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Abstract

Environmental amenities—such as access to lead-free water, proximity to green space, or
the absence of unhealthy levels of smog—vary widely across the United States and can
affect mental and physical health. This dissertation asks how firms affect disparities in
exposure to toxic air pollution, and whether exposure early in childhood diminishes later
cognition.

In my first essay, I study the effects of heightened toxic air pollution across cohorts at
public elementary schools in the United States, linking the Risk Screening Environmen-
tal Indicators model of the Toxics Release Inventory to standardized testing data from
EDFacts. I find harmful effects on test scores from exposure to airborne chemicals in
early childhood, and particularly chromium.

I build on these themes in the second essay, asking how toxicity shocks in infancy
affect cognitive development throughout early childhood. I use the individual-level Birth
Cohort of the Early Childhood Longitudinal Survey, and exploit variation in the timing
of children’s births within zip codes to identify causal effects. I test whether household
behaviors and characteristics mitigate or exacerbate that initial exposure. While I find no
behavioral response to pollution exposure, the magnitude of the effect of neonatal toxicity
exposure on later cognition varies with household income. This finding suggests removing
spatial inequalities in pollution exposure does not entirely alleviate the contribution of
environmental harm to socioeconomic status-associated inequalities in outcomes.

My third essay turns to the role of firms in the disproportionate exposure of disadvan-
taged neighborhoods to environmental hazards. I link Toxics Release Inventory facilities
to their parent companies and to corporate merger and acquisition activity. This allows
me to estimate the effect of acquisitions on both facility-level high-risk air pollution and
its firm-level distribution, using variation in the timing of acquisition among acquired
facilities. I find evidence emissions fall following an acquisition and are redistributed to
facilities in more-disadvantaged neighborhoods.

Taken together, these essays highlight the continued importance of understanding

both the causes and consequences of inequality in exposure to toxic air pollution.
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Chapter 1

Toxic Test Scores: The Impact of Chemical Releases on

Standardized Test Performance Within U.S. Schools

Abstract

This paper estimates the effects of exposure to toxic chemicals, and individual airborne
metals in particular, in early childhood on school-level standardized test performance a
decade later. The analysis links the cohort-level proficiency of primary school students
born in the United States in the early 2000s to Toxics Release Inventory exposure, exploit-
ing variation in the timing and magnitude of toxicity risk within public school catchment
areas to estimate the impact of early exposure on educational outcomes. Estimates of
airborne toxicity may better correspond to the human health risks from the varied compo-
sition of particulate pollution. One standard deviation higher aggregate airborne toxicity
in the catchment area during the year in which most students were born causes cohorts to
perform 0.02 standard deviations worse on statewide tests. Finally, airborne chromium

is identified as a driver of this effect.

1.1 Introduction

The hypothesis that individuals build skills in each period of life, compounding human
capital from investments in earlier periods, is informed by theory in Heckman (2007)
and Cunha and Heckman (2016). The most extreme version of the theory that early

childhood matters disproportionately for a child’s trajectory through life is the fetal



origins hypothesis, which argues conditions from conception to birth can have lasting
consequences for health and cognition (Almond, 2006; Black et al., 2007; Royer, 2009). It
follows that policies minimizing threats to cognition when children are most vulnerable
could have an outsize influence in ensuring all children have an equal chance at success.

Many environmental threats to fetal and infant health are well established. Increases
in air pollution have negative consequences for contemporaneous health and cognitive per-
formance (Chay and Greenstone, 2003; Currie and Neidell, 2005; Currie and Schmieder,
2009; Agarwal et al., 2010; Currie et al., 2011, 2015; Sanders and Stoecker, 2015; Eben-
stein et al., 2016; Knittel et al., 2016; Persico et al., 2016; Persico and Venator, 2019).
Recently, researchers have begun investigating the more difficult question of how ma-
ternal and early-childhood exposure to airborne pollution could be affecting longer-term
outcomes. If exposure to air pollution during early stages of development matters for
health and human capital formation over a lifetime, protecting vulnerable populations
from extreme pollution becomes an issue of social mobility in addition to public health.

This paper is the first national-scale, empirical examination of the effects on later-life
cognitive performance from birth-year exposure to the many airborne chemicals in the
Toxics Release Inventory (TRI). I ask whether variation in local toxicants in the early
2000s diminishes student performance on standardized tests taken nearly a decade later,
from 2010 to 2015, by comparing the relative proficiency of cohorts of children passing
through U.S. schools over six years. I pair a toxicity-weighted measure of the risk from
all TRI emissions with the U.S. Department of Education’s EDFacts, a national panel
of school-level standardized test proficiency. I aggregate gridded pollution data using
the School Attendance Boundary Survey, a geospatial dataset of public school catchment
areas.

Identification of effects on student standardized test proficiency relies on local, tem-
poral variation in toxicity-weighed concentrations of airborne chemicals during the years
in which successive cohorts of students were born. This extends previous work exploiting
plant openings and closings over time (for example, Currie et al., 2015), while exploit-

ing toxicity-weighted concentrations of airborne pollutants better allows for identifying



variation to come from less salient changes in environmental amenities.

These national-level data also provide sufficient coverage and variation to estimate
the effects of exposure to specific chemicals. I refine my findings by replacing the mea-
sure of aggregate toxicity with estimated concentrations of individual airborne metals,
and find robust negative effects on later standardized test performance from chromium
emissions in the first year of life. This analysis does not rely on the EPA’s inhalation
toxicity weights, but a significant effect from airborne chromium exposure corroborates
the toxicity rankings.

That worse educational performance may driven by exposure to airborne toxic chem-
icals nearly a decade earlier during vulnerable periods of development can inform the
regulation of sources of toxic chemicals, and reinforce our understanding of the ways
high-stakes standardized testing outcomes reflect underlying environmental inequalities.
The study of specific chemical releases calls attention to the importance of accounting
for the composition of particulate matter, and the geographic breadth of the data, which
cover a large majority of public elementary schools in the United States, make the findings

immediately relevant to national education policy.

1.2 Background

Many chemical compounds found at many different doses via several exposure pathways
comprise environmental threats to health and cognition. Particulate matter (PM) has
been studied extensively as a driver of adverse outcomes from conception through old
age, but without widespread measurement of the constituents of PM, there has been
little work in economics that identifies the population-wide effects of the toxicity of air
emissions on long-term neurological development.

Both health generally and cognitive health in particular are implicated in the hy-
pothesis that prenatal and neonatal environmental exposures matter. Poor health in
childhood is strongly correlated with socioeconomic status (Case et al., 2002), and low-

income and minority households are also more likely to live in polluted places (Ard, 2015).



Outcomes such as premature birth, low birth weight, or a diagnosis of asthma are indi-
cators of poor health, and could affect a child’s performance in school through a channel
such as reduced attendance, as in Neidell (2004), which finds a causal link between CO
and asthma hospitalizations, or Currie et al. (2009), which finds CO reduces attendance
for a sample of school districts in Texas. Diminished cognitive (or behavioral) skills in
kindergarten means a child starts school already behind peers—and with Heckman-style
dynamic complementarity of skill-building over the course of formal education, closing
those gaps becomes more costly with time.

The importance of any finding that early exposures matter for future outcomes is
heightened by a large body of literature correlating environmental exposures with other
forms of socioeconomic disadvantage (for example, Tessum et al. (2019) find excess pollu-
tion burden, relative to consumption, among nonwhite racial-ethnic groups). This means
children growing up breathing the most polluted air are likely also experiencing other
insults of poverty and minority status. Household investments in health, including diag-
nosis, treatment, and avoidance behavior, are all costly, which means low-SES families
are not in a position to mitigate the adverse impacts of environmental harm, or avoid
such harm in the first place. For example, Ferrie et al. (2012) find heterogeneity in
the magnitude of damage to I1Q from waterborne lead exposure across income levels: the
lowest-SES individuals suffered the greatest harm, while higher-SES households may have
been better able to attenuate the cognitive harm from lead poisoning.

The notion that differences in environmental quality contribute to variation in edu-
cational performance is grounded in findings that exposure to a wide array of chemical
toxicants harms human cognition. Recent work has focused on lead, arguably the most
prominent environmental neurotoxin. Ferrie et al. (2012) highlights the interaction of la-
bor market outcomes with lead using historic data on drinking water, and Sampson and
Winter (2016) uses longitudinal blood tests to connect racial inequality in lead exposure
to socioeconomic disadvantage in Chicago. Aizer et al. (2018) and Evens et al. (2015)
connect lead and test scores. The first looks at policy changes that reduced blood lead

levels in Rhode Island and resulting decreases in the racial disparities in test scores in



the state, and the second finds an association between blood lead levels and lower stan-
dardized test scores, controlling for some other health measures and demographics. In an
examination of heavy metal exposure, Rau et al. (2015) find reduced standardized test
scores from proximity to a site containing deposits of hazardous mining waste. Persico
et al. (2016) looks more generally at airborne toxics and childhood cognitive outcomes
in Florida using superfund sites, while Ebenstein et al. (2016) link low performance on a
standardized exam to days with contemporaneous airborne particulate matter. Finally,
the recent finding of Isen et al. (2017) suggests the cognitive cost from airborne pollution
is disproportionately determined in the first year of life, but persists well into adulthood,
with lower labor market participation and earnings decades later.

To examine the long-run impacts of birth-year exposure to pollution, Sanders (2012)
follows the identification strategy of Chay et al. (2003), and Isen et al. (2017) follows
Chay and Greenstone (2003). Instrumenting for pollution with the 1980s recession, the
former finds negative impacts of TSP on high school test scores, and the later finds re-
duced labor force participation and earnings at age 30 for cohorts born before and after
the 1970 CAA. Bharadwaj et al. (2017) links fetal exposure to CO and PM to lower
math and language skills in fourth grade for a panel of siblings in Santiago born be-
tween 1992 and 2001. In a paper using the ECLS-K, Marcotte (2017) finds unequal
early childhood exposure to PM and pollen may contribute to school readiness gaps in
kindergarten. Rosales-Rueda and Triyana (2018) find the most persistent health effects
from exposure to wildfires in Indonesia among children exposed in utero. Collectively,
these previous efforts find convincingly negative effects from early childhood exposure to
particulate matter. But most PM data do not allow researchers to examine the hetero-
geneity of airborne pollution; hazardous constituents, such as heavy metals, may have
disproportionate effects on cognition.

Currie (2009) and Currie et al. (2015), use the Toxics Release Inventory to show
negative impacts on infant health and housing values from toxicant releases. The earlier
study regresses gestation time, birth weight, and infant deaths at the county level on the

pounds of chemicals released in the previous year (also at the county level) for a subset of



the toxicants reported in the TRI. The later paper exploits plant openings and closings
by linking restricted business-level data from the US Census, which the authors argue
provides cleaner identification, but abstracts away from estimating the marginal effect
of changes in the levels of different pollutants. More evidence of short-run evidence for
adverse cognitive outcomes is in Persico and Venator (2019), who find the years in which
TRI facilities opened were linked to lower standardized test performance among nearby
students. In contrast, this study concentrates not on contemporaneous changes in TRI
exposure, but the conditions of airborne toxicity when children were very young, and
identifies the effects of particular chemicals, accounting for the widespread heterogeneity
in the health risks from airborne emissions.

This study includes individual toxic metals—airborne elements like arsenic, chromium,
lead, and mercury—because these compounds are widely identified as threats to human
health and cognition by the EPA and the World Health Organization (Tchounwou et al.,
2012) and because their releases are empirically both widespread and generally uncor-
related. Airborne metals tend to be among the most fine particulates (Ravindra et al.,
2008), and smaller particle sizes are associated with most of the health impacts from PM
inhalation as they penetrate furthest into the body (Pope and Dockery, 2006). Lead poi-
soning has received particular attention for causing cognitive harm in children, but less is
known about population-wide exposure to most other airborne metals, even though sev-
eral are ranked even more highly than lead by the EPA for inhalation toxicity risk. The
EDFacts proficiency data are nearly national, and therefore provide sufficient coverage
and variation in exposures to begin to understand the potential for neurotoxic effects.
This attention to the composition of airborne pollution, rather than its mass concen-
tration, foregrounds the risks from PM comprised of highly toxic chemicals (Lippmann,

2010; Kelly and Fussell, 2012).



1.3 Data

I pair standardized test score data from the U.S. Department of Education’s EDFacts
with the U.S. Environmental Protection Agency’s Risk-Screening Environmental Indica-
tors (RSEI) to form a six-year panel in which public elementary schools are the unit of
observation. The standardized test data come from assessments given in the 2009-2010
through 2014-2015 school years, and the environmental toxicant data are from 2001-2006;

both sources cover the entire United States.

1.3.1 EDVFacts

The EDFacts data provide proficiency percentages on annual, statewide, federally-mandated
standardized tests. Each state reports school-level proficiency outcomes on its standard-
ized tests for each combination of year (2009-2015), grade (3-8), and subject (math and
reading). This measures the aggregate performance of students within each school, grade
level, subject area, and year; individual students’ scores are not provided, though there
are counts of students taking each test, and breakdowns for some subgroups, including by
gender and major racial and ethnic groups.! The U.S. Department of Education compiles
the states’ reports, performs quality review on the submitted data, and releases EDFacts
to the public (U.S. Department of Education, 2015). A restricted use license from the
National Center for Education Statistics allows me to include proficiency percentages
that are suppressed or rounded in the public version of the data.

Though administration of standardized tests for certain grades and subjects is feder-
ally mandated, states’ standardized tests vary in content, difficulty, and proficiency cut-
offs across grades and from year to year (described further in Fahle et al., 2017). There
are two reasonable approaches to make meaningful comparisons in spite of those differ-
ences. First, an attempt can be made to standardize scores within each subject, grade,

and state; this is the approach in, for example, the Stanford Education Data Archive’s

1Counts and proficiency scores for these subgroups are consistently, but not perfectly, reported. For
example, the EDFacts category for the percent of students who are “Two or more races” is missing in
7 percent of schools. Counts for the subgroup “non-white” are constructed as the difference between
the total number of students and the number of white-only students, who are the most consistently
measured.



district-level measures of proficiency, which link to National Assessment of Educational
Progress (NAEP) scores. This sort of standardization involves extensive interpolation,
and the SEDA scores are only available at the level of a school district—which may mask
important school-level heterogeneity in neighborhood characteristics.

A second approach is to recognize that school-level student proficiency is an impor-
tant policy outcome in is own right. Students, teachers, schools, and school districts
are all held accountable by high-stakes standardized testing policies, which aim to incen-
tivize performance and can determine, for example, student placement or school funding.
Parents and researchers can easily observe school-level standardized test scores, making
it a frequent measure of school quality for both home buyers and in the large litera-
ture estimating parents’ willingness to pay for school quality (Black, 1999; Bayer et al.,
2007). The No Child Left Behind Act (NCLB), which was in effect for all the years in
my test score data, was a prominent example of federal incentives to improve student
performance on standardized tests. Under NCLB, schools missing targets for student
proficiency could face state and federal sanctions.? Though the use of high-stakes stan-
dardized testing has been criticized (Afflerbach, 2005; Haladyna, 2006; Wiliam, 2010), it
remains influential: the Every Student Succeeds Act (ESSA), which replaced the NCLB
in 2015, de-emphasizes but does not eliminate standardized testing for students in grades
3 through 8.

This paper presents several outcome variables, showing results are generally robust
to either interpretation of the EDFacts proficiency data. I consider (1) the raw percent
proficient reported by EDFacts at the school, grade, and subject level; (2) school-level
proficiency in standard deviations relative to the test (i.e., within a state, subject, and
grade level); and (3) the ranked proficiency for each school, grade, and subject among
their cohort.

I standardize the reported percentage of students scoring proficient in school 7, year
t, subject s, and grade level g using the mean p and standard deviation o among all

students in state S who took the exact same test (where the calculation of © and o use a

2See more information about NCLB here: https://www.edweek.org/ew /section/multimedia/no-child-
left-behind-overview-definition-summary.html.



balanced panel of schools who report statewide tests in each year of the EDFacts data):

StandardizedScore; sy = (PctProficientisg — isisg)/Tstsg-

I interpret this standardized score for a group of students in a specific school, subject,
and year as their performance relative to peers in the same cohort.

The third outcome is a school’s ranked proficiency on a standardized test. This ordinal
measure does not use the mean or spread of proficiency in a given year, but instead simply
ranks schools by the percentage of students who passed, relative to all others schools with
students who took the same test. Improvement in this metric requires a school to move
up in the statewide rankings, which can in itself be a high-stakes outcome for teachers and
schools. To compare the rankings across states with very different numbers of schools, 1

standardize ranks to a percentile, following

PercentileRank;s; = 100 * (Rankisg — 1)/ (Ngsg — 1),

so the lowest-performing school is at 0 and the highest performing school is at 100. For
this outcome, I reduce the sample of schools to a balanced panel (so the denominator,

which counts schools in a state-subject-grade cell, is fixed over time).

1.3.2 Toxics Release Inventory

The U.S. Environmental Protection Agency’s Toxics Release Inventory (TRI) is a na-
tional, annual assessment reporting the location, type, and quantity of individual chemi-
cal releases by facilities above a certain size, as mandated by the EPA, from 1988 to the
present. Releases to air, water, and soil from a wide range of industries are covered, in-
cluding mining, power generation, manufacturing, and hazardous waste facilities; I focus

on air releases in this study.?

3The TRI is a unique source for a detailed panel of industrial releases at the national level, but it does
omit some sources of airborne toxicants that have been linked to cognitive outcomes, notably non-point
sources such as highways, railroads, seaports, and airports. A relatively short panel of six years ensures
variability in pollution is not being driven by long-term changes in TRI reporting requirements.
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The Risk-Screening Environmental Indicators (RSEI) model transforms reported TRI
releases by location, quantity, and pathway into a product called “Geographic Micro-
data,” which includes estimates of ambient airborne concentrations from TRI releases
over 810-square-meter grid cells covering the United States. To compare risk to people
over space due to hundreds of different exposures, the toxicity-weighted concentrations
scale each estimated concentration of a chemical by its relative estimated inhalation tox-
icity risk, producing a unitless measure of aggregate potential harm from airborne TRI
releases at each grid cell.

These RSEI toxicity-weighted concentrations account for transport and residence
time of chemicals, where local dispersion depends on factors like weather, stack heights,
and atmospheric chemistry. Exposure to toxicants is modeled rather than measured
(a contrast with air quality monitor data), and the modeling process makes simplifying
assumptions—such as constant, uniform release of a chemical by a facility over the course
of a year—but doesn’t rely on a symmetric radius around a point source of toxic releases
(Ash and Fetter, 2004), and doesn’t have to match locations to the nearest air quality
monitor, which is sometimes quite far away. For this study, I use the EPA’s inhalation-
specific toxicity weights, and since TRI reporting requirements have changed over time,
I use subsets of chemicals for which reporting requirements were consistent for all co-
horts of a given age. The RSEI model is described in detail, including the development
of inhalation toxicity weights and the atmospheric dispersion of chemical releases, in its
documentation (U.S. EPA, 2018), and in Ash and Boyce (2018).

Inhalation toxicity weights likely encompass some chemicals that are not neurotoxic to
infants, and some that may be strongly so. In this sense, the aggregate toxicity measure—
which accounts for long term risk for cancers as well as reproductive, developmental, and
respiratory effects—is noisy relative to my hypothesized pathway. Conversely, the sum
may be greater than its parts, if the cumulative insult of many toxic releases matters
more than relatively high levels of individual toxicants.

To examine the potential contribution of individual toxicants to diminished learning

outcomes, I use estimated concentrations of airborne metals reported to the TRI and
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available in the RSEI “Disaggregated Microdata”. In general, causal interpretation is
tricky with these disaggregate data: the individual chemical-level RSEI data are noisier
than the aggregate toxicity scores, many listed compounds are chemically similar or
highly collinear with others, and many chemicals are only reported in a small subset of
states. However, the metals reported in the TRI generally do not have these drawbacks.
They are prevalent, appearing in most states in the data (Table 1.1) and releases of each
are generally uncorrelated with others, so detecting individual causal effects is plausible
(Figure 1.1). This approach does not depend on the EPA’s assigned toxicity scores,
but I do standardize the estimated airborne concentrations of each chemical using its
distribution in the sample for comparability and interpretation (significant results are
robust to alternatives).

Data accuracy is a potential issue for any study using reported TRI releases. Accu-
rate reporting is legally required by the EPA, and the EPA conducts quality review on
submitted data. Marchi and Hamilton (2006) investigate the question of TRI accuracy
and find more evidence of random noise (likely due to imprecise estimation at facilities) in
the data than strategic under-reporting, suggesting data inaccuracy is introducing classic
measurement error rather than bias. The greatest potential threat to identification in this
paper will be time-varying misreporting correlated with determinants of standardized test
performance, but if these trends are in response to state-level policies, a state-by-year
fixed effect should alleviate those concerns. Ultimately, while widespread and frequent
monitoring—rather than modeling—of specific hazardous air pollutants would be a great
benefit to empirical research, for now the TRI are one of the best available sources for
national coverage of point-source industrial pollutants.

In order to attribute toxicant exposure to schools, I use school attendance bound-
aries from a publicly available shapefile, the School Attendance Boundary Survey from
the National Center for Education Statistics, which provides substantial (though not
complete) coverage of school attendance boundaries in the United States. I average the
higher-resolution pollution data, weighting for grid-level population, up to the atten-

dance boundaries for primary schools. For a school ¢ with J grid cells within its school
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attendance boundary, where a given cell j has toxicity-weighted concentration ToxConc,
RSEI-reported population Pop, and PctCoverage percent of the cell overlapping the

school catchment area, the aggregate annual measure for toxicant exposure risk is

Z;}:l ToxConcj, * Popj, x PctCoverage;
ToxExp; = = .
> i—y Popji x PctCoverage;

This captures both the toxicity and the proximity of TRI releases to the population living
within the attendance boundary for a school. For lack of national data on how school
attendance areas have changed over time, I hold constant the 2015 school attendance
boundaries.

Use of the School Attendance Boundary Survey (SABS) for this analysis allows me to
calculate a population-weighted average toxicant exposure over each school’s geographic
catchment area. However, coverage of schools in the SABS is incomplete (see Figure 1.2):
public schools only appear in the SABS if their school district responded to a survey
conducted by the National Center for Education Statistics in 2013—14, which may imply
a sample selection process that compromises the external validity of the findings. About
72 percent of schools for which I have third grade test scores and geographic coordinates in
the EDFacts data are represented in the School Attendance Boundary Survey. Comparing
observable sociodemographic characteristics across the schools included and excluded
from the SABS reveals excluded schools are, on average smaller, with comparable racial
composition and county-level income (Table 1.2). Schools included in the SABS have
fewer extreme proficiency outcomes than those excluded (Figure 1.3).

Changes in toxicity-weighted concentrations over time arise, for example, when local
firms increase or decrease production, change pollution control practices, or experience
accidental releases. The existence of sufficient time-varying exposure is supported anec-
dotally in Figure 1.4, which shows annual toxicant scores for schools in the Los Angeles
area in the years when third graders in the EDFacts data were born. Los Angeles is repre-
sentative of many urban areas in the country in that it is comprised of hotspots recording
persistently high toxicity scores, large areas with consistently low toxicant exposure, and

also many places which show variability over time.
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States in the U.S. generally require that students are five years old in August, Septem-
ber, or October to start kindergarten (some states allow school districts to set their own
cutoffs, but provide similar guidance); this creates a year-long window, most often start-
ing on September 1st, during which students in the same cohort in school were born.
Following the pattern BirthY ear = TestY ear — Grade — 6 allows me to attribute lagged
toxicant exposure for each cohort; for example, the majority of third graders taking
tests in the spring of 2013 were born in 2004. This assumes a school-level observation
is comprised of typical students who do not get held back or skip a grade. The length
of the panel is constrained by available test score data: a public school with complete
observations between 2010 and 2015 has six cohorts of third graders with assessments in
two subjects between 2010 and 2015 (Table 1.3). There are inevitably students in my
data who take standardized tests in a different location than where they were born; the
historic pollution exposure for part of a school-cohort is mis-attributed because of these
students, but this is not a threat to identification unless unobserved characteristics of
those students are correlated with local shifts in toxic emissions; this and other threats
to identification are discussed in Section 1.4.1.

A descriptive preview of the data suggests high levels of environmental toxicants typ-
ically accompany educational and economic disadvantage, while afluent neighborhoods
enjoy both strong public schools and high environmental quality (Figure 1.5). This
means environmental harm is frequently an additional dimension of poverty for students
experiencing other challenges. If toxic environments have a lasting effect on students’
educational attainment, this cognitive externality should be taken seriously by schools
and school districts evaluating standardized test performance in heavily polluted places.

Summary statistics for the data are presented in Table 1.2.

1.4 Empirical approach

An appropriate regression design to isolate the effect of TRI exposure on cognitive ability

depends on the hypothesized pathway from local toxic releases to students’ performance
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on tests. Toxicant harm could be cumulative (damage in each year of life matters, possibly
in an additive way), contemporaneous (toxic releases to the environment in the year of
testing matter), or age-dependent (toxic releases in specific, sensitive years of life matter).
Building on previous findings in the literature I test the final pathway, examining a narrow
window during which exposure to toxicants likely affects cognition in the long run. My
reduced form analysis is agnostic about the exact pathway from chemical releases in the
year of birth to standardized test performance; direct cognitive harm or reduced school
attendance due to physical health issues are both plausible.

My main regressions isolate the causal effect of toxicant exposure during a cohort’s
year of birth on its future performance on standardized tests, relative to peers in the

same school, grade, and subject area:

Yvitg =0 TO'rExpitsg + BgXitsg + aisg + QSis + €its (11)

where a unit of observation is a cohort of students in public school 7, year ¢, subject area
s, and grade g.

The outcome variables Y, as described in Section 1.3, measure the performance of
students relative to peers taking the same statewide assessment, in either un-transformed
proficiency percentages, standard deviations of the proportion of proficient students, or
the ranked performance of a cohort of students. The EDFacts report proficiency sep-
arately for math and reading assessments. If I think each standardized test is a noisy
measure of students’ overall cognitive abilities, it makes sense to control for the individual
test with fixed effects (and sometimes test-specific standardization) and then pool these
scores into one regression. If, however, the effects of early exposure to environmental
toxicants are meaningfully different for the development of math and reading skills, it
makes sense to estimate separate coefficients 6 for each subject. The literature is not
definitive on this point, so I present both.*

The independent variable ToxFExp is the inhalation toxicity-weighted concentration

4In a study of particulate matter exposure among adults in China, Zhang et al. (2018) find larger
effects on verbal assessments than math, and write this is because “air pollution has a stronger effect on
white matter (required more by verbal tests) than on gray matter (required more by math tests)”.
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of airborne pollutants, averaged over the school’s catchment area. The RSEI toxicity
measures are unitless, only indicating relative risk to human health, and their distribution
is strongly right-skewed (Panel A of Figure 1.6). I transform this variable twice in order
to make results readily interpretable in terms of typical changes in airborne toxicity risk
across the schools in the panel by first taking a log of the toxicity scores (Panel B),
and finally converting this more-symmetric distribution to Z-scores (Panel C). Modeled
concentrations (in pg/m?) of the individual airborne metals are meaningful, but still hard
to interpret, so I again standardize relative to the observed distribution of each chemical.
Robustness checks in Appendix 1.A show the results are robust to alternate specifications
of the independent variables. Coefficient 6 is the effect of increases in Z-scores of school
catchment-level toxicity when a cohort is in infancy on that cohort’s standardized test
proficiency in elementary school.

The controls X are observable characteristics of a cohort as reported in EDFacts,
quadratics in both county temperature and precipitation in the pollution year, and
county-level economic indicators in the test year. I use 5-year ACS county estimates for
median household income, unemployment rate, and population in order to keep smaller
counties in the data. The coefficient ¢ is allowed to vary by subject. the fixed effects ;s
and g, are for individual schools by grade level and subject, and for states by subject,
year, and grade, respectively.

Because my analysis links individual schools with local pollution nearly a decade
ago, it will be useful to focus on third grade students: first, elementary schools have
the smallest geographic footprint, and therefore more precise pollution attribution, and
second, third graders are the youngest students in the EDFacts data, and therefore least
likely to have moved since birth. (Additionally, including standardized tests for additional
grades doesn’t include many more individuals, but instead mostly the same cohorts at
older ages — see Table 1.3.)

I expect both pollution and standardized test scores to be correlated both within
schools over time and across schools, so I cluster standard errors at the school district

level. T weight regressions using the number of students in each test-taking cohort, since
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student proficiency is informed by a larger number of students, but results are robust to

omitting these weights.

1.4.1 Identification

I expect air pollution where a household lives will be related to the household’s education,
occupation, income, health, and preferences over correlated neighborhood attributes (such
as density, crime, and property values). In this context, claiming a causal effect of toxic
exposure on test score performance relies on controlling for correlated, household- and
neighborhood-level effects that also determine student ability. Put differently, annual
variability in the lagged concentrations of airborne environmental toxicants within a
school attendance boundary must enter this setting as exogenous conditional on included
controls.

Uncontrolled-for variables that correlate with TRI releases could introduce bias that
either attenuates or exaggerates the effect of exposure to toxicity. Much work has been
done identifying correlations between low socioeconomic status (SES) and high exposure
to pollution in the United States; this type of correlation might bias upwards the mag-
nitude of an effect of toxicant exposure on student ability. Conversely, higher levels of
pollution may correlate with local economic activity that generates higher income for
families and perhaps funding for schools schools; this type of effect could bias downward
the magnitude of an estimate for cognitive health impacts.

The panel fixed effects design exploits the intertemporal variability in toxic releases
within the catchment area for individual schools, over a short panel: identification rests
on changes in the levels of toxicant exposure not affecting the households’ (and in partic-
ular, new parents’) mobility decisions in a way that causes toxic releases to be correlated
with unobserved differences in student ability across otherwise-similar cohorts nearly a
decade later. A state-by-year fixed effect, present in all regressions, absorbs average
changes in reporting behavior over time. Including county-level weather in the year of
airborne emissions should help control for the effect of temperature and precipitation on

the dispersion of air pollution, and including county-level population, income, and unem-
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ployment should help control for time-varying differences in regional economic activity. A
relatively short panel also mitigates the possibility that longer-term changes (such as
deindustrialization and gentrification) are driving results.

Household turnover is likely strongest when changes in airborne pollution levels are
salient, substantial, and perceived as permanent, as when a plant opens or closes in a
neighborhood; Currie et al. (2015) find a housing market response to the opening and
closing of TRI plants, though only among houses inside half a mile of the site. The
authors find significant concentrations of pollutants at a wider radius than the sorting
response—up to a mile from toxic plants—so there may be many changes in exposures
outside of the salience radius that affect children but do not drive a sorting response (the
RSEI dispersion model estimates atmospheric concentrations within a 30-mile radius of
a plant). This echoes the finding in Spencer Banzhaf and Walsh (2008), who present
evidence of demographic change over a decade within a half mile of TRI openings and
closures in California. Unlike those papers, this analysis exploits changes in facility output
rather rather than openings, and most plants remain in operation.

Still, any evidence of neighborhood composition changing in response to variation
in toxicant exposures presents a possible threat to identification, and the assumption
that most students don’t move is violated in the worst case if moves are correlated with
unobserved characteristics of students that drive test scores (for example, if an increase in
toxic releases causes affluent families to leave, or conversely an increase in environmental
quality drives gentrification and more wealthy families).

The fact that I use a long lag, rather than contemporaneous pollution exposure, dimin-
ishes the confounding effect of household sorting in response to changes in environmental
quality. This is because the timing of exposure is particularly important for identification:
I pair cohorts with the ambient pollution just in their year of birth, and compare them to
cohorts born at most few years earlier and later, who take tests in the same public school.
Households therefore have nearly a decade to “vote with their feet” after birth-year emis-
sions are realized and before standardized tests are taken—relocation does not introduce

bias unless households with children born exactly in the year of higher releases move at
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a higher rate than households with kids just a few years older and younger. A more
realistic process of household sorting is that the families who move in and out of a school
catchment area—even potentially in response to changing environmental quality—have
children at many ages. Put differently, the identifying assumption is that the effect of
TRI releases on household sorting is constant across all cohorts within in a school after
nearly a decade, but the effect of TRI releases on cognition is uniquely harmful for the
cohort exposed in their birth year.

It is possible to test for violations of the “no correlated household mobility” assump-
tion. In particular, if the demographic characteristics across waves of elementary school
students in the EDFacts data are correlated with chemical releases in their years of birth,
there would be compelling evidence cohorts of students within one school are not good
controls for one another. Regressing observable attributes of students (as reported to
EDFacts) on lagged local toxicant releases shows how school-level panel fixed effects con-
trol for correlations between household demographics (race and income) and exposure
to environmental harm (columns (3) and (6) of Table 1.4); this is consistent with the
assumption that other unobserved child attributes are unrelated to variation in the birth
year toxicant exposure experienced across cohorts.

Within a state for a given year, the birth-year toxicant exposures of cohorts are corre-
lated with available demographic characteristics (proportion of minority groups, class size,
economic disadvantage, and limited English proficiency); this is expected and consistent
with widespread patterns of household sorting over space. Within school districts, envi-
ronmental justice correlations persist—schools reporting more nonwhite students tended
to have higher exposure to airborne toxicity within their district— but these correlations
are not present with the inclusion of school fixed effects. The finding that class size is not
correlated with lagged toxic releases also addresses a possible concern that toxicant ex-
posure drives students to start school late, or repeat grades—if this was the case, smaller
third grade class sizes might correlate with high-pollution birth years.

Beyond threats to identification, there are some unavoidable sources of measurement

error that come from using elementary schools as the unit of observation. I only observe
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traditional public schools, so students in private, magnet, or charter schools, which do not
have geographic catchment areas, are not included in the data. I also have to approximate
the age of students in each grade: for example, a typical individual in third grade in the
spring of 2010 was born in 2001, but some of her classmates were actually born at the
end of 2000. I attribute the year 2001 as the birth year exposure for this entire class
of third graders, recognizing some individuals are already infants by the start of 2001.
However, if the effect I'm looking for—cognitive damage from environmental toxicants
impacts school performance, then students in polluted districts might be more likely to
be held back and be older than the typical student in a grade level. In this case, there is
incorrect attribution of exposure for the most affected students. Additionally, should the
effect of toxicant exposure truly be substantial and negative, then a finding of decreased
performance on standardized tests—which are, in many places, high-stakes for the teacher
as well as the students—is net of any compensating effort by parents and teachers to bring

under-performing students up to grade level.

1.5 Results

1.5.1 Aggregate toxicity

I examined whether greater local toxicity during infancy contributed to lower standard-
ized test performance in the EDFacts proficiency scores for more-exposed cohorts. Main
results for the average effect are presented in Table 1.5 for three outcomes: the reported,
school-level student proficiency rate; the test-normalized percentage of students scoring
proficient; and a statewide test-specific percentile relative to other schools. The indepen-
dent variable is in Z-scores for interpretability. Across these three outcomes, a change in
airborne toxicity risk that increases airborne toxicity by one standard deviation within a
school catchment area when a cohort is in its infancy is expected to reduce that cohort’s
collective standardized test proficiency in third grade by 0.3 percentage points (e.g., one
fewer student passes in a cohort of 300 students), 0.02 standard deviations, or 0.4 per-

centiles, all relative to their peers in other schools taking the same test (by state, year,
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grade level, and subject area).

Estimates are about twice as large among third graders than for the panel that in-
cludes grades 4 and 5. This may be because households move, and even if moves are
uncorrelated with pollution nearly a decade ago, the presence of children taking stan-
dardized tests in a location different from where they were born reduces the proportion
of the cohort with correctly-attributed pollution exposure. As kids get older, their like-
lihood of a household move since birth increases.® Third graders also typically attend
smaller elementary schools than middle schools, with correspondingly smaller catchment
areas; this means the attribution of air pollution to their third grade school is more
geographically precise. Finally, it’s also possible that some of the observed decrease is
because the effect of early exposure to air pollution on early standardized test perfor-
mance doesn’t persist to later grades as students learn new skills or get additional help
from parents and teachers.

The average effect of an increase in airborne toxicity-weighted concentrations is to
lower performance across both subject areas; there is mixed evidence suggesting this
negative effect is significantly larger for math tests (the interaction terms in Table 1.6
indicate estimated coefficients for reading tests are always smaller in magnitude, but not
always significantly different from those estimated for math tests). EDFacts proficiency
percentages are also reported for subgroups across students’ race and gender, providing an
opportunity to examine the heterogeneity of the effects of high toxicant exposure across
groups of students. Using these subgroup proficiency percentages as outcome variables,
and modifying the set of fixed effects so student proficiency in each group is compared
only to other students of their race or gender, I find no statistically significant differences

in the magnitude of the effect (Table 1.7).

5To give a sense of the possible scale of this measurement error, in 2012 the Census estimated the rates
of 5-9 year olds who moved in the past five years was 45 percent, but the great majority of these were in
the same county (there is no more precise estimate for shorter-distance moves), and moves outside the
county still tended to be under 50 miles. See https://www.census.gov/prod/2012pubs/p20-567.pdf.
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1.5.2 Metal toxicity

I next extended the estimating equation from Section 1.4 to the case of multiple, distinct
airborne metals in two ways: estimating separate regressions for concentrations of each
airborne metal, and then jointly in one regression; because airborne releases of metals are
not strongly correlated across the SABS catchment areas (recall Figure 1.1), coefficients
are expected to be similar across both approaches. As with the aggregate RSEI toxicity
scores, | standardized modeled concentrations of each metal to Z-scores (relative to the
distribution of each) for interpretability. Coefficients from separate regressions of profi-
ciency outcomes on each airborne metal are plotted in Figure 1.7, and coefficients from
the combined regression are presented in Table 1.8.

Among the metals reported in the TRI, early-childhood exposure airborne chromium
strongly drives diminished standardized test proficiency in third grade. Coefficients on the
estimated birth-year concentrations are significant both individually and in the regression
with all airborne metals, across different transformations of estimated concentrations
(Table 1.A3), and after correcting for multiple hypothesis testing. A standard deviation
increase in chromium exposure has an estimated effect of reducing a cohort’s ranking by
about 0.08 percentage points, 0.09 percentiles, or 0.006 standard deviations relative to
peers. This finding corroborates the EPA’s toxicity weights used above: among the 18
metals included in this study, chromium is ranked first for inhalation toxicity.

The lack of significant findings for other metals does not mean they are not toxic, but
instead that there is not sufficient variation in the data to detect effects in this study,
which is quite saturated with controls. For cognitive risk imposed by less common or
correlated toxic compounds, including nonmetallic chemicals, which were not analyzed
individually, the aggregate toxicity measure remains a useful representation of risks across

exposures from industrial releases.

6All releases containing chromium are reported in a single category in the TRI but only one form of
the chemical, hexavalent chromium (chromium-6), is classified as carcinogenic by the EPA. Chromium-6
is used across a variety of industries, including ore refining, chemical processing, textile dyeing, wood
preserving, stainless steel production, and electroplating; it is most frequently linked to lung cancer from
occupational exposure. Using facility-level records from the TRI, about 830,000 pounds of chromium
were released per year into the air in the United States in the 2000s, and almost every state had some
level of activity.
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1.6 Conclusion

This study brings recent, national data to the question of long-term harm to educational
proficiency from cohorts’ early childhood exposure to airborne toxicants. I estimate the
effect on cohort-level standardized test performance from modeled exposures nine years
prior, and my findings suggest early environmental harm may have lasting impacts on
high-stakes educational outcomes much later in life.

Using an estimate of inhalation toxicity-weighted concentrations of TRI chemicals
provides a clear link from facility releases to human health risk, and is motivated by
findings that particulate matter can have substantial spatial and temporal heterogeneity.
While the EPA primarily measures and regulates particulate pollution by particle size,
the toxicity of its composition also matters for human health.

Across elementary schools with a third grade, a standard deviation increase in the
EPA toxicity score in the year in which most students were born is predicted to lower
that cohort’s overall passing rate by about three tenths of a percentage point, and that
class is predicted to rank about 0.4 percentile points lower statewide. Since similarly-
aged cohorts of students in a school catchment area experience much of the same toxicity
exposure, but at different developmental stages, this study highlights the importance of
infancy as a period of particular vulnerability to environmental toxicants.

The extensive coverage of both the RSEI and the EDFacts data also provide a context
to study the harm from individual airborne metals without making assumptions about
their relative toxicity. Airborne metals have been associated with numerous adverse
health outcomes, and are prevalent in the TRI data. Among the 18 metals studied here,
chromium exposure in infancy was linked to diminished cohort proficiency in third grade:
a one standard deviation increase in exposure in infancy is predicted to decrease a cohort’s
passing rate by 0.08 percentage points.

In light of potential measurement error, the findings in this paper suggest a lower
bound on the impact local environmental toxicity can have on children’s cognitive devel-
opment. First, there is inevitable attenuation bias from using elementary schools, rather

than individuals, as the unit of observation: any students who move into a local elemen-
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tary school area after birth “miss out” on the toxic exposure history which is attributed
to their cohort. Second, there is likely some mismatch around the age of students and
their toxicant exposure, as both are approximated to a year but will not always overlap.

Finally, it is important to re-contextualize the magnitude of these findings within the
aims of the identification strategy. In the U.S., there is much more variation in exposure
to toxicants across places than within them over time. This means a within-school fixed
effect strategy has good causal purchase but weaker variability off of which to identify
effects. The effects here—worse proficiency rates among students born in years when
local pollution is higher—should be interpreted as a small suggestion of the potential for
persistent cognitive harm in communities where the average level of toxicant exposure is
always substantially higher than in other places. My finding that within-school increases
in toxicant exposure diminish performance on standardized tests relative to other students
attending the exact same school tells us nothing about how much worse students who live
in places that are always polluted do relative to students in places that are always clean,
all else equal. Future work should further examine the magnitude of this fundamental

inequality.
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1.7 Figures and tables

Table 1.1: Exposure to airborne metals

Places with nonzero

Toxicity modeled TRI concentrations
rank  Symbol Chemical Schools Districts — States
1 Cr Chromium 35,210 9,340 20
2 Co Cobalt 26,400 6,510 47
3 As Arsenic 20,750 4,800 48
4 Be Beryllium 7,370 1,540 35
5 Cd Cadmium 13,320 3,060 42
6 Ni Nickel 35,090 9,150 51
7 Pb Lead 38,110 10,520 51
8 Sb Antimony 23,830 5,730 48
9 Mo Molybdenum 13,630 2,910 40
10 T1 Thallium 3,780 1,080 29
11 Mn Manganese 35,650 9,580 o1
12 Ba Barium 31,520 8,000 50
13 Cu Copper 35,300 9,500 50
14 Al Aluminum 21,220 4,950 42
15 Ag Silver 12,910 2,650 42
16 Se Selenium 11,370 2,620 46
17 \Y Vanadium 26,470 6,520 48
18 Zn Zinc 35,370 9,440 51

Metals are among the most consistently reported TRI chemicals. Counts are of schools
(with a third grade), districts and states reporting positive concentrations of each toxicant
in at least one year. Relative inhalation toxicity is from the EPA.
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Figure 1.1: Pairwise correlations among school-level concentrations of airborne metals

Unlike many of the reported TRI compounds, estimated concentrations of particulate

metals are generally uncorrelated with one another.
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Figure 1.2: School Attendance Boundary Survey coverage of schools with a third grade.

0.4
|:| In SABS
0.3 |:| Not in SABS
P
B 0.2
(]
)
0.1-
0.0-

-4 0
Standardized proficiency

Figure 1.3: Comparison of distributions of scores at schools included in and omitted from

the School Attendance Boundary Survey
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Table 1.2: Summary statistics for grades 3-5 in the panel by SABS coverage

Full EDFacts Not in SABS In SABS
(1) (2) (3)

Students per cohort 72 59 7
(48) (47) (47)
Reported percent proficient 65 62 66
(24) (27) (23)
Standardized proficiency -0.1 -0.3 -0.1
(1.2) (1.5) (1.1)
Proficiency percentile 50 50 20
(0.3) (0.3) (0.3)
Pct. Asian 0.04 0.04 0.05
(0.10) (0.09) (0.10)
Pct. Black 0.16 0.20 0.15
(0.26) (0.30) (0.24)
Pct. Hispanic 0.22 0.19 0.23
(0.27) (0.26) (0.28)
Pct. Native American 0.02 0.03 0.02
(0.10) (0.15) (0.07)
Pct. White 0.54 0.53 0.54
(0.35) (0.36) (0.34)
Pct. ECD 0.57 0.58 0.57
(0.29) (0.30) (0.28)
County med. HH inc. 53,790 53,560 53,900
(14360) (14020) (14480)
County unemp. 8.85 9.06 8.77
(2.80) (3.00) (2.72)
County population 727800 677800 745700
(1336700) (1243200) (1368100)
Birth year toxicity 16070
(445030)
Z-score log(Birth year toxicity) 0.00
(1.00)
Grades 35 35 39
Distinct schools 61640 19480 42160
Mean years in panel 5.73 5.38 5.85

*Rounding dictated by EDFacts data disclosure rules

The EDFacts “ECD” category corresponds to economically disadvantaged students. Pro-
ficiency outcomes and toxicity exposure are defined in Section 1.3. Schools not partici-
pating in the SABS appear to be slightly smaller and score a bit lower on standardized
tests.
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Figure 1.5: School-level toxic exposure and standardized test scores

Each point is a school; toxicity scores are unitless and truncated at the 99th percentile
for presentation. As median household income rises, fewer and fewer schools are exposed
to the highest levels of airborne toxicity.
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Panel A: Untransformed
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Figure 1.6: Distribution of relative airborne toxicity risk

Airborne inhalation toxicity risk scores are transformed following the three stages of
distributions shown. Results are robust to the choice of log- or IHS-transformed toxicity

data.



Table 1.3: Test score data in EDFacts

Cohort
1 2345 6 7 8 9 10 11
2010 8 7 6 5 4 3
2011 8 7 6 5 4 3
Grage 2012 8 7 6 5 4 3
Z2013 8 7 6 5 4 3
Year 9014 8 7 6 5 4 3
2015 8 7 6 5 4 3
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The EDFacts data provide standardized test proficiency for all grades taking standardized
tests in each school from 2010-2015. Within each school, the data contain fewer cohorts
than proficiency observations, since most cohorts appear multiple times at different ages.
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Table 1.4: Correlation between lagged toxicant exposure and cohort demographics

Dependent variable:

Z-score log(Toxicity)

(1) (2) (3) (4) (5) (6)
Pct. Male 0.026 —0.005 0.015 0.020 —0.002 0.016
(0.027) (0.011) (0.010) (0.026) (0.011) (0.010)
Pct. ECD —0.605*** 0.036 0.005 —0.506*** 0.021 0.004
(0.053) (0.025) (0.021) (0.047) (0.024) (0.021)
Pct. White —1.020*  —0.139*** 0.019 —1.031%** —0.100 0.021
(0.053) (0.033) (0.019) (0.248) (0.062) (0.051)
Pct. Asian 0.234 0.003 —0.063
(0.238) (0.062) (0.057)
Pct. Black 0.060 0.031 0.021
(0.252) (0.067) (0.055)
Pct. Hispanic —0.192 0.075 —0.003
(0.275) (0.060) (0.052)
Pct. Native American —1.286*** 0.011 0.091
(0.326) (0.098) (0.074)
log(Class size) 0.133*** 0.010 —0.002 0.143*** 0.010 —0.002
(0.016) (0.008) (0.007) (0.016) (0.007) (0.007)
Grades 3-5 3-5 3-5 3-5 3-5 3-5
State-year-subject-grade FE Yes Yes Yes Yes Yes Yes
District-subject-grade FE No Yes No No Yes No
School-subject-grade FE No No Yes No No Yes
Cluster District District District District District District
Observations 1,277,480 1,277,480 1,277,480 1,259,480 1,259,480 1,259,480
Note: *p<0.1; *p<0.05; **p<0.01

School-level panel fixed effects minimize correlation between lagged pollution exposure
and observable demographics. Columns (4)—(6) include additional covariates, which to-
gether often become collinear with reported white students where diversity is low. Within
states and even within school districts, minority populations are correlated with higher
toxicant exposure, but panel (school FE) variation in pollution lags are uncorrelated with
cohort demographics. Results are the same for the 3rd grade-only subset of the data.
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Dependent variable:

Pct. proficient SD pct. prof. Percentile
(1) (2) (3) (4) (5) (6)
Z-score log(Toxicity) —0.307**  —0.187*  —0.018*  —0.011*  —0.442* —0.205
(0.133) (0.100) (0.008) (0.005) (0.229) (0.164)
Grades 3 3-9 3 3-5 3 3-5
Observations 428,690 1,266,690 428,690 1,266,690 366,060 1,070,470
Note: *p<0.1; *p<0.05; **p<0.01

Across all three standardized test proficiency outcomes, higher birth-year toxicity drives
lower cohort performance, particularly among younger students; possible explanations
for this are discussed in the main text.

Here—and in all regression tables going forward unless otherwise noted—included
fixed effects are for state-subject-grade-year, and school-subject-grade groups. Standard
errors are clustered at the school district level, and regression weights are the size of
each cohort of students.

Table 1.6: Heterogeneity by subject area

Dependent variable:

Pct. proficient SD pct. prof. Percentile
(1) (2) (3) (4) (5) (6)
Z-score log(Toxicity) — —0.407**  —0.229*  —0.025**  —0.014**  —0.650™* —0.267
(0.169) (0.126) (0.009) (0.007) (0.279) (0.198)
. X reading 0.200 0.083 0.015* 0.006 0.407* 0.121
(0.135) (0.091) (0.008) (0.006) (0.243) (0.172)
Grades 3 3-5 3 3-5 3 3-5
Observations 428,690 1,266,690 428,690 1,266,690 366,060 1,070,470
Note: *p<0.1; *p<0.05; ***p<0.01

I find suggestive evidence math scores (the baseline category in each regression) are more
affected by toxicity exposure in regressions that allow the effect to vary by subject area.
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Table 1.7: Heterogeneity by subgroup

Dependent variable:

Subgroup pct. proficient

(1) (2) (3) (4)
Z-score ihs(Toxicity) — —0.283*  —0.194*  —0.328" —0.188
(0.141)  (0.107)  (0.180)  (0.142)

. x Male —0.042 0.011
(0.088)  (0.062)

. x White 0.030 0.023
(0.181)  (0.148)

Grades 3 3-5 3 3-5
Observations 861,040 2,543,970 795,040 2,342,040
Note: *p<0.1; *p<0.05; **p<0.01

The baseline category in columns (1) and (2) is proficiency outcomes for female students;
in columns (3) and (4) the baseline category is non-white students. In these regressions,
the outcome variable is each subgroup’s proficiency percentage, weights used are the
number of students in each school-year-subject-grade subgroup, and separate fixed effects
for each subgroup are included (so proficiency for male students, for example, is relative
to other cohorts of male students in the same stage, subject, grade, and year, and male
students in the same school, subject, and grade). There are not meaningful differences
in the effect size by students’ race or gender.
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Coefficients are estimated from separate regressions of each standardized test outcome on
standardized concentrations of each airborne metal. Metals shown are those from Table
1.1 with more than 15,000 schools providing estimating variation; those omitted are not
consistently statistically significant. Error bars are 1.96 x SE x SD.
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Table 1.8: Outcomes regressed on all airborne metals
Dependent variable:
Toxicity Pct. proficient Percentile SD pct. prof.
rank (1) (2) (3)
1 Chromium —0.083"* (0.015)  —0.092*** (0.024) —0.006™* (0.001)
2 Cobalt —0.062 (0.055) —0.049 (0.075) —0.002 (0.003)
3 Arsenic —0.045 (0.028) —0.155 (0.078) —0.005 (0.003)
4 Beryllium —0.054** (0.017) —0.420 (0.322) —0.003"** (0.001)
5 Cadmium —0.051 (0.042) —0.063 (0.032) —0.003 (0.002)
6 Nickel 0.021 (0.015) 0.003 (0.021) 0.001 (0.001)
7 Lead 0.010 (0.023) 0.013 (0.035) 0.001 (0.002)
8 Antimony 0.049** (0.010) 0.060** (0.021) —0.001 (0.002)
9 Molybdenum 0.042 (0.053) 0.072 (0.111) 0.004 (0.005)
10 Thallium —0.0004 (0.015) 0.034 (0.019) 0.001 (0.001)
11 Manganese 0.032 (0.021) 0.061 (0.047) 0.005™ (0.002)
12 Barium —0.066 (0.139) —0.037 (0.127) —0.007 (0.006)
13 Copper —0.025 (0.019) —0.093 (0.081)  —0.003** (0.001)
14 Aluminum 0.011 (0.051) 0.185 (0.140) 0.003 (0.004)
15 Silver —0.042** (0.012) 0.423 (0.530) —0.003"** (0.0004)
16 Selenium —0.119 (0.076) —0.193*** (0.033) —0.006 (0.004)
17 Vanadium 0.042 (0.052) 0.024 (0.077) 0.001 (0.003)
18 Zinc 0.017 (0.025) 0.012 (0.033) —0.0004 (0.001)
Grades 3 3 3
Observations 423,560 362,010 423,560

Note change in significance cutoffs:

*p<0.01; **p<0.006; **p<0.001

Using modeled airborne concentrations of each metal reported in the TRI, significant
and negative effects generally corroborate the EPA’s toxicity rankings and the main

findings presented above.

The full set of controls and weights used throughout were

included. Only Chromium exposure is robust to the choice of outcome variable at the
p < 0.006 significance level (stricter cutoffs are used in the presence of multiple hypotheses
of interest; 0.006 corresponds to the Bonferroni correction a/N = 0.1/18). Significant
effects that are not robust to the choice of dependent variable are among those least

frequently reported in the TRI (Table 1.1).
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Appendix

1.A Additional robustness tables

Additional robustness checks are presented in this appendix. Table 1.A1 shows the in-
clusion of contemporaneous (to the testing year) ambient toxicity does not change the
main results. Table 1.A2 shows the results are not dependent on the use of z-scores as
the dependent variables, and Table 1.A3 presents similar robustness for concentrations
of airborne chromium. Table 1.A4 replicates the main findings (Table 1.5) using the
z-scores of the IHS-transformed RSEI toxicity instead of the log transformation; results
are attenuated slightly but not meaningfully different. Table 1.A5 replicates the main

specifications without weighting by cohort size; results are again similar.

Table 1.A1: Main findings with contemporaneous toxicity

Dependent variable:

Pct. proficient SD pct. prof. Percentile

(1) (2) (3) (4) (5) (6)
Z-score log(Toxicity) -0.251  -0.251** -0.020* —0.020™  —-0.501"*  —0.501**
(0.122) (0.122) (0.008) (0.008) (0.238) (0.238)
Z-score log(Contemp. toxicity) —0.004 0.006 —0.034
(0.164) (0.009) (0.267)

Grades 3 3 3 3 3 3
Observations 354,540 354,540 354,540 354,540 304,540 304,540
Note: p<0.1; *p<0.05; **p<0.01
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Table 1.A4: Main findings with Z-scores for IHS-transformed toxicity

Dependent variable:

Pct. proficient SD pct. prof. Percentile
(1) (2) (3) (4) (5) (6)
Z-score ihs(Toxicity) — —0.293** —0.173* —0.016** —0.010* —0.397* —0.187

(0.136)  (0.103)  (0.008)  (0.006)  (0.229)  (0.165)

Grades 3 3-5 3 3-5 3 3-5
Observations 429,690 1,270,370 429,690 1,270,370 366,790 1,073,110
Note: “p<0.1; **p<0.05; **p<0.01

Table 1.A5: Main findings without weighting

Dependent variable:

Pct. proficient SD pct. prof. Percentile
(1) (2) (3) (4) () (6)
Z-score log(Toxicity) — —0.292** —0.145 —0.020"*  —0.010*  —0.449* —0.139

(0.124)  (0.097) (0.008) (0.006)  (0.211)  (0.165)

Grades 3 3-5 3 3-5 3 3-5
Observations 428,690 1,266,690 428,690 1,266,690 366,060 1,070,470

Note: p<0.1; *p<0.05; ***p<0.01
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Chapter 2

The Cognitive Cost of Toxic Chemicals in Early Childhood

Abstract

I estimate the effect of exposure to toxic chemicals in infancy on both child cognition
in the critical years before kindergarten and parent responsiveness to this shock to child
cognition. Linking data from the Early Childhood Longitudinal Study and emissions from
the Toxics Release Inventory, I exploit within-zip code variation in children’s months of
birth. I find higher exposure substantially diminishes cognition—moving from the 60th
percentile to the median toxicity hazard improves early reading and math skills by 0.08
standard deviations—but I find no evidence parents alter behavior in response. Children
from more affluent households are less affected by airborne chemical exposure, suggesting
heterogeneity in early skill investments, which are associated with household resources,

may exacerbate environmental inequality at the neighborhood level.

2.1 Introduction

A growing empirical literature has established the vulnerability of later-life outcomes to
exposure to air pollution in childhood (Almond and Currie, 2011; Currie et al., 2014).!
Much of this work draws from and affirms a theoretical framework in which skills are

complementary across multiple dimensions and compound over the life course, so early

TAs a “shock” to early human capital, air pollution fits into a much larger context of risk factors for
children, such as malnutrition, maternal stress, disease, recession, and natural disasters; these shocks are
reviewed in detail by Almond et al. (2018).
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skill development has cascading benefits for later success in learning (Heckman, 2008).
Distilling early childhood into a series of endowments and investments, this theory pre-
dicts parents choose their allocations of time and money in response to their children’s
human capital in early childhood. Empirically, observed harm to cognition from neighbor-
hood pollution is net of household decisions, a product of both biological and behavioral
mechanisms (Almond et al., 2018). When environmental exposures are disproportion-
ately concentrated among low-income and minority neighborhoods (Ash and Boyce, 2018;
Banzhaf et al., 2019), this channel from environmental shocks to cognitive outcomes may
contribute to observed school readiness gaps and perpetuate socioeconomic inequality.

This paper finds a substantial and harmful effect of exposure to airborne toxic re-
leases during infancy, a critical period of neurodevelopment, on child cognition several
years later. Individual observations from a detailed survey of early childhood also allow
me to study the relationship between household choices and environmental shocks to
cognition in the formative years before kindergarten: I estimate both the responsiveness
and protectiveness of parenting behaviors, and find suggestive evidence of socioeconomic
status (SES)-associated resilience to local environmental harm. This highlights the im-
portance of households for mitigating children’s experiences of adverse neighborhoods.

I pair the Birth Cohort of the Early Childhood Longitudinal Study (ECLS-B) with
the Risk-Screening for Environmental Indicators (RSEI) data on toxic air pollution. The
ECLS-B surveys a nationally representative cohort of children born in the United States
in 2001, and includes multiple, standardized, direct assessments of child cognition and
parent attention, as well as detailed household responses to surveys. These repeated
records of inputs to, and measurements of, human capital help identify the mechanisms
through which environmental harm has persistent effects on development in the period
from birth to kindergarten entry.

The Toxics Release Inventory (TRI) data are records of releases from industrial sources
in the United States, providing a year-, chemical-, and facility-specific measure of both
permitted and accidental air emissions for hundreds of common, harmful compounds. The

RSEI model estimates and aggregates the dispersion of these chemicals into a measure
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of relative, neighborhood-level variation in ambient inhalation toxicity hazard over time.
This better accounting for the relative toxicity of the constituents of airborne pollution
improves on the use of particulate matter (PM; often measured as PM2.5 or PM10),
which has a heterogeneous composition across both time and space. Inhalation presents
a clear pathway from firm releases to infants’ health. Relative to the toxicity-weighted
index, using annual satellite PM2.5 measurements in an otherwise-identical specification
results in estimates that are attenuated towards zero by about half, which is consistent
with PM2.5 being an imprecise proxy for cognitive risks.

The process of households sorting into neighborhoods differentiated by amenities, from
labor markets to school quality to clean air, confounds a cross-sectional evaluation of the
effect of local environments on skills in early childhood; instead, I exploit the timing of
children’s births within zip codes. Identification rests on a child’s month of birth being
unrelated to annual variation in toxic releases, and zip code fixed effects controlling for
constant, unobserved, neighborhood-level determinants of children’s cognition. I create
a month of birth-weighted average of RSEI concentrations in 2001 and 2002, assigning
younger children a higher proportion of releases from the later year, and demonstrate
that this variation in environmental exposure is uncorrelated with child and household
characteristics, household moves, and sample attrition.

Decreased exposure to toxic chemicals in infancy predicts higher cognitive skills through-
out early childhood, using as an outcome variable children’s scores on standardized ECLS-
B assessments. Moving from the 60th percentile of toxicity to the median corresponds to
an increase in cognitive skills of about 0.08 standard deviations, and this harm from expo-
sure in infancy persists until kindergarten entry. The relatively small change in toxicant
exposure hazard associated with the 60th to 50th percentile change (0.5 units) is in line
with neighborhood-level panel variation in exposure (0.3 units), and much smaller than
a standard deviation (about 3 units). Its predicted effect is comparable in magnitude to
the 0.08 to 0.12 standard deviation increase in early reading and math skills Lee et al.
(2014) estimate from participation in Head Start for the same ECLS-B cohort, indicat-

ing reductions in exposure to environmental toxicants could have widespread benefits for
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children in the United States.

The broader potential benefits to public health implied by these estimates depend on
the extent to which early cognitive scores are predictive of future labor market outcomes.
In standard deviations of cognitive performance relative to peers, I find no evidence the
effects of exposure to toxicants in infancy diminish across the three waves when the same
cognitive assessments were given (roughly, preschool age through kindergarten entry). I
do not observe how the ECLS-B cohort is doing today, now old enough to be graduating
high school, but other research concludes the foundations for inequalities in educational
attainment are established well before children enter a kindergarten classroom (Currie and
Stabile, 2003; Chetty et al., 2011). The early math and reading skills with which children
enter kindergarten tend to be the strongest predictors of later achievement in school across
a wide range of characteristics (Duncan et al., 2007; Claessens et al., 2009). Gaps in
cognitive ability among five year olds often follow familiar patterns of disadvantage along
race and class lines, and are strong predictors of later performance in school, which means
targeting investments in children’s health, learning, and environments at very young
ages can be a particularly important channel for reducing intergenerational inequality
(Heckman, 2007).

A persistent and causal link from toxicity-weighted air pollution exposure in infancy
to children’s prekindergarten cognition is an important finding in its own right, and ex-
pands on literature that has largely focused on prenatal exposures to particulate matter.
It is also an average effect, net of parental investments and home environments that may
exacerbate or remediate a biological pathway of harm. If the impact of environmental
pollution in early childhood depends on a household’s available resources, then avoidance
behavior, healthcare, childcare, or extra time spent reading are all ways in which higher-
SES parents can attenuate adverse environments (Case et al., 2002; Ferrie et al., 2012);
conversely, adverse shocks early on may be invariant to household SES if the biologi-
cal effect dominates the behavioral (Figlio et al., 2014). The quasi-exogenous variation
in environmental harm in infancy allows me to estimate whether parental investments

respond to children’s skills in the formative years before kindergarten.
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The role of responsive investments matters for the interpretation of reduced-form
estimates, and in turn for policies regulating airborne toxicants near residential neigh-
borhoods with the goal of improving child outcomes or reducing environmental inequality.
If household investments are endogenous with respect to environmental shocks to cogni-
tion, then it is possible to estimate the extent to which decreases in cognitive skills are
explained by reinforcing parental investment, or conversely, to what extent harm from
toxicant exposure is understated due to compensating investments. I test for responsive-
ness using parents’ choices of reading-related activities and videotaped assessments of
parent engagement, asking whether households whose children were exposed to relatively
more toxic emissions subsequently report higher or lower levels of investment. I rule
out compensatory or reinforcing investments as a large part of the net effect of toxicity
exposure on cognition, and this null finding may reflect the context: in low-information
settings, where parents do not have clear signals about shocks to children’s human capital,
responsive behavior may not be plausible.

Despite this, I find toxicity exposure in infancy is more harmful among children from
lower-income households than among children from higher-income households. 1 rule
out within-zip code, SES-associated differences in exposure by testing for, and failing
to find, a similar gradient in income for motor skills. This pattern is consistent with
observed underlying heterogeneity in investments by income, so one potential explanation
of this finding is that early parental investments modulate early harm from exposure to
environmental toxicants. Put differently, if household SES is protective against harm from
toxicity, then even if pollution exposure were distributed evenly across the population (it
is not: Boyce et al. (2016) find environmental inequality is starker than income inequality
in the United States), it would still cause more harm among poorer households.

These findings contribute to a broader understanding of the ways parents allocate
time and effort toward children in adverse circumstances, highlighting two distinct chan-
nels through which exposure to toxic air pollution may contribute to school readiness
gaps: unequal exposures across neighborhoods, and unequal resources across households.

Across the United States, the most-polluted neighborhoods are disproportionately home
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to children facing other dimensions of disadvantage. Across households, household re-
sources may then mitigate external threats in a way that reinforces inequality, if families
with more resources are able to provide costly investments protective to cognition. This
second channel illustrates the need for more research on how household characteristics
and choices modulate harmful neighborhoods in the critical developmental years before
kindergarten, and reinforces the importance of well-resourced and widely accessible early
childhood programs.

Studying the consequences of toxic air pollution also has clear policy implications.
Understanding the potential harm from air toxicity motivates both better monitoring of
the composition of particulate pollution across time and space, and careful consideration
of facility siting that exposes neighborhoods to harmful emissions. As the current EPA
has considered weakening rules that count co-benefits among the gains from regulating
emissions and minimizing the role of communities to appeal pollution permits in their
neighborhoods,? this study presents evidence that industrial pollutants are a persistent

threat to children’s early cognitive development.

2.2 Background and theory

Empirical studies of the effects of air pollution on health and cognition implicitly or ex-
plicitly speak to several dimensions of treatment: the relative toxicity of the pollutant; the
magnitude, or dose, of exposure; and the timing of the exposure (in the context of early
childhood, this is the prenatal or neonatal period). Estimated effects range from contem-
poraneous or short-term outcomes (mortality or birthweight) to long-term behavioral,
educational, and labor market outcomes. Much recent research has examined criteria
pollutants that are measured by widespread air quality monitors (e.g., carbon monoxide,
ozone, and particulate matter). The effects of these relatively well-measured emissions on
early childhood outcomes have been studied across a wide range of doses, on outcomes

throughout the life course. Conclusions drawn from both county- and individual-level

2See https://www.epa.gov/environmental-economics/increasing-consistency-and-transparency-
considering-costs-and-benefits and  https://www.nytimes.com/2019/07/12/climate/epa-community-
pollution-appeal.html.


www.nytimes.com/2019/07/12/climate/epa-community-pollution-appeal.html
www.nytimes.com/2019/07/12/climate/epa-community-pollution-appeal.html
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data generally indicate adverse long-term effects on measures like test scores and earn-
ings (Sanders, 2012; Black et al., 2013; Bharadwaj et al., 2017; Isen et al., 2017; Voorheis,
2017; Rosales-Rueda and Triyana, 2018).

Particulate matter (e.g., PM2.5 or PM10), while a commonly used measure of air pol-
lution, reflects the density of all the constituent parts of particulate pollution in air, and
this makeup can vary over both time and space in ways that could matter substantially
for human health. Valavanidis et al. (2008) find strong associations between the chemical
composition and toxicity of fine PM, and Kelly and Fussell (2012) argue that “identifying
and quantifying the influences of specific components or source-related mixtures [of PM]|
on measures of health-related impacts” is an important step toward reducing the disease
burden of air pollution. This study uses a measure of airborne toxicity in order to better
attribute the threat to human health from industrial pollution.

Several existing studies link exposure to toxic air pollution with negative outcomes
for fetal and infant health using the TRI. It is the most comprehensive record of toxic
chemicals released from point sources into the environment in the United States, with
mandated reporting from firms above a certain size in major industrial sectors such
as manufacturing, mining, chemical production and treatment, and power generation.
Currie and Schmieder (2009) find shorter gestation length and birth weight from prenatal
exposure to county-level toxic releases, using the total weight of releases normalized by
county area. Agarwal et al. (2010) use a similar explanatory variable and find negative
effects on county-level infant, but not fetal, mortality rates. These studies benefit from the
large sample sizes provided by natality data, but inevitably average out the substantial
spatial heterogeneity in exposure to toxicants within cities and counties. Currie et al.
(2015) exploit firm openings and closings to estimate the effects of toxic releases in the
immediate neighborhood of TRI-reporting facilities and find an increase in the incidence
of low birthweight within a mile of firms.

Persico and Venator (2019) study the effect of TRI facility openings and closings in the
proximity of Florida public schools, identifying effects of cumulative pollution exposure on

student standardized test outcomes and school rankings. They find this discrete change
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in exposure reduces test scores by 0.024 standard deviations for schools within a mile of
TRI facilities, relative to schools one to two miles from a TRI site; their smaller effect size
from exposure among students in grade 3 or above is consistent with reduced sensitivity
of cognitive development at older ages.

Two other recent papers provide useful points of comparison for long-term cognitive
outcomes from household proximity to sites contaminated with hazardous waste. Rau
et al. (2015) find short-term cognitive harm of 0.09 and 0.07 standard deviations for
math and language skills, respectively, for children living a kilometer nearer to a site
containing deposits of mining waste (particularly lead) in northern Chile, and larger
long-term effects from increases in blood lead levels associated with exposure to the site.
Studying mothers living within two miles of Florida Superfund sites (areas flagged by
the EPA for deposits of toxic waste), Persico et al. (2016) find differences in test scores
of 0.06 standard deviations for children conceived before and after the sites were cleaned
up, as well as increases in grade repetition and school suspensions for exposed siblings.

This study introduces parent behavior as a potential modulator of environmental
shocks, providing generalizable insights about the role of household heterogeneity be-
yond the study context of toxic pollution exposure. These findings also reinforce our
understanding of the ways harmful environments in the earliest stage of life may have
persistent effects years later, and are based on a nationally representative sample of
children with a toxicity measure that accounts for the heterogeneity in potential health

impacts of chemicals released by the TRI.

2.2.1 Toxic pollution and human capital formation

The hypothesis that infancy is an important window of sensitivity—that is, a period
during which toxic chemicals are disproportionately harmful for neurodevelopment—to

air pollution is grounded in findings across epidemiology, pharmacology, and toxicology.?

3After birth, the body’s organs and metabolic processes to eliminate toxicants mature rapidly;
this maturation is nearly complete by age one (Renwick, 1998; Scheuplein et al., 2002). Uniivar and
Biiyiikgebiz (2012) write, “Children and especially newborns are more sensitive to environmental toxins
compared to adults. ... The ability of the newborn to metabolize, detoxify and eliminate many toxins is
different from that of the adults. Although exposures occur during fetal or neonatal period, their effects
may sometimes be observed in later years.” Describing the potential for unique vulnerability during
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Heft-Neal et al. (2018) also find strong effects from PM2.5 exposure on infant mortality
(that is, during the 12 months after birth) in sub-Saharan Africa. Following these other
literatures, I examine airborne toxic exposures during this period of postnatal neurological
development.

That air toxics matter for contemporaneous infant mortality and morbidity does not
mean exposure causes long-term skill gaps: parents’ behavioral responses in subsequent
years may mitigate the initial exposure. When parental investments counteract the role of
cognitive harm from environmental insults, net effects undercount the cost from exposure
to air toxics. This echoes the intuition that failing to measure costly avoidance behavior
as a response to pollution results in undermeasurement of pollution’s damages. But unlike
avoidance behavior, parental behavior can also go the other direction and exacerbate net
effects. Theory linking early shocks to cognition and parental investments is formalized
by Almond et al. (2018) and modified here for intuition. Other recent papers such as
those by Heckman (2007), Del Boca et al. (2014), Bharadwaj et al. (2018), and Attanasio
et al. (2019) also explore these themes.

Consider a multiperiod model of early childhood, where circumstances of birth en-
dow a child with unidimensional human capital Hy. Early childhood development, the
accumulation of skills at each age t, is approximated as the production of human capital,
where parent investments X and skills in previous periods are inputs to human capital

in each period:

Hy = f(Hy—1, Xy).

Parents get utility U from their children’s human capital, but the investments X is costly
and comes out of the household’s total budget Y, which is otherwise spent on consumption

C. If parents know the human capital production function f, and observe H;_ i, they can

which organs are much more sensitive than later in life, Bruckner (2000) write that infants’ anatomy and
physiology are quite different from adults, including their nervous systems. As those systems develop,
“relatively small disruptions in these processes may set individuals on trajectories that have subtle ef-
fects in early years and profound effects later in life” (Block et al., 2012). At very young ages, children’s
metabolic rates are higher, meaning their relative oxygen consumption is relatively higher than adults
(Bearer, 1995; Bateson and Schwartz, 2008); it follows that when the air is polluted, infants breathe in
a proportionally larger share of the pollution.
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choose an optimal investment X* as part of the optimization
H}?X U(Ht, Ct) st. Y 2 tix + Ct.
t

Environmental harm enters as a shock S < 0 to children’s cognition, decreasing X at

time ¢:

Ht - f(Ht—la Xt + St)

Since f is increasing in both inputs H and X, S unambiguously decreases contempo-
raneous human capital. We also know the reduced form effect from a growing body of
literature: a measurable long-term decrease in later-life human capital can be linked to
many environmental shocks in childhood (dH;,y/dS; < 0, where N is many periods in
the future). In theory, this decrease is relative to the same child’s counterfactual human
capital in the absence of the shock; empirically, researchers estimate the “baseline” using
siblings or peers who are not exposed or are less exposed.

The reduced form effect dHyy n/dS; embeds two possibilities. With compensatory in-
vestment, parents allocate additional time and effort into children’s skills in order to make
up for the shock in the previous period (dX/,,/dS; < 0); with reinforcing investment,
parents reduce their inputs in light of the negative shock (dX7, ;/dS; > 0). Understanding
whether the investment response magnifies or minimizes environmental shocks is directly
useful for understanding (and mitigating) the source of long-term, reduced-form harm.

The functional form f has been intentionally left unspecified, but it—and the func-
tional form of parents’ preferences U—is necessary for a theoretical prediction about the
direction of parental investment.* In particular, the extremes of perfect complementar-
ity and perfect substitutability of endowments of skills and parental investments produce
opposite predictions. Three functional forms are presented for intuition in Appendix 2.A.

Any production function for human capital generating responsive parental investment
implies something about the ways a shock persists across periods when human capital

is an input to its own production. In the case of perfect substitutes, the model implies

4Cunha and Heckman (2016) and Cunha et al. (2010), among others, provide some insight toward
estimating this production function.
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compensating investments: extra time and effort in the current period can “make up” for
diminished human capital in the previous period. When endowments and investments are
perfect complements in the production function for skills, however, we expect reinforcing
investments. Intuitively, if the returns to investment are limited by diminished skills
in the previous period, then parents correspondingly divest, reallocating instead toward
consumption. In the absence of any other inputs or shocks to human capital (such as
preschool), these two extremes predict very different trajectories for skills over the course
of early childhood. Since there exist functional forms consistent with either outcome, the
direction of responsiveness remains an empirical question.

The theoretical assumption that parents observe (and respond) to child human cap-
ital provides intuition about parent responsiveness, but it may not hold up to empirical
scrutiny. Many studies of parental investment examine responses to birthweight or nu-
trition shocks by exploiting sibling and twin fixed effects models to isolate differences in
parents’ allocation of time or resources among siblings (Yi et al., 2015; Bharadwaj et al.,
2018). It may be unrealistic, however, to frame those findings as descriptive of the ways
parents with a single child recognize and respond to shocks in other contexts. Having a
twin for comparison is not useful just for econometricians: if relative, rather than abso-
lute, ability informs investment allocations, then this behavioral signal is not available
to parents of singleton children. Birthweight is also an easily and universally observed
dimension of human capital; it seems less plausible parents precisely know whether their
child’s cognitive skills are age appropriate (Dizon-Ross, 2019). In fact, for the ECLS-
B cohort, parents do not even appear to be strongly responsive to birthweight: Royer
(2009) finds little evidence of compensatory or reinforcing investments in early medical
care across twins, and Lynch and Brooks (2013) find no evidence of responsive longer-
term parenting investments, after controlling for cross-sectional associations of poor child
health and lower investment behaviors. This lack of parent responsiveness is echoed in the
empirical findings here, which do not identify responsive parent behavior in the presence
of environmental harm.

Finally, household environments likely matter. In the abstract, this model imposes
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a budget constraint on investment, so resources, not parents’ abilities or preferences,
are the relevant constraint over allocations of time and effort. This informs the choice
to study empirical heterogeneity households of different SES. Even if parents do not
actually observe cognitive shocks, income heterogeneity is plausible: household wealth,
education, health insurance, and habituated behaviors all affect resources available to
children. Because I expect parents’ investment decisions—and access to resources more
generally—will vary with income, it will be useful to think about “protective environ-
ments,” or characteristics of households that mitigate the effects of adverse environmental

shocks, in addition to directly responsive investments.

2.3 Data

This paper pairs a survey of early childhood development with local estimates of toxicity
hazard from airborne chemical emissions. Individual microdata on child outcomes and
parental choices provide detailed outcome and control variables with which to examine
the role of shocks in environmental exposure, which I link to children using residential

zip code and month of birth.

2.3.1 Birth Cohort of the Early Child Longitudinal Survey

The Early Childhood Longitudinal Study — Birth Cohort (ECLS-B), designed by the
National Center for Education Statistics, follows a cohort of children born in the United
States in 2001 from birth through kindergarten entry. The 10,700 children were sampled
from birth certificates, and the first wave of the survey was conducted when most children
were nine or ten months old.® The second wave collected information from children and
families around age two, and waves three through five were conducted between ages 4
and 7. Attrition reduced the sample size to about 8,800 students, four-fiftths of whom
entered kindergarten in 2006 and the remainder the next year, in 2007. Each wave

of data collection provides an evolving picture of child development over these early

5To protect child privacy, this and all sample sizes going forward are rounded to the nearest 50, as
per NCES privacy rules.
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years, alongside rich data on individual measures and family controls, such as parent age,
education, attitudes, and SES. Unfortunately, the nature of this sample precludes sample
designs used elsewhere; in particular, the study does not collect information about the
focal cohort’s siblings, so sibling fixed effects and other multiyear comparisons are not an
option.

I restrict the sample for estimation to neuro-typical children (identified by the “spe-
cial needs” variable in the ECLS-B) who are living with their birth mother; this is 96
percent of the entire sample. The main outcome variable of interest is the performance
of children on direct cognitive assessments given in each wave of the study. Assessments
are standardized in the ECLS-B to have a unit variance for each wave, so changes in this
outcome variable will be in standard deviations of performance relative to peers, or age-
appropriate cognitive development. To get at medium-term effects of contemporaneous
exposure from airborne toxicity in the first year of life, I do not use the wave 1 cognitive
score, collected when children were nine months old, as an outcome variable.

Assessments in wave 2 tested early language and problem solving using the Mental
Scale of the Research Edition of the Bayley Short Form, and in waves 3 through 5 tested
early mathematics, and early language and literacy, using a range of assessments, includ-
ing some from the ECLS-K and other proprietary (but commonly used) assessments.
In order to have a continuous outcome variable from waves 2 through 5, I average the
math and reading scores to create a single cognitive score for each child in these later
waves, and also consider each subject area separately. Empirical analysis is designed to
estimate cognitive differences across children at the same age with respect to their history
of exposure to toxic pollution, so cognitive scores are compared within waves rather than
across them. This alleviates some concerns that the assessments given in each wave of
the ECLS-B measure different sets of skills at each age.

A secondary outcome is parental time investments in child skills, which are mea-
sured through two channels: parent-reported investment activities in reading, and the
videotaped “Two Bags Task.” Literacy investments are revealed in survey responses to

questions about how many times per week the parent reads to the child and how many
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children’s books parents have in the house.® Because both of these are a recall question, I
expect responses to be a noisy measurement of the underlying variability in parent effort.
In order to minimize hypothesis testing and improve precision, I combine the measures
into an index by adding the z-scores of each, relative to responses in the wave in which
the responses were collected.

The Two Bags Task measured the quality of parent-child interactions during a “semi-
structured play activity” at two years and preschool age (waves 2 and 3 of the ECLS-B).
Videotapes of the sessions, which asked parents to play with toys and read a book to
their children, were graded using a standardized rating scale across several dimensions
meant to characterize the quality of the interactions. The parent rating scales assessed
sensitivity to children’s behaviors, stimulation of cognitive development, and expressions
of positive regard, as well as some negative responses, which I do not include. Steps were
taken to ensure the task was administered in a standardized way across all ECLS-B home
visits, and ratings were uniformly applied across the coders who watched the video tapes
(the collection and measurement of these data are discussed further by Andreassen C
and Fletcher P (2007) and Najarian et al. (2010)). As with the parent-reported reading
activities, I sum z-scores of the individual measures into an index reflecting the positive
aspects of parental engagement during the activity.

The two measures of parent investment are correlated, but not strongly (the corre-
lation coefficient is about 0.32 for waves 2 and 3). While the index of reading activities
focuses specifically on how parents foster early literacy, the Two Bags index is a more
general assessment of parent attentiveness. The relationship between reading sessions
and the Two Bags index is visualized in Figure 2.1.

I focus on income as the main dimension of household heterogeneity with respect to
child sensitivity to environmental toxics, recognizing income can also be considered a

proxy for household SES more broadly. Reports of household income were collected in

6 “Number of kids’ books” was an open-ended response, and has a positive skew. Results are generally
invariant to top-coding the largest responses. Responses for reading sessions were collected in four bins:
“0 times per week,” “1-2 times per week,” “3-6 times per week,” or “Every day”; I treat the middle
of each interval as a number. Unfortunately, two other potential measures of literacy investment were
not collected consistently: responses for “telling stories” were collected only in waves 1 and 2, while
responses for “minutes spent reading” were collected only in waves 3-5.
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14 bins in the survey; I average the endpoints of each bin to create a continuous variable.

Across the children in the ELCS—B, the associations of child skills, parent investment,
and parent resources are apparent: wealthier parents tend to invest more time and effort
into children and have higher-quality interactions, and children from wealthy families tend
to score higher on cognitive assessments. The effect of extra parental effort, therefore,
cannot be easily separated from the lucky circumstance of being born into a household
with more material resources at its disposal. Figure 2.2 shows the stratification of both
early childhood cognition and parent investments by terciles of income in the ECLS-B
(low-, middle-, and high-income households).

Summary statistics are presented in Table 2.1, which also previews the balance nec-
essary for identification across zip code toxicity exposure (discussed in the next section).
Identifying variation relies on within-zip code differences in ambient air pollution: for
internal validity, it is important children exposed to more and less pollution are compa-
rable on observable and unobservable characteristics; for external validity, it is important
children in zip codes not contributing to identifying variation are comparable to “treated”
children on observable and unobservable characteristics.

The ECLS-B cohort initially lives in 4,000 distinct zip codes in over 2,300 cities across
the United States. Children in the survey were geographically clustered at the first wave
to facilitate data collection, but the ECLS-B cohort is nationally representative with
sampling weights, which are used throughout empirical analysis. The survey provides
household zip codes, which I use to link neighborhood-level environmental conditions. I
assume the household zip code reported at the first wave of the survey, conducted when
children are just nine months old, is where a child has lived since birth.

Anticipating the variation that will identify the effect of toxicant exposure, 1,950
zip codes have children born in more than one month of the year, and these zip codes
contain 76 percent of the ECLS-B children (Table 2.2). Household mobility is substantial
(29 percent of children moved between waves 1 and 2, and 45 percent report a different
zip code at least once in the survey), which makes it difficult to control for children’s

zip codes in later waves of the study, since most ECLS-B families who move end up in
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a zip code with no ECLS-B peers. I test that moves after wave 1 are uncorrelated with

exposure to air toxicity at wave 1 of the survey, and control only for zip code of birth.

2.3.2 Toxics Release Inventory and Risk-Screening Environmen-

tal Indicators model

The Toxics Release Inventory (TRI) is a federally mandated reporting program for chem-
ical releases in the United States. Since 1988, manufacturing firms have been required
to report their releases of hundreds of chemicals directly to the EPA, which compiles the
data and makes it publicly available. In 1994, over 200 chemicals were added to the TRI,
and in 1998, a major expansion brought additional industry sectors under mandated TRI
reporting, including metal and coal mining, electric utilities, chemical distributors, and
chemical treatment and disposal facilities. Federal facilities have always been required to
report, regardless of sector. The reporting thresholds for persistent bioaccumulative toxic
chemicals—toxicants which remain in the human body and the environment over long pe-
riods of time—were lowered for the 2000 reporting year, which means the TRI years used
here contain more accurate information about smaller releases of highly toxic chemicals.
These expansions improve the reports as a representation of neighborhood-level environ-
mental conditions—in 2001, nearly 650 distinct chemicals were required to be reported,
and total releases were in the billions of pounds—but the TRI is not exhaustive. The
data do not account for mobile sources of pollution (such as airports and highways), nor
firms falling outside of covered sectors or below reporting thresholds (which are based on
number of employees and weight of chemicals used).

Reported toxic releases typically come from regular, permitted operation of industrial
facilities. These fluctuate year to year due to changes in the type or quantity of activity
at a facility (for example, changes in demand for a product, changes in production inputs
or processes, or improvements in pollution control technology); an additional source of
annual variation at a facility is accidental or one-time releases, any instances of which
must be included in TRI reporting.

This paper primarily uses TRI data from the 2001 and 2002 reporting years to at-
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tribute environmental toxicity in infancy, and over these years the TRI maintained con-
sistent rules across sectors and chemical compounds; this means changes in toxicity (and
estimated effects) are not being driven by changes in reporting requirements. A sin-
gle reporting change (the threshold for lead and lead compounds was lowered for 2001)
affects comparisons from 2000 to 2001, so in Appendix 2.D where zip code-level concen-
trations from 2000 are included, I recreate an inhalation toxicity-weighted concentration
that omits releases of lead to ensure consistency across TRI years.

To reflect the potential harm to people in the neighborhood of TRI facilities, it is
important to consider the size of the area around a firm affected by TRI releases, and the
relative toxicity of individual chemicals. Currie et al. (2015) identify a uniform radius
around TRI facilities affected by releases and exploit plant openings and closings for
variation in local exposure. This paper instead takes advantage of a dispersion model
providing traction on the quantities of chemicals released, the fate and transport of those
chemicals, and their relative toxicities. Two features of the RSEI model make the health
risks implied by reported TRI releases more tractable: dispersion and toxicity. These
aspects are discussed briefly here, and at length in Appendix 2.C.

An EPA dispersion model called AERMOD? estimates the fate and transport of each
release in the TRI, producing ambient concentrations of the chemical in the area around
the point location of a facility. These concentration estimates account for site-specific
quantities, release pathways (stack or fugitive), and weather; and compound-specific dis-
persion characteristics. (Over half of ECLS-B zip codes do not contain any TRI facilities
but are affected by facilities in neighboring zip codes via the RSEI dispersion model.)

Toxicity weights are the other component of the RSEI data, and reflect the fact that
the threat to human health from TRI releases varies widely among the chemicals reported,
from relatively benign (for example, sodium nitrite, used as a food preservative) to known
carcinogens and neurotoxicants (like asbestos and chromium). I scale concentrations with
the RSEI’s inhalation-specific toxicity weights, which reflect the EPA’s collected research

about relative risk for adverse health consequences from inhalation of each chemical

TAERMOD is documented at www.epa.gov/scram/air-quality-dispersion-modeling-preferred-and-
recommended-models.


https://www.epa.gov/scram/air-quality-dispersion-modeling-preferred-and-recommended-models
https://www.epa.gov/scram/air-quality-dispersion-modeling-preferred-and-recommended-models
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compound.®

Using estimated concentrations and toxicity weights, the RSEI model aggregates all
TRI releases up to a standardized grid, so each cell reflects the total, relative levels
of toxicity-weighted airborne hazard from the contributions of each chemical from each
individual facility affecting the location in a given year. I link the RSEI grid, which
covers the entire United States at a resolution of 810 square meters, to ECLS-B zip
codes, assigning airborne toxicity-weighted concentrations by joining the centroid of each
zip code to its nearest grid cell. Zip codes do not represent geographic areas (as do
counties, census tracts, or school attendance boundaries) so it is not possible to average
RSEI exposure over an entire zip code. Consequently, I expect rural zip codes, which
cover residential addresses over a large area (typically the most rural places) to have the
highest potential for measurement error. Because environmental releases tend to be low
in rural places, I do not expect this source of measurement error to meaningfully affect
findings. Because ambient concentrations are modeled, there is considerable smoothing
in the RSEI grid, which means neighboring grid cells are spatially correlated.

The TRI present uniquely detailed toxicity data, but the quantities of chemicals are
ultimately self-reported, and in many cases estimated rather than measured by firms.
However, there are legal requirements report accurately to the EPA, and penalties for
firms failing to do so. The accuracy of TRI reporting is discussed by Marchi and Hamilton
(2006), who find more evidence of random noise (possibly due to inaccurate guessing) than
strategic underreporting. The exogeneity of these releases with respect to unobservable
attributes of the ECLS-B cohort is discussed in Section 2.4.1.

Since the RSEI toxicity-weighted concentrations are unitless, they are best interpreted
as a measure of relative risk for chemical exposure across a nationally representative sam-
ple. Changes in airborne toxicity exposure can be expressed in terms of quantiles of the
sample-weighted distribution (e.g., moving from the 75th percentile to the median), which

are independent of monotonic transformations of the underlying data. For reference, with

8Coefficients from regressions using the all-around toxicity weights are slightly attenuated toward zero,
corroborating the assumption that inhalation is the most immediate pathway by which TRI releases affect
infants; issues of accumulation in water or soil are left for future study.
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the inverse hyperbolic sine-transformed independent variable I use for analysis, moving
from the 60th percentile of toxicity risk to the median is about 0.5 units, and from the
90th percentile to the median is about 2.2 units. As would be expected, panel variation is
smaller than cross-sectional variation: the median absolute within-zip code change from
2001 to 2002 for the RSEI measure is about 0.3 units. Summary percentiles are presented

in Table 2.3, and the distribution is visualized in Figure 2.3.

2.3.3 Particulate matter

In order to evaluate whether the use of toxicity-weighted concentrations from the RSEI
model leads to substantively different conclusions from the use of PM measurements, I
replicate the main analysis with PM data from two sources.

The first is an intermediate estimate from the RSEI data. I sum the modeled concen-
trations of airborne particulates from TRI emissions without using the inhalation toxicity
weights, to produce a gridded value for the total concentration of PM from all industrial
sources reporting to the TRI. Of course, non-TRI sources are still missing from these
data, but particulates of all sizes are included.

The second is the NASA Global Annual PM2.5 Grids from van Donkelaar et al.
(2018), which combine multiple satellite measurements to estimate average near-surface
PM2.5 with dust and sea salt removed at a resolution of 0.01 degrees and in units of
micrograms per cubic meter. This measurement of the mass concentration of ambient
particulates includes non-point and non-industrial sources of air pollution, such roads,
airports, and other sites that do not report to the TRI, but omits larger particles. PM2.5
is preferred to PM10 since finer airborne particulates have been more strongly linked to
adverse health outcomes. Since the satellite data is also an annual measure, and very
similar in resolution to the RSEI grid (0.01 degrees is 850 meters at 40 degrees north),
the comparison to the main results is empirically straightforward. As above, I link the
centroid of each ECLS zip code to the gridded PM data in each year.

For each zip code, satellite PM2.5 is almost always greater than TRI PM (on average

by about 10 micrograms per cubic meter), which is to be expected as the satellite mea-
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sure includes many sources of airborne PM not captured by the TRI. Empirically, the
correlation coefficient of the toxicity hazard index and the satellite PM2.5 is only 0.35 for
exposures in infancy among the ECLS-B children (Figure 2.4). That is, there are many
locations where toxicity is relatively high but PM is relatively low, and vice versa, and

so PM may be a noisy measure of relative health risk in this context.

2.4 Empirical analysis

Empirical analysis will determine whether child cognition in the years leading up to
kindergarten is sensitive to airborne toxicant exposure in infancy, and test whether
parental behavior and household environments mitigate or exacerbate environmental
shocks to early human capital. I discuss the exogeneity of the independent variable
after introducing the main specification.

At the first wave of the survey, many zip codes are shared by multiple ECLS-B
households. 1 exploit this geographic clustering and focus on differences in outcomes
among children born in different months in the same zip code. Since the ECLS-B cohort
was born entirely in 2001, and TRI releases are reported only at annual intervals, I create
zip-level weighted averages of the RSEI toxicity-weighted concentrations for the 2001
and 2002 reporting years. This generalizes the intuition that children born in January
experience ambient pollution throughout 2001 during their first year of life, while children
born in December are exposed to air toxics released in 2002 during their infancy. For any
child ¢ born in month B living in zip code z, toxicity risk in the first 12 months of life is

a weighted average of the value Tox, at the matched RSEI grid cell for 2001 and 2002:
TOZL’Z(Z) = TOLUZ,Q()Ol * (12 — Bl)/12 + TOmZ’2002 * (Bz)/12 (21)

Since only one RSEI grid cell is used per zip code, variation in estimated exposure risk
among children born in the same zip is exclusively derived from variation in month of
birth. This attribution based on timing of birth for an ECLS cohort is comparable to the

strategy used by both Marcotte (2017) and Heft-Neal et al. (2018).
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Treatment at the zip code level, then, is the sign and magnitude of the change in
RSEI airborne toxicity risks from 2001 to 2002 combined with a child’s month of birth.
Using rolling averages avoids potentially large, discrete breaks in pollution exposure at-
tributed to children born, or assessed, only a few months apart, but it also inherits the
assumption built into the RSEI model of uniform air release rates over the course of a
year. Finally, because the RSEI toxicity-weighted concentrations have an enormous right
skew, I transform each zip-level RSEI concentration T'ox, with the inverse hyperbolic sine
to prevent outliers in the far right tail from overinfluencing regression estimates.” The
spatial distribution of the average, unitless ambient toxicity risk across 2001 and 2002 is
shown in Panel A of Figure 2.5, while the zip code-level changes from 2001 to 2002 in the
RSEI measure are shown in Panel B.

Using this variation in local airborne toxicity during infancy among children born in
the same zip code in 2001, a fixed effect regression of cognitive assessments on ambi-
ent airborne toxicity and observable household characteristics gives the causal effect of

interest,

Cogiw = ﬁl TOxz(i) + /szw + QwAiw + Hiw + Mr(),B; + Cz(z) + €izw, (22)

where Cog is child i’s cognitive score measured in wave w at age A; the fixed effect
i captures the month and year in which the child was assessed. Tox,;) approximates
ambient airborne toxicity during infancy (following equation 2.1), and ¢ is a zip code of
birth fixed effect. X is a matrix of observed, household-level controls: child sex, race,
number of siblings, and twin status; mother’s age at birth, marriage status, and dummies
for drinking or smoking during pregnancy; and household income.

It is possible children’s birth months are correlated with other socioeconomic deter-
minants of child cognition. To account for this possibility I include 48 region by month-
of-birth fixed effects (7,(;),5,); this assumes any drivers of selection into birth month are

constant across larger geographies than neighborhood-level pollution exposure. Birth-

9Recall that the RSEI toxicity-weighted concentrations are unitless, and meaningful only as ordinal
measures of relative risk. This means a linear-log functional form should not be interpreted as a dose-
response relationship (which would imply diminishing harm from unit changes at higher levels of toxicity).
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weight has been closely examined as both an outcome of exposure to toxic pollution in
utero, and also as a determinant of later-life outcomes in its own right; because birth-
weight may be influenced by local pollution, I do not include birthweight and gestational
length as controls but instead explore the relationship between prenatal and neonatal
exposures for this sample in Appendix 2.D—to preview that result, I find that for air
toxicity risk, neonatal exposures matter relatively more for later cognition.

Coefficient (3 is the parameter of interest, and represents the effect on cognition at
age 2 and older of exposure to toxic air releases in the first year of life. For f; to be
identified, with a zip code fixed effect, the air toxicity during the first year of life, must
matter. This is because by March of 2002, for example, the entire cohort had been born
and experienced the ambient pollution of the zip code, but some children were 3 months
old and some were 15 months old.

I cluster standard errors at the child’s city of birth, even in later waves of the survey.
The clearest need for this comes from the RSEI model, which estimates exposure smoothly
around facilities, so nearby grid cells are spatially correlated. This means neighboring
zip codes, particularly those very close to one another, experience correlated pollution
exposure.

It is also useful to relax the zip code fixed effect specification, instead controlling for
the local level of ambient toxicity for 2001 and 2002. I include this pollution “baseline”

with T'ox, 2001 and T'ox 2002, as above:

Cogiw = P2 Tox iy + B3 Tox 2001 + Ba 10T 2002 +

fyXiw + ewAiw + Hiw + Tlr(i),B; + Als(4) + €izw- (23)

This cross-sectional specification treats the observed environmental quality of a zip code
as a proxy for determinants of early childhood cognition that lie outside the household,
which cannot be controlled for with observed attributes of children and their families, and
are correlated with local air toxics. After controlling for average pollution in residential

zip codes, the timing of births should be quasi-exogenous. I add a state-of-birth fixed
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effect to this regression, a;), and keep the same set of household and region by month-
of-birth controls.

The average toxicity specification is less plausible for causal inference, but provides
greater estimating variation, since zip codes with only one child (or all children born
in the same month of 2001; column (2) of Table 2.1) contribute to the estimate of the
effect in this specification but not the specification with zip code fixed effects. Point
estimates turn out to be quite similar across the zip code fixed effect and average toxicity
specifications. This reinforces the external validity of specification (2.2), where we might
otherwise be concerned the limited estimating variation distorts the national represen-
tation of the sample. The average toxicity specification will also have the advantage of
more identifying variation in household characteristics (relative to individual zip codes)

when later regressions estimate heterogeneity in effects by SES.

2.4.1 Exogeneity of TRI exposures

Causal identification of the effects of toxic exposure in infancy requires that month of
birth for children born in the same zip code in 2001 is unrelated to variation in RSEI
concentrations between 2001 and 2002; if this is the case, then local toxicant exposure can
be considered a quasi-exogenous shock. Much has been made of household sorting and
neighborhood demographic turnover in response to changes in environmental amenities,
which in turn correlates unobservable determinants of child cognition with local environ-
mental conditions. “Household sorting” in this context could take the form of relocation
decisions (e.g., some households opt to leave a neighborhood when environmental con-
ditions deteriorate), but also the timing of parenthood (e.g., some families delay having
children in response to air pollution). This type of sorting requires both salience of en-
vironmental shocks and time for households to change behavior. For example, Spencer
Banzhaf and Walsh (2008) find compositional changes in the immediate neighborhood of
TRI facilities when they open or close, but they identify these relatively small changes
over a decade.

Several empirical checks confirm both characteristics of children, and their attrition
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from the sample, are not significantly related to their relative (zip-level) “treatment” into
toxicant exposure. I show balancing tests of assigned exposure to toxicity-weighted con-
centrations are uncorrelated with household characteristics within zip codes (Table 2.4),
and controlling instead for average toxicity combined with state or city fixed effects does
nearly as well on balance as zip code fixed effects. In Table 2.5, I show toxicant exposures
are unrelated to the likelihood a child’s household moves during ECLS-B data collection,
the number of household zip codes reported by a child’s household, or the number of
cognitive assessments collected for each child. Additional discussion of the exogeneity
of toxicity exposure, and robustness checks of the main empirical results, are presented
in Appendix 2.B, which includes specifications that drop observations that had larger
(and therefore, potentially salient) changes in the number of TRI facilities both within
or affecting the household zip code from 2001 to 2002; show removing household charac-
teristics does not meaningfully change estimates (consistent with as-random assignment
to pollution); estimate placebo effects for randomized child zip codes, months of birth,
or years of exposure.

Finally, some descriptive characteristics of this study and the TRI make it less vulner-
able to household sorting than longer-term and primarily cross-sectional analyses. The
ECLS-B cohort was born within a single calendar year, minimizing the potential for sub-
stantial demographic turnover that would make children compared to one-another within
a zip code bad counterfactuals. TRI data is available to the public more than a year after
each reporting year, making it impossible for households to respond to the information
specifically contained in the TRI, and further, the RSEI measure reflects variation in the
levels of emissions from continuously operating facilities, so most changes are not being
driven by firm openings and closings. And since “many toxic pollutants are colorless,
odorless, and not well monitored, making them less salient than other negative external-
ities” (Currie et al., 2015), and most of the zip-level, year-over-year changes in the levels
of toxicants released from 2001 to 2002 are small, households may not accurately perceive
levels of toxic pollutants affecting their neighborhood.

The specification presented so far restricts the effect of toxicant releases on cognition
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to be perfectly persistent over time: the harm to cognition 3 is invariant over the waves
of the survey in which cognition was assessed. This is a useful first step to establish
the existence of a relationship between toxic exposure and cognition, but unnecessarily
restrictive. Does the relative performance of children who were exposed to higher toxicity
fall relative to peers as the cohort ages, or does the magnitude of harm revert toward
zero?

Interacting toxicant exposure in the first year of life with the wave of the survey
in which children are assessed, or the age at which they are assessed, helps show the
(reduced form) persistence of the relative harm to cognition for children more exposed in
early childhood. Modifying equation (2.2) only slightly, I estimate specifications where
the effect of toxicity is flexible with respect to the wave of the survey (w is waves 2-5),
and alternately where I include an interaction with assessment age.

It is not conceptually obvious whether the harmful effect of exposure in infancy is
decreasing or increasing in magnitude with age. If compensating investments better
describe how parents adapt to children’s environmental harm in infancy, the coefficient
of an interaction between early exposure and age should be positive, while the opposite
sign would be consistent with growing inequality in cognitive skills, relative to peers, as

children age.

2.4.2 Household responsiveness and heterogeneity

The reduced form effect estimated in equation (2.2) is net of parent investments in child
cognition, which are an important component of early development. If parental behavior
is compensatory or reinforcing with respect to shocks to children’s human capital, there
should be evidence parents shift resources toward child development. To examine this,
I omit children’s cognitive scores, and estimate the causal effect of neonatal toxic expo-
sure directly on investment choices, circumventing the simultaneity arising from parents’
choices of investments and children’s endowments of skills. I assume the effect of quasi-

exogenous toxic shocks in infancy on parents’ behavior only operates through the channel
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of children’s cognition:

Invy, = 51 TO:I;z(i) + ’YXlw + ewAiw + Miw + Nr(),B; + Cz(z) + €izw
(2.4a)

Invgy, = 62 To-rz(i) + 53 Toxz(i) * log(InCil) + ’Ysz + ewAiw + Hiw + Nr(3),B; + Cz(z) + €izw
(2.4b)

where log(Inc;) is household income in the first wave of the survey, and I'nvy, is reported
reading activity or parent engagement assessed with the Two Bags task. As always, I
include controls for household characteristics. The coefficient (; reflects the average re-
sponsiveness of parents’ investments (reading activities or the Two Bags assessment) to
neonatal toxicity shocks, and [y and 3 allow that responsiveness to vary with house-
hold income. These equations allow me to test whether, for example, parents whose
children were more exposed to toxicity than their peers in the zip code also read to their
children more than other parents. More precisely, when [3; is positive, investments are
compensatory—higher toxicity exposure diminishes cognitive skills and parents respond
with increased effort; the opposite sign implies reinforcing investments. Estimates con-
sistent with responsive investments will depend on both a strong relationship between
early toxicity exposure and children’s later skills, and also that parents actually adjust
allocations of time and effort in response to their perceptions of children’s skills.

I limit the empirical analysis in this section to waves 2 and 3, since later waves have
substantially greater attrition, the Two Bags task was only administered in these waves,
and by wave 4 the older children had already entered kindergarten, which likely has large
effects on parents’ investment decisions. If household incomes are relatively homogeneous
within zip codes (zip codes are segregated by affluence or poverty), then I expect the spec-
ification allowing cross-sectional comparisons will provide greater identifying variation.

Investment behaviors have the potential to mitigate adverse circumstances in early
childhood, even if they are not responsive. And of course, parents’ choices of effort
are constrained by the total household budget. If investment choices do not respond to

parent’s perceptions of children’s skills, then the potential endogeneity bias from including
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investment activities on the right hand side of equations (2.4a) and (2.4b) is avoided.
Empirically, I use two descriptive regressions to ask whether there is a link between
the magnitude of harm from exposure to neonatal environmental toxics and household
resources (equation 2.5a) or investments in reading activities or the two bags assessment
(equation 2.5b) (this has precedent in Currie and Hyson (1999)). These regressions, by
now familiar, involve an interaction of toxicity exposure with household characteristics

and behaviors:

Cogiw = 51 Toxz(i) + 62 Toxz(i) * IOg(I’I’LCil) + ’Ysz + gwAiw + i + Mr(4),B; + Cz(z) + €izw
(2.5a)

Cogiw = ﬂ?) Toxz(z) + 54 Toxz(z) * ]nviw + ’Ysz + 6)11)141‘111 + Hiw + Mr(3),B; + gz(z) + €izw-
(2.5D)

If 5 is positive, household resources are “protective” against cognitive shocks — that is,
the same magnitude of exposure to toxicity in early childhood predicts smaller decreases in
performance relative to peers for children from more affluent households. When household
investment decisions are the only way to mitigate neonatal toxic shocks, then rejecting
the hypothesis 5, = 0 is consistent with heterogeneous investments by household income,
but for this to be a reasonable interpretation, “investment” needs to include much more
than the econometrician can observe (such as avoidance behavior). The coefficient S,
is not necessarily causal, since the baseline choice of investment is likely correlated with

other determinants and outcomes of SES.

2.5 Results

Table 2.6 shows the reduced-form, causal effect of exposure to airborne toxicity in infancy
on several outcomes: cognitive skills, motor skills, and health. I find a persistent, negative
effect of exposure to air pollution in the first year of life on cognition in subsequent waves
of the survey. Cognitive scores are (.08 standard deviations lower for children exposed

to birth-year toxicity at the 60th percentile versus the median, relative to peers, for
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assessments given in waves 2 through 5 (using the reference percentiles presented in
Table 2.3). In the later waves, where assessments differentiate math and reading skills,
toxicity exposure seems more harmful for reading skills. It is possible the harmful effect
on cognition is echoed in harm to other dimensions of human capital. Child motor skills
may be affected by toxicity exposure, but child health (as reported by parents) does not
seem to be, suggesting TRI chemicals are a particular threat to learning.

In general, results will be described for the specification using zip code fixed effects
(Panel A). Estimates using the secondary, cross-sectional specification (regression equa-
tion (2.3), which uses zip-level average toxicity, rather than zip code fixed effects, to
control for unobservables that correlate child cognition with ambient pollution risk) are
presented in Panel B throughout, for comparison. The point estimates are generally
consistent with the primary specification, and provide more precise estimates, especially
when geographic variation is useful for identifying heterogeneity, as will be the case with
varying effect sizes by household income.

The effect of early chemical exposure on cognition is persistent: children are not
simply scoring worse than peers on cognitive assessments shortly after exposure, and
then rebounding to the mean. Allowing the coefficient on neonatal toxicity exposure
to vary with the age at which children are assessed or, more flexibly, with the wave
of the survey in which they are assessed, Table 2.7 shows the harmful effect of early
exposure is greatest at the age-2 wave of the survey, but remains negative through the
age at which children enter kindergarten (note, though, the change in magnitude between
waves 2 and 3 should not be over-interpreted, since the ECLS-B cognitive assessments
changed between those waves). Between the ages of approximately 4 and 6, there is no
evidence the overall magnitude of the initial shock is magnified or minimized with age.
This medium-term persistence distinguishes these findings from studies of air pollution

showing students perform worse on “bad air” days.
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2.5.1 Comparison to PM

Using the concentration of airborne particulates, rather than a toxicity-weighted index,
as the independent variable has the effect of diminishing the estimated magnitude of
the effect of exposure in infancy on later cognition. This finding is consistent with the
motivation that since the composition of PM varies over time and space, it is an imprecise
measure of health risk. Two different proxies for PM informed this finding: the modeled
RSEI concentrations, without toxicity weights, of particulates from TRI air emissions;
and annual satellite measurements of near-surface PM2.5.

Table 2.8 replicates column 1 of Table 2.6 using zip-level PM exposure. Estimated
coefficients are smaller in magnitude (for a comparable change in exposure) and not
statistically significant. Table 2.8 also shows the inclusion of either measure of PM in the
the preferred specification has essentially no effect on the estimated magnitude of harm

to cognition from toxicity.

2.5.2 Behavior and heterogeneity

The reduced-form analysis so far has established environmental exposure in infancy di-
minishes cognitive performance several years later, and these shocks are large enough that
parent behavior plausibly adjusts in response. Table 2.9 shows estimates from regression
equations (2.4a) and (2.4b), which directly test this. For the ECLS-B cohort, there is not
much evidence for responsive investments in either direction (compensatory or reinforc-
ing, a positive or negative coefficient on toxicity exposure): the average responsiveness
to infant toxicity exposure is indistinguishable from zero.

Panel B of each table seems to suggest investment responsiveness may be heteroge-
neous with household income: across both outcomes and all three indicators for SES, the
responsiveness of wealthier households to toxicity shocks is more compensatory. That
is, holding constant average differences in levels of investment by income, upper-income
households appear to increase reading activity significantly more in response to cognitive
shocks in infancy. However, Figure 2.6 plots the responsiveness of households and shows

no statistically significant effects at any income level; and in any case, any degree of
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responsiveness implied by Table 2.9 is economically small, since the investment outcomes
are standardized to have unit variance.

The degree of cognitive harm from early toxicity exposure is heterogeneous by the
SES of households: Table 2.10 shows the mitigating effect of household income. Using
household characteristics reported in wave 1 of the survey, an interaction between toxicity
exposure and SES shows the impact of airborne toxic exposure on cognitive scores is
smaller among children from wealthier households (this effect is consistent across three
different indicators for household SES: logged household income, an indicator for whether
household income is below 185 percent of the poverty line, and dummy variables for high-
medium- and low-income households). These results are only significant for the average
toxicity specification, which is reasonable if within-zip code variation in household income
is low. The coefficient on toxicity exposure is about 30 percent lower for children in the
top third of the income distribution relative to children from the bottom third of the
income distribution.

This relationship is not necessarily causal, though it’s consistent with a theory of
human capital development where resources provide advantages protective against cog-
nitive shocks: higher-income households may have better access to nutrition, childcare,
or healthcare, and we know income is correlated with investments in cognition from the
associations plotted in Figure 2.2. All of these hypothetical channels involve behaviors,
intentional or not, that could help children’s development catch up to peers’ after envi-
ronmental shocks.

This finding of income heterogeneity does not seem to be driven by wealthier children
tending to be less-exposed within their zip codes: if this heterogeneity were being driven
by income-correlated measurement error in toxicity exposure, which might arise from
within-zip code sorting of wealthier households further from TRI facilities, or differential
avoidance behavior by income (such as less time spent outdoors), then we would expect
to see income (or the distance for which it may proxy) also moderates the effect of toxicity
on motor skills. Table 2.11 and Figure 2.7 show this is not the case.

Table 2.12 considers whether children are less affected by toxicity in the medium-
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term if their parents tend to invest more (which, following the results above, is plausibly
not endogenous with respect to the toxicity shock). Across both specifications, there
is evidence reading activities do just this, though not greatly: a standard deviation
more reading investment reduces the estimated effect of toxicant exposure by about one
tenth. To be clear, these effects should not be considered causal, since household reading
activities are quite correlated with other developmental advantages determined by SES.
There is no evidence the attentiveness measured with the parent scores on the Two
Bags assessment is similarly protective, and neither investment is protective for children’s
motor skills.

Because recall measures of reading investment and assessed quality of interactions
are noisy signals for the underlying effort parents allocate toward early literacy and
cognition for their children, I can’t rule out the possibility that environmental shocks drive
responsive investments, but these estimates are not sufficiently precise. In particular,
heterogeneous parent responsiveness is a mechanism consistent with the finding of lower-
magnitude harm among children from higher-income households. The absence of strong
evidence for responsiveness may simply mean cognitive shocks are not salient to parents,
since in this setting, parents do not receive a clear signal about children’s human capital.
More broadly, this study presents a case where behavior changes are probably not a large
component of the net, reduced-form effects of toxicity on cognition. Instead, differences
in resources across families, and the affordability of investments in early childhood, may

be driving observed heterogeneity.

2.6 Conclusion

This study estimates a persistent effect from exposure in infancy to airborne toxic emis-
sions on cognitive scores at kindergarten entry. It is the first to estimate the effect of TRI
releases for cognitive outcomes using a nationally representative cohort of U.S. children,
and highlights the particular sensitivity of cognitive development in infancy. Within-zip

code variation in month of birth across children provides causal estimates of the effect
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of toxicity in infancy, which is assigned using the RSEI dispersion model of ambient air-
borne toxicity-weighted concentrations. The average effect of reducing toxicity risk from
the 60th percentile to the median has a comparable effect on early reading and math
skills (0.08 standard deviations) to the effect of Head Start participation estimated by
Lee et al. (2014), and to the effect of living a kilometer further from a land-based site
contaminated with hazardous waste estimated by Rau et al. (2015). Since environmental
toxicants are disproportionately imposed on less-advantaged neighborhoods, this harmful
effect may exacerbate school readiness gaps through the channel of neighborhood sorting.

Evidence for a statistically significant, negative effect from exposure to airborne pol-
lution in the first year of life contrasts the finding in Marcotte (2017), which reports no
measurable effect from early exposure to particulate matter (PM2.5) on school readiness
in the ECLS-K. This absence of a statistically significant finding for PM is replicated
here: using annual satellite-derived measures of PM2.5 shows that the RSEI inhalation
toxicity-weighted index is more strongly linked to diminished early childhood cognition
than the mass concentration of fine particulates. This highlights the empirical impor-
tance of accounting for the toxicity of particulate pollution, and should motivate greater
monitoring of and attention to the composition of air pollution.

Detailed household-level data allowed me to consider the ways in which parents re-
spond to environmental shocks, and whether children from more- or less-advantaged
backgrounds are differentially affected by pollution. Despite the large average effect on
cognition, in this context, where neither shocks to cognition nor endowments of skills
are particularly salient, parents’ behaviors are not responsive to environmental exposures
during children’s infancies. Yet, parent behavior may inadvertently modulate the effect
of exposure to toxicant releases. A standard deviation increase in reading investments—
which are strongly associated with economic resources available to the household—is
associated with a 10 percent reduction in the harmful effects of exposure. Similarly, the
harmful effect of toxicity on cognitive scores for the poorest third of children is about 40
percent larger than for children from the highest-third of the income distribution. That

more-affluent children are less-harmed suggests an additional channel by which environ-
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mental exposures may perpetuate inequality in educational outcomes. Importantly, this
channel of SES-associated adaptation would exist even in the absence of larger-scale spa-
tial inequality in exposure to toxic air pollution. The mechanisms behind these patterns,

should be further investigated in future research.
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2.7 Figures and tables
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Figure 2.1: Two Bags scores by reported reading sessions
Parent scores on the standardized Two Bags index by reading sessions reported in waves

2 and 3. Parents who read more often to children typically have higher Two Bags scores,
but this relationship is noisy.
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Figure 2.2: Child cognitive scores, reading, and parents’ Two Bags scores by wave and
household income

Average levels of cognitive scores and investment (reading, Two Bags) are plotted by
terciles of income in the ECLS-B, in standard deviations. Cognition was measured using
different sets of assessments between wave 2 and waves 3-5. Time spent reading with the
child is reported as sessions per week. The Two Bags Task, described in the main text,
was only conducted in waves 2 and 3. Horizontal density of points reflects the number of
ECLS-B children assessed at each age. Sample weights are used throughout.
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Zip-demeaned toxicity:

Negative Zero Positive Difference

(1) (2) (3) (4)
Exposure Tox;) — Tox, -0.11 0.00 0.10 0.215
(0.21)  (0.00)  (0.17) -0.040
Tox.; 8.31 7.90 8.49 0.178
(2.47)  (2.76) (2.52) 0.049
Characteristics Pct. male 0.50 0.50 0.52 0.020
Pct. Asian 0.03 0.02 0.03 0.001
Pct. Black 0.16 0.11 0.14 -0.019
Pct. Hispanic 0.27 0.19 0.28 0.012
Pct. other nonwhite 0.05 0.04 0.04 -0.002
Pct. mother unmarried 0.33 0.29 0.34 0.010

Pct. twin or higher 0.03 0.03 0.03 0.001

Pct. smoked during pregnancy 0.10 0.12 0.11 0.011
Pct. alcohol during pregnancy 0.03 0.04 0.03 -0.002
log(Income) 10.42 10.55  10.41 -0.005
(0.93)  (0.90)  (0.90) -0.032
Mother’s age 27.29 27.88  27.08 -0.215
(6.17)  (6.18) (6.18) 0.004
Mother’s education 12.84 13.20 12.75 -0.097
(3.00) (2.66) (2.89) -0.116
Number of siblings 0.99 0.96 0.99 -0.004
(1.13)  (1.10)  (1.09) -0.039
Attrition € Number of cognitive asmts. 3.38 3.32 3.34 -0.047
moving (1.25)  (1.20) (1.15) -0.099
Pct. ever moved 0.44 0.44 0.45 0.009
Number of reported zips 1.58 1.57 1.57 -0.012
(0.75)  (0.74)  (0.71) -0.031

Number of children 3,850 2,000 4,250 400

Summary statistics are presented across three groups of children in the ECLS-B, split by
the variation in toxicity exposure within zip codes (which is based on timing of birth):
higher than zip-average (1), no zip-level change (2), and lower than zip-average (3).

Differences between columns (1) and (3) are shown in column (4).

After demeaning,

there is similarity of children across higher and lower toxicity exposure. The similarity
of columns (1) and (3) to column (2) informs the external validity of estimates identified
using the part of the ECLS-B sample experiencing changes in neighborhood toxicity
exposure; the children summarized in column (2) tend to be slightly whiter and more
affluent. Weighted summary statistics are presented throughout.



82

Table 2.2: Counts of wave 1 ECLS-B zip codes by number of distinct birth months

represented

Calendar months in zip Number of zips

(2)

Number of children Toz,

(3)

(4)

1 2000 2300 7.87

2 900 2050 8.36

3 450 1650 8.71

4 200 1100 8.47

) 150 850 8.65

6 50 450 7.91

7-8 100 950 8.37
9-10 50 500 8.53
11-12 0* 200 7.01
Full sample 3,900 10,100 8.30

*Nonzero but rounds to zero.

About four-fifths of the ECLS-B sample was born in a zip code shared by peers born
in a different month. Birth month at the zip code level provides identifying variation in
toxicity exposure in the main specification. Toxicity risk does not appear to be related
to the density with which a zip code was sampled.

Table 2.3: Variation in Wave 1 toxicity exposure

Percentile ~ RSEI level  Tox.;
(1) (2) (3)
0 0 0
10 56.04 4.72
25 627.71 7.14
50 3116.09 8.74
60 5175.56 9.24
75 12582.43 10.13
90 29297.99 10.98
100 53709310.31 18.49
Mean 20166.26 8.30
St. dev. 459033.7 2.56

Distribution of assigned zip-level toxicity for the ECLS-B cohort. Column (2) shows
the right skew of the RSEI measure (before transformation using the inverse hyperbolic
sine), and column (3) presents Wave 1 exposure for the transformed measure used in
the analysis (T'ox.(;)). Sample weights are used for the reference percentiles, means, and

standard deviations.



83

Panel A
1.00 -

0.75-

0.50 -

Density

0.25-

0.00 - —

-4 0 4
Zip-level A toxicity (2002—2001)

Panel B

0.20 -

0.15-

0.10 -

Density

0.05-

0.00 -

5 10 15
Birth-year toxicity

Figure 2.3: Distributions of toxicity exposure

Panel A shows the distribution of changes from 2001 to 2002 in RSEI toxicity for all
the ECLS-B zip codes. Most zip codes experience small changes (that is, small panel
variation) in toxicity risk. Panel B shows cross-sectional variation in toxicity exposure

risk for the ECLS-B sample.
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Figure 2.4: Correlation of toxicity-weighted concentrations and satellite PM2.5

The correlation coefficient for near-surface PM2.5 and toxicity-weighted concentrations
(0.35) is positive but not large. Annual, gridded near-surface PM2.5 from satellite mea-
surements are assigned using the same weighting formula across exposure in 2001 and
2002 as in the main analysis (equation 2.1); each point is an ECLS-B child.
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Figure 2.5: RSEI toxicity-weighted risk, 2001-2002

Panel A shows unitless RSEI aggregate toxicity for the contiguous United States, trans-
formed with the inverse hyperbolic sine and averaged between 2001 and 2002 (the two
years identifying variation in neonatal exposure for the ECLS-B cohort); darker colors
correspond to higher toxicity risk. Panel B maps the change in zip-level toxicity from
2001 to 2002: darker orange corresponds to larger increases, while darker blue corresponds
to larger degreases. These year-over-year shifts are clustered locally, but their direction
and magnitude are not distributed systematically over the United States For the visual-
ization, I mapped the zip code-level RSEI measure using a crosswalk to the U.S. Census
Bureau’s ZCTA geographies. Alaska and Hawaii are included in the ECLS-B sample and
in the study. None of the shading is related to locations of the ECLS-B children.
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Table 2.4: Toxicant exposure and household and child characteristics

Dependent variable: Tox .

(1) 2) (3) (4) ()

T 2001 0.491**  0.506***
(0.037) (0.054)
T, 2002 0.505**  0.502***
(0.038) (0.055)

1(Male) 0.014 —0.016 —0.002 0.006 —0.002
(0.059) (0.037) (0.011)  (0.008) (0.009)
1(Asian) 0.753** 0.164*** —0.025 —0.021 —0.026*
(0.100) (0.056) (0.020)  (0.014) (0.014)

1(Black) 0.903* 0.204**  —0.008 —0.025*  —0.006
(0.125) (0.069) (0.020)  (0.014) (0.013)

1(Hispanic) 0.879* 0.206**  —0.008 0.022 —0.009
(0.103) (0.064)  (0.022)  (0.021)  (0.015)

1(Other nonwhite) 0.259* 0.072 0.015 0.049* 0.021
(0.144) (0.067) (0.034)  (0.025) (0.024)

log(Income) 0.119* 0.002 0.008 —0.007 0.004
(0.054) (0.026) (0.010)  (0.010) (0.007)

1(Mother unmarried) —0.021 0.038 —0.001  —0.003  —0.002
(0.078) (0.044)  (0.015)  (0.010)  (0.011)

Mother’s age 0.020** 0.010**  —0.002  —0.001  —0.001
(0.006) (0.003) (0.001)  (0.001) (0.001)

Mother’s education —0.013 —0.012* —0.002 0.002 —0.001

(0.014) (0.006)  (0.003)  (0.003)  (0.002)
1(Smoked during pregnancy) — —0.521"*  —0.166*  0.006  0.009 0.001
(0.110) (0.069)  (0.024)  (0.015)  (0.016)

1(Alcohol during pregnancy) 0.145 —0.029 0.032 —0.003 0.009
(0.168) (0.078) (0.026)  (0.019) (0.022)
Number of siblings —0.077** —0.027 0.007 0.003 0.004
(0.033) (0.017) (0.006)  (0.004) (0.004)
1(Twin or higher) 0.134 0.055 0.013 —0.004 0.003
(0.086) (0.057) (0.017)  (0.010) (0.012)
Number of cog. asmts. —0.080**  —0.039*** —0.010  —0.004 —0.007
(0.028) (0.014) (0.007)  (0.004) (0.005)
Waves 1 1 1 1 1
Fixed Effect State City Zip State City
Observations 9,450 9,450 9,450 9,450 9,450

With state-of-birth fixed effects, characteristics of the ECLS-B children and households
predict RSEI toxicity exposure (column 1); city fixed effects do not fully remove these
correlations (column 2). Corresponding to equation 2.2, zip code fixed effects, which
derive identifying variation exclusively from timing of birth, show no statistically signifi-
cant correlations between household attributes and children’s toxicity exposure (column
3). Controlling instead for zip-level ambient toxicity does nearly as well as zip code
fixed effects (columns 4 and 5); the pairing of zip-level exposure with state fixed effects
corresponds to equation 2.3.
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Table 2.5: Sample attrition related to toxicant exposure

Dependent variable:

Ever moved Reported zips No. cog. asmts.

(1) (2) (3) (4) (5) (6)
Tox.(; 0.031 —-0.002 —-0.015 —0.027 —0.176 —0.051
(0.035)  (0.018)  (0.054) (0.026) (0.122)  (0.051)

Zip FE Yes No Yes No Yes No
Zip-level tox. No Yes No Yes No Yes
State FE No Yes No Yes No Yes
Waves 1 1 1 1 1 1

Observations 9,600 9,600 9,600 9,600 9,600 9,600

Three outcomes related to attrition—whether the household ever moved during the
ECLS-B data collection, the number of household zip codes given for each child dur-
ing the survey, and the number of cognitive assessments collected for each child—are not
significantly related to toxicity exposure using either the zip code FE (columns 1,3,5) or
average-toxicity (columns 2,4,6) specifications.
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Table 2.6: Net effect of neonatal toxicity exposure

Dependent variable:
Cognition  Reading Math Motor Health
A: Zip FE (1) (2) (3) (4) (5)

Tox.g —0.162"*  —0.162"* —0.103* —0.112* —0.038
(0.052) (0.060)  (0.055)  (0.063)  (0.058)

Zip FE Yes Yes Yes Yes Yes
B: Zip-level toxicity (1) (2) (3) (4) (5)
Tox.; —0.097* —0.107* —0.065 —0.002  —0.033

(0.044) (0.046)  (0.043)  (0.030)  (0.032)

Zip-level tox. Yes Yes Yes Yes Yes
State FE Yes Yes Yes Yes Yes
Waves 2-5 3-5 3-5 2-5 2-5
Observations 23,600 15,400 15,400 23,250 25,250

These are the reduced form effects of exposure to toxicity risk in the first year of life
on human capital across several measures, from assessments given in waves 2 through
5 (which occurred at least a year after neonatal toxicity exposure). A strong negative
effect on cognition is apparent, and appears to be driven by diminished reading scores in
the later waves. Motor skills may also be harmed by toxicity exposure, but child health
does not appear to be affected. Estimates are quite similar across Panel A, which
presents estimates from the zip code fixed effect specification and Panel B, showing the
cross-sectional specification controlling for zip-level toxicity (explained in the main text).

NB: In this and all regression tables to follow, unless otherwise noted, included
controls are date of assessment fixed effects; month of birth-by-region fixed effects; and
household characteristics explained in the main text. Sampling weights are used and
standard errors are clustered at the city of birth.
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Dependent variable:

Cognition Reading Math
A: Zip FE (1) (2) (3) (4) (5) (6)
Tox.(; —0.190**  —0.180**  —0.176™* —0.166™* —0.071 —0.101*
(0.053) (0.053) (0.065) (0.060) (0.060) (0.055)
Tox.; x age (years)  0.007** 0.003 —0.007
(0.002) (0.005) (0.005)
Tox,; x Wave 3 0.028***
(0.008)
Tox.; x Wave 4 0.028*** 0.009 —0.004
(0.009) (0.007) (0.007)
Tox.; x Wave 5 0.023* 0.006 —0.007
(0.013) (0.013) (0.013)
Zip FE Yes Yes Yes Yes Yes Yes
B: Average toxicity (1) (2) (3) (4) (5) (6)
Tox.(; —0.128***  —0.117*** —0.126** —0.110* —0.040 —0.061
(0.045) (0.044) (0.052) (0.046) (0.048) (0.043)
Tox.; x age (years)  0.008"** 0.004 —0.005
(0.002) (0.004) (0.004)
Tox,;) X Wave 3 0.030***
(0.007)
Tox.; x Wave 4 0.027*** 0.004 —0.009
(0.008) (0.006) (0.006)
Tox.; x Wave 5 0.034*** 0.013 —0.003
(0.013) (0.012) (0.012)
Zip-level tox. Yes Yes Yes Yes Yes Yes
State FE Yes Yes Yes Yes Yes Yes
Waves 2-5 2-5 3-5 3-5 3-5 3-5
Observations 23,600 23,600 15,400 15,400 15,400 15,400

The negative effect on cognition shown in table 2.6 is largest around age 2 (wave 2),
and diminishes with child age, suggesting harm to human capital from neonatal exposure
recovers somewhat as children get older. However, this attenuation is definitely not to
zero. Allowing the effect of early exposure to vary more flexibly by survey wave, the
effect holds constant across waves 3 through 5 (the left-out wave is 2 in column (2) and
3 in columns (4) and (6)). As in table 2.6, estimates are quite similar across Panel A

and Panel B.



90

Table 2.8: Net effect of exposure to PM

Dependent variable:

Cognition
(1) (2) (3) (4) (5) (6)
Tox.; —0.162** —0.161"*  —0.159"**  —0.159***
(0.052) (0.052) (0.052) (0.052)
TRI PM, —0.104 —0.101 —0.103
(0.079) (0.077) (0.078)
Satellite PM. —0.041 —0.032 —0.033
(0.051) (0.050) (0.050)
Zip FE Yes Yes Yes Yes Yes Yes
Waves 2-5 2-5 2-5 2-5 2-5 2-5
Observations 23,600 23,600 23,750 23,600 23,600 23,600
Note: *p<0.1; *p<0.05; **p<0.01

Replicating the specification from column (1) of Table 2.6 with two estimates of zip-
level PM yields estimates that are smaller in magnitude and not statistically significant.
Including PM concentrations in the toxicity specification has almost no effect on the
estimate of the effect of toxicity. TRI PM is the RSEI modeled particulate concentration
from TRI sources, and satellite PM is satellite-measured near-surface PM2.5; both are
in units of micrograms per cubic meter. To interpret these magnitudes using the same
framework as the main results, a change in satellite PM2.5 from the 60th to 50th percentile
in these data is about 1 microgram per cubic meter—so the effect is about half as large,
relative to the toxicity-weighted independent variable. This finding is consistent with PM
as a noisy measure for the human health risks of airborne particulate pollution.
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Figure 2.6: Coefficients and error bands on toxicity exposure as a function of household
income

The estimated coefficient ) + (o * log(Income) on neonatal toxicant exposure, where
the outcome is parent investment, is plotted over levels household income. Each panel
corresponds to the regressions presented in columns (2) and (6) of Table 2.9. Though
the statistically significant interaction terms in the average toxicity specifications across
both outcomes suggest meaningful differences by household income in the magnitude of
responsive investment, the coefficient is significant outside the range of household incomes
observed in the data. Possible explanations for the imprecision of these estimates are
discussed in the main text. Error bands show a 10-percent significance level (1.65 * SE).
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Figure 2.7: Coefficients and error bands on toxicity exposure as a function of household
income

The estimated coefficient ) + (o * log(Income) on neonatal toxicant exposure, where
the outcome is the standardized cognitive score in waves 2 and 3, is plotted over levels
household income. Each panel corresponds to the regressions presented in columns (2)
and (6) of Tables 2.10 and 2.11. The significant gradient in the effect of toxicity on
cognition is not replicated in the effect of toxicity on motor skills, which may suggest
observed heterogeneity by income is not being driven by within-zip code differences in
exposure by income. Error bands show a 10-percent significance level (1.65 % SE).



96

Table 2.12: Higher reading investment is associated with smaller effects from toxic expo-

sure
Dependent variable:
Cognitive score Motor score
A: Zip FE 1 @) 3) 4) ) (6)
Tox. ) —0.142**  —0.141**  —0.147* —-0.102 —-0.100 —0.134**
(0.053) (0.051) (0.061) (0.072)  (0.072) (0.065)
Tow,;) x Reading index 0.012* 0.007
(0.005) (0.006)
Tox.; x Two bags index 0.003 —0.003
(0.006) (0.006)
Zip FE Yes Yes Yes Yes Yes Yes
B: Average toxicity (1) (2) (3) (4) (5) (6)
Tox. ) —0.094** —0.086* —0.084 —-0.019 —-0.017 —0.018
(0.046) (0.044) (0.053) (0.030)  (0.030) (0.033)
Tow,;) x Reading index 0.013*** 0.005
(0.004) (0.004)
Tox.; x Two bags index 0.003 0.001
(0.004) (0.004)
Zip-level tox. Yes Yes Yes Yes Yes Yes
State FE Yes Yes Yes Yes Yes Yes
Waves 2:3 2:3 2:3 2:3 2:3 2:3
Observations 15,800 15,550 15,800 15,500 13,500 13,300

Across the two measures of parent investment, only reading activities are correlated
with attenuated effects of neonatal exposure several years later, and only for cognitive

scores.

The units of both indices of investment are standardized with mean zero for

interpretability. Among households who read to their children one standard deviation
above the mean, the estimated coefficient on neonatal toxicity risk is about 10 percent
smaller. These effects are not causal, since household investment decisions may be en-
dogenous with respect to early shocks to cognition, and correlated with unobserved or
uncontrolled-for characteristics of households.
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Appendix

2.A Production of human capital

This model illustrates the complementarity of endowments and investments, and modifies
Almond et al. (2018). There, human capital is not an input to its own production in
subsequent periods, so parental responsiveness relies on the intertemporal substitutability
of investments across two periods. Here, the functional form for the production of human
capital determines the predicted direction of parental investment in response to human
capital shocks in preceding periods. Each of these functional forms oversimplifies the
process by which children accumulate skills in early childhood, omitting inputs such as
preschool and peers. Further, for both extreme cases (perfect substitutes and perfect
complements), the predicted response is independent of household resources.

Following from the theory presented in the main text, if the shock S to X in period
t reduces contemporaneous human capital H, then §X;,1/65; is equivalent to the more
general 0X;,1/0H;. For a Cobb-Douglas U, parents optimize (1 — «)log C; + «log Hy,

yielding choices that solve

11—« Q@ af 1

C; f(He1, X7)dX] p,

1. Cobb-Douglas: f(H;_1, X;) = H; X} implies optimization

Do’

l—a  a(l—9) (Ht_l>v 1
Y — X, H) X7\ Xe

Y

with solution X} = — a7
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2. Perfect substitutes: f(H;_1,X;) = vH;—1 + (1 — v) X}, implies

—(1—a)

X' /0H,_1 =
5t/5t1 7_1

<0,

so a shock to cognition reducing H; ; is expected to induce compensating invest-

ments: X/ is greater than it would have been in the absence of the shock.

3. Perfect complements: f(H; 1, X;) = min(vyH;_1, (1 —v)X}) implies

(SX*/éHt_l — (1 — ’y)

when f binds, and the Cobb-Douglas solution when the budget constraint binds,

so harmful environmental shocks imply corresponding reductions in investment.
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2.B Exogeneity and toxicity of TRI exposures

Understanding the estimated coefficient on neonatal toxicity exposure as causal requires
that children’s exposure is quasi-exogenous, where the key identifying variation in expo-
sure is within-zip codes, with respect to month of birth.

The disaggregated RSEI microdata model the dispersion of each TRI release to every
neighboring grid cell for each year. This allows me to back out for each RSEI grid cell
the number of firms and the number of distinct chemicals affecting the cell’s aggregate
toxicity in each year, as well as the number of TRI facilities located within each ECLS-B
zip code. Changes in these three measures might indicate the sorts of local economic
shifts that drive household sorting. Restricting the sample to ECLS-B zip codes that
never contained TRI facilities or experienced no change in the number of firms between
2001 and 2002 demonstrates firm openings and closings are not driving most of the year-
to-year variation in toxic releases on which effects are identified (Table 2.B1). Similarly,
imposing a cutoff on the year-over-year percent change in the number of distinct firms and
distinct chemicals affecting each grid cell does not change results meaningfully. Since the
RSEI model uses a 50-kilometer radius of potential influence around each facility, almost
all ECLS-B zip codes experience some changes in sources of toxic exposure, though the
estimated contributions from large distances are typically small; sensitivity to this cutoff
is presented in Table 2.B2, and results are consistent with the main specification, except
where sample sizes become very small.

Though I control for household demographics in all specifications, I also show their
exclusion from the main specification does not meaningfully change results (Table 2.B3),
which is consistent with random assignment to “treatment”. Put differently, there should
be no correlations between, for example, parents’ incomes, races and ethnicities, or edu-
cation levels, and the ambient airborne conditions when their children were born. I test
this by regressing children’s ambient exposure risk in the first year of life on observable
attributes of the household.

Several randomization exercises assign placebo month or location of birth. I first shuf-

fled month of birth within all children born in the same zip code by sampling without
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replacement from the actual months in which children were born, and reestimated equa-
tion (2.2) using toxicity exposure implied by children’s true locations and the randomized
birth months. I separately shuffled household zip codes in the first wave of the survey
(again, sampling without replacement, this time from all ECLS-B wave 1 zip codes), al-
ways keeping children from the same zip code together. I then reestimated equation (2.2)
using the toxicity exposure associated with the new (placebo) location and children’s
actual birth months.

Repeating each randomization test 3500 times produces two similar distributions of
the estimated coefficients, both centered around zero, and shown in Figure 2.B1. For each
distribution of placebo coefficients, about 0.7 percent of the time the estimated exposure
to toxicity from randomized months or locations exceeded the effect estimated from the
un-randomized data, which is well within what might be expected from random chance.

A final placebo check involves assigning neonatal toxicity exposure to the ECLS-B
cohort as if the children had been born in a year other than 2001, without changing their
home zip code or month of birth. The placebo years’ “birth year” exposures generally do
not produce significant results (Table 2.B4), ruling out the possibility that past variation

in TRI exposure is a proxy for contemporaneous variation in pollution.
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Table 2.B1: Table 2.6, dropping any zip codes where the number of TRI facilities located

in the zip code changed at all between 2001 and 2002

Dependent variable:

Cognition  Reading Math Motor Health

A: Zip FE (1) (2) (3) (4) (5)
Tox.; —-0.179***  —0.150"* —0.105 —0.133* —0.036
(0.066) (0.070) (0.069)  (0.069)  (0.063)

Zip FE Yes Yes Yes Yes Yes

B: Average toxicity (1) (2) (3) (4) (5)
Tox.; —0.073 —0.067 —-0.039  —-0.017  —0.032
(0.052) (0.051) (0.052)  (0.034)  (0.035)

Zip-level tox. Yes Yes Yes Yes Yes

State FE Yes Yes Yes Yes Yes

Drop open/close zips Yes Yes Yes Yes Yes

Waves 2-5 35 35 2-5 2-5
Observations 19,300 12,600 12,600 19,000 20,600

Some of the ECLS-B zip wave 1 household zip codes contain TRI facilities. For these
zip codes, changes in the number of facilities within in a zip code between 2001 and
2002 might be correlated with unobservable household sorting around salient changes in
environmental amenities. The exclusion of the zip codes where the number of in-zip code
TRI facilities changed between 2001 and 2002 does not meaningfully change estimates.
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Table 2.B2: Column 1 of Table 2.6, where zip codes are dropped if the number of chemicals
or facilities affecting the zip changed by more than a threshold percentage between 2001

and 2002
Dependent variable:
Cognition
(1) (2) (3) (4) (5) (6)
Tox; —-0.162*  —0.154*  —0.177"*  —0.109* —0.082 —0.471"
(0.052) (0.061) (0.065) (0.059)  (0.070) (0.267)
Zip FE Yes Yes Yes Yes Yes Yes
B: Average toxicity (1) (2) (3) (4) (5) (6)
Tox.; —0.097*  —0.123"  —0.122* —-0.076  —0.072  —0.597**
(0.044) (0.048) (0.050) (0.052)  (0.058) (0.217)
Zip-level tox. Yes Yes Yes Yes Yes Yes
State FE Yes Yes Yes Yes Yes Yes
Drop over threshold None 0.20 0.15 0.10 0.05 0.01
Waves 2-5 2-5 2-5 2-5 2-5 2-5
Observations 23,600 20,600 19,100 16,150 14,050 850

The RSEI model indicates the number of distinct firms and the number of distinct toxic
chemicals contributing to the average toxicity at each zip code. Again, large changes
in either count might be evidence of inconsistent TRI reporting, or particularly salient
local economic shifts in industrial activity (though these totals do not account for the
proximity of releases, so some changes may be driven by more remote facilities). Each
column presents the estimated effect after dropping children from wave 1 household zip
codes associated with successively lower thresholds for this change (from 20 percent down
to 1 percent). This has the effect of reducing variation to changes in the quantity of
releases from a more constant set of facilities, but since TRI facilities are opening and

closing every year, it also dramatically reduces the sample.



Table 2.B3: Table 2.6, with variants of controls included
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Dependent variable:

Cognition  Reading Math Motor Health
(1) (2) (3) (4) (5)
Tox.(; —0.008 —0.001 0.003 0.008* —0.011*
(0.005) (0.006) (0.006) (0.004) (0.005)
Zip FE No No No No No
Control variables No No No No No
(1) (2) (3) (4) (5)
Tox.(; 0.0001 0.004 0.008 0.008* —0.002
(0.005) (0.005) (0.005) (0.004) (0.004)
Zip FE No No No No No
Control variables Yes Yes Yes Yes Yes
(1) (2) (3) (4) (5)
Tox.(; —0.136** —0.133* —0.083 —0.106* —0.021
(0.062) (0.074) (0.063) (0.061) (0.053)
Zip FE Yes Yes Yes Yes Yes
Control variables No No No No No
(1) (2) (3) (4) (5)
Tox.; —-0.162***  —0.162** —0.103* —0.112* —0.038
(0.052) (0.060) (0.055) (0.063) (0.058)
Zip FE Yes Yes Yes Yes Yes
Control variables Yes Yes Yes Yes Yes
Waves 2-5 3-5 3-5 2-5 2-5
Observations 23,600 15,400 15,400 23,250 25,250

Coefficients vary greatly with the inclusion of zip code fixed effects, which is consistent
with household sorting across landscapes in a way that correlates unobservable attributes
of households with toxicant exposure (though not always pairing high-SES and low-
pollution), but the inclusion or exclusion of household demographic controls matters far
less for the final estimates, which is consistent with quasi-exogenous treatment of toxicity
exposure within zip codes: household covariates are included to improve efficiency, not
reduce bias. Controls are child sex, race, household income, number of siblings, mother’s
age and marital status at birth, twin category, and drinking and smoking during preg-
nancy. Child age, assessment date, and birth month-by-region fixed effects are included

in all specifications.
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Figure 2.B1: Coefficients estimated from two randomization exercises

Two separate randomization checks show the importance of child zip code and month of
birth for the estimated effects of toxicity exposure on early cognition. The distribution
“Shuffle months” is generated by randomly shuffling (sampling without replacement)
actual months of birth among all children born in the same zip code and using those
placebo birth months to assign toxicity exposure. Similarly, “Shuffle zips” keeps all
children from the same zip code together and randomly shuffles all the ECLS-B zip
codes. I ran each data randomization 3500 times, and show here the distribution of
estimated coefficients, which are quite similar, with means and medians of each effectively
zero. About 0.2 percent of estimated coefficients from both distributions exceeded B , the
estimated coefficient from the nonrandomized data.



Table 2.B4: Placebo toxicity exposure by birth year
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Independent variable: Placebo Tox.;

2001-02 200203 2003-04 2004-05 2005-06 2006-07  2007-08
A. Zip FE (1) (2) (3) (4) (5) (6) (7)
Coeflicient —0.150™** 0.016 —0.043 0.127* —0.010 —0.017 —0.047

(0.052) (0.070) (0.046) (0.069) (0.070) (0.077) (0.063)
Zip FE Yes Yes Yes Yes Yes Yes Yes
B. Average toxicity (1) (2) (3) (4) (5) (6) (7)
Coeflicient —0.091* —0.035 —0.023 0.041 —0.055 0.039 —0.040

(0.044) (0.042) (0.036) (0.032) (0.041) (0.042) (0.041)
Zip-level tox. Yes Yes Yes Yes Yes Yes Yes
State FE Yes Yes Yes Yes Yes Yes Yes
Waves 2-5 2-5 2-5 2-5 2-5 2-5 2-5
Observations 23,750 23,750 23,750 23,750 23,750 23,750 23,750

Column (1) uses RSEI toxicity exposure for the year in which the ECLS-B children were
actually born; the other columns replicate the regression using toxicity exposure as if the
cohort had been born in 2002 (averaging 2002 and 2003 RSEI years for placebo neonatal
toxicity), 2003, and so on. Coefficients on this placebo exposure, in otherwise-identical
regressions where the dependent variable is cognition, are generally indistinguishable from

Zero.
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2.C Risk-Screening Environmental Indicators model

Modeled exposures to airborne industrial pollution used in this paper rely on the EPA’s
RSEI model, which estimates the dispersion of chemical emissions from TRI facilities.
This model intended to transform the point-source pounds of chemicals released at TRI
facilities into a more useful measure of relative hazard to human health; it is discussed
at length in the EPA documentation'®, and summarized here.

The RSEI model starts by locating the reporting facility for each TRI release in
space. Releases in pounds are reported separately for each distinct facility, chemical,
release medium, and year. Releases to the air are differentiated by those that exit a
facility at a point, through a stack or vent (“stack air emissions” in the RSEI model),
and other emissions, such as leaks and evaporation (“fugitive”).

The dispersion of each TRI air release is mapped from its facility to an airborne con-
centration on an 810-meter grid covering the United States. The American Meteorological
Society/EPA Regulatory Model (AERMOD) is a “steady-state Gaussian plume model
used to estimate pollutant concentrations downwind of a stack or area source”; this means
the neighborhoods where TRI releases end up depends on the local meteorology (such as
wind speed and direction), chemical-specific air decay rates, and characteristics of the fa-
cility. Constant releases over the reporting year are assumed, as well as industry-specific
stack heights, diameters, and velocities if facility-specific data are missing. The result is
estimates of ground-level pollutant concentrations for grid cells up to 49 kilometers away
from the facility (determined to be the distance from facilities at which concentrations
are sufficiently close to zero under most conditions) (Figure 2.C1).

The toxicity index is constructed by summing the product of each chemical’s in-
halation toxicity weight for each estimated concentration for each grid cell, producing
an aggregate measure of chronic health risks over the 810-meter grid. Inhalation toxicity
weights are chosen to reflect the EPA’s accumulated knowlege of the the toxicity of chem-

icals, incorporating information from many offices and agencies (such as the Integrated

10Gee  https://www.epa.gov/sites/production/files/2018-12/documents/rsei_methodology v2.3.7.pdf
for an overview, and for greater detail https://www.epa.gov/sites/production/files/2014-
03/documents/rsei_analyses.pdf.
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Risk Information System, Office of Air Quality Planning and Standards, Office of Pesti-
cide Programs, Agency for Toxic Substances and Disease Registry, and California’s EPA.
Assigned values encompass risks for chronic, carcinogenic and non-carcinogenic outcomes
resulting from exposure, and are down-weighted if there is uncertainty in the scientific
evidence; acute health effects are not incorporated. The inhalation toxicity weights are
unitless. Less than 1 percent of TRI releases are chemicals for which the EPA does not
have a toxicity weight.

The full RSEI model also incorporates data from the U.S. census to estimate popula-

tion exposures, but this analysis does not use those data.

Figure 2.C1: RSEI dispersion (Source: EPA)

The dispersion of each release reported to RSEI is a function of facility and chemical
characteristics, and local meteorology, and is estimated for a 50-kilometer radius around
TRI facilities. Figure from https://www.epa.gov/rsei/modeling-air-releases-rsei.
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2.D Exposure attribution and timing

This paper focuses on exposures in infancy, in contrast to much of the extant literature,
which focuses on fetal exposures. An exhaustive empirical approach to the question of
exposure timing would require a panel of early childhood development spanning more
than one birth year, but a discussion of in utero exposures, as well as simple tests of
the sensitivity of results to changes in the independent variable, are discussed in this
appendix.

TRI reporting requirements changed for lead (but nothing else) in 2001, and because
these analyses use pollution data from TRI reporting year 2000, I recalculate the ag-
gregate, zip-level toxicity-weighted concentrations using only the subset of chemicals for
which reporting requirements were constant. This ensures that identifying variation is
not being determined by changes in the lead reporting rule, but instead actual changes
in firms’ activity.

First, a difference-in-difference specification allows me to understand the relative harm
from exposure during the fetal and infant periods without making any assumptions about
the importance of each.

Consider a regression equation of the form:

Cogivw = BoT% 2000 X Bi + 1T 2001 X Bi + 52T 2003 X B

+ B5T% 2000 + BT 20010 + B5T% 2003 + Y Xiw + OwAiw + thiw + Mri),B;, + €izw- (2.D1)

As in the main text, the outcome Cog is the standardized score on cognitive assess-
ments for a child ¢ born in zip code z in (integer) month of birth B. Fixed effects 7, p,
flexibly absorb averages differences in cognitive scores across each region-by-month of
birth; controls X and A are defined above. Departing from the main text, I include
zip-level, annual, ambient toxicity 7" for 2000, 2001, and 2002—the years over which the
entire ECLS-B cohort was both in utero and in infancy—rather than an average over just
the neonatal years.

The coefficient of interest, (1, allows us to understand the relative importance of
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exposure during the fetal and infant periods using variation in the 2001 cohort’s months
of birth. More precisely, the sign of 3; suggests which window of toxic exposure matters
relatively more for later cognition, and its magnitude reflects the net difference between
the two effects. The coefficients 3, B4, and (5 are not identifiable with zip code fixed
effects, and so not the focus of this estimation, but for now consider each is somewhere
between null (indistinguishable from zero) and harmful (negative).

Intuition follows from two extreme cases. First, assume fetal exposure is the only
pollution that affects later cognition. Then a child born at the beginning of 2001 avoids
that year’s harmful exposure, having been in utero almost entirely during 2000. Children
born in the same place progressively later in the year experience an increasingly negative
penalty to cognition from toxic air pollution in 2001, as the share of their gestational
time in 2001 increases. We should then expect 8; < 0: the harm from toxicity in 2001 is
increasing in month of birth. Similarly, 5y > 0, the harmful effect of pollution occurring
during 2000 diminishes toward zero as children are born later and later in 2001; and
there is no prediction about 5. But if exposures in infancy are the only pollution that
matters, then a child born at the beginning of 2001 experiences all of that year’s harmful
exposure during the critical window. Children born later in the year live through less of
2001 and more of 2002. It follows that we expect S; > 0: the magnitude of the cognitive
penalty from exposure in 2001 falls toward zero with month of birth. Correspondingly,
B2 < 0 and there is no prediction about .

Of course, these two cases bound the more realistic scenario that both fetal and infant
exposures matter, in which case 3; captures the net effect of the timing of toxicant
exposure during each crucial period of development. The sign of 3 suggests which
exposure window is more strongly related to adverse, medium-term cognitive outcomes,
and its magnitude by how much. With respect to the other coefficients, even if the first
case is “more” true, we might still expect 5y < 0, or even if the second case dominates,
it may still be that gy > 0.

Estimates for this regression are presented in Table 2.D1 for specifications that include

either zip code or state fixed effects; the positive and significant coefficients on 3, suggests
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when airborne toxicity covering both the prenatal and neonatal periods are included in the
same regression, neonatal exposures appear to matter relatively more than fetal exposures
for cognition. This study, which combines a particular cohort of children and toxic air
pollution, may be somehow unique, but these findings imply greater consideration should
be given to a larger period of vulnerability than strictly fetal origins. More important
than precise identification of “window of exposure”, researchers and policymakers could
understand that early childhood comprises multiple vulnerable periods of development,
and policy to reduces pollution for both mothers and young children has potentially large
benefits for long-term learning.

For the TRI data, annual measures of releases further complicate identification, es-
pecially for children born in the middle months of 2001 likely have measurement error
in the attribution of ambient toxicity risk in infancy than children born at either end of
2001: the distinction between pre- and neonatal ambient toxicity for a child born in the
middle of the year is murkier than for a child born in January. For a child born in July,
for example, some of the toxic releases reported for 2001 likely occurred while the child
was in utero, and some occurred in infancy. Conversely, a January baby is exposed to all
of the 2001 toxicant releases, and they all occur while the child is an infant. Mechanically,
in the zip code fixed effects specification, if two children are born in adjacent months their
attributed neonatal toxicity exposures are also quite similar, while children in a single
zip code born at opposite ends of the year have substantially more identifying variation
in ambient toxicity risk.

The solution to accurately attributing TRI exposure in Currie and Schmieder (2009)
is to only examine births occurring in the first few months of the year. With only
10,700 ECLS-B children in the survey, restricting the sample by month of birth may
diminish power more than it helps control measurement error. Reassuringly, results are
fairly consistent whether the “middle-month” children are retained or dropped from the
sample: Table 2.D2 presents coefficients estimated from equation (2.2) with only children
from the end months of the year, indicating the main results are not being driven by very

small differences in attributed exposure for children of nearly the same age.
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Alternative constructions of the independent variables affect the magnitude of effects
estimated from the main specifications. Focusing on within-zip code variation, the first
year of life is when children most clearly experienced or avoided pollution exposure differ-
ently from their peers, so in the context of this study, the biological importance of the first
year of life is not entirely separable from its econometric importance. The cross-sectional

¢

specification makes it clear other “windows of vulnerability” may also be associated with
diminished cognitive outcomes, suggesting the potential for a broader consideration of
early childhood vulnerability to air toxics than simply the fetal or neonatal periods.
Regressions using different right-hand-side variables—ranging from the 6 months before
birth and after birth to the 18 months after birth, as well as the 12-month window be-
fore the Wave 2 assessment (“contemporaneous” exposure using current household zip
code)—are presented in table 2.D3. These different exposures weight combinations of the
RSEI years 2000 through 2004.

Finally, though the main focus of this paper is the cognitive effect of exposure in
infancy, and Table 2.D1 indicates that exposure matters relatively more for cognition
in the case of airborne toxicity, it is possible to check how prenatal outcomes relate to
toxicant exposure. However, the ECLS-B cohort is a selected sample with regards to
prenatal health: since it draws from live births at 9 months, the most severe outcomes
of fetal or infant death as a result of exposure to toxic air pollution are missing from the
data. Table 2.D4 shows no measurable effect of neighborhood toxicant exposure on several
measures of birthweight, several measures of gestational length, and five-minute APGAR
scores. For these regressions, I use as the dependent variable the zip-level variation in
toxicant exposure in the 12 months before birth, averaging the RSEI years 2000 and 2001

(denoted T'ox(;—12) and otherwise replicating equation (2.2).



Table 2.D1: Exposure-by-month of birth analysis
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Dependent variable:

Cognition Reading Math
(1) (2) (3) (4) (5) (6)
Tox; 2000 0.023 0.015 —0.001
(0.000) (0.027) (0.000) (0.032) (0.000)  (0.030)
Tozx, 2001 —0.070** —0.083** —0.029
(0.000) (0.031) (0.000) (0.038) (0.000)  (0.032)
Tox, 2002 0.039 0.065** 0.029
(0.000) (0.027) (0.000) (0.031) (0.000)  (0.031)
Tox, 2000 X B;  —0.009** 0.0001 —0.010* 0.001 —0.006 0.002
(0.004) (0.004) (0.005) (0.004) (0.006)  (0.004)
Tox, 2001 X B; 0.018*** 0.009** 0.020*** 0.010** 0.012* 0.005
(0.005) (0.004) (0.006) (0.005) (0.006)  (0.004)
Tox, 902 X B; —0.007"* —0.008*  —0.008"  —0.010"* —0.003 —0.006
(0.004) (0.003) (0.004) (0.003) (0.004)  (0.004)
Zip FE Yes No Yes No Yes No
State FE No Yes No Yes No Yes
Cluster City City City City City City
Waves 2:5 2:5 3:5 3:5 3:5 3:5
Observations 23,750 23,750 15,500 15,500 15,500 15,500

A difference-in-differences specification (equation (2.D1), described in the text) suggests
that higher levels of airborne toxicity are relatively more harmful for children currently
in infancy than those still in utero. Coefficients on zip-level TRI toxicity risk interacted
with children’s months of birth indicate harm from pollution in 2001—the year over which
the ECLS-B cohort was born—is diminishing in children’s month of birth (the coefficient
on Tox, 2001 X B;). This means higher pollution in 2001 causes children born at the
beginning of the year, who experience that year as infants, to perform relatively worse
on cognitive assessments than children born at the end of the year, who experience that
year mostly in utero. Similarly, the coefficients on T'ox, 2002 X B, tend to suggest children
born later in 2001, with a greater share of their infancy in 2002 than slightly older peers,
perform relatively worse the more polluted their zip code in 2002.
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Table 2.D2: Estimates from ECLS-B subsamples, by month of birth

Dependent variable:

Cognition

(1) (2) 3) (4) (©) (6)

Tox. —0.162%%  —0.177***  —0.201**  —0.217"* —0.171*  —0.205
(0.052) (0.057) (0.063) (0.072)  (0.086)  (0.154)

Birth months dropped None 67 5-8 4-9 3-10 2-11
Zip FE Yes Yes Yes Yes Yes Yes
Waves 2-5 2-5 2-5 2-5 2-5 2-5
Observations 23,600 20,000 16,200 12,350 8,150 4,150

For the specification using a zip code fixed effect, identifying variability in neonatal
toxicity exposure is stronger when children are born at opposite ends of the year. Very
small differences across children born in the middle of year are not driving the main
results: columns (2) through (6) reestimate the zip code fixed effect specification using
increasingly restricted subsets of the data.

Table 2.D3: Regressions of cognitive scores on toxicant exposure over different critical
periods

Independent variable: Tox.(; over exposure window...

46 months 9 months 12 months 15 months 18 months

A: Zip FE (1) (2) (3) (4) (5)
Coefficient 0.002 —0.105"*  —0.159*** —0.148* —0.124**
(0.041) (0.038) (0.051) (0.053)
Zip FE Yes Yes Yes Yes Yes
B: Average toxicity (1) (2) (3) (4) (5)
Coefficient —0.046 —0.085™** —0.087* —0.078" —0.074*
(0.034) (0.033) (0.044) (0.046) (0.042)
Zip-level tox. Yes Yes Yes Yes Yes
State FE Yes Yes Yes Yes Yes
Waves 2-5 2-5 2-5 2-5 2-5
Observations 23,600 23,600 23,600 23,600 23,600

Different windows of exposure affect the estimated magnitude of the effect of toxicity
exposure on cognition. Column (3) corresponds to the window used in the main text.
This sensitivity is likely driven both by the biological importance of the first year of life
for cognitive development in early childhood, and the context of this study: differences
in ambient toxicity during the first year of life are most-differentiated for children born
in a single cohort.
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Chapter 3

Pollution and Acquisition: The Environmental Justice Effects

of Mergers

Abstract

I estimate the effect of mergers and acquisitions on both facility-level toxic air pollution
and its firm-level distribution. Since acquisition is endogenous to the operation and
emissions of polluting facilities, making target facilities substantially different from other
polluting establishments, I use event study designs that exploit variation in the timing of
acquisition among target facilities. When a plant continues to operate after acquisition
(many facilities close entirely), I find evidence operations change, but not necessarily in
ways that reduce the health risks from its air pollution. I also find evidence of increased
inequality in emissions among target plants after acquisition, and shifts in pollution
toward lower-income and less-white neighborhoods. These findings suggest consolidation
in sectors with negative externalities may reduce the externality but increase inequality

in its exposure.

3.1 Introduction

A large literature focuses on the human impacts of exposure to environmental harm, and
particularly air pollution, on long- and short-run health, cognition, and behavior. These
studies are empirically challenging because patterns of environmental inequality mean

many dimensions of socioeconomic disadvantage are associated with higher pollution
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burdens. Yet considerably less work has directly examined the determinants of these ob-
served correlations between poor and minority neighborhoods and adverse environmental
exposures.

This paper focuses on the supply of toxic emissions from facilities in the U.S.; ana-
lyzing the ways in which firm behavior contributes to environmental inequality. Existing
research on facility siting tends to focus on the relationship between individual plants
and local characteristics. Wolverton (2009) argues “disproportionate siting”——the pro-
cess by which firms target low-income and minority communities with heavily-polluting
activities—likely matters less than local production costs, such as land, labor, and access
to transportation. But we know relatively little about how corporations coordinate or
allocate polluting activities across plants. This is a potentially important dimension of
environmental inequality, since the majority of Toxics Release Inventory (TRI)-reporting
facilities are owned by parent companies who control at least ten, and sometimes hun-
dreds, of separate plants. Studying M& A-induced changes in operations at TRI facilities,
most of which operate continuously over the study period, allows for a research design
that is not limited to the set of facilities that open, close, or relocate.

This paper asks whether mergers and acquisitions (M&A) tend to exacerbate or miti-
gate environmental inequality, which refers to a distribution of pollution that puts dispro-
portionate burden on low income and minority neighborhoods. I study corporate mergers
and acquisitions as both a plant-level treatment, and a shift in the number and location of
facilities already held by parent companies. I estimate the effect of a merger on emissions
using event study designs, exploiting variation in the timing of acquisition among target
facilities. This work does not explain why certain firms and not others are acquired, but
instead takes as given the transactions that occurred in the past two decades and studies
their effects.

Observations come from the EPA’s Toxics Release Inventory (TRI), a federal program
mandating facilities report emissions of toxic chemicals across many industrial sectors.
The number of firms and the pounds of emissions released in the US has fallen over

the past two decades, but toxicity risk—the potential for adverse health effects from
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exposure—has fallen by less, suggesting this source of air pollution has become increas-
ingly harmful. Observing establishment-level emissions allows me to isolate the effect
of an acquisition on emissions while controlling for fixed facility characteristics. 1 use
corporate hierarchy data from Dun & Bradstreet, and the Thompson database of M&A
activity. All of these sources cover both publicly- and privately-held U.S. companies,
providing a detailed picture of the ownership of large point-source polluters in the US.

M&A activity is an important feature of the U.S. economy, with over $2.5 trillion in
announced deals in the first half of 2018. TRI-specific sectors are no different: in the
global chemical manufacturing industry, for example, 2018 merger activity exceeded 72
billion dollars and 600 transactions, the bulk of which targeted U.S. companies.

Toxic air pollution is a local environmental externality, so firm choices over where,
how much, and how cleanly to operate have meaningful impacts on the neighborhoods
in which plants are located, and the effect of a merger on the quantity and distribution
of this negative externality is not obvious. Acquiring companies tend to be larger and
better-resourced, and may implement more efficient pollution control; these technological
asymmetries and the transfer of environmental expertise between acquiring and target
firms can motivate M&A activity (Berchicci et al., 2012; Kwon et al., 2018). This pathway
resembles the strategy of target facilities adopting the technology and practices of the
acquiring firm documented in Eliason et al. (2019). Consolidation-driven improvements
in abatement technology is also consistent with observed trends in the manufacturing
sector described in Shapiro and Walker (2018).

However, a merger may also allow firms to reduce or terminate risky or harmful
emissions in the most advantaged communities, exacerbating environmental inequality;
acquisitions may even be motivated by this opportunity. Banzhaf et al. (2019) pro-
poses as a potential explanation for environmental justice correlations that firms locate
hazardous activities across space and time to minimize costs. These costs may include
location-specific expectations of enforcement, current and anticipated regulation, com-

munity oversight, and preferences for discrimination (Hamilton, 1995). This potential

!'New York times, July 2018; Deliotte’s 2019 Global chemical industry mergers and acquisitions out-
look.
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side effect of mergers—the redistribution of the burden of pollution among facilities in
a way that increases environmental inequality—adds another dimension to the tradeoff
between increased market power and efficiency gains resulting from M&A activity.

Though much literature has focused on the effects of M&A activity on firm perfor-
mance and market power (such as Blonigen and Pierce (2016)), there is no empirical
evidence documenting the effect of M&A activity on environmental performance or the
distribution of environmental externalities. Several relevant bodies of work consider the
welfare effects of mergers in sectors with externalities, the role of trade in the environmen-
tal performance of firms, and the ways firms are sensitive to regulatory and community-
based pressure in their choices of location and environmental performance.

Accounting for firm structure, ownership dynamics, and heterogeneity across plant
locations is essential to understanding environmental performance. Grant and Jones
(2003) finds subsidiary firms tend to pollute more heavily than their parent companies,
and Akey and Appel (2017) finds greater liability protection for parent companies drives
higher emissions among subsidiaries through disincentivizing investment in abatement
technologies. Acquisitions may be motivated by technological asymmetries between the
target and acquiring firms, or expansion into less-regulated (or less-scrutinized) loca-
tions. Cui et al. (2016) discusses the effects of firm structure and trade on environmental
performance, finding larger and more productive facilities tend to have lower emission
intensities for criteria pollutants. Similarly, Holladay (2016) finds toxic emissions are
lower among exporting firms, and Li and Zhou (2017) associate lower toxic pollution at
US plants with firms that import more from low-wage counties.

Fikru (2011) shows environmental policy can incentivize M&A activity among pollut-
ing firms, and Condliffe and Morgan (2009) finds stricter environmental regulations deter
new plant openings, particularly in the most-polluting sectors. Among operating facili-
ties, however, Becker (2011) does not find evidence higher environmental compliance costs
diminish facility productivity. Fikru and Gautier (2020) provides a theoretical framework
for incorporating environmental externalities in the welfare effects of mergers, proposing

overall welfare effects depend on the size of the merger and the pollution intensity of the
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firms involved. Simon and Prince (2016) finds increased competition reduces facility-level
emissions through reduced output and increased abatement; however, that paper does
not account for facility ownership or facility-specific heterogeneity, instead linking the
HHI of each facility’s industry. Park (2019) documents mixed effects of airline mergers
on NOx emissions.

Community characteristics may inform both the perceived value of acquisitions and
also subsequent management of target firms. De Silva et al. (2016) finds polluting fa-
cilities are more likely to locate in tracts with higher shares of nonwhite residents, and
Millimet and Slottje (2002) finds federal regulation that increases environmental com-
pliance costs acts to exacerbate disparities in air pollution exposure. Ash and Boyce
(2011) document patterns of disproportionate exposure to toxic pollution within major
firms in the US, and Kim et al. (2019) finds local facility ownership is associated with
lower toxic chemical releases. Sanders (2012) and Powers (2013) estimate the effects of
the information shock of the TRI itself on housing prices and plant births, and Wang
et al. (2018) finds the 1989 TRI disclosures caused the relocation of polluting facilities
towards more disadvantaged communities. Similarly, Kagan et al. (2003) attributes some
heterogeneity in environmental performance across polluting firms to local community
and activist pressure, and Campa (2018) finds a negative effect of press coverage on TRI
emissions.

To understand the distributional impacts of M&A activity, I take as a conceptual
framework the decisions made by a firm with multiple polluting establishments that per-
form similar functions and operate in multiple markets. Each firm decides each year how
to allocate production across its set of facilities, minimizing costs at each facility, and
constrained in the short run by total capacity. Each facility has its own access to local
markets and supply chains, and faces local regulations and forms expectations of their en-
forcement. M&A activity occurs if it is perceived to increase value for the acquiring firm.
As Berchicci et al. (2012) and Simon and Prince (2016) note, an acquisition may provide
either the target or acquiring firm with new expertise, including for pollution control.

The acquisition also increases the set of facilities available for production, and firms may
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make changes at any of them after the acquisition. I hypothesize firms’ increased scope
to decide where to operate leads to an increased emissions share in more-disadvantaged
neighborhoods (those that have lower median incomes and greater nonwhite populations).
The firm’s ability to reallocate production among facilities is constrained by the extent
to which plants are substitutes for one another; I expect large firms to be the most likely
to have multiple facilities with substitutable production, and similarly, that horizontal
mergers are most likely to create redundancy and an opportunity to reallocate production.

This paper estimates the effects of a change in firm ownership on high-risk emissions
at the facility level using the event study design of Sun and Abraham (2020), which allows
for treatment effect heterogeneity and causal interpretation. I find the quantity of toxic
chemicals released to the air at target facilities falls by about 24 percent in the decade
following an acquisition, a much larger estimate than the descriptive decreases reported
in Berchicci et al. (2012), and examine potential mechanisms for these effects. Reductions
tend to be greatest when the target and acquiring firms operate in the same industrial
sector, suggesting technology transfer is important. Facilities treated by an acquisition
are also more likely to close down in the years immediately following the acquisition than
never-acquired facilites of the same age and operating in the same sector.

I then estimate the heterogeneity of the effect of an acquisition by the demographic
characteristics of the neighborhoods in which facilities are located, and characterize the
changes in distribution and the socioeconomic composition of the population exposed to
a firms’ emissions using firm-level summary statistics, the exposure-weighted average (in
the spirit of the firm-level distributional measure in Ash and Boyce (2011)), and the Gini
coefficient. I show in the decade following an acquisition, pollution becomes less equally
distributed among targe firm plants, and lower-income and less-white neighborhoods end
up relatively more exposed than before the acquisition. For acquiring firms there is not
a clear and pre- and post-period, but I document a similar shift in the inequality of
emissions across a fixed set of plants as the size of the firm increases.

This work informs our understanding of the supply side of neighborhood-level pollution—

which has been widely established to threaten long-term health and cognition, particularly
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for vulnerable populations—by explaining the distributional effects of mergers in heavily
polluting industries. Consolidation in polluting sectors may have local environmental

benefits but further entrench environmental inequality.

3.2 Data

An observation in the data consists of a TRI facility in a given year, and includes its
annual toxic emissions, its parent company, industrial sector, and location. I link in-
dividual polluting facilities and their emissions from Environmental Protection Agency
records to their parent firms using the Dun & Bradstreet business database and the Your
Economy Time Series establishment-level data. I then use matched parent companies to
identify facilities affected by corporate mergers and acquisitions using deals collected in
the Thomson (formerly SDC Platinum) M&A database. These data cover the United

States for the period 2001 through 2018.

3.2.1 Toxics Release Inventory

The facilities in this paper are all mandatory-reporters to the EPA’s Toxics Release
Inventory (TRI), a federal environmental reporting program that has been in existence
since 1988. Established as a “right to know” program, the TRI mandates all facilities
operating in particular sectors above specific chemical usage and employment levels to
report the quantity, type, and pathway for all chemicals released to the environment.
Reporting sectors encompass major point sources of pollutants in the U.S. economy, from
mining and manufacturing, to chemical production and disposal. Facilities must report
if they have 10 or more employees and handle any listed chemical above its threshold—
typically in the tens of thousands of pounds, though lower for a group known as persistent
bioaccumulative (PBT) chemicals. Omitted from the TRI are non-point-source polluters,
such as trucks and airports, and small establishments, such as dry cleaners.

Acute or long-term exposure to the chemicals covered under mandatory TRI report-

ing is known or suspected to threaten human or environmental health. The list currently
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includes nearly 600 distinct chemicals and chemical groups, each of which must be re-
ported separately, and has been expanded over the history of the program. Facility-level
emissions must also be disaggregated by how they are released to the environment: air
releases (through a smokestack or otherwise), releases to water, releases to land, and
releases off-site for treatment or disposal. These different modes of release imply very
different outcomes for local human and environmental health. Air releases, particularly
those not emitted through a smokestack, escape into the vicinity of a facility at ground
level, while water releases contaminate nearby streams, rivers, and lakes. Off-site trans-
port, on the other hand, shifts the pollution burden to other neighborhoods. This paper
focuses on air releases, which pose an immediate risk to neighborhoods surrounding the
facility, and cannot be mitigated or remediated once they leave the facility.

Another way to understand the impact of toxic emissions is through the toxicity-
weighted quantity of releases. Several billions of pounds of TRI chemicals are released to
the air, water, and soil each year, but not all of these chemicals pose the same risk for
health (for example, a pound of airborne mercury presents a much greater risk to human
health than a pound of sodium nitrite). The EPA has established toxicity weights based
on the available science in order to make more meaningful comparisons of heath risk
from emissions, which they define as exposure that increases the long-term (not acute
or contemporaneous) likelihood of carcinogenic and non-carcinogenic adverse outcomes,
such as respiratory, cardiovascular, and neurological harm.

I use as outcome variables both the pounds of toxic chemicals released and the total
toxicity of releases. Changes in quantity in pounds of chemicals released to the air may
be more salient, but changes in the toxicity-weighted releases from TRI facilities better
reflect changes in health risks to the neighborhood surrounding a plant. Annual toxicity-
weighed releases are the facility-level sum of each individual chemical release quantity
times its toxicity weight; this number is unitless, and only meaningful in relative terms
(higher toxicity-weighted releases represent greater health risks).

This analysis begins in 2001 because many chemicals were added for TRI reporting

in 2000 and the thresholds for PBTs were lowered in that year; and shortly before, in
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1998, many major industry sectors were included in the TRI for the first time. This
cutoff ensures changes in release quantities reported are not due to changes in reporting
requirements. [ omit facilities owned by the federal government and those with zero
reported emissions in all years between 2001 and 2018. Industries are assigned using the
first 3- or 4-digits of the NAICS code, following the EPA’s classifications.

Of course, in addition to varying emissions at the intensive margin, facilities start
and cease to operate throughout the study period. Closures are an important possible
outcome of M&A activity, because a polluting facility shutting down entirely matters for
both local health and local employment. TRI facility reports do not identify the year in
which a facility officially started or stopped operating, and closed facilites are not required
to file reports. I consider the year after the last TRI report with positive emissions to
be a meaningful zero in the data, and include the facility in the panel for 3 more years,
with zero emissions. After that point, the facility drops out of the data (results are not
sensitive to longer inclusion of zero-emission years in the panel). In specifications that
keep these zero-emission years, closures inform the estimated average change in ambient
air quality at acquired plants. To better understand just the intensive margin operations
of TRI facilities, I also consider just the subset of facilities that are definitely operating

(those that report nonzero emissions, to any release media, in a particular year).

3.2.2 Linked merger, business, and Census tract data

The Thomson M&A data list transactions in the U.S., providing the name of the target
company (the company that was purchased), the name of the acquiring company (also
referred to as the new parent company), the industrial sectors of each firm (which allows
me to identify same-sector mergers), and the date of acquisition. Since the Thomson data
include privately-held companies (which are not required to report mergers to regulators),
they present one of the most complete pictures of M&A activity in the U.S. available to

researchers.? I omitted transactions in the Thomson data where the listed purchaser is

2This paper leaves for future study the effect of an acquisition by a large multinational on offshoring
pollution. Acquisitions by multinationals with production overseas appear in the Thomson data, but I
only observe domestic facilities’ emissions.
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not another firm (instead, the same firm, a group such as bondholders, shareholders, or
employee stock ownership), transactions where the target purchase was not the entire
company (instead, a particular division, franchise, location, or unit), and transactions
where either the target or acquiring firm is unknown.

The TRI is a very detailed facility-level reporting program, but it is often difficult and
sometimes impossible to attribute corporate ownership of a plant, or to characterize how
firm ownership has changed over time. Making accurate links from individual facilities
to their parent firms allows correct assignment of mergers, which are recorded at the firm
level. The relevant TRI reporting fields for facilities are an open-ended “Parent company”,
an EPA-cleaned “Standardized parent company” that modifies the previous field, and the
parent company’s Dun & Bradstreet number, which is a proprietary, EIN-like numeric
identifier used primarily for corporate credit ratings. All of these fields contain numerous
blanks, errors (typos or missing digits), and inconsistencies (small shifts from year to
year in facility or firm names, including alternately listing subsidiaries and their parent
companies) in the EPA data. I first cleaned facility and parent company names and
removed small discrepancies and missing data from year to year within facilities.® I then
matched the standardized names of the target companies listed in the Thomson data to
several cleaned and standardized fields in the TRI, prioritizing the “Standardized parent
company” field, then the “Parent company” and finally the “Facility name” field.

I consider a TRI facility in the treatment group if it belongs to a firm that was acquired
and has exactly one matched merger. This makes for distinct separation of pre- and post-
acquisition periods, but excludes facilities that matched to multiple acquisitions (about
3 percent of all facilities). In addition to this, despite efforts to accurately categorize

facilities, the plant-to-parent matching was intentionally quite conservative, which means

3Cleaning the TRI data fields is best explained with several representative examples. I removed all
punctuation and common phrases like “UNKNOWN” and “SEE ABOVE”. I dropped uninformative
strings like “LLC”, “PLANT” or “FACILITY”, as well the names of plants’ cities and counties, from the
ends of strings, so “3M HARTFORD CITY PLANT” becomes just “3M”. Large companies that are com-
monly abbreviated in the data were identified, so “ADM” becomes “ARCHER DANIELS MIDLAND”.
I standardize multiple common abbreviations for single words to one abbreviation, so consecutive years
reported as “SOUTHERN MFG CO” and “SOUTHERN MANUFACTURING CO” register as the same
ownership. These and all other rules were applied to the (already much more standardized) Thomson
data as well as the TRI data.
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there there are inevitably facilities that should be in the treatment group but are not
(in particular, those with very inaccurate or frequently-missing parent company data).
Both of these facts may compromise the representativeness of the sample, but minimize
incorrect assignment of treatment.

About 60 percent of the facilities in the sample have matched records in the Your
Economy Time Series (YTS) data,* a database from the University of Wisconsin Business
Dynamics Research Consortium, comparable to the National Establishment Time-Series
database. These establishment-level records, which run from 1997-2019, provide figures
for employment (about half of which is verified and half of which is estimated), and
sales (which are always imputed from establishment NAICS codes and employment) for
matched facilities. Because the TRI facilities are incompletely matched to the YTS data,
and the YTS data are themselves often imputed, estimates relying these fields should be
considered motivation for further investigation.

Finally, I link each TRI facility to its Census tract (ACS 5-year estimates since 2009)
and county (ACS 1-year estimates since 2005) in order to represent the characteristics of
the immediate neighborhoods and larger areas surrounding the facility. I focus on median
household income, the percent of residents by racial and ethnic categories, and the pop-
ulation density. I primarily use Census tracts as an approximation of the neighborhood

surrounding a TRI facility; they are typically several thousands of people.

3.2.3 Summary statistics

Figure 3.1 shows the largest share of on-site TRI facility releases over the past two decades
have gone to land (such as waste piles, landfills, underground injection, and spills of
liquids), while smaller shares of all releases are water discharges to streams, rivers, and
lakes, and other bodies of water, and air releases. Figure 3.2 shows aggregate trends in
the number of facilities reporting air emissions, total pounds released, and the toxicity
of air releases over the study period. Across most industries, there have been declines in

releases since the early 2000s, but per pound toxicity of emissions has risen.

4YTS staff performed the matching using a combination of TRI facility names, addresses, and geo-
graphic coordinates.
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Many TRI facilities in the analysis open, or are acquired, or close down during the
study period. Twenty-nine percent of TRI facilities in the sample had emissions from the
start to the end of the study period, while the remainder opened and/or closed (Figure
3.3). Figure 3.4 shows all years have at least some merger activity, but the number of
facilities acquired in each year, and the industrial composition of those acquisitions, varies
between 2001 and 2018.

Summary statistics for the facilities used in the analysis are shown in Table 3.1. Of
the 33,573 facilities in the sample that ever report air emissions, a great majority are
never acquired: about 14 percent (4,560) have a single matched acquisition, and another
5 percent (1,680) have multiple matched acquisitions. Before their acquisition, facilities
treated by a single merger tend to release more pounds of chemicals to the air than

facilities never acquired. All three groups have comparable demographic characteristics.

3.3 Empirical analysis

The first goal of estimation is to understand whether (and by how much) an acquisition
of a polluting facility affects its subsequent emissions. In this empirical setting, the panel
comprises nearly two decades of emissions data for individual facilities, whose timing of
treatment (acquisition) varies throughout the study period, and a large potential control
group (more than 80 percent of facilities do not have a matched M&A event).

In light of the evolving literature laying out the ways the two-way difference-in-
differences estimators may be biased when the timing of treatment varies and treatment
effects vary over time, my preferred specification is an event study that omits never-
acquired facilities. I use both the typical event study (ES) design allowing for dynamic
treatment effects, and also show estimates using the Sun and Abraham (2020) estima-
tor (which they call the interaction-weighted, or IW estimator), which allows for treat-
ment effect heterogeneity by averaging dynamic treatment effects across cohorts treated
at different points in time. I also present estimates for the static two-way fixed effect

difference-in-differences (TWFE) for comparison. Identification is discussed in Section
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3.3.3.

The second empirical goal is to understand whether the effects of mergers differ by
plants’ neighborhood characteristics, and whether acquisition leads to a reallocation of
pollution among facilities within a treated firm. For the firm-level analysis, I use summary
statistics that reflect relative changes in emissions exposures across the demographic
groups in which facilities are located and the distributional inequality of emissions across

target firm plants.

3.3.1 Two way fixed effect estimates

A two way fixed effects strategy to estimate the impact of a corporate acquisition on TRI

facility emissions is as follows:

Yie = BMy + o + vje + 0 + €5

where the outcome Y represents the pounds, or toxicity-weighted quantity, of on- or off-
site releases reported to the EPA for each facility ¢ and year ¢, and can go to zero when the
facility closes down. M is equal to one if the facility’s parent company was the target of an
acquisition, in all the years after the acquisition. Fixed facility-specific characteristics are
captured with the fixed effect «; and nonlinear, industry-specific time trends by the sector-
by-year fixed effect 7;;. Since environmental policies and macroeconomic conditions may
also vary across states and years, oy is a state-by-year fixed effect. Standard errors are
clustered at the industry level (EPA-assigned groups from the first three or four digits
of the facility NAICS code, corresponding to sectors like “wood products”, “chemical
wholesalers”, or “hazardous waste”).

The coefficient of interest, 3, reflects the average change in annual emissions at a TRI
establishment after the establishment is the target of an acquisition. Identifying variation
comes from both the average differences in emissions across treated and control facilities,
and the timing of the merger relative to other acquired facilities. Following, for example,

Goodman-Bacon (2018), the static estimate [ is biased if treatment effects change over
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time.

3.3.2 Event study estimates

The event study model,

-1 L

Yi = Z ,ulDit + Z ,ulDit + o + Vit + Ost + €ty

l=—L =1

is analogous to the TWFE above, but treatment effects are estimated using a standardized
lead or lag relative to the time of acquisition. The indicator D!, = 1{t — E; = [}
corresponds to unit ¢ being [ periods away from year of treatment F in year t. The fixed
effects are the same as in the specification above. If the y; where [ < 0 are equal to zero,
the event study is consistent with the assumption that acquired firms in the TRI do not
ramp emissions up or down in the years leading up to acquisition. Similarly, if the g
where [ > 0 are significantly different from zero, then mergers have short-term effects on
emissions. For large lags and leads of the treatment, the y; are identified off of relatively
few observations. The year of acquisition is [ = 0, and its coefficient is not estimated in
the regression. Since M&A activity happens throughout the year, and it may take some
time for the effects of an acquisition to be felt at facilities after a change in ownership, it

is plausible the first year after the merger is when its effects will show up in emissions.

3.3.3 Interaction-weighted estimates

The Sun and Abraham (2020) estimator builds on the dynamic event study model by
estimating a different yu; for each cohort e, which in this setting is a group of facilities
that share a year of acquisition. The interaction-weighted estimator proceeds from the

regression

Yi = Z 25€l<1{E’i = G}Dét) + O Vit + Ost + €4ty
e¢C 1#0

where 0,; is the cohort-specific average treatment effect, and the other parameters are

defined above. To avoid issues of multicollinearity, the omitted cohorts C' are the first
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cohort (2001), which is always treated in the sample, and the last cohort (2018), which
is never treated in the sample.

The weighted average across cohorts of period-specific average treatment effects is
Zeec welgel, where weights are the sample shares of each cohort in each period, and is
analogous to the event study coefficient 1;, above. The weighted average across both peri-
ods and cohorts (for some fixed number of periods after treatment g) is F}\ Dleg Qe Werber,
and is analogous to the TWFE 3, above. Standard errors for both are straightforward
to derive.

In regression tables, I present both the TWFE estimates and the IW estimate for
the average treatment effect in the post-period. Comparing both gives some sense of
the extent to which the TWFE estimator departs from the IW estimator, which may be
consistent with the “contamination” of estimates of particular leads and lags by effects
in other periods described in Sun and Abraham (2020). In event study plots, I present
both the “typical” and IW event study coefficients. My preferred specifications estimate
effects for target facilities within 5- or 10- years of their acquisition, since longer horizons
rely on estimates from fewer cohorts and so may not be representative.

Several assumptions are required for unbiased estimates of the effect of M&A activity
on facility emissions.

First, the counterfactual must be reasonable. Since most of the TRI sample is not
treated by a merger, there is a large potential control group against which to compare
treated plants. However, this set of never-acquired TRI facilities is an implausible coun-
terfactual if the plants have substantively different patterns of emissions, which is likely
if the decision to acquire a plant or firm is related to its output and emissions control
technologies. I address this concern by omitting never-acquired and multiply-acquired
facilities from the sample.

A more complicated threat to identification is if earlier- and later-acquired facilities are
not good counterfactuals for one another. The IW estimator requires that the treatment
is homogeneous across cohorts—that is, the post-merger trajectory is the same across

facilities acquired in 2005 as it is in 2015. However, this assumption may not be tenable
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if, for example, effects vary across sectors and the composition of acquisition cohorts
also varies across sectors (as Figure 3.4 shows). I include covariates for each industrial
sector in each year, and assume treatment effects are homogeneous conditional on those.
There may also be selection or timing effects within sectors. If mergers select for the
most (or least) successful firms earlier in time, it is less plausible that effects are homo-
geneous across earlier and later acquisition years. Spillovers within industries may also
lead an earlier acquisition to affect not-yet-acquired facilities, if those facilities have to
adjust operations in order to stay viable. Changing regulatory and macroeconomic con-
ditions (including the Great Recession) also threaten the assumption that post-treatment
trajectories are constant over time.

A related concern is the presence of shocks that occur at the same time as the ac-
quisition. This could be regulatory shocks that simultaneously affect emissions and the
likelihood of acquisition, or local demand shocks. Consider the case of an estimated de-
crease in emissions resulting from acquisition. If mergers select very successful firms just
when they would have ramped up production, the magnitude of the effect of the acquisi-
tion is underestimated. Conversely, if mergers select firms right before they are about to
go out of business, so their continued operation results directly from the acquisition, the
contribution of the merger to observed decreases in emissions is over-estimated. In order
to avoid this source of bias, Arnold (2020) focuses on M&A activity among large firms,
which also may be a relevant strategy here.

Finally, it is also necessary to assume treated units do not anticipate treatment. This
is reasonable if the effects of the merger are primarily through transfer of mangement
practices and technology that cannot affect target facilities until after the deal is complete,
but could be problematic if target firms manipulate their plants’ emissions as part of
merger negotiations, or defer maintenance or upgrades until the change in ownership.
Pre-merger event study coefficients showing facility emissions (or other statistics) are
indistinguishable from zero in the years leading up to an acquisition can corroborate the

assumption of no anticipation.
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3.3.4 Facility closures

A facility closure is a meaningful outcome for local pollution and employment. When the
regressions above include these zero-emission outcomes, the estimated effect of the merger
captures both the extensive (closure) and intensive (operational) margin. In regressions
that omit facilities after they they close down, (5 just captures the average effect on facility
operations.

In order to understand more directly the likelihood a firm acquired in year t closes,
relative to all other never-acquired TRI facilities operating in the year of the acquisition,
I estimate the model

Yii = BAu + Yije + 0t + €.

The binary variable A is equal to one if the facility was the target of a merger. I use
a cross section here, comparing each cohort of TRI facilities (those sharing a particular
acquisition year) to all never-treated facilities in operation in the year of the merger. I only
include target facilities in their acquisition year to avoid comparing contemporaneously-
acquired facilities to facilties that have been acquired or will be acquired in the future,
which affects their closure likelihoods. The fixed effect v is a dummy variable for industry
sector, year, and first observed year of operation (which is the start of the panel for most
of the sample), and o for county and year.

The outcome Y is either a binary indicator for whether the firm is still open within
two years of the acquisition year, or the number of years a firm will continue to operate
before closing. This is a descriptive, rather than causal regression, since selection into
acquisition is non-random. The estimate for 5 indicates whether acquired facilities tended
to remain open (8 > 0) for longer than facilities whose firms were never the target of an
acquisition but were operating at the same time.

The intuition for the potential bias in the effect of mergers on facility closures is not
obvious. If acquiring firms target struggling or inefficient facilities that would have shut
down had they not been acquired, the comparison to never-acquired facilities leads to

an overestimate of the effect of the merger on eventual closure. If acquiring firms select
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more successful firms and the control group consists of facilites less likely to survive, this

specification underestimates the effect of a merger on facility closure.

3.3.5 Distributional outcomes

Facility-level reductions in pollution may not correspond with a more equitable distribu-
tion of pollution. In order to assess whether a merger systematically shifts the distribu-
tion of high-risk pollution within acquired firms, I estimate heterogeneity in the effect by
neighborhood demographics, and in the aggregate changes in emissions exposure across
a target firm’s facilities.

Empirically, there are multiple reasonable ways to classify an individual target facil-
ity’s relative advantage, which could lead to disparate findings and interpretations, so I
use two different rankings for facility demographic characteristics. In order to understand
the overall effects M&A activity may be having on the distribution of air pollution from
toxic facilities among the least-advantaged communities in the United States, I classify
facilities across an entire industry into “High”, “Medium”, or “Low” terciles, based on
either Census tract-level median household income and percent of non-Hispanic white
residents. Then, in order to understand how an acquiring firm’s management of target
firms in the years after an acquisition affects the distribution of pollution across its own
facilities, I classify plants into terciles within their target firm and industry, so that “high
income”, for example, is relative to comparable plants over which the parent company
may adjust operations. There is less overlap than one might expect between a facility’s
classification in the first, broader classification and the second, more granular classifica-
tion (for the income terciles, only 65 percent of the sample has the same sample-wide as
within-firm tercile). Because the within-firm terciles require at least 3 facilities within a
firm and industry over which to distinguish levels, those results necessarily omit the very
smallest target firms.

For the firm level analysis, an observation consists of a treated firm in each state,
industry, and year, which I consider to be the relevant unit within which firms reallocate

pollution. Though it would be interesting to understand whether the acquiring firm shifts
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polluting activity to facilities in the target firm when they are in less-advantaged neigh-
borhoods, and vice versa, it is likely facilities’ neighborhood characteristics are correlated
with the type of activity at the facility. Instead, I focus on emission shares within the
target firm’s fixed set of facilities.

To do this, I use a measure of the neighborhood characteristics that reflects the dis-
tribution of emissions across sociodemographic groups in each year, which I call the
exposure-weighted average. First, an example: suppose a firm consists of just Facility H,
located in a high-income neighborhood, and Facility L, located in a low-income neighbor-
hood. They each have some reported emissions in the first period. If in the second period
emissions rise at Facility L and fall at Facility H, then the firm’s exposure-weighted aver-
age income will be lower in the second period; this can be interpreted as a shift towards a
greater share of exposure in the lower-income neighborhood. It should not be interpreted
as evidence the typical income of households in either neighborhood changed in response
to the pollution.

In general, the exposure-weighted average S is:

Ziekjs Xz * dl * Eit
Ziekjs di * Ej

Skjst =

where X is a tract-level demographic variable (for example, median household income),
d is the tract population density, and E is emissions at facility 7 in a particular state,
industry, and year belonging to firm k. Each facility’s neighborhood demographics and
population density are held at those of the 2010 Census Tracts in which the facility is
located, and the set of facilities in each firm, industry, and state are constant—so changes
in the exposure-weighted average demographics are only driven by relative changes in
emissions across those facilities. If after a merger parent companies shift pollution to
poorer neighborhoods, the firm’s overall exposure-weighted household income will look
less affluent.

I test this with the following, by now familiar, TWFE regression (shown here), event
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study regression, and interaction-weighted estimator (which follow analogously as above):

Skjst = ﬂMkjst +apjs+ Vit + 05 + €kjst

for each firm k& comprised of facilities in state s treated by an acquisition. The outcome
S is the exposure-weighted demographic descriptor defined above, and «, 7, and o are
firm-industry-state, industry-year and state-year fixed effects, respectively. Larger firms
have many more facilities informing the aggregate outcome .S, and so in these regressions
I weight by the number of facilities. As with all previous regressions, the event study and
interaction-weighted designs present an opportunity to confirm, at this aggregate level,
the absence of pre-trends.

I also use this design to estimate whether the distribution of emissions within each
firm, industry, and state becomes more unequal after an acquisition, using a Gini coeffi-
cient (this measure of inequality in emissions has precent in Millimet and Slottje (2002)).
An increase in the Gini coefficient indicates fewer plants within a fixed set of facilities are
responsible for a greater share of the total emissions, but does not on its own reveal which
plants experienced the relative increase and which the relative decrease. It is possible for
the Gini coefficient to rise even as total emissions fall.

Finally, I use the exposure-weighted average and Gini coefficient as an outcome vari-
able in a descriptive regression, relating this distributional measure to changes in the
size of acquiring firms. Following the intuition above, I expect as acquiring firms grow,
emissions also shift away from plants in more-advantaged neighborhoods. I estimate this
with an analogous exposure-weighted average for acquiring firms, again averaging across
a fixed set of facilities with a single parent company (facilities not ever the target of an
acquisition). I replace the treatment M with the number of facilities held by the parent
company in a given year. An increase in the number of held facilities is a proxy for an
acquisition, but by no means a perfect one, since firms may add plants for other rea-
sons. As above, changes in the exposure-weighted demographics reflect relative changes

in emissions.
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3.4 Results

In order to understand how a change in the parent company of a TRI facility affects the
pollution it releases to the surrounding neighborhood, I first focus on the facility-specific
effects of an acquisition, estimating whether and how much toxic air emissions change at
individual plants. I then conduct a firm-level analysis of the distribution of emissions at
target and acquiring firms following an acquisition.

I report the inverse-weighted (Sun and Abraham) estimates throughout this section,
which average across cohorts and event years as explained above, for the specified years
post-treatment. I summarize immediate and longer-term effects with 5- and 10-year
windows. In all regression tables, I present estimates from both the TWFE and IW
designs, and in the plots I present the event study and the IW estimates; results are often
but not always similar, and not consistently different in a way that suggests the source

of bias introduced with the TWFE estimator in this setting.

3.4.1 Target facility effects

A change in ownership results in substantially lower emissions at the facility level, in
both the pounds of toxic releases and when accounting for the toxicity of releases (Table
3.2). Examining both the total pounds of emissions and the toxicity of the waste stream
helps understand both mechanisms—M&A activity may lead to reductions in overall
activity, or adjustments to facility operations—and also consequences for health risk in
surrounding neighborhoods.

When the sample of treated facilities includes the extensive margin (facilities that close
in the years immediately after a merger), an acquisition causes the pounds of plant-level
air emissions to decline by about 52 percent in 5 years following, and 62 percent in the
10 years following; toxicity-weighted emissions fall by even more, about 80 percent in the
10 years after the change in ownership. However, much of the effect is diven by facilities
closing down entirely (further explored below). Among facilites that continue to operate

in the subsequent years, the decline is much smaller in magnitude: about 24 percent
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fewer pounds of chemicals are released to the air in the decade following an acquisition
at a TRI facility. The total toxicity of that emissions stream falls by an average of 27
percentage points over the decade.

TWFE and IW event study plots both show the decrease is not a one-time shift to a
lower level of emissions, but a steady decline over the post-merger period (Figures 3.6 and
3.7). These plots all corroborate the parallel trends assumption, with estimated effects
in the years before the acquisition insignificantly different from zero. Among operating
facilities, the IW coefficients suggest even as the quantity of pollution falls, the total
toxicity decreases in the years following acquisition are not significantly different from
zero, suggesting plant-level shifts in the composition of the waste stream.

TRI facility emissions are self-reported, and so it is possible post-acquisition reduc-
tions are not representative of real changes in facility operations, but instead changes
in the reporting practices or strategy. If acquisitions increase under-reporting of emis-
sions at acquired facilities, the estimated effect of a merger on actual emissions may be
biased up in its magnitude; on the other hand, if larger parent companies are less likely
to tolerate downward-biased misreporting, the estimated effect of a merger on emissions
could be biased downwards (pre-merger emissions reports being too low). I cannot rule
out either case, but can evaluate whether the effects presented in Table 3.2 are indepen-
dently detectable by linking TRI facilities’ locations to gridded, annual, satellite-derived
estimates of near-surface fine particulates (PM2.5).

Using this outcome variable risks missing the signal for the noise, since many non-TRI
sources of pollution contribute to near-surface fine particulates (such as traffic, airports,
small facilites, and non-point emitters); the releases from an individual TRI facility may
comprise a very small share of the total PM at a given location. Moverover, not all TRI
facility releases are particulates, and so are not detected by satellite PM measures (nor
PM monitors). Both of these caveats should introduce measurement error that biases
towards zero an estimated effect of an acquisition on emissions, and in fact, I fail to find
an effect on satellite PM2.5 among all facilities (Panels A1 and B1 of Table 3.3).

However, among the top quarter of facilities by release quantities—that is, those
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most likely to move the needle of annual, all-source PM2.5—an acquisition shows up as an
annual 0.10ug/m? decrease in local ambient PM2.5 (Panels A2 and B2) on average over 10
years.® Panels A3 and B3 further subset facilities, restricting to both the highest-quarter
of air emissions and the lowest-quarter of ambient PM; intuitively, in low-overall PM
areas, few other sources contribute to ambient PM, making the TRI facility a large share
of the detected amount. The imposed restrictions mean a small sample size, but estimates
are yet larger (—0.23ug/m?® on average post-merger). These findings corroborate Table
3.3 that post-merger reported decreases reflect actual changes in air emissions.

I expect a merger to have different effects when the acquiring and target firms operate
in the same or different industrial sectors, and this is the case. “Same sector” mergers are
not necessarily horizontal, but they identify the set of acquisitions where the new parent
company is much more likely to have preexisting experience and capacity; “different
sector” mergers are the remainder of M&A activity, where the target and acquiring firms
operate in different primary industries. Both types of acquisitions lead to plant closures,
but among the set of facilities that continue operating, decreases in the quantity of air
emissions are driven almost entirely by same-sector acquisitions (column (3) of Table
3.4). This heterogeneity in outcomes by acquisition type is consistent with several, not
mutually exclusive, explanations: acquiring firms already operating in the same sector
as the target firm may be more likely to have the technical expertise to improve facility
efficiency, and also to be acting anti-competitively and reducing output.

The seeming improvement in local air pollution at operating facilities, particularly
for same-sector merger types, does not actually mean a decrease in the health burden
on the surrounding neighborhood. While the pounds of point-source pollution falls, the
per-unit toxicity, or health risk, of the pollution that is released increases by an average
of 36 percent over the next five years (column (3) of Table 3.5). This compositional shift
may entirely offset the health benefits from the decrease in quantity: the toxicity-weighted
total amount of air pollution hardly falls at operating plants after the acquisition (column

(6) of Table 3.4).

SFor reference, the EPA annual PM2.5 standard is 12 pg/m?3.
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Changes in sales and employment also provide insight to operational changes at ac-
quired plants. I find facilities that stay open after a merger increase employment slightly
(by about 6 percentage points) and sales do not change (columns (5) and (6) of Table
3.6). Sales would typically be a better proxy for output than labor, but sales are imputed
from employment in the YTS data, and no other inputs to production are available. I
use both to understand the emissions intensity of production at plants, and estimate
whether these ratios change in the post-merger years. 1 find some evidence emissions
intensity falls (columns (7)-(10) of Table 3.6), which is consistent with acquiring parents
improving emissions control technology. However, sales and employment data come from
a separate source, and are incompletely matched—Iless than half of the TRI facilities in
the sample have a corresponding observation—and estimates for the main specification
look quite different among this subset. Columns (2) and (4) of Table 3.6 show facilities
with linked employment and sales data decrease emissions by much less than the typical
facility in the study. Future research should attempt to link TRI facilities to a more
complete survey of establishment-level operational data.

Facilities report more than just emissions to the air, and mergers may also affect
those releases. Post-acquisition decreases in output observed across all release media
might be more indicative of decreases in output, while medium-specific decreases could
be more consistent with operational changes. Table 3.7 shows only air emissions fall
after acquisition, while emissions to water and land, and transport off-site, may not
change at all. Air emissions have so far been presented as the combination of releases
through two channels that the EPA calls “‘stack” and “fugitive”. Stack emissions leave
through controlled outlets, such as smokestacks or chimneys, while fugitive emissions are
unintended or unaccounted-for releases that do not pass through an exhaust system (both
groups can be particulate or gaseous air emissions). Post-merger fugitive emissions fall
by about twice as much (in percentage terms) as stack emissions, which may indicate
new parent companies impose better practices to reduce instances of loss and leaks.

I directly estimate the difference in lifespans of facilities that are acquired, compared

to those owned by a firm never involved in either side of M&A activity, operating in
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the same county and industrial sector, and with the same first operating year in the
panel. Target facilities are 2-3 percent more likely to close in the two years following the
acquisition, and tend to have shorter lifespans (years from the acquisition year to closure)

by about 2 months (Table 3.8).

3.4.2 Distributional effects

It is plausible a change in ownership, which appears to dramatically reduce toxic air
pollution at individual facilities, correspondingly lessens broader spatial disparities in
exposure to air pollution. This could be the case if plants with the greatest pre-merger
inefficiencies in emissions control technology were disproportionately located in disad-
vantaged communities; widespread descriptive documentation of disproportionate TRI
exposure (for example, Brooks and Sethi (1997)) suggets this may be the case. On the
other hand, if acquiring firms have discretion over which target facilities they close down
and where they prioritize technological and operational changes, air quality improvements
may disproportionately accrue to more advantaged neighborhoods; this could happen if
firm decisions are in part motivated by community pressure, as Wang et al. (2018) suggest.

To estimate whether the magnitude of the effect of an acquisition at a target facility
varies systematically by facility neighborhood characteristics, as described in Section
3.3.5, T classify facilities into terciles based on two demographic metrics (income and
racial composition) in two ways: across industries for the entire sample (reflecting overall
differences in facility neighborhoods), and within target firms, states, industries (reflecting
relative differences within firms’ choice sets). In order to assess within-firm heterogeneity
in facility neighborhoods, I necessarily focus on target firms that have at least three
facilities.

The two classifications produce very similar results for facility income ranks, and
suggest the discretionary explanation dominates the efficiency explanation. Facilities
whose tracts are in the highest-third of median household income—both sample-wide
and within-firm, and particularly for the case of same-sector mergers—have greater de-

creases in emissions exposure (Table 3.9). There is slightly less robust evidence the
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racial composition of facilities’ neighborhoods is associated with the degree of emissions
reductions.

With the acquired firms as the unit of observation, I then estimate the effect of an
acquisition on the emissions-weighted average neighborhood demographics, a statistic
that reflects changes in the share of emissions across demographic groups in facilities’
neighborhoods, and the Gini coefficient for the inequality in emissions across plants.
These findings generally corroborate the facility-level heterogeneity, and allow for event-
study estimates. In the decade after acquisition, emissions shift towards facilities in
lower-income and less white neighborhoods (Table 3.10 and Figure 3.9), so that the
exposure-weighted average neighborhood looks 4 percent poorer and 20 percentage points
less white. Because the exposure-weighted average is calculated for a fixed set of facilities
(those held by the target firm) with fixed neighborhood characteristics (2010 Census),
this can only be explained by relatively greater post-merger decreases in air emissions
in higher-income and whiter neighborhoods. (This also underestimates the dynamics of
the disparity if neighborhood characteristics are responsive to changes in emissions, and
relatively greater decreases in emissions occur in already-higher-income neighborhoods.)
The distribution of both the quantity and toxicity of emissions within the target firm also
becomes more unequal: the Gini coefficient for the distribution of both the pounds and
toxicity of emissions increases by 0.06 and 0.07 units, respectively.

These are not causal estimates, since differences in the types of firms located in neigh-
borhoods with different demographic characteristics may underlie the observed post-
merger differences in pollution control. Still, the findings are consistent with acquiring
firms having some discretion over where emissions efficiency is improved and where clo-
sures happen, and indicates mergers increase exposure disparities across neighborhoods.
These findings suggest the greater trend towards consolidation in highly-polluting indus-
tries has not lessened environmental justice correlations, and that parent companies—
either intentionally or inadvertently—tend to exacerbate exposure disparities by improv-
ing operational efficiency at, or closing entirely, plants in wealthier, whiter, and denser

neighborhoods.
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3.4.3 Acquiring facility effects

After finding emissions decline substantially at target plants after a change in ownership,
it is natural to ask whether there are spillover effects among facilities already owned by
the parent company. However, most acquiring firms make multiple acquisitions, so there
is no clear pre- and post-merger period over which to compare emissions. [ estimate
the effect of an acquisition on already-held facilities among the small subset of firms that
make a single acquisition over the study period, and find mixed evidence the total toxicity
of emissions rises at operating plants (Table 3.11), which could mean some decreases in
emissions at the target firm’s facilities are offset with increases at the acquiring firm’s
facilities. The absence of strong evidence M&A activity affects the parent firm may mean
technology transfer primarily happens from acquiring to target facilities. These single-
acquisition firms are clearly a special case that omits large- or fast-growing firms—only
34 percent of acquiring firms make a single acquisition over the study period—so these
estimates should not be considered representative of all M&A activity.

A less-precise way to understand how changes in firm size affect the distribution
of pollution at acquiring firms uses changes in the number of facilities associated with
acquiring firms. Since acquisitions are not the only reasons firms grow, this is an im-
perfect proxy for acquisitions. As above, I hold fixed the set of facilities over which the
exposure-weighted average and the Gini coefficient are calculated, so only relative changes
in emissions among an acquiring firm’s plants operating in the same industry and state
lead to changes in the aggregate statistics. I find as firms grow, average emissions at
the original set of plants do not increase or decrease, but they become more unequally
distributed across the acquiring firm’s plants, meaning some facilities generate a greater
share of emissions while others generate less. The quantity of emissions also becomes
more concentrated at the plants in less-white neighborhoods as the size of acquiring firm

grows.
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3.5 Conclusion

This paper documents the effects of a change in ownership at polluting facilites on both
plant-level air emissions of toxic chemicals and the firm-level distribution of toxic pollu-
tion across plants, using two decades of M&A activity paired with reporting data from
large, point-source polluters in the United States. Toxic air emissions have been widely
established to threaten public health, and are disproportionately imposed on underserved
communities. This empirical evidence suggests concentration does not necessarily lead
to better environmental performance, nor a more equitable distribution of harmful envi-
ronmental exposures, in polluting sectors.

Many facilities close down entirely after acquisition, which implies local loss of em-
ployment, may signal more-concentrated markets in affected sectors, and unambiguously
improves local air quality by removing a large source of toxic pollutants.

Among facilities that continue to operate, a change in ownership at a highly pollut-
ing facility is less obviously beneficial for local air quality. The quantity of annual air
emissions only falls when the target and acquiring firms operate in the same sector—
highlighting the importance of industry-specific expertise for operational changes at
plants—and the emission stream increases in toxicity per pound. There is substantial
evidence operational changes at target facilities contribute to observed decreases in air
emissions.

Mergers also have troubling consequences for the distribution of toxic environmental
exposures across facilities, which is consistent with the acquiring firm having discretion
over where to cease or modify operations. After an acquisition, emissions become more
unequally distributed across facilities in the target firm, and fall by more at facilities in
higher-income and more-white neighborhoods.

This mixed story suggests analyses of mergers should carefully consider both the po-
tential for changes in facility-level environmental performance, and also firm-level shifts
in the burden of exposure to toxic air pollution across more- and less-advantaged neigh-

borhoods.
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3.6 Figures and tables
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Figure 3.1: TRI on-site releases by medium

Overall, on-site TRI releases declined steadily through the first half of the study period,
and flattened somewhat after 2010. Land releases consistently comprise the greatest share

of on-site emissions (compared with emissions to air and water).
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Figure 3.2: Toxics Release Inventory facilities and air emissions over time
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Trends in TRI facilities and their air emissions are shown relative to 2001 levels. The
number of facilities reporting emissions, as well as the total quantity of those emissions,
has declined since the early 2000s. Emissions per facility have also declined, but releases
have gotten more harmful to human health. These trends all hold for the subset of
facilities in continuous operation during the study period (not shown) and so are not
being driven by entry of less-polluting firms and exit of more-polluting firms, suggesting
instead changes in facility operation.
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Figure 3.3: Counts of TRI facilities by first and final reporting years
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Most (63 percent) of the facilities in the sample reported emissions in 2001 (the start
of the study period) and nearly half reported emissions in 2018 (the end of the study
period). Twenty-nine percent of facilities are in both groups. The remainder started or

ended operations during the study period.
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Figure 3.5: Air emissions and emission-weighted tract demographics, all TRI facilities
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As the total amount of air emissions has fallen over the past two decades, the burden
of exposure has also shifted (most recently towards lower-income and less-white neigh-
borhoods, although this was not always the trend). Inequality in the distribution of
emissions across TRI facilities remained incredibly high throughout the study period,
indicating very few plants are responsible for most of the emissions. For reference, the
2010 U.S. population was about 64 percent non-Hispanic White, 12 percent Black, and 16
percent Hispanic, and the median household income was about 49,500 (in the calculation
of the exposure-weighted demographics, neighborhood characteristics are held fixed at
2010 levels).
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Table 3.1: Summary statistics

Merged once

Never merged Pre Post Mult. merges
(1) (2) (3) (4)
Facilities 27,333 4,560 4,560 1,680
Years open 9.96 14.3 14.3 13.3
(6.71) (4.88) (4.88) (5.8)
Lbs. released to air 52600 81300 57300 125000
(386000) (490000)  (285000) (665000)
Lbs. released to water 11700 9770 12500 17100
(225000) (106000) (124000) (176000)
Lbs. on site total 213000 165000 168000 221000
(6740000)  (1210000)  (1760000)  (1030000)
log(Tox. released to air) 20.8 21.6 20.7 20.7
(24.8) (25.3) (23.1) (24)
log(Tox. released to water) 17.5 17.3 17 18.3
(21.3) (20.4) (20.2) (22.9)
log(Tox. on site total) 25.1 27 26.8 22.9
(21.3) (20.4) (20.2) (22.9)
Tract med. hh. inc. 48200 47600 48600 50100
(19900) (19300) (20400) (20800)
Tract pct. White 0.68 0.69 0.69 0.68
(0.29) (0.28) (0.28) (0.29)
log(Tract density) 14.3 14.2 14.1 14.2
(1.76) (1.74) (1.77) (1.74)
Employees* 170 209 203 247
(347) (416) (451) (404)
Sales* 73600 96900 102000 127000
(255000) (685000)  (365000) (361000)

*These measures of facility-level sales and employment are not collected in the TRI, but
linked from the Your Economy Time Series, and only available for about 60 percent of

the facilities in the sample.

Facilities are grouped as follows: (1) never identified as being the target of an acquisi-
tion; (2) acquired once, in the years before acquisition; (3) acquired once, in the years
after acquisition; and (4) matched to multiple acquisitions during the panel. Summary
statistics are calculated across facilities that are open in a given year.
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Table 3.2: Average merger effects on TRI releases

A: TWFE Estimates

ihs(Lbs air emissions)  ihs(Tox air emissions)

A1l: All facilities (1) (2) (3) (4)
Post-merger —0.482**  —0.418**  —0.972**  —0.797***
(0.048) (0.047) (0.136) (0.095)
Observations 65,065 45,900 65,065 45,900
A2: Operating facilities (1) (2) (3) (4)
Post-merger —0.081  —0.108"*  —0.242*  —0.212"
(0.049) (0.037) (0.097) (0.067)
Observations 52,642 37,122 52,642 37,122
Merged within ... years 10 ) 10 )

B: IW Estimates

ihs(Lbs air emissions)  ihs(Tox air emissions)

B1: All facilities (1) (2) (3) (4)
Post-merger —0.887**  —0.760™* 1477  —1.161"*"
(0.116) (0.115) (0.258) (0.251)
Observations 65,065 45,900 65,065 45,900
B2: Operating facilities (1) (2) (3) (4)
Post-merger —0.272*  —0.203"*  —0.320"" —0.107
(0.083) (0.074) (0.146) (0.092)
Observations 52,642 37,122 52,642 37,122
Merged within ... years 10 ) 10 )
Note: *p<0.1; *p<0.05; **p<0.01

The interaction-weighted estimator of Sun and Abraham (2020) generally yields larger-
magnitude estimates of the effect of an acquisition on emissions at target facilities. For
both estimators and both outcomes, effects are larger over the 10-year horizon than over
5 years. Effects are much smaller for the sample restricted to facilities that continue
to operate, implying many acquired facilities close down after the acquisition (Table 3.8
explores this further). Regressions in this table, and all future tables unless otherwise
specified, include state-by-year, industry-by-year, and facility fixed effects. Standard
errors are clustered at the industry level.
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Figure 3.6: TWFE event studies - target facility effects
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Figure 3.7: IW event studies - target facility effects at all facilities
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The multicolored point estimates correspond to cohort-specific average treatment effects
in each event year (d), and show there is substantial heterogeneity in treatment magni-
tudes across acquisition years. The black point estimates are the weighted average across

cohorts, the IW equivalent of the coefficients in Figure 3.6.



157

Figure 3.8: IW event studies - target facility effects at operating facilities

b
0

Coefficient

S TN B T T B TN BN N T K O

-10 5 0 5
Event year

(a) Pounds released, operating facilities

25~

0.0- -

Coefficient

-2.5-

L0 N T T T B K B O 2 A

5.0- . . , \ .
-10 5 0 5 10
Event year

(b) Toxicity released, operating facilities

Among facilities that continue to operate, the emissions-reducing effects of the merger
are less clear using the IW estimator—particularly for the total toxicity of air emissions,
for which event-study coefficients are often insignificantly different from zero in the post-
merger decade.



Table 3.3: Annual satellite-derived PM2.5 at operating TRI facilities

A: TWFE Estimates

Satellite PM2.5

All facilities

Operating facilities

A1l: All facilities (1) (2) (3) (4)
Post-merger —0.016* 0.009 —0.020** —0.007
(0.008) (0.022) (0.010) (0.008)
Observations 59,326 42,465 48,031 34,346
A2: Only highest emitters (1) (2) (3) (4)
Post-merger —0.052"**  —0.034* —0.062**  —0.036*
(0.019) (0.018) (0.021) (0.019)
Observations 17,452 12,245 15,770 11,079
A3: Only highest emitters & lowest PM (1) (2) (3) (4)
Post-merger —0.110"" —0.152*  —0.139***  —0.182***
(0.045) (0.065) (0.043) (0.063)
Observations 3,963 2,781 3,650 2,580
Merged within ... years 10 ) 10 5

B: IW Estimates

Satellite PM2.5

All facilities

Operating facilities

B1: All facilities (1) (2) (3) (4)
Post-merger —0.008 0.010 —0.033 —0.013
(0.022) (0.018) (0.030) (0.019)
Observations 59,326 42,465 48,031 34,346
B2: Only highest emitters (1) (2) (3) (4)
Post-merger —0.103** —0.054 —0.104* —0.067*
(0.051) (0.036) (0.053) (0.040)
Observations 17,452 12,245 15,770 11,079
B3: Only highest emitters & lowest PM (1) (2) (3) (4)
Post-merger —0.231* —0.212** —0.225* —0.269"**
(0.112) (0.093) (0.125) (0.103)
Observations 3,963 2,781 3,650 2,580
Merged within ... years 10 5 10 5
Note: *p<0.1; *p<0.05; **p<0.01

158

Large decreases in emissions could show up in annual estimates of ground-level fine par-
ticulates, and this is one way to check that reported decreases actually occurred. There
is no detected effect among all facilities (Panels A1 and B1), but among subsets where
decreases are most likely to be detected (Panels A2, A3, B2, and B3), the magnitudes
of estimates corroborate that decreases occur. The middle panel restricts the analysis to
facilities in the top 25 percent by air emissions, and the bottom uses facilities in both
the top 25 percent by air emissions and also the bottom 25 percent of facilities by typical

PM2.5 levels.
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Table 3.4: TRI releases to air by acquisition type (different- versus same- sector)

A: TWFE Estimates

ihs(Lbs air emissions)

ihs(Tox air emissions)

A1: All facilities (1) (2) (3) (4) (5) (6)
Post-merger —0.418"*  —0.387**  —0.449™*  —0.797**  —0.785"* = —(.828***
(0.047) (0.102) (0.053) (0.095) (0.130) (0.126)
Observations 45,900 19,353 26,547 45,900 19,353 26,547
A2: Operating facilities (1) (2) (3) (4) (5) (6)
Post-merger —0.108*** —0.005 —0.171"*  —0.212*** —0.056 —0.332**
(0.037) (0.073) (0.059) (0.067) (0.089) (0.145)
Observations 37,122 15,628 21,494 37,122 15,628 21,494
Sector All Different Same All Different Same
Merged within ... years ) ) ) ) > 5

B: IW Estimates

ihs(Lbs air emissions)

ihs(Tox air emissions)

B1: All facilities (1) (2) (3) (4) (5) (6)
Post-merger —0.760*  —0.881**  —0.703"* —1.161*"* —1.758***  —0.926™**
(0.115) (0.233) (0.104) (0.251) (0.356) (0.252)
Observations 45,900 19,353 26,547 45,900 19,353 26,547
B2: Operating facilities (1) (2) (3) (4) (5) (6)
Post-merger —0.203*** —0.103 —0.238** —0.107 —0.285 —0.067
(0.074) (0.126) (0.096) (0.092) (0.240) (0.141)
Observations 37,122 15,628 21,494 37,122 15,628 21,494
Sector All Different Same All Different Same
Merged within ... years ) ) ) ) b} 5

Note:

*p<0.1; **p<0.05; **p<0.01

For the sample with all target facilites, including those that close, reductions in air emis-
sions after a merger are substantial across all types of mergers. Among target facilities
that continue to operate, the observed reduction in facility-level emissions is driven by
mergers in which the acquiring and target firms operate in the same sector. This suggests
both types of mergers result in facility closures, while only same-sector mergers result in
intensive-margin decreases in emissions.
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Table 3.5: Emission toxicity per unit

A: TWFE Estimates

ihs(Tox per pound of emissions)

Operating facilities (1) (2) (3)
Post-merger —0.030 0.028 —0.062
(0.035) (0.060) (0.064)
Merger sectors All Different Same
Merged within ... years ) ) S
Observations 33,481 13,895 19,586

B: IW Estimates

ihs(Tox per pound of emissions)

Operating facilities (1) (2) (3)
Post-merger 0.238** —0.034 0.326**
(0.091) (0.179) (0.111)
Merger sectors All Different Same
Merged within ... years ) ) )
Observations 33,481 13,895 19,586
Note: *p<0.1; *p<0.05; **p<0.01

The toxicity of each unit of emissions rises for mergers in the same sector, suggesting facil-
ities substitute to more harmful chemicals (or reduce emissions of less-harmful chemicals
by more).
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Table 3.7: Releases by medium

A: TWFE Estimates

ihs(Pounds) released to:

Stack Fugitive Water Land Off site Total

Operating facilities (1) (2) (3) (4) (5) (6)
Post-merger —0.048 —0.067** 0.011 0.026 0.023 —0.059
(0.047)  (0.031)  (0.016) (0.022) (0.064)  (0.039)
Merged within ... years ) ) ) ) D D
Observations 37,122 37,122 37,022 37,122 37,122 37,122

B: IW Estimates

ihs(Pounds) released to:

Stack Fugitive Water Land Off site Total

Operating facilities (1) (2) (3) (4) (5) (6)
Post-merger —-0.129*  -0.218"*  —0.005 0.006 —-0.121  —0.227*
(0.074)  (0.067)  (0.026) (0.034)  (0.086)  (0.105)
Merged within ... years ) ) ) ) d d
Observations 37,122 37,122 37,122 37,122 37,122 37,122
Note: p<0.1: *p<0.05; **p<0.01
Air emissions are reported in two categories: “stack” emissions leave through a

smokestack, chimney, or vent, while “fugitive” emissions escape through leaks, loss, acci-
dents, and other channels. Among operating facilities, the overall effect on air emissions
is more driven by reductions in fugitive emissions, which tend to be closer to the ground
(and so potentially a greater threat to neighborhood health) and less controlled. There is
not evidence air emissions are being substituted to other release media (water and land)
after a merger, but emissions to these media do not decline, either.
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Table 3.8: Facility closures

Still open in 2 years (0/1) Years until closure

(1) (2) (3) (4) () (6) (7) (8)
Acquired —-0.017**  —0.012*  —0.027** —0.023** —0.151* —0.010 —0.197* —0.061
(0.005) (0.006) (0.009) (0.009) (0.074) (0.079) (0.113) (0.120)

. X same sector 0.017 0.020* 0.082 0.091
(0.010) (0.010) (0.131) (0.131)

Omit acq. firms No Yes No Yes No Yes No Yes
Observations 248,347 180,179 248,347 180,179 248,347 180,179 248,347 180,179
Note: p<0.1; *p<0.05; **p<0.01

To (descriptively) understand whether target facilities tend to stay open for more or fewer
years than non-acquired facilities, I compare target facilities in their year of acquisition
to facilities that were also open in the same year of the acquisition, and whose parent
firms were never acquired. Alternating columns omit from the comparison group facilities
held by firms that acquired other TRI facilities. The coefficient on “acquired” indicates
targeted facilites are 1-2 percentage points more likely to close within the next two
two years, but don’t have shorter subsequent lifespans after that initial window. The
likelihood of immediate closure may be less when the acquiring and target firms operate in
the same sector. Facilities that were the target of multiple acquisitions were dropped from
all specifications. Acquired and never-acquired facilities may be substantively different
in their propensity to close down, and this selection effect is discussed in the main text.
Regressions in this table use industry-by-year-by-first panel year and county-by-year fixed
effects, and results are robust to alternative choices.
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Table 3.9: Effect heterogeneity by facility neighborhood demographics, TWFE estimates

ihs(Pounds air emissions)

All facilities (1) (2) (3) (4) (5) (6) (7) (8)
Post-merger, Low income —0.199 —0.323 —0.037 —0.185
(0.156) (0.208) (0.185) (0.284)
Post-merger, Med. income 0.159 —0.208 —-0.121 —0.325
(0.295) (0.334) (0.246) (0.268)
Post-merger, High income —0.280"  —0.439* —-0.171 —0.453*
(0.124) (0.229) (0.165) (0.258)
Post-merger, Low pct. White —0.071 —0.382 —0.082 —0.270
(0.166) (0.258) (0.131) (0.211)
Post-merger, Med. pct. White —0.061 —0.244 —0.220 —0.304
(0.141) (0.213) (0.275) (0.418)
Post-merger, High pct. White —0.223 —0.350 —0.058 —0.394*
(0.248) (0.338) (0.138) (0.189)
ihs(Toxicity of air emissions)
All facilities (1) (2) (3) (4) (5) (6) (7) (8)
Post-merger, Low income —0.560 —0.983 —0.349 —0.844
(0.362) (0.637) (0.286) (0.677)
Post-merger, Med. income —0.643 —1.316* —0.804* —1.218*
(0.400) (0.702) (0.438) (0.623)
Post-merger, High income —-0.729"  —1.276* —0.793"* —1.505**
(0.305) (0.622) (0.361) (0.655)
Post-merger, Low pct. White —0.382 —1.162 —-0.573* —1.122*
(0.314) (0.669) (0.275) (0.581)
Post-merger, Med. pct. White —0.745"  —1.384** —0.607 —0.770
(0.324) (0.570) (0.402) (0.724)
Post-merger, High pct. White —0.885* —1.046 —0.741*  —1.591*
(0.506) (0.804) (0.375) (0.653)
Merger sectors All Same All Same All Same All Same
Terciles within ... All All Firm Firm All All Firm Firm
Acquisition within ... years 10 10 10 10 10 10 10 10
Observations 10,679 6,332 10,679 6,332 10,679 6,332 10,679 6,332

Note:

*p<0.1; *p<0.05; **p<0.01

The pollution-reducing effects of a merger vary significantly by the demographics of the
neighborhood in which a target facility is located—whether or not the relative advantage
is industry-wide or within a target firm. Across TRI-reporting industries, facilities in
the lowest-third of the income distribution see the smallest decreases in air emissions.
Associations between the racial composition of facility neighborhoods and post-merger
reductions in pollution are less robust than for income. Interacted coefficients are pre-
sented in order to make clear when a group (tercile)’s coefficient is different from zero

with significance.
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Table 3.10: The pollution burden shifts at target firms after an acquisition, TWFE and

IW estimates

Pounds-weighted

ihs(Lbs per fac.)  ihs(HH. income) Pct. white Pct. black  Gini (lbs.)

TWFE (1) (2) (3) (4) ()
Post-merger —0.495%* —0.020** —0.019* 0.016** 0.017*

(0.178) (0.009) (0.007) (0.006) (0.010)
W (1) (2) (3) (4) ()
Post-merger —1.420*** —0.039*** —0.017* 0.014* 0.071**

(0.173) (0.013) (0.009) (0.008) (0.012)
Acquisition within ... years 10 10 10 10 10
Observations 8,642 8,642 8,642 8,642 7,108

Toxicity-weighted
ihs(Lbs per fac.)  ihs(HH. income)  Pct. white  Pct. black  Gini (tox.)

TWFE (1) (2) (3) (4) ()
Post-merger —0.849*** —0.016 —0.018** 0.016™* 0.011

(0.301) (0.011) (0.008) (0.006) (0.010)
W (1) (2) (3) (4) ()
Post-merger —2.305"* —0.016 —0.023* 0.016* 0.060***

(0.363) (0.014) (0.011) (0.008) (0.015)
Acquisition within ... years 10 10 10 10 10
Observations 8,642 8,642 8,642 8,642 6,766
Note: *p<0.1; *p<0.05; **p<0.01

In the decade after being acquired, firms see a shift in the pollution burden towards lower
income, less white, and more black neighborhoods. Here, an observation represents a
target firm, rather than individual facilities, operating in a particular state and industry
in the years before and after its acquisition. The outcome variables in columns (3)—(8)
represent the emissions-weighted average demographics for a firm treated by a merger
(explained in detail in the main text), and regressions include weights equal to the number
of facilities in each firm. The per-facility decrease in emissions is larger here, because
facilities that close down are not dropped from the panel after 3 years (as is the case

elsewhere).
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Figure 3.9: IW event studies - exposure-weighted demographics
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At the target firm-level, air emissions and their total toxicity declines substantially after
an acquisition, but they also become more unevenly distributed. Event-year averages
(across cohorts) only are presented and cohort-specific estimates are omitted for sim-
plicity. These estimates correspond to the second and fourth rows of Table 3.10. The
IW pre-period estimates are often, but not always, insignificantly different from zero.

Visual inspection suggests a departure from the pre-period trend in the years after the
acquisition for these aggregate (firm-level) measures.
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Table 3.11: Releases at facilities held by acquiring firms

A: TWFE Estimates

ihs(Pounds air emissions) ihs(Toxicity of air emissions)

A1l: All facilities (1) (2) (3) (4) (5) (6) (7) (8)
Post-merger 0.030 0.041 0.052  —0.007  0.031 0.072 0.009  —0.043

(0.087)  (0.071)  (0.084) (0.076) (0.144) (0.194) (0.153)  (0.171)
Observations 31,122 19,163 22,481 13,752 31,122 19,163 22,481 13,752
A2: Operating facilities (1) (2) (3) (4) (5) (6) (7) (8)
Post-merger 0.006 0.009 0.046 —0.016 0.056 0.079 0.094 0.042

(0.060)  (0.050)  (0.057)  (0.059) (0.068) (0.122) (0.071) (0.124)
Observations 26,498 16,190 19,103 11,564 26,498 16,190 19,103 11,564
Merger sectors All Same All Same All Same All Same
Acquisition within ... years 10 10 5 5 10 10 5 5

B: IW Estimates

ihs(Pounds air emissions) ihs(Toxicity of air emissions)

B1: All facilities (1) (2) (3) (4) (5) (6) (7) (8)
Post-merger —0.096  0.118 0.063 0.176 ~ —0.004  0.601* 0.118 0.437

(0.110)  (0.135)  (0.101) (0.127) (0.425) (0.335) (0.335) (0.278)
Observations 31,122 19,163 22481 13,752 31122 19,163 22481 13,752
B2: Operating facilities (1) (2) (3) (4) (5) (6) (7) (8)
Post-merger —0.003  0.012 0.044 0.048 0.358*  0.512*  0.290* 0.288

(0.050)  (0.125)  (0.058) (0.128)  (0.206) (0.296)  (0.158)  (0.226)
Observations 26,498 16,190 19,103 11,564 26,498 16,190 19,103 11,564
Merger sectors All Same All Same All Same All Same
Acquisition within ... years 10 10 5 5 10 10 5 5
Note: “p<0.1; *p<0.05; **p<0.01

I estimate the effect of an acquisition among facilities already held by the acquiring parent,
finding no evidence that the quantity of emissions changes post-merger at already-held
plants, and mixed evidence the toxicity of emissions rises somewhat. However, this is only
possible when the parent company makes a single acquisition during the study period,
which is a small subset of facilities held by parent companies that make acquisitions
(when parent companies have more than one matched M&A transaction, they do not
have a clear pre- and post-period; these tend to be larger and more-active firms). The
identifying assumption that acquisitions are unanticipated may also be more tenuous
among facilities held by the acquiring firm.
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Table 3.12: The pollution burden also shifts as the number of facilities held by acquiring
firms changes

Pounds-weighted
ihs(Lbs per fac.)  ihs(HH. income)  Pct. white  Pct. black  Gini (Ibs.)

TWFE (1) (2) (3) (4) (5)

Post-merger 0.041 —0.019 —0.034** 0.012** 0.041*
(0.402) (0.023) (0.017) (0.005) (0.020)

Observations 15,567 15,567 15,567 15,567 14,375

Toxicity-weighted
ihs(Lbs per fac.)  ihs(HH. income) Pct. white Pct. black  Gini (tox.)

TWFE (1) (2) (3) (4) (5)
Post-merger —0.487 0.018 —0.019 —0.006 0.040**
(0.866) (0.043) (0.026) (0.020) (0.016)
Observations 15,567 15,567 15,567 15,567 13,512
Note: *p<0.1; *p<0.05; **p<0.01

As acquiring firms grow in size, the distribution of emissions at the original set of facilities
becomes more unequal. The quantity of emissions, but not the total toxicity, shifts
towards plants in less-white neighborhoods. Because most acquiring firms—particularly
those that are large or fast-growing—make multiple acquisitions, there is no clear pre-
and post-merger period. However, I can exploit variation in changes in the number of
facilities for each firm, state, and industry, considering the same distributional outcomes
as in Table 3.10.
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Table 3.A1: Changes in the number and type of airborne releases

A: TWFE Estimates

ihs(Num. airborne chemicals)

Airborne metals (0/1)

Operating facilities (1) (2) (3) (4)
Post-merger —0.009 —0.011 —0.008 —0.008*
(0.008) (0.007) (0.006) (0.004)
Observations 52,642 37,122 52,642 37,122
Merged within ... years 10 ) 10 )

B: IW Estimates

ihs(Num. airborne chemicals)

Airborne metals (0/1)

Operating facilities (1) (2) (3) (4)
Post-merger —0.028 0.005 —0.021* —0.010
(0.025) (0.015) (0.011) (0.007)
Observations 52,642 37,122 52,642 37,122
Merged within ... years 10 ) 10 D

Note:

*p<0.1; *p<0.05; **p<0.01

Changes in the types of air releases at target facilities could provide evidence of shifts
in the management of toxic chemicals. There is only mixed evidence acquired facilities
release fewer airborne metals, which are especially toxic, after acquisition.
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Figure 3.A1: Event studies - number and type of airborne chemicals
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Event study plots corresponding to Table 3.A1 suggest the number of different chemicals
released to the air declines at facilities that continue to operate following an acquisition,
as does the likelihood that any metals (which are particularly toxic to human health)

are released to air. These changes are consistent with plant-level operational shifts that
reduce pollution.
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Table 3.A2: Continuously operating facilities
A: TWFE Estimates

ihs(Lbs air emissions)  ihs(Tox air emissions)

A1l: Operating facilities (1) (2) (3) (4)
Post-merger —0.081  —0.108"* —0.242*  —0.212**
(0.049) (0.037) (0.097) (0.067)
Observations 52,642 37,122 52,642 37,122
A2: Continuously operating facilities (1) (2) (3) (4)
Post-merger —0.050 —0.082* —0.196* —0.172*
(0.041) (0.034) (0.101) (0.068)
Observations 41,632 29,616 41,632 29,616
Merged within ... years 10 ) 10 )

B: IW Estimates

ihs(Lbs air emissions)  ihs(Tox air emissions)

B1: Operating facilities (1) (2) (3) (4)
Post-merger —0.2727**  —0.203"*  —0.320** —0.107
(0.083) (0.074)  (0.146)  (0.092)
Observations 52,642 37,122 52,642 37,122
B2: Continuously operating facilities (1) (2) (3) (4)
Post-merger —0.219"*  —0.170** —0.195 —0.034
(0.070) 0.078)  (0.152)  (0.117)
Observations 41,632 29,616 41,632 29,616
Merged within ... years 10 ) 10 D
Note: “0<0.1: *p<0.05: **p<0.01

Small facilities may operate just above and just below the reporting threshold from year to
year, in which case their releases in the data would be inappropriately truncated to zero in
the years under the threshold, and nonzero otherwise. Zeros reflecting activity below the
threshold and “true” zeros are indistinguishable in the data. In order to ensure that this
characteristic of the reporting requirements is not driving results, I compare estimates for
operating facilities (nonzero emissions in a given year, corresponding to panels A2 and
B2 of Table 3.2) and continuously emitting facilities, which never report zero emissions
to at least some medium in a year in between two positive-emissions years. Of course,
subsetting the data in this way risks throwing out meaningful zeros and estimating effects
among a selected sample of facilities.
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A: TWFE Estimates
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ihs(Lbs air emissions)

A1l: All facilities (1) (2) (3) (4) (5)
Post-merger C0.5007 05127 —0.4917*  —0.482%*  —(0.465"

(0.054)  (0.055) (0.045) (0.048) (0.033)
Observations 65,065 65,065 65,065 65,065 65,065
A2: Operating facilities (1) (2) (3) (4) (5)
Post-merger ~0.083  —0.085  —0.095"  —0.081 —0.078"

(0.053)  (0.052) (0.045) (0.049) (0.030)
Observations 52,642 52,642 52,642 52,642 52,642
FE Y+i S:Y+i C:Y+i LY+S:Y+i LY+C:YHi
Merged within ... years 10 10 10 10 10

B: IW Estimates
ihs(Lbs air emissions)

B1: All facilities (1) (2) (3) (4) (5)
Post-merger —0.931**  —0.909***  —0.989*** —0.887*** —0.959***

(0.116)  (0.120)  (0.145) (0.116) (0.116)
Observations 65,065 65,065 65,065 65,065 65,065
B2: Operating facilities (1) (2) (3) (4) (5)
Post-merger —0.254**  —0.241"*  —0.285"** —0.272%** —0.307***

(0.085) (0.085) (0.095) (0.083) (0.075)
Observations 52,642 52,642 52,642 52,642 52,642
FE Y+i S:Y+i C:Y+i LY+S:Y+i LY+C:YHi
Merged within ... years 10 10 10 10 10

Note:

*p<0.1; **p<0.05; **p<0.01

Fixed effects are abbreviated: (Y) year, (i) facility, (S) state, (C) county, and (I) indus-
try. My preferred specification uses a richer set of fixed effects (I:Y+S:Y+i) than just
individual and year fixed effects, but results are robust to other choices.
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