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ABSTRACT

The population of microbes that inhabit the mammalian intestine have profound effects on
host physiology. The gut microbiome varies substantially among healthy individuals, and its
composition is shaped by a complex interplay of environmental and genetic factors. Alterations in
its composition are associated with the development of metabolic diseases, including obesity and
type 2 diabetes. Therefore, manipulation of the intestinal microbiome ecosystem is a promising
target for emerging therapies. However, it remains largely unknown how host genetics interacts
with environmental factors (e.g. diet) to shape microbiota profiles, and how these interactions may
contribute to metabolic disease susceptibility.

The objective of this thesis research was to investigate the effects of host genetic
variation on gut microbiota composition, evaluate how these interactions influence host diet-
induced metabolic phenotypes, and to identify genetic variants that influence the abundance
of gut microbes.

In Chapter 2, | evaluate the relative contributions of host genetics and diet on gut
microbiota composition and metabolic phenotypes using a panel of eight genetically diverse inbred
mouse strains. In a controlled laboratory environment, | found gut microbiota composition and
metabolic phenotypes are shaped by both genetics and diet. Guided by the results of this screen, |
went on to demonstrate that in a gnotobiotic mouse model transplantation of genotype-associated
microbiota can alter pancreatic islet function and confer sustained metabolic phenotypes despite
chronic high-fat high-sucrose (HF/HS) feeding.

In Chapter 3, | identify host genetic loci that influence gut microbiota and bile acid
profiles. | performed quantitative trait loci (QTL) mapping to find genetic variants associated with

abundance of gut microbes and bile acid levels using the Diversity Outbred (DO) mouse stock,



which is derived from the eight strains profiled in Chapter 2. I found novel genetic variants
associated with both microbial taxa and bile acids, including an association between the intestinal
bile acid transporter, Slc10a2, the abundance of Turicibacter sp. and plasma cholic acid levels.
Subsequent investigation revealed direct interactions between Turicibacter sp. and bile acids in
vitro, supporting a role of genetics in elucidating host-microbe interactions.

Together, this thesis work contributes to our understanding host-microbe interactions and

provides a foundation for future mechanistic studies.
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CHAPTER 1: Host — Microbe Interactions and the Contributions of the Gut Microbiome

to Disease



INTRODUCTION

The mammalian gut harbors trillions of commensal microorganisms, comprised of
bacteria, viruses, archaea and eukaryotes (fungi and protists), which together constitute the
intestinal microbiota (Sender et al., 2016). These microorganisms have evolved with the host to
establish mutualistic symbioses, where they reside in nutrient rich intestine and as reciprocity they
expand the host metabolic repertoire, allowing for the breakdown of otherwise indigestible
carbohydrates and the synthesis of essential nutrients (Qin et al., 2010; Sommer and Béckhed,
2013). It has become clear that the microbes that inhabit the intestine play a critical role in
determining many aspects of health. Alterations in microbiota composition are implicated in a
spectrum of metabolic (Karlsson et al., 2013a), immunological (Petersen and Round, 2014) and
cognitive disorders (Petra et al., 2015; Vuong et al., 2017). To date, most research has focused on
identifying individual gut microbes and microbial communities associated with healthy and
diseased states, but the underlying mechanisms remain largely elusive.

Sequencing-based studies of fecal microbial communities have also revealed substantial
inter-individual differences in microbiota composition (Human Microbiome Project Consortium,
2012; Qin et al., 2010; Spor et al., 2011). Microbiomes can be characterized by 16S rRNA gene
sequencing and metagenomic sequencing, which allow for the quantification of bacterial taxa and
gene functions, respectively (Goodrich et al., 2014a). Thousands of organisms are capable of
colonizing the human intestine (Lozupone et al., 2012) and their combined genomes contain >100-
fold more genes than are encoded in the human genome (Qin et al., 2010). The observed variation
in gut microbiota communities is driven by a multitude of variables including environmental
factors (e.g. maternal seeding, diet) and host genetics (Costello et al., 2009; Falony et al., 2016;

Goodrich et al., 2014b; Zhernakova et al., 2016).



Due to the contributions of the gut microbiota to various diseased states, it has become
increasing important to identify and understand the specific factors that govern microbiota
composition. However, the extent to which host genetics shapes microbiota composition and the
causal variants remain poorly characterized. In this review, we summarize the importance of the
gut microbiome for host health and the current research deciphering relative contributions of
environmental and genetic factors in shaping the composition of these microbial communities.
Additionally, we discuss how genetic-driven variation in the microbiome influences the host and

highlight the role of metabolites in mediating host-microbe interactions.

THE ENTERIC MICROBIOTA IN HEALTH AND DISEASE

Contributions to host development

The presence of the enteric microbiota is instrumental for proper host development. The
importance of these microbes in development is evident from comparative studies with germ-free
animals which have extensive developmental defects. Germ-free mice are devoid of any
microorganisms and can be used to evaluate the contributions of microbes to clinical phenotypes.
Studies of germ-free animals demonstrate the gut microbiota modulates many aspects of
development ranging from bone-mass density (Sjogren et al., 2012), intestinal angiogenesis
(Reinhardt et al., 2012), intestinal architecture and mucus layer properties (Hooper and Gordon,
2001; Petersson et al., 2011; Sharma et al., 1995), and innate and adaptive immune systems (Cebra,
1999; lvanov et al., 2008; Macpherson and Harris, 2004). Best described in germ-free animals are
the roles of the gut microbiota in development and maturation of the intestinal epithelium and the
immune system.

Germ-free animals have stark differences in intestinal morphology compared to those fully

colonized. Most noticeably, germ-free rodents have an enlarged cecum (Wostmann, 1981). Other



morphological differences include reduced intestinal surface area (Gordon and Bruckner-Kardoss,
1961) and villus thickness (Reinhardt et al., 2012), as well as impaired brush border differentiation
(Abrams et al., 1963). Furthermore, the absence of a microbiota impairs regulation of cell turnover
and promotion of cell renewal (Smith et al., 2007). In addition to intestinal morphology, gut
microbes serve an important role in maintaining mucosal barrier integrity (Natividad and Verdu,
2013). In fact, the addition of specific organisms to the intestinal ecosystem can improve intestinal
barrier function including Bacteroides thetaiotaomicron (Hooper et al., 2001), Akkermansia
muciniphila (Reunanen et al., 2015) and Lactobacillus plantarum (Zhou et al., 2010).

Human and animal studies have also shown a direct role of microbiota in the maturation
and function of the immune system (Brestoff and Artis, 2013). Intestinal microbes contribute to
immune system by promoting the development of lymphoid structures, as well as through the
modulating of activation and differentiation of several lymphocyte populations (Round and
Mazmanian, 2009). Moreover, the microbiome is required for development of completely
functional 1gA-producing cells (Kawamoto et al., 2012) and germ-free mice have limited IgA
plasmablasts in their gut lamina propria (Crabbé et al., 1970). However, the number of IgA plasma
cells is greatly expanded after colonization (Crabbé et al., 1968). These deficiencies in immune
and intestinal development leave the germ-free host susceptible to invasion by opportunistic

pathogens (Smith et al., 2007).

Immune implications of gut microbiome

In addition to stimulating the development of the host immune system, gut bacteria are
instrumental for maintaining immune homeostasis. There is substantial evidence that perturbations
the intestinal microbiota contribute to the development of numerous inflammatory disorders

including chronic inflammatory bowel diseases (Devkota et al., 2012; Sokol et al., 2008),



rheumatoid arthritis (Vaahtovuo et al., 2008), asthma (Arrieta et al., 2015), and type 1 diabetes
(Greiner et al., 2014; Wen et al., 2008). Bacterial species interact with several cell types including
epithelial cells, dendritic cells, and T cells to influence host immune responses. Commensal
microbes maintain immune homeostasis through both immune-stimulatory and immune-
modulatory effects. Starting at birth, the early intestinal colonizers instigate development and
maturation of the immune system (Brestoff and Artis, 2013). Microbes stimulate the immune
system by components of their cell wall and their metabolites. For example, microbial production
of short chain fatty acids (SCFAs) induce immune cell activation, cytokine production and T-
lymphocyte proliferation (Corréa-Oliveira et al., 2016). Commensal microbes help maintain
intestinal barrier function through the recruitment of immune cells to the mucosa (Macpherson and
Harris, 2004), as well as stimulate protective epithelial functions such as the secretion of mucus
and antimicrobial peptides (Hooper and Macpherson, 2010). Gut microbes also serve an immune-
modulatory role to prevent overactivation of inflammatory and allergic responses. For example,
microbial production of the short chain fatty acid butyrate induces colonic regulatory T cells (T reg
cells) (Furusawa et al., 2013). Treg cells regulate the immune system through the induction of anti-
inflammatory cytokines I1L-10 and IL-35. The induction of Treg cells by commensal organisms is
crucial to limiting inflammation and disease. These immune-modulatory effects determine the

robustness of the host immune response and influence host health.

Metabolic syndrome and the role of the microbiome

There is substantial evidence that the gut microbiota influences development of metabolic
and cardiovascular diseases. Comparative studies between health and diseased individuals
identified alterations in the microbiota composition in obesity (Ley et al., 2006; Turnbaugh et al.,

2009a), type 2 diabetes (T2D) (Karlsson et al., 2013b; Qin et al., 2012), nonalcoholic fatty liver



disease (Henao-Mejia et al., 2012), and atherosclerosis (Wang et al., 2011). Lower microbial
diversity is also associated with many of these metabolic syndromes (Le Chatelier et al., 2013;
Turnbaugh et al., 2009a). Greater microbial species richness, or the number of species present, is
associated with a healthier intestinal ecosystem considered more stable and less susceptible to
invasion by new species (Lozupone et al., 2012). This may be an indication of dietary differences
between lean and obese individuals, given Hadza hunter-gathers consume food with high-fiber
content and have greater microbial species richness compared with individuals living in
Westernized nations (Schnorr et al., 2014). Moreover, greater richness in microbial species and
genes has been observed in lean compared to obese individuals (Turnbaugh et al., 2009a).

In addition to these associations, studies using germ-free mice have demonstrated a causal
role of the microbiome in metabolic disease development. Germ-free mice are protected from
high-fat diet-induced obesity and have significantly less body fat mass than conventionally-raised
mice independent of food-intake (Béckhed et al., 2004). This resistance is attributed to altered fatty
acid metabolism and reduced energy harvest from dietary substrates (Béckhed et al., 2007).
Transplant studies have demonstrated a causal role of the microbiota in obesity (Ridaura et al.,
2013), insulin sensitivity (Vijay-Kumar et al., 2010), and insulin secretion from pancreatic islets
(Kreznar et al., 2017; Perry et al., 2016). Interestingly, there appears to be a similar causal
relationship in humans, as demonstrated from a study by Vrieze and colleagues that found transfer
of intestinal microbes from lean donors to recipients with metabolic syndrome improved glucose
metabolism and insulin sensitivity (Vrieze et al., 2010). Therefore, manipulation of the gut
microbiome may be an effective therapy for treating metabolic disorders. However, the organisms

responsible for these metabolic changes are relatively unknown.



The gut microbiota influences the development of metabolic disorders in part by altering
host energy harvest and inflammation. Intestinal microbes provide important metabolic
capabilities that influence the efficiency of energy harvest from diet and how it is stored (Béckhed
et al., 2004; Turnbaugh et al., 2006). Microbiota from obese individuals has an increased capacity
for energy harvest compared with lean individuals and this metabolic capability can be
transplanted into germ-free animals (Turnbaugh et al., 2006, 2009a). By-products of microbial
metabolism also influence host energy balance by acting as ligands for various host receptors. For
example, short chain fatty acids (SCFAS), which are derived from bacterial fermentation of dietary
fibers, are involved in energy regulation through altering host epigenetics (Krautkramer et al.,
2016) and through interactions with G protein-coupled receptors (GPCRS) (Gao et al., 2009; Lin
et al., 2012). GPCRs stimulate the release of anorexigenic intestinal hormones glucagon-like
peptide-1 (GLP-1) and peptide YY (PYY), thereby modulating host energy homeostasis. Systemic
and adipose tissue inflammation are hallmarks of obesity, insulin resistance and T2D (Osborn and
Olefsky, 2012), and this inflammatory state may be attributed to microbiota composition. Bacterial
cell wall components like lipopolysaccharide (LPS) and peptidoglycan cause inflammation
(Rietschel et al., 1998). Increased plasma levels of LPS have also been observed in patients with
metabolic syndrome (Creely et al., 2007). Consumption of a high-fat diet increases intestinal
permeability, leading to an increase in the translocation of microbial-derived components into the
circulatory system and systemic inflammation (Cani et al., 2007). Together, these data suggest
microbiota may contribute to metabolic diseases through several mechanisms, such as increased

energy harvest from diet and altered systemic and adipose tissue inflammation.



ENVIRONMENTAL FACTORS SHAPING MICROBIOTA COMPOSITION

Early life establishment

The assembly of the intestinal microbiome is initiated at birth, with rapid colonization by
microbes in the surrounding environment. Vertical transmission of the microbiome from mother
to infant is facilitated by delivery mode, which determines colonization patterns of the infant
microbiome (Bokulich et al., 2016; Dominguez-Bello et al., 2010; Yassour et al., 2016). Infants
born via vaginal delivery acquire bacterial communities that resemble their mother’s vaginal
microbiome, while caesarian (CS) delivered infants harbor a microbiota that is the most similar to
their mother’s skin (Dominguez-Bello et al., 2010). Infants delivered vaginally were also had a
greater abundance of Lactobacillus, while CS-delivered infants had a greater abundance of
Staphylococcus (Dominguez-Bello et al., 2010). In addition to delivery mode, breastmilk shapes
the infant microbiota by providing a continuous supply of potentially probiotic bacteria to the
infant gut (Fernandez et al., 2013), along with secreted maternal antibodies that provide protection
from harmful species (Rogier et al., 2014). The presence of various oligosaccharides in breastmilk
have been shown to select for specific gut microbes (Zivkovic et al., 2011). Additionally, antibiotic
administration is considered one of the most significant factors affecting the infant microbiota and
results in a loss of microbial diversity (Jernberg et al., 2010). Although the effects of these early
life events on microbiota composition are lost within the first year of life (Rutayisire et al., 2016).
The microbiome is also more susceptible to perturbations during infancy before a stable microbial
community has developed. This coincides with a critical host developmental period where
microbial colonizers facilitate/orchestrate immune and metabolic development. Therefore,
disruption of the infant microbiome during this critical development window may have lasting
effects on the host (Ajslevetal., 2011; Cox et al., 2014; Kelly et al., 2007). Antibiotic perturbations

of the infant microbiota alter the host’s metabolic activity, resulting in growth promotion and an



increased risk of obesity (Cox et al., 2014). Additionally, early life alterations in the microbiota
are associated with immunological changes in intestinal mucosa (Renz et al., 2012) and the
function of intestinal natural Kkiller T cells is shaped by age-sensitive contact with commensal
microbes (Olszak et al., 2012). Taken together, early life events have a profound impact on shaping

the microbiota composition, and in turn, host health.

Lifestyle factors

The composition of the gut microbiota is also shaped by a range of lifestyle factors
including medications, social relationships, personal habits and location. Medication such as
antibiotics (Antonopoulos et al., 2009; Cox et al., 2014), proton-pump inhibitors (Imhann et al.,
2016), metformin (Forslund et al., 2015) and antidepressants (Zhernakova et al., 2016) shift
microbiota profiles. Medications have differential effects on the microbiota profiles. Many of these
studies report decrease in species richness, which may have detrimental effects on the host.
However, other xenobiotics, like metformin, appear to shift the microbiota to a more beneficial
state. Metformin treatment in individuals with T2D increased the abundance of bacteria capable
of producing SCFAs, which are linked with many metabolic benefits (Kasubuchi et al., 2015).
Other lifestyle factors such as smoking (Biedermann et al., 2013) and exercise (Allen et al., 2018)
also influence the microbiota. Geographical location contributes to variation as shown by
differences among geographically discrete populations (Rehman et al., 2016; Yatsunenko et al.,
2012) and among individuals living in rural vs urban environments (Tyakht et al., 2013). Recently,
there has been an increase in studies focused on understanding the role of social relationships in
shaping the microbiota (Herd et al., 2018). Co-habitation has been identified in several studies as
having a stronger effect than relatedness in determining the similarity of microbiota composition

among individuals (Dill-McFarland et al., 2018; Rothschild et al., 2018; Song et al., 2013). For
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example, married individuals had greater bacterial diversity and richness than those living alone
(Dill-McFarland et al., 2018). Interestingly, social dynamics appear to influence the microbiome
as couples reporting close relationship had greater bacterial diversity than ones who reported a

somewhat close relationship (Dill-McFarland et al., 2018).

Diet drives composition and function of gut microbiome

Diet exerts a strong effect on the gut microbiota and is arguably one of the most significant
determinants of microbiota composition and function. Dietary components that are not digested
and absorbed by the host pass through the intestine where they serve as primary energy sources
for bacteria. The microbiome is highly responsive to alterations in dietary patterns (David et al.,
2014; Muegge et al., 2011). Substantial changes in diet have been shown to have profound
consequences on the overall composition and metabolic capabilities of the microbiota, such as
switching from vegetarian to an omnivorous diet (David et al., 2014) or from a low-fat plant-rich
diet to a high-fat high-sugar diet (Turnbaugh et al., 2009b). In fact, diet-induced changes in
population structure can occur in a single day (Carmody et al., 2015). Dietary preferences also
enrich for specific bacteria taxa. For example, Prevotella is enriched in individuals consuming
high-fiber diets (De Filippo et al., 2010), while Bacteroides is higher in humans consuming high-
protein diets (Yatsunenko et al., 2012). The influence of a “Western” high-fat diet on microbiota
composition and function has been particularly well characterized for its role in diet-induced
obesity. Western-style diets cause substantial changes in microbiota composition and function, as
demonstrated by studies in humans and rodent models. A frequently observed theme in response
to a Western diet is a shift in the ratio of the major phyla Bacteroidetes and Firmicutes (Carmody
etal., 2015; Kreznar et al., 2017; Parks et al., 2013; Turnbaugh et al., 2009b). Moreover, diets high

in fat are associated with decreased overall microbiome diversity (Turnbaugh et al., 2008).



11

Microbes enriched in response to a Western diet also allow the host to harvest more energy (Ley
et al., 2005; Turnbaugh et al., 2006), as shown by an enrichment of microbial pathways involved

in nutrient processing.

HOST GENETICS SHAPES MICROBIOME

Interpersonal differences in the overall microbiota composition and the inter-individual
variation in bacterial taxa can be partially attributed to host genetics. Early investigations focused
on comparisons of overall microbiome composition (B-diversity) among related and unrelated
individuals. One study found the overall similarity of the gut microbiome increased with closer
degrees of relatedness in families (Erwin G. Zoetendal, Antoon D. L. Ak, 2001) . Twin studies
corroborated these findings, where the microbiota composition between twins (both monozygotic
(M2) and dizygotic (DZ)) were more similar to one another than to unrelated individuals
(Turnbaugh et al., 2009a; Yatsunenko et al., 2012). In fact, a comparison of 416 twin pairs found
that MZ twins are more similar to each other than DZ twins (Goodrich et al., 2014b). However,
these differences between MZ and DZ twins can only be discerned with a sufficient sample size.
Interestingly, metagenomic analysis of the microbiome of TwinsUK cohort found that the
similarity among twins decreased once they lived apart (Xie et al., 2016). This suggesting that
environment may mask the contributions of genetics on shaping the microbiota and the effects of
genetic variation is most pronouced among individuals in a shared environment.

Since contributions of genetics is confounded by environmental factors, experiments using
inbred mouse have proven to be valuable to evaluate the extent to which genetic variation shapes
microbial communities. Mouse models are well suited for discerning the influence of host genetics
because many confounding environmental factors can be carefully controlled (Spor et al., 2011).

Additionally, different breeding approaches can be utilized to maximize genetic diversity and
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mimic the variation found among humans. For example, the Collaborative Cross (CC) progenitor
strains are comprised of 5 classical inbred strains and 3 wild derived strains, which together
encompass the genetic diversity found in human population (Churchill et al., 2004). Three separate
characterizations of these 8 strains by different research groups found microbial signatures unique
to each strain, where the microbiome within strains was more similar than between strains (Kovacs
et al., 2011; Kreznar et al., 2017; O’Connor et al., 2014). Similarly, another study performed by
Org and colleagues profiled fecal samples from 113 mouse strains that comprise the Hybrid Mouse
Diversity Project (HMDP) population. Again, they also found greater similarity in microbiota
structure among mice of the same genotype (Org et al., 2015).

In addition to comparing overall structure of related and unrelated populations, many
studies have utilized heritability measurements to identify specific bacterial taxa influenced by
genetics. Here, heritability is defined as the extent to which the total phenotypic variation for a
trait is attributed to genetic rather than environmental factors. Studies of the heritability of the gut
microbiota in different organisms have collectively identified a subset of organisms that appear to
be influenced by host genetics, including Turicibacter, Oscillospira, Lactobacillus, Lactococcus,
Roseburia and Akkermansia (Benson et al., 2010; Goodrich et al., 2016; Org et al., 2015).
Interesting, all of these genera are part of the Firmicutes phyla, with the exception of Akkermansia
which is in the Verrucomicrobia phyla, indicating bacteria in this phylum are particularly sensitive
to host genetics. Heritability estimates are substantially higher in mice compared to humans where
environmental factors are controlled. In mice, heritability estimates for individual taxa range from
26% — 86% (O’Connor et al., 2014; Org et al., 2015), whereas heritability only accounts for 1.9%
to 8.1% of the overall variation in microbiota composition in humans (Goodrich et al., 2016;

Rothschild et al., 2018). Despite these observed differences in heritability, the congruence of
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heritable taxa between studies provides strong evidence that specific, identifiable taxa are
responsive to host genotype across populations.

Genetic mapping approaches can be applied to identify specific genetic loci associated with
bacterial abundance and community diversity. Two approaches can be used, quantitative trait loci
(QTL) analysis or genome wide association studies (GWAS). QTL analysis can be applied to
intercross populations where kinship is known. GWAS relies on regression at measured markers
and a larger sample size is required. Benson et al. (Benson et al., 2010) was the first to identify
host genetic variants associated with microbial abundance using the fourth generation (G4) of an
advanced intercross mouse population by QTL mapping. In total, 13 loci were significantly
associated with microbial abundance. Notably, this study provided valuable insight into the
underlying genetic architecture that shapes microbiota composition. For example, the researchers
identified several genomic regions where a single locus associated with multiple microbial traits,
indicating that host genetic variation can also influence population structure. A follow-up study
using later generations of these intercrossed mice (G10) identified an additional 42 microbial QTL
and replicated four QTL identified in G4 (Leamy et al., 2014). Several other QTL studies using
different mouse populations and breeding schemes have identified even more regions associated
with bacterial abundance (McKnite et al., 2012; Snijders et al., 2017; Wang et al., 2015). Another
study by Org et al. (Org etal., 2015) used a GWAS approach with 110 HMDP strains and identified
7 loci associated with microbial abundance. While the QTL overlaps among these studies are
extremely limited, some of the taxa with the strongest associations were similar including
Lachnospiraceae, Ruminococcus, Lactobacillus, Turicibacter, Bacteroides and Oscillospira.
Interestingly, several of these associations occurred with taxa like Lachnospiraceae, Ruminococcus

and Turicibacter, which were also identified as highly heritable (Benson et al., 2010; Goodrich et
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al., 2016). Moreover, several of these microbial QTL were also linked with obesity, lipid levels
and markers of immune response (Leamy et al., 2014; McKnite et al., 2012; Org et al., 2015;
Snijders et al., 2017).

Human GWAS studies have also shed important insight into genetic determinants of both
gut microbiota composition and function. The first microbial GWAS studies were limited by
sample size, but still identified several interesting associations between variants in metabolism-
related genes (Blekhman et al., 2015; Davenport et al., 2015). For example, a variant near PLD1,
a gene previously associated with body mass index (Ng et al., 2012) was associated with the
abundance of the genus Akkermansia, which is known to affect obesity (Everard et al., 2013).
Blekham et al. (Blekhman et al., 2015) used a subset of 93 individuals from the Human
Microbiome Project for whom they had both genotype and metagenomics data. A significant
association between increased Bifidobacterium genus and a SNP (rs56064699) located in the
lactase (LCT) gene was found in this population. Interestingly, the association variant in LCT and
Bifidobacterium abundance was observed in larger population cohorts (Goodrich 2016, Bonder
2016, Rothschild 2018). This association was recently replicated in an expanded analysis using
298 HMP participants (Kolde et al.).

Additional associations have been identified by large-scale population studies using
German (Wang et al., 2016), Dutch (Bonder et al., 2016) and Canadian cohorts (Turpin et al.,
2016). All three cohorts were comprised of more than 1,000 unrelated individuals and each study
included replication cohorts. Despite the large cohorts, the observed associations had small effect
sizes, demonstrating the genetic architecture underlying microbiome traits is highly complex.
Turpin et al. (Turpin et al., 2016) identified 6 significant associations with microbial taxa. In the

German cohort, Wang et al. (Wang et al., 2016) analyzed bacterial B-diversity and discovered an
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association with a variant in the VDR gene that encodes the vitamin D receptor. They went on to
show significant shifts in microbiota composition in Vdr~- mice relative to control mice. The Dutch
cohorts replicated several findings from a previous study of UK twins (Goodrich et al., 2016),
including strong heritability of Methanobacteriaceae—a family that belongs to the Archaea, and
the bacterial genus Blautia (Bonder et al., 2016). Moreover, they found significant associations
between microbial functional groups and variants in C-type lectins, which are proteins involved in
modulating innate immunity.

A common theme that emerges from these genetic mapping studies is the association
between the microbiome and variants in immune related genes. The reciprocal role of the immune
system in modulating microbiota composition is evident from knockout of innate and adaptive
immune genes in mice, including TIr5 (Vijay-Kumar et al., 2010), Nod2 (Rehman et al., 2011),
Myd88 (Larsson et al., 2012), Card9 (Lamas et al., 2016) and Ragl (Dimitriu et al., 2013). Innate
immune genes are responsible for sensing microbes and triggering down-stream cell signaling
pathways, while adaptive immune genes maintain immune homeostasis through antigen
recognition and immunological memory. The genetic mapping studies discussed above
corroborate the importance of immune genes in shaping intestinal microbial communities. For
instance, Benson et al (Benson et al., 2010) discovered QTLs for Coriobacteriaceae and
Lactococcus on mouse chr 10 where the loci contained multiple genes involved in mucosal
immunity including Irak3, 1122, and lysozyme genes Lizl and Liz2. Abundance of
Rikensenellaceae and Roseburia were associated with Irak4 (McKnite et al., 2012; Org et al.,
2015), which encodes for a kinase that activates TLR- and T cell-receptor signaling pathways
(Suhir and Etzioni, 2010). In humans, microbial functions associated with polymorphisms in genes

known immune genes NOD1 and NOD2, as well as genes implicated in IBD risk (CCL2, DAP2,
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IL23R)(Bonder et al., 2016). These studies highlight the importance of the bidirectional interaction

of the microbiome and host immune system.

HOST GENOTYPE-SHAPED MICROBIOMES ALTER DISEASE SUSCEPTIBILITY

Heterogeneity in disease susceptibility can in part be explained by host genotype-driven
differences in the gut microbiome. There is evidence that gut bacteria act as a causal link between
the genetic and phenotypic diversity among genetically diverse inbred mouse strains (Kasahara et
al., 2018; Kreznar et al., 2017; Parks et al., 2013). For example, the eight CC progenitor strains
show substantial variation in metabolic phenotypes to atherogenic and Western-style high-fat high-
sucrose diets when raised in the same environment (Kreznar et al., 2017; O’Connor et al., 2014).
Some of these strains are highly responsive to the Western diet and become obese and glucose
intolerant, while others remain lean and insulin sensitive even after 22 weeks of dietary challenge
(Kreznar et al., 2017). Strikingly, microbiota transplantation of microbiota from strains with
disparate phenotypes replicates aspects of donor metabolic phenotypes in recipient mice. Cecal
contents from Western diet-responsive and -resistant mice were transplanted into germ-free
recipient animals of the same genotype as the diet-responsive strain and fed the Western diet for
16 weeks. Despite the dietary challenge, germ-free mice that received the microbiota of the diet-
resistant strain gained significantly less weight than the mice that received the diet-response
microbiota.

A separate study using the Hybrid Mouse Diversity Panel (HMDP) also found a causal role
of host genotype-shaped microbiota on cardiovascular disease development. The HMDP consists
of ~100 inbred strains that exhibit diverse microbiota community structure and have varying
susceptibility to obesity and atherosclerosis (Bennett et al., 2015; Parks et al., 2013). Groups of

germ-free ApoE”- mice were colonized with cecal microbiota from four HMDP strains that showed
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disparate atherosclerosis phenotypes. Researchers found that the microbiota successfully conferred
cardiovascular phenotypes into recipient mice, as mice that received the microbiota from athero-
prone HMDP strains developed larger aortic lesion sizes than germ-free animals that received the
microbiota from athero-resistant HMDP strains (Kasahara et al., 2018). For the mouse populations
used for these studies, environmental factors are the same and the only variation among these
animals is genotype, so differences in the microbiota composition can mostly be attributed to
genetic variation. These transplantation studies demonstrate the importance of host genotype-

shaped microbiota in modulating susceptibility to metabolic and cardiovascular diseases.

METABOLITES: AT THE INTERSECTION OF HOST-MICROBR INTERACTIONS
Variation in host genetics and gut microbiota composition shape metabolic disease
development in part by the production and modification of metabolites. Microbial metabolism of
dietary substrates produces a myriad of metabolites with differential effects on host physiology
(Nicholson et al., 2012). For example, intestinal bacteria metabolize dietary choline to
trimethylamine (TMA), which is processed by the host hepatic enzyme FMO3 to produce the pro-
atherogenic metabolic trimethylamine-N-oxide (TMAO) (Wang et al., 2011). Through
fermentation reactions, the gut microbiota can metabolize complex polysaccharides to produce
SCFAs. Acetate, butyrate, and propionate are the most abundant SCFAs in the distal gut and they
have different effects on the host (den Besten et al., 2013). In general, reduced levels of total
SCFAs and SCFA producing bacteria are associated with obesity (Ridaura et al., 2013) and T2D
(Karlsson et al., 2013b; Qin et al., 2012). Butyrate has been shown to improve intestinal barrier
function and ameliorate atherosclerosis development (Kasahara et al., 2018). Furthermore, acetate
can directly influence glucose homeostasis through stimulation of insulin secretion from pancreatic

islets (Perry et al., 2016; Priyadarshini et al., 2015). Gut microbes also synthesize essential
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vitamins, such as B and K, that are substrates for metabolic reactions (Hill, 1997; LeBlanc et al.,
2013). Interestingly, several of these microbially-derived metabolites have also been shown to
directly interact with the host genome by altering host epigenetic status through histone acetylation
and methylation (Krautkramer et al., 2016; Romano et al., 2017).

Bile acid (BA) metabolites are of particular interest because their composition and
abundance are shaped by both the host and intestinal bacteria. BAs reciprocally modulate gut
microbiota composition through alterations of the chemical and physical properties of the intestine
(Islam 2011, Zheng 2017). Primary BAs are synthesized in the liver from cholesterol and are
secreted into the duodenum to aid in the digestion of lipids and facilitate nutrient absorption
(Russell, 2009). Gut microbes can metabolize primary BAs through several chemical reactions
(deconjugation, dehydrogenation, epimerization and dehydroxylation) to produce secondary BAs
(Ridlon et al., 2006), which in turn have varying effects on host physiology and health (Kuipers et
al., 2014; Ridlon et al., 2016). BAs act as hormones to regulate lipid, glucose, lipoprotein and
energy homeostasis (Li and Chiang, 2014; Zhou and Hylemon, 2014). Alterations in the size and
composition of BA pools are associated many diseases like T2D (Handelsman, 2011), obesity
(Ryanetal., 2014), IBD (Devkota et al., 2012), and colon cancer (Ajouz et al., 2014). Furthermore,
BA metabolizing capabilities of the microbiome is associated with altered host metabolism as
demonstrated by loss of bile salt hydrolase (BSH) activity in conventionally-raised and mono-
colonized mice (Joyce et al., 2014; Yao et al., 2018)

Recently, several genetic studies have found evidence of interactions between host genetics
and the microbiome through the regulation of bile acid metabolism. Much of this work has focused
on genetic alterations to gene encoding the vitamin D receptor (VDR), which is involved in bile

acid sensing and homeostasis. VDR is a known receptor for secondary bile acids and its activation



19

can inhibit bile acid synthesis (Makishima et al., 2002). Loss of VDR in mice significantly alters
the composition of the microbiota where Lactobacillus is depleted and Clostridium and
Bacteroides are enriched (Jin et al., 2015). In humans, polymorphisms in VDR were associated
with B-diversity and abundance of Parabacteroides (Wang et al., 2016). The authors went on to
validate the role of VDR in determining microbial community structure by showing loss of Vdr in
mice significant affects B-diversity. Additionally, GWAS studies by Blekhman et al. (Blekhman
et al., 2015) and Bonder et al. (Bonder et al., 2016) found strong associations between the host
variants and bacterial pathways for bile acid metabolism. Together, these studies provide evidence
for host genome-gut microbiome interactions regulated by variation in bile acid related genes.

Additional investigations are warranted to further elucidate molecular mechanisms.
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ABSTRACT

Genetic variation drives phenotypic diversity and influences the predisposition to
metabolic disease. Here, we characterize the metabolic phenotypes of eight genetically distinct
inbred mouse strains in response to a high-fat/high-sucrose diet. We found significant variation in
diabetes-related phenotypes and gut microbiota composition among the different mouse strains in
response to the dietary challenge and identified taxa associated with these traits. Follow-up
microbiota transplant experiments showed that altering the composition of the gut microbiota
modifies strain-specific susceptibility to diet-induced metabolic disease. Animals harboring
microbial communities with enhanced capacity for processing dietary sugars and for generating
hydrophobic bile acids showed increased susceptibility to metabolic disease. Notably, differences
in glucose-stimulated insulin secretion between different mouse strains were partially recapitulated
via gut microbiota transfer. Our results suggest that the gut microbiome contributes to the genetic
and phenotypic diversity observed among mouse strains and provide a link between the gut

microbiome and insulin secretion.
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INTRODUCTION

The intestinal microbiota exerts a profound influence on development, physiology and
health (Clemente et al. 2012; Sommer & Béackhed 2013; Tremaroli & Béckhed 2012). Although
there is substantial interpersonal variation in the composition of the gut microbiota among
unrelated healthy subjects, sequencing studies have revealed distal gut community patterns
associated with different pathological states, including obesity and diabetes (Ridaura et al. 2013;
Qin et al. 2012; Karlsson et al. 2013). Remarkably, alterations in the intestinal microbiota
composition have been shown to modulate insulin sensitivity (Vrieze et al. 2010) —a key feature
in metabolic disease and type 2 diabetes (T2D), and thus play a role in diabetes susceptibility. s

Dietary components that are not efficiently absorbed in the proximal intestine reach the
distal gut where they are metabolized by gut microbes. Intestinal microbes impact our health in
part by generating numerous metabolites from our diet. Short-chain fatty acids (SCFA), mainly
acetate, propionate and butyrate, are produced through bacterial fermentation of dietary
carbohydrates. SCFA serve as energy and signaling molecules in the intestine and peripheral
organs (Besten et al. 2013). Specifically, SCFA are important regulators of both energy and
glucose homeostasis (Besten et al. 2013; Koh et al. 2016). For example, butyrate improves insulin
sensitivity (Gao et al. 2009; Hartstra et al. 2015) and T2D patients have reduced levels of butyrate-
producing bacteria (Qin et al. 2012). Additionally, acetate modulates insulin secretion from B-cells
(Priyadarshini et al. 2015; Perry et al. 2016). While primarily associated with metabolic benefits,
increased concentrations of butyrate and acetate have been found in the cecum of obese mice,
suggesting an increased ability of the microbiome to harvest energy from the diet (Turnbaugh et

al. 2006).
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Gut microbes also impact host physiology by modifying bile acids (BA) synthesized by
the host (Houten et al. 2006; Kuipers et al. 2014; Ryan et al. 2014; Sayin et al. 2013). In addition
to their role in emulsifying lipids, BA function as hormones through their ability to activate nuclear
hormone receptors (D. J. Parks et al. 1999) and G-coupled protein receptors (Kawamata et al.
2003). They modulate glucose homeostasis, lipid metabolism, energy expenditure, and intestinal
motility (Kuipers et al. 2014). Primary BA are synthesized from cholesterol in the liver (Russell
2009), stored in the gallbladder, and secreted into the duodenum upon ingestion of a meal. The gut
microbiota catalyzes the production of secondary BA via deconjugation, dehydrogenation,
epimerization, and dehydroxylation of primary BA (Ridlon et al. 2006). BA with different
modifications vary in their ability to activate receptors and affect host physiology (Makishima et
al. 1999; Kuipers et al. 2014). Subjects with T2D have altered circulating BA profiles. Treatment
of T2D subjects with compounds that increase fecal excretion of BA and modify BA composition
improves their glycemic status (Handelsman 2011).

Mouse genetics can be employed to explore the relationships between diet, host genetics,
and metabolic responses (O'Connor et al. 2014; B. W. Parks et al. 2013; Ussar et al. 2015). The
Collaborative Cross (CC) is a systems genetics mouse resource that consists of a panel of
recombinant inbred lines and an outbred stock derived from eight genetically diverse founder
strains. These include five classical inbred strains (A/J, C57BL/6J, 129S1/SvimJ, NOD/ShiLtJ and
NZO/HIL1tJ), and three wild-derived strains (CAST/EiJ, PWK/PhJ, WSB/EiJ) (Churchill et al.
2004; Roberts et al. 2007; Aylor et al. 2011).

We examined the metabolic phenotypes and gut microbiota composition of the eight CC
founder strains in response to chronic consumption of two defined diets: a high-fat/high-sucrose

diet (HF/HS) and a control diet. We found remarkable variation in diabetes-related phenotypes
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and gut microbiota composition as a function of host genotype and diet, and we identified bacterial
taxa that correlate with metabolic traits, including body weight, glucose, and insulin levels. Germ-
free (GF) mice were colonized with microbiota derived from two founder strains that exhibited
divergent metabotypes, C57BL/6J and CAST/EiJ. The transplanted animals were maintained on
the HF/HS diet and then subjected to metabolomic and metagenomic analyses. We identified
functional differences attributable to the two transplanted microbial communities, including

insulin secretion responses and susceptibility to diet-induced metabolic disease.
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RESULTS

Host metabolic responses to diet are influenced by genetic background

We assessed the variability of diet-induced metabolic responses of the eight genetically
diverse CC founder strains: A/J, C57BL/6J (B6), 129S1/SvimJ (129), NOD/ShiLt] (NOD),
NZO/HILt] (NZO), CAST/EiJ (CAST), PWK/PhJ (PWK), WSB/EiJ (WSB). All mice were
obtained from the Jackson Laboratory, maintained in the same vivarium and fed the same diet, so
that the only known difference among the strains is genetics. We placed four-week-old male mice
from each strain on either a control or a high-fat high-sucrose (HF/HS) diet for 22 weeks (Table
S1).

The CC founder strains displayed a wide range of body weight and metabolic responses to
the dietary challenge (Figure 2.1 and S2.1). Two-way ANOVA analysis of the clinical traits
revealed a significant strain effect for fasting insulin (F = 14.94, p < 0.0001). We also observed
significant strain-diet interactions for body weight (F = 3.19, p < 0.01) and fasting glucose (F =
2.81, p < 0.01). Significant strain and diet effects were also seen for hepatic triglyceride content
(F = 10.96, p < 0.0001; F = 11.92, p < 0.001, respectively) effects. Liver triglyceride content
showed high inter-strain variation, with 129 having the most significant response to diet (p < 0.05)
(Figure 2.1D). NZO mice were the only strain to become overtly diabetic (glucose levels >300
mg/dl) as a consequence of HF/HS feeding. With the exception of NZO mice, which did not
survive past 18 weeks on the HF/HS diet, B6 mice were the most responsive to diet. HF/HS-fed
B6 mice became obese (p < 0.01) and developed insulin resistance and glucose intolerance after
~8 weeks (Figure 2.1A and S2.1A-C). In addition to differences in diet responsiveness, the strains
varied in both absolute levels of insulin and change in insulin levels over time, suggesting a

significant divergence in insulin sensitivity among the strains (Figure S2.1B).
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To assess whole-body glucose homeostasis and more directly evaluate the underlying role
of the pancreatic islets in the control of plasma insulin, we measured plasma glucose and insulin
during an oral glucose tolerance test (0GTT). Both plasma glucose and insulin during the oGTT
varied dramatically between the strains. We computed the area under the curve (AUC) for each
trait to determine the overall excursion in glucose and insulin that occurred during the oGTT
(Figure 2.1E-F and S2.2). We observed a wide inter-strain range of responses in plasma insulin
during the oGTT (F = 12.84, p < 0.0001) (Figure 2.1F and 2.2B). Changes in plasma insulin may
reflect altered insulin secretion from [-cells, peripheral insulin resistance, reduced insulin
clearance, or any combination thereof. 129 and WSB showed diet-induced glucose intolerance,
but minimal changes in their insulin response during the oGTT (Figure 2.1E-F and S2.2A),
suggesting that their glucose intolerance may be driven by altered insulin secretion and/or
enhanced insulin clearance. Remarkably, insulin secretion and glucose tolerance were completely
unaffected by the HF/HS diet in CAST. Furthermore, the kinetics of the glucose and insulin
responses were more rapid in CAST than in all other strains (Figure S2.2), suggesting that CAST
mice may employ different pathways underlying glucose-stimulated insulin secretion and whole-

body glucose disposal.

Diet and host genotype influence microbiota composition

Gut microbes influence the development of metabolic disease. We characterized the cecal
microbiomes of the eight CC founder strains by 16S rRNA sequencing. We compared the cecal
microbiomes employing UniFrac, a phylogenetic distance metric used to measure differences in
bacterial community structure (Lozupone & Knight 2005). Principal coordinates analysis (PCoA)
of 16S rRNA unweighted UniFrac distances revealed a strong influence of strain (PERMANOVA,

p < 0.001) and diet (PERMANOVA, p < 0.001) on microbial community composition (Figure
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S2.3A). Consistent with previous studies, the effect of diet on gut microbial composition varied
among the strains (O'Connor et al. 2014; B. W. Parks et al. 2013; Carmody et al. 2015), where B6,
CAST and NOD mice showed the greatest microbiome response to diet (Figure S2.3A).

We detected eight bacterial phyla among the mice (Figure S2.3B). Bacteroidetes and
Firmicutes dominated the gut of all strains on either diet, accounting for >90% of the sequenced
reads. As reported by other studies, we observed a decrease in the Bacteroidetes:Firmicutes ratio
and an increase in Proteobacteria in the HF/HS-fed mice (Ley et al. 2005; Hildebrandt et al. 2009).
In fact, Proteobacteria showed the greatest fold change in abundance in response to diet: HF/HS
feeding caused an average 5.4-fold change (p < 0.0001), although the relative increase varied

among strains.

Microbial taxa correlate with metabolic phenotypes

To determine whether strain-dependent variability in microbiota composition was
associated with the dramatic differences in the diabetes-related clinical traits, we computed
Pearson’s correlations between abundance of family-level taxa and the metabolic traits among the
8 CC founder mice (Figure 2.2A). We focused our analysis on families that were present in at least
7 of the founder strains. Bacteroidaceae was among the most negatively correlated with several
metabolic phenotypes, including body weight, fasting plasma insulin and AUCinsuiin during the
oGTT. The Bacteroidaceae family belongs to the Bacteroidetes phylum and is typically found at
higher levels in fecal samples of lean vs. obese individuals (Ley et al. 2005; Turnbaugh et al. 2009).
Conversely, Clostridiaceae and Rikenellaceae showed the strongest positive correlations with
plasma insulin levels. Our analysis also identified strong positive correlations between fasting

plasma glucose and the Streptococcaceae and Desulfovibrionaceae families. Members of these
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families have previously been shown to be enriched in the fecal microbiome of patients with T2D
(Qin et al. 2012; Karlsson et al. 2013).

Some of the correlations mentioned above varied significantly as a function of host diet
and strain (Table S2). For example, the negative correlation observed between fasting insulin
levels and Bacteroidaceae had a significant strain effect (p < 0.0001). We also observed a slight
diet effect (p < 0.001), which is likely driven by the low abundance and high fasting insulin levels
in the chow-fed NZO mice (Figure 2.2B). We also observed a significant diet effect for the
relationship between Clostridiaceae and fasting insulin levels (p < 0.05), but there was also a strain
difference that seems to be driven by NZO on chow diet (p < 0.001) (Figure 2.2C).

These results suggest that diet and genetic background are major determinants of gut
microbial composition and metabolic disease. However, the relative contributions of host genetic
variance vs. microbial-derived genetic variation across different mouse strains in the development

of diet-induced metabolic phenotypes remain largely unknown.

The gut microbiome is a source of genetic variation that influences host-associated differences
in diet-induced metabotypes

To directly test the influence of gut microbes on the metabolic phenotypes observed among
the founder strains, we performed cecal transplants into germ-free B6 (B6-GF) hosts, leveraging
two CC founder strains that showed disparate responsiveness to the HF/HS diet. The B6 strain
became obese, insulin resistant, and glucose intolerant, whereas the CAST strain remained lean
and insulin-sensitive despite HF/HS feeding (Figure 2.1).

As mentioned above, B6 and CAST mice had significantly different intestinal microbiota
(PERMANOVA, F = 4.86, p < 0.001) (Figure S2.3A). B6 mice harbored a significantly greater

abundance of microbial families with strong positive correlations with metabolic traits, such as
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weight and insulin (i.e. Clostridiaceae, p < 0.05), while CAST mice had a greater representation
of families with significant negative correlations (i.e. Bacteroidaceae, p < 0.01) (Figure 2.2A and
S2.3C).

We transplanted cecal microbiota from either conventionally-raised B6 (B6-CR) or CAST
(CAST-CR) donor mice into 9-week-old B6-GF recipient mice, to yield B6ss or B6cast mice,
respectively. Transplanted animals were housed by treatment group in separate vinyl gnotobiotic
isolators and maintained on a HF/HS diet for 16 weeks following colonization (Figure 2.3A). A
dietary treatment of 16 weeks allows robust development of metabolic phenotypes associated with
consumption of HF/HS diet.

Recipient mice recapitulated microbial and metabolic phenotypes observed in the
respective donor strains (Figure 2.3 and 2.4). B6ss mice gained ~25% more weight, had larger
epididymal fat pad mass and showed greater hepatic triglyceride accumulation than B6cast mice
(Figure 2.3). Additionally, oGTT revealed that while the plasma glucose levels resulting from an
orally administered bolus of glucose did not significantly differ between the two groups of
transplanted mice (Figure 2.3E), the insulin responses were dramatically different (Figure 2.3F).
The glucose challenge evoked a much larger insulin response in B6ss mice than in B6cast mice.
The low insulin response in B6cast mice resembled the insulin response of the CAST-CR donors
(Figure 2.1F and S2.1F). These results suggest that the effectiveness of insulin to maintain
euglycemia was greater in the mice receiving the CAST microbiota than in mice receiving the B6
microbiota (Figure 2.3E-F).

16S rRNA gene profiling of the donor cecal inoculum and transplant recipient fecal
samples show that recipient mice were successfully colonized with the donor’s microbiota. B6gs

and B6cast mice assumed a phylogenetically similar composition to that of their respective donors
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as confirmed by PCoA of unweighted UniFrac distances (Figure 2.4A). As seen in the founders,
Bacteroidetes and Firmicutes comprised ~90% of the microbiome, although the abundance of
Firmicutes was higher in B6ss (p < 0.05) (Figure 2.4B). We identified taxonomic differences in
the microbiota composition between the two recipient groups using linear discriminant analysis
(LDA) effect size (LEfSe) with LDA score >2 (Segata et al. 2011). We found 20 microbial families
that were differentially enriched in the fecal microbiota of B6ss versus B6cast mice. There were
12 microbial families that were enriched in B6ss, of which 7 belonged to the Firmicutes phyla
(Figure 2.4C). Some of the families differentially represented in the transplanted animals overlap
with taxa that are significantly correlated with metabolic phenotypes in the founder strains (Figure
2.2). Notably, B6ss mice exhibited higher levels of Clostridiaceae (p < 0.01), which is positively
associated with insulin secretion in the founder strains (Figure 2.2), whereas B6cast mice had
higher levels of Bacteroidaceae (p < 0.01), which is negatively associated with body weight and
insulin secretion (Figure 2.2). These results are concordant with the metabolic phenotypes
observed in the transplanted mice and suggest that the distinct microbial gut communities influence
metabolic changes evoked by HF/HS feeding, including insulin secretion,

We characterized the functional potential of transplanted communities by sequencing and
analyzing their metagenomes. Metagenomic analysis of the same samples further validated that
the B6 and CAST-derived microbiota were distinct from one another, with donors clustering with
their respective transplant recipients (Figure 2.4D). We identified several thousand genes
differentially represented between the B6 and CAST microbiota (Table S4). This metagenomic
analysis also revealed microbial functions that were enriched in each transplanted microbial
community (Table S5). The most enriched microbial pathways in B6ss mice included genes

involved in membrane transport, and carbohydrate and lipid metabolism (Figure 2.4E). For
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example, the ABC transporters and phosphotransferase system (PTS) pathways were enriched in
mice colonized with the B6 microbiota (p < 0.01). PTS are a class of transport systems involved
in the uptake and phosphorylation of a variety of carbohydrates that can be subsequently fermented
to SCFA (Deutscher et al. 2006). It has been previously reported that diet-induced obese mice have
a concomitant enrichment of microbial pathways involved in PTS and elevated concentrations of
SCFA (Turnbaugh et al. 2008), reflecting an increased capacity for energy harvest. Consistent with
these results, targeted GC/MS analysis of SCFA in cecal contents disclosed that B6ss mice had an
increased concentration of the major fermentation end-products, compared with B6cast (Figure
2.4F). Conversely, B6cast microbiota were enriched in genes related to the vitamin B12
(cobalamin) biosynthetic pathway (Figure S2.4A), synthesis of other B vitamins and enzyme co-
factors, as well as lipopolysaccharide (LPS) biosynthesis (Figure 2.4E and S2.4B). A difference in
LPS biosynthetic potential may reflect the composition of the B6cast microbiota, which has a
significantly higher relative abundance of gram negative Bacteroidetes than the B6ss microbiota
(Figure S2.3B). Our findings mirror those described previously in T2D patients relative to
diabetes-free control patients (Qin et al. 2012; Karlsson et al. 2013)—Dboth the microbiota of T2D
patients and our metabolically-diseased mice with B6 microbiota show enrichment in KEGG
pathways involved in membrane transport, while diabetes-free patients and mice with the CAST

microbiota exhibit enrichment in vitamin and co-factor biosynthesis.

B6 and CAST microbiota produce divergent bile acid profiles

Gut microbes impact host physiology in part by modulating the composition of the BA
pool. We determined fecal BA profiles of the transplanted mice and HF/HS-fed B6-CR and CAST-
CR mice by UPLC/MS-based quantification of primary and the most abundant secondary BA. The

BA composition of B6ss mice closely resembled that of B6-CR donor mice, whereas B6cast
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exhibited a BA profile that was intermediate between CAST-CR and B6-CR mice (Figure 2.5A).
Microbiota composition was also a significant predictor of BA composition. Bray-Curtis
dissimilarity-based PCA revealed clustering of the BA profiles by microbiota composition.

Although the B6cast microbiota composition resembled that of CAST-CR (Figure 2.4A),
there were significant differences in BA profiles between these groups, suggesting that variation
in circulating BA is under the control of both host genetics and gut microbiota. For example, the
primary BA cholic acid (CA), chenodeoxycolic acid (CDCA) and a-muricholic acid (a-MCA)
were significantly higher in CAST-CR mice compared to B6cast mice (p < 0.01, p < 0.05, p <
0.01, respectively) (Figure 2.5B). Moreover, taurine-conjugated muricholic acids (MCAs) were
significantly higher in CAST-CR mice compared with B6cast mice. In contrast, these differences
in taurine conjugation were not present between B6-CR and B6ss mice. Taurine conjugation of
MCA:s is a host process (Ridlon et al. 2006), further highlighting the interaction of host genetics
and microbiome in modulating host BA profiles.

B6-CR and B6ss mice had a significantly greater representation of hydrophobic BA species
(e.g., deoxycholic acid, lithocholic acid (Figure 2.5B-C)), which are elevated in humans and mice
with insulin resistance (Ryan et al. 2014; Prawitt et al. 2011). Microbial metabolism of bile acids
generally leads to a more hydrophobic bile acid pool, which facilitates fecal elimination of bile
acids. Bile salt hydrolases (BSH) are involved in the hydrolysis of conjugated BA, a necessary
step for the production of secondary BA. Consistent with the results presented above, there were
a higher number of distinct BSH genes in the B6 microbiota relative to CAST microbiota (13
annotated BSH genes highly abundant in the B6 microbiota relative to CAST vs. two annotated
BSH genes highly abundant in the CAST microbiota relative to B6, Table S4). Furthermore, the

two groups of recipient mice had vastly different fecal BA profiles. Chenodeoxycholic acid
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(CDCA; p < 0.05), deoxycholic acid (DCA; p < 0.01), lithocholic acid (LCA; p < 0.01), ®-
muricholic acid («MCA; p < 0.05), and tauro-o-muricholic acid (ToMCA; p < 0.05) were all
significantly higher in B6ss than in B6cast (Figure 2.5B). DCA was the most abundant BA species
in B6ss mice, and was also ~5-fold more abundant in B6-CR vs. CAST-CR mice. DCA contributes
to microbial dysbiosis, a hallmark of metabolic disease, and is positively associated with higher
levels of Firmicutes (Islam et al. 2011). Tauroursodeoxycholic acid (TUDCA) was >2-fold higher
in CAST-CR mice compared to the transplanted animals, but was not detected in B6-CR mice.
Interestingly, administration of TUDCA has been shown to decrease hepatic steatosis and improve
insulin resistance in genetically obese mice (Kars et al. 2010; Ozcan et al. 2006), suggesting a
potential protective role. These results reveal differences in BA profiles linked to both host
genotype and gut microbial composition. They also suggest that the differential responses to
prolonged HF/HS diet consumption between B6 and CAST mice could be mediated at least in part

by differences in microbial BA metabolism.

Gut microbiota influences insulin secretion

The most dramatic phenotype difference we observed between B6ss and B6cast mice was
in insulin secretion, where B6cast mice had a blunted insulin response during the oGTT (Figure
2.3E). This attenuated response in B6¢cast mice may also reflect low insulin secretion from -cells
and/or increased insulin clearance. To determine whether the differential insulin response during
the oGTT in the B6ss vs. B6cast mice resulted from altered insulin secretion, we performed ex
vivo insulin secretion assays on isolated islets. Islets were harvested from B6-GF mice 1 month
after successful colonization with either CAST-CR or B6-CR cecum-derived microbiota (Figure

S2.5).
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The isolated islets partially recapitulated the reduced insulin secretion observed in the
CAST-colonized mice in vivo (Figure 2.3E). The comparison between the B6-GF mice receiving
B6 vs. CAST microbiota allowed us to estimate the contribution of the microbiota to the strain
difference in insulin secretion (Figure 2.6A). Accordingly, the reduction in insulin secretion caused
by CAST microbiota colonization in B6 mice was ~33%.

Circulating acetate is capable of modulating insulin secretion from pancreatic islets.
Specifically, recent studies have shown that acetate directly enhances glucose-stimulated insulin
secretion through activation of free fatty acid receptors on p-cells (Priyadarshini et al. 2015) and
the parasympathetic nervous system (Perry et al. 2016). Therefore, we measured concentrations of
SCFA in plasma and cecum, but found no differences in levels of acetate between B6ss and B6cast
mice (Figure S2.6A-B), suggesting that the divergent effects of the B6 and CAST microbiota on
insulin secretion are unlikely to stem from differences in acetate.

Recent in vitro studies have also identified BA as important regulators of islet function
(Dufer et al. 2012; Renga et al. 2010). We investigated the plasma BA profiles in the B6ss and
B6cast mice used for insulin secretion studies (Figure S2.6C-D). B6cast BA profiles were
composed of a significantly higher percentage of hydrophilic BA (Figure S2.6C). Consistent with
a previous report (Sayin et al. 2013), BA profiles were dominated by taurine-conjugated species,
with ToMCA and TBMCA being the two most abundant in both groups of animals (Figure S2.6D).
In B6ss mice, the hydrophobic secondary BA DCA and LCA were significantly higher than in
B6cast mice (Figure S2.6D).

BA regulate insulin secretion through the activation of specific receptors in islets. For
instance, BA can directly increase insulin secretion and production through activation of farnesoid

X receptor (Fxr) in B-cells (Dufer et al. 2012; Renga et al. 2010). Expression of Fxr is increased
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in an agonist-dependent manner (Lee et al. 2006). Remarkably, we found that expression of Fxr
was significantly higher in B6gs islets compared with B6cast islets (Figure 2.6B). These results

suggest that the gut microbiota modulate BA-dependent signaling in pancreatic islets.
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DISCUSSION

The collective genetic variance of the eight CC strains is roughly equivalent to that of the
entire human population, with the three wild-derived strains (WSB, CAST and PWK) accounting
for ~75% of the genetic diversity within the cohort (Roberts et al. 2007). Remarkably, these three
wild-derived strains captured the full scope of dietary responsiveness observed across the panel
(Figure 2.1 and S2.1). HF/HS feeding had no effect on any of the phenotypes measured in CAST
mice, whereas it resulted in weight gain, glucose intolerance and insulin resistance in B6 mice.
Additionally, the diet caused a simultaneous increase in weight and glucose in NZO mice. We also
identified significant differences in the gut microbiota composition among strains and between
diets. All animals were obtained from the same facility, and subject to the same environmental
conditions throughout the study, and genetic differences among the mice is the only known
variable. Together, these results support a role for host genetics to regulate the composition of the
microbiota. However, it’s important to note that although large population studies have identified
highly heritable taxa, the genetic architecture underlying these taxa is highly complex with
relatively small effect sizes that are difficult to replicate (Benson 2016).

From the CC founder panel, we identified B6 and CAST as the two strains with the most
divergent phenotypes. Previous studies have exploited the differential response to diet-induced
metabolic disease between B6 and CAST to identify genetic loci associated with metabolic disease
(Mehrabian et al. 2000; Mehrabian et al. 1998). In these studies, the gut microbiome was not may
have contributed to the metabolic differences between strains.

In order to dissect the contribution of the microbiome of B6 and CAST to their contrasting
metabolic profiles, we resorted to fecal transplantation experiments. B6-GF mice colonized with

the CAST microbiota were less affected by chronic HF/HS feeding relative to B6-GF mice
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colonized with the B6 microbiota. The mice receiving the CAST microbiota secreted far less
insulin in response to a glucose challenge, but were still able to maintain normal blood glucose
levels.

We consistently identified microbial taxa in both the CC founders and transplant recipients
associated with metabolic traits. Clostridiaceae showed the strongest positive correlation with
plasma insulin levels and weight gain (Figure 2.2A). Clostridiaceae also had a strong positive
correlation with AUC insulin, a proxy for pancreas function. OTUs within the Clostridiaceae
family have previously been both positively and negatively associated with metabolic traits (Ussar
et al. 2015; Karlsson et al. 2013), and a recent study showed a positive correlation between an
increase in BMI and an increase of SCFA-producing Closdiria species in Danish infants
(Bergstrom et al. 2014). In contrast to the elevated Clostridiaceae in mice with a B6 microbiota,
Bacteroidaceae was significantly higher in CAST-CR and B6cast mice (Figure S2.3C and 2.4C).
Bacteroidaceae was negatively correlated with body weight, circulating insulin and AUCinsulin
(Figure 2.2A). A previous report found that daily oral administration of Bacteroides uniformis, a
member of the Bacteroidaceae family, ameliorated metabolic dysfunction resulting from a high-
fat diet (Gauffin Cano et al. 2012). This species also evoked a reduction in hepatic triglyceride
levels, consistent with our observations that B6cast mice have lower hepatic lipid levels compared
to B6ss mice. Fecal abundance of members of the Bacteroidaceae family, including Bacteroides
vulgatus, has also been reported to be lower in humans with T2D (X. Wu et al. 2010). Despite the
high abundance of Bacteroidaceae in B6cast mice, we did not observe complete protection from
diet-induced metabolic disease that we observed in CAST-CR mice, suggesting that host factors,
or taxa that failed to colonize transplanted mice (e.g., Verrucomicrobiaceae), contribute to the

metabotype differences.
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Vitamin B12 is exclusively produced by microbes (Martens et al. 2002) and several
members of the Bacteroidaceae family transport, metabolize and produce vitamin B12 analogs
(Goodman et al. 2009; Degnan et al. 2014; M. Wu et al. 2015). Metagenomic analysis of the
microbial communities from mice with the CAST microbiota revealed microbial functional
enrichment for pathways involved in the biosynthesis of vitamin B12 (Figure S2.4A), which is
necessary for DNA synthesis, neurological function, hematopoiesis, epigenetic modifications, and
propionate metabolism (Kibirige & Mwebaze 2013). Importantly, deficiencies in vitamin B12 are
commonly observed in individuals with T2D and gestational diabetes (Kibirige & Mwebaze 2013;
Krishnaveni et al. 2009), and B12 therapy improves insulin resistance and endothelial function in
patients with metabolic syndrome by mechanisms that are not fully elucidated (Setola et al. 2004).

Our metagenomic analysis also revealed that genes involved in LPS production are
enriched in the CAST-transplanted microbiome (Figure 2.4E and SF2.4B). This finding was
surprising given that increased levels of LPS have been causally linked to the development of
metabolic disease, yet B6cast mice are partially protected from the effects of HF/HS feeding
relative to B6ss animals (Figure 2.3). Taxonomic evaluation of the metagenomic data indicated
that the Bacteroidetes phylum is the major contributor to the increased abundance of genes from
this pathway (Table S4). This is relevant because unrelated bacteria generate structurally distinct
LPS molecules with varying capacity to elicit an innate immune response (Whitfield & Trent
2014). Notably, a recent study showed that LPS derived from E. coli generates a strong
inflammatory signal, whereas LPS derived from members of the Bacteroidetes phylum inhibited
the host immune response (Vatanen et al. 2016). The differential ability of LPS sub-types to
modify host physiology may explain why LPS has been shown to both stimulate (Nguyen et al.

2014) and attenuate (Amyot et al. 2012) insulin secretion. Studies aimed at testing the roles of LPS
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derived from phylogenetically diverse taxa on metabolic disease and insulin secretion are
warranted to further clarify how structural differences in this molecule affect host metabolism.

In addition to LPS, gut microbes produce SCFA, which are important energy and signaling
molecules implicated in metabolic disease. For instance, butyrate has been shown to improve
whole-body insulin sensitivity (Gao et al. 2009) and patients with T2D have reduced levels of
butyrate-producing bacteria (Qin et al. 2010). SCFA are also elevated in individuals with diet-
induced obesity, which is consistent with the elevated cecal SCFA levels in B6ss mice (Turnbaugh
et al. 2008). Interestingly, SCFA are also known regulators of insulin sensitivity and secretion.
Acetate can modulate insulin secretion from B-cells either directly through FFAR2 or via
parasympathetic activation (Priyadarshini et al. 2015; Perry et al. 2016). However, we did not
observe differences in concentrations of plasma or cecal acetate in the transplanted animals (Figure
2.4F and S2.6A-B). Therefore, it is unlikely that the differences in insulin secretion could be
attributed to SCFA and consequentially implies there are multiple pathways through which the gut
microbiota can module insulin secretion from B-cells.

Gut microbes are responsible for the production of the highly hydrophobic secondary BA
DCA and LCA through the dehydroxylation of the primary BA, CA and CDCA, in the colon.
Removal of glycine/taurine BA conjugates via BSH enzymes is a prerequisite for 7o/B-
dehydroxylation of primary BA into secondary BA (Batta et al. 1990). Interestingly, there were 13
predicted BSH genes that were more abundant in the B6 metagenome but only two in the CAST
metagenome. One possible interpretation of this result is that there may be more bacterial species
present in the B6 microbiome that are able to deconjugate BA. Consistent with this, Béss mice had
significantly higher levels of secondary BA as well as hydrophobic BA species than B6cast mice

(Figure 2.5B-C and S2.6C-D), both of which are elevated in humans and mice with insulin
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resistance (Ryan et al. 2014; Prawitt et al. 2011). Furthermore, DCA has been positively associated
with higher levels of Firmicutes (Islam et al. 2011). This is consistent with our findings as B6-CR
founders and B6ss had a significantly greater relative abundance of Firmicutes and fecal DCA than
CAST-CR and B6cast (Figure S2.3B and 2.5B). Conversely, B6cast had a higher abundance of
hydrophilic BA and the majority of the BA pool was comprised of the mouse primary BA, BMCA
(Figure 2.5B-C).

The BA receptor Fxr is expressed in pancreatic B-cells and its activation via BA enhances
insulin secretion (Kumar et al. 2012; Renga et al. 2010). Hydrophobic BA such as CDCA, DCA,
LCA, and their taurine conjugates are known ligands of Fxr. The hydrophobic TCDCA increases
insulin production and secretion through an FXR-dependent regulation of Katp channels (Dfer et
al. 2012). Moreover, B-cell FXR activation in diabetic leptin receptor deficient (db/db) mice and
NOD mice increases insulin secretion and delays the development of diabetes (Renga et al. 2010;
Zhang et al. 2006). We detected higher levels of LCA and DCA in the feces and plasma of B6ss
mice relative to B6cast mice (Figure 2.5B and S2.6C-D), along with increased expression of Fxr
in pancreatic islets from B6ss mice (Figure 2.6B). Altogether, this suggests that the gut microbiota
and BA composition could modulate pancreatic function and insulin secretion.

We have highlighted four examples of microbial-derived products, vitamin B12, SCFAs,
LPS, and BA, as plausible mediators of the microbiome effect on insulin secretion. However, there
are thousands of other metabolites that were not characterized in our study and could also play an
important role in regulating host metabolism. Future experiments using gnotobiotic mice colonized
with defined communities that have different metabolic capabilities will provide mechanistic

insights into the communication between gut microbes and the host.
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EXPERIMENTAL PROCEDURES

Mouse husbandry. Animal care and study protocols were approved by the University of
Wisconsin - Madison Animal Care and Use Committee.

Collaborative Cross (CC) mouse husbandry. Mice were housed on a 12 h-light:dark cycle. CC
founder strains were obtained from The Jackson Laboratory (Bar Harbor, ME, USA) and were
bred at University of Wisconsin, Madison. Mice were group housed by strain (2 mice/cage) and
diet under a temperature- and humidity-controlled conditions, and received ad libitum access to
water and food. After 4 weeks of age, mice were maintained on either a control (TD.08810, Envigo
Teklad, 16.8%-kcal fat, 60.9% carbohydrate, 22.3% protein) or a high-fat high-sucrose diet
(TD.08811, Envigo Teklad, 44.6%-kcal fat, 40.6% carbohydrate, 14.8% protein) (Table S1).
Strains were housed within the same vivarium throughout the duration of the study.

Gnotobiotic mouse husbandry. C57BL/6J germ-free mice were bred and housed in the Microbial
Sciences Building vivarium at University of Wisconsin-Madison to generate mice used in this
study. B6-CR and B6-GF mice were housed in separate plastic flexible vinyl gnotobiotic isolators
under temperature- and humidity-controlled conditions (12 hr light:dark). Fresh cecal contents
were collected from 15-week old conventional B6-CR and CAST-CR mice maintained on the
HF/HS diet (n = 2 to 3 mice per donor cecal microbiota samples). Cecal contents from B6 and
CAST donor mice were resuspended in rich medium (1:100 w/vol) inside an anaerobic chamber.
Suspensions were transferred into anaerobic sealed tubes and moved into gnotobiotic isolators. 9-
week-old B6-GF male mice were inoculated via a single oral gavage with ~0.2 ml of cecal incoula
(Turnbaugh et al. 2009). Each group of mice was housed in a controlled environment in separate
plastic flexible vinyl gnotobiotic isolators under standard conditions. Recipient mice received

sterilized water and HF/HS diet (TD.0.8811) ad libitum beginning one week before colonization.
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Fasting plasma measurements. Following a 4h fast, blood was collected via retro-orbital bleed
in EDTA-coated eppendorf tubes. Blood samples were centrifuged and plasma was collected and
stored at -80°C until further analysis. Plasma glucose was quantified using the Thermo-Fisher
Infinity Glucose Oxidase reagent (Pittsburgh, PA), insulin was quantified using the Millipore-
Linco Sensitive Rat Insulin RIA (Billerica, MA), and triglycerides levels were quantified Thermo-

Fisher Infinity Triglycerides reagents (Pittsburgh, PA).

Oral Glucose Tolerance Test (0GTT). Mice were fasted for four hours prior to testing and were
challenged with an oral dose of 2 g/kg body weight glucose at time 0. Blood was collected via
retro-orbital bleed at 0, 5, 15, 30, 60 and 120 minutes post glucose challenge. Blood samples were

centrifuged and plasma collected and stored at -80°C until further analysis.

Triglyceride measurement. Liver triglycerides (TG) were quantified following the Bligh and
Dyer extraction method (Bligh & Dyer 1959). Briefly, ~30 mg frozen liver tissue was
homogenized using a 40X dilution with 1X PBS. Total lipids were extracted from the liver
homogenate in methanol-chloroform (2:1). The organic extract with dried and reconstituted in
10% Triton X-100 in isopropanol. Triglyceride content was determined by colorimetric assay from
Wako (Richmond, VA) according to the manufacturer’s instructions and expressed in pug of

triglycerides per milligram of protein.

Microbiome Sample Processing. Genomic DNA was extracted from feces and cecum using a

bead-beating protocol (Turnbaugh et al. 2009). Briefly, mouse fecal pellets (~50 mg) or cecal
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contents were re-suspended in a solution containing 500 pl of extraction buffer [200 mM Tris (pH
8.0), 200 mM NaCL, 20 mM EDTA], 210 ul of 20% SDS, 500 pul phenol:chloroform:isoamyl
alcohol (pH 7.9, 25:24:1) and 500 pl of 0.1-mm diameter zirconia/silica beads. Samples were
mechanically disrupted using a bead beater (BioSpec Products, Barlesville, OK; maximum setting
for 3 min at room temperature), followed by centrifugation, recovery of the aqueous phase, and
precipitation with isopropanol. NucleoSpin Gel and PCR Clean-up Kit (Macherey-Nagel,
Bethlehem, PA) was used to remove contaminants. Isolated DNA was eluted in 5 mM Tris/HCI
(pH 8.5) and was stored at -20°C until further use.

Collaborative cross founders: Amplicons of ~330 bp, spanning variable region 2 (V2) of the
bacterial 16S rRNA gene, were generated by using modified primers 27F and 338R that
incorporated sample specific barcodes (Muegge et al., 2011). A final library for sequencing was
created by combining equimolar ratios of amplicons from the individual samples. The 16S rRNA
amplicon mixture was subjected to 454 pyrosequencing conducted on a Roche GS Junior (Roche,
Indianapolis, IN) with the Lib-L kit and Titanium chemistry.

Transplant: Amplification of 16S rRNA genes (V4) was done from DNA by PCR using unique 8-
bp barcodes on the forward and reverse primers and fused with Illumina sequencing adapters
(Kozich et al. 2013). Each sample was amplified in duplicate in a reaction volume of 25ul using
KAPA HiFi HotStart DNA polymerase (KAPA Biosystems, Wilmington, MA), 10uM of each
primer and ~25ng of genomic DNA. PCR was carried out under the following conditions: initial
denaturation for 3 min at 95°C, followed by 25 cycles of denaturation for 30 s at 95°C, annealing
for 30 s at 55°C and elongation for 30 s at 72°C, and a final elongation step for 5 min at 72°C.

PCR products were purified with the NucleoSpin Gel and PCR Clean-up kit (Macherey-Nagel,
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Bethlehem, PA) and then quantified using Qubit dSDNA HS Assay kit (Invitrogen, Oregon, USA).

Samples were pooled and sequenced on the Illumina MiSeq 2x250bp platform.

Microbiota Analysis in QIIME. Demultiplexing of 16S rRNA gene sequences, quality control
and operational taxonomic unit (OTU) binning were performed using Quantitative Insights Into
Microbial Ecology (QIIME) (Caporaso, Kuczynski, et al. 2010) version 1.9.1. Quality filtered
reads were trimmed of Illumina adaptor and barcode sequences. Sequences were then clustered in
OTUs using an open-reference OTU picking protocol based on 97% identity using UCLUST
(Edgar 2010) against the Greengenes reference database (McDonald et al. 2012). Representative
sequences (most abundant sequence in OTUSs) were picked, aligned to GreenGenes Core reference
alignment (DeSantis et al. 2006) using PyNAST (Caporaso, Bittinger, et al. 2010). Taxonomic
assignments were associated with OTUs based on the taxonomy associated with the Greengenes
reference sequence defining each OTU. UniFrac distances between samples were calculated using
the Greengenes reference tree (Lozupone & Knight 2005). Greengenes reference sequences, trees
and taxonomy data used in the analysis can be found at:
http://greengenes.secondgenome.com/downloads/database/13 5

The resulting biom-formatted OTU table was filtered to remove singletons. CC founder cecal
samples sequenced by 454 pyrosequencing were rarefied to an even sampling depth of 900 reads,
and 5 samples were removed from the dataset as assigned reads fell below the rarefaction point of
900 reads/sample. Donor and recipient samples from microbiota transplants were rarefied to an
even sampling depth of 10,000 reads/sample. The relative abundance of each taxon was calculated
by dividing the sequences pertaining to a specific taxon by the total number of sequences for that

sample. OTUs representing less than 0.1% were removed for relative abundance assessments and
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correlation analyses. Assessments of alpha-diversity and beta-diversity were also conducted on the
rarefied OTU table in QIIME. Principal coordinate analysis (PCoA) was performed in QIIME
using UniFrac distances calculated from the Greengenes reference tree. Permutation Multivariate
Analysis of Variance (PERMANOVA) was used to compare strength of sample groups (diet,
genotype) for founder PCoA using the compare_categories.py command in QIIME. Linear
discriminant analysis (LDA) effect size (LEfSe) was used to identify taxa that discriminated
between the fecal microbiota of transplant recipient mice using standard parameters (p < 0.05,
LDA score 2.0)(Segata et al. 2011). For correlation analyses, only microbial families with at least
one non-zero measurement for each strain on at least one diet were included. Correlations between
microbiota and phenotypes and association testing were performed in R. Correlation coefficients

and adjusted p-values are reported in Table S2.

Metagenomic analysis. Raw reads were pre-processed using the fastx toolkit (version 0.0.13)
(Hannon Lab n.d.): raw reads were demultiplexed using fastx_barcode_splitter (specifying -bol -
partial 2 and -mismatches 2), barcodes were trimmed using fastx_trimmer, (specifying —f 9 and —
Q 33), and quality trimmed using fastq_quality trimmer, (specifying -t 20 -1 30 and -Q 33). In
order to filter out host contaminating reads in the metagenome samples, we identified paired and
unpaired reads in our demultiplexed and trimmed files, and mapped them independently to the
mouse genome assembly (Ensembl release 84, GRCm38.dna.toplevel) using Bowtie2 (v. 2.2.7)
(Langmead & Salzberg 2012) with default settings (Table S3). From this output, we then identified
reads that did not map to the mouse genome using samtools view (version 1.3) (Li et al. 2009),

specifying —f 4 only for unpaired reads, or both —4 and —f 8 for paired reads in addition to default
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settings, and regenerated .fastq files containing only reads that did not map to the mouse genome
(custom perl scripts).

In order to examine gene-level abundance differences among our samples, we utilized the mouse
gut metagenome gene sequences available from the Mouse Gut Metagenome Project (downloaded
from gigadb.org: http://gigadb.org/dataset/100114) (Xiao et al. 2015). “Decontaminated” paired
and unpaired reads were independently mapped against genes in the mouse gut metagenome
assembly with Bowtie2 using default settings (v. 2.2.7) (Langmead & Salzberg 2012). A table of
raw read counts was generated using htseg-count command (v. 0.6.0) (Anders et al. 2014),
specifying a ‘mock’.gff file containing “gene” entries, whose lengths were lengths of genes, for

example:

S-Fel0_GL0000040 mock gene 1 1870 . + . gene_id "S-Fel0_GL0000040";

The resulting raw read count table was filtered to exclude low abundance genes, defined here as
genes with average raw read counts of less than 10 across all 12 samples (total number of 73,905
genes), and then input into DESeq2 (version 1.10.1) (Love et al. 2014), for library size
normalization (default settings). To allow for comparison of individual gene abundances, counts
were further normalized by gene length to give “reads per kilobase gene” (Table S4).

In order to examine the similarity of the B6-derived microbiota DESeq2 was also used to identify
genes differentially abundant between the B6 and CAST-derived microbiota using default settings,
and found a very large number of genes differentially abundant (29,283 in B6 > CAST microbiota;
10,742 in CAST > B6 microbiota, with FDR < 0.05, Table S4), indicating dramatic genic diversity

between B6 and CAST-derived microbiota.


http://gigadb.org/dataset/100114)
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Functional (KEGG Orthology (KO)and eggNOG annotations) and taxonomic annotations
corresponding to the detected genes from the aforementioned mouse gut metagenome were
downloaded (gigadb.org: http://gigadb.org/dataset/100114)(Xiao et al. 2015). This was further
expanded to include enzyme commission numbers (ECs) and KEGG pathway information, by
mapping these functions from KEGG to the individual genes by way of KO annotations.
Enrichment of these functional groups in genes of increased abundance in B6 or CAST-derived
microbiota compared to background (all genes detected) was examined using a Fisher’s exact test

(p-value < 0.05).

Bile acid analysis. ~100 mg feces were homogenized in 500 pl 50:50 water:methanol. Next 500
ul of alkaline acetonitrile (5% ammonium hydroxide in acetonitrile) was added to the homogenate,
which was then heated for 20 minutes at 75°C. 500 pl of the mixture was centrifuged at 11,000
RPM for 10 minutes and 250 pl of the supernatant was collected and evaporated under N2 gas.
Samples were reconstituted in 50 pl 50:50 water:methanol and 2H4-CDCA was added to the
samples for a final concentration of 2 pg/ml. For serum samples, 1 ml ice-cold acetonitrile was
added to 50 pl serum and spiked with the internal standard for a final concentration of 2 pg/ml
2H4-CDCA. The mixture was vortexed, centrifuged at 15,000 x g for 10 minutes, and the
supernatant was aspirated and evaporated under vacuum. The LC-MS/MS conditions used were

as described (Youcai Zhang & Klaassen 2010).

Measurement of SCFAs. Flash-frozen cecal contents (100mg) or plasma (50 ul) were mixed with
20 ul internal standards (acetic-d4 acid, Sigma-Aldrich #233315; propionic-3,3,3-d3 acid, CDN

isotopes #D-80; and butyric-d7 acid, CDN isotopes #D-171) and acidified with 20 ul 33% HCI.
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Two rounds of extraction using 1 ml diethyl ether were carried out by mixing for 10 minutes at
room temperature following by centrifugation at 1932 x g for 10 minutes at 4°C. Extracts (60 pl)
were then incubated at room temperature for 2 hours with 2 ul N-tert-Butyldimethylsilyl-N-
methyltrifluoroacetamide (MTBSTFA, Sigma-Aldrich #394882). Derivatized samples (1 ul) were
injected onto an Agilent 7890B/5977A GC/MSD instrument with a DB1-ms column. A linear
temperature gradient was used, wherein the initial temperature of 80°C was held for 1 minute, then
increased to 280°C at a rate of 15°C per minute prior to a final hold at 280°C for 5 minutes. The
source temperature was set to 200°C and emission current to 300mA. The injector and transfer
line temperatures were set to 250°C. Quantitation was performed using selected ion monitoring
acquisition mode and metabolites were compared to relevant labeled internal standards using
Agilent Mass Hunter v Acquisition B.07.02.1938. The m/z of monitored ions are as follows: 117
(acetic acid), 120 (acetic-d4 acid), 131 (propionic acid), 134 (propionic-3,3,3-d3 acid), 145
(butyric acid), and 152 (butyric-d7 acid). Concentrations were normalized to g of cecal contents

or ml plasma.

Islet isolation, ex vivo insulin secretion and RNA isolation. Intact pancreatic islets were isolated
from mice using a collagenase digestion procedure (Rabaglia et al. 2005). Briefly, islets were
carefully hand-picked under a stereo microscope to remove contaminating acinar tissue. For
insulin secretion assays, single islets were placed in a well of a 96-well microtiter plate and used
to determine the amount of insulin secreted in response to low (1.7 mM) or high (16.7 mM)
glucose, KCI (40 mM, plus 1.7 mM glucose), or the incretin hormone GLP-1 (100 nM, plus either
8.3 or 16.7 mM glucose). From each mouse, 7 islets were used per secretory condition, and 5 mice

were surveyed per strain (B6, A/J, WSB, CAST), or transplant group (B6B6, B6CAST). Insulin
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secretion was monitored over a 45 min period. Insulin levels in the medium as well as that
remaining within the islets was determined by ELISA.

Islets used for RNA isolation were washed twice with phosphate buffered saline (PBS) and
centrifuged at 1500 rpm, 3 min RT. The PBS supernatant was removed and 350 pl RLT buffer
(Qiagen, Hilden, Germany) was added. Islets were homogenized by hand for 1 min with a plastic
micropestel (USA Scientific) and stored at -800C until RNA purification. Total RNA was purified
using the RNeasy Mini Kit (Qiagen, Hilden, Germany) following manufacturer’s directions with

on-column TURBO DNase treatment (Invitrogen, Carlsbad, CA).

Quantitative Real-Time PCR. SuperScript Il Reverse Transcriptase with oligo(dT) primer (all
from Invitrogen, Carlsbad, CA) was used to synthesize 20 pul cDNA templates from 100 ng purified
RNA. cDNA was diluted 2X before use and gRT-PCR reactions were prepared in a 10ul volume
using SsoAdvanced Universal SYBR Green Supermix (Bio-Rad, Hercules, CA, USA) and 400 nM
specific primers targeting the gene of interest (FXR-F [5’-CCAACCTGGGTTTCTACCC-3’];
FXR-R [5’-CACACAGCTCATCCCCTTT-3"]). Reactions were run on a CFX96 Real-Time PCR
System (Bio-Rad, Hercules, CA, USA). Relative gene expression was calculated by the AACt

method using B-actin as an internal control.

Statistical Analysis. The data are expressed as mean + SEM and analyzed using GraphPad Prism
6.0 (GraphPad Software, La Jolla, CA). Multiple groups were analyzed by one-way or two-way
ANOVA followed by Bonferroni’s multiple comparisons test. Significant differences between two
groups were evaluated by two-tailed unpaired Student’s t-test or Mann-Whitney U test for samples

that were not normally distributed. Pearson’s correlations between microbiota and phenotypes and
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association testing were performed in R. The level of significance was set at p < 0.05; *p < 0.05,

**p <0.01, ***p <0.001, ****p < 0.0001.

ACCESSION NUMBERS
The data reported in this paper are accessible in the European Nucleotide Archive (ENA)

database under accession ID PRJEB15120.
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Figure 2.1. Segregation of metabolic syndrome among CC founder mice. Male mice were
maintained on the high-fat/high-sucrose (HF/HS) or a control diet for 22 weeks beginning at 4
weeks of age. (A) Body weight, (B) fasting plasma glucose and (C) insulin, and (D) hepatic
triglyceride content determined for all mice at 26 weeks of age. Areas under the curve (AUC) for
(E) glucose and (F) insulin during oral glucose tolerance test (0GTT) conducted at 22 weeks of
age. Insulin and glucose values were determined from plasma following a 4 hour fast. No data
(ND) were collected for NZO mice during oGTT. In all panels, *p < 0.05, **p < 0.01, ***p <
0.001, ****p < 0.0001 by two-way ANOVA (diet and strain) with Bonferroni’s multiple
comparisons test to assess within-strain differences. Data are mean + SEM, n > 9

mice/genotype/diet.
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Figure 2.2. Gut microbial taxa correlate with metabolic phenotypes. (A) Heat map illustrates

Pearson’s pair-wise correlation between microbial families and diabetes-related clinical traits

measured in the 8 CC founder mice (n > 9 mice/genotype/diet). Microbial families are ordered by

their correlation to body weight. Red, positive correlation; blue, negative. Area under the curve

(AUC) values for insulin and glucose were computed from oGTT conducted at 22 weeks; other

metrics were collected at 26 weeks. Correlation coefficients and p-values found in Table S2.

Contributions of strain and diet on the correlations observed between fasting insulin and (B) the

Bacteroidaceae family, and (C) the Clostridiaceae family.
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Figure 2.3. Divergent effects of B6 and CAST microbiomes on diet-induced metabolic
phenotypes. (A) Transplant experimental design. (B) Total weight change, (C) epididymal fat pad
mass and (D) quantification of hepatic triglyceride (TG) contents. (E and F) Glucose and insulin
values during oGTT and (G) AUC insulin in B6ss and B6cast mice. All measurements shown
collected 16-weeks post-colonization. *p < 0.05, **p < 0.01 by Student’s t-test. Data are mean +

SEM, n =7 for B6se and n = 6 for B6cast mice.
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Figure 2.4. Gut microbiota composition and function of transplant recipients. (A) Principal
coordinate analysis (PCoA) of unweighted UniFrac distances for the fecal microbiota of transplant
donors and recipients at sacrifice. Each circle represents an individual mouse. Percent variation
explained by each PC is shown in parentheses. (B) Relative abundance of major microbial phyla
ordered by increasing mean abundance; * denotes mean phyla abundance <1%. (C) Microbial
families differentially enriched in either B6cast (blue) or B6ss (orange) as determined by linear
discriminant analysis (LDA) with effect size (LEfSe). (D) Clustering of mice based on relative
abundance of KEGG metabolic pathways using euclidian distance measurement with complete
linkage hierarchical clustering; B6-CR (grey), CAST-CR (green), B6ss (orange), B6cast (blue).
(E) KEGG categories enriched in either CAST (blue) or B6 (orange) transplanted microbiomes.
(F) Targeted GC-MS analysis of cecal short-chain fatty acids; *p < 0.05 by Student’s t-test. Data
are mean = SEM, n = 6-7 mice/recipient group and n = 2-3 mice/donor group. For metagenomics

analysis n=5 mice/recipient group.
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Figure 2.5. B6 and CAST microbiota produce different bile acid profiles. (A) Principal component
analysis of the square root proportion of 14 major bile acid species (ng/mg). Each dot represents
the bile acid profile of an individual mouse. Percent variation explained by each PC is shown in
parentheses. (B) Abundance of fecal bile acids, and (C) relative abundance of hydrophobic and

hydrophilic BA species determined by UPLC-MS/MS from fecal samples collected at 12-weeks
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post-colonization. No data (ND). *p < 0.05, **p < 0.01, ***p < 0.001 by one-way ANOVA with
Bonferroni’s multiple comparisons test. Data are mean = SEM, n= 6-7 for transplant recipients,

and n=5 for CR mice.
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Figure 2.6. CAST and B6 microbiomes differentially regulate insulin secretion and Fxr
expression in pancreatic islets. (A) Total islet insulin content and glucose-stimulated insulin
secretion in response to low glucose (3.3 mM), low glucose plus KCI (40 mM), high glucose
(16.7), and high glucose plus GLP-1 (100 mM) from islets isolated from B6ss and B6cast mice.
The number of islets and the insulin content per islet were not different between the groups. (B)
Relative expression of Fxr mRNA from isolated islets. Supplememntal Figure 2.6 shows
microbiota composition for donor and transplanted communities. *p < 0.05 by Student’s t-test.

Data are mean = SEM, n=5.
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Supplemental Figure 2.1. Segregation of metabolic syndrome among the founder strains of
the Collaborative Cross (CC). Related to Figure 2.1. (A) Body weight, (B) fasting plasma
insulin, (C) glucose and (D) triglycerides (TG) were determined at various ages for CC founder
mice fed either a high-fat/high-sucrose (HF/HS) or a control diet for 22 weeks. Note differences

in Y-axis scale for NZO mice. *p < 0.05. data are mean £ SEM, n > 9 mice/genotype/diet.
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Supplemental Figure 2.2. Diet-induced glucose tolerance and insulin sensitivity differ among
CC founder mice. Related to Figure 2.1. Male mice were maintained on either a control or high-
fat/high-sucrose (HF/HS) diet. At 22 weeks of age, mice were given glucose bolus (2 g/kg body
weight) via oral gavage following a 4-hour fast. Blood was collected via retro-orbital bleed at 0,
5, 15, 30, 60, and 120 minutes following the glucose bolus, and used to determine plasma (A)
glucose and (B) insulin levels. NZO mice did not survive 22 weeks of age on HF/HS diet. *p <

0.05. Data are mean + SEM, n > 9 mice/genotype/diet.
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Supplemental Figure 2.3. Host genotype and diet affect microbial composition. Related to
Figure 3.2. (A) Principal Coordinate Analysis (PCoA) of unweighted UniFrac distances for the
cecal microbiota of the founder mice. Open symbols, control diet; filled symbols HF/HS diet. (B)
Relative abundance of 8 major microbiota phyla identified in cecal contents from CC founder mice
maintained on control (abv. C) or HF/HS (abv. HF) diet for 22 weeks. Phyla ordered by mean
abundance; * denotes mean phyla abundance < 1%. (C) Relative abundance of Bacteroidaceae and
Clostridicaceae in CC founder strains. Family not detected marked as ND. Data are mean = SEM,

n > 9 mice/genotype/diet.
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Supplemental Figure 2.4. Microbial pathways enriched in CAST-derived microbiota.

Related to Figure 2.4. (A) Vitamin B12 biosynthesis is functionally enriched in CAST-derived
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microbiota. KEGG pathway for “Porphyrin and Chlorophyll Metabolism” (map00860). Fifty-Six
genes within the pathway were more abundant in B6cast than B6ss microbiota. ECs higher in the
B6cast microbiota compared to B6ss microbiota colored in red. The KO annotations for the 56
genes in the Porphyrin and Chlorophyll Metabolism pathway were input to the Reconstruct
Module of KEGG Mapper. Red triangles indicate members of the module for vitamin B12
(cobalamin) biosynthesis, which is nearly complete; the missing block in this module corresponds
to EC number 3.1.3.73, which is not boxed in red. (B) Lipopolysaccharide biosynthesis is
functionally enriched in CAST-derived microbiota. KEGG pathway for “Lipopolysaccharide
Biosynthesis” (map00540). Forty-six genes within the pathway were more abundant in B6cast
than B6ss microbiota. ECs higher in the B6cast microbiota compared to B6ss microbiota colored

inred.



85

>
W

@B6-CR  @B6,,
@CAST-CR @ B6_,,

Firmicutes
Bacteroidetes
Proteobacteria
Unassigned
Deferribacteres
Actinobacteria
Verrucomicrobia
Tenericutes

PC2 (9.37%)
Relative abundance
EEO0 DN ODCOEN

PC1 (28.95%) B6-CR  B6g; CAST-CR B6cpgr

Supplemental Figure 2.5. Microbiota composition of B6-CR, CAST-CR, B6ss and B6cast
mice used for insulin secretion studies. Related to Figure 2.6. (A) Principal Coordinate Analysis
(PCoA) of unweighted Unifrac distances, and (B) relative abundance of microbial phyla. Data are

mean = SEM, n =5 for B6ss and B6cast mice and n = 1 for CR mice
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Supplemental Figure 2.6. SCFA and BA measurements in B6ss and B6cast mice. Related to
Figure 2.6. (A) Cecal and (B) plasma SCFA concentrations from B6ss and B6cast animals used
for insulin secretion studies as determined by GC-MS. (C) Relative abundance of hydrophobic and
hydrophilic bile acid (BA) species, and (D) abundance of major plasma BA species determined by

UPLC-MS/MS. *p < 0.05, **p < 0.01. Data are mean £ SEM, n=5



Supplemental Table 2.1. Related to Figures 2.1-5. Composition of diets used in this study

Low glycemic control diet (TD.08810)

High-fat high-sucrose diet (TD.08811)
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Component g/'Kg
Casein 210.0
L-Cystine 3.0
INACTIVE Hi-Maize 220 (Resistant Starch) 500.0
Maltodextrin 100.0
Sucrose 39.1
Anhydrous Milkfat 20.0
Soybean Oil 200
Cellulose 350
Mineral Mix, AIN-93G-MX (94046) 350
Vitamin Mix, AIN-93-VX (94047) 15.0
Choline Bitartrate 2.8
TBHQ, antioxidant 0.0
Yellow Food Color 0.1

Component g/Kg
Casein 195.0
L-Cystine 3.0
Sucose 340.0
Comn Starch 56.9
Maltodextrin 60.0
Anhydrous Milkfat 210.0
Soybean Oil 20.0
Cellulose 50.0
Mineral Mix, AIN-93G-MX (94046) 43.0
Vitamin Mix, AIN-93-VX (94047) 19.0
Choline Bitartrate 3.0
TBHQ, antioxidant 0.0

Green Food Color

0.1
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CHAPTER 3: Genetic Determinants of Gut Microbiota Composition and Bile Acid Profiles
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ABSTRACT

The microbial communities that inhabit the distal gut vary widely among individuals.
While host genetic variation is a known factor that influences gut microbiota composition, the
mechanisms underlying this variation have not been fully elucidated. Bile acids (BAs) are
hormones that are produced by the host and modified by gut bacteria. BAs can serve as
environmental cues and nutrients for bacteria, but they can also have antibacterial effects. We
hypothesized that host genetic variation in BA metabolism impact gut microbiota composition. To
address this, we used the Diversity Outbred (DO) stock, a population of genetically distinct mice
derived from eight founder strains. We characterized the fecal microbiota composition and plasma
and cecal BA profiles of 400 DO mice fed a high-fat high-sucrose diet for ~22 weeks. Using
quantitative trait loci (QTL) analysis, we identified several genomic regions associated with both
microbial abundance and BA levels. These overlapping QTL included taxa previously associated
with BAs, including Akkermansia muciniphila and the Peptostreptococcaeae family. Notably, we
found overlapping QTL for Turicibacter sp. and plasma cholic acid that mapped to a locus
containing the gene for the ileal bile acid transporter, Slc10a2. Mediation analysis and follow-up
validation experiments suggest that differences in Slc10a2 gene expression associated with the
different strains influences levels of both traits and revealed novel interactions between
Turicibacter sp. and BAs. Together, our work provides insights into the mechanisms underlying
host-gut microbe interactions and illustrates how systems genetics can be used to generate

hypotheses elucidating these interactions.
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INTRODUCTION

The intestinal microbiota has profound effects on host physiology and health (Le Chatelier
et al., 2013; Clemente et al., 2012; Sommer and Bé&ckhed, 2013). The composition of the gut
microbiota is governed by a combination of environmental factors including diet, drugs, maternal
seeding, cohabitation, and host genetics (Lozupone et al., 2012; Rothschild et al., 2018;
Zhernakova et al., 2016). Together, these environmental and genetic factors cause substantial inter-
individual variation in microbiota composition and modulate disease risk (Hall et al., 2017; Ussar
et al., 2016). Alterations in the composition of the microbiota are associated with a spectrum of
pathologies including obesity, diabetes, metabolic syndrome, and inflammatory diseases
(Clemente et al., 2018; Khan et al., 2014; Qin et al., 2012; Turnbaugh et al., 2006). A major
challenge in the field is deciphering how host genetics and environmental factors interact to shape
the composition of the gut microbiota and the mechanisms by which these interactions can be
manipulated to improve health outcomes.

Several mouse and human studies have examined the role of host genetics in shaping the
composition of the gut microbiota. The effects of genetics on the microbiome have been
highlighted by composition differences among inbred mouse strains (Kreznar et al., 2017; Parks
et al., 2013) and through the loss of metabolism and immune-related genes (Kurilshikov et al.,
2017). Additionally, quantitative trait loci (QTL) analysis in mice have identified genetic loci that
control for the abundance of different taxa (Belheouane et al., 2017; Benson et al., 2010; Leamy
et al., 2014; McKnite et al., 2012). Twin studies and genome wide association studies (GWAS)
have identified heritable taxa and SNPs associated with specific gut microbes. However,
comparing these studies is often difficult because of differences in environmental variables among

populations. Despite these confounding effects, some associations are consistently found among
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geographically discrete populations, such as the association between Bifidobacterium and the
lactase (LCT) gene locus (Blekhman et al., 2015; Bonder et al., 2016; Goodrich et al., 2016),
indicating specific taxa are regulated by host genetics.

The host and gut microbiome interact through the production and modification of
metabolites, many of which impact host physiology (Herrema et al., 2017; Krautkramer et al.,
2016; Ridlon et al., 2016; Romano et al., 2017; Wang et al., 2011). Among these, bile acids (BAs)
are particularly relevant for understanding the relationship between host genetic variation and gut
microbiota composition. BAs are host-derived and microbial-modified metabolites that regulate
both the gut microbiome and host metabolism (Kuipers et al., 2014; Ridlon et al., 2006; Wahlstrom
et al., 2016). BAs are synthesized in the liver from cholesterol, stored in the gallbladder and are
secreted in the proximal small intestine where they facilitate absorption of fat-soluble vitamins and
lipids. Once in the intestine, BAs can be metabolized by gut bacteria through different reactions
including deconjugation, dehyrdoxylation, epimerization, and dehydrogenation, to produce
secondary BAs with differential effects on the host (Ridlon et al., 2006, 2016). In addition to their
direct effects on the host, BAs shape the gut microbiota composition through antimicrobial
activities (Islam et al., 2011; Zheng et al., 2017). The detergent properties of BAs cause plasma
membrane damage and the bactericidal activity of a BA molecule corresponds to its
hydrophobicity (Begley et al., 2005). Additionally, the microbiota regulates primary BA synthesis
through regulation of the nuclear factor FXR(Sayin et al., 2013).

To investigate how genetic variation affects gut microbiota and BA profiles, we used the
Diversity Outbred (DO) mouse population, which is a heterogenous population derived from eight
founder strains: C57BL6/J, A/J, 1291/SvimJ, NOD/ShiLtJ, NZO/HiLtJ, CAST/EiJ, PWK/PhJ, and

WSBJ/EIiJ (Churchill et al., 2012; Svenson et al., 2012). These eight strains capture a large breadth
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of genetic diversity found in laboratory and wild mouse populations. Additionally, the founder
strains harbor distinct gut microbial communities and exhibit disparate metabolic responses to diet-
induced metabolic disease (Kovacs et al., 2011; Kreznar et al., 2017; O’Connor et al., 2014). The
DO population is maintained by a randomized outbreeding strategy so that the genome of each DO
mouse is a mosaic of the eight founder strains, making it an ideal resource for high-resolution
genetic mapping of microbial and metabolic traits. Since each position of a DO mouse genome
can be attributed to a founder strain, this resource also allows for subsequent validation studies in
the founder strains.

We characterized the intestinal microbiota composition and plasma and cecal BA profiles
in ~400 genetically district DO mice fed a high-fat/high-sucrose diet for ~22 weeks and performed
quantitative trait loci (QTL) analysis to identify host genetic loci associated with these traits.
Specifically, we focused our analysis on potentially pleiotropic loci, which we defined as a single
genetic locus that associates with both microbial and BA traits. Our analysis revealed several
instances of microbial and metabolite traits attributed to the same DO founder haplotypes mapping
to the same position of the mouse genome, including a locus associated with plasma BA levels and
the disease-modulating organism Akkermansia muciniphila. Additionally, we identified the ileal
BA transporter Slc10a2 as a candidate gene that regulates the abundance of Turicibacter sp.

abundance and plasma cholic acid levels.
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RESULTS AND DISCUSSION

We investigated the effects of genetic variation on gut microbiota composition and host
BA profiles using a cohort of ~400 DO mice fed a high-fat high-sucrose diet (45% kcal fat and
34% sucrose) for 22 weeks, starting at weaning. Additionally, we incorporated in our analyses
clinical weight traits collected from the same mice that were previously published (Keller et al.,
2018) (Figure 3.1A). All mice were individually housed throughout the duration of the study to

minimize microbial exchange by coprophagy and to monitor food intake.

Variability and associations among microbial, bile acid, and clinical traits

We found substantial variation in plasma and cecal BA profiles across the 400 mice (Table
3.1) as demonstrated by the variability seen in the levels of primary BAs in plasma and cecal
contents (Figure 3.1C-D). Gut microbiota composition was profiled by 16S rRNA gene amplicon
sequencing of DNA extracted from fecal samples collected the day of sacrifice (21-25 weeks-old).
Within the cohort there were 907 unique Exact Sequence Variants (ESVs), (100% operational
taxonomic units defined with dada2 (Callahan et al., 2016)), which were agglomerated into 151
lower taxonomic rankings (genus, family, order, class, phyla). The microbial traits represented
each of the major phyla found in the intestine and the relative abundance of these phyla was highly
variable among the DO mice (Figure 3.1B). For instance, the abundance of taxa classified to the
Bacteroidetes phylum ranged from 1.17 — 89.28%.

For subsequent analysis, we identified a core measurable microbiota (CMM), which we
defined as taxon found in at least 20% of the mice (Benson et al., 2010). This was done to remove
the effects of excessive variation in the data due to bacterial taxa that were low abundance and/or
sparsely distributed. In total, the CMM was comprised of 86 ESVs and 42 agglomerated taxa

(Table 3.2)(ESV key Supplemental Table 3.1). The CMM traits represent a small fraction of the
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total microbes detected, but account for 94.5% of the rarefied sequence reads, and therefore
constitute a significant portion of the identifiable microbiota.

Since mice were received in waves of 100, we examined whether animals in each wave
were more similar to each other than mice in other waves. The fecal microbiota composition
significantly clustered by wave (p < 0.001, PERMANOVA) and sex (p < 0.001, PERMANOVA)
(Supplemental Figure 3.1). PCA analysis of plasma and cecal bile acids showed a significant effect
of sex, but not wave, on both plasma (p < 0.01, Kruskal Wallis) and cecal BA profiles (p < 0.0001,
Kruskal Wallis) (Supplemental Figure 3.2)

There is substantial evidence implicating gut microbiota and BAs in metabolic disease
development (Kuipers et al., 2014; Wahlstrom et al., 2016). To identify potential relationships
among these traits, we performed correlation analysis which yielded many significant associations
after FDR correction (FDR < 0.05) (Table 3.3). We found significant positive and negative
associations between body weight and different Lachnospiraceae ESVs. This dual correlation is
consistent with previous studies that have found this bacterial family to be positively (Org et al.,
2015) and negatively (Kreznar et al., 2017; O’Connor et al., 2014) correlated with obesity and
other metabolic traits. Additionally, we identified significant associations between BAs and body
weight. Body weight over time was inversely correlated with plasma levels of deoxycholic acid
(DCA), taurochenodeoxycholic acid (TCDCA) and taurocholic acid (TCA). Conversely, cecal
levels of muricholic acid (MCA) and ursodeoxycholic acid (UDCA) were positively correlated
with body weight. The unconjugated plasma BAs allo-cholic acid (ACA), UDCA, 7-dehydrocholic
acid (7-dHCA), hyodeoxycholic acid (HDCA), DCA, MCA and cholic acid (CA) were all
positively associated with Turicibacter abundance. Interestingly, the only cecal bile acid to

negatively correlate with Turicibacter was TCA (r = -0.2619, p = 0.0035). We also found several
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taxa among the Lachnospiraceae family were positively associated with conjugated secondary
cecal bile acids including tauroursodeoxycholic acid (TUDCA), TCA, taurodeoxycholate
(TDCA), glycodeoxycholic acid (GDCA), taurolithocholic acid (TLCA) and TCDCA. This is
consistent with a previous study that found members of the Lachnospiraceae family were

positively correlated with all secondary bile acids (Theriot et al., 2016).

Bacterial taxa and bile acids associate to host genome

To identify associations between regions of the mouse genome and the clinical and
molecular traits discussed above, we performed QTL analysis using the r/qtl2 package (Broman,
2018). We used sex, days on the diet, and experimental cohort (wave) as covariates. We identified
459 QTL for bacterial (306), bile acid (131), and body weight (22) traits (Figure 3.2, Table 3.4).

Of the microbial QTL, we found 190 QTL for 76 distinct bacterial ESVs from four phyla
that met a LOD cut-off of > 5.5. ESVs with the strongest QTL (LOD ~ 8) are classified to the
Clostridiales order and map on chr 12 at ~33 Mbp, the Lachnospiraceae family on chr 2 at 164
Mbp, and the S24-7 family on chr 2 at ~115 Mbp. We also identified 116 QTL for microbial taxa
collapsed by taxonomic assignment (i.e., genus to phylum). The genera Lactococcus and
Akkermansia were also associated with host genetic variation, which is consistent with previous
studies (Benson et al., 2010; Davenport et al., 2015; Leamy et al., 2014; Org et al., 2015).

Similarly, BA QTL mapped to multiple loci spanning the mouse genome and most BA
traits mapped to multiple positions. BA synthesis and metabolism are regulated by multiple host
signaling pathways: there are > 17 known host enzymes involved in the production of BAs
(Wabhlstrém et al., 2016), transporters, which are critical role for maintaining the enterohepatic
circulation and BA homeostasis, and receptors that respond to BA in a variety of host tissues (de

Aguiar Vallim et al., 2013; Martinot et al., 2017; Russell, 2003). Therefore, it is not surprising that
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our results indicate BA levels are polygenic and shaped by multiple host factors. We observed
multiple instances of related BA species associating to the same genetic locus. These overlapping
QTL may indicate the presence of a pleiotropic locus. Interestingly, several of these loci associate
with levels of related BA species in different stages of microbial modification. For example, cecal
TCA and plasma CA QTL overlap on chr 7 at 122 Mbp. Likewise, four BA QTL that are all
derivatives of the secondary BA DCA, including plasma TDCA and cecal DCA, isodeoxycholic
acid (IDCA), and HDCA overlap on chr 12 at ~99 — 104 Mbp. For the cecal BA, the WSB founder
haplotype was associated with higher levels of these three BA, while the NOD founder haplotype
was associated with lower levels. The opposite pattern was observed for plasma TDCA, where the
NOD and WSB haplotype was associated with higher and lower levels, respectively (Supplemental
Figure 3.3E-H).

We also identified overlapping QTLs on chr 11 at ~71 Mbp for cecal levels of the
secondary BAs lithocholic acid (LCA) and isolithocholic acid (ILCA), the isomer of LCA
produced by bacterial 3a-hydroxylation (Supplemental Figure 3.3A). Higher levels of these cecal
BAs are associated with the 129 founder haplotype and lower levels are associated with the A/J
founder haplotype (Supplemental Figure 3.3B-C). We identified the positional candidate gene
Slc13a5, which is a sodium-dependent transporter that mediates cellular uptake of citrate, an
important precursor in the biosynthesis of fatty acids and cholesterol (Inoue et al., 2002). Recent
evidence indicates Slc13a5 influences host metabolism and energy homeostasis (Birkenfeld et al.,
2011; von Loeffelholz et al., 2017; Pesta et al., 2015). Slc13a5 is a transcriptional target of
pregnane X receptor (PXR) (Lietal., 2015), which also regulates the expression of genes involved

in the biosynthesis, transport, and metabolism of BAs (Staudinger et al., 2001).
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Overlapping bacterial and bile acid QTL

Given the known interplay among gut microbes, BAs, and host genetics, it is reasonable to
expect that some of the microbial and BAs QTLs might exhibit pleiotropic effects. To examine
this possibility, we identified instances of microbial and BA QTL mapping to the same position.
In total, 17 instances of overlapping microbial and BA QTL were identified on 12 chromosomes.
This co-mapping indicates there are some QTLs with pleiotropic effects on BAs and the
microbiota, suggesting that genetic variation influencing host BA profiles has an effect on
compositional features of the gut microbiota, or genetic-driven variation in microbiota
composition alters BAs. Additionally, these co-mapping traits may be evidence of interactions
between the traits (Civelek and Lusis, 2014).

We found QTL for an unknown genus in the Peptostreptococcaceae family overlapping
with the hotspot containing QTL for plasma levels of CA, CDCA, UDCA, MCA, 7-dHCA and
glycodehydrocholic acid (G-dHCA) on chr 3 between ~40-50 Mbp. These QTL all show the same
founder strain haplotype effects, where the NOD haplotype is associated with higher levels of these
traits (Supplemental Figure 3.5A-F). Peptostreptococcus productus, a member of the
Peptostreptococcaceae family, has 3a-, 33-, and 73-hydroxysteroid dehydrogenases and is capable
of oxidation and epimerization of BAs (Edenharder et al., 1989). Several of these secondary bile
acids require 73-epimerization, including hyocholic acid (HCA) and UDCA which is produced
from 73-epimerization of CDCA (Wabhlstrom et al., 2016), which may help explain why these BAs
co-map with Peptostreptococcaceae abundance. An interesting candidate within the QTL peak
region is progesterone receptor membrane component 2 (Pgrmc2), which is expressed in bile
sensitive tissues such as intestine, liver and brown adipose (Chen et al., 2010). PGRMC2 is
predicted to be a membrane receptor (Gerdes et al., 1998), which binds to P450 cytochrome

proteins and has similar characteristics to PGRMC1 (Wendler and Wehling, 2013). The shared
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sequence between Pgrmc2 and Pgrmcl is especially interesting in the context of BAs because
Pgrmcl directly binds to Cyp7al (Hughes et al., 2007), a P450 cytochrome protein responsible for
the regulation of BA synthesis. These data suggest that Pgrmc2 may be a novel gene involved in
BA signaling and/or homeostasis.

On chr 1 at ~90 — 100 Mbp, we identified overlapping QTL for Akkermansia muciniphila
and plasma levels of CA, MCA and 7-dHCA, where the NZO haplotype is positively associated,
and the 129 haplotype is negatively associated with each of these traits (Supplemental Figure 3.4A-
D). Significant positive correlations were also found between the abundance of A. muciniphila and
plasma levels of CA (r = 0.19, p < 0.0045) and MCA (r = 0.17, p < 0.0149) (Supplemental Figure
3.4F-H). These observations are particularly striking given the recent studies associating the
abundance of A. muciniphila and BAs. For example, Pierre et al. found the abundance of A.
muciniphila was positively correlated with higher levels of circulating primary bile acids (Pierre
et al., 2016) and administration of the secondary bile acid UDCA was found to increase its
abundance (Van den Bossche et al., 2017). Furthermore, supplementation with up to 1% porcine
bile extract increased A. muciniphila growth in vivo (van der Ark et al., 2017). In the intestine, A.
muciniphila degrades host mucins (Derrien et al., 2004), which provide growth substrates for other
intestinal commensals (Belzer and de VVos, 2012). Notably, BAs have a stimulatory effect on mucin
secretion as a defense mechanism to protect the gastrointestinal epithelium against potential BA
toxicity (Klinkspoor et al., 1999; Shekels et al., 1996). Therefore, the positive correlation between
bile acid levels and A. muciniphila may be the result of this stimulatory effect where greater mucin
secretion from BA stimulation can support a larger intestinal A. muciniphila population.

There is growing interest in the potential therapeutic role of A. muciniphila since it has

been associated with improvements in host metabolic syndrome (Cani and de VVos, 2017; Everard
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et al., 2013; Org et al., 2015; Plovier et al., 2017) and plays a key role in regulating intestinal
barrier function and mucosal immunity (Derrien et al., 2011; Everard et al., 2013). Strikingly, we
found several candidate genes under the QTL region on chr 1 related to host lipid metabolism and
immunity (Supplemental Figure 3.4E). Top immune-related genes include Lrrfipl, a transcription
regulator of TLR pathway signaling (Arakawa et al., 2010) and TNF expression (Shi et al., 2014),
and Gpr35, a G protein-coupled receptor for the mucosal chemokine CXCL17 (Maravillas-
Montero et al., 2015). Candidate lipid metabolism genes include Farp2 and Stk25, which were
previously identified as candidate genes for plasma HDL levels (Su et al., 2009a). In fact, several
mouse studies using F2 crosses have identified QTL for plasma cholesterol and HDL levels at this
position on chr 1 (Ishimori et al., 2004; Purcell-Huynh et al., 1995; Su et al., 2009a, 2009b)
including one where the association was driven by the 129 haplotype (Ishimori et al., 2004). The
plasma HDL QTL found at the position as the microbial and metabolite QTL on chr 1 is
particularly interestingly because A. muciniphila abundance has been associated with elevated
HDL levels (Fu et al., 2015) and administration of a purified protein from this microbe decreased
HDL and LDL cholesterol levels, indicating it may have a regulatory impact on cholesterol
metabolism (Plovier et al., 2017). Therefore, the co-mapping A. muciniphila and plasma bile acid
traits seen in our study may be driven by another unmeasured factor or plasma lipid, which explains
why they map to the same position. Future integration of additional lipid profiling may identify a

causal factor that explains the relationship between these microbial and bile acid traits.

Slcl0a2 is a candidate gene for Turicibacter sp. and plasma cholic acid

We focused our co-mapping analysis on chr 8 at ~ 5.5 Mbp, where Turicibacter sp. QTL
and plasma cholic acid (CA) QTL overlap (Figure 3.3A-B). These traits were particularly

interesting because both have been shown to be influenced by host genetics by previous studies.
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For example, Turicibacter was identified as highly heritable in both mouse and human genetic
studies (Benson et al., 2010; Goodrich et al., 2016; O’Connor et al., 2014; Org et al., 2015),
whereas multiple studies have found differences in CA levels as a function of host genotype
(Kreznar et al., 2017; Sehayek et al., 2006). Furthermore, CA levels are influenced by both host
genetics and microbial metabolism since it is synthesized by host liver enzymes from cholesterol
and subsequently modified by gut microbes in the intestine. Notably, these co-mapping traits also
share the same allele effects pattern, where the A/J and WSB haplotypes have strong positive and
negative associations, respectively (Figure 3.3C-D).

To assess whether trait patterns in the DO founder strains correspond to the observed allelic
effects in the QTL mapping, we performed a separate characterization of the fecal microbiota
composition and plasma bile acids in age-matched A/J and WSB animals fed the HF/HS diet. The
founder strain allele patterns inferred from the QTL mapping closely resembled the observed levels
of Turicibacter sp. (Figure 3.3E) and plasma CA in the founder strains (Figure 3.3F), where A/J
animals had significantly higher levels of Turicibacter sp. and CA than WSB animals. However,
Turicibacter levels in the founder strains do not completely mirror the estimated allele effects.
This may be due to other genetic factors that also influence Turicibacter levels, as this taxa may
be influenced by multiple host genes and levels of Turicibacter have previously been associated
on chr 7 (Benson et al., 2010), 9 and 11 (Org et al., 2015). Furthermore, Turicibacter and plasma
CA were positively correlated in the DO mice (r = 0.43, p = 3.53e19). This finding is consistent
with a previous study that found positive correlations between Turicibacter and unconjugated
cecal BAs (Theriot et al., 2016). Taken together, the overlap between the Turicibacter sp. QTL

and plasma CA QTL, along with the similar allele effects pattern, which reflect the values observed
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in the founder strains, provide strong evidence suggesting that these traits are related and they are
responding to the common genetic driver.

We searched under the QTL for candidate genes via high-resolution association mapping
on chr 8 and identified SNPs associated with both traits. Among these we identified SNPs
upstream the candidate gene Slc10a2, which encodes for the apical sodium-bile transporter (Figure
3.3G). Slc10az2 is responsible for ~95% of BA reabsorption in the distal ileum and plays a key role
in BA homeostasis (Dawson et al., 2003). In humans, mutations in this gene are responsible for
primary BA malabsorption, resulting in interruption of enterohepatic circulation of BAs and
decreased plasma cholesterol levels (Oelkers et al., 1997). Likewise, Slc10a2”- mice have reduced
total BA pool size, increased fecal BA concentrations and reduced total plasma cholesterol in
comparison to wild-type mice (Dawson et al., 2003). Additionally, a comparison between germ-
free and conventionally-raised mice found that expression of Slc10a2 is downregulated in presence
of the gut microbiota, suggesting microbes may have influence the expression of the transporter
(Sayin et al., 2013).

Genome analysis identified SNPs associated with levels of Turicibacter sp. and plasma CA
at the QTL peak (Figure 3.3G). The SNPs with the strongest associations were attributed to the
WSB and PWK haplotypes and fell on intergenic regions near Slc10a2. There is growing evidence
that non-coding intergenic SNPs are often located in or closely linked to regulatory regions,
suggesting they may influence host regulatory elements and alter gene expression (Chen and Tian,
2016; Maurano et al., 2012). To assess if candidate gene expression patterns in the DO founders
corresponded to the estimated allelic effects in the QTL mapping, we quantified Slc10a2
expression in distal ileum samples from AJ and WSB mice by quantitative reverse transcriptase

PCR (qRT-PCR). AJ mice exhibited significantly higher expression of Slc10a2 compared to WSB
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mice (Figure 3.3H), which is consistent with estimated allele patterns for the overlapping

Turicibacter and plasma CA QTLs on chr 8 (Figure 3.3A-B).

Mediation and causal inference testing identify a correlative relationship between Turicibacter
and plasma cholic acid QTLs

The strong association between Turicibacter sp. and plasma CA levels may be due to a
single shared locus (pleiotropy) or multiple closely linked loci (linkage disequilibrium). We
examined whether these two traits were affected by a single locus of a pair of loci by likelihood
ratio testing with a null hypothesis of pleiotropy (Boehm, 2018). Analysis of 1000 bootstrap
samples resulted in a p-value of 0.531, which is consistent with the presence of a single pleiotropic
locus that affects both traits (Supplemental Figure 3.6A).

We next sought to understand the causal relationships between the microbe and the BA.
We asked whether the relationship between the microbe and BA was causal, reactive or
independent. To establish the directionality of the relationship, we applied mediation analysis
where we conditioned one trait on the other (MacKinnon et al., 2007). When we conditioned
Turicibacter sp. on plasma CA (QTL - Bile Acid - Microbe), we observed a LOD drop of 3.2
(Figure 3.4A-B). Likewise, when we conditioned the plasma cholic acid on the microbe (QTL -
Microbe - Bile Acid) there was a LOD drop of 3.32 (Figure 3.4C-D). The partial mediation seen
in both models suggests a correlative relationship between the microbe and BA, where they exert
an effect on one another and the directionality of the relationship is unclear.

Further causal model selection testing (Neto et al., 2013) found evidence that Turicibacter
sp. is significantly correlated with plasma CA levels (p < 0.05), where the reactive SNPs occurred
between ~5.39 — 7 Mbp. These reactive SNPs could be partially attributed to the WSB and PWK

haplotypes (Supplemental Figure 3.6B). This reactive mediation model is consistent with the
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pleiotropy analysis where the driver variant occurs between ~5.5 — 7 Mbp. There is also evidence
of a causal relationship (p < 0.005) near ~9 Mbp where the microbe influences the abundance of
the BA, which can also be attributed to the WSB and PWK alleles (Supplemental Figure 3.6C).
However, this locus is in a gene desert, offering no immediate biological interpretation.

From this analysis, we can hypothesize this relationship can be explained by a pleiotropic
model, where a single locus influences a microbial and BA trait, and the microbial trait is also
reactive to changes in the BA trait (Figure 3.4H), with a second locus affecting the microbe, which
in turn affects the BA. It is important to note that statistical inference only partially explains the
relationship between the traits and there may be other hidden variables that may further explain
the relationship. The complex relationship depicted by the causal inference testing is consistent
with the complicated interplay between gut microbes and BAs in the intestine and their known

ability to influence their other.

Bile acids inhibit Turicibacter sanguinis growth at physiologically relevant concentrations

Due to the strong correlative relationship between the QTL, we tested whether there was a
direct interaction between bile acids and Turicibacter. Turicibacter inhabits the small intestine
where concentrations of BAs are greater than in the cecum or colon (Li et al., 2017; Onishi et al.,
2017). We screened the human isolate Turicibacter sanguinis for deconjugation and
transformation activity in vitro by HPLC/MS-MS. We found that T. sanguinis deconjugated ~96-
100% of taurocholic acid and glycochenodeoxycholic acid (Figure 3.5A) within 24 hours. It also
transformed ~6 and 8 % of CA and CDCA to 7-dHCA and 7-ketolithocholic acid (7-KLCA),
respectively (Figure 3.5B-C). The percent transformed did not increase after 24 hours (data not
shown). Both of these transformations occur by action of the bacterial 7a-hydroxysteroid

dehydrogenase.
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Based on these results, we asked if conjugated and unconjugated bile acids differentially
effect T. sanguinis growth. BA concentrations range from ~1-10 mM along the small intestine
(Northfield and McColl, 1973) to ~0.2-1 mM in the cecum (Hamilton et al., 2007). Therefore, we
grew T. sanguinis in the presence of either conjugated or unconjugated bile acids at physiologically
relevant concentrations ranging from 0.1 — 1 mM. T. sanguinis growth decreased with increasing
concentrations of conjugated bile acids and growth was completely inhibited at 1 mM (Figure
3.5D). Unconjugated bile acids affected growth rate at 1 mM (Figure 3.5E), Growth rate was
significantly slower in the presence of 1 mM conjugated and unconjugated bile acids (Figure
3.5G). The slower growth rate at higher concentrations of BAs may affect intestinal abundance of
T. sanguinis.

To compare T. sanguinis sensitivity to conjugated bile acids relative to other small intestine
colonizers, we grew four taxa (Bacteroides thetaiotamicron, Clostridium asparagaiforme,
Lactobacillus reuteri and Escherichia coli MS200-1) known to colonize this region of the intestine
with or without 1 mM conjugated bile acids. Members of these genera are known to have bile salt
hydrolase (BSH) activity to deconjugate bile acids (Ridlon et al., 2006). Unlike T. sanguinis, the
addition of conjugated bile acids had little to no effect on the growth of these four gut microbes
(Supplemental Figure 3.6). Based on the specific sensitivity of T. sanguinis to moderate-high
concentrations of conjugated bile acids, T. sanguinis may use deconjugation as a survival
mechanism to allow it to compete with other ileum colonizing organisms that can tolerate higher
concentrations of conjugated bile acids. Consistent with these findings, Turicibacter abundance
was negatively correlated with cecal TCA levels in the DO mice (r = -0.262, p = 0.0035),

supporting the notion this it is sensitive to elevated conjugated bile acid levels.
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Taken together, these data indicate that T. sanguinis is sensitive to higher concentrations
of conjugated and to a lesser extent unconjugated BA compared to other small intestine colonizers
and that it may use deconjugation to decrease BA toxicity. These reciprocal effects between the
BA and the bacterium provide biological evidence for the correlative relationship shown by the
causal model testing (Figure 3.4H). In summary, using a genetic approach, we identified and
provide validation of a relationship between a genetic locus containing the BA transporter Slc10a2,
and levels of Turicibacter and plasma cholic acid. Based on our findings, we hypothesize that the
identified locus regulates expression of Slcl0a2, altering active BA reabsorption in the ileum,
leading to increased intestinal BA concentrations and alterations in the intestinal BA environment.
Consequently, the resulting change in environmental BA concentration and/or composition
provides an unfavorable habitat for Turicibacter. The loss of Turicibacter’s deconjugation activity

leads to a decrease in circulating free plasma cholic acid levels.
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CONCLUSIONS

In this study, we performed the first known genetic mapping integration of gut microbiome
and BA. We used genetics as an anchor to identify microbe-metabolite interactions and
hypothesize novel host genes involved in shaping gut microbiota and bile acid profiles. Using DO
mice, we identified multiple QTL for gut microbes and bile acids spanning the host genome. These
included loci that associated with individual microbial and BA traits, as well as loci with potential
pleiotropic effects, where a single genetic region influenced both the abundance of a gut microbe
and levels of a BA.

While several studies suggest that host genetic variation has a minor impact on microbiota
composition, there are overlapping findings among different studies in both human and mouse
populations that indicate that specific bacterial taxa are influenced by host genetics. Our results in
the DO population corroborate several of these key findings. For example, we observed the
strongest associations to the host genome with members of the Firmicutes phylum, including
unknown members of the Clostridiales order, the Lachnospiraceae, Christensenellacae and S24-7
families, the Turicibacter and Coprococcus genera, as well as the species Akkermansia
muciniphila and Ruminococcus gnavus (Table 4), all of which have consistently been identified in
multiple studies as either highly heritable or associating to positions on the host genome (Benson
et al., 2010; Davenport et al., 2015; Leamy et al., 2014; McKnite et al., 2012; Org et al., 2015;
Wang et al., 2016). Furthermore, our study replicated correlations between taxa including the
Peptostreptococcaeae and Turicibacteriaceae families (Goodrich et al., 2016). Previous studies in
humans and rats also identified a significant correlation between these taxa (Goodrich et al., 2016;
Lietal., 2017), and both taxa are consistently identified as heritable in humans and mice (Benson

et al., 2010; Goodrich et al., 2016; O’Connor et al., 2014). This correlation is particularly notable
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since we found that these two organisms have complementary BA metabolism capabilities, where
the Turicibacteriaceae family performs the deconjugation necessary for members of
Peptostreptococcaceae to transformations bile acids. BAs must be deconjugated prior to
epimerization, so Peptostreptococcaeae may associate with Turicibacteriaceae in order to utilize
this metabolic capability. Thus, their co-occurrence may provide a fitness advantage for small
intestine colonization. These findings may give insight into microbial dynamics that govern BA
profiles and warrant further investigation. Given the high degree of variability in the gut
microbiome across subjects and host organisms, these instances of congruence between studies
argues that there are specific taxa responsive to host genotype that may warrant follow-up
investigation. Our work with the DO population provides an approach to validate these
associations.

The work presented here plus data from previous studies suggest that BA pool alterations
driven by Slc10a2 activity elicit an impact on gut microbiota community structure and influence
the ability of Turicibacter to colonize and persist in the intestine. Several studies have noted
concomitant changes in microbiota composition and Slc10a2 mRNA levels (Janssen et al., 2017;
Miyata et al., 2011; Out et al., 2015). Furthermore, Enterobacteraceae and enteropathogenic E. coli
can modulate intestinal bile acid transport via Slc10a2 (Annaba et al., 2012; Miyata et al., 2011).
We found that T. sanguinis efficiently deconjugates primary BAs, which may explain the
correlative relationship between the abundance of this taxa and levels of free CA in the plasma.
Although this microbe deconjugates primary BAs, we also found that it is also sensitive to elevated
concentrations of both conjugated and unconjugated BAs. While our data shows that higher
concentrations of conjugated BAs inhibit Turicibacter growth, it is still unknown what intestinal

environment is more favorable for Turicibacter growth and colonization. Future experiments are
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needed to examine how a decrease in Slc10a2 expression changes intestinal BA profiles and the
consequences on Turicibacter colonization.

We also identified multiple host-microbe-metabolite interactions that can be validated with
additional mechanistic studies. More broadly, our work demonstrates that we can identify novel
interactions between microbial and metabolite traits using host genetics and provides new testable
hypotheses to further dissect factors that shape gut microbiota composition. This work may

provide a critical framework for future host-microbe interaction studies.
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EXPERIMENTAL PROCEDURES

Animals and sample collection. Animal care and study protocols were approved by the
University of Wisconsin-Madison Animal Care and Use Committee. DO mice were obtained from
the Jackson Laboratories (Bar Harbor, ME, USA) at ~4 weeks of age and maintained in the
Department of Biochemistry vivarium at the University of Wisconsin-Madison. Mice were housed
on a 12-hour light:dark cycle under temperature- and humidity-controlled conditions. Waves of
DO mice from generations 18, 19 and 21 were obtained three times per year until 500 DO mice
were surveyed. Each wave was composed of equal numbers of male and female mice. All mice
were fed a high-fat high-sucrose diet (TD.08811, Envigo Teklad, 44.6% kcal fat, 34%
carbohydrate, and 17.3% protein) ad libitum upon arrival to the facility. Mice were kept in the
same vivarium room and were individually housed to monitor food intake and prevent coprophagy
between animals. DO mice were sacrificed at 22-25 weeks of age.

The eight DO founder strains (C57BL/6J, A/J, 129S1/SvimJ, NOD/ShiLtJ, NZO/HILtJ, PWK/PhJ,
WSB/EiWJ and CAST/EiJ) were obtained from the Jackson Laboratories. Mice were bred at the
University of Wisconsin-Madison Biochemistry Department. Mice were housed by strain and sex
(2-5 mice/cage), with the exception of CAST that required individual housing. Mice were housed
under the same environmental conditions as the DO animals. Like the DO mice, the eight founder
strains were maintained on the HF/HS diet and were sacrificed at 22 weeks of age, except for NZO
males that were sacrificed at 14 weeks, due to high mortality attributable to severe disease.

For both DO and founder mice, fecal samples for 16S rRNA sequencing were collected
immediately before sacrifice after a 4 hour fast. Cecal contents, plasma, and additional tissues were
harvested promptly after sacrifice and all samples were immediately flash frozen in liquid nitrogen

and stored at -80°C until further processing.
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DNA extraction. DNA was isolated from feces wusing a bead-beating protocol
{Turnbaugh:2009ei}{Turnbaugh:2009ei}. Mouse feces (~1 pellet per animal) were re-suspended
in a solution containing 500ul of extraction buffer [200mM Tris (pH 8.0), 200mM NACL, 20mM
EDTA], 210ul 0f20% SDS, 500ul phenol:chloroform:isoamyl alcohol (pH 7.9, 25:24:1) and 500ul
of 0.1-mm diameter zirconia/silica beads. Cells were mechanically disrupted using a bead beater
(BioSpec Products, Barlesville, OK; maximum setting for 3 min at room temperature), followed
by extraction with phenol:chloroform:isoamyl alcohol and precipitation with isopropanol.
Contaminants were removed using QlAquick 96-well PCR Purification Kit (Qiagen, Germantown,
MD, USA). Isolated DNA was eluted in 5 mM Tris/HCL (pH 8.5) and was stored at -80°C until

further use.

16S rRNA Sequencing. PCR was performed using universal primers flanking the variable 4 (\V4)
region of the bacterial 16S rRNA gene (Kozich et al., 2013). Genomic DNA samples were
amplified in duplicate. Each reaction contained 10-30 ng genomic DNA, 10 uM each primer, 12.5
pl 2x HiFi HotStart ReadyMix (KAPA Biosystems, Wilmington, MA, USA), and water to a final
reaction volume of 25 pl. PCR was carried out under the following conditions: initial denaturation
for 3 min at 95°C, followed by 25 cycles of denaturation for 30 s at 95°C, annealing for 30 s at
55°C and elongation for 30 s at 72°C, and a final elongation step for 5 min at 72°C. PCR products
were purified with the QlIAquick 96-well PCR Purification Kit (Qiagen, Germantown, MD, USA)
and quantified using Qubit dsSDNA HS Assay kit (Invitrogen, Oregon, USA). Samples were
equimolar pooled and sequenced by the University of Wisconsin — Madison Biotechnology Center

with the MiSeq 2x250 v2 kit (Illumina, San Diego, CA, USA) using custom sequencing primers.
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16S analysis. Demultiplexed paired end fastq files generated by CASAVA (lllumina) and a
mapping file were used as input files. Sequences were processed, quality filtered and analyzed
with QIIME2 (version 2018.4) (https://giime2.org), a plugin-based microbiome analysis platform
(Caporaso et al., 2010). DADAZ2 (Callahan et al., 2016) was used to denoise sequencing reads with
the g2-dada2 plugin for quality filtering and identification of de novo exact sequence variants
(ESVs) (i.e. 100% exact sequence match). This resulted in 20,831,573 total sequences with an
average of 52,078 sequences per sample for the DO mice, and 2,128,796 total sequences with an
average of 34,335.4 sequences per sample for the eight DO founder strains. Sequence variants
were aligned with mafft (Katoh and Standley, 2013) with the g2-alignment plugin. The g2-
phylogeny plugin was used for phylogenetic reconstruction via FastTree (Price et al., 2010).
Taxonomic classification was assigned using classify-sklearn (Bokulich et al., 2018) against the
Greengenes 13 8 99% reference sequences (McDonald et al., 2012). Alpha- and beta-diversity
(weighted and unweighted UniFrac (Lozupone and Knight, 2005) analyses were performed using
g2-diversity plugin at a rarefaction depth of 10000 sequences per sample. For the DO mice, one
sample (DO071) was removed from subsequent analysis because it did not reach this sequencing
depth. For analysis of the eight DO founder strains, one sample (NOD5) was removed because it
did not reach this sequencing depth. Subsequent processing and analysis were performed in R
(v.3.5.1), and data generated in QIIME2 was imported into R using Phyloseq (McMurdie and
Holmes, 2013). Sequencing data was normalized by cumulative sum scaling (CSS) using
MetagenomeSeq (Paulson et al., 2013). Summaries of the taxonomic distributions were generated
by collapsing normalized ESV counts into higher taxonomic levels (genus to phylum) by

phylogeny. We defined a core measurable microbiota (CMM) (Benson et al., 2010) to include only
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microbial traits present in 20% of individuals in the QTL mapping. In total, 86 ESVs and 42

collapsed microbial taxonomies comprised the CMM.

Sample preparation for plasma bile acid analysis. 40 uL. of DO plasma collected at sacrifice
(30 uL used for founder strains) were aliquoted into a tube with 10 uLL SPLASH Lipidomix internal
standard mixture (Avanti Polar Lipids, Inc.). Protein was precipitated by addition of 215 pL
MeOH. After the mixture was vortexed for 10 s, 750 uL methyl tert-butyl ether (MTBE) were
added as extraction solvent and the mixture was vortexed for 10 s and mixed on an orbital shaker
for 6 min. Phase separation was induced by adding 187.5 uL of water followed by 20 s of
vortexing. All steps were performed at 4 °C on ice. Finally, the mixture was centrifuged for 4 min
at 14,000 x g at 4 °C and stored at -80 °C. For targeted bile acids analysis, samples were thawed
on ice. 400 pL of ethanol were added to further precipitate protein, as well as 15 pL of isotope-
labeled internal standard mix (12.5 pM d4-TaMCA, 10 uM d4-CDCA). The samples were
vortexed for 20 s and centrifuged for 4 min at 14,000 g at 4 °C after which the supernatant (ca.
1000 pL) was taken out and dried down. Dried supernatants were resuspended in 60 puL. mobile
phase (50 %B), vortexed for 20 s, centrifuged for 4 min at 14,000 g and then 50 puLL were transferred

to vials with glass inserts for MS analysis.

Sample preparation for cecal bile acid analysis. 30 (£ 7.5) mg cecal contents along with 10 puL
SPLASH Lipidomix internal standard mixture were aliquoted into a tube with a metal bead and
270 uL. MeOH were added for protein precipitation. To each tube, 900 uL MTBE and 225 pL of
water were added as extraction solvents. All steps were performed at 4 °C on ice. The mixture was

homogenized by bead beating for 8 min at 25 Hz. Finally, the mixture was centrifuged for 4-8 min
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at 11,000 x g at 4 °C. Subsequent processing for the DO mice and eight DO founder strains differed
due to other analysis performed on the samples that is not presented in this paper. For DO samples,
100 pL of the aqueous and 720 pL of organic layer were combined and stored at -80 °C. For
analysis, these were thawed on ice and 400 pL of ethanol were added to further precipitate protein,
as well as 15 puL of isotope-labeled internal standard mix (12.5 uM d4-TaMCA, 10 uM d4-CDCA).
The samples were vortexed for 20 s and centrifuged for 4 min at 14,000 g at 4 °C after which the
supernatant (ca. 1000 uL) was taken out and dried down. Dried supernatants were resuspended in
100 pL. mobile phase (50 %B), vortexed for 20 s, centrifuged for 8 min at 14,000 g and then 50 puL
were transferred to vials with glass inserts for MS analysis. For the eight DO founder strains, the
mixture was dried down including all solid parts and stored dried at -80 °C. For targeted bile acid
analysis, these dried down samples were then thawed on ice and reconstituted in 270 puL of
methanol, 900 uL of MTBE, and 225 pL of water. 400 uL of ethanol were added to further
precipitate protein, as well as 15 uL of isotope-labeled internal standard mix (12.5 uM d4-TaMCA,
10 uM d4-CDCA). The mixture was bead beat for 8 min at 25 Hz and centrifuged at 14,000 g for
8 minutes after which the supernatant (ca. 1500 puL) was taken out and dried down. Dried
supernatants were resuspended in 100 pL mobile phase (50 %B), vortexed for 20 s, centrifuged

for 4 min at 14,000 g and then 90 uL. were transferred to vials with glass inserts for MS analysis.

Measurement and analysis of mouse bile acids. LC-MS analysis was performed in randomized
order using an Acquity CSH C18 column held at 50 °C (100 mm X 2.1 mm x 1.7 um particle size;
Waters) connected to an Ultimate 3000 Binary Pump (400 pL/min flow rate; Thermo Scientific).
Mobile phase A consisted of 10 mM ammonium acetate containing 1 mL/L ammonium hydroxide.

Mobile phase B consisted of MeOH with the same additives. Mobile phase B was initially held at
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50% for 1.5 min and then increased to 70% over 13.5 min. Mobile phase B was further increased
to 99% over 0.5 min and held for 2.5 min. The column was reequilibrated for 5.5 min before the
next injection. Twenty microliters of plasma sample or ten microliters of cecum sample were
injected by an Ultimate 3000 autosampler (Thermo Scientific). The LC system was coupled to a
TSQ Quantiva Triple Quadrupole mass spectrometer (Thermo Scientific) by a heated ESI source
kept at 325°C (Thermo Scientific). The inlet capillary was kept at 350 °C, sheath gas was set to 15
units, auxiliary gas to 10 units, and the negative spray voltage was set to 2,500 V. For targeted
analysis the MS was operated in negative single reaction monitoring (SRM) mode acquiring
scheduled, targeted scans to quantify selected bile acid transitions, with two transitions for each
species’ precursor and 3 min retention time windows. Collision energies were optimized for each
species and ranging from 20-55 V. Due to insufficient fragmentation for unconjugated bile acids,
the precursor was monitored as one transition with a CE of 20 V. MS acquisition parameters were
0.7 FWHM resolution for Q1 and Q3, 1 s cycle time, 1.5 mTorr CID gas and 3 s Chrom filter. In
total, 27 bile acids, including 14 unconjugated, 9 tauro- and 4 glycine-conjugated species, were
measured. The resulting bile acid data were processed using Skyline 3.6.0.10493 (University of
Washington). For each species, one transition was picked for quantitation, while the other was
used for retention time confirmation. Normalization of the quantitative data was performed to the
internal standard d4-CDCA as indicated in Equation 1.

Equation 1: (Peak Area / d4-CDCA Peak Area) - Average of d4-CDCA Peak Area

Genotyping. Genotyping was performed on tail biopsies as previously described (Svenson et al.,
2012) using the Mouse Universal Genotyping Array (GigaMUGA) [143,259 markers] (Morgan et

al., 2015) at Neogen (Lincoln, NE). Genotypes were converted to founder strain-haplotype
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reconstructions using a hidden Markov model (HMM) implemented in the R/DOQTL package
(Gatti etal., 2014). We interpolated the GigaMUGA markers onto an evenly spaced grid with 0.02-
cM spacing and added markers to fill in regions with sparse physical representation, which resulted

in 69,005 pseudomarkers.

QTL mapping. We performed QTL mapping using the R package R/qtl2 (Broman, 2018). QTL
mapping was done through a regression of the phenotype on the founder haplotype probabilities
estimated with a HMM designed for multi-parental populations. Genome scans were performed
for each phenotype with sex, cohort (wave), and days on diet were included as additive covariates
for the trait mapping. Genetic similarity between mice was accounted for using a kinship matrix
based on the leave-one-chromosome-out (LOCO) methods. For microbial QTL mapping,
normalized gut microbiota abundance data was nqgrank transformed. For bile acid QTL mapping,
normalized plasma and cecal bile acid levels were log2 transformed. The mapping statistic
reported is log of the odds ratio (LOD). The significance thresholds were determined by
performing 1000 permutations of genome-wide scans by shuffling phenotypic data in relation to
individual genotypes. QTL reaching a LOD score > 5.5 were considered of interest and the QTL

support interval was defined using the 95% Bayesian credible interval.

Mediation and pleiotropy analysis. To assess whether two co-mapping traits were caused by a
pleiotropic locus, we used a likelihood ratio test implemented with the open source R package
R/qtl2pleio (Boehm, 2018). Here, we compared the alternative hypothesis of two distinct loci with
the null hypothesis of pleiotropy for two traits that map to the same genetic region. Parametric

bootstrapping was used to determine statistical significance (p < 0.05). Mediation analysis was
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applied to identify whether a microbe or bile acid were likely to be a causal mediator of the QTL
as presented in Li et al. (Li et al., 2010). This analysis was adapted from a general approach
previously described to differentiate target from mediator variables (Baron and Kenny, 1986). The
effect of a mediator on a target was evaluated by performing an allele scan or SNP scan using the
target adjusted by mediator. Only individuals with both values for both traits were considered for
mediation analysis. Traits with a LOD drop >2 after controlling for the mediator were considered
for further causality testing. To statistically assess causality between microbial and bile acid trait
sets (causal, reactive, independent, undecided), a causal model selection test (Neto et al., 2013)
was applied using the R packages R/intermediate and R/qtl2. Causal model selection tests were

evaluated on both alleles and SNPs in peak region.

RNA extraction. Total RNA was extracted from flash-frozen distal ileum tissues by TRIzol
extraction and further cleaned using the RNeasy Mini Kit (Qiagen, Germantown, MD, USA). DNA
was removed by on-column DNase digestion (Qiagen). Purified RNA was quantified using a

Nanodrop 2000 spectrophotometer.

Quantitative Real-Time PCR. SuperScript Il Reverse Transcriptase with oligo(dT) primer (all
from Invitrogen, Carlsbad, CA, USA) was used to synthesize 20 pul cDNA templates from 1 pg
purified RNA. cDNA was diluted 2X before use and qRT-PCR reactions were prepared ina 10 pl
volume using SsoAdvanced Universal SYBR Green Supermix (Bio-Rad, Hercules, CA, USA) and
400 nM specific primers targeting the gene of interest (SLC10A2-F [5’-
TGGGTTTCTTCCTGGCTAGACT-3’]; SLC10A2-R [5’- TGTTCTGCATTCCAGTTTCCAA-

3’] (Rao et al., 2016)). All reactions were performed in triplicate. Reactions were run on a CFX96
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Real-Time PCR System (Bio-Rad, Hercules, CA, USA). The 2-AACt method (Livak and
Schmittgen, 2001) was used to calculate relative changes in gene expression and all results were

normalized to GAPDH.

Bacterial culturing. Bacterial strains were obtained from DSMZ and ATCC. All strains were
cultured at 37°C under anaerobic conditions using an anaerobic chamber (Coy Laboratory
Products) with a gas mix of 5% hydrogen, 20% carbon dioxide and 75% nitrogen. Strains were
grown in rich medium (Supplemental Table 2) that was filter sterilized and stored in the anaerobic
chamber at least 24 hours prior to use. L. reuteri was grown in medium supplemented with 20 mM
glucose. For all in vitro assays, cultures used for inoculation were grown overnight at 37°C in 10
mL 14b medium in anaerobic Hungate tubes. Stock solutions of conjugated bile acids (TCA,
GCDCA) and unconjugated bile acids (CA, CDCA, DCA) were prepared to a final concentration

of 100 mM and used for all in vitro assays. All bile acids used were soluble in methanol.

Microbial bile acid metabolism screen. Stock solutions of conjugated and unconjugated bile
acids (100 mM) were added to 3 ml 14b medium to obtain a final concentration of 100 uM total
bile acid. Tubes were inoculated with a T. sanguinis cultured overnight, then incubated in the
anaerobic chamber at 37°C for 48 hours. At the 24- and 48-hour timepoints, 1 mL of each culture
was removed and the supernant was collected after brief centrifugation. Each culture supernant
was diluted 10x in initial running solvent (30:70 MeOH:10 mM ammonium acetate). Samples were
spun at max speed for 3 minutes to remove suspended particles prior to loading on the uHPLC.

Samples were analyzed using a uHPLC coupled with a high-resolution mass spectrometer.
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Microbial bile acid screen uHPLC-MS/MS parameters. 10 pL aliquots of diluted supernatant
samples were analyzed using a UHPLC-MS/MS system consisting of a Vanquish uHPLC coupled
by electrospray ionization (ESI) (negative mode) to a hybrid quadrupole-high-resolution mass
spectrometer (Q Exactive Orbitrap; Thermo Scientific). Liquid chromatography separation was
achieved on an Acquity UPLC BEH C18 column (2.1-by 100-mm column, 1.7-um particle size)
heated to 50°C. Solvent A was 10 mM Ammonium acetate, pH 6; solvent B was 100% methanol.
The total run time was 31.5 minutes with the following gradient: 0 min, 30% B; 0.5 min, 30% B;
24 min, 100% B; 29 min, 100% B; 29 min, 30% B; 31.5 min, 30% B. Bile acid peaks were
identified using the Metabolomics Analysis and Visualization Engine (MAVEN) (Clasquin et al.,

2012).

Growth curves. Bacterial growth rate was measured in medium 14b supplemented with either 100
uM, 300 uM, 1 mM bile acids or methanol control. Medium was dispensed inside an anerobic
chamber into Hungate tubes. Tubes containing 10 mL of medium were inoculated with 30 puL of
an overnight culture and incubated at 37°C for 24 hours. T. sanguinis was grown with shaking to
disrupt the formation of flocculent colonies. Growth was monitored as the increase in absorbance
at 600 nm in a Spectronic 20D+ spectrophotometer (Thermo Scientific, Waltham, MA, USA).
Growth rate was determined as p = In(X/Xo0)/T, where X is the OD600 value during the linear
portion of growth and T is time in hours. Values given are the mean p values from two independent

cultures done in triplicate.

Statistical analysis. All statistical analyses were performed in R (v.3.5.1) (Team). Unless

otherwise indicated in the figure legends, differences between groups were evaluated using
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unpaired two-tailed Welch’s t-test. For multiple comparisons, Krustkal-Wallis test was used if
ANOVA conditions were not met, followed by Mann-Whitney/Wilcoxon rank-sum for multiple
comparisons and adjusted for multiple testing using the Benjamini-Hochberg FDR procedure. The
correlation between the abundance of microbial taxa was performed using Spearman’s correlation
in the “Hmisc” (v.4.1-1) R package (Harrell Jr and others, 2018). The p-values were adjusted using
the Benjamini and Hochberg method, and correlation coefficients were visualized using the
“pheatmap” (v.1.0.10) (Kolde, 2018). Multiple groups were compared by Kruskal-Wallis test and
adjusted for multiple testing using the Benjamini-Hochberg FDR procedure. Significance was
determined as p-value < 0.05. To assess magnitude of variability of the CMMs, summary statistics
were calculated on each CMM (taxa and ESVs). Non-parametric-based PERMANOVA statistical
test (McArdle and Anderson, 2001) with 999 Monte Carlo permutations was used to compare

microbiota compositions among groups using the Vegan R package (Oksanen et al., 2018).
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Figure 3.1. Phenotypic variation among Diversity Outbred (DO) mice fed high-fat and high-
sucrose diet. (A) Body weight at 6, 10, 14, and 21-25 (sacrifice) weeks in DO mice fed high-fat
and high-sucrose diet (n = 500) (Adapted from Keller et al. (Keller et al., 2018)) (B) Distributions
of the normalized relative abundance of bacterial phyla identified in DO fecal microbiota (n =

399). (C) Abundance (peak area) of primary bile acids detected in plasma and (D) cecal contents

(n=384).
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Figure 3.2. Genetic architecture of quantitative trait loci (QTL) for microbial exact sequence
variants (ESVs) and taxa abundance, and plasma and cecal bile acids in Diversity Outbred (DO)
mice. The outer layer shows the chromosome location where major tick marks correspond to 25
Mbp. Logarithm of the odds (LOD) range is shown for each track. Each dot represents a QTL on

each chromosome of the mouse genome for a given trait. Grey dots denote QTLs with LOD <5.5.

Colored dots correspond to QTL with LOD > 5.5.
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Figure 3.3. Co-mapping of Turicibacter sp. and plasma cholic acid (CA) QTL on chromosome 8.

Haplotype effects of the eight DO founder strains on the (A) fecal abundance of Turicibacter sp.

and (B) plasma CA levels. The x-axis indicates the position in Mb along chromosome (chr) 8. The

y-axis for the top panel indicates the effect coefficient depicting the estimated contributions of

each founder allele, and the y-axis in the bottom panel is the LOD score. A/J and WSB founder

alleles are associated with higher and lower levels of Turicibacter and plasma CA levels,

respectively. The estimated founder strain abundance of (C) Turicibacter and (D) levels of plasma

CA in the DO population reflects measured values observed in founder strains for (E) the

abundance of Turicibacter sp. and (F) plasma cholic acid levels (n = 8 mice/genotype, 4 male and

4 female). (G) SNPs (top panel) and protein coding genes (bottom panel) under the QTL interval.
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Magenta dots correspond to SNPs with the strongest association where the LOD drop < 1.5 from
the top SNP. (H) Relative expression of Slc10a2 measured in the distal ileum by gRT-PCR in AJ
and WSB parental strains (n =6, 3 male and 3 female). Data are presented as mean+ SEM; Welch’s
t test; * p < 0.05. Correlation p-values adjusted for multiple tests using Benjamini and Hochberg

correction.
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Figure 3.4. Mediation analysis and causal inference testing suggest causal relationship between

Turicibacter sp. abundance and plasma cholic acid (CA) levels. (A) Hypothetical causal model
that proposes that cholic acid (CA) mediates the changes in Turicibacter sp. abundance. (B)
Change in LOD score of plasma CA when adjusting for Turicibacter sp. abundance. (C)
Hypothetical causal model that proposes that Turicibacter sp. mediates changes in abundance of
plasma CA levels. (D) Change in LOD score of Turicibacter sp. when controlling for plasma CA

levels. (E) Predicted model based on pleiotropy and causal model hypothesis testing.
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Figure 3.5. Turicibacter sanguinis and bile acid interactions. (A) Percent of conjugated bile acids

detected after 24-hour incubation with or without the presence of T. sanguinis. (B) Transformation

of cholic acid (CA) to 7-dehydrocholic acid (7-dHCA), and (C) chenodeoxycholic acid (CDCA)

to 7-ketolithocholic acid (7-KLCA) by T. sanguinis after 24 hours. Growth rate of T. sanguinis in

the presence of 100uM, 300uM and 1mM (D) conjugated (equimolar pool of taurocholic acid
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(TCA) and glycochenodeoxycholic acid (GCDCA)), and (E) unconjugated (equimolar pool of
cholic CA, CDCA, and deoxycholic acid (DCA)) bile acids over 24 hours. (F) T. sanguinis yield
after 24 hours of incubation with varying concentrations of conjugated (c) and unconjugated (u)
bile acids, as determined by optical density at 600nm. (G) Growth rate of T. sanguinis in medium
supplemented with varying concentrations of conjugated and unconjugated bile acids. Data shown
are from one experiment with three technical replicates. Data are presented as mean £ SEM; one-
way ANOVA followed by Tukey’s multiple comparisons test; ** p < 0.01, *** p <0.001, **** p

< 0.0001.
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Supplemental Figure 3.1. Principal coordinate analysis (PCoA) of unweighted UniFrac distances
for fecal samples shows significant clustering by (A) wave (F = 16.9535, p = 0.001) and (B) sex

(F =5.57169, p = 0.001). Clustering by treatment evaluated by PERMANOVA.
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Supplemental Figure 3.2. Plasma and cecal bile acids do not group by batch or sex. PCAs of

plasma bile acid profiles colored by (A) sex (PC1, p = 2.2e-16; PC2, p = 0.001696) and (B) batch

(PC1, p=0.5937; PC2, p = 0.4588), and PCAs of cecal bile acid profiles colored by (C) sex (PC1,

p = 0.011; PC2, p = 8.4e-05) and (D) batch (PC1, p = 0.2072; PC2, p = 0.009). Kruskal Wallis

one-way test followed by Wilcoxon pair-wise multiple comparisons with Benjamini and Hochberg

correction.
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Supplemental Figure 3.3. Related bile acid species map associate to same locus. (A) Cecal levels
of isolithocholic acid (ILCA) and lithocholic acid (LCA) associate to same locus on chr 11. (B)
Estimated founder allele effects for cecal ILCA and (C) LCA. (D) Genes under cecal LCA and
ILCA QTL interval. (E) Haplotype effects and LOD scores of plasma taurodeoxycholic acid
(TDCA), (F) cecal deoxycholic acid (DCA), (G) cecal isodeoxycholic acid (IDCA) and (H) cecal
hyodeoxycholic acid (HDCA). For each plot, the x-axis is the physical position in Mb along chr
12. The y-axis for the top panel is the effect coefficient depicting the estimated contributions of

each founder allele, and the y-axis in the bottom panel is the LOD score.



142

A Akkermansia muciniphila B Plasma Cholic Acid F DO Mice
3 o
2 s
72} £
£ :
Lo 5
[ B
a -1 Al NZO AJ NZO | §
=mB6 ==CAST mbE == CASI E
_o|[=120 wmpwK 128w PWK S
==NOD ==WSB _15|/=nNoD =wss %
6 ------------- T
o o 5 9 12 15 18 21
8 3 4 Plasma CA
w w 3
) o)
2 -
9 S ; G DO Mice
0 15
50 100 150 50 100 150 s
Chr 1 Position Chr 1 Position 5
S 104
C Plasma Muricholic Acid D Plasma 7-dehydrocholic Acid _E
&
& 59
05 £
&2 12} =
£00 go 2
w w 100 125 150 175 200
0.5
6— ] NZo 6—0.5 o~ e Plasma MCA
L1o||Z% o =% S .
|| m=NOD ==wSB —1.0| =NOD ==wWsB H DO Mice
T
o 6 o s
3 3 £
n 4 (2] s
[m] [a] £
S 2 9 =
c
0 ]
50 100 150 50 100 150 E
5]
Chr 1 Position Chr 1 Position = r=008
< 4 p=9.
10.0 125 15.0
Plasma 7-dHCA

Agap1 [Cops8 JUbe2f 1Gpc1 RHdIbp |Fam174a W Ppipsk2
|Gbx2  BCol6a3 | Asbi I Nduta10 | Mierf4 i si8siad | BEl B sicoBdt
BAsbia  [Miph [ Trafdipt  |Olir1416 | Galast2 IDiErde22e
| |Prih |Oifr1415 | Ppp1r7 IGin1
I Twisi2 |Olir1414 Ano7 |Neud
B Lrfip1 | Sept2
| Rbm44 |oifr1412
1Ramp1 |oiratt  |stkes
|oir1410 | Bok
| Espnl |oifr12 I Sned1 | Pdedt
| Kinizo I Thapa
|Erte | Otos | 2310007B03Rik
likap fAnkmy1 JAtgdb
Irer2 |Dusp28
linas
|capn10 JD2hadh
lcpr3s  |Gaistzb
|Agp12
Bxitia
JCroce2
0 92 94 96 98 100

Chr 1 Position

Supplemental Figure 3.4. Exact sequence variant of Akkermansia muciniphila and plasma bile
acid QTL overlap on chr 1. Haplotype effects and LOD scores of (A) A. muciniphila (B) plasma
cholic acid (CA), (C) plasma muricholic acid (MCA), and (D) plasma 7-dehydrocholic acid (7-

dHCA). For each plot, the x-axis is the physical position in Mb along chr 1. The y-axis for the top
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panel is the effect coefficient depicting the estimated contributions of each founder allele, and the
y-axis in the bottom panel is the LOD score. (E) Protein coding genes under 10 Mbp QTL interval.
Spearman correlations in the DO mice between A. muiniphila and (F) plasma CA, (G) plasma
MCA, and (H) plasma 7-dHCA levels. Correlation p-values adjusted for multiple tests using
Benjamini and Hochberg correction. Higher levels of these microbial and bile acid traits were
associated with the NZO haplotype and lower levels were associated with the 129 haplotype. (E)
Protein coding genes under 10 Mbp QTL interval. Spearman correlations in the DO mice between
A. muiniphila and (F) plasma CA, (G) plasma MCA, and (H) plasma 7-dHCA levels. Correlation

p-values adjusted for multiple tests using Benjamini and Hochberg correction
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Supplemental Figure 3.5. Peptostreptococcaceae and plasma bile acids co-map on chr 3.

Haplotype effects and LOD scores of (A) Peptostreptococcaceae family, (B) plasma cholic acid

(CA), (C) plasma chenodeoxycholic acid (CDCA), (D) plasma muricholic acid (MCA), (E) plasma

ursodeoxycholic acid (UDCA), and (F) plasma 7-dehydrocholic acid (7-dHCA). For each plot, the

x-axis is the physical position in Mb along chr 3. The y-axis for the top panel is the effect
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coefficient depicting the estimated contributions of each founder allele, and the y-axis in the
bottom panel is the LOD score. All overlapping QTL have positive association with the NOD

allele. (G) Protein coding genes under QTL interval.
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Supplemental Figure 3.6. Pleiotropy and causal inference testing describe overlapping QTL for
Turicibacter sp. and plasma cholic acid (CA) on chromosome 8. (A) Profile logarithm of the odds
(LOD) curves for close linkage vs pleiotropy hypothesis test for Turicibacter sp. abundance and
plasma CA levels. Gray trace denotes pleiotropy. Triangles indicate the univariate LOD maxima

and diamonds indicate the profile LOD maxima. Pleiotropy analysis performed using 1000
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bootstrap samples. (B) Turicibacter sp. is reactive as shown by causal model hypothesis testing.
Plot indicates SNPs associated with Turicibacter sp. as either causal or reactive. Allele pattern of
SNPs denoted by different pattern colors. (G) Plasma CA is reactive to Turicibacter sp. as shown

by causal model hypothesis testing.
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Supplemental Figure 3.7. Gut associated bacteria have differential growth responses to
conjugated bile acids. Growth rate in the presence of 1 mM conjugated bile acids or methanol
control for (A) Bacteroides thetaiotamicron, (B) Clostridium asparagiforme, (C) Escherichia coli
MS200-1, and (D) Lactobacillus reuteri. Data shown are from one experiment with three technical
replicates. Data are presented as mean = SEM; Welch’s t test; no significant differences were

observed between growth conditions for any of the tested organisms.



149

Table 3.1. Measures of variability of microbial exact sequence variants (ESVs) or taxon (phylum, class, order,
family, genus) in DO mice. n =399, Data presented as normalized read counts. SD, standard deviation.

Rank Trait Samples  Mean Median ~ SD Min Max

ESV 00cd2f68603124759047487807589F27 174 3.069 8.051 1.254 2.129 11.147
ESV 02408cd60926b 71813 4a2{8955136ac 200 10.011 10.131 1.712 2377 13.427
LSV 029%ac 1f87abeac7dbaclababed 89cfec 328 10.624 10,776 1.495 4,262 13.917
ESV 06338b 7745018590396 243 7t449fa00a 381 7.521 7.600 1.447 3.550 11.297
| Y 0ad13b6d 1cd98ad 7e816ec9909d33114 357 8.552 8.479 1.377 5.111 12.663
ESY 0e064a94474c09%cd422c1ef160ab28e 205 8.343 8.270 1.412 4.399 12.758
ESV 14¢78619269b8c455 54 abda8ddi2(22¢ 237 5.901 5.99 0.913 2.699 8.319
ESV 1930d2ae4018583d0606e705beea3 1bdl 135 3010 4.947 1.764 0.655 13.218
ESV 1c281deat7 1c6d702d 1ddadfa®53eact 139 6.001 6.071 1.224 2.087 9.741
LSv 20a¢30224£0d69236151be02ac845631 142 7.557 7.655 1.190 3.896 10.924
ESY 270274564 7e 14 2daefddcac78b43c7 230 5.854 6.092 1.505 0.999 10.190
LSV 31217980cdl305668ba%c8482a34¢81 125 4.003 3.946 0.873 2.019 7.147
ESV 319210892:08ec28 249363 7Hd a2 8d60) 149 3.635 3.687 0.813 1.548 5.673
ESY 324a68faca87d16¢8c64abe6856¢1003 261 5.163 5.158 0.936 2877 8.003
LSV 3562d3a0374b912ed190cla7aaTdedb7 39 5.248 3.092 1.117 2.832 8.896
ESV 4598eTdbGdfFS10 1 9ffdfGe50dc05df4 241 5.618 5.447 1.697 1.860 10.179
| Y 50313555c1a4385e25c85b06a5c8ad42 244 5.639 3.730 0.956 3.147 8.628
ESVY 52844958401983847ecd0b741a%ad 71 228 8.121 8.508 2.265 1.761 12,195
ESY 538add871396be3 1ee52bdebeT3542a 226 8.704 9.08% 1471 2.464 11.474
ESV 54dch911e2ab04e9d5b30c3912100b4 1 249 6.29 6.186 1.588 2,190 11,048
ESV 62dc76a093260359be5946507e82e91a 148 4.544 4.491 1.144 1.347 7.2006
LSV 6536aTbc84¢05500ct05185628c91407 177 5.586 5.702 0875 3273 7.574
ESY 682dde(43b6d08ef20021dc 1ed234406d 156 4.893 4.695 1.435 2.380 11.980
LSv 6a8118b17d1d40cf877db24449¢eb6 16 249 6.282 6.321 1.440 2.153 9.439
ESV 6e77543756dde39:81c925b6th1c8b17 142 5.671 5.647 1.114 2.478 8.587
ESV 727992952atbbf 55406 b97c29855¢9¢2 316 6.260 6.318 1.523 2.044 10.691
LSV T2e530a420612e4804d50214dfca83 87 391 9.963 0.973 1276 5.571 13,596
ESV Th28c20e72c6c95b 3604084924 5770 222 10.107 10.520 2.368 3.433 14.816
LSV 80dd7110133ba7b0b03 71699904 1848 145 3.074 3136 0.993 1.662 7.946
ESV 811133 8edef%eechd73298 Tce878cha 157 4.634 4.334 1.324 2.626 11.324
ESY 2b6b13c8006338590139¢10569b4cda 373 8.553 8.477 1.412 4755 12.066
ESV 86335947ddte576¢c1bb9cd 2deb3998df 268 3.286 5333 0.909 1.769 7.744
ESV 89¢b9aac28805b300fa544Ged4fa08 17 278 9.636 9.940 1.635 2.968 12.951
| DAY 8065d91c013525d1¢86061ab40c0a88b 163 6.014 6.064 1422 1.541 9.712
ESY 8dal8b476bo 46105364743 5b68O0LB0 376 7.439 7.523 0.940 1.339 10.023
LSV 87416663a319a304acb 8284be 7 1{d23 318 6.552 6.590 0.838 0.999 9.417
ESV 901c9973bde010e1a5e49023e63c0252 247 5.387 5.431 1.060 1.713 8.810
ESV 912487364b4£da5393a03447d60 1119 189 4.345 4.362 0.839 2475 6.882
LSV 92466 81342d19de3 5¢2226e4a6c09bd 148 7.688 7.701 1.198 5.003 10.887
ESV 958d78a02bet69a793806f97adb 11 7ea 241 8.671 8.831 1.010 4916 10.688
LSV 9b4036adb487adtedcadB84346b3b9aTb 237 7.533 7.339 1163 4.988 10.487
ESV 9h&ILE11be2292552e327(16a2 1 Feetf 127 3.854 3924 0.549 2.468 5.371
ESY 963b0ccObb60LTEIT20¢102089¢55 297 7.108 7.041 1.130 3.782 9.967
LSV f3ae0f6096976f00cdTe13a471 71 196 3381 5.439 237 1.881 10.722
ESV a728aldeel 7d5afbd677e6ec19c2391 266 5.549 5.625 1.183 2.385 9.428
ESV bOL809cbabf3ac99182581cc095868b2 289 8.817 9.063 1.368 2342 11.901
ESVY b135d97b79acc30860e1 1845 1afad124 301 9.973 10.247 1.460 3272 12.508
ESV b1652det64d4c8ec2d 12342668701204 144 4.834 4.843 1324 1.955 7.356

ESV bG3410081e87ed629211d7th 136ecd 3F 288 6.988 7.006 1.315 1.210 10.000
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ESV bal9%b8193a715chic3d44d03cedan0s 191 4.780 4.843 0.846 2.104 7.838
ESV bbeeOt3d24T Teac 7790 70c ac2c57 ed 291 7.736 7.778 1.297 3114 10.694
ESY beb1407c19f7fa27ce3bbelaa7f36157 144 5.890 6.054 1.237 2.420 9322
LSV bfa3561cald3 1bcasdbe08e2dOf 7937 196 5422 5.453 1222 1.667 9.675
ESY <014aa25b920b3 16e503£0308c05ab9 201 5.513 5.601 1.094 0.580 8.491
LSV ¢735a¢6008025d80134bd 14971219d 3¢ 230 6.733 6.489 1.390 3.874 11.287
ESV 97 14e76481a05%9ef7hba0 1 1bb8h1d40 161 5.741 5.787 1.169 2.0306 9.124
ESY ch8bBadee6belal 1318b24a45 alel2a 154 6.439 6.493 1.741 2.390 11.974
LSV cbdeOfdfccTble56aace302¢2b9b370¢ 268 7.413 7.657 1310 2716 9.9335
ESV ce82a5a0b284dead7583c8afa5a09733 135 6.900 6.973 (0.933 2.490 8.858
LSV ce 784 14357068359ddae6ad 7h6 592408 345 7.093 7.230 1324 1.342 10.582
ESV d1144b4e335125128be28401522dd41a 392 11.908 12113 1.726 5.804 15.891
ESV d6¢da88bd8370a52076b0dalde1224%a 205 5.898 5.957 1401 2.197 9.673
ESV daacd3be6cf16991£62a085babit3bG 212 8.201 8.090 1.051 5.307 11.200
ESY dfe3d38eec730326754d8c] 7aBbSete 198 10.407 11.004 2.540 0.996 14.375
LSV 04cbBe06d3 5 feele181a15{ed4511d0e 204 4.519 4.481 0.864 1.062 6.937
ESY ef3ad0c4f2605019887d73ceanab84£2 301 8.791 8.815 1.558 4.100 12.852
LSV [3¢9d78dacead2d3450807483 1ac3dd 153 6.547 6.412 1.290 3.984 9.978
ESV 19c752d5¢510e07c4 57029af2dod 3 1b 136 3.809 3070 1.072 1.843 10.521
class Bacilli 07 23471 21.338 12.350 0.914  120.627
clags Bacteroidia 396 77.834 76.991 23.967 14216  169.5358
class Clostridia 307 265702 263.955 108.537 5016 569.740
class Coriobacteriia 388 12,729 3,030 3.450 5317 27.067
class Ervsipelotrichi 110 11.718 10.887 7.034 1.381 32.040
class Gammaproleobacteria 103 4.487 3721 2.855 0.484 16.5322
class Mollicutes 68 6.363 6.223 2227 2.584 16.331
class V errucomicrobiae 222 10.094 10.387 2.307 3.708 18.635
family [Mogibactleriaceac] 238 5.660 4,923 2.653 0.471 14.681
family Anaeroplasmataceae 60 5.903 6.207 1.656 2.584 9.610
famuly Bacterowdaceac 68 14.074 12.400 5.540 2.967 26.964
family Christensenellaceae 222 5.463 5.515 1.757 0.464 12.713
family Clostridiaccac 99 15.876 10.487 9.267 1.948 44.111
tamily Coriobacteriaceae 388 12,729 13.030 3.450 5.317 27.067
family Dehalobacteriaceae 75 5.124 5172 0.957 1.713 7.058
family Enterobacteriaceae 99 4.533 3979 2744 0.484 13.477
family Ervsipelotrichaceae 110 11.718 10.887 7.034 1.381] 32.040
Lamuly Lachnospiraccac 395 126.030 130745 53.326 9.158  267.013
family Peptostreptococcaceae 90 16.686 19.425 8210 1.264 30.271
family Ruminococcaceae 303 54.676 49.730 28.003 4,799 132370
family §24-7 393 74.584 73.785 23926 20.087 165.716
family Staphylococcaceae 41 8.023 6.524 3910 4.133 21.743
lamuly Streptecoccaceae 392 13.727 12.520 4463 5.867 51.742
family Turicibacteraceae 199 12.040 10.960 6.301 0.948 36.933
family V errucomicrobiaccac 222 10.094 10.387 2.307 3.708 18.635
genus [Rummogocens) 284 8.639 7.457 4.537 2.476 26.213
genus Adlercreutzia 388 12.621 12.935 3.363 5.317 27.067
genus Akkermansia 222 10.094 10.387 2507 3.708 18.635
genus Anaeroplasma 60 5.993 6.207 1.656 2.584 9.610
genus Bacteroides 68 14.074 12.400 5.540 2.967 26.964
cenus Coprococcus 354 26.617 26.441 9.796 3.643 51791
genus Dehalobacterium 75 5.124 5172 0.957 1.713 7.058
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senus Deorca 33 13.421 13.680 5.626 3.008 28.636
genus Escherichia 75 4.088 3.040 1.900 0.484 9.719
genus Lactococcus 302 13.683 12.473 4.431 5.867 51.742
genus Oscillospira 387 52.154 48.195 26.497 5927 130493
gsenus Ruminococcus 70 7.871 6.315 4.220 2.697 26.398
genus Staphylococcus 41 8.023 6.524 3910 4.133 21.743
Enus Turicibacter 199 12.040 10.960 6.301 0.948 36.953
order Anacroplasmatales 60 5.993 6.207 1.656 2.584 9.610
order DBacillales 93 7.414 5.798 4.063 1.502 21.743
order Bactermdales 306 77.834 76.901 23967 14216 169.558
order Clostridiales 397 265693 263935 1083519 5016 368751
order Coriobacteriales 388 12.729 13.030 3.450 5317 27.067
order Enterobacieriales 99 4,533 3979 2744 0.484 13.477
order Ervsipelotrichales 110 11.718 10.887 7.034 1.381 32,040
order Lactobacillales 303 15.710 13.373 8.180 0.914  104.225
order Turicibacterales 199 12.040 10.960 6.301 0.948 36.953
order V errucomicrobiales 222 10.094 10.387 2.507 3.708 18.633
phyla Actinobacteria 388 12.880 13.070 3.706 5317 33.054
phyla Bacteroidetes 396 771.841 76.991 23.958 14216 169.338
phyla Frmicutes 309 290969  288.123 109.443 8.676  607.951
phyla Proteobacteria 118 4.9135 4.019 3446 0.484 19.723
phyla Tenericutes 68 6.363 6.223 2227 2.584 16.331
phyla Verrucomicrobia 222 10.094 10.387 2.307 3,708 18.635
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Table 3.2. Measurces of variability of cecal and plasma bile acids in DO mice. Bile acid levels are
presented as log2(peak arca). n —384. SD. standard deviation

Tissue Bile Acid S pecies Samples Mean Median SD Min Max

cecal ACA 383 19.962 20.209 1.514 10.857 22.968
cecal CA 383 19.618 20.394 5.488 -3.921 25.981
cecal CDCA 383 17.473 17.389 1.728 12.546 22,717
cecal DCA 383 25.229 25.457 1.665 16.033 28.378
ceeal GDCA 383 5.789 7.268 4.410 -3.921 11.607
cecal GdHCA 383 3.037 4.614 4.079 -3.921 8444
cecal GLCA 383 0361 0.613 4.312 -3.921 8.764
cecal GUDCA 383 0.561 -3.921 4.786 -3.921 10.534
vecal HDCA 383 20.919 21.270 1.878 10.889 24.416
cecal IDCA 383 13.537 13.614 1.5%6 7.700 17.303
cecal ILCA 383 16.041 16.077 1.344 9.208 19.180
cecal TCA 383 21.0Mm 21.114 1.439 13.285 24.408
vecal MCA 383 25.336 25547 1.469 17.210 28.406
cecal TaMCA. TbMCA 383 19.446 19.786 1.963 12.598 23.068
cecal TCA 383 15.265 16.001 4.958 -3.921 21.023
cecal TCDCA 383 11.439 11.381 2.798 -3.921 18.332
cecal TDCA 383 14.633 14.941 1718 -3.921 20.342
ceeal TdHCA 383 6.022 6.839 2.991 -3.921 10.172
ceeal THDCA 383 13.118 13.628 3.709 -3.921 18.871
cecal TLCA 383 11.382 11.525 2.173 3.003 16.133
ceeal TUDCA 3%83 13.467 13.378 2.104 7.925 18.858%
cecal TwMCA 383 16.709 16.976 2.634 -3.921 21.807
vecal Uuca 383 8.645 8.786 2.088 -0.352 15,132
cecal UnCca 383 19.629 19.751 1.672 13.493 24.426
coval 12-KLCA 383 18.5357 18.795 1.391 9.3:8 21.101
cecal 3-dICA 383 15231 15.206 1.722 10.893 20.904
cecal 7-dHCA 383 20.650 20.830 1.624 13316 23.731
plasma ACA 384 10.041 9.835 1.639 6.101 15.155
plasma CA 384 12.749 12.285 2.366 8623 20.625
plasma CDCA 384 13.894 13.852 0.223 13.547 15.630
plasma DCA 384 14.091 14.087 1.699 10.426 15.192
plasma GDCA 384 -3.891 -4.133 1.297 -4.133 7.043
plasma GdHCA 384 -4.079 -4.133 0.475 -4.133 1.464
plasia GLCA 384 -3.836 -4.133 1.255 -4.133 55358
plasma GUDCA 384 -4.047 -4.133 0.828 -4.133 8323
plasina HDCA 384 10.919 10.787 1,033 7.935 15.759
plasina IDCA 384 9.082 9.043 0.959 5.8835 14.023
plasma IMCA 384 9.644 9.668 0.733 6.478 11.572
plasma ICA 384 10.229 10.229 0.800 7798 12.932
plasma MCA 384 14.777 14.593 1.602 11.038 20.138
plasma TaMCA. ThMCA 384 10.800 10.602 2.256 -4.133 17.677
plasma TCA 384 10.942 10.930 2.268 3.667 17.417
plasma TCDCA 384 4.015 5.184 4.462 -4.133 12.310
plasma TDCA 384 7.253 8.309 3.860 -4.133 12.795
plasma TdHCA 384 -3.506 -4.133 1.950 -4.133 5.701

plasma THDCA 384 5.184 6.682 4.627 -4.133 13.338
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plasma TLCA 384 -3.630 -4.133 1.761 -4.133 3,891
plasma TUDCA 384 6.359 7242 3.649 -4.133 14,142
plasma TwMCA 384 9.27 9.061 1.260 6.274 15.385
plasma UcA 384 10.661 10.593 0.780 7.571 14.592
plasma UDCA 384 11.066 10.924 1.235 8208 15.599
plasma 12-KLCA 384 9.470 9.468 0.839 7.303 12.933
plasma 3-dHCA 384 9.119 9.017 1.056 6.536 13.789
plasma 7-dHCA 384 11.389 11.258 1.416 8215 16.539
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Table 3.3. Q1L peaks for gut microbiota, plasina and cecal bile acid, and weight traits in the Diversity Outbred mice.
Only QTL with LOD = 6 shown. "Pos" 1s peak position is Mbp. "c1 lo" and "c1 hi" correspond to the positions forthe
95% bavesian confidence interval.

roup Trait Chr Peak Position 10D Cl_lo CI1_hi

165 LSV 8111358c4e89cechd 73298 ceR78cba 1 19.371181 8.2610 18.500121 21.127272
165_ESV 02%9ac1f¥7abeae7dbaclababed89ciee 1 39.156427 6.3519 38.757802 151.593486
163_ESV c0f42a23b%a6b316e50¢310308¢0 5ab9 1 39.248326 6.1808 36.267238 61.79937
165_ESY 7h28620e7266c95b3e6040849245770 1 90.979223 6.1609 89.630159  101.569007
1658 ESVY b155d97b79acc3086ce118451afa0124 1 172.39215 6.3697 40.840301 172.713578
165 _ESY 86555947ddfc576c1bbYcd 2deb3998df 1 175199659 6.4246  172.713378 176.044287
165_ESV bta3561ca0d31bcas4be08e2d 0179371 2 108.929936 6.06059  106.511713 113.191065
165 ESV cb8bBabeceobelal 158b24ad 5 alcl2a 2 115.150381 7.8351 106.495471 115557252
165 ESV 270a74564 714 2daetddcac78bd3c7 2 164.314068 84422 164.253184 165.143532
165 ESV bal%cb8193a715cbtc3d44d03cc4an08 2 180.240944 6.0044 179813971 181.334954
165 ESV d114b4c335125128bc28401322dd4 1a 3 32.655432 6.7619 31324428 33888837
165 ESV 8c63d91c013525d1c8606fabd0c0a88b 3 135232817 74494 133.651296 136.132389
165_ESV 0e004a94474c099%cd422¢1ef160ab28 ¢ 4 53.5881389 6.5113 15725362 54 842888
165_ESV 52844958401983847ec0d0b741a%471 4 127.442688 6.4200  123.134205 127.531669
165_ESY 324a68faca87d16c8e64abe6856e10e5 4 154.897633 7.2597  154.793084 155.016685
165 _ESY ¢e7841435706835%dac6ad 7659208 5 20.619491 6.2762 17.33613 24.584674
168 ESY f3e9d78dacead 2d345080748e31ae3dd 5 36.060028 6.7424 32.432453 41.026864
168_ESV S28449584010838472c0d0b741a%a471 5 37.317278 6.8845 37151983 38.235269
165 ESV 86555947 ddfc576c1bbOcd 2deb3 998df 5 72.347411 6.9511 71.78836 74.125376
165 ESV d114b4c335125128be28401522d41a 5 75.965721 7.1440 53.955e13 80.679204
165 _ESY 682dde043b6d08cf20021dc 14234464 6 41.816338 6.7972 17.806817 44.015743
165 ESV 31217980c£d305668ba%c8482a34c81 6 148.8783%94 6.0032 §8.150733 149.721874
165 ESV 958d78a02bele9a 79580615 7adbl17ca 7 24.672478 6.1850 19.586003 24.785743
165 ESV 324a68facaB7d16¢8eo4abe6856¢10¢3 7 92.51887¢ 6.4509 90.225765 94342611
165_ESV 6a8118b17d1d40c1877db24449¢cebo16 7 119.033971 6.4851 118459217 12012465
165_ESV di0e3d38eec730326754d8¢1 7agbgefe 3 5.222420143 7.6229 3 8532219
1658_ESY chdadf4fccTble56aacc302¢2b9b870¢ 3 78.245881 6.3266 76.590861 81.855579
165_ESY 19e752d5c510e07c4572029af2d6d3 1h 3 110.268158 6.6600  108.809724 112.109201
168 ESY b1652de664d4elee2d123d26687d1204 9 15.699149 6.1945 3 28.023622
168_ESV 97711 4c76481a059ef7ba61 1bbBb1d0 9 64.462733 6.1142 63.539107 66.396123
163 ESV e04cb8c96d3 Sfeclel181al 51451 1d0¢ 9 69.495874 6.5651 69.401241 70941615
165 ESV 0c064a94474c099¢d422¢ 1c1160ab28 ¢ 9 77.797741 6.9339 74161347 783847238
165 _ESY 13e0d78dacead2d343080748:31ac3dd 9 87.121723 6.0478 85.976427 88.333365
163 ESV 029ac1{87abcac7dbaclababed89ctec 10 20.556788 6.0706 28.736097 30.789134
165 ESY b01809cbabi3ac99182581cc095868b2 10 36.288014 6.3124 37.041839 40.711299
165 ESV 06538b77450085903962437 (449 a50a 10 117.96262 6.6468 116.367023 117.977894
165_ESV 727992952afbbl55406b97 2983 5¢9¢ 2 10 118.543274 6.2653 116408963 119582858
168 _ESV 1930d2ae4018383d606e705beeald 1bdl 11 75.888433 6.0064 74732783 93.123381
1658_ESY bal9eb8193a715ebfc3d44d03ec4a608 11 90.410989 6.3010 89.481658 95.109999
165 ESY 62dc76a09326c359he3946507e8 2e9fa 11 121.047934 6.7698 119.004814 122.07865
165_ESY 9h4036adb487adfedca484346b5b%a7b 12 32113752 6.9593 31.43%030 33372128
163_ESV ef3a40c4f26b5019887 07 3ceaaab 8412 12 33.226705 8.2429 31.287334 33.38232
163 ESVY 45987 dbodfI8101 9t H6c 50de05df4 12 33.314826 6.4604 31.363293 33.80949
165 ESV beb1407c1917ta27ec3bbelaa 736157 12 108.922998 6.4726  107.834116 110.712645
165 _ESY daact3bebcfl6991162208 Shadbff3be 13 42.992646 6.0656 42.542397 43.838146
163 ESV b1652dc664d4eRee2d123d26687d1204 13 56.792444 6.6271 53.609063 57.665623
165 ESV 8dal8b476b646(053647455b6890L80 13 97.066118 6.1521 92.434063 109.268801
165 ESV 727992952afbbl55406b97 2983 5¢9¢2 13 111.35717 6.4748 12.728539 112251959
165_ESV 3362d3a0374b912ed190¢1a7aa7dedb7 14 22.563214 6.3390 22486446 23929316

165_LSV 9b4036adb48 7adfedcad 84346050 Th 14 24952981 7.4766 24579786 25415171
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165 ESV ¢l[3a40c4126b5019887d73ccaaab 8412 14 24932981 6.5684  1R.51212117 25421781
165 ESV cbBbBa6ee6befal 13[8b24ad3falel 2a 14 28.136816 6.0222 26.376227 73.423611
165 LSV a728aldcel 7d5athd677e6cc919¢2391 14 117.862217 6.5029 46.303404 119.6536779
165_ESV beb1407c19t7fa27ce3bbedaa 736157 15 6.822614 6.0913 4064824 8.303673
165_ESY 86555947ddfc576c1bb9c42deb3998df 15 40.218796 6.2829 24.059061 93.879197
168 ESY 02408cd609a6b 7181 34da2f89551 36ac 15 £8.426196 6.3903 41.698616 96.172368
168 ESY Be7d6163a519a304aeb8284he711d23 15 03. 728085 6.30090 93.602473 93.879197
165 _ESY ¢75226008025d80134bd1429712F3d5¢ 16 13.601789 6.8280 10.487495 14.95168
168 _ESY 9h89b811he9292552e327116a21 Teetf 16 30.209134 7.4044 45.655104 52.408954
168_ESV 8dal 8b476b641£6f05364 745506890180 16 60.663826 6.1794 66903616 97.635634
168 ESV 270a745647e1f412daetddcac78bd3e7 17 6242707 7.1618 60.5743 64.831601
165 ESV 8c653d91e013525d1e8606taba0c0a88b 17 62.864536 8.0634 62.839716 62.994328
165 ESV 319210892¢08:c28249363 7141228460 17 63.6812354 6.4057 62850398 73.72302
168 ESV 02408cd609a6b78134da2(8953136ac 17 65.118631 6.0124 53336739 66.728536
165_ESV 0e064a94474c099cd422¢ 1efl160ab28c 17 80.523135 6.3224 44.607302 80.896107
165_ESV b155d97b79acc3086¢ce118451afa0124 18 63.528436 6.1314 65.362441 71.610719
165 _ESV 97711 4c76481a059¢f7baG11bbEb1d0 18 72.645875 6.3878 71.966545 73.209461
168 ESV ¢75ae6008025dR0134bd14e9712f9d5c 18 73.241283 6.4451 71.753426 75444163
168_ESWY 89chYaae? 8895b309faS446ed4fallB17 18 75475846 6.2185 75140066 85.516641
165 _ESY 1c281deaf71cad702d1ddadfav53each 18 T6.82683 6.1614 72861939 77299959
168_ESWY 82b6b13c800633859b139cf0569h4cda 19 22651972 61118 200801032 25. 101665
168_ESV 682dde043b6d08cf20021dcle423446d X 36.428014 7.3023 53360141 57.77883
165 ESV c752e6008025d80134bd14297129d5c X 163.245884 6.8336  101.393378 163.874991
165 taxon ¢ [Ruminococcus| 1 12.732461 6.3062 11.572899 13.275729
165 taxon p Proteobacteria 1 124.238885 6.1384 122328968 128.840159
168 taxon ¢ Gammaprotcobacieria 1 126.492682 7.0377 122.328968 135.088167
165 _taxon o_Lnterobacteriales 1 126.492682 6.9091 122328908 135.128708
168 _taxon f Enterobacteriaceae 1 126.492682 6.9091 122.328968 135.128708
165 _ta<on f Clostridiaceae 1 174.605368 7.0998 172.481584 189.196043
168 taxon f Christensenallaceae 2 31.001321 6.1271 30.745909 168.905507
168 _taxon & Ruminococcus 3 51.835%6 6.1115 51.2735005 52486241
168 _taxon f Bacteroidaceas 4 199789035 6.2606 19.724371 200226775
168 _taxon & Bacteroides 4 19978905 6.2606 19.724371 20226775
165 _taxon f Streptococcaceae 4 114.63299 6.8545 110193087 117.431836
163 taxon g Lactococous 4 114.63299 7.4226 110.1935087 117.431836
165 taxon g Oscillospira 5 26.233194 6.9093 25.708607 28.187788
165 taxon g Coprococeus 7 73.317519 6.4531 72.879931 73.792766
16S taxon p Proteobacteria 7 120.166967 6.2931 119174583 121.265902
165 _taxon f Ruminococcaceas 7 122.764241 6.1346 6.886117 123.769458
168 _taxon o_Turicibacterales 8 4316385571 8.0438 3 8457798
168 tason f Turicibacteraceae 8 4.316585571 8.0438 3 8457798
168 _taxon ¢ _Turicibacter 4 4316585571 R.0438 3 8457798
168 _taxon f |Mogibacteriaceae | 9 78915194 6.2119 75.331319 81.097855
168 _taxon g_Coprococcus 11 8.167195 6.1775 6.846303 8.65504
168 _taxon f Clostridiaceae 11 87.759735% 7.0462 87321774 92.645335
165 taxon ¢ Racilli 12 19.867285 6.5144 16402611 24.633072
163 taxon g Dorea 12 29.335633 6.2333 26.703078 33.380272
165 _taxon ¢_Erysipclotrichi 13 73.735345 6.3341 72552722 76.790639
165 taxon o Erysipelotrichales 13 73.735345 6.3341 72352722 76.790639
165 taxon [ Ervsipalotrichaceas 13 73735345 6.3341 72352722 76.790659
165 _taxon { [Mogibacleriaccac] 13 108.9023354 6.3898 106514366 116.777127
165 _taxon p_Actnobacteria 13 111.35717 6.1075 109.591937 111.83217
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165 taxon ¢ [Ruminococeus) 14 22331425 6.3042 22262318 23.291899
165 taxon g Dorca 14 117.892982 6.0684  112.763789 124 867725
165 _taxon p_DBacteroidetes 17 78.535623 6.0403 78.360998 79.442392
165 _taxon ¢_Dacteroidia 17 78.535623 6.0312 78.360998 79442392
163 _taxon o_Bacteroidales 17 78.535623 6.0312 78.360998 79.442392
168 taxon p_Protecbacteria 1% 23.734117 8.6701 23.103739 23.787565
168 taxon t Streptococcaceae 18 83.941055 6.1560 83.314147 84.209135
165 taxon g_Lactococcus 18 83.941055 6.0076 83.080879 84.209135
165 _taxon p_lenericutes N 108.1758067 6.1138 106.795755 113.454148
163 _taxan ¢ Mollicutes X 108.1758067 6.1138 106.793755 113.454148
163 _taxon o_Anacroplasmatales X 108.1758067 6.1575 105509303 113.454148
165 taxon t Anacroplasmataccac N 108.1758067 6.1575 105.509305 113.454148
165 taxon g Anacroplasma X 108.17538067 6.1575 105509305 113.454148
bile acid cecal HDCA 1 18.180457 6.1190 16.219251 124761482
bile_acid cecal_TCA 1 25409657 7.2389 16.219251 25.648999
bile_acid plasma_X7dIICA 1 92.814235 6.6724 89.06822 95.084861
bile_acid plasma_MCA 1 92.877907 6.7112 88.592613 95.552177
bile_acid cecal UUDCA 1 125.76851 6.9489 119.608537 128.520288
bile_acid cecal DCA 1 125.76851 6.2822  121.317748 128.520288
bile_acid cecal_UDCA 2 109540781 6.1553 26.29342 128.664063
bile_acid cecal_TdHCA 2 169.623584 6.2600  169.541177 169.631838
bile_acid cecal_1UDCA 3 09.242439 6.0983 2100785 15.797831
bile acid plasma_GdHCA 3 39.635478 6.9090 37.37487 50421529
bile acid plasma X7dHCA 3 40.321565 7.0417 39.653779 41.176845
bile acid plasma UDCA 3 40.530684 6.0251 16.86208 50.719235
bile acid plasma CDCA 3 40.530684 6.9568 38.268133 42.537396
bile_acid plasma TLCA 3 42.802943 6.7119 41.082904 47.037036
bile_acid cecal_ACA 5 96.525149 6.0102 92.605094 100.397159
bile_acid cecal GUDCA 5 143.920616 6.1562  105.844204 144727745
bile acid cecal TaMCA TbMCA 5 147.944084 6.0672  146.734615 148.213321
bile_acid cecal_GUDCA 6 85.546851 6.7921 72.801787 86.505014
bile_acid cecal_1UDCA 6 8R.138776 7.0356 81.150653 90.891845
bile_acid plasma_CA 7 122.188931 7.0122  120.871261 122.264107
bile_acid cecal _1CA 7 122.283363 6.1908 119171629 122.6018828
bile_acid plasma_CA 8 4.316385571 6.5561 3.863608286 6.588673
bile acid plasma TUDCA 8 94.619354 12.4973 92.258469 94.93712
bile acid cecal TUDCA 9 103.011666 6.31463 102.22695 103.631026
bile acid plasma GUDCA 11 8.562401 6.1073 5.590372 33693427
bile_acid cecal_LCA 11 71.782692 6.4792 70661194 73.111862
bile_acid cecal_ILCA 11 72974476 7.3233 71.436346 78.151256
bile_acid plasma_TCDCA 12 15804608 6.4534 14.081757 15.859788
bile_acid plasma_X7dHCA 12 16.484186 6.6199 15.856173 16.640678
bile_acid plasma_113CA 12 07887484 6.1323 93.463652 98.294021
bile_acid cecal_1DCA 12 105488733 6.4398 104.993986 106.319764
bile_acid cecal_1TUDCA 13 101.781132 6.1881 101.296192 103.001155
bile_acid cecal X12KICA 13 108.844173 6.3889  107.893874 114.297395
bile acid cecal DCA 13 108.844173 6.3664 107.96%07 108.951876
bile_acid cecal ACA 13 108.848034 6.3020  107.893874 109.317842
bile acid plasma UDCA 13 117.098378 6.3666  116.843339 120.387272
bile acid cecal TwMCA 13 118.273332 6.4503 115.755144 119.024281
bile_acid plasma_GLCA 14 94.567949 6.4134 94.205664 94.7929
bile_acid plasma_CDCA 15 27.22439 6.0282 26.581796 30.307434
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bile acid plasma MCA 13 28.317331 6.0230 15826221 28487178
bile acid plasma GUDCA 15 66.904936 8.3159 63.597543 BB.097035
bile_acid cecal LCA 16 24.227344 68885 23.663421 26087386
bile_acid cecal_TIIDCA 16 32.8523235 6,7072 32.539119 33.350802
bile_acid plasma_GLCA 17 75.69297 6.0280 57.071792 76.391316
bile_acid cecal_CA 17 87.333217 6.9694 86.941496 88.845846
bile_acid cecal 112CA 17 87.482811 6.1049 28.673505 91.030924
bile_acid plasma_1CA 18 39.473025 6.3987 34.860924 44.53206
bile_acid plasma_11CA 18 40.497868 6.0634 34.798997 43.062062
bile_acid cecal UIDCA 18 42162702 6.2414 41.751738 49.591482
bile_acid cecal_ DCA 18 42277142 6.9832 41.750711 43.062062
bile acid cccal TaMCA . ThMCA 18 46.410922 6.4716 41.751758 82.492788
bile acid cecal TwMCA 18 46.410922 9.2661 44.53206 47.404138
bile acid cecal GUDCA 18 82.346839 7.2851 81.832735 82492788
bile_acid plasma_GDCA 18 86.129718 7.4071 85394126 90.672596
bile_acid plasma_GUDCA X 107.447444 7.4236 95048232 145.180627
tissue weight liver weight 9 66,709912 9.3300 62.273806 67.850302
fissue weight heart weight 12 97.14182 7.1416 92.527894 97.887484
tissue_weight fat_pad weight 17 45.97704 6.6703 45301577 46.576551
tissue weight heart weight 19 3 7.3563 3 4.267368
fissue weight  liver_weight X 62.509448 6.0148 57.312056 70.827748
weight weight sac 1 55.765244 6.7403 53.963403 135.682079
weight weight 14wk 2 135.298676 6.4476 28.187457  136.018886
weight weight sac 3 151.191183 6.2401 150317473 151942151
wight weight 6wk 9 44.26364 6.2283 44128836 45224039
welght weight 6wk 17 34.180423 6.7973 31.458566 44.522035
weight weiglt_10wk 17 34.660915 6.9212 31.363705 44067339
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Table 3.4. Correlations among microbial taxa, bile acid and weight traits. Spearman's rank correlation.
Only microbial exact sequence variants, genera and familiv included in figure. Correlations shown passed
FDR = 0.01 cut-off and correlation coefficient either < -0.33 or » 0.35. Correlating bile acids from same
tissuc removed from table for brevity.

Trait.1 Trait.2 cor p p.fdr

f44404ca806c18f6b05b7cbbaf3e5fd2  af26ba64d6f2fab3083dbedfb2a8241F -0.60847 0.00028 0.00366
8111338489 ecbd 75298 Tve878cha I Clostridiaveas -0.57988 0.00040 0.00498
1c281deaf71c6d702d 1ddadfa®33eact6 £ 824-7 -0.49340 0.00000 0.00000
cbdeOf4fecTble36aace302¢2bSb 870 I Clostnidiaceas -0.49054 0.00004 0.00072
d114fh4c333125128be28401322dd41a  f Tachnospiraceae -0.46932 0.60000 (.00000
d6eda88bd8370a32076b0dalde1224%a  1”_Clostridiaceae -0.46433 0.00052 0.00611
f444042a806¢18f6h05b7chbdf3e5fd2  b155d97h79acc3086ce] 1845 1afal (24 -0.46066 0.00019 0.00257
00ed2f68603124759047487807589f27  cecal HDCA -0.45171 0.00000 0.00000
heart norm weightSac plasma DCA -0.45001 0.00000 0.00000
89cb9aac28895b309f05446ed4fa0817  coB2a5a0b284dead7583c8afa5n997355 -0.44526 0.00000 0.00004
00cd2f6860312475904 748780758927 1 824-7 -0.44119 0.00000 0.00000
677545756dde39e81c925b6th1e8b17  fat_norm_weightSac -0.43699 0.00000 0.00003
9¢3b0eclbb620b781971200102089¢55  f Clostridiaceac -0.43679 0.00006 0.00099
heart_porm_weighiSac plasma ACA -0.43498 0.00000 0.00000
270a743647e1f4f2daefddcac78b43c7 £ Clostridiaceae -0.43337 0.00076 0.00833
c(3a40eH26b5019887d7Iccanab8412 I Clostridiaceae -0.43164 0.00021 0.00287
weight Tdwk plasma_TDCA -0.42913 0.00000 (.00000
weight ldwk plasma_DCA -0.42393 0.00000 0.00000
weight 4wk plasma ACA -0.42160 0.00000 0.00000
721bhde09abf2f5 1fc7d8cacabsb2 21 ef3ad0c4f26h5019887d73ceaaab84{2 -0.41801 0.00089 0.00956
b153d97h79acc3086ce]118451afa 124 f Peptostreptococcaceae -0.41530 0.00058 0.00667
82b36f3b6dcBec399c84ff3907c36ead  cecal TCA -0.41407 0.00015 0.00211
86535947ddfe576c1bb%9e42deb3998df  f Clostridiaccac -0.41272 0.00038 0.00476
weight 10wk plasma DCA -0.41001 0.00000 0.00000
weight 6wk plasma DCA -0.41036 0.00000 0.00000
8e7H6163a519a304aeb8284be711d23 f 824-7 -0.40979 0.00000 0.00000
heart norm_weightSac plasma TDCA -0.40941 0.00000 0.00000
welght sac plasma DCA -0.40923 0.00000 0.00000
weiglt owk plasma ACA -0.40838 0.00000 0.00000
weight_sae plasma ACA -0.40612 0.00000 0.00000
weight 10wk plasma TDCA -0.40564 0.00000 0.00000
811f358ede&9eechd 75298 fce878cha f 824-7 -0.40437 0.00000 0.00001
d114fb4c335125128be28401522dd41a  g_Oscillospira -0.40287 0.60000 0.00000
weight sac plasma TDCA -0.40233 0.00000 0.00000
weight 6wk plasma_TDCA -0.40184 0.00000 0.00000
f Erysipelotrichaceae f Lachnospiraceae -0.40046 0.00003 0.00043
weight 10wk plasma ACA -0.39841 0.00000 0.00000
bbeeOf3d2fT7eac779b70c7ac2c¢97 14 cc82a35a0b284dead7383cRafa3a99753 -0.39701 0.00011 0.00137
82b3613b6dc8ec399¢84T5907¢c36cad  cecal TUDCA -0.393587 0.00028 0.00363
ch¥b8abeetbefal 1518b24a45 alc] 2a 30313555¢1a438525c85b06a5c8ad 42 -0.39421 0.00013 0.00190
6e77545756dde39¢81c925b61b1¢8b17  hearl norm weightSac -0.39067 0.00002 0.00039
9b4030adb 48 Tadledead84346b5b9%70 [ S24-7 -0.38797 0.00000 0.00000
b135d97b79acc3086c21184531ala0124 g Akkermansia -0.38633 0.00000 0.00003
weight 14wk plasma TCA -0.37669 0.006000 0.00000
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cb8bBadeedbelal 1518b24ad5alel 2a cbdeOf4tec7hb le36aace30 2c2b9bE70¢ -0.37587 0.00012 0.0016%
hearl_norm_weighiSac plasma TCA -0.37317 0.00000 0.00000
7b28c2027206c95b3e604f0849245770  h155d97h79acc3086ce 11845 1afa0 (24 -0.37302 0.00000 0.00006
6277545756dde39c81c925h6th1e8h 17 weight sac -0.37178 0.00001 0.00014
4ad0th 5fe 1hf702d971ed3c3fe0ad2d3 cecal TaMCA.TeMCA -0.36841 0.00045 0.00339
00ed2f6R603124759047487807389f27  cecal UDCA -0.36799 0.00000 0.00002
4598e7db6 A0 1 9fF4f6 3 0dc05d4 f 824-7 -0.36778 0.00000 0.00000
weight 6wk plasma TCA -0.36607 0.00000 0.00000
f Lachnospiraceac f Streptococcaccac -0.36492 0.00000 0.00000
b153d97b79acc3086cc118451afa0124 £ Ervsipelotrichaccae -0.36374 0.00058 0.00663
f Lachnospiraceae g_Lactococcus -0.36292 0.00000 0.00000
eb3759¢804¢8c80d9[b0de81 7207129  cecal MCA -0.36104 0.00026 0.00343
3562d320374b202ed190¢1a7aa7dedb7 [ S24-7 -0.36034 0.00000 0.00000
d114[b4c335125128b228401322dd41a I Ruminococcaceae -0.35985 0.00000 0.00000
ch8h8ateetbefal15f8h24ad5fale] 2a 538add871396be3 [ fee52h4c6e73542a -0.35709 0.00041 0.00503
4e0a63b0a2fab7hfOf307d360b679d87  f Ruminococcaceae -0.35687 0.00033 (.00423
af26ba64d6f2tah3985dbedth2a8241f §24-7 -0.35616 0.00022 (0.00297
weight 10wk plasma TCA -0.35584 0.00000 0.00000
00ed2f6860312475904 748780758927 cecal 1.CA -0.353539 0.00000 0.00004
89¢cb9aac28895b309fa3446cd4fa0817  4598c7dbad TR0 19fT416c30de05df4 -0.35524 0.00000 0.00008
6c77345756dde39e81c925h6th1c8b17  weight 10wk -0.35267 0.00002 0.00038
00cd2f68603124759047487807589f27  cecal MCA -0.35262 0.00000 0.00003
4ad0tb5£c1bf702d971ed3c3fe0ad2d3 cecal TUDCA -0.35254 0.00081 0.00887
230337¢4856de1617e682de90caba2ld  plasma HDCA -0.35063 0.00049 0.00584
029ac1f87abeac7dbaclababed 89cfec 62dc76a09326c359be3946307:82e91a 0.35029 0.00004 0.00067
0e064094474c099¢d422¢1e160ab28c  a728aldeel 7d5alba677e6ee91 92391 0.35073 0.00000 0.00001
06538h77450f8390396243 714492600 g_Adlercreutzia 0.35130 0.060000 0.00000
I Turicibacleraceas plasma DCA 0.35254 0.00000 0.00001
g_Turicibacter plasma DCA 0.33254  0.00000 0.00001
plasma MCA cecal MCA 0.35239 0.00000 0.00000
plasma ACA cecal TDCA 0.35279 0.00000 0.00000
t Streptococcaceas g Adlercreutzia 0.33291 0.00000 0.00000
f Coriobacteriaccac f Streptococcaccac 0.35348 0.00000 0.00000
00cd2f6860312475904 7487807589127 ¢04cb8c96d35fee0c181al 5fe4511d0c 0.35385 0.00058 0.00666
0c064a94474c099cd422clet100ab28c g Coprococcus 0.35452 0.00000 0.00000
20ac302240d69230615fbc03ac843630 g Dorea 0.35467 0.00003 0.00054
270a743647e1f4f2daefddcac78b43c7 1¢281deaf71c6d702d1ddadfa933eact 0.35757 0.00024 0.00321
g_'luricibacter plasma MCA 0.35848 0.00000 0.00001
270a74 5647 114f2daefddcac78b43c7 a728aldeel 7d5afbd677e6ce919¢2391 0.35894 0.60000 0.00003
a8220bca73e4d05e¢b793d6e301236264 g Coprococeus 0.35915 0.00016 0.00219
plasma HDCA cecal TIDCA 0.36041 0.00000 0.00000
924ah5ch47309a83271d60320378d194  8dal 8b476b64f6F053647455h6890F80 0.36125 0.00008 0.00128
811f358ede&9eechd 73298 fce78cha 9e3h{lcedbheI0h 7RO 720102089¢3 53 0.36266 0.00002 0.00027
af26bac4d6f2tab3985dbedth2a8241f  f Lachnospiraceae 0.36499 0.00015 0.00213
912487364b4fda5993a03f47d60 1112 811f358c4c89cachd 75298 ffce878cha 0.36399 0.00020 0.00263
t444042a806¢18f6b0SHTchbdf3e5fd2  plasma N7dHCA 0.36678 0.00076 0.00832
8c74f6163a5f9a304ach8284be711d23 g Coprococcus 0.36798 0.00000 0.00000
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3362d3203740912ed190¢c1a7aa7dedb?  a728aldeel 7d3alb4677e6ued 192391 0.36836 0.00000 (.00000
0d4ab2107d92228¢6751838e7dbbet97  8e74[6163a519a304acb8284be 711423 0.36848 0.00033 0.00416
dfDe3d38eec730326734d8¢cl 7a8h8efe  721bhde09abf2f51fe7dReacah5b2211 0.36882 0.00056 0.00644
Be74t6t63a519a304ach8284be71fd23 9h4036adh487adfedcadR4346h3h9a7h 0.36892 0.60000 0.00000
029ac1f87abeae7dbacl ababe489cfec 72e330a4206f224804d502(4dfcaB387 0.36930 0.00000 0.00000
20ac302240d6923615fbc03ac84563f  6536a7he84c93500ef05 18362891407 0.36945 0.00014 0.00204
Be7H6I63059a304aeb8284be711d23 31217980cfdf305668ba%c8482a3481 0.36946 0.00004 0.00067
270a745647c1t4f2dacfddcac78b43c7 811358c4c89%%cechd75298ffce878¢cha 0.37125 0.00006 0.00094
54deb911e3ab04c9d5b30c3912100b41  9b4036adb487adfcdcad84346b5b%a7b 0.37133 0.00000 0.00002
924668F542d0de35c222604a6cf09bd  <f3ad0c4£26b5019887d73ccaaab8412 0.37153 0.00003 0.00046
d114th4c335125128be28401522dd41a  06338b774350f859039624371449fa60a 0.37224 0.00000 0.00000
vbBb8abeestbelal15{8b24a45alel 2a bbee3d217eac779h70cTac2¢9 7104 0.37224 0.00001 0.00019
1e281deal71c0d702d 1ddadla933eaco g Dorea 0.37270 0.00001 0.00018
863553947dd[e376¢1bb9ec42deb3098dI  00¢d2{68603124739047487807589127 0.37361 0.00004 0.00068
g Coprococcus g Dorea 0.37364 0.00000 0.00000
00cd2f6860312473904 7487807358927 4398eTdbadITRIN 191146 c30de() 3df4 0.37436 0.60006 (0.00088
8e74t6f63a5f9a304aeb8284be7 1 fd23 1c281deaf71c6d702d1 ddadta9 53 eact 0.37461 0.00002 (.00030
3e064e318R31dd051884a58537182eetf  of3ad004f26b3019887d73ceanab8412 0.37488 0.00038 0.00468
df0e3d38eec730326754d8¢c1 7a8h8efe plasma MCA 0.37506 0.00000 0.00000
1930d2ac4018583d606¢705becadlbd]l  89cb%2ac28895b309fa53446cd4fa0817 0.37611 0.00003 0.00081
Ibd036adh48Tadfe4cadB84346b3b%Th  9c3blceIbb6I0bTRIV 72010208955 0.37770 0.00000 0.00000
958d78a02bef69a795806197adbl17ca 3562d3a0374b912ed190c1 a7aa7dedb? 0.37916 0.00000 0.00001
50313555¢c1a4385¢25c85b06a5c8ad42  of3ad40c4f26b35019887d73ccaaab8412 0.37929 0.00000 0.00000
3362d3203740912ed 190¢c1a72a7dedb7  43987dbod BN 19IHEC3Ode0 5S4 0.37981 0.00000 0.00001
811f358e4e89eechbd 75298 tce878cba ef3a40¢426b3019887d73ceaaabl412 0.38028 0.00001 0.00021
324a6812ca87d16c8e04abe08306c10e3 g Coprococeus 0.38137 0.00000 0.00000
63536aTheR4c95500et05185628c9f407  00cd2f68603124739047487807589127 0.38146 0.00048 0.00570
958d78402bef69a795806[97adb1 1 7ea  0e064094474¢099¢d422¢1el160ab28¢ 0.381353 0.00000 0.00000
6536a7hc84c95300ef05 18562891407 g Dorea 0.38138 0.60000 0.00002
f Lachnospiraceae g Dorea 0.38196 0.00000 0.00000
82b6h 13e8006338590139ef0569hdeda 72e530a42067224804d50214dfeaR387 0.38326 0.00000 (.00000
plasma DCA cecal CA 0.38358 0.00000 0.00000
df0e3d38eec730326754d8c17a8b8efe f Peptostreptococcaceae 0.38375 0.00037 0.00465
721bbdc(9abf215 1fc7d8cacab5b22f1 g_Turicibacter 0.38408 0.00031 0.00397
303135355¢c1a4385¢25c85b06a5c8ad42 g Dorca 0.38428 0.00000 0.00000
df0e3d38eec7303267534d8c17a8b8ete [ Clostridiaceae 0.38545 0.00018 0.00243
ech3759e804e8c80d9Tb0de817207fe9  F Lachnospiraceas 0.38860 0.00007 0.00108
924ab5¢b47309a83:71d60320378d194 91248736404 da3993403[47d60111e9 0.38890 0.00047 0.00563
9124873640 4tda5993a03147d60 1119 00cd2f68603124739047487807389127 0.38994 0.00023 0.00301
14440424806 1816b05b7cbb4f3e3(d2 plasma MCA 0.39092 0.00031 0.00396
g Turicibacter plasma CA 0.39134 0.00000 0.00000
bOt809chabf3ac99182381ec(95868h2  af26bad4dGf2fab3o83dbedfh2a8241f 0.39138 0.00046 0.00355
ch8h8aGeetbefal15f&h24ad3falc] 2a 89ch922e28895h309fa5446ed4fan817 0.39357 0.00000 0.00007
ccB82a5a0b284dead7583¢cRafa5a99755 g Dorea 0.39395 0.00001 0.00013
BeTdf6f63a59a304ach8284be711d23 3562d3a0374b912ed190c] a7aa7dedb? 0.39433 0.00000 0.00000
ch&b&atectbefal 1518b24ad5falcl 2a f 824-7 0.39469 0.00000 0.00001
4ad0tb 5£c1bf702d971cd3c3fe0ad2d3 f Streptococcaccac 0.40252 0.00013 0.00192
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4ad0b3e1bl702d971ed3c3e0ad2d3 g Lactococeus 0.40252 0.00013 0.00192
ee82a5a0b284dead7583cBalada99755  al20bab4d612{ab3I 8 Sdbedb2a82411 0,40410 0.00029 0.00380
82136f3h6dcRec399cB4fTI907c36ead  bhee?f3d21t7eae77%h70c7ac2c97 124 0.40499 0.00034 0.004353
8111358ede&9eechd 75298 1Tce’878cha chdeOfdfecThle56aace302¢2h9hR70c 0.40538 0.60002 0.00034
270a745647e14f2daefddcac78b43c7 3e064c3F883fdd0S5 1884a58537182eef 0.40710 0.0003% 0.00479
3e064c38R3fdd051884a58337182eef  chdcOfdfecTb leS6aacc302c2h9b870c 0.40896 0.00030 0.00383
20ac30224f0d6923615fbc03ac8435631  682dde043b6d0Rer20021deled423446d 0.41132 0.00018 0.00233
029%c1f87abeac7dbaclababe489cfec g Akkermansia 0.41172 0.00000 0.00000
a728aldeel7d3afb4677c6ce919¢2391  1¢281deaf7106d702d1 ddadfa933cact 0.41191 0.00001 0.00015
029ac1f87abeac7dbaclababed 89cfee 7b28¢20¢72c6c95b3c6040849245770 0.41583 0.00000 0.00000
89ch9aac28895b309faS446ed4fa0817  02408cd609a6b718134da2f8935136ac 0.41983 0.00000 0.00000
dl0e3d38eec730326754d8¢17a8b8ele  plusma CA 0.42128 0.00000 0.00000
0e064094474¢c099¢d422¢1el160ab28¢ 25[537¢4836del617e682deDlcaba215 0.42202 0.00012 0.00172
plasma DCA vecal TDCA 0.42300 0.00000 0.00000
00cd2f68603124759047487807589f27  a728aldeel 7d5afb4677e6ec919¢2391 0.42360 0.60000 0.00004
1c281deaf71c6d702d 1ddadfa953eact 31217980cfdf305668bad9c8482a34e81 0.42618 0.00011 0.00162
811f35R8ede&9eechd 75298 fee878cha 31217980cfdf305668ba9c8482a34e81 0.42749 0.00018 (.00249
a728aldeel7d5aftb467 7260091902391 af26bad4dof2fab3983dbodfb2a824 11 0.42832 0.00003 0.00084
t Ruminococcaceas g Coprocoeccus 0.43117 0.00000 0.00000
plasma_ACA cecal_NI12KLCA 0.43141 0.00000 0.00000
bbecOf3d2ft7eac779bT0c7ac2e97 1 04 1930d2ac4018583d606705becad 1bd 1 0.43211 0.00000 0.00001
af26basddof2fab3985dbhe4th2a8241F g_Coprococcus 0.43286 0.00001 0.00011
811f358c4e89ccchd 75298 tcc878cba af26bad 4d612fab3985dbedfb2a824 11 0.43550 0.00089 0.00956
d0e3d38ecc7303267534d8¢1 7a8b8ele [44404ea806¢18[6b0O3b7cbb4l3e51d2 0.43633 0.00007 0.00111
02408cd609a6b718134da2f8935136ac [ 824-7 0.43814 0.00000 0.00000
811358c4e89eechbd 7529811ce878cba 00ed2{68603124759047487807589127 0.43829 0.00017 0.00231
682dde043b6d08ct2002 1dcle423446d  g_[Ruminococcus) 0.43895 0.060000 0.00000
811£358c408%ecbd 75298(1¢e878¢cha 1¢281deal71¢6d702d1ddad 2953 euc6 0,43919 0.00004 0.00061
f_Clostridiaceae g_Turicibacter 0.44624  0.00001 0.00019
1930d2424018583d606e705beea3lbd]l  02408cd609a60b 718 134daZfR955136ac 0.44746 0.00001 0.00020
0e064094474c099cd422¢1ef160ab28  00cd2f686031247390474R8780°7589F27 0.44877 0.00000 (.00000
20dcb8c96d35fee0e181al 5fcd51 1d0e dbeda®Rbd8370a52076b0dafde12249a 0.45268 0.00000 0.00000
924668F542d0de35c2226e4a6cf09bd  00cd2{68603124759047487807389127 0.45440 0.00016 0.00227
plasma_ACA cecal_LCA 0.45547 0.00000 0.00000
811f358c4c89eccbd 75298 tcc878cba c04cb8c96d35fee0c181al 5fe4511d0c 0.45364 0.00000 0.00005
00cd2{6860312475904 7487807589127 9¢3beePbbo20b 7RV T7I20¢102089¢35 0.45713 0.00000 0.00001
029ac1f87abeac7dbaclababed89ctec f 824-7 0.4573% 0.00000 0.00000
b135d97b79ace3080e21184531ala0124  al26bab4do2[ab3 98 5dbedb2a8241F 0.45743 0.00000 0.00004
958d78a02bef69a795806197adb117ea  af26baé4d6i2fab3985dbedih2a8241( 0.45863 0.00001 0.00012
&04cb8c96d35[ee0e181al 51e4511d0e 31217980ctd{303668bud8482a3 4081 0.45928 0.00001 0.00013
g Coprococeus g Oscillospira 0.46109 0.00000 0.00000
d114th4c335125128be28401322dd41a  4ad0fh3felbf702d971ed3c3fe0ad2d3 0.46355 0.00001 0.00015
03d1dblece3740348242e94d57eca3h 270a745647e1f4f2daefddcas78b43c7 0.46777 0.00001 0.00014
251537c4856d21617e682de90caba2l5 g Coprococeus 0.46816 0.00000 0.00006
cbdcOfdfecTble56aacc302c2b9bR70c cf3ad0c4f26b3019887d73ccaaab84f2 0.46912 0.00000 0.00000
6536a7hcR4c95500et05185628c9f407  f Lachnospiraceae 0.47045 0.00000 0.00000
3562d3a0374b9f2cd190c1a7aa7dedb? g [Ruminococcus] 0.47338 0.00000 0.00000
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43987db6 TR 9T H630dec05dM4 g Dorea 0.47340 0.00000 (.00000
82036[3b6du8ec399¢8AT5907306cad  02408¢cd609a6b718134da289535136ac 0.47560 0.00007 0.00110
af26bac4d6f2tab3985dhedth2a8241F g Dorea 0.47728 0.00000 0.00002
00cd2f686031247359047487807589f27 g Dorea 0.47916 0.60000 0.00000
251537c4856d21617e682de90caba215  f Tachnospiraceae 0.48109 0.00000 0.00002
c2ed6F99655915682fbe0G 158318378 6a8118b17d1d40cf877dh24449¢ceb616 0.48292 0.00001 0.00021
6536a7bc84c95500ef05185628c9fd07 g Coprococcus 0.48365 0.00000 0.00000
bbecOf3d2fTTeac779b 70c7ac2c¢97 1 04 f 824-7 0.48954 0.00000 0.00000
cf3a40c4£26b35019887d73ccaaab8412 9¢3b0ceVbbo90b TRV 72010208953 0.49046 0.00000 0.00000
727992952afbbf55406b97c29855¢9¢2  { Coriobacteriaceas 0.49092 0.00000 0.00000
bal9eh8193a71 5ebfe3d44d03ec4a608  1c281deat71cod702d] ddadfa9353eact 0.49217 0.00000 0.00005
plasma DCA cecal X12KLCA 0.49244 0.00000 0.00000
6536a7bc84e93500ef05185628c00407  25[537¢4830del617e682dePcaba215 0.49384 0.00002 0.00033
938d78a02bet69a793806197adb117ea g _Coprococeus 0.49649 0.00000 0.00000
1c281deaf71c6d702d1ddadta®53eac6  4598e7db6dITRIN 191 416c30de0 5df4 0.49997 0.60000 0.00000
727992952afbbf35406b9729855¢9¢2 g Adlercreutzia 0.30007 0.60000 (.00000
plasma ACA cecal ACA 0.530106 0.00000 0.00000
0e064a94474c099cd422c1ef160ab28c  af26bac4dof2fab3983dbodfb2a824 11 0.50140 0.00000 0.00001
9bd036adh48Tadfedcad84346h3h9aTh  2f3ad0cdf26h5019887d73ceaaab4f2 0.30260 0.00000 0.00000
82b0b13c800633859b139cf0569b4eda 0ad13b6d1cd98ad 7e86ecd909d33114 0.30314 0.00000 0.00000
00cd2f6860312475904 7487807589127  af26bad 4d6t2fab3V83dbedfb2a8241f 0.30669 0.00011 0.00138
1930d2ac4018583d606705beca3lbdl £ 8524-7 0.50859 0.00000 0.00000
plasma_DCA cecal LCA 0.51120 0.00000 0.00000
a728aldeel 7d5alb4677e60e919¢2391 g Dorea 0.51433 0.00000 0.00000
cc82a3a0b284dead7383c8atada99755  1¢281deat71c6d702d]1 ddadfa9353cact 0.51546 0.00000 0.00001
89cb9aac28895b309u5446ed4{a0817 I 8§24-7 0.52047 0.00000 0.00000
plasma_ACA cecal DCA 0.32616 0.060000 0.00000
682dde043b6d08ef20021dele423446d  3362d3a0374b912¢d190c 1 a7aaTdedb 7 0.52785 0.00000 0.00000
bbeeSf3d2tT7eae 7790 70c7ac2e97 124 89ch9aae28895h309fa5446ed4fal817 0.53028 0.60000 0.00000
81 1{35RedeR9eechd 75298 fce’78cha 92466R1542d19de35c22264a6ef09hd 0.35812 0.00000 0.00000
06538b77450f85903962437f449fa60a  plasma TdHCA 0.36422 0.00034 (0.00428
plasma DCA cecal ACA 0.57220 0.00000 0.00000
f Clostridiaceac f Peptostreptococcaceae 0.57766 0.00000 0.00009
bbecOf3d2fT7eac779b70c7ac2c97 1 04 02408cd60%a6b718134da2{8955136ac 0.58293 0.00000 0.00000
270a745647c1f4f2dactfddcac78b43c7 af26ba6 4d612fab3V83dbe4fb2a8241f 0.38744 0.00000 0.00003
029ac1[87abeacTdbaclababed89ctfec 89cb9aue2 889 5b309 a5446ed4a0817 0.61084 0.00000 0.00000
Be74H6163a519a304aeb8284be711d23 a8220bca73e4d05eb793d62301236264 0.62016 0.00000 0.00000
1c281deaf71¢6d702d lddadla933caco al26ba64d612Mab3985dbedb2a8241F 0.62942 0.00000 0.00000
I’ Lachnospiraceae I Ruminococcaceae 0.63405 0.00000 0.00000
plasma DCA cecal DCA 0.64315 0.00000 0.00000
liver norm_weightSac fat_norm_weightSac 0.64683 0.00000 0.00000
f TLachnospiraceae g Oscillospira 0.66531 0.00000 0.00000
weight 6wk fat norm weightSac 0.67503 0.00000 0.00000
8e7461630519a304aeb8284be711d23 bal%ebR193a715ebfe3d44d03ec4a608 0.67696 0.00000 0.00000
c73ac6008025d80134bd14cH712f9d5c  a8220bca75e4d05cb793d62501236264 0.68693 0.00000 0.00000
t Lachnospiraceae g Coprococcus 0.71349 0.00000 0.00000
6d4ab2107d92228¢6751838c7dbbes97  bal%eb8193a715ebfe3d44d03cc4a608 0.71429 0.00040 0.004%96
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heart_norm_weightSac lal_norm_weightSac 0.72033 0.00000 0.00000
cb8b8abeetbelal1518b24ad5(alel 2a eld39¢d63 45 b6aTddb747c3393¢225 0,72611 0.00001 0.00015
721hhde09ahf2151fc7d8cacab5h 2211 f Clostridiaceae 0.73054 0.00000 0.00000
weight 10wk fat_norm_weightSac 0.75479 0.00000 0.00000
weight 6wk liver norm weightSac 0.73548 0.00000 0.00000
td444042a806¢ 18f6b0Sh7cbbadf3e5fd2 f Peptostreptococcaceae 0.804381 0.00000 0.00000
liver norm weightSac heart norm weightSac 0.80513 0.00000 0.00000
weight 14wk fat_norm_weightSac 0.81024 0.00000 0.00000
weight 10wk liver norm_weightSac 0.81063 0.00000 0.00000
welght 6wk heart_norm_weightSac 0.81159 0.00000 0.00000
weight 14wk liver norm_weightSac 0.824306 0.00000 0.00000
weight sac liver norm_weightSac 0.83997 0.00000 0.00000
d114b4c335125128be28401522dd41a g Lactococcus 0.84263 0.00000 0.00000
6e77545756dde39¢810925b6Ib1e8b1T7  OTTI14¢T76481a059ef7bac1 1bb8b1d0 0,85520 0.00000 0.00000
weight sac fat_norm_weightSac 0.86281 0.00000 0.00000
4e0a63b0a2fab7hfO307d360b679dR7  538add871396be3 1fee52hde6e73342a 0.86488 0.60000 (.00000
c6t4aa25h%a6h316e50e3f0308c05ab9  f Christensenellaceas 0.86929 0.00000 (0.00000
weight 10wk heart norm weightSac 0.87118 0.00000 0.00000
weight 6wk weight sac 0.87334 0.00000 0.00000
weight 14wk heart_norm_weightSac 0.89685 0.00000 0.00000
weight sac hecart norm_weightSac 0.91275 0.00000 0.00000
weight 6wk weight 14wk 0.91552 0.00000 0.00000
weight 10wk weight sac 0.93265 0.00000 0.00000
dl0e3d38eec730326754d8¢c17a8b8ele g 'luricibacter 0.93580 0.00000 0.00000
weight 6wk weight_ 10wk 0.95219 0.00000 0.00000
weight 14wk weighl sac 0.96038 0.00000 0.00000
weight 10wk weight Tdwk 0.96370 0.00000 0.00000
I Coriobacteriaceae g Adlercreutzia 0.97790 0.00000 0.00000
f_Ruminococcaceae g_Oscillospira 0.98008 0.60000 0.00000
Th28&c20e72c6c93b3e60410849243770 g Akkermansia 0.99334 0.00000 0.00000
f Streptococcaceae g Tactococcus 0.996358 0.00000 0.00000
f Verrucomicrobiaceae g Akkermansia 1.00000 0.00000 0.00000
f Turicibacteraceae g_Turicibacter 1.00000 0.00000 0.00000
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Supplemental Table 3.1. Exact scquence variant (ESV)taxonomy assignment [or core measurable microbiota ({CMNM).
NA"indicates taxonomic rank could not assigned.

Rank ESV ID Taxonomy (Phyla;Class,Order; Family; Genus; S pecies)

ESV 06538077450{85203962437{449fa60a Actimobacteria;Coriobacteriia;Coriobacteriales:Corobacteriaceae Adlercrentzia, N A
ESV 727992952afbb155406b97229855¢9¢2 Actinobacteria;Coriobacteriia;C'orlobacteriales;Corobacteriaczae; Adlercreutzia, N A
LSV 02408cda09a6b718134da2(89551 36ac Bacteroidetes:Bacteroidia: Bacterondales; S 24- 7N A NA

ESV 029ac1{87abeac7dbacl ababed 89cfec Bacieroidetes ;Bacteroidia: Bacleroidales; S24- TN AN A

ESV 0ad13bé6dl cd98ad TeBl6cc9909d33114 Bacteroidetes ;Bacteroidia; Bacteroidales; 524-7; N A NA

ESWV 1930d2ae4018383d606e705beca31bdl Bacteroidetes;Bacteroidia;Bacteroidales; S24-T, N A N A

ESY 72e530a420612¢4804d502f4dfca8387 Bacteraidetes;Bacteroidia; Bacteroidales; S24-T,NA; N A

ESV $2b6b13c8006338590139¢056%b4cda Bacteroidetes;Bacteroidia; Bacteroidales; S24-7;NANA

LSV $9cb9aac28895b3091a5446ed41a0817 Dacteroidetes:Bacteroidia:Bacieroidales; 524-7;NA NA

ESV bbeed3d 2 Teac779070¢Tac2¢97 14 Bacteroidetes :Bacteroidia: Bacleroidales: S 24- 7 NA:NA

ESV cbEb8adecobelal 15E8b24ad5alelZa Bacteroidetes ;Bacteroidia: Bacteroidales; S24-7; NANA

ESV daaed 3be6ctln991162a085ba8bit3h6 Bacteroidetes ;Bacteroidia; Bacteroidales; S24-7,NA N A

ESWV d114fb4c335125128be28401522dd41a Firmicutes :Bacilli;]actobacillales ;Streptococcaceae; ] actococeus; N A
ESV dfle3d3Beec730326754d8c1 7a8h8efe Firmicutes ;Bacilli; Turicibacterales; Turicibacteraceae; [uricibacter;N A
ESWY 3192f0892c08ec28249363 714 fa28d60 Firmicutes ;Clastridia;Clostridiales;| Mogibacteriaceae |;N AN A

ESV 62dc76a09326c359be 5946507829 a Firmicutes ;Clostridia;Clostridiales;[ Mogibactenaceae ;N ANA

ESV c6f4aa25b9a6b3 16e50¢310308¢05ab9 Firmicutes :Clostricha:Clostridiales: Christensencllaceas; N AN A

ESV 3562d3a0374b92¢d190c1a7aa7dedb? Firmicules ;Clostridia:Clostridiales Tachnospiraccac; [Ruminococcus Jignavus
ESV 682dde043bod08c(20021de1c423446d Firmicules :Clostridia;Clostridiales;Lachnospiraccac; [ Ruminococcus J.gnavus
ESV 324a68taca87d16c8e6dabeoR56210e5 Firmicutes ;Clostridia;Clostridiales;Lachnospiraceae,Coprococcus;N A
ESV BeT74f6f63a519a304acbB284be711d23 Firmicutes :Clastridia;Clostridiales;T.achnospiraceas;Coprococcus; N A
ESV OhR9h811he9292552e327f16a21 Teenf Firmicutes ;Clostridia;Clostridiales;Tachnospiraceae;Coprococcus; N A
LSV blo32deotddde8ce2d123d26687d1204  Firmicutes Clostridia;Clostridiales Lachnospiraceas:Coprococcus: N A
LSV bal %b8193a7135¢blc3d44kI03ecda608 Firmicutes :Clostridia:Clostridiales;Lachnospiraceae; Coprococeus:N A
ESV c75ac6008025d080134bd14c9712(9d5¢ Firmicutes ;Clostridia;Clostridiales;Lachnospiraccac:Coprococcus; N A
ESV 4598 7dbedfI8 1019014 f6c30dc 05414 Firmicutes ;Clostridia:Clostridiales Lachnospiraceac:Dorea NA

ESV 50313555¢1a4383¢23¢85b06a5¢8ad42 Firmicules ;Closiridia;Clostridiales ;Lachnospiraccac; Dorca, N A

ESWV a728aldcel 7dSafbd677e6cc919c2391 Firmicutes :Clostridia;Clostridiales;Lachnospiraceas; Dorea; NA

ESY 270a745647el f4f2dactddcac78b43c7 Firmicutes ;Clostridia;Clostridiales;Tachnospiraceas, NA; N A

ESV 31217980cfdf305668ba%c8482a34¢81 Firmicutes ;Clostridia;Clostridiales;Lachnospiraceac, NAN A

L5V 538add871396be3 1feed2bdcoe73542a Firmicuies:Clostridia;Clostridiales Lachnospiraceac: NA:NA

ESV 6536aTbc84c95500c 0518562891407 Firmicuics ;Closiridia;:Closiridiales Lachnospiraccac: NANA

ESV 6c77345756d0d0c39¢81¢925b6ib1c8b17 Firmicules ;Clostridia:Clostridiales;Lachnospiraccac, NA;NA

ESV 80dd 711013 5ba7b0b93 7H699b90d18d8 Firmicutes :Clostridia;Clostridiales:Lachnospiraceas; NA;NA

ESWY B11358edefBeechd7 5298 ffcek T8cha Firmicutes ;Clostridia;Clostridiales;I.achnospiraceas; NA; N A

ESV Re65d91e013525d1 c8606fabdDe0a88b Firmicutes ;Clostridia;Clostrichales;1.achnospiraceaeg; NA; N A

ESV 901c9973bde010c1a5¢490236630c252 Firmicutes :Clostridia:Clostridiales Lachnospiraceas: NA:NA

ESV 9e3b0ceIbb620bTEMITI20c102089¢55 Firmicutes ;Clostridia;Clostridiales;Lachnospiraceag, NA; NA

LSV 93a09f6096976f00cd 7c13a4 71 7Hf 1 Firrmeutes :Clostricha:Clostridiales: Lachnospiraceas NANA

ESWV bOfBOSChabf3ac99182581cc095868b2 Firmicules ;Clostridia;Clostridiales Lachnospiraccac: NA:NA

ESV b1535d97b79acc3086¢c118451afal 124 Firrnicules ;Clostridia;Clostridiales Lachnospiraccac; NA;NA

ESV bebl407cl9f7faZ27cedbbelaa7fials7 Firmicutes ;Clostridia;Clostridiales;Lachnospiraceac; NA;NA

ESV bfa3561calddd1beasSdbeI8e2d9f7937F Firmicutes ;Clostridia;Clostridiales;T.achnospiraceas; NA; N A

ESV c97714c76481a059%f7bac11bb8b 1d0 Firmicutes ;Closiridia;Clostridiales;Lachnospiraceag NA;NA

LSV chdeOfdfec Tbl e56aacc302¢2b9b8 70 Firmicutes ;Clostridia;Clostridiales: Lachnospiraceas, NANA

LSV d6eda88bd8370a52076b0dafle12249a Firmicutes ;Clostridia:Clostridiales: Lachnospiraceac NA:NA

ESV cO4cb8e96d35 ee0c1 81al Sted 511d0e Firmicules ;Clostridia:Clostridiales;Lachnospiraccac, NA;NA

ESWV 19752d5¢51 0e07c4572029at2d6d3 1b Firmicutes :Clostridia;Clostridiales:L achnospiraceas; NA:NA

ESV (00cd2f6R8603124759047487R07589127 Firmicutes ;Clostridia;Clostridiales; N AN ANA

ESWV 020642944 74c099cdd 22 1ef160ab2 e Firmicutes :Clostridia;Clostridiales: N A ;N A;NA

ESY 1c281deaf71c6d702d1 ddadfa953cact Firmicutes ;Clostridia;Clostridiales; N AN AN A

ESV 52844958401983847ec0d0b741a%a471 Firmicutes ;Clostridia;Clostridiales; N AN AN A

LSV 54debS11e3ab04e9d5b30¢3912100b41 Firmicutes :Clostridia:Clostridiales N AN AINA
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Rank ESV ID Taxonomy (Phyla;Class:Order:Family; Genus; Species)

ESV 9246681542493 5¢2226c4a60[09bd Firmicutes ;Clostridia;Clostridiales N AN A NA

ESV 9b4036adb487adtcdcad84346b3b%aTb Firmicutes Clostridia;Clostridiales, N A;NANA

ESV b65410081c872d629211d71b1 36ecd 51 Firmicutes ;Clostridia;Clostridiales;N AN ANA

ESV ef3a40c4f26b501988 7d T3ceanah 8412 Firmicutes ;Clostridia;Clostridiales;N AN AN A

LSV 14678619269b8cd5554abda8ddf2(22¢ Firmmicutes :Clostridia;Clostridiales: Ruminococcaceas, Oscillospira; NA
LSV 20ac30224{0d692361 5(bc03ac84 5630 TFirmicutes ;Clostridia:Clostridiales: Ruminococcaceac,Oscillospira; NA
ESV 6a8118b17d1d40c(877db2444%cb616 Firmicutes ;Clostridia;Clostridiales; Ruminococcaceac.Oscillospira; NA
ESV 8§6553947ddfc576c1bbIcd 2deb3998df Firmicutes ;Clostridia;Clostridiales; Ruminococcaceae,Oscillospira; N A
ESV 8dal 8b476b641610536474 5506830180 Firmicutes ;Clostridia;Clostridiales JRuminococcaccac,Oscillospira; N A
ESWV 912487364b4fda5993a03147d60111eY Firmicutes :Clostridia;Clostridiales:Ruminococcaceas;Oscillospira N A
ESY 958d178a02bef69a795R06f27adb11 7ca Firmicutes ;Clostridia;Clostridiales; Ruminococcaceas; Oscillospira, NA
ESV ceB2a5a0b284dead7583¢8afa5a99755 Firmicutes ;Clostridia;Clostridiales;Ruminococcaceac;Oscillospira N A
L5V ce784143570083390dac6a47b0592a08 Firmicuies :Clostridia;Clostridiales Ruminococcaceac:Oscillospira] N A
ESV £3¢9d78daccad 2d3435080748¢3 Lac3dd Firmicuies ;Closiridia:Closiridiales Ruminococcaceac:Oscillospira, N A
ESV  Tb28c20¢T2e6c95b3¢6040849245770  Verrucomicrobia;Verrucomicrobiae; Verrucomicrobiales |V errucomicrobiaceac:

Akkermansia;muciniphila
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CHAPTER 4: Conclusions and Future Directions
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CONCLUSIONS AND FUTURE DIRECTIONS

Inter-individual variation in microbiota composition is associated with differential
susceptibility to metabolic disease. The research presented in this thesis attempts to further
understand the interplay between the host genome and gut microbiome, and how their interactions
contribute to metabolic health outcomes. This work also provides the foundation for future
research to elucidate the molecular mechanisms underlying genetic regulation of microbiota
composition and how these microbes confer metabolic phenotypes.

Early evidence from studies using related individuals hinted at a contribution of common
genetic variants in shaping the microbiome (Erwin G. Zoetendal, Antoon D. L. Ak, 2001,
Turnbaugh et al., 2009a). However, these studies were limited by sample size and results were
confounded by environmental factors, making it difficult to determine the relative genetic
contributions. In Chapter 2, we interrogated the interactions among host genotype, diet, gut
microbiome, and metabolic phenotypes using a panel of genetically diverse inbred mouse strains.
The mouse model allowed us to control for environmental differences and circumvent confounding
factors found in human studies. We used eight inbred founder strains (Churchill et al., 2012),
herein referred to as “founder strains”. These founder strains include five laboratory-derived and
three wild-derived strains, which together exhibit comparable genetic variation to what is found
within the human population (Churchill et al., 2004). We placed the founder strains on either a
control or high-fat high-sucrose (HF/HS) diet for 22 weeks. At the end of the study, we found
significant variation in metabolic phenotypes and microbiota composition as a function of
genotype and diet.

Using the results obtained from these strains, we next investigated whether metabolic

phenotypes could be transferred via gut microbes. We took the microbiota from two strains that
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exhibit disparate metabolic phenotypes, HF/HS diet-susceptible (B6) and diet-resistant (CAST)
strains and colonized germ-free B6 mice. After 16 weeks on the HF/HS diet, we found significant
differences in body weight and glucose homeostasis among these animals, where the CAST
microbiota protected the mice from diet-induced metabolic disease. Pancreatic -cell function also
differed by microbiota composition, where the islets from CAST-colonized animals secreted
significantly less insulin than islets from B6-colonized mice. Concomitant alterations in bile acid
profiles were also overserved among these animals. Interestingly, bile acids are associated with
metabolic disease (Kuipers et al., 2014) and are capable of stimulating -cell insulin secretion
(Dufer et al., 2012). Overall, this study identified microbiota compositions associated with
metabolic phenotypes and provided novel insight into how the microbiota can influence glucose
homeostasis via 3-cells.

The transplant experiments with B6 and CAST microbiota present several directions for
future studies. First, while we have associations between microbial taxa and host phenotypes,
specific genotype-selected microbial taxa need to be identified and tested for their role in metabolic
disease. We also showed that the microbiota can transfer resistance to diet-induced metabolic
phenotypes in diet-sensitive genotypes (B6). To further evaluate the contributions of genotype-
specific microbiota composition on susceptibility to diet-induced metabolic disease, it would be
of interest to repeat the transplant experiment using a mouse strain resistant to metabolic syndrome
like CAST. This would enable further characterization of bacterial communities and taxa
associated with susceptibility or resistance to diet-induced metabolic disease. It would particularly
interesting to examine ex vivo insulin secretion in germ-free CAST mice colonized with either
CAST or B6 microbiota, since the CAST microbiota conferred such a strong insulin secretion

phenotype.
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In general, this transplant study highlighted the importance of the microbiota on insulin
phenotypes and additional work needs to be done to identify specific microbial taxa and
metabolites or microbial-dependent signals that affect -cell function. Our study suggests variation
in bile acid profiles may contribute to differences islet insulin secretion. There is evidence that
specific bile acids stimulate insulin secretion via bile acid receptors (Dufer et al., 2012; Kumar et
al., 2012). However, the effects of different bile acid profiles on insulin secretion remains relatively
unknown. In addition to bile acids, other microbial derived metabolites may be responsible for
changes in insulin secretion. For example, microbial production of the short chain fatty acid
(SCFA) acetate was causally shown to modulate B-cell function through stimulation of the
parasympathetic nervous system (Perry et al., 2016). Future studies examining microbial-driven
differences in insulin secretion should take a systems biology approach and integrate metagenomic
profiling of the intestinal microbiome, plasma and cecal metabolomics, and transcriptomics of the
ileum and B-cells.

In Chapter 3, we build on the characterization of genotype-specific microbiome from
Chapter 2 to identify specific host loci associated with the abundance of gut bacteria, as well as
bile acid levels. We characterized the fecal microbiota composition and levels of 27 bile acid
species in 400 genetically unique Diversity Outbred (DO) mice. The DO mouse stock is population
used for high-resolution genetic mapping derived from an outbreeding scheme using the eight
founder strains profiled in Chapter 2. The genome of each DO mouse is a mosaic of the eight
founder strains and every position can be attributed to one of the founder haplotypes. Furthermore,
this breeding scheme allows for high-resolution genetic mapping to better identify candidate genes

(Svenson et al., 2012). This is an improvement from previous microbial QTL studies in mice,
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which have limited mapping resolution and unevenly distributed genetic variation due to the
intercross breeding schemes (Svenson et al., 2012; Yang et al., 2007).

We found significant variation in the gut microbiota and bile acid profiles among the DO
mice. In fact, we identified loci associating with both gut microbes and bile acids, suggesting
possible pleiotropy, or genomic intervals that influence multiple traits. For example, we found a
locus on chromosome 8 containing the bile acid transporter Slc10a2 was associated with the
abundance of Turicibacter sp. and plasma cholic acid levels. We also found associations with the
metabolically beneficial bacterium Akkermansia muciniphila (Everard et al., 2013) and plasma
bile acids on chromosome 1 mapping to the same position as previously identified cholesterol
QTLs (Ishimori et al., 2004; Su et al., 2009a). This is particularly striking given the association of
A. muciniphila to obesity and cholesterol levels (Everard et al., 2013; Fu et al., 2015; Plovier et
al., 2017). Thus, additional work should investigate whether cholesterol explains the relationship
between this locus and A muciniphila and bile acids levels.

The instances of overlapping microbial and bile acid QTL are particularly interesting
because they may yield important insight into host-microbe interactions. Overlapping QTL may
be influenced by a pleiotropic locus, or a locus that effects multiple traits, or two closely linked
loci. Additional causal inference testing can then be used to elucidate the directionality of the
relationships and to determine if the underlying genetic variation effects both traits or whether one
trait is causal for the other. The results of causal testing can be applied to designing validation
experiments to gain mechanistic insight. For example, we used a genetics approach to identify a
correlative relationship between Turicibacter sp. and plasma cholic acid levels. The correlative
relationship between the traits suggested there may be an interaction between this microbe and bile

acid. So, we designed follow-up experiments to identify a novel metabolic capability of
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Turicibacter sp. and found this microbe is sensitive to high concentrations of bile acids, expanding
what is known about microbe-metabolite interactions in the intestine. Even though the effect of
the variant is still unclear, this approach yielded novel insight into factors that shape the gut
microbiome.

Furthermore, our findings in Chapter 3 successfully replicate patterns from earlier human
and mouse genetic mapping studies (Benson et al., 2010; Goodrich et al., 2016; McKnite et al.,
2012; Org et al., 2015; Wang et al., 2016). While genetic variation only explains a small fraction
(1% - 8.1%) of the variability in the microbiome among individuals, the congruence among these
studies provides strong evidence that specific bacterial taxa are modulated by host genetics.

While there are many instances of microbial taxa associating to the mouse genome, it is
important to acknowledge these associations do not equate to causation. Functional validation by
additional experimental work using in vivo and in vitro approaches is required to establish causality
and elucidate the molecular mechanisms underlying these associations. A major limitation of
genetic mapping studies is the inability to validate candidate genes since the majority of
associations are found in intergenic regulatory regions and identified loci often contain too many
genes to individually test (Chen and Tian, 2016; Maurano et al., 2012). The inclusion of additional
“omics” data would allow for a systems genetics approach and likely provide a deeper
understanding of the underlying biology (Civelek and Lusis, 2014). The ability to assign candidate
genes is vastly improved when transcriptome data is incorporated (Chick et al., 2016).
Metabolomics data also provides another layer to dissect underlying mechanisms and causal
pathways. Specific functional interactions likely underlie host gene — microbe associations,
therefore it would likely be beneficial to incorporate metagenomics data to characterize the

functional capacity of the microbiota. Taken together, the incorporation of these additional
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“omics” data would greatly enhance our ability to decipher host-microbe interactions in the DO
mice.

It is clear that the microbiome is a complex, high dimensional trait governed by an interplay
of environmental and genetic factors. Overall, the information resulting from this thesis project
enhances the understanding of the role of genetics in modulating gut microbiota and provides a
framework for mechanistic studies. Ultimately, this work will help guide therapeutic strategies to

manipulate the gut microbiome to treat human disease.
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ABSTRACT

Histone-modifying enzymes regulate transcription and are sensitive to availability of
endogenous small molecule metabolites, allowing chromatin to respond to changes in
environment. The gut microbiota produces a myriad of metabolites that affect host physiology and
susceptibility to disease, however the underlying molecular events remain largely unknown. Here
we demonstrate that microbial colonization regulates global histone acetylation and methylation
in multiple host tissues in a diet-dependent manner: consumption of a “Western-type” diet prevents
many of the microbiota-dependent chromatin changes that occur in a polysaccharide rich diet.
Finally, we demonstrate that supplementation of germ-free mice with short-chain fatty acids, major
products of gut bacterial fermentation, is sufficient to recapitulate chromatin modification states
and transcriptional responses of colonization on host epigenetic programming. These findings have
profound implications for understanding the complex functional interactions between diet, gut

microbiota, and host health.
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INTRODUCTION

The eukaryotic genome is organized into a highly compressed nucleoprotein structure
known as chromatin. Histone proteins are major components of chromatin and act as spools,
wrapping DNA into fundamental nucleosome units that can fold into higher order structures.
Histones undergo a myriad of covalent post-translational modifications (PTMs), and along
with histone variant replacement, comprise what is known as the “histone code,” wherein the
local PTM-state dictates whether chromatin is repressive or activating toward transcription
(Jenuwein and Allis, 2001). For example, histone acetylation is generally associated with open
chromatin and active transcription, whereas trimethylation of histone H3 K27 (H3K27me3) is
associated with transcriptional repression (Cao et al., 2002; Lachner et al., 2001). Histone
PTMs exist in a combinatorial manner and can serve as a signal integration platform, sensing
changes in environment and allowing for adaptive responses (Johnson and Dent, 2013).
Importantly, the enzymes that add and remove PTMs are known to be exquisitely sensitive to
the availability of endogenous small molecule metabolites (Fan et al., 2015). For example,
acetyl-coenzyme A (acetyl-CoA) is a necessary substrate for histone acetyltransferases
(HATS), and increased availability results in increased HAT activity.

The gut microbiota produces a variety of metabolites that are present at detectable
levels in host circulation (Wikoff et al., 2009), including small organic acids, bile acids,
vitamins, choline metabolites, and lipids (thoroughly reviewed in (Nicholson et al., 2012)).
Dietary poly- and oligosaccharides that are resistant to digestion by the mammalian host’s
limited repertoire of carbohydrate active enzymes are not broken down and absorbed in the
small intestine, but rather pass to the distal gut where they serve as a source of carbon and

energy for gut bacteria. Through fermentative reactions, the gut microbiota can metabolize
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these complex carbohydrates to produce small organic acids, the majority of which are
comprised of the short chain fatty acids (SCFAs) acetate, propionate, and butyrate (>95%)
(Besten et al., 2013). These metabolites are present in the proximal gut lumen at roughly 70-
140 mM total concentration, depending on dietary substrate (Topping and Clifton, 2001). A
number of robust associations between gut microbiota and host metabolic outcomes have been
made in recent years, including cardiovascular disease (Karlsson et al., 2012; Wang et al.,
2011), metabolic syndrome (Cabreiro et al., 2013; Chassaing et al., 2015; Suez et al., 2014;
Vijay-Kumar et al., 2010), obesity (Backhed et al., 2004; Ley et al., 2005; Ridaura et al., 2013;
Turnbaugh et al., 2006; Zhao, 2013), diabetes mellitus (Amar et al., 2011; Qin et al., 2012),
non-alcoholic fatty liver disease (Henao-Mejia et al., 2012), hepatic steatosis (Singh et al.,
2015), and even inflammatory bowel disorders and malignancy (Chassaing et al., 2015;
Donohoe et al., 2012; 2014). Interestingly, SCFAs have recently been associated with both
disease promoting (Belcheva et al., 2014; Perry et al., 2016; Samuel et al., 2008; Singh et al.,
2015; Turnbaugh et al., 2006) and therapeutic effects (Canfora et al., 2015; Donohoe et al.,
2014; Tan et al.,, 2014; Tilg and Moschen, 2014), prompting a need for increased
understanding of the underlying molecular mechanisms.

It is possible that gut microbial metabolites, which are present at detectable levels in
host circulation, play regulatory roles at the level of host chromatin. For example, acetate,
propionate, and butyrate can be converted to acetyl-CoA, thereby activating HAT activity.
Further, butyrate is a known histone deacetylase inhibitor (HDACI) (Riggs et al., 1977).
Therefore, these small organic acids may increase histone acetylation. Histone methylation
may also be affected by microbial metabolites. Gut bacteria produce a number of B-vitamins

(Hill, 1997) including B2 (riboflavin), B9 (folate), and B12 (cobalamin), which may promote
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availability of the methyl-donor S-adenosyl methionine (SAM), increasing histone
methylation. The gut microbiota may also compete with the host for choline (Romano et al.,
2015), ultimately limiting SAM availability. Therefore, there are a number of ways in which
gut microbial metabolites may impact the host epigenome, however experimental evidence
linking changes in the abundance of these metabolites to global variations in histone PTMs
in-vivo is lacking.

Here, we explore whether the gut microbiota affects host epigenetic programming in a
variety of tissues and how this relationship is affected by host diet. We provide the first
evidence of gut microbiota- mediated changes in global histone acetylation and methylation
not only in colon, which is in direct contact with microbes and their metabolites, but in tissues
outside the gut. We demonstrate that this regulatory relationship is sensitive to host diet,
wherein a “Western-type” diet limits microbial SCFA production, abolishes the effects of
microbiota on host chromatin states, and results in functionally relevant alterations in hepatic
gene expression. Finally, we identify an underlying mechanism that reveals SCFA
supplementation of germ-free mice is sufficient to recapitulate the epigenetic phenotype

associated with gut colonization.
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RESULTS

Gut microbiota affect host tissue epigenetic states

To investigate whether gut microbes and their metabolites affect host chromatin states, we
examined histone PTM states as a function of colonization. We focused our analysis on proximal
colon, liver, and white adipose. The proximal colon harbors the largest microbial community in
the body and is a region exposed to the highest levels of microbial metabolites. Nearly all
metabolite-rich venous blood that drains from the gut enters the liver via the convergence of
several mesenteric veins into the hepatic portal vein. Given this anatomical feature and known
associations between gut microbiota and hepatic steatosis, liver tissue was a logical choice to
investigate the effects of bacterial metabolites. Lastly, we selected white adipose tissue
(WAT) as a tissue more distant from the gut that is known to be affected by gut microbial
colonization (Béackhed et al., 2004). The experimental workflow is described in figure 1A.
Briefly, mice were either maintained germ- free (GF) throughout the experiment, allowed to
acquire a microbiota from birth to adulthood (conventionally raised, ConvR), or colonized
with a complete (uncultured) microbiota (conventionalized, ConvD) harvested from ConvR
donors. The use of a ConvD mouse model allows for the determination of whether the
phenotype observed in ConvR animals is transferrable via the gut microbiota alone.
Additionally, since ConvR animals experience different environmental exposure early in life
and have developmental differences (K. Smith et al., 2007) that may exhibit phenotypic
differences vs. their GF controls, the use of ConvD mice for relatively short time periods
allows for dissection of effects more directly related to differences in microbial metabolism.
At the time of sacrifice, tissues were harvested, and histones were extracted and prepared for
mass spectrometry analysis using an in-house data independent acquisition mass spectrometry

workflow (Krautkramer et al., 2015).
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We surveyed 55 unique and combinatorial acetylated and methylated histone PTM
states in proximalcolon, liver, and WAT (Supp. Table 1). Colonization induced robust
increases in histone H4 acetylation in all three tissues (Fig. A.1B). This peptide includes the
first 4 lysines (K5, K8, K12, and K16) on the histone H4 N-terminal tail. Thus H4: Oac
indicates peptides where no lysine residues are acetylated, whereas H4:1lac-4ac indicates
peptides where any 1-4 of the 4 lysines are acetylated. In ConvR animals, there was a
significant 2.1-fold increase in both triply and quadruply acetylated histone H4 (H4: 3ac and
H4:4ac, respectively). Similarly, ConvR animals showed a 3-fold and 1.30-fold increase in
the highly acetylated H4: 4ac peptide in proximal colon and adipose tissue, respectively,
relative to GF mice (Fig. A.1B). The effects of colonization on histone H4 acetylation were
even more robust in ConvD mice, with a 4.5-, 6.0-, and 12.0-fold increase in H4: 4ac of
proximal colon, adipose, and liver, respectively (Fig. A.1B). Triply acetylated histone H4
peptides also increased 2.1- to 4.2-fold in proximal colon, adipose, and liver (Fig. A.1B). Itis
noteworthy that these two histone H4 states collectively account for just over 1% of the total
histone H4 states, suggesting that this open chromatin state is confined to very specific loci
along the genome. As acetylated forms of the H4 N-terminal tail increased in abundance in
colonized animal tissues, the completely unmodified form of this peptide decreased
significantly (H4: Oac, 1.33 to 3.3-fold across the tissues surveyed), consistent with the
conversion of unacetylated states to higher acetylation content in colonized animals.

Microbes also induced acetylation of canonical histone H3 and the variant histone
H3.3. Similar to the patterns observed on histone H4, there were significant increases in
acetylation in response to gut colonization. The doubly acetylated canonical histone H3

K9ac+K14ac and H3 K18ac+K23ac peptides increased significantly in ConvD mouse livers
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and trended toward a similar magnitude of increase in proximal colon of ConvR and ConvD
mice (Fig. A.1B). Similar to highly acetylated histone H4 peptides, these two doubly
acetylated canonical histone H3 peptides account for roughly 2% or less of total histone PTM
states observed in each peptide family, again supporting a more loci-specific role for these
modified nucleosomes along the genome (Fig. A.1B). Interestingly, the singly acetylated
peptides K9ac+K14un and K9un+K14ac decrease concomitantly with an increase in the
doubly acetylated K9ac + K14ac peptide, and a similar pattern occurs on the singly acetylated
and coeluting K18ac/K23ac peptides (Fig. A.1B). These results are consistent with a shift
away from a singly acetylated state toward a maximally acetylated state.

Histone H3 methylation patterns are also altered as a function of gut colonization
status. There is a modest, yet statistically significant increase in histone peptide H3
K27me3+K36un in proximal colon, liver, and adipose tissues from ConvD mice vs. their GF
controls (1.4- to 1.5-fold increase, Fig. A.1B). This modification accounts for ~12% of total
PTM states, suggesting more broad regulatory effects in comparison to highly acetylated
states of histones H3 and H4 which accounted for only a very small fraction of total chromatin.
There were significant increases in peptides containing highly methylated forms of K27 and
K36 (i.e. me2 and me3) on both the canonical histone H3 and the histone variant H3.3,
however these effects were not present consistently across all three tissues, suggesting some
tissue- specificity in the response to colonization (Fig. A.1B). Notably, histone
monomethylation at H3 K18 decreased significantly across all three ConvD tissues (Fig.
A.1B, 2.1 to 8.3-fold across liver, proximal colon, and adipose tissue). A similar pattern was
present for the combinatorial K27me2+K36mel peptide on both histone H3 and the variant

H3.3 (Fig. A.1B). Together, these results demonstrate that gut microbiota affect host tissue
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acetylated and methylated chromatin states in a site-specific and combinatorial fashion,
strongly supporting a role for the gut microbiota as a driver of host tissue chromatin
regulation. Finally, while some histone PTM states appear to be similarly regulated across all
tissues surveyed, other changes are unique within a tissue.

A key feature of our mass spectrometry data is the ability to detect histone PTMs
within the context of neighboring modifiable sites on the same peptide, thereby capturing
some of the combinatorial nature of the histone code and allowing for detection of histone
PTM states that account for a very small percentage of the total. Thus, our quantitative mass
spectrometry results identified changes in histone PTM states that are not necessarily
resolvable by orthologous techniques such as western blot analysis (Aebersold et al., 2013).
Indeed, we performed several western blots and found no statistically significant differences
in histone H3 K9ac, H3 K27me3, or pan-acetyl(K) detectable via western blot in histone
extracts from GF, ConvR, and ConvD mouse livers (Supplemental Fig. 1A-B). To more
directly compare our mass spectrometry data with that obtained via western blot, we summed
all possible permutations of peptides containing K9ac and K27me3 on canonical histone H3
to obtain single western blot-like estimates of K9ac and K27me3 abundance for GF, ConvR,
and ConvD mouse liver histone PTM states (equations available in Supplemental Methods).
We then calculated fold changes relative to GF. Using this method, both K9ac and K27me3,
as a total among all combinatorial forms quantified, are predicted to remain relatively
unchanged between colonized and GF mice (Supplemental Fig. 1C), which is consistent with
quantitative western blot results (Supplemental Fig. 1B). It is also noteworthy that robust
changes in histone PTM states, including triply and quadruply acetylated histone H4 peptides,

cannot be probed using antibodies, since there are no antibodies currently available that can
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specifically detect these combinatorial states. Therefore, our histone proteomics workflow
allowed for identification of altered chromatin states that would not otherwise have been

detectable.

Gut microbiota-mediated changes in chromatin state are sensitive to host diet

Since host diet is known to affect both gut microbial community composition and
metabolism (Daniel et al., 2013; David et al., 2013; Turnbaugh et al., 2009b), we next
evaluated the effects of host diet on microbiota-mediated regulation of host chromatin states
(Supp. Table 1). ConvR and GF mice were fed a “Western-type” high fat, high sucrose diet
(HF/HS), which is provides low levels of fermentable substrate for the gut microbiota, for 16
weeks prior to sacrifice at 19 weeks of age. At the time of sacrifice, tissues were harvested
and a number of physiological parameters and histone PTM states were measured as described
in the workflow (Fig. A.2A). As anticipated, ConvR mice fed a HF/HS diet weighed
significantly more than diet-matched GF controls (Fig. A.2B). HF/HS-fed ConvR mice also
displayed significantly higher hepatic total cholesterol and triglycerides vs. diet-matched GF
controls and chow-fed mice (Fig. A.2C-D). Thus, HF/HS feeding significantly impacted host
metabolic state in a microbiota-dependent manner. To determine whether HF/HS feeding
altered SCFA production, we measured acetate, propionate and butyrate concentrations in
cecal contents (i.e. at the principal site of fermentation) of ConvR, ConvD, and GF mice on
both chow and HF/HS diets. SCFAs are mostly derived from microbial fermentation of
complex polysaccharides, thus we anticipated differences in SCF A production in response to
altered diet composition. Indeed, gut microbial colonization resulted in an increase of these

metabolites in the ceca of mice, and this increase was more pronounced in mice fed a chow
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diet compared to HF/HS diet (Fig. A.2E). In HF/HS-fed ConvR mice, cecal acetate,
propionate, and butyrate were present at significantly lower levels relative to chow-fed
ConvR mice (1.9-6.0 fold, Fig. A.4A, Supplemental Fig. 5A), in accordance with the lack of
microbiota-accessible carbohydrates in this diet. Interestingly, chow-fed ConvD mice had
greater cecal SCFAs than ConvR mice (Fig. A.2E). This pattern in cecal SCFA levels is
consistent with that of histone PTM changes in ConvD and ConvR mice on chow, wherein
PTM states trend in the same direction, but the magnitude of change is larger in ConvD mice
vs. ConvR (Fig. A.1B). This suggests that SCFA availability influences histone PTM states.
In peripheral venous blood, levels of these SCFAs were unchanged (Supplemental Fig. 5B),
which is consistent with these organic acids having already undergone significant metabolism
in the liver prior to reaching peripheral venous blood.

As predicted by cecal SCFA data, the gut microbiota-host epigenome relationship was
significantly altered in response to HF/HS feeding. While there was a microbiota-dependent
increase in histone H4 acetylation in ConvR and ConvD tissues of chow-fed mice (Fig. A.1B),
HF/HS-feeding abolished the effects of gut colonization in liver and WAT (Fig. A.2F and
A.2G). Interestingly, the microbiota-dependent effects on histone H4 acetylation were
attenuated, but still significantly increased relative to GF controls in HF/HS-fed mouse
proximal colon (Fig. A.2H). This pattern of diet-dependence was also present in other histone
PTM states. The response to gut microbiota on histone H3 K18 and K23 also trended as a
function of diet: K18mel and K23mel peptides both decreased significantly in livers of both
ConvR and ConvD chow fed mice, but remained unchanged in HF/HS-fed mice (Fig. A.2l).
The coeluting peptides K18ac and K23ac (i.e. K18ac/K23ac) were unchanged in response to

gut microbiota in livers of chow-fed mice, yet decreased significantly in HF/HS-fed mouse
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livers (Fig. A.2l). However, in proximal colon this diet-dependency was again absent and
histone PTM states trended in similar directions regardless of dietary conditions (Fig. A.2J).
There was also a diet-dependent, microbiota-independent increase in basal histone H4
acetylation in liver, proximal colon, and adipose tissue. In comparison to histone H4
acetylation in tissues from chow-fed ConvR and GF animals, there were significant increases
in nearly all forms of lac-4ac histone H4 peptides in HF/HS-fed tissues ranging from 1.2 to
7.2-fold (Supplemental Fig. 6).

Although the direction of change in both acetylated and methylated histone PTM states
generally remained similar in ConvR and ConvD tissues, there were differences in the
magnitude of PTM changes (Fig. A.1B, A.2F-J) that trended with differences in cecal SCFA
levels (Fig. A.2E). To investigate whether these differences reflected alterations to microbial
community composition, we performed 16S rRNA sequencing. Principal Coordinates
Analysis (PCoA) of weighted UniFrac distances revealed that the microbial community
composition of ConvR and ConvD mice on a chow diet was more similar to each other than
it was to the microbial community from mice fed HF/HS diet (Supplemental Fig. 2A). ConvR
mice fed a HF/HS diet had significantly fewer Bacteroidetes and a greater abundance of
Firmicutes (Supplemental Figures 2B-C) than chow fed ConvR and ConvD mice. This is
consistent with previous observations that diet and obesity alter the ratio of Bacteroidetes to
Firmicutes in the gut (Ley et al., 2005; Turnbaugh et al., 2006). Furthermore, the relative
abundance of these two major phyla in chow-fed ConvD mice were intermediate between
chow- and HF/HS-fed ConvR mice (Supplemental Figures 2B- D). Together, these data

suggest that both gut microbial community composition and metabolite production, which are
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inherently linked, are important factors that mediate the relationship between gut microbiota

and regulation of host chromatin states.

Functional impact: Co-regulation of hepatic genes associates with altered chromatin states

To assess whether microbiota-dependent changes in host chromatin state affected
tissue gene expression, we performed RNA-seq analyses on livers of colonized (both ConvR
and ConvD) and GF mice on the two diets described above. Each group of colonized mice
was compared to its diet-matched GF control: i.e., chow-fed ConvR vs. GF, chow-fed ConvD
vs. GF, and HF/HS-fed ConvR vs. GF. A total of 623 genes were differentially expressed (DE)
among these three groups, as determined by an FDR cut-off of 0.05 (Supp. Table 2). K-means
clustering of hepatic DE genes revealed 6 optimal clusters, each enriched for unique biological
pathways (Fig. A.3A, Supp. Table 3). When comparing ConvR mice on either chow or HF/HS
diets to their respective GF controls, cluster 2 contained genes that are co-regulated as a
function of both diet and microbiota (Fig. A.3A-B). This group of genes was enriched for
processes involved in insulin, SREBP, and PPAR signaling, and adaptive immunity.
Additionally, this cluster contains a number of genes that may regulate histone PTM states
via modulation of small molecule metabolite availability. Clusters 4 and 6 contain genes
whose expression patterns differ in ConvR animals as a function of diet (Fig. A.3A, C-D).
Cluster 4 genes are enriched for pathways involved in cholesterol, retinol, and amino acid
metabolism as well as host immunity, whereas cluster 6 contains a number of genes involved
in lipid and amino acid metabolism as well as a group of genes involved in regulation of folate,
which ultimately affects the availability of the one-carbon donor SAM to histone
methyltransferases. It is noteworthy that a significant proportion of DE genes (4% of DE

genes) are known hepatic targets of SREBP and PPAR.
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To specifically assess the effects of diet alone, we made comparisons in GF and ConvR
mice as a function of diet. Thus, rather than comparing each group of mice to their respective
GF control, mice were compared within colonization groups (i.e. GF or ConvR) across dietary
conditions (i.e. HF/HS vs. chow). This comparison yielded 868 differentially expressed genes,
413 of which increased and 455 of which decreased in expression in HF/HS-fed mice relative
to chow-fed controls (Supplemental Fig. 4A- B). Although a fraction of DE up (Supplemental
Fig. 4A) and DE down (Supplemental Fig. 4B) genes are regulated in both ConvR and GF
mice, the fact that there are 1.8-fold more total DE genes in response to diet in ConvR mice
vs. GF mice suggests that gut microbiota drive a significant portion of the response to HF/HS
feeding in liver. Additionally, KEGG pathway analysis of unique and overlapping DE genes
in GF and ConvR mice revealed several oppositely regulated pathways as a function of diet
(Supplemental Figures 4C-D). For example, while starch and sucrose metabolism is enriched
in DE up genes of ConvR mice, this same pathway is significantly enriched in DE down genes
of GF mice. The same pattern is present for pathways involved in arachidonic acid
metabolism, cytokine-cytokine receptor interaction, and endocytosis. Other key differences
include DE up gene enrichment for processes involved in the TCA cycle and propionate
metabolism in GF mice only, and butyrate metabolism in ConvR mice only (Supplemental
Fig. 4C). Importantly, genes involved in PPAR signaling, insulin signaling, and diabetes
mellitus were enriched in DE up genes shared by both GF and ConvR mice (Supplemental
Fig. 4C). Pathways involved in de-novo cholesterol synthesis are significantly enriched in DE
down genes shared by both GF and ConvR mice, suggesting that HF/HS feeding decreases

host de-novo cholesterolsynthesis irrespective of gut colonization status.
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Thus, there are a number of DE genes that associate with altered chromatin states in
liver whose expression is mediated by this diet-microbiota interaction. More detailed
information about specific gene cluster membership, expression, and pathway enrichment
among clusters is described in Supplemental Tables 2-4, Supplemental Figures 3-4, and the

Supplemental Information.

SCFA-supplementation partially phenocopies the effects of colonization on host epigenetic
programming

We hypothesized that the SCFAS acetate, propionate, and butyrate were key mediators
of systemic microbiota-induced changes in host chromatin states. To further investigate this
idea, we supplemented germ-free mice with acetate, propionate, and butyrate (GF+SCFA)
and harvested liver and proximal colon for histone PTM and gene expression analyses (Fig.
A.4A). These GF+SCFA mice were then compared to GF and ConvD mice, as negative and
positive controls, respectively. Hierarchical clustering revealed that histone PTM states of
GF+SCFA and ConvD mice were strikingly similar across both acetylated and methylated
peptides (Fig. A.4B). Further, GF+SCFA and ConvD histone PTM signatures were highly
correlated, with a Pearson’s correlation coefficient of 0.74 - 0.75, for proximal colon and liver
samples (p = 1.2 x 10%% and 5.7 x 101, respectively; Fig. A.4C-D). These data reveal that the
global chromatin states induced by SCFAs mimic, in part, gut colonization.

While levels of acetate, propionate, and butyrate were significantly increased in the
cecal contents of ConvD mice, there were no significant differences between GF+SCFA mice
and GF controls (Supplemental Fig. 5C). Similar to previous observations (Supplemental Fig.
5B), peripheral blood levels of SCFAs were unchanged as a function of either gut colonization

or SCFA-supplementation (Supplemental Fig. 5D). Thus, while conventionalization results in
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increased local concentration of cecal SCFAs, oral supplementation of SCFAs did not, as
these organic acids are expected to be absorbed to some extent across earlier segments of the
alimentary tract. Additionally, each bolus of ingested SCFA in GF+SCFA mice is likely to be
absorbed very quickly across the gut epithelium, which may result in differential luminal
accumulation vs. constant local production by the gut microbiota. Despite these potential
differences, the physiological impacts are likely to be similar, given that venous blood from
the small intestine also drains to the liver via the hepatic portal vein where it mixes with blood
traveling from the colon.

To determine whether these highly similar global chromatin states elicited similar
biological effects in ConvD and GF+SCFA mice, we used RNAseq analyses to examine
hepatic gene expression in ConvD, GF+SCFA, and GF mice. Consistent with histone PTM
observations, GF+SCFA mice had highly similar transcriptional profiles to ConvD mice (Fig.
A.4E & A.4G). K-means clustering of 537 DE genes revealed 6 clusters of co-regulated genes
that were enriched for a number of metabolic and immunological processes (Fig. A.4E-F,
Supp. Tables 5-6). In particular, clusters b and ¢ were enriched for GO-terms involved in
immunity (cluster b) and regulation, storage, and metabolism of lipids and cholesterol (cluster
c, Supp. Table 5). Finally, there was striking overlap of DE genes between GF+SCFA and
ConvD mice, wherein >50% of DE genes in GF+SCFA livers overlapped with DE genes in
ConvD mice (Fig. A.4G). Together these data suggest that SCFAs are partially causative
metabolites in the complex regulatory relationship between diet, gut microbiota, and host

tissue epigenetic programming.
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DISCUSSION

Eukaryotic histone modifying enzymes have evolved to sense and integrate
environmental signals, ultimately programming gene expression patterns and mediating
phenotype. Given the sensitivity of these enzymes to endogenous small molecule metabolites,
we hypothesized gut microbial metabolites absorbed and metabolized by the host may exert
similar control. Here, we present the first evidence that global histone acetylation and
methylation are mediated by gut microbiota in multiple host tissues, not limited solely to the

gut itself.

Gut microbiota-diet interactions influence host chromatin states

Gut colonization drives robust increases in acetylation of histones H3 (K9, K14, K18,
and K23) and H4 (K5, K8, K12, and K16) in a diet- and tissue-dependent manner (Fig. A.1B).
While there were increases in histone acetylation in liver and adipose tissue from colonized
chow-fed animals, the effects of gut colonization were lost in animals fed a HF/HS diet (Fig.
A.2F-H). Interestingly, the diet-dependency of microbiota-driven changes in histone H4
acetylation was attenuated in proximal colon. Although HF/HS-feeding diminished the
magnitude of change in H4 acetylation, the change was not abolished (Fig A.2H). This
difference in tissue-specific response may be due to changes in availability of SCFAs.
Production of SCFAs is reduced 1.9 to 6-fold in HF/HS-fed animals vs. their colonized
counterparts (Fig. A.2E, Supplemental Fig. 5A). These dietary effects were expected, given
that HF/HS-feeding is known to reduce gut microbial biomass and significantly alter both
community composition and metabolite production (Daniel et al., 2014). Therefore, while
SCFAs may still be present at high enough concentration to affect histone modifying enzymes

in the gut of HF/HS-fed animals, the amount available in peripheral circulation may not be
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sufficient to elicit effects in distal tissues in HF/HS-fed mice. It is worth noting that although
there was no effect of microbiota on histone H4 acetylation in tissues of HF/HS-fed mice,
HF/HS-feeding alone induced an increase in baseline histone H4 acetylation (Supplemental
Fig. 6). The nature of this increase is unclear, but could result from increased production of
acetyl-CoA through beta-oxidation of dietary lipids or due to elevated lipid-based signaling
pathways in the HF/HS diet. While it may be possible that this basal increase in histone
acetylation masked microbiota-driven changes, the fact that acetylation is increased still
further in proximal colon, where SCFAs are generated, under HF/HS-feeding suggests that
the loss of effect seen in distal tissues is due to limiting amounts of bacterial SCFA rather than
an elevated baseline.

SCFAs play a dual role as both substrates for metabolism and as signaling molecules
(Besten et al.,, 2013). Mice and humans derive ~10% of their energy from oxidation of
bacterial SCFAs. Colonocytes obtain 60-70% of their energy from oxidation of SCFAs. The
remaining SCFAs drain from the gut via the superior and inferior mesenteric veins, which
converge and empty into the liver via the hepatic portal vein. As much as 70% of acetate and
roughly 30% of propionate is taken up by the liver, where they both serve as sources of energy.
Acetate can also serve as a substrate for cholesterol, long-chain fatty acid, glutamine, and
glutamate synthesis in the liver. The remainder is metabolized by other tissues, including
white adipose. As ligands of the G-protein coupled receptors FFAR2 (GPR43) and FFAR3
(GPRA41), SCFAs play a role in lipid and glucose metabolism. Thus, these metabolites play
complex roles in regulation of host metabolic phenotype. Whether SCFAs contribute to
beneficial or pathogenic effects in the host remains unclear. While SCFAs have been

associated with anti-inflammatory effects, improvement of insulin sensitivity, glucose
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homeostasis, and weight control; and protection from colorectal cancer (Besten et al., 2013;
Canfora et al., 2015; Donohoe et al., 2012; 2014; P. M. Smith et al., 2013), they have also
conversely been associated with increased capacity for energy harvest, inflammation, hepatic
steatosis, and the promotion of colorectal cancer (Belcheva et al., 2014; Singh et al., 2015;
Turnbaugh et al., 2006). Thus, further investigation is needed to reveal the complete set of
molecular mechanisms underlying SCFA-associated phenotypes.

Here, we show that SCFA supplementation of germ-free mice is sufficient to
recapitulate many of the epigenetic effects of gut colonization (Fig. A.4A-G). Interestingly,
SCFA supplementation mimics effects of colonization on both histone acetylation and
methylation, to the extent that collective histone PTM states in liver and proximal colon of
GF+SCFA and ConvD mice have highly significant Pearson’s correlation values of 0.74-0.75
(Fig. A.4B-D). While the link between histone acetylation and SCFAs is more clear, the link
between SCFAs and histone methylation is less clear. Treatment with SCFAs in a cell culture
system has been shown to suppress expression of the histone methyltransferases EZH2 and
SUV39H1and decrease of the repressive histone methylation modifications H3 K9me3 and
H3 K27me3 (Yu et al., 2014), however the underlying mechanisms are not currently
understood. Regulation of histone methylation may be due to either antagonism by acetylation
at the same site (Pasini et al., 2010) or regulation by combinatorial effects of acetylated states
at nearby sites. While the effects of SCFA- supplementation broadly recapitulated both
chromatin states and gene expression patterns of ConvD mice, it is worth noting that the
magnitude of the effects were generally less in SCFA+GF tissues relative to ConvD (Fig.
A.4B, A.4E). This suggests that while SCFAs are at least partially causative, there are likely

other bacterial metabolites that regulate the host epigenome.
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The increases observed in histone acetylation generally accounted for very small mean
percentages of total global chromatin states (<2.1% of the total across all conditions for highly
acetylated peptides containing H3 K9, K14, K18, and K23 and H4 K5, K8, K12, and K16).
In contrast, H3 K27me3, which increased by 1.4- to 1.5-fold in ConvD tissues relative to GF
controls, accounted for a mean of nearly 12% of the global peptide family total across all
conditions. Therefore, it is possible that gut microbiota drive active chromatin states at very
specific loci in the genome (given the small % of global peptide family totals), whereas the
microbiota-induced repressive chromatin states are more broadly distributed across the
genome (given their larger % of total global peptide family states).

While the direction of change remained highly similar across PTM states in ConvR
and ConvD tissues, the magnitude of change was often greater in ConvD mice vs. ConvR
(Fig. A.1B). Notably, this trend in PTM states mirrored that of cecal SCFA contents (Fig.
A.2E), which supports a role for SCFAs as key metabolites in the microbiota-host epigenome
response. This is somewhat unexpected but is likely due, at least in part, to differences in
microbial community composition between ConvR and ConvD mice. This variance may be
due to loss of key taxa during colonization of GF mice and/or differences in the ability of
specific taxa to compete in a GF environment. It is also possible that differences in the host
tissue chromatin response are due to the fact that ConvD animals were colonized only one
month prior to sacrifice, whereas ConvR animals were allowed to acquire a microbiota from
birth onward. In this scenario, the increased magnitude of change in histone PTM states
of ConvD mice vs. their ConvR counterparts may be due to the fact that ConvD hosts are
still metabolically adapting to a previously inaccessible source of nutrition via the gut

microbiota.
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Hepatic gene co-regulation is linked to altered chromatin states

Altered histone PTM states associated with differential expression of genes involved
in metabolic homeostasis and immune regulation in both colonized and SCFA-supplemented
mice (Fig. A.3A-D, Fig. A.4F-H). A surprisingly large number of hepatic DE genes were
involved in either glucose or lipid and cholesterol homeostasis, which is underscored by
significant pathway enrichment for insulin and PPAR signaling (Fig. A.3, Supplemental
Information). The fact that genes involved in insulin signaling were downregulated in both
chow and HF/HS fed mice vs. their GF controls suggests that insulin sensitivity may be
decreased in colonized mice, irrespective of diet. Interestingly, hepatic Scdl expression was
significantly increased in colonized mice relative to their GF controls, and the magnitude of
change was greater in chow- vs. HF/HS fed mice (Fig. 3B). Expression of Scdl was recently
shown to be driven by gut microbiota in a SCFA-dependent manner and to contribute to the
development of metabolic syndrome and increased de novo hepatic lipogenesis in toll-like
receptor 5 knockout (T5KO) mice (Singh et al., 2015). Given this, it is unclear why the
microbiota-driven increase in Scdl expression is greater in mice fed a standard chow diet than
in those fed a diet more permissive to the development of metabolic syndrome (HF/HS), but
the increased response in chow-fed mice may simply be due to increased SCFA availability
relative to their HF/HS-fed counterparts. Further, TSKO mice are prone to the development
of metabolic syndrome, thus, their metabolic response to microbiota may differ from that of
a wild type mouse (Singh et al., 2015).

The gut microbiota also altered expression of a number of genes involved in
availability of small molecule metabolites that are known to regulate histone PTM addition or

removal. One prime example is ATP citrate lyase (Acly). Under both chow and HF/HS



197

feeding, Acly expression decreased in ConvR vs. GF mice. This enzyme has been
demonstrated to be essential for glucose-driven histone acetylation in mammalian cells,
however acetate-driven histone acetylation was not affected by knockdown of Acly expression
(Wellen et al., 2009). Interestingly, Acly expression decreases most in HF/HS-fed ConvR
mouse livers. This begs the question of whether Acly expression is decreased in the setting of
decreased tissue glucose-dependency due to the presence of other sources of carbon and
energy, such as bacterial SCFAs or highly energetic lipids from HF/HS-feeding. Availability
of NAD", a necessary co-substrate for Class 11l HDACs, may also be modulated by gut
microbiota. NAMPT, which catalyzes the rate-limiting step in NAD™ biosynthesis, was
differentially expressed in colonized vs. GF livers. Finally, there were four genes in cluster 6
linked to regulation of folate, which can affect the availability of the methyl donor SAM for
histone methyltransferases: Sardh, Dmgdh, Amt, and Gldc (Fig. A.3D). Loss of Gldc, the first
enzyme of the glycine cleavage system that breaks down glycine to produce one carbon
formate, has been associated with neural tube defects, growth retardation, and decreased levels
of one carbon-carrying folates in tissue that can be rescued by supplementation with formate
(Pai et al., 2015). Thus, decreased expression of these enzymes may affect tissue SAM
availability, via modulation of folate levels.

Finally, a number of genes associated with host immunity and inflammation were
differentially expressed in colonized as well as GF+SCFA mice relative to their GF controls
(Fig. 3A-D, 4F-G). Given that GF mice are completely naive to microbiota, it is not
unexpected that colonized mice have altered expression of immunomodulatory genes relative
to GF mice. Further, it is known that gut microbiota are important for the development and

function of host immunity (Belkaid and Hand, 2014). SCFAs have been previously shown to
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play an important role in both adaptive and innate immunity, in FFAR2- and FFAR3-
dependent manners (Belkaid and Hand, 2014; Correa et al., 2016; P. M. Smith et al., 2013).
Whether the multitude of DE metabolic and immunomodulatory genes observed here are
directly regulated by histone PTMs remains to be determined. However, it is noteworthy that
there are a number of regulated genes that have no known association with FFAR2 or FFAR3
signaling. The close association between histone PTM states and gene expression patterns,
particularly in GF+SCFA mice, further supports a role for histone PTMs in the response to
microbiota. Finally, gene activation via FFAR2 and FFAR3 signaling need not be mutually
exclusive with concurrent alterations in histone PTM states. Further work will be required to
elucidate which genes are directly regulated by microbiota- mediated histone PTM states,
however the work presented here offers an extensive resource that will be invaluable for future

exploration of this nature.
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CONCLUSIONS

The gut microbiota is a diverse, metabolically rich community that has co-evolved
with its mammalian hosts (Ley et al., 2008). The impact of this metabolic and immune
regulatory organ on the host has become increasingly evident in recent years. Here, we
demonstrate that gut microbiota exert a regulatory role on both methylated and acetylated host
chromatin states in multiple organ systems that is at least partially driven by microbial SCFAs.
These SCFAs can be either directly converted (acetate) or oxidized (propionate and butyrate)
to acetyl-CoA, the substrate for HAT enzymes. Further, butyrate is a known HDAC inhibitor.
Both scenarios result in increased histone acetylation. Consequently, it is possible that
eukaryotic histone-modifying enzymes have evolved to “sense” not only endogenous small
molecule metabolites, but also those produced by commensal microbiota. In this manner, the
host epigenetic machinery guides phenotype in response to altered metabolic states, such as
increased availability of SCFAs, driving specific gene responses. While robust associations
between the gut microbiota and the host in health and disease have been demonstrated, in
many cases the underlying molecular mechanisms remain to be elucidated. Here we show that
the gut microbiota and their metabolites exert systemic regulatory effects at the level of host
tissue epigenetic programming. This approach may provide valuable insight into a variety of
gut microbiota-mediated host metabolic and immunologic phenotypes, enhancing our ability
to not only understand how the gut dysbiosis affects host disease, but also to harness this

metabolic organ to promote host health.
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EXPERIMENTAL PROCEDURES

Mouse husbandry — Animal care and study protocols were approved by the University of
Wisconsin- Madison Animal Care and Use Committee. Mice were housed in the Microbial
Sciences Building vivarium. Conventionally-raised (ConvR) and germ-free (GF) C57BL/6J
mice were bred at the University of Wisconsin-Madison to generate mice used in this study.
GF mice were housed in separate plastic flexible vinyl gnotobiotic isolators.

Mice were group housed by colonization status and diet (3-5 mice/cage) under standard
conditions (12 h light:dark, temperature- and humidity-controlled conditions), and received
ad libitum access to water and food. After 3 weeks of age, mice were maintained on either a
control breeder chow (5021, Lab Diet, 23.7%-kcal fat, 53.2% carbohydrate, 23.1% protein)
or a high-fat high-sucrose (HF/HS) diet (TD.08811, Envigo Teklad, 44.6%-kcal fat, 40.6%
carbohydrate, 14.8% protein). Diets were sterilized by irradiation and autoclaving. Sterility of
germ-free animals was assessed by incubating freshly collected fecal samples under aerobic
and anaerobic conditions using standard microbiology methods. Final dissection and data
collection were performed at 19-weeks of age.

Conventionalized (ConvD) mice were generated by colonizing GF C57BL/6J mice with fresh
cecal contents were collected from 15-week old conventionally-raised C57BL/6J mice
maintained on a control breeder chow diet (n = 2 mice per donor cecal microbiota sample per
experiment; 5021, Lab Diet). Immediately after sacrifice, fresh cecal contents from donor
mice were re-suspended in Mega Medium (1:100 w/v) in an anaerobic chamber (Romano et
al., 2015). Suspensions were transferred into anaerobic sealed tubes and used to colonize mice

in a sterile biological safety cabinet. Germ-free 15-week-old C57BL/6J male mice were
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inoculated via a single oral gavage with ~0.2 ml of cecal inocula (Turnbaugh et al., 2009b)
and kept in sealed filter-top gnotobiotic cages for 4 weeks.

SCFA Supplementation — Germ-free (GF) C57BL/6J male mice were maintained in sterile
HEPA filter cages and fed water and autoclaved chow ad libitum. At 12 weeks of age a subset
of GF mice were supplemented with a mixture of short chain fatty acids (SCFA) (acetate
67.5mM, butyrate 40mM, propionate 25.9mM (P. M. Smith et al., 2013)) via drinking water
supplied ad libitum or conventionalized (ConvD) with a C57BL/6J intestinal microbial
community by gavage. Inoculum for colonization was prepared by suspending freshly
collected fecal pellets in Mega Medium. Water was sterilized by autoclave prior to SCFA
addition and filter sterilized after SCFA addition through a 0.2 um filter before being supplied
to the mice. SCFA supplemented water was freshly prepared and changed every 5 days and
again 24h before sacrifice. Sterility of germ-free animals was assessed by incubating freshly
collected fecal samples under aerobic and anaerobic conditions using standard microbiology
methods. Prior to sacrifice and tissue collection at 14 weeks of age all mice (GF, GF+SCFA,

ConvD) were anesthetized with 1-5% inhalant isoflurane supplied in oxygen.

The methods used to measure histone PTMs, 16S rRNA sequencing, gene expression, hepatic
total cholesterol and triglycerides, and cecal and peripheral blood SCFAs are described in the

Supplemental Methods.



202

CONTRIBUTIONS

KAK conceived the project, performed experiments, interpreted results, prepared figures
and write the manuscript. Julia Kemis, Kymberleigh Romano and Greg Barrett-Wilt performed
experiments, interpreted results, and contributed to writing the manuscript. Specifically, Julia
Kemis collected fecal samples and performed 16S rRNA sequencing and analysis to profile the
gut microbiota composition. Eugenio Vivas and Mary Rabaglia performed experiments. Alan Attie
and Mark Keller interpreted results and contributed to writing the manuscript. John Denu and

Federico Rey conceived the project, interpreted results, and wrote the manuscript.

ACKNOWLEDGEMENTS

We thank the members of the Epigenetics Theme at the Wisconsin Institute for Discovery
for their support and expertise, in particular the Rupa Sridharan group (Rupa Sridharan and Khoa
Tran) for their guidance with RNAseq work and input throughout the duration of the project. We
thank Marie Adams and the staff at the University of Wisconsin Biotechnology Center DNA
Sequencing Facility for their assistance in acquiring RNAseq data. We also thank the University
of Wisconsin - Madison Molecular Archaeology Group for providing access to their GC/MS
instrument and expertise in performing GC/MS data acquisition. Finally, we thank the Center for
High Throughput Computing (CHTC) staff, with particular gratitude to Lauren Michael, Christina
Koch, and Neil Van Lysel, for their invaluable guidance while using HTCondor. We apologize to
authors whose work was able to be cited given the strict length constrains of a short article.

K.A.K. is supported by NIH F30 DK108494, JA.D by NIH GM059789-15/P250VA.

Additional support: Clinical and Translational Science Award program through the NIH National



203

Center for Advancing Translational Sciences grants UL1TR000427 and KL2TR000428 (F.E.R.),

NIH DK108259 (F.E.R.), DK101573 (A.D.A.).



204

REFERENCES

Aebersold, R., Burlingame, A.L., Bradshaw, R.A., 2013. Western Blots versus Selected
Reaction Monitoring Assays: Time to Turn the Tables? Molecular & Cellular Proteomics
12, 2381-2382. d0i:10.1074/mcp.E113.031658

Amar, J., Serino, M., Lange, C., Chabo, C., lacovoni, J., Mondot, S., Lepage, P., Klopp, C.,
Mariette, J., Bouchez, O., Perez, L., Courtney, M., Marre, M., Klopp, P., Lantieri, O., Doré,
J., Charles, M.A., Balkau, B., Burcelin, R., D.E.S.I.R. Study Group, 2011. Involvement of
tissue bacteria in the onset of diabetes in humans: evidence for a concept. Diabetologia 54,
3055-3061. doi:10.1007/s00125-011-2329-8

Barrett, T., Wilhite, S.E., Ledoux, P., Evangelista, C., Kim, I.F., Tomashevsky, M., Marshall,
K.A., Phillippy, K.H., Sherman, P.M., Holko, M., Yefanov, A., Lee, H., Zhang, N.,
Robertson, C.L., Serova, N., Davis, S., Soboleva, A., 2013. NCBI GEO: archive for
functional genomics data sets--update. Nucleic Acids Research 41, D991-5.
doi:10.1093/nar/gks1193

Backhed, F., Ding, H., Wang, T., Hooper, L.V., Koh, G.Y., Nagy, A., Semenkovich, C.F.,
Gordon, J.1., 2004. The gut microbiota as an environmental factor that regulates fat storage.
Proc Natl Acad Sci USA 101, 15718-15723. d0i:10.1073/pnas.0407076101

Belcheva, A., Irrazabal, T., Robertson, S.J., Streutker, C., Maughan, H., Rubino, S.,
Moriyama, E.H., Copeland, J.K., Kumar, S., Green, B., Geddes, K., Pezo, R.C., Navarre,
W.W., Milosevic, M., Wilson, B.C., Girardin, S.E., Wolever, T.M.S., Edelmann, W.,
Guttman, D.S., Philpott, D.J., Martin, A., 2014. Gut microbial metabolism drives
transformation of MSH2-deficient colon epithelial cells. Cell 158, 288- 299.
doi:10.1016/j.cell.2014.04.051

Belkaid, Y., Hand, T.W., 2014. Role of the microbiota in immunity and inflammation. Cell.
doi:10.1016/j.cell.2014.03.011

Besten, den, G., van Eunen, K., Groen, A.K., Venema, K., Reijngoud, D.-J., Bakker, B.M.,
2013. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and
host energy metabolism. J. Lipid Res. 54, 2325-2340. doi:10.1194/jlr.R036012

Bligh, E.G., Dyer, W.J., 1959. A rapid method of total lipid extraction and purification.
Canadian Journal of Biochemistry and Physiology 37, 911-917. doi:10.1139/059-099

Cabreiro, F., Au, C., Leung, K.-Y., Vergara-lrigaray, N., Cochemé, H.M., Noori, T.,
Weinkove, D., Schuster, E., Greene, N.D.E., Gems, D., 2013. Metformin retards aging in
C. elegans by altering microbial folate and methionine metabolism. Cell 153, 228-239.
doi:10.1016/j.cell.2013.02.035

Canfora, E.E., Jocken, J.W., Blaak, E.E., 2015. Short-chain fatty acids in control of body
weight and insulin  sensitivity. Nature Publishing Group 11, 577-591.
doi:10.1038/nrendo0.2015.128



205

Cao, R., Wang, L.J., Wang, H.B., Xia, L., Erdjument-Bromage, H., Tempst, P., Jones, R.S.,
Zhang, Y., 2002. Role of histone H3 lysine 27 methylation in polycomb-group silencing.
Science 298, 1039-1043. doi:10.1126/science.1076997

Caporaso, J.G., Bittinger, K., Bushman, F.D., DeSantis, T.Z., Andersen, G.L., Knight, R.,
2010a. PyNAST: a flexible tool for align ng sequences to a template alignment.
Bioinformatics 26, 266—-267. doi:10.1093/bioinformatics/btp636

Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K.,
Fierer, N., Pefia, A.G., Goodrich, J.K., Gordon, J.1., Huttley, G.A., Kelley, S.T., Knights,
D., Koenig, J.E., Ley, R.E., Lozupone, C.A., McDonald, D., Muegge, B.D., Pirrung, M.,
Reeder, J., Sevinsky, J.R., Turnbaugh, P.J., Walters, W.A., Widmann, J., Yatsunenko, T.,
Zaneveld, J., Knight, R., 2010b. QIIME allows analysis of high-throughput community
sequencing data. Nat Chem Biol 7, 335-336. d0i:10.1038/nmeth.f.303

Chassaing, B., Koren, O., Goodrich, J.K., Poole, A.C., Srinivasan, S., Ley, R.E., Gewirtz,
A.T., 2015. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and
metabolic syndrome. Nature 519, 92-96. doi:10.1038/nature14232

Correa, R.O., Fachi, J.L., Vieira, A., Sato, F.T., Vinolo, M.A.R., 2016. Regulation of immune
cell function by short-chain fatty acids. Clinical and Translational Immunology 2-8.
doi:10.1038/cti.2016.17

Daniel, H., Gholami, A.M., Berry, D., Desmarchelier, C., Hahne, H., Loh, G., Mondot, S.,
Lepage, P., Rothballer, M., Walker, A., hm, C.B.O., Wenning, M., Wagner, M., Blaut, M.,
Schmitt-Kopplin, P., Kuster, B., Haller, D., Clavel, T., 2013. High-fat diet alters gut
microbiota physiology in mice. ISME J 8, 295-308. d0i:10.1038/ismej.2013.155

Daniel, H., Moghaddas Gholami, A., Berry, D., Desmarchelier, C., Hahne, H., Loh, G,
Mondot, S., Lepage, P., Rothballer, M., Walker, A., B6hm, C., Wenning, M., Wagner, M.,
Blaut, M., Schmitt-Kopplin, P., Kuster, B., Haller, D., Clavel, T., 2014. High-fat diet alters
gut microbiota physiology in mice. ISME J 8, 295-308. d0i:10.1038/ismej.2013.155

David, L.A., Maurice, C.F., Carmody, R.N., Gootenberg, D.B., Button, J.E., Wolfe, B.E.,
Ling, A.V., Devlin, A.S., Varma, Y., Fischbach, M.A., Biddinger, S.B., Dutton, R.J.,
Turnbaugh, P.J., 2013. Diet rapidly and reproducibly alters the human gut microbiome.
Nature 505, 559-563. doi:10.1038/nature12820

Dennis, G., Sherman, B.T., Hosack, D.A., Yang, J., Gao, W., Lane, H.C., Lempicki, R.A.,
2003. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome
Biol 4, P3. d0i:10.1186/gb- 2003-4-9-r60

DeSantis, T.Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E.L., Keller, K., Huber, T.,
Dalevi, D., Hu, P., Andersen, G.L., 2006. Greengenes, a chimera-checked 16S rRNA gene
database and workbench compatible with ARB. Applied and Environmental Microbiology
72, 5069-5072. doi:10.1128/AEM.03006-05



206

Donohoe, D., Collins, L., Wali, A., Bigler, R., Sun, W., Bultman, S., 2012. The Warburg
Effect Dictates the Mechanism of Butyrate-Mediated Histone Acetylation and Cell
Proliferation. Molecular Cell 48, 612— 626. doi:10.1016/j.molcel.2012.08.033

Donohoe, D.R., Holley, D., Collins, L.B., Montgomery, S.A., Whitmore, A.C., Hillhouse, A.,
Curry, K.P., Renner, S.W., Greenwalt, A., Ryan, E.P., Godfrey, V., Heise, M.T.,
Threadgill, D.S., Han, A., Swenberg, J.A., Threadgill, D.W., Bultman, S.J., 2014. A
Gnotobiotic Mouse Model Demonstrates that Dietary Fiber Protects Against Colorectal
Tumorigenesis in a Microbiota- and Butyrate-Dependent Manner. Cancer Discovery CD—
14-0501. d0i:10.1158/2159-8290.CD-14-0501

Edgar, R.C., 2010. Search and clustering orders of magnitude faster than BLAST.
Bioinformatics 26, 2460-2461. doi:10.1093/bioinformatics/btq461

Fan, J., Krautkramer, K.A., Feldman, J.L., Denu, J.M., 2015. Metabolic regulation of histone
post-translational modifications. ACS Chem. Biol. 10, 95-108. d0i:10.1021/cb500846u

Henao-Mejia, J., Elinav, E., Jin, C., Hao, L., Mehal, W.Z., Strowig, T., Thaiss, C.A., Kau,
A.L., Eisenbarth, S.C., Jurczak, M.J., Camporez, J.P., Shulman, G.I.,, Gordon, J.I.,
Hoffman, H.M., Flavell, R.A., 2012. Inflammasome-mediated dysbiosis regulates
progression of NAFLD and obesity. Nature 482, 179-185. doi:10.1038/nature10809

Hill, M.J., 1997. Intestinal flora and endogenous vitamin synthesis. Eur. J. Cancer Prev. 6
Suppl 1, S43-5.

Jensen, L.J., Kuhn, M., Stark, M., Chaffron, S., Creevey, C., Muller, J., Doerks, T., Julien, P.,
Roth, A., Simonovic, M., Bork, P., Mering, von, C., 2009. STRING 8-a global view on
proteins and their functional interactions in 630 organisms. Nucleic Acids Research 37,
D412-D416. doi:10.1093/nar/gkn760

Jenuwein, T., Allis, C.D., 2001. Translating the histone code. Science 293, 1074-1080.
doi:10.1126/science.1063127

Johnson, D.G., Dent, S.Y.R., 2013. Chromatin: receiver and quarterback for cellular signals.
Cell 152, 685-689. d0i:10.1016/j.cell.2013.01.017

Karlsson, F.H., Fak, F., Nookaew, I., Tremaroli, V., Fagerberg, B., Petranovic, D., Backhed,
F., Nielsen, J., 2012. Symptomatic atherosclerosis is associated with an altered gut
metagenome. Nat Commun 3, 1245. doi:10.1038/ncomms2266

Kessner, D., Chambers, M., Burke, R., Agus, D., Mallick, P., 2008. ProteoWizard: open
source software for rapid proteomics tools development. Bioinformatics 24, 2534-2536.
doi:10.1093/bioinformatics/btn323

Kozich, J.J., Westcott, S.L., Baxter, N.T., Highlander, S.K., Schloss, P.D., 2013.
Development of a dual- index sequencing strategy and curation pipeline for analyzing
amplicon sequence data on the MiSeq Illumina sequencing platform. Applied and
Environmental Microbiology 79, 5112-5120. do0i:10.1128/AEM.01043-13



207

Krautkramer, K.A., Reiter, L., Denu, J.M., Dowell, J.A., 2015. Quantification of SAHA-
Dependent Changes in Histone Modifications Using Data-Independent Acquisition Mass
Spectrometry. J. Proteome Res. 14, 3252-3262. doi:10.1021/acs.jproteome.5b00245

Lachner, M., O'Carroll, D., Rea, S., Mechtler, K., Jenuwein, T., 2001. Methylation of histone
H3 |lysine 9 creates a binding site for HP1 proteins. Nature 410, 116-120.
doi:10.1038/35065132

Leng, N., Dawson, J.A., Thomson, J.A., Ruotti, V., Rissman, A.l., Smits, B.M.G., Haag, J.D.,
Gould, M.N., Stewart, R.M., Kendziorski, C., 2013. EBSeq: an empirical Bayes
hierarchical model for inference in RNA-seq experiments. Bioinformatics 29, 1035-1043.
doi:10.1093/bioinformatics/btt087

Ley, R.E., Backhed, F., Turnbaugh, P., Lozupone, C.A., Knight, R.D., Gordon, J.I., 2005.
Obesity alters gut microbial ecology. Proc Natl Acad Sci USA 102, 11070-11075.
doi:10.1073/pnas.0504978102

Ley, R.E., Hamady, M., Lozupone, C., Turnbaugh, P.J., Ramey, R.R., Bircher, J.S., Schlegel,
M.L., Tucker, T.A., Schrenzel, M.D., Knight, R., Gordon, J.I., 2008. Evolution of
mammals and their gut microbes. Science 320, 1647-1651. doi:10.1126/science.1155725

Li, B., Dewey, C.N., 2011. RSEM: accurate transcript quantification from RNA-Seq data with
or without a reference genome. BMC Bioinformatics 12, 323. d0i:10.1186/1471-2105-12-
323

MacLean, B., Tomazela, D.M., Shulman, N., Chambers, M., Finney, G.L., Frewen, B., Kern,
R., Tabb, D.L., Liebler, D.C., MacCoss, M.J., 2010. Skyline: an open source document
editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26, 966 —
968. doi:10.1093/bioinformatics/btq054

Maile, T.M., Izrael-Tomasevic, A., Cheung, T., Guler, G.D., Tindell, C., Masselot, A., Liang,
J., Zhao, F., Trojer, P., Classon, M., Arnott, D., 2015. Mass Spectrometric Quantification
of Histone Post-translational Modifications by a Hybrid Chemical Labeling Method. Mol.
Cell Proteomics 14, 1148-1158. d0i:10.1074/mcp.0114.046573

McDonald, D., Price, M.N., Goodrich, J., Nawrocki, E.P., DeSantis, T.Z., Probst, A.,
Andersen, G.L., Knight, R., Hugenholtz, P., 2012. An improved Greengenes taxonomy
with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME
J6,610-618. doi:10.1038/ismej.2011.139

Nicholson, J.K., Holmes, E., Kinross, J., Burcelin, R., Gibson, G., Jia, W., Pettersson, S.,
2012. Host-gut microbiota metabolic interactions. Science 336, 1262-1267.
doi:10.1126/science.1223813

Pai, Y.J., Leung, K.-Y., Savery, D., Hutchin, T., Prunty, H., Heales, S., Brosnan, M.E.,
Brosnan, J.T., Copp, A.J., Greene, N.D.E., 2015. Glycine decarboxylase deficiency causes
neural tube defects and features of non-ketotic hyperglycinemia in mice. Nat Commun 6,
6388. d0i:10.1038/ncomms7388



208

Pasini, D., Malatesta, M., Jung, H.R., Walfridsson, J., Willer, A., Olsson, L., Skotte, J., Wutz,
A., Porse, B., Jensen, O.N., Helin, K., 2010. Characterization of an antagonistic switch
between histone H3 lysine 27 methylation and acetylation in the transcriptional regulation
of Polycomb group target genes. Nucleic Acids Research 38, 4958-4969.
doi:10.1093/nar/gkq244

Perry, R.J., Peng, L., Barry, N.A., Cline, G.W., Zhang, D., Cardone, R.L., Petersen, K.F.,
Kibbey, R.G., Goodman, A.L., Shulman, G.1., 2016. Acetate mediates a microbiome-brain-
B-cell axis to promote metabolic syndrome. Nature 534, 213-217.
doi:10.1038/nature18309

Qin, J.,, Li, Y., Cai, Z., Li, S., Zhu, J., Zhang, F., Liang, S., Zhang, W., Guan, Y., Shen, D.,
Peng, Y., Zhang, D., Jie, Z., Wu, W., Qin, Y., Xue, W., Li, J., Han, L., Lu, D., Wu, P., Dai,
Y., Sun, X,, Li, Z,, Tang, A., Zhong, S., Li, X., Chen, W., Xu, R., Wang, M., Feng, Q.,
Gong, M., Yu, J., Zhang, Y., Zhang, M., Hansen, T., Sanchez, G., Raes, J., Falony, G.,
Okuda, S., Almeida, M., LeChatelier, E., Renault, P., Pons, N., Batto, J.-M., Zhang, Z.,
Chen, H., Yang, R., Zheng, W., Li, S., Yang, H., Wang, J., Ehrlich, S.D., Nielsen, R.,
Pedersen, O., Kristiansen, K., Wang, J., 2012. A metagenome-wide association study of
gut microbiota in type 2 diabetes. Nature 490, 55—60. do0i:10.1038/nature11450

Ridaura, V.K., Faith, J.J., Rey, F.E., Cheng, J., Duncan, A.E., Kau, A.L., Griffin, N.W.,
Lombard, V., Henrissat, B., Bain, J.R., Muehlbauer, M.J., llkayeva, O., Semenkovich,
C.F., Funai, K., Hayashi, D.K., Lyle, B.J., Martini, M.C., Ursell, L.K., Clemente, J.C., Van
Treuren, W., Walters, W.A., Knight, R., Newgard, C.B., Heath, A.C., Gordon, J.I., 2013.
Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science
341, 1241214. doi:10.1126/science.1241214

Riggs, M.G., Whittaker, R.G., Neumann, J.R., Ingram, V.M., 1977. n-Butyrate causes histone
modification in HelLa and Friend erythroleukaemia cells. Nature 268, 462-464.
doi:10.1038/268462a0

Romano, K.A., Vivas, E.l., Amador-Noguez, D., Rey, F.E., 2015. Intestinal microbiota
composition modulates choline bioavailability from diet and accumulation of the
proatherogenic metabolite trimethylamine-N-oxide. MBio 6, e02481.
doi:10.1128/mBi0.02481-14

Samuel, B.S., Shaito, A., Motoike, T., Rey, F.E., Backhed, F., Manchester, J.K., Hammer,
R.E., Williams, S.C., Crowley, J., Yanagisawa, M., Gordon, J.I., 2008. Effects of the gut
microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-
coupled receptor, Gprdl. PNAS 105, 16767— 16772. doi:10.1073/pnas.0808567105

Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N.,
Schwikowski, B., Ideker, T., 2003. Cytoscape: A software environment for integrated
models of biomolecular interaction networks. Genome Res. 13, 2498-2504.
doi:10.1101/gr.1239303

Singh, V., Chassaing, B., Zhang, L., San Yeoh, B., Xiao, X., Kumar, M., Baker, M.T., Cai,
J., Walker, R., Borkowski, K., Harvatine, K.J., Singh, N., Shearer, G.C., Ntambi, J.M., Joe,



209

B., Patterson, A.D., Gewirtz, A.T., Vijay-Kumar, M., 2015. Microbiota-Dependent
Hepatic Lipogenesis Mediated by Stearoyl CoA Desaturase 1 (SCD1) Promotes Metabolic
Syndrome in  TLR5-Deficient Mice. Cell Metabolism 22, 983- 996.
doi:10.1016/j.cmet.2015.09.028

Smith, K., McCoy, K.D., Macpherson, A.J., 2007. Use of axenic animals in studying the
adaptation of mammals to their commensal intestinal microbiota. Semin. Immunol. 19, 59—
69. doi:10.1016/j.smim.2006.10.002

Smith, P.M., Howitt, M.R., Panikov, N., Michaud, M., Gallini, C.A., Bohlooly-Y, M.,
Glickman, J.N., Garrett, W.S., 2013. The microbial metabolites, short-chain fatty acids,
regulate colonic Treg cell homeostasis. Science 341, 569-573.
doi:10.1126/science.1241165

Suez, J., Korem, T., Zeevi, D., Zilberman-Schapira, G., Thaiss, C.A., Maza, O., Israeli, D.,
Zmora, N., Gilad, S., Weinberger, A., Kuperman, Y., Harmelin, A., Kolodkin-Gal, I.,
Shapiro, H., Halpern, Z., Segal, E., Elinav, E., 2014. Artificial sweeteners induce glucose
intolerance by altering the gut microbiota. Nature 514, 181-186. doi:10.1038/nature13793

Tan, J., McKenzie, C., Potamitis, M., Thorburn, A.N., Mackay, C.R., Macia, L., 2014. The
role of short- chain fatty acids in health and disease. Adv. Immunol. 121, 91-119.
doi:10.1016/B978-0-12-800100- 4.00003-9

Tilg, H., Moschen, A.R., 2014. Microbiota and diabetes: an evolving relationship. Gut 63,
1513-1521. doi:10.1136/gutjnl-2014-306928

Topping, D.L., Clifton, P.M., 2001. Short-chain fatty acids and human colonic function: roles
of resistant starch and nonstarch polysaccharides. Physiological Reviews 81, 1031-1064.

Turnbaugh, P.J., Hamady, M., Yatsunenko, T., Cantarel, B.L., Duncan, A., Ley, R.E., Sogin,
M.L., Jones, W.J., Roe, B.A., Affourtit, J.P., Egholm, M., Henrissat, B., Heath, A.C.,
Knight, R., Gordon, J.1., 2009a. A core gut microbiome in obese and lean twins. Nature
457, 480-484. do0i:10.1038/nature07540

Turnbaugh, P.J., Ley, R.E., Mahowald, M.A., Magrini, V., Mardis, E.R., Gordon, J.I., 2006.
An obesity- associated gut microbiome with increased capacity for energy harvest. Nature
444, 1027-131. doi:10.1038/nature05414

Turnbaugh, P.J., Ridaura, V.K., Faith, J.J., Rey, F.E., Knight, R., Gordon, J.l., 2009b. The
Effect of Diet on the Human Gut Microbiome: A Metagenomic Analysis in Humanized
Gnotobiotic Mice. Sci Transl Med 1, —6ral4. doi:10.1126/scitransImed.3000322

Vijay-Kumar, M., Aitken, J.D., Carvalho, F.A., Cullender, T.C., Mwangi, S., Srinivasan, S.,
Sitaraman, S.V., Knight, R., Ley, R.E., Gewirtz, A.T., 2010. Metabolic syndrome and
altered gut microbiota in mice lacking Toll-like receptor 5. Science 328, 228-231.
doi:10.1126/science. 1179721



210

Wang, Z., Klipfell, E., Bennett, B.J., Koeth, R., Levison, B.S., DuGar, B., Feldstein, A.E.,
Britt, E.B., Fu, X., Chung, Y.-M., Wu, Y., Schauer, P., Smith, J.D., Allayee, H., Tang,

W.H.W., DiDonato, J.A., Lusis, A.J., Hazen, S.L., 2011. Gut flora metabolism of
phosphatidylcholine

promotes  cardiovascular

disease. Nature 472, 57-63.
doi:10.1038/nature09922

Wellen, K.E., Hatzivassiliou, G., Sachdeva, U.M., Bui, T.V., Cross, J.R., Thompson, C.B.,

2009. ATP- Citrate Lyase Links Cellular Metabolism to Histone Acetylation. Science 324,
1076-1080. doi:10.1126/science.1164097

Wikoff, W.R., Anfora, A.T., Liu, J., Schultz, P.G., Lesley, S.A., Peters, E.C., Siuzdak, G.,
2009. Metabolomics analysis reveals large effects of gut microflora on mammalian blood
metabolites. Proc Natl Acad Sci USA 106, 3698—3703. d0i:10.1073/pnas.0812874106

Yu, X., Shahir, A.-M., Sha, J., Feng, Z., Eapen, B., Nithianantham, S., Das, B., Karn, J.,
Weinberg, A., Bissada, N.F., Ye, F., 2014. Short-chain fatty acids from periodontal

pathogens suppress histone deacetylases, EZH2, and SUV39H1 to promote Kaposi's
sarcoma-associated herpesvirus

replication. Journal of Virology 88, 4466-4479.
doi:10.1128/JV1.03326-13

Zhao, L., 2013. The gut microbiota and obesity: from correlation to causality. Nat Rev Micro
11, 639- 647. doi:10.1038/nrmicro3089



FIGURES
A.
GF /@:@_ B ; _
1 "o 2 3 P :
R, —> [>T > s
" /e_ ./—@ : e pIc———

B. Tissue: Liv Liv Col Col Adi Adi

Condition: R D R D R D

o N
o o
c 0
EG
GRS
-E(D
S v
=5
H3:
_ H3:
] H3
£ H3
[S} H3
2 H3

H3.3: K27ac K36un
H3.3: K27me1 K36me1
H3.3: K27me1 K36me2
H3.3: K27me1 K36me3
H3.3: K27me1 K36un
H3.3: K27me2 K36me1
H3.3: K27me2 K36me2
H3.3: K27me2 K36un
H3.3: K27me3 K36me1
H3.3: K27me3 K36me2
H3.3: K27me3 K36un
H3.3: K27un K36me1
H3.3: K27un K36me2
H3.3: K27un K36un

K1Bac K23ac
K18ac/K23ac

- K18me1 K23un

- K18un K23me1

: K18un K23un

. K27ac K36un

: K27me1 K36me1
- K27me1 K36me2
- K27me1 K36me3
- K27me1 K36un

. K27me2 K36me1
: K27me2 K36me2
. K27me2 K36un

- K27me3 K36me1
- K27me3 K36me2
- K27me3 K36un

- K27un K36met1

- K27un K36me2

: K27un K36un

- Kdme1

. K4me2

: K4me3

- Kdun

- K79me1

: K79me2

- K79un

- K9ac K14ac

- K9ac K14un

- K9me1 K14ac

: K9me1 K14un

: K9me2 K14ac

- K9me2 K14un

: K9me3 K14ac

- K9me3 K14un

: K9un K14ac

- K9un K14un

: Dac

s lac

: 2ac

: 3ac

- 4ac

ion intensity

0 50 mO

IA
o

Retention Time

211

540



212

Figure A.1. Gut microbiota affect host tissue epigenetic states. (A) Experimental design: 1.
proximal colon, liver, and white adipose tissue was harvested from germ-free (GF), conventionally
raised (ConvR), and conventionalized (ConvD) mice. 2-3. Histones were extracted, chemically
derivatized and trypsinized to generate peptides amenable to mass spectrometry analysis. 4-5.
Histone peptides were injected onto a Thermo Q-Exactive mass spectrometer and data was
acquired on >60 unique histone PTM states. (B) Relative abundance of histone PTMSs on histone
H3, histone H3.3, and histone H4. Values are reported as a fold change vs. GF controls (log2). The
mean % of peptide family total across all samples is displayed in the right-most column. * p <

0.05, ** p <0.01, *** p < 0.001, n=4 mice per condition.
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Figure A.2. Gut microbiota-mediated epigenetic changes are sensitive to diet. (A)
Experimental design: 1.GF and ConvR mice were raised on either chow or a HF/HS
(“Westernized”) diet. 2-5. Tissues were harvested and histone extracts were prepared for mass
spectrometry analysis as described in Figure 3.1. (B-D) Histone H4 (K5, K8, K12, and K16)
acetylation in colonized liver (B), proximal colon (C), and adipose tissue (D) relative to GF
controls (fold change, log2). (E-F) Histone H3 K18 and K23 methylation and acetylation in

colonized liver (E) and proximal colon (F) relative to GF control (fold change, log2). (G) Histone
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H4 (K5, K8, K12, and K16) acetylation in tissues of HF/HS-fed vs. chow-fed mice. Mean % of
peptide family totals are displayed in the right-most column. * p < 0.05, ** p <0.01, *** p < 0.001,

error bars represent standard error from the mean, n=4 mice per condition.
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colonization status. (A) K-means clustering of differentially expressed hepatic genes (left, fold
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change vs. GF, log2) and KEGG pathway enrichment terms (right). (B-D) Interaction network for
cluster 2 (B), cluster 4 (C), and cluster 6 (D). Only genes with at least one reported interaction are
graphed. Edges indicate interaction. Node size indicates relative expression in HF/HS-fed mouse

livers. Node color indicates relative expression in chow-fed mouse livers.
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diet. *p < 0.05, **p < 0.01, error bars represent standard deviation, n = 4 mice per condition. (B)
Experimental design: 1. Germ-free mice were supplemented with SCFAs (GF+SCFA) or
colonized (ConvD) and tissues were harvested. 2-5. Histone extracts were prepared as described
in figure 1. (C) Hierarchical clustering of histone PTMs in colonized and GF+SCFA mouse tissues
(fold change vs. GF, log2). (D-E) Pearson’s correlation of ConvD and GF+SCFA mouse tissue
histone PTM states in liver (D) and proximal colon (E). (F) K-means clustering of differentially
expressed hepatic genes in ConvD and GF+SCFA mice. FDR cutoff for differential expression =
0.05, n = 3 mice per condition. (G) GO-term enrichment in clusters b and c. (H) Overlap of

differentially expressed genes between ConvD and GF+SCFA mice.
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APPENDIX B: Social Relationships, Social Isolation, and the Human Gut Microbiota

The work presented in this appendix is currently under review:
Dill-McFarland KA", Tang ZZ", Kemis JH, Kerby RL, Chen G, Palloni A, Sorenson T, Rey FE*,
Herd P*
*indicates lead author, * indicates corresponding author

Supplemental data files available online
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ABSTRACT

Social relationships shape human health and mortality via behavioral, psychosocial, and
physiological mechanisms, including inflammatory and immune responses. Though not tested in
human studies, recent primate studies indicate that the gut microbiome may also be a biological
mechanism linking relationships to health. Integrating microbiota data into the 60-year-old
Wisconsin Longitudinal Study, we found that socialness with family and friends is associated with
differences in the human fecal microbiota. Analysis of spouse (N = 94) and sibling pairs (N = 83)
further revealed that spouses have more similar microbiota and more bacterial taxa in common
than siblings, with no observed differences between sibling and unrelated pairs. These differences
held even after accounting for dietary factors. The differences between unrelated individuals and
married couples was driven entirely by couples who reported close relationships; there were no
differences in similarity between couples reporting somewhat close relationships and unrelated
individuals. Moreover, the microbiota of married individuals, compared to those living alone, has
greater diversity and richness, with the greatest diversity among couples reporting close
relationships, which is notable given decades of research documenting the health benefits of
marriage. These results suggest that human interactions, especially sustained, close marital

relationships, influence the gut microbiota.
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INTRODUCTION

Social relationships exert a sustained influence on human health and mortality with social
isolation having strong negative consequences and high levels of social integration far exceeding
the protective effects on mortality of individual level behaviors such as smoking cessation or
maintaining a normal weight 12, Research in the social sciences has shown that individuals who
cohabitate in marriage and marital like relationships have better health than do unpartnered adults®.
For both social relationships generally, and marriage specifically, health benefits are largely
achieved in the context of high-quality relationships. The robust links between these relationships
and health are related to stress, behaviors, and psychosocial resources, among other factors 2. In
part, social support may impact one’s health by reinforcing healthy habits, reducing the impacts of
stress, and preventing the use of unhealthy “self-medications” like smoking and drinking 2.
Additional research points to stress-related biological processes that may also contribute to the
positive impacts of social relationships through changes in inflammatory processes, metabolic
syndrome, and neurological functioning °.

Recent work in the field of microbiology points to another possible biological mechanism
linking human relationships and health: the microbiome. The microbial communities that inhabit
mammals have profound effects on biology and health 8. Gastrointestinal (GI) microbial
communities impact host health by modulating the epigenome 7, brain function 8, and metabolism
of drugs and nutrients °as well as impacting immune system function °and development 1. While
the microbiota reaches an adult-like configuration by three to five years of age *?, considerable
variation exists between adults '3, and differences are mediated by a number of factors. Most
notable among these are diet ** and host genetics °, which also correlate with health. An

individual’s microbiota structure (i.e. relative abundance) and composition (i.e. who’s there) can
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change rapidly in response to inputs like diet 6 and antibiotics 1. Nonetheless, there is evidence
that an individual’s microbiota remains relatively stable over many years 820 perhaps in part
because a person’s behaviors also tend to be consistent over many years.

While a number of factors like diet are known to impact both the microbiota and health??,
less is known regarding social relationships. Most existing research has focused on animal models,
which has produced compelling evidence that social interactions, via a range of different types of
physical contact, influences the gut microbiota through microbial sharing between individuals 2%
26 Additionally, states of isolation, such as maternal neglect, influence the gut microbial
composition in animal models 27 at least in part through stress 222°, Thus, the gut microbiota may
play a role in some of the long-term health effects of social relationships.

But despite this tantalizing evidence, studies in human populations remain relatively small
in number ¥, There are a few studies exploring how mother-infant interactions influence the
development of the infant’s gut microbiome and even how broader social interactions influence
the milk microbiome 332, In terms of adults, there is evidence regarding the influence of
cohabitation, may influence the gut microbiome. A few recent studies have found that individuals
living together had more similar gut 32 and skin 3334 microbiota. Interestingly, however, another
study found that married cohabitating couples had no more similarity in the composition of their
gut microbiota than did unrelated individuals 3°.

Thus, while it does appear that living together may influence the gut microbiome, human
studies have not investigated how adult relationships, rather than just simply living in the same
space, may influence the gut microbiome. The quality of the relationship may matter. Closer
relationships likely lead to even closer shared environments, via mechanisms such as time spent

physically together. Indeed, one recent study of wild baboons found that close partners within
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social groups had more similar gut microbiotas 6. Studies have also have not more generally
compared how living alone versus living with an intimate partner influences the gut microbiome;
individuals living alone are on average, de facto, more socially isolated than those living with
someone, and animal studies have generally shown that social isolation leads to decreased
microbial diversity 2237-3, Though causality is not certain, decreased microbial diversity is
associated with obesity, cardiac disease, and type 2 diabetes, and a range of other inflammatory
disorders 447, More broadly, there is extensive evidence that cohabitating couples in later life
have substantially improved physical and psychological well-being compared to single adults 48
50, Thus, similar mechanisms might explain some of the variance in findings in humans.

An important hindrance to research examining social relationships and the GI microbiota
is the availability of human samples with sufficiently well-characterized life course measures of
broader social environments and conditions. Thus, most microbiological research in this field is
based on animal models 2225, However, there are now a wide array of well-characterized
longitudinal studies in the social sciences that have generated decades of research documenting
relationships between broader social environments and mortality >4, These data can provide a
platform for studies of the human microbiota to advance knowledge for both social scientists and
microbiologists, including whether social conditions influence the gut microbiota and whether the
gut microbiota is a mediating biological mechanism explaining how social conditions influence
health.

Here, we leverage a multidisciplinary collaboration to investigate the links between human
interaction, the microbiota, and human health. We utilized data in the nearly 60-year Wisconsin
Longitudinal Study (WLS) %, which constitutes a random sample of 1 in 3 1957 Wisconsin high

school graduates (N = 10,317), as well as selected spouses and siblings surveyed periodically
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during their adult life. We correlate the fecal microbiota of 408 older individuals (58 — 91 yo) from
WLS with extensive health and behavioral data, as well as compare spouse and sibling pairs within
the cohort. Overall, this project demonstrates the promise of joint participation between social
scientists and microbiologists in efforts to more fully understand the gut microbiota and its impacts

on human health.
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RESULTS AND DISCUSSION

We employed 16S rRNA gene sequencing to characterize the fecal microbiota of 408
individuals, including Wisconsin Longitudinal Study (WLS) graduates (N = 179, 76 + 0.5 years
old), siblings of graduates (134, 74 + 6.4), spouses of graduates (63, 76 + 3.7), and spouses of
siblings (32, 73 + 6.1). We then correlated these communities to longitudinal survey data
collected from 1957 to 2015 as part of WLS >4 For more details on this data collection, see *.
A total of 24.5 million high-quality sequences were obtained for 408 fecal samples (60,000 +
19,000 SD sequences per sample) after quality filtering in mothur. All samples achieved sufficient
coverage as determined by Good’s coverage > 99% (Dataset S1).

In the WLS graduate cohort, we identified several factors correlated with gastrointestinal
(GI) microbiota including sex, antibiotics, dietary protein, high blood sugar, and heart disease
(Fig.B.1, Fig. S1, Table S1). These factors were reported in the previous literature 57 with diet
playing a particularly strong role 4165 Thus, we assessed diet across a number of measures
including habitual intake of protein, vegetables, and fruits (Text S1) during the year prior to the
fecal sample collection (for details, see METHODS, Statistical analysis for graduates). While
overall dietary dissimilarity (Bray-Curtis and Jaccard) across these three categories correlated with
gut microbiota dissimilarity, only the total frequency of dietary protein consumption was robustly
associated with microbial composition using either univariate or multivariate analyses (Table S1).
Thus, we note that all analyses have adjusted for potential confounders including age, sex,
antibiotics, dietary protein, and chronic conditions (diabetes and heart disease) unless stated
otherwise. In some analyses —that are noted below—we do also include vegetable and fruit dietary

data.
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Social interactions and the human fecal microbiota
Human interactions were also associated with differences in gut microbiota and diversity.
Specifically, we found that individuals that were cohabitating with a spouse or partner had more
similar microbiota composition with their cohabitating spouse/partner as well as higher diversity
and richness than unmarried, non-cohabitating individuals (unweighted UniFrac P = 0.029
Shannon P = 0.005, Chao P = 0.011, Fig. B.2). Since all cohabitating pairs were male-female and
sex was a strong determinant of the microbiota in this study (P < 0.001, Table S2), increased
diversity may be partially due to sustained exchange of microorganisms between the sexes, though
we were not able to test this given that there were no same sex couples in these data. Increases in
diversity seen here are consistent with a previous cohabitation study in pigs °° and may have
implications for human health, as previous work indicates that increased gut microbial diversity
is associated with lower risks of irritable bowel syndrome (IBS), Crohn’s disease, ulcerative
colitis, and other Gl afflictions ©°. Social interactions with relatives and friends were stronger
predictors of gut microbial diversity in non-cohabiting individuals than cohabiting
spouses/partners (unweighted UniFrac P = 0.0030, Shannon P = 0.042, Chao P = 0.063, Fig. S2)
(Table S2). Here, social interactions were defined as the sum of “How many times during the past
four weeks have you gotten together with relatives/friends?” The associations may have been
weaker for cohabitating spouses due to their higher microbial diversity; ecological theory supports
that diverse communities are more resilient and resistant to invasion by new species 1. Thus, one
explanation for these differential associations is that the more diverse microbiotas of individuals
already cohabitating with a spouse may not have been as strongly influenced by increasing social
interactions while the less diverse microbiotas of those living alone were more strongly
influenced by invasion of new species through social exposures. It is also possible that

cohabitating couples share the same friends and socialize together with these friends. However,
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factors contributing to the resilience of the human gut microbiota require further exploration to

confirm this hypothesis.

Spouses have more similar microbes than siblings and unrelated individuals

Previous studies have established that the GI microbiota reaches an adult-like configuration
by 3 to 5 years of age'®6263 and that during adulthood, communities are stable on the time scale
of years %20, Thus, microbial communities established in early life may persist and, aside from
extreme perturbation, remain stable across one’s adult lifetime. However, our analyses comparing
sibling, couple, and unrelated pairs challenge the assumption that microbial communities
established in early life will be largely unperturbed in later life (for details, see METHODS,
Statistical Analysis for spouse and siblings). In fact, we find no evidence for a remaining influence
of early life on the composition of the gut microbiota among older adults. In this older cohort,
spouses were more similar than unrelated subjects (unweighted UniFrac P = 3.2E-5) or sibling
pairs (unweighted UniFrac P = 0.033, Fig. B.3). Further, the length of the cohabitating marital
relationship was positively correlated with similarity (unweighted UniFrac, P = 0.031) In contrast,
siblings were no more similar than unrelated pairs by any beta-diversity metric (P > 0.3, Fig. B.3A,
Fig. S3A, D, G) (Table S2). We also found no evidence that the physical proximity of siblings—
as measured by physical distance between siblings—influenced gut microbial similarity. Thus,
adult factors like marriage with cohabitation (spouses) appear to have a greater influence on the
adult gut microbiota than early-life environment or genetics (siblings).

This is further supported by our findings that childhood farm status was not associated with
microbial richness (Chao P = 0.342) while working on a farm as an adult correlated with higher
richness (Chao P = 0.005). Farm-driven differences in the microbiota are of particular interest,

because adolescents that grew up on a farm have more diverse microbial communities % and
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reduced risk of asthma and other atopic diseases both during childhood % and as adults . Given
the results here, it appears that the microbially-driven protective effects of early farm exposures
are not due to the persistence of protective microorganisms acquired in early-life. Protection may,
instead, be conferred by immune development and training by early-life microbes as suggested
previously .

Our results are also in contrast with previous work showing that genetically related
individuals harbor more similar microbial communities than unrelated individuals, regardless of
current cohabitation 356870, However, these previous studies investigated children 8, young
adults®8°, or a wide age range 7°, and therefore, cumulative changes across a lifetime may not
have reached a level sufficient to overcome early-life factors impacting the microbiota.
Additionally, sibling pairs in other studies were twins 3870 and many focused on monozygotic
twins (same sex and age) 3°6%70 as opposed to this study where siblings were often of opposite sexes
(43%) and ranged from less than a year to 18 years apart in age. Also, the unrelated group in this
study may have exhibited higher homogeneity than unrelated groups in other studies, because most
grew up in and/or currently live in the state of Wisconsin. Thus, compared to previous studies,
siblings were likely less similar and unrelated pairs more similar across our cohort. Furthermore,
genetic effects on the microbiota are often small "°and detection may require a larger human cohort
than used here. Taken together, these factors may have contributed to the lack of significant
differences observed between sibling and unrelated groups even though average sibling beta-

diversity was intermediate between spouses and unrelated individuals.

Increased microbial similarity, diversity, and richness in closer relationships

For both spouse and sibling relationships, microbiota similarity was associated with self-

reported relationship closeness (unweighted UniFrac P = 0.0079). Closeness was measured by
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participant responses to “How close are you and your current spouse/sibling?”” on a scale of not at
all (1) to very (4). Due to the small sample sizes in the categories “Not very” (N=13) and “Not at
all” (N=4), we combined these two groups into “Not” close. Across spouses and siblings,
individuals in very close relationships harbored gut microbial communities more similar to their
close social partners than those in not very close relationships (Fig. B.3B), though this relationship
was not significant within the spousal and sibling pair groups separately (Fig. B.3C). Moreover,
differences between spouses and unrelated individuals, in terms of closeness (Fig. B.2), as well as
the enhanced diversity and richness in cohabitating couples versus individuals living alone (Fig.
B.2) were driven by spouses reporting very close relationships. This was in contrast to couples
reporting only somewhat close relationships as these pairs did not have higher gut microbiota
similarity than unrelated pairs (Table S3) nor did they display microbial diversity or richness
different from non-cohabitating individuals (Table S3). Importantly, the apparent impacts of
relationship closeness do not appear to be mediated by similarities in diet since overall dietary
dissimilarity (Bray-Curtis and Jaccard) did not significantly differ according to relationship
closeness (ANOVA P > 0.5; Table S4). We note that these included sensitivity tests that modeled
diet based on the protein consumption, but also overall diet that captured vegetable and fruit
consumption.

While diet is often correlated with the GI microbiota 6, closeness points to the less well-
understood contributions of human interactions and shared behaviors. Close proximity and
frequent physical contact were correlated with microbiota similarity among primates with direct
microbial sharing between individuals contributing to similarity 2>23. In this study, relationship
closeness may represent a summative measure of time spend together, physical affection, and other

human interactions with the potential to result in microbial sharing. Indeed, there is evidence that
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the salivary microbiome influences the gut microbiome and the salivary microbiome may be
influenced by kissing %72, In these data, this is supported by the fact that spouses had more
operational taxonomic units (OTUs, a proxy for microbial species) in common (30.4 £7.32%) than
siblings (26.4 £ 7.47%, t-test P = 4.39E-04) (Dataset S2). Also, when comparing the spouse and
sibling pair within a family represented in this dataset, a person tended to have more OTUs in
common with his or her very close spouse (25.4 + 7.9%) than his or her very close sibling (22.2+
6.4%, N = 12 families, P = 0.074, Fig. 3D). This is also true when comparing very close spouses
(22.9 £ 5.8%) and somewhat close siblings within a family (20.6 + 5.5%, N = 17 families, P =

0.027, Fig. B.3E).

Shared taxa with close human relationships.

In general, highly abundant genera and OTUs were shared between many spouse and
sibling pairs while less abundant shared taxa were specific to one pair type and shared by a small
number of pairs within that type (Dataset S3). OTUs that were commonly found among spouses or
siblings (> 50% of pairs) but rare in the unrelated dataset (< 70% individuals, < 49% unrelated
pairs) may represent bacterial species easily shared by close human interaction. These OTUs were
predominately from the phylum Firmicutes (16 of 22 OTUs) with representatives of families
Lachnospiraceae and Ruminococcaceae (Dataset S4). Interestingly, most of these potentially
shared OTUs were from strictly anaerobic taxa, indicating that persisting in an oxygen-rich
environment in-between hosts may not be a limiting factor in very close human relationships.
Transmission, in these cases, could be mediated by direct contact similar to mechanisms of
vertical transmission from mother to child 3.

Taxa commonly associated with reduced disease incidence or severity like Akkermansia

muciniphila 4, Bifidobacterium sp. >76, Collinsella aerofaciens ¢, and Ruminococcus bromii ’
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as well as potentially harmful taxa like Clostridium spiroforme 77° were often present inboth
persons in a spouse or sibling pair. Several of these potentially shared OTUs were associated with
disease incidence in the larger dataset. In particular, Ruminococcus bromii, Lachnospira sp. and
unclassified Ruminococcaceae and Lachnospiraceae OTUs were less abundant in those with high
blood sugar (Fig. 4, Dataset S4). These results are in contrast to previous reports of more abundant
Ruminococcaceae/Ruminococcus 88 and Lachnospiraceae & associated with diabetes in humans
and may point to important differences in the impacts of the microbiota on metabolic health in
older populations. Overall, though, this indicates that GI microbial species with the potential to
impact host health may be shared by close human interactions. However, it cannot be discounted
that these apparent health associations may be mediated by diet as those with high blood sugar
often consume specific diets to manage disease.

Overall, our findings indicate that in order to understand environmental influences on the
gut microbiota, we must now consider the many microbiotas with which this individual interacts.
Socialness with family and friends is associated with differences in the fecal microbiota. These
differences held even after accounting for dietary factors, though given this is the first study ofits
kind, it will be critical for future work to validate this finding. Thus, it is possible that relationships
with others may influence the gut microbiota and consequent health outcomes, either through
direct microbial transfer or reinforcement of healthy microbiota behaviors. We further found not
only that married couples had more similar gut microbiota but also that the microbiota of married
individuals, compared to those living alone, has greater diversity and richness. Key to both of these
findings, however, was that they were driven by individuals reporting that they were very close to
their spouse as opposed to somewhat close. Close marriage relationships had a stronger influence

than the shared genetic factors and early life environments among siblings. This finding is



232

interesting, in part, because it parallels an extensive body of evidence demonstrating robust links
between high quality marriages and morbidity and mortality. Future work could attempt to
disentangle the mechanisms linking close relationships to microbial composition. For example,
while we did not find evidence that shared diet was primarily responsible for these findings, we
could not test precise frequencies of physical contact and intimacy as an alternative explanatory
mechanism. Importantly, the types of physical contact and intimacy change over the life course,
with sexual intimacy becoming far less frequent in later life, but other kinds of intimate physical
contact remaining important. Regardless of the mediating mechanism, from a social and
population health science perspective, decades of evidence that social relationships, especially
close ones like marriage, influence morbidity and mortality make the central finding of significant
interest. For example, even if future work finds a greater role for shared diets, it is still the social
relationships that drive that shared diet.

Overall, these results provide support for the gut microbiome as a possible mediating
pathway between social relationships, especially marriage, and health and mortality. These
findings, in the context of the robust body of evidence linking social relationships to human
morbidity and mortality, provide fodder for further work examining the role of the gut microbiome
as a possible biological mediator in these relationships 2. Further microbiota work across time in
a more diverse population should be undertaken with the many longitudinal social science studies
currently underway in an effort to increase our understanding of the complex interactions between

human behavior, the microbiota and health.
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EXPERIMENTAL PROCEDURES

Wisconsin Longitudinal Study (WLS). WLS is based on a one-third sample of all 1957
Wisconsin high school graduates (N = 10,317) as well as selected siblings and spouses 4.
Graduates originally enrolled with an in-person questionnaire upon graduating high school in 1957,
which was followed by data collection in 1964, 1975, 1992, 2004, and 2011. Siblings were
surveyed in 1977, 1994, 2005, and 2011; spouses were surveyed in 2004 or 2006. The content of
WLS surveys changed to reflect the participants’ life course with an education focus in the initial
data collection, familial and career outcomes in young adulthood / midlife, and health, cognitive
functioning, psychological well-being, non-work activities, caregiving, bereavement, social
support, and end-of-life preparations in later rounds. WLS data collection was approved by the
Institutional Review Board (IRB) at the University of Wisconsin-Madison (2014-1066, 2015-
0955). Informed consent, the content and procedures of which were included in the IRB approval,
was obtained from participants. All methods were performed in accordance with relevant

guidelines and regulations.

Study design. A total of 500 individuals were randomly drawn from the full WLS dataset
constrained based on the following: 1) participated in the 2011 interviews; 2) lived in one of 10
counties in Wisconsin that included both northern rural counties and southern more urban counties;
and 3) were part of a sibling pair. Individuals were removed from the study if they did not give
consent, their sample did not arrive for processing chilled, but not frozen, within 48 hrs of
collection, or their sample did not yield at least 10,000 sequences for analysis. This resulted in 408
individuals being included in this study. An additional survey was administered at the time of fecal

sampling, which detailed dietary data from the prior three days, prescription/antibiotic use, current
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living situation, and additional health information. This as well as selected data from the larger
WLS study focused on health, spouse/sibling relationships, and social interactions were used in
this study (Text S1). Data, documentation, and other materials are accessible at
http://www.ssc.wisc.edu/wlsresearch/. Access to the full dataset can be obtained through

wls@ssc.wisc.edu.

Sample collection. Stool samples were collected by participants in November 2014, January 2015,
or April 2015 following provided instructions (Text S2). Participants stored samples at ~4 °C in
their refrigerator or in a NanoCool box (Albuguerque, NM) with cooling cartridge and customized
foam insert, supplemented with a single ice pack. Interviewers picked-up samples from
participants within 24 hours of collection and shipped samples in fresh NanoCool boxes for arrival
at UW-Madison within 48 hours of collection. Upon arrival, an aliquot of feces was collected for
DNA extraction and immediately stored at -80°C until further processing. The use of WLS and
fecal microbiota data were approved by the Institutional Review Board at the University of

Wisconsin-Madison (2017-0600).

DNA extraction. Genomic DNA was extracted from fecal aliquots using a bead-beating
protocol*®. Briefly, feces (~100 mg) were re-suspended in a solution containing 500 pl of extraction
buffer 344 [200 mM Tris (pH 8.0), 200 mM NaCL, 20 mM EDTA], 210 pl of 20% SDS, 500 p
phenol:chloroform:isoamyl alcohol (pH 7.9, 25:24:1) and 500 pl of 0.1-mm diameter
zirconia/silica beads. Samples were mechanically disrupted using a bead beater (BioSpec Products,
Barlesville, OK; maximum setting for 3 min at room temperature), followed by centrifugation,

recovery of the aqueous phase, and precipitation with isopropanol. QlAquick 96-well PCR
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Purification Kit (Qiagen, Germantown, MD) was used to remove contaminants. Isolated DNA was
eluted in 5 mM Tris/HCI (pH 8.5) and was stored at -80 °C until further use. We also note that we

used negative controls.

Sequencing. PCR was performed using universal primers flanking the variable 4 (V4) region of
the bacterial 16S rRNA gene 8. We used negative controls for each PCR reaction. PCR reactions
where the negative control yielded a product were not sequenced until the problem was solved.
Samples were processed all together, not in batches, in a random order (i.e., not clustered by
family). Additionally, unlike other specimens (e.g., saliva, skin), DNA contamination from
reagents is in general not a problem for fecal samples given the high DNA content of the sample
(10=microbes/g of feces). In one reaction per sample, 10 - 50 ng DNA, 10 uM each primer, 12.5
pl 2X HotStart ReadyMix (KAPA Biosystems, Wilmington, MA, USA), and water to 25 pl were
used. Cycling conditions were initial denaturation of 95 °C for 3 min followed by 25 cycles of
95°C for 30°s, 55 °C for 30 s, and 72 °C for 30 s, with a final extension of 72 °C for 5 min. PCR
products were purified with the QIAquick 96-well PCR Purification Kit (Qiagen, Germantown,
MD, USA). Samples were quantified by Qubit Fluorometer (Invitrogen, Carlsbad, CA, USA) and
equimolar pooled. The pool plus 5% PhiX control DNA was sequenced through the U. of
Wisconsin-Madison Biotechnology Center with the MiSeq 2x250 v2 kit (Illumina, San Diego, CA,
USA) using custom sequencing primers 2. All DNA sequences are available upon institutional

review board (IRB) or other ethics board approval through wis@ssc.wisc.edu.

Sequence clean-up. All sequences were demultiplexed on the Illumina MiSeq. Sequence clean-

up and processing was performed with mothur v.1.36.1 8 following a protocol similar to 8. Briefly,
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paired-end sequences were combined into contigs with default parameters (match bonus 373 = 1,
mismatch penalty = -1, gap penalty = -2, gap extend penalty = -1, insert quality > 20, mismatch
quality difference >6). Poor-quality sequences, including those with ambiguous basepairs,
homopolymers greater than 8, or outside 200 — 500 bp in length, were discarded. Sequences were
then aligned to the SILVA 16S rRNA gene reference alignment database 8and trimmed to the V4
region. To reduce sequencing error, sequences with 2 or fewer differences were pre-clustered.
Chimera detection and removal were performed using UCHIME 8. Final sequences were then
classified to the GreenGenes database 6. Singletons were removed to facilitate downstream
analyses. All sequences were grouped into 98% operational taxonomic units (OTUs) by
uncorrected pairwise distances and average neighbor clustering in mothur. Clustering performed
on uncorrected pairwise distances revealed no differences in clusters at 97 vs 98% similarity.
Therefore, the stricter cutoff was reported Coverage was assessed by Good’s coverage, and then
samples were normalized to whole number counts by percent relative abundance to approximately

10,000 sequences per sample (9,914 - 10,061 after rounding.

Statistical analysis for graduates. Graduates were assessed separately from siblings and spouses
to avoid potential interactions, and the graduate subset was not significantly different from other
groups (PERMANOVA P Bray-Curtis P = 0.56, Jaccard P = 0.57, weighted UniFrac P = 0.33,
unweighted UniFrac P = 0.24). Alpha-diversity was assessed with Shannon’s diversity and Chao’s
richness calculated in mothur. Differences in alpha-metrics were assessed in R v3.3.2 8 by linear
regression with the Benjamini-Hochberg correction for multiple comparisons across each metric.
Microbial beta-diversity was assessed for Bray-Curtis, Jaccard, weighted, and unweighted UniFrac

metrics with results shown for unweighted UniFrac unless otherwise noted. Dietary beta- diversity
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was assessed for Bray-Curtis and Jaccard metrics as well as corresponding nMDS axes calculated
from habitual intake of specific sources of protein (N = 4), vegetables (N = 76), and fruits (N =
24) expressed as times consumed per week (protein), proportions of total types (all), and
presence/absence of individual types (all). Differences in beta-diversity were tested with
permutational analysis of variance (PERMANOVA, adonis) in the vegan package 8 with the
Benjamini-Hochberg correction for multiple comparisons across each metric and a maximum of
5000 permutations. All variables were modeled using independent, univariate tests and dietary
variables were additionally modeled using multivariate tests of all components (protein,
vegetables, fruits). Co-variance of microbial and dietary beta metrics was measured using Mantel’s
test. The factors that associated with the microbiome in univariate models (i.e. age, sex, antibiotics,
dietary protein, high blood sugar, and heart disease °’) were adjusted for in regression models as
potential confounders. Beta-diversity was visualized by non-metric multidimensional scaling
(nMDS) plots with arrows from significant variables (PERMANOVA) fitted to the ordination
using maximum correlation (envfit, vegan). All tests were assessed at significance P < 0.05 and

trends 0.05< P < 0.1.

Statistical analysis for spouses and siblings. For the spouse and sibling similarity analysis, the
unit of the observation is the pair (i.e. spouse, sibling, or unrelated pair defined below) and the
variables used in the analysis are distance in individual measurements between the two members
of the pair. Specifically, beta-diversity metrics were used to quantify the distance in microbial and
overall diet whereas absolute difference were calculated to quantify the distance in all the other
variables (e.g. age, sex, dietary protein). We sampled unrelated pairs from the data in order to

compare the spouse or sibling pair with unrelated pairs. In particular, the unrelated individuals
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cannot be siblings, spouses, or in-laws, and each unrelated pair will match the corresponding
spouse or sibling pair in sex and antibiotics usage. Beta-diversity distances were compared
among spouse, sibling, and unrelated pairs using linear regression while adjusting for the distance
in age, sex, dietary protein, health conditions (if available). P-values were averaged across 1000
rounds of unrelated pair sampling. For closeness analysis, we removed age and sex from the model
because the two variables are highly correlated with pair type (i.e. sibling/spouse pair can be
accurately classified using the difference of the age or sex between the two members of the pair).
For comparing OTU sharing among spouse and sibling within a family, we used mixed-effect
models to account for family clustering. All tests were assessed at significance P < 0.05 and trends

0.05<P<0.01.
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Figure B.1. Factors associated with the overall fecal microbiota. Non-metric multidimensional
scaling (nMDS) of unweighted UniFrac for all graduates (N = 179). Variables found to be
significant (PERMANOVA P < 0.05, red) and trends (0.05 < P < 0.1, black) are shown as fitted
arrows. Arrows point toward increasing values (dietary protein), toward affirmative responses

(high blood sugar, antibiotics, heart disease), or from male to female (sex).
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Figure B.2. Cohabitation is associated with increased alpha-diversity. Boxplots of (A)
Shannon’s diversity and (B) Chao’s richness of graduates that are (blue) or are not (red)
cohabitating with a spouse or partner. All spouses/partners were cohabitating while all non-

cohabitating individuals were unmarried. **P < 0.01, *P < 0.05.
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Figure B.3. Microbial sharing in spouse and sibling relationships. Unweighted UniFrac

distances of (A) spouse, sibling, and unrelated pairs, (B) spouses and siblings grouped by

relationship closeness, and (C) spouses and siblings separated by relationship closeness. Groups

(A) were compared in linear regression model adjusting for potential confounders (e.g. age, sex,

diet, health conditions). P-values were averaged across 1000 rounds of unrelated pair sampling.

Closeness groups (B,C) were compared in linear regression models adjusting for potential

confounders. (D,E) Average percentages of shared OTUs within family groups including a related

spouse and sibling pair. Families included those with both very close spouses and siblings (D, N

= 12) and those with very close spouses and somewhat close siblings (E, N = 17). Percentages are

of the total number of OTUs across all three individuals, and circle sizes are proportional to total

percentages represented. ***P < 0.001, **P <0.01, *P <0.05, «P<0.1.
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Figure B.4. Percent relative abundance of OTUs that are commonly shared between spouses and
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and (B) more highly abundant OTUs. Means with standard error bars are shown. Kruskal-Wallis

FDR *P < 0.05, *P < 0.1
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APPENDIDX C: Chapter 3 Supplemental Results
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SUPPLEMENTAL RESULTS

Here, we report additional findings from the analysis of the Diversity Outbred (DO) mice
presented in Chapter 3. We found additional QTL and associations among the measured bile acid,
microbial and clinical traits that were interesting, but were not included in the version set for
publication. Notably, these supplemental results corroborate findings from other studies and

provide support for further mechanistic studies.

Correlations between bile acids, clinical traits and gut microbiota abundance

Correlation analysis identified several significant associations between the microbial and
clinical weight traits after FDR correction (FDR < 0.05) (Table 4.4, see Chapter 3). The significant
correlations between weight and microbial traits were attributed to 15 distinct microbial taxa from
the Actinobacteria, Bacteroidetes and Firmicutes phyla. ~58% of these associations could be
attributed to exact sequence variants (ESVs) assigned to the Lachnospiraceae family and another
~19% to ESVs classified to the S24-7 family. Additionally, the Ruminococcus genus and fat pad
weight were negatively correlated, and ESVs classified to the Adlercreutzia genus and body weight
at 14 weeks were positively correlated.

Additionally, we identified significant associations between bile acids and body weight.
Body weight over time was inversely correlated with plasma levels of deoxycholic acid (DCA),
taurodeoxycholic acid (TDCA) and taurocholic acid (TCA) (Table 4.4). Conversely, cecal levels
of muricholic acid (MCA) and ursodeoxycholic acid (UDCA) were positively correlated with
body, liver and heart weight. These associations were surprising since elevated levels of DCA have
been associated with weight gain and insulin resistance in humans (Brufau et al., 2010; Cariou et

al., 2011; Gu et al., 2017).
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Four of the ESVs from the Lachnospiraceae family were significantly associated with body
weight and fat pad weight. Interestingly, one of these Lachnospiraceae ESVs was positively
correlated with the weight traits, while the other three were negatively correlated, indicating the
metabolic effects of Lachnospiraceae are possibly genus or even strain dependent. Disparate
associations of different members of the Lachnospiraceae on weight traits has been shown in
previous mouse genetic studies. For example, one study fed ~110 inbred strains of mice from the
Hybrid Mouse Diversity Panel a high-fat high-sucrose diet and found that two taxa from the
Lachnospiraceae family were positively associated with obesity and metabolic traits (Org et al.,
2015). On the other hand, two separate studies using the eight DO founder strains fed different
diets found that Lachnospiraceae family was negatively correlated with body weight (Kreznar et
al., 2017; O’Connor et al., 2014).

Despite these significant correlations, QTLs for only two of the Lachnospiraceae ESVs
overlapped with weight QTL. These two Lachnospiraceae traits represented the two patterns
observed where one was positively correlated and the other negatively correlated with weight
traits. QTLs for liver weight and one of the Lachnospiraceae taxa that negatively correlated with
liver weight overlapped on chr 9 at ~65-66 Mbp. Furthermore, QTL for the Lachnospiraceae taxa
positively correlated with weight traits associated to the same position of the genome as QTLs for
body weight on chr 4 at ~150 Mbp. For both of these examples, the microbial and weight traits
were driven by different founder haplotypes indicating the co-mapping traits are likely not causally
related.

Correlation analysis of the microbial taxa comprising the CMM was also used to provide
insight into microbiota community structure in the DO mice (Table 4.4). A positive correlation

was found between two members of the small intestine microbiome, Turicibacter and
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Peptostreptococcaeae (r = 0.33, p = 0.026). A similar correlative relationship was detected in the
founder strains (r = 0.65, p = 0.003). This finding is consistent with Goodrich et al., who found
these taxa strongly correlated with one another in humans (r = 0.66) (Goodrich et al., 2016).
Additionally, both taxa are consistently identified as heritable in humans and mice, and associate
to regions of the mouse genome (Benson et al., 2010; Goodrich et al., 2016; O’Connor et al., 2014).
The correlation between Turicibacter and Peptostreptococcaeae particularly notable since we
observe both taxa co-mapping with plasma bile acids and significantly correlating. However, we
do not observe QTL for these taxa mapping to the same position. Additionally, both taxa are
capable of bile acid metabolism. As shown in Chapter 3, Turicibacter efficiently deconjugates bile
acids. Peptostreptococcus productus, a member of the Peptostreptococcaceae family, has 3a-, 3p3-
, and 7B-hydroxysteroid dehydrogenases and is capable of oxidation and epimerization of bile
acids (Edenharder et al., 1989). These microbes have complimentary bile acid metabolism
capabilities as Turicibacter provides necessary deconjugation activity for further transformations
by members of the Peptostreptococcaeae family. Thus, their co-occurrence may provide a fitness
advantage for small intestine colonization. Bile acids must be deconjugated prior to epimerization,
S0 Peptostreptococcaeae may associate with Turicibacter in order to utilize this metabolic
capability. The consistency in these findings as well as the different bile acid metabolism
capabilities warrant further investigation and may provide insight into community dynamics and

bile acid metabolism in the small intestine.

Adlercreutzia associates to immune genes on chromosome 10

We identified QTL for two different taxa classified to the Adlercreutzia genus that mapped
to chr 10 at ~118-119 Mbp (Figure C.1A). Adlercreutzia are gram-positive organisms classified to

the Coriobacteriaceae family in the Actinobacteria phylum. These two QTL were of particular
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interest because Benson et al., previously found a Coriobacteriaceae peak at the identical position
with significant dominance effects of the B6 allele (Benson et al., 2010). They also identified
Lactococcus QTL that overlapped at this locus. While Lactococcus did not map to this position in
our study, we did replicate the significant positive correlation between the abundances of
Coriobacteriaceae and Lactococcus (r = 0.353, p < 0.0001), providing additional evidence to
support host genetic influence on shaping the abundance of these taxa. Additionally, there are
several strong candidate genes under these QTL relating to host immune response and host
regulation of gram-positive organisms (Figure C.1B). Strong candidate genes at these loci are the
two primary murine lysozyme genes, Lyz1 and Lyz2 (Markart et al., 2004). Additionally, the same
interval also contains the genes encoding Irak3, IFN-y and IL-22, which play a role in mucosal
immunity (Kjerrulf et al., 1997; Nakayama et al., 2004; Zheng et al., 2008).

Upon further investigation, we found that the two QTLs were driven by distinct allele
patterns. For one QTL, denoted as Adlercreutzia sp. 1, the B6 and 129 founder haplotypes were
associated with higher levels of Adlercreutzia, while the AJ haplotype was associated with lower
levels of Adlercreutzia (Figure C.1C). The converse pattern was observed for the second
Adlercreutzia QTL (Adlercreutzia sp. 2), where the AJ haplotype had a positive association and
the B6 and 129 haplotypes had a negative association with levels of that strain of Adlercreutzia
(Figure C.1A). It appears that the B6 haplotype for this locus is associated with increased
abundance of one Adlercreutzia species and associated with a decreased abundance of another
(Figure C.1E).

These founder allele effect patterns suggest that there are at least two distinct variants that
drive Adlercreutzia abundance and these QTL may reveal insight into how host genetic variants

select for specific species or strains of closely related bacteria. Furthermore, we found a significant
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negative correlation between these two strains of Adlercreutzia (r = -0.261, p = 3.35e-06),
providing additional evidence that host genotype at this locus determines which Adlercreutzia
strain is capable of colonizing the intestine.

The identification of this QTL in separate studies, along with the interesting genes under

the QTLs warrant further investigation.

Christensenellaceae and body weight traits associate to chromosome 1

Christensenellaceae is a gram-negative bacterium that previously identified as a highly
heritable in geographically distinct groups of humans (Goodrich et al., 2014b; Lim et al., 2017,
Turpin et al., 2016). We identified a QTL for Christensenellaceae spanning 5.5 Mbp on chr 1 at
~59 Mbp (Figure C.2A). A candidate gene within the QTL interval is Casp8, which is a key
regulator of the host innate immune response and plays a central role in inflammasome-mediated
cell death (Figure C.2B). In the intestine, Casp8 is activated by microbial recognition receptors,
such as TLR4 in response to LPS (Monie and Bryant, 2015). It also a known transcriptional
regulator of the 111b gene (Gurung et al., 2014), which has previously been shown to be influenced
by the composition of the microbiota (Seo et al., 2015).

Genome analysis identified a missense variant (rs32803726) within a coding region of
Casp8 (Q13R) driven by the CAST, PWK, NOD and WSB haplotypes. This missense variant may
affect protein structure and have functional consequences on the transcribed protein, leading to
changes in intestinal immune environment. Consistent with this notion, Christensenellaceae
abundance varied by genotype (p = 0.0048; one-way Kruskal-Wallis) and was significantly greater
in DO mice with this variant than in mice with two copies of the B6 allele (0-1 p = 0.0217, 0-2 p
=0.0099; 1-2 p =0.1210, Wilcoxon test with Benjamini-Hochberg correction) (Figure C.2C). This

same pattern was also observed at the peak SNP, where the abundance of Christensenellaceae was
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greater in DO mice with this variant than in mice without, but no significant differences were
found between genotypes (0-1 p = 0.636, 0-2 p = 0.199; 1-2 p = 0.069) (Figure C.2D). To further
validate these findings, we compared the abundance of Christensenellaceae in the founder strains
to the estimated coefficients in the DO mice. We found these estimated coefficients closely
resembled the abundance of Christensenellaceae in the founder strains, where CAST and PWK
harbored the highest abundance of this bacteria (Figure C.2E-F).

Christensenellaceae has been negatively associated with BMI and visceral adiposity in
humans (Beaumont et al., 2016; Goodrich et al., 2014b). It was also shown that administration of
Christensenella minuta attenuated weight gain and total adiposity in germ-free mice colonized
with feces from an obese human donor (Goodrich et al., 2014b). Interestingly, QTL for body
weight at 14 weeks and sacrifice associate to the same position on chr 1 (Figure C.2A). However,
Chirstensenellacae abundance did not correlate with body weight at 14 weeks (r = -0.09, p =
0.206), body weight at sacrifice (r = -0.06, p = 0.406), or fat pad mass per gram body weight (r =
0.12, p =0.129) (Figure C.2G-I). Furthermore, the body weight QTLs were driven by the 129 and
WSB haplotypes, providing additional evidence that the Christensenellaceae and weight QTLs are
unlikely to be related. In our study, the relationship between Christensenellaceae and weight may
be masked by the HF/HS diet, since the previous work done in mice used animals fed a chow diet.
To our knowledge, this is the first instance linking differences in Christensenellaceae to host

genetics in mice, thus providing additional insight into the heritability of Christensenellaceae.

Bile acid QTL are found in multiple “hot spots”

QTL analysis revealed several metabolite hotspots where multiple bile acid traits co-map
within a <20 Mbp window. These hotspots may indicate traits that interact or are have highly

correlated levels. They may also be a consequence of the occurrence of pleiotropic or regulatory
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genes controlling multiple metabolite traits. Notable bile acid hotspots were detected on chrs 3,
13, and 18, where at least 5 bile acid traits associated within a <15 Mbp genomic interval. The
hotspot on chr 3 includes multiple plasma bile acids driven by the NOD haplotype and is previously
discussed. Both plasma and cecal bile acid QTLs are found at the hotspots on chrs 13 and 18.

The hotspot on chr 13 at ~108-119 Mbp was associated with 4 cecal and 1 plasma bile acid
QTL (Figure C.3A). All overlapping QTL at this hotspot were for secondary bile acids. These
QTL have varying genetic architecture, which suggests more than one causal locus. QTL for cecal
levels of DCA, allocholic acid (ACA) and 12-ketolithocholic acid (12-KLCA) were all positively
associated with the PWK and NZO alleles and negatively associated with the CAST allele (Figure
C.3B-D). Furthermore, these three cecal bile acids were also highly correlated with one another
(Table C.1). Mediation analysis found a correlative relationship between DCA and both 12-KLCA
and ACA. However, no causal relationship was detected between 12-KLCA and ACA.
Interestingly, the mediation analysis captured the relationship of these bile acids. For example,
both ACA and DCA are respectively derived from 5a- and 7a-epimerization of CA by gut
microbes. 12-KLCA is produced from metabolism of DCA. Thus, we see correlative relationships
between bile acids that are either derived from the same metabolite. ACA and 12-KLCA do not
have a relationship because they are not directly linked to one another.

Since all the co-mapping metabolites were secondary bile acids, we looked for overlapping
microbial QTL that may be causal for levels of these bile acids. Several microbial traits associated
to this locus including the Mogibacteriaceae family and taxa classified to the Adlercreutzia and
Oscillospira genera. The Mogibacteriaceae QTL had a positive association with the PWK allele,
but mediation analysis did not show a causal relationship. The other microbial QTL did not share

genetic architecture with any of the other bile acid QTL.
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The largest hotspot was on chr 18 at 32 - 46 Mbp and included 9 bile acid traits, most of
which were secondary bile acids except for plasma TCA and cecal tauromuricholic acid (TMCA)
(Figure C.4F). This hotspot contains a variety of bile acid traits including conjugated and
unconjugated, plasma and cecal, and primary and secondary. In general, there is no shared founder
effects pattern shared among these traits. The underlying genetic architecture of these QTL is
varied and complicated, which some founder haplotypes are positively associated with some traits
and negatively associated with others. For instance, plasma TCA levels are positively and plasma
UCA levels are negatively associated with the CAST haplotype. The variability in the underlying
genetic architecture of the plasma bile acids is greater than that seen the cecal bile acids. All four
overlapping cecal metabolite QTL have a negative association with the NOD and/or CAST
haplotypes and are significantly correlated with each other. The variability seen at this hotspot

suggests multiple closely linked loci, as opposed to a single pleiotropic locus.

Corroboration of previous human and mouse genetics studies

Although recent studies show environment contributes more to the variability among gut
microbiota composition than genetics (Falony et al., 2016; Rothschild et al., 2018; Zhernakova et
al., 2016), there are consistencies among different host organisms and geographically discrete
populations indicate specific taxa and related traits are under the influence of the host genome.
Our results in the DO population corroborate several of these key findings for both microbial and
clinical traits. These shared findings can be followed up for mechanistic experiments.

We observed the strongest associations to the host genome with members of the Firmicutes
phyla, including unknown members of the Clostridiales order, the Lachnospiraceae,
Christensenellacae and S24-7 families, the Turicibacter and Coprococcus genera, as well as the

species Akkermansia muciniphila and Ruminococcus gnavus. These taxa have consistently been
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identified in multiple studies as either highly heritable or associating to positions on the host
genome (Benson et al., 2010; Davenport et al., 2015; Leamy et al., 2014; McKnite et al., 2012;
Org et al., 2015; Wang et al., 2016). Furthermore, our study replicated correlations between taxa
including the Peptostreptococcaeae and Turicibacteraceae families (Goodrich et al., 2016), which
may give insight into microbial dynamics that govern bile acid profiles.

Although the majority of these shared taxa seen in our study did not map to the same loci
as in previous studies, we did find several microbial taxa and clinical traits that mapped to the
same position of the mouse genome as in previous studies. We did find several clinical QTL in the
DO population that co-mapped with clinical QTL previously identified in the HMDP population.
For example, we found a QTL for body weight at 14 weeks on chr 2 at 135.2 that overlaps with a
percent body fat increase QTL between 138.9 - 139.4 Mbp (Parks et al., 2013). We also found a
QTL for fat pad weight on chr 7 at ~40 Mbp that falls within the same confidence interval as a
HMDP QTL for triglyceride (TG) gonadal fat (Org et al., 2015). Additionally, QTL for taxa
classified to the Coriobacteraceae family mapped to chr 10 between ~116 — 120 Mbp in our study
and in an advanced intercross line used by Benson et al. (Benson et al., 2010) (Figure C.1A).
However, the majority of these shared taxa seen in our study and previous analysis did not map to
the same position.

Given the causal contribution of gut microbiota and obesity/metabolic disease, we were
surprised to find few instances of overlapping microbial and clinical QTL. This was especially
surprising given the overlap between microbial and obesity-related traits seen in other studies
(Leamy et al., 2014; Org et al., 2015; Parks et al., 2013). The lack of congruence may be a result
of the complexity of each trait or due to the different genetic background of the study populations

as well as other factors including diet, age, and experimental design. Our analysis found co-



260

mapping of body weight with Christensenellaceae and Lachnospiraceae families. However, these
co-mapping traits did not share the same founder haplotype effects and did not show a causal
relationship as determined by mediation analysis. Therefore, we hypothesize that the microbial
and clinical traits are the result of closely linked, but different loci.

Given the high degree of variability in the gut microbiome across subjects and host
organisms, these instances of congruence between studies argues that there are specific taxa
responsive to host genotype that may warrant follow-up investigation. Our work with the DO

population provides an approach to validate these associations.
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Figure C.1. Multiple Adlercreutzia sp. QTL map to immune genes on chromosome 10. (A)
Association of two Adlercreutzia exact sequence variants (ESVs) mapping along chr 10. Dashed
line denotes LOD threshold of 5.5. (B) Genes under the QTLs. Diversity Outbred (DO) founder
coefficients at the QTL peak showing the effects of each founder allele on the abundance of (C)
Adlercreutzia sp. 1 and (D) Adlercreutzia sp. 2. (E) Correlation of the normalized abundance of
Adlercreutzia sp. 1 and Adlercreutzia sp. 2 in the DO mice (n = 309). Spearman correlation; p-

value adjusted for multiple tests using Benjamini-Hochberg correction.
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Figure C.2. Christensenellaceae sp. and body weight QTL map to chromosome 1. (A) Scan of chr
1 of Christensenellaceae sp. and body weight at sacrifice. Dashed line denotes LOD threshold of
5.5. (B) Genes under QTL. (C) Normalized Christensenellaceae sp. abundance within each
genotype at the missense SNP (rs32803726) and (D) peak SNP (rs217569639). (E) Estimated

founder allele effects and (F) observed abundance of Christensenellaceae family in the founder
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strains. Pearson correlations in the DO mice between the abundance of Christensenellaceae sp.
and (G) body weight at 14 weeks (n = 199), (H) body weight at sacrifice (n = 196), and (1) fat pad
weight per gram body weight at sacrifice (n = 151). Data are presented as mean + SEM; Kruskal
Wallis one-way test followed by Wilcoxon pair-wise multiple comparisons with Benjamini-

Hochberg correction; * p < 0.05, ** p < 0.01.
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Figure C.3. Bile acids (BAs) associate to hotspots on chromosomes 13 and 18 of mouse genome.

(A) Scan of chr 13 BA QTL hotspot where QTL for plasma ursodeoxycholic acid (UDCA), and

cecal levels of 12-ketolithocholic acid (12-KLCA), deoxycholic acid (DCA), allocholic acid

(ACA) and tauro-omega-muricholic (T@MCA) overlap. Dashed line denotes LOD threshold of
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5.5. (B) Estimated founder allele effects for cecal ACA, (C) cecal 12-KLCA, and (D) cecal DCA
levels. (E) Protein coding genes under chr 13 QTL hotspot. (F) Scan of chr 18 bile acid QTL
hotspot including plasma taurocholic acid (TCA), plasma taurodeoxycholic acid (TDCA), cecal
ursodeoxycholic acid (UDCA), cecal DCA, cecal tauro-muricholic acid (TMCA), and cecal

ToMCA.
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