 Under the conditions δov = δev and βov ≥ 1 − γ, the index Φ < 0, and

adopting e-visits would increase the overall cycle time.

Proof: See the Appendix.

Corollary 6.2 provides a sufficient but not necessary condition to refrain from using e-

visits. Basically, when e-visit fails to reduce service variation (we assume δev ≤ δov), and

the efficiency gained cannot compensate the loss of effectiveness, adopting e-visit is not

recommended.

As revealed by Proposition 6.3 and Corollary 6.2, there are multiple factors that

leverage the value of index Φ, including nondirect care task variation factor ωv, e-visit

service rate µev, e-visit service time variation factor δev, and e-visit to office visit referral

ratio βov. We further assume these factors are mutually independent and investigate

their impact on system efficiency.

Impact of nondirect care tasks

Note that physician’s nondirect care work exists no matter e-visit is offered or not. Let

the random variable V represent the duration of completing such tasks. ωv = E(V 2)
2E(V )

,

which is the half moments ratio of the second moment to the first of “vacation” time.

When physician’s other tasks are not considered, ωv = 0. In this case, denote a new

comparison index Φnv.
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Proposition 6.4 Φ = Φnv − αβovωv. Compared to Φnv, the performance index of the

system incorporating physician’s other nondirect care tasks (Φ) is smaller.

Proof: See the Appendix.

It can be concluded that physician’s other nondirect care tasks do affect the system

property. The incorporation of “vacation” essentially offsets the changes e-visits could

bring to the overall cycle time. The performance index Φ is decreasing with respect to

ωv. When the other tasks take a very long time or with large variations, the potential

benefits from adopting e-visits will be significantly impaired.

On the other hand, even without other tasks, the superiority of having e-visits cannot

be guaranteed. In particular, if without “vacation,” ωv = 0, the condition presented in

Proposition 6.3 will be mainly determined by the relation between δov and δev.

Impact of e-visit service time

E-visit service time is characterized by the service rate µev and the variation factor

δev. To investigate the impact of e-visit service time on system comparison, we take

derivatives of Φ with respect to µev and δev, correspondingly.

Proposition 6.5 Φ is monotonically increasing with respect to e-visit service rate µev,

i.e., ∂Φ
∂µev

> 0. In addition, Φ is monotonically decreasing with respect to e-visit service

time variation factor δev, i.e.,
∂Φ
∂δev

< 0.

Proof: See the Appendix.

Considering Φ as a function of µev, the boundary of Φ with respect to µev can be

identified. When µev → ∞, i.e., e-visits can be finished instantaneously. Although
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unlikely, it provides an upper bound of Φ:

Φµev→∞ = (1− βov)
αλ

µov

− αβovλωv +
δovλ

2

(1− ρt)µ2
ov

(6.11)

− δov(1− α + αβov)(1 + αβov)λ
2

(1− ρov)µ2
ov

.

Next, if µev → µov, then, the lower bound of Φ can be found as

Φµev=µov = −αβovλ

µov

− αβovλωv +
δovλ

2

(1− ρt)µ2
ov

(6.12)

− (δov(1− α+ αβov) + δevα)(1 + αβov)λ
2

(1− ρ)µ2
ov

.

It both cases, the sign of Φ cannot be determined. On one hand, even if physicians

can serve e-visit patients very fast, it cannot guarantee the reduction of the overall

patient cycle time as long as βov is large. On the other hand, although e-visits might

take approximately the same amount of time as office visits, it still has the potential

to reduce cycle time on average if both δev and βov are small. Thus, to improve care

delivery, providing standardized and time-saving e-visits is pursued.

Impact of referral ratio

The analysis in Subsection 6.2.3 directs us to investigate how the referral ratio βov

leverages the system performance. Considering Φ as a function of βov and taking the

partial derivative of Φ with respect to βov, we conclude:

Proposition 6.6 Φ is monotonically decreasing with respect to the e-visit to office visit

referral ratio βov, i.e.,
∂Φ
∂βov

< 0.

Proof: See the Appendix.

Similarly, the range of Φ can be identified based on the monotonicity of Φ with respect
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to βov. When βov = 0, Φ reaches its maximum:

Φβov=0 =
(1− γ)αλ

γµev

+
αλ2((δov − γ2δev)µev − (δov − γδev)λ)

µev(λ− γµev)((1− (1− γ)α)λ− γµev)

>
(1− γ)αλ

γµev

+
αλ2(δov − γ2δev)(µev − λ)

µev(λ− γµev)((1− (1− γ)α)λ− γµev)
> 0. (6.13)

Inequality (6.13) suggests that if e-visit can fully satisfy patients’ needs without incurring

additional office visits (βov = 0), adopting e-visit is beneficial whenever e-visit takes a

shorter service time on average (γ < 1). Such an advantage is even staggering if e-visit

consumes significantly less time and with smaller variances according to Proposition 6.5.

Next, when βov = 1, the lower bound of Φ is calculated as:

Φβov=1 = −λ{αωv +
α(1− (1− γ)ρt)ρt

(1− ρt)(1− (1 + αγ)ρt)ωov

+
αγ(1 + α)ρtωev

1− (1 + αγ)ρt
+

α

µev

} < 0. (6.14)

Therefore, when βov = 1, the service model with e-visits is not preferred no matter

how fast e-visits can be processed. Intuitively, if all e-visit patients seek face-to-face

encounters afterwards, then there’s no need to provide e-visits which are apparently

redundant.

Remark 6.1 Although e-visits provide a gateway for patients with simple complaints,

for those patients receiving office visits after e-visits, their office visit time might not be

reduced. Therefore, µov is kept the same for all office visits. Besides, a referral patient

still needs to go through the regular scheduling process for a subsequent office visit.

Numerical experiments

To further study the property of Φ, numerical experiments are carried out. Fix λ = 1 as

the unit arrival rate and ωv is normalized so the range is set to [0.01, 0.5]. The values

of µev and γ are randomly generated under the physician utilization constraints (6.5).
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The other parameters are chosen from the following sets:

δev ∈ [0.01, 0.99],

δov ∈ [0.01, 0.99],

α ∈ [0.01, 0.99],

and δev ≤ δov.

Two sample numerical experiments are exhibited in Figures 6.2(a) and 6.2(b). The

figures illustrate the three-dimension plot of Φ as a function of βov and γ. The light color

panels represent the plane Φ = 0, and the thick black lines are βov + γ = 1. They shed

light on the trends that when either βov or γ is large, Φ is small, while when both βov

and γ are small, Φ can be above zero. Moreover, in Figure 6.2(a), the value of ωv is much

smaller than that of Figure 6.2(b). When ωv is close to zero, the values of βov and γ

that satisfy Φ(βov, γ) = 0 are almost coincident with βov+γ = 1, while when ωv is large,

there’s a broad area between the black line and the intersection curve. It corresponds

to Proposition 6.3 that physician’s longer “vacations” on other tasks would impair the

potential benefits from e-visit diversion, so βov needs to be way smaller than 1 − γ to

make Φ > 0. Practically, other tasks are competing with direct patient care work on

physician resource. The “free time” released by e-visits is consumed by nondirect care

work, and such influence is significant when nondirect care work is dominant.

6.3 Physician Capacity and Patient Diversion

As we are interested in introducing e-visits to improve patient access, in this section, we

draw the attention to two questions. First, what sizes of patient panels are manageable

that are compatible with delivering a reasonable level of access to care? Second, how is
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(a) Small ωv (b) Large ωv

Figure 6.2: Comparison index Φ as a function of βov and γ

a manageable patient panel size affected by partial diversion of patient demand to the

use of electronic communications?

6.3.1 Physician Capacity Analysis

Viewing the arrival rate (provider visits per day) as a reflection of the physician’s panel

size, when there’re more patients affiliated with the physician, there’re more patient

complaints that the physician should expect. The previous section investigates the

system property by assuming the same total external arrival. In this section, we relax

such an assumption. Prior to e-visit, the patient demand a physician could accommodate

corresponds to an arrival rate λt. When e-visit is implemented, physicians adjust his/her

panel size accordingly with an external arrival rate λ. In this subsection, we still fix α

and let 0 < α < 1 since practically, e-visits can only meet limited patient needs.

First, we evaluate the physician’s utilization on patient care before (ρt) and after (ρ)
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e-visit implementation:

ρt =
λt

γµev

< 1, (6.15)

ρ =
(1− α(1− γ − βov))λ

γµev

< 1. (6.16)

Proposition 6.7 Suppose the original arrival rate λt results in a reasonable level of

physician utilization. Then, when e-visit is implemented, the maximum external arrival

rate λ that is manageable (with the physician’s utilization unchanged) can be calculated

as

λ∗ =
λt

1− α(1− γ − βov)
, (6.17)

and when 1− γ − βov > 0, λ∗ > λt, a larger external arrival rate can be accommodated.

Proof: See the Appendix.

Conclusions can be drawn that if some of the panel patients use e-visits and the provided

e-visit service satisfies the service rate ratio and referral ratio constraint, physicians can

potentially accommodate an increased arrival rate and enlarge his/her panel size by

approximately α(1− γ − βov)100%.

Next, it is of interest to us how the system performs when the capacity is expanded.

We hereby compare the average cycle times of office and e-visits when λ = λ∗.

Proposition 6.8 When λ = λt

1−α(1−γ−βov)
and 1 − γ − βov ≥ 0, adopting e-visits could

reduce both office and e-visit patients’ cycle times compared to e-visit is not offered, i.e.,

Tov − Tt < 0, (6.18)

Tev − Tt < 0. (6.19)

Proof: See the Appendix.
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Furthermore, we take a look at the performance index Φ when λ = λ∗:

Φλ=λ∗ =
αλ2

t (δov(α + α(2γ − 1)βov + γ(α(γ − 2) + 2)− 1)− γ2δev(1 + αβov))

γµev(1− α(1− γ − βov))2 (γµev − λt)

− α(1− γ)λtωv

1− α(1− γ − βov)
. (6.20)

Unfortunately, the sign of Φλ=λ∗ is still difficult to determine even if 1− γ − βov ≥ 0 is

satisfied. It demonstrates that with the expanded capacity, the reduction in the overall

cycle time cannot be guaranteed. Meanwhile, considering the second moments, it can

be shown that:

Proposition 6.9 When λ = λt

1−α(1−γ−βov)
and 1 − γ − βov ≥ 0, if δov = δev, then,

adopting e-visits yields a larger overall cycle time, Φλ=λ∗ < 0.

Figure 6.3 demonstrates how the index Φλ=λ∗ changes with respect to service time

variation factors δov and δev when the condition 1 − γ − βov ≥ 0 is satisfied. The thick

black line indicates δov = δev and for Φλ=λ∗ > 0, δov > δev is required.

Therefore, to achieve a larger panel size (1− γ − βov > 0) and a reduced cycle time

(Φλ=λ∗ > 0) simultaneously, conditions regarding the second moments – the service time

and “vacation” time variations are required. In particular, ωv needs to be small, and

δov > δev serves as a necessary but not sufficient condition for Φλ=λ∗ > 0.

Remark 6.2 Take the partial derivative of Φ with respect to λ:

∂Φ

∂λ
= −ρ

λ
− (ρovωov + ρevωev)(

2(1 + αβov)

1− ρ
+

(1 + αβov)ρ

(1− ρ)2
) (6.21)

− (1 + αβov)ωv < 0.

Thus, Φ is monotone decreasing with λ. Ideally, solving for the λ0 that satisfies Φ =

0 when λ = λ0, we obtain the threshold of λ for an unchanged overall cycle time

performance. However, challenges are that many variables are involved in the expression

of λ0 and a straightforward explanation of λ0 is hard to achieve.
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Figure 6.3: Comparison index Φ as a function of δov and δev

6.3.2 Optimal Patient Diversion

In this subsection, we no longer fix α and explore how a manageable patient panel is

affected by the partial diversion of patient demand to e-visits. Proposition 6.7 suggests

that λ∗ is an increasing function of α. It implies that if the e-visit volume is independent

of other variables, under the assumption that 1−γ−βov > 0, it is ideal to have as many

patients using e-visits as possible. Nevertheless, this might not be the case in real prac-

tice. Based on physicians’ experience, among those patient complaints they received,

only part of the encounters are suitable for virtual visits without additional referrals. To

estimate the proportion of substitutable office visits and determine the optimal diversion

α∗, physicians need to understand the characteristics of their patient population. It’s

important to review community prevalence statistics to assess the symptom categoriza-

tion, disease burden, and vulnerability and utilization-intensity of their panels. Besides,
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physicians should also consider patients’ individual financial needs, care preferences, and

accessibility to e-visit related infrastructure.

Meanwhile, there exists a discrepancy between the ideal diversion as physicians ex-

pected and the real usage and acceptance by patients. Some patients advocate e-visits

while others might have concerns regarding the quality of care and reimbursement issue,

or have limited access to patient portal and internet. Therefore, a match between the

“fit” recognized by the physician and patients’ reactions is desired. To investigate the

proper usage of e-visits, we consider a practical relation between the referral ratio and

e-visit volume. Here we follow assumptions (2) and (4) and further assume that the

referral ratio increases with respect to e-visit patient volume. The rationale is that if

all patients are encouraged to receive e-visits, patients who are not suitable for e-visits

might be “mis-triaged” and still need face-to-face encounters, which results in a very

high referral ratio and a much longer time to be diagnosed and treated. Specifically,

define βov = k1α + k2, where k1, k2 > 0 and k1 + k2 < 1. Then, βov is within 0 and

1 and is positively correlated with α. On one hand, k2 represents the fixed effect that

regardless of patients making appropriate decisions to seek e-visits or not, some patients

still need further assessment that cannot be accomplished via message exchange. On

the other hand, k1 represents the effect that associates with e-visit volume. Having pa-

tients with complex complaints treated by e-visits would potentially increase the risk of

making office visit referrals. The maximum arrival rate λ∗ in Proposition 6.7 indicates

that both α and βov affect the expected new capacity. Substituting βov by k1α + k2,

λ∗

λt

=
1

1− α(1− γ − k1α− k2)
. (6.22)

Figure 6.4 illustrates the change of λ∗ and λt with respect to patient e-visit usage α.

Let α∗ be the optimal diversion, when α < α∗, e-visit is underutilized, and the maximum
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arrival rate λ∗ is increasing with respect to α. When α > α∗, the maximum arrival rate

λ∗ decreases. By maximizing the value of λ∗

λt
in (6.22), we have Corollary 6.3.

Corollary 6.3 Under the assumption that the referral ratio βov is an linear function of

the patient diversion factor α, i.e., βov = k1α + k2, the optimal α∗ to maximize λ∗ in

(6.22) is

α∗ =
1− γ − k2

2k1
.

Proof: See the Appendix.

Figure 6.4: Panel size change with respect to patient diversion factor α

In close, if the referral ratio is not related to e-visit volume, then the larger the

diversion, the more patients each physician would expect to handle. Now as βov is

positively correlated with α, it is no longer the case that the more e-visits the better.

The optimal diversion α∗ is determined by the service rate ratio and how the referral

ratio is affected by e-visit patient volume. As a remark, the relationship between α and

βov might not be linear, and the values of k1 and k2 might not be easily obtained. The

purpose of this discussion is to serve as a caveat to avoid abusing e-visits – physicians

should advertise e-visit properly, and provide their patients with the most appropriate

care.
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6.4 Conclusions

In this chapter, formulas to evaluate the overall system performance of primary care

delivery systems with and without e-visits are developed. The criteria for implementing

e-visits are investigated. For system with e-visits to outperform the system without

e-visits, conditions such as the referral ratio should be less than the relative service rate

difference are required. In summary, to benefit from implementing e-visits, variables

such as mean e-visit service time, e-visit service time variation, and the referral ratio

from e-visits to office visit are all the smaller the better. Besides, adopting e-visits could

potentially increase the physician’s capacity to handle more patients. Physicians should

also direct those patients who are suitable for e-visits to receive e-visits. In conclusion,

this work provides a quantitative tool for primary care physicians to understand e-visit’s

impact on patients’ accessibility to care.
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Chapter 7

Case Studies

To elucidate the applicability of the methods introduced in this dissertation, we present

two case studies to show how the modeling framework can be used to provide managerial

insights and identify opportunities and challenges for future improvement. Specifically,

in Section 7.1, the modeling approach is applied to a gastroenterology clinic for work-

flow redesign, and in Section 7.2, the mammography testing process is studied and the

demand change analysis is conducted.

7.1 Case Study I: Design and Analysis of a Gas-

troenterology (GI) Clinic

The University of Wisconsin Medical Foundation was designing a new Digestive Health

Center in Madison, Wisconsin. The DHC is a multi-disciplinary health care facility that

integrates various services including gastroenterology and hepatology clinic, colorectal

surgery clinic, endoscopy procedures, radiology, laboratory, and pharmacy. The DHC

provides multi-disciplinary patient care and comprehensive clinical services related to

the digestive tract, with specialists diagnosing and managing complex and chronic gas-

trointestinal disorders. The mission of the DHC is to partner with patients and families

to meet the unique digestive health needs of every patient through comprehensive, un-

paralleled care while advancing research and educating the next generation of health
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professionals.

As an important part of the DHC, the GI clinic focuses on the digestive system and its

disorders. Understanding the workflow in the current GI clinic can help streamline clinic

operations and identify the opportunities for improvement in preparation for the new

center. The goals of this work are to develop a quantitative model to analyze the patient

flow in the new GI clinic, evaluate its design options, and propose recommendations for

the ideal staff coverage needed to accommodate the anticipated patient volume.

7.1.1 Work Flow Description

The current GI clinic care provider team consists of a clinician (physician, physician

assistant, or nurse practitioner) and one clinical staff (medical assistant or registered

nurse). Two exam rooms are assigned to each provider team. The service times of the

team members are random, but the variances of the service times are relatively small.

Within the GI clinic, patient visits primarily fall into two categories: office visit (OFV)

and consult visit (CON). The OFV is for patients who have frequent visits to a GI

specialist due to a chronic GI illness requiring frequent clinician care. The visit type

CON is for patients who are new to the GI service or recently confront an illness, often

referred by other physicians (most frequently primary care physicians). Consult visits

are scheduled for a longer duration than office visits. The office visits and consult visits

are distributed throughout the daily schedule based on demand, provider preference,

and office efficiency.

A typical visit to the GI clinic contains the following steps (see Figure 7.1):

• A patient checks in at the reception desk; a receptionist notifies the clinical staff,

and the patient is seated in the waiting room.
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Figure 7.1: Workflow in the GI clinic for one provider team

• The patient is escorted from the waiting room to an exam room by the clinical

staff. The clinical staff collects basic information from the patient, obtains vitals,

prepares paperwork, and records information into the health information systems.

This step is referred to as patient rooming.

• The clinician enters the exam room, assesses and diagnoses the patient’s condition,

and develops a treatment plan.

• To discharge the patient, the clinical staff prepares the after visit summary (AVS)

and follow-up instructions. The clinical staff then explains next steps and instruc-

tions to the patient and schedules any future clinic visits or procedures including

colonoscopy, endoscopy, MRI and CT Scan, etc. If any appointments regarding

the above procedures are needed, additional documentation is required after the

appointment.

• Finally, the patient leaves the clinic.
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7.1.2 System Modeling and Performance Analysis

Since each provider team works independently, we focus our study on one provider

team primarily. In this case, the workflow can be simplified into a serial process which

comprises of six steps: patient waiting for rooming, rooming (information collection, vital

check, paperwork, reporting, etc.), patient waiting for the clinician, clinician examination

and diagnosis, patient waiting for check-out, and check-out (including schedule possible

follow-up appointments, file additional paperwork and give instructions, etc.). Finally,

the patient leaves the clinic. Such a workflow is illustrated in Figure 7.2, where the

circles represent the services, and the rectangles characterize patient waiting for the

next service.

Figure 7.2: Structural model of the GI clinic workflow

To analyze the above process, the following assumptions and notations are intro-

duced to address the services, the resources (clinicians and clinical staffs), and their

interactions.

(i) For patient arrival, the inter-arrival time of the incoming patients follows the ex-

ponential distribution with arrival rate λ.

(ii) There are N steps after a patient arrives, where N = 6 in the current model (see

the following list of processes). It is assumed that all six steps are identical for

each room. There are three provider services in each exam room: clinical staff
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rooming, clinician visit, and clinical staff wrap-up, denoted as services 1, 2, and

3, respectively. For other waiting steps, the mean cycle times are all zeros. Here

we assume the service times follow exponential distributions with corresponding

processing rates ci =
1
τi
, i = 1, 2, 3. The extension to non-Markovian arrival and

service will be estimated using the empirical formulas described in Chapter 4.

(a) patient waiting for rooming,

(b) patient rooming/clinical staff visit,

(c) patient waiting for clinician service,

(d) clinician examination and diagnosis,

(e) patient waiting for check-out,

(f) clinical staff checking out the patient.

(iii) The number of rooms assigned to one provider is M , where M = 2 in the current

model. If a patient arrives while all the exam rooms are occupied, he/she needs to

wait in the lobby. The maximum capacity of the waiting lobby is set as Q. In this

study, we select Q = 10 according to the capacity of the clinic under study.

(iv) There are two types of resources in the system (R = 2). The number of resources

is defined by {r1, r2}, representing the number of clinical staff and clinicians, re-

spectively. In the current setting, r1 = r2 = 1.

(v) The staff allocation for each process is denoted as θi, i = 1, 2, . . . , 6. The current

configuration is {θ1, . . . , θ6} = {0, 1, 0, 2, 0, 1}, where 0 implies that no resource

is needed, and θ2 = θ6 = 1 and θ4 = 2 represent that the required resources for

the second and sixth steps, and the fourth step are clinical staff and clinician,

respectively.



119

(vi) Sometimes two services may require the same type of resource. In this case, priority

is assigned to a later service. For example, if a patient needs to be discharged and

another patient is waiting for rooming, the clinical staff will discharge the first

patient and then room the other. There is no interruption of the ongoing service,

i.e., if the resource is being used, the next patient has to wait until the current

service finishes.

The detailed description of the transitions can be found in the Appendix and Zhong

et al. [132]. With the balance equations (A.11), and by applying the same derivation

scheme as in Section 3.3.4, the patient average length of visit and staff utilization can be

obtained. Define TP as the system throughput rate, i.e., the rate patient leaving from

the last service, and WIP as the average number of patients in the system. Then we

obtain Theorem 7.1.

Theorem 7.1 Under assumptions (i)-(vi), TP and WIP can be calculated as follows:

TP = c3

K∑
l=1

Pls
l
6, (7.1)

WIP =
K∑
l=1

(
Pl

6∑
j=1

slj

)
, (7.2)

where P ′
l s are solved using the same method as in (3.16 - 3.18).

By Little’s Law, the patient average length of visit, Ts, can be obtained.

Corollary 7.1 Under assumptions (i)-(vi),

Ts =
WIP

TP
=

∑K
l=1

(
Pl

∑6
j=1 s

l
j

)
c3
∑K

l=1 Plsl6
. (7.3)

In addition to patient length of visit, the staff utilizations can be calculated as follows:
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Corollary 7.2 Under assumptions (i)-(vi),

ρclinical staff =
K∑
l=1

Pl(s
l
2 + sl6), (7.4)

ρclinician =
K∑
l=1

Pls
l
4. (7.5)

Remark 7.1 The length of visit in Corollary 7.1 is obtained under the assumption of

exponential inter-arrival and service times, and is nominated as T exp
s . When extending

to non-Markovian scenarios, the length of visit can be estimated using the empirical

formulas introduced in Subsection 4.3.3 based on T exp
s and the corresponding distribution

parameters.

7.1.3 Design of the New GI Clinic

The DHC will consolidate several satellite clinics and endoscopy locations into a single

center and is expected to accommodate 14,500 GI clinic visits per year. They spare 15

exam rooms in the new center for GI services. The collaborative multi-disciplinary team

consists of about 30 clinicians. However, not all rooms are open every day and not all

physicians show up every day. The clinic will keep a schedule regarding which room is

available and which clinician is at service each day. The 15 exam rooms are divided into

independent pods and each clinician is working independently with two assigned exam

rooms. To achieve a better service in the new GI clinic, the impacts of staffing alterna-

tives, the number of rooms, and demand changes need to be apprehended. In addition,

a new clinic layout and operational processes have been proposed. In particular, differ-

ent check-out processes have been designed to improve patient access by decreasing the

patient length of visit. Table 7.1 summarizes all the scenarios in the what-if analyses.

Note that the 50% clinical staff availability is intended to model the scenario where
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Table 7.1: Summary of the what-if scenarios for designing the new GI clinic

Scenario Category Description

1 Staffing model 50% clinical staff availability or

two clinical staffs per clinician

2 Demand change Increase demand

by 10% or 30%

3 Room configuration One or three exam

rooms per clinician

4 Service times Change service times of

clinical staff or clinician by 10%

5 Combined scenarios Add one room or one clinical staff

and increase demand by 30%
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one clinical staff supports two clinicians so that roughly 50% of the clinical staff’s effort

is devoted to each clinician. In this case, the model discussed in Section 7.1.2 is still

applicable with the modification that the rate of rooming and checking out the patient

should be decreased by half approximately, i.e., c′1 =
c1
2
, and c′3 =

c3
2
. This implies that

the patient may stay at the previous state after finishing it, due to the unavailability

of the clinical staff. Finally, the last scenario is a combination of all parameter changes

in scenarios 1-3. In the following subsections, the performance evaluations of these

scenarios are introduced.

Staffing model

First, we investigate the impact of changes in the current staffing model. Instead of

having one clinical staff to assist one clinician, we inspect the case of one clinical staff

supporting two clinicians (i.e., 50% clinical staff availability for each clinician), and the

case of two clinical staff for each clinician. The results are summarized in Table 7.2.

The above results manifest that a clinical staff of 50% availability is definitely not

enough since the patient average length of visit increases significantly and the utilization

of the clinical staff is doubled. However, the case of two clinical staff for one clinician is

not necessary since it significantly decreases clinical staff’s utilization while the decrease

in the average length of visit is not remarkable. Therefore, the current staffing model of

one clinical staff for one clinician can well accommodate the current demand.

Remark 7.2 Note that the staff utilization obtained from the model only represents

the time percentage the clinician or clinical staff is working with the patient inside the

exam room. In addition to serving patients (rooming, diagnosis, medication, etc.), they

also carry out a substantial amount of work outside the patient rooms, such as docu-

menting/reporting, answering phone calls/messages, and analysis of lab testing results.
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Table 7.2: GI clinic: staffing model comparison

(a) 50% clinical staff availability per clinician

From To Changes (%)

LOSmodel(min) 54.16 117.7 117.32

ρclinical staff(%) 43.95 81.14 84.61

ρclinician(%) 47.06 43.44 -7.69

(b) Two clinical staffs per clinician

From To Changes (%)

LOSmodel(min) 54.16 48.22 -10.9

ρclinical staff(%) 43.95 21.99 -49.97

ρclinician(%) 47.06 47.09 0.06

It is assumed that the service in the exam room has a higher priority so that the other

activities will be stopped whenever a patient service is requested.

Demand change

Next, we study the effects of patient demand change on system performance. The current

inter-arrival times of 15 and 45 minutes are dictated by the clinic scheduling system. We

investigate the system with the same structural model, but with decreased inter-arrival

times (for instance, from 15 to 13.5 minutes, and 45 to 40.5 minutes, for a 10% increase

in demand; and to 10.5 and 34.6 minutes, for a 30% increase in demand).

Remark 7.3 In real practice, when patient demand for the care provider increases,

instead of changing the scheduling template to make shorter slots, which might yields



124

messy schedules, the scheduler tends to double book or triple book patients into the

original slots. However, because of the variability in arrival, directly decreasing inter-

arrival times would yield similar patient arrival patterns.

Table 7.3: GI clinic: patient demand change

(a) Demand increased by 10%

From To Changes (%)

LOSmodel (min) 54.16 58.11 7.29

ρclinical staff(%) 43.95 48.14 9.53

ρclinician(%) 47.06 51.54 9.52

(b) Demand increased by 30%

From To Changes (%)

LOSmodel(min) 54.16 70.32 29.85

ρclinical staff(%) 43.95 56.06 27.56

ρclinician(%) 47.06 60.02 27.54

As advertised in Table 7.3, if the demand is increased by 10%, the increase in the

average length of visit is 7.29%, which is not favorable, but still can be accommodated.

However, the current GI Clinic does not have the capability to comply a 30% demand

surge – the average length of visit increases substantially under this setting. In addition,

both clinical staff and clinician utilizations are increased by about 30%. Although more

patients can be served, the excessive waiting time for the patients and substantial over-

time work for the providers are ineluctable. More capacity and resources are demanded

in this scenario.
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Room configuration

Table 7.4: GI clinic: room configuration change

(a) One exam room

From To Changes (%)

LOSmodel(min) 54.16 81.92 51.26

ρclinical staff(%) 43.95 42.77 -2.68

ρclinician(%) 47.06 45.79 -2.77

(b) Three exam rooms

From To Changes (%)

LOSmodel(min) 54.16 51.22 -5.43

ρclinical staff(%) 43.95 43.99 0.09

ρclinician(%) 47.06 47.11 0.11

Here we change the number of rooms assigned to each provider group to one and

three. The results are compared in Table 7.4. On one hand, dropping one room increases

the patient average length of visit by 51.26%, which indicates that one room is not enough

and causes a long wait for rooming. On the other hand, by adding one more room, the

length of visit is decreased by 5.43%, which is not significant. Therefore, the current

setting of two rooms per provider team is reasonable.

Service times

The change in service times of both clinical staff and clinician are investigated. Suppose

the service times of the clinical staff and the clinician are decreased by 10%. The
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corresponding performance is presented in Table 7.5.

Table 7.5: GI clinic: service time change

(a) Decrease clinical staff service times by 10%

From To Changes (%)

LOSmodel(min) 54.16 51.66 -4.62

ρclinical staff(%) 43.95 39.57 -9.97

ρclinician(%) 47.06 47.08 0.04

(b) Decrease clinician service time by 10%

From To Changes (%)

LOSmodel(min) 54.16 51.17 -5.52

ρclinical staff(%) 43.95 43.98 0.07

ρclinician(%) 47.06 42.38 -9.95

As one can see, decreasing the service time of either the clinical staff or the clinician

would have the similar impact on system performance, due to their similar workloads in

the current system setting. Usually, the patient average length of visit is more sensitive

to the service with a longer operation time, which is clinician’s service in this system.

From our observation, the clinician and the clinical staff may ask the patient the same

questions repeatedly during their visits. Therefore, improving coordination between the

clinician and the clinical staff to decrease duplicate work could possibly result in reduced

staff service time. Additionally, some of the paperwork can be prepared by the clinical

staff during the clinician’s visit so that the patient check-out time could be reduced.

Furthermore, some information for patients with frequent visits can be prepared prior
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to the visit. Thus, there exist considerable opportunities to reduce service time without

sacrificing care quality and patient satisfaction.

Combined Scenarios

Finally, we study the scenario that multiple parameters are subject to change. In this

circumstance, the demand is increased by 30%, and at the same time, one more room is

added, or one more clinical staff is added to the system.

Table 7.6: GI clinic: combined scenarios

(a) Increase demand by 30% and add a room

From To Changes (%)

LOSmodel(min) 54.16 61.26 13.12

ρclinical staff(%) 43.95 56.89 29.46

ρclinician(%) 47.06 60.86 29.32

(b) Increase demand by 30% and add a clinical staff

From To Changes (%)

LOSmodel(min) 54.16 54.02 -0.26

ρclinical staff(%) 43.95 25.65 -41.64

ρclinician(%) 47.06 61.04 29.71

When only demand is increased (see Table 7.3), a 30% demand surge leads to a

roughly 30% increase in the average length of visit. However, such an increase shrinks

to 13% when an additional room is introduced (Table 7.6). On the contrary, if an

additional clinical staff is added, even with 30% demand increase, the average length of
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visit will not increase, but decrease by 0.26%. Therefore, additional clinical staff would

be needed to reconcile the high volume of patients.

In summary, the above what-if analyses pinpoint the desired clinical setting: the

current setting of two exam rooms, one clinician, one clinical staff could efficiently ac-

commodate the current patient demand. A 10% increase in patient demand can be

accommodated with a degraded performance, but a 30% increase will need an extra

clinical staff to ensure the desired quality of care. Reducing the staff service time could

be beneficial, but the implementation needs to be further investigated so that patient

outcomes will not be sacrificed. Moreover, it can be observed that the patient average

length of visit is monotonically non-increasing with respect to the numbers of rooms and

staff. These results offer a quantitative guideline for designing the new GI clinic.

Check-Out Process

Three check-out processes are considered:

(I) Check-out in exam room: In this process, the patient would check out in the

same room where he/she is examined. Such a model has been studied in previous

subsections.

(II) Check-out in scheduling room: This process suggests using a dedicated scheduling

room and scheduler to perform the check-out function for every four exam rooms.

Therefore, check-out does not occur in the exam room. The idea of this process

is to increase the availability of exam rooms to incoming patients.

(III) Mixed check-out process : In this case, the patients can either check out inside the

exam room or go to the scheduling room shared by the four exam rooms.
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To investigate the impact of different check-out processes, the analytical model de-

scribed above has been modified to fit into each scenario, and the corresponding system

performances are compared.

First, assume the check-out times are the same either inside the exam room or in

the scheduling room. Since only one provider team is considered in the model, we have

c4 = c3
2
. Then, we evaluate the patient average length of visit as a function of the

probability of check-out in the exam room, p, and the check-out service time τ4. The

results are exhibited in Figure 7.3, in which four check-out times, long, medium long,

medium short, and short, denoted as τ4,j, j = 1, . . . , 4, are considered. In addition, we

assume τ4,j > τ4,j+1, j = 1, 2, 3. Then, the following observations are obtained:
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Figure 7.3: GI clinic check-out process comparison: identical check-out time

• When the check-out time is short, having most of the patients checking out in the

scheduling room leads to a shorter average length of visit. This is due to an extra

resource (scheduler) is added to the system, which is similar to adding a clinical

staff with 50% availability in the original system.
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• When the check-out time is long, a higher percentage of patient checking out

inside the exam room will result in a better outcome, since the scheduler will take

doubled workload (due to supporting two providers) and the check-out process in

the scheduling room is even slower.

• In most cases, the mixed check-out process has the best performance. This is

because the discharge workload assigned to the clinical staff and the scheduler are

more or less balanced. These results imply that an effort to balance the workload

will be beneficial in reducing the length of visit.

• When the check-out time is long, different check-out processes may result in a

significant difference in patient length of visit. As revealed in Figure 7.3, the

mixed check-out process could reduce almost 15% of the average length of visit.

These results suggest that a proper check-out process could decrease the patient

length of visit without utilizing extra workforce.

Next, assume the scheduler has a different discharge service time comparing with

that of the clinical staff. This experiment is motivated by the possible scenario that the

service time of the scheduler and the clinical staff can be significantly different, which

might affect the choice of check-out process. In this case, introduce parameter α which

characterizes the ratio between the two service times, i.e., c4 = αc3 (or τ4 =
1
α
τ3). Since

the scheduler supports two provider teams, the service time is doubled looking from

either one team’s perspective. Thus, α = 0.5 implies the two service times are identical.

In Figure 7.4, the results for three cases, p = 0.25, 0.5, and 0.75, are compared. By

examining the figure, the following observations can be obtained:

• It should be pointed out that the patient average length of visit is monotonically

decreasing with respect to α. Such monotonicity is due to the fact that a larger
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α implies a shorter service time in the scheduling room. When α is large enough,

the check-out time becomes extremely short and its impact on the overall length

of visit becomes negligible. Consequently, we observe that when α is small, the

patient average length of visit decreases fast, while when α is close to or larger

than one, the decrease becomes minimal.

• When α is smaller than 0.4 (i.e., check-out in the scheduling room is slower than

that in the exam room), the larger the probability p, the shorter the length of

visit. In this case, more people should stay in the exam room to check out. When

α is larger than 0.5 (check-out in the exam room takes more time), more people

should check out in the scheduling room since now a smaller p leads to a shorter

length of visit.
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Figure 7.4: GI clinic check-out process comparison: different check-out times

From the above discussions, based on the configuration plan of the designed GI clin-

ic, the mixed check-out process is recommended. If the check-out service time is long,

more patients should check out inside the exam rooms. Otherwise, more patients are
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recommended to check out in the scheduling room, which would balance the discharge

workload of the clinical staff and the scheduler, and, therefore, lead to a shorter patient

length of visit on average. The UWMF leadership team has accepted the recommenda-

tion. It was applied in the final design and operation of the new GI clinic.

7.1.4 Conclusions

In this section, the analytical framework proposed in Chapter 3 is utilized to analyze

the design of the workflow in a gastroenterology clinic. The patient average length of

visit and the staff utilization are evaluated. What-if analyses are carried out to inves-

tigate the impacts of different workforce and resource configurations. It demonstrates

that the allocation of one clinical staff and two exam rooms per clinician can well ac-

commodate the current patient demand. If patient demand increases, adding a clinical

staff is more effective to maintain the system performance than adding exam rooms.

In addition, different check-out processes have been compared. The results reveal that

the mixed check-out process that patients can check out either inside the exam room or

in the scheduling room is the optimal way to ensure a smooth workflow and enhanced

patient outcomes. Our model helps the leadership team understand the workflow in

hospital units and clinics, streamline service operations, and identify the opportunities

for improvement in preparation for the redesign.
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7.2 Case Study II: Mammography Testing Process

Modeling

With the rapid growth in health service demand, the efficient and safe use of radiology

services for diagnosis and treatment is of extreme importance for the well-being of both

patients and care providers. Mammography, which uses low-energy X-rays and allows

the visualization of fine details in the breast tissue, is regarded as the most effective

tool for routine breast cancer screening and early diagnose of cancer [133]. To ensure

the effective use of mammography, the patient-flow analysis and work management are

craved.

A case study of the mammography testing process patient flow at the Breast Imag-

ing Center of the University of Wisconsin Medical Foundation in Madison, Wisconsin is

introduced. In recent years, the imaging center of the UWMF has experienced an in-

creasing demand for mammography testing for the detection of breast cancer. In 2012,

the imaging center conducted around 11,000 mammography procedures, including 7,400

screening mammograms and 3,600 diagnostic mammograms, and thousands of breast

ultrasounds, bone densities, biopsies, and breast MRIs. From 2013, the clinic plans to

collaborate with the University of Wisconsin Carbone Cancer Center, which will bring

an estimated 1,000 influx of mammography patients into the Breast Imaging Center.

Therefore, the goal of this study is to develop a quantitative model of the mammography

patient flow, investigate the impact of demand change, and propose recommendations.



134

7.2.1 Process Description and Structural Modeling

A typical Breast Imaging Center consists of mammography equipment, exam rooms, re-

ceptionists, technologist assistants (TA), radiology technologists (Tech), and imaging ra-

diologists. The capacity of these resources varies according to test center sizes, demands,

and purposes. However, the general procedures are usually standardized. Screening and

diagnostic imaging are performed at designated exam rooms. Usually, the receptionist

deals with all types of patient visits at the reception desk. The TA is responsible for

bringing patients from the reception area to the changing room, preparing patient pa-

perwork, dealing with schedule changes, and all other miscellaneous work. The Tech’s

are usually dedicated to their specific exam rooms taking images. An imaging radiologist

is required when working with a diagnostic patient. The radiologist is not dedicated to

the mammography unit but also working for other radiology departments and is seldom

considered as a constraint in this system. Thus, in this study, we view the TA, Tech,

and the exam room (equipment) as the primary constraints of interest. The workflow of

a typical Breast Imaging Center is displayed in Figure 7.5.

Figure 7.5: Mammography patient flow in the Breast Imaging Center

Each technologist works independently in their exam rooms. Therefore, we focus our

study on one exam room initially and extend to the system with more exam rooms later.
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In this case, the workflow can be simplified into a serial process which includes patient

check-in (filling in forms), rooming by TA (changing into gown), imaging procedure

(for screening patients, this procedure only involves image taking, while for diagnostic

patients, radiologist reviews are included), and finally, patient changing clothes and

leaving. Such a workflow is illustrated in Figure 7.6.

Figure 7.6: Mammography patient flow model: one exam room

Within each exam room, only one patient is permitted at a time. However, the

TA will bring the next patient into a sub-waiting room for preparation right before the

patient’s scheduled imaging time, even if the exam room is still occupied. So there is

a maximum of two patients in the sub-waiting room and exam room. Typically, the

TA leaves once the patient finishes changing into a gown. Moreover, since most of the

patients arrive ahead of their appointment time, a finite capacity of the waiting area is

assumed for these patients. However, the number of patients waiting for the exam room

will not be too large, due to the fact that the appointments are scheduled in advance.

For the imaging procedure, diagnostic patients have to wait for results and comments

from the radiologist which demands a longer stay, while for screening patients, the stay is

relatively shorter. Thus, the service times of the radiology technologist among different

types of patients can be significantly different. Except this, the other service times

for different types of visits are relatively similar. Note that although the technologists

work independently, all the exam rooms share only one TA, which may introduce an

availability issue and cause delay.
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7.2.2 Model Development and Validation

The Breast Imaging Center at the UWMF performs mainly screening, diagnostic imag-

ing, and bone density tests. The center consists of a changing (sub-waiting) room, a

bone density room, an ultrasound room, a staff lounge, and three examination rooms,

each equips with one mammography machine. Due to the high demand in screening, two

of the exam rooms are used for screening test while the third is for diagnostic imaging.

There are about 45-60 daily visits for screening and diagnostic mammography in total.

The care provider team consists of three radiology technologists, two imaging radiolo-

gists, and one technologist assistant. The technologists are cross-functional so that they

can perform both diagnostic and screening imaging. However, they are dedicated to one

exam room per each shift. The TA is responsible for bringing patients from the recep-

tion area (waiting room) to the changing room (sub-waiting room), preparing patient

paperwork, dealing with schedule changes, and any other miscellaneous work. A diag-

nostic appointment is scheduled for every 30 minutes while a screening appointment is

for every 20 minutes, starting from eight in the morning. Such a workflow is illustrated

in Figure 7.7.

Figure 7.7: UWMF Breast Imaging Center patient flow model
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Using the method introduced in Chapter 4, an analytical model has been developed to

characterize the Breast Imaging Center. To validate the model, the results obtained from

the model analysis are compared with that obtained from hundreds of observations and

records from heath information system database within one month in the Breast Imaging

Center. Same simulation setups are used for validation purposes and the confidence

intervals are typically within 2% of the performance measure.

Let LOSobserved and LOSmodel denote the average lengths of visit obtained by data

collection and the analytical model, respectively. Introduce

△ = LOSobserved − LOSmodel,

ϵ =
LOSobserved − LOSmodel

LOSobserved

· 100%.

The results of such comparisons are summarized in Table 7.7. As one can see, the

differences between them are minor. Therefore, the model can accurately estimate the

system performance and is proper for carrying out further analysis.

Table 7.7: Mammography testing process model validation

Screening Diagnostic

LOSobserved (min) 25 34

LOSmodel (min) 25.2 32.9

△ (min) -0.2 1.1

ϵ -0.8% 3.24%
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7.2.3 Demand Change Analysis

Using the model, we investigate the impact of patient demand change. To respond to

a demand increase, without loss of generality, the scheduled inter-arrival times are de-

creased. With a 5% demand increase, the inter-arrival times are decreased from 20 to 19

minutes and from 30 to 28.5 minutes, for screening and diagnostic patients, respectively.

For a 10% increase in demand, such times are reduced to 18 and 27 minutes, respec-

tively. Note that with the increasing demand, there is a higher possibility that more

patients will wait in the queue. To avoid the scenario that patient will be rejected in the

analytical model due to limited queue length, the queue size for each room is increased

to Qi = 10 and Qi = 20, i = 1, 2, 3, for 5% and 10% demand increase, respectively. The

consequence changes in the patient length of visit and staff utilization in one room are

illustrated in Table 7.8.

As one can see, a 5% demand increase will lead to an 18.3% increase in the length of

visit for screening patients and a 13.7% increase for diagnostic patients. The utilization

of the TA and the Tech of both patient types is increased by 6% and 9%, respectively.

Although not favorable, such demand change can still be accommodated with the current

clinic setting.

However, the Breast Imaging Center does not have the capacity to accommodate a

10% demand surge. In this scenario, the patient length of visit will increase substantially,

with a 45% and 41% spike for screening and diagnostic patients, respectively. In addition,

the utilization of the TA and the Tech is increased by 12% and 16%, respectively.

Although more patients can be served, the results of excessive waiting time and

substantial overload for the providers are not desirable. More capacity and resources

are demanded in this scenario (note that the provider utilization is for one room and

only involves the work in contact with patients, while many other responsibilities are
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Table 7.8: Mammography patient demand change

(a) Demand increased by 5%

Screening patient From To Changes (%)

LOSscreening (min) 25.2 29.8 18.3

ρTA(%) 5.0 5.3 6.0

ρtech(%) 70.8 76.7 8.3

Diagnostic patient From To Changes (%)

LOSdiagnostic (min) 32.9 37.4 13.7

ρTA(%) 3.3 3.5 6.1

ρtech(%) 77.6 84.5 8.9

(b) Demand increased by 10%

Screening patient From To Changes (%)

LOSscreening (min) 25.2 36.6 45.2

ρTA(%) 5.0 5.6 12

ρtech(%) 70.8 82.0 15.8

Diagnostic patient From To Changes (%)

LOSdiagnostic (min) 32.9 46.6 41.6

ρTA(%) 3.3 3.7 12.1

ρtech(%) 77.6 90.7 16.9
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not included).

To accommodate such demand changes, several possible solutions are proposed,

which include extending work time (either starting work earlier or finishing later or

shrinking break time), diffusing the patients to other clinic sites, or adding extra exam

rooms with equipment and technologists. Since the TA’s workload in direct contact with

patients is not high, there is no need to increase the number of TAs. In this case, we test

the scenario that one additional exam room and one more Tech are added. With the

same amount of arrival, the new arrival rate is decreased by 25% for each exam room

(due to adding one room). We compare the two scenarios (3 exam rooms, 3 technol-

ogists, and 4 exam rooms, 4 technologists) in respect to the average patient length of

visit.
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Figure 7.8: Mammography patient LOV change w.r.t. increasing demand

From the results exhibited in Figure 7.8, we can conclude that the current system

is running at a relatively high intensity, i.e., the patient length of visit increases rapidly

with respect to the demand increase. While in four exam rooms case, the workload of

each room is reduced, and the increase of the patient length of visit is moderate with
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a higher demand. With as much as 12% increase in demand, the increase in screening

patients and diagnostic patients’ length of visit is only around 2 minutes. Therefore,

with capacity (room, equipment, and technologist) increase, the Breast Imaging Center

will be able to accommodate the surge in patient volumes. The recommendation has

been acknowledged by the clinic leadership team.

7.2.4 Conclusions

In this section, an analytical model is developed and the iterative method is applied

to study the workflow of mammography testing process. Using this model, demand

change analysis is carried out and it manifests that with a substantial demand increase,

extending the work time or adding more equipment and resource is demanded. In future

work, using such a model, we can investigate the optimal control policies. For example,

the model can be used to determine the minimum number of TAs required to achieve

the desired patient length of visit.
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Chapter 8

Summary and Future Research

8.1 Summary

Modeling care delivery services is critical to achieve efficient patient flow in hospital

divisions and clinics. Health professionals are increasingly aware of the need to use

their resources as efficiently as possible to empower proper care delivery. As the core

part of my dissertation, a theoretical framework to characterize primary care delivery

systems by modeling care providers’ activities and patient flow is established. This is a

challenging problem for two reasons. First, healthcare delivery systems can be intrin-

sically complicated featuring multiple care activities conducted within multiple patient

rooms by a limited number of care providers. Secondly, models to characterize health-

care delivery systems need to be highly attuned to the subtleties of human behaviors

and accommodate system variability. To tackle these challenges, innovative models and

methods are proposed in this dissertation.

In particular, two ways to improve primary care delivery are investigated. To improve

the efficiency of the current care delivery channel, stochastic models are developed to

characterize care activities within patient rooms to streamline patient flow. It’s demon-

strated that with an appropriate level of simplification and abstraction, Markovian chain

based models can provide a deft analysis of the care delivery processes while preserving

the realism of the system. One novel work is the development of a convergent iterative
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method to tackle the problems of resource sharing and non-identical services. The pro-

posed shared resource iteration overcomes the issues of the curse of dimensionality for

scaled-up systems and makes it feasible to work with heterogeneous and interdependent

systems to extend the modeling scope to the care facility level. In addition, this work al-

so inspects electronic visit as a new channel for care delivery and investigates its impact,

where few analytical study prevails. A queueing model is built to address physicians’

operations on both office visits and e-visits and incorporate physicians’ other tasks not

in direct contact with patients. System-theoretic properties can be analyzed.

As this dissertation has attempted to demonstrate, effective analytical models can

facilitate the improvement in patient’s accessibility to care, enlighten the design of de-

livering the most appropriate care in a timely fashion, and enhance the provider’s pro-

ductivity.

8.2 Future Work

The future direction of health care delivery will be more intelligent, flexible and patient-

centered. The emerging information technologies such as electronic visit, telemedicine,

and teleconsult would bring drastic changes to the traditional care delivery system. It’s

demanding that innovative methodologies with various optimization approaches should

be introduced to 1) integrate diverse care delivery options to investigate their interac-

tions and impacts and 2) enhance the design of delivering the most appropriate care.

Furthermore, customized care delivery is desired where care can be delivered timely and

proactively, targeting on the right population. Along this line, it’s necessary to embark

on developing scalable algorithms to transform massive electronic medical record data

into patient health information and integrating them with service system dynamics to
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accelerate smart care delivery.

Combining the data analytics with stochastic modeling, my future research aims to

construct a two-level closed-loop hierarchical framework. At the lower-level, analytical

modeling evokes and defines data, and in return, data analytics advances and refines

analytical modeling. Such a framework will enable the optimal decision making and

system control, which generates managerial insights and feedback to reinforce system

modeling and data analytics at the upper-level. The broader impact lies in the discovery

of the underlying laws that govern diverse sets of service systems sharing similar problem

structures. An illustration of the framework is exhibited in Figure 8.1.

Figure 8.1: Stochastic modeling and data analytics framework
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Appendix: Proofs and Derivations

Proofs of Chapter 3

Proof of Corollary 3.1: When M = 2, N = 2 and R = 2, there exist three states in

total. Define the states as:

S1 = (2, 0), S2 = (1, 1), S3 = (0, 2),

where the elements in S represent the number of patients in services 1 and 2. Since

r1 = r2 = 1 (i.e., one resource in each service, such as nurse and doctor), we have

R = 2; R = [1, 1]; Θ = [1, 2].

Let Pi denote the probability the system is in state Si, i = 1, 2, 3. Then the transition

equations are obtained as follows:

c1P1 = c2P2,

c1P2 = c2P3.

In addition,

P1 + P2 + P3 = 1.

Solving Pi we obtain:

P1 =
1

1 + ( c1
c2
) + ( c1

c2
)2
,

P2 =
( c1
c2
)

1 + ( c1
c2
) + ( c1

c2
)2
,

P2 =
( c1
c2
)2

1 + ( c1
c2
) + ( c1

c2
)2
.
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Therefore, the system throughput TP is

TP = (P2 + P3)c2

=
( c1
c2
) + ( c1

c2
)2

1 + ( c1
c2
) + ( c1

c2
)2
c2.

Then the patient length of visit and resource utilizations are obtained:

Ts =
2

TP
=

2[1 + ( c1
c2
) + ( c1

c2
)2]

[( c1
c2
) + ( c1

c2
)2]c2

=
2(c21 + c22 + c1c2)

c1c2(c1 + c2)

=
2(τ 21 + τ 22 + τ1τ2)

τ1 + τ2
,

ρ1 = P1 + P2 =
1 + ( c1

c2
)

1 + ( c1
c2
) + ( c1

c2
)2

=
c2(c1 + c2)

c21 + c22 + c1c2

=
τ1(τ1 + τ2)

τ 21 + τ 22 + τ1τ2
,

ρ2 = P2 + P3 =
( c1
c2
) + ( c1

c2
)2

1 + ( c1
c2
) + ( c1

c2
)2

=
c1(c1 + c2)

c21 + c22 + c1c2

=
τ2(τ1 + τ2)

τ 21 + τ 22 + τ1τ2
.

Proof of Corollary 3.2:

∂Ts

∂τ1
=

4τ1 + 2τ2
τ1 + τ2

− 2(τ 21 + τ 22 + τ1τ2)

(τ1 + τ2)2

=
2

(τ1 + τ2)2
[(2τ1 + τ2)(τ1 + τ2)− (τ 21 + τ 22 + τ1τ2)]

=
2τ1(τ1 + 2τ2)

(τ1 + τ2)2
> 0.

Analogously,

∂Ts

∂τ2
=

2τ2(τ2 + 2τ1)

(τ1 + τ2)2
> 0.

Therefore, the monotonicity with respect to τ1 and τ2 exist.
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Proof of Corollary 3.3:

∂ρ1
∂τ1

=
2τ1 + τ2

τ 21 + τ 22 + τ1τ2
− τ1(τ1 + τ2)

(τ 21 + τ 22 + τ1τ2)2
(2τ1 + τ2)

=
2τ1 + τ2

(τ 21 + τ 22 + τ1τ2)2
[τ 21 + τ 22 + τ1τ2 − τ1(τ1 + τ2)]

=
2τ1 + τ2

(τ 21 + τ 22 + τ1τ2)2
τ 22 > 0.

Similarly,

∂ρ1
∂τ2

=
τ1

τ 21 + τ 22 + τ1τ2
− τ1(τ1 + τ2)

(τ 21 + τ 22 + τ1τ2)2
(2τ2 + τ1)

=
τ1

(τ 21 + τ 22 + τ1τ2)2
[τ 21 + τ 22 + τ1τ2 − (2τ2 + τ1)(τ1 + τ2)]

=
−τ1(2τ1 + τ2)

(τ 21 + τ 22 + τ1τ2)2
< 0.

Therefore, ρ1 is monotonicity increasing and decreasing with respect to τ1 and τ2, re-

spectively. Similar arguments can be applied to prove the monotonicity of ρ2.

Proof of Corollary 3.4:

∂Ts

∂τ1
− ∂Ts

∂τ2
=

2τ1(τ1 + 2τ2)

(τ1 + τ2)2
− 2τ2(τ2 + 2τ1)

(τ1 + τ2)2
=

2(τ1 − τ2)

τ1 + τ2
.

As one can see, the system is more sensitive to the service with the longer service time.

Thus, the service with a larger τi is the impeding process (i.e., bottleneck).

Proof of Corollary 3.5: Let τ1 + τ2 = τ = constant. Then

Ts =
τ2(τ

2
1 + τ 22 + τ1τ2)

τ1 + τ2

=
2

τ
[τ 21 + (τ − τ1)

2 + τ1(τ − τ1)]

=
2

τ
[(τ1 −

τ

2
)2 +

3

4
τ 2].
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As one can see, Ts reaches the minimum when τ1 = τ
2
. Thus, the optimal allocation is

τ ∗1 = τ ∗2 .

Proof of Corollary 3.6: Similar to the proof of Corollary 3.1, due to joint service

and the higher priority of doctor visit, there only exist two states:

S1 = (2, 0), S2 = (1, 1).

Again let Pi denote the probability the system is in state Si, i = 1, 2. Then the

following equations are obtained:

c1P1 = c2P2,

P1 + P2 = 1.

Solving Pi we obtain:

P1 =
c2

c1 + c2
,

P2 =
c1

c1 + c2
.

Therefore, the system throughput TP is

TP = P2c2 =
c1c2

c1 + c2
.

Then the patient length of visit and resource utilizations are obtained:

Ts =
2

TP
= 2 ·

1
τ1
· 1
τ2

1
τ1
+ 1

τ2

= 2(τ1 + τ2),

ρ1 = P1 + P2 = 100%,

ρ2 = P2 =
1
τ1

1
τ1
+ 1

τ2

=
τ2

τ1 + τ2
.
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Proofs of Chapter 4

To prove Proposition 4.1, the following lemmas are needed:

Lemma 8.1 Under assumptions 1)-4) in Section 4.2.2, in Procedure 4.1, if p
(k)
1 <

p
(k−1)
1 , then p

(k+1)
1 < p

(k)
1 , for k ≥ 2.

Lemma 8.2 Under assumptions 1)-4) in Section 4.2.2, in Procedure 4.1, if p
(k)
2 >

p
(k−1)
2 , then p

(k+1)
2 > p

(k)
2 , for k ≥ 2.

Proof of Lemma 8.1: When p
(k)
1 < p

(k−1)
1 , we obtain

c
(k)
2,2 = c2,2(1− p

(k)
1 ) > c2,2(1− p

(k−1)
1 ) = c

(k−1)
2,2 .

As Ti is monotonically decreasing with respect to cj,i ([134], [135]), it can be concluded

that

T
(k)
2 < T

(k−1)
2 .

This leads to

p
(k)
2 =

1

c2,2T
(k)
2

>
1

c2,2T
(k−1)
2

= p
(k−1)
2 ,

which follows that

p
(k)
2 > p

(k−1)
2 .

Continue such arguments, we have

c
(k+1)
2,1 = c2,1(1− p

(k)
2 ) < c2,1(1− p

(k−1)
2 ) = c

(k)
2,1,

and

T
(k+1)
1 > T

(k)
1 .
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Then it follows that

p
(k+1)
1 =

1

c2,1T
(k+1)
1

<
1

c2,1T
(k)
1

= p
(k)
1 .

Proof of Lemma 8.2: The proof is similar to that of Lemma 8.1.

Proof of Proposition 4.1: From p
(0)
2 = 0, we have

c
(1)
2,1 = c2,1,

T
(1)
1 = fT (Q1, c1,1, c

(1)
2,1, c3,1, c4,1, λ1),

p
(1)
1 =

1

c2,1T
(1)
1

.

It follows that

c
(1)
2,2 = c2,2(1− p

(1)
1 ),

T
(1)
2 = fT (Q2, c1,2, c

(1)
2,2, c3,2, c4,2, λ2),

which leads to

p
(1)
2 =

1

c2,2T
(1)
2

> 0.

Thus, we obtain

c
(2)
2,1 = c2,1(1− p

(1)
2 ) < c

(1)
2,1,

which implies that

T
(2)
1 > T

(1)
1 ,

and

p
(2)
1 =

1

c2,1T
(2)
1

< p
(1)
1 .



151

Continue such arguments we obtain

c
(2)
2,2 > c

(1)
2,2, T

(2)
2 < T

(1)
2 ,

which implies that

p
(2)
2 > p

(1)
2 .

From Lemmas 8.1 and 8.2, we conclude that p1 is monotonically decreasing, while p2 is

monotonically increasing. Since p1 and p2 are probabilities bounded by 0 and 1, by the

theorem for convergence of a monotone sequence of real numbers, we conclude that as

n → ∞, {p(n)i }, i = 1, 2, are convergent, i.e.,

lim
n→∞

p
(n)
i = pi, i = 1, 2.

Using the convergent pi, a convergent value of T
(n)
i can be determined. Thus, we have

lim
n→∞

T
(n)
i = Ti, i = 1, 2.

The proof of the convergence of the shared resource iteration to a unique value is

sketched as follows. In mathematics, the Banach fixed-point theorem (also known as the

contraction mapping theorem or contraction mapping principle) is an important tool in

the theory of metric spaces. The Banach fixed-point theorem guarantees the existence

and uniqueness of fixed points of certain self-maps of metric spaces, and provides a

constructive method to find those fixed points.

Let (X, d) be a metric space. Then a map F : X → X is called a contraction

mapping on X if there exists q ∈ [0, 1) such that

d(F (x), F (y)) ≤ qd(x, y)

for all x, y in X.
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Banach fixed point theorem states that let (X, d) be a non-empty complete metric

space with a contraction mapping F : X → X, then F admits a unique fixed-point x∗ in

X (i.e. F (x∗) = x∗). Furthermore, x∗ can be found as follows: start with an arbitrary

element x0 in X and define a sequence xn by xn = F (xn−1), then xn → x∗.

For the shared resource iteration, starting with any arbitrary p
(0)
i , i = 1, 2, each

iteration generates a new set of p
(k)
i , i = 1, 2. Therefore, we can view each iteration as

a function F such that

p
(k+1)
i = F (p

(k)
i ), k = 1, 2, . . .

Choose the measurement d as the absolute difference between the probabilities obtained

from two consecutive iterations. Then, it is of interest to prove that

|p(k+1)
i − p

(k)
i | = |F (p

(k)
i )− F (p

(k−1)
i )| ≤ q|p(k)i − p

(k−1)
i |.

According to the iteration procedure,

|p(k+1)
i − p

(k)
i | = 1

c2,i
| 1

T
(k)
i

− 1

T
(k−1)
i

|,

where c2,i is the transition rate of the second service in the i−th room which is conducted

by the shared resource. T
(k)
i is the i− th room’s cycle time in the k − th iteration.

Since for each iteration, all other variables are consistent except for c2,i changes, we

only consider the service with the shared resource. Such a subsystem can be approx-

imated by an M/M/1/C queue where C is the maximum number of patients at that

service stage and C = 2 according to the assumption described in Section 4.2.3. Then

we define the cycle time for the service with the shared resource in room i at the k− th

iteration as t
(k)
i . For this subsystem, denote the server intensity and service rate as ρ

(k)
i

and µ
(k)
i in room i during the k − th iteration. Note that µ

(k)
i = c

(k)
2,i .
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According to the cycle time of an M/M/1/C queue:

1

t
(k)
i

=
(1 + ρ

(k)
i )

(1 + 2ρ
(k)
i )

µ
(k)
i .

For the absolute difference between any two iterations,

| 1

t
(k)
i

− 1

t
(k−1)
i

| = | (1 + ρ
(k)
i )

(1 + 2ρ
(k)
i )

µ
(k)
i − (1 + ρ

(k−1)
i )

(1 + 2ρ
(k−1)
i )

µ
(k−1)
i |

= |µ(k)
i − µ

(k−1)
i |(2ρ

(k)
i (1 + ρ

(k−1)
i ) + ρ

(k)
i (1 + 2ρ

(k−1)
i ))

(1 + 2ρ
(k)
i )(1 + 2ρ

(k−1)
i )

= q
(k)
i |µ(k)

i − µ
(k−1)
i |,

where q
(k)
i =

(2ρ
(k)
i (1+ρ

(k−1)
i )+ρ

(k)
i (1+2ρ

(k−1)
i ))

(1+2ρ
(k)
i )(1+2ρ

(k−1)
i )

.

After simple algebra operations it can be proved that q
(k)
i < 1 for any 0 ≤ ρ

(k)
i , ρ

(k−1)
i <

1. Let qi be a real number satisfying qi ∈ [0, 1) and qi is the upper bound of the sequence

q
(k)
i . Therefore,

| 1

t
(k)
i

− 1

t
(k−1)
i

| ≤ qi|µ(k)
i − µ

(k−1)
i |.

Next, consider the shared resource iteration, for the first room:

|p(k+1)
1 − p

(k)
1 | =

1

c2,1
| 1

T
(k+1)
1

− 1

T
(k)
1

|

≤ 1

c2,1
| 1

t
(k+1)
1

− 1

t
(k)
1

|

≤ 1

c2,1
q1|µ(k+1)

1 − µ
(k)
1 |

= q1|p(k)2 − p
(k−1)
2 |. (A.1)

Similarly, for the second room:

|p(k+1)
2 − p

(k)
2 | =

1

c2,2
| 1

T
(k+1)
2

− 1

T
(k)
2

|

≤ 1

c2,2
| 1

t
(k+1)
2

− 1

t
(k)
2

|

≤ 1

c2,2
q2|µ(k+1)

2 − µ
(k)
2 |

= q2|p(k+1)
1 − p

(k)
1 |. (A.2)
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Combine the two scenarios together, it can be shown that

|p(k+1)
1 − p

(k)
1 | ≤ q1|p(k)2 − p

(k−1)
2 | ≤ q1q2|p(k)1 − p

(k−1)
1 |,

|p(k+1)
2 − p

(k)
2 | ≤ q2|p(k+1)

1 − p
(k)
1 | ≤ q1q2|p(k)2 − p

(k−1)
2 |.

In conclusion, |p(k+1)
i − p

(k)
i | ≤ q|p(k)i − p

(k−1)
i |, where q = q1q2 < 1, which satisfies the

Banach fixed point theorem. Consequently, the shared resource iteration will converge

to a unique set of probabilities p∗i , i = 1, 2.

Remark 8.1 The first inequality in (A.1) and (A.2) is valid because Ti is the i − th

room’s total cycle time but ti only represents the cycle time for the service with the

shared resource.

Proofs of Chapter 5

Due to space limitation, we omit the majority of algebraic operations and only provide

the sketch of proofs.

Proof of Theorem 5.1: To model physician’s office and e-visit services, consider an

M/G/1 queue with vacations. Define Nk as the total number of patients in the system

after the departure of a patient k, and Mk as the number of new patients arrived during

the service time of the patient k, and then the discrete time process Nk constitutes a

Markov chain,

Nk+1 =

 Nk − 1 +Mk+1 Nk > 0,

Mk+1 Nk = 0.
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Denote

N̂k =

 Nk − 1 Nk > 0,

Nk Nk = 0.

Then

Nk+1 = N̂k +Mk+1.

Since M and N̂ are independent, the probability generating functions (PGFs) satisfy

GN(z) = GN̂(z) ·GM(z).

To determine GN̂(z) and GM(z), we have

GN̂(z) = E[zN̂ ] = P{N̂ = 0}+
∞∑
i=1

ziP{N̂ = i}

= P{N = 0}
(
1− 1

z

)
+

1

z

∞∑
i=0

ziP{N = i}

=
GN(z)− (1− ρ)(1− z)

z
,

where ρ = λE[S], λ is the arrival rate, and E[S] is the expectation of service time S.

According to the Pollaczek-Khinchin transform equation ([136], Sec. 5.8),

GM(z) = S∗((1− z)λ),

where S∗(s) represents the Laplace-Stieltjes transform (LST) of S. Then

GN(z) =
(1− ρ)(1− z)S∗((1− z)λ)

S∗((1− z)λ)− z
.

Similarly, denote T ∗(s) as the LST of the patient cycle time T , and then according to

[136], Sec.5.8,

GN(z) = T ∗((1− z)λ),

T ∗(s) =
(1− ρ)sS∗(s)

s− λ+ λS∗(s)
.
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Since the waiting time W and service time S are independent and T = W + S, it is

natural that T ∗(s) = W ∗(s)S∗(s), which implies that

W ∗(s) =
(1− ρ)s

s− λ+ λS∗(s)
.

Taking the first and second derivatives of W ∗(s) at s = 0 and applying L’Hôspital’s rule,

the mean waiting time E(W ), the second moment E(W 2), and the variance of waiting

time V ar(W ) = E(W 2)− E2(W ) can be calculated.

If server vacation is considered, denote the vacation time as V with mean E(V ) and

LST V ∗(s), the PGF of N is modified as

GN(z) =
(1− ρ)(1− V ∗((1− z)λ))S∗((1− z)λ)

λE(V )(S∗((1− z)λ)− z)

= T ∗((1− z)λ),

Through similar derivation, we have

W ∗(s) =
1− V ∗(s)

sE(V )
· (1− ρ)s

s− λ+ λS∗(s)
.

Then, the first and second moments of the waiting time are given by

E(W ) =
λE(S2)

2(1− ρ)
+

E(V 2)

2E(V )
,

E(W 2) =
λE(S3)

3(1− ρ)
+

λ2E(S2)2

2(1− ρ)2
+

λE(S2)E(V 2)

2(1− ρ)E(V )
+

E(V 3)

3E(V )
.

In the case of the first come first serve policy, let the total arrival rate be λ = λ′
ov+λ′

ev,

and define

pi = λ′
i/λ, i = ev, ov.
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Then, the first to the third moments of the service time S can be evaluated as

E(S) =
∑

i=ev,ov

pi
1

µi

= (
λ′
ov

µov

+
λ′
ev

µev

)
1

λ
=

ρ

λ
,

E(S2) =
∑

i=ev,ov

piE(S2
i ) =

2

λ

(λ′
ovδov
µ2
ov

+
λ′
evδev
µ2
ev

)
=

2

λ
(ρovωov + ρevωev),

E(S3) =
∑

i=ev,ov

piE(S3
i ) =

λ′
ovE(S3

ov) + λ′
evE(S3

ev)

λ
.

Consequently, the waiting time can be calculated as

E(W ) = (ρovωov + ρevωev)
1

(1− ρ)
+ ωv,

and the variance of waiting

Var(W ) = E(W 2)− E2(W )

=
(ρovωov + ρevωev)

2

(1− ρ)2
− ω2

v +
(1− ρ)µvE(V 3) + λ′

ovE(S3
ov) + λ′

evE(S3
ev)

3(1− ρ)
.

Finally, the average time each type of patients spend in the system and the associated

variance are obtained:

Ti = E(W ) + E(Si),

Vari = Var(W ) + Var(Si), i = ev, ov.

Next, consider the M/G/1 queue with priorities. The formulations can be derived

similarly but with more complexity. The detailed derivation can be referred to ([137],
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Chapters 3.3 and 3.4). For the non-preemptive policy,

E(Wov) =
(1− ρ)E(V 2)

E(V )
+ λ′

ovE(S2
ov) + λ′

evE(S2
ev)

2(1− ρov)
,

E(Wev) =
(1− ρ)E(V 2)

E(V )
+ λ′

ovE(S2
ov) + λ′

evE(S2
ev)

2(1− ρov)(1− ρ)
,

E(W 2
ov) =

λ′
ovE(S2

ov)(1− ρ)E(V 2)
E(V )

2(1− ρov)2
+

λ′
ovE(S2

ov)(λ
′
ovE(S2

ov) + λ′
evE(S2

ev))

2(1− ρov)2

+
(1− ρ)E(V 3)

E(V )
+ λ′

ovE(S3
ov) + λ′

evE(S3
ev)

3(1− ρov)
,

E(W 2
ev) =

(1− ρ)E(V 2)
E(V )

+ λ′
ovE(S2

ov) + λ′
evE(S2

ev)

2(1− ρov)(1− ρ)

·
(λ′

ovE(S2
ov)

(1− ρov)2
+

λ′
ovE(S2

ov) + λ′
evE(S2

ev)

(1− ρov)(1− ρ)

)
+

(1− ρ)E(V 3)
E(V )

+ λ′
ovE(S3

ov) + λ′
evE(S3

ev)

3(1− ρov)2(1− ρ)
.

The second moments are rephrased as

E(S2
i ) =

2ωi

µi

, i = ev, ov, v.

Plugging in the second moments, the expected patient length of visit and the associated

variance for each type of patients can be obtained.
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For the preemptive-resume policy,

E(Wov) =
(1− ρ)E(V 2)

E(V )
+ λ′

ovE(S2
ov)

2(1− ρov)
,

E(Wev) =
(1− ρ)E(V 2)

E(V )
+ λ′

ovE(S2
ov) + λ′

evE(S2
ev)

2(1− ρov)(1− ρ)
,

E(W 2
ov) =

λ′
ovE(S2

ov)((1− ρ)E(V 2)
E(V )

+ λ′
ovE(S2

ov))

2(1− ρov)2
+

(1− ρ)E(V 3)
E(V )

+ λ′
ovE(S3

ov)

3(1− ρov)
,

E(W 2
ev) =

(1− ρ)E(V 2)
E(V )

+ λ′
ovE(S2

ov) + λ′
evE(S2

ev)

2(1− ρov)(1− ρ)

· (λ
′
ovE(S2

ov)

(1− ρov)2
+

λ′
ovE(S2

ov) + λ′
evE(S2

ev)

(1− ρov)(1− ρ)
)

+
(1− ρ)E(V 3)

E(V )
+ λ′

ovE(S3
ov) + λ′

evE(S3
ev)

3(1− ρov)2(1− ρ)
.

Plugging in the second moments, the expected patient length of visit and the associated

variance for each type of patients can be calculated.

Proof of Proposition 5.1: From Theorem 5.1, take the partial derivative of Tov

w.r.t. βov,

∂Tov

∂βov

=



λev [ωov+ρev(ωev−ωv)]
µov(1−ρov)2

,

non-preemptive policy

λev [ωov−ωvρev ]
µov(1−ρov)2

,

preemptive-resume policy

λev [ωov(1−ρev)+ωevρev ]
µov(1−ρ)2

.

first come first serve policy

As one can see, under the first come first serve policy, ∂Tov

∂βov
> 0 without any condition

since ρev < 1. Under the non-preemptive policy, ∂Tov

∂βov
> 0 if and only if ωov + ρev(ωev −
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ωv) > 0. For the preemptive-resume policy, ∂Tov

∂βov
> 0 if and only if ωov > ωvρev.

Proof of Proposition 5.2: From Theorem 5.1, we obtain

∂Tov

∂βev

=



λws[βovµevωov−(λ′
ov−βovλev−µov)(ωev−ωv)]

µevµov(1−ρov)2
,

non-preemptive policy

λws[βovµevωov+(λ′
ov−βovλev−µov)ωv ]

µevµov(1−ρov)2
,

preemptive-resume policy

λws[ωovρov+ωev(1−ρov)]
µev(1−ρ)2

+ λwsβov [ωov(1−ρev)+ωevρev ]
µov(1−ρ)2

.

first come first serve policy

Again, ∂Tov

∂βev
> 0 unconditionally under the first come first serve policy. After simple

algebraic operations, it can be shown that under the non-preemptive policy,

∂Tov

∂βev

> 0 iff βovµevωov > (µov − λov)(ωv − ωev).

Under the preemptive-resume policy,

∂Tov

∂βev

> 0 iff βovµevωov > (µov − λov)ωv.

Proof of Proposition 5.3: From Theorem 5.1, under the non-preemptive policy,
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we obtain:

∂Tev

∂βov

=
λev(ωovρov + ωevρev + ωv(1− ρ))

µov(1− ρov)(1− ρ)2
+

λev(ωov − ωv)

µov(1− ρov)(1− ρ)

+
λev(ωovρov + ωevρev + ωv(1− ρ))

µov(1− ρov)2(1− ρ)
,

∂Tev

∂βev

=
λwsβov(ωovρov + ωevρev + ωv(1− ρ))

µov(1− ρov)2(1− ρ)

+
λws(

βovωov

µov
+ ωev

µev
− βovωv

µov
− ωv

µev
)

(1− ρov)(1− ρ)

+
λws(

βov

µov
+ 1

µev
)(ωovρov + ωevρev + ωv(1− ρ))

(1− ρov)(1− ρ)2
.

Simplifying the above equations, one can show that ∂Tev

∂βov
> 0 if and only if

ωevρev(2− ρ− ρov) + ωov[1− ρ+ ρov(1− ρov)] + ωv(1− ρ)2 > 0,

which is satisfied without any condition. In addition, ∂Tev

∂βev
> 0 if and only if

ρov(1− ρov)ωov + (1− ρov)
2ωev + βov

µev

µov

[ωevρev(2− ρ− ρov)

+ ωov[1− ρ+ ρov(1− ρov)] + ωv(1− ρ)2] > 0

which is always satisfied as well.

Under the preemptive-resume policy, we have

∂Tev

∂βov

=
λev(ωovρov + ωevρev + ωv(1− ρ))

µov(1− ρov)(1− ρ)2
+

λev(ωov − ωv)

µov(1− ρov)(1− ρ)

+
ρev

µov(1− ρov)2
+

λev(ωovρov + ωevρev + ωv(1− ρ))

µov(1− ρov)2(1− ρ)
,
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∂Tev

∂βev

=
λwsβov(ωovρov + ωevρev + ωv(1− ρ))

µov(1− ρov)2(1− ρ)

+
λws(

βovωov

µov
+ ωev

µev
− βovωv

µov
− ωv

µev
)

(1− ρov)(1− ρ)
+

λwsβov

µovµev(1− ρov)2

+
λws(

βov

µov
+ 1

µev
)(ωovρov + ωevρev + ωv(1− ρ))

(1− ρov)(1− ρ)2
.

Comparing with the results under the non-preemptive policy, an additional term ρev
µov(1−ρov)2

is added to ∂Tev

∂βov
, and an additional term λwsβov

µovµev(1−ρov)2
is added to ∂Tev

∂βev
. Since both of

them are positive, ∂Tev

∂βov
> 0 and ∂Tev

∂βev
> 0 are satisfied.

Under the first come first serve policy, we have

∂Tev

∂βov

=
λev(ωov(1− ρev) + ωevρev)

µov(1− ρ)2
> 0,

∂Tev

∂βev

=
λws(ωovρov + ωev(1− ρov))

µev(1− ρ)2
+

λwsβov(ωov(1− ρev) + ωevρev)

µov(1− ρ)2
> 0.

Proof of Proposition 5.4: First, consider the non-preemptive policy. Define

Wov =
ρovωov + ρevωev + (1− ρ)ωv

1− ρov
,

Nov =
ρovωov − ρevωev − (1− ρ)ωv

1− ρov
,

Mov =
(1− ρ)µvE(V 3) + λ′

ovE(S3
ov) + λ′

evE(S3
ev)

1− ρov
,

and

Var(Wov) = WovNov +
1

3
Mov.

The partial derivative of Varov w.r.t. βi can be expressed as

∂Varov
∂βi

=
∂Var(Wov)

∂βi

=
∂Wov

∂βi

Nov +Wov
∂Nov

∂βi

+
1

3

∂Mov

∂βi

, i = ev, ov.
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It can be shown that

∂Wov

∂βov

> 0 iff ωov + ωevρev − ωvρev > 0,

∂Nov

∂βov

> 0 iff ωov − ωevρev + ωvρev > 0,

∂Mov

∂βov

> 0 iff µovE(S3
ov) + λ′

evE(S3
ev)− ρevµvE(V 3) > 0.

The sufficient conditions are satisfied when all of the above-mentioned inequalities are

true.

Next, consider the preemptive-resume policy. Define

Wov =
ρovωov + (1− ρ)ωv

1− ρov
,

Nov =
ρovωov − (1− ρ)ωv

1− ρov
,

Mov =
(1− ρ)µvE(V 3) + λ′

ovE(S3
ov)

1− ρov
.

Similarly, one can show that ∂Wov

∂βov
> 0 implies ωov > ωvρev,

∂Mov

∂βov
> 0 implies µovE(S3

ov) >

ρevµvE(S3
v), and

∂Nov

∂βov
> 0 is always true, since ωov + ωvρev > 0.

Finally, consider the first come first serve policy. Define

W =
ρovωov + ρevωev + (1− ρ)ωv

1− ρ
,

N =
ρovωov + ρevωev − (1− ρ)ωv

1− ρ
,

M =
(1− ρ)µvE(S3

v) + λ′
ovE(S3

ov) + λ′
evE(S3

ev)

1− ρ
.

It can be shown that both ∂W
∂βov

> 0 and ∂N
∂βov

> 0 imply ωov(1 − ρev) + ωevρev > 0, and

∂M
∂βov

> 0 implies µov(1− ρev)E(S3
ov) + λ′

evE(S3
ev) > 0, which are always true.
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Proof of Proposition 5.5: First, consider the non-preemptive policy.

∂Wov

∂βev

> 0 iff βovωov > (ωv − ωev)[βovρev +
µov

µev

(1− ρov)],

∂Nov

∂βev

> 0 iff βovωov > (ωev − ωv)[βovρev +
µov

µev

(1− ρov)],

∂Mov

∂βev

> 0 iff βov[µovE(S3
ov) + λevE(S3

ev)− ρevµvE(S3
v)]

+ (1− ρov)
µov

µev

[µevE(S3
ev)− µvE(S3

v)] > 0.

Plug-in ρev = λev+βevλws

µev
and ρov = λov+βov(λev+βevλws)

µov
. Then, the sufficient but not

necessary conditions for ∂Varov
∂βev

> 0 are βovµevωov > (µov−λov)|ωv−ωev| and µevE(S3
ev) ≥

µvE(S3
v).

Next, consider the preemptive-resume policy.

∂Wov

∂βev

> 0 iff βov(ωov − ωvρev)− (1− ρov)ωv
µov

µev

> 0,

∂Nov

∂βev

> 0 iff βov(ωov + ωvρev) + (1− ρov)ωv
µov

µev

> 0,

∂Mov

∂βev

> 0 iff βov[µovE(S3
ov)− ρevµvE(S3

v)]− (1− ρov)
µov

µev

µvE(S3
v) > 0.

The sufficient but not necessary conditions are ∂Wov

∂βev
≥ 0 and ∂Mov

∂βev
≥ 0, which lead to

βovµevωov > (µov − λov)ωv and βovµovµevE(S3
ov) ≥ (µov − λov)µvE(S3

v).
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Finally, consider the first come first serve policy.

∂W

∂βev

> 0 iff µov(ωovρov + ωev(1− ρov))

+ βovµev[ωov(1− ρev) + ωevρev] > 0,

∂N

∂βev

> 0 iff βov(ωov(1− ρev) + ωevρev)

+
µov

µev

[ωovρov + ωev(1− ρov)] > 0,

∂M

∂βev

> 0 iff λovµovE(S3
ov) + µovµev(1− ρov)E(S3

ev)

+ µevβov[µov(1− ρev)E(S3
ov) + λevE(S3

ev)] > 0,

which are always true.

Proof of Proposition 5.6: Consider both the non-preemptive and preemptive-

resume policies. Define

Wev =
ρovωov + ρevωev + (1− ρ)ωv

(1− ρov)(1− ρ)
,

Nev =
ρovωov + ρevωev − (1− ρ)ωv

(1− ρov)(1− ρ)
+

2ρovωov

(1− ρov)2
,

Mev =
(1− ρ)µvE(S3

v) + λ′
ovE(S3

ov) + λ′
evE(S3

ev)

(1− ρov)2(1− ρ)
.

Under the non-preemptive policy,

Var(Wev) = WevNev +
1

3
Mev,

∂Varev
∂βi

=
∂Var(Wev)

∂βi

=
∂Wev

∂βi

Nev +Wev
∂Nev

∂βi

+
1

3

∂Mev

∂βi

, i = ev, ov.

In addition, under the preemptive-resume policy,

Aev =
2δev − 1

µ2
ev(1− ρov)2

,

∂Varev
∂βi

=
∂Var(Wev)

∂βi

+
∂Aev

∂βi

, i = ev, ov.
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It follows that

∂Wev

∂βov

> 0 iff ωov(1− ρ2ov − ρev)

+ ωevρev(2− ρov − ρ) + ωv(1− ρ)2 > 0,

∂Nev

∂βov

> 0 iff ωov((1− ρ2ov − ρev)(1− ρov) + 2(1 + ρov)(1− ρ)2)

+ ωevρev(2− ρov − ρ)(1− ρov)− ωv(1− ρ)2(1− ρov) > 0,

∂Mev

∂βov

> 0 iff µov[(1 + ρov)(1− ρev)− 2ρ2ov]E(S3
ov)

+ λev(3− 2ρ− ρov)E(S3
ev) + 2µv(1− ρ)2E(S3

v) > 0.

In addition,

∂Aev

∂βov

=
2ρev(2δev − 1)

µovµev(1− ρov)3
> 0.

Since all the other conditions are true except for ∂Nev

∂βov
> 0, a sufficient but not necessary

condition for ∂Varov
∂βov

> 0 is ∂Nev

∂βov
≥ 0. Such a condition can be rephrased as

ωov((1− ρ)(1− ρov) + 2(1− ρov)(1− ρ)2)

+ 2ωevρev(1− ρ)(1− ρov)− ωv(1− ρ)2(1− ρov) ≥ 0,

which can be further relaxed to

2ωov − ωv ≥ 0.
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Moreover, for βev,

∂Wev

∂βev

> 0 iff
µov

µev

(1− ρov)[ρovωov + (1− ρov)ωev]

+ βov[ωov(1− ρ2ov − ρev) + ωevρev(2− ρov − ρ) + ωv(1− ρ)2] > 0,

∂Nev

∂βev

> 0 iff
µov

µev

(1− ρov)
2[ρovωov + (1− ρov)ωev]

+ βov[ωov((1− ρ2ov − ρev)(1− ρov) + 2(1 + ρov)(1− ρ)2)

+ ωevρev(2− ρov − ρ)(1− ρov)− ωv(1− ρ)2(1− ρov)] > 0,

∂Mev

∂βev

> 0 iff µov[λov(1− ρov) + βovµev((1 + ρov)(1− ρev)− 2ρ2ov)]E(S3
ov)

+ µev[µov(1− ρov)
2 + βovλev(3− 2ρ− ρov)]E(S3

ev)

+ 2βovµevµv(1− ρ)2E(S3
v) > 0.

In addition, in the case of the preemptive-resume policy,

∂Aev

∂βev

=
2βovλws(2δev − 1)

µovµ2
ev(1− ρov)3

> 0.

Again, all the other conditions are true except for ∂Nev

∂βev
> 0, and a sufficient but not

necessary condition for ∂Varov
∂βev

> 0 is ∂Nev

∂βev
≥ 0. Note that such a condition is the same

as the one for ∂Nev

∂βov
≥ 0 by adding one more positive term. Thus, the same sufficient

condition applies.

Proof of Proposition 5.7: In the case of the first come first serve policy, since

the waiting time for both the types of patients are the same, using the results from

Propositions 5.4 and 5.5, ∂Varev
∂βov

> 0 and ∂Varev
∂βev

> 0 hold for any choice of parameters.

Proof of Proposition 5.8: First, compare TNon-Preemp and TPreemp.

TNon-Preemp − TPreemp =
ρovρev(

µov

µev
δev − 1)

(1− ρov)λ
.
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Since µov < µev and cvev < 1, we obtain TNon-Preemp < TPreemp. Thus, the non-preemptive

service system is preferred compared with the preemptive-resume one.

Next, compare non-preemptive and first-come first-serve policies.

TNon-Preemp − TFCFS =
ρovωov + ρevωev + (1− ρ)ωv

(1− ρov)(1− ρ)λ
· λ′

ovλ
′
ev

( 1

µov

− 1

µev

)
.

Since µov < µev, we obtain TNon-Preemp > TFCFS. Thus, the first come first serve policy

yields the shortest overall patient length of visit.

Proof of Proposition 5.9: For the variance of the non-preemptive and the preemptive-

resume policies,

VarNon-Preemp − VarPreemp = pov

(λevE(S3
ev)

3(1− ρov)
− ρevωev(ρevωev + 2(1− ρ)ωv)

(1− ρov)2

)
+ pev

(
1− 1

(1− ρov)2

)(2δev − 1

µ2
ev

)
.

It follows that VarNon-Preemp − VarPreemp < 0 if and only if

3ρov − 6 + µev[12− 6ρov + 6(1− ρ)µovωv]ωev

+ 3λ′
evµovω

2
ev − (1− ρov)µovµ

2
evE(S3

ev) > 0.

Here, we consider the third distribution moment of the e-visit service, and the condition

becomes

E(S3
ev) <

1

(1− ρov)µovµ2
ev

(3ρov − 6 + µev[12− 6ρov + 6(1− ρ)µovωv]ωev + 3λ′
evµovω

2
ev).

Proof of Corollary 5.5: When all the service and vacation time distributions are
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exponential and µov < µev,

VarexpNon-Preemp − VarexpPreemp < 0 iff

2(1− ρ)λ′
ovµev + [(2− ρov)ρovµev − λ′

ov(2− ρov − ρ)]µv > 0.

Let λ′
ov = aλ′

ev, µov = bµev, and b < 1,

(2− ρov)ρovµev − λ′
ov(1− ρov + 1− ρ) > 0 iff(

− 2a+
2a

b

)
+
(
a− a2

b2
+

2a2

b

)
ρev > 0.

If (a − a2

b2
+ 2a2

b
) ≥ 0, the above inequality is satisfied. If not, the above inequality can

be written as

(
2a− 2a

b

)
+
(
− a+

a2

b2
− 2a2

b

)
ρev < 0.

Since ρ < 1, which implies that 1− (1+ a
b
)ρev > 0, it leads to ρev <

b
a+b

. Then we obtain

(
2a− 2a

b

)
+
(
− a+

a2

b2
− 2a2

b

)
ρev

< 2
(
a− a

b

)
+
(
− a+

a2

b2
− 2a2

b

) b

a+ b

= −a[a+ (2− b)b]

b(a+ b)
< 0.

Next, compare VarFCFS and VarNon-Preemp. Define

M = (1− ρ)µvE(V 3) + λ′
ovE(S3

ov) + λ′
evE(S3

ev),

N = ρovωov + ρevωev + (1− ρ)ωv.
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Then the difference in variance between the two policies:

VarexpNon-Preemp − VarexpFCFS

=
( pov
1− ρov

+
pev

(1− ρov)2(1− ρ)
− 1

1− ρ

)M
3

+
[
pov

ρovωov − ρevωev − (1− ρ)ωv

(1− ρov)2

+ pev

(ρovωov + ρevωev − (1− ρ)ωv

(1− ρov)2(1− ρ)2
+

2ρovωov

(1− ρov)3(1− ρ)

)
− ρovωov + ρevωev − (1− ρ)ωv

(1− ρ)2

]
N.

Proofs of Chapter 6

Proof of Proposition 6.1: Recall (6.4),

ρ = ρov + ρev = (1− α(1− γ − βov))ρt.

Since 0 < α < 1, then, ρ < ρt if and only if 1− γ − βov > 0.

Proof of Proposition 6.2: Compare the change in the average cycle time Tov −Tt:

Tov − Tt =
αλ (γδev (−λ+ γµev) + δov (λ− (1− βov)µev))

µev (λ− γµ) ((1− α(1− γ − βov))λ− γµev)
. (A.3)

According to the physician utilization constraints, the denominator of (A.3) is larger
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than zero, so a closer look is taken at the numerator:

γδev(−λ+ γµev) + δov(λ− (1− βov)µev)

≤ γδov(−λ+ γµev) + δov(λ− (1− βov)µev)

= ((1− γ)λ− (1− γ2 − βov)µev)δov

< ((1− γ)γµev − (1− γ2 − βov)µev)δov

= −(1− γ − βov)µevδov.

The above inequalities indicate that a sufficient but not necessary condition for Tov−Tt <

0 is 1− γ − βov ≥ 0.

Proof of Proposition 6.3: Under the same total external arrival rate λ, if 1− γ−

βov = 0,

Φβov=1−γ = −αλ(1− γ)ωv

+ αλ2 (−1 + 2γ + (1− γ)γα)δov − γ2(1 + (1− γ)α)δev
γµev(−λ+ γµev)

.

Therefore, a necessary and sufficient condition for Φβov=1−γ > 0 is

ωv < λ
(−1 + 2γ + (1− γ)γα)δov − γ2(1 + (1− γ)α)δev

γ(1− γ)µev(−λ+ γµev)
. (A.4)

Then, according to the monotonicity of Φ with respect to βov, if the condition (A.4) is

satisfied, then when 1− γ − βov > 0, Φ > 0.

Proof of Proposition 6.4: When the physician’s other nondirect care work is

not considered, the system can be modeled as a single server queue. Specifically, when

e-visits are not offered,

Tt =
ρtωov

1− ρt
+

1

µov

. (A.5)
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When part of patients use e-visits,

Tev = (ρovωov + ρevωev)
1

(1− ρ)
+

1

µev

, (A.6)

Tov = (ρovωov + ρevωev)
1

(1− ρ)
+

1

µov

. (A.7)

Using (A.5)-(A.7) to calculate Φnv, it can be shown that Φ = Φnv − αβovωv.

Proof of Proposition 6.5: Take the partial derivatives of Φ with respect to e-visit

service rate µev and the variation factor δev:

∂Φ

∂µev

=
ρev
µev

+ (
2ρevωev

(1− ρ)µev

+
(ρevωev + ρovωov)ρev

(1− ρ)2µev

)(1 + αβov)λ > 0,

∂Φ

∂δev
= −ρev(1 + αβov)λ

(1− ρ)µev

< 0.

Therefore, Φ is monotonically increasing with respect to e-visit service rate µev, and is

monotonically decreasing with respect to e-visit variation factor δev.

Proof of Proposition 6.6: Take the partial derivative of Φ with respect to βov,

∂Φ

∂βov

= −αλ

µov

− αλωv −
α

µov

(1 + αβov)λ
2

1− ρ
ωov

− (
αλ

1− ρ
+

α

µov

(1 + αβov)λ
2

(1− ρ)2
)(ρovωov + ρevωev) < 0.

It can be concluded that Φ is monotonically decreasing with βov.

Proof of Corollary 6.2: Suppose β = 1− γ and plug-in δov = δev,

Φβov=1−γ = −αλ(1− γ)ωv −
αλ2(1− γ)2(1− γα)δov

γµev(−λ+ γµev)
< 0.

Based on the monotonicity property of Φ with respect to βov, when βov ≥ 1 − γ,

Φδov=δev < 0.
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Proof of Proposition 6.7: According to the physician utilizations defined in (6.15)

and (6.16),

ρ− ρt =
(1− α(1− γ − βov))λ− λt

γµev

≤ 0, iff.

λ ≤ λt

1− α(1− γ − βov)
.

Thus, the maximum arrival rate λ∗ the physician can accommodate is

λ∗ =
λt

1− α(1− γ − βov)
.

Proof of Proposition 6.8: Plug-in λ = λt

1−α(1−γ−βov)
to (6.6),

Tov − Tt = − α (δov − γδev)λt

µev(1− α(1− γ − βov)) (γµev − λt)
< 0,

Tev − Tt < Tov − Tt < 0.

Proof of Proposition 6.9: When λ = λt

1−α(1−γ−βov)
and δov = δev,

Φλ=λ∗ = − α(1− γ)2δov(1− α(1− βov))λ
2
t

γµev(1− α(1− γ − βov))2 (γµev − λt)
− α(1− γ)λtωv

1− α(1− γ − βov)
< 0.

Proof of Corollary 6.3: In (6.22), the denominator is a quadratic function of α.

To find the optimal α∗ to maximize λ∗ is equal to maximize α(1− γ − k1α− k2), which

yields

α∗ =
1− γ − k2

2k1
.
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Derivations in Chapter 7

Consider the state space defined by assumptions (i)-(vi) in Section 7.1.2. Let Sk = {sk1,

sk2, s
k
3, s

k
4, s

k
5, s

k
6}, where ski represents the number of patients in stage i and state k,

i = 1, . . . , 6. sk2 = m indicates that there are m patients in process 2 (rooming) in state

k. However, not every state is feasible due to the constraints. To figure out how many

states are feasible, the following constraints are considered:

• sk1 ≤ Q, queue length constraint,

• sk2 + sk3 + sk4 + sk5 + sk6 ≤ M , room space constraint,

• sk2 + sk6 ≤ r1, clinical staff resource constraint,

• sk4 ≤ r2, clinician resource constraint.

In addition, for any feasible state, we have

• sk3 > 0 only when sk4 = r2 (the clinician is busy),

• sk5 > 0 only when sk2 + sk6 = r1 (the clinical staff is busy),

• sk1 > 0 only when
∑6

i=2 s
k
i = M (all the rooms are occupied), or sk2 + sk6 = r1 (the

clinical staff is occupied).

Therefore, the number of feasible states, K, is reduced. It can be described by a

function of the maximum queue length Q and the number of exam rooms M , and can

be obtained using numerical search. The current GI clinic can be characterized by 79

feasible states. Denote a feasible state as Sk, k = 1, . . . , K. The steady state probability

for a feasible state Sk is then defined as

Pk = P (sk1, s
k
2, s

k
3, s

k
4, s

k
5, s

k
6), k = 1, 2, . . . , K.
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For a feasible state Sj, there may exist a transition from another feasible state Sk to

Sj, triggered by one of the following events: (1) a patient arrives; (2) patient rooming

finishes; (3) clinician examination finishes; and (4) a patient checks out. Note that such

events cannot occur simultaneously. The transition rates of these events are outlined

below:

• For patient arrival, the following scenarios exist:

– If sk1 = Q (i.e., the waiting room is full, although unlikely), the patient is lost

due to the space limit and no transition occurs.

– Otherwise, the transition rate is λ.

• The clinical staff finishes rooming, and the transition rate is c1.

• The clinician finishes examination and diagnosis, and the transition rate is c2.

• The patient checks out, and the transition rate is c3.

Let I{X} be the indicator of whether event X occurs or not, i.e.,

I{X} =


1, if X is true,

0, if X is false.

(A.8)

Then, for a feasible state Sk, the rate goes out of Sk can be written as

µk
out = {λ · I{0≤sk1<Q} + c1 · I{sk2>0} + c2 · I{sk4>0}

+c3 · I{sk6>0}} · P (sk1, s
k
2, s

k
3, s

k
4, s

k
5, s

k
6), (A.9)

which represents that any one of the four events described above could trigger the leave

from state Sk.
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Similarly, the rate goes into Sk can be written as:

µk
in = c1 · [P (sk1, s

k
2 + 1, sk3, s

k
4 − 1, sk5 + 1, sk6 − 1) + P (sk1, s

k
2 + 1, sk3, s

k
4 − 1, sk5, s

k
6)

+P (sk1, s
k
2 + 1, sk3 − 1, sk4, s

k
5 + 1, sk6 − 1) + P (sk1, s

k
2 + 1, sk3 − 1, sk4, s

k
5, s

k
6)

+P (sk1 + 1, sk2, s
k
3, s

k
4 − 1, sk5, s

k
6) + P (sk1 + 1, sk2, s

k
3 − 1, sk4, s

k
5, s

k
6)]

+c2 · [P (sk1, s
k
2, s

k
3 + 1, sk4, s

k
5, s

k
6 − 1) + P (sk1, s

k
2, s

k
3, s

k
4 + 1, sk5, s

k
6 − 1)

+P (sk1, s
k
2, s

k
3 + 1, sk4, s

k
5 − 1, sk6) + P (sk1, s

k
2, s

k
3, s

k
4 + 1, sk5 − 1, sk6)]

+c3 · [P (sk1, s
k
2, s

k
3, s

k
4, s

k
5 + 1, sk6) + P (sk1 + 1, sk2 − 1, sk3, s

k
4, s

k
5, s

k
6 + 1)

+P (sk1, s
k
2, s

k
3, s

k
4, s

k
5, s

k
6 + 1)] + λ · [P (sk1 − 1, sk2, s

k
3, s

k
4, s

k
5, s

k
6)

+P (sk1, s
k
2 − 1, sk3, s

k
4, s

k
5, s

k
6)]. (A.10)

In (A.10), the first bracket includes the possible events that happen after a patient fin-

ishes rooming, and the corresponding transition rate is c1. Note that for a certain state

Sk, the transition is triggered by one event at one time so that only one of the corre-

sponding probabilities in the bracket can be nonzero. The next three brackets denote

the probabilities of events that are triggered by the clinician finishing examination, the

patient check-out, and a new patient arrival, with transition rates c2, c3 and λ, respec-

tively. Again, only one event can trigger the transition in each bracket. Finally, the

balance equations can be written as

µk
in = µk

out, k = 1, 2, . . . , K. (A.11)

The transitions and the corresponding transition rates from state Sk to state Sj are

elaborated below:

1. For patient arrival, the following scenarios exist:

• If sk1 = Q (i.e., the waiting room is full, although unlikely), the patient is lost

due to the space limit and no transition occurs.
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• If sk1 < Q (there’s available space in the waiting room) and
∑6

i=2 s
k
i = M

(i.e., all rooms are occupied by the patients), then the patient has to wait,

we have

sj1 = sk1 + 1, sji = ski , i = 2, . . . , 6.

• If
∑6

i=2 s
k
i < M (i.e, not all rooms are occupied) and sk2+sk6 < n1 (the clinical

staff is available), then the patient does not need to wait and will be roomed

immediately,

sj2 = sk2 + 1, sji = ski , i = 1, 3, . . . , 6.

• However, if
∑6

i=2 s
k
i < M and sk2 + sk6 = n1 (i.e., the clinical staff is busy),

then the patient still needs to wait,

sj1 = sk1 + 1, sji = ski , i = 2, . . . , 6.

In all three latter cases, the transition rate is λ.

2. When the clinical staff finishes rooming, the following scenarios need to be consid-

ered:

• If
∑6

i=2 s
k
i = M (all rooms are occupied), then

sj1 = sk1, sj2 = sk2 − 1.

– If sk4 < n2 (the clinician is available),

sj3 = sk3, sj4 = sk4 + 1.

Furthermore, since the resource (clinical staff) is released,
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∗ if sk5 > 0 (there are patients waiting for check-out),

sj5 = sk5 − 1, sj6 = sk6 + 1,

∗ otherwise,

sj5 = sk5, sj6 = sk6.

– If sk4 = n2 (the clinician is busy),

sj3 = sk3 + 1, sj4 = sk4.

The changes in processes 5 and 6 are the same as in the previous scenario

(sk5 > 0).

• If
∑6

i=2 s
k
i < M (not all rooms are occupied),

– if sk4 < n2 (the clinician is available),

sj3 = sk3, sj4 = sk4 + 1.

Moreover,

∗ if sk5 > 0 (there are patients waiting for check-out),

sj1 = sk1, sj2 = sk2 − 1,

sj5 = sk5 − 1, sj6 = sk6 + 1,

∗ if sk5 = 0 (there is no patient waiting for check-out) and sk1 > 0 (there

are patients waiting for rooming),

sj1 = sk1 − 1, sj2 = sk2,

sj5 = sk5, sj6 = sk6,



179

∗ if no patient is waiting for rooming or discharge,

sj2 = sk2 − 1, sji = ski , i = 1, 5, 6.

– If sk4 = n2 (the clinician is busy),

sj3 = sk3 + 1, sj4 = sk4.

The changes in processes 1, 2, 5, and 6 are the same as in the previous

case (sk4 < n2).

In all above scenarios, the transition rate is c1.

3. If the clinician finishes examining, sj1 = sk1, s
j
2 = sk2, then

• if sk2 + sk6 < n1 (the clinical staff is available),

sj5 = sk5, sj6 = sk6 + 1,

In addition,

– if there are patients waiting for the clinician,

sj3 = sk3 − 1, sj4 = sk4,

– if there is no patient waiting for the clinician,

sj3 = sk3, sj4 = sk4 − 1.

• If sk2 + sk6 = n1 (the clinical staff is busy),

sj5 = sk5 + 1, sj6 = sk6.

The changes in processes 3 and 4 are the same as in the previous case (sk2+sk6 <

n1).
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In all these cases, the transition rate is c2.

4. If any patient checks out, then

sj3 = sk3, sj4 = sk4.

In addition, the following scenarios exist:

• If there are patients waiting for check-out,

sj1 = sk1, sj2 = sk2,

sj5 = sk5 − 1, sj6 = sk6.

• If there is no patient waiting for check-out, but

– there are patients waiting for rooming,

sj1 = sk1 − 1, sj2 = sk2 + 1,

sj5 = sk5, sj6 = sk6 − 1,

– otherwise,

sj1 = sk1, sj2 = sk2,

sj5 = sk5, sj6 = sk6 − 1.

Again, in these scenarios, the transition rate is c3.
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