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abstract

Machine learning has proliferated on many Internet-of-Things (IoT) ap-
plications designed for edge devices. Energy efficiency is one of the most
crucial constraints in the design of machine learning applications on IoT
devices due to battery and energy-harvesting power sources. Previous
attempts use the cloud to transmit data back and forth onto the edge device
to alleviate energy strain, but this comes at a great latency and privacy
cost. Approximate computing has emerged as a promising solution to
bypass the cloud by reducing the energy cost of secure computation on-
device while maintaining high accuracy and low latency. Within machine
learning, approximate computing can be used on overparameterized deep
neural networks (DNNs) by removing the redundancy by sparsifying the
network connections. This thesis attempts to leverage approximate com-
puting techniques on the hardware and software-side of DNNs in order
to port onto edge devices with limited power supplies. This thesis aims
to implement reconfigurable approximate computing on low-power edge
devices, allowing for optimization of the energy-quality tradeoff depend-
ing on application specifics. These objectives are achieved by three tasks
as follows: i) hardware-side memory-aware logic synthesization, ii) de-
signing energy-aware model compression techniques, and, iii) optimizing
edge offloading techniques for efficient client and server communication.
These contributions will help facilitate the efficient implementation of edge
machine learning on resource-constrained embedded systems.
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1 introduction

IoT devices have proliferated in the past few years, with devices using
machine learning as a way to interact with data collected on the edge.
Mobile devices on the edge rely on unstable energy source from either
battery or energy harvesting, which means that resource allocation must be
carefully considered. Primarily, the millions of multiply-and-accumulate
(MAC) operations must be carefully considered, as they are the most costly
operation within neural network implementation. Cloud computing has
been considered in order to offload computations from the edge device
to the cloud. However, with cloud computing, latency and privacy is a
concern due to constant data transmission.

This thesis aims to use the emerging paradigm of approximate comput-
ing to perform inference directly on the edge device and perform more
efficient edge offloading than previous works. In this thesis, we further the
advancement of approximate computing techniques for neural networks
by combining both software- and hardware-side approximate computing
techniques in order to close the gap between large server-scale machine
learning and mobile edge device machine learning.

Approximate computing in this thesis will operate under a balancing
act between energy and quality, with application-specific reconfigurabil-
ity allowing for fine-grain adjustment of the energy-quality tradeoff. In
particular, approximate computing techniques for neural networks in this
thesis will focus on i) model storage size reduction, ii) latency reduction,
and iii) memory access reduction. First, this thesis first aims to reduce
the memory accesses via memory-aware logic synthesization [7]. We
consider methods that eliminate memory accesses from heavy MAC oper-
ations which will lead to energy consumption reduction. Furthermore, we
consider methods that simultaneously reduce the model size with energy-
aware model compression techniques [6]. Lastly, we want to optimize
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our approximation methods by developing optimized edge offloading
techniques for tightly coupled machine learning tasks.

The research goals of this thesis will be carried out through the follow-
ing research thrusts.

• Designing memory-aware logic synthesization

• Designing energy-aware model compression

• Optimizing edge offloading

The rest of the thesis is organized as follows: Section 2 introduces three
major thrusts of this thesis to realize energy-efficient approximate com-
puting for embedded systems which includes the required background
and prior works. Sections 3, 4, 5 describe the research works. Finally, we
summarize the document in Section 6.
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2 background

With the end of Moore’s law approaching, engineers are seeking new
paradigms to extract performance gains for the new generation of inte-
grated circuits [60]. This holds especially true with IoT and embedded
systems which demand performance and accuracy despite being ham-
pered by power constraints. However, by examining the applications of
these power-constrained devices, we notice that many applications do
not necessarily need a fully-precise design. In fact, power intensive appli-
cations such as machine learning or image/video processing margins of
error that do not degrade the overall quality for the end user [30, 55].

Approximate computing prioritizes low-power computing by relaxing
accuracy requirements for applications that do not demand exact com-
putation results [19]. Neural networks have proven to be a particularly
error-resilient application that approximate computing can target. The
self-healing nature of neural networks allows for significant approxima-
tion while maintaining an acceptable inference output. Outputs of neural
networks are probabilistic in nature, with output probability percentage
degradation still producing accurate inference in a majority of use cases.
At the hardware level, different approximate computing techniques have
been proposed, with approximate arithmetic units, load-value prediction,
and voltage scaling included as potential solutions to heavy computational
overhead [27]. At the software level, loop perforation and lossy compres-
sion are examples of algorithm approximation [56, 53]. Additionally, we
have neural network specific designs that include memory access skipping
and logarithmic approximate computing [71, 33].

In order to relax these accuracy constraints, approximate computing is
used to find the optimal energy-accuracy trade-off [27, 64]. Approximate
computing relies on the concept of sparsifying the system design and
eliminating redundancy such that the appliation-defined or user-defined
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threshold of error tolerance is not breached [66, 71, 43, 61]. Within each
of these works is i) an approximation method and ii) an optimization
method that balances the energy-accuracy trade-off. The following re-
search thrusts are novel methods which generate optimum approximate
computing methods by exploiting both sparsification and redundancy
within the system design.
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3 memory-aware logic synthesization

The first approximate computing scheme we propose is memory-aware
logic synthesization. In the following section, we introduce a new hardware-
based technique that reduce memory accesses by implementing approxi-
mate computing techniques at a hardware-level.

Related Works

Researchers have proposed various methods to save energy in neural
processing by exploiting its intrinsic error resilience, sparsity, and massive
parallelism at different levels of the system stack, but the common goal
has been reducing memory access. Examples include quantization [25],
pruning [4, 35], and model compression [20]. Processing-in-memory
(PIM) also reduces memory access by performing analog computing in
or near specially designed memory without fetching the weights into the
NPE [12, 10]. The feasibility of realization of NNs as combinational logic
has been proven in recent work [11, 44, 52], but the problem of scaling the
large logic size is yet to be addressed. At a hardware level, reserachers have
proposed using shift and add operations to approximate multiplications
such as in [58, 41], along with a similar approach using look-up tables
such as in [51, 47].

Introduction

Reducing memory access is the core of realizing fast and efficient neu-
ral networks (NNs). In conventional neural processing element (NPE)-
based NNs, frequent multiply-and-accumulate (MAC) operations incur
heavy memory access overhead for fetching weight parameters and stor-
ing intermediate outputs, which is the primary source of latency and
energy consumption [12]. An emerging hardware-oriented solution to
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this challenge is combinational logic NN (CLNN), where the inputs
and outputs of the neurons are binarized and represented as arbitrary
Boolean functions mapped to combinational logic circuits or look-up tables
(LUTs) [52, 11, 44, 59, 62]. The evaluation of such hardware does not
involve any memory access other than fetching the inputs and storing
the final outputs, and hence is extremely faster than equivalent binarized
MAC on NPEs. It makes CLNNs attractive and suitable for low-latency,
fixed-function applications, such as in-sensor inference [52] and network
intrusion detection [59].

The low latency of CLNNs, however, is powered by massively parallel
hardware resources that cost significant area occupancy and hence en-
ergy consumption. The key to the realization of area- and energy-efficient
CLNNs is to exploit its intrinsic redundancy and error resilience like in
other NN optimization methods (e.g., pruning and quantization) in every
design step including logic-level optimization. Unfortunately, conven-
tional logic optimization methods that strictly preserve original input-
to-output mapping are not able to capture and exploit the redundancy
and error resilience, and thus are far from effective when optimizing
CLNNs. As recognized in [48], this gap between machine learning and
logic optimization is yet to be resolved, and should be addressed for more
widespread adoption of CLNNs.

In this section, we propose a novel CLNN design method called Syn-
thNet for bridging this gap and pushing the limit of CLNN adoption for
high-throughput and low-power applications. Our techniques improve
upon the scalability of CLNNs by proposing minimization techniques
that allow for large scale networks to be compressed to synthesizable
circuits. SynthNet exploits the intrinsic error resilience of NNs in order
to selectively remove or replace Boolean mapping functions and thereby
significantly reduce the logic circuit size. By judiciously over-minimizing
the truth tables of neuron mapping functions based on the significance
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of each mapping with the awareness of neuron activation properties, the
circuit implementation of the resultant truth tables is reduced by orders-of-
magnitude than that of the original truth tables. This design method also
boosts the accuracy by suppressing inference errors induced by random
output mapped to input combinations unseen during training, which is a
unique hazard in CLNNs.

The contributions of this part of the project are summarized as follows:

• We analyze activation of neurons realized as a logic circuit and iden-
tify opportunities to further minimize the logic size beyond what
traditional logic optimization methods can achieve, in order to fully
exploit the error resilience of NNs.

• Based on the analysis, we present two very effective CLNN optimiza-
tion techniques: i) synthesis-aware pruning and ii) input-driven neu-
ral logic minimization. We explore the energy-accuracy trade-offs
of the logic optimization and present an efficient and more scalable
design framework to determine the optimal implementation that
meets a given accuracy constraint.

• We evaluate SynthNet for a CLNN using the CIFAR-10 dataset [31].
Our method reduces the energy consumption per image by 90–99%
compared to a systolic array-based architecture, while maintaining
82% accuracy, yet to be achieved by CLNN-only implementations on
the CIFAR-10 dataset.

Combinational McCulloch-Pitts Neural Networks

The McCulloch-Pitts neuron model, which has binary inputs and a binary
output, is an ideal model for CLNN implementation since combinational
logic can implement any arbitrary binary mapping. A McCulloch-Pitts
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includes/proposed/figures/neuron_2.pdf

Figure 3.1: Combinational logic implementation of a McCulloch-Pitts
neuron.
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neuron’s function can is defined as follows:

y =

1 if
∑

j x
jwj ⩾ b

0 otherwise
, (3.1)

where y is the output of the neuron, xj and wj respectively are the j-
th input and weight, and b is the bias of the neuron. Unlike binarized
NNs that binarize everything including weights (e.g., XNOR-based NNs),
wj can be a high-precision floating-point value, which are desirable for
high accuracy [44]. Boolean logic circuit is suitable for implementing
this neuron model because the inputs and output are binary and their
mapping requires the ability to realize arbitrary Boolean functions.

A trained McCulloch-Pitts neuron can be implemented as a logic circuit
as illustrated in Fig. 3.1. If the number of inputs is small, outputs can
be defined for all possible input combinations based on (3.1) to build
the truth table of a completely specified function (CSF) with no don’t-
care (DC) output. In practical NNs, however, the number of inputs is
much grater than three, making it impossible to enumerate outputs for
all input combinations. Alternatively, defining the Boolean function as
an incompletely specified function (ISF), where the output is specified
only for a subset of input combinations and the rest are left as DC, can
greatly reduce the enumerated outputs since only a small subset of input
combinations are seen during training and inference [44]. Finally, logic
minimization and synthesis is followed to implement the ISFs as logic
circuits.

In this work, the straight-through estimator in the form of the hard
hyperbolic tangent (tanh) linear activation function is used as in [25], in
order for the binarized neurons to be able to successfully update gradi-
ents within the back-propagation algorithm when the derivative is zero
everywhere. We substitute the classical dropout regularization technique
with a random binarization probability. Activations are binarized with a
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includes/proposed/figures/hitcount_bar_chart_and_scatter.pdf

Figure 3.2: (a) Histogram of row hit counts greater than 0 in the training
set. (b) Correlation between row hit counts between the training set and
the test set. (Range limited for better visualization.)

certain specified probability. Stochastically binarizing activations ensures
our gradients update during back-propagation, derived from the variant
of dropout in [25].



11

Motivation: Unexploited Error Resilience

As mentioned above, conventional precise logic minimization and synthesis
does not take advantage of the high error resilience of CLNNs. It leads
to two limitations (and opportunities) in terms of energy efficiency and
accuracy.

When input-to-output mapping does not always have to be precise,
which is the case for CLNNs, approximate implementation of Boolean
functions allows sharing not only exactly equivalent sub-circuits but also
near-equivalent sub-circuits, resulting in a smaller logic size and thus
high energy efficiency that precise implementation cannot achieve. For
the approximate implementation of combinational neuron, we should
exploit the property that the probability distributions of neuron inputs
and outputs are not uniform.

Let us consider the VGG-like architecture in [57] of six convolutional
layers followed by three fully-connected layers. As an example, to imple-
ment the second convolutional layer (3× 3 convolution, 20 input channels,
20 output channels) as a logic circuit, we would need to build 20 truth
tables of 3 × 3 × 20 = 180 inputs (i.e., 2180 input combinations) of one
output each. After building a truth table with 10,000 images from the
training set, out of the 2180 rows, output is specified (as either 0 or 1) for
only 1.1× 106 rows on average across 20 output channels, and the output
for the rest of the rows remains unspecified (DC). This corresponds to only
7.4 × 10−47% of total maximum possible rows. More importantly, some
rows are seen more frequently than other rows, implying that not all rows
are equally important. As a metric of the importance of rows, we define
hit count, HC, which refers to the number of occurrences that the row’s
input combination is seen during training or inference. Fig. 3.2(a) shows
the histogram of the row hit counts greater than 0 (i.e., excluding DC rows
with HC = 0) after training. We can see that 51% of the rows are hit (i.e.,
the corresponding input is seen) only once, and only 11% of the rows are
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hit 10 or more times. Furthermore, there exists a very high correlation
between the hit counts of the training set and the test set (10,000 images)
as shown in Fig. 3.2(b), which suggests that logic optimization based on
training set will work as well for inference.

The input combinations defined in the ISFs from the training set cover
the most of the input combinations of the test set, but not all. In the same
example above, about 14% of the input combinations of the test set are not
seen in the training set. Since the output for such input combinations is
set to DC in the ISFs, an output that violates (3.1) may be mapped during
synthesis, which becomes a source of accuracy loss. This is a unique
hazard of CLNNs that does not exist in NPE-based NNs where outputs for
unseen inputs are still correctly computed based on the loaded weights.

In order to mitigate the problem, we need to minimize the accuracy
loss due to unspecified outputs. This could be achieved by increasing
the possibility that the output is specified for given input combinations,
i.e., increasing the hit rate, which is defined as the percentage of the in-
put combinations that are seen during both the training and inference.
However, specifying more output for unseen rows is not a viable option
since it will increase the logic complexity. Rather, introducing DCs in the
inputs will increase the hit rate because the total number of unseen input
combinations is reduced, and as a result more generalized truth tables will
be generated. This is similar to pruning of conventional NNs in that it
requires a judicious choice of inputs to be ignored. In CLNNs, this is an
opportunity for boosting accuracy by preventing unknown outputs during
training (which does not happen in conventional NN training).

Design Optimization of CLNNs

Based on the intuitions discussed in the previous sections, we present a
design optimization method of CLNNs called SynthNet, focusing on logic
minimization. Specifically, we propose two complementary techniques,
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includes/proposed/figures/designflow.pdf

Figure 3.3: SynthNet’s fully automated design optimization of CLNNs.
The dashed box represents the territory of the proposed logic optimization.

synthesis-aware pruning and input-driven neural logic minimization, to
address the above-mentioned limitations and exploit the error resilience
of CLNNs for improving energy efficiency.

Design Flow

The overall design flow is presented in Fig. 3.3. We first train a McCulloch-
Pitts NN and convert target layers into ISF truth tables. Our CLNN op-
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timization is performed before the conventional logic minimization and
synthesis of the truth tables, as highlighted by the dashed box in the figure.
We split the multi-input multi-output truth tables into multi-input single-
output truth tables to be optimized independently. The truth tables are
then sent through our logic optimization procedure composed of iterative
synthesis-aware pruning and input-driven neural logic minimization until
it reaches a given target accuracy. Accuracy is evaluated on the test set
using the reduced truth tables. Finally, the reduced truth tables are im-
plemented as logic circuits through conventional logic minimization and
synthesis. The synthesized circuit is evaluated for hardware metrics, and
the test set is applied on the circuit to get the actual accuracy. The following
two subsections respectively describe the synthesis-aware pruning and
the input-driven neural logic minimization, followed by the integration of
both in the design flow.

Synthesis-aware Pruning

Pruning, in general, removes low-magnitude weights that contribute little
to the model output. In CLNNs, weight pruning is equivalent to removing
an input from the truth table, or placing DC on the input to be removed.
This serves two benefits. First, the truth table size (hence the circuit
complexity) decreases exponentially as the number of inputs decreases.
Second, the hit rate increases because some DC outputs, which would
have mapped to a random output, are now specified based on remaining
more significant weights, leading to accuracy improvement. There is a
point of diminishing returns in accuracy improvement because beyond
a certain point, accuracy loss due to over-generalization becomes greater
than the accuracy gain due to the reduction of DC outputs.

Specifically, for a given ISF truth table, we gradually remove inputs
(introduce DCs) beginning with the corresponding lowest-magnitude
weights. We denote the percentage of removed inputs by pruning degree
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∆p. For example, in the 3× 3 convolutional layer where there are 20 input
channels, we can remove up to 180 inputs. If ∆p = 90%, 162 lowest-weight
inputs will be removed, reducing the maximum of input combinations
from 2180 to 218 . The input removal results in multiple rows with different
outputs mapping to the same row with the same output in the reduced
truth table. In order to determine the new output, we take a weighted av-
erage of the inputs mapped together under the DCs to take the importance
of each row into account for the new output y ′ as follows:

y ′ = round
(∑

i∈I yi ×HCi∑
i∈I HCi

)
, (3.2)

where I is the set of inputs that are merged, yi is the output and HCi is
the hit count of the i-th row that is merged. The hit count of the new rows,
HC ′ is the sum of the hit counts of the merged rows. That is,

HC ′ =
∑
i∈I

HCi. (3.3)

Consider an example shown in Fig. 3.4. The second input, x2, has the
lowest weight of 1, so we consider pruning it. Pruning a single input will
cause pairs of inputs to respectively map to a single input. For example,
consider the two input combinations x1x2x3 = 101 and x1x2x3 = 111. In
the original truth table, their outputs differ as 0 and 1, respectively, but
in the reduced truth table, they both map to x1x3 = 11, and the new
output is round

(0×10+1×1000
10+1000

)
= 1. The hit count of the new rows is now

10 + 1000 = 1010.
Two input combinations x1x2x3 = 000 and x1x2x3 = 010 show how

pruning improves accuracy. The first input combination, 000, is seen
during training, and its output is specified as 0 in the original truth table.
On the other hand, the second input combination, 010, is not seen during
training, and its output is not specified. If this DC output is mapped to 1
during synthesis, it would become a source of inference error because it
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includes/proposed/figures/minimization1.pdf

Figure 3.4: Synthesis-aware pruning. In this example, ∆p = 33.3%, and
hence x2 is removed.
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includes/proposed/figures/minimization2.pdf

Figure 3.5: Input-driven logic minimization (row dropping). In this ex-
ample, ∆h = 40%, and output for four input combinations, 100, 101, 110,
and 111, are unspecified.

violates (3.1). Pruning x2 effectively specifies the output of 010 as 0, which
is the correct output if it had been seen during training.

Input-driven Neural Logic Minimization

As discussed in the motivation sections, the hit counts of the rows varies
significantly, and the majority of input combinations appear only a few
times during training. These low-hit count rows contribute little to the
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CLNN accuracy, as compared to high-hit count rows, and can be removed
from the ISF truth table as if they have not appeared during training.
This is done by unspecifiying the output, i.e., making 0 or 1 to DC, and
the row is called dropped from the table. As we drop seldom-hit inputs
and introducing more DC outputs, we can reduce the complexity of the
synthesized circuit.

Specifically, our input-driven neural logic minimization, or simply row
dropping, unspecifies the output for the rows with the lowest non-zero hit
counts until the total hit counts of dropped rows reaches a row dropping
degree ∆h. We do not set the hit count of the dropped rows to zero because
the hit counts should be preserved for making decisions in the following
iterations of pruning. Fig. 3.5 shows an example of row dropping for
∆h = 40%. Since the total hit count is 3165, we drop low-hit count rows
until the sum of the hit counts of the dropped row reaches 1266. In this
case, four rows x1x2x3 = 100 x1x2x3 = 101, x1x2x3 = 110, and x1x2x3 = 111
have the lowest non-zero hit counts, whose sum is 5+10+150+1000 = 1165.
Therefore, the four rows are dropped by unspecifying their output, but
their hit counts, 1165 in total, are preserved.

Pruning and Row Dropping Thresholds

Determining the two thresholds, pruning degree ∆p and row dropping
degree∆h, can be time-consuming since the design space is large, and logic
synthesis for accuracy evaluation takes a long time. We propose a variant
of coordinate descent to determine the two thresholds to minimize the
logic size while meeting an accuracy constraint c without time-consuming
exhaustive search. Also, we estimate the accuracy of the resulting NN
using the reduced ISF truth table without synthesizing it.

The threshold optimization procedure is described in Algorithm 1. Ini-
tially, ∆p is set to 0% and ∆h is set to 0%, i.e., no pruning and no row drop-
ping is applied. For larger networks, we can start ∆h and ∆p at a higher
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number. In the Prune procedure, we first search along the space of ∆p by
gradually increasing it by a granularity of δp until the accuracy reaches
the maximum. During this procedure, new accuracy acc(∆new

p ,∆h) is
compared to the previous step’s accuracy, acc(∆old

p ,∆h). At the maximum
accuracy, we fix ∆p and move on to the rowDrop procedure where we
gradually increase ∆h by a granularity of δh until the accuracy hits the
user-defined accuracy constraint c. This is repeated until increasing ∆p

further does not improve accuracy and increasing ∆h further causes the
accuracy to drop below c. To reduce computational complexity, we start at
a coarse granularity for the initial search and gradually increase the gran-
ularity. As a result, the coordinate descent algorithm’s iterative procedure
repeats the two-dimensional search and returns the optimal ∆p and ∆h

that satisfy the given accuracy constraint.
In each iteration during coordinate descent for pruning, acc() function

estimates the accuracy of a candidate NN, which would require time-
consuming synthesis and simulation of its logic implementation. In order
to reduce execution time, we estimate the accuracy by keeping the ISFs as
lookup tables. Instead of time-consuming synthesis and simulation, these
lookup tables can be used to quickly estimate the output of the circuit.
Because the truth tables are incomplete, some table lookups may fail when
an input with unspecified output is encountered. Upon the completion of
Algorithm 1 for each layer, all layers are integrated and synthesized for
the evaluation of accuracy and power consumption.

Results and Discussion

In this section, we demonstrate the efficacy of SynthNet for energy-efficient
implementation of CLNN.

We consider a small CNN model that is suitable for low-latency in-
sensor image recognition as shown in Table 3.1. Note that, while small,
this network is the deepest and most computationally complex network
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Algorithm 1 CLNN logic optimization
1: procedure optimize(c)
2: initialize δp and δh
3: let ∆old

p = 0, ∆old
h = 0, ∆new

p = δp, ∆new
h = δh

4: while ∆new
p > ∆old

p or ∆new
h > ∆old

h do
5: decrease δp and δh
6: ∆old

p = ∆new
p , ∆old

h = ∆new
h

7: ∆new
p = prune(∆old

p , δp,∆old
h )

8: ∆new
h = rowDrop(∆old

h , δh,∆new
p , c)

9: end while
10: return ∆old

p , ∆old
h

11: end procedure
12: procedure prune(∆old

p , δp, ∆h)
13: while acc(∆new

p ,∆h) >acc(∆old
p ,∆h) do

14: ∆old
p = ∆new

p , ∆new
p = ∆old

p + δp
15: end while
16: return ∆old

p

17: end procedure
18: procedure rowDrop(∆old

h , δh, ∆p, c)
19: while acc(∆p,∆new

h ) > c do
20: ∆old

h = ∆new
h , ∆new

h = ∆old
h + δhit

21: end while
22: return ∆old

h

23: end procedure

yet to be integrated with ultra-low latency CLNNs. The model is trained
on the CIFAR-10 image dataset using Google Tensorflow.

Since making early layers energy-efficient is more effective [45], we
apply the proposed method to the second and third convolutional layers.
However, the applicability is not limited to any specific layer type and is
applicable to any binary-input binary-output layers. The other layers are
binarized as well and processed by NPEs.

We use batch normalization after every layer, a batch size of 128, and
the last 5000 samples of the training set as a validation set with the test



21

Table 3.1: VGG-like NN architecture with 32× 32 input map used in the
experiments.

Layer Type Max pool 2× 2 Dropout
1 Binarized 3× 3 Conv (3,20)
2 Binarized 3× 3 Conv (20,20) ✓ ✓
3 Binarized 3× 3 Conv (20,40)
4 Binarized 3× 3 Conv (40,40) ✓ ✓
5 Binarized 3× 3 Conv (40,80)
6 Binarized 3× 3 Conv (80,80) ✓ ✓
7 Fully connected (80,1024) ✓
8 Fully connected (1024,1024) ✓
9 Fully connected (1024,10)

error rate reported on the best validation accuracy after 200 epochs, similar
to [25]. We do not retrain on the validation set and use only the images
in the training set, excluding the validation set, to build the truth tables.
Therefore, the truth tables are built on a completely separate set of images
than the images on which we test the classification accuracy. All accuracy
numbers reported in this section are obtained by simulating synthesized
circuits, not estimated by the acc() function.

All results for CLNN are synthesized with Synopsys Design Compiler
using the TSMC 45 nm library. Every circuit representing individual truth
tables needs cycles according to the height×width so that the whole input
is convolved. For example, the input to Layer 2 is 32×32, thus it takes 1024
cycles of the combinational logic to convolve the entire input. Note that
one can exchange latency for area by instantiating more combinational
circuits to reduce the number of cycles. As the baseline, we use SCALE-
Sim [54] and DRAMPower [5] to estimate the energy consumption for
memory accesses in systolic array-based architecture with the parameters
in [9].

Figs. 3.6 and 3.7 show the change in hit rate and classification accuracy
for varying ∆p and ∆h, respectively. In Fig. 3.6, we can see that hit rate
increases as ∆p increases. As a result, the accuracy increases up to 86.4% at
∆p = 83.3% in Layer 2 and 86.9% at ∆p = 89.4% in Layer 3, which is found
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by Algorithm 1. Beyond these ∆p, combinational circuitry is coalescing too
many inputs and making the output too generic. Figs. 3.7(a) and 3.7(b)
shows that the hit rate decreases as ∆h increases for Layers 2 and 3, while
∆p is set to the respective optimal value. As a result, the classification
accuracy also drops, but only by a few percent even at ∆h = 90%, i.e.,
when only 10% of the input combinations from training are preserved.
Fig. 3.7(c) shows the hit rate of Layers 2 and 3 and the accuracy after
combining both layers with the same ∆h. As a result of row dropping in
subsequent layers, the accuracy is slightly decreased, but it is still as high
as 80% even when 90% of the rows are dropped in each layer.

Finally, we evaluate the CLNN in comparison to a conventional systolic
array-based NN estimated using SCALE-Sim and DRAMPower. We set
the target accuracy of our design to 82%, which is achieved at ∆h = 50%
(see Fig. 3.7(c)). Pruning degree ∆p is set to the respective optimal, 83.3%
for Layer 2 and 89.4% for Layer 3. Compared to the systolic array-based
NN architecture, the proposed CLNN consumes only a fraction of energy
because there is no energy consumption for fetching weights from off-chip
memory. We can also observe the greatest power reduction for layers with
smaller input size but larger output channel width. For example, Layer 3
is convolving over a 16× 16 input map after a max pooling layer, which
means less cycles are needed to perform the full convolution. However, the
weight fetching DRAM accesses’ expenditure is much higher, regardless of
input size, and is only dependent upon the width of the input and output
channels. Therefore, layers with smaller input map sizes and larger width
experience the greatest reduction in power consumption.

CLNNs are a promising approach to reduce the energy overhead of
memory access in ultra low-latency NNs, but the large logic size has lim-
ited their application at scale in area- and energy-constrained applications.
We presented a design optimization method for the energy-efficient im-
plementation of CLNNs allowing for scalable synthesize of deeper NNs.
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includes/proposed/figures/Prune.pdf

Figure 3.6: Synthesis-aware pruning with a varying pruning threshold ∆p

on (a) Layer 2 and (b) Layer 3.
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includes/proposed/figures/rowDrop.pdf

Figure 3.7: Input-driven neural logic minimization with a varying row
dropping threshold ∆h on (a) Layer 2, (b) Layer 3, and (c) Layer 2 and 3
combined.

Exploiting the error-resilient nature of NNs, we proposed two techniques
to over-simplify the input-to-output mapping of neurons and a coordinate
descent-based optimization algorithm to determine the optimal level of
simplification. Compared to the conventional systolic array-based NN,



25

more than 90% power reduction is demonstrated per layer with an accu-
racy of 82% on CIFAR-10, yet to achieved by previous CLNNs.
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4 energy-aware model compression

The second approximate computing scheme we propose is energy-aware
model compression. In the following section, we introduce a software-
based model compression technique that optimizes upon previous model
compression designs.

Introduction

Despite the unprecedented success of machine learning (ML), bringing
intelligence to resource-constrained edge devices has not seen similar
success. While neural network (NN) models are rapidly growing in com-
plexity and size to serve more and more sophisticated applications, the
gap between their compute requirements and the capabilities of edge
devices has only been widening. Specifically, for edge ML, the limited stor-
age and memory capacity has been identified as a major hindrance [39].
The recent emergence of binary neural networks (BNNs) has shed some
light on the possibility of making ML models smaller, in which all the
weights and activations are binarized to either +1 or -1 [25] Binarized
weights and activations require less memory and storage than their full-
precision (floating-point or integer) counterparts, and they can also be
processed with simple, low-power bit-wise logic units instead of complex,
power-hungry arithmetic units. It makes BNNs highly suitable for ML
applications on edge devices with small memory and storage, and thin
energy budget.

However, despite the dramatic size reduction of binarization, BNN
models still require further compression to be ported onto more severely
resource-constrained platforms. Compression methods have been pro-
posed to further optimize BNNs, including computation skipping [16],
and bit-level data pruning [38]. Weight pruning is a widely applicable
model compression technique that removes unnecessary or unimportant
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weights from the network [21]. In traditional full-precision NN models,
unnecessary or unimportant weights can be easily identified by their small
magnitude during the forward pass. Removing such near-zero weights
has only a minimal impact on the output accuracy, and, in fact, it can
even reach a “sweet spot" in the model where accuracy can surpass the
original unpruned model accuracy due to the reduction of overfitting from
overparameterization of the model, in addition to performance gains due
to reduced computations [20]. This form of unstructured pruning comes
at a potential hardware overhead cost identifying the sparsity within the
weight matrix. Structured pruning has advantages in generalization but
lack the fine-grain control of individual weight connection pruning [69].
However, compression methods can overcome potential hardware over-
head by employing methods through quantization, encoding, and weight
permutation [20, 8]. Additionally a previous work in [17] has considered
the communication latency of hardware when implementing full-precision
networks onto the device. Some forms of extremely low-power networks,
such as the combinational neural network, will require no hardware over-
head when identifying sparsity within the matrix by simply removing the
circuit component corresponding to the weight element [44, 7]. However,
weight pruning for BNN models is not a straightforward problem since
the magnitude of all weights is strictly 1, regardless of their sign, and
thus magnitude cannot serve as an indicator of the weights’ importance.
Therefore, BNN pruning requires a new significance metric to replace the
weight magnitude.

In this section, we propose to use latent weights for pruning. Latent
weights are real-valued weights that are used to obtain the pseudogra-
dient vector during backpropagation as the real gradient vector cannot
be obtained from binary weights [22]. We present a model compression
technique that identifies the layer that has the greatest potential to improve
the compression ratio at a time and prunes the layer based on the latent
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weights. The proposed technique includes an effective method to find
the target layers based on the impact of pruning on the output accuracy
without time-consuming model exploration. As a result, the proposed
technique can achieve a dramatic reduction in model size and operation
count, and reach the pareto-optimal of compressed networks that suffer
no accuracy loss.

The contributions of this section are as follows:

• We present a latent weight-based pruning technique that selects
layers that can be pruned with the minimum impact on the output
accuracy and prune the layers based on latent weights.

• We introduce a multidimensional analysis of pruning layer-by-layer
and include an optimization algorithm that intelligently minimizes
a BNN that selectively prunes error-tolerant insensitive layers.

• We show experimental results that indicate a highly-optimized form
of BNN pruning that decrease BOPs (binary operations) and model
size by 46% and 27%, respectively, while incurring a small accuracy
gain of +0.4% on the CIFAR-10 dataset, and similar results on other
datasets. Our work is the first that can achieve a significant reduction
in model size even without any accuracy loss.

Background and Related Work

The ever-increasing size of NN models not only poses a challenge to fast
and energy-efficient processing, but is a major barrier to the deployment on
devices with small memory and storage, which calls for effective solutions
for efficient model compression and operation count reduction. In this
section, we overview some key notions related to BNNs and BNN model
compression.
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Binary Neural Networks

The high error resilience of NNs allows for aggressive quantization for
computation at reduced precision such as fixed-point or ternary weights
instead of complex full precision [34, 28]. BNNs are an extreme case of
quantized NNs, where weights and activations are restricted solely to two
values, +1 or -1 [25]. This binarization leads to a simplification of multiply-
and-accumulate (MAC) operations, which is the most fundamental but
expensive aspect of the convolutional operation, to extremely simpler
XNOR and popcount operations. This leads to a significant reduction in
power consumption and model size. The complexity of a BNN is measured
by the number of binary operations (BOPs), instead of the number of
floating-point operations (FLOPs).

A key observation is that the derivative of the binarization function
at all spots is zero or undefined, making backpropagation gradient cal-
culation impossible. Therefore, the straight through estimator is used to
allows the gradient to pass exactly as an identity, generating a pseudogradi-
ent [2, 25]. Also, having only binary values for weights, it is impossible
to distinguish distinct magnitudes between the weights in BNNs. Thus,
traditional magnitude-based weight pruning is ineffective, as there is no
way to determine which weight affects classification accuracy more.

Flip Frequency-based Channel Shrinking

For the weight pruning of a BNN model, a new indicator of weight signifi-
cance that substitutes the weight magnitude is required. A recent work
has proposed to exploit the amount of weight flips (+1 to -1 or vice versa)
that occur during training [37]. In this work, they conjecture that the
weights can be determined as “unstable” if they flip frequently during
training. Unstable weights are considered to have little contribution in the
minimization of loss within the network. When the final stage of training
is near (i.e., when the loss is stabilizing), the occurrence of flips is counted
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for each weight kernel as f. If the number of weight flips is above a prede-
termined threshold, the corresponding weight is determined as negligible
and thus prunable. The portion of the prunable weights represents the
portion of channels that can be potentially removed. Therefore, the num-
ber of channels is reduced by the portion of the prunable weights, and the
entire BNN is retrained. This is repeated until the predetermined accuracy
threshold has been reached.

Latent Weights in BNN

In a BNN model, the optimizer cannot directly compute the gradients
required to update the weight kernels during backpropagation because
the gradient of the sign function is zero almost everywhere. Therefore,
a real-valued weight vector, w̃, is used instead of the binary weights for
training [2, 25]. Also called the latent weight [22], it is used to calculate the
pseudogradient during backpropagation. During the forward pass, the
binarized weights, wbin, is simply the sign of the latent weight:

wbin = sign(w̃) =

{
+1 if w̃ ⩾ 0

−1 if w̃ < 0
. (4.1)

The sign and magnitude can be thought of separately as follows [22]:

w̃ = sign(w̃) · |w̃| =: wbin ·m,wbin ∈ {−1,+1},m ∈ [0,∞). (4.2)

Since there now exists a magnitude value of the latent weight, m, different
techniques typically reserved for floating-point models can now be applied
to BNNs. Weights build inertia m over time. The higher the inertia, the
stronger the gradient signal that is required in order to make the weight flip.
Weights in the forward pass can only flip and not adjust their magnitude,
unlike their floating-point counterparts. However, in the backpropagation
stage, m for each latent weight can adjust during each training epoch,
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distinguishing individual weights in the kernel from one another. This real-
valued vector allows for optimization methods to be applied to the BNN.
Each BNN model that is trained contains the pseudogradient information
along with latent weight information.

Proposed Latent Weight-based Pruning

We propose a new method to prune BNN models based on latent weights
that dramatically reduces the model size and operation count, while main-
taining accuracy. Specifically, we address the challenges in BNN pruning
mentioned in Section 4: i) identify which layer should be pruned and
determine how heavily it should be pruned, and ii) select weight kernels
within the identified layer to be pruned.

Design Flow Overview

We first describe our pruning method in which a BNN model is pruned
based on latent weights. Unlike flip frequencies [37] which are an “indirect”
significance metric induced from the latent weights, latent weight-based
pruning offers a more “direct” indicator of significance since the magni-
tude of the latent weight drives the inertia of the weight flipping. This
enables us to use the source of weight kernel optimization, which offers
additional granularity as we can tune pruning of real-valued weights.

The overall model optimization flow around the proposed latent weight-
based pruning is presented in Figure 4.1. During training, we initialize all
pruning percentages from zero and begin iterative pruning. From zero,
we begin pruning on the least accuracy-responsive layer by increasing the
pruning percentage on each layer iteratively. We prune each layer to a pre-
defined accuracy threshold and prune the next least accuracy-responsive
layer afterward. Our iterative pruning ends when we no longer can prune
and maintain accuracy above the threshold. The following subsections
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Model training

Target accuracy, At
Latent weight-
based pruning

Trained model, M

Operation count

Final accuracy

Optimized model

Training set

Test set

Verification

Figure 4.1: Proposed latent weight-based pruning method integrated in
the model optimization flow.

describe the latent weight-based pruning highlighted in Figure 4.1 and its
subroutines of the algorithm in detail.

Iterative Pruning Optimization

Algorithm 2 describes the main routine of the proposed latent-weight
based pruning method, which is highlighted in Figure 4.1. The inputs
to the pruning algorithm are M, At, and δ, where M is the trained BNN
with unpruned weights, At is the target accuracy after pruning, and δ

is the incremental increase in pruning percentage upon each iteration.
Since BNNs are easily overfitted [21], At can be set to the accuracy of the
original model before pruning, but it can also be any accuracy level that
meets the application’s requirement.

The pruning algorithm is performed by the iterative execution of
getSensitivity to select a target layer through sensitivity analysis and
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pruneLayer to actually prune the target layer. The algorithm is iterated
over each unpruned layer of M until all layers have been pruned. We first
find an unpruned layer that is most robust to pruning using getSensitivity,
which is described in Section 4, and set it as the target layer lp. The target
layer lp is gradually pruned until further pruning violates the accuracy
requirement At. The pruning percentage is gradually incremented by δ

each time. As mentioned in Section 4, the initial pruning percentage for
the target layer, t(lp), is initialized to zero, and it is updated after every
iteration of pruning of the layer.

The value of δ should be set small enough not to miss the fine-grained
optimal point of the pruning percentage, but not too big in order to mini-
mize computational overhead. We find δ = 10% to be reasonable for most
cases. The layer-wise pruning is repeated from the least sensitive layer
to the most sensitive layer. We conclude the iterative procedure once all
layers have been pruned or further pruning violates the target accuracy
At.

Layer Sensitivity Analysis

When pruning convolutional layers, certain layers react with more volatil-
ity than others due to the low operation count after max-pooling or intrinsic
small weight kernel size. Therefore, in order to get the most BOPs reduc-
tion without hurting accuracy, we determine the sensitivity, s, for every
layer and prune the least sensitive layers first. For layer l, its sensitivity sl

is defined as the amount of accuracy loss, ∆A, over the operation count
reduction, ∆BOPs, as:

sl =
∆A

∆BOPs
, (4.3)

after pruning p percentage of the weights of layer l in isolation while other
layers remain unpruned. The value p must be high enough to introduce
accuracy instability within the network, generating a sufficient accuracy
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Algorithm 2 Latent-weight based pruning
1: procedure prune(M, At, δ)
2: while exists an unpruned layer in M do
3: smax← 0
4: t(lp)← 0
5: for each unpruned layer l do
6: sl← getSensitivity(l)
7: if sl > smax then
8: smax← sl; lp← l

9: end if
10: end for
11: while Ap > At do
12: pruneLayer(lp, t(lp) + δ)
13: t(lp)← t(lp) + δ

14: Ap ← Accuracy of pruned M

15: end while
16: Mark lp as pruned
17: end while
18: return M

19: end procedure

response. We find p = 95% to be reasonable in most cases to provoke a
negative accuracy response within the network. This metric allows us to
see which layers are less sensitive and likely to fluctuate less in accuracy
when pruned. Effectively, this metric tells us how much accuracy loss we
can expect a layer to contribute for a given amount of BOPs reduction.
Therefore, the less sensitive a layer is, the better candidate for pruning it
is.

The operation count for binarized layer l is calculated as the following:

BOPsl =

(
n∏

i=1

wi

)
× ih × iw (4.4)

where n is the dimension of the weights (n = 4 for convolutional layers
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Figure 4.2: Comparison of the magnitude of latent weights and flips of
layer 3 of BinaryNet’s weight kernel.

and n = 2 for dense layers), wi is the i-th index of the weight kernel, and
ih, iw is the height and width of the output, respectively.

Pruning based on Latent Weights

Within the function pruneLayer(lp,p), we prune the target layer lp by
removing the p percentile of the weight kernels with the lowest latent
weight magnitude. Using latent weights offers distinct advantages over
using the flip frequency. First, latent weights are a better indicator of the
significance of weight kernels, which is often not correctly captured by
flip frequencies. As described in Section 4, the larger the magnitude of the
latent weights, the less likely the weight is unstable. Figure 4.2 shows the
relationship between latent weights and flip frequencies captured from
the BinaryNet as an example. It shows that the maximum latent weight is
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inversely proportional to flip frequency, but the near-zero latent weights,
which are the majority of the weights (Region 3), show widely varying
flip frequencies, between 0 and 21 in this example. In other words, a low
flipping frequency does not always represent an important weight kernel
with a high latent weight, and removing only high flip frequency weights
(Region 2) may lead to ineffective pruning of weights. On the other hand,
our method keeps the high latent weights (Region 1) for better pruning
results, as we show in the experimental results.

Second, the real-valued nature of the latent weights allows us to per-
form more fine-grained pruning. We can distinguish almost every individ-
ual weight within the kernel and prune by the percentage of weights that
fall below a certain threshold as opposed to pruning on discrete integer
values. The ability to prune based on real-valued weights allows us to
distinguish individual layers based on our sensitivity analysis as well. To
illustrate the disadvantages of discretized pruning, Figure 4.3 shows that
an overwhelming majority of flip frequencies have stabilized and are at
f = 0, making them impossible to discern. Furthermore, flip frequencies
that comprise the remainder of weights in the kernel comprise a small
fraction of the overall weights. Therefore, there is no way to distinguish
sensitivities and selectively choose layers to prune for a baseline flip fre-
quency of f > 2. Simply pruning intermediate f values at f = 1 and f = 2
is unable to produce a sufficient accuracy response for sensitivity analysis.
This is in contrast to real-valued pruning on BNNs using latent weights,
where we can adjust the entire pruning threshold on a real-valued scale
and effectively observe sensitivities.

As a result, the proposed latent weight-based pruning achieves higher
reduction in BOPs while maintaining high accuracy, as demonstrated in
the following section.
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Figure 4.3: Discrete pruning for flip frequencies f = 0, f = 1, f = 2, and
f > 2 of BinaryNet.

Table 4.1: Models and datasets used in the experiments.

Model Dataset Bin. conv. Total Base
layers BOPs acc.

3ConvNet MNIST [32] 2 4.5× 106 97.4%
BinaryNet [25] CIFAR-10 [29] 5 5.1× 108 80.5%
XNOR-net [50] Imagenette [24] 5 2.9× 109 63.0%

Experiments

In this section, we demonstrate the efficacy of our BNN pruning algorithm
in comparison to the baseline unpruned networks as well as network
shrinking based on flip frequency [37].

We consider three neural networks, a simple three-layer CNN with two
binarized convolutional layers (3ConvNet), BinaryNet [25], and XNOR-
Net [50], trained for classification of the MNIST [32], CIFAR-10 [29],
and Imagenette [24] datasets, respectively, to demonstrate the proposed
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pruning method on different sized image inputs and network complexities.
Table 4.1 summarizes their complexities. The models are trained using
Tensorflow and each BNN is built using the Larq API [1] and pruned
using the proposed method. We use batch normalization after every layer
and use 20% of the training set as a validation set used to determine the
accuracy. Accuracy of the final result is evaluated once on the test set
previously unseen to the algorithm. We do not retrain on the validation
set and only determine the accuracy threshold strictly on the validation set.
Fine tuning is done post-pruning with ten epochs with a learning rate at
10% of the original training learning rate. As discussed in Section 4, At is
set to the baseline accuracy of the unpruned network to enable iso-accuracy
comparison.

Results

We describe results on all three datasets with different networks.
We first implement a small 3-layer CNN with two binary convolutional

layers to classify MNIST. The first layer is a floating point activation layer
with 32 output channels followed by two binary convolutional layers
with 32 and 64 output channels. The small network used is immediately
responsive to pruning on both layers. The initial sensitivity analysis reports
that the second convolutional layer is the least sensitive to pruning with
s = 64× 10−9 opposed to s = 308× 10−9 as displayed in Figure 4.4(a). We
first iterate through layer 2 with δ = 10% and then proceed onto layer 2
with the same granularity. Results indicate a 42% reduction in BOPs and
30% reduction in model size compared to the unpruned base model with
no accuracy loss as demonstrated in Figure 4.5(a). Latent weight pruning
outperforms flip frequency pruning by 19.4% in BOPs reduction and by
12.5% in model size reduction.

The second model classifies CIFAR-10 using the BinaryNet architecture
[25]. The initial sensitivity analysis reports that convolutional layer 4 is
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the least sensitive to pruning with s = 0.71× 10−9 in Figure 4.4(b). The
initial sensitivity analysis indicates binary convolutional layer 6 is the
least sensitive to pruning, with the lowest magnitude s value. Since each
layer contributes differently to the total number of operations within the
network due to max pooling layers and increasing channel output width,
imbalances occur as evidenced in Figure 4.4(b) on the right-hand side.
This proves to be beneficial in the case of layer 6, as there is a very high
BOPs count within this layer, allowing great BOPs reduction at the cost of
little accuracy degradation. Therefore, we prune layer 6 to its entirety until
the At is reached after fine-tuning. At each end of each pruning iteration,
we recalculate s for every unpruned layer. In BinaryNet’s case with CIFAR-
10 dataset, we prune layers four and six as they are the least sensitive layers.
In Figure 4.6(a), the first three iterations with multiple pruning steps are
displayed, with layers 6, 4, and 2 only being pruned once before reaching
the accuracy threshold. Beyond these first two iterations, we degrade
accuracy beyond the At threshold. Results indicate a 46% reduction in
BOPs and 27% reduction in model size compared to the unpruned base
model with no accuracy loss as demonstrated in Figure 4.5(b). Latent
weight pruning outperforms flip frequency pruning by 29.9% in BOPs
reduction and by 13.1% in model size reduction.

We implement the XNOR-net architecture to classify the Imagenette
dataset for our third network analysis [50, 24]. We initialize pruning on
the fourth convolutional layer due to its sensitivity being the lowest at
s = 0.43×10−9 as displayed in Figure 4.4(c). Layer 6 of XNOR-net contains
a 6×6 convolutional filter, allowing for this layer to be significantly reduced
by pruning over 80% of the original weights. Additionally, pruning layer
6 has massive implications on overall model size, since layer 6 comprises
62% of the total model storage size, allowing us to greatly reduce the
model size more than the other designs. Following the pruning of layer
6, layer 5 is pruned according to it having the lowest sensitivity, which
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is again re-evaluated at the end of each layer pruning iteration. Within
Figure 4.4(c), the sensitivities only indicate what layer will be pruned on
the first iteration, which is layer 6. The sensitivity is recalculated at the
end of each iteration, meaning that while layer 2 has a lower sensitivity
than layer 5 on the first iteration, layer 2 will not necessarily be pruned
before layer 5. We increase pruning at δ = 10% and prune layer-by-layer
until the accuracy threshold is reached at 63%. In Figure 4.6(b), the first
three iterations with multiple pruning steps are displayed, with layer 1
only being pruned once before reaching the accuracy threshold.

Results indicate a 33% reduction in BOPs and 40% reduction in model
size compared to the unpruned base model with no accuracy loss as
demonstrated in Figure 4.5(c). Latent weight pruning outperforms flip
frequency pruning by 13.0% in BOPs reduction and by 18.9% in model
size reduction.

Discussion

We compared our method to purely using a channel shrinking method
based on weight flipping frequencies described in [37]. Our method
provides a distinct advantage where channel shrinking is removing com-
plexity from the network without exploiting the sparse resilience and
lottery-ticket behavior of the network. In this method, we demonstrate
the importance of exploiting sparsity within the network, as only a select
few connections within the network are shown to be major contributors to
the final classification accuracy [15].

Our results using iterative pruning incurs additional offline costs but
produce a more efficient final pruned model. These offline costs can be
handled by GPUs, producing a portable model for loading onto storage
and computation-constrained systems. In particular, we have greatly
reduced the amount of BOPs within the network. Our goal is to take
computationally demanding training and not have it be handled by the
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edge device. The only edge device responsibility is inference with the
ported model. While the accuracy gain is mild, this unstructured pruning
regularizes the network efficiently. Channel shrinking, on the other hand,
does not take advantage of the inertia of the binary weights and provides
no guarantee for regularization. Thus, we conclude that with our method,
we produce a more efficient and accuracy-robust pruned model than the
previous work.

Conclusions

Latent weight-based BNN pruning is a promising approach which mixes
two popular neural network compression techniques: quantization and
weight pruning. The classical unstructured pruning that has been used
in floating point models is difficult to integrate with BNNs due to their
binary nature and the lack of weight magnitude in the forward pass.
We demonstrated that latent weights that exist during backpropagation
are a promising alternative that allows pseudogradient weights to repre-
sent how negligible a weight is. We presented a pruning solution that is
precision-tuned to each layer, querying the sensitivities of individual com-
ponents of the network to prune in a coordinated manner. In particular,
our method focuses on reducing computational complexity and memory
storage overhead of the pruned model. Compared to the previous work of
pruning binary neural networks, we achieve a lower OPs count and smaller
model size. On all three datasets with three different architecture sizes,
we demonstrated 33%–46% reduction in operation count and a 27%–40%
reduction in model size with no accuracy loss or up to a +0.4% gain.
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5 efficient edge offloading

In the final thrust of the project, efficient edge offloading, we design a new
machine learning scheme to reduce transmission latency between an edge
client and server. We intelligently scale the resolution of transmitted data
in order to reduce the amount of total data transmitted over a commu-
nication link. Our method uses a dynamic online reconfigurable scaling
optimization that allows us to determine the best scaling for a transmitted
image based on accuracy constraints.

Introduction

Extended Reality (XR) has been rapidly gaining traction across various
domains, spanning from entertainment [13] to education [42] and health-
care [70]. Its utilization is extending into increasingly critical applications,
as evidenced by its incorporation into mission-critical contexts [46, 3].
Given that XR devices are worn on the head, they must adhere to stringent
size, weight, and power constraints, similar to other wearable technologies,
and these constraints inevitably limit the computational capabilities of
XR devices. Moreover, due to the interactive nature of XR applications,
low latency is a critical requirement, which worsens the challenge. XR
devices are typically equipped with a low-power system-on-chip (SoC)
commonly found in smartphones, which fall short in meeting the demands
of compute-intensive deep learning (DL) tasks. The gap between the com-
puting power required and what can be provided is expected to widen
as DL models continue to grow in complexity, facilitating more advanced
applications.

Computation offloading stands out as a promising solution for enabling
compute-intensive DL applications on resource-constrained devices [49].
It involves splitting the workload and leveraging resource-rich edge servers
to handle the computationally intensive segments. Consequently, the qual-
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Figure 5.1: Computation offloading of face identification. (a) No offload-
ing. (b) Full offloading of workload. (c) Partial offloading by partitioning
workload. (d) Proposed context-aware offloading.

ity of service (QoS), such as latency and accuracy, can be significantly
enhanced. However, it is essential to exercise caution during the work-
load partitioning process to ensure that it alleviates the burden on the XR
device while minimizing communication overhead. Inefficient computa-
tion offloading can lead to limited or even negative QoS improvements,
owing to excessive communication overhead and potential data quality
deterioration.

In Figure 5.1, we illustrate the concept of computation offloading using
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Figure 5.2: Computation offloading of face identification from an XR device
(client) to a server. Image from IMDb-Face dataset [63].

DL-based face identification as an example. Figure 5.1(a), is the baseline
scenario where the XR device handles the task entirely, which might not
meet performance requirements. Figure 5.1(b) shows complete offload-
ing, where the entire task is executed on the edge server. Although the
edge server offers more computational power, transmitting the raw input
data results in substantial communication overhead. In partial offloading
shown in Figure 5.1(c), the DL model is partitioned into two segments
so the transmitted intermediate data is minimized after the XR device
executes part of the original model. Here, the DL model is divided into
two segments, minimizing the transmission of intermediate data after the
XR device completes the first segment. In this section, we propose context-
aware computation offloading as illustrated in Figure 5.1(d), where the XR
device intelligently compresses input data using a lightweight model in a
context-aware manner, thereby significantly reducing the communication
overhead.

More specifically, our framework introduces an intelligent input scaling
mechanism on the XR device using a lightweight model. The compressed
data is then transmitted to and processed by the full DL model hosted on
the edge server. We refer to this approach as coarse segmentation, which
efficiently identifies regions-of-interest (ROIs) within the input while
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reducing the fidelity of non-ROIs to minimize communication overhead,
all while preserving the integrity of ROIs. The lightweight model executes
a simplified version of the original model’s task but remains distinct from it.
For instance, in a face identification scenario, the lightweight model focuses
on “face detection,” a less complex task than “face identification.” This
process involves preserving the resolution of detected faces while down-
scaling the background, generating compressed input data. Subsequently,
the edge server performs the more intricate identification task using this
compressed, but ROI-preserved data.

The section’s contributions can be summarized as follows:

• We introduce an efficient DL workload offloading approach centered
on context-aware coarse segmentation, enabling ROI-preserving
data scaling for XR devices. We introduce a novel training objective,
coarse segmentation, to train a lightweight model for the efficient
identification of ROIs.

• We propose an optimization framework capable of dynamically man-
aging system operations to adhere to latency constraints in varying
wireless conditions. This framework comprises offline characteriza-
tion of DL workloads and online adaptation of data scaling.

• We implement a comprehensive end-to-end pipeline of our proposed
framework in the context of face identification, showcasing improved
accuracy when compared to baseline computation offloading.

Related Work

Computation offloading is a promising strategy for facilitating resource-
intensive tasks on devices with limited resources. Achieving effective
computation offloading hinges on the efficient reduction of communica-
tion overhead between the client and the server. In the context of video
analysis, leveraging inter-frame similarities can substantially decrease this
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communication overhead. Since a video frame closely resembles a previ-
ously processed or transmitted frame, there is considerable potential to
diminish both computation and communication requirements, as noted
in [40, 36]. A recent work presents a technique to encode intermediate
features to compress the data [68].

Accurate ROI detection plays a pivotal role in optimizing data scaling
and encoding. It is essential that this detection process remains compu-
tationally efficient to ensure that the advantages of computation offload-
ing are not undermined. One of the fundamental techniques involves
straightforward frame-to-frame subtraction to identify significant changes
between frames. Advanced ROI detection methods leverage various strate-
gies, including exploiting historical frame data [40], lightweight local
object detection technique [67, 26], and the integration of multi-camera
networks to reduce overlap [18, 65].

Context-Aware Input Scaling

Our aim is to design a compute offloading method for XR systems for
efficient DL workloads under latency constraints. We propose a new
technique called context-aware input scaling to determine key ROI and scale
the fidelity of the input data in order to lessen the communication costs.
For the rest of this section, we focus on a face identification task as the
application of the system, but the proposed method can be generally
applicable to any compute-heavy DL workloads.

Let us consider a scenario where an XR device (the client) performs
a face identification task that compares a face in a captured image to a
pre-existing database of faces to find a matching identity. First, XR devices
generally do not have the compute power to efficiently perform such a
complex task. In addition, due to the memory and storage constraints,
storing the entire face database in the client will be inefficient or infeasible
due to the large storage requirement. Moreover, a face database contains
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sensitive personal data, which cannot be in distributed devices due to pri-
vacy concerns. For these reasons, the captured image cannot be processed
on the client but must be sent to an edge server (the server) for processing.

Under a latency constraint, computation offloading must be performed
with additional overheads taken into account, including data compression
and transmission. In order to minimize the overhead the compression
should have three crucial properties:

• Compressive: It should reduce the amount of data transmission
substantially to reduce communication overhead.

• Efficient: The compression process itself should be lightweight to
minimize compute overhead.

• Adaptive: The compression ratio must be should be able to adapt to
varying wireless conditions to meet the latency constraint.

In the rest of this section, we describe how we design context-aware
input scaling to meet these requirements.

Context-Aware Input Scaling Pipeline

The proposed context-aware input scaling pipeline is composed of four
main components as illustrated in Figure 5.2.

• Workload analysis is an offline step that analyzes the latency and
accuracy of the target DL workload. We also generate a coarse seg-
mentation model in this step, which is used in the next component.

• Coarse segmentation is an online step performed by the client. The
input is partitioned into ROI patches and non-ROI patches using the
coarse segmentation model.
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Figure 5.4: Design flow of client-side coarse segmentation model.

• Parameter optimization derives two control paramerters, scaling factor
and resolution factor, used in the coarse segmentation and down-
scaling steps, respectively.

• Downscaling is where the non-ROI patches are downscaled based on
the resolution factor determined in the parameter optimization step.

The ROI patches and the downscaled non-ROI patches are then trans-
mitted to the server, where they are merged and processed by the down-
stream DL workload (face identification in this example). The following
subsections describe each components of the pipeline in detail.
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Coarse Segmentation

The coarse segmentation step is to partition an input image into ROI
patches that contain ROIs and non-ROI patches that do not. In order to
meet the goals discussed in Section ??, we introduce a new task called
coarse segmentation and propose a lightweight convolutional neural network
(CNN)-based coarse segmentation method.

In coarse segmentation, the objective is to predict if a patch contains
the pixels of ROI or not, where a patch is one piece of an image equally
divided into N ×N. For the downstream task of face identification, we
consider face pixels as our ROI. Each patch is labeled either ‘1’ if the patch
contains any face pixels or ‘0’ otherwise. Thus, the ground truth label is a
2-D binary mask of dimensions N×N as shown in Figure 5.3.

In order to perform coarse segmentation, we redesign and adapt a
lightweight CNN backbone image classifier to predict the ROI via its fea-
ture maps. Different layers in a CNN classifier learn a hierarchy of features,
from simple and local features such as edges to more complex and global
features such as object parts and, eventually, entire objects or patterns.
The deeper layers capture increasingly abstract representations, making
the network capable of recognizing and classifying complex patterns in
the input data. Analysis of intermediate feature maps also shows that
the regions that are activated exhibit a strong correlation with the regions
containing semantic objects [63]. This indicates the possibility of approxi-
mating the positions of important regions within the image by analyzing
the activations of feature maps. Therefore, we redesign the model and
training objective for a lightweight CNN backbone of an image classifier
such that it predicts ROI via its feature maps.

Figure 5.4 shows our approach to perform coarse segmentation. We
train a lightweight CNN backbone without a classification head, such that
the last feature map outputs high activations at the spatial locations of
ROI and low activations otherwise. After applying the activation function,
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the output is interpreted as the probability of block containing ROI pixels.
When this feature map is projected on the original image dimensions, we
obtain the ROI and non-ROI patches as shown in Figure 5.4.

For training the model, the original RGB image serves as the input train-
ing image and the coarse segmentation mask serves as the ground truth.
Loss is calculated by comparing the output feature map and the ground
truth mask and the model weights are updated using backpropagation.

Next, we determine the number of patches that will be downscaled in
resolution using a parameter called scaling factor 0 ⩽ Sf ⩽ 1. It is defined
as

Sf = 1 −
Nds

N2 , (5.1)

where Nds is number of downscaled patches. These patches are selected
based on the output feature map of coarse segmentation model. The
patches are sorted based on their probability scores from the feature map.
A low probability score indicates that the patch is unimportant for the
downstream task and hence can be downscaled in resolution. Therefore,
we downscale Nds patches with the lowest probability scores. Figure 5.5
shows coarse segmentation of an image with three different scaling factors.
Within Figure 5.5, we see that as scaling factor increases, the amount of
high resolution original input image increases. Our system tunes a balance
between high accuracy, high scaling factor and low latency, low scaling
factor inputs. This parameter will be explicitly defined within our system
design and dynamically adjusted depending upon application constraints.

Workload Analysis

The workload analysis is an offline step to understand the computation
and communication requirements of the workload in the context of the DL
task. This step builds a latency model and an accuracy model for a given
training dataset. It also produces a coarse segmentation model, which has
been described above within coarse segmentation.
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Figure 5.5: Example of coarse segmentation with three different scaling
factors. N = 8.

First, a latency model is built based on empirical measurement and
analytical estimation. The total latency on the client side to process an
image is the sum of the acquisition latency Lacq to obtain the source
image, the processing latency Lproc to split the image into ROI and non-
ROI patches, and the transmission latency Ltx. We do not consider the
processing latency on the server side, since it is generally negligible due
to its high performance. The total latency should be less than or equal to
the latency constraint Lc.

Lacq + Lproc + Ltx ⩽ Lc (5.2)
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Since the image resolution R is fixed, Lacq is constant. The majority of
Lproc is for coarse segmentation with some for image partitioning, and this
is also constant for a fixed R on a given client device. Therefore, theses two
latency factors can be empirically measured on the target client platform.

On the other hand, Ltx is most the dominant and variable latency factor.
First, we downscale non-ROI patches by a resolution factor Rf, which is the
percentage of how much we downscale the individual patch resolution
height and width by. Without downscaling, the baseline transmission
latency Lbase

tx would be directly proportional to the size of the image and
inversely proportional to the datarate.

Lbase
tx = c

R2

γ
, (5.3)

where c is a constant that relates the image size to data size, and γ is the
data rate. Then, with the proposed scaling, for a given Sf and Rf, Ltx is
reduced to

Ltx = c
R2

γ

(
Sf + Rf

2(1 − Sf)
)

. (5.4)

Since 0 ⩽ Rf ⩽ 1, Ltx increases as either Sf or Rf increases.
This step also generates an accuracy model. It characterizes the accu-

racy of the downstream task by running it with different Sf or Rf settings.
As the quality of the image also increases as Sf or Rf increases, the accuracy
also increases. Considering these latency and accuracy characteristics, the
next step is to find the optimal values of Sf or Rf that maximizes the accu-
racy while meeting the constraint (5.2) as discussed in the next subsection.

Parameter optimization

In order to determine optimum Sf and Rf, we use a combination of latency
analysis combined with downstream task accuracyAs(Sf,Rf) calculated of-
fline. While the parameters are selected online, the latency and accuracies
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MBps. (b) Accuracy model Atx(Sf,Rf).

are already calculated, ready to conform to constraints. We dynamically
choose parameters (Sf,Rf) such that we scale the input image to match
application-defined latency constraint Lc while maintaining the highest
level of accuracy based on validation data accuracy for the downstream
task.

To do this, we use Ca to represent all possible (Sf,Rf) configurations
corresponding to unique latencies, L:

Let Cs be the set of elements: Cs = {Ai : Ltx(Sf,Rf) < Lc}, (5.5)

where Cs is the subset of configurations satisfying the latency constraint
within Ca, and Ai is the accuracy of the particular configuration. Thus, the
optimization problem is to find the configuration that maximizes accuracy
within Cs:

(Sfo,Rfo) = max
Ai∈Cs

(Ao) (5.6)

where (Sfo,Rfo) is the optimum scaling and resolution factors that satisfy
constraints, and Ao is the highest accuracy within the subset of config-
urations Cs. With this, we can say that (Sfo,Rfo) is the most latency-
constrained, highest-accuracy configuration for context-aware resolution
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Figure 5.7: Accuracy of face identification after computation offloading
for different latency constraints and data rates.

scaling for a given data rate.

Experiments

In this section, we demonstrate the efficacy of our context-aware efficient
edge offloading scheme for object detection.

Within our system model, we use the Raspberry Pi 4 as our XR client
running a redesigned MobileNetV3-Small backbone as our coarse seg-
mentation model. We use the Raspberry Pi for flexibility in software
modification, but the proposed methodology is largely hardware-agnostic.

Face identification involves detecting faces in an input image and pre-
dicting the individuals by matching them against a gallery of labeled
images of individuals. While we use face identification for this experi-
ment, coupled similar lightweight models and downstream tasks can also
be used in our agnostic design. We use a subset of 100 identities from
IMDb-Face dataset [63] which comprises of annotated faces of celebrities
as our test dataset for the downstream face identification model. We con-
struct an annotated gallery of images of at most ten images per individual
against which the test images are matched for identification. The test set
comprises of 1190 images that do not overlap with the gallery. For the
coarse segmentation model, we use 5000 training images and 2000 test im-
ages from IMDb-Face dataset. We ensure that the training data for coarse
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segmentation does not overlap with the test data for the face identification
downstream task. The images in this dataset are official photos, lifestyle
photos, and movie snapshots of celebrities sourced from the IMDb web-
site. The images display large variations in terms of scale, pose, lighting,
and occlusion of faces, as well as number of faces per image. Specifically,
movie snapshots provide a diverse dataset for testing the robustness of
our methodology.

As a baseline design, we consider an image downscaling without con-
text awareness. It downscales the entire input image to meet the latency
constraint without partitioning into ROI and non-ROI.

Client-side Coarse Segmentation Model

We redesign MobileNetV3-Small [23] classification model to adapt to the
task of coarse segmentation. MobileNetV3 architecture design is well-
suited for deployment on resource-constrained environments due to its
efficiency and competitive performance as compared to other CNN back-
bones [23]. Post-training dynamic range quantization is used to convert
the model from tensorflow to TFLite.

As described above, we remove the classification head and the final
three bottleneck layers. The ground truth coarse segmentation mask was
created using the bounding box annotations provided in the dataset. Here,
we treat the region inside face bounding box as the region of interest. Thus,
the regions within a bounding box for a face were labeled as “1” and “0”
otherwise. We add a point-wise convolution layer to this trimmed model to
produce a feature map with a channel dimension of 1. The input resolution
is 600 × 600 pixels (R = 600), and the output feature map resolution is 15
× 15 (R = 15). The output feature map is selected from one of the internal
layers of the coarse segmentation model. Multiple layers can potentially
be chosen, resulting in different coarse segmentation feature map sizes.

We use binary cross-entropy loss to train the model for 500 epochs
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with Adam optimizer and learning rate of 0.001. On evaluating on the test
data, we obtain a PR-AUC (area under the precision-recall curve) score of
0.82. We use the value of cross-validation to select the best weights with
minimum validation loss. The model is trained in TensorFlow framework
and converted to TFLite for portability on Raspberry Pi. The execution
time of the coarse segmentation model and image partitioning (Lproc) is
46 milliseconds per image. This short execution time is compared to full
face identification on Raspberry Pi, taking well over 2.8 seconds for a small
subset of 3 faces to identify. We can conclude that coarse segmentation
is much faster than full face identification on the Pi without any of the
privacy concerns that accompany a face database on the client.

Server-side Latency Optimization

In our design, since typical Wi-Fi connections greatly depend on varying
transmission upload rates, we analytically find latency according to the
methods described in the previous section. We can visualize the latency
surface when plotting the surface of (5.4) in Figure 5.6(a) with an image
resolution of r = 600, and an estimated client upload data rate of 10 Mbps,
5 MBps, and 1 MBps. There are 420 total different configurations within
Figure 5.7 for each data rate. We choose 20 different Sf equidistant from
Sf = 0 to Sf = 1. We choose 21 different Rf equidistant from Rf = 0 to
Rf = 1. Therefore, we can conclude that transmission latency is the domi-
nant source of overall system latency since transmission latency, during
low data rate transmission (1 MBps), is over 25×model and preprocessing
latency. Figure 5.6(a) provides analytical latency calculations given differ-
ent data rates, such that we observe Sf and Rf increase proportionally to
the latency of transmission of individual frames. Conversely, Figure 5.6(b)
displays the accuracy of our face identification model given different Sf

and Rf configurations. We use off-the-shelf ArcFace [14] model for face
identification, since our methodology remains model-agnostic such that
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accuracy values remain "as is" for off-the-shelf models. Latency dispropor-
tionately decreases by a large percentage for a small decrease in accuracy
when adjusting scaling and resolution factor. Therefore, our system is
accuracy-insensitive but remains latency-sensitive when doing context-
aware resolution scaling. Similarly, we notice that accuracy increases as Sf

and Rf increases, as the image lies closer to its full resolution.

Parameter Optimized for Accuracy

Given an application-specified latency constraint, our design selects the
best Sf and Rf such that our downstream task accuracy is the highest.
We use the method described within our workload analysis for multiple
latency constraints and plot them in Figure 5.7. In Figure 5.7, we out-
perform the baseline resolution scaling for multiple data rates giving us
16.52%–17.34% higher accuracy on average across three different data rates
than simple baseline resolution scaling across sample latency constraints.
The unique corner case of Rf = 0 where only ROI are sent is displayed in
Figure 5.7. Accuracy drastically declines when Rf decreases to near-zero
(only ROI) values. Therefore, we optimally wish to select Rf that is both
nonzero, indicating that resolution scaling still preserves original task ac-
curacy. Note that as data rate decreases, the accuracy sensitivity decreases,
with dramatic changes in accuracy for small latency constraint adjustments
at higher data rates. For lower data rate scenarios, our method outper-
forms the baseline resolution scaling at greater latency percentages, due
to dominance of transmission latency over the entire workload. Therefore,
we can conclude that context-aware resolution scaling is more critical in
low-bandwidth scenarios.

Conclusions

Computation offloading, if properly designed, can greatly improve the
performance and latency of DL applications on XR systems. We introduced
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a method to improve computation offloading from an XR device to an
edge server. Our method optimizes scaling of wireless transmitted images
by identifying ROI to preserve its fidelity while reducing the fidelity of
non-ROI background. We used face identification as the downstream
DL task as an example and demonstrated a significant improvement of
accuracy under the same latency constraint. We achieved 16.52%–17.34%
higher downstream task accuracy for three different data rates under the
same latency constraints as the baseline naive resolution scaling.

For future work, our method can be extrapolated to a variety of different
downstream tasks, such as pose segmentation. Additionally, multiple
other control knobs, such as variable resolution adjustment for higher Rf

around ROI or variable data rate fluctuatio, can be examined for accuracy
preservation.
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6 conclusion

Edge machine learning is growing, with more applications being ported on
energy-constrained devices. In order to satisfy energy constraints, some of
form of low-power computing must be employed to enable edge machine
learning. Approximate computing is a design paradigm new to machine
learning that leverages both software and hardware elements by relaxing
the accuracy requirement so long as the output meets a certain quality
threshold. The highly error-tolerant probabilistic nature of machine learn-
ing lends itself to approximate computing being used to enable machine
learning.

In this thesis, we first introduce a hardware-based memory-aware logic
synthesization. This proposed scheme has been successfully implemented
and optimized with CLNNs and shift-and-add multiplication schemes.
Next, we introduce a software-based energy-aware model compression
with latent weight based pruning. Lastly, we introduce an efficient edge
offloading technique that allows for low-latency communication between
a client and server for couple machine learning tasks. We hope to combine
elements of hardware and software based machine learning by strategically
by adding approximate multipliers and profiling multiplications using
machine learning.
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