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Abstract 

This dissertation introduces a new and novel methodology for estimating vehicle 

emissions at signalized intersections. Radar based vehicle detection systems, when placed at 

intersection approaches, is able to track vehicle operational characteristics at very high frequency, 

thus provides an ideal data source for emission estimation. By combining radar based vehicle 

detection data and MOVES project level analysis operating mode distribution approach, a real-

time emission estimation system for signalized intersections is proposed. The Emission 

Computation Tool for Radar Data is developed to facilitate the automatic and continuous 

computation of operating mode distribution and emissions. The emission rates computed can 

also be integrated with existing air dispersion models in order to be used for air quality 

conformity and hot spot analysis.  

A case study is conducted to test the feasibility and validity of the proposed real-time 

emission estimation system. The results showed that the data collected should be used for 

computing a variety of parameters, including traffic volume, average speed, operating mode 

distribution, total emissions and emission rates for various pollutants. With emission rates, 

existing pollutant dispersion models such as AERMOD are applied, yielding pollutant 

concentrations at various locations, providing additional functionalities to the system. Evaluation 

results showed that the traffic volume and emission rates computed matches closely with AADT 

data and EPA’s emission standards.  

Finally, an operating mode based macroscopic emission model is developed by using 

both empirical data from the case study as well as incorporating existing traffic flow dynamics 

model. This predictive model is based on estimating total time spent in each operating mode 
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directly from traffic demand and other variables. Total time idling is modeled using kinematic 

wave theory and queuing theory, while others are modeled using empirical data.  The validation 

results showed that the model is able to achieve a high degree of accuracy, within approximately 

10 percent of emission results computed using the radar data. In conclusion, both the proposed 

real-time emission estimation system at signalized intersections and the emission model 

developed showed to yield highly accurate and detailed results, and are applicable in real world 

intersection locations.   
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1 Introduction 

1.1 Background 

Air pollution has become an important issue and concern during the past decades due to 

the industrialization of many developing countries and increasing consumption of fossil fuels 

worldwide (1). It is becoming an increasingly serious hazard to human health especially in urban 

areas. According to World Health Organization (WHO), air pollution in 2012 caused the deaths 

of approximately 7 million people worldwide (2). Among the different contributing sources of 

air pollution, transportation related emissions are a major factor. Statistics show that in 2002, 

transportation related emissions accounted for 82 percent of carbon monoxide (CO), 56 percent 

of nitrogen dioxide (NO2) emissions, 45 percent of the volatile organic compounds (VOCs), 12 

percent of lead (Pb) and 5 percent of sulfur dioxide (SO2) emissions in the United States (U.S.) 

(3). Transportation emissions also contribute to approximately 27 percent of all U.S. greenhouse 

gas (GHG) emissions in 2013 (4). Among all transportation facilities, urban intersections have 

been identified as a major source for vehicle emissions, large traffic volume along with complex 

vehicle activities including stop-and-go, deceleration, idling, and acceleration lead to more 

pollutant emissions (5). Therefore, emission monitoring and assessment at intersection level is 

highly needed and desired by transportation agencies and authorities as part of the overall 

performance measure of urban intersections.  

 Transportation researchers have continuously developed methods throughout the years to 

calculate or measure transportation emissions in order to obtain a more accurate estimation result. 

The most direct approach is to use air pollutant concentrations data via air quality monitoring 

stations across the country (6). However, these values are only point-based values, which could 
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not be used to infer the total amount of pollutant emitted. In addition, the air pollutant density 

measured may come from multiple sources, motor vehicle emissions cannot be separated from 

other sources, such as industrial, agriculture and electricity generation. Older methods developed 

emission inventories through annual average emissions estimates mainly derived from vehicle-

miles-traveled (VMT) trends, which can provide a rough macroscopic level estimate of 

emissions. Emission estimate with an intermediate level of detail, usually at daily values were 

obtained through travel demand models, which is commonly used by Metropolitan Planning 

Organizations (MPOs) (7). However, a major issue is that static planning models were not able 

to model individual vehicle activity, which includes passenger cars, trucks and buses. This 

inability to monitor individual vehicle activity leads to underestimation of pollutant emissions, as 

they do not account for link capacity and other variables. As a result, estimates of emissions 

based on static planning models suffer from significant biases in different traffic conditions (8). 

During recent years, with the advent of more advanced tools such as EPA’s MOVES, researchers 

have focused on getting more accurate emission estimates at the microscopic level through 

smaller time and distance ranges by splitting the road network into smaller links and utilizing 

second-by-second vehicle operations data to calculate emissions.  

1.2 Problem Statement 

MOVES is an acronym for “Motor Vehicle Emission Simulator”, which is the U.S. 

Environmental Protection Agency's (EPA) state-of-the-art model for emission estimation. The 

latest version of the model is MOVES 2014a (9). The purpose of MOVES is to provide an 

accurate estimate of emissions from passenger cars, trucks of all categories and non-highway 

mobile sources under a wide range of user-defined conditions. In the modeling process, the user 
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specifies vehicle types, time periods, geographical areas, pollutants, vehicle operating 

characteristics, and road types to be modeled. The model then performs a series of calculations, 

and provide estimates of emission quantities or emission rates. Compared with other emissions 

estimation models such as Comprehensive Modal Emissions Model (CMEM) (10) and Emission 

Factors Model (EMFAC) (11), MOVES is a national level model, and currently required to be 

used for transportation conformity purpose throughout the U.S. (except California, where 

EMFAC is used) (12).  

MOVES can be used both at the macroscopic and microscopic level. The microscopic 

level, which is also called project level, aims at analyzing specific roadway segments or 

intersections. To reach the highest level of accuracy, users need to input an operating mode 

distribution data. Although this method will yield the most accurate estimation result, this 

information cannot be obtained through direct measurements. Second-by-second vehicle 

operating data (i.e., speed, location at each timestamp) is commonly used as data source to 

convert to operating mode distributions.  

Previous research used vehicle trajectory data obtained from microsimulation software as 

a surrogate method due to the difficulty of obtaining real-world vehicle trajectory data. Micro-

simulation models, such as VISSIM (13) and PARAMICS (14) can represent traffic flow 

conditions to some extent if well calibrated, which requires extra time and input data. Micro-

simulation modeling also relies on the validity of assumptions when changing model parameters 

(15). Previous research studies have also used GPS probe vehicle data, which is, using a single or 

a few test vehicles operating within the traffic flow. Since probes are individual vehicles, method 

based on probes assumes that the probe vehicle can represent the characteristics of the entire 

traffic flow and often assumes that the driving behavior is the same for all vehicles (16). This 
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assumption may rarely be true as individual vehicles typically have different speed and 

acceleration characteristics even though they are in the same traffic platoon, and affected by 

sample bias (17). 

Radar-based vehicle detection technology, when placed at an intersection approach or 

along a roadway, is able to track approaching vehicles’ trajectories for every per half second 

within an approximately 500 feet detection range.  This detection range is large enough to cover 

most urban intersections functional area. Therefore, this technology provides sound technical 

feasibility to address the accuracy issue due to the limitations of GPS probe based method. 

Moreover, as radar detectors continuously track trajectories of all vehicles at an intersection in 

real time, it provides the possibility to develop a method for continuously monitoring intersection 

vehicle emissions.  

With the combined availability of radar detection technology and project-level MOVES 

analysis, this research aims at developing, validating and testing a new and novel method, which 

is a real-time vehicle emission monitoring system for intersections using vehicle operations data 

from radar based vehicle detection system. With this new method, an exciting and novel 

framework of a real-time intersection emission monitoring system is established that transforms 

the ability to effectively consider emissions as one of Measures of Effectiveness (MOEs) in 

optimizing traffic signal operations. Specifically, the ability to continuously estimate emissions 

will greatly assist the monitoring of urban intersections from an environmental perspective, and 

the decision making of different countermeasures taken to reduce traffic congestion and air 

pollution such as signal re-timing and intersection reconfigurations. Furthermore, by linking 

emissions with air dispersion models, the pollutant concentration results can be used for air 

quality conformity and hot spot analysis, providing additional functionalities to the system.  
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Using detailed traffic data to compute through emission models such as MOVES could 

yield more accurate emission estimations. However, considering the cost of the implementation 

and the large amount of data, this system may not be feasible to implement at all locations.  

Based on this consideration, mathematical models can be developed as a surrogate method to 

predict emissions directly using parameters such as traffic volume and traffic signal variables. 

The main objective of this model is to provide a macroscopic predictive method to estimate 

vehicle emissions at intersection approaches while still providing details and resolutions in the 

computation process. It will serve as a surrogate method for predicting transportation emissions 

at signalized intersections at macroscopic level.  

Previous researchers have developed few models that serve similar purpose. Specifically, 

none of the models are able to apply operating mode distribution as the basis for emission 

estimation. Another limitation is that the factors included in the developed model vary greatly, 

which may not consider the more important variables such as grade, percentage of heavy 

vehicles, and traffic signal variables. In this research, the proposed model will be able to directly 

estimate the total time spent in different operating modes and through incorporating emission 

factors, total emissions and emission rates can be directly computed. The model is based on both 

empirical data from radar based emission monitoring system, and existing traffic flow models 

such as kinematic wave theory (18). The effectiveness and accuracy of the model will be 

evaluated using the never-been-used part of radar-based vehicle emissions monitoring systems 

data.  

The description above demonstrates the need for both capturing individual vehicle 

operations characteristics at microscopic level and developing transportation emission prediction 

models at macroscopic level. Developing such models could greatly enhance to the 
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understanding of key transportation parameters to vehicular emissions in a stochastic-

microscopic traffic environment. 

1.3 Objectives and Scopes 

Based on the problem statement described above, the specific objectives of this research 

are as follows: 

 Develop an algorithm and tool to integrate radar based vehicle detection data and 

MOVES operating mode distribution approach to automatically and directly 

compute emissions for various pollutants. 

 Establish a framework for real-time monitoring of intersection emissions based on 

radar-based vehicle detection data, and implement the system through a case 

study and evaluate its performance. 

 Develop transportation emission model through total time spent in each operating 

mode based on traffic demand and signal variables and evaluate the developed 

model accuracy.   

 

The scope of this research is restricted to the following constraints and assumptions: 

 The proposed system for real-time estimation of vehicle emissions focuses on the 

application at microscopic level, at signalized intersections. 

 The emissions computed in the proposed system are only from running exhaust as 

defined in MOVES. Other emission processes, such as tire wear and brake wear 

are not modeled.  
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1.4 Contributions 

The contributions of this research are as follows: 

 This research presents a new and novel methodology to implement radar-based 

vehicle detection data to estimate emissions at microscopic level. In addition, it is 

the first research effort to create a system for real-time emissions monitoring at 

intersections.  

 Novel macroscopic emission models developed to estimate transportation 

emissions through estimating the total time spent in each operating mode using 

traffic volume and signal variables at signalized intersections can help better 

understand the key contributing parameters to transportation emissions. 

1.5 Thesis Organization 

This thesis is organized into six chapters. An overview of the research flow of this 

dissertation is presented in Figure 1.1. The contents of each chapter are introduced in the 

following paragraphs.  

Chapter 1 includes background information on the research topic and presents the 

objectives and scopes along with expected contributions of this research.  

Chapter 2 presents a comprehensive literature review of relevant topics. Current air 

quality measurement and standards are presented. State-of-the-art emission analysis models and 

air dispersion models are presented and compared. Previous research on real-time estimation and 

emission modeling are also summarized. 
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Chapter 3 presents the proposed methodology for this research. Project level emission 

analysis procedure is introduced along with the traffic and non-traffic data needed. The proposed 

system framework is introduced for achieving a real-time estimation of emissions based on 

Radar Based Vehicle Detection data, including the data collection process, data processing, and 

output of the system. The development and algorithm of the Emission Computation Tool for 

Radar-based Vehicle Detection data is also presented. The air dispersion modeling procedure is 

introduced and connections between emission analysis and dispersion analysis is highlighted. 

Chapter 4 implements the proposed system through a case study at an urban signalized 

intersection. The data collection and reduction process, emission and air pollutant concentrations 

results are presented. Results are visualized through various graphs and tables.  

Chapter 5 introduces the emission modeling efforts and results. The emission results are 

first compared with probe vehicle methods to show its advantages. The sensitivity and 

correlation between emission and several key contributing factors are explored. The model 

development procedure is presented and the model is evaluated using radar based emission 

monitoring system data.  

Chapter 6 summarizes the major findings and contributions of this project and address 

possible short term and long term future work of on this research topic.  
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Figure 1.1 Dissertation Flowchart 
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2 Literature Review 

2.1 Air Quality Measurement and Standards 

2.1.1 Criteria Pollutants 

Among all air pollutants, a few called “criteria air pollutants”, are common throughout 

the U.S. These pollutants can injure health, harm the environment and cause property damage. 

The current criteria pollutants are ozone, particulate matter (PM), carbon monoxide (CO), 

nitrogen oxides (NOx), sulphur dioxide (SO2) and lead (Pb). Significant portions of mobile 

source emissions are composed mainly of three of these criteria pollutants primarily CO, NOx, 

PM and one other class of pollutants volatile organic compounds (VOCs) (19). The following 

paragraphs summarize the causation and health impact for each criteria pollutant.  

 Carbon Monoxide: CO is formed through vehicle’s incomplete combustion of 

fuels especially at low temperatures. Gasoline engines emit higher amounts of CO 

than diesel engines due to their lower combustion temperature compared to diesel. 

Carbon monoxide has the impact of decreasing the amount of oxygen in the blood, 

which may aggravate heart disease, resulting in chest pain and other symptoms 

(19). The highest levels of CO usually occur during the colder months as 

mentioned earlier especially during nighttime due to temperature inversion where 

vehicle emissions are high and inversion conditions are more frequent. In 2010, 

motor vehicle emissions contribute to about half of all CO emissions nationwide 

(19). 

 Particulate Matter: Two common categories of PM are PM2.5 which refers to the 

fine particles that are less than or equal to 2.5 μm in diameter and PM10 which 
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refers to all particles less than or equal to 10 μm in diameter. They can be both a 

primary or secondary pollutant. Primary particles come from several sources such 

as passenger cars, trucks, buses, factories and construction sites. Secondary 

particles are formed when gases from fuel combustion such as motor vehicles or 

power plants react with sunlight and water vapor. Diesel engines emit 

significantly more PM than gasoline engines. Fine particulate matter can be 

inhaled deeply in the lungs, which can aggravate symptoms in individuals 

suffering from respiratory or cardiovascular diseases (19).  

 Nitrogen Oxides: NOx is a group of gases that are formed during fuel combustion 

especially at high temperatures where engines burn a small amount of the nitrogen 

in the air along with nitrogen compounds from the vehicle fuels. Diesel engines 

generally produce greater amounts of NOx than gasoline engines due to their 

higher combustion temperatures. NOx aggravates lung diseases leading to 

respiratory symptoms (19). NOx also are precursors of smog components such as 

Ozone (O3). 

 Sulphur Dioxide: SO2 is emitted from the Sulphur combustion found in the fuel. 

Most of SO2 come from diesel engines since they contain more Sulphur than 

gasoline engines. It aggravates asthma and increases respiratory symptoms (19). 

 Other Pollutants: Vehicles also emit toxic air pollutants such as benzene, 

butadiene, soot, acrolein, and formaldehyde. Some components are VOCs, while 

others are in the form of particles. Freon or R12 used in older air conditioning 

systems are known as ozone depleting substances, which are emitted through 

leaks or during repairs. Newer vehicles refrigerant is still considered as GHG 
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pollutants although they are non-ozone depleting coolants. The storage and 

distribution of vehicle fuels also cause air pollution emissions such as the 

emission of hydrocarbon vapors during refueling of vehicles (20). 

2.1.2 Air Quality Standards 

The Clean Air Act, which was last amended in 1990, requires EPA to set National 

Ambient Air Quality Standards (NAAQS) for pollutants considered harmful to public health and 

the environment. The Clean Air Act identifies two types of national ambient air quality standards.  

 Primary standards: provide public health protection, including protecting the health of 

"sensitive" populations such as asthmatics, children, and the elderly.  

 Secondary standards: provide public welfare protection, including protection against 

decreased visibility and damage to animals, crops, vegetation, and buildings. 

A district meeting a given standard is known as an "attainment area" for that standard and 

otherwise a "non-attainment area". The U.S. EPA has published guidance for performing 

“Project-Level” transportation conformity analysis of PM10, PM2.5, and CO “hot-spots”, for areas 

where local pollution concentrations might exceed the NAAQS standards. Table 2.1 shows the 

detailed standard for each criteria pollutant according to NAAQS (12). 
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Table 2.1 NAAQS Standards (21) 

Pollutant Type 
Averaging 

Time 
Level Form 

CO Primary 
8-hour 9 ppm Not to be exceeded more than once per 

year 1-hour 35 ppm 

Pb 
Primary and 

Secondary 

Rolling 3-

month average 

0.15 

µg/m3 
Not to be exceeded 

NO2 

Primary 1-hour 100 ppb 

98th percentile of 1-hour daily 

maximum concentrations, averaged 

over 3 years 

Primary and 

Secondary 
Annual 53 ppb Annual Mean 

O3 
Primary and 

Secondary 
8-hour 

0.075 

ppm 

Annual fourth-highest daily maximum 

8-hr concentration, averaged over 3 

years 

PM2.5 

Primary Annual 12 µg/m3 Annual mean, averaged over 3 years 

Secondary Annual 15 µg/m3 Annual mean, averaged over 3 years 

Primary and 

Secondary 
24-hour 35 µg/m3 98th percentile, averaged over 3 years 

PM10 
Primary and 

Secondary 
24-hour 

150 

µg/m3 

Not to be exceeded more than once per 

year on average over 3 years 

SO2 

Primary 1-hour 75 ppb 

99th percentile of 1-hour daily 

maximum concentrations, average over 

3 years 

Secondary 3-hour 0.5 ppm 
Not to be exceeded more than once per 

year 

 

2.1.3 Air Quality Index 

Air Quality Index (AQI) is an index for reporting daily air quality. It informs the general 

public about the cleanliness of air, and the associated health effects and concerns. The AQI 

focuses on health impacts that could be experienced within a few hours or days after breathing 

polluted air. EPA calculates the AQI for five major air pollutants regulated by the Clean Air Act: 

ground-level ozone (O3), particle matter (PM), carbon monoxide (CO), sulfur dioxide (SO2), and 

nitrogen dioxide (NO2). For each of the pollutants, EPA has established national air quality 

standards to protect public health. Ground-level ozone and airborne particles are the two 



14 

 

pollutants that pose the greatest threat to human health. Table 2.2 presents each air quality level 

along with its AQI range and potential impact. The air quality index is a piecewise linear 

function of the pollutant concentration. At the boundary between AQI categories, there is a 

discontinuous jump of one AQI unit. An AQI value of 100 generally corresponds to the level of 

the NAAQS for the pollutant (6). 

Table 2.2 US EPA Air Quality Index Categories (6) 

Category AQI 
O3 8-hr 

(ppm) 

O3 1-hr 

(ppm) 

PM2.5 

(µg/m3) 

PM10 

(µg/m3) 

CO 

(ppm) 

SO2 

(ppm) 

NO2 

(ppm) 

Good 0-50 0-0.064  0-15.4 0-54 0-4.4 0-0.034 N/A 

Moderate 51-100 
0.065-

0.084 
 15.5-40.4 55-154 4.5-9.4 

0.035-

0.144 
N/A 

Unhealthy, 

sensitive 

groups 

101-150 
0.085-

0.104 

0.125-

0.164 
40.5-65.4 155-254 9.5-12.4 

0.145-

0.224 
N/A 

Unhealthy 151-200 
0.105-

0.124 

0.165-

0.204 

65.5-

150.4 
255-354 12.5-15.4 

0.225-

0.304 
N/A 

Very 

unhealthy 
201-300 

0.125-

0.374 

0.205-

0.404 

150.5-

250.4 
355-424 15.5-30.4 

0.305-

0.604 
0.65-1.24 

Hazardous 301-500 N/A 
0.405-

0.604 

250.5-

500.4 
425-604 30.5-50.4 

0.605-

1.004 
1.25-2.04 

 

2.2 Factors Affecting Vehicle Emissions 

As stated in an U.S. EPA fact sheet, emissions from an individual vehicle generally 

contribute to a small amount of air pollution (22). However, as the number of vehicles adds up to 

a significantly large number, which is the case for major metropolitan areas, the amount of 

emissions can accumulate to a large number and lead to significant air pollution. Transportation 

emissions are often the biggest contributing source to air pollution in metropolitan areas. 

The power to move a vehicle comes from burning fuel in an engine. Vehicle emissions 

come from by-products of this combustion process (exhaust) and from evaporation of the fuel 

itself. Ideally, the combustion process of the engine would convert all hydrogen in the fuel to 
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water and all the carbon in the fuel to carbon dioxide. However, in reality, the combustion 

process cannot be perfect, and would thus emit several types of pollutants. The amount of 

pollutants emitted, though, will differ based on several factors. The major factors affecting 

vehicle emissions are listed in the following subsections. These factors can be classified into 

three categories: vehicle characteristics, vehicle operational characteristics and non-vehicle 

factors. 

2.2.1 Vehicle Characteristics 

Vehicle characteristics play an important role in affecting the amount of pollutants 

emitted. Specifically, the following characteristics are listed and explained below. 

 Vehicle Type and Size: 

Vehicle type is a fundamental classification method for motor vehicles. Typical motor 

vehicle types include passenger cars, trucks and buses. For the purpose of emission analysis, 

vehicle types are usually divided into categories that are more specific. For example, EPA 

MOVES listed 13 motor vehicles types, while FHWA has a slightly different classification (23).  

The emission rate for different vehicles varies significantly. Figure 2.1 shows the idling 

emissions factors for heavy-duty diesel vehicles with different GVW (24). It illustrates that even 

within a single vehicle type, as the gross vehicle weight (GVW) increases, the amount of 

pollutants emitted also increases.   
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Figure 2.1 Idle Emission Factors for Heavy-Duty Diesel Vehicles by GVW 

 Vehicle Age and Maintenance: 

For a specific vehicle, as the vehicle age and mileage increases, the engine efficiency will 

decrease, leading to larger pollutant emissions. An EPA report stated that emissions do not 

appear to increase indefinitely with age, but rather tend to stabilize at some point between 12 and 

15 years of age (23). Figure 2.2 illustrates the relationship between CO emissions and vehicle 

age. Maintenance conditions also affect the amount of vehicle emissions. A well-maintained 

vehicle will emit fewer pollutants than a vehicle in need of maintenance. 
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Figure 2.2 CO Emission vs. Vehicle Age for Light-Duty Vehicles 

 Fuel Type:  

In recent years, the advances in alternative fuel vehicles have greatly changed the 

emissions of vehicles. Alternative fuel vehicles, including hybrid electric vehicles (HEVs), plug-

in hybrid electric vehicles (PHEVs), and all-electric vehicles (EVs) typically produce lower 

emissions than conventional vehicles with gasoline do. However, although all-electric vehicles 

are generally considered zero emissions, the production of electricity source to power the 

vehicles leads to indirect emissions since there are emissions associated with the majority of 

electricity production in the United States. By taking this indirect emission into account, the U.S. 

Department of Energy compares the annual CO2 emissions for the above mentioned alternative 

fuel type vehicle compared with traditional gasoline vehicles, shown in Figure 2.3 (25). Even 

considering the indirect emissions from electricity production, all-electric vehicles will have 60 
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percent less CO2 emissions than gasoline vehicles. However, the percentage of alternative fuel 

vehicles is still significantly low to make an impact on reducing overall vehicle emissions. 

Statistics show that by the end of 2015, only about 5.3 percent of vehicles are alternative fuel 

vehicles (25). As the market penetration rates for alternative fuel vehicles may increase during 

the coming years, it is predictable that overall transportation emissions will further decrease.  

 

Figure 2.3 Annual CO2 Emissions by Vehicle Fuel Types 

2.2.2 Vehicle Average Speed 

Many research efforts have identified vehicle average speed as a key factor in affecting 

emissions.  Therefore, emission factors or rates have been commonly associated with average 

speed. MOBILE6 model, which was EPA’s official emission model prior to the development of 

MOVES, estimate vehicle emissions mainly based on traffic average speed. The general 

relationship between average speed and CO2 emissions can be illustrated in Figure 2.4 (26). As 
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can be observed from the figure, the trend can be described as a “U-Shaped” pattern. CO2 

emission rate are high during low speed, decreases as speed increases. The lowest emission rates 

are within a 40 mph to 60 mph range, higher than 60 mph will cause emission rates to further 

increase.  

 

Figure 2.4 Average Speed vs. CO2 Emissions 

2.2.3 Vehicle Driving Cycle 

A typical driving trip consists of idling, accelerating, cruising, and decelerating, which is 

referred to as a driving cycle. The proportion of driving time spent in each of the modes will 

greatly affect the amount pollutants emitted. This proportion depends on several factors, 

including driver behavior (e.g., aggressive vs. mild driving habits), roadway type (e.g., freeways, 

arterials or locals), and the level of traffic congestion. This can be shown graphically through a 

vehicle speed profile, a chart that shows speed over time for different roadway types, shown in 

Average Speed (mph)

C
O

2
 E

m
is

si
o

n
s 

(g
/m

i)



20 

 

Figure 2.5 (26). The amount of pollutants emitted during the trip will differ based on these 

factors. Given a specific speed profile and detailed information on the vehicle, emissions can be 

estimated using a vehicle emissions model.  

 

Figure 2.5 Typical Vehicle Speed Profile for Different Roadway Types 

 The emission rate for each vehicle operating mode can differ significantly. Figure 2.6 

illustrates the CO emission rate for each operating mode for light-duty vehicles (passenger cars 

and trucks) (Modified based on 23). As can be observed from the figure, idling has the smallest 

emission rate in terms of g/time (which is also referred to as emission factor), deceleration comes 

next with a slightly higher emission rates. Cruise and acceleration have the largest emission rates. 

They can be further divided by the speed range. Low speed cruise/acceleration will have lower 

emission rates compared with medium speed and high-speed cruise/acceleration. This 

fundamental relationship serves as the basis for EPA’s MOVES project level analysis. 
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Figure 2.6 CO Emission Rate vs. Operating Modes 

2.2.4 Non-Vehicle Factors 

Non-vehicle factors that affect vehicle emissions are mainly weather conditions, 

including temperature, humidity and wind. Emission rates are usually high in very hot weather or 

in very cold weather.  

Besides, roadway grade is also an influencing factor. With a larger upgrade, the vehicle 

needs to have larger drag force, causing higher emissions, vice versa.  

Low Speed 

Cruise/Acceleration

Medium Speed 

Cruise/Acceleration

High Speed 

Cruise/Acceleration

IdleDeceleration
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2.3 Transportation Emission Analysis Models 

2.3.1 MOVES 

MOVES stands for U.S. Environmental Protection Agency's (EPA) Motor Vehicle 

Emission Simulator. The predecessor of MOVES is a model named MOBILE6. MOBILE6 was 

designed by the U.S. EPA to address a wide variety of air pollution modeling needs. MOBILE6 

is a computer program that estimates HC, CO, NOx, PM, SO2, NH3, HAP, and CO2 emission 

factors for gasoline-fueled and diesel highway motor vehicles, and for certain special vehicles 

such as natural-gas-fueled or electric vehicles for calendar years between 1952 and 2050. 

MOBILE6 estimates emissions mainly based on link average speed. However, this model has 

been critiqued in numerous researches due to its inaccuracy. For example, Unal et al. stated that 

the use of standard driving cycles in MOBILE makes it inapplicable for evaluation at 

microscopic scale (27). Yu et al. criticized the model for being constrained by its model frame, 

which limits the use and refinement for multilevel emissions estimation (28). 

In 2004, MOVES was launched as EPA’s state-of-the-art tool for estimating emissions 

from highway vehicles. Its latest version up to date is MOVES 2014a (9). It is used to create 

emission factors or emission inventories for both on-road motor vehicles and non-road 

equipment. The purpose of MOVES is to provide an accurate estimate of emissions from cars, 

trucks and non-highway mobile sources under a wide range of user-defined conditions. 

In the current modeling process, the user specifies vehicle types, time periods, 

geographical areas, pollutants, vehicle operating characteristics, and road types to be modeled. 

The model then performs a series of calculations, which have been carefully developed to 
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accurately reflect vehicle-operating processes, such as running, starts, or hoteling, and provide 

estimates of total emissions or emission rates per vehicle or unit of activity.  

2.3.2 EMFAC 

The California Air Resources Board developed an Emission Factors (EMFAC) model to 

calculate statewide or regional emissions inventories by multiplying emissions rates with vehicle 

activity data from all motor vehicles, including passenger cars to heavy-duty trucks, operating on 

highways, freeways, and local roads in California (10). The latest version of the model is 

EMFAC2014. In EMFAC2014, the emission rates are multiplied with vehicle activity data 

provided by the regional transportation agencies to calculate the statewide or regional emission 

inventories. The EMFAC2014 model can estimate emission rates for on-road mobile sources for 

calendar years from 1970 to 2050 operating in California. Pollutant emissions for HC, CO, NOX, 

PM10, PM2.5, lead, and sulfur oxides are output from the model. Emissions are calculated for 

thirteen different vehicles classes comprised of passenger cars, various types of trucks and buses, 

motorcycles, and motor homes. EMFAC is used to calculate current and future inventories of 

motor vehicle emissions at the state, air district, air basin, or county level. EMFAC models on-

road mobile source emissions under multiple temporal and spatial scales. It produces composite 

emission factors for an average day of a month (from January to December), a season (summer 

and winter), or an annual average, for specific California geographic areas by air basin, district, 

and county as well as statewide level. EMFAC can produce PM2.5 and PM10 emission rates for 

three exhaust emission processes (running, starting, and idle), tire wear, and brake wear. In 

summary, EMFAC is only used for conformity purposes in California at the macroscopic level. 

Therefore, this model is not applicable for project level emission analysis.  
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2.3.3 CMEM 

Comprehensive Modal Emissions Model (CMEM) was initially developed in the late 

1990's with sponsorship from the National Cooperative Highway Research Program (NCHRP) 

and the U.S. EPA to fulfill the need for microscopic emissions modeling (11). The model was 

developed at the University of California, Riverside as a fine-scale emissions predictions model 

that was specifically designed to improve the prediction of the variation of the vehicle operating 

conditions. CMEM was developed to meet the need for an emissions modeling system in 

response to traffic operational changes (i.e. the various driving ‘modes’, such as idle, steady-state 

cruise, various levels of acceleration/deceleration).  

CMEM integrates with existing micro-simulation software packages that generate 

second-by-second speed/acceleration vehicle trajectories. CMEM is microscopic because it 

predicts second-by-second tailpipe emissions and fuel consumption based on different modal 

operations from in-use vehicle fleet (11). One of the most important features of CMEM is that it 

uses a physical, power-demand approach based on a parameterized analytical representation of 

fuel consumption and emissions production. In this type of model, the entire fuel consumption 

and emissions process is broken down into components that correspond to physical phenomena 

associated with vehicle operation and emissions production. Each component is modeled as an 

analytical representation consisting of various parameters that are characteristic of the process. 

These parameters vary according to the vehicle type, engine, emission technology, and level of 

deterioration. One distinct advantage of this physical approach is that it is possible to adjust 

many of these physical parameters to predict energy consumption and emissions of future 

vehicle models. 
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2.4 Pollutant Dispersion Models 

2.4.1 Dispersion Modeling Introduction 

Air pollutant dispersion modeling is a mathematical simulation of emissions as they are 

transported through the atmosphere. It uses mathematical equations describing the atmosphere, 

dispersion and chemical and physical processes within the plume to compute pollutant 

concentrations at various locations. Dispersion models are used to estimate the downwind 

ambient concentration of air pollutants or toxins emitted from sources such as industrial plants, 

vehicular traffic or accidental chemical releases. The models are typically used to determine 

whether existing or proposed new projects are or will comply with the National Ambient Air 

Quality Standards (NAAQS) (29). 

Gaussian model is the most popular and is employed in almost all currently available 

dispersion models. It assumes that the air pollutant dispersion follows a Gaussian distribution, 

meaning that the pollutant distribution has a normal probability distribution. Gaussian models are 

most often used for predicting the dispersion of continuous, buoyant air pollution plumes 

originating from ground level or elevated sources. Gaussian models may also be used for 

predicting the dispersion of non-continuous air pollution plumes (called puff models). The 

primary algorithm used in Gaussian modeling is the Generalized Dispersion Equation for a 

Continuous Point-Source Plume (30). 

Emission sources in air dispersion models can be categorized into four types according to 

its shapes, as follows, 
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 Point source: Single, identifiable source of air pollutant emissions. Point sources are also 

characterized as being either elevated or at ground level. A point source has no geometric 

dimensions. Examples include the emissions from a combustion furnace flue-gas stack. 

 Line source: One-dimensional source of air pollutant emissions. Examples include the 

emissions from the vehicles on a roadway. 

 Area source: Two-dimensional source of diffuse air pollutant emissions. Examples 

include the emissions from a forest fire, a landfill or the evaporated vapors from a large 

spill of volatile liquid. Transportation emissions can also be modeled using area sources.  

 Volume source: Three-dimensional source of diffuse air pollutant emissions. Essentially, 

it is an area source with a third (i.e. height) dimension. Examples include the fugitive 

gaseous emissions from piping flanges, valves and other equipment at various heights 

within industrial facilities such as oil refineries and petrochemical plants. 

2.4.2 U.S. EPA Preferred and Recommended Models 

 AERMOD 

AERMOD is U.S. EPA most advanced and currently recommended model. AERMOD is 

a near field steady state Gaussian plume model based on planetary boundary layer turbulence 

structure and scaling concepts, including treatment of both surface and elevated sources over 

both simple and complex terrain. It is able to model multiple sources of different types including 

point, area and volume. In the stable boundary layer, the distribution is assumed to be Gaussian 

in both the horizontal and vertical directions. However, in the convective boundary layer, the 

vertical distribution is described using a bi-Gaussian probability density function, whilst the 

horizontal distribution is considered to be Gaussian. AERMOD is capable to model buoyant 
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plumes and incorporates a treatment of lofting, whereby the plume remains near the top of the 

boundary layer. In general, Gaussian models are limited to treatments of flows over a simple 

terrain; however, AERMOD incorporates a simple method to approximate flows over complex 

terrain (12). 

There are two input data processors that are regulatory components of the AERMOD 

modeling system: AERMET, a meteorological data preprocessor that incorporates air dispersion 

based on planetary boundary layer turbulence structure and scaling concepts, and AERMAP, a 

terrain data preprocessor that incorporates complex terrain using USGS Digital Elevation Data 

(31).  

 CALPUFF 

CALPUFF is a multi-layer, multi-species non-steady-state puff dispersion model that 

simulates the effects of time- and space-varying meteorological conditions on pollution transport, 

transformation and removal. CALPUFF can be applied on scales of tens to hundreds of 

kilometers.  It includes algorithms for sub grid scale effects, as well as, long-range effects (32). 

 CALINE3 

CALINE3 is a steady-state Gaussian dispersion model designed to determine air 

pollution concentrations at receptor locations downwind of highways located in relatively 

uncomplicated terrain. CALINE3 is incorporated into the more refined CAL3QHC and 

CAL3QHCR models. It consisted of a series of tables and monographs that enabled the user to 

predict CO concentrations near roadways based on estimated meteorology and traffic. The 

transport and dispersion element of the model was a modified form of the Gaussian point source 

plume dispersion model (33). 
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 CAL3QHC/CAL3QHCR 

CAL3QHC is a CALINE3 based CO model with queuing and hot spot calculations and 

with traffic model to calculate delays and queues that occur at signalized intersections; 

CAL3QHCR is a more refined version based on CAL3QHC that requires local meteorological 

data (34). CAL3QHC requires all the inputs required for CALINE-3 including roadway 

geometries, receptor locations, meteorological conditions and vehicular emission rates. In 

additional, several other parameters are necessary, including signal timing data and information 

describing the configuration of the intersection being modeled (34). 

2.5 Real-Time Estimation of Vehicle Emissions 

2.5.1 Portable Emission Measurement System (PEMS) 

A comprehensive literature search was conducted to identify current practice in real-time 

vehicle emission monitoring systems. Portable Emission Measurement System (PEMS) have 

been widely used in previous government testing and academic research (35). PEMS is 

essentially a lightweight laboratory that can be used to test and assess mobile source emissions 

for the purposes of compliance, regulation, or decision-making.  

The PEMS system is able to continuously and directly measure various gaseous 

emissions including NO, NO2, CO, CO2 and THC. The system can determine exhaust gas mass 

emissions and vehicular fuel economy of a vehicle operating in the real world in real-time. It 

employs a novel exhaust gas flow rate measurement technique, integrates Global Position 

System (GPS) functionality to associate emissions with location, and interfaces with a vehicle's 

data port to associate emissions with engine operating parameters and driver control (35).  
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The advantages of PEMS system is that it is a much more flexible system compared with 

laboratory testing. Since the testing can take place during the regular operation of the tested 

vehicles, a large number of vehicles can be tested within a relatively short period of time and at 

relatively low cost. In addition, the data obtained is a real-world emission data.  

However, only one vehicle can be tested at a time, which is often used as probe vehicle 

within the traffic flow. This probe vehicle method was employed in a series of researches to 

collect vehicle operating data and emission data. It is also not applicable for emission estimation 

for an entire traffic flow, nor continuously monitors emissions at fixed locations on the roadway. 

2.5.2 Visual Traffic Monitoring 

Video cameras on roadways have been widely used for a variety of transportation 

purposes, including traffic volume monitoring, red-light running detection, speed detection and 

incident detection, among others. Early vision-based traffic monitoring researches used video 

cameras to mimic the inductive loop sensor counts by manually defining virtual loops in the 

camera field of view (36). Although effective and easy to implement, the virtual loops did not 

take advantage of the spatial coverage afforded by the camera, reducing the wide field of vision 

into several small point sensors. Afterwards, most researches began to focus on moving object 

detection and tracking, through counts for every tracked vehicle (37).  

However, video data processing also has its own issues and disadvantages. The 

placement location of video cameras and its view are critical for successful data collection. 

Although the images can provide roadway coverage over long distances, it can also cause 

perspective distortion, which greatly affects the apparent size of vehicles and leads to occlusion. 

Cameras also have difficulties dealing with changing environmental conditions such as 
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illumination changes, nighttime traffic data is very difficult to obtain and inaccurate. In addition 

to shadows caused by lighting, it is quite difficult to operate vision systems at night without the 

use of costly low-light sensitive or infrared cameras, reducing the effective operating time. 

Morris et al. developed an enhanced video-based traffic measurement system to monitor 

the highway operations in real-time (38). Researchers acquired velocity, acceleration and vehicle 

classification data at frequency of 1 Hz or greater through video data. Both CMEM and MOVES 

were used to generate emission estimates and fuel consumptions. Morris et al.’s system focused 

on emission monitoring for highway segments. The literature search did not identify any study 

that has been completed on real-time emission monitoring for intersections.  

2.6 Emission Analysis and Modeling Efforts  

2.6.1 Emission Analysis 

Significant amounts of research have been focused on the impact of traffic control and 

other variables on intersection emission. Hallmark et al. assessed the impact of traffic signal 

timing on CO emissions (39). In that study, acceleration, speed and distance data were collected 

using handheld laser range-finding devices. A mesoscopic MEASURE model was used to 

estimate the emission rate. Results revealed that signal coordination is an effective traffic control 

measure in reducing traffic emission at signalized intersections. Hallmark et al. also investigated 

on-road variables that affect passenger emission at intersections (40). Researchers collected 

second-by-second activity data for individual vehicles at signalized intersections. Using 

hierarchical tree based regression analysis, they identified queue position, grade, downstream 

and upstream per-lane volume, percent heavy vehicles and speed limit were the most statistically 
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significant variables that affect the proportion of vehicles operating in each driving cycle 

(acceleration, deceleration, cruise, idling).  

Another identified research focus is on how emission rate changes under various roadway 

characteristics. Jackson and Aultman-Hall analyzed the emission of an unconstrained lead 

vehicle using field probe-vehicle data under various roadway curve conditions to better calibrate 

modal emission models (41). They found that horizontal curves and vertical curves have a 

significant impact. The same research group further examined driver and road type effects on 

PM, CO and other gas emissions using an instrumented minivan. They concluded that different 

driver and road types both significantly affect emissions (42). Zhang et al. analyzed vehicle 

emissions under free-flow and congested conditions using probe vehicles and GPS collected 

second-by-second vehicle speed and acceleration data (43). They concluded that the highest 

emission rates occurred during the transition from free-flow condition to congested condition and 

vice-versa. Panis et al. investigated the PM, NOx and CO2 emission reductions from speed 

management policies in Europe, they examined the impact on urban versus highway traffic with 

different modeling approaches (microscopic versus macroscopic). Results indicated that 

emissions of most classic pollutants do not rise or fall dramatically. The effects of specific speed 

reduction schemes on PM emissions from trucks were ambiguous but lower maximum speed 

(e.g., 55-65 mph) for trucks consistently result in lower emissions of CO2 (44). In an earlier 

research effort by Panis et al. to model instantaneous traffic emissions and the influence of traffic 

speed limits, they concluded that the speed management impact on vehicle emissions is complex 

(45). The frequent acceleration and deceleration movements in the network may significantly 

reduce the benefits of changing the overall average speed. The conclusion from that study was 

that active speed management had no significant impact on total pollutant emissions.  
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Emissions also vary with respect to drivers’ attitude, experience, gender, physical 

condition, and age. De Vliger et al. concluded that aggressive driving increases emissions 

compared to normal driving (46). Sierra Research found that most drivers spend about 2 percent 

of total driving time in aggressive mode, which contributes about 40 percent of total emissions 

(47). 

As emission analysis models such as MOVES and CMEM started to provide options to 

conduct more detailed and microscopic emission estimation, research that incorporate trajectory 

data from real-world GPS probe data and traffic micro-simulation model into emission 

estimation has emerged. The operating mode distribution approach provides an option to utilize 

vehicle trajectory data (i.e., speed and acceleration rate at second level) to estimate emission to 

the most of its accuracy. Especially, when using micro-simulation model, the operating mode 

approach is an ideal way for vehicle emission estimation by taking full advantage of the output 

trajectory data from micro-simulation. A microscopic simulation platform for estimating vehicle 

emissions that can capture the vehicles' instantaneous modal activities was developed by Chen et 

al. They integrated the microscopic traffic-emission simulation platform by using the 

microscopic traffic simulation model VISSIM and the modal emission model CMEM on a sub-

network selected in Beijing to evaluate the network traffic and emission conditions (48). Sun et 

al. proposed trajectory-based energy/emissions estimation method for signalized arterials using 

mobile sensing data (e.g., GPS traces). The proposed method first estimates the trajectories for 

the entire traffic population, including free-flow vehicles and queued vehicles. The estimated 

trajectories reflect not only the traffic state (e.g., queuing and free flowing), but also vehicle 

driving mode (e.g., cruise, idle, acceleration and deceleration). The estimated vehicle trajectories 
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are then processed through CMEM emission model to estimate the total fuel consumptions and 

emissions (49).  

A study conducted by University of Cincinnati developed a video-based software 

program to extract vehicle trajectory data that were later converted into operating mode 

distributions as input into MOVES (50, 51). Tao et al. collected GPS trajectory data of two probe 

vehicles, and used Portable Emission Measurement System (PEMS) to investigate the effect of 

signal coordination on reducing vehicle emissions. Operating mode distribution approach of 

MOVES was applied to generate emission rates under different scenarios (52). Den Braven et al. 

used both on-board diagnostics and microsimulation tools as two methods to generate input from 

MOVES emission analysis (53). Apart from the mentioned research, few research efforts have 

been documented to conduct MOVES analysis that is detailed to the operating mode distribution 

level based on vehicle trajectory data.  

2.6.2 Emission Modeling 

A few research efforts have constructed models to predict emissions based on traffic 

variables. For example, Nesamani et al. proposed an intermediate model component that can 

provide better estimates of link speeds by considering a set of Emission Specific Characteristics 

for each link. The intermediate model was developed using multiple linear regression and 

evaluated using a microscopic traffic simulation model. The evaluation results showed that the 

proposed emission estimation method performed better than current practice and was capable of 

estimating time-dependent emissions if traffic sensor data are available as model input (54). 

Abou-Senna et al. developed a microscopic transportation emissions model to investigate 

CO2 emission on limited access highways using micro-simulations (20). The model is able to 
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achieve an acceptable degree of accuracy as a surrogate model for predicting transportation 

emissions. The model considered volume, speed, percent trucks, grade and temperature at 

different levels. Results showed that volume correlation with CO2 emissions rates revealed an 

exponentially decaying function toward a limiting value expressed in the freeway capacity. 

Moreover, at speeds between 55 and 60 mph there was a significant reduction in the emissions 

rate, yet up to 90% of the freeway capacity was maintained (20).  

Shabihkhani and Gonzales developed an analytical model based on kinematic wave 

theory to model vehicle emissions at signalized intersections (55). The model is able to compute 

stops, the proportion of time spent idling, and cruising based on the arrival flows. By 

incorporating the resulting emission factors into the analytical traffic model, total traffic 

emissions are easily estimated for a wide range of arriving traffic flows without the need for 

extensive microsimulations or additional data collection (55). 

Chen et al. also developed analytical emission models based on macroscopic mobility 

measures (56). The modeling procedure was based on MOVES operating mode distribution 

method and microsimulation output through stepwise regression. The final model included VMT 

and vehicle delay to estimate emissions, which showed to reach an acceptable degree of accuracy 

compared with operating mode approach (56).  

Salamati et al. developed a simplified empirical based macroscopic model to compare 

emissions in roundabouts and signalized intersections. Traffic variables including intersection 

capacity, demand-to-capacity ratio (d/c), cycle length, green-to-cycle length ratio, signal 

progression (i.e., arrival type), and number of lanes were included in the model for analysis and 

comparison between signals and roundabouts. Total hourly emissions are estimated as the sum of 
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emissions generated by each speed profile (Type A: no stop, Type B: one stop, Type C: multiple 

stops) multiplied by the proportion of those vehicles that have that speed profile and the hourly 

entry flow of the approach (57).  

2.7 Literature Summary  

In summary, although emission models such as MOVES has provided options to estimate 

transportation emissions based on operating mode distribution, only a few studies have adopted 

this method, which may be due to the lack of reliable vehicle operations data.  Among these 

studies, trajectory data were either collected by probe vehicle equipped with GPS data logger or 

obtained from the output of micro-simulation. The major issue of using probe vehicle based GPS 

data is that the trajectory data used are solely based on the trajectories of one or two probe 

vehicles, which is difficult to fully represent the dynamic characteristics of all vehicles in the 

entire traffic flow. However, this disadvantage of probe GPS data can be fully addressed by 

using radar detection data that track all vehicle trajectories within the radar detector’s detection 

range. Due to the limitation of probe GPS data, there is also a lack of research on real-time traffic 

emission monitoring system based on real world vehicle operations data. Especially, none has 

been developed for intersection applications.  

In addition, only a few recent researches have attempted to develop macroscopic models 

to directly predict emissions from traffic demand and other variables. Specially, none of them are 

based on predicting total time spent in each operating mode, which provides more resolution 

than other previously used methods. In addition, many important variables, including percent of 

heavy vehicles and impact of roadway grade have not been considered in the models. With the 

use of radar based vehicle detection data and emission monitoring system, predictive models 
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could be developed to assess the influence various factors on transportation emissions at 

intersection level.    
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3 Development of Real-Time Emission Monitoring 

System at Intersection Level 

3.1 Transportation Emission Estimation at Microscopic Level 

3.1.1 Project Level Analysis Procedure based on MOVES 

As EPA’s state-of-the-art emission analysis model, MOVES is able to complete analysis 

and estimation at national level (macroscopic), county level (macroscopic) and project level 

(microscopic). Since the proposed real-time emission monitoring system framework operates at 

the intersection (microscopic) level, only the project level analysis is further discussed below. 

MOVES project level analysis is conducted in a series of steps. The first step in 

completing a project-level analysis using MOVES is to define project links in order to accurately 

capture emissions where they occur. Within MOVES, a link represents a segment of road where 

a certain type of vehicle activity occurs. Generally, the links specified for a project should 

include segments with similar traffic/activity conditions and characteristics. For example, a free-

flow highway segment with a relatively stable average speed might be modeled as a single link, 

while an intersection or interchange will involve several number of links. The next step is to 

complete the Run-Spec, which include the general information for this project level analysis, 

including the location, time period, vehicles, roadway type, pollutants and processes to be 

analyzed, output type and format. The final step is to enter detailed project data using the project 

data manager. The data that is needed can be categorized in two general types: traffic related 

information and non-traffic related information. Traffic related information is the key to the 

accuracy of the emission estimation. For project-level analyses, MOVES allows users to enter 
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specific details of vehicle activity for each link in the highway or transit project. MOVES 

provides three methods to achieve this objective: 

 Link average speed. Using this method, MOVES will calculate emissions based 

on a default driving cycle for a given speed, grade, and road type. This method 

requires the least amount of traffic information.  However, it also yields the least 

resolution when analyzing project level emissions due to the fact that default 

driving cycles within MOVES cannot reflect the traffic characteristics of the 

project roadway. This is also the method that the predecessor of MOVES, 

MOBILE6 used, which have been critiqued in several research. 

 Link drive schedule. This method allows the user to define the precise speed and 

grade as a function of time (seconds) on a particular roadway link. It provides 

more resolution than the link average speed method. However, only one driving 

cycle can be entered for a run no matter the traffic volume and vehicle types, this 

method can only represent the path for an “average” vehicle in the traffic flow. 

Thus, link drive schedules will only represent average vehicle activity, not the full 

range of activity that will occur on the link.  

 Operating mode distribution. This method allows the user to directly import 

operating mode fraction data for source types, hour/day combinations, roadway 

links, and pollutant/process combinations that are included in the run specification. 

Among the three methods, operating mode distribution requires the most detailed 

input data, which in turn leads to more accurate emission estimation. It is to be 

noted that, even when using the previous two approaches, MOVES still internally 

converts the data into operating mode distribution. For example, if using the 
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average speed approach, MOVES assigns a default drive schedule that 

corresponds to the average speed provided and coverts to operating mode 

distribution.  If using the drive schedule approach, MOVES converts the second-

by-second speed profile to operating mode distribution as well.  

As stated in the previous paragraphs, traffic activity input is key to emission estimations. 

MOVES provides three methods to users, which is summarized and illustrated in Figure 3.1. 

Operating mode distribution method needs the most detailed input, and yields the most accurate 

results. Therefore, operating mode distribution method will serve as the basic methodology 

throughout this research to provide accuracy of estimation.  



Figure 3.1 Traffic Data Input Methods in MOVES Project Level Analysis 

3.1.2 Data Needs for Project Level Analysis 

This section summarizes the different types of data needed for microscopic emission 

estimation, with respect to the MOVES project level operating mode distribution method 

specifically. As mentioned from previous sections, the data needed for project level analysis can 

be generally separated into two categories: traffic related and non-traffic related. Figure 3.2 

displays the data needed for microscopic emission estimation based on operating mode approach.  
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Figure 3.2 Data Needs for Microscopic Emission Estimation 

 Non-Traffic Data and Sources 

Non-traffic data for transportation emission analysis include meteorological information, 

fuel information, vehicle age distribution and inspection/maintenance program. Some of the non-

traffic related data, such as, meteorological information could be obtained from local 

measurement or historical data, while others, including fuel, vehicle age distribution are difficult 

to obtain. Thus, MOVES provides a default database for this information based on the year, 

month and location selected. Therefore, MOVES default database is used to fill in the non-traffic 

data needed.  

 Traffic Data and Sources 

Traffic related data is crucial for accurate estimation of transportation emissions. The 

typical traffic data needed include roadway traffic volume, average speed, grade, the proportion 



41 

 

of different vehicle types and the proportion of time in each operating mode. Traffic volume, 

average speed and grade are generally easier to obtain due its aggregate nature of measurement. 

The percentage of different vehicle types may be obtained from a field data collection. On the 

other hand, operating mode distribution is a type of data that cannot be directly obtained from 

any data sources. There is a need for a complex computation process from a more detailed 

vehicle operating information in the traffic, which often takes the form of a vehicle trajectory 

data, i.e., tracking the speed/location/acceleration of vehicles at every certain time interval. 

Currently, the source of operating mode data may come from the following sources: 

 Probe Vehicles. Probe vehicles or devices are vehicles designed primarily for 

collecting traffic data in real-time, which is currently primarily used for collecting 

travel time and traffic operations data, incident detection, and route guidance 

applications. Probe vehicles collect data based on two primary methods: GPS data 

and geo-location that leverage cellular phone networks. These data were also used in 

several researches to estimate and analyze the emission rates for the probe vehicle 

itself and for the traffic around it. It is flexible to be implemented at any roadways 

without the need for fixed detectors and video cameras. However, the trajectory for 

the probe vehicle is used for emission analysis to represent an “average” vehicle’s 

operations, which cannot capture the dynamics of the entire traffic flow, and the 

“average” conditions are hard to be measured or conducted within the traffic flow. 

 Output from microsimulation models. Microsimulation models such as VISSIM and 

PARAMICS are great tools for the microscopic evaluation of traffic flow and 

operations. They are often able to generate second-by-second vehicle trajectory files 

that could be used for computing an operating mode distribution as input for 
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emissions analysis. However, one issue is that there is a need to calibrate and validate 

the simulation results in order to improve accuracy. To complete the validation and 

calibration, significant additional efforts are needed.  

 Real-world vehicle trajectories. Ideally, this method will be able to capture all 

vehicles’ operational information at all times. This will greatly improve the accuracy 

of the emission estimation compared with the other sources mentioned above. Radar 

based vehicle detection technology has shown the potential of obtaining this type of 

data, which is the method proposed in this research to achieve a real-time estimation 

of vehicle emissions. 

3.2 Radar Based Vehicle Detection and Data Collection Process 

Microwave radar was first developed for detecting objects before and during World War 

II. Only until recently was microwave radar used for transportation data collection purposes. The 

radar operating principle is as follows: roadside-mounted microwave radar sensors transmit 

energy toward an area of the roadway from an overhead antenna. The area in which the radar 

energy is transmitted is controlled by the size and the distribution of energy across the aperture 

of the antenna. The manufacturer usually establishes the design constraints of the radar sensor. 

When a vehicle passes through the antenna beam, a portion of the transmitted energy is reflected 

back towards the antenna. The energy then enters a receiver where the detection is made and 

vehicle data, such as volume, speed, occupancy, and length, are calculated (58). 

For intersection applications, radar sensor is typically mounted on the signal arm or other 

utility poles at the intersection, as shown in Figure 3.3. The radar sensor overlooks the 

approaching traffic, and uses radar wave to scan all oncoming vehicles. Radar based vehicle 
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detection system is able to continuously monitor vehicle trajectories. If a vehicle is within the 

range of the radar detection, and is traveling toward the radar, the system will constantly keep 

track of the vehicle position and speed at a very short interval. Currently, the sensor is capable of 

detecting vehicles up to approximately 500 feet from its location. This distance is large enough 

to cover the functional area of most urban intersections, which means the radar detector is able to 

acquire all approaching vehicles operating characteristics. At every scanning instant (0.1s to 0.5s 

as the interval depending upon different sensors), the sensor obtains the horizontal (Y) and 

lateral (X) positions of each vehicle within its detection range.  Each vehicle’s instant speed is 

then computed based on the distance difference of the vehicle’s successive horizontal positions. 

Based on these features, the sensor is therefore able to track each vehicle’s trajectory and speed 

during the course when the vehicle approaches the intersection. Unlike loop detectors that are 

placed at limited fixed locations, the radar sensor is more like having a series of contiguous 

“virtual loop detectors” between its minimum and maximum detection ranges, and can hence 

accurately estimate each vehicle’s real-time position and speed. 

 

Figure 3.3 Radar Based Vehicle Detection at Signalized Intersections 

 (Modified based on http://www.wavetronix.com/zh/products/smartsensor/advance/features) 
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3.3 Development of Emission Computation Tool for Radar Data 

With the data collected using radar based vehicle detection devices, it is important to 

develop an algorithm to use the data to convert to operating mode distribution and eventually 

compute emissions. In addition, this process ideally will be automatically completed every time 

new data come in to the system to achieve the real-time computation of transportation emissions. 

Ideally, the algorithm will not need to run MOVES each time, it will only need to obtain the key 

parameters (i.e. emission factors) from MOVES and apply these factors during the computation. 

Therefore, the objectives of the development of the data conversion tool are to implement and 

automate the process of converting raw vehicle operational data into emission estimates through 

using emission factors from MOVES model.  

The source data is the raw data collected from radar detectors, which contains the 

following variables: 

 Location variables (e.g. intersection name, approach direction); 

 Time stamp; 

 Unique vehicle ID; 

 X and Y coordinates; 

 Speed; and 

 Vehicle length. 

To process raw data into operating mode distribution and proceed with emission 

computation, interim variables including acceleration rate, vehicle specific power (VSP), and 

operating mode, need to be computed. The entire emission computation tool was developed 

using the R programming language, which is a popular language for data analysis and processing 
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(59). The following paragraphs summarize the internal algorithm used in developing this tool 

and illustrated in Figure 3.4. 

 

Figure 3.4 Internal Algorithm of Emission Computation Tool 

3.3.1 Outlier Removal 

The raw radar detector data will contain irrelevant data detected, including pedestrian 

activity data and other irrelevant information. This is due to the nature that the radar detector is 

able to detect all types moving objects. Therefore, a preliminary step is to clean the data to 

remove outlier (noise). However, this procedure will differ by each location. Hence, there is not 

a universal algorithm for this procedure. An outlier removal procedure is presented in Section 

4.2.3 for the case study intersection.   
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3.3.2 Assign MOVES Link ID 

 As stated in previous sections, the roadway needs to be separated into different links for 

MOVES analysis. The radar data will typically be stored in a SQL database. R will then import 

the data into its workspace. Different approaches are first separated given a link ID number (or 

range) for each approach. If further division is needed, this tool requires users to import a .txt 

or.csv file that contains definitions of different links. The file needs to contain information 

including link ID number, the upper and lower boundary position of the link and the 

corresponding approach. The tool will then automatically assign each raw vehicle trajectory 

point to its corresponding link ID number based its x and y coordinates. 

3.3.3 Compute Acceleration Rate 

As the trajectory data did not contain acceleration rate information for each time stamp, 

acceleration rate need to be derived using the following equations. Specifically, speeds at 

successive time stamps were used to compute the acceleration rate, as represented by Equation 

3.1. For the first appearance of each vehicle, the acceleration rate for its first time stamp is 

assumed the same as the acceleration rate at its second occurrence as shown by Equation 3.2.  

at,k =
𝑣𝑡−1,𝑘−𝑣𝑡,𝑘

𝑇
                                                                   (3.1) 

a1,k = 𝑎2,𝑘                                  (3.2) 

Where, 

at,k   = acceleration rate of vehicle k at time t; 

 𝑣𝑡−1,𝑘𝑣𝑡,𝑘  = speed of vehicle k at time t and t-1; and 
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T   = time gap between successive vehicle trajectory data. 

3.3.4 Compute Vehicle Specific Power (VSP) 

VSP is a significant factor for determining vehicle operating mode. It is first proposed by 

Jimenez et al, representing the instantaneous tractive power per unit vehicle mass. It can be 

calculated from roadside measurements, and captures most of the dependence of light-duty 

vehicle emissions on driving conditions, and is directly specified in emissions certification cycles. 

The equation of VSP is a mathematical representation of engine load against aerodynamic drag, 

acceleration, rolling resistance, plus the kinetic and potential energies of the vehicle, all divided 

by the mass of the vehicle (60). Its original equation is in the following form, as shown in 

Equation 3.3: 

𝑉𝑆𝑃 = 𝑣(1.1𝑎 + 𝑔𝑠𝑖𝑛𝜃 + 𝑔𝐶𝑟) + 
𝜌𝑎𝐶𝑑𝐴𝑓𝑣3

2𝑀
    (3.3) 

Where, 

v = vehicle speed (m/s); 

a = vehicle acceleration rate (m/s2); 

g = acceleration due to gravity (9.81 m/s2); 

= grade; 

Cr = coefficient of rolling resistance; 

 = density of air (kg/m3); 

𝐶𝑑 = coefficient of aerodynamic drag; 
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Af = frontal area of vehicle (m2); and, 

M = mass of vehicle (kg); 

In practice, a generic set of coefficients values for estimating VSP for a typical light duty 

fleet is applied as a useful basis for characterization (61). VSP is calculated based on only 

measured speed, acceleration and road grade. The VSP values for light-duty and heavy-duty 

vehicles are calculated using the following equations: 

𝑉𝑆𝑃𝐿𝐷𝑉 = 𝑣×[1.1𝑎 + 9.81×𝑔𝑟𝑎𝑑𝑒 + 0.132] + 0.000302×𝑣3            (3.4) 

𝑉𝑆𝑃𝐻𝐷𝑉 = 𝑣×[𝑎 + 9.81×𝑔𝑟𝑎𝑑𝑒 + 0.09199] + 0.000169×𝑣3            (3.5) 

Where, 

v = vehicle speed (m/s); 

a = vehicle acceleration rate (m/s2); and, 

grade = vehicle vertical rise divided by the horizontal run. 

3.3.5 Assign Operating Mode 

Emission estimation in this research is based on operating mode distribution to determine 

emission rates for a project level analysis. Operating mode can generally be classified into four 

categories, deceleration, idling, cruising and acceleration. In total, MOVES has further classified 

and defined 23 operating modes for estimation of vehicle running exhaust. A vehicle’s operating 

mode is determined through a combination of the vehicle’s speed and VSP. The detailed 

definition of each operating mode bins is list in MOVES User Manual, as shown in Table 3.1 (9). 
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Each raw trajectory point was assigned a corresponding operating mode number based on its 

speed range and VSP values.  

Table 3.1 Definition of Operating Modes 

Category 
Op Mode 

ID 
VSP Criteria (kW/ton) Speed Criteria (mph) 

Braking 0 
Acceleration <= -2 mph/s or <= -1 mph/s for 3 

consecutive seconds 

Idling 1  -1 <= Speed<1 

Low Speed 

Cruise/Acceleration 

11 VSP< 0 1<=Speed<25 

12 0<=VSP< 3 1<= Speed<25 

13 3<=VSP< 6 1<=Speed<25 

14 6<=VSP< 9 1<=Speed<25 

15 9<=VSP<12 1<=Speed<25 

16 12<=VSP 1<=Speed<25 

Medium Speed 

Cruise/Acceleration 

21 VSP< 0 25<=Speed<50 

22 0<=VSP< 3 25<=Speed<50 

23 3<=VSP< 6 25<=Speed<50 

24 6<=VSP< 9 25<=Speed<50 

25 9<=VSP<12 25<=Speed<50 

27 12<=VSP<18 25<=Speed<50 

28 18<=VSP<24 25<=Speed<50 

29 24<=VSP<30 25<=Speed<50 

30 30<=VSP 25<=Speed<50 

High Speed 

Cruise/Acceleration 

33 VSP< 6 50<=Speed 

35 6<=VSP<12 50<=Speed 

37 12<=VSP<18 50<=Speed 

38 18<=VSP<24 50<=Speed 

39 24<=VSP<30 50<=Speed 

40 30<=VSP 50<=Speed 

 

3.3.6 Compute Operating Mode Distribution 

 Operating mode distribution uses a percentage values to show the proportion of a specific 

operating mode within the entire data for each combination of link and vehicle type. It is 

computed using the following equation: 
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pl,v,o =
𝑛𝑙,𝑣,𝑜

∑ 𝑛𝑙,𝑣𝑜
      (3.6) 

Where, 

 pl,v,o  = proportion of vehicle time operating in operating mode o, in link l, for vehicle 

type v. 

 nl,v,o = number of vehicle trajectory points in operating mode o, in link l, for vehicle 

type v. 

3.3.7 Compute Total Emissions and Emission Rates 

In traditional approach, the results (i.e. data tables) obtained could be used as input into 

the MOVES model along with the RunSpec files created with location, road type and other 

information. Many other data, such as meteorological data, vehicle age, and fuel type used 

MOVES default values, as no exact local data could be obtained for these inputs. Although 

MOVES is able to estimate emission by considering several factors, including running exhaust, 

start exhaust, and tire wear, only running exhaust is considered in this research, as it is the most 

significant type of emission on roadways. However, one issue that exists for this traditional 

approach is that, MOVES needs to be run for each analysis, which is not only time consuming, 

but also preventing the automatic process to obtain emission estimates.  

During the development of this tool, an improved method is implemented to use emission 

factors generated by MOVES, thus eliminating the need to run MOVES for each analysis. 

MOVES only need to run once for each location and month combination to generate emission 

factors for each operating mode and source type.  Emission factors come with the unit of g/hr or 
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g/s, specific to each vehicle type and operating mode. The detailed procedure to generate 

emission factors from MOVES for a specific location is presented in the case study chapter. 

With the availability of emission factors, total emissions for each link can be computed 

using the following model. All data can be obtained from intermediate variables computed in the 

previous steps in the algorithm. 

𝐸𝑙,𝑝 =  
𝐿𝑙

𝑣𝑙
∗ 𝑉𝑙 ∗ (∑ ∑ (𝐸𝐹𝑜,𝑡,𝑝 ∗ 𝑝𝑜 ∗ 𝑝𝑡)𝑜𝑝𝑚𝑜𝑑𝑒𝑠𝑡 )   (3.7) 

Where, 

𝐸𝑙,𝑝  =total emission for link l, and pollutant p, in grams; 

L  =link length for link l, in miles; 

v  =link average speed for link l, in mph; 

V  =link traffic volume for link l, in veh/time; 

𝐸𝐹𝑜,𝑡,𝑝  =emission factors for pollutant p, operating mode o and source type t, in 

g/s; 

𝑝𝑜  =operating mode fraction for operating mode o; 

 𝑝𝑡  =vehicle type fraction for vehicle type t; 

 In addition, per-vehicle emission rate can be computed using the following equation: 

𝐸𝑅𝑝,𝑙 =
𝐸𝑝,𝑙

𝑉𝑙∗ 𝐿𝑙
                                                       (3.8) 

Where, 
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 𝐸𝑅𝑝  = per vehicle emission rate, for link l, pollutant p, in g/veh-mile (g/VMT); 

 𝐸𝑝,𝑙    = total emission for link l, pollutant p, in g; 

 V    = traffic volume for a certain period of time (veh/time); and 

 L    = length of link defined for emission analysis (mile); 

With the computed total emissions and emission rates, the tool will also be able to 

compute AERMOD emission factors as input to dispersion modeling. These factors will provide 

the critical connection between emission analysis and dispersion modeling. This procedure is 

presented in Section 3.4.1.  

3.3.8 Graphical User Interface (GUI) 

The graphical user interface of the data conversion tool is shown in the Figure 3.5. The 

web application was developed using R Shiny Package, a web development framework for R 

(62). Users can select specific radar data based on a specific date and time period and specific 

approaches. Various pollutants can be processed as outputs. The GUI will then proceed with the 

calculations and display various outputs. Basic traffic parameters including traffic volume and 

average speed for each link can be displayed; total emissions and emission rate per vehicle-mile 

(g/VMT) are also displayed. Operating mode distributions are graphically displayed as well 

which can greatly help users visualize the data.  
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Figure 3.5 GUI of the Emission Computation Tool for Radar Data 

3.4 Integration with Air Pollutant Dispersion Models 

The computed emission quantity and rates for various criteria pollutants provide detailed 

and valuable insight on vehicle emissions. Furthermore, if air pollutant concentration could be 

computed using the emissions rates through air dispersion models, this system could provide 

additional functionalities. Average pollutant concentration data can be used for quantitative 

hotspot analysis and NAAQS air quality conformity purposes. This section introduces the 

procedure and data needed for completing such analysis. 
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3.4.1 AERMOD Dispersion Analysis Procedure 

As EPA’s preferred and recommended dispersion model, AERMOD is a steady state 

Gaussian plume model for analyzing air pollutant dispersion from various sources, including 

industrial and transportation sources. In the stable boundary layer, it assumes the concentration 

distribution to be Gaussian in both the vertical and horizontal directions. In the convective 

boundary layer, the horizontal distribution is also assumed to be Gaussian, but the vertical 

distribution is described with a bi-Gaussian probability density function. AERMOD incorporates 

algorithms to account for enhancements of lateral dispersion resulting from plume meander. It 

characterizes the planetary boundary layer through surface and mixed layer scaling. Vertical 

profiles of wind speed, wind direction, turbulence, temperature, and temperature gradient are 

constructed by using measurements and extrapolations of those measurements. AERMOD 

accounts for the vertical inhomogeneity of the planetary boundary layer in its dispersion 

calculations. The latest version of AERMOD, as of 2016, version 15181 was used in this air 

dispersion analysis.  

The Gaussian plume model serves as the basis of the AERMOD. The equation is shown 

as follows (63), 

C =
𝑞

2𝜋𝑢𝜎𝑦𝜎𝑧
∗ exp (

−𝑦2

2𝜎𝑦
2 ) ∗ [exp (

−(𝑧−𝐻)2

2𝜎𝑧
2 ) + exp (

−(𝑧+𝐻)2

2𝜎𝑧
2 )]   (3.9) 

Where, 

 C  = concentration of receptor at (x, y, z) in g/m3; 

 q  = emission factor in g/s; 
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 u  = wind speed in m/s; 

 H  = source height in m and, 

 σy, 𝜎𝑧 = horizontal and vertical dispersion parameters in m. 

AERMOD is a command line based model using a keyword-parameter approach. To 

complete the AERMOD analysis, users need to provide an input text file that contains most 

necessary options for modeling. Additional text files may be needed to supplement the input 

information. This input file is structured to have five components, which are listed as follows. An 

example of contents of AERMOD input file is shown in Figure 3.6.  

 COntrol: this segment defines the title and modeling options including the 

pollutant type, average concentration time period etc. 

 SOurce: this segment defines the source type, location, size and emission factors. 

Multiple sources of different types can be defined and modeled in a single run. 

 REceptor: this segment defines the locations at which air pollutant density needs 

to be computed. Again, multiple sets of receptors can be defined and modeled in a 

single run.  

 EVent: this segment is optional for input and not usually applicable for roadways 

as emission sources. 

 OUtput: this segment configures the types of output options for pollutant 

concentrations. Output options include computing average or first-highest, 

second-highest, etc. concentrations for each receptor locations, or a list of 

receptors with highest concentrations.  



56 

 

 
Figure 3.6 Example Contents of AERMOD Input File 
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3.4.2 Data Needs for Dispersion Analysis 

This section summarizes the different types of data needed for air pollutant dispersion 

analysis, with respect to AERMOD model for transportation emission sources. Figure 3.7 

provides an overview of data needs. The input data for air dispersion analysis can be classified 

into three general categories, which are introduced below. 

 

Figure 3.7 Data Needs for AERMOD Dispersion Analysis 

Emission Source (Roadway) Characteristics 

For transportation air pollutants dispersion analysis, roadways are the sources of 

emissions and air pollutions. The required source characteristics include roadway segment 

lengths, widths and urban/rural location. For intersection analysis, multiple sources can be 

separately defined for each approach or at even more detailed level. Roadways are 
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conventionally modeled as LINE or rectangular AREA sources. The separation of different 

emission sources can generally follow the link definition in emission analysis.  

Emission Factors 

An emission factor is one of the most important inputs for dispersion analysis. This also 

provides the connection between emissions computed using radar based vehicle detection data 

and dispersion modeling. A more detailed variable emission factors will lead to more resolution 

for dispersion analysis. Therefore, the radar-based emission modeling procedure introduced in 

the previous sections can provide such detailed emission factors information.  

AERMOD requires composite emission factors in the units of g/s/m2. Therefore, there is 

a need to convert emission rates computed to the units required by AERMOD. The equation for 

computing composite emission factors is listed below: 

𝐸𝐹𝑐𝑜𝑚𝑝,𝑙 =  
𝐸𝑅𝑙∗𝑉𝑙∗𝐿𝑙

3600∗𝐴𝑙
      (3.10) 

Where, 

 EFcomp,l = Composite emission factor, in g/s/m2; 

 𝐸𝑅𝑙  = Emission rate computed using Emission Computation Tool for Radar 

Data, in g/veh-mile (VMT); 

 V  = Source traffic volume, in vph; 

 L   = Source length, in m, and 

 A   = Source area, in m2. 

Meteorological Information 
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Meteorological data directly uses the results from the two preprocessors AERMET and 

AERMAP based on local data. Weather data can be obtained from National Weather Service 

database.  

Receptors 

Receptors are virtual monitoring stations where air pollutants concentration data is 

estimated. Receptors are general placed at a height of 1.8 m above the ground to simulate the 

human breathing height. Generally, near a source, receptors are placed with finer spacing and 

farther from a source with wider spacing. 

Background Concentrations 

The background concentration includes emissions from all sources other than the project, 

which affects concentrations in the project area. The concentrations obtained from AERMOD 

should be added to the background concentration to get the total representative concentration, 

called the design value; this value describes the future air quality concentration in a project area, 

which can be compared with the National Ambient Air Quality Standards. Several options for 

obtaining the background concentration can be found in an EPA publication (12). 

Output Options 

 The dispersion output options including highest 1-hour, 3-hour, 8-hour, 24-hour average 

concentrations in order to compare with NAAQS standards for each criteria pollutant. The 

concentration computed have the units of μg/m3, while NAAQS criteria are provided as ppm 

(particles per million).  There is a need to convert between units, shown in the following 
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equation. Other output options include identify the Top X receptors locations with the highest 

average concentrations, which can be used for quantitative hot spots analysis. 

 𝐶𝑜𝑛𝑐 (
𝜇𝑔

𝑚3) = 𝐶𝑜𝑛𝑐 (𝑝𝑝𝑚) ∗
𝑀𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 𝑀𝑎𝑠𝑠 (

𝑔

𝑚𝑜𝑙
)

𝑀𝑜𝑙𝑎𝑟 𝑉𝑜𝑙𝑢𝑚𝑒 (𝐿)
∗ 103  (3.11) 

 

3.5 Real-Time Emission Monitoring System Framework 

Based on the characteristics of the radar based vehicle detection system, emission 

computation tool and dispersion analysis procedure, a full-scale framework for a system that 

monitors vehicle emission at intersections in real time, and provides visualization and decision-

making support for transportation authorities to react to high emission levels, is proposed. The 

system is named as Real-Time Intersection Emission Surveillance System (RETIESS). The 

feasibility of RETIESS is based on incorporation of MOVES emission factors, radar detection 

data and AERMOD dispersion modeling.  

Figure 3.8 shows the system framework of RETIESS with data flow indicated. According 

to the figure, RETIESS is composed of the following six components: Configuration Module 

(CM), Data Collection Module (DCM), Data Processing Module (DPM), Emission Computation 

Module (ECM), Dispersion Analysis Module (DAM) and Emission Visualization and Decision 

Support Module (EVDSM).  
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Figure 3.8 Real-Time Emission Monitoring System Framework 

The functionality of each module is presented in the following paragraphs: 

3.5.1 Configuration Module 

The configuration module (CM) provides a GUI (Graphical User Interface) to define the 

MOVES links, and MOVES project parameters, and collect all non-traffic related information. 

The configurations are eventually stored in a Run-Spec file in MOVES database, many non-

traffic parameters could apply MOVES default database values.   

3.5.2 Data Collection Module 

In this data collection module (DCM), data collected from radar detectors are 

continuously stored into a SQL database on a real-time basis to prepare for data processing. 
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3.5.3 Data Processing Module 

The data processing module (DPM) retrieves real-time trajectory data of all vehicles 

traveling on all legs of an intersection at a certain frequency (e.g. 0.5 second) from the radar 

detector. The collected trajectory data are stored immediately in the database of RETIESS.  The 

DPM then retrieves the trajectory data from the database at certain analysis interval (e.g. 1 

minute), processes and converts the trajectory data into interim processed data including 

acceleration rates, average speeds of links, volumes, VSPs and operating mode distributions.   

3.5.4 Emission Computation Module 

The emission computation module (ECM) eventually runs the Emission Computation 

Tool using emission factors generated from MOVES model to estimate the emission rate for 

specified types of pollutants. This entire process can be repeated at a fixed time interval (e.g., 1 

minute or 5 minutes), so that real time emission surveillance can be realized. 

3.5.5 Dispersion Analysis Module 

The dispersion analysis module (DAM)s converts the emission computation result into 

AERMOD input format and configures the receptors and other needed information. AERMOD 

will be run in this module and concentration values will be computed using the defined sets of 

receptors.  

3.5.6 Emission Visualization and Decision Support Module 

The emission visualization and decision support module (EVDSM) is responsible of the 

emission rate surveillance by providing a GUI that displays the emission rates of various 
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intersection approaches. The emission alarm server of the EVDSM monitors the emission rate in 

real time and initiates alarm as warnings if the emission rate exceeds the preset threshold, for 

example using EPA’s light duty vehicle emission standard. The system can also display other 

traffic information, such as traffic volume, average speed, and operating mode distribution. Air 

dispersion results can be used for air quality analysis and transportation conformity purposes by 

comparing to NAAQS standards. 

In summary, this uniqueness in terms of completeness of dataset for computing the 

operating mode distribution assures accurate estimation of vehicle emission using Emission 

Computation Tool for Radar Data and in a real-time manner. The next chapter will implement 

this proposed system at an urban signalized intersection as a case study to test the feasibility and 

validity of this system. 
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4 System Implementation - Case Study 

4.1 Study Site 

The objective of this case study is to implement the proposed real-time emission 

monitoring system and evaluate its applicability and performance for an urban signalized 

intersection scenario. The study intersection is an urban signalized traditional four-leg 

intersection located in Appleton, WI. The intersecting roadways are Wisconsin Avenue and 

Meade Street, in which Wisconsin Avenue is an arterial and Meade Street is a collector road. The 

average annual daily traffic (AADT) on Wisconsin Avenue is approximately 11,000 veh/day, 

while AADT on Meade Street is approximately 10,000 veh/day (64). The speed limit on all 

approaches is 30 mph. Each of the four approaches has one exclusive left turn lane and two 

through lanes (right turns are shared in the right most lane), as shown in Figure 4.1. 

 

Figure 4.1 Case Study Intersection Configurations 
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4.2 Data Collection and Processing 

4.2.1 Data Collection Overview 

In order to collect raw vehicle’s operational data at each intersection approach using 

radar based vehicle detection, one radar detector was placed on the signal pole to monitor each 

approach. As can be shown through Figure 4.3, each red circle indicates the location of the radar 

detector at the intersection approaches, which are installed on signal poles. The radar detector 

used is called IntersectorTM, a commercially available radar based vehicle detection system 

manufactured by MsSedco. Figure 4.2 illustrates the actual IntersectorTM device. The advantages 

of the device include not affected by weather conditions, the ability to detect in multi-lanes, and 

easily installable, among others (65). The data collection was conducted during the months of 

January and February 2015.  

 

Figure 4.2 IntersectorTM Radar Detector by MsSedco (65) 
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(a) Southbound Approach (b) Northbound Approach 

  
(c) Westbound Approach (d) Eastbound Approach 

Figure 4.3 Study Site Data Collection Photos 

 In order to log radar data for all four intersection approaches, a laptop computer running 

custom data collections software was placed inside the signal cabinet. The software used for 

logging vehicle trajectory data from radar detectors relies on the technology developed by 

Santiago-Chaparro et al (66). The data collection software monitors the underlying data stream 

of the radars without interfering with the main function of the vehicle detection system.  
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4.2.2 Raw Trajectory Data 

A sample of the raw vehicle trajectory data collected by the radar detector is presented in 

Figure 4.4. The raw is stored in a MySQL database, subsequently imported into R for data 

analysis. It can be observed from the figure that one vehicle trajectory record is generated for 

approximately every 0.5 seconds for each vehicle within the detection range. Each raw record 

contains the following information that enables data query and manipulations based these 

attributes. 

 Data collection site; 

 Unique Vehicle ID; 

 Detailed timestamp (date and time); 

 Approach; 

 X, Y coordinates representing the location of the vehicle on the Cartesian plane; 

 Speed (mph); and 

 Vehicle length (ft). 
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Figure 4.4 Raw Radar Detector Data Sample 

In order to visualize the raw vehicle trajectory data, a randomly selected sample of data 

was plotted based on its X and Y coordinates for each approach and presented in Figure 4.5.  The 

y-coordinate is measured approximately parallel to the roadway direction of travel. A zero y-

coordinate represents the location of the radar detector. As Y increases, it indicates that the 

actual vehicle location at the specific time stamp is farther away from the intersection. The 

farthest data points detected is slightly above 500 ft., which confirms the radar detector’s 

detection range. The x-coordinate is measured approximately perpendicular to the roadway 

direction of travel. It can indicate the lane that the vehicle is traveling on. It can be seen from the 

figure that, the plot of this raw data sample generally conforms to the configurations of each 

intersection approach, which shows its plausibility of being a valid and strong data source for 

transportation emission analysis. However, a number of data points seem to be to out of the 

roadway range, which are considered outliers and noises. These data points need to be removed 

before starting data processing and emission analysis to improve validity and accuracy.  
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Figure 4.5 Vehicle Trajectory Points Examples 

4.2.3 Outlier Removal 

The objective of the outlier removal is to identify the noise sources and remove data that 

are irrelevant to vehicle operations near the case study intersection. Through investigating the 

surrounding land use and intersection configurations, three major sources of data noise are 

identified, which are listed below. Each noise source is also indicated in Figure 4.5 using the 

corresponding number.  

1. Vehicles operating in nearby business parking lots detected; 

2. Pedestrian and bicyclists activities detected; 

3. Cross traffic detected (duplicate detection); 

1 

2 

3 

4 
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4. In addition, the geometry at the northbound approach becomes complicated beyond 

300 ft. from the intersection, as the roadway is curved and there exists another 

immediate unsignalized three-leg intersection.  

Each of the different noise source needs to have separate criteria for removing the data 

and associated trajectory. An important parameter to consider before defining noise removal 

criteria is to identify the location (i.e. y-coordinate in the radar data) of the stop bar. Through 

intersection measurement, the stop bar has a y-coordinate of approximately 120 ft for all 

approaches. With the stop bar location for each approach identified, noise removal criteria can be 

defined, introduced in the following paragraphs. 

First, remove all trajectory points on the northbound approach where y-coordinate of the 

point is larger the 300 ft threshold. This step aims at removing the data from the local road that is 

irrelevant to this intersection. Next, remove all trajectory points on all approaches where the data 

has a y-coordinate greater than the y-coordinate of the stop bar (ysb) and whose x-coordinate is 

outside of the range of the traveled lanes (defined by xlow and xupp), shown through the following 

equation. 

Remove: y > ysb & (𝑥 < 𝑥𝑙𝑜𝑤 | 𝑥 > 𝑥𝑢𝑝𝑝)    (4.1) 

This step can remove the vehicle activity data in the nearby parking lot and some pedestrian and 

bicycle data. Then, remove all data associated with a vehicle id that only appears with y smaller 

the ysb or only y larger than ysb, shown in the following equations.  

Remove all: max(𝑦𝑖𝑑1) < 𝑦𝑠𝑏 | min (y𝑖𝑑2) > 𝑦𝑠𝑏   (4.2) 
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The former is able to remove cross traffic from other approaches, while the latter is able to 

remove vehicles entering into nearby businesses. Finally, remaining pedestrian data are removed 

with the following criteria, 

Remove all: lengthid < 6 & mean(xid) < xlow   (4.3) 

 Figure 4.6 graphically illustrates the outlier removal process. As a result of this process, 

the remaining data contains the best possible trajectory data that can be used for further analysis. 

This ensures that the best available data is used to achieve the highest accuracy in analysis results.  

 

Figure 4.6 Noise Removal Procedure Illustration 
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4.3 Results Analysis and Validation 

4.3.1 Traffic Volume 

With raw vehicle trajectory data cleaned up from outliers and ready for data processing 

and analysis, a series of analyses were designed and conducted in this case study. To start with, 

fundamental traffic parameters, including traffic volume and average speed could easily be 

obtained from the radar detector data in real-time, which is analogous to the data obtained from 

conventional loop detectors.  

Traffic volume can be computed using the number of unique vehicle ids that exist during 

a certain time period. Figure 4.7 illustrates the traffic volume variations during a weekday at the 

study site based on the collected data grouped by each approach. One traffic volume count is 

generated every 15 minutes. The traffic volume trend over the day is a typical pattern that can be 

commonly observed, with very low traffic during midnight to 6 AM, and high volume during 

morning and evening peak hours. All approaches have rather similar number of entry vehicles 

into the intersection, with northbound and southbound approaches having larger volume during 

morning peak hours and eastbound approach having the greatest number of vehicles during 

evening peak hours.  

The average weekday intersection entering volume during the data collection period is to 

21,069 vehicles, which closely matches with the intersection AADT of approximately 21,000 

veh/day. To be more specific, the average weekday EB and WB entering volume is 10,753 

(AADT 11,000) and NB and SB entering volume is 10,285 (AADT 10,000). This can show that 

the radar based vehicle detection system is able to detect vehicle operating data with a very high 

degree of accuracy. 
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Figure 4.7 Traffic Volume by Hour of Day 

4.3.2 Average Speed 

 Average speed is computed by taking the mean speed of all vehicle trajectory point with 

a specific period. Again, one average speed for each approach is computed every 15 min. Figure 

4.8 illustrates the results. A commonly seen daily speed pattern can be observed with high 

average speed during nighttime due to less number of stops and deceleration. Eastbound and 

westbound approaches have generally larger average speed than northbound and southbound 

approaches dues to their higher speed limit (35 mph). Northbound approach has the lowest 

average speed due to its different shorter intersection distance measurement from the intersection 

compared with other approaches.   
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Figure 4.8 Average Speed by Hour of Day 

4.3.3 Operating Mode Distribution  

The proposed real-time emission monitoring system is used to estimate the emissions of 

various pollutants for each intersection approach. As an intermediate step, operating mode 

distributions during different time periods was first analyzed. Each operating mode distribution 

is calculated and obtained as an intermediate result using the Emission Computation Tool for 

Radar Data. As a result, figures were generated to compare the operating mode distributions in 

short time interval during a typical peak and off-peak hour.  

Figures 4.9 compare the operating mode distribution during consecutive 10-minute 

intervals in a typical peak hour (4 PM to 5 PM) and off-peak hour (10 AM to 11 AM) by 

corresponding intersection approaches. Note that operating modes 33 through 40 are not shown 

in this figure and subsequent figures. These operating modes represent high-speed 
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acceleration/cruising modes (>=50 mph) which is not applicable for this intersection due to low 

speed limits. These comparisons aim at revealing the change in operating mode distribution 

during different short time intervals within an hour. According to these figures, change in 

operating mode distribution can be seen in both peak-hour intervals and off-peak hour intervals. 

For example, in Figures 4.9, percentages of different operating modes vary in different figures 

among different approaches and time intervals. The patterns are significantly different for 

operating mode 1 (i.e. idling), with higher percentage during peak hours. This indicates that 

during peak hour, larger percentage of vehicle need to stop at the intersection approach. In 

addition, it can be observed that non-peak hour has generally a higher proportion of operating 

mode 21 through 30, which indicates that during non-peak hours, traffic operates more smoothly 

and more vehicles are able to maintain their operating speed while traveling through the 

intersection.  

 

Figure 4.9 Operating Mode Distribution during Peak and Non-Peak Hour Periods by Approach 
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Figure 4.10 Link Classification Diagram 

Next, each approach is further divided into links to analyze the operating mode difference 

with respect to distance to intersection. Figure 4.10 graphically displays the link classification for 

this test intersection. Specifically, each approach was divided into four separate links (3 for NB 

approach), with each link having a length of 120 ft. Link 1 of each approach represent the area 

within the intersection, link 2 represent the section that is nearest the approach stop bar, 4 being 

furthest away for intersection. Each operating mode distribution was illustrated for each 

approach and peak/non-peak hour with respect to each link. It can be shown from Figure 4.11 

that link 2 of each approach mainly consist of vehicle idling, while link 3 has the largest 
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proportion of vehicle decelerating, link 4 has the largest proportion of vehicle mid-speed 

cruising/acceleration.  

 

Figure 4.11 Operating Mode Distribution during Peak and Non-Peak Hour by Link 

These figures have proven that operating mode distribution patterns did change over short 

periods at the study intersection approach and differ by approaches and distance to intersections. 

This difference results from the change of traffic flow state, and showed to be well captured by 

the radar detector. The above finding further validates the necessity of real-time emission 

monitoring at intersections, as the change in operating mode distribution will accordingly result 

in a change in emission rate. To verify the results, Chi-squared test was used to test homogeneity 

between different operating mode distributions. The test statistic and the expected frequency 

count can be computed using the following equations: 
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𝜒2 = ∑
(𝑂𝑟,𝑐−𝐸𝑟,𝑐)2

𝐸𝑟,𝑐
                                                      (4.4) 

𝐸𝑟,𝑐 =
𝑛𝑟∗𝑛𝑐

𝑛
                                                                 (4.5) 

Where, 

 𝑂𝑟,𝑐 = the observed frequency count in population r for level c of the categorical 

variable; 

 𝐸𝑟,𝑐 = the expected frequency count in population r for level c of the categorical 

variable. 

 𝑛𝑟 = total number of observations from population r; 

 𝑛𝑐 = total number of observations at level c; and 

 𝑛 = total sample size. 

Specifically, selected periods from peak hour and non-peak hour in Figure 4.9 and 4.11 

were compared to each other. Finally, the peak hour and non-peak hour data were compared. 

Comparisons were not conducted separately for each link due to the limited sample size within 

each link, since chi-squared test generally requires at least five counts for each mode type.  The 

chi-squared test results are shown in Table 4.1, showing most pairs of distributions are 

significant different even at 0.001 significance level. This result further indicates that different 

links at different time periods will yield significantly different operating mode distribution 

patterns.  
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 Table 4.1 Chi-square Test for Homogeneity Result 

Comparison Type Trajectory Data 

Sample Size 

df 𝝌𝟐 p-Value 

Peak 1 VS. Peak 2 680 915 7 54.6 <0.001 

Peak 1 VS. Peak 3 680 893 7 17.8 0.013 

Peak 2 VS. Peak 3 915 893 7 45.9 <0.001 

Non-Peak 1 VS. Non-Peak 2 3008 3207 11 180 <0.001 

Non-Peak 1 VS. Non-Peak 2 3008 4393 11 55.8 <0.001 

Non-Peak 2 VS. Non-Peak 3 3207 4393 11 336 <0.001 

Peak Hour VS. Non- Hour   14 897 <0.001 

 

4.3.4 Total Emissions and Emission Rates 

With the computed intermediate variables such as volume, speed, and operating mode 

distribution, total emissions and emission rates are computed using the proposed methodology. 

The advantage of this method is to extract emission factors for the case study intersection so that 

there is no need to run MOVES for each analysis. MOVES emission factors are generated by 

assuming one single vehicle on each link and only operating on a single operating mode for one 

hour. The resulting total emission can then be used as emission factors with the unit of g/hr for 

each operating mode. Figure 4.12 graphically illustrates the emission factors for a passenger 

vehicle and truck for common pollutants including CO, CO2, NOx and PM2.5 for the case study 

intersection only. Equation 3.7 can then be applied to compute the total emission for a link 

during a certain period of time. To validate the proposed method, a few test cases have been 

performed to compare the emission results from using the proposed method and fully running 

MOVES for each analysis. The comparison results showed that the proposed method yielded the 

exact same result with fully running MOVES. This indicates the proposed method is valid and 

can automatically and continuously compute emissions without the need of manually running 

MOVES each time.  
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Figure 4.12 Emission Factors by Operating Mode for Major Pollutants 

Total emissions and emission rate per vehicle for various pollutants were then computed 

for each link using the Emission Computation Tool for Radar Data. Figure 4.13 show how CO 

emission rates during a typical peak and non-peak hour for each link of each approach, 

respectively. According to the figure, the emission rates for different links have different 

magnitudes, which is an expected result due to the difference in operating mode distributions. 

The reason behind the phenomenon is that emission rate should vary by the distance from the 

intersection. This is due to the more complex driving behavior (e.g., idling, acceleration, and 

deceleration) at a closer distance from the signalized intersection. To be more specific, link 3 has 

the lowest emission rate, since a majority of operating modes is composed of braking which 
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usually causes a low CO emission rate. On the other hand, Link 1 shows a higher CO emission 

rate than the remaining links. As Link 1 represents part of the within-intersection portion of the 

case study site, vehicles traveling on Link 1 are typically high-acceleration-rate traffic from 

stopping condition or relatively high-speed traffic which passes the intersection during the green 

signal. There are usually no low-emission breaking conditions associated with Link 1. As higher 

speed and higher acceleration rate lead to higher VSP, Link 1 is mainly composed of vehicles 

with higher VSP that results in a higher emission rate. In addition, by comparing emission rates 

during peak and non-peak hours shows that peak hours have slightly larger emission rate due to 

lower average speed.  

 

Figure 4.13 CO Emission Rate during a Typical Peak and Non-Peak Hour by Link 
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On the other hand, Figure 4.14 shows the distribution of various pollutant emission rates 

at a more aggregated level. Each data point in the figure represents the emission rate during a 15-

min interval for a specific link. Data for time period from 6 AM to 10 PM are shown. These 

figures can be combined with a threshold line to apply the concept of the Emission Visualization 

and Decision Support Module, which is responsible for displaying the emission rate in real time 

and provide warnings when the emission rate exceeds a certain threshold.  

 

Figure 4.14 Emission Rate of Various Pollutants during a Typical Day 
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4.3.5 System Validation 

 Although no ground truth emissions are available to validate total emissions and emission 

rates computed, the validation process is still needed and can completed through multiple 

indirect methods. The validation process using different aspects of data is presented in the 

following paragraphs, 

 First of all, the average daily traffic volume computed closely matches with recent 

AADT data from Wisconsin Department of Transportation. This indicates that there is 

no significant over counting or under counting of vehicle activities. 

 Secondly, the emission computed using the proposed method are identical to fully 

running MOVES for each analysis. This indicates that the proposed methodology is 

valid and is able to automatically replicate the MOVES computation process.  

 Finally, the emission rates computed are compared with the recent EPA’s light duty 

vehicle emission standards. It stated a 3.4 to 4.2 g/mile for CO emissions, and 0.4 to 0.6 

g/mile from a single vehicle standpoint. The computed emission rates closely match 

with the EPA criteria, although somewhat towards the higher end due larger volume and 

longer time to cross the intersection. 
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4.4 Pollutant Dispersion Analysis 

4.4.1 Dispersion Modeling Setup 

AERMOD input file setup consists of several components including defining sources, 

characterizing receptors, input meteorological information and select modeling options. Sources 

are separated identically with the separation of links during the emission computation process. 

Each intersection approach is defined as a separate emission source, whose length is identical to 

the coverage area of the radar detectors which is approximately 500 ft. Initial emission release 

height is assumed to be approximately 1.7 times the average vehicle height to account for the 

effects of vehicle induced turbulence according to U.S. EPA documents (12). The base elevation 

of the intersection was determined using USGS Geographic Names Information Systems (GNIS) 

for Appleton, WI (67). The specific characteristics of the sources can be found in Table 4.2.  

Table 4.2 Source and Receptor Characteristics of the Study Site 

Items Characteristics Values 

Sources  

Number of Sources 4 

Source Length 152 m 

Source Width 7 m 

Base Elevation 240 m 

Release Height 2.5 m 

Receptors 

Sets of Receptors 8 

Receptor Spacing 10 & 25 m 

Receptor Height 1.8 m 

Total No. of Receptors 564 

  

Receptors are virtual monitoring stations where air pollutants concentration data is 

estimated. Receptors are placed at a height of 1.8 m above the ground to simulate the human 

breathing height. Eight sets of receptors are defined for this case study intersection. The first four 
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sets of receptors are placed 10-meter from each other on grid scale. These are placed directly 

adjacent to the intersection approaches. Another four sets of receptors are placed further apart 

from the intersection, with a 25-meter interval. Figure 4.15 visually displays the receptors setup. 

 

Figure 4.15 AERMOD Receptors Setup 

Composite emission factors were computed based on emission rates computed above 

using the procedure introduced in the previous chapter. Emission factors were computed on an 

hourly basis for each source as input to dispersion modeling. Figure 4.16 shows the composite 

emission factors over an entire day for each intersection approach. The pattern for composite 

emission factors generally follows the trend of approach vehicle volume, which is the highest 

during morning and afternoon peak hours. 
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Figure 4.16 Hourly AERMOD Emission Factors  

 Detailed meteorological information and background concentrations levels could not be 

obtained through publicly available sources. Background concentration were thus not specified 

in AERMOD modeling, leading to results that only measures the impact of this intersection 

vehicle emissions. Meteorological information from a similar location was used, thus the results 

is not representative of the actual meteorological conditions of the local area.  

4.4.2 Pollutant Concentration Results 

 Highest 1-hour average and 8-hour average CO concentrations are selected as output 

concentrations for this study intersection since NAAQS standards uses these two average periods’ 

concentrations for CO in their standards. Figure 4.17 shows the plotted 1-hour CO 

concentrations for receptors defined without considering background concentrations. The 

concentrations were found to be higher near the sources and gradually decreased as the distance 
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from the sources increased. In addition, these high concentration locations were concentrated 

toward the northeast quadrant, which matches the directions of the prevailing winds from 

southwest to northeast for the case study intersections. The receptor with the highest 1-hour 

concentration is 1,334 μg/m3, is far below NAAQS 1-hour CO standards of 35 ppm (43,200 

μg/m3). 

 

Figure 4.17 Highest 1-hour CO Concentrations Plot without Background Concentrations 

The concentration results presented in this section shows that emission computed using 

radar based vehicle detection data can be further integrated with dispersion models to provide 

additional functionalities to the entire system.  



88 

 

5 Operating Mode Based Emission Modeling  

5.1 Comparison with Probe Vehicle Methods 

5.1.1 Qualitative Comparison 

Many previous researches used probe vehicle GPS data to analyze transportation 

emissions. The assumption behind this approach is to use trajectory data of an individual probe 

vehicle to represent the characteristics of the entire traffic flow. To validate this assumption, a 

comparison was conducted to compare the difference of traffic characteristics and operating 

mode distribution between a platoon of vehicles and individual probe-like vehicles. This 

difference can be both understood qualitatively and analyzed quantitatively. If significant 

difference exists, the assumption used by the GPS probe data based methods would be invalid. 

 In order to visualize the difference between operating characteristics of platoon and 

probe-like vehicles in the platoon, a platoon of four vehicles traveling through the intersection in 

the same lane during peak hour was selected for analysis. The trajectories of all vehicles within 

the platoon was plotted and shown in Figure 5.1. The different colors in each trajectory represent 

the instantaneous speed of each vehicle at different time stamps. Observing the figure, although 

the four vehicles have somewhat similar trajectories, significant differences can be observed 

from the different deceleration and accelerations rate for different vehicles.  
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Figure 5.1 Vehicle Platoon Trajectory Plot 

 To further understand the underlying difference between individual probe-like vehicles 

and vehicle platoons, an experiment was designed to qualitatively compare the operating mode 

difference. Specifically, trajectory data of the platoon approaching to the intersection was used to 

compute the operating mode distribution of the platoon. At the same time, trajectory data of each 

individual vehicle in the platoon was used to compute the operating mode distribution of 

individual probe-like vehicle. Comparison results are illustrated by Figures 5.2. The upper 

subfigures show the speed and acceleration rate distributions of the entire platoon, and each 

individual vehicle. It can be seen that the speed patterns of the platoon are different from that of 

individual vehicles. The shapes of the acceleration rate distribution curves are more similar 

between the entire platoon and individual vehicles. Based on the speed and acceleration rate data, 

operating mode distributions of entire platoon and the individual vehicles were computed. These 

operating mode distributions of individual vehicles and the platoon were then compared to each 

other. The lower subfigure shows the comparison results. It shows that the operating mode 
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distribution of the platoon is substantially different from that of individual vehicles. Furthermore, 

a one-by-one comparison of operating modes between individual vehicles and the entire platoon 

shows that approximately 20 to 25 percent of all operating modes within the platoon have been 

classified differently compared with corresponding individual vehicle data.  

 

 

Figure 5.2 Platoon and Individual Vehicles: Speed/Acceleration and Operating Mode Comparisons  
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Chi-squared tests are further used to validate the aforementioned findings by testing the 

homogeneity of different operating mode distributions. A pair of operating mode distributions 

was compared to determine if one distribution is significantly different from the other using the 

Chi-squared test. Each distribution contains a count of trajectory data point conforming to each 

of the 23 different operating modes. Table 5.1 summarizes the test results. Statistically 

significant difference was found between the operating distribution curves of (1) the platoon and 

this first vehicle of the platoon; (2) the platoon and the second vehicle of the platoon; and (3) the 

first vehicle and the second vehicle.                                                                                                                                                                                                                                  

Table 5.1 Results of Chi-square Test for Homogeneity 

Comparison Type Trajectory Data 

Sample Size 

df 𝝌𝟐 p-Value 

Platoon VS. Vehicle 1 651 45 7 38.2 <0.001 

Platoon VS. Vehicle 2 651 108 7 54.1 <0.001 

Vehicle 1 VS. Vehicle 2 45 108 7 28.6 <0.001 

5.1.2 Quantitative Analysis 

To further understand the underlying cause that ultimately lead to the difference in 

emissions estimated using probe vehicle and platoon data, the following equations are used to 

illustrate the sources of difference. The root cause lays in that the instantaneous speed and 

acceleration rate values at each time stamp may be different for probe-like vehicle and other 

vehicles in the platoon. This difference will lead to the different values of VSP computed. The 

difference in VSP will have a certain probability of being classified as a different operating mode 

than the probe vehicle. This probability largely depends on the classification criteria of different 

operating modes. Adding up the total number of operating modes that has been differently 

classified will result in the difference of emission rate calculated.   
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𝜀𝑣 = 𝑣𝑖 − 𝑣𝑝𝑟𝑜𝑏𝑒     (5.1) 

𝜀𝑎 = 𝑎𝑖 − 𝑎𝑝𝑟𝑜𝑏𝑒     (5.2) 

𝜀𝑉𝑆𝑃 = 𝑉𝑆𝑃𝑖 − 𝑉𝑆𝑃𝑝𝑟𝑜𝑏𝑒 = 𝑓(𝜀𝑣, 𝜀𝑎)   (5.3) 

𝜀𝑂𝑀 =  𝑃(𝑂𝑀𝑖 ≠ 𝑂𝑀𝑝𝑟𝑜𝑏𝑒) = 𝑓(𝜀𝑉𝑆𝑃 , 𝜀𝑣) = 𝑓(𝑓(𝜀𝑣, 𝜀𝑎), 𝜀𝑣)  (5.4) 

𝜀𝐸𝑅 = |𝐸𝑅𝑖 − 𝐸𝑅𝑝𝑟𝑜𝑏𝑒| = 𝑓(∑ 𝜀𝑂𝑀)     (5.5) 

Where, 

 𝜀  =difference in probe-like vehicle and platoon for a specific variable; 

𝑣𝑖 , 𝑣𝑝𝑟𝑜𝑏𝑒 =speed for vehicle i in a platoon and probe-like vehicle; 

𝑎𝑖, 𝑎𝑝𝑟𝑜𝑏𝑒 =acceleration rate for vehicle i in a platoon and probe-like vehicle; 

𝑉𝑆𝑃𝑖 , 𝑉𝑆𝑃𝑝𝑟𝑜𝑏𝑒=VSP of vehicle i in a platoon and probe-like vehicle; 

𝑂𝑀𝑖, 𝑂𝑀𝑝𝑟𝑜𝑏𝑒 =operating mode for vehicle i in a platoon and probe-like vehicle; and 

𝐸𝑅𝑖 , 𝐸𝑅𝑝𝑟𝑜𝑏𝑒 =emission rate for vehicle i in a platoon and probe-like vehicle; 

Finally, an experiment was designed to quantify the difference in emission rate estimated 

between using probe vehicle and platoon data. Twenty platoon trajectory data were randomly 

selected and extracted. Within each platoon, a probe-like vehicle was selected that could most 

closely represent the operating characteristics of the entire platoon. Each probe-like vehicle and 

its corresponding platoon was considered as a comparison pair. Emission was then computed for 
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all probe-like vehicle trajectory data and platoon trajectory data. To complete the analysis, the 

following three variables were computed for each comparison pair. 

 Absolute difference in emission rate: representing the difference of emission rate 

using platoon and probe-vehicle, calculated using the Emission Computation Tool for 

Radar Data, shown in the following equation. 

𝜀𝐸𝑅 = |𝐸𝑅𝑝𝑟𝑜𝑏𝑒 − 𝐸𝑅𝑝𝑙𝑎𝑡𝑜𝑜𝑛|    (5.6) 

Where, 

 𝐸𝑅𝑝𝑟𝑜𝑏𝑒, 𝐸𝑅𝑝𝑙𝑎𝑡𝑜𝑜𝑛 = Emission Rate computed using probe vehicles and platoon. 

 Mean absolute error of VSP: representing the mean absolute difference in VSP 

between probe-like vehicle and platoon, shown in the following equation. 

𝑀𝐴𝐸𝑉𝑆𝑃 =
1

𝑁
∑ |𝑉𝑆𝑃𝑖 − 𝑉𝑆𝑃𝑝𝑟𝑜𝑏𝑒|𝑁

𝑖=0    (5.7) 

Where,  

𝑀𝐴𝐸𝑉𝑆𝑃  =mean absolute error of VSP; 

𝑉𝑆𝑃𝑖 , 𝑉𝑆𝑃𝑝𝑟𝑜𝑏𝑒 =VSP of vehicle i in a platoon and probe vehicle; and 

𝑁   =number of vehicles in a platoon. 

 Percentage difference in operating mode: computed as the proportion of operating 

mode in a platoon that has been classified differently than its corresponding probe-

like vehicle, shown in Equation 5.8. 

𝜀𝑂𝑀 =
𝑁(𝑂𝑀𝑝𝑟𝑜𝑏𝑒≠𝑂𝑀𝑝𝑙𝑎𝑡𝑜𝑜𝑛)

𝑁𝑡𝑜𝑡𝑎𝑙
∗ 100%    (5.8) 
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Figure 5.3 Relationship between CO emission rate, VSP and operating mode differences 

Scatterplots between the difference in CO emission rate and MAE of VSP and Percentage 

difference in operating modes were plotted and linear model were built based on the data and are 

illustrated in Figure 5.3. The figure showed that the difference of emission increases with both a 

larger mean VSP difference and percentage operating mode difference, although the r-squared 

value is not as strong.  

In summary, all these results validate that individual probe-like vehicles cannot represent 

a platoon of vehicles, in terms of both traffic flow characteristics and operating mode distribution. 

Emission rates estimated using the two approaches are different by approximately 15 to 25 

percent.  Therefore, emission estimated using the GPS probe data based method cannot be 

accurate enough to describe the entire traffic flow at the intersection. However, this limitation 

can be overcome by the proposed method based on radar based vehicle detection data. 
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5.2 Sensitivity Analysis 

5.2.1 Roadway Grade 

This section conducts sensitivity analysis of two important variables that directly or 

indirectly affect vehicle emissions. Roadway grade is a variable used in computing Vehicle 

Specific Power (VSP). VSP represent the instantaneous tractive power per unit vehicle mass. 

The higher the upgrade, the larger amount of tractive power is needed to maintain vehicle speed. 

VSP then affects operating mode distribution, eventually impacting the total emissions and 

emission rates. Specifically, grade only affects the percentage of cruising and acceleration 

operating modes, but has no influence on the percentage of braking and idling modes. 

In this analysis, grade is set to nine different values, ranging from -5 percent downgrade 

to 5 percent upgrade, in 1 percent interval. Firstly, the impact of grade on computed VSP values 

was tested at different speed levels. In this analysis, it was assumed that vehicles maintain a 

cruising state (i.e. zero acceleration). Figure 5.4 shows that the relationship between VSP and 

grade with respect to different speed levels. VSP will generally increase along with speed 

keeping grade constant. In general, a positive grade will lead to a larger VSP by keeping the 

same speed, vice versa. Furthermore, the level of grade impact grows as speed increases.  
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Figure 5.4 VSP vs. Roadway Grade 

To help further understand the impact of grade, emission factor vs. grade at different 

speed levels is plotted. Again, acceleration is assumed to be zero. Grade directly affects VSP, 

VSP affects operating mode classification, which in turn affect emission factor. However, this 

change in operating mode classification is a stepwise change, thus the relationship is a piecewise 

constant function, as can be seen from Figure 5.5.  
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Figure 5.5 Emission Factor vs. Grade 

5.2.2 Heavy Vehicle Percentage 

As stated in the literature review chapter, vehicle type significantly affects the amount of 

emissions. In this research, vehicle type is classified only into two types: passenger cars and 

heavy vehicles since the radar based vehicle data cannot distinguish between specific vehicle 

types as defined in MOVES. The percentage of heavy vehicle in this sensitivity analysis is set 

from 0 percent to 16 percent, in 2 percent intervals. Three typical operating mode distributions 

were selected, including a high braking/idling scenario, a high cruising/acceleration scenario and 

a balanced scenario. Figure 5.6 displays the emission result with the percentage of heavy 

vehicles in the three scenarios. Emission rate index was used as the dependent factor, with 100 

representing the baseline condition with zero heavy vehicles. Results showed that the high 

braking/idling condition, which is usually reflected by high traffic volume condition, would have 
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a faster rate of increase in emission rates with respect to percent of heavy vehicles. This indicates 

that heavy vehicles will have a higher impact on emissions during congested periods.  

 

Figure 5.6 Emission Rate vs. Percent of Heavy Vehicles 

5.3 Delay and Emissions 

5.3.1 Direct Delay Computation Using Radar Data 

Delay is an important performance measure in traffic operations analysis. Delay also 

directly determines the level of service (LOS) of roadway segments or intersections. In this 

analysis, the relationship between emission rate and delay at signalized intersections is 

investigated using radar based vehicle detection data collected at the study intersection.  

In the traditional approach, the computation of delay at signalized intersections needs to 

follow the Highway Capacity Manual (HCM) procedures. However, with the radar based vehicle 

detection data, it is possible to directly compute intersection using the vehicle trajectory data 
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collected without going through the analytical process. The computation procedure for 

intersection delay using radar based vehicle detection data is summarized below. The procedure 

accounts for the fact that the first detection of a vehicle may occur at slightly different locations 

(i.e. y-coordinates). 

 Step 1: For each vehicle id, compute actual travel time, 

TTact,i = max(ti) − min (ti)      (5.9) 

Where, 

 TTact,i  = actual travel time for vehicle id i, in sec; and 

 ti  = vector of time stamps for vehicle id i; 

 Step 2: For each vehicle id, compute ideal travel time, 

TTideal,i =
max(𝑦𝑖)−min (𝑦𝑖)

𝑣𝑙𝑖𝑚∗1.467 
      (5.10) 

Where, 

 TTideal,i = ideal travel time for vehicle id i, in sec; 

 yi  = vector of y-coordinates for vehicle id i, in ft; and 

 𝑣𝑙𝑖𝑚  = speed limit of intersection approach, in mph. 

 Step 3: Compute the individual delay for each vehicle id and loop through all vehicle ids. 

If actual travel time is less than ideal travel time, individual delay is considered zero. 

𝑑𝑇𝑜𝑡 = ∑ {
𝑇𝑇𝑎𝑐𝑡,𝑖 − 𝑇𝑇𝑖𝑑𝑒𝑎𝑙,𝑖          if TTact,i ≥ TTideal,i

0                                        if TTact,i < TTideal,i

𝑁
𝑖=0   (5.11) 
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 Step 4: Divide total delay by traffic volume yields average delay per vehicle for this 

approach and time period. 

𝑑𝐴𝑣𝑔 =
𝑑𝑇𝑜𝑡

𝑉 
      (5.12) 

Where, 

 d𝐴𝑣𝑔  =average delay per vehicle, in s/veh;  

 𝑑𝑇𝑜𝑡  =total delay during the analysis time period, in s; and 

 V  =traffic volume during analysis the time period. 

5.3.2 Total Delay and Total Emissions 

 Through this computation procedure, total delay and average delay per vehicle can be 

directly obtained without going through the complex analytical procedure. It is to be noted that  

due to the unavailability of full downstream vehicle operations data, delay computed in this 

section may be systematically underestimated. In this analysis, a total of 3,950 15-min period 

data was used to compute delay. These 15-min periods are composed of daytime, nighttime, 

peak/non-peak hours, weekdays and weekend, thus representing a broad range of traffic 

conditions. Most average delay per period falls into the 10 to 20 s/veh range, corresponding to 

LOS B, with a few falling into LOS C. CO emission rate is also computed for these periods.   

A scatterplot is created to investigate the relationship between total delay and total CO 

emissions, shown in Figure 5.7. Total delay is shown in the x-axis, total CO emission on the y-

axis, and color of the points represent the corresponding level of service (LOS). As can be seen 

from the figure, total emissions increase along with an increase total delay. The correlation 
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coefficient of these two factors is 0.91, which further shows the significant impact of congestion 

delay on transportation emissions.  

 

Figure 5.7 Relationship between Total Delay and Total CO Emissions 

5.4 Model Development 

5.4.1 Model Data Preparation 

With the large amount of radar based vehicle detection data collected at the study 

intersection, and the validated emission monitoring system, it is possible to gain more insight on 

the nature of transportation emissions at signalized intersections based on empirical observations 

and modeling. 

To start with, the overall assumptions of this macroscopic model are as follows: 
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1. The speed limits of the approaches do not exceed 35 mph (low speed intersection 

approaches). 

2. Under-saturated conditions (i.e. demand<capacity), with no residual queue. 

3. The analysis time interval covers at least five signal cycles, preferably at least 15 min. 

4. Vehicle arrivals are uniform. 

Empirical data from radar based vehicle detectors shows that all approaching vehicle 

trajectories can be classified into two categories according to changes in speed and number of 

stops. The first type is approaching vehicle travels through the intersection without stopping, 

though it may or may not involve certain level of decelerations. The second type is approaching 

vehicles stopping once while traveling through the intersection. In theory, though, there is a third 

type, which is vehicles have to stop two or more time. However, this scenario is extremely rare 

for this case study intersection. In terms of emissions, the third type will generate the most 

emissions as a result of the multiple acceleration and deceleration cycles and longer vehicle 

operating hours.  

The basic approach behind this predictive modeling is still based on operating mode 

distribution and total vehicle operating time to compute the total emissions for an approach 

during a certain period of time. To be more specific, there is a need to develop a predictive 

model to identify the total vehicle time spent in each mode category, which is braking (operating 

mode 0), idling (operating mode 1), low speed cruising/acceleration (operating modes 11 through 

16), medium speed cruising/acceleration (operating modes 21 through 30) and high speed 

cruising/acceleration (operating modes 33 through 40).   
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In the modeling process, the 80/20 method is used, which is commonly used in machine 

learning and statistical modeling procedures. This means that 80 percent of available data will be 

used as training data and 20 percent of available data will be used as testing data. Also, it is 

noted that all northbound approach data is excluded from the modeling since it has a non-typical 

special roadway geometry (immediate non-signalized intersection) that is not able to represent 

the typical characteristics of an intersection approach. 

The modeling data is prepared as follows. To ensure an as large as possible sample size, 

the minimum desirable analysis period is used, which is 15-minute interval as stated in the model 

assumptions. Also, data from 12 AM to 5 AM is excluded due to the extremely low traffic 

volume, which will also likely to be considered as outliers. For each 15-min analysis period, the 

list of parameters computed is listed in Table 5.2. Traffic volume, average speed, operating mode 

distribution and emission quantities and rates are obtained directly from Emission Computation 

Tool for Radar Data. The remaining variables are calculated based on the above variables. For 

example, total vehicle time is computed as follows: 

Ttot = 𝑉 ∗
𝐿

𝑣
∗ 3600       (5.13) 

Where, 

 Ttot  =Total vehicle operating time, in sec; 

  𝑉  =Traffic volume, in veh/time; 

 𝐿  =Segment length, in miles; and 

 𝑣  =Segment average speed, in mph. 
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Total time idling, deceleration, and cruising/acceleration are then computed by splitting the total 

vehicle time based on operating mode percentages. The total 15-min sample size is more than 

4,000. They are randomly split between 80 percent modeling and 20 percent validation data. 

Besides, in actual modeling procedure, all traffic volume is expressed through traffic flow rate, 

which bear the unit of vehicle per hour per lane (vphpl). All total times are expressed through 

seconds per lane per hour to ensure consistency of units. 

Table 5.2 List of Variables in the Modeling Data 

Variable Name Notes 

Day Day of Month 

Time Period 15-min period 

Approach Excluding NB 

Total CO Emissions In grams 

Emission Rate In g/veh-mile 

Flow Rate In vphpl 

Average Speed In mph 

Percentage of Heavy Vehicles In decimals 

Grade In decimals 

Total Vehicle Time In sec 

Total Idling Time In sec 

Total Deceleration Time In sec 

Total Low Speed Cruising/Acc Time In sec 

Total Medium Speed Cruising/Acc Time In sec 

Total High Speed Cruising/Acc Time In sec 

  

5.4.2 Total Time Decelerating Sub-Model 

The first relationship to investigate is between traffic flow rate and total vehicle time 

spent in deceleration. A scatterplot plot is generated to have traffic flow rate on the x-axis, total 

time decelerating per lane per hour on the y-axis. The flow rate and total vehicle time are 

extrapolated based on a 15-min interval basis according to the model preparation procedure. The 

scatterplot is shown in Figure 5.8. It can be generally observed that these two variables show a 
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strong linear relationship. Correlation analysis of these two variables shows that the correlation 

coefficient is 0.957, which confirms their strong linear relationship. 

 

Figure 5.8 Total Time Decelerating vs. Approach Flow Rate 

A least square linear is then fit for these two variables. The intercept is fixed to zero to 

reflect actual conditions. The R-squared value of this model is this linear model is 0.91, which 

indicates a strong explanatory power of this model. The fitted model line is then added to the 

scatterplot, as shown in the blue line in Figure 5.8. By multiplying the number of lanes and 

analysis period, total time decelerating for the analysis period can be computed. This sub-model 

is shown in the following equation: 

𝑇𝑑𝑒𝑐 = 11.15 ∗ 𝑉 ∗ 𝑁𝑙𝑎𝑛𝑒 ∗ 𝑇     (5.14) 

Where, 
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 Tid  =Total vehicle time decelerating per analysis period, in sec; 

 V  =Traffic Flow Rate, in vphpl; 

 𝑁𝑙𝑎𝑛𝑒  =Number of through lanes for the intersection approach; and 

 T  =Analysis time period, in hours. 

5.4.3 Total Time Idling Sub-Model 

There are two options considered for modeling total time idling at intersection approach. 

One method is to completely use empirical data, by relating traffic volume directly with total 

time idling. However, this method did not consider some very important variables, since total 

time idling is highly dependent on traffic signal cycle and effective green and red time. Therefore, 

the second method is used, which is to apply existing traffic flow dynamics and kinematic wave 

theory.  

In this modeling process, it is assumed that the approach is a homogenous road section 

displaying a triangular fundamental diagram. This method follows the analytical model of 

kinematic wave theory for signalized intersections. The triangular fundamental diagram is shown 

in Figure 5.9.  It includes free flow speed, saturation flow and jam density as key factors. Again, 

it is assumed the arrival flow is less than saturation flow, which indicates unsaturated conditions.  
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Figure 5.9 Triangular Fundamental Diagram 

 For intersection applications, traffic signal cycle data significantly affects the operations 

of vehicle traffic. The key traffic signal parameters include cycle length, effective red time and 

effective green time. Additionally, there may be a residual queue of vehicles that were not served 

in the previous cycle. A time-space diagram of the traffic states of the intersection approach both 

upstream and downstream is shown in Figures 5.10. 

The assumptions of the kinematic wave theory are that vehicles will instantly transition 

from free flow speed to idling, which means that vehicles accelerate and decelerate infinitely fast, 

as can be seen from the figure. However, in reality, the vehicles at an intersection need to 

decelerate from cruising speed to a stop and to accelerate from a stop up to the free flow speed. If 

the vehicle speed changes at a constant rate for the duration of acceleration, then the curvature of 

the more realistic trajectory is parabolic as shown in Figure 5.10.  It can be assumed that half of 

the vehicle hours traveled while accelerating are taken away from the idling state and the other 
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half are taken away from the cruising state. Therefore, the idling time per vehicle would be 

reduced from the average deceleration time and acceleration time.  

 

Figure 5.10 Kinematic Waves for Signalized Intersections with Sample Trajectory 

Based on the length of the queue, including the vehicles in the residual queue, it is 

possible to estimate the number of vehicles that stop during the cycle, which follows from the 

geometry of the triangular queued state: 

𝑁𝑠,𝑐𝑦𝑐𝑙𝑒 = 𝑁𝑟 +
𝑅𝑠𝑉

𝑠−𝑉
      (5.15) 

Where, 

 𝑁𝑠,𝑐𝑦𝑐𝑙𝑒 =Number of vehicles that stop per signal cycle; 

𝑁𝑟,𝑐𝑦𝑐𝑙𝑒 =Residual queue per signal cycle; 
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R  =Average effective red time per signal cycle, in sec; 

s  =Saturation flow rate, in vph; and 

V  =Demand flow rate, in vph. 

The total vehicle time spent idling can then be calculated by adding the time that vehicles 

in the residual queue spend idling to the time that vehicles arriving at the back of the queue 

spend idling. Without accounting for the effects of acceleration and deceleration, the times 

would be based on effective red time. However, by accounting for acceleration and deceleration 

time, the longest time spent completely idling would be removing half of deceleration and 

acceleration time from the effective red time. Thus, the total time spent idling per signal cycle 

and per analysis period assuming no residual queue can be computed using the following models: 

𝑇𝑖𝑑,𝑐𝑦𝑐𝑙𝑒 =
𝑠𝑉

2(𝑠−𝑉)
(𝑅 −

𝑡𝑎𝑐𝑐+𝑡𝑑𝑒𝑐

2
)

2

∗ 𝑁𝑙𝑎𝑛𝑒   (5.16) 

𝑇𝑖𝑑 =
𝑇

𝐶
∗ 𝑇𝑖𝑑,𝑐𝑦𝑐𝑙𝑒      (5.17) 

Where, 

 𝑇𝑖𝑑,𝑐𝑦𝑐𝑙𝑒 =Total time idling per signal cycle, in sec; 

 Tid  =Total time idling per analysis period; 

 T  =Analysis period; 

 C  =Cycle length, in sec; 

R  =Average effective red time per signal cycle, in sec; 

𝑡𝑎𝑐𝑐 , 𝑡𝑑𝑒𝑐 =Average per vehicle acceleration/deceleration time; 
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s  =Saturation flow rate, in vphpl; and 

V  =Traffic flow rate, in vphpl. 

This model to compute total time idling would account for the important impact of traffic 

signal cycle.  

5.4.4 Total Time Low/Medium/High Speed Cruising/Acceleration Sub-Models 

  Due to the placement locations of radar detectors, they are not able to fully grasp the 

downstream vehicle operational characteristics of vehicles accelerating to free flow speed. 

Therefore, empirical modeling method is used to model total vehicle time spent cruising and 

acceleration. Total time cruising/acceleration for low speed (0-25 mph), medium speed (25-50 

mph) and high speed (50 mph+) are separately modeled to purposefully match with operating 

mode definitions.  

 To start with, the relationship between total time low speed cruising/acceleration and 

traffic flow rate is investigated. A scatterplot of the two variables is displayed in Figure 5.11. As 

can be seen from the figure, the relation between the two variables most likely follows a second 

order polynomial model (i.e. parabolic curve). Thus, an empirical model is created for the two 

variables based on this observation. The intercept is fixed to zero to match realistic conditions. 

The model results are shown as follows, and the fitted curve is plotted in Figure 5.11. Again, 

there is a need to multiply that result with number of lanes and analysis period. 

𝑇𝑙𝑜𝑤 = (0.0336 ∗ 𝑉2 + 3.4258 ∗ 𝑉) ∗ 𝑁𝑙𝑎𝑛𝑒 ∗ 𝑇     (5.18) 

Where, 
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 𝑇𝑙𝑜𝑤  =Total time low speed cruising/acceleration during the analysis period, in 

sec; 

 V  =Traffic flow rate during analysis period, in vphpl; 

𝑁𝑙𝑎𝑛𝑒  =Number of through lanes for the intersection approach; and 

T  =Analysis time period, in hours. 

This model has a R-squared value of 0.88, which indicates a high goodness-of-fit.  

 

Figure 5.11 Total Time Low Speed C/A vs. Approach Flow Rate 

 Next, a similar modeling procedure is conducted for medium speed cruising and 

acceleration. A scatterplot of traffic volume vs. total time medium speed cruising/acceleration is 

shown in Figure 5.12. Again, observations from scatterplot show that a parabolic model would 
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be the best fit. Again, intercept is fixed to zero to match realistic conditions. The model result is 

shown as follows: 

 𝑇𝑚𝑒𝑑 = (−0.073 ∗ 𝑉2 + 3.0978 ∗ 𝑉) ∗ 𝑁𝑙𝑎𝑛𝑒 ∗ 𝑇     (5.19) 

Where, 

 𝑇𝑙𝑜𝑤  =Total time low medium cruising/acceleration during the analysis period, 

in sec; 

 V  =Traffic flow rate during analysis period, in vphpl; 

𝑁𝑙𝑎𝑛𝑒  =Number of through lanes for the intersection approach; and 

T  =Analysis time period, in hours.

 

Figure 5.12 Total Time Medium Speed C/A vs. Approach Flow Rate 
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 For low speed intersection approaches, which have speed limits of 35 mph or less, the 

total time spent in high speed cruising/acceleration modes is assumed to be zero. This can be 

confirmed from case study data, since the average percentage of operating modes 33 through 40 

is less than 0.005%. 

5.4.5 Classify Cruising/Acceleration Modes 

With the models developed in the previous sections, it is possible to compute the total 

time spent in each operating mode category. However, in order to gain more insight into the 

cruising and acceleration modes, further separation into each specific mode is necessary 

(operating modes 11 through 16, 21 through 30). This necessity is further enhanced by the fact 

that different operating modes have significantly different emission factors that varies by its VSP 

ranges.    

The operating mode percentages within cruising/acceleration modes are calibrated using 

empirical data by computing its average distribution. This calibration may be needed for 

different locations or areas since the magnitude of VSP is highly dependable on driving behavior 

of local drivers. All percentages assume a zero roadway grade condition.  

Table 5.3 shows the operating mode percentages within low speed cruising/acceleration 

modes based on case study data computation. The mean percentages of modes 11 through 16 

should add up 100% to represent the total time in low speed cruising/acceleration conditions. 

Operating mode 11 has zero percentage since this mode represent conditions where VSP is 

negative. This situation mostly occurs in downhill conditions. The standard deviation of each 

operating mode is fairly small compared to its mean value, representing a centered distribution. 
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Therefore, it is acceptable to use the average percentage for each low speed cruising/acceleration 

mode.  

Table 5.3 Percentage of Mode Distribution within Low Speed Cruising/Acceleration  

Speed 

Range 

Operating 

Mode 
Mean St. Dev. 

 11 0% 0 

 12 44.2% 0.094 

0-25 mph 13 21.3% 0.053 

 14 16.1% 0.047 

 15 10.1% 0.043 

 16 8.2% 0.051 

Total Low 

Speed 
11-16 100%  

 

Table 5.4 shows the operating mode percentages within medium speed 

cruising/acceleration modes based on case study data computation. Again, the mean percentages 

of modes 21 through 30 should add up 100% to represent the total time in medium speed 

cruising/acceleration conditions. Operating mode 21 has zero percentage since this mode 

represent conditions where VSP is negative. This situation mostly occurs in downhill conditions. 

The standard deviations values are somewhat larger compared with their mean values, which 

indicates that the percentage distributions are more dispersed. However, considering the total 

time spent in medium speed cruising/acceleration on average accounts for less than 6 percent of 

total vehicle times, the author believes that this method is an acceptable way of distributing 

among operating modes 21 through 30.    
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Table 5.4 Percentage of Mode Distribution within Medium Speed Cruising/Acceleration  

Speed Range Operating 

Mode 
Mean St. Dev. 

 21 0% 0 

 22 52.1% 0.094 

 23 20.3% 0.053 

 24 11.5% 0.047 

25-50 mph 25 7.1% 0.043 

 27 6.5% 0.051 

 28 1.5%  

 29 0.5%  

 30 0.5%  

Total Medium 

Speed 
21-30 100%  

 

5.4.6 Full Model Form 

An additional important input for applying the final model is the emission factors for 

each operating mode and vehicle type. The emission factors can be extracted by running 

MOVES only once for each specific location and year/month combination. This procedure was 

also completed during the development of the Emission Computation Tool for Radar Data as 

presented in Section 3.3.  

With the development of interim models above and the emission factors available, it is 

necessary to combine the results from all previous sub-models and incorporate them using a 

single final model to compute total emissions and emission rates for specific pollutants.  

The final model form shown in the following equation. This final model generally 

follows the one used in emission computation for radar data, and is a modified version of 

equation 3.7. The advantage of this revised model is to use total vehicle time instead of volume 
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and average speed. Total vehicle time is then dependent on traffic volume. In this method, there 

is no need to specifically compute average speed, which is also dependent on traffic volume.  

𝐸𝑝 = ∑ 𝑝𝑠𝑡 [𝑇𝑖𝑑𝐸𝐹𝑖𝑑,𝑠𝑡,𝑝 + 𝑇𝑑𝑒𝑐𝐸𝐹𝑑𝑒𝑐,𝑠𝑡,𝑝 + 𝑇𝑙𝑜𝑤 (∑ 𝑝𝑙𝑜𝑤𝐸𝐹𝑙𝑜𝑤,𝑠𝑡,𝑝) + 

𝑇𝑚𝑒𝑑(∑ 𝑝𝑚𝑒𝑑𝐸𝐹𝑚𝑒𝑑,𝑠𝑡,𝑝) + 𝑇ℎ𝑖𝑔ℎ(∑ 𝑝ℎ𝑖𝑔ℎ𝐸𝐹ℎ𝑖𝑔ℎ,𝑠𝑡,𝑝) ]  (5.20) 

Where, 

 𝐸𝑝  =Total emissions for pollutant p, in g;  

 𝑇   =Total vehicle time idling, decelerating etc., in sec; 

 𝐸𝐹𝑠𝑡,𝑝  =Emission factors at each operating mode for each vehicle type for 

pollutant p, in g/s; 

 𝑝𝑠𝑡  =Vehicle type percentage. 

 With the computed total emissions, emission rates can also be computed using equation 

3.8.  This completes the entire modeling procedure. The next section will validate the proposed 

model using the testing data. 

5.5 Model Evaluation 

5.5.1 Validate Total Time Idling 

The first step in the model evaluation process is to evaluate total time idling sub-model. 

This part of the model is developed based on kinematic wave theory instead of empirical data 

from the case study. Therefore, all available model data can be used for evaluation purposes.  
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Since total time idling involves several parameters, especially traffic signal parameters, 

their values need to be identified. Based on observations from radar data, the following values 

are used in the evaluation process: 

 Average signal cycle length: 90 sec; 

 Average effective red time: 50 sec; 

 Deceleration/Acceleration Time: 11.15 sec; (according to total time decelerating model) 

 Adjusted saturation flow rate: 1600 vphpl. 

The relationship between traffic flow rate and total time idling is plotted in Figure 5.13. 

The scattered points in black represent the case study data, while the blue line represents the 

calculated values using the proposed model. From visual observation, the proposed model fits 

the empirical data fairly well. In low flow rate conditions, however, the proposed model seems to 

have some overestimation of total time idling, which may be due to the values of hard-to-justify 

adjusted saturation flow rate of each specific location.  
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Figure 5.13 Total Time Idling Validation 

5.5.2 Validate Total Emissions 

The second validation is to evaluate the full model predictability by comparing the total 

CO emissions computed using the radar based vehicle detection data and proposed model.  In the 

computation of emissions using the proposed model, percentage of heavy vehicles is assumed 

zero. Data of two analysis period is compared, 15-min aggregation and 1-hour aggregation.   

Two parameters are selected to evaluate the full model performance in predicting total CO 

emissions. First, the Root-Mean-Square-Error (RMSE) is used to quantify the model 

performance as a scale-dependent parameter. A second scale-independent parameter is Mean 

Absolute Percentage Error (MAPE). This parameter indicates the average percentage difference 
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between predicted data and empirical data. The RMSE and MAPE values can then be computed 

using the following equations: 

𝑅𝑀𝑆𝐸 =  √∑ (𝑦�̂�−𝑦𝑡)2𝑁
𝑡=1

𝑁
     (5.21) 

   𝑀𝐴𝑃𝐸 =  
∑ (𝑦�̂�−𝑦𝑡)/𝑦𝑡

𝑁
𝑡=1

𝑁
∗ 100%    (5.22) 

Where, 

  𝑦�̂�  =Predicted value using proposed model; 

 𝑦𝑡  =Observed value from case study; and 

 N  =Number of observations. 

 The relationship between traffic flow rate and 15-min total CO emissions is plotted in 

Figure 5.14. The scattered points in black represent the case study data, while the red line 

represents the calculated values using the proposed model assuming zero heavy vehicles. From 

visual observation, the proposed model fits the empirical data fairly well. The sample size for 

this validation dataset is 638 data points. The RMSE of this 15-min CO emission is 3.46 g, and 

the MAPE value is 11.9%. This value is significantly small to show the strong predictive power 

of this proposed model.  
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Figure 5.14 15-min Total CO Emissions Validation 

The relationship between traffic flow rate and 1-hour total CO emissions is plotted in 

Figure 5.15. The scattered points in black represent the case study data, while the green line 

represents the calculated values using the proposed model assuming zero heavy vehicles. From 

visual observation, the proposed model fits the empirical data fairly well. The sample size for 

this validation is 798. The RMSE of this 1-hour CO emission is 10.47 g, and MAPE is 9.0%. 

This value is significantly small to show the strong predictive power of this proposed model in 

the 1-hour analysis period as well. And it indicates that with a more aggregated analysis period, 

the average percentage error rate is smaller due to less fluctuations in arrival types and other non-

modeled factors.  
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Figure 5.15 Hourly Total CO Emissions Validation 
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6 Conclusions and Future Work 

6.1 Conclusions 

This dissertation introduces a new and novel microscopic methodology for estimating 

vehicle emissions at signalized intersections. Radar based vehicle detections system, when 

placed at intersection approaches, is able to track vehicle operational characteristics at very high 

frequency, and provides an ideal data source for emission estimation. The advantages of this data 

source compared with previous ones are: it will be able to provide second-by-second vehicle 

operations data for the entire traffic flow, not just a few test vehicle data compared with, and it 

does not need calibration compared with microsimulation data since the radar data is real-world 

data. Such high-resolution data greatly assist the use operating mode distribution method for 

emission estimation.  

A detailed procedure is proposed to convert the raw vehicle operations data collected by 

radar detectors to an operating mode distribution through a series of computations and by 

combining with emission factors extracted from MOVES, the emission computation can be 

automatically and continuously completed without having the run MOVES each time. This entire 

procedure is realized in the “Emission Computation Tool” for radar data using R programming 

language. Based on this tool, a full system framework for real-time estimation of vehicle 

emissions at signalized intersections is proposed. The system will be comprised of several 

different modules, including data collection, configurations, emission estimation, dispersion 

modeling, and data visualization and decision support module. 

A case study is conducted to test the feasibility and validity of the proposed real-time 

emission estimation system. The test intersection is located in Appleton, WI. The results showed 
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that data collected could be used in computing a variety of parameters, including the traffic 

volume, average speed, operating mode distribution and total emissions and emission rates for 

various pollutants. With emission rates, existing pollutant dispersion models such as AERMOD 

can be applied, yielding pollutant concentrations at various locations. These could be used for air 

quality conformity and hotspot analysis purposes, thus providing additional functionalities of the 

proposed system. Finally, the proposed system has been validated through three different 

perspectives to prove that the results match with real world conditions. 

With the abundant raw data from the case study, an operating mode based macroscopic 

emission model is developed by using both empirical data from the case study as well as 

incorporating existing traffic flow dynamics model. This emission model is based on estimating 

total time spent in each operating mode directly from traffic variables and signal variables. Total 

time idling is modeled using kinematic wave theory and queuing theory, while other total time 

decelerating and cruising/acceleration are modeled using empirical data from case studies.  The 

validation results showed that the model is able to achieve a high degree of accuracy, with an 

approximately 10 percent error rate.  

Along with the successes with the proposed system, challenges were also identified. The 

major challenge is that the detection rate of radar detectors becomes lower as the distance from 

the center of intersection increases. A low detection rate can underestimate the vehicle volume 

on certain links. Secondly, vehicle length information collected by radar detectors is sometime 

inaccurate. As emission rates are vehicle class dependent, the absence of accurate vehicle length 

information can deteriorate the estimation result. Solution to the above issues can be simply 

switching to other radar detector product with more reliable detection, or adding a video detector 

into the system to collect more reliable vehicle classification data.   
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6.2 Future Work 

6.2.1 Short Term Future Work 

Based on the limitations of the currently proposed system, short term future work may 

include: 

 Use more advanced radar detection devices, or use radar detection along with video 

camera for data collection to improve downstream coverage area, and better distinguish 

vehicle types, especially with the prevalence of alternative fueled vehicles.  

 Explore the feasibility and validity of such system at other roadway types, including 

roundabouts, interchanges, or arterial/freeway segments.  

6.2.2 Long Term Future Work 

Long-term future research directions could focus on the following topics: 

 Build a stronger emission model by collecting radar based vehicle detection data at 

intersections with different characteristics, for example, three leg vs. four leg, stop 

controlled vs. signalized, different approach speeds, etc.  

 Apply an emission factor that is a continuous distribution to VSP changes, compared with 

the current operating mode method which categorizes with a range of VSP values.  
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