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Multiscale Numerical Methods for Elliptic and Wave-Type
PDEs and Their Inverse Problems

Shi Chen

Abstract

Partial differential equations (PDE) that arise from physics are usually multiscale in
nature. These PDEs include small parameters that differ significantly from the scales
at which the equations are typically considered, making it difficult to solve. Tradition-
ally, solving such multiscale systems requires a careful integration of analytical insights
into numerical solvers. However, modern multiscale PDEs are usually nonlinear, complex
and high-dimensional, making analytical characterization challenging and often leading
to the failure of classical numerical solvers. With the increasing ability to collect and
process massive volumes of data, a pertinent question arises: can data be leveraged to
solve these multiscale problems? This dissertation aims to explore this possibility for
elliptic and wave-type equations and their inverse problems. For nonlinear elliptic equa-
tions, we investigate how data can be used to enhance the efficiency of multiscale PDE
solvers. Specifically, we propose a domain decomposition framework that makes use of the
compressibility of solution manifolds and incorporates two strategies from data science:
neural networks and manifold learning. We demonstrate the effectiveness of our numeri-
cal method across various nonlinear elliptic PDEs. For wave-type equations, we explore
how to select appropriate measured data for solving multiscale inverse problems. We pro-
pose two formulations of inverse scattering problems with new data collection processes in
both time-dependent and time-independent settings, inheriting the well-posedness of the
Liouville inverse scattering problem in the high-frequency limit.
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1

Chapter 1

Introduction

Multiscale modeling and simulation is a body of theory and methods to solve problems

that have important features across multiple temporal and spatial scales. The latest surge

of multiscale modelling traces back to the mid-1980s when US national labs started to

reduce nuclear underground tests, and the idea of simulation-based design and analysis

concepts were birthed [125]. Since then, a wealth of multiscale numerical methods has

been developed, commonly referred to as “numerical homogenization” [15, 128, 90] or

“asymptotic preserving” [84, 106, 138] methods. In the design of such multiscale solvers,

it is crucial to fuse the analytical understanding of the governing equations into suitable

computational methods [8]. However, modern multiscale systems are often nonlinear,

complex, and high-dimensional, making their analytical properties difficult to characterize

and classical numerical methods prone to failure. Designing multiscale numerical methods

tailored to such systems remains an intractable task.

In recent years, the fast development of techniques in data science has provided com-

pletely new perspective and methodologies in modern computational methods. With the

substantial increase in computing power and the ability to collect and process massive

volumes of data, whether synthetic or experimental, the integration of data to support

computation has become fundamental. Among the myriad of methods driving this trend,

Physics Informed Neural Networks (PINN) have emerged as particularly popular in simu-
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lating physical systems [188, 85]. While PINNs are versatile enough to solve any PDE using

data, effectively integrating analytical insights is challenging and their advantage over clas-

sical numerical methods is still elusive [188]. Since different types of PDEs possess unique

analytical properties, efficient data-driven methods should consider these distinctions and

be specifically tailored to each type.

In this dissertation, we explore data-driven numerical methods for elliptic and wave-

type PDEs and their inverse problems. Our research are guided by two primary questions:

• Given data of solutions, how can we design efficient solvers for multiscale PDEs?

Multiscale PDEs usually contain a small scale parameter that makes the PDEs rather

stiff: to ensure accuracy and stability, classical methods require the mesh size to resolve

the small parameter, resulting in large degrees of freedom as the parameter approaches

zero. Without prior information about the PDE, this complexity is inevitable [19, 18].

However, with data of solutions, this issue can be mitigated. By using a set of PDE so-

lutions, we can judiciously compress the data into a set of basis that effectively represent

the solution space. This approach has been proved successful for linear elliptic PDEs [52,

210, 65]. However, applying the same approach to nonlinear PDEs—which do not form

a linear space—might not be straightforward. Here we specifically focus on elliptic mul-

tiscale PDEs, and introduce two different new strategies to compress the data, inspired

by techniques from data science. In both approaches, we adopt a domain decomposition

framework with Schwarz iteration. In the first approach, we propose a multiscale solver

that use two-layer neural networks to approximate the nonlinear low dimensional solu-

tion map for the subdomains [68]. In the second approach, inspired by manifold learning

techniques, we exploit the tangent spaces spanned by the nearest neighbors to compress

local solution manifolds [71]. Both strategies demonstrate significant improvement in ef-

ficiency and good accuracy, and can be applied to a wide class of PDEs. Specifically, we

demonstrate that our manifold learning approach can be applied to a nonlinear radiative

transfer equation in the diffusion regime.
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• Given a multiscale PDE, how can we choose the appropriate data for solving inverse

problems?

Partial differential equations that arise from physics usually include a variety of param-

eters that cannot be directly measured from experiments. The strategies for estimating

such unknown or partially known parameters from measured data fall under the category

of inverse problems. We are interested in inverse problems whose governing equation is

a multiscale PDE. While connecting multiscale PDEs to their asymptotic limit is a clas-

sical topic in traditional applied mathematics, their counterpart for inverse problems is

still an area ripe for exploration. For radiative transport equation, connecting their in-

verse problem to its asymptotic limit has been previous studied in [60, 153]. Here we

study the problems associated to wave-type PDEs. We study two inverse problems: a

time-dependent inverse scattering problem [66], and a time-independent inverse scattering

problem [69]. The key reason of failure in connecting classical inverse problems lies at

the disparity of data. This could lead to stability issue in the reconstruction of unknown

parameters, making the inverse scattering problem difficult to solve in the high frequency

limit. By choosing the right data, we can design new inverse scattering problems that are

asymptotically stable in the small parameter regime. This fact stands in contrast with the

unstable reconstruction for classical inverse scattering problems.

The rest of this dissertation is organized as follows: Chapter 2 provides an overview of

analytical properties of the elliptic and wave-type PDEs. We first review the homogeniza-

tion limits of elliptic PDEs that serve as a motivation of many numerical homogenization

methods. We then describe the domain decomposition framework and Schwarz iteration

that will be used in the subsequent chapters. For wave-type PDEs, we introduce the

Wigner transform techniques and showcase their application in deriving the classical limit

of the Schrödinger equation. Chapter 3 and Chapter 4 describe our strategies for solving

elliptic multiscale PDEs: a method based on two-layer neural networks and a method

inspired by manifold learning. These strategies are applicable to a broader class of PDEs,

and we demonstrate their use in solving a nonlinear radiative transfer equation in Chap-
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ter 4. Next, Chapter 5 and Chapter 6 use the Wigner transform to connect the inverse

scattering problem to its asymptotic limit in the time-dependent and time-independent

setting, respectively. In the time-dependent setting, we explore linearized problems across

three different scenarios. In the time-independent setting, we introduce an asymptotically

stable Helmholtz inverse scattering problem by selecting data that aligns with its asymp-

totic counterpart, the Liouville inverse scattering problem. A conclusion is provided in

Chapter 7.
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Chapter 2

Homogenization of Elliptic and

Wave-Type PDEs

In this chapter, we consider partial differential equations that involves multiple scales.

Typically, these PDEs include small parameters that crucially influence solution behav-

iors. As the small parameters approach zero, the multiscale PDEs converge to different

asymptotic limits that do not have scale separations. Deriving such asymptotic limit-

ing equations as accurate surrogates of the original equations is termed homogenization.

Depending on the type of PDE, diverse homogenization techniques are invented across dif-

ferent parameter regimes. In this chapter, we review these homogenization techniques for

elliptic and wave-type PDEs, which will be useful in motivating our data-driven multiscale

numerical methods. This chapter is organized as follows. In Section 2.1, we describe non-

linear multiscale elliptic PDEs and discussed the homogenization limit of elliptic equations

with highly oscillatory media. Next, in Section 2.2, we outline the domain decomposition

framework and the Schwarz iteration strategy. This framework, which is widely used in

solving elliptic PDEs, will be further integrated with data-driven approaches in subsequent

chapters. Then in Section 2.3, we introduce the Wigner transform, a technique that is

used in deriving the classical limit of the Schrödinger equation.
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2.1 Homogenization limit of nonlinear elliptic equations

Consider the following general class of nonlinear elliptic PDEs with Dirichlet boundary

conditions: 
F ε

(
D2uε(x), Duε(x), uε(x), x

)
= 0, x ∈ Ω ,

uε(x) = ϕ(x), x ∈ ∂Ω ,
(2.1)

where Ω ⊂ Rd is a domain in d-dimensional space, ε > 0 represents the small scale, and

F ε : Sd×d×Rd×R×Ω→ R (where Sd×d denotes the space of real symmetric d×dmatrices)

is a smooth function. To ensure ellipticity, we require for all (R, p, u, x) ∈ Sd×d×Rd×R×Ω

that

F ε(R+Q, p, u, x) ≤ F ε(R, p, u, x) ,

for all nonnegative semidefinite Q ∈ Sd×d. We assume that for an appropriately chosen

boundary condition ϕ, the PDE (2.1) has a unique (viscosity) solution uε ∈ C(Ω). For

details on the theory of fully nonlinear elliptic equations, see for example, [54, 136].

This class of problems has fundamental importance in modern science and engineering,

in such areas as synthesis of composite materials, discovery of geological structures, and

design of aerospace structures. The primary computational challenges behind all these

problems lie in the complicated interplay between the nonlinearity and the extremely high

number of degrees of freedom necessitated by the smallest scale.

To achieve a desired level of numerical error, classical numerical methods require refined

discretization strategies with a mesh width ∆x = o(ε), making the leading to at least

O(ε−d) degrees of freedom in the discretized problem. The resulting numerical cost is

prohibitive when ε is small. The homogenization limit of (2.1) as ε → 0 can be specified

under additional assumptions, such as when the medium is pseudo-periodic. Let

F ε(R, p, u, x) = F
(
R, p, u, x,

x

ε

)
(2.2)

for some F : Sd×d×Rd×R×Ω×Rd → R that is periodic in the last argument with period



7

Y . We have the following theorem.

Theorem 2.1 ([101], Theorem 3.3). Suppose that the nonlinear function F ε is uniform

elliptic and u 7→ F ε(·, ·, u, ·) is nondecreasing. Let F ε be pseudo-periodic as defined in

(2.2). The solution uε ∈ C(Ω) to (2.1) converges uniformly over Ω as ε→ 0 to the unique

viscosity solution u∗ of the following equation


F̄ (D2u∗(x), Du∗(x), u∗(x), x) = 0, x ∈ Ω ,

u∗(x) = ϕ(x), x ∈ ∂Ω ,
(2.3)

where the homogenized nonlinear function F̄ (R, p, u, x) is defined as follows: For a fixed

set of (R, p, u, x) ∈ Sd×d × Rd × R× Ω, there exists a unique real number λ for which the

following cell problem has a unique viscosity solution v ∈ C1,γ(Rd) for some γ > 0:


F (D2

yv(y) +R, p, u, x, y) = λ, y ∈ Rd ,

v(y + Y ) = v(y), y ∈ Rd ,

(2.4)

(where Y is the period in the last argument of F ). We set F̄ (R, p, u, x) = λ.

This result can be viewed as the extension of a linear homogenization result [8]. Al-

though the medium is highly oscillatory for small ε, the solution uε approaches that of a

certain limiting equation with a one-scale structure, as ε→ 0. In practice, the form of the

limit F̄ is typically unknown, but this observation has led to an exploration of numerical

homogenization algorithms, in which one seeks to capture the limit numerically without

resolving the fine scale ε. We view this problem as one of manifold reduction. The solution

uε can be “compressed” significantly; its “information” is stored mostly in u∗, which can be

computed from (2.4) using mesh width ∆x = O(1), in contrast to the ∆x = o(ε) required

to solve (2.1). In other words, the O(ε−d)-dimensional solution manifold can potentially

be compressed into an O(1)-dimensional solution manifold, up to small homogenization

error that vanishes as ε→ 0.

The literature for numerical homogenization is rich, particularly for the linear setting.
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Relevant approaches include the multiscale finite element method (MsFEM) [128, 98, 129],

the heterogeneous multiscale method (HMM) [90, 4, 93], the generalized finite element

method [17, 16], upscaling based on harmonic coordinates [181], elliptic solvers based on

H-matrices [40, 119], the reduced basis method [3, 2], the use of localization [171], and the

methods based on random SVD [65, 64, 63], to name a few. The analytical understanding

of the homogenized equation is essential in the construction of these methods [8]. When

randomness presents, one can also look for low dimensional representation of the solutions

in the random space [78, 130, 127, 157].

The literature for nonlinear problems is not as rich. There are several works on quasi-

linear problems, all of which can be seen as extensions of classical methods, including the

MsFEM [97, 73, 96], the HMM [93, 5], the generalized finite element method [99], the

local orthogonal decomposition method [122], the reduced basis method [3] and nonlocal

multicontinua upscaling [79]. These solvers must be designed carefully for specific nonlin-

ear equations. By contrast, our method makes use of the low-rankness of the solution sets

and could be applied with minor modification to different equations.

2.2 Domain Decomposition and the Schwarz method for

multiscale elliptic PDEs

A popular framework for solving partial differential equations is domain decomposition,

where the problem is decomposed and solved separately in different subdomains, with

boundary conditions chosen iteratively to ensure regularity of the solution across the full

domain. This approach is naturally parallelizable, with potential savings in memory and

computational cost. It essentially translates the inversion of a large matrix into the compo-

sition of inversions of many smaller matrices. The many variants of domain decomposition

include the Schwarz iteration strategy that we adopt in this dissertation. This strategy

makes use of a partition-of-unity function that resolves the mismatch between two solu-

tions in adjacent subdomains. We briefly review the method here.

For simplicity we describe the case of d = 2 and assume throughout the chapter
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that Ω = [0, L]2 for some L > 0. The approach partitions the domain Ω into multiple

overlapping subdomains, also called patches. It starts with an initial guess of the solution

on the boundaries of all subdomains, and solves the Dirichlet problem on each patch. The

computed solutions then serve as the boundary conditions for neighboring patches, for

purposes of computing the next iteration. The entire process is repeated until convergence.

In the current setting, the overlapping rectangular patches are defined as follows:

Ω =
⋃
m∈J

Ωm, with Ωm = (x(1)m1
, x(2)m1

)× (y(1)m2
, y(2)m2

) , (2.5)

where m = (m1,m2) is a multi-index and J is the collection of the indices

J = {m = (m1,m2) : m1 = 1, . . . ,M1, m2 = 1, . . . ,M2} .

We plot the setup in Figure 2.1. For each patch we define the associated partition-of-unity

function χm, which has χm(x) ≥ 0 and

χm(x) = 0 on x ∈ Ω \ Ωm ,
∑
m

χm(x) = 1, ∀x ∈ Ω . (2.6)

We set ∂Ωm to be the boundary of patch Ωm and denote by N (m) the collection of indices

of the neighbors of Ωm. In this 2D case, we have

N (m) = {(m1 ± 1,m2)} ∪ {(m1,m2 ± 1)} ⊂ J . (2.7)

Naturally, indices that are out of range, which correspond to patches adjacent to the

boundary ∂Ω, are omitted from N (m).

In the framework of domain decomposition, the full-domain problem is decomposed

into multiple smaller problems supported on the subdomains. Define the local Dirichlet
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(1) 𝑥𝑥𝑚𝑚1
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𝑦𝑦𝑚𝑚2
(2)

Figure 2.1: Domain decomposition for a square 2D geometry. Each patch is la-
beled by a multi-index m = (m1,m2). The patches adjacent to Ωm are those on its
north/south/west/east sides.

problem on patch Ωm by:


F ε

(
D2uεm(x), Duεm(x), uεm(x), x

)
= 0 , x ∈ Ωm ,

uεm(x) = ϕm(x) , x ∈ ∂Ωm .

(2.8)

For this local problem, we define the following operators:

• Sεm is the solution operator that maps local boundary condition ϕm to the local

solution uεm:

uεm = Sεmϕm .

Denoting by dm the number of grid points on the boundary ∂Ωm and Dm the number

of grid points on the subdomain Ωm, then Sεm maps Rdm to RDm .

• Il,m denotes the restriction (or trace-taking) operator that restricts the solution

within Ωm to its part that overlaps with the boundary of Ωl, for all l ∈ N (m). That

is,

Il,muεm = uεm|∂Ωl∩Ωm .

Denoting by pl,m the number of grid points in ∂Ωl ∩ Ωm, then Il,m maps RDm to
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Rpl,m .

• Qε
l,m is the composition of Sεm and Il,m. It is a boundary-to-boundary operator that

maps the local boundary condition ϕm to the restricted solution uεm|∂Ωl∩Ωm :

Qε
l,mϕm = Il,mSεmϕm = uεm|∂Ωl∩Ωm .

Qε
l,m maps Rdm to Rpl,m .

• Qε
m denotes the collection of all segments of boundary conditions ψl,m that is com-

puted from the full-domain boundary condition ϕm:

Qε
mϕm =

⊕
l∈N (m)

ψl,m =
⊕

l∈N (m)

Qε
l,mϕm =

⊕
l∈N (m)

Il,mSεmϕm . (2.9)

Letting pm =
∑

l∈N (m) pl,m, Qε
m maps Rdm to Rpm .

The Schwarz procedure starts by making a guess of boundary condition on each Ωm.

At the nth iteration, (4.9) is solved for each subdomains Ωm (possibly in parallel) and

these solutions are used to define new boundary conditions for the neighboring subdomains

Ωl, l ∈ N (m). The boundary conditions for Ωm at iteration n+ 1 are thus:

ϕ(n+1)
m =


ψ
(n)
m,l = Im,lSεl ϕ

(n)
l , on ∂Ωm ∩ Ωl, l ∈ N (m) ,

ϕ|∂Ωm∩∂Ω , on ∂Ωm ∩ ∂Ω .
(2.10)

Note that the physical full-domain boundary condition is imposed on the points in ∂Ωm ∩

∂Ω. Each iteration of the Schwarz procedure can be viewed as an application of the map

Qε
m,l. The procedure concludes by patching up the local solutions from the subdomains.

The overall algorithm is summarized in Algorithm 1.

The convergence of classical Schwarz iteration is guaranteed for fully nonlinear elliptic

equations; see, for example [163, 164, 107]. Since the computation of solution uεm = Sεmϕm

can be expensive due to the nonlinearity and oscillation of the medium at small scale ε,



12

the major computational cost for Schwarz iteration comes from the repeated evaluation of

the boundary-to-boundary map Qε
m,l, which requires solution of an elliptic PDE on each

subdomain.

Algorithm 1 The Schwarz iteration for fully nonlinear elliptic equations (2.1).

1: Domain Decomposition:
2: Decompose Ω into overlapping patches: Ω =

⋃
m∈J Ωm.

3: Given tolerance δ0 and initial guesses ϕ
(0)
m of boundary conditions on each patchm ∈ J .

4: Schwarz iteration:
5: Set n = 0 and res = 1.
6: while res ≥ δ0 do
7: For m ∈ J , compute local solutions u

(n)
m = Smϕ(n)m ;

8: For m ∈ J and l ∈ N (m), restrict the solutions ψ
(n)
m,l = Im,lu

(n)
m ;

9: For m ∈ J , update ϕ(n+1)
m by (4.15);

10: Set res =
∑

m ∥ϕ
(n+1)
m − ϕ(n)m ∥L2(∂Ωm) and n← n+ 1.

11: end while
12: return Global solution u(n) =

∑
m∈J χmu

(n)
m .

2.3 The Classical limit of the Schrödinger equation

In this section, we review the homogenization of wave-type PDEs, with a specific focus

on the Wigner transform technique. This technique seamlessly connects wave-type PDEs

and their high-frequency limit, or classical limit. We illustrate its application using the

Schrödinger equation as an example.

2.3.1 Schrödinger equation

In this section, we present some preliminary results that show the classical limit of the

Schrödinger equation in the classical limit.

For a nonrelativisitic single particle, the time-dependent Schrödinger equation in po-

sition basis writes as:

iε∂tϕ
ε = −1

2
ε2∆xϕ

ε + V (x)ϕε , x ∈ Rd , t > 0 ,

ϕε(0, x) = ϕεI (x) , x ∈ Rd .

(2.11)
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This is derived assuming the Hamiltonian is H = 1
2 |k|

2 + V (x), a summation of kinetic

and potential energies of the particles constituting the system. In the equation, ϕε is the

wave function, ε > 0 is the rescaled Planck constant, and V (x) is the potential term.

Some physical quantities can be calculated using ϕε. For example, the particle density

ρε and current density Jε are calculated by

ρε(t, x) = |ϕε(t, x)|2 , Jε(t, x) = εIm
(
ϕε(t, x)∇xϕ

ε(t, x)
)
.

These present the probability and the probability flux of the particle found in some spatial

configuration at some instant of time, according to the Copenhagen interpretation. Both

quantities are quadratic functionals of ϕε(t), and it is straightforward to derive, from (2.11),

the following conservation law:

∂tρ
ε +∇x · Jε = 0 .

A more general definition of physical observables can be given using phase space sym-

bols and Weyl quantization [124]. To make it more explicit, let a(x, k) be a symbol, then

using Weyl quantization, we can define a pseudo-differential operator aW (x, εDx) whose

action on f(x) leads to:

(aW(x, εDx)f)(x) =
1

(2π)d

∫
R2d

a

(
x+ y

2
, εk

)
f(y)ei(x−y)kdydk , (2.12)

where εDx = −iε∇x. We then define the expectation value of the symbol a to be a

quadratic functional of wave function ϕε(t):

a[ϕε(t)] =
〈
ϕε(t), aW(x, εDx)ϕ

ε(t)
〉
L2(Rd)

,

where ⟨·, ·⟩L2(Rd) denotes the inner product on L2(Rd).

The well-posedness theory of Schrödinger equation (2.11) is classical. For V = V (x)
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being continuous and bounded, i.e., V ∈ Cb(Rd), the Hamiltonian operator Ĥε is

Ĥεϕε = −ε
2

2
∆xϕ

ε(x) + V (x)ϕε(x) . (2.13)

It maps functions in H2(Rd) ⊂ L2(Rd) to L2(Rd), and is self-adjoint. By Stone’s theorem,

the operator 1
iεĤ

ε generates a unitary, strongly continuous semi-group on L2(Rd), which

guarantees a unique solution to the Schrödinger equation (2.11). Moreover, the L2(Rd)

inner product is conserved in time:

⟨ϕε1(t), ϕε2(t)⟩L2(Rd) = ⟨ϕ
ε
1(0), ϕ

ε
2(0)⟩L2(Rd) , ∀t > 0 , (2.14)

for ϕεi (t), i = 1, 2 both solve the Schrödinger equation (2.11).

2.3.2 Wigner transform and the classical limit

The Wigner transform is one of many approaches used to derive (semi-)classical limit of

Schrödinger equations. The technique was explored in depth in [109]. Let ϕε1(t) and ϕ
ε
2(t)

solve the Schrödinger equation, and we define the corresponding Wigner transform:

W ε[ϕε1, ϕ
ε
2](t, x, k) =

1

(2π)d

∫
Rd

eikyϕε1

(
t, x− ε

2
y
)
ϕε2

(
t, x+

ε

2
y
)
dy . (2.15)

Here ϕε is the complex conjugate of ϕε. This definition is essentially the Fourier transform

of the density matrix

〈
x− ε

2
y
∣∣∣ϕε1〉〈

ϕε2

∣∣∣x+
ε

2
y
〉
= ϕε1

(
t, x− ε

2
y
)
ϕε2

(
t, x+

ε

2
y
)

in the y variable.

We furthermore abbreviateW ε[ϕε, ϕε] to beW ε[ϕε]. It is then straightforward to show

that W ε[ϕε] is real-valued.

Note that the Wigner transform loses the phase information: Changing ϕε(t) to

ϕε(t)eiS(t), one obtains the same corresponding Wigner function. Moreover, it is not
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guaranteed that W ε[ϕε] is positive, and thus it does not serve directly as the particle den-

sity on the phase space. However, the quantum expectation of physical observables can

be easily recovered using the Wigner function. Using the symbol defined in (2.12), it can

be shown [124] that

a[ϕε(t)] =
〈
ϕε(t), aW(x, εDx)ϕ

ε(t)
〉
L2(Rd)

=

∫
R2d

a(x, k)W ε[ϕε(t)]dxdk .

In particular, the first and second moments in k of W ε[ϕε] exactly recover the particle

density ρε(t) and the current density Jε(t):

ρε(t, x) =

∫
Rd

W ε[ϕε(t)](t, x, k)dk , Jε(t, x) =

∫
Rd

kW ε[ϕε(t)](t, x, k)dk .

We now derive the equation for W ε[ϕε1, ϕ
ε
2], as summarized in the following lemma.

Lemma 2.1. Let ϕε1(t) and ϕ
ε
2(t) solve the Schrödinger equation (2.11), and define

f ε(t, x, k) =W ε[ϕε1, ϕ
ε
2](t, x, k) .

Then f ε satisfies the following Wigner equation:

∂tf
ε + k · ∇xf

ε = LεV [f ε] , (x, k) ∈ R2d , t > 0 ,

f ε(0, x, k) = f εI (x, k) ,

(2.16)

with f εI (x, k) being the Wigner transform of initial conditions ϕε1(0) and ϕε2(0), and the

operator LεV is defined as:

LεV [f ε] = i
1

(2π)d

∫
R2d

δε[V ](x, y)f ε(x, p)eiy(k−p)dydp . (2.17)

Here δε[V ](x, y) = 1
ε

[
V
(
x+ 1

2εy
)
− V

(
x− 1

2εy
)]
. Equivalently, one can also write

LεV [f ε] = i

∫
R2d

eip(x−y)V (y)Dεf ε(x, k, p)dpdy , (2.18)
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where the term Dεf ε is defined by

Dεf ε(x, k, p) =
1

ε

[
f ε

(
x, k +

1

2
εp

)
− f ε

(
x, k − 1

2
εp

)]
. (2.19)

We note that LεV is an operator that is anti-self-adjoint for all real-valued potential V .

To see that, we first define

Vε(x, k) = i
1

(2π)d

∫
Rd

δε[V ](x, y)eiykdy . (2.20)

This allows us to simplify (2.17) to a convolution form

LεV [f ε] =
∫
R2d

Vε(x, k − p)f(x, p)dp = Vε ∗k f ε .

Since Vε(x,−k) = −Vε(x, k), it is straightforward to see

⟨Vε ∗k f ε1 , fε2 ⟩L2(R2d) = −⟨f
ε
1 ,Vε ∗k f ε2 ⟩L2(R2d) ,

meaning:

⟨LεV [f ε1 ], fε2 ⟩L2(R2d) = −⟨f
ε
1 ,LεV [f ε2 ]⟩L2(R2d) . (2.21)

To derive the Wigner equation (2.16), one only needs to plug in the Schrödinger equa-

tion for both ϕε1 and ϕε2. The statement of the lemma is formal, but one can make it

rigorous in L2(Rd). We omit the derivation from this chapter, but refer interested readers

to [109].

The nice format of the Wigner equation makes it easy to obtain the classical limit.

Indeed, formally, as ε → 0, δε[V ] → y · ∇xV . Then according to the definition of the

operator (2.17), we have

LεV [f ε]→ ∇xV · ∇kf
ε +O(ε2) .

This means the asymptotic limit of (2.16), up to the truncation of O(ε2), is the Liouville
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equation:

∂tf + k · ∇xf −∇xV · ∇kf = 0 . (2.22)

Following the characteristic of this equation we have:

ẋ = k , k̇ = −∇xV (x) . (2.23)

This is exactly the same as the Newtonian law of motion generated by the Hamiltonian

H(x, k) = 1
2 |k|

2 + V (x).

This formal analysis can be made rigorous. Indeed in [109] the authors studied a

general Hamiltonian system and derived the asymptotic limit for the Wigner equation.

Let S ′(R2d) denotes the space of tempered distributions. In our special case, the rigorous

theorem states as follows.

Theorem 2.2. Suppose the potential V (x) satisfies

V (x) ∈ C∞(Rd;R) : |∂αxV (x)| ≤ Cα ∀α ∈ Nd , (2.24)

then the Wigner transform f ε(t, x, k) of ϕε(t), the solution to Schrödinger equation (2.11),

converges, in L∞(R,S ′(R2d)) in the weak-∗ sense, locally uniformly in t to the measure

f(t, x, k) that solves:

∂tf + k · ∇xf −∇xV · ∇kf = 0 , f(0, x, k) = fI(x, k) . (2.25)

The initial data fI is the weak-∗ limit of Wigner transform of ϕεI (t) in S ′(Rd).
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Chapter 3

A Reduced Order Schwarz

Method Based on Two-Layer

Neural Networks

Neural networks are powerful tools for approximating high dimensional data that have

been used in many contexts, including solution of partial differential equations. We de-

scribe a solver for multiscale fully nonlinear elliptic equations that makes use of domain

decomposition, an accelerated Schwarz framework, and two-layer neural networks to ap-

proximate the boundary-to-boundary map for the subdomains, which is the key step in the

Schwarz procedure. Conventionally, the boundary-to-boundary map requires solution of

boundary-value elliptic problems on each subdomain. By leveraging the compressibility of

multiscale problems, our approach trains the neural network offline to serve as a surrogate

for the usual implementation of the boundary-to-boundary map. Our method is applied

to a multiscale semilinear elliptic equation and a multiscale p-Laplace equation. In both

cases we demonstrate significant improvement in efficiency as well as good accuracy and

generalization performance.
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3.1 Introduction

Approximation theory plays a key role in scientific computing, including in the design of

numerical PDE solvers. This theory prescribes a certain form of ansatz to approximate

a solution to the PDE, allowing derivation of an algebra problem whose solution yields

the coefficients in the ansatz. Various methods are used to fine-tune the process of trans-

lation to an algebraic problem, but the accuracy of the calculated solution is essentially

determined by the underlying approximation theory. New approximation methods have

the potential to produce new strategies for numerical solution of PDEs.

During the past decade, driven by some remarkable successes in machine learning, neu-

ral networks (NNs) have become popular in many contexts. They are extremely powerful

in such areas as computer vision, natural language processing, and games [154, 112]. What

kinds of functions are well approximated by NNs, and what are the advantages of using

NNs in the place of more traditional approximation methods? Some studies [37, 152, 92]

have revealed that NNs can represent functions in high dimensional spaces very well. For

Barron functions, in particular, unlike traditional approximation techniques that require

a large number of parameters (exponential on the dimension), the number of parameter

required for a NN to achieve a prescribed accuracy is rather limited. In this sense, NN

approximation overcomes the “curse of dimensionality.” This fact opens up many possibil-

ities in scientific computing, where the discretization of high dimensional problems often

plays a crucial role. One example is problems from uncertainty quantification, where many

random variables are needed to represent a random field, with each random variable essen-

tially adding an extra dimension to the PDE [214, 215, 110, 20]. Techniques that exploit

intrinsic low-dimensional structures can be deployed on the resulting high-dimensional

problem [105, 47, 38, 80, 127]. Another example comes from PDE problems in which the

medium contains structures at multiple scales or is highly oscillatory, so that traditional

discretization techniques require a large number of grid points to achieve a prescribed

error tolerance. Efficient algorithms must then find ways to handle or compress the many

degrees of freedom.
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Despite the high dimensionality in these examples, successful algorithms have been

developed, albeit specific to certain classes of problems. With the rise of NN approxima-

tions, with their advantages in high-dimensional regimes, it is reasonable to investigate

whether strategies based on NNs can be developed that may even outperform classical

strategies. In this chapter, we develop an approach that utilizes a two-layer NN to solve

multiscale elliptic PDEs. We test our strategy on two nonlinear problems of this type.

The use of NN in numerical PDE solvers is no longer a new idea. Pioneering works

that solving PDEs with NN often take the approach of using NN to approximate the so-

lutions. Notable examples include the Physics Informed Neural Network [188], the Deep

Ritz method [94], the Deep Backward SDE method [91], the Deep Galerkin method [196],

the Weak Adversarial Network [218], a method based on the Feymann-Kac formula [46]

and the Multi-scale Deep Neural Network [167, 158], to name a few. Another category of

approaches uses NN to approximate the solution map. Pioneer works in this category in-

clude DeepONet [170], Fourier Neural Operator [161], PDE-Net [168], Bufferfly-Net [159,

216], methods based on hierarchical matrices [103, 102, 210], the Switch-Net [144] and

methods based on modal space [213], to name a few. Due to the complicated and un-

conventional nature of approximation theory for NN, it is challenging to perform rigorous

numerical analysis for the methods above, though solid evidence has been presented of the

computational efficacy of these approaches.

The remainder of this chapter is organized as follows. In Section 3.2, we discuss our

NN-based approach in detail and justify its use in this setting. We then present our

reduced-order Schwarz method based on two-layer neural networks. Numerical evidence

is reported in Section 3.3. Two comprehensive numerical experiments for the semilinear

elliptic equation and the p-Laplace equation are discussed, and efficiency of the methods

is evaluated. We make some concluding remarks in Section 3.4.
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3.2 Reduced order Schwarz method based on neural net-

works

As we have seen from Section 2.2, the major numerical expense in the Schwarz iteration

comes from the local PDE solves — one per subdomain per iteration. However, except

at the final step where we assemble the global solution, our interest is not in the local

solutions per se: It is in the boundary-to-boundary maps that share information between

adjacent subdomains on each Schwarz iteration. If we can implement these maps directly,

we can eliminate the need for local PDE solves. To this end, we propose an offline-online

procedure. In the offline stage, we implement the boundary-to-boundary maps, and in

the online stage, we call these maps repeatedly in the Schwarz framework. This approach

is summarized in Algorithm 2. In this description, we replace the boundary-to-boundary

map Qε
m by a surrogate QNN

m (θm), which is neural network parametrized by weights θm,

whose values are found by an offline training process.

Algorithm 2 The NN-Schwarz iteration for nonlinear elliptic equations (2.1).

1: Domain Decomposition:
2: Decompose Ω into overlapping patches: Ω =

⋃
m∈J Ωm, and collect the indices

for interior patches in Ji = {m ∈ J : ∂Ωm ∩ ∂Ω = ∅} and boundary patches in
Jb = {m ∈ J : ∂Ωm ∩ ∂Ω ̸= ∅}. CHR: (There’s a specific symbol for ∅.)[SCH: fixed]

3: Offline training:
4: For each interior patch Ωm, train the boundary-to-boundary map QNN

m (θm)
parametrized by θm.

5: Schwarz iteration (Online):

6: Given the tolerance δ0 and the initial guess of boundary conditions ϕ
(0)
m on each

patch m ∈ J .
7: Set n = 0 and res = 1.
8: while res ≥ δ0 do
9: For m ∈ Ji, compute function (ψ

(n)
m,l)l∈N (m) = QNN

m (θm)ϕ
(n)
m ;

10: For m ∈ Jb, compute function ψ
(n)
l,m = Im,lSεmϕ

(n)
m for l ∈ N (m);

11: For m ∈ J , update ϕ(n+1)
m by (4.15);

12: Set res =
∑

m ∥ϕ
(n+1)
m − ϕ(n)m ∥L2(∂Ωm) and n← n+ 1.

13: end while
14: For m ∈ J , compute function u

(n)
m = Sεmϕ

(n)
m ;

15: return Global solution u(n) =
∑

m∈J χmu
(n)
m .
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Since the online stage is self-explanatory, we focus on the offline stage, and study how

to obtain the approximation to Qε
m.

We have two additional comments about our approach.

• Our algorithm uses the surrogate boundary-to-boundary map only for the interior

patches m ∈ Ji. For patches that are adjacent to the physical boundary, we perform

the standard Schwarz iteration. This choice is mainly for convenience of coding.

There are several other options. For example, one can choose to learn in the offline

stage the surrogate boundary-to-boundary map for patches boundary patches Jb as

well. However, in the training stage, one needs to impose a rather general class of

functions to serve as the potential physical boundary condition. Whether this chosen

class of functions represents well the boundary condition given in the online phase

is a question for approximation theory. We omit a discussion here.

• If the PDE operator F ε has no explicit dependence on x, then the boundary-to-

boundary map is the same across all patches of the same size. In this case, training

can be implemented in parallel, saving computational time.

3.2.1 Two observations

A rigorous approach to preparing the boundary-to-boundary map Qε
m in the offline stage

is not straightforward. In the case of linear PDEs, it amounts to computing all Green’s

functions in the local subdomains and confining them on the adjacent subdomain bound-

aries for the map; see [62]. When the PDEs are nonlinear, there would seem to be no

alternative to solving the local PDEs with all possible configurations of the boundary

conditions, applying the appropriate restrictions, and storing the results. At the discrete

level, Qε
m would be represented as a high-dimensional function mapping Rdm to Rpm . To

achieve a specified accuracy, both dm and pm need to scale as O(ε−(d−1)). For brute-force

training, at least O(dm) = O(ε−(d−1)) local PDE solves need to be performed to compute

the required approximation to Qε
m. This is a large amount of computation, and it offsets

whatever gains accrue in the online stage from efficient deployment of the approximation
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to Qε
m.

To be cost-effective, a method of the form of Algorithm 2 must exploit additional

properties, intrinsic to Qε
m and to the scheme for approximating this mapping. The first

such property is a direct consequence of homogenization. As argued in Section 2.1, the

solution of the effective equation (2.3) can preserve the ground truth well, with the effective

equation independent of ε. Therefore, the map Qε
m, though presented as a mapping from

Rdm to Rpm , is intrinsically of low dimension and can be compressed. To visualize this

relation, we plot the relative singular values of the boundary-to-boundary operator Qε
m of

a linear multiscale elliptic equation (see (3.17)) in Figure 3.1.
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Figure 3.1: Singular values of the boundary-to-boundary operatorQε
m for the linear elliptic

equation (3.17) with medium κε defined in (3.15) for different values of ε and ∆x on a
local patch. Left plot: ∆x = 2−8. Right plot: ε = 2−4. To ensure the regularity of the
test function space, the discrete version of the boundary-to-boundary map is represented
on basis functions composed of piecewise linear function with fixed step size 2−8.

With the system being of intrinsically low dimension, we expect that a compression

mechanism can be deployed. Even though the data itself is represented in high dimension,

the number of parameters in the compressed representation should not grow too rapidly

with the order of discretization. We seek an approximation strategy that can overcome the

“curse of dimensionality.” These considerations lead us to the use of neural network (NN).

NN, unlike other approximation techniques, is powerful in learning functions supported in

high dimensional space; the number of parameters that need to be tuned to fit data in a

high dimensional space is typically relaxed from the dimension of the data.

Consider a fully connected feedforward neural network (fully connected NN) repre-
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senting a function f : Rn → Rm. A 2-layer fully connected NN with hidden-layer width h

would thus be required to satisfy

fNN(x) =W2σ(W1x+ b1) + b2 , x ∈ Rn , (3.1)

where W1 ∈ Rh×n, W2 ∈ Rm×h are weight matrices and b1 ∈ Rh, b2 ∈ Rm are biases. The

activation function σ : R → R is applied component-wise to its argument. (The ReLU

activation function σ(x) = max(x, 0) is especially popular.) This 2-layer fully connected

NN already can represent high dimensional functions. A fundamental approximation result

[152, 95, 37] is captured in the following theorem.

Theorem 3.1 (Barron’s Theorem). Let D ⊂ Rn be a bounded domain. Suppose a generic

function f ∈ L2(D) satisfies

∆(f) =

∫
Rn

∥ω∥21|f̂(ω)|dω <∞ , (3.2)

where f̂ is the Fourier transform of the zero extension of f to L2(Rd). Then there exists

a two-layer ReLU neural network fNN with h hidden-layer neurons such that

∥f − fNN∥L2(D) ≲
∆(f)√
h
. (3.3)

A natural high dimensional extension of the result is as follows.

Corollary 3.1. Let D ⊂ Rn be a bounded domain. Suppose a generic function f =

[f1 , . . . , fm] : Rn → Rm so that fi ∈ L2(D) satisfies (3.2), then there exists a two-layer

ReLU neural network fNN with h hidden-layer neurons such that

∥f − fNN∥L2(D) ≲

√√√√ m∑
i=1

∆2(fi)

h/m
≤ m∆(f)√

h
. (3.4)

where ∆(f) := maxmi=1∆(fi).

A nice feature of this result is that the approximation error is mostly relaxed from the
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dimension of the problem, making NN a good fit for our purposes. In our setting, it is

the high-dimensional operator Qε
m that needs to be learned. Theorem 3.1 suggests that if

fully connected NN is used as the representation, the number of neurons h required will

not depend strongly on this dimension.

3.2.2 Offline training and the full algorithm

The two observations above suggest that using a neural-network approximation for the

boundary-to-boundary operator can reduce computation costs and memory significantly.

Following (3.1), we define the NN approximation QNN
m to Qε

m as follows:

QNN
m (θm)ϕm =Wm,2σ(Wm,1ϕm + bm,1) + bm,2 , where ϕm ∈ Rdm . (3.5)

Here θm = {Wm,1,Wm,2, bm,1, bm,2} denotes all learnable parameters, with weight matrices

Wm,1 ∈ Rhm×dm ,Wm,2 ∈ Rpm×hm and biases bm,1 ∈ Rhm , bm,2 ∈ Rpm . The number of

neurons hm is a tunable parameter that relates to the number of degrees of freedom in

QNN
m (θm). Theorem 3.1 and the homogenizability of the elliptic equation suggest that hm

can be chosen to satisfy a prescribed approximation error while being independent of both

dm and pm, and thus of the small scale ε.

Given a fixed NN architecture and a data set, the identification of optimal QNN
m (θm)

amounts to minimizing a loss function L(θm) that measures the misfit between the data

and the prediction. One needs to prepare a set of data Xm = {ϕm,i}Ni=1 and corresponding

outputs

Ym =
{
ψm,i = Qε

mϕm,i = (ψl,m,i)l∈N (m) =
(
uεm,i|∂Ωl∩Ωm

)
l∈N (m)

}N

i=1
, (3.6)

where uεm,i solves (2.8). The loss function to be minimized is

L(θm) :=
1

N

N∑
i=1

ℓ
(
QNN

m (θm)ϕm,i , ψm,i

)
, (3.7)
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where ℓ evaluates the mismatch between the first and the second arguments. (This measure

could be defined using the L2 norm and / or the H1 norm.) Gradient-based algorithms

for minimizing (3.7) have the general form

θ(t+1)
m ← θ(t)m − ηtGt

(
∇θmL

(
θ(t)m

)
, . . . ,∇θmL

(
θ(1)m

))
, (3.8)

where ηt is the learning rate and Gt is based on the all gradients seen so far. For example,

for the Adam optimizer [146], the function Gt is a normalized exponentially decaying

average of gradients:

Gt (at, . . . , a1) ∝
(
1− βt1

)−1
t∑

s=1

βt−s
1 (1− β1) as , (3.9)

for some parameter β1 ∈ (0, 1). The ∝ sign means Gt needs to be normalized so that

∥Gt∥2 ∼ 1.

Like many optimization processes, the training and tuning of this NN depends on some

prior knowledge. We propose a mechanism to select training data that represent well

the information in Qε
m. We also initialize the weights θm according to a reduced linear

problem. These mechanisms are described in the following two sections; their effectiveness

in numerical testing is demonstrated in Section 3.3.

Generating training data

To learn the parameters in the NN approximation to the boundary-to-boundary map,

one needs to provide a training set of examples of the map. We generate such examples

by adding a boundary margin of width ∆xb to each interior patch Ωm to obtain an

enlarged patch Ωm, as shown in Figure 4.1. Samples are generated by choosing Dirichlet

conditions for the enlarged patch, then solving the equation, and defining the map in terms

of restrictions of both input and output conditions to the appropriate boundaries.

Specifically, following [71], we generate N i.i.d. samples of the boundary conditions

ϕm for the enlarged patch ∂Ωm according to H1/2(∂Ω) (See Appendix A.1), and solve the
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following equations for uεm,i(x):


F ε

(
D2uεm,i(x), Du

ε
m,i(x), u

ε
m,i(x), x

)
= 0 , x ∈ Ωm ,

uεm,i(x) = ϕm,i(x) , x ∈ ∂Ωm .

(3.10)

The boundary-to-boundary map Qε
m maps each element of Xm = {ϕm,i}Ni=1 to the corre-

sponding element of Ym = {ψm,i}mi=1, where

ϕm,i = uεm,i|∂Ωm , ψm,i = (ψl,m,i)l∈N (m) =
(
uεm,i|∂Ωl∩Ωm

)
l∈N (m)

. (3.11)

This pair of sets — input set Xm and output set Ym — serves as the training data. We

have two comments regarding the training process.

• Various NN architectures could be considered. We use fully connected NN mostly

because the initialization procedure requires singular value decomposition of the

linearized counterpart of boundary-to-boundary map, and this kind of NN is a nat-

ural extension of the linear network that capture the SVD to the nonlinear regime.

Another potentially good option is Convolutional Neural Network (CNN) whose

structure can potentially alleviate computational difficulty as one refines the dis-

cretization.

• For generating training data, each patch is slightly enlarged before application of the

PDE solver. Most homogenization results need a boundary layer correction adjacent

to the physical boundary, so the low-rank property fails to hold near the boundary.

The use of a small boundary buffer zone on each patch dampens the boundary layer

effect and enables low-rank structure of the boundary-to-boundary map.

Initialization

The training problem of minimizing L(θm) in (3.7) to obtain the NN approximate operator

QNN
m (θm) is nonconvex, so a good initialization scheme can improve the performance of a

gradient-based optimization scheme significantly. We can make use of knowledge about
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the PDE to obtain good starting points. Our strategy is to assign good initial weights and

biases for the neural network using a linearization of the fully nonlinear elliptic equation

(2.1). Denoting by QL
m the boundary-to-boundary operator of a linearized version of Qε

m,

to be made specific below for the numerical examples in Section 3.3, we initialize QNN
m in

a way that approximately captures QL
m. The linear boundary-to-boundary operator QL

m

has a matrix representation. Denoting by rm the approximate rank (up to a preset error

tolerance), we can write

QL
m ≈ Um,rmΛrmV

⊤
m,rm =

(
Um,rm

√
Λrm

)(
Vm,rm

√
Λrm

)⊤
, (3.12)

where Um,rm ∈ Rpm×rm and Vm,rm ∈ Rdm×rm have orthonormal columns while Λrm ∈

Rrm×rm is diagonal. As argued in [62], due to the fact that the underlying equation is

homogenizable, this rank rm is much less than min{dm, pm}, and is independent of pm

and dm.

To start the iteration of QNN
m , we compare (3.5) with the form of (3.12). This suggests

the following settings of parameters in (3.5): bm,1 = bm,2 = 0 and

Wm,1 =
[
Vm,rm

√
Λrm ,−Vm,rm

√
Λrm

]⊤
,

Wm,2 =
[
Um,rm

√
Λrm ,−Um,rm

√
Λrm

]
.

(3.13)

Note that hm = 2rm. These configurations will be used as the initial iteration in (3.8).

We summarize our offline training method in Algorithm 3. Integrating into the full

algorithm yields the reduced order neural network based Schwarz iteration method.

Algorithm 3 Offline training of QNN
m (θm), as a surrogate of Qε

m on patch Ωm.

1: Enlarge each interior patch Ωm to obtain Ωm;
2: Randomly generate samples {ϕm,i}Ni=1 and solve (3.10) to obtain {uεm,i}Ni=1.

3: Compute (4.10) to define {Xm ,Ym} = {{ϕm,i}Ni=1 , {(ψl,m,i)l∈N (m)}Ni=1};
4: Initialize θm in QNN

m (θm) by using the linearized boundary-to-boundary operator QL
m,

as defined in (3.13);
5: Find the optimal coefficient θ∗m in the neural network QNN

m (θm) by applying the gra-
dient descent method (3.8) until convergence.
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3.3 Numerical results

We present numerical examples using our proposed method to solve a multiscale semilinear

elliptic equation and a multiscale p-Laplace equation. In both examples, we use domain

Ω = [0, 1]2. To form the partitioning, Ω is divided into M1 ×M2 equal non-overlapping

rectangles, then each rectangle is enlarged by ∆xo on the sides that do not intersect with

∂Ω, to create overlap. We thus have

Ωm =
[
max

(
m1−1
M1
−∆xo, 0

)
,min

(
m1
M1

+∆xo, 1
)]

×
[
max

(
m2−1
M2
−∆xo, 0

)
,min

(
m2
M2

+∆xo, 1
)]

, m = (m1,m2) ∈ J .

The loss function is defined as in (3.7), with parameter µ = 10−3. For training to obtain

QNN
m (θm), we use PyTorch [183]. For both examples, each neural network is trained for

5,000 epochs using shuffled mini-batch gradient descent with a batch-size of 5% of the

training set size. The Adam optimizer is used with default settings, and the learning rate

decays with a decay-rate of 0.9 every 200 epochs. The codes accompanying this chapter

are publicly available [68].

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2

4

6

8

10

12

14

16

18

20

22

Figure 3.2: Medium κ for semilinear elliptic equation.
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3.3.1 Semilinear elliptic equations

The first example is the semilinear elliptic equation


−∇ · (κε(x)∇uε(x)) + uε(x)3 = 0, x ∈ Ω ,

uε(x) = ϕ(x), x ∈ ∂Ω ,
(3.14)

with oscillatory medium κε(x) = κε(x1, x2) defined by

κε(x1, x2) = 2+sin(2πx1) cos(2πx2)+
2 + 1.8 sin(2πx1/ε)

2 + 1.8 cos(2πx2/ε)
+

2 + sin(2πx2/ε)

2 + 1.8 cos(2πx1/ε)
. (3.15)

with ε = 2−4. The medium is plotted in Figure 3.2.

The reference solution and the local PDE solves are computed using the standard finite-

volume scheme with uniform grid with mesh size ∆x = 2−8 = 1
256 and Newton’s method

is used to solve the resulting algebraic problem. For our domain decomposition approach,

we set M1 = M2 = 4 to define the patches Ωm, with boundary margins ∆xo = 2−4 = 1
16

to form Ωm. The input and output dimensions of Qε
m are thus (dm, pm) = (388, 388).

To obtain the training data, each patch Ωm is further enlarged to a buffered patch Ωm

by adding a margin of ∆xb = 2−4 = 1
16 to Ωm. On each patch Ωm, 10, 000 samples are

generated with random boundary conditions defined by Rm = 1000 and D = 3. To train

the NN, we use the loss function (3.7) with

ℓ(QNN
m (θm)ϕm − ψm) =∥QNN

m (θm)ϕm − ψm∥2

+ µ
∑

l∈N (m)

∥DhQNN
l,m(θm)ϕm −Dhψl,m∥2 ,

(3.16)

whereQNN
l,m(θm) andQNN

m (θm) are NN approximation ofQl,m(θm) andQl,m(θm), as defined

in (2.7) and (2.9), respectively; and Dh is the discrete version of the derivative operator

with step size h. The second term measures mismatch in the derivative so as to enforce

the regularity.

To initialize the neural networks, we takeQL
m to be the boundary-to-boundary operator
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Figure 3.3: Training loss for loss function L (3.16) for patch (2,2). For the variants that use
random initializations, we use the PyTorch default, which generate the weights and biases
in each layer uniformly from (−

√
dinput,

√
dinput), where dinput is the input dimension of

the layer.

of the following linear elliptic equation

−∇ · (κε(x)∇uε(x)) = 0, x ∈ Ω . (3.17)

We truncate the rank representation of QL
m at rank rm = 40 to preserve all singular values

bigger than a tolerance δ1 = 10−2 so that the width of the hidden layer is hm = 80.

Offline training

We show the improvements in the offline process for training QNN
m due to the two strategies

described in Subsection 3.2.2: the use of enlarged patches, and initialization using SVD

of a matrix representation of a linearized equation. Figure 3.3 plots number of epochs

in the offline training vs the training loss function L (3.16) associated with QNN
m for the

patch m = (2, 2) in four different settings: SVD-initialization on training data with buffer

zone, SVD-initialization on training data without buffer zone, and the counterpart without

SVD-initialization. The same NN model is used in all four settings. It is immediate that

the training process has a much faster decay in error if buffer zone is adopted, and that

the SVD initialization gives a much smaller error than random initialization.

To show the generalization performance of the resulting trained NN, we generate a test
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data set from the same distribution as the buffered training data set with 1,000 samples,

for the same patch m = (2, 2). Since the NNs trained using non-buffered data produce

larger error, we only test the NNs trained with buffered data. The test errors (3.16) in the

training process for different models are plotted in Figure 3.4. Again, the use of buffered

data along with SVD-initialization yields the best performance.
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Figure 3.4: Testing error during the training for patch (2,2).

To demonstrate generalization performance, we plot the predicted outputs for two

typical examples in the test set in Figure 3.5. For comparison, we also plot the outputs

produced by randomly initialized neural network and the linear operator QL
m. It can be

seen that the low-rank SVD-initialized neural network has the best performance among

all the initialization methods.

We note too that the neural network models initialized by the SVD of linear PDEs tend

to be more interpretable. Figure 3.6 shows the final weight matrices for models initialized

by different methods. It can be seen that SVD-initialized model yields weight matrices

with recognizable structure: the parameters for higher modes are near zero, and only the

top 25 modes in the positive and negative halves are nontrivial. By comparison, the

trained weight matrices using randomly initialized parameters do not show any pattern or

structure.
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Figure 3.5: The top row shows the ground truths ψl,m (m = (2, 2), l = (2, 1)) of two

samples in the test set. The bottom row shows the error |ψl,m − ψ̃l,m|, where ψ̃l,m are
computed by the low-rank SVD initialized QNN

m (with and without buffer-zone), randomly
initialized QNN

m (with and without buffer-zone), and the linear operator QL
m.
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Figure 3.6: The first row shows the final weight matrices W1 (left), W2 (right) obtained
the for SVD-initialized model on patch m = (2, 2). The second row shows the final weight
matricesW1 (left), W2 (right) for randomly initialized model on patch m = (2, 2). In both
cases, training data is obtained by enlarging the patch.
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No. Boundary condition

1
ϕ(x, 0) = 40 , ϕ(x, 1) = 40
ϕ(0, y) = 40 , ϕ(1, y) = 40

2
ϕ(x, 0) = 50− 50 sin(2πx) , ϕ(x, 1) = 50 + 50 sin(2πx)
ϕ(0, y) = 50 + 50 sin(2πy) , ϕ(1, y) = 50− 50 sin(2πy)

3
ϕ(x, 0) = 10 , ϕ(x, 1) = 35

ϕ(0, y) = 10 + 25y , ϕ(1, y) = 10 + 25y

Table 3.1: Boundary conditions used in the global test.

Online phase: Schwarz iteration

We show results obtained by using the NN approximation QNN
m (θm) of the boundary-to-

boundary map inside the Schwarz iteration. Table 3.1 shows the boundary conditions used

for the three problems we tested. (The same medium (3.15) is used in all cases.) We use

δ0 = 10−4 for the tolerance in Algorithm 2, and use the full accuracy local solvers as in

the generation of training data set. In Figure 3.7, we plot the ground truth solutions for

different boundary conditions and the absolute error of uNN obtained by neural network-

based Schwarz iteration. (Note that the scaling of the y-axis in the latter is different

from the former.) The relative errors obtained for the four variants of NN approximation

along with the linear approximation QL
m to the boundary-to-boundary map can be found

in Tables 3.2 and 3.3. Note that the smallest errors are attained by the variant that uses

the SVD initialization and buffered patches. To demonstrate the efficiency of our method,

we compare the CPU time of neural network based-Schwarz method and the classical

Schwarz method, using the same tolerance δ0 = 10−4 for the latter. The NNs we used

for the test is trained by SVD initialization, and its training data is generated with buffer

zone. Since NN-produced local boundary-to-boundary map is only an approximation to

the ground truth, for a fair comparison, we also run the reference local solution with a

relaxed accuracy requirement. The CPU time, number of iteration and error comparison

can be found in Table 3.4. In all three test cases, the NN approximate executes faster

than the conventional local solution technique as a means of implementing the boundary-

to-boundary map, while producing H1 errors of the same order.
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Figure 3.7: The first row shows the ground truth solutions u∗ for boundary conditions 1
to 3 from left to right. The second row shows the absolute error |uNN − u∗| for boundary
conditions 1 to 3 from left to right. (Note the much smaller vertical scale used in the
second row.)

Problem Number 1 2

Relative Error L2 H1 L∞ L2 H1 L∞

SVD-NN 0.0013 0.0028 0.0029 0.0010 0.0010 0.0016
SVD-NN (No buffer zone) 0.0042 0.0091 0.0078 0.0029 0.0030 0.0039

Rand-NN 0.0425 0.0445 0.0907 0.0379 0.0188 0.0370
Rand-NN (No buffer zone) 0.0882 0.0965 0.1555 0.0773 0.0400 0.0629

Linear 0.0606 0.0644 0.1066 0.0505 0.0252 0.0415

Table 3.2: Relative error for global solutions by different methods.

Problem Number 3

Relative Error L2 H1 L∞

SVD-NN 0.0035 0.0059 0.0058
SVD-NN (No buffer zone) 0.0235 0.0341 0.0346

Rand-NN 0.1029 0.1293 0.1333
Rand-NN (No buffer zone) 0.1739 0.2277 0.2078

Linear 0.0614 0.0729 0.0776

Table 3.3: Relative error for global solutions by different methods. (Continued)
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Problem Number 1 2 3

Method NN Classical NN Classical NN Classical

CPU time 12.4 17.2 13.9 18.5 13.4 19.5
Iteration 30 29 30 29 34 35
H1 Error 0.0035 0.0024 0.0012 0.0007 0.0062 0.0022

Table 3.4: CPU time (s), number of iterations and the H1 error of the classical Schwarz
iteration and the neural network accelerated Schwarz iteration.

(a) κ (b) log10(κ|∇uε|p−2)

Figure 3.8: Medium κ and κ|∇uε|p−2 for p-Laplace equation. The solution uε is computed
by boundary condition 1 (See Table 3.5).

3.3.2 p-Laplace equations

The second example concerns the multiscale p-Laplace elliptic equation [13, 108, 186, 76,

166] defined as follows:


−∇ · (κε(x)|∇uε|p−2∇uε(x)) = 0, x ∈ Ω ,

uε(x) = ϕ(x), x ∈ ∂Ω ,
(3.18)

where we use p = 6 in this section, and the oscillatory medium is

κε(x, y) =
1

6

(
1.1 + sin(2πx/ε1)

1.1 + sin(2πy/ε1)
+

1.1 + sin(2πy/ε2)

1.1 + cos(2πx/ε2)
+

1.1 + cos(2πx/ε3)

1.1 + sin(2πy/ε3)

+
1.1 + sin(2πy/ε4)

1.1 + cos(2πx/ε4)
+

1.1 + cos(2πx/ε5)

1.1 + sin(2πy/ε5)
+ sin(4x2y2) + 1

)
,

(3.19)

with ε1 = 1/5, ε2 = 1/13, ε3 = 1/17, ε4 = 1/31, ε5 = 1/65. See Figure 3.8 for an illustra-

tion of the medium.
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Figure 3.9: Neural network architecture for the boundary-to-boundary map in the p-
Laplace equation.

Noting that the differential equation in (3.18) is invariant when a constant is added or

when multiplied by a constant, we use a normalization layer to improve the accuracy and

robustness of the two-layer neural network. Given a input boundary condition ϕm ∈ Rdm ,

we define the input normalization layer by

Norminput(ϕm) =
ϕm − ϕ̃m

max{∥ϕm∥2, ε1}
(3.20)

where ϕ̃m := 1/dm
∑dm

i=1(ϕm)i is the mean, and the norm is defined by ∥ϕm∥22 = ∆x
∑dm

i=1(ϕm)2i .

We use ε1 = 10−8 for the regularization constant. The output normalization layer is de-

fined by

Normoutput(ψm) = max{∥ϕm∥2, ε1}ψm + ϕ̃m . (3.21)

The overall architecture is illustrated in Figure 3.9.

To compute both the reference solution and the patchwise solutions (3.10), we for-

mulate the discretization using the standard piecewise linear finite element with uniform

triangular grid, and solve with a preconditioned gradient descent method [132], where the

line search parameter is computed by the Matlab function fminunc. The mesh size is

∆x = 2−8 = 1/256.

For the domain decomposition, we set M = 8 with ∆xo = .03125 to form Ωm. The

resulting input dimension is dm = 196 and the output dimension is pm = 196. Training

data is produced on enlarged patches Ωm with ∆xb = .09375. On each patch, 1, 000

samples are generated with random distribution parameters Rm = 10 and D = 3. To

initialize the neural networks, we take QL
m to be the boundary-to-boundary operator of

the linear elliptic equation −∇ · (κε(x)∇u(x)) = 0. We truncate the rank presentation of

QL
m at rank rm = 36, to preserve all singular values greater than a tolerance δ1 = 10−2 so
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that the width of the hidden layer is hm = 72.
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Figure 3.10: Training loss using loss function L (3.16) for patch m = (2, 2). We use the
default random initialization method in PyTorch, which generate the weights and biases
in each layer uniformly from (−

√
dinput,

√
dinput) with dinput being the input dimension of

the layer.

Offline training

Here we show the improvements in the training process of QNN
m by using the sampling and

initialization strategies in Subsection 3.2.2. Figure 3.10 shows the training loss vs epochs

for learning QNN
m for the patch m = (2, 2) using 1,000 samples. The four variants are the

same as in Figure 3.3. As for the previous example, the most effective training loss is for

the variant in which samples are computed from buffered patches, using a reduced SVD

initialization based on the linear approximate operator.
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Figure 3.11: Testing error during the training for patch (2,2).
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We generate a test data set from the same distribution as the buffered training data

set with 100 samples for patch m = (2, 2). The test errors (3.16) in the training process

for different models are plotted in Figure 3.11. As for the training loss, the variant with

buffered patches and SVD initialization gives the best results.

To demonstrate generalization performance on this example, we plot the predicted

outputs for two typical examples in the test set in Figure 3.12. For comparison, we also

plot the outputs produced by randomly initialized neural network and the linear operator

QL
m. The low-rank SVD-initialized neural network shows best reconstruction performance.

Figure 3.13 show the final weight matrices for models initialized by different methods.

All weights have non-trivial values, suggesting that the NN has appropriate dimensions

for approximating Qε
m. Although the structure of the W2 matrix looks roughly similar for

each case, the W1 matrices are quite different in character, with the randomly initialized

version at bottom left having no obvious structure.
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Figure 3.12: The top row shows the ground truths ψl,m (m = (2, 2), l = (2, 1)) of two

samples in the test set. The bottom row shows the error |ψl,m − ψ̃l,m|, where ψ̃l,m are
computed by the low-rank SVD initialized QNN

m (with and without buffer zone), randomly
initialized QNN

m (with and without buffer zone), and the linear operator QL
m.
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Figure 3.13: The first row shows the final weight matrices W1 (left), W2 (right) for SVD-
initialized model on patchm = (2, 2). The second row shows the weight matricesW1 (left),
W2 (right) for randomly initialized model on patch m = (2, 2). In both cases, training
data is obtained by enlarging the patch.

Schwarz iteration: Online solutions

No. Boundary condition

1
ϕ(x, 0) = − sin(2πx) , ϕ(x, 1) = sin(2πx)
ϕ(0, y) = sin(2πy) , ϕ(1, y) = − sin(2πy)

2
ϕ(x, 0) = − sin(4πx) , ϕ(x, 1) = sin(4πx)
ϕ(0, y) = sin(4πy) , ϕ(1, y) = − sin(4πy)

3
ϕ(x, 0) = −1 , ϕ(x, 1) = 1

ϕ(0, y) = 2y2 − 1 , ϕ(1, y) = 2y2 − 1

Table 3.5: Boundary conditions for p-Laplace equation (3.18) used in the global test.

Next, we apply the neural networks to the Schwarz iteration and show the global test

performance. In Table 3.5 we list the boundary conditions for three problems used in the

test. We use tolerance δ0 = 10−4 in Algorithm 2 and use the full accuracy local solvers as in

the generation of training data set. Figure 3.14 shows ground-truth solutions for different

boundary conditions and the absolute error of uNN obtained by neural network-based

Schwarz iteration (plotted on a different scale). Error norms for the different methods can
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be found in Table 3.6.

Figure 3.14: The first row shows the ground truth solution u∗ for p-Laplace equation (3.18)
for boundary condition 1 to 3 from left to right. The second row shows the absolute error
|uNN − u∗| for boundary condition 1 to 3 from left to right.

To demonstrate the efficiency of our method, we compare the CPU time of neural

network based-Schwarz method and the classical Schwarz method with tolerance δ0 = 10−4

in Algorithm 4. The NNs are trained using SVD initialization, with training data generated

with buffer zones on the patches. The local solvers in the reference solution are chosen so

that the local accuracy is at the same level as the NN-approximation, making for a fair

comparison. The CPU time, number of iteration and error comparison can be found in

Table 3.8. Compared with the classical Schwarz iteration, the reduced method updates

local iterations much faster, while producing H1 errors of the same order.

No. BC 1 2

Relative Error L2 H1 L∞ L2 H1 L∞

SVD-NN 0.0199 0.0314 0.0324 0.0171 0.0250 0.0290
SVD-NN (No buffer zone) 0.0935 0.1793 0.1398 0.0874 0.1052 0.1346

Rand-NN 0.0280 0.0400 0.0480 0.0260 0.0331 0.0367
Rand-NN (No buffer zone) 0.1062 0.1793 0.1412 0.0696 0.1023 0.1119

Linear 0.0623 0.1178 0.0909 0.0606 0.0990 0.0751

Table 3.6: Relative error for p-Laplace equation (3.18) by different methods.
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No. BC 3

Relative Error L2 H1 L∞

SVD-NN 0.0215 0.0443 0.0311
SVD-NN (No buffer zone) 0.1204 0.3331 0.2173

Rand-NN 0.0241 0.0578 0.0411
Rand-NN (No buffer zone) 0.2748 0.4380 0.3947

Linear 0.1390 0.1861 0.1624

Table 3.7: Relative error for p-Laplace equation (3.18) by different methods. (Continued)

Problem Number 1 2 3

Method NN Classical NN Classical NN Classical

CPU time 35.0 87.8 27.8 68.3 117.7 302.2
Iteration 52 54 37 38 151 146
H1 Error 0.0392 0.0231 0.0363 0.0256 0.0457 0.0124

Table 3.8: CPU time (s), number of iterations and the H1 error of the classical Schwarz it-
eration and the neural network accelerated Schwarz iteration for p-Laplace equation (3.18).

3.4 Conclusion

We have presented a reduced-order neural network-based Schwarz method for multiscale

nonlinear elliptic PDEs. In each iteration, the Schwarz method requires evaluation of a

boundary-to-boundary map for each of the subdomains (patches). This map has high

dimensional input and output spaces but is compressible due to the existence of a ho-

mogenization limit. A neural network can approximate high-dimensional maps using a

number of parameters relaxed significantly from the dimension of data, and thus is a per-

fect fit to learn the boundary-to-boundary operator. Our method trains two-layer neural

networks (with many fewer parameters than the input and output dimensions) to learn

the boundary-to-boundary operators in an offline stage. In an online stage, the neural

networks serve as surrogates of local solvers in the Schwarz iteration, leading to signifi-

cant speedup over classical approaches. Our approach is illustrated with two examples: a

semilinear elliptic equation and a p-Laplace equation.
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Chapter 4

A Manifold Learning Approach for

Numerical Homogenization

In this chapter, we describe an efficient domain decomposition-based framework for nonlin-

ear multiscale PDE problems. The framework is inspired by manifold learning techniques

and exploits the tangent spaces spanned by the nearest neighbors to compress local solu-

tion manifolds. In particular, our framework is applied to a semilinear elliptic equation

with oscillatory media and a nonlinear radiative transfer equation. This new method

does not rely on detailed analytical understanding of the multiscale PDEs, such as their

asymptotic limits, and thus is more versatile for general multiscale problems.

4.1 Introduction

Homogenization is a body of theory and methods to study differential, or differential-

integro equations with rapidly oscillating coefficients. It traces back to the famous work

of Bensoussan-Lions-Papanicolaou [44], and builds on several other important develop-

ments [128, 90, 16, 89, 114, 35, 115, 1]. Generally speaking, the goal of homogenization

is to derive asymptotic limiting equations as accurate surrogates of the original equations

that do not have scale separations. The core technique is asymptotic analysis.
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4.1.1 Goal

There are a number of famous examples that use homogenization techniques, such as

elliptic equations with rapidly oscillating media [44], Schrödinger equation with small

rescaled Planck constant [109], the neutron transport equation with small Knudsen num-

ber [45, 118], compressible Euler equation with small Mach number [149, 148, 194], and

Boltzmann-type equations in the fluid regime [32]. All these examples have the form

N εuε = f , (4.1)

whereN ε is a partial differential operator that depends explicitly on the small parameter ε.

The term f on the right-hand side represents the external information—the source terms,

the boundary conditions, the initial conditions, and so on—which has no dependence on

ε. Due to the ε-dependence of N ε, the PDE is rather stiff: the solutions either exhibit

high oscillations (such as the Schrödinger equation with small value of the rescaled Planck

constant, or the elliptic equation with rough media), or present boundary/initial layers

within which solutions change rapidly (such as the Knudsen layer in kinetic systems). The

oscillations and layers themselves usually do not carry any interesting physical information;

one is more interested in extracting physically meaningful quantities from the solutions

directly, with these details omitted. Thus, it is important to evaluate the limiting behavior

of (4.1) as ε→ 0. There are two contrasting approaches in the literature that enable this

task: One is analytical and the other is numerical.

The analytical approach seeks the asymptotic limit of the PDE (4.1), defined as follows:

N ∗u∗ = f . (4.2)

The term “asymptotic limit” refers to the fact that for any reasonable f , in a certain space

with a certain metric, we have

∥uε − u∗∥ → 0 as ε→ 0. (4.3)



45

A classical way to derive this limit is to perform Hilbert expansion in terms of ε. Here,

we define the ansatz

uε = u0 + εu1 + ε2u2 + . . .

and substitute into (4.1), then balance the two sides in terms of ε. Typically, at some

level of the expansion, a closure is performed to derive the effective operator N ∗. This

framework is highly effective and general; we will give explicit examples in later sections.

On the numerical side, we look for cheap solvers that compute the asymptotic limits.

A typical requirement for classical numerical solvers to be accurate is that the discretiza-

tion has to resolve the smallness of ε. This can lead to high numerical and memory cost,

sometimes beyond reasonable computational resources. The focus of “numerical homog-

enization” or “asymptotic preserving” is thus to design schemes that capture asymptotic

limits of the solutions with relaxed (and thus more efficient) discretization requirements.

One technique is to explore analytical results and translate them to the discrete setting:

The asymptotic limiting equations are derived first, and then a “macro solver” for the

limiting equation and a “micro solver” that solves the original equation, are combined in

some way. This strategy has been applied to deal with the Boltzmann-type equations,

the Schrödinger equation, and the elliptic equations with highly oscillatory media, under

the name of designing “asymptotic preserving” schemes, finding semi-classical limits, and

performing “numerical homogenization.” There is a significant drawback of this approach:

The design of the numerical method is based completely on analytical understanding, so

numerical development necessarily lags analytical progress. This fact significantly limits

the role of multiscale computation.

This observation motivates the question that we address in this chapter. Given a

system of the form (4.1), knowing it has an asymptotic limit (4.2) but not knowing the

specific form of this limit, can we design an efficient, accurate solver?
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4.1.2 Approach

In this chapter, we propose a numerical approach based on “compression.” Classical

methods require the use of Nε ∼ 1
εα grid points to achieve accuracy and stability in

solving (4.1), for some power α > 0. Note that Nε blows up to infinity as ε → 0. By

contrast, the limiting equation (4.2) is independent of ε, so we typically require only

N∗ grid points (a number that is independent of ε) to solve this system. Thus, the

information carried in Nε degrees of freedom can potentially be “compressed” into N∗

degrees of freedom, provided that we can tolerate an asymptotic error of order ε in the

solution (see (4.3)).

How can we design an approach to solving (4.1) that exploits compression? Our

roadmap consists three steps: (a) identify the solution set that can be compressed; (b)

compress the set into a smaller effective solution set; (c) for a given new data point f(x),

single out the solution from the effective set. We call the first two steps the offline stage,

and the last step the online stage.

For linear equations, this roadmap has been followed by several authors in [52, 65, 64,

63]. When the setup is linear, the solution set is a space, and thus information is entirely

coded in representative basis functions. These basis functions can be found in the offline

stage, and a Galerkin formulation can then be used to identity the linear combination of

the basis for a given f(x) in the online stage. To find the representative basis functions,

one can utilize the random sampling technique developed for finding low rank structures

of matrices in [121], where the authors proved that a few random samples are able to

reconstruct the low-rank column space with high probability; see [65].

In this chapter, we develop the roadmap in the nonlinear setting. The extension is not

straightforward. Since the solution set is not a space in the nonlinear setup, the notion of

“basis function” does not even exist. Instead, we seek an N∗-dimensional approximating

manifold in an Nε-dimensional space. For every given f(x), there is a corresponding

numerical solution uε to the original equation (4.1) in the Nε space. Within ε distance

there exists its homogenized solution u∗ to the limiting equation (4.2). Since u∗ relies
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on only N∗ degrees of freedom, as f(x) varies, the variations of u∗ form a manifold of

dimension at most N∗.

By using this argument, we formulate the homogenization problem (in the nonlinear

setting) into a manifold-learning problem: Suppose we can generate a few configurations

of f(x) and compute the associated numerical solutions, can we learn to represent the

solution manifold? Further, given a completely new configuration of f(x), can we quickly

identify the corresponding solution? These two questions are addressed in the offline and

online stages, respectively.

Many different approaches have been proposed for manifold learning based on observed

point clouds. They typically look for key features that the points share, either locally

(as in local linear embedding (LLE) [192], multi-scale SVD [9, 165], local tangent space

alignment [219]), or globally (as in the use of heat kernels [81, 41]). The strategy we

propose here is not a direct application of any one of these ideas, but it uses elements

of the the local linear embedding and multi-scale SVD approaches. Specifically, we seek

local linear approximations to the solution map, and cover the solution manifold with a

number of these tangent space “patches.”

We define the solution map as follows:

Sε : f ∈ X → uε ∈ Y . (4.4)

It maps the source term and initial/boundary conditions captured in f(x) to the solution

of the equation (4.1). To find the solution manifold, we randomly sample a large number

of configurations fi in X , and compute the solution uεi = Sεfi ∈ Y associated with each of

these configurations. These solutions form a point cloud in a high dimensional space Y.

We subdivide the set of configurations {fi} into a number of small neighborhoods, and we

look for the tangential approximation to the mapping (4.4) on each of these neighborhoods.

Given a configuration f , we identify the neighborhood to which it belongs, and interpolate

linearly to obtain the corresponding solution.

We summarize our online-offline strategy as follows. (Some modifications described in
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Section 4.2 will reduce the cost of implementation.)

Offline: Randomly sample fi(x), i = 1, . . . , N , and find solutions uεi = Sεfi;

Online: Given f(x):

Step 1: Identify the k-nearest neighbors of f(x), call them fij , j = 1, 2, . . . , k,

with fi1 being the nearest neighbor;

Step 2: Compute

Sεϕ ≈ uεi1 + U · c , with U =


| |

uεi2 − u
ε
i1

. . . uεik − u
ε
i1

| |

 ,

where c is a set of coefficient that fits f − fi1 with a linear combination of

fij − fi1 , for j = 2, 3, . . . , k.

In Step 2 we used the fact that the solution manifold if of low dimensional locally. To

make the strategy mathematically precise, we need to address several questions, including

the following.

• How should we sample fi(x) during the offline step?

• What metric should we use to quantify distance?

• Since computing each solution map uεi = Sεfi is expensive, is there anyway to reduce

the cost further?

We discuss these questions in the following sections. We stress that the manifold learning

technique that we investigate in this chapter works best when the intrinsic dimensionality

of the problem is significantly smaller than the typical required degrees of freedom, and this

holds true for all homogenizable problems where the discretization of the limiting equation

eliminates the ε dependence. For problems without ε dependence, and the dimension of

the numerical solution is only moderately large, the approach that we take is not expected

to reduce cost.
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4.1.3 The layout of this chapter

We discuss the general recipe of the algorithm in Section 4.2, then show how the approach

can be applied to two examples (a semi-linear elliptic equation and a nonlinear radiative

transfer equation coupled with a temperature term) in Section 4.3 and Section 4.4, respec-

tively. In both sections, we review the relevant homogenization theory for the equations,

study the low rank structure of the tangential solution spaces, and present numerical

evidence for the efficacy of our approach.

4.2 Framework

Our approach is a domain decomposition algorithm that makes use of Schwarz iteration.

After decomposing the domain into multiple overlapping patches, the Schwarz method

solves the PDE in each patch, conditioned on agreement of solutions in the overlapping

regions, which are boundary regions for the adjacent patches. At the initial step, these

boundary conditions are unknown, so some initial guess is made. Subsequently, solution

of PDEs on each patch alternates with updates of the solution on the overlapping regions,

until convergence is obtained with respect to certain criteria. The cost of the entire process

is determined by the number of iterations and the cost of the local solves, noting that,

as with any domain decomposition method, the local solves can be performed in parallel.

The approach is efficient when the local solves can be performed much more efficiently

on the available computing resources than a solver that does not decompose the domain.

The optimal domain partitioning depends on the conditioning of the problem and is often

specific to the problem under study. Comprehensive descriptions of the Schwarz method

appear in [197, 203].

This basic Schwarz iteration does not fully address the issue of ε-dependence that we

discussed in Section 4.1, since local solvers still necessarily depend on ε. As a step toward

making use of compression, we take the viewpoint that the purpose of the local solution

step is to implement a boundary-to-boundary map, taking one part of the boundary

conditions on a patch and using the solution of the resulting PDE to update the boundary
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conditions for its neighboring patches. We propose to learn the boundary-to-boundary

maps in an “offline” stage, by running the local solvers as many times as are needed to

attain the desired accuracy in this map. This offline stage comes with a high overhead

cost, but the computation is done only once, and we hope that the cost of the online stage

is greatly reduced by having the boundary-to-boundary maps available. Note that this

“offline” learning process is distinct from the Offline stage discussed in Section 1. With

the application of domain decomposition, it is the local behavior that needs to be learned,

instead of the full uε.

In the linear setting, building the boundary-to-boundary maps is quite straightforward.

It amounts roughly to finding all discrete Green’s functions, with the degree of freedom

being determined by the number of grid points on the patch boundary, with one Green’s

function per grid point. In the nonlinear setting, the boundary-to-boundary map is non-

linear, so we can no longer build a linear basis, and we turn to manifold learning approach

to approximate the map. Specifically, in the offline stage, we would sample randomly

some configurations and find the corresponding image under the map. The resulting point

cloud in high dimensional space can be viewed as samples of the manifold, which we can

then learn by means of local approximate tangential planes. In the online stage, these

tangential planes are used as surrogates to local boundary-to-boundary maps.

Before presenting details of the offline and online stage computations, we specify the

setup and notation. We consider the following nonlinear PDE with Dirichlet boundary

conditions in a domain Ω ⊂ R2: 
N εuε = 0 , in Ω

uε = ϕ, on ∂Ω,

(4.5)

where, as usual, ε indicates the small scale of the problem. For simplicity, we will assume

throughout a square geometry Ω = [0, L]2. The domain Ω is decomposed into overlapping
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rectangular patches defined by

Ω =
⋃
m∈J

Ωm, with Ωm = (x(1)m1
, x(2)m1

)× (y(1)m2
, y(2)m2

) , (4.6)

where m = (m1,m2) is a multi-index and J is the collection of the indices

J = {m = (m1,m2) : m1 = 1, . . . ,M1, m2 = 1, . . . ,M2} .

This setup is illustrated in Figure 2.1. For each patch we define the associated partition-

of-unity function χm, which has χm(x) ≥ 0 and

χm(x) = 0 on x ∈ Ω \ Ωm ,
∑
m

χm(x) = 1, ∀x ∈ Ω . (4.7)

We set ∂Ωm to be the boundary of patch Ωm and denote by N (m) the collection of indices

of the neighbors of Ωm. In this particular 2D case, we have

N (m) = {(m1 ± 1,m2)} ∪ {(m1,m2 ± 1)} ⊂ J . (4.8)

Assume that the equation (4.5) is well-posed, meaning that given ϕ in some function

space X , there exists a unique solution uε in another function space Y. Assume further

that the local nonlinear equation on patch Ωm defined by


N εuεm = 0 , in Ωm ,

uεm = ϕm, on ∂Ωm ,

is well-posed, given local boundary condition ϕm in some function space Xm, and that the

solution uεm lives in space Ym. We further define the following operators.

• Sεm denotes the solution operator that maps local boundary condition ϕm to the

local solution uεm:

Sεm : Xm → Ym, Sεmϕm = uεm .
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• I lm denotes the trace operator for all l ∈ N (m):

I lmuεl = uεl |∂Ωm∩Ωl
, l ∈ N (m) ,

which takes the value of uεl restricted on the boundary ∂Ωm ∩ Ωl. Here we assume

that the space Yl allows for trace.

• Pm denotes the boundary update operator, mapping
⊕

l∈N (m)Xl to Xm

Pm(ϕl, l ∈ N (m)) =


I lmSεl ϕl, on ∂Ωm ∩ Ωl, l ∈ N (m) ,

ϕ|∂Ωm∩∂Ω, on ∂Ωm ∩ ∂Ω .

Note that on the points in ∂Ωm∩∂Ω, the boundary condition from the whole domain

Ω is imposed.

The offline and online stage of the algorithm are essentially to construct and to evaluate

Pm, as we now show.

4.2.1 Offline Stage

The goal of the offline stage is to construct a dictionary to approximate Pm for every

m ∈ J . To eliminate any boundary layer effect, we enlarge each local patch slightly by

adding a margin around its edges (except for the edges that correspond to part of the

boundary of the whole domain). The enlarged domains are denoted by Ω̃m and illustrated

in Figure 4.1.

We denote by X̃m the space of boundary conditions on ∂Ω̃m equipped with norm ∥ · ∥,

and define a ball in X̃m as follows:

B(Rm; X̃m) = {ϕ̃ ∈ X̃m : ∥ϕ̃∥ ≤ Rm} .
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Figure 4.1: The plot demonstrates the use of local enlargement to damp boundary effects.

First, we draw N samples randomly from the ball, as follows:

ϕ̃m,i ∈ B(Rm; X̃m) , i = 1, . . . , N .

(The specific measure used in drawing depends on the particular problem being considered;

we will make it more precise in the examples below.) For these samples we obtain local

solutions ũm,i from the following PDEs:


N εũεm,i = 0 , in Ω̃m

ũεm,i = ϕ̃m,i , on ∂Ω̃m

(4.9)

We build a dictionary from these solutions by confining them in the interior Ωm and the

boundary ∂Ωm:

Im = {ψm,i = ũm,i|Ωm}Ni=1, Bm = {ϕm,i = ũm,i|∂Ωm}Ni=1 . (4.10)

Since the problems that we consider are homogenizable, meaning that the solution mani-

fold is of low dimensional, the value of N can be relatively small.

Remark 4.1. Two remarks are in order.
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• How to sample? That is, how to find a measure µm on X̃m for drawing samples? To

make the setting more precise, we discretize the space X̃m to get X̃ h
m equipped with

norm ∥·∥h, and define a measure µhm on the ball B(Rm; X̃ h
m). Denoting the dimension

of X̃m by p, we sample the magnitude and the angle separately, that is, we take the

measure as a product µhm = µr,m ⊗ µS,m with µr,m being the radial part on (0, Rm)

and µS,m being the measure on the unit sphere Sp−1 = {ϕ ∈ X̃ h
m : ∥ϕ∥h = 1} ⊂ Rp.

The angular measure µS,m is chosen to be the uniform and the radial part µr,m has

a density function f(r) = D+1
RD

m
rD. The number D here plays the role of effective

dimension; it should depend on the expected dimension of solution manifold. Note

that if we take D = p−1, the measure µhm is exactly the uniform measure on the full

ball B(Rm; X̃ h
m) ⊂ Rp. The question of selecting D in a rigorous way is left to future

research. (See Appendix A.1 and Appendix A.2 for further details on this issue.)

• The physical boundary. To respect the boundary condition on ∂Ω, the boundary

patches Ωm that touch the physical boundary need to be treated differently. For

each sample ϕ̃m,i, the physical boundary condition is enforced on the set ∂Ωm ∩ ∂Ω.

Random sampling is done only on the remaining part of the patch boundary, that is,

∂Ωm \ ∂Ω. See Appendix A.1 and Appendix A.2 for details.

4.2.2 Online Stage

The online stage finds a particular solution u for given boundary data ϕ, based on infor-

mation accumulated in the offline stage. This process is carried out through a Schwarz

iteration to update local boundary conditions on each patch.

Denote by ϕ(n) = [. . . , ϕ
(n)
m , . . . ] the collection of local boundary conditions at the nth

iteration, with m being the patch index. At each iteration, we need to obtain ϕ
(n+1)
m =

Pmϕ(n). For each m ∈ J , let ϕ
m,i

(n)
q

be the q-th L2-nearest neighbor of ϕ
(n)
m in Bm, q =

1, 2, . . . , k. These neighbors, supported on ∂Ωm lie (approximately) on a local tangential
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plane centered at ϕ
m,i

(n)
1

:

Φ(n)
m =


| |

ϕ
m,i

(n)
2

− ϕ
m,i

(n)
1

. . . ϕ
m,i

(n)
k

− ϕ
m,i

(n)
1

| |

 . (4.11)

Associated with this plane, we also formulate the solution space centered around ψ
m,i

(n)
1

:

Ψ(n)
m =


| |

ψ
m,i

(n)
2

− ψ
m,i

(n)
1

. . . ψ
m,i

(n)
k

− ψ
m,i

(n)
1

| |

 . (4.12)

Locally, the map between these two planes is approximately linear, and thus to find

ϕ
(n+1)
m = Pmϕ(n), we look for a linear interpolation of ϕ

(n)
m on Φ

(n)
m , and map this in-

terpolation to Ψ
(n)
m . More precisely, we look for c

(n)
m that solves the least-squares problem

c(n)m = argminvm∈Rk−1

∥∥ϕ(n)m − ϕ
m,i

(n)
1

− Φ(n)
m vm

∥∥
L2(∂Ωm)

, (4.13)

and define the approximate solution to be:

u(n)m = Sεmϕ(n)m ≈ ψ
m,i

(n)
1

+Ψ(n)
m c(n)m . (4.14)

To summarize: the map Pmϕ(n) is a composition of Pm(ϕ
(n)
l , l ∈ N (m)) with l ∈

N (m), where

ϕ(n+1)
m = Pm(ϕ

(n)
l , l ∈ N (m)) = I lmSεlϕl, on ∂Ωm ∩ Ωl . (4.15)

Once a preset error tolerance is achieved, at some step n (usually because the local
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boundary condition barely changes), the global solution is patched up as follows:

u(n) =
∑
m∈J

χmu
(n)
m , (4.16)

where u
(n)
m is the local solution (4.14) and χm : Ω → R is the smooth partition of unity

associated with the partition.

We summarize the procedure in Algorithm 4.

Remark 4.2. The Johnson-Lindenstrauss lemma [139] indicates that the search for d-

dimensional k nearest neighbors in a data set of size N , with distance error δ, can be done

in query time O
(
kd logN

δ2

)
and storage cost NO(log(1/δ)/δ2) + O

(
d
(
N + logN

δ2

))
[134, 12].

In addition, a cost of O(k2d) is incurred at each iteration, due to L2 minimization for

each patch via QR factorization. In our setting, d is equal to the degrees of freedom on

the boundary ∂Ωm.

Remark 4.3. To avoid notational complexity, the discussion above does not consider the

physical boundary ∂Ω. If a patch contains part of ∂Ω, then that particular section of the

patch is not updated. The true boundary condition ϕ is enforced in every iteration. The

derivation is straightforward and is omitted from the discussion.

4.3 Example 1: Semilinear elliptic equations with highly

oscillatory media

In this section, we apply the methodology described above to solve semilinear elliptic

equations. Semilinear elliptic equations with multiscale structures arise in a variety of

situations, for instance, in nonlinear diffusion generated by nonlinear sources [142], and in

the gravitational equilibrium of stars [162, 59]. As fundamental models in many areas of

physics and engineering, the equations have received considerable attention.
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Algorithm 4 Multiscale solver for nonlinear homogenizable equations (4.5).

1: Given the radius Rm, the number of nearest neighbors k, the tolerance δ and the initial

guess of boundary conditions ϕ
(0)
m on each patch m ∈ J .

2: Domain Decomposition:
3: Decompose Ω into overlapping patches: Ω =

⋃
m∈J Ωm, and enlarge each patch to

obtain Ω̃m.
4: Offline Stage: Prepare local dictionaries on interior patches Ωm.

5: Step 1: For each m ∈ Ji, generate N samples ϕ̃m,i from B(Rm; X̃m);
6: Step 2: For all i, call function

ũm,i = LocPDESol(Ω̃m, ϕ̃m,i) ;

7: Step 3: Collect local dictionaries according to (4.10) for Bm and Im.

8: Online Stage: Schwarz iteration.

9: while
∑

m ∥ϕ
(n)
m − ϕ(n−1)

m ∥L2(∂Ωm) ≥ δ do
10: for m ∈ J do
11: Search for k-nearest neighbors of ϕ

(n)
m in Bm;

12: Solve c
(n)
m from the least-squares problem (4.13);

13: Update ϕ
(n+1)
m by (4.15).

14: end for
15: n← n+ 1
16: end while
17: return Global solution u(n) defined by (4.16).

1: function LocPDESol(Local domain Ωm, Boundary condition ϕm)
2: Perform the standard finite difference or finite element methods to solve the local

nonlinear equation (4.9);
3: return Local solution um
4: end function
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We consider the equation


−∇x ·

(
A
(
x, xε

)
∇xu

ε
)
+ f(uε) = 0, x ∈ Ω ,

uε(x) = ϕ(x), x ∈ ∂Ω .
(4.17)

The physical domain is Ω ⊂ Rd with d ≥ 1, and Dirichlet boundary condition is given

as ϕ(x). The permeability A(x, y) = (aij(x, y))d×d : Ω × Rd → Rd×d depends on both

the slow variable x and the fast variable y = x/ε and is highly oscillatory. The function

f : R → R describes the nonlinear source term. The solution uε presents one component

in a chemical reaction or one species of a biological system.

The well-posedness of equation (4.17) is classical. We assume that the permeability A

is a symmetric matrix with L∞-coefficients satisfying the standard coercivity condition,

and that the nonlinear function f is locally Lipschitz continuous and increasing. Then,

assuming the boundary ∂Ω is smooth enough, given boundary condition ϕ ∈ H1/2(∂Ω) ∩

L∞(∂Ω), the problem (4.17) has a unique H1-solution satisfying the maximum principle.

We refer to [111, 75] for details.

4.3.1 Homogenization limit

The semilinear elliptic equation (4.17) has a homogenization limit as ε → 0. Supposing

that A(x, y) is smooth and periodic in y with period I = [0, 1]d, then as ε→ 0, the solution

uε converges to a limit u∗ that satisfies the same class of semilinear elliptic equations with

an ε-independent effective permeability A∗(x) = (a∗ij(x))d×d:


−∇x · (A∗(x)∇xu

∗) + f(u∗) = 0, x ∈ Ω ,

u∗(x) = ϕ(x), x ∈ ∂Ω .
(4.18)

This equation (in particular, the effective permeability A∗(x)) can be derived by expanding

the equation (4.17) into different orders of ε. Rigorous proofs are given in [44, 43, 182].

We cite the following theorem as a reference:
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Theorem 4.1 (Section 16.3 in Chapter 1 of [44]; see also [8]). Assume the boundary

∂Ω is smooth. Given ϕ(x) ∈ H1/2(∂Ω) ∩ L∞(∂Ω), let uε be the unique solution to the

semilinear elliptic equation (4.17) in H1(Ω)∩L∞(Ω). Assume that the permeability A(x, y)

is periodic in y with period I = [0, 1]d and that A(x, ·) ∈ C1(I). Then the solution uε

converges weakly in H1(Ω) as ε→ 0 to u∗ (the solution to (4.18)), where the permeability

A∗(x) = (a∗ij(x))d×d is defined by

a∗ij(x) =

∫
I

∑
k,l

akl(x, y)(δki + ∂ykχi)(δlj + ∂ylχj)dy . (4.19)

Here, for each fixed coordinate j = 1, 2, . . . , d, the function χj(x, y) is the solution of the

following cell problem with periodic boundary condition on I:

∇y · (A(x, y)∇y(χj(x, y) + yj)) = 0 . (4.20)

To solve (4.17), the discretization has to resolve ε, but in the limit (4.18), the dis-

cretization is independent of ε. This suggests significant opportunities for cost savings:

The information contained in O(1/ε) degrees of freedom can be expressed with O(1) de-

grees of freedom.

4.3.2 Low dimensionality of the tangent space

We now study the structure of the tangent space of the solution manifold, verifying in par-

ticular the low dimension assumption. We choose some point uε on the solution manifold

and then randomly pick a neighboring solution point uε. These two points are solutions

to (4.17) computed from distinct nearby boundary configurations ϕ and ϕ, that is,

uε|∂Ω = ϕ , uε|∂Ω = ϕ , with ∥ϕ− ϕ∥L∞(∂Ω) = O(δ) . (4.21)
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By varying ϕ around ϕ, one can build a small point cloud around uε. Denoting δuε :=

uε − uε, we have immediately that


−∇x ·

(
A
(
x, xε

)
∇xδu

ε
)
+ f(uε + δuε)− f(uε) = 0, x ∈ Ω ,

δuε(x) = ϕ(x)− ϕ(x), x ∈ ∂Ω .
(4.22)

In the small-δ regime, this collection of solution differences δuε spans the tangent plane.

We claim this tangent plane is low dimensional, so that it inherits the homogenization

effect of the original equation. We have the following result.

Theorem 4.2. Let δuε solve (4.22). Assume A(x, y) = (aij(x, y))d×d is periodic in y with

period I = [0, 1]d. The equation has homogenization limit when ε→ 0, meaning there exists

a limiting permeability A∗(x) = (a∗ij(x))d×d, determined by A(x, y) via equation (4.19)

and (4.20), so that δuε → δu∗ and δu∗ solves:


−∇x · (A∗(x)∇xδu

∗) + f(u∗ + δu∗)− f(u∗) = 0, x ∈ Ω ,

δu∗(x) = ϕ(x)− ϕ(x), x ∈ ∂Ω ,
(4.23)

where u∗ solves: 
−∇x · (A∗(x)∇xu

∗) + f(u∗) = 0, x ∈ Ω ,

u∗(x) = ϕ(x), x ∈ ∂Ω .
(4.24)

Further, for small δ, equation (4.23), in the leading order of δ, becomes:

−∇x · (A∗(x)∇xδu
∗) + f ′(u∗(x))δu∗ = 0 . (4.25)

Proof. By applying Theorem 4.1 to the equation for uε, which is


−∇x ·

(
A
(
x, xε

)
∇xδu

ε
)
+ f(uε) = 0, x ∈ Ω ,

δuε(x) = ϕ(x), x ∈ ∂Ω ,

we have by comparing with equation (4.17) for uε that uε converges weakly to u∗, which
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solves (4.24), and that uε converges weakly to u∗, which solves (4.18). From the definition

δuε = uε − uε, we find that δuε converges to δu∗, which solves (4.23).

This theorem suggests that for the discretized equation, because of the existence of the

homogenized limit, the tangent plane of the discrete solution is approximately low-rank.

The space spanned by {δuε} can be approximately spanned by {δu∗}, which solves the

limiting equation (4.23) without dependence on small scales.

4.3.3 Implementation

We apply Algorithm 4 to equation (4.17) with f(u) = u3 and Ω = [0, L]2 ⊂ R2, that is,


−∇x ·

(
a
(
x, xε

)
∇xu

)
+ u3 = 0 , x ∈ Ω = [0, L]2,

u(x) = ϕ(x), x ∈ ∂Ω.
(4.26)

We use the domain decomposition strategy of Section 4.2 to solve this system. Since Ω is

convex and the coefficient a(x, x/ε) belongs to L∞(Ω), we can show using the monotone

method [10, 75] that the equation is well-posed, having a unique solution if we set

X = H1/2(∂Ω) ∩ L∞(∂Ω), Y = H1(Ω) ∩ L∞(Ω) .

In the offline stage, we generate N samples for each enlarged patch Ω̃m, as follows:

ϕ̃m,i ∈ B(Rm; X̃m) , i = 1, . . . , N .

(The measure we use for sampling is discussed in Appendix A.1.) We equip the ball with

H1/2-norm:

B(Rm; X̃m) = {ϕ̃ ∈ X̃m : ∥ϕ̃∥H1/2(∂Ωm) ≤ Rm} . (4.27)
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We compute the H1/2(∂Ω)-norm numerically using the Gagliardo seminorm [87]:

∥ϕ∥H1/2(∂Ω) =

√∫
∂Ω
|ϕ(x)|2dx+

∫∫
∂Ω×∂Ω

|ϕ(x)− ϕ(y)|2
|x− y|2

dxdy .

For these boundary configurations, we solve the equation


−∇x ·

(
a
(
x, xε

)
∇xũm,i

)
+ ũ3m,i = 0 , x ∈ Ω̃m ,

ũm,i(x) = ϕ̃m,i(x) , x ∈ ∂Ω̃m ,

(4.28)

and build two sets of dictionaries by confining the solutions in the interior Ωm and the

boundary ∂Ωm, as follows:

Im = {ψm,i = ũm,i|Ωm}Ni=1, Bm = {ϕm,i = ũm,i|∂Ωm}Ni=1 . (4.29)

In the online stage, local boundary conditions are updated according to (4.14) at each

iteration, with coefficients computed from (4.13). The local tangent space is found by

searching for the k nearest neighbors in the dictionary Bm, mapped to the dictionary Im

(see (4.29)). We use the L2 norm to measure the distance between the newly generated

solutions and the older solution set.

Once a preset error tolerance is achieved (at step n, say), the global solution is patched

up from the local pieces, as follows:

u(n) =
∑
m∈J

χmu
(n)
m , (4.30)

where u
(n)
m is the local solution on Ωm at the n-th step and χm : Ω → R is a smooth

partition of unity.
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4.3.4 Numerical Tests

We present numerical results for (4.26) in this subsection. We use L = 1, yielding the

domain Ω = [0, 1]2, and define the oscillatory media as follows:

a(x, y, x/ε, y/ε) = 2 + sin(2πx) cos(2πy) +
2 + 1.8 sin(2πx/ε)

2 + 1.8 cos(2πy/ε)
+

2 + sin(2πy/ε)

2 + 1.8 cos(2πx/ε)
.

The boundary condition is

ϕ(x, 0) = − sin(2πx) , ϕ(x, 1) = sin(2πx) ,

ϕ(0, y) = sin(2πy) , ϕ(1, y) = − sin(2πy) .

To form the partitioning, the whole domain Ω is divided equally into 4 × 4 non-

overlapping squares, and then each square is enlarged by ∆xo = .0625 on the sides that

do not intersect with ∂Ω, to create overlap. We thus have M1 = M2 = 4, with Ωm for

m = (m1,m2), m1 = 1, 2, 3, 4 and m2 = 1, 2, 3, 4, defined by

Ωm =
[
max

(
m1−1
M1
−∆xo, 0

)
,min

(
m1
M1

+∆xo, 1
)]

×
[
max

(
m2−1
M2
−∆xo, 0

)
,min

(
m2
M2

+∆xo, 1
)]

, m = (m1,m2) ∈ J .

Denote Ωm = [x
(1)
m , x

(2)
m ] × [y

(1)
m , y

(2)
m ]. The partition of unity function χm is defined

by normalizing the bump functions on the overlapping domains. More precisely, we first

define a bump function fm : Ω→ R supported on Ωm as follows:

fm(x, y) =


exp

(
− 1

1−|x−xm|/αm
− 1

1−|y−ym|/βm

)
, (x, y) ∈ Ωm

0 , Otherwise

,

where xm = x
(2)
m −x

(1)
m

2 , ym = y
(2)
m −y

(1)
m

2 , αm = x
(1)
m +x

(2)
m

2 and βm = y
(1)
m +y

(2)
m

2 . The partition of



64

unity χm : Ω→ R is then obtained by

χm(x, y) =
fm(x, y)∑

m∈J fm(x, y)
.

A standard finite-volume scheme with uniform grid is used for discretization, the cor-

responding nonlinear discrete system being solved by Newton’s method. The reference

solutions are computed on the fine mesh with h = 2−12 = 1
4096 . Unless otherwise specified,

other computations are performed with mesh size h = 2−9 = 1
512 . Denoting the numerical

solution by uij ≈ u(xi, yj), we use the classical discrete L2 norm

∥u∥L2 = h

√√√√ p∑
i,j=0

|uij |2 ,

and the energy norm

∥u∥E = h

√√√√ p∑
j=0

p−1∑
i=0

ai+1/2,j

∣∣∣∣ui+1,j − uij
h

∣∣∣∣2 + p∑
i=0

p−1∑
j=0

ai,j+1/2

∣∣∣∣ui,j+1 − uij
h

∣∣∣∣2 ,
and define the relative errors accordingly by

relative L2 error =
∥uref − uapprox∥L2

∥uref∥L2

, relative energy error =
∥uref − uapprox∥E

∥uref∥E
.

We first describe numerical experience with the offline stage. Each interior patch Ωm

is enlarged by a margin ∆xb to damp the boundary effects. The resulting buffered patch

Ω̃m is concentric with Ωm; see Figure 4.2. In the plots shown below, we study the patch

indexed by m = (2, 2).

To build the local dictionary, we generate 64 samples randomly in B(R2,2, X̃2,2), where

R2,2 = 20. (The sampling scheme is discussed in Appendix A.1.) We compute the local

solutions with these boundary conditions on Ω̃2,2, for several choices of buffer size ∆xb,

and subtract the solutions from the reference solution, confined to Ω2,2. This procedure

forms the tangent space centered around the reference solution in this particular patch. In
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Figure 4.2: Buffered domain decomposition.

Figure 4.3a we plot the singular value decay of this tangent space, for ε = 2−4. It is clear

that the singular values decay exponentially, with a larger buffer margin ∆xb leading to a

faster decay rate. This observation suggests that the tangent space is approximately low

dimensional. We then project the reference solution onto the space spanned by its closest

neighbors. As the number of neighbors increases, the relative error decays exponentially,

as seen in Figure 4.3b. When the buffer margin is ∆xb = 2−4, we achieve 99% accuracy

with 30 neighbors. By comparison, the degrees of freedom for this patch is determined by

the total number of grid points on the boundary of this patch — 768, in this particular

case.

In the online stage, we set the stopping criterion to be

∑
m

∥ϕ(n)m − ϕ(n−1)
m ∥L2(∂Ωm) < 10−5 ,

where the upper index (n) indicates the evaluation of the solution in the n-th iteration

on Xm, which is the boundary of Ωm. The initial guess for all local boundary condition is

chosen (trivially) to be ϕ
(0)
m |∂Ωm\∂Ω = 0 and ϕ

(0)
m |∂Ωm∩∂Ω = ϕ|∂Ωm∩∂Ω.

In Figure 4.4, we compare the numerical solutions using the space spanned by k = 5

and k = 40 nearest neighbors. The buffer margin is ∆xb = 2−4, and we set ε = 2−4. We

also document the error behavior as a function of k, ε, and ∆xb. In Figure 4.5, we plot
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Figure 4.3: (a) The singular value decay of the tangent space (centered around the refer-
ence solution) on patch Ω2,2, for different values of the buffer margin ∆xb. (b) The relative
error of the projection of the reference solution onto the space spanned by the nearest k
neighbors on Ω2,2. The distance is measured in L2(Ω2,2). ε = 2−4 in both plots.

Figure 4.4: Computed solutions. Left panel shows the reference solution obtained with
fine grids of width h = 2−12. Middle and right panels show the numerical error |u− uref|
obtained with k = 5 and k = 30, respectively.
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the error decay as a function of k (the number of neighbors used in the online stage) for

different values of ε and ∆xb. The decay is independent of ε, indicating the rank structure

is not influenced by small scales in the equation. As the number of neighbors k increases,

the global relative L2 and energy error decays exponentially provided a buffer zone is

present. When ∆xb = 0 (no buffer), the boundary layer effect is strong, and convergence

is not obtained, meaning that the local solution cannot be well approximated from the

dictionary.
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Figure 4.5: The top row of plots shows the global L2 error as a function of k with different
ε and buffer zone size ∆xb. The bottom row of plots shows the global energy error. The
three columns of plots represent ∆xb = 2−4, 2−5, 0, respectively.

We show CPU times in Table 4.1, comparing the reduced model for different values of

k with the classical Schwarz iteration, for ε = 2−4 and ∆xb = 2−4. The same stopping

criterion is used for all variants. The online stage of each reduced model is significantly

faster than the classical Schwarz iteration. Even with k = 40 neighbors involved in the local

solution reconstruction, our method requires 1.12s, compared to 187.8s required by the

classical Schwarz method. While the offline preparation is expensive in general, it is still

cheaper in this example than the classical Schwarz iteration for solving a single problem.

Because the dictionary can be reused, our method has a strong advantage in situations
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CPU Time (s) (ε = 2−4)

offline online

Reduced model k = 5 135.6914 0.173712
Reduced model k = 10 0.305707
Reduced model k = 20 0.462857
Reduced model k = 30 0.696785
Reduced model k = 40 1.124082

Classical Schwarz — 187.7705

Table 4.1: CPU time comparison between our reduced method with k = 5, 10, 20, 30, 40
and classical Schwarz method.

where many solutions corresponding to different boundary conditions are needed. This

is a typical situation in inverse problems, where to determine the unknown media, many

boundary configurations are imposed and numerical solutions are computed to compare

with measurements [60].

4.4 Example 2: Nonlinear radiative transfer equation

Here we study the application of Algorithm 4 to a nonlinear radiative transfer equation.

Radiative transfer is the physical phenomenon of energy transfer in the form of electromag-

netic radiation, and the radiative transfer equations describe the absorption or scattering

of radiation as it propagates through a medium. The equations are important in optics,

astrophysics, atmospheric science, remote sensing [172], and other applications.

We denote by Iε(x, v) the distribution function of photon particles at location xmoving

with velocity v in the physical domain D ⊂ R3 and the velocity domain V = S2. Also

denote by T ε(x) the temperature profile across domain D. We consider a nonlinear system

of equations that couples the photon particle distribution with the temperature profile.

The steady state equations are


εv · ∇xI

ε = B(T ε)− Iε, for (x, v) ∈ K = D × V,

ε2∆xT
ε = B(T ε)− ⟨Iε⟩, for x ∈ D ,

(4.31)
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with the velocity-averaged intensity given by

⟨I⟩(x) =
∫
V
I(x, v)dµ(v) . (4.32)

Here, µ(v) is a normalized uniform measure on V and B(T ) is a nonlinear function of T ,

typically defined as

B(T ) = σT 4, (4.33)

where σ is a scattering coefficient [151, 207]. The parameter ε is called the Knudsen

number, standing for the ratio of the mean free path and the typical domain length.

When the medium is highly scattering and optically thick, the mean free path is small,

with ε≪ 1. The scattering coefficient σ is independent of ε.

We consider a slab geometry. Assuming the y and z directions to be homogeneous,

then since v = (cos θ, sin θ sinφ, sin θ cosφ), the vx component becomes cos θ ∈ [−1, 1].

The problem is simplified to:


εv∂xI

ε = B(T ε)− Iε

ε2∂2xT
ε = B(T ε)− ⟨Iε⟩

, (x, v) ∈ K = [a, b]× [−1, 1] , (4.34)

with ⟨I⟩(x) = 1
2

∫ 1
−1 I(x, v)dv.

We provide incoming boundary conditions that specify the distribution of photons

entering the domain. The boundary condition itself has no ε dependence; we have

Iε(x, v) = Ib(x, v) on Γ− , T ε(x) = Tb(x) on ∂D . (4.35)

Here Γ± collect the coordinates at the boundary with velocity pointing into or out of the

domain:

Γ± = {(x, v) : x ∈ ∂D ,±v · nx > 0} ,

and nx denotes the unit outer normal vector at x ∈ ∂Ω.
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4.4.1 Homogenization limit

The equations (4.31) have a homogenization limit. As ε → 0, the right hand side of the

equations dominates, and by balancing the scales we obtain

Iε ∼ ⟨Iε⟩ ∼ σ(T ε)4 ∼ I∗ ∼ σ(T ∗)4 .

To find the equation satisfied by T ∗, we expand the equations (4.31) up to second order in

ε. Rigorous results are shown in [156, 150, 33, 36]. We cite the following theorem captures

the results needed here.

Theorem 4.3 (Modification of Theorem 3.2 in [150]). Let D ⊂ R3 be bounded and ∂D

be smooth. Assuming that the boundary conditions (4.35) are positive and that Tb ∈

H1/2(∂D)∩L∞(∂D) and Ib ∈ L∞(Γ−), then the nonlinear radiative transfer equation (4.31)

has a unique positive solution (Iε, T ε) ∈ L∞(K) × L∞(D). If we assume further that

(Ib, Tb) ≥ γ > 0 and Ib = B(Tb) a.e. on Γ−, then the solution in the limit as ε → 0

converges weakly to (B(T ∗), T ∗), where the limiting temperature T ∗ is the unique positive

solution to the following PDE:

∆x(T
∗ +B(T ∗)/3) = 0 , for x ∈ D , (4.36)

equipped with Dirichlet boundary data T ∗|∂D = Tb. The convergence of T ε is in H1(D)

weak and the convergence of Iε is in L∞(K) weak-∗.

Remark 4.4. Without appropriate boundary conditions Ib = B(Tb), boundary layers of

width O(ε) may emerge as ε→ 0. It is conjectured in [150] that the boundary layers in the

neighborhood of each point x̂ ∈ ∂D can be characterized by the following one-dimensional
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Milne problem for y ∈ [0,∞):

−(v · nx̂)∂y Î = B(T̂ )− Î ,

∂2y T̂ = B(T̂ )− ⟨Î⟩ ,

T̂ (0) = Tb(x̂), Î(0, v) = Ib(x̂, v), for v · nx̂ < 0 ,

where y = (x−x̂)·nx̂

ε represents a rescaling of the layer. The solutions that are bounded

at infinity are used to form the Dirichlet boundary conditions for (4.36): At the limit as

y →∞, B(T̂ ) = ⟨Î⟩ = Î, and one uses T (x̂) = T̂ (∞).

According to Theorem 4.3, in the zero limit of ε, Iε loses its velocity dependence and

is proportional to (T ε)4 that satisfies a semi-linear elliptic equation. Since the information

in the velocity domain is lost, we expect low dimensionality of the (discretized) solution

set. For the slab problem for RTE (4.34), the number of grid points needed for a sat-

isfactory numerical result is NxNv, with both Nx and Nv scaling as O(1ε ) for numerical

accuracy. Thus, for every given configuration of boundary conditions, the numerical solu-

tion is one data point in an NxNv-dimensional space — a space of very high dimension.

However, when ε is small, the solutions are approximately given by the limiting elliptic

equation (4.36) and the number of grid points needed is a number N∗
x that has no depen-

dence on ε. This implies that the point clouds in the O(1/ε2)-dimensional space can be

essentially represented using O(1) degrees of freedom: The solution manifold is approx-

imately low dimensional. (Savings are even greater for problems with higher physical /

velocity dimension.)

The use of a limiting equation to speed up the computation of kinetic equations is

not new. For Boltzmann-type equations (for which RTE serves as a typical example),

one is interested in designing algorithms that automatically reconstruct the limiting solu-

tions with low computational cost. The algorithms that achieve this property are called

“asymptotic-preserving” (AP) methods [84, 138], because the asymptotic limits are pre-

served automatically. There are many successful examples of AP schemes, but most of
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them depend strongly on the analytical understanding of the limiting equation. The solver

of the limiting equation is built into the Boltzmann solver, to drag the numerical solu-

tion to its macroscopic description [155, 88, 86, 131]. Such a design scheme limits the

application of AP methods significantly. Many kinetic equations have unknown limiting

behavior, making the use of AP designs impossible. By contrast, Algorithm 4 does not

rely on any explicit information of the limiting equation, and is able to deal with general

kinetic equations with small scales.

4.4.2 Low dimensionality of the tangent space

As for the example of Section 4.3, we start by studying some basic properties of the local

solution manifold and its tangential plane.

We first randomly pick a point (I
ε
, T

ε
) on the solution manifold around which to

perform tangential approximation. Nearby points (Iε , T ε) are obtained by solutions to

the RTE (4.34) with respect to perturbed boundary conditions. The boundary conditions

for (I
ε
, T

ε
) and (Iε , T ε), respectively, are

(I
ε|Γ− , T

ε|∂D) = (Ib , T b) , (Iε|Γ− , T
ε|∂D) = (Ib , Tb) , (4.37)

and we assume close proximity, in the sense that

∥Ib − Ib∥L2(Γm,−) + ∥T b − Tb∥2 = O(δ) . (4.38)

Using the notation δIε := Iε−Iε and δT ε := T ε−T ε
for the difference of the two solutions,

we find that this difference satisfies the equations


εv∂xδI

ε = B(T
ε
+ δT ε)−B(T

ε
)− δIε ,

ε2∂2xδT
ε = B(T

ε
+ δT ε)−B(T

ε
)− ⟨δIε⟩ ,

(4.39)
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with boundary conditions:

δIε|Γ− = Ib − Ib , δT ε|∂D = T b − Tb .

By varying Ib and Tb (subject to (4.38)), we obtain a list of solutions (δIε , δT ε) that

spans the tangent plane of the solution manifold surrounding (I
ε
, T

ε
). It will be shown

below that this plane is low dimensional. We have the following result.

Theorem 4.4. Let (δIε, δT ε) solve (4.39). As ε→ 0, we have (δIε, δT ε)→ (δI∗, δT ∗) so

that δI∗ = ⟨δI∗⟩ = B(T
∗
+ δT ∗)−B(T

∗
) and δT ∗ solves:

∂2x

[
δT ∗ + 1

3B(T
∗
+ δT ∗)− 1

3B(T
∗
)
]
= 0 . (4.40)

Here the reference state T
∗
solves:

∂2x

[
T
∗
+ 1

3B(T
∗
)
]
= 0 . (4.41)

Both equations are equipped with appropriate Dirichlet type boundary conditions. Further-

more, for small δ, the leading order equation is

∆x

[(
1 + 1

3B
′(T

∗
)
)
δT ∗

]
= 0 . (4.42)

Proof. Apply Theorem 4.3 (in one dimension) to the equation for (I
ε
, T

ε
) to obtain


εv∂xI

ε
= B(I

ε
)− Iε

ε2∂2xT
ε
= B(I

ε
)− ⟨Iε⟩,

and the equation (4.34) for (Iε , T ε). Together, these equations show that (I
ε
, T

ε
) con-

verges weakly to (I
∗
, T

∗
) that solves (4.41), and also that (Iε , T ε) converges weakly to

(I∗ , T ∗) that solves (4.36). Taking the difference for (I
ε
, T

ε
) and (Iε , T ε) we find that

(δIε, δT ε) converges to (δI∗, δT ∗), which solves (4.40).
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In one dimension, the elliptic problem only has two degrees of freedom, determined

by the two Dirichlet boundary conditions. This suggests that in the limit as ε → 0,

for relatively small δ, the tangent plane spanned by (δIε, δT ε) is asymptotically two-

dimensional, and is parameterized by the two boundary conditions for δT ε. (A similar

reduction holds in higher dimensions, but we leave the implementation to future work.)

4.4.3 Implementation of the algorithm

In RTE, the domain setup needs some extra care, and we need to re-perform partitioning.

The physical boundaries are no longer the boundaries on which the Dirichlet conditions

are imposed, and the general framework in Algorithm 4.2 for PDE with Dirichlet boundary

condition on the physical boundaries has to be changed accordingly. For the (1+1)D case,

we set

K = D × V = [0, L]× [−1, 1] ; then Γ− = {(0, v) : v > 0} ∪ {(1, v) : v < 0} ,

with boundary conditions

Iε|Γ− = g = (g(1)(0, ·), g(2)(L, ·)), T ε(0) = θ(1), T ε(L) = θ(2) ,

where g(1) is supported only on v > 0 while g(2) is supported only on v < 0. For notational

simplicity, we write

u := (Iε, T ε) , u|Γ− := ϕ = (g(1)(0, ·), g(2)(L, ·), θ(1), θ(2)) .

To partition the domain, we divide K into M overlapping patches:

K =

M⋃
m=1

Km, with Km = Dm × V = [tm, sm]× [−1, 1], (4.43)
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where tm and sm are left and right boundaries for the m-th patch, satisfying

0 = t1 < t2 < s1 < t3 < · · · < sM−2 < tM < sM−1 < sM = L .

The size of the mth patch in x direction is denoted as dm = tm − sm. For each patch, we

define the local incoming boundary coordinates as follows:

Γm,− = {(tm, v) : v > 0} ∪ {(sm, v) : v < 0} . (4.44)

See Figure 4.6 for an illustration of the configuration.

x

v Km-1

tm-1

sm-1

tm

Km

Γm,-

1

-1

tm+1

sm+1

Km+1

sm

Figure 4.6: Domain decomposition for nonlinear RTE and the incoming boundary of the
local patch.

In this particular setup, according to [156], if ϕ is in the space

X = L2(Γ−)× R2
+ =

{(
g, θ(1), θ(2)

)
| g ∈ L2(Γ−); θ

(1), θ(2) ≥ 0
}
,
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then there exists a unique positive solution in the space

Y = H1
2 (K)×H1(D) =

{
(I, T ) | I ∈ H1

2 (K), T ∈ H1(D)
}
,

where H1
2 (K) is the space of functions for which the following norm is finite:

∥I∥H1
2 (K) = ∥I∥L2(K) + ∥v∂xI∥L2(K) .

Note that the trace operators T±u = u|Γ± are well-defined maps from H1
2 (K) to L2(Γ±)

(see, for example [6]).

To proceed, we define several operators. We denote spaces associated with each patch

m as follows:

Xm := L2(Γm,−)× R2
+ =

{(
g, θ(1), θ(2)

)
| g ∈ L2(Γm,−), θ

(1), θ(2) ≥ 0
}
,

Ym := H1
2 (Km)×H1(Dm) =

{
(I, T ) | I ∈ H1

2 (Km), T ∈ H1(Dm)
}
.

Then we have the following operator definitions for each patch m. (For simplicity of

notation, we set σ ≡ 1 in the definition (4.33) of B(T ).)

• The solution operator Sm : Xm → Ym satisfies Smϕm = um, where um = (Iεm, T
ε
m)

solves the RTE on patch Km with boundary condition

ϕm = (gm, θ
(1)
m , θ

(1)
m ):


εv∂xI

ε
m = (T ε

m)4 − Iεm

ε2∂2xT
ε
m = (T ε

m)4 − ⟨Iεm⟩
, (x, v) ∈ Km ,

with T ε
m(tm) = θ

(1)
m , T ε

m(sm) = θ
(2)
m , and

Iεm|Γm,− = gm(x, v) = (g(1)m (x, v), g(2)m (x, v)) .

• The restriction operator Imm±1 from patch Km to the boundaries of adjacent patches,
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namely, Km ∩ Γm±1,− and Dm ∩ ∂Dm±1,−, is defined as follows:

Imm+1um = (Iεm|Km∩Γm+1,− , T
ε
m|Dm∩∂Dm+1,−), m = 1, . . . ,M − 1 ,

Imm−1um = (Iεm|Km∩Γm−1,− , T
ε
m|Dm∩∂Dm−1,−), m = 2, . . . ,M .

• The boundary update operator Pm : Xm−1 ⊕ Xm+1 → Xm is defined for m ̸= 1 and

m ̸=M by

Pm(ϕm−1, ϕm+1) = (Im−1
m Sm−1ϕm−1, Im+1

m Sm+1ϕm+1). (4.45)

For the two “end” patches K1 and KM that intersect with physical boundary Γ−,

boundary conditions are updated only in the interior of the domain:

P1 : X × X2 → X1, P1(ϕ, ϕ2) = (ϕ|Γ−∩Γ1,− , I21S2ϕ2) ,

PM : XM−1 ×X → XM , PM (ϕM−1, ϕ) = (IM−1
M SM−1ϕM−1, ϕ|Γ−∩ΓM,−) .

As suggested by Algorithm 4, in the offline stage, we construct local dictionaries on

interior patches from a few random samples, enlarging each interior patch slightly to

eliminate the boundary layer effect. Define K̃m and D̃m such that

Km ⊂ K̃m = D̃m × V ,

where Dm ⊂ D̃m ⊂ D expands the boundary of Dm to both sides by a margin of ∆xb.

Denoting by Γ̃m,− the boundary coordinates corresponding to D̃m, we let X̃m = L2(Γ̃m,−)×

R2 capture the boundary conditions on ∂D̃m.

We draw N samples ϕ̃m,i, i = 1, 2, . . . , N , randomly from the set

B+(Rm; X̃m) := {ϕ̃ = (ĨB, T̃B) ∈ X̃m : ∥ϕ̃∥X̃m
≤ Rm, ĨB ≥ 0, T̃B ≥ 0} .

(The sampling procedure is discussed in Appendix A.2.) The local solutions ũm,i =
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(Ĩεm,i, T̃
ε
m,i) solve


εv∂xĨ

ε
m,i = (T̃ ε

m,i)
4 − Ĩεm,i

ε2∂2xT̃
ε
m,i = (T̃ ε

m,i)
4 − ⟨Ĩεm,i⟩

(x, v) ∈ K̃m ,

(Ĩεm,i|Γ̃m,−
, T̃ ε

m,i|∂D̃m
) = ϕ̃m,i , i = 1, 2, . . . , N.

(4.46)

The solutions to these equations, confined to the original patch Km and its boundary Γm,

are used to construct two dictionaries:

Im = {ψm,i}Ni=1, Bm = {ϕm,i}Ni=1. (4.47)

where

ψm,i = (Ĩεm,i|Km , T̃
ε
m,i|Dm) , ϕm,i = (Ĩεm,i|Γm,− , T̃

ε
m,i|∂Dm) .

In the online stage, at each iteration, we seek neighbors to interpolate for local solu-

tions. We use the L2 norm to measure the distance between the newly generated solutions

and the older solution set. Denote by ϕ
(n)
m the solution at the n-th iteration in patch Km,

and define by

{ϕ
m,i

(n)
q
, q = 1, 2, . . . , k}

its k nearest neighbors in Bm, for some chosen positive integer k, with the indices i
(n)
q

being ordered so that ϕ
m,i

(n)
1

is the nearest neighbor. Then we define the local tangential

approximation Smϕ(n)m by:

u(n)m = Smϕ(n)m = ψ
m,i

(n)
1

+Ψ(n)
m c(n)m , (4.48)

where Ψ
(n)
m and c

(n)
m are defined as in (4.12) and (4.13). The local solution is then updated

as follows:

ϕ(n+1)
m = Pm(ϕ

(n)
m−1, ϕ

(n)
m+1) = (Im−1

m Sm−1ϕ
(n)
m−1, I

m+1
m Sm+1ϕ

(n)
m+1) . (4.49)
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For m = 1 and m =M , to avoid updating the physical boundary, we set

P1(ϕ, ϕ(n)2 ) = (ϕ|Γ−∩Γ1,− , I21S2ϕ
(n)
2 ) ,

PM (ϕ
(n)
M−1, ϕ) = (IM−1

M SM−1ϕ
(n)
M−1, ϕ|Γ−∩ΓM,−) .

Once the convergence is achieved (at iteration n, say), we assemble the final solution

as

ufinal = u(n) =
M∑

m=1

χmu
(n)
m , (4.50)

with χm : Ω→ R being the smooth partition of unity associated with the partition of K.

4.4.4 Numerical Tests

In the numerical tests, we take the domain to be

K = D × V = [0, L]× [−1, 1] = [0, 3]× [−1, 1].

To form the patch Km = Dm × V, the domain D is divided into M = 7 non-overlapping

patches whose widths are d1 = d7 =
L

2(M−1) = 0.25 and di =
L

M−1 = 0.5, i = 2, . . . ,M − 1.

Each patch is then enlarged by ∆xo = .125 to both sides (except the ones adjacent to the

physical boundary, which are enlarged only on the “internal” sides), so we have

Dm =
(
L(2m−1)
2(M−1) −∆xo,

L(2m−1)
M +∆xo

)
, m = 2, . . . ,M − 1 ,

D1 =
(
0, L

2(M−1) +∆xo

)
, DM =

(
L− 3

2(M−1) −∆xo, 3
)
.

The region of overlap between adjacent patches Km has size 2∆xo× [−1, 1]. The partition

of unity functions over each patch Km are obtained using the method of Section 4.3.4

Denote the spatial grid points by 0 = x0 < x1 < · · · < xNx−1 < xNx = L, which

is a uniform grid with step size ∆x = L
Nx

. The velocity grid points are denoted by

−1 < v1 < v2 < · · · < vNv−1 < vNv < 1 for some even value of Nv. We use the

Gauss-Legendre quadrature points for the vi. The numerical solutions are denoted by
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Iij ≈ I(xi, vj) and T i ≈ T (xi). To quantify the numerical error, we denote the discrete

L2 norm of u = ([Iij ], [T i]) by

∥u∥22 =
Nv∑
j=1

wj
∆x

2
|I0j |2 +

Nv∑
j=1

wj
∆x

2
|IiNx |2 +

Nx−1∑
i=1

Nv∑
j=1

wj∆x|Iij |2

+
∆x

2
|T 0|2 + ∆x

2
|TNx |2 +

Nx−1∑
i=1

∆x|T i|2 ,

where wj is the Gauss-Legendre weight, and the relative error uref between a reference

solution and an approximate solution uapprox is defined by

relative L2 error =
∥uref − uapprox∥2

∥uref∥2
.

We solve the PDE using finite differences. The intensity equation is discretized in

space by a classical second-order exponential finite difference scheme [133, 191], and the

temperature equation is approximated by the standard three-point scheme. The resulting

nonlinear system is then solved by fixed point iteration [150, 156], where in each evaluation

of the fixed point map, the monotone iterative method is exploited to solve the semilinear

elliptic equation. For computations with ε = 2−4 and ε = 2−6, we further use Anderson

acceleration to boost the convergence of fixed point iteration [11, 104, 208].

We use extremely fine discretization with ∆x = 2−14 = 1
16384 and Nv = 210 = 1024.

The discretization is fine enough for us to view it as the reference solution. All the other

computations are done with coarser mesh ∆x = 2−11 = 1
2048 and Nv = 27 = 128.

The boundary condition ϕ = (g(1), g(2), θ(1), θ(2)) is defined as follows:

g(1)(0, v > 0) = 3 + sin(2πv) , g(2)(L = 3, v < 0) = 2 + sin(2πv) ,

θ(0) = θ(1) = 2 , θ(L) = θ(2) = 3 .

The enlarged patches needed in the offline stage, denoted by K̃m, are obtained by
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enlarging each respective Km by the quantity ∆xb. The configuration of the domain and

the partition are seen in Figure 4.7, where ∆xb = .125.

x

v
1

-1
0

K 3

�K 3

0.625

0.75 1.75 2.75

3.0

0.25

0.5 1.375 1.5

�𝛤𝛤 3,-

Γ3,-

1.25 2.25

Δ𝑥𝑥b

Δ𝑥𝑥o

Figure 4.7: Configuration of patches (including enlarged patches) in the decomposed do-
main

On the buffered interior patch K̃m, we sample N = 64 configuration of boundary

conditions in B+(Rm; X̃m). On the discrete level, this process finds 64 boundary conditions

ϕ̃ so that

∥ϕ̃∥2 =

Nv
2∑

j=1

wj |g̃(2)(s, vj)|2 +
Nv∑

j=Nv
2

+1

wj |g̃(1)(t, vj)|2 + |θ̃(1)|2 + |θ̃(2)|2 < Rm .

We set Rm = 25 in our experiments.

To demonstrate the linearity of the updating map Pm, we choose the patch K3 =

[0.625, 1.375] × [−1, 1], which overlaps K2 at [0.625, 0.875] × [−1, 1]. For ∆xb = 2−3

and ε = 2−6, we compute local solutions on the buffered domain K̃3 with 64 different

configurations, and evaluate T at 0.625 and 1.375 (the two ending points of K3) and at

0.875 (the point that intersects with ∂K2). In Figure 4.8, we plot T (0.875) as a function of

T (0.625) and T (1.375). We observe that it is a slowly varying two-dimensional manifold

and is locally almost linear. Thus, T (0.875) can be determined uniquely by the pair of

values (T (0.625), T (1.375)). Further, we plot ⟨|I(x,·)−⟨I⟩(x)|2⟩
⟨I⟩(x)2 and ⟨I⟩(x)−T 4(x)

T 4(x)
at x = 0.875,

showing that the relative variation is nearly zero. This means that I is essentially constant
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at x = 0.875, with I = T 4. These calculations suggest that the entire solution on this

patch is uniquely determined by T (0.625) and T (1.375), implying that the local degrees of

freedom for the solution in the entire patch is only two, so that the local solution manifold

is approximately two-dimensional.

Figure 4.8: The plot on the left shows the point cloud (T (0.625), T (1.375), T (0.875)) and
its fitting plane. We observe that the manifold is approximately two-dimensional, so that
T (0.875) can be uniquely determined by (T (0.625), T (1.375)). The middle and right panels

show the quantities ΣI = ⟨|I(x,·)−⟨I⟩(x)|2⟩
⟨I⟩(x)2 and ΣT = ⟨I⟩(x)−T (x)4

T (x)4
at x = 0.875, respectively,

showing that the solution is nearly constant, with I = T 4.

To verify that the local dictionary represents the solution manifold adequately, we

confine the reference solution in patch K2 and project it onto the space spanned by its

nearest k modes in the local dictionary. We evaluate the resulting relative error as a

function of k, plotting the result in Figure 4.9. For ε = 2−6 and ∆xb = .125, we observe

a sharp decay of error when k ≥ 3, meaning that the local reference solution can be

represented to acceptable accuracy by two local dictionary modes, and suggesting once

again that the local solution manifold is two-dimensional.

The sample number N and the radius Rm are two crucial parameters that affect the

effectiveness of the method. We check how the approximation capability of the local

dictionary depends on the two parameters over the local patch K2. In Figure 4.10a, we

show the projection error as N increases for different Rm. The error of the dictionary

saturates as N increases, and it can be used as a criterion to decide the size of the local

dictionary. In Figure 4.10b, we show the relative projection error of the reference solution

onto the local tangent space using dictionaries with different Rm. It can be seen that the
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Figure 4.9: The relative error of the L2 projection of the reference solution onto the space
spanned by the nearest k modes on the patch K2.

radius Rm must be large enough to obtain a good local basis.

In the online computation, we set the stopping criterion to be

∑
m

∥ϕ(n)m − ϕ(n−1)
m ∥ < 10−3 ,

where ϕ
(n)
m is the boundary condition on the patch Km at the n-th iteration. We take the

initial boundary condition on each patch to be trivial, setting ϕ
(0)
m |Γm,−\Γ− = 0, except on

the real physical boundary condition, where it is set to the prescribed Dirichlet conditions.

In Figure 4.11, we compare the reference solution with our numerical solution computed

using k = 5 and buffer zone ∆xb = 2−3. When ε = 1, the equation is far away from its

homogenization limit, and the numerical solution is far from the reference, but for ε = 2−6

the numerical solution is captured rather well using just k = 5 neighbors.

In Figure 4.12 we document the relative error for various values of k and ∆xb. When

ε is small, and for buffer width ∆xb sufficiently large, we need only k = 2 neighbors to

produce a solution of acceptable accuracy. Without the buffer zone to damp the boundary

layer effect, however, the low dimensionality of the solution manifold cannot be captured,

even for small ε.

We also compare the cost of our reduced method with the classical Schwarz iteration.
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Figure 4.10: The plot on the left shows the average error of the L2 projection of 100 test
samples onto the space spanned by the nearest 5 modes. The test samples are generated
from the same distribution as the dictionary. The plot on the right shows the relative
error of the L2 projection of the reference solution onto the space spanned by the nearest
5 modes on patch K2. The number of samples is N = 64 for all Rm.

Figure 4.11: The first two columns of plots show the reference solution and numerical
solution for ε = 1, and the last two columns compare the solutions for ε = 2−6.
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Figure 4.12: The relative L2 error in one trial as a function of k, for various values of ∆xb
and ε.



86

CPU Time (s)

ε = 2−4 ε = 2−6

offline online offline online

Reduced model k = 3 394.3911 0.181324 904.7498 0.215390
Reduced model k = 5 0.301761 0.222538
Reduced model k = 10 0.379348 0.282070
Reduced model k = 15 0.548689 0.346633
Reduced model k = 20 0.586276 0.532603

Classical Schwarz — 458.0987 — 2183.7079

Table 4.2: CPU time comparison between reduced model method with k = 3, 5, 10, 15, 20
(size of each local dictionary N = 64).

CPU times for both methods are summarized in Table 4.2 for ε = 2−4 and ε = 2−6, with

buffer size ∆xb = .125. The online cost of the reduced method is about 1000 times cheaper

than the classical Schwarz iteration when ε = 2−4 and 4000 times cheaper when ε = 2−6.

Even considering the large overhead cost in the offline stage, the reduced order method is

still cheaper than Schwarz iteration.

Finally, we reiterate that due to the nonlinear nature of the equations, the concept

of “basis function” is not well-defined. The reduced model method for linear equations

was proposed in [62, 63], where random sampling is used to construct the boundary-to-

boundary map P, by following the idea of randomized SVD [121]. If we translate this

approach to nonlinear homogenization, using Green’s functions in a brute-force manner,

the numerical results are poor. By the “Green’s functions,” we mean the solution to

the equation with delta boundary conditions (counterparts of Green’s functions in the

linear setting). The numerical results are presented in Figure 4.13, that compares the

ground-truth solution with the Green’s function interpolation.

4.5 Conclusion

Multiscale physical phenomena are often described by PDEs that contain small parame-

ters. It is generally expensive to capture small-scale effects using numerical solvers. There

is a vast literature on improving numerical performance of PDE solvers in this context,
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Figure 4.13: The left column of plots is the solution with ε = 2−4, and the right column
is the solution from a linear combination of the full set of “Green’s functions”. The top
row shows the solution T and the bottom row shows the solution I.

but most algorithms are equation-specific, requiring analytical understanding to be built

into algorithm design.

We have described numerical methods that can capture the homogenization limit of

nonlinear PDEs with small scales automatically, without analytical prior knowledge. This

work can be seen as a nonlinear extension of the earlier work [65] for linear PDEs. Elements

of our algorithm include domain decomposition framework and Schwarz iteration. The

method is decomposed into offline and online stages, where in the offline stage, random

sampling is employed to learn the low-rank structure of the solution manifold, while in

the online stage, the reduced manifolds serve as surrogates of local solvers in the Schwarz

iteration. Since the manifolds are prepared offline and are of low dimension, the method

exhibits significant speedup over naive approaches, as we demonstrate using computational

results on the semilinear elliptic equation.
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Chapter 5

Semiclassical limit of a

time-dependent inverse problem

for the Schrödinger equation

It is a classical derivation that the Wigner equation, derived from the Schrödinger equation

that contains the quantum information, converges to the Liouville equation when the

rescaled Planck constant ε → 0. Since the latter presents the Newton’s second law, the

process is typically termed the (semi-)classical limit. In this chapter, we study the classical

limit of an inverse problem for the Schrödinger equation. More specifically, we show that

using the initial condition and final state of the Schrödinger equation to reconstruct the

potential term, in the classical regime with ε → 0, becomes using the initial and final

state to reconstruct the potential term in the Liouville equation. This formally bridges an

inverse problem in quantum mechanics with an inverse problem in classical mechanics.

5.1 Introduction

The classical limit, or the semi-classical limit of quantum mechanics is the ability of

quantum theory to recover, or partially recover classical mechanics when the rescaled
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Planck constant ε is considered negligible. More specifically, by setting ε ≈ 0 in the

Schrödinger equation, one is expected to recover the Newtonian’s law of motion (Newton’s

second law) in the asymptotic limit.

The concept of linking quantum mechanics and classical mechanics was already in

formulation in 1920s, and was presented by N. Bohr in his Nobel lecture under the name of

“correspondence principle”. Since then, there have been abundant studies on deriving and

proving the classical limits. While the formal derivation using WKB expansion is relatively

easy to show, the discontinuity in the limiting equation (Hamiltonian-Jacobi equation)

makes the rigorous mathematics analysis hard to obtain. In [109, 193, 22], the authors,

by introducing Wigner measures, flipped the studies to the phase space and expanded out

the singularity, upon which, the derivation of classical limit was made rigorous.

We investigate the problem in an inverse setup. Suppose a quantum system is modeled

by the Schrödinger equation, and one can measure the initial and final state, can one

reconstruct the potential term (the field) in the equation? Moreover, if the quantum

system is in the classical regime, with ε ≈ 0, can we view this inverse problem as the

inverse problem for the Newtonian motion? What is the connection between the inverse

Schrödinger and the inverse Newton’s law? These questions essentially come down to

deriving the classical limit of the inverse problem for the Schrödinger equation.

It is a relatively big topic, and in this chapter in particular, we confine ourselves to the

linearized setting. Namely, we assume the potential term is close to a preset background

potential, and we are interested only in reconstructing the perturbation term. Under this

setting, both the inverse Schrödinger problem and the inverse Newtonian motion problem

can be formulated as Fredholm integrals, and it is the representatives (or the kernels) of

the integrals that reveal the perturbed potential information. The question of deriving the

classical limit, when confined in linearized setting, becomes: are the two representatives

asymptotically equivalent when ε→ 0 in some sense?

The problem is of great interest, not only for our mathematical curiosity, but also for

its practical use.
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Since the fundamental question of bridging quantum mechanics and classical mechanics

is mathematically clear, it is very natural to seek for its correspondence in the inverse

setting. Indeed, in what sense can one view the inverse Schrödinger problem and the

inverse Newtonian motion problem equivalently? Or, is it possible for one problem to be

more stable than the other? This type of stability increasing/decreasing problem recently

attracts a large amount of attention for various sets of problems [61, 153, 209, 176].

Practically, the Schrödinger equation is not only regarded as the fundamental model

for quantum mechanics, but also emerges as the limit of the Helmholtz equation when

dynamics in different dimensions is described at separate scales [113], and thus serves as

a fundamental model for the wave propagation (for a fixed high frequency) as well. There

are abundant applications, in which high-frequency waves are sent to detect the media [21,

26, 29, 39, 200]. Mathematically, this is to seek for reconstructing the speed of sound in

the Helmholtz equation, which is to reconstruct the potential term in the Schrödinger

equation. Moreover, the inverse Schrödinger problem is also a transformed version of the

celebrated Calderón problem, arises from Electrical Impedance Tomography (EIT) [55].

For these reasons, inverse Schrödinger problem has long been regarded as one of the most

important inverse problems. Most of the studies, however, set the Planck constant in

the Schrödinger equation to be an O(1) value. This is not practical in many applications

mentioned above. In the high frequency regime for the Helmholtz equation, or in the

classical regime with the rescaled ε→ 0, the stability of the inverse problem may change,

and it would be of great practical interests to predict the stability in these regimes, and

to quantify the reconstruction error in terms of the rescaled ε. Linking it to the inverse

Newtonian motion is a natural strategy.

Despite the great importance of the problem, the theoretical study has been thin, even

though it is mentioned a couple of times in the literature [143, 140, 141, 178]. Most of

the studies formulate the problem as the (quantum) scattering problem. See also the

geometric version for reconstructing the refraction index [175, 174, 123, 173]. The obsta-

cles come from (a) the disparity of the technicalities used in deriving the classical limit,
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and in analyzing inverse problems, and (b) the disparity in analyzing the two different

inverse problems (inverse Schrödinger and inverse Newtonian motion). In this chapter,

we take an initial attempt to bridge the two under the linearized setting, hoping to unveil

some connections that could potentially serve as stepping stones for further investigation.

We should mention, that when the media encodes randomness, the classical limit of the

Schrödinger equation (or similarly the wave equation) is the linear Boltzmann equation

(or the radiative transfer equation) that characterizes the dynamics of photons on the

mesoscopic level. The associated inverse problem is highly related to imaging, and has

been studied in different contexts [24, 27, 25, 58, 126].

This chapter is organized as follows. In Section 5.2, we utilize the linearization ap-

proach to set up the frameworks for Schrödinger, Wigner and Liouville inverse problems.

The relations between and the three inverse problems are considered in Section 5.3, in-

cluding the equivalence of the Schrödinger and the Wigner inverse problem, and the con-

vergence from the Wigner to the Liouville inverse problem as ε→ 0. Numerical tests are

exploited in Section 5.4 to demonstrate the convergence from the Wigner to the Liouville

inverse problem.

5.2 Three inverse problems for the Schrödinger equation in

the classical limit

As We have seen from Section 2.3, for the Schrödinger equation in the classical limit, we

are now facing three equations: the original Schrödinger equation, the Wigner equation,

and the Liouville equation as the classical limit of the Wigner equation. With respect to

these three equations, we can formulate three inverse problems, all of which will be derived

in this section.

We employ the same setup for the three inverse problems: we assume the equations are

Cauchy problems without boundary constraints, and we confine ourselves to the linearized

setting. This is to assume the potential term V is close enough to a background Vb. The

given input is the initial data and one can measure the final state at a given time T . The
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to-be-reconstructed parameter is the potential term V (or equivalently Ṽ = V − Vb).

We present the three inverse problems in the following three subsection respectively.

5.2.1 A linearized inverse problem for the Schrödinger equation

Recall the Schrödinger equation in Rd is

iε∂tϕ
ε = −1

2
ε2∆xϕ

ε + V (x)ϕε . (5.1)

Let the initial data be ϕε(0, x) = ϕεI (x), and final data at t = T be ϕε(T, x) = ϕεT (x).

While the forward problem is to compute ϕεT for every given ϕεI , the inverse problem is to

use (ϕεI , ϕ
ε
T ) data pairs to reconstruct V . In other words, denoting

Mε
S[V ] : ϕεI → ϕεT ,

the inverse problem is to use the mapMε
S[V ] to reconstruct V .

Remark 5.1. The reconstruction is at most unique up to a gauge transform. Indeed, let

Ĥε be the Hamiltonian operator (2.13), and define Ĥε
n to be a new Hamiltonian operator

Ĥε
n = Ĥε +

2πε

T
n , n ∈ Z .

We further define the unitary semi-group generated by Ĥε and Ĥε
n:

U ε(t) = e−itĤε/ε , U ε
n(t) = e−itĤε

n/ε , t > 0 .

Clearly the two Hamiltonian operators are different, but U ε(T ) = U ε
n(T ), for all n ∈ Z.

This suggests that the initial-to-final map

Mε
S[V ] =Mε

S

[
V +

2πε

T
n

]
,

and thus the reconstruction cannot be unique.
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To derive the linearized version of the inverse problem, we assume there is a known

background potential term Vb(x) such that

Ṽ (x) = V (x)− Vb(x)

is much smaller than Vb(x) in amplitude. We further write the background problem with

the same initial condition:

iε∂tϕ
ε
b = −1

2
ε2∆xϕ

ε
b + Vb(x)ϕ

ε
b ,

ϕεb(0, x) = ϕεI (x) .

(5.2)

For a preset Vb and ϕεI (x), one can compute the equation for ϕεb(T, x) = ϕεb,T (x).

Let ϕ̃ε = ϕε−ϕεb be the perturbation of wave ϕε, then by subtracting the equation (5.1)

from (5.2) and omitting the higher order term Ṽ ϕ̃ε, we get the equation for the perturba-

tion ϕ̃ε

iε∂tϕ̃
ε = −1

2
ε2∆xϕ̃

ε + Vb(x)ϕ̃
ε + Ṽ (x)ϕεb ,

ϕ̃ε(0, x) = 0 .

(5.3)

Note that ϕ̃ε has trivial initial data and implicitly depends on the initial condition ϕεI

through the background wave ϕεb. Knowing the measured data ϕεT (x), and the computed

data ϕεb,T (x), we merely take the difference and define

ϕ̃εT = ϕ̃ε(T, x) = ϕεT (x)− ϕεb,T (x) . (5.4)

The inverse problem now translates to reconstructing Ṽ using (ϕεI , ϕ̃
ε
T ) data pairs. To do

so, we formulate the adjoint equation ψε that solves:

iε∂tψ
ε = −1

2
ε2∆xψ

ε + Vb(x)ψ
ε ,

ψε(T, x) = ψε
T (x) ,

(5.5)

where the data is given at the final time T .
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Taking (5.3)× ψε − (5.5)× ϕ̃ε, we arrive at

iε∂t(ϕ̃
εψε) = −1

2
ε2(ψε∆xϕ̃

ε − ϕ̃ε∆xψε) + Ṽ (x)ϕεbψ
ε .

We integrate the equation over Rd× [0, T ], and then apply the Green’s identity and make

use of the trivial initial data for ϕ̃ε. This finally yields our problem formulation

∫
Rd

ϕ̃εTψ
ε
Tdx =

1

iε

∫
Rd

Ṽ (x)

∫ T

0
ϕεbψ

εdtdx =

∫
Rd

Ṽ (x)Rε
S[ϕ

ε
I , ψ

ε
T ](x)dx , (5.6)

where we call the representative:

Rε
S[ϕ

ε
I , ψ

ε
T ] =

1

iε

∫ T

0
ϕεbψ

εdt . (5.7)

Note that the left hand side of (5.6) is known, with ψε
T given in (5.5) and ϕ̃εT calculated

from the measured data (5.4). The right hand side formulates a Fredholm integral on the

unknown Ṽ and the kernel Rε
S. Reconstruction of Ṽ amounts to inverting this Fredholm

integral using different configurations of Rε
S, which, in turn, are tuned by (ϕεI , ψ

ε
T ) data

pairs.

5.2.2 A linearized inverse problem for the Wigner equation

The counterpart of the Schrödinger equation on the phase space is the Wigner equation.

We derive the linearized inverse problem for this equation assuming initial and final states

are given. Recall the Wigner equation in R2d:

∂tf
ε + k · ∇xf

ε = LεV [f ε] , (5.8)

with

LεV [f ε] = i

∫
R2d

eip(x−y)V (y)
1

ε

[
f ε

(
x, k +

1

2
εp

)
− f ε

(
x, k − 1

2
εp

)]
dpdy .
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Let the initial data be f ε(0, x, k) = f εI (x, k), and we call the final time data f ε(T, x, k) =

f εT (x, k). The goal is to use initial-final data pairs (f εI , f
ε
T ) to reconstruct the potential

term V . This amounts to using the following operator to reconstruct V :

Mε
W[V ] : f εI → f εT .

Remark 5.2. According to the definition of LV , it is immediate that LεV = LεV+C where

C can be any constant. This makesMε
W[V ] =Mε

W[V +C]. Therefore the reconstruction

can be at most unique up to an unknown constant.

To derive the linear inverse problem, we assume that there is a background potential

Vb(x) so that Ṽ (x) = V (x) − Vb(x) is much smaller than Vb(x) in amplitude. Call the

background problem with the same initial condition:

∂tf
ε
b + k · ∇xf

ε
b = LεVb

[f εb] ,

f εb(0, x, k) = f εI (x, k) ,

(5.9)

where the operator LVb
is defined by the background potential. With a preset Vb and f εI ,

f εb,T (x, k) = f εb(T, x, k) can be pre-computed.

Define f̃ ε = f ε − f εb, we subtract (5.9) from (5.8), and drop the higher term Lε
Ṽ
[f̃ ε] to

have the equation for f̃ ε:

∂tf̃
ε + k · ∇xf̃

ε = LεVb
[f̃ ε] + Lε

Ṽ
[f εb ] ,

f̃ ε(0, x, k) = 0 .

(5.10)

This equation describes the dynamics of the perturbed data f̃ ε. It has trivial initial

data, and implicitly depends on f εI through the Lε
Ṽ
[f εb] term. Since f εT (x, k) is the measured

data and f εb,T (x, k) is precomputed, the perturbed equation’s final data is also known:

f̃ εT (x, k) = f̃ ε(T, x, k) = f ε(T, x, k)− f εb(T, x, k) = f εT (x, k)− f εb,T (x, k) .
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As was done in the case of the Schrödinger equation, we also derive the adjoint equation

for gε:

∂tg
ε + k · ∇xg

ε = LεVb
[gε] ,

gε(T, x, k) = gεT (x, k) ,

(5.11)

with the data imposed at the final time t = T .

Taking (5.10)× gε + (5.11)× f̃ ε, we arrive at

∂t(f̃
εgε) +∇x · (kf̃ εgε) = gεLεVb

[f̃ ε] + f̃ εLεVb
[gε] + gεLε

Ṽ
[f εb] . (5.12)

We integrate the equation over R2d× [0, T ]. Making use of the anti-self-adjointness of LεVb
,

as shown in (2.21), and the trivial initial data of f̃ ε, we obtain:

∫
R2d

f̃ εT g
ε
Tdxdk =

∫
R2d×[0,T ]

gεLε
Ṽ
[f εb]dxdkdt .

We note that the integral term on the right hand side of the equation is a linear

operator on Ṽ . To do so, we expand Lε
Ṽ
, and employ (2.18):

∫
R2d

f̃ εT g
ε
Tdxdk =

∫
Rd

Ṽ (x)Rε
W[f εI , g

ε
T ](x)dx , (5.13)

with the representative

Rε
W[f εI , g

ε
T ] =

i

(2π)d

∫
R3d×[0,T ]

eip(z−x)gε(z, k)Dεf εb(z, k, p)dpdzdkdt , (5.14)

where Dεf εb is defined in (2.19).

Once again, the left hand side of (5.13) is known, with f̃ εT computed and gεT given, and

the right hand side of (5.13) is a Fredholm integral on Ṽ with the kernel Rε
W. The linear

inverse problem of the Wigner equation amounts to inverting such an integral. By choosing

different configurations of (f εI , g
ε
T ), we obtain different profiles of Rε

W, using which, we try

to reconstruct Ṽ .
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5.2.3 A linearized inverse problem for the Liouville equation

Finally, we derive the inverse problem for the Liouville equation. Recall the Liouville

equation in R2d

∂tf + k · ∇xf −∇xV · ∇kf = 0 . (5.15)

Denote the initial data to be f(0, x, k) = fI(x, k), and we assume one can experimentally

measure the final time solution at t = T for fT (x, k) = f(T, x, k). The goal is to reconstruct

V in the Liouville equation using the initial-to-final data pairs (fI , fT ). Namely, to use

the following operator to reconstruct V :

Mε
L[V ] : fI → fT .

Remark 5.3. Since the potential term enters the equation (5.15) through its gradient

∇xV , Mε
L[V ] =Mε

L[V + C] for any constant C. This means the reconstruction of V is

at most unique up to an arbitrary constant.

As was done in the previous sections, the problem shall be linearized around a back-

ground potential Vb(x). The background equation with the same initial data writes:

∂tfb + k · ∇xfb −∇xVb · ∇kfb = 0 ,

fb(0, x, k) = fI(x, k) .

(5.16)

Denoting the perturbation f̃ = f−fb, we subtract (5.16) from (5.15), and drop the higher

order term ∇xṼ · ∇kf̃ to obtain the equation for the perturbation:

∂tf̃ + k · ∇xf̃ −∇xVb · ∇kf̃ = ∇xṼ · ∇kfb ,

f̃(0, x, k) = 0 .

(5.17)

The equation has trivial initial data, but it implicitly depends on fI through the fb term

that enters as the source. Since fT (x, k) is measured, and fb(T, x, k) can be precomputed
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for any given Vb, we easily obtain:

f̃T = f̃(T, x, k) = f(T, x, k)− fb(T, x, k)

as a known quantity.

The adjoint equation for g is:

∂tg + k · ∇xg −∇xVb · ∇kg = 0 ,

g(T, x, k) = gT (x, k) .

(5.18)

Taking (5.17)× g + (5.18)× f̃ , we arrive at

∂t(f̃g) +∇x · (kf̃g)−∇k · (f̃g∇xVb) = g∇xṼ · ∇kfb .

We integrate the equation over R2d × [0, T ], and make use of the trivial initial data for f̃ :

∫
R2d

f̃T gTdxdk =

∫
R2d×[0,T ]

g∇xṼ · ∇kfbdxdkdt .

Moving the ∇x from V to g∇kfb, this becomes

∫
R2d

f̃T gTdxdk =

∫
Rd

Ṽ (x)RL[fI, gT ](x)dx , (5.19)

where the Liouville representative is defined as:

RL[fI, gT ] = −∇x ·
∫
Rd×[0,T ]

g∇kfbdkdt . (5.20)

Again, the left hand side of (5.19) is known, and the right hand side of (5.19) is a Fredholm

integral of Ṽ with the kernel RL. The linear inverse problem of the Liouville equation is

to invert such an integral.
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5.3 Connecting the three inverse problems

The Schrödinger equation, the Wigner equation and the Liouville equation are connected.

According to Lemma 2.1 and Theorem 2.2, f ε = W ε[ϕε] necessarily satisfies the Wigner

equation as long as ϕε solves the Schrödinger equation, and when ε → 0, f ε → f that

solves the Liouville equation.

We look for the counterparts of these relations in the inverse setting. This is to

investigate the three inverse problems introduced in Section 5.2. More specifically, since

the three inverse problems are uniquely represented by the three representatives Rε
S, R

ε
W

and RL, as defined in (5.7), (5.14) and (5.20) respectively, we essentially need to show the

connections between them.

5.3.1 From Schrödinger to Wigner in the inverse setting

This is to study the relation between the linear Schrödinger inverse problem (5.6) and the

linear Wigner inverse problem (5.13). For simplicity of notations, we drop the ε super-

script throughout the subsection. The theorem below demonstrates that every Wigner

representative RW can be written as a linear combination of Schrödinger representatives

RS. This means the space spanned by all RW is a subspace spanned by all RS.

Theorem 5.1. Let ϕb(t) and ϕ′b(t) be the solutions to the background Schrödinger equa-

tion (5.2) with initial data ϕI and ϕ′I respectively. Let ψ(t) and ψ′(t) be the solutions to

the adjoint Schödinger equation (5.5) with final data ψT and ψ′
T respectively. More over,

let fI =W [ϕI, ψ
′(0)] and gT =W [ψT , ϕ

′
b(T )]. Then

(2πε)dRW[fI, gT ] =
〈
ϕ′I, ψ

′(0)
〉
RS[ϕI, ψT ]− ⟨ϕI, ψ(0)⟩RS[ϕ

′
I, ψ

′
T ] . (5.21)

Proof. According to the definition of Wigner representative (5.14), let fb and g solve the

background and the adjoint Wigner equations, RW[fI, gT ] becomes

RW[fI, gT ] =
i

(2π)d

∫ T

0
I(t)dt (5.22)
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with

I =

∫
R3d

eip(z−x)g(z, k)Dfb(z, k, p)dpdzdk .

According to (2.1), g(t) =W [ψ(t), ϕ′b(t)] and fb(t) =W [ϕb(t), ψ
′(t)] and thus

I =

∫
R3d

eip(z−x)W [ψ(t), ϕ′b(t)](z, k)DW [ϕb(t), ψ
′(t)](z, k, p)dpdzdk .

Here DW [ϕb(t), ψ
′(t)] is defined as in (2.19). Plugging in the Wigner transform, we get

I =
1

(2π)2dε

∫
R5d

eik(q−y)[eip(z+
1
2
εq−x) − eip(z−

1
2
εq−x)]

ψ

(
z − 1

2
εy

)
ϕ′b

(
z +

1

2
εy

)
ϕb

(
z − 1

2
εq

)
ψ′

(
z +

1

2
εq

)
dydqdpdzdk

=
1

(2π)dε

∫
R3d

[eip(z+
1
2
εq−x) − eip(z−

1
2
εq−x)]

ψ

(
z − 1

2
εq

)
ϕ′b

(
z +

1

2
εq

)
ϕb

(
z − 1

2
εq

)
ψ′

(
z +

1

2
εq

)
dqdpdz ,

(5.23)

where we used the Fourier inversion formula

1

(2π)d

∫
R2d

eik(q−y)h(y)dydk = h(q) . (5.24)

Let z′ = z + 1
2εq, z

′′ = z − 1
2εq, we get

I =
1

(2π)dεd+1

∫
R3d

[eip(z
′−x) − eip(z′′−x)]ψ(z′′)ϕ′b(z

′)ϕb(z
′′)ψ′(z′)dz′dpdz′′

=
1

εd+1
[⟨ϕb(t), ψ(t)⟩L2(Rd) ϕ

′
b(x)ψ

′(x)−
〈
ϕ′b(t), ψ

′(t)
〉
L2(Rd)

ϕb(x)ψ(x)]

(5.25)

where we again use the Fourier inversion formula in the second equality.

According to (2.14), ⟨ϕb(t), ψ(t)⟩ and ⟨ϕ′b(t), ψ′(t)⟩ are both constants independent of

t. Using (5.22) and the definition of the Schrödinger representative (5.7), we integrate the

equation over [0, T ] to conclude (5.21).

The unique reconstruction of Ṽ in (5.6) and (5.13) amounts to investigating the dimen-

sion of the spaces RS and RW respectively. This theorem suggests that the latter space is
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a subspace of the former, meaning the unique reconstruction of (5.13) would indicate the

unique reconstruction of (5.6).

5.3.2 From Wigner to Liouville in the inverse setting

According to Theorem 2.2, the Liouville equation is the classical limit of the Wigner

equation, meaning that f ε, which solves the Wigner equation, converges to f , which

solves the Liouville equation, when ε→ 0. We expect similar argument holds true in the

inverse setting as well. This amounts to study the two representatives Rε
W and RL.

Theorem 5.2. Let Rε
W[f εI , g

ε
T ], and RL[fI, gT ] be the representatives defined in (5.14)

and (5.20) respectively, where

fI = lim
ε→0

f εI , gT = lim
ε→0

gεT ,

then we claim:

lim
ε→0

Rε
W[f εI , g

ε
T ] = RL[fI, gT ] . (5.26)

Proof. Suppose f εb solves the background Wigner equation (5.9) with the initial data f εI ,

and fb solves the background Liouville equation (5.16) with the initial data fI. In the

semi-classical regime ε → 0, by Theorem 2.2, we know that the background wave f εb

converges to fb. Thus, we have, formally,

lim
ε→0

Dεf εb(z, k, p) = lim
ε→0

1

ε

[
f εb

(
z, k +

1

2
εp

)
− f εb

(
z, k − 1

2
εp

)]
ε→0→ p · ∇kfb(z, k) .

(5.27)

Similarly, suppose gε solves the adjoint Wigner equation (5.11) with the final data gεT , and

g solves the adjoint Liouville equation (5.18) with the final data gT , then the adjoint wave
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gε converges to g. Combining these:

Rε
W[f εI , g

ε
T ](x) =

i

(2π)d

∫
R3d×[0,T ]

eip(z−x)gε(z, k)Dεf εb(z, k, p)dpdzdkdt

ε→0→ i

(2π)d

∫
R3d×[0,T ]

eip(z−x)g(z, k)p · ∇kfb(z, k)dpdzdkdt .

(5.28)

Integrating by parts for the limit and applying the Fourier inversion formula (5.24) lead

to the Liouville representative, that is, the right hand side of the last limit becomes:

− 1

(2π)d

∫
R3d×[0,T ]

eip(z−x)∇z · (gε(z, k)∇kfb(z, k))dpdzdkdt

=−∇x ·
∫
Rd×[0,T ]

g(x, k)∇kfb(x, k)dkdt = RL[fI, gT ] ,

(5.29)

which concludes (5.26).

The proof above is formal. We assumed enough regularity for the convergence (5.27).

We also need the convergence to hold true in the strong sense (in L2 for example).

This theorem suggests that the inverse problem of the Wigner equation, in the classical

regime with ε → 0, is asymptotically equivalent to the inverse problem of the Liouville

equation. This suggests the connection between the Schrödinger equation and the New-

ton’s law of motion in the inverse setting: if the reconstruction of the potential term

using the initial-to-final data map is unique (up to a gauge transform) and stable for the

Schrödinger equation, it is expected that the same should hold true for the Newton’s law

of motion.

5.4 Numerical results

As a proof of concept, we provide numerical evidences for the Wigner inverse prob-

lem (5.13) in the classical regime.
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5.4.1 Numerical setup

In (1 + 1)-dimensional space, the background Wigner equation reads

∂tf
ε
b + k∂xf

ε
b =

i

2πε

∫
R2

[
Vb

(
x+

εy

2

)
− Vb

(
x− εy

2

)]
f εb(x, p)e

iy(k−p)dydp ,

f εb(0, x, k) = f εI (x, k) ,

(5.30)

and its adjoint equation reads

∂tg
ε + k∂xg

ε =
i

2πε

∫
R2

[
Vb

(
x+

εy

2

)
− Vb

(
x− εy

2

)]
g(x, p)eiy(k−p)dydp ,

gε(T, x, k) = gεT (x, k) .

(5.31)

The corresponding Liouville equation for the background equation and the adjoint equation

are

∂tfb + k∂xfb − ∂xVb∂kfb = 0 ,

fb(0, x, k) = fI(x, k) ,

(5.32)

and

∂tg + k∂xg − ∂xVb∂kg = 0 ,

g(T, x, k) = gT (x, k) ,

(5.33)

respectively. According to the definitions (5.14) and (5.20), the Wigner and Liouville

representatives in the inverse problems are

Rε
W[f εI , g

ε
T ](x)

=
i

2π

∫
R3×[0,T ]

eip(z−x)gε(z, k)
1

ε

[
f εb

(
z, k +

εp

2

)
− f εb

(
z, k − εp

2

)]
dpdzdkdt ,

and

RL[fI, gT ](x) = −∂x
∫
Rd×[0,T ]

g(x, k)∂kfb(x, k)dkdt ,

where f εb, g
ε, fb and g satisfy the equations above. We are to demonstrate the relation

between the two representatives as ε→ 0.

To set up the experiment, we choose the background potential Vb(x) to have a Gaussian
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form

Vb(x) = A exp

(
−(x− a)2

w2

)
, (5.34)

and the initial and final time conditions are

f εI (x, k) = fI(x, k) = B exp

(
−(x− bx)2

σ2x
− (k − bk)2

σ2k

)
, (5.35)

and

gεT (x, k) = gT (x, k) = C exp

(
−(x− cx)2

δ2x
− (k − ck)2

δ2k

)
. (5.36)

To compute the Wigner equation (5.30) and (5.31), we truncate the computational

domain to Ω = [0, L] × [K1,K2] and apply periodic boundary condition on x. The time

interval is taken to be [0, T ]. The transport term is discretized by a fifth-order WENO

scheme [137], and the collision term is computed by the trapezoidal approximate [56].

To compute the Liouville equation (5.32) and (5.33), we use the particle method. This

is to solve the ODE systems of trajectories. For example, to compute (5.32) for 0 ≤ t ≤ T ,

we set the trajectory equation

ẋ = −k , k̇ = ∂xVb(x) , with x(0) = y , k(0) = p ,

and the initial data for the particle (y, p) is determined by fI. The final solution is thus

fb(T, y, p) = fI(x(T ), k(T )).

5.4.2 Numerical examples

In the numerical examples, we set the parameters in (5.34) to be

A = 1 , a = 0.25 , w = 2−3 ,

and the parameters defined in (5.35) and (5.36) are

B = C = 1 , σx = δx = 2−4 , σk = δk = 2−3 , bk = ck = 2−3 .
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For discretization, we use ∆x = 2−10, ∆k = 2−10 and ∆t = 2−10 in both the Wigner and

the Liouville solver. In the Wigner solver, we set L = 0.5, K1 = −0.375, K2 = 0.625. The

terminal time is set to be T = 2−6.

In Figure 5.1 and Figure 5.2, we first plot the level sets of solutions f εb and gε at

different time.
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Figure 5.1: The left column shows the contour of f εb for ε = π−12−4 and the right column
shows the contour for ε = π−12−8.

We then compare the two representatives Rε
W[f εI , g

ε
T ] and RL[fI, gT ] for two different

configurations of (bx, cx). As shown in the left column of Figure 5.3, with ε → 0, the

profile of Rε
W[f εI , g

ε
T ] gets closer and closer to that of RL[fI, gT ] for both examples. To

quantify the convergence, we define

ErrR(ε) =
∥Rε[f εI , g

ε
T ]−R[fI, gT ]∥L2(Rd)

∥R[fI, gT ]∥L2(Rd)

,

and plot the convergence rate with respect to ε, as shown in the right column of Figure 5.3.

In both examples, the plots suggest a decay rate of O(ε2).
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Figure 5.2: The left column shows the contour of gε, the solution to the adjoint equa-
tion (5.31) that propagates backwards in time, for ε = π−12−4 and the right column
shows the contour for ε = π−12−8.
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Figure 5.3: The left column compares the Wigner representative Rε
W[f εbI, g

ε
T ] with different

values of ε and the limiting Liouville representative RL[fbI, gT ]. The right column shows
ErrR(ε) as a function of ε. The decay rate suggests that ErrR(ε) is of O(ε2).
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We finally demonstrate the convergence for a large set of basis functions. To do so,

we first take the interval [xl, xr] = [0.1875, 0.3125], and denote the discrete points in the

interval xi = xl + i∆x, with i ∈ N and xl ≤ xi ≤ xr. Considering ∆x = 2−10, we have

N = 129 configurations of xi. We then let bx and cx, the centers for f εI and gεT taking

these configurations. The combination provides us a large set of initial/final time data f εI,i

and gεT,j . We compute the corresponding solutions, termed f εi and gεj and formulate a set:

Rε
W = {Rε

W,ij = Rε
W[f εI,i , g

ε
T,j ] , i, j = 0 , . . . , 128} .

The same process is done to obtain RL,ij and the set RL.

We now compare the set Rε
W and RL. We first compare the singular values of the

two sets. In Figure 5.4a, we plot the relative singular value decay of both Rε
W at different

values of ε, and RL. As ε → 0, it is clear the decay profile converges. We also quantify

the convergence of relative singular value using the following error term:

Errs,i(ε) =
|sεi − si|
|si|

,

where sεi is the ith relative singular value of Rε
W, and si is the ith relative singular value

of RL. In Figure 5.4b, we plot Errsi(ε) as a function of ε for i = 2, 3, 4, 5. It is clear that

the relative singular values of Rε
W converge to their counterparts in the ε → 0 classical

limit.
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Figure 5.4: (a) The relative singular values of RL and Rε
W at different values of ε. (b)

Errsi(ε) as a function of ε for the 2nd to the 5th relative singular values.
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We then compare the left singular vectors of the basis. In Figure 5.5, we show the first,

third, seventh and tenth left singular vectors of Rε
W. As ε → 0, the profiles converge to

those of RL. To quantify such convergence, we let Qε
k and Qk to denote the column spaces

(orthonormalized) spanned by the first k left singular vectors of Rε
W and RL, respectively,

and define the angle between the spaces:

ErrR,k = ∥Qk −Qε
k(Q

ε
k)

⊤Qk∥2 .

The angle between the two spaces are shown to converge as ε → 0 for different values of

k in Figure 5.6.
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Figure 5.5: The singular vectors of RL and Rε
W at different values of ε.

5.5 Conclusion

It is a well-known result that the Schrödinger equation leads to the Newton’s second law

in the classical limit, when the rescaled Planck constant ε → 0. We investigate this
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Figure 5.6: ErrR,k as a function of ε for k = 1, 3, 7, 10.

limit in the inverse setting. More specifically, we assume the initial and final data is

available and we study if the initial-final data pairs can reconstruct the potential term in

the Schrödinger equation. The investigation is done in the linearized setting, assuming

the potential is close enough to a background, and this boils the problem down to the

study of the representative of the associated Fredholm integral derived from the inverse

problem.

We employ the Wigner transform tool. In particular, we translate the information of

the Schrödinger equation to that of the Wigner equation, and pass its limit to obtain the

Liouville equation which presents particle trajectories following the classical mechanics.

We are able to show that the representative derived under the Wigner framework indeed

converges to the representative derived under the Liouville framework when ε → 0, and

thus we link the inverse Schrödinger problem with the inverse Newton’s law of motion.
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Chapter 6

High-frequency limit of the

Helmholtz inverse scattering

problem

In this chapter, we investigate the asymptotic relation between the inverse problems relying

on the Helmholtz equation and the radiative transfer equation as physical models, in

the high-frequency limit. In particular, we evaluate the asymptotic convergence of a

generalized version of the inverse scattering problem based on the Helmholtz equation,

to the inverse scattering problem of the Liouville equation (a simplified version of RTE).

The two inverse problems are connected through the Wigner transform that translates the

wave-type description on the physical space to the kinetic-type description on the phase

space, and the Husimi transform that models data localized both in location and direction.

The finding suggests that impinging tightly concentrated monochromatic beams can indeed

provide stable reconstruction of the medium, asymptotically in the high-frequency regime.

This fact stands in contrast with the unstable reconstruction for the classical inverse

scattering problem when the probing signals are plane-waves.
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6.1 Introduction

The wave-particle duality of light has been one of the greatest enigmas in the natural

sciences, dating back to Euclid’s treatise in light, Catoptrics (280 B.C.) and spanning

more than two millennia. In a nutshell, light can be either described as an electromagnetic

(EM) wave governed by the Maxwell’s equations, or as a stream of particles, called photons,

governed by the radiative transport equation (RTE).

Although the advent of quantum mechanics at the onset of the last century partially

solved the riddle, due to computational considerations, light continues to be modeled either

as a particle or as a wave depending on the target application. Among those applications,

inverse problems are perhaps the ones that have gained the most attention in the last

decades, which in return have fueled many breakthroughs in telecommunications [211, 212],

radar [74], biomedical imaging [195, 28] and, more recently, in chip manufacturing [145].

In this context, inverse problems can be roughly described as reconstructing unknown

parameters within a domain of interest by data comprised of observations on its boundary.

Unfortunately, the properties of the inverse problems are highly dependent on the spe-

cific modeling of the underlying physical phenomena, even though, in principle, they share

the same microscopic description. In particular, the stability of the inverse problem, i.e.,

how sensitive is the reconstruction of the unknown parameter to perturbations in the data,

is surprisingly disparate [176, 66], thus creating an important gap between the wave and

particle descriptions, which we seek to bridge in this chapter. We point out that under-

standing this gap is not only of theoretical importance, it would also play an important

role in designing new reconstruction algorithms with improved stability applicable to a

broader set of wave-based inverse problems, which are ubiquitous in science [202, 189, 179]

and engineering [184, 14, 82].

For simplicity, we consider a time-harmonic wave-like description governed by the

Helmholtz equation, which can be derived from the time-harmonic Maxwell’s equations

after some simplifications. Alternatively, the Helmholtz equation can also be obtained

by computing the Fourier transform of the constant-density acoustic wave equation at
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frequency k, and is given by1 (
∆+ k2n

)
u(x) = 0 , (6.1)

where u is the wave field, and n(x) is the refractive index of the medium. We point out

that even if this is a simplified model, it retains the core difficulty of more complex physics.

We also consider a particle-like description governed by the Liouville equation, which

is a simplified RTE, given by:

v · ∇xf −∇xn · ∇vf = 0 , (6.2)

where f(x, v) is the distribution of photon particles, and n is still the refractive index. The

Liouville equation describes the trajectories of photons via its characteristics: ẋ = v and

v̇ = −∇xn. For simplicity we neglect the photon interactions which are usually encoded

by the collision operator.

Following the wave and photon descriptions, we define the forward problem as calcu-

lating either the wave-field, or the photon distribution from the refractive index by solving

either the Helmholtz or the Liouville equations. The wave-particle duality, when trans-

lated to mathematical language, corresponds to the fact that the solutions obtained by

the Helmholtz and Liouville equations are asymptotically close when k →∞, see [23].

For the sake of conciseness, we consider a simplified inverse problem consisting of

reconstructing an unknown environment within a domain of interest by probing it with

tightly concentrated monochromatic beams originated from the boundary of the domain,

in which the response of the unknown medium to the impinging beam is measured at

its boundary. This measurement is performed by a measurement operator that is model-

specific and it will play an important role in what follows. For simplicity, we consider the

full aperture regime, i.e., we can probe the medium from any direction, and we sample

its impulse response in all possible directions. When the beam is modeled as a wave,

i.e., using the Helmholtz equation as a forward model, this process can be considered as

1The domain of definition, source, and boundary conditions will be specified in Section 6.2.
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a generalized version of the inverse scattering wave problem (which we, for the sake of

clarity, just refer to as the generalized Helmholtz scattering problem. When the beam is

modeled as a flux of photons, i.e., using the Liouville equation as a forward model, this

process is often referred to as the optical tomography problem, but we will refer to as the

Liouville scattering problem in this chapter.

Although the two different formulations seek to solve the same underlying physical

problem, our understanding of the two inverse problems seems to suggest different stability

properties. The traditional inverse scattering problem, using either near-field or far-field

data is ill-posed: small perturbations in the measurements usually lead to large deviations

in the reconstructions [83, 120]. Thus, sophisticated algorithms [160, 51, 50, 185, 72, 48,

31] have been designed to artificially stabilize the process by appropriately restricting the

class of possible unknown environments, usually in the form of band-limited environments.

Conversely, the inverse Liouville equation is well-conditioned: a small perturbation is

reflected by a small error in the reconstruction [178].

Thus the observation that the stability for both problems is different seems to be at

odds with the fact that the Liouville equation and the Helmholtz equation are asymptot-

ically close in the high-frequency regime. Fortunately, as what we will see, this somewhat

contradictory property stems from the inability of traditional formulations of the inverse

problems to agree in the high-frequency limit. When the measurement operators are

accordingly adjusted, we show that the new formulations, which we call the generalized

inverse scattering, are equivalent in the limit as k →∞, producing a stable inverse prob-

lem. The convergence from the Helmholtz equation to the Liouville equation is conducted

through the Wigner transform [109, 193, 23], and the convergence of the measuring op-

erators is achieved through the Husimi transform [42]. Both convergences are obtained

asymptotically in the k →∞ limit. This convergence allows us to conclude the following:

The inverse Liouville scattering problem is asymptotically equivalent to the generalized

inverse Helmholtz scattering problem in the high-frequency regime.

The current chapter is dedicated to formulating the statement above in a mathe-
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matically precise manner, while providing extensive numerical evidence supporting the

statement.

On the mathematical level, the current chapter carries the following important features:

• The result connects the two seemingly distinct inverse problems, and suggests that

in the high-frequency regime, probing an unknown object with a single frequency is

already enough for its reconstruction, with properly prepared data in the generalized

inverse scattering setting. This partially answers the stability question regarding the

inverse scattering.

• The result can be viewed as the counterpart of the asymptotic multiscale study

conducted in the forward setting. In particular, semi-classical limit is a theory that

connects quantum mechanical and the classical mechanical description: the proposed

formulation for the inverse scattering problem can be regarded as taking the (semi-

)classical limit in the inverse setting, and thus the work carries conceptual merits.

This is in line with [176, 66]. See also [153] for a different setting.

These mathematical understandings also naturally bring numerical and practical ben-

efits. The new inverse wave scattering formulation coupled with PDE-constrained opti-

mization seems to be empirically less prone to cycle-skipping, i.e., convergence to spurious

local minima [205], than its standard counterparts [206, 48], thus potentially opening the

way to more robust algorithmic pipelines for inverse problems.

We point out that even though this current study is motivated by the wave-particle

duality of light, the current results are also applicable to other oscillatory phenomena,

see [66] for a discussion on inverse Schrödinger problem in the classical limit.

Organization

In Section 6.2, we briefly review the Helmholtz equation and present the corresponding

inverse problem that fits the particular experimental setup that allows passing the system

to the k → ∞ limit. In Section 6.3, we discuss the limiting Liouville equation and the
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inverse Liouville scattering problem, by conducting the Wigner and Husimi transforms.

The connections between the two inverse problems will thus be immediate. Finally, we

present our numerical evidences that justify the convergence in Section 6.4 and we showcase

the stability of the inverse problem in Section 6.5.

6.2 Experimental setup and inverse problem formulation

Suppose we use tightly concentrated monochromatic beams, or laser beams, to probe the

medium. Each beam impinges in the area of interest, thus producing a scattered field

which is then measured by directional receivers2 placed on a manifold around the domain

of interest (See Figure 6.1). The data, which is used to reconstruct the optical properties

of the medium, is the intensity captured by each receiver for each incoming beam. Thus,

the data is indexed by the position and direction of the impinging beam, and the location

and direction of the receivers.

𝑣𝑣𝑠𝑠
𝑥𝑥𝑠𝑠𝑣𝑣𝑟𝑟

𝑥𝑥𝑟𝑟

Figure 6.1: Illustration of the setup. Here xs and vs denote the location and direction of
the incident beam, respectively, while xr and vr denote the location and direction of the
receiver, respectively.

In this section, we set up the experiment and provide the mathematical formulation,

using both the wave and the particle forms for the forward model. This prepares us to

link the two problems in Section 6.3.

6.2.1 Helmholtz equation and inverse wave scattering problem

The Helmholtz equation is a model equation for time-harmonic wave propagation. After

some approximations, both the constant-density acoustic wave equation and the Maxwell

2Experimentally, this is often achieved by placing a collimator before the receiver, and changing the
orientation of the collimator.
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equations for the EM waves, can be recast, through the Fourier transform in t, into the

Helmholtz equation. It writes as:

∆uk + k2n(x)uk = Sk(x) . (6.3)

In the equation, uk is the wave-field, with the superscript, k > 0 represents the wave

number (that carries the frequency information, and thus in the chapter we use the two

words interchangeably). n(x) is a complex-valued refractive index having non-negative

imaginary part, Im(n(x)) ≥ 0, reflecting the heterogeneity of the medium. We assume

n(x) is the constant one in all Rd except in a convex bounded open set Ω ⊂ Rd, meaning

supp(n − 1) ⊂ Ω. In order to streamline the notation, we let Ω = B1, the ball with

radius 1 centered around the origin. The right-hand side Sk(x) is the source term, which

is wave-number dependent.

The classical setup for the scattering problem is to probe the medium with an incident

wave-field ui,k that triggers the response from the medium. Noting that the total field,

which satisfies (6.3), is the sum of the incident and the scattered wave-fields, we can write:

uk = ui,k + us,k ,

and derive the equation for the scattered wave-field us,k. Suppose the incident wave is

designed so that it absorbs all the external source information:

∆ui,k + k2ui,k = Sk(x) , (6.4)

then by simply subtracting it from (6.3), we have the equation for us,k:

∆us,k + k2n(x)us,k = k2(1− n(x))ui,k x ∈ Rd ,

∂us,k

∂r
− ikus,k = O(r−(d+1)/2) as r = |x| → ∞ .

(6.5)

In this equation, we can view the incident wave ui,k impinging in the perturbation n − 1
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as the source term for us,k. Clearly, this source term k2(1 − n(x))ui,k is zero outside B1,

the support of n− 1. The Sommerfeld radiation condition is imposed at infinity to ensure

the uniqueness for us,k.

When d = 3, a typical approach is to set S(x) = δy, a point Dirac delta, then the

solution ui,k to (6.4) becomes the fundamental solution to the homogeneous Helmholtz

equation in R3

Φ(x; y) = − 1

4π

exp(ik|x− y|)
|x− y|

, x, y ∈ R3, x ̸= y ,

for any given y. We can clearly observe that the function is radially symmetric centered in

y thus it is often termed a spherical wave. If |y| ≫ |x|, i.e., y is far away from the origin,

we have the far-field regime, in which the fundamental solution is approximately a plain

wave: Φ(x; y) ≈ − eik|y|

4π|y| exp(−ikŷ · x) with ŷ = y
|y| being the unit vector.

In this case, however, instead of using the Dirac delta, we handcraft a specially designed

source term, which will be crucial for the re-scaling proposed in this chapter. In particular,

we choose Sk
H(x) to be the following:

Sk
H(x;xs, vs) = −k

3+d
2 Svs(k(x− xs)) x ∈ Rd , (6.6)

where the subscript H stands for Helmholtz, and

Svs(x) = C(σ, d) exp

(
−σ2 |x|

2

2
+ ivs · x

)
. (6.7)

Here C(σ, d) is the normalization constant C(σ, d) =
√
2
(

σ√
π

) d+1
2
.

Physically this source term can be understood as the source generating a tight beam

being shone onto the medium from the location xs in the direction of vs. The profile of

this tight beam, or “laser beam”, is a Gaussian centered around the light-up location xs

and the width of the Gaussian is characterized by (kσ)−1. With σ fixed, as k → ∞, the

beam is more and more concentrated.

Following the explanation above we incorporate the source term in (6.6) into (6.3)-
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(6.4), to probe the medium from the positions, xs, in the direction of vs, that are physically

pertinent. In particular, we let (xs, vs) ∈ Γ− where

Γ± = {(x, v) ∈ ∂B1 × Sd−1 : ±v · ν(x) > 0} .

In which, ν(x) denotes the outer-normal direction at x ∈ ∂B1. This means the laser

beams shine from the boundary of B1 in the direction v pointing inward the interior of

the domain.

From (6.6) we can observe that as k → ∞, the laser beam becomes increasingly

concentrated. In particular, in the k → ∞ limit, the incident wave ui,k becomes a ray,

propagating through a straight line3.

As usual in inverse problems (in particular, in non-intrusive experimental setups), we

take measurements of uk near the boundary ∂B1. To take such measurement we design a

family of test functions of the form:

ϕkv(x) = kd/4χ
(√

kx
)
e−ikv·x , (6.8)

where χ : Rd → R is a smooth radially symmetric function that vanishes as |x| → ∞.

We define the measurement of uk as its Husimi transform

Hkuk(x, v) =

(
k

2π

)d ∣∣∣uk ∗ ϕkv∣∣∣2 for (x, v) ∈ Γ+. (6.9)

The measurement then consists of the intensity of the field that convolves with the test

function. This measurement is conducted only on the boundary, and only in the directions

pointing outside the domain.

This measurement has a clear physical interpretation: it measures the intensity of the

wave-field at location x propagating in direction v, using χ as the impulse response of the

receiver, or test function.

3The incoming ray propagates in a straight line due to the assumption that the background is constant.
Otherwise, the ray would bend if a smooth non-constant background is considered.
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One typical choice for the family of test functions is to set χ as a Gaussian (normalized

in L2 norm)

χ(x) =

(
1

π

)d/4

exp

(
−|x|

2

2

)
. (6.10)

It is straightforward to see that as k →∞, the test function ϕkv concentrates around zero

due to the
√
k scaling. As such, the measurement uk ∗ϕkv at a location xs only takes value

of uk in a very small neighborhood around xs.

Remark 6.1. We note that the choice of χ in (6.10) is not essential. We use this specific

form to make the calculation explicit, as it will be shown in 6.1. Other forms of χ would

also work well as long as the corresponding Gk =W k[ϕk0] converges to a Dirac delta when

k →∞, as it will be explained in 6.5.

Forward Map: now we have all the elements to define the forward map. For any

(xs, vs) ∈ Γ−, we shine laser beam into B1 according to the format in (6.6), then the

solution to the Helmholtz equation (6.3), uk is tested by ϕkv(x) and evaluated on Γ+:

Λk
n : Sk

H(x;xs, vs)→ Hkuk(xr, vr)|Γ+ . (6.11)

As a consequence, the dataset generated by this forward map is the collection of:

Dk[n] =
{(
Sk
H(x;xs, vs),Λ

k
n[S

k
H](xr, vr)

)
: (xs, vs) ∈ Γ−, (xr, vr) ∈ Γ+

}
. (6.12)

We now formulate the generalized inverse scattering problem as

to reconstruct n using the information in Dk[n]. (6.13)

Traditional inverse scattering problem

Given that we use a non-standard formulation of the inverse scattering problem, we will

stress a couple of similarities and differences between the generalized and classical inverse

scattering problems.
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In particular, the form of the forward map introduced in our setting differs from the

classical one, where the incident wave is typically a plane wave, meaning ui,k(x; vs) =

exp(ikvs · x), where vs ∈ Sd−1, see [147].

So the forward map is given by the far field map, Λ̃k
n:

Λ̃k
n : ui,k(x; vs)→ u∞,k(x̂; vs) ,

where u∞,k : Sd−1 → C is defined as

u∞,k(x̂; vs) = lim
r→∞

rus,k(rx̂; vs) exp(−ikr)|x̂∈Sk−1 , ∀x̂ ∈ Sd−1 ,

with us,k being the solution of (6.5), where we leverage that ui,k(x; vs) satisfies (6.4) with

S = 0. Therefore, in this setting, the data set induced by the forward map is defined as:

D̃k[n] =
{(
ui,k(x; vs), Λ̃

k
n

[
ui,k

]
(x̂)

)
: vs ∈ Sd−1, x̂ ∈ Sd−1

}
.

The well-posedness and stability of the inverse scattering problem in this context has been

studied in [120, Theorem 1.2].

The differences from the classical inverse scattering formulation is twofold: i) we use

a richer set of probing functions, instead of using incident waves that are directionally

localized (as plane waves) or whose sources are localized (as Green’s functions), we use

tight beams that combine these two properties, and ii) instead of measuring the scattered

wave-field on a manifold around the domain of interest, we multiply it with a set of

directional filters localized on the same manifold, and we compute its intensity. We should

emphasize that this difference is significant. Take the plane-wave as the probing wave,

as an example, it is only the direction of the incoming wave that can be tuned, and

this composes 2 dimensions of degrees of freedom in 3D with vs ∈ Sd−1. The way our

source term is designed automatically carries 4 dimensions of degrees of freedom with

(xs, vs) ∈ Γ−. Similarly, the way data gets taken also expands the degrees of freedom the

measuring operator can access. It is a widely accepted fact that more data leads to more
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stable reconstruction. This will be indeed demonstrated in the later sections.

Remark 6.2. We note that even though the conventional inverse scattering problem has

been shown to be ill-conditioned, a couple of strategies have been introduced in the literature

to stabilize the problem. The most prominent strategy is to add the phase information

(microlocally) [34, 198, 77]. At the first look, the Husimi data (6.9) also extracts the

phase information, by integrating the scattered wave with an oscillatory test function (6.8)

that is localized in position and direction. In very simple cases, we can even show that

the two sets of information are equivalent. For example, suppose the wave field is of the

simple form of uk(x) = A(x)eikp·v with p ∈ Sd−1 and A(x) ≥ 0, for all x ∈ Rd. Then in

the limit k → ∞, we can fully recover uk(x), both the amplitude and the phase, on the

boundary ∂B1 using the Husimi data (6.9)

lim
k→∞

Hkuk(x, v) = |A(x)|2δ(v − p) , ∀(x, v) ∈ ∂B1 × Sd−1 .

However, in general cases, we are not aware of results that translate Husimi data to the

phase data. Indeed, according to [116, 117, 7], this might be a very complicated phase

retrieval problem that is beyond the scope of the dissertation.

Remark 6.3. Another strategy to stabilize the inverse scattering problem is to transform

the Helmholtz equation back to the time-domain, and solve the inverse acoustic wave prob-

lem, with either full or partial data available for all time T ≥ 0. In various settings [30,

135, 199, 217], it is proved that the time-domain data is sufficient to reconstruct the

medium. The wave equation and Helmholtz equation are Fourier transform of each other

in time. Roughly speaking, the temporal data collected on the boundary translates to the

boundary information for all frequency k. As such, the temporal data has wide-band in-

formation instead of being monochromatic, and thus is expected to be more stable. In our

setting, though we require k ≫ 1, we still use monochromatic information, and thus the

data does not directly translate.

We should note, however, that though the time-domain data is expected to be more
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informative in theory, in practice, however, especially within the optimization-based re-

construction algorithm framework, the typical ℓ2 misfit loss function results in an ex-

tremely non-linear problem that often leads to cycle-skipping, and convergence to spuri-

ous, non-physical, local minima. The numerical problem is usually attenuated by using

the time/frequency duality and localizing the frequency content of the data, which is then

processed in a hierarchical fashion [72, 185]. These are beyond the focus of the dissertation.

6.2.2 High-frequency limit and inverse Liouville scattering problem

The Liouville equation is a well-studied classical model for describing particle propagation.

Any system with a large number of identical particles can be described by the Liouville

equation, or its variants, which is often written as:

v · ∇xf +
1

2
∇xn · ∇vf = SL(x, v) , (6.14)

where f(x, v) characterizes the number of particles on the phase space (x, v). Following

the characteristics, we see that the particles follow Newton’s second law:

ẋ = v , v̇ =
1

2
∇xn .

As usual in classical mechanics, we can define the Hamiltonian for each particle to be

H(x(t), v(t)) =
1

2
|v(t)|2 − 1

2
n(x(t)) ,

which is preserved along the characteristics of the particles, i.e., dH
dt = 0.

We use (6.14) to describe photon propagation, and use the same setup as that in

Section 6.2.1. The source term SL(x, v) on the right-hand side of (6.14) describes how

laser beams are shone into the medium, and takes the form of:

SL(x, v;xs, vs) = ϕ(x− xs)ψ(v − vs) , with (xs, vs) ∈ Γ− , (6.15)
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where both ϕ : Rd → R and ψ : Rd → R are radially symmetric smooth functions that

concentrate at the origin. By setting (xs, vs) ∈ Γ−, we have the laser beam shining from

the boundary ∂B1 inward to the domain. The concentration of the beam is determined

by ϕ and ψ in physical- and velocity-space respectively.

Similar to the previous section, we take the measurements of the light intensity at the

boundary pointing outside of the domain. To do so, we set the test function ζ(x, v) and

the measurements would be its convolution with the solution to (6.14):

Lf(x, v) = f ∗ ζ(x, v) . (6.16)

The physical setup is clear. Imaging ζ a blob centers around (x, v) = (0, 0), then Lf(xr, vr)

essentially represents a measuring equipment that takes in light intensity concentrated

around (xr, vr) with the concentration determined by the size of the blob. The specific

format of ζ will be specified in Section 6.3.

Forward Map: we define the forward map in a similar fashion as in Section 6.2.1. For

any (xs, vs) ∈ Γ−, we solve (6.14) with SL defined in (6.15), and test the solution on ζ(x, v)

evaluated on Γ+:

Λn : SL(x, v;xs, vs)→ Lf(xr, vr)|Γ+ .

As a consequence, the dataset generated by this forward map is the collection of:

D[n] = {(SL(x, v;xs, vs),Λn[SL](xr, vr)) : (xs, vs) ∈ Γ−, (xr, vr) ∈ Γ+} . (6.17)

While the forward problem is to compute and construct this D[n] for any given n, the

inverse problem amounts to inferring n using the information in D[n].
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6.3 Relation between the two problems in the high-frequency

regime

In this section we discuss the connection between the forward maps for the wave- and

particle-like descriptions introduced in the section above. We start introducing the Wigner

transform, and we use it to present the equivalence of the two descriptions for the forward

maps in the high-frequency regime. Then we introduce the Husimi transform to take the

limit of the measuring operator, and this is used to show the equivalence of the two inverse

problems. Finally, we briefly introduce the stability of the inverse Liouville problem.

6.3.1 High-frequency limit of the forward problem

We first present their connection in the forward setting. We discuss the derivation of the

Liouville equation as the limiting equation for the Helmholtz. This process is typically

called taking the “classical”-limit, to reflect the passage from quantum mechanics to clas-

sical mechanics by linking the Schrödinger equation to the Liouville equation in the small

ℏ regime.

Among the multiple techniques to derive the classical limit we utilize the Wigner

transform [109, 193, 23, 67]. Compared to other techniques, such as WKB expansion [100]

and Gaussian beam expansion [201, 169, 187] , Wigner transform presents the equation

on the phase space, and avoids the emerging singularities during the evolution. Let uk1

and uk2 be two functions, then the corresponding Wigner transform is defined as

W k[uk1, u
k
2](x, v) =

1

(2π)d

∫
Rd

eiv·yuk1

(
x− y

2k

)
uk2

(
x+

y

2k

)
dy . (6.18)

Here uk2 is the complex conjugate of uk2. We furthermore abbreviate W k[uk1, u
k
2] to be

W k[uk].

The Wigner transformW k[uk] is defined on the phase space, is always real-valued, and

the moments in v of W k[uk] carry interesting physical meanings. In particular, the first
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moment recovers the energy density Ek:

Ek(x) =
∫
Rd

W k[uk](x, v)dv =
∣∣∣uk(x)∣∣∣2 , (6.19)

and its second moment expresses the energy flux Fk:

Fk(x) =

∫
Rd

vW k[uk](x, v)dv =
1

k
Im

(
uk(x)∇xu

k(x)
)
. (6.20)

Most importantly, if uk solves the Helmholtz equation (6.3), one can show thatW k[uk]

solves an equation in the form of the radiative transfer equation, and in the k →∞ limit,

this degenerates to the Liouville equation (6.14). In what follows we seek to make this

statement more precise by defining the functional space and an appropriate metric.

Let λ > 0, we define Xλ a space that contains all scalar real valued functions defined

on the phase-space R3 × R3:

Xλ =

{
ϕ(x, y)

∣∣∣∣ ∫
R3

sup
x∈R3

(1 + |x|+ |ξ|)1+λ|ϕ̂(x, ξ)|dξ <∞
}
, (6.21)

with associated norm given by

∥ϕ∥Xλ
=

∫
R3

sup
x∈R3

(1 + |x|+ |ξ|)1+λ|ϕ̂(x, ξ)|dξ ,

where ϕ̂(x, ξ) = 1
(2π)d

∫
Rd ϕ(x, y)e

−iξ·ydy is the Fourier transform in velocity-space. Now

we cite a result from [42, Theorem 3.11, 3.12].

Theorem 6.1. Let n(x) be a C2(Rd;R+) function that satisfies certain conditions (see

Remark 6.4). Let uk be the solution to (6.3) with radiation conditions, where the source

term Sk
H is defined in (6.6). Then the Wigner transform of uk, denoted by fk(x, v) =

W k[uk](x, v) solves

v · ∇xf
k +

1

2
Lkn[fk] = −

1

k
Im

(
W k[uk, Sk]

)
, (x, v) ∈ R2d , (6.22)
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with the operator Lkn defined as

Lkn[fk] :=
i

(2π)d

∫
R2d

δk[n](x, y)fk(x, p)eiy(v−p) dy dp . (6.23)

Here δk[n](x, y) = k
[
n
(
x+ y

2k

)
− n

(
x− y

2k

)]
. Furthermore, when k → ∞, fk converges

in weak-⋆ sense to f(x, v) in (Xλ)
⋆, the solution to the Liouville equation (6.14) with the

radiation condition lim|x|→∞ f(x, v) = 0 for all x · v < 0, and the source SL(x, v) is:

SL(x, v) = (2π)d
π

2
δ(x− xs)|Ŝvs(v)|2δ

(
|v|2 = n(xs)

)
. (6.24)

Here Ŝvs denotes the Fourier transform, and the delta function δ
(
|v|2 = n(xs)

)
∈ D′(Rd)

means

⟨δ
(
|v|2 = n(xs)

)
, g⟩ =

∫
|v|2=n(xs)

g(v)dSv, ∀g ∈ S(Rd) .

Suppose Sv takes the form of (6.6), we can explicitly calculate its Fourier transform:

|Ŝvs(v)|2 = C(σ, d)2
1

(2π)dσ2d
e−

|v−vs|2

σ2 .

Remark 6.4. The formal derivation of the limit is shown in Appendix B. To prove it rig-

orously, we refer to [42, Theorem 3.11, 3.12] and [57]. The conditions for a rigorous proof

are rather complicated to obtain. However, we mention that if n is radially symmetric,

i.e., n(x) = n(|x|), the statement of the theorem holds true rigorously.

Theorem 6.1 suggests that the wave model and the particle model are asymptotically

equivalent in the high-frequency regime. According to (6.24), the source term concentrates

at (xs, vs), the source location and the source velocity, when k → ∞. The concentration

on x is already achieved by taking to limit as k → ∞, but the concentration profile in

v still needs to be tuned by σ. Smaller σ results in a more concentrated source in this
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limiting regime. Let σ → 0, we have the source term SL turning into:

(2π)d
π

2
δ(x− xs)|Ŝvs(v)|2δ(|v| = 1) = δ(x− xs)

(
1

σ
√
π

)d−1

e−
|v−vs|2

σ2 δ(|v| = 1)

→ δ(x− xs)δ(v − vs) ,
(6.25)

where we used n(xs) = 1, given that xs is out of the domain interest B1.

In this specific limit, we have the explicit solution to the Liouville equation (6.14):

f(x, v) = δ(x(t;(xs,vs)),v(t;(xs,vs))) , k →∞ , (6.26)

where (x(t; (xs, vs)), v(t; (xs, vs))) are the location and velocity of a particle at time t that

starts off at (xs, vs), meaning (x(0; (xs, vs)), v(0; (xs, vs))) = (xs, vs) and


dx(t; (xs, vs))

dt
= v(t; (xs, vs)) ,

dv(t; (xs, vs))

dt
=

1

2
∇xn(x(t; (xs, vs))) .

(6.27)

The formulation in (6.26) means in this limit, with k →∞ and σ ≪ 1, the wave becomes

a curved ray that follows the trajectory of the particle that is governed by Newton’s laws.

As a consequence, recall the definition of energy and energy flux in (6.19)-(6.20):

lim
σ→0

lim
k→∞

Ek(x) = 1t>0δx(t;(xs,vs)), lim
σ→0

lim
k→∞

Fk(x) = 1t>0δx(t;(xs,vs))v(t; (xs, vs)) ,

suggesting that Ek and Fk respectively show approximately the location and velocity of

the trajectory.

6.3.2 High-frequency limit of the inverse problem

In the prequel we linked the two forward problems. We now proceed to connect the

two inverse problems, by evaluating the convergence of the measurements. To do so, we

first introduce Lemma 6.1 from [190, Section 2.5] that connects the Husimi and Wigner

transforms.
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Lemma 6.1. Assume u ∈ L2(Rd;R) , and let Hku be the Husimi transform defined

in (6.9) with ϕkv being the test function (defined in (6.8)). Denote fk = W k[u], and

Gk =W k[ϕk0], the Wigner transform of uk and ϕk0 respectively. Here ϕk0 = ϕkv=0. Then

Hku(x, v) = fk ∗Gk(x, v) , ∀(x, v) ∈ R2d . (6.28)

Proof. This theorem is a directly result of the Moyal identity

(W k[h1],W
k[h2])L2(R2d) =

(
k

2π

)d

|(h1, h2)L2(Rd)|2 , ∀h1, h2 ∈ L2(Rd;R) , (6.29)

and the fact that

W k[ϕkv(x− ·)](y, p) =W k[ϕk0](x− y, v − p) . (6.30)

Using (6.9), we have

Hku(x, v) =

(
k

2π

)d ∣∣∣u ∗ ϕkv∣∣∣2
=

(
k

2π

)d ∣∣∣∣(u(·), ϕkv(x− ·))L2(Rd)

∣∣∣∣2
=

(
W k[u],W k[ϕkv(x− ·)]

)
L2(R2d)

=
(
W k[u],W k[ϕk0](x− ·, v − ·)

)
L2(R2d)

= fk ∗Gk ,

where we use (6.29) in the third equality, (6.30) in the fourth equality, and the definitions

of fk and Gk in the last equality.

This lemma connects the measurement of uk with the measurement on the phase space.

Testing uk using the test function ϕk0 is translated to testing fk using the test function

Gk. This allows us to pass to the limit on the phase space. Combining with Theorem 6.1,

we have the following proposition:

Proposition 6.1. Let the assumption in Theorem 6.1 hold true. Denote fk = W k[uk],
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with uk solving the Helmholtz equation (6.3) with the source term SH defined in (6.6),

and denote f the solution to the Liouville equation (6.14) with source term SL defined

in (6.24). If χ takes the form of (6.10), so that Gk takes the form of:

Gk(x, v) =

(
k

π

)d

exp
(
−k

(
|x|2 + |v|2

))
, (6.31)

as k →∞, we have:

fk ∗Gk(x, v)→ f(x, v)

weak-⋆ in (Xλ)
⋆.

Proof. Given the form of Gk in (6.31), for any ϕ ∈ Xλ, as k →∞:

Gk ∗ ϕ(x, v) −→ ϕ(x, v) in Xλ .

Thus,

lim
k→∞

∫
R3×R3

(
fk ∗Gk(x, v)

)
ϕ(x, v)dx dv = lim

k→∞

∫
R3×R3

fk(x, v)
(
Gk ∗ ϕ(x, v)

)
dx dv

= lim
k→∞

∫
R3×R3

fk(x, v)ϕ(x, v)dx dv

=

∫
R3×R3

f(x, v)ϕ(x, v)dx dv ,

where we use ∥fk∥(Xλ)∗ being bounded in the second equality, and fk → f in the weak-⋆

sense in the last equality.

Remark 6.5. We note that the statement of the proposition indeed uses the explicit form

of χ as defined in (6.10), but the use only lies in the fact that Gk ∗ ϕ(x, v) −→ ϕ(x, v) in

the high frequency limit. Other forms of χ works equally well as long as this Gk serves as

a delta measure when k →∞.

Theorem 6.2. Let the assumptions in Theorem 6.1 and Lemma 6.1 hold true, then:

lim
k→∞

Hkuk(x, v) = lim
k→∞

fk ∗Gk(x, v) −−−−→
weak−⋆

f(x, v),
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in (Xλ)
∗. Furthermore, if Hkuk and f are continuous, then each element in Dk[n] has a

limit in D[n]. More specifically:

(Sk
H(x;xs, vs) ,Λ

k
n[S

k
H](xr, vr))→ (SL(x, v;xs, vs) ,Λn[SL](xr, vr)) (6.32)

where SL takes the form of (6.24), and Λn[SL](xr, vr) = f(xr, vr). In particular, if σ → 0,

Λn[SL](xr, vr) = f ∗ δ(⃗0,⃗0)|Γ+ = f(xr, vr)|Γ+ = δ(x− xrs)δ(v − vrs) , (6.33)

with (xrs , vrs) being the outgoing location and velocity when the photon particle leaves the

domain, namely:

xrs = x(T ; (xs, vs)), vrs = v(T ; (xs, vs)) , (6.34)

where T = supt≥0 {t|x(t; (xs, vs)) ∈ B1} and {x(t; (xs, vs), v(t; (xs, vs))} solves (6.27).

This theorem naturally links the two inverse problems. In the k → ∞ limit, the two

datasets (6.12),(6.17) are asymptotically close with ζ = δ(⃗0,⃗0)(x, v) in (6.16). In the limit

of k →∞ and σ → 0, the dataset (6.12) is asymptotically approximately equivalent to

D∞[n] = {((xs, vs), (xr, vr)) : (xs, vs) ∈ Γ−, (xr, vr) from (6.34)} . (6.35)

6.3.3 Stability of Liouville inverse problem

In this section, we consider the stability of Liouville inverse problem. In particular, we

focus on the stability of (6.35). We will show that when n is close enough to 1, D∞
n almost

contains the information of the X-ray transforms of n(x) and ∇xn(x), while the inverse

of X-ray transform is a well-posed inverse problem.

We first introduce the X-ray transform. Define

TSd−1 =
{
(x, v)

∣∣∣x ∈ Rd, v ∈ Sd−1, ⟨v, x⟩ = 0
}
.

Assuming that n(x) is continuous, we introduce the X-ray transform P , which maps
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n(x),∇xn(x) into functions Pn ∈ C(TSd−1,R) and P (∇xn) ∈ C(TSd−1,Rd), such that

Pn(v, x) =

∫ ∞

−∞
n(tv + x)dt, P (∇xn)(v, x) =

∫ ∞

−∞
∇xn(tv + x)dt.

To connect D∞
n with X-ray transform, we define a projection map P : ∂B1 × Sd−1 →

Rd × Sd−1

P((x, v)) = (x− ⟨x, v⟩ v, v)

that projects x to the plane with normal vector v. We also define in-out map L : Γ− → Γ+

corresponding to (6.34):

L((xs, vs)) = (xr, vr) .

Remark 6.6. We remark that the in-out map may not be well-defined for arbitrarily given

n. Suppose n(x) ≥ c0 for all x ∈ Rd and some c0 > 0, then according to the conservation

of Hamiltonian

H(x, v) =
1

2
|v|2 − 1

2
n(x) =

1

2
− 1

2
= 0 , (6.36)

the velocity of the particle satisfies

|v(t)| =
√
n(x(t)) ≥

√
c0 > 0 ,

for all time t ≥ 0. This by no means suggests the non-trapping property, but it at least

ensures that the potential is not a sink. In the general case, we do assume that n is

non-trapping, so that any incoming particle can eventually be expelled out of the domain

again, making the map L well-defined. Such non-trapping condition is closely related to

geodesic X-ray transforms, and we list references [198, 77, 174] for interested readers. In

our numerical examples, we choose the media to be locally repulsive in the sense that

n(x) + x · ∇n(x) ≥ c1 > 0 , ∀x ∈ Rd . (6.37)

Let (x(t), v(t)) be any particle trajectory that solves (6.27). Given (6.37), we obtain the
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inequality

d2

dt2

(
1

2
|x(t)|2

)
= |v(t)|2 + x(t) · dv

dt
= n(x(t)) + x(t) · ∇n(x(t)) ≥ c1 > 0 . (6.38)

In the last equality, we have used (6.36). By making use of (6.38), the particle is non-

trapped since |x(t)| ≥ t
√

1
2c0 for sufficiently large s > 0.

We note that P((x, v)) ∈ TSd−1 for any (x, v) ∈ ∂B1 × Sd−1, and P|Γ− : Γ− →

Rd × Sd−1,P|Γ+ : Γ+ → Rd × Sd−1 are invertible. Now, we are ready to introduce the

following approximation theorem [178, Theorem 4.1]:

Theorem 6.3. Assume

∥∇n(x)∥L∞ ≤ ∆, ∥∥Hn(x)∥F ∥L∞ ≤ ∆

for some ∆ > 0, then for any (v, x) ∈ TSd−1, we have

∣∣∣(Pn(v, x), P (∇xn)(v, x))− P|Γ+ ◦ L ◦
(
P|Γ−

)−1
(v, x)

∣∣∣ ≤ C∆2 ,

where C > 0 is a constant only depends on d.

According to Theorem 6.3, if n is almost a constant (close enough to 1), then we can

use the data set to recover X-ray transform of n,∇n(x). Thus, we can separate (6.35)

into two inverse problems

D∞[n] =⇒ (Pn(v, x), P (∇xn)(v, x)) =⇒ n(x) ,

where the first one can be approximately calculated if n is almost constant 1 and the second

one is the inverse of X-ray transform that is well-posed according to [177, Theorem 5.1].
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6.4 Numerical experiments

In this section we provide numerical evidence showcasing the theory developed above. In

particular, we would like to demonstrate that as k increases, the measurement taken on

the solution to the Helmholtz equation through the Husimi transform converges to the

pointwise evaluation of the solution to the Liouville equation, and that the data becomes

more and more sensitive to the perturbation in media, making the inverse problem more

and more stable.

We first summarize the numerical setup and unify the notations, and then present a

class of numerical results.

6.4.1 Numerical setup

We set up our experiment in a two-dimensional domain that takes the form of:

∆uk + k2n(x)uk = −k
5
2Svs(k(x− xs)), x ∈ R2 . (6.39)

The Sommerfeld radiation condition is imposed at infinity as well. The source term is

given by

Svs(x) =
√
2

(
σ√
π

) 3
2

exp

(
−σ2 |x|

2

2
+ ivs · x

)
, (6.40)

for (xs, vs) ∈ Γ−. We denote the solution to (6.39) by ukxs,vs whenever the source center

and the incident direction are relevant for the discussion. The Husimi transform defined

in (6.9) takes the form

Hkuk(xr, vr) =

(
k

2π

)d ∣∣∣uk ∗ ϕkvr(xr)∣∣∣2 , (6.41)

with (xr, vr) ∈ Γ+ . We let the refractive index n(x) set to be n(x) = 1 + q(x) with the

support of the heterogeneity q(x) ⊂ B(r). The measurement is taken on ∂B(R) with

R > r. See Figure 6.2 for an illustration of the configuration.

Computationally we set the domain D = [−L/2, L/2]2, with L significantly bigger
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than R, and choose the spatial mesh size h = 1/N with N being an even integer. For

simplicity of representation, we use the angles θs and θr to denote the center of the sources

and the center of the receivers, respectively, and the angles θi and θo are used to denote

the incident and outgoing direction of the sources and receivers, respectively, so that:

xs = (R cos θs, R sin θs) ,

vs = (− cos(θs + θi),− sin(θs + θi)) ,

(6.42)

and

xr = (R cos(θs + θr), R sin(θs + θr))

vr = (cos(θs + θr + θo), sin(θs + θr + θo)) .

(6.43)

The angles θi and θo take values in [0, 2π), whereas the angles θi and θo take values in

(−π
2 ,

π
2 ). An illustration of the angles can be found in Figure 6.2. Since the mapping

between (θs, θi, θs, θo) and the corresponding (xs, vs, xr, vr) is one-to-one, we present the

quantities uk and Hkuk on the θ coordinate system whenever there is no confusion.

The angles are discretized with step size ∆θ and the angular grids are denoted by

θjs , θ
j
r = j∆θ for all j = 0, . . . , 2π/∆θ−1, and θji , θ

j
o = −π

2+j∆θ for all j = 1, . . . , π/∆θ−1.

𝐵𝐵(𝑅𝑅)

𝐵𝐵(𝑟𝑟)

D
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𝜃𝜃𝑜𝑜

Figure 6.2: (left) illustration of the setup for numerical experiments, (right) sketch of the
definition of the angles on the circle ∂B(R) used to parameterize the data.

To compare the Husimi transform of the solutions, we further define two quantities.
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The first quantity is the Husimi transform integrated in the outgoing direction

Mk
o (xs, vs, xr) :=

∫
S+xr

Hkukxs,vs(xr, vr)dvr =

∫ π/2

−π/2
Hkukθs,θi(θr, θo)dθo , (6.44)

where S±xr
= {v ∈ S1 : ±ν(xr) · v > 0} and ν(x) is the unit outer normal vector at x ∈ ∂Ω.

Similarly, we also define the Husimi transform integrated along the outgoing boundary

Mk
r (xs, vi, vr) :=

∫
∂Ω+

vr

Hkukxs,vi
(xr, vr)dxr =

∫
(−π/2+θor,π/2+θor)

Hkukθs,θi(θr, θor − θr)dθr ,

(6.45)

where we denote θor = θo + θr ∈ [0, 2π), and define ∂Ω±
vr = {x ∈ ∂Ω : ±ν(x) · vr > 0}.

To solve the Helmholtz equation (6.39), we use the truncated kernel method [204], and

solve for the Lippmann-Schwinger equation to obtain the scattered field us,k. This allows

us to push for high-frequency without suffering from the numerical pollution that finite

difference or finite element methods often have. The scattered field is then combined with

the incident field ui,k to yield uk.

6.4.2 Numerical examples

In the first example, we set L = 1, R = 0.3 and r = 0.25. For the medium, we set the

heterogeneity to be the radially symmetric smooth function

q(x) =


A exp

(
− 1

1−|x|2/r2

)
, |x| < r ,

0 , otherwise .

(6.46)

Clearly, the support of q(x) is contained in B(r); see Figure 6.3. We note that with

−1 < A ≤ 0, the media is locally repulsive, and the incident wave is guaranteed to

be expelled out of the domain. For the source term, we fix σ = 2−5 in the following

experiments. Noting that the medium n(x) is radially symmetric, one can study the

scattered data for a fixed source location. We choose θs = π/4; see Figure 6.3. For

discretization, we choose spatial step size h = 1/(2k) in the truncated kernel solver, and
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Figure 6.3: The left plot illustrates the medium n(x) = 1 + q(x) in (6.46) with A = −0.5.
The right plot shows the amplitude of source |Svs(k(x− xs))| with k = 211, σ = 2−5 and
θs = π/4.

∆θ = π/30 for the angular grids.

We first show the solution’s behavior as k increases in Figure 6.4. As k increases, the

solution converges to a narrow beam that follows the characteristic equation (6.27).

We compute the Husimi transform Hkuk for different k and we compare them with

the trajectories of the Liouville equation. The results are shown in Figure 6.5, where we

can observe that for a fixed θi, H
kuk converges to a delta function on the θr-θo plane, as

k increases. This agrees with the statement in Theorem 6.1, especially equation (6.33).

We then compare the integrated Husimi transform defined in (6.44) and (6.45). In

Figure 6.6 and Figure 6.7, we demonstrate the convergence of Mk
o and Mk

r as k increases.

As k increases, the outgoing data becomes more and more sparse, and fewer and fewer

detectors can receive outgoing light, leading to the sparser matrix presentation of Λk
n (see

definition in (6.11). This is shown in Figure 6.8 for different k.

Finally we compare the change of Λk
n as n differs, for different k. Let n0(x) = 1 as

the background media whose corresponding map is denoted Λk
0, and by adjusting A we

design a sequence of n(x). We measure how the Frobenius norm ∥Λk
n−Λk

0∥F changes with

respect to ∥n − n0∥L∞ for different k. As can be seen in Figure 6.9, as k increases, the

slope of ∥Λk − Λk
0∥F as ∥n− n0∥L∞ → 0 increases. This confirms that bigger k sees more

sensitivity of the data when n changes, hence the reconstruction is expected to be better
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Figure 6.4: The real part of uk for k = 29 (left), k = 210 (middle) and k = 211 (right).
The blue lines show the Liouville trajectory that solves (6.27). The medium (6.46) has
amplitude A = −0.5. The incident direction θi = 0 (upper) and θi = −π/6 (lower).
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Figure 6.5: The Husimi transform Hkuk for k = 29 (left), k = 210 (middle) and k = 211

(right). The upper row shows the results with θi = 0, and the lower row shows the results
with θi = −π/6. The red crosses show the outgoing position and direction (6.34) of the
Liouville trajectory. The medium (6.46) has amplitude A = −0.5.
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Figure 6.6: The averaged Husimi transform Mk
o for k = 29 (left) and k = 211 (right). The

red lines show the outgoing position (6.34) of the Liouville trajectory. The medium (6.46)
has amplitude A = −0.5.
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Figure 6.7: The averaged Husimi transform Mk
r for k = 29 (left) and k = 211 (right). The

red lines show the outgoing direction (6.34) of the Liouville trajectory. The medium (6.46)
has amplitude A = −0.5.

0 500 1000 1500

0

200

400

600

800

1000

1200

1400

1600

Figure 6.8: Sparsity of the matrix Λk
n for k = 24 (left) and k = 211 (right). Rows represent

different (θr, θo), and columns represent different (θs, θi). Elements that are larger than
half of the maximal element in Λk

n are shown. For k = 24, we use larger computational
domain [−8, 8]2, and the step size is h = 2−8.



140

for higher k.
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Figure 6.9: The dependence of ∥Λk − Λk
0∥F on the medium perturbation ∥n − n0∥L∞ .

Different ∥n− n0∥L∞ is obtained by tuning the amplitude A in the medium (6.46).

6.5 Inversion Algorithm

The inverse problem that we study in this chapter has a different setup from the con-

ventional one. While the conventional setup has either the concentration in the incoming

direction, or in the incoming source location, our experimental setup requires concen-

tration in both direction and source location. Naturally we expect a better stability in

the reconstruction process, compared to the traditional formulation. In this section we

showcase such stability.

Numerically the reconstruction process is formulated as a PDE-constrained minimiza-

tion problem, where we seek to minimize the misfit between the data and the forward

model:

min
n

∥∥∥D −Dk[n]
∥∥∥2
L2(Γ−×Γ+)

, (6.47)

or equivalently, in the discretized form:

min
n
J [n], where J [n] := 1

2nrcvnsrc

nrcv∑
i=1

nsrc∑
j=1

∣∣∣∣Di,j −
(
Dk[n]

)i,j
∣∣∣∣2 . (6.48)

In particular, nrcv and nsrc stand for the number of receivers and sources, and each point
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(Dk[n])i,j is the intensity squared of the impulse response generated by illuminating the

medium n with a tight beam given by (6.6) originated at xis with direction vis, which is

then filtered using (6.8) centered at xjr with direction vjr . See definition in (6.41), with

(xr, vr) replaced by (xjr , v
j
r ), and uk solving (6.39) with (xs, vs) replaced by (xis, v

i
s).

We employ quasi-newton methods for finding a local minimum4, thus we need to

efficiently compute the gradient of the misfit function. In order to provide a fully self-

contained exposition we briefly summarize below how to compute the gradient for only

one data point using the adjoint-state methods. From there the computation for the full

gradient can be easily deduced.

We can readily compute the application of the gradient to a perturbation δn by using

the chain rule, which results in

∇J [n]δn =

(
k

2π

)d (
D −Hkuk(xr, vr)

)
Real

(
2(uk ∗ ϕkvr(xr))(ϕ

k
vr(xr) ∗ F [n]δn)

)
,

(6.49)

where F [n] is linearized forward wave-propagation operator, given by the Born approx-

imation of the scattered wave-field [49]. Thus the gradient can be easily computed by

applying the adjoint of the Born approximation to the residual times the filter function,

i.e.,

∇J [n] = 2

(
k

2π

)d

Real
(
F [n]∗

((
D −Hkuk(xr, vr)

)
(uk ∗ ϕkvr(xr))(ϕkvr(xr − x))

))
.

Fortunately, the application of the adjoint of the Born approximation operator is well

studied: it can be performed by solving the adjoint equation followed by a multiplication

by the solution of the forward wave problem5. In this case the adjoint equation is the

same Helmholtz equation, but with adjoint Sommerfeld radiation conditions, i.e., we solve

∆v + k2n(x)v =
(
D −Hkuk(xr, vr)

)
(uk ∗ ϕkvr(xr))(ϕkvr(xr − x)) x ∈ Rd ,

∂v

∂r
+ ikv = O(r−(d+1)/2) as r = |x| → ∞ .

(6.50)

4Given that the problem is very non-linear, there is no guarantee that we can find the global minimum.
5We redirect the interested readers to [48] for a modern self-contained presentation.
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Thus, using (6.50), we can easily compute the application of the adjoint of the Born

approximation

F [n]∗
((
D −Hkuk(xr, vr)

)
(uk ∗ ϕkvr(xr))(ϕkvr(xr − x))

)
= ukv. (6.51)

where v solves (6.50).

We point out that in (6.51), the source for the adjoint is conjugated, thus following

(6.8), we can see that it means that the (ϕkvr(x− xr)) is pointing towards the interior of

the domain in direction −vr.

We solve (6.48) using L-BFGS [53, 220], a quasi-Newton method in Matlab. We

consider the initial perturbation equal to zero. We set a first order optimality tolerance

of 10−5 and let the algorithm run for a maximum of 300 iterations or until the tolerance

is achieved.

To avoid the inverse crime [83], the data is generated by solving the Lippmann-

Schwinger equation discretized by the truncated kernel method [204] as in Section 6.4,

and the inversion is performed with an 4th-order finite difference scheme for both (6.39)

and (6.50). To generate the data, we set the computational domain to be K = [−1, 1]2

with NLS = 2562 = 65536 grid points so that there are at least 12 points per wave-

length for the largest k = 26. In the inversion, we discretize the same domain K with

NFD = 1632 = 26569 grid points so that there are at least 8 points per wavelength for

k = 26. We enclose the domain K with perfect matching layer (PML) to avoid reflection.

We choose the thickness of PML to be 2.5 times wavelength.

The measurement is taken on ∂B(R) with R = 0.4 in all the examples. To generate

the probing ray, we set σ = 2−2 in (6.40). We compute the data with the source position

and incident direction

xi1s = (R cos θi1s , R sin θi1s )

vi1,i2s = (− cos(θi1s + θi2i ),− sin(θi1s + θi2i ))
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where θi1s = π + i1
π
48 for all i1 = 0, . . . , 95 and θi2i = −π

2 + i2
π
49 for all i2 = 1, . . . , 48, and

the receiver position

xj1r = (R cos θj1r , R sin θj1r )

vj1,j2r = (cos(θj1r + θj2o ), sin(θj1r + θj2o ))

where θj1r = j1
π
48 for all j1 = 0, . . . , 95 and θj2o = −π

2 + j2
π
49 for all j2 = 1, . . . , 48.

In all the examples, the scattered data is perturbed with the noise in the form

D̃i,j = Di,j + 0.05ε
Di,j

|Di,j |
(6.52)

where ε is symmetric Bernoulli random variable that takes the values ±1.

All the experiments are reported on a server with 64-core Intel Xeon CPU and 256

Gigabytes RAM. The code accompanying this chapter are publicly available [70].

In order to illustrate the reconstruction using Husimi data, we choose three examples

of increasing complexity. The exact contrast function q(x)’s are shown in Figure 6.10.
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Figure 6.10: The contrast function q(x) for our three examples: a bump function (left), a
delocalized function (middle) and the Shepp-Logan phantom (right).

In the first example, we consider a single bump in the form (6.46) with A = 0.5 and

r = 0.2, which is shown in Figure 6.10 (left). We run the minimization loop as described

above using k = 24 and k = 26, and the resulting reconstruction are shown in Figure 6.11.

From Figure 6.11 we can clearly see that as k becomes larger, the reconstruction becomes

closer to the true medium. The solution time for k = 26 is 15787.1 seconds.

In the second example, we consider a delocalized medium. The delocalized contrast
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Figure 6.11: Recovering a single bump contrast function. The upper row shows the
estimated contrast function and the lower row shows the reconstruction error at k = 26

(left) and k = 24 (right).
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function q(x) is obtained by convolving a pointwise independent Gaussian random field

with a Gaussian mollifier. The main difference with the single bump example is that the

refractive index, can be smaller than the background one, thus allowing for more complex

ray paths as shown in Figure 6.10 (center). We repeat the same experiments, whose results

are shown in Figure 6.12. The solution time required for k = 26 is 13185.3 seconds.
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Figure 6.12: Recovering a delocalized contrast function. The upper row shows the esti-
mated contrast function and the lower row shows the reconstruction error at k = 26 (left)
and k = 24 (right).

Finally, for the third example, we consider the more challenging, and more practical,

problem of recovering the Shepp-Logan phantom, depicted in Figure 6.10 (right). In this

case we have very sharp transitions of the refractive index, which will generate a strong

reflection, compared to the refraction-dominated media considered before. In addition,

the interior of the still acts as a resonant cavity, thus creating a large amount of interior

reflections, which are exacerbated as the frequency increases. We perform the same exper-

iments as above, whose results are depicted in in Figure 6.13. The solution time required
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for k = 26 is 14640.4 seconds. In this case, the reconstruction is qualitatively worse than

before. We can still see the shape of the phantom, but with a large amount of artifacts.

These artifacts are common to the three examples, but are somewhat more notorious

for the Shepp-Logan phantom. Indeed, these artifacts can be in part explained by the

large difference in the dispersion relation between the forward and backwards discretiza-

tion. The Lippmann-Schwinger discretization used for the forward problem is known to

be highly accurate if the media is smooth. In the cases before, the data generated by

the Lippmann-Schwinger solver is close to the analytical solution, and the artifacts seems

to come mostly for the phase errors in the finite-difference discretization. However, in

this case the phantom is discontinuous thus creating large phase errors in the solution

of the equation, and therefore the forward map, which in return produce more notorious

artifacts.
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Figure 6.13: Recovering the Shepp-Logan phantom. The estimated contrast functions are
shown for k = 26 (left) and k = 24 (right).

To avoid inverse crime, we have used two different solvers for computing the equation.

The two solvers produce relatively large phase errors that propagate in the reconstruction.

The reconstruction can be significantly improved if we use the same PDE solvers in gen-

erating data and reconstructing the media. In Figure 6.14, we show the reconstructions

of the same single bump medium as in Figure 6.11 but with the 4th-order finite difference

for both data generation and inversion. It can be seen that the artifacts in the estimated

medium are much smaller for larger k and the reconstructed medium achieves a relative
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L2 error of 0.0389 for k = 26. Better reconstruction can also be seen in Figure 6.15 for

the reconstructed delocalized medium, whose relative L2 error is 0.0341 for k = 26. In

Figure 6.16, we show the reconstruction for the Shepp-Logan phantom. We can observe

that as the frequency increased the reconstruction becomes better, though due to compu-

tational limitations induced by the current implementation, we were unable to test with

a higher frequency. However, we would expect to obtain even a better reconstruction.
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Figure 6.14: Recovering a single bump contrast function with 4th-order finite difference
solver for both data and inversion. The upper row shows the estimated contrast function
and the lower row shows the reconstruction error at k = 26 (left) and k = 24 (right).

Lastly, we compare the conventional inverse scattering problem and our new inverse

problem using the Husimi data. We choose the incident wave ui,k = eiωθ̂·x with θ̂ ∈ S1

in (6.4), and measure the scattered far field data us,k. Again we cast the problem as

a nonlinear least square problem, and solve it using L-BFGS. We consider the initial

perturbation equal to zero, and set a first order optimality tolerance of 10−5.

For simplicity, we use 4th-order finite difference for both data generation and inversion.

The setup of the computational domain and the discretization are the same as in the
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Figure 6.15: Recovering a delocalized contrast function with 4th-order finite difference
solver for both data and inversion. The upper row shows the estimated contrast function
and the lower row shows the reconstruction error at k = 26 (left) and k = 24 (right).
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Figure 6.16: Recovering the Shepp-Logan phantom with 4th-order finite difference solver
for both data and inversion. The estimated contrast functions are shown for k = 26 (left)
and k = 24 (right).
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previous examples.

The far field measurement is taken on the boundary ∂B(R̃) with R̃ = 1. We compute

the data with 180 incident directions θ̂ that are equally distributed on S1 and 180 receivers

that are equally distributed on ∂B(R̃). We add 5% noise to the scattered data in the form

of (6.52).
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Figure 6.17: Recovering a single bump contrast function by plane waves. The estimated
contrast function at k = 26 (left) and k = 24 (right) are shown. 4th-order finite difference
solver is used for both data and inversion.

Finally, we test the robustness of the new formulation with respect to the non-convexity

of the loss function. The ill-posedness of the inverse scattering problem is often manifested

as a very non-convex loss function with a myriad of local minima. As a consequence, any

PDE constrained optimization-based reconstruction has a higher chance of converging to a

non-physical minimum, a process that is often called cycle-skipping [206]. For comparing

the new formulation and the traditional one we also run the classical full-wave form in-

version in frequency domain, using data at a single frequency, using the delocalized media

in Figure 6.10. As discussed in Section 6.2.1, in the classical formulation one probes the

medium with plane waves, and the measurement operator samples the wavefield directly

on the boundary of the domain of interest. Numerically, we minimize the ℓ2 misfit of

the wavefield at the boundary, using the same L-BFGS solver as before. Initial guess is

zero. We repeat the experiments for two different wave numbers that are used in the new

formulation as well. The results are shown in Figures 6.17, 6.18, and 6.19, respectively.

In the plots we can observe that at low-frequencies we recover a smoothed version of the
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medium, but as the frequency increases we encounter cycle-skipping, i.e., the algorithm

converges to a spurious medium. This is an stark contrast with the inversion results of

the new formulation shown in Figures 6.14, 6.15, and 6.16, where at low-frequency the re-

construction does not perform as well, but it is more stable at high-frequencies, providing

an accurate reconstruction.

In summary the numerical experiments seem to indicate that the new inverse formu-

lation is far more robust to cycle skipping than its traditional counterpart.

-0.6 -0.4 -0.2 0 0.2 0.4

x

-0.6

-0.4

-0.2

0

0.2

0.4

y

-0.1

0

0.1

0.2

0.3

0.4

0.5

-0.6 -0.4 -0.2 0 0.2 0.4

x

-0.6

-0.4

-0.2

0

0.2

0.4

y

-0.1

0

0.1

0.2

0.3

0.4

0.5

Figure 6.18: Recovering a delocalized contrast function by plane wave. The estimated
contrast function at k = 26 (left) and k = 24 (right) are shown. 4th-order finite difference
solver is used for both data and inversion.

-0.6 -0.4 -0.2 0 0.2 0.4

x

-0.6

-0.4

-0.2

0

0.2

0.4

y

-0.05

0

0.05

0.1

0.15

-0.6 -0.4 -0.2 0 0.2 0.4

x

-0.6

-0.4

-0.2

0

0.2

0.4

y

-0.05

0

0.05

0.1

0.15

Figure 6.19: Recovering the Shepp-Logan phantom by plane wave. The estimated contrast
function at k = 26 (left) and k = 24 (right) are shown. 4th-order finite difference solver is
used for both data and inversion.
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6.6 Conclusions

To reconstruct an unknown medium, the generalized Helmholtz inverse scattering problem

uses data pairs consisting of the impinging and scattered wave fields, while Liouville inverse

scattering problems uses data pairs consisting of incoming and outgoing wave location and

direction. The former is regarded ill-posed in the high-frequency regime, while the latter

is well-posed. This is intuitively contradicting to the fact that Liouville equation is the

asymptotic limit of the Helmholtz equation.

We investigate this issue in this chapter. In particular, we develop a new formulation

for studying the Helmholtz inverse scattering problem with a new data collection process,

and we show that this new formulation, in the high-frequency limit, becomes the Liouville

inverse scattering problem, and thus inherits the well-posedness nature. This discovery

bares the conceptual merit of providing the mathematical description of the wave-particle

duality for light propagation in the inverse setting. In addition, this discovery also sug-

gests a more stable numerical reconstruction process for studying the Helmholtz inverse

scattering problem, which we showcase using several numerical experiments.
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for studying the Helmholtz inverse scattering problem with a new data collection process,
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inverse scattering problem, and thus inherits the well-posedness nature. This discovery
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bares the conceptual merit of providing the mathematical description of the wave-particle

duality for light propagation in the inverse setting. In addition, this discovery also sug-

gests a more stable numerical reconstruction process for studying the Helmholtz inverse

scattering problem, which we showcase using several numerical experiments.
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Chapter 7

Conclusion

This dissertation investigates data-driven numerical methods for multiscale elliptic and

wave-type partial differential equations and their inverse problems. Our primary moti-

vation is to integrate analytical insights about multiscale PDEs with data and numerical

methodologies.

In the first part of the dissertation, we focus on developing efficient numerical solvers for

elliptic multiscale PDEs. Although the discrete solution manifold of these PDEs is high-

dimensional, it is essentially compressible if a homogenization limit exists. To compress

the solution manifold, we employ two distinct strategies from data science, both within

the domain decomposition framework and use Schwarz iteration. Our first strategy uses

neural networks as surrogate models for the boundary-to-boundary map in each Schwarz

iteration. In the second strategy, inspired by manifold learning techniques, the reduced

solution manifolds are used as surrogates for local solvers.

The second part of the dissertation focuses on the inverse problems associated with

wave-type PDEs in the high-frequency or classical limit. Observing the disparity in the

stability between traditional inverse scattering problems and their asymptotic limits, we

introduce new formulations for both a time-dependent and a time-independent inverse

scattering problem. These formulations involve new data collection processes that align

them with the Liouville inverse scattering problem, thus inheriting its well-posedness. This
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discovery suggests that properly integrating data into the multiscale inverse problems is

crucial for developing numerical reconstruction processes that are stable and reliable in

practice.

We comment on some problems and directions that deserve further study. First, in

Chapter 4, we propose using local bases over the solution manifold to construct numerical

solutions for nonlinear PDEs, supported by numerical examples demonstrating the efficacy

of this approach. In practice, the performance of this manifold-learning-based method cru-

cially depends on the properties of the solution manifold, such as curvature and intrinsic

dimension. A detailed error analysis of the method, along with a quantification of the sam-

ple complexity required to ensure accuracy and stability, would be interesting. Although

the current approach is inspired by the Local Linear Embedding method, the perspective

of the solution manifold could potentially be extended beyond this setting. Therefore, it

would be interesting to explore adapting other geometric machine learning methods to

solving PDEs, such as diffusion maps [81] and functional maps [180].

Second, in Chapter 6, we demonstrate that the new Helmholtz inverse scattering prob-

lem framework, when formulated as a PDE-constrained optimization problem, is asymp-

totically stable in the high-frequency limit. However, this setting has not yet been fully

understood theoretically. Two main challenges remain. On the PDE level, the well-

posedness of the inverse problem, particularly the stability of the new inverse scattering

problem, needs clarification—specifically, how perturbations in the measured data affect

the reconstructed medium. On the optimization level, it would be beneficial to study the

landscape of the optimization problem, including the local and global minima of the ob-

jective functional. Addressing these challenges is crucial for understanding the increasing

stability observed in numerical experiments and would require further exploration of re-

lated problems such as phase retrieval [116]. Additionally, while the current framework is

asymptotically stable, the dimension of the measured data is doubled, leading to quadratic

growth in computational complexity. It is uncertain whether the current algorithm will

yield a better method, taking this into account. Therefore, developing efficient algorithms
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based on the current framework would be an interesting direction for future research.
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Appendix A

Sampling method for solution

manifold

A.1 Sampling method for the semilinear elliptic equation

We explain here the sampling method for the semilinear elliptic equation in Sec-

tion 4.3.4. To enforce the boundary condition on the physical boundary, patches that

intersect this boundary should be treated differently from patches inside the domain. (We

call the patch Ω̃m an “interior patch” if it satisfies ∂Ω̃m∩∂Ω = ∅, and a “boundary patch”

otherwise.)

A.1.1 Sampling for interior patches

For the interior patch ∂Ω̃m, each sample in B(Rm; X̃m) is decomposed into radial and

angular parts ϕ̃ = rX, with the two parts r and X sampled independently. The radial

part r is generated so that ( r
Rm

)D is uniformly distributed in the unit interval [0, 1], where

D is a preset integer. (We choose D = 5 and Rm = R = 20 in our tests.) The angular part

X is a Nm-dimensional vector uniformly distributed in the set {X ∈ RNm : ∥X∥1/2 = 1},
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where Nm is the number of grid points on ∂Ω̃m, and the norm ∥ · ∥1/2 is defined by

∥ϕ̃∥1/2 =

√√√√√√h

Nm∑
i=1

|ϕ̃i|2 + h2
Nm∑
i,j=1
i ̸=j

|ϕ̃i − ϕ̃j |2
|zi − zj |2

.

Here ϕ̃ = (ϕ̃i)
Nm
i=1 is any discrete boundary condition, and zi denotes the grid point on

∂Ω̃m.

In order to generate X, let Y1, . . . , YNm ∼ N (0, 1) be i.i.d. standard Gaussian random

variables. Define the weight matrix W = (Wij)Nm×Nm by

Wii = h+

Nm∑
j=1
j ̸=i

2h2

|zi−zj |2 , Wij = − 2h2

|zi−zj |2 ,

and suppose that its Cholesky decomposition is W = C⊤C. Then the vector Z =

C−1(Y1, . . . , YNm)
⊤ has uniform angular distribution with respect to the norm ∥ · ∥1/2,

so its normalization X = Z
∥Z∥1/2

is uniformly distributed on the unit sphere {X ∈ RNm :

∥X∥1/2 = 1}.

A.1.2 Sampling for boundary patches

Let

ϕ̃m =

ϕ̃m,d

ϕ̃m,r

 ∈ RNm

be a random sample, with ϕ̃m,d representing the physical boundary part and ϕ̃m,r repre-

senting the random part. When we rearrange the weight matrix W as

W =

Wdd Wdr

Wrd Wrr

 ,
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so that ∥ϕ̃m∥21/2 = ϕ̃⊤mWϕ̃m, then it yields

ϕ̃⊤m,rWrrϕ̃m,r = R2
m − ϕ̃⊤m,d(Wdd −WdrW

−1
rr Wrd)ϕ̃m,d ,

indicating that the random part lies in an ellipsoid.

Hence, the random part ϕ̃m,r can be sampled as follows. We decompose it into indepen-

dently sampled radial and angular part ϕ̃r = rmXm, so that rDm is uniformly distributed

in the interval
[
0, (R2

m − ϕ̃⊤m,d(Wdd −WdrW
−1
rr Wrd)ϕ̃m,d)

D/2
]
, and Xm is uniformly dis-

tributed on the set {Xm : X⊤
mWrrXm = 1}.

A.2 Sampling method for the nonlinear radiative transfer

equations

Here we describe the sampling method for the nonlinear radiative transfer equations

discussed in Section 4.4.4.

To generate samples for the interior patches K̃m, m = 2, . . . ,M − 1, each sample is

decomposed into radial and angular parts ϕ̃ = rX, which are sampled independently. We

take ( r
Rm

)2 to be uniformly distributed in [0, 1], while X is a (Nv + 2)-dimensional vector

uniformly distributed in the set {X ∈ RNv+2 : ∥X∥ = 1, X ≥ 0}, where the norm ∥ · ∥ is

defined by

∥ϕ̃∥2 =

Nv
2∑

j=1

wj |g̃(2)(s, vj)|2 +
Nv∑

j=Nv
2

+1

wj |g̃(1)(t, vj)|2 + |θ̃(1)|2 + |θ̃(2)|2 ,

given any discrete boundary condition

ϕ̃ =

(
{g̃(2)(s, vj)}

Nv
2

j=1, {g̃
(1)(t, vj)}Nv

j=Nv
2

+1
, θ̃(1), θ̃(2)

)
.

Here Nv is the number of grid points in the velocity direction and the wj are the Gaussian-
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Legendre weights. (We choose Rm = R = 25 in our tests.)

To generate X, let Y1, . . . , YNv+2 ∼ N (0, 1) be i.i.d. standard Gaussian random vari-

ables. Denote the vector

Z =

(
Y1√
w1
, . . . ,

YNv√
wNv

, YNv+1, YNv+2

)
.

Then the normalized vector X = Z
∥Z∥ is uniformly distributed on the unit sphere {X ∈

RNv+2 : ∥X∥ = 1}. Note that (4.46) is invariant under x-translation, so we need only

learn one interior dictionary on one interior patch, then re-use in for the other interior

patches.

Sampling the boundary conditions on the boundary patches can be done in the same

way. However, we do adjust the radius r. In particular, ( r
R1/M

)2 is chosen uniformly in

[0, 1], where R1/M has the fixed boundary condition deducted from R.
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Appendix B

Formal derivation of Theorem 6.1

We start from the equation

ikαkuk +∆uk + k2n(x)uk = −Sk(x) = −k
d+3
2 S(k(x− xs)) , x ∈ Rd , (B.1)

and assume that αk → α ≥ 0 in the limit k → ∞. We denote the density matrix of uk

satisfying (B.1) by

gk(x, y) = uk
(
x− y

2k

)
uk

(
x+

y

2k

)
, (B.2)

and the Fourier transform of a generic u by

û(v) = Fy→vu(y) =
1

(2π)d

∫
Rd

e−iyvu(y)dy . (B.3)

The inverse Fourier transform is then

F−1
v→xu(v) =

∫
Rd

eixvu(v)dv . (B.4)
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Now we compute the equation satisfied by the Wigner transform. The first step is to

compute the derivatives of gk

∇y · ∇xg
k(x, y) = − 1

2k

[
∆uk

(
x− y

2k

)
uk

(
x+

y

2k

)
− uk

(
x− y

2k

)
∆uk

(
x+

y

2k

)]
,

(B.5)

and thus we have

αkgk + i∇y · ∇xg
k(x, y) +

ik

2

[
n
(
x+

y

2k

)
− n

(
x− y

2k

)]
gk(x, y) =

= σk(x, y)

:=
i

2k

[
Sk

(
x− y

2k

)
uk

(
x+

y

2k

)
− Sk

(
x+

y

2k

)
uk

(
x− y

2k

)]
.

(B.6)

Therefore, after a Fourier transform, we obtain the following transport equation on the

Wigner transform fk

αkfk(x, v) + v · ∇xf
k(x, v) + Zk(x, v) ∗v fk(x, v) = Qk(x, v) , (B.7)

where the last term denotes the convolution in v

Zk(x, v) ∗v fk(x, v) =
∫
Rd

Zk(x, v − p)fk(x, p)dp

and the quantities Zk, Qk arising in this equation are given by

Zk(x, v) =
1

(2π)d
ik

2
F−1
y→v

[
n
(
x+

y

2k

)
− n

(
x− y

2k

)]
,

Qk(x, v) =
1

(2π)d
F−1
y→vσ

k(x, y) .

(B.8)

From this equation we can compute the formally compute the limits. For Zk we have that

Zk(x, v)
k→∞−−−→ 1

(2π)d
i

2
(F−1

y→vy) · ∇xn(x) = −
1

2
∇xn(x) · ∇vδ(v) . (B.9)
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The limit of the source term Qk is slightly more involved. First, we define the complex

valued function

wk(y) =
1

k
d−1
2

uk
(
xs +

y

k

)
, (B.10)

which after a change of variable can be rewritten as

uk(x) = k
d−1
2 wk(k(x− xs)) , (B.11)

where function wk satisfies the rescaled Helmholtz equation

i
αk

k
wk +∆wk + n

(
xs +

y

k

)
wk = −S(y) . (B.12)

In the high-frequency limit, wk converges towards a solution w of

∆w + n(xs)w = −S(y) . (B.13)

The second step is to compute the Fourier transform of w. To do so, we add an absorption

term to the equation above, resulting in

iβw +∆w + n(xs)w = −S(y) . (B.14)

where β > 0. This new term is used as a broadening factor, which helps to smooth the

Fourier transform. We perform a Fourier transform on both sides, which leads to

ŵ(v) =
−Ŝ(v)

n(xs)− |v|2 + iβ
= Ŝ(v)Ĝ(v;β) . (B.15)

where Ĝ(v;β) denotes the Fourier transform of the outgoing Green’s function that vanishes

at infinity

Ĝ(v;β) ≡ − 1

n(xs)− |v|2 + iβ
= − n(xs)− |v|2

(n(xs)− |v|2)2 + β2
+

iβ

(n(xs)− |v|2)2 + β2
, β > 0 .

(B.16)
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As usual, we take the limit β → 0+. The first term converges weakly to the principal

value

− n(xs)− |v|2

(n(xs)− |v|2)2 + β2
β→0+−−−−→ −P.V.

(
1

n(xs)− |v|2

)
. (B.17)

The second term converges to a delta function on the sphere {|v|2 = n(xs)} as β → 0+

iβ

(n(xs)− |v|2)2 + β2
β→0+−−−−→ iπ

2
δ(|v|2 = n(xs)) . (B.18)

In summary, we obtain the Fourier transform of the outgoing solution to (B.13)

ŵ(v) = lim
β→0+

Ŝ(v)Ĝ(v;β) = Ŝ(v)

[
iπ

2
δ(|v|2 = n(xs))− P.V.

(
1

n(xs)− |v|2

)]
. (B.19)

Now we are ready to compute Qk. We take two test functions ϕ(x) and ψ(y)

∫
R2d

σk(x, y)ϕ(x)ψ(y) dx dy

=
i

2k

∫
R2d

[
Sk

(
x− y

2k

)
uk

(
x+

y

2k

)
− Sk

(
x+

y

2k

)
uk

(
x− y

2k

)]
ϕ(x)ψ(y)dxdy

=
ikd

2

∫
Rd

[
S
(
k
(
x− y

2k
− xs

))
wk

(
k
(
x+

y

2k
− xs

))
− S

(
k
(
x+

y

2k
− xs

))
wk

(
k
(
x− y

2k
− xs

))]
ϕ(x)ψ(y)dxdy

=
i

2

∫
R2d

[
S(z)wk(z + y)ϕ

(z
k
+

y

2k
+ xs

)
− S(z)wk(z − y)ϕ

(z
k
− y

2k
+ xs

)]
ψ(y)dzdy

k→∞−−−→ i

2
ϕ(xs)

∫
R2d

[
S(z)w(z + y)− S(z)w(z − y)

]
ψ(y)dzdy .

(B.20)

In other words, we have formally obtained that

σk(x, y)
k→∞−−−→ i

2
δ(x− xs)

∫
Rd

[
S(z)w(z + y)− S(z)w(z − y)

]
dz , (B.21)
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which after a Fourier transform gives

Qk(x, v) =
1

(2π)d
F−1
y→vσ

k(x, y)

k→∞−−−→ 1

(2π)d
i

2
δ(x− xs)F−1

y→v

{∫
Rd

[
S(z)w(z + y)− S(z)w(z − y)

]
dz

}
=

i

2
δ(x− xs)(2π)d

[
Ŝ(v)ŵ(v)− Ŝ(v)ŵ(v)

]
= (2π)dδ(x− xs)Im

[
Ŝ(v)ŵ(v)

]
.

(B.22)

We finally obtain

Qk(x, v)
k→∞−−−→ (2π)d

π

2
δ(x− xs)|Ŝ(v)|2δ(|v|2 = n(xs)) . (B.23)

by substituting (B.19) in (B.22).
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