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ABSTRACT

Harnessing the instabilities in soft composites, we can design materials with auxetic

properties, tunable bandgap, negative viscoelasticity, and tunable stiffness. Moreover, insta-

bilities leading to drastic microstructure transformations can be employed to develop soft

robots, flexible electronics, and adhesive systems. However, it is difficult to change the

instability-induced functionality once the required structure is fabricated since the geometry

of the manufactured structure is fixed. Viscoelasticity as an intrinsic property for soft ma-

terials provides an opportunity to overcome this limitation and expand the design space. In

particular, we could achieve richer functionality by adjusting temperature and applied strain

rate without changing the geometric parameters. A deeper understanding of the influence

of viscoelasticity in soft materials and the interplay between instability and viscoelasticity

can be helpful for the design of soft materials with novel properties.

In this dissertation, we primarily focus on: (i) the nonlinear viscoelasticity of soft photo-

cured polymer used in 3D printing and (ii) the interplay of viscoelasticity and instabilities in

soft laminate and particulate composites. Firstly, we explore the influence of light intensity

used in the 3D printing process on the viscoelasticity of soft photocured polymer. We present

a theoretical framework and carried out the uniaxial test to validate the model. Next, we

perform numerical analysis to detect the instabilities in visco-hyperelastic laminates and

present a simple qualitative model to capture this rate-dependent critical buckling strain.

Additionally, we probe the transformation of buckling patterns in the load-hold loading path

and explore the dynamic properties of the buckled laminates. Finally, we study the rate-

dependent critical strain and wavelength in soft particulate composites via numerical analysis

and further examine the dynamic modulus, damping, stiffness and energy absorption of the

buckled particulate composites.
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CHAPTER 1

INTRODUCTION

1.1 Instability

Instability was regarded as a mode of failure and thus as something that should be avoided

in engineering applications [45, 23]. Recently, however, it has been used to realize the novel

functionalities of materials. For example, instability is utilized to design acoustic switches

[146, 15], soft robotics [12, 157], materials with negative Poisson’s ratio [16, 86, 110], tunable

stiffness [101] and tunable color [84].

1.1.1 Instability in hyperelastic soft composites

In hyperelastic soft composites, instability can develop at microscopic and macroscopic

length scales [50, 90]. Macroscopic instability refers to the buckling shape whose wave-

length is significantly larger than the characteristic length of the microstructure. In con-

trast, the wavelength in microscopic instability is comparable with the characteristic length

of the microstructure. The onset of macroscopic instabilities can be predicted by the

loss of ellipticity requiring the evaluation of the effective tensor of elastic moduli. The

effective tensor of elastic moduli can be evaluated either from phenomenological models

[103, 104, 105, 106, 120] or computed through micromechanics-based homogenization ap-

proaches [2, 35, 60, 97, 95, 96, 127]. Analysis of microscopic instabilities, however, is more

challenging and needs more sophisticated methods such as Bloch wave analysis [50, 114, 136].

Notice that Geymonat et al. [50] have rigorously proved that the Bloch-Floquet analysis is

equivalent to the loss of ellipticity analysis for instability with infinite wavelength. Exten-

sive research in instabilities has been carried out in 2D laminates, 3D fiber composites, and
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particulate composites.

The pioneering work on the elastic instabilities in periodic laminates was given by [124]

who derived an analytical expression for the compressive strength of linear elastic 2D lami-

nate composites. Later on, Parnes and Chiskis [116] revisited the elastic buckling in periodic

linear elastic laminates. They found that the microscopic instability will appear in dilute

composites while the macroscopic instability appears in non-dilute composites. For instabil-

ities in hyperelastic laminates, Triantafyllidis and Maker [136] investigated the microscopic

and macroscopic instability of the 2D laminates under plane strain conditions and discussed

the influence of geometry and material properties on the buckling behaviors of Stören− Rice

and Mooney-Rivlin material. Merodio and Ogden [103, 104, 105, 106] presented a series of

works on the instabilities of the nonlinear elastic fiber-reinforced composites under plane

deformation by using the loss of ellipticity analysis. Nestorović and Triantafyllidis [114]

demonstrated that load orientation, material properties, and fiber volume fraction could

significantly affect the buckling of hyperelastic laminates. Bertoldi and Lopez-Pamies [18]

analytically analyzed the macroscopic and microscopic instabilities in periodic 2D hyperelas-

tic laminates with three phases (matrix, interphase and fiber) by using the loss of ellipticity

and Bloch-Floquet analysis. They found that the interphase significantly affects the stabil-

ity of the hyperelastic laminates. Li et al. [90] explored the instabilities in soft laminates

through experiments, analytical methods and numerical simulations. The results showed me-

chanical behavior of the laminates can be tailored by selecting the material properties and

geometry parameters. Rudykh and Bertoldi [125] investigated the anisotropic laminate mag-

netorheological elastomers (MREs) subjected to finite deformation. They provided a general

analytical model which enables the prediction of the onset of the macroscopic instability of

the laminate hyperelastic MREs. Gao and Li [47] investigated the mechanical behavior of
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laminates with three phases: the stiffer interfacial phase, the softer matrix phase and the

transition phase between the stiff and matrix phase. They explored the transition phase’s

influence on the linear elastic composites’ instability through analytical analysis, and post-

buckling analysis (FEA) was also performed to validate the analytical method. The results

show that the transition zone significantly affects the wrinkling pattern. Greco et al. [57],

Greco et al. [58] investigated the failure behaviors of periodic laminates by considering the

interaction between local fiber buckling and fiber/matrix interface microcrack. They showed

that the microcrack is vital to predicting the actual failure behavior of microcracked compos-

ites. Arora et al. [5] further investigated the influence of the inhomogeneous transition zone

on the elastic instability of the hyperelastic laminates by using the Bloch-wave approach.

They found that the critical strain and the buckling mode can be tuned by the properties of

the inhomogeneous transition zone. Li et al. [87] explored the influence of compressibility on

the onset of instability of the finite-deformed laminates through the Bloch-Floquet analysis.

They found that the compressible laminates buckled at larger deformation compared to the

incompressible laminates. El Hamdaoui et al. [41] predicted the fiber kinking and splitting

failure modes in hyperelastic laminates with the loss of ellipticity analysis. Pathak et al.

[117] studied the interplay between macroscopic and microscopic instabilities in the magne-

toactive (MAE) laminates undergoing large deformation subjected to the external magnetic

field. They showed that MAEs can develop an antisymmetric microscopic buckling mode

that cannot be probed without a magnetic field. In addition, they demonstrated that the

bucking pattern can be significantly tuned by the applied magnetic field. More recently, Li

et al. [88] reported the experimental observations of instability-driven domain formations in

soft hyperelastic laminates.

Agoras et al. [2] studied the macroscopic instability of the 3D fiber composites with
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randomly distributed fibers under general finite deformation. They showed that the modulus

contrast between fiber and matrix has a more significant effect on the onset of the macroscopic

instability than other parameters. Rudykh and deBotton [127] studied the hyperelastic fiber

composites with the loss of ellipticity analysis. In particular, they analyzed the instability

of neo-Hookean and Gent composites. They showed that the critical stretch ratio mainly

depends on fiber volume fraction and the contrast between the moduli of fiber and matrix.

Slesarenko and Rudykh [132] investigated the macroscopic and microscopic instabilities in

3D periodic fiber composites undergoing finite deformations through Bloch-Floquet analysis.

They also showed that the buckling mode is determined by the fiber volume fraction and

the modulus contrast in the fiber and matrix phases. They also found that the macroscopic

and microscopic instability tend to develop in composites with high and low fiber volume

fractions, respectively. Galich et al. [46] investigated the role of fiber arrangement on

elastic instabilities in 3D fiber composites. They found that the elastic instabilities can be

tuned by the selection of the periodicity of the fiber arrangements. Moreover, they revealed

that critical stretches are bound by the critical values for the 3D laminates and the fiber

composites with square arrays of fibers. Li et al. [85] examined the elastic instabilities in

the 3D-printed fiber composites and they found that the fiber will show softening behavior

upon arriving at the critical strain. They observed the transition between the microscopic

instability to macroscopic instability with an increase in the fiber volume fraction for the

fiber composites with square in-plane periodicity. For composites with a rectangular in-plane

periodicity of fibers, buckling develops in the direction with a narrower distance between

fibers. Arora et al. [6] studied the influence of stiffening behavior on the microscopic and

macroscopic instabilities in 3D fiber composites. They found that stiffening dictates the

interplay between macroscopic and microscopic instabilities and matrix stiffening behavior
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makes the composites more stable. More recently, Arora et al. [7] experimentally and

numerically showed that the buckling orientation of fibers can be tuned by the in-plane

periodicity and shear modulus contrast in 3D fiber composites.

For particulate composites with distributed inclusions, Lopez-Pamies and Castaneda

[95, 96] provided a general homogenization framework that can probe the onset of macro-

scopic instabilities in cylindrical particulate composites undergoing finite deformation. Tri-

antafyllidis et al. [137] investigated instability in the porous solids and particulate composites

with periodically distributed stiff circular inclusions by a novel numerical technique based

on Bloch wave analysis. Michel et al. [108] considered the influence of the fiber distribution,

the fiber volume fraction, the material models and the cross-section of the inclusions on mi-

croscopic and macroscopic instabilities of the particulate composites. The effect of interface

de-cohesion, matrix cavitation and fiber contact were also considered. They found that both

macroscopic and microscopic instabilities can develop in the composites with periodic inclu-

sions. Avazmohammadi and Castaneda [9] examined the particulate composites in which

the inclusions with elliptical cross-sections are randomly distributed in the soft matrix. In

particular, the homogenization approach and the loss of strong ellipticity analysis are used to

identify the instability. Li et al. [83] observed the domain formation and pattern transition

in soft particulate composites and demonstrated that the buckling pattern could be tuned

by adjusting the initial geometry parameters. Goshkoderia et al. [53] examined the elas-

tic instability in magnetoactive elastomer (MAE) composites with periodically distributed

particles. They revealed that the new instability-induced pattern could be formed in the

soft MAE composites subjected to the magnetic field and these newly formed patterns are

determined by the magnitude of the applied magnetic field. Through the Bloch-Floquet

analysis, Chen et al. [28] examined the elastic instability in soft particulate composites un-
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der large deformations and extensively studied the buckling pattern with different geometric

parameters.

1.1.2 Instability in viscoelastic soft composites

The strong dissipation effect was previously regarded as an adverse effect and thus should

be avoided [13]. In recent decades, however, dissipation in mechanical instabilities attracted

more attention because the interplay between instabilities and viscoelasticity and the spa-

tial patterning of viscoelastic properties offers opportunities to create metamaterials with

rate-dependent behavior [39]. For example, Alur and Meaud [3] investigated the mechanical

behavior of the non-dilute viscoelastic laminates undergoing finite deformation. They found

that the effective stiffness and damping properties can be adjusted by tuning the pre-strain.

Slesarenko and Rudykh [131] demonstrated the tunability of the instability-induced pattern

in viscoelastic laminates by using different applied strain rates. Che et al. [26] showed that

the snaping sequence of the viscoelastic architected materials could be adjusted by temper-

ature. Che et al. [27] further investigated the snap-through instabilities in the 3D printed

viscoelastic metastructure and observed that the metastructure was temporarily bistable af-

ter a critical time which can be tuned by the temperature before relaxing to the undeformed

state. Dykstra et al. [38] explored the snap-through response of viscoelastic metamateri-

als in experiments and found that the mechanical instability will be significantly affected

beyond a certain strain rate. A soft compliant mechanism model was used to qualitatively

capture the experimental behavior. They found that the high rate-sensitivity originates in

the nonlinear and inhomogeneous deformation rate. Gomez et al. [52] proposed a truss

model to capture the dynamics of the snap-through instability in the presence of viscoelas-

ticity. They showed two types of possible snap-through: (i) the truss immediately snaps



7

back or (ii) pseudo-bistability (the truss will creep slowly first before acceleratingly snapping

back). They also found that inertial effects need to be taken into consideration to accurately

capture the pseudo-bistability. Janbaz et al. [71] introduced a viscoelastic bi-beam structure

and showed that the bi-beam could be used to design lattice metamaterials with switchable

auxetic behaviors and negative viscoelasticity. Urbach and Efrati [140] provided a theoretical

framework to quantitatively study the delayed instability in the viscoelastic shells and found

that the incompressible viscoelastic system will not lose stability if it is abruptly brought

from the rest state to the locally stable state despite the existence of the stress relaxation.

Bossart et al. [22] introduced an oligomodal metamaterial with switchable Poisson’s ratio

due to the existence of viscoelasticity. Glaesener et al. [51] provided a theoretical-numerical-

experimental study for truss-based metamaterial and demonstrated that a viscoelastic beam

approach calibrated by the tensile test of the individual strut specimen can well capture the

response of the truss lattice metamaterial.

1.2 Outline of this dissertation

In Chapter 2, we provide the theoretical and modeling background. We overview nonlin-

ear mechanics, hyperelastic and visco-hyperelastic models. The numerical details, including

geometric structure, material models and boundary conditions, are also included.

In Chapter 3, we study the nonlinear viscoelasticity of soft photocured polymers typi-

cally used in Digital Light Processing (DLP) 3D printing. A continuum thermodynamics

framework is used to capture the dependence of viscoelasticity of the photocured polymer

on the light intensity used in the 3D printing process.

In Chapter 4, we focus on the instabilities in the visco-hyperelastic laminates under in-

plane deformation. In particular, we present a theoretical method and numerical simulations
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to study rate-dependent instability behavior. We further investigate the pattern transforma-

tion in the load-and-hold deformation state and the dependence of the dynamic mechanical

properties on the cyclic loading frequency and pre-strain. In addition, the experiments are

also carried out on the 3D printed soft laminate composites to validate the numerical method.

Chapter 5 investigates the role of viscoelasticity in the critical strain and wavelength onset

of buckling in particulate composites subjected to in-plane deformation with a constant strain

rate through simulations. In particular, we employ the single and multiple-branch visco-

hyperelastic models. In addition, we perform experiments on the 3D-printed soft particulate

composites to verify the numerical analysis.

Chapter 6 further explores the interaction between instability and viscoelasticity in soft

particulate composites. In particular, we investigate the rate-dependent dynamic mechanical

properties, negative stiffness of post-buckling response, and the energy absorption undergoing

large deformation.

Finally, Chapter 7 concludes the dissertation and provides prospective research.



9

CHAPTER 2

THEORETICAL AND MODELING BACKGROUND

2.1 Nonlinear mechanics

A material point of a continuum solid in the reference configuration Ω0 can be identified

with its position vector X. After deformation, X will be mapped into the current con-

figuration Ω at the current time t with the corresponding position vector x (see Fig. 2.1)

as

x = χ(X , t),X ∈ Ω0 (2.1)

Accordingly, the deformation gradient tensor is defined as

F = Grad χ(X , t) =
∂x

∂X
(2.2)

where Grad is the gradient operation with respect toX. The determinant of the deformation

gradient tensor J = det F>0 represents the volume ratio between the current and reference

configuration. Let χt denote the history of the motion χ up to time t as

χt (X , s) = χ (X , t− s) , 0 ≤ s ≤ t (2.3)

In general, the Cauchy stress σ of a particle in the continuum body is determined by the

history of motion χ [43, 115, 139, 166], symbolically,

σ=F (χt (X , s) ;X , t) , s ≥ 0 (2.4)
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Figure 2.1: Configuration and motion of a continuum body.

where F is a constitutive functional with respect to χt (X, s). Note that since χt is the

possible motion history for Ω0 as a whole, F is not restricted to X although it explicitly

depends on X. The history of motion of all particles in Ω0 will contribute to the stress at

a specific particle in Ω0 at the current time t. For simple material, in which the stress at a

particle is determined by the cumulative history of the deformation gradient at that particle

[115], the general constitutive equation 2.4 can be simplified as

σ=F (Grad χt (X , s) ;X , t) , s ≥ 0 (2.5)

The corresponding first Piola-Kirchoff (P) and second Piola-Kirchoff (S) stress tensors

are related to the Cauchy stress through

P = JσF−T and S = JF−1σF−T (2.6)
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, respectively. In the reference configuration, the equation of motion (absence of body forces)

is written as

DivP = ρ0
D2χ

Dt2
(2.7)

where Div denotes the divergence operator in the reference configuration. D()/Dt is the

material time derivative operator and ρ0 is the initial mass density of the material. In the

quasi-statically loading condition, Eq. 2.7 modifies to

DivP = 0 (2.8)

In the following subsection, we introduce two specific cases of simple material: hypere-

lastic and visco-hyperelastic material.

2.2 Constitutive models

2.2.1 Hyperelastic model

For hyperelastic material, the mechanical behavior can be described by a strain energy

density function (SEDF) WH , and the second Piola-Kirchoff stress SH can be obtained by

SH = 2
∂WH

∂C
, (2.9)

where C = FTF is the right Cauchy-Green deformation tensor. For incompressible hypere-

lastic material (J = 1), Eq. 2.9 is rewritten as

SH = 2
∂WH

∂C
− pC−1 (2.10)
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where p is an unknown Lagrange multiplier. The SEDF of an isotropic hyperelastic material

can be expressed in terms of the invariants of the right Cauchy-Green tensor as WH =

WH (I1, I2, I3), where,

I1 = trC, I2 =
1

2

[
(trC)2 − trC2

]
, I3 = detC = J2 (2.11)

For incompressible hyperelastic material, I3 = 1. The SEDF of the homogeneous incom-

pressible material described by the neo-Hookean model is

WH =
µH
2

(I1 − 3) (2.12)

where µH is the initial shear modulus. Substituting Eq. 2.12 into 2.10, the second Piola-

Kirchoff stress is shown to be

SH = µHI+ pC−1 (2.13)

where I is the identity tensor.

2.2.2 Visco-hyperelastic model

Soft materials show strong nonlinear viscoelasticity [25, 102, 150], so their mechanical

properties can be tuned by temperature and applied strain rate. Deriving an accurate model

which can predict the mechanical responses of the soft materials is vital to designing the

structure with desired functionalities.

In this section, we review the general theory of thermodynamics for visco-hyperelastic

theory [111, 123]. Any thermodynamic process should satisfy the second law of thermody-



13

namics. In continuum mechanics, it is written as Clausius-Duhem inequality [123]

S :
1

2

.
C− Ẇ ≥ 0 (2.14)

The elastic SEDF can be denoted as

W = W (C, ξ1, · · · , ξM ) (2.15)

where ξα (α = 1, · · ·,M) are the internal variables, substituting Eq. 2.15 into Eq. 2.14, we

have (
S− 2

∂W

∂C

)
:
1

2

.
C−

M∑
α=1

∂W

∂ξα
· ξ̇α ≥ 0 (2.16)

From Eq. 2.16, we have

S = 2
∂W

∂C
(2.17)

−
M∑
α=1

∂W

∂ξα
: ξ̇α ≥ 0 (2.18)

To determine the internal variables, M set of internal evolution equations should be given

as

ξ̇α = ξα (C, ξ1, ξ2, · · · ξM ) (2.19)

Eqs. 2.17, 2.18 and 2.19 are fundamental equations for the dissipation processes. The

viscoelastic process is also known as a dissipation process, so it should satisfy these equa-

tions. Therefore, the critical problem for formulating a thermodynamically-based model is

to choose a reasonable SEDF W , internal variables ξα, and their evolution equations. There

are no general expressions for visco-hyperelastic models. A constitutive equation would be

considered reasonable if it is based on mechanism images and experimental data and satisfies
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Figure 2.2: The rheological representation of the generalized Maxwell model.

Eq. 2.18 [134]. In the following, we introduce one specific visco-hyperelastic framework from

Holzapfel [64].

Here, we introduce a visco-hyperelastic model [64] based on the rheological representation

of the generalized Maxwell model (schematically illustrated in Fig. 2.2. The corresponding

SEDF WV is

WV = W∞ +
M∑
α=1

Wα (2.20)

where W∞ characterize the equilibrium state as t→ ∞, Wα = βαW∞ represents the SEDF

characterizing the non-equilibrium response; this corresponds to the non-linear spring in αth

branch; here, βα is the strain-energy factor that can be used to characterize the value of the

instantaneous shear modulus of the αth branch [64]. The second Piola-Kirchoff stress SV is

SV = 2
∂WV

∂C
= S∞ +

M∑
α=1

Qα (2.21)

where S∞ is the equilibrium stress, Qα is the non-equilibrium stress of the αth branch. The
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equilibrium stress S∞ and non-equilibrium stress Qα are

S∞ = 2
∂W∞
∂C

− p∞C−1 (2.22)

and

Q̇α +
Qα

τα
= βαDev(Ṡ∞) (2.23)

where p∞ is an unknown Lagrange multiplier, (̇) is time derivative operator and Dev() =

()−1/3 [() : C]C−1 is the deviatoric operator. The SEDF of the homogeneous material whose

equilibrium (W∞) and instantaneous (Wα) response are described by the neo-Hookean model

is

WV =
µ∞
2

(I1 − 3) +
M∑
α=1

µα
2

(I1 − 3) (2.24)

where µ∞ is the initial shear modulus of equilibrium response, µα = βαµ∞ is the initial

instantaneous shear modulus of the αth branch. Accordingly, the initial shear modulus of

the instantaneous response can be defined as µ0 = µ∞(1 +
∑

α βα). The second Piola-

Kirchoff stress of the visco-hyperelastic model in Eq. 2.21 is calculated as

SV (t) = µ∞I+ p∞C−1 +
M∑
α=1

∫ t

0
µα exp

(
−(t− τ)

τα

) •[
I− I : C (τ)

3
C (τ)−1

]
dτ (2.25)

2.3 Numerical simulation

To investigate the buckling behavior of visco-hyperelastic composites under large defor-

mation, we implement the finite element analysis (FEA) using a commercial software package

COMSOL. All the numerical results in the following chapter are employed without consider-

ation of the inertial effect for exclusively discussing the effect of viscoelasticity. Additionally,
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the incompressible material is selected in all our simulations. In particular, when the incom-

pressible hyperelastic materials are adopted in COMSOL, the SEDF consists of the isochoric

part [30] as

W = W
(
I1, I2

)
(2.26)

where I1 = TrC and I2 = 1
2

(
I
2
1−TrC

2
)

and C=J−2/3C is the isochoric right Cauchy-

Green tensor. In COMSOL, a weak constraint (
∫
Ω

(
(1− J) dpw +

(
pw + 1

3Tr (s)
)
dJ
)
dV =

0) is built-in to ensure the incompressibility condition (J = 1). Here pw is an auxiliary

variable.

In this thesis, we focus on the laminate and particulate composites undergoing in-plane

compression. Accordingly, the average deformation gradient tensor is

F = λe1 ⊗ e1 + λ
−1

e2 ⊗ e2 + e3 ⊗ e3 (2.27)

where λ (t) = 1− ε(t) is the applied macroscopic stretch ratio in the compression direction,

ε (t) is the applied compression strain. Here and hereafter, the superscript (m) represents

the soft matrix for both laminate and particulate composites. The superscript (f) denotes

the stiff fiber of laminates and superscript (i) represents the stiff inclusions of particulate

composites (see Fig. 2.3 and Fig. 2.4).

2.3.1 Numerical modeling details for laminate composite

We consider a periodic laminate composite consisting of two phases, as schematically

illustrated in Fig. 2.3 (a), w0 and d0 are initial width of the unit cell and fiber, respectively.

The volume fractions of the fiber and matrix are expressed as v(f) and v(m) = 1 − v(f),

respectively. The mechanical response of the matrix and fiber material is described by the
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Figure 2.3: (a) Schematically illustration of the unit cell of the laminate composite. (b) two types the
geometric imperfections: (b.1) angle imperfections and (b.2) Cosine function-shaped imperfections.
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incompressible neo-Hookean and the visco-hyperelastic model [64], respectively (as intro-

duced in Sec. 2.2.2).

We implement the numerical analysis through finite element simulations in COMSOL

5.6. We apply the in-plane compression through the following periodic boundary conditions

imposed on the unit cell:

U top −U down =
(
F− I

) (
X |top −X |down

)
(2.28)

U right −U left =
(
F− I

) (
X |right −X |left

)
(2.29)

where U = [U1, U2]
T are the displacement vector, U1 and U2 are the displacement compo-

nents in e1 and e2, respectively. The subscript “top”, “down”, “left” and “right” denote the

edges of AB, CD, AC and BD, respectively, and the “A”, “B”, “C” and “D” are illustrated in

Fig. 2.3 (a). To prevent rigid body motion, we impose a constraint as U|center=0. Here the

subscript “center” is the center point of the unit cell (see the red point in Fig. 2.3 (a)). For

discussion, we set the contrast in the initial equilibrium shear modulus of fiber and matrix as

µ
(f)
∞ /µ(m) = 15 and the contrast in initial instantaneous shear modulus of fiber and matrix

as µ
(f)
0 /µ(m) = 100.

2.3.2 Numerical modeling details for particulate composite

Consider the soft particulate composite consisting of stiff circular inclusions embedded in

the soft matrix, as illustrated in Fig. 2.4. The geometry of the structure is defined through

the periodicity aspect ratio η = w0/h0 and inclusion spacing ratio ξ = d0/h0; where w0

and h0 are the width and height of the primitive unit cell, and d0 is the diameter of the

inclusions. The stiff inclusions are modeled by the incompressible neo-Hookean and the soft
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Figure 2.4: Schematic illustration of the primitive unit and representative cell.
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matrix is characterized by the visco-hyperelastic model [64] (as introduced in Sec. 2.2.2).

To analyze the instabilities in the soft composite, we carry out the numerical analysis

through finite element simulations in COMSOL 5.6. We use a single-column inclusion sys-

tem with a large enough number of inclusions (N = 40, if not specified otherwise) along

e1-direction in the representative cell (see Fig. 2.4). We apply the in-plane unidirectional

compression by imposing the periodic displacement boundary conditions on the representa-

tive cell as

UAB −UCD =
(
F− I

)
(X |AB −X |CD) (2.30)

UBD −UAC =
(
F− I

)
(X |BD −X |AC) (2.31)

where the subscript AB, CD, AC, and BD denote the interior node on the top, bottom,

left, and right edges of the representative cell, respectively, and the “A”, “B”, “C”, and

“D” are illustrated in Fig. 2.4. To prevent rigid body motion, we impose a constraint as

U |TC+U |BC= 0. Here the subscript “TC” and “BC” are the center points of inclusions on

the top and bottom of the representative cell, respectively (see the red points in Fig. 2.4).

In chapter 5, we focus on composite configuration with weak interactions between columns

of inclusions; accordingly, we assign a high unit cell aspect ratio, w0/h0 = 32 . The inclusion

spacing ratio is set as ξ = 0.8. The initial equilibrium shear modulus of the matrix µ
(m)
∞ =

0.1614 MPa. The contrast between the initial shear modulus of stiff inclusions and the initial

equilibrium shear modulus of the matrix is set as µ(i)/µ
(m)
∞ = 105. Thus, the deformation

in stiff inclusions is negligible in comparison with that of the soft matrix.

In chapter 6, we focus on composites configuration with non-negligible and weak interac-

tions between columns of inclusions. In particular, we assign η = 3.0 and ξ = 0.8 and η = 32

and ξ = 0.8 for the composites with non-negligible and weak interactions between columns of
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inclusions, respectively. For convenience, we name the composites with η = 3.0 and ξ = 0.8

as well as η = 32 and ξ = 0.8 as composite one and two, respectively. Our numerical analysis

is performed with the material parameters from Alur and Meaud [3]. Specifically, the initial

shear modulus of the stiff inclusions is set as µ(i) = 5.49×104 MPa, resembling the steel.

The soft matrix material resembles polyurethane which is simulated by the single-branch

visco-hyperelastic model with µ
(m)
∞ = 1.115 MPa, β = 134.5 and τ = 0.15s. The contrast

between the initial shear modulus of stiff inclusions and the initial equilibrium shear modulus

of the matrix is around 5×104, so the deformation in stiff inclusions is negligible in compar-

ison with that of the soft matrix. The stress-strain response of the particulate composite

undergoing the compression with a constant strain rate was reported to be identical for a

given Weissenberg number Wi = ε̇τ [153]. Therefore, in chapter 5 and 6, we may use Wi

as the dimensionless strain rate if not specified otherwise.
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CHAPTER 3

MECHANICAL CHARACTERIZATION AND CONSTITUTIVE

MODELING OF VISCO-HYPERELASTICITY OF

PHOTOCURED POLYMERS

Yuhai Xiang, Cody Schilling, Nitesh Arora, AJ Boydston, Stephan Rudykh

(*Reprinted from Additive Manufacturing of Elsevier)

In this chapter, we study the nonlinear behavior of soft photocured polymers typically

used in 3D-printing. We perform experimental testing of 3D-printed samples cured at various

controlled light intensities. The experimental data show the dependence of the material

elasticity and rate-sensitivity on the curing light intensity. To elucidate these relations,

we develop a physically-based visco-hyperelastic model in the continuum thermodynamics

framework. In our model, the macroscopic viscoelastic behavior is bridged to the microscopic

molecular chain scale. This approach allows us to express the material constants in terms

of polymer chain physical parameters. We consider different physical mechanisms governing

hyperelasticity and rate-dependent behaviors. The hyperelastic behavior is dictated by the

crosslinked network; whereas, the viscous part originates in the free and dangling chains.

Based on our experimental data, we illustrate the ability of the new constitutive model to

accurately describe the influence of the light intensity on photocured polymer viscoelasticity.

3.1 Introduction

3D-printing of soft materials has been employed in numerous areas such as tissue en-

gineering [36, 61], drug delivery devices [112, 145] and soft robots [75]. The technology
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expands the design space by allowing the fabrication of complicated geometries, composi-

tion, and tailored properties [119, 168]. A promising soft material fabrication method –

Digital Light Processing (DLP) 3D printing – utilizes photo-polymerization in the layer

by layer curing process [4, 10, 74, 76, 129]. The produced materials typically exhibit rich

material nonlinearity and rate-sensitivity [21, 133, 148], and their properties are highly de-

pendent on the printing process parameters. Motivated by providing the understanding of

the soft digital material behavior, in this chapter, we develop a new physically-based visco-

hyperelastic model in the continuum thermodynamics framework. Previously, Zarrelli et al.

[164] – utilizing the Kohlrausch-Williams-Watts (KWW) equations [130] – developed a con-

stitutive model that describes the dynamic relaxation modulus during curing. The model

incorporates the four coupled phenomena: photophysics, photochemistry, chemomechani-

cal coupling, and mechanical deformation. A general thermodynamic framework has been

proposed by Long et al. [94]; the model allows simulating different mechanisms-induced

photochemical-thermal-mechanical coupling behavior of photo-active polymer undergoing fi-

nite deformation. Recently, Zhao et al. [167] investigated the effects of oxygen on the stress

relaxation and bending actuation of the light-activated polymers. Most recently, Wu et al.

[149] studied the evolution of material properties during the photo-polymerization. They ap-

plied a phase evolution model to characterize the coupling between mechanical and chemical

reactions during the curing process; the developed “multibranch” viscoelastic model captures

the nonlinear viscoelastic behavior of the photocured polymer. Sain et al. [128] proposed

a thermal-chemo-mechanically coupled constitutive framework for cured glassy thermoset

polymer. Yu et al. [160] presented a theoretical framework to consider the effects of light

intensity, light wavelength, and photoinitiator concentration on self-healing behavior. The

shape distortion of the structures created by DLP 3D printing technology is investigated by
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using photo-polymerization reaction kinetics and Euler–Bernoulli beam theory [148].

Photo-polymerized polymers frequently exhibit strong nonlinear viscoelastic behavior

under finite deformation [113, 149]. To model finite deformation viscoelastic behaviors, the

so-called phenomenological and physically-based constitutive models are used. While here,

we mostly focus on the physically-based models, interested readers are referred to the works

by [66, 73, 77, 98, 99, 109, 147], among many others.

Physically-based viscoelastic models can be formulated by consideration of the viscous-

related micromechanisms, such as the reptational motion of molecular chains [14, 40, 170],

re-orientation and stretch relaxation of chain segments [92], as well as the breaking and reat-

taching of temporary crosslinks [93]. These models, however, include fitting parameters that

are not directly related to the underlying physical mechanisms. For the thermodynamically

consistent models [92, 109, 170], appropriate restrictions are imposed on their fitting parame-

ters. On the other hand, physically-based models can be developed by directly characterizing

the viscous related microscopic structures so that all material constants can be connected

to the microscopic quantities [89, 91, 135, 141, 142, 152]. For a more detailed discussion

of the topic, the readers are referred to the recent review by Xiang et al. [151]. We note

that there is a large number of viscoelastic models incorporating finite-deformation, while

only a few models consider the specifics of the viscoelasticity in the photocured polymer

[67, 68, 128, 149].

In this chapter, we develop a finite-deformation physically-based visco-hyperelastic con-

stitutive model for photocured polymers. Our finite-deformation viscoelastic model incorpo-

rates the rate-dependent behaviors by considering the microstructure of the polymer, includ-

ing the crosslinked network, and free and dangling chains (schematically shown in Fig. 3.3).

Moreover, the light intensity-dependent crosslinked network and the nonlinear viscosity of
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free and dangling chains are also included in the model.

We further apply our model for a particular material – 2-hydroxyethyl acrylate (HEA) –

that we produce through DLP 3D-printing with the light intensity-controlled viscoelasticity.

We illustrate the ability of the constitutive model to accurately describe the experimentally

observed influence of the light intensity on the photocured polymer viscoelasticity.

The chapter is organized as follows: Section 3.2 describes the procedures for 3D print-

ing and mechanical characterization. Section 3.3 presents the continuum thermodynamic

framework for viscoelastic materials, the formulation for light intensity-dependent nonlinear

viscosity of the free and dangling chains, and the expressions for light intensity-dependent

Helmholtz free energy density. Section 3.4 includes the modeling and experimental results,

followed by discussions and concluding remarks.

3.2 Material fabrication and experiments

The sample fabrication procedure is schematically shown in Fig. 3.1. The typical DLP

printing system comprises a light projector, moving stage, and a resin vat [4, 76], Wu et al.

[149]. The geometric features of the specimens are digitally sliced into a series of images.

Then, these images are sequentially projected by the DLP projector (Optoma HD27 1080p

DLP Home projector) into the liquid resin vat to cure it into a solid layer [129]. Thenceforth,

the stage moves vertically to a new position, and the next layer is cured. The layer by layer

process is repeated until the final structure of the specimen is completely printed (depicted

in Fig. 3.1 (b)).

Specimen preparation. Typical vat photopolymerization resins consist of monomers,

crosslinkers, and photoinitiators. Our resin consisted of 2-hydroxyethyl acrylate (HEA)

as the monomer and Irgacure 819 as the photoinitiator (0.25 wt % with respect to the
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monomer mass). No additional crosslinker was added as commercial HEA contains several

single weight percent of diacrylate impurities [129]. Different levels of the visible (or white)

light intensity I controlled through gray scale adjustments in Microsoft PowerPoint were

used to produce specimens with varying mechanical properties, while keeping other envi-

ronmental variables fixed, including the temperature, the layer exposure time (20 seconds),

the initial concentration of uncured liquid resin and the thickness of each projected layer

(100 µm). In particular, we printed the specimens at four different visible (or white) light

intensities, namely, I = 12.56 klx± 2.58 klx, 15.10 klx± 4.28 klx, 21.53 klx± 3.37 klx, and

27.17 klx± 3.23 klx. Average intensities were measured using an Extech HD450 Light meter

at the vat interface. All printed parts were rinsed with acetone to remove excess monomer

and post-cured by irradiating with white light for a minimum of 12 hours. For each light

intensity, at least 6 dog bone specimens are printed, each comprised of 30 total cured layers.

The dimensions of the specimen are provided in Fig. A.1 in Appendix A.1. To ensure the

specimen can be tightly fixed by the screw grippers, two holes at the ends of the specimen

(Fig. 3.2).

Experimental setup. The mechanical testing was performed in the experimental apparatus

schematically shown in Fig. 3.2. The linear actuators and a load cell with Labview are used

to synchronize displacement measurement, imaging, and force data collection (Landauer et

al. [79]. The optical system for recording data (consisting of a control computer, camera,

a long-distance microscopy lens, polarizing filters, and LED light panels) are installed on a

vibration-isolated table, and the collected data is analyzed by the DIC. The DIC camera is

aligned to the uniform deformation area in the middle of the specimen. A secondary camera

is used to detect possible abnormal deformation conditions. For the uniaxial tensile test,

screw-actuated grips are attached to the base of the load frame and the load cell, and the
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Figure 3.1: Schematic representation of the DLP 3D printing process. 3D geometric images of
specimens are sliced into pictures and are projected sequentially into a liquid resin to cure the layer-
by-layer structure. (a) The DLP 3D printing system, (b) the procedures for top-down DLP printing.

specimen is tightly gripped with the griping-force exerted by the screw grips.

The uniaxial tensile tests were performed at three different strain rates ε̇ = 10−3 s−1,

10−2 s−1, and 10−1 s−1; the tests were repeated at least twice for each strain rate. The

nominal stress P is calculated as P = F/A0, where F is the force data collected by the load

cell, and A0 is the original area of the cross-section of the DIC measured region. The results

show that all the HEA specimens tested here exhibit strong viscoelastic behavior.

3.3 Theory

3.3.1 The continuum thermodynamics

Consider a polymer molecular network composed of the crosslinked network, free and

dangling chains, as schematically shown in Fig. 3.3. The free chains are not chemically bound
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Figure 3.2: Schematic of the top and side views of the experimental setup and the front view of the
fixtures for the uniaxial tensile test.

Figure 3.3: The schematic diagram of the molecular chain network: the molecular network composed
of the crosslinked network, free chains, and dangling chains.

to the crosslinked network, while the dangling chains are connected to the crosslinked network

by a single end-link. Whereas the crosslinked network is attributed to the purely hyperelastic

mechanical response, the free and dangling chains are responsible for the viscous response.

The corresponding macroscopic mechanical behavior of the polymer can be described by the

rheological model, as shown in Fig. 3.4. The branches A, B1 and B2represent the crosslinked

network, free chains, and dangling chains, respectively.

The deformation acting on all the branches is identical (see, Fig. 3.4); hence, the applied

deformation gradient tensor F is equal to the deformation gradient tensor of the branch A,

B1 and B2, i.e., F=FA=FB1
=FB2

. For branches B1 and B2, the deformation gradient tensor
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Figure 3.4: The macroscopic rheological representation of viscoelasticity.

can be multiplicatively decomposed into the elastic part and viscous part as FBn
=Fe

Bn
Fi
Bn

(n=1,2). Fe
Bn

and Fi
Bn

denote the deformation gradient tensor of the spring and dashpot,

respectively.

Next, the continuum thermodynamics is introduced to capture the viscoelastic behavior

[66, 123, 170]. The Helmholtz free energy density functions of the springs are WA (FA),

WB1

(
Fe
B1

)
and WB2

(
Fe
B2

)
, so that the total Helmholtz free energy density of the printed

material is

W
(
FA,F

e
B1
,Fe

B2

)
=WA (FA)+WB1

(
Fe
B1

)
+WB2

(
Fe
B2

)
(3.1)

The total Cauchy stress is given by

T=J−1∂W

∂F
FT=TA+

2∑
n=1

TBn
(3.2)

where J= det (F),

TA=J
−1∂WA (FA)

∂F
FT (3.3)
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and

TBn
=J−1

∂WBn

(
Fe
Bn

)
∂F

FT (3.4)

According to the Clausius-Planck inequality [65]

P:Ḟ−Ẇ ≥ 0 (3.5)

where, P is the total first Piola–Kirchhoff stress, we have

(
P− ∂W

∂F

)
: Ḟ−

2∑
n=1

∂W

∂
(
FBn

Hi
Bn

) :
∂
(
FBn

Hi
Bn

)
∂FiBn

: Ḟi
Bn

≥ 0 (3.6)

where Hi
Bn

is the inverse of Fi
Bn

. According to the Eq. 3.6, we have

P=
∂W

∂F
(3.7)

and
2∑

n=1

∂W

∂Fe
Bn

:
(
Fe
Bn

Ḟ
i
Bn

Hi
Bn

)
≥0 (3.8)

Introducing the inelastic Cauchy stress

T
NEQ
Bn

=
1

det
(
Fe
Bn

) ∂WBn

(
Fe
Bn

)
∂Fe

Bn

(
Fe
Bn

)T
(3.9)

The Eq. 3.8 can be rewritten as

T
NEQ
Bn

:Li
Bn

≥ 0 (3.10)
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where Li
Bn

=Fe
Bn

Ḟ
i
Bn

Hi
Bn

He
Bn

, He
Bn

is the inverse of Fe
Bn

. Due to the symmetry of T
NEQ
Bn

,

the Eq. 3.10 is rewritten as

T
NEQ
Bn

:Di
Bn

≥ 0 (3.11)

where Di
Bn

=

(
Li
Bn

+
(
Li
Bn

)T)
/2. To satisfy the Eq. 3.11, a kinetic evolution equation is

given by Hong [66] as

Di
Bn

=M:T
NEQ
Bn

(3.12)

where M is a positive-definite fourth-order tensor, defined as [123]

M=
1

2ηBn

(
I−1

3
I⊗I

)
(3.13)

where I = δikδjlei⊗ej⊗ek⊗el is the fourth-order symmetric identity tensor, I is the second-

order identity tensor. ηBn
is the viscosity of dashpot Bn (for Eq. 3.13, the incompressibility of

the elastomer is assumed). The procedure for determining the nonlinear viscosity coefficients

ηBn
is described next; to this end, the viscosity of free chains are determined based on Wu

et al. [149] and Zhou et al. [170], and the viscosity of dangling chains is calculated based on

Wu et al. [149] and Pearson and Helfand [118].

3.3.2 The nonlinear viscosity of free chains and dangling chains

Free chains

For describing the free chain contribution, we follow the work of Wu et al. [149]. We

assume that the relative viscosity η of melt changes as a function of the degree of conversion of

monomers as η = exp
(
cpp
)
during curing; here, p is the degree of conversion of monomers,

and cp is a relative viscosity coefficient related to p. Since a higher light intensity can
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transform more monomers for a given projection time, a higher degree of conversion is

produced. Therefore, we assume that the relative viscosity η is the function of light intensity

I, namely, η = exp (cII), where cI is a relative viscosity coefficient related to light intensity.

Thus, for the dashpot in the branch B1 (free chains), the nonlinear viscosity is assumed to

be dependent on the light intensity I as

ηB1
(I,F)=ηI0B1

(F) exp( c1I) (3.14)

where c1 is a relative viscosity coefficient for the dashpot B1. The relationship between

viscosity and deformation is formulated by Zhou et al. [170] as

ηI0B1
(F) =

η0B1

α(F)2
(3.15)

where η0B1
is the initial viscosity of the dashpot B1 in the reference state, and,

α (F)=

∫
|F·R|2f0 (R) d3R〈
R2

ee

〉
0

∫ |F·u0|
4π d2u0

(3.16)

〈
R2

ee

〉
0
=

∫
|F·R|2f0 (R) d3R (3.17)

where f0 is the statistical distribution function of end to end vector R of the free chains

(or dangling chains) in the reference state and the Gaussian distribution is usually adopted

[89, 170]; u0 is the initial unit tangent vector of free chains (or dangling chains).
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Dangling chains

Now, we build upon the formulation above Eq. 3.14, and introduce the contribution of

the dangling chains into the material viscoelastic response. For the dashpot in the branch

B2(dangling chains), similar to the dashpot B1, the nonlinear viscosity is also formulated as

ηB2
(I,F)=ηI0B2

(F) exp( c2I) (3.18)

where c2 is a relative viscosity coefficient for the dashpot B2 and ηB2
(F) can be expressed

by Pearson and Helfand [118] (more details are provided in Appendix A.2) as

ηI0B2
(F)=η0B2

α (F) exp

(
Γ
′

α (F)2

)
and Γ

′
=
12

25
Γ (3.19)

where η0B2
=
(
4Γ
5

)−1/2 b2nB2
NB2

√
πζB2

5
(
v
′
)5/2 is a parameter related to the viscosity of dashpot

B2,v
′
= 0.6 and ζB2

is the friction constant for dangling chains, Γ=
NB2

b2

d22
is a tube-related

geometric factor (the arm of dangling chains retract in a confining tube to relax stress), in

which b is the length of the Kuhn monomers, and d2 is the tube diameter of the dangling

chains in the reference state.

3.3.3 Helmholtz free energy density

Crosslinked network

The Helmholtz free energy density WAof the crosslinked network can be expressed as

[154]

WA = Gc (I)N (I) ln

(
3N (I) + 1

2I1 (C)

3N (I)− I1 (C)

)
+Ge (I)

∑
i=1,2,3

1

λi
(3.20)
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whereC=FTF is the right Cauchy-Green tensor of spring A (crosslinked network) and I1 (C)

is the first invariant of C; λi denotes the principal stretches of spring A. Gc (I) and Ge (I)

are the initial elastic moduli corresponding to the responses of the crosslinked network and

the entanglement of the spring A, respectively. The moduli are expressed as

Gc (I)=n (I) kBT and Ge (I)=αn (I)N (I) kBT
b2

3(d0 (I))
2

(3.21)

where n is the numbers of chains per volume (or chain number density) in the crosslinked

network; N is the number of the Kuhn monomers per chain in the crosslinked network; kB

and T are the Boltzmann constant and Kelvin temperature; α is a tube-related geometric

factor; d0 is the tube diameter of the crosslinked network in the reference state, and it is

proportional to
(
nNb2

)−1
[44], so that the entanglement modulus can be expressed as

Ge=
αkBTb

4(nN)2

3β
(3.22)

where β is a proportionality factor. The chain density n and number of the Kuhn monomers

per chain N of the crosslinked network depends on light intensity. Here, we assume that

n=n0exp
(
α1
(
I−Ig

))
; N=N0exp

(
−α2

(
I−Ig

))
; (α1> 0,α2> 0) (3.23)

where Ig is the critical light intensity for the gel point1; α1 and α2 are light intensity-

dependent factors for chain number density and the number of Kuhn monomers per chain of

the crosslinked network, respectively; n0 and N0 are the number density of chains and the

number of the Kuhn monomers per chain in the crosslinked network at the gel point; nN

is the number density of monomers of the crosslinked network, and nN increases with an

1. The materials are in a liquid state if the light intensities is lower than I g
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increase in light intensity, thus, α1−α2> 0. Substituting Eq. 3.23 into 3.21, we have

Gc (I)=G
0
cexp

(
α1
(
I−Ig

))
and Ge (I)=G

0
eexp

(
2 (α1−α2)

(
I−Ig

))
(3.24)

where

G0
c=n0kBT and G0

e=
αkBTb

4(n0N0)
2

3β
(3.25)

are the initial moduli corresponding to the response of the crosslinked network and the

entanglement of the spring A (crosslinked network) at the gel point, respectively. Thus, Eq.

3.20 can be rewritten as

WA = G0
c exp

(
α1
(
I − Ig

))
N0 exp

(
−α2

(
I − Ig

))
ln

(
3N0 exp

(
−α2

(
I − Ig

))
+ 1

2I1(C)

3N0 exp
(
−α2

(
I − Ig

))
− I1(C)

)

+G0
e exp

(
3 (α1 − α2)

(
I − Ig

)) ∑
i=1,2,3

1

λi

(3.26)

We note that the adopted microstructure-based model for the specific Helmholtz free

energy density functions for the crosslinked networkWA [154] will also be used for describing

free and dangling chains WBn
. The model allows us to connect the material parameters

to viscous-related microscopic quantities and this characteristic can be further utilized to

capture the light intensity-dependent viscoelastic behavior. In addition, the entanglements

between chains play an important role in the mechanical behavior of the crosslinked network,

free and dangling chains. We note that alternative models, such as 3-chain model [70],

Arruda–Boyce model [8], or Gent model [49], could also be used. On the other hand, the

utilized model accounts for the entanglement mechanism, thus, potentially improving the

accuracy for describing the mechanical behavior of polymer chains.
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Free and dangling chains

The hyperelasticity of the free and dangling chains (of the springs in branches Bn (n =

1, 2)) is assumed to be governed by a similar Helmholtz free energy density WBn
, namely,

WBn
=GcnNBn

ln

3NBn
+1

2I1

(
Ce
Bn

)
3NBn

−I1
(
Ce
Bn

)
+Gen

∑
i=1,2,3

1

λein
. (3.27)

Here, Gcn and Gen are initial modulus of the temporary crosslinked network and the en-

tanglement modulus of the spring in branches Bn, respectively; NBn
is the number of the

Kuhn monomers in a single free or dangling chain; Ce
Bn

is the right Cauchy-Green tensor of

spring Bn; I1

(
Ce
Bn

)
is the first invariant of Ce

Bn
, and λein represents the principal stretches

of spring Bn. Here, we assume the material parameters for spring Bn (temporary hypere-

lastic properties of free chains and dangling chains) to be independent of light intensity. At

certain projection times, high light intensities can transform a more significant number of

free chains or dangling chains into the crosslinked network, as compared to low light inten-

sities; however, simultaneously producing more free and dangling chains. Therefore, overall,

the light intensities have much more effect on the crosslinked network in comparison to the

insignificant effect on the free and dangling chains.

Thus, the combination of Eqs. 3.2-3.4, 3.12-3.14, 3.18, 3.26, and 3.27, comprises the

visco-hyperelastic constitutive model for photocured polymers.

3.4 Results

Here, we specify the visco-hyperelastic model for the uniaxial loading and apply the

analysis to the experimental data on the 3D-printed HEA polymer material. For the uni-

axial tensile deformation, the gradient deformation tensor of the spring A and Bn(shown in
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Fig. 3.4) can be expressed as

F=FA=FBn
=Fe

Bn
Fi
Bn

=λe1⊗e1+λ
−1/2 (I−e1⊗e1) (3.28)

Fe
Bn

=λeBn
e1⊗e1+

(
λeBn

)−1/2
(I−e1⊗e1) ; F

i
Bn

=λiBn
e1⊗e1+

(
λiBn

)−1/2
(I−e1⊗e1) (3.29)

where λ represents the uniaxial stretch ratio, the superscripts “e” and “i” indicate the elastic

(spring) and inelastic (viscous dashpot), respectively. Here, we consider the materials to be

incompressible.

Substituting Eq. 3.28 and 3.29 into Eq.3.26 and 3.27 using Eq. 3.2, the total nominal

stress is determined as

P11 (t) = G0
cexp

(
α1
(
I − Ig

)) (
λ (t)− λ−2 (t)

)(
1− I1(t)

3N0exp(−α2(I−Ig))

)(
1 + 1

2
I1(t)

3N0exp(−α2(I−Ig))

)
+G0

e exp
(
3 (α1 − α2)

(
I − Ig

)) (
λ−1/2(t)− λ−2(t)

)

+
2∑

n=1

Gcn

(
λ(t)

(
λiBn

(t)
)−2

− λ−2(t)λiBn
(t)

)
(
1− I1e(t)

3NBn

)(
1 +

1I1e(t)
23NBn

) +Gen

((
λ(t)λiBn

(t)
)−1/2

− λ−2(t)λiBn
(t)

)
(3.30)

where I1 = λ2 + 2λ−1. The first term of Eq. 3.30 represents the stress of branch A

(crosslinked network) and the second term denotes the stress from branches B1 and B2 (free

chains and dangling chains). Then, substituting the expressions of the viscosity of free chains

3.14 and dangling chains 3.18 into the kinetic evolution equation 3.12, we have
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dλiB1
(t)

dt
=

λiB1
(t)α(F)2

3η0B1
exp (c1I)

)
Gc1

(
λ2(t)

(
λiB1

(t)
)−2

− λ−1(t)λiB1
(t)

)
(
1− I

B1(t)
1e
3NB1

)(
1 +

1I
B1(t)
1e

23NB1

) +

Ge1

(
λ1/2(t)

(
λiB1

(t)
)−1/2

− λ−1(t)λiB1
(t)

)] (3.31)

dλiB2
(t)

dt
=

λiB2
(t)

3η0B2
α(F) exp

(
Γ′

α(F)2
+ c2I

)
Gc2

(
λ2(t)

(
λiB2

(t)
)−2

− λ−1(t)λiB2
(t)

)
(
1− I

B2
1 (t)
3NB2

)(
1 + 1

2
I
B2
1 (t)
3NB2

) +

+Ge2

(
λ1/2(t)

(
λiB2

(t)
)−1/2

− λ−1(t)λiB2
(t)

)]
(3.32)

where IBn
1e =

(
λeBn

)2
+2
(
λeBn

)−1
= λ2

(
λiBn

)−2
+2λ−1λiBn

is the first invariant of the right

Cauchy-Green tensor of spring Bn.

The material constants are determined as follows. First, we determine the time-indepe-

ndent material constants G0
c , α1, N0, G

0
e, α and Ig by using the data at a low strain rate (ε̇ =

10−3 s−1) in Section 3.4.1. Then, these material constants are used for determining the time-

dependent material constants Gc1 , N1, Ge1 , η
0
B1

, c1, Gc2 , N2, Ge2 , η
0
B2

, Γ
′
and c2 by fitting

the data with strain rates 10−2 s−1 and 10−1 s−1 (Section 3.4.2). We note that a proper

initial guess of material constants is essential, and is based on the physical meaning of the

material constants, thus, the parameters need to be positive, and, additionally, α1−α2> 0.
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Figure 3.5: The model and experimental results for specimens with the strain rate ε̇ = 10−3 s−1 and
different light intensities (12.56klx, 15.10klx, 21.53klx and 27.17klx). The circles and curves denote
the experimental and modeling results, respectively.

3.4.1 Material constants of the crosslinked network

Here we use the data of quasistatic deformation at a low strain rate (ε̇ = 10−3 s−1) to

extract the material parameters of the hyperelastic part (crosslinked network). To this end,

the first term in Eq. 3.30 is used. In Fig. 3.5, we show the comparison of experimental

data (circular symbols) and simulation results (curves) for the specimens printed at the

light intensities: I = 12.56 klx (magenta), 15.10 klx (black), 21.53 klx (blue), and 27.17 klx

(red). As expected, the response becomes stiffer as the light intensity is increased. This

is also captured by the hyperelastic material model based on the crosslinked network. The

obtained material parameters are provided in Table 3.1.
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Table 3.1: The material parameters of the hyperelastic (crosslinked network) part of specimens.

G0
c(MPa) α1(1/x) N0 G0

e(MPa) α2(1/lx) Ig( lx)

0.1049 6.79× 10−6 1030 0.1940 6.76× 10−6 998

3.4.2 Material constants of the free and dangling chains

Once the material constants describing material hyperelasticity are obtained, we can eval-

uate the material parameters corresponding to the viscoelasticity (related to the free and

dangling chains). In Fig. 3.6, we show the dependence of the nominal stress on the stretch

ratio obtained from the uniaxial tests (triangular, square, and circles ). In particular, the

results are shown for the specimens prepared at light intensities I = 12.56 klx (Fig. 3.6

(a)), I = 15.10 klx (Fig. 3.6 (b)), I = 21.53 klx (Fig. 3.6 (c)), and I = 27.17 klx

(Fig. 3.6 (d)); subjected to strain rates ε̇ = 10−3 s−1 (red circles), ε̇ = 10−2 s−1 (blue

squares), and ε̇ = 10−1 s−1 (magenta triangles). We use Eqs. 3.30-3.32 to simultaneously

fit the experimental data for these specimens with strain rates (10−2 s−1 and 10−1 s−1).

The modeling results for the nominal stress-stretch curves are shown in Fig. 3.6. For com-

pleteness, the simulation results for strain rate ε̇ = 10−3 s−1 are also presented. Clearly,

the proposed model can accurately capture light intensity-dependent viscoelastic response.

We note that this model feature comes at the cost of introducing additional material pa-

rameters, as compared to existing models; for example, Bergstrom and Boyce [14] model

describes the material behavior with only 7 material parameters. On the other hand, our

model enables us to capture the light intensity-dependent behavior (although, at the cost of

introducing additional material parameters), which is a desirable feature for modeling DLP

3D-printed materials. The corresponding material parameters (for free and dangling chains)

are provided in Table 3.2.

Utilizing the parameters listed in Table 3.1 and Table 3.2, we can compare the stress



41

(a) (b)

(c) (d)

Figure 3.6: Comparison of modeling and experimental results for specimens subjected to strain rates
ε̇ = 10−3 s−1 (red circles), ε̇ = 10−2 s−1 (blue squares), and ε̇ = 10−1 s−1 (magenta triangles) with
projected light intensities (a) I = 12.56klx; (b) I = 15.10klx; (c) I = 21.53klx and (d) I = 27.17
klx.

Table 3.2: The material parameters of the viscoelastic (free and dangling chains) part of specimens.

Gc1(MPa) N1 Ge1(MPa) η0B1
(MPa · s) c1(1/lx) Gc2(MPa) N2 Ge2(MPa) η0B2

(MPa · s) Γ′ c2(1/x)

2.72× 10−5 861 0.2938 0.1553 3.11× 10−5 0.0456 764 3.1515 1.26 0.0022 7.99× 10−5
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contributions from the crosslinked network, free and dangling chains, and analyze the de-

pendence of nonlinear viscosity on the deformation and light intensity.

To analyze the stress contributions from the crosslinked network, free and dangling chains,

we consider the example of the specimens prepared under light intensity I = 12.56 klx

subjected to strain rates ε̇ = 10−2 s−1 and 10−1 s−1 (the fitting parameters are listed in

Table 3.1 and Table 3.2). In Fig. 3.7, we show the contribution from the hyperelastic (blue

curve) and viscous (magenta curve) part to the total stress (black curve). On comparing

Fig. 3.7 (a) and (b), one can observe that the stress from the viscous part increases with

the increase in applied strain rate. Moreover, the contribution from the hyperelastic part is

rate-independent for given light intensity.

To elucidate the dependence of viscous response on the light intensity, we consider the

example of the specimens tested at the strain rate ε̇ = 10−1 s−1. Fig. 3.8 (a) shows the

viscous part of the stress for specimens prepared under light intensities I = 12.56 klx

(magenta), 15.10 klx (black), 21.53 klx (blue), and 27.17 klx (red). Clearly, the viscous

stress increases with an increase in light intensity. We also evaluate the contribution from

the free chains (magenta circular symbols) and dangling chains (magenta square symbols) to

the viscous stresses, separately, as shown in Fig. 3.8 (b). Here, the specimen prepared under

light intensity I = 12.56 klx is used as an example. It indicates the importance of both free

and dangling chains for accurate characterization of the viscous response. Interestingly, we

also observe that the stress of free chains plays a more important role at smaller deformation

levels. However, it relaxes much faster than the stress of dangling chains. This observation

is in agreement with the fact that the relaxation time of dangling chains is much larger

than that of free chains [55, 155]. Henceforth, the contribution from dangling chains is more

significant than free chains under larger deformations.
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(a) (b)

Figure 3.7: Comparison of stresses from the hyperelastic part (blue curve) and viscous part (magenta
curve) under strain rates (a) ε̇ = 10−2 s−1 and (b) ε̇ = 10−1s−1.

Fig. 3.9 shows the stress from free chains (circular symbols) and dangling chains (square

symbols) of the specimens at four light intensities I = 12.56 klx (magenta), 15.10 klx (black),

21.53 klx (blue), and 27.17 klx (red). One can observe that the stresses from both the free

and dangling chains increase with the increase in light intensity. Moreover, the contribution

from free chains shows a higher sensitivity to change in light intensity than dangling chains.

Next, we study how the viscosity of the free and dangling chains evolve with deformation

and light intensity. Using Eqs. 3.14-3.15, and Eqs. 3.18-3.19 together with the parameters

in Table 3.1 and Table 3.2, in Fig. 3.10, we show the variation of nonlinear viscosity of

these chains with deformation. We consider four different light intensities: I = 12.56 klx

(magenta), 15.10 klx (black), 21.53 klx (blue), and 27.17 klx (red). We observe that both

the deformation and light intensity significantly affect the viscosity. In particular, the light

intensity has a similar effect on the viscosity of both free and dangling chains. More specifi-

cally, the viscosity of these chains increases with the increase in light intensity. In contrast,
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(a) (b)

Figure 3.8: The viscous stresses of specimens tested at the strain rate ε̇ = 10−1 s−1. (a) The
specimens prepared under light intensities I = 12.56klx, 15.10klx, 21.53klx and 27.17klx. (b) The
viscous stresses from free chains and dangling chains for the specimen with light intensity 12.56klx.

Figure 3.9: The stress from free chains and dangling chains; the circular and square symbols re-
spectively represent the results for free chains and dangling chains.
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(a) (b)

Figure 3.10: The dependence of the nonlinear viscosity of (a) free chains and (b) dangling chains
on the deformation and light intensities.

the influence of deformation on the viscosity of free and dangling chains is opposite, i.e., the

viscosity of free chain decreases, while that of the dangling chain increases with the increase

in deformation.

We show the effect of the number of free chains on the mechanical response of the spec-

imen in Fig. 3.11. We consider an example of the specimen prepared under light intensity

I = 27.17 klx tested at the strain rate ε̇ = 10−1 s−1. To illustrate the model predictions

for the polymer behavior with an increased amount of free-chains, we show the results for

(i) specimens with unchanged free chains (back curve), and (ii) with the doubled amount of

free chains (red curve). We observe that free chains play a more significant role at smaller

deformation levels, while the influence on the stress weakens at larger deformation levels.

As expected, the viscoelastic stress contributed by free chains rapidly relaxes to a similar

level as can be seen in Fig. 3.11 (b). The amounts of free chains can be adjusted by, for

example, adding non-crosslinkable analogs into specimens, thus, allowing us to regulate the
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(a) (b)

Figure 3.11: The stresses of specimens with projected light intensity I = 27.17klx tested at the
strain rate ε̇ = 10−1s−1. (a) The total stress and (b) the stress from free chains of the free chains
unchanged specimen (black curve) and free chains doubled specimen (red curve).

rate-dependent behavior of the printed specimen.

3.5 Concluding Remarks

In this chapter, we experimentally and theoretically investigate the curing light intensity-

dependent viscoelastic behavior of HEA prepared by the DLP 3D-printing method. The HEA

specimens are printed at different light intensities, otherwise with the same environment set-

ting. The tensile tests are conducted on these specimens at various loading rates. The

experimental results reveal the strong dependence of the viscoelasticity of HEA on the light

intensity. To shed light on the dependence of the material properties of photocured polymers

on curing light intensity, we develop a visco-hyperelastic model. The model is based on the

continuum thermodynamics with the decomposition of the polymer microstructure response

into hyperelastic and viscous parts. The hyperelastic and viscous parts are attributed to
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the crosslinked network and the diffusion of free and dangling chains, respectively. The

developed model is applied to characterize the rate-dependent behavior of the photocured

HEA. The simulation results demonstrate the ability of this model to accurately character-

ize the light intensity-dependent viscoelastic response. In particular, the stresses from the

crosslinked network, free chains, and dangling chains are compared, showing the necessity

of simultaneously considering the contributions from free and dangling chains for accurately

characterizing viscoelasticity. The evolution of viscosity with the deformation and light in-

tensity is also presented to indicate the strong dependence of viscosity on the deformation

and light intensity. The effect of the free chains on mechanical response is also discussed.

Our model predicts that the free chains have a more significant effect on the mechanical re-

sponse at smaller deformation levels, and their influence weakens at large strain levels. This

behavior can be potentially realized in experiments by adding non-crosslinkable analogs into

the specimen, thus increasing the free chain content. While the model is calibrated based

on the experiment data of HEA, it can be used for a large variety of photocured polymers

due to the similarity of the photopolymerization mechanism.

While the present study exclusively investigates the effect of projected light-intensity on

the mechanical properties of photo-cured polymers, several other controllable factors influ-

ence the digital material behavior, for example, oxygen (through reacting with the radicals

and making them inactive, or through inhibiting the photopolymerization reaction [167]), the

layer thickness [81], exposure time [20], and the post-curing temperature [31]. Moreover, in

multi-material 3D-printing [83, 86], depending on the characteristic microstructure size, and

printing process, the mixing interphase zone can form. These interphases, while being me-

chanically invisible, may influence pattern formations in soft composites experiencing local

buckling [5]. These factors present a rich research avenue towards the understanding of soft
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3D-printed material behavior and its relation to the physical mechanism during 3D-printing.
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CHAPTER 4

MICROSTRCURAL BUCKLING IN SOFT

VISCO-HYPERELASTIC LAMINATES*

Yuhai Xiang, Qi Yao, Dean Chen, Jian Li, Stephan Rudykh

(*Prepared for submission to a journal)

We investigate the microstructural buckling phenomenon in visco-hyperelastic laminates

under compressive loads. We determine the dependence of the critical strain and wavenum-

ber on the loading strain rate. The numerical results are complemented with an analytical

estimate predicting the dependence of the critical strain on the strain rate. We find that

the critical strain is bound by the two limits corresponding to sufficiently fast and slow

loading rates, and decreases with the increase in the strain rate, and the theoretical and

numerical critical strain show good agreements. The critical wavenumber of the dilute lam-

inates decreases with the increase in the strain rate. However, the critical wavenumber of

the non-dilute laminates remains nearly zero with the change in strain rate. Then, the lami-

nates under the “load-and-hold” regime are explored. We observe that the buckling pattern

gradually disappears in the holding phase of the load-and-hold loading path. Next, we in-

vestigate the dependence of dynamic modulus and loss factor on cyclic loading frequency

and pre-strain. We note that dynamic modulus and loss factor are slightly (or significantly)

dependent on the pre-strain when the pre-strain is smaller (or larger) than the critical strain

corresponding to quasi-static loading. Finally, we examine the instabilities in the 3D-printed

laminates through experiments and simulations. The simulations show good agreement with

the experimental critical strain of the 3D-printed laminates, demonstrating the capability of

numerical simulation to capture the mechanical behavior of the visco-hyperelastic laminates.
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4.1 Introduction

Soft composites with tunable microstructure under large deformation provide a avenue

to achieve more novel properties such as auxetic properties [16, 86, 110], reconfigurable

structure [156] and negative viscoelasticity [71]. Moreover, soft microstructured materials

with elastic instabilities can be utilized to tune the wave propagation [15, 126].

The pioneering work Rosen [124] laid a foundation for understanding the elastic insta-

bilities in laminate composites. He provided a theoretical expression for the buckling stress

of linear elastic laminates. Parnes and Chiskis [116] further investigated the instabilities

of linear elastic laminates. They found that dilute and non-dilute composites experience

microscopic and macroscopic instability, respectively. In hyperelastic laminates, the insta-

bilities can also develop at microscopic and macroscopic length scales [90]. The microscopic

instability can be analyzed by employing Bloch-Floquet analysis [18, 50]. The onset of

macroscopic instability can be detected through loss of ellipticity analysis which requires the

evaluation of the tensor of elastic moduli. The tensor of elastic moduli can either be eval-

uated through micromechanics-based homogenization approaches [2, 56, 59, 127] or derived

from phenomenological models [103, 104, 105, 106, 107]. We note that Geymonat et al. [50]

have demonstrated the equivalence between Bloch-Floquet and loss of ellipticity analysis for

infinite wavelength. Triantafyllidis and Maker [136] examined the microscopic and macro-

scopic instabilities in hypoelastic and hyperelastic laminates under plane-strain compression.

Nestorović and Triantafyllidis [114] studied the instabilities in hyperelastic and elastoplastic

laminates undergoing shear combined compression deformation. Arora et al. [5] further

investigated the instabilities of hyperplastic laminates with inhomogeneous transition zones.

The majority of the studies focus on purely elastic or hyperelastic laminates. However,

soft materials exhibit intrinsic viscoelasticity [78, 151], and the rate sensitivity of laminates
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can substantially affect their buckling behavior. Biot [19] investigated the creep buckling

of the confined viscoelastic laminates. Alur and Meaud [3] investigated the rate-dependent

buckling behavior of the non-dilute visco-hyperelastic laminates. Slesarenko and Rudykh

[131] investigated the rate dependence of wavy buckling patterns in visco-hyperelastic lam-

inate composites, and they showed that the wavey pattern could be tuned by applying

different strain rates.

Here, we focus on the role of the visco-hyperelasticity of laminate constituents on the

microstructural buckling phenomenon. We investigate the dependence of critical buckling

strain and wavenumber on the applied strain rates through the finite deformation post-

buckling analysis. In addition, we analytical estimates for the critical buckling strain. We

further examine the buckling pattern transformation for the “load-and-hold” regime. In

addition, the influence of cyclic loading frequency and the pre-strain on dynamic mechanical

properties are also explored. Finally, we show the applicability of simulations by comparing

numerical results with the experimental results of 3D-printed laminates.

4.2 Numerical and analytical analysis

4.2.1 Numerical analysis of buckling of hyperelastic laminates

Viscoelasticity of material can be suppressed by fast and slow loading rates. Therefore,

we can regard the material under the two extreme cases as hyperelastic materials, and then

Bloch-Floquet analysis can be employed to calculate the critical strain and wavenumber [82].

The effective shear modulus contrast of fiber and matrix is µ
(f)
eff/µ

(m) = µ
(f)
∞ /µ(m) = 15 for

slow loading rates and µ
(f)
eff/µ

(m) = µ
(f)
0 /µ(m) = 100 for fast loading rates.

In Fig. 4.1, we show the critical buckling strain εcr (a) and the dimensionless critical
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(a) (b)

Figure 4.1: The dependence of the critical strain (a), and dimensionless critical wavenumber (b)
on the fiber volume fraction.

wavenumber k̂cr = kcrW0 (b). kcr is the number of the repeating pattern of the buckling

shape per unit distance. The black and red curves denote the Bloch-Floquet results for

µ
(f)
eff/µ

(m) = 15 and µ
(f)
eff/µ

(m) = 100, respectively. We can expect that the critical strain

and wavenumber for visco-hyperelastic laminates can be transformed from the result of

µ
(f)
eff/µ

(m) = 15 to that of µ
(f)
eff/µ

(m) = 100 with the increase in the loading rates. In

Fig. 4.1 (b), we define two types of laminates: dilute laminates and non-dilute laminates

(see the gray and pink map). For the dilute laminates, such as v(f) = 0.12 (see the solid

vertical blue line), the corresponding critical wavenumber can be transformed from a finite

value to another value by increasing the loading rates. For non-dilute laminates, such as

v(f) = 0.3 (see the dashed vertical blue line), however, the critical wavenumber remains to

be nearly zero regardless of loading rates.



53

4.2.2 Numerical analysis of buckling of visco-hyperelastic laminates

In this section, we show the details to probe the buckling behavior of visco-hyperelastic

laminates through post-buckling analysis. We discuss the instabilities of both the dilute and

non-dilute laminates. Specifically, we illustrate the results by examples of v(f) = 0.12 and

v(f) = 0.3. We use the single-branch visco-hyperelastic model to characterize the visco-

hyperelastic fiber. Thence, there are two parameters τ1 and β1. For simplicity, we ignore the

subscript of τ1 and β1. The effective shear modulus contrast µ
(f)
eff/µ

(m) is set to be bounded

by µ
(f)
∞ /µ(m) = 15 (for slow strain rate) and µ

(f)
0 /µ(m) = 100 (for fast strain rate). In

addition, we find that the Weissenberg number can be introduced as a dimensionless strain

rate for the loading path with a constant strain rate. Namely, the mechanical response is

identical for the same Weissenberg number regardless of the value of relaxation time τ (see

Appendix B.1).

The critical wavenumber of the laminates with v(f) = 0.3 is nearly zero regardless of

the loading rates (see the critical wavenumber corresponding to the dashed verticle blue

line in Fig. 4.1 (b). That is, macroscopic instability is always triggered. For macroscopic

instability, we can introduce a tiny angle θ0 = 10−3 rad as the geometric imperfections

(see Fig. 2.3 (b.1)). For v(f) = 0.12, which is dilute laminates, the critical wavenumber

changes from a certain number to another certain value, and finally arrives at zero with

the increase in loading rate (see the critical wavenumber corresponding to the vertical solid

blue line in Fig. 4.1 (b)). Therefore, the microscopic instability can be activated at a lower

loading rate, while the macroscopic instability would gradually dominate the buckling mode

with an increase in loading rates. Simulating the rate dependence of dilute laminates is far

more challenging. Since the critical wavenumber of the initially triggered buckling mode

is unknown for a certain strain rate, it is inappropriate to use a small angle as geometric
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imperfections. We adopt the Cosine function as the imperfection, as shown in Fig. 2.3 (b.2).

Specifically, the shape of fiber follows the function δ = δ0cos (2πks/H), where s range over 0

to H, δ0 = d0
2 ×10−3. Recall that the wavenumber k is unknown for a specific loading rate,

so we have to scan the wavenumber k for a given loading rate to obtain the correct critical

strain and wavenumber. In particular, we scan k from 0.001 to 5. For each scanned k, we

can calculate the corresponding εcr and kcr. Among them, the reasonable values of εcr and

kcr would correspond to the smallest value of εcr. The critical strain is monitored by the

stress-strain curve and the related critical wavenumber can be directly recognized from the

buckling pattern. More details about the identification of the critical strain and wavenumber

are given in Appendix B.2 and Appendix B.3.

4.2.3 Theoretical prediction of the critical strain in visco-hyperelastic

laminate composite

The instabilities in hyperelastic laminates have been widely investigated and the Bloch-

Floquet analysis is typically used to identify the critical strain and wavenumber [18, 87]. For

hyperelastic laminate composites, the buckling critical strain is determined by the fiber-to-

matrix shear modulus contrast (µ(f)/µ(m)) which is equal to fiber-to-matrix stress contrast

σ
(f)
11 /σ

(m)
11 before buckling. For visco-hyperelastic laminates, however, there is no theoretical

method to predict the strain onset of buckling. Here, we present a quantitative approach

based on the assumption that the critical strain of laminate composites is determined by

fiber-to-matrix stress contrast σ
(f)
11 /σ

(m)
11 .

In Fig. 4.2, we depict the critical strain versus the fiber-to-matrix stress contrast for

hyperelastic laminate composite with v(f)=0.3 (see the black dashed curve). The critical

strain curve divides the regime into the buckled region (pink map) and unbuckled region
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Figure 4.2: The illustration of determination of the critical strain for viscoelastic laminate compos-
ites.

(gray map). For visco-hyperelastic laminates, the σ
(f)
11 /σ

(m)
11 changes with deformation. We

illustrate the strain versus the σ
(f)
11 /σ

(m)
11 curve based on Eqs. 2.13 and 2.25 by examples of

Wi = 0.01 (see the red curve) and Wi = 0.1 (see the blue curve). We can observe that the

σ
(f)
11 /σ

(m)
11 gradually decreases with the increase in strain. As decreasing of σ

(f)
11 /σ

(m)
11 , the

strain arrives at the corresponding critical strains which are the intersection of black dashed

and red curves for Wi = 0.01 (see the violet hollow circle marker) as well as the intersection

of black dashed and blue curves for Wi = 0.1 (see the green hollow circle marker), and then

the buckling appears. For any given Weissenberg number, we can identify the intersection

point as the critical strain.
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(a) (b)

Figure 4.3: The dependence of the (a) critical strain and (b) dimensionless critical wavenumber on
Wi for v(f)=0.12 and v(f)=0.3.

4.3 Results

4.3.1 The critical buckling strain and wavenumber

We start by examining the instability behavior of laminates undergoing compression

with a constant applied strain rate. Figure 4.3 shows the numerical results of the rate-

dependent critical strain (a) and wavenumber (b) for v(f) = 0.12 (black dashed curve with

square markers) and v(f) = 0.3 (red dashed curve with circle markers). The corresponding

theoretical critical strain, as introduced in see Sec. 4.2.3, is also presented for comparison

(see solid curves). Dashed and dotted horizontal lines represent critical strain corresponding

to the two limits (slow and fast loading rates) which are calculated from the Bloch-Floquet

analysis.

As expected, the critical strain and wavenumber converge to the value corresponding
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to the two limits. For instance, the black curves converge to the black dashed horizontal

line at small Wi (such as Wi = 10−6) and the black dotted horizontal line at large Wi

(such as Wi = 1). The theoretical critical strain is in good agreement with the results

from the numerical simulation (compare solid and dash-markers curves in Fig. 4.3 (a)). We

observe that the critical strain decrease with the increase in strain rate. The rate dependence

of the critical strain can be interpreted in terms of the fiber-to-matrix stress contrast. In

hyperelastic laminates, the critical strain decrease with the increase in the fiber-to-matrix

shear modulus (stress) contrast [90]. In visco-hyperelastic laminates (with visco-hyperelastic

fibers), the fiber-to-matrix stress contrast increase with the increase in the strain rate for a

given strain. Therefore, the corresponding critical strain decreases with an increase in the

strain rate. As shown in Fig. 4.2, composites with Wi = 0.1 arrive at the critical strain

earlier than composites with Wi = 0.01 (compare the violet and green hollow circle markers

in Fig. 4.2).

One can note that the critical wavenumber for v(f) = 0.3 always be close to zero with

the increase in strain rate (see the red curve in (b)). Therefore, the buckling pattern al-

ways is macroscopic instability, whereas the buckling pattern for v(f) = 0.12 changes from

microscopic to macroscopic instability with the increase in strain rate. In particular, the di-

mensionless critical wavenumber decreases from 0.6 to nearly zero with an increase in strain

rate (see the black dashed curve in (b)).
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Figure 4.4: (a) The buckling pattern evolves with time in the holding process (t > th); (b) illustra-
tively explains the rate-dependent buckling pattern.

4.3.2 The load-and-hold loading path

In this subsection, we probe the pattern transformation when applying the load-and-hold

loading path defined as

ε (t) =

 ε = ε̇t t ≤ th

εh t > th

(4.1)

where ε̇ = Wi/ τ and th are the strain rate and time to reach a designated strain εh (see the

inset on the left side Fig. 4.4 (a)). For discussions, we illustrate the results by the example of

the laminate structure with v(f) = 0.3 and the loading pathWi = 0.1, τ = 1s and εh = 0.03.

Figure 4.4 (a.1)-(a.4) shows the pattern transformation. Interestingly, we observe that the

buckling pattern gradually disappears in the holding process (t > th). We can explain this

phenomenon based on the rate-dependent critical strain, as illustrated in Fig. 4.4 (b). Since

εh = 0.03 is larger than the critical strain corresponding to Wi = 0.1 (the black square is

above the black circle in (b)), the buckling can be triggered. However, once holding the

strain, the effective strain rate would be zero, so the corresponding critical strain would be
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Figure 4.5: (a) The dynamic mechanical properties |E∗| (red) and tanδ (black) versus fτ for
different relaxation time. (b) The dynamic modulus |E∗| and (c) loss factor tanδ versus fτ with
different pre-strain ε0.

equal to εlrcr = 0.07482 which is large than the applied holding strain εh (the red dashed line

is above the black square in (b)). Therefore the buckling pattern gradually disappears as

the stress relaxes in the fiber. One can expect that the buckling pattern will be maintained

if εh is large than εlrcr (εh is higher than the red dashed line in (b)) due to the fact that

εh is always larger than the critical strain for all range of strain rates. We also confirm the

permanent buckling pattern in simulations (we have not shown figures here).

4.3.3 Dynamic mechanical properties under cyclic loading

In this subsection, we show the influence of the cyclic loading frequency f and pre-strain

ε0 on the dynamic modulus |E∗| and loss factor (damping) tanδ . The dynamic mechanical

properties are determined through simulations. In particular, we pre-compress the laminates

to a pre-strain ε0 with a certain strain rate (t < t0), then we hold the pre-strain for a while

until the laminates relax to the equilibrium state (t0 < t < td). Finally, we cyclic load

the pre-compressed laminates to obtain the dynamic mechanical properties (t > td) (see
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Appendix B.4).

The dynamic mechanical properties of homogeneous viscoelastic material are identical

for the same value of fτ . Inspired by this, We examine whether the dynamic mechanical

properties of the laminate composite are also identical for the same value of fτ regardless of

the relaxation time. The laminate structure with v(f) = 0.3 undergoing pre-strain ε0 = 0.019

is simulated as an example. Figure 4.5 (a) shows the dynamic modulus (see red curve)

and loss factor (see black curve) of the composites whose fiber’s relaxation time is 0.1 s

(see solid curves) and 10 s (see square markers). We observe that the dynamic mechanical

properties are identical for different relaxation times when the fτ is the same. The frequency

dependence of the dynamic mechanical properties of the laminates is similar to that of

homogeneous material. In specific, the damping increase first and then peaks at (fτ)max =√
|E∗|min/ (|E∗|max)/2π (see the vertical gray dashed line), and finally decreases with the

increase in fτ . The dynamic modulus shows an increasing trend with the increase in fτ and

increases sharply when fτ is around (fτ)max. Moreover, the dynamic modulus approach

asymptotic values when fτ is small (such as fτ = 10−5) and large (such as fτ = 10).

We further examine the influence of pre-strain ε0 on the dynamic mechanical properties.

Figure 4.5 (b) and (c) show the dynamic modulus and damping with different pre-strain

ε0, respectively. Specifically, we examine the laminates with ε0 = 0 (black) , 0.016 (red),

0.019 (blue), 0.03 (green), 0.06 (violet), and 0.08 (brown). In terms of section 4.3.2, we

note that the buckling pattern gradually disappears (or can be maintained) in the holding

process (t0 < t < td) when the pre-strain ε0 is smaller (or larger) than the critical strain at

the quasi-static loading condition (εlrcr = 0.07482). Therefore, we can expect that pre-strain

has a distinct effect on the dynamic mechanical properties for ε0 < εlrcr and ε0 > εlrcr.

As expected, we observe that the dynamic modulus and loss factors have a weak depen-
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dence on the pre-strain when the pre-strain range from 0 to 0.06 (see the black, red, blue,

green and violet curves), while the dynamic mechanical properties show a sharp change when

pre-compression strain ε0 = 0.08 (see the brown curve). Remarkably, the dynamic modulus

significantly decreases when the pre-strain increases from 0.06 to 0.08 (compare the violet

and brown curves in (b)). For example, the dynamic modulus of laminates with ε0 = 0.06

is around six times of that of laminates with ε0 = 0.08 for fτ = 1. However, damping can

be significantly increased (or decreased) for the fτ < (fτ)max (or (fτ > fτ)max) when the

pre-strain increases from 0.06 to 0.08 (compare the violet and brown curves in (c)). For

example, the damping of the laminates with ε0 = 0.08 is around 7.6 and 0.6 times of that of

laminates with ε0 = 0.06 for fτ = 1×10−5 and fτ = 1, respectively. One can also note that

the pre-strain has a more negligible effect on the frequency dependence of the dynamic me-

chanical properties. The dynamic mechanical properties show similar frequency dependence

even when ε0 > εlrcr (see (b) and (c)).

4.4 Application of multiple-branch model for 3D-printed soft

laminate composite

In this section, we characterize the instability of the 3D-printed laminate composite in

experiments, validating the capability of our numerical analysis. Here, fiber and matrix

are manufactured with Digital material with Shore index 95 (DM95) and TangoPlus, re-

spectively. To accurately model the instability behavior, the visco-hyperelastic model with

multiple relaxation times is applied for both fiber and matrix, the material extraction pro-

cedures are provided in Appendix B.5.

We conduct the in-plane compression at room temperature (T = 21oC) with the MTS
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Figure 4.6: (a) The buckling pattern for (a.1) ε̇ = 10−3s−1 and (a.2) ε̇ = 10−1s−1. (b) The
dependence of experimental, simulation and theoretical critical strain on applied strain rate.
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system and the out-plane deformation is restricted by a transparent fixture. The structure

with the volume fraction v(f) = 0.2 is investigated. Specifically, The dimensions of samples

are prepared with d0 = 0.8mm and W0 = 4mm. We conduct the tests with three different

applied strain rates ε̇ = 10−3s−1, 10−2s−1 and 10−1s−1, and each test is repeated at least

three times. v(f) = 0.2 corresponds to non-dilute laminates (see Fig. 4.1). Therefore, the

macroscopic instability is expected; and the buckling pattern with long-wavelength is also

confirmed by experiment tests for low strain rate (ε̇ = 1×10−3s−1, see Fig. 4.6 (a.1)) and

high strain rate (ε̇ = 1×10−1s−1, see Fig. 4.6 (a.2)).

Figure 4.6 (b) shows the dependence of experimental (scatter square markers) and simu-

lated (dashed black curve) critical strain on the applied strain rate. The theoretical critical

strain is also presented for comparison (solid black curve). We note that the critical strain

decreases with an increase in strain rate and the numerical simulation can well capture this

rate dependence of the critical strain. We also note that the theoretical results could still

give qualitative predictions for the critical strain (see the solid black curve) even though the

fiber and matrix visco-hyperelastic materials.

The simulation results are lower than that of the experiments. Multiple potential reasons

could be attributed to the errors. For instance, the load cell should be accelerated to achieve

the stable strain rate we need in experiments, and friction in the fixture cannot be eliminated.

In addition, the material parameters are from the DMA test and the non-linear response of

fiber and matrix is characterized by the neo-Hookean model. Therefore, nonlinearity, such

as stiffening [8, 49] and damage [151, 169], beyond the capability of the neo-Hookean model

can cause deviation from the real scenarios. Furthermore, the interphases formed in the

3D-printing process could also affect the instability behavior of the soft laminates [5]. The

buckling of composites can be affected by materials imperfections [62, 63, 122] or geometry
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uncertainties [29, 37, 161]. We can qualify the effect of uncertainties through stochastic

analysis [42, 100].

4.5 Concluding remarks

In this chapter, we study the rate-dependent instabilities in visco-hyperelastic laminates

through post-buckling analysis. Based on the results for the hyperelastic laminates, we

categorize laminates into dilute and non-dilute laminates. The post-buckling of the visco-

hyperelastic non-dilute laminates can be simulated with the angle geometric imperfections.

To identify the buckling of visco-hyperelastic dilute laminates, we implemented the Cosine

function-shaped imperfections and wavenumber scanning. The post-buckling analysis indi-

cates that the critical strain of both dilute and non-dilute laminates are bounded by value

at extreme slow and fast loading cases and monotonically decreases with the increase in

the strain rates. We also note that critical wavenumber for dilute laminates is also rate

dependent. We provide an analytical method to determine the critical strain based on the

assumption that the critical strain is controlled by the contrast in the stress of fiber and ma-

trix. The theoretical results are in good agreement with the numerical solutions. Therefore,

we can predict that the critical strain will monotonically increase with the increase in the

applied strain rates if the soft matrix is visco-hyperelastic material and the stiff matrix is

hyperelastic material, as demonstrated by Alur and Meaud [3].

Next, we study the load-and-hold deformation mode. We find that the buckling pattern

disappears when the pre-strain (εh) is smaller than the critical strain (εlrcr) at the quasi-static

loading condition, while the buckling pattern is maintained if the holding strain εh is higher

than εlrcr. Therefore, we investigate the dependence of dynamic mechanical properties on

the pre-strain with two cases: the pre-strain ε0 larger and smaller than the εlrcr. When the
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pre-strain is smaller than εlrcr, dynamic mechanical properties have a similar frequency de-

pendence as the homogeneous viscoelastic materials, and the pre-strain has a slight effect on

the dynamic modulus and damping. When pre-strain is larger than εlrcr, dynamic mechani-

cal properties still show similar frequency dependence behavior. However, the pre-strain can

significantly change the value of dynamic modulus and damping.

We finally study the buckling of the 3D-printed soft laminate composite. The multiple-

branch visco-hyperelastic model is adopted for both matrix and fiber. We note that the

critical strain decrease with an increase in the strain rate and the numerical method can well

predict the rate-dependence of the critical strain. In addition, we find that the analytical

results can also predict the measured rate-dependent critical strain. Therefore, the analytical

method is still applicable for the identification of the critical strain for the laminates even

though both fiber and matrix are visco-hyperelastic materials with multiple relaxation times.

In this chapter, the non-linear response of fiber is described by the neo-Hookean model.

However, other non-linear effects such as softening [34, 154], stiffening [8, 49] and damage

[151, 169] are not included, and fully considering these nonlinearities could improve the

accuracy of numerical simulation, especially for composites with large deformations. This

chapter reveals that the instabilities of (hyperelastic and visco-hyperelastic) laminates are

dominated by the stress contrast in fiber and matrix. Therefore, we can design the lami-

nates with desired properties by carefully controlling the fiber-to-matrix stress contrast. For

instance, we can adjust the fiber-to-matrix stress contrast by tuning the relaxation time of

materials. In practice, we can adjust the relaxation time by changing the temperature or

light intensity in the process of additive manufacturing [149, 150]. Moreover, the instabili-

ties in visco-hyperelastic 3D fiber composites could also be controlled by the fiber-to-matrix

stress contrast and this could be a potential research direction in the future. In addition,
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the microstructure in soft composites can be sharply transformed by external stimuli re-

motely, such as electric and magnetic fields [53, 69, 72, 117]. Therefore, the properties of

soft composites can be customized remotely.
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CHAPTER 5

TOWARDS UNDERSTANDING THE ROLE OF

VISCOELASTICITY IN INSTABILITIES IN SOFT

PARTICULATE COMPOSITES*

Yuhai Xiang, Dean Chen, Nitesh Arora, Stephan Rudykh

(*Prepared for submission to a journal)

This chapter investigates the interplay between viscoelasticity and elastic instabilities

in soft particulate composites under finite deformation. We study the dependence of the

critical strain and wavelength on the applied strain rate in a soft particulate composite

system. The composite is subjected to in-plane deformation at constant strain rates, and

experiences microstructural buckling upon reaching exceeding the critical strain level. In the

numerical simulations, we employ the single and multiple-branch visco-hyperelastic models.

In addition, we perform experiments on the 3D-printed soft particulate composite. We

find that the critical strain in the composites – characterized by the single-branch model –

shows a non-monotonic dependence on the strain rate, reaching a maximum at a specific

strain rate. The corresponding critical wavelength dependence is similarly non-monotonic

and is not a smooth function of the strain rate. The buckling pattern with different critical

wavelengths can be activated by changing strain rates, and a broader set of possible buckling

modes can be triggered in composites with higher strain-energy factors. In the composites

characterized by the multiple-branch model, the critical strain function exhibit multiple

local maxima following a superposition of single-branch responses. The branch with a larger

relaxation time has a more significant effect on the critical strain. Moreover, we can increase

a certain local maximum of critical strain by increasing the corresponding strain-energy
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factor. Furthermore, the comparison of the experiment and simulation of the 3D-printed

particulate composite with a broad spectrum of relaxation times demonstrates the ability of

the numerical model to predict the critical buckling strain and pattern.

5.1 Introduction

Soft microstructured materials are prone to developing elastic instabilities frequently

leading to microstructure transformations [82]. In the post-buckling regime, the material

can exhibit auxetic behavior [16, 86, 110], shape transformations [17], tunable color [84], and

tunable bandgap [87, 146]. Moreover, buckling-induced microstructure transformations can

be employed to design soft robots [121].

The “small-on-large” framework [115] is frequently used to detect the onset of instabili-

ties. In soft composites, the instabilities can develop at microscopic and macroscopic length

scales [50]. The onset of the macroscopic or longwave instability can be detected through the

loss of ellipticity analysis requiring the evaluations of the tensor of elastic moduli. The tensor

of elastic moduli can be calculated through analytical or numerical micromechanics-based

homogenization approaches [56, 59, 127] or, alternatively, can be derived from phenomeno-

logical models [103, 104, 105, 106, 107]. The analysis of microscopic instability requires a

more demanding approach and usually employs the Bloch-Floquet method [50]. Triantafyl-

lidis et al. [137] applied the technique to study the instability of the two-phase composite

with circular inclusions arranged in a square and a diagonal 2D periodic unit cell with

various volume fractions. Li et al. [83] reported the experimental observations of the nu-

merically predicted instability-induced microstructure transformations in the soft particulate

composites. Chen et al. [28] examined the instability in the soft particulate composites with

varying configurations of periodically distributed inclusions and reported distinct instability
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patterns, including strictly doubled periodicity, seemingly nonperiodic state, and longwave

patterns. Arora et al. [5] studied the influence of inhomogeneous interphase on instabilities

in laminates. The effect of phase compressibility of the layered materials has been ana-

lyzed by Li et al. [87]. More recently, Li et al. [88] reported the experimental observations of

instability-driven domain formations in soft laminates. Rudykh and deBotton [127] analyzed

the macroscopic instabilities in 3D fiber composites. The series of works [7, 46, 85, 132] in-

vestigated the microscopic instability and associated buckling modes in deformable 3D fiber

composites.

Most theoretical and numerical studies examined the instability phenomenon in purely

elastic or hyperelastic materials. However, soft materials exhibit inelastic behavior. The

intrinsic viscoelasticity of soft materials [78, 151, 152] can significantly influence the buck-

ling phenomenon. Alur and Meaud [3] performed a numerical study of the rate-dependent

behavior of the viscoelastic laminates with a stiff elastic layer and soft viscoelastic matrix.

Slesarenko and Rudykh [131] reported the experimental observation of the tunability of wavy

patterns in soft viscoelastic laminates. However, little is known about the interplay between

viscoelasticity and the instability phenomenon in soft composites.

In this chapter, we examine the role of viscoelasticity in the instabilities in the soft partic-

ulate composite. Section 5.2 summarizes the numerical results, illustrating the dependence

of the buckling characteristics on loading rates for the soft composite described by (i) a

single-branch and (ii) multiple-branch visco-hyperelastic models. Finally, in Sec. 5.3, the ap-

plicability of the multiple-branch visco-hyperelastic model is illustrated in comparison with

the experimental results for the 3D-printed soft particulate composites.
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Figure 5.1: The dependence of the normalized stress-strain curves on Wi. The solid curve, square
and star marks represent the results for τ1 = 0.1s, 1s and 10s, respectively.

5.2 Results

5.2.1 Single-branch visco-hyperelastic model

We start by discussing the rate-dependent buckling behavior with the single-branch visco-

hyperelastic model. For the single-branch model, there are only two independent parameters:

relaxation time τ1 and strain-energy factor β1. We study the effect of τ1 and β1 on the critical

strain and wavelength.

The effect of relaxation time τ 1

Figure 5.1 shows the dependence of normalized stress component P11/µ
(m)
∞ on strain for

different values of the Weissenberg number, Wi = ε̇τ1. We illustrate the results for the com-

posite with β1 = 1 loading regimes from Wi = 10−4 to 10−1. In particular, the black, red,
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Figure 5.2: The dependence of (a) critical strain εcr and (b) normalized critical wavelength lcr on
Wi. (c) The buckling pattern corresponds to the red marker in (b). The circle, square, and star
marks represent the results for τ1=0.1s, 1s and 10s, respectively.

green, and blue curves and markers represent the mechanical response for composite with

the applied loading rates corresponding to Wi = 10−4, 10−3, 10−2, and 10−1, respectively.

The solid curves, square, and star markers correspond to the results for the composites with

τ1= 0.1s, 1s, and 10s, respectively. We note that the mechanical response is independent of

the relaxation time τ1 for a givenWi. The same values ofWi indicate that composites expe-

rience equivalent loading rates despite being characterized by different relaxation times τ1.

While this behavior can be expected for homogeneous material, in the particulate composite,

however, is not apparent since the deformation and the deformation rate vary spatially.

Figure 5.2 shows the dependence of the critical strain εcr (a) and normalized critical

wavelength lcr (b) on Weissenberg number Wi, and the buckling pattern (c) corresponding

to Wi = 10−2. We highlighted the critical wavelength for the composite loading with the

strain rate corresponding to Wi = 10−2 by the red star in Fig. 5.2 (b). The normalized

critical wavelength represents the number of inclusions in the repeating set of the buckled
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shape. The critical strain and wavelength are identified from the stress-strain curve and

the buckling pattern, respectively. Specifically, we monitor the macroscopic stress of the

composites during the compression, and we identify the strain at which the stress sharply

changes with the increase in the applied strain as the critical strain. The discrete Fourier

transform (DFT) method is employed to identify the critical wavelength of the buckled

composites (see Appendix B.6). Here, the circle, square, and star markers represent the

results for the composites with τ1= 0.1s, 1s and 10s, respectively. The critical strain is a

smooth function of the Weissenberg number. We connect the markers with a dotted curve

to indicate the rate dependence trend. However, the critical wavelength is not a smooth

function of the Weissenberg number, so the connecting curves between the markers show the

variation tendency only, not the actual value. High (such as Wi = 10) and low loading rates

(such as Wi = 10−7) can suppress the viscoelasticity. So that we can estimate the critical

strain and wavelength for the two extreme cases through the Bloch-Floquet analysis for

purely elastic composites [83, 132]. The results for the purely elastic composites are denoted

by the gray dashed curve in Fig. 5.2 (a) and (b). Note that, due to the high contrast in

µ(i)/µ
(m)
∞ , the critical strain and wavelength in the two limits (high and low loading rates)

are almost identical.

We note that the critical strain and wavelength are identical for the same Wi regardless

of τ1 (compare the different types of markers). Besides, the critical strain approaches the

value corresponding to the limits for sufficiently fast (or slow) loading rates. Specifically,

εcr = 0.1123 (for Wi = 10) and εcr = 0.11198 (for Wi = 10−7), approaching the critical

value for the elastic composites, εcr = 0.11078, as calculated through the Bloch-Floquet

analysis. Interestingly, for Wi ranging from 10−7 to 10, the dependence of the critical strain

on Wi is non-monotonic, with the maximum of the critical strain being significantly larger
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than the values in the two extreme cases. In particular, the peak value of the critical strain

is 0.1466, being larger than the critical strain (0.11078) from the Bloch-Floquet analysis

(compare the peak value of the black dotted curve and the value of the gray dashed curve

in Fig. 5.2 (a)). This composite behavior is different from that observed in the laminated

composite, for which the critical buckling strain is a monotonic function of the strain rate

bounded by the two limits for sufficiently fast and slow loading rates. For example, in the

laminates with viscoelastic matrix (and elastic layers), the critical strain increases with an

increase in the applied strain rate [3], and the opposite rate dependence will be observed if

the fiber is viscoelastic [131].

We observe that the rate dependence of the critical wavelength is non-monotonic (see

Fig. 5.2 (b)), reaching the maximum plateau at a range of intermediate values of Wi. In

particular, lcr reaches the highest plateau value when Wi is within the range of 10−3 to

10−2. For low loading rates, such as Wi = 10−7, and high loading rates such as Wi = 10,

the critical wavelength reaches the plateau value lcr = 4.44 being close to the value from

the Bloch-Floquet analysis (lcr = 4.56). Recall that the normalized critical wavelength lcr

represents the number of inclusions in the repeating sets of the instability-induced wavy

pattern; therefore, lcr might be expected to be an integer. However, a buckling pattern

may not attain a perfect periodicity (with an integer number of repeating inclusions), as

illustrated in Fig. 5.2 (c), where two alternating sets of six and seven inclusions can be ob-

served. To identify the wavelength of the instability-induced irregular quasiperiodic pattern,

we use the discrete Fourier transform (DFT) method. Through the analysis, we determine

the dominant wavelength in the instability-induced wavy pattern (the details are provided in

Appendix B.6). Note that the obtained normalized critical wavelength is not always an inte-

ger. For example, the DFT dominant wavelength of the composite undergoing deformation
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Figure 5.3: The dependence of (a) rate-dependent critical strain εcr, (b) peak point-related critical
strain εpcr and Weissenberg number Wip on β1.

at the rate corresponding to Wi = 10−2 (shown in Fig. 5.2 (c)) is 6.67; the value is between

the two wavelengths with an integer number of inclusions (6 and 7) of the corresponding

repeating blocks. We also note that the critical wavelength function is not smooth; with the

Weissenberg number increasing from 10−7 to 10, the critical wavelength takes the discrete

values of 4.44, 5.0, and 6.67, respectively. This observation indicates that different loading

rates may activate buckling modes with different wavelengths and the wavelength of the

activated modes does not continuously change with an increase in the loading rate.

The effect of the strain-energy factor β1

To illustrate the influence of the strain-energy factor on the buckling characteristics, we

first show the dependence of the critical strain εcr on the strain-energy factor β1 in Fig. 5.3

(a). Specifically, we show the rate-dependent critical strain for β1 changing from 0.1 to
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500. For later discussions, let us consider the dependence of the peak point-related critical

strain ε
p
cr (red curve) and Weissenberg numberWip (black curve) on the strain-energy factor

(see Fig. 5.3 (b)). Here, ε
p
cr is the maximum critical strain and Wip is the corresponding

Weissenberg number for a given β1 (ε
p
cr and Wip for β1 = 1 are illustrated by the violet

dashed lines in (a)).

We observe that the critical strain shows a similar rate dependence for different β1,

namely, the critical strain increases first, then, after reaching the maximum, it starts de-

creasing with an increase in Wi. For example, for β1 = 1, the critical strain increases until

its maximum value reaching ε
p
cr = 0.1466 at Wip = 5×10−3, and then decreases with a

further increase in Wi (see the violet curve in (a)). In addition, the critical strain increases

with an increase in β1 (compare the different colored curves in Fig. 5.3 (a)). Figure 5.3 (b)

shows that the peak point of critical strain, ε
p
cr increases with an increase in β1. However,

Wip shows the opposite trend, namely, it decreases with an increase in the strain-energy

factor approaching around 5×10−3 and 10−3 when β1 ≤ 1 and β1 ≥ 100. The dependence

of the critical strain on the strain-energy factor can be related to the effective modulus con-

trast of inclusions and matrix. For the hyperelastic particulate composites (in the absence

of viscoelasticity), it has been reported that the critical strain monotonically increases with

a decrease in the inclusions-to-matrix shear modulus contrast [83]. In visco-hyperelastic

materials, the effective modulus of the matrix increases with an increase in β1. Therefore,

the modulus contrast between inclusions and matrix is lower for composites with a larger

strain-energy factor for a given loading rate. As a result, the corresponding critical strain

increases with an increase of β1.

Figure 5.4 shows the dependence of the normalized critical wavelength lcr on Weissenberg

number Wi. The results are shown for the composites with various strain-energy factor
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Figure 5.4: The dependence of normalized critical wavelength l̄cr on Weissenberg number Wi for
composites with various strain-energy factor β1.

values β1 (from 0.1 to 500). Similar to the previous observations, here, we also find that lcr

is not a smooth function of the Weissenberg number, and it only switches between values

4.44, 5.0, 5.71, 6.67, and 10 with a change in Wi. We observe that slow (such as

Wi = 10−7) and fast (such as Wi = 10) loading rates limit the appearance of possible

buckling modes. In particular, lcr shifts between 4.44 and 5.0 only forWi = 10−7, and takes

a single value of 4.44 for Wi = 10 over a range of β1 (from 0.1 to 500).

In addition, we note that lcr shows an increasing trend with an increase in β1 for com-

posites with strain-energy factors smaller than 100. The normalized critical wavelength can

span a broader range of values with the change of Wi for higher β1. For example, lcr has

two possible values for β1 = 0.1 (see the light blue curve), three possible values for β1 = 0.5

and 1 (see the brown and violet curves), four possible values for β1 = 5 and 10 (see the

green and dark blue curves), and five possible values for β1 = 100 and 500 (see the red and



77

(a) (b)

10-9 10-7 10-5 10-3 10-1 101 103

0.11

0.12

0.13

0.14

 ( )

( )1pε( )2pε( )1pε( )2pε

10-10 10-8 10-6 10-4 10-2 100 102

0.11

0.12

0.13

0.14

 ( )

crε crε

Figure 5.5: The dependence of critical strain on strain rate for the composites with matrix char-
acterized by double-branch model with (a) τ1=1s and τ2=100 s, (b) τ1=0.01s and τ2=10 s. The
strain-energy factors are β1 = β2 = 0.5.

black curves). We can conclude that overall a broader set of possible buckling modes can be

activated in composites characterized by higher strain-energy factors.

5.2.2 Multiple-branch visco-hyperelastic model

In this section, we examine the rate sensitivity of the critical strain in the composite with

the matrix characterized by the multiple-branch visco-hyperelastic model. Figure 5.5 shows

the dependence of critical strain on strain rate for the composites with matrix described by

the double-branch model (corresponding to M = 2 in Eq. 2.25). The results are shown

for the composites with β1 = β2 = 0.5, and τ1 = 1s and τ2 = 100 s in Fig. 5.5 (a);

and for the case of β1 = β2 = 0.5, and τ1 = 0.01s and τ2 = 10 s in Fig. 5.5 (b). The

continuous and dashed curves represent the results for the double-branch and single-branch
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models, respectively. The single branch models are characterized by their corresponding

strain-energy factor and relaxation times: β1 = 0.5, τ1 = 1s (the black dashed curve) and

β2 = 0.5, τ2 = 100s (the red dashed curve) in Fig. 5.5 (a); and β1 = 0.5, τ1 = 0.01s (the

black dashed curve) and β2 = 0.5, τ2 = 10s (the red dashed curve) in Fig. 5.5 (b).

We observe that the critical strain function is characterized by two local maxima (or two

peaks) for both cases. Interestingly, the strain rate values (corresponding to the maxima)

coincide with those of the single-branch models with corresponding relaxation times. For

example, ε̇p(1) and ε̇p(2) in Fig. 5.5 (a) is the strain rate corresponding to peaks for the

composite with the singe-branch model with β1 = 0.5, τ1 = 1s and β2 = 0.5, τ2 = 100s,

respectively (see the perpendicular dashed gray lines). We also observe that the peak corre-

sponding to the larger relaxation time is higher than the peak corresponding to the shorter

relaxation time. In particular, the critical strain is higher for the value corresponding to

ε̇p(2) than the value corresponding to ε̇p(1) (see the blue curves). This observation indicates

that for the double-branch model with the same strain-energy factor (β1 = β2), the branch

with a larger relaxation time plays a more dominant role in the determination of the critical

buckling strain.

Figure 5.6 displays the dependence of the critical strain on strain rate for the composites

with matrix characterized by the three-branch model (M = 3 in Eq. 2.25) in Fig. 5.6 (a),

and the five-branch model (M = 5 in Eq. 2.25) in Fig. 5.6 (b). In Fig. 5.6 (a), we show the

three-branch model with two cases: β1 = β2 = β3 = 1 as well as τ1 = 0.01s, τ2 = 1 s and

τ3 = 100 s (see the blue curve); β1 = 10 and β2 = β3 = 1 as well as τ1 = 0.01s, τ2 = 1 s

and τ3 = 100 s (see the violet curve). In Fig. 5.6 (b), we study the five-branch model with

β1 = β2 = β3 = β4 = β5 = 1 as well as τ1 = 0.01s, τ2 = 0.1 s, τ3 = 1 s, τ4 = 10 s

and τ5 = 100 s (see the pink curve). All the dashed curves denote the results of the single-
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Figure 5.6: The dependence of the critical strain on strain rate for the composites with matrix
characterized by (a) the three-branch model and (b) the five-branch model.
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branch model with the corresponding strain-energy factor and relaxation time. For instance,

the red, gray, and green dashed curves in Fig. 5.6 (a) denote the results with β1 = 1 and

τ1 = 0.01s, β2 = 1 and τ2 = 1s as well as β3 = 1 and τ3 = 100s, respectively.

As expected, the values of the strain rate ε̇p(α) (α = 1, 2, and 3) corresponding to

the maxima coincide with those of the single-branch models with corresponding relaxation

times. In particular, ε̇p(α) is the strain rate corresponding to peaks for the composite de-

scribed by the singe-branch model with βα and τα (see the perpendicular green, gray, and

red dashed lines in Fig. 5.6 (a)). Similar to the double-branch model, the magnitude of the

peak corresponding to the shorter relaxation time is also lower for the three-branch model.

In particular, the critical strain corresponding to ε̇p(1) is lower than the value corresponding

to ε̇p(2) (compare the perpendicular red and gray dashed lines) and the critical strain corre-

sponding to ε̇p(2) is lower than the value corresponding to ε̇p(3) (compare the perpendicular

gray and green dashed lines). In addition, we note that the critical strain corresponding to

the peak increases as the related strain-energy factor increases. For example, an increase of

β1 from one to ten, leads to the corresponding magnitude of the peak increasing from 0.11 to

0.16 (compare the violet and blue curves in Fig. 5.6 (a)). On the contrary, the corresponding

strain rate slightly decreases with the increase in β1 (the perpendicular violet dashed line

is the left side of the perpendicular red dashed line). Therefore, the results indicate that a

higher strain-energy factor βα can increase the corresponding local peak and decrease the

corresponding strain rate ε̇p(α). These observations are consistent with the numerical results

of the single-branch model. For the single-branch model, the maximum critical strain ε
p
cr

and the corresponding strain rate increases and decreases with an increase in the strain-

energy factor (see the discussion of Fig. 5.3 (b)). Moreover, we find that the increase of the

strain-energy factor βα can even make its adjacent local peak invisible. For example, the
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local peaks corresponding to ε̇p(2) disappear when β1 increase from one to ten (see the violet

curve in Fig. 5.6 (a)).

For the five-branch model, we observe that there is a single peak only (see the pink curve

in Fig. 5.6 (b)), and the ε̇p almost coincides with the value of strain rate (corresponding

to the maximum) of the single-branch model with the largest relaxation time (τ = 100 s).

These observations support the hypothesis that the branch with a larger relaxation time in

the multiple-branch model possessing the identical strain-energy factor determines the value

of ε̇p.

5.3 Application of multiple-branch model for 3D-printed soft

particulate composite

In this section, we apply the multiple-branch model to capture the instability behavior

of the 3D-printed soft particulate composite. To model the 3D-printed soft particulate

composite characterized by a broad spectrum of relaxation times [131, 133], Wu et al. [149],

[159], we adopt the multiple-branch visco-hyperelastic model.

The composite samples are fabricated with the help of the Objet Connex 260 3D printer.

The dimensions of the specimens are 80mm×60mm (width × height) with 6mm thickness

in the out-plane direction. We examine the composites with a single column of inclusions

with the spacing ratio ξ = 0.8. The height of the primitive unit cell and the diameter

of the inclusions are 2.5mm and 2mm, respectively. The soft matrix and stiff inclusions

are printed with TangoPlus and VeroBlack, respectively. The stiff inclusions are modeled

by incompressible neo-Hookean materials with µ(i)/µ
(m)
∞ = 103. Based on the dynamic

mechanical analysis (DMA) characterization data [163], the TangoPlus material is modeled
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Figure 5.7: The dependence of critical strain on applied strain rate for the single column composite
system.

by the multiple-branch visco-hyperelastic model with M = 10 in Eq. 2.25. The identified

material parameters for the matrix (3D printed in TangoPlus) are provided in Appendix B.5

The in-plane compression tests are carried out by the MTS compression machine at

room temperature around 21oC. The deformation in the thickness direction is restricted by

a transparent fixture. The compression is applied at different strain rates: ε̇ = 10−3s−1,

5×10−3s−1, 10−2s−1, 5×10−2s−1, and 10−1s−1. At least four samples are tested for each

strain rate.

Figure 5.7 shows the dependence of the critical strain on the applied strain rate. In

particular, the experimental (the black makers) and numerical (the red curve) critical strain

is presented in Fig. 5.7. The critical strain increases with an increase in the strain rate (within

the considered loading range). Our simulations also show a similar trend capturing the

rate-dependent behavior qualitatively. We note that, here, the critical strain monotonically

increases with an increase in the applied strain rate.
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Figure 5.8: (a) Experimental bucking pattern with (a) ε̇= 10−3s−1 and (b) ε̇ = 10−1s−1. The
simulated bucking pattern with (c) ε̇ = 10−3s−1 and (d) ε̇ = 10−1s−1 for compressive strain 20%.

Figure 5.8 illustrates the post-buckling patterns observed in experiments (a) and (b), and

in simulations (c) and (d). The composite is subject to a compressive strain of 20% with

strain rates ε̇ = 10−3s−1 (see (a) and (c)) and ε̇ = 10−1s−1 (see (b) and (d)). In experiments,

we observe that the critical wavelength increases with an increase in the applied strain rate

(see (a) and (b)). In particular, the normalized critical wavelengths are lcr = 6 and 8 for

ε̇ = 10−3s−1 and 10−1s−1, respectively. Our simulations also predict a similar increase in the

critical wavelength, as illustrated in (c) and (d). The numerical prediction of the normalized

critical wavelengths for ε̇ = 10−3s−1 and 10−1s−1 are lcr = 5 and 8, respectively.

The modeling overestimates the critical strain (see Fig. 5.7) and the predicted post-

buckling patterns do not perfectly match the experiments. In particular, the numerical

wavelength is smaller than that of experiments for ε̇ = 10−3s−1 and the predicted buckling
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amplitude is visibly smaller than that of the experimental pattern for ε̇ = 10−1s−1 for the

same compressive strain level, 20% (see Fig. 5.8). The difference between the numerical

and experimental results may be attributed to multiple reasons, such as possible damage

occurring in materials during deformation [80, 151, 169] and the friction in the experiment

setup, among other factors. Moreover, the material parameters are extracted from the DMA

that characterize the material properties in the small deformation range. In the experiments,

however, the composite experience high-level deformations (especially the matrix material

in the area between the inclusions). In addition, the high-level deformations could cause

stiffening behavior of the polymeric materials [8, 34, 49, 151]. However, in our numerical

simulation, the equilibrium and instantaneous responses of the matrix material are described

by the neo-Hookean model which is unable to capture the stiffening behavior in the deforma-

tion process accurately. We also note that the interphase formed in the 3D-printing process

may also influence the instabilities in soft composites [5]. Furthermore, the composite buck-

ling behavior may be affected by the imperfections or uncertainties in materials [62, 63, 122]

or geometry [29, 37, 161] of composite. The influence of uncertainties can be quantified and

implemented into the numerical framework through stochastic analysis [42, 100].

5.4 Concluding remarks

We examined the buckling of the visco-hyperelastic particulate composite with the matrix

material described by the visco-hyperelastic model. We started by considering the depen-

dence of the critical strain and wavelength on the applied strain rate in the composite with

the matrix characterized by the single-branch visco-hyperelastic model. We found that the

stress-strain response of the composites (subjected to compression with a constant strain

rate) is identical (both before and after buckling) for a given Weissenberg number regardless
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of the relaxation time, although the local deformation history varies significantly. We ob-

served that the critical strain was not monotonically dependent on the applied strain rate.

In particular, the critical strain increases first, then reaches its maximum value at a certain

strain rate, and finally decreases with an increase in strain rate. Additionally, we noted that

the Weissenberg number (corresponding to the maximum of critical strain) sightly decreased

with an increase in the strain-energy factor (instantaneous shear modulus). In addition, the

critical wavelength was also found to be non-monotonically depending on the applied strain

rate. The critical wavelength shows an increasing trend with an increase in the instantaneous

shear modulus.

The dependence of the critical strain on the strain-energy factor can be explained in

terms of inclusion-to-matrix shear modulus contrast. In particular, the instantaneous shear

modulus of the matrix increases with the increase in the strain-energy factor. As a result,

the instantaneous inclusion-to-matrix shear modulus contrast decrease with an increase in

the strain-energy factor. Accordingly, the corresponding critical strain shows an increasing

trend. However, the rate dependence of the critical strain cannot be fully explained based on

the modulus contrast. The instantaneous modulus of the visco-hyperelastic matrix mono-

tonically increases with the increase in strain rate. Therefore, if we consider the influence

of strain rate on the effective modulus contrast only, the critical strain will monotonically

increase with an increase in the applied strain rate; and critical strain will be bounded by

the critical buckling strain at the extremely slow and fast loadings. However, the critical

strain shows a non-monotonic strain rate dependence. This observation hints at a more

complex buckling behavior stemming from the viscoelasticity of the particulate composite.

An important component of the complexity is the spatial inhomogeneity of deformation (and

rate of deformation). As a result, the estimates based on the rate-dependent instantaneous
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modulus may not be accurate.

We further explored the instability behavior of the composites with the matrix character-

ized by a multiple-branch visco-hyperelastic model. We found that the critical strain versus

the applied strain rate curve obtained by the M -branch model tends to have an M number

of local maxima (peaks). The strain rates corresponding to the local maxima coincide with

those obtained by the single-branch models with the corresponding relaxation times. The

branch with the larger relaxation time can significantly affect the local peaks and even make

other peaks (with shorter relaxation time) invisible. The local maximum can be significantly

increased by increasing the corresponding strain-energy factor. Therefore, the branch with

a larger strain-energy factor can significantly influence the rate dependence behavior of the

critical strain.

Finally, we experimentally studied the buckling of the 3D-printed soft particulate com-

posite. The 3D printed matrix material (TangoPlus) used in experiments is characterized

by a broad spectrum of relaxation times. Therefore, the multiple-branch visco-hyperelastic

model is adopted in numerical simulations for the corresponding matrix. The experimental

critical strain and wavelength increase with an increase in the applied strain rate, and the

numerical modeling can qualitatively capture the rate dependence of the critical strain and

wavelength.

Our results provide insights into the complex role of viscoelasticity in the buckling be-

havior of soft composites. The results can be helpful for the design of soft metamaterial.

In particular, the instabilities combined with viscoelasticity can be used to design metama-

terials with novel properties that pure elastic metamaterials cannot achieve. For example,

viscoelastic metamaterials can show seemingly contradictory behavior - positive and nega-

tive Poisson’s ratio, by applying different strain rates [22, 71]. Technically, we can tailor
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the properties of the soft metamaterials by regulating their viscoelasticity. In practice, the

viscoelasticity of soft materials can be tuned by adjusting the temperature and scanning

light intensity in the 3D printing process [149, 150]. In addition, the electric [1], mag-

netic [53, 117, 125], and thermal loading [27, 162] can be remotely applied to control the

rate-dependent behavior. Therefore, the mechanical properties can be tuned remotely by

programmable external stimuli.



88

CHAPTER 6

TUNABLE MECHANICAL BEHAVIORS OF

VISCO-HYPERELASTIC PARTICULATE COMPOSITE

THROUGH BUCKLING*

Yuhai Xiang, Dean Chen, Stephan Rudykh

(*Prepared for submission to a journal)

Through numerical simulation, we demonstrate that we can tune the dynamic modu-

lus and damping by pre-compress the particulate composites with different strain rates.

We show that the tunability of the dynamic mechanical properties stems from the rate-

dependent critical buckling strain. Moreover, we observe that the dynamic negative stiffness

of the composites after buckling is triggered when the applied strain rate is below a certain

value. Furthermore, we observe that the rate dependence of the energy absorption under

large deformation for particulate composites is quite different from that for homogeneous

materials. For slow loading rates, the particulate composite shows a higher capability than

homogeneous materials to absorb energy. As the applied strain rates increase, the energy

absorption capability of homogeneous materials surpasses that of particulate composites in

the intermediate loading rate regime. With a further increase in the strain rate into the

high loading rate regime, homogeneous materials and the composite show similar abilities to

absorb energy.

6.1 Introduction

Instabilities in soft microstructured materials leading to dramatic pattern transformation

[82] are exploited to design materials with tunable and target properties, such as tunable
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bandgap material [87, 126, 146], auxetic material [16, 86, 110], the materials with negative

viscoelasticity [71] and tunable stiffness [101].

The framework of small perturbations superimposed on finite deformation [115] is fre-

quently employed to detect the onset of instability in soft materials. In composites, the

instability may develop at macroscopic and microscopic scales [50]. Macroscopic insta-

bilities (longwave instabilities) can be detected with loss of ellipticity analysis which re-

quires evaluating the effective tensor of elastic moduli. The effective tensor of elastic mod-

uli can be calculated either through phenomenological models [103, 104, 105, 106, 107] or

the micromechanics-based homogenization approaches [2, 35, 60, 95, 96, 127]. For micro-

scopic instabilities, Bloch-Floquet analysis is widely used to identify the onset of buckling

[5, 46, 48, 85, 87, 90, 114, 132, 136, 138].

The pioneering work on both microscopic and macroscopic instability of the particulate

composites was reported by Triantafyllidis et al. [137] who investigated the instability of

the compressible neo-Hookean porous and rigid particulate composites under biaxial plane

compression. Michel et al. [108] examined the microscopic and macroscopic instability of

the particulate composites with different particle distribution, particle volume fraction, the

matrix’s constitutive model and the particles’ shape. Li et al. [83] observed the microstruc-

ture transformation induced by elastic instabilities in particulate composites in experiments.

Chen et al. [28] extensively examined the buckling pattern in soft particulate composites via

numerical simulation. Most recently, Xiang et al. [153] explored the rate-dependent critical

strain and wavelength in soft visco-hyperelastic particulate composites.

The majority of the studies on particular composites focus on purely elastic or hyper-

elastic materials. However, the influence of instability together with viscoelasticity on the

mechanical behavior of the particulate composite is less reported. Most soft composites are
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fabricated with a polymeric material that possesses strong viscoelasticity [133, 150, 151].

Therefore the instabilities and the corresponding mechanical behavior in the soft particulate

composite are expected to be significantly affected by the applied strain rate.

The present work studies the non-linear mechanical behavior induced by the instability

of visco-hyperelastic particulate composites. First, we study the dynamic mechanical prop-

erties of the pre-strained composites. Then, we examine the stiffness of buckled composites.

Finally, we investigate the energy absorption of composites undergoing finite deformation for

different applied strain rates. Our numerical results demonstrate that the instability coupled

with viscoelasticity can provide an opportunity to tune material properties.

6.2 Results

We start with investigating the effect of the pre-strain and the rate of the pre-strain on

the dynamic modulus |E∗| and loss factor (damping) tanδ . In particular, we calculate the

dynamic mechanical properties under the pre-strain state. Firstly, we load the particulate

composite to the pre-strain ε0 with a certain dimensionless strain rate Wi (t < t0). Then

we hold the particulate composite at the pre-strain ε0 until relaxing to the equilibrium state

(t0 < t < td). Finally, we employ the cyclic loading on the pre-strained composites to obtain

the dynamic mechanical properties (td < t < tf ). The details for the determination of the

dynamic mechanical properties are given in Appendix B.4.

Figure 6.1 shows the dynamic modulus ((a) and (c)) and loss factor ((b) and (d)) for com-

posite one ((a) and (b)) and two ((c) and (d)). We demonstrate the dependence of dynamic

mechanical properties on the strain rate (Weissenberg number) in the pre-strain process

(t < t0) for different pre-strain ε0 ranging from 0 to 0.16. For homogeneous viscoelastic ma-

terials, the dynamic mechanical properties are independent of strain rate in the pre-strain
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(a) (b)

(c) (d)

Figure 6.1: (a) The dependence of the dynamic modulus and (b) loss factor on pre-strain rate for
composite one; (c) The dependence of the dynamic modulus and (d) loss factor on pre-strain rate
for composite two with different pre-strain ε0.
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loading process for any value of the pre-strain ε0. However, for this particulate composite,

one can observe that there exists a threshold strain εthcr . The dynamic mechanical properties

are indifferent to the strain rate in the pre-strain loading process for ε0 < εthcr . Conversely,

the dynamic mechanical properties are highly dependent on the strain rate in the pre-strain

loading process for ε0 ≥ 0εthcr . For ε0 < εthcr , the dynamic modulus increase with the increase

in pre-strain. However, the loss factor shows the opposite trend (see the black, red, dark

blue, and green curves in (a) and (b); see the black, red, dark blue, green and violet curves in

(c) and (d)). The threshold strain εthcr are around 0.14 and 0.15 for composite one and two,

respectively. For composite one, different strain rates in the pre-strain process may result

in distinct dynamic mechanical properties when ε0≥0.14. For instance, when ε0 = 0.16, the

dynamic modulus increases first, then reaches a plateau, and finally it decreases with the

increase in strain rate, while the loss factor shows the opposite dependence on strain rate

(see the light blue curves in (a) and (b)). The dynamic mechanical properties of composite

two show similar rate dependence as composite one for ε0 ≥ 0.15 (see the light blue and

brown curves in Fig. 6.1 (c) and (d)).

To interpret the rate-dependent dynamic mechanical properties, we show the rate-depe-

ndent critical strain of the composite one in Fig. 6.2 (a) and illustrate the dynamic modulus

of the composite one with ε0 = 0.16 in Fig. 6.2 (b). The details to obtain the rate-dependent

critical strain are given in Appendix B.2 When we load the composites relatively slower (such

as Wi = 10−5) and faster (such as Wi = 0.1) (see the vertical dashed black lines), ε0 is

larger than the corresponding critical strain. As a result, buckling occurs. Once bucked, the

microstructure pattern is dramatically transformed. However, for intermediate strain rates

such as Wi = 10−3 (see the vertical dashed gray line), the ε0 is smaller than the correspond-

ing critical strain, so buckling does not appear. As the different microstructure patterns are
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Figure 6.2: (a) Rate-dependent critical strain for composite one. (b) The dependence of dynamic
modulus of composite one (subjected to the pre-strain ε0 = 0.16) on strain rate. (c) Illustration of
a case where buckling patterns are activated by the cyclic loading.

triggered by different pre-strain rates, we can expect that the dynamic mechanical properties

should depend on the loading rate in the pre-strain loading process. We can observe that

the dynamic modulus corresponding to Wi = 10−5 and 0.1 is significantly lower than the

value corresponding to Wi = 10−3 (compare the values corresponding to dashed black and

gray lines in (b)). We use the hollow markers to represent the cases where the instability

has already occurred (this rule is also applied for makers in Fig. 6.1 (a)-(d)).

In addition, we note that for some pre-strain rates, such as Wi = 10−2 (see the vertical

dashed blue line), the pre-strain is slightly smaller than the critical strain, so the buckling

does not occur in the pre-loading process, but we observe that the buckling pattern is acti-

vated in the cyclic loading process. In particular, we show the microstructure of composite

one undergoing Wi = 10−2 at t0, ts and tf in Fig. 6.2 (c). We note that the buckling does

not appear at t0 and ts, but appears at tf . We use the half-hollowed markers to represent

the cases where the buckling is activated in the cyclic loading process in Fig. 6.1 (a)-(d). One

can observe that the dynamic mechanical properties (corresponding to the cases where the
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(a) (b)

Figure 6.3: The stress-strain curves for (a) composite one undergoing Wi=0.01, 0.1, 0.15 and 0.16
and (b) composite two undergoing Wi=0.01, 0.05, 0.06 and Wi=0.07.

buckling is activated in the cyclic loading phase) are different from the values for the cases

where there is no buckling for the whole loading process (compare the filled and half-hollowed

markers in Fig. 6.2 (b)).

Next, we examine the stiffness of the composites after buckling. Figure 6.3 shows the first

Piola-Kirchoff stress component P11 versus the applied strain ε for the composite one (a)

and two (b). We illustrate the results of the composite one underWi range from 0.01 to 0.16

in (a); as well as composite two under Wi range from 0.01 to 0.07 in (b). We note that the

stress response (especially in the post-buckling regime) dramatically depends on the strain

rate. In particular, we find that below a certain Weissenberg number Wic, discontinuous

buckling can be observed. Discontinuous buckling is a case where the post-buckling stiffness

is negative [32]. Specifically, Wic is around 0.16 and 0.07 for the composite one and two,

respectively. Namely, the stiffness of the composite one and two right after buckling are
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(a) (b)

Figure 6.4: (a) Illustration of the dissipated energy and the applied work per unit volume in one
cycle; (b) the dependence of relative hysteresis of the particulate composites and homogeneous vis-
coelastic materials on strain rate.

negative when Wi is smaller than 0.16 and 0.07, respectively (see the red, blue and green

curves).

Finally, we explore the dependence of energy absorption capability under finite deforma-

tion on strain rate. In Fig. 6.4 (a), we illustrate the stress-strain response undergoing loading

and unloading path with a certain constant value of dimensionless strain rate Wi (see the

black curve in (a)). The capability of the energy absorption is characterized by the relative

amount of hysteresis, H, which is defined as ψd/ψl [38]. Here ψd is the energy dissipated per

unit volume during the loading and unloading path (see the shaded gray area in Fig. 6.4 (a))

and ψl is the amount of applied work per unit volume during the loading phase only (see

the orange slash area in Fig. 6.4 (a)). For a given Wi, we can calculate the corresponding

relative hysteresis. Accordingly, the rate dependence of the hysteresis can be obtained.
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In Fig. 6.4 (b), we show the rate dependence of hysteresis for the composite one (black

curve) and two (red curve), as well as the homogeneous viscoelastic material (green curve).

Here the homogeneous viscoelastic material represents the material that only consists of the

matrix material of the particulate composite. We focus on the cases where the maximum

applied strain εmax is sufficiently large to trigger the instabilities in the particulate com-

posites. In these cases, the rate dependence of the relative hysteresis in composites is quite

similar for different maximum applied strains εmax. Thence, εmax = 0.25 is taken as an

example for quantitative comparison.

We note that relative hysteresis for the particulate composites shows different rate-

dependent behavior compared with homogeneous material. In particular, relative hysteresis

for particulate composites shows two local maxima while there is just one maximum for

homogeneous material. One can observe that the relative hysteresis of the homogeneous

material is higher than that of particulate composites for the intermediate value of loading

rates. In particular, the hysteresis of homogeneous material is higher than that of the com-

posite one and two for 5×10−4 < Wi < 0.04 and 4×10−4 < Wi < 0.04. For relatively

slower loading rates, such as Wi < 5×10−4 (or < 4×10−4) for composite one (or two), the

hysteresis of the homogeneous material is lower than that of the particulate composites. For

Wi > 0.4, the relative hysteresis of the two types of composites and homogeneous material

is similar.

We find that the minimum value (between two peaks) of the relative hysteresis is smaller

for the composites with a high periodicity aspect ratio η. By contrast, dimensionless strain

rateWi (corresponding to the minimum value between two peaks) increases with the increase

in periodicity aspect ratio (compare the black and red curves). In particular, the minimum

values (between two peaks) of the relative hysteresis are around 0.669 at Wi = 5×10−4 and
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around 0.123 at Wi = 3×10−3 for composite one and two, respectively. In addition, the

relative hysteresis of composite one is higher than that of composite two when Wi ranges

from 1.5×10−4 to 0.04. For Wi < 1.5×10−4, the relative hysteresis of composite one is still

larger than that of composite two for 1×10−5 < Wi < 6×10−5. Otherwise, the opposite is

true.

6.3 Conclusions and Discussions

We explore the buckling-related mechanical behavior of particulate composites under

large deformation. First, we investigate the dynamic modulus and loss factor of composites

under the pre-compression state. We observe that the pre-strain rate can result in distinct

dynamic mechanical properties even for the same pre-compression strain when the pre-strain

is higher than a threshold strain. Therefore, we can tune the dynamic mechanical properties

of the composite by tuning the pre-loading velocity.

Next, we study the post-buckling stress-strain response and find that the negative stiff-

ness in the post-buckling regimes appears when the Weissenberg number is below a specific

value, demonstrating that the viscoelasticity can sharply alter the post-buckling mechanical

response of the composite. We can tailor the post-buckling stiffness by selecting the appro-

priate relaxation time to enable the applied Weissenberg number to be within the required

value range.

Finally, we explore the energy absorption under large deformation; the capability of the

energy absorption can be tuned by changing the geometric parameters. The rate dependence

of relative hysteresis of particulate composites shows a sharp distinction from that of the

homogeneous material. In particular, the hysteresis versus strain rate curve has a mono

maximum for homogeneous material, while it has two peaks for particulate composites.
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The energy absorption capability of particulate composites is lower (higher) than that of

homogeneous material for intermediate (relatively low) dimensionless strain rate. We can

adjust the energy absorption capability by selecting geometric parameters and relaxation

time. The relaxation time is selected to make the applied dimensionless strain rate Wi in

the required range.

Theoretically, the relaxation time of polymeric material is connected to the microscopic

quantities of the polymer chain, such as the length and diffusion of the free chains (Xiang et

al., 2019; Ying et al., 2016). Therefore, the relaxation time can be controlled by changing

the microscopic physical quantities. In practice, we can tune the microscopic quantities by

adjusting the manufacturing parameters, such as the light intensity or temperature in the

process of 3D printing (Wu et al., 2018; Xiang et al., 2020a).
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CHAPTER 7

CONCLUSIONS AND PERSPECTIVES

This dissertation focused on the interplay between viscoelasticity and instability in two

types of soft composites: soft particulate and laminated composites. Through numerical

simulation, experiment, and theoretical analysis, we have a deeper understanding of the

buckling in soft visco-hyperelastic composites and demonstrate that the combination of vis-

coelasticity and instability can be employed to tune the mechanical behavior of the soft

composites, such as the dynamic mechanical properties and energy absorption.

We close the dissertation by presenting several prospective research in the future.

1. More fundamental experiments could be carried out to further verify our numerical

results. For example, the soft material described by the single-branch visco-hyperelastic

model can be synthesized. So that the rate-dependent properties predicted in our simulations

could be validated.

2. To our knowledge, a general theoretical framework to identify the critical strain and

wavelength onset of instability in visco-hyperelastic periodical composites is still absent.

Further efforts in the theoretical aspects would help us better understand the interaction

between viscoelasticity and instability.

3. The instabilities in hyperelastic magnetoactive composites have been extensively ex-

plored [54, 72, 117, 125, 165]. Yet the instability in viscoelastic magnetoactive composites

remains unexplored.

4. To date, the viscoelasticity has only been explored in simple structures such as partic-

ulate composite and laminates. The role of viscoelasticity in the mechanical metamaterials

with more intricated geometry remains overlooked.

5. The majority of the studies investigate the strain rate dependence of the instabilities in
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viscoelastic composites; However, few studies focus on the influence of temperature [27, 26].

The combination of the applied strain rate and temperature may expand the design space

of soft composites/metamaterials.
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APPENDIX A

SUPPLEMENTARY INFORMATION:

VISCO-HYPERELASTICITY OF PHOTOCURED POLYMERS

A.1 Dimensions of specimens

The dimensions of the specimens are shown in Fig. A.1.

Figure A.1: The dimensions of a specimen (Unit: mm).

A.2 The viscosity of dangling chains

To obtain the nonlinear viscosity of dangling chains in Sec. 3.3.2, here, we briefly illustrate

the relation between the viscosity of dangling chains and deformation. Different from the free

chains, the reptational motion of dangling chains is suppressed by their crosslinked ends. Arm

retraction, as the relaxation mechanisms for arm polymers, is also responsible for the stress

relaxation of dangling chains [11, 24, 33, 143, 144], therefore, the rate-dependent behaviors

of the star arms and dangling chains are equivalent [24, 33, 55, 143]. Here we introduce the

theory of Pearson and Helfand [118], the viscosity η0 of the arms of star polymer in this

work is expressed as

η0 = Ge
ζL2eq

2ΥkBT

(
π

γ

)1/2

exp(Υ)/2Υ (A.1)
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where ζ is the friction coefficient of the polymer chains, and Y can be written as

Y = v′
(
M

Me

)
=

4

5

Nb2

d2
v′ (A.2)

where M is the molecular weight of an arm; Me is the molecular weight between entangle-

ments; v′ is estimated as 0.6 [118]; N is the number of the Kuhn monomers of an arm; d is

the tube diameter, wherein the arms are confined; b is the length of the Kuhn monomers;

Leq is the equilibrium contour length of an arm, which can be expressed by Edwards [40] as

Leq =
M

Me
d =

4Nb2

5d
(A.3)

where Ge is the plateau modulus, which can be expressed as [40, 158]

Ge =
ρRT

Me
= nkBT

4Nb2

5d2
(A.4)

where ρ is the mass density of arms, R is the molar gas constant, n is the chain number

density of arms. Here we assume that the tube diameter of an arm d have a similar evolution

relationship with deformation as free chains, thus, d can be expressed as [170]

d = α(F)d0 (A.5)

where α(F) is expressed as the Eq. 3.16 in Sec. 3.3.2, d is the tube diameter of the arm under

reference configuration. Hence, Eq. A.1 can be rewritten as

η0 = η′α(F) exp
(

Γ′

α(F)2

)
(A.6)
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where,

η′ =
(
4Γ

5

)−1/2 b2nN
√
πζ

5 (v′)5/2

Γ′ =
12

25

Nb2

d20

(A.7)

The Eq. A.6 can be directly applied to Sec. 3.3.2.
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APPENDIX B

SUPPLEMENTARY INFORMATION: INSTABILITIES IN

VISCO-HYPERELASTIC SOFT COMPOSITES

B.1 Weissenberg number in laminates

Figure B.1: The nominal stress versus the applied strain for diverse Weissenberg numbers with
different relaxation times.

Weissenberg number is defined as Wi = ε̇τ , which is usually used as the dimensionless

“loading rate”. In homogeneous material and even particulate composite (see Sec. 5.2.1),

the mechanical response will be identical for the same Weissenberg number regardless of the

relaxation time. Here, we justify the Weissenberg number as the dimensionless loading rate

for laminate composite. As illustrated in Fig. B.1, we show the nominal stress versus the

strain for different Wi with different relaxation times. In particular, we applied Wi = 10−5
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(black), Wi = 10−4 (red), Wi = 10−3 (green), Wi = 0.01 (blue), Wi = 0.1 (cyan) and

Wi = 1 (pink) to the laminate structure with relaxation time τ = 0.1s (solid curve), τ = 1s

(star markers) and τ = 10s (square markers). We can observe that the mechanical response

is identical for the same Wi in defiance of the relaxation time.

B.2 The identification procedures for critical strain

11
dP d ε 2

11 2

d
P

dε
crε

Figure B.2: The illustration of the determination of critical strain.

Here, we show the procedures for identifying the critical strain. Based on the simulation,

we calculate the first derivative (dP11
dε , black curve) and second derivative (d

2P11
dε2

, red curve)

of the nominal stress with respect to the applied strain ε (see Fig. B.2). The second derivation

d2P11
dε2

is utilized to identify the critical strain. In particular, in regions where the dP11
dε sharply

changes the value with the change in ε, ε corresponding to the minimum value of d2P11
dε2

is

identified as εcr (see the red point in Fig. B.2).
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B.3 The identification procedures for wavelength for laminates

crl

Figure B.3: The identification of the critical wave number

Here, we show the procedures for the identification of the wavenumber for laminates. We

take a laminate structure with vf = 0.12 undergoing Wi = 10−4 as an example. To obtain

the critical wavenumber, we employ the Fourier transformation on the displacement U2 of

the fiber onset of the buckling. U2 is depicted in Fig. B.3 (a) and we note that the buckling

pattern of the laminates is closer to the trigonometric functions compared with the bucking

pattern of particulate composites. Therefore, the result of Fourier transformation has more

shape peaks, as shown in Fig. B.3 (b). The corresponding buckling pattern is illustrated as

an inset in (b). The wavenumber with the dominant magnitude is identified as the critical

wavenumber kcr.
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B.4 Determination of the dynamic modulus and loss factor
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Figure B.4: (a) The applied strain versus the time and (b) stress versus strain for the whole loading
process.

Here, we show the procedure to evaluate dynamic mechanical properties through simula-

tions. The dynamic mechanical properties are characterized by dynamic mechanical analysis

(DMA). To simulate the dynamic mechanical properties, the oscillatory loading, as illus-

trated in Fig B.4 (a), is prescribed as

ε (t) =


ε = ε̇t t < t0

ε = ε0 t0<t < td

ε = ε0 +∆ε sin (2πft) td<t < tf

(B.1)

where ε̇ is the applied strain rate, t0 is the loading time to reach the pre-strain ε0. td and

tf are the time of starting and ending of the oscillatory loading, respectively. To ensure the
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composite relaxes to the equilibrium state before the cyclic loading, we set td = t0 + 40τ . f

and ∆ε are the frequency and amplitude of the cyclic applied strain. To only consider the

effect of pre-strain and rate of pre-strain, we fix the value of f and ∆ε as 1 Hz and 10−5,

respectively. The typical stress and strain curve is illustrated in Fig B.4 (b). The stress

gradually relaxes to the equilibrium state as holding the strain as ε0. Subsequently, the

hysteresis loop curve (see the inset in Fig B.4 (b)) is produced by the harmonic loading due

to the viscoelasticity.

0ε

0σ 2 σ∆

2 ε∆

dW

max
dW

E 

Figure B.5: Stress versus strain under oscillatory loading. Illustration of slope |E∗|, dissipated and
the maximum dissipated energy for a full cycle.

To get the dynamic modulus and loss factor under the pre-strain state, the final hysteresis

loop of the cyclic loading is utilized [3, 78], as illustrated in Fig. B.5. The cyclic stress

response can be expressed as

σ(t) = ∆σ sin(2πf + δ) + σ0 (B.2)
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where ∆σ is the amplitude of the stress, δ and is the phase difference between the strain

and the stress due to the viscoelasticity. σ0 is the equilibrium stress in the steady-state

corresponding to pre-strain ε0. The dynamic modulus is defined as

|E∗| = ∆σ/∆ε (B.3)

We schematically show the dynamic modulus as the slope of the solid curve that connects

the upper-right corner and the lower-left corner in Fig. B.5. The loss factor is defined as

tan(δ) = tan

[
sin−1

(
Wd

Wmax
d

)]
(B.4)

where Wd is the dissipated energy per cycle per unit volume (see the gray shaded area in

Fig. B.5), and it is calculated as

Wd =

∫ 2π/ω

0
σ(t)

dε

dt
dt (B.5)

, and Wmax
d = π∆σ∆ε (see the orange area in Fig. B.5), representing the maximum energy

that the linear viscoelastic material can dissipate per cycle per unit volume.

B.5 The parameters extraction for TangoPlus and DM95

We use the neo-Hookean model for nonlinear springs in all branches of Fig. 2.2. For

the neo-Hookean model, the mechanical behaviors are determined by the initial material

parameters (initial shear modulus) under small deformation. The mechanical properties

under small deformation can be characterized by the DMA test. We also assume that the

relaxation times do not change with deformation. So we can get all material parameters
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for TangoPlus and DM95 by fitting the viscoelastic model to DMA data. Herein, we use

the DMA data of TangoPlus and DM95 from Yuan et al. [163] and Zorzetto et al. [171],

respectively. in which the tests are performed at a frequency of 1 Hz. Since the DMA

test is executed by scanning temperature, we need to utilize the time-temperature principle

(TTSP) to capture the temperature dependence behavior.

Based on the TTSP, τα can be calculated from the relaxation time τRα at reference

temperature Tref by

τα(T ) = α(T )τRα (B.6)

where α (T ) is a shift factor, it followsWilliams–Landel–Ferry (WLF) equation and Arrhenius

type equation as

log10[α(T )] = −
C1
(
T − Tref

)
C2 +

(
T − Tref

) , T > Tref

ln[α(T )] = −AFc
k

(
1

T
− 1

Tref

)
, T < Tref

(B.7)

where C1, C2 and AFc/k are the material parameters to be extracted.

The relationship between storage modulus and tan δ can be obtained from the DMA

test. Theoretically, the dependence of storage modulus Es (T ), loss modulus El (T ) and loss

factor tan δ on temperature can be expressed as

Es(T ) = E∞ +
∑
α

Eαω
2 [τα(T )]

2

1 + ω2 [τα(T )]
2

El(T ) =
∑
α

Eαωτα(T )

1 + ω2 [τα(T )]
2

tan δ =
El(T )

Es(T )

(B.8)

where E∞ and Eα are initial tensile modulus of the equilibrium branch and αth nonlinear
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spring respectively, ω is the angular frequency used in the DMA test. We assume the

TangoPlus to be incompressible, so the µ∞ and µm can be derived as µ∞ = E∞/3 and µα =

Eα/3. We fit the Eq. B.8 to the DMA data (see the markers in Fig B.6) for extracting the

parameters including E∞, Eα, τ
R
α , C1, C2, Tref and AFc/k. In particular, we simultaneously

fit storage modulus and tan δ, and the fitting results are shown in Fig B.6) (see the dashed

curves). The fitting results show good agreement with the experimental data, indicating the

reliability of the extracted parameters.

(a) (b)

Figure B.6: Fitting curves of the DMA results for (a) TangoPlus and (b) DM95 (The data are
extracted from Yuan et al. [163] and Zorzetto et al. [171]).

Recall that we conduct our in-plane compression tests at room temperature 21oC. To

simulate the deformation process of particulate composites, we need to obtain the relaxation

time at room temperature by scaling the parameters at the reference temperature with a

shift factor through Eqs. B.6 and B.6. The corresponding strain-energy factors and relax-

ation times for TangoPlus and DM95 under room temperature are listed in Table B.1 and

Table B.2.
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Table B.1: The material parameters for TangoPlus

Branch (m) βm τm (Unit: s) Branch (m) βm τm (Unit: s)
1 733.73 9.35E-11 6 210.28 3.60E-05
2 779.24 4.38E-09 7 40.60 2.37E-04
3 771.50 8.26E-08 8 7.05 0.0017
4 626.76 9.10E-07 9 1.96 0.016
5 426.89 6.50E-06 10 0.65 0.25

E∞ (MPa) 0.49 C2 (oC) 45.07
µ∞ (MPa) 0.1633 Tref (oC) -6.75

C1 8.76 AFc/k -24411.13

Table B.2: The material parameters for DM95

Branch (m) βm τm(Unit: s) Branch (m) βm τm(Unit: s)
1 1.29E+01 1.55E-08 15 2.23E+01 2.29E-03
2 1.96E+01 1.58E-08 16 2.04E+01 7.51E-03
3 3.68E+01 3.84E-08 17 1.79E+01 2.69E-02
4 1.01E+01 9.33E-08 18 9.96E+00 9.44E-02
5 1.21E+01 1.35E-07 19 6.93E+00 2.58E-01
6 3.13E+01 1.75E-07 20 4.70E+00 6.34E-01
7 2.52E+01 5.25E-07 21 3.83E+00 1.90E+00
8 5.85E+01 8.86E-07 22 2.12E+00 6.04E+00
9 1.37E+01 3.94E-06 23 1.31E+00 1.90E+01
10 3.33E+01 6.43E-06 24 8.28E-01 6.12E+01
11 2.43E+01 1.94E-05 25 4.80E-01 2.21E+02
13 3.06E+01 5.47E-05 26 1.30E-11 9.14E+02
13 2.99E+01 2.00E-04 27 6.80E-15 9.48E+03
14 2.54E+01 7.00E-04

E∞ (MPa) 6.18 C2 (oC) 44.63
µ∞ (MPa) 2.06 Tref (oC) -2.5

C1 14.56 AFc/k -16000
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B.6 The identification procedures for wavelength of particulate

composites
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Figure B.7: (a) The displacement of inclusions along the e2-direction onset of the buckling; (b) the
corresponding buckling shape; (c) the Fourier transformation on the U2 of the inclusions.

Here, we show the procedure to identify the critical wavelength. After the buckling occurs,

we observe that the initial inclusions column transforms into a wavy chain of inclusions. This

wavy chain pattern can be described as a discrete pattern by connecting the centers of the stiff

inclusions. We consider the displacement of the centers of stiff inclusions in e2 direction. The

position of inclusions along the e2-direction onset of the buckling is illustrated in Fig B.7 (a).

The normalized critical wavelength lcr is defined as the number of inclusions in the repeating

blocks of the buckled pattern, so lcr is expected to be an integer. However, we find that

the buckling pattern does not show perfect periodicity. In particular, the buckling pattern

contains alternating repeating sets of six and seven inclusions (see Fig B.7 (b)). To quantify

the wavelength of irregular quasiperiodic buckling patterns, we apply a Discrete Fourier
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Transform (DFT) to the discrete pattern in (a) to characterize the dominant wavelength of

the post-buckling pattern.

The position of the centers of the inclusions in e2-direction is defined as {xn} := x1, x2, x3

. . . ,xN and the DFT uses a set of harmonic waves with fundamental wavenumber 1/N

to reassemble the post-buckling pattern {xn}. Specifically, N harmonics waves should be

selected and the wavenumber of the kth harmonic wave is k/N . The DFT reassembly is

defined via

xn =
N−1∑
k=0

Xk • ei2π
k
N n (B.9)

where the Xk is the Fourier coefficient of the kth harmonic wave. Finally, we determine

the dominant harmonic wave for the post-buckling pattern and identify the corresponding

wavenumber k/N as the normalized critical wavenumber kcr, as illustrated in Fig B.7 (c).

Then, the normalized critical wavelength is calculated as lcr = 1/kcr. In addition, we observe

that the normalized critical wavenumber kcr is smaller than 0.5 for all of our simulations,

and this observation is physically consistent since there must be at least two inclusions per

repeating block of the buckled shape (lcr ≥ 2).
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