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ABSTRACT 

The population of microbes that inhabit the mammalian intestine have profound effects on 

host physiology. The gut microbiome varies substantially among healthy individuals, and its 

composition is shaped by a complex interplay of environmental and genetic factors. Alterations in 

its composition are associated with the development of metabolic diseases, including obesity and 

type 2 diabetes. Therefore, manipulation of the intestinal microbiome ecosystem is a promising 

target for emerging therapies. However, it remains largely unknown how host genetics interacts 

with environmental factors (e.g. diet) to shape microbiota profiles, and how these interactions may 

contribute to metabolic disease susceptibility. 

The objective of this thesis research was to investigate the effects of host genetic 

variation on gut microbiota composition, evaluate how these interactions influence host diet-

induced metabolic phenotypes, and to identify genetic variants that influence the abundance 

of gut microbes.  

In Chapter 2, I evaluate the relative contributions of host genetics and diet on gut 

microbiota composition and metabolic phenotypes using a panel of eight genetically diverse inbred 

mouse strains. In a controlled laboratory environment, I found gut microbiota composition and 

metabolic phenotypes are shaped by both genetics and diet. Guided by the results of this screen, I 

went on to demonstrate that in a gnotobiotic mouse model transplantation of genotype-associated 

microbiota can alter pancreatic islet function and confer sustained metabolic phenotypes despite 

chronic high-fat high-sucrose (HF/HS) feeding.  

In Chapter 3, I identify host genetic loci that influence gut microbiota and bile acid 

profiles. I performed quantitative trait loci (QTL) mapping to find genetic variants associated with 

abundance of gut microbes and bile acid levels using the Diversity Outbred (DO) mouse stock, 
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which is derived from the eight strains profiled in Chapter 2. I found novel genetic variants 

associated with both microbial taxa and bile acids, including an association between the intestinal 

bile acid transporter, Slc10a2, the abundance of Turicibacter sp. and plasma cholic acid levels. 

Subsequent investigation revealed direct interactions between Turicibacter sp. and bile acids in 

vitro, supporting a role of genetics in elucidating host-microbe interactions.  

Together, this thesis work contributes to our understanding host-microbe interactions and 

provides a foundation for future mechanistic studies.   
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CHAPTER 1: Host – Microbe Interactions and the Contributions of the Gut Microbiome 
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INTRODUCTION 

The mammalian gut harbors trillions of commensal microorganisms, comprised of 

bacteria, viruses, archaea and eukaryotes (fungi and protists), which together constitute the 

intestinal microbiota (Sender et al., 2016). These microorganisms have evolved with the host to 

establish mutualistic symbioses, where they reside in nutrient rich intestine and as reciprocity they 

expand the host metabolic repertoire, allowing for the breakdown of otherwise indigestible 

carbohydrates and the synthesis of essential nutrients (Qin et al., 2010; Sommer and Bäckhed, 

2013). It has become clear that the microbes that inhabit the intestine play a critical role in 

determining many aspects of health. Alterations in microbiota composition are implicated in a 

spectrum of metabolic (Karlsson et al., 2013a), immunological (Petersen and Round, 2014) and 

cognitive disorders (Petra et al., 2015; Vuong et al., 2017). To date, most research has focused on 

identifying individual gut microbes and microbial communities associated with healthy and 

diseased states, but the underlying mechanisms remain largely elusive. 

Sequencing-based studies of fecal microbial communities have also revealed substantial 

inter-individual differences in microbiota composition (Human Microbiome Project Consortium, 

2012; Qin et al., 2010; Spor et al., 2011). Microbiomes can be characterized by 16S rRNA gene 

sequencing and metagenomic sequencing, which allow for the quantification of bacterial taxa and 

gene functions, respectively (Goodrich et al., 2014a). Thousands of organisms are capable of 

colonizing the human intestine (Lozupone et al., 2012) and their combined genomes contain >100-

fold more genes than are encoded in the human genome (Qin et al., 2010). The observed variation 

in gut microbiota communities is driven by a multitude of variables including environmental 

factors (e.g. maternal seeding, diet) and host genetics (Costello et al., 2009; Falony et al., 2016; 

Goodrich et al., 2014b; Zhernakova et al., 2016).  



 

 3 

Due to the contributions of the gut microbiota to various diseased states, it has become 

increasing important to identify and understand the specific factors that govern microbiota 

composition. However, the extent to which host genetics shapes microbiota composition and the 

causal variants remain poorly characterized. In this review, we summarize the importance of the 

gut microbiome for host health and the current research deciphering relative contributions of 

environmental and genetic factors in shaping the composition of these microbial communities. 

Additionally, we discuss how genetic-driven variation in the microbiome influences the host and 

highlight the role of metabolites in mediating host-microbe interactions.  

 

THE ENTERIC MICROBIOTA IN HEALTH AND DISEASE 

Contributions to host development 

The presence of the enteric microbiota is instrumental for proper host development. The 

importance of these microbes in development is evident from comparative studies with germ-free 

animals which have extensive developmental defects. Germ-free mice are devoid of any 

microorganisms and can be used to evaluate the contributions of microbes to clinical phenotypes. 

Studies of germ-free animals demonstrate the gut microbiota modulates many aspects of 

development ranging from bone-mass density (Sjögren et al., 2012), intestinal angiogenesis 

(Reinhardt et al., 2012), intestinal architecture and mucus layer properties (Hooper and Gordon, 

2001; Petersson et al., 2011; Sharma et al., 1995), and innate and adaptive immune systems (Cebra, 

1999; Ivanov et al., 2008; Macpherson and Harris, 2004). Best described in germ-free animals are 

the roles of the gut microbiota in development and maturation of the intestinal epithelium and the 

immune system.  

Germ-free animals have stark differences in intestinal morphology compared to those fully 

colonized. Most noticeably, germ-free rodents have an enlarged cecum (Wostmann, 1981). Other 
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morphological differences include reduced intestinal surface area (Gordon and Bruckner-Kardoss, 

1961) and villus thickness (Reinhardt et al., 2012), as well as impaired brush border differentiation 

(Abrams et al., 1963). Furthermore, the absence of a microbiota impairs regulation of cell turnover 

and promotion of cell renewal (Smith et al., 2007). In addition to intestinal morphology, gut 

microbes serve an important role in maintaining mucosal barrier integrity (Natividad and Verdu, 

2013). In fact, the addition of specific organisms to the intestinal ecosystem can improve intestinal 

barrier function including Bacteroides thetaiotaomicron (Hooper et al., 2001), Akkermansia 

muciniphila (Reunanen et al., 2015) and Lactobacillus plantarum (Zhou et al., 2010).  

Human and animal studies have also shown a direct role of microbiota in the maturation 

and function of the immune system (Brestoff and Artis, 2013). Intestinal microbes contribute to 

immune system by promoting the development of lymphoid structures, as well as through the 

modulating of activation and differentiation of several lymphocyte populations (Round and 

Mazmanian, 2009). Moreover, the microbiome is required for development of completely 

functional IgA-producing cells (Kawamoto et al., 2012) and germ-free mice have limited IgA 

plasmablasts in their gut lamina propria (Crabbé et al., 1970). However, the number of IgA plasma 

cells is greatly expanded after colonization (Crabbé et al., 1968). These deficiencies in immune 

and intestinal development leave the germ-free host susceptible to invasion by opportunistic 

pathogens (Smith et al., 2007).  

 

Immune implications of gut microbiome 

In addition to stimulating the development of the host immune system, gut bacteria are 

instrumental for maintaining immune homeostasis. There is substantial evidence that perturbations 

the intestinal microbiota contribute to the development of numerous inflammatory disorders 

including chronic inflammatory bowel diseases (Devkota et al., 2012; Sokol et al., 2008), 
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rheumatoid arthritis (Vaahtovuo et al., 2008), asthma (Arrieta et al., 2015), and type 1 diabetes 

(Greiner et al., 2014; Wen et al., 2008). Bacterial species interact with several cell types including 

epithelial cells, dendritic cells, and T cells to influence host immune responses. Commensal 

microbes maintain immune homeostasis through both immune-stimulatory and immune-

modulatory effects. Starting at birth, the early intestinal colonizers instigate development and 

maturation of the immune system (Brestoff and Artis, 2013). Microbes stimulate the immune 

system by components of their cell wall and their metabolites. For example, microbial production 

of short chain fatty acids (SCFAs) induce immune cell activation, cytokine production and T-

lymphocyte proliferation (Corrêa-Oliveira et al., 2016). Commensal microbes help maintain 

intestinal barrier function through the recruitment of immune cells to the mucosa (Macpherson and 

Harris, 2004), as well as stimulate protective epithelial functions such as the secretion of mucus 

and antimicrobial peptides (Hooper and Macpherson, 2010). Gut microbes also serve an immune-

modulatory role to prevent overactivation of inflammatory and allergic responses. For example, 

microbial production of the short chain fatty acid butyrate induces colonic regulatory T cells (TReg 

cells) (Furusawa et al., 2013). TReg cells regulate the immune system through the induction of anti-

inflammatory cytokines IL-10 and IL-35. The induction of TReg cells by commensal organisms is 

crucial to limiting inflammation and disease. These immune-modulatory effects determine the 

robustness of the host immune response and influence host health. 

 

Metabolic syndrome and the role of the microbiome 

There is substantial evidence that the gut microbiota influences development of metabolic 

and cardiovascular diseases. Comparative studies between health and diseased individuals 

identified alterations in the microbiota composition in obesity (Ley et al., 2006; Turnbaugh et al., 

2009a), type 2 diabetes (T2D) (Karlsson et al., 2013b; Qin et al., 2012), nonalcoholic fatty liver 
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disease (Henao-Mejia et al., 2012), and atherosclerosis (Wang et al., 2011). Lower microbial 

diversity is also associated with many of these metabolic syndromes (Le Chatelier et al., 2013; 

Turnbaugh et al., 2009a). Greater microbial species richness, or the number of species present, is 

associated with a healthier intestinal ecosystem considered more stable and less susceptible to 

invasion by new species (Lozupone et al., 2012). This may be an indication of dietary differences 

between lean and obese individuals, given Hadza hunter-gathers consume food with high-fiber 

content and have greater microbial species richness compared with individuals living in 

Westernized nations (Schnorr et al., 2014). Moreover, greater richness in microbial species and 

genes has been observed in lean compared to obese individuals (Turnbaugh et al., 2009a).  

In addition to these associations, studies using germ-free mice have demonstrated a causal 

role of the microbiome in metabolic disease development. Germ-free mice are protected from 

high-fat diet-induced obesity and have significantly less body fat mass than conventionally-raised 

mice independent of food-intake (Bäckhed et al., 2004). This resistance is attributed to altered fatty 

acid metabolism and reduced energy harvest from dietary substrates (Bäckhed et al., 2007). 

Transplant studies have demonstrated a causal role of the microbiota in obesity (Ridaura et al., 

2013), insulin sensitivity (Vijay-Kumar et al., 2010), and insulin secretion from pancreatic islets 

(Kreznar et al., 2017; Perry et al., 2016). Interestingly, there appears to be a similar causal 

relationship in humans, as demonstrated from a study by Vrieze and colleagues that found transfer 

of intestinal microbes from lean donors to recipients with metabolic syndrome improved glucose 

metabolism and insulin sensitivity (Vrieze et al., 2010). Therefore, manipulation of the gut 

microbiome may be an effective therapy for treating metabolic disorders. However, the organisms 

responsible for these metabolic changes are relatively unknown.   
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The gut microbiota influences the development of metabolic disorders in part by altering 

host energy harvest and inflammation. Intestinal microbes provide important metabolic 

capabilities that influence the efficiency of energy harvest from diet and how it is stored (Bäckhed 

et al., 2004; Turnbaugh et al., 2006). Microbiota from obese individuals has an increased capacity 

for energy harvest compared with lean individuals and this metabolic capability can be 

transplanted into germ-free animals (Turnbaugh et al., 2006, 2009a). By-products of microbial 

metabolism also influence host energy balance by acting as ligands for various host receptors. For 

example, short chain fatty acids (SCFAs), which are derived from bacterial fermentation of dietary 

fibers, are involved in energy regulation through altering host epigenetics (Krautkramer et al., 

2016) and through interactions with G protein-coupled receptors (GPCRs) (Gao et al., 2009; Lin 

et al., 2012). GPCRs stimulate the release of anorexigenic intestinal hormones glucagon-like 

peptide-1 (GLP-1) and peptide YY (PYY), thereby modulating host energy homeostasis. Systemic 

and adipose tissue inflammation are hallmarks of obesity, insulin resistance and T2D (Osborn and 

Olefsky, 2012), and this inflammatory state may be attributed to microbiota composition. Bacterial 

cell wall components like lipopolysaccharide (LPS) and peptidoglycan cause inflammation 

(Rietschel et al., 1998). Increased plasma levels of LPS have also been observed in patients with 

metabolic syndrome (Creely et al., 2007). Consumption of a high-fat diet increases intestinal 

permeability, leading to an increase in the translocation of microbial-derived components into the 

circulatory system and systemic inflammation (Cani et al., 2007). Together, these data suggest 

microbiota may contribute to metabolic diseases through several mechanisms, such as increased 

energy harvest from diet and altered systemic and adipose tissue inflammation.   

 



 

 8 

ENVIRONMENTAL FACTORS SHAPING MICROBIOTA COMPOSITION 

Early life establishment 

The assembly of the intestinal microbiome is initiated at birth, with rapid colonization by 

microbes in the surrounding environment. Vertical transmission of the microbiome from mother 

to infant is facilitated by delivery mode, which determines colonization patterns of the infant 

microbiome (Bokulich et al., 2016; Dominguez-Bello et al., 2010; Yassour et al., 2016). Infants 

born via vaginal delivery acquire bacterial communities that resemble their mother’s vaginal 

microbiome, while caesarian (CS) delivered infants harbor a microbiota that is the most similar to 

their mother’s skin (Dominguez-Bello et al., 2010). Infants delivered vaginally were also had a 

greater abundance of Lactobacillus, while CS-delivered infants had a greater abundance of 

Staphylococcus (Dominguez-Bello et al., 2010). In addition to delivery mode, breastmilk shapes 

the infant microbiota by providing a continuous supply of potentially probiotic bacteria to the 

infant gut (Fernández et al., 2013), along with secreted maternal antibodies that provide protection 

from harmful species (Rogier et al., 2014). The presence of various oligosaccharides in breastmilk 

have been shown to select for specific gut microbes (Zivkovic et al., 2011). Additionally, antibiotic 

administration is considered one of the most significant factors affecting the infant microbiota and 

results in a loss of microbial diversity (Jernberg et al., 2010). Although the effects of these early 

life events on microbiota composition are lost within the first year of life (Rutayisire et al., 2016). 

The microbiome is also more susceptible to perturbations during infancy before a stable microbial 

community has developed. This coincides with a critical host developmental period where 

microbial colonizers facilitate/orchestrate immune and metabolic development. Therefore, 

disruption of the infant microbiome during this critical development window may have lasting 

effects on the host (Ajslev et al., 2011; Cox et al., 2014; Kelly et al., 2007). Antibiotic perturbations 

of the infant microbiota alter the host’s metabolic activity, resulting in growth promotion and an 
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increased risk of obesity (Cox et al., 2014). Additionally, early life alterations in the microbiota 

are associated with immunological changes in intestinal mucosa (Renz et al., 2012) and the 

function of intestinal natural killer T cells is shaped by age-sensitive contact with commensal 

microbes (Olszak et al., 2012). Taken together, early life events have a profound impact on shaping 

the microbiota composition, and in turn, host health.  

 

Lifestyle factors 

The composition of the gut microbiota is also shaped by a range of lifestyle factors 

including medications, social relationships, personal habits and location. Medication such as 

antibiotics (Antonopoulos et al., 2009; Cox et al., 2014), proton-pump inhibitors (Imhann et al., 

2016), metformin (Forslund et al., 2015) and antidepressants (Zhernakova et al., 2016) shift 

microbiota profiles. Medications have differential effects on the microbiota profiles. Many of these 

studies report decrease in species richness, which may have detrimental effects on the host. 

However, other xenobiotics, like metformin, appear to shift the microbiota to a more beneficial 

state. Metformin treatment in individuals with T2D increased the abundance of bacteria capable 

of producing SCFAs, which are linked with many metabolic benefits (Kasubuchi et al., 2015). 

Other lifestyle factors such as smoking (Biedermann et al., 2013) and exercise (Allen et al., 2018) 

also influence the microbiota. Geographical location contributes to variation as shown by 

differences among geographically discrete populations (Rehman et al., 2016; Yatsunenko et al., 

2012) and among individuals living in rural vs urban environments (Tyakht et al., 2013). Recently, 

there has been an increase in studies focused on understanding the role of social relationships in 

shaping the microbiota (Herd et al., 2018). Co-habitation has been identified in several studies as 

having a stronger effect than relatedness in determining the similarity of microbiota composition 

among individuals (Dill-McFarland et al., 2018; Rothschild et al., 2018; Song et al., 2013). For 
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example, married individuals had greater bacterial diversity and richness than those living alone 

(Dill-McFarland et al., 2018). Interestingly, social dynamics appear to influence the microbiome 

as couples reporting close relationship had greater bacterial diversity than ones who reported a 

somewhat close relationship (Dill-McFarland et al., 2018).  

 

Diet drives composition and function of gut microbiome 

Diet exerts a strong effect on the gut microbiota and is arguably one of the most significant 

determinants of microbiota composition and function. Dietary components that are not digested 

and absorbed by the host pass through the intestine where they serve as primary energy sources 

for bacteria. The microbiome is highly responsive to alterations in dietary patterns (David et al., 

2014; Muegge et al., 2011). Substantial changes in diet have been shown to have profound 

consequences on the overall composition and metabolic capabilities of the microbiota, such as 

switching from vegetarian to an omnivorous diet (David et al., 2014) or from a low-fat plant-rich 

diet to a high-fat high-sugar diet (Turnbaugh et al., 2009b). In fact, diet-induced changes in 

population structure can occur in a single day (Carmody et al., 2015). Dietary preferences also 

enrich for specific bacteria taxa. For example, Prevotella is enriched in individuals consuming 

high-fiber diets (De Filippo et al., 2010), while Bacteroides is higher in humans consuming high-

protein diets (Yatsunenko et al., 2012). The influence of a “Western” high-fat diet on microbiota 

composition and function has been particularly well characterized for its role in diet-induced 

obesity. Western-style diets cause substantial changes in microbiota composition and function, as 

demonstrated by studies in humans and rodent models.  A frequently observed theme in response 

to a Western diet is a shift in the ratio of the major phyla Bacteroidetes and Firmicutes (Carmody 

et al., 2015; Kreznar et al., 2017; Parks et al., 2013; Turnbaugh et al., 2009b). Moreover, diets high 

in fat are associated with decreased overall microbiome diversity (Turnbaugh et al., 2008). 
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Microbes enriched in response to a Western diet also allow the host to harvest more energy (Ley 

et al., 2005; Turnbaugh et al., 2006), as shown by an enrichment of microbial pathways involved 

in nutrient processing.  

 

HOST GENETICS SHAPES MICROBIOME 

Interpersonal differences in the overall microbiota composition and the inter-individual 

variation in bacterial taxa can be partially attributed to host genetics. Early investigations focused 

on comparisons of overall microbiome composition (-diversity) among related and unrelated 

individuals. One study found the overall similarity of the gut microbiome increased with closer 

degrees of relatedness in families (Erwin G. Zoetendal, Antoon D. L. Ak, 2001) . Twin studies 

corroborated these findings, where the microbiota composition between twins (both monozygotic 

(MZ) and dizygotic (DZ)) were more similar to one another than to unrelated individuals 

(Turnbaugh et al., 2009a; Yatsunenko et al., 2012). In fact, a comparison of 416 twin pairs found 

that MZ twins are more similar to each other than DZ twins (Goodrich et al., 2014b). However, 

these differences between MZ and DZ twins can only be discerned with a sufficient sample size. 

Interestingly, metagenomic analysis of the microbiome of TwinsUK cohort found that the 

similarity among twins decreased once they lived apart (Xie et al., 2016). This suggesting that 

environment may mask the contributions of genetics on shaping the microbiota and the effects of 

genetic variation is most pronouced among individuals in a shared environment. 

Since contributions of genetics is confounded by environmental factors, experiments using 

inbred mouse have proven to be valuable to evaluate the extent to which genetic variation shapes 

microbial communities. Mouse models are well suited for discerning the influence of host genetics 

because many confounding environmental factors can be carefully controlled (Spor et al., 2011). 

Additionally, different breeding approaches can be utilized to maximize genetic diversity and 
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mimic the variation found among humans. For example, the Collaborative Cross (CC) progenitor 

strains are comprised of 5 classical inbred strains and 3 wild derived strains, which together 

encompass the genetic diversity found in human population (Churchill et al., 2004). Three separate 

characterizations of these 8 strains by different research groups found microbial signatures unique 

to each strain, where the microbiome within strains was more similar than between strains (Kovacs 

et al., 2011; Kreznar et al., 2017; O’Connor et al., 2014). Similarly, another study performed by 

Org and colleagues profiled fecal samples from 113 mouse strains that comprise the Hybrid Mouse 

Diversity Project (HMDP) population. Again, they also found greater similarity in microbiota 

structure among mice of the same genotype (Org et al., 2015).  

In addition to comparing overall structure of related and unrelated populations, many 

studies have utilized heritability measurements to identify specific bacterial taxa influenced by 

genetics. Here, heritability is defined as the extent to which the total phenotypic variation for a 

trait is attributed to genetic rather than environmental factors. Studies of the heritability of the gut 

microbiota in different organisms have collectively identified a subset of organisms that appear to 

be influenced by host genetics, including Turicibacter, Oscillospira, Lactobacillus, Lactococcus, 

Roseburia and Akkermansia (Benson et al., 2010; Goodrich et al., 2016; Org et al., 2015). 

Interesting, all of these genera are part of the Firmicutes phyla, with the exception of Akkermansia 

which is in the Verrucomicrobia phyla, indicating bacteria in this phylum are particularly sensitive 

to host genetics. Heritability estimates are substantially higher in mice compared to humans where 

environmental factors are controlled. In mice, heritability estimates for individual taxa range from 

26% – 86% (O’Connor et al., 2014; Org et al., 2015), whereas heritability only accounts for 1.9% 

to 8.1% of the overall variation in microbiota composition in humans (Goodrich et al., 2016; 

Rothschild et al., 2018). Despite these observed differences in heritability, the congruence of 
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heritable taxa between studies provides strong evidence that specific, identifiable taxa are 

responsive to host genotype across populations.  

Genetic mapping approaches can be applied to identify specific genetic loci associated with 

bacterial abundance and community diversity. Two approaches can be used, quantitative trait loci 

(QTL) analysis or genome wide association studies (GWAS). QTL analysis can be applied to 

intercross populations where kinship is known. GWAS relies on regression at measured markers 

and a larger sample size is required. Benson et al. (Benson et al., 2010) was the first to identify 

host genetic variants associated with microbial abundance using the fourth generation (G4) of an 

advanced intercross mouse population by QTL mapping. In total, 13 loci were significantly 

associated with microbial abundance. Notably, this study provided valuable insight into the 

underlying genetic architecture that shapes microbiota composition. For example, the researchers 

identified several genomic regions where a single locus associated with multiple microbial traits, 

indicating that host genetic variation can also influence population structure. A follow-up study 

using later generations of these intercrossed mice (G10) identified an additional 42 microbial QTL 

and replicated four QTL identified in G4 (Leamy et al., 2014). Several other QTL studies using 

different mouse populations and breeding schemes have identified even more regions associated 

with bacterial abundance (McKnite et al., 2012; Snijders et al., 2017; Wang et al., 2015). Another 

study by Org et al. (Org et al., 2015) used a GWAS approach with 110 HMDP strains and identified 

7 loci associated with microbial abundance. While the QTL overlaps among these studies are 

extremely limited, some of the taxa with the strongest associations were similar including 

Lachnospiraceae, Ruminococcus, Lactobacillus, Turicibacter, Bacteroides and Oscillospira. 

Interestingly, several of these associations occurred with taxa like Lachnospiraceae, Ruminococcus 

and Turicibacter, which were also identified as highly heritable (Benson et al., 2010; Goodrich et 
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al., 2016). Moreover, several of these microbial QTL were also linked with obesity, lipid levels 

and markers of immune response (Leamy et al., 2014; McKnite et al., 2012; Org et al., 2015; 

Snijders et al., 2017).  

Human GWAS studies have also shed important insight into genetic determinants of both 

gut microbiota composition and function. The first microbial GWAS studies were limited by 

sample size, but still identified several interesting associations between variants in metabolism-

related genes (Blekhman et al., 2015; Davenport et al., 2015). For example, a variant near PLD1, 

a gene previously associated with body mass index (Ng et al., 2012) was associated with the 

abundance of the genus Akkermansia, which is known to affect obesity (Everard et al., 2013). 

Blekham et al. (Blekhman et al., 2015) used a subset of 93 individuals from the Human 

Microbiome Project for whom they had both genotype and metagenomics data. A significant 

association between increased Bifidobacterium genus and a SNP (rs56064699) located in the 

lactase (LCT) gene was found in this population. Interestingly, the association variant in LCT and 

Bifidobacterium abundance was observed in larger population cohorts (Goodrich 2016, Bonder 

2016, Rothschild 2018). This association was recently replicated in an expanded analysis using 

298 HMP participants (Kolde et al.).  

Additional associations have been identified by large-scale population studies using 

German (Wang et al., 2016), Dutch (Bonder et al., 2016) and Canadian cohorts (Turpin et al., 

2016). All three cohorts were comprised of more than 1,000 unrelated individuals and each study 

included replication cohorts. Despite the large cohorts, the observed associations had small effect 

sizes, demonstrating the genetic architecture underlying microbiome traits is highly complex. 

Turpin et al. (Turpin et al., 2016) identified 6 significant associations with microbial taxa. In the 

German cohort, Wang et al. (Wang et al., 2016) analyzed bacterial -diversity and discovered an 
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association with a variant in the VDR gene that encodes the vitamin D receptor. They went on to 

show significant shifts in microbiota composition in Vdr-/- mice relative to control mice. The Dutch 

cohorts replicated several findings from a previous study of UK twins (Goodrich et al., 2016), 

including strong heritability of Methanobacteriaceae—a family that belongs to the Archaea, and 

the bacterial genus Blautia (Bonder et al., 2016). Moreover, they found significant associations 

between microbial functional groups and variants in C-type lectins, which are proteins involved in 

modulating innate immunity.  

A common theme that emerges from these genetic mapping studies is the association 

between the microbiome and variants in immune related genes. The reciprocal role of the immune 

system in modulating microbiota composition is evident from knockout of innate and adaptive 

immune genes in mice, including Tlr5 (Vijay-Kumar et al., 2010), Nod2 (Rehman et al., 2011), 

Myd88 (Larsson et al., 2012), Card9 (Lamas et al., 2016) and Rag1 (Dimitriu et al., 2013). Innate 

immune genes are responsible for sensing microbes and triggering down-stream cell signaling 

pathways, while adaptive immune genes maintain immune homeostasis through antigen 

recognition and immunological memory. The genetic mapping studies discussed above 

corroborate the importance of immune genes in shaping intestinal microbial communities. For 

instance, Benson et al (Benson et al., 2010) discovered QTLs for Coriobacteriaceae and 

Lactococcus on mouse chr 10 where the loci contained multiple genes involved in mucosal 

immunity including Irak3, Il22, and lysozyme genes Liz1 and Liz2. Abundance of 

Rikensenellaceae and Roseburia were associated with Irak4 (McKnite et al., 2012; Org et al., 

2015), which encodes for a kinase that activates TLR- and T cell-receptor signaling pathways 

(Suhir and Etzioni, 2010). In humans, microbial functions associated with polymorphisms in genes 

known immune genes NOD1 and NOD2, as well as genes implicated in IBD risk (CCL2, DAP2, 
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IL23R)(Bonder et al., 2016). These studies highlight the importance of the bidirectional interaction 

of the microbiome and host immune system.  

 

HOST GENOTYPE-SHAPED MICROBIOMES ALTER DISEASE SUSCEPTIBILITY 

Heterogeneity in disease susceptibility can in part be explained by host genotype-driven 

differences in the gut microbiome. There is evidence that gut bacteria act as a causal link between 

the genetic and phenotypic diversity among genetically diverse inbred mouse strains (Kasahara et 

al., 2018; Kreznar et al., 2017; Parks et al., 2013). For example, the eight CC progenitor strains 

show substantial variation in metabolic phenotypes to atherogenic and Western-style high-fat high-

sucrose diets when raised in the same environment (Kreznar et al., 2017; O’Connor et al., 2014). 

Some of these strains are highly responsive to the Western diet and become obese and glucose 

intolerant, while others remain lean and insulin sensitive even after 22 weeks of dietary challenge 

(Kreznar et al., 2017). Strikingly, microbiota transplantation of microbiota from strains with 

disparate phenotypes replicates aspects of donor metabolic phenotypes in recipient mice. Cecal 

contents from Western diet-responsive and -resistant mice were transplanted into germ-free 

recipient animals of the same genotype as the diet-responsive strain and fed the Western diet for 

16 weeks. Despite the dietary challenge, germ-free mice that received the microbiota of the diet-

resistant strain gained significantly less weight than the mice that received the diet-response 

microbiota.  

A separate study using the Hybrid Mouse Diversity Panel (HMDP) also found a causal role 

of host genotype-shaped microbiota on cardiovascular disease development. The HMDP consists 

of ~100 inbred strains that exhibit diverse microbiota community structure and have varying 

susceptibility to obesity and atherosclerosis (Bennett et al., 2015; Parks et al., 2013). Groups of 

germ-free ApoE-/- mice were colonized with cecal microbiota from four HMDP strains that showed 
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disparate atherosclerosis phenotypes. Researchers found that the microbiota successfully conferred 

cardiovascular phenotypes into recipient mice, as mice that received the microbiota from athero-

prone HMDP strains developed larger aortic lesion sizes than germ-free animals that received the 

microbiota from athero-resistant HMDP strains (Kasahara et al., 2018). For the mouse populations 

used for these studies, environmental factors are the same and the only variation among these 

animals is genotype, so differences in the microbiota composition can mostly be attributed to 

genetic variation. These transplantation studies demonstrate the importance of host genotype-

shaped microbiota in modulating susceptibility to metabolic and cardiovascular diseases. 

 

METABOLITES: AT THE INTERSECTION OF HOST-MICROBR INTERACTIONS  

Variation in host genetics and gut microbiota composition shape metabolic disease 

development in part by the production and modification of metabolites. Microbial metabolism of 

dietary substrates produces a myriad of metabolites with differential effects on host physiology 

(Nicholson et al., 2012). For example, intestinal bacteria metabolize dietary choline to 

trimethylamine (TMA), which is processed by the host hepatic enzyme FMO3 to produce the pro-

atherogenic metabolic trimethylamine-N-oxide (TMAO) (Wang et al., 2011). Through 

fermentation reactions, the gut microbiota can metabolize complex polysaccharides to produce 

SCFAs. Acetate, butyrate, and propionate are the most abundant SCFAs in the distal gut and they 

have different effects on the host (den Besten et al., 2013). In general, reduced levels of total 

SCFAs and SCFA producing bacteria are associated with obesity (Ridaura et al., 2013) and T2D 

(Karlsson et al., 2013b; Qin et al., 2012). Butyrate has been shown to improve intestinal barrier 

function and ameliorate atherosclerosis development (Kasahara et al., 2018). Furthermore, acetate 

can directly influence glucose homeostasis through stimulation of insulin secretion from pancreatic 

islets (Perry et al., 2016; Priyadarshini et al., 2015). Gut microbes also synthesize essential 
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vitamins, such as B and K, that are substrates for metabolic reactions (Hill, 1997; LeBlanc et al., 

2013). Interestingly, several of these microbially-derived metabolites have also been shown to 

directly interact with the host genome by altering host epigenetic status through histone acetylation 

and methylation (Krautkramer et al., 2016; Romano et al., 2017). 

Bile acid (BA) metabolites are of particular interest because their composition and 

abundance are shaped by both the host and intestinal bacteria. BAs reciprocally modulate gut 

microbiota composition through alterations of the chemical and physical properties of the intestine 

(Islam 2011, Zheng 2017). Primary BAs are synthesized in the liver from cholesterol and are 

secreted into the duodenum to aid in the digestion of lipids and facilitate nutrient absorption 

(Russell, 2009). Gut microbes can metabolize primary BAs through several chemical reactions 

(deconjugation, dehydrogenation, epimerization and dehydroxylation) to produce secondary BAs 

(Ridlon et al., 2006), which in turn have varying effects on host physiology and health (Kuipers et 

al., 2014; Ridlon et al., 2016). BAs act as hormones to regulate lipid, glucose, lipoprotein and 

energy homeostasis (Li and Chiang, 2014; Zhou and Hylemon, 2014). Alterations in the size and 

composition of BA pools are associated many diseases like T2D (Handelsman, 2011), obesity 

(Ryan et al., 2014), IBD (Devkota et al., 2012), and colon cancer (Ajouz et al., 2014). Furthermore, 

BA metabolizing capabilities of the microbiome is associated with altered host metabolism as 

demonstrated by loss of bile salt hydrolase (BSH) activity in conventionally-raised and mono-

colonized mice (Joyce et al., 2014; Yao et al., 2018)  

Recently, several genetic studies have found evidence of interactions between host genetics 

and the microbiome through the regulation of bile acid metabolism. Much of this work has focused 

on genetic alterations to gene encoding the vitamin D receptor (VDR), which is involved in bile 

acid sensing and homeostasis. VDR is a known receptor for secondary bile acids and its activation 
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can inhibit bile acid synthesis (Makishima et al., 2002). Loss of VDR in mice significantly alters 

the composition of the microbiota where Lactobacillus is depleted and Clostridium and 

Bacteroides are enriched (Jin et al., 2015). In humans, polymorphisms in VDR were associated 

with -diversity and abundance of Parabacteroides (Wang et al., 2016). The authors went on to 

validate the role of VDR in determining microbial community structure by showing loss of Vdr in 

mice significant affects -diversity. Additionally, GWAS studies by Blekhman et al. (Blekhman 

et al., 2015) and Bonder et al. (Bonder et al., 2016) found strong associations between the host 

variants and bacterial pathways for bile acid metabolism. Together, these studies provide evidence 

for host genome-gut microbiome interactions regulated by variation in bile acid related genes. 

Additional investigations are warranted to further elucidate molecular mechanisms.    
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ABSTRACT 

Genetic variation drives phenotypic diversity and influences the predisposition to 

metabolic disease. Here, we characterize the metabolic phenotypes of eight genetically distinct 

inbred mouse strains in response to a high-fat/high-sucrose diet. We found significant variation in 

diabetes-related phenotypes and gut microbiota composition among the different mouse strains in 

response to the dietary challenge and identified taxa associated with these traits. Follow-up 

microbiota transplant experiments showed that altering the composition of the gut microbiota 

modifies strain-specific susceptibility to diet-induced metabolic disease. Animals harboring 

microbial communities with enhanced capacity for processing dietary sugars and for generating 

hydrophobic bile acids showed increased susceptibility to metabolic disease. Notably, differences 

in glucose-stimulated insulin secretion between different mouse strains were partially recapitulated 

via gut microbiota transfer. Our results suggest that the gut microbiome contributes to the genetic 

and phenotypic diversity observed among mouse strains and provide a link between the gut 

microbiome and insulin secretion.  
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INTRODUCTION 

The intestinal microbiota exerts a profound influence on development, physiology and 

health (Clemente et al. 2012; Sommer & Bäckhed 2013; Tremaroli & Bäckhed 2012). Although 

there is substantial interpersonal variation in the composition of the gut microbiota among 

unrelated healthy subjects, sequencing studies have revealed distal gut community patterns 

associated with different pathological states, including obesity and diabetes (Ridaura et al. 2013; 

Qin et al. 2012; Karlsson et al. 2013). Remarkably, alterations in the intestinal microbiota 

composition have been shown to modulate insulin sensitivity (Vrieze et al. 2010) —a key feature 

in metabolic disease and type 2 diabetes (T2D), and thus play a role in diabetes susceptibility. s 

Dietary components that are not efficiently absorbed in the proximal intestine reach the 

distal gut where they are metabolized by gut microbes. Intestinal microbes impact our health in 

part by generating numerous metabolites from our diet. Short-chain fatty acids (SCFA), mainly 

acetate, propionate and butyrate, are produced through bacterial fermentation of dietary 

carbohydrates. SCFA serve as energy and signaling molecules in the intestine and peripheral 

organs (Besten et al. 2013). Specifically, SCFA are important regulators of both energy and 

glucose homeostasis (Besten et al. 2013; Koh et al. 2016). For example, butyrate improves insulin 

sensitivity (Gao et al. 2009; Hartstra et al. 2015) and T2D patients have reduced levels of butyrate-

producing bacteria (Qin et al. 2012). Additionally, acetate modulates insulin secretion from β-cells 

(Priyadarshini et al. 2015; Perry et al. 2016). While primarily associated with metabolic benefits, 

increased concentrations of butyrate and acetate have been found in the cecum of obese mice, 

suggesting an increased ability of the microbiome to harvest energy from the diet (Turnbaugh et 

al. 2006). 
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Gut microbes also impact host physiology by modifying bile acids (BA) synthesized by 

the host  (Houten et al. 2006; Kuipers et al. 2014; Ryan et al. 2014; Sayin et al. 2013). In addition 

to their role in emulsifying lipids, BA function as hormones through their ability to activate nuclear 

hormone receptors (D. J. Parks et al. 1999) and G-coupled protein receptors (Kawamata et al. 

2003). They modulate glucose homeostasis, lipid metabolism, energy expenditure, and intestinal 

motility (Kuipers et al. 2014). Primary BA are synthesized from cholesterol in the liver (Russell 

2009), stored in the gallbladder, and secreted into the duodenum upon ingestion of a meal. The gut 

microbiota catalyzes the production of secondary BA via deconjugation, dehydrogenation, 

epimerization, and dehydroxylation of primary BA (Ridlon et al. 2006). BA with different 

modifications vary in their ability to activate receptors and affect host physiology (Makishima et 

al. 1999; Kuipers et al. 2014). Subjects with T2D have altered circulating BA profiles. Treatment 

of T2D subjects with compounds that increase fecal excretion of BA and modify BA composition 

improves their glycemic status (Handelsman 2011). 

Mouse genetics can be employed to explore the relationships between diet, host genetics, 

and metabolic responses (O'Connor et al. 2014; B. W. Parks et al. 2013; Ussar et al. 2015). The 

Collaborative Cross (CC) is a systems genetics mouse resource that consists of a panel of 

recombinant inbred lines and an outbred stock derived from eight genetically diverse founder 

strains. These include five classical inbred strains (A/J, C57BL/6J, 129S1/SvImJ, NOD/ShiLtJ and 

NZO/HILtJ), and three wild-derived strains (CAST/EiJ, PWK/PhJ, WSB/EiJ) (Churchill et al. 

2004; Roberts et al. 2007; Aylor et al. 2011).  

We examined the metabolic phenotypes and gut microbiota composition of the eight CC 

founder strains in response to chronic consumption of two defined diets: a high-fat/high-sucrose 

diet (HF/HS) and a control diet. We found remarkable variation in diabetes-related phenotypes 
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and gut microbiota composition as a function of host genotype and diet, and we identified bacterial 

taxa that correlate with metabolic traits, including body weight, glucose, and insulin levels. Germ-

free (GF) mice were colonized with microbiota derived from two founder strains that exhibited 

divergent metabotypes, C57BL/6J and CAST/EiJ. The transplanted animals were maintained on 

the HF/HS diet and then subjected to metabolomic and metagenomic analyses. We identified 

functional differences attributable to the two transplanted microbial communities, including 

insulin secretion responses and susceptibility to diet-induced metabolic disease.  
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RESULTS 

Host metabolic responses to diet are influenced by genetic background 

We assessed the variability of diet-induced metabolic responses of the eight genetically 

diverse CC founder strains: A/J, C57BL/6J (B6), 129S1/SvImJ (129), NOD/ShiLtJ (NOD), 

NZO/HILtJ (NZO), CAST/EiJ (CAST), PWK/PhJ (PWK), WSB/EiJ (WSB). All mice were 

obtained from the Jackson Laboratory, maintained in the same vivarium and fed the same diet, so 

that the only known difference among the strains is genetics. We placed four-week-old male mice 

from each strain on either a control or a high-fat high-sucrose (HF/HS) diet for 22 weeks (Table 

S1).  

The CC founder strains displayed a wide range of body weight and metabolic responses to 

the dietary challenge (Figure 2.1 and S2.1). Two-way ANOVA analysis of the clinical traits 

revealed a significant strain effect for fasting insulin (F = 14.94, p < 0.0001). We also observed 

significant strain-diet interactions for body weight (F = 3.19, p < 0.01) and fasting glucose (F = 

2.81, p < 0.01). Significant strain and diet effects were also seen for hepatic triglyceride content 

(F = 10.96, p < 0.0001; F = 11.92, p < 0.001, respectively) effects. Liver triglyceride content 

showed high inter-strain variation, with 129 having the most significant response to diet (p < 0.05) 

(Figure 2.1D). NZO mice were the only strain to become overtly diabetic (glucose levels >300 

mg/dl) as a consequence of HF/HS feeding. With the exception of NZO mice, which did not 

survive past 18 weeks on the HF/HS diet, B6 mice were the most responsive to diet. HF/HS-fed 

B6 mice became obese (p < 0.01) and developed insulin resistance and glucose intolerance after 

~8 weeks (Figure 2.1A and S2.1A-C). In addition to differences in diet responsiveness, the strains 

varied in both absolute levels of insulin and change in insulin levels over time, suggesting a 

significant divergence in insulin sensitivity among the strains (Figure S2.1B).  
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To assess whole-body glucose homeostasis and more directly evaluate the underlying role 

of the pancreatic islets in the control of plasma insulin, we measured plasma glucose and insulin 

during an oral glucose tolerance test (oGTT). Both plasma glucose and insulin during the oGTT 

varied dramatically between the strains. We computed the area under the curve (AUC) for each 

trait to determine the overall excursion in glucose and insulin that occurred during the oGTT 

(Figure 2.1E-F and S2.2). We observed a wide inter-strain range of responses in plasma insulin 

during the oGTT (F = 12.84, p < 0.0001) (Figure 2.1F and 2.2B). Changes in plasma insulin may 

reflect altered insulin secretion from β-cells, peripheral insulin resistance, reduced insulin 

clearance, or any combination thereof. 129 and WSB showed diet-induced glucose intolerance, 

but minimal changes in their insulin response during the oGTT (Figure 2.1E-F and S2.2A), 

suggesting that their glucose intolerance may be driven by altered insulin secretion and/or 

enhanced insulin clearance. Remarkably, insulin secretion and glucose tolerance were completely 

unaffected by the HF/HS diet in CAST. Furthermore, the kinetics of the glucose and insulin 

responses were more rapid in CAST than in all other strains (Figure S2.2), suggesting that CAST 

mice may employ different pathways underlying glucose-stimulated insulin secretion and whole-

body glucose disposal. 

 

Diet and host genotype influence microbiota composition 

Gut microbes influence the development of metabolic disease. We characterized the cecal 

microbiomes of the eight CC founder strains by 16S rRNA sequencing. We compared the cecal 

microbiomes employing UniFrac, a phylogenetic distance metric used to measure differences in 

bacterial community structure (Lozupone & Knight 2005). Principal coordinates analysis (PCoA) 

of 16S rRNA unweighted UniFrac distances revealed a strong influence of strain (PERMANOVA, 

p < 0.001) and diet (PERMANOVA, p < 0.001) on microbial community composition (Figure 
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S2.3A). Consistent with previous studies, the effect of diet on gut microbial composition varied 

among the strains (O'Connor et al. 2014; B. W. Parks et al. 2013; Carmody et al. 2015), where B6, 

CAST and NOD mice showed the greatest microbiome response to diet (Figure S2.3A).  

We detected eight bacterial phyla among the mice (Figure S2.3B). Bacteroidetes and 

Firmicutes dominated the gut of all strains on either diet, accounting for >90% of the sequenced 

reads. As reported by other studies, we observed a decrease in the Bacteroidetes:Firmicutes ratio 

and an increase in Proteobacteria in the HF/HS-fed mice (Ley et al. 2005; Hildebrandt et al. 2009). 

In fact, Proteobacteria showed the greatest fold change in abundance in response to diet: HF/HS 

feeding caused an average 5.4-fold change (p < 0.0001), although the relative increase varied 

among strains.  

 

Microbial taxa correlate with metabolic phenotypes 

To determine whether strain-dependent variability in microbiota composition was 

associated with the dramatic differences in the diabetes-related clinical traits, we computed 

Pearson’s correlations between abundance of family-level taxa and the metabolic traits among the 

8 CC founder mice (Figure 2.2A). We focused our analysis on families that were present in at least 

7 of the founder strains. Bacteroidaceae was among the most negatively correlated with several 

metabolic phenotypes, including body weight, fasting plasma insulin and AUCinsulin during the 

oGTT. The Bacteroidaceae family belongs to the Bacteroidetes phylum and is typically found at 

higher levels in fecal samples of lean vs. obese individuals (Ley et al. 2005; Turnbaugh et al. 2009). 

Conversely, Clostridiaceae and Rikenellaceae showed the strongest positive correlations with 

plasma insulin levels. Our analysis also identified strong positive correlations between fasting 

plasma glucose and the Streptococcaceae and Desulfovibrionaceae families. Members of these 
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families have previously been shown to be enriched in the fecal microbiome of patients with T2D 

(Qin et al. 2012; Karlsson et al. 2013).  

Some of the correlations mentioned above varied significantly as a function of host diet 

and strain (Table S2). For example, the negative correlation observed between fasting insulin 

levels and Bacteroidaceae had a significant strain effect (p < 0.0001). We also observed a slight 

diet effect (p < 0.001), which is likely driven by the low abundance and high fasting insulin levels 

in the chow-fed NZO mice (Figure 2.2B). We also observed a significant diet effect for the 

relationship between Clostridiaceae and fasting insulin levels (p < 0.05), but there was also a strain 

difference that seems to be driven by NZO on chow diet (p < 0.001) (Figure 2.2C).  

These results suggest that diet and genetic background are major determinants of gut 

microbial composition and metabolic disease. However, the relative contributions of host genetic 

variance vs. microbial-derived genetic variation across different mouse strains in the development 

of diet-induced metabolic phenotypes remain largely unknown. 

 

The gut microbiome is a source of genetic variation that influences host-associated differences 

in diet-induced metabotypes 

To directly test the influence of gut microbes on the metabolic phenotypes observed among 

the founder strains, we performed cecal transplants into germ-free B6 (B6-GF) hosts, leveraging 

two CC founder strains that showed disparate responsiveness to the HF/HS diet. The B6 strain 

became obese, insulin resistant, and glucose intolerant, whereas the CAST strain remained lean 

and insulin-sensitive despite HF/HS feeding (Figure 2.1).  

As mentioned above, B6 and CAST mice had significantly different intestinal microbiota 

(PERMANOVA, F = 4.86, p < 0.001) (Figure S2.3A). B6 mice harbored a significantly greater 

abundance of microbial families with strong positive correlations with metabolic traits, such as 
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weight and insulin (i.e. Clostridiaceae, p < 0.05), while CAST mice had a greater representation 

of families with significant negative correlations (i.e. Bacteroidaceae, p < 0.01) (Figure 2.2A and 

S2.3C). 

 We transplanted cecal microbiota from either conventionally-raised B6 (B6-CR) or CAST 

(CAST-CR) donor mice into 9-week-old B6-GF recipient mice, to yield B6B6 or B6CAST mice, 

respectively. Transplanted animals were housed by treatment group in separate vinyl gnotobiotic 

isolators and maintained on a HF/HS diet for 16 weeks following colonization (Figure 2.3A). A 

dietary treatment of 16 weeks allows robust development of metabolic phenotypes associated with 

consumption of HF/HS diet.  

Recipient mice recapitulated microbial and metabolic phenotypes observed in the 

respective donor strains (Figure 2.3 and 2.4).  B6B6 mice gained ~25% more weight, had larger 

epididymal fat pad mass and showed greater hepatic triglyceride accumulation than B6CAST mice 

(Figure 2.3).  Additionally, oGTT revealed that while the plasma glucose levels resulting from an 

orally administered bolus of glucose did not significantly differ between the two groups of 

transplanted mice (Figure 2.3E), the insulin responses were dramatically different (Figure 2.3F). 

The glucose challenge evoked a much larger insulin response in B6B6 mice than in B6CAST mice. 

The low insulin response in B6CAST mice resembled the insulin response of the CAST-CR donors 

(Figure 2.1F and S2.1F). These results suggest that the effectiveness of insulin to maintain 

euglycemia was greater in the mice receiving the CAST microbiota than in mice receiving the B6 

microbiota (Figure 2.3E-F). 

16S rRNA gene profiling of the donor cecal inoculum and transplant recipient fecal 

samples show that recipient mice were successfully colonized with the donor’s microbiota. B6B6 

and B6CAST mice assumed a phylogenetically similar composition to that of their respective donors 
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as confirmed by PCoA of unweighted UniFrac distances (Figure 2.4A). As seen in the founders, 

Bacteroidetes and Firmicutes comprised ~90% of the microbiome, although the abundance of 

Firmicutes was higher in B6B6 (p < 0.05) (Figure 2.4B). We identified taxonomic differences in 

the microbiota composition between the two recipient groups using linear discriminant analysis 

(LDA) effect size (LEfSe) with LDA score >2 (Segata et al. 2011). We found 20 microbial families 

that were differentially enriched in the fecal microbiota of B6B6 versus B6CAST mice. There were 

12 microbial families that were enriched in B6B6, of which 7 belonged to the Firmicutes phyla 

(Figure 2.4C). Some of the families differentially represented in the transplanted animals overlap 

with taxa that are significantly correlated with metabolic phenotypes in the founder strains (Figure 

2.2). Notably, B6B6 mice exhibited higher levels of Clostridiaceae (p < 0.01), which is positively 

associated with insulin secretion in the founder strains (Figure 2.2), whereas B6CAST mice had 

higher levels of Bacteroidaceae (p < 0.01), which is negatively associated with body weight and 

insulin secretion (Figure 2.2). These results are concordant with the metabolic phenotypes 

observed in the transplanted mice and suggest that the distinct microbial gut communities influence 

metabolic changes evoked by HF/HS feeding, including insulin secretion, 

We characterized the functional potential of transplanted communities by sequencing and 

analyzing their metagenomes. Metagenomic analysis of the same samples further validated that 

the B6 and CAST-derived microbiota were distinct from one another, with donors clustering with 

their respective transplant recipients (Figure 2.4D). We identified several thousand genes 

differentially represented between the B6 and CAST microbiota (Table S4). This metagenomic 

analysis also revealed microbial functions that were enriched in each transplanted microbial 

community (Table S5). The most enriched microbial pathways in B6B6 mice included genes 

involved in membrane transport, and carbohydrate and lipid metabolism (Figure 2.4E). For 
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example, the ABC transporters and phosphotransferase system (PTS) pathways were enriched in 

mice colonized with the B6 microbiota (p < 0.01). PTS are a class of transport systems involved 

in the uptake and phosphorylation of a variety of carbohydrates that can be subsequently fermented 

to SCFA (Deutscher et al. 2006). It has been previously reported that diet-induced obese mice have 

a concomitant enrichment of microbial pathways involved in PTS and elevated concentrations of 

SCFA (Turnbaugh et al. 2008), reflecting an increased capacity for energy harvest. Consistent with 

these results, targeted GC/MS analysis of SCFA in cecal contents disclosed that B6B6 mice had an 

increased concentration of the major fermentation end-products, compared with B6CAST (Figure 

2.4F). Conversely, B6CAST microbiota were enriched in genes related to the vitamin B12 

(cobalamin) biosynthetic pathway (Figure S2.4A), synthesis of other B vitamins and enzyme co-

factors, as well as lipopolysaccharide (LPS) biosynthesis (Figure 2.4E and S2.4B). A difference in 

LPS biosynthetic potential may reflect the composition of the B6CAST microbiota, which has a 

significantly higher relative abundance of gram negative Bacteroidetes than the B6B6 microbiota 

(Figure S2.3B). Our findings mirror those described previously in T2D patients relative to 

diabetes-free control patients (Qin et al. 2012; Karlsson et al. 2013)—both the microbiota of T2D 

patients and our metabolically-diseased mice with B6 microbiota show enrichment in KEGG 

pathways involved in membrane transport, while diabetes-free patients and mice with the CAST 

microbiota exhibit enrichment in vitamin and co-factor biosynthesis.  

 

B6 and CAST microbiota produce divergent bile acid profiles 

Gut microbes impact host physiology in part by modulating the composition of the BA 

pool. We determined fecal BA profiles of the transplanted mice and HF/HS-fed B6-CR and CAST-

CR mice by UPLC/MS-based quantification of primary and the most abundant secondary BA. The 

BA composition of B6B6 mice closely resembled that of B6-CR donor mice, whereas B6CAST 
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exhibited a BA profile that was intermediate between CAST-CR and B6-CR mice (Figure 2.5A). 

Microbiota composition was also a significant predictor of BA composition. Bray-Curtis 

dissimilarity-based PCA revealed clustering of the BA profiles by microbiota composition.  

Although the B6CAST microbiota composition resembled that of CAST-CR (Figure 2.4A), 

there were significant differences in BA profiles between these groups, suggesting that variation 

in circulating BA is under the control of both host genetics and gut microbiota. For example, the 

primary BA cholic acid (CA), chenodeoxycolic acid (CDCA) and α-muricholic acid (α-MCA) 

were significantly higher in CAST-CR mice compared to B6CAST mice (p < 0.01, p < 0.05, p < 

0.01, respectively) (Figure 2.5B). Moreover, taurine-conjugated muricholic acids (MCAs) were 

significantly higher in CAST-CR mice compared with B6CAST mice. In contrast, these differences 

in taurine conjugation were not present between B6-CR and B6B6 mice. Taurine conjugation of 

MCAs is a host process (Ridlon et al. 2006), further highlighting the interaction of host genetics 

and microbiome in modulating host BA profiles.  

B6-CR and B6B6 mice had a significantly greater representation of hydrophobic BA species 

(e.g., deoxycholic acid, lithocholic acid (Figure 2.5B-C)), which are elevated in humans and mice 

with insulin resistance (Ryan et al. 2014; Prawitt et al. 2011). Microbial metabolism of bile acids 

generally leads to a more hydrophobic bile acid pool, which facilitates fecal elimination of bile 

acids. Bile salt hydrolases (BSH) are involved in the hydrolysis of conjugated BA, a necessary 

step for the production of secondary BA. Consistent with the results presented above, there were 

a higher number of distinct BSH genes in the B6 microbiota relative to CAST microbiota (13 

annotated BSH genes highly abundant in the B6 microbiota relative to CAST vs. two annotated 

BSH genes highly abundant in the CAST microbiota relative to B6, Table S4). Furthermore, the 

two groups of recipient mice had vastly different fecal BA profiles. Chenodeoxycholic acid 
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(CDCA; p < 0.05), deoxycholic acid (DCA; p < 0.01), lithocholic acid (LCA; p < 0.01), ω-

muricholic acid (ωMCA; p < 0.05), and tauro-ω-muricholic acid (TωMCA; p < 0.05) were all 

significantly higher in B6B6 than in B6CAST (Figure 2.5B). DCA was the most abundant BA species 

in B6B6 mice, and was also ~5-fold more abundant in B6-CR vs. CAST-CR mice. DCA contributes 

to microbial dysbiosis, a hallmark of metabolic disease, and is positively associated with higher 

levels of Firmicutes (Islam et al. 2011). Tauroursodeoxycholic acid (TUDCA) was >2-fold higher 

in CAST-CR mice compared to the transplanted animals, but was not detected in B6-CR mice. 

Interestingly, administration of TUDCA has been shown to decrease hepatic steatosis and improve 

insulin resistance in genetically obese mice (Kars et al. 2010; Ozcan et al. 2006), suggesting a 

potential protective role. These results reveal differences in BA profiles linked to both host 

genotype and gut microbial composition. They also suggest that the differential responses to 

prolonged HF/HS diet consumption between B6 and CAST mice could be mediated at least in part 

by differences in microbial BA metabolism. 

 

Gut microbiota influences insulin secretion  

 The most dramatic phenotype difference we observed between B6B6 and B6CAST mice was 

in insulin secretion, where B6CAST mice had a blunted insulin response during the oGTT (Figure 

2.3E). This attenuated response in B6CAST mice may also reflect low insulin secretion from -cells 

and/or increased insulin clearance. To determine whether the differential insulin response during 

the oGTT in the B6B6 vs. B6CAST mice resulted from altered insulin secretion, we performed ex 

vivo insulin secretion assays on isolated islets. Islets were harvested from B6-GF mice 1 month 

after successful colonization with either CAST-CR or B6-CR cecum-derived microbiota (Figure 

S2.5).  
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The isolated islets partially recapitulated the reduced insulin secretion observed in the 

CAST-colonized mice in vivo (Figure 2.3E). The comparison between the B6-GF mice receiving 

B6 vs. CAST microbiota allowed us to estimate the contribution of the microbiota to the strain 

difference in insulin secretion (Figure 2.6A). Accordingly, the reduction in insulin secretion caused 

by CAST microbiota colonization in B6 mice was ~33%. 

Circulating acetate is capable of modulating insulin secretion from pancreatic islets. 

Specifically, recent studies have shown that acetate directly enhances glucose-stimulated insulin 

secretion through activation of free fatty acid receptors on β-cells (Priyadarshini et al. 2015) and 

the parasympathetic nervous system (Perry et al. 2016). Therefore, we measured concentrations of 

SCFA in plasma and cecum, but found no differences in levels of acetate between B6B6 and B6CAST 

mice (Figure S2.6A-B), suggesting that the divergent effects of the B6 and CAST microbiota on 

insulin secretion are unlikely to stem from differences in acetate. 

Recent in vitro studies have also identified BA as important regulators of islet function 

(Düfer et al. 2012; Renga et al. 2010). We investigated the plasma BA profiles in the B6B6 and 

B6CAST mice used for insulin secretion studies (Figure S2.6C-D). B6CAST BA profiles were 

composed of a significantly higher percentage of hydrophilic BA (Figure S2.6C). Consistent with 

a previous report (Sayin et al. 2013), BA profiles were dominated by taurine-conjugated species, 

with TωMCA and TβMCA being the two most abundant in both groups of animals (Figure S2.6D). 

In B6B6 mice, the hydrophobic secondary BA DCA and LCA were significantly higher than in 

B6CAST mice (Figure S2.6D). 

BA regulate insulin secretion through the activation of specific receptors in islets. For 

instance, BA can directly increase insulin secretion and production through activation of farnesoid 

X receptor (Fxr) in β-cells (Düfer et al. 2012; Renga et al. 2010). Expression of Fxr is increased 
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in an agonist-dependent manner (Lee et al. 2006). Remarkably, we found that expression of Fxr 

was significantly higher in B6B6 islets compared with B6CAST islets (Figure 2.6B). These results 

suggest that the gut microbiota modulate BA-dependent signaling in pancreatic islets. 
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DISCUSSION 

The collective genetic variance of the eight CC strains is roughly equivalent to that of the 

entire human population, with the three wild-derived strains (WSB, CAST and PWK) accounting 

for ~75% of the genetic diversity within the cohort (Roberts et al. 2007). Remarkably, these three 

wild-derived strains captured the full scope of dietary responsiveness observed across the panel 

(Figure 2.1 and S2.1). HF/HS feeding had no effect on any of the phenotypes measured in CAST 

mice, whereas it resulted in weight gain, glucose intolerance and insulin resistance in B6 mice. 

Additionally, the diet caused a simultaneous increase in weight and glucose in NZO mice. We also 

identified significant differences in the gut microbiota composition among strains and between 

diets. All animals were obtained from the same facility, and subject to the same environmental 

conditions throughout the study, and genetic differences among the mice is the only known 

variable. Together, these results support a role for host genetics to regulate the composition of the 

microbiota. However, it’s important to note that although large population studies have identified 

highly heritable taxa, the genetic architecture underlying these taxa is highly complex with 

relatively small effect sizes that are difficult to replicate (Benson 2016).   

From the CC founder panel, we identified B6 and CAST as the two strains with the most 

divergent phenotypes. Previous studies have exploited the differential response to diet-induced 

metabolic disease between B6 and CAST to identify genetic loci associated with metabolic disease 

(Mehrabian et al. 2000; Mehrabian et al. 1998). In these studies, the gut microbiome was not may 

have contributed to the metabolic differences between strains.  

In order to dissect the contribution of the microbiome of B6 and CAST to their contrasting 

metabolic profiles, we resorted to fecal transplantation experiments. B6-GF mice colonized with 

the CAST microbiota were less affected by chronic HF/HS feeding relative to B6-GF mice 
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colonized with the B6 microbiota. The mice receiving the CAST microbiota secreted far less 

insulin in response to a glucose challenge, but were still able to maintain normal blood glucose 

levels.  

We consistently identified microbial taxa in both the CC founders and transplant recipients 

associated with metabolic traits. Clostridiaceae showed the strongest positive correlation with 

plasma insulin levels and weight gain (Figure 2.2A). Clostridiaceae also had a strong positive 

correlation with AUC insulin, a proxy for pancreas function. OTUs within the Clostridiaceae 

family have previously been both positively and negatively associated with metabolic traits (Ussar 

et al. 2015; Karlsson et al. 2013), and a recent study showed a positive correlation between an 

increase in BMI and an increase of SCFA-producing Closdiria species in Danish infants 

(Bergström et al. 2014). In contrast to the elevated Clostridiaceae in mice with a B6 microbiota, 

Bacteroidaceae was significantly higher in CAST-CR and B6CAST mice (Figure S2.3C and 2.4C). 

Bacteroidaceae was negatively correlated with body weight, circulating insulin and AUC insulin 

(Figure 2.2A). A previous report found that daily oral administration of Bacteroides uniformis, a 

member of the Bacteroidaceae family, ameliorated metabolic dysfunction resulting from a high-

fat diet (Gauffin Cano et al. 2012). This species also evoked a reduction in hepatic triglyceride 

levels, consistent with our observations that B6CAST mice have lower hepatic lipid levels compared 

to B6B6 mice. Fecal abundance of members of the Bacteroidaceae family, including Bacteroides 

vulgatus, has also been reported to be lower in humans with T2D (X. Wu et al. 2010). Despite the 

high abundance of Bacteroidaceae in B6CAST mice, we did not observe complete protection from 

diet-induced metabolic disease that we observed in CAST-CR mice, suggesting that host factors, 

or taxa that failed to colonize transplanted mice (e.g., Verrucomicrobiaceae), contribute to the 

metabotype differences. 
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Vitamin B12 is exclusively produced by microbes (Martens et al. 2002) and several 

members of the Bacteroidaceae family transport, metabolize and produce vitamin B12 analogs 

(Goodman et al. 2009; Degnan et al. 2014; M. Wu et al. 2015). Metagenomic analysis of the 

microbial communities from mice with the CAST microbiota revealed microbial functional 

enrichment for pathways involved in the biosynthesis of vitamin B12 (Figure S2.4A), which is 

necessary for DNA synthesis, neurological function, hematopoiesis, epigenetic modifications, and 

propionate metabolism (Kibirige & Mwebaze 2013). Importantly, deficiencies in vitamin B12 are 

commonly observed in individuals with T2D and gestational diabetes (Kibirige & Mwebaze 2013; 

Krishnaveni et al. 2009), and B12 therapy improves insulin resistance and endothelial function in 

patients with metabolic syndrome by mechanisms that are not fully elucidated (Setola et al. 2004).  

Our metagenomic analysis also revealed that genes involved in LPS production are 

enriched in the CAST-transplanted microbiome (Figure 2.4E and SF2.4B). This finding was 

surprising given that increased levels of LPS have been causally linked to the development of 

metabolic disease, yet B6CAST mice are partially protected from the effects of HF/HS feeding 

relative to B6B6 animals (Figure 2.3). Taxonomic evaluation of the metagenomic data indicated 

that the Bacteroidetes phylum is the major contributor to the increased abundance of genes from 

this pathway (Table S4). This is relevant because unrelated bacteria generate structurally distinct 

LPS molecules with varying capacity to elicit an innate immune response (Whitfield & Trent 

2014). Notably, a recent study showed that LPS derived from E. coli generates a strong 

inflammatory signal, whereas LPS derived from members of the Bacteroidetes phylum inhibited 

the host immune response (Vatanen et al. 2016). The differential ability of LPS sub-types to 

modify host physiology may explain why LPS has been shown to both stimulate (Nguyen et al. 

2014) and attenuate (Amyot et al. 2012) insulin secretion. Studies aimed at testing the roles of LPS 
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derived from phylogenetically diverse taxa on metabolic disease and insulin secretion are 

warranted to further clarify how structural differences in this molecule affect host metabolism. 

In addition to LPS, gut microbes produce SCFA, which are important energy and signaling 

molecules implicated in metabolic disease. For instance, butyrate has been shown to improve 

whole-body insulin sensitivity (Gao et al. 2009) and patients with T2D have reduced levels of 

butyrate-producing bacteria (Qin et al. 2010). SCFA are also elevated in individuals with diet-

induced obesity, which is consistent with the elevated cecal SCFA levels in B6B6 mice (Turnbaugh 

et al. 2008). Interestingly, SCFA are also known regulators of insulin sensitivity and secretion. 

Acetate can modulate insulin secretion from β-cells either directly through FFAR2 or via 

parasympathetic activation (Priyadarshini et al. 2015; Perry et al. 2016). However, we did not 

observe differences in concentrations of plasma or cecal acetate in the transplanted animals (Figure 

2.4F and S2.6A-B). Therefore, it is unlikely that the differences in insulin secretion could be 

attributed to SCFA and consequentially implies there are multiple pathways through which the gut 

microbiota can module insulin secretion from β-cells. 

Gut microbes are responsible for the production of the highly hydrophobic secondary BA 

DCA and LCA through the dehydroxylation of the primary BA, CA and CDCA, in the colon. 

Removal of glycine/taurine BA conjugates via BSH enzymes is a prerequisite for 7α/β-

dehydroxylation of primary BA into secondary BA (Batta et al. 1990). Interestingly, there were 13 

predicted BSH genes that were more abundant in the B6 metagenome but only two in the CAST 

metagenome. One possible interpretation of this result is that there may be more bacterial species 

present in the B6 microbiome that are able to deconjugate BA. Consistent with this, B6B6 mice had 

significantly higher levels of secondary BA as well as hydrophobic BA species than B6CAST mice 

(Figure 2.5B-C and S2.6C-D), both of which are elevated in humans and mice with insulin 
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resistance (Ryan et al. 2014; Prawitt et al. 2011). Furthermore, DCA has been positively associated 

with higher levels of Firmicutes (Islam et al. 2011). This is consistent with our findings as B6-CR 

founders and B6B6 had a significantly greater relative abundance of Firmicutes and fecal DCA than 

CAST-CR and B6CAST (Figure S2.3B and 2.5B). Conversely, B6CAST had a higher abundance of 

hydrophilic BA and the majority of the BA pool was comprised of the mouse primary BA, βMCA 

(Figure 2.5B-C).  

The BA receptor Fxr is expressed in pancreatic β-cells and its activation via BA enhances 

insulin secretion (Kumar et al. 2012; Renga et al. 2010). Hydrophobic BA such as CDCA, DCA, 

LCA, and their taurine conjugates are known ligands of Fxr. The hydrophobic TCDCA increases 

insulin production and secretion through an FXR-dependent regulation of KATP channels (Düfer et 

al. 2012). Moreover, β-cell FXR activation in diabetic leptin receptor deficient (db/db) mice and 

NOD mice increases insulin secretion and delays the development of diabetes (Renga et al. 2010; 

Zhang et al. 2006). We detected higher levels of LCA and DCA in the feces and plasma of B6B6 

mice relative to B6CAST mice (Figure 2.5B and S2.6C-D), along with increased expression of Fxr 

in pancreatic islets from B6B6 mice (Figure 2.6B). Altogether, this suggests that the gut microbiota 

and BA composition could modulate pancreatic function and insulin secretion.  

We have highlighted four examples of microbial-derived products, vitamin B12, SCFAs, 

LPS, and BA, as plausible mediators of the microbiome effect on insulin secretion. However, there 

are thousands of other metabolites that were not characterized in our study and could also play an 

important role in regulating host metabolism. Future experiments using gnotobiotic mice colonized 

with defined communities that have different metabolic capabilities will provide mechanistic 

insights into the communication between gut microbes and the host.  
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EXPERIMENTAL PROCEDURES 

Mouse husbandry. Animal care and study protocols were approved by the University of 

Wisconsin - Madison Animal Care and Use Committee.  

Collaborative Cross (CC) mouse husbandry. Mice were housed on a 12 h-light:dark cycle. CC 

founder strains were obtained from The Jackson Laboratory (Bar Harbor, ME, USA) and were 

bred at University of Wisconsin, Madison. Mice were group housed by strain (2 mice/cage) and 

diet under a temperature- and humidity-controlled conditions, and received ad libitum access to 

water and food. After 4 weeks of age, mice were maintained on either a control (TD.08810, Envigo 

Teklad, 16.8%-kcal fat, 60.9% carbohydrate, 22.3% protein) or a high-fat high-sucrose diet 

(TD.08811, Envigo Teklad, 44.6%-kcal fat, 40.6% carbohydrate, 14.8% protein) (Table S1). 

Strains were housed within the same vivarium throughout the duration of the study.  

Gnotobiotic mouse husbandry. C57BL/6J germ-free mice were bred and housed in the Microbial 

Sciences Building vivarium at University of Wisconsin-Madison to generate mice used in this 

study. B6-CR and B6-GF mice were housed in separate plastic flexible vinyl gnotobiotic isolators 

under temperature- and humidity-controlled conditions (12 hr light:dark). Fresh cecal contents 

were collected from 15-week old conventional B6-CR and CAST-CR mice maintained on the 

HF/HS diet (n = 2 to 3 mice per donor cecal microbiota samples). Cecal contents from B6 and 

CAST donor mice were resuspended in rich medium (1:100 w/vol) inside an anaerobic chamber. 

Suspensions were transferred into anaerobic sealed tubes and moved into gnotobiotic isolators. 9-

week-old B6-GF male mice were inoculated via a single oral gavage with ~0.2 ml of cecal incoula 

(Turnbaugh et al. 2009). Each group of mice was housed in a controlled environment in separate 

plastic flexible vinyl gnotobiotic isolators under standard conditions. Recipient mice received 

sterilized water and HF/HS diet (TD.0.8811) ad libitum beginning one week before colonization.  
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Fasting plasma measurements. Following a 4h fast, blood was collected via retro-orbital bleed 

in EDTA-coated eppendorf tubes. Blood samples were centrifuged and plasma was collected and 

stored at -80°C until further analysis.  Plasma glucose was quantified using the Thermo-Fisher 

Infinity Glucose Oxidase reagent (Pittsburgh, PA), insulin was quantified using the Millipore-

Linco Sensitive Rat Insulin RIA (Billerica, MA), and triglycerides levels were quantified Thermo-

Fisher Infinity Triglycerides reagents (Pittsburgh, PA). 

 

Oral Glucose Tolerance Test (oGTT). Mice were fasted for four hours prior to testing and were 

challenged with an oral dose of 2 g/kg body weight glucose at time 0. Blood was collected via 

retro-orbital bleed at 0, 5, 15, 30, 60 and 120 minutes post glucose challenge. Blood samples were 

centrifuged and plasma collected and stored at -80°C until further analysis.  

 

Triglyceride measurement. Liver triglycerides (TG) were quantified following the Bligh and 

Dyer extraction method (Bligh & Dyer 1959). Briefly, ~30 mg frozen liver tissue was 

homogenized using a 40X dilution with 1X PBS. Total lipids were extracted from the liver 

homogenate in methanol-chloroform (2:1). The organic extract with dried and reconstituted in 

10% Triton X-100 in isopropanol. Triglyceride content was determined by colorimetric assay from 

Wako (Richmond, VA) according to the manufacturer’s instructions and expressed in μg of 

triglycerides per milligram of protein.  

 

Microbiome Sample Processing. Genomic DNA was extracted from feces and cecum using a 

bead-beating protocol (Turnbaugh et al. 2009). Briefly, mouse fecal pellets (~50 mg) or cecal 
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contents were re-suspended in a solution containing 500 μl of extraction buffer [200 mM Tris (pH 

8.0), 200 mM NaCL, 20 mM EDTA], 210 μl of 20% SDS, 500 μl phenol:chloroform:isoamyl 

alcohol (pH 7.9, 25:24:1) and 500 μl of 0.1-mm diameter zirconia/silica beads. Samples were 

mechanically disrupted using a bead beater (BioSpec Products, Barlesville, OK; maximum setting 

for 3 min at room temperature), followed by centrifugation, recovery of the aqueous phase, and 

precipitation with isopropanol. NucleoSpin Gel and PCR Clean-up Kit (Macherey-Nagel, 

Bethlehem, PA) was used to remove contaminants. Isolated DNA was eluted in 5 mM Tris/HCl 

(pH 8.5) and was stored at -20°C until further use.   

Collaborative cross founders: Amplicons of ~330 bp, spanning variable region 2 (V2) of the 

bacterial 16S rRNA gene, were generated by using modified primers 27F and 338R that 

incorporated sample specific barcodes (Muegge et al., 2011). A final library for sequencing was 

created by combining equimolar ratios of amplicons from the individual samples. The 16S rRNA 

amplicon mixture was subjected to 454 pyrosequencing conducted on a Roche GS Junior (Roche, 

Indianapolis, IN) with the Lib-L kit and Titanium chemistry.  

Transplant: Amplification of 16S rRNA genes (V4) was done from DNA by PCR using unique 8-

bp barcodes on the forward and reverse primers and fused with Illumina sequencing adapters 

(Kozich et al. 2013). Each sample was amplified in duplicate in a reaction volume of 25µl using 

KAPA HiFi HotStart DNA polymerase (KAPA Biosystems, Wilmington, MA), 10µM of each 

primer and ~25ng of genomic DNA. PCR was carried out under the following conditions: initial 

denaturation for 3 min at 95°C, followed by 25 cycles of denaturation for 30 s at 95°C, annealing 

for 30 s at 55°C and elongation for 30 s at 72°C, and a final elongation step for 5 min at 72°C. 

PCR products were purified with the NucleoSpin Gel and PCR Clean-up kit (Macherey-Nagel, 
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Bethlehem, PA) and then quantified using Qubit dsDNA HS Assay kit (Invitrogen, Oregon, USA). 

Samples were pooled and sequenced on the Illumina MiSeq 2x250bp platform.  

 

Microbiota Analysis in QIIME. Demultiplexing of 16S rRNA gene sequences, quality control 

and operational taxonomic unit (OTU) binning were performed using Quantitative Insights Into 

Microbial Ecology (QIIME) (Caporaso, Kuczynski, et al. 2010) version 1.9.1. Quality filtered 

reads were trimmed of Illumina adaptor and barcode sequences. Sequences were then clustered in 

OTUs using an open-reference OTU picking protocol based on 97% identity using UCLUST 

(Edgar 2010) against the Greengenes reference database (McDonald et al. 2012). Representative 

sequences (most abundant sequence in OTUs) were picked, aligned to GreenGenes Core reference 

alignment (DeSantis et al. 2006) using PyNAST (Caporaso, Bittinger, et al. 2010). Taxonomic 

assignments were associated with OTUs based on the taxonomy associated with the Greengenes 

reference sequence defining each OTU. UniFrac distances between samples were calculated using 

the Greengenes reference tree (Lozupone & Knight 2005). Greengenes reference sequences, trees 

and taxonomy data used in the analysis can be found at: 

http://greengenes.secondgenome.com/downloads/database/13_5 

The resulting biom-formatted OTU table was filtered to remove singletons. CC founder cecal 

samples sequenced by 454 pyrosequencing were rarefied to an even sampling depth of 900 reads, 

and 5 samples were removed from the dataset as assigned reads fell below the rarefaction point of 

900 reads/sample. Donor and recipient samples from microbiota transplants were rarefied to an 

even sampling depth of 10,000 reads/sample. The relative abundance of each taxon was calculated 

by dividing the sequences pertaining to a specific taxon by the total number of sequences for that 

sample. OTUs representing less than 0.1% were removed for relative abundance assessments and 
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correlation analyses. Assessments of alpha-diversity and beta-diversity were also conducted on the 

rarefied OTU table in QIIME. Principal coordinate analysis (PCoA) was performed in QIIME 

using UniFrac distances calculated from the Greengenes reference tree. Permutation Multivariate 

Analysis of Variance (PERMANOVA) was used to compare strength of sample groups (diet, 

genotype) for founder PCoA using the compare_categories.py command in QIIME. Linear 

discriminant analysis (LDA) effect size (LEfSe) was used to identify taxa that discriminated 

between the fecal microbiota of transplant recipient mice using standard parameters (p < 0.05, 

LDA score 2.0)(Segata et al. 2011). For correlation analyses, only microbial families with at least 

one non-zero measurement for each strain on at least one diet were included. Correlations between 

microbiota and phenotypes and association testing were performed in R. Correlation coefficients 

and adjusted p-values are reported in Table S2.   

 

Metagenomic analysis. Raw reads were pre-processed using the fastx toolkit (version 0.0.13) 

(Hannon Lab n.d.):  raw reads were demultiplexed using fastx_barcode_splitter (specifying -bol -

partial 2 and -mismatches 2), barcodes were trimmed using fastx_trimmer, (specifying –f 9 and –

Q 33), and quality trimmed using fastq_quality_trimmer, (specifying -t 20 -l 30 and -Q 33). In 

order to filter out host contaminating reads in the metagenome samples, we identified paired and 

unpaired reads in our demultiplexed and trimmed files, and mapped them independently to the 

mouse genome assembly (Ensembl release 84, GRCm38.dna.toplevel) using Bowtie2 (v. 2.2.7) 

(Langmead & Salzberg 2012) with default settings (Table S3). From this output, we then identified 

reads that did not map to the mouse genome using samtools view (version 1.3) (Li et al. 2009), 

specifying –f 4 only for unpaired reads, or both –f4 and –f 8 for paired reads in addition to default 
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settings, and regenerated .fastq files containing only reads that did not map to the mouse genome 

(custom perl scripts). 

In order to examine gene-level abundance differences among our samples, we utilized the mouse 

gut metagenome gene sequences available from the Mouse Gut Metagenome Project (downloaded 

from gigadb.org: http://gigadb.org/dataset/100114) (Xiao et al. 2015). “Decontaminated” paired 

and unpaired reads were independently mapped against genes in the mouse gut metagenome 

assembly with Bowtie2 using default settings (v. 2.2.7) (Langmead & Salzberg 2012).  A table of 

raw read counts was generated using htseq-count command (v. 0.6.0) (Anders et al. 2014), 

specifying a ‘mock’.gff file containing “gene” entries, whose lengths were lengths of genes, for 

example: 

 

S-Fe10_GL0000040  mock  gene  1  1870  .  +  .  gene_id "S-Fe10_GL0000040"; 

 

The resulting raw read count table was filtered to exclude low abundance genes, defined here as 

genes with average raw read counts of less than 10 across all 12 samples (total number of 73,905 

genes), and then input into DESeq2 (version 1.10.1) (Love et al. 2014), for library size 

normalization (default settings).  To allow for comparison of individual gene abundances, counts 

were further normalized by gene length to give “reads per kilobase gene” (Table S4). 

In order to examine the similarity of the B6-derived microbiota DESeq2 was also used to identify 

genes differentially abundant between the B6 and CAST-derived microbiota using default settings, 

and found a very large number of genes differentially abundant (29,283 in B6 > CAST microbiota; 

10,742 in CAST > B6 microbiota, with FDR < 0.05, Table S4), indicating dramatic genic diversity 

between B6 and CAST-derived microbiota. 

http://gigadb.org/dataset/100114)
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Functional (KEGG Orthology (KO)and eggNOG annotations) and taxonomic annotations 

corresponding to the detected genes from the aforementioned mouse gut metagenome were 

downloaded (gigadb.org: http://gigadb.org/dataset/100114)(Xiao et al. 2015). This was further 

expanded to include enzyme commission numbers (ECs) and KEGG pathway information, by 

mapping these functions from KEGG to the individual genes by way of KO annotations.  

Enrichment of these functional groups in genes of increased abundance in B6 or CAST-derived 

microbiota compared to background (all genes detected) was examined using a Fisher’s exact test 

(p-value < 0.05). 

 

Bile acid analysis. ~100 mg feces were homogenized in 500 μl 50:50 water:methanol. Next 500 

μl of alkaline acetonitrile (5% ammonium hydroxide in acetonitrile) was added to the homogenate, 

which was then heated for 20 minutes at 75°C. 500 μl of the mixture was centrifuged at 11,000 

RPM for 10 minutes and 250 μl of the supernatant was collected and evaporated under N2 gas. 

Samples were reconstituted in 50 µl 50:50 water:methanol and 2H4-CDCA was added to the 

samples for a final concentration of 2 μg/ml. For serum samples, 1 ml ice-cold acetonitrile was 

added to 50 μl serum and spiked with the internal standard for a final concentration of 2 μg/ml 

2H4-CDCA. The mixture was vortexed, centrifuged at 15,000 x g for 10 minutes, and the 

supernatant was aspirated and evaporated under vacuum. The LC-MS/MS conditions used were 

as described (Youcai Zhang & Klaassen 2010). 

 

Measurement of SCFAs. Flash-frozen cecal contents (100mg) or plasma (50 l) were mixed with 

20 l internal standards (acetic-d4 acid, Sigma-Aldrich #233315; propionic-3,3,3-d3 acid, CDN 

isotopes #D-80; and butyric-d7 acid, CDN isotopes #D-171) and acidified with 20 l 33% HCl. 
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Two rounds of extraction using 1 ml diethyl ether were carried out by mixing for 10 minutes at 

room temperature following by centrifugation at 1932 x g for 10 minutes at 4C. Extracts (60 l) 

were then incubated at room temperature for 2 hours with 2 l N-tert-Butyldimethylsilyl-N-

methyltrifluoroacetamide (MTBSTFA, Sigma-Aldrich #394882). Derivatized samples (1 l) were 

injected onto an Agilent 7890B/5977A GC/MSD instrument with a DB1-ms column. A linear 

temperature gradient was used, wherein the initial temperature of 80C was held for 1 minute, then 

increased to 280C at a rate of 15C per minute prior to a final hold at 280C for 5 minutes. The 

source temperature was set to 200C and emission current to 300mA.  The injector and transfer 

line temperatures were set to 250C. Quantitation was performed using selected ion monitoring 

acquisition mode and metabolites were compared to relevant labeled internal standards using 

Agilent Mass Hunter v Acquisition B.07.02.1938. The m/z of monitored ions are as follows: 117 

(acetic acid), 120 (acetic-d4 acid), 131 (propionic acid), 134 (propionic-3,3,3-d3 acid), 145 

(butyric acid), and 152 (butyric-d7 acid). Concentrations were normalized to g of cecal contents 

or ml plasma. 

 

Islet isolation, ex vivo insulin secretion and RNA isolation. Intact pancreatic islets were isolated 

from mice using a collagenase digestion procedure (Rabaglia et al. 2005). Briefly, islets were 

carefully hand-picked under a stereo microscope to remove contaminating acinar tissue. For 

insulin secretion assays, single islets were placed in a well of a 96-well microtiter plate and used 

to determine the amount of insulin secreted in response to low (1.7 mM) or high (16.7 mM) 

glucose, KCl (40 mM, plus 1.7 mM glucose), or the incretin hormone GLP-1 (100 nM, plus either 

8.3 or 16.7 mM glucose). From each mouse, 7 islets were used per secretory condition, and 5 mice 

were surveyed per strain (B6, A/J, WSB, CAST), or transplant group (B6B6, B6CAST). Insulin 
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secretion was monitored over a 45 min period. Insulin levels in the medium as well as that 

remaining within the islets was determined by ELISA. 

Islets used for RNA isolation were washed twice with phosphate buffered saline (PBS) and 

centrifuged at 1500 rpm, 3 min RT. The PBS supernatant was removed and 350 μl RLT buffer 

(Qiagen, Hilden, Germany) was added. Islets were homogenized by hand for 1 min with a plastic 

micropestel (USA Scientific) and stored at -80oC until RNA purification. Total RNA was purified 

using the RNeasy Mini Kit (Qiagen, Hilden, Germany) following manufacturer’s directions with 

on-column TURBO DNase treatment (Invitrogen, Carlsbad, CA).   

 

Quantitative Real-Time PCR. SuperScript II Reverse Transcriptase with oligo(dT) primer (all 

from Invitrogen, Carlsbad, CA) was used to synthesize 20 μl cDNA templates from 100 ng purified 

RNA. cDNA was diluted 2X before use and qRT-PCR reactions were prepared in a 10μl volume 

using SsoAdvanced Universal SYBR Green Supermix (Bio-Rad, Hercules, CA, USA) and 400 nM 

specific primers targeting the gene of interest (FXR-F [5’-CCAACCTGGGTTTCTACCC-3’]; 

FXR-R [5’-CACACAGCTCATCCCCTTT-3’]). Reactions were run on a CFX96 Real-Time PCR 

System (Bio-Rad, Hercules, CA, USA). Relative gene expression was calculated by the ∆∆Ct 

method using β-actin as an internal control.  

 

Statistical Analysis. The data are expressed as mean ± SEM and analyzed using GraphPad Prism 

6.0 (GraphPad Software, La Jolla, CA). Multiple groups were analyzed by one-way or two-way 

ANOVA followed by Bonferroni’s multiple comparisons test. Significant differences between two 

groups were evaluated by two-tailed unpaired Student’s t-test or Mann-Whitney U test for samples 

that were not normally distributed. Pearson’s correlations between microbiota and phenotypes and 
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association testing were performed in R. The level of significance was set at p < 0.05; *p < 0.05, 

**p < 0.01, ***p < 0.001, ****p < 0.0001. 
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FIGURES 

 

 

Figure 2.1. Segregation of metabolic syndrome among CC founder mice. Male mice were 

maintained on the high-fat/high-sucrose (HF/HS) or a control diet for 22 weeks beginning at 4 

weeks of age. (A) Body weight, (B) fasting plasma glucose and (C) insulin, and (D) hepatic 

triglyceride content determined for all mice at 26 weeks of age. Areas under the curve (AUC) for 

(E) glucose and (F) insulin during oral glucose tolerance test (oGTT) conducted at 22 weeks of 

age. Insulin and glucose values were determined from plasma following a 4 hour fast. No data 

(ND) were collected for NZO mice during oGTT. In all panels, *p < 0.05, **p < 0.01, ***p < 

0.001, ****p < 0.0001 by two-way ANOVA (diet and strain) with Bonferroni’s multiple 

comparisons test to assess within-strain differences. Data are mean ± SEM, n ≥ 9 

mice/genotype/diet.  
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Figure 2.2. Gut microbial taxa correlate with metabolic phenotypes. (A) Heat map illustrates 

Pearson’s pair-wise correlation between microbial families and diabetes-related clinical traits 

measured in the 8 CC founder mice (n ≥ 9 mice/genotype/diet). Microbial families are ordered by 

their correlation to body weight. Red, positive correlation; blue, negative. Area under the curve 

(AUC) values for insulin and glucose were computed from oGTT conducted at 22 weeks; other 

metrics were collected at 26 weeks. Correlation coefficients and p-values found in Table S2. 

Contributions of strain and diet on the correlations observed between fasting insulin and (B) the 

Bacteroidaceae family, and (C) the Clostridiaceae family.  
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Figure 2.3. Divergent effects of B6 and CAST microbiomes on diet-induced metabolic 

phenotypes. (A) Transplant experimental design. (B) Total weight change, (C) epididymal fat pad 

mass and (D) quantification of hepatic triglyceride (TG) contents. (E and F) Glucose and insulin 

values during oGTT and (G) AUC insulin in B6B6 and B6CAST mice. All measurements shown 

collected 16-weeks post-colonization. *p < 0.05, **p < 0.01 by Student’s t-test. Data are mean ± 

SEM, n = 7 for B6B6 and n = 6 for B6CAST mice.  
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Figure 2.4. Gut microbiota composition and function of transplant recipients. (A) Principal 

coordinate analysis (PCoA) of unweighted UniFrac distances for the fecal microbiota of transplant 

donors and recipients at sacrifice. Each circle represents an individual mouse. Percent variation 

explained by each PC is shown in parentheses. (B) Relative abundance of major microbial phyla 

ordered by increasing mean abundance; * denotes mean phyla abundance <1%. (C) Microbial 

families differentially enriched in either B6CAST (blue) or B6B6 (orange) as determined by linear 

discriminant analysis (LDA) with effect size (LEfSe). (D) Clustering of mice based on relative 

abundance of KEGG metabolic pathways using euclidian distance measurement with complete 

linkage hierarchical clustering; B6-CR (grey), CAST-CR (green), B6B6 (orange), B6CAST (blue). 

(E) KEGG categories enriched in either CAST (blue) or B6 (orange) transplanted microbiomes. 

(F) Targeted GC-MS analysis of cecal short-chain fatty acids; *p < 0.05 by Student’s t-test. Data 

are mean ± SEM, n = 6-7 mice/recipient group and n = 2-3 mice/donor group. For metagenomics 

analysis n=5 mice/recipient group.  
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Figure 2.5. B6 and CAST microbiota produce different bile acid profiles. (A) Principal component 

analysis of the square root proportion of 14 major bile acid species (ng/mg). Each dot represents 

the bile acid profile of an individual mouse. Percent variation explained by each PC is shown in 

parentheses. (B) Abundance of fecal bile acids, and (C) relative abundance of hydrophobic and 

hydrophilic BA species determined by UPLC-MS/MS from fecal samples collected at 12-weeks 
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post-colonization. No data (ND). *p < 0.05, **p < 0.01, ***p < 0.001 by one-way ANOVA with 

Bonferroni’s multiple comparisons test. Data are mean ± SEM, n= 6-7 for transplant recipients, 

and n= 5 for CR mice.  
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Figure 2.6. CAST and B6 microbiomes differentially regulate insulin secretion and Fxr 

expression in pancreatic islets. (A) Total islet insulin content and glucose-stimulated insulin 

secretion in response to low glucose (3.3 mM), low glucose plus KCl (40 mM), high glucose 

(16.7), and high glucose plus GLP-1 (100 mM) from islets isolated from B6B6 and B6CAST mice. 

The number of islets and the insulin content per islet were not different between the groups. (B) 

Relative expression of Fxr mRNA from isolated islets. Supplememntal Figure 2.6 shows 

microbiota composition for donor and transplanted communities. *p < 0.05 by Student’s t-test. 

Data are mean ± SEM, n = 5.  
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Supplemental Figure 2.1. Segregation of metabolic syndrome among the founder strains of 

the Collaborative Cross (CC). Related to Figure 2.1. (A) Body weight, (B) fasting plasma 

insulin, (C) glucose and (D) triglycerides (TG) were determined at various ages for CC founder 

mice fed either a high-fat/high-sucrose (HF/HS) or a control diet for 22 weeks. Note differences 

in Y-axis scale for NZO mice. *p < 0.05. data are mean ± SEM, n ≥ 9 mice/genotype/diet. 
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Supplemental Figure 2.2. Diet-induced glucose tolerance and insulin sensitivity differ among 

CC founder mice. Related to Figure 2.1. Male mice were maintained on either a control or high-

fat/high-sucrose (HF/HS) diet. At 22 weeks of age, mice were given glucose bolus (2 g/kg body 

weight) via oral gavage following a 4-hour fast. Blood was collected via retro-orbital bleed at 0, 

5, 15, 30, 60, and 120 minutes following the glucose bolus, and used to determine plasma (A) 

glucose and (B) insulin levels. NZO mice did not survive 22 weeks of age on HF/HS diet. *p < 

0.05. Data are mean ± SEM, n ≥ 9 mice/genotype/diet. 
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Supplemental Figure 2.3. Host genotype and diet affect microbial composition. Related to 

Figure 3.2. (A) Principal Coordinate Analysis (PCoA) of unweighted UniFrac distances for the 

cecal microbiota of the founder mice. Open symbols, control diet; filled symbols HF/HS diet. (B) 

Relative abundance of 8 major microbiota phyla identified in cecal contents from CC founder mice 

maintained on control (abv. C) or HF/HS (abv. HF) diet for 22 weeks. Phyla ordered by mean 

abundance; * denotes mean phyla abundance < 1%. (C) Relative abundance of Bacteroidaceae and 

Clostridicaceae in CC founder strains. Family not detected marked as ND. Data are mean ± SEM, 

n ≥ 9 mice/genotype/diet.  
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Supplemental Figure 2.4. Microbial pathways enriched in CAST-derived microbiota. 

Related to Figure 2.4. (A) Vitamin B12 biosynthesis is functionally enriched in CAST-derived 
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microbiota. KEGG pathway for “Porphyrin and Chlorophyll Metabolism” (map00860). Fifty-six 

genes within the pathway were more abundant in B6CAST than B6B6 microbiota. ECs higher in the 

B6CAST microbiota compared to B6B6 microbiota colored in red. The KO annotations for the 56 

genes in the Porphyrin and Chlorophyll Metabolism pathway were input to the Reconstruct 

Module of KEGG Mapper. Red triangles indicate members of the module for vitamin B12 

(cobalamin) biosynthesis, which is nearly complete; the missing block in this module corresponds 

to EC number 3.1.3.73, which is not boxed in red. (B) Lipopolysaccharide biosynthesis is 

functionally enriched in CAST-derived microbiota. KEGG pathway for “Lipopolysaccharide 

Biosynthesis” (map00540). Forty-six genes within the pathway were more abundant in B6CAST 

than B6B6 microbiota. ECs higher in the B6CAST microbiota compared to B6B6 microbiota colored 

in red. 

  



 

 85 

 

 

Supplemental Figure 2.5. Microbiota composition of B6-CR, CAST-CR, B6B6 and B6CAST 

mice used for insulin secretion studies. Related to Figure 2.6. (A) Principal Coordinate Analysis 

(PCoA) of unweighted Unifrac distances, and (B) relative abundance of microbial phyla. Data are 

mean ± SEM, n = 5 for B6B6 and B6CAST mice and n = 1 for CR mice 
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Supplemental Figure 2.6. SCFA and BA measurements in B6B6 and B6CAST mice. Related to 

Figure 2.6. (A) Cecal and (B) plasma SCFA concentrations from B6B6 and B6CAST animals used 

for insulin secretion studies as determined by GC-MS. (C) Relative abundance of hydrophobic and 

hydrophilic bile acid (BA) species, and (D) abundance of major plasma BA species determined by 

UPLC-MS/MS. *p < 0.05, **p < 0.01. Data are mean ± SEM, n = 5 
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ABSTRACT 

The microbial communities that inhabit the distal gut vary widely among individuals. 

While host genetic variation is a known factor that influences gut microbiota composition, the 

mechanisms underlying this variation have not been fully elucidated. Bile acids (BAs) are 

hormones that are produced by the host and modified by gut bacteria. BAs can serve as 

environmental cues and nutrients for bacteria, but they can also have antibacterial effects. We 

hypothesized that host genetic variation in BA metabolism impact gut microbiota composition. To 

address this, we used the Diversity Outbred (DO) stock, a population of genetically distinct mice 

derived from eight founder strains. We characterized the fecal microbiota composition and plasma 

and cecal BA profiles of 400 DO mice fed a high-fat high-sucrose diet for ~22 weeks. Using 

quantitative trait loci (QTL) analysis, we identified several genomic regions associated with both 

microbial abundance and BA levels. These overlapping QTL included taxa previously associated 

with BAs, including Akkermansia muciniphila and the Peptostreptococcaeae family. Notably, we 

found overlapping QTL for Turicibacter sp. and plasma cholic acid that mapped to a locus 

containing the gene for the ileal bile acid transporter, Slc10a2. Mediation analysis and follow-up 

validation experiments suggest that differences in Slc10a2 gene expression associated with the 

different strains influences levels of both traits and revealed novel interactions between 

Turicibacter sp. and BAs. Together, our work provides insights into the mechanisms underlying 

host-gut microbe interactions and illustrates how systems genetics can be used to generate 

hypotheses elucidating these interactions.  
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INTRODUCTION 

The intestinal microbiota has profound effects on host physiology and health (Le Chatelier 

et al., 2013; Clemente et al., 2012; Sommer and Bäckhed, 2013). The composition of the gut 

microbiota is governed by a combination of environmental factors including diet, drugs, maternal 

seeding, cohabitation, and host genetics (Lozupone et al., 2012; Rothschild et al., 2018; 

Zhernakova et al., 2016). Together, these environmental and genetic factors cause substantial inter-

individual variation in microbiota composition and modulate disease risk (Hall et al., 2017; Ussar 

et al., 2016). Alterations in the composition of the microbiota are associated with a spectrum of 

pathologies including obesity, diabetes, metabolic syndrome, and inflammatory diseases 

(Clemente et al., 2018; Khan et al., 2014; Qin et al., 2012; Turnbaugh et al., 2006). A major 

challenge in the field is deciphering how host genetics and environmental factors interact to shape 

the composition of the gut microbiota and the mechanisms by which these interactions can be 

manipulated to improve health outcomes.  

Several mouse and human studies have examined the role of host genetics in shaping the 

composition of the gut microbiota. The effects of genetics on the microbiome have been 

highlighted by composition differences among inbred mouse strains (Kreznar et al., 2017; Parks 

et al., 2013) and through the loss of metabolism and immune-related genes (Kurilshikov et al., 

2017). Additionally, quantitative trait loci (QTL) analysis in mice have identified genetic loci that 

control for the abundance of different taxa (Belheouane et al., 2017; Benson et al., 2010; Leamy 

et al., 2014; McKnite et al., 2012). Twin studies and genome wide association studies (GWAS) 

have identified heritable taxa and SNPs associated with specific gut microbes. However, 

comparing these studies is often difficult because of differences in environmental variables among 

populations. Despite these confounding effects, some associations are consistently found among 



 

 91 

geographically discrete populations, such as the association between Bifidobacterium and the 

lactase (LCT) gene locus (Blekhman et al., 2015; Bonder et al., 2016; Goodrich et al., 2016), 

indicating specific taxa are regulated by host genetics.  

The host and gut microbiome interact through the production and modification of 

metabolites, many of which impact host physiology (Herrema et al., 2017; Krautkramer et al., 

2016; Ridlon et al., 2016; Romano et al., 2017; Wang et al., 2011). Among these, bile acids (BAs) 

are particularly relevant for understanding the relationship between host genetic variation and gut 

microbiota composition. BAs are host-derived and microbial-modified metabolites that regulate 

both the gut microbiome and host metabolism (Kuipers et al., 2014; Ridlon et al., 2006; Wahlström 

et al., 2016). BAs are synthesized in the liver from cholesterol, stored in the gallbladder and are 

secreted in the proximal small intestine where they facilitate absorption of fat-soluble vitamins and 

lipids. Once in the intestine, BAs can be metabolized by gut bacteria through different reactions 

including deconjugation, dehyrdoxylation, epimerization, and dehydrogenation, to produce 

secondary BAs with differential effects on the host (Ridlon et al., 2006, 2016). In addition to their 

direct effects on the host, BAs shape the gut microbiota composition through antimicrobial 

activities (Islam et al., 2011; Zheng et al., 2017). The detergent properties of BAs cause plasma 

membrane damage and the bactericidal activity of a BA molecule corresponds to its 

hydrophobicity (Begley et al., 2005). Additionally, the microbiota regulates primary BA synthesis 

through regulation of the nuclear factor FXR(Sayin et al., 2013). 

To investigate how genetic variation affects gut microbiota and BA profiles, we used the 

Diversity Outbred (DO) mouse population, which is a heterogenous population derived from eight 

founder strains: C57BL6/J, A/J, 1291/SvImJ, NOD/ShiLtJ, NZO/HiLtJ, CAST/EiJ, PWK/PhJ, and 

WSB/EiJ (Churchill et al., 2012; Svenson et al., 2012). These eight strains capture a large breadth 
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of genetic diversity found in laboratory and wild mouse populations. Additionally, the founder 

strains harbor distinct gut microbial communities and exhibit disparate metabolic responses to diet-

induced metabolic disease (Kovacs et al., 2011; Kreznar et al., 2017; O’Connor et al., 2014). The 

DO population is maintained by a randomized outbreeding strategy so that the genome of each DO 

mouse is a mosaic of the eight founder strains, making it an ideal resource for high-resolution 

genetic mapping of microbial and metabolic traits. Since each position of a DO mouse genome 

can be attributed to a founder strain, this resource also allows for subsequent validation studies in 

the founder strains.   

We characterized the intestinal microbiota composition and plasma and cecal BA profiles 

in ~400 genetically district DO mice fed a high-fat/high-sucrose diet for ~22 weeks and performed 

quantitative trait loci (QTL) analysis to identify host genetic loci associated with these traits. 

Specifically, we focused our analysis on potentially pleiotropic loci, which we defined as a single 

genetic locus that associates with both microbial and BA traits. Our analysis revealed several 

instances of microbial and metabolite traits attributed to the same DO founder haplotypes mapping 

to the same position of the mouse genome, including a locus associated with plasma BA levels and 

the disease-modulating organism Akkermansia muciniphila. Additionally, we identified the ileal 

BA transporter Slc10a2 as a candidate gene that regulates the abundance of Turicibacter sp. 

abundance and plasma cholic acid levels.  
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RESULTS AND DISCUSSION  

We investigated the effects of genetic variation on gut microbiota composition and host 

BA profiles using a cohort of ~400 DO mice fed a high-fat high-sucrose diet (45% kcal fat and 

34% sucrose) for 22 weeks, starting at weaning. Additionally, we incorporated in our analyses 

clinical weight traits collected from the same mice that were previously published (Keller et al., 

2018) (Figure 3.1A). All mice were individually housed throughout the duration of the study to 

minimize microbial exchange by coprophagy and to monitor food intake.  

 

Variability and associations among microbial, bile acid, and clinical traits 

We found substantial variation in plasma and cecal BA profiles across the 400 mice (Table 

3.1) as demonstrated by the variability seen in the levels of primary BAs in plasma and cecal 

contents (Figure 3.1C-D). Gut microbiota composition was profiled by 16S rRNA gene amplicon 

sequencing of DNA extracted from fecal samples collected the day of sacrifice (21-25 weeks-old). 

Within the cohort there were 907 unique Exact Sequence Variants (ESVs), (100% operational 

taxonomic units defined with dada2 (Callahan et al., 2016)), which were agglomerated into 151 

lower taxonomic rankings (genus, family, order, class, phyla). The microbial traits represented 

each of the major phyla found in the intestine and the relative abundance of these phyla was highly 

variable among the DO mice (Figure 3.1B). For instance, the abundance of taxa classified to the 

Bacteroidetes phylum ranged from 1.17 – 89.28%.  

For subsequent analysis, we identified a core measurable microbiota (CMM), which we 

defined as taxon found in at least 20% of the mice (Benson et al., 2010). This was done to remove 

the effects of excessive variation in the data due to bacterial taxa that were low abundance and/or 

sparsely distributed. In total, the CMM was comprised of 86 ESVs and 42 agglomerated taxa 

(Table 3.2)(ESV key Supplemental Table 3.1). The CMM traits represent a small fraction of the 
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total microbes detected, but account for 94.5% of the rarefied sequence reads, and therefore 

constitute a significant portion of the identifiable microbiota. 

Since mice were received in waves of 100, we examined whether animals in each wave 

were more similar to each other than mice in other waves. The fecal microbiota composition 

significantly clustered by wave (p < 0.001, PERMANOVA) and sex (p < 0.001, PERMANOVA) 

(Supplemental Figure 3.1). PCA analysis of plasma and cecal bile acids showed a significant effect 

of sex, but not wave, on both plasma (p < 0.01, Kruskal Wallis) and cecal BA profiles (p < 0.0001, 

Kruskal Wallis) (Supplemental Figure 3.2) 

There is substantial evidence implicating gut microbiota and BAs in metabolic disease 

development (Kuipers et al., 2014; Wahlström et al., 2016). To identify potential relationships 

among these traits, we performed correlation analysis which yielded many significant associations 

after FDR correction (FDR < 0.05) (Table 3.3). We found significant positive and negative 

associations between body weight and different Lachnospiraceae ESVs. This dual correlation is 

consistent with previous studies that have found this bacterial family to be positively (Org et al., 

2015) and negatively (Kreznar et al., 2017; O’Connor et al., 2014) correlated with obesity and 

other metabolic traits. Additionally, we identified significant associations between BAs and body 

weight. Body weight over time was inversely correlated with plasma levels of deoxycholic acid 

(DCA), taurochenodeoxycholic acid (TCDCA) and taurocholic acid (TCA). Conversely, cecal 

levels of muricholic acid (MCA) and ursodeoxycholic acid (UDCA) were positively correlated 

with body weight. The unconjugated plasma BAs allo-cholic acid (ACA), UDCA, 7-dehydrocholic 

acid (7-dHCA), hyodeoxycholic acid (HDCA), DCA, MCA and cholic acid (CA) were all 

positively associated with Turicibacter abundance. Interestingly, the only cecal bile acid to 

negatively correlate with Turicibacter was TCA (r = -0.2619, p = 0.0035). We also found several 
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taxa among the Lachnospiraceae family were positively associated with conjugated secondary 

cecal bile acids including tauroursodeoxycholic acid (TUDCA), TCA, taurodeoxycholate 

(TDCA), glycodeoxycholic acid (GDCA), taurolithocholic acid (TLCA) and TCDCA. This is 

consistent with a previous study that found members of the Lachnospiraceae family were 

positively correlated with all secondary bile acids (Theriot et al., 2016).  

 

Bacterial taxa and bile acids associate to host genome 

To identify associations between regions of the mouse genome and the clinical and 

molecular traits discussed above, we performed QTL analysis using the r/qtl2 package (Broman, 

2018). We used sex, days on the diet, and experimental cohort (wave) as covariates. We identified 

459 QTL for bacterial (306), bile acid (131), and body weight (22) traits (Figure 3.2, Table 3.4). 

Of the microbial QTL, we found 190 QTL for 76 distinct bacterial ESVs from four phyla 

that met a LOD cut-off of > 5.5. ESVs with the strongest QTL (LOD ~ 8) are classified to the 

Clostridiales order and map on chr 12 at ~33 Mbp, the Lachnospiraceae family on chr 2 at 164 

Mbp, and the S24-7 family on chr 2 at ~115 Mbp. We also identified 116 QTL for microbial taxa 

collapsed by taxonomic assignment (i.e., genus to phylum). The genera Lactococcus and 

Akkermansia were also associated with host genetic variation, which is consistent with previous 

studies (Benson et al., 2010; Davenport et al., 2015; Leamy et al., 2014; Org et al., 2015).  

Similarly, BA QTL mapped to multiple loci spanning the mouse genome and most BA 

traits mapped to multiple positions. BA synthesis and metabolism are regulated by multiple host 

signaling pathways: there are > 17 known host enzymes involved in the production of BAs 

(Wahlström et al., 2016), transporters, which are critical role for maintaining the enterohepatic 

circulation and BA homeostasis, and receptors that respond to BA in a variety of host tissues (de 

Aguiar Vallim et al., 2013; Martinot et al., 2017; Russell, 2003). Therefore, it is not surprising that 
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our results indicate BA levels are polygenic and shaped by multiple host factors. We observed 

multiple instances of related BA species associating to the same genetic locus. These overlapping 

QTL may indicate the presence of a pleiotropic locus. Interestingly, several of these loci associate 

with levels of related BA species in different stages of microbial modification. For example, cecal 

TCA and plasma CA QTL overlap on chr 7 at 122 Mbp. Likewise, four BA QTL that are all 

derivatives of the secondary BA DCA, including plasma TDCA and cecal DCA, isodeoxycholic 

acid (IDCA), and HDCA overlap on chr 12 at ~99 – 104 Mbp. For the cecal BA, the WSB founder 

haplotype was associated with higher levels of these three BA, while the NOD founder haplotype 

was associated with lower levels. The opposite pattern was observed for plasma TDCA, where the 

NOD and WSB haplotype was associated with higher and lower levels, respectively (Supplemental 

Figure 3.3E-H). 

We also identified overlapping QTLs on chr 11 at ~71 Mbp for cecal levels of the 

secondary BAs lithocholic acid (LCA) and isolithocholic acid (ILCA), the isomer of LCA 

produced by bacterial 3-hydroxylation (Supplemental Figure 3.3A). Higher levels of these cecal 

BAs are associated with the 129 founder haplotype and lower levels are associated with the A/J 

founder haplotype (Supplemental Figure 3.3B-C). We identified the positional candidate gene 

Slc13a5, which is a sodium-dependent transporter that mediates cellular uptake of citrate, an 

important precursor in the biosynthesis of fatty acids and cholesterol (Inoue et al., 2002). Recent 

evidence indicates Slc13a5 influences host metabolism and energy homeostasis (Birkenfeld et al., 

2011; von Loeffelholz et al., 2017; Pesta et al., 2015). Slc13a5 is a transcriptional target of 

pregnane X receptor (PXR) (Li et al., 2015), which also regulates the expression of genes involved 

in the biosynthesis, transport, and metabolism of BAs (Staudinger et al., 2001).  
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Overlapping bacterial and bile acid QTL  

Given the known interplay among gut microbes, BAs, and host genetics, it is reasonable to 

expect that some of the microbial and BAs QTLs might exhibit pleiotropic effects. To examine 

this possibility, we identified instances of microbial and BA QTL mapping to the same position. 

In total, 17 instances of overlapping microbial and BA QTL were identified on 12 chromosomes. 

This co-mapping indicates there are some QTLs with pleiotropic effects on BAs and the 

microbiota, suggesting that genetic variation influencing host BA profiles has an effect on 

compositional features of the gut microbiota, or genetic-driven variation in microbiota 

composition alters BAs. Additionally, these co-mapping traits may be evidence of interactions 

between the traits (Civelek and Lusis, 2014).  

We found QTL for an unknown genus in the Peptostreptococcaceae family overlapping 

with the hotspot containing QTL for plasma levels of CA, CDCA, UDCA, MCA, 7-dHCA and 

glycodehydrocholic acid (G-dHCA) on chr 3 between ~40-50 Mbp. These QTL all show the same 

founder strain haplotype effects, where the NOD haplotype is associated with higher levels of these 

traits (Supplemental Figure 3.5A-F). Peptostreptococcus productus, a member of the 

Peptostreptococcaceae family, has 3-, 3-, and 7-hydroxysteroid dehydrogenases and is capable 

of oxidation and epimerization of BAs (Edenharder et al., 1989). Several of these secondary bile 

acids require 7-epimerization, including hyocholic acid (HCA) and UDCA which is produced 

from 7-epimerization of CDCA (Wahlström et al., 2016), which may help explain why these BAs 

co-map with Peptostreptococcaceae abundance. An interesting candidate within the QTL peak 

region is progesterone receptor membrane component 2 (Pgrmc2), which is expressed in bile 

sensitive tissues such as intestine, liver and brown adipose (Chen et al., 2010). PGRMC2 is 

predicted to be a membrane receptor (Gerdes et al., 1998), which binds to P450 cytochrome 

proteins and has similar characteristics to PGRMC1 (Wendler and Wehling, 2013). The shared 
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sequence between Pgrmc2 and Pgrmc1 is especially interesting in the context of BAs because 

Pgrmc1 directly binds to Cyp7a1 (Hughes et al., 2007), a P450 cytochrome protein responsible for 

the regulation of BA synthesis. These data suggest that Pgrmc2 may be a novel gene involved in 

BA signaling and/or homeostasis.  

On chr 1 at ~90 – 100 Mbp, we identified overlapping QTL for Akkermansia muciniphila 

and plasma levels of CA, MCA and 7-dHCA, where the NZO haplotype is positively associated, 

and the 129 haplotype is negatively associated with each of these traits (Supplemental Figure 3.4A-

D). Significant positive correlations were also found between the abundance of A. muciniphila and 

plasma levels of CA (r = 0.19, p < 0.0045) and MCA (r = 0.17, p < 0.0149) (Supplemental Figure 

3.4F-H). These observations are particularly striking given the recent studies associating the 

abundance of A. muciniphila and BAs. For example, Pierre et al. found the abundance of A. 

muciniphila was positively correlated with higher levels of circulating primary bile acids (Pierre 

et al., 2016) and administration of the secondary bile acid UDCA was found to increase its 

abundance (Van den Bossche et al., 2017). Furthermore, supplementation with up to 1% porcine 

bile extract increased A. muciniphila growth in vivo (van der Ark et al., 2017). In the intestine, A. 

muciniphila degrades host mucins (Derrien et al., 2004), which provide growth substrates for other 

intestinal commensals (Belzer and de Vos, 2012). Notably, BAs have a stimulatory effect on mucin 

secretion as a defense mechanism to protect the gastrointestinal epithelium against potential BA 

toxicity (Klinkspoor et al., 1999; Shekels et al., 1996). Therefore, the positive correlation between 

bile acid levels and A. muciniphila may be the result of this stimulatory effect where greater mucin 

secretion from BA stimulation can support a larger intestinal A. muciniphila population.  

There is growing interest in the potential therapeutic role of A. muciniphila since it has 

been associated with improvements in host metabolic syndrome (Cani and de Vos, 2017; Everard 
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et al., 2013; Org et al., 2015; Plovier et al., 2017) and plays a key role in regulating intestinal 

barrier function and mucosal immunity (Derrien et al., 2011; Everard et al., 2013). Strikingly, we 

found several candidate genes under the QTL region on chr 1 related to host lipid metabolism and 

immunity (Supplemental Figure 3.4E). Top immune-related genes include Lrrfip1, a transcription 

regulator of TLR pathway signaling (Arakawa et al., 2010) and TNF expression (Shi et al., 2014), 

and Gpr35, a G protein-coupled receptor for the mucosal chemokine CXCL17 (Maravillas-

Montero et al., 2015). Candidate lipid metabolism genes include Farp2 and Stk25, which were 

previously identified as candidate genes for plasma HDL levels (Su et al., 2009a). In fact, several 

mouse studies using F2 crosses have identified QTL for plasma cholesterol and HDL levels at this 

position on chr 1 (Ishimori et al., 2004; Purcell-Huynh et al., 1995; Su et al., 2009a, 2009b) 

including one where the association was driven by the 129 haplotype (Ishimori et al., 2004). The 

plasma HDL QTL found at the position as the microbial and metabolite QTL on chr 1 is 

particularly interestingly because A. muciniphila abundance has been associated with elevated 

HDL levels (Fu et al., 2015) and administration of a purified protein from this microbe decreased 

HDL and LDL cholesterol levels, indicating it may have a regulatory impact on cholesterol 

metabolism (Plovier et al., 2017). Therefore, the co-mapping A. muciniphila and plasma bile acid 

traits seen in our study may be driven by another unmeasured factor or plasma lipid, which explains 

why they map to the same position. Future integration of additional lipid profiling may identify a 

causal factor that explains the relationship between these microbial and bile acid traits. 

 

Slc10a2 is a candidate gene for Turicibacter sp. and plasma cholic acid  

We focused our co-mapping analysis on chr 8 at ~ 5.5 Mbp, where Turicibacter sp. QTL 

and plasma cholic acid (CA) QTL overlap (Figure 3.3A-B). These traits were particularly 

interesting because both have been shown to be influenced by host genetics by previous studies. 
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For example, Turicibacter was identified as highly heritable in both mouse and human genetic 

studies (Benson et al., 2010; Goodrich et al., 2016; O’Connor et al., 2014; Org et al., 2015), 

whereas multiple studies have found differences in CA levels as a function of host genotype 

(Kreznar et al., 2017; Sehayek et al., 2006).  Furthermore, CA levels are influenced by both host 

genetics and microbial metabolism since it is synthesized by host liver enzymes from cholesterol 

and subsequently modified by gut microbes in the intestine. Notably, these co-mapping traits also 

share the same allele effects pattern, where the A/J and WSB haplotypes have strong positive and 

negative associations, respectively (Figure 3.3C-D). 

To assess whether trait patterns in the DO founder strains correspond to the observed allelic 

effects in the QTL mapping, we performed a separate characterization of the fecal microbiota 

composition and plasma bile acids in age-matched A/J and WSB animals fed the HF/HS diet. The 

founder strain allele patterns inferred from the QTL mapping closely resembled the observed levels 

of Turicibacter sp. (Figure 3.3E) and plasma CA in the founder strains (Figure 3.3F), where A/J 

animals had significantly higher levels of Turicibacter sp. and CA than WSB animals. However, 

Turicibacter levels in the founder strains do not completely mirror the estimated allele effects. 

This may be due to other genetic factors that also influence Turicibacter levels, as this taxa may 

be influenced by multiple host genes and levels of Turicibacter have previously been associated 

on chr 7 (Benson et al., 2010), 9 and 11 (Org et al., 2015). Furthermore, Turicibacter and plasma 

CA were positively correlated in the DO mice (r = 0.43, p = 3.53e-10). This finding is consistent 

with a previous study that found positive correlations between Turicibacter and unconjugated 

cecal BAs (Theriot et al., 2016). Taken together, the overlap between the Turicibacter sp. QTL 

and plasma CA QTL, along with the similar allele effects pattern, which reflect the values observed 
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in the founder strains, provide strong evidence suggesting that these traits are related and they are 

responding to the common genetic driver. 

We searched under the QTL for candidate genes via high-resolution association mapping 

on chr 8 and identified SNPs associated with both traits.  Among these we identified SNPs 

upstream the candidate gene Slc10a2, which encodes for the apical sodium-bile transporter (Figure 

3.3G). Slc10a2 is responsible for ~95% of BA reabsorption in the distal ileum and plays a key role 

in BA homeostasis (Dawson et al., 2003). In humans, mutations in this gene are responsible for 

primary BA malabsorption, resulting in interruption of enterohepatic circulation of BAs and 

decreased plasma cholesterol levels (Oelkers et al., 1997). Likewise, Slc10a2-/- mice have reduced 

total BA pool size, increased fecal BA concentrations and reduced total plasma cholesterol in 

comparison to wild-type mice (Dawson et al., 2003). Additionally, a comparison between germ-

free and conventionally-raised mice found that expression of Slc10a2 is downregulated in presence 

of the gut microbiota, suggesting microbes may have influence the expression of the transporter 

(Sayin et al., 2013).  

Genome analysis identified SNPs associated with levels of Turicibacter sp. and plasma CA 

at the QTL peak (Figure 3.3G). The SNPs with the strongest associations were attributed to the 

WSB and PWK haplotypes and fell on intergenic regions near Slc10a2. There is growing evidence 

that non-coding intergenic SNPs are often located in or closely linked to regulatory regions, 

suggesting they may influence host regulatory elements and alter gene expression (Chen and Tian, 

2016; Maurano et al., 2012). To assess if candidate gene expression patterns in the DO founders 

corresponded to the estimated allelic effects in the QTL mapping, we quantified Slc10a2 

expression in distal ileum samples from AJ and WSB mice by quantitative reverse transcriptase 

PCR (qRT-PCR). AJ mice exhibited significantly higher expression of Slc10a2 compared to WSB 
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mice (Figure 3.3H), which is consistent with estimated allele patterns for the overlapping 

Turicibacter and plasma CA QTLs on chr 8 (Figure 3.3A-B).  

 

Mediation and causal inference testing identify a correlative relationship between Turicibacter 

and plasma cholic acid QTLs 

The strong association between Turicibacter sp. and plasma CA levels may be due to a 

single shared locus (pleiotropy) or multiple closely linked loci (linkage disequilibrium). We 

examined whether these two traits were affected by a single locus of a pair of loci by likelihood 

ratio testing with a null hypothesis of pleiotropy (Boehm, 2018). Analysis of 1000 bootstrap 

samples resulted in a p-value of 0.531, which is consistent with the presence of a single pleiotropic 

locus that affects both traits (Supplemental Figure 3.6A).  

We next sought to understand the causal relationships between the microbe and the BA. 

We asked whether the relationship between the microbe and BA was causal, reactive or 

independent. To establish the directionality of the relationship, we applied mediation analysis 

where we conditioned one trait on the other (MacKinnon et al., 2007). When we conditioned 

Turicibacter sp. on plasma CA (QTL → Bile Acid → Microbe), we observed a LOD drop of 3.2 

(Figure 3.4A-B). Likewise, when we conditioned the plasma cholic acid on the microbe (QTL → 

Microbe → Bile Acid) there was a LOD drop of 3.32 (Figure 3.4C-D). The partial mediation seen 

in both models suggests a correlative relationship between the microbe and BA, where they exert 

an effect on one another and the directionality of the relationship is unclear.  

Further causal model selection testing (Neto et al., 2013) found evidence that Turicibacter 

sp. is significantly correlated with plasma CA levels (p < 0.05), where the reactive SNPs occurred 

between ~5.39 – 7 Mbp. These reactive SNPs could be partially attributed to the WSB and PWK 

haplotypes (Supplemental Figure 3.6B). This reactive mediation model is consistent with the 
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pleiotropy analysis where the driver variant occurs between ~5.5 – 7 Mbp. There is also evidence 

of a causal relationship (p < 0.005) near ~9 Mbp where the microbe influences the abundance of 

the BA, which can also be attributed to the WSB and PWK alleles (Supplemental Figure 3.6C). 

However, this locus is in a gene desert, offering no immediate biological interpretation.  

From this analysis, we can hypothesize this relationship can be explained by a pleiotropic 

model, where a single locus influences a microbial and BA trait, and the microbial trait is also 

reactive to changes in the BA trait (Figure 3.4H), with a second locus affecting the microbe, which 

in turn affects the BA. It is important to note that statistical inference only partially explains the 

relationship between the traits and there may be other hidden variables that may further explain 

the relationship. The complex relationship depicted by the causal inference testing is consistent 

with the complicated interplay between gut microbes and BAs in the intestine and their known 

ability to influence their other.   

 

Bile acids inhibit Turicibacter sanguinis growth at physiologically relevant concentrations  

Due to the strong correlative relationship between the QTL, we tested whether there was a 

direct interaction between bile acids and Turicibacter. Turicibacter inhabits the small intestine 

where concentrations of BAs are greater than in the cecum or colon (Li et al., 2017; Onishi et al., 

2017). We screened the human isolate Turicibacter sanguinis for deconjugation and 

transformation activity in vitro by HPLC/MS-MS. We found that T. sanguinis deconjugated ~96-

100% of taurocholic acid and glycochenodeoxycholic acid (Figure 3.5A) within 24 hours. It also 

transformed ~6 and 8 % of CA and CDCA to 7-dHCA and 7-ketolithocholic acid (7-KLCA), 

respectively (Figure 3.5B-C). The percent transformed did not increase after 24 hours (data not 

shown). Both of these transformations occur by action of the bacterial 7-hydroxysteroid 

dehydrogenase.  
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Based on these results, we asked if conjugated and unconjugated bile acids differentially 

effect T. sanguinis growth. BA concentrations range from ~1-10 mM along the small intestine 

(Northfield and McColl, 1973) to ~0.2-1 mM in the cecum (Hamilton et al., 2007). Therefore, we 

grew T. sanguinis in the presence of either conjugated or unconjugated bile acids at physiologically 

relevant concentrations ranging from 0.1 – 1 mM. T. sanguinis growth decreased with increasing 

concentrations of conjugated bile acids and growth was completely inhibited at 1 mM (Figure 

3.5D).  Unconjugated bile acids affected growth rate at 1 mM (Figure 3.5E), Growth rate was 

significantly slower in the presence of 1 mM conjugated and unconjugated bile acids (Figure 

3.5G). The slower growth rate at higher concentrations of BAs may affect intestinal abundance of 

T. sanguinis.  

To compare T. sanguinis sensitivity to conjugated bile acids relative to other small intestine 

colonizers, we grew four taxa (Bacteroides thetaiotamicron, Clostridium asparagaiforme, 

Lactobacillus reuteri and Escherichia coli MS200-1) known to colonize this region of the intestine 

with or without 1 mM conjugated bile acids. Members of these genera are known to have bile salt 

hydrolase (BSH) activity to deconjugate bile acids (Ridlon et al., 2006). Unlike T. sanguinis, the 

addition of conjugated bile acids had little to no effect on the growth of these four gut microbes 

(Supplemental Figure 3.6). Based on the specific sensitivity of T. sanguinis to moderate-high 

concentrations of conjugated bile acids, T. sanguinis may use deconjugation as a survival 

mechanism to allow it to compete with other ileum colonizing organisms that can tolerate higher 

concentrations of conjugated bile acids. Consistent with these findings, Turicibacter abundance 

was negatively correlated with cecal TCA levels in the DO mice (r = -0.262, p = 0.0035), 

supporting the notion this it is sensitive to elevated conjugated bile acid levels.   
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Taken together, these data indicate that T. sanguinis is sensitive to higher concentrations 

of conjugated and to a lesser extent unconjugated BA compared to other small intestine colonizers 

and that it may use deconjugation to decrease BA toxicity. These reciprocal effects between the 

BA and the bacterium provide biological evidence for the correlative relationship shown by the 

causal model testing (Figure 3.4H). In summary, using a genetic approach, we identified and 

provide validation of a relationship between a genetic locus containing the BA transporter Slc10a2, 

and levels of Turicibacter and plasma cholic acid. Based on our findings, we hypothesize that the 

identified locus regulates expression of Slc10a2, altering active BA reabsorption in the ileum, 

leading to increased intestinal BA concentrations and alterations in the intestinal BA environment. 

Consequently, the resulting change in environmental BA concentration and/or composition 

provides an unfavorable habitat for Turicibacter. The loss of Turicibacter’s deconjugation activity 

leads to a decrease in circulating free plasma cholic acid levels.  
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CONCLUSIONS 

In this study, we performed the first known genetic mapping integration of gut microbiome 

and BA. We used genetics as an anchor to identify microbe-metabolite interactions and 

hypothesize novel host genes involved in shaping gut microbiota and bile acid profiles. Using DO 

mice, we identified multiple QTL for gut microbes and bile acids spanning the host genome. These 

included loci that associated with individual microbial and BA traits, as well as loci with potential 

pleiotropic effects, where a single genetic region influenced both the abundance of a gut microbe 

and levels of a BA.  

While several studies suggest that host genetic variation has a minor impact on microbiota 

composition, there are overlapping findings among different studies in both human and mouse 

populations that indicate that specific bacterial taxa are influenced by host genetics. Our results in 

the DO population corroborate several of these key findings.  For example,  we observed the 

strongest associations to the host genome with members of the Firmicutes phylum, including 

unknown members of the Clostridiales order, the Lachnospiraceae, Christensenellacae and S24-7 

families, the Turicibacter and Coprococcus genera, as well as the species Akkermansia 

muciniphila and Ruminococcus gnavus (Table 4), all of which have consistently been identified in 

multiple studies as either highly heritable or associating to positions on the host genome (Benson 

et al., 2010; Davenport et al., 2015; Leamy et al., 2014; McKnite et al., 2012; Org et al., 2015; 

Wang et al., 2016). Furthermore, our study replicated correlations between taxa including the 

Peptostreptococcaeae and Turicibacteriaceae families (Goodrich et al., 2016). Previous studies in 

humans and rats also identified a significant correlation between these taxa (Goodrich et al., 2016; 

Li et al., 2017), and both taxa are consistently identified as heritable in humans and mice (Benson 

et al., 2010; Goodrich et al., 2016; O’Connor et al., 2014). This correlation is particularly notable 
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since we found that these two organisms have complementary BA metabolism capabilities, where 

the Turicibacteriaceae family performs the deconjugation necessary for members of 

Peptostreptococcaceae to transformations bile acids. BAs must be deconjugated prior to 

epimerization, so Peptostreptococcaeae may associate with Turicibacteriaceae in order to utilize 

this metabolic capability. Thus, their co-occurrence may provide a fitness advantage for small 

intestine colonization. These findings may give insight into microbial dynamics that govern BA 

profiles and warrant further investigation. Given the high degree of variability in the gut 

microbiome across subjects and host organisms, these instances of congruence between studies 

argues that there are specific taxa responsive to host genotype that may warrant follow-up 

investigation. Our work with the DO population provides an approach to validate these 

associations. 

The work presented here plus data from previous studies suggest that BA pool alterations 

driven by Slc10a2 activity elicit an impact on gut microbiota community structure and influence 

the ability of Turicibacter to colonize and persist in the intestine. Several studies have noted 

concomitant changes in microbiota composition and Slc10a2 mRNA levels (Janssen et al., 2017; 

Miyata et al., 2011; Out et al., 2015). Furthermore, Enterobacteraceae and enteropathogenic E. coli 

can modulate intestinal bile acid transport via Slc10a2 (Annaba et al., 2012; Miyata et al., 2011). 

We found that T. sanguinis efficiently deconjugates primary BAs, which may explain the 

correlative relationship between the abundance of this taxa and levels of free CA in the plasma. 

Although this microbe deconjugates primary BAs, we also found that it is also sensitive to elevated 

concentrations of both conjugated and unconjugated BAs. While our data shows that higher 

concentrations of conjugated BAs inhibit Turicibacter growth, it is still unknown what intestinal 

environment is more favorable for Turicibacter growth and colonization. Future experiments are 
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needed to examine how a decrease in Slc10a2 expression changes intestinal BA profiles and the 

consequences on Turicibacter colonization.  

We also identified multiple host-microbe-metabolite interactions that can be validated with 

additional mechanistic studies. More broadly, our work demonstrates that we can identify novel 

interactions between microbial and metabolite traits using host genetics and provides new testable 

hypotheses to further dissect factors that shape gut microbiota composition. This work may 

provide a critical framework for future host-microbe interaction studies. 
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EXPERIMENTAL PROCEDURES 

Animals and sample collection. Animal care and study protocols were approved by the 

University of Wisconsin-Madison Animal Care and Use Committee. DO mice were obtained from 

the Jackson Laboratories (Bar Harbor, ME, USA) at ~4 weeks of age and maintained in the 

Department of Biochemistry vivarium at the University of Wisconsin-Madison. Mice were housed 

on a 12-hour light:dark cycle under temperature- and humidity-controlled conditions. Waves of 

DO mice from generations 18, 19 and 21 were obtained three times per year until 500 DO mice 

were surveyed. Each wave was composed of equal numbers of male and female mice. All mice 

were fed a high-fat high-sucrose diet (TD.08811, Envigo Teklad, 44.6% kcal fat, 34% 

carbohydrate, and 17.3% protein) ad libitum upon arrival to the facility. Mice were kept in the 

same vivarium room and were individually housed to monitor food intake and prevent coprophagy 

between animals. DO mice were sacrificed at 22-25 weeks of age.  

The eight DO founder strains (C57BL/6J, A/J, 129S1/SvImJ, NOD/ShiLtJ, NZO/HILtJ, PWK/PhJ, 

WSB/EiJ and CAST/EiJ) were obtained from the Jackson Laboratories. Mice were bred at the 

University of Wisconsin-Madison Biochemistry Department. Mice were housed by strain and sex 

(2-5 mice/cage), with the exception of CAST that required individual housing. Mice were housed 

under the same environmental conditions as the DO animals. Like the DO mice, the eight founder 

strains were maintained on the HF/HS diet and were sacrificed at 22 weeks of age, except for NZO 

males that were sacrificed at 14 weeks, due to high mortality attributable to severe disease.  

For both DO and founder mice, fecal samples for 16S rRNA sequencing were collected 

immediately before sacrifice after a 4 hour fast. Cecal contents, plasma, and additional tissues were 

harvested promptly after sacrifice and all samples were immediately flash frozen in liquid nitrogen 

and stored at -80°C until further processing.  
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DNA extraction. DNA was isolated from feces using a bead-beating protocol 

{Turnbaugh:2009ei}{Turnbaugh:2009ei}. Mouse feces (~1 pellet per animal) were re-suspended 

in a solution containing 500μl of extraction buffer [200mM Tris (pH 8.0), 200mM NACL, 20mM 

EDTA], 210μl of 20% SDS, 500μl phenol:chloroform:isoamyl alcohol (pH 7.9, 25:24:1) and 500μl 

of 0.1-mm diameter zirconia/silica beads. Cells were mechanically disrupted using a bead beater 

(BioSpec Products, Barlesville, OK; maximum setting for 3 min at room temperature), followed 

by extraction with phenol:chloroform:isoamyl alcohol and precipitation with isopropanol. 

Contaminants were removed using QIAquick 96-well PCR Purification Kit (Qiagen, Germantown, 

MD, USA). Isolated DNA was eluted in 5 mM Tris/HCL (pH 8.5) and was stored at -80°C until 

further use.   

 

16S rRNA Sequencing. PCR was performed using universal primers flanking the variable 4 (V4) 

region of the bacterial 16S rRNA gene (Kozich et al., 2013). Genomic DNA samples were 

amplified in duplicate. Each reaction contained 10-30 ng genomic DNA, 10 µM each primer, 12.5 

µl 2x HiFi HotStart ReadyMix (KAPA Biosystems, Wilmington, MA, USA), and water to a final 

reaction volume of 25 µl. PCR was carried out under the following conditions: initial denaturation 

for 3 min at 95°C, followed by 25 cycles of denaturation for 30 s at 95°C, annealing for 30 s at 

55°C and elongation for 30 s at 72°C, and a final elongation step for 5 min at 72°C. PCR products 

were purified with the QIAquick 96-well PCR Purification Kit (Qiagen, Germantown, MD, USA) 

and quantified using Qubit dsDNA HS Assay kit (Invitrogen, Oregon, USA). Samples were 

equimolar pooled and sequenced by the University of Wisconsin – Madison Biotechnology Center 

with the MiSeq 2x250 v2 kit (Illumina, San Diego, CA, USA) using custom sequencing primers.  
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16S analysis. Demultiplexed paired end fastq files generated by CASAVA (Illumina) and a 

mapping file were used as input files. Sequences were processed, quality filtered and analyzed 

with QIIME2 (version 2018.4) (https://qiime2.org), a plugin-based microbiome analysis platform 

(Caporaso et al., 2010). DADA2 (Callahan et al., 2016) was used to denoise sequencing reads with 

the q2-dada2 plugin for quality filtering and identification of de novo exact sequence variants 

(ESVs) (i.e. 100% exact sequence match). This resulted in 20,831,573 total sequences with an 

average of 52,078 sequences per sample for the DO mice, and 2,128,796 total sequences with an 

average of 34,335.4 sequences per sample for the eight DO founder strains. Sequence variants 

were aligned with mafft (Katoh and Standley, 2013) with the q2-alignment plugin. The q2-

phylogeny plugin was used for phylogenetic reconstruction via FastTree (Price et al., 2010). 

Taxonomic classification was assigned using classify-sklearn (Bokulich et al., 2018) against the 

Greengenes 13_8 99% reference sequences (McDonald et al., 2012). Alpha- and beta-diversity 

(weighted and unweighted UniFrac (Lozupone and Knight, 2005) analyses were performed using 

q2-diversity plugin at a rarefaction depth of 10000 sequences per sample. For the DO mice, one 

sample (DO071) was removed from subsequent analysis because it did not reach this sequencing 

depth. For analysis of the eight DO founder strains, one sample (NOD5) was removed because it 

did not reach this sequencing depth. Subsequent processing and analysis were performed in R 

(v.3.5.1), and data generated in QIIME2 was imported into R using Phyloseq (McMurdie and 

Holmes, 2013). Sequencing data was normalized by cumulative sum scaling (CSS) using 

MetagenomeSeq (Paulson et al., 2013). Summaries of the taxonomic distributions were generated 

by collapsing normalized ESV counts into higher taxonomic levels (genus to phylum) by 

phylogeny. We defined a core measurable microbiota (CMM) (Benson et al., 2010) to include only 

https://qiime2.org/
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microbial traits present in 20% of individuals in the QTL mapping. In total, 86 ESVs and 42 

collapsed microbial taxonomies comprised the CMM. 

 

Sample preparation for plasma bile acid analysis. 40 μL of DO plasma collected at sacrifice 

(30 μL used for founder strains) were aliquoted into a tube with 10 μL SPLASH Lipidomix internal 

standard mixture (Avanti Polar Lipids, Inc.). Protein was precipitated by addition of 215 μL 

MeOH. After the mixture was vortexed for 10 s, 750 μL methyl tert-butyl ether (MTBE) were 

added as extraction solvent and the mixture was vortexed for 10 s and mixed on an orbital shaker 

for 6 min. Phase separation was induced by adding 187.5 μL of water followed by 20 s of 

vortexing. All steps were performed at 4 °C on ice. Finally, the mixture was centrifuged for 4 min 

at 14,000 x g at 4 °C and stored at -80 °C. For targeted bile acids analysis, samples were thawed 

on ice. 400 μL of ethanol were added to further precipitate protein, as well as 15 μL of isotope-

labeled internal standard mix (12.5 µM d4-TαMCA, 10 µM d4-CDCA). The samples were 

vortexed for 20 s and centrifuged for 4 min at 14,000 g at 4 °C after which the supernatant (ca. 

1000 μL) was taken out and dried down. Dried supernatants were resuspended in 60 μL mobile 

phase (50 %B), vortexed for 20 s, centrifuged for 4 min at 14,000 g and then 50 μL were transferred 

to vials with glass inserts for MS analysis.  

 

Sample preparation for cecal bile acid analysis. 30 (± 7.5) mg cecal contents along with 10 μL 

SPLASH Lipidomix internal standard mixture were aliquoted into a tube with a metal bead and 

270 μL MeOH were added for protein precipitation. To each tube, 900 μL MTBE and 225 μL of 

water were added as extraction solvents. All steps were performed at 4 °C on ice. The mixture was 

homogenized by bead beating for 8 min at 25 Hz. Finally, the mixture was centrifuged for 4-8 min 
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at 11,000 x g at 4 °C. Subsequent processing for the DO mice and eight DO founder strains differed 

due to other analysis performed on the samples that is not presented in this paper. For DO samples, 

100 μL of the aqueous and 720 μL of organic layer were combined and stored at -80 °C. For 

analysis, these were thawed on ice and 400 μL of ethanol were added to further precipitate protein, 

as well as 15 μL of isotope-labeled internal standard mix (12.5 µM d4-TαMCA, 10 µM d4-CDCA). 

The samples were vortexed for 20 s and centrifuged for 4 min at 14,000 g at 4 °C after which the 

supernatant (ca. 1000 μL) was taken out and dried down. Dried supernatants were resuspended in 

100 μL mobile phase (50 %B), vortexed for 20 s, centrifuged for 8 min at 14,000 g and then 50 μL 

were transferred to vials with glass inserts for MS analysis. For the eight DO founder strains, the 

mixture was dried down including all solid parts and stored dried at -80 °C. For targeted bile acid 

analysis, these dried down samples were then thawed on ice and reconstituted in 270 μL of 

methanol, 900 μL of MTBE, and 225 μL of water. 400 μL of ethanol were added to further 

precipitate protein, as well as 15 μL of isotope-labeled internal standard mix (12.5 µM d4-TαMCA, 

10 µM d4-CDCA). The mixture was bead beat for 8 min at 25 Hz and centrifuged at 14,000 g for 

8 minutes after which the supernatant (ca. 1500 μL) was taken out and dried down. Dried 

supernatants were resuspended in 100 μL mobile phase (50 %B), vortexed for 20 s, centrifuged 

for 4 min at 14,000 g and then 90 μL were transferred to vials with glass inserts for MS analysis. 

 

Measurement and analysis of mouse bile acids. LC-MS analysis was performed in randomized 

order using an Acquity CSH C18 column held at 50 °C (100 mm × 2.1 mm × 1.7 μm particle size; 

Waters) connected to an Ultimate 3000 Binary Pump (400 μL/min flow rate; Thermo Scientific). 

Mobile phase A consisted of 10 mM ammonium acetate containing 1 mL/L ammonium hydroxide. 

Mobile phase B consisted of MeOH with the same additives. Mobile phase B was initially held at 
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50% for 1.5 min and then increased to 70% over 13.5 min. Mobile phase B was further increased 

to 99% over 0.5 min and held for 2.5 min. The column was reequilibrated for 5.5 min before the 

next injection. Twenty microliters of plasma sample or ten microliters of cecum sample were 

injected by an Ultimate 3000 autosampler (Thermo Scientific). The LC system was coupled to a 

TSQ Quantiva Triple Quadrupole mass spectrometer (Thermo Scientific) by a heated ESI source 

kept at 325°C (Thermo Scientific). The inlet capillary was kept at 350 °C, sheath gas was set to 15 

units, auxiliary gas to 10 units, and the negative spray voltage was set to 2,500 V. For targeted 

analysis the MS was operated in negative single reaction monitoring (SRM) mode acquiring 

scheduled, targeted scans to quantify selected bile acid transitions, with two transitions for each 

species’ precursor and 3 min retention time windows. Collision energies were optimized for each 

species and ranging from 20-55 V. Due to insufficient fragmentation for unconjugated bile acids, 

the precursor was monitored as one transition with a CE of 20 V. MS acquisition parameters were 

0.7 FWHM resolution for Q1 and Q3, 1 s cycle time, 1.5 mTorr CID gas and 3 s Chrom filter. In 

total, 27 bile acids, including 14 unconjugated, 9 tauro- and 4 glycine-conjugated species, were 

measured. The resulting bile acid data were processed using Skyline 3.6.0.10493 (University of 

Washington). For each species, one transition was picked for quantitation, while the other was 

used for retention time confirmation. Normalization of the quantitative data was performed to the 

internal standard d4-CDCA as indicated in Equation 1. 

Equation 1: (Peak Area / d4-CDCA Peak Area) · Average of d4-CDCA Peak Area 

 

Genotyping. Genotyping was performed on tail biopsies as previously described (Svenson et al., 

2012) using the Mouse Universal Genotyping Array (GigaMUGA) [143,259 markers] (Morgan et 

al., 2015) at Neogen (Lincoln, NE). Genotypes were converted to founder strain-haplotype 
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reconstructions using a hidden Markov model (HMM) implemented in the R/DOQTL package 

(Gatti et al., 2014). We interpolated the GigaMUGA markers onto an evenly spaced grid with 0.02-

cM spacing and added markers to fill in regions with sparse physical representation, which resulted 

in 69,005 pseudomarkers.  

 

QTL mapping. We performed QTL mapping using the R package R/qtl2 (Broman, 2018). QTL 

mapping was done through a regression of the phenotype on the founder haplotype probabilities 

estimated with a HMM designed for multi-parental populations. Genome scans were performed 

for each phenotype with sex, cohort (wave), and days on diet were included as additive covariates 

for the trait mapping. Genetic similarity between mice was accounted for using a kinship matrix 

based on the leave-one-chromosome-out (LOCO) methods. For microbial QTL mapping, 

normalized gut microbiota abundance data was nqrank transformed. For bile acid QTL mapping, 

normalized plasma and cecal bile acid levels were log2 transformed. The mapping statistic 

reported is log of the odds ratio (LOD). The significance thresholds were determined by 

performing 1000 permutations of genome-wide scans by shuffling phenotypic data in relation to 

individual genotypes. QTL reaching a LOD score > 5.5 were considered of interest and the QTL 

support interval was defined using the 95% Bayesian credible interval. 

 

Mediation and pleiotropy analysis. To assess whether two co-mapping traits were caused by a 

pleiotropic locus, we used a likelihood ratio test implemented with the open source R package 

R/qtl2pleio (Boehm, 2018). Here, we compared the alternative hypothesis of two distinct loci with 

the null hypothesis of pleiotropy for two traits that map to the same genetic region. Parametric 

bootstrapping was used to determine statistical significance (p < 0.05). Mediation analysis was 
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applied to identify whether a microbe or bile acid were likely to be a causal mediator of the QTL 

as presented in Li et al. (Li et al., 2010). This analysis was adapted from a general approach 

previously described to differentiate target from mediator variables (Baron and Kenny, 1986). The 

effect of a mediator on a target was evaluated by performing an allele scan or SNP scan using the 

target adjusted by mediator. Only individuals with both values for both traits were considered for 

mediation analysis. Traits with a LOD drop >2 after controlling for the mediator were considered 

for further causality testing. To statistically assess causality between microbial and bile acid trait 

sets (causal, reactive, independent, undecided), a causal model selection test (Neto et al., 2013) 

was applied using the R packages R/intermediate and R/qtl2. Causal model selection tests were 

evaluated on both alleles and SNPs in peak region.  

 

RNA extraction. Total RNA was extracted from flash-frozen distal ileum tissues by TRIzol 

extraction and further cleaned using the RNeasy Mini Kit (Qiagen, Germantown, MD, USA). DNA 

was removed by on-column DNase digestion (Qiagen). Purified RNA was quantified using a 

Nanodrop 2000 spectrophotometer.  

 

Quantitative Real-Time PCR. SuperScript II Reverse Transcriptase with oligo(dT) primer (all 

from Invitrogen, Carlsbad, CA, USA) was used to synthesize 20 μl cDNA templates from 1 μg 

purified RNA. cDNA was diluted 2X before use and qRT-PCR reactions were prepared in a 10 μl 

volume using SsoAdvanced Universal SYBR Green Supermix (Bio-Rad, Hercules, CA, USA) and 

400 nM specific primers targeting the gene of interest (SLC10A2-F [5’- 

TGGGTTTCTTCCTGGCTAGACT-3’]; SLC10A2-R [5’- TGTTCTGCATTCCAGTTTCCAA-

3’] (Rao et al., 2016)). All reactions were performed in triplicate. Reactions were run on a CFX96 
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Real-Time PCR System (Bio-Rad, Hercules, CA, USA). The 2-∆∆Ct method (Livak and 

Schmittgen, 2001) was used to calculate relative changes in gene expression and all results were 

normalized to GAPDH.  

 

Bacterial culturing. Bacterial strains were obtained from DSMZ and ATCC. All strains were 

cultured at 37°C under anaerobic conditions using an anaerobic chamber (Coy Laboratory 

Products) with a gas mix of 5% hydrogen, 20% carbon dioxide and 75% nitrogen. Strains were 

grown in rich medium (Supplemental Table 2) that was filter sterilized and stored in the anaerobic 

chamber at least 24 hours prior to use. L. reuteri was grown in medium supplemented with 20 mM 

glucose. For all in vitro assays, cultures used for inoculation were grown overnight at 37°C in 10 

mL 14b medium in anaerobic Hungate tubes. Stock solutions of conjugated bile acids (TCA, 

GCDCA) and unconjugated bile acids (CA, CDCA, DCA) were prepared to a final concentration 

of 100 mM and used for all in vitro assays. All bile acids used were soluble in methanol. 

 

Microbial bile acid metabolism screen. Stock solutions of conjugated and unconjugated bile 

acids (100 mM) were added to 3 ml 14b medium to obtain a final concentration of 100 μM total 

bile acid. Tubes were inoculated with a T. sanguinis cultured overnight, then incubated in the 

anaerobic chamber at 37°C for 48 hours. At the 24- and 48-hour timepoints, 1 mL of each culture 

was removed and the supernant was collected after brief centrifugation. Each culture supernant 

was diluted 10x in initial running solvent (30:70 MeOH:10 mM ammonium acetate). Samples were 

spun at max speed for 3 minutes to remove suspended particles prior to loading on the uHPLC. 

Samples were analyzed using a uHPLC coupled with a high-resolution mass spectrometer. 
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Microbial bile acid screen uHPLC-MS/MS parameters. 10 µL aliquots of diluted supernatant 

samples were analyzed using a uHPLC-MS/MS system consisting of a Vanquish uHPLC coupled 

by electrospray ionization (ESI) (negative mode) to a hybrid quadrupole-high-resolution mass 

spectrometer (Q Exactive Orbitrap; Thermo Scientific). Liquid chromatography separation was 

achieved on an Acquity UPLC BEH C18 column (2.1-by 100-mm column, 1.7-µm particle size) 

heated to 50˚C. Solvent A was 10 mM Ammonium acetate, pH 6; solvent B was 100% methanol. 

The total run time was 31.5 minutes with the following gradient: 0 min, 30% B; 0.5 min, 30% B; 

24 min, 100% B; 29 min, 100% B; 29 min, 30% B; 31.5 min, 30% B. Bile acid peaks were 

identified using the Metabolomics Analysis and Visualization Engine (MAVEN) (Clasquin et al., 

2012).  

 

Growth curves. Bacterial growth rate was measured in medium 14b supplemented with either 100 

μM, 300 μM, 1 mM bile acids or methanol control. Medium was dispensed inside an anerobic 

chamber into Hungate tubes. Tubes containing 10 mL of medium were inoculated with 30 μL of 

an overnight culture and incubated at 37°C for 24 hours. T. sanguinis was grown with shaking to 

disrupt the formation of flocculent colonies. Growth was monitored as the increase in absorbance 

at 600 nm in a Spectronic 20D+ spectrophotometer (Thermo Scientific, Waltham, MA, USA). 

Growth rate was determined as μ = ln(X/Xo)/T, where X is the OD600 value during the linear 

portion of growth and T is time in hours. Values given are the mean μ values from two independent 

cultures done in triplicate.  

 

Statistical analysis. All statistical analyses were performed in R (v.3.5.1) (Team). Unless 

otherwise indicated in the figure legends, differences between groups were evaluated using 
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unpaired two-tailed Welch’s t-test. For multiple comparisons, Krustkal-Wallis test was used if 

ANOVA conditions were not met, followed by Mann-Whitney/Wilcoxon rank-sum for multiple 

comparisons and adjusted for multiple testing using the Benjamini-Hochberg FDR procedure. The 

correlation between the abundance of microbial taxa was performed using Spearman’s correlation 

in the “Hmisc” (v.4.1-1) R package (Harrell Jr and others, 2018). The p-values were adjusted using 

the Benjamini and Hochberg method, and correlation coefficients were visualized using the 

“pheatmap” (v.1.0.10) (Kolde, 2018). Multiple groups were compared by Kruskal-Wallis test and 

adjusted for multiple testing using the Benjamini-Hochberg FDR procedure. Significance was 

determined as p-value < 0.05. To assess magnitude of variability of the CMMs, summary statistics 

were calculated on each CMM (taxa and ESVs). Non-parametric-based PERMANOVA statistical 

test (McArdle and Anderson, 2001) with 999 Monte Carlo permutations was used to compare 

microbiota compositions among groups using the Vegan R package (Oksanen et al., 2018).  
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FIGURES AND TABLES 

 

Figure 3.1. Phenotypic variation among Diversity Outbred (DO) mice fed high-fat and high-

sucrose diet. (A) Body weight at 6, 10, 14, and 21-25 (sacrifice) weeks in DO mice fed high-fat 

and high-sucrose diet (n = 500) (Adapted from Keller et al. (Keller et al., 2018)) (B) Distributions 

of the normalized relative abundance of bacterial phyla identified in DO fecal microbiota (n = 

399). (C) Abundance (peak area) of primary bile acids detected in plasma and (D) cecal contents 

(n = 384). 
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Figure 3.2. Genetic architecture of quantitative trait loci (QTL) for microbial exact sequence 

variants (ESVs) and taxa abundance, and plasma and cecal bile acids in Diversity Outbred (DO) 

mice. The outer layer shows the chromosome location where major tick marks correspond to 25 

Mbp. Logarithm of the odds (LOD) range is shown for each track. Each dot represents a QTL on 

each chromosome of the mouse genome for a given trait. Grey dots denote QTLs with LOD < 5.5. 

Colored dots correspond to QTL with LOD > 5.5. 
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Figure 3.3. Co-mapping of Turicibacter sp. and plasma cholic acid (CA) QTL on chromosome 8. 

Haplotype effects of the eight DO founder strains on the (A) fecal abundance of Turicibacter sp. 

and (B) plasma CA levels. The x-axis indicates the position in Mb along chromosome (chr) 8. The 

y-axis for the top panel indicates the effect coefficient depicting the estimated contributions of 

each founder allele, and the y-axis in the bottom panel is the LOD score. A/J and WSB founder 

alleles are associated with higher and lower levels of Turicibacter and plasma CA levels, 

respectively. The estimated founder strain abundance of (C) Turicibacter and (D) levels of plasma 

CA in the DO population reflects measured values observed in founder strains for (E) the 

abundance of Turicibacter sp. and (F) plasma cholic acid levels (n = 8 mice/genotype, 4 male and 

4 female).  (G) SNPs (top panel) and protein coding genes (bottom panel) under the QTL interval. 
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Magenta dots correspond to SNPs with the strongest association where the LOD drop < 1.5 from 

the top SNP. (H) Relative expression of Slc10a2 measured in the distal ileum by qRT-PCR in AJ 

and WSB parental strains (n = 6, 3 male and 3 female). Data are presented as mean ± SEM; Welch’s 

t test; * p < 0.05. Correlation p-values adjusted for multiple tests using Benjamini and Hochberg 

correction. 
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Figure 3.4. Mediation analysis and causal inference testing suggest causal relationship between 

Turicibacter sp. abundance and plasma cholic acid (CA) levels. (A) Hypothetical causal model 

that proposes that cholic acid (CA) mediates the changes in Turicibacter sp. abundance. (B) 

Change in LOD score of plasma CA when adjusting for Turicibacter sp. abundance. (C) 

Hypothetical causal model that proposes that Turicibacter sp. mediates changes in abundance of 

plasma CA levels. (D) Change in LOD score of Turicibacter sp. when controlling for plasma CA 

levels. (E) Predicted model based on pleiotropy and causal model hypothesis testing.   
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Figure 3.5. Turicibacter sanguinis and bile acid interactions. (A) Percent of conjugated bile acids 

detected after 24-hour incubation with or without the presence of T. sanguinis. (B) Transformation 

of cholic acid (CA) to 7-dehydrocholic acid (7-dHCA), and (C) chenodeoxycholic acid (CDCA) 

to 7-ketolithocholic acid (7-KLCA) by T. sanguinis after 24 hours. Growth rate of T. sanguinis in 

the presence of 100uM, 300uM and 1mM (D) conjugated (equimolar pool of taurocholic acid 
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(TCA) and glycochenodeoxycholic acid (GCDCA)), and (E) unconjugated (equimolar pool of 

cholic CA, CDCA, and deoxycholic acid (DCA)) bile acids over 24 hours. (F) T. sanguinis yield 

after 24 hours of incubation with varying concentrations of conjugated (c) and unconjugated (u) 

bile acids, as determined by optical density at 600nm. (G) Growth rate of T. sanguinis in medium 

supplemented with varying concentrations of conjugated and unconjugated bile acids. Data shown 

are from one experiment with three technical replicates. Data are presented as mean ± SEM; one-

way ANOVA followed by Tukey’s multiple comparisons test; ** p < 0.01, *** p < 0.001, **** p 

< 0.0001.  
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Supplemental Figure 3.1. Principal coordinate analysis (PCoA) of unweighted UniFrac distances 

for fecal samples shows significant clustering by (A) wave (F = 16.9535, p = 0.001) and (B) sex 

(F = 5.57169, p = 0.001). Clustering by treatment evaluated by PERMANOVA.  
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Supplemental Figure 3.2. Plasma and cecal bile acids do not group by batch or sex. PCAs of 

plasma bile acid profiles colored by (A) sex (PC1, p = 2.2e-16; PC2, p = 0.001696) and (B) batch  

(PC1, p = 0.5937; PC2, p = 0.4588), and PCAs of cecal bile acid profiles colored by (C) sex (PC1, 

p = 0.011; PC2, p = 8.4e-05) and (D) batch (PC1, p = 0.2072; PC2, p = 0.009). Kruskal Wallis 

one-way test followed by Wilcoxon pair-wise multiple comparisons with Benjamini and Hochberg 

correction.  
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Supplemental Figure 3.3. Related bile acid species map associate to same locus. (A) Cecal levels 

of isolithocholic acid (ILCA) and lithocholic acid (LCA) associate to same locus on chr 11. (B) 

Estimated founder allele effects for cecal ILCA and (C) LCA. (D) Genes under cecal LCA and 

ILCA QTL interval. (E) Haplotype effects and LOD scores of plasma taurodeoxycholic acid 

(TDCA), (F) cecal deoxycholic acid (DCA), (G) cecal isodeoxycholic acid (IDCA) and (H) cecal 

hyodeoxycholic acid (HDCA). For each plot, the x-axis is the physical position in Mb along chr 

12. The y-axis for the top panel is the effect coefficient depicting the estimated contributions of 

each founder allele, and the y-axis in the bottom panel is the LOD score.  
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Supplemental Figure 3.4. Exact sequence variant of Akkermansia muciniphila and plasma bile 

acid QTL overlap on chr 1. Haplotype effects and LOD scores of (A) A. muciniphila (B) plasma 

cholic acid (CA), (C) plasma muricholic acid (MCA), and (D) plasma 7-dehydrocholic acid (7-

dHCA). For each plot, the x-axis is the physical position in Mb along chr 1. The y-axis for the top 
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panel is the effect coefficient depicting the estimated contributions of each founder allele, and the 

y-axis in the bottom panel is the LOD score. (E) Protein coding genes under 10 Mbp QTL interval. 

Spearman correlations in the DO mice between A. muiniphila and (F) plasma CA, (G) plasma 

MCA, and (H) plasma 7-dHCA levels. Correlation p-values adjusted for multiple tests using 

Benjamini and Hochberg correction. Higher levels of these microbial and bile acid traits were 

associated with the NZO haplotype and lower levels were associated with the 129 haplotype. (E) 

Protein coding genes under 10 Mbp QTL interval. Spearman correlations in the DO mice between 

A. muiniphila and (F) plasma CA, (G) plasma MCA, and (H) plasma 7-dHCA levels. Correlation 

p-values adjusted for multiple tests using Benjamini and Hochberg correction 
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Supplemental Figure 3.5. Peptostreptococcaceae and plasma bile acids co-map on chr 3. 

Haplotype effects and LOD scores of (A) Peptostreptococcaceae family, (B) plasma cholic acid 

(CA), (C) plasma chenodeoxycholic acid (CDCA), (D) plasma muricholic acid (MCA), (E) plasma 

ursodeoxycholic acid (UDCA), and (F) plasma 7-dehydrocholic acid (7-dHCA). For each plot, the 

x-axis is the physical position in Mb along chr 3. The y-axis for the top panel is the effect 
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coefficient depicting the estimated contributions of each founder allele, and the y-axis in the 

bottom panel is the LOD score. All overlapping QTL have positive association with the NOD 

allele. (G) Protein coding genes under QTL interval.  
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Supplemental Figure 3.6. Pleiotropy and causal inference testing describe overlapping QTL for 

Turicibacter sp. and plasma cholic acid (CA) on chromosome 8. (A) Profile logarithm of the odds 

(LOD) curves for close linkage vs pleiotropy hypothesis test for Turicibacter sp. abundance and 

plasma CA levels. Gray trace denotes pleiotropy. Triangles indicate the univariate LOD maxima 

and diamonds indicate the profile LOD maxima. Pleiotropy analysis performed using 1000 
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bootstrap samples. (B) Turicibacter sp. is reactive as shown by causal model hypothesis testing. 

Plot indicates SNPs associated with Turicibacter sp. as either causal or reactive. Allele pattern of 

SNPs denoted by different pattern colors.  (G) Plasma CA is reactive to Turicibacter sp. as shown 

by causal model hypothesis testing.  
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Supplemental Figure 3.7. Gut associated bacteria have differential growth responses to 

conjugated bile acids. Growth rate in the presence of 1 mM conjugated bile acids or methanol 

control for (A) Bacteroides thetaiotamicron, (B) Clostridium asparagiforme, (C) Escherichia coli 

MS200-1, and (D) Lactobacillus reuteri. Data shown are from one experiment with three technical 

replicates. Data are presented as mean ± SEM; Welch’s t test; no significant differences were 

observed between growth conditions for any of the tested organisms. 
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CONCLUSIONS AND FUTURE DIRECTIONS 

Inter-individual variation in microbiota composition is associated with differential 

susceptibility to metabolic disease. The research presented in this thesis attempts to further 

understand the interplay between the host genome and gut microbiome, and how their interactions 

contribute to metabolic health outcomes. This work also provides the foundation for future 

research to elucidate the molecular mechanisms underlying genetic regulation of microbiota 

composition and how these microbes confer metabolic phenotypes. 

Early evidence from studies using related individuals hinted at a contribution of common 

genetic variants in shaping the microbiome (Erwin G. Zoetendal, Antoon D. L. Ak, 2001; 

Turnbaugh et al., 2009a). However, these studies were limited by sample size and results were 

confounded by environmental factors, making it difficult to determine the relative genetic 

contributions. In Chapter 2, we interrogated the interactions among host genotype, diet, gut 

microbiome, and metabolic phenotypes using a panel of genetically diverse inbred mouse strains. 

The mouse model allowed us to control for environmental differences and circumvent confounding 

factors found in human studies. We used eight inbred founder strains (Churchill et al., 2012), 

herein referred to as “founder strains”. These founder strains include five laboratory-derived and 

three wild-derived strains, which together exhibit comparable genetic variation to what is found 

within the human population (Churchill et al., 2004). We placed the founder strains on either a 

control or high-fat high-sucrose (HF/HS) diet for 22 weeks. At the end of the study, we found 

significant variation in metabolic phenotypes and microbiota composition as a function of 

genotype and diet.  

Using the results obtained from these strains, we next investigated whether metabolic 

phenotypes could be transferred via gut microbes. We took the microbiota from two strains that 
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exhibit disparate metabolic phenotypes, HF/HS diet-susceptible (B6) and diet-resistant (CAST) 

strains and colonized germ-free B6 mice. After 16 weeks on the HF/HS diet, we found significant 

differences in body weight and glucose homeostasis among these animals, where the CAST 

microbiota protected the mice from diet-induced metabolic disease. Pancreatic -cell function also 

differed by microbiota composition, where the islets from CAST-colonized animals secreted 

significantly less insulin than islets from B6-colonized mice. Concomitant alterations in bile acid 

profiles were also overserved among these animals. Interestingly, bile acids are associated with 

metabolic disease (Kuipers et al., 2014) and are capable of stimulating -cell insulin secretion 

(Düfer et al., 2012). Overall, this study identified microbiota compositions associated with 

metabolic phenotypes and provided novel insight into how the microbiota can influence glucose 

homeostasis via -cells. 

The transplant experiments with B6 and CAST microbiota present several directions for 

future studies. First, while we have associations between microbial taxa and host phenotypes, 

specific genotype-selected microbial taxa need to be identified and tested for their role in metabolic 

disease.  We also showed that the microbiota can transfer resistance to diet-induced metabolic 

phenotypes in diet-sensitive genotypes (B6). To further evaluate the contributions of genotype-

specific microbiota composition on susceptibility to diet-induced metabolic disease, it would be 

of interest to repeat the transplant experiment using a mouse strain resistant to metabolic syndrome 

like CAST. This would enable further characterization of bacterial communities and taxa 

associated with susceptibility or resistance to diet-induced metabolic disease. It would particularly 

interesting to examine ex vivo insulin secretion in germ-free CAST mice colonized with either 

CAST or B6 microbiota, since the CAST microbiota conferred such a strong insulin secretion 

phenotype.  
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In general, this transplant study highlighted the importance of the microbiota on insulin 

phenotypes and additional work needs to be done to identify specific microbial taxa and 

metabolites or microbial-dependent signals that affect -cell function. Our study suggests variation 

in bile acid profiles may contribute to differences islet insulin secretion. There is evidence that 

specific bile acids stimulate insulin secretion via bile acid receptors (Düfer et al., 2012; Kumar et 

al., 2012). However, the effects of different bile acid profiles on insulin secretion remains relatively 

unknown. In addition to bile acids, other microbial derived metabolites may be responsible for 

changes in insulin secretion. For example, microbial production of the short chain fatty acid 

(SCFA) acetate was causally shown to modulate -cell function through stimulation of the 

parasympathetic nervous system (Perry et al., 2016). Future studies examining microbial-driven 

differences in insulin secretion should take a systems biology approach and integrate metagenomic 

profiling of the intestinal microbiome, plasma and cecal metabolomics, and transcriptomics of the 

ileum and -cells.  

In Chapter 3, we build on the characterization of genotype-specific microbiome from 

Chapter 2 to identify specific host loci associated with the abundance of gut bacteria, as well as 

bile acid levels. We characterized the fecal microbiota composition and levels of 27 bile acid 

species in 400 genetically unique Diversity Outbred (DO) mice. The DO mouse stock is population 

used for high-resolution genetic mapping derived from an outbreeding scheme using the eight 

founder strains profiled in Chapter 2. The genome of each DO mouse is a mosaic of the eight 

founder strains and every position can be attributed to one of the founder haplotypes. Furthermore, 

this breeding scheme allows for high-resolution genetic mapping to better identify candidate genes 

(Svenson et al., 2012). This is an improvement from previous microbial QTL studies in mice, 
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which have limited mapping resolution and unevenly distributed genetic variation due to the 

intercross breeding schemes (Svenson et al., 2012; Yang et al., 2007).  

We found significant variation in the gut microbiota and bile acid profiles among the DO 

mice. In fact, we identified loci associating with both gut microbes and bile acids, suggesting 

possible pleiotropy, or genomic intervals that influence multiple traits. For example, we found a 

locus on chromosome 8 containing the bile acid transporter Slc10a2 was associated with the 

abundance of Turicibacter sp. and plasma cholic acid levels. We also found associations with the 

metabolically beneficial bacterium Akkermansia muciniphila (Everard et al., 2013) and plasma 

bile acids on chromosome 1 mapping to the same position as previously identified cholesterol 

QTLs (Ishimori et al., 2004; Su et al., 2009a). This is particularly striking given the association of 

A. muciniphila to obesity and cholesterol levels (Everard et al., 2013; Fu et al., 2015; Plovier et 

al., 2017). Thus, additional work should investigate whether cholesterol explains the relationship 

between this locus and A muciniphila and bile acids levels. 

The instances of overlapping microbial and bile acid QTL are particularly interesting 

because they may yield important insight into host-microbe interactions. Overlapping QTL may 

be influenced by a pleiotropic locus, or a locus that effects multiple traits, or two closely linked 

loci. Additional causal inference testing can then be used to elucidate the directionality of the 

relationships and to determine if the underlying genetic variation effects both traits or whether one 

trait is causal for the other. The results of causal testing can be applied to designing validation 

experiments to gain mechanistic insight. For example, we used a genetics approach to identify a 

correlative relationship between Turicibacter sp. and plasma cholic acid levels. The correlative 

relationship between the traits suggested there may be an interaction between this microbe and bile 

acid. So, we designed follow-up experiments to identify a novel metabolic capability of 



 

 171 

Turicibacter sp. and found this microbe is sensitive to high concentrations of bile acids, expanding 

what is known about microbe-metabolite interactions in the intestine. Even though the effect of 

the variant is still unclear, this approach yielded novel insight into factors that shape the gut 

microbiome. 

Furthermore, our findings in Chapter 3 successfully replicate patterns from earlier human 

and mouse genetic mapping studies (Benson et al., 2010; Goodrich et al., 2016; McKnite et al., 

2012; Org et al., 2015; Wang et al., 2016). While genetic variation only explains a small fraction 

(1% - 8.1%) of the variability in the microbiome among individuals, the congruence among these 

studies provides strong evidence that specific bacterial taxa are modulated by host genetics.  

While there are many instances of microbial taxa associating to the mouse genome, it is 

important to acknowledge these associations do not equate to causation. Functional validation by 

additional experimental work using in vivo and in vitro approaches is required to establish causality 

and elucidate the molecular mechanisms underlying these associations.  A major limitation of 

genetic mapping studies is the inability to validate candidate genes since the majority of 

associations are found in intergenic regulatory regions and identified loci often contain too many 

genes to individually test (Chen and Tian, 2016; Maurano et al., 2012). The inclusion of additional 

“omics” data would allow for a systems genetics approach and likely provide a deeper 

understanding of the underlying biology (Civelek and Lusis, 2014). The ability to assign candidate 

genes is vastly improved when transcriptome data is incorporated (Chick et al., 2016). 

Metabolomics data also provides another layer to dissect underlying mechanisms and causal 

pathways. Specific functional interactions likely underlie host gene – microbe associations, 

therefore it would likely be beneficial to incorporate metagenomics data to characterize the 

functional capacity of the microbiota. Taken together, the incorporation of these additional 
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“omics” data would greatly enhance our ability to decipher host-microbe interactions in the DO 

mice.    

It is clear that the microbiome is a complex, high dimensional trait governed by an interplay 

of environmental and genetic factors. Overall, the information resulting from this thesis project 

enhances the understanding of the role of genetics in modulating gut microbiota and provides a 

framework for mechanistic studies. Ultimately, this work will help guide therapeutic strategies to 

manipulate the gut microbiome to treat human disease.   
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ABSTRACT 

Histone-modifying enzymes regulate transcription and are sensitive to availability of 

endogenous small molecule metabolites, allowing chromatin to respond to changes in 

environment. The gut microbiota produces a myriad of metabolites that affect host physiology and 

susceptibility to disease, however the underlying molecular events remain largely unknown. Here 

we demonstrate that microbial colonization regulates global histone acetylation and methylation 

in multiple host tissues in a diet-dependent manner: consumption of a “Western-type” diet prevents 

many of the microbiota-dependent chromatin changes that occur in a polysaccharide rich diet. 

Finally, we demonstrate that supplementation of germ-free mice with short-chain fatty acids, major 

products of gut bacterial fermentation, is sufficient to recapitulate chromatin modification states 

and transcriptional responses of colonization on host epigenetic programming. These findings have 

profound implications for understanding the complex functional interactions between diet, gut 

microbiota, and host health. 
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INTRODUCTION 

The eukaryotic genome is organized into a highly compressed nucleoprotein structure 

known as chromatin. Histone proteins are major components of chromatin and act as spools, 

wrapping DNA into fundamental nucleosome units that can fold into higher order structures. 

Histones undergo a myriad of covalent post-translational modifications (PTMs), and along 

with histone variant replacement, comprise what is known as the “histone code,” wherein the 

local PTM-state dictates whether chromatin is repressive or activating toward transcription 

(Jenuwein and Allis, 2001). For example, histone acetylation is generally associated with open 

chromatin and active transcription, whereas trimethylation of histone H3 K27 (H3K27me3) is 

associated with transcriptional repression (Cao et al., 2002; Lachner et al., 2001). Histone 

PTMs exist in a combinatorial manner and can serve as a signal integration platform, sensing 

changes in environment and allowing for adaptive responses (Johnson and Dent, 2013). 

Importantly, the enzymes that add and remove PTMs are known to be exquisitely sensitive to 

the availability of endogenous small molecule metabolites (Fan et al., 2015). For example, 

acetyl-coenzyme A (acetyl-CoA) is a necessary substrate for histone acetyltransferases 

(HATs), and increased availability results in increased HAT activity. 

The gut microbiota produces a variety of metabolites that are present at detectable 

levels in host circulation (Wikoff et al., 2009), including small organic acids, bile acids, 

vitamins, choline metabolites, and lipids (thoroughly reviewed in (Nicholson et al., 2012)). 

Dietary poly- and oligosaccharides that are resistant to digestion by the mammalian host’s 

limited repertoire of carbohydrate active enzymes are not broken down and absorbed in the 

small intestine, but rather pass to the distal gut where they serve as a source of carbon and 

energy for gut bacteria. Through fermentative reactions, the gut microbiota can metabolize 
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these complex carbohydrates to produce small organic acids, the majority of which are 

comprised of the short chain fatty acids (SCFAs) acetate, propionate, and butyrate (≥95%) 

(Besten et al., 2013). These metabolites are present in the proximal gut lumen at roughly 70-

140 mM total concentration, depending on dietary substrate (Topping and Clifton, 2001). A 

number of robust associations between gut microbiota and host metabolic outcomes have been 

made in recent years, including cardiovascular disease (Karlsson et al., 2012; Wang et al., 

2011), metabolic syndrome (Cabreiro et al., 2013; Chassaing et al., 2015; Suez et al., 2014; 

Vijay-Kumar et al., 2010), obesity (Bäckhed et al., 2004; Ley et al., 2005; Ridaura et al., 2013; 

Turnbaugh et al., 2006; Zhao, 2013), diabetes mellitus (Amar et al., 2011; Qin et al., 2012), 

non-alcoholic fatty liver disease (Henao-Mejia et al., 2012), hepatic steatosis (Singh et al., 

2015), and even inflammatory bowel disorders and malignancy (Chassaing et al., 2015; 

Donohoe et al., 2012; 2014). Interestingly, SCFAs have recently been associated with both 

disease promoting (Belcheva et al., 2014; Perry et al., 2016; Samuel et al., 2008; Singh et al., 

2015; Turnbaugh et al., 2006) and therapeutic effects (Canfora et al., 2015; Donohoe et al., 

2014; Tan et al., 2014; Tilg and Moschen, 2014), prompting a need for increased 

understanding of the underlying molecular mechanisms. 

It is possible that gut microbial metabolites, which are present at detectable levels in 

host circulation, play regulatory roles at the level of host chromatin. For example, acetate, 

propionate, and butyrate can be converted to acetyl-CoA, thereby activating HAT activity. 

Further, butyrate is a known histone deacetylase inhibitor (HDACi) (Riggs et al., 1977). 

Therefore, these small organic acids may increase histone acetylation. Histone methylation 

may also be affected by microbial metabolites. Gut bacteria produce a number of B-vitamins 

(Hill, 1997) including B2 (riboflavin), B9 (folate), and B12 (cobalamin), which may promote 
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availability of the methyl-donor S-adenosyl methionine (SAM), increasing histone 

methylation. The gut microbiota may also compete with the host for choline (Romano et al., 

2015), ultimately limiting SAM availability. Therefore, there are a number of ways in which 

gut microbial metabolites may impact the host epigenome, however experimental evidence 

linking changes in the abundance of these metabolites to global variations in histone PTMs 

in-vivo is lacking.  

Here, we explore whether the gut microbiota affects host epigenetic programming in a 

variety of tissues and how this relationship is affected by host diet. We provide the first 

evidence of gut microbiota- mediated changes in global histone acetylation and methylation 

not only in colon, which is in direct contact with microbes and their metabolites, but in tissues 

outside the gut. We demonstrate that this regulatory relationship is sensitive to host diet, 

wherein a “Western-type” diet limits microbial SCFA production, abolishes the effects of 

microbiota on host chromatin states, and results in functionally relevant alterations in hepatic 

gene expression. Finally, we identify an underlying mechanism that reveals SCFA 

supplementation of germ-free mice is sufficient to recapitulate the epigenetic phenotype 

associated with gut colonization. 
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RESULTS 

Gut microbiota affect host tissue epigenetic states   

To investigate whether gut microbes and their metabolites affect host chromatin states, we 

examined histone PTM states as a function of colonization. We focused our analysis on proximal 

colon, liver, and white adipose. The proximal colon harbors the largest microbial community in 

the body and is a region exposed to the highest levels of microbial metabolites. Nearly all 

metabolite-rich venous blood that drains from the gut enters the liver via the convergence of 

several mesenteric veins into the hepatic portal vein. Given this anatomical feature and known 

associations between gut microbiota and hepatic steatosis, liver tissue was a logical choice to 

investigate the effects of bacterial metabolites. Lastly, we selected white adipose tissue 

(WAT) as a tissue more distant from the gut that is known to be affected by gut microbial 

colonization (Bäckhed et al., 2004). The experimental workflow is described in figure 1A. 

Briefly, mice were either maintained germ- free (GF) throughout the experiment, allowed to 

acquire a microbiota from birth to adulthood (conventionally raised, ConvR), or colonized 

with a complete (uncultured) microbiota (conventionalized, ConvD) harvested from ConvR 

donors. The use of a ConvD mouse model allows for the determination of whether the 

phenotype observed in ConvR animals is transferrable via the gut microbiota alone. 

Additionally, since ConvR animals experience different environmental exposure early in life 

and have developmental differences (K. Smith et al., 2007) that may exhibit phenotypic 

differences vs. their GF controls, the use of ConvD mice for relatively short time periods 

allows for dissection of effects more directly related to differences in microbial metabolism. 

At the time of sacrifice, tissues were harvested, and histones were extracted and prepared for 

mass spectrometry analysis using an in-house data independent acquisition mass spectrometry 

workflow (Krautkramer et al., 2015). 
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We surveyed 55 unique and combinatorial acetylated and methylated histone PTM 

states in proximalcolon, liver, and WAT (Supp. Table 1). Colonization induced robust 

increases in histone H4 acetylation in all three tissues (Fig. A.1B). This peptide includes the 

first 4 lysines (K5, K8, K12, and K16) on the histone H4 N-terminal tail. Thus H4: 0ac 

indicates peptides where no lysine residues are acetylated, whereas H4:1ac-4ac indicates 

peptides where any 1-4 of the 4 lysines are acetylated. In ConvR animals, there was a 

significant 2.1-fold increase in both triply and quadruply acetylated histone H4 (H4: 3ac and 

H4:4ac, respectively). Similarly, ConvR animals showed a 3-fold and 1.30-fold increase in 

the highly acetylated H4: 4ac peptide in proximal colon and adipose tissue, respectively, 

relative to GF mice (Fig. A.1B). The effects of colonization on histone H4 acetylation were 

even more robust in ConvD mice, with a 4.5-, 6.0-, and 12.0-fold increase in H4: 4ac of 

proximal colon, adipose, and liver, respectively (Fig. A.1B). Triply acetylated histone H4 

peptides also increased 2.1- to 4.2-fold in proximal colon, adipose, and liver (Fig. A.1B). It is 

noteworthy that these two histone H4 states collectively account for just over 1% of the total 

histone H4 states, suggesting that this open chromatin state is confined to very specific loci 

along the genome. As acetylated forms of the H4 N-terminal tail increased in abundance in 

colonized animal tissues, the completely unmodified form of this peptide decreased 

significantly (H4: 0ac, 1.33 to 3.3-fold across the tissues surveyed), consistent with the 

conversion of unacetylated states to higher acetylation content in colonized animals. 

Microbes also induced acetylation of canonical histone H3 and the variant histone 

H3.3. Similar to the patterns observed on histone H4, there were significant increases in 

acetylation in response to gut colonization. The doubly acetylated canonical histone H3 

K9ac+K14ac and H3 K18ac+K23ac peptides increased significantly in ConvD mouse livers 
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and trended toward a similar magnitude of increase in proximal colon of ConvR and ConvD 

mice (Fig. A.1B). Similar to highly acetylated histone H4 peptides, these two doubly 

acetylated canonical histone H3 peptides account for roughly 2% or less of total histone PTM 

states observed in each peptide family, again supporting a more loci-specific role for these 

modified nucleosomes along the genome (Fig. A.1B). Interestingly, the singly acetylated 

peptides K9ac+K14un and K9un+K14ac decrease concomitantly with an increase in the 

doubly acetylated K9ac + K14ac peptide, and a similar pattern occurs on the singly acetylated 

and coeluting K18ac/K23ac peptides (Fig. A.1B). These results are consistent with a shift 

away from a singly acetylated state toward a maximally acetylated state.  

Histone H3 methylation patterns are also altered as a function of gut colonization 

status. There is a modest, yet statistically significant increase in histone peptide H3 

K27me3+K36un in proximal colon, liver, and adipose tissues from ConvD mice vs. their GF 

controls (1.4- to 1.5-fold increase, Fig. A.1B). This modification accounts for ~12% of total 

PTM states, suggesting more broad regulatory effects in comparison to highly acetylated 

states of histones H3 and H4 which accounted for only a very small fraction of total chromatin. 

There were significant increases in peptides containing highly methylated forms of K27 and 

K36 (i.e. me2 and me3) on both the canonical histone H3 and the histone variant H3.3, 

however these effects were not present consistently across all three tissues, suggesting some 

tissue- specificity in the response to colonization (Fig. A.1B). Notably, histone 

monomethylation at H3 K18 decreased significantly across all three ConvD tissues (Fig. 

A.1B, 2.1 to 8.3-fold across liver, proximal colon, and adipose tissue). A similar pattern was 

present for the combinatorial K27me2+K36me1 peptide on both histone H3 and the variant 

H3.3 (Fig. A.1B). Together, these results demonstrate that gut microbiota affect host tissue 
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acetylated and methylated chromatin states in a site-specific and combinatorial fashion, 

strongly supporting a role for the gut microbiota as a driver of host tissue chromatin 

regulation. Finally, while some histone PTM states appear to be similarly regulated across all 

tissues surveyed, other changes are unique within a tissue. 

A key feature of our mass spectrometry data is the ability to detect histone PTMs 

within the context of neighboring modifiable sites on the same peptide, thereby capturing 

some of the combinatorial nature of the histone code and allowing for detection of histone 

PTM states that account for a very small percentage of the total. Thus, our quantitative mass 

spectrometry results identified changes in histone PTM states that are not necessarily 

resolvable by orthologous techniques such as western blot analysis (Aebersold et al., 2013). 

Indeed, we performed several western blots and found no statistically significant differences 

in histone H3 K9ac, H3 K27me3, or pan-acetyl(K) detectable via western blot in histone 

extracts from GF, ConvR, and ConvD mouse livers (Supplemental Fig. 1A-B). To more 

directly compare our mass spectrometry data with that obtained via western blot, we summed 

all possible permutations of peptides containing K9ac and K27me3 on canonical histone H3 

to obtain single western blot-like estimates of K9ac and K27me3 abundance for GF, ConvR, 

and ConvD mouse liver histone PTM states (equations available in Supplemental Methods). 

We then calculated fold changes relative to GF. Using this method, both K9ac and K27me3, 

as a total among all combinatorial forms quantified, are predicted to remain relatively 

unchanged between colonized and GF mice (Supplemental Fig. 1C), which is consistent with 

quantitative western blot results (Supplemental Fig. 1B). It is also noteworthy that robust 

changes in histone PTM states, including triply and quadruply acetylated histone H4 peptides, 

cannot be probed using antibodies, since there are no antibodies currently available that can 



 

 185 

specifically detect these combinatorial states. Therefore, our histone proteomics workflow 

allowed for identification of altered chromatin states that would not otherwise have been 

detectable. 

 

Gut microbiota-mediated changes in chromatin state are sensitive to host diet   

Since host diet is known to affect both gut microbial community composition and 

metabolism (Daniel et al., 2013; David et al., 2013; Turnbaugh et al., 2009b), we next 

evaluated the effects of host diet on microbiota-mediated regulation of host chromatin states 

(Supp. Table 1). ConvR and GF mice were fed a “Western-type” high fat, high sucrose diet 

(HF/HS), which is provides low levels of fermentable substrate for the gut microbiota, for 16 

weeks prior to sacrifice at 19 weeks of age. At the time of sacrifice, tissues were harvested 

and a number of physiological parameters and histone PTM states were measured as described 

in the workflow (Fig. A.2A). As anticipated, ConvR mice fed a HF/HS diet weighed 

significantly more than diet-matched GF controls (Fig. A.2B). HF/HS-fed ConvR mice also 

displayed significantly higher hepatic total cholesterol and triglycerides vs. diet-matched GF 

controls and chow-fed mice (Fig. A.2C-D). Thus, HF/HS feeding significantly impacted host 

metabolic state in a microbiota-dependent manner. To determine whether HF/HS feeding 

altered SCFA production, we measured acetate, propionate and butyrate concentrations in 

cecal contents (i.e. at the principal site of fermentation) of ConvR, ConvD, and GF mice on 

both chow and HF/HS diets. SCFAs are mostly derived from microbial fermentation of 

complex polysaccharides, thus we anticipated differences in SCFA production in response to 

altered diet composition. Indeed, gut microbial colonization resulted in an increase of these 

metabolites in the ceca of mice, and this increase was more pronounced in mice fed a chow 
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diet compared to HF/HS diet (Fig. A.2E). In HF/HS-fed ConvR mice, cecal acetate, 

propionate, and butyrate were present at significantly lower levels relative to chow-fed 

ConvR mice (1.9-6.0 fold, Fig. A.4A, Supplemental Fig. 5A), in accordance with the lack of 

microbiota-accessible carbohydrates in this diet. Interestingly, chow-fed ConvD mice had 

greater cecal SCFAs than ConvR mice (Fig. A.2E). This pattern in cecal SCFA levels is 

consistent with that of histone PTM changes in ConvD and ConvR mice on chow, wherein 

PTM states trend in the same direction, but the magnitude of change is larger in ConvD mice 

vs. ConvR (Fig. A.1B). This suggests that SCFA availability influences histone PTM states. 

In peripheral venous blood, levels of these SCFAs were unchanged (Supplemental Fig. 5B), 

which is consistent with these organic acids having already undergone significant metabolism 

in the liver prior to reaching peripheral venous blood. 

As predicted by cecal SCFA data, the gut microbiota-host epigenome relationship was 

significantly altered in response to HF/HS feeding. While there was a microbiota-dependent 

increase in histone H4 acetylation in ConvR and ConvD tissues of chow-fed mice (Fig. A.1B), 

HF/HS-feeding abolished the effects of gut colonization in liver and WAT (Fig. A.2F and 

A.2G). Interestingly, the microbiota-dependent effects on histone H4 acetylation were 

attenuated, but still significantly increased relative to GF controls in HF/HS-fed mouse 

proximal colon (Fig. A.2H). This pattern of diet-dependence was also present in other histone 

PTM states. The response to gut microbiota on histone H3 K18 and K23 also trended as a 

function of diet: K18me1 and K23me1 peptides both decreased significantly in livers of both 

ConvR and ConvD chow fed mice, but remained unchanged in HF/HS-fed mice (Fig. A.2I). 

The coeluting peptides K18ac and K23ac (i.e. K18ac/K23ac) were unchanged in response to 

gut microbiota in livers of chow-fed mice, yet decreased significantly in HF/HS-fed mouse 
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livers (Fig. A.2I). However, in proximal colon this diet-dependency was again absent and 

histone PTM states trended in similar directions regardless of dietary conditions (Fig. A.2J). 

There was also a diet-dependent, microbiota-independent increase in basal histone H4 

acetylation in liver, proximal colon, and adipose tissue. In comparison to histone H4 

acetylation in tissues from chow-fed ConvR and GF animals, there were significant increases 

in nearly all forms of 1ac-4ac histone H4 peptides in HF/HS-fed tissues ranging from 1.2 to 

7.2-fold (Supplemental Fig. 6). 

Although the direction of change in both acetylated and methylated histone PTM states 

generally remained similar in ConvR and ConvD tissues, there were differences in the 

magnitude of PTM changes (Fig. A.1B, A.2F-J) that trended with differences in cecal SCFA 

levels (Fig. A.2E). To investigate whether these differences reflected alterations to microbial 

community composition, we performed 16S rRNA sequencing. Principal Coordinates 

Analysis (PCoA) of weighted UniFrac distances revealed that the microbial community 

composition of ConvR and ConvD mice on a chow diet was more similar to each other than 

it was to the microbial community from mice fed HF/HS diet (Supplemental Fig. 2A). ConvR 

mice fed a HF/HS diet had significantly fewer Bacteroidetes and a greater abundance of 

Firmicutes (Supplemental Figures 2B-C) than chow fed ConvR and ConvD mice. This is 

consistent with previous observations that diet and obesity alter the ratio of Bacteroidetes to 

Firmicutes in the gut (Ley et al., 2005; Turnbaugh et al., 2006). Furthermore, the relative 

abundance of these two major phyla in chow-fed ConvD mice were intermediate between 

chow- and HF/HS-fed ConvR mice (Supplemental Figures 2B- D). Together, these data 

suggest that both gut microbial community composition and metabolite production, which are 
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inherently linked, are important factors that mediate the relationship between gut microbiota 

and regulation of host chromatin states. 

 

Functional impact: Co-regulation of hepatic genes associates with altered chromatin states  

To assess whether microbiota-dependent changes in host chromatin state affected 

tissue gene expression, we performed RNA-seq analyses on livers of colonized (both ConvR 

and ConvD) and GF mice on the two diets described above. Each group of colonized mice 

was compared to its diet-matched GF control: i.e., chow-fed ConvR vs. GF, chow-fed ConvD 

vs. GF, and HF/HS-fed ConvR vs. GF. A total of 623 genes were differentially expressed (DE) 

among these three groups, as determined by an FDR cut-off of 0.05 (Supp. Table 2). K-means 

clustering of hepatic DE genes revealed 6 optimal clusters, each enriched for unique biological 

pathways (Fig. A.3A, Supp. Table 3). When comparing ConvR mice on either chow or HF/HS 

diets to their respective GF controls, cluster 2 contained genes that are co-regulated as a 

function of both diet and microbiota (Fig. A.3A-B). This group of genes was enriched for 

processes involved in insulin, SREBP, and PPAR signaling, and adaptive immunity. 

Additionally, this cluster contains a number of genes that may regulate histone PTM states 

via modulation of small molecule metabolite availability. Clusters 4 and 6 contain genes 

whose expression patterns differ in ConvR animals as a function of diet (Fig. A.3A, C-D). 

Cluster 4 genes are enriched for pathways involved in cholesterol, retinol, and amino acid 

metabolism as well as host immunity, whereas cluster 6 contains a number of genes involved 

in lipid and amino acid metabolism as well as a group of genes involved in regulation of folate, 

which ultimately affects the availability of the one-carbon donor SAM to histone 

methyltransferases. It is noteworthy that a significant proportion of DE genes (4% of DE 

genes) are known hepatic targets of SREBP and PPAR. 



 

 189 

To specifically assess the effects of diet alone, we made comparisons in GF and ConvR 

mice as a function of diet. Thus, rather than comparing each group of mice to their respective 

GF control, mice were compared within colonization groups (i.e. GF or ConvR) across dietary 

conditions (i.e. HF/HS vs. chow). This comparison yielded 868 differentially expressed genes, 

413 of which increased and 455 of which decreased in expression in HF/HS-fed mice relative 

to chow-fed controls (Supplemental Fig. 4A- B). Although a fraction of DE up (Supplemental 

Fig. 4A) and DE down (Supplemental Fig. 4B) genes are regulated in both ConvR and GF 

mice, the fact that there are 1.8-fold more total DE genes in response to diet in ConvR mice 

vs. GF mice suggests that gut microbiota drive a significant portion of the response to HF/HS 

feeding in liver. Additionally, KEGG pathway analysis of unique and overlapping DE genes 

in GF and ConvR mice revealed several oppositely regulated pathways as a function of diet 

(Supplemental Figures 4C-D). For example, while starch and sucrose metabolism is enriched 

in DE up genes of ConvR mice, this same pathway is significantly enriched in DE down genes 

of GF mice. The same pattern is present for pathways involved in arachidonic acid 

metabolism, cytokine-cytokine receptor interaction, and endocytosis. Other key differences 

include DE up gene enrichment for processes involved in the TCA cycle and propionate 

metabolism in GF mice only, and butyrate metabolism in ConvR mice only (Supplemental 

Fig. 4C). Importantly, genes involved in PPAR signaling, insulin signaling, and diabetes 

mellitus were enriched in DE up genes shared by both GF and ConvR mice (Supplemental 

Fig. 4C). Pathways involved in de-novo cholesterol synthesis are significantly enriched in DE 

down genes shared by both GF and ConvR mice, suggesting that HF/HS feeding decreases 

host de-novo cholesterol synthesis irrespective of gut colonization status. 
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Thus, there are a number of DE genes that associate with altered chromatin states in 

liver whose expression is mediated by this diet-microbiota interaction. More detailed 

information about specific gene cluster membership, expression, and pathway enrichment 

among clusters is described in Supplemental Tables 2-4, Supplemental Figures 3-4, and the 

Supplemental Information. 

 

SCFA-supplementation partially phenocopies the effects of colonization on host epigenetic 

programming  

We hypothesized that the SCFAs acetate, propionate, and butyrate were key mediators 

of systemic microbiota-induced changes in host chromatin states. To further investigate this 

idea, we supplemented germ-free mice with acetate, propionate, and butyrate (GF+SCFA) 

and harvested liver and proximal colon for histone PTM and gene expression analyses (Fig. 

A.4A). These GF+SCFA mice were then compared to GF and ConvD mice, as negative and 

positive controls, respectively. Hierarchical clustering revealed that histone PTM states of 

GF+SCFA and ConvD mice were strikingly similar across both acetylated and methylated 

peptides (Fig. A.4B). Further, GF+SCFA and ConvD histone PTM signatures were highly 

correlated, with a Pearson’s correlation coefficient of 0.74 - 0.75, for proximal colon and liver 

samples (p = 1.2 x 10-10 and 5.7 x 10-11, respectively; Fig. A.4C-D). These data reveal that the 

global chromatin states induced by SCFAs mimic, in part, gut colonization.  

While levels of acetate, propionate, and butyrate were significantly increased in the 

cecal contents of ConvD mice, there were no significant differences between GF+SCFA mice 

and GF controls (Supplemental Fig. 5C). Similar to previous observations (Supplemental Fig. 

5B), peripheral blood levels of SCFAs were unchanged as a function of either gut colonization 

or SCFA-supplementation (Supplemental Fig. 5D). Thus, while conventionalization results in 
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increased local concentration of cecal SCFAs, oral supplementation of SCFAs did not, as 

these organic acids are expected to be absorbed to some extent across earlier segments of the 

alimentary tract. Additionally, each bolus of ingested SCFA in GF+SCFA mice is likely to be 

absorbed very quickly across the gut epithelium, which may result in differential luminal 

accumulation vs. constant local production by the gut microbiota. Despite these potential 

differences, the physiological impacts are likely to be similar, given that venous blood from 

the small intestine also drains to the liver via the hepatic portal vein where it mixes with blood 

traveling from the colon. 

To determine whether these highly similar global chromatin states elicited similar 

biological effects in ConvD and GF+SCFA mice, we used RNAseq analyses to examine 

hepatic gene expression in ConvD, GF+SCFA, and GF mice. Consistent with histone PTM 

observations, GF+SCFA mice had highly similar transcriptional profiles to ConvD mice (Fig. 

A.4E & A.4G). K-means clustering of 537 DE genes revealed 6 clusters of co-regulated genes 

that were enriched for a number of metabolic and immunological processes (Fig. A.4E-F, 

Supp. Tables 5-6). In particular, clusters b and c were enriched for GO-terms involved in 

immunity (cluster b) and regulation, storage, and metabolism of lipids and cholesterol (cluster 

c, Supp. Table 5). Finally, there was striking overlap of DE genes between GF+SCFA and 

ConvD mice, wherein >50% of DE genes in GF+SCFA livers overlapped with DE genes in 

ConvD mice (Fig. A.4G). Together these data suggest that SCFAs are partially causative 

metabolites in the complex regulatory relationship between diet, gut microbiota, and host 

tissue epigenetic programming. 
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DISCUSSION 

Eukaryotic histone modifying enzymes have evolved to sense and integrate 

environmental signals, ultimately programming gene expression patterns and mediating 

phenotype. Given the sensitivity of these enzymes to endogenous small molecule metabolites, 

we hypothesized gut microbial metabolites absorbed and metabolized by the host may exert 

similar control. Here, we present the first evidence that global histone acetylation and 

methylation are mediated by gut microbiota in multiple host tissues, not limited solely to the 

gut itself. 

 

Gut microbiota-diet interactions influence host chromatin states  

Gut colonization drives robust increases in acetylation of histones H3 (K9, K14, K18, 

and K23) and H4 (K5, K8, K12, and K16) in a diet- and tissue-dependent manner (Fig. A.1B). 

While there were increases in histone acetylation in liver  and adipose tissue from colonized 

chow-fed animals, the effects of gut colonization were lost in animals fed a HF/HS diet (Fig. 

A.2F-H). Interestingly, the diet-dependency of microbiota-driven changes in histone H4 

acetylation was attenuated in proximal colon. Although HF/HS-feeding diminished the 

magnitude of change in H4 acetylation, the change was not abolished (Fig A.2H). This 

difference in tissue-specific response may be due to changes in availability of SCFAs. 

Production of SCFAs is reduced 1.9 to 6-fold in HF/HS-fed animals vs. their colonized 

counterparts (Fig. A.2E, Supplemental Fig. 5A). These dietary effects were expected, given 

that HF/HS-feeding is known to reduce gut microbial biomass and significantly alter both 

community composition and metabolite production (Daniel et al., 2014). Therefore, while 

SCFAs may still be present at high enough concentration to affect histone modifying enzymes 

in the gut of HF/HS-fed animals, the amount available in peripheral circulation may not be 
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sufficient to elicit effects in distal tissues in HF/HS-fed mice. It is worth noting that although 

there was no effect of microbiota on histone H4 acetylation in tissues of HF/HS-fed mice, 

HF/HS-feeding alone induced an increase in baseline histone H4 acetylation (Supplemental 

Fig. 6). The nature of this increase is unclear, but could result from increased production of 

acetyl-CoA through beta-oxidation of dietary lipids or due to elevated lipid-based signaling 

pathways in the HF/HS diet. While it may be possible that this basal increase in histone 

acetylation masked microbiota-driven changes, the fact that acetylation is increased still 

further in proximal colon, where SCFAs are generated, under HF/HS-feeding suggests that 

the loss of effect seen in distal tissues is due to limiting amounts of bacterial SCFA rather than 

an elevated baseline. 

SCFAs play a dual role as both substrates for metabolism and as signaling molecules 

(Besten et al., 2013). Mice and humans derive ~10% of their energy from oxidation of 

bacterial SCFAs. Colonocytes obtain 60-70% of their energy from oxidation of SCFAs. The 

remaining SCFAs drain from the gut via the superior and inferior mesenteric veins, which 

converge and empty into the liver via the hepatic portal vein. As much as 70% of acetate and 

roughly 30% of propionate is taken up by the liver, where they both serve as sources of energy. 

Acetate can also serve as a substrate for cholesterol, long-chain fatty acid, glutamine, and 

glutamate synthesis in the liver. The remainder is metabolized by other tissues, including 

white adipose. As ligands of the G-protein coupled receptors FFAR2 (GPR43) and FFAR3 

(GPR41), SCFAs play a role in lipid and glucose metabolism. Thus, these metabolites play 

complex roles in regulation of host metabolic phenotype. Whether SCFAs contribute to 

beneficial or pathogenic effects in the host remains unclear. While SCFAs have been 

associated with anti-inflammatory effects, improvement of insulin sensitivity, glucose 
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homeostasis, and weight control; and protection from colorectal  cancer (Besten et al., 2013; 

Canfora et al., 2015; Donohoe et al., 2012; 2014; P. M. Smith et al., 2013), they have also 

conversely been associated with increased capacity for energy harvest, inflammation, hepatic 

steatosis, and the promotion of colorectal cancer (Belcheva et al., 2014; Singh et al., 2015; 

Turnbaugh et al., 2006). Thus, further investigation is needed to reveal the complete set of 

molecular mechanisms underlying SCFA-associated phenotypes. 

Here, we show that SCFA supplementation of germ-free mice is sufficient to 

recapitulate many of the epigenetic effects of gut colonization (Fig. A.4A-G). Interestingly, 

SCFA supplementation mimics effects of colonization on both histone acetylation and 

methylation, to the extent that collective histone PTM states in liver and proximal colon of 

GF+SCFA and ConvD mice have highly significant Pearson’s correlation values of 0.74-0.75 

(Fig. A.4B-D). While the link between histone acetylation and SCFAs is more clear, the link 

between SCFAs and histone methylation is less clear. Treatment with SCFAs in a cell culture 

system has been shown to suppress expression of the histone methyltransferases EZH2 and  

SUV39H1and decrease of the repressive histone methylation modifications H3 K9me3 and 

H3 K27me3 (Yu et al., 2014), however the underlying mechanisms are not currently 

understood. Regulation of histone methylation may be due to either antagonism by acetylation 

at the same site (Pasini et al., 2010) or regulation by combinatorial effects of acetylated states 

at nearby sites. While the effects of SCFA- supplementation broadly recapitulated both 

chromatin states and gene expression patterns of ConvD mice, it is worth noting that the 

magnitude of the effects were generally less in SCFA+GF tissues relative to ConvD (Fig. 

A.4B, A.4E). This suggests that while SCFAs are at least partially causative, there are likely 

other bacterial metabolites that regulate the host epigenome. 
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The increases observed in histone acetylation generally accounted for very small mean 

percentages of total global chromatin states (≤2.1% of the total across all conditions for highly 

acetylated peptides containing H3 K9, K14, K18, and K23 and H4 K5, K8, K12, and K16) . 

In contrast, H3 K27me3, which increased by 1.4- to 1.5-fold in ConvD tissues relative to GF 

controls, accounted for a mean of nearly 12% of the global peptide family total across all 

conditions. Therefore, it is possible that gut microbiota drive active chromatin states at very 

specific loci in the genome (given the small % of global peptide family totals), whereas the 

microbiota-induced repressive chromatin states are more broadly distributed across the 

genome (given their larger % of total global peptide family states). 

While the direction of change remained highly similar across PTM states in ConvR 

and ConvD tissues, the magnitude of change was often greater in ConvD mice vs. ConvR 

(Fig. A.1B). Notably, this trend in PTM states mirrored that of cecal SCFA contents (Fig. 

A.2E), which supports a role for SCFAs as key metabolites in the microbiota-host epigenome 

response. This is somewhat unexpected but is likely due, at least in part, to differences in 

microbial community composition between ConvR and ConvD mice. This variance may be 

due to loss of key taxa during colonization of GF mice and/or differences in the ability of 

specific taxa to compete in a GF environment. It is also possible that differences in the host 

tissue chromatin response are due to the fact that ConvD animals were colonized only one 

month prior to sacrifice, whereas ConvR animals were allowed to acquire a microbiota from 

birth onward. In this scenario, the increased magnitude of change in histone PTM states 

of ConvD mice vs. their ConvR counterparts may be due to the fact that ConvD hosts are 

still metabolically adapting to a previously inaccessible source of nutrition via the gut 

microbiota. 
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Hepatic gene co-regulation is linked to altered chromatin states  

Altered histone PTM states associated with differential expression of genes involved 

in metabolic homeostasis and immune  regulation in both colonized and SCFA-supplemented 

mice (Fig. A.3A-D, Fig. A.4F-H). A surprisingly large number of hepatic DE genes were 

involved in either glucose or lipid and cholesterol homeostasis, which is underscored by 

significant pathway enrichment for insulin and PPAR signaling (Fig. A.3, Supplemental 

Information). The fact that genes involved in insulin signaling were downregulated in both 

chow and HF/HS fed mice vs. their GF controls suggests that insulin sensitivity may be 

decreased in colonized mice, irrespective of diet. Interestingly, hepatic Scd1 expression was 

significantly increased in colonized mice relative to their GF controls, and the magnitude of 

change was greater in chow- vs. HF/HS fed mice (Fig. 3B). Expression of Scd1 was recently 

shown to be driven by gut microbiota in a SCFA-dependent manner and to contribute to the 

development of metabolic syndrome and increased de novo hepatic lipogenesis in toll-like 

receptor 5 knockout (T5KO) mice (Singh et al., 2015). Given this, it is unclear why the 

microbiota-driven increase in Scd1 expression is greater in mice fed a standard chow diet than 

in those fed a diet more permissive to the development of metabolic syndrome (HF/HS), but 

the increased response in chow-fed mice may simply be due to increased SCFA availability 

relative to their HF/HS-fed counterparts. Further, T5KO mice are prone to the development 

of metabolic syndrome, thus, their metabolic response to microbiota may differ from that of 

a wild type mouse (Singh et al., 2015). 

The gut microbiota also altered expression of a number of genes involved in 

availability of small molecule metabolites that are known to regulate histone PTM addition or 

removal. One prime example is ATP citrate lyase (Acly). Under both chow and HF/HS 
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feeding, Acly expression decreased in ConvR vs. GF mice. This enzyme has been 

demonstrated to be essential for glucose-driven histone acetylation in mammalian cells, 

however acetate-driven histone acetylation was not affected by knockdown of Acly expression 

(Wellen et al., 2009). Interestingly, Acly expression decreases most in HF/HS-fed ConvR 

mouse livers. This begs the question of whether Acly expression is decreased in the setting of 

decreased tissue glucose-dependency due to the presence of other sources of carbon and 

energy, such as bacterial SCFAs or highly energetic lipids from HF/HS-feeding. Availability 

of NAD+, a necessary co-substrate for Class III HDACs, may also be modulated by gut 

microbiota. NAMPT, which catalyzes the rate-limiting step in NAD+ biosynthesis, was 

differentially expressed in colonized vs. GF livers. Finally, there were four genes in cluster 6 

linked to regulation of folate, which can affect the availability of the methyl donor SAM for 

histone methyltransferases: Sardh, Dmgdh, Amt, and Gldc (Fig. A.3D). Loss of Gldc, the first 

enzyme of the glycine cleavage system that breaks down glycine to produce one carbon 

formate, has been associated with neural tube defects, growth retardation, and decreased levels 

of one carbon-carrying folates in tissue that can be rescued by supplementation with formate 

(Pai et al., 2015). Thus, decreased expression of these enzymes may affect tissue SAM 

availability, via modulation of folate levels. 

Finally, a number of genes associated with host immunity and inflammation were 

differentially expressed in colonized as well as GF+SCFA mice relative to their GF controls 

(Fig. 3A-D, 4F-G). Given that GF mice are completely naive to microbiota, it is not 

unexpected that colonized mice have altered expression of immunomodulatory genes relative 

to GF mice. Further, it is known that gut microbiota are important for the development and 

function of host immunity (Belkaid and Hand, 2014). SCFAs have been previously shown to 
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play an important role in both adaptive and innate immunity, in FFAR2- and FFAR3-

dependent manners (Belkaid and Hand, 2014; Correa et al., 2016; P. M. Smith et al., 2013). 

Whether the multitude of DE metabolic and immunomodulatory genes observed here are 

directly regulated by histone PTMs remains to be determined. However, it is noteworthy that 

there are a number of regulated genes that have no known association with FFAR2 or FFAR3 

signaling. The close association between histone PTM states and gene expression patterns, 

particularly in GF+SCFA mice, further supports a role for histone PTMs in the response to 

microbiota. Finally, gene activation via FFAR2 and FFAR3 signaling need not be mutually 

exclusive with concurrent alterations in histone PTM states. Further work will be required to 

elucidate which genes are directly regulated by microbiota- mediated histone PTM states, 

however the work presented here offers an extensive resource that will be invaluable for future 

exploration of this nature. 
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CONCLUSIONS 

The gut microbiota is a diverse, metabolically rich community that has co-evolved 

with its mammalian hosts (Ley et al., 2008). The impact of this metabolic and immune 

regulatory organ on the host has become increasingly evident in recent years. Here, we 

demonstrate that gut microbiota exert a regulatory role on both methylated and acetylated host 

chromatin states in multiple organ systems that is at least partially driven by microbial SCFAs. 

These SCFAs can be either directly converted (acetate) or oxidized (propionate and butyrate) 

to acetyl-CoA, the substrate for HAT enzymes. Further, butyrate is a known HDAC inhibitor. 

Both scenarios result in increased histone acetylation. Consequently, it is possible that 

eukaryotic histone-modifying enzymes have evolved to “sense” not only endogenous small 

molecule metabolites, but also those produced by commensal microbiota. In this manner, the 

host epigenetic machinery guides phenotype in response to altered metabolic states, such as 

increased availability of SCFAs, driving specific gene responses. While robust associations 

between the gut microbiota and the host in health and disease have been demonstrated, in 

many cases the underlying molecular mechanisms remain to be elucidated. Here we show that 

the gut microbiota and their metabolites exert systemic regulatory effects at the level of host 

tissue epigenetic programming. This approach may provide valuable insight into a variety of 

gut microbiota-mediated host metabolic and immunologic phenotypes, enhancing our ability 

to not only understand how the gut dysbiosis affects host disease, but also to harness this 

metabolic organ to promote host health. 
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EXPERIMENTAL PROCEDURES 

Mouse husbandry – Animal care and study protocols were approved by the University of 

Wisconsin- Madison Animal Care and Use Committee. Mice were housed in the Microbial 

Sciences Building vivarium. Conventionally-raised (ConvR) and germ-free (GF) C57BL/6J 

mice were bred at the University of Wisconsin-Madison to generate mice used in this study. 

GF mice were housed in separate plastic flexible vinyl gnotobiotic isolators. 

Mice were group housed by colonization status and diet (3-5 mice/cage) under standard 

conditions (12 h light:dark, temperature- and humidity-controlled conditions), and received 

ad libitum access to water and food. After 3 weeks of age, mice were maintained on either a 

control breeder chow (5021, Lab Diet, 23.7%-kcal fat, 53.2% carbohydrate, 23.1% protein) 

or a high-fat high-sucrose (HF/HS) diet (TD.08811, Envigo Teklad, 44.6%-kcal fat, 40.6% 

carbohydrate, 14.8% protein). Diets were sterilized by irradiation and autoclaving. Sterility of 

germ-free animals was assessed by incubating freshly collected fecal samples under aerobic 

and anaerobic conditions using standard microbiology methods. Final dissection and data 

collection were performed at 19-weeks of age. 

Conventionalized (ConvD) mice were generated by colonizing GF C57BL/6J mice with fresh 

cecal contents were collected from 15-week old conventionally-raised C57BL/6J mice 

maintained on a control breeder chow diet (n = 2 mice per donor cecal microbiota sample per 

experiment; 5021, Lab Diet). Immediately after sacrifice, fresh cecal contents from donor 

mice were re-suspended in Mega Medium (1:100 w/v) in an anaerobic chamber (Romano et 

al., 2015). Suspensions were transferred into anaerobic sealed tubes and used to colonize mice 

in a sterile biological safety cabinet. Germ-free 15-week-old C57BL/6J male mice were 
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inoculated via a single oral gavage with ~0.2 ml of cecal inocula (Turnbaugh et al., 2009b) 

and kept in sealed filter-top gnotobiotic cages for 4 weeks. 

SCFA Supplementation – Germ-free (GF) C57BL/6J male mice were maintained in sterile 

HEPA filter cages and fed water and autoclaved chow ad libitum. At 12 weeks of age a subset 

of GF mice were supplemented with a mixture of short chain fatty acids (SCFA) (acetate 

67.5mM, butyrate 40mM, propionate 25.9mM (P. M. Smith et al., 2013)) via drinking water 

supplied ad libitum or conventionalized (ConvD) with a C57BL/6J intestinal microbial 

community by gavage. Inoculum for colonization was prepared by suspending freshly 

collected fecal pellets in Mega Medium. Water was sterilized by autoclave prior to SCFA 

addition and filter sterilized after SCFA addition through a 0.2 µm filter before being supplied 

to the mice. SCFA supplemented water was freshly prepared and changed every 5 days and 

again 24h before sacrifice. Sterility of germ-free animals was assessed by incubating freshly 

collected fecal samples under aerobic and anaerobic conditions using standard microbiology 

methods. Prior to sacrifice and tissue collection at 14 weeks of age all mice (GF, GF+SCFA, 

ConvD) were anesthetized with 1-5% inhalant isoflurane supplied in oxygen. 

 

The methods used to measure histone PTMs, 16S rRNA sequencing, gene expression, hepatic 

total cholesterol and triglycerides, and cecal and peripheral blood SCFAs are described in the 

Supplemental Methods. 
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FIGURES 
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Figure A.1. Gut microbiota affect host tissue epigenetic states. (A) Experimental design: 1. 

proximal colon, liver, and white adipose tissue was harvested from germ-free (GF), conventionally 

raised (ConvR), and conventionalized (ConvD) mice. 2-3. Histones were extracted, chemically 

derivatized and trypsinized to generate peptides amenable to mass spectrometry analysis. 4-5. 

Histone peptides were injected onto a Thermo Q-Exactive mass spectrometer and data was 

acquired on >60 unique histone PTM states. (B) Relative abundance of histone PTMs on histone 

H3, histone H3.3, and histone H4. Values are reported as a fold change vs. GF controls (log2). The 

mean % of peptide family total across all samples is displayed in the right-most column. * p < 

0.05, ** p < 0.01, *** p < 0.001, n=4 mice per condition.  
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Figure A.2. Gut microbiota-mediated epigenetic changes are sensitive to diet. (A) 

Experimental design: 1.GF and ConvR mice were raised on either chow or a HF/HS 

(“Westernized”) diet. 2-5. Tissues were harvested and histone extracts were prepared for mass 

spectrometry analysis as described in Figure 3.1. (B-D) Histone H4 (K5, K8, K12, and K16) 

acetylation in colonized liver (B), proximal colon (C), and adipose tissue (D) relative to GF 

controls (fold change, log2). (E-F) Histone H3 K18 and K23 methylation and acetylation in 

colonized liver (E) and proximal colon (F) relative to GF control (fold change, log2). (G) Histone 
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H4 (K5, K8, K12, and K16) acetylation in tissues of HF/HS-fed vs. chow-fed mice. Mean % of 

peptide family totals are displayed in the right-most column. * p < 0.05, ** p < 0.01, *** p < 0.001, 

error bars represent standard error from the mean, n=4 mice per condition. 
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Figure A.3. Hepatic genes are co-regulated in colonized mice as a function of diet or 

colonization status. (A) K-means clustering of differentially expressed hepatic genes (left, fold 
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change vs. GF, log2) and KEGG pathway enrichment terms (right). (B-D) Interaction network for 

cluster 2 (B), cluster 4 (C), and cluster 6 (D). Only genes with at least one reported interaction are 

graphed. Edges indicate interaction. Node size indicates relative expression in HF/HS-fed mouse 

livers. Node color indicates relative expression in chow-fed mouse livers. 
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Figure A.4. SCFA-supplementation mimics colonization-induced epigenetic programming. (A) 

SCFA measurement in cecal contents from GF, ConvR, and ConvD animals on chow and HF/ HS 
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diet. *p < 0.05, **p < 0.01, error bars represent standard deviation, n = 4 mice per condition. (B) 

Experimental design: 1. Germ-free mice were supplemented with SCFAs (GF+SCFA) or 

colonized (ConvD) and tissues were harvested. 2-5. Histone extracts were prepared as described 

in figure 1. (C) Hierarchical clustering of histone PTMs in colonized and GF+SCFA mouse tissues 

(fold change vs. GF, log2). (D-E) Pearson’s correlation of ConvD and GF+SCFA mouse tissue 

histone PTM states in liver (D) and proximal colon (E). (F) K-means clustering of differentially 

expressed hepatic genes in ConvD and GF+SCFA mice. FDR cutoff for differential expression = 

0.05, n = 3 mice per condition. (G) GO-term enrichment in clusters b and c. (H) Overlap of 

differentially expressed genes between ConvD and GF+SCFA mice. 
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ABSTRACT 

Social relationships shape human health and mortality via behavioral, psychosocial, and 

physiological mechanisms, including inflammatory and immune responses. Though not tested in 

human studies, recent primate studies indicate that the gut microbiome may also be a biological 

mechanism linking relationships to health. Integrating microbiota data into the 60-year-old 

Wisconsin Longitudinal Study, we found that socialness with family and friends is associated with 

differences in the human fecal microbiota. Analysis of spouse (N = 94) and sibling pairs (N = 83) 

further revealed that spouses have more similar microbiota and more bacterial taxa in common 

than siblings, with no observed differences between sibling and unrelated pairs. These differences 

held even after accounting for dietary factors. The differences between unrelated individuals and 

married couples was driven entirely by couples who reported close relationships; there were no 

differences in similarity between couples reporting somewhat close relationships and unrelated 

individuals. Moreover, the microbiota of married individuals, compared to those living alone, has 

greater diversity and richness, with the greatest diversity among couples reporting close 

relationships, which is notable given decades of research documenting the health benefits of 

marriage. These results suggest that human interactions, especially sustained, close marital 

relationships, influence the gut microbiota. 
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INTRODUCTION 

Social relationships exert a sustained influence on human health and mortality with social 

isolation having strong negative consequences and high levels of social integration far exceeding 

the protective effects on mortality of individual level behaviors such as smoking cessation or 

maintaining a normal weight 1,2. Research in the social sciences has shown that individuals who 

cohabitate in marriage and marital like relationships have better health than do unpartnered adults3. 

For both social relationships generally, and marriage specifically, health benefits are largely 

achieved in the context of high-quality relationships. The robust links between these relationships 

and health are related to stress, behaviors, and psychosocial resources, among other factors 2. In 

part, social support may impact one’s health by reinforcing healthy habits, reducing the impacts of 

stress, and preventing the use of unhealthy “self-medications” like smoking and drinking 2. 

Additional research points to stress-related biological processes that may also contribute to the 

positive impacts of social relationships through changes in inflammatory processes, metabolic 

syndrome, and neurological functioning 4,5. 

Recent work in the field of microbiology points to another possible biological mechanism 

linking human relationships and health: the microbiome. The microbial communities that inhabit 

mammals have profound effects on biology and health 6. Gastrointestinal (GI) microbial 

communities impact host health by modulating the epigenome 7, brain function 8, and metabolism 

of drugs and nutrients 9 as well as impacting immune system function 10 and development 11. While 

the microbiota reaches an adult-like configuration by three to five years of age 12, considerable 

variation exists between adults 13, and differences are mediated by a number of factors. Most 

notable among these are diet 14 and host genetics 15, which also correlate with health. An 

individual’s microbiota structure (i.e. relative abundance) and composition (i.e. who’s there) can 
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change rapidly in response to inputs like diet 16 and antibiotics 17. Nonetheless, there is evidence 

that an individual’s microbiota remains relatively stable over many years 18–20, perhaps in part 

because a person’s behaviors also tend to be consistent over many years. 

While a number of factors like diet are known to impact both the microbiota and health 21, 

less is known regarding social relationships. Most existing research has focused on animal models, 

which has produced compelling evidence that social interactions, via a range of different types of 

physical contact, influences the gut microbiota through microbial sharing between individuals 22–

26. Additionally, states of isolation, such as maternal neglect, influence the gut microbial 

composition in animal models 27 at least in part through stress 28,29. Thus, the gut microbiota may 

play a role in some of the long-term health effects of social relationships. 

But despite this tantalizing evidence, studies in human populations remain relatively small 

in number 30. There are a few studies exploring how mother-infant interactions influence the 

development of the infant’s gut microbiome and even how broader social interactions influence 

the milk microbiome 31,32. In terms of adults, there is evidence regarding the influence of 

cohabitation, may influence the gut microbiome. A few recent studies have found that individuals 

living together had more similar gut 33 and skin 33,34 microbiota. Interestingly, however, another 

study found that married cohabitating couples had no more similarity in the composition of their 

gut microbiota than did unrelated individuals 35. 

Thus, while it does appear that living together may influence the gut microbiome, human 

studies have not investigated how adult relationships, rather than just simply living in the same 

space, may influence the gut microbiome. The quality of the relationship may matter. Closer 

relationships likely lead to even closer shared environments, via mechanisms such as time spent 

physically together. Indeed, one recent study of wild baboons found that close partners within 
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social groups had more similar gut microbiotas 36. Studies have also have not more generally 

compared how living alone versus living with an intimate partner influences the gut microbiome; 

individuals living alone are on average, de facto, more socially isolated than those living with 

someone, and animal studies have generally shown that social isolation leads to decreased 

microbial diversity 22,37–39. Though causality is not certain, decreased microbial diversity is 

associated with obesity, cardiac disease, and type 2 diabetes, and a range of other inflammatory 

disorders 40–47. More broadly, there is extensive evidence that cohabitating couples in later life 

have substantially improved physical and psychological well-being compared to single adults 48–

50. Thus, similar mechanisms might explain some of the variance in findings in humans. 

An important hindrance to research examining social relationships and the GI microbiota 

is the availability of human samples with sufficiently well-characterized life course measures of 

broader social environments and conditions. Thus, most microbiological research in this field is 

based on animal models 22–25. However, there are now a wide array of well-characterized 

longitudinal studies in the social sciences that have generated decades of research documenting 

relationships between broader social environments and mortality 5,51–54. These data can provide a 

platform for studies of the human microbiota to advance knowledge for both social scientists and 

microbiologists, including whether social conditions influence the gut microbiota and whether the 

gut microbiota is a mediating biological mechanism explaining how social conditions influence 

health. 

Here, we leverage a multidisciplinary collaboration to investigate the links between human 

interaction, the microbiota, and human health. We utilized data in the nearly 60-year Wisconsin 

Longitudinal Study (WLS) 54, which constitutes a random sample of 1 in 3 1957 Wisconsin high 

school graduates (N = 10,317), as well as selected spouses and siblings surveyed periodically 
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during their adult life. We correlate the fecal microbiota of 408 older individuals (58 – 91 yo) from 

WLS with extensive health and behavioral data, as well as compare spouse and sibling pairs within 

the cohort. Overall, this project demonstrates the promise of joint participation between social 

scientists and microbiologists in efforts to more fully understand the gut microbiota and its impacts 

on human health.  
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RESULTS AND DISCUSSION 

We employed 16S rRNA gene sequencing to characterize the fecal microbiota of 408 

individuals, including Wisconsin Longitudinal Study (WLS) graduates (N = 179, 76 ± 0.5 years 

old), siblings of graduates (134, 74 ± 6.4), spouses of graduates (63, 76 ± 3.7), and spouses of 

siblings (32, 73 ± 6.1). We then correlated these communities to longitudinal survey data 

collected from 1957 to 2015 as part of WLS 54. For more details on this data collection, see 55. 

A total of 24.5 million high-quality sequences were obtained for 408 fecal samples (60,000 ± 

19,000 SD sequences per sample) after quality filtering in mothur. All samples achieved sufficient 

coverage as determined by Good’s coverage > 99% (Dataset S1). 

In the WLS graduate cohort, we identified several factors correlated with gastrointestinal 

(GI) microbiota including sex, antibiotics, dietary protein, high blood sugar, and heart disease 

(Fig.B.1, Fig. S1, Table S1). These factors were reported in the previous literature 57,58 with diet 

playing a particularly strong role 14,16,56. Thus, we assessed diet across a number of measures 

including habitual intake of protein, vegetables, and fruits (Text S1) during the year prior to the 

fecal sample collection (for details, see METHODS, Statistical analysis for graduates). While 

overall dietary dissimilarity (Bray-Curtis and Jaccard) across these three categories correlated with 

gut microbiota dissimilarity, only the total frequency of dietary protein consumption was robustly 

associated with microbial composition using either univariate or multivariate analyses (Table S1). 

Thus, we note that all analyses have adjusted for potential confounders including age, sex, 

antibiotics, dietary protein, and chronic conditions (diabetes and heart disease) unless stated 

otherwise. In some analyses –that are noted below—we do also include vegetable and fruit dietary 

data. 
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Social interactions and the human fecal microbiota  

Human interactions were also associated with differences in gut microbiota and diversity. 

Specifically, we found that individuals that were cohabitating with a spouse or partner had more 

similar microbiota composition with their cohabitating spouse/partner as well as higher diversity 

and richness than unmarried, non-cohabitating individuals (unweighted UniFrac P = 0.029 

Shannon P = 0.005, Chao P = 0.011, Fig. B.2). Since all cohabitating pairs were male-female and 

sex was a strong determinant of the microbiota in this study (P < 0.001, Table S2), increased 

diversity may be partially due to sustained exchange of microorganisms between the sexes, though 

we were not able to test this given that there were no same sex couples in these data. Increases in 

diversity seen here are consistent with a previous cohabitation study in pigs 59 and may have 

implications for human health, as previous work indicates that increased gut microbial diversity 

is associated with lower risks of irritable bowel syndrome (IBS), Crohn’s disease, ulcerative 

colitis, and other GI afflictions 60. Social interactions with relatives and friends were stronger 

predictors of gut microbial diversity in non-cohabiting individuals than cohabiting 

spouses/partners (unweighted UniFrac P = 0.0030, Shannon P = 0.042, Chao P = 0.063, Fig. S2) 

(Table S2). Here, social interactions were defined as the sum of “How many times during the past 

four weeks have you gotten together with relatives/friends?” The associations may have been 

weaker for cohabitating spouses due to their higher microbial diversity; ecological theory supports 

that diverse communities are more resilient and resistant to invasion by new species 61. Thus, one 

explanation for these differential associations is that the more diverse microbiotas of individuals 

already cohabitating with a spouse may not have been as strongly influenced by increasing social 

interactions while the less diverse microbiotas of those living alone were more strongly 

influenced by invasion of new species through social exposures. It is also possible that 

cohabitating couples share the same friends and socialize together with these friends. However, 
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factors contributing to the resilience of the human gut microbiota require further exploration to 

confirm this hypothesis. 

 

Spouses have more similar microbes than siblings and unrelated individuals  

Previous studies have established that the GI microbiota reaches an adult-like configuration 

by 3 to 5 years of age18,62,63 and that during adulthood, communities are stable on the time scale 

of years 19,20. Thus, microbial communities established in early life may persist and, aside from 

extreme perturbation, remain stable across one’s adult lifetime. However, our analyses comparing 

sibling, couple, and unrelated pairs challenge the assumption that microbial communities 

established in early life will be largely unperturbed in later life (for details, see METHODS, 

Statistical Analysis for spouse and siblings). In fact, we find no evidence for a remaining influence 

of early life on the composition of the gut microbiota among older adults. In this older cohort, 

spouses were more similar than unrelated subjects (unweighted UniFrac P = 3.2E-5) or sibling 

pairs (unweighted UniFrac P = 0.033, Fig. B.3). Further, the length of the cohabitating marital 

relationship was positively correlated with similarity (unweighted UniFrac, P = 0.031) In contrast, 

siblings were no more similar than unrelated pairs by any beta-diversity metric (P > 0.3, Fig. B.3A, 

Fig. S3A, D, G) (Table S2). We also found no evidence that the physical proximity of siblings—

as measured by physical distance between siblings—influenced gut microbial similarity. Thus, 

adult factors like marriage with cohabitation (spouses) appear to have a greater influence on the 

adult gut microbiota than early-life environment or genetics (siblings).  

This is further supported by our findings that childhood farm status was not associated with 

microbial richness (Chao P = 0.342) while working on a farm as an adult correlated with higher 

richness (Chao P = 0.005). Farm-driven differences in the microbiota are of particular interest, 

because adolescents that grew up on a farm have more diverse microbial communities 64 and 
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reduced risk of asthma and other atopic diseases both during childhood 65 and as adults 66. Given 

the results here, it appears that the microbially-driven protective effects of early farm exposures 

are not due to the persistence of protective microorganisms acquired in early-life. Protection may, 

instead, be conferred by immune development and training by early-life microbes as suggested 

previously 67.  

Our results are also in contrast with previous work showing that genetically related 

individuals harbor more similar microbial communities than unrelated individuals, regardless of 

current cohabitation 35,68–70. However, these previous studies investigated children 68, young 

adults35,69, or a wide age range 70, and therefore, cumulative changes across a lifetime may not 

have reached a level sufficient to overcome early-life factors impacting the microbiota. 

Additionally, sibling pairs in other studies were twins 35,68–70, and many focused on monozygotic 

twins (same sex and age) 35,69,70 as opposed to this study where siblings were often of opposite sexes 

(43%) and ranged from less than a year to 18 years apart in age. Also, the unrelated group in this 

study may have exhibited higher homogeneity than unrelated groups in other studies, because most 

grew up in and/or currently live in the state of Wisconsin. Thus, compared to previous studies, 

siblings were likely less similar and unrelated pairs more similar across our cohort. Furthermore, 

genetic effects on the microbiota are often small 70 and detection may require a larger human cohort 

than used here. Taken together, these factors may have contributed to the lack of significant 

differences observed between sibling and unrelated groups even though average sibling beta-

diversity was intermediate between spouses and unrelated individuals.  

 

Increased microbial similarity, diversity, and richness in closer relationships  

For both spouse and sibling relationships, microbiota similarity was associated with self-

reported relationship closeness (unweighted UniFrac P = 0.0079). Closeness was measured by 
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participant responses to “How close are you and your current spouse/sibling?” on a scale of not at 

all (1) to very (4). Due to the small sample sizes in the categories “Not very” (N=13) and “Not at 

all” (N=4), we combined these two groups into “Not” close. Across spouses and siblings, 

individuals in very close relationships harbored gut microbial communities more similar to their 

close social partners than those in not very close relationships (Fig. B.3B), though this relationship 

was not significant within the spousal and sibling pair groups separately (Fig. B.3C). Moreover, 

differences between spouses and unrelated individuals, in terms of closeness (Fig. B.2), as well as 

the enhanced diversity and richness in cohabitating couples versus individuals living alone (Fig. 

B.2) were driven by spouses reporting very close relationships. This was in contrast to couples 

reporting only somewhat close relationships as these pairs did not have higher gut microbiota 

similarity than unrelated pairs (Table S3) nor did they display microbial diversity or richness 

different from non-cohabitating individuals (Table S3). Importantly, the apparent impacts of 

relationship closeness do not appear to be mediated by similarities in diet since overall dietary 

dissimilarity (Bray-Curtis and Jaccard) did not significantly differ according to relationship 

closeness (ANOVA P > 0.5; Table S4). We note that these included sensitivity tests that modeled 

diet based on the protein consumption, but also overall diet that captured vegetable and fruit 

consumption. 

While diet is often correlated with the GI microbiota 56, closeness points to the less well-

understood contributions of human interactions and shared behaviors. Close proximity and 

frequent physical contact were correlated with microbiota similarity among primates with direct 

microbial sharing between individuals contributing to similarity 22,23. In this study, relationship 

closeness may represent a summative measure of time spend together, physical affection, and other 

human interactions with the potential to result in microbial sharing. Indeed, there is evidence that 
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the salivary microbiome influences the gut microbiome and the salivary microbiome may be 

influenced by kissing 71,72. In these data, this is supported by the fact that spouses had more 

operational taxonomic units (OTUs, a proxy for microbial species) in common (30.4 ± 7.32%) than 

siblings (26.4 ± 7.47%, t-test P = 4.39E-04) (Dataset S2). Also, when comparing the spouse and 

sibling pair within a family represented in this dataset, a person tended to have more OTUs in 

common with his or her very close spouse (25.4 ± 7.9%) than his or her very close sibling (22.2 ± 

6.4%, N = 12 families, P = 0.074, Fig. 3D). This is also true when comparing very close spouses 

(22.9 ± 5.8%) and somewhat close siblings within a family (20.6 ± 5.5%, N = 17 families, P = 

0.027, Fig. B.3E). 

 

Shared taxa with close human relationships.  

In general, highly abundant genera and OTUs were shared between many spouse and 

sibling pairs while less abundant shared taxa were specific to one pair type and shared by a small 

number of pairs within that type (Dataset S3). OTUs that were commonly found among spouses or 

siblings (> 50% of pairs) but rare in the unrelated dataset (< 70% individuals, < 49% unrelated 

pairs) may represent bacterial species easily shared by close human interaction. These OTUs were 

predominately from the phylum Firmicutes (16 of 22 OTUs) with representatives of families 

Lachnospiraceae and Ruminococcaceae (Dataset S4). Interestingly, most of these potentially 

shared OTUs were from strictly anaerobic taxa, indicating that persisting in an oxygen-rich 

environment in-between hosts may not be a limiting factor in very close human relationships. 

Transmission, in these cases, could be mediated by direct contact similar to mechanisms of 

vertical transmission from mother to child 73. 

Taxa commonly associated with reduced disease incidence or severity like Akkermansia 

muciniphila 74, Bifidobacterium sp. 75,76, Collinsella aerofaciens 76, and Ruminococcus bromii 77 
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as well as potentially harmful taxa like Clostridium spiroforme 78,79 were often present in both 

persons in a spouse or sibling pair. Several of these potentially shared OTUs were associated with 

disease incidence in the larger dataset. In particular, Ruminococcus bromii, Lachnospira sp. and 

unclassified Ruminococcaceae and Lachnospiraceae OTUs were less abundant in those with high 

blood sugar (Fig. 4, Dataset S4). These results are in contrast to previous reports of more abundant 

Ruminococcaceae/Ruminococcus 80,81 and Lachnospiraceae 80 associated with diabetes in humans 

and may point to important differences in the impacts of the microbiota on metabolic health in 

older populations. Overall, though, this indicates that GI microbial species with the potential to 

impact host health may be shared by close human interactions. However, it cannot be discounted 

that these apparent health associations may be mediated by diet as those with high blood sugar 

often consume specific diets to manage disease. 

Overall, our findings indicate that in order to understand environmental influences on the 

gut microbiota, we must now consider the many microbiotas with which this individual interacts. 

Socialness with family and friends is associated with differences in the fecal microbiota. These 

differences held even after accounting for dietary factors, though given this is the first study of its 

kind, it will be critical for future work to validate this finding. Thus, it is possible that relationships 

with others may influence the gut microbiota and consequent health outcomes, either through 

direct microbial transfer or reinforcement of healthy microbiota behaviors. We further found not 

only that married couples had more similar gut microbiota but also that the microbiota of married 

individuals, compared to those living alone, has greater diversity and richness. Key to both of these 

findings, however, was that they were driven by individuals reporting that they were very close to 

their spouse as opposed to somewhat close. Close marriage relationships had a stronger influence 

than the shared genetic factors and early life environments among siblings. This finding is 
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interesting, in part, because it parallels an extensive body of evidence demonstrating robust links 

between high quality marriages and morbidity and mortality. Future work could attempt to 

disentangle the mechanisms linking close relationships to microbial composition. For example, 

while we did not find evidence that shared diet was primarily responsible for these findings, we 

could not test precise frequencies of physical contact and intimacy as an alternative explanatory 

mechanism. Importantly, the types of physical contact and intimacy change over the life course, 

with sexual intimacy becoming far less frequent in later life, but other kinds of intimate physical 

contact remaining important. Regardless of the mediating mechanism, from a social and 

population health science perspective, decades of evidence that social relationships, especially 

close ones like marriage, influence morbidity and mortality make the central finding of significant 

interest. For example, even if future work finds a greater role for shared diets, it is still the social 

relationships that drive that shared diet. 

Overall, these results provide support for the gut microbiome as a possible mediating 

pathway between social relationships, especially marriage, and health and mortality. These 

findings, in the context of the robust body of evidence linking social relationships to human 

morbidity and mortality, provide fodder for further work examining the role of the gut microbiome 

as a possible biological mediator in these relationships 32. Further microbiota work across time in 

a more diverse population should be undertaken with the many longitudinal social science studies 

currently underway in an effort to increase our understanding of the complex interactions between 

human behavior, the microbiota and health.  
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EXPERIMENTAL PROCEDURES 

Wisconsin Longitudinal Study (WLS). WLS is based on a one-third sample of all 1957 

Wisconsin high school graduates (N = 10,317) as well as selected siblings and spouses 54. 

Graduates originally enrolled with an in-person questionnaire upon graduating high school in 1957, 

which was followed by data collection in 1964, 1975, 1992, 2004, and 2011. Siblings were 

surveyed in 1977, 1994, 2005, and 2011; spouses were surveyed in 2004 or 2006. The content of 

WLS surveys changed to reflect the participants’ life course with an education focus in the initial 

data collection, familial and career outcomes in young adulthood / midlife, and health, cognitive 

functioning, psychological well-being, non-work activities, caregiving, bereavement, social 

support, and end-of-life preparations in later rounds. WLS data collection was approved by the 

Institutional Review Board (IRB) at the University of Wisconsin-Madison (2014-1066, 2015-

0955). Informed consent, the content and procedures of which were included in the IRB approval, 

was obtained from participants. All methods were performed in accordance with relevant 

guidelines and regulations. 

 

Study design. A total of 500 individuals were randomly drawn from the full WLS dataset 

constrained based on the following: 1) participated in the 2011 interviews; 2) lived in one of 10 

counties in Wisconsin that included both northern rural counties and southern more urban counties; 

and 3) were part of a sibling pair. Individuals were removed from the study if they did not give 

consent, their sample did not arrive for processing chilled, but not frozen, within 48 hrs of 

collection, or their sample did not yield at least 10,000 sequences for analysis. This resulted in 408 

individuals being included in this study. An additional survey was administered at the time of fecal 

sampling, which detailed dietary data from the prior three days, prescription/antibiotic use, current 
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living situation, and additional health information. This as well as selected data from the larger 

WLS study focused on health, spouse/sibling relationships, and social interactions were used in 

this study (Text S1). Data, documentation, and other materials are accessible at 

http://www.ssc.wisc.edu/wlsresearch/. Access to the full dataset can be obtained through 

wls@ssc.wisc.edu. 

 

Sample collection. Stool samples were collected by participants in November 2014, January 2015, 

or April 2015 following provided instructions (Text S2). Participants stored samples at ~4 °C in 

their refrigerator or in a NanoCool box (Albuquerque, NM) with cooling cartridge and customized 

foam insert, supplemented with a single ice pack. Interviewers picked-up samples from 

participants within 24 hours of collection and shipped samples in fresh NanoCool boxes for arrival 

at UW-Madison within 48 hours of collection. Upon arrival, an aliquot of feces was collected for 

DNA extraction and immediately stored at -80°C until further processing. The use of WLS and 

fecal microbiota data were approved by the Institutional Review Board at the University of 

Wisconsin-Madison (2017-0600). 

 

DNA extraction. Genomic DNA was extracted from fecal aliquots using a bead-beating 

protocol45. Briefly, feces (~100 mg) were re-suspended in a solution containing 500 µl of extraction 

buffer 344 [200 mM Tris (pH 8.0), 200 mM NaCL, 20 mM EDTA], 210 µl of 20% SDS, 500 µl 

phenol:chloroform:isoamyl alcohol (pH 7.9, 25:24:1) and 500 µl of 0.1-mm diameter 

zirconia/silica beads. Samples were mechanically disrupted using a bead beater (BioSpec Products, 

Barlesville, OK; maximum setting for 3 min at room temperature), followed by centrifugation, 

recovery of the aqueous phase, and precipitation with isopropanol. QIAquick 96-well PCR 

http://www.ssc.wisc.edu/wlsresearch/
mailto:wls@ssc.wisc.edu
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Purification Kit (Qiagen, Germantown, MD) was used to remove contaminants. Isolated DNA was 

eluted in 5 mM Tris/HCl (pH 8.5) and was stored at -80 °C until further use. We also note that we 

used negative controls. 

 

Sequencing. PCR was performed using universal primers flanking the variable 4 (V4) region of 

the bacterial 16S rRNA gene 82. We used negative controls for each PCR reaction. PCR reactions 

where the negative control yielded a product were not sequenced until the problem was solved. 

Samples were processed all together, not in batches, in a random order (i.e., not clustered by 

family). Additionally, unlike other specimens (e.g., saliva, skin), DNA contamination from 

reagents is in general not a problem for fecal samples given the high DNA content of the sample 

(1012 microbes/g of feces). In one reaction per sample, 10 - 50 ng DNA, 10 µM each primer, 12.5 

µl 2X HotStart ReadyMix (KAPA Biosystems, Wilmington, MA, USA), and water to 25 µl were 

used. Cycling conditions were initial denaturation of 95 °C for 3 min followed by 25 cycles of 

95°C for 30 s, 55 °C for 30 s, and 72 °C for 30 s, with a final extension of 72 °C for 5 min. PCR 

products were purified with the QIAquick 96-well PCR Purification Kit (Qiagen, Germantown, 

MD, USA). Samples were quantified by Qubit Fluorometer (Invitrogen, Carlsbad, CA, USA) and 

equimolar pooled. The pool plus 5% PhiX control DNA was sequenced through the U. of 

Wisconsin-Madison Biotechnology Center with the MiSeq 2x250 v2 kit (Illumina, San Diego, CA, 

USA) using custom sequencing primers 82. All DNA sequences are available upon institutional 

review board (IRB) or other ethics board approval through wls@ssc.wisc.edu. 

 

Sequence clean-up. All sequences were demultiplexed on the Illumina MiSeq. Sequence clean-

up and processing was performed with mothur v.1.36.1 83 following a protocol similar to 82. Briefly, 

mailto:wls@ssc.wisc.edu
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paired-end sequences were combined into contigs with default parameters (match bonus 373 = 1, 

mismatch penalty = -1, gap penalty = -2, gap extend penalty = -1, insert quality  20, mismatch 

quality difference  6). Poor-quality sequences, including those with ambiguous basepairs, 

homopolymers greater than 8, or outside 200 – 500 bp in length, were discarded. Sequences were 

then aligned to the SILVA 16S rRNA gene reference alignment database 84 and trimmed to the V4 

region. To reduce sequencing error, sequences with 2 or fewer differences were pre-clustered. 

Chimera detection and removal were performed using UCHIME 85. Final sequences were then 

classified to the GreenGenes database 86. Singletons were removed to facilitate downstream 

analyses. All sequences were grouped into 98% operational taxonomic units (OTUs) by 

uncorrected pairwise distances and average neighbor clustering in mothur. Clustering performed 

on uncorrected pairwise distances revealed no differences in clusters at 97 vs 98% similarity. 

Therefore, the stricter cutoff was reported Coverage was assessed by Good’s coverage, and then 

samples were normalized to whole number counts by percent relative abundance to approximately 

10,000 sequences per sample (9,914 - 10,061 after rounding. 

 

Statistical analysis for graduates. Graduates were assessed separately from siblings and spouses 

to avoid potential interactions, and the graduate subset was not significantly different from other 

groups (PERMANOVA P Bray-Curtis P = 0.56, Jaccard P = 0.57, weighted UniFrac P = 0.33, 

unweighted UniFrac P = 0.24). Alpha-diversity was assessed with Shannon’s diversity and Chao’s 

richness calculated in mothur. Differences in alpha-metrics were assessed in R v3.3.2 87 by linear 

regression with the Benjamini-Hochberg correction for multiple comparisons across each metric. 

Microbial beta-diversity was assessed for Bray-Curtis, Jaccard, weighted, and unweighted UniFrac 

metrics with results shown for unweighted UniFrac unless otherwise noted. Dietary beta- diversity 
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was assessed for Bray-Curtis and Jaccard metrics as well as corresponding nMDS axes calculated 

from habitual intake of specific sources of protein (N = 4), vegetables (N = 76), and fruits (N = 

24) expressed as times consumed per week (protein), proportions of total types (all), and 

presence/absence of individual types (all). Differences in beta-diversity were tested with 

permutational analysis of variance (PERMANOVA, adonis) in the vegan package 88 with the 

Benjamini-Hochberg correction for multiple comparisons across each metric and a maximum of 

5000 permutations. All variables were modeled using independent, univariate tests and dietary 

variables were additionally modeled using multivariate tests of all components (protein, 

vegetables, fruits). Co-variance of microbial and dietary beta metrics was measured using Mantel’s 

test. The factors that associated with the microbiome in univariate models (i.e. age, sex, antibiotics, 

dietary protein, high blood sugar, and heart disease 57) were adjusted for in regression models as 

potential confounders. Beta-diversity was visualized by non-metric multidimensional scaling 

(nMDS) plots with arrows from significant variables (PERMANOVA) fitted to the ordination 

using maximum correlation (envfit, vegan). All tests were assessed at significance P < 0.05 and 

trends 0.05 < P < 0.1. 

 

Statistical analysis for spouses and siblings. For the spouse and sibling similarity analysis, the 

unit of the observation is the pair (i.e. spouse, sibling, or unrelated pair defined below) and the 

variables used in the analysis are distance in individual measurements between the two members 

of the pair. Specifically, beta-diversity metrics were used to quantify the distance in microbial and 

overall diet whereas absolute difference were calculated to quantify the distance in all the other 

variables (e.g. age, sex, dietary protein). We sampled unrelated pairs from the data in order to 

compare the spouse or sibling pair with unrelated pairs. In particular, the unrelated individuals 
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cannot be siblings, spouses, or in-laws, and each unrelated pair will match the corresponding 

spouse or sibling pair in sex and antibiotics usage. Beta-diversity distances were compared 

among spouse, sibling, and unrelated pairs using linear regression while adjusting for the distance 

in age, sex, dietary protein, health conditions (if available). P-values were averaged across 1000 

rounds of unrelated pair sampling. For closeness analysis, we removed age and sex from the model 

because the two variables are highly correlated with pair type (i.e. sibling/spouse pair can be 

accurately classified using the difference of the age or sex between the two members of the pair). 

For comparing OTU sharing among spouse and sibling within a family, we used mixed-effect 

models to account for family clustering. All tests were assessed at significance P < 0.05 and trends 

0.05 < P < 0.01. 
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FIGURES 

 

 
 

Figure B.1. Factors associated with the overall fecal microbiota. Non-metric multidimensional 

scaling (nMDS) of unweighted UniFrac for all graduates (N = 179). Variables found to be 

significant (PERMANOVA P < 0.05, red) and trends (0.05 < P < 0.1, black) are shown as fitted 

arrows. Arrows point toward increasing values (dietary protein), toward affirmative responses 

(high blood sugar, antibiotics, heart disease), or from male to female (sex). 
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Figure B.2. Cohabitation is associated with increased alpha-diversity. Boxplots of (A) 

Shannon’s diversity and (B) Chao’s richness of graduates that are (blue) or are not (red) 

cohabitating with a spouse or partner. All spouses/partners were cohabitating while all non-

cohabitating individuals were unmarried. **P < 0.01, *P < 0.05. 
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Figure B.3. Microbial sharing in spouse and sibling relationships. Unweighted UniFrac 

distances of (A) spouse, sibling, and unrelated  pairs,  (B)  spouses  and  siblings  grouped by 

relationship closeness, and (C) spouses and siblings separated by relationship closeness. Groups 

(A) were compared in linear regression model adjusting for potential confounders (e.g. age, sex, 

diet, health conditions). P-values were averaged across 1000 rounds of unrelated pair sampling. 

Closeness groups (B,C) were compared in linear regression models adjusting for potential 

confounders. (D,E) Average percentages of shared OTUs within family groups including a related 

spouse and sibling pair. Families included those with both very close spouses and siblings (D, N 

= 12) and those with very close spouses and somewhat close siblings (E, N = 17). Percentages are 

of the total number of OTUs across all three individuals, and circle sizes are proportional to total 

percentages represented. ***P < 0.001, **P < 0.01, *P < 0.05, •P< 0.1.  



 

 249 

 
 

Figure B.4. Percent relative abundance of OTUs that are commonly shared between spouses and 

that differed between those with (grey) and without (white) high blood sugar. (A) Low abundance 

and (B) more highly abundant OTUs. Means with standard error bars are shown.  Kruskal-Wallis 

FDR *P < 0.05, •P < 0.1 
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SUPPLEMENTAL RESULTS 

Here, we report additional findings from the analysis of the Diversity Outbred (DO) mice 

presented in Chapter 3. We found additional QTL and associations among the measured bile acid, 

microbial and clinical traits that were interesting, but were not included in the version set for 

publication. Notably, these supplemental results corroborate findings from other studies and 

provide support for further mechanistic studies. 

 

Correlations between bile acids, clinical traits and gut microbiota abundance 

Correlation analysis identified several significant associations between the microbial and 

clinical weight traits after FDR correction (FDR < 0.05) (Table 4.4, see Chapter 3). The significant 

correlations between weight and microbial traits were attributed to 15 distinct microbial taxa from 

the Actinobacteria, Bacteroidetes and Firmicutes phyla. ~58% of these associations could be 

attributed to exact sequence variants (ESVs) assigned to the Lachnospiraceae family and another 

~19% to ESVs classified to the S24-7 family. Additionally, the Ruminococcus genus and fat pad 

weight were negatively correlated, and ESVs classified to the Adlercreutzia genus and body weight 

at 14 weeks were positively correlated.  

Additionally, we identified significant associations between bile acids and body weight. 

Body weight over time was inversely correlated with plasma levels of deoxycholic acid (DCA), 

taurodeoxycholic acid (TDCA) and taurocholic acid (TCA) (Table 4.4). Conversely, cecal levels 

of muricholic acid (MCA) and ursodeoxycholic acid (UDCA) were positively correlated with 

body, liver and heart weight. These associations were surprising since elevated levels of DCA have 

been associated with weight gain and insulin resistance in humans (Brufau et al., 2010; Cariou et 

al., 2011; Gu et al., 2017).  
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Four of the ESVs from the Lachnospiraceae family were significantly associated with body 

weight and fat pad weight. Interestingly, one of these Lachnospiraceae ESVs was positively 

correlated with the weight traits, while the other three were negatively correlated, indicating the 

metabolic effects of Lachnospiraceae are possibly genus or even strain dependent. Disparate 

associations of different members of the Lachnospiraceae on weight traits has been shown in 

previous mouse genetic studies. For example, one study fed ~110 inbred strains of mice from the 

Hybrid Mouse Diversity Panel a high-fat high-sucrose diet and found that two taxa from the 

Lachnospiraceae family were positively associated with obesity and metabolic traits (Org et al., 

2015). On the other hand, two separate studies using the eight DO founder strains fed different 

diets found that Lachnospiraceae family was negatively correlated with body weight (Kreznar et 

al., 2017; O’Connor et al., 2014).   

Despite these significant correlations, QTLs for only two of the Lachnospiraceae ESVs 

overlapped with weight QTL. These two Lachnospiraceae traits represented the two patterns 

observed where one was positively correlated and the other negatively correlated with weight 

traits. QTLs for liver weight and one of the Lachnospiraceae taxa that negatively correlated with 

liver weight overlapped on chr 9 at ~65-66 Mbp. Furthermore, QTL for the Lachnospiraceae taxa 

positively correlated with weight traits associated to the same position of the genome as QTLs for 

body weight on chr 4 at ~150 Mbp. For both of these examples, the microbial and weight traits 

were driven by different founder haplotypes indicating the co-mapping traits are likely not causally 

related.   

Correlation analysis of the microbial taxa comprising the CMM was also used to provide 

insight into microbiota community structure in the DO mice (Table 4.4). A positive correlation 

was found between two members of the small intestine microbiome, Turicibacter and 
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Peptostreptococcaeae (r = 0.33, p = 0.026). A similar correlative relationship was detected in the 

founder strains (r = 0.65, p = 0.003). This finding is consistent with Goodrich et al., who found 

these taxa strongly correlated with one another in humans (r = 0.66) (Goodrich et al., 2016). 

Additionally, both taxa are consistently identified as heritable in humans and mice, and associate 

to regions of the mouse genome (Benson et al., 2010; Goodrich et al., 2016; O’Connor et al., 2014). 

The correlation between Turicibacter and Peptostreptococcaeae particularly notable since we 

observe both taxa co-mapping with plasma bile acids and significantly correlating. However, we 

do not observe QTL for these taxa mapping to the same position. Additionally, both taxa are 

capable of bile acid metabolism. As shown in Chapter 3, Turicibacter efficiently deconjugates bile 

acids. Peptostreptococcus productus, a member of the Peptostreptococcaceae family, has 3-, 3-

, and 7-hydroxysteroid dehydrogenases and is capable of oxidation and epimerization of bile 

acids (Edenharder et al., 1989). These microbes have complimentary bile acid metabolism 

capabilities as Turicibacter provides necessary deconjugation activity for further transformations 

by members of the Peptostreptococcaeae family.  Thus, their co-occurrence may provide a fitness 

advantage for small intestine colonization. Bile acids must be deconjugated prior to epimerization, 

so Peptostreptococcaeae may associate with Turicibacter in order to utilize this metabolic 

capability. The consistency in these findings as well as the different bile acid metabolism 

capabilities warrant further investigation and may provide insight into community dynamics and 

bile acid metabolism in the small intestine.  

 

Adlercreutzia associates to immune genes on chromosome 10 

We identified QTL for two different taxa classified to the Adlercreutzia genus that mapped 

to chr 10 at ~118-119 Mbp (Figure C.1A). Adlercreutzia are gram-positive organisms classified to 

the Coriobacteriaceae family in the Actinobacteria phylum. These two QTL were of particular 
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interest because Benson et al., previously found a Coriobacteriaceae peak at the identical position 

with significant dominance effects of the B6 allele (Benson et al., 2010). They also identified 

Lactococcus QTL that overlapped at this locus. While Lactococcus did not map to this position in 

our study, we did replicate the significant positive correlation between the abundances of 

Coriobacteriaceae and Lactococcus (r = 0.353, p < 0.0001), providing additional evidence to 

support host genetic influence on shaping the abundance of these taxa. Additionally, there are 

several strong candidate genes under these QTL relating to host immune response and host 

regulation of gram-positive organisms (Figure C.1B). Strong candidate genes at these loci are the 

two primary murine lysozyme genes, Lyz1 and Lyz2 (Markart et al., 2004). Additionally, the same 

interval also contains the genes encoding Irak3, IFN-y and IL-22, which play a role in mucosal 

immunity (Kjerrulf et al., 1997; Nakayama et al., 2004; Zheng et al., 2008). 

Upon further investigation, we found that the two QTLs were driven by distinct allele 

patterns. For one QTL, denoted as Adlercreutzia sp. 1, the B6 and 129 founder haplotypes were 

associated with higher levels of Adlercreutzia, while the AJ haplotype was associated with lower 

levels of Adlercreutzia (Figure C.1C). The converse pattern was observed for the second 

Adlercreutzia QTL (Adlercreutzia sp. 2), where the AJ haplotype had a positive association and 

the B6 and 129 haplotypes had a negative association with levels of that strain of Adlercreutzia 

(Figure C.1A). It appears that the B6 haplotype for this locus is associated with increased 

abundance of one Adlercreutzia species and associated with a decreased abundance of another 

(Figure C.1E).  

These founder allele effect patterns suggest that there are at least two distinct variants that 

drive Adlercreutzia abundance and these QTL may reveal insight into how host genetic variants 

select for specific species or strains of closely related bacteria. Furthermore, we found a significant 
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negative correlation between these two strains of Adlercreutzia (r = -0.261, p = 3.35e-06), 

providing additional evidence that host genotype at this locus determines which Adlercreutzia 

strain is capable of colonizing the intestine.   

The identification of this QTL in separate studies, along with the interesting genes under 

the QTLs warrant further investigation. 

 

Christensenellaceae and body weight traits associate to chromosome 1 

Christensenellaceae is a gram-negative bacterium that previously identified as a highly 

heritable in geographically distinct groups of humans (Goodrich et al., 2014b; Lim et al., 2017; 

Turpin et al., 2016). We identified a QTL for Christensenellaceae spanning 5.5 Mbp on chr 1 at 

~59 Mbp (Figure C.2A). A candidate gene within the QTL interval is Casp8, which is a key 

regulator of the host innate immune response and plays a central role in inflammasome-mediated 

cell death (Figure C.2B). In the intestine, Casp8 is activated by microbial recognition receptors, 

such as TLR4 in response to LPS (Monie and Bryant, 2015). It also a known transcriptional 

regulator of the Il1b gene (Gurung et al., 2014), which has previously been shown to be influenced 

by the composition of the microbiota (Seo et al., 2015).  

Genome analysis identified a missense variant (rs32803726) within a coding region of 

Casp8 (Q13R) driven by the CAST, PWK, NOD and WSB haplotypes. This missense variant may 

affect protein structure and have functional consequences on the transcribed protein, leading to 

changes in intestinal immune environment. Consistent with this notion, Christensenellaceae 

abundance varied by genotype (p = 0.0048; one-way Kruskal-Wallis) and was significantly greater 

in DO mice with this variant than in mice with two copies of the B6 allele (0-1 p = 0.0217, 0-2 p 

= 0.0099; 1-2 p = 0.1210, Wilcoxon test with Benjamini-Hochberg correction) (Figure C.2C). This 

same pattern was also observed at the peak SNP, where the abundance of Christensenellaceae was 
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greater in DO mice with this variant than in mice without, but no significant differences were 

found between genotypes (0-1 p = 0.636, 0-2 p = 0.199; 1-2 p = 0.069) (Figure C.2D). To further 

validate these findings, we compared the abundance of Christensenellaceae in the founder strains 

to the estimated coefficients in the DO mice. We found these estimated coefficients closely 

resembled the abundance of Christensenellaceae in the founder strains, where CAST and PWK 

harbored the highest abundance of this bacteria (Figure C.2E-F).  

Christensenellaceae has been negatively associated with BMI and visceral adiposity in 

humans (Beaumont et al., 2016; Goodrich et al., 2014b). It was also shown that administration of 

Christensenella minuta attenuated weight gain and total adiposity in germ-free mice colonized 

with feces from an obese human donor (Goodrich et al., 2014b). Interestingly, QTL for body 

weight at 14 weeks and sacrifice associate to the same position on chr 1 (Figure C.2A). However, 

Chirstensenellacae abundance did not correlate with body weight at 14 weeks (r = -0.09, p = 

0.206), body weight at sacrifice (r = -0.06, p = 0.406), or fat pad mass per gram body weight (r = 

0.12, p = 0.129) (Figure C.2G-I). Furthermore, the body weight QTLs were driven by the 129 and 

WSB haplotypes, providing additional evidence that the Christensenellaceae and weight QTLs are 

unlikely to be related. In our study, the relationship between Christensenellaceae and weight may 

be masked by the HF/HS diet, since the previous work done in mice used animals fed a chow diet. 

To our knowledge, this is the first instance linking differences in Christensenellaceae to host 

genetics in mice, thus providing additional insight into the heritability of Christensenellaceae. 

 

Bile acid QTL are found in multiple “hot spots”  

QTL analysis revealed several metabolite hotspots where multiple bile acid traits co-map 

within a <20 Mbp window. These hotspots may indicate traits that interact or are have highly 

correlated levels. They may also be a consequence of the occurrence of pleiotropic or regulatory 
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genes controlling multiple metabolite traits. Notable bile acid hotspots were detected on chrs 3, 

13, and 18, where at least 5 bile acid traits associated within a <15 Mbp genomic interval. The 

hotspot on chr 3 includes multiple plasma bile acids driven by the NOD haplotype and is previously 

discussed. Both plasma and cecal bile acid QTLs are found at the hotspots on chrs 13 and 18.  

The hotspot on chr 13 at ~108-119 Mbp was associated with 4 cecal and 1 plasma bile acid 

QTL (Figure C.3A). All overlapping QTL at this hotspot were for secondary bile acids. These 

QTL have varying genetic architecture, which suggests more than one causal locus. QTL for cecal 

levels of DCA, allocholic acid (ACA) and 12-ketolithocholic acid (12-KLCA) were all positively 

associated with the PWK and NZO alleles and negatively associated with the CAST allele (Figure 

C.3B-D). Furthermore, these three cecal bile acids were also highly correlated with one another 

(Table C.1). Mediation analysis found a correlative relationship between DCA and both 12-KLCA 

and ACA. However, no causal relationship was detected between 12-KLCA and ACA. 

Interestingly, the mediation analysis captured the relationship of these bile acids. For example, 

both ACA and DCA are respectively derived from 5- and 7-epimerization of CA by gut 

microbes. 12-KLCA is produced from metabolism of DCA. Thus, we see correlative relationships 

between bile acids that are either derived from the same metabolite. ACA and 12-KLCA do not 

have a relationship because they are not directly linked to one another.  

Since all the co-mapping metabolites were secondary bile acids, we looked for overlapping 

microbial QTL that may be causal for levels of these bile acids. Several microbial traits associated 

to this locus including the Mogibacteriaceae family and taxa classified to the Adlercreutzia and 

Oscillospira genera. The Mogibacteriaceae QTL had a positive association with the PWK allele, 

but mediation analysis did not show a causal relationship. The other microbial QTL did not share 

genetic architecture with any of the other bile acid QTL.  



 

 258 

The largest hotspot was on chr 18 at 32 - 46 Mbp and included 9 bile acid traits, most of 

which were secondary bile acids except for plasma TCA and cecal tauromuricholic acid (TMCA) 

(Figure C.4F). This hotspot contains a variety of bile acid traits including conjugated and 

unconjugated, plasma and cecal, and primary and secondary. In general, there is no shared founder 

effects pattern shared among these traits. The underlying genetic architecture of these QTL is 

varied and complicated, which some founder haplotypes are positively associated with some traits 

and negatively associated with others. For instance, plasma TCA levels are positively and plasma 

UCA levels are negatively associated with the CAST haplotype. The variability in the underlying 

genetic architecture of the plasma bile acids is greater than that seen the cecal bile acids. All four 

overlapping cecal metabolite QTL have a negative association with the NOD and/or CAST 

haplotypes and are significantly correlated with each other. The variability seen at this hotspot 

suggests multiple closely linked loci, as opposed to a single pleiotropic locus.  

 

Corroboration of previous human and mouse genetics studies 

Although recent studies show environment contributes more to the variability among gut 

microbiota composition than genetics (Falony et al., 2016; Rothschild et al., 2018; Zhernakova et 

al., 2016), there are consistencies among different host organisms and geographically discrete 

populations indicate specific taxa and related traits are under the influence of the host genome. 

Our results in the DO population corroborate several of these key findings for both microbial and 

clinical traits. These shared findings can be followed up for mechanistic experiments.   

We observed the strongest associations to the host genome with members of the Firmicutes 

phyla, including unknown members of the Clostridiales order, the Lachnospiraceae, 

Christensenellacae and S24-7 families, the Turicibacter and Coprococcus genera, as well as the 

species Akkermansia muciniphila and Ruminococcus gnavus. These taxa have consistently been 
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identified in multiple studies as either highly heritable or associating to positions on the host 

genome (Benson et al., 2010; Davenport et al., 2015; Leamy et al., 2014; McKnite et al., 2012; 

Org et al., 2015; Wang et al., 2016). Furthermore, our study replicated correlations between taxa 

including the Peptostreptococcaeae and Turicibacteraceae families (Goodrich et al., 2016), which 

may give insight into microbial dynamics that govern bile acid profiles.  

Although the majority of these shared taxa seen in our study did not map to the same loci 

as in previous studies, we did find several microbial taxa and clinical traits that mapped to the 

same position of the mouse genome as in previous studies. We did find several clinical QTL in the 

DO population that co-mapped with clinical QTL previously identified in the HMDP population. 

For example, we found a QTL for body weight at 14 weeks on chr 2 at 135.2 that overlaps with a 

percent body fat increase QTL between 138.9 - 139.4 Mbp (Parks et al., 2013). We also found a 

QTL for fat pad weight on chr 7 at ~40 Mbp that falls within the same confidence interval as a 

HMDP QTL for triglyceride (TG) gonadal fat (Org et al., 2015). Additionally, QTL for taxa 

classified to the Coriobacteraceae family mapped to chr 10 between ~116 – 120 Mbp in our study 

and in an advanced intercross line used by Benson et al. (Benson et al., 2010) (Figure C.1A). 

However, the majority of these shared taxa seen in our study and previous analysis did not map to 

the same position.  

Given the causal contribution of gut microbiota and obesity/metabolic disease, we were 

surprised to find few instances of overlapping microbial and clinical QTL. This was especially 

surprising given the overlap between microbial and obesity-related traits seen in other studies 

(Leamy et al., 2014; Org et al., 2015; Parks et al., 2013). The lack of congruence may be a result 

of the complexity of each trait or due to the different genetic background of the study populations 

as well as other factors including diet, age, and experimental design. Our analysis found co-
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mapping of body weight with Christensenellaceae and Lachnospiraceae families. However, these 

co-mapping traits did not share the same founder haplotype effects and did not show a causal 

relationship as determined by mediation analysis. Therefore, we hypothesize that the microbial 

and clinical traits are the result of closely linked, but different loci.  

Given the high degree of variability in the gut microbiome across subjects and host 

organisms, these instances of congruence between studies argues that there are specific taxa 

responsive to host genotype that may warrant follow-up investigation. Our work with the DO 

population provides an approach to validate these associations.  
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FIGURES 

 

 

Figure C.1. Multiple Adlercreutzia sp. QTL map to immune genes on chromosome 10. (A) 

Association of two Adlercreutzia exact sequence variants (ESVs) mapping along chr 10. Dashed 

line denotes LOD threshold of 5.5. (B) Genes under the QTLs. Diversity Outbred (DO) founder 

coefficients at the QTL peak showing the effects of each founder allele on the abundance of (C) 

Adlercreutzia sp. 1 and (D) Adlercreutzia sp. 2. (E) Correlation of the normalized abundance of 

Adlercreutzia sp. 1 and Adlercreutzia sp. 2 in the DO mice (n = 309). Spearman correlation; p-

value adjusted for multiple tests using Benjamini-Hochberg correction. 
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Figure C.2. Christensenellaceae sp. and body weight QTL map to chromosome 1. (A) Scan of chr 

1 of Christensenellaceae sp. and body weight at sacrifice. Dashed line denotes LOD threshold of 

5.5. (B) Genes under QTL. (C)  Normalized Christensenellaceae sp. abundance within each 

genotype at the missense SNP (rs32803726) and (D) peak SNP (rs217569639). (E) Estimated 

founder allele effects and (F) observed abundance of Christensenellaceae family in the founder 
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strains. Pearson correlations in the DO mice between the abundance of Christensenellaceae sp. 

and (G) body weight at 14 weeks (n = 199), (H) body weight at sacrifice (n = 196), and (I) fat pad 

weight per gram body weight at sacrifice (n = 151). Data are presented as mean ± SEM; Kruskal 

Wallis one-way test followed by Wilcoxon pair-wise multiple comparisons with Benjamini-

Hochberg correction; * p < 0.05, ** p < 0.01. 
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Figure C.3. Bile acids (BAs) associate to hotspots on chromosomes 13 and 18 of mouse genome. 

(A) Scan of chr 13 BA QTL hotspot where QTL for plasma ursodeoxycholic acid (UDCA), and 

cecal levels of 12-ketolithocholic acid (12-KLCA), deoxycholic acid (DCA), allocholic acid 

(ACA) and tauro-omega-muricholic (TMCA) overlap. Dashed line denotes LOD threshold of 
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5.5. (B) Estimated founder allele effects for cecal ACA, (C) cecal 12-KLCA, and (D) cecal DCA 

levels. (E) Protein coding genes under chr 13 QTL hotspot. (F) Scan of chr 18 bile acid QTL 

hotspot including plasma taurocholic acid (TCA), plasma taurodeoxycholic acid (TDCA), cecal 

ursodeoxycholic acid (UDCA), cecal DCA, cecal tauro-muricholic acid (TMCA), and cecal 

TMCA.  
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