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Abstract

Cancer immunotherapy has revolutionized cancer treatment and has helped thousands of
patients (Couzin-Frankel, 2013; Patel & Minn, 2018). However, most patients are still not showing
positive responses to current cancer immunotherapy treatment regimens (Patel & Minn, 2018). Using
radiation therapy (RT) and intratumoral injections of immunocytokine (IC), our lab has developed a local
in situ vaccine regimen capable of curing mice bearing B78 melanoma tumors with protective immune
memory (Morris etal., 2016). Our in situ vaccine (RT+IC) cures 70% of treated mice bearing a single large
B78 tumor (which expresses GD2) and creates strongimmunologicmemory to reject a second challenge
of B78 melanoma. We have also demonstrated that our in situ vaccine causes epitope spread; 75% of
cured mice rejecta challenge with B16 melanoma cells (which do not express the GD2 antigen), and we
observed strong antibody-binding to B16 cells using serum from cured as compared to naive mice

(Baniel, Heinze, et al., 2020; Morris et al., 2016).

Although we observed epitope spread, the exact antigen targets of these endogenous antibodies were
unknown. Knowledge of these additionaltargets could help to identify biomarkers of positive responses,
as well as identify possible new therapeutictargets. In this thesis we utilized a peptide array approach to
probe every mouse protein (broken into 16-mer peptides in a stepwise overlapping fashion) to ide ntify
antibody targets, using serum from cured mice vs. their matched naive sample to identify

immunodominant tumor antigens on cold murine tumors.

We were able to develop arobust analysis method (HERON) to identify a number of proteins recognized
by multiple mice that we are further investigating (explained in detail in Chapter 2). We furthermore

saw that within the top epitopes (measured by signal strength and detection in multiple mice) peptides
containing a specific four amino acid long sequence were highly overrepresented. The presence of this

sequence seemed to be associated with binding, although not being the sole source recognized for
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antibody binding. Multiple analysis approaches have led us to know more about this motif while ye t not

being able to elucidate it fully (described in chapter 3).

Furtherinvestigation is needed into top proteins co-recognized by multiple immune mice as well as the
four amino acid motif and possible implications and uses as biomarkers or treatment alternatives. We
are pursuing experimental as well as bioinformatic approaches to enhance our knowledge of the

identified antibody targets.

The methods generated will provide useful tools to identify the immunodominant tumor-specific
antigens which may be translatable to mechanisms of resistance (and how to overcome such resistance)

in human cancers and find potential uses as biomarkers or new treatment targets.
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Chapter 1: Introduction & Background

Melanoma

Melanoma is a cancer of the skin; in more detail, a cancer that originated in melanocytes. It
primarily arises in the skin but can also arise from melanocytes in the CNS, gastrointestinal mucosa,
genitourinary mucosa, and the uvea (Tas et al., 2011). Most skin cancers originate in keratinocytes
and develop to basal cell carcinoma (BCC) or squamous cell carcinoma (SCC), with BCC accounting
for over 4 million and SCC for over 1 million new diagnoses per year in the US alone (Siegel et al.,
2022). Melanoma accounted for only 1-2% of all skin cancer cases with over 99000 cases in the US in
2022 (Siegelet al., 2022). It is the 5" most common cancer in males and females for 2022 estimates.
Even though it is only responsible for 1-2% of skin cancer diagnoses a year, it is responsible for
almost all deaths due to skin cancer with nearly 10000 deaths in the US alone per year. Risk factors
for melanoma include fair skin (with Caucasians being 20x more likely to develop melanoma than
African Americans), exposure to UV radiation (via sun exposure or tanning beds) and a history of
blistering sunburns in childhood as well as having more than 50 small nevi or having dysplastic or

atypical nevi (Gandini et al., 2005).

While melanomain stage | and Il (localized) has a 5-year survival rate of 99%, this steadily decreases
to 30% for stage IV (distant stage, metastatic melanoma). The primary line of treatment is surgical
resection. For patients with advanced disease, a systemic therapy will be used. Until 2011 this was
generally chemotherapy alone. More recently, breakthrough discoveries, using immunotherapy
have translated into successful (at times curative) therapeutic approaches for some patients with
unresectable stage Ill or metastatic melanoma (stage IV). Mainly, immunotherapy has shown great
success in increasing survival over the last decade from less than 15% to now 30% for metastatic

melanoma (Albittar et al., 2020). The first immunotherapy approved for metastatic melanoma was



high-dose IL-2. An overall response rate of 16% was achieved in a pooled analysis of 270 patients
that received high-dose IL-2 treatment between 1985 and 1993 where patients that did show a
complete response at 30 months continued to show no progression (Atkins et al., 1999). While IL-2
showed some success, most patients were not responding to high-dose IL-2; thus additional
therapies neededto be developed. One way to augment the high-dose IL-2 therapy was via adoptive
cell therapy where tumor-derived T cells are expanded in vitro and given back to the patient. This
treatment showed an overall response rate of 51% in a small trial with 35 patients, but only 9%
showed a complete response (Dudley et al., 2005). Another approach was the use of immune
checkpoint inhibitors, like anti-CTLA4 and anti-PD1. Ipilimumab, a fully human IgG1 monoclonal
antibody inhibiting CTLA4, was FDA-approved in 2011 for unresectable metastatic melanoma.
Ipilimumab led to a significantly longer overall survival (Hodi et al., 2010; Robert et al., 2011). Other
successful checkpoint inhibitors in the treatment of metastatic melanoma are Nivolumab, a fully
human IgG4 anti-PD1 antibody, and Pembrolizumab, a fully humanized IgG4 anti-PD-1 antibody with
some success (Robert, Long, et al., 2015; Robert, Schachter, et al., 2015). Various combinations of
these 3 and other similar agents are showing better outcomes than treatment with single agent

checkpoint inhibitors.

Another approach is the tumor vaccine approach where tumor associated antigens or mutation-
derived antigens are used to target the tumor specifically and induce an adaptive immune response
with memory to further increase overall and long-term survival. One such approach was taken by
Schwartzentruberet al where a gp100 peptide vaccine was given in conjunction with high-dose IL-2
(Schwartzentruber et al., 2011). The response rate was increased significantly but the overall
survival, while improved, was not statistically significant. To potentially improve on these results,
checkpoint blockade is currently being tested in different combination treatments with

chemotherapy, radiotherapy, vaccines, cytokines, and other checkpoint inhibitors. Other



combinatorial approaches are being tested (Albertini et al., 2016; Hsueh & Morton, 2003; Sahin et

al., 2020).

Cancer Immunotherapy

The 4 pillars of cancer treatment

Prior to the rise of immunotherapy, the mainstays of cancer treatment were surgery, radiation, and
chemotherapy. While all of these are still widely used and the current standard of care for many
cancers, immunotherapy offers hope for less toxic treatments than chemotherapy and radiation
alone as well as a higher chance for long term survival without recurrence of the tumor, for certain
cancer types. Surgery, chemotherapy, and radiation rely on effectively removing or killing all tumor
cells. However, after treatment is completed, the presence of any residual live tumor, means that
the non-eradicated tumor is free to regrow. Immunotherapy offers a way to harness the immune
system’s power of immune recognition and destruction, to potentially enable destruction of all
tumor cells, which would thereby prevent regrowth of residual viable tumor cells. Furthermore,
chemotherapy is not tumor-specific and will harm other tissues and cells usually leaving patients

with quite severe side effects.

Cancer immunotherapy has seen an explosion of interest in the 215 century thanks to important
research and discoveries made in the 20 century concerning the immune system and immune cell
functions and types. These discoveries helped provide greater understanding of the
interactionbetween the immune system and cancerous cells. Ourimmune system is constantly
surveying, recognizing, and killing cells that have cancerous or an otherwise harmful potential. If a
cancer develops nonetheless, these cells have already managed to evade the immune system’s
recognition as potentially harmful. The purpose of immunotherapy is to enable the immune system

to recognize and eliminate these cancer cells that had previously evaded immune recognition and



destruction. The process leading to cancer cell escape and tumor formation is described in the

“three E” hypothesis.

The “three Es”

The three Es concept is an important hypothesis by Dunn, Old, and Schreiber published in 2004 as
“the three Es of cancer immunoediting” consisting of elimination, equilibrium, and escape (Dunn et
al., 2004) which predicts biological interactions and immune editing processes between the immune

system and evolving cancerous cells.

The elimination phase consists of the classical view of cancer immunosurveillance. In this phase, a
cancerous cellis seen by the immune system and eliminated. If this process is executed to
completion, the othertwo phases of equilibrium and escape will not be reached, and the host stays
cancer-free. To achieve this, an integrated response requiring both the innate and adaptive immune
systemis necessary (Janeway, 1989). The first change that the immune system notices is a change in
the local stroma surrounding the cancerous growth in the form of one or multiple of the hallmarks
of cancer (Hanahan, 2022; Hanahan & Weinberg, 2000). Stromal changes cause the release of
proinflammatory molecules and chemokines (sometimes produced by the cancerous cells
themselves) which in turn attract innate immune cells like natural killer (NK) cells, macrophages,
natural killer T (NKT) cells and y& T cells (Matzinger, 1994; Wrenshall et al., 1999). These cells
recognize certain surface molecules on the cancerous cells and produce interferon gamma (IFN-y)
and proceed to kill these cells via direct immune cell killing mechanisms or indirectly through
increasing levels of IFN-y which then activates a number of IFN-y-dependent processes like cell cycle
inhibition (Bromberg et al., 1996), apoptosis (Kumar et al., 1997), angiostasis (Coughlin et al., 1998;
Qin & Blankenstein, 2000), and induction of macrophage tumoricidal activity (Hibbs et al., 1977;

Pace et al., 1983) leading to killing of a proportion of cancerous cells/the developing tumor. Debris



from cancerous cells that underwent immunogenic cell death can now be taken up by activated
dendritic cells (DCs). The activated and antigen-bearing DCs then proceed to travel to lymph nodes
(Sallusto et al., 2000) where they present tumor antigens to naive CD4 and CD8 T cells and prime
and activate these T cells against the presented tumor antigens. These tumorspecific CD4 and CD8 T
cells can home to the tumor site to then actively kill cancerous cells that express the antigens they

were primed with.

This process of elimination is most likely constantly ongoing in the body and a continuous process
which is repeated every time antigenically distinct neoplastic or cancerous cells arise. One reason for
the ageing population to have a higher cancer prevalence is the ageing immune system which shows
decline in its function and therefore also in its cancer surveillance capabilities. Another age
associated cause of cancer may involve greater exposure to environmental toxins or DNA damage,
leading to greater chances for somatic mutations that can lead to neoplastic transformation of

previously healthy cells.

If the immune response in the elimination phase was unable to eliminate all neoplastic/cancerous

cells, the equilibrium phase arises.

The equilibrium phase is comprised of a dynamic equilibrium between the hostimmune system and
cancerous cells; this results in a tumor that made it through the elimination phase without
elimination. During this time the host’s immune system is successfully able to control tumor
progression, but unable to fully eradicate it. During this phase, many of the original tumor cells are
destroyed, but different variant subpopulations of the original neoplastic clone arise until some can
evade detection and eradication by the immune system. This equilibrium phase can be short, but
can often have the longest duration of the three phases. It has been shown that there can be a 20-

year gap between exposure to a carcinogen and clinical presentation of a tumor (Loeb et al., 2003).



In the last phase, referred to as the Escape phase, tumor cells that escape from the growth
inhibition of the equilibrium phase are selected for their ability to continue growing. These
“escapees” can grow within the host, despite an intact immune system, without detection. This
progressive tumor growth then leads to formation of a large tumor mass that is symptomatic and
clinically detectable. Tumors either directly or indirectly obstruct the anti-tumor immune response.
This can be through immunosuppressive cytokines, mechanisms involving T regulatory (Treg) cells,
altered gene and protein expression on the tumor itself, such as loss of major histocompatibility
complex (MHC) molecules (Marincola et al., 2000) and natural killer group 2 member D (NKG2D)
(Groh et al., 2002) components, defects in signaling pathways, or anti-apoptotic signal expression
(Catlett-Falcone et al., 1999; Takeda et al., 2002), or via development of an insensitivity to IFNy

(Kaplan et al., 1998).

The cytokine IL-2 as an immunotherapeutic agent

IL-2 was first identified and described as T cell growth factor in 1976. It is a proinflammatory
cytokine mainly produced by CD4 T cells but also secreted by CD8 T cells, NK cells and dendritic cells
(Leonard, 2001; Paliard et al., 1988; Rosenberg, 2014; Yui et al., 2004) and consists of a small
15.5kDa four alpha-helical bundle (Jiang et al., 2016). It plays a major role in the initialimmune
response as well as the development of a memory response (Boyman & Sprent, 2012). IL-2 has been
used clinically in metastatic melanoma and metastatic renal cell carcinoma due to its potential to
activate a systemicanti-tumor immune response resulting in immune mediated tumor shrinkage at
multiple sites of metastatic disease (Atkins et al., 1999; Klapper et al., 2008; Rosenberg, 2014). It
has, in rare cases, been shown to maintain a durable anti-tumor immune response for decades

(Rosenberg, 2014).



IL-2is used for its stimulating capabilities to increase an existing anti-tumor immune response and
overcome a threshold for therapeutic efficacy. It is also used to proliferate T cells ex vivo and keep
them alive during infusions back into patients (Rosenberg, 2014). However, response rates to IL-2
monotherapy in metastatic melanoma and metastatic renal cell carcinoma are limited (~16%)
(Atkins et al., 1999; Davar et al., 2017; Klapper et al., 2008). One major issue of IL-2 is its very short
in vivo half-life of under 1 hour in humans poses one possible reason for its low in vivo efficacy.
Ways to circumvent this issue are by injecting IL-2 directly into the tumor which ensures a high
amountof IL-2 delivered to the target site (Vaage, 1987) or the use of an immunocytokine (IC) which
significantly increases the half-life, and the localization to the tumor, of the IL-2 molecule. There is
currently more ongoing research on how to increase the short half-life of IL-2 that could also

augment its efficacy while potentially decreasing some of its side effects.

Intratumoralinjections allowed forlower doses of IL-2 to be given to the patients and overall, while
still enabling higher doses to reach the target site. This was tested in a phase Il clinical trial with
patients with stage lll or IV melanomawhere IL-2was injected directly into the skin metastases. This
treatment resulted in complete responses in 78% of treated lesions while side effects were kept

minimal (Weide et al., 2010).

The use of a tumor-targeted immunocytokine (IC) is another option of targeted delivery of IL-2 as an
immunocytokine offers anincrease of the IL-2 half-life as well as potency and efficacy and reduction
of side effects (Neri & Sondel, 2016). Immunocytokines are monoclonal antibodies (mAbs) which
generally target a tumorantigen and a cytokine or other small molecule attached somewhere at the
constant region of the antibody. Due to the specificity of the mAb for the tumor, ICs localize to the
tumor microenvironment (TME) and deliver the cytokine or other small molecule directly to the
TME. This direct delivery then increases the activation and recruitment of T cells and NK cells in the

TME (Neri & Sondel, 2016; Yang et al., 2012). In addition to the delivery of the cytokine, ICs also



have the capability of inducing ADCC or phagocytosis of the tumor cells due to NK cells and
macrophage recognition of the tumor-bound antibody and engagement with the Fc portion of the
antibody via their Fcreceptors. The efficacy of the immunocytokine was also enhanced by local
intratumoral injection vs. systemic delivery (Baniel, Sumiec, et al., 2020; Yang et al., 2012). This anti-
tumor effect was further enhanced by the addition of radiation therapy (RT) and showed strong

synergy (Morris et al., 2016).

In situ cancer vaccines

The first ever used cancer vaccine was Coley’s toxin which consisted of killed Streptococcus
pyogenes and Serratia marcescens. Coley successfully used this toxin as a localized treatment of
cancer in the late 19" century (Coley, 1893). This toxin, or vaccine, was a powerful inflammatory
which primarily functioned via activation of the innate immunity. It lacked capabilities to activate
adaptive immunity to specific targets and therefore caused a local immune reaction but failed to
initiate antigen-specific memory (Guo et al., 2013). Another kind of cancer vaccine is prophylactic
vaccination. One example of this type of vaccine is the HepB vaccine targeting Hepatitis B and is
about 70% effective inthe prevention of development of hepatocellular carcinoma (Chang & Chen,
2015). Another vaccine in this class is the HPV (human papilloma virus) vaccine which has been
largely successful in preventing HPV-linked cancer development of head and neck, cervical, penile,
vulvar and anal cancers (De Vincenzo et al., 2014). These vaccines function by activating lifelong
adaptive immune responses against specific virus peptides which allows early clearance of a virus
infection (De Vincenzo et al., 2014; Yang et al., 2017). However, these mostly work in preventing
establishment of disease, not clearing an already existing viral infection or an already existing cancer

(Yangetal., 2017).



Generating a cancer vaccine against an already existing cancer faces the same difficulties and has
been shown to be largely ineffective even if a good target is identified and present, either as a
neoantigen (mutated versions of proteins that are only present on tumor cells), overexpression of
certain proteins, expression of embryonal proteins or other proteins otherwise unique to the tumor

(Albittar et al., 2020; Durgeau et al., 2018).

However, recent advances in cancer immunotherapy have shown promising results using an in situ
vaccine rather than a vaccine against one specific cancer antigen. For an in situ vaccination
approach, the cancer vaccine is generated in vivo rather than against a specific previously defined
antigen. Generally, the in situ vaccine consists of adaptive immunity stimulating components
delivered directly to a site of cancer; this then uses the tumor-associated antigens on that cancer
that are being released via immunogenic tumor cell death (Hammerich et al., 2015) which can, for
example, be caused by radiation. These tumor-associated antigens are then taken up by antigen
presenting cells (APCs) and presented to T and B cells. One way to enhance this process is by giving
otherimmune modulators such as IL-2, a monoclonal antibody or immune checkpoint engagers like
anti-CTLA4, anti-PD1, or anti-PDL1. Once a potent adaptive, T cell-mediated anti-tumor response is
generated, it should then be possible to result in systemic anti-tumor immunity as fully activated
effector T cells can circulate to all sites in vivo, no longer require costimulatory signals to kill their
target cells and are also less susceptible to inhibitory signals (Gudmundsdottir et al., 1999;

Hammerich et al., 2015; London et al., 2000; Suresh et al., 2001).

GD2: a Ganglioside

Gangliosides are carbohydrate-containing sphingolipids (glycosphingolipids) that are composed of a
ceramide (generally sphingosine, a long-chain amino alcohol, attached by an amide group to a fatty

acid core with varying chain lengths from C18 to C20) bound to a sialic acid (an acidic carbohydrate
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with a nine-carbon backbone) linked to one or more monosaccharide units (Fleurence et al., 2017;
Schnaar et al., 2009; Varki et al., 2022). Naming of gangliosides generally starts with a G for
ganglioside, followed by the letter M, D, T, Q, P, Hor S that refer to mono-, di-, tri-, quatra-, penta-,
hexa- and septa-sialo-gangliosides, based on the number of sialic acid residues, and ending with the
numbers 1, 2, or 3 indicating the order of ganglioside migration on thin layer chromatography (Liu et
al., 2018; Svennerholm, 1963). Therefore, GD2, is a disialoganglioside (di-sialo-ganglioside) 2,
containing two sialic acid residues and is linked to two monosaccharide units. A chemical structure
and IUPAC name for GD2 is available here:

https://pubchem.ncbi.nlm.nih.gov/compound/534811244#section=3D-Status.

Gangliosides are synthesized intracellularly starting with the formation of a ceramide core, followed
by generation of the monosaccharide units and then translocation to the plasma membrane where
they are attached via the ceramide moiety (Berois & Osinaga, 2014; Yu et al., 2011). Gangliosides
interact with membrane proteins and other membrane lipids to regulate signaling molecule
responsiveness and as mediators and modulators of signal transduction (Lopez & Schnaar, 2009).
The monosaccharide units of the ganglioside reach the extracellular space where they facilitate cell-
cell recognition and adhesion and display antigenic properties (Battula et al., 2012; Krengel &
Bousquet, 2014; Lopez & Schnaar, 2009). Many of the gangliosides are expressed across a wide
variety of normal humantissues (like GM3, GM2, GM1and GD1) (Krengel & Bousquet, 2014; Ledeen
& Wu, 2018; Ledeen & Yu, 1982; Yu et al., 2011). This wide expression makes most subtypes of
Gangliosides unsuitable as targets forimmunotherapy. Functions of these gangliosides vary, but
mostly involve cell recognition and regulation of membrane-bound signaling proteins like epidermal
growth factor receptor (EGFR) and vascular endothelial growth factor receptor (VEGFR) (Brodeur,

2003; Krengel & Bousquet, 2014).


https://pubchem.ncbi.nlm.nih.gov/compound/53481124#section=3D-Status
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However, GD2 is somewhat different from most other gangliosides, in that it is expressed on very
few normal tissues, mainly limited to the central nervous system, peripheral nerve fibers, dermal
melanocytes, lymphocytes, and mesenchymal stem cells (Cavdarli et al., 2019; Hersey & Jamal,
1989; Navid et al., 2010; Yoshida et al., 2001). While GD2 seems to play a role in cell signaling, the
exact function of GD2 in normal cell physiology is poorly understood (Dobrenkov & Cheung, 2014).
Its function in cancer is better understood. GD2 contributes to elevated tumor cell proliferation,
migration, motility, adhesion, and invasion as well as assists with resistance to apoptosis (Chung et

al., 2009; Esaki et al., 2018; Liu et al., 2014; Shibuya et al., 2012; Yoshida et al., 2002).

Due to the limited areas of expression of GD2 in normal tissue and the strong overexpression in
neuroectodermal tumors like neuroblastoma, melanoma, small cell lung cancer, Ewing sarcoma,
osteosarcoma, soft tissue sarcoma, glioma, retinoblastoma, and some tumors not of
neuroectodermal origin like some breast and bladder cancers, and its cell surface expression, it is a

useful target for antibody-based cancer immunotherapy.

Anti-GD2 immunotherapy

Antibody-based anti-GD2 immunotherapy has been shown to be successful in neuroblastoma, a
childhood cancer of neuroectodermal origin and with a very high percentage of GD2-positive tumor
cells (Manengq et al., 2020; Mujoo et al., 1987; Sariola et al., 1991), when given as a monoclonal
antibody in combination with IL-2 and GM-CSF (Yu et al., 2010; Yu et al., 2021) or without GM-CSF
and with or without IL-2 (Ladenstein et al., 2018). It showed a dramatic increase in survival and
became the standard of care treatment for neuroblastoma. Consequently it is currently under
investigation for use on other solid neuroectodermal tumors expressing high levels of GD2

(Anderson et al., 2022; Nazha et al., 2020). It has also been shown that anti-GD2 mAb-based
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therapies are associated with a higherlong-term survival and disease-free rate (Cheung et al., 1987;

Voeller & Sondel, 2019; Yu et al., 2010).

The proposed mechanisms of action for anti-GD2 monoclonal antibodies (mAbs) against GD2-
expressing tumor cells is 1) antibody-dependent cell-mediated cytotoxicity (ADCC) via NK cells and
granulocytes and phagocytosis by macrophages, 2) complement-dependent cytotoxicity which
results in tumor cell lysis, or 3) direct induction of cell death due to specific binding of anti-GD2
mAbs to GD2 and antibody crosslinking (Anderson et al., 2022; Cavdarli et al., 2019; Perez Horta et

al., 2016).

The primary mechanism of action is generally ADCC when using an anti-tumor monoclonal antibody.
For ADCC, the antibody bound to the tumor engages NK cells and granulocytes via surface Fcy
receptors which triggers the release of granzyme B and perforin which causes pore generation in the
target cellmembrane which then causes Fc-dependent phagocytosis and lysis of the tumor cells
(Gémez Roman et al., 2014; Hanton & Pastoret, 1984; Osinska et al., 2014; Siebert et al., 2014). It
has been shown that high levels of baseline ADCC correlate with overall survival in cancer patients

treated with mAb against their cancer (Lo Nigro et al., 2019).

To increase the ADCC capability, Yu et al added the cytokine IL-2 to the treatment regimen.

This was further observed in mouse model studies utilizing intratumoral injections of anti-GD2
antibody or immunocytokine in combination with IL-2 and/or radiation which showed a strong

synergistic effect (Morris et al., 2016; Yang et al., 2012).

Radiation as an immune modulator

Traditionally, radiation has been used as a potent anti-cancer treatment by inducing localized cell
death via targeted administration of beams of radiation (usually X-rays or y-rays). To this day, about

half of all cancer patients will undergo radiation therapy (RT) at some point during their treatment
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course, either as treatment with curative intent or as a palliative treatment. Radiation offers a
possibility of treatment especially for patients with inoperable tumors or tumors where a complete
resection was not possible, but is limited by the sensitivity of normal tissue to radiation and its

associated toxicities (Barnett et al., 2009; Durante & Loeffler, 2010).

One way to limit toxicity in healthy tissues and enhance the efficacy in tumor tissue is fractionated
radiation where the same amount of radiation is administered in many small doses rather than one
large dose. A current standard dosing regimen for patients consists of daily fractions of 1.8-2 Gray
(Gy) over a course of 6-7 weeks. These small doses result in a cumulative dose of 50-70 Gy of
radiation administered to the tumor (Crocenzi et al., 2016; Durante & Loeffler, 2010), while trying to

minimize delivery of radiation to nearby normal tissues.

Recent developments in radiation therapy are moving towards hypo-fractionated regimes where
radiation is administered in higher doses (usually 8-30Gy) per session of radiation and the sessions
are more spread out and have become standard of care especially for NSCLC (Ko et al., 2018; Nedzi,
2008; von Reibnitz et al., 2018; Whelan et al., 2010). One reason to use hypo- rather than hyper-
fractionated radiation is that lymphocytes are very sensitive to radiation-induced cell death. With
constant low doses of radiation, the immune response to the tumor might be ablated before having
a chance of becoming effective (Lee et al., 2009; Trott, 1982). A study in mice showed that one high
dose of radiation followed with a series of low doses of radiation was less effective in inducing
tumor clearance than a single high dose alone. This correlated further with a decrease in CD8+ T
cells which are especially radiosensitive, and with an increase in more radioresistant myeloid-
derived suppressor cells (MDSCs) (Filatenkov et al., 2015). Other studies have also shown that the
effect of radiotherapy is largely connected to a functioning immune system as radiation efficacy is

attenuated in immune incompetent mouse models (Chakravarty et al., 1999; Meng et al., 2005;
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North, 1986; Stone et al., 1979) and an accumulation of immune cells can often be seen around

regressing tumors following irradiation (Stewart, 1933).

Mechanism of action of radiation-induced tumor regression

Radiation currently used for therapy usually refers to ionizing radiation, which means it can excite
electronsin atoms to higher energy states. This causes some electrons to be ejected from the outer
shell and will induce nonspecific damage to proteins and DNA. This is then followed by damage
repair responses and the potential for cell death. Roughly half of the damage is caused by water
radicals [reactive oxygen species (ROS)] and the other half is induced by direct ionization of non-
water molecules like protein and DNA (Breimer, 1988; Sevilla et al., 2016). Alterations to the DNA in
some cells can cause lasting damage to the irradiated tissue as the DNA changes (breakages,
translocations, point mutations and deletions/insertions) can cause direct cell death and can also be
passed on through cell divisions to surviving clones of daughter cells, making it the primary cause of

radiation induced therapeutic anti-tumor responses (Thompson, 2012).

One majorway radiation engages the immune system is through immunogenic cell death (ICD). ICD
is defined as “a form of regulated cell death that is sufficient to activate an adaptive immune
response in immunocompetent syngeneic hosts” (Galluzzi et al., 2018). The ability of regulated cell
death to drive adaptive immunity depends on antigenicity and adjuvanticity. Antigenicity implies
that the host has T cell clones that can recognize antigens selectively expressed on infected or
malignant cells (Han & Lotze, 2020; Palucka & Coussens, 2016). These might be neoepitopes which
are highly immunogenic orimmunogenic epitopes through gaps in central tolerance or incomplete
peripheral tolerance (Goldszmid et al., 2014). Adjuvanticity refers to the spatiotemporally
coordinated release or exposure of danger signals [such as DAMPS (damage -associated molecular

patterns) and cytokines] necessary for recruitment, maturation and phagocytotic activity of antigen
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presenting cells (APCs) (Bloy etal., 2017; Garg et al., 2015). These APCs then migrate to lymph nodes
and prime a cytotoxicT lymphocyte (CTL) dependentimmune response against the MHC-presented
engulfed antigenic material of the cancer cell. In addition, interaction with naive B cells takes place,
where B cells start developing antibodies against the presented antigens from the tumor cells

through their interaction with antigen presenting cells.

There are three specific molecular signals leading to a perceived “dangerous” cell death by the
immune system which aids adjuvanticity. One of those is the translocation of calreticulin to the
surface of dying tumor cells which then facilitates uptake of tumor cell material by dendritic cells via
scavenger receptors (Obeid et al., 2007). Another is the release of high-mobility group protein B1
(HMGB1) which then binds TLR4 (toll-like receptor 4) which are both directly induced by radiation
(Apetoh et al., 2007; Obeid et al., 2007). The third signal is the active release of ATP of cells that are
committed to undergo apoptotic cell death. This then activates the NLRP3 (NOD-like receptor
family, pyrin domain containing-3n protein) inflammasome (NLRP3-dependent caspase-1 activation
complex) on dendritic cells which results in antigen presentation by this dendritic cell to T cells and B
cells (Ghiringhelli etal., 2009). ATP-release is generally driven by autophagy, which is also promoted
by ionizing radiation (Rieber & Rieber, 2008; Rodriguez-Rocha et al., 2011). This illustrates that
ionizing radiation is well capable of inducing immunogenic cell death and can be used as an in situ

cancer vaccine (Demaria & Formenti, 2012).

Synergy between radiation and immunocytokine in a B78 melanoma mouse model

Morris and colleagues demonstrated in 2016 that 12 Gy RT synergizes with intratumoral injections
of an immunocytokine linking anti-GD2 mAb to IL-2 when treating GD2-positive B78 murine
melanoma tumors in C57BL6 mice (Morris et al., 2016). They went on to show that the combination

of radiation [given on day 1 via external beam radiation therapy (EBRT)] and the immunocytokine
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given intratumorally on days 6 to 10 once daily, activated a potent T cell mediated in situ vaccine.
This treatment was able to cure 70% of tumor-bearing mice of their moderate size (100-200 mm?3)
tumor. 90% of these cured mice were able to demonstrate immunologic memory against the B78
melanoma as shown by successful rejection of a rechallenge with the B78 melanoma tumor around
one to three months following primary cure. The authors furthermore were able to show
immunologic memory to a related, but phenotypically distinct tumor cell line, B16, which does not
express GD2. This immunologic memory to a related tumor lacking GD2 expression shows antigen
spread and recognition of other tumor markers present on both cancer cell lines by the mouse’s

immune system.

Furthermore, the authors showed that the day 6-10 timing of the immunotherapy following
radiation was important. Early (days 1-5) or late (days 11-15) administration of the immunotherapy
resulted in the loss of the synergistic effect seen when it was given on days 6-10. The timing used
here (days 6-10) correlated with the largest expression changes observed in B78 melanoma after
radiation with 12 Gy EBRT (Werner et al., 2017). Furthermore, it was shown that this treatment
utilized, at least in part, anti-GD2 antibody mediated recognition to generate this anti-tumor
response as mice lacking Fcy receptors were notable to control tumor growth. Furthermore, Morris
et al. found that this treatmentresponseresultedina memory T cell response as mice depleted of T
cells were not able to reject a rechallenge with the same tumor type while mice without T cell

depletion rejected 90% of rechallenged B78 tumors.

This treatment regimen of combining 12 Gy EBRT with intratumoral administration of an
immunocytokine targeting GD2 coupled to IL-2 was used as the treatment received by all animals

further studied in this thesis.



17

Antibody generation and B cells in the context of a tumor

Usually much fewer B cells and plasma cells are found in tumor infiltrates compared to T cells
(Bindeaetal., 2013; Chevrieretal., 2017; Jacksonetal., 1996; Schoorl et al., 1976), however, several
studies have shown that tumor infiltrating B cells can be an important prognostic factor in cancer
(Castino et al., 2016; Erdag et al., 2012; Germain et al., 2014; Kroeger et al., 2016; Ladanyi et al.,
2011; Lund & Randall, 2010). Just a few plasma cells in the tumor microenvironment can produce a
large amount of antibody and cytokines (Dang et al., 2014) which can influence the TME and
immune response to the tumor via ADCC and phagocytosis (Gilbert et al., 2011; Kurai et al., 2007),
complement activation and enhancing antigen presentation via dendritic cells (Carmi et al., 2015). In
addition, it has also been shown that B cells can act as antigen presenting cells (APCs) to CD4 and
CD8 T cells and shape antigen-specificimmune responses in the tumor microenvironment (Bruno et
al., 2017; Rivera et al., 2001; Rossetti et al., 2018). While many anti-cancer immune responses,
especially when associated with long-term response and memory, are based on T cells, more recent
work has established a crucial interaction between T and B cells either in tertiary lymphoid
structures or in clusters of tumor-infiltrating lymphocytes (Sharonov et al., 2020). It has also been
hypothesized that B cells contribute to the formation of tumor associated tertiary lymphoid
structures in which the maturation and isotype switching of tumor-specific B cells as well as T cells
can take place (Pitzalis et al., 2014; Sautes-Fridman et al., 2019; Zhu et al., 2015). When B cells were
eliminated, an anti-GITR antibody was not capable of activating an antitumor T cell response in a
colorectal and breast carcinoma mouse model (Zhou et al., 2010) and a CD73 inhibitor was not able
to activate T helper cells in melanoma (Forte et al., 2012), further highlighting the need for B cells
evenin a T cell mediated response. Intratumoral B cell to T cell interactions can be explained by the

B cell capability to serve as an APC (Rubtsov et al., 2015) and can help maintain additional T cell
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expansion intratumorally after initial activation in the lymph nodes via dendritic cells (Bruno et al.,

2017; Rossetti et al., 2018).

B cells located in tertiary lymphoid structures have been shown to undergo clonal expansion,
somatic hypermutation, isotype switching and tumor-specific antibody production; which further
suggests an active participation in the anti-tumor immune response (Bolotin et al., 2017; Cipponi et
al., 2012; Coronella et al., 2002; Germain et al., 2014; Kroeger et al., 2016; Mose et al., 2016; Nzula
et al., 2003; Sautes-Fridman et al., 2019). High levels of inmunoglobulin mRNA in the tumor
(measured by RNAseq) have been shown to be associated with increased survival in melanoma
(Bolotin et al., 2017; Mose et al., 2016) and lung adenocarcinoma (Isaeva et al., 2019), further
hinting at the importance of B cells and linking B cell responses to cancer driver mutations like KRAS

and STK11 to B cell responses (Isaeva et al., 2019).

Tumor-specific antibodies

Tumor-specificantibodies are generally found in the tumor microenvironment and in serum and are
usually directed against an array of tumor-expressed and self-antigens which can include
overexpressed or differentially expressed self-antigens, modified proteins as well as normal
intracellular molecules and, importantly, neoantigens created by mutated proteins (Gnjatic et al.,
2010; Reuschenbach et al., 2009; Sahin et al., 1995; Stockert et al., 1998). Serum antibodies can be
useful and potent prognostic markers as they are easily accessible and have been validated in later
stages of disease (Fremd et al., 2016; Garaud et al., 2018; Gnjatic et al., 2010; Hamanaka et al.,
2003; Hirasawa et al., 2000; Reuschenbach et al., 2009). Additionally, measurable amounts of
antibodies against known tumor antigens can be detected in the serum of up to 50% of patients
with breast cancer (Coronella-Wood & Hersh, 2003; Lu et al., 2008). As established above, it has

been shown that anti-tumor antibodies can be produced directly in TLSs in the tumor



19

microenvironment (Bolotin et al., 2017; Cipponi et al., 2012; Kroeger et al., 2016), but they can also
be produced by plasma cells in classical niches like the bone marrow or spleen as systemic B cell
responses in the form of tumor-specific B cells, plasma blasts and plasma cells have been found in
peripheral blood (DeFalco et al., 2018; Gilbert et al., 2011). DeFalco et al. reported that levels of
plasma blasts in the blood of cancer patients was higher and antibodies cloned from some of these

blasts were able to bind tumor tissue from other patients with the same kind of tumor.

Technologies to identify antibody binding sites

Identification of antibody targets is important in many settings. For example, knowing the exact
target of an antibody is important to gain basic insight into antibody specificity and sensitivity as
well as to facilitating the identification and design of antigens that can then be used for the
generation of therapeutic antibodies and vaccines as well as for the generation of reagents for
proteomics research (Irving et al., 2001; Nelson et al., 2010; Uhlen et al., 2010). Many different
methods can be utilized to determine the epitopes of antibodies. Some examples are mass
spectrometry (Baerga-Ortiz et al., 2002), bacterial display (Rockberg et al., 2008), phage display
(Christiansen et al., 2015; Larman et al., 2011; Petersen et al., 1995) as well as peptide arrays
(Bruschi etal., 2022; Buus etal., 2012; Forsstrom et al., 2014; Geysenetal., 1984). Each one of these
techniques has its own specific benefits and downfalls. Phage display is based on diverse peptide
particles that are fused to phage surface proteins. A selection process called bio-panning is generally
performedtoreduce the numberoftargets (Pande et al., 2010). One issue with phage and bacterial
display is the large selection of target unrelated peptides (TUPs) due to either providing proliferative
advantage to the phage or to binding the constant part of the screening platform (Menendez &
Scott, 2005; Vodnik et al., 2011). Besidesthese issues, phage display generally is a laborious process
involving many iterations of screening and functional testing of individual phage clones (Pande etal.,,

2010). The big advantage of mass spectrometry to identify antibody epitopes is that it can identify
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discontinuous epitopes. However, the processis very labor intensive and limited in resolution. Since
epitopes are identified either via epitope excision or limited proteolysis and comparing the bound
vs. unbound protein-antibody complex, mapping is limited to epitope regions with cleavage sites.
The identified peptide sequences are generally 30 to 60 residues long while a typical antibody
binding epitope usually is much shorter (Baerga-Ortiz et al., 2002). Peptide arrays now offer a larger
scale, faster approach to antibody mapping of multiple samples throughout the whole proteome

(Bruschi et al., 2022; Forsstrom et al., 2014).

Peptide array technology

Peptide arrays have been developed for the past ~30 years with commercial products being
available since the early 2000s. Most arrays typically consist of hundreds to thousands and now
moving into millions of distinct peptide sequences and have been used for determining substrate
specificities of enzymes, antibody profiling and identifying binding epitopes as well as ligands that

mediate cell adhesion and studying ligand-receptor interactions.

Arrays started out in the early 1990s with oligonucleotide arrays developed by Patrick Brown,
Stephen Fodor and Edwin Southern (Fodor et al., 1991; Maskos & Southern, 1992; Schena et al.,
1995) and were able to profile roughly 1000 genes by 1996 (Schena et al., 1996). Oligonucleotide
arrays are nowadays standard tools in many laboratories and often include several millions of
oligonucleotides (Davies et al., 2012; Telenti et al., 2016). Thanks to the fast advances in technical
development of the arrays, it is now possible to use robust and inexpensive arrays for clinical
applications to help understand human disease and viruses (Abegglen et al., 2015; Jabara et al.,

2016).

However, the development of peptide arrays has been slower. For scientific discovery, it is vital to

also utilize peptide, protein, and carbohydrate arrays as there often is a disconnect between gene
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expression, mRNA, and protein activity as proteins are regulated by many additional factors,
including post-translational modifications, alternative splicing, allosteric ligands, colocalization and
degradation. Another issue with screening peptides and proteins is the increase in numbers of
different proteins vs. a rather limited number of genes. Looking at the human genome, there are
roughly 20,000 genes (International Human Genome Sequencing, 2004), however, this already
increases to ~100,000 transcriptomes (Pan et al., 2008) and further expands to over 1 million
proteoforms (Harper & Bennett, 2016; Jensen, 2004) requiring a much more computationally heavy

and involved analysis.

Otherissues with protein arrays are the generation of proteins, stable immobilization of the protein
in a specific orientation, and maintaining protein activity while immobilized while also preventing
denaturation. One way around most of these issues is using a peptide array. Short peptides are
relatively easy to synthesize, stable and compatible with different immobilization chemistries like
biotinylation. One major downfall of peptides however is that they cannot represent the tertiary
structure of a protein and therefore cannot mimic for example antibody binding to conformational
epitopes. The first such array was performed in 1984 where Geysen et al. successfully mapped a
linear epitope on the coat protein of hand foot and mouth disease virus by using a tiled approach of
overlapping peptides (Geysen et al., 1984). Since then, Maier et al. were able to adapt the
technology to facilitate a high-throughput epitope-mapping screen of a total of 2304 overlapping
peptides comprising the vitamin D receptor (Maier et al., 2010). In the next few years peptide array
technology rapidly expanded. Just 2 years later, in 2012, Buus et al. published that they successfully
used an in situ synthesis on microarrays to generate 70,000 peptides of varying length (between 4
and 20 aa long) for epitope mapping of antibodies (Buus et al., 2012). Then in 2014, Forsstrém et al.
were able to utilize a peptide array with 2.1 million overlapping peptides covering the whole human

proteome in 12-mer peptides overlapping by six amino acids (Forsstrom et al., 2014) and has since
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expanded further to over 7 million peptides (Bruschi et al., 2022). Peptide array technology is now
utilized in many ways, these include: characterizing binding epitopes of monoclonal antibodies,
guantitatively evaluating protein kinase activity (Houseman et al., 2002; Jarboe et al., 2012),
defining autoantibody signatures in different diseases (Sahlstrom et al., 2020; Yan et al., 2019;
Zandian et al., 2017) and assessing CD8 T cell epitope recognition via MHC class 1 binding peptides

(Haj et al., 2020).

Peptide arrays to characterize antibody epitopes

Antibody epitopes are generally categorized as conformational (or discontinuous), or linear
(continuous). Conformational epitopes require an intact protein structure for the antibody to bind
and are therefore difficult to characterize concerning exact binding sites and binding sequence.
However, linear epitopes can be assessed using peptide arrays. To evaluate antibody epitope
sequences using peptide arrays, specific peptides need to be generated and placed in a de fined
location. Generally, this used to be done using SPOT™ technology which can synthesize a couple
thousand peptides in parallel (Frank, 2002; Halperin et al., 2011; Winkler et al., 2011). For specific
epitope sequence identification peptides are often used as a mapping tool by either utilizing
overlapping peptide sequences or by N or C-terminal truncations, amino-acid scan, or random

single, double, or triple substitutions (Buus et al., 2012).

The ultra-high-density peptide microarray is a relatively new way of using peptide arrays (developed
within the last 10 years as highlighted above). It utilizes generation of peptides in a combined
maskless photolithographic and solid phase peptide synthesis strategy employing a digital mirror
device to project light of a specific wavelength (365nm) onto photosensitive 2-(2-nitrophenyl) propyl
oxy-carbonyl (NPPOC)-photo-protected amino groups on a glass surface. The NPPOC-

photoprotection as well as the standard fluorenylmethoxycarbonyl (Fmoc)-protected amino acids
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allow for individually predefined peptides to be generated in each synthesis field (Li et al., 2005;
Wang et al., 2022). Side chain protection groups were removed using trifluoroacetic acid (TFA)
treatment which leaves peptides attached to the glass slide at the C-terminus withoutthe needfora
biotin-streptavidin connection or other linker. This technology can generate on a single slide (a
“chip”) over 7 million distinct microscale “lawns”, each presenting many identical copies of a single
peptide, thereby allowing for whole proteome scanning of antibody binding of linear epitopes
(Bruschi et al., 2022). Once the peptides are generated on the slide, the array is incubated with the

serum or purified antibody sample. Primary sample binding of the antibody in the serum or purified

antibody sample is detected utilizing an AlexaFluor ® 647 conjugated secondary antibody against

the Immunoglublin of the primary host species. For example, if the sample being evaluated involves

serum from an immune mouse, the secondary antibody is an AlexaFluor ® 647 conjugated goat anti-

mouse IgG antibody. The fluorescent signal of the secondary antibody is detected via scanning at
635nm at a 2um resolution using an MS200 microarray scanner and fluorescent intensity values are
extracted for each peptide that can then be further analyzed to determine antibody binding to
specific peptides. A schematic of the principles of in situ peptide array synthesis and antibody
binding analysis can be seen in Figure 1.1 (Forsstrom et al., 2014). Using a tiled approach removes
the necessity of exact replicate samples as consecutive peptides will serve as surrogate replicates

and help in the identification of exact binding sequences.
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Figure-1.1: The principle of in situ peptide array synthesis and subsequent antibody binding

analysis.

A: digital micromirrors individually activate square features on the array by reflecting light on the
photo-labile protecting groups of the previously incorporated amino acids. Repeated cycles of
selective activation, addition of amino acids, and removal of excess amino acids enables parallel
synthesis of peptides with unique sequences. B: schematic picture of incubation of the peptide array
with the primary antibody and fluorophore-labeled secondary antibody. C: a scan image of a part of
a planar ultra-dense peptide array in which the bright spots correspond to peptide features bound

by antibodies. (Forsstrom et al., 2014)
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Thesis structure and hypotheses

Cancer immunotherapy has the potential to engage a patient’s own immune system to systemically
attack a patient’s cancer. Notjust at the local site of disease, but also at distant sites and potentially
prevent recurrence through immune memory. However, current response rates of patients to
immunotherapy remain low. Ways to help the immune system selectively identify and destroy the
tumor are still needed. One way to assist with this is identifying new possible tumor targets that
differfrom normal tissue eithervia mutations or differential expression patterns. This thesis aims to
show a way to help identify new tumor targets that one’s own immune system might be able to
recognize, but an additional immunostimulatory boost may be needed to facilitate a sufficiently

effective immune response.

Hypotheses: This thesis focuses on work | performed as a Ph.D. student examining sera from
immunocompetent naive mice and serum from immunocompetent mice that were implanted with
the syngeneic B78 melanoma, cured via treatment with radiotherapy followed by intratumoral
hu14.18-IL-2 immunocytokine , and then proven to be immune by their rejection of a rechallenge of
the B78 tumor. These immune serum samples, from multiple tumor-immune mice, were shown to
be able to bind to the syngeneic murine melanoma, and were then tested against the entire
C57BL/6 proteome using the high-density peptide array. Subsequent validation methods were then
used, and analyses were performed to evaluate the scope of the antibody repertoire demonstrated,

and to evaluate the nature of antigens recognized. We hypothesized that:

A. Mice that reject a rechallenge with the same, or a related, tumortype have developed antibodies
that recognize the cancer cells, and that some immunodominant antigens are recognized by

antibodies in immune sera from multiple mice cured from the same tumor



26

B. A whole-proteome peptide array will be a useful tool in identification of antibody targets on

cancer cells

C. Antibody targets co-recognized by the antibodies of multiple immune mice may potentially be
useful as future therapeutic targets, and possibly as a way to monitor patient’s antibody responses

as a biomarker of anti-tumor immunity.

Chapter 2 addresses a new method of high-density peptide array tehnology to analyze the whole
mouse proteome of normal proteins for antibody targets elicited by a potent anti-tumor in situ
vaccine immunotherapy regimen in a C57BL6 mouse model of a low immunogenic B78 melanoma.
The reproducibility of the methodology, the very large number of peptide targets recognized by the
sera ofimmune mice, and the validation of this recognition using two separate ELISA like assays are
presented. The work in chapter 2 is complete; and the manuscript is available as a preprint in
BioRxiv (Hoefges et al., 2023), and has been submitted to an immunology journal for formal peer

review for subsequent publication.

Chapter 3 explores a phenomenon we have identified within the results of chapter 2 where half of
the mice we analyzed using the whole proteome screen exhibited antibodies against an
immunodominant motif consisting of four amino acids (SDTG). Most of the work is complete, but
some components are still in progress. After the completion of the few remaining ongoing
experiments, this manuscript will be deposited in BioRxiv, and submitted for peer review for

publication in the summer of 2023.

Chapter 4 summarizes the findings from chapter 2 and 3 and highlights conclusions we can already
draw fromthis work. It discusses ongoing work still underway, but not far enough along to include in
this thesis. It then presents future directions on how to further pursue the antibody targets we have

already identified using this technology in these mice cured of B78 melanoma. It then briefly asks
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additional questions that could now be pursuedin further analyzing the immune targets recognized
by seraof mice cured of B78 melanoma, or of mice with separate tumors we (and others) are curing
using effective immunotherapy. Finally, we present our current ideas on how these methodologic

approaches might be used to better understand the antibody targets of sera from human patients

cured of their cancers viaimmunotherapy, and how this information might be used in the future to

potentially benefit human cancer patients.
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Chapter 2: Antibody landscape of C57BL/6 mice cured of B78

melanoma via immunotherapy

Preface

This chapter includes the extensive work that was done to generate and analyze the peptide array
datasets containing proteome-wide data in the form of 16-mer peptides overlapping by 12 or 14aa.
The work leading up to the use of a whole proteome peptide array contained the generation of a
melanoma and cancer-specific list of proteins to investigate via a targeted peptide array approach
with roughly 700 proteins, the determination of the right serum concentration to use on such
peptide arrays and the planning and generation of mouse serum samples to be used on these
arrays. The serum sample selection process involved following tumor growth and rechallenge for
extended periods of time, rechallenging with B78 melanoma as well as the parental B16 melanoma
cell line, serum collection at pre-specified time points and flow cytometric analysis of tumor cell
binding of the mouse serum. After generation and run of the screening chip (~700 melanoma and
general cancer-specific proteins) with different serum dilutions, an anlysis approach needed to be
developed. To develop the analysis method, we partnered with a bioinformatics lab with expertise
in large datasets to develop a method answering exactly our question. It took some refinement and

time to get to the final result and the analysis method developed is highlighted in Appendix A.

The work in this chapter has been submitted for publication to an immunology journal and is

currently available as a preprint in BioRxiv (Hoefges et al., 2023).

Abstract

Antibodies can play an importantrole in innate and adaptive immune responses against cancer, and

in preventing infectious disease. Flow cytometry analysis of sera of immune mice that were
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previously cured of their melanoma through a combined immunotherapy regimen with long-term
memory showed strong antibody-binding against melanoma tumor cell lines. Using a high-density
whole-proteome peptide array, we assessed potential protein-targets for antibodies found in
immune sera. Sera from 6 of these cured mice were analyzed with this high-density, whole-
proteome peptide array to determine specific antibody-binding sites and their linear peptide
sequence. We identified thousands of peptides that were targeted by 2 or more of these 6 mice and
exhibited strong antibody binding only by immune, not naive sera. Confirmatory studies were done
to validate these results using 2 separate ELISA-based systems. To the best of our knowledge, this is
the first study of the “immunome” of protein-based epitopes that are recognized by immune sera

from mice cured of cancer viaimmunotherapy.

Introduction

Cancer immunotherapy has revolutionized cancer treatment and has helped thousands of patients
(Couzin-Frankel, 2013; Patel & Minn, 2018). However, most patients are still not showing positive
responses to current cancer immunotherapy treatment regimens (Chiriva-Internati & Bot, 2015;
Patel & Minn, 2018). Using radiation therapy (RT) and intratumoral injections of immunocytokine
(IC), we have developed a local in-situ vaccine (ISV, RT+IC) regimen capable of curing
immunocompetent C57BL/6 mice bearing syngeneic B78 melanoma tumors and resulting in
protective immune memory (Morris et al., 2016). Even though B78 is considered a functionally
“cold” tumor due to its lack of response to checkpoint inhibitors (Gentles et al., 2015; Morris et al.,
2018), our RT+IC regimen can cure many of them. With our in-situ vaccine, RT acts to increase the
immunogenicity of the tumor by modifying its phenotype and releasing immune stimulatory
cytokines. ICis an engineered fusion protein consisting of a tumor-specific monoclonal antibody
targeting disialoganglioside (GD2) linked to IL-2. GD2 is a molecule expressed on the surface of most

neuroectodermal tumors and some nerve fibers. We also demonstrated that our in-situ vaccine
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causes epitope spread; 75% of cured mice reject a challenge with B16 melanoma cells (Morris et al.,
2016; Yang et al., 2012). B16 melanoma cells do not express the GD2 antigen and are the parental
cell line to B78 (Haraguchi et al., 1994; Silagi, 1969; Silagi et al., 1972). We observed strong antibody-
binding to B16 cells using serum from cured as compared to naive mice (Baniel, Heinze, et al., 2020).
These antibodies might enable MHC-independent, CD8-T cell independent anti-tumor adaptive
immune responses via macrophage-mediated antibody-dependent direct tumor cell killing
(Jagodinsky et al., 2022). However, the exact antigen targets of these endogenous antibodies are

unknown.

Identifying epitopes on tumor cells that are recognized by antibodies may help identify the
immunodominant antigens of cold human tumors, which may help in overcoming immune
resistance in these cancers (Sasaki et al., 2020; Shen et al., 2013; Tarp et al., 2007). With the RT+IC
regimen, although we are targeting GD2, the memory response does not require GD2 (Morris et al.,
2016). Knowledge of these additional antigenic targets may help to identify biomarkers of positive

responses and identify potential new therapeutic targets.

In this paper, we utilized a high-density peptide array approach to probe every protein of the mouse
proteome, broken down into 16-mer peptides in a 2 or 4 amino acid (aa) tiling approach, to identify
antibody targets, using serum from cured mice vs. their matched naive sample. This high-density
peptide array technology has been used forseveral productive applications recently (Engmark et al.,
2016; Haj et al., 2020; Lo et al., 2020; Lyamichev et al., 2017; Mishra et al., 2021; Shen et al., 2019).
Using this approach, we identified many tumor antigens expressed by cold murine tumors in

individual mice as well as some tumor antigens that are recognized by multiple mice.
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Methods

Mice and in vivo tumor treatment:

The treatment model used here was previously described in detail (Baniel, Heinze, et al., 2020;
Morris et al., 2016; Morris et al., 2018). In brief, B78-D14 (B78) tumor bearing mice were treated
when tumors reached ~ 100 mm?3 with a combination of 12 Gy local radiotherapy (RT), followed 5
days later with 5 daily intratumoral (IT) injections of the hu14.18-IL-2 immunocytokine (IC). Mice
that were cured were rechallenged after 90 days with an additional injection of the B78 tumor. Mice
that rejected the rechallenge were considered immune (Figure 2.1A). At indicated timepoints
(Figure 2.1A), blood via mandibular bleed was collected into BD serum collection tubes and serum
was harvested. For select animals a terminal bleed was obtained via cardiac puncture immediately
following euthanasia via CO, to obtain larger volumes of serum from immune mice. Experiments
were performed under an animal protocol approved by the Institutional Animal Care and Use
Committee. Alist of all serum samples from individual naive and immune mice, used to generate the

data presented in this report is included as Supplemental Table 2.1.

Tumor cells:

B78-D14 [“B78”, obtained from Ralph Reisfeld (Scripps Research Institute) in 2002] melanomaiis a
poorly immunogenic cell line derived from B78-H1 cells, which were originally derived from B16
melanoma (Becker et al., 1996; Haraguchi et al., 1994; Silagi, 1969). B78-D14 cells lack melanin, but
were transfected with functional GD2/GD3 synthase to express the disialoganglioside GD2 (Becker
et al., 1996; Haraguchi et al., 1994), which is overexpressed on the surface of many human tumors
including melanoma (Nazha et al., 2020). B16-F10 melanoma was obtained from American Type
Culture Collection (ATCC) in 2005. The murine pancreatic ductal adenocarcinoma cell line Panc02

was purchased from ATCC. Panc02, B78 and B16 cells were grown in vitro in RPMI-1640 (Mediatech)
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supplemented with 10% FBS, 2mMol L-glutamine, 100U/ml penicillin, and 100ug/ml streptomycin.

Mycoplasma testing via PCR was routinely performed.

Flow cytometry:

0.5x10° cells of B16, Panc02 or B78 were used per tube and incubated with 1ul of serum for
45minutes. Afterincubation, cells were washed with 3ml flow buffer (PBS with 2% FBS) at 300xg and
stained with goat anti-mouse IgG-APC (BioLegend, clone Poly4053, catalog # 405308) and rat anti-
mouse IgM-PE (ThermoFisher, clone eB121, catalog # 12-5890-82) polyclonal antibodies. Cells were
washed again at 300xg for 5min with 3ml flow buffer and resuspended in 50-100ul flow buffer. A
drop of DAPI (BioLegend, catalog # 422801) was added to each tube before data was acquired on a
ThermoFisher Attune flow cytometer. Data analysis was performed using the software Flowlo

version 10.

High-density peptide array:

Design of mouse whole proteome peptide microarray:

The mouse whole proteome peptide microarray was designed based on the protein set downloaded
from UniProt in December of 2018 for C57BL/6 mice (The UniProt, 2017). The library was generated
in silico for synthesis on high-density peptide microarrays (Nimble Therapeutics, Madison WI). The
library consisted of overlapping 16-mers representing the entire mouse proteome tiled at every

second amino acid for reviewed proteins and every 4 amino acids for most unreviewed proteins. All
redundant (non-unique) peptides were only printed once but later computationally mapped back to
all UniProt IDs containing this peptide. The individual peptidesin the library were randomly assigned

to positions on the microarray to minimize the impact of spatial biases.
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Peptide array sample binding:

Mouse serum samples were diluted 1:100 in binding buffer (0.01M Tris-Cl, pH 7.4, 1% alkali-soluble
casein, 0.05% Tween-20). Diluted sample aliquots were bound to arrays overnight for 16—-20 hours
at £C. After binding, the arrays were washed 3x in wash buffer (1x TBS, 0.05% Tween-20), 10
minutes perwash. Sample binding was detected via goat-anti-mouse IgG Alexa Fluor 647 conjugated
polyclonal antibody (Jackson ImmunoResearch, 115-605-071). The secondary antibody was diluted
in secondary binding buffer (1x TBS, 1% alkali-soluble casein, 0.05% Tween- 20) and incubated with
arrays for 3 hours at room temperature, then washed 3x in wash buffer (10 minutes per wash) and
30 seconds in reagent-grade water. Then the array was washed 2x for 1 minute in 1x TBS and
washed once for 30 seconds in reagent-grade water. Fluorescent signal of the secondary antibody
was detected by scanning at 635 nm at 2um resolution and 25% gain, using a micro-array scanner.

Data were reported as arbitrary fluorescence units.

Peptide array data processing:

The datasets generated and analyzed for this study can be found on Zenodo under the following

DOI: 10.5281/zenodo.7871566.

For each serum sample, the fluorescence intensity data from a single chip, for each unique peptide,
was assayed and processed once; then results from identical peptides redundant to multiple
proteins (i.e., were present in more than one protein represented) were restored to each protein.
Raw fluorescence intensity signals from primary antibodies binding to peptides on the array, and
secondary antibodies with a fluorescent tag binding to primary antibodies were reported. The
amount of fluorescence signal is influenced by both the titer and affinity of primary antibodies

binding to each peptide sequence.
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Data analysis workflow/pipeline of whole proteome data:

Detailed bioinformatic/biostatistical data modeling, algorithms, analyses, and graphic presentation
methodologies are beyond the scope of this manuscript focusing on the biology and immunology of
whatis detected usingthe sera of these immune mice. These issues, and their justification/rationale

are presented in detail in a separate manuscript (Mcllwain et al., 2023).

JPT peptide array:

Samples were senttoJPT (JPTinnovative Peptide Solutions, Berlin, Germany) and a custom designed
PepStar Multiwell Peptide Microarray was performed following manufacturers protocol using a
manufacturing process based on SPOT synthesis as described previously (Nahtman et al., 2007;
Zerweck et al.,, 2016). Peptides were chosen based on different criteria from the high-density
peptide array results, as described in the results section. We included 376 16-mer peptides with a
range of signal from the high-density peptide array data and tested those on the same serum
samples as well as additional serum samples from immune and naive mice at a dilution of 1:100.
Raw data obtained by JPT for these analyses were sent to us for further analysis and processing.

Data were reported as arbitrary fluorescence units.

Peptide ELISA:

For the peptide ELISA, 16 separate JPT BioTides™ Biotinylated Peptides were purchased containinga
TTDS-linkerand biotinylation at the N-terminus. The peptides were generated using the same SPOT
synthesis as the larger peptide array (Nahtman et al., 2007). Peptides were synthesized from C- to N-
terminus ensuring that only full-length peptides will have a biotin at the N-terminus. Coating of
streptavidin plates was performed per manufacturers instruction with a 250-fold dilution of
lyophilized BioTide peptides. ELISA was performed accordingto JPTs peptide ELISA protocol with the

adaptation to a 384 well plate instead of the standard 96 well plate to conserve on serum samples.
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Neutravidin coated 384 well plates by ThermoScientific (#15400) were used. Stop solution was
added aftera 30-minute TMB incubation. Plates were read at regular intervals during TMB substrate
incubation (reads at 655 nm) and right after addition of stop solution (reads at 450 nm). Optical

density values were used to analyze results.

Choosing of peptides for JPT and ELISA

PeptidesforJPTanalysis were chosen before the second dataset of whole proteome data using the
high-density peptide array was generated and analyzed. 376 peptides were chosen based on
different signal strength and reactivity to sample types. In more detail, peptides were chosen based
on high signal (>500) in at least one immune sample and low to no signal (<20) in naive samples.
Some peptides were included because they shared, or partially shared, amino acid sequences.
Others were chosen because they exhibited no antibody binding in any tested sample or because
they had bindingin every single sample. We also chose some peptides that exhibited low to medium
signal.

For ELISA validation we chose a total of 16 peptides, 2 peptides without any reactivity in any tested
sample, 5 peptides based on good correlation between JPT and whole -proteome results and 12
peptides (3 of which were also included in the JPT to whole-proteome correlation category) that
showed significant binding in at least 3 immune samples in the moderate (or restrictive) category.
We also confirmed that the expected binding sequence within each of these 16 peptides did not
have the same, or very similar, sequence to those of any of the other peptides in this group of 16

peptides, to help ensure that each peptide would be identifying relatively distinct antibodies.
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Statistical analysis:

Peptide array processing

Data from 13 total unique serum samples were tested in the high-density microarray: 5 from naive
mice, 6 immune samples were obtained from mice following their RT+ IC induced cure from their
initial B78 tumor, and then 8-12 days following their rechallenge with another injection of B78
tumor; and two samples (replicates) were obtained from separate mice after a 2" rechallenge
injection of B78 tumor (Figure 2.1A). These 13 serum samples were assayed for antibody binding to
6,090,593 unique sequence probes mapped to a total of 8,459,970 unique probe IDs (due to
redundancies in tiling across protein sequences and using a mixed tiling of either 2aa or 4aa across
each protein), or a total of 53,640 individual proteins. Using spatially corrected processed data from
Nimble Therapeutics, the data were log2 transformed, quantile normalized, and further processed

using a sliding average mean window across the protein location of +/-8aa.

HERON (Hierarchical antibody binding Epitopes and pROteins from liNear peptides) (Mcllwain et al.,
2023) was developed and used to determine thresholds for calling antibody binding at the probe,
epitope (consecutive probes), and protein level for each sample using meta-analyses methods to
summarize binding across subjectsin the post-rechallenge condition. Briefly, 1) a global p-value was
calculated using a z-test foreach probe signal using all sample and probe values, and 2) a differential
p-value was calculated between the average of the naive samples and each individual post-
rechallenge (Tumor-free) sample. The global p-value and differential p-value for each post-
rechallenge sample were then combined using the Wilkinson’s max meta p-value method
(Wilkinson, 1951). After correcting for false discoveries using the Benjamini-Hochberg (BH) method
(Benjamini & Hochberg, 1995), the individual probes for each post-rechallenge sample are

considered bound by antibodies if their false discovery rates (FDR) are below a threshold. Epitope
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regions were identified by applying the skateralgorithm (AssunCao et al., 2006) to identify groups of
antibody-bound probes (spatially and across subjects), and epitope meta p-values were calculated
using the Wilkinson’s max method on the 2" highest probe p-value. Protein p-values were
calculated using Wilkinson’s min (or Tippett’s) method (Tippett, 1931). After correcting the epitope
and protein p-values using the BH algorithm, the epitope and protein sample calls were made using
an FDR cutoff. To avoid prioritization of peptidesthat may be due to spurious noise, singleton probe
and epitope calls without calls of neighboring probes or if the singleton call was not presentin
repeatimmune samplesit was removed. The number of samples that were bound by antibodies for
each probe, epitope, and protein were tabulated as K of N statistics (K = # of samples with antibody

binding; N = total # of samples).

ICCscore

Statistical analysis was conducted using R (v. 4.1.1; R Core Team 2021) and the packages ‘Ime4’ (v.
1.1.27.1; (Bates et al., 2015) and ‘specr’ (v. 0.2.1; (Masur, 2020) for computing intraclass correlation
coefficients (ICC). To analyze the agreement in the high-density whole-proteome, JPT, and ELISA
instrument readings among selected peptides, log-transformed readings/intensity was modeled and
compared using linear mixed-effects models, in which individual samples and the instruments were
modeled, respectively, as random effects, while tumor stage and peptide, when applicable, were
modeled as fixed effects. Intra-mouse correlation and intra-instrument correlation were
accommodated via random intercepts. The ICCwas computed from the instrument random effect to
estimate their share of variance in the log-transformed readings. An ICC of 0-0.5 is considered poor
reliability; 0.5-0.75 is considered moderate reliability, 0.75-0.9 are considered good reliability; 0.9-1

are considered excellent reliability.
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Linear regression/r? score

Simple linear regression was performed using GraphPad Prism (Version 9.5.0, 2022) and r2values
were reported. These values were used to describe how predictive the high-density peptide data for
the same sample is of the JPT peptide data. The closer the r? value is to 1, the more predictive the

high-density peptide array value is of the JPT value.

Test of proportions

A test of proportions was used to compare the portion of positive reactivity between different
peptide groups at a threshold of 2 or higher for OD readings. A p-value of 0.05 was considered
statistically significant. The proportion of reactivity in the randomly selected peptides (1 of 200 with
0D >2) were found to be significantly less reactive than the HERON validation set (3+ FDR 0.05, 48 of

240 with OD>2), respectively.

Hypergeometric testing

The ELISA data replicates were first averaged together. A threshold of >2 O.D. (optical density) units
was used to call positive antibody binding for each ELISA data point. For each peptide, the fraction
of peptides with antibody binding was calculated for the immune samples in the original and
validated ELISA set and for the naive samples in the validated set. A peptide was considered

validated if 25% or more of the respective samples were found to be positive.

To calculate the likelihood of getting n antibody-bound (positive) peptides out of a random sample
of 14 draws, a hypergeometric distribution was used to calculate the probability of getting at least x

positive hits out of 14 random draws, where the total pool of peptides tested by high-density array
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has K positive peptides®. As the true fraction of positive peptides (K /6090593) within the pool of ~6
million possible peptides to test from the high-density array is not known, we simulated the
calculated p-value from the hypergeometric using different proposed fractions of the total positive

peptides within the whole set of ~6 million peptides tested by Nimble.

Results

Mice elicit a tumor-specific adaptive humoral response to RT+ IC treatment

B78 melanoma bearing mice treated with RT + IC + anti-CTLA4 generated an antibody response to
surface proteins on the B78 (or B16) tumor cells that was measurable at day 22 post tumor
implantation (Baniel, Heinze, et al., 2020). To further investigate these antibody responses and to
ensure that the RT+IC treatment alone (without added anti-CTLA4) can elicit a similar antibody
response, we collected serum at multiple times before, during and after successful RT+IC treatment
of B78-bearing mice (Figure 2.1A). Serum was collected from mice at the following timepoints:
before tumor cells were implanted (Naive); once tumors reached treatment size but prior to
treatment (Pre-treatment); within a week of mice completing the RT+IC regimen (Post-treatment);
whenthe tumors were regressing but still present, weeks later after mice were deemed tumor-free
and prior to a rechallenge (Tumor-free); and 8-12 days after subcutaneous rechallenge with
injection of B78 cells, ~90 days after treatment and >30 days after the mice were tumor free

(Immune). Atthis point, a strong memory response was demonstrated based on the rejection of the

1 To simplify our explanation, we use the binomial distribution, which assumes the probability is the same for
every trial (assumes replacement): if there are 10000 positive peptides within the pool of total possible peptides
(6000000), the probability of getting k=8 positive peptides out of n=14 selected peptides (if all peptides are
equally likely) is p=((6000000 — 10000)/6000000). The probability of 14-k failures is (1-p)®4-). However,
there are (:*) different ways of distributing k=8 successes in a sequence of n=14 trials, so P(X = 8) =

14!

;ps(l — p)®. Finally, we calculate the sum of the probabilities using 8 to 14 peptidesto obtain the cumulative

distribution function P(X >= 8).
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rechallenged B78 tumors. These mice were monitored for an additional 5 weeks to ensure complete
tumor clearance of the re-engrafted B78 tumor, proving that these mice were immune.

Using flow cytometry, we tested the serum from each of these timepoints for IgG antibody binding
to B78 cells. We observed the presence of endogenous anti-tumor antibodies against B78 in tumor-
bearing mice starting at the pre-treatmenttimepoint, with increasing levels of antibody detected by
flow cytometry at all subsequenttimepoints (Figure 2.1B). To determine the specificity of these anti-
tumor antibodies, we also incubated these serum samples with B16 melanoma cells, the parental
line to B78 that is GD2 negative as well as a separate syngeneic pancreatic adenocarcinoma cell line,
Panc02. Serum antibodies showed recognition of B16 to a very similar degree as to B78 and a lower
recognition of Panc02 (Figure 2.1B). Recognition of Panc02 cells by these serum samples might
reflect some shared surface antigens between B78 and Panc02 cancer cell lines. The data presented
in Figure 1 are the summed flow cytometry results for 3 of the 6 mice studied subsequently in the
high-density peptide array, described below; individual mice showed slight variations in the strength

of the responses to these 3 tumor lines at different timepoints (Supplemental Figure 2.1).

Whole proteome peptide array results are reliable and repeatable at high signal levels

To investigate what these antibodies are recognizing onthe tumor cells, we used a whole proteome
peptide array to profile antibody recognition comparing serum from the naive vs. the immune
timepoints (as shown in Figure 2.1A). First, we plotted the signal for each of the 6 mice against all
8.46 x10° individual peptides, referred to as probes, as a boxplot for each individual sample ( Figure
2.2A). The overallappearance of immune and naive samples is very similar, with most probes giving
a signal near the baseline, and a small fraction of probes giving signals 100-1000 fold higher than
baseline. Even so, more of the probes (detailed numerically in the next paragraph) have even
stronger signals in the immune sera, such that the mean of allimmune samples is greater than the

mean of all naive samples (Figure 2.2A). Our hypothesis was that specific peptides would show
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significantly higher binding in immune samples compared to naive samples. Overall, since we are
measuring antibody responses to all native peptides within the mouse proteome, we did expect to
see antibody binding to some of these peptides in naive as well as immune samples as previously
seen by Hulett et alin 2018 (Hulett et al., 2018).

Prior to identifying high binding peptides recognized by individual or multiple mice, we evaluated
how reproducible the signal strength is using this high-density peptide array system. Serum samples
from an individual immune mouse (mouse B2), taken after rejection of rechallenge (the immune
timepoint in Figure 2.1A) was divided and separate aliquots were analyzed in the same array assay,
on independent “chips”, each quantifying the binding signal against all 8.46x10° 16-mer peptides.
The paired values for each of these peptides, in the 2 parallel samples are plotted on the Xand Y
axes in Figure 2.2B. We first looked at all peptides with significantly higher binding than the mean
overall signal, defined as a signal that is larger than three standard deviations (SDs) above the mean
(inclusive) (left panel of Figure 2.2B, red). Although difficult to appreciate due to the number of data
points overlying each other, there are 8,424,675 black data points (corresponding to both of the
values for that peptide being <3SD from the mean value), and only 35,295 non-black data points in
the Inclusive group, indicating that at least one of the data points was >3SD ( Figure 2.2B, red). A
similar analysis was performed for 2 separate aliquots of immune serum from the same blood
sample, but from a separate immune mouse (mouse PD1), that was performed on 2 separate
identical chips against all peptides, but the analyses were run on separate days, ~ one year apart
(Supplemental Figure 2.2A). As for Figure 2.2B, there are 8,423,302 black data points, and only
36,668 non-black data points (Suppl. Figure 2.2A). However, when looking at all probes that fit these
criteria and plotting replicate sample results against each other (Figure 2.2B and Suppl. Figure 2.2A),
we noted that at 3SDs, we found a number of probes where one of the values was >3SD from the

mean but where the replicate sample gave a result that was <3SD from the mean. In Figure 2.2B,
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these are the probes shown off the diagonal in light-red or dark-red, while all the probes shown

along the diagonal in red correspond to those where both values from the two separate “runs” of

the same serum sample gave concordant values >3SD from the mean. In Figure 2.2B, the number of
probesinred, (i.e., seen by both replicates, and designated in the legend box as “InclusiveXY”),
corresponds to 65% of the non-black probes with 35% of the non-black probes comprised of the
lighter and darker red probes (Figure 2.2B). Because one of the values for these lighter and darker
red probes was not >3SD from the mean, these values were not consistent or reproducible,

therefore less reliable to call as antibody binding hits.

To enhance reliability and reproducibility of results, we increased the signal strength criteria to
>6SDs above the mean (middle panel of Figure 2.2B, moderate, in blue) which included the top
~0.1% of peptides compared to the top 0.4% of peptides at 3SDs in the inclusive category. This
moderate category showed a larger concordance of recognition between the two replicates, with
80% of the non-black probes being identified at this level by both samples, shown in blue (6653
probes); only 20% of the probes showed discordant signals (one sample >6SD with the paired
sample being <6SD) in the lighter (591 probes) and darker blue (1027 probes). The best
reproducibility between the 2 paired samples on a peptide level was achieved with the restrictive
category which was set at 10 SDs (right panel of Figure 2.2B, restrictive, green), which includes only
0.02% of all peptides. At 10SDs, over 85% of probes that are not black (at least one of the 2 values
>10SD) were in the green category, with both probes >10SD (1422 probes) while only 15% of probes
showed discordant signals (one sample >10SD with the paired sample being <10SD), in the lighter
(95 probes) ordarker (149 probes) green. The specificnumbers of probes in each category, for each
of the paired serum samples for Figures 2.2B and Supplemental Figure 2.2A are provided in

Supplemental Table 2.2.
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We developed the HERON algorithm to identify consecutive overlapping, reproducible probes with
high signal, and categorized the shared aa sequences represented by those highly recognized probes
as epitopes based on specified thresholds (Figure 2.3A). The mean signal of an epitope was
calculated based on the mean signal of all peptides that comprise the epitope. We again used the
categories of inclusive, moderate, and restrictive (based on the single probe calls, but now based on
standard deviations as well as false discovery rates (FDRs) to assure that all epitopes with significant
signal were counted. Reliability and reproducibility for each of these categories increased
significantly by looking at epitopesratherthan probesalone and helped eliminate many of the non-
reproducible binding events seen only on X or Y axes, but not both ( Figure 2.2C and Supplemental
Figure 2.2B, Supplemental Table 2.2). From samples from the same run, the percent of epitopes in
the inclusive group of epitopes co-recognized by both samples improved from 65% (for peptides in
Figure 2.2B, Supplemental Table 2.2) to 72% (for epitopes in Figure 2.2C, Supplemental Table 2.2);
in the moderate category from 80% to 94% and in the inclusive category from 85% to 98.5% (Figure
2.2C, Supplemental Table 2.2). When looking at data from separate runs of the same sample, it
improved from 37% on the inclusive probe level to 43% on the epitope level. For the moderate
category, it increased from 49% to 63%, and in the restrictive category, it increased from 53% to

73% (Supplemental Figure 2.2B, Supplemental Table 2.2).

We further assessed reactivity of the sera to which protein these peptides and epitopes could
correspond to based on specific criteria. Proteins recognized by immune sera were defined as
proteins containing epitopes recognized by the immune sera, using the same criteria for defining
inclusive, moderate and restrictive categories of proteins based on the epitope signal for the
strongest epitope signal in that protein being either >3, 6 or 10 x SD significantly greater than the
mean at FDR adjusted levels of 0.2, 0.05, and 0.01 respectively, clustering across probe hits using

skater (AssunCao et al., 2006) to find epitopes, and filtering regions that are likely spurious signals
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reflecting individual probes with a positive signal, but without a signal for the flanking peptides, and
rescoring using the Wilkinson’s 2" highest max and the Wilkinson’s min/Tippets (Dewey, 2022;
Tippett, 1931; Wilkinson, 1951) for the epitope and protein p-values respectively and using
Benjamini Hochberg to calculate adjusted p-values on the probe, epitope, and protein level before
making calls at the corresponding FDR levels (Benjamini & Hochberg, 1995)(as shown in Figure
2.4A). At the protein level, we again were able to see an increase in reliability of called proteins
based on signal strength (Figure 2.2D). The stronger a protein was recognized (based on signal
strength within each epitope in the protein), the higher the percentage of co-recognition by the 2
replicate serum assays (plotted on the X and Y axes) were found: the inclusive category showing
78%, moderate category showing 95% and restrictive category showing 99% of proteins co-
recognized by both replicate samples (Figure 2.2D, Supplemental Table 2.2). When comparing data
from the same sample from different runs, the percent of proteins co-recognized by both replicate
samples also increased in comparison to probes and epitopes, with 50% in inclusive, 66% in
moderate and 75% in restrictive (Supplemental Figure 2.2C, Supplemental Table 2.2). Overall, we
see increasing levels of reproducibility (namely co-recognition of the same peptides, epitopes or
proteins by the 2 replicate samples evaluated on separate chips on the same day, or on different
days), when going from the inclusive to the moderate to the exclusive category. Furthermore, we
see increasing levels of reproducibility within each of these 3 categories, when going from peptide

to epitope to protein.

Some epitopes are identified by multiple mice

Using consecutive peptides that show high fluorescence signals in immune serabut not in naive sera
enabled us to identify binding epitopes as well as which part of the peptides contained the binding
sequence. Figure 2.3A shows at the top an exemplary 16 aa sequence of the protein Titin (UniProt

ID A2ASS6), ranging from aa position 8901 to position 8917. Underit are 8 more consecutive 16-mer
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peptides, each shifted 2 positions to the right from the one above it, thus overlapping with it by 14
amino acids. For this section of Titin, no binding was observed to any of these 9 peptides by the 2
naive sera tested (A3 & B2). However, strong binding was seen, reflected in high signal numbers, by
sera from 2 immune mice, PD1 and B2. The center 5 peptides all show strong binding by both of the
immune sera, indicating that the shared 8 aa sequence of these 5 peptides, SSDSGEYI, reflects the
antibody binding sequence. The shared 8 aa sequence, recognized in these 5 overlapping peptides,
is referred to as an epitope. Overall, using data from the high-density peptide array, we were able to
identify an average of 6400 epitopes in the inclusive category, 2200 epitopes in the moderate
categoryand just under 500 epitopesinthe restrictive category by the immune serum samples from
each of the 6 immune mice studied (Figure 2.3B). Of the identified epitopes, many were recognized
by only one mouse, while some epitopes were recognized by sera from 2 or more mice, with one
epitope being recognized by sera from all 6 mice in the inclusive category (Figure 2.3C). However,
with increasing signal strength requirements, that same epitope was seen by fewer than 6 mice
when usingthe moderate orrestrictive category. In the highest binding (restrictive) category, twelve
epitopes are each recognized by sera from 4 mice (Figure 2.3C), while 2450 of 2644 epitopes are
recognized by only a single mouse (different epitopes for different mice). For the moderate
category, 11491 of 12327 epitopes are recognized by only a single mouse. In the inclusive category,
46493 of 51664 total epitopes are recognized by only a single mouse. These findings are in line with
previous studies looking at protein arrays where the abundantand heterogeneous nature of plasma
and serum auto-antibodies, regardless of disease status, was discussed (Ayoglu et al., 2013; Nagele

etal., 2013).

Previous reports stated that an average length for a linear B cell epitope is around 5 to 12 amino
acids (Buus et al., 2012; Engmark et al., 2016; Kringelum et al., 2013). Consistent with this, over 90%

of epitopes within the restrictive category are between 7 and 16 amino acids long ( Figure 2.3D).
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Note that a very small fraction of epitopes is identified with a length of 1-2 aa. These small epitopes
may be an artifact of the computer algorithm, and most likely suggest that at least two separate
antibodies in an individual mouse’s serum are binding to overlapping epitopes in this 1-2 aa region,
such that we are actually measuring the overlap of the 2 longer epitopes. However, with the data
that we have, it is impossible to determine the startand end for each individual overlapping epitope
within the region. In general, we found that epitope length varies slightly across binding strength
categories, an increase in shorter epitopes is visible in the lower categories (Supplemental Figure

2.3A & B).

A greater fraction of proteins than epitopes are bound by sera from multiple mice

A greater fraction of recognized proteins was bound by sera from multiple mice than were found
when evaluating epitopes. This difference in proteins vs. epitopes recognized by multiple mice
reflectsthe different requirements forthe determination of recognition of a protein vs. an epitope.
For an epitope to be recognized by sera from 2 separate mice, the 2 serum samples need to
recognize the same epitope. In contrast, for a protein to be recognized by sera from 2 separate
mice, each of the 2 serum samples need to recognize that protein, but not necessarily at the same
place on the protein; in other words, if the 2 serum samples recognize distinct epitopes, even at
opposite ends of the protein, then these 2 serum samples still recognize that individual protein, as
shown schematically in Figure 2.4A. For each of the 6 mice tested, an average of 5089 recognized
proteins were in the inclusive category as compared to 1963 in the moderate and 447 in the
restrictive category (Figure 2.4B). However, using sera from multiple mice, 4323 proteins were
recognized by at least 3 mice within the inclusive category, but only 136 proteins were found to be
recognized by sera from all 6 mice. In the restrictive category, 74 proteins were recognized by sera
from at least 3 of 6 mice, and 469 proteins from the moderate category were recognized by at least

3 of 6 mice (Figure 2.4C).
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To broaden the criteria for recognition by sera from multiple mice, we focused on all proteins that
were detectedin the restrictive category by at least one mouse (2188 total unique UniProt IDs) and
looked at these UniProt IDs to see if they were detected by sera from any of the other 5 mice using
the restrictive to moderate (purple) criteria (Figure 2.4D) to see how many of these mice would
recognize these same proteins when the signal strength requirement was loosened. We were able
to detect 2 proteins that were now recognized by all 6 mice in this restrictive to moderate category.
Overall, 33% of proteins seen by at least one mouse using the restrictive category were seen by 2 or
more mice, and 11.4% were seen by 3 or more mice. A similar analysis is also shown for proteins
recognized by at least one mouse in the restrictive category, and by other mice using the inclusive
(orange) criteria (Figure 2.4D). This showed 66% of proteins seen strongly by at least one mouse are
recognized by two or more immune mice, while 40% are recognized by 3 or more mice. These
analyses indicate that there are several proteins recognized by more than one mouse, while the

strength of the recognition signal of the peptide array system can vary from mouse to mouse.

Separate peptide ELISA techniques validate whole proteome peptide array data

After we established HERON, the method used above forthe detailed analyses of peptide array data
of the proteome recognized by immune sera from mice (and detailed further in a separate
companion bioinformatic manuscript, (Mcllwain et al., 2023), we wanted to validate our findings
with a separate, independent, antibody detection system for 16-meraa probes that uses a different
technology. For this we used a JPT multi-well peptide array to test 189 16-mer peptides per slide,
allowing for testing of a larger number of serum samples. We chose peptides to use in this JPT
system based on the results obtained using HERON analysis applied to data from the analyses of the
entire proteome, summarized above. We chose to include a small number of peptides that showed
no binding in any (naive and immune) serum samples and chose a larger number of peptides that

showed significant level of binding by one or more of the immune serum samples using the data
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from the proteome analyses from the 6 immune mice tested. The full panel of peptides selected,
and the level of their reactivity with naive and immune serum samples are presented in
Supplemental Table 2.3. We used some of the same serum samples that we previously tested on
the whole proteome high-density array (Figure 2.5A) to test these 189 peptides on the JPT array
(Figure 2.5B). We show the mean reactivity for these same peptides and these same sera using the
whole proteome data and the JPT system data (Figure 2.5A&B). Both naive samples show no
binding in eitherthe high signal peptide orno signal peptide groups onthe whole proteome peptide
array as well as the JPT multi-well peptide array (Figures 2.5A&B). Immune serum samples showed
very similar trends, with higher mean signals seen for the high signal peptides than for the no signal
peptides. The A3and A4 immune samples have a low mean signal for the high signal peptides in the
whole proteome array as well as JPT. Overall, these results show that Nimble peptide array data can
be qualitatively reproduced using an independent JPT multi-well peptide array. Note that the
peptides in the Nimble system are biotinylated at the opposite end from that for the JPT peptides,
and thereby fixed to the plate at opposite ends; this makes the peptide available to the serain
reverse orientation, thereby partially accounting for non-identical recognition patterns for the same

peptides in these two systems.

The assessment of responses to some of the individual single peptides tested in both systems,
demonstrates a qualitative relationship between the magnitude of responses by individual immune
mouse serum samples, when tested on the same peptide in the Nimble and JPT systems ( Figure
2.5C). We examined the same peptides recognized by the same serum samples as shown in Figure
2.5C utilizing a separate peptide ELISA system (Figure 2.5D). The ELISA data showed these same
serum samples show a qualitatively similar pattern to that seen using the Nimble data for these
same peptides. A summary of Nimble to JPT to ELISA comparison for 11 peptides using 4 immune

and 2 naive samples is shown in Figure 2.5E. The overall intraclass correlation coefficient (ICC) for
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instrument (Nimble, JPT, ELISA), considering peptide, tumorstage, and intra-mouse correlation, was
0.86. At the peptide-level, accounting for naive vs. immune and intra-mouse correlation, these
comparisons show 4 peptides with excellent ICCs (> 0.90: Gria4, Scndb, Srsy and Vsig2) and 7 with
good ICCs (0.75-0.90). None of the tested peptides received a moderate (0.5-0.75) or poor (< 0.5)
ICC, thereby demonstrating that these 3 ways of measuring antibody responses are not important
sources of variation in the measurement of antibodies to these peptides. Overall, these three assay

systems showed similar patterns of response for the peptides we chose to evaluate.

Single peptides follow a similar trend in reactivity as seen with surface staining via

flow cytometry

We chose 3 peptides to test all timepoints of serum collection shown in Figure 2.1 using samples
from 2 mice. These peptides were chosen based on high signals for these 3 peptides using most
immune samples tested, as well as low signals with most naive samples tested. Figure 2.6A shows
how the level of antibody from mouse B2 towards the specific peptide increases with each
subsequentserum sample (as detected by peptide ELISA) until reaching a plateau and then remains
at that peak level while Figure 2.6B shows overall lower levels of antibody (as detected by peptide
ELISA) for mouse A3 towards the selected peptides. Furthermore, we were able to observe stable
antibody concentrations from post-treatment to tumor-free timepoints followed by an increase in
antibody in ourimmune timepoints. In contrast to the flow data reactivity to B16 cells ( Figure 2.1B),
we were not able to see that the post-treatment timepoint exhibited the highest antibody binding

for these three specific peptides.
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Validation cohort shows binding to most of the 14 peptides selected for binding in

immune samples

Lastly, we hypothesized that peptides recognized by immune (but not naive) sera by 50% or more of
our initial cohort of 6 mice would also be seen by sera from additional similarly treated immune
mice (as in Figure 2.1A) that were not ever previously tested on any peptide array or ELISA. To test
this hypothesis, we selected 14 well-recognized peptides with binding by sera from at least 3 of 6
immune mice in the moderate category (Figure 2.2B) as tested in the whole proteome peptide array
and selected 2 peptides without any significant binding in any serum samples from the Nimble
system. Of the 6.09 x10° unique peptides tested in the Nimble system for these 6 immune mice,
only 316 peptides (0.005%) showed recognition at the moderate level for at least 3 of 6 immune
mice. Figure 2.7A shows, by heat map, the original whole proteome data for these 14 recognized
and 2 non-recognized peptides for 5 of the original 6 mice. We then tested these same 16 peptides
via ELISA on the same naive and immune samples as we had run on the whole-proteome peptide
array (in Figure 2.7A) and obtained qualitatively comparable results (Figure 2.7B). We were able to
test the same 5 mice but didn’t have enough serum left for all peptides with mice A4 or PD1. In this
ELISA 12 of the 14 previously selected peptides show significant recognition by at least 1 immune
mouse, and 8 of the 14 peptides are recognized by at least 2 of these 5 mice. We then proceeded to
run these same 14 reactive peptides (and 2 non-recognized peptides) on new naive and immune
samples (previously untested by array or ELISA) collected from mice who had the same B78 tumor
and received the same RT + IC therapy as our initially treated mice. ELISA results of the 20 new
immune and 14 new matched naive serum samples are shown in Figure 2.7C. Overall, we were able
to show that ~13 of the 20 new immune mice (65%) have antibodies against at least 1 of the 14
reactive peptides with 10 mice showing reactivity to multiple peptides. Allnew samples exhibited no

antibody binding against the 16-mer peptides from Gria4 or P53, just like none of the original
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samples did in Figures 2.7A&B. However, 6 peptides showed binding to at least 1 naive sample with

4 of the 14 naive samples showing some antibody reactivity against at least 1 peptide (Figure 2.7C).

To contrast the large amount of antibody binding observed within this targeted selection of peptides
we developed and utilized HERON to choose peptides recognized by at least 3 of the 6 mice included
on the whole proteome dataset, we used arandom number generator to pick 10 peptides out of the
whole proteome array dataset of 6,090,593 unique peptide sequences. The log-transformed
fluorescence intensity values associated with these 10 random peptides and the negative control
Gria4 peptide, used previously from the whole proteome peptide array, are shown in Figure 2.8A.
All 10 of these random peptides showed virtually no reactivity with any of the sera from the 6
immune mice tested, exceptforone peptide that showed low, but detectible, reactivity with the B2
immune sample on the original whole proteome dataset (Whrn). This one somewhat positive
reaction out of the 60 possible combinations of 10 random peptides with 6 serum samples in Figure
8A corresponds to 1.7% positive. We used these 10 random peptides to probe the immune serum
samples from the same 20 validation set mice utilized in Figure 2.7C for antibody binding to any of
these randomly selected peptides (Figure 2.8B). We observed moderate antibody binding by one of
the 20 validation set immune samples (V16) to one of the 10 tested random peptides (Podnl1). No
othervalidation serum samples showed detectible binding to any of these 10 peptides. Thus, of 200
possible combinations of the 20 serum samples with the 10 randomly selected peptidesin Figure 8B,
only one (0.5%) was positive. Contrasting the relatively absent reactivity of these 20 new validation
immune samplesto these randomly selected peptides, we now show the relatively strong reactivity
of these same 20 validation immune serum samples to the 12 peptides from Figure 7C selected
utilizing HERON analyses of the original Nimble data, that were recognized by at least 3 of the
original 6 immune mice. These data are shown in Figure 2.8C, using a selection of data also shown in

Figure 2.7C. Unlike the 1 positive reaction out of 200 possible combinations shown in Figure 2.8B,
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these same 20 immune serum samples now show 20% positive reactions with these 12 HERON
selected peptides (48 reactions with an OD reading of >=2 out of 240 possible combinations = 20%).
This substantial reactivity of these 20 validation sera to these 12 HERON selected peptides is

significantly greater (p< 0.001) from the 0.5% reactivity in the randomly selected peptides.

We acknowledge that our sample size of 10 randomly selected peptides in Figure 2.8B is a small
fraction of the over 6 million peptides present on the array. To approach and analyze the ability of
the HERON method to identify peptides from the initial Nimble data with the original 6 mice that
will show greater than chance reactivity with a new set of immune serum samples, using a
calculation that includes a larger number of randomly selected peptides, we employed a model
utilizing the hypergeometric distribution (Supplemental Figure 4). When calculating the probability
of having a quarter of the previously untested mice recognize a specific peptide with a high ELISA
threshold (minimum O.D. signal of 2) if the peptides would have been chosen at random using a
hypergeometric test (P(X >= 8 given 14 draws out of a pool of ~6 million), the chance of having this
occur with a separate set of mice is almost zero (Supplemental Figure 2.4). For example, if we
assume that 1% (60,906) of the peptidesfromthe setof the ~6 million unique peptides are reactive,
the probability of randomly choosing 14 peptides from the pool of possible peptides and finding that
at least 8 of the peptidesthatare responsive to 25% or more of the mice in the new validation set is
1.9x10°. If we are sampling with replacement from the pool of samples, i.e. using a binomial
distribution ratherthan hypergeometric, the probability is still 2.85x103, The similar result between
the hypergeometric and binomial approach is due to the low likelihood of randomly choosing the
same peptide twice amongst the large pool of possible peptides. These analyses indicate that
peptidesrecognized atthe moderate levelusingthe Nimble array data for immune serafrom 50% of
multiple mice are highly likely to be recognized by separate, similarly immunized mice, in a

validation set, using ELISA data as a validation system.
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Since only 0.45% of peptides tested are recognized at the moderate level by at least one mouse
(27639 peptides), and only 0.005% of peptides tested are recognized at the moderate level by 3 or
more mice (316 peptides), the fact that 13 of 20 (65%) of independent immune mice from the
validation set are recognizing at least one of the 14 peptides (selected from the 0.005% of peptides
recognized in the Nimble system by 3 or more mice) by the ELISA system indicates that these
peptides co-recognized by multiple mice in the Nimble system are identifying peptides likely to be

recognized by independent (validation set) immune mice.

Discussion and conclusions

The aim of this study was to establish a method to utilize a high-density overlapping stacked array of
peptides representing the entire C57BL/6 proteome in order to identify the “immunome” of
epitopes recognized by antibody induced in mice that received curative immunotherapy associated
with complete and durable eradication of B78 melanoma tumors with induction of tumor-specific
immune memory. Inthis work, we demonstrated the utility of high-density peptide microarrays for
profiling the antibody repertoire in immune serum samples by using a proteome -scale peptide
microarray representing all proteins in the mouse proteome. This enabled a fine-mapping of all
regions of linear epitopes recognized by circulating antibodies induced during the growth and
subsequent completerejection of asyngeneic murine melanoma. Although these whole -proteome
peptide microarrays contained peptides representing the proteome, this study is not a complete
analysis of the antibody detected “immunome”. The length of the 16-mer peptides is a limitation, as
conformational (or discontinuous) epitopes may remain undetected. Nevertheless, these proteome-
scale peptide microarrays, along with the development and use of HERON analytic methods,
provided an in-depth snapshot of the information stored in the antibody repertoire of mice immune

to B78 melanoma after successful RT+IC immunotherapy.
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We were able to achieve improved reliability and reproducibility when considering epitopes rather
than single peptide probes (Figures 2.2B vs. 2.2C). A couple of factors contribute to this; first, there
are many more probes than epitopes in the proteome, giving a larger number of possible
mismatches. Second, an individual epitope can be a component of several overlapping probes; our
HERON algorithm for detecting epitopes recognized by separate assessments of serum samples,
requires a degree of similar recognition of the related epitope containing probes by the 2 samples,
but does not require complete identity of probe recognition and signal. This enables higher
reproducibility of epitopes recognized with high signals than peptides recognized with high signals
whenreplicate chips are evaluated for separate aliquots of the same immune serum sample ( Figures
2.2B vs. 2.2C). Somewhat similarly, when evaluating proteins that are recognized, since a single
protein might be recognized by different mice at different regions, the number of proteins
recognized by 4, 5 or 6 of the 6 immune mice (at inclusive, moderate and restrictive recognition
levels) is substantially higher than the number of epitopes mutually recognized by 4, 5 or 6 of the 6

immune mice (comparing Figures 2.3C vs. 2.4C).

While we were able to use signal strength as a predictor for peptide binding reliability, it cannot be
used as a measure of antibody affinity (Buus et al., 2012). Signal strength in peptide arrays is
determined by many factors, including quality of synthesized peptide, variations in peptide
solvation, presence, orabsence of high-affinity antibodies as well as presence orabsence of multiple
lower-affinity antibodies towards the peptide. As seen in Figure 2.3B, the number of recognized
epitopes is similar across all 6immune mice, while the epitopes recognized by individual mice show
a large heterogeneity between mice. This heterogeneity in epitopes recognized is demonstrated by
the very large number of epitopes recognized by at least one mouse, compared to the substantially
smaller number of epitopes with mutual recognition by any 2 of the 6 immune mice ( Figure 2.3C)

and only a much smaller fraction of epitopes mutually recognized by 3 or more (50%) of the 6
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immune mice. A large heterogeneity in antibody repertoire between individuals has been shown
before in humans (Ayoglu et al., 2013; Nagele et al., 2013) and was expected due to the stochastic
nature of V-D-J recombination leading to the specific binding characteristics of an individ ual

antibody generated by a clonally expanded mature B cell.

Interestingly, when validating just a small cohort of 12 peptides, representing ~2.86% of the
peptides examined out of the total of 420 peptides, which were each recognized by at least 3 of our
original 6 mice based onthe Nimble system data, we were able to show reactivity to at least one of
these peptides in 65% of our validation cohort of 20 separate immune mice (Figure 2.7D). While we
did not achieve the same rate of recognition foreach individual peptide, having at least one peptide
recognized by some of these additional 20 mice supports the biological relevance of these proteins
being antibody targets by multiple mice in our system. This biological importance is further
supported by the testing of random peptides with immune serum samples from 20 additional mice
(Figure 2.8) where 10 randomly selected peptides showed only one of the 20 mice recognized just
one of the 10 peptides barely above the threshold of an OD value of 2 (mean value of 2.28),
corresponding to 0.05% positive reactions of 200). In contrast when these same 20 validation
immune serum samples were used to recognize the 12 HERON-selected peptides that showed
reactivity with at least 3 of the original 6 mice in the Nimble data, 48 out of the 240 possible
combinations had an OD reading of 2 or higher (20%, p< 0.001). This validation indicates that the
HERON method of selecting peptides from the Nimble data successfully identifies peptides that are
being recognized reproducibly in validation assays at a rate far greater than would be seen merely
by chance. More importantly, because the antibody repertoire is determined by stochastic gene
rearrangements of V-D-J immunoglobulin gene components, the antibody repertoires of distinct
genetically identical mice, should have substantial differences. Thus the ability of the HERON

method to identify peptides based on their recognition by an initial set of mice using the Nimble
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data and these same peptides are subsequently strongly recognized using an independent ELISA
assay, on a separate set of previously untested validationimmune serum samples, indicates that the
peptides (and epitopes) identified by the HERON-method have immunologic importance for other
mice from the same strain immunized to the same B78 tumor using the same immunotherapy

regimen.

There are several limitations to the current assay configuration to evaluate peptide binding by
serum antibodies using a high-density peptide array technology. The assay is set up to provide end-
point binding of a complex mixture of antibodies at a single serum dilution. It is difficult to estimate
the absolute binding affinity of each antibody clone in the complex sera from such a mixture model.
By using different dilutions of known concentrations of well characterized mAbs known to recognize
specific epitopes or peptides on the Nimble array, a “standard curve” could be created enabling one
to interpolate signals seen withimmune serato the standard curve with the mAb dilutions, allowing
calculation of a “mAb concentration equivalent”. We have not pursued thisand do not think this has
been done yet by others using this technology. By evaluating serial dilutions of multiple different
mAbs, at the same concentrations, on this high-density proteome array, one might be able to
investigate some general patterns to allow quantitative assessments of binding to elements of the
proteome with this technology. Once this knowledge has been acquired, this peptide array might be
an optimal way to characterize the binding and specificity/cross-reactivity for new mAbs being

developed.

Itis also possible that this array misses the antibody target of some clinically important antibody
responses. These include antibody reactivity against conformationally determined epitopes that are
not generated in relatively small 16-mer peptides. Second, as the peptides used in this array are
strictly 16-mer aa sequences, no glycosylation is applied to these peptides. Thus, circulating

antibodies that recognize differentially glycosylated peptides would not be detected. Third, some
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clinically important antibody targets have no peptide component. A major example is the GD2
disialoganglioside, proven to be a clinically important target on neuroblastoma; this glycolipid has
no peptide component and is recognized by the Dinutuximab mAb (Yu et al., 2010), and the
hu14.18-IL-2 immunocytokine used to cure mice of B78 melanoma in this study (Baniel, Heinze, et
al., 2020; Morris et al., 2016), and also recognized by circulating antibody in patients immunized
with a GD2-containing vaccine (Cheungetal., 2021). This peptide array would not be able to identify
antibodies that might have beenturned onto such non-peptide antigens, even if they were strongly
induced in the process of these mice rejecting, and developing, a memory immune response to
these B78 tumors. However, the array would be able to detect antibody binding to peptide
mimotopes of such antigens as they are cross-reactive with the non-peptide antigens (Bolesta et al.,
2005; Horwacik et al., 2015; Wondimu et al., 2008). Finally, some of the antigenic targets on tumors
that have been recognized by adaptive immunity are mutation-driven neo-antigens, with aa
sequences different from that controlled by the inherited germline genome. As each individual
tumor will have its own unique set of neoantigens, the detection of antibodies to these neoantigens
using this high-density peptide array technology would require inde pendently created proteome
arrays to be established for each individual tumor being evaluated. This would seem currently

impractical.

As such, while other epitope discovery methods are superior in probing more limited numbers of
targets to define discontinuous or conformational or glycosylated, or non-peptide, or mutated
epitopes and immunodominant responses, this technology appears useful in identifying
immunoreactive regions within the entire proteome, not previously considered as potential

epitopes, on alarge scale.

Beyond the possible utility of identifying biomarkers for effective immune responses induced by

cancer immunotherapy, we are hopeful that this technology can be used in profiling antibody
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responses to many other diseases. This tool was able to detect known and previously unknown
protein targets of antibody responses throughout the mouse proteome. This approach could

potentially be applied to other cancers to advance diagnostic and cancer vaccine development.

This initial description of the results of our analyses to probe the detection of linear epitopes
recognized by sera of mice cured of their B78 tumors, relies on the novel bioinformatic approaches
developed to analyze these large data sets, reported separately (Mcllwain et al., 2023). This report
presents: 1) the immunologic methods used to obtain data and validate it using additional JPT and
ELISA systems; 2) the spectrum of peptides, epitopes and proteins recognized; and 3) initial
description of what fraction of targets recognized by at least one immune mouse are also
recognized by some other mice, despite the stochastic nature of each mouse’s individual B-cell
repertoires. Important additionalanalyses are still underway and are beyond the scope of this initial
report. These include characterizing which antigens are recognized by these immune sera and
determining their relationship to the B78 melanoma tumor that responded to the immunotherapy
in the process of turning on these adaptive antibody responses. These ongoing studies also include
identifying which of the proteins recognized by these immune antisera are expressed or over-
expressed by the tumor cells themselves, and if expressed by the tumor cells, what is their cellular
location (membrane, cytoplasmicor nuclear). Furthermore, even though these antibodies were not
seen in naive mice, and were thus induced by bearing the tumor, and responding to the
immunotherapy (as demonstrated in Figure 2.5D), given the very large number of proteins
recognized by these immune sera (~10,000 proteins recognized by at least 1 immune mouse, as
shown in Figure 2.4C), it seems very unlikely thatall of these are selectively expressed by the tumor
cells and not normal tissues. As such these antibodies induced in these mice by implanting and
successfully treating these tumors may also reflect antibodies that can recognize proteins from

normal tissues and may thereby be considered “auto-antibodies”. Such auto-antibodies may be the
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mechanism behind auto-immune, paraneoplastic, syndromes seen frequently in patients with
cancer (Ong et al., 2022; Villagran-Garcia etal., 2023). Finally, even though multiple distinct proteins
are recognized by these immune sera, might some of these antibodies be recognizing shared or
similar amino acid sequences on these distinct proteins, reflecting possible immune cross-reactivity
of similar antibodies to seemingly distinct proteins? These issues are now being pursued and will be

presented in a subsequent separate report (Hoefges et al., 2022).

In summary, this work shows that peptide array technology can be used to detect the linear
antibody-recognized “immunome” of sera from mice immune to B78 tumors through RT+IC
treatment. While we saw a large heterogeneity between individual mice, some proteins were
strongly recognized by sera from multiple immune mice and may potentially be of importance in
achieving immunity to the cancer, or as a biomarker of a potent adaptive response to the cancer.
This same type of workflow could be applied to other types of cancer or diseases as well as to the
analyses of patients that have received effective immunotherapy associated with a clear immune
mediated anti-tumor response to their cancer to evaluate the equivalent antibody-recognized
human tumor “immunome”. Some work in this cancer realm, and in analyses of auto-immunity and
anti-viral immunity has been reported and is underway (Heffron et al., 2021; Mergaert et al., 2022;

Potluri et al., 2020; Zheng et al., 2021).
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Figure 2.1: Mice develop antibodies against melanoma tumors throughout treatment

A: Timeline of blood serum collection. C57BL/6 purchased from vendors are allowed to acclimate 1-
2 weeks prior to Naive sample collection and B78 tumor implantation. After measurable tumors
have established, Pre-treatment samples are collected prior to initiation of radio-immunotherapy
[12 Gy external beam radiotherapy (EBRT) and intratumoral hu14.18-IL-2 immunocytokine (IT-1C)].
Following completion of therapy, Post-treatment samples are collected. Tumor-free samples are
collected from animals that have no palpable tumors ~30 days following treatment initiation. ~90
days post treatment initiation, these “cured” animals are rechallenged with tumorcells and Immune

samples are collected the following week. Schematic created using BioRender.

B: Flow cytometric analysis of serum antibody binding to tumor cells. Murine blood serum was
incubated with murine tumor cells prior to staining with fluorescently tagged anti-mouse IgG
antibodies and flow cytometric analysis. Median fluorescence intensity values corresponding to the
timepoints described in A are shown. Serum samples were tested against B16 melanoma (black),
B78 melanoma (pink) and Panc02 pancreatic adenocarcinoma (green) murine tumor cell lines. Error

bars show standard error of the mean, n=3 mice for each datapoint.
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Figure 2.2: Overview of array data and reproducibility and reliability of probe, epitope, and

protein calls.
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Figure 2.2: Overview of array data and reproducibility and reliability of probe, epitope, and protein

calls.

Serum samples from mice describedin Figure 1A were run on the Nimble Therapeutics mouse whole

proteome peptide microarray.

A: Summary boxplot of signal intensity for sera from each of 6 mice, for which Immune sera were
tested (designated: PD1, AC5, B2, A3, Ad and C4). For 3 of these mice, (B2, A3 and A4) naive sera
results are also shown. Naive-1, and Naive-2 are pools of sera from 6 separate naive mice (4
individual mouse samples perpool), and immune-1and immune-2 are pools of Immune sera from 6
mice (4 individual mouse samples per pool). PD1-1and PD1-2 are 2 replicate serum samples of
cryopreserved Immune sera run independently, one year apart, on separate whole proteome
microarray chips; B2-1 and B2-2 similarly are Immune sera from 2 replicate cryopreserved serum
samples, run independently on separate whole proteome microarray chips within a day of each
other. Data are presented as log-log transformed smoothed fluorescent intensities for all peptidesin
the array. Medianvaluesfor all Immune ) and Naive samples (blue) shown are represented with

dotted horizontal lines.

B: Correlation of fluorescence intensity values from two separate whole -proteome microarray chips
run one day apart (B2-1 and B2-2) on the same Immune-serum from one representative mouse.
Each dot represents the log transformed processed raw array data for an individual called peptide.
These peptides were then separated into 3 categories based on their signal strength: restrictive
(highest signal, >10xSD above the mean), moderate (>6xSD above the mean), and

based on the statistical significance for each value above the mean signal strength
for all peptides. Lighter colored dots represent peptide only called in the B2-1 assay, darker colored

dots represent peptides only called in the B2-2 assay, for its respective category (Red: inclusive,
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Blue: moderate and green: restrictive). For each graph, the black dots are those peptides that were

not called for that graph (at the indicated signal strength level) either in the B2-1 or the B2-2 assay.

C: Scatter plots of epitope-level data based on the peptide data shown in Figure 2.2B, again
segmented into restrictive, moderate, and inclusive rankings. Epitopes were identified based on
overlapping consecutive recognized peptides and values plotted based on the -log10 p-values.
Lighter colored dots represent peptides only called for sample B2-1, darker colored dots represent
peptides only called for sample B2-2, for its respective category. D: Scatter plots of predicted
protein-level data based on the peptide and epitope data shown in Figure 2.2B&C, segmented into
restrictive, moderate, and inclusive rankings. Proteins were identified by combining epitope data
and generating a protein p-value and values plotted based on the -log10 p-values. Lighter colored
dotsrepresent peptide only called in replicate sample B2-1, darker colored dots represent peptides
only called in replicate sample B2-2, for its respective category. For Figures 2.2 B-D the numbers in

the legend box within each figure indicate the number of dots in each category.
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Figure 2.3: Number of epitopes identified and categorized from mouse whole proteome peptide

microarray for all Inmune samples

A: Example of raw data highlighting a predicted epitope, defined as a clustered and overlapping

antibody binding region in the peptide microarray. A section of the titin protein is shown, with 9

stacked 16-mer peptides, each shifted by 2 aa positions, starting at aa position 8901- 8917.
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Fluorescence intensity results are shown for each of these 9 16-mer peptides for separate serum
samples from 2 naive mice (naive B2 and naive A3) and 2 immune mice (PD1 and B2). Five of the
consecutive 16-mers show strong binding by the 2 immune sera, while the other 4 16-mers show
very weak binding by all 4 sera shown. The 5 well recognized 16mers each share the 8 sequential aa

shown in the green box, indicating a recognized epitope.

B: Number of , and restrictive epitopes identified in the Immune samples with
significantly higher antibody binding in Immune serum than in Naive serum samples. Each dot
represents the number of epitopes in that category, for each of the 6 separate mice tested. The

individual mouse identifications are indicated next to each dot.

C: Number of unique epitopes each recognized by any individual immune mouse, or co-recognized
by 2, 3, 4,5 or 6 Immune mice (of 6 total mice), segmented by cutoff category of ,

and restrictive of the epitopes. Within each category, the single dot plotted above the
individual numbers plotted on the X axis indicate the number of epitopes recognized by exactly that

number of mice.

D: Categorization of epitopes by peptide length, based on the clustering as in Fig. 3A, using data
from the restrictive category. Above each pair of numbers (i.e.: 1-2, 3-4, etc.) on the X axis are 6
colored dots each indicating the number of epitopes of that aa length recognized by each of the 6

mice tested.
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Figure 2.4: Protein level analysis of Nimble Therapeutics mouse whole proteome peptide

microarray data and identified epitopes

A: Schematic showing examples of conditions that can lead to identification of one protein
recognized by sera from 2 separate mice, including conditions where the same epitope within the
protein is not recognized by antibodies from both mice, even though the protein is recognized by
sera from both mice.

B: Number of unique UniProt IDs recognized per Immune sample, segmented by the inclusive,
moderate, and restrictive categorization of the called protein. Mouse IDs are labeled on each dot to

demonstrate similar overall distribution within each category.

C: Number of inclusive, moderate, and restrictive unique proteins recognized by at least 1, 2, 3,4, 5

or 6 of the 6 mice tested.



D: Number of proteins identified by the given number of mice on the X axis, where at least one
mouse recognized the protein within the restrictive category and the other mice identified that
same protein at least in the moderate category (purple dots) or at least in the inclusive category

(orange dots) in the other samples.

69



70

A B
Whole Proteome Peptide array JPT multiwell peptide array
10000 20000 ’
@® No Signal @ No Signal
- A High Signal A A £ 15000 A A High Signal
@ 1000 2
2 A ]
E E
8 ] A A 8 10000
g 100 g e o A
g H
g g A
=] 10 S 5000+ ) ° A A
£ A [ [ ] °
N N .
° o © * 9
1 T T T T T T T T T T o ! ! ! ! ! ! !
@ o e Q e e Q P K & & A 4
& & & & & ¢§9 & &o‘P K @0& & ,bo"\ e‘°° o&‘ & @e“' @&“’ &6“) @6“\
@ ¢ o F o E & ¥ o & o e Y
& PP & & v 4
R Q
&
C
Ccdc9 Scndb Hmen1 Lemd3
2 40000 > 80000 > 30000 2 30000 2 50000
é 30000 £ so000 £ £ £ 40000 2087
g g 5 8 suoo
§ 20000 g 40000 ] 8 g
4 8 £ 10000 g g 20000
o Q 20000 o Q o 1)
g . 2 é ] & 10000 .
E I B £ £
5 05 4 5 ot 5 5
0 5000 10000 15000 20000 0 2000 4000 6000 800010000 o 1 2z 3 & 5 0 1 2 3 4 5
Nimble fluorescence intensity Nimble fluorescence intensity Nimble | 1ce y Nimble log(fluorescence intensity)
44 49 4
D E *-10000m £ A~10000 T E I-10000 2
s - w» = £ I o gy - c c * 9 * 5
§ 3 ] § 3] T oy * g § 3 B ox E
x . F1o00 § 3 100 § 3 #1000 §
[ ] © * 8 o o
EZ- % N 2 P '3 -] 2 =3
@29 e 100 § 227 * Lo 8 82 L100 8
] T 7} 5 ] b EX
i * g 3 § = g
81 x* . [z 8" « 10§ 81 « *x [0 7
g. * A F g, *x g g x X e
o= 1 0 1 o= 1
Ccdc9 Vsig2 Scndb
4+ 4~ : N 4 ‘
E |a R i - | 10000 T E 100002 ® B2naive
§ 34 * . & o § § 34 S § 3 S ¢ B2immune
= —1000 § s ~1000 @ = —1000 e e A3naive
2 3 2 ] & 3 e A3 immune
s 100 3 821 100 8 22 100 8 ‘
8 ® * 5 2 5 3 % e ACS5immune
§ 1 ° L 10 g g 1 l-10 § ER 10 3 PD1 naive
s * ZF & ] i & 3 & * €+ PDYimmun
. B ok e
Oyl = 1 Ol > -7, %y el Jalkele, B
Hmen1 Gria4
E
IMMUNE NAIVE
A3 ACS B2 PD1 A3 B2 IcC
Nimble ELISA JPT Nimble ELISA JPT Nimble ELISA JPT Nimble ELISA JPT Nimble ELISA JPT Nimble ELISA JPT
Ccdc9 0.85
Gria4 0.99
Hmcenl 0.89
Junb 0.82
Lemd3 0.82
Lzts3 0.89
Scndb 0.91
Srsy 0.92
Ube2vl 0.89
Uck2 0.85
Vsig2 0.92




71

Figure 2.5: Comparisons of data from Nimble and JPT systems, for the same peptides and serum

samples.

A & B: Comparison of results using the same 10 serum samples tested in both JPT and whole
proteome (Nimble) systems, for 11 peptides selected from the whole proteome data to show no
significant signal with any serum samples (naive orimmune) vs. 272 peptides showing a high signal

with at least one immune serum sample (A&B).

A: Median fluorescence intensity values (from the whole proteome system) for peptides with a high
signal (>1000 fluorescence units, >10SD over the mean) in at least 1 immune serum sample that
were also tested on the JPT peptide array (pink triangle, high signal, 272 peptides) and on 12
peptides with a signal below 10 fluorescence units in all samples (identified based on the immune
and naive samples from the first whole proteome chipset) (black circle, no signal, 11 peptides) are

displayed for 10 serum samples tested in the whole proteome system.

B: Median values for the same peptides as shown in A are shown for the same samples (minus the

repeat PD1 sample which was only run once on JPT) run on JPT multi-well peptide array.

C: JPT (Y-axis) vs. Nimble (whole proteome, X-axis) fluorescence signal data-comparison plots for 5

exemplary peptides.

D: Whole proteome datato ELISA comparison plots for 6 representative peptides (5 of which are the
same as displayed in C) on 7 separate serum samples. Foreach peptide shown, the left Y axis shows
ELISA data as optical density readings, and the right Y axis shows original whole proteome peptide
array fluorescence intensity dataforthe same serum samples on the same peptide. The 7 individual
serum samples are displayed in each graph with the same color, ELISA data are shown as circles,

whole proteome data are shown as stars. The vertical dotted line separates ELISA from Nimble data.
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Multiple datapoints [dots (ELISA) or stars (Nimble, whole proteome) for one sample] show

replicates.

E: Heat map of 11 peptides from 11 different proteins with results from 4 immune serum samples
and 2 naive samples across 3 different peptide binding assays. Results from Nimble whole proteome
peptide array as well as JPT peptide array and peptide ELISA were performed on the same serum
samples and peptides; results are visualized via heatmap. Eight of the peptides shown were selected
based on significant binding by at least 50% of immune serum samples in the whole proteome
system. ICC: Intraclass correlation coefficient, is the reliability measure of the instrument for that
specific peptide accounting for time of treatment and mouse. ICC scores of 0-0.5 show poor

reliability,0.5 - 0.75: Moderate reliability, 0.75-0.9: Good reliability and 0.9-1 excellent reliability.
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Figure 2.6: Time-course analysis and validation of Nimble peptide array results via peptide ELISA.

A&B: Peptide ELISA of three exemplary peptides (16-mer peptides belonging to Hmen1, Vsig2 and
Scndb) on all serum collection timepoints shown in Figure 2.1 on the indicated separate serum
samplesfrom 2 immune mice [B2, top row (A) and A3, bottom row (B)] are shown as optical density
on the left Y axis. Right Y axis displays the corresponding fluorescence intensity from the Nimble
Peptide array system forthe indicated naive and immune timepoints. Three separate replicate data
points are shown for each serum specimen foreach peptide in the ELISA (left Y axis), and 2 replicate
data points are shown (at times these overlap) for each serum sample on each peptide for the

immune Nimble (whole proteome) data (right Y-axis).
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Figure 2.7: Peptides identified by the whole proteome array are also seen by ELISA testing for the

same 6 immune mice, and for a separate validation set of 20 separate immune mice.

A: Heatmap of 16 chosen peptidesfrom whole proteome peptide array displaying whole proteome
peptide array sample results for 12 serum samples including 2 replicate samples (B2 immune and
PD1limmune). Data are shown as log transformed fluorescence intensity. Dotted pink line separates
naive serum samples on left from immune serum samples on right. Fourteen of these 16 Peptides
were chosen, based on whole proteome data, demonstrating significant binding by serum samples
from at least 3 of the 6 immune samples. Two of these 16 peptides shown were selected because
they exhibited no binding by any of the immune or naive serum samples tested in the whole
proteome system (Gria4 & P53, at the top and bottom of the list shown). Data shown are log10 of

the fluorescence units of the peptide array signal.
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B: Heatmap of ELISA results using the same peptides and serum samples as in Figure 2.7A. Grey
areas indicate peptides not tested for the 4 indicated serum samples. Data shown are Optical

Density (0O.D.) values read at 450 nm length on a scale from O to 3.5.

C: ELISA data for the same peptides as in A & B but using immune mouse serum samples never
tested before from 20 separate mice that have received the same treatment to cure their B78
cancer (together with matched naive serum samples for 14 of these 20 immune mice). Also included
here is a repeat immune serum sample from one of the 6 immune mice used in the original whole
proteome samplesasan internal control (B2 immune, also shown in whole proteome data in Figure
2.7A, and ELISA data for original whole proteome samples in Figure 2.7B). Data shown are optical

density values read at 450nm length on a scale from 0 to 3.5.
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C Validation set ELISA on HERON-selected peptides
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Figure 2.8: Peptides selected at random from whole proteome array
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Peptides selected at random from whole proteome array are similarly recognized by ELISA testing

for a separate validation set of 20 separate immune mice and show much lower antibody

recognition in comparison to HERON-identified peptides present in 50% or more of the original

cohort.
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A: Heatmap of 11 peptides from the whole proteome dataset displaying whole proteome peptide
array sample results for 6 immune serum samples (the same 6 immune serum samples used for
figures 2 & 3). Ten of these 11 Peptides were chosen at random utilizing a random number
generator out of all probed peptides from the whole proteome array. One peptide is included as a
negative control peptide that was intentionally selected as a negative control; we have never
observed antibody binding to it in any of our original or validation tested samples (Gria4, at the

bottom of the list). Data shown are log10 of the fluorescence units of the peptide array signal.

B: ELISA data for the same peptides as in A but using immune mouse serum samples not tested on
the whole proteome array from 20 separate immune mice that have received the same treatment
to cure their B78 cancer. These 20 new immune serum samples are identical to the 20 new immune
serum samples shown in Figure 7C. Also included here is a repeat immune serum sample from one
of the 6immune mice used in the original whole proteome samples as an internal control (B2

immune, also shown in whole proteome data in Figure 2.8A). Data shown are optical density values

read at 450nm length on a scale from O to 3.5.

C: ELISA data for 13 of the 16 peptides highlighted in Figure 7 on the same immune serum samples
as in Figure 2.7C. The peptides included here reflect 12 peptides chosen for strong antibody
reactivity in 3 or more of the original 6 mice tested on the whole proteome array. As in Fig. 8A and
B, the Gria4 peptide is included as a negative control peptide (at the bottom of the list). Also
included hereis a repeatimmune serum sample from one of the 6 immune mice used in the original
whole proteome samples as an internal control (B2 immune, also shown in the whole proteome
datain Figure 2.7A, and ELISA data for original whole proteome samples in Figure 2.7B). Data shown
are optical density values read at 450nm length on a scale from 0 to 3.5. Scales used for the

heatmaps in Figure 2.8 A-C are consistent with the scales used in Figure 2.7 A-C.
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Supplemental Figures and Tables

A mouse A3 mouse A4 mouse B2

Normalized To Mode

Normalized To Mode

B Comp-RLL-A: ant-mouse IgG-APC-A Comp-RLL-A ant-mouse IgG-APC-A Comp-RLL-A : ant-mouse IgG-APC-A

Normalized To Mode
Normalized To Mode

C Comp-RLL-A ant-mouse I9G-APC-A Comp-RLL-A ant-mouse IgG-APC-A Comp-RLL-A - ant-mouse IgG-APC-A

Normalized To Mode.
Normalized To Mode

Comp-RLLA  anti-mouse IgG-APC-A Comp-RLLA : ant-mouse IgG-APC-A Comp-RLLA : anti-mouse I9G-APC-A

@ no serum @ naive @ pre-treatment @ post-treatment @ tumor-free @ immune

Supplemental Figure 2.1: Histograms of 1gG binding to tumor cells for three individual mice (A3, A4

and B2) on 3 different tumor cell lines.

Timepoints correspond to the sample collection timeline in Figure 2.1A. A: Binding of serum
antibodies to B16 tumor cells as measured viaflow cytometry. B: Binding of serum antibodies to B78
tumor cells as measured via flow cytometry. C: Binding of serum antibodies to Panc02 tumor cells as
measured via flow cytometry. Data are shown as fluorescence intensities detected in the red
channel measuring fluorescence signal for APC. The samples for each individual mouse are

normalized to mode to enable comparison between the different time points for each mouse.
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Supplemental Figure 2.2: Reproducibility and reliability of probe, epitope, and protein calls

A-C: Reliability of Peptide array: Called peptides were separated in 3 categories [left panel inclusive;
middle panel moderate; right panel restrictive] based on signal strength of the bound peptides. A:
Cryopreserved serum samples from the same Immune blood sample from mouse PD1, were tested
independently (sample PD1-1and PD1-2) on identical whole proteome chips, in assays that were
performed 1year apart. These showed high correlation between signal strength and repeatability of

results after data pre-processing on a probe level. Shown are the log transformed processed raw
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peptide array data generated in arbitrary fluorescence units. In the inclusive category (signal >3xSD
greater than the mean) 58% of probes recognized in sample PD1-2 are also recognized in sample
PD1-1. In the moderate category (signal >6xSD greater than the mean) 70% of probes recognized in
sample PD1-2 are also recognized in sample PD1-1 and in the restrictive category (Signal > 10xSD
greater than the mean) 80% of probes recognized in sample PD1-2 are also recognized in sample
PD1-1. Shown are the log transformed values of background corrected smoothed raw peptide array
data generated in arbitrary fluorescence units. B: Scatter plot of the same serum sample from A
looking at epitope level data instead of individual peptides. Plotted are the -log10 values of the
epitope p values for each epitope recognized in sample PD1-1 and sample PD1-2. Graphs are split up
into each category, B-left, showing inclusive category with 43% of epitopes co-recognized by both
samples, B-middle showing moderate category with 63% of epitopes co-recognized by both samples
and B-right showing restrictive category with 73%. of epitopes co-recognized by both samples, C:
Scatter plot of the same serum sample from A & B looking at protein level data instead of individual
peptides or epitopes. Plotted are the -log10 values of the protein p values for each protein
recognized in sample PD1-1and sample PD1-2. Graphs are split up into each category, C-left
showing inclusive category with 50% of proteins co-recognized by both samples, C-middle showing
moderate category with 66% of proteins co-recognized by both samples and C-right showing

restrictive category with 75% of proteins co-recognized by both samples.
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Supplemental Figure 2.3: Epitope length divided by intensity of binding signal

A & B: Epitopes were split in epitope length spanning between 1 and 8 consecutive 16-mer probes
tiled at 2 amino acids. Over 80% of epitopes required amino acid sequences of 7-16 amino acids for
binding in the moderate (A) and inclusive category(B). Only linear epitopes were probed, but small
conformational epitopes are possible within a 16-mer peptide. The X axis shows the length of the

detected epitope in 2aa steps as most peptides were tiled at 2amino acids. The Y-axis shows the

percentage of all epitopes persample, foreach of the 6 mice tested, with the corresponding epitope
length. The designation for each of the individual 6 mice is shown in small letters next to each of the

6 dots appearing in each of the columns.



82

—
<
()]
—
)
=
©
S
© [e0)
T 9
-
=
—
=
(@]
g . :
s ® .
= _
S 2
°
x
‘% °
= 8§
© [ —
o (0]
C ~—
b= .
3
~ °
(0] (o))
3 9
S o
| ~—
o
® Orig x =10
© 0New><l=8
orl) ° ® New-Naive x=2
[} I I I I I I I I
—
5e-02 5e-01 5e+00 5e+01

% Total Positive Peptides in whole set
elisat: 2 fract: 0.25

Supplemental Figure 2.4: Plot of the hypergeometric p-value of getting at least x or more positives
out of a sample of 14 randomly chosen peptides versus the % of proposed total peptides in the
whole set of ~6.5 million unique peptides. Green - original ELISA results on immune mice, Red -
validation ELISA results on immune mice, Blue - validation ELISA results on Naive mice. Both the red
and green line show very significant p-values for up to almost 50% of peptides of the 6.5million
unique peptides giving a positive signal. However, looking at the Naive samples a significant p-Value
is only reached by a maximum of 5% of positive peptides in this simulation using values derived from

the Nimble and ELISA data generated.
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Supplemental Table 2.1: List of serum samples used across Nimble Peptide arrays, JPT multi-well
peptide array and peptide ELISA with data displayed in this manuscript. Identifiers referto individual
mouse IDs, used for naive as well as immune (noted in column labeled status). Samples marked as
(Pool) on Nimble whole proteome array 1 were only used for Figure 2.2A, Naive 1, Naive 2 and
Immune 1, Immune 2. These were array chips run with pooled samples where it was not possible to
distinguish which serum sample caused each specific antibody binding. Samples were used at a
1:200 concentration for each specific sample, 1:50 concentration for overall serum concentration in

the corresponding array chip.



Nimble Nimble JPT
. whole whole multiwell
Identifier Status . ELISA
proteome proteome peptide
array 1 array 2 array

ACS .na|ve X

immune X X X

PD1 naive X X

immune X X X X

B2 .na|ve X X X

immune X X X

A3 palve X X X

immune X X X

ca immune X X

Ad .na|ve X X

immune X X X
naive pool 1 naive X
naive pool 2 naive X
immune pool 1 |[immune X
immune pool 2 |[immune X

Validation cohort for ELISA only:

Vi r\alve X
immune X
V2 pawe X
immune X
V3 .nalve X
immune X
va .nalve X
immune X
V5 .nalve X
immune X
V6 halve X
immune X
V7 pawe X
immune X
V8 .nalve X
immune X
Vo .na|ve X
immune X
V10 .nalve X
immune X
Vil rwalve X
immune X
V12 r\alve X
immune X
Vi3 halve X
immune X
Vid r\a|ve X
immune X
V15 immune X
V16 immune X
V17 immune X
V18 immune X
V19 immune X
V20 immune X

84
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Supplemental Table 2.2: Co-recognized probe, epitope and protein calculations between repeat

samples.

Values corresponding to Figure 2.2 and supplemental Figure 2.2 and percentage calculations based
on the respective called probes, epitopes, or proteins for serum samples from the same mice at the
same timepoints (using the same cut-offs as shown in Figure 2.2 and Supplemental Figure 2.2)
either run within a day of each other (for mouse B2 in Figure 2.2) or a year apart (for mouse PD1, in
Supplemental Figure 2.2). In addition: calculations comparing serum from 2 different mice tested in
the same run (B2 vs. repeat of PD1) show that different mice demonstrate co-recognition of a small
fraction of the samples seen by those same individual mice. Calculations for % were done as
following: overall=X only +Y only + X&Y; % overall=(overall/all probes)x100; % X&Y=(X&Y/all
probes)x100; % of called (X)=(X&Y/(X only + X&Y))/100; % of called (Y)=(X&Y/(Y only + X&Y))x100; %

of called X&Y=(X&Y/overall)x100.

Sample X (.1) only | Y (.2) only X&Y overall all probes | not called | % overall % X&Y % of called | % of called | % of called
(X) (Y) X&Y

B2 73 5311 7178 22806 35295 8459970 8424675 0.417 0.270 81.11 76.06 64.62

PD1 73 12975 10057 13636 36668 8459970 8423302 0.433 0.161 51.24 57.55 37.19

B2 76 591 1027 6653 8271 8459970 8451699 0.098 0.079 91.84 86.63 80.44

@ |PD1Z6 2610 1857 4326 8793 8459970 8451177 0.104 0.051 62.37 69.97 49.20|

L2 |B2z10 95 149 1422 1666 8459970 8458304 0.020 0.017 93.74 90.52 85.35

e PD1 710 688 276 1068 2032 8459970 8457938 0.024 0.013 60.82 79.46 52.56
o B2vsPD1 (same run, different mice)

23 25536 21112 2581 49229 8459970 8410741 0.582 0.031 9.18 10.89 5.24

26 6408 5347 836 12591 8459970 8447379 0.149 0.010 11.54 13.52 6.64

210 1355 1128 216 2699 8459970 8457271 0.032 0.003 13.75 16.07 8.00

B2 73 1374 1724 7868 10966 85.13 82.03 71.75

PD1Z3 3725 3067 5025 11817 57.43 62.10 42.52

B2 726 58 89 2376 2523 97.62 96.39 94.17|

g PD1Z6 561 453 1752 2766 75.75 79.46 63.34

O [B2710 6 2 526 534 98.87 99.62 98.50

= PD1 710 132 53 495 680 78.95 90.33 72.79
I.E- B2vsPD1 (same run, different mice)

3 8036 6886 1206 16128 13.05 14.90 7.48

76 2434 1844 361 4639 12.92 16.37 7.78

710 427 443 105 975 19.74 19.16 10.77

B2 73 806 1137 6440 8383 53640 45257 15.628 12.006 88.88 84.99 76.82

PD1 73 2295 2001 4249 8545 53640 45095 15.930 7.921 64.93 67.98 49.72

B2 726 45 73 2166 2284 53639 51355 4.258 4.038 97.96 96.74 94.83

_E PD1 Z6 437 375 1544 2356 53639 51283 4.392 2.879 77.94 80.46 65.53

3 B2 710 4 3 501 508 53640 53132 0.947 0.934 99.21 99.40 98.62

2 PD1 710 107 50 458 615 53640 53025 1.147 0.854 81.06 90.16 74.47
Q. |B2vsPD1 (same run, different mice)

Z3 5058 4062 2188 11308 53640 42332 21.081 4.079 30.20 35.01 19.35

26 1767 1475 445 3687 53640 49953 6.874 0.830 20.12 23.18 12.07

210 404 407 101 912 53640 52728 1.700 0.188 20.00 19.88 11.07
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Supplemental Table 2.3: Peptides used in Figure 5 with Nimble and JPT data

284 peptides tested on JPT, and Nimble platform used in Figure 2.5 in no or high signal category.
Data provided for all samples from Nimble and JPT shown in Figure 2.5. Categories were chosen
based on Nimble whole proteome array 1 and then tested on JPT and Nimble whole proteome array

2. All data from JPT multi-well peptide array runs and matched Nimble peptides on all samples can

be found in Supplemental Data 1.
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Supplemental Data 2.1:
376 peptidestested onJPTand Nimble platform. Data provided for all samples from Nimble and JPT

runs performed. Categories were chosen based on Nimble whole proteome array 1 and then tested

on JPT and Nimble whole proteome array 2.
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Chapter 3: Prevalent binding motif in C57BL6 mice cured of B78

melanoma via immunotherapy

Preface

This chapter highlights an interesting finding we came across when analyzing epitopes that were
recognized by multiple mice as highlighted in chapter 2. We found that half of the analyzed mice
exhibited antibiodies against an immunodominant motif consisting of four amino acids (SDTG).
While most of the work is complete, some key questions are left unanswered. We have a few

ongoing experiments to address these and will update the results as we are able to obtain them.

One key limiting factor for this chapter was availability of mouse serum containing antibodies
directed against SDTG-containing peptides to use for various experiments. We were able to show
that additional mice injected with the same tumor cell line and treated the same way were able to
generate an antibody response against some SDTG-containing peptides. These additional samples
will be helpful for some of the planned experiments that will require larger volumes of serum
containing antibodies against SDTG-containing sequences. We have tried many ways but have yet to
identify the exact cause of SDTG recognition as well as what else besides SDTG causes antibody

recognition of these peptides.

We are planning to submit the manuscript later this summertoa peerreviewed journal and make it

available on BioRxiv at the same time. It is tentatively titled and authored by:

Hoefges A, Mathers N, Mcllwain SJ, Tetreault K, Hampton A, Feils A, Tsarovsky N, Pinapati R, Garcia
B, PatelJ, Morris ZS, Erbe AK, Ong IM, Sondel PM. Prevalent binding motif in C57BL6 mice
cured of B78 melanoma via immunotherapy. In preparation for submission; 2023.
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Abstract

Background: Usinga high-density peptide array, we assessed potential protein-targets for antibodies
detectedin mice cured of melanomathrough a combined immunotherapy regimen. Ourgoal was to
identify linear peptide sequences recognized by anti-tumor antibodies produced in mice cured of

melanoma following immunotherapy.

Methods: Mice bearing B78 melanoma tumors were treated with a combination immunotherapy
(local radiation therapy + intratumoral anti-GD2 mAb linked to IL2) capable of inducing an “in situ
vaccine” effect (ISV), enabling mice to be cured of their tumors with long-term immune memory.
Naive (prior to tumorinjection) and immune (post-rechallenge/after cure) sera were collected from
these mice. Using flow cytometry, immune sera showed strong antibody-binding against B16
(parental cell line of B78) and B78 melanomas. These sera were then used on a whole-proteome
peptide-array with 16-mer linear peptides overlapping by 12 or 14 aa to determine specific
antibody-bindingsites, and data were analyzed using HERON (Hierarchical antibody binding Epitopes
and pROteins from liNear peptides), a dynamic programming method that scans adjacent peptides
to determine whether a peptide is bound by antibodies. Epitopes were selected if peptides were

bound using immune sera but not bound, or bound significantly less, with the sera from naive mice.

Results: We identified many binding epitopes only present in immune mice. Among the epitopes
found using our moderate binding category (namely the epitopes showing strong antibody binding),
we noticed a repeating motif consisting of 4 amino acids (aa), SDTG, that was a component of over
60% of epitopes that are well recognized by antibodies induced in at least 50% of the cured mice.
Even though the epitope analysis indicated that this SDTG motif was a component of the peptide
actually recognized on these 16-mers by these immune antibodies, this SDTG 4 amino-acid motif is

not the only reason for antibody binding to these epitopes, as ~ 1/3 of the 16-mer peptides
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including this SDTG motif do not show detectible binding. The specific aa before and the specific 2
aas following the SDTG motif seem to be important for antibody binding. Using an independent
cohort of mice, we were able to show binding of selected peptides containing the identified SDTG

motif by serum from these additional immune mice.

Conclusions: This motif might be an important piece in the immune response of some mice to the
immunotherapeutically induced cure of syngeneic B78 melanoma. We are furtherinvestigating what
causes binding vs. no binding to the motif, and if the antibodies against it originated as a response to
one specificimmunogenic protein vs. an immune response to multiple immunogenic proteins
containing the same motif. The presence of antibodies against this motif might be a useful
biomarkerto predict response to our ISV regimen and might have the potential to be used for other

immunotherapy treatments.

Introduction

Recentcancerimmunotherapy has shown substantial clinical progress especially in melanoma. Even
so, melanoma still causes about 10000 cancer-related deaths in the US alone. Current patients with
late-stage melanoma still have a low 5-year survival rate (~30%) which reflects an improvement
from the 5-year survival rate for comparable patients prior to the introduction of modern
immunotherapy (~15%) (Albittar et al., 2020; Siegel et al., 2022). Current therapeutic measures
include surgical resection and immunotherapy utilizing checkpoint blockade like anti-CTLA4 and

anti-PD1 (Albittar et al., 2020).

However, a 30% 5-year survival rate is not satisfactory, and many patients still do not show
responses to current cancer immunotherapy treatment regimens (Chiriva-Internati & Bot, 2015;

Patel & Minn, 2018).
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Utilizing an in situ vaccination (ISV) regimen previously developed in our lab, consisting of local
administration of radiation and an immunocytokine (IC), we are able to cure C57BL/6 mice with B78
melanoma tumors with lasting protective immune memory (Morris et al., 2016). Within this
treatment, the low-dose radiation acts on the tumor to increase immunogenicity by modifying the
tumor phenotype and releasing immune stimulatory cytokines. The ICis an engineered fusion
protein that contains an anti-GD2 monoclonal antibody linked to IL-2. GD2 is a surface antigen on
many cancers of neuroectodermal origin, including melanoma and neuroblastoma (Navid et al.,
2010). Previous research showed epitope spread in mice cured of B78 via the ISV treatment, as
demonstrated by rejection of the parental B16 melanoma cell line lacking GD2 expression
(Haraguchi et al., 1994; Morris et al., 2016; Silagi, 1969; Silagi et al., 1972; Yang et al., 2012). Serum
samples from these cured mice contained antibodies able to bind to the tumor cells, which was not

seen in serum samples from naive mice (Baniel, Heinze, et al., 2020; Hoefges et al., 2023).

To identify possible new antigenic targets that can be used in a therapeutic approach or as
biomarkers, we utilized a whole proteome peptide array to determine the peptide targets of these
antibodies found in the serum samples from these cured mice. In 2 recent manuscripts we detailed
the immunologic methodology involved for detecting binding of these immune antibodies to
thousands of peptides in the whole proteome array (Hoefges et al., 2023) and presented a
bioinformatic analysis approach to determine which peptides, epitopes and proteins are well

recognized by these immune serum samples (Mcllwain et al., 2023).

This paper evaluates the group of peptides found to be most strongly recognized by sera from six
immune mice evaluated using this whole proteome peptide array. When we focused on those 100
distinct epitopes that were most strongly recognized by at least 3 of these 6 mice, we found a

dominant peptide motif of the 4 aa sequence SDTG, that was contained in roughly half of these 100
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distinct epitopes. This manuscript presents the data identifying this immunodominant epitope and

explores its possible meaning and implications.

Methods

Mice and in vivo tumor treatment:

The treatment modelused here has been previously described in detail (Baniel, Heinze, et al., 2020;
Morris et al., 2016; Morris et al., 2018). In brief, B78-D14 (B78) tumor bearing mice were treated
when tumors reached ~ 100 mm?3 with a combination of 12 Gy local radiotherapy (RT), followed 5
days later with 5 daily intratumoral injections of the hu14.18-IL2 immunocytokine (IC). For mice that
were cured, after 90 days they were rechallenged with an additional injection of the B78 tumor, and
mice that rejected the rechallenge were considered immune. At specific timepoints, as previously
described in detail in (Hoefges et al., 2023), serum was collected via mandibular bleed using BD
serum collection tubes. For select animals, a terminal bleed was obtained via cardiac puncture
under general anesthesia, prior to euthanasia, to obtain larger volumes of serum from immune
mice. Experiments were performed under an animal protocol approved by the Institutional Animal

Care and Use Committee.

Tumor cells:

B78-D14 [“B78”, obtained from Ralph Reisfeld (Scripps Research Institute) in 2002] melanomais a
poorly immunogenic cell line derived from B78-H1 cells (obtained from Dr. Matthew Krummel at
UCSF) which were originally derived from B16 melanoma (Becker et al., 1996; Binnewies et al., 2019;
Broz et al., 2014; Haraguchi et al., 1994; Silagi, 1969). B78-D14 cells lack melanin, but were
transfected with functional GD2/GD3 synthase to express the disialoganglioside GD2 (Becker et al.,
1996; Haraguchi et al., 1994), which is overexpressed on the surface of many human tumors

including melanoma (Nazha et al., 2020). B78-D14 and B78-H1 cells were grown in vitro in RPMI-
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1640 (Mediatech) supplemented with 10% FBS, 2mMol L-glutamine, 100U/ml penicillin and

100ug/ml streptomycin. Mycoplasma testing via PCR was routinely performed.

Nimble peptide array:

The mouse whole proteome peptide microarray was designed and generated as previously
described (Hoefges et al., 2023) and based on the protein set downloaded from UniProt in
December of 2018 for C57BL/6 mice (The UniProt, 2017). Fluorescent intensity unit scoring and

analyses for each peptide were analyzed as described (Hoefges et al 2023, Mcllwain et al 2023).

Peptide ELISA:

For peptide ELISA, 29 separate JPT BioTides™ Biotinylated Peptides were purchased containing a
TTDS-linkerand biotinylation at the N-terminus. The peptides were generated using SPOT synthesis
(Nahtman et al., 2007). Peptides were synthesized from C- to N-terminus ensuring that only full-
length peptides will have a biotin at the N-terminus. Coating of streptavidin plates was performed
per manufacturers instruction with a 250-fold dilution of lyophilized BioTides. ELISA was performed
according to JPTs peptide ELISA protocol with the adaptation to a 384 well plate instead of the
standard 96 well plate to conserve on serum samples. Neutravidin coated 384 well plates by
ThermoScientific (#15400) were used. TMB incubation was set to 30min before adding of the stop
solution and plates were read at regular intervals during TMB substrate incubation (reads at 655nm)
and 1min and 3min after addition of stop solution (reads at 450nm). Optical density values were

used to analyze results.

scRNAseq

Mice bearing B78-D14 tumors were treated with no treatment or external beam RT (12 Gy, Day 1) +

IT-IC (50ug/dose, Day 6-Day 9). On Day 9, 1 hr post-intratumoral injection of IC, mice were
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euthanized via CO, and tumors were excised. Duplicate tumors per treatment group were finely
chopped and suspended in 2.35 ml of RPMI 1640 + Enzyme D (100pL), R (50uL) and A (12.5uL)
(Miltenyi), transferred to a C Tube (130-093-237, Miltenyi) and placed on a gentleMACS Octo
Dissociator with Heaters. On the gentleMACs dissociator, program m_imp Tumor_02was used, after
which the tubes were then inverted and placed in a shaking incubator at 37°C x 40min, and then
returned to the gentleMACS dissociator and run on program m_imp Tumor_03. Dissociated tumors
were filtered through a 40um cell strainer (352340, Corning), washed with 15ml of RPMI 1640, and
centrifuged at 300xg for 10 min. After removal of the supernatant, live cells were purified from the
tumor cell pellet using Miltenyi’s Dead Cell Removal Kit (130-090-101) according to the
manufacturer’s protocol. Cell viability was determined and confirmed to be >90%. The Chromium
Next GEM Single Cell 5’ Reagent Kits v2 (Dual Index) protocol from 10X Genomics was followed for
scRNAseq processing. Quantity and quality of the RNA were assessed using High Sensitivity D5000
ScreenTape on an Agilent 4200 TapeStation System (UW Biotech Center). Around 10,000 cells per
sample captured for library preparation, and sequenced on an lllumina NovaSeq6000 (Novogene,

Sacramento, CA).

Statistical analysis:

Peptide array processing

Data from 13 total samples (5 naive, 6 immune and 2 replicate samples of 2 individual immune
samples) were assayed for antibody binding from 6,090,593 unique sequence probes mapped to a
total of 8,459,970 probes (due toredundancies in tiling across protein sequences and using a mixed
tiling of either 2aa or 4aa across each protein), or a total of 53,640 individual proteins. Using

spatially corrected processed data from Nimble Therapeutics, the data were log2 transformed,
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guantile normalized, and further processed using a sliding average mean window across the protein

location of +/-8 aa.

HERON (Mcllwain et. al 2023) was used to determine thresholds for calling antibody binding at the
probe, epitope (consecutive probes), and protein level for each sample using meta-analyses
methods to summarize binding across subjects in the post-rechallenge condition. Briefly, 1) a global
p-value was calculated using a z-test for each probe signal using all sample and probe values, and 2)
a differential p-value was calculated between the average of the naive samples and each individual
immune (tumor-free) sample. The global p-value and differential p-value for each immune sample
were then combined using the Wilkinson’s max meta p-value method (Wilkinson, 1951). After
correcting for false discoveries using the Benjamini-Hochberg (BH) method (Benjamini & Hochberg,
1995), the individual probesforeach post-rechallenge sample are considered bound by antibodies if
their false discovery rates (FDR) are below a threshold. Epitope regions were identified by applying
the skater algorithm (AssunCao et al., 2006) to identify groups of antibody-bound probes (spatially
and across subjects), and epitope meta p-values were calculated using the Wilkinson’s max method
on the 2" highest probe p-value. Protein p-values were calculated using Wilkinsons’s min (or
Tippet’s) method (Tippett, 1931). After correcting the epitope and protein p-values using the BH
algorithm, the epitope and protein sample calls were made using an FDR cutoff. The number of
samples that were bound by antibodiesforeach probe, epitope, and protein were tabulated as K of

N statistics (K = # of samples with antibody binding; N = total # of samples).

MAFFT alignment tool

MAFFT (Multiple Alignment using Fast Fourier Transform) (Katoh et al., 2019) is a high-speed
multiple sequence alignment program for amino acid or nucleotide sequences. It was used here to

align epitope sequences for all epitopes identified in a certain category to visualize alignment of
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sequences within these epitopes. Input of the top 100 16-mers sorted by average immune
fluorescent score from the moderate category recognized in many individual immune mouse
samples showed strong alignment for these top peptide candidates. Peptide candidates were

previously filtered to represent only one protein isoform for each gene.

WeblLogo creation

Weblogo is a web-based application to make the generation of sequence logos easy and painless.
Sequence logos are a graphical representation of an amino acid or nucleic acid multiple sequence
alignment developed by Tom Schneider and Mike Stephens. The logo consists of a stack of symbols
for each position in the sequence. Level of sequence conservation at a certain position is displayed
by the overall height of the stack while a specific amino acids conservation and frequency is
indicated by the height and size of the specific letter. In general, a sequence logo provides a richer
and more precise visual description of a binding site than would a consensus sequence. WeblLogo
was created by Gavin E. Crooks, Gary Hon, John-Marc Chandonia and Steven E. Brenner,
Computational Genomics Research Group, Department of Plant and Microbial Biology, University of
California, Berkeley and was described in detail by Crooks et al (Crooks et al., 2004) and is based on

Schneider and Stephens sequence logo alignment (Schneider & Stephens, 1990).

Observed vs. expected motif frequency in the proteome

Observedvs. expected frequencies were calculated following Shen et al’s probabilistic model for the
analysis of frequencies of amino acid pairs within protein sequences (Shen et al., 2006). We utilized
the protein sequences presentonthe whole proteome peptide array and calculated frequencies for
each amino acid as well as the count and frequency for each 4-mer peptide. We then followed the

calculations described in Shen et al. If the log2 of the observed divided by expected frequency is
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larger than zero, the sequence occurs more often than expected, if it is smaller than zero, it occurs

less often than expected.

Expected frequency for SDTG=P(S) x P(D) x P(T) x P(G) = 0.0856 x 0.0482 x 0.0542 x 0.0635 =

0.00001419; SDSG= 0.00002240

Observed frequency of SDTG: 310 SDTG-mers found in the dataset = 0.00001382.

Observed frequency for SDSG: 806 SDSG-mers found in dataset = 0.00003594.

Log2(Observed/Expected) for SDTG: -0.03795

Log2(Observed/Expected) for SDSG: 0.68209

Random forest model

All unique sequences bearing the xSDTGxx peptides were found using a regex search.

In total there are 848 sequences. The following features were extracted:

- motif.posl - the amino acid at the 1st position before the SDTG
- motif.pos6 - the amino acid at the 1st position after the SDTG

- motif.pos7 - the amino acid at the 2nd position after the SDTG
- start - the starting position of the SDTG within the peptide

- sequence_length - the length of the peptide sequence

Using the alakazam R package, the following features were collected over the whole peptide:

- gravy - the hydrophobicity of the amino acid sequences

- bulk - the average bulkiness of the amino acid sequences

- polar - the average polarity of the amino acid sequence

- aliphatic - the average aliphaticity of the amino acid sequence

- charge - the overall charge of the amino acid sequence

- region_ACIDIC - the fraction of amino acids that are acidic

- region_BASIC - the fraction of amino acids that are basic

- region_PHOS - the fraction of amino acids containing phosphorylation sites (STY)
- region_AROMATIC - the fraction of amino acids containing aromatics

We also estimate features for the gravy, bulk, polarity, aliphaticity, and charge of the motif.pos1,

motif.pos6, motif.pos7, and the motif.pos67 amino acid sequences.
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We regressed the average post-rechallenge signal using random forests from the random forest
package. After investigating the mean squared error and mean absolute error using 10-fold cross-
validation, the also investigated the variable importance to estimate the largest contributors to the
random forest model. We find that charge, polarity, and the bulkiness of the amino acids at the 1st

and 2nd position after the SDTG have the greatest effect on the regression modeling.

2-way ANOVA

An ordinary 2-way ANOVA was carried out using GraphPad Prism version 9.5.0 using data displayed

in Figure 3.6A. Multiple comparison results used Tukey’s multiple comparisons test.

DNA sequencing analysis pipeline

DNA sequences from B16 and B78 cell lines were kindly provided by the Maris Laboratory at
Childrens Hospital of Philadelphia (CHOP) and compared to the ensemble GRCm39.107 mouse
genome. Paired-end reads were alighed using bwa mem, converted to sorted bams utilizing
samtools (https://samtools.github.io/bcftools/howtos/csq-calling.html), gatk was used to analyze
for single nucleotide variations, small indels and frameshift mutations

(https://gatk.broadinstitute.org/hc/en-us). Duplicates were marked using gatk as well as to add or

replace read groups. Gatk Haplotype caller was used for variant finder and bcftools csq for
consequence calling on protein sequences. Vcf2prot (https://github.com/ikmb/vcf2prot) was

utilized to find new proteins.

ScRNAseq

Raw reads were aligned to the mm10 reference genome together with UMI (unique molecular
identifier) counting using the Cell Ranger pipeline (V3) from 10X Genomics. Data was filtered using
DoubletFinder (McGinnis et al., 2019) to remove potential doublets. Further filtering was done to

include only the cells with low mitochondria contents (<=10%) and more than 200 genes covered by


https://gatk.broadinstitute.org/hc/en-us
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the mapping. To integrate the scRNAseq, we used a fuzzy clustering-based integration method
(Harmony method) (Korsunsky et al., 2019) to account for potential technical variance across

samples.

Downstream analysis for all cells and for only tumor cells were based on Seurat single -cell analysis
package (Stuart et al., 2019) including: principal component analysis with standard deviation
saturation elbow plot to select the optimal number of principal components, graph-based clustering
using FindCluster with different resolutions from 0.1 to 2 to justify the number of clusters based on
representative markers overlaid in the hierarchical tree across different resolutions (Clustree R
package), differential expression analysis using MAST (Finak et al., 2015) implemented in Seurat with
the cutoff average log2FC 0.5, and at least 30% of cells expressed the markers. Data was further

analyzed using GraphPad Prism version 9.5.0.

Results

Most of the highly recognized epitopes share a common motif

We have shown previously that B78 melanoma bearing mice successfully treated and cured with ISV
could generate many different antibodies against endogenous proteins on the cell surface of B78
melanoma and in the proteome of C57BL/6 mice (Hoefges et al., 2023). We used a high-density
whole proteome peptide array system to focus on identifying antigenic epitopes recognized with
strong binding by antibodiesin immune serum samples (after the mice had been successfully cured
of their tumor and rejected a rechallenge with the same or a related tumor type) but no binding by
antibodies in naive mouse serum samples (beforetumors were implanted). An example of how the
raw data from this high-density array system can be analyzed to identify highly recognized epitopes
is presented in Figure 3.1A. As we reported, we used the HERON system, evaluating the

strength/intensity of binding data to define 3 analysis categories of peptide and epitope binding,
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based on how many standard deviations above the mean was used to define the threshold for each
category. We utilized a very strict (> 10 S.D. over the mean), a more moderate (> 6S.D. over the
mean) and an inclusive (> 3 S.D. over the mean) threshold. When focusing on the moderate
threshold, we saw around 2000 distinct epitopes on average recognized by each of 6 individual

immune mice probed on a whole-proteome peptide array (Figure 3.1B).

To identify which of these epitopes might be more important and need further investigation, we
looked at epitopes that were recognized by multiple immune mice. Figure 3.1C shows the number
of these moderate category epitopes that were co-recognized by atleast 3 of our 6 whole proteome
profiled immune mice (highlighted by green dotsin Figure 3.1C). We then focused on those epitopes
with the highest average immune signals. We furthermore filtered out different splice variants of
proteins if the identified epitope was in a conserved area (i.e., the peptides were the same for this
area between different splice variants). One epitope entry perspecificsequence was used to ensure
each was a unique epitope, and made certain that the binding component (main aa se quence
recognized) of the epitope was present and then selected the top 100 of these epitopes. We then
collected the sequence for the whole epitope and entered it into a sequence alignment program
(MAFFT, Multiple Alignment using Fast Fourier Transform) to check for common aa sequences and
possible overlap between proteins and epitopes that otherwise was not apparent to us ( Figure
3.1D). Interestingly, we saw that over 50% of our top 100 sequences aligned to a specific motif four
amino acids in length. It was either an SDTG (Serine, Aspartic acid, Threonine, and Glycine) or an
SDSG, where the T (Threonine) was replaced by anotherS (Serine). SDTG was present 45 times while
SDSG was present only 13 times. This high representation of SDTG within these 100 sequ ences was

further illustrated in Figure 3.1E.
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Motif presence in the proteome

To investigate the meaning of this motif we checked for overrepresentation of SDTG and SDSG in
the proteome. Utilizing Shen et al's developed algorithm to determine if a specific amino acid
sequence’s observed frequency is more or less than expected, we found that there are 310 SDTG-
mers belonging to unique UniProt IDs in the whole proteome peptide array dataset, which leads to
an observed frequency of 0.00001382 vs. an expected frequency of 0.00001419 (Shen et al., 2006).
The Log2(Observed frequency/expected frequency) gives information if the sequence occurs less or
more often than expected. If the result is greater than 0, the sequence occurs more than expected,
if it is less than zero, it occurs less than expected. Log2(0.00001382/0.00001419) = -0.03795. This
resultindicates that SDTG occurs slightly less oftenin the proteome than expected. With it occurring
less oftenin the proteome oreven with an average frequency as expected, finding SDTG in 45 of our
top 100 co-recognized epitopes is quite unexpected. The Log2(0.45/0.00001382) = 15, consistent
with a far higher than expected presence in the epitopes recognized by the immune serafrom these

6 mice, and thereby suggesting it has biological significance in this setting.

When testing for overrepresentation of SDSG in the proteome, we found an overrepresentation of
SDSG with an expected frequency of 0.00002240 and an observed frequency of 0.00003594, leading
to a value of 0.68209 which indicates a small overrepresentation of the sequence. Thus, the

appearance of SDSG in 14 of the 100 top epitopesis also greaterthan expected, but~ 10-fold less so

than SDTG (Figure 3.1D). For SDSG, the Log2(0.14/0.00003594)= 12.

Most, but not all SDTG motif containing peptides are recognized by some immune sera

We investigated if we would observe binding by immune serum to all peptides in the proteome
containing SDTG. We filtered the whole proteome peptide array dataset for SDTG -containing probes

and grouped those into regions, combining individual consecutive peptides into one region, and
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removed all redundant sequences from separate splice variants. By this process we found 169
separate SDTG sequences in the proteome (Figure 3.2A). Not all SDTG peptides showed binding in
the immune samples. Of these 169 sequences, 125 sequences were detected utilizing HERON with
48 being recognized in the restrictive category (light green in Figure 3.2A), 40 in the moderate
category (dark green in Figure 3.2A) and 37 in the inclusive category (dark red in Figure 3.2A). 44 of
these SDTG-regions were not recognized by HERON (light red in Figure 3.2A). Overall, very little
reactivity to SDTG was found in naive samples, while over half of all peptides showe d significant
binding in some immune samples and a quarter of peptides showed very high reactivity (88 regions
were recognized in moderate or restrictive, 48 in the restrictive category by HERON) in immune

samples.

To investigate what may be different between the SDTG-containing peptides with
substantial immune serum binding versus the SDTG-containing peptides without substantial
immune serum binding, we utilized a random forest model. This screened for the potential
importance of many different properties of these peptides to help distinguish those peptides that
were bound by immune sera from those that were not. The properties evaluated, and their
importance in whetheran individual SDTG containing peptide was bound by immune seraare shown
in Figure 3.2B, and include: peptide charge, presence of specific amino acids in specific positions,

polarity, groups they contain, their acidity, and other features.

The random forest model showed that charge, as well as amino acid positions adjacent to the SDTG
motif do have some influence on whether a particular peptide might or might not be bound by
immune serum, none of these parameters, nor any combination of these parameters can be used
with certainty to determine whether a given peptide will or will not be bound by immune serum
(Figure 3.2B). For example, the determinant of charge was identified as the most important

determinant tested in Figure 3.2B. Peptides with extreme charges (< -4 or > +3) all show low or
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moderate binding by immune serum (Figure 3.2C). Yet, peptides with moderate-low charges ranging
from -4 to +3 show about equal distribution of peptides with low signal, with moderate signal and
with high signal. In other words, within the moderate charge range, there is no charge difference

between peptides that are recognized well vs. not recognized by immune sera (Figure 3.2C).

We then asked whether the single amino acid position immediately before the SDTG sequence
influenced the ability of the peptide to be bound by immune sera ( Figure 3.2D). However, for the 20
aa tested in the position before the SDTG, 17 showed a wide distribution of peptides with high,
medium, and low signal average with immune sera; indicating that these 17 individual aa did not
substantially influence immune serum binding. Two aa appeared to show only strong binding by
immune sera (C and K), while one aa showed only low binding (W). However, for all 3 of these, the
number of peptides found with that amino acid in the first position was low (4 for C, 9 for K and 5
for W). Further inspection showed that these peptides were all closely related stacked peptides
from a single epitope for C and W and from 2 epitopesforK. Thus, it is possible that the presence of
C or K in this position actually increased binding by immune sera, while a W may actually decrease
binding. However, as the number of epitopes with these 3 aa in this position is so small, it may be
that some totally different property is influencing the high or low binding of these, and by
coincidence/chance alone, the C, K or W is showing up in this position in these few peptides. Figure
3.2E & F show a similar analysis as shown in Figure 3.2D, but for the importance of the specific aa
(of 20 possible) seenin position 6 (Figure 3.2E) and position 7 (2 down from the SDTG) (Figure 3.2F).
For the most part, most aa in this position 6 and 7 are associated with a range of peptides with high,
moderate, or low binding by immune sera. The combination of all 3 of these positions (1-SDTG-6-7)

can be seen in Supplemental Figure 3.1.
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Antibody to the SDTG Motif is present in additional immune animals

For further investigation of the antibody response in immune mice to this SDTG motif, we tested
whether additional animals that were cured of the same B78 melanoma utilizing the same
treatment also developed antibodies against SDTG containing epitopes. We chose 26 separate
peptides containing SDTG from those that showed high-binding by some immune serum samples
from the original whole-proteome peptide array. The original whole proteome peptide array data
using the original naive and immune serum samples (Hoefges et al, 2023) are shown in heat-map
format, against these 26 peptides, which are shown on the Y axis in Figure 3.3A. We tested these
same 26 peptides via a separate peptide ELISA assay system (see Methods and Hoefges et al, 2023)
on the same original naive and immune serum samples (where they were available) ( Figure 3.3B)
and were able to reproduce somewhat similar binding patterns between the data from the whole
proteome array and the peptide ELISA systems. When testing these same 26 SDTG-containing
peptides in the peptide ELISA system using serum samples from 20, new, additional, independent
mice that had successfully cleared their B78 melanoma tumor utilizing the same radiation in
combination with the immunocytokine immunotherapy, and had never been tested on the whole
proteome array, we were able to identify 9 additional mice that also responded to at least some of
the SDTG-containing peptides (Figure 3.3C). With 9 out of 20 recognizing at least some SDTG-
containing peptides, the ratio is similar to that seen with our original whole proteome sample set (3
out of 6 mice recognizing SDTG peptides). This therefore confirms that induction of antibody to
some SDTG containing peptides is induced by the process of bearing B78 tumor and receiving this

radio-immunotherapy treatment.
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Why is antibody recognition of SDTG so prevalent?

One possible cause of SDTG reactivity could relate to the fact that the B78 tumor used here was
derived from B78-H1 melanoma that was then transfected with GD2 synthase and GD3 synthase to
induce membrane expression of the GD2 disialoganglioside, to enable recognition by the anti-GD2
immunocytokine usedin the therapy (Haraguchi et al., 1994). To test this, we obtained the parental
B78-H1 cells (B78 cells nevertransfected to express GD2) and implanted these into 20 C57BL/6 mice
which we then treated with radiation and intratumoral IL2. Since these tumors did not express GD2,
treatment with an anti-GD2 immunocytokine would not be advantageous. This treatment with
intratumoral IL2 would not be as effective as the immunocytokine against a GD2 expressing tumor
but should still provide some immunotherapeutic benefit. To help generate some tumor-free mice,
we treated half of the cohort with anti-CTLA4 in addition to the radiation and IL-2, since we have
previously shown that the addition of anti-CTLA4 to the treatment increases response and can cure
larger tumors (Morris et al., 2016; Morris et al., 2018). Serum samples from all 20 of these mice
were obtained on day 55 post-treatment (when some animals with progressive tumors needed
euthanasia). These serum samples were all tested for reactivity to SDTG -expressing peptides using
13 of the previously most-reactive peptides in the ELISA system (as shown in Figure 3.3B&C). We
included all mice here irrespective of tumor clearance or not. While 1 of the 20 mice showed very
strong anti-SDTG antibody response to all of the SDTG containing peptides (mouse D5), 11 of the 19
mice tested had detectible antibody to at least one SDTG containing peptide, 2 mice had reactivity

to 2 SDTG peptides and 2 mice had reactivity to 3 or more SDTG peptides (Figure 3.4A).

Tumor growth curves of these 20 mice treated either with radiation and IL-2 only or radiation in
conjunction with IL2 and anti-CTLA4 are shown in Figure 3.4B, no obvious difference could be noted
between the two separate groups. Overall, the complete response rate was low in this experiment:

2 mice getting the IL2 alone had complete response (CR) and 5 mice getting the I1L2 with anti-CTLA4
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had a complete response (CR), out of 10 in each group. When dividing the groups based on ELISA
reactivity to SDTG-containing peptides and grouping them into 3 groups: a) did not recognize any
peptide, b) recognized one peptide, or c) recognized more than 1 peptide, we also saw no obvious
differencesin the growth kinetics (Figure 3.4C, p-values 0.05 for Ovs. 1, 0.06 for 1 vs. 2+ and 0.79 for
0 vs. 2+). The complete response rate and partial response rate were similar in Figure 3.4C for these
mice with antibody detected to SDTG to Figure 3.4B where groups were divided based on treatment

received.

Hypotheses regarding the frequent SDTG recognition

We established that the SDTG motif is recognized frequently by mice cured of B78 melanoma
utilizing radiation and IC treatment, but we are still investigating why it is frequently recognized.
One of our hypotheses is that somewhere in the B78 genome a mutation happened that caused an
amino acid sequence change in a protein which led to a protein previously not containing SDTG, now
containing SDTG. This could have happened via a deletion, insertion or via a base pair switch that
resulted in a changed amino acid sequence (Figure 3.5A). Another hypothesis is that the protein
already contained an SDTG, but due to a mutation in the gene the conformation of the protein was
changed which now exposes the SDTG in the folded protein. Either of these scenarios could make
the modified protein appear foreign and different to the immune system, in the exposed SDTG
region, resulting in immune recognition of this mutated protein (Figure 3.5B). However, our search
through DNA mutations in B78 versus normal mouse cells has not yielded any new proteins in B78
that contain SDTG and has not shown mutations that would cause conformational changes in a
protein that contains SDTG. We did find 2 proteins (Ccnalf and Btbd8) with mutations that contain
SDTG (Supplemental Figure 3.2), but the mutations seemed to be minor and not affect folding. Both
proteins did show high binding in the whole proteome peptide array to the SDTG -containing region.

However, further analyses utilizing alpha fold protein prediction is underway.
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The third hypothesis is not based on DNA mutations, but rather differential expression between
normal tissue and B78 melanoma either due to treatment or just in general (Figure 3.5C). Might
there be a protein that contains SDTG that has very restricted expression in post-natal tissues, such
that the immune system is not aware of it. If that protein were overexpressed in or on B78 tumors,
the process of rejecting it immunotherapeutically may turn on a strong immune response, which
could focus on the SDTG containing e pitope. To investigate this further, we conducted scRNAseq of
treated and untreated tumors taken 8 days post radiation, and immediately after receiving the 4
subsequent doses of the immunocytokine, to look at differential expression in SDTG -containing
proteins at this time point in treated and untreated tumors. Inthese analyses of scRNAseq data, we
used RNA expression of SDTG-containing proteins in the B78 tumor cells themselves and compared
this to RNA expression from the non-malignant, non-melanoma cells within the tumor, consisting of
cells from the tumor microenvironment, identified as epithelial cells, myeloid cells, B cells, stromal
cells, NK cells and T cells (Figure 3.6A). We further split this up into treated and untreated tumor

and other.

We found four SDTG-containing proteins that had significantly different expressionin the treatedvs.
untreated tumor samples as well as in comparison to the non-tumor cells found in the tumor
microenvironment, mainly T and NK cells, stromal cells, myeloid and B cells and endothelial cells
(Figure 3.6B). The 4 genes with differential mMRNA expression and SDTG-motif present in their
protein were Junb, Pdia3, Bng and Rpl11 as identified via 2-way ANOVA and Tukey’s multiple
comparisons test with Junband Rpl11 higherin the treated than untreated, and the other 2 lower in
the treated tumorthan the untreated tumor. Bsg showed an overall higher expression in tumorthan
otherindependent of treatment. For Pdia3 we observed highest expressionin the untreated groups

vs. the treated groups.
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Junb, Pdia3 and Rpl11 were also highly recognized via antibody responses as measured on
the whole proteome peptide array (Figure 3.3A). We attempted ELISA analyses with these peptides
but were notable to get good ELISA binding to any of these peptides even testing the original serum
samples from 4 of the original 6 mice, of which at least 2 mice tested in this ELISA had shown strong

binding to these peptides in the proteome array (Figure 3.3A vs. Figure 3.3B).

Discussion and conclusions

In this paper we identify a 4 aa SDTG motif, found in many peptides, that was strongly bound by
immune sera from mice cured of B78 melanoma utilizing an ISV treatment consistent of radiation
and intratumoral immunocytokine targeting GD2 on the tumor cell surface and delivering IL2.
Antibody able to bind to this motif was identified in roughly half of all mice that have become
immune to this B78 melanoma tumor via our treatment as shown via successful rejection of a
rechallenge (Figure 3.1). This motif is notoverrepresented onits own in the mouse proteome when
utilizing an algorithm to determine expected vs. observed frequencies of specific motifs (Shen et al.,
2006). To identify a motif that is this frequently recognized in the immunome of mice is especially
striking when looking at the study of Han & Lotze who took two blood samples from the same
individual, from the left arm in the morning and the right arm in the evening and divided each draw
into 20 aliquots (Han & Lotze, 2020). They then went on to analyze all complementarity-determining
regions (CDR)-3 regions found in T and B cells, via sequencing, to establish the immune repertoire
that this one individual had at the 2 timepoints. The immune repertoire was defined as the sum-
total of the individual clonotypes within one chain, including individual CDR3 sequences. They found
over 5 million separate clonotypes with only 12,220 (0.24%) of these being shared by all 40 aliquots.
Only about 50% were shared between any 2 aliquots with a higher percentage being shared at the
morning draw (55%). About half of the identified clonotypesappearedin only one of the 40 aliquots.

Seeing that only 0.24% of all clonotypes were shared between all aliquots taken within one
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individual highlights the diversity presentatany given time in clonotypes and the adaptome, where
the adaptome is defined as the sum-total of expressed T and B cell receptor genes in a sample,
composed of seven chains, including the alpha/beta and gamma/delta chains for T cells, and

heavy/lambda or kappa chains for B cells (Han & Lotze, 2020).

Finding this 4 aa sequence motif in more than 50% of the top epitopes from a whole proteome
antibody binding screen identifying epitopes co-recognized by at least 3 of 6 separate immune mice,
but not by their naive sera (Figure 3.1) in comparison to the fraction of shared clonotypes within a
single individual, suggests this motif is highly recognized by an immune response triggered by

bearing the B78 melanoma and receiving this curative immunotherapy.

We further characterized the SDTG-motif and its properties. We identified all SDTG-containing
regions present on the whole proteome peptide array and kept only unique SDTG-containing
regions. This revealed that of the 310 SDTG-mers only 169 were unique epitopes and not part of an
isoform of the same gene (Figure 3.2A). Within these 169 SDTG-containing regions we found 125
being recognized by HERON, with 48 in the restrictive category, 40 in the moderate category and 37
in the inclusive category. 44 peptides were not recognized as having significant binding by HERON.
While this highlights that most SDTG regions did show antibody binding, not all of them did. To
determine whatis required forantibody binding besides the presence of the four aa long sequence
of SDTG we utilized a random forest model. While the random forest model showed some
correlation to overall charge of the peptide as well as aa present right before or after the SDTG
motif, it did not show a clear answer to what determines whether immune sera from a mouse that
binds to at least some SDTG containing peptides will or won’t bind to an individual SDTG containing
peptide of interest (Figure 3.2B). One issue with this analysis could be that we were only able to use
the data present from the 169 SDTG containing regions from the proteome used in the initial

peptide array. However, for a thorough analysis of importance of which aa found just before or after
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the SDTG aa (as in Figue 3.2D&E) it may be helpful to look at additional aa before or after the motif

as well as all possible combinations of the 20 aa in all positions.

To further substantiate the significance of this motif, we tested sera from several separate immune
mice, to validate that antibody against this SDTG motif could be confirmed in additional mouse
serum samples. By testing for antibody binding to SDTG peptides in a validation set of 20 mice
(compared to the original 6) we were able to identify an additional 9 mice with strong reactivity
towards at least 1 SDTG-containing peptide (45%, Figure 3.3C), with several mice recognizing several
SDTG peptides. We translated these results with the whole proteome peptide array system to an
analysis in a separate ELISA system using a fraction of the SDTG containing peptides that were
strongly positive in the array. Not all of these peptides showed the same pattern of binding on the
same samples utilized in the whole proteome peptide array, but there were some clear similarities.
In general, peptides that did not show the same pattern, i.e., lacked positive binding signal in the
ELISA usingthe serum samples from the initial peptide array, also did not show binding to any of our
validation serum samples via ELISA. This does not mean that these validation samples do not have
reactivity towards these peptides, but rather hints at a possible issue with binding in the ELISA
system. This could be caused by the different synthesis mechanisms used to generate these
peptides, the different way of attaching peptides to the plate between the whole proteome array
and the peptide ELISA, differentincubation times and temperatures as well as the opposite direction
in which the peptides are attached to the plate in the array vs. the ELISA (N-terminal attachment via

Biotin in the ELISA system vs. C-terminal attachment via a Lysine in the peptide array).

Due to these issues with some of the peptides, we decided to choose peptides we had seen good

ELISA results with to further screen for SDTG-reactive antibody presence.



113

One possible mechanism that might have induced antibody to SDTG could potentially be the plasmid
used to integrate GD2 and GD3 synthase into the B78-D14 cell line to express GD2 on the cell
surface. To test if this was the case, we implanted B78-H1 cells into mice and treated them with
radiation and IL2 as well as radiation, IL2 and anti-CTLA4 to generate tumor-free immune mice. B78-
H1 is the original B78 cell line that had neverbeentransfected and does not express GD2. We were
able to show that 11 of 20 mice generated antibody able to bind at least one of the 13 SDTG
peptidestested, and one mouse generated a very strong antibody response to all 13 SDTG peptides
(Figure 3.4A). However, this mouse did not clear its tumor. Nonetheless, the ability of these mice,
never exposed to a plasmid containing tumor to recognize some SDTG containing peptides
establishes that SDTG generationin these mice is not caused by possible changesin the genome due

to integration of the plasmid enabling GD2 expression on the cell surface.

The strength of the anti-SDTG antibody response in this experiment was lower than those shown in
Figure 3.3, based on the lower fraction of SDTG peptides recognized. Even so, the number of
positive peptides recognized by these 19 serum samples from treated mice ( Figure 3.4A) of these 13
selected SDTG containing peptides (27 positive reactions out of 247 tests involving 13 SDTG -
containing peptides identified with separate mice) far exceeds (p< 0.001) the number of ELISA
positive reactions seen with the 20 highly immune validation mice shown in Figure 3.3C, when they
were tested on 10 randomly selected 16-mer peptides from the whole proteome array (1 weakly
positive reaction out of 200 combinations in a similar ELISA, as reported previously (Hoefges et al.,
2023). This could be further caused by differences in selection of mice tested via ELISA. For this
experiment we tested all mice included in the experiment. We rechallenged all of these mice
regardless of current tumor status 30 days after they finished treatment and harvested their serum

10 days after rechallenge. For all other experiments we only utilized rechallenge serum from mice
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that had successfully rejected a rechallenge as well as their primary tumor with the primary tumor

cured at least 30 days prior to rechallenge.

We wanted to assess if the development of antibodies targeting SDTG -containing regions was
associated with tumor clearance or response to treatment. To assess this, we grouped the mice
based on SDTG-recognition by their serum testing in ELISA. If only 1 SDTG-containing peptide of the
13 tested was recognized, they were evaluated separately than those mice that had serum that
bound more than one SDTG-containing peptide. A third group contained animals that did not
recognize any of the 13 tested SDTG-containing peptides. Analyses of tumor size in response to
treatmentbetween these 3groups did not show any significant difference; nor was there any trend.
These results indicate, in this small study, that the development of antibody to SDTG following
treatment was not associated with a detectible impact on anti-tumor effect in the initial tumor
response totreatment. The only trend visible was that the addition of anti-CTLA-4 to the radiation +
immunocytokine treatment induced a slightly better overall response rate than radiation and IL-2
alone (p = < 0.001); all of the animals receiving the additional anti-CTLA4 showed a partial or
complete response (Figure 3.4B & C). SDTG-reactivity and response correlation was difficult due to
sample size. While this might be due to SDTG-detection not aiding response, it could also be
because this cohort overall had a lower than previously reported response rate (for SDTG as well as
treatment). All of this might again be due to the different cell line and treatment used than in
previous reports as mentioned above. In a separate analysis of the curative immune response to
these same B78-D14 tumors, in response to radiation, checkpoint blockade and toll-like-receptor
activation, our collaborative team found that the involvement of B cells played a role in the primary
anti-tumor response, and tumor-reactive antibody was also involved in the anti-tumor effect
(Jagodinsky et al., 2022). It was not possible to obtain serum from these animals to evaluate anti-

SDTG antibody.
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When testing the different hypotheses proposed in Figure 3.5A&B, DNA sequencing only showed
mutations affecting the amino acid sequence in two genes containing SDTG (Cacnalf and Btbd8).
Both had these mutations in a separate area of the protein than the SDTG sequence is located, and
the mutation present did not seem to affect protein folding properties (Supplemental Figure 3.2).
We are further investigating the influence of the mutation on protein structure utilizing alpha fold

predictions.

RNAseq analysis revealed differential expression of 4 genes between the tumor and other cell types
foundin the tumor microenvironment (Figure 3.6). One issue with the RNAseq data is that we were
only able to match 115 gene names containing SDTG. Some of the missing genes were ones with
high peptide array binding. These potentially could have a more differential expression between
normal tissue and tumor. We are currently also conducting bulk RNAseq of tissues obtained from
tumor-bearing mice, to compare B78 cells vs. radiated B78 cells vs. normal C57BL6 skin cells. We are
hoping that this comparison will allow for better comparison between tumor cells and “normal”
non-tumor cells (those found in skin) than we did with our initial analysis that used the non-tumor
immune and stromal cells from the tumor microenvironment, to evaluate gene expression in non-

tumor cells with data from the single cell RNAseq data obtained from in vivo tumors.

In summary, we identified an SDTG-based antibody binding motif that seems to have
biological meaning, given the very strong and high frequency of its recognition by a large proportion
of mice cured of the B78 tumor by this immunotherapy regimen. While the translatability of this
exact motif to humans might not be given, the approach used to identify this motif could certainly
be used as a template for motif identification in human samples. It will be important to investigate
this motif further to elucidate the reason why it is recognized so strongly and so frequently, and

whether its presence may somehow be involved in the primary, or memory, anti-tumor response.
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Figure 3.1: Motif identification.

A: Example of raw high-density peptide array binding data highlighting a predicted epitope,
defined as a clustered and overlapping antibody binding region in the peptide microarray. A
section of the membrane-spanning 4-domains subfamily A member 10 (Ms4A10) protein is

shown, with 8 stacked 16-mer peptides, each shifted by 2 aa positions, starting sequentially at
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aa position 221 through 235, and thereby collectively representing aa positions 221-251.
Fluorescence intensity results are shown for each of these 8 16-mer peptides forseparate serum
samplesfrom 2 naive mice (naive B2 and naive A3) and 3 immune mice (PD1, B2 and A3). Five of
the consecutive 16-mers show strong binding by 2 of the 3 immune sera, while the other 3 16-
mers show very weak binding by all 5 sera shown. Immune A3 shows binding to the same 5
peptides but signal strength is significantly reduced in comparison to the other 2 immune mice.
The 5 well recognized 16mers each share the 8 sequential aa shown in green font in the probe
sequence section, indicating this 8 aa sequence, shared by these 5 peptides is the recognized

epitope.

B: Number of epitopes identified in the Immune samples with significantly higher antibody
binding (in the moderate threshold category) in immune serum than in Naive serum samples.
Each dot represents the number of epitopes recognized in the moderate category for each of

the 6 separate immune mice tested.

C: Number of unique epitopes each recognized by any individual immune mouse, or co-
recognized by 2, 3, 4, 5 or 6 immune mice (of 6 total mice) for the number of epitopes in the
moderate category. The single dot plotted above the individual numbers plotted on the X axis
indicates the number of total distinct epitopes recognized by exactly that number of mice.
Epitopes shared by 3 or more mice are highlighted with green dots. For example, 186 epitopes
are recognized by 3 mice. That means 186 epitopes total are shared by exactly 3 of the six
immune mice tested, different epitopes out of this group of 186 are recognized by different
combinations of 3 mice out of the 6 immune mice. For reference of epitopes recognized in the

inclusive and restrictive categories, please refer to Hoefges et al 2023, Figure 3.
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D: All epitopes co-recognized by at least 3 mice were filtered to include unique epitopes only
representing one isoform of each protein. The average immune score of a specific epitope was
usedto representthe epitope. Epitopes were ranked by highest average immune signal and the
top scoring 100 epitopes were aligned to identify amino acid sequences shared or similar
between these using MAFFT alignment. MAFFT alignment revealed a 4-aa sequence (with 4

identical or similar amino acids) shared by 65 of the top 100 epitopes.

E: WebLogo representation of the top 100 epitopes aligned in D. Weblogo is a software for
sequence logo generation which is a graphical representation of an amino acid multisequence
alignment. It consists of a stack of symbols for each position in the sequence. Level of sequence
conservation at a certain position is displayed by the overall height of the stack while a specific
amino acid’s conservation and frequency is indicated by the height and size of the specific letter.
Length of the Weblogo is 24 positions due to MAFFT alighment aligning the original 16-mer
sequencestostartand end at different positions. The WebLogo clearly highlights the conserved

common motif of SDTG within these 100 epitopes.
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Figure 3.2: SDTG-Motif in the proteome: binding vs. no binding.

A: MAFFT alignment of all 169 unique SDTG-sites present onthe whole proteome peptide array
is shown on the left. To the right, are the corresponding measured log2-transformed
fluorescence intensities for each of these unique SDTG peptides, as detected with all serum
samples tested. These serum samples include samples from 5 naive mice and 6 immune mice.

The heat map color scale is linearly related to the strength of the fluorescent signal for that
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serum sample tested, ranging from black (weakest) over purple to light yellow (strongest). Last
column in the heatmap represents the level at which HERON identified these peptides as being
bound, or not bound by the immune sera ( : restrictive, dark green: moderate, dark

red: inclusive, light red: not called).

B: Random Forest model significance matrix showing parameters with influence on signal
strength for a specific peptide containing SDTG. Each line on the Y axis is a separate parameter
tested for importance of influence on signal strength (see statistical methods). The X axis
indicates % IncMSE, defined as % increase in mean standard error, the higher the MSE is, the

more influence this parameter has on the modelinferring importance of the parameter.

C: Charge as a significant influence on binding: Each light green dot is a fluorescent signal value
for naive serum being tested on 848 unique SDTG-containing peptides. Each dark green dot is a
value for immune serum being tested on the same 848 peptides. The strength of the signal is
indicated on the y axis, and the electric charge forthat peptide is indicated, from -9 to +6 on the
X-axis. Those few peptides with extreme charges < -5 or > +4 have low chances of SDTG-
antibody binding. Peptides with charges ranging from -4 to +2 show a distribution of peptides
with low, moderate, or high immune serum binding. None of the peptides have high binding

with naive sera, regardless of charge.

D: Amino acid position immediately before SDTG (position 1): each column along the X-Axis
showsthe dots for immune serum binding to all 848 SDTG-containing unique peptides, based on
which of the 20 possible aa is in the position immediately before the SDTG. The vast majority of
peptides have one of 17 aa in that 1% preceding position, that are associated with a similar

distribution of high, medium or low valuesin each column. A small number of epitopes have aC
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or K in this position, and they all have high binding, while a small number have a W in this

position, and they all have low binding. These correspond to “motif.pos.1” in Figure 3.2B.

E: Amino acid position 6, one amino acid after SDTG: This analysis is similar to that in Fig. 2D, but
instead is looking at those epitopes that have the indicated aa on the X-axis in position 6, 1 aa
after SDTG in the epitope. Some amino acid combinations show a trend toward either high or
low binding while others show a wide range of high, medium, and low binding possibilities. The
analyses yield somewhat similar results as seen in Figure 3.2D, and this corresponds to the

analysis of “motif.pos.6” in Figure 3.2B.

F: Amino acid position 7, two amino acids after SDTG: This analysis is similar to that in Figure
3.2D&E, but instead is looking at those epitopes that have the indicated aa on the X-axis in
position 7, 2 aa after SDTG in the epitope. Some amino acid combinations show a trend toward
either high or low binding while others show a wide range of high, medium, and low binding
possibilities. The analyses yield somewhat similar results as seen in Figure 3.2D&E, and this

corresponds to the analysis of “motif.pos.7” in Figure 3.2B.
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A Whole Proteome array data on HERON-selected SDTG- B Whole Proteome array samples ELISA data on
containing peptides HERON-selected SDTG-containing peptides
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Figure 3.3: SDTG-containing peptides are seen by additional mice and can be validated utilizing

ELISA.

A: Heatmap of 29 chosen peptides from the whole proteome peptide array displaying whole

proteome peptide array data using the serum samples from the 6 individual immune mice used in
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the original peptide array (Hoefges et al., 2023). 26 of these 29 peptides contain SDTG in their
sequence and were chosen based on significant binding (restrictive or moderate category) by serum
from at least 50% (> 3 of the 6 mice tested) of the immune samples tested in the whole proteome
array. Two peptides (Artx_Q61687;873 and Pdcd4 Q61823;81) did not contain SDTG in their
sequence but were recognized by 5 of the 6 individual immune mouse serum samples in the whole
proteome peptide array, were alsoincluded, as was 1 peptide that was chosen as a negative control
peptide (Griad_Q9Z2WS8) as no binding was observed to it by any of the serum samplestestedin the
whole proteome peptide array (from naive orimmune mice). Data shown are log10 of the

fluorescence units of the peptide array signal.

B: Heatmap of ELISA results using the same peptides and serum samples as in Figure 3.3A. Gray
areas indicate the 4 serum samples that had been previously depleted. To enable testing on all 29
peptides, only some peptides were tested with these; the untested combinations are shown in gray.
Serum samples B2, A3, PD1, A4 and C4 were cryopreserved serum samples from the same exact
aliquot usedin the proteome array (Fig. 3A). Forsome of the original samples no serum or almost no
serum remained (AC5, PD1, A4 and C4, grey areas indicate peptide not tested). Data shown are
normalized to the average value of the negative control peptide (Griad) for each serum sample. Red
boxes are applied to all values above 2 and below 3 to highlight significant increases over

background to determine positive binding values.

C: ELISA data for the same peptides as in Figure 3.3A&B but using independent immune mouse
serum samples nevertested beforefrom 20 separate mice that received the same treatment to cure
their B78 cancer. Also included here is a repeat immune serum sample from one of the 6 immune
mice used in the original whole proteome samples, as an internal control (mouse B2, also shown in
in Figure 3.3A&B. Data shown are normalized to the average value of the negative control peptide

for each serum sample. Red boxes are applied to all values above 2 and below 3 to highlight
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significant increases over background to determine positive binding values. Values > =3 are

displayed in yellow and easily recognizable as positive.

A normalized ELISA results for B78-H1 mice
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Figure 3.4: GD2 expression on the tumor is not required to induce antibody to SDTG.

A: ELISA data for 13 SDTG-containing peptides and for 2 peptides not expressing SDTG, but showing
reactivity with 5 of the 6 initial serum samples used in the peptide array, as well as 1 negative
control peptide (Griad) (as described for Figure 3.3) are shown. The 20 mice tested here were
injected with B78-H1, a B78-tumor cell line lacking GD2 expression. Post-treatment serum samples
from 19 individual mice were available as collected on day 55, 9 treated with radiation and IL-2, and

10 treated with radiation, IL-2 and anti-CTLA4. One of the mice (D5), showed potent recognition of
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all peptidestested, and a separate timepoint from this same mouse (labeled D5 20221101, was also
tested in parallel and showed similar reactivity. Mouse D5 was treated with radiation and IL2 alone.
Also included here is a repeat immune serum sample from one of the 6 immune mice used in the
original whole proteome samples as an internal control (from the same timepoint from mouse B2,
also shown in Figure 3.3 A, B and C labeled here as B2 original). Data shown are normalized to the
average value of the negative control peptide (Gria4) for each serum sample. Red boxes are applied
to all fold-change values above 2 and below 3 to highlight significant increases over background to
determine positive binding values. Values > =3 are displayed in yellow and easily recognizable as

positive.

B: Tumor growth curves for all 20 animals with B78-H1 flank tumors are shown starting the day
before treatment. Serum was harvested at day 55 post treatment. Complete responses (CR), partial
responses (PR) and the combination of partial and complete responses are shown as a fraction of

the 20 mice evaluated as well as by percent.

C: Tumor growth curves of the same animals in B are shown divided into mice with reactivity to no
SDTG peptides (8 mice), reactivity to only one SDTG peptide (7 mice), or reactivity to more than one
SDTG peptide (4 mice), as shown in Figure 3.4A. Complete, partial and a combination of complete
and partial responses are noted as absolute numbers as well as percent for those 11 mice with at

least 1 SDTG peptide detected.
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Figure 3.5: Hypotheses to elucidate strong and frequent SDTG-response:

A: A mutation in B78 created an additional SDTG-site in a protein that is now being recognized by

the immune system as foreign.

B: A mutation in an SDTG-containing protein caused a conformational change which now makes the

SDTG-site accessible and recognizable for the immune system.

C: SDTG-containing proteins are upregulated in B78 vs. normal cells and are being recognized

through immunogenic cell death.
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Figure 3.6: Differential expression values of mMRNA measures of SDTG-containing proteins.
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Figure 3.6: Differential expression values of mMRNA measures of SDTG-containing proteins.

A: Heatmap of scRNAseq datafrom tumor homogenates of 2treated and 2 untreated mice taken on
treatment day 8 (RT given on day 0, intratumoral IC injections given on days 5-8). Populations are
divided into malignant B78 tumor cells (tumor) and normal non-malignant normal stromal cells
(other). The population labeled as other consists of epithelial cells, stromal cells, myeloid cells, B
cells, NKcells, and T cells. Medians of each of these populations divided by treatment were used. X
axis shows different cell types, the Y axis displays a list of 115 SDTG-containing genes ordered by
epitope detection category based on HERON calls starting with restrictive (top 38, until first dotted
white line), 24 in moderate category (until next white dashed line), 23 in the inclusive category and
30 that were not called by HERON. Expression values are shown ranging from 1 to 15 as a heatmap

from black over purple to light yellow. Expression values above 15 are shown in bright yellow.

B: Volcano plot of the values displayed in Figure 3.6A for treated vs. untreated tumor samples. Red
circles highlight genes with differential expression as identified using a two-way ANOVA utilizing
data displayed in 6A. The X axis plots the difference between means. A dotted grid line is shown at
X=0, no difference. Y value plots the minus logarithm of the q ratio, using the method of FDR. A

dotted grid line is shown at Y=-log(Q).
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Supplemental Figures
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Supplemental Figure 3.1: Amino acid position surrounding SDTG:

A: aa position 6 & 7, the two positions immediately following SDTG. Each column along the X-Axis
shows the dots forimmune serum binding to all 848 SDTG-containing unique peptides, based on all
represented combinations of which of the 20 possible aa is in the 1°* position immediately after the
SDTG and which is in the 2" position immediately after the SDTG. The top graph shows naive
samples, the bottom graph shows allimmune samples. Almost all naive samples show low signal in
all possible combinations. Immune samples show low or high binding depending on the
combinations, with some showing high and low binding across different peptides with the same

combination of aa in position 6 & 7 after the SDTG.

B: Positions right before as well as 15t and 2" position after SDTG (position 1, 6, & 7) are shown in
combination. Each column along the X-Axis shows the dots forimmune serum binding to all 848
SDTG-containing unique peptides, based on all represented combinations of which of the 20
possible aa is in each of the 3 indicated positions, namely, the position immediately before SDTG,
the 1°t position immediately after the SDTG, and the 2"¢ position immediately after the SDTG. The
top graph shows naive samples, the bottom graph shows all peptides with mean values of immune

samples. Almost all peptides with mean values based on naive samples show low signalin all
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possible combinations. Mean values of immune sample peptides show low or high binding
depending on the amino acid combinations, with some showing high and low binding across

different peptides with the same combination of aa in position 1, 6, & 7 surrounding the SDTG.

A ENSMUSG00000031142/Cacnalf

Query 121 NTANHNLEQVEYVFLVIFTVETVVKIVAYGLVLHPSAYIRNGWNLLDFIIVVVGLFSVLL 180
NTANHNLEQVEYVFLVIFTVETVHKIVAYGLVLHPSAYIRNGWNLLDFIIVVVGLFSVLL
Sbjct 121 NTANHNLEQVEYVFLVIFTVETVLKIVAYGLVLHPSAYIRNGWNLLDFIIVVVGLFSVLL 180

Query 421 VDGNLASLAEEGRAGHRPQLSELTNRRRGRLRWFSHSTRSTHSTSSHASLPASDTGSMTD 480
VDGNLASLAEEGRAGHRPQLSELTNRRRGRLRWFSHSTRSTHSTSSHASLPASDTGSMTD
Sbjct 421 VDGNLASLAEEGRAGHRPQLSELTNRRRGRLRWFSHSTRSTHSTSSHASLPASDTGSMTD 480

B ENSMUSG00000111375/Btbd8

Query 121 NKNIKNYEEEIVKKLKVGSLMPEKGPDVSFPRYRTSSDCFLGKGEIQEDITGGGDCFISK 180
NKNIKNYEEEIVKKLKVGSLMPEKGPDVSFPRYRTSSDCFLGKGEI EDITGGGDCFISK
Sbjct 121 NKNIKNYEEEIVKKLKVGSLMPEKGPDVSFPRYRTSSDCFLGKGEIPEDITGGGDCFISK 180

Query 1201 ATHQRESPESDTGSATTSSDDIKPRSEDYDAGGSQDDEGSHDRGISKCSTALCHDFLGRS 1260
ATHQRESPESDTGSATTSSDDIKPRSEDYDAGGSQDDEGSHDRGISKCSTALCHDFLGRS
Sbjct 1201 ATHQRESPESDTGSATTSSDDIKPRSEDYDAGGSQDDEGSHDRGISKCSTALCHDFLGRS 1260

Supplemental Figure 3.2: DNA sequencing results with mutations in SDTG-containing proteins.

A: Protein sequence alighment of B78 DNA sequencing data translated to a protein sequence vs.
C57BL/6 protein sequence for Cacnaflis shown. A single nucleotide variation caused a change at aa

position 124 with a V (Valine) to L (Leucine), both are aliphatic. SDTG is located at aa position 472.

B: Protein sequence alignment of B78 DNA sequencing data translated to a protein sequence vs.
C57BL/6 protein sequence for Btbd8 is shown. A single nucleotide variation caused the change of Q

(Glutamine) to P (Proline) at aa position 166. Q is amidic, P is aliphatic.
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Chapter 4: Discussion, Conclusions, & Future directions

Overview

In this chapter | summarize the findings and conclusions from chapters 2 and 3, discuss additional
scientific questions that arise, as well as outline the major implications of this work. | also give a
brief overview of additional findings | did not present in chapters 2 and 3. Finally, | discuss possible

ways of addressing in future and ongoing experiments some questions so far left unanswered.
Summary of thesis findings

Antibody landscape of C57BL/6 mice cured of B78 melanoma via immunotherapy

Here we established a method to utilize a high-density overlapping stacked array of 16-mer peptides
representing the entire C57BL/6 proteome to identify the linear “immunome” of epitopes
recognized by antibody induced in mice after receiving curative immunotherapy that is associated
with complete and durable eradication of B78 melanoma tumors and induces tumor-specific
immune memory. We utilized the HERON analysis method (Appendix A), developed by us
specifically to analyze these whole proteome peptide array datasets of immune and naive mice, and
isolated peptides, epitopes, and proteins that showed a significant increase in antibody binding

compared to the naive samples.

By utilizing epitopes, rather than single peptides, we increased the reliability and reproducibility
(Figure 2.2B & 2C) as measured by repeat samples. HERON requires a degree of similar recognition
of the related epitopes, but does not require that all probes that are part of the epitope are also
recognized by another sample to indicate that the same epitope has been recognized in an
additional sample. The same principle applies to protein data, where recognition of the same

protein was given if the individual mouse sample showed antibody binding to any region of this



134

protein. By not requiring the same or similar region of the protein to be recognized, we achieved a
higher number of proteins that were recognized by 4, 5 or even 6 mice than when comparing to

epitope data (Figure 2.3C & 4C).

Separately, we showed that peptides that showed antibody binding in the whole proteome peptide
array, in most cases, also showed antibody binding in a separate peptide ELISA as well as a smaller
scale peptide array (Figure 2.5). Furthermore, utilizing additional mice that had not been evaluated
using a peptide array, we found that 65% of the mice in the validation cohort recognized at least one
of the peptides tested that was previously recognized by 3 of the original 6 mice (Figure 2.7D).
Having any of these peptides recognized by additional mice supports the biological importance of
these proteins being antibody targets by multiple mice in our system. To enhance the importance of
these peptides being recognized by additional mice, we also selected random peptides from the
whole proteome dataset and tested these on the same validation set of mice. In the randomly
selected peptides we only achieved a 0.05% rate of positive reactions, while the HERON -selected
peptides yielded 20% positive reactions. This indicates that the HERON method used to select
peptides fromthe whole proteome peptide array data successfully identifies peptides that are also
being recognized in validation assays with the same serum samples at a significantly increased rate

over randomly chosen peptides (p<0.001).

More importantly, due to the random rearrangement of V-D-J immunoglobulin gene components, a
large diversity in antibody repertoire, even in a group of genetically identical mice, was expected.
The ability of HERON to identify peptides based on their recognition by an initial set of mice using
the original dataset and the same peptides being subsequently recognized by serum from additional
mice drives the point of immunologic importance of these proteins for mice of the same strain

immunized to the same B78 tumor using the same immunotherapy regimen.
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In summary, we described the immunologic methods used to obtain data and validate it using
additional small-scale peptide arrays and peptide ELISA systems. We showed the spectrum of
peptides, epitopes and proteins recognized and described what fraction of targets recognized by at
least one immune mouse are also recognized by some other mice, despite the stochastic nature of

each mouse’s individual B-cell repertoires.

We showed that this peptide array technology and analysis method can be used to detect the linear
antibody-recognized “immunome” of sera from mice immune to B78 (and B16) melanoma through
RT + ICimmunotherapy. Proteins recognized by sera from multiple immune mice may potentially be
of importance in achieving immunity to the cancer or could potentially be used as a biomarker of a

potent adaptive response to the cancer.

Prevalent binding motif in C57BL/6 mice cured of B78 melanoma

Here we described a four amino acid motif identified in many strongly recognized epitopes from
immune sera of mice cured of B78 melanoma utilizing a RT + IC immunotherapy regimen that acts as

an in situ vaccine.

The motif was identified when focusing on all epitopes that were recognized via antibody from at
least three of the six original immune samples that were tested on the whole proteome. We took all
epitopesrecognized by at least three mice and ordered them based on average immune signal from
highest signal to lowest. When using the top 100 epitopes (highest immune signals), 65 of these
showed the four aa motif (Figure 3.1). This motif was found in over 50% of the top epitopes from a
whole proteome antibody binding screening of epitopes that were co-recognized by at least 3 of the
6 separate immune mice, but not by the naive sera. This observation suggests that this motif is
recognized duringan immune response to the B78 tumor for many B78-bearing mice. We identified

310 separate SDTG-containing regions of which 194 were unique epitopes that did not belong to an
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isoform of the same gene (Figure 3.2). Within these 194, we found 114 of these with an average
immune binding score of over 100 and 42 with an average immune binding score of under 20. This
showed that while most SDTG-containing regions were recognized viaan antibody response in some
of these mice, some SDTG-containing epitopes were not. This generated the question: what besides
the presence of SDTG determines binding? To elucidate this, we used a random forest model and
discovered that charge, as well as the amino acid position before SDTG and two positions after
SDTG, does play a role. However, none of these findings by themselves gave a clear answer (Figure

3.2) and we are investigating further.

We tested an additional validation set of 20 immune mice for reactivity to SDTG -containing peptides
and found 9 mice with strong reactivity towards at least 1 SDTG-containing peptide (45%, Figure 3.3)
and several of these 20 mice recognizing multiple SDTG-containing peptides. One possible cause of
SDTG-reactivity could have been the transfection of the original GD2-negative line with a plasmid
needed to integrate GD2 and GD3 synthase into the B78 tumor cell genome to cause expression of
GD2 on the tumor cell surface. If these genes, or a translated portion of the plasmid, contained an
SDTG sequence that was “foreign” to these mice, this could have induced antibody to the foreign
proteins, that might have created some anti-SDTG antibody. To test for this, we aquired the
“original” B78 cell line, referred to as B78-H1 that was not transfected to express GD2, and treated
mice bearing B78-H1 tumors with radiation and IL-2 or with radiation, IL-2 and anti-CTLA4, in an
effort to cure them of their B78-H1 tumors. We then harvested serum from all 20 treated mice and
tested for reactivity against SDTG-containing peptides. We found 1 mouse with strong response to
SDTG and a few with weaker but detectible SDTG-reactivity (Figure 3.4). With the ability to generate
an SDTG-response in these mice, we have shown that the transfection of the plasmid needed to
integrate GD2 and GD3 synthase into the B78 genome was not required to induce anti-SDTG

antibody.



137

We performed DNA sequencing on B78 and B16 cells to search for mutations as possible
mechanisms fora strongand frequent SDTG response. We hypothesized that a mutation could lead
to an additional SDTG sequence being presentin a protein or, that a protein that contained an SDTG
naturally, could aquire a mutation that resulted in a conformational change leading to exposure of
SDTG (Figure 3.5). However, we only found 2 genes (Cacnalf and Btbd8) containing SDTG that had
mutations at different parts of the protein. These mutations were not predicted to have an

influence on the protein structure and cause exposure of the SDTG motif.

We then went on to RNAseq analyses of the B78 tumor, where we found four genes that were
differentially expressed between tumorand cell types found in the tumor microenvironment (Figure

3.6).

In summary, we identified a four aa motif that most likely has immunologic relevance ; antibody
against it is present in a large proportion of mice cured of B78 tumor via in situ vaccine treatment
(RT + IC). The exact meaning and origin of this motif are yet to be fully elucidated, but the workflow

used here to identify this motif could certainly be applied to human data.

Summary of additional findings not mentioned in the previous chapters

In addition to the work presented above, we have collaborated with researchers fromthe Children’s
Hospital of Philadelphia (CHOP) who have developed an analysis pipeline utilizing surface
proteomics and target prioritization. The Maris lab at CHOP focuses on neuroblastoma research.
While this thesis is focused on melanoma, and there are many fundamental differences between
melanoma and neuroblastoma, both of these tumors are from neuroectodermal origin and
generally express GD2 on their surface. Amber Weiner PhD, a postdoc in the lab of John M. Maris,
generated aneuroblastoma surfacesomeatlas. To do this, she performed plasma membrane protein

extraction utilizing a sucrose density gradient methodology followed by nano-liquid chromatography
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coupled to mass spectrometry (nLC-MS/MS) on 9 neuroblastoma cell lines as well as 12 patient-
derived xenografts (PDX). She then integrated the MS data with RNA-sequencing data from 153
neuroblastomas and 7859 normal tissues to evaluate proteins that had an annotated extracellular
domain that was differentially expressed in neuroblastoma compared to normal tissues. She
identified 4826 unique membrane proteins and confirmed known neuroblastoma surface proteinsin
development as immunotherapeutic targets like ALK, GPC2, NCAM1, DLL3 and CD276. Utilizing her
dataset of the human neuroblastoma surfaceome, we screened all of these neuroblastoma
surfacome proteins to identify those that are human homologues of the mouse proteins that
showed strong antibody binding by the whole proteome array data we generated using the sera
from the 6 originally tested mice that had beenimmunotherapeutically cured of the B78 melanoma.
Focusing on the mouse proteins with strong antibody binding (identified in our restrictive category),
we were able to map the human homologues of 71 of them to human UniProt IDs. Of these, 52
were unique gene names. Afterintersecting these 52 proteins with the neuroblastoma surfaceome
and target prioritization, we found five proteins that were also enriched in the neuroblastoma

surfaceome data. These five proteins were Hectd4, Cntnap2, Ace, Ptk7 and Pdia3 (Figure 4.1).

The top hit based on abundance in neuroblastoma was Pdia3 (Figure 4.1), a protein disulfide-
isomerase. It is well studied and showed some potential as a biomarker in multiple cancer types
(Wang et al., 2017; Zhang et al., 2020; Zhang, Li, et al., 2022; Zhang, Wang, et al., 2022). Ptk7, also
highly abundant on the neuroblastoma surfaceome (Figure 4.1), called the inactive tyrosine-protein
kinase, is a tyrosine kinase involved in the Wnt signaling pathway. It functions in cell adhesion, cell
migration, cell polarity, proliferation, actin skeleton reorganization, and apoptosis and also has a
role in embryogenesis, epithelial tissue organization and angiogenesis (Golubkov et al., 2010; Meng
et al., 2010; Prebet et al., 2010; Puppo et al., 2011). Recently, an anti-PTK7 antibody as well as CAR

T-cells targeting PTK7 have been developed and are undergoing testing as possible therapeutics
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(Damelin et al., 2017; Jie et al., 2021; Kim et al., 2022). Ace, angiotensin-converting enzyme, plays a
key role in the regulation of blood pressure, electrolyte homeostasis or synaptic plasticity (Anthony
et al., 2010; Yang et al., 1970) and is also very abundant in the neuroblastoma surfaceome where it
is highly recognized via antibody as detected in the whole proteome peptide array of mice cured of
B78 melanoma. Cntnap2, contactin-associated protein-like 2, is associated with several
neurodivergent disorders, like autism spectrum disorder, epilepsy, ADHD, schizophrenia, and

intellectual disability (Choe et al., 2022; de Jong et al., 2021; Penagarikano et al., 2011; Poot, 2015).

Hectd4, an E3 ubiquitin-protein ligase, showed relatively low abundance on the neuroblastoma
surfaceome abundance scale, but was still enriched (Figure 4.1). Certain Hectd4 variants are
associated with type 2 diabetes and neurodevelopmental disorders (Fageih et al., 2023; Lee et al.,
2022; Sun et al., 2021). Hectd4 is involved in Myc stability (Vatapalli et al., 2020). Components of
this pathway could potentially be targeted and used as therapeutic targets for select cancers. This
data showing that these human proteins are homologues of mouse proteins that are strongly
recognized by antibody from mice cured of B78 further supports pursuit of these as potential

biomarkers or therapeutic targets.

We also utilized a different approach from the Maris lab to identify possible new therapeutic
targets. In this approach Mark Yarmarkovich PhD, a previous post-doc in the Maris lab who now has
his own lab at NYU, developed a tumor discovery workflow to identify peptides presented via MHC
in neuroblastoma tumors (Yarmarkovich et al., 2021). He purified MHC and eluted peptides from
patient-derived xenografts and primary neuroblastoma tumors and characterized peptide
sequences by tandem mass spectrometry. Exome sequencing of these tumors was also performed.

Utilizing the exome sequencing data of the tumors, HLA types were inferred using PHLAT (Bai et al.,
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2014). Predicted MHC binding affinities for eluted peptides were obtained using NetMHC.
Differential gene expression was assessed via comparison of 153 neuroblastoma cases to the GTEx
database of normal tissue gene expression. The differential gene expression was used to derive
antigens and compare these against a database of MHC presented peptides from 190 healthy
tissues. This resulted in the discovery of 83 neuroblastoma antigens that had not been observed in
healthy tissue. With Mark’s help, we utilized his MHC-peptidome dataset for neuroblastoma and
filtered the mouse homologues of these to search for any that were identified as mouse proteins
highly recognized by our immune mouse serum samples. We identified some overlapping genes that
were recognized in his neuroblastoma MHC peptide dataset that were also recognized in our whole
proteome peptide array dataset of antibody recognition by mice cured of their B78 melanoma.
Within our restrictive dataset, we identified a total of 33 proteins that are also in his list of 1980
human proteins with peptides found presented by HLA on human neuroblastomas; we are further
investigating these. One of the issues with the comparison of this dataset to ours is the gene
translation from mouse to human as well as the different HLA subtypes present in humans that are
not translatable to mouse data. However, we are looking further into the recognized proteins,
because their dual recognition through these 2 detection systems would seem to increase the

likelihood of their biological/immunological importance.

In addition to these collaborations, we looked more closely into several other proteins. One of these
being Hemicentin 1 (Hmcn1, D3YXGO). Hmcn1 was strongly recognized by the 4 of the 6 mice in the
original peptide array with another mouse with weak recognition. This protein has multiple
antibody-recognized epitopes, 4 of them contain SDTG sites, 2 of them with high binding and 2 with
moderate to low binding. We validated 2 of the Hmcn1 SDTG-containing peptides as being
recognized via ELISA by additional mouse serum samples (Figure 3.3). We furthermore detected

strong antibody staining for Hmcn1in B78 and B16 cells (Figure 4.2A) as well as B78 tumors
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removed from tumor-bearing mice and skin of C57BL/6 mice (Figure 4.2B&C), evaluated via IHC-IF
(immunohistochemistry-immunofluorescence). Looking at RNAseq profiles for Hmcn1 expression
across tissues, RNA for this protein is expressed in almost all tissues as well as most cancers.
However, Hmcn1lis highly overexpressed in human melanoma tumors (Figure 4.2D). Hmcn1 has
been found to have negative effects on outcome if cancers have a higher expression of Hmcn1l
(Gong et al., 2022; Kikutake et al., 2018; Liu et al., 2019; Wen et al., 2022). We are further
investigating whether the presence of antibodies against Hmcn1 could potentially be used as

biomarkers.

Additional work in progress, future directions and scientific conclusions:

Work in Progress

While we have characterized the antibody landscape of C57BL/6 mice cured of B78 melanoma via in
situ vaccine (RT + IC), we have a number of questions yet left unanswered. Here | discuss some of
the ongoing and future experiments we are proposing to elucidate some of the unanswered

guestions.

One of the first things we plan to investigate furtheris whether there is an association of antibodies
against select proteins that are only present if the animal has a complete response. So far we have
focused our analysis on naive and immune samples, i.e. samples that had never seen a tumor in
comparison to serum samples of mice that successfully rejected a tumor and exhibited memory
against the same or similar tumor type. Our next step will be to test the peptides that were
recognized by the highest number of individual immune samples (combining original data with ELISA
data from validation set mice) on mice that have a tumor but did not receive treatment, as well as
on mice that did receive treatment but failed to clear the tumor. In chapter 3 we took a first look at

mice that did not fully reject their initial B78 (in this case B78-H1) tumors; in that limited study we
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were not able to see differences in anti-tumor response based on the pattern/level of antibody
detected against SDTG peptides tested. However, with a larger number of mice and by using the
original B78-D14 tumor (which does have GD2 surface expression), as well as focusing on select
peptides, we might be able to discern differences in recognition frequency by antibody, based on
whetherthe mice were immunotherapeutically cured, or not. One factor that needs to be controlled
forin such studies is that mice that showed a response after receiving treatment, but were unable
to clear their tumor fully, might still show the same antibody generation as seen in mice that were
able to clear their tumorfully, as an immune response against the tumor took place, but in the end,
was not strong enough to fully clear it. For this experiment, we are currently collecting more serum
samplesto test untreated, treated but not cured, as well as mice that were treated and cured; sera
from these 3 groups will be tested and compared via ELISA on select peptides. | plan to conduct

these experiments early in summer 2023.

We hope that the workflow we developed here to identify important cancer antigens can be
transferred to humans and other mouse cancer models. While we don’t necessarily expect that all
our identified proteins will translate to human data, the workflow developed here could easily be
applied to human serum samples of different cancer types and help identify additional targetable
proteins or antibodies as potential biomarkers of response to therapy. We currently have an
ongoing clinical trial for advanced melanoma at UW Madison (UW16134) investigating the same
utilized in situ vaccine regimen (RT + IC) in melanoma patients that was used in the mice in this
thesis. We are collecting their serum at multiple timepoints. So far this trial has enrolled seven
patients. Due to the large diversity across humans, a larger sample size will be necessary to perform
statistical analysis and possibly reach significance, when trying to see whether there may be any
association with detectible antibody in the serum of these patients after treatment, and their

likelihood of responding to the therapy with a clinical anti-tumor response.
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Another question we are currently investigating is what caused the strong antibody response

against SDTG-containing peptides in the first place?

To investigate this further, we are working on DNA sequencing analysis of B78, B16 and the normal
C57BL/6 mouse genome. While we were not able to find geneticalterations leading to generation of
SDTG so far (point mutations), we are still working on analysis concerning more complicated
alterations like chromosomal inversions, deletions and duplications as well as copy number
variations. To complement the DNA sequencing, we conducted RNAseq on a single cell level of in
vivo extracted tumors as well as bulk RNAseq of B78 cells in culture. For the scRNAseq we used 2
tumors from untreated animals and 2 tumors from treated animals. For the bulk RNAseq data, we
treated some B78 cells with radiation and left others untreated. We also included healthy C57BL6
skin lysates as our control. With these data we hope to see changes in genes that contain the SDTG
motif in the tumors compared to the normal skin. Some of this work is detailed in Figure 3.6.
However, we hope that the bulk RNAseq data will provide more information about B78 vs. healthy
skin as well as the differences caused by radiation in B78 gene expression without the confounding
effects of the presence of the cells (and their RNA) from the non-tumor cells in the tumor

microenvironment.

Future Directions

Another possible place SDTG could have originated from to induce an antibody response is the
microbiome; if so what we are actually detecting with the ELISA and peptide array may be cross-
reactivity of microbial proteins and normal mouse proteins. If the bulk RNAseq as well as scRNAseq
data do not show any significant differences in any SDTG-containing genes between tumor and
normal tissue, we will look closer into the microbiome as a possible source of inducing antibody

reactivity to SDTG. To do this, we will utilize a blast peptide search against all common known
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bacterial species present in C57BL/6 mice. In conjunction, we will conduct 165 rRNA sequencing
(Johnson et al., 2019) to capture the microbiome present in mice with SDTG-recognition in
comparison to mice that did not develop antibodies recognizing SDTG (but have also been treated
against B78 tumors and rejected the tumor with memory). We hypothesize that an increase in a
specific bacterial population that contains the motif SDTG in one of its proteins might be the cause

of SDTG recognition and subsequent SDTG-antibody generation.

It could also be possible that the original site of SDTG-recognition was from a viral protein. To
investigate viral proteins and possible viruses that these mice could have been infected with, we
would again start with a blast search for SDTG in mouse virus proteins and then move on to

sequencing.

Another approach would be to focus on the antibody sequence and B cells. Characterizing the
sequence of the antibodies generated, specifically the hyper variable regions, may help assess
antibody targets. Contrasting the antibody repertoire sequencing of antibody producing cells from:
a) mice before tumor implantation (as a baseline and to filter out tumor-unrelated antibodies), b)
mice after tumor implantation but before treatment (to focus on antibodies associated with B78
melanoma) and c) after mice have been cured and exhibit memory (to compare to the other 2
groups to filter out differences associated with a positive anti-tumor response) might help us
uncover the original target that the SDTG antibodies are directed against. The technology for
antibody repertoire sequencing is rapidly improving and allows for ranking and robust detection of
antibody sequences (Choi et al., 2023; Greiff et al., 2014). We might be able to screen these
sequences for potential binding ability to SDTG-containing peptides. To answer the question why
only some SDTG-containg proteins showed strong antibody binding and others did not, we could
develop monoclonal antibodies that recognize the top 5 SDTG-containing peptides based on

antibody binding scores from the whole proteome array and ELISA, and use as “controls” the
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bottom 5 SDTG-containing peptides based on fluorescent signal from the whole proteome peptide
array. We would hope to generate atleast one antibody that strongly recognizes the top 5 peptides
and not the bottom 5 peptides. This antibody and its interactions with the top 5 peptides, vs. the

bottom 5 peptides could be studied using structural biology.

There are different ways to generate these antibodies: 1) We can use the peptides to isolate B cells

from mice that are recognizing SDTG and generate a hybridoma cell line from these B cells.

2) We can introduce these peptides to mice or rabbits to generate B cells recognizing a specific set
of peptides, then generate a hybridoma of the B cells from these mice (or rabbits), select for

successful hybridoma cells and test via ELISA for specificity to the 5 peptides (Zarei et al., 2015).

3) We could use phage display to generate binders that bind well to our top 5 peptides and not the
bottom 5 peptides. 4) We can use the sequencing information we got from the antibody repertoire
sequencing and generate recombinant monoclonal antibodies which is proposed to be quicker and
cheaper than the traditional generation of antibodies and allows for easy modifications (Deluca et
al., 2021). Once we have the separate antibodies, we will be able to test them against all SDTG -
containing peptides we identified. With these antibodies we will have the possibility of conducting
multiple experiments and reproducibly use the same source of antibody for characterization
reasons. However, generation of monoclonal antibodies is laborious and time consuming. Instead,
we could also utilize mice that developed anti-SDTG antibodies and pull out these specificantibodies
from the serum utilizing the peptides we know are bound. After we have a somewhat “pure” anti-
SDTG antibody sample, we can use this antibody as a tag. Tumor, skin, or microbiome lysates could
be probed against the SDTG-targeting antibody. Everythingbound to the SDTG-antibody canthen be
analyzed using mass spectrometry to identify the specific target. Furthermore, the antibody will help

us in characterization of biophysical aspects including its affinity to its target and solvent
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accessibility. If the affinity is very low, what we have identified is most likely not the primary target
or its native antigen. We recognize this latter approach might not have the discriminatory capability,

or analytic power of the mAb approach, and thus is a “2"-line” option.

Utilizing mass spectrometry to identify the native antigen of the anti-SDTG antibody will also help us
identify if the native target was a linear sequence containing SDTG, or if it actually targets a
conformational epitope. Up until this point, i.e. without the “original” anti-SDTG antibody, we were
unable to assess if the native target was a linear or conformational epitope. Predicting a
conformational epitope and globally testing a whole proteome for conformational epitopes is not

yet possible. Phage display may allow for restricted identification of some conformational epitopes.

After further investigation utilizing the above described assays, we might be able to answer the

guestions so far left unanswered concerning SDTG:

1) Why is it being recognized and what is its native antigen?

2) What determins binding besides the presence of SDTG as some SDTG-containing peptides were

not recognized in the original dataset?

The answers to these questions might help us in determining the significance and usability of this

motif and the workflow developed to detect it.

Another way to utilize the whole proteome peptide array data is to use it for identification of new
CAR-T cell targets. For this approach, we are partnering with the DeKosky lab at MIT as well as with
the Yarmarkovich lab at NYU. The DeKosky lab focuses on inventing and applying cutting-edge tools
in translational molecular biology to study immune system interactions and focused on TCR and
antibody sequencing. The Yarmarkovich lab focuses on developing and employing technologies at
the intersection of genomics, proteomics, immunology, antibody engineering and computational

biology and has developed a novel class of peptide-centric CAR T cells that potently eradicate
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tumors in preclinical models. We will supply the DeKosky lab with tumor, lymph node and spleen
cells from mice cured of B78 using our ISV regimen that showed immune memory via rejection of a
rechallenge with the same or a related tumor type. We will first test their serum against some of the
previously identified top peptides from the whole proteome peptide array dataset, then harvest B
and T cells from these mice from their tumor, lymph node and spleen where the DeKosky lab will
generate a TCR library of the most “frequent” TCRs present in the cells. In addition, they will
generate a library of all “frequent” scFvs in the same samples utilizing yeast display and next
generation sequencing (Banach et al., 2022; Fahad et al., 2021; Wang et al., 2018). These libraries
will be transferred to the Yarmarkovich lab who will then clone these into CAR T cells and gene tically
modified TCR T cells and generate alibrary of these (Yarmarkovich etal., 2021). These will be further
evaluated utilizing the Berkeley lights platform to screen forthe most potent tumor-recognizing and
killing TCR and CART cells with a high-throughput, single cell level resolution (Bunse et al., 2019;
Green et al., 2019). This will help identify the most functionally potent MHC-presented peptides as

well as the most potent surface antigens (not MHC-presented) for best CAR T cell recognition.

Conclusions

Returning to the main 3 hypotheses for this thesis, proposed at the end of chapter 1, we have
shown in chapter 2 and chapter 3, that mice that reject a rechallenge with the same, or a related,
tumor type have developed antibodies that recognize the cancer cells, and that some
immunodominant antigens are recognized by antibodies in immune sera from multiple mice cured

from the same tumor (Hypothesis A).

We furthermore provided evidence that a whole-proteome peptide array will be a useful tool in
identification of antibody targets on cancer cells (Hypothesis B) as we were able to identify a

number of candidates that are now under further investigation.
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Our last hypothesis was that antibody targets co-recognized by the antibodies of multiple immune
mice may potentially be useful as future therapeutic targets, and possibly as a way to monitor

patient’s antibody responses as a biomarker of anti-tumor immunity. We are currently still working
on answering this hypothesis and have proposed a series of experiments to investigate this further,

some of which are already underway and outlined above.

In summary, we have identified a list of tumor-associated antigens and a binding motif on B78
tumors that may potentially be used as biomarkers of response as well as possible new
immunotherapeutictargets. Filtering these against serum samples from mice with large tumors that
did not receive treatment as well as mice that received treatment but were unable to successfully

reject their tumor will help narrow down the list of possible biomarkers and therapeutic targets.

Overall, this work could be extended to the identification of immunodominant tumor-associated
antigens within other cold murine cancers. Ultimately, these findings and this methodology could be
extended to the study of sera from human cancer patients, cured viaimmunotherapy, to similarly

probe the antigens recognized by tumor-immune human sera.
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Figure 4.1: Identified enriched neuroblastoma surface proteins with highlighted antibody targets

in whole proteome peptide array dataset.

A: Heatmap of relative abundance of cross-identified proteins together with known neuroblastoma
surface targets in 9 neuroblastoma cell lines sorted by average abundance. B: Heatmap of relative
abundance of cross-identified proteins together with known neuroblastoma surface targets in 11
neuroblastoma patient-derived xenografts sorted by average abundance. C: Protein abundance of
all identified neuroblastoma surfaceome proteins with commonly known proteins highlighted in red
and proteins identified in our dataset highlighted in yellow (with black font). Normalized iBAQ
abundance is a measure of protein abundance where the iBAQ value is obtained by dividing protein
intensities by the number of theoretically observable tryptic peptides between 6 and 30 aa and is on

average highly correlated with protein abundance (Krey et al., 2014; Schwanhausser et al., 2011)
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Figure 4.2: Hmcnl is expressed in B78, B16 and normal mouse skin.

A: Immunohistochemistry staining of B78 and B16 cultured on slides with anti-HMCN1 antibody and

anti-rabbit IgG AF647 as a secondary antibody. Strong staining was observed. Images were aquired

using the EVOS FL imaging system from ThermoFisher at 20x. B: Fresh frozen sections of mouse skin
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were stained with phalloidin (green), DAPI (blue), and anti-Hmcn1 in conjunction with a secondary
anti-rabbit 1gG AF647 antibody (red). Images were aquired utilizing a Zeiss LSM710 confocal
microscope. Images were aquired with a 400x magnification. C: Fresh frozen sections of mouse
tumor were stained with phalloidin (green), DAPI (blue), and anti-Hmcn1in conjunction with a
secondary anti-rabbit IgG AF647 antibody (red). Images were aquired utilizing a Zeiss LSM710
confocal microscope. Images were aquired with a 630x magnification. D: Hmcn1 mRNA expression
in normal and matched tumor tissue as collected from Gepia: Gene Expression Profiling Interactive

Analysis, http://gepia2.cancer-pku.cn/, doi: 10.1093/nar/gkz430.
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