
Random Weighting in LASSO Regression and in Discrete Mixture
Models

by

Tun Lee Ng

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

(Statistics)

at the

UNIVERSITY OF WISCONSIN–MADISON

2022

Date of final oral examination: 5/5/2022

The dissertation is approved by the following members of the Final Oral Committee:
Michael A. Newton, Professor, Statistics
Christina Kendziorski, Professor, Biostatistics and Medical Informatics
Vikas Singh, Professor, Biostatistics and Medical Informatics
Qiongshi Lu, Assistant Professor, Biostatistics and Medical Informatics
Sameer Deshpande, Assistant Professor, Statistics

© Copyright by Tun Lee Ng 2022
All Rights Reserved

i

Acknowledgments

First, I want to express my deep gratitude to my advisor Professor Michael A. Newton
for his expert guidance and mentoring. The vast majority of this thesis has grown out of
regular discussions with Professor Newton. I am inspired by his passion for research and
his many deep insights in statistical methods. I am also indebted to his character reference
and his consistent funding support, which have led to exciting collaborative opportunities
in several applied statistical genomics projects with Oncology faculty Professors James Shull
and Douglas McNeel and their respective lab members. It is my honor and pleasure to work
with Professor Newton and the PIs during my Ph.D study in Madison, WI.

I am also thankful to my committee members Drs. Christina Kendziorski, Vikas Singh,
Qiongshi Lu and Sameer Deshpande for their many helpful comments and insights.

Special thanks are due to Professors Michael A. Newton and Christina Kendziorski
for their encouragement and emotional support during the difficult COVID-19 lockdown
period.

My appreciation also extends to Drs. Naijun Sha, Ori Rosen, Panagis Moschopoulos and
Shuanming Li for their past guidance that has helped me in pursuing Statistics graduate
study in the United States.

Finally, I want to thank my family and friends for their unconditional love and unwaver-
ing support throughout all these years, which have meant the world to me.

ii

Contents

Contents . ii

List of Tables . iv

List of Figures . v

Abstract . viii

1 Introduction . 1

2 RandomWeighting in LASSO Regression . 5
2.1 Preamble . 5
2.2 Problem Setup . 8
2.3 Main Results . 13
2.4 Numerical Experiments . 24
2.5 Discussion . 37

3 Technical Details for Chapter 2 . 43

4 RandomWeighting in Discrete Mixture Models . 82
4.1 Framework . 82
4.2 Methodology . 88
4.3 Numerical Experiments . 101
4.4 Theoretical Properties . 114

iii

5 Supplementary Material for Chapter 4 . 125
5.1 Implementation details of DP-rich . 125
5.2 Additional details of RW SDP-rich . 127
5.3 Additional details of RW K-means . 136
5.4 Additional details for theoretical properties . 137
5.5 Additional information for numerical experiments 145
5.6 Variational Inference . 153

References . 159

iv

List of Tables

2.1 Simulation Settings . 26
2.2 Empirical coverage q̂j and average width l̂j (in parentheses) of the two-sided

90% CI for the first 10 variables in Simulation Setting 8, using the five approaches:
MCMC via BLASSO, two-step random-weighting approach using weighting
schemes (2.4) (denoted RW1), (2.5) (denoted RW2) and (2.6) (denoted RW3),
and LASSO residual bootstrap (denoted RB). 31

2.3 Variables in Boston Housing Data Set . 36

5.1 Average (across T simulated data sets) computational times for various methods
in our simulations. The proportion of average computational time (as a percent-
age of that of MCMC) for each method in each simulation setting is presented in
parenthesis. Unit ‘s’ stands for seconds. 150

5.2 Computational times for various methods in our benchmark and motivating
data examples. The proportion of computational time (as a percentage of that of
MCMC) for each method in each data set is presented in parenthesis. Units ‘s’,
‘h’ and ‘d’ represent seconds, hours and days respectively. 151

v

List of Figures

2.1 Simulation Part I: Sampling distribution of total variation distance between the
random-weighting distribution and a Bayesian posterior (averaged across all
β’s) among T = 500 simulated data sets in 8 simulation settings between ecdf
of MCMC samples and ecdf of samples from each of the 4 methods: two-step
random-weighting approach using weighting schemes (2.4) (denoted RW1),
(2.5) (denoted RW2) and (2.6) (denoted RW3), and LASSO residual bootstrap
(denoted RB). 27

2.2 Simulation Part I: Sampling distribution of conditional (on data) probabilities of
selecting β1 and β7 among T = 500 simulated data sets in 8 simulation settings
by the 5 methods: MCMC via Bayesian LASSO, two-step random-weighting
approach using weighting schemes (2.4) (denoted RW1), (2.5) (denoted RW2)
and (2.6) (denoted RW3), and LASSO residual bootstrap (denoted RB). 29

2.3 Simulation Part II: Sampling distribution of total variation distance between
random-weighting distribution and a Bayesian posterior (averaged across all
β’s) among T = 500 simulated data sets in Simulation Setting 2 between ecdf
of MCMC samples and ecdf of the two-step random-weighting samples, com-
puted with λn obtained via 1-step cross validation or 2-step cross validation,
using weighting schemes (2.4) (2.5) and (2.6) (denoted RW1, RW2 and RW3
respectively). 34

vi

2.4 Simulation Part II: Sampling distribution of conditional (on data) probabilities
of selecting β’s among T = 500 simulated data sets in Simulation Setting 2 by
the two-step random-weighting approach, computed with λn obtained via 1-step
cross validation or 2-step cross validation, using weighting schemes (2.4) (2.5)
and (2.6) (denoted RW1, RW2 and RW3 respectively). 35

2.5 Boston Housing data example: Marginal posterior/conditional distribution plots
forβ = (β1, · · · , β13)′ sampled from the 5methods –MCMCvia Bayesian LASSO,
the two-step random-weighting approach using weighting schemes (2.4) (2.5)
and (2.6) (denoted RW1, RW2 and RW3 respectively), as well as the parametric
residual bootstrap (denoted RB). 42

4.1 K-means clustering for data points which are uniformly distributed on an equi-
lateral triangle with vertices {(0, 0), (1, 0), (0.5,√3/2)}. The black dots represent
the centroids obtained by the K-means algorithm specified withK = 3 and the
data points are colored according to their respective clusters. 83

4.2 Cluster partitions obtained by Dahl (2009)’s algorithm, DP-rich and DP-means
approaches for the 1-dimensional Galaxy data set (Roeder, 1990), where red
color indicates that the pair of observations is clustered together and navy-blue
color otherwise. The observations in the data set are arranged in ascending order. 91

4.3 Schematic depicting different variations of the random-weighting models. . . . 97
4.4 Sampling distribution for 4 comparison measurements among T = 10 simulated

data sets in 3 simulation settings: TV (t)
ϕ(·) (Criterion (1)), TV (t)

ή(·) (Criterion (4)),
p̌
(t)
(·) (Criterion (3)), and g̃(t)(·) (Criterion (2)). 106

vii

4.5 The ecdf curves of CoV of cluster sizes (see, Equation (4.22)) and the ecdf curves
of NMI (see, Equation (4.25)) comparing randomly-sampled pairs of cluster
assignments for all 6 methods – MCMC (solid black), VI (solid green), RW
DP-means (dashed light-blue), RW DP-rich (solid dark-blue), RW SDP-means
(dashed orange) and RW SDP-rich (solid red), as well as the barplots depicting
mean absolute differences (in comparison withMCMC) of pairwise probabilities
of clustering any two observations together (see, Equation (4.24)) for the other 5
methods, among the 3 benchmark and motivating data examples. 110

5.1 Comparing performances of RW DP-rich and RW SDP-rich using different rgr
tuning parameters. For RW DP-rich, we specify λrwDP-rich

2 to be 0 (denoted
rwDPmeans), 0.5 (denoted rwDPrich1), 1 (denoted rwDPrich2) and 2 (denoted
rwDPrich3). For RWSDP-rich, we specifyλrwSDP-rich

2 to be 0 (denoted rwSDPmeans),
0.5 (denoted rwSDPrich1) and 1 (denoted rwSDPrich2). 134

5.2 Sampling distribution of average NMI η(b,t)(·) in comparison with ground-truth
cluster assignments (Equation (5.19)) among T = 10 simulated data sets in 3
simulation settings for each of the 6 methods: MCMC, VI and the 4 random-
weighting setups. 147

5.3 Sampling distribution of average (over B random-weighting draws) computa-
tional times for RW SDP-means and RW SDP-rich across T = 10 simulated data
sets in the 3 simulation settings. 150

5.4 Trace plots for posterior number of clusters obtained byMCMC for all benchmark
and motivating data sets. 152

5.5 PCA scree plots for wine data set depicting percentage of variance explained in
the data across the principal components. The blue dashed lines represent linear
mapping of the original data set to a 5-dimensional subspace. The gray dashed
lines only serve as interpolation between the points to ease visual inspection. . 153

viii

Abstract

We consider a general-purpose approximation approach to Bayesian inference in which
repeated optimization of a randomized objective function provides surrogate samples from
the joint posterior distribution. Our motivation stems from the need for computationally
efficient uncertainty quantification in contemporary settings.

This thesis consists of twomain parts: In the first part, we establish statistical properties of
random-weighting methods in LASSO regression under different regularization parameters
and suitable regularity conditions. In Chapter 2, we show that existing approaches have
conditional model selection consistency and conditional asymptotic normality at different
growth rates of regularization parameters as sample size increases. We propose an extension
to the available random-weighting methods and establish that the resulting samples attain
conditional sparse normality and conditional consistency in a growing-dimension setting.
We illustrate the proposed methodology using synthetic and benchmark data sets, and we
discuss the relationship of the results to approximate Bayesian analysis and to perturbation
bootstrap methods. Relevant technical details for Chapter 2 are collected in Chapter 3.

The second part of the thesis concerns with random-weighting discrete mixture models
under the Bayesian nonparametric learning (NPL) framework. Specifically, in Chapter 4, we
first develop new asymptotics for a Dirichlet Process Mixture (DPM) model – the DP-rich
algorithm. Unlike the DP-means approach that arises as small-variance-asymptotics of the
DPM, our DP-rich setup retains the rich-gets-richer property of the DPM. We then apply the
random-weighting mechanism under the Bayesian NPL framework on an extended version
of the DP-rich setup that leads to our main random-weighting discrete mixture model: the

ix

random-weighting scaled DP-rich (RW SDP-rich) approach. We develop a scalable algo-
rithm (which is trivially parallelizable over multiple computing nodes) that ensures local
convergence of solutions, and explore various related random-weighting mixture models
via simplifications of our RW SDP-rich setup. We illustrate, via various simulations and
benchmark data examples, that our RW SDP-rich approach provides reasonable approx-
imation to MCMC posterior clustering for the DPM model. Finally, we establish several
appealing theoretical properties of our random-weighting models under the Bayesian NPL
framework. Additional details for our random-weighting mixture models are collected as
supplementary material in Chapter 5.

1

Chapter 1

Introduction

Computational and modeling considerations in contemporary Bayesian analysis have led
to renewed interest in a class of weighted bootstrap algorithms for posterior inference. An
important example in this class is the weighted likelihood bootstrap (WLB), which was
designed to yield approximate posterior samples in parametric models (M. A. Newton
& Raftery, 1994). Compared to Markov chain Monte Carlo (MCMC), for example, WLB
provides computationally efficient approximate posterior samples in cases where likelihood
optimization is relatively easy. Asymptotic arguments demonstrate that for sufficiently
regular models WLB samples provide a valid posterior approximation as the amount of
data increases. However, the utility of WLB approximation is in doubt as we consider the
availability of sophisticated MCMC schemes and codes that are simulation consistent: i.e.,
they produce exact posterior summaries on a fixed data set as the amount of computing
resources increases without bound (e.g., Carpenter et al., 2017). Contemporary models also
strain the validity of regularity conditions that support existing WLB asymptotic analysis.

The decades since publication of WLB have seen dramatic improvements in algorithms
and code systems for optimization, as well as the interpenetration of these techniques
into statistics (e.g., Bhadra, Datta, Polson, & Willard, 2019; Duchi, Jordan, Wainwright, &
Wibisono, 2015; R. J. Tibshirani & Taylor, 2011). This period has likewise seen improvements
in Bayesian analysis, but there continue to be difficulties with posterior computation in

2

some settings, especially given the problem to assure Monte Carlo error bounds with
MCMC (e.g., Mossel and Vigoda (2006)), the increased size of data sets (e.g., Welling &
Teh, 2011), the increased complexity of modeling techniques (e.g., Jordan, 2013), and the
growing emphasis on tools that are not overly sensitive to modeling assumptions. The
search for scalable, accurate posterior inference tools continues to be an important challenge
in computational statistics.

Framing WLB in a contemporary context, M. Newton, Polson, and Xu (2021) extended
the posterior approximation scheme to a class of penalized likelihood objective functions.
They saw good performance of the proposedWeighted Bayesian Bootstrap (WBB) extension
in high-dimensional regression, trend filtering, and deep-learning applications. Others have
recognized the utility of weighted bootstrap computations beyond the realm of parametric
posterior approximation. A critical perspective was provided by Bissiri, Holmes, andWalker
(2016) with the concept of generalized Bayesian inference. Rather than constructing a fully
specified probabilistic model for data, as in traditional Bayesian analysis, the authors told
us to focus on an objective function for a parameter of interest, sidestepping the marginal
posterior inference on this parameter by creating a generalized Bayesian posterior defined
directly using this objective function. Lyddon, Holmes, and Walker (2019) discovered a key
connection between the generalized Bayesian posterior and WLB sampling, and constructed
a modification called the loss-likelihood bootstrap to leverage this connection. Further links
to nonparametric Bayesian inference were recently reported in Lyddon, Walker, and Holmes
(2018) and Fong, Lyddon, and Holmes (2019), who introduced the concept of Bayesian
Nonparametric Learning (Bayesian NPL). These works demonstrate renewed interest in the
operating characteristics of weighted bootstrap computation.

Whether we aim for approximate parametric Bayes, generalized Bayes, or model-guided
nonparametric Bayes, it is important to understand the distributional properties of these
random-weighting procedures. Precise answers are difficult, even with simple loss functions
(e.g., Hjort & Ongaro, 2005), and so asymptotic methods are helpful to study the conditional
distribution of parameters of interest given data. Adopting a Dirichlet prior on the sampling

3

distribution, Fong et al. (2019) pointed out that WBB sampling is consistent under suitable
regularity conditions, due to posterior consistency property of the Dirichlet process (e.g.,
Ghosal, Ghosh, & Ramamoorthi, 1999; Ghosal, Ghosh, & van der Vaart, 2000). M. A. Newton
and Raftery (1994)’s first-order analysis of the weighted bootstrap samples yields the same
Gaussian limits as the standard Bernstein-von-Mises results (e.g., van der Vaart, 1998) under
a correctly-specified Bayesian parametric model. Under model misspecification setting,
Lyddon et al. (2019) showed that the Gaussian limits of weighted bootstrap sampling do
not coincide with their Bayesian counterparts in Kleijn and van der Vaart (2012). Instead,
they mimic the Gaussian limits in Huber (1967) – the asymptotic covariance matrix of the
weighted bootstrap sampling is in fact the well-known sandwich covariance matrix in robust
statistics literature.

With the work reported here, we first aim to extend asymptotic analysis for weighted
bootstrap distributions to high-dimensional regression models. The first part of our work,
namely Chapters 2 and 3, adapts frequentist-theory asymptotic arguments, notably the
works of Knight and Fu (2000), Zhao and Yu (2006) and Liu and Yu (2013), to the present
context.

Subsequently, in Chapters 4 and 5, we further explore random weighting in discrete
mixture models. Quantifying the uncertainty in clustering is a difficult but important
inference problem that arises in many statistical applications. It could be an end in itself
(e.g., Wade & Ghahramani, 2018, and references therein), or it might be relevant when
clustering is one element in sequence of data-analysis steps (e.g.,Ma, Korthauer, Kendziorski,
& Newton, 2021). An important general approach to address the clustering inference
problem is to invert through some computational means (e.g., Markov chain Monte Carlo,
or variational Bayes) a fully specified prior and generative statistical model in order to access
the posterior distribution of the clustering object (e.g. Müller, Quintana, Jara, & Hanson,
2015; Scrucca, Fop, Murphy, & Raftery, 2016). An alternative approach could use models to
guide optimization-based computations, such as in generalized Bayesian inference (Bissiri
et al., 2016) or Bayesian nonparametric learning (NPL) (Lyddon et al., 2019, 2018). This

4

approach has potential benefits that are both computational (e.g., leveraging optimization
tools; no MCMC diagnosis) as well as statistical (e.g., less reliance on model assumptions).
Discrete mixing has long provided a model-based approach to clustering (e.g., McLachlan,
Lee, & Rathnayake, 2019), and by using such models to guide Bayesian NPL, we find new
and potentially useful schemes for clustering inference.

One popular class of Bayesian nonparametric discrete mixture models is the Dirichlet
Process Mixture (DPM) models, due to its appealing theoretical properties (e.g., strong
consistency, exchangeability) and practicality (e.g., DPM readily models uncertainty about
the number clusters without the need for additional model selection procedures). Whilst
various standard MCMC procedures have been developed for implementing the DPM mod-
els (e.g., Müller et al., 2015), computational challenges remain in terms of poor scalability
and difficulty in assessing chain mixing. While many approximate Bayesian procedures
are available for finite-mixture-models (e.g., Nemeth & Fearnhead, 2021, and references
therein), to the best of our knowledge, Blei and Jordan (2006)’s Variational Inference (VI)
approach remains the preferred approximate posterior inference tool for the DPM to date,
albeit its own limitations such as underestimation of posterior uncertainty (Fong et al., 2019).
Meanwhile, other authors were concerned with posterior point estimation (e.g., Karabatsos,
2020; Zuanetti, Muller, Zhu, Yang, & Ji, 2019) instead of uncertainty quantification. Conse-
quently, we want to further explore approximate posterior inference for countable discrete
mixture models using the Bayesian NPL approach in Chapters 4 and 5.

5

Chapter 2

RandomWeighting in LASSO

Regression

2.1. Preamble

Consider the well-studied linear regression model with fixed design

Y = βµ1n +Xβ + ϵ, (2.1)

where Y = (y1, . . . , yn)
′ ∈ Rn is the response vector, 1n is a n× 1 vector of ones,X ∈ Rn×pn

is the design matrix, β is the vector of regression coefficients, and ϵ = (ϵ1, . . . , ϵn)
′ is the

vector of independent and identically distributed (i.i.d.) random errors with mean 0 and
variance σ2ϵ . Without loss of generality, we assume that the columns of X are centered, and
take β̂µ = Ȳ , in which case we can replace Y in (2.1) with Y − Ȳ 1n, and concentrate on
inference for β. Again, without loss of generality, we also assume Ȳ = 0. Let β0 ∈ Rpn be
the true model coefficients with q non-zero components, where q ≤ min(pn, n). Note that
Y , X and ϵ are all indexed by sample size n, but we omit the subscript whenever this does
not cause confusion.

6

Recall, the LASSO estimator is given by

β̂LAS
n := argmin

β

n∑
i=1

(yi − x′
iβ)

2 + λn

pn∑
j=1

|βj |, (2.2)

for a scalar penalty λn (R. Tibshirani, 1996), where x′
i is the ith row of X . The LASSO is a

canonical example in the broad class of penalized inference procedures; for the purpose of
uncertainty quantification in such models, M. Newton et al. (2021) developed the random-
weighting approach as a straightforward technique to leverage advances in optimization.
They reported good performance in high-dimensional regression, trend-filtering and deep
learning applications. In particular, their random-weighting version of (2.2) is

β̂wn := argmin
β

n∑
i=1

Wi(yi − x′
iβ)

2 + λn

pn∑
j=1

W0,j |βj |

 , (2.3)

where the analyst first chooses a distribution FW with P (W > 0) = 1 and E(W 4) < ∞,
and constructsWi

iid∼ FW for all i = 1, 2, · · · , n. The precise treatment of penalty-associated
weights W0 = (W0,1, · · · ,W0,pn) induces several random-weighting variations, the simplest
of which has

W0,j = 1 ∀ j, (2.4)

or the penalty terms all share a common random weight

W0,j =W0 ∀ j, where (W0,Wi)
iid∼ FW ∀ i, (2.5)

and the most elaborate of which has all entries

(W0,j ,Wi)
iid∼ FW ∀ i, j. (2.6)

Regardless of our treatment of the weights, (2.3) yields independent and identically

7

distributed draws from the conditional distribution of β̂wn given data when we repeatedly
realize weight vectors in silico by one of the random-weighting mechanisms. A computa-
tional benefit for uncertainty quantification is that random weighting is readily parallelized.
Though useful inference tools already exist for LASSO regression (e.g., Friedman, Hastie, &
Tibshirani, 2010), we focus on this well-studied model in order to extend random-weighting
theory and also to guide work for more complex settings where random weighting may be
readily applied (M. Newton et al., 2021). In the present study we investigate the asymptotic
properties of (2.3), with attention on properties of the conditional distribution given data.
By allowing different rates of growth of the regularization parameter λn, and under suit-
able regularity conditions, we prove that the random-weighting method has the following
properties:

• conditional model selection consistency (for both growing pn and fixed p)

• conditional consistency (for fixed pn = p)

• conditional asymptotic normality (for fixed pn = p)

for all three weighting schemes (2.4), (2.5) and (2.6). We find there is no common λn
that would allow random-weighting samples to have conditional sparse normality (i.e.,
simultaneously to enjoy conditional model selection consistency and to achieve conditional
asymptotic normality on the true support of β) even under fixed pn = p setting. Conse-
quently, we propose an extension to the random-weighting framework (2.3) by adopting
a two-step procedure in the optimization step as laid out in Algorithm 2. We prove that
a common regularization rate λn allows two-step random-weighting samples to achieve
conditional sparse normality and conditional consistency properties under growing pn
setting.

After setting regularity conditions and notation in Section 2.2, we report our main
distributional results for random weighting in Section 2.3. Asymptotic techniques from
Knight and Fu (2000), Zhao and Yu (2006) and Liu and Yu (2013) guide our calculations.
Extensive simulations and application to a benchmark data set illustrate how two-step

8

random weighting under schemes (2.4), (2.5) and (2.6) compares with both Bayesian and
bootstrap methods for uncertainty quantification (Section 2.4). In Section 2.5 we comment
on our findings in relation to the perturbation bootstrap (e.g., Das & Lahiri, 2019) and
also to recent nonparametric Bayesian work that has renewed interest in the operating
characteristics of random-weighting (Fong et al., 2019; Lyddon et al., 2019, 2018). Detailed
proofs are presented in Chapter 3.

2.2. Problem Setup

We assume throughout that the unknown number of truly relevant predictors, q, is fixed,
that

E(ϵ4i) <∞ ∀ i, (2.7)

and all pn predictors are bounded, i.e. ∃M1 > 0 such that

|xij | ≤M1 ∀ i = 1, . . . , n ; j = 1, . . . , pn, (2.8)

where xij refers to the (i, j)th element of X .
Without loss of generality, we partition β0 into

β0 =

β0(1)

β0(2)

 ,
where β0(1) refers to the q × 1 vector of non-zero true regression parameters, and β0(2) is a
(pn − q)× 1 zero vector. Similarly, we partition the columns of the design matrix X into

X =

[
X(1) X(2)

]

which corresponds to β0(1) and β0(2) respectively.

9

We consider both fixed-dimensional (pn = p) and growing-dimensional (pn increases
with n) settings. In the growing dimensional setting, we assume that for someM2 > 0,

α′

[
X ′

(1)X(1)

n

]
α ≥M2 ∀ ∥α∥2 = 1. (2.9)

Note that assumptions (2.8) and (2.9), coupled with the fact that q is fixed, ensure that
1
nX

′
(1)X(1) is invertible ∀ n, a fact that we rely on in this paper.
Meanwhile, for fixed-dimensional (pn = p) setting, we assume that rank(X) = p and

there exists a non-singular matrix C such that

1

n
X ′X =

1

n

n∑
i=1

xix
′
i → C as n→∞, (2.10)

where xi is the ith row of the design matrix X .
Comments on assumptions: The fixed-q assumption is commonly found in Bayesian linear-
model literature, such as Johnson and Rossell (2012), and Narisetty and He (2014). Since we
intend to compare the random-weighting approach with posterior inference, we make the
fixed-q assumption to align with existing Bayesian theory. The finite-moment assumption
(2.7) of ϵ is commonly found in literature (e.g., Camponovo, 2015; Das & Lahiri, 2019) is
weaker than the normality assumption commonly specified under a Bayesian approach
(e.g., Johnson & Rossell, 2012; Narisetty & He, 2014; Park & Casella, 2008). Assumption (2.8)
can also be found in some seminal papers, such as Zhao and Yu (2006) and A. Chatterjee
and Lahiri (2011b), and in fact, can be (trivially) achieved by standardizing the covariates.
Assumption (2.9) is equivalent to providing a lower bound to the minimum eigenvalue of
1
nX

′
(1)X(1). This eigenvalue assumption is very common in both frequentist and Bayesian

literature, such as Zhao and Yu (2006) and Narisetty and He (2014). Finally, assumption
(2.10) is common in the LASSO literature under fixed p setting, which can be traced back
to Knight and Fu (2000) and Zhao and Yu (2006). This assumption basically explains the
relationship between the predictors under a fixed design model, and can be interpreted as

10

the direct counterpart to the variance-covariance matrix ofX under a random design model.
For the case of growing pn, assumption (2.10) is no longer appropriate since the dimension
of 1

nX
′X grows.

Probability Space: There are two sources of variation in the random-weighting setup (2.3),
namely the error terms ϵ and the user-defined weights W . In this paper, we consider a
common probability space with the common probability measure P = PD × PW , where
PD is the probability measure of the observed data Y1, Y2, · · · , and PW is the probability
measure of the triangular array of random weights (e.g., Mason & Newton, 1992). The use
of product measure reflects the independence of user-definedW and data-associated ϵ. We
focus on the conditional probabilities given data, that is, given the sigma-field Fn generated
by ϵ:

Fn := σ(Y1, . . . , Yn) = σ(ϵ1, . . . , ϵn).

The study of convergence of these conditional probabilities P (· |Fn) under a weighted
bootstrap framework is not new; see, for example, Mason and Newton (1992) and Lyddon
et al. (2019). We now outline some definitions and notations in this respect.
Conditional Convergence Notations: Let random variables (or vectors) U, V1, V2, . . . be
defined on (Ω,A). We say Vn converges in conditional probability a.s. PD to U if for every
δ > 0,

P (∥Vn − U∥ > δ|Fn)→ 0 a.s. PD

as n→∞. The notation a.s. PD is read as almost surely under PD, and means for almost every

infinite sequence of data Y1, Y2, · · · . For brevity, this convergence is denoted

Vn
c.p.
−→ U a.s. PD.

Similarly, we say Vn converges in conditional distribution a.s. PD to U if for any Borel
set A ⊂ R,

P (Vn ∈ A|Fn)→ P (U ∈ A) a.s. PD

11

as n→∞. For brevity, this convergence is denoted

Vn
c.d.−→ U a.s. PD.

In addition, for random variables (or vectors) V1, V2, . . . and random variables U1, U2, . . .,
we say

Vn = Op(Un) a.s. PD

if and only if , for any δ > 0, there is a constant Cδ > 0 such that a.s. PD,

sup
n
P
(
∥Vn∥ ≥ Cδ|Un|

∣∣∣Fn) < δ;

whereas
Vn = op(Un) a.s. PD

if and only if
Vn
Un

c.p.
−→ 0 a.s. PD.

Other Notation: Following the usual convention, denoteΦ{.} as the cumulative distribution
function of the standard normal distribution. For two random variables U and V , the
expression U ⊥ V is read as “U is independent of V ”. Denote ∥ · ∥2 and ∥ · ∥F as the l2 norm
and Frobenius norm respectively. Let 1k and Ik be k × 1 vector of ones and k × k identity
matrix respectively for some integer k ≥ 2. Besides that, for any two vectors u and v of the
same dimension, we denote u ◦ v as the Hadamard (entry-wise) product of the two vectors.
In addition, define

Cn(11) Cn(12)

Cn(21) Cn(22)

 :=
1

n
X ′X =

1

n

X ′
(1)X(1) X ′

(1)X(2)

X ′
(2)X(1) X ′

(2)X(2)

 .

12

Notice that an immediate consequence of Assumption (2.10) is that

Cn(ij) → Cij ∀ i, j = 1, 2,

where C11 is invertible. Furthermore, denote µW and σ2W as the mean and variance of the
random weight distribution FW . Let Dn = diag(W1, . . . ,Wn), and define

Cwn(11) Cwn(12)

Cwn(21) Cwn(22)

 :=
1

n
X ′DnX =

1

n

X ′
(1)DnX(1) X ′

(1)DnX(2)

X ′
(2)DnX(1) X ′

(2)DnX(2)

 .
Notice that Dn does not contain any penalty weightsW0,j . For weighting scheme (2.6), the
penalty weightsW0 = (W0,1, · · · ,W0,pn) could also be partitioned into

W0 =

W0(1)

W0(2)

 ,
which corresponds to the partition of β0. For ease of notation, define

Zw
n(1) =

1√
n
X ′

(1)Dnϵ,

Zw
n(2) =

1√
n
X ′

(2)Dnϵ,

Zw
n(3) = Cn(21)C

−1
n(11)Z

w
n(1) −Zw

n(2),

C̃wn = Cwn(21)

(
Cwn(11)

)−1
− Cn(21)C−1

n(11).

Finally, the function sgn(·)maps positive entry to 1, negative entry to -1 and zero to zero.
An estimator β̂ is said to be equal in sign to the true parameter β0, if

sgn(β̂) = sgn(β0),

and is denoted as
β̂

s
= β0.

13

2.3. Main Results

2.3.1. One-step Procedure

We investigate the asymptotic properties of random-weighting draws (2.3) obtained from
Algorithm 1, which coincides with the weighted Bayesian bootstrap method considered by
M. Newton et al. (2021). For convenience, we shall call this the “one-step procedure” to
distinguish it from the extended framework that we shall discuss in Section 2.3.2.

Algorithm 1 Random-Weighting in LASSO regression
Require: data D = (y, X), regularization parameter λn, number of draws B, choice of

random weight distribution FW , choice of weighting schemes (2.4), (2.5) or (2.6)
1: for b = 1 to B do
2: Draw i.i.d. random weights from FW and substitute them into (2.3).
3: Store β̂w,bn obtained by optimizing (2.3).
4: end for

Ensure: B parameter samples {β̂w,bn }Bb=1

First, we establish the property of conditional model selection given data. In particular,
we are interested in the conditional probability of the random-weighting samples matching
the signs of β0. Notably, sign consistency is stronger than variable selection consistency,
which requires only matching of zeros. Nevertheless, we agree with Zhao and Yu (2006)’s
argument of considering sign consistency – it allows us to avoid situations where models
have matching zeroes but reversed signs, which hardly qualify as correct models. We begin
with a result that establishes the lower bound for this conditional probability.

Proposition 2.1. Suppose pn ≤ n and rank(X) = pn. Assume (2.7), (2.8) and (2.9). Furthermore,

assume the strong irrepresentable condition (Zhao & Yu, 2006): there exists a positive constant

vector η such that

∣∣∣Cn(21) (Cn(11))−1 sgn
(
β0(1)

)∣∣∣ ≤ 1pn−q − η, (2.11)

14

where 0 < ηj ≤ 1 ∀ j = 1, . . . , pn − q, and the inequality holds element-wise. Then, for all n ≥ pn,

P
(
β̂wn (λn)

s
= β0

∣∣Fn) ≥ P (Awn ∩Bw
n

∣∣Fn) ,
where

(a) for weighting scheme (2.4),

Awn ≡
{∣∣∣∣(Cwn(11))−1

(
Zw
n(1) −

λn
2
√
n
sgn

[
β0(1)

])∣∣∣∣ ≤ √n ∣∣β0(1)

∣∣ element-wise
}

Bw
n ≡

{∣∣∣∣C̃wn (Zw
n(1) −

λn
2
√
n
sgn

[
β0(1)

])
+Zw

n(3)

∣∣∣∣ ≤ λn
2
√
n
η element-wise

}
;

(b) for weighting scheme (2.5),

Awn ≡
{∣∣∣∣(Cwn(11))−1

(
Zw
n(1) −

λnW0

2
√
n
sgn

[
β0(1)

])∣∣∣∣ ≤ √n ∣∣β0(1)

∣∣ element-wise
}

Bw
n ≡

{∣∣∣∣C̃wn (Zw
n(1) −

λnW0

2
√
n
sgn

[
β0(1)

])
+Zw

n(3)

∣∣∣∣ ≤ λnW0

2
√
n
η element-wise

}
;

(c) for weighting scheme (2.6),

Awn ≡
{ ∣∣∣∣(Cwn(11))−1

(
Zw
n(1) −

λn
2
√
n
W0(1) ◦ sgn

[
β0(1)

])∣∣∣∣
≤
√
n
∣∣β0(1)

∣∣ element-wise
}

Bw
n ≡

{ ∣∣∣∣C̃wn (Zw
n(1) −

λn
2
√
n
W0(1) ◦ sgn

[
β0(1)

])
+Zw

n(3)

∣∣∣∣
≤ λn

2
√
n

(
W0(2) −

∣∣∣Cn(21) (Cn(11))−1
W0(1) ◦ sgn

[
β0(1)

]∣∣∣) element-wise
}
.

The rank(X) = pn ≤ n assumption in Proposition 2.1 ensures that the random-weighting
setup (2.3) has a unique solution (Osborne, Presnell, & Turlach, 2000). For a random-design
setting, the rank(X) = pn ≤ n assumption can be replaced with the assumption that X is
drawn from a joint continuous distribution (R. J. Tibshirani, 2013).

15

The strong irrepresentable condition (2.11) can be seen as a constraint on the relationship
between active covariates and inactive covariates, that is, the total amount of an irrelevant
covariate “represented” by a relevant covariate must be strictly less than one. Similar to
Zhao and Yu (2006)’s argument, Awn refers to recovery of the signs of coefficients for β0(1),
and Bw

n further implies obtaining β̂wn(2) = 0 given Awn . The regularization parameter λn
continues to play the role of trade-off between Awn and Bw

n : higher λn leads to larger Bw
n

but smaller Awn , which forces the random-weighting method to drop more covariates, and
vice versa. Meanwhile, larger η in (2.11), which could be interpreted as lower “correlation”
between active covariates and inactive covariates, increases Bw

n but does not affect Awn , thus
allowing the random-weighting method to better select the true model. Zhao and Yu (2006)
also gave a few sufficient conditions that ensure the following designs ofX satisfy condition
(2.11):

• constant positive correlation,

• bounded correlation,

• power-decay correlation,

• orthogonal design, and

• block-wise design.

Again, we would like to highlight the fact that conditional on Fn, the randomness of Awn and
Bw
n derives from the random weights instead of ϵ. Besides that, notice how the presence

of different penalty weights in weighting scheme (2.6) affects the strong irrepresentable
condition (2.11) in Bw

n . We will see how these different weighting schemes affect the
constraints on pn and λn in order to achieve conditional model selection consistency.

Theorem 2.2. (Conditional Model Selection Consistency) Assume assumptions in Proposition

2.1.

16

(a) Under weighting schemes (2.4) and (2.5), if there exists 1
2 < c1 < c2 < 1.5 − c1 and

0 ≤ c3 < min{2(c2 − c1), 2c1 − 1} for which λn = O (nc2) and pn = O (nc3), then as

n→∞,

P
(
β̂wn (λn)

s
= β0

∣∣Fn)→ 1 a.s. PD.

(b) Under weighting scheme (2.6), if (Wi,W0,j)
iid∼ Exp(θw) for some θw > 0, and if η = 1pn−q,

and if there exists 1
2 < c1 < c2 < 1.5− c1 and 0 ≤ c3 < min{23(c2 − c1), 2c1 − 1} for which

λn = O (nc2) and pn = O (nc3), then as n→∞,

P
(
β̂wn (λn)

s
= β0

∣∣Fn)→ 1 a.s. PD.

Theorem 2.2 could be interpreted as the “concentration” of the conditional distribution
of signs of β̂wn around the neighborhood of the true signs of β as n → ∞. Comparing
the three weighting schemes, we can see that assigning random weights on the penalty
term further impedes how fast pn could increase with n while achieving conditional model
selection consistency, especially when the penalty terms do not share a common random
weight in weighting scheme (2.6). This adversely affects/violates the strong irrepresentable
assumption (2.11), unless under a stringent condition where η = 1. One sufficient condition
for η = 1 would be zero correlation between any relevant predictor and any irrelevant
predictor, i.e. Cn(21) = 0 for all n.

We also point out that the conditional model selection consistency property under a
fixed dimensional (pn = p) setting could be easily obtained by taking c3 = 0 in Theorem 2.2.

The next two results concern with the properties of conditional consistency and con-
ditional asymptotic normality of the random-weighting samples under a fixed-dimension
(pn = p) setting.

Theorem 2.3. Suppose pn = p is fixed. Assume (2.7), (2.8) and (2.10).

(a) (Conditional Consistency) If λn
n
→ 0, then for all three weighting schemes (2.4), (2.5)

17

and (2.6),

β̂wn
c.p.−→ β0 a.s. PD.

(b) If λn
n
→ λ0 ∈ (0,∞), then

(
β̂wn − β0

)
c.d.−→ argmin

u
g(u) a.s. PD,

where

g(u) = µWu′Cu+ λ0

p∑
j=1

Wj |β0,j + uj |

and

(i) Wj = 1 for all j under weighting scheme (2.4),

(ii) Wj =W0 for all j andW0 ∼ FW under weighting scheme (2.5),

(iii) Wj
iid∼ FW under weighting scheme (2.6).

In other words, the conditional distribution of β̂wn concentrates in the neighborhood of
argminu g(u) as the sample size increases. In fact, for part (b)(i) of Theorem 2.3, conditional
convergence in probability takes place since g(u) is not a random function (i.e., does not
involve any non-degenerate random variables).

Theorem 2.4. (Asymptotic Conditional Distribution) Suppose pn = p is fixed. Assume (2.7),

(2.8) and (2.10). Let β̂SC
n be a strongly consistent estimator of β in the linear model (2.1) such that

for en = Y −Xβ̂SC
n ,

1√
n
X ′en → 0 a.s. PD. (2.12)

If q = p and λn√
n
→ λ0 ∈ [0,∞), then

√
n
(
β̂wn − β̂SC

n

)
c.d.−→ argmin

u
V (u) a.s. PD,

18

where

V (u) = −2u′Ψ+ µWu′Cu+ λ0

p∑
j=1

Wj [uj sgn(β0,j)] ,

for Ψ ∼ N
(
0, σ2Wσ

2
ϵC
)
, and

(i) Wj = 1 for all j under weighting scheme (2.4),

(ii) Wj =W0 for all j,W0 ∼ FW andW0 ⊥ Ψ under weighting scheme (2.5),

(iii) Wj
iid∼ FW andWj ⊥ Ψ for all j under weighting scheme (2.6).

In particular, if λ0 = 0, then for all three weighting schemes (2.4), (2.5) and (2.6),

√
n
(
β̂wn − β̂SC

n

)
c.d.−→ N

(
0 ,

σ2Wσ
2
ϵ

µ2W
C−1

)
a.s. PD.

The OLS estimator β̂OLS
n and the standard LASSO estimator β̂LAS

n (λ∗n)with λ∗n = o(
√
n)

are two qualified candidates for β̂SC
n to satisfy the conditions in Theorem 2.4. (Note that λ∗n

does not necessarily have to be the same as the λn that we use for the random-weighting
approach.) Firstly, due to Assumption (2.10), β̂OLS

n is strongly consistent (Lai, Robbins, &
Wei, 1978), and

X ′eOLS
n =

(
X ′Y −X ′X(X ′X)−1X ′Y

)
= 0.

Meanwhile, since E(|ϵi|) < ∞ for all i and λ∗n = o(
√
n), β̂LAS

n (λ∗n) is strongly consistent
(A. Chatterjee & Lahiri, 2011b), and the KKT conditions ensure that

1√
n

∥∥∥X ′eLAS
n

∥∥∥
2
=

1√
n

∥∥∥X ′
(
y −Xβ̂LAS

n

)∥∥∥
2
≤
λ∗n
√
p

√
n
→ 0 a.s. PD.

We also point out that centering on the true regression parameter

√
n
(
β̂wn − β0

)
.

results in additional terms that depend on the sample path of realized data {y1, y2, · · · }.
Consequently, convergence in conditional distribution almost surely under PD (just like the

19

result in Theorem 2.4) could not be achieved. We refer readers to Remark 3.1 in Chapter 3
for more details.

On the other hand, a more sophisticated argument is needed to establish the asymptotic
conditional distribution for the case of 0 < q < p. First, note that for j ∈ {j : β0,j = 0},
√
nβ̂SCn,j has an asymptotic normal distribution (denoted Zj) under PD. By the Skorokhod

representation theorem, there exists random variables Un,j and Uj such that Un,j d
=
√
nβ̂SCn,j ,

Uj
d
= Zj , and Un,j → Uj a.s. PD. Then, for (λn/

√
n)→ λ0 ∈ [0,∞),

√
n
(
β̂wn − β̂SC

n

) c.d.−→ argmin
u

V ∗(u) a.s. PD, (2.13)

where

V ∗(u) =− 2u′Ψ+ µWu′Cu

+ λ0

p∑
j=1

Wj

[
uj sgn(β0,j)1{β0,j ̸=0} + (|Uj + uj | − |Uj |)1{β0,j=0}

]
,

for Ψ and {Wj}1≤j≤p defined in Theorem 2.4.
The results presented above fulfill our first objective to study and extend the asymptotic

properties of the “one-step” random-weighting procedure that was considered by M. New-
ton et al. (2021). However, we also recognize that the current “one-step” random-weighting
setup (2.3) in Algorithm 1 does not produce random-weighting samples that have condi-
tional sparse normality property. From Theorems 2.2 and 2.4, it is evident that even under
a fixed dimensional (pn = p) setting, the random weighting samples achieve conditional
model selection consistency when λn = O (nc) for some 1

2 < c < 1, whereas conditional
asymptotic normality happens when λn = o (

√
n).

Unsurprisingly, this finding about (lack of) conditional sparse normality approximation
coincides with many existing Bayesian and frequentist results. For instance, in the Bayesian
framework, Theorem 7 of Castillo, Schmidt-Hieber, and van der Vaart (2015) proved that
the Bayesian LASSO approach (Park & Casella, 2008) could not achieve asymptotic sparse

20

normality for any one given λn due to the conflicting demands of sparsity-inducement and
normality approximation on the regularization parameter λn. In the frequentist setting,
Liu and Yu (2013) pointed out that there does not exist one λn that allows a standard
LASSO estimator (2.2) to simultaneously achieve model selection and asymptotic normality.
Consequently, many variations of “two-step” LASSO estimators (e.g., Zou (2006)’s ALasso),
and their corresponding bootstrap procedures (e.g., Das, Gregory, and Lahiri (2019)’s
perturbation bootstrap of ALasso) were introduced to overcome this shortcoming.

2.3.2. Two-step Procedure

To overcome the regularization problem, we propose an extension to random weighting in
LASSO regression. We retain the random-weighting framework of repeatedly assigning
random-weights and optimizing the objective function (2.3), exceptwe propose optimization
in two-steps: In step one, we optimize

min
β

n∑
i=1

Wi(yi − x′
iβ)

2 + λn

pn∑
j=1

W0,j |βj |

 (2.14)

to select variables. Let Ŝwn ⊆ {1, · · · , pn} be the set of variables being selected in (2.14), and
let (Ŝwn)c be the set of discarded variables. In addition, denoteX

Ŝw
n
as the n×|Ŝwn | submatrix

of X whose columns correspond to the selected variables in (2.14). Then, in step two, we
obtain our random-weighting samples by solving

β̂wn :=

β̂w
n,Ŝw

n

β̂w
n,(Ŝw

n)c

 :=

(
X ′
Ŝw
n

DnXŜw
n

)−1
X ′
Ŝw
n

DnY

0

 , (2.15)

where the partition of β̂wn corresponds to Ŝwn and
(
Ŝwn

)c
.

For convenience, we shall refer to this proposed extension as a “two-step procedure”,
which is laid out in detail in Algorithm 2. This extension can be seen as the random-

21

Algorithm 2 Random-Weighting in LASSO+LS regression
Require: data D = (y, X), regularization parameter λn, number of draws B, choice of

random weight distribution FW , choice of weighting schemes: (2.4), (2.5) or (2.6)
1: for b = 1 to B do
2: Draw i.i.d. random weights from FW and substitute them into (2.3).
3: Optimize (2.14) to obtain Ŝw,bn .
4: Based on the selected set of variables Ŝw,bn , obtain β̂w,bn by solving (2.15).
5: end for

Ensure: B sets of selected variables {Ŝw,bn }Bb=1, B parameter samples {β̂w,bn }Bb=1

weighting version of Liu and Yu (2013)’s LASSO+LS procedure, i.e., a LASSO step (2.2) for
variable selection followed by a least-square estimation for the selected variables. (Belloni
and Chernozhukov (2013) had also studied the finite-sample and asymptotic properties
of the post-LASSO OLS estimator.) We shall denote this unweighted two-step LASSO+LS
estimator as β̂LAS+LSn , and let Ŝn be the set of variables selected (in the first step) by this
estimator. Notice that Ŝn and Ŝwn may be different due to the presence of random-weights in
the selection step of (2.14). The superscript w of Ŝwn helps to remind readers that the set of
selected variables in (2.14) could change with different sets of assigned random weights.

In this subsection, we adopt the same assumptions as we did in Theorem 2.2, including
the fact that pn ≤ n and X is full rank for all n. Thus X

Ŝw
n
is full rank and consequently,

X ′
Ŝw
n
DnXŜw

n

is also full rank and is invertible for all n.
For ease of presentation, we introduce a bit of additional notation. Let S0 be the true

set of relevant variables. To be consistent with our previous notation, we remind readers
that S0 = {1, · · · , q}without loss of generality, and XS0 = X(1). We also partition β̂wn and
β̂LAS+LSn into

β̂wn =

β̂wn(1)

β̂wn(2)

 and β̂LAS+LSn =

β̂LAS+LSn(1)

β̂LAS+LSn(2)

22

respectively, which correspond to the partition of β0 =
[
β0(1) β0(2)

]′. We observe that if
Ŝwn = S0, then

β̂w
n,Ŝw

n
= β̂wn(1) and β̂w

n,(Ŝw
n)c

= β̂wn(2) = β0(2) = 0.

Similarly, if Ŝn = S0, then

β̂LAS+LS
n,Ŝn

= β̂LAS+LSn(1) and β̂LAS+LS
n,(Ŝn)c

= β̂LAS+LSn(2) = β0(2) = 0.

We are now ready to establish the conditional sparse normality property of the two-step
random-weighting samples (2.15) under growing pn setting with appropriate regularity
conditions.

Theorem 2.5. (Conditional Sparse Normality) Adopt all regularity assumptions as stated in

Theorem 2.2 (including assumptions about the different rates of λn and pn for weighting schemes

(2.4), (2.5) and (2.6)). Furthermore, assume µW = 1 and Cn(11) → C11 for some nonsingular

matrixC11. Let β̂wn be the two-step random-weighting samples defined in (2.15), and let β̂LAS+LSn be

the unweighted two-step LASSO+LS estimator (i.e. a LASSO variable selection step (2.2) followed

by least-squares estimation for the selected variables). Then,

P
(
Ŝwn = S0

∣∣Fn)→ 1 a.s. PD,

and
√
n
(
β̂wn(1) − β̂LAS+LSn(1)

)
c.d.−→ Nq

(
0 , σ2Wσ

2
ϵC

−1
11

)
a.s. PD.

Theorem 2.5 highlights the improvement brought about by the extended random-
weighting framework as compared to the original “one-step” procedure considered by
M. Newton et al. (2021). With a common regularization parameter λn (and all regularity
conditions that apply), the two-step random-weighting samples attain conditional model
selection consistency and achieve conditional asymptotic normality (by centering at the un-
weighted two-step LASSO+LS estimator) on the true support S0 under growing pn setting.

23

We acknowledge that the convergence rate of P
(
Ŝwn = S0

∣∣Fn) is rather slow; see Lemma
3.11 for more details.

We conclude this section by establishing that the random-weighting samples from the
two-step procedure also achieve the conditional consistency property under growing pn
setting. This could be viewed as an improvement to the result that we have in Theorem
2.3(a) which applies to fixed dimensional setting only.

Theorem 2.6. (Conditional Consistency) Adopt all regularity assumptions as stated in Theorem

2.2 (including assumptions about the different rates of λn and pn for weighting schemes (2.4), (2.5)

and (2.6)). Let β̂wn be the two-step random-weighting samples defined in (2.15). Then

∥∥∥β̂wn − β0

∥∥∥
2

c.p.−→ 0 a.s. PD.

Theorem 2.6 indicates a concentration of the conditional distribution of β̂wn near β0 with
increasing sample size given almost any data set.

2.3.3. Remarks

The two-step random-weighting procedure is a valid bootstrap procedure for Liu and Yu
(2013)’s LASSO+LS estimator β̂LAS+LSn under growing pn setting. Using very similar
regularity assumptions, Liu and Yu (2013) showed that their LASSO+LS method gives
consistent model selection under PD, and

√
n
(
β̂LAS+LSn(1) − β0(1)

)

converges to N (0 , σ2ϵC−1
11

) under PD. Hence, based on Theorem 2.5, by fulfilling the
appropriate regularity assumptions and drawing random weights from FW with unitary
mean and variance (µW = σ2W = 1), the conditional distribution of the two-step random-
weighting samples β̂wn converges to the same distributional limit of the LASSO+LS estimator
under PD. This enables the two-step random-weighting procedure to produce bootstrap

24

samples that provide valid distributional approximation to the LASSO+LS estimator.
We point out that by capitalizing on the sub-Gaussian nature of ϵ, Liu and Yu (2013)’s

proposed residual bootstrap procedure for their LASSO+LS estimator works under high-
dimensional setting where pn grows nearly exponential with sample size n. On the other
hand, in this paper, we only require finite fourth moment assumptions for both error term ϵ

and random weights W , and our random-weighting procedure only allows pn to grow at a
polynomial rate of o(√n).

Similarly, under fixed dimensional (pn = p) setting where β0 is not sparse (i.e. q = p),
our one-step random-weighting approach in Algorithm 1 could also be a valid bootstrap
procedure for the standard LASSO estimator β̂LAS

n (λn). Specifically, Knight and Fu (2000)
proved that for (λn/

√
n)→ λ0 ∈ [0,∞),

√
n
(
β̂LAS
n (λn)− β0

)

converges to the same distributional limit stated in Theorem 2.4 under PD. However, for
the case where q < p, the one-step random-weighting procedure no longer provides valid
distributional approximation to β̂LAS

n (λn), as evident from the Skorokhod argument. This
mimics the asymptotic conditional distribution of the LASSO parametric residual bootstrap
(Knight & Fu, 2000).

2.4. Numerical Experiments

We perform simulation studies and data analysis using R (R Core Team, 2019); all source
code is available at the Github public repository: https://github.com/wiscstatman/

optimizetointegrate/tree/master/Tun.

2.4.1. Simulation: Part I

A simulation study of one-step random-weighting procedures (Algorithm 1) was previously
reported (M.Newton et al., 2021), and so herewe study performance of the two-step random-

https://github.com/wiscstatman/optimizetointegrate/tree/master/Tun
https://github.com/wiscstatman/optimizetointegrate/tree/master/Tun

25

weighting procedure (Algorithm 2) for all three weighting schemes (2.4), (2.5) and (2.6) –
denoted RW1, RW2 and RW3 respectively – in several experimental settings, and compare it
with:

• Bayesian LASSO (Park & Casella, 2008), which can be easily implemented with R
package monomvn (Gramacy, Moler, & Turlach, 2019)

• parametric residual bootstrap (Knight & Fu, 2000), which is a very common and easily
implementable bootstrap procedure in LASSO regression. We denote this method as
RB thereafter.

We drew inspiration from Das and Lahiri (2019), Liu and Yu (2013) andM. Newton et al.
(2021) in setting up our simulation schemes. Specifically, we consider 8 simulation settings
as tabulated in Table 2.1. In all settings, the generative state β0 = (β0,1, · · · , β0,p)′ is defined
as β0,j = (3/4) + (1/4)j for j = 1, · · · , q and β0,j = 0 for j = q + 1, · · · , p. The predictors xi
are drawn from p-variate normal distribution with different covariance structures. Σ(1) has
the following structure

Σ
(1)
i,j = 1{i=j} + 1{i ̸=j} ×

(
0.3|i−j|1{i≤q}1{j≤q}

)
for 1 ≤ i, j ≤ 10. (2.16)

Σ(3) also has the same structure as (2.16), except that it has larger dimension p = 50.
Meanwhile, Σ(2) has the following structure: for 1 ≤ i, j ≤ 10,

Σ
(2)
i,j = 1{i=j} + 1{i ̸=j} ×

[
0.41{i≤q}1{j≤q} + 0.5

(
1− 1{i≤q}1{j≤q}

)]
.

We verify that only simulation settings 5 and 6 violate the strong irrepresentable condition
(2.11), whereas the other six simulation settings satisfy assumption (2.11). By simulating
i.i.d. ϵi and xi, we generate yi = xiβ0 + ϵi for i = 1, · · · , n.

Purpose of simulation setup: The even-numbered simulation settings share the same
specifications as their odd-numbered counterparts except with larger sample size n (e.g.
Setting 2 versus Setting 1, Setting 4 versus Setting 3, et cetera). Simulation Settings 3 and 4

26

Table 2.1: Simulation Settings

Setting n p q ϵi xi ∼ Np(0,Σ)

1 100 10 6 N(0, 1) Σ = Σ(1)

2 500 10 6 N(0, 1) Σ = Σ(1)

3 100 10 6 χ2
2 − 2 Σ = Σ(1)

4 500 10 6 χ2
2 − 2 Σ = Σ(1)

5 100 10 6 N(0, 1) Σ = Σ(2)

6 500 10 6 N(0, 1) Σ = Σ(2)

7 100 50 6 N(0, 1) Σ = Σ(3)

8 500 50 6 N(0, 1) Σ = Σ(3)

are used as an example of cases where the error term ϵ is no longer normally distributed,
whereas Simulation Settings 5 and 6 are set up to illustrate the situations where the strong
irrepresentable condition (2.11) is violated. Finally, we increase the dimension p of predictors
by five-fold in Settings 7 and 8 to compare performances in higher-dimensional setting.

For each simulation setting, we generate T = 500 independent datasets. For each simu-
lated data set, we draw B = 1000 posterior/bootstrap samples from the 5 aforementioned
methods: Bayesian LASSO (BLASSO), two-step random-weighting with schemes (2.4),
(2.5) and (2.6), and residual bootstrap. For the Bayesian LASSO procedure, we specify a
2000 burn-in period. In addition, Bayesian LASSO imposes a noninformative marginal prior
on σ2ϵ , π(σ2ϵ) ∼ 1/σ2ϵ , and a Jeffrey’s prior on λn. To induce sparsity in the MCMC samples
of β, the posterior distribution is sampled by a Reversible Jump Markov Chain Monte Carlo
(RJMCMC) algorithm (Green, 1995), with a uniform prior specified on the number of
non-zero coefficients to be included in the model. For the three random-weighting schemes,
all i.i.d. random weights are drawn from a standard exponential distribution. The regular-
ization parameter λn is chosen via cross-validation using Liu and Yu (2013)’s (unweighted)

27

Setting_7 Setting_8

Setting_5 Setting_6

Setting_3 Setting_4

Setting_1 Setting_2

RW1 RW2 RW3 RB RW1 RW2 RW3 RB

RW1 RW2 RW3 RB RW1 RW2 RW3 RB

RW1 RW2 RW3 RB RW1 RW2 RW3 RB

RW1 RW2 RW3 RB RW1 RW2 RW3 RB

0.005

0.010

0.015

0.020

0.01

0.02

0.03

0.04

0.0

0.1

0.2

0.3

0.0025

0.0050

0.0075

0.0100

0.0125

0.02

0.04

0.06

0.08

0.05

0.10

0.15

0.0

0.1

0.2

0.3

0.01

0.02

0.03

0.04

method

T
o

ta
l
va

ri
a

ti
o

n
 (

a
ve

ra
g

e
d

 a
c
ro

s
s
 a

ll
β
’s

)

method

RW1

RW2

RW3

RB

Figure 2.1: Simulation Part I: Sampling distribution of total variation distance between the
random-weighting distribution and a Bayesian posterior (averaged across all β’s) among
T = 500 simulated data sets in 8 simulation settings between ecdf of MCMC samples and
ecdf of samples from each of the 4 methods: two-step random-weighting approach using
weighting schemes (2.4) (denoted RW1), (2.5) (denoted RW2) and (2.6) (denoted RW3),
and LASSO residual bootstrap (denoted RB).

28

LASSO+LS procedure, and then the same λn is used to draw the 1000 random-weighting
samples according to Algorithm 2. We note that the optimization step (2.14) can be easily
computed using R package glmnet (Friedman et al., 2010). Meanwhile for residual boot-
strap, its regularization parameter λRBn is chosen via cross-validation using standard LASSO,
and values of λRBn are thereafter fixed for all bootstrap computations on the same dataset.

For each of the five aforementioned methods, we obtain {β̂(b,t)j } that represents the jth

component of sampled/bootstrapped β in the bth iteration for the tth simulated data set,
where j = 1, · · · , p, and b = 1, · · · , B, and t = 1, · · · , T . To be precise, we have

{
β̂
(b,t)
j(MCMC), β̂

(b,t)
j(RW1), β̂

(b,t)
j(RW2), β̂

(b,t)
j(RW3), β̂

(b,t)
j(RB)

}

that correspond to the sampled/bootstrapped β’s of the five aforementioned methods, but
for brevity we drop the subscripts whenever it does not cause any confusion, since each
method is subject to the same performance evaluation. We then assess the performances of
each of these five methods – BLASSO, RW1, RW2, RW3 and RB – in each of the 8 simulation
settings using the following comparison criteria:

• Estimation MSE of coefficients. Specifically, for each simulated data set t = 1, · · · , T ,
we keep track of

MSE(t) =
1

B

B∑
b=1

∥∥∥Y (t) −X(t)β̂(b,t)
∥∥∥2
2
.

• Out-of-sample prediction MSE (abbreviated as MSPE thereafter), where test sets are
of the same size as the corresponding training sets. Similarly, for each simulated data
set t = 1, · · · , T , we keep track of

MSPE(t) =
1

B

B∑
b=1

∥∥∥Y (t)
test −X

(t)
testβ̂

(b,t)
∥∥∥2
2
.

• Conditional (on data) probability of selecting the jth variable where j = 1, · · · , p.

29

Variable_7

Variable_1

Setting_1 Setting_2 Setting_3 Setting_4 Setting_5 Setting_6 Setting_7 Setting_8

Setting_1 Setting_2 Setting_3 Setting_4 Setting_5 Setting_6 Setting_7 Setting_8

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Simulation Settings

p
ro

b
a
b
ili

ty
 o

f
s
e
le

c
ti
n
g
 v

a
ri

a
b
le

method MCMC RW1 RW2 RW3 RB

Figure 2.2: Simulation Part I: Sampling distribution of conditional (on data) probabilities
of selecting β1 and β7 among T = 500 simulated data sets in 8 simulation settings by
the 5 methods: MCMC via Bayesian LASSO, two-step random-weighting approach using
weighting schemes (2.4) (denoted RW1), (2.5) (denoted RW2) and (2.6) (denoted RW3),
and LASSO residual bootstrap (denoted RB).

30

Specifically, for each simulated data set t = 1, · · · , T , we keep track of

p̂
(t)
j :=

1

B

∣∣∣{b : β̂(b,t)j ̸= 0
}∣∣∣ .

We note that the computation of p̂(t)j is sensible because all the five methods (includ-
ing BLASSO with RJMCMC implementation) induce sparsity in the sampled/boot-
strapped β’s.

• Coverage and average width of the two-sided 90% credible/confidence interval (CI)
for the jth variable where j = 1, · · · , p. Specifically, denote r̂(t)0.05,j and r̂

(t)
0.95,j as the 5th

percentile and 95th percentile of the empirical distribution of {β̂(b,t)j }1≤b≤B . Then, the
average width (across T = 500 simulated data sets) of the two-sided 90% CI for the
jth variable is computed as

l̂j :=
1

T

T∑
t=1

(
r̂
(t)
0.95,j − r̂

(t)
0.05,j

)
,

and its corresponding empirical coverage is calculated as

q̂j :=
1

T

∣∣∣{t : r̂(t)0.05,j ≤ β0,j ≤ r̂
(t)
0.95,j

}∣∣∣ .
In addition, we obtain the total variation distance between empirical cumulative dis-

tribution function (ecdf) of MCMC samples and ecdf of samples produced by one of the
other four methods – the two-step random-weighting (RW1, RW2 and RW3) and residual
bootstrap (RB). The intent is to assess howwell the random-weightingmethods approximate
the MCMC-approximated posterior. Specifically, for the jth variable in the tth simulated
data set, let

F̂
(t)
j(MCMC) = ecdf of

{
β̂
(b,t)
j(MCMC)

}
1≤b≤B

,

and let F̂ (t)
j(.) be the ecdf of samples produced by one of the other 4 methods: RW1, RW2,

RW3 or RB. Note that the ecdf’s are easily obtained via the function ecdf in R base package

31

(R Core Team, 2019). Then, for each of the 4 methods, we keep track of the total variation
(averaged across all p variables) for each simulated data set t = 1, · · · , T :

TV (t) =
1

p

p∑
j=1

1

2

∑
ω∈Ω

∣∣∣F̂ (t)
j(MCMC)(ω)− F̂

(t)
j(.)(ω)

∣∣∣ ,
where the inner summation is approximated using a trapezoidal rule with an interval width
of 0.001.

Table 2.2: Empirical coverage q̂j and average width l̂j (in parentheses) of the two-sided 90%
CI for the first 10 variables in Simulation Setting 8, using the five approaches: MCMC via
BLASSO, two-step random-weighting approach using weighting schemes (2.4) (denoted
RW1), (2.5) (denoted RW2) and (2.6) (denoted RW3), and LASSO residual bootstrap
(denoted RB).

β0,j MCMC RW1 RW2 RW3 RB
1.00 0.918 0.878 0.882 0.906 0.344

(0.161) (0.152) (0.152) (0.16) (0.153)

1.25 0.908 0.88 0.876 0.904 0.588
(0.169) (0.158) (0.159) (0.168) (0.16)

1.50 0.894 0.864 0.868 0.886 0.578
(0.168) (0.158) (0.158) (0.165) (0.16)

1.75 0.918 0.886 0.892 0.9 0.596
(0.168) (0.159) (0.159) (0.165) (0.16)

2.00 0.922 0.894 0.882 0.898 0.556
(0.168) (0.159) (0.159) (0.164) (0.16)

2.25 0.886 0.866 0.872 0.874 0.35
(0.161) (0.151) (0.152) (0.157) (0.153)

0.00 1 1 1 1 0.998
(0.04) (0.016) (0.096) (0.099) (0.023)

0.00 1 0.998 1 1 1
(0.041) (0.018) (0.097) (0.1) (0.024)

0.00 1 1 1 1 1
(0.04) (0.015) (0.097) (0.099) (0.023)

0.00 0.998 1 1 1 1
(0.04) (0.015) (0.097) (0.1) (0.023)

Firstly, as expected, performance improves with larger sample size n, such as smaller

32

MSE’s, smaller MSPE’s, higher coverage probabilities and narrower CI’s. Secondly, we note
that the MSE’s and MSPE’s are very similar among all the five methods in all 8 simulation
settings (figures not shown). However, the two-step random-weighting approach, especially
weighting schemes (2.4) and (2.5) – denotedRW1andRW2, outperforms the LASSO residual
bootstrap (denoted RB) in all other performance measures.

Figure 2.1 displays the sampling distribution of total variation distance {TV (t)}1≤t≤T

between the random-weighting distribution and a Bayesian posterior (averaged across all
β’s), among the T = 500 simulated data sets in the 8 simulation settings for the 4 methods:
RW1, RW2, RW3 and RB. Generally, larger sample size n leads to smaller total variations.
Moreover, in all simulation settings, RW1 and RW2 have smaller total variations than that of
RB, which illustrates the viability of the two-step random-weighting samples to approximate
posterior inference. RW3 has larger total variations especially in Settings 5 and 6, where the
strong irrepresentable condition (2.11) is violated. This illustrates the need for restrictive
regularity assumption for weighting scheme (2.6) that we highlighted in part (c) of Theorem
2.2.

In Figure 2.2, we show the sampling distributions of {p̂(t)1

}
1≤t≤T and {p̂(t)7

}
1≤t≤T among

the T = 500 simulated data sets in the 8 simulation settings for all the five methods. Recall
that the first variable corresponds toβ0,1 = 1 and the seventh variable corresponds toβ0,7 = 0.
Sampling distribution of conditional (on data) probabilities of selecting other relevant
predictors is similar to that of the first variable, and sampling distribution of conditional
probabilities of selecting other irrelevant predictors is similar to that of the seventh variable.
In all 8 simulation settings, all methods almost always select the first variable, except for
RW3 in Simulation Settings 5 and 6, due to the violation of condition (2.11). However,
similar to MCMC, the two-step random-weighting schemes (especially RW1) have lower
conditional probabilities of selecting the seventh variable (which is an irrelevant predictor)
than the LASSO RB. This illustrates that the two-step random-weighting approach is more
capable of discarding irrelevant variables as compared to LASSO residual bootstrap. Only
in Simulation Settings 5 and 6 do we see similarly high conditional probabilities of selecting

33

the seventh variable among RW1, RW2, RW3 and RB, due to violation of condition (2.11).
Empirical coverage and average width of the two-sided 90% CI’s for relevant predictors

(i.e. β0,j ̸= 0) paint a similar story. For illustration, the empirical coverage q̂j and average
width l̂j (in parentheses) of the two-sided 90% CI for the first 10 variables, i.e. for j =

1, · · · , 10, in Simulation Setting 8, are tabulated in Table 2.2. Generally, average widths of
CI’s are similar among all five methods in all but two simulation settings, where RW3 has
much wider 90% CI’s in Simulation Settings 5 and 6. Interestingly, empirical coverage for
MCMC and random-weighting samples is similar and close to 90% , but the LASSO residual
bootstrap samples always have the lowest empirical coverage, especially in Simulation
Settings 7 and 8, where their empirical coverage is only around 30% - 40%.

2.4.2. Simulation: Part II

On a separate calculation, we use Simulation Setting 2 (see Table 2.1) to illustrate that there
are computational advantages in using λn chosen via cross-validation on the unweighted
LASSO+LS procedure (Liu & Yu, 2013), instead of cross-validation on the standard LASSO
method, for obtaining the two-step random-weighting samples. For brevity, we shall refer
to the former as the two-step cross validation, and the latter as the one-step cross validation.

Specifically, for each of the T = 500 simulated data sets under Simulation Setting 2,
we repeat the two-step random-weighting calculations outlined in Algorithm 2, but with
λn chosen via cross-validation on the standard LASSO method. This is in fact the same
regularization parameter λRBn that we used to generate the residual bootstrap samples.

We find from the simulation results that the two-step cross-validation leads to larger λn
as compared to the one-step cross-validation. This ties back to the conflicting demands of the
standard LASSO method on λn: smaller λn allows more variables into the model to reduce
estimationMSE; and largerλn enablesmore regularization to discard irrelevant variables. On
the other hand, using a two-step LASSO+LS procedure frees up these conflicting constraints
on λn.

For these two sets of random-weighting samples, we repeat the same calculations of

34

0.005

0.010

0.015

0.020

RW1 RW2 RW3

method

T
o
ta

l
va

ri
a
ti
o
n
 (

a
v
e
ra

g
e
d
 a

c
ro

s
s
 a

ll
β
’s

)

method RW1 RW2 RW3

Using λ’s from 1−step cv

0.005

0.010

0.015

0.020

RW1 RW2 RW3

method
T
o
ta

l
va

ri
a
ti
o
n
 (

a
v
e
ra

g
e
d
 a

c
ro

s
s
 a

ll
β
’s

)

method RW1 RW2 RW3

Using λ’s from 2−step cv

Figure 2.3: Simulation Part II: Sampling distribution of total variation distance between
random-weighting distribution and a Bayesian posterior (averaged across all β’s) among
T = 500 simulated data sets in Simulation Setting 2 between ecdf of MCMC samples and
ecdf of the two-step random-weighting samples, computed with λn obtained via 1-step
cross validation or 2-step cross validation, using weighting schemes (2.4) (2.5) and (2.6)
(denoted RW1, RW2 and RW3 respectively).

performance measures as we did in Part I of our simulation studies. We found out that
MSE’s, MSPE’s and empirical coverage of the two-sided 90% CI are very similar between
these two sets of random-weighting samples. However, from Figure 2.3, we see that larger
regularization λn based on the two-step cross validation leads to lower total variation
distance between random-weighting distribution and a Bayesian posterior. Meanwhile, in
Figure 2.4, the random-weighting samples computed with the larger λn have much lower
conditional probabilities of selecting irrelevant variables (variables 7 – 10), whilst almost
always selecting relevant predictors (variables 1 – 6). This also helps to illustrate the fact that
the two-step random-weighting approach is able to utilize more regularization to discard
irrelevant predictors while maintaining estimation accuracy.

35

Variable_9 Variable_10

Variable_7 Variable_8

Variable_5 Variable_6

Variable_3 Variable_4

Variable_1 Variable_2

RW1 RW2 RW3 RW1 RW2 RW3

RW1 RW2 RW3 RW1 RW2 RW3

RW1 RW2 RW3 RW1 RW2 RW3

RW1 RW2 RW3 RW1 RW2 RW3

RW1 RW2 RW3 RW1 RW2 RW3

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

method

p
ro

b
a

b
ili

ty
 o

f
s
e

le
c
ti
n

g
 v

a
ri

a
b
le

method RW1 RW2 RW3

Using λ’s from 1−step cv

Variable_9 Variable_10

Variable_7 Variable_8

Variable_5 Variable_6

Variable_3 Variable_4

Variable_1 Variable_2

RW1 RW2 RW3 RW1 RW2 RW3

RW1 RW2 RW3 RW1 RW2 RW3

RW1 RW2 RW3 RW1 RW2 RW3

RW1 RW2 RW3 RW1 RW2 RW3

RW1 RW2 RW3 RW1 RW2 RW3

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

method

p
ro

b
a

b
ili

ty
 o

f
s
e

le
c
ti
n

g
 v

a
ri

a
b
le

method RW1 RW2 RW3

Using λ’s from 2−step cv

Figure 2.4: Simulation Part II: Sampling distribution of conditional (on data) probabilities
of selecting β’s among T = 500 simulated data sets in Simulation Setting 2 by the two-step
random-weighting approach, computed with λn obtained via 1-step cross validation or
2-step cross validation, using weighting schemes (2.4) (2.5) and (2.6) (denoted RW1, RW2
and RW3 respectively).

36

2.4.3. Benchmark data example

To further illustrate the two-step random-weighting methodology, we apply it to the often-
analyzed Boston Housing data set, which is available in the R package MASS (Venables &
Ripley, 2002). Data from n = 506 housing prices in the suburbs of Boston are available,
with response the median value of owner-occupied homes in $1000’s, and with 13 variables
(p = 13) listed in Table 2.3.

Table 2.3: Variables in Boston Housing Data Set
Abbreviation Variable
crim per capita crime rate by town
zn proportion of residential land zoned for lots over 25,000 sq.ft.
indus proportion of non-retail business acres per town
chas Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)
nox nitrogen oxides concentration (parts per 10 million)
rm average number of rooms per dwelling
age proportion of owner-occupied units built prior to 1940
dis weighted mean of distances to five Boston employment centers
rad index of accessibility to radial highways
tax full-value property-tax rate per $10,000
ptratio pupil-teacher ratio by town
Black proportion Black residents by town
lstat lower status of the population (percent)

Again, we apply Bayesian LASSO, the random-weighting approach for all three weight-
ing schemes (2.4), (2.5) and (2.6) according toAlgorithm 2, aswell as the parametric residual
bootstrap method (Knight & Fu, 2000) with B = 1000. We use the same prior specifica-
tions as well as RJMCMC implementation for Bayesian LASSO as we did in our simulation
studies. For the random-weighting approach, random weights are drawn from a standard
exponential distribution, and the regularization parameter is chosen with cross-validation
using Liu and Yu (2013)’s unweighted LASSO+LS procedure (i.e. 2-step cross-validation).
Meanwhile, for residual bootstrap, its regularization parameter is chosen via cross-validation
using standard LASSO.

Figure 2.5 shows the marginal posterior distributions of β’s sampled from MCMC as
well as the marginal conditional (on data) distributions of β’s obtained from the random-

37

weighting methods and the parametric residual bootstrap. For most of the coefficients, there
is very good agreement among the methods. One notable feature is that the parametric
residual bootstrap approach induces the least sparsity among all five methods for variables
indus and age. In addition, Bayesian LASSO appears to introduce slightly more sparsity
than the random-weighting schemes for the variable age. Besides that, random-weighting
with different penalty weights (2.6) appears to produce lower outliers for variables crim,
indus and ptratio.

2.5. Discussion

The findings above extend what is known about asymptotic conditional sampling distri-
bution of random-weighting solutions in LASSO regression, and thereby contribute to
our understanding of uncertainty quantification in penalized estimation settings. Because
random weighting is readily deployed in contemporary applications involving large-scale
optimization, further work is warranted that sheds more light on the random-weighting
approach and its links with bootstrap and Bayesian approaches.

Connection to Bayes

In fixed dimensional (pn = p) setting where β0 is not sparse (i.e. q = p), Theorems 2.3 and
2.4 describe the first order behavior of the conditional distribution of the one-step random-
weighting samples β̂wn . Under typical parametric Bayesian inference for β in the linear
model (2.1), for any prior measure of β that is absolutely continuous in a neighborhood of
β0 with a continuous positive density at β0, the Berstein-von Mises Theorem (e.g., Theorem
10.1 of van der Vaart (1998)) ensures that for every Borel set A ⊂ Θ ⊂ Rp,

P
[√

n
(
β − β̂MLE

n

)
∈ A

∣∣Fn]→ P [Z ∈ A]

along almost every sample path, where Z ∼ N(0, σ2ϵC
−1). Hence, based on Theorem 2.4

(with centering on β̂MLE
n = β̂OLS

n), for any λn = o(
√
n), by drawing random weights from

38

FW with unitary mean and variance (µW = σ2W = 1), the conditional distribution of the
one-step random-weighting samples β̂wn converges to the same limit as in the Bernstein-von
Mises Theorem, i.e., the conditional distribution of β̂wn is the same – at least up to the first
order – as the posterior distribution of β under the regime of Bayesian inference.

Theorem 2.4 (with centering on β̂MLE
n) highlights an important implication for the choice

of FW in deploying the random-weighting approach to approximate posterior inference.
Specifically, non-unitary mean or variance of the random weights would cause the random-
weighting samples to converge to a conditional normal distribution with an asymptotic
variance that is different from the one guaranteed by the Bernstein-von-Mises Theorem.

M. A. Newton and Raftery (1994)’s first-order approximation theory for the random-
weighting method relies on some classical regularity assumptions that do not hold in the
LASSO setting studied here (2.2). The present work therefore extends the range of cases
in which random-weighting operates successfully in large samples to achieve approximate
Bayesian inference.

Comparison of random weighting and posterior distribution is less straightforward
in cases where β0 is sparse. Castillo et al. (2015) used a mixture of point masses at zero
and continuous distributions as a sparse prior in their full Bayesian procedures for high-
dimensional sparse linear regression. For this sparse prior, they showed that the resulting
posterior distribution is not approximated by a non-singular normal, but by a random
mixture of different dimensional normal distributions. Whilst we do not have an explicit
result on the distributional approximation for β̂wn in growing-pn setting (e.g., Theorem 6 of
Castillo et al. (2015)), our Theorem 2.5 ensures that the conditional distribution of β̂wn does
amass around the true support ofβ, and on the true support, the random-weighting samples
attain asymptotic Gaussian distributional behavior. Theorem 3.4 is therefore comparable
to Corollary 2 in Castillo et al. (2015), although different techniques are deployed; for
instance we consider almost sure weak conditional convergence, whereas Castillo et al.
(2015) considers sample average total-variation distance convergence, and we have no
explicit prior structure. Yet the basic message of both is that the mass of the posterior

39

distribution, on the one hand, and the random-weighting distribution, on the other, are
similarly concentrating on the correct model subset according to the same Gaussian law.
We also acknowledge the fact that these Bayesian models could handle high-dimensional
problem where pn grows nearly exponential with sample size n by using sparse-inducing
priors on β. On the other hand, our results require pn to grow at a polynomial rate of o(√n).

Perturbation bootstrap (in general)

Whilst the random-weighting approach has a Bayesian justification, its resemblance to
existing bootstrap algorithms, especially the perturbation bootstrap, warrants a comparison
with non-Bayesian bootstrap literature. The (naive) perturbation bootstrap was introduced
by Jin, Ying, and Wei (2001) as a method to estimate sampling distributions of estimators
related toU -process-structured objective functions. S. Chatterjee and Bose (2005) established
first-order distributional consistency of a generalized perturbation bootstrap technique in
M-estimation where they allowed both n→∞ and pn →∞. That paper also pointed out
that for broader classes of models, the generalized bootstrap method is not second-order
accurate without appropriate bias-correction and studentization. In particular, the work
in (naive) perturbation bootstrap resembles the Bayesian NPL objective function (Fong et
al., 2019). Subsequently, Minnier, Tian, and Cai (2011) proved the first-order distributional
consistency of the perturbation bootstrap for Zou (2006)’s Adaptive LASSO (ALasso) and
Fan and Li (2001)’s smoothly clipped absolute deviation (SCAD) under fixed-p setting in
order to construct accurate confidence regions for ALasso and SCAD estimators. Again,
their work has the flavor of Bayesian Loss-NPL (Fong et al., 2019) where the loss function is
either ALasso or SCAD. More recently, Das et al. (2019) extended the work of Minnier et al.
(2011) by introducing a suitably Studentized version of modified perturbation bootstrap
ALasso estimator that achieves second-order correctness in distributional consistency even
when pn →∞.

40

Bootstrapping for LASSO

Various bootstrap techniques have been considered to construct confidence regions for stan-
dard LASSO estimators in (2.2) under different model settings, including fixed or random
design, as well as homoscedastic or heteroscedastic errors ϵ. Knight and Fu (2000) first
considered the residual bootstrap under fixed design and homoscedastic error. A. Chat-
terjee and Lahiri (2010) presented a rigorous proof for the heuristic discussion of Knight
and Fu (2000)’s Section 4 to show that the LASSO residual bootstrap samples fail to be
distributionally consistent unless β0 is not sparse, for which Knight and Fu (2000) invoked
the Skorokhod’s argument. Subsequently, A. Chatterjee and Lahiri (2011a) rectified the
shortcoming by proposing a modified residual bootstrap method by thresholding the Lasso
estimator. Meanwhile, Camponovo (2015) proposed a modified paired-bootstrap technique
and established its distributional consistency to approximate the distribution of Lasso esti-
mators in linear models with random design and heteroscedastic errors. Recently, Das and
Lahiri (2019) considered the perturbation bootstrap method for Lasso estimators under both
fixed and random designs with heteroscedastic errors. Since centering on the thresholded
Lasso estimator (c.f. A. Chatterjee & Lahiri, 2011a) resulted in distributional inconsistency
of the naive perturbation bootstrap, Das and Lahiri (2019) proceeded with a suitably Stu-
dentized version of modified perturbation bootstrap (c.f. Das et al. (2019)) to rectify the
shortcoming.

Comparison and contribution of our paper

Interestingly, the setup of naive perturbation bootstrap in Das and Lahiri (2019) mimics the
proposed random-weighting approach (2.3) in LASSO regression with weighting scheme
(2.4), but there remain some differences in our approach. Das and Lahiri (2019) also
considered heteroscedastic error term ϵ, which we do not consider in this paper. Meanwhile,
the weighting schemes considered in this paper are slightly more flexible, since we also
consider the cases where independent random weights are also assigned on the LASSO
penalty term in weighting schemes (2.5) and (2.6). The random weights in Das and Lahiri

41

(2019)’s perturbation bootstrap are restricted to independent draws from distribution with
σ2W = µ2W , whereas we consider any positive random weights with finite fourth moment.
Furthermore, our extended random-weighting framework in Section 2.3.2 attains conditional
sparse normality property under growing pn setting, whereas Das and Lahiri (2019)’s
(modified) perturbation bootstrap method achieves distributional consistency under fixed
dimensional (pn = p) setting.

42

lstat

ptratio Black

rad tax

age dis

nox rm

indus chas

crim zn

−0.8 −0.6 −0.4 −0.2 0.0

−0.6 −0.4 −0.2 0.0 0.00 0.05 0.10 0.15

−0.2 0.0 0.2 0.4 −0.4 −0.2 0.0

−0.1 0.0 0.1 −0.4 −0.2 0.0 0.2

−0.4 −0.3 −0.2 −0.1 0.0 0.0 0.2 0.4 0.6

−0.4 −0.2 0.0 0.00 0.05 0.10 0.15

−0.4 −0.3 −0.2 −0.1 0.0 0.00 0.05 0.10 0.15 0.20

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

β

M
a
rg

in
a
l
p
o
s
te

ri
o
r/

c
o
n
d
it
io

n
a
l
c
d
f
o
f

β

method

MCMC

RW1

RW2

RW3

RB

Figure 2.5: Boston Housing data example: Marginal posterior/conditional distribution
plots for β = (β1, · · · , β13)′ sampled from the 5 methods – MCMC via Bayesian LASSO,
the two-step random-weighting approach using weighting schemes (2.4) (2.5) and (2.6)
(denoted RW1, RW2 and RW3 respectively), as well as the parametric residual bootstrap
(denoted RB).

43

Chapter 3

Technical Details for Chapter 2

We present the proofs for all the theorems, proposition and corollaries in Chapter 2. Many
subsequent proofs rely on this following result.

Lemma 3.1. LetU1, U2, · · · be any i.i.d. random variables with E(Ui) = 0 and E[(Ui)2] = σ2 <∞.

Then for any bounded sequence of real numbers {ki} and for any 1
2 < c < 1,

1

nc

n∑
i=1

kiUi
a.s.−→ 0.

Proof. Since {ki} are bounded, ∃M > 0 such that |ki| ≤M ∀ i. Then

∞∑
n=1

V ar

(
knUn
nc

)
= σ2

∞∑
n=1

k2n
n2c
≤ σ2M2

∞∑
n=1

1

n2c
<∞.

B y Theorem 2.5.3 of Durrett (2010), with probability one,

∞∑
n=1

knUn
nc

<∞.

Finally, apply Kronecker’s Lemma to obtain the desired result.

44

Lemma 3.2. Assume assumptions (2.8) and (2.9). Then,

∥∥∥∥(Cwn(11))−1
∥∥∥∥
2

= Op(1).

Proof. Due to assumptions (2.8) and (2.9) and that q is fixed, Cn(11) is invertible for all n.
We also verify the invertibility of Cwn(11) by recognizing that

Cwn(11) =
1

n
X ′

(1)DnX(1) =
1

n

(
D

1
2
nX(1)

)′(
D

1
2
nX(1)

)

where D1/2
n = diag

(√
W1, · · · ,

√
Wn

), which is a full-rank square matrix. Thus,

rank
(
Cwn(11)

)
= rank

(
D

1
2
nX(1)

)
= rank

(
X(1)

)
= q,

i.e. Cwn(11) is full-rank and is invertible for every n. Next,

Cwn(11) = Cn(11) +
1

n
X ′

(1)(Dn − µW In)X(1)

where the Strong Law of Large Numbers ensures that

1

n
X ′

(1)(Dn − µW In)X(1)
a.s.−→ 0

due to assumption (2.8). Since Cn(11) is invertible for all n, we have

∥∥∥∥(Cwn(11))−1
∥∥∥∥
2

=
∥∥∥(Cn(11) + o(1)

)−1
∥∥∥
2
= O(1) a.s.

In fact, if we assume Cn(11) → C11 for some nonsingular matrix C11 in Lemma 3.2, then
by the Strong Law of Large Numbers and Continuous Mapping Theorem,

(
Cwn(11)

)−1 a.s.−→ 1

µW
C−1
11 .

45

Lemma 3.3. Assume assumptions (2.8) and (2.9). For any 1
2 < c1 < 1, if ∃ 0 ≤ c3 < 2c1 − 1 for

which pn = O(nc3), then ∥∥∥n1−c1C̃wn ∥∥∥
2
= op(1).

Proof. Let
H = X(1)C

−1
n(11)Cn(12) −X(2).

Then
n1−c1C̃wn =

1

nc1
H ′(µW In −Dn)X(1)

(
Cwn(11)

)−1
.

Due to assumptions (2.8) and (2.9) and that q is fixed, every element of the matrix H is
bounded. Let hij and xij be the (i, j)th element of H and X(1) respectively. For 0 ≤ c3 <

2c1 − 1, by Lemma 3.1,
1

nc1−
c3
2

n∑
i=1

hk,ixi,l(Wi − µW)
a.s.−→ 0

for every k = 1, · · · , pn − q and l = 1, · · · , q. Thus,

∥∥∥∥ 1

nc1
H ′(µW In −Dn)X(1)

∥∥∥∥2
2

≤
∥∥∥∥ 1

nc1
H ′(µW In −Dn)X(1)

∥∥∥∥2
F

=

pn−q∑
k=1

q∑
l=1

[
1

n
c3
2

× 1

nc1−
c3
2

n∑
i=1

hk,ixi,l(µW −Wi)

]2
= O(pn)× o

(
n−c3

)
= o(1) a.s..

Finally, by Lemma 3.2,

∥∥∥n1−c1C̃wn ∥∥∥
2
≤
∥∥∥∥ 1

nc1
H ′(µW In −Dn)X(1)

∥∥∥∥
2

∥∥∥∥(Cwn(11))−1
∥∥∥∥
2

= op(1).

46

Lemma 3.4. Suppose that pn = p is fixed. Assume (2.8) and (2.10). Then, as n→∞,

µW
n
X ′DnX

a.s.−→ µWC.

Proof. Due to assumption (2.8), the Strong Law of Large Numbers gives

1

n
X ′(Dn − µW In)X =

1

n

n∑
i=1

(Wi − µW)xix
′
i

a.s.−→ 0,

where xi is the ith row of X . Then, due to assumption (2.10),

1

n
X ′DnX =

1

n
X ′(Dn − µW In)X +

µW
n
X ′X

a.s.−→ 0+ µWC = µWC.

An immediate consequence of Lemma 3.4 is that when p is fixed,

Cwn(ij)
a.s.−→ µWCij ∀ i, j = 1, 2.

We remind readers that in this paper, we consider a common probability space P = PD×PW ,
which correspond to the two sources of randomness (ϵ,W). Note that the product proba-
bility space highlights the fact that the random weights W are drawn independently from
the data D. The rest of the proofs deals with convergence of conditional probabilities/dis-
tributions (given data, i.e. given Fn) for expressions containing ϵ, where the convergence
takes place almost surely under PD (i.e. for almost every data set). See Mason and Newton
(1992) for relevant background.

Lemma 3.5. Assume (2.7). Then

ϵ′Dnϵ

n

c.p.−→ µWσ
2
ϵ a.s. PD.

47

Proof. Clearly,
1

n

n∑
i=1

ϵ2i → σ2ϵ a.s. PD.

Due to assumption (2.7),
1

n

n∑
i=1

ϵ4i = O(1) a.s. PD,

which leads to

1

n2

n∑
i=1

E(ϵ4iW 2
i

∣∣Fn) = 1

n2

n∑
i=1

ϵ4iE(W 2
i) =

σ2W + µ2W
n

(
1

n

n∑
i=1

ϵ4i

)
→ 0 a.s. PD.

Hence, by the Weak Law of Large Numbers (e.g., Theorem 1.14(ii) of Shao (2003)),

1

n
ϵ′(Dn − µW In)ϵ =

1

n

n∑
i=1

ϵ2i (Wi − µW)
c.p.
−→ 0 a.s. PD,

and thus,

ϵ′Dnϵ

n
=

1

n

n∑
i=1

ϵ2i (Wi − µW) +
µW
n

n∑
i=1

ϵ2i
c.p.
−→ 0 + µWσ

2
ϵ = µWσ

2
ϵ a.s. PD.

Lemma 3.6. Assume (2.7), (2.8) and (2.9). Then for any c > 0,

1

nc
Zw
n(1) = op(1) a.s. PD.

Proof. Let xij be the (i, j)th element of X(1). Then, we can rewrite

(
1

nc

∥∥∥Zw
n(1)

∥∥∥
2

)2

=
1

n2c

q∑
j=1

(
1√
n

n∑
i=1

ϵixji(Wi − µW) +
µW√
n

n∑
i=1

ϵixji

)2

=

q∑
j=1

(
1

n
1
2
+c

n∑
i=1

ϵixji(Wi − µW) +
µW

n
1
2
+c

n∑
i=1

ϵixji

)2

,

48

where we note that

E

(
n∑
i=1

ϵixjiWi

∣∣∣∣Fn
)

=
n∑
i=1

ϵixjiE(Wi) = µW

n∑
i=1

ϵixji,

and
V ar

(
n∑
i=1

ϵixjiWi

∣∣∣∣Fn
)

=

n∑
i=1

ϵ2ix
2
jiV ar(Wi) = σ2W

n∑
i=1

ϵ2ix
2
ji.

Now, due to assumption (2.8),

1

n

n∑
i=1

ϵ2ix
2
ji = O(1) a.s. PD =⇒

n∑
i=1

ϵ2ix
2
ji = O(n) a.s. PD,

and coupled with assumption (2.7),

1

n

n∑
i=1

ϵ4ix
4
ji = O(1) a.s. PD =⇒

n∑
i=1

ϵ4ix
4
ji = O(n) a.s. PD.

Thus, by using assumptions (2.7) and (2.8) and that FW has finite fourth moment, the
Liapounov’s sufficient condition is satisfied

[
n∑
i=1

ϵ2ix
2
jiV ar(Wi)

]−2 [n∑
i=1

ϵ4ix
4
jiE(Wi − µW)4

]

= O
(
n−2

)
×O (n) = O

(
n−1

)
a.s. PD,

in order to deploy the Lindeberg’s Central Limit Theorem

∑n
i=1 ϵixji(Wi − µW)√
σ2W

∑n
i=1 ϵ

2
ix

2
ji

c.d.−→ N(0, 1) a.s. PD.

Subsequently, for all j = 1, · · · , q,

1√
n

n∑
i=1

ϵixji(Wi − µW)

49

=

√√√√σ2W
n

n∑
i=1

ϵ2ix
2
ji ×

∑n
i=1 ϵixji(Wi − µW)√
σ2W

∑n
i=1 ϵ

2
ix

2
ji

= Op(1) a.s. PD,

and hence,
1

n
1
2
+c

n∑
i=1

ϵixji(Wi − µW) = op(1) a.s. PD.

Finally, by assumption (2.8) and Lemma 3.1,

µW

n
1
2
+c

n∑
i=1

ϵixji → 0 a.s. PD

for all j = 1, · · · , q. Since q is fixed,

(
1

nc

∥∥∥Zw
n(1)

∥∥∥
2

)2

= op(1) a.s. PD,

and the result follows.

If we assume thatCn(11) → C11 for some nonsingular matrixC11 in Lemma 3.6, notations
could be simplified in the preceding proof by using Cramer-Wold device. We point out to
readers that the Cn(11) → C11 assumption is required in Theorem 2.5 but not in Theorem
2.2. The following proof contains some interim results that will be utilized in the proof of
Theorem 2.5.

Specifically, let xi(1) be the ith row of X(1). Then, for every z ∈ Rq,

z′
[

1√
n
X ′

(1)(Dn − µW In)ϵ
]

=
1√
n

n∑
i=1

ϵi(Wi − µW)z′xi(1)

=

√√√√σ2W
n

n∑
i=1

ϵ2i
(
z′xi(1)

)2 × ∑n
i=1 ϵi(Wi − µW)z′xi(1)√
σ2W

∑n
i=1 ϵ

2
i

(
z′xi(1)

)2 ,

50

where we note that

E

(
n∑
i=1

ϵiWi(z
′xi(1))

∣∣∣∣Fn
)

=
n∑
i=1

ϵi(z
′xi(1))E(Wi) = µW

n∑
i=1

ϵi(z
′xi(1)),

and

V ar

(
n∑
i=1

ϵiWi(z
′xi(1))

∣∣∣∣Fn
)

=
n∑
i=1

ϵ2i (z
′xi(1))

2V ar(Wi) = σ2W

n∑
i=1

ϵ2i (z
′xi(1))

2.

Now,

1

n

n∑
i=1

ϵ2i
(
z′xi(1)

)2
= z′

(
1

n

n∑
i=1

ϵ2ixi(1)x
′
i(1)

)
z

= z′

(
σ2ϵCn(11) +

1

n

n∑
i=1

(
ϵ2i − σ2ϵ

)
xi(1)x

′
i(1)

)
z

→ z′ (σ2ϵC11

)
z a.s. PD

due to assumption (2.8) and the Strong Law of Large Numbers. Thus,

n∑
i=1

ϵ2i
(
z′xi(1)

)2
= O(n) a.s. PD.

In addition, by assumptions (2.7) and (2.8),

1

n

n∑
i=1

ϵ4i
(
z′xi(1)

)4 ≤ (qM1∥z∥2)4
(
1

n

n∑
i=1

ϵ4i

)
= O(1) a.s. PD,

which implies
n∑
i=1

ϵ4i
(
z′xi(1)

)4
= O(n) a.s. PD.

Therefore, by using assumptions (2.7) and (2.8) and that FW has finite fourth moment, we

51

could verify the Liapounov’s sufficient condition

[
n∑
i=1

ϵ2i
(
z′xi(1)

)2
V ar(Wi)

]−2 [n∑
i=1

ϵ4i
(
z′xi(1)

)4 E(Wi − µW)4

]

= O
(
n−2

)
×O (n) = O

(
n−1

)
a.s. PD,

in order to deploy the Lindeberg’s Central Limit Theorem

∑n
i=1 ϵi(Wi − µW)z′xi(1)√
σ2W

∑n
i=1 ϵ

2
i

(
z′xi(1)

)2 c.d.−→ N(0, 1) a.s. PD.

Then, by Slutsky’s Theorem, for every z ∈ Rq,

z′
[

1√
n
X ′

(1)(Dn − µW In)ϵ
]

c.d.−→ N
(
0 , z′ (σ2Wσ2ϵC11

)
z
)
.

and by Cramer-Wold device,

1√
n
X ′

(1)(Dn − µW In)ϵ
c.d.−→ Nq

(
0 , σ2Wσ

2
ϵC11

)
,

Since assumption (2.8) and Lemma 3.1 ensure that for any c > 0,

1

n
1
2
+c
X ′

(1)ϵ→ 0 a.s. PD,

we finally have

1

nc
Zw
n(1) =

1

nc

[
1√
n
X ′

(1)(Dn − µW In)ϵ
]
+

µW

n
1
2
+c
X ′

(1)ϵ = op(1) a.s. PD.

Lemma 3.7. Assume (2.7), (2.8) and (2.9).

(a) If there exists 1
2 < c1 < c2 < 1.5− c1 and 0 ≤ c3 < 2(c2 − c1) for which pn = O(nc3), then

1

nc2−
1
2

∥∥∥Zw
n(3)

∥∥∥
2
= op(1) a.s. PD.

52

(b) If there exists 1
2 < c1 < c2 < 1.5− c1 and 0 ≤ c3 < 2

3(c2 − c1) for which pn = O(nc3), then

pn − q
nc2−

1
2

∥∥∥Zw
n(3)

∥∥∥
2
= op(1) a.s. PD.

Proof. Let
H = X(1)C

−1
n(11)Cn(12) −X(2).

Then
Zw
n(3) =

1√
n
H ′Dnϵ.

Due to assumptions (2.8) and (2.9) and that q is fixed, every element of the matrix H is
bounded. Let hij be the (i, j)th element of H . Then, for all j = 1, · · · , pn − q,

1

n

n∑
i=1

h2jiϵ
2
i = O(1) a.s. PD =⇒

n∑
i=1

h2jiϵ
2
i = O(n) a.s. PD,

and
1

n

n∑
i=1

h4jiϵ
4
i = O(1) a.s. PD =⇒

n∑
i=1

h4jiϵ
4
i = O(n) a.s. PD

due to assumption (2.7). Next, we note that

E

(
n∑
i=1

hjiϵiWi

∣∣∣∣Fn
)

=

n∑
i=1

hjiϵiE(Wi) = µW

n∑
i=1

hjiϵi,

and
V ar

(
n∑
i=1

hjiϵiWi

∣∣∣∣Fn
)

=
n∑
i=1

h2jiϵ
2
iV ar(Wi) = σ2W

n∑
i=1

h2jiϵ
2
i .

By using assumptions (2.7) and (2.8) and that FW has finite fourth moment, we could verify
the Liapounov’s sufficient condition

[
n∑
i=1

h2jiϵ
2
iV ar(Wi)

]−2 [n∑
i=1

h4jiϵ
4
iE(Wi − µW)4

]

= O
(
n−2

)
×O (n) = O

(
n−1

)
a.s. PD,

53

in order to deploy the Lindeberg’s Central Limit Theorem

∑n
i=1 hjiϵi(Wi − µW)√
σ2W

∑n
i=1 h

2
jiϵ

2
i

c.d.−→ N (0, 1) a.s. PD.

Thus, for all j = 1, · · · , pn − q,

1√
n

n∑
i=1

hjiϵi(Wi − µW)

=

√√√√σ2W
n

n∑
i=1

h2jiϵ
2
i ×

∑n
i=1 hjiϵi(Wi − µW)√
σ2W

∑n
i=1 h

2
jiϵ

2
i

= Op(1) a.s. PD,

which leads to
1

nc1

n∑
i=1

hjiϵi(Wi − µW) = op(1) a.s. PD,

whereas Lemma 3.1 ensures that

1

nc1

n∑
i=1

hjiϵi → 0 a.s. PD.

Therefore, for part (a) of Lemma 3.7,

(
1

nc2−
1
2

∥∥∥Zw
n(3)

∥∥∥
2

)2

=
1

n2c2−1

∥∥∥Zw
n(3)

∥∥∥2
2

=
1

n2c2−1

pn−q∑
j=1

(
1√
n

n∑
i=1

hjiϵi(Wi − µW) +
1√
n

n∑
i=1

hjiϵi

)2

=
n2c1−1

n2c2−1

pn−q∑
j=1

(
1

nc1

n∑
i=1

hjiϵi(Wi − µW) +
1

nc1

n∑
i=1

hjiϵi

)2

= O
(
n2(c1−c2)

)
× op (nc3) a.s. PD

= op(1) a.s. PD

54

since c3 < 2(c2 − c1).
For part (b) of Lemma 3.7,

(
pn − q
nc2−

1
2

∥∥∥Zw
n(3)

∥∥∥
2

)2

= O
(
n2(c1−c2+c3)

)
× op (nc3) a.s. PD

= op(1) a.s. PD

since c3 < 2
3(c2 − c1).

Lemma 3.8. Assume (2.8) and that pn = p is fixed. Then

1

n
X ′Dnϵ

c.p.−→ 0 a.s. PD.

Proof. Let xi and xij be the ith row and (i, j)th element ofX respectively. Due to assumption
(2.8),

1

n
X ′ϵ→ 0 a.s. PD,

and for all j = 1, · · · , p,

1

n2

n∑
i=1

E
(
x2jiϵ

2
iW

2
i

∣∣∣Fn)
=

1

n2

n∑
i=1

x2jiϵ
2
iE(W 2

i)

≤
M2

1 (σ
2
W + µ2W)

n

(
1

n

n∑
i=1

ϵ2i

)

→ 0 a.s. PD.

Hence, by the Weak Law of Large Numbers (e.g., Theorem 1.14(ii) of Shao (2003)),

1

n
X ′(Dn − µW In)ϵ =

1

n

n∑
i=1

ϵi(Wi − µW)xi
c.p.
−→ 0 a.s. PD.

55

Finally,
X ′Dnϵ

n
=

1

n
X ′(Dn − µW In)ϵ+

µW
n
X ′ϵ

c.p.
−→ 0 a.s. PD.

Lemma 3.9. Suppose that pn = p is fixed. Assume (2.7), (2.8), (2.10), and

1√
n
X ′en → 0 a.s. PD,

where en is the residual of the strongly consistent estimator β̂SC
n of the linear model (2.1). Then,

1√
n
X ′Dnen

c.d.−→ Np

(
0, σ2Wσ

2
ϵC
)

a.s. PD.

Proof. Due to assumption (2.10),

σ2ϵ
n
X ′X → σ2ϵC.

Since β̂SC
n is a strongly consistent estimator of β in (2.1), we have

(
β̂SC
n − β0

)
→ 0 a.s. PD.

Let xi be the ith row of X , and let ei be the ith element of en. Due to assumption (2.8) and
Lemma 3.1 and the fact that β̂SC

n is strongly consistent,

1

n

n∑
i=1

(e2i − σ2ϵ)xix′
i

=
1

n

n∑
i=1

([
x′
i

(
β0 − β̂SC

n

)
+ ϵi

]2
− σ2ϵ

)
xix

′
i

=
1

n

n∑
i=1

(ϵ2i − σ2ϵ)xix′
i

+
2

n

n∑
i=1

ϵi

[
x′
i

(
β0 − β̂SC

n

)]
xix

′
i

56

+
1

n

n∑
i=1

[
x′
i

(
β0 − β̂SC

n

)]2
xix

′
i

→ 0 a.s. PD,

which leads to

1

n

n∑
i=1

e2ixix
′
i =

1

n

n∑
i=1

(e2i − σ2ϵ)xix′
i +

σ2ϵ
n
X ′X → σ2ϵC a.s. PD. (3.1)

Now for every z ∈ Rp, consider

z′
[

1√
n
X ′(Dn − µW In)en

]
=

1√
n

n∑
i=1

ei(Wi − µW)(z′xi)

=

√√√√σ2W
n

n∑
i=1

e2i (z
′xi)2 ×

∑n
i=1 ei(Wi − µW)(z′xi)√
σ2W

∑n
i=1 e

2
i (z

′xi)2
.

We verify that

E

{
n∑
i=1

eiWi(z
′xi)

∣∣∣∣Fn
}

= µW

n∑
i=1

ei(z
′xi),

and
V ar

(
n∑
i=1

eiWi(z
′xi)

∣∣∣∣Fn
)

= σ2W

n∑
i=1

e2i (z
′xi)

2.

From (3.1), we have

1

n

n∑
i=1

e2i (z
′xi)

2 = z′

(
1

n

n∑
i=1

e2ixix
′
i

)
z → z′ (σ2ϵC) z a.s. PD,

and thus
n∑
i=1

e2i (z
′xi)

2 = O(n) a.s. PD.

57

Due to assumptions (2.7) and (2.8) and the fact that β̂SC
n is strongly consistent,

1

n

n∑
i=1

e4i (z
′xi)

4

≤ (pM1∥z∥2)4 ×

(
1

n

n∑
i=1

e4i

)

= (pM1∥z∥2)4 ×

(
1

n

n∑
i=1

[
ϵi − x′

i

(
β̂SC
n − β0

)]4)

≤ (pM1∥z∥2)4 ×

[
1

n

n∑
i=1

(
|ϵi|+ pM1

∥∥∥β̂SC
n − β0

∥∥∥
2

)4]

= O(1) a.s. PD,

and thus
n∑
i=1

e4i (z
′xi)

4 = O(n) a.s. PD.

Since the i.i.d. random weights are drawn from FW which has finite fourth moment, the
Liapounov’s sufficient condition is satisfied

[
n∑
i=1

e2i (z
′xi)

2V ar(Wi)

]−2 [n∑
i=1

e4i (z
′xi)

4E(Wi − µW)4

]

= O
(
n−2

)
×O (n)

= O
(
n−1

)
a.s. PD

in order to deploy the Lindeberg’s Central Limit Theorem

∑n
i=1 ei(Wi − µW)(z′xi)√
σ2W

∑n
i=1 e

2
i (z

′xi)2

c.d.−→ N(0, 1) a.s. PD.

By Slutsky’s Theorem, for every z ∈ Rp,

z′
[

1√
n
X ′(Dn − µW In)en

]
c.d.−→ N

(
0 , z′ (σ2Wσ2ϵC) z) a.s. PD,

58

and by Cramer-Wold device,

1√
n
X ′(Dn − µW In)en

c.d.−→ Np

(
0 , σ2Wσ

2
ϵC
)

a.s. PD.

Finally,
1√
n
X ′Dnen

c.d.−→ Np

(
0 , σ2Wσ

2
ϵC
)

a.s. PD

since by assumption (2.12),
µW√
n
X ′en → 0 a.s. PD.

We are now ready to prove the main results presented in the main text. The proof of
Proposition 2.1 is similar to that of Proposition 1 of Zhao and Yu (2006).

Proof of Proposition 2.1. First, we note that since rank(X) = pn, where pn ≤ n, the solution to
(2.3) is unique by Osborne et al. (2000) and R. J. Tibshirani (2013). We begin with weighting
scheme (2.6). Results for the other two simpler weighting schemes could then be easily
inferred.

β̂wn = argmin
β

{
1

n
(Y −Xβ)′Dn(Y −Xβ) +

λn
n

pn∑
j=1

W0,j |βj |

}

= argmin
β

{
1

n
[ϵ−X(β − β0)]

′Dn[ϵ−X(β − β0)]

+
λn
n

pn∑
j=1

W0,j |β0,j + βj − β0,j |

}
.

Therefore,

(β̂wn − β0)

= argmin
un

{
1

n
(ϵ−Xun)

′Dn(ϵ−Xun) +
λn
n

pn∑
j=1

W0,j |β0,j + un,j |

}

59

= argmin
un

{
u′
n

(
X ′DnX

n

)
un − 2u′

n

(
X ′Dnϵ

n

)
+

ϵ′Dnϵ

n

+
λn
n

pn∑
j=1

W0,j |β0,j + un,j |

}
.

The term (ϵ′Dnϵ)/n could be dropped since for every n, it does not contain un and Lemma
3.5 ensures that it converges in conditional probability to a finite limit. Differentiating the
first two terms with respect to un yields

1

n

{
2X ′DnXun − 2X ′Dnϵ

}
=

1

n

{
2
√
n
[
Cwn
(√
nun

)
−Zw

n

]}
.

For j = 1, · · · , pn, considering sub-differentials of the penalty term with respect to un,j
yields

λn
n W0,j × sgn (β0,j + un,j) for β0,j + un,j ̸= 0

λn
n W0,j × [−1, 1] for β0,j + un,j = 0

=

λn
n W0,j × sgn

(
β̂wn,j

)
for β̂wn,j ̸= 0

λn
n W0,j × [−1, 1] for β̂wn,j = 0

Note that β̂wn = ûn + β0, which can be partitioned into

β̂wn =

β̂wn(1∗)
β̂wn(2∗)

 ,
where β̂wn(1∗) consists of non-zero elements of β̂wn , and β̂wn(2∗) = 0. The asterisk here is to
distinguish the partition of random-weighting samples β̂wn from the true partition of β0. It
follows that

2
√
n
[
Cwn
(√
nûn

)
−Zw

n

]

60

= 2
√
n

Cwn(11∗) Cwn(12∗)

Cwn(21∗) Cwn(22∗)

×√n
ûn(1∗)
ûn(2∗)

−
Zw

n(1∗)

Zw
n(2∗)

 .

Note that ûn(2∗) does not necessarily equal to 0 unless the partition of the random-weighting
samples β̂wn coincides with the true partition of β0. As a consequence of the Karush-Kuhn-
Tucker (KKT) conditions, we have

Cwn(11∗)
[√
nûn(1∗)

]
+ Cwn(12∗)

[√
nûn(2∗)

]
−Zw

n(1∗) = −
λn
2
√
n
W0(1) ◦ sgn

(
β̂wn(1∗)

)
(3.2)

and

∣∣∣Cwn(21∗) [√nûn(1∗)]+ Cwn(22∗)
[√
nûn(2∗)

]
−Zw

n(2∗)

∣∣∣ ≤ λn
2
√
n
W0(2) (3.3)

element-wise. Meanwhile, we also note that

{∣∣ûn(1)∣∣ < ∣∣β0(1)

∣∣} =
{
ûn(1) <

∣∣β0(1)

∣∣}⋂{
ûn(1) > −

∣∣β0(1)

∣∣}
=
{
β̂wn(1) < β0(1) +

∣∣β0(1)

∣∣}⋂{
β̂wn(1) > β0(1) −

∣∣β0(1)

∣∣} ,
where all inequalities hold element-wise. Thus, β̂wn(1) < 0 element-wise if β0(1) < 0 element-
wise, and vice versa. In other words,

{
sgn

(
β̂wn(1)

)
= sgn (β0(1)

)}
⊇
{∣∣ûn(1)∣∣ < ∣∣β0(1)

∣∣ element-wise} . (3.4)

Therefore, by (3.2), (3.3), (3.4), and uniqueness of solution for the random-weighting setup
(2.3), if there exists ûn such that the following equation and inequalities hold:

Cwn(11)
[√
nûn(1)

]
−Zw

n(1) = −
λn
2
√
n
W0(1) ◦ sgn

(
β0(1)

) (3.5)

− λn
2
√
n
W0(2) ≤ Cwn(21)

[√
nûn(1)

]
−Zw

n(2) ≤
λn
2
√
n
W0(2) element-wise (3.6)∣∣ûn(1)∣∣ < ∣∣β0(1)

∣∣ element-wise, (3.7)

61

then we have sgn
(
β̂wn(1)

)
= sgn [β0(1)

] and ûn(2) = β̂wn(2) = β0(2) = 0, ie.

β̂wn
s
= β0,

and

P

(
β̂wn

s
= β0

∣∣∣∣Fn
)

≥ P
({∣∣∣Cwn(21) [√nûn(1)]−Zw

n(2)

∣∣∣ ≤ λn
2
√
n
W0(2) element-wise

}
⋂{

Cwn(11)
[√
nûn(1)

]
−Zw

n(1) = −
λn
2
√
n
W0(1) ◦ sgn

[
β0(1)

]}
⋂{∣∣ûn(1)∣∣ < ∣∣β0(1)

∣∣ element-wise} ∣∣∣∣Fn).
Now we proceed to simplify these equation and inequalities (3.5), (3.6) and (3.7). Equation
(3.5) can be re-written as

√
nûn(1) =

(
Cwn(11)

)−1
[
Zw
n(1) −

λn
2
√
n
W0(1) ◦ sgn

[
β0(1)

]]
. (3.8)

Substituting inequality (3.7) into equation (3.8) above leads to Awn . Replace the expression

W0(1) ◦ sgn
[
β0(1)

]
in equation (3.8) withW0sgn

[
β0(1)

] and sgn [β0(1)

] for weighting schemes (2.5) and (2.4)
respectively to obtain Awn .

Next, substituting equation (3.8) into inequality (3.6) and simple arithmetic yield

B̃w
n ≡

{ ∣∣∣∣C̃wnZw
n(1) +Zw

n(3) −
λn
2
√
n
Cwn(21)

(
Cwn(11)

)−1
W0(1) ◦ sgn

[
β0(1)

]∣∣∣∣
− λn

2
√
n

∣∣∣Cn(21)C−1
n(11)W0(1) ◦ sgn

[
β0(1)

]∣∣∣
≤ λn

2
√
n

(
W0(2) −

∣∣∣Cn(21)C−1
n(11)W0(1) ◦ sgn

[
β0(1)

]∣∣∣) element-wise
}

62

for weighting scheme (2.6). Now, observe that Bw
n ⊆ B̃w

n , since (LHS of Bw
n) ≥ (LHS of B̃w

n)
element-wise. Thus,

P

(
β̂wn

s
= β0

∣∣∣∣Fn) ≥ P (Awn ∩ B̃w
n

∣∣Fn) ≥ P (Awn ∩Bw
n

∣∣Fn) .
For weighting scheme (2.5),

B̃w
n ≡

{ ∣∣∣∣C̃wnZw
n(1) +Zw

n(3) −
λnW0

2
√
n
Cwn(21)

(
Cwn(11)

)−1
sgn [β0(1)

]∣∣∣∣
− λnW0

2
√
n

∣∣∣Cn(21)C−1
n(11)sgn

[
β0(1)

]∣∣∣
≤ λnW0

2
√
n

(
1pn−q −

∣∣∣Cn(21)C−1
n(11)sgn

[
β0(1)

]∣∣∣) element-wise
}
.

(3.9)

Now, observe that Bw
n ⊆ B̃w

n , since (LHS of Bw
n) ≥ (LHS of B̃w

n) element-wise, whereas
(RHS of Bw

n) ≤ (RHS of B̃w
n) element-wise due to the Irrepresentable condition (2.11).

Therefore,
P

(
β̂wn

s
= β0

∣∣∣∣Fn) ≥ P (Awn ∩ B̃w
n

∣∣Fn) ≥ P (Awn ∩Bw
n

∣∣Fn) .
For weighting scheme (2.4), substituteW0 = 1 in (3.9) and the result follows.

Proof of Theorem 2.2. From Proposition 2.1,

P
(
β̂wn (λn)

s
= β0

∣∣Fn) ≥ P (Awn⋂Bw
n

∣∣Fn)
= 1− P

[(
Awn
⋂
Bw
n

)c ∣∣∣∣Fn]
= 1− P

[
(Awn)

c
⋃

(Bw
n)

c
∣∣Fn]

≥ 1−
{
P
[
(Awn)

c
∣∣Fn]+ P

[
(Bw

n)
c
∣∣Fn] }.

We now investigate the conditional probabilities P [(Awn)c ∣∣Fn] and P [(Bw
n)

c
∣∣Fn] separately.

All three weighting schemes (2.4), (2.5) and (2.6) share very similar P [(Awn)c ∣∣Fn]. We
start off with the most general version (2.6) of the weighting schemes. Results for the other

63

two simpler weighting schemes could then be easily inferred. For ease of notation, let

zn = [zn,1, · · · , zn,q]′ :=
(
Cwn(11)

)−1
(
Zw
n(1) −

λn
2
√
n
W0(1) ◦ sgn

[
β0(1)

])
.

Note that
λn
2n

W0(1) ◦ sgn
[
β0(1)

] p−→ 0.

Hence, by Lemmas 3.2 and 3.6,

P [(Awn)
c |Fn] = P

 q⋃
j=1

{
|zn,j | >

√
n |β0,j |

}∣∣∣∣Fn

≤
q∑
j=1

P

(
1√
n
|zn,j | > |β0,j |

∣∣∣∣Fn)
→ 0 a.s. PD,

because for all j = 1, · · · , q, we have |β0,j | > 0 but

1√
n
|zn,j | = op(1) a.s. PD.

For weighting schemes (2.5) and (2.4), replace the expression

W0(1) ◦ sgn
[
β0(1)

]
withW0sgn

[
β0(1)

] and sgn [β0(1)

] respectively to obtain the same result

P [(Awn)
c |Fn]→ 0 a.s. PD.

We now turn our attention to P [(Bw
n)

c
∣∣Fn], where weighting scheme (2.6) is markedly

different – and derived separately – from weighting schemes (2.4) and (2.5). We first
consider weighting scheme (2.5), and then infer the result for weighting scheme (2.4) as a

64

special case. For ease of notation, define

ζn = [ζn,1, · · · , ζn,pn−q]
′ := Zw

n(3),

νn = [νn,1, · · · , νn,pn−q]
′ := C̃wn

(
Zw
n(1) −

λnW0

2
√
n
sgn [β0(1)

])
.

Then, for any ξ > 0,

P
[
(Bw

n)
c
∣∣Fn]

= P

pn−q⋃
j=1

{
|ζn,j + νn,j | >

λn
2
√
n
ηj

} ∣∣∣∣∣Fn

≤ P

pn−q⋃
j=1

{
|ζn,j |+ |νn,j | >

λn
2
√
n
ηj

} ∣∣∣∣∣Fn

≤ P

pn−q⋃
j=1

[{
|ζn,j |+ |νn,j | >

λn
2
√
n
ηj

}⋂{
|νn,j | ≤ ξ

}] ∣∣∣∣∣Fn

+ P

pn−q⋃
j=1

[{
|ζn,j |+ |νn,j | >

λn
2
√
n
ηj

}⋂{
|νn,j | > ξ

}] ∣∣∣∣∣Fn

≤ P

pn−q⋃
j=1

{
|ζn,j | >

λn
2
√
n
ηj − ξ

} ∣∣∣∣∣Fn
+ P

pn−q⋃
j=1

{|νn,j | > ξ}

∣∣∣∣∣Fn

≤ P

pn−q⋃
j=1

{
|ζn,j | >

λnW0

2
√
n
ηj − ξ

} ∣∣∣∣∣Fn
+ P

(
∥νn∥2 > ξ

∣∣∣Fn) .
Since

λnW0

n1.5−c1
sgn [β0(1)

]
= op(1),

we have, by Lemmas 3.3 and 3.6,

∥νn∥2 ≤
∥∥∥n1−c1C̃wn ∥∥∥

2

∥∥∥∥ 1

n1−c1
Zw
n(1) −

λnW0

2n1.5−c1
sgn [β0(1)

]∥∥∥∥
2

= op(1) a.s. PD,

and thus,
P
(
∥νn∥2 > ξ

∣∣∣Fn) = o(1) a.s. PD.

65

Now, let
η∗ = min

1≤j≤pn−q
ηj ,

and note that 0 < η∗ ≤ 1 from assumption (2.11). Then,

P

pn−q⋃
j=1

{
|ζn,j | >

λnW0

2
√
n
ηj − ξ

} ∣∣∣∣∣Fn

≤ P

pn−q⋃
j=1

{
|ζn,j | >

λnW0

2
√
n
η∗ − ξ

} ∣∣∣∣∣Fn

= P

(
max

1≤j≤pn−q

∣∣ζn,j∣∣ > λnW0

2
√
n
η∗ − ξ

∣∣∣∣∣Fn
)

≤ P

(∥∥ζn∥∥2 > λnW0

2
√
n
η∗ − ξ

∣∣∣∣∣Fn
)

= P

(
1

nc2−
1
2

(∥∥ζn∥∥2 + ξ
)
>
λnW0

2nc2
η∗

∣∣∣∣∣Fn
)

= o(1) a.s. PD,

because
λnW0

2nc2
η∗ = Op(1)

whereas part (a) of Lemma 3.7 ensures that

1

nc2−
1
2

(∥∥ζn∥∥2 + ξ
)
= op(1) a.s. PD.

Thus, for weighting scheme (2.5), we have just shown that

P
[
(Bw

n)
c
∣∣Fn] = o(1) a.s. PD.

For weighting scheme (2.4), takeW0 = 1 and repeat the preceding steps to obtain the
same result.

66

Now, for weighting scheme (2.6), define

νn = [νn,1, · · · , νn,pn−q]
′ := C̃wn

(
Zw
n(1) −

λn
2
√
n
W0(1) ◦ sgn

[
β0(1)

])
,

γn = [γn,1, · · · , γn,pn−q]
′ := Cn(21)C

−1
n(11)W0(1) ◦ sgn

[
β0(1)

]
.

and for any ξ > 0,

P
[
(Bw

n)
c
∣∣Fn]

= P

pn−q⋃
j=1

{
|ζn,j + νn,j | >

λn
2
√
n

(
W0(2),j − |γn,j |

)} ∣∣∣∣∣Fn

≤ P

pn−q⋃
j=1

{
|ζn,j | >

λn
2
√
n

(
W0(2),j − |γn,j |

)
− ξ
} ∣∣∣∣∣Fn

+ P
(
∥νn∥2 > ξ

∣∣∣Fn) .
Again,

λn
n1.5−c1

W0(1) ◦ sgn
[
β0(1)

]
= op(1),

so, by Lemmas 3.3 and 3.6,

P
(
∥νn∥2 > ξ

∣∣∣Fn) = o(1) a.s. PD.

Notice how the penalty weightsW0(1) andW0(2) upend the strong irrepresentable condition
(2.11). Specifically,

P
(
W0(2),j − |γn,j | < 0

)
> 0,

which then renders the probability bound to be unhelpful. Instead, notice that from the
strong irrepresentable condition (2.11),

γn,j ≤ (1− η∗)× max
1≤j≤q

W0(1),j

67

for all j = 1, · · · , q. We focus on the more restrictive case where

η∗ = 1⇐⇒ η = 1pn−q,

which leads to a more meaningful probability bound. Then, γn,j = 0 for all j = 1, · · · , q,
and

P

pn−q⋃
j=1

{
|ζn,j | >

λn
2
√
n
W0(2),j − ξ

} ∣∣∣∣∣Fn

≤ P

pn−q⋃
j=1

{
|ζn,j | >

λn
2
√
n

(
min

1≤j≤pn−q
W0(2),j

)
− ξ
} ∣∣∣∣∣Fn

≤ P

(∥∥∥ζn∥∥∥
2
>

λn
2
√
n

(
min

1≤j≤pn−q
W0(2),j

)
− ξ

∣∣∣∣∣Fn
)

= P

(
1

nc2−
1
2

(∥∥ζn∥∥2 + ξ
)
>

λn
2nc2

(
min

1≤j≤pn−q
W0(2),j

) ∣∣∣∣∣Fn
)

For the case of exponential random weights

FW (w) = 1− e−θww

for some θw > 0, we immediately have

(
min

1≤j≤pn−q
W0(2)j

)
∼ Exp ((pn − q)θw) .

Then, by part (b) of Lemma 3.7,

P

(
1

nc2−
1
2

(∥∥ζn∥∥2 + ξ
)
>

λn
2nc2

(
min

1≤j≤pn−q
W0(2),j

) ∣∣∣∣∣Fn
)

= P

(
W < θw

2nc2

λn

pn − q
nc2−

1
2

(∥∥ζn∥∥2 + ξ
)∣∣∣Fn) where W ∼ Exp(1)

= o(1) a.s. PD,

68

and we have just shown that

P
[
(Bw

n)
c
∣∣Fn] = o(1) a.s. PD

for weighting scheme (2.6).
Finally,

P
(
β̂wn (λn)

s
= β0

∣∣Fn)
≥ 1−

{
P
[
(Awn)

c
∣∣Fn]+ P

[
(Bw

n)
c
∣∣Fn] }

= 1− o(1) a.s. PD

for all three weighting schemes (2.4), (2.5) and (2.6).

Proof of Theorem 2.3. From the proof of Proposition 2.1,

(β̂wn − β0)

= argmin
u

{
u′
(
X ′DnX

n

)
u− 2u′

(
X ′Dnϵ

n

)
+

ϵ′Dnϵ

n

+
λn
n

p∑
j=1

W0,j |β0,j + un,j |

}

:= argmin
u

gn(u).

By Lemmas 3.4, 3.5 and 3.8, for λnn → λ0 ∈ [0,∞), Slutsky Theorem gives

gn(u)
c.d.−→ g(u) + µWσ

2
ϵ a.s. PD.

Note that for weighting schemes (2.5) and (2.6), g(u) is a random function as it contains
random weights. Since gn(u) is convex and g(u) has a unique minimum, it follows from

69

Geyer (1996) that

argmin
u

gn(u)
c.d.−→ argmin

u

{
g(u) + µWσ

2
ϵ

}
= argmin

u
g(u) a.s. PD.

For weighting schemes (2.4), g(u) is not a random function. Instead, we note that since
gn(u) is convex, it follows from pointwise convergence of conditional probability that

β̂wn − β0 = Op(1).

For any compact setK, by applying the Convexity Lemma (Pollard, 1991),

sup
u∈K

∣∣gn(u)− g(u)− µWσ2ϵ ∣∣ c.p.
−→ 0 a.s. PD.

Therefore, (
β̂wn − β0

)
= argmin

u
gn(u)

c.p.
−→ argmin

u
g(u) a.s. PD.

Finally, for all three weighting schemes, if λ0 = 0, argminu g(u) = 0, i.e.

β̂wn
c.p.
−→ β0 a.s. PD.

Proof of Theorem 2.4. Let en be the residual that corresponds to the strongly consistent esti-
mator β̂SC

n of the linear regression model (2.1), and define

Qn(z) :=

∥∥∥∥D 1
2
n (y −Xz)

∥∥∥∥2
2

+ λn

p∑
j=1

W0,j |zj |,

which leads to

Qn

(
β̂SC
n +

1√
n
u

)

70

=

∥∥∥∥D 1
2
n

[
Y −X

(
β̂SC
n +

1√
n
u

)]∥∥∥∥2
2

+ λn

p∑
j=1

W0,j

∣∣∣∣β̂SCn,j + 1√
n
uj

∣∣∣∣
=

∥∥∥∥D 1
2
n

(
en −

1√
n
Xu

)∥∥∥∥2
2

+ λn

p∑
j=1

W0,j

∣∣∣∣β̂SCn,j + 1√
n
uj

∣∣∣∣ ,
and

Qn

(
β̂SC
n

)
=

∥∥∥∥D 1
2
n

(
Y −Xβ̂SC

n

)∥∥∥∥2
2

+ λn

p∑
j=1

W0,j

∣∣∣β̂SCn,j∣∣∣
=

∥∥∥∥D 1
2
nen

∥∥∥∥2
2

+ λn

p∑
j=1

W0,j

∣∣∣β̂SCn,j∣∣∣ .
Now, define

Vn(u) := Qn

(
β̂SC
n +

1√
n
u

)
−Qn

(
β̂SC
n

)
,

and note that

argmin
u

Vn(u) = argmin
u

Qn

(
β̂SC
n +

1√
n
u

)
=
√
n
(
β̂wn − β̂SC

n

)
.

Notice that Vn(u) can be simplified into

u′
(
X ′DnX

n

)
u− 2u′

(
X ′Dnen√

n

)
+
λn√
n

p∑
j=1

W0,j

(∣∣∣√nβ̂SCn,j + uj

∣∣∣− ∣∣∣√nβ̂SCn,j∣∣∣) ,
where its penalty term can be expanded into

λn√
n

p∑
j=1

W0,j

(∣∣∣√nβ̂SCn,j + uj

∣∣∣− ∣∣∣√nβ̂SCn,j∣∣∣)
=

λn√
n

p∑
j=1

W0,j

{ ∣∣∣√n [β0,j + (β̂SCn,j − β0,j)]+ µj

∣∣∣
−
∣∣∣√n [β0,j + (β̂SCn,j − β0,j)]∣∣∣ }

71

:=
λn√
n

p∑
j=1

W0,jpn(uj).

For β0,j ̸= 0, (
β̂SCn,j − β0,j

)
→ 0 a.s. PD,

and hence √nβ0,j dominates uj for large n. Thus, it is easy to verify that pn(uj) converges
to ujsgn (β0,j) for all j ∈ {j : β0,j ̸= 0}. Thus, by Lemmas 3.4 and 3.9, if q = p, Slutsky
Theorem ensures that

Vn(u)
c.d.−→ V (u) := µWu′Cu− 2u′Ψ+ λ0

p∑
j=1

Wj [uj sgn(β0,j)] a.s. PD,

where Ψ has a N (0, σ2Wσ2ϵC) distribution, and
(i) Wj = 1 for all j under weighting scheme (2.4),

(ii) Wj =W0 for all j,W0 ∼ FW andW0 ⊥ Ψ under weighting scheme (2.5),

(iii) Wj
iid∼ FW andWj ⊥ Ψ for all j under weighting scheme (2.6).

Since Vn(u) is convex and V (u) has a unique minimum, it follows from Geyer (1996) that

√
n
(
β̂wn − β̂SC

n

)
= argmin

u
Vn(u)

c.d.−→ argmin
u

V (u) a.s. PD

when q = p. In particular, if λ0 = 0,

argmin
u

V (u) =
1

µW
C−1Ψ ∼ N

(
0,
σ2Wσ

2
ϵ

µ2W
C−1

)
.

However, if 0 < q < p, then for j ∈ {j : β0,j = 0}, pn(uj) is back to

∣∣∣√nβ̂SCn,j + µj

∣∣∣− ∣∣∣√nβ̂SCn,j∣∣∣ ,

72

which depends on the sample path of realized data. This necessitates the Skorokhod
argument, thus leading to the penalty term in (2.13).

We need the following lemma to prove Theorem 2.5:

Lemma 3.10. Consider Liu and Yu (2013)’s unweighted two-step LASSO+LS estimator β̂LAS+LSn ,

with its corresponding set of selected variables denoted as Ŝn. Adopt assumptions (2.8), (2.9) and

(2.11). If there exists 1
2 < c1 < c2 < 1 and 0 ≤ c3 < 2(c2 − c1) for which λn = O (nc2) and

pn = O (nc3), then as n→∞,

P
(
Ŝn = S0

∣∣∣Fn)→ 1 a.s. PD.

Proof. The first step (i.e. the variable selection step) of obtaining β̂LAS+LSn is effectively the
standard LASSO procedure. Thus, by assumption (2.11), from the proof of Proposition 1 of
Zhao and Yu (2006), we obtain

{
Ŝn = S0

}
⊇ {An ∩Bn}

and thus
P
(
Ŝn = S0

∣∣∣Fn) ≥ P (An ∩Bn∣∣Fn) ,
where

An ≡

{∣∣∣∣∣C−1
n(11)

X ′
(1)ϵ√
n

∣∣∣∣∣ ≤ √n
(∣∣β0(1)

∣∣− λn
2n

∣∣∣C−1
n(11)sgn

(
β0(1)

)∣∣∣) element-wise
}

Bn ≡
{∣∣∣∣ 1√

n

[
Cn(21)C

−1
n(11)X

′
(1) −X

′
(2)

]
ϵ

∣∣∣∣ ≤ λn
2
√
n
η element-wise

}
.

Next, we want to show that

P
(
Acn
∣∣Fn)→ 0 a.s. PD and P

(
Bc
n

∣∣Fn)→ 0 a.s. PD

73

such that

P
(
Ŝn = S0

∣∣∣Fn) ≥ 1−
[
P
(
Acn
∣∣Fn)+ P

(
Bc
n

∣∣Fn)]→ 1 a.s. PD.

First, by assumptions (2.8) and (2.9), C−1
n(11) = O(1) for all n, whereas

λn
2n
C−1
n(11)sgn

(
β0(1)

)
→ 0.

By Lemma 3.1, for any 1
2 < c′ < 1,

1

nc′
X ′

(1)ϵ→ 0 a.s. PD =⇒ 1

nc
′− 1

2

(
C−1
n(11)

X ′
(1)ϵ√
n

)
→ 0 a.s. PD.

For ease of notation, let
z = [z1, · · · , zq]′ := C−1

n(11)

X ′
(1)ϵ√
n
.

Then, for any 1
2 < c′ < 1,

P
(
Acn
∣∣Fn) ≤ q∑

j=1

P
(
|zj | >

√
n [|β0,j |+ o(1)]

∣∣∣Fn)
=

q∑
j=1

P

(
|zj |
nc

′− 1
2

> n1−c
′
[
|β0,j |+ o(1)

]∣∣∣Fn)
→ 0 a.s. PD.

Next, using the same notations that we introduced in the proofs of Lemma 3.7 and Theorem
2.2, let

H = X(1)C
−1
n(11)Cn(12) −X(2),

and let
η∗ = min

1≤j≤pn−q
η,

where assumption (2.11) ensures that 0 < η∗ ≤ 1. Again, due to assumptions (2.8) and (2.9)

74

and that q is fixed, every element in the matrix H is bounded. Let hij be the (i, j)th element
of H . Again, by Lemma 3.1, for all j = 1, · · · , pn − q,

1

nc1

n∑
i=1

hjiϵi → 0 a.s. PD

for 1
2 < c1 < 1. Consequently, we have

P
(
Bc
n

∣∣Fn) = P

pn−q⋃
j=1

{∣∣∣∣∣ 1√
n

n∑
i=1

hjiϵi

∣∣∣∣∣ > λn
2
√
n
ηj

}∣∣∣∣∣Fn

≤ P

(
max

1≤j≤pn−q

∣∣∣∣∣ 1√
n

n∑
i=1

hjiϵi

∣∣∣∣∣ > λn
2
√
n
η∗

∣∣∣∣∣Fn
)

≤ P

(∥∥∥∥ 1√
n
H ′ϵ

∥∥∥∥
2

>
λn
2
√
n
η∗

∣∣∣∣∣Fn
)

= P

(
1

nc2−
1
2

∥∥∥∥ 1√
n
H ′ϵ

∥∥∥∥
2

>
λn
2nc2

η∗

∣∣∣∣∣Fn
)
,

where

(
1

nc2−
1
2

∥∥∥∥ 1√
n
H ′ϵ

∥∥∥∥
2

)2

=
1

n2c2−1

pn−q∑
j=1

(
1√
n

n∑
i=1

hjiϵi

)2

=
n2c1−1

n2c2−1

pn−q∑
j=1

(
1

nc1

n∑
i=1

hjiϵi

)2

= O
(

1

n2(c2−c1)

)
× o (nc3) a.s. PD

= o(1) a.s. PD

because c3 < 2(c2 − c1) and 1
2 < c1 < c2 < 1, whereas

λn
2nc2

η∗ = O(1).

Hence P (Bc
n

∣∣Fn)→ 0 almost surely under PD and the result follows.

Note that the constraints on c1, c2 and c3 in Lemma 3.10 cover the more restrictive

75

constraints found in Theorem 2.2. Therefore, the result in Lemma 3.10 still holds under the
assumptions of Theorem 2.2.

A slightly different layout of the proof for Lemma 3.10 would be as follows: using the
results in Proposition 1 of Zhao and Yu (2006), on the probability space PD,

PD

(
Ŝn = S0

)
≥ PD (An ∩Bn) .

Using the same techniques in the preceding proof, we show that

lim
n→∞

Acn = ∅ a.s. PD =⇒ PD

(
lim
n→∞

Acn

)
= 0 =⇒ PD (Acn i.o.) = 0,

and
lim
n→∞

Bc
n = ∅ a.s. PD =⇒ PD

(
lim
n→∞

Bc
n

)
= 0 =⇒ PD (Bc

n i.o.) = 0,

where i.o. stands for “infinitely often”. Then,

PD ((An ∩Bn)c i.o.) ≤ PD (Acn i.o.) + PD (Bc
n i.o.) = 0

=⇒ PD ({An ∩Bn} i.o.) = 1

=⇒ PD

({
Ŝn = S0

}
i.o.
)
≥ PD ({An ∩Bn} i.o.) = 1

=⇒ PD

(
lim
n→∞

Ŝn = S0

)
= 1,

and thus, on the probability space P = PD × PW ,

P
(
Ŝn = S0

∣∣∣Fn)→ 1 a.s. PD.

We have
lim
n→∞

Acn = ∅ a.s. PD

76

because for any 1
2 < c′ < 1,

1

nc
′− 1

2

(
C−1
n(11)

X ′
(1)ϵ√
n

)
→ 0 a.s. PD

whereas
n1−c

′
(∣∣β0(1)

∣∣− λn
2n

∣∣∣C−1
n(11)sgn

(
β0(1)

)∣∣∣) = O
(
n1−c

′
)
.

Meanwhile, we establish
lim
n→∞

Bc
n = ∅ a.s. PD

because
Bc
n ⊆

{
1

nc2−
1
2

∥∥∥∥ 1√
n
H ′ϵ

∥∥∥∥
2

>
λn
2nc2

η∗

}
,

where
1

nc2−
1
2

∥∥∥∥ 1√
n
H ′ϵ

∥∥∥∥
2

= o(1) a.s. PD but λn
2nc2

η∗ = O(1).

The following version of Sherman–Morrison–Woodbury matrix-inversion identity (e.g.,
Equation (26) of Henderson and Searle (1981)) will come in handy later: For any square
matrices A and B of conformal sizes where A is invertible, we have

(A+B)−1 = A−1 −A−1BA−1
(
I +BA−1

)−1
. (3.10)

Proof of Theorem 2.5. Since the first-step is in fact equivalent to the one-step procedure, The-
orem 2.2 immediately gives us

P
(
Ŝwn = S0

∣∣Fn) ≥ P (β̂wn s
= β0

∣∣Fn)→ 1 a.s. PD,

while Lemma 3.10 immediately gives us

P
(
Ŝn = S0

∣∣Fn)→ 1 a.s. PD.

77

Conditional on
{
Ŝwn = S0

}
and

{
Ŝn = S0

}
, since Y = X(1)β0(1) + ϵ,

β̂wn(1) − β̂LAS+LSn(1)

=
(
X ′

(1)DnX(1)

)−1
X ′

(1)DnY −
(
X ′

(1)X(1)

)−1
X ′

(1)Y

=
(
X ′

(1)DnX(1)

)−1
X ′

(1)Dnϵ−
(
X ′

(1)X(1)

)−1
X ′

(1)ϵ

=
(
Cwn(11)

)−1 X ′
(1)(Dn − In)ϵ

n
−
[
C−1
n(11) −

(
Cwn(11)

)−1
] X ′

(1)ϵ

n
,

which leads to

√
n
(
β̂wn(1) − β̂LAS+LSn(1)

)
=
(
Cwn(11)

)−1 X ′
(1)(Dn − In)ϵ
√
n

−
[
C−1
n(11) −

(
Cwn(11)

)−1
] X ′

(1)ϵ√
n
.

Based on the (alternative) proof of Lemma 3.2, we have seen that

(
Cwn(11)

)−1 a.s.−→ C−1
11 ,

and from the (alternative) proof of Lemma 3.6, we could deploy Slutsky’s Theorem to obtain

(
Cwn(11)

)−1 X ′
(1)(Dn − In)ϵ
√
n

c.d.−→ Nq

(
0 , σ2Wσ

2
ϵC

−1
11

)
a.s. PD.

Meanwhile, we deploy the matrix inversion identity (3.10) by taking A = Cn(11) and

B =
1

n
X ′

(1)(Dn − In)X(1)

to obtain

(
Cwn(11)

)−1
=

[
Cn(11) +

1

n
X ′

(1)(Dn − In)X(1)

]−1

= A−1 −A−1BA−1
(
Iq +BA−1

)−1
.

78

Then,
[
C−1

n(11) −
(
Cw

n(11)

)−1
]
X ′

(1)ϵ√
n

= C−1
n(11)

[
X ′

(1)(Dn − In)X(1)

n

]
C−1

n(11)

[
Iq +

(
X ′

(1)(Dn − In)X(1)

n

)
C−1

n(11)

]−1
X ′

(1)ϵ√
n

= C−1
n(11)

[
X ′

(1)(Dn − In)X(1)

n1−c

]
C−1

n(11)

[
Iq +

(
X ′

(1)(Dn − In)X(1)

n

)
C−1

n(11)

]−1
X ′

(1)ϵ

n
1
2+c

,

where Lemma 3.1 and assumption (2.8) ensure that for any 0 < c < 1
2 ,

1

n1−c
X ′

(1)(Dn − In)X(1)
a.s.−→ 0

and
X ′

(1)ϵ

n
1
2
+c
→ 0 a.s. PD.

Since Cn(11) is invertible for all n, we have

C−1
n(11) → C−1

11 ,

and
[
Iq +

(
X ′

(1)(Dn − In)X(1)

n

)
C−1
n(11)

]−1

= Cn(11)

(
Cwn(11)

)−1

a.s.−→ C11C
−1
11

= Iq.

Hence, [
C−1
n(11) −

(
Cwn(11)

)−1
] X ′

(1)ϵ√
n

c.p.
−→ 0 a.s. PD.

Consequently, conditional on
{
Ŝwn = S0

}
and

{
Ŝn = S0

}
, Slutsky’s Theorem ensures that

√
n
(
β̂wn(1) − β̂LAS+LSn(1)

) c.d.−→ Nq

(
0 , σ2Wσ

2
ϵC

−1
11

)
a.s. PD.

79

Finally, for any t ∈ R,

P
(√

n
(
β̂wn(1) − β̂LAS+LSn(1)

)
≤ t
∣∣∣Fn)

=P
(√

n
(
β̂wn(1) − β̂LAS+LSn(1)

)
≤ t ,

{
Ŝwn = S0, Ŝn = S0

} ∣∣∣Fn)
+ P

(√
n
(
β̂wn(1) − β̂LAS+LSn(1)

)
≤ t ,

{
Ŝwn = S0, Ŝn = S0

}c ∣∣∣Fn)
≤P

(√
n
(
β̂wn(1) − β̂LAS+LSn(1)

)
≤ t ,

{
Ŝwn = S0, Ŝn = S0

} ∣∣∣Fn)
+ P

({
Ŝwn ̸= S0

}⋃{
Ŝn ̸= S0

} ∣∣∣Fn)
≤P

(√
n
(
β̂wn(1) − β̂LAS+LSn(1)

)
≤ t ,

{
Ŝwn = S0, Ŝn = S0

} ∣∣∣Fn)
+ P

(
Ŝwn ̸= S0

∣∣∣Fn)+ P
(
Ŝn ̸= S0

∣∣∣Fn)

where

P
(
Ŝwn ̸= S0

∣∣∣Fn)→ 0 a.s. PD and P
(
Ŝn ̸= S0

∣∣∣Fn)→ 0 a.s. PD,

and
P
(√

n
(
β̂wn(1) − β̂LAS+LSn(1)

)
≤ t ,

{
Ŝwn = S0, Ŝn = S0

} ∣∣∣Fn)→ P (Z ≤ t)

almost surely under PD for Z ∼ Nq

(
0 , σ2Wσ

2
ϵC

−1
11

).
Proof of Theorem 2.6. Since Y = X(1)β0(1) + ϵ, by conditioning on

{
Ŝwn = S0

}
, we have

β̂wn(2) = β0(2) = 0, and

β̂wn(1) − β0(1) =
(
X ′

(1)DnX(1)

)−1
X ′

(1)DnY − β0(1)

=
(
X ′

(1)DnX(1)

)−1
X ′

(1)Dnϵ

=
(
Cwn(11)

)−1 X ′
(1)Dnϵ

n
c.p.
−→ 0 a.s. PD

80

by Lemmas 3.4 and 3.6. Finally, for any ξ > 0,

P
(∥∥∥β̂wn − β0

∥∥∥
2
> ξ
∣∣∣Fn)

= P
(∥∥∥β̂wn − β0

∥∥∥
2
> ξ , Ŝwn = S0

∣∣∣Fn)+ P
(∥∥∥β̂wn − β0

∥∥∥
2
> ξ , Ŝwn ̸= S0

∣∣∣Fn)
≤ P

(∥∥∥β̂wn − β0

∥∥∥
2
> ξ , Ŝwn = S0

∣∣∣Fn)+ P
(
Ŝwn ̸= S0

∣∣Fn)
→ 0 a.s. PD.

Remark 3.1. Consider Theorem 2.4 with centering on β0

√
n
(
β̂wn − β0

)
.

Using the same technique in the proof of Theorem 2.4, we work with

Vn(u) := Qn

(
β0 +

1√
n
u

)
−Qn (β0)

which can be simplified into

u′
(
X ′DnX

n

)
u− 2u′

(
X ′Dnϵ√

n

)
+
λn√
n

p∑
j=1

W0,j

(∣∣√nβ0,j + uj
∣∣− ∣∣√nβ0,j∣∣) .

Again, assumption 2.10 ensures convergence of the first term, whereas argument for the penalty term

in the proof of Theorem 2.4 still applies to the third term. However, the second term has

X ′Dnϵ√
n

=
1√
n
X ′ (Dn − µW In) ϵ+

1√
n
X ′ϵ,

where
1√
n
X ′ (Dn − µW In) ϵ = Op(1) a.s. PD,

but (X ′ϵ)/(
√
n) is asymptotically normal under PD (Knight & Fu, 2000). Thus, conditional

81

on Fn, (X ′Dnϵ)/(
√
n) depends on the sample path of realized data {y1, y2, · · · }, thus causing

√
n
(
β̂wn − β0

)
to be unable to achieve convergence in conditional distribution almost surely under

PD.

Lemma 3.11 (Rate of Convergence). Adopt all assumptions in Theorem 2.5. If there exists

0 < c4 <
1
2 such that

0 ≤ c3 < min{2(c2 − c1) , 2c1 − 1} − c4

under weighting schemes (2.4) and (2.5), or

0 ≤ c3 < min

{
2

3
(c2 − c1)−

c4
3
, 2c1 − 1− c4

}

under weighting schemes (2.6), then

P
(
Ŝwn ̸= S0

∣∣Fn) = o
(
n−c4

)
a.s. PD.

Proof of Lemma 3.11. The result is immediate by extracting the additional n−c4 factor from
the proofs of Lemmas 3.3 and 3.7 as well as Theorem 2.2. In particular, from Lemma 3.6, it
is clear that the rate of convergence of P [(Awn)c|Fn] is faster than P [(Bw

n)
c|Fn], whereas the

conditions in Lemma 3.11 ensure that P [(Bw
n)

c|Fn] = o (n−c4). Finally,

P
(
Ŝwn ̸= S0

∣∣Fn) ≤ P [(Awn)c|Fn] + P [(Bw
n)

c|Fn] = o
(
n−c4

)
a.s. PD.

82

Chapter 4

RandomWeighting in Discrete

Mixture Models

4.1. Framework

4.1.1. Bayesian NPL: parameters and loss functions

Regardless of idiosyncrasies in the application domain, suppose that data available for
analysis amount to a sample of points {y1, y2, · · · , yn} in a subset of d-dimensional Euclidean
space: Ω ⊆ Rd. Our calculations presume the existence of a distribution F∗ on Ω from which
the yi’s are regarded as the realization of a random sample. Rather than further assume
that F∗ is constrained to some statistical model, we use modeling considerations somewhat
more loosely to guide inference computations, as, for example, in Bayesian Nonparametric
Learning (NPL) (e.g., Fong et al., 2019). That is, we require a parameter space Θ ⊆ Rp and
loss function l̃(t, y)mapping Θ× Ω into R, and we use this loss function to associate with
any distribution F on Ω the parameter

θ := argmin
t∈Θ

L (t, F) := argmin
t∈Θ

∫
Ω
l̃(t, y) dF (y). (4.1)

83

The choice of l̃(t, y) establishes the parameter θ as a functional of the underlying distribution,
rather than as an index for a parametric model, which is its role in conventional Bayesian
analysis. It is well known, for example, that setting l̃(t, y) = ∥y− t∥22 returns the mean. More
generally, setting l̃(t, y) to be the negative loglikelihood corresponding to some parametric
model Fθ ∈ FΘ leads to θ∗ := argmint∈Θ L (t, F∗); this minimizes the Kullback-Leibler
divergenceKL(f∗∥fθ), where f∗ and fθ are the respective densities of F∗ and Fθ. Notably
in this case, we may have a well-defined parameter without assuming that the parametric
model has captured (i.e., contained) the data-generating distribution F∗. Contemporary,
high-dimensional examples further warrant inclusion of regularization terms in the loss
function:

l̃(t, y) = l(t, y) + λl0(t)

for some tuning parameter λ > 0 and penalty function l0(t), which then extends (4.1),

L (t, F) =

∫
Ω
[l(t, y) + λl0(t)] dF (y) =

∫
Ω
l(t, y) dF (y) + λl0(t).

Figure 4.1: K-means clustering for data points which are uniformly distributed on an equilat-
eral triangle with vertices {(0, 0), (1, 0), (0.5,√3/2)}. The black dots represent the centroids
obtained by the K-means algorithm specified withK = 3 and the data points are colored
according to their respective clusters.

84

The use of models and loss-functions to guide inference has been exceedingly effective
(e.g., Hastie, Tibshirani, & Friedman, 2009), in part because statistical estimation is enabled by
plugging the empirical distribution Fn into (4.1) and leveraging sophisticated optimization
tools to solve the minimization problem. Our specific interest here is clustering, which may
align with the present framework through, for example, the expected loss:

L (AK , F) =

∫
Ω

min
a∈AK

∥y − a∥22 dF (y),

where AK = {a1, · · · , aK} containsK distinct points on Rd. Then theK−means algorithm
aims to minimize L (AK , Fn) (Hartigan & Wong, 1979; Pollard, 1981). Figure 4.1 illustrates
the functional parameter in a toy example withK = 3. We note that the functional parameter
exists even if the underlying populationF∗ is not induced by some true clusteringmechanism.

In practice, the number of clustersmaynot be known in advance. Hence, we are interested
in mixture-model-related loss functions l̃(t, y) that allow the number of clusters to be a data-
driven variable (which could also account for cluster-size information), instead of being
treated as a fixed parameterK that has to be pre-specified by the analyst. Furthermore, we
are also interested in quantifying uncertainty in the mixture-model functional parameters
due to our own uncertainty about the data-generating mechanism F∗.

4.1.2. Bayesian NPL: posterior sampling and random weighting

The idea to use a Dirichlet process (DP) to express uncertainty in F∗ has been studied exten-
sively (e.g., Müller et al., 2015), and so too have been techniques that allow approximate DP
calculations. We are guided here by the Bayesian NPL approach explained in Fong et al.
(2019), and the particular Bayesian-bootstrap approximation that follows when the DP prior
mass converges to zero, a posteriori. Then it is computationally elementary to sample the
distribution F from its posterior given {y1, y2, · · · , yn}; the computational challenge is in
optimizing the expected loss under that F , which then happens repeatedly, perhaps in par-
allel, over many posterior draws of F to produce a posterior sample of functionally-induced

85

parameters. Specifically, a draw F from the approximate DP posterior is a distribution sup-
ported on the unique sample points, with probability masses that themselves have a finite
Dirichlet distribution. This is conveniently achieved with mutually independent standard
Exponentially distributed weights W = (W1,W2, · · · ,Wn). Then the expected loss L (t, F)

associated with such a posterior-sampled F is proportional to

Lλ(t,W) :=
n∑
i=1

Wil(t, yi) + λl0(t). (4.2)

There are various ways to handle the regularization weight λ; for simplicity here we ignore
posterior variation this penalty, but other approaches have merit (e.g., Ng & Newton, 2020).
We present a detailed derivation in the supplementary material Chapter 5.4 on how we
arrive at (4.2) from L (t, Fw), where Fw represents the Bayesian bootstrap approximation of
the DP posterior sampling of F∗.

In summary, the random-weighting approach amounts to repeated assignment of ran-
dom weightsW = (W1,W2, · · · ,Wn) and minimization in t of (4.2) to obtain a sample of
the functional parameter values, θ. Utility of the approach depends in part on the suit-
ability of loss functions l(t, yi) and l0(t). The finite mixture case was examined in Fong et
al. (2019), who adopted the negative loglikelihood of a finite Gaussian mixture model as
the loss function. To eliminate the need to choose the number of clusters and to improve
other features, here we examine Bayesian NPL for loss functions developed from certain
parameter-limiting calculations within a class of nonparametric models.

4.1.3. Working model and small-variance asymptotics

In the search for a suitable loss function l̃(t, y), we first consider the Dirichlet Process
Mixture (DPM) model via the Chinese Restaurant Process (CRP) specification (Blackwell

86

& MacQueen, 1973) as our working model:

yi|(zi = k, µk,Σ) ∼ Nd(µk,Σ)

µk

∣∣∣ (Σ, z, κ) ∼ Nd (µ0, h (Σ))

Σ ∼ p (Σ)

(z, κ) ∼ CRP (α0),

(4.3)

where α0 > 0 and µ0 ∈ Rd. As an example, p (Σ) could be an inverse-Wishart density
with ν0 degrees of freedom and a symmetric positive-definite scale matrix ψ0, whereas
h (Σ) = Σ/ξ0 for some ξ0 > 0. Our working model has a common covariance structure Σ

across all mixture components (unless deliberately stated otherwise). Note that the number
of clusters is denoted with κ in (4.3) to highlight the fact that it is a random variable to
distinguish it from the user-specifiedK in the finite-mixture and K-means settings. Both κ
and cluster assignments z = {z1, · · · , zn} characterize the partitioning of a DPM.

The notion of working model serves as a reminder to the readers that we do not assume
that (4.3) is the true sampling distribution F∗, and (4.3) is also not involved in the Bayesian
NPL setup as explained in the preceding subsection. In fact, the joint density of (4.3), which
is given by

p (Y , z, κ, {µk}κk=1,Σ)

:= p
(
Y
∣∣∣z, κ, {µk}κk=1,Σ

)
× p

(
{µk}κk=1

∣∣∣Σ, z, κ)× p (Σ)× p(z, κ)
= (2π)−

nd
2 |Σ|−

n
2 exp

−1

2

κ∑
k=1

∑
i:zi=k

(yi − µk)′Σ−1(yi − µk)

× (2π)−

dκ
2 | h(Σ)|−

κ
2 exp

{
−1

2

κ∑
k=1

(µk − µ0)′ [h(Σ)]−1 (µk − µ0)

}

× p (Σ)× ακ−1
0

Γ(α0 + 1)

Γ(α0 + n)

κ∏
k=1

Γ(nk),

(4.4)

merely serves as a guidepost for us in specifying the loss functions l(t, yi) and l0(t) in (4.2).

87

We further point out that using Bayesian nonparametric approach as a guiding model is a
novel idea in Bayesian NPL literature.

Many maximum-a-posteriori (MAP) procedures for (4.4), such as Dahl (2009) and
Raykov, Boukouvalas, and Little (2016), may appear promising at first glance, but they
rely on the exchangeability property (Pitman, 1995) of the DPM that breaks down once we
introduce random-weights into these loss functions. In fact, optimization of (4.4) by itself
may already be daunting; some model-guided simplification to (4.4) is preferred to ensure
a simpler, practical working model that could be computed more efficiently.

Consequently, we turn our attention to Kulis and Jordan (2012) who approached (4.3)
from the perspective of small-variance-asymptotics (SVA) that resulted in the DP-means
objective function:

L DPmeans
λ (µ, z, κ) :=

κ∑
k=1

∑
i:zi=k

∥yi − µk∥22 + λκ. (4.5)

In particular, Broderick, Kulis, and Jordan (2013) constructed (4.5) with the SVA setup
outlined in Remark 4.1. Under their SVA regime, a diminishing σ2 (indicating a decreasing
variance of mixture components which results in more clusters) faces an opposing force of
diminishing α0 (i.e. lower intensity of the CRP to create new clusters), such that a balance
is achieved via the regularization parameter λ.

Remark 4.1 (DP-means as SVA of the DPM (Broderick et al., 2013)). Consider the DPMmodel

(4.3), where Σ = σ2Id and h(Σ) = c2Id for some finite c. If σ2 → 0 and α0 → 0 such that they are

modulated with α0 = exp {−λ/(2σ2)} for some λ > 0, then the negative log of (4.4), multiplied by

σ2, converges to the DP-means objective function (4.5).

The DP-means setup (4.5) is simple and could be easily adopted for our random-
weighting approach, by specifying a (cluster-specific) squared-error loss in (4.2) with
a penalty on the number of clusters. However, the DP-means still has some modeling limi-
tations, especially its inability to replicate the rich-gets-richer (rgr) property of the DPM
(e.g., Raykov et al., 2016).

88

4.2. Methodology

4.2.1. DP-rich: Alternate asymptotics for the DPM

While the small-variance limit in (4.5) nicely reveals within-cluster sum-of squares and
cluster-number features, it has an unintended negative consequence. Namely, it eliminates
from the objective function any mechanism to measure the cluster sizes. For the sake of
comparison, consider another extreme, where σ2 →∞ instead of shrinking to zero. This
would indicate that the data points arise from very “noisy” Normal components/clusters,
and data clustering will be completely dictated by the Chinese Restaurant process (CRP),
without regard to the distance that points are from centroids. We find it helpful to modulate
other working model parameters, and to leave σ2 alone to represent some intrinsic sampling
variation. We assume Σ = σ2Id and h(Σ) = σ2

ξ0
Id in (4.3), where σ2 = λ2 for some tuning

parameter λ2 > 0 to be calibrated by the analyst.
In addition, notice that α0 is the CRP intensity parameter while ξ0 acts as the scaling

factor between the variance of mixture components and the prior variance of µk. Contrary
to the SVA setup in Remark 4.1, we further argue that increasing α0 → ∞ and reducing
ξ0 → 0 must go hand-in-hand from an Empirical-Bayes perspective: if the variance of
mixture components stays rather “constant” (i.e., σ2 = λ2), then larger number of clusters
signifies wider data coverage in the Euclidean space. In this case, new centroids must have
arisen farther away from µ0 in order to establish these new “colonies” or clusters. Hence,
α0 → ∞ (indicating higher intensity to create new clusters under the CRP prior) and
ξ0 → 0 (suggesting a noisier prior for µk) must happen concurrently. Finally, these limiting
behaviors of α0 and ξ0 are modulated together with λ2 via the relationship

λ1 = λ2 log

[(
2πλ2
ξ0

) d
2 1

α0

]
, (4.6)

where λ1 > 0 is another tuning parameter to be calibrated by the analyst (note that this
modulating relationship between λ1 and λ2 in (4.6) holds with the limiting behavior of

89

ξ0 and α0; in practice, we only require the regularization parameters λ1, λ2 > 0). These
considerations lead to our first main result in Theorem 4.1 – new asymptotics for the DPM
which we coin as the DP-rich objective function

L DP-rich
(λ1,λ2)

(µ, z, κ) :=
κ∑
k=1

∑
i:zi=k

∥yi − µk∥22 + λ1 · κ− λ2
κ∑
k=1

log [Γ(nk)] . (4.7)

Theorem 4.1 (DP-rich as alternative asymptotics for the DPM). Consider the DPM model

(4.3), where Σ = σ2Id and h(Σ) = σ2

ξ0
Id. If σ2 = λ2 for some λ2 > 0, α0 →∞ and ξ0 → 0 such

that they are modulated via (4.6) for some λ1 > 0, then the negative log of (4.4), multiplied by σ2,

converges to the DP-rich objective function (4.7).

Proof of Theorem 4.1. Given Σ = σ2Id and h(Σ) = σ2

ξ0
Id and σ2 = λ2 for some λ2 > 0 , we

have

−σ2 log p(Y , z, κ,µ) = 1

2

 κ∑
k=1

∑
i:zi=k

∥yi − µk∥22 + ξ0

κ∑
k=1

∥µk − µ0∥22

+ κ · λ2 · log

[(
2πλ2
ξ0

)d/2
· 1

α0

]
− λ2

κ∑
k=1

log [Γ(nk)]

+
nd

2
λ2 log(2πλ2)− λ2 log

[
Γ(α0 + 1)

α0Γ(α0 + n)

]
.

(4.8)

Notice that we have treated Σ as deterministic in this case and so we dropped the term
p(Σ) in (4.4). Next, the third line of (4.8) does not contain (µ, κ,z) and could be dropped.
Finally, push α0 →∞ and ξ0 → 0 such that (4.6) is satisfied, and scale the entire equation
by 2 to arrive at (4.7). In particular, we also verify that for any finite n ≥ 1, as α0 → ∞,
Γ(α0 + 1)

α0Γ(α0 + n)
=

Γ(α0)

Γ(α0 + n)
→ 1.

Note that we pick the name “DP-rich” to highlight the fact that we are able to retain the
rich-gets-richer (rgr) property by following an alternative asymptotic argument that differs
from its counterpart in Remark 4.1. Clearly, setting λ2 = 0 in (4.7), i.e. switching off the rgr
regularization in the DP-rich setup, returns the DP-means objective function.

90

In addition, notice that, from (4.7), λ1 allows direct calibration by the analyst to tune the
number of clusters κ obtained by the DP-rich algorithm, whereas λ2 controls the magnitude
of the algorithm’s rgr effect brought about by the term log [Γ(nk)].

4.2.2. DP-rich: optimization and illustration

Similar to the DP-means algorithm, the objective function in (4.7) can be optimized using a
block coordinate descent-type algorithm (Tseng, 2001) that alternates between cluster reas-
signments and centroid updates until the algorithm converges when the cluster assignment
for all observations no longer changes.

First, consider the cluster re-assignment step. To reassign the ith data point, we first
hold all the cluster parameters and cluster labels of all other observations constant. Then
we reassign this ith observation to (either an existing or a new) cluster that contributes the
least to the increment of the objective, i.e. minimizing the cost to pay for assigning this
observation. Specifically, an observation yi is either assigned to an existing cluster Ck for
k ∈ {1, · · · , κ} or allocated into a new cluster Cκ+1, by comparing its “cost” of joining an
existing cluster Ck

dik = ∥yi − µk∥22 − λ2 log(nk,−i) (4.9)

for k = 1, · · · , κ, as well as its “cost” to create a new cluster Cκ+1

di,κ+1 = λ1. (4.10)

The term nk,−i in (4.9) denotes the number of observations in cluster Ck excluding the current
ith observation, i.e. if i ∈ Ck′ , then nk′,−i = nk′ − 1 and nk,−i = nk for k ∈ {1, · · · , κ} \ {k′}.
From (4.9), it is evident that the allocation of an observation yi into an existing cluster Ck is
affected by two opposing forces, namely the squared Euclidean distance from the cluster
centroid µk, which is discounted by log(nk,−i)with a factor of λ2. The term log(nk,−i) can
be viewed as the “gravitational mass” of the cluster Ck that “pulls” or “attracts” the data

91

point yi.

Algorithm 3 DP-rich
Require: data {y1, · · · , yn}, regularization parameters λ1 and λ2
1: Initialize by assigning all observations into a single cluster, and initialize µ1 as the grand

centroid.
2: while not all zoldi = zi do
3: zoldi ← zi for all i.
4: for each data point yi do
5: Compute dik with (4.9) for k = 1, · · · , κ.
6: If min1≤k≤κ dik > λ1, set κ = κ + 1, zi = κ and µκ = yi. Otherwise, set zi =

argmin1≤k≤κ dik.
7: Drop empty clusters if they exist.
8: end for
9: For each cluster k, update its cluster centroid µk as the average of observations

allocated to the cluster.
10: end while
Ensure: Number of clusters κ, cluster centroids {µk}1≤k≤κ, and cluster assignments
{zi}1≤i≤n.

0

20

40

60

80

0 20 40 60 80

observation

o
b
s
e

rv
a
ti
o

n

Partitioning by Dahl’s algorithm

0

20

40

60

80

0 20 40 60 80

observation

o
b
s
e

rv
a
ti
o

n

Partitioning by DP−rich

0

20

40

60

80

0 20 40 60 80

observation

o
b
s
e

rv
a
ti
o

n

Partitioning by DP−means

Figure 4.2: Cluster partitions obtained by Dahl (2009)’s algorithm, DP-rich and DP-means
approaches for the 1-dimensional Galaxy data set (Roeder, 1990), where red color indicates
that the pair of observations is clustered together and navy-blue color otherwise. The
observations in the data set are arranged in ascending order.

After re-assigning all the observations, we move on to the centroid updates. Conditional
on the existing partition (κ, z), the centroid µk is updated as the average of {yi : i ∈ Ck}
for k = 1, · · · , κ. Algorithm 3 outlines this DP-rich procedure in detail, while Lemma 4.2

92

ensures local convergence of Algorithm 3. We refer readers to the supplementary material
Chapter 5.1 for other implementation details of the algorithm.

In particular, we would like to point out that, while the K-means procedure is influenced
by the choices of initial cluster centroids (Arthur&Vassilvitskii, 2007), theDP-rich procedure
depends on the order in which data points are processed (i.e., the order in which yi : i ∈
{1, · · · , n} is processed in the for-loop (lines 4–8) of Algorithm 3). This feature is also
shared by the DP-means algorithm (Kulis & Jordan, 2012), because both DP-rich and DP-
means algorithms involve inserting new cluster(s) and/or deleting empty cluster(s) during
their cluster reassignment steps. To mitigate the problem of sub-optimal local solution, we
follow Kulis and Jordan (2012)’s suggestion to repeat the algorithm several times in which
we process the data points with different randomly-permuted order, and pick the set of
solutions with the smallest objective.

Lemma 4.2 (Local Convergence of DP-rich). Algorithm 3 monotonically decreases the DP-rich

objective function (4.7) until local convergence is achieved.

Proof of Lemma 4.2. The proof follows a similar argument as the proof for Kulis and Jordan
(2012)’s Theorem 3.1, except that the reassignment step nowdepends on a squared Euclidean
distance discounted by λ2 log(nk,−i).

As an example, we use the galaxy benchmark data set (Roeder, 1990) to illustrate that
the DP-rich approach has an advantage over the DP-means approach (Kulis & Jordan,
2012) in capturing the rich-gets-richer (rgr) property brought about by the DPM. Briefly, this
benchmark data set contains physical information on velocities for 82 galaxies drawn from six
well-separated conic sections of the Corona Borealis region (i.e., n = 82, d = 1 andKtrue =

6). We compare these two methods with Dahl (2009)’s algorithm which is guaranteed to
find the MAP clustering for 1-dimensional data if the underlying sampling distribution is
(4.3) with known mixture-component variance σ2y and centroids’ prior variance h(σ2) = σ2µ.
Specifically, we specify the priors µ0, σ2y and σ2µ via Empirical Bayes, i.e., these priors are
estimated using cluster parameters obtained from a K-means implementation withK = 6.

93

We also fix α0 = 1.3 such that the CRP prior mean of κ is approximately 6. For DP-rich,
we specify λ2 to be the estimated σ2y . For meaningful comparison, we fix λ1 = 5 for both
DP-rich and DP-means. We repeat both DP-rich and DP-means algorithms 20 times and we
pick the solutions with the lowest objectives. Figure 4.2 illustrates the partitions obtained by
these three methods. We see that at λ1 = 5, DP-rich obtains 6 clusters for the data points
whereas DP-means has 7 clusters. The presence of the rgr regularization in DP-rich attracts
the data points (that would otherwise fall into two separate clusters under DP-means) into
one combined cluster. From Figure 4.2, it is evident that the partition obtained by DP-rich
is more “similar” to that of Dahl (2009)’s algorithm. Using the partition obtained by Dahl
(2009)’s algorithm as benchmark, the Normalized Mutual Information (NMI) (Vinh, Epps,
& Bailey, 2010) for DP-rich is 0.916, whereas the NMI for DP-means in this case is 0.700.

4.2.3. Main model: Random-Weighting Scaled DP-rich

Now that we have a suitable loss function l̃(t, y) = l(t, y) + λ · lλ(t) in the form of DP-rich
(4.7), we introduce the objective function Lλ(t,W) in (4.2) for our main random-weighting
countable-mixture model , which we coin as the random-weighting scaled DP-rich (RW

SDP-rich) approach:

L rwSDP-rich
(λ1,λ2)

(z, κ,µ,Σ)

:=
1

2

 κ∑
k=1

∑
i:zi=k

Wi(yi − µk)′Σ−1(yi − µk) + ξ0

κ∑
k=1

(µk − µ0)′Σ−1(µk − µ0) + Tr
(
ψ0Σ

−1
)

+

(
n∑
i=1

Wi + ν0 − d− 1

)
log
∣∣∣Σ1/2

∣∣∣+ λ1 · κ− λ2
κ∑
k=1

log [Γ(nk)] , (4.11)

where the prior components µ0 ∈ Rd and ξ0 > 0, ν0 > d + 1 and the symmetric positive
definite matrix ψ0 are specified in (4.3),Wi

iid∼ Exp(1), and λ1, λ2 > 0 are the tuning/reg-
ularization parameters to be supplied by the analyst. Similar to the RW DP-means, the
couplet (κ,z) characterize the partition obtained by the RW SDP-rich model.

Specifically, we adopt the random-weighting framework on an extended version of

94

the DP-rich model to arrive at (4.11). Besides retaining the tuning parameters λ1 and λ2
(that allow direct calibration of κ and the magnitude of the rgr effect respectively), we
incorporate a common covariance term Σ into the objective function (to be optimized with
other parameters) that enables the RW SDP-rich approach to capture potential non-spherical
nature (correlation and different scaling among features or dimensions) of the data. In fact,
the RW SDP-rich objective function (4.11) is obtained by modifying (4.4); see supplementary
material Chapter 5.2 for more details about the modification.

4.2.4. RW SDP-rich: optimization

We repeatedly assign i.i.d. standard Exponential weights {Wi}1≤i≤n and optimize (4.11) for
B times to obtainB random-weighting samples. For any given set of the i.i.d. (W1, · · · ,Wn),
the objective function in (4.11) can be optimized using an algorithm that is similar to
Algorithm 3. In particular, the “cost” of the ith data point joining an existing cluster Ck is
updated as

dwik =
1

2
Wi(yi − µwk)′Σ−1

w (yi − µwk)− λ2 log(nk,−i) (4.12)

for k = 1, · · · , κ, while the “cost” to create a new cluster Cκ+1 is given by

dwi,κ+1 =
1

2

ξ0Wi

ξ0 +Wi
(yi − µ0)′Σ−1

w (yi − µ0) + λ1. (4.13)

For cluster-parameter updates, conditional on the existing partition (κ, z), the cluster-specific
centroids are updated as

µwk =

∑
i:zi=k

Wiyi + ξ0µ0∑
i:zi=k

Wi + ξ0
(4.14)

for k = 1, · · · , κ, and the common (across all κ clusters) covariance term is updated as

Σw =

∑κ
k=1

∑
i:zi=k

Wi(yi − µk)(yi − µk)′ + ξ0
∑κ

k=1(µk − µ0)(µk − µ0)′ + ψ0

(
∑n

i=1Wi + ν0)− d− 1
. (4.15)

95

These parameter updates (4.14) and (4.15) enable incorporation of prior information in
(4.3), which will be superseded by data information as sample size increases.

Algorithm 4 Random-weighting Scaled DP-rich (RW SDP-rich)
Require: data {y1, · · · , yn}, regularization parameters λ1 and λ2, prior terms {µ0, ξ0, ν0, ψ0},

and number of posterior draws B
1: for b = 1, · · · , B do
2: DrawWi

iid∼ Exp(1) ∀ i = 1, · · · , n.
3: Initialize by assigning all observations into a single cluster. In addition, initialize

Σwb = ψ0/(ν0−d−1).
4: while true do
5: zw,oldi,b ← zwi,b for all i.
6: for each data point yi do
7: Compute dwik with (4.12) for k = 1, · · · , κwb , and compute dwi,κwb +1 with (4.13).
8: Ifmin1≤k≤κwb d

w
ik > dwi,κwb +1, set κwb = κwb +1, zwi,b = κwb and initialize µwκwb ,b with

(4.14). Otherwise, set zwi,b = argmin1≤k≤κwb
dwik.

9: Drop empty clusters if they exist.
10: end for
11: For each cluster k, update its cluster centroid µwk,b with (4.14).
12: Update Σwb with (4.15).
13: if zw,oldi,b = zwi,b for all i then
14: Store κwb , Σwb , µwk,b for k = 1, · · · , κwb and zwi,b for i = 1, · · · , n.
15: end if
16: end while
17: end for
Ensure: B samples of number of clusters {κwb }1≤b≤B , covariance term {Σwb }1≤b≤B , cluster

centroids
{
µwk,b

}
1≤k≤κwb ;1≤b≤B

, and cluster assignments
{
zwi,b

}
1≤i≤n;1≤b≤B

.

Algorithm 4 outlines this random-weighting procedure in detail. Notice that this algo-
rithm is trivially parallelizable over b ∈ {1, · · · , B}, which enhances its scalability to large
datasets. We refer readers to the supplementary material Chapter 5.2 for other implementa-
tion details of the algorithm.

Lemma 4.3. (Local Convergence of RW SDP-rich) For any given sets of positive weights

(W1, · · · ,Wn), the while-loop (lines 4–16) of Algorithm 4 monotonically decreases the objective

given in (4.11) until local convergence.

Lemma 4.3 ensures local convergence of the RW SDP-rich algorithm. Its proof is given in

96

the supplementary material Chapter 5.2. Similar to the DP-rich algorithm, the RW SDP-rich
procedure also depends on the order in which data points are processed (i.e., the order in
which yi : i ∈ {1, · · · , n} is processed in the for-loop (lines 6–10) of Algorithm 4). Again,
we suggest that for each set of random weights (W1, · · · ,Wn), we repeat the while-loop
(lines 4–16) of Algorithm 4 several times in which we process the data points with different
permuted order, and pick the set of solutions with the smallest objective.

4.2.5. RW SDP-rich: related models

There are several variations (or simplifications) to the RW SDP-rich model, which could
be useful in different situations. Figure 4.3 summarizes these variations of the random-
weighting procedures.

Diagonal Covariance Structure

For high-dimensional datasets with high correlation among features, the scalability and
chain-mixing problems of standard MCMC procedures become more prominent. The
analyst may choose to first apply some dimension-reduction tools (e.g. Scrucca et al., 2016),
such as the Principal Component Analysis (PCA) on the data points {y1, · · · , yn}, or the
Multidimensional Scaling (MDS) approach on the pairwise distances of the data points
(e.g. Hastie et al., 2009), and then perform clustering on these principal components (PCs)
or eigenvectors from the MDS. Since these dimensionally-reduced datasets are uncorrelated
by construction, the analyst could then apply the RW SDP-rich model with a diagonal
covariance structure instead:

L rwSDP-rich
(λ1,λ2)

(z, κ,µ,σ2)

:=
d∑
j=1

1

2σ2j

 κ∑
k=1

∑
i:zi=k

Wi(yij − µkj)2 + ξ0j

κ∑
k=1

(µkj − µ0j)2 + 2b0j

 (4.16)

+
1

2

d∑
j=1

(
n∑
i=1

Wi + 2a0j − 2

)
log
(
σ2j
)
+ λ1 · κ− λ2

κ∑
k=1

log [Γ(nk)] ,

97

whereWi
iid∼ Exp(1) and b0,j , ξ0,j > 0 and a0,j > 1 for all j = 1, · · · , d. In fact, this objective

function (4.16) is derived by modifying (4.4) where a common diagonal covariance structure
is adopted, i.e. Σ = diag

(
σ21, · · · , σ2d

), h(Σ) = diag
(
σ2
1

ξ0,1
, · · · , σ

2
d

ξ0,d

)
, and σ2j ∼ IG(a0,j , b0,j)

for j = 1, · · · , d. Similar procedure (Algorithm 4) could be used to optimize (4.16), with
slightly different formulae for parameter updates and costs of contribution to the objective.
We refer readers to the supplementary material Chapter 5.2 for these formulae. Notice
that this algorithm runs faster than its full-covariance counterpart since matrix inversion of
cluster covariance Σ is avoided in this case.

Figure 4.3: Schematic depicting different variations of the random-weighting models.

No rich-gets-richer (rgr) property

If the analyst decides that the “rich-gets-richer” (rgr) property does not reflect the underlying
data generating processes (e.g. Jensen & Liu, 2008), then the rgr penalty in the RW SDP-rich
could be discarded by setting λ2 = 0 in (4.11) or (4.16). To distinguish its lack of rgr property,
we name this procedure as random-weighting scaled DP-means (RW SDP-means).

No feature scaling

If the underlying true sampling distribution is indeed a mixture model where each cluster
of observations has uncorrelated features (dimensions) with unit variance, then the analyst
may choose to simplify the random-weighting procedures by setting Σ = Id in (4.3). In

98

addition, the analyst may also choose to specify h(Σ) = Id/ξ0, where ξ0 → 0 signifying a very
noisy or uninformative prior for µk. In this case, the objective functions (4.11) and (4.16)
could be simplified into the random-weighting DP-rich (RW DP-rich) procedure

L rwDP-rich
(λ1,λ2)

(z, κ,µ) :=
κ∑
k=1

∑
i:zi=k

Wi∥yi − µk∥22 + λ1 · κ− λ2
κ∑
k=1

log [Γ(nk)] . (4.17)

(4.17) is indeed the random-weighting version of (4.7). Again, Algorithm 4 could be used to
optimize (4.17), except that the weighted squared Mahalanobis distance (with the 1/2 factor)
in the formulae would be replaced with weighted squared Euclidean distance (without the
1/2 factor). Another notable difference is that no optimization w.r.t. Σ is required here for
(4.17) , thus leading to faster computation as compared to the RW SDP-rich setup. Note that
setting λ2 = 0 in (4.17) reduces the objective function to the random-weighting DP-means

(RW DP-means):

L rwDPmeans
λ1 (z, κ,µ) :=

κ∑
k=1

∑
i:zi=k

Wi∥yi − µk∥22 + λ1 · κ. (4.18)

Again, (4.18) is the random-weighting version of (4.5).
Finally, if the analyst pre-specify a fixed number of clustersK instead of letting κ to be a

data-driven parameter, then the RW DP-means setup is reduced to the random-weighting

K-means (RW K-means) algorithm:

L rwKmeans
K (µ, z) :=

K∑
k=1

∑
i:zi=k

Wi ∥yi − µk∥22 . (4.19)

We refer readers to the supplementary material Chapter 5.3 for an algorithm to deploy RW
K-means, as well as a simple proof about how RW K-means serves as the small-variance
asymptotics of Fong et al. (2019)’s random-weighting Gaussian finite-mixture model.

99

4.2.6. RW SDP-rich: computational complexity

For every set of random weights (W1, · · · ,Wn), the random-weighting algorithms are either
repeated until local convergence where cluster assignments no longer change, or capped at
tmax times, whichever is achieved earlier.

RW K-means. Thus, the computational complexity for RW K-means is at most

O (B · tmax ·K · n · d) ,

where B denotes the number of posterior draws and K denotes the number of clusters
specified by the analyst. The factor n · d results from the squared Euclidean distance
computed for every data point in the cluster reassignment step.

RW DP-rich. Similarly, the order of complexity for RW DP-rich is given by

O (B · tmax · κ̄rwDP-rich · n · d) ,

where κ̄rwDP-rich denotes the average estimated number of clusters by the RW DP-rich algo-
rithm. (See, for example, Paul and Das (2020) on how they accounted for the computational
complexity of their algorithm which extends the DP-means approach.)

RW SDP-rich (full covariance structure). Meanwhile, for the RW Scaled DP-rich ap-
proach (4.11), the order of complexity is given by

O
(
B · tmax ·

[
κ̄rwSDP-rich (full) · n · d2 + d3

])
,

where κ̄rwSDP-rich (full) denotes the average estimated number of clusters by the RW SDP-rich
algorithm under the full covariance structure. The factor n · d2 results from the squared Ma-
halanobis distance computed for every data point in the cluster reassignment step, whereas
the d3 factor results from the inversion of the common (across all clusters) covariance term
Σw.

RW SDP-rich (diagonal covariance structure). Since the RW Scaled DP-rich approach

100

with diagonal covariance structure (4.16) does not involve calculation of Mahalanobis
distance or inversion of covariance matrix, its computational complexity is reduced to
O
(
B · tmax · κ̄rwSDP-rich (diag) · n · d

), where κ̄rwSDP-rich (diag) denotes the average estimated
number of clusters by the algorithm.

4.2.7. RW SDP-rich: calibrating regularization parameters

We first focus on the rich-gets-richer (rgr) tuning parameter λ2 for both RW SDP-rich and RW
DP-rich approaches. Based on the construction of DP-rich in Section 4.1 as well as Equation
(4.12), we propose to specify λrwSDP-rich

2 = 1
2 and λrwDP-rich

2 = σ̂2, where σ̂2 is the analyst’s
estimate about the variance in each feature of the data points in the same cluster. Then, we
have

drwSDP-rich
ik =

1

2

[
Wi(yi − µwk)′Σ−1

w (yi − µwk)− log(nk,−i)
]

drwDP-rich
ik =Wi ∥yi − µwk ∥

2
2 − σ̂

2 log(nk,−i).

(4.20)

Notice that if Σw = Id and σ̂2 = 1 in (4.20), then the weighted squared Mahalanobis
distance or weighted squared Euclidean distance of a data point yi from a centroid µk is
“discounted” by the same factor of log(nk,−i). We find that these choices of λn,2 lead to
reasonable performance by the algorithms in our numerical experiments. We illustrate via a
simulation example in the supplementary material Chapter 5.2 to compare the performance
of these two approaches using different rgr tuning parameters.

From (4.20), it is evident that under the RW DP-rich approach, the scales of the data
directly affect the ratio between the squared Euclidean distance and log(nk,−i). Thus, the
onus is on the analyst to estimate σ̂2, or the RW SDP-rich approach should be adopted
instead, because the issue of non-unitary feature-scales is already taken into consideration
by the RW SDP-rich algorithm via the variable Σw.

After determining λ2, we now turn our attention to the tuning parameter λ1 that directly
regulates κ for all the random-weighting approaches. We opine that calibration of λ1
depends on the purpose of the analyst’s clustering exercise. Here are some examples of

101

benchmark measurements that may be considered by the analyst:

• The analyst may wish to tune λ1 such that the average of {κwb }1≤b≤B mimics the MAP
estimate of κ. There are numerous existing approximate methods to obtain MAP
estimates for the DPM (without full MCMC procedure); see, for example, Zuanetti et
al. (2019), Karabatsos (2020) and references therein.

• The analyst may be interested to compare the clustering patterns obtained from the
random-weightingmethods against other clustering procedure (such as agglomerative
hierarchical clustering). Then, the analyst may choose to calibrate λ1 to maximize the
average of some similarity measures (such as Normalized Mutual Information (NMI)
or Adjusted Rand Index (ARI) (Vinh et al., 2010)) comparing the random-weighting
partitions and the “benchmark” partition by the other clustering method.

• Other potential consideration could also be the notion of stability selection; see, for
example, Fang and Wang (2012) as well as Paul and Das (2020).

We refer readers to the supplementary material Chapter 5.2 for a detailed algorithm that
outlines the specific steps for calibrating λ1 after the analyst has decided on the benchmark
measurement to be used for tuning this regularization parameter.

4.3. Numerical Experiments

We study performances of the random-weighting (RW) procedures, namely RW DP-rich
(where RW DP-means is a special case) and RW SDP-rich (where RW SDP-means is a
special case), and compare them with standard MCMC methods for the DPM of Normals
and Blei and Jordan (2006)’s variational inference (henceforth abbreviated as VI). All
simulation studies and data analyses are performed using R (R Core Team, 2019); the
source code is available at the Github public repository https://github.com/ngtunlee/

random-weighting-mixture. In particular, we accelerate the random-weighting and VI

https://github.com/ngtunlee/random-weighting-mixture
https://github.com/ngtunlee/random-weighting-mixture

102

algorithms in R with C++ implementations via RcppArmadillo (Eddelbuettel & Sanderson,
2014). In addition,

• standardMCMCprocedure for the DPMofNormalswith full covariance structure (i.e.,
h(Σk) = Σk/ξ0 and Σk|(z, κ) ∼ IW (ν0, ψ0) in (4.3)) is implemented with R package
DPpackage (Jara, Hanson, Quintana, Mueller, & Rosner, 2011), and is compared with
its variational inference counterpart (formulae provided in the supplementarymaterial
Chapter 5.6) as well as RW SDP-rich in (4.11).

• standard MCMC procedure for the DPM of Normals with diagonal covariance struc-
ture, (i.e.,Σk = diag

(
σ2k,1, · · · , σ2k,d

)
, h(Σk) = diag

(
σ2
k,1

ξ0,1
, · · · , σ

2
k,d

ξ0,d

)
, and σ2k,j

∣∣∣(z, κ) ∼
IG(a0,j , b0,j) for j = 1, · · · , d in (4.3)), is implemented with R package BNPmix (Cor-
radin, Canale, & Nipoti, 2021), and is compared with its variational inference coun-
terpart (see supplementary material Chapter 5.6) as well as RW SDP-rich in (4.16).
Again, note that ξ0 is a d−dimensional vector here, whereas ξ0 under the full covariance
structure is a scalar.

Notice that, even though our DPM working model in (4.3) considers a common covariance
term acrosss the mixture components, the aforementioned existing software packages
implement standard MCMC schemes that involve a more general form of DPM that allows
cluster-specific covariance terms.

In order to facilitate meaningful comparison between MCMC posterior samples and
surrogate samples from all the other approximate methods (VI and random-weighting) in
all our numerical experiments, the same set of prior values are adopted across MCMC, VI
and RW SDP-rich (where applicable), and we also calibrate the tuning parameter λ1 for all
random-weighting methods to mimic the posterior mean of κ obtained by MCMC. Again,
we fix λrwSDP-rich

2 = 1
2 in each simulation and data analysis. The mixing of the MCMC chains

is assessed with the trace plots of the posterior number of clusters sampled by MCMC.
Each of the random-weighting (and VI) algorithms is repeated 5 times, and we pick the
solution with the lowest objective (or, for VI, the highest evidence lower bound (ELBO); see

103

supplementary material Chapter 5.6 for more details). Computational times for all these
methods in all of our numerical experiments are provided in the supplementary material
Chapter 5.5.

4.3.1. Simulations

We consider 3 simulation settings as explained below. For each simulation setting, we
generate T = 10 independent data sets. Each of these simulated data sets consists of
n = 1000 training samples andm = 500 held-out (test) samples.

Simulation Setting I.We generate data from a 2-dimensional Gaussian finite-mixture
model with Ktrue = 16 and Σtrue = I2. Each cluster has (almost) equal number of data
points. The true centroids are equally spaced-out among (x, y)-coordinates ∈ {−6,−2, 2, 6}.
For this simulation setting, we adopt the diagonal covariance structure on all the aforemen-
tioned methods (MCMC, VI and random-weighting). For j = 1, 2, the priors are specified
to be: µ0,j = 0, ξ0,j = 0.1, a0,j = 2 and b0,j = 1, such that the inverse gamma priors have
a mean of 1. We also specify α0 = 2.6 such that the prior mean of κ under the CRP is
approximately 16. Corresponding to the diagonals of Σtrue, we specify λrwDP-rich

2 = 1.
Simulation Setting II. The simulation setting is similar to Simulation Setting I, except

that now Σtrue =
(

1 .5
.5 1

), so that we could compare the performances of the methods when
the features/dimensions of the data are more highly-correlated. For this simulation setting,
we adopt the full-covariance structure on all the aforementioned methods. Again, the same
priors are specified, except that the inverse gamma priors are replaced with the inverse
Wishart prior where ν0 = 5 and ψ0 =

(
2 1
1 2

), such that the inverse Wishart prior has a mean
that equals Σtrue. Again, corresponding to the diagonals of Σtrue, we specify λrwDP-rich

2 = 1.
Simulation Setting III.We generate data from a 2-dimensional DPM of Normals with

a CRP intensity parameter α0 = 2.6. The mixture component variance is fixed at Σtrue =(
1 .5
.5 1

), whereas the mixture component centroids are sampled from a Normal prior with
parameters µ0 = (0, 0)′ and ξ0 = 0.1. Again, the full-covariance structure is adopted on all
the aforementioned methods. Ground-truth prior values which are used to generate data

104

are also adopted for MCMC, VI, RW SDP-means and RW SDP-rich. Again, corresponding
to the diagonals of Σtrue, we specify λrwDP-rich

2 = 1.
For each simulated data set, we draw B = 5000 posterior (or approximate posterior)

samples for each of the aforementioned methods. For MCMC, we specify a burn-in period
of 5000 and a thinning interval of 15 to reduce auto-correlation among posterior samples.
For variational inference, we fix the stick-breaking threshold atKmax = 40 for Simulation
Settings I and II, and Kmax = 60 for Simulation Settings III. The MCMC and random-
weighting implementations produce

{
κ
(b,t)
(MCMC), κ

(b,t)
(rwDPmeans), κ

(b,t)
(rwDP-rich), κ

(b,t)
(rwSDPmeans), κ

(b,t)
(rwSDP-rich)

}

and

{
z
(b,t)
i(MCMC), z

(b,t)
i(rwDPmeans), z

(b,t)
i(rwDP-rich), z

(b,t)
i(rwSDPmeans), z

(b,t)
i(rwSDP-rich)

}
1≤i≤n

,

which represent the sampled/bootstrapped κ’s and cluster assignment for the ith observation
in the bth iteration (i.e. bth posterior draw) for the tth simulated data set.

Meanwhile, the variational inference (VI) algorithm produces local solution to “vari-
ational parameters” of the “variational densities”. (Again, see supplementary material
Chapter 5.6 for more detailed formulae.) In particular, the CRP prior of (4.3) could be
reformulated as a stick-breaking prior (Sethuraman, 1994): for i = 1, · · · , n,

zi|π(v) ∼Mult(1;π(v)) where π(v)|α0 ∼ GEM(α0). (4.21)

The VI method approximates the multinomial components in (4.21) with variational multi-
nomial probabilities {π̂i,k}1≤i≤n,1≤k≤Kmax

. We then draw B surrogate samples of cluster
assignments based on these VI multinomial probabilities, i.e. for every ith training data

105

point in the tth simulated data set, we sample independently

z
(b,t)
i(VI) ∼Mult

(
1; π̂i,1 , · · · , π̂i,Kmax

)
during the bth iteration (draw), and obtain κ(b,t)(VI) as the number of unique cluster labels{
z
(b,t)
i(VI)

}
1≤i≤n

.
We then assess the performances of each of these 6 methods (MCMC, RW DP-means,

RW SDP-means, RW DP-rich, RW SDP-rich and VI) in each simulation setting using the
following comparison criteria:

1. Coefficient of variation (CoV) of cluster sizes

For each of the 6 methods, during the bth posterior draw for tth simulated training
data set, we obtain the cluster labels z(b,t)

(·) , which tells us about the number of clusters
κ
(b,t)
(·) obtained by the method, as well as the cluster sizes

{
n
(b,t)
k,(·)

}
1≤k≤κ(b,t)

(·)

. We keep
track of the coefficient of variation (CoV) of these cluster sizes

ϕ
(b,t)
(·) := CoV of

{
n
(b,t)
k,(·)

}
1≤k≤κ(b,t)

(·)

for each of the 6 methods, and then obtain the ecdf of these CoV’s

F̂
(t)
ϕ(·) = ecdf of

{
ϕ
(b,t)
(·)

}
1≤b≤B

. (4.22)

F̂
(t)
ϕ(MCMC) is treated as the “benchmark curve”, and is used to compare with F̂ (t)

ϕ(·) from
the other 5 methods, by keeping track of the total variation TV (t)

ϕ(·) between F̂ (t)
ϕ(MCMC)

and F̂ (t)
ϕ(·).

2. Average log posterior predictive density

Denote ỹ(t)
ĩ

as the held-out (test) data for ĩ = 1, · · · ,m, that is generated using the
same simulation setting as the tth set of simulated training data. For MCMC and
the 4 random-weighting methods, we compute the average (over the tth test set) log

106

Simulation I Simulation II Simulation III

0.05 0.10 0.15 0.20 0.25 0.05 0.10 0.15 0.0 0.2 0.4 0.6

rwDPmeans

rwDPrich

rwSDPmeans

rwSDPrich

VI

Total variation of coefficient of variation for cluster sizes (w.r.t. MCMC)

Simulation I Simulation II Simulation III

0.000 0.005 0.010 0.015 0.020 0.00 0.01 0.02 0.030.00 0.03 0.06 0.09

rwDPmeans

rwDPrich

rwSDPmeans

rwSDPrich

VI

Total variation of NMI for sampled pairs of cluster labels (w.r.t. MCMC)

Simulation I Simulation II Simulation III

0.015 0.020 0.025 0.0300.010 0.015 0.020 0.05 0.10 0.15 0.20 0.25

rwDPmeans

rwDPrich

rwSDPmeans

rwSDPrich

VI

Mean absolute difference of pairwise probability of 2 observations clustered together

Simulation I Simulation II Simulation III

−5.52 −5.50 −5.48 −5.46 −5.44 −5.42 −5.50 −5.45 −5.40 −5.35 −11 −10 −9 −8 −7 −6 −5

rwDPmeans

rwDPrich

rwSDPmeans

rwSDPrich

VI

MCMC

Average log posterior predictive density

Figure 4.4: Sampling distribution for 4 comparison measurements among T = 10 simulated
data sets in 3 simulation settings: TV (t)

ϕ(·) (Criterion (1)), TV (t)
ή(·) (Criterion (4)), p̌(t)(·) (Criterion

(3)), and g̃(t)(·) (Criterion (2)).

107

posterior predictive density evaluated at these held-out data points as follows:

g̃
(t)
(·) :=

1

m

m∑
ĩ=1

log

{
1

B

B∑
b=1

κ
(b,t)
(·)∑
k=1

n
(b,t)
k(·)

n+ α0
fTd

(
ỹ
(t)

ĩ

∣∣∣ν̃(b,t)k(·) , µ̃
(b,t)
k(·) , Σ̃

(b,t)
k(·)

)
+

α0

n+ α0
fTd

(
ỹ
(t)

ĩ

∣∣∣ν̃0, µ̃0, Σ̃0

)}
, (4.23)

where fTd(y|ν, µ,Σ) denotes the d-dimensional multivariate T density (with ν degrees
of freedom as well as location and scale parameters µ and Σ) evaluated at y. The
subscript k(·) and superscript (b, t) for the T density parameters represent their spe-
cific values computed based on the bth posterior samples obtained by one of the 5
methods (MCMC or random weighting) for the kth cluster in the tth simulated data
set. The formula for these multivariate T densities in (4.23) follows that of the pos-
terior predictive density corresponding to a conjugate normal-inverse-Wishart prior.
In fact, (4.23) computes the average log posterior predictive density under the full-
covariance structure; the formulae for its counterpart under the diagonal-covariance
structure are given in supplementary material Chapter 5.5. Meanwhile, the average
log posterior predictive density for VI is computed based on its variational densities
and its corresponding variational parameters. Detailed formulae are provided in the
supplementary material Chapter 5.6.

3. Pairwise probability of any two observations clustered together

We keep track of the probability of clustering the ith and jth observations together by
MCMC and the 4 random-weighting schemes in the tth simulated training dataset

p̆
(t)
ij(·) :=

1

B

B∑
b=1

1{
z
(b,t)
i(·) =z

(b,t)
j(·)

}

for all i, j ∈ {1, · · · , n} and i ̸= j. Meanwhile, p̆(t)ij(VI) is calculated based on the varia-
tional multinomial probabilities; see Chapter 5.6 for more detail. Then, we compare
the other 5 methods against MCMC by computing the average absolute difference of

108

these pairwise probabilities for the tth dataset

p̌
(t)
(·) :=

2

n(n− 1)

∑
i<j

∣∣∣p̆(t)ij(·) − p̆(t)ij(MCMC)

∣∣∣ . (4.24)

4. Normalized Mutual Information (NMI) based on randomly-sampled pairs of pos-

terior cluster assignments

We could also compare “similarities” of cluster assignments between MCMC and the
other 5 methods (VI and random-weighting) in terms of Normalized Mutual Infor-
mation (e.g. Vinh et al., 2010) that ranges between 0 and 1, with 1 indicating perfect
agreement between the two sets of cluster assignments and 0 otherwise. However,
this would involve B2 NMI computations for each of the 5 methods when we compare
them against MCMC, which is very computationally intensive. Hence, we would
instead randomly sample (with replacement), say, B́ pairs of cluster assignments and
compute their NMI’s. Specifically, let

{
ź
(b́,t)
(·)

}
1≤b́≤B́

be the random samples from the

(standard or approximate) posterior cluster assignments
{
z
(b,t)
(·)

}
1≤b≤B

obtained by
one of the 6 aforementioned methods for the tth simulated training dataset. Next, we
compute NMI for the b́th randomly-sampled pair of cluster assignments (where one
of them is from MCMC) with

ή
(b́,t)
(·) := NMI

(
ź
(b́,t)
(·) , ź

(b́,t)
(MCMC)

)
,

and then obtain the empirical distribution function (ecdf) of these NMI values

F̂
(t)
ή(·) = ecdf of

{
ή
(b́,t)
(·)

}
1≤b́≤B́

. (4.25)

In particular, F̂ (t)
ή(MCMC) is treated as the “benchmark curve”, and is used to compare

with F̂ (t)
ή(·) from the other 5 methods, by keeping track of the total variation TV (t)

ή(·) be-
tween F̂ (t)

ή(MCMC) and F̂
(t)
ή(·). Note that ή(b́,t)(MCMC) is computed asNMI

(
z̀
(b́,t)
(·) , ź

(b́,t)
(MCMC)

)
,

109

where z̀(b́,t)(·) is another independent random sample of MCMC posterior cluster as-
signments.

Comments on comparison criteria. First, note that all four comparison criteria here circum-
vent the label-switching problems that complicate many mixture-modeling calculations
(Stephens, 2000). Comparison criterion (1) illustrates the variability in posterior cluster
assignments obtained by the 6 methods. Ideally, the other 5 approximate methods should
mimic the variability displayed by MCMC samples under criterion (1), so total variation
distance (in comparison with MCMC) should ideally be small. Criterion (2) is popular in
existing mixture-modeling and clustering literature, and higher average log posterior pre-
dictive density indicates “better prediction for the test data”. Meanwhile, we also consider
criteria (3) and (4) in order to compare the “similarities” between MCMC posterior cluster
assignments and those obtained by the other 5 methods. Higher degree of agreement in
cluster assignments between MCMC and the other 5 methods should lead to lower p̌(t)(·) and
TV

(t)
ή(·).
The simulation results are presented in Figure 4.4. Overall, RW SDP-rich obtains the

best approximation to MCMC clustering results as compared to VI and the other 3 random-
weighting setups, as it has the smallest total variation distance

{
TV

(t)
ή(·)

}
1≤t≤10

as well as the
smallestmean absolute difference in pairwise probabilities of clustering any two observations{
p̌
(t)
(·)

}
1≤t≤10

across the 3 simulation settings. The presence of the cluster covariance term Σ

in RW SDP-means and RW SDP-rich allows them to perform better than their respective
counterparts without feature-scaling (i.e., RW DP-means and RW DP-rich, respectively)
in Simulation Setting II where data features are more correlated. The boxplots for total
variation distance of CoV of cluster sizes illustrate that the presence of rgr regularization
in RW DP-rich and RW SDP-rich allows them to better mimic MCMC posterior variation
in cluster samples than VI and their respective counterparts without rgr penalty – RW
DP-means and RW SDP-means, in all 3 simulation settings. All 6 methods (MCMC, VI
and the 4 random-weighting setups) have very similar average log posterior predictive

110

densities in all simulation settings (with VI and RW DP-rich register slightly lower values in
Simulation Setting II).

Iris Wine TCR

0.00 0.25 0.50 0.75 1.00 1.25 0.0 0.5 1.0 1.5 1 2 3

0.00

0.25

0.50

0.75

1.00

Coefficient of variation of cluster sizes

e
c
d

f

Iris Wine TCR

0.4 0.6 0.8 1.00.00 0.25 0.50 0.75 1.00 0.60 0.65 0.70 0.75

0.00

0.25

0.50

0.75

1.00

NMI for sampled pairs of cluster labels (w.r.t. MCMC)

e
c
d

f

0.254

0.142

0.092

0.13

0.095

0.088

0.062

0.087

0.053
0.057

0.005

0.008 0.008

0.034

0.006

Iris Wine TCR

rwDPmeans
rwDPrich

rwSDPmeans

rwSDPrich
VI

rwDPmeans
rwDPrich

rwSDPmeans

rwSDPrich
VI

rwDPmeans
rwDPrich

rwSDPmeans

rwSDPrich
VI

0.00

0.01

0.02

0.03

0.000

0.025

0.050

0.075

0.0

0.1

0.2

Mean absolute difference of pairwise probability of 2 observations clustered together

m
e

a
n

 a
b

s
o

lu
te

 d
if
fe

re
n

c
e

Figure 4.5: The ecdf curves of CoV of cluster sizes (see, Equation (4.22)) and the ecdf curves
of NMI (see, Equation (4.25)) comparing randomly-sampled pairs of cluster assignments
for all 6 methods – MCMC (solid black), VI (solid green), RW DP-means (dashed light-
blue), RW DP-rich (solid dark-blue), RW SDP-means (dashed orange) and RW SDP-rich
(solid red), as well as the barplots depicting mean absolute differences (in comparison with
MCMC) of pairwise probabilities of clustering any two observations together (see, Equation
(4.24)) for the other 5 methods, among the 3 benchmark and motivating data examples.

111

4.3.2. Benchmark Data Examples

Next, we deploy all the 6 aforementioned methods on two benchmark data sets – iris and
wine, which are commonly found in many clustering and classification literature. Briefly, the
iris data set (Anderson, 1935) gives the measurements of sepal length and width and petal
length and width, respectively, for 50 flowers from each of 3 species of iris (i.e., n = 150,
d = 4 and Ktrue = 3). Meanwhile, the wine data set, which is available in the R package
rattle.data (Williams, 2011), contains the results of 13 chemical analyses for 178 samples
(that belong to either one of the three classes) of wine grown in a specific area of Italy (i.e.,
n = 178, d = 13 andKtrue = 3).

For each benchmark data set, we draw B = 2000 posterior (or approximate posterior)
samples for each method. We refer readers to the supplementary material Chapter 5.5 for
details about specifying the priors for MCMC, VI, RW SDP-rich and RW SDP-means. λ2
for RW DP-rich is then specified using the (average, across all features, of) prior mean
of mixture-component variance. Since Ktrue is small for both benchmark data sets, the
stick-breaking threshold for VI is fixed atKmax = 10. For iris data set, the full-covariance
structure is adopted for MCMC, VI, RW SDP-rich and RW SDP-means. Meanwhile, we point
out thatMCMC has poormixing (as indicated by theMCMC trace plot in the supplementary
material Chapter 5.5) when we adopt the full covariance structure for the original wine
data set. Consequently, we perform a PCA on the data set, and use the first 5 principal
components (which explains more than 80% of variation in the data) as our transformed
data set. The diagonal-covariance structure is thus adopted for MCMC, VI, RW SDP-rich
and RW SDP-means, since principal components are uncorrelated by construction.

Based on the clustering results obtained by the 6 methods, we obtain their respective ecdf
curves for coefficient of variation of cluster sizes F̂ϕ(·) (see, Equation (4.22)) and ecdf curves
for NMI F̂ή(·) computed based on randomly-sampled pairs of posterior cluster assignments
(see, Equation (4.25)). We also keep track of the mean absolute difference of pairwise
probabilities p̌(·) (for any two observations to be clustered together) computed by the other
5 methods in comparison with MCMC (see, Equation (4.24)).

112

The results are presented in Figure 4.5. Overall, RW SDP-rich provides the best ap-
proximation to MCMC posterior cluster assignments among all other methods, since its
(solid red) ecdf curve hugs the MCMC (solid black) ecdf curve the tightest. Furthermore,
in both benchmark data sets, RW SDP-rich also has (nearly) the smallest mean absolute
difference of pairwise probabilities of clustering any two observations together, whereas VI
reports the highest value in this criterion. Notice that for iris data set, the ecdf curves of
NMI for sampled pairs of cluster assignments for RW DP-means and RW DP-rich (dashed
light-blue and solid dark-blue curves, respectively) are further away from the MCMC (solid
black) ecdf curve than the ecdf curves for RW SDP-means and RW SDP-rich, due to the
former’s lack of feature-scaling limitation in capturing the feature correlation in the iris
data set. This pattern is not observed in the wine data set because we are working on the
transformed data set via PCA and principal components are uncorrelated by construction.
From the ecdf of CoV of cluster sizes, it is evident that VI severely underestimates posterior
variation in cluster assignments in both benchmark data sets. In fact, most of the VI samples{
z
(b)
(VI)

}
1≤b≤B

show (almost) the same partition. This finding is also consistent with VI’s
poor performance (in terms of approximating posterior variation) in the simulations; see
Figure 4.4. Similar limitation has also been reported in Fong et al. (2019). Again, the lack of
rgr regularization in RW DP-means and RW SDP-means causes their ecdf curves (dashed
light-blue and dashed orange curves, respectively) for CoV of cluster sizes to be further
away from the MCMC ecdf curve than RW DP-rich and RW SDP-rich.

4.3.3. Motivating Example: T-cell Receptor Data

Now we consider our motivating T-cell Receptor (TCR) data example. Specifically, Zahm,
Ng, Newton, and McNeel (2022) sequenced 13387 TCR sequences from 70 mice, which
were administered with different experimental antigens in order to study antigen specificity
of TCR sequences in mice. Clustering of TCR based on sequence “similarities” to reflect
antigen specificity has gained traction in literature recently (e.g. Vujovic et al., 2020), which
has been aided by availability of software packages such as tcrdist3 that computes the

113

pairwise distances of TCR sequences based on their sequencing reads (Dash et al., 2017).
We are interested in the uncertainty quantification of clustering these TCR sequences, using
the methods that are developed in this paper.

We note that pairwise distances of data points could be utilized by certain clustering
methods, such as hierarchical clustering or K-medoids. However, all methods that are men-
tioned or developed in this paper (MCMC, VI and random-weighting) work on Euclidean
data points. Consequently, using the classical multidimensional-scaling (MDS) approach
(Hastie et al., 2009), we map these (13387×13386)/2 pairwise distances into a 3-dimensional
Euclidean space, which leaves us with a data set where n = 13387 and d = 3. We then draw
B = 20, 000 posterior (or approximate posterior) samples for each method. Again, since
these 3-dimensional eigenvectors are uncorrelated by construction, we adopt the diagonal-
covariance structure for MCMC, VI, RW SDP-means and RW SDP-rich. The priors for these
methods are estimated using a hierarchical-clustering procedure that is implemented based
on the pairwise distances. λ2 for RW DP-rich is then specified using the (average, across all
features, of) prior mean of mixture-component variance. We refer readers to the supple-
mentary material Chapter 5.5 for details about specifying the priors and the stick-breaking
threshold for VI.

Again, we compare the posterior cluster assignments from all the 6 methods with the
same criteria that we used for our benchmark data examples. From Figure 4.5, the RW
SDP-rich (solid red) ecdf curves are the closest to the MCMC (solid black) ecdf curves,
thus suggesting better approximation to posterior cluster assignments than VI and the
other random-weighting schemes. We also note that p̌(VI) is the smallest, which is closely
followed by p̌(rwSDP−rich) (see, Criterion (3)). It is worth noting that RW DP-rich has the
worst performance in this case; in fact, it is way off from all the other methods. This data
analysis example illustrates the tricky nature of calibrating λrwDP-rich

2 : if λrwDP-rich
2 is too

small, then its performance is no different from a RW DP-means implementation; on the
other hand, if λrwDP-rich

2 is too big, then the performance of RW DP-rich is adversely affected.
Hence, in practice, RW SDP-rich is preferred over RW DP-rich since the variance of the

114

mixture components is part of the model variables to be optimized under the RW SDP-rich
approach, instead of being a tuning parameter that needs to be carefully calibrated by the
analyst under the RW DP-rich setup.

4.4. Theoretical Properties

We first furnish additional definitions relating the Bayesian NPL framework (Lyddon et
al., 2018) from Section 4.1 to the clustering parameters in our random-weighting approach
for mixture models from Section 4.2. Then, we present our asymptotic results under this
framework. The proofs for all the theorems in this section are collected in the supplementary
material Chapter 5.4.

Specifically, from Section 4.1, we are interested in expected loss L (t, F) where posterior
sampling of F is approximated with Bayesian bootstrap Fw, which leads to

L (t, Fw) =

∫
Ω
l̃(t, y) dFw(y) =

∫
Ω
l(t, y) dFw(y) + λ0l0(t) =

n∑
i=1

wil(t, yi) + λ0l0(t), (4.26)

where (w1, · · · , wn) ∼ Dir(1, · · · , 1) and λ0 > 0 is supplied by the analyst. Then, we arrive at
(4.2) by normalizing the standard dirichlet random weights into i.i.d. standard Exponential
randomweights, as well as replacing λ0

∑n
i=1Wi with λ in (4.2). We refer interested readers

to the supplementary material Chapter 5.4 for detailed derivation of this Bayesian NPL
approach. The following subsections will instead focus on the setup in (4.26).

115

4.4.1. Definitions under Bayesian NPL Framework

RW K-means

First, let AK = {a1, · · · , aK} be a set of K points on Rd, and we want to find AK that
minimizes

inf
AK

L (AK , Fw) = inf
AK

{∫
Ω

min
a∈AK

∥y − a∥22 dFw(y)
}

= min
(µ,z)

K∑
k=1

∑
i:zi=k

wi∥yi − µk∥22

 ,

(4.27)

where (w1, · · · , wn) ∼ Dir(1, · · · , 1), and Fw is the Bayesian bootstrap defined in (4.26).
From the discussion in Section 4.1, it is evident that the RHS of (4.27) is related to (4.19).
The subscript K in AK highlights the fact that the variable depends on the choice of K
specified by the analyst under the RW K-means approach.

Furthermore, denote Vk as the Voronoi region generated by ak

Vk :=
{
yi ∈ Ω : ∥yi − ak∥22 < ∥yi − ak′∥

2
2 for all k′ ̸= k

}
. (4.28)

Then, ⋃k Vk is the Voronoi tessellation (e.g., Urschel, 2017) of Ω, and the set Ω\(⋃k Vk)

consists of data points that are equidistant from more than one centroid. In this subsection,
we shall refer to the collection of Voronoi regions and Ω\(

⋃
k Vk) as the Voronoi partition

(denoted as P).
Let Awn,K := argminAK

L (AK , Fw) be the minimizer of (4.27), where the subscript n
indicates that the set of centroids changes with dataset. Then, the NPL posterior distribution
Πn
(
AK
∣∣y) has a corresponding (approximate) posterior density

π
(
AK
∣∣y) = ∫ π

(
AK
∣∣Fw) dπ(Fw), (4.29)

where the approximation comes from the fact that the integral in (4.29) is performed w.r.t.

116

the Bayesian bootstrap approximation Fw, and

π
(
AK
∣∣Fw) = δ

Aw
n,K

(Fw)
(AK) . (4.30)

The delta arises because AK is a deterministic functional of Fw from (4.27). Notice that
Awn,K depends on Fw, i.e. Awn,K depends on the independent dirichlet weights (w1, · · · , wn).
See also, Section 2.3 of Fong et al. (2019) for a discussion of Bayesian NPL posterior. In
addition, for the delta in (4.30) to be well-defined, we implicitly assume that Awn,K is unique
a.s. PFw , i.e. the set of centroids that minimizes (4.27) is unique for almost every set of
dirichlet weights.

Similarly, let Pwn,K be the Voronoi partition associated with Awn,K . Then, the NPL posterior
distribution Πn

(
PK
∣∣y) has a corresponding (approximate) posterior density

π
(
PK
∣∣y) = ∫ π

(
PK
∣∣Fw) dπ(Fw), (4.31)

where π (PK∣∣Fw) = δPw
n,K

(Fw)
(PK).

RWDP-means

To derive the RW DP-means objective function from the Bayesian NPL perspective, let
Aλ0 = {a1, · · · , aκ} be a set of κ points on Rd for κ = |Aλ0 | ∈ N, and we want to find Aλ0
that minimizes

inf
Aλ0

L (Aλ0 , Fw) = inf
Aλ0

{∫
Ω

min
a∈Aλ0

∥y − a∥22 dFw(y) + λ0 · |Aλ0 |
}

= min
(µ,z,κ)

κ∑
k=1

∑
i:zi=k

wi∥yi − µk∥22 + λ0κ

 , (4.32)

where λ0 > 0 is a tuning parameter, Fw is the Bayesian bootstrap defined in (4.26), and
(w1, · · · , wn) ∼ Dir(1, · · · , 1). In addition, denote Pλ0 as the Voronoi partition associated
with Aλ0 . The subscript λ0 in Aλ0 and Pλ0 highlights the fact that the variables depend on

117

the tuning parameter λ0. We note that (4.32) is also in line with the concept of Loss NPL
introduced in Section 2.6 of Fong et al. (2019). Again, from Section 4.1, it is evident that
(4.32) is related to (4.18).

Let Awn,λ0 := argminAλ0
L (Aλ0 , Fw) be the minimizer of (4.32), and let Pwn,λ0 be the

Voronoi partition associated with Awn,λ0 . Again, the subscript n indicates that the solutions
change with dataset. Then, the NPL posterior distribution Πn

(
Aλ0

∣∣y) has a corresponding
(approximate) posterior density

π
(
Aλ0

∣∣y) = ∫ π
(
Aλ0

∣∣Fw) dπ(Fw), (4.33)

where π (Aλ0∣∣Fw) = δ
Aw
n,λ0

(Fw)
(Aλ0), whereas the NPL posterior distribution Πn

(
Pλ0
∣∣y)

has a corresponding (approximate) posterior density

π
(
Pλ0
∣∣y) = ∫ π

(
Pλ0
∣∣Fw) dπ(Fw), (4.34)

where π (Pλ0∣∣Fw) = δPw
n,λ0

(Fw)
(Pλ0).

RW SDP-means

We also analyze the random-weighting scaled DP-means setup for the case where ξ0 = 0 and
the common covariance term Σ is pre-specified with a symmetric positive-definite matrix
Σ0 (For the case of ξ0 > 0, the notation is only slightly more cumbersome but uninteresting,
because its associated ”prior” term will be overwhelmed by data information as sample size
n increases). From Section 4.1, by recognizing (2λ1) to be (λ0

∑n
i=1Wi) forWi

iid∼ Exp(1),
we can re-specify the RW SDP-means setup into the form of

inf
A(λ0,Σ0)

L (A(λ0,Σ0), Fw)

= inf
A(λ0,Σ0)

{∫
Ω

min
a∈A(λ0,Σ0)

(y − a)′Σ−1
0 (y − a) dFw(y) + λ0 ·

∣∣A(λ0,Σ0)

∣∣} (4.35)

118

= min
(µ,z,κ)

κ∑
k=1

∑
i:zi=k

wi(yi − µk)′Σ−1
0 (yi − µk) + λ0κ

 ,

where κ =
∣∣A(λ0,Σ0)

∣∣, and (w1, · · · , wn) ∼ Dir(1, · · · , 1). We also denote P(λ0,Σ0) as the
Voronoi partition associated with A(λ0,Σ0). The subscript (λ0,Σ0) highlights the fact that the
variables depend on the choices of λ0 and Σ0. Basically, the setup in (4.32) is a special case
of (4.35) with Σ0 = Id.

Again, let Awn,(λ0,Σ0)
:= argminA(λ0,Σ0)

L (A(λ0,Σ0), Fw) be the minimizer of (4.35), and
let Pwn,(λ0,Σ0)

be the Voronoi partition associated with Awn,(λ0,Σ0)
. Then, the NPL posterior

distribution Πn
(
A(λ0,Σ0)

∣∣y) has a corresponding (approximate) posterior density

π
(
A(λ0,Σ0)

∣∣∣y) =

∫
π
(
A(λ0,Σ0)

∣∣∣Fw) dπ(Fw), (4.36)

where π
(
A(λ0,Σ0)

∣∣∣Fw) = δ
Aw
n,(λ0,Σ0)

(Fw)

(
A(λ0,Σ0)

), whereas the NPL posterior distribution
Πn

(
P(λ0,Σ0)

∣∣∣y) has a corresponding (approximate) posterior density

π
(
P(λ0,Σ0)

∣∣∣y) =

∫
π
(
P(λ0,Σ0)

∣∣∣Fw) dπ(Fw), (4.37)

where π
(
P(λ0,Σ0)

∣∣∣Fw) = δPw
n,(λ0,Σ0)

(Fw)

(
P(λ0,Σ0)

).
4.4.2. Asymptotic Results

Lyddon et al. (2018) and Fong et al. (2019) mentioned about the Bayesian NPL strong
consistency property of the solutions or samples θw := argmint∈Θ L (t, Fw) in (4.26), i.e.

θw −→ θ∗ := argmin
t∈Θ

L (t, F∗)

almost surelyP (∞)
F∗

, which relies on the strong consistency property of the Bayesian bootstrap

Fw −→ F∗ a.s. P
(∞)
F∗

, (4.38)

119

where the convergence of random measure in (4.38) takes place on a space of probability
measures under the weak topology characterized by the Portmanteau Theorem as outlined
in Section A.2 of Ghosal and van der Vaart (2017).

In this subsection, we present a rigorous discussion on how the solutions or samples
obtained by our random-weighting mixture models satisfy the Bayesian NPL strong consis-
tency property under certain regularity conditions.

First, we consider themetric space (A,DH), whereA is the set of all centroid sets (i.e. sets
of k discrete Euclidean points, where k = 1, 2, · · ·), and DH is the Hausdorff metric. Under
this metric space, we establish that, as sample size increases, the posterior distributions
of AK , Aλ0 and A(λ0,Σ0) congregate at their respective asymptotic limits A∗,K , A∗,λ0 and
A∗,(λ0,Σ0) which are defined below in (4.39), (4.41) and (4.43).

Theorem 4.4. (Bayesian NPL Strong Consistency for the set of centroids) Assume that F∗

has finite second moment. Furthermore,

(a) (RW K-means) suppose that under F∗ and the choice of K ≥ 1, there exists a unique set

A∗,K ofK points on Rd such that

A∗,K = argmin
AK

L (AK , F∗) = argmin
AK

{∫
Ω

min
a∈AK

∥y − a∥22 dF∗(y)

}
. (4.39)

Then, for every ϵ > 0, as n→∞,

Πn
(
AK : DH (AK , A∗,K) > ϵ

∣∣y)→ 0 a.s. P
(∞)
F∗

, (4.40)

where the posterior distribution Πn of AK is defined in (4.29).

(b) (RW DP-means) suppose that under F∗ and the choice of λ0 > 0, there exists a unique set

A∗,λ0 of κ = |A∗,λ0 | points on Rd such that

A∗,λ0 = argmin
Aλ0

L (Aλ0 , F∗) = argmin
Aλ0

{∫
Ω

min
a∈Aλ0

∥y − a∥22 dF∗(y) + λ0κ

}
. (4.41)

120

Then, for every ϵ > 0, as n→∞,

Πn
(
Aλ0 : DH (Aλ0 , A∗,λ0) > ϵ

∣∣y)→ 0 a.s. P
(∞)
F∗

, (4.42)

where the posterior distribution Πn of Aλ0 is defined in (4.33).

(c) (RW SDP-means) suppose that under F∗ and the choices of λ0 > 0 and symmetric positive-

definite Σ0, there exists a unique set A∗,(λ0,Σ0) of κ =
∣∣A∗,(λ0,Σ0)

∣∣ points on Rd such that

A∗,(λ0,Σ0) = argmin
A(λ0,Σ0)

{∫
Ω

min
a∈A(λ0,Σ0)

[
(y − a)′Σ−1

0 (y − a)
]
dF∗(y) + λ0κ

}
. (4.43)

Then, for every ϵ > 0, as n→∞,

Πn
(
A(λ0,Σ0) : DH

(
A(λ0,Σ0), A∗,(λ0,Σ0)

)
> ϵ
∣∣y)→ 0 a.s. P

(∞)
F∗

, (4.44)

where the posterior distribution Πn of A(λ0,Σ0) is defined in (4.36).

Comments on Assumptions of Theorem 4.4. We point out that Pollard (1981) made the
same uniqueness assumption on A∗,K . Here, we extend the uniqueness requirement to
Awn,K to ensure that the posterior distribution Πn of AK is well-defined. Similar uniqueness
assumptions are applicable to the RWDP-means andRWSDP-means setups. The uniqueness
condition carries a lot of information – similar discussion could be found in the paragraph
after the main theorem of Pollard (1981). Here, we shall illustrate this point with a simple
example. Consider the case where χ = [0, 1] and F∗ = U(0, 1). LetM1 =

∫ 1
0 (y− 0.5)2dy and

letM2 =
∫ 0.5
0 (y − 0.25)2dy +

∫ 1
0.5(y − 0.75)2dy. Under RW DP-means, if λ0 > (M1 −M2),

then κ∗,λ0 := |A∗,λ0 | = 1. However, if λ0 = (M1 −M2), then κ∗,λ0 could be either 1 or 2.
We need additional/external rule(s) to resolve this conundrum. In addition, there are also
well-known cases where A∗,K or Aλ0 or A(λ0,Σ0)) is not unique. For instance, consider the
case where Ω is a unit circle centered at the origin and F∗ is a Uniform distribution covering
the circle. Under RW K-means with K = 2, the asymptotic limit has infinitely many A∗,2;

121

see, for example, Theorem 4.3 of Urschel (2017). We shall revisit the issue about uniqueness
assumption when we comment on Theorem 4.5.

Next, we consider the metric space (P,DL), where P is the set of all Voronoi partitions
for Ω ⊂ Rd, and DL is Leonardi and Tamanini (2002)’s metric. It is interesting to note that
Leonardi and Tamanini (2002)’s metric DL is not affected by the label-switching problem
(Stephens, 2000), and that it could handle partitionswith different number of clusters. Under
thismetric space, we establish that, as sample size increases, the posterior distributions ofPK ,
Pλ0 and P(λ0,Σ0) congregate at their respective asymptotic limits P∗,K , P∗,λ0 and P∗,(λ0,Σ0),
which are the Voronoi partitions corresponding to A∗,K , A∗,λ0 and A∗,(λ0,Σ0) respectively.

Theorem 4.5. (Bayesian NPL Strong Consistency for partition) Assume that F∗ is absolutely

continuous (w.r.t. the Lebesgue measure) and has bounded support, i.e. Ω ⊂ Rd. Furthermore,

(a) adopt the assumptions in part (a) of Theorem 4.4. Let P∗,K be the Voronoi partition corre-

sponding to A∗,K . Then, for every ϵ > 0, as n→∞,

Πn
(
PK : DL (PK ,P∗,K) > ϵ

∣∣y)→ 0 a.s. P
(∞)
F∗

, (4.45)

where the posterior distribution Πn of PK is defined in (4.31).

(b) adopt the assumptions in part (b) of Theorem 4.4. Let P∗,λ0 be the Voronoi partition corre-

sponding to A∗,λ0 . Then, for every ϵ > 0, as n→∞,

Πn
(
Pλ0 : DL (Pλ0 ,P∗,λ0) > ϵ

∣∣y)→ 0 a.s. P
(∞)
F∗

, (4.46)

where the posterior distribution Πn of Pλ0 is defined in (4.34).

(c) adopt the assumptions in part (c) of Theorem 4.4. Let P∗,(λ0,Σ0) be the Voronoi partition

corresponding to A∗,(λ0,Σ0). Then, for every ϵ > 0, as n→∞,

Πn
(
P(λ0,Σ0) : DL

(
P(λ0,Σ0),P∗,(λ0,Σ0)

)
> ϵ
∣∣y)→ 0 a.s. P

(∞)
F∗

, (4.47)

122

where the posterior distribution Πn of P(λ0,Σ0) is defined in (4.37).

The following result is a direct consequence of the assumptions adopted in Theorem 4.5.

Lemma 4.6 (Zero-measure of decision boundaries). Adopt assumptions in Theorem 4.5. Then,

the decision-boundary set Ω\
⋃
k Vk (i.e., the set of points which are equidistant from more than one

centroid) of a Voronoi partition has measure zero.

Comments on Assumptions of Theorem 4.5. The assumptions about bounded support and
absolute continuity of F∗ are required for Leonardi and Tamanini (2002)’s metric DL. Next,
note that the bounded support assumption also immediately ensures finite second moment
for F∗, which allows us to continue adopting the same sets of assumptions from Theorem 4.4.
Meanwhile, under Leonardi and Tamanini (2002)’s metric DL, uniqueness of the Voronoi
partitions is defined up to sets of measure zero; the metric does not distinguish different
allocation of data points that fall on the decision-boundary setwhich hasmeasure zero due to
Lemma 4.6. For example, consider, again, the case where Ω = [0, 1] and F∗ = U(0, 1). Under
RWK-means approachwhereK = 2,P∗,2 could be either {[0, 1/2], (1/2, 1]} or {[0, 1/2), [1/2, 1]},
because DL ({[0, 1/2], (1/2, 1]} , {[0, 1/2), [1/2, 1]}) = 0.
Connection to Centroidal Voronoi Tessellation. We also want to point out that the objective
function

min
a∈AK

{∫
PK

g(y − a) dF∗(y)

}
, (4.48)

where g(y− a) could be either ∥y− a∥22 or (y− a)′Σ−1
0 (y− a) for a given symmetric positive-

definiteΣ0, is related to the topic of Centroidal Voronoi Tessellation; see, for example, Urschel
(2017), Richter and Alexa (2015) and references therein. The asymptotic limit for RW K-
means in Theorems 4.4 and 4.5 is exactly (4.48) with squared Euclidean distance, whereas for
RW DP-means, its asymptotic limit in Theorems 4.4 and 4.5 could be thought of as applying
(4.48) with squared Euclidean distance on the grid of positive integers N and then picking
the solution that corresponds to the smallest objective (that has been penalized with λ0K for

123

K = 1, 2, · · ·). Similar argument is also applicable to the asymptotic limit of RW SDP-means
(with a fixed Σ0) in Theorems 4.4 and 4.5, but this time with the Mahalanobis distance
instead. We acknowledge that the uniqueness assumption on (A∗,K ,P∗,K), (A∗,λ0 ,P∗,λ0) or
(A∗,(λ0,Σ0),P∗,(λ0,Σ0)) is rather strict; to the best of our knowledge, there are currently no
general theorems that outline the (sufficient and/or necessary) conditions for uniqueness
of solution to (4.48) that apply to every possible scenario. We refer interested readers to
the aforementioned references on the characterization of (4.48) in certain specific settings,
which is beyond the scope of this paper.

Remark 4.2. In this paper, we examine the Bayesian NPL strong consistency properties of RW

K-means, RW DP-means and RW SDP-means. In fact, the same asymptotic limits (for the sets of

centroids) in Theorem 4.4 are also applicable to RW DP-rich and RW SDP-rich if we ensure that the

rgr penalty terms vanish in the limit by shrinking λ2 = o
(
(n log n)−1

)
, due to the fact that

κ∑
k=1

log Γ(nk) ≤ log Γ(n) = O(n log n)

from Sterling’s Formula. However, in this case, due to the presence of rgr penalty λ2 > 0 in finite

samples, the solutions no longer respect a Voronoi partition.

Finally, we present a simple asymptotic result that is not related to the Bayesian NPL
framework. Consider the special case where we already have a fixed partition P0 of Ω
consisting ofK0 ≥ 1 disjoint clusters {C01 , · · · , C0K0

}. Conditional on this partition P0, the
RW K-means (4.19), RW DP-means(4.18) and RW DP-rich (4.17) setups are reduced to
obtaining random-weighting centroids

µwn,k =

∑
i∈C0

k
Wiyi∑

i∈C0
k
Wi

(4.49)

for k = 1, · · · ,K0 and Wi
iid∼ Exp(1), since cluster-reassignment steps are no longer per-

formed in this case. Similarly, the RW SDP-means and RW SDP-rich setups are reduced to

124

obtaining (random-weighting Σw and) random-weighting centroids

µwn,k =

∑
i∈C0

k
Wiyi + ξ0µ0∑

i∈C0
k
Wi + ξ0

(4.50)

for k = 1, · · · ,K0 andWi
iid∼ Exp(1). Conditional on data with a fixed partition P0 of Ω, we

prove that these random-weighting centroids, which are centered on their corresponding
sample mean of the cluster

µ̂n,k =
1

nk

∑
i∈C0

k

yi (4.51)

for nk =
∣∣C0k∣∣, are asymptotically normal as n→∞. To simplify notation, denote

V P0
∗,k :=

∫
C0
k

yy′dF∗(y)−

[∫
C0
k

ydF∗(y)

][∫
C0
k

ydF∗(y)

]′
.

Theorem 4.7 (Asymptotic Normality). Assume that F∗ has finite second moments. Suppose Ω

has a fixed partition P0 withK0 ≥ 1 disjoint clusters. Conditional on P0, consider the sample mean

µ̂n,k defined in (4.51) and the random-weighting centroid µwn,k defined in (4.49) or (4.50). Then,

for k = 1, · · · ,K0 and for any Borel set B ⊂ Rd, as nk →∞,

P
(√

nk
(
µwn,k − µ̂n,k

)
∈ B

∣∣∣y)→ P (Z ∈ B) a.s. P
(∞)
F∗

,

where Z ∼ Nd

(
0 , V P0

∗,k

)
.

125

Chapter 5

Supplementary Material for Chapter 4

5.1. Implementation details of DP-rich

5.1.1. Singleton clusters

Suppose we are now in the cluster reassignment step of the DP-rich and we are considering
the data point yi that is sitting alone in cluster Ck′ , i.e. i ∈ Ck′ where nk′ = 1. Then, problems
will arise in the DP-rich algorithm. First, log(nk′,−i) = log(nk′ − 1) would be undefined.
Furthermore, we should not consider di,κ+1 in this case, since taking yi out of Ck′ (i.e. Ck′

is emptied and subsequently dropped) and putting it into a brand new cluster does not
increase the total number of clusters κ in the objective function.

Therefore, if i ∈ Ck′ where nk′ = 1, we should do the following instead: first, update

µk′ = yi, (5.1)

which is in fact the centroid that we would initialize had we created a new cluster. Then,
update the cost to join an existing cluster to be

dik = ∥yi − µk∥22 − λ2 log(nk′,−i)− λ1 (5.2)

126

for all k ∈ {1, · · · , κ}\{k′}, whereas

dik′ = 0, (5.3)

and finally, set di,κ+1 = ∞ since we do not consider creating another new cluster in this
case. If argmink∈{1,··· ,κ} dik ̸= k′, then cluster Ck′ is dropped and no observation will ever be
allocated to this cluster in subsequent steps. Again, all these modified formulae still ensure
that the objective function never increase, and the local convergence property of the DP-rich
algorithm is still ensured.

5.1.2. Initialization of algorithm

Here are some details that we need to consider when we initialize the DP-rich algorithm.

Rich-gets-richer penalty

Recall that the cost to join an existing cluster is given by

dik = ∥yi − µk∥22 − λ2 log(nk,−i).

When we first initialize the algorithm where all data points are grouped together, the term
λ2 log(nk,−i)may be too overwhelming, and the algorithm may fail to break up this single
initial cluster.

To overcome this problem, we suggest to set λ2 = 0 in the first (few) epoch(s) of the DP-
rich algorithm. One epoch here is defined as one iteration of cluster reassignment through
all data points.

However, care has to be taken here, because toomany epochswith λ2 = 0 before allowing
λ2 > 0may lead to the DP-rich algorithm to saddle at a local solution that is too similar to the
DP-means algorithm. From our numerical experiments, we find that one epoch with λ2 = 0

(before allowing λ2 > 0) leads to reasonable performance by the algorithm. We report that

127

Raykov et al. (2016) faced similar problem with their own algorithm and suggested similar
workarounds.

Initial cluster labels

We note that the DP-rich algorithm could also be initialized with more than one cluster.
However, we caution the readers against attempts to game or “improve” initialization
by using other methods such as the standard K-means, as this might lead to the DP-rich
algorithm saddling at suboptimal local solution, i.e. the DP-rich algorithm might produce a
solution with a smaller objective had we initialized the algorithm by randomly assigning
the observations. Therefore, in this paper, we follow the convention of Kulis and Jordan
(2012) as well as Paul and Das (2020), where all observations are grouped together when
we initialize the algorithm.

5.2. Additional details of RW SDP-rich

5.2.1. Modifying DPM’s negative log-posterior

Here, we provide further details about the modification of the negative log-posterior of the
DPM of Normals to arrive at the objective function of RW SDP-rich. Specifically, we begin
with h(Σ) = Σ/ξ0 and p(Σ) is inverse-Wishart with ν0 degrees of freedom and a symmetric
positive-definite scale matrix ψ0. Following the Bayesian NPL framework where we assign
i.i.d. standard Exponential random weights (W1, · · · ,Wn) on the likelihood component of

128

the DPM, we have:

pw (Y , z, κ, {µk}κk=1,Σ)

:= pw

(
Y
∣∣∣z, κ, {µk}κk=1,Σ

)
× p

(
{µk}κk=1

∣∣∣Σ, z, κ)× p (Σ)× p(z, κ)
∝ (2π)−

d
2

∑n
i=1Wi |Σ|−

1
2

∑n
i=1Wi exp

−1

2

κ∑
k=1

∑
i:zi=k

Wi(yi − µk)′Σ−1(yi − µk)

× (2π)−

dκ
2 ξ

dκ
2
0 | Σ|

−κ
2 exp

{
−ξ0

2

κ∑
k=1

(µk − µ0)′Σ−1(µk − µ0)

}

× |Σ|−(ν0+d+1)/2 exp

{
−1

2
Tr
(
ψ0Σ

−1
)}
× ακ−1

0

Γ(α0 + 1)

Γ(α0 + n)

κ∏
k=1

Γ(nk).

Then, taking negative log,

− log pw(Y , z, κ,µ,Σ)

=
1

2

 κ∑
k=1

∑
i:zi=k

Wi(yi − µk)′Σ−1(yi − µk) + ξ0

κ∑
k=1

(µk − µ0)′Σ−1(µk − µ0) + Tr
(
ψ0Σ

−1
)

+

(
n∑
i=1

Wi + ν0 + d+ 1 + κ

)
log
∣∣∣Σ1/2

∣∣∣ (5.4)

+ κ log

((
2π

ξ0

)d/2
· 1

α0

)
−

κ∑
k=1

log [Γ(nk)] + other terms.

Borrowing the idea of the DP-rich algorithm, we replace the coefficient of κ in (5.4) with a
tuning parameter λ1 > 0, and introduce another tuning parameter λ2 > 0 for the rgr term
in (5.4). Recall that λ1 allows direct calibration by the analyst to tune the number of clusters
obtained by the algorithm, whereas λ2 controls the magnitude of the algorithm’s rgr effect.

129

Then, we are left with

1

2

 κ∑
k=1

∑
i:zi=k

Wi(yi − µk)′Σ−1(yi − µk) + ξ0

κ∑
k=1

(µk − µ0)′Σ−1(µk − µ0) + Tr
(
ψ0Σ

−1
)

+

(
n∑
i=1

Wi + ν0 + d+ 1 + κ

)
log
∣∣∣Σ1/2

∣∣∣+ λ1κ− λ2
κ∑
k=1

log [Γ(nk)] .

(5.5)

Notice how (5.5) looks very similar to our RW SDP-rich objective function, except for the
coefficient of log

∣∣Σ1/2
∣∣. Now, if we had adopted (5.5) as our objective function, then solving

for Σ (while holding κ, z and {µk}1≤k≤κ constant) would have yielded

∑κ
k=1

∑
i:zi=k

Wi(yi − µk)(yi − µk)′ + ξ0
∑κ

k=1(µk − µ0)(µk − µ0)′ + ψ0∑n
i=1Wi + ν0 + d+ 1 + κ

. (5.6)

The presence of the term κ in the denominator of (5.6) is problematic. First, recall from
the construction of DP-rich, ξ0 would be small if there is prior belief for larger number of
clusters. Thus, the term∑κ

k=1(µk − µ0)(µk − µ0)′ is moderated by ξ0, and as sample size
increases, the term∑κ

k=1

∑
i:zi=k

Wi(yi− µk)(yi− µk)′ would dominate the other two terms
in the numerator of (5.6). However, in the denominator of (5.6), if κ also increases with∑n

i=1Wi as sample size increases, |Σ|1/2 becomes smaller. This problem becomes evident
when we consider the cost to create a new cluster:

dwi,κ+1 =
1

2

ξ0Wi

ξ0 +Wi
(yi − µ0)′Σ−1(yi − µ0) + λ1.

The larger κ, the smaller |Σ|1/2, the smaller the cost dwi,κ+1 to create a new cluster, which
leads to a cascade of more clusters getting created and so on.

To break this vicious cycle, we modify (5.5) by replacing the coefficient of log
∣∣Σ1/2

∣∣ in
(5.5) with

n∑
i=1

Wi + ν0 − d− 1, (5.7)

130

such that when sample size is small (and thus number of clusters κ is not huge), Σ is
approximately equal to its inverse-Wishart prior mean ψ0/(ν0−d−1). This helps to ensure
stability of the variable Σ (and thus the stability of the algorithm itself) especially when
sample size is small, and also justifies initialization of Σw with ψ0/(ν0−d−1) in the beginning
of the RW SDP-rich algorithm. As sample size increases, the denominator of Σ is heavily
influenced by the term∑n

i=1Wi, and so Σ will be approximately

∑κ
k=1

∑
i:zi=k

Wi(yi − µk)(yi − µk)′∑n
i=1Wi

.

5.2.2. Proof of Lemma 4.3 (Local convergence of RW SDP-rich)

This proof is an extension of the proof for Kulis and Jordan (2012)’s Theorem 3.1.

Proof. The reassignment step results in a non-increasing objective since the weighted Ma-
halanobis distance between a point and its newly-assigned weighted cluster centroid (dis-
counted by the corresponding rgr “gravitational pull”) is smaller than that before the
re-allocation occurs. If an observation is assigned to a new cluster, the cost of creating the
new cluster is cheaper than to assign the observation to any one of the existing clusters,
which results in a reduction in objective. Dropping empty cluster(s) – for example, dropping
cluster Ck – decreases the objective by λ1 + ξ0(µk − µ0)′Σ−1(µk − µ0). Similarly, the cluster
parameter updates lead to a non-increasing objective since the objective function of the RW
SDP-rich is convex in µ and Σ conditional on (κ, z). The algorithm will converge locally
because the objective function cannot increase, and that there are only a finite number of
possible clusterings of the data.

5.2.3. Singleton clusters

The issue discussed in Section 5.1.1 is also applicable to the RW SDP-rich algorithm, except
that now we have to replace Equation (5.1) with

µwk′ =
Wiyi + ξ0µ0
Wi + ξ0

,

131

and replace Equation (5.2) with

dwik =
1

2
Wi(yi − µk)′Σ−1(yi − µk)− λ2 log(nk′,−i)− λ1,

and replace Equation (5.3) with

dwik′ =
1

2

ξ0Wi

ξ0 +Wi
(yi − µ0)′Σ−1(yi − µ0).

5.2.4. Initialization of algorithm

Again, the issues about the rgr penalty and initial cluster assignments, which are discussed
in Section 5.1.2, are also relevant when we initialize the RW SDP-rich algorithm.

Furthermore, here we also need to consider about the issue regarding initialization of Σ.
Recall that Σ is updated with the formula

∑κ
k=1

∑
i:zi=k

Wi(yi − µk)(yi − µk)′ + ξ0
∑κ

k=1(µk − µ0)(µk − µ0)′ + ψ0

(
∑n

i=1Wi + ν0)− d− 1
.

When we first initialize the algorithm where all data points are grouped together, the
corresponding initialized Σ will be approximately the overall weighted sum-of-squares

∑n
i=1Wi(yi − µ̄w)(yi − µ̄w)′∑n

i=1Wi
,

where µ̄w = (
∑n

i=1Wiyi+ξ0µ0)/(
∑n

i=1Wi+ξ0) represents the weighted grand centroid. We may
be “overestimating” the dispersion among data points from the same cluster in this case.
Hence, we suggest fixing Σ = ψ0/(ν0−d−1) (or, for the case of diagonal covariance structure,
σ2j = b0,j/(a0,j−1) for all j) during the first epoch of the RW SDP-rich algorithm to ensuremore
stable performance by the algorithm, based on our experience in the numerical experiments.

132

5.2.5. Formulae for diagonal covariance structure

Conditional on an existing partition (κ, z), for j = 1 · · · , d,

µwkj =

∑
i:zi=k

Wiyij + ξ0jµ0j∑
i:zi=k

Wi + ξ0j
,

and

(σ2w)j =

∑κ
k=1

∑
i:zi=k

Wi(yij − µkj)2 + ξ0j
∑κ

k=1(µkj − µ0j)2 + 2b0j

(
∑n

i=1wi + 2a0j)− 2
,

and in the beginning of the algorithm, we initialize (σ2w)j with b0j/(a0j−1). In the cluster
reassignment step, the cost dwik of assigning observation yi to an existing cluster Ck is now

dwik =

d∑
j=1

Wi(yij − µkj)2

2σ2j
− λn,2 log(nk)

for k = 1, · · · , κ, whereas the cost to create a new cluster for observation yi is

dwi,κ+1 =

d∑
j=1

ξ0jWi

ξ0j +Wi

(yij − µ0j)2

2σ2j
+ λn,1.

Similarly, if i ∈ Ck′ where nk′ = 1, update µwk′ as we have discussed in Section 5.2.3, and
update

dwik =
d∑
j=1

Wi(yij − µkj)2

2σ2j
− λn,2 log(nk′,−i)− λn,1 for k ∈ {1, · · · , κ}\{k′},

dwik′ =

d∑
j=1

ξ0jWi

ξ0j +Wi

(yij − µ0j)2

2σ2j
,

dwi,κ+1 =∞.

133

5.2.6. Regularization parameters

Choice of λ2

We now compare the performances of RWDP-rich and RW SDP-rich specified with different
values of λrwDP-rich

2 and λrwSDP-rich
2 using a set of simulations. Specifically, we adopt the

“full-covariance higher-correlation” Simulation Setting as well as its corresponding MCMC
prior specifications, which we already outlined in the Main Text.

Here, we compare λrwDP-rich
2 ∈ {0, 0.5, 1, 2} and λrwSDP-rich

2 ∈ {0, 0.5, 1, 2}, using the differ-
ent comparison criteria that we described in the Main Text. Recall that setting λrwDP-rich

2 = 0

corresponds to RW DP-means whereas specifying λrwSDP-rich
2 = 0 corresponds to RW SDP-

means.
Figure 5.1 shows the performances of these different methods. Ideally, we want all

performance criteria for these methods that involve total variation to be as close to zero
as possible, which indicates higher degree of “similarity” to MCMC samples. Meanwhile,
the average held-out log probability for these methods should be as high as possible, and
the average of absolute difference in pairwise probability (of two observations clustered
together) as compared to MCMC samples should be as close to zero as possible.

From Figure 5.1, it appears that setting λrwDP-rich
2 = 1 (denoted as rwDPrich2) leads to

the best performance in most of the comparison criteria among the RW DP-rich contenders
(which is unsurprising, since the true variance of the mixture components is indeed equal
to 1), whereas specifying λrwSDP-rich

2 = 0.5 (denoted as rwSDPrich1) leads to the best perfor-
mance in most of the comparison criteria among the RW SDP-rich candidates. In particular,
the boxplots for RW SDP-rich with λ2 = 2 (denoted as rwSDPrich3) are not shown in Figure
5.1 because their performances are the worst (way worse than all the other methods).

Calibrating λ1

Here, we use a Binary Search procedure (e.g. Raykov et al., 2016) to tune λ1 such that
the (average of) random-weighting samples of κ “matches” a targeted number of clusters

134

0.4

0.8

1.2

1.6

rw
DPmeans

rw
DPric

h1

rw
DPric

h2

rw
DPric

h3

rw
SDPmeans

rw
SDPric

h1

rw
SDPric

h2

Method

T
o
ta

l
V

a
ri

a
ti
o
n

Total Variation of Number of Clusters

0.00

0.05

0.10

0.15

rw
DPmeans

rw
DPric

h1

rw
DPric

h2

rw
DPric

h3

rw
SDPmeans

rw
SDPric

h1

rw
SDPric

h2

Method

T
o
ta

l
V

a
ri

a
ti
o
n

Total Variation of Coeff of Variation of Cluster Sizes

0.00

0.01

0.02

0.03

rw
DPmeans

rw
DPric

h1

rw
DPric

h2

rw
DPric

h3

rw
SDPmeans

rw
SDPric

h1

rw
SDPric

h2

Method

T
o
ta

l
V

a
ri

a
ti
o
n

Total Variation of NMI for sampled pairs of cluster labels

0.00

0.01

0.02

0.03

rw
DPmeans

rw
DPric

h1

rw
DPric

h2

rw
DPric

h3

rw
SDPmeans

rw
SDPric

h1

rw
SDPric

h2

Method

T
o
ta

l
V

a
ri

a
ti
o
n

Total Variation of NMI w.r.t. true labels

−5.50

−5.45

−5.40

−5.35

MCMC

rw
DPmeans

rw
DPric

h1

rw
DPric

h2

rw
DPric

h3

rw
SDPmeans

rw
SDPric

h1

rw
SDPric

h2

Method

A
ve

ra
g
e

Average of Held−out Log Probability

0.010

0.015

0.020

0.025

rw
DPmeans

rw
DPric

h1

rw
DPric

h2

rw
DPric

h3

rw
SDPmeans

rw
SDPric

h1

rw
SDPric

h2

Method

A
ve

ra
g
e

Average of Abs Diff in Pairwise Probability (vs MCMC)

Figure 5.1: Comparing performances of RW DP-rich and RW SDP-rich using different rgr
tuning parameters. For RW DP-rich, we specify λrwDP-rich

2 to be 0 (denoted rwDPmeans),
0.5 (denoted rwDPrich1), 1 (denoted rwDPrich2) and 2 (denoted rwDPrich3). For RW
SDP-rich, we specify λrwSDP-rich

2 to be 0 (denoted rwSDPmeans), 0.5 (denoted rwSDPrich1)
and 1 (denoted rwSDPrich2).

135

Ktarg for any one of the four random-weighting algorithms: RW DP-means, RW DP-rich,
RW SDP-means or RW SDP-rich. In our numerical experiments, we specifyKtarg to be the
posterior mean of κ obtained from standard MCMCmethod, which (in most cases of our
numerical experiments) are also close to the MAP of κ.

Briefly, we start off by picking a starting value of λ(0)1 via, say, a farthest-first approach
(e.g. Kulis & Jordan, 2012). Next, we generate and storeB′ sets of i.i.d. standard Exponential
random weights {W 1:n

b

}
1≤b≤B′ := {(W1,b, · · · ,Wn,b)}1≤b≤B′ . For calibration purpose, we

could use a “cheaper” random-weighting scheme by using a smaller number of draws, say,
B′ = 1000 in order to save computational time, and yet perform reasonably well in our
numerical experiments.

Each b = 1, · · · , B′ set of these random weights W 1:n
b is then fed into the random-

weighting procedure specified with λ1 = λ
(0)
1 to obtain {κwb }1≤b≤B . Next, we compute the

average of κwb −Ktarg

d
λ
(0)
1

:=
1

B′

B′∑
b=1

(κwb −Ktarg) . (5.8)

If d
λ
(0)
1

> 0, this indicates that on average, there are more clusters obtained by the random-
weighting procedure thanKtarg, i.e. we want less clusters, and thus we need to scale up λ1
to inflict a heavier penalty on κ in the objective function. Therefore, we set λ1 = λ

(0)
1 to be

the lower bound of λ1, and specify the next potential tuning parameter value λ(1)1 = 2× λ(0)1 .
On the other hand, if d

λ
(0)
1

< 0, we want more clusters, and thus we need to reduce λ1
to inflict less penalty on κ in the objective function. Therefore, we set λ̄1 = λ

(0)
1 to be the

upper bound of λ1, and specify the next potential tuning parameter value λ(1)1 =
λ
(0)
1
2 . We

substitute λ(1)1 into the random-weighting procedure and repeat the steps above to obtain
d
λ
(1)
1

and so on.
Suppose after the (t− 1)th step, we have our lower bound λ1 and upper bound λ̄1. Then,

136

we could specify

λ
(t)
1 =

λ1 + λ̄1
2

(5.9)

and subsequently obtain d
λ
(t)
1

. If d
λ
(t)
1

< 0, update the lower boundλ1 = λ
(t)
1 and setλ(t+1)

1 via
the same formula (5.9) using this new lower bound. On the other hand, if d

λ
(t)
1

> 0, update
the upper bound λ̄1 = λ

(t)
1 , and compute λ(t+1)

1 with (5.9) using this new upper bound.
Repeat this process until |dλ1 | ≤ ϵλ, where ϵλ is some minute tolerance level determined by
the analyst.

Alternatively, we can also use this Binary Search procedure to nail down a reasonable
range of [λ1, λ̄1], so that we can then use a grid search approach to find the value of λ1 that
produces the smallest |dλ1 |.

5.3. Additional details of RW K-means

The RW K-means procedure mentioned in the main text is outlined in Algorithm 5. In
particular, the standard K-means optimization procedures, such as that by Hartigan and
Wong (1979), could still be used to optimize the RW K-means objective function, except
that now, weighted Euclidean distance is considered in the cluster reassignment step and
weighted centroids are updated instead. Arthur and Vassilvitskii (2007)’s discussion about
careful seeding is also relevant here to improve the local solutions obtained by the RW
K-means procedure.

While the regular K-means has long been known to be the small-variance asymptotics
(SVA) of the Gaussian finite-mixture model (GMM) (e.g., Hastie et al., 2009), we verify in
Lemma 5.1 that this SVA property remains applicable to their random-weighting counter-
parts.

Lemma 5.1 (RW K-means as the SVA of RW GMM). For a Gaussian finite mixture with

common variance Σk = σ2Id ∀ k = 1, · · · ,K, the negative loglikelihood of its random-weighting

137

Algorithm 5 Random-weighting K-means
Require: data {y1, · · · , yn}, number of clustersK, number of posterior draws B.
1: for b = 1, · · · , B do
2: Initialize withK centroids.
3: DrawWi

iid∼ Exp(1) ∀ i = 1, · · · , n.
4: Optimize the RW K-means objective function, and store µwk,b for k = 1, · · · ,K, and
zwi,b for i = 1, · · · , n.

5: end for
Ensure: B samples of cluster centroids

{
µwk,b

}
1≤k≤K;1≤b≤B

, and B samples of cluster as-

signments
{
zwi,b

}
1≤i≤n;1≤b≤B

.

counterpart (Fong et al., 2019)

K∏
k=1

∏
i:zi=k

[pkfk (yi|µk,Σk)]Wi , (5.10)

multiplied with 2σ2, converges to the objective function of random-weighting K-means (4.19) when

we push σ2 → 0.

Proof of Lemma 5.1. Taking negative log of (5.10) where Σk = σ2Id ∀ k = 1, · · · ,K, we
have

−
K∑
k=1

(log pk)
∑
i:zi=k

Wi +
K∑
k=1

∑
i:zi=k

Wi

[
d

2
log σ2 +

∥yi − µk∥22
2σ2

]
+
d log(2π)

2

n∑
i=1

Wi. (5.11)

Multiply (5.11) with 2σ2, then push σ2 → 0 to obtain the objective function in (4.19).

5.4. Additional details for theoretical properties

5.4.1. Probability space

There are two sources of variation in the random-weighting setup under the Bayesian NPL
framework, namely the data {y1, y2, · · · } and the random weights {w1, w2, · · · }. Conse-
quently, we consider a common probability space with the common probability measure
P = P

(∞)
F∗
× PF̃w

, where P (∞)
F∗

is the probability measure of the observed data, and PF̃w

138

is the probability measure of the triangular array of random weights (Mason & Newton,
1992) that arises from Bayesian bootstrap F̃W . The use of product measure reflects the
independence of data and random weights. The study of asymptotic properties under the
random-weighting framework is not new; see, for example, Mason and Newton (1992),
Lyddon et al. (2019) and Ng and Newton (2020).

5.4.2. Derivation for Bayesian NPL framework

Under the Bayesian NPL framework (Fong et al., 2019), since F∗ is unknown, we place a
Dirichlet process (DP) prior on the sampling distribution

F |(α0, F0) ∼ DP (α0, F0), (5.12)

where α0 is the concentration parameter and F0 is the prior centering measure. We want to
remind readers that F∗ is not required to be in some “neighborhood” of F0, and DP (α0, F0)

in (5.12) is NOT related to the DPM working model that we mentioned in the main text.
From the conjugacy of the DP (e.g., Ghosal & van der Vaart, 2017), the posterior of F

becomes

F |y := F̃ ∼ DP

(
α0 + n ,

α0

α0 + n
F0 +

1

α0 + n

n∑
i=1

δyi

)
, (5.13)

where δ denotes the dirac measure. Based on the stick-breaking construction (Sethuraman,
1994) of the DP, we have

argmin
t∈Θ

L (t, F̃) = argmin
t∈Θ

∫
l(t, y)dF̃ (y) = argmin

t∈Θ

∞∑
j=1

w̆jl(t, y̆j)

 , (5.14)

where {w̆j}∞j=1 ∼ GEM(α0 + n) and

y̆j
iid∼

(
α0

α0 + n
F0 +

1

α0 + n

n∑
i=1

δyi

)

139

for all j (Ishwaran & Zarepour, 2002). Exact posterior calculation of (5.14) requires infinite
sampling, but could be approximated with

argmin
t∈Θ

n∑
i=1

wil(t, yi) +
T∑
j=1

w̃jl(t, ỹj)

 (5.15)

for large truncation limit T , where ỹj iid∼ F0 and

(w1, · · · , wn, w̃1, · · · , w̃T) ∼ Dir (1, · · · , 1, α0/T , · · · , α0/T) .

As n→∞ such that n≫ T , data realizations overwhelm prior information, whichmotivates
Rubin (1981)’s Bayesian bootstrap approximation of F̃ (henceforth denoted asFw) by setting
α0 = 0 in (5.15):

L (t, Fw) =

∫
Ω
l̃(t, y) dFw(y) =

∫
Ω
l(t, y) dFw(y) + λ0l0(t) =

n∑
i=1

wil(t, yi) + λ0l0(t), (5.16)

where (w1, · · · , wn) ∼ Dir(1, · · · , 1). See also Muliere and Secchi (1996) on further inter-
pretations of the Bayesian bootstrap. Since

(w1, · · · , wn)
d
=

(
W1∑n
i=1Wi

, · · · , Wn∑n
i=1Wi

)

whereWi
iid∼ Exp(1), solvingmint∈Θ L (t, Fw) in (5.16) is equivalent to optimizing

min
t∈Θ

{
n∑
i=1

[
Wi · l(t, yi)

]
+

(
λ0

n∑
i=1

Wi

)
· l0(t)

}
.

In practice, we replace the (λ0
∑n

i=1Wi) term with a unifying regularization parameter
λ > 0 to be calibrated by the analyst, and finally we arrive at (4.2).

140

5.4.3. Collection of proofs for Chapter 4.4

Proof of Lemma 4.6. The decision-boundaries of a Voronoi partition are linear discriminant
functions under the RW K-means, RW DP-means or RW SDP-means (with a fixed Σ0) setup.
Simple rank-nullity exercise reveals that these decision boundaries have (d− 1) dimensions,
and thus have measure zero due to absolute continuity of F∗.

Before we prove Theorem 4.4, we need the following results.

Lemma 5.2 (Finiteness of asymptotic limits). Adopt assumptions in Theorem 4.4. Then,

(a) κ∗,λ0 <∞ and κ∗,(λ0,Σ0) <∞.

(b) all centroids in A∗,K , A∗,λ0 and A∗,(λ0,Σ0) are finite.

Proof of Lemma 5.2. The finite second moment requirement on F∗ leads to

∫
Ω
∥y∥22dF∗(y) <∞ and

∫
Ω
yΣ−1

0 y dF∗(y) <∞

for any symmetric positive definite Σ0. Then, for any point r ∈ Rd,

∫
Ω

min
a∈AK

∥y − a∥22 dF∗(y) ≤
∫
Ω
∥y − r∥22dF∗(y) ≤ 4∥r∥22 + 4

∫
Ω
∥y∥22dF∗(y), (5.17)

where the RHS of (5.17) is finite only if point r is finite. Thus, all centroids inA∗,K have to be
finite, otherwise contradiction occurs. Similarly, for any point r ∈ Rd and for any symmetric
positive-definite Σ0,

∫
Ω

min
a∈AK

[
(y − a)′Σ−1

0 (y − a)
]
dF∗(y) ≤

∫
Ω
(y − r)′Σ−1

0 (y − r)dF∗(y)

≤ 4r′Σ−1
0 r + 4

∫
Ω
y′Σ−1

0 y dF∗(y),

(5.18)

where the second line of (5.18) is finite only if point r is finite. We remind the readers that
for RW DP-means and RW SDP-means, κ is data-driven instead of being pre-specified by
the analyst, but we need (5.17) and (5.18) to prove part (a) of the lemma.

141

For RW DP-means, we have, from (5.17),

∫
Ω
min
a∈A
∥y − a∥22dF∗(y) = O(1)

for any partition P of Ω that is associated with the set of centroids A = {a1, · · · , aκ} where
κ = |A|. Increasing the number of clusters indefinitely shrinks the integral to 0 but increases
κ → ∞, which in turn pushes the objective to∞. Thus, a minimizer must arrive at finite
κ∗,λ0 .

Next, since κ∗,λ0 <∞, we could think of minimizing

{∫
Ω

min
a∈Aλ0

∥y − a∥22 dF∗(y) + λ0κ

}

as minimizing the LHS of (5.17) on the grid of positive integers N, and evaluate the corre-
sponding objectives penalized with λ0K forK = 1, · · · , κmax

∗,λ0 where κ∗,λ0 ≤ κmax
∗,λ0 . Finally,

pick the clustering that has the lowest objective. Using similar argument in (5.17), we ensure
that all the centroids in A∗,λ0 are finite.

Finally, For RW SDP-means with a fixed symmetric positive-definite Σ0, we could use
(5.18) and similar arguments to establish that κ∗,(λ0,Σ0) < ∞, and that all centroids in
A∗,(λ0,Σ0) are finite.

Lemma 5.3 (Continuity for sets of centroids). Adopt assumptions in Theorem 4.4. Then,

(a) L (AK , F∗) is a continuous function of AK in (4.39).

(b) L (Aλ0 , F∗) is a continuous function of Aλ0 in (4.41).

(c) L (A(λ0,Σ0), F∗) is a continuous function of A(λ0,Σ0) in (4.43).

Proof of Lemma 5.3. To prove continuity, we need to first invoke Lemma 5.2 to ensure that
κ∗,λ0 <∞ and κ∗,(λ0,Σ0) <∞, and all centroids in A∗,K , A∗,λ0 and A∗,(λ0,Σ0) are finite. Then,
we immediately obtain part (a) of the Lemma by invoking the established result in Pollard
(1981) about the continuity of L (AK , F∗) as a function of AK in (4.39).

142

To obtain part (b), we still need to construct a similar ϵ− ζ proof; i.e., for every ϵ > 0,
there exists ζϵ > 0 such that DH

(
Aλ0 , A

′
λ0

)
< ζϵ implies

∣∣L (Aλ0 , F∗)−L (A′
λ0
, F∗)

∣∣ < ϵ.
First, note that if |Aλ0 | ̸=

∣∣A′
λ0

∣∣, there is always another set of centroids A′′
λ0

such that
|Aλ0 | =

∣∣A′′
λ0

∣∣ and ∣∣L (Aλ0 , F∗)−L (A′′
λ0
, F∗)

∣∣ < ∣∣L (Aλ0 , F∗)−L (A′
λ0
, F∗)

∣∣, because A′′
λ0

can be exactly the same as Aλ0 except for one of its centroids, where its coordinates are
slightly perturbed such that the resulting change in the sum of squares of its cluster is
smaller than

∣∣L (Aλ0 , F∗)−L (A′
λ0
, F∗)

∣∣. Hence, we only need to consider the case where
|Aλ0 | =

∣∣A′
λ0

∣∣ in the ϵ− ζ proof, and Pollard (1981)’s continuity result immediately follows.
Similar arguments can also be applied to prove part (c) by replacing the Euclidean

distance with the Mahalanobis distance.

Proof of Theorem 4.4. We first invoke Lemma 5.3 to establish that L (A,F∗) is a continu-
ous function of A, where A stands for AK , Aλ0 and A(λ0,Σ0) in (4.39), (4.41) and (4.43)
respectively. Then, by noticing thatAK , Aλ0 andA(λ0,Σ0) are deterministic functionals of Fw,
whereas A∗,K , A∗,λ0 and A∗,(λ0,Σ0) are deterministic functionals of F∗, the convergence of
the posterior distribution Πn of AK , Aλ0 and A(λ0,Σ0) follows immediately from (4.38).

Before we prove Theorem 4.5, we need the following results.

Lemma 5.4 (Continuity for partitions). Adopt assumptions in Theorem 4.5. Then,

(a) L (PK (AK) , F∗) is a continuous function of PK , where PK is the Voronoi partition associ-

ated with AK in (4.39).

(b) L (Pλ0 (Aλ0) , F∗) is a continuous function of Pλ0 , where Pλ0 is the Voronoi partition associ-

ated with Aλ0 in (4.41).

(c) L
(
P(λ0,Σ0)

(
A(λ0,Σ0)

)
, F∗
)
is a continuous function ofP(λ0,Σ0), whereP(λ0,Σ0) is the Voronoi

partition associated with A(λ0,Σ0) in (4.43).

Proof of Lemma 5.4. Again, due to Lemma 5.2, we ensure that κ∗,λ0 <∞ and κ∗,(λ0,Σ0) <∞,
and all centroids in A∗,K , A∗,λ0 and A∗,(λ0,Σ0) are finite. Then, we need to construct an

143

ϵ− ζ proof for continuity; i.e., for every ϵ > 0, there exists ζϵ > 0 such that DL (P,P ′) < ζϵ

implies |L (P(A), F∗)−L (P ′(A′), F∗)| < ϵ, whereP andP ′ have their respective subscripts
stipulated in parts (a), (b) and (c) of the Lemma. However, note that P and P ′ are Voronoi
partitions that are associated with specific sets of centroids A and A′. That is, based on P
and P ′, we could compute both DL (P,P ′) and DH (A,A′), and that we actually compute
|L (A,F∗)−L (A′, F∗)|.

To understand the following arguments, we require readers to understand Section 3.1 of
Leonardi and Tamanini (2002). Now, for part (a) of the Lemma, it is clear that two partitions
PK and P ′

K are “close” to each other (i.e. DL (PK ,P ′
K) is small) only if every cluster Vk in

PK largely overlaps its counterpart V ′
k in P ′

K (the notion of “counterpart” makes sense here,
because Leonardi and Tamanini (2002)’s metric DL actually considers the minimum of the
Lebesgue measure of non-overlapping regions for every permutation of the clusters in the
two partitions). High degree of overlapping occurs when the cluster centroid ak of Vk is close
to the centroid a′k of V ′

k for all k = 1, · · · ,K; i.e., DH (AK , A
′
K) is small when DL (PK ,P ′

K)

is small. Hence, there is only an additional layer to be inserted in the ϵ− ζ proof: for every
ϵ > 0, pick partition P ′

K that has DL (PK ,P ′
K) < ζP (ζϵ) such that their corresponding sets

of centroids have DH (AK , A
′
K) < ζϵ, then plug in Pollard (1981)’s proof for continuity to

ensure that |L (PK(AK), F∗)−L (P ′
K(A′

K), F∗)| = |L (AK , F∗)−L (A′
K , F∗)| < ϵ.

For part (b), we can deploy a similar argument in the proof for part (b) of Lemma 5.3 to
restrict our consideration to partitions Pλ0 and P ′

λ0
with the same number of clusters. Then,

the result for part (b) immediately follows from part (a). Part (c) is also the same, except
that now Mahalanobis distance is involved.

Proof of Theorem 4.5. We first invoke Lemma 5.4 to establish that L (P(A), F∗) is a con-
tinuous function of P , where P stands for the Voronoi paritions PK , Pλ0 and P(λ0,Σ0) that
are associated with AK , Aλ0 and A(λ0,Σ0) in (4.39), (4.41) and (4.43) respectively. Then,
by noticing that PK , Pλ0 and P(λ0,Σ0) are deterministic functionals of Fw, whereas P∗,K ,
P∗,λ0 and P∗,(λ0,Σ0) are deterministic functionals of F∗, the convergence of the posterior
distribution Πn of PK , Pλ0 and P(λ0,Σ0) follows immediately from (4.38).

144

Proof of Theorem 4.7. We first consider the cases for RW K-means, RW DP-means and RW
DP-rich. Notice that

√
nk
(
µwn,k − µ̂n,k

)
=

√
nk∑

i∈C0
k
Wi

∑
i∈C0

k

Wiyi −

∑
i∈C0

k

Wi

 µ̂n,k

=

1

Wn,k

· 1
√
nk

∑
i∈C0

k

Wi(yi − µ̂n,k)

whereWn,k =
1

nk

∑
i∈C0

k
Wi

a.s.−→ 1 as nk →∞. Then, for every z ∈ Rd,

z′
[√
nk
(
µwn,k − µ̂n,k

)]
=

1

Wn,k

· 1
√
nk

∑
i∈C0

k

Wi

[
z′(yi − µ̂n,k)

]
=

1

Wn,k

·
√√√√ 1

nk

∑
i∈C0

k

[z′(yi − µ̂n,k)]2 ·
∑

i∈C0
k
[z′(yi − µ̂n,k)]Wi√∑

i∈C0
k
[z′(yi − µ̂n,k)]2

,

where

1

nk

∑
i∈C0

k

[
z′(yi − µ̂n,k)

]2
= z′

 1

nk

∑
i∈C0

k

[yi − µ̂n,k][yi − µ̂n,k]′
 z

→ z′
(
V P0
∗,k

)
z a.s. P

(∞)
F∗

,

and

E

∑
i∈C0

k

[
z′(yi − µ̂n,k)

]
Wi

∣∣∣∣∣y
 =

∑
i∈C0

k

[
z′(yi − µ̂n,k)

]
= 0,

V ar

∑
i∈C0

k

[
z′(yi − µ̂n,k)

]
Wi

∣∣∣∣∣y
 =

∑
i∈C0

k

[
z′(yi − µ̂n,k)

]2
= O(n),

E

∑
i∈C0

k

[
z′(yi − µ̂n,k)

]4
W 4
i

∣∣∣∣∣y
 =

∑
i∈C0

k

[
z′(yi − µ̂n,k)

]4 E (W 4
i

)
= O(n),

where the last two lines follow from the finite (second and) fourth moment(s) property of
the standard-Exponentially-distributed random weights. Hence, the Liapounov’s sufficient

145

condition is satisfied to apply the Lindeberg’s Central Limit Theorem (coupledwith Slutsky’s
Theorem) to obtain

P
(
z′
[√
nk
(
µwn,k − µ̂n,k

)]
∈ B

∣∣y)→ P (Z1 ∈ B) a.s. P
(∞)
F∗

for any Borel set B ⊂ R and Z1 ∼ N
(
0, z′

(
V P0
∗,k

)
z
)
. Finally, apply the Cramer-Wold device

to obtain the result.
For RW SDP-means and RW SDP-rich, notice that

√
nk
(
µwn,k − µ̂n,k

)
=

√
nk∑

i∈C0
k
Wi + ξ0

∑
i∈C0

k

Wiyi −

∑
i∈C0

k

Wi + ξ0

 µ̂n,k + ξ0µ0

=

∑
i∈C0

k
Wi∑

i∈C0
k
Wi + ξ0

· 1

Wn,k

· 1
√
nk

∑
i∈C0

k

Wi(yi − µ̂n,k) + ξ0 (µ0 − µ̂n,k)

 .
The first term converges to one almost surely as nk increases, whereas the extra term

ξ0 (µ0 − µ̂n,k)√
nk

→ 0 a.s. P
(∞)
F∗

.

The rest of the terms are the same from before, and the result follows from applying Slutsky’s
theorem to deal with these extra terms.

5.5. Additional information for numerical experiments

5.5.1. Additional comparison for simulations

First, we provide the formula for the computation of average log posterior predictive density
(Comparison Criterion 2) under the diagonal-covariance structure:

g̃
(t)
(·) :=

1

m

m∑
ĩ=1

log

{
1

B

B∑
b=1

κ
(b,t)
(·)∑
k=1

n
(b,t)
k(·)

n+ α0

d∏
j=1

fT1

(
ỹ
(t)

ĩj

∣∣∣ν̃(b,t)kj(·), µ̃
(b,t)
kj(·), σ̃

(b,t)
kj(·)

)

146

+
α0

n+ α0

d∏
j=1

fT1

(
ỹ
(t)

ĩj

∣∣∣ν̃0j , µ̃0j , σ̃0j)},
where fT1(y|ν, µ, σ) denotes the univariate T density (with ν degrees of freedom as well
as location and scale parameters of µ and σ) evaluated at y. Again, the formula for these
univariate T densities follow that of the posterior predictive density corresponding to a
conjugate normal-inverse-gamma prior.

Next, we consider an additional comparison criterion for our simulation results: NMI

w.r.t. ground truth cluster labels. Specifically, we compute the NMI (Vinh et al., 2010)
value that compares the bth posterior draw of cluster assignments and the ground-truth
cluster labels for the tth simulated training data set

η
(b,t)
(·) := NMI

(
z
(b,t)
(·) , z

(t)
(truth)

)
,

and then plot the boxplots for the mean of these NMI’s from each of these 6 methods for
t = 1, · · · , T datasets

η̄
(t)
(·) =

1

B

B∑
b=1

η
(b,t)
(·) . (5.19)

Basically, we want to compare how well these methods in “recovering” the true cluster
partition (one for perfect recovery of true partition, and zero otherwise). We note that this
comparison criterion is popular in existing classification and/or clustering literature.
Results. Overall the RW DP-rich and RW SDP-rich have average NMI values that are
comparable to those of MCMC and VI, and they are also higher than those of RW DP-means
and RW SDP-means. This could be attributable to the presence of rgr regularization in the
RW DP-rich and RW SDP-rich setups.

147

Simulation I Simulation II Simulation III

0.750 0.775 0.800 0.825 0.8500.75 0.80 0.85 0.4 0.5 0.6 0.7

rwDPmeans

rwDPrich

rwSDPmeans

rwSDPrich

VI

MCMC

Mean NMI w.r.t. ground truth cluster labels

Figure 5.2: Sampling distribution of average NMI η(b,t)(·) in comparison with ground-truth
cluster assignments (Equation (5.19)) among T = 10 simulated data sets in 3 simulation
settings for each of the 6 methods: MCMC, VI and the 4 random-weighting setups.

5.5.2. Specifying priors for benchmark and motivating data examples

For both benchmark data sets, we specify a burn-in period of 2000 and a thinning interval
of 15 for MCMC. Meanwhile, the priors for these data sets are specified with an Empirical
Bayes approach (i.e., priors are estimated using some information from the data itself), and
then the same set of priors are adopted for MCMC, VI and RW SDP-rich (where applicable)
to facilitate meaningful comparison among all these methods.

Benchmark data examples

For iris data set, the full-covariance structure is adopted for MCMC, VI and RW SDP-
rich. Based on the ground-truth cluster labels, we find their corresponding cluster-specific
centroids and covariances. Let µ̃0 and Σ̃0 be the corresponding weighted (by true mixing
proportion) average of these centroids and covariances. Then, we specify µ0 = µ̃0, ν0 =

d + 3 = 7, and ψ0 = 2 × Σ̃0, such that the inverse-Wishart prior mean of Σ is equal to Σ̃0

whereas the prior variance of Σ is huge. ξ0 is estimated to be the average of element-wise
ratios between the diagonals of Σ̃0 and the diagonals of the covariance of all data. Finally,
α0 is fixed at 0.4 such that the CRP prior mean of κ (e.g., Teh, 2010) is equal toKtrue = 3.

Similar method of prior specification is also used for the wine data set, except that we
adopt the diagonal covariance structure here, since we are analyzing the transformed data

148

set via PCA. Again, let µ̃0 and
{
σ̃20,j

}
1≤j≤d

be the corresponding weighted (by true mixing
proportion) average of the cluster-specific centroids and variances for each dimension
j = 1, · · · , d. Then, we fix µ0 = µ̃0, a0,j = 2, and b0,j = 2× σ̃20,j for all 1 ≤ j ≤ d, such that
the inverse-Gamma prior mean of σ2j is equal to σ̃20,j whereas the prior variance of σ2j is
huge. Similarly, for each dimension j, ξ0,j is taken to be ratio between σ̃20,j and variance of
{yij}1≤i≤n. Again, we also fix α0 = 0.4 to equate the CRP prior mean of κ toKtrue = 3.

TCR Data Example

We first perform an agglomerative hierarchical clustering (HC) with average linkage on
the 3-dimensional TCR data set (n = 13387 TCR sequences) to obtain a solution path of
partitions starting from singleton/atomic clusters to all observations lumped together in a
degenerate cluster.

Next, we need to determine a suitable cutoff on the HC dendrogram which would give
us a corresponding partition to help us specify our priors. Now, we could obtain Shannon’s
entropy for each partition along the hierarchical clustering (HC) solution path. Intuitively,
a “good” partition is one that clusters homogeneous observations together and separates
non-homogeneous ones apart, which leads to a significant drop in Shannon’s entropy.
Consequently, for each partition along the HC solution path, we repeatedly permute the
cluster labels and recalculate the corresponding (permuted) entropy. By keeping track of
the percentage of permuted entropies that are smaller (more extreme) than the observed
entropies, we are able to obtain a series of permutation p-values associated with the HC
solution path. This permutation exercise reveals that the partition consisting of 1477 clusters
is the finest partition we could get before the permutation p-values rise up sharply, i.e.
subsequent agglomeration of the clusters no longer leads to any significant drop in Shannon’s
entropy.

Based on these 1477 clusters obtained from hierarchical clustering, we specify our priors
for the DPM under the diagonal-covariance structure: we fix α0 = 420 so that the CRP
prior mean of κ is approximately 1470, and that the VI stick-breaking threshold is fixed at

149

Kmax = 2000. Subsequently, similar to our preceding benchmark data analyses, based on
these 1477 HC clusters, we compute the weighted (by the mixing proportion as indicated
by the 1477 HC clusters) average µ̃0 of the cluster centroids, weighted variance (denoted
with µ̌0) of the cluster centroids, weighted average σ̃20,j of the cluster variances as well as
the weighted variance (denoted with σ̌20,j) of cluster variances for j = 1, · · · , d. Finally, we
specify the priors µ0,j , ξ0,j , a0,j and b0,j via method-of-moments:

µ0,j = µ̃0,j ,

ξ0,j =
σ̃20,j
µ̌0,j

,

a0,j =

[
σ̃20,j

]2
σ̌20,j

+ 2,

b0,j = σ̃20,j × (a0,j − 1) .

We also specify a burn-in period of 2000 and a thinning interval of 10 for MCMC.

5.5.3. Additional plots and tables

This subsection serves as a placeholder for additional plots and tables for the numerical
experiments in this paper.

Computational times for the numerical experiments are tabulated in Tables 5.1 and 5.2
for comparison. Recall, from the main text in Chapter 4, that each random-weighting and VI
algorithm is repeated 5 times to improve their respective local solutions. TCR data analysis
is performed using UW Madison Biomedical Computing Group (BCG) computational
hosts (URL: https://bcg.biostat.wisc.edu/computational-hardware/). The random-
weighting schemes (aswell as the sampling of

{
z
(b,t)
i(VI)

}
for b = 1, · · · , B) are parallelized over

10 computing nodes. All other simulations and benchmark data analyses are performed
using a laptop computer with Intel Core i7-8559U 2.7 GHz processor and 16GB RAM,
which has 8 computing nodes for parallelization of the random-weighting schemes and the

https://bcg.biostat.wisc.edu/computational-hardware/

150

sampling of
{
z
(b,t)
i(VI)

}
1≤b≤B

.

Methods Simulation I Simulation II Simulation III

MCMC 81.0 s 367.5 s 300.0 s
(100 %) (100 %) (100 %)

RW DP-means 9.3 s 9.9 s 14.7 s
(11.5 %) (2.7 %) (4.9 %)

RW DP-rich 10.3 s 11.0 s 13.1 s
(12.7 %) (3.0 %) (4.4 %)

RW SDP-means 23.1 s 30.9 s 53.5 s
(28.5 %) (8.4 %) (17.8 %)

RW SDP-rich 20.5 s 29.9 s 42.5 s
(25.3 %) (8.1 %) (14.2 %)

VI 3.6 s 4.8 s 6.5 s
(4.4 %) (1.3 %) (2.1 %)

Table 5.1: Average (across T simulated data sets) computational times for various methods
in our simulations. The proportion of average computational time (as a percentage of that
of MCMC) for each method in each simulation setting is presented in parenthesis. Unit ‘s’
stands for seconds.

Simulation I Simulation II Simulation III

9.5 10.0 10.5 11.0 11.5 9 10 11 15.0 17.5 20.0 22.5

rwSDP−means

rwSDP−rich

average computational steps

Figure 5.3: Sampling distribution of average (over B random-weighting draws) computa-
tional times for RW SDP-means and RW SDP-rich across T = 10 simulated data sets in the 3
simulation settings.

The computational times for the random-weighting schemes tabulated in Tables 5.1
and 5.2 largely reflect the orders of complexity (see, Chapter 4.2) for these methods. We
remind readers that our random-weighting schemes are trivially parallelizable over multiple

151

Methods Iris Data Wine Data TCR Data
(after PCA)

MCMC 25.0 s 1.34 s 10.17 d
(100 %) (100 %) (100 %)

RW DP-means 0.24 s 0.32 s 7.93 h
(1.0 %) (23.9 %) (3.2 %)

RW DP-rich 0.29 s 0.38 s 12.33 h
(1.2 %) (28.3 %) (5.0 %)

RW SDP-means 0.70 s 0.85 s 14.25 h
(2.8 %) (63.4 %) (5.8 %)

RW SDP-rich 0.73 s 0.81 s 15.54 h
(2.9 %) (54.5 %) (6.4 %)

VI 0.11 s 0.22 s 6.78 h
(0.4 %) (16.4 %) (2.8 %)

Table 5.2: Computational times for various methods in our benchmark and motivating data
examples. The proportion of computational time (as a percentage of that of MCMC) for
each method in each data set is presented in parenthesis. Units ‘s’, ‘h’ and ‘d’ represent
seconds, hours and days respectively.

computing nodes, and we could further shorten their respective computational times by
increasing the number of available computing resources. It is interesting to note that the
average computational times for RW SDP-rich in the simulation settings are slightly shorter
than those of RW SDP-means, considering the fact that the RW SDP-rich setup involves
calculation of an additional logarithmic term in dwik. This is due to fewer computational
steps taken by RW SDP-rich to achieve local convergence, as illustrated in Figure 5.3.

Meanwhile, Figure 5.4 shows the trace plots for posterior number of clusters obtained
by MCMC for all benchmark and motivating data sets. In particular, the trace plot corre-
sponding to the MCMC scheme deployed on the original wine data set (original number of
features d = 13) using R package DPpackage shows poor mixing of the MCMC chain. This
MCMC implementation involves a full covariance structure where the priors are specified
using similar approach that we described in the preceding subsection. A closer inspection of
the covariance among the features reveals a highly-correlated data structure, which justifies

152

0 5000 10000 15000 20000

2
3

0
2

4
0

2
5

0
2

6
0

2
7

0

MCMC traceplot for TCR dataset

posterior draw

p
o

s
te

ri
o

r
n
u

m
b

e
r

o
f

c
lu

s
te

rs

0 500 1000 1500 2000

3
4

5
6

7
8

9

MCMC traceplot for Iris dataset

posterior draw

p
o

s
te

ri
o

r
n
u

m
b

e
r

o
f

c
lu

s
te

rs

0 500 1000 1500 2000

4
6

8
1

0
1

2
1

4
1

6

MCMC traceplot for Wine original dataset (d = 13)

posterior draw

p
o

s
te

ri
o

r
n
u

m
b

e
r

o
f

c
lu

s
te

rs

0 500 1000 1500 2000

5
6

7
8

9
1

0

MCMC traceplot for Wine dataset after PCA (d = 5)

posterior draw

p
o

s
te

ri
o

r
n
u

m
b

e
r

o
f

c
lu

s
te

rs

Figure 5.4: Trace plots for posterior number of clusters obtained byMCMC for all benchmark
and motivating data sets.

our approach of first transforming the data set with PCA and use only the first 5 principal
components which explain more than 80% of the variation in the data as illustrated in Figure
5.5. Subsequent MCMC implementation based on this transformed data set demonstrates
reasonable mixing of the MCMC chain.

153

2 4 6 8 10 12

0
.0

0
0

.1
0

0
.2

0
0

.3
0

principal components

%
 V

a
ri

a
n

c
e

 E
x
p

la
in

e
d

2 4 6 8 10 12

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

principal components

C
u

m
m

u
la

ti
ve

 %
 V

a
ri

a
n

c
e

 E
x
p

la
in

e
d

Figure 5.5: PCA scree plots for wine data set depicting percentage of variance explained in
the data across the principal components. The blue dashed lines represent linear mapping
of the original data set to a 5-dimensional subspace. The gray dashed lines only serve as
interpolation between the points to ease visual inspection.

5.6. Variational Inference

The DPM of Normals (with Normal-inverse-Wishart prior) can be expressed with a stick-
breaking prior (Sethuraman, 1994):

yi|(zi = k, µk,Σk) ∼ Nd(µk,Σk)

µk
∣∣Σk ∼ Nd (µ0, h(Σk))

Σk ∼ p(Σk)

zi|π(v) ∼Mult (π(v))

π(v)|α0 ∼ GEM(α0)⇐⇒ πk = vk

k−1∏
l=1

(1− vl) for vk ∼ Beta(1, α0).

(5.20)

Note that in the main text, we have considered a DPM working model which shares a
commonmixture-component covariance term. However, since theMCMC schemes deployed
in the numerical experiments adopt themore general formofDPM that allows cluster-specific
covariance terms, we also adopt the same generalized DPM model for variational inference
(VI) so that the results obtained by VI are more closely aligned to the MCMC samples.

154

5.6.1. Full-covariance structure

Under the full-covariance structure, h(Σk) = Σk/ξ0, and here we specify a Wishart prior on
the precision

Σ−1
k ∼Wishartd(ν0, ψ0) (5.21)

Note that the parameterization used for Wishart distribution is such that E (Σ−1
k

)
= ν0ψ0.

Applying the mean-field variational inference at a truncation levelKmax, we approximate

p
(
µ,Σ, z,v

∣∣y)
with

Kmax∏
k=1

[
q
(
µk
∣∣Σk) q (Σk) q(vk)]× n∏

i=1

q(zi),

where the variational densities q are specified as below:

µk
∣∣Σk ∼ Nd

(
µ̂k,

1

ξ̂k
Σk

)
Σ−1
k ∼Wishartd(ν̂k, ψ̂k)

zi ∼Mult (π̂i)

vk ∼ Beta (α̂k1, α̂k2) .

(5.22)

We need to solve for

{α̂k1, α̂k2}1≤k≤Kmax
and

{
µ̂k, ξ̂k, ν̂k, ψ̂k

}
1≤k≤Kmax

and {π̂ik}1≤i≤n,1≤k≤Kmax
.

155

Using techniques outlined in Section 4.1 of Nakajima, Watanabe, and Sugiyama (2019), we
obtain

µ̂k =
ξ0µ0 +

∑n
i=1 π̂ikyi

ξ0 +
∑n

i=1 π̂ik

ξ̂kj = ξ0j +
n∑
i=1

π̂ik

ν̂k = ν0 +
n∑
i=1

π̂ik

ψ̂−1
k =

n∑
i=1

π̂ikyiy
′
i + ξ0µ0µ

′
0 − ξ̂kµ̂kµ̂′k + ψ−1

0

α̂k1 = 1 +
n∑
i=1

π̂ik

α̂k2 = α0 +

Kmax∑
l=k+1

n∑
i=1

π̂il,

(5.23)

and

π̄ik = exp

{
[Ψ (α̂k1)−Ψ(α̂k1 + α̂k2)] +

k−1∑
l=1

[Ψ (α̂k2)−Ψ(α̂k1 + α̂k2)]

+
1

2

[
d∑
j=1

Ψ

(
ν̂k + 1− j

2

)
+ d log 2 + log

∣∣∣ψ̂k∣∣∣
− d

ξ̂k
− ν̂k(yi − µ̂k)′ψ̂k(yi − µ̂k)

]}
(5.24)

where Ψ(·) denotes the digamma function, such that

π̂ik =
π̄ik∑Kmax
l=1 π̄il

. (5.25)

156

The coordinate ascent algorithm is used to iteratively update the parameters of the variational
distributions until the evidence lower bound (ELBO) converges:

Lq =−
Kmax∑
k=1

n∑
i=1

π̂ik log π̂ik −
Kmax∑
k=1

log
Γ (α̂k1 + α̂k2)

Γ (α̂k1) Γ (α̂k2)

+

Kmax∑
k=1

d∑
j=1

log Γ

(
ν̂k + 1− j

2

)
+

1

2

Kmax∑
k=1

ν̂k log
∣∣∣ψ̂k∣∣∣

+
d log 2

2

Kmax∑
k=1

ν̂k −
d

2

Kmax∑
k=1

log
(
ξ̂k

)
.

(5.26)

The predictive distribution p(yn+1|y1:n) is approximated with

Kmax∑
k=1

{
α̂k1

α̂k1 + α̂k2
×
k−1∏
j=1

α̂j2
α̂j1 + α̂j2

× π−d/2 ×

(
ξ̂k

1 + ξ̂k

) d
2

×
Γ

(
ν̂k + 1

2

)
Γ

(
ν̂k + 1− d

2

) ×
∣∣∣ψ̂−1
k

∣∣∣ ν̂k2∣∣∣ψ̂−1
new,k

∣∣∣ ν̂k+1

2

}
,

(5.27)

where
ψ̂−1
new,k = ψ̂−1

k +
ξ̂k

1 + ξ̂k
(yn+1 − µ̂k)(yn+1 − µ̂k)′.

The pairwise probability of clustering the ith and jth observations together under the VI
approach is given by

p̆
(t)
ij(VI) :=

Kmax∑
k=1

π̂ikπ̂jk.

5.6.2. Diagonal-covariance structure

For diagonal-covariance structure, Σk = diag
(
σ2k1, · · · , σ2kd

) in (5.20), and

h(Σk) = diag

(
σ2k1
ξ0,1

, · · · ,
σ2kd
ξ0,d

)
.

157

Gamma priors are adopted for the precision terms, i.e. for j = 1, · · · , d,

1

σ2kj

ind∼ Gamma(a0j , b0j).

Applying the mean-field variational inference at a truncation levelKmax, we approximate

p
(
µ, σ2, z,v

∣∣y)
with

Kmax∏
k=1

q(vk)
d∏
j=1

[
q
(
µkj
∣∣σ2kj) q (σ2kj)]

×
n∏
i=1

q(zi),

where the variational densities q(zi) and q(vk) are the same as their counterparts in (5.22),
and the other variational densities for the component parameters are

µkj
∣∣σ2kj ∼ N

(
µ̂kj ,

1

ξ̂kj
σ2kj

)
1

σ2kj
∼ Gamma(âkj , b̂kj).

We need to solve for {α̂k1, α̂k2}1≤k≤Kmax
and

{
µ̂kj , ξ̂kj , âkj , b̂kj

}
1≤k≤Kmax ; 1≤j≤d

and {π̂ik}1≤k≤Kmax ; 1≤i≤n .

The solutions for
{
α̂k1, α̂k2, µ̂kj , ξ̂kj

}
are the same as their counterparts in (5.23), whereas

âkj = a0j +
1

2

n∑
i=1

π̂ik

b̂kj = b0j +
1

2

n∑
i=1

π̂iky
2
ij +

1

2
ξ0jµ

2
0j −

1

2
ξ̂kjµ̂

2
kj .

158

We still use (5.25) to calculate π̂ik, but we need to modify the formula to calculate π̄ik by
replacing the second and third line of (5.24) inside the exponent with

+
1

2

d∑
j=1

[
Ψ(âkj)− log

(
b̂kj

)
− 1

ξ̂kj
−
âkj

b̂kj
(yij − µ̂kj)2

]
.

The formula for ELBO also needs to be modified by replacing the second and third line of
(5.26) with

+

Kmax∑
k=1

d∑
j=1

log Γ (âkj)−
Kmax∑
k=1

d∑
j=1

âkj log
(
b̂kj

)
− 1

2

Kmax∑
k=1

d∑
j=1

log
(
ξ̂kj

)
.

Finally, the formula to approximate the predictive distribution should be modified by
replacing the second line of (5.27) with

(2π)−d/2 ×
d∏
j=1

(
ξ̂kj

1 + ξ̂kj

) 1
2

×
d∏
j=1

Γ
(
âkj +

1
2

)
Γ (âkj)

×
d∏
j=1

b̂
âkj
kj

b̌
âkj+

1
2

kj

,

where
b̌kj = b̂kj +

ξ̂kj

1 + ξ̂kj

(yn+1,j − µ̂kj)2

2
.

159

References

Anderson, E. (1935). The irises of the Gaspe Peninsula. Bulletin of the American Iris Society,
59, 2–5.

Arthur, D., & Vassilvitskii, S. (2007). k-means++: the advantages of careful seeding.
In Proceedings of the eighteenth annual acm-siam symposium on discrete algorithms (pp.
1027–1035).

Belloni, A., & Chernozhukov, V. (2013). Least squares after model selection in high-
dimensional sparse models. Bernoulli, 19(2), 521–547.

Bhadra, A., Datta, J., Polson, N. G., & Willard, B. T. (2019). LASSO meets horseshoe: a
survey. Statistical Science, 34(3), 405–427.

Bissiri, P. G., Holmes, C. C., &Walker, S. G. (2016). A general framework for updating belief
distributions. Journal of the Royal Statistical Society Series B (Statistical Methodology),
78(5), 1103-1130.

Blackwell, D., & MacQueen, J. B. (1973). Ferguson distribution via Polya Urn schemes. The
Annals of Statistics, 1(2), 353–355. doi: 10.1214/aos/1176342372

Blei, D. M., & Jordan, M. I. (2006). Variational inference for Dirichlet process mixtures.
Bayesian Analysis, 1(1), 121–144.

Broderick, T., Kulis, B., & Jordan, M. I. (2013). MAD-Bayes: MAP-based asymptotic
derivations from bayes. Proceedings of the 30th International Conference on Machine

Learning, 28(3), 226-234.
Camponovo, L. (2015). On the validity of the pairs bootstrap for LASSO estimators.

Biometrika, 102(4), 981–987.

160

Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., . . . Riddell,
A. (2017). Stan: A probabilistic programming language. Journal of statistical software,
76(1).

Castillo, I., Schmidt-Hieber, J., & van der Vaart, A. (2015). Bayesian linear regression with
sparse priors. The Annals of Statistics, 43(5), 1986–2018.

Chatterjee, A., & Lahiri, S. N. (2010). Asymptotic properties of the residual bootstrap for
LASSO estimators. Proceedings of the AmericanMathematical Society, 138(12), 4497–4509.

Chatterjee, A., & Lahiri, S. N. (2011a). Bootstrapping LASSO estimators. Journal of the

American Statistical Association, 106(494), 608–625.
Chatterjee, A., & Lahiri, S. N. (2011b). Strong consistency of LASSO estimators. Sankhya:

The Indian Journal of Statistics, Series A, 73(1), 55-78.
Chatterjee, S., & Bose, A. (2005). Generalized bootstrap for estimating equations. The Annals

of Statistics, 33(1), 414–436.
Corradin, R., Canale, A., & Nipoti, B. (2021). BNPmix: Bayesian nonparametric mixture

models [Computer softwaremanual]. Retrieved from https://CRAN.R-project.org/

package=BNPmix (R package version 0.2.8)
Dahl, D. B. (2009). Modal clustering in a class of product partition models. Bayesian Analysis,

4(2), 243–264. doi: 10.1214/09-BA409
Das, D., Gregory, K., & Lahiri, S. N. (2019). Perturbation bootstrap in Adaptive Lasso. The

Annals of Statistics, 47(4), 2080–2116.
Das, D., & Lahiri, S. N. (2019). Distributional consistency of the LASSO by perturbation

bootstrap. Biometrika, 106(4), 957–964.
Dash, P., Fiore-Gartland, A. J., Hertz, T., Wang, G. C., Sharma, S., Souquette, A., . . . Thomas,

P. G. (2017). Quantifiable predictive features define epitope-specific T cell receptor
repertoires. Nature, 547, 89–93.

Duchi, J. C., Jordan, M. I., Wainwright, M. J., & Wibisono, A. (2015). Optimal rates for zero-
order convex optimization: The power of two function evaluations. IEEE Transactions

on Information Theory, 61(5), 2788–2806.

https://CRAN.R-project.org/package=BNPmix
https://CRAN.R-project.org/package=BNPmix

161

Durrett, R. (2010). Probability: Theory and examples (cambridge series in statistical and prob-

abilistic mathematics) (4th ed.). New York, USA: Cambridge: Cambridge University
Press.

Eddelbuettel, D., & Sanderson, C. (2014). RcppArmadillo: Accelerating R with high-
performance C++ linear algebra. Computational Statistics and Data Analysis, 71, 1054–
1063. Retrieved from http://dx.doi.org/10.1016/j.csda.2013.02.005

Fan, J., & Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle
properties. Journal of the American Statistical Association, 96(456), 1348-1360.

Fang, Y., & Wang, J. (2012). Selection of the number of clusters via the bootstrap method.
Computational Statistics and Data Analysis, 56, 468–477. doi: 10.1016/j.csda.2011.09.003

Fong, E., Lyddon, S., & Holmes, C. (2019). Scalable nonparametric sampling from mul-
timodal posteriors with the posterior bootstrap. Proceedings of the 36th International

Conference on Machine Learning, 97, 1952–1962.
Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear

models via coordinate descent. Journal of Statistical Software, 33(1), 1–22. Retrieved
from http://www.jstatsoft.org/v33/i01/

Geyer, C. (1996). On the asymptotics of convex stochastic optimization. (Unpublished
manuscript)

Ghosal, S., Ghosh, J. K., & Ramamoorthi, R. V. (1999, 03). Posterior consistency of Dirichlet
mixtures in density estimation. The Annals of Statistics, 27(1), 143–158. Retrieved from
https://doi.org/10.1214/aos/1018031105 doi: 10.1214/aos/1018031105

Ghosal, S., Ghosh, J. K., & van der Vaart, A. W. (2000, 04). Convergence rates of posterior
distributions. The Annals of Statistics, 28(2), 500–531. Retrieved from https://doi

.org/10.1214/aos/1016218228 doi: 10.1214/aos/1016218228
Ghosal, S., & van der Vaart, A. (2017). Fundamentals of nonparametric Bayesian inference.

Cambridge University Press.
Gramacy, R. B., Moler, C., & Turlach, B. A. (2019). monomvn: Estimation for mvn and

student-t data with monotone missingness [Computer software manual]. Retrieved

http://dx.doi.org/10.1016/j.csda.2013.02.005
http://www.jstatsoft.org/v33/i01/
https://doi.org/10.1214/aos/1018031105
https://doi.org/10.1214/aos/1016218228
https://doi.org/10.1214/aos/1016218228

162

from https://CRAN.R-project.org/package=monomvn (R package version 1.9-13)
Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian

model determination. Biometrika, 82(4), 711–732.
Hartigan, J. A., & Wong, M. A. (1979). Algorithm AS 136: A k-means clustering algorithm.

Journal of the Royal Statistical Society. Series C (Applied Statistics), 28(1), 100–108.
Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data

mining, inference and prediction (Second ed.). Springer.
Henderson, H. V., & Searle, S. R. (1981). On deriving the inverse of a sum of matrices. SIAM

Review, 23(1), 53–60.
Hjort, N. L., & Ongaro, A. (2005). Exact inference for random Dirichlet means. Statistical

Inference for Stochastic Processes, 8(3), 227–254.
Huber, P. J. (1967). The behavior of maximum likelihood estimates under nonstandard

conditions. In Proceedings of the fifth berkeley symposium on mathematical statistics and

probability, volume 1: Statistics (pp. 221–233). Berkeley, Calif.: University of California
Press. Retrieved from https://projecteuclid.org/euclid.bsmsp/1200512988

Ishwaran, H., & Zarepour, M. (2002). Exact and approximate sum representations for the
Dirichlet process. Canadian Journal of Statistics, 30(2), 269-283.

Jara, A., Hanson, T., Quintana, F., Mueller, P., & Rosner, G. (2011). Bayesian semi- and
nonparametric modeling in R. Journal of Statistical Software, 40(5), 1–30. Retrieved
from http://www.jstatsoft.org/v40/i05/

Jensen, S. T., & Liu, J. S. (2008). Bayesian clustering of transcription factor binding mo-
tifs. Journal of the American Statistical Association, 103(481), 188–200. doi: 10.1198/
016214507000000365

Jin, Z., Ying, Z., & Wei, L.-J. (2001). A simple resampling method by perturbing the
minimand. Biometrika, 88(2), 381–390.

Johnson, V., & Rossell, D. (2012). Bayesian model selection in high-dimensional settings.
Journal of the American Statistical Association, 107(498), 649-660.

Jordan, M. I. (2013). On statistics, computation and scalability. Bernoulli, 19(4), 1378–1390.

https://CRAN.R-project.org/package=monomvn
https://projecteuclid.org/euclid.bsmsp/1200512988
http://www.jstatsoft.org/v40/i05/

163

Karabatsos, G. (2020). Fast search and estimation of Bayesian nonparametric mixture
models using a classification annealing EM algorithm. Journal of Computational and

Graphical Statistics, 1–12. doi: 10.1080/10618600.2020.1807995
Kleijn, B., & van der Vaart, A. (2012). The bernstein-von-mises theorem under misspecifi-

cation. Electronic Journal of Statistics, 6, 354–381. Retrieved from https://doi.org/

10.1214/12-EJS675 doi: 10.1214/12-EJS675
Knight, K., & Fu, W. (2000). Asymptotics for LASSO-type estimators. The Annals of Statistics,

28(5), 1356-1378.
Kulis, B., & Jordan, M. I. (2012). Revisiting k-means: New algorithms via Bayesian nonpara-

metrics. Proceedings of the 29 th International Conference on Machine Learning.
Lai, T. L., Robbins, H., & Wei, C. Z. (1978). Strong consistency of least squares estimates in

multiple regression. Proceedings of National Academy of Sciences, 75(7), 3034 - 3036.
Leonardi, G. P., & Tamanini, I. (2002). Metric spaces of partitions, and Caccioppoli partitions.

Advances in Mathematical Sciences and Applications, 12(2), 725–753.
Liu, H., & Yu, B. (2013). Asymptotic properties of LASSO+mLS and LASSO+Ridge in

sparse high-dimensional linear regression. Electronic Journal of Statistics, 7, 3124-3169.
Lyddon, S., Holmes, C., & Walker, S. (2019). General Bayesian updating and the loss-

likelihood bootstrap. Biometrika, 106(2), 465–478.
Lyddon, S., Walker, S., & Holmes, C. (2018). Nonparametric learning from Bayesian models

with randomized objective functions. In Proceedings of the 32nd international conference on

neural information processing systems (pp. 2075–2085). Curran Associates Inc. Retrieved
from http://dl.acm.org/citation.cfm?id=3326943.3327135

Ma, X., Korthauer, K., Kendziorski, C., & Newton, M. A. (2021). A compositional model
to assess expression changes from single-cell RNA-seq data. The Annals of Applied

Statistics, 15(2), 880–901.
Mason, D. M., & Newton, M. A. (1992). A rank statistics approach to the consistency of a

general bootstrap. The Annals of Statistics, 20(3), 1611–1624.
McLachlan, G. J., Lee, S. X., & Rathnayake, S. I. (2019). Finite mixture models. Annual review

https://doi.org/10.1214/12-EJS675
https://doi.org/10.1214/12-EJS675
http://dl.acm.org/citation.cfm?id=3326943.3327135

164

of statistics and its application, 6, 355–378.
Minnier, J., Tian, L., & Cai, T. (2011). A perturbation method for inference on regularized

regression estimates. Journal of the American Statistical Association, 106(496), 1371–1382.
Mossel, E., & Vigoda, E. (2006). Limitations of Markov Chain Monte Carlo algorithms for

Bayesian inference of phylogeny. The Annals of Applied Probability, 16(4), 2215-2234.
Muliere, P., & Secchi, P. (1996). Bayesian nonparametric predictive inference and bootstrap

techniques. Annals of the Institute of Statistical Mathematics, 48(4), 663–673.
Müller, P., Quintana, F. A., Jara, A., & Hanson, T. (2015). Bayesian nonparametric data analysis.

Springer.
Nakajima, S., Watanabe, K., & Sugiyama, M. (2019). Variational Bayesian learning theory

(First ed.). Cambridge University Press.
Narisetty, N. N., & He, X. (2014). Bayesian variable selection with shrinking and diffusing

priors. The Annals of Statistics, 42(2), 789-817.
Nemeth, C., & Fearnhead, P. (2021). Stochastic gradient Markov Chain Monte Carlo. Journal

of the American Statistical Association, 116(533), 433–450. doi: 10.1080/01621459.2020
.1847120

Newton, M., Polson, N. G., & Xu, J. (2021). Weighted Bayesian bootstrap for scalable
posterior distributions. The Canadian Journal of Statistics, 49(2), 421–437. Retrieved
from https://doi.org/10.1002/cjs.11570

Newton, M. A., & Raftery, A. (1994). Approximate Bayesian inferencewith theweighted like-
lihood bootstrap. Journal of the Royal Statistical Society Series B (Statistical Methodology),
56(1), 3–48.

Ng, T. L., & Newton, M. A. (2020). Random weighting in LASSO regression. arXiv:

2002.02629. (In revision at the Electronic Journal of Statistics.)
Osborne, M. R., Presnell, B., & Turlach, B. A. (2000). On the LASSO and its dual. Journal of

Computational and Graphical Statistics, 9(2), 319–337.
Park, T., & Casella, G. (2008). The Bayesian LASSO. Journal of the American Statistical

Association, 103(482), 681-686.

https://doi.org/10.1002/cjs.11570

165

Paul, D., & Das, S. (2020). A Bayesian non-parametric approach for automatic clustering
with feature weighting. Stat, 9(1). doi: 10.1002/sta4.306

Pitman, J. (1995). Exchangeable and partially exchangeable random partitions. Probability
Theory and Related Fields, 102(2), 145–158.

Pollard, D. (1981). Strong consistency of k-means clustering. The Annals of Statistics, 9(1),
135-140.

Pollard, D. (1991). Asymptotics for least absolute deviation regression estimators. Econo-
metric Theory, 7(2), 186-199.

R Core Team. (2019). R: A language and environment for statistical computing [Computer
software manual]. Vienna, Austria. Retrieved from https://www.R-project.org/

Raykov, Y. P., Boukouvalas, A., & Little, M. A. (2016). Simple approximate MAP inference
for Dirichlet processes mixtures. Electronic Journal of Statistics, 10, 3548–3578. doi:
10.1214/16-EJS1196

Richter, R., & Alexa, M. (2015). Mahalanobis centroidal Voronoi tessellations. Computers

and Graphics, 46, 48–54. doi: 10.1016/j.cag.2014.09.009
Roeder, K. (1990). Density estimation with confidence sets exemplified by superclusters

and voids in the galaxies. Journal of the American Statistical Association, 85, 617–624.
Rubin, D. B. (1981). The Bayesian Bootstrap. The Annals of Statistics, 9(1), 130–134.
Scrucca, L., Fop, M., Murphy, T. B., & Raftery, A. E. (2016). mclust 5: clustering, classification

and density estimation using Gaussian finite mixture models. The R Journal, 8(1),
289–317. doi: 10.32614/RJ-2016-021

Sethuraman, J. (1994). A constructive definition of Dirichlet priors. Statistica Sinica, 4,
639-650.

Shao, J. (2003). Mathematical Statistics (Second ed.). New York, USA: Springer Texts in
Statistics.

Stephens, M. (2000). Dealing with label switching in mixture models. Journal of the Royal
Statistical Society Series B (Statistical Methodology), 62(4), 795-809.

Teh, Y. W. (2010). Dirichlet process [Computer software manual]. (https://www.stats

https://www.R-project.org/
https://www.stats.ox.ac.uk/~teh/research/npbayes/Teh2010a.pdf
https://www.stats.ox.ac.uk/~teh/research/npbayes/Teh2010a.pdf

166

.ox.ac.uk/~teh/research/npbayes/Teh2010a.pdf)
Tibshirani, R. (1996). Regression shrinkage and selection via the LASSO. Journal of the Royal

Statistical Society Series B (Statistical Methodology), 58(1), 267-288.
Tibshirani, R. J. (2013). The LASSO problem and uniqueness. Electronic Journal of Statistics,

7, 1456-1490.
Tibshirani, R. J., & Taylor, J. (2011). The solution path of the generalized LASSO. The Annals

of Statistics, 39(3), 1335–1371.
Tseng, P. (2001). Convergence of a block coordinate descent method for nondifferentiable

minimization. Journal of Optimization Theory and Applications, 109(3), 475–494.
Urschel, J. C. (2017). On the characterization and uniqueness of centroidal Voronoi tessella-

tions. SIAM Journal on Numerical Analysis, 55(3), 1525–1547. doi: 10.1137/15M1049166
van der Vaart, A. W. (1998). Asymptotic statistics (cambridge series in statistical and probabilistic

mathematics). Cambridge University Press.
Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with s (Fourth ed.). New

York: Springer. Retrieved from http://www.stats.ox.ac.uk/pub/MASS4 (ISBN
0-387-95457-0)

Vinh, N. X., Epps, J., & Bailey, J. (2010). Information theoretic measures for clusterings
comparison: Variants, properties, normalization and correction for chance. Journal of
Machine Learning Research, 11, 2837–2854.

Vujovic, M., Degn, K. F., Marin, F. I., Schaap-Johansen, A.-L., Chain, B., Andresen, T. L.,
. . . Marcatili, P. (2020). T cell receptor sequence clustering and antigen specificity.
Computational and Structural Biotechnology Journal, 18, 2166–2173. doi: 10.1016/j.csbj
.2020.06.041

Wade, S., & Ghahramani, Z. (2018). Bayesian cluster analysis: point estimation and credible
balls (with discussion). Bayesian Analysis, 13(2), 559–626. doi: 10.1214/17-BA1073

Welling, M., & Teh, Y. W. (2011). Bayesian Learning via Stochastic Gradient Langevin
Dynamics. Proceedings of International Conference on Machine Learning, 681–688.

Williams, G. J. (2011). Data mining with Rattle and R: The art of excavating data for

https://www.stats.ox.ac.uk/~teh/research/npbayes/Teh2010a.pdf
https://www.stats.ox.ac.uk/~teh/research/npbayes/Teh2010a.pdf
https://www.stats.ox.ac.uk/~teh/research/npbayes/Teh2010a.pdf
http://www.stats.ox.ac.uk/pub/MASS4

167

knowledge discovery. Springer. Retrieved from http://www.amazon.com/gp/product/

1441998896/ref=as li qf sp asin tl?ie=UTF8&tag=togaware-20&linkCode=

as2&camp=217145&creative=399373&creativeASIN=1441998896

Zahm, C., Ng, T. L., Newton, M. A., & McNeel, D. (2022). Antigen specificity of T-cell
receptors. In preparation.

Zhao, P., & Yu, B. (2006). On model selection consistency of LASSO. Journal of Machine

Learning Research, 7, 2541-2563.
Zou, H. (2006). The adaptive LASSO and its oracle properties. Journal of the American

Statistical Association, 101(476), 1418–1429.
Zuanetti, D. A., Muller, P., Zhu, Y., Yang, S., & Ji, Y. (2019). Bayesian nonparametric

clustering for large data sets. Statistics and Computing, 29, 203–215. doi: 10.1007/
s11222-018-9803-9

http://www.amazon.com/gp/product/1441998896/ref=as_li_qf_sp_asin_tl?ie=UTF8&tag=togaware-20&linkCode=as2&camp=217145&creative=399373&creativeASIN=1441998896
http://www.amazon.com/gp/product/1441998896/ref=as_li_qf_sp_asin_tl?ie=UTF8&tag=togaware-20&linkCode=as2&camp=217145&creative=399373&creativeASIN=1441998896
http://www.amazon.com/gp/product/1441998896/ref=as_li_qf_sp_asin_tl?ie=UTF8&tag=togaware-20&linkCode=as2&camp=217145&creative=399373&creativeASIN=1441998896

	Contents
	List of Tables
	List of Figures
	Abstract
	Introduction
	Random Weighting in LASSO Regression
	Preamble
	Problem Setup
	Main Results
	Numerical Experiments
	Discussion

	 Technical Details for Chapter 2
	Random Weighting in Discrete Mixture Models
	Framework
	Methodology
	Numerical Experiments
	Theoretical Properties

	Supplementary Material for Chapter 4
	Implementation details of DP-rich
	Additional details of RW SDP-rich
	Additional details of RW K-means
	Additional details for theoretical properties
	Additional information for numerical experiments
	Variational Inference

	References

