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Abstract 

This thesis outlines research focusing on the development and application of 

chromatography separation and mass spectrometry data acquisition methods aimed at improving 

profiling depth in proteomic analyses. This work is briefly outlined and explained in Chapter 1, 

highlighting how reliance on common analytical methodologies inherently limits our view of the 

proteome. Chapter 2 details the initial reports of utilizing porous graphitic carbon (PGC) 

chromatography as an alternative to reversed-phase liquid chromatography (RPLC). This report 

describes demonstrable improvements in peptide, glycopeptide, and protein identifications while 

highlighting the various analytical advantages seen over traditional separations. In this preliminary 

work, we observed elevated column temperatures imparted potentially detrimental effects of 

various glycopeptides, a phenomenon explored in Chapter 3. This following report provides 

heuristic guidance in PGC-based glycoproteomic analyses and details how column temperature 

must be optimized to suit the given analytical need. Chapter 4 provides a topical overview of 

quantitative approaches in glycan and glycopeptide analyses, providing meaningful consideration 

and comparison of methodologies most appropriate for use in future glycoproteomic analyses. In 

Chapter 5, we return to PGC separations with a specific focus on further detailing the benefits 

found in proteomic analyses. This report highlights substantial improvements in the number of 

peptide and protein identifications compared to what was seen previously and highlights the 

breadth of information lost during routine RPLC analyses. Chapter 6 departs from 

chromatographic separation and turns attention towards quantitative mass spectrometry (MS) 

methods useful for biological discovery. The knowledge and information garnered from this report 

informed the experimental design used in Chapter 7, which describes the employment of data-

independent acquisition (DIA)-MS to study a novel, progressive prostate cancer cell model. Here 
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we quantified 6,614 proteins across 9 biological samples, finding 1,242 to be significantly 

dysregulated in malignant cancer phenotypes. Thes proteins demonstrate potential for disease 

diagnosis, phenotypic stratification, and therapeutic targeting. In Chapter 8 we expand on the 

utility of DIA-MS, detailing the ability to reuse and repurpose prior proteomic measurements for 

enhanced biomolecular identification. We apply this workflow to the analysis of neurological 

disorder patient cohorts, revealing 1,642 dysregulated proteins that speak to the biomolecular 

organization related to Alzheimer’s Disease. Chapter 9 describes new and emerging ion mobility 

(IM)-based analytical modalities and discuss their capacity for biomolecular interrogation and 

structural analysis. Given instrumentation of this kind is not utilized in the works preceding, this 

report explains potential advantages and necessary considerations, should this technology become 

of interest. Finally, we conclude with Chapter 10, briefly discussing the various investigations 

that may follow this body of work. 
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Chapter 1: Introduction and Summary 
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Investigations of health and human disease have long relied on adept analytical 

methodologies for biomolecular analysis. Decades of concerted focus and advanced training have 

bolstered the importance of understanding the molecular drivers of normal and aberrant biological 

processes and have progressively increased the need for more advanced technology and methods 

providing greater information breadth. A sector of contemporary biomolecular analysis is the study 

of proteins, the participants executing cellular functions necessary to sustain life. The study of 

protein expression, modification, and structure is ubiquitously referred to as ‘proteomics.’ Among 

the litany of analytical techniques available, mass spectrometry (MS) is unquestionably the 

method-of-choice as it facilitates the breadth of measurements needed for holistic proteomic 

analyses and provides the only high-throughput technique for peptide and protein identification1. 

Expectedly, the increasing appreciation for and reliance on MS-based analyses have brought about 

the development of nuanced variations that provide researchers with both greater experimental 

flexibility as well as the need to evaluate the efficiency of a chosen approach. 

Broadly, MS-based proteomics may be divided into four distinct areas: sample preparation, 

chromatographic separation, data acquisition, and data processing. Technological advances have 

provided extreme diversity in approach for each of these four areas, with each researcher likely 

utilizing a different combination to facilitate proteomic measurements. Despite being 

heterogenous in approach, a high-level view of proteomics identifies some general consistencies 

shared across most applications. Argued subjectively, chromatographic separation is the area most 

conserved across time and research settings. Reversed-phase liquid chromatography (RPLC) is the 

standard mode of chromatographic separation with unquestionable efficiency and broad utility2-4. 

This separation, which takes advantages of differences in analyte hydrophobicity allows for facile 

separation of peptide and protein mixtures, making it suitable for most analyses. However, 
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literature has routinely suggested the limitations of reversed-phase chromatography due to the 

inability to effectively retain hydrophilic analytes. As well, analytes of hydrophilic character that 

are retained display very poor partitioning between the solid and aqueous phase, resulting in poor 

liquid-phase resolution and inhibiting detection and limiting utility in downstream analysis. 

Further complicating this point, hydrophilic analytes are often characterized by low ionization 

efficiency both due to the lower propensity to carry charge and being outcompeted for ionization 

by longer, often more basic hydrophobic peptides. These realities are further exacerbated when 

considering potential peptide modifications such as glycosylation and phosphorylation that impart 

additional hydrophobicity and increase the inherent complexity within complex mixtures5, 6. 

Considered holistically, the ubiquitous use of RPLC inherently limits the proteomic information 

revealed in routine analyses, significantly biasing our understanding of the proteome towards those 

biomolecules most compatible with this separation. 

There are several alternative chromatography paradigms that may be used in place of 

RPLC. Ion-exchange, size exclusion, and affinity chromatography have all been extensively 

employed in proteomics analyses, utilizing the innate or inspired character of peptides to 

distinguish complex mixtures. However, these separations are relatively agnostic to peptide 

hydrophobicity and only serve to contrast RPLC separations if specific physiochemical properties 

are present. Hydrophilic interaction chromatography (HILIC) is the most common separation 

regime utilized to target hydrophilic analytes and has been routinely employed for analysis of 

peptides and small molecules alike7-9. A recent addition to the chromatographic toolbox is 

electrostatic repulsion-hydrophilic interaction chromatography (ERLIC)10-13, which combines 

benefits of ion-exchange and HILIC to improve retention of polar analytes14-17. However, both 

HILIC and ERLIC present limitations that inhibit their utility in proteomic analyses. HILIC utilizes 
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gradients that move from a high concentration of organic buffer to a high concentration of aqueous 

buffer. As such, peptide mixtures must be resuspended in an organic solution prior to analysis, 

which can prove challenging for some hydrophilic analytes. Additionally, both HILIC and ERLIC 

require the use of salt-containing buffers to mitigate charge effects, which can hinder analyte 

detection via MS. Taken together, there is an immediate need to develop or validate easily 

implemented chromatography paradigms that display broad biomolecular compatibility while 

addressing the limitations presented in RPLC analyses. 

Porous graphitic carbon (PGC) has gained significant attention in recent years for its ability 

to retain polar analytes, with specific attention drawn to metabolites and free glycans18-31.. 

Whereas RPLC separations utilize a silica resin support to which long carbon chains may be 

affixed, PGC is constructed from planar graphene sheets, which promote analyte retention based 

on polarity and electrostatic interactions. This separation paradigm is compatible with the typical 

aqueous-organic gradients used in RPLC analysis while still exhibiting solvent-flexibility for 

unique applications, indicating it may be directly implemented in a majority of analytical settings. 

In addition, recent reports have demonstrated PGC separations present the unique capacity to 

separate biomolecular isomers at higher temperatures. This phenomenon is principally highlighted 

in the analysis of glycans, where at high temperatures the oligosaccharide moiety adopts an 

elongated conformation, allowing greater separation of biomolecules with unique connectivity. 

Importantly, a single report detailed the ability of PGC to distinguish glycopeptide isomers through 

targeted analysis of glycoprotein standards. This report enabled us to hypothesize that the polar 

and electrostatic retention of PGC separation is not completely incompatible with peptide 

backbones and may therefore be evaluated as a potential compliment to RPLC separations and 

may play display even further benefit in untargeted glycopeptide analysis.  
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In Chapter 2, we assess this hypothesis by fabricating custom nano-flow capillary columns 

to directly compare PGC and RPLC separations. An additional biphasic PGC-RPLC column was 

also fabricated to evaluate any combinatorial advantages. Using these columns to analyze complex 

cell line digests, and enriched glycopeptide mixtures, we demonstrate a significant complement in 

proteomic and glycoproteomic coverage. Though RPLC still exceeds the other separations in 

number of peptide and proteins identified, our analyses resulted in a 23% improvement in peptide 

identifications and a 14% improvement in protein identification when column temperatures are 

optimized. We were encouraged by these initial findings as they represent some of the first reports 

detailing the utility of PGC in proteomic analyses. However, we felt this shotgun approach may 

inherently limit the true potential of PGC separations and later sought to overcome these obstacles 

(see Chapter 5). In addition to these complementary peptide and protein identifications, we 

demonstrated that PGC analysis of glycopeptide mixtures results in greater retention of small, 

hydrophilic glycopeptides dominated in character by the attached glycan. As well, PGC-specific 

glycopeptides were found to have greater charge density than those found in RPLC, directly 

addressing the challenges of ionization inefficiency. We also observe greater recovery of site 

microheterogeneity and reveal facile isomeric separation at elevated temperatures. Taken together, 

this report details the potentially advantageous nature of incorporating PGC separations into 

routine analyses. Though sample coverage is complementary and not orthogonal, we present 

substantial improvements in the breadth and depth of proteomic information retrieved how this 

paradigm may be further developed for unique structural analyses. 

However, these analyses did present some topical limitations. We observed significant 

disparities in the quantity and type of glycopeptides identified at higher temperatures – information 

that was not available until this report. Observing that high mannose and sialylated glycans were 
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the classes of glycans most directly affected – and noting the contrasting impact – we hypothesized 

this was a universal trend that would sufficiently impact identification and quantitation of 

glycopeptides. In Chapter 3 we investigate this hypothesis by performing follow-up analyses on 

enriched glycopeptide mixtures. Using a similar separation approach as that seen in Chapter 2, we 

reveal that increases in column temperature to 45°C largely benefit the identification of all 

glycopeptides while further increases to 60°C impart differential effects on various glycopeptide 

classes. At highest temperatures, mannose-type glycopeptides (i.e., high mannose and 

paucimannose glycopeptides) were not impacted, exhibiting greater liquid-phase resolution and 

higher reporting signal. Sialylated glycopeptides – and to a lesser extent complex and fucosylated 

glycopeptides – displayed greatest resolution but lowest reporting signal and identification rates at 

60°C. Though we were not able to fully elucidate the cause of this observation, we speculate it is 

due progressive deterioration of glycopeptides caused by the acidic conditions used in LC-MS 

analyses and the introduction of additional energy in the form of heat. In the same report, we use 

spectral counting for quantitation and reveal that even though identifications are lowest at high 

temperatures, quantitative accuracy generally improves. Taken together, this report expands on the 

utility of PGC for glycopeptide analysis, providing heuristic guidance for how experimental 

conditions can, and should, be tailored to fit analytical need. 

As preceding chapters have introduced the need for enhanced glycopeptide identification 

and also the relevance of PGC analyses in perform quantitative investigations, Chapter 4 provides 

a timely description of the most recent efforts in glycan and glycopeptide quantitation. Whether 

utilizing metabolic incorporation, isotopic labeling, isobaric labeling, or label free approaches, 

numerous detailed reports exist to provide guidance as to the best means of quantitation for a given 

application. These approaches may be easily incorporated into PGC-based glycopeptide analyses 
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to not only provide quantitation across samples, but also to provide quantitation of unique 

glycopeptide isomers distinguished at high temperatures. Ultimately, we consider the combination 

of high-throughput quantitation and PGC analyses an area of emerging interest and suggests a 

meaningful future direction (see Chapter 10).  

As introduced previously, Chapter 5 further expands the role of PGC in proteomic analyses. 

Though we briefly revealed the advantages of PGC separations for peptide and protein 

identification in Chapter 2, we neither sought to explore the relevance of increased protein 

identifications nor contextualize the importance complementary peptide identifications. Within 

this report, we utilize a prefractionation approach to further compare the performance of PGC and 

RPLC separations. Using this strategy, we elevate the complementary performance of PGC, 

increasing peptide and protein identifications by 43% and 24%, respectively. More than this, we 

detail that although the quantity of peptides identified was lower than those in RPLC, PGC 

separations identified significantly more proteins overall, suggesting there is significant 

redundancy in RPLC analyses. We further explain that the additional proteins identified do not 

significantly differ in abundance than those identified in RPLC analyses. This finding is significant 

as it acutely displays the quantity and breadth of proteomic information lost during routine 

proteomic analyses. We go on to validate the importance of including additional peptide 

identifications in protein abundance estimations, revealing that protein quantitation ascertained 

through RPLC analyses may not be reflective of physiological concentration. Overall, this report 

further cements the use of PGC analyses in an array of MS-based proteomics investigations. 

With the importance of chromatographic separation development squarely in place, we can 

begin to turn our attention towards the ways in which proteomic analyses may be used for 

biomolecular discovery and investigation of human disease. Chapter 6 introduces quantitative 
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proteomics in the effort to elucidate biomolecular changes seen in various cancers. Through 

understanding the various avenues for protein quantitation and their applicability towards 

biological discovery, we were able to ascertain appropriate experimental design for our 

investigation of prostate cancer (PCa) in Chapter 7. 

Prostate cancer is the second leading form of cancer in men and the cancer with the highest 

age-adjusted rate of incidence overall. While the importance of illuminating strategies for disease 

diagnosis goes without stating, the rapidly aging demographics in population-dense and high-

cancer-rate countries further impress this need and mandate immediate attention. Prostate cancer 

presents numerous limitations in diagnosis and treatment as common urological screenings, digital 

rectal exams (DREs), only serve to suggest the presence of prostate cancer. Ultimately PCa is 

diagnosed through biopsy and histological assessment, as well as through biofluid screening to 

determine prostate specific antigen (PSA) levels – an inefficient biomarker. This biomarker is 

repeatedly used to monitor PCa progression and treatment, indicating there are severe 

shortcomings in our current reliance on a single protein. For this reason, we hypothesize we can 

leverage MS-based proteomics to uncover proteins or protein communities that bear significance 

in PCa progression and may prove more useful in clinical diagnosis, PCa stratification, and 

therapeutic monitoring.  

Previous works introduced here have exclusively utilized data-dependent acquisition. This 

type of data acquisition is based on a priority queue, whereby ionized analytes detected by mass 

spectrometry are ranked according to their abundance and then sent for fragmentation. This 

acquisition results in clean, easily processed data but is inherently biased towards those highly 

abundant analytes. Data-independent acquisitions provides a remedy to this limitation by isolating 

all ions in a given mass window and fragmenting them simultaneously. In this way, we can achieve 
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greater sample coverage, more robust quantitation, and higher identification rates at cost of more 

complex data analysis. Based on these considerations, we elected to utilize data-independent 

acquisition (DIA) in the discovery of protein fingerprints related to prostate cancer. 

In Chapter 7, we introduce the idea of library-free DIA-MS analysis and utilize this 

technique to profile a novel, progressive prostate cancer cell model. Using label-free quantitation, 

we illuminate the biomolecular profiles observed as PCa advances from non-tumorigenic to 

aggressive tumorigenic to aggressive metastatic tumorigenic. Quantifying 6,614 proteins with 

1,242 found to be dysregulated in malignant cell lines, we demonstrate the unique proteomic 

fingerprints of these cell lines easily distinguish cancer phenotypes from one another. Furthermore, 

we identify 7 distinct protein clusters that bear similarity in direction and magnitude of 

dysregulation, allowing us to easily identify protein communities related to PCa progression or 

those that serve as markers of malignancy. Within these analyses, we highlight the importance of 

various biological pathways such as mitosis, interferon signaling, and small molecule processing 

within PCa. 

The work in Chapter 7 utilizes a library free approach, assigning peptide precursors 

according to their theoretical fragment ions and expected retention time. However, library free 

analyses only extend so far, being unavailable for use in post-translational modification (PTM 

analysis) and often containing theoretical information not analogous to that which observed. We 

posit the in-depth proteomic analyses, which account for PTMs and provide empirical 

measurements may be re-used by other researchers to advance their DIA-MS analyses. Within 

Chapter 8, we demonstrate that large, comprehensive spectral libraries containing data not 

collected by a given user can be calibrated to new experimental conditions and used for peptide 

and protein identification. We utilize an open-source machine learning architecture to train a model 
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that learns to predict retention time from our empirical data. This model is then introduced to 

unseen peptide sequences – those found in the MassIVE knowledgebase, which are then given an 

expected retention time, allowing us to identify peptides and proteins that would otherwise go 

unobserved. Using this approach, we quantify >9,300 protein groups across neurological disease 

cohorts, revealing 1,642 to be significantly dysregulated against healthy control. This information 

not only illuminates the proteomic reorganization specific to Alzheimer’s Disease, but also 

highlights the ability to accurately reuse empirical proteomic measurements for biological 

discovery. 

Finally, as proteomics encompasses protein identification, quantitation, and structural 

characterization, Chapter 9 provides a review of emerging MS technologies most suitable to a 

given approach. Ion mobility (IM)-MS is a powerful technique that may be leveraged for increased 

sample throughput or to provide structural information. We review the four main IM modalities – 

drift tube, traveling wave, trapped ion, and high field asymmetric waveform ion mobility mass 

spectrometry – for their capacity within various omics applications and their ability to provide 

structural elucidation. As seen through our in-depth comparison, IM technology not only presents 

a promising analytical technique across numerous applications, they also must be carefully 

selected and appropriately matched to a given application. In all, this review should serve both as 

preliminary information to new IM researchers, as well as providing logical guidance to future 

investigators seeking to utilize this technique for coming analyses. 



11 

 

References 

1. Gillet, L. C.;  Leitner, A.; Aebersold, R., Mass Spectrometry Applied to Bottom-Up 

Proteomics: Entering the High-Throughput Era for Hypothesis Testing. Annual Review of 

Analytical Chemistry 2016, 9 (1), 449-472. 

 

2. Mao, Z.;  Hu, C.;  Li, Z.; Chen, Z., A reversed-phase/hydrophilic bifunctional interaction 

mixed-mode monolithic column with biphenyl and quaternary ammonium stationary 

phases for capillary electrochromatography. Analyst 2019, 144 (14), 4386-4394. 

 

3. Liang, Y.;  Zhang, L.; Zhang, Y., Monolithic Materials-Based RPLC-MS for Proteoform 

Separation and Identification. In Proteoform Identification: Methods and Protocols, Sun, 

L.; Liu, X., Eds. Springer US: New York, NY, 2022; pp 43-53. 

 

4. Rozing, G., Micropillar array columns for advancing nanoflow HPLC. Microchemical 

Journal 2021, 170, 106629. 

 

5. Badgett, M. J.;  Boyes, B.; Orlando, R., Predicting the Retention Behavior of Specific O-

Linked Glycopeptides. J Biomol Tech 2017, 28 (3), 122-126. 

 

6. Zhu, R.;  Zacharias, L.;  Wooding, K. M.;  Peng, W.; Mechref, Y., Chapter Twenty-One - 

Glycoprotein Enrichment Analytical Techniques: Advantages and Disadvantages. In 

Methods in Enzymology, Shukla, A. K., Ed. Academic Press: 2017; Vol. 585, pp 397-429. 

 

7. Boersema, P. J.;  Mohammed, S.; Heck, A. J. R., Hydrophilic interaction liquid 

chromatography (HILIC) in proteomics. Analytical and Bioanalytical Chemistry 2008, 391 

(1), 151-159. 

 

8. Sun, Z.;  Ji, F.;  Jiang, Z.; Li, L., Improving deep proteome and PTMome coverage using 

tandem HILIC-HPRP peptide fractionation strategy. Analytical and Bioanalytical 

Chemistry 2019, 411 (2), 459-469. 

 

9. Badgett, M. J.;  Boyes, B.; Orlando, R., Peptide retention prediction using hydrophilic 

interaction liquid chromatography coupled to mass spectrometry. Journal of 

Chromatography A 2018, 1537, 58-65. 

 

10. Yeh, T.-T.;  Ho, M.-Y.;  Chen, W.-Y.;  Hsu, Y.-C.;  Ku, W.-C.;  Tseng, H.-W.;  Chen, S.-

T.; Chen, S.-F., Comparison of different fractionation strategies for in-depth 

phosphoproteomics by liquid chromatography tandem mass spectrometry. Analytical and 

Bioanalytical Chemistry 2019, 411 (15), 3417-3424. 

 

11. Cui, Y.;  Tabang, D. N.;  Zhang, Z.;  Ma, M.;  Alpert, A. J.; Li, L., Counterion Optimization 

Dramatically Improves Selectivity for Phosphopeptides and Glycopeptides in Electrostatic 

Repulsion-Hydrophilic Interaction Chromatography. Analytical Chemistry 2021, 93 (22), 

7908-7916. 

 



12 

 

12. Cui, Y.;  Yang, K.;  Tabang, D. N.;  Huang, J.;  Tang, W.; Li, L., Finding the Sweet Spot 

in ERLIC Mobile Phase for Simultaneous Enrichment of N-Glyco and Phosphopeptides. 

Journal of the American Society for Mass Spectrometry 2019, 30 (12), 2491-2501. 

 

13. Alpert, A. J., Electrostatic Repulsion Hydrophilic Interaction Chromatography for Isocratic 

Separation of Charged Solutes and Selective Isolation of Phosphopeptides. Analytical 

Chemistry 2008, 80 (1), 62-76. 

 

14. Zhen, J.;  Kim, J.;  Zhou, Y.;  Gaidamauskas, E.;  Subramanian, S.; Feng, P., Antibody 

characterization using novel ERLIC-MS/MS-based peptide mapping. mAbs 2018, 10 (7), 

951-959. 

 

15. Yan, J.;  Ding, J.;  Jin, G.;  Duan, Z.;  Yang, F.;  Li, D.;  Zhou, H.;  Li, M.;  Guo, Z.;  Chai, 

W.; Liang, X., Profiling of Human Milk Oligosaccharides for Lewis Epitopes and Secretor 

Status by Electrostatic Repulsion Hydrophilic Interaction Chromatography Coupled with 

Negative-Ion Electrospray Tandem Mass Spectrometry. Analytical Chemistry 2019, 91 

(13), 8199-8206. 

 

16. Qing, G.;  Yan, J.;  He, X.;  Li, X.; Liang, X., Recent advances in hydrophilic interaction 

liquid interaction chromatography materials for glycopeptide enrichment and glycan 

separation. TrAC Trends in Analytical Chemistry 2020, 124, 115570. 

 

17. Bermudez, A.; Pitteri, S. J., Enrichment of Intact Glycopeptides Using Strong Anion 

Exchange and Electrostatic Repulsion Hydrophilic Interaction Chromatography. In Mass 

Spectrometry of Glycoproteins: Methods and Protocols, Delobel, A., Ed. Springer US: 

New York, NY, 2021; pp 107-120. 

 

18. West, C.;  Elfakir, C.; Lafosse, M., Porous graphitic carbon: A versatile stationary phase 

for liquid chromatography. Journal of Chromatography A 2010, 1217 (19), 3201-3216. 

 

19. Bapiro, T. E.;  Richards, F. M.; Jodrell, D. I., Understanding the Complexity of Porous 

Graphitic Carbon (PGC) Chromatography: Modulation of Mobile-Stationary Phase 

Interactions Overcomes Loss of Retention and Reduces Variability. Analytical Chemistry 

2016, 88 (12), 6190-6194. 

 

20. Stavenhagen, K.;  Hinneburg, H.;  Kolarich, D.; Wuhrer, M., Site-Specific N- and O-

Glycopeptide Analysis Using an Integrated C18-PGC-LC-ESI-QTOF-MS/MS Approach. 

In High-Throughput Glycomics and Glycoproteomics: Methods and Protocols, Lauc, G.; 

Wuhrer, M., Eds. Springer New York: New York, NY, 2017; pp 109-119. 

 

21. Xu, J.;  Liu, X.; Zhou, H., Recent advances in separation methods for post-translational 

modification proteomics. Sepu 2016, 34 (12), 1199-1205. 

 

22. Zhou, S.;  Huang, Y.;  Dong, X.;  Peng, W.;  Veillon, L.;  Kitagawa, D. A. S.;  Aquino, A. 

J. A.; Mechref, Y., Isomeric Separation of Permethylated Glycans by Porous Graphitic 



13 

 

Carbon (PGC)-LC-MS/MS at High Temperatures. Analytical Chemistry 2017, 89 (12), 

6590-6597. 

 

23. Zhou, S.;  Dong, X.;  Veillon, L.;  Huang, Y.; Mechref, Y., LC-MS/MS analysis of 

permethylated N-glycans facilitating isomeric characterization. Analytical and 

Bioanalytical Chemistry 2017, 409 (2), 453-466. 

 

24. Huang, Y.;  Zhou, S.;  Zhu, J.;  Lubman David, M.; Mechref, Y., LC‐MS/MS isomeric 

profiling of permethylated N‐glycans derived from serum haptoglobin of hepatocellular 

carcinoma (HCC) and cirrhotic patients. ELECTROPHORESIS 2017, 38 (17), 2160-2167. 

 

25. Ashwood, C.;  Lin, C.-H.;  Thaysen-Andersen, M.; Packer, N. H., Discrimination of 

Isomers of Released N- and O-Glycans Using Diagnostic Product Ions in Negative Ion 

PGC-LC-ESI-MS/MS. Journal of the American Society for Mass Spectrometry 2018, 29 

(6), 1194-1209. 

 

26. Hinneburg, H.;  Chatterjee, S.;  Schirmeister, F.;  Nguyen-Khuong, T.;  Packer, N. H.;  

Rapp, E.; Thaysen-Andersen, M., Post-Column Make-Up Flow (PCMF) Enhances the 

Performance of Capillary-Flow PGC-LC-MS/MS-Based Glycomics. Analytical Chemistry 

2019, 91 (7), 4559-4567. 

 

27. Ashwood, C.;  Pratt, B.;  MacLean, B. X.;  Gundry, R. L.; Packer, N. H., Standardization 

of PGC-LC-MS-based glycomics for sample specific glycotyping. The Analyst 2019, 144 

(11), 3601-3612. 

 

28. Ashwood, C.;  Waas, M.;  Weerasekera, R.; Gundry, R. L., Reference glycan structure 

libraries of primary human cardiomyocytes and pluripotent stem cell-derived 

cardiomyocytes reveal cell-type and culture stage-specific glycan phenotypes. Journal of 

Molecular and Cellular Cardiology 2020, 139, 33-46. 

 

29. Wei, J.;  Tang, Y.;  Bai, Y.;  Zaia, J.;  Costello, C. E.;  Hong, P.; Lin, C., Toward Automatic 

and Comprehensive Glycan Characterization by Online PGC-LC-EED MS/MS. Analytical 

Chemistry 2020, 92 (1), 782-791. 

 

30. Chen, C.-H.;  Lin, Y.-P.;  Ren, C.-T.;  Shivatare, S. S.;  Lin, N.-H.;  Wu, C.-Y.;  Chen, C.-

H.; Lin, J.-L., Enhancement of fucosylated N-glycan isomer separation with an ultrahigh 

column temperature in porous graphitic carbon liquid chromatography-mass spectrometry. 

Journal of Chromatography A 2020, 1632, 461610. 

 

31. Riley, N. M.;  Bertozzi, C. R.; Pitteri, S. J., A Pragmatic Guide to Enrichment Strategies 

for Mass Spectrometry-based Glycoproteomics. Molecular & Cellular Proteomics 2021, 

100029. 

 

 



14 

 

 

 

 

 

 

 

 

 

Chapter 2: Complementary proteome and glycoproteome access revealed through 

comparative analysis of reversed phase and porous graphitic carbon chromatography. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Delafield, D. G., Miles, H. N., Liu, Y., Ricke, W. A., & Li, L. (2022) Complementary proteome 

and glycoproteome access revealed through comparative analysis of reversed phase and porous 

graphitic carbon chromatography. Analytical and Bioanalytical Chemistry. 414, 5461–5472. 



15 

 

Abstract  

Continual development in instrumental and analytical techniques have aided in establishing 

rigorous connections between protein glycosylation and human illness. These illnesses, such as 

various forms of cancer, are often associated with poor prognoses, prompting the need for more 

comprehensive characterization of the glycoproteome. While innovative instrumental and 

computational strategies have largely benefited glycoproteomic analyses, less attention is given to 

benefits gained through alternative, optimized chromatographic techniques. Porous graphitic 

carbon (PGC) chromatography has gained considerable interest in glycomics research due to its 

mobile phase flexibility, increased retention of polar analytes and improved structural elucidation 

at higher temperatures. PGC has yet to be systematically compared against or in tandem with 

standard reversed phase liquid chromatography (RPLC) in high-throughput bottom-up 

glycoproteomics experiments, leaving the potential benefits unexplored. Performing comparative 

analysis of single and biphasic separation regimes at a range of column temperatures illustrates 

complementary advantages for each method. PGC separation is shown to selectively retain shorter, 

more hydrophilic glycopeptide species, imparting higher average charge, and exhibiting greater 

microheterogeneity coverage for identified glycosites. Additionally, we demonstrate that liquid-

phase separation of glycopeptide isomers may be achieved through both single and biphasic PGC 

separations, providing a means towards facile, multidimensional glycopeptide characterization. 

Beyond this, we demonstrate how utilization of multiple separation regimes and column 

temperatures can aid in profiling the glycoproteome in tumorigenic and aggressive prostate cancer 

cells. RAW MS proteomics and glycoproteomics datasets have been deposited to the 

ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier 

PXD024196 (10.6019/PXD024196) and PXD024195, respectively. 
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Introduction 

Glycoproteins, a unique class of post-translationally modified biomolecules, have long 

been an area of dedicated investigation within proteomic research communities. The high degree 

of modification complexity1 has revealed the numerous roles glycoproteins play in physiological 

processes such as cell trafficking2-4, signaling pathways5-7 and protein folding8-10, among others. 

Aided by continual improvements in mass spectrometry (MS)-based biomolecule discovery and 

identification, researchers have turned their attention towards understanding the relationship 

between these protein modifications and human disease. The dynamic nature of modification site 

occupancy and microheterogeneity11 has established connections between glycoproteins and 

neurodegenerative diseases12-17, autoimmune disorders18-20 and numerous forms of cancer21-23. 

The growing relevance of the human glycoproteome has prompted analytical innovation, 

stimulating curiosity in strategies best suited for detecting, identifying, and characterizing 

glycoproteins. Specific to bottom-up glycoproteomic investigations, glycopeptide enrichment 

strategies and instrument capabilities are often the areas of most intense focus. Numerous novel 

enrichment strategies24-26 have been developed to compensate for the low abundance of 

glycopeptides within complex proteolytic mixtures, while novel dissociation techniques27-30 are 

pursued to provide more effective single-run sequencing of peptide backbones. Beyond this, ion 

separation regimes are often the primary focus when seeking to provide structural information of 

diverse glycan modifications31-33. 

 

Though these analytical developments have provided unique avenues towards more 

comprehensive glycoproteomic analysis, the experiments validating their efficacy almost 



17 

 

exclusively rely on traditional reversed-phase liquid chromatography (RPLC). As there has been 

no extensive utilization of alternative separation regimes, with the exception of hydrophilic 

interaction chromatography (HILIC), the potential benefits and complements offered through 

novel chromatography have been left uncharacterized. Porous graphitic carbon (PCG) has shown 

increased utility in recent years for glycan identification and characterization34-37 experiments but 

has not been evaluated in high-throughput glycopeptide analyses. As Zhu et al.38 recently 

demonstrated the utility of PGC in elucidating glycopeptide modification structure, we question to 

what extent PGC may be employed to deepen the coverage of the human glycoproteome and 

complement the robust strategies that currently exist. 

Presented here is a systematic comparison of proteome and glycoproteome profiling 

enabled through traditional RPLC C18, PGC, and biphasic RPLC-PGC separation regimes. We 

build on current literature that highlights the differences in analyte retention at elevated column 

temperatures, illustrating the impact it has in complex glycopeptide profiling experiments. This 

study brings to light the complementary proteome coverage provided by PGC, selectively retaining 

those shorter, more hydrophilic analytes that go unretained in RPLC analyses. PGC is also shown 

to provide greater coverage for glycan microheterogeneity and enable higher charge states on the 

retained hydrophilic glycopeptides. Interestingly, we also demonstrate both PGC and biphasic 

separation regimes provide higher isomeric resolution as column temperature increases, indicating 

potential utility in characterization experiments. Finally, we examine two complex, human-derived 

prostate cancer cell lines, demonstrating the utility of complementary separation regimes and 

characterizing the benefits and drawbacks of altering column temperatures in complex 

glycopeptide profiling experiments.  
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Materials and methods 

Reagents and Materials  

Bovine fetuin (F3004), bovine ribonuclease B (R7884), and bovine a1-Acid Glycoprotein 

(G3643) standards, as well as 1,4-dithiothreitol (DTT, D9779), 2-iodoacetamide (IAA, I6125), and 

methanol (MeOH, 34860) were purchased from MilliporeSigma (Burlington, MA). Urea (U15), 

tris-base (BP152), hydrochloric acid (A144SI), chloroform (C297), and acetonitrile (ACN, A998) 

were purchased from Fisher Scientific (Waltham, MA). Trypsin was purchased from Promega 

(V5113, Madison, WI). Capillary tubing (1068150019) was purchased from PolyMicro. RPLC 

packing material (4451GP) was purchased from Osaka Soda Co. (Osaka, Japan). PGC packing 

material was obtained by extracting stationary phase from PGC guard columns (35003-014001) 

purchased from ThermoFisher Scientific (Waltham, MA). PolyHYDROXYETHYL A packing 

material was purchased from PolyLC (Columbia, MD). Materials for preparing frits were 

purchased from Next Advance (Troy, NY).  

Pancreatic Cancer Cell (PANC1) Culture 

The commercial pancreatic cancer cell lines PANC-1 obtained from American Type 

Culture Collection (ATCC, Manassas, VA, USA) were cultured and maintained in DMEM:F12 

(Hyclone, GE Healthcare Life Sciences, Logan, Utah, USA) containing 10% fetal bovine serum 

(FBS) (Gibco, Origin: Mexico), 1% penicillin-streptomycin solution (Gibco, Life Technologies 

Corporation, Grand Island, NY, USA). Cells cultured in a 37°C moisture incubator supplied with 

5% CO2. PANC-1 cultures between passage 3 and 15 were used for all experiments. Cells at 70%-

90% confluence were trypsinized using 0.25% trypsin EDTA solution (Corning, Mediatech, Inc., 

Manassas, VA, USA). Cell suspension was centrifuged at 800g for 5 minutes and the medium was 
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discarded. Cells were resuspended in phosphate-buffered saline (PBS) (Corning, Mediatech, Inc., 

Manassas, VA, USA) and washed 3 times with PBS, flash frozen in dry ice, and stored at −80°C.  

Prostate Cancer Cell (BCaP, LNCaP) Culture 

The BPH1 to cancer progression (BCaP)39 and LNCaP40 cell lines were grown and 

maintained in phenol-free DMEM/Ham’s F-12 (Gibco) supplemented with 5% fetal bovine serum 

(HyClone) and 1% penicillin-streptomycin solution (Gibco). T175 culture flasks were placed in 

an incubator at 5% CO2 and 98% humidity. Cells were grown to 90% confluency, washed with 1X 

phosphate-buffered saline (Cytiva) and harvested using a cell scraper. Cell pellets were washed 

twice using phosphate-buffered saline and stored at -80°C for subsequent processing.  

Protein Extraction and Digestion 

Evaluating various preparation protocols, an adapted FASP approach was chosen for 

extraction and digestion of proteins from PANC1, LNCaP, BCaP-NT1, and BCaP-T10 cell lines. 

This strategy, which does not provide targeted membrane protein enrichment, proved to enable 

highest recovery of secretory glycoproteins and access to a small number of heavily glycosylated41-

43 membrane-bound species. Dedicated strategies are required to target membrane proteins and 

may be pursued in later analyses. Briefly, cells were resuspended in and washed with PBS, 

centrifuging at 14,000 rcf between washes. Cells were then resuspended in lysis buffer (8M Urea, 

protease inhibitor, 20mM HEPES) and lysed via ultrasonication. Cell debris was removed, and 

proteins were reduced and alkylated with centrifuge filtering between each step. Proteins were 

digested with trypsin (1:50) overnight at 37°C and desalted via reverse phase desalting cartridges. 

Volume was reduced under vacuum and concentration of peptides was estimated via Pierce Peptide 

Assay. Standard glycoproteins were reduced alkylated and digested similarly; a detailed 

preparation workflow is described in the electronic supplemental information.  
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Glycopeptide Enrichment 

The enrichment procedure is fully detailed in the electronic supplemental information. 

Briefly, 200µL pipette tips were blocked with 3mg sterile cotton, and loaded with a hydrated 

polyHYDROXYETHYL-A resin. Weight of beads is adjusted according to the mass of peptides 

used. Peptide mixture was added and allowed to bind through repeated centrifugation. Non-

specific peptides were washed away using 80% ACN+0.1% TFA with enriched glycopeptides 

eluted in 10% ACN+5% FA. Prior to analysis, glycopeptides were dried under vacuum and 

resuspended in LC/MS-grade water+0.1% FA.  

LC-MS Parameters 

Samples were analyzed on an Thermo Scientific QE-HF mass spectrometer coupled with 

a NanoUltimate 3000 chromatography stack. Follow-up analyses were performed on an Thermo 

Scientific Fusion Lumos with the same chromatography system. Custom capillary columns were 

fabricated and coupled as described (electronic supplemental information, Figure S2.1) and 

temperatures were controlled by a 30 cm pencil column heater (Phoenix S&T). Flow rate was 

established for each column by achieving a stable pressure drop of 450 bar at 30°C and was held 

constant as temperature was varied (C18: 475µL/min, PGC: 750µL/min, BP: 525µL/min). Using 

water+0.1%FA and ACN+0.1%FA as buffers A and B LC gradients were held consistent between 

columns: a trapping phase from 0-16 minutes at 3% B moving to 40% at minute 100, 75% B at 

from minutes 102.5-105, 97% B from minutes 105.1-113, and 3% B from minutes 115-125.  

Mass spectrometry settings were configured to balance profiling depth with mass 

resolution. Using a full MS/dd-MS2 method, MS1 settings were as follows: polarity, positive; 

default charge state, 2; microscans, 1; resolution, 60K; AGC target, 1e6; maximum injection time, 

250 ms; m/z range, 150-1500; spectrum type, centroid. MS2 settings: microscans, 1; resolution, 
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15K; AGC target, 2e5; maximum AGC 8e3; maximum injection time, 120 ms; loop count, 15; 

isolation window, 2 m/z, isolation offset, 0 m/z; fixed first mass, 100.0 m/z; collision energy, 

stepped HCD (25, 35, 45); spectrum type, centroid; dynamic exclusion, 30s; rejected charge states, 

1+, 8+ >8+. 

Data Analysis and Availability 

Preliminary results from analysis of PANC1 cell lysate digest were identified in PEAKS 

X (Bioinformatics Solutions Inc.) searching against the UniProt reviewed human proteome. 

Glycopeptide data was annotated via Byonic (Protein Metrics). Standard glycopeptides were run 

against a custom database of UniProt protein sequences while LNCaP and BCaP samples were 

searched against the human proteome. The parameters used for PEAKS X and Byonic searching 

are described in the electronic supplemental information. 

RAW MS data for proteomics and glycoproteomics datasets have been deposited to the 

ProteomeXchange Consortium via the PRIDE44 partner repository with the dataset identifier 

PXD024196 (10.6019/PXD024196) and PXD024195, respectively. Peptide, glycopeptide, and 

protein identifications are also provided in supplemental tables S1-7. Byonic output files are 

available at https://figshare.com/account/home#/projects/98459. Custom data scraping, analysis, 

calculations, and visualization was done primarily in Python using the Altair45 library with 

additional components done in R, D3, and vega-lite. All code is available at 

https://github.com/lingjunli-research/pgc-parallel-comparison.   

Results and Discussion 

While PGC is noted to be amenable to an array of solvent systems, a key benefit is its 

compatibility with typical water/ACN buffer systems. In hand with the principle of contrasting 

retention mechanisms compared to RPLC, this indicates a facile means of complementary 

https://figshare.com/account/home#/projects/98459
https://github.com/lingjunli-research/pgc-parallel-comparison
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proteomic/glycoproteomic analysis and multidimensionality compared to organic-based 

separations such as HILIC. Though a multidimensional C18-PGC strategy was reported for 

pronase-digested glycopeptides 46, the profiling depths of these two separation regimes have not 

yet been compared for complex proteomic or glycoproteomic analyses.  

We address this knowledge gap through comparative analyses of complex proteolytic and 

enriched glycopeptide mixtures across three custom-fabricated nanoflow separation regimes run 

at varying temperatures (Figure 2.1). Columns were prepared as described (electronic 

supplemental information) and coupled to a Q-Exactive-HF nano-electrospray source as shown 

(Figure S2.1). As a note, 3mm diameter packing materials are used for each stationary phase as, at 

the time of writing, this was the smallest available PGC packing material. Smaller diameter RPLC 

material may be employed to increase liquid-phase resolution and is under evaluation for future 

research. 

Proteomic Performance 

To evaluate the performance in shotgun-like proteomic investigations, proteins were extracted 

from pancreatic cancer cells (PANC1), digested with trypsin, and subjected to LC-MS/MS at 

varying temperatures (30°C, 45°C, 60°C). RPLC demonstrated the best overall performance in 

peptide and protein identifications, followed by PGC and biphasic (BP) separations ( 

Figure 2.2, Figure S2.2, Table S1). While temperature variations had negligible effect on BP 

performance, both C18 and PGC experiments displayed noticeable improvements in number of 

identified species when run at 45°C; this observation is consistent with later analyses and is 

discussed within. Across all temperatures, our results produced the expected overlap in highly 
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abundant identified species, though RPLC and PGC demonstrate the most distinct differences in 

number of unique identifications ( 

Figure 2.2). This observation supports the idea of complementary proteome access enabled 

through PGC separation, indicating more holistic coverage may be obtained when incorporated 

alongside RPLC. We further investigated the species found to be unique in RPLC or PGC 

separations to establish any preferential retention of subcellular species. Our data demonstrate that 

there are noticeable differences in the most prevalent subcellular locations and cellular 

compartments associated with proteins unique to each separation regime (Figure S2.1, Table S2). 

While this finding supports the gain of complimentary proteome access through respective 

separations, it must be considered carefully. Rather than definitively conclude that each separation 

regime targets specific protein subclasses, these data only present trends that may be further 

defined after in-depth discovery proteomics experiments. 

Hypothesizing that differences in peptide character are the primary factor in driving this 

complementary proteome access, we first evaluated the distribution of retained peptide lengths. 

Considering the high number of peptides identified in each experiment (between 6,000 and 11,000) 

it is not surprising the median peptide lengths are largely conserved across all experiments ( 

Figure 2.2). However, at all temperatures, PGC demonstrates the lowest median length, a more 

concise interquartile range, and shorter maximums and outlier species. More importantly is the 

evaluation of hydrophilic character of retained peptides identified in each experiment. Using 

GRAVY (grand average of hydropathy) score to infer hydrophilic character, RPLC separations 
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retained those peptide species with the greatest overall hydrophobic character at all gradient 

timepoints, as evidenced by the higher, positive GRAVY scores ( 

Figure 2.2). Conversely, PGC separations yield peptides with overall hydrophilic character 

(lower, more negative GRAVY scores). Noting intermediate trend of biphasic separations 

compared to the two higher performing regimes, this knowledge, combined with the presence of 

unique peptide identifications in this separation strategy, indicates that further optimization of 

biphasic separations could provide synergistic retention and identification. The utility of biphasic 

regimes is further expanded in glycopeptide analyses, as seen below. 

To establish the reliability of our custom separation strategies, it was imperative we 

evaluate inter-run reproducibility. Our follow-up replicate analyses of each separation regime 

(Table S3) established high reproducibility in peptide and protein identifications (Figure S2.4), as 

well as confirmed the trends seen in peptide length and hydropathy (Figure S2.5). In total, these 

results point toward two notable conclusions. First, PGC separations can be successfully employed 

in high-throughput analyses of tryptic proteolytic mixtures. As previous experiments have been 

confined to analyses of small peptides - often using sequential or non-specific digestion - this 

observation stands alone as the first of its kind and implies high utility in proteomic analyses. 

Second, our results demonstrate the complementary access to the human proteome that is granted 

when PGC separations are employed. Whereas PGC selectively retains those shorter, more 

hydrophilic peptides, as well as being amenable to standard LC mobile phases, this regime presents 

a useful approach to proteome profiling that may be readily implemented in research settings where 

RPLC is employed. As well, greater benefit may be found in multidimensional chromatography 

experiments and instances where fractionation is used to reduced sample complexity.   
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Trends in Glycopeptide Identification 

To understand the performance of these complementary separation regimes in glycopeptide 

identification and characterization experiments, we performed HILIC enrichment on three 

glycopeptide-rich samples: one mixture of standard glycoprotein digests and two BPH1 to cancer 

progression (BCaP) cell line digests. The former sample was employed to provide a robust, 

reproducible dataset that may be validated in other research settings, while the latter two are meant 

to serve as real, complex glycoproteomic mixtures. Within our analyses, we sought to profile the 

characteristic differences of glycopeptides retained in RPLC, PGC, and biphasic separations while 

evaluating the extent to which incorporation of PGC separations would benefit glycoproteomic 

workflows, expand microheterogeneity profiling, and offer benefits in structural elucidation. 

After compiling annotated glycopeptides identified in all samples, we again observed a 

greater number of total and unique glycopeptides in RPLC experiments with PGC as the next best 

performer (Figure 2.3), with these two regimes also displaying the greatest number of unique 

glycopeptides across all experiments (Figure 2.3). Comparing glycopeptide identifications when 

sample constituents and column temperature are held constant confirms the difference in retention 

mechanism is the primary cause of unique identifications (Figure 2.3, Figure S2.6). However, our 

data also confirms that that there are temperature-dependent differences in glycopeptide 

identification (Figure 2.3, Figure S2.7), an observation further validated in subsequent analyses 

(Figure S2.8, Tables S4-5). Knowing this, we then sought to understand what differences exist 

between glycopeptides retained on each stationary phase. As a note, we again observe a noticeable 

improvement in analyte identification when RPLC and PGC columns are operated at 45°C 

compared to other conditions, which is discussed below. 
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Peptide-Level Differences in Retained Glycopeptides 

To illuminate the peptide-level differences existing between RPLC and PGC separations, 

we consolidated the dataset to contain only those glycopeptides that were identified in a single 

separation regime. Given the hydrophobicity-driven separation mechanism of RPLC, we had 

anticipated this regime would vastly outpace the others in number of unique glycopeptide 

backbones. In contrast to this hypothesis, holistic and sample-specific data (Figure 2.4, Figure 

S2.9, Table S6) revealed comparable numbers of unique species in RPLC and PGC with the former 

regime identifying only slightly more peptide backbones. Additionally, RPLC-specific 

glycopeptides were found to be significantly longer than those identified in PGC (p=1.44E-32, 

Wilcoxin rank-sum) and notably different from those in BP experiments (p=0.102, Wilcoxin rank-

sum) while simultaneously providing a greater distribution of charge states (Figure 2.4). These 

stark discrepancies in RPLC experiments result from a higher prevalence of basic amino acid 

residues, due in large part to missed cleavage sites.  

These observations must be carefully considered in the context of glycoproteomics. Our 

data suggest that RPLC separations provide the highest identification rates of glycopeptides, 

agreeing with the general utility of this technique across current literature. However, RPLC 

separations very clearly benefit from instances where the hydrophobic character of the peptide 

outpaces the often-dominating hydrophilicity of the glycan; such is the case for long peptides and 

those with missed cleavage sites. These results highlight that the incorporation of PGC separations 

into existing experiments directly complements, rather than detracts from current glycoproteomics 

methodologies. As each regime provides meaningful access to unique components of the 

glycoproteome, these two regimes may be leveraged in tandem to increase glycoproteomic 

coverage. 
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Furthermore, the differences in charge state distribution across all experiments may be 

further contextualized for potential benefits and drawbacks. Within glycoproteomic analyses, 

longer peptides with higher charge states could be considered beneficial in some analytical 

applications as they may be leveraged for modification site localization through electron transfer 

dissociation (ETD) and directly combats traditional limitations in ionization efficiency of 

glycopeptides. However, this can also result in precursor reporting signal being distributed across 

several channels, lowering overall signal intensity, and potentially limiting precursor selection in 

data-dependent analyses. Interestingly, glycopeptides identified in PGC analyses display a 

consolidated charge state distribution, primarily displaying 2+ and 3+ ions at rates higher than or 

equal to those seen in RPLC analyses. Normalizing this charge to the length of the peptide 

backbone reveals that PGC-specific glycopeptides demonstrated higher charge density among all 

separation regimes (Figure 2.4, Figure S2.9). This increased charge density displayed in short, 

hydrophilic analytes is a direct consequence of not selectively retaining those hydrophobic species 

that traditionally outcompete during ionization. As such, we may conclude that for applications 

where charge-mediated fragmentation is desired, RPLC separations are more beneficial as they 

will retain longer, highly charged glycopeptides. At the same time, PGC separations may find 

utility in applications where researchers wish to remedy ionization inefficiency hydrophilic 

analytes – the need for which is exacerbated when considering glycan-level differences of retained 

glycopeptides. 

Glycan-Level Differences 

Turning to the differences exhibited at the glycan level, the benefits of PGC separations 

become more pronounced. Topically, PGC analyses retained the broadest array of unique glycan 

structures, only falling behind RPLC in the standard glycopeptide sample (Figure 2.5, Figure 
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S2.10). Interestingly, when comparing the extent of glycosylation (inferred from the number of 

monosaccharide residues within each glycan structure), initial observations revealed that PGC 

retained smaller glycans compared to other separation regimes, though this discrepancy is confined 

to the standard peptide sample and is likely due to microheterogeneity differences at retained 

glycosites. 

Across all experiments, we did not observe notable bias towards any glycopeptide type, as 

all identifications were found to be exclusively high-mannose or complex. More notable however, 

is the relative size of the glycan in relation to the peptide backbone. Across all samples, PGC-

specific peptides displayed the highest monosaccharide-to-amino-acid ratio, indicating the 

character of these glycopeptides is largely dominated by the large, hydrophilic glycan. 

Rearticulating the above-mentioned observation that PGC selectively retains glycopeptides with 

shorter, more hydrophilic backbones, this revelation further emphasizes the utility of PGC 

separations in accessing those portions of the glycoproteome that would traditionally go 

undetected in RPLC analysis.  

As a primary goal in glycoprotein profiling investigations is to characterize site 

microheterogeneity, it is of topical concern to evaluate the number of glycans associated with each 

identified peptide backbone. Across all experiments, PGC regularly outpaced the other 

separations, providing a higher median number of glycans per glycosite, with higher maximums 

found in all but one sample (Figure 2.5). This observation further illustrates the value of PGC 

separation in glycoproteomic analyses as it not only accesses those portions of the glycoproteome 

not found in RPLC analyses, but it also provides improved microheterogeneity profiling depth. 

This reality may be further leveraged to provide unparalleled glycoproteome profiling, if used 
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alongside established methods of sequential or non-specific enzymatic digestion to provide a broad 

array of PGC-compatible glycopeptides.  

Improved Isomeric Resolution 

While analytical methods capable of assigning glycan location and composition occupy a 

large portion of glycoproteomics investigations, facile structural elucidation remains on the outset 

of widespread investigation. Previous studies have detailed the ability of PGC to provide 

separation of isomeric glycans at higher temperatures 34, 38, 47 postulating the expanded glycan 

morphology that results from increased temperature interacts more readily with the stationary 

phase, improving liquid-phase resolution. Though this PGC-based approach was recently 

demonstrated in collections of tryptic/chymotryptic glycopeptides 38, it has never been explored in 

complex samples that display high diversity in peptide sequence and glycan composition. 

Similar to these previous results, our studies show that isomeric glycopeptides can be 

resolved through PGC separations with benefits often being further pronounced at higher 

temperatures (Figure 2.6, Figure S2.11-Figure S2.12). However, as previous studies utilized 

commercial columns of shorter length (L=10cm, i.d.=75µm), we predicted our longer stationary 

phase would impart greater resolution of constitutional isomers prior to MS. Contrary to this 

hypothesis, a subset of glycopeptides that were partially or fully resolved in PGC experiments also 

displayed comparable resolution in BP separations, with some more well-resolved in the latter 

regime (Figure S2.13). This realization, in tandem with the poorer demonstrated performance of 

BP in glycopeptide retention indicate a novel approach may be to couple higher resolution RPLC 

stationary phases (L=15cm, d.p.=1.7µm) with a 15cm PGC stationary component. This method 

may provide a more effective means of deep profiling and structural elucidation. 
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In addition, a survey of those species with altered liquid phase retention yields two putative 

trends. The less surprising observation is that isomeric resolution is greater for those containing 

high mannose and complex glycans with unequal antennae, especially those found to be singly 

sialylated. Second, as liquid-phase separation was more readily achieved in glycopeptides from 

our standard protein mixture and in species identified on all separation regimes, we hypothesize 

this observation is concentration-dependent. This is also supported in theory. Considering the 

unequal distribution between major and minor glycan conformations, it is logical to assume some 

minor species may not be preserved after extensive sample handling. 

 

Taken together, our results serve to further emphasize the potential benefits of 

incorporating PGC separation strategies into routine glycoproteomics investigations. Whereas 

previous studies often employ more expensive commercial columns – many of which are no longer 

available for purchase – our study highlights the facility of custom fabrication and customization 

of analytical columns capable of discerning structural information. Comprehensive structural 

characterization is not a primary goal of many bottom-up glycoproteomics experiments, we present 

a low-cost, facile means of deepening glycoproteome coverage that may be further developed to 

provide substantial gains in biological information. 

Glycoproteome Profiling 

Though the results have thus far demonstrated the marked differences in proteome access 

provided through PGC and RPLC separations, we must assess any potential bias in glycopeptide 

retention presented in PGC analysis and evaluate the potential impact that higher temperature plays 

on glycoproteome profiling. Focusing on the two complex samples, BPH1 to cancer progression 

(BCaP) NT1 and T10 cell lines 48, it is immediately noticeable that high mannose glycans present 
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the highest proportion of glycan species identified (Figure 2.7). As this observation is shared 

between RPLC and PGC separations, and because analyses of our standard mixture deviate from 

this trend (Figure S2.14), we can hypothesize this is not a result of preferential retention of high 

mannose glycans and is instead related to higher prevalence of these species in the samples 

analyzed. Future quantitative investigations, performed across numerous cell lines, are needed to 

confirm this hypothesis. 

 

Mammalian N-glycoproteins are known to be dominated by complex glycans, with high 

mannose modifications being considered “immature” within the synthetic pathway 1. Recently, a 

growing number of studies have revealed high abundances of high mannose glycans in cancer cells 

49, 50 with these moieties noted as being involved in cell-cell interactions 51, 52. Of note, a recent 

study revealed that extended high mannose glycans directly contribute to bile duct cancer 

metastasis, noting the importance of specific cell surface glycosylation 53. Importantly, this study 

notes the importance of terminal α-1,2 mannose residues, bolstering the importance of providing 

structural elucidation in glycoproteomic investigations. Based on our results that demonstrate 

resolution of isomeric glycopeptides in BP and PGC separations, we anticipate this type of analysis 

would provide a novel path toward in-depth, targeted glycoproteomics. As the importance given 

to glycan isomers continues to grow, and the ability to easily distinguish these species without 

specialized instrumentation becomes invaluable, the incorporation of a PGC separation component 

will play a vital role in future investigations.  

With respect to the observed prevalence of high mannose glycan modifications, we also 

observe an obvious difference in the number of species identified at 45°C versus those at any other 

temperature. As this trend was also conserved in both RPLC and PGC experiments, we surveyed 
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the composition of high mannose glycans identified at all temperatures and found no significant 

disparities at the peptide level suggesting a cause for increased identifications (Figure S2.15-Figure 

S2.16).  

Speculating the increase of high mannose glycopeptides may be due to species only being 

retained at 45°C, extracting the masses of identified glycopeptides demonstrated that most 

precursors could be identified across all temperatures, and that very few glycopeptides displayed 

temperature-dependent retention. A more consistent observation, however, is that different column 

temperatures result in different MS1 peak heights/areas, likely impacting their selection in data-

dependent experiments. The prevailing trend is for species to exhibit highest median peak heights 

at 45°C, either increasing or decreasing in magnitude at 60°C (Figure S2.17). We did not observe 

notable differences in MS2 fragmentation across unique temperatures (Figure S2.18), indicating 

MS1 level differences are likely driving altered identification of glycopeptides. More intensive 

analysis is needed to determine the exact cause of this observation, though we hypothesize that 

45°C may provide a more optimal balance between droplet desolvation and liquid-phase 

resolution, resulting in higher identification rates overall.  

One potential concern of raising column temperatures is the additional energy provided to 

species prior to ionization. A consistent observation in both the complex and standard glycopeptide 

samples is that lower temperatures were more successful in identifying sialylated glycans (Figure 

2.7, Figure S2.14). In general, we observed a decay in reporting signal as temperature increased 

(Figure S2.19) though a wider collection of sialylated species may be needed to confirm the 

universality of this trend. However, it cannot be ignored that in a small number of cases, little or 

no MS1 signal could be observed for sialylated glycopeptides at 60°C. Considering the labile nature 

of glycosidic bonds, it is possible the increased energy prompted premature dissociation of 
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glycosidic bonds and therefore has direct adverse effects on identification. These hypotheses are 

currently under investigation. 

These potential limitations notwithstanding, our data demonstrate both RPLC and PGC 

separations are benefited by moderate increases in running temperatures. Raising column 

temperature even higher may result in better isomeric resolution, as suggested by previous studies, 

but may cause undesired signal decay. This tradeoff must be carefully balanced depending on 

experimental objectives. 

Conclusions 

Taken together, our results demonstrate the incorporation of a PGC stationary phase grants 

complementary, though not orthogonal, access to the proteome and glycoproteome. While 

traditional RPLC separation regimes provide the greatest overall retention of peptides and 

glycopeptides, our results demonstrate RPLC preferentially retain longer, more hydrophobic 

species within solution. In contrast, PGC expands overall sample coverage by retaining those 

smaller, more hydrophilic peptides and glycopeptides that would otherwise go unidentified. 

Furthermore, we demonstrate that the glycopeptides retained by PGC have a more consolidated 

charge state distribution than those in RPLC experiments, generating more charge per length of 

peptide regardless of dominant hydrophilic character. As well, PGC separations provided greater 

microheterogeneity profiling depth by identifying more glycans per retained peptide. Our results 

also build on previous studies that show the capacity for liquid-phase separation of isomeric 

glycopeptides at higher temperatures. However, our results show a long PGC stationary phase is 

not exclusively necessary to provide improved liquid-phase separation. This knowledge indicates 

the combination of high-resolution RPLC stationary components in tandem with a PGC stationary 

phase could provide a useful strategy in high-throughput characterization studies. Finally, we 
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demonstrate that running both RPLC and PGC separations at higher temperatures provides altered 

peptide and glycopeptide identification rates, with the most optimal temperature shown to be 45°C. 

In summary, PGC enables pronounced benefits in proteomic and glycoproteomic analyses and 

provides a means towards facile, high-throughput characterization. As such, this regime is sure to 

exhibit utility in applications targeting unique post-translational modifications and as a separation 

strategy for structural interrogation. 
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Figures 

 

 

 

Figure 2.1 General workflow utilized throughout the experiment. 

Samples were run sequentially at different temperatures (run 1: 30°C, run 2: 45°C, run 3: 60°C). 

Data was collected on a Thermo Q-Exactive-HF orbitrap mass sepctrometer, with peptide and 

glycopeptide annotations provided by PEAKS and Byonic prior to custom data analysis. 
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Figure 2.2 High-level overview of identified peptides resulting from analysis of PANC1 cell 

lysate digests. 

A) Comparison of total and unique peptides identified between all columns at varying 

temperatures. B) Overlap of identified peptides (left) and identified proteins (right), demonstrating 

the clear distinction in the species retained in PGC and RPLC separations. C) Comparison of 

identified peptide lengths. D) Hydrophilicity of identified peptides as a function of time, 

demonstrating the complementary retention between PGC and RPLC. Lesser values are associated 

with hydrophilic character while greater values are associated with hydrophobic character. The 

line represents average GRAVY score, shaded area represents 95% confidence interval.  
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Figure 2.3 Overview of glycopeptides identified between all separation regimes. 

Overview of glycopeptides identified between all separation regimes. A) Comparison of total (left) 

and unique (right) glycopeptides identified across all samples, shown according to separation 

strategy and column temperature. B) Overlap of all glycopeptides identified in each separation 

phase across all samples. C) (top) Overlap of glycopeptides identified in the standard mixture 

when column temperature is held constant and column is varied, (bottom) overlap of glycopeptides 

from standard mixture when separation regime is constant and temperature is varied.  
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Figure 2.4 Peptide level differences between glycopeptides identified across all experiments. 

A) Distribution of number unique backbones identified, average glycopeptide length, and average 

glycopeptide charge between all separation regimes. Error bars: 95% confidence inteval, n=3 (each 

sample). B) Distribution of glycopeptide charge states between all separations and temperatures. 

C) Normalized charge per glycopeptide, shown as a function of average charge/amino acid residue. 

Error bars: 95% confidence inteval, n=3 (each sample). 
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Figure 2.5 Comparison of glycopeptide characteristics. 

A) Distribution of # unique glycans, glucose units per glycan, and glucose units per amino acid 

residue. Error bars: 95% confidence inteval, n=3 (each sample). B) Boxplots displaying the 

number of glycans associated with retained peptide bacbones. Note: for samples “NT1” and “T10”, 

the median values of RPLC are found to be 1, making them difficult to view here.  
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Figure 2.6 Extract ion chromatogram (EIC) of a representative glycopeptide identified on 

all columns at all temperatures. 

As the retention mechanism of RPLC is driven by hydrophobic interactions, the lack of any liquid-

phase resolution is expected. However, both a longer (L=30cm) and short (L=15cm) PGC 

stationary phases were shown to provide adequate liquid phase resolution of isomeric 

glycopeptides. Note, the 3+ charge state in BP, 30°C has been manually confirmed as correct.  
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Figure 2.7 Distribution of glycan types identified within prostate cancer cell lines NT1 and 

T10. 

 Glycan class (i.e., High Mannose, Complex, etc.) are colored to highlight the changing quantities 

of glycans as a function of column temperature. 
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Supplemental Methods 

Cell preparation 

The needed solutions were prepared as follows: 

Reagent Instructions/Recipe 

1x PBS Buffer From purchased stock 

200 mM HEPES, pH 8.0 476.6 mg HEPES dissolved in ultrapure water 

Adjust pH to 8.0 using HCl or NaOH 

Protease inhibitor Collect 1 tablet each of Roche protease (5892970001) and 

phosphatase inhibitor (4906845001) 

Dissolve 1 tablet in 1 mL of ultrapure water to yield 10x solution 

(can be stored up to 12 weeks in -20°C) 

Dilute to 1x using 9:1 water: inhibitor ratio 

Urea Lysis Buffer Must be made fresh 

10 mL: 1 mL 200 mM HEPES (pH 8.0) + 4.8 g Urea + 8 mL ddH2O 

+ 1 mL protease inhibitor 

After adding urea, volume of water used to dissolve is approximate. 

Final volume should be 10mL, even though volume of water added 

is not exactly 8mL 

200 mM HEPES Buffer Dissolve 476.6 mg HEPES in 10 mL ddH2O 

500 mM DTT Dissolve 77.125 mg DTT in 1mL 200 mM HEPES 

500 mM IAA Dissolve 92.48 mg IAA in 1 mL 200 mM HEPES 

50 mM Tris-HCl Dissolve 39.53 mg ABC in 10 mL dd H2O 

Trypsin Purchased from Promega (V5113) 

 

Cell pellets (~50-100uL) were first washed three times with 500uL PBS. Each wash 

entailed adding PBS, mixing via pipette, and spinning down at 14,000rcf at 4C for 5 minutes. After 

extracting the final PBS wash, cell pellets were resuspended in 250uL urea lysis buffer with no 

additional mixing. Cell pellets were then lysed via ultrasonication using pulse 3 second pulses (3s 

on, 3s off) for a total sonication time of 1minute at the lowest amplitude. If any remaining cells 

could be observed, the cell pellets were left on ice for 10 minutes and sonicated again. 

Following sonication, cell debris was removed by centrifugation at 14,000rcf for 15 

minutes at 4C. The resulting supernatant was removed and placed in a 10kDa MWCO filter 
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(Millipore) and centrifuged at 14,000rcf for 10 minutes. Flow through was discarded and 

remaining sample volume was adjusted to 200uL with urea lysis buffer. DTT was added 1:50 (v:v) 

and incubated at room temperature for 60 minutes. Buffer was then exchanged by centrifuging at 

14,000rcf for 10 minutes at 4C and readjusting volume to 200uL with urea lysis buffer. IAA was 

then added 1:25 (v:v) and incubated at room temperature for 30 minutes in the dark. Buffer was 

exchanged three times using the same method as previous two steps. Following this samples were 

washed with Tris-HCl three times using the same buffer exchange method. After the third wash, 

trypsin was added 1:50 (w:w) and incubated overnight (~18hr) at 37C. Cutoff filters were then 

placed in fresh tubes and peptide mixtures were collected via centrifugation at 14,000 rcf for 10 

minutes. Filters were washed three times with Tris-HCl and flow through was kept at each step. 

Standard glycoprotein preparation 

Bovine fetuin, bovine ribonuclease B, and bovine a1-Acid Glycoprotein were reconstituted 

in ultrapure water. Concentrations were estimated via Pierce BCA Assay and two 500mg aliquots 

of each protein were dried to completion under vacuum. Urea, DTT, and IAA were prepared at 

concentrations of 8M, 100mM, and 200mM concentrations, respectively, with 50mM tris-HCl. 

Dried protein was reconstituted in 100µL Urea and mixed at room temperature for 5 minutes. DTT 

was added to yield 2:5 DTT:protein ratio (26.32µL), mixed briefly and incubated for 1 hour at 

room temperature. IAA was then added to yield a 2:3 IAA:protein ratio (42.67µL), mixed and 

incubated at room temperature for 30 minutes in the dark. Excess IAA was quenched by addition 

of DTT, mixed and left to stand for 5 minutes. Solutions were then diluted to lower urea 

concentration to 0.9M and mixed 1:50 with trypsin. Proteins were digested overnight at 37°C and 

desalted via reverse phase desalting cartridges. 
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Glycopeptide Enrichment 

Before beginning, the following solutions were prepared: 1%TFA in ultrapure water, 80% 

ACN + 1% TFA in ultrapure water, and 10% ACN + 5% FA in ultrapure water. 

polyHYDROXYETHYL-A beads were weighed out in a 30:1 beads:peptide mass ratio 

(e.g. 300mg peptides required 9mg beads). Beads were then resuspended in 1% TFA solution, 

using 200uL for every 10mg beads (e.g., 9mg beads were added to 180uL). Mixtures were vortexed 

for 15 minutes. 3.0 mg sterile cotton was inserted tightly in to a 200uL pipette tip and placed within 

a microtube as shown below. The bead slurry was then added to the pipette tip and centrifuged at 

0.2kg for 2 minutes to remove liquid. Beads were then washed three times with 300uL aliquots of 

1% TFA, centrifuging at 0.2kg for 2 minutes each time. Beads were conditioned with three aliquots 

of 300uL 80% ACN, centrifuging for 5 minutes at 0.1kg. Peptide samples were reconstituted in 

80% ACN and loaded into pipette tips. Samples were flowed through via centrifugation (0.1kg, 

5minutes). The flow-through was collected and readministered 5 times. Samples were washed with 

6 aliquots of 80% ACN, with centrifugation at 0.2kg for 2 minutes. Flow through was separated 

at each step. Remaining glycopeptides were then eluted into fresh tube using three 150uL aliquots 

of 10% ACN via centrifugation at 0.2kg for 3 minutes. 

Analytical column preparation 

Three, 40cm lengths of capillary tubing (360µm o.d., 75µm i.d.) were cut and flushed with 

methanol. While drying, a frit solution of potassium silicate (Kasil) and formamide was prepared 

according to manufacturer instructions. Once dry, one end of each capillary was inserted into the 

frit solution for 10 seconds. Frits were dried at 100°C overnight, inspected under microscope and 

trimmed to a final length of ~2mm. RPLC C18 (3µm d.p.) and PGC (3µm d.p.) packing materials 

were reconstituted in chloroform and MeOH, respectively. Using a column packer (Next 
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Advance), packing solutions were pushed through at 1200psi, increasing pressure gradually as 

needed, until packed portions had reached 30cm. C18 columns were packed tight with 100% ACN 

for 20 minutes at 1500psi and PGC columns with 100% MeOH, each followed by flowing nitrogen 

over packed bed for 20min at 1500psi. Note: this process is consisted for the biphasic (BP) 

columns, only with packing phases stopped at 15cm. 

Searching Parameters 

PEAKS X 

All PANC1 cell lysate datasets were searched against the UniProt Human Proteome 

(Reviewed only) using the following settings: Parent mass error, 20ppm; fragment mass error, 0.02 

Da; precursor search type, monoisotopic; enzyme, trypsin; max missed cleavages, 2; digest mode, 

unspecific; fixed modifications, carbamidomethylation; variable modifications, oxidation (M), 

acetylation (N-term); max variable mod per peptide, 3.  

Byonic 

All standard glycopeptide mixtures were searched against a custom fasta database 

containing only the UniProt sequences belonging to the three proteins in use (Bovine Fetuin, 

Bovine a1-Acid Glycoprotein, Bovine Ribonuclease B) using the following parameters: Cleavage 

site: RK; cleavage side: C-terminal; digestion specificity, fully specific; missed cleavages, 2; 

precursor mass tolerance, 25; fragmentation type, QTOF/HCD; fragment mass tolerance, 0.02 Da; 

recalibration, none. Modifications: Carbamidomethyl (fixed), oxidation (M, variable, common1), 

acetyl (N-term, variable, common1); total common max, 4; total rare max, 1. Glycans: N-glycan 

73 bovine as rare1 modifications. All other settings left as default.  
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NT1 and T10 glycopeptides were searched against the UniProt Human proteome using the 

following parameters: Cleavage site: RK; cleavage side: C-terminal; digestion specificity, fully 

specific; missed cleavages, 2; precursor mass tolerance, 25; fragmentation type, QTOF/HCD; 

fragment mass tolerance, 0.02 Da; recalibration, none. Modifications: Carbamidomethyl (fixed), 

oxidation (M, variable, common1), acetyl (N-term, variable, common1); total common max, 4; 

total rare max, 1. Glycans: N-glycan 309 mammalian no sodium as rare1 modifications. All other 

settings left as default.  

Results were custom filtered, using the following criteria. Byonic score ≥ 200, Delta Mod 

≥ 10, Log Prob ≥ 1. 
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Supplemental Tables 

For brevity, the tables referred to in the manuscript have been omitted. These tables may 

be found alongside the online version of this manuscript (10.1007/s00216-022-03934-7).  
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Supplemental Figures 

 

 
Figure S2.1 Graphical representation of LC connections coupling column to LC, heater 

and ESI. 

The high-pressure LC fittings were purchased from IDEX Health & Science (UH-436) and 

accommodate 360um o.d. capillary tubing with zero dead volume. The coupling capillary (~5cm) 

was implemented to protect the stationary phase from direct HV application. The emitter was 

pulled from 360um o.d. capillary tubing and was ~4cm in length. 
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Figure S2.2 Total and unique proteins identified during analysis of PANC1 cell lysate 

digests. 

Total and unique proteins identified during analysis of PANC1 cell lysate digests. PGC, C18 and 

BP analyses were performed sequentially with temperatures varied from low to high.  
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Figure S2.3 Subcellular location and compartment terms. 

Count of proteins belonging to A) subcellular location and B) cellular compartment terms 

associated with unique proteins identified in C18 and PGC analyses. Terms are compiled from the 

UniProt Human Proteome database. This list of entries is comprised of the top 90% of counted 

terms. This top 90% provides a succinct, relevant list of terms useful for discussion and removes 

all cases where a term is counted only one time. When examining these data, PGC and C18 seem 

to provide directed retention of specific entities, with respect to the proteins identified in this 

experiment. While these findings suggest some useful differences between each separation regime, 

we are careful not to present these as absolute. In future studies where a larger population of 

proteins are identified in each separation regime, it will be evident whether a separation strategy 

provides directed analysis of protein subclasses. But as of now, the dataset is limited in scope and 

these conclusions must remain as potential outcomes of later investigations. 
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Figure S2.4 Glycopeptide and glycoprotein overlap. 

To ensure reliability and reproducibility of our analyses, we performed follow-up analyses increase 

confidence in our initial observations. Examining the A) glycopeptide and B) protein overlap taken 

from triplicate analysis of LNCaP cell line digests, we demonstrate high inter-run reproducibility 

for each of our custom separation strategies. This reproducibility and the analysis of multiple 

unique biological samples within the main text increase our confidence that observations within 
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the main text truly stem from unique retention mechanisms and not sample/run variance. All 

triplicates were collected at 45°C. 
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Figure S2.5 Peptide character across separations. 

Our initial proteomic investigations revealed that the overall character of the peptide was the 

primary factor causing differential identification of peptides across each separation regime. These 

A) peptide length and B) hydropathy observations were further verified on follow-up triplicate 

analysis of LNCaP cell line digests. Error bands on plot B represent the 95% confidence interval. 

All triplicates were collected at 45°C. 
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Figure S2.6 Glycopeptide overlap when column is varied. 

Venn diagram of unique glycopeptides identified across all experiments, shown. Glycopeptides 

are stratified by sample and by column. Across all experiments, the largest quantities of unique 

glycopeptides are found in RPLC and PGC separations, indicating that complementary retention 

mechanism is the driving unique identification rates. ‘StdEnr’ represents the standard glycopeptide 

mixture discussed in the main text. 
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Figure S2.7 Glycopeptide overlap when temperature is varied. 

Venn diagram of unique peptides identified across all experiments, illustrating the effects of 

temperature on glycopeptide identification. Glycopeptides are stratified by sample and by column. 

‘StdEnr’ represents the standard glycopeptide mixture discussed in the main text. 
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Figure S2.8 Triplicate confirmation of glycopeptide identifications through PGC. 

The data presented within the main text allowed us to correlate differences in column temperature 

with differential retention an identification of glycopeptides. Reanalyzing the standard 

glycopeptide mixture in triplicate and using PGC separations as a representative, we continue to 

observe the same trends noted in the main body. A) As temperature increases, the overall number 

of glycopeptide deviates, continuing to display increased identifications at 45°C, and showing the 

greatest disparity at 60°C. Error bars represent standard deviation, n=3. B) Comparing the overlap 

of identified peptides (those identified in at least two runs at a given temperature), we again 

observe meaningful quantities of unique species identified at each temperature. 
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Figure S2.9 Comparison of glycopeptide backbones across columns. 

Bar and dot plots of unique peptides identified across all experiments, illustrating the effects of 

temperature on glycopeptide identification. Glycopeptides are stratified by sample and by column. 

Error bars: 95% confidence inteval, n=3 (each unique sample). ‘StdEnr’ represents the standard 

glycopeptide mixture discussed in the main text. 
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Figure S2.10 Comparison of glycopeptide modifications across columns. 

Distribution of number of unique glycans, glucose units per glycan and glucose units per amino 

acid residue from glycopeptides identified in each sample. Error bars: 95% confidence inteval, n=3 
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(each unique sample). ‘StdEnr’ represents the standard glycopeptide mixture discussed in the main 

text. 



66 

 

 

 



67 

 

 

 



68 

 



69 

 

 

 



70 

 

 

 



71 

 

 

 



72 

 

 
Figure S2.11 Extract ion chromatograms of species displaying altered resolution at higher 

temperatures. 

These figures contain EICs from each sample analyzed and only species identified in every 

individual run (i.e., BP at all temperatures, C18 at all temperatures and PGC at all temperatures) 

were extracted. After extracting EICs of all species meeting this criterion (mass tolerance = 

10ppm), plots were filtered manually to display only those where liquid-phase resolution was 

apparent and unambiguous. 
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Figure S2.12 Extract ion chromatograms, C18 and PGC only. 

This figure contains EICs from each sample analyzed and only species identified in every C18 and 

PGC run (i.e., C18 at all temperatures and PGC at all temperatures) were extracted. After 

extracting EICs of all species meeting this criterion (mass accuracy=10ppm), plots were filtered 

manually to display only those where liquid-phase resolution was apparent and unambiguous. 
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Figure S2.13 Representative glycopeptide extract ion chromatograms displaying greater 

resolution in BP separations than in PGC. 

Representative extract ion chromatogram of a glycopeptide identified in all columns at all 

temperatures, displaying greater resolution in BP separations than in PGC. This observation 

indicates a long PGC stationary phase is not necessary to provide liquid-phase separation and a 

shorter (L=15cm) PGC stationary component could be coupled with a high-resolution RPLC 

component to provide better glycoproteome profiling. Masses are extracted to a 10ppm error. 
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Figure S2.14 Distribution of glycan modifications identified in mixture of digested 

glycoprotein standards. 

The prevalence of sialoglycans stems primarily from the high proportion of glycopeptides 

identified from bovine fetuin and alpha-1-acid glycoprotein. These identifications contrast those 

seen in analyses of the complex samples, indicating there is no bias towards glycans of a particular 

composition within any separation regime. As well, analysis of this sialoglycan-rich sample 

highlights the observation that higher temperatures provide lower identification rates of sialylated 

glycans. Though more experimentation is needed, one explanation may be the additional energy 

imparted on labile glycan bonds may force premature dissociation of glycan bonds. ‘StdEnr’ 

represents the standard glycopeptide mixture discussed in the main text. 
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Figure S2.15 Underlying trends of all glycopeptides identified following RPLC separation. 

A) As 45°C displayed higher numbers of glycopeptide identifications than any other temperature, 

we evaluated whether any of the peptide-level differences were a cause of the improved 

identification rates. As seen, there are only marginal differences between the average charge and 

length, while hydrophilicity of identified glycopeptides changes substantially at 45°C (error bars 

= 95% c.i., n=3, each sample). B) In order to evaluate if our results were in response to preferential 

retention of unique glycan compositions, we divided high mannose glycopeptides according to 

their glycan moiety and tallied the number of occurrences within identified glycopeptides. As 

shown, almost all moieties follow the general trend of having lowest identifications at 30°C, 
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highest at 45°C, with 60°C lying somewhere in the middle. Given that even the elongated Man9 

glycans are observed in higher quantities at 60°C, we suggest that this trend is not due to early 

dissociation of glycan moieties, which could create false databases matches. 
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Figure S2.16 Underlying trends of all glycopeptides following PGC separation. 

A) Following the same trends seen in RPLC separations (Figure S2.13), there are only slight 

differences presented at the peptide level. As changes fluctuate when temperatures increase, we 

posit this is not a cause for the differences in glycopeptide identifications. B) Similar to RPLC 

separations, all high mannose glycans have highest identification rates at 45°C. Taken together 

with the data in the main text and the information presented in Figure S2.12, column running 

temperatures impart a notable effect on peptide/glycopeptide identifications. While both PGC and 
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RPLC analyses seem to suggest more similarity between 45°C and 60°C than between any two 

other temperatures, more extensive experimentation is required to fully illuminate this relationship. 

Future studies should seek to expand the collection of proteins and peptides identified (either 

through highly fractionated studies or more intensive preparation steps) in order to illuminate the 

effect of temperature on analytical performance. As well, it would be of interest to include analysis 

of standards to see whether or not temperature inspires any biotransformation/alteration that could 

lead to incorrect identifications. 
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Figure S2.17 Representative extract ion chromatogram of high mannose glycopeptide 

identified in RPLC separations. 

Mimicking the trend seen in identification rates, this species exhibits highest MS1 reporting signal 

at 45°C, drastically improved from 30°C experiments. Though signal intensity and peak area 

cannot be directly compared from experiment to experiment, this trend is shared among numerous 

glycopeptide species. As such, we feel this observation is directly related to the identification 

success in our experiments and indicates higher temperatures may provide benefit in glycopeptide 

analyses. 
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Figure S2.18 Representative MS2 spectra of high mannose glycopeptide identified in RPLC 

experiments. 

This is also the same species shown in Figure S2.17. Note, this precursor mass was only selected 

for dissociation at 45°C and 60°C and no MS2 information exists from 30°C experiments. Despite 

the differences in MS1 reporting signal, we do not observe significant differences in MS2 

fragmentation, indicating that our manual evaluations of glycopeptide EICs is not obfuscated by 

mistaken identity and that increases in temperature are not inspiring differences in fragmentation.   
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Figure S2.19 EIC of representative sialylated glycopeptide identified in RPLC separations 

at all temperatures. 

A notable observation in our experiments is the gradual decline in MS1 signal intensity for 

numerous sialylated glycopeptides within our experiments. Considering this trend arises with 

increases in temperature, we hypothesize the higher energy levels (via increased temperature) 

cause a loss of some labile glycosidic-bonded species. This reality would result in a lower overall 

reporting signal and lower identification rates of unique glycopeptides.   
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Chapter 3: Higher Temperature Porous Graphitic Carbon Separations Differentially 

Impact Distinct Glycopeptide Classes  
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Abstract 

Mass spectrometry-based discovery glycoproteomics is highly dependent on the use of 

chromatography paradigms amenable to analyte retention and separation. When compared against 

established stationary phases such as reversed phase and hydrophilic interaction liquid 

chromatography, reports utilizing porous graphitic carbon (PGC) have detailed its numerous 

advantages. Recent efforts have detailed the utility in porous graphitic carbon in high throughput 

glycoproteomics, principally through enhanced profiling depth and liquid phase resolution at 

higher column temperatures. However, increasing column temperature has shown to impart 

disparaging effects in glycopeptide identification. Herein we further elucidate this trend, 

describing qualitative and semi-quantitative effects of increased column temperature on 

glycopeptide identification rates, signal intensity, resolution, and spectral count linear response. 

Through analysis of enriched bovine and human glycopeptides, species with high mannose and 

sialylated glycans were shown to most significantly benefit and suffer from high column 

temperatures, respectively. These results provide insight as to how porous graphitic carbon 

separations may be appropriately leveraged for glycopeptide identification while raising concerns 

over quantitative and semi-quantitative label free comparisons as temperature changes. RAW MS 

glycoproteomic data are available via ProteomeXchange with identifier PXD034354. 
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Introduction 

Glycosylation is one of the most prevalent and heterogenous post-translational 

modifications (PTMs) within the human proteome1-3. The inherent complexity of its study is not 

felt just in considering the vast expanse of known and theoretical modification sites2, but also 

through appreciation of the high degree of compositional and structural complexity4. Decades of 

targeted research have revealed the high degree of glycosylation diversity presents an equally 

diverse set of functions. Glycans and glycoproteins are known to participate in a litany of 

biological processes such as cell signaling5-7, host-pathogen interaction8-10, and protein folding11-

13, and are ever increasingly implicated in health and human disease. Despite the importance of 

these PTMs and the extensive effort contributed to their study, analytical strategies that can keep 

pace with biological complexity remain limited.  

In order to offset the overwhelming difficulties in glycopeptide analysis, numerous areas 

of analytical development have received significant attention in recent years. Glycopeptide 

enrichment strategies have been developed to compensate for low analyte abundance in proteolytic 

mixtures14-16, with some being tailored to unique glycan classes17, 18. As well, ubiquitous utilization 

of tandem-MS for glycopeptide identification has brought about validation and application of 

numerous unique dissociation modalities19-22. Even efforts for accurate quantitation of intact 

glycopeptides have seen a rise in popularity as isotopic and isobaric labeling strategies become 

more accessible23. These areas of development, however, largely ignore any potential benefits that 

may come through more effective chromatography.  

Glycoproteomic analyses continue to utilize traditional reversed-phase liquid 

chromatography (RPLC) due to the effective retention mechanism and ease of implementation. 

This separation strategy provides meaningful access to the glycoproteome, but analyte retention is 
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dependent on a dominant hydrophobic character of the peptide backbone – a characteristic not 

observed for all glycopeptides. Furthermore, the large, hydrophilic glycan moiety often reduces 

the efficacy of RPLC for glycopeptide retention and separation24, 25. Hydrophilic interaction 

chromatography (HILIC) and electrostatic repulsion-hydrophilic interaction chromatography 

(ERLIC) are popular separation modalities that promote greater retention of glycopeptides26-28 but 

are less commonly implemented on-line due to the need for salt-containing buffers27, 29 and sample 

phase changes prior to MS analysis. 

Offering reprieve from these shortcomings, porous graphitic carbon (PGC) has 

demonstrated great utility in the retention and separation of polar analytes. PGC has been 

extensively used in the analysis of released glycans30-35 and has even shown baseline resolution of 

glycan isomers when run at elevated temperatures36. Increasing column running temperatures 

promotes an expanded glycan morphology, increasing the partition coefficient and improving 

resolution. These improvements in glycan retention and separation have recently been validated 

for targeted37 and discovery-based glycoproteomics analyses where higher temperature PGC 

separations were shown to enhance glycoproteomic coverage and profiling depth38. However, 

these improvements were shown to come at a cost.  

Whereas previous studies demonstrated that modest increases in column temperature result 

in higher peptide and glycopeptide identification rates, these improvements often diminished at 

higher column temperatures38. With specific attention drawn to high mannose and sialylated 

glycopeptides, these two glycopeptide classes were shown to yield the most significant changes in 

identification rates and signal response. As PGC separations are increasingly employed for glycan 

and glycopeptide analysis – and due to the biological significance of affected glycopeptide classes 

– these observations present substantial roadblocks in the pursuit of successful glycoproteomic 
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analysis. Understanding the cause of altered identification rates and the effects higher temperatures 

impart on intact glycopeptides is imperative to promoting enhanced glycoproteomic coverage and 

providing guidance over experimental conditions that reduce analytical efficacy. 

To survey the effects of higher column temperatures in PGC separations, we performed 

discovery-based glycoproteomic analysis on glycopeptides enriched from human prostate cancer 

cell lysate, supplemented with sialoglycopeptides from bovine standard proteins. Recreating 

previous experimental conditions38, we reaffirm profiling depth is enhanced with modest increases 

in column temperature (45°C). Increasing temperature to 60°C, however, results in significant 

disparities in glycopeptide detection. Confining much of our focus to high mannose and sialylated 

glycopeptides – those species most differentially affected – we demonstrate how elevated 

temperatures are responsible for altered reporting signal and peak shape, affecting detection and 

identification. Further knowing the prevalence of label-free and reaction monitoring quantitative 

approaches that rely on precursor peak intensity or area, we also analyzed serial dilutions of 

enriched glycopeptide mixtures to evaluate impact of column temperature on glycopeptide 

quantitation. Mirroring the observations seen in glycopeptide identification, glycopeptide spectral 

matches were shown to significantly deviate as temperature climbs, indicating label-free 

comparisons across temperatures are not viable without special consideration. Nevertheless, for 

almost all glycopeptide classes, our data demonstrate greater spectral-counting-based quantitative 

accuracy at the highest temperature, 60°C. The disparity in observations between discovery and 

quantitative analyses suggest that column temperature must be individually tailored to suit 

biological discovery or quantitative accuracy. Overall, the findings presented within serve to 

highlight notable limitations and topical concerns for future PGC-based glycoproteomics analyses. 
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Methods 

Materials 

Dithiothreitol (DTT, D9779), iodoacetamide (IAA), sodium dodecyl sulfate (SDS), 

trifluoroacetic acid (TFA), bovine ribonuclease B (R7884), bovine fetuin (F3004), bovine 

asialofetuin (A4781), and bovine α1-acid glycoprotein (G3643) were purchased from Millipore 

Sigma (Burlington, MA). Urea (U15), tris-base (BP152), hydrochloric acid (A144SI), formic acid 

(A117), water, acetonitrile, and PGC guard columns (35003-014001) were purchased from Fisher 

Scientific (Waltham, MA). Capillary tubing (1068150019) was purchased from PolyMicro. 

Trypsin (V5113) was purchased from Promega (Madison, WI). PolyHYDROXYETHYL-A 

packing material was purchased from PolyLC. Pencil column heater was purchased from Phoenix 

S&T. Sources of all other materials are noted. 

Protein Digestion 

300mg of each standard glycoprotein was aliquoted into separate reaction microtubes and 

dried under vacuum. Urea was dissolved in 50mM Tris-HCl to a concentration of 8M, which was 

then used to resuspend standard glycoproteins at a concentration of 2.0µg/µL. Disulfide bonds 

were reduced with 5mM DTT at room temperature for 1 hour, followed by alkylation with 15mM 

IAA at room temperature for 30 minutes in the dark. Alkylation was quenched with excess DTT 

prior to diluting the mixture 1:10 to reduce Urea concentration to <1M. Trypsin was added 1:100 

for 4 hours at 37°C, followed by 1:50 and overnight incubation at 37°C. 

Cell Preparation 

Prostate cancer cell lines (BCaPMT10) were generated and described previously39.  Cell lines 

were grown and maintained in phenol-free DMEM/Ham’s F12 (Gibco) supplemented with 5% 



95 

 

fetal bovine serum (HyClone) and 1% penicillin-streptomycin solution (Gibco). T175 culture 

flasks were placed in an incubator at 5% CO2 and 98% humidity. Cells were grown to 90% 

confluency, washed with 1× phosphate-buffered saline (Cytiva), and harvested using a cell scraper. 

Approximately 1e6 cells were collected after culture. Cell pellets were washed twice using 

phosphate-buffered saline and stored at −80°C for subsequent processing.  

Cell pellets were resuspended in 4 volumes of 4% SDS prior to lysis via ultrasonication. 

Protein concentration was estimated via bicinchoninic acid (BCA) assay (ThermoFisher 

Scientific). Disulfide bonds were reduced with 450nM DTT for 30 minutes at 55°C followed by 

alkylation with 10mM IAA at room temperature for 15 minutes. Protein was extracted through 

repeated additions of cold 80% acetone and incubation at -20°C. Protein was reconstituted in 8M 

Urea with 1x protease inhibitor cocktail. 300mg aliquots were taken, diluted, and digested 

similarly to the standard proteins. 

Glycopeptide Enrichment 

Glycopeptides were enriched using a custom spin tip method. Briefly, 200µL pipette tips 

were packed with 3mg sterile cotton and loaded with polyHYDROXYETHYL-A packing resin at 

a 30:1 bead-to-peptide ratio. Beads were hydrated in 1% TFA prior to loading. Beads were flushed 

with 1% TFA and conditioned with 80%ACN+1%TFA. Samples were resuspended in 80% 

ACN+1% TFA and applied to the beads a total of six times, which was followed by six washes in 

the same buffer to remove non-glycosylated peptides. Glycopeptides were eluted in 10% ACN+5% 

FA prior to drying under vacuum. Samples were reconstituted in 0.1% FA and serially diluted 1x 

to 16x prior to LC-MS analysis (Figure 3.1). 
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Column Preparation 

Capillary tubing (o.d.=360um, i.d.=75um) was trimmed to a length >30cm with a small 

portion of the polyimide coating removed. A Sutter P-2000 micropipette laser puller was used to 

stretch the glass capillary into the final emitter geometry. The closed, tapered tip was then opened 

via emersion in 48% hydrofluoric acid for 2.5 minutes. 3um PGC packing material was harvested 

from PGC guard columns (Thermo Fisher Scientific, 35003-014001) and resuspended in optima 

grade methanol in a 1.5mL glass vial. A micro flea stir bar was added to provide agitation, and the 

slurry and etched capillary were placed in a pressure injection cell (Next Advance, PC77-MAG). 

The capillary was packed with PGC material using ~1000psi industrial grade nitrogen until 30cm 

of the capillary was full. Pressure was released and the same packing conditions were used to flush 

the column with methanol and air, sequentially. Columns were stored at room temperature until 

use. 

LC-MS Analysis 

Enriched glycopeptide mixtures were analyzed in technical triplicate using a Nano 

Ultimate 3000 chromatography stack coupled to an Orbitrap Fusion Lumos mass spectrometer. 

Glycopeptides were trapped on the column at 3% B for 18 minutes, followed by a 52-minute 

gradient from 15% B to 40% B. Column was washed at 75% B for ten minutes followed by another 

ten-minute wash at 95%B. The column was then equilibrated to 3% for the final ten minutes. The 

Fusion Lumos was set to perform DDA analysis using a 3-second MS2 acquisition window rather 

than selecting top N precursors. MS1 settings were as follows: resolution, 120,000; m/z range, 400-

2,000; RF lens, 30%; AGC target, 2.0e5; maximum injection time, 50ms; microscans, 1; polarity, 

positive. MS2 settings were as follows: resolution, 60,000; detector, orbitrap; isolation width, 

1.6m/z; activation, HCD; collision energy mode, stepped HCD; collision energies, 20-30-40; first 
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mass, 120m/z; AGC target, 5.0e4; maximum injection time, 118ms. Precursors were also required 

to meet an intensity threshold of 2.5e4 for selection. Allowed charges states were 2+ to 7+; 

precursors were excluded after 1 occurrence for 15 seconds.  

Standard Peptide Analysis 

A standard disialylated glycopeptide (KVANK[HexNAc4Hex5NeuAc2]T) was purchased 

from TCI America (S0523). Listed at >95% pure with uniformity confirmed through gel and 

capillary electrophoresis, this product enables analysis of a highly uniform glycopeptide not 

subject to biological variation or abundance constraints. Preparation and analysis of this standard 

is detailed in the Supplemental Information. 

Data and Code Availability 

The mass spectrometry glycoproteomics data have been deposited to the 

ProteomeXchange40 Consortium via the PRIDE41, 42 partner repository with the dataset identifier 

PXD034354 and 10.6019/PXD034354. Data were searched using Proteome Discoverer 2.5 with 

the Protein Metrics Byonic node; searching and filtering parameters are described in the 

Supplemental Information. Search results are available in the PRIDE repository. All code used for 

analysis is available at https://github.com/lingjunli-research/pgc-glycosylation-lfq.  

Results and Discussion 

Changes in Glycopeptide Identification 

Previous reports have signaled improved peptide and glycopeptide identification rates at 

elevated column temperatures38, indicating potential differences in analyte behavior or optimal 

separation and desolvation efficiency. This trend is rearticulated in this study where, especially at 

higher concentrations (1x, 2x, and 4x dilutions), 45°C provided the highest overall rates of 

https://github.com/lingjunli-research/pgc-glycosylation-lfq
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glycopeptide identification (Figure 3.2, Table S1). Though this behavior is not conserved at lower 

concentrations (8x and 16x dilutions), a consistent trend across all analyses is that 60°C provided 

the lowest rates of glycopeptide identification. This latter observation is in-line with previous 

reports38 and serves as an early marker for suboptimal chromatography conditions. Mapping 

glycopeptides back to their parent protein, our data demonstrate that the increase in glycopeptide 

identifications at 45°C stem from the detection of glycosites on previously undetected proteins, 

rather than new, additional glycosites or glycopeptides from proteins already identified (Figure 

3.2). Interestingly, while our data show that the majority of glycosites are identified across all 

temperatures (Figure 3.2), each unique glycopeptide dilution contained proportional quantities of 

unique glycosites with statistically insignificant differences across all but the most concentrated 

sample (Figure S3.1). As our data showed high intra-sample reproducibility in the identification 

of glycosites at all temperatures (Figure 3.2), we are confident this complementary detection is not 

due to analytical inaccuracies and serves to corroborate previous observations38 that column 

temperatures provide access to different portions of the glycoproteome. 

We investigated whether the peptide backbone played a significant role in the retention of 

glycopeptides at different temperatures. As shown in Figure 3.2, the relative hydrophilicity – 

presented here in the form of grand average of hydropathy (GRAVY) – and peptide length are well 

conserved across temperatures for each glycopeptide dilution. While the data show some slight 

preference for more hydrophilic analytes at higher temperatures, this observation is biased by 

fewer identified glycopeptides and should be further investigated in analyses of unmodified tryptic 

peptides where a hydrophilic glycan moiety plays no role. Interestingly, our data show a decrease 

in GRAVY score that mirrors glycopeptide concentration. This lower average value is mostly due 
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to the lower number of identified glycopeptides, but it does speak to the power of PGC to 

selectively trap, retain, and elute these highly polar, hydrophilic analytes.  

However, the differences in glycopeptide identification begin to take shape when 

examining the classes of glycans identified (Figure 3.2). High mannose glycans were the most 

predominant modification identified across our analyses. These glycans, considered immature 

within the biosynthetic pathway4, may be seen in greater quantity due to the known relationship 

between cancer cell proliferation and glycan nascence43-45, though targeted investigation is needed 

for confirmation within this respective cell line model. Interestingly, while we anticipated complex 

glycans would be the second most prevalent glycan type, instead our data reveal paucimannose 

glycans as the next most common. Paucimannose glycans are relatively understudied in humans 

as it can be conjectured these glycans result from degradation or harsh preparation conditions46. 

However, recent studies have validated the occurrence of these glycan types in humans and have 

even been shown to play significant roles in human cancer47-49. Sialoglycopeptides, complex 

glycopeptides, and fucosylated glycopeptides follow in number of identifications. A clear disparity 

between mannose and the latter three glycan subtypes is the effect seen when elevating column 

temperature. While identifications of glycopeptides in all classes increased or were unaffected at 

45°C, identifications of mannose subtypes continued to increase at 60°C (Figure 3.2), albeit 

marginally. Conversely, the remaining glycan subtypes demonstrated overall worse performance 

at the highest temperature. This trend is less severe in complex glycopeptides but is immediately 

noticeable in fucosylated and sialylated glycopeptides.   

Increasing glycopeptide identifications at 45°C are consistent with previous reports38; 

however, these data show more substantial increase of mannose subtypes at higher temperatures, 

which we attribute to different cell lysis methods and scale-up. Nevertheless, the reproducibility 
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of declining identifications at high temperatures presented in our data indicates these observations 

are not due to experimental aberrations such as run-to-run variance or uncontrolled variables. 

Instead, we hypothesize that raising column temperatures induces some underlying chemical or 

chromatographic abnormalities that are responsible for affecting identification rates. Our results 

may be further dissected to provide qualitative and semi-quantitative investigation of this 

hypothesis. 

Aberrant Chromatographic Behavior 

To survey any potential underlying abnormalities that may be responsible for the 

observations mentioned above, we compiled extracted ion chromatograms (XICs) for all identified 

glycopeptide masses in the highest concentration sample. Given the different quantities of 

glycopeptides as temperature rises, it would be reasonable to expect that glycopeptides not 

identified were truly absent or were seen at such low intensities they could be mistaken for noise. 

Neither of these suspicions were confirmed. Our analyses demonstrate that the vast majority of 

glycopeptide masses were both present and observed at appreciable intensity in every run – an 

observation that holds true regardless of glycan class, as evidenced below. This further supports 

our hypothesis that column temperatures are responsible for affecting identification rates.  

To avoid misinterpretation of data, we first manually inspected the XIC images, removing 

any species that were poorly extracted or contained traces of insufficient quality (i.e., 

indistinguishable major peaks, co-extracted masses, etc.). Inspecting the remaining data, several 

trends became obvious. First, and most expectedly, increasing column temperature resulted in 

nearly unanimous increases in resolution, with XICs displaying narrower full width at half 

maximum (FWHM) and resolution of some putative glycopeptide isomers. More interestingly, 

however, is the disparity in overall signal intensity and peak height seen between glycopeptides of 
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different classes. As temperature increased, the improved resolution for high mannose 

glycopeptides translated into higher signal intensity (i.e., narrower, taller peaks) (Figure 3.3). This 

trend is largely conserved across high mannose glycopeptides to varying extents. At the same time, 

sialoglycopeptides show a similar improvement in resolution and signal intensity at 45°C but show 

a significant drop off at 60°C (Figure 3.3). These observations rearticulate those seen elsewhere38 

and provide direct evidence of temperature-correlated analyte response. If these temperature 

effects were directly related to glycopeptide detection and identification, we anticipate other 

glycopeptide subtypes to display similar correlations. Indeed, examining paucimannose and 

fucosylated glycopeptides reveal similar evidence. Paucimannose glycopeptides generally 

benefited from higher column temperatures while fucosylated glycopeptides showed higher 

intensity at 45°C that waned at higher temperatures (Figure S3.2). It should be noted that the 

associated trends are less significant for these latter two glycopeptide classes, but further study and 

broader collections of analytes may serve to definitively characterize their response to elevated 

temperatures.  

With evidence to support our hypothesis that temperature changes promote 

chromatographic behavior that impacts glycopeptide identification, we sought to provide further 

qualitative analysis to aid in characterizing these occurrences. For all glycopeptides identified in 

the highest concentration sample, we isolated the major peak and determined peak height, FWHM, 

and peak area via curve integration. We selected only the major peak for these analyses as the 

confident assignment of minor peaks must rely on exact match of isotopic envelopes to that of the 

major species that was selected for MS2 fragmentation; we found this to be untenable, given the 

quantity of unique glycopeptide identifications, replicates, and possible minor species.  
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Examining the data underpinning these glycopeptide identifications, all classes 

demonstrated the expected decrease in FWHM as temperature increases, reflecting the known 

improvements in liquid phase resolution achieved as glycan morphology expands (Figure 3.4). As 

well, all glycopeptide classes demonstrated changes in peak intensity that directly reflect the 

observations made above, though these changes are most visible for sialylated glycopeptides. 

Similarly, when integrating area under the curve, high mannose and paucimannose glycopeptides 

demonstrate little discrepancy in peak area as temperature increases, contrasting that of complex 

and sialylated glycopeptides (Figure 3.4). Taken together, we posit those improvements in liquid-

phase resolution for mannose-type glycopeptides at high temperatures result in sharper, narrower 

elution peaks that conserve the overall peak area observed at lower temperatures. Because these 

observations directly correlate with identification rates, deviating peak intensities and areas are 

likely directly responsible for the incremental improvement in identifications, as greater intensity 

will raise precursor priority when performing DDA-MS/MS. 

In order to validate this conjecture, we utilized the extracted information from each 

glycopeptide to represent the fold-change in relative abundance with respect to the base 

temperature, 30°C. Averaging across technical triplicates, the vast majority – though not all – 

glycopeptides exhibit higher relative abundance at 45°C (Figure 3.4), mirroring the 

aforementioned XIC observations and identification rates. However, where these data begin to 

diverge is the relative abundance seen at the highest temperature, 60°C. For high mannose and 

paucimannose glycopeptides, relative abundances are often even higher than those observed at 

45°C. While these glycopeptide classes do show some species to be lower in abundance at 60°C 

than at 45°C, the relative abundance at the highest temperature are often equivalent to or higher 

than the abundances seen at the base temperature of 30°C. Contrary to this observation, complex, 
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fucosylated, and sialylated glycopeptides show significant drops in relative abundance at 60°C, 

with the majority of glycopeptides displaying lower or substantially lower abundances compared 

to that observed at either of the two lower temperatures.  

These observations and conjectures notwithstanding, we acknowledge the presence of 

glycopeptides that deviate from these noted trends. However, these cases are the minority, giving 

way to the prevailing observations discussed here. This diversity in results should be expected for 

any biological population and therefore do not significantly hamper our interpretation of the 

overall trends seen across glycopeptide classes. Fucosylated glycopeptides, as well, show diversity 

in their relative abundances as temperature climbs. Given the lower number of these species and 

that fucosylation and sialylation often co-occur, these data may be further reorganized and 

investigated in later experiments to provide a more comprehensive dataset.  

Overall, these data serve to confirm our hypothesis that increases in temperature induce 

chromatographic behavior that impacts glycopeptide identification. As shown, mannose type 

glycopeptides benefit from increased temperatures as their increased resolution results in greater 

peak intensity and therefore greater selection in DDA-MS/MS. Complex, fucosylated, and 

sialylated glycopeptides do benefit from improved resolution at higher temperatures but often yield 

lower peak intensities, affecting downstream identification. Beyond this, given the demonstrated 

abnormalities in glycopeptide detection and peak shape as temperature increases, we suspect 

common label-free quantitative methods may be unreliable under these chromatographic 

conditions.  

Assessing Spectral Count-Based Quantitation 

Strategies for glycopeptide quantitation have experienced a surge in innovation over the 

past decade23. While metabolic labeling, isotopic chemical tags, and isobaric labeling strategies 
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have all been demonstrated as viable and effective, these approaches are often custom-tailored and 

require additional handling that can introduce sample loss. Label-free quantitation (LFQ) avoids 

these complications but is prone to missing values and run-to-run variance. Common LFQ  

approaches such as reaction monitoring rely on precursor area under the curve or intensity of 

transition ions50 as the quantitative marker, while others such as spectral counting assume relative 

quantity is proportional to frequency of MS selection. Given each of these methods relies on 

precursor and fragment intensity, severe limitations may be met when employing PGC separations 

at elevated temperatures. 

Averaging the number of peptide spectral matches (PSMs) across technical replicates, a 

subset of glycopeptides was shown to be quantifiable (i.e., identified in ≥3 dilutions) with good 

linearity (Figure 3.5). Notably, fucosylated glycopeptides demonstrated the worst linear response; 

this is due to the relatively low abundance of this class of glycopeptide – evidenced by the low 

number of identifications and PSMs.  When comparing across the remaining glycopeptide 

subtypes, high mannose glycopeptides demonstrated the highest density of species with linear 

regression fit >0.9, though all classes demonstrated a meaningful distribution of high linearity 

species. More interestingly, quantifiable complex, fucosylated and sialylated glycopeptides 

showed greater PSM-based linearity as temperature climbed (Figure 3.5). This observation 

presents a caveat to our existing discussion of how elevated temperatures bring limitations to 

glycopeptide identification. Though high temperatures (i.e., ≥60°C) reveal the fewest overall 

identifications, those that are identified tend to show excellent linear response and may be more 

easily relied upon for quantitation. On the other hand, mannose type glycopeptides generally 

showed a decrease in linear response at 45°C before becoming bimodally distributed at 60°C 

(Figure 3.5). These data inform us that column temperatures may be tailored based on intended 
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experimental outcome; 45°C typically provides best signal response but does not provide the best 

quantitation for all species.  

While these data suggest at which temperatures spectral counting-based quantitation may 

be achieved, we have not established whether individual glycopeptides may be accurately 

compared across temperatures. As shown in Figure 3.5, all glycopeptide classes yield different 

quantities of PSMs at different temperatures. This observation may be obvious, given the 

discussion of chromatographic behavior. However, mannose and fucosylated subtypes generally 

showed a more conserved spectral count as temperatures increased compared to complex and 

sialylated glycopeptides. As seen, sialylated glycopeptides displayed a demonstrable increase in 

the number of PSMs at 45°C before decreasing again at 60°C, which reflects the deviation in signal 

intensity at these temperatures. Complex glycopeptides, on the other hand, exhibited steady 

increases in the number of PSMs as temperature climbs higher, being only one of two peptide 

classes that display such trend.  

Taken together, these data are not intended to confer any quantitative information beyond 

the efficacy of using a label-free strategy for glycopeptide analysis when column temperature is 

an experimental variable. While our data demonstrate good linear response when PSMs are 

averaged as a function of sample dilution, this is only true when temperature is constant. In large 

part, glycopeptides cannot be directly compared across different temperatures in a label-free 

fashion. This conclusion is evidenced first by the significant changes in PSM count as temperature 

changes (Figure 3.5) and when considering the noted differences in precursor peak intensity and 

area (Figure 3.3, Figure S3.2). While quantitative accuracy remains to be evaluated when using 

area under the curve, our data suggest this approach may not be suitable; we did attempt to perform 

XIC area based LFQ in these analyses, but the breadth of identifications combined with technical 
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replicates at three temperatures was untenable and computationally inefficient. Perhaps MS2-based 

transition monitoring is a more appropriate strategy for glycopeptide LFQ when using elevated 

column temperatures, but this claim should be investigated on its own.  

Hypotheses and Future Directions 

Given the nature of our data, it is imperative we consider the underlying phenomena that 

induce the observed chromatographic behavior shown to impact glycopeptide analysis. Focusing 

on sialylated glycopeptides, those species most adversely affected, two prevailing hypotheses exist 

that may explain the significant decrease in signal intensity at high temperatures. The first 

hypothesis is that sialoglycopeptides exhibit greater structural diversity in nature (i.e., antennae 

linkage, α/β orientation, etc.) and this structural diversity is readily resolved at high temperatures, 

as shown previously36, 37. This increased resolution distributes the density of glycopeptides eluting 

per unit time, lowering overall peak heights. The alternative explanation is that liquid phase 

separations at high temperatures impart greater energy into the system, provoking early 

dissociation of labile sialic acid linkages. As well, sialylated glycopeptides are known to be labile 

under acidic conditions17, 51, 52; our 0.1% FA additive during LC-MS, though common practice, 

likely exacerbates their lability and may contribute to early dissociation. We do not find strong 

evidence to support this hypothesis in our data as examining the identified sialoglycopeptides did 

not provide any such correlation between high sialylation states and lower sialylation states. To 

state tersely, we did not observe any disalylated glycopeptides converted to monosialylated 

glycopeptides, and so on. We did further investigate this claim through analysis of a commercially 

available sialoglycopeptide standard and no early dissociation could be definitively observed 

(Figure S3.3). In addition, we did not observe any relationship between the five high mannose 
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glycans and identification rate, peak height, etc., further reinforcing the trends discussed in this 

report as global observations and not specific to a subset of modifications. 

In all, the chemical or physical cause of altered glycopeptide identifications at elevated 

temperatures is still not clear. Anecdotal evidence supports the idea that the acidic conditions 

chosen for LC-MS analysis does cause dissociation of sialic acid. Considering the addition of 

higher temperatures during separation and desolvation, indiscriminate cleavage of glycosidic 

bonds is not outside the realm of possibilities. As our study provided some semi-quantitative 

investigations of this anomaly, we propose a more rigorous means of quantitation may be 

employed to fully elucidate this trend. Establishing specific transition ions for a broad array of 

glycopeptides and utilizing reaction monitoring (MRM or PRM) would eliminate any errors in 

precursor identification, extraction, and quantitation. Regardless of future approaches that provide 

a succinct connection between column temperature and glycopeptide identification, the data 

presented here provide heuristic guidance towards appropriate experimental design, depending on 

analytical objectives.  

Conclusions 

Porous graphitic carbon separations are a powerful addition to mass spectrometry-based 

glycoproteomics. Providing excellent retention of hydrophilic glycopeptides with a dominant 

glycan moiety, PGC provides facile access to regions of the glycoproteome that may be 

unobtainable through traditional separation modalities. As shown within, elevated column 

temperatures inspire significant improvements in liquid-phase resolution for all glycopeptide 

classes and yield greater reporting signal that aids in auto-MS identification. However, further 

increasing column temperature presents a tradeoff between liquid-phase resolution and 

glycopeptide identification. Our analyses show unique glycopeptide classes are differentially 
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impacted – mannose type glycopeptides appear to benefit from high temperatures while complex 

and sialylated glycopeptides do not. Beyond this, we demonstrate the feasibility of performing 

label-free glycopeptide quantitation when temperature is held constant. However, glycopeptide 

species cannot be reliably compared from one temperature to the next as their spectral count and 

precursor area under curve are shown to deviate substantially according to their glycan 

composition. In summary, PGC-based glycopeptide separation and discovery is most effective at 

45°C, providing excellent reporting signal and modest resolution. However, in chasing isomeric 

resolution at higher temperatures, special consideration must be taken to avoid misinterpretation 

of glycopeptide identifications – or lack thereof – and when drawing comparisons to analyses 

under different experimental conditions.  
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Figures 

 

Figure 3.1 Outline of workflow. 

Glycoprotein mixtures or cell lysate were enzymatically digested prior to glycopeptide enrichment. 

Glycopeptides were reconstituted, serially diluted, and analyzed in technical triplicate on a custom 

PGC-packed capillary column. Data were collected on an Orbitrap Fusion Lumos with database 

searching performed in Proteome Discoverer with the Protein Metrics Byonic node. 
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Figure 3.2 Results outlining temperature-based differences in glycopeptide identification. 

A) Higher concentration glycopeptide samples (i.e., the undiluted sample (1x), and first two serial 

dilutions (2x and 4x)) displayed the expected increase in identifications when separated at 45°C, 

stemming largely from accessing new glycoprotein constituents. Concentration and temperature 

are independent; all concentrations (i.e., dilutions) were analyzed at all temperatures. B) Our 

analyses showed high technical reproducibility indicating the changes in unique glycosites 

between temperature is unlikely due to analytical abnormalities. C) The peptide backbone 

information of glycopeptides was largely conserved across temperatures, suggesting major 

differences are not due to the backbone itself. D) Glycopeptides demonstrated a class-dependent 

response to temperature with mannose type glycans benefitting from higher temperatures; 

complex, fucosylated and sialylated types show decreased identifications at high temperatures. 
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Figure 3.3 Representative extract ion chromatograms (XICs) of high mannose and 

sialylated glycopeptides. 

Both glycopeptides demonstrate improved resolution as temperature increases but high mannose 

types (A) displayed further increases in signal intensity as temperature climbs. Conversely, 

sialylated glycopeptides (B) increase in intensity at 45°C before showing significant attenuation at 

60°C.  

 



113 

 

 

Figure 3.4 Qualitative metrics from identifiable glycopeptides. 

A) All glycopeptides demonstrate improved resolution at high temperatures, but most classes 

demonstrate little change in median peak height or peak area. Sialylated glycopeptides, however, 

do show disparities in these metrics. However, this change in median value is only reflective of 

the whole population. B) When examining peak intensity for each individual glycopeptide,  we 

observed that the majority of glycopeptides from each glycan class showed noticeable 

improvements in peak intensity at 45°C with  a subset demonstrating statistical significance 

(P≤0.05, high mannose: 74 glycopeptides, 23.6% of high mannose population; paucimannose: 22 

glycopeptides, 25.9% of population; complex: 16 glycopeptides, 30.8% of population; sialylated: 
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15 glycopeptides, 25.0% of population, fucosylated: 7 glycopeptides, 14.9% of population). 

Mannose type glycopeptide peak intensity is not largely impacted at 60°C, whereas complex and 

sialylated glycopeptides are – a finding that reflects their identification rates at high temperatures. 
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Figure 3.5 Semi-quantitative evaluations of glycopeptide dilution series across temperature. 

A) Plots demonstrating the linear response of glycopeptide identifications across dilutions. When 

temperature is held constant, spectral counting may be a viable option for LFQ. B) Distribution of 

linear regression for quantifiable glycopeptides as temperature increases. While 45°C is most 

beneficial for glycopeptide identifications, it is not the most optimal for LFQ. Conversely, 

identifiable glycopeptides may be best quantified at 60°C. C) Change in spectral count as 

temperature climbs. While PSM count for mannose type glycans is relatively conserved, complex 

and sialylated glycopeptides show significant differences across temperatures. This observation 

suggests that LFQ methods may be significantly impacted at different temperatures. 
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Supplemental Methods  

Standard Peptide Analysis 

Sialoglycopeptide standard was purchased from TCI America (S0523). Dried peptide was 

reconstituted to 0.2 ug/uL in ultra-high purity water with the addition of 0.1% FA prior to analysis. 

These experiments were run on a fresh PGC column, prepared as stated above, in order to avoid 

any competing analytes from obscuring our measurements. Given the simplicity of the mixture 

and the propensity for PGC to retain small, hydrophilic analytes, the LC gradient was constructed 

as follows: analytes were trapped on the column for 15 minutes at 0% buffer B followed by a 25-

minute gradient from 20% to 45%B. The column was washed with 95% B for 10 minutes and 

equilibrated to 0% B for ten minutes. 

Samples were detected on a Q-Exactive Orbitrap mass spectrometer with the following 

settings. MS1 resolution, 70,000; AGC target, 1e6; maximum injection time, 250ms; m/z range, 

300-2,000. MS2 resolution, 35,000; AGC target, 2e5; maximum injection time, 120ms; loop count, 

10; isolation window, 2m/z; fixed first mass, 100; NCE, 30.  

Database Searching 

Raw MS files were processed using Proteome Discoverer 2.5 with Protein Metrics Byonic 

as the engine. Datafiles belonging to the bovine standard glycoprotein digests were searched 

against a custom fasta database containing the respective protein sequences from Uniprot. The 

prostatic cancer cell lines were searched against the Uniprot Human proteome (as found on 

October 30th, 2021). Both standard glycoproteins and complex cell digests were searched using 

the following parameters. Cleavage enzyme, trypsin; allowed missed cleavages, 2; precursor mass 

tolerance, 25ppm; fragment mass tolerance, 20ppm; fragmentation type, HCD; total common 
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modifications, 4; total rare modifications, 1; MS/MS diagnostic peaks, HexNAc [H+], 204.087. 

Modifications were set as follows: fixed modifications - carbamidomethyl of Cysteine; variable 

modifications - oxidation of Methionine, deamidation of Asparagine and Glutamine, acetylation 

of N-terminus. The built-in 309 mammalian N-glycans were set as rare modifications. The only 

other notable workflow inclusion is that Proteome Discoverer was instructed to keep all peptide 

results rather than those determined as ‘high’ confidence. FDR cutoff was set to 1% and 

glycopeptide data were filtered to only contain those species with a score > 150, delta_mod > 10, 

and a log_prob > 1. During data analysis we also filtered positive results to those species identified 

in at least 2/3 replicates in each dilution at each temperature. 
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Supplemental Tables 

For brevity, the tables referred to in the manuscript have been omitted. These tables may 

be found alongside the online version of this manuscript (10.1021/jasms.2c00249).  
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Supplemental Figures 

 

Figure S3.1 Comparisons of glycosite overlap across dilutions. 

A) Venn diagrams displaying the overlap of identified glycosites for each glycopeptide 

dilution. For all dilutions, there are some glycosites unique to a specific temperature, highlighting 

the additional coverage associated with column temperatures. B) Relative fraction of glycosites 

found at all temperatures within each dilution. While the highest concentration sample (1x) showed 

statistically significant difference between all other dilutions, the four latter dilutions were found 

to not be significantly different in their relative overlap.   
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Figure S3.2 Representative XICs for paucimannose and fucosylated glycopeptides. 

As shown, paucimannose glycopeptides generally benefit from increases in 

column temperature while fucosylated glycopeptides mirror the effects seen in 

sialoglycopeptides – increasing intensity at 45°C with reduced intensity at 60°C.  
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Figure S3.3 Extract ion chromatograms (XICs) of a commercial sialoglycopeptide. 

These data serve to highlight that no early dissociation of sialic acid was immediately 

obvious. While the commercial product is listed as being biantennary with two terminal sialic 

acids, all analyses, regardless of temperature, were able to identify the singly sialylated form. If 

de-sialylation was a result of temperature increase, we would expect to observe i) no singly 

sialylated peptide at lower temperatures and ii) an increasing intensity of the singly sialylated form. 
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Neither of these observations is apparent, indicating further study is needed to determine whether 

early dissociation is the primary contributor to lower intensity of sialylated glycopeptides.  
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Abstract 

Growing implications of glycosylation in physiological occurrences and human disease 

have prompted intensive focus on revealing glycomic perturbations through absolute and relative 

quantification. Empowered by seminal methodologies and increasing capacity for detection, 

identification, and characterization, the past decade has provided a significant increase in the 

number of suitable strategies for glycan and glycopeptide quantification. Mass spectrometry-based 

strategies for glycomic quantitation have grown to include metabolic incorporation of stable 

isotopes, deposition of mass difference and mass defect isotopic labels, and isobaric chemical 

labeling, providing researchers with ample tools for accurate and robust quantitation. Beyond this, 

workflows have been designed to harness instrument capability for label-free quantification and 

numerous software packages have been developed to facilitate reliable spectrum scoring. In this 

review, we present and highlight the most recent advances in chemical labeling and associated 

techniques for glycan and glycopeptide quantification. 
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Introduction 

Continuous developments of analytical strategies enable advancements that illuminate the 

roles in which post-translational modifications (PTMs) act to influence organism maturation, 

physiological processing, and immune response. While all members of this class of protein 

decorators are recognized for their alteration of protein function and contribution to proteomic 

diversity1, no PTM is considered as complex or highly dynamic as that of glycosylation2. The 

downstream products of enzymatic construction and deposition of carbohydrate moieties—

glycans—onto a nascent backbone2, glycoproteins present significant challenges in analysis due 

to their high degree of structural and compositional complexity2, ionization inefficiency3, low 

abundance4, and the unique phenomena of macro- and microheterogeneity2. Mass spectrometry 

(MS)-based glycomics has benefited greatly from advances in sample preparation protocols5, 

enrichment strategies6-8, and instrumental capabilities (fragmentation, data dependent and data 

independent acquisition, parallel reaction monitoring etc.)9, 10, which now provide broad access to 

the glycoproteome.  

As a result of these advances, targeted glycomic research continuously expands the 

implication of glycosylation in physiological processes such as cell signaling11-14, host-pathogen 

interaction15-18, and immune response11, 19-21, with significant revelations provided in connection 

to human disease. Recent evaluations demonstrating the importance of glycosylation in 

neurodegenerative diseases22, 23, diabetes24, 25, and cancer26-28 promote further interest in glycomic 

investigation to reveal potential biomarkers and unambiguous symptomatic protein profiles. As 

focus shifts from glycomic discovery and characterization to that of glycan expression levels and 

minute perturbations in site occupancy, the need for robust and efficient glycan and glycopeptide 

quantitative strategies steadily grows. In response to this demand, the last decade has seen a surge 
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in reports detailing novel chemical-labeling-based and label-free strategies built on both data 

dependent and data independent acquisition for quantitative glycomics (Figure 4.1). The previous 

review by Mechref et al.29 provides a detailed discussion of the seminal reports paving the way for 

recent innovations, which may be explored in supplement to the strategies outlined herein. 

Discussed below are the most recent advances in metabolic incorporation, isotopic and isobaric 

chemical labeling, label-free approaches, and software for quantitative glycan and glycopeptide 

analysis.  

Glycan Quantitation 

As glycoconjugate function is shown to be impacted by glycan structure and composition, 

enzymatic or chemical release of glycans provides direct access to profiling altered glycan 

expression while enabling structural and compositional characterization. Considering the ever-

present challenges in glycan analysis such as ionization inefficiency, highly hydrophilic character, 

glycosidic bond lability, and presence of negative charge, effective glycan quantitation may be 

achieved through strategies that offer reprieve from these ailments while providing facile labeling 

and reduction in spectral complexity. 

Isotopic Labeling 

Glycan quantification at the MS1 level is an attractive prospect due to broad access to 

higher resolution instrumentation and the reduced considerations of selectivity bias in data-

dependent acquisition experiments. Relative quantitation in this manner is often achieved through 

labeling of glycans in “heavy” and “light” channels to produce a consistent mass difference (i.e., 

> 1 Da). In order to avoid retention time differences between constituents of each channel and 

increase quantitative accuracy, heavy and light labels are engineered through the incorporation of 

stable isotopes, such as 12C and 13C.  2-aminobenzoic acid (2-AA) is a classic glycan label, often 
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employed for its fluorescent properties in UV-based experiments30 and was adapted for isomer-

specific quantitative glycomic evaluations31.  The well-characterized labeling strategy, 

commercial availability of isotopologues and complete separation of isotopic envelopes—

necessary to avoid peak overlap and inaccurate quantitation—make this strategy well-suited for 

facile quantitation. The importance of envelope separation was reinforced in the preliminary report 

of glycan reductive isotopic labeling (GRIL)32, which employed aniline isotopologues to stabilize 

sialic acid linkages, eliminate negative charge, and distinguish isotopic envelopes. GRIL was later 

employed for glycan analysis through porous graphitic carbon (PGC) LC-MS, which enabled 

liquid-phase resolution of biantennary sialylated glycans33, 34. CID fragmentation was shown to 

provide antennae-specific fragmentation, further indicating the ability to quantify differential 

expression of isomeric glycans. Additionally, Walker, et al. established a method labeling glycan 

with isotopic hydrazide tags35, INLIGHT36, which echoes the importance of envelope separation 

to eliminate inaccurate correction or quantitation. This method was validated against glycan 

standards and those extracted from human plasma, demonstrating quantitative accuracy across 4 

orders of magnitude.  

As an alternative to carbon isotopes, glycans may be labeled with heavy oxygen (18O) when 

enzymatic release is performed in the presence of heavy water. First reported by Tao and 

Orlando37, the mechanism of glycan release with PNGase F results in a terminal amine group at 

the glycan reducing end, which is then replaced with a hydroxyl group after spontaneous 

hydrolysis. When released in heavy water, glycans will express a 2 Da mass shift over unlabeled 

counterparts. This method has been further applied38 and is advantageous in that it requires no 

synthesis or treatment with commercial isotopologues, and that labeling efficiency is at or near 

100%, depending on the purity of heavy water available. However, considering sample complexity 
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and the unavoidable overlap of isotopic envelopes when labeled/unlabeled pairs are separated by 

only 2 Da, Cao and colleagues developed a strategy for glycan reducing end dual isotopic labeling 

(GREDIL), which provided an additional 1 Da mass shift through NaBH4/NaBD4 reduction of 

glycans39. 

Beyond heavy carbon and oxygen, the incorporation of deuterium has been widely reported 

in quantitative glycomics experiments. As glycan permethylation40 is routinely employed to reduce 

the high hydrophilicity of glycans and increase ionization efficiency prior to LC-MS analyses, 

early reports demonstrate simple workflow adaptation using iodomethane isotopologues to 

produce three labeling channels through light, medium, and heavy methyl labels (i.e. CH3, CD2H, 

CD3)
41. The same research group later expanded this workflow into an 8-plex labeling strategy 

that included additional heavy carbon isotopes42. Early reports of deuterium-based isotopic tags 

were provided by Zaia and colleagues, who first assessed multiple novel compounds for tetraplex 

labeling43 and later applied them for glycan and glycosaminoglycan quantitation44. Numerous 

other deuterium-based isotopic labeling strategies have been employed: derivatization with 

phenyl-methyl-pyrazole (PMP) has been employed to produce a one-pot dual-channel labeling 

strategy for MALDI-based quantitation of O-glycans45, 46, which was also adapted for in-gel 

labeling without significant sample loss47; stabilization and quantitation of sialic acid-containing 

glycans was promoted through a solid-phase p-toluidine labeling strategy48; duplex stable isotope 

labeling (DuSIL) was developed to discriminate neutral and sialylated glycans without the need 

for synthesis 49-51; isomer-specific quantitation of sialic-acid containing glycans was achieved 

through Glycoqueing, which enabled sialoglycan stabilization, isomer-specific elution order, and 

boosted MS signal52; and quantitation by mutant enzyme reaction stable isotope labeling 

(QMERSIL) facilitated glycan release and labeling in a single step53. Other methods for MS1 level 
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quantitation are reported by Yang and colleagues, who employed a metal chelating agent (p-NH2-

Bn-DOTA) and rare earth metals to provide a 10 Da mass shift and near 100% labeling 

efficiency54, and the quantification of N-glycan types presented by Li et al. that couples 

endoglycosidase digestion with channel labeling to provide an enrichment-friendly three-plex 

labeling strategy composition55. 

Due to the significant sample handling necessary for glycan purification, derivatization, 

labeling and cleanup prior to electrospray ionization (ESI)-based MS experiments, Chen et al. 

conceived a strategy that leverages the salt-tolerant, facile nature of matrix-assisted laser 

desorption/ionization (MALDI)-based glycan analysis while eliminating the ion suppression that 

stems from sample complexity. Combining glycans after labeling with light/heavy HDEAT (2-

hydrazino-4,6-bis-(diethylamino)-s-triazine)—which provides a 20 Da mass shift between species, 

HILIC separation was employed to deliver a liquid trace onto a MALDI plate. After matrix 

application, the liquid trace could be analyzed directly to identify N-glycans. The spatial 

distribution of glycans on the MALDI plate could be reconstructed into a base peak chromatogram 

to provide retention time of glycan species. This method reports significantly improved 

performance for glycan quantitation with higher sensitivity, reproducibility, and accuracy 

compared to MALDI alone and may be further expanded to multiplexed experiments56. 

Of particular note are strategies that reduce sample handling and associated loss by 

employing cellular machinery to facilitate glycan labeling, combining features of both metabolic 

and isotopic labeling. A pioneering study of this kind was provided by Kudelka et al. who 

introduced cellular O-glycome reporter/amplification, CORA57. This methodology involves the 

supplementation of cell culture media with paracetylated benzyl-α-N-Acetylgalactosamine 

(GalNAc-Bn), which is extended into a mature glycans by endogenous glycosyltransferases. 
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Because the reducing end of the glycan is blocked by the benzene group, these glycans are not 

acted on by oligotransferases, rather being excreted from the cell and escaping degradation. The 

benzene group also facilitates simple purification using reversed-phase cartridges for efficient MS 

analysis of the O-glycome constituents. This method was further developed to enable relative 

quantitation by employing light/heavy GalNAc-Bn in the method dubbed ICORA, isotopic 

labeling with cellular O-glycome reporter/amplification58 (Figure 4.2). Highlights of this method 

include complete discrimination of isotopic envelopes through a 7 Da mass shift, high-levels of 

persistence found in Bn-protected glycans, and the ability to evaluate O-glycome perturbations in 

response to altered growth conditions. Though this method does not mitigate any of the challenges 

in glycan analyses (e.g. MS/MS of low abundance species, structural assignment, or accuracy of 

MALDI vs. ESI) and is not broadly useful beyond MS due to the weak absorbance of the benzene 

ring, this method does provide a rigorous example of how “classic” metabolic incorporation of 

stable isotopes and azide sugars may be employed for glycan amplification and quantitation—an 

idea expanded much further in quantitative glycopeptide experiments (vide infra). 

Metabolic Incorporation  

Though isotopic labeling is successfully employed for MS1-level comparison of glycans, 

the questions of labeling efficiency, as well as reagent synthesis, cost, and availability remain. As 

an alternative, several researchers have turned to the classic strategy stable isotopic labeling of 

amino acids in cell culture (SILAC), which significantly reduces concerns over labeling efficiency 

while retaining the ability to perform relative quantitation and offering a means to discern glycome 

lifetime and stability.  

IDAWG, isotopic detection of amino sugars with glutamine59, is one of a few seminal 

reports on the feasibility and accuracy of metabolic incorporation for relative quantitation. Though 
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discussed in depth in the previous review29, briefly, heavy nitrogen was introduced to cell culture 

in the form of 15N-glutamine, which provided near complete labeling of glycosylation sites and 

aminosugars across the observed proteome. This method demonstrates the reliability of metabolic 

incorporation for glycosite and glycan quantification, as well as how media treatment can be used 

to evaluate further synthesis or degradation of aminosugar-containing glycans in response to 

cellular behavior. This idea was further expanded by two groups who sought to comprehensively 

quantify the glycome and glycoproteome through combining metabolic incorporation and isotopic 

labeling. Yang et al. accomplished characterization of bladder cancer cell lines (KK47, YTS1, J82, 

T24) against a normal bladder mucosa cell line (HCV29)60. This report employed SILAC labeling 

for proteomic quantification while combining lectin microarrays and sialylated glycan 

derivatization with heavy/light aniline to comprehensively quantify glycan expression levels. 

Further expansions of combinatorial methods is provided in the report of solid phase extraction of 

N-linked glycans and glycosite-containing peptides (NGAG) by Zhang and colleagues61. This 

method employs sequential elutions after tryptic peptides have been complexed with aldehyde-

functionalized resin beads. In the first pass, lysine side chains are protected through guanidination 

prior to derivatization of acidic species (sialic acid and aspartic acid) with aniline, which is 

followed by PNGase F treatment to release N-glycans. The released glycans were then labeled 

with iTRAQ, isotopic tags for relative and absolute quantitation, prior to LC-MS identification and 

quantitative analysis. In the second pass, the newly formed aspartic acid residues that result from 

glycan release are then cleaved by Asp-N treatment, eluted, and quantified after combining with 

heavy-labeled glycosite-containing peptides from SILAC treatment. Using the NGAG method to 

analyze OVCAR-3 Cells, 85 unique glycan compositions and 2,044 glycosite-containing peptides 

were identified, offering complementary coverage to that of the previously reported SPEG 
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methodology62 of the same group.  These methods present an efficient strategy for quantifying the 

glycome and glycoproteome through metabolic incorporation of stable isotopes, providing an 

avenue of expansion which has since been greatly explored in quantitative glycopeptide 

experiments. However, given the lack of suitable stable isotopes that may be incorporated and the 

increasing spectral complexity when numerous isotopes are present, these mass-difference 

experiments are fundamentally limited by the number of channels that may be analyzed at any one 

time. As such, great benefit may be found in employing the strategy of mass defect-based chemical 

labels. 

Mass Defect 

While isotopic labeling and metabolic incorporation impart a mass shift of > 1 Da—a mass 

difference, mass defect-based strategies impart a mDa mass shift. As such, MS1 mass spectra are 

significantly less complex than in mass difference experiments, redundant sampling is avoided 

because all labeled ions are selected for fragmentation in the same MS2 isolation window, and 

quantification at the MS1 level is retained, reducing the concerns over precursor co-isolation. Early 

reports of such strategies using CH3I and CH2DI have been reported63, 64, but few reports exist over 

recent years. One example provided by Chen et al., was the successful application of mass defect 

dimethyl pyrimidinyl ornithine (DiPyrO)65, an amine reactive tag, for quantitative glycomics66 

(Figure 4.3). This study successfully quantified glycan expression differences between B-cells of 

healthy and acute lymphoblastic leukemia and demonstrated dynamic linearity across two orders 

of magnitude. This study provides two notable observations: i) increasing instrumental resolution 

will facilitate immediate expansion of DiPyrO beyond three demonstrated labeling channels and 

ii) employing amine reactive tags for glycan quantitation is a promising path that can be widely 

explored. This latter notion was explored by Feng et al. in the development of mass-defect isobaric 
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multiplex labeling reagents for carbonyl-containing compound (mdSUGAR) tags67. This three-

channel approach is built upon the simple three-step synthesis of the original SUGAR tags68 (see 

below), providing a 23.8 mDa mass shift between channels and labeling at both the reducing end 

and on sialic acid residues for stabilization. Beyond the significant reproducibility demonstrated 

when analyzing standard and complex samples, the MS2 fragmentation spectra revealed complete 

y glycan fragment series with the mdSUGAR tag attached with additional tagged b ions found in 

sialylated glycans. This improved fragmentation series compared to unlabeled species allows for 

greater confidence during glycan annotation and structural assignment. These approaches 

represent a facile strategy for glycan labeling, with excellent accuracy and dynamic range that can 

be employed in scenarios where instrument resolving power is limited. Further expansion of these 

tags may prove useful in highly multiplexed experiments that seek to exploit rapidly evolving 

capabilities of novel instrumentation. 

Isobaric Labeling 

In order to avoid explosions in spectral complexity and the need for slower, higher-

resolution MS1 scans, numerous reports have explored the utility of glycan quantitation at the MS2 

level. By employing isobaric labels—each of which has an identical overall mass but a reporter 

ion region of unique mass—collision-based dissociation allows for relative quantitation to proceed 

through the comparison of reporter ion abundance. 

At the time of last review, isobaric labeling strategies for glycan quantitation were only 

just emerging. iART, isobaric aldehyde reactive tags, was an early report of MS2-based 

quantitation, employing a simple synthesis strategy to create two labeling channels. This method 

demonstrated significant improvements in glycan sensitivity post-derivatization as well as reliable 

quantitation when applied to quantifying the gp120 subunit of the HIV envelope69. The same 
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researchers later expanded this underlying strategy in developing a four-plex labeling strategy by 

developing quaternary amine containing isobaric tag for glycans, QUANTITY70. This method was 

originally validated using N-glycans released from human serum and CHO cell lines, which 

revealed relative quantitation of 90 and 159 N-glycans, respectively. Later, QUANTITY was 

employed for simultaneous quantitation of N- and O-glycans through sequential release and 

labeling techniques71. Concurrent with these studies, numerous strategies were established for 

glycan quantitation using commercial tandem mass tags (TMT). Though glycoTMT, a carbonyl 

reactive tag for N-glycan quantitation, was reported early72, broad applicability was demonstrated 

through the use of the amine reactive tags, aminoxyTMT73-77. Notably, Zhong et al. demonstrated 

baseline resolution of TMT-labeled high-mannose glycans through capillary electrophoresis, while 

CE-TWIM-MS (capillary electrophoresis-traveling wave ion mobility mass spectrometry) was 

able to distinguish isomers of sialylated O-glycans in human milk74. Chen et al. later established 

the improved quantitative accuracy of N-glycans using MultiNotch MS3 triggered by the presence 

of Y1 glycan ions76. These recent reports indicate the utility of isobaric labeling for deep glycomic 

quantitation; however, the inefficiency of multi-step syntheses presented by iART and 

QUANTITY, as well as the high cost of commercial TMT labels, often place these workflows out 

of reach. In remedy to this, Li and coworkers developed Isobaric Multiplex Labeling Reagents for 

Carbonyl-Containing Compound (SUGAR) tags68 (Figure 4.4). This report details a simple, three-

step synthesis of SUGAR isotopologues with ~70% overall yield, and two-step labeling for near 

100% labeling efficiency of all N-glycans tested. As well, the low cost of the reagents employed 

make this an attractive strategy that may be readily implemented in numerous research settings. 

Finally, in addition to the efficiency and quantitative accuracy, SUGAR tags demonstrated 

significantly improved glycan fragmentation in CID/HCD-based experiments for more accurate 
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structural and compositional assignment. Considering these numerous developments over recent 

years, isobaric labeling is seen as an effective strategy for glycan quantification, which is likely to 

be further expanded with improvements in instrument resolution and need for increased sample 

throughput. 

Fluorescence Labeling 

Fluorescence and absorbance-based labeling strategies were methods of significant interest 

prior to the heavy development of MS-based technology and MS-suitable sample preparations. 

However, fluorescence labeling is still employed due to the relative ease of glycan derivatization, 

the reduced need for intensive sample cleanup, and the reduction of sample loss via reduced sample 

handling. A notable improvement in glycan labeling efficiency was reported by Lauber et al., 

where they demonstrated commercial RapiFluor-MS can label glycans in under 5 minutes78 

compared to the >1 hour found strategies mentioned above. RapiFluor-MS also facilitated 

quantitative recovery of glycans during cleanup, facilitated sensitive fluorescence, and quantitative 

accuracy in ESI-MS experiments. In the effort to reduce the limitations surrounding single-channel 

measurements of fluorescence-based strategies, Rana et al. developed a three-channel sensing 

system that employs unique fluorescent proteins to generate a multiplex output79. Utilizing gold 

nanoparticles with a glycan recognizing functional ligand, this strategy proved useful in rapidly 

and quantitatively comparing human cell types according to their surface glycan profiles. 

Label Free 

Rapidly evolving instrumental capabilities present a unique path towards quantitative 

glycomics. An ideal approach to quantitative experiments is the incorporation of an internal 

standard, but this method is not widely employed due to the complexity of glycan synthesis and 

the lack of commercial isotopic glycan standards. iGlycoMab, an isotope labeled monoclonal 
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antibody, was recently developed through 15N metabolic incorporation. As heavy nitrogen will be 

incorporated into the aminosugars of the single glycosylation site on the Fc region, glycans 

released from this standard protein can serve as an internal isotopic standard in glycomics 

experiments. This strategy was successfully employed by Zhou and others, indicating the 

feasibility of isotopic glycans as internal standards80. An alternative strategy using the 

incorporation of exogenous standards was also validated for glycan quantitation81. As data 

suggests that molar responses for permethylated glycans are relatively uniform, investigators 

spiked in permethylated malto-series glycans at known concentrations for absolute quantification 

of N-glycans. These two previous reports are unique strategies for glycan quantification, but both 

state the need for a complete N-glycan standard series for more accurate, reliable, and broadly 

useful experiments. Given the unavailability of isotope-encoded glycan standards, a premium is 

placed on methods capable of accurate quantitation while reducing dependence on internal 

standards. To this end, numerous reports have validated significant increases in analytical 

sensitivity and quantitative accuracy when employing parallel and multiple reaction monitoring. 

MS Reaction Monitoring 

With rapidly expanding access to instrumentation capable deciphering highly complex 

mixtures, alongside the appreciation of reliable and reproducible instrument performance, a 

growing number of investigators have sought to exploit instrument capabilities for absolute and 

relative quantitation. Rapidly gaining favor in the area of glycan analysis are select, parallel, and 

multiple reaction monitoring (SRM, PRM and MRM). Though each has been successfully 

employed for glycomic quantitation MRM analyses has gained favor in glycoproteomics82 due to 

more precise quantitation83, high analytical reproducibility, better signal-to-noise, and increased 

dynamic range84. Though in-depth description of reaction monitoring concepts and considerations 
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may be read elsewhere85, 86. In brief, MRM, which is often implemented on triple quadrupole 

(QQQ) instrumentation, involves scanning of glycans in the first quadrupole, CID fragmentation 

in the second, and scanning of transitions (i.e. fragments of precursor masses) are scanned in the 

third. User control over valid precursor and transition masses results in a highly-selective and 

sensitive method for glycan identification. Noting that transition signal response is directly related 

to analyte concentration, iterative analyses of standard mixtures can be employed to develop 

calibration curves of transition abundance. After analysis of unknown sample mixtures, these 

curves are used to provide absolute abundance of targeted analytes. The targeted nature and 

considerable effort needed to establish effective MRM workflows limit their utility in high-

throughput experiments, but are widely useful in glycan biomarker and protein characterization 

studies85.  

Of the numerous reports employing reaction monitoring, Lebrilla and colleagues have been 

instrumental in developing novel methods for MRM analysis of mono- and oligosaccharides. Of 

note, Hong et al. detailed the ability to perform label-free absolute quantitation of human milk 

oligosaccharides (HMOs) and leverage 2’-fucosylation concentration to profile samples from 

secretors and nonsecretors87. Of note, this method established quantitative accuracy across five 

orders of magnitude and displayed femtomole sensitivity, rearticulating the benefits of targeted 

MRM analyses. Later, Xu et al., expanded on this approach and demonstrated that differences in 

retention time between monosaccharide isomers can be leveraged to create dynamic multiple 

reaction monitoring methods88—a concept discussed in detail in later sections. In addition to these 

fundamental reports, Xia et al. provided an early entry through their analysis of N- and O-glycans 

for diagnosis of congenital disorders89. Later Tao et al. reported a penta-HILIC-SRM-MS for the 

separation and identification of 2,3/2,6 sialic acid-containing N-glycan isomers90 and Tsai et al. 
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established a protocol to for N-glycan biomarker discovery in hepatocellular carcinoma (HCC)91. 

MRM has also been used in combination with glycan permethylation to quantify 88 N-glycans 

from only 5 nL of human blood92. Finally, Orlando and coworkers have pursued absolute N-glycan 

quantitation from biotherapeutic antibodies93 and Mank et al. expanded on the earlier reports of 

HMO analysis to provide structural selectivity94. These reports are among those that signal 

increasing interest in label-free, instrument-dependent methodologies for glycomic quantitation. 

Though the benefits and drawbacks of these strategies must be carefully weighed again those 

mentioned for chemical labeling, future innovations in the area of MS reaction monitoring and 

instrument efficiency could pave the way for a gradual shift towards confident label-free analyses.  

Critical Evaluations and Considerations 

Numerous strategies have been developed for glycan quantitation, presenting unique 

benefits and drawbacks that must be considered prior to implementation. A guiding consideration 

should include relative sample complexity and need for throughput. In low complexity 

experiments where throughput is not needed (i.e. analyzing no more than 2 samples), isotopic 

labeling is an effective strategy that may be customized to fit individual needs. Isotopic labeling 

reveals greater benefits when employing tags that increase glycan hydrophobicity and ionization 

efficiency or impart positive permanent charge. As sample complexity increases, mass-defect-

based isotopic labeling strategies may be implemented to offer reprieve from precursor co-

isolation and spectral complexity while also providing slightly higher throughput. In high-

throughput investigative experiments, if samples are relatively simple and MS1 level 

quantification is possible, 8-plex glycan permethylation would be of use due to the significant 

increases in glycan hydrophobicity for LC separations and improved ionization efficiency. 

However, isobaric labeling is undoubtedly the method-of-choice in high-throughput, high-
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complexity experiments as quantitation is pursued in tandem with identification at the MS2 level. 

If seeking to perform analyses at this level, channel multiplexing, synthetic capacity, and cost will 

be the guiding factors. A brief summary of highlighted methods may be found in Table 1. No 

matter the application, the techniques presented above provide achievable avenues to those seeking 

to perform quantitative glycomic analyses. 

Glycopeptide Quantitation 

Direct glycan analysis after enzymatic or chemical release enables understanding of the 

heterogeneity found within a given glycoproteome while providing the best opportunity for 

structural and compositional interrogation. In pursuit of comprehensive glycoprotein 

characterization, glycan analysis is limited by the elimination of protein localization as no glycan 

can be related to a modification site without intensive experimental control. To this end, analysis 

of intact glycopeptides retains site-specific information while enabling modest elucidation of the 

attached glycan. Though traditionally limited due to low abundance within proteolytic mixtures 

and poor ionization efficiency, glycopeptide analyses have benefited greatly from recent advances 

in sample preparation95-97, enrichment strategies98-100, and instrumental functionality101-103. 

Enabled by broad access to the glycoproteome, revealing deviations at the glycan, modification 

site, and protein level are of immediate interest in the effort to provide a more comprehensive view 

that helps to elucidate the role of glycosylation in physiological processes and human disease. As 

the following reports exercise analysis of glycosylated peptides and de-glycosylated peptides, clear 

distinction has been provided to avoid confusion. Discussion of “glycopeptides” refers strictly to 

glycosylated species and all references involving release of glycans prior to analysis are noted as 

“deglycosylated peptides.” 
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Metabolic Incorporation 

As SILAC experiments involving the incorporation of heavy amino acids—traditionally 

heavy lysine and arginine—during protein translation, glycopeptide quantitation through 

metabolic incorporation is widely accessible. This approach was taken in early reports that detailed 

the utility of data-independent acquisition (DIA) of sequential isolation windows (SWATH-MS) 

for glycopeptide quantitation104. DIA analyses will be discussed further in subsequent sections, 

but this initial report demonstrated the sensitivity and reproducibility gained during application. 

Further application of heavy amino acids was reported by Poljak et al. who used enzymatic 

cleavage and parallel reaction monitoring (PRM) of glycopeptides to quantitation the N-

glycosylation machinery in yeast105, though this method did not provide evaluation of glycan 

expression levels. While the applicability of incorporating isotopic labels is plainly seen across 

proteomics, significant contributions to glycopeptide analysis have come through the development 

of methods that combine efficient enrichment and complete labeling. Though the following 

methods enable quantitation through isotopic labels, they are presented here for their unique 

implementation of metabolic azide sugar incorporation.  

Due to the facile, highly-selective nature of copper-catalyzed cycloaddition of terminal 

alkynes and azides106, 107 (i.e. click chemistry), numerous groups have employed this reaction to 

label, enrich, and quantify glycopeptides. A benchmark study, isotope-targeted glycoproteomics 

(IsoTaG), demonstrated the ability to incorporate azide-containing sugars into nascent glycans108-

110. This azide sugar was then ligated to an acid-labile, isotopically labeled biotin tag with a 

terminal alkyl group for glycopeptide enrichment with streptavidin beads. The biotin tag was then 

cleaved, leaving behind the isotopic group, which could then be used for targeted mass 

spectrometry due to the characteristic mass shift against isotopic partners. The combined 
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efficiencies of azide sugar incorporation and biotin-streptavidin enrichment presented a powerful 

strategy for quantitative glycomics and glycan/glycopeptide enrichment. Though this method has 

difficulty in complete characterization of N-glycans—due to the unpredictable composition of 

sialic acid-containing glycopeptides—the authors successfully elucidated 32 N-glycopeptides with 

an additional 156 partial assignments and complete characterization of more than 500 O-

glycopeptides. The shortcomings in N-glycopeptide detection were addressed in a later study that 

incorporated alkyne-sugars rather than azido-sugars, which facilitated greater access to N- and O-

glycopeptides alike with 156 and 578 confident identifications, respectively111. A key benefit of 

employing IsoTaG is the accompanying software, IsoStamp112, that aids in spectral deconvolution 

and quantitation. Such benefits are replicated in the study from Qin, et al. that detailed O-

glycopeptide analysis through isotope-tagged cleavable linker (isoTCL)113 and quantitation using 

MaxQuant. Though quantitative accuracy was still achieved, manual confirmation of heavy/light 

pairs must be performed, bolstering the value of IsoTag and IsoStamp that eliminate the need for 

validation. Finally, in order to eliminate the harsh solution conditions associated with acid-labile 

chemical probes, a photocleavable biotin tag for O-GlcNAcylated glycopeptide quantification was 

developed by Li et al.114. This study localized 419 and 276 O-GlcNAcylation sites from sorafenib-

sensitive and sorafenib-resistant HepG2 cells, respectively, 262 of which were not previously 

reported. 

Isotopic Labeling 

Following the trend seen in glycan analyses, isotopic labeling is a method-of-choice in 

glycopeptide quantitation due to the well-characterized nature of numerous peptide labeling 

strategies. As dimethyl labeling is a highly facile method for peptide derivatization and employs 

reagents that are not cost-preventative, numerous reports detail the utility of dimethyl labeling in 
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lower throughput relative glycopeptide quantitation experiments115, 116. Novel applications include 

the association of altered glycopeptide glycosylation profiles with pancreatic cancer117, 

glycoproteomic profiling in triple negative breast carcinomas through analysis of deglycosylated 

peptides118, quantitative comparisons of sialic-acid containing glycopeptides in human embryotic 

and neural stem cells119, and employing deglycosylated peptides to determine changes in site 

occupancy rates between normal liver and hepatocellular carcinoma (HCC) liver tissues120. Further 

development of this strategy has been seen in the employment of diethyl labeling of 

glycopeptides121-123, which reduces retention time differences and quantitation errors by replacing 

incorporating heavy carbon in place of deuterium. 

Though chemical labeling strategies such as dimethyl labeling are facile in nature, reagent 

purity and labeling efficiency are persistent factors that reduce the overall efficiency and accuracy 

of glycomic quantitation. However, in search of avenues for isotope incorporation with high 

efficiency and no need for intensive synthesis, researchers have capitalized on the mechanism of 

proteolytic cleavage to incorporate more advantageous stable isotopes, such as 18O. A novel 

strategy for 18O stable isotope labeling (TOSIL) of deglycosylated peptides was presented by Liu 

et al.124 and later adapted for use in complex samples125. By performing trypsin digestion in the 

presence of heavy water, the newly formed C-terminus will be labeled with two 18O atoms. 

PNGase F treatment of the formed peptides will result in additional 18O atom being incorporated 

during the transition of the Asn modification site to Asp. This strategy was employed for accurate 

quantitation of glycosylation profiles between innovator and biosimilar antibodies126. Though this 

method retains no glycan-specific information, the authors employed selective lectin enrichment 

prior to glycan release to generate glycopeptide subgroups to evaluate topical modification 

changes. Validated in comparisons of normal and HCC liver cells, this method demonstrated high 
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quantitative accuracy across the dynamic range and complete isotopic envelope separation. To 

evaluate the utility of the original TOSIL method for N-glycoproteome quantitation, Liu et al. 

employed TOSIL in tandem with lectin microarrays to reveal potential biomarkers in HCC 

metastasis127. 

In addition to these innovations, numerous groups have developed novel chemical tags 

useful for glycopeptide labeling, which are easily translated to quantitative experiments after 

synthesizing the deuterium isotopologue. For example, Kurogochi et al. employed benzoic acid 

N-succinimidyl ester to enhance ionization efficiency of glycopeptides in MALDI-based 

quantitative experiments128, while Pabst et al. later determined galactosylation and sialylation 

patterns in Immunoglobulin G (IgG) glycopeptides in both ESI and MALDI regimes through 

derivatization with succinic anhydride129. As routine proteolytic digestion involves reduction of 

disulfide bonds and protection through alkylation, reports have detailed the utilization of these 

processes for direct peptide labeling. Kim and coworkers conceived the use of isotope-coded 

carbamidomethylation130 to label deglycosylated peptide species in tandem with free thiol 

protection, while Zhao et al. employed isotopic dithiothreitol to label O-glycosylation sites after 

beta-elimination to produce deglycosylated peptides131. These are attractive methods for peptide 

quantification as it does not involve subsequent sample handling or cleanup beyond those used in 

routine digestion workflows. Validated strategies such as these provide a litany of facile labeling 

strategies for relative glycopeptide quantitation but are inherently limited by low channel number 

and the inability to facilitate absolute quantitation. In remedy, recent reports have demonstrated 

the utility of isotopic internal standard peptides for absolute quantitation and novel application.  

First, Zhu et al. reported a strategy to determine absolute quantitation of glycosite 

occupancy in experiments deglycosylated peptide abundance to isotope-coded synthetic 
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peptides132. Noting deamidation of Asn residues is shown to occur spontaneously during sample 

preparation and therefore skew quantitative comparisons of deglycosylated peptides, this work 

synthesized isotopic deglycosylated peptide partners. This allowed site occupancy to be reliably 

quantified by subtracting the concentration of non-glycosylated protein from total protein 

concentration. Later, Roy et al. reported a strategy for absolute quantitation of IgG subclasses by 

synthesizing isotopic glycopeptides using Asn-GlcNAc residues that display no difference in 

retention time from glycopeptides produced during digestion133. This method could be readily 

expanded due to the flexibility of peptide synthesis and accuracy of internal standard calibration. 

Finally, Nilson et al. reported a method to quantify the recently reported amyloid-β (Aβ) 

glycopeptide as well as unmodified Aβ in cerebrospinal fluid134. Though Aβ glycopeptide contains 

a rare Tyrosine O-glycosylation (Tyr-GalNAc) and internal standards require intensive derivation 

prior to peptide synthesis, the report accurately quantifies differences in glycosylated Aβ-15 and 

Aβ-17 fragments across 20 Alzheimer’s Disease patients and 20 non-demented controls. As 

synthetic peptide production evolves and the reliability and accuracy of multi and parallel-reaction 

monitoring strategies continue to improve, these reports are likely to serve as a basis for broad 

absolute glycopeptide quantitation. 

Isobaric Labeling 

The multiplexing capacity of isobaric peptide labeling provides a high degree of 

experimental accuracy and throughput in quantitative proteomic investigations. Traditional 

methods such as isobaric tags for relative and absolute quantitation (iTRAQ) and tandem mass 

tags (TMT) have been widely employed for glycoproteomic profiling in various biological 

samples. Among these, iTRAQ has been utilized for N-glycopeptide analyses in neurodegenerative 

diseases135 and cardiac hypertrophy136, analyzing glycopeptides to profile the glycoproteome of 
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human tear fluid137, and interrogating deglycosylated peptides to reveal dynamic glycoprotein 

regulation in maize seedlings138, representing the utility of iTRAQ to further glycomic 

experimentation. TMT has seen even greater utility in quantitative experiments as they have been 

applied to evaluate glycopeptide perturbations in HCC patient plasma139, pancreatic cancer 

serum140, aggressive prostate cancer cell lines141 and urinary profiles of prostate cancer patients142, 

human cell surfaces143, cerebrospinal fluid144 (glycopeptides and deglyscylated peptides), and 

PNGase F-resistant N-glycopeptides145, as well as the evaluation of glycopeptide enrichment 

strategies146 via direct analysis through ETD147 and strategies for simultaneous phosphopeptide 

and glycopeptide quantitation148. iTRAQ and TMT are attractive strategies for those in seek of 

reliable relative glycopeptide quantitation, with added benefits of well-documented workflow, 

commercial availability and quality control. However, the steep cost of these commercial reagents 

makes them unsuitable for use during method development or exploratory studies and are not 

amenable to bespoke method alteration. Recently, a promising alternative was presented that 

allows for a significant reduction in cost, facile in-house synthesis, and a high degree of flexibility 

for method experimentation. 

N,N-dimethyl leucine (DiLeu) isobaric tags were originally presented in 2010 by Xiang et 

al. as a novel 4-plex strategy for quantitative proteomics149. With commercial leucine as the 

starting material, each reporting channel is synthesized in no more than two simple reactions, each 

of which employs commonly available reagents—emphasizing cost-efficiency. Due to the 

comparable performance when evaluated against iTRAQ, DiLeu was expanded to a 5-plex 

platform for absolute quantitation (iDiLeu)150 and an 8-plex relative quantitation strategy that 

maintained the overall ease-of-synthesis from the original report. DiLeu was further developed to 

facilitate 12-plex relative quantitation151 , utilizing mass-defect principle and higher-resolution 
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instrumentation that is becoming more readily available, and this strategy was then coupled with 

dimethyl labeling, producing an effective 24-channel strategy for relative quantitation152. DiLeu 

isobaric labels have been evaluated in a number of proteomic and peptidomic experiments150, 152-

155, and has also been developed into an absolute quantitation strategy. Hybrid offset-triggered 

multiplex absolute quantification (HOTMAQ), combines 4-plex iDiLeu with 12-plex isobaric tags 

to create an internal calibration curve at the MS1 level in tandem with identification of peptides at 

the MS2 level156 (Figure 4.5). This strategy provides up to a 12-fold increase in throughput during 

absolute quantitation experiments. 

Of interest, DiLeu tags were recently applied for site-specific characterization and 

quantitation of N-glycopeptides in PANC1 pancreatic cancer and PKM2 knockout breast cancer 

cells157. As sialylated glycans are known to be upregulated in various cancers and show distinct 

expression across lifetime, this study provided an early report on the most efficient strategy for 

sialylated N-glycopeptide extraction and enrichment. Method validation in PANC1 experiments 

revealed 1067 N-glycopeptides, 311 glycosites, and 88 glycan compositions from 205 

glycoproteins. Quantitative evaluations of PKM2 cells provided evidence that N-glycosylation 

signaling pathways are tightly regulated by cellular metabolism, with 484 N-glycopeptides 

quantified and 81 showing significant changes in expression. As this method offers comparable 

performance to the hallmark commercial methods of TMT and iTRAQ, as well as providing an 

avenue for mass defect-based proteomics65, development and employment of DiLeu isobaric labels 

is a beneficial strategy for accurate, cost-effective proteomic and glycoproteomic quantitation with 

great room for further implementation. 
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Label Free and MS Reaction Monitoring 

While a small number of reports detail the implementation of mathematical modeling to 

facilitate accurate, label-free quantitation of glycopeptides—such as that detailed by Mayampurath 

et al.158—glycopeptide quantitation has benefited greatly from the implementation of PRM and 

MRM. Similar to strategies implemented for glycan analyses, reaction monitoring of glycopeptides 

does offer high quantitative accuracy and improved sensitivity, but requires deeper consideration. 

MRM analysis requires effective ionization of glycopeptides and the production or reproducible, 

quantifiable fragments. As hydrophilic glycans reduce the overall ionization efficiency and the 

heterogeneity of glycosylation divides the intensity of glycopeptides across several glycoforms86 

enrichment strategies are often required to improve detectability against complex peptide 

backgrounds and avoid loss of minor glycoforms within the mixture159. However, these strategies 

have not prevented the successful implementation of MRM for numerous novel investigations. Of 

note, MRM has successfully quantified differential expression of IgG subclass glycosylation160 , 

haptoglobin glycoforms161, 162 and core fucosylation163  in liver disease, profile changes in 

galactosylation and sialylation in rheumatoid arthritis (RA) patients164, quantify glycoproteins in 

esophagus disease165, reveal alterations in Murine immunoglobulin glycoforms166, characterizing 

the function and importance of UDP-GlcNAc transporter167, and quantitation of golgi-resident 

glycosylation enzymes from cultured human cells168. In addition, researchers have also detailed 

methods for glycopeptide quantitation in a range of human biofluids such as human serum169, 170 

and liver cancer plasma171. Pinpointing some standouts, Srikanth et al. provided a quantitative 

method that combines 18O labeling and MRM, Jian et al. established the feasibility of top-down 

glycoprotein characterization when protein length is short172, Hammura et al. detailed a method to 

both synthesize and quantify rare bisecting N-glycans in therapeutic antibodies173, and van der 
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Burgt et al. implemented a strategy to quantify sialic acid linkage isomers of prostate specific 

antigen (PSA)174. The later also provides a topical comparison of various analytical methods for 

linkage isomer analysis on the basis of throughput, robustness, quantification ability, recognition 

of glycoforms, and isomer separation, which may be of interest to some readers. 

In addition to these above reports, Lebrilla and colleagues have fundamental to the 

expansion of MRM glycopeptide analysis. Offering numerous reports of MRM analysis that 

identify and quantify immunoglobulin classes (i.e. IgG, IgA, IgM) and their glycosylation 

profiles175, 176, as well as quantify site-specific glycosylation in recombinant antibody drugs177, this 

group has also provided accurate quantitation of human milk protein glycoforms178 and evaluated 

the differential expression of serum glycoproteins to serve as biomarkers in ovarian cancer179. On 

top of their numerous applications, this research group demonstrates the improvements found in 

implementing dynamic multiple reaction monitoring (dMRM). Though routine MRM analyses are 

highly-specific, minimizing the ailments surrounding coeluting peptides that may cause ion 

suppression and fail to identify low-abundance analytes, monitoring specific targets and transitions 

over the entire chromatographic timeframe severely reduces the number of analytes that may be 

quantified. As such, Li et al.180 hypothesized retention time may be leveraged to reduce the time 

spent searching for selected precursor and transition masses, thereby increasing the number of 

novel species quantified. Employing multi-enzyme standard protein digestion to produce smaller 

glycopeptides and increase sample coverage, this strategy first employed orbitrap-based analysis 

of enriched glycopeptides that were identified by Byonic (vide infra). In addition to the identified 

glycopeptides, the authors imputed missing values for undetected species by generating in silico 

transition masses and predicting retention time according to the relative hydrophobicity of the 

glycopeptides. Using the retention times, precursor masses and unique transitions of all identified 
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and suspected analytes to build a dMRM method, the authors were able to quantify nearly 700 

glycopeptides in a single 50-minute LC run, which was then validated on human serum samples. 

With low femtomolar limits of detection and quantification, this method illustrates the utility of 

MRM for complex sample quantification and the ability to accommodate higher-throughput. 

Taken together, the specificity, enhanced sensitivity, and uncompromised quantification accuracy 

of MRM is an attractive strategy for glycopeptide and glycoprotein quantitation with much room 

left for novel innovation and application.   

As typical limitations in glycopeptide detection and identification include low 

concentration of glycopeptides within proteolytic mixtures and poor ionization efficiency, many 

glycopeptide species are overlooked and not selected for MS/MS fragmentation in data-dependent 

acquisition (DDA) experiments. For this reason, data-independent acquisition (DIA) has gained 

steady traction in broad proteomic and glycoproteomic experiments for its ability to expand 

profiling depth and select low-lying precursor masses, offering potential remedy to the low-

throughput of MRM analyses181. Typical DIA experiments such as SWATH-MS (i.e. sequential 

window acquisition of all theoretical fragment ion spectra mass spectrometry) require user 

definition of m/z windows to be used for fragmentation. As most peptides are found within 400-

1250 m/z, common practice is to set consistent window sizes (~25-36 m/z) over this range. 

However, due to the large mass addition of glycans, glycopeptides are not evenly distributed along 

this range and are concentrated between 950-1200 m/z. As such, Zhou et al. validated a more 

effective strategy, GP-SWATH, that narrows selection window width across the glycopeptide 

region to provide more accurate and robust glycopeptide detection and quantification182. A notable 

limitation in DIA analysis is the deconvolution of tandem MS spectra as DIA experiments 

commonly lose precursor information, making identification of post-translationally modified 
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peptides a challenge—especially for O-glycopeptides. Offering alleviation of this ailment, Ye et 

al. recently established Glyco-DIA, a strategy to provide enhanced O-glycopeptide identification 

and quantitation183.  As illustrated in Figure 4.6, this method constructs spectral libraries from 

numerous DDA experiments, which can be expanded in silico to provide missing values. 

Evaluation of this methodology revealed significantly improved performance of O-glycopeptides 

in direct analyses with even greater benefit in runs performed after enrichment. Though the authors 

state limitations in this method such as biasing towards abundant O-glycopeptides in DDA 

experiments, Glyco-DIA may be rapidly expanded for O-glycoproteome coverage and tailored for 

individual, targeted analyses. 

Software Advances 

Accurate glycopeptide annotation is dependent on efficient glycan and peptide 

fragmentation, as the high compositional complexity of all glycans and the challenges in glycosite 

assignment of O-glycans can easily be misinterpreted and result in false identifications. Though 

few studies have evaluated the efficacy of decoy glycopeptide databases184-187, numerous advances 

have been made in developing open source and commercial software capable of adept peptide 

annotation and quantitative comparisons. Premier Biosoft International provided early access into 

spectral deconvolution for glycan analysis. Touting a robust relational database of glycans and 

glycoproteins, support for MALDI and ESI file formats, glycopeptide qualitative analysis, built-

in functionality to process TMT-based quantitative information, and the ability to assign glycan 

structure from MSn data, SimGlycan remains a relevant and effective tool for glycomic 

investigation. Bern et al. (Protein Metrics) introduced Byonic in 2012 for peptide and protein 

identification, which remains a premier method for glycopeptide identification188. Following suit, 

Protein Metrics later introduced Byologic to facilitate an identification/quantitative analysis 
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pipeline which has been validated in a number of glycopeptide studies189, 190. As these licensed 

commercial software packages may be cost preventative and not widely employed by individual 

users, open source alternatives have been reported. LaCyTools191 and GlycopeptideGraphMS192 

are python-based utilities that have reported improved glycopeptide identification and 

quantitation, while GPSeeker116 facilitates structural N-glycoproteomics by integrating previously 

reported software from the same research group193-195. SugarQb145, 196 was developed to provide 

glycan and glycopeptide insights within the Proteome Discoverer (Thermo) environment. An 

alternative to working within Proteome Discoverer is presented by Maxwell et al. in their 

development on GlycReSoft197. Building on their validated strategy for targeted glycan analyses, 

Manatee198, GlycReSoft implements a data deconvolution algorithm to enable the rapid extraction 

and confidence scoring of glycan and glycopeptide identifications in both supervised and 

unsupervised analyses. In addition, GlycReSoft provides a user-friendly web-based application 

that can also leverage distributed computation to accommodate broad search space. The same 

research group later validated novel tools for increased glycomic profiling199, 200, which utilized 

knowledge of biosynthetic pathways to improve glycan feature recognition. Finally, Integrated 

GlycoProteome Analyzer (I-GPA) enables global characterization of site-specific structural 

features and reliable, automated label-free quantitation201. 

One open-source alternative that has gained much attention is pGlyco202 and its latest 

iteration, pGlyco 2.0203. As the initial software was a useful tool for glycopeptide spectra 

deconvolution, the authors state the need for expansion due to the existing limitations in high-

throughput tools for peptide and glycan identification, the inability of current software to provide 

built-in manual interpretation and validation, and most notably, the lack of robust quality control 

and FDR estimation that drastically underperform in adjacent bioinformatic tools. The latter point 
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is echoed by Park et al.,201 who provided topical comparisons of FDR approximations through 

GlycoFraqWork204, GP Finder205, Sweet-Heart206, and GPS207. Further, as stepped collisional 

energy (SCE) dissociation was nascent at the time of publication but was shown to outperform 

single regime (i.e. CID, HCD, and ETD) and hybrid fragmentation modes (i.e. ETciD and EThcD), 

pGlyco 2.0 provided early access to using SCE for broad glycopeptide analysis. pGlyco 2.0 

validated an improved FDR estimation through isotope-based and entrapment-based strategies. 

Complete details of these strategies may be read within203, but performing database searches of the 

same data (i.e. yeast cell lysate digest) using pGlyco 2.0 provided <1% FDR while Byonic resulted 

in >19%, and every identification may be visually inspected in pGlyco 2.0 using the built-in gLabel 

software. In terms of raw performance, five mouse tissues (brain, heart, kidney, liver, and lung) 

were analyzed and subjected to pGlyco searching, which revealed 10,009 site-specific glycans on 

1,988 glycosites from 955 glycoproteins with quantitation enabled through pQuant. pGlyco was 

then used to re-evaluate the previously discussed NGAG dataset61 that used GPQuest as the search 

engine and revealed a 97% increase in glycopeptide identifications from the same data. Though 

pGlyco 2.0 was not heavy utilized for O-glycopeptide discovery, topical analyses of asialofetuin 

standard glycoprotein revealed reliable N- and O-glycopeptide identifications, indicating 

analytical potential. Taken together, pGlyco 2.0 presents a powerful, open-source option for robust 

glycopeptide identification.  
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Conclusions and Future Directions 

The field of glycan and glycopeptide quantitation has experienced tremendous growth over 

the past decade. Widely accepted as an area of significant analytical challenge, the numerous 

creative strategies demonstrated above have proven successful as they directly address areas of 

topical concern in glycomic analyses. Ionization efficiency may be improved through glycan 

permethylation or by employing labels that increase hydrophobicity or impart permanent positive 

charge. The need for effective enrichment was addressed by methods that incorporate azide-

containing sugars during cell culture for use in click chemistry labeling experiments. And 

instrumental functionality such as multiple reaction monitoring and data independent acquisition 

alleviate consequences of low glycopeptide abundance within a proteolytic sample. However, 

though these examples present significant advances in glycomic analysis, many improvements are 

still needed. 

 As pursuit of quantitative glycomics increases, researchers will be left searching 

for higher throughput methodologies and inevitably seek strategies for absolute quantitation. 

Methods presented above will lay the foundation for these new techniques, most likely seeing 

numerous strategies used in tandem, such as the workflow demonstrated in HOTMAQ156. 

Additionally, coverage of the glycome and glycoproteome will benefit from improvements in 

sensitivity. Lower- and nanoflow, chip-based technologies facilitate much greater signal response 

from glycan and glycopeptide species and are likely to be invaluable strategies moving forward. 

As well, capillary electrophoresis is likely to see greater implementation in glycomics 

investigations, owing to the extremely low sample consumption, ability to resolve isomeric 

mixtures and ultrahigh resolution. Alternatively, researchers may choose to boost glycan and 

glycopeptide abundance at the MS1 level by using methods more amenable to the labeling strategy 
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employed, such as that shown in BASIL (boosting to amplify signal with isobaric labeling)208. 

Finally, computational tools and software capable of accurately deconvoluting and correctly 

assigning glycomic observations will be an area of continual need. Decoy database creation and 

implementation will see greater utilization as quantitative glycomics gains popularity, and resource 

bottlenecks (e.g. CPU processing speed and available cores) must be alleviated as access to the 

glycome increases. 

 Taken together, the field of quantitative glycomics is a space rich in invention, 

novel implementation, and discovery. Numerous labeling strategies have enabled facile, accurate 

investigations of disease-relevant glycoproteins and are well suited to uncover future biomarkers 

and discern symptomatic protein profiles. The developments in instrumental capability over the 

next several years are likely to provide greater expansion in chemical labeling experiments and 

possibly enable greater implementation of label-free quantitative strategies. But no matter the 

direction, quantitative glycomics and glycoproteomics will remain an area of significant active 

focus for years to come, with numerous challenges still to be presented and overcome. 
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Tables 

Table 4.1 Comparisons of Labeling Strategies for Glycan Quantitation 

Type Method Name Pros Cons 
Metabolic 

Incorporation/Isotopic 

Labeling 

ICORA58 Improved reporting signal 

through increased O-glycan 

abundance, increased 

enrichment efficiency, 

optimal labeling efficiency 

Only validated for O-glycans, 

time-restrictive, growth 

conditions must be carefully 

monitored 

Isotopic Labeling Dimethyl 

Labeling 

Low cost reagents, facile 

labeling, slight increase in 

glycan hydrophobicity 

Limited throughput (low 

multiplexing capacity) 

Isotopic Labeling Isotopic 

Permethylation42 

Significant improvements in 

glycan hydrophobicity and 

ionization efficiency, 8-

channel multiplexing 

Toxicity of iodomethane 

reagents 

Isotopic Labeling Custom Tags (e.g. 

PMP-, Gerard’s 

reagent P-, 

aniline-based etc.) 

Highly customizable, 

effective in bespoke tagging 

workflows, stabilization of 

sialic acid residues, fixing of 

permanent positive charges 

Concerns over labeling 

efficiency, need for 

optimization and method 

design 

Mass Defect DiPyrO66 Greatly reduced spectral 

complexity, elimination of 

redundant sampling, 

precursor co-isolation does 

not affect quantification, 

amine reactive tag (may be 

applied to glycans, peptides, 

and proteins) 

Low multiplexing capacity (3-

channels), requires higher-

resolution MS1 scans, current 

instrumentation outperforms 

multiplexing capacity 

Mass Defect mdSUGAR67 Labeling at glycan reducing 

end and on sialic acids, 

improved glycan 

fragmentation compared to 

commercial tags 

Carbonyl-reactive tags are not 

as flexible in peptide and 

protein quantification, offers 

three-channel multiplexing 

Isobaric Labeling QUANTITY70 Improved fragmentation and 

reporter ion signal, high 

labeling efficiency. 

Quaternary amin imparts 

permanent positive charge 

Requires multi-step synthesis, 

offers 4-channel multiplexing 

Isobaric Labeling TMT Commercial quality control, 

well characterized protocols, 

8-channel multiplexing, fits 

within Thermo “ecosystem”  

Cost-preventative 

Isobaric Labeling SUGAR68 Improved b/y glycan 

fragment series for 

identification, synthesized in 

three high-yield steps, near 

100% labeling efficiency, 

higher reporter ion signal for 

quantitation 

Offers 4-plex multiplexing 
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Figures 

 

Figure 4.1 Graphical representation of quantitative glycomics and glycoproteomic 

analyses. 

Glycomic evaluations, as discussed here, may take place at either the glycan or glycopeptide level 

and pursued through incorporation of stable isotopes, deposition of isotopic labels for MS1 level 

quantification, isobaric labeling for MS2 level quantitation, or label-free comparison. Both data 

dependent and data independent acquisition are effectively employed for glycome or glycopeptide 

detection with numerous software tools available to perform identification and quantitative 

analysis.  
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Figure 4.2 Overview of isotopic labeling with cellular O-glycome reporter/amplification 

(ICORA). 

Cells undergoing condition A are incubated with Ac3GalNAc-BnH7 while cells undergoing 

condition B are incubated with Ac3GalNAc-BnD7. Ac3GalNAc-Bn crosses the plasma 

membrane, is de-esterified in the cytosol, taken up into the Golgi apparatus, and modified by 

endogenous glycosyltransferases to produce light H7 or heavy D7 labeled Bn-O-glycans before 

being secreted into the media. Media from the two conditions is mixed together and heavy and 

light Bn-O-glycans are purified, permethylated, and analyzed by mass spectrometry. A 7 Da mass 

shift distinguishes the light and heavy O-glycans, enabling quantification of shifts in relative 

abundance and comparison of O-glycans in condition A versus condition B. Reprinted from 

Kudelka et al58 with permission from the author.  
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Figure 4.3 DiPyrO labeling 

Top) DiPyrO Labeling of Glycosylamine; Red dots represent heavy isotopic atoms (15N418O) in 

the light DiPyrO tag; blue dots represent heavy isotopic atoms (2H6) in the heavy DiPyrO tag. 

Bottom) Workflow for the relative quantification of DiPyrO-labeled N-glycans illustrating the 

microenvironment. Adapted from Chen et al.66 with permission. 
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Figure 4.4 SUGAR Labeling 

Left) Structure and isotope configurations of 4-plex SUGAR tags. Purple dot: 13C, orange dot: 2H, 

red dot: 15N. Right) ESI-MS/MS fragmentation comparison of aminoxyTMT-labeled and 

SUGAR-labeled N-glycans. AminoxyTMT-labeled H8N2 ([aminoxyTMT – H8N2 + 2H]2+) at NCE 

25 (A) and 30 (C), SUGAR-labeled H8N2 ([SUGAR – H8N2 + 2H]2+) at NCE 25 (B) and 30 (D). 

Adapted from Feng et al.68 with permission. 
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Figure 4.5 Schematic illustration for the HOTMAQ method. 

A) Synthetic peptides are labeled with 4-plex iDiLeu at different concentrations and spiked into 

12-plex DiLeu-labeled analytes. B) Labeled peptides are detected with identical chromatographic 

elution profiles as five precursor ion clusters. The iDiLeu labeled-synthetic peptides are used to 

generate internal calibration curves to quantify the total amount of multiplexed target peptides. 

iDiLeu d0-labeled synthetic trigger peptides and multiplexed DiLeu-labeled target peptides are 

separated in MS1 spectra by a mass offset of 4.01 Da, which enables synthetic trigger peptides to 

initiate quantitative analysis of target peptides via MS2 regardless of target peptide precursor 

abundances. C) Real-time MS2 analysis of d0-labeled synthetic peptides by matching MS2 
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spectrum to a product mass inclusion list unambiguously triggers fragmentation of 12-plex DiLeu-

labeled target peptides in a predefined monitoring window. Acquisition parameters alternate 

between a low-resolution scan for monitoring d0-labeled trigger peptides and a high-resolution 

scan for quantifying 12-plex DiLeu-labeled target peptides. Fragment ions of 12-plex DiLeu-

labeled target peptides are selected for synchronous precursor selection (SPS)-MS3 analysis. D) 

The relative abundance of each 12-plex DiLeu-labeled peptide is accurately determined by 

targeted SPS-MS3 acquisition at a resolving power of 60K (at m/z 200). The absolute amounts of 

target peptides are quantified by integrating the total amount obtained using the standard curve. 

Adapted from Zhang et al.156 with permission. 
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Figure 4.6 Outline of Glyco-DIA. 

A) The major biosynthetic steps and enzymes involved in core1–4 O-glycan structures with 

extensions and capping by sialic acid are illustrated. B) Overview of Glyco-DIA libraries. The 

Glyco-DIA library consists of several sublibraries, including Tn-DIA libraries from SC cell lines, 

T-DIA libraries from WT cell lines, T-DIA library from human blood serum and in silico-

expanded libraries. LFQ, label-free quantification. Reprinted from Ye et al183 with permission 

from the author. 
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Abstract 

The ubiquity of mass spectrometry-based bottom-up proteomic analyses as a component 

of biological investigation mandates the validation of methodologies that increase acquisition 

efficiency, improve sample coverage, and enhance profiling depth. Chromatographic separation is 

often ignored as an area of potential improvement with most analyses relying on traditional 

reversed-phase liquid chromatography (RPLC); this consistent reliance on a single 

chromatographic paradigm fundamentally limits our view of the observable proteome. Within, we 

build upon early reports and validate porous graphitic carbon chromatography (PGC) as a facile 

means to substantially enhance proteomic coverage without changes to sample preparation, 

instrument configuration, or acquisition method. Analysis of offline fractionated cell line digests 

using both separations revealed increase peptide and protein identifications by 43% and 24%, 

respectively. Increased identifications provided more comprehensive coverage of cellular 

components and biological processes independent of protein abundance, highlighting the 

substantial quantity of proteomic information that may go undetected in standard analyses. We 

further utilize these data to reveal that label-free quantitative analyses using RPLC separations 

alone may not be reflective of actual protein constituency. Together, these data highlight the value 

and comprehension offered through PGC-MS proteomic analyses. RAW proteomic data have been 

uploaded to the MassIVE repository with primary accession code MSV000091495. 

 

Introduction 

The long-standing need for human health- and disease-related biomolecular investigation 

has promoted the widespread development of numerous analytical disciplines. Among others, 

proteomic analyses remain a vital component of biological investigations, as these studies provide 

a more robust representation of functioning cells and living systems. Holistic proteomic 
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investigations require analysis of protein expression1, modification2, structure3, and function4, each 

presenting unique instrumental, preparatory and bioinformatic requirements. Mass spectrometry 

(MS) is now the tool-of-choice in contemporary proteomics, as this modality facilitates the breadth 

of measurements required and remains the only high-throughput strategy for peptide sequencing 

and high-resolution mass measurements5. The current acceptance, ubiquity, and ever-increasing 

expertise of MS-based proteomic analyses continues to expand the conduit towards rapid 

investigation of biomolecular alteration in response to external stress, disease, and treatment. 

However, this analytical pursuit demands continual method development and optimization. While 

the improvements desired in MS-based proteomics are diverse and may be discussed separately6-

9, the most fundamental need is for methodologies that enhance acquisition efficiency10, increase 

sample coverage11, and enhance profiling depth12. Efforts seeking to provide such improvements 

target either the sample preparation or instrumentation levels while chromatographic separation is 

relatively constant and potential improvements are underexplored12. 

By in large, high-throughput bottom-up proteomic investigations utilize reversed-phase 

liquid chromatography (RPLC) due to its reliability, availability, relative low cost, and extensive 

innovation13-15. This modality is preferred in bottom-up experiments as the hydrophobicity-based 

retention mechanism retains and separates a large portion of the average proteolytic mixture. 

RPLC does not, however, effectively retain hydrophilic peptides, a shortcoming exacerbated in 

various analyses such as post-translational modification (PTM) discovery16, 17. Additionally, any 

hydrophilic peptides that do not elute in the void volume may be poorly resolved and suffer from 

significant ionization suppression in the presence of more hydrophobic, basic peptides18. Within 

RPLC-MS analyses, the willful disposal of these peptides and their potential insight into protein 

structure and function is considered an acceptable loss in favor of high identification rates and 
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simpler experimental setups. For this reason, there is a critical need to implement facile, flexible 

experimental components that allow for these often-discarded analytes to be effectively retained, 

separated, and identified. 

Traditionally, there have been few options when in search of chromatographic paradigms 

capable of retaining hydrophilic peptides. Hydrophilic interaction chromatography (HILIC) is the 

most common and widely reported19-21 modality but may be considered disadvantageous as it 

requires mixtures to undergo phase change into organic buffers prior to analysis – an obvious 

limitation for hydrophilic analytes. Electrostatic repulsion-hydrophilic interaction chromatography 

(ERLIC)22-25 is a recent addition to the chromatographic toolbox, reporting greater retention of 

hydrophilic peptides26 and polar analytes27-29. A limitation of both HILIC and ERLIC is the 

requirement of salt-containing buffers to mitigate charge effects23, 30 or to maintain and improve 

separation capacity31, which can hinder mass spectrometry detection. Porous graphitic carbon 

(PGC) chromatography is an emerging chromatographic regime that has gained popularity for its 

ability to retain polar, hydrophilic analytes32-34 with particular favor in the analysis of released 

glycans35-45. This separation strategy was shown to be suitable for the analysis of tryptic 

glycopeptides46, 47, suggesting the utility of PGC may extend beyond metabolomic and glycomic 

analyses. With growing understanding of the retention mechanism, it was recently hypothesized 

that chromatography of this nature may be a suitable complement to traditional RPLC in 

untargeted, high-throughput analyses. Early reports validated this hypothesis as PGC revealed a 

substantial improvement in peptide and protein identification, with additional benefits seen when 

column temperature is optimized48. Stating broadly the advantages that may be seen when PGC 

separations are included, these initial studies did not acutely detail to what extent this additional 
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information serves to increase sample coverage, improve profiling depth, and affect our 

understanding of sample constituency.  

Herein, we expand on the benefits of PGC chromatography within discovery proteomics 

experiments. Utilizing offline fractionation to partition prostate cancer cell line lysate, sequential 

analyses revealed a 43% increase in peptide identification when PGC separations are included, 

with almost all fractions revealing competitive identification rates between RPLC and PGC. 

Confident protein identifications were also increased by 23% when including PGC separations, 

providing greater coverage of numerous cellular compartments and biological process pathways. 

Interestingly, there was no significant difference in the known abundances of proteins identified 

through each separation, suggesting proteomic profiling can be significantly improved without the 

need to explore deeper into a given mixture. Finally, we compiled these data into spectral libraries 

that were deployed in data-independent label-free quantitative analyses. These evaluations reveal 

highly reproducible quantitation between PGC and RPLC separations when using the same 

collection of peptide precursors for quantitation. However, including the additional, 

complementary peptide identifications provided through PGC during quantitation produces 

significantly different protein expression levels than those found through RPLC alone. Overall, 

our work demonstrates the level of information that may go undiscovered in traditional proteomic 

analyses and how a narrow view of the observable proteome can impact qualitative and 

quantitative measurements. Despite the incalculable number of experimental optimizations 

intended to improve analytical throughput, each will be fundamentally hindered by a limited, 

chromatography-specific view of the proteome. For this reason, future development of PGC that 

increases retention capacity and reduces time needed to perform sequential RPLC and PGC will 

play a pivotal role in comprehensive proteome profiling. 
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Experimental 

Materials 

Water (H2O, 223623) acetonitrile (ACN, A955), methanol (MeOH, A456), chloroform 

(C298), formic acid (FA, A117), tris base (BP152), urea (U15), and hydrochloric acid (HCl, 

A144SI) were purchased from Thermo Scientific. Acetone (179124), sodium dodecyl sulfate 

(SDS, 7173C), dithiothreitol (DTT, D9779), and iodoacetamide (IAA, I6125) were purchased 

from Millipore Sigma. Trypisn (V5113) was purchased from Promega (Madison, WI). RPLC 

packing materials (4451IP, 4472IP) were purchased from Osaka Soda Co (Osaka, Japan). PGC 

packing material was harvested from ThermoFisher PGC guard columns (35003-014001). 

Capillary tubing (1068150019) was purchased from PolyMicro. All other sources are listed. 

Cell Growth 

Benign prostate hypertrophy to prostate cancer (BCaP) cell lines were generated and 

described previously49. A tumorigenic cell line (BCaP-T10) and an aggressive, metastatic, 

tumorigenic cell line (BCaP-MT10) are used throughout these analyses. Growth conditions are 

listed in the supplementary information. 

Protein Extraction and Digestion 

Cell pellets were resuspended in 4 volumes 50mM Tris-HCl, 4% SDS prior to lysis via 

ultrasonication. Lysates were centrifuged to remove cell debris and protein concentration was 

estimated via bicinchoninic acid (BCA) assay (ThermoFisher Scientific, 23225). Disulfide bonds 

were reduced with 450mM DTT for 30 minutes at 55°C followed by alkylation with 10mM IAA 

at room temperature for 15 minutes. Protein was extracted through repeated additions of cold 80% 

acetone and incubation at -20°C. Protein was reconstituted in 8M urea with 1x protease inhibitor 
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cocktail (Roche, 05892791001 and 04906837001). Aliquots of crude protein were diluted 1:10 

with 50mM Tris-HCl to reduce urea concentration to <1 M followed by two additions of trypsin 

for digestion. Trypsin was added 1:100 w:w and incubated for four hours at 37°C followed by a 

second addition of trypsin 1:50 that was left to incubate overnight at 37°C. Proteolytic mixtures 

were desalted, dried under vacuum, and peptide concentration was estimated via peptide assay 

(ThermoFisher Scientific, 23275). 

HPLC Fractionation 

Samples were fractionated using a Waters e2695 separation module equipped with a 

Waters 2489 UV-Vis detector operating in acquiring at 214 and 280nm. A Phenomenex Kinetex 

2.6um PS C18 100Å column (150mm x 4.6mm) was used for separation. Buffers A and B were 

H2O+0.1% FA and ACN+0.1%FA, respectively. 100ug each of T10 and MT10 lysate digest were 

combined, dried, and reconstituted in buffer A prior to separation. Samples were separated using 

a 94 min gradient of the following composition: 1% buffer B from minute 0-5, 40% buffer B at 

minute 50, 60% buffer B at minute 54, 70% buffer B at minute 58, 100% buffer B from minutes 

59-74, 1% buffer B from minutes 74.5-94. Flow rate was set to 0.2 mL/min. Fractions were 

collected in 1.5-minute intervals between minutes 10-70 and were combined as described below 

(see Results and Discussion). 

LC-MS/MS 

Samples were analyzed using a Dionex nanoUltimate 3000 chromatography stack coupled 

to a ThermoFisher Scientific Orbitrap Fusion Lumos. Separation was performed on 15cm custom-

packed capillary columns, which were prepared as described in the Supporting Information. 

Buffers A and B were H2O+0.1% FA and ACN+0.1%FA, respectively. A flow rate of 350 nL/min 

and the following 110 gradient were used for all analyses: 3% buffer B from minutes 0-18.3, 35% 
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buffer B at minute 90, 95% buffer B from minutes 90.5-100, 3% buffer B from minutes 101-110. 

The following MS1 parameters were used for DDA analyses: resolution, 120,000; scan range, 400-

1250m/z; AGC target, 2e5; maximum injection time, 50ms; intensity threshold, 2e4; charge state, 

2-6; dynamic exclusion, after 1 occurrence for 45s. The MS2 parameters were as follows: 

resolution, 60,000; isolation width 1 m/z; activation, HCD 30; AGC target, 1e4; fixed first mass, 

100m/z. For DIA analyses, MS1 settings were resolution, 120,000; scan range, 400-1250m/z; AGC 

target, 1e6; maximum injection time, 50ms. DIA MS2 parameters were resolution, 60,000; scan 

range, 200-2000m/z; isolation window 24m/z; activation, HCD 30; AGC target, 1e5; maximum 

injection time, 45ms; loop control N=9. All fractions and all samples were analyzed in technical 

duplicate.  

Database Searching 

DDA data were processed using FragPipe 18.0 with MSFragger50 3.5. An open-source 

Python library, easypqp, was used to generate spectral libraries from processed DDA runs; RPLC 

and PGC libraries were generated separately. These spectral libraries were imported to DIA-NN51 

for analysis of data-independent analyses. All parameters used within MSFragger and DIA-NN 

may be found in the Supporting Information.  

Data and Code Availability 

RAW proteomic data have been uploaded to the MassIVE repository with primary 

accession code MSV000091495. All code and files required to reproduce the analyses and figures 

presented within can be found at https://github.com/lingjunli-research/pgc-rplc-frac-profiling. 
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Results and Discussion 

Profiling Fractionated Prostate Cancer Cell Lysate 

Within mass spectrometry-based proteomic analyses, the profiling depth that may be 

achieved is directly tied to the efficiency with which biological mixtures are simplified during 

separation. Often, a single chromatographic modality does not provide the requisite simplicity for 

deep profiling, leading many to employ offline fractionation. As previous analyses have directly 

compared RPLC and PGC in shotgun analyses48, we chose to employ offline fractionation both to 

further profile the level of information gained through the addition of PGC separations, as well as 

mimic common decomplexation techniques within bottom-up proteomics. Pooling tumorigenic 

and metastatic prostate cancer cell lysate, reversed phase offline fractionation was performed to 

partition the complex mixture and each fraction was analyzed sequentially via RPLC- and PGC-

MS analysis (Figure 5.1a). After fractionation (see methods), the 280nm absorbance trace was 

integrated across the fractionation window (minutes 10-70). The integrated area was divided into 

8 approximately equal segments, all fractions within a segment were pooled for LC-MS analysis 

(Figure 5.1b). As previous studies have reiterated the capacity of PGC to separate polar, 

hydrophilic analytes, we elected to combine fractions sequentially, keeping peptides of similar 

hydrophobicity together.  

We hypothesized the sequential combination would result in the greatest contrast between 

RPLC and PGC analyses. Theoretically, the early fractions containing predominantly hydrophilic 

analytes should be poorly retained and elute early in subsequent RPLC-MS, whereas PGC should 

retain these analytes far longer and have elution profiles inversely correlated with fraction number 

(i.e., peptides in early fractions elute late and vice versa). Examining the time points of all 

confidently identified peptides, we see this theoretical expectation largely holds true in RPLC 
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analyses but not for PGC separations (Figure 5.2a). Rather, PGC separations demonstrate a 

progressive trend in peptide retention times, similar to that of RPLC analyses, suggesting that 

peptide hydrophobicity is not solely responsible for PGC retention. As well, we had anticipated 

PGC elution profiles to be more broadly distributed than those in RPLC separations, which was 

only marginally observed. This observation indicates the LC gradient used within our analyses – 

one modeled from typical RPLC experiments – is not the most appropriate for PGC separations 

and later optimizations will result in more effective PGC peptide separation (Figure S5.1).  

Examining the overall peptide identifications within each fraction, initial comparisons 

show RPLC outpaces PGC across all fractions (Figure 5.2b), mirroring those observations seen 

elsewhere48. However, given the anticipated redundancy in identifications, removing peptides 

detected through both separation modalities reveals PGC separations are competitive, especially 

for those early, predominantly hydrophilic fractions (Figure 5.2b). Furthermore, the number of 

peptides specific to a single separation paradigm serves to highlight how much proteomic 

information may be lost during typical RPLC-MS analyses. Overall, RPLC analysis of offline 

fractions revealed 34,261 peptides with 21,266 unique to this separation. The inclusion of PGC 

separations revealed an additional 14,783 peptides, a 43% increase compared to RPLC alone, 

culminating in 49,044 total peptide sequences (Figure 5.2c). As anticipated, PGC provided greater 

access to those hydrophilic peptides across all fractions (Figure 5.2d) in addition to selectively 

retaining shorter analytes compared to RPLC (Figure 5.2e). While these high-level results are 

encouraging at face value, they should be further contextualized within this experiment. Here, we 

utilized offline fractionation, which empirically improves profiling capability of RPLC analyses. 

Given that we are still able to extract such an extensive quantity of additional information through 
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PGC analyses, it is even more clear the level of information that is lost in single-separation, RPLC 

shotgun proteomics.  

One consideration in PGC analyses, however, is the software and parameters used during 

peptide identification. Within this study we utilized MSFragger, a well-recognized suite of tools 

with demonstrated merit50. A highly beneficial component of this software is the ability generate 

in silico tandem MS spectra and theoretical retention times that may be used as a scoring 

mechanism for identified peptides. Within our analyses, peptides identified in RPLC separations 

regularly scored higher and may be considered more confident matches than those in PGC 

separations (Figure 5.2f). Certainly, it is possible that all RPLC-retained peptides produced better 

spectra; however, peptides identified in PGC analyses also fell behind in score of the next-best 

peptide sequence identification, match to theoretical retention time, and PeptideProphet 

expectation52 (Figure S5.2). Given the consistency with which PGC peptides score below RLPC 

peptides, this is most likely a reflection of how database searching tools, statistical models, and 

predicted expectations are largely trained upon datasets that utilize RPLC separations. We do not 

argue that the retention and separation capacity of RPLC is superior to that of PGC, as 

demonstrated here and previously48, but given these observations and further discussion provided 

below, we posit that the heavy emphasis on RPLC separations in the construction and utilization 

of bioinformatic tools presents a fundamental limitation in the ability to correctly and confidently 

identify peptides in PGC-MS experiments. 

Enhanced Protein Identification, Compartment Coverage and Pathway Completeness 

Encouraged by the improved peptide recognition provided when PGC separations are used 

in addition to RPLC, we anticipated the quantity of peptides identified would directly correlate to 

the number of proteins identified through both separations. Considering all proteotypic peptides 
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identified in a given fraction, PGC and RPLC yielded virtually identical quantities of proteins 

except for those later fractions where RPLC excelled (Figure 5.3a). However, knowing the 

redundancy in peptide identifications between the two separations (Figure 5.2c), removing these 

redundant identifications reveals notable improvements in protein recognition enabled through 

PGC separations. Though both separations provided access to different collections of proteins, 

PGC outpaces RPLC in the number of unique protein identifications, especially within the inner-

most fractions (Figure 5.3a). This observation is particularly valuable when considered alongside 

the differences in peptide identifications shown in Figure 5.2. RPLC identified more peptides 

overall and in all fractions except for one; however, those peptides do not map to a larger collection 

of proteins. This likely speaks to the known limitations in typical RPLC-MS analyses where data-

dependent acquisition experiments bias towards identification of those highly abundant, 

hydrophobic peptides that ionize well and can cause signal suppression of unique, low-abundance 

analytes. PGC, which provided a greater quantity of unique protein species, likely benefits from 

the smaller number of peptides within each protein that are compatible with the separation 

modality, reducing overall number of peptides but increasing number of proteins.  

In total, 3,868 proteins were identified through both separations with PGC and RPLC 

revealing 1,130 and 752 separation-specific proteins, respectively (Figure 5.3b). Increased 

identification rates alone are notable, though we hypothesized the significant increase in protein 

recognition likely signaled greater profiling depth across the experiment. Organizing all identified 

proteins into their known subcellular compartments (as listed in the UniProt knowledgebase) 

reveals the improved compartment coverage when PGC separations are used (Figure 5.3c). While 

we anticipated PGC would enable more comprehensive coverage of the cytoplasm, nucleus and 

other compartments with predominantly cytosolic proteins, our data also revealed PGC was able 
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to improve the detection of membrane and membrane-associated proteins. These observations are 

encouraging as it demonstrates PGC broadly provides more effective protein recognition and is 

not biased towards compartments dominated by hydrophilic species.  

As PGC separations noticeably augmented the proteome coverage achieved through 

traditional RPLC-MS analyses, we allowed ourselves to consider the possibility that PGC was 

sampling deeper into the biological matrix, identifying species lower in abundance. When the 

identified proteins were sorted according to their expected abundances (see Supplemental 

Information), the proteins identified through both separations were those known to be highest in 

abundance (Figure 5.3d-e). However, proteins unique to a single separation were not significantly 

different in abundance, with PGC separations showing only a slightly greater density of lower 

abundance species. This observation alone would lead us to believe PGC does not significantly 

enhance profiling depth, rather it provides greater breadth. However, comparing the global protein 

populations provides an obtuse conclusion, as there is no information as to protein relatedness or 

activity. As such, we further categorized proteins according to their biological processes to 

determine whether PGC separations provide any better coverage of physiological pathways or 

protein communities. Of those biological processes represented by at least 50 members, many were 

enhanced through the inclusion of PGC separations, providing detection of lower abundance 

proteins (Figure 5.3f). For example, PGC provided greater coverage of mRNA splicing, 

translation, lipid metabolic process, and protein localization by identifying species lower in 

abundance than those seen in RPLC analyses. Noting there are other pathways where RPLC 

provides identification of lower abundance species (Figure 5.3f), PGC does still provide benefit in 

amplifying pathway coverage and revealing information that may be otherwise lost.  
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Overall, the peptide- and protein-level results presented here serve to illustrate the breadth 

and depth of information reclaimed when utilizing PGC analyses in addition to RPLC. Within this 

experiment, we utilized offline fractionation to reduce matrix complexity and enable greater 

sample coverage, anticipating PGC separations would benefit analyses of those predominantly 

hydrophilic fractions but would provide negligible enhancement of others. However, these 

expectations were largely subverted as PGC separations provided substantial increases to peptide 

and protein recognition in almost all cases. More interestingly, the additional proteins identified in 

PGC experiments showed virtually no difference in known abundance as those seen in RPLC 

analyses. These observations indicate current proteomics should not only focus on exploring 

deeper into the proteome but should also consider exploring broader. Our data shows within all 

analyses – not just shotgun experiments – using a single separation will always provide a limited, 

biased view of the proteome. By utilizing and optimizing facile, complementary separation 

strategies, these limitations may be systematically addressed and overcome. 

PGC Analyses Enable More Representative Label-Free Protein Quantitation 

Data-independent acquisition (DIA) MS is rapidly gaining favor in analysis of biological 

mixtures as it provides higher throughput and greater profiling depth53. Critically, the 

comprehensive and reproducible nature of DIA-MS has promoted its widespread use in label-free 

protein quantitation53-55. After confident precursor assignment, protein quantitation in DIA 

analyses is enabled through summating peptide or transition ion abundances or peak area, though 

variations to this workflow have been described56. As we have established the vast, complementary 

proteomic information provided when PGC separations are used to augment RPLC-MS analyses, 

our ability to quantify proteins is similarly enhanced. However, while PGC enables identification, 

and therefore quantitation, of proteins previously unseen in RPLC-MS, PGC also enabled the 
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retention and identification of additional peptides from protein sequences already identified. 

Knowing common label-free protein quantitation in DIA analyses utilizes summated precursor 

abundances, the additional peptides identified through PGC are likely to significantly impact 

quantitative estimations. 

To investigate this claim, we compiled the data-dependent analyses of the offline fractions 

into two spectral libraries, one for each separation regime. After DIA analyses of tumorigenic 

(T10) and metastatic (MT10) prostate cancer cell line digests, these libraries were deployed for 

precursor assignment. Peptide identification rates resembled the trend observed in DDA analyses 

of fractions, though fewer were identified overall (Figure 5.4a). The number of identified proteins, 

however, was comparable between the two separations. This observation, which does not coincide 

with our DDA analyses, is likely a result of the compressed elution profile observed through PGC 

separations (Figure 5.4b), rearticulating the need to investigate the optimal gradient composition 

for this paradigm. During manual interrogation of these identifications, we noted an additional 

aspect of chromatographic behavior that may present limitation. Focusing on peptides identified 

in both separations, these peptides were almost unanimously retained longer in PGC separations 

(Figure 5.4c), 11.68 minutes longer on average. Expectedly, those with greatest retention time 

difference were generally those with highest hydrophilicity and polarity (Figure S5.3). These 

differences in retention time do not impact our DIA analyses as we are using empirical spectral 

libraries where the experimental MS spectra and retention time are known and used for 

identification. However, library-free analyses are gaining popularity as they are efficient and can 

expand profiling capacity while eliminating the need to generate extensive libraries. We posit 

library-free analysis built into current software is not suitable for PGC-DIA-MS analyses. 
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Library-free analyses, such as that offered through DIA-NN, work by using machine 

learning approaches to generate theoretical tandem-MS spectra and peptide retention times. These 

tools are constructed on the extensive body of RPLC-MS proteomics data, making them accurate, 

reliable tools when RPLC is the separation regime. However, the significant difference in peptide 

retention time observed in our PGC analyses means that library-free tools such as DIA-NN would 

struggle to make accurate retention time predictions and would provide limited peptide and protein 

identifications. We briefly investigated this claim by performing library-free analyses of our DIA 

datasets (see Supplemental Information). Agreeing with previous literature, library-free data 

processing resulted in significant improvements in the number of precursors and proteins identified 

in RPLC analyses (Figure S5.4). These improvements are largely due to the rigorous, well-aligned 

in silico spectra and retention times predicted for our RPLC separations. Nevertheless, library-free 

results for our PGC datasets were rather poor, as expected, identifying only marginally more 

peptides but far fewer proteins compared to our chosen spectral-library approach (Figure S5.4). 

As we are confident these deficiencies stem from the inability to correctly predict precursor 

retention time, users must either rely on empirical spectral libraries or develop custom machine 

learning approaches that provide rigorous, accurate retention time predictions for PGC-DIA-MS 

analyses. 

These limitations notwithstanding, we turned our attention to ensuring technical 

reproducibility and quantitative accuracy. DIA-NN implements strict requirements for precursor 

assignment, offers matching between runs, and has a built-in FDR estimation. These features, 

alongside the implementation of the MaxLFQ algorithm57, allow for highly reproducible protein-

level estimations. Within our analyses, both separation paradigms provided excellent intra-sample 

reproducibility (Pearson R2>0.99, Figure 5.3d) and low variance (Figure 5.3e) in protein 
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abundance estimations, indicating both separations are suitable for high-throughput quantitative 

DIA-MS analyses. To directly compare protein abundance estimations between PGC and RPLC 

experiments, all proteotypic peptides identified in both separations were compiled, grouped by 

protein precursor, and peptide MS1 areas were summed and then averaged across technical 

duplicates. For each of the two prostate cancer samples analyzed, approximately 2,100 proteins 

could be directly compared between each separation paradigm, demonstrating excellent correlation 

(R2≈0.95, Figure 5.4f). This observation indicates that extracted precursor area is conserved 

regardless of the separation modality employed and that protein-level estimations made through 

one separation modality will largely hold true in the other. Knowing this, we may reliably combine 

extracted precursor areas of separation-specific peptides to achieve more representative protein 

abundances.  

To evaluate how protein quantity estimations change when PGC separations are used in 

tandem with RPLC, we compiled all proteotypic peptides regardless of their identifying separation, 

summated peptide areas and averaged technical replicates as above. We observed poor correlation 

(Pearson R2≤0.5, Figure 5.4g) of these new, adjusted protein abundances to those calculated using 

peptides from RPLC experiments alone. As well, protein quantities were significantly different 

between the two calculations, 963 proteins having notably greater calculated abundance (≥0.25 

fold increase) with 465 and 133 proteins shown to be at least 1- and 2-fold greater, respectively 

(Figure 5.4h). These substantial differences in protein level estimations further evidence the swath 

of information lost or left undiscovered in routine RPLC analyses. Even if our quantitative 

approach was altered to utilize averaged peptide abundances or only the N-most abundant peptides 

from each protein, our data suggest the resulting protein abundance estimations could be 

significantly impacted.  
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Within this single experiment, PGC separations enable the retention and identification of 

topical peptide precursors that not only enhance proteomic coverage but also present the possibility 

of significantly impacting our perception of protein regulation, pathway activity, and sample 

constituency. As such, we hold the position that RPLC separations may never be replaced or 

supplanted but we can, and should, turn our attention to developing facile, high-throughput 

strategies that enable complementary proteomic investigations. Our data validate PGC not as the 

singular solution to these endeavors but as one suitable strategy that enables more comprehensive, 

representative analyses. We are confident PGC can gain purchase within the ever-changing 

analytical landscape and that engineering developments, targeted optimization, and increased 

utilization will help drive the proteomic investigations of tomorrow. 

Conclusion 

Validated methodologies that increase efficiency and enable more comprehensive sample 

coverage are an ever-present need in mass spectrometry-based proteomics. Whereas high-

throughput measurements continue to rely on RPLC as the principal separation strategy, this report 

details to what extent the incorporation of PGC chromatography may enhance routine analyses. 

Without changes to sample preparation, gradient composition, or acquisition parameters, the 

inclusion of porous graphitic carbon provided a significant increase in peptide and protein 

identification and resulted in greater coverage of cellular compartments and biological pathways. 

Our report also demonstrates how these additional peptide identifications significantly impact 

downstream protein quantitation when compared against RPLC-MS based measurements. 

Ultimately, this study serves to highlight the extensive proteomic information that may be 

reclaimed through the simple inclusion of this nascent chromatographic paradigm and to validate 

this methodology as suitable for in-depth proteomic investigations. As our data indicate the 
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development of tailored separation and acquisition parameters will substantially improve PGC-

based discovery analyses, it is clear the future development of PGC separations presents a valid, 

worthwhile avenue towards comprehensive proteomic analyses and label-free quantitation. 
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Figures 

 

Figure 5.1 Analytical workflow and offline fractionation. 

a) Graphical representation of proposed analytical workflow whereby offline-fractionated samples 

are analyzed through both RPLC- and PGC-MS. b) Absorbance (280nm) trace collected during 

fractionation; vertical lines represent the 1.5minute divisions of each fraction collected. The trace 

was integrated between minutes 10-70 and divided into 8 approximately equal components. All 

fractions within these 8 components (depicted by the gray boxes) were combined to make 8 final 

fractions used for analysis. 
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Figure 5.2 Peptide-level differences between PGC and RPLC analyses 

a) Density plots displaying the time points during which peptides were identified. b) Total peptides 

(left) and number of column-specific peptides (right) identified in each fraction. “Column-

specific” refers to peptides identified only through that single separation modality. c) Overlap of 

all peptides identified in all fractions. d) Relative hydrophilicity of all peptides identified within a 

given separation method. Grand average of hydropathy (GRAVY) calculations are grouped by 

retention time and averaged across fractions. e) Jitter plots displaying the length of peptides 

identified through both separations. f) Line plots displaying the average hyperscore, an MSFragger 

metric of confidence, for all peptides in a single fraction, partitioned according to the separation 

that retained them. 
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Figure 5.3 PGC analyses provide enhanced protein identification compared to RPLC alone. 

a) Quantities of total (top) and column-specific (bottom) proteins identified in each fraction. 

“Column-specific” refers to peptides identified only through that single separation modality. b) 

Overlap of proteins identified across all fractions. c) Six representative cellular compartments 

displaying the number of proteins localized within those compartments and through what 

separations they were identified; PGC (orange), RPLC (blue), both columns (gray). d) Proteins 

identified across all fractions sorted and ranked according to expected protein abundance within 

the human proteome. Expected abundances are normalized according to quantities estimated in the 

protein abundance database, Pax-DB58 (see Supplemental Information). e) Boxplots displaying the 

distribution of protein abundances identified in either separation. f) Representative biological 
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processes identified across all fractions with boxplots displaying the distribution of protein 

abundances identified within those pathways. 
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Figure 5.4 Spectral library-based DIA-MS analysis of prostate cell lines. 

a) Overlap of peptides and proteins identified through both separations. Results are combined 

across the two cell lines analyzed. b) Density plots representing the elution profiles of peptides 

identified in both PGC and RPLC experiments. c) Retention times of representative peptides 

identified through both separation paradigms displaying the significantly later times associated 

with PGC analysis. d) Intrasample reproducibility of protein-level abundance calculated after DIA-

MS analyses. e) Violin plots displaying the percent difference in protein abundance between 

technical replicates. f) Scatter plot displaying the agreement of protein abundances when using 

peptide precursors identified in both separation regimes. g) Protein abundances calculated using 

all proteotypic peptide precursors plotted against protein abundances estimated using only 

precursors found in RPLC analyses. h) The count of proteins showing increased abundance 

estimations after PGC peptides are included. Vertical bars represent count and horizontal axis is 

the binned fold increase as calculated by 𝐹𝑜𝑙𝑑 𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒 = 𝑙𝑜𝑔2(𝑅𝑃𝐿𝐶 + 𝑃𝐺𝐶 𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒) −

 𝑙𝑜𝑔2(𝑅𝑃𝐿𝐶 𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒). 
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Supplemental Methods 

Cell Growth 

Cell lines were grown and maintained in phenol-free DMEM/Ham’s F12 (Gibco) 

supplemented with 5% fetal bovine serum (HyClone) and 1% penicillin-streptomycin solution 

(Gibco). T175 culture flasks were placed in an incubator at 5% CO2 and 98% humidity. Cells were 

grown to 90% confluency, washed with 1× phosphate-buffered saline (Cytiva), and harvested 

using a cell scraper. Approximately 3.5e6 cells were collected after culture. Cell pellets were 

washed twice using phosphate-buffered saline and stored at −80°C for subsequent processing. 

Column Preparation 

25 cm of capillary (360um o.d., 75um i.d.) were taken for column packing. Using a flame, 

a small 3cm portion of the capillary coating was removed, approximately 5 cm from one end. An 

emitter was pulled using a Sutter P2000 laser puller. Column shells were flushed with MeOH to 

ensure adequate spray. RPLC columns were packed with 3um packing material at 100psi for 5 

seconds followed by packing with 1.7um packing material at 1500psi. Columns were packed until 

15cm of the capillary was filled. Packing material for RPLC columns was suspended in 

chloroform. For PGC columns, this process is identical, save for the packing step. Packing 

material, 3um, was suspended in MeOH and packed at 1500psi until a final length of 15cm was 

reached. 

Data Processing 

DDA raw files were processed using FragPipe 18.0 with MSFragger 3.5 and IonQuant 1.8. 

All technical duplicates were assigned as part of the same experiment to yield one result file per 

fraction and all files were searched against the UniProt Human proteome (December 2021). MS1 
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and MS2 mass tolerance were set to 20ppm, enzymatic digestion was set to strict K and R cleavage 

and two allowed missed cleavage sites, peptide length 7-50 and mass 500-5000 were allowed. 

Carbamidomethyl of C was set as a fixed modification with the following modifications considered 

as variable: protein N-terminal acetylation (1 occurrence per peptide), peptide N-terminal 

acetylation (1 occurrence per peptide), oxidation of Met (3 occurrence per peptide), deamidation 

of Asn and Glu (3 occurrence per peptide). All results were filtered to a 1% FDR prior to analysis.  

Spectral libraries were generated separately for RPLC and PGC separations and were 

imported to DIA-NN for analysis. Analyses were searched against the UniProt human proteome 

(December 2021) with Trypsin/P digestion and two allowed missed cleavage sites. N-terminal Met 

excision, carbamidomethylation of Cys, oxidation of Met, and N-terminal acetylation were 

selected as modifications with 4 variable modifications allowed per peptide. Peptides of length 7-

50, charge 2-7, precursor range 400-1250m/z, fragment ion range 200-2000m/z were considered. 

FDR cutoff was set to 1%. Match between runs was selected and proteins were inferenced base on 

protein names. All other options were set as default. RPLC and PGC analyses were searched 

separately. For library free analyses within DIA-NN, the same parameters were used but no 

spectral libraries were provided. Rather, we allowed DIA-NN to create an in silico spectral library 

using the UniProt Human Proteome (December 2021). 

Expected Protein Abundance 

To aid in our understanding of profiling depth (i.e., whether a single separation paradigm 

samples proteins known to be lower in abundance or not), we utilized Pax-DB, an external resource 

containing empirical protein abundance measurements. We selected the integrated Homo sapiens 

– whole organism dataset (https://pax-db.org/dataset/9606/1502934799/, released 2021), 

which covers 99% of the human proteome and contains 19,338 abundance values. Abundance 

https://pax-db.org/dataset/9606/1502934799/
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values this dataset were converted to a log 10 scale using the equation 𝐿𝑜𝑔 𝐴𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒 =

 𝑙𝑜𝑔10(𝑃𝑎𝑥𝐷𝐵 𝐴𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒 𝑥 1000) and were then normalized to the maximum abundance value 

within the dataset to yield “normalized abundance.” Throughout the main text, we refer to 

“expected” or “anticipated” abundance, referring to the relative abundance at which we expect 

these proteins to be seen in the average proteomic measurement. As we do not have quantitative 

data within our DDA analyses, the empirical abundance values for our samples cannot be stated. 
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Supplemental Tables 

The supplemental tables listed below are found within a single Excel file with multiple, 

titled sheets. As a note, this data is not needed to recreate the analyses used within the manuscript; 

the original result files from MSFragger and DIA-NN have been uploaded to the github repository. 

Cloning the repository will let you recreate all figures. 
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Supplemental Figures 

 

Figure S5.1 Comparison of peptide elution/identification times with respect to gradient 

composition. 

A primary consideration raised in this work is the use of appropriate gradients. For consistency, 

both separations utilized a typical gradient used for RPLC analyses, which is indicated by the 

overlaid blue line and right Y-axis. As shown in this representative data (DDA analyses of fraction 

5), RPLC separations (blue) were distributed across the useable gradient. However, PGC (left) 

analyses of the same sample with the same gradient displays a condensed elution profile with most 

identifications coming at 20%+ ACN, indicating typical proteomics gradients can work but are 

less suitable for these separations. 
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Figure S5.2 Quality metrics of peptides identified through MSFragger. 

a) Comparison of hyperscore, a measure of similarity between experimental and theoretical 

spectra. The higher values for RPLC experiments (blue) indicate consistently better matches. b) 

Comparison of nextscore, the similarity of next-best scoring peptide to the experimental spectra. 

The higher values of PGC (orange) represents less well-defined differences in spectral quality 

between first- and second-best peptide matches. c) Comparison of rtscore, a metric indicating the 

match between theoretical and experimental retention times. The lower values of PGC (orange) 

indicate the retention times found largely do not match those expected. This highlights a prevalent 

bias in bioinformatic tools towards RPLC-based analyses. d) Comparison of expectation values 

from PeptideProphet; lower values indicate higher likelihood. 
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Figure S5.3 Peptide characteristics driving retention time differences in PGC separations. 

a) Correlation matrix comparing numerous calculated peptide descriptors with respect to the 

determined RT difference. ∆𝑅𝑇 =  𝑅𝑇𝑃𝐺𝐶 − 𝑅𝑇𝑅𝑃𝐿𝐶 b) Line and error band plots of those peptide 

characteristics most responsible for RT difference PGC separations. Overall, the data suggest the 

hydrophilicity is a major driving factor, which is exacerbated by increased prevalence of aromatic 

residues and reduced prevalence of basic residues. 
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Figure S5.4 Overlap of peptide precursor and protein identifications identified in library 

free analysis. 

While RPLC separations (blue) benefitted substantially from the use of library free analyses, as 

evidenced by the significant increase in precursor assignments, PGC separations (orange) only 

revealed moderately more peptides. In addition, library-free analyses resulted in far fewer 

identified proteins for PGC analyses compared to the DDA experiments. While the compressed 

elution profiles mentioned in the main text did not help identification rates, the substantial 

reduction of unique species for PGC separations confirm there is incongruency between the 

retention mechanism and the predictions made in DIA-NN. 
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Abstract 

Innovations in medical technology and dedicated focus from the scientific community have 

inspired numerous treatment strategies for benign and invasive cancers. While these improvements 

often lend themselves to more positive prognoses and greater patient longevity, means for early 

detection and severity stratification have failed to keep pace. Detection and validation of cancer-

specific biomarkers hinges on the ability to identify subtype-specific phenotypic and proteomic 

alterations and the systematic screening of diverse patient groups. For this reason, clinical and 

scientific research settings rely on high throughput and high sensitivity mass spectrometry methods 

to discover and quantify unique molecular perturbations in cancer patients. Discussed within is an 

overview of quantitative proteomics strategies and a summary of recent applications that enable 

revealing potential biomarkers and treatment targets in prostate, ovarian, breast, and pancreatic 

cancer in a high throughput manner. 
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Introduction 

Mass spectrometry (MS) represents a unique and powerful technological platform in 

investigative biomolecular research. This high sensitivity regime grants access to the discovery 

and identification of small molecules,1-3 endogenous peptides,4-7 proteins,8-10 and macromolecular 

complexes.11-13 The utility of MS is enhanced through the facility of ionizing biomolecule species 

in solution via electrospray ionization14 (ESI) and matrix-assisted laser desorption/ionization15-17 

(MALDI) that provides a means of producing ions from stationary supports and tissue sections. 

As well, numerous mass analyzers18 have been developed to accommodate high-speed and high-

resolution measurements. Realizing the full potential and flexibility of modern MS platforms, as 

well as their ability to decipher complex biological samples, focus has shifted towards improving 

instrument efficiency and sample throughput. 

Gradual improvements in instrument operational speed, the advent of novel dissociation 

techniques19-22 and implementation of multidimensional ion separation regimes23-25 enable 

researchers to obtain greater levels of detail from complex mixtures than ever before. However, 

while shotgun proteomics provides a means for deep proteomic profiling, the typical time course 

and complexity of a single experiment26 renders repetitive measurements of numerous samples 

untenable. For this reason, many have turned to multiplexed quantitative proteomics workflows to 

provide simultaneous deep proteomic profiling of numerous samples while retaining the ability to 

assign relative and absolute abundance information.  

Quantitative proteomics, now comprised of several distinct strategies, operates under the 

principle that signal response from any given analyte is related to its abundance within the mixture. 

As such, should an analyte be identified in numerous samples, the relative intensity of the analyte’s 

signal response in each sample can be used to provide a means of relative or absolute quantitation. 
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However, MS reporting signal is divided into numerous channels depending on the quantity and 

ionization efficiency of all present biomolecules, which indicates the high variability that can arise 

from even discrete sample changes. In remedy of this ailment—and to remove run-to-run 

variation—researchers have employed unique chemical modifiers that often incorporate stable 

isotopes to label biomolecules within solution. These labels result in a unique mass shift for each 

sample without altering their retention time in liquid-chromatography. These newly tagged 

analytes may then be combined, measured simultaneously via MS, and then evaluated for the 

relative abundance of all labeled channels.  

These quantitative strategies have provided unique avenues towards the discovery and 

validation of cancer-specific biomarkers. The ability to analyze numerous samples simultaneously 

provides researchers not only with a means for high throughput sample profiling, but also a means 

to uncover what proteomic perturbations are relevant across patients, between control groups, and 

specific to disease severity and progression. These perturbations and quantitative differences are 

often discussed in language that is familiar to proteomic researchers but that may create confusion 

in those coming from adjacent fields of research. Within proteomics, and ubiquitous throughout 

this review, quantitative differences of proteins, peptides and other biomolecules are described as 

“up-regulated” or “down-regulated.” These terms are used to describe those species with 

quantifiable differences against the control, often with statistical significance. Though readers may 

conjecture that up- or down-regulated protein species are the result of pathway regulation, these 

hypotheses are often not explored in proteomic literature and may be discussed elsewhere.  For 

this reason, it is important to clarify that differences in regulation are meant only to indicate the 

quantitative findings presented by the original authors. Regardless of verbiage technicalities, 
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researchers often pursue quantitative proteomics as a facile avenue towards novel biological 

insight. 

Given the significant heterogeneity associated with various cancer subtypes, researchers 

have sought to employ quantitative proteomics to a litany of biological questions. As seen within, 

these endeavors have provided seminal insights into the role post-translational modifications play 

in cancer progression, uncovering up- and down-regulation of biomolecules in disease groups, as 

well as the efficacy of using protein expression to monitor medical treatment. The true breadth of 

proteomic cancer research cannot be understated. While quantitative experiments date back several 

decades, we aim to present a mass spectrometry-centric review. High-throughput quantitative 

proteomics firmly gained prominence in the early 2000s, providing nearly twenty years of 

meaningful contributions to cancer detection, identification, and understanding. To provide 

readers with the most timely and topical review—as well as to provide discussion on future 

research interests, we have confined our literature review to applications seen within the past 5 

years. This concise range enables us to provide critical suggestions for researchers seeking to begin 

or continue their unique cancer research. Here we present a brief introduction to quantitative 

proteomics methods and recent investigations of prostate, ovarian, breast, and pancreatic cancer. 

Quantitative Strategies 

Quantitative proteomics has experienced substantial growth over the last two decades, due 

in large part to the invention and development of high-speed, high-resolution mass spectrometry 

instrumentation. While there are numerous unique and technically driven means to pursue relative 

and absolute protein quantitation, most applications fall within one of four major categories: 

metabolic labeling, isotopic labeling, isobaric labeling, and label-free quantitation. Each method 

has been thoroughly reviewed and in-depth discussion can be found elsewhere. However, in order 
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to provide rationale behind each strategy for use in investigative cancer research, understanding 

the principles and key considerations of each is imperative. 

Metabolic Labeling 

Metabolic labeling is the earliest27, 28 and arguably most traditional method of mass 

spectrometry-based quantitative proteomics. Taking after the classical Meselson-Stahl29 

experiment that proved the semiconservative nature of DNA replication, more routine use of mass 

spectrometry for peptide identification revealed that proteins, too, could be metabolically labeled 

with stable isotopes to provide ‘heavy’ and ‘light’ isotopologues. Within these experiments, 

adjacent cell cultures are provided with either unlabeled, naturally occurring amino acids or amino 

acids that have been labeled with stable isotopes; this also lends itself to the acronym SILAC, 

Stable Isotopic Labeling with Amino Acids in Cell Culture.27, 30 Though SILAC has grown to 

incorporate numerous stable isotopes, the most traditional SILAC strategy is to grow a control 

group in the presence of 12C-Lysine and 13N- Arginine while providing the experimental group 

with 13C-Lysine and 15N-Arginine.31 During culture growth, these light or heavy amino acids are 

incorporated into the protein backbones with no effect on protein function, viability or expression. 

Digesting these cellular proteins with a proteolytic enzyme (e.g. trypsin) produces peptides that 

contain a single labeled or unlabeled residue. Peptides are then combined and analyzed via MS, at 

which point their mass difference can be observed. Evaluating the intensities of the labeled and 

unlabeled peptide partners allows the relative abundance of peptides and proteins to be determined. 

Metabolic labeling strategies are of topical interest to groups seeking to reveal how altered growth 

conditions, drug administration, or environmental perturbations affect protein production and 

expression. Beyond relative quantitation of proteins and peptides, SILAC-like experiments have 

been used to probe post-translational modification production and turnover. However, the chief 
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considerations and drawbacks of these methods are 1) the small number of suitable amino acids 

that may be used for isotope incorporation; 2) poor separation of isotopic envelopes (causing errors 

in quantitative accuracy); and 3) the inability to incorporate isotopes to biological tissue and 

biofluid samples. In remedy, researchers may choose to tag proteins and peptides with isotopic 

labels after extraction and digestion. 

Isotopic Tagging 

Isotopic tagging, though similar in nature to metabolic incorporation, comes with a higher 

level of flexibility and customization.31 Modern research settings have access to a broad array of 

stable isotopes, the most ubiquitous being 13C, 15N, 2H, and 18O. These isotopes enable researchers 

to synthesize their own chemical scaffold while varying the incorporation of these isotopes, 

creating an array of chemical tags with unique masses that may be functionalized and chemically 

bound to proteolytic peptides to provide them with a mass difference distinguishable via MS.32, 33 

In this way, the need for metabolic incorporation is completely removed and experimental peptides 

can be labeled after extraction and digestion. Similar to metabolic labeling, differences in MS1-

level signal intensity between labeled species allow for determination of relative quantitation. 

Furthermore, isotopic labeling can be used as a means of absolute quantitation, whereby internal 

calibration curves are created and compared to experimental peptides. Overall, isotopic labeling 

presents highest utility in instances where the sample collection is relatively small because as 

sample number increases so does spectral complexity, which can create mass overlap between 

unique peptide species and produce erroneous quantitation estimates. These limitations in mind, 

the vast improvements in MS operational speeds, resolving power, and scanning depth begged the 

question as to whether more efficient chemical labels could leverage these instrumental 
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improvements and eliminate the spectral complexity found in complex isotopic tagging 

experiments. 

Isobaric Labeling 

As mass spectrometry technology continued to develop, it became obvious that the spectral 

complexity associated with high-throughput metabolic labeling and isotopic tagging experiments 

directly counteracted any instrumental improvements. As such, it became pertinent to find a 

method for absolute and relative quantitation that alleviate the ailments posed by multiplexed 

labeling methods while still retaining the facility in quantitative measurements. Remembering that 

isotopic tags may be constructed to provide a high number of labeling channels, each with a distinct 

mass difference of >1 Da, isobaric labels correct for this inherent mass difference using a balancing 

group.34 When implemented, these isobaric labels display virtually indistinguishable masses at the 

MS1 level, reducing the spectral complexity of high-throughput experiments. Upon selection of a 

labeled analyte, MS dissociation causes the isobaric tags to fragment and produce ‘reporter ions’ 

of unique mass. In this way labeled analytes may be selected and fragmented, providing 

identification and quantitative information in a single step. As a result, the reduced spectral 

complexity at the MS1 level promotes greater profiling depth of complex samples and provides 

equivalent quantitative accuracy. The most popular examples of commercial isobaric labels are 

iTRAQ, Isotopic Tags for Relative and Absolute Quantitation35 and TMT, Tandem Mass Tags.36 

However, the broad utility of isobaric labeling has garnered significant attention from the research 

community, resulting in numerous novel quantitative labeling strategies37, 38 that promote 

quantitative accuracy at significantly reduced cost. 
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Label-free and Reaction Monitoring 

Finally, in instances where sample labeling may not be preferred (i.e., precious samples, 

low-abundance molecules of interest, or instances where protein targets are known), label-free and 

reaction monitoring methods provide a suitable alternative.39 Label-free quantitation serves to 

provide relative quantitation between samples by comparing area-under-curve for detected 

analytes. This method, though steadily improving with better instrumentation and software tools, 

is highly susceptible to changes in sample composition, can result in missing values, and is lower 

throughput than labeled methods. However, label-free quantitation does still represent a 

meaningful entry point in discovery-based quantitative proteomics, often providing deep sample 

profiling and elucidating targets for future analyses. In contrast, reaction monitoring workflows 

(e.g. multiple reaction monitoring, select reaction monitoring, etc.) may be considered one of the 

most accurate quantitative strategies, being most suited to targeted analyses and instances when 

internal standards are readily available.  Though reaction monitoring strategies are often tailored 

to fit unique experimental conditions, all workflows bear resemblance to a basic strategy. First, 

serial dilutions of a purified or synthetic peptide standard are analyzed via targeted MS/MS. In 

these targeted analyses, the biomolecule(s) of interest are subjected to MS dissociation, with the 

various fragments observed and recorded. As each biomolecule will provide a unique 

transition/fragment, the prevalence of these transitions may be used as a proxy for overall 

biomolecule abundance. In this way, absolute and relative quantitation information can be 

determined without the need for chemical labeling while eliminating concerns over sample and 

spectral complexity. Often, it is preferential to incorporate an isotope-encoded standard,40, 41 

enabling rapid analyses and high quantitative accuracy. Given the variety of quantitative strategies, 
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it is of topical importance to evaluate their efficacy and provide understanding of quantitative 

accuracy. 

Diagnostic Accuracy 

As quantitative proteomics continues to mature, discussions over quantitative accuracy will 

continue to be a vanguard consideration. Recently, Dowle, et al.42 provided an in-depth 

comparison of multiple quantitative strategies and should evaluated independently by interested 

parties. Within all quantitative strategies, the primary diagnostic for accuracy and utility are 

metrics built on specificity and sensitivity. Measures of specificity (i.e. proportion of correctly-

identified trye positives) and sensitivity (i.e. proportion of correctly-identified true negatives), may 

be combined into a single metric. This receiver operating characteristic (ROC) is often viewed as 

a curve with high sensitivity and specificity representing a value close to 1.  As demonstrated by 

Dowel, several commonly used quantitative strategies display high ROC values, providing detailed 

considerations of the method most appropriate for a range of experiments. This work may serve as 

a helpful guide when entering or expanding quantitative proteomics experiments. 

Taken together, metabolic labeling, isotopic tagging, isobaric labeling, and label-free 

strategies provide a wealth of entry points into quantitative proteomics. This access in mind, the 

growing needs of the medical community combined with the ever-increasing access to mass 

spectrometry technology necessitate the utilization and expansion of investigational proteomics to 

aid in discovering and validating cancer-specific biomarkers. 

Prostate Cancer 

The second leading cancer type in men, prostate cancer is estimated to affect around 12 

percent of all men during their lifetime and currently affects over 3 million men within the United 

States, with the majority of individuals diagnosed being at least 65 and older.43  Androgen 
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deprivation, the first means of therapeutic intervention, can lead to the progression of castration-

resistant prostate cancer (CRPC) in some men, a more aggressive stage of cancer resulting in poor 

prognosis and survival, with the majority of men developing metastases prior to or following 

diagnosis.44 Further analyses of the literature have characterized these CRPC subtypes and 

demonstrated the growing emergence of CRPC phenotypes that have either low or negative AR 

expression for which there are few targeted therapeutics.45 The growing heterogeneity in prostate 

cancer subtype underscores the urgency to elucidate and discover novel molecular mechanisms 

underlying pathogenesis for all subtypes. The use of mass spectrometry (MS)-based quantitative 

proteomics for prostate cancer research in recent years has been a driving force to exploit the 

factors underlying tumorigenesis and metastasis.  

Cellular and Tissue Analyses  

Investigations often profile quantitative differences in the proteome via patient-derived 

tissue samples, cellular models, or genetically engineered mouse models such as the transgenic 

adenocarcinoma of the mouse prostate (TRAMP) model. One such study by Zhang et al.46 utilized 

a label-free approach to quantify differences in expression between the prostate glands of TRAMP 

versus wild-type littermates. Through generation and an in-depth analysis of the quantitative 

proteomics data, the authors were able to predict and validate the role of platelet-derived growth 

factor (PDGF)-B overexpression in increased proliferation, thereby highlighting the therapeutic 

potential of targeting PDGF signaling within prostate cancer.  Other label-free approaches have 

utilized patient-derived tissue samples to profile global differences, including the work of Müller 

et al.47 using formalin fixed, paraffin embedded tissue from radical prostatectomy, which focused 

on characterizing differences between nonmetastasizing tumors, metastasizing primary tumors and 

their distant nodal metastases. Although the analysis had only five biological replicates per tumor 
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type, significant differences in expression were measured that allowed for clear distinction of each 

and presented several potential proteins whose increased expression in metastatic tumors could be 

targeted in future therapeutic studies. However, a smaller sample set warrants further investigation 

into these proteins as potential targets with a larger sample cohort.   

Methods that incorporate stable isotopes into the peptide backbone, such as SILAC, allow 

for direct comparison of identical peptides across sample types and is more robust to 

instrumentational variation compared to unlabeled approaches. Recently, SILAC was used to 

examine extracellular vesicles (EVs) and the impact that upregulated α(1,6)-fucosyltransferase 

(FUT8) expression had on biogenesis of these secreted biomolecules.48 This was one of the first 

reports to map the systematic impact of an overexpressed glycosyltransferase on the EV proteome, 

specifically of a glycosyltransferase with known oncogenic activity.49, 50 FUT8 overexpression 

showed a decrease in EVs produced compared to wild-type cells and further analysis of intact 

glycopeptides from LAPC4 EVs showed marked differences in glycosite occupancy between EV 

populations and revealed a shift in glycoform composition. Miao et al.51 combined the SILAC 

approach with parallel-reaction-monitoring (PRM) methods to discern differential kinase 

expression in two bone metastasis-derived prostate lines, PC3 and PC3MLN4.51 Of the kinases 

that were quantified and found to be differentially expressed, most notably different was mitogen-

activated protein kinase kinase kinase kinase 4 (MAP4K4), a kinase previously observed to play a 

role in ovarian cancer.52 One final example using the SILAC strategy by Sbrissa et al.53 

investigated the mechanisms of bone metastasis by determining CXCR4-interacting proteins 

through overexpression and knockdown of CXCR4 in PC3 cell lines. Proteomic analysis found 

one unexpected protein, phosphatidylinositol 4-kinase III α (PI4KIIIα), to be upregulated and it 

was found to localize with CXCR4 to lipid rafts and thus promote cancer cell invasion through 
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increasing phosphatidylinositol-4-phosphate production. The discovery of this novel interaction 

between chemokine receptor and PI4KIIIα and its regulation on tumor cell invasion requires more 

detailed experiments characterizing the specific molecular details regarding receptor-kinase 

communication. 

Chemical or enzymatic isotopic labeling strategies allow for labeling of more than cell 

culture models to study prostate cancer. One approach by Lee et al.54 used biotin ─ both as an 

isotopic label and for affinity purification ─ to systematically label cell-surface proteins that could 

serve to distinguish adenocarcinoma from neuroendocrine prostate cancer. From this 

proteogenomic investigation, they systematically validated two candidate antigens: FXYD domain 

containing ion transport regulator 3 (FXYD3) in prostate adenocarcinoma and CEA cell adhesion 

molecule 5 (CEACAM5) in neuroendocrine prostate cancer. While additional investigation into 

targeting these antigens is warranted, such a study demonstrates the utility of quantitative 

proteomics in discovering and validating new therapeutic targets for advanced prostate cancer.  

Much of the quantitative research has shifted to the use of isobaric labeling strategies, 

which allow for increased multiplexing capabilities and decreased instrument variation through 

reduced overall runs. Zhou et al.55 used 5-plex TMT labeling to perform a large-scale proteomic 

quantitation of core fucosylated glycopeptides after selective lectin affinity enrichment to 

differentiate non-aggressive and aggressive prostate cancer cell models (Figure 6.1). Over 20 

fucosylated proteins were upregulated in the aggressive cell lines and were involved in processes 

such as cellular signaling, adhesion and extracellular communication. Identification of these 

fucosylated proteins and their upregulation in aggressive prostate cancer models establishes these 

proteins as potential targets for further examination into how their upregulation impacts the 

aggressive phenotype of the associated model. Another advantage to using TMT labeling is that 
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these tags can undergo synchronous precursor selection (SPS)-MS3 quantitation, which allow for 

more accurate quantitation. Zhou et al.56 utilized a TMT-SPS-MS3 approach on patient-derived 

tissue samples with varying prostatic phenotypes to determine differential expression of protein 

complexes. Low-grade prostate cancer samples were found to have upregulation of complexes 

involved in RNA splicing and downregulation of those associated with cell adhesion, while high-

grade prostate tissue samples had increased assembly of antiapoptotic complexes and a similar 

lower abundance of complexes involving cell adhesion. Such a comprehensive study of individual 

protein complexes may give way to determining what protein complexes are critical in 

distinguishing and diagnosing low- and high-grade cancers.  

Comparable to TMT labeling, iTRAQ allows for both relative and absolute quantitation of 

labeled samples. Höti et al.57 set out to examine the mechanisms underlying androgen resistance 

through a global proteomic approach using iTRAQ, labeling tryptic peptides from two prostate 

cancer cell models grown in triplicate. One main realization of the data was that androgen 

resistance cannot be treated with a single therapeutic, as the mechanisms driving resistance involve 

multiple independent pathways. While unfortunate, these findings did uncover some of the 

mechanisms driving resistance, including the PI3K/AKT signaling pathway, mitochondrial 

dysfunction of oxidative phosphorylation complexes and the multicatalytic 26S proteasome.  

Zhang et al.58 used two sublines of PC-3M to distinguish unique characteristics of highly- and 

poorly-metastatic potential in prostate cancer. After validation, two proteins were found to 

potentially contribute to the higher metastatic potential, matrix metallopeptidase 1 (MMP1) and 

four and a half LIM domains 1 (FHL1). While FHL1 has been extensively studied in a variety of 

cancer types, the information collected here suggests a unique role of MMP1 for increasing 

metastatic potential in prostate cancer, presenting the opportunity for future inspection of both 
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MMP1 and other MMPs. Webber et al.59 performed a stromal cell proteomics analysis to 

differentiate normal from tumor-reactive stromal phenotypes that drive disease progression. One 

compelling finding was the loss of aldehyde dehydrogenase (ALDH1A1) expression in altered 

versus normal stromal types, suggesting its potential role as a novel marker of disease-induced 

changes of the stromal environment. Additional investigations have turned to animal models, as 

prostate cancers grown in vivo reflect interactions that may otherwise be missed in cell culture 

models. The Pten-knockout mouse model60 was recently examined by Zhang et al.61 through the 

combined analysis of iTRAQ proteomics and microarray transcriptomics to identify associated 

molecular changes in mouse prostate carcinogenesis. Both transcriptomic and proteomic data 

found that immune and inflammation responses were greatly perturbed, in addition to mediations 

in central nodal activity through the Akt, NF-κB and P53 signaling pathways.  

While tissue-based sampling allows for determination of mechanistic properties of the 

pathways contributing to tumorigenesis and metastasis, its highly invasive nature is discouraged 

unless necessary. Even if biopsies are obtained, these analyses are often limited by size constraints, 

as patient-derived tissues covering all stages of prostate cancer progression can be difficult to 

obtain in large numbers. Mouse models afford the opportunity to mimic tumor progression and 

metastasis in vivo, but there are still controversies surrounding prostate-based mouse models due 

to distinct anatomical differences.62 Cell culture models avoid the translational constraints that 

other model organisms are bound to, but often omit stromal-epithelial interactions during cell 

growth, a process that has a great impact on tumor invasiveness and metastatic potential. 

Additionally, current cell-based models for prostate cancer often either only reflect advanced 

prostate cancer or require the use of multiple cell lines to cover multiple progression stages, 

introducing variability that complicates genetic-based analyses. Recent advances in cell-based 
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prostate models have been made that address some of the pitfalls outlined here,63 so future 

quantitative studies should be selective in the models they choose when profiling. 

Biofluid Analyses 

There is a push to develop biomarker strategies involving the collection of biofluids, a less 

invasive and more cost-effective method of sample collection. Biofluids ─ such as blood, tissue-

based fluid, saliva, or urine ─ allow for easier monitoring of patient outcomes, as disease 

progression and treatment responsiveness can be evaluated with frequent patient sampling. Such 

biofluid-based monitoring strategies are critical in prostate cancer patients, as a portion of men 

diagnosed with prostate cancer have tumors that are indolent. One study by Davalieva et al.64 

comparatively profiled urine samples using a label-free strategy from patients with prostate cancer, 

benign prostatic hyperplasia, bladder cancer and renal cancer to determine selective biomarkers 

for earlier diagnosis of prostate cancer. Of the most promising urinary biomarkers identified by 

the authors, nine had not yet been associated with prostate cancer, indicating their potential as 

novel biomarkers and necessitating further research into their associated pathways. Soekmadji et 

al.65 profiled secretome differences of unlabeled, CD9-positive EVs from cell culture models 

treated with the hormone dihydrotestosterone (DHT). Their combined analyses determined that 

DHT treatment increases CD9-positive EV secretion and alters the content of secreted EVs, and 

in agreement with previous literature highlighting the potential of CD9 EVs as a biomarker for 

prostate cancer. 

Reaction monitoring-based strategies are one label-free approach that are typically used 

after initial discovery for validation and accurate quantitation of biomarkers. Targeted analysis of 

urinary EVs was completed by Sequeiros et al.66 using SRM to quantify 64 protein candidate 

biomarkers for prostate cancer. A two-protein combination (ADSV and TGM4) distinguished 
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patients with benign tissue from those with cancer, and a five-protein panel differentiated high- 

from low-grade prostate cancer (CD63, GLPK5, SPHM, PSA and PAPP), highlighting the 

advantages of targeted proteomics as a diagnostic tool in the clinic. Kim et al.67 investigated 

expressed prostatic secretion samples using SRM-based quantitation to determine molecular 

signatures for extracapsular prostate cancer. From a pool of over 200 potential candidates, these 

researchers narrowed the candidate list to include 34 peptides representative of 27 unique proteins 

with promising results as biomarkers. Karasota et al.68 evaluated the analytical performance of 

multiple SRM- and PRM-based strategies to quantitate kallikrein related peptidase 4  (KLK4) in a 

variety of biofluid samples. Secreted KLK4 was demonstrated to be present in seminal plasma, 

and for the first time was investigated as a potential biomarker in both seminal plasma and blood. 

Taken together, the label-free, targeted proteomics methods used for analysis of biofluids offer a 

reliable tool for biomarker validation and should thus be considered as useful tools for clinical 

development.  

Fujita et al.69 combined two strategies, initially using iTRAQ for urine samples to profile 

EVs from patients with a high Gleason score.70 After quantifying 3528 proteins, candidate 

biomarkers were selected for further quantitation and validation using SRM/MRM. Fatty acid 

binding protein 5 (FABP5) was highlighted as the most promising biomarker from urinary EVs 

for the detection and diagnosis of high Gleason score prostate cancer, but further studies would be 

necessary for confirmation. Yan et al.71 performed an iTRAQ-based analysis on the serum of 

prostate cancer patients with or without bone metastasis to find potential biomarkers indicative of 

these metastases. Of the 32 differentially expressed proteins identified, three ─ CD59, haptoglobin 

and tetranectin ─ were selected and validated to be related to prostate cancer bone metastasis, 

confirming their utility as serum biomarkers. Larkin et al.72 implemented iTRAQ to enhance their 
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proteomic profiling of high-quality serum samples for biomarker discovery. After identification 

and validation using ELISA, two biomarkers, SAA and TSR1, showed promising results when 

used in combination with KLK3. However, these results were obtained in a small sample cohort, 

so further studies with a larger, more diverse sample set are necessary before serious consideration 

of these proteins as biomarkers.   

The use of quantitative proteomic strategies on patient-derived biofluid samples show 

promise in the discovery and validation of new biomarkers. Specifically, the KLK family of 

proteins has been shown in the mentioned literature to have potential in many biofluids and may 

improve diagnostic accuracy further when combined with others. On the other hand, serum 

biomarkers in prostate cancer deserve a level of scrutiny as demonstrated by prostate-specific 

antigen (PSA), a currently approved biomarker whose elevation in serum is also associated with 

benign prostatic hyperplasia (BPH), resulting in high false positive rates.73 Noting this, prostate 

cancer biomarkers should be rigorously tested against patients with BPH and other prostatic 

diseases to ensure accuracy. Such rigorous tests involving larger sample sets can be achieved using 

the quantitative strategies described above, indicating their potential to advance the knowledge 

within the field at a rapid pace.   

Pancreatic Cancer 

The seventh leading cause of cancer-related deaths in the world,74 pancreatic cancer has 

rightfully garnered significant attention from clinical research communities. In-depth proteomic 

analyses have illuminated the highly dynamic nature of post-translational modifications,75-77 while 

providing novel insights toward treatment monitoring and severity stratification. The promising 

results of these profiling experiments in hand, great success has come in the effort to employ 
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quantitative strategies to illuminate dysregulated protein expression, identify treatment pathways, 

and validate potential biomarkers.  

Tissue Analyses 

The prevalence of pancreatic cancer across the world’s population has necessitated in-

depth proteomic analyses of cancerous tissue and model systems. Model cell lines have enabled 

researchers to identify pertinent biomolecules specific to pancreatic cancer without the need for 

invasive, repetitive tissue resection. Naturally, the study of cell lines lends itself to the use of 

SILAC to perform quantitative investigations. Recently, Liu et al.78 performed secretomic analyses 

of pancreatic cancer cells (PC-1), revealing 161 proteins with altered expression, including 55 

proteins not previously reported. As well, they note a combination panel for cadherin 3 (CDH3), 

plasmogen activator, urokinase (PLAU), and lunatic fringe (LFNG) proteins that may be useful 

for improving cancer patient prognoses. Beyond this, Marchand et al.79 employed a three-channel 

SILAC approach to reveal association of transcription factor EB (TFEB) with nuclear proteins 

upon inhibition of glycogen synthase kinase-3 (GSK3) and mammalian target of rapamycin 

(mTOR). Moving beyond SILAC experiments, Shi et al.80 used isotopic dimethyl labeling to 

examine paracrine communication between pancreatic cancer cells and pancreatic stellate cells 

(PSCs). This experiment provided the knowledge that leukemia inhibitory factor (LIF) is a key 

paracrine factor from activated PSCs acting on cancer cells. Employing a novel approach, Roberts 

et al. 81 developed a cysteine-reactive fragment-based ligand library to coordinate novel small 

molecules that impair pancreatic cancer pathogenicity with druggable hotspots for potential cancer 

therapy. While numerous SILAC and isotopic tagging workflows exist outside the time frame of 

this review, the relatively small number of recent applications indicates an area of potential focus 

for researchers examining pancreatic cancer. 
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Isobaric labeling, however, has seen significant use in the study of pancreatic cancer. 

Zhang and colleagues82 have provided a meaningful guide for those seeking to perform isobaric 

labeling experiments using the commercial TMT36 offering from ThermoScientific. Beyond this, 

Perera et al.83 employed TMT labeling to study pancreatic cancer cell metabolism, revealing the 

MiT/TFE proteins – MITF, TFE3 and TFEB – are decoupled from regulatory mechanisms, 

increasing expression levels of lysosomal catabolic function essential for pancreatic ductal 

adenocarcinoma (PDA) growth. As an alternative to TMT, An et al.84 employed iTRAQ in the 

analysis of serum exosomes from chemotherapy patients (Figure 6.2). Of note, this study indicates 

patient-derived exosomes play a significant role in cancer metastasis. Furthermore, Li et al.85 

demonstrated monumental success in broad protein quantitation while analyzing Peripheral Blood 

Mononuclear Cells (PBMCs). This study, which employed iTRAQ labeling and 2D-LC-MS 

quantified 3,357 proteins, with 114 being distinguished as dysregulated in the cancer group. These 

examples of isobaric labeling indicate the broad utility for high throughput analyses of complex 

pancreatic cancer samples. However, a chief limitation of TMT and iTRAQ is cost, placing their 

use out-of-reach for many budding research groups. In remedy, Li and colleagues34 developed 

Dimethyl Leucine (DiLeu) that provides greater multiplexity86-88 than commercial options at a 

fraction of the cost. DiLeu is available as an isotopic,89 isobaric,34, 86, 87  and mass-defect90 chemical 

tag and has even been modified to provide absolute quantitation.89, 91 The mass-defect offering, 

mdDiLeu, has been successfully applied for simultaneous multiomic analysis of pancreatic cancer 

cells,92 providing uncompromised access to high throughput small molecule and protein 

quantitation.  

Label-free analyses, too, have seen routine utilization in pancreatic cancer investigations. 

Wang et al.93 introduced the novel IonStar pipeline for accurate MS1-level protein quantitation. 
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This preliminary example quantified >4,000 proteins from 40 biological samples and identified 

541 proteins dysregulated groups treated with birinapant and paclitaxel. Later Zhu et al.94 applied 

the IonStar pipeline to elucidate the relations among relevant signaling pathways during 

gemcitabine and birinapant treatment. These applications highlight the utility of quantitative 

proteomics to evaluate treatment efficacy. In a similar vein, Singh et al.95 presented a large-scale, 

label-free proteomics study to uncover the mechanism by which sanguinarine suppresses cancer 

proliferation. While quantifying >3,100 proteins, 37 biomolecules were identified as differentially 

expressed, highlighting the pleotropic effects of sanguinarine. Finally, Zhou et al.96 employed 

parallel reaction monitoring (PRM) to identify 165 potential biomarkers in pancreatic cancer. 

During validation, brain acid soluble protein 1 (BASP1) was identified as a novel target for 

pancreatic cancer therapy and is shown to interact with Wilms tumor protein (WT1).  

Biofluid Analyses 

Considering the real-world application of investigational proteomics analyses, a topical 

concern is the need for invasive patient sampling. This in mind, researchers have long sought to 

identify cancer-specific analytes from biofluids, which may be sampled repeatedly at lower 

physical and monetary cost to patients. Though metabolic and isotopic labeling are not well 

represented in pancreatic cancer research in recent years, Jhaveri et al.97 used a novel serum 

antibody–based SILAC immunoprecipitation approach, denoted as SASI, to identify specific 

targets expressed in cancer patients post-vaccine therapy. More popular, however, are applications 

utilizing isobaric labeling. Sogawa et al.98 employed TMT labeling to ascertain that complement 

component 4 binding protein alpha (C4BPA) and polymeric immunoglobulin receptor (PIGR) 

expression was significantly higher in preoperative patients than postoperative. Naba et al.99 

identified unique expression levels in 35 proteins as pancreatic cancer islets progressed from 
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hyperplastic to angiogenic to insulomas. Yu et al.100 employed iTRAQ to quantify 4,517 proteins 

in the exosomes of Panc02 and Panc02-H7 cells, notably revealing cancer-derived exosomes 

promote tumor metastasis. Lin et al.101 and Liu et al.102 further implemented iTRAQ for 

quantitative evaluations of pancreatic cancer patient serum. An important overlap of these two 

studies was the identification that apolipoprotein A-1 (APOA1) shows distinct expression in 

pancreatic cancer patients. Considering this trend was shared between patients expressing 

carbohydrate antigen (CA) 19-9 and those who are CA19-9-negative, APOA1 presents an area of 

significant interest moving forward. 

Similar to the studies presented in pancreatic cancer tissue analyses, label-free quantitation 

has been routinely employed in quantification of biofluid proteins. Through this quantitative 

strategy, Ohmine et al.103 successfully validated deoxycytidine kinase (dCK) as a good predictor 

of progression-free survival and an effective biomarker of gemcitabine sensitivity. Yoneyama et 

al.104 identified insulin-like growth factor-binding proteins insulin-like growth factor binding 

protein 2 (IGFBP2) and IGFBP3 as compensatory biomarkers of pancreatic cancer in instances 

when CA19-9 screening is inconclusive. Park et al.105 performed a large-scale validation of 

biomarkers, finding that  APOA-IV, APOCIII, IGFBP2, and tissue inhibitor of metalloproteinase 

1 (TIMP) were significantly altered in pancreatic cancer. Of note, a panel including CA19-9, 

APOA-IV, and TIMP1 showed improved performance in distinguishing early pancreatic cancer 

from pancreatitis. Do et al.106 identified 18 biomarker candidates associated with malignancy in 

intraductal papillary mucinous neoplasms (IPMNs). Finally, Nigjeh et al.107 developed an 

optimized data-independent acquisition (DIA) workflow to identify and quantify >14,000 peptides 

from ~2,300 plasma proteins (Figure 6.3).  
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As seen by the numerous examples of pancreatic cancer tissue and biofluid investigation, 

quantitative proteomics provides a facile entry point into the field of biomarker identification and 

validation (Table 2). Considering the agreement across several studies that proteins such as 

APOA1, APOA4, IGFBP and CA19-9 serve as rigorous biomarkers in pancreatic cancer, future 

studies should investigate the utility of high throughput label-free, PRM, or MRM screening of 

these biomolecules. Meaningful evaluation of MS-based protein assays in blind studies may 

demonstrate potential to accurately identify and diagnose pancreatic cancer at scale. Development 

of these workflows and associated technology will be vital to understanding the risk factors 

associated with disease onset and progression, as well as the success of current and novel treatment 

strategies.  

Breast Cancer 

The high rate of incidence associated with breast cancer, as well as targeted focus drawn 

from successful advocacy and research fundraising, have shed significant light on the mechanisms 

of breast cancer. Though this dedicated focus has reduced patient mortality and cancer rates in 

high income countries, developing nations display the opposite trend.108 Beyond this, breast cancer 

is of continual interest to the medical community due to the high rate of recurrence and 

metastasis.109, 110 For these reasons, many have turned to quantitative proteomics to aid in 

stratifying cancer subtypes and identifying potential biomarkers. 

Tissue and Biofluid Analyses 

Within the timeframe of this review, the majority of quantitative proteomic investigations 

have been centered on tissue analyses, often employing model cell lines or resected tumor tissue 

to determine protein expression. Though few applications have employed metabolic labeling for 

quantitative analyses, Tyanova et al.111 presented a robust investigation that merged quantitative 
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mass spectrometry with traditional RNA- and DNA-based sequencing strategies. Analyzing 40 

tumors that were either estrogen receptor positive, Her2 positive, or triple negative, the authors 

identified an average of >7,000 proteins on average, spanning 8 orders of magnitude in protein 

intensity. Within this study, they combined their quantitative results with microarray analyses and 

machine learning classification to identify potential subtype-specific therapies.  

More popular than SILAC-like experiments, isobaric labeling has been extensively 

employed in breast cancer investigations. Suman et al.112 employed iTRAQ to identify proteins 

associated with breast cancer subtypes. Notably, this study indicated fibronectin (FN1), alpha-2-

macroglobulin (A2M), complement component-4-binding protein-alpha (C4BPA) and 

complement factor-B (CFB) were critical to subtype differentiation in both plasma and tissue 

samples. Calderon-Gonzalez et al.113 further employed this technology to identify 306 

differentially expressed proteins in breast cancer cell lines. As well, their study indicates large 

proline-rich protein (BAG6), ATP-dependent RNA helicase (DDX39), annexin A8 (ANXA8) and 

cytochrome c oxidase subunit 4 (COX4) may serve as useful biomarkers. Gajbhiye et al.114 

provided a novel DIA-iTRAQ strategy to uncover proteomic divergence in HER2-enriched cancer 

cell lines, which allowed for the creation and testing of a 21 protein panel to discriminate cancer 

and healthy controls. Turning to TMT labeling, Going et al.115 and Clark et al.116 utilized this 

strategy, illuminating the pathways of action of methoxyclcone in triple negative breast cancer 

(Figure 6.4) and classifying exosomal cargo proteins, respectively. As a cost-effective alternative 

to these iTRAQ and TMT labeling strategies, DiLeu tagging approach has also successfully been 

employed in identifying strategies for inhibiting cancer cell proliferation. Within this work, Liu, 

et al.117 revealed that dynamic methylation of pyruvate kinase M2 (PKM2) directly affect the 

metabolic activity of cancer cells and promotes cell propagation, migration and metastasis. This 
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study, along with those detailed above, serve to indicate the importance of high-throughput 

quantitative cancer proteomics, outlining potential targets for future treatment strategies. 

A significant entry into quantitative breast cancer proteomics was provided by Johansson 

et al.118. This study provided in-depth quantitation of 45 breast cancer tumors, spanning each of 

the 5 PAM50-based molecular classifications. Upon quantitation of 9,995 proteins, the authors 

used these proteome profiles to interpret multiple layers of systems measurements. While each of 

these studies offered unique insight into uncovering and validating potential biomarkers and 

investigative strategies, a chief concern among many is the long-term reproducibility of 

quantitative measurements. Using iTRAQ to quantify proteins from human-in-mouse xenograft 

tissue, Zhou et al.119 demonstrated that the large majority of quantitative measurements hold 

consistent over time, but also raised some topical concerns. First, they observed higher variability 

in quantitation of hydrophilic peptides compared to those of average peptide character, likely due 

to poor retention of these peptides on column. Second, as researchers have their choice of 

dissociation methods, this study reveals stepped collision energy offers higher reproducibility 

between unique measurements. Finally, whereas most commercial software implements a form of 

scoring to determine the quality of a peptide spectral match (PSM), this study goes further and 

reveals that a stricter scoring mechanism improves reliability of time-course measurements. This 

study provides an excellent framework and series of considerations for individuals seeking to begin 

or improve quantitative mass spectrometry investigations.  

Label-free analyses have also been routinely implemented for high throughput biomarker 

discovery and screening. Among these, Ntai et al.120 compared the quantitation efficiency in 

bottom-up and top-down analyses of tumor xenografts. Tveitras et al.121 performed comparative 

analyses of pre-metastatic and metastatic triple negative breast cancer xenograft tissue, uncovering 
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significant changes in expression of haptoglobin, fibrinogen, and thrombospondin-4 and 

transferrin receptor protein 1 between groups. Wang et al.122 employed a DIA-select reaction 

monitoring (SRM) approach to reveal distinct proteomic and N-glycoproteomic divergence 

between normal, precancerous, and cancerous tissues. Gamez-Pozo et al.123 integrated label-free 

MS quantitation with RT-qPCR to definitively distinguish estrogen receptor positive and triple 

negative cancer subtypes. Nie et al. 124 identified 98 differentially expressed proteins when 

comparing pure breast cancer stem cells and mature luminal cells. Finally, Warmoes et al.125 

elucidated 215 proteins that are significantly enriched in BRCA1-deficient secretome. This study 

highlights the potential of mass spectrometry to provide sensitive identification of biomarkers in 

instances when traditional ELISA screening may fall short. 

These examples of successful quantitative proteomic analyses in breast cancer applications 

highlight the flexibility and facility of creating novel workflows to answer an array of biological 

problems. Knowing there have been a significant number of proteomic measurements made prior 

to the period in review, these examples of biomarker discovery and validation highlight how 

rigorous protein MS-based screening assays for the confident identification and stratification of 

breast cancer may be within reach (Table 3). Assays of this kind, devoid of the need for invasive 

and repetitive tissue sampling, provide a meaningful conduit towards aiding communities that have 

limited access to dedicated cancer screening centers and provide direct targets for potential novel 

therapies. 

Ovarian Cancer 

Although it has an estimated incidence rate of approximately 2% for 2020, ovarian cancer 

is the deadliest reproductive cancer in women, with an estimated mortality rate of 5% in women 

diagnosed with any cancer type and 64% for women diagnosed with ovarian cancer.126 Much 
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emphasis has been placed on the continued research into mechanisms driving ovarian cancer, as 

late-stage diagnosis of advanced cancer contributes to the high mortality of ovarian cancer. 

Continued efforts have focused on the identification of critical mechanisms driving disease 

progression across ovarian cancer subtypes. Quantitative proteomic strategies have continued to 

increase the depth of knowledge surrounding ovarian cancer and its various subtypes to improve 

earlier identification strategies and highlight new therapeutic targets. 

Cellular and Tissue Analyses  

Because the majority of diagnosed ovarian cancer cases have already progressed to a more 

advanced stage, much quantitative research delves into tissue and cellular proteomic profiling to 

isolate and exploit dysregulated proteins. While only applicable to cellular-based models, SILAC 

has been implemented in ovarian cell lines and led to the discovery of critical modulators in ovarian 

disease progression. Musrap et al.127 cultured the ovarian line OV-90 in adherent and non-adherent 

conditions using SILAC to compare the impacts of cancer aggregate formation on cellular 

proteomics. After quantifying 1533 proteins in total, they compared expression with other 

aggregate-forming lines and saw upregulation of CLCA1, which appeared to affect cancer cell 

aggregation after further siRNA experimentation. Grassi et al.128 utilized SILAC to quantify 

epidermal growth factor (EGF)-induced epithelial-mesenchymal transition (EMT) to identify 

specific mechanisms of this process that may be dysregulated for metastatic purposes. 206 proteins 

were found to be differentially expressed, some of which included proteins associated with the G1 

and G2 checkpoints of the cell cycle, indicating the role of EGF-induced EMT in cell cycle control 

mechanisms. Another investigation by Ji et al.129 utilized the metabolic strategy to perform an 

integrated proteomic and N-glycoproteomic analysis of ovarian cancer lines that were either 

doxorubicin-sensitive or -resistant. They quantified 5509 protein groups and identified 1525 high-
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confidence N-glycosites corresponding to 740 glycoproteins. Quantifying the protein abundance 

allowed these researchers to examine glycoprotein abundances and alterations, which provides 

unique information into the role of N-glycosylation in drug resistance.   

Applicable to more than just cell culture-based models, isobaric labeling is commonly 

employed for quantitative experiments applied to ovarian cancer sample sets. Zhang et al.130 used 

iTRAQ labeling to integrate quantitative proteomics with the transcriptomic profile of ovarian 

high-grade serous cancer (HGSC) patient biospecimens. Over 3500 proteins were quantified and 

used in tandem with genomic results to reveal a strong association between specific histone 

acetylation events and the homologous recombination deficient phenotype seen in patient samples. 

Hiramatsu et al.131 comparatively profiled HGSC and endometrial carcinoma samples using 

iTRAQ-based quantitation. Comprehensive analysis revealed 356 quantifiable proteins and 

identified mitochondrial inner membrane protease subunit 2 (IMP2) and minichromosome 

maintenance complex component 2 (MCM2) to be modulators of rapid HGSC growth, illustrating 

the need to examine these two proteins in further ovarian cancer studies.  

Alternatively, many other analyses have used the TMT-based isobaric strategy rather than 

iTRAQ labeling. Recently, Hu et al.132 used an integrated proteomic and glycoproteomic approach 

with TMT-labeled peptides in their analysis of ovarian HGSC versus non-tumor tissues. These 

authors combined global proteomics, solid-phase extraction of glycosite-containing peptides 

(SPEG) and glycan identification via intact glycopeptide analysis to provide a comprehensive view 

into N-glycoproteomics within ovarian cancer. Their integrated approach yielded promising 

results, identifying tumor-specific glycosylation and revealing glycosylation enzymes that were 

correlated with altered glycosylation status. Yoshimura et al.133 treated neighboring peritoneal 

mesothelial cells with a microRNA shown to be elevated in the serum of ovarian cancer patients 
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to determine its role in cancer invasion and metastasis. The TMT-based proteomics analysis 

exhibited increased expression of fibronectin and vitronectin, enhancing the ability of the cancer 

cells to invade the surrounding environment. A straightforward, quantitative comparison of TMT-

labeled normal versus cancerous ovarian tissue was performed by Qu et al.134 to find differentially 

expressed proteins that hold promise in elucidating disease progression. Initial analyses found 498 

differentially expressed proteins and highlighted chloride intracellular channel protein 1 (CLIC1), 

which was examined further and ultimately determined to promote tumorigenesis, making it an 

attractive therapeutic target. Proteogenomic and phosphoproteomic analysis was performed by 

McDermott et al.135 to characterize mechanisms driving ovarian HGSC functions down to the post-

translational level. Global proteomic analysis led to the identification of 10,706 proteins and 

combined results described a role of histone acetylation as a marker for homologous recombination 

deficiency, confirming an association earlier proposed by Zhang et al.130 Phosphoproteomics data 

provided understanding into proliferation-induced replication stress and the impact it has on 

chromosomal instability in HGSC, implying that mitotic and cyclin-dependent kinases could serve 

as therapeutic targets after future experimental validation. 

Label-free quantitation is frequently employed for ovarian cancer analyses, as the global 

overview it provides of the proteome allows researchers to identify multiple pathways for further 

targeted analyses. Chuffa et al.136 used this approach to determine the influence of melatonin 

treatment on an in vivo model of ovarian cancer. Comparative proteomics analyses showed that 

downregulation of processes involved in cancer signaling was promoted, underlining molecular 

targets for therapeutic intervention while indicating the feasibility of melatonin supplementation 

for ovarian cancer patients. Another comparative analysis by Júnior et al.137 explored the effects 

of P-MAPA, IL-12 or a combination immunotherapy of the two on the SKOV-3 ovarian cancer 
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cell line. After confirming 532 proteins were identified across all groups, it was noted that 

combination therapy of P-MAPA and IL-12 was most efficient at regulating proteins involved in 

metabolic processes that may render cancer cells more vulnerable, suggesting that the use of the 

two therapies concomitantly is a plausible treatment strategy. Coscia et al.138 used a quantitative, 

label-free approach in tandem with other quantitative strategies to probe the proteomes of 

platinum-resistant and -sensitive ovarian HGSC patient-derived tissues (Figure 6.5). Multi-level 

quantitative analyses revealed cancer/testis antigen family 45 (CT45) as a prognostic factor 

through mediation of chemosensitivity, thereby exposing it as an immunotherapy target.  

The quantitative tissue analyses outlined here provide multiple protein targets for the 

development of new targeted therapies. The role of a defective DNA damage response in ovarian 

cancer is well established, so the multiple studies highlighting histone acetylation and its role in 

homologous recombination deficiency is supported by current literature and should be examined 

in therapeutic development.139 Additional analyses that examine post-translational modifications 

simultaneously with proteomics should also be explored, as these studies may highlight other 

processes outside the DNA damage response that promote cancer progression. The experiments 

above outline the utility that quantitative proteomic approaches hold in advancing the knowledge 

of the ovarian cancer field.  

Biofluid Analyses 

Quantitative analyses that inspect biofluids of ovarian cancer samples provide valuable 

information about potential biomarkers that allow for earlier detection and diagnosis, a current 

area of the ovarian cancer field that is in dire need of new research breakthroughs. Isobaric labeling 

of ovarian biofluids allow scientists to relatively quantify biomarkers that may otherwise go 

undetected or are lost during depletion of abundant serum proteins such as albumin. Zhang et al.140 
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profiled exosomes derived from patient plasma using the TMT tagging strategy. When the 225 

proteins identified across all samples were quantitatively compared, proteins associated with the 

coagulation cascade were found to be differentially expressed and may therefore be promising 

diagnostic factors for ovarian cancer. Zhang et al.141 went on to further profile circulating 

exosomes of late-stage cancer patients using iTRAQ. After validation, they determined that 

apolipoprotein E (ApoE) multiplexed with epithelial cell adhesion molecule (EpCAM), 

plasminogen  (PLG), serpin family C member 1 (serpinC1) and complement component 1q 

(C1q)were able to accurately diagnose ovarian cancer. It was also noted that activation of 

coagulation cascades was increased in the ovarian cancer cohort due to increased Factor X levels, 

demonstrating the impact that tumor-derived extracellular vesicles may have on other biological 

processes. Swiatly et al.142 examined iTRAQ-labeled serum proteins from healthy control, benign 

ovarian tumor and ovarian cancer patients. Five proteins were found to be differentially expressed 

within the ovarian cancer group, and three of these coupled to current biomarkers CA125 and HE4 

improved diagnostic discrimination between benign and malignant ovarian tumors. Russell et al.143 

used iTRAQ to screen preclinical serum samples for detection of early stage biomarkers and 

initially identified 90 differentially expressed proteins in ovarian cancer cases. A second targeted 

analysis of 20 selected candidates revealed Vitamin K-dependent protein Z (VKDP), an 

anticoagulant not previously associated with ovarian cancer, as either a novel independent early 

detection biomarker or concomitantly with CA125 to increase differential diagnostic capabilities.  

Although label-free analyses suffer from longer instrument times and potential run-to-run 

variability, they provide the greatest profiling depth of the multiple quantitative strategies and are 

vital to finding new ovarian biomarkers. Barnabas et al.144 performed deep proteome profiling of 

187 uterine liquid biopsy-derived microvesicles to identify early detection biomarkers. Machine 
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learning algorithms identified a 9-protein signature that correctly identified all Stage I lesions, 

demonstrating the strength of the panel for future use in early diagnosis. Zhang et al.145 studied the 

plasma proteins to isolate biomarkers related to chemoresistance of postoperative reoccurrence. 

These experiments found a total of six dysregulated proteins that could serve as predictive 

biomarkers for chemoresistance in ovarian cancer patients. The combination of plasma proteomics 

and metabolomics was utilized by Ahn et al.146 to discover new molecular signatures of ovarian 

HGSC. Differential expression of 34 metabolites and 197 proteins was found, with three proteins 

(phosphopantothenoylcysteine synthetase (PPCS), peripheral myelin protein 2 (PMP2) and tubulin 

beta class I (TUBB)) and two metabolites (L-carnitine and PC-O) related to the carnitine system 

established as potential markers of cancer plasticity. Hüttenhain et al.147 created a biomarker 

development strategy for large-scale SRM studies in ovarian cancer plasma samples. After 

developing a 5-protein signature for ovarian cancer and testing it against the current ELISA-based 

standard for biomarker tests, it was found that the SRM-based method had sensitivity 

measurements that exceeded the current ELISA standard, validating its potential for clinical 

development and use. Rauniyar et al.148 also used a more targeted approach, combining data-

independent acquisition methods with PRM to improve identification of ovarian cancer serum 

biomarkers. They demonstrated that ApoA-IV is a more reliable biomarker than previously 

determined by immunological assays in addition to the identification of C-reactive protein, 

transferrin and transthyretin as other available ovarian serum markers. Overall, this study validated 

the use of quantitative mass spectrometry as a more sensitive and reliable method of quantitation 

compared to immunological-based procedures. 

While the quantitative research mentioned here has progressed ovarian cancer research, 

continuing studies are still necessary to delve deeper into specific mechanisms of novel markers 
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identified. During the review process, many of the identified studies had a tissue-based proteomics 

approach and minimal studies focused on biofluid samples (Table 4). More studies focusing on 

the use of biofluids in ovarian cancer research are critical in the development of novel biomarkers 

for earlier detection and treatment, and the lack of literature compared to tissue-based studies 

highlights a current area for further quantitative experimentation in ovarian cancer. In particular, 

studying the microvesicular proteome for the discovery of novel biomarkers has shown great 

potential both here and in other quantitative applications. Profiling of extracellular vesicles may 

prove to be a vital key in the prevention of late-stage diagnosis and increasing the overall survival 

rate of patients diagnosed with ovarian cancer. 
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Conclusions and Future Directions 

The various quantitative strategies outlined here have demonstrated the growing utility of 

MS-based quantitation methods in cancer diagnosis and research. Quantitative analyses of prostate 

cancer have been frequently performed within the field due to the growing emergence of resistance 

to first-line treatments and false diagnoses associated with elevated PSA levels. Multiple members 

of the KLK family were identified as potential biomarkers and further strengthened when detected 

in combination with other proteins, suggesting their potential for clinical diagnosis. Targeted 

validation experiments in a cohort spanning all grades of prostate cancer as well as BPH should 

be performed before serious consideration is given to using these proteins as biomarkers. 

Pancreatic studies have been relatively successful in determining sets of robust biomarkers for 

diagnosis and patient stratification. APOA1, APOA4, IGFBP, and CA19-9 have been indicated in 

numerous peer-reviewed studies as critical components for pancreatic cancer screening. Future 

analyses should focus on high throughput reaction monitoring to rapidly screen for these 

biomarkers. Breast cancer research has seen limited quantitative proteomics studies in recent years, 

so future efforts of those investigating new biomarkers and determining mechanisms of 

carcinogenesis should consider quantitative proteomics strategies in their analyses. The small 

number of studies highlighted here contribute potential protein panels useful for breast cancer 

screening, but more large-scale studies that confirm the utility of these proteins as biomarkers are 

necessary. Ovarian research has seen large numbers of tissue- and cellular-based quantitation, but 

there is a lack of biofluid-based experiments. While tissue-based studies provide large amounts of 

information that guide knowledge of disease mechanisms, biofluid studies offer important insights 

that could facilitate the identification and development of protein biomarkers for clinical diagnosis. 
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Due to the lack of biomarkers that detect ovarian cancer at an earlier stage, studies covering 

biofluids are critical and present an understudied area within the ovarian field.  

A common drawback of the quantitative studies addressed is that these investigations only 

determine up- or downregulation of differentially expressed proteins at a single point in time. 

Time-course evaluations monitoring the differential expression and dynamic changes of these 

proteins over time could prove to be more useful, as these studies would explain how expression 

levels change within a single patient over time. In combination with the expression levels across 

varying disease severity, there is a potential to determine a critical expression level for each stage 

of cancer progression that determines not only if the patient has cancer, but also the severity of 

that cancer relative to biomarker concentration levels. Rapid analyses of cancer samples via 

targeted monitoring strategies offer benefits over current immuno-based assays such as ELISA, 

demonstrating the advantage of MS-based quantitation for detection and prolonged patient 

monitoring. Another strategy for improving cancer diagnosis is the integration of additional 

analyses, such as transcriptomics, metabolomics, or analysis of post-translational modifications 

and associated crosstalk. Many of the studies outlined here utilized a combined approach to their 

investigations, leading to the successful identification of a specific protein or process with altered 

expression in both datasets. These integrated approaches help scientists identify mechanisms 

driving cancer metastasis and treatment resistance, thus demonstrating their growing utility in 

future studies. Additional efforts should be made towards understanding communication within 

the tumor microenvironment, as much remains to be known about the interactions that help a tumor 

transition from localized to metastatic ability. Finally, studies focusing on single-cell analyses 

should also be considered for future experiments, as the cellular diversity and heterogeneity 
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provided from such examinations may prove to be critical in understanding specific mechanisms 

that allow pathogenesis to advance.  

Taken together, this review highlights the utility of various quantitative strategies, their 

associated limitations, and some directions for novel applications in cancer diagnosis and cancer 

research. As instrumental capabilities continue to grow, it will become necessary for researchers 

to develop and validate higher throughput labeling strategies that accommodate deeper proteomic 

profiling. Regardless of the application, quantitative proteomics represents a premier avenue 

towards cancer biomarker detection, identification, and validation. Continued efforts in the coming 

years will certainly be centered on the utility of mass spectrometry-based biomarker detection in 

clinical settings and the development of point-of-care biomolecule screening.   
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Tables 

Table 6.1 Summarized selection of prostate cancer biomarkers. 

Proposed Biomarker Source Findings 

Platelet-derived growth factor 

(PDGF)-B 46 

Prostatic tissue Overexpressed with increased 

cancer proliferation 

α(1,6)-fucosyltransferase (FUT8) 48-50 LAPC4 and 

LNCaP cells 

Increased FUT8 expression 

corresponded with decreased 

extracellular vesicle production 

Mitogen-activated protein kinase 

kinase kinase kinase 4 (MAP4K4) 51, 52 

PC3 and 

PC3MLN4 

cells 

Differential expression in 

metastasis-derived cell lines 

 Phosphatidylinositol 4-kinase III α 

(PI4KIIIα) 53 

PC3 cells Upregulated in PC3 cell lines; 

promotes cancer cell invasion 

FXYD domain containing ion transport 

regulator 3 (FXYD3) 54 

PrAd, NEPC 

cell lines 

Biomarker specific to prostate 

adenocarcinoma 

CEA cell adhesion molecule 5 

(CEACAM5) 54 

PrAd, NEPC 

cell lines 

Biomarker specific to 

neuroendocrine cancer 

Four and a half LIM domains 1 

(FHL1), Matrix metallopeptidase 1 

(MMP1) 58 

PC-3M 

sublines 

Promote higher metastatic potential 

Aldehyde dehydrogenase (ALDH1A1) 
59 

Stromal tissue Loss of expression in altered stromal 

cell types 

Actin-depolymerizing factor (ADSV), 

transglutaminase 4 (TGM4) 66 

Urine Differentiates benign and cancerous 

tissue 

CD63 Molecule (CD63), glycerol 

kinase 5 (GLPK5), SPHM 

sulfohydrolase (SPHM), Prostate-

specific antigen (PSA) and pappalysin 

1 (PAPP) 66 

Urine Distinguishes high- and low- grade 

cancer 

Kallikrein related peptidase 4 (KLK4) 
68 

Seminal Fluid Biomarker available in seminal fluid 

Fatty acid binding protein 5 (FABP5) Urine Utility in detecting, diagnosing high 

gleason score prostate cancer 

CD59 molecule (CD59), haptoglobin 

and tetranectin 71 

Serum Expression correlated to bone 

metastasis 
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Table 6.2 Summarized selection of pancreatic cancer biomarkers. 

Proposed Biomarker Source Findings 

Cadherin 3 (CDH3), plasmogen 

activator, urokinase (PLAU), lunatic 

fringe (LFNG) 78 

PC-1 cell 

secretome 

Potential for improving cancer 

patient prognoses 

Transcription factor EB (TFEB) 79 HEK293, 

PANC1, MIA 

PaCa-2 cells 

Association with nuclear protein 

upon inhibition of GSK3 

Leukemia inhibitory factor (LIF) 80 Pancreatic 

stellate cells 

Denoted as major paracrine factor 

Melanocyte inducing transcription 

factor (MITF), transcription factor 

binding to IGHM enhancer 3 (TFE3) 

and transcription factor EB (TFEB) 83 

Tissue, PDA 

cells 

Decoupled from regulatory 

mechanisms, promote catabolic 

function 

Brain acid soluble protein 1 (BASP1) 
96 

Tissue Novel cancer therapy target 

Complement component 4 binding 

protein alpha (C4BPA), polymeric 

immunoglobulin receptor (PIGR) 98 

Serum Higher expression in preoperative 

patients than postoperative 

Apolipoprotein A-1 (APOA1) 101, 102 Serum Distinct expression in both CA 19-9 

positive and CA 19-9-defficient 

patients 

Deoxycytidine kinase (dCK) 103 PK9, CFPac-1, 

PK1, SUIT-2, 

and AsPC-1 

cells 

Predictor of progression-free 

survival, biomarker of gemcitabine 

sensitivity 

Insulin like growth factor binding 

protein 2 (IGFBP2) and IGFBP3 104 

Plasma Compensatory biomarkers when CA 

19-9 screening is inconclusive 

Insulin-like growth factor binding 

protein 2 (IGFBP2) tissue inhibitor of 

metalloproteinase 1 (TIMP1), 

Apolipoprotein A IV (APOA-IV), 

Apolipoprotein CIII APOCIII 105 

Blood Protein panel highly effective in 

early detection of pancreatic cancer 
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Table 6.3 Summarized selection of breast cancer biomarkers. 

Proposed Biomarker Source Findings 

Fibronectin (FN1), alpha-2-

macroglobulin (A2M), complement 

component-4-binding protein-alpha 

(C4BPA) and complement factor-B 

(CFB) 112 

Tumor tissue Critical for subtype differentiation 

Large proline-rich protein (BAG6), 

ATP-dependent RNA helicase 

(DDX39), annexin A8 (ANXA8) and 

cytochrome c oxidase subunit 4 

(COX4) 113 

MCF7 and 

T47D, MDA-

MB-231, and 

SK-BR-3 cells 

Putative biomarkers for breast 

cancer 

Methylated pyruvate kinase M2 

(PKM2) 117 

MCF7, MDA-

MB-231, 

HEK293T cells 

Promotes cell propagation, 

migration and metastasis 

Haptoglobin, fibrinogen, and 

thrombospondin-4 and transferrin 

receptor protein 1 121 

Pre-/metastatic 

xenograft 

tissue 

Reveal N-glycoproteomic 

divergence between normal, 

precancerous, and cancerous tissues 
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Table 6.4 Summarized selection of ovarian cancer biomarkers. 

Proposed Biomarker Source Findings 

Calcium-activated chloride channel 1 

(CLCA1) 127 

OV-90 cells Affects cancer cell regulation 

Insulin-like growth factor 2 (IMP2) 

and minichromosome maintenance 

complex component 2 (MCM2) 131 

HGSC and 

endometrial 

tissue 

Modulators of rapid high-grade 

serous cancer growth 

Fibronectin and vitronectin 133 Peritoneal 

mesothelial 

cells 

Increased expression promotes 

cancer cell invasion 

Chloride intracellular channel protein 1 

(CLIC1) 134 

Tissue Determined to promote 

tumorigenesis 

Histone acetylation 130, 135 Tumor tissue Marker for homologous 

recombination deficiency 

Phospholinoleate–palmitoleate 

anhydride (P-MAPA), interleukin 12 

(IL-12) 137 

SKOV-3 Combination immunotherapy is a 

plausible treatment strategy 

Cancer/testis antigen family 45 (CT45) 
138 

Tissue Found to be a prognostic factor 

Apolipoprotein E (ApoE), epithelial 

cell adhesion molecule (EpCAM), 

plasminogen  (PLG), serpin family C 

member 1 (serpinC1) and complement 

component 1q (C1q) 141 

Circulating 

exosomes 

Diagnostic markers of ovarian 

cancer 

Vitamin K-dependent protein Z 

(VKDP) 

Preclinical 

serum 

Novel, early detection biomarker 

Phosphopantothenoylcysteine 

synthetase (PPCS), peripheral myelin 

protein 2 (PMP2) and tubulin beta class 

I (TUBB) 146 

Blood, plasma Potential markers of cancer 

plasticity 

Apolipoprotein IV (ApoA-IV) 148 Serum More reliable biomarker compared 

to benchmark proteins 
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Figures 

 

Figure 6.1 Example workflow detailing quantitative investigation of prostate cancer 

protein modifications. 

Complete workflow utilized by Zhou et al.55 detailing the quantitative approach to investigate site-

specific fucosylation and glycoproteins associated with aggressive prostate cancer phenotypes. 

The optimized enrichment strategy used to identify glycopeptides contributing to prostate cancer 

aggressiveness shows promise for application in a variety of cancer glycosylation studies but 

should also be applied to other prostate cancer models to determine its utility across sample types. 

Reprinted with permission.  
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Figure 6.2 Quantitative analysis of chemotherapy patient exosomes via iTRAQ. 

Workflow described by An, et al.84 for the quantitative analysis of chemotherapy patient exosomes 

through iTRAQ labeling and quantitative mass spectrometry. This example of a facile isobaric 

labeling proteomics experiment provides deep proteomic profiling of multiple complex samples 

with lower spectral complexity than isotopic labeling methods. Reprinted with permission. 
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Figure 6.3 Isobaric labeling in the context of high-throughput quantitative proteomics. 

Workflow implemented by Nigjeh, et al.107 Quantitative workflows utilizing isobaric labels 

present the greatest propensity for deep proteome profiling. However, these workflows are limited 

by their instrument acquisition speed and cycle time required to select and fragment top precursors. 

For this reason, implementation of DIA strategies presents the ability to sequence a greater number 

of peptides in the same amount of time. Though the data processing methods are significantly more 

involved, DIA workflows are sure to be of critical importance to proteome profiling in the coming 

years. Reprinted with permission. 
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Figure 6.4 Example of quantitative analyses to determine treatment efficacy. 

Representative workflow established by Going, et al.115 As quantitative proteomics is critical for 

discovering and validated biomolecules of interest during periods of disease and treatment, this 

workflow represents an example of how treatment strategies may be controlled and systematically 

evaluated. While SILAC methods would be useful in situations where cell growth is monitored, 

isotopic labeling methods may be considered inherently lower throughput due to the increases in 

spectral complexity they may provide. Reprinted with permission. 
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Figure 6.5 Quantitative proteomics workflow to stratify chemotherapeutic response. 

Analysis by Coscia et al.138 to determine proteomic differences in ovarian cancer tissue samples 

either resistant or sensitive to platinum-based chemotherapeutics. This strategy identified CT45 as 

a chemosensitivity modulator and demonstrates the ability of quantitative methods to identify 

factors that play a role in therapeutic resistance. Reprinted with permission. 
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Abstract  

Prostate cancer is the second-leading form of cancer in men and diagnoses are expected to 

increase sharply as risk factors become more prevalent and global populations age. Despite this, 

clinical diagnoses continue to rely on variable physical examinations, invasive tissue biopsy, and 

serological screening of poor-specificity biomarkers. There has never been a more pressing need 

to develop methodologies for accurate diagnosis and stratification, mandating a comprehensive 

understanding of the biomolecular drivers of prostate cancer. As research towards this goal has 

traditionally been limited by the lack of model organisms that mimic the progressive genetic, 

phenotypic, and molecular characteristics human cancer development, the identification and 

investigation of suitable alternatives remains a principal concern. The recently developed benign 

prostate hypertrophy-1 cancer progression (BCaP) cell model provides direct reprieve from 

traditional shortcomings of prostate cancer investigation and enables the confident association of 

proteomic reorganization with cancer phenotype. Here, we analyze three components of this cell 

model to illuminate biomolecular alterations as benign prostate cancer transitions and progresses 

through malignancy. Using library-free data-independent acquisition mass spectrometry, we 

identify 95,144 peptides and quantify 6,614 proteins with 1,242 shown to be significantly 

dysregulated in malignant phenotypes. Dysregulated proteins were grouped into 7 distinct 

diagnostic expression patterns, revealing the progressive reorganization of critical biological 

processes such as kinetochore formation, cytoskeletal organization, metabolic processing, and 

interferon signaling. We also provide a topical comparison of transcript and protein level analyses, 

articulating the importance of proteomic measurements and the need for regular, multimodal 

analyses. Together, this study presents a primary investigation of the proteomic perturbations 
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observed in a novel progressive prostate cancer cell model and suggest protein communities useful 

biomarker validation, therapeutic targeting, and protein-centric cancer diagnosis. 
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Introduction 

Prostate cancer (PCa) is the second most prevalent form of cancer in men1 and exhibits the 

highest age-adjusted rate of incidence in numerous populations2. As the risk of prostate cancer 

emergence positively correlates with age3, maturing demographics in numerous in population-

dense and high cancer rate countries2 significantly exacerbate this global health concern and 

further emphasizes the need for early detection and treatment. Standard mitigation practices 

involve regular urological screenings for men considered at risk – digital rectal examinations 

(DREs) being the standard medical diagnostic4. While DRE remains the predominant form of 

prostate cancer detection, limitations have been noted in consistency5 and reliability6. As 

well, DREs are elective procedures that only serve as a primary screen, which brings 

patient reluctance prior to symptom manifestation7. While DREs serve to identify 

irregularities prostate volume and tissue density that accompany prostate cancer 

development tumor presentation, the unique physiological alterations seen in both healthy 

aging and diseased prostates present diagnostic challenges that cannot be surmounted 

by a physical examination alone.  

The diversity of physiologies associated with benign and cancerous prostate 

enlargement presents the principal challenge. Benign prostatic hyperplasia (BPH), which 

affects >50% of men past the age of 508, 9, presents the hallmarks of an enlarged prostate, 

dysuria and nocturia10; these symptoms overlap with those seen in PCa. Furthermore, 

PCa is a heterogenous, progressive cancer type with four clinically recognized stages11, 

each of which presents unique physiological traits. Today, these conditions and 

phenotypes are diagnosed through a combination of tumor classification, serological PSA 

evaluation, histological imaging, and Gleason scoring11. Biopsy and pathology are 
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paramount in diagnoses, but limitations are apparent when considering invasiveness, 

subjectivity12, and global availability. More confounding is the reliance of PSA as an 

effective PCa biomarker13, 14, which has been highly scrutinized for its poor specifity15-17. 

As there is a clear need to directly address these clinical limitations and pitfalls, we posit 

recent biological and analytical developments may be leveraged to surmount traditional 

obstacles in PCa investigation and provide a suitable path towards understanding the 

biomolecular drivers of prostate cancer. 

A primary obstacle in PCa investigation has traditionally been the availability of a suitable 

cell or animal model that mimics the diverse, progressive physiology of human PCa. Though many 

entries have proved useful in suggesting relevant biological underpinnings18, unraveling the 

complex events that inspire PCa initiation and development will likely depend on the use of 

temporal, human-derived  models. Recently, a cell model that mimics the genetic, phenotypic, and 

molecular characteristics of human prostate cancer was presented by Ricke and colleagues19. This 

BPH-1-derived Cancer Progression (BCaP) cell model enables the study of discrete PCa 

phenotypes which may be analyzed independently or considered as longitudinal counterparts. This 

ability to confidently relate biomolecular observations to PCa severity provides a significant step 

forward in the effort to illuminate the biological foundations of PCa progression and makes the 

BCaP model a worthwhile subject in contemporary analyses.  

A secondary obstacle in PCa investigation is the pragmatic selection of biomolecular 

analysis. Dedicated focus has established the robustness and sensitivity of transcriptional analyses 

and validated their utility in identifying relevant biological targets in PCa20-22. However, these 

analyses are fundamentally limited by the lack of a quantitative correlation between transcript 

evidence and protein abundance23-25, obfuscating biomolecular understanding and revelation of 



298 

 

active biological participants. Mass spectrometry (MS)-based proteomic analyses, on the other 

hand, offer direct reprieve from these limitations and is considered the tool-of-choice for 

contemporary biomolecular interrogation. Critically, data-independent acquisition mass 

spectrometry (DIA-MS) has found favor in quantitative proteomics investigations26 as it provides 

a facile avenue towards deep proteomic profiling and quantitative accuracy, and experimental 

reproducibility27, 28. Given the routine employment in biomarker investigation29, disease state 

stratification26, and therapeutic monitoring30, DIA-MS proteomics represents the most facile, 

reproducible avenue towards representative biomolecular profiling.  

Within this work, we validate the utility of library-free DIA-MS to illuminate relevant 

proteomic dysregulation and reorganization events correlated to distinct prostate cancer 

phenotypes. Biological triplicate assessment of benign non-tumorigenic (BCaP-NT1), aggressive 

tumorigenic (BCaP-T10), and aggressive metastatic tumorigenic (BCaP-MT10) cell lines provided 

confident identification of 95,144 proteotypic peptide sequences mapping to 7,820 proteins. 6,614 

proteins were reproducibly identified and quantified in all samples, with 1,242 proteins shown to 

be dysregulated beyond statistical significance. Clustering analyses revealed these proteins may 

be grouped into 7 diagnostic patterns, enabling facile assignment of proteins as putative cancer 

progression biomarkers or phenotypic identifiers. These proteomic fingerprints highlight the 

systematic disruption and suppression of kinetochore formation and cytoskeletal organization that 

accompany cancer development; in contrast, other processes such as glutathione production and 

metabolic flux are shown to be upregulated. We also present a topical comparison of proteomic 

and transcriptomic analyses, articulating the importance of protein-level measurements in 

conferring biomolecule abundance and uncovering pertinent reorganization. As shown, the 

silencing of critical pathways such as interferon signaling and antigen presentation are only 
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observed at the protein level where transcriptional analyses would indicate no dysregulation. 

Taken together, this study provides initial reports on the proteomic fingerprints of discrete prostate 

cancer physiologies. Further validation and employment of the protein panels discussed within 

may provide a seminal, protein-centric approach towards accurate, minimally invasive prostate 

cancer identification and stratification. 

 

Experimental Procedures 

Experimental Design 

The BPH-1-derived Cancer Progression (BCaP) cell model was developed to mimic the 

molecular and genetic characteristics of prostate cancer progression and may be reviewed 

elsehwere19. To provide a rational evaluation of biomolecular regulation with respect to increasing 

cancer severity, three discrete phenotypes were selected for analysis: BCaP-NT1 (non-

tumorigenic), BCaP-T10 (aggressive tumorigenic), and BCaP-MT10 (aggressive metastatic, 

tumorigenic) (Figure 7.1). The remainder of the 5 available BCaP phenotypes are to be evaluated 

in future studies. Three biological replicates of NT1, T10, and MT10 cell lines were grown in 

parallel under identical conditions. Cells were harvested, washed, and lysed prior to a standard in-

solution protein extraction and tryptic digestion workflow. Each of the 9 biological samples was 

analyzed in technical duplicate via DIA-MS without prefractionation. Data were analyzed using 

the free software DIA-Neural Network (DIA-NN)31, providing a means of performing library-free 

data analysis by creating in silico spectral libraries from the reference UniProt human proteome. 

Results were then processed and visualized using custom code, which is available for public use 

as described below.  
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Statistical Rationale 

A critical component of DIA data analysis is the validation of true positive precursor 

assignment. Using an empirical spectral library, precursors are confidently identified prior to 

library construction, allowing reliable precursor identification in later DIA analyses. As we 

employed a library-free approach, however, false-discovery rate estimations must be inferred 

directly. DIA-NN provides built-in false discovery rate (FDR) estimation at both the peptide and 

protein level, which has been systematically validated31 and is relied upon in this current work. 

The final collection of proteins used for quantitation and discussion are those found below a strict 

1% protein-level FDR cutoff, identified in every biological sample, and evidenced by at least one 

proteotypic peptide. All peptides discussed within the manuscript have likewise cleared a 1% 

peptide-level FDR cutoff. DIA-NN provides automatic protein-level quantitation using the 

MaxLFQ algorithm, which has been previously validated for quantitative accuracy32. In 

comparison of protein expression levels, the low coefficient of variance (CV) rationalized a log2 

fold change threshold of ±1 from the control group, NT1. Statistical significance was determined 

via Student’s t-test and P-values were subjected Benjamini-Hochberg correction to account for 

multiple comparisons. 

Materials 

Acetone (179124), sodium dodecyl sulfate (SDS, 7173C), dithiothreitol (DTT, D9779), 

and iodoacetic acid (IAA, I6125) were purchased from Millipore Sigma. Water (H2O, 223623) 

acetonitrile (ACN, A955), methanol (MeOH, A456), chloroform (C298), formic acid (FA, A117), 

tris base (BP152), urea (U15), and hydrochloric acid (HCl, A144SI), bicinchoninic acid (BCA) 

assay (23225), and peptide assay (23275) were purchased from Thermo Scientific. Trypisn 

(V5113) was purchased from Promega (Madison, WI). RPLC packing materials (4451IP, 4472IP) 
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were purchased from Osaka Soda Co (Osaka, Japan). Capillary tubing (1068150019) was 

purchased from PolyMicro. All other reagent manufacturers are listed. 

Cell Culture 

BCaP cell lines were generated as described previously19. Briefly, BPH-1 and urogenital 

mesenchymal (rUGM) cells were combined and grafted into adult male athymic mice. Without 

treatment, these cells resulted in a benign graft whereas longitudinal treatment with testosterone 

and estrodiol (T+E2) resulted in unique tumors mimicking stage-specific cancer characteristics 

found in humans. The most aggressive tumorigenic line (T10) was regrafted and found to form 

lymph node metastases without treatment (Figure 7.1). Cells harvested from these were grown and 

maintained in phenol-free DMEM/Ham’s F12 media (Gibco) supplemented with 5% fetal bovine 

serum (HyClone) and 1% penicillin-streptomycin solution (Gibco). Culture was performed inside 

T175 culture flasks, incubated at 5% CO2 and 98% humidity, Cells were grown to a confluency 

of 90%, washed with 1x phosphate-buffered saline (PBS, Cytiva), released with trypsin, and 

harvested using a cell scraper. Harvested cell count was 2e6 for NT1 and 3e6 for the T10 and 

MT10 lines. Cell pellets were washed twice using phosphate-buffered saline and stored at −80°C 

for subsequent processing. 

RNA Microarray 

Microarray preparation and analysis has been described previously33. Briefly, messenger 

RNA was harvested from cultured cell lines, processed, labeled, and hybridized to Affymetrix 

HuGene-1.0-st-v1 expression microarrays with 22,211 gene probes. Data were collected by 

Affymetrix (Santa Clara, CA) and processed to determine differences between NT1, T10, and 

MT10 lines. Due to sample size, statistics could not be utilized in gene selection. 
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Protein Extraction and Digestion 

Cell pellets were allowed to thaw on ice for 30 minutes and resuspended in 4 volumes of 

4% SDS, 50mM Tris-HCl solution prior to lysis via ultrasonication. Homogenate was centrifuged 

at 14,000rpm (~20,800rcf) and the supernatant was extracted from any remaining cell debris. 

Protein concentration was estimated via BCA assay and volumes were estimated provide 

approximate total protein contents. Disulfide bonds were reduced by adding 1.25M DTT in a 1:278 

(v:v) ratio and incubated at 55°C for 30 minutes. Solutions were left to stand at ambient conditions 

until they reached room temperature, followed by 1:10 (v:v) additions of 19mg/mL IAA. Solutions 

were left to incubate at room temperature for 15 minutes in the dark. Four volumes of ice cold 

80% acetone were added to the protein solutions and left to incubate at -20°C overnight. Three 

sequential precipitate washes were facilitated by centrifugation at 14,000g (~20,800rcf), 4°C for 

15 minutes followed by addition of 4 volumes of cold 80% acetone and -20°C incubation for 30 

minutes. Upon final acetone removal, samples were left to air dry for 2-3 minutes and then 

resuspended in 4 volumes of 50mM Tris-HCl, 8M urea, 1x protease and phosphatase inhibitor 

cocktail. Protein aliquots were digested with trypsin 1:100 for 4 hours at 37°C followed by a 

second 1:50 trypsin addition and overnight incubation at 37°C. Digests were desalted, and peptide 

concentration was estimated via peptide assay. 

LC-MS/MS 

Peptide digest samples were analyzed using an Orbitrap Fusion Lumos mass spectrometer 

coupled to an Ultimate 3000 nanoflow liquid chromatography system. Analytes were separated on 

a 15cm-long, custom-packed C18 capillary column, the preparation of which is noted in the 

supplemental information. Using a flow rate of 350nL/min, H2O+0.1% FA as buffer A, and 

ACN+0.1% FA as buffer B, the following 150-minute gradient was used for all analyses: 3% B 
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minutes 0-18, linear gradient to 35% B at minute 126, 75% B minutes 126.5-130, 95% B minutes 

130.5-140, 3% B minutes 140.5-150. A custom DIA-MS method with the following parameters 

was used for all analyses. MS1 settings: resolution, 120,000; scan range 400-1250m/z; AGC target, 

1e6; maximum injection time, 50ms. MS2 settings: precursor mass range, 400-1250m/z; isolation 

window, 24mz; mass defect, 1.0005; activation type, HCD; collision energy, 30; detector, 

Orbitrap; resolution, 60,000; scan range, 200-2000; AGC target, 1e5; maximum injection time, 

45ms; loop control, N; number of spectra (N), 9. The option to inject ion for all available 

parallelizable time was set to True.  

Data Analysis 

MS data files were processed using DIA-NN 1.8. An in silico spectral library was created 

from the reference UniProt human proteome (downloaded February 2022) to facilitate library-free 

search. Trpysin/P digested peptides with up to 2 missed cleavages were considered; methionine 

oxidation and n-terminal acetylation were considered variable modifications with up to 4 allowable 

modifications per peptide. Precursors were confined to those of length 7-50, charge state 1-7, and 

m/z 300-1400; fragment m/z 50-2,000 were used for identification. MS1 and MS2 accuracy, as 

well as retention time scan window were determined automatically by DIA-NN, match between 

runs (MBR) was enabled, protein inference was set to ‘Protein Names,’ and all other settings left 

as default. Results were filtered to a q-value=0.01 (1% FDR) prior to analysis. Gene ontology 

analysis was performed using Metascape34.  

Data and Code Availability 

The .raw MS data has been uploaded to the MassIVE repository with the primary accession 

code MSV000091469 (https://doi.org/doi:10.25345/C5QN5ZN2J). Data may also be found 

through ProteomeXchange using the identifier PXD040776. Summary tables containing relevant 



304 

 

peptide and protein information have also been provided in a tabular format as Supplemental Data 

1-3. All files and custom code needed to reproduce the analyses and figures presented within this 

manuscript can be accessed at htttps://github.com/lingjunli-research/bcap_dia_profiling.  

Results 

DIA-MS Profiling Depth and Quantitative Accuracy 

Whereas traditional quantitative DIA-MS workflows would employ empirical spectral 

libraries, decoupling biomolecular discovery from quantitative investigation, our use of a library-

free approach implies both aspects must be simultaneously evaluated to ensure correct 

discrimination of results. The bulk of peptide identifications provided through DIA-NN come 

through matches to the comprehensive in silico library initialized as part of the workflow – namely 

those with unambiguous evidence and appreciable abundance. However, an advantageous 

component of DIA-NN is the implementation of match between runs (MBR), allowing previously 

missed precursor identifications to be rescued based on confident identification in another sample. 

These two aspects combine to enable highly reproducible peptide and protein identifications across 

the experimental dataset. This is evidenced in our data as any 3 biological replicates display 

excellent correlation of precursor masses confidently identified, being evenly distributed across 

the chosen mass range and highly conserved among the three treatment groups (Figure 7.2a). This 

results in highly reproducible protein group identifications, with >93% of all protein groups being 

confidently identified in each of three triplicates and similar quantities of proteins identified across 

the three cell lines (Figure 7.2b). Altogether, we observe 95,144 peptide sequences belonging to 

7,820 protein groups that may be evaluated for confidence and quantitative accuracy.  

It is imperative we establish intra- and inter-sample quantitative reproducibility in order to 

establish the reliability of protein-level estimations, rationalize any quantitative thresholds, and 
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avoid incorrect interpretation of protein expression levels. DIA-NN provides direct protein 

quantitation through implementing the MaxLFQ algorithm32, which provides robust normalization 

and recalibration of protein abundance across samples. Comparing to the number of protein groups 

evidenced in every biological replicate for a given sample, technical duplicate analyses provided 

reproducible (R2≥0.987), correlational protein abundance estimations of ≥96.8% all protein 

observations (Figure 7.2c). These data highlight the quantitative information will be largely 

conserved when replicates are averaged together for comparison and suggest the potential for low 

variance, as discussed below. Filtering data to meet a strict 1% peptide- and protein-level FDR 

cutoff, our final dataset contained an average 74,847 peptide precursors per sample with an average 

of 71,406 found to be proteotypic. The presence of at least one proteotypic peptide was a principal 

requirement during protein filtering, as well as surpassing a 1% protein-level FDR cutoff (Figure 

7.2d). It is worth noting that FDR filtering alone removed only a small number of proteins from 

final consideration (Figure 7.2e), highlighting the breadth of confident peptide identifications 

observed for each protein. Proteotypic peptide requirements reduced the final protein collection 

by ~25% but this ensures any proteins suggested as useful for disease stratification are not mis-

identified. Finally, the 6,614 confident protein identifications shared between all biological 

replicates and each treatment group (Figure 7.2f, supplemental data 1) were taken for comparison 

and discussion. 

Prostate Cancer Biomolecular Fingerprinting 

To establish rational criteria for consideration of proteomic dysregulation, we evaluated 

the variance associated from replicate measurements. For all samples, the average coefficient of 

variance was found to be 5.7-6.0% (median 3.6-3.8%, supplemental Figure S7.1) when using the 

average and deviation of biological replicate measurements in each sample. This low variance 
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enabled us to establish a 1-fold change (2x change in abundance, as calculated by MaxLFQ) 

threshold for dysregulation, further discriminated by corrected statistical significance 

determination. With the non-tumorigenic (NT1) treatment group serving as the control, our 

analyses revealed both the aggressive tumorigenic (T10) and aggressive metastatic, tumorigenic 

(MT10) groups were relatively consistent in the number of upregulated proteins, approximately 

420 (Figure 7.3a). T10 displayed a similar number of downregulated proteins, 410, while this 

quantity increased in the MT10 group by approximately 30% to 540 proteins (Figure 7.3a). In 

total, our data provided a pool of 1,242 statistically dysregulated proteins that may be further 

investigated to illuminate potentially significant biomolecular aberrations that signal PCa stage 

and progression. 

Realizing the extent of protein dysregulation was seemingly more advanced in the latter 

physiology, we anticipated this observation reflected the progressive nature of these BCaP cell 

lines and highlighted proteome reorganization was conserved or correlated with prostate cancer 

progression. Pearson correlation analysis initially confirmed this expectation as the NT1 and MT10 

phenotypes bore greater similarity to the T10 group than they did to one another (Figure 7.3b, 

supplemental Figure S7.2). We further investigated the congruency of protein regulation between 

T10 and MT10 groups and reveal 44% of all dysregulated proteins were similarly altered in both 

groups (i.e. proteins upregulated in T10 stay upregulated in MT10 and vice versa, supplemental 

Figure S7.3). These observations are encouraging and cause us to speculate that these proteins are 

likely to provide relevant markers of advanced PCa or signals of malignancy. Furthermore, 

because less than half of all significantly dysregulated proteins are well-correlated within the 

disease groups, we hypothesize a holistic evaluation of the entire 1,242 protein panel would reveal 

nuanced regulation useful for stratifying these three phenotypes. This hypothesis was confirmed 
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through hierarchical clustering, which revealed correct separation of all biological groups and 

reaffirmed phenotypic relationship (Figure 7.3c). We validated this clustering and rearticulated the 

distinction of disease states through unsupervised dimensional reduction (supplemental Figure 

S7.4).  

Encouraged by the unambiguous grouping of biological replicates within each disease 

state, we sought to identify the collection of proteins most responsible for ascertaining differences. 

Our data had so far suggested a correlational – though not always proportional – dysregulation for 

some proteins in the T10 and MT10 lines (supplemental Figure S7.3). If we permit the 

consideration of a longitudinal relationship between the three phenotypes analyzed here (i.e., NT1 

comes before T10 and T10 comes before MT10), the consistency in protein dysregulation can be 

considered reflective of putative oncogenes or tumor suppressor genes. Based on this, we 

hypothesized all remaining dysregulated proteins may be clustered according to their magnitude 

and direction and then represented longitudinally to reveal putative protein panels useful for 

biomarker validation and therapeutic targeting. We evaluated this hypothesis by performing row-

wise hierarchical clustering of protein expression, manually inspecting cluster thresholds to obtain 

the most logical protein groupings. Ultimately, the allowed granularity revealed 7 major clusters 

discussed below. 

The dysregulation of proteins within these clusters enable understanding as to which 

protein populations are useful for disease identification, those that may be investigated for 

potential biomarkers, and which proteins may serve to suggest phenotype but are not viable as 

markers of progression. For example, of the clusters displayed in Figure 7.3d, clusters 2 (112 

proteins) and 6 (141 proteins) demonstrate progressive downregulation and upregulation in 

accordance with cancer aggressiveness, respectively; logically, these are topical targets for 
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biomarker validation or for use in therapeutic monitoring. Clusters 4 (456 proteins) and 7 (302 

proteins) display conserved dysregulation in the T10 and MT10 groups, which implies these 

protein panels may be used as signals of malignancy and can be evaluated as oncogenes or 

suppressor genes. On the other hand, clusters 3 (54 proteins) and 5 (136 proteins) show distinct 

protein expression in each of the tested cell lines, suggesting expansion of these populations could 

prove useful in assigning phenotype. Regardless of the speculated potential of these protein 

clusters, we cannot infer the biological significance or relevance from dysregulation patterns alone. 

We therefore further analyzed these proteins to reveal protein communities of interest and to 

illuminate potential underpinnings of PCa progression. 

Identification of Protein Communities Related to PCa Malignancy, Progression and Phenotype 

The proteomic reorganization observed within our analyses can be grouped into 7 unique 

clusters based on the magnitude and direction of protein regulation. However, the extent of 

dysregulation alone is not sufficient to suggest importance in PCa-specific investigations, and each 

cluster should therefore be investigated separately to establish biological relevance and ascertain 

proteins that show promise for future investigation (Figure 7.3d). We surveyed the activity and 

relatedness of these proteins by submitting each cluster to gene ontology (GO) analysis (Figure 

7.3e, supplemental data 2) to identify any highly conserved protein communities. Clusters 1 and 2 

demonstrate concerted dysregulation of proteins involved in cellular mitosis. Specifically, our data 

point to disruption of kinetochore assembly, as evidenced by suppression of AURKB, INCENP, 

KNL1, KNSTRN, NUF2, SPC24, and SPDL1 among others (supplemental data 2). Dysregulation 

of kinetochore activity is further capitulated by lowered expression of BUB1, CDC20, UBE2C, 

and UBE2S that are required to form the anaphase promoting complex, as well as CEP55, CEP78, 

KIF20A, and KIFC1 involved in microtubule association with the kinetochore. We also noted 
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RHO GPTase family members and interactive components such as ANLN, PKN1, PPP2R5D, and 

PRC1, suggesting both kinetochore disruption and participation in cytoskeletal reorganization.  

Previous studies have established the importance of kinetochore activity in cancer35, as 

correct association and participation of these components is critical for correct chromosome 

migration. Review of investigations into the role of the kinetochore highlight that overexpression 

of constituent proteins may contribute to cancer progress by driving aneuploidy35. Given that our 

data suggests progressive downregulation of kinetochore-associated proteins, we hypothesize our 

data is reflective of prolonged mitosis and cellular senescence. Literature supports this hypothesis 

as senescent tumor cell have been shown to contribute to invasion by providing an 

immunoprotective environment for non-senescent cells36; this theme is further confirmed by our 

data that show suppressed immunity in malignant cell lines (see information on cluster 4 and RNA-

protein comparison).  

In addition to these possible drivers of PCa progression, our serve to bring attention to the 

Ndc80 complex. This complex is known to participate in all aspects of kinetochore function and 

is chromosome segregation in all eukaryotes37. The Ndc80 complex is comprised of four subunits: 

NDC80, NUF2, SPC24, and SPC25. NUF2 and PSC24 were both shown to be downregulated only 

in the metastatic MT10 cell line, as highlighted by their position in cluster 1 (figure 3d). We 

searched for the remaining two subunits in our dataset and reveal that both NDC80 and SPC25 are 

likewise downregulated only in MT10, though they were just shy of the 1-fold change threshold 

(NDC80 = -0.92, SPC25= -0.809). The stark contrast of NDC80 regulation in malignant cell lines 

suggests the depletion or silencing of NDC80 contributes to or accompanies metastasis. We 

propose functional analyses of metastatic phenotypes within the BCaP model (M1 and MT10, 

Figure 7.1) may be used to further elucidate metastatic potential NDC80. 
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Diagnostic cluster 3 presented lesser conservation in biological processes but did display 

enrichment of epidermis development. Among the small collection of proteins in this cluster, 

several species such as  CASP138, CAV139, CLDN140, COL17A141, IL1842, KRT543, PPL44, and 

SFN45 have demonstrated connection to various cancers. Prior to investigation, we anticipated 

various processes such as epidermal-mesenchymal transition (EMT) or cornified envelope 

formation to be dysregulated as PCa progresses, meaning the identification of these proteins is not 

surprising. However, these proteins are marked by higher expression in the NT1 line, suppressed 

in T10, and then partially corrected in MT10, which subverts our expectation that these species 

may be disrupted longitudinally. We caution drawing conclusion from a small protein population, 

though two hypotheses may be constructed. First, the greatest disruption of ‘normal’ epidermal 

development may be seen in early PCa phenotypes with some activity trending towards baseline 

in advanced stages. Further analyses of early BCaP phenotypes (i.e., NT1 and T1) may elucidate 

or reject this reality. Alternatively, we hypothesize the true aberration in cluster 3 is actually the 

high prevalence of proteins in NT1. Given that cluster 3 also highlights proteins involved in 

monocarboxylic acid and that their regulation trajectories resemble that of clusters 6 and 7, we 

consider this hypothesis quite possible and will be investigated in future studies. 

Cluster 4, which is comprised of proteins downregulated in malignant T10 and MT10 

phenotypes, was both largest in size and most highly conserved in biological pathway 

participation. Obviously, cytokine and interferon signaling were the most enriched pathways, 

highlighting the participation of these process in tumor progression46-48. Due to significance of the 

proteins within these pathways, and due to the observations found in our comparisons of transcript-

level data, presentation and discussion of proteins within these processes are largely confined to 

later sections (see RNA-protein comparison). Beyond cytokine and interferon signaling, actin-
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filament processes were shown to be dysregulated, restating the known relationship between 

cancer and cytoskeletal reorganization49. We identified numerous classical actors in these 

pathways such as actins (ACTG1, ACTN1), keratins (KRT1, KRT10, KRT14, KRT17, KRT80), 

myosins (MPRIP, MYH14, MYL6, MYO18A, MYO1C), and tropomyosins (TPM1, TPM4), as 

well as GSN in cluster 2. These data are more in-line with the expected epidermal and cytoskeletal 

dysregulation associated with PCa, reaffirm the loss of adherence to neighboring cells and tissue 

contribute to invasion50, 51. Given recent support, we propose expansion and validation of this 

protein community may provide relevant targets for anti-cancer therapy and biomarkers of 

malignancy. 

One significant observation worth noting from cluster 4 is the downregulation of DDX60, 

DDX60L, and DDX3Y. These three proteins are DEAD-box (DDX) helicase superfamily 

members, each known to participate in RIG-1-dependent type 1 interferon (IFN) production52. 

There is no consensus on the relationship of DDX60 and DDX60L expression and cancer 

prognoses, with reports suggesting both up-53, 54 and downregulation55, 56 are clinical markers. 

Regardless, our data reveal a significant downregulation of these proteins and downstream 

partners, suggesting a compromised immune response in malignant cell lines. DDX3X and 

DDX3Y, relatives of DDX60, were also quantified in our dataset with proteotypic support. 

Notably, DDX3Y was significantly downregulated with DDX3X showing normal expression. This 

observation stood out due to the commentary on the activity of these proteins in PCa. Recent 

literature points to loss-of-Y (LOY)57, 58 as a marker of cancer susceptibility, though some opinions 

prior to these reports suggest caution in this hypothesis59. Suppression of Y-chromosome-coded 

DDX3Y in our dataset suggests general agreement with LOY studies, though we do not attempt 

to draw a firm connection. More importantly, the redundancy between DDX3Y and DDX3X are 
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often associated with rescue of function60-62, implying suppression of DDX3Y leads to higher 

DDX3X activity in the present study. Increased activity of DDX3X would, however, confirm 

previous transcriptomic analyses of the BCaP cell lines, which have suggested DDX3 as a marker 

of metastases63 and regulator of androgen receptor64. Given the importance and recent focus on 

DDX3, we posit further investigations are mandatory to both confirm the presence and 

downregulation of DDX3Y presented here, as well as further elucidate the unique role of DDX3X. 

Cluster 5 presented the greatest breadth and lowest conservation of enriched pathways. The 

enrichment of proteins involved in cholesterol synthesis reinforce the known energy and metabolic 

demands of various cancers65, 66. However, we observe a similar phenomenon as that seen in cluster 

3 where direction of dysregulation is reversed when moving from T10 to MT10. As well, the 

proteins within this cluster are shown to be related to microtubule binding and mitosis, which 

harken back to clusters 1, 2, and 4. This provides further support to our earlier conjecture that the 

aberration in this cluster stems from altered expression in NT1 and that the changes observed in 

T10 and MT10 are mimicking those seen in other clusters. For this reason, we speculate the 

proteins confined to clusters 3 and 5 may demonstrate potential utility in assigning non-

tumorigenic phenotypes. 

The dysregulation pattern observed in cluster 6 indicates these constituent proteins are 

those progressively upregulated as PCa progresses. This cluster is arguably the most congruent in 

biological processes as we observe a clear association between the protein members, metabolic 

transport, and metabolic flux. Very specifically, we pinpoint glutathione (GSH) production as 

progressively upregulated in accordance with cancer progression (Figure 7.4). Our data display 

membrane antiporters SLC7A11/SLCA32 and SLC1A3 are upregulated, providing greater influx 

of cysteine and aspartate, respectively67. Cysteine is a critical component in GSH biosynthesis, 
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with cysteine-glutamate pathway members GCLC, GCLM, and GSS all being upregulated. 

SLC1A3 further contributes to GSH biosynthesis by providing aspartate that is converted to 

glutamate in the TCA cycle by way of GOT1, which is also upregulated. GSH is a key mediator 

used to eliminate reactive oxidative species (ROS) through glutathione peroxidases (GPX) and our 

data demonstrate upregulation of GPX1 and upregulation of GPX4, though it did not meet the 1-

fold change threshold. Based on this, we posit the increased production of GSH and 

normal/elevated elimination of ROS inhibits ferroptosis and confers cell survival. To further this 

point, recent literature has noted the contribution of the glutamine transporter SLSC1A5 to drive 

GSH production and confer chemotherapy resistance68. Beyond these transporters, increased 

SLC7A11/SLCA32 is also shown to promote invasion and metastases through activation of the 

PIK3-AKT-mTOR pathway67; PIK3 is shown to be upregulated in our data with AKT and mTOR 

showing normal regulation (Figure 7.4). Given the conservation of activity and increasing attention 

in translational studies, the proteins grouped into this cluster point towards clinical relevance of 

GSH production and suggest potential utility of SLC-focused therapies. 

Finally, proteins constitutively upregulated in malignant phenotypes are grouped into 

cluster 7. As expected, these proteins are largely associated with glycogen and glucose metabolism 

(G6PD, PFKM, PGM1), amino acid biosynthesis (BCAT1, FAH, MTRR, SLC1A3, PSAT1, 

PSPH) as well as restating glutathione production mentioned above (PYCR1, PYCR3. GSS, 

GCLM, GSTM4), among others (supplemental data 2). There is abundant evidence implicating 

these processes within cancer69-72 as they are critical for energy production and survival. In 

addition, this cluster also revealed proteins involved in in EGFR signaling (supplemental data 2), 

implicating this pathway in invasion and metastases, as noted before73. Notably, our data indicate 

higher expression of STAT6, an emerging target of interest in cancer therapies due to its role in 
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mediate immune respose74. This upregulation of STAT6 is more compelling, considering the 

suppression of other STAT family members discussed below (see RNA-protein comparison). 

Given the topical nature of proteins in this pathway, we further articulate the potential use for these 

proteins in targeted therapies or as markers of malignancy. Likewise, all 7 clusters presented here 

may be considered individually or in concert in the effort to form effective, protein-based strategies 

for disease assessment. As we have so far demonstrated the ability of these clusters to provide 

relevant, actionable insight into PCa progression, it is our position these clusters should be further 

expanded and validated through repeat measurements and then explored longitudinally to reveal 

meaningful prognostic markers. 

Transcript-Protein Inconsistency Reveals Suppressed Pathways 

Transcriptomic analyses have long been the standard primary measurement in the effort to 

uncover specific biomolecular alterations specific to human disease. While the sensitivity and 

efficiency of these methodologies has been widely reported20-22, a fundamental limitation is the 

lack of a quantitative relationship between RNA and the proteins for which they code23-25. Because 

a core argument in this work is that protein identification and quantitation enable a more 

representative view of PCa progression, we sought to evaluate the agreement between 

transcriptomic and proteomic observations and illuminate potential dysregulation events that may 

be hidden at the transcript level.  

A preconstructed RNA microarray was used to screen NT1, T10, and MT10 cell lines (see 

methods), with ratios calculated against the control NT1 group and log2 transformed to determine 

fold change. Coding genes were mapped to all proteins identified in the proteomics dataset and 

joined to the microarray data. We assume a 1-fold change threshold for microarray data, though it 

is important to consider the differences in measurement between RNA and protein datasets; 
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contrasts discussed here are merely qualitative. Overall comparison between these datasets 

revealed a weak positive correlation for both the T10 (R2=0.48) and MT10 (R2=0.58) groups, 

reflecting the general agreement between transcript evidence and protein expression, though the 

most obvious similarities are seen at the extremes. Using MT10 as a representative (Figure 7.5, 

supplemental data 3), numerous proteins are shown to be downregulated at both the transcript and 

protein levels. Among these, we observe downregulation of the tumor suppressors BCAM75, 

FSTL176, DPS77, DSC378, and ST1479 rearticulating their known roles pinpointing relevant targets 

contributing to invasion and metastases. However, we also note the suppression of some 

genes/proteins that have previously been presented as poor prognosis markers, such as KRT1080, 

KRT1481, CPA482, and CALD183. The suppression of these markers will be confirmed in later 

studies, though our findings may simply highlight cancer heterogeneity and non-analogous 

presentation of prognostic markers.  

Turning to those proteins upregulated at both the transcript and protein levels, we observe 

increased levels of known cancer-related actors such as BCAT184, AGR285 and INA86, each of 

which has been suggested as a putative therapeutic target. Opposing these, STOM is suggested as 

a tumor suppressor87, indicating the upregulation seen in our datasets may suggest feedback 

activation or a mechanism promoting survival. In addition to these proteins, we also observe 

overexpression of hypoxia upregulated 1 (HYOU1), which brings into focus two areas of 

consideration. First, HYOU1 is known to promote proliferation, invasion and metastases through 

the PI3K-AKT-mTOR pathway88, a signaling cascade also promoted through SLC7A11 activity. 

Our proteomic analyses revealed significant upregulation of SLC7A11 and PI3K, while AKT, 

mTOR, and RPTOR expression was normal (Figure 7.4, supplemental data 1). The conserved 

upregulation of this protein community highlights a putative mechanism driving PCa progression 
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in this BCaP cell model. However, STOM expression has been found to be negatively correlated 

with AKT activation87, allowing us to hypothesize that either STOM upregulation or PI3K-AKT 

activation is inspired through feedback mechanisms. 

The second, larger observation gleaned through HYOU1 upregulation is that malignant 

lines in the BCaP model adopt a permanent hypoxic phenotype. Though it is obvious that oxygen 

starvation leads to increased expression of HYOU1, we can further confirm hypoxia through the 

significant downregulation of IVL, an oxygen regulated product89. HYOU1 is known to inhibit 

apoptosis though downregulation of IFN-α/β88, causing us to question if disruption of this pathway 

could be observed in our analyses. Though IFN-α/β were not quantified in our analyses, our search 

did reveal the suppression IFIT1, IFIT2, and IFIT3. Most strikingly, these proteins were only 

shown to be dysregulated at the protein level, whereas transcriptional analysis indicate no 

perturbation in expression  (Figure 7.5). Intrigued, we searched for all related proteins and 

interacting partners, revealing nearly ubiquitous downregulation of proteins within the JAK/STAT 

pathway (Figure 7.6). Both STAT1 and STAT2 were shown to be downregulated, suggesting 

lowered activity of their activated complex and subsequent reduced activation of interferon 

response element, ISRE. Examining the multitude of downstream IFN-induced genes, we observe 

unambiguous downregulation of ubiquitin modifiers (ISG15, ISG20), oligoadenylate synthases 

(OAS3, OASL), PSMB8, IFIT proteins (IFIT1, IFIT2, IFIT3, IFIT5, IFITM3, IFI35), and HLA 

class I (HLA-A, HLA-B, HLA-C, HLA-E, HLA-F).  

Diagnostic cluster 4, mentioned above (Figure 7.3d), displayed the greatest enrichment of 

any single biological processes, with cytokine and interferon signaling being the most significant 

terms (Figure 7.3e). The conserved downregulation of the JAK/STAT proteins is the primary 

driver of that enrichment and highlights the potentially significant roles of this signaling pathway 
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in PCa progression. Existing literature90 has noted that hypoxia drives JAK/STAT suppression 

through reduced degradation of HIF1a, which may be stabilized through interaction with HSP9091 

and proceeds to drive JAK/STAT inhibition92. However, recent reports have suggested the 

silencing of JAK/STAT is hypoxia specific and only partially inspired through HIF1a 

mechanisms93. HIF1a was not identified or quantified in our proteomics dataset and we therefore 

cannot confirm either claim. However, since we cannot ascertain any accumulation of HIF1a in 

the advanced, malignant cell lines, our data suggests agreement with the conjecture that 

JAK/STAT silencing is mediated by hypoxia alone rather than by HIF1a. These claims must be 

investigated separately. These biological questions notwithstanding, our data reveal a 

demonstrable contribution to PCa invasion and metastases from oxygen regulated signaling 

pathways. We provide evidence that both interferon signaling and antigen presentation are silenced 

in malignant phenotypes, indicating either solitary or joint contribution to progression. We suggest 

these are critical drivers of PCa development and advocate for dedicated investigation. The BCaP 

cell model that revealed these truths makes for a compelling system in which to investigate the 

effects, allowing not only facile knock in/out of relevant gene targets, but also a logical comparison 

of the physiological traits inspired after targeted therapy. 

Discussion 

Library-free data-independent acquisition mass spectrometry is a powerful tool in the effort 

to uncover biomolecular changes in health and human disease. Here we present the ability to 

provide reproducible peptide and protein identification and rigorous protein-level abundance 

estimates. Nevertheless, it may be argued that direct analysis of proteolytic mixtures may never 

replace the profiling depth enabled found when utilizing pre-fractionation and building an 

empirical spectral library specific. Certainly, the utilization of newer DIA-based technologies94 or 
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the use of instrumentation with higher acquisition speed95 may have improved the extent of 

proteomic information obtained within this study. However, quantification of 6,614 proteins across 

9 biological samples brings merit and rigor to this investigation, providing a meaningful collection 

of biomolecules useful for phenotypic comparison and follow-up study. We believe development 

of this work should focus on two primary areas. First, the expansion of these proteomic 

comparisons both in depth of coverage and the BCaP phenotypes compared. These investigations 

will provide support or greater context for the observations made here and enable a more nuanced 

understanding of PCa physiology. The second area of development is the inclusion or targeted 

assessment of post-translational modifications (PTMs). As PTMs are a critical component of 

disease progression, they are worthwhile target in future investigation and may provide more 

reflective protein quantitation when considered alongside the unmodified peptides shown here. 

Furthermore, our analyses highlighted JAK/STAT silencing and reaffirmed its relevance to cancer 

progression. Protein phosphorylation is the underlying currency of this pathway and must be 

analyzed independently to better understand dysregulation of JAK/STAT in prostate cancer. 

A core tenant of this work was to provide distinct biomolecular fingerprints of PCa 

progression. Our analyses of three BCaP cell lines, which mimic the genetic, phenotypic, and 

molecular characteristics of human cancer, allowed us to identify 1,242 dysregulated proteins that 

highlight molecular alterations as PCa advances. These significant proteins could easily 

distinguish all three tested phenotypes from one another and correctly identified the expected 

phenotypic relationships. More than this, because various protein communities display a high 

degree of relation to one another in their direction and magnitude of dysregulation, we easily 

grouped these proteins into 7 diagnostic clusters. Viewing these clusters longitudinally allows us 

to understand which protein cohorts are useful as progressive markers and those useful to assign 
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malignancy (Figure 7.3d). Clusters 4 and 7 contain those proteins consistently up- or 

downregulated in malignant phenotypes and are useful for severity assignment. However, because 

we cannot determine at what point during PCa progression these proteins become dysregulated, 

inclusion of intermediate BCaP phenotypes becomes necessary. Though clusters 4 and 7 present 

the most logical oncogenic or suppressor targets, clusters 2 and 6 may be considered more 

immediately interesting. We of course anticipate the number of proteins within these clusters to 

grow in subsequent, higher-throughput analyses, but this initial report already suggests the 

potential significance of understanding mitotic disruption and glutathione production in cancer 

progression. 

Finally, our work points towards critical considerations in biomolecular investigation. 

Though decades of innovation have bolstered the sensitivity and throughput of RNA-based 

analyses, total reliance on transcript-level information may prove limiting. We agree, on principle, 

that transcription analyses provide a high-level understanding of protein presence. However, our 

data) reinforces the understanding that protein abundance cannot be directly inferred at the 

transcript level, mandating proteomic analyses. For this reason, we fervently suggest that both the 

entire BCaP cell model, and other future cancer models must employ comprehensive RNA and 

proteomic analysis. In doing so we will provide more comprehensive, rational presentation of any 

significant biomolecular alterations observed and provide insight into meaningful experimental 

design for emerging research. 

Summary 

In summary, we provide a preliminary investigation of the proteomic perturbations related 

to and responsible for prostate cancer progression. The novel, progressive BCaP cell model is an 

invaluable tool for gleaning insight into this disease as it not only provides an avenue for 
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biomolecular discovery, but it also allows the confident assignment of biomolecular changes that 

accompany discrete PCa phenotypes. Here we demonstrate the unique proteomic fingerprints of 

non-tumorigenic, aggressive tumorigenic, and aggressive metastatic, tumorigenic cell lines are 

immediately applicable for disease stratification. As well, these proteomic fingerprints can be 

dissected and represented longitudinally to understand those proteins and protein communities that 

present potential for biomarker validation, malignancy assignment, and severity assessment. In 

addition to kinetochore disruption and cytoskeletal reorganization highlighted in our findings, our 

data reveal the silencing of the JAK/STAT signaling cascade is a marker of PCa malignancy, 

possibly due to disruption of immune activity and silenced interferon signaling. As well, we 

highlight PCa progression is associated with a possible overproduction of GSH that fails to inspire 

ferroptosis. Further investigation may reveal the clinical significance of these pathways and 

suggest potential therapeutic targets. Regardless of outcome, this work validates a suitable 

methodology for investigating PCa progression that will be expanded to provide more 

comprehensive understanding of relevant biomolecular changes visible in human cancer. 
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Figures 

 

Figure 7.1 Graphical representation of the BCaP cell model. 

BPH-1 and rUGM cells were grafted into the renal capsule of adult male athymic mice. Left 

untreated, these grafts resulted in a non-tumorigenic (NT1) phenotype. After treatment with 

normal circulating levels of testosterone and estrodiol grafts were found to be tumorigenic (T1) at 

2 months, aggressive metastatic at 4 months (T10) and metastasize at 4 months (M1). Metastatic 

cells were regrafted as before and left untreated to form an aggressive metastatic tumorigenic 

(MT10) line. T1 and M1 lines are transparent because they are not used or discussed in this work.  
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Figure 7.2 Reproducibility, accuracy, and quality of library-free DIA-NN results. 

a) Density plots representing the conserved distribution of peptide m/z values. Each biological 

replicate is a unique line on a given plot. b) Upset plot displaying the overlap of protein 

identifications in each BCaP line. Nodes represent a single biological replicate; bars represent 

proteins found in the highlighted nodes. c) Scatter plot comparing MaxLFQ protein abundances 

between technical replicates. Dot color represents kernel density estimate. d) Quantity of peptides 

(top) and proteins (bottom) identified in each sample. Unique peptides are non-redundant modified 

sequences; unique proteins are proteins with proteotypic evidence. e) density plot displaying the 

protein-level FDR, as estimated via DIA-NN. f) Overlap of final proteins eligible for quantitative 

comparison; only the 6,614 shared proteins are used for final discussion. 
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Figure 7.3 Proteomic fingerprints obtained through quantitative DIA-MS analyses. 

a) Volcano plots displaying proteins shown to be dysregulated beyond statistical significance 

(P≤0.05, Benjamani-Hochberg correction applied). b) Pearson correlation of protein abundances 

between all tested samples. c) Column- and row-wise hierarchical clustering of 1,242 dysregulated 

proteins. Intensities have been normalized using z-score. d) 6 diagnostic patterns revealed when 

proteins are grouped together according to magnitude and direction of dysregulation. e) GO 

analyses of proteins contained within their respective diagnostic cluster. 
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Figure 7.4 Dysregulation of GSH production pathway. 

Proteins and small molecules not quantified in this study are represented with light grey 

backgrounds and dashed outlines. Proteins not significantly dysregulated in this study are dark 

grey and proteins upregulated are dark blue. Downstream effects of dysregulation (i.e. invasion, 

metastases) are discussed elsewhere67.  
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Figure 7.5 Comparison of MT10 RNA and protein biomolecular profiles. 

Scatter plot presents comparison of dysregulation determined through microarray (y-axis) and 

proteomic analyses (x-axis). Bar charts are called out for individual proteins and display the log2 

abundances for NT1, T10, and MT10 cell lines. *P≤0.05; **P≤0.01; ***P≤0.005; ****P≤0.001. 

All P-values have been corrected via Benjamini-Hochberg correction. 
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Figure 7.6 Hypoxia-driven suppression of the JAK/STAT pathway. 

Proteins not quantified in this study are represented by light grey background and dashed outlines. 

Proteins not dysregulated are dark grey and proteins downregulated are light blue. 
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Supplementary Methods 

Column Preparation 

25cm of capillary (360µm o.d., 75µm i.d.) were taken for column packing. Using a flame, 

a small 3cm portion of the capillary coating was removed, approximately 5 cm from one end. An 

emitter was pulled using a Sutter P2000 laser puller. Column shells were flushed with MeOH to 

ensure adequate spray. RPLC columns were packed with 3um packing material at 100psi for 5 

seconds followed by packing with 1.7µm packing material at 1500psi. Columns were packed until 

15cm of the capillary was filled. Packing material for RPLC columns was suspended in 

chloroform. For PGC columns, this process is identical, save for the packing step. Packing 

material, 3µm, was suspended in MeOH and packed at 1500psi until a final length of 15cm was 

reached. Capillary was trimmed to a final length of ~17cm and used in-line with the Ultimate 3000 

nano-flow LC system. 
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Supplemental Tables 

For brevity, supplementary data tables have not been included here. The tables are included 

as part of the submitted manuscript and may be found online or may be obtained directly through 

directly contact the authors of this chapter. 
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Supplementary Figures 

 

Figure S7.1 Coefficient of variance calculated for all quantified proteins. 

Variance is plotted both as density plots (a) and boxplots (b) to visualize the 

congregation of proteins below 10% CV. 
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Figure S7.2 Intersample correlation. 

Pearson correlation heatmap is shown at the bottom – the same as figure 3b in the main text – and 

is overlayed with specific sample comparisons. Scatter plots above represent the correlation of 

protein expression between the two represented samples and are colored to show kernel density 

estimate. 
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Figure S7.3 Pearson correlation of proteins up- and downregulated in malignant cell lines. 

Scatter plot points are colored according to their direction of dysregulation and plotted to show the 

consistency between T10 and MT10 cell lines.  
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Figure S7.4 Dimensional reduction of all tested samples. 

Using all 6,614 quantified proteins, NT1, T10, and MT10 cell lines are immediately separated, and 

all biological replicates are clustered together. 
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Abstract 

Proteomic analyses of mild cognitive impairment (MCI) and its frequent successor, 

Alzheimer’s Disease (AD), are necessary to elucidate means of early detection and putative 

therapeutic targets. Cerebrospinal fluid (CSF) offers the most direct observation of neurological 

protein perturbation but suffers from low sample availability and high dynamic range of protein 

expression. Here we present a modular framework to generate and employ sample agnostic 

spectral libraries to enhance profiling and quantitative depth. Utilizing an open-source machine 

learning approach to ‘calibrate’ comprehensive libraries to new experimental conditions, we 

quantified 9,313 protein groups in CSF through data-independent acquisition (DIA) mass 

spectrometry, nearly a 14-fold increase compared to a traditional DIA workflow that uses a data-

dependent acquisition (DDA) spectral library. Revealing 1,642 significantly dysregulated protein 

groups against healthy controls, this study not only validates a flexible approach towards 

comprehensive sample profiling but also provides understanding of protein targets useful for 

disease stratification and treatment. 

 

Introduction 

Among the more than 50 million worldwide diagnoses of dementia, Alzheimer’s Disease 

(AD) is the most prevalent and widely recognized with multiple reports forecasting a significant 

increase in confirmed diagnoses over the coming years1. The classical presentation of AD 

pathology is the formation of neurofibrillary tangles and amyloid plaques that inspire inflammation 

and initiate a cascade of adverse neuropathologic changes2, which in turn can lead to memory 

deficits, cognitive decline, and a deteriorated quality of life1. Though developed nations in North 

America and Western Europe currently lead in number of dementia diagnoses3, these figures point 
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both towards the rising rates of incidence as well as global disparities in detection, stratification, 

and correct diagnosis of these neurological disorders. Such adverse realities highlight the urgent 

need to develop and validate rapid, facile strategies for disease identification and assignment of 

severity. 

Because brain tissue may only be studied postmortem, researchers have turned to biofluids 

as a primary source to study AD-related proteomic perturbations. Cerebrospinal fluid (CSF) is 

considered the gold standard in the effort to extract proteomic information related to neurological 

disorders due to its confinement to the central nervous system and contact with the brain. Mass 

spectrometry (MS)-based proteomic analysis has been a method-of-choice to uncover 

biomolecular candidates to serve as effective biomarkers or therapeutic targets and has seen regular 

employment in the analysis of CSF4, 5. However, the extreme dynamic range of protein expression 

within CSF coupled with stochastic precursor selection in typical shotgun proteomics experiments 

severely hinders the profiling depth that may be achieved. Data-independent acquisition mass 

spectrometry (DIA-MS) contrasts these traditional methodologies by isolating and fragmenting all 

precursor ions within a pre-defined mass range, offering substantially higher throughput than 

routine data-dependent acquisition (DDA) analyses. In turn, DIA removes sampling bias, increases 

profiling depth, and bolsters experimental reproducibility, making it a favorable strategy in 

dynamic, sample-limited scenarios6.  

Though the benefits of DIA-MS are widely reported, a principal concern is the pursuit of 

time efficient experimental design and avenues for adept data deconvolution7. As DIA data 

analysis commonly depends on the use of spectral libraries – empirical collections of precursor 

masses, retention times and tandem mass spectra – constructing these libraries is considered a 

necessary component of experimental design, increasing sample requirement and analysis time. 
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Further, the information gleaned from DIA analyses is effectively limited to the depth of the 

library, mandating exceptional quality. Several tools have been validated for their ability to 

perform ‘library-free’ analysis8-10, generating in silico tandem mass spectra, and predicting an 

expected retention time based on experimental data or internal calibrants. While successful, these 

freeware and proprietary tools do not offer a modular approach that provides the flexibility 

expected in custom experimental design, confining users to a predetermined machine learning 

architecture and prohibiting the use of empirical datasets to build spectral libraries.  

Advances in DIA-MS-based human health research hinge on flexibility in the approaches 

employed to predict retention times, the chromatography paradigm employed during analysis, and 

portion of the proteome being targeted. Only with this modularity will researchers be able to 

rapidly adapt new technologies to a chosen analytical platform and be empowered to reemploy 

comprehensive spectral libraries tailored to a given proteomic objective. To provide this flexibility 

and modularity in approach, we validate here the ability to accurately predict peptide retention 

time using an open-source machine learning model. This trained model was then re-deployed, 

forecasting the expected retention times of all peptide sequences within an external, third-party 

spectral library. Forecasting these retention times effectively calibrates this spectral library to our 

experiment, aligning empirical spectra with their anticipated elution times and allowing 

downstream software to identify peptide precursors that would otherwise be missed. Verifying 

success of this approach would outline an open framework easily adapted to new investigations as 

each component of this workflow - the chromatographic separation, the machine learning 

architecture, the external spectral library, and the processing software – may be exchanged 

according to user needs. 
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We therefore provide empirical validation of this methodology through retention time 

calibration of the MASSIVE-KB11 human proteome spectral library and deploying this library in 

the analysis of CSF from neurodegenerative disease cohorts. Coupling these untargeted analyses 

with label-free quantitation, we successfully quantified >9,300 protein groups with 1,642 shown 

to be significantly dysregulated against healthy controls. In addition to the significant 

improvements in peptide and protein identifications seen through  this approach, our analyses 

rearticulate the biological significance of numerous protein species within Alzheimer’s Disease 

and further reveal areas of proteome reorganization that provide insight into therapeutic targets 

and diagnostic markers.  

 

Results 

Experimental Design & Validation of Accurate Retention Time Prediction 

To establish the advantages of sample agnostic libraries over traditional libraries 

constructed from sample fractionation, our experimental design compared these two 

methodologies in parallel, with traditional DDA analyses included to serve as baseline 

performance. Control, MCI and AD cohort samples were prepared as described with individual 

samples analyzed via DDA and SWATH-like DIA (see methods). Meanwhile, all the cerebrospinal 

fluid (CSF) samples were pooled and split amongst 15 high pH fractions and analyzed via DDA 

to construct a traditional spectral library (referred to as the ‘sample specific’ library). The outputs 

of all DDA analyses (both fractionated and pooled samples) were used to compile the machine 

learning dataset and the resulting model was used to predict retention time of sequences within the 

MassIVE-KB spectral library. This final, retention time-corrected spectral library (the ‘sample 

agnostic’ spectral library) was used for precursor identification (Figure 8.1). 
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Peptide identifications from DDA and fractionated samples (see methods) were filtered to 

accommodate a peptide-level 1% FDR cutoff, leaving 164,269 total identifications (25,284 unique 

sequences) to use for model training and validation. Duplicate identifications (i.e., from replicate 

DDA analyses, etc.) were retained in this collection to account for expected run-to-run variance 

and ensure model generalization. The dataset (Supplemental Data 1) was split 70:30 for training 

and testing, respectively. Though numerous machine learning-based retention time prediction 

architectures have been previously reported, we utilized DeepRT+12, an open-source capsule 

network implementation. As capsule networks demonstrate the ability to preserve spatial 

information during convolution, they are well-suited to recognize relationships between amino 

acids and their effect on retention time. After 20 rounds of training, the predictive model (referred 

to as the ‘global’ model) showed excellent agreement between predicted and experimental 

retention times (Figure 8.2a, Supplemental Data 2). Within the testing dataset, predicted retention 

times showed an average difference of 0.8 minutes compared to experimental values with 94.7% 

of all predicted retention times showing deviation ≤5 minutes (Figure 8.2b). 

We further ensured the reliability of our chosen capsule network retention time prediction 

workflow through 10-fold cross validation. Using the same collection of peptide identifications, 

data were partitioned 90:10 for training and testing and subjected to the same training procedure 

as before. This process was repeated 10 times to ensure all precursors were used in a testing set at 

least once. All ten cross validation iterations demonstrated high reproducibility in retention time 

prediction, all but two showing linear regression fit >0.99 (Figure 8.2c-d, Supplemental Data 3). 

With each iteration rearticulating the consistency of retention time prediction seen in the global 

model (Figure 8.2c-e, Figure S8.1), these data establish low out-of-sample error and highlight the 

suitability of the global model to predict retention time of previously unseen peptide sequences. 
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Though demonstrated effective in our approach, this machine learning architecture is only one 

component of the entire workflow. Future applications seeking to emulate this approach may 

exchange this architecture for newly conceived approaches or a model that more suitable to a given 

experiment.  

 

Assessing Reproducibility, Reliability, and Data Quality of a Sample Agnostic Spectral Library 

To establish stringent filtering criteria when employing the sample agnostic library, the 

first consideration was parameters that provide high intrasample reproducibility. These criteria 

were established using one of the three healthy control samples as a representative, arbitrary test 

case. Utilizing precursor isotope dot product – a Skyline13 measure of confidence based on the 

similarity between extracted precursor isotopic masses – to construct progressive thresholds, all 

data demonstrate high reproducibility and coalesce along the expected correlational trend (Figure 

8.3a). The intrasample reproducibility and depth of quality data provide the ability to set strict 

cutoff thresholds, with evidence of 10,011 proteins remaining when the isotope dot product 

threshold is ≥0.8. Critically evaluating this threshold against precursors identified in DDA analyses 

and the sample specific library determined that a threshold of ≥0.7 to be more rigorous, retaining 

approximately 50% of the sample specific library but only 13.47% of the agnostic library (Figure 

8.3b). We confirmed the suitability of this lower threshold by manually inspecting the MS1 and 

MS2 information of peptide precursors identified only in the agnostic library (Figure 8.3c). To 

provide the strictest overall filtering criteria, this dot product threshold quality it utilized in tandem 

with the requirement that a given peptide precursor must be identified in every analyzed biological 

replicate. 
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Having determined data quality thresholds, extracted precursors from all experiments were 

filtered for redundancy and averaged across replicates. Peptide abundances were aggregated by 

protein group with the average abundance representing protein quantity. Only precursors that were 

identified in every sample were considered and no more than the top 6 precursors were averaged 

for a given protein (see methods); proteins remaining after this step are considered quantifiable 

proteins. In all, DDA analysis of individual CSF samples resulted in only 500 quantifiable protein 

groups mapping to 585 potential protein matches – expectedly modest performance in this 

acquisition paradigm. The sample specific library provided 655 quantifiable protein groups (769 

putative proteins), representing 42% of all proteins available in the specific library. The sample 

agnostic library significantly outpaced these results, revealing 9,313 quantifiable protein groups 

mapping to 9,702 protein sequences, a ~14-fold increase in protein identifications (Figure 8.3d, 

Supplemental Data 4-5). The majority of these proteins were commonly quantified between two 

of the three identification strategies, though DDA and the sample specific analyses were able to 

quantify proteins not found in the agnostic library (Figure 8.3e) due to the positive identification 

of unique, variably modified peptide sequences, which is discussed below. 

To ensure quantitative reliability, we compared protein-level quantitation between the 

sample specific and sample agnostic libraries. Of the 681 proteins commonly quantified between 

these two groups, 528 proteins were quantified using the same peptide precursors and could be 

directly compared between the two methods. The consistency of protein quantitation between the 

two libraries (Figure 8.3f) further demonstrates the reliability of the agnostic library compared to 

traditional spectral libraries. Discrepancies in protein quantitation arise largely due to differences 

in retention time (predicted vs empirical), the allowable tolerances during data extraction (see 

methods), and accurate bounding of precursors during data processing. We further investigated the 
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source of unique peptide identifications that led to quantifiable proteins not seen in the agnostic 

library. Across all samples, 530,984 unique peptide sequences were identified only using the 

sample agnostic library with an additional 12,026 sequence shared between the agnostic library 

and DDA analyses (fractionated and individual samples, Supplemental Data 6). Of the 9,858 

peptide sequences not identified using the agnostic library, 7,249 sequences (73.5%) were due to 

variable modifications only allowed during DDA database searches (Figure 8.3g). 1,630 sequences 

(16.5%) were not available in the agnostic library due to filtering criteria or were identified as part 

of a missed cleavage, leaving 929 sequences as truly unidentified. However, when accounting for 

low quality precursors, we only expanded our search to those sequences with a dot product ≥0.5 

due to computational constraints; the final 10% of unidentified sequences would likely be found 

in the agnostic library if our search was expanded. It should be noted that newer versions of the 

MassIVE-KB (released after the time of analysis) have better support for common variable 

modifications, which may assist future iterations of this workflow. 

Quantitative Investigations of Cerebrospinal Fluid 

Having established the reproducibility and reliability of a sample agnostic spectral library, 

we applied this approach to label free quantitative investigation of cerebrospinal fluid (CSF) 

between healthy controls, mild cognitive impairment (MCI) and Alzheimer’s Disease (AD) patient 

cohorts (see methods). With all protein abundances compared against control to determine fold 

change and statistical significance determined via Student’s t-test, our data reveal 1,642 

significantly dysregulated proteins across the two disease cohorts (fold change≥2, P≤0.05, 

Supplemental Data 5, 7). While both MCI and AD cohorts revealed similar quantities of 

significantly upregulated protein groups – 307 and 336, respectively (Figure 8.4a) – the MCI 
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cohorts displayed a striking difference in the number of downregulated protein groups, 993, nearly 

doubling the quantity downregulated in AD patients. 

We further dissected these dysregulated proteins by employing clustering analysis to 

correlate protein expression levels with disease state, identifying three protein subpopulations 

bearing notable resemblance. The two groups most immediately distinguished are those 

significantly up- (160 protein groups) and downregulated (356 protein groups) in both MCI and 

AD patient cohorts (Figure 8.4b). While our global analysis required a fold change ≥2 to be 

considered significantly dysregulated, these protein populations far exceeded this threshold, 

averaging 5.08±0.21-fold higher and 4.21±0.32-fold lower than the same proteins in control 

groups. Further, the expression profiles of these proteins were relatively consistent across MCI 

and AD cohorts, evidenced by the low standard deviation and high correlation (Pearson r=0.98, 

Figure 8.4c, Figure S8.2) between cohorts.  

Given the significant difference in expression between healthy and disease samples and the 

remarkable similarity across MCI and AD cohorts, we questioned whether these proteins had any 

previously established relationship to neurodegenerative disease. From among the 160 commonly 

upregulated protein groups (Supplemental Data 7), we identified several conserved protein groups 

with known relationship to Alzheimer’s Disease and neurological disorders such as cadherins and 

protocadherins14, growth factors, metalloproteinases15, 16, among others (Figure S8.3). Beyond 

this, several interesting targets emerged such as P-selectin glycoprotein ligand 1 (SELPLG), which 

mediates inflammatory response17, is shown to be upregulated in AD cohorts18 and is a known 

substrate for the APP-cleaving protease BACE119. Translin (TSN) was also shown to be 

upregulated, suggesting increased neuronal trafficking of brain-derived neurotrophic factor20. The 

tubulin-modifying protein monoglycylase TTLL8 (TTLL8)21, 22 was conserved across disease 
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groups, as well as cell surface hyaluronidase (CEMIP2), pointing towards the antagonistic activity 

of hyaluronan in AD23. Our data also reveal upregulation of spermine synthase (SMS), highlighting 

production of free radical-scavenging spermine24. Neuropilin tolloid-like 1 (NETO1), which 

associates with the amyloid precursor/ n-methyl-d-aspartate complex25, is also significantly 

upregulated. 

The 356 consistently downregulated protein groups rearticulate the dysregulation of similar 

protein clusters as noted above, whereas this collection of proteins was also found to be rich in 

modifying enzymes such as kinases, phosphatases, transferases, and others (Supplemental Data 7). 

Among the individual targets of interest, synaptodpodin (SYNPO) has been previously validated 

as a downregulated protein in AD26, though knock-out studies have shown amelioration of AD 

symptoms27. Myeoblastin (PRTN3) has also previously shown a high negative correlation with 

amyloid28 and is conjectured to have a sign of dementia and synaptic loss29. Serpins B7 and B9 

were shown to be downregulated in disease groups, the latter of which is a regulator of granzyme 

B and interleukin-1β30. Interestingly, our data show a consistent downregulation of spermidine 

synthase (SRM), contrasting the upregulation of SMS and highlighting the recently suggested 

therapeutic effects of spermidine supplementation in AD31. Neurturin (NRTN), a neurotrophic 

factor32 suggested as therapeutic treatment for neurodegenerative diseases33, 34, as well as the 

neuroprotective35 thrombospondin (TSP) that has is a known downregulated protein in AD36, are 

commonly dysregulated and are also highlighted in latter analyses (see below). Degradation of 

microtubule-associated protein 1A (MAP1A) is a known consequence of AB-induced 

neurodegeneration37 and is likewise dysregulated in our data. Others include tetraspanin 5 

(TSPAN5), which regulates the cleavage of amyloid precursor (APP) by ADAM1038, and 

EphrinB3 that impacts axonal growth, spatial learning, and memory39. While these significantly 
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up- and downregulated proteins point towards a broad, evidence-based protein panel that can 

distinguish disease from healthy control, the conserved regulation between MCI and AD render 

them incapable of deciphering disease cohorts from one another.  

The final subpopulation emerging in our analyses were those 637 protein groups found to 

be significantly downregulated in MCI cohorts that but were not downregulated in AD 

(Supplemental Data 5). When accounting for these proteins, all three patient cohorts were 

immediately distinguished from one another in all downstream analyses. This is exemplified 

through column-wise hierarchical clustering, which revealed both the stratification of disease state 

and the correlation of similarly expressed proteins (Figure 8.4d). The capacity to distinguish 

control, MCI, and AD patients is further confirmed through dimensional reduction analysis, 

revealing concise distribution within sample cohorts and no ambiguity between disease states 

(Figure 8.4e). Despite the heterogeneity of this protein population, we identified participants in 

several relevant processes such as tubulins (TUBB1, TUBB6, TUBAL3, TUBA1C, and others) 

involved in axonal guidance40, shootin 1 (SHTN1) involved in neuronal migration and polarity41, 

as well as neurofibromin 142 (NF1) and syntaphilin43 (SNPH) involved in brain development.  

Overall, these data serve as evidence as to the specificity and utility of the proposed 

method. Having established the significant improvements in profiling depth and ensuring 

quantitative reliability, closely examining those proteins shown to be significantly dysregulated 

reveals numerous proteins related to dementia and AD. Further, the correlation of these disease-

specific dysregulated proteins between AD and MCI that starkly contrasts the healthy controls 

demonstrates the data extracted and kept for comparison is not stochastic but is instead topically 

relevant to the system being observed. Finally, the proteomic profiles extracted during analysis 

highlight the accuracy with which disease cohorts may be distinguished. Though commonly 
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dysregulated proteins were sufficient in distinguishing healthy controls from disease cohorts, the 

unique expression profiles that are conserved between unique MCI and AD biological replicates 

allow for immediate discrimination of disease groups. This evidence further suggests a flexible 

approach for building sample agnostic spectral libraries will decrease experimental burden and 

facilitate rapid, accurate patient profiling useful for disease detection and stratification.  

 

Proteomic Reorganization Associated with Neurodegenerative Disease 

Having established the capacity for the sample agnostic spectral library to quantify 

proteomic perturbations useful in distinguishing healthy controls from disease cohorts, as well as 

stratify MCI and AD disease states, we further scrutinized those dysregulated proteins to 

characterize proteomic pathways and processes significantly impacted within our disease cohorts, 

as well as illuminate proteins known to be of interest in AD research and treatment. As a cursory 

analysis, upregulated and downregulated proteins were separated and subjected to Gene Ontology 

enrichment (see methods). Examining these analyses, our data reveal the dysregulation of several 

central processes and pathways known to be active participants in Alzheimer’s Disease.  

Proteins shown to be significantly downregulated were notably involved in adaptive 

immune response (Figure 8.5a, Figure S8.4), reaffirming the emerging evidence that 

immunodeficiency contributes to AD pathogenesis44, a compelling direction for future proteomic 

analyses. Noting the activation of immune response, we expected to observe an increase in 

cytokine production that promote the hallmark inflammatory response to AD. Indeed, our ontology 

results did indicate upregulation of the genes related to Interleukin-1 (IL-1) signaling (Figure S8.5-

6) as well as genes related to activation of nuclear factor kappa B (NF-KB), the upstream regulator 

of IL-1 production. However, dissecting the proteins assigned to these gene clusters, upregulation 
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was largely confined to the proteasomal processing proteins, whereas other proteins dysregulated 

in these pathways seem to indicate inhibition of the overall processes. Of the proteins related to 

NF-KB activation, for example, we demonstrate significant downregulation of the catalytical IKKa 

subunit (CHUK) and the NF-KB essential modulator (NEMO/IKBKG) while NF-KB p105 

(NFKB1) – a preprocessed subunit – displayed significant upregulation. Suggesting overall 

inhibition or slowing of NF-KB activation, this hypothesis is further complemented by the 

downregulation of protein ubiquitination (Figure 8.5b., Figure S8.5) necessary for NF-KB 

processing, as well as the downregulation of IL-18 and IL-37, two closely related downstream 

products of activated NF-KB. As NF-KB-related processes are routinely implicated in AD, our 

observations may serve to indicate feedback inhibition of NF-KB activation in our disease cohorts, 

though further analyses are required for confirmation.  

In addition to dysregulation of protein ubiquitination – a critical driver of protein regulation 

and degradation45 – our data also reveal downregulation of genes controlling phosphorylation (Fig 

5b). This observation is expected giving the known importance of protein phosphorylation in AD46, 

namely the hyperphosphorylation of Tau47. Phosphoproteomic analysis in AD is an area of interest 

and is amenable to the machine learning architecture we employed here12 but was not a goal of the 

present study. Among the numerous processes of interest shown to be dysregulated, our analyses 

repeatedly indicate negative regulation of cell cycle (Fig 5a-b), a known actor in Alzheimer’s and 

other neurodegenerative diseases48. This observation in tandem with downregulated mitotic cell 

cycle processes and DNA repair (Figure 8.5a-b), as well as an upregulation of BRAF (Figure 8.5c), 

rearticulate previous reports associating prolonged mitosis, cellular senescence, and age-related 

deterioration in AD49. In addition, our data reveal downregulation of programmed cell death and 

apoptosis, which often coincides with chronic oxidative stress in Alzheimer’s Disease50. Finally, 
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we also observed downregulation of genes pertaining to exocytosis and diminished synaptic 

transmission in AD51, 52. 

Given the quantitative depth of this experiment and the number of disease-related proteins 

already observed, we expected common AD hallmarks to show similar expression to previous 

reports. One limitation of this experiment is that three common AD markers, Tau (MAPT), 

amyloid precursor (APP), and apolipoprotein E (APOE) were not shown to be significantly 

dysregulated, bearing similar intensity between healthy and disease groups (Figure 8.5c). For 

MAPT, this limitation is largely due to the low number of peptides identified in all samples (Figure 

S8.7). The peptides used for quantitation of APP and APOE were not useful in determining 

quantitative differences, but still facilitate some degree of distinction between healthy and disease 

groups when clustering analysis is used (Figure S8.7). We speculate these observations are a result 

of pooling numerous patient samples (n=5 for each pool) prior to analysis; this may be overcome 

in latter experiments. Despite this limitation, manual inspection of known AD-related proteins 

revealed significant changes in protein abundance between healthy and AD cohorts, some proteins 

changing by >2 orders of magnitude (Figure 8.5c). Of those not previously discussed, we identified 

numerous mitochondrial microenvironment proteins (NDUFAB1, NDUFA4, UQCRFS1, 

UQCRC1, among others) that have been recently connected to AD53-55. We also reveal 

downregulation of nicastrin (NCSTN), suggesting disruption of AB processing that can lead to AB 

accumulation56. Kinesin light chain (KLC1), downregulated in this study, has been previously 

reported in brains of Alzheimer’s patients57, but brain acid soluble protein (BASP1) is shown to 

be upregulated, suggesting a move towards neuroprotection58. 

Among our analysis, we also noticed significant dysregulation of the semaphorin family of 

proteins, as well as their plexin and neuropilin receptors (Figure 8.5c). Semaphorins are long-
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known participants in nervous system development that have recently been discussed for their 

roles in adult neuronal plasticity59. Of the semaphorins dysregulated in our study, SEMA6D is the 

least evidenced in connection to AD, though it has been proposed to be associated to AD 

pathogenesis60 through the known TREM2-PLXNA1-SEMA6D interaction61. SEMA3D62, 

SEMA3F63, and SEMA4C64, are critical components of the adult brain with dysregulation of plexin 

and neuropilins known to be linked to neurological disorders59. Though the role of these proteins 

in AD cannot be ignored, their known association with the extracellular matrix (ECM) caused us 

to question whether or not our disease cohorts exhibited some of ECM reorganization in response 

to AD. Referencing proteins known to be expressed in the ECM65, we identified 55 known ECM 

components with significant dysregulation in at least one disease cohort (Figure 8.5d). 

Transglutaminases (TGM2, TGM3, TGM5), metalloproteinases (ADAMTS15, ADAM9, 

ADAM21, MMP15), serpins (SERPINH1, SERPINA10, SERPINB9, SERPINB7), S100 proteins 

(S100A4, S100A6, S100A8), and thrombospondins (THSB1, THSB3), among others, were shown 

to be dysregulated against healthy controls, rearticulating previous reports that suggest the multi-

faceted role of ECM within neurological disorders66. Taken together, these data rearticulate the 

known proteomic alterations associated with AD and further illuminate the complex network of 

aberrations contributing to, or stemming from, AD pathogenesis. As the importance of these 

biomolecular alterations becomes clear and the clinical relevance of comprehensive proteomic 

profiling is established, rapid, sample-efficient strategies such as that presented here are sure to be 

of value in disease diagnoses and monitoring.  
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Discussion 

Mass spectrometry-based proteomic profiling is fundamentally limited by the inherent 

complexity of biological mixtures and the direct correlation between profiling depth, sample 

requirement, and analysis time. DIA analyses offer a direct remedy to these ailments but often 

constrain users to a few rigid solutions for data deconvolution. This sample agnostic spectral 

library approach utilizes an open-source machine learning architecture that may be changed, 

optimized, or substituted without penalty to downstream analysis. The modularity presented within 

seeks to enable researchers to implement new technologies and freely optimize analytical 

components (chromatography, instrumentation, etc.), an aspect paramount to the changing 

landscape of mass spectrometry. The approach presented within does come with the cost of being 

computationally expensive; however, this limitation may be balanced by reducing the proteomic 

search space to those proteins of greatest relevance or those evidenced in survey DDA analyses. 

Given the ubiquity of library-based approaches in DIA analyses, this framework for 

generating and employing agnostic libraries is presented to directly enhance those more traditional 

approaches typically employed. Utilizing a sample specific library – constructed through DDA 

analysis of fractionated pooled samples – significantly underperformed this agnostic library 

approach in terms of identification depth and quantitation; though the sample specific library did 

outperform strict DDA analysis of individual samples. However, we do acknowledge the earlier 

generation of mass spectrometer used within this experiment. With the rise of instrumental 

platforms that provide substantially improved acquisition speed and profiling depth in routine 

DDA experiments, later evaluations may determine that a sample specific library is more 

competitive than that presented here. Nevertheless, as a means to eliminate the need for extensive 
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fractionation, reduce sample requirement, and shorten analysis time, this approach remains 

worthwhile. 

Having applied this methodology to analysis of CSF, the content of which is dominated by 

albumin and globulin, the capacity to identify and quantify >9,300 protein groups highlights the 

potential utility of this method in unique proteomic investigations. Knowing the concerted effort 

behind utilizing non-invasive sampling and easily collected biofluids, as well as the ever-present 

need for extensive sample cleanup prior to analysis, this analytical method represents an avenue 

towards ascertaining extensive proteomic information without the need for dedicated enrichments 

or depletion of abundant analytes. Though extensive trials are needed to assess the efficacy of this 

agnostic library approach in different biofluids, this initial report indicates it is a competitive 

approach that will substantially reduce sample handling and improve analytical throughput. 

Finally, the utilization of publicly available data to construct the agnostic spectral library 

is a principal strength. As the approach demonstrated here utilizes the MassIVE-KB human HCD 

spectral library, constructed from data provided by the proteomics community and is reported to 

contain ‘best-evidence’ spectra for each constituent peptide, it is reasonable to conclude that a 

similar community-drive approach can, and potentially should, be employed for unique proteomic 

objectives. Whether it is proteomic analysis from specific tissue types, organ systems, organisms, 

or post-translational modification profiling, each of these unique directions may benefit from the 

construction of evidence-based spectral libraries that can be used for DIA analysis. In this way, 

researchers may achieve deep, rapid proteomic profiling within their chosen system without the 

need for laborious sample fractionation and long DDA instrument runs. This possibility will 

require intentional efforts from the research community to both compile these spectral libraries, as 

well as agreeing on criteria for reliable precursor identification. DIA MS analyses will never 
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replace DDA, especially in the pursuit of novel discovery, but more intentional efforts to blend the 

success of these two paradigms are critical to rapid development in clinical MS applications. 

 

Methods 

CSF  

CSF samples were obtained from Wisconsin Alzheimer’s Disease Research Center and all 

study procedures have been approved by the University of Wisconsin Institutional Review Board. 

Disease state was assigned via a comprehensive neuropsychological test battery, Mini-Mental 

State Examination, positron emission tomography (PET) imaging of β-amyloid, and 18F Fluoro-2-

deoxy-glucose (FDG)-PET of hypometabolism. 45 total patients were used within this study, 

evenly split across healthy control, MCI and AD cohorts. Each disease cohort of 15 patients was 

further divided into 3 subgroups to serve as biological replicates; each patient sample was used 

only once. Sex distribution and age information of all study subjects was provided in Supplemental 

Data 8.  

Sample Preparation  

CSF protein concentrations were estimated via bicinchoninic acid (BCA) protein assay 

(Thermo Pierce, Rockford, IL). 10 µg protein was taken from each patient and pooled according 

to the description above. Using 50 mM tris-HCl (pH=8.0) as the stabilizing buffer, proteins were 

denatured in 8M urea at room temperature for 5 minutes. Disulfide bonds were reduced with 

100mM DTT for 1 hour at room temperature followed by alkylation with 200mM IAA for 30 

minutes at room temperature. Urea content was reduced to 0.9M before adding mass spec grade 
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trypsin/Lys-C mix 1:25 (w:w). Protein digestion was incubated overnight at 37 oC, quenched by 

10% TFA to pH 3, and desalted with Bond Elut OMIX C18 pipette tips (Agilent, Santa Clara, CA).   

High pH reversed-phase fractionation.  

To build a sample spectral library, 2 µL CSF sample from each patient was mixed, followed 

by separation on a Phenomenex Kinetex 5 µm C18 100Å column (L=150mm i.d.=2.1mm). 

Fractionation was facilitated by a Waters e2659 separation module with a Waters 2489 UV/Visible 

detector. Mobile phase A was 10mM NH4HCO2 (pH 10) and mobile phase B was 10mM 

NH4HCO2 in 90% ACN (pH 10). Samples were loaded and fractionated using the following 

gradient: 1% buffer B from minute 0-3, 35%B at minute 50, 60%B at minute 54, 70%B at minute 

60, 100%B minutes 61-74, 1%B from minutes 74.5-94. Flow rate was held constant at 0.2mL/min. 

The fractions of the first 60 minutes were collected with 2-min interval and recombined into a total 

of 15 final fractions based on UV chromatogram. All the fractions were concentrated under 

vacuum. This experimental protocol was performed in duplicates and termed as Mix1 and Mix2 

in Supplemental data 4.  

Mass Spectrometry Data Acquisition  

All separations were performed on NanoUltimate 3000 UPLC chromatography stack using 

a 15cm self-packed capillary C18 reverse phase column. Mobile phases A and B were 0.1% FA 

and 0.1% FA/100% ACN, respectively. The CSF samples from CTRL, MCI, or AD were 

reconstituted in 50 µL mobile phase A and analyzed in technical replicates using both DDA and 

DIA methods. The high pH fractions were resuspended in 20 µL mobile phase A and analyzed 

only once with DDA method. Samples were loaded and trapped on the column at 3% B for 16 

minutes. The gradient ramped from 3% to 35% B over 94 min, followed by a 10-minute elution at 
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75% B for 10 min, then held at 95% B for 10 minutes and a 10-minute equilibration at 3% B. The 

gradient was consistent between all DDA and DIA experiments.  

Data were collected on a ThermoFisher Scientific Q-Exactive HF mass spectrometer. In 

DDA, a full MS scan over a m/z range of 300-1600 was acquired at a resolving power of 60,000, 

an AGC target of 1e6, and a maximum ion injection time of 50ms. Tandem MS analysis was 

performed in a data-dependent top 15 manner for precursors at charge states 2-6 using normalized 

higher energy collisional dissociation (HCD) of 30%. Dynamic exclusion was set to 45 seconds 

with an exclusion width of 10 ppm. In DIA, a full MS scan at a resolving power of 60,000 was 

acquired over a m/z range of 400-1200 with an AGC target of 1e6 and a maximum injection time 

of 50ms. The MS/MS was collected by using a 36 m/z isolation window over 400-1200 m/z (a 

total of 24 mass windows) at a normalized HCD of 30%. The control, MCI and AD cohort samples 

were technically analyzed twice in both DDA and DIA. Throughout this study, biological 

replicates are denoted by suffixes of sample names (e.g., CTRL1 and CTRL2 are biological 

replicates, Supplemental Data 8) while technical replicates are denoted separately as “rep 1” or 

“rep 2.”   

Database Searching  

DDA .raw files were searched using PEAKS Xpro. Precursors were matched using a 

20ppm tolerance with fragments allowed a 0.02Da mass error. PEAKS was instructed to consider 

only strict trypsin digestion with up to 2 missed cleavage sites. All cysteines were considered to 

have a fixed carbamidomethyl modification while n-terminal acetylation, Asn and Glu 

deamidation, and Met oxidation were allowed as variable modifications. De novo peptides were 

matched against the UniProt reviewed human proteome (downloaded October 30, 2021) and all 

results were filtered to a peptide-level 1% FDR cutoff.  
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Machine Learning  

Machine learning was facilitated using the previously published and validated DeepRT+12 

capsule network machine learning model, the authors of which receive full credit for 

implementation and utility. Peptide sequences from PEAKS database searching were split 70:30 

training and testing and subjected to a 20-epoch training cycle, as noted in the original 

publication12. The final model (the 20th epoch) was used as the ‘global model’ throughout this 

report.  

Spectral Library Generation.  

The Human HCD Spectral Library was downloaded as a .mgf file from the MassIVe-KB 

website (https://massive.ucsd.edu). As a note, the library used in this report is now labeled as a 

‘v1’ release and newer ‘v2’ releases are available since the time of analysis. Peptide sequences 

were extracted from the .mgf file and subjected to retention time prediction using the global ML 

model described above. The resulting retention times were then reinserted to the .mgf file. The 

final .mgf was submitted to Peaks for database matching, using the same parameters listed above; 

results were exported as .mzid. The final .mzid file was submitted to Skyline (version 21.2.0.425) 

and the resulting spectral library was used for all subsequent analyses. 

Gene Ontology  

Gene ontology was performed using Metascape67. Dysregulated proteins were submitted 

as UniProt accession numbers and ‘express analysis’ was used for all comparisons. Gene ontology 

bar charts and protein networks were downloaded directly from the results page. Protein network 

colors and position were edited in Cytoscape68. 
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Precursor Assignment and Extraction  

Peptide searches were imported into Skyline using the spectral library described above 

using a DIA workflow. Only modifications recognized in the .mgf file were retained during 

searching. Transition settings were set as follows: precursor charges, 2-7; ion charges, 1-2; ion 

types, y, b, p; product ions from, ion 3; product ions to, last ion; min m/z, 50; max m/z, 2,000; ion 

match tolerance, 0.05; pick 6 product ions; minimum product ions, 3. MS1 filtering was set as 

follows: isotope peaks included, count; precursor mass analyzer, Orbitrap; peaks, 3; resolving 

power, 60,000 at m/z 400. MS/MS filtering was set as follows: acquisition method, DIA; product 

mass analyzer, Orbitrap; isolation scheme was set to the 24 mass windows used during analysis; 

resolving power, 30,000 at m/z 400. Retention time filtering was allowed to use any scans within 

5 minutes of the MS/MS IDs. Data were searched against the UniProt reviewed human proteome 

(downloaded October 30, 2021) with up to 2 missed cleavages. 1 reverse sequence decoy was 

generated for every peptide. mProphet models were trained within Skyline to generate FDR 

estimations for identified precursors. 

Protein Level Quantitation.  

All quantitation was performed at the MS1 level. All precursors were compiled and filtered 

to remove decoys and low-scoring peptides. Further filtering was applied to remove any redundant 

peptides attributed to the same protein in the same sample, keeping the most intense occurrence. 

Valid precursors were then confined to those peptides that were found in every sample (i.e. at least 

one technical duplicate of each biological replicate). The final number of peptides was then 

reduced to consider no more than the top 6 peptides from each protein. All peptides used for 

quantitation were found in every sample. Quantitation was performed by log2 transforming the 

precursor area and averaging all precursors for a given protein. Repeating this process for all 
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biological replicates provided N=9 datapoints for quantitation. Protein intensities were averaged 

across biological replicates and fold change was calculated as intensitydisease – intensitycontrol. 

Statistical significance was calculated via student’s independent t-test. 

Data and Code Availability.  

All .raw mass spectrometry data files and retention time-corrected spectral libraries have 

been uploaded to the MassIVE repository with the primary accession code MSV000091165 

(https://doi.org/doi:10.25345/C5S46HG56). All code and files needed to recreate the figures and 

analyses within the manuscript can be accessed at https://github.com/lingjunli-

research/csf_dia_eval_lfq. Additional summary tables containing all retention times, peptide 

identities, protein quantity estimations, protein descriptions, and patient information have been 

provided as Supplemental Data 1-8. 
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Figures 

 

Figure 8.1 Workflow for sample agnostic spectral library construction. 

a) Outline of parallel DDA and DIA analyses. Pooled cohorts were fractionated via high pH 

fractionated and analyzed via DDA. The resulting peptide sequences and retention times were used 

to train a capsule network model to predict retention times. The trained model then inferred 

retention times of all MassIVE-KB sequences. The final spectral library was used to inform 

downstream analysis of DIA experiments. b) step-by-step outline of the sample agnostic spectral 

library approach. 
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Figure 8.2 Validation of capsule network approach for retention time prediction. 

a) Comparison of predicted and empirical retention times for all peptide sequences used for the 

testing set (left) and training set (right). b) Binned histogram denoting the difference between 

retention time predictions and their empirical value. (inset) Portion of all testing set predictions 

falling within a set time difference threshold. c) All iterations of ten-fold cross validation used to 

assess out-of-sample error and general applicability of method. Though some iterations 

demonstrate greater reproducibility than the global model, this is likely attributed to a larger 

training test set. d) Sum of least squares regression fit for all ten cross validation iterations. e) 

Density plots of all ten cross fold validation iterations demonstrating that all models predict ~95% 

of all retention times to within 5 minutes of the empirical value. 
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Figure 8.3 Investigation of sample agnostic library reliability and quality. 

a) Intra-sample reproducibility of MS1 protein quantitation. Each subplot displays all proteins that 

can be quantified when peptide precursors have an isotopic dot product greater than or equal to the 

shown value. b) Comparison of all datasets displaying peptide precursors and proteins above a 

given isotopic dot product. c) Representative MS1 and MS2 spectra of peptide precursors only 

identified through the sample agnostic spectral library. The quality of data at both the low and high 

end of our chosen cutoff reinforces the reliability of chosen metrics. d) Comparison of total and 

unique proteins identified through each analysis paradigm. ‘Total proteins’ represents all proteins 

potentially identified and ‘unique proteins’ are the number of protein groups evidenced with at 

least one proteotypic peptide. e) Overlap of protein groups identified in each analysis paradigm. f) 
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Correlation of MS1 level protein quantitation when using the sample agnostic spectral library and 

the sample specific library. g) Overlap of unique peptide sequences identified through each 

analytical paradigm. Those sequences not found in the agnostic library are further broken down to 

address discrepancy. 
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Figure 8.4 Quantitative evaluation of CSF facilitates disease state stratification. 

a) Volcano plots representing fold change of protein expression and the -log10(statistical 

significance) determined through student’s t-test. Only proteins with fold change ≥2 and P≤0.05 

(-log10(P)≥1.3) are considered ‘significantly dysregulated.’ b) K-means clustering analysis 

highlighting the distinct dysregulation of proteins across disease states. c) Scatter plot displaying 
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difference in protein expression across disease states. The high Pearson correlation highlights the 

propensity for proteins dysregulated in MCI patients to also be dysregulated in AD. d) Column- 

and row-wise hierarchical clustering of protein-level expression, demonstrating separation of 

disease states and healthy control. e) Principal component analysis (PCA) of all cohort samples, 

based on protein level expression. 
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Figure 8.5 Proteome reorganization in neurological disease cohorts. 

a) Metascape gene ontology protein network displaying putative pathways significantly 

downregulated across MCI and AD cohorts. Proteins are clustered in space according to similarity 

in pathway participation; clusters are named according to the most enriched term. Colors are 

arbitrary but serve to denote distinct clusters; original Metascape colors are preserved in Figure 

S8.4for clarity. b) Density plots of protein abundances associated with various biological 

pathways. AD and control plots are overlaid to display dysregulation. c) Ranked protein 

abundances for all proteins quantified; only AD and control groups are shown. Proteins with text 

are various species discussed in the main text or other known proteins of interest. d) Heatmap of 

extracellular matrix proteins; proteins are grouped according to Matrisome DB65. Fold changes are 

log2 and statistical significance is denoted by asterisks. 
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Supplemental Tables 

For brevity, supplementary data tables have not been included here. The tables are included 

as part of the submitted manuscript and may be found online or may be obtained directly through 

directly contact the authors of this chapter. 
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Supplemental Figures 

 

Figure S8.1 Average retention time predictions across all cross validations. 

a) Density plots of all ten cross validation iterations (gray) displaying the distribution of retention 

time prediction error. Considering all predictions from all cross validations, the average density is 

shown in orange. b) Plot displaying the portion of all retention time predictions from all cross 

validations that fall within a given error window. 
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Figure S8.2 Correlation within and across patient cohorts. 

Pearson correlation between all samples analyzed within the experiment, demonstrating the 

conservation of expression profiles between healthy and disease state cohorts. The color coding of 

each box within the heatmap corresponds to the Pearson coefficient between the row- and column-

indexed samples, calculated based on the protein-level expression. The two called out density plots 

represent the protein intensity correlation across the compared samples; Pearson coefficients are 

denoted within each density plot. 
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Figure S8.3 Conserved dysregulation across protein families. 

Bar plots displaying the average log2 intensity of protein expression across all three patient 

cohorts; error bars represent the standard deviation. Among all dysregulated species, significant 

populations of the cadherin and protocadherin (a), disentegrin and metalloproteinase (b), 

proteasomal component/subunit (c), and semaphorin (d) families were consistently dysregulated. 

Whereas expression of these four protein groups across MCI and AD cohorts seems relatively 

independent of disease state, tubulins (e) show consistent dysregulation across cohorts; tubulins 

are notably downregulation in MCI cohorts and show slight recovery in AD.  
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Figure S8.4 Metascape gene ontology protein network. 

Network displaying the putative pathways significantly downregulated across MCI and AD 

samples. This network displays the same information as that shown in Figure 8.5a within the main 

text; this representation preserves the distinct, unedited cluster colors to provide clarity. 
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Figure S8.5 Gene ontology expression changes between control and AD cohorts. 

  

Density plots represent the log10 protein-level intensity of all proteins associated with a given 

biological process (as determined by Metascape). Pathways and processes represented are those 

discussed directly or tangentially within the main text, as well as other pathways of interest not 

directly discussed within. 
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Figure S8.6 Pathways and processes upregulated across MCI and AD cohorts. 

Metascape gene ontology protein networks displaying those proteins shown to be significantly 

upregulated in either MCI or AD patient cohorts. Similar to other protein networks, proteins are 

clustered in space according to known participation within shared protein groups, grouped 

according to similarity, and groups are labeled according to the most significantly enriched gene 

ontology term.  
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Figure S8.7 Peptide-level expression differences of common AD hallmarks. 

Left) Hierarchical clustering heatmaps displaying peptide-level column- and row-wise clustering 

of patient cohorts, as determined for each hallmark protein. Missing values are zero-filled. While 

some slight clustering is possible based on peptide expression levels, the prevalence of missing 

values and uniform expression prevent any quantitative distinction at the protein level. Right) 

Upset plots displaying the number of peptides identified between groups. Black dots to the left 
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represent individual groups and bars to the right represent the number of peptides shared in those 

respective groups.   
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Abstract 

Mass spectrometry-based biomolecular analyses have become permanent fixtures of 

academic, industrial, and clinical research settings. The rise in utilization of mass spectrometry 

has, in turn, spurred on a technological arms race, with every major vendor seeking to provide 

instrumentation that is more sensitive, higher in resolution, or may otherwise offer fundamental 

advantages during analysis. Enabling higher sensitivity, increased instrumental duty cycle, 

reduced analysis time and lower sample requirements, gas phase ion separation techniques now 

provide a fourth dimension of analysis, enabling rapid structural characterization and high 

throughput -omics profiling in a single run. Presented here is a current review of the latest iterations 

and applications of high-end ion-mobility enabled instrumentation, the Agilent 6560 IM-QTOF, 

Waters Cyclic, Bruker timsTOF, and Thermo FAIMS Pro instrument platforms. Describing their 

engineering developments and analytical success over the past two decades, we highlight notable 

advantages and considerations for novice and experienced biomolecular researchers alike. 
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Introduction 

Having recently garnered significant attention and invigorated utilization, the past six 

decades of instrumental development have given way to a gilded era of Ion Mobility Spectrometry 

(IMS). With the earliest reports of ion mobility provided over a century ago1 and the first published 

instrumental iteration nearing its sixtieth anniversary2, the analytical capacity and breadth of 

meaningful applications have long been hindered by the rate of technical development. With Drift 

Tube (DTIMS), Field Asymmetric Waveform (FAIMS), and Traveling Wave Ion Mobility 

(TWIMS) arriving nearly twenty years apart – followed soon by Trapped Ion Mobility (TIMS) – 

these ion separation modalities have long been relegated to niche research focus and the analysis 

of structural conformation. 

Within the past ten years, there has been a fundamental shift in IM-based biomolecular 

analyses. While the potential improvements in discovery -omics analyses that may be found 

through the addition of ion separation regimes have long been suggested, it was not until the 

commercialization of proteomics-specific IM instrumentation in the mid-2010s (Figure 9.1) that 

these analytical improvements were realized, paving the way for current high-end ion mobility 

instrumentation. “High-end” ion mobility instrumentation, as discussed below, refers to the latest 

iterations of four unique IM paradigms that directly augment biomolecular investigation by 

demonstrating significant improvements in sensitivity and sample coverage or offering 

unparalleled success in analyte differentiation and structural characterization through high gas-

phase resolution (R>200). While this generation of instrumentation may be considered a 

competitive advantage in the pursuit of biological and biomolecular insight, these flagship 

instruments have each established their own niche advantages, use cases, and drawbacks. (Table 

1) These unique instrumental capabilities, along with the technological innovations that make them 
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possible, are described within this review. Surveying recent literature for four cutting-edge 

instrumental platforms – the Agilent 6560 DTIMS, Waters Cyclic IMS, Bruker timsTOF, and 

Thermo FAIMS Pro – it becomes immediately clear that targeted and untargeted -omics 

investigations comprise an increasingly large sector of utility in IMS research, with structural 

investigations continuing to be a paradigm-defining application. Given this reality, we will confine 

our discussion to these areas to provide broad relevance with those more unique IMS applications 

being worthy of their own, independent review. Here we seek to provide readers with heuristic 

guidance in experimental design, as well as highlight analytical strengths of four IMS paradigms 

that will facilitate future biomolecular analyses. 

Drift Tube Ion Mobility Spectrometry (DTIMS)  

Among various ion mobility paradigms, Drift Tube Ion Mobility Spectrometry (DTIMS) 

is often considered fundamental, as it was the earliest developed. The distinctive feature of DTIMS 

is the uniform electric field applied across the drift tube, which is filled with a neutral buffer gas 

such as nitrogen or helium. This system, then, can directly measure the amount by which an ion is 

slowed due to collisions with the carrier gas as it passes through the tube. The low, uniform electric 

field used in DTIMS is consistent with the classical Mason-Schamp equation3. If the experiment 

parameters are precisely controlled and recorded, DTIMS is the only ion mobility paradigm that 

can provide precise collisional cross section (CCS) measurement without the need for calibration 

ions4. The long history of DTIMS development has been discussed in detail elsewhere5, 6 but in 

this review we will confine our discussion to a cutting-edge commercial DTIMS instrument, the 

Agilent 6560 Ion Mobility Q-TOF. The successful application of DTIMS in structural 

investigation and omics-related studies over the past two decades are also discussed below. 
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Background and Engineering Developments 

In 1998, with the advancement of high-speed electrical components, David Clemmer and 

colleagues built the first drift tube TOF-coupled ion mobility mass spectrometer, which enabled 

the observation of drift time and m/z value for the whole ion system7. In the following years, 

Richard Smith’s group integrated the electrodynamic ion funnels at the front and at the rear of the 

drift tube8, 9. The introduction of ion funnels improves ion accumulation efficiency and enhances 

detection sensitivity. In 2014, the first commercial drift tube IM-MS system (6560 Ion Mobility 

Q-TOF) was launched by Agilent Technologies10. This system has been upgraded further with 

more precise gas control components11. The Agilent 6560 is composed of a 78 cm ring electrode-

stacked drift tube, bracketed by the ion funnels. Under this configuration, ions travel through the 

drift tube under a uniform weak electric field (10~20 V·cm−1). Unlike another kind of drift tube 

IMS-TOF launched by TOFWERK12, in which the pressure of the drift tube is around 760 Torr, 

the Agilent 6560 has a relatively low pressure of around 4 Torr. Despite the low pressure of Agilent 

6560 that results in fewer collisions between the analyzed ions and neutral buffer gas, which limits 

the ion mobility resolving power to around 60, the low-pressure system enables higher sensitivity 

of the detection and is more suitable for complex samples analysis.  

The initial design and typical operation of DTIMS utilizes a single pulse, which has an ion 

accumulation time of around 40-60 ms, forcing all other ions to wait until the previous ion packet 

has reached the detector. However, this long accumulation time brings with it the potential for 

space-charge effects that cause loss of low m/z (m/z < 250) ions13. Attempting to reduce the 

accumulation time in single pulse mode would further reduce duty cycle. To overcome these 

shortcomings, Agilent unveiled an ion multiplexing methodology. In multiplexed mode, ions are 

injected in multiple packets at predetermined intervals. Although the first ion packet is still 
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traveling through the drift tube, the following ion packet can also be injected. As each packet 

receives a shorter accumulation time, this strategy serves to enhance duty cycle and reduce the 

negative impacts of the space charge effects14-17. However, multiplexed mode results in 

overlapping ion mobility spectra. To deconvolute the complicated ion mobility spectrum the 

Hadamard Transformation algorithm was introduced to obtain deconvoluted drift times18, 19. 

Beyond this, high resolution demultiplexing (HRdm)20 with Hadamard Transformation can also 

improve the signal-to-noise ratio21, 22 and lower the limit of detection approximately 10-fold. The 

narrowed ion mobility peaks resulting from the Hadamard Transformation provides an increase in 

ion mobility resolving power from around 60 to between 100 and 20023.  

Structural Investigations 

Collisional Cross Section (CCS) has emerged as the most ubiquitous and widely used 

metric in ion mobility-based structural analysis of gas-phase ions. Given the low uniform electric 

field applied to the drift tube, DTIMS serves as the gold standard for CCS measurement for 

structural investigations. CCS measurement has been obtained for a broad range of ion species 

including small organic compounds, carbohydrates, lipids, peptides, denatured proteins, and 

native-like proteins10, 24-30, which have been fundamental in enabling the CCS calibration of 

TWIMS and other high-resolution ion mobility modalities31. These previous CCS measurements 

were foundational to the instrumental success of the Agilent 6560. Evolving from the criterion 

CCS measurement, DTIMS experiments on the Agilent 6560 platform can also be performed with 

CCS calibration with the so-called “single field” CCS method, using calibration ions to simplify 

the CCS measurement. Using this single field mode for CCS calibration, an interlaboratory 

evaluation showed high reproducibility (an average, absolute bias of 0.54%) of CCS measurement 

across different ion species can be achieved32. Furthermore, based on the comprehensive CCS 
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database constructed via DTIMS, many machine learning methods have also been developed to 

predict the CCS values in a short time without the need of complicated modeling calculation33-37. 

Beyond the measurement of CCS values, one of the important applications of DTIMS is 

the separation of isomers. Typical isomeric species including metabolites38, lipids39, 40, 

carbohydrates41, and peptides42, 43 are42, 43 discussed extensively by other reviews, but this section 

will focus the discussion on recent applications of the Agilent 6560 platform. For example, organic 

pollutants per- and polyfluoroalkyl substances (PFAS) contain many isobars and constitutional 

isomers, which will generate similar fragment ions. Therefore, the traditional LC-MS/MS strategy 

is not suitable for the analysis of these compounds. By introducing ion mobility separation as an 

additional dimension, a lower detection limit and higher confidence structural identification can 

be achieved44, 45 (Figure 9.2). Other organic molecular isomer separation applications include 

steroid metabolites46-49, bile acids50, peptide conformers/isomers43, 51, and isobaric/isomeric 

biomarkers in newborn screening23. Ozonolysis, Paternò−Büchi reactions and cuprous ion-induced 

fragmentation have also been coupled with IM separation to identify double bond position in 

lipids52-54. Using the Agilent 6560 platform, the separation capacity of glycan isomers can be 

further enhanced by the incorporation of metal ions55, 56 or derivatization57. Meanwhile, in addition 

to the electrospray ionization source, the Agilent 6560 can also be coupled to other ionization 

modalities to produce spatial information for mass spectrometry imaging. The Julia Laskin group 

has successfully used a desorption electrospray ionization source to achieve high-resolution 

imaging of biomolecular isomers in tissue40, 58, 59. Infrared matrix-assisted laser desorption 

electrospray ionization (IR-MALDESI), developed by David Muddiman and colleagues, can also 

be coupled to the Agilent 6560 to separate different analyte classes60.  
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In addition to the separation of small molecular isomers, another structural investigation 

application of DTIMS is to study the gas-phase structures of large intact proteins or protein 

assemblies61, 62. In native mass spectrometry, the non-covalent interactions between proteins and 

ligands or proteins and proteins can be preserved. Further, proteins with different charge states can 

fold/unfold into different conformations due to the existence of secondary structure elements and 

Coulombic repulsive forces. Using the Agilent 6560 platform, solvent evaporation conditions and 

front end voltages can be tuned to best preserve the native state63. Beyond this, collision-induced 

unfolding (CIU) is gradually becoming a useful technique in the field of native ion mobility mass 

spectrometry to study the conformation and stability of intact proteins or protein complexes64. 

Ruotolo and colleagues employed sulfur hexafluoride gas in the source region in front of the 

Agilent 6560 drift tube to enhance collision activation efficacy65. This modification significantly 

improves CIU performance, allowing for the comparison of structure and stability between 

monoclonal antibodies and their biosimilar therapeutics65-68. 

Relevance to -omics Applications 

Ion separation in DTIMS resides on the timescale of milliseconds, making it suitable for 

coupling LC separations that operate on the order of seconds. One advantage for DTIMS related -

omics studies is that, in addition to the retention time and accurate mass, DTCCSN2 annotation can 

also be achieved in the same experiment. Since the launch of Agilent 6560, numerous 

metabolomics investigations have been performed with recorded DTCCSN2 annotation69-74. The 

Zheng-Jiang Zhu group collected more than 5,000 empirical metabolite CCS values from literature 

to predict the CCS for more than 1.6 million small molecules75. Beyond LC separation, 

electrophoretic separation, which exploits a compound’s size and charge, operates under a similar 

mechanism to ion mobility separation. The relationship between the effective mobility and CCS 
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values was evaluated by coupling capillary zone electrophoresis (CZE) to DTIMS76. Lipidomic 

research has also been widely explored on the Agilent 6560 platform 77-83.  

Compared to the nearly 100% duty cycle in TIMS, the poor duty cycle in DTIMS hinders 

further application in -omics applications. This limitation is largely mitigated when operating in 

multiplexed mode19. The Smith group first used ion multiplexing to identify and quantify liver 

fibrosis proteins from blood serum84. Another successful proteomic application is the identification 

of host protein signatures to evaluate the treatment effect of pulmonary tuberculosis85. More 

recently, multiplexed DTIMS has also been used in metabolomics. Compounds of emerging 

concern (CEC) in human urine samples were investigated and a comprehensive CCS database was 

built using the Agilent 6560 platform86. Untargeted metabolomics demultiplexing analysis can also 

be achieved16. To simplify the ion mobility-mass spectrometry-based -omics workflow and the 

detection of low abundance ions, the Smith group developed PNNL Preprocessor, which can 

integrate data interpolation, demultiplexing, multidimensional smoothing, and saturation repair 

functions. The PNNL Preprocessor software is proven to have faster processing speed and yields 

greater lipid annotation in lipidomics87 analyses. 

Considerations and Future Directions 

Considering CCS values have high inter-laboratory reproducibility compared to 

inconsistent retention times in LC separations, DTIMS, the only direct CCS measurement 

paradigm, continues to play an important role in the ion mobility field. It is conceivable that in the 

future each ion will have an accurate CCS value determined by DTIMS as an intrinsic property 

like the mass-to-charge ratio. However, the current iteration of DTIMS presents some limitations. 

Poor duty cycle resulting from the tradeoff between ion accumulation time and total time in the 

drift tube hinders ion utilization efficiency. Advanced ion injection strategies, such as 
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multiplexing, require further development to overcome this obstacle. As mentioned above, the 

low-pressure (4 Torr) environment in the drift tube of the Agilent 6560 platform further limits the 

ion mobility resolving power due to fewer collisions between ions and neutral buffer gas. Further 

increasing pressure in the drift tube will be an effective way to enhance the ion mobility resolving 

power. Overall, we foresee that DTIMS will play an increasingly important role in the future of 

scientific research. 

Cyclic Ion Mobility Spectrometry (CIMS) 

Cyclic Ion Mobility Spectrometry (CIMS) is a unique entry in the high-resolution IMS 

family. It is based on Traveling Wave IMS (TWIMS), which was developed in the early 2000s 

and commercialized soon after by Waters Corporation88, 89. In accordance with other IMS 

modalities, it is readily interfaced between liquid chromatography separations and mass 

spectrometry. While TWIMS is a commonly employed and successfully commercialized IMS 

modality, its earlier iterations failed to provide resolving powers greater than 5090. Such low 

resolving powers struggle to differentiate CCS values that differ by less than 1%. TWIMS 

resolution increases roughly with the square root of path length, so overcoming these diminishing 

returns necessitates ultra-long path length devices91.  CIMS has been developed to achieve high 

resolution separations by extending the traditionally short TWIMS path length and enabling 

analytes to undergo multiple passes92 (Figure 9.3), substantially improving resolution. CIMS 

technology was commercialized in a tandem IMS time-of-flight mass spectrometry system by 

Waters Corporation in 2019 as the Select Series Cyclic IMS and is one of the only ultra-long path 

length IMS platforms to be commercialized93-95. Since the resolving power of the IMS separation 

is proportional to the number of passes around the path, resolving power and analysis time are 

easily tunable by the operator, allowing for convenient optimization92. The system does, however, 
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require some tradeoffs at higher resolving powers. Principally, as higher resolving powers are 

achieved, a narrower CCS window must be measured, otherwise higher mobility compounds 

would wrap around those of lower mobility. Due to this complication, the Waters Cyclic IMS 

provides a very powerful platform when targeted super-high-resolution separations are desired, 

but it is not generally suitable for discovery-based applications. A brief comparison of Waters' 

TWIMS-based IM-MS offerings is highlighted in Table 2, should this IM paradigm be of further 

interest. 

Operating Principles and Engineering 

The CIMS cell is effectively a circular TWIMS cell that has been modified with an ion 

entry/exit port. A relatively mature IMS archetype, traditional TWIMS separates ions in a drift 

tube-like fashion. Instead of applying a constant potential, however, ions are subjected to uniform 

“waves” of potential that travel the length of the cell. Higher-mobility ions are able to “surf” these 

waves more effectively and are overtaken by them less often than low-mobility ions91. TWIMS 

analysis utilizes pulsed ion injection, much like DTIMS, bringing with it the same shortcomings 

described above. To overcome this limitation, the Select Series CIMS contains a quadrupole mass 

filter and an ion trap upstream from the CIMS cell, where ions are accumulated prior to injection 

and analysis92. It should be noted that CCS value measurements in CIMS must be obtained from 

careful calibration of the instrument and not physical/electronic characteristics alone. Although 

uncertainty and variation in “true” CCS value is still a limiting factor, relatively recent progress in 

optimization of TWIMS calibration has made high-confidence calibration much more reliably 

achievable, an especially important consideration for super-high resolution CIMS96, 97.  

One of the largest drawbacks to CIMS’ application in -omics investigations is the necessity 

to eject ions from the cyclical flight path. Since the CIMS cell contains an ouroboric ion path, 
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ejection of certain ions will become necessary after a certain number of passes to prevent higher 

mobility ions from overtaking those with lower mobility. This results in the potential for extremely 

high-resolution separations at the cost of sample coverage and CCS range. If targeted high-

resolution separation is all that is desired, the system can be utilized in “IM Isolation” mode, where 

all ions outside of a desired mobility range are immediately ejected during the first pass, and the 

remainder may continue being separated in subsequent passes. The Waters Cyclic is also the only 

platform on this list capable of true tandem IMS. It can be operated in IMSn mode, where ions are 

separated as normal in the CIMS cell, then instead of being sent to the TOF for MS analysis, 

selected packets will be reintroduced to the pre-array store and may then be reinjected into the 

CIMS cell under different conditions a theoretically unlimited number of times92.  

In terms of resolving power, the Select Series CIMS has a single pass resolving power of 

60-80, and this value should theoretically increase by the square root of the number of passes. 

Experimentally, this relationship remains true to the theory, with resolving powers of ~750 

observed after 100 passes92. Giles et al. report ion losses of less than 2.5% per pass through the 

CIMS loop for small relatively stable ions though it is expected that this value will vary greatly 

between analyte families and robustness92. 

Structural Investigations 

Since the introduction of the first commercialized ion mobility mass spectrometer, the 

Waters Synapt HDMS, TWIMS has been widely used in structural investigation of different ion 

species such as small organic compounds, glycans, peptides, and proteins. The Waters Cyclic, with 

high resolving power and unique geometry, further enhances structural investigations.  

Complex small molecule mixtures, such as petroleum, contain many isobaric and isomeric 

compounds, which provides an ideal application scenario for ion mobility differentiation. For 
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example, the Waters Cyclic can help to identify the CH- and CHS- petroleum species solely on 

structural difference, whereas traditional mass spectrometry may fail to resolve these species due 

to the small 3.4 mDa SH4/C3 mass difference98. The IM isolation function, which focuses on 

specified mobility regions, can help to reduce the interferences of isobaric compounds. Notably, 

gradually increasing the number of passes from 1 to 10 has demonstrated gradual separation of 

isomeric benzo[b]naphtho[2,3-d]thiophene and anthra[2,3-b]thiophene98. Other similar complex 

mixture separations on Waters Cyclic include lipid isomers99, 100, crude oil compounds101, 102, 

environmental contaminants103-106, natrual compounds107, isomeric drugs and related 

metabolites108-110. Beyond this, Gabe Nagy and colleagues also utilized the Waters Cyclic to study 

the effect of isotopic substitutions in isotopologues and isotopomers on the mobility change111. 

Surprisingly, two deuterated palmitic acid isotopomers with deuterium labeled at different 

positions show different mobility. This finding challenges the classical Mason−Schamp equation, 

in which isotopomers should not be resolved given their identical mass and structure. Given this 

finding, access to this ultra-high-resolution IM technology may prompt reevaluation of tradition 

IMS theory. Besides, temporal compression was found to be capable to improve the IMS peak 

intensity in CIMS112. 

Glycan sequencing is challenging in analytical science due to the complexity of the 

monosaccharide building blocks, which contain several chiral centers. The anomericity and 

regiochemistry of the linkages between the monosaccharides further complicate structural 

characterization. The Waters Cyclic offers several advantages for the elucidation of glycan 

structure. First, high-resolution ion mobility with multiple passes facilitates separation of 

oligosaccharides113-115. For example, mixtures of three pentasaccharides cannot be resolved in 1-

pass (R~65). However, after 5-passes the resolving power increases to ~145, allowing facile 
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separation of pentasaccharides constituents113. This application, however, is not immune to the 

“wrap-up” effect. In this example separation, 7 CIMS passes will result in the IM peak of the low-

mobility branched mannopentaose being overtaken by the highest-mobility cellopentaose, which 

will distort the IM measurement for different ion species116. To overcome this issue, IM isolation 

mode can be used to select a specific ion mobility range, allowing for target molecules to complete 

a higher number of passes. The other advantage of the Waters Cyclic in glycan analysis is the 

unique IMSn function. Not only are the glycan precursor ions isomeric, but also the product ions. 

The engineering design of the Waters Cyclic allows the selection and dissociation of the precursor 

ions with a specific ion mobility range and can further separate product ions, an approach similar 

to MSn. The isomeric disaccharide and trisaccharide building blocks of the glycans display specific 

ion mobility fingerprints and diagnostic fragmentation patterns, which enable the sequencing of 

oligosaccharides117-119. As well, the Waters Cyclic also demonstrates potential in assigning exact 

fucosyl120 and sulfate121 positions and elucidating the structure of glycopeptides122. 

Peptide isomers resulting from the stereoisomerism and chemical modification of different 

residues are difficult to analyze due to their identical mass and possible co-elution in reversed-

phase liquid chromatography. Compared to other advanced ion mobility paradigms, the Waters 

Cyclic has a trap cell, in which precursor ion can be fragmentated by collision-induced dissociation 

(CID) prior to entry into the CIM separator. Fragment ions of isomerized peptides will display a 

recognizable arrival time shift, which can be used for the site-specific localization of 

isomerization42, 123-125. As an example, 4 passes with resolving power around 130 in the Waters 

Cyclic was found to be sufficient to map the racemization or L/D-amino acid substitution site in 

protein therapeutics126. Other successful applications of the Waters Cyclic include the separation 

of cross-linking peptides127 and the assignment of disulfide bridge pairing128. 
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Finer gas-phase structure of proteins can be provided by multi-pass separation in the 

Waters Cyclic. Meanwhile, the increased length of IM separation will also increase the time of 

protein ions spent in the gas phase. Thalassinos and colleagues used the Waters Cyclic to study 

the gas phase stability of protein ions and found the native protein conformation is stable on the 

order of hundreds of milliseconds129. Further, the IMSn function of the Waters Cyclic can 

separately slice specific ion mobility range of proteins ion to perform the collision-induced 

unfolding (CIU) experiments, which will provide more detailed information about the protein 

unfolding pathway129-131. In addition, the Waters Cyclic can be further retrofitted with an electron 

capture dissociation (ECD) cell either in front or rear of the cIM separator to enhance top-down 

protein characterization132. Similarly, Vicki Wysocki and colleagues have incorporated a simple 

surface-induced dissociation (SID) cell into the Waters Cyclic instrument, which enables surface-

induced unfolding (SIU) experiments133, 134. It should be noted that this is also the first 

commercialization of SID, which will provide new insight into the analysis of proteins and protein 

complexes. 

Considerations and Future Directions 

With increasing CIMS pass numbers, time spent within the CIMS flight path will increase. 

Across all IM paradigms longer flight times are associated with reduced transmission, leading to 

a reduction in sensitivity. Additionally, the existence of the “wrap-up” effect resulting from 

multiple passes may hinder the accurate measurement of m/z and arrival time for the whole ion 

system. The above features limit application of the Waters Cyclic in omics-related investigations. 

Furthermore, the CCS measurement of target ions is also an issue for Waters Cyclic. The electrical 

field in the CIMS separator is not uniform, which means the CCS values cannot be calculated from 

first principles. The current work-around is to use calibration ions; however, the CCS values of 
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calibrant ions obtained from DTIMS have an experimental uncertainty between 0.5% and 2%10. 

Although single-pass CCS measurements on the Waters Cyclic agree well with the literature, 

multi-pass CCS measurement cannot be reliably achieved until the validation of higher accuracy 

CCS standards. Nevertheless, the customizable ion mobility resolving power and unique IMSn 

function of the Waters Cyclic promise to bring more exciting IMS applications in the future. 

Trapped Ion Mobility Spectrometry (TIMS) 

Trapped ion mobility spectrometry (TIMS) is a relatively recent addition to the 

bioanalytical toolbox, and was patented in the late 2000s by Melvin Park and associates at Bruker 

Daltonics135. Despite the short turnaround time since its commercialization in 2017 as the timsTOF 

line of instruments, TIMS has quickly matured into a powerful and convenient platform for a wide 

variety of structural analyses and discovery-based investigations. Specifically, TIMS provides a 

sensitive and flexible platform that is well suited to add another dimension of separation in between 

existing chromatographic and mass spectrometry-based workflows136-138.  In addition to the ESI-

based instrumentation that brought TIMS into the spotlight, Bruker has recently unveiled TIMS 

units with matrix-assisted laser desorption/ionization (MALDI) imaging capability that is 

consistent with the current gold-standard139. An optional MALDI-2 postionization laser and TIMS’ 

unique parallel-accumulation serial fragmentation (PASEF) capabilities round out the modality as 

an impressive, highly sensitive platform for modern structural biology and -omics 

investigations140, 141.  

Operating Principles and Engineering 

The TIMS separation principle is effectively inverted from traditional ion mobility 

modalities. In drift tube-style devices, rotationally averaged collisional cross sections (CCS) of 

gas-phase ions are measured by accelerating them through an environment populated with inert 
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gas, which impedes ion motion toward the detector in a way that is proportional to the ions’ CCS. 

In TIMS, ions are immobilized in a region filled with moving gas. This trapping is accomplished 

inside a segmented linear quadrupole ion trap. In this TIMS cell, different plates along the length 

vary the potential on ions as a function of distance, so that ions with larger CCS values will be 

pushed further along the cell due to the energy they receive from the carrier gas (Figure 9.4)142. 

The accumulated ions can then be eluted through the TIMS analyzer by sequentially lowering the 

position-dependent plate potential as a function of time. This sequence of accumulation and elution 

can be adjusted to optimize for fast scans (tens of ms) or for high resolution separations (hundreds 

of ms)143.  Using optimized stepping scan functions can provide IMS resolving powers >300 while 

reducing overall experiment time, and increasing duty cycle144. As detailed below, there are a host 

of parameters specific to the TIMS cell and accompanying ion optics that may be altered and 

optimized to meet experiment-specific needs. By elongating the TIMS cell and creating two 

separate trapping regions within, the first “ion accumulation trap” can collect ions while the second 

trap analyzes a previously collected batch. This technique, dubbed Parallel Accumulation-Serial 

Fragmentation (PASEF), provides a duty cycle of up to 100%, albeit usually with a reduction in 

maximum resolving power145. PASEF can be harnessed to successfully increase MS/MS coverage 

and maintains the sensitivity of the TIMS cell137. The extra dimension of separation that TIMS 

provides, when combined with the potential to create highly reproducible data sets, and high 

ionization efficiency makes it a very attractive platform for data-independent acquisition (DIA) 

experiments. Dubbed “diaPASEF,” this acquisition mode has been shown to overcome traditional 

drawbacks to the technique such as low ion utilization and convoluted spectra124.  

Much like other high-resolution IMS techniques, and unlike drift-tube IMS, the CCS of 

ions cannot be readily calculated from first principles. Instead, instruments must be calibrated with 
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standards of accurately known CCS values. A properly calibrated TIMS produces CCS values that 

are reproducible, accurately matching drift-tube values to around 1% and demonstrating high 

reproducibility146, 147. Calibration has even been validated by inserting a drift tube before the TIMS 

cell, thereby comparing CCS values from both IMS modalities in tandem and with the exact same 

analytes148.  

Role in Structural Investigations 

Due to its high resolving power, easy interfacing between liquid chromatography and mass 

spectrometry, and high duty cycle, TIMS separations have quickly been adopted for a wide variety 

of structural characterization. Fast, simple, and effective analysis of chiral compounds can be 

achieved in the gas phase thanks to the TIMS cell149. Impressively, the high resolution capabilities 

also allow for separation of isobaric lysine propionylation and acroleination, which have CCS 

values that differ by as low as 1%150. TIMS has been utilized effectively in data-dependent 

acquisition PASEF (DDA-PASEF) mode to determine the mechanisms of SARS-CoV-2 host 

protein interactions and identify binding motifs151. In terms of tertiary and quaternary structure of 

proteins, TIMS has demonstrated the ability to conveniently separate complex antibody-drug 

conjugate mixtures prior to MS analysis, allowing for high-throughput structural characterization 

of multiple attributes in top-down analysis152.  

Cross-linking mass spectrometry is a proteomic technique that involves intensive data 

analysis to differentiate cross-linked peptides from linear digested ones. TIMS provides a 

convenient way to easily discriminate linked and non-reacted peptides by CCS, and provides more 

robust information than can be gleaned from MS analysis alone153. This distinction can even be 

automated to determine in real time which CCS values represent species of interest154. The 

application of TIMS with another structural proteomic technique, fast photochemical oxidation of 



408 

 

proteins (FPOP), improves quality of analysis and even enables resolution of different 

modifications on the same amino acid residue, as well as the ability to differentiate peptides based 

on location of backbone oxidation155, 156. The structural applications of TIMS are apparent in top-

down investigations as well, where it has been used to differentiate protein conformations based 

on differing amounts of intra-protein disulfide bonds157.  

TIMS has also been used successfully to analyze isomeric opioid metabolites in human 

urine, and does so with better precision and reproducibility than standard multiple reaction 

monitoring (MRM) techniques158. Analysis of isomeric compounds is an especially important task 

in analysis of lipids since much of the diversity in the lipidome stems from isomeric species. The 

addition of TIMS in lipidomic workflows allows for more robust characterization while 

maintaining high sensitivity and vastly increases MS/MS coverage in the resulting data159, 160. 

TIMS’ ability to interface with MALDI imaging produces a system that can provide a useful 

dimension to deconvolute lipidomic imaging data161.  

Relevance to -omics Applications 

The Bruker timsTOF lineup is tailored to -omics applications first and foremost. The 

convenient and rapid high-quality IMS separations pair extremely well with high-resolution 

imaging capabilities and rapid MS acquisition. Proteomics is currently the most mature of the -

omic disciplines, and TIMS analysis aids in pushing the envelope on both targeted and discovery-

focused investigations. TIMS has been shown to decrease spectral complexity in proteomics by 

separating peptides prior to MS analysis162. The reduction in co-fragmentation is an added benefit 

to the extra dimension of separation provided by IMS in general. TIMS has been utilized to 

successfully improve quantitation using isobaric tags without increasing experiment time163, and 

is suitable for label-free phosphoproteomics164.  Due to the relationship between timescale of 
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TIMS scan and MS scan, it is possible to measure multiple different peptides in each ion mobility 

scan. Using this in a targeted proteomics approach has been achieved in parallel reaction 

monitoring (PRM-PASEF) workflows165, 166. This methodology allows for absolute quantitation 

of endogenous peptides when isotopically labeled standards are spiked into bottom-up samples. 

With the high sensitivity enabled via PASEF, this technique has been successfully employed to 

monitor pathogenesis, progression, and biomarkers of various diseases, and in the localization of 

glycation sites in human serum albumin167-169. Software packages that leverage PASEF parameters 

can be employed to improve run-to-run reproducibility of PRM experiments170.  

Yet more nanoLC-coupled workflows have been optimized for peptide biomarker 

detection and targeting171. The human cardiac proteome has been analyzed and demonstrates high 

reproducibility and number of protein identifications172. The timsTOF is also well suited to the 

generation of spectral libraries due to its high sensitivity173, 174. It has also been shown that the 

TIMS cell is capable of interfacing with ECD and can readily differentiate the histone proteoform 

in this modality175. On the subject of peptide and protein fragmentation, TIMS parameters can be 

utilized to fragment these larger biomolecules in the TIMS cell itself, providing a “pseudo-MS3” 

analysis for top-down or middle-down proteomics176.  

Single-cell proteomic analyses are substantially improved through utilization of timsTOF 

technology, as the high sensitivity and duty cycle capabilities have shown promise in dealing with 

the inherent extreme sample-limited conditions177-180. These capabilities have even been leveraged 

to measure peptide stereochemistry within a single cell181. Even so, new developments offer a 

glimpse of an even higher sensitivity for the instrument in the future, with work being done to 

produce a brighter ion beam and lower the limit of detection even further182. Recent work has been 
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done to enable sub-cellular MALDI MS analysis of single organelles thanks to the timsTOF’s 

MALDI capabilities and aptitude for sample-limited conditions183.  

Metabolic and lipidomic workflows on the timsTOF are able to reap the rewards of TIMS’ 

capabilities as well. Taking advantage of the system’s high resolution mass spectrometry and ion 

mobility, human urine metabolites can be targeted and analyzed with relatively little sample 

preparation184, 185. The high resolution capabilities of TIMS analysis also allow highly effective 

separation and discrimination of biologically relevant lipid species based on CCS differences far 

below 1%186. As always, PASEF remains relevant in metabolomic workflows, increasing the 

number of features with high-quality MS/MS spectra associated187. These qualities have enabled 

targeted and untargeted metabolic profiling of such wide-ranging systems as extra virgin olive oil, 

mosquitoes, and breast cancer cell lines187-189.   Additionally, the MALDI capabilities of the 

timsTOF Pro are effectively supplemented by the high-quality IMS separation. Traditionally, 

MALDI imaging of small molecules is impeded by high amounts of low-mass interferences that 

originate from the matrix. By performing a high-quality IMS separation prior to mass spectrometry 

analysis, these interferences can be cleaned up, and higher quality data is obtained. The high 

performance of the timsTOF MALDI imaging system has been leveraged in spatial metabolomic 

inquiries on human kidneys190. TIMS has been used to study human colorectal cancer from a 

metabolic and multi-omic point of view and has been used to identify genomic perturbations 

associated with mitochondrial dysfunction and poor disease prognosis191, 192. Recent work has used 

MALDI-TIMS imaging for structural elucidation of modified Lipid A in bacterial colonies193. 

Due to the complexity inherent in acquiring and analyzing 4-dimensional chromatography-

TIMS MS/MS data, many different software packages have been published for a wide variety of 

TIMS-specific applications. MaxQuant and the associated MaxDIA are broadly applicable 
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software packages for shotgun proteomics and DIA analysis respectively194, 195. OpenSWATH is 

an open-source DIA tool that has been adapted for use with diaPASEF experiments124, 196. 

MaxLynx is another package built upon the MaxQuant environment and is designed specifically 

for cross-linking mass spectrometry analysis197.  MSFragger and IonQuant are two PASEF-

compatible software packages from the Nesvizhskii group that purport to improve unique peptide 

IDs and fast label-free quantitation when compared to MaxQuant and the popular software PEAKS 

198. Analyzing DIA data can be accomplished with and without a spectral library, and these two 

approaches each come with perks and drawbacks. According to Wen et al., with the current state 

of the workflow, libraries will provide a higher number of both precursor identifications and 

missing values. Despite this, both library-based and library-free analyses lead to comparable 

conclusions199.  Machine and deep learning strategies have been harnessed to improve peptidomic 

identifications, and to build computational CCS libraries with high accuracy200, 201. Neural 

networks (NN) have recently proven to be effective in analyzing DIA proteomics data, and this 

DIA-NN technology has been added to the Bruker PaSER 2022 software release202. Finally, for 

simple visualization and indexing of large datasets, AlphaTims and the OpenTIMS suite are 

designed for fast access to raw data202-205.  

Future Directions and Considerations 

Although this may seem like a plethora of software, the relative novelty of the platform 

dictates that many needs are still unfulfilled. As a newer entrant to the field, TIMS technology 

lacks pragmatic guidance on method building, and there is a need to rigorously evaluate and 

develop methodologies that can be disseminated throughout the community. For more mature 

proteomic platforms, this seminal development work has already been conducted, and users are 

able to select published and validated methods for common analyses with high confidence. 



412 

 

Community efforts to develop standard proteomic, metabolomic, and lipidomic methods on the 

timsTOF would enable greater access to such a promising platform. There are also certain 

formative questions that remain unanswered about the system. For example, there is evidence that 

although the system is indeed suitable for native proteomics, CCS distributions can vary widely 

across trapping methods206. In a similar vein, recent work indicates that small molecule CCS values 

are influenced by solvent conditions and trapping parameters, and these effects should be noted by 

users207.  These drawbacks are certainly unfortunate, but many of these gaps in knowledge are due 

in large part to the relative novelty of the platform as a whole. With time and increased utilization, 

it is anticipated that many of these needs will be addressed as the scientific community continues 

to embrace this convenient and powerful family of instruments. One future development that may 

prove to be impactful is tandem TIMS208. The yet uncommercialized technology has been utilized 

to probe protein structure changes as a function of the proteoform and shows the ability to maintain 

highly charged non-covalent protein assemblies209, 210. It remains to be seen whether this 

development is useful enough for widespread adoption, or whether drawbacks will render it a niche 

addition to the TIMS family. Despite these unknowns, the extensive publication record of this 

instrumental regime in its nascent lifetime indicates TIMS and the Bruker timsTOF have a bright 

future in the analytical fields and promise to push the boundaries of modern ion-mobility 

spectrometry. 

Differential Ion Mobility & Field Asymmetric Waveform Ion Mobility Spectrometry 

(FAIMS) 

Standing in contrast to each of the previously discussed ion mobility paradigms, differential 

ion mobility spectrometry (DIMS) provides a unique entry into the realm of high-end ion mobility 

instrumentation in the form of Field Asymmetric-Waveform Ion Mobility Spectrometry (FAIMS). 
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Whereas TWIMS, TIMS, and DTIMS exploit the instantaneous mobility of gas phase ions in the 

presence of a constant electric field, DIMS is so named for its ability to exploit the different 

mobilities of gas phase ions when in the presence of low and high electric fields. While the storied 

development and analytical success of DIMS has been detailed elsewhere211, we will confine our 

discussion to that of FAIMS, as this sector of differential ion mobility has seen successful 

commercialization and significant implementation in structural elucidation and cutting-edge mass 

spectrometry based biomolecular investigations. As demonstrated across the past decades of 

development, the flexible, compact design of various FAIMS implementations have been specially 

tailored to provide higher separation capacity and analytical sensitivity while providing topical 

considerations in experimental design. 

Background and Engineering Developments 

While the conceptualization and invention of FAIMS is unclear, credit may most broadly 

be given to Russian scientists circa 1980, with the earliest literature appearing in the 1990s, prior 

to the technology reaching the United States212. At the time, traditional IM modalities capable of 

exploiting gas phase mobility of ions required sub-ambient pressure, forcing confinement of these 

separation strategies to settings where high vacuum and stable temperature could be achieved. In 

contrast, FAIMS, which operates at atmospheric pressure and near-ambient conditions, offered the 

first suitable mechanism for field deployment and detection of a broad range of chemical 

species212. In FAIMS, ions are introduced between two planar or cylindrical electrodes and are the 

propelled toward the detector by a carrier gas. An asymmetric waveform voltage – referred to as 

the Dispersion Voltage (DV) – is then applied to a single electrode such that the oscillating high 

and low electric fields yield equivalent time-voltage integral (Figure 9.5)212, 213. The oscillating 

high and low fields, each of opposite polarity, impart a force on gas phase ions orthogonal to the 
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carrier gas, causing ions to migrate towards the opposing detector in a fashion consistent with their 

response to high and low fields. The dispersion voltage alone would ultimately cause all ions to 

contact the electrodes and be neutralized. To account for this, a second voltage – the Compensation 

Voltage (CV), constant in both polarity and amplitude – may be applied to the opposite electrode, 

allowing for responsive ions to drift safely towards the detector. When the DV and CV are held 

constant, FAIMS devices operate as an ion filter, as only those ions compatible with chosen 

voltages will reach the detector. This strategy is fundamental to biomolecular separation, as 

discussed below, but would present infinitesimally low duty cycle in complex mixture analysis. 

As such, all but the most specialized FAIMS devices have the capacity to sweep through a range 

of compensation voltages or may otherwise operate at a range of voltages for the duration of the 

experiment. These FAIMS principles, which are comprehensively explained elsewhere213, give 

rise to multiple unique FAIMS implementations, with planar and cylindrical instruments being the 

focus of our discussion. 

Though fundamental differences in planar and cylindrical FAIMS devices may be the 

subject of a separate, comprehensive review, topical considerations arise from how each geometry 

influences the achievable electric field. Planar FAIMS, using flat plate electrodes, reminiscent of 

traditional DIMS, allows for homogenous electric fields across the FAIMS device, which provides 

narrow peak widths and therefore higher peak capacity214, 215. Shvartsburg and colleagues have 

repeatedly demonstrated the utility of the FAIMS regime for biomolecular separation and 

distinction of isoforms, as shown below. Early on, Shvartsburg et al.216 validated that smaller 

planar gaps allow for higher electric fields, allowing for shorter analyses without sacrificing 

resolution and later demonstrated that reducing gas flow allows for even higher peak capacity217. 

Later hybrid FAIMS-IMS implementations were able to increase gas-phase resolution even 
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further218. While FAIMS’ operation at atmospheric pressure offers utility in field applications219, 

this can present limitations when coupling FAIMS to modern mass spectrometers with strict gas 

requirements and pressure limits. Baird et al.220 demonstrated a means of removing buffer gas 

constraints when coupling planar FAIMS to orbitrap mass spectrometers, while Shvartsburg et 

al.221 demonstrated FAIMS may be used in low pressure regimes, paving the way for future 

instrumental implementations and coupling to activation electronics.  

Contrasting planar FAIMS, electric fields applied in cylindrical FAIMS are inherently non-

homogenous. This lack of uniformity ultimately reduces the achievable peak capacity compared 

to planar FAIMS, lowering the achievable gas phase resolution. However, non-homogenous 

electric fields provide a means of ion focusing, resulting in significantly higher sensitivity, and 

making this FAIMS regime more suited to discovery-based -omics investigations. In addition, the 

geometry of cylindrical FAIMS (Figure 9.5) is more amenable to controlling temperature stability, 

which greatly improves ion transmission214, 222. Similar to planar FAIMS, recent reports have 

improved analytical performance by decreasing electrode gap widths, which provided a four-fold 

increase in peak capacity and 98% increase in identifiable proteins223. Noting the complementary 

benefits in these two popular FAIMS implementations, it becomes clear to what research interests 

each lends its analytical capability. 

Structural Investigations 

Due to the propensity for operating at higher electric fields, higher peak capacity, and 

demonstrated gas phase resolution, planar FAIMS has been extensively employed for the 

separation of diverse sets of isomeric and isobaric biomolecules. Recently employed to identify 

isotopic shifts on organic molecules224, separate polyproline isomers225 and classify lipid 

isomers226, 227, this separation modality exhibits innate propensity to glean minute structural 
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differences from relevant biomolecules. A more active sector of research, however, is the 

utilization of FAIMS to separate and identify peptide/protein isoforms. Given the ubiquity of 

protein phosphorylation and challenges in site localization, these biomolecules made for an 

excellent analytical subject in early analyses228-231. Concurrently, Shvartsburg et al.232 

demonstrated separation of peptide sequence isomers employing a similar strategy in the analysis 

of methylated histones233. This latter work was further expanded by Garabedian et al.234, Shliaha 

et al.235, and Baird et al.236, the latter of which detailed high mobility and mass resolution. Given 

its suitability for localizing and distinguishing post-translational modifications (PTMs), planar 

FAIMS has also been used to separate and identify isomeric glycopeptides237. While the structural 

complexity of glycosylation still outpaces the analytical power of FAIMS, Pathak et al.238 

successfully separated isomeric glycopeptides. Additionally, FAIMS has also been employed to 

analyze both small and large proteins239. These targeted studies demonstrate the capability of 

FAIMS as an ion separation and ion filtering technique and highlight the distinct analytical power 

it may present. Even more noteworthy is the extensive utilization of FAIMS within -omics 

investigations, which have aided in cementing FAIMS as capable far beyond structural 

investigations240. 

Relevance to -omics Applications 

Though several commercial FAIMS offerings exist, the rise in access to and adoption of 

orbitrap mass spectrometers within -omics investigations has served to establish the Thermo Fisher 

FAIMS Pro as the most ubiquitous analytical platform. Given the ability of FAIMS to operate at 

a range of CVs – providing unique ion filtering at each – the FAIMS pro has been extensively 

employed in proteomics, as it provides a facile avenue towards comprehensive sample coverage. 

This is exemplified in the numerous reports of FAIMS within bottom-up analyses, namely Hebert 
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et al.241 who provided early reports of comprehensive bottom-up analyses with FAIMS, 

demonstrating how ion separation can be used to augment existing analytical techniques242-247. Of 

significant interest at the time of review is the analytical sensitivity enabled through FAIMS248, 249. 

FAIMS has aided in analysis of iPSC-derived neurons250, has shown utility in single-shot 

proteomics when using short LC gradients251, 252, and has even been coupled with machine 

learning252 to identify >2,800 proteins from a single nanogram of material253. Demonstrating 

extreme sensitivity – having demonstrated the ability to identify >1,000 proteins from individual 

cells254, FAIMS presents itself as a meaningful modality in the nascent field of single-cell 

proteomics178, 255 that can be further enhanced through instrumental application programming 

interfaces (APIs)256.  

Though discovery-based analyses are a permanent fixture within proteomics, FAIMS has 

also been extensively employed to benefit quantitative proteomics investigations. Beyond 

improvements in sample coverage, FAIMS – operating both as an ion focusing agent and ion filter 

– improves quantitative accuracy by reducing the quantity of co-isolated precursors, with 

numerous reports detailing the improvements achieved257-259. Several reports have also detailed 

the ability of FAIMS to provide equivalent or higher quantitative accuracy260 without reducing 

identification rates259, 261, as well as showing utility in creating custom analysis pipelines262. The 

analytical capacity of FAIMS is further expanded when targeting a specific biomolecular class. As 

in all ion mobility regimes, biomolecule subspecies (i.e., phosphopeptides, glycopeptides, etc.) 

bear similarities in mobility with one another, making them easily distinguishable from other 

analytes. As such, FAIMS parameters may be tuned to specifically target these species and has 

been employed in quantitative investigations261, 263, 264. PTM analyses via FAIMS extend beyond 
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quantitative proteomics265 as FAIMS also provides benefits in global247, 266-268 and targeted269 PTM 

profiling from a variety of biological sources. 

FAIMS has also been leveraged in more niche scenarios, including those where significant 

sample limitations exist. Of interest, Cooper and colleagues have utilized liquid extraction surface 

analysis (LESA) in combination with FAIMS to analyze both heat preserved tissue270 and dried 

blood spots271, resulting in a 50% increase in protein identifications from the latter report. Other 

unique applications of FAIMS include the use of real time searching (RTS) to determine temporal 

protein expression272, monitoring host cell proteins produced during expression of 

biotherapeutics273, as well as using FAIMS filtering to selectively analyze the cysteinome246, 

SUMOylated peptides274, crosslinked peptides275 and identify PTM cross-talk sites276. However, 

among these unique applications, special attention may be drawn to direct-infusion shotgun 

proteome analysis (DI-SPA), recently demonstrated by Meyer et al.277. Given the value in 

quantitative proteomic measurements, innovations that provide higher throughput, lower analysis 

time, and higher accuracy are of paramount importance. Meyer demonstrated that utilizing FAIMS 

filtering in combination with data independent acquisition (DIA) results in astonishingly high 

throughput, having acquired >45,000 quantitative measurements from 132 samples in ~4.4 hours. 

DI-SPA is sure to provide a framework for future high-throughput proteomics workflows, and was 

even recently adapted to PRM analyses278. 

While bottom-up proteomics applications occupy the largest swath of FAIMS-based -

omics investigations, there is growing interest in using FAIMS for larger protein fragments and 

intact proteins279, as well as metabolomics analyses280, 281. Though analysis of histone isoforms 

was repeatedly mentioned in the discussion of planar FAIMS for structural characterization, 

reinforcing the biological relevance and complexity of these biomolecules, FAIMS has also been 
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employed for discovery-based middle-down histone investigations. Utilizing multiple ion 

separation regimes, Garabedian et al.234 were able to identify methylated, trimethylated, acetylated 

and phosphorylated histone variants, while Shliaha et al.282 were able to confidently identify 

histone isoforms from mouse embryonic stem cells. Moving beyond these middle-down analyses, 

top-down and native mass spectrometry have also demonstrated improvements when FAIMS is 

incorporated. Fulcher et al.283 successfully employed FAIMS for top-down proteomic 

investigations of Alzheimer’s Disease brain tissue, while Griffiths et al.284 identified proteoforms 

from tissue samples using LESA-FAIMS. Gerbasi et al.285 reported increased proteoform 

identification through inclusion of FAIMS, while Fulcher et al.286 further illustrates this point in 

their utilization of FAIMS CV stepping. Circular FAIMS has also been used for native mass 

spectrometry analyses287, illustrating that FAIMS may be tailored for fragile ions where 

maintaining tertiary structure is paramount. Moving in the opposite direction, FAIMS is also 

increasingly employed for metabolomic investigations, aided largely by the capacity to sample 

airborne analytes and design miniaturization288. Traditional untargeted metabolomics studies have 

detailed the utility of FAIMS in separation and distinction of metabolite isomers289, screening 

potential biofluid biomarkers290, identifying airborne chemical constituents291 and comprehending 

differences in fecal microbes in response to disease292. These studies, however, are more akin to 

the numerous proteomics investigations listed above, as analytes of interest are obtained from 

solution or tissue. More interestingly, volatile organic solvents293 (VOCs) are easily sampled from 

above urine294-298 and stool299 for the detection of irritable bowel syndrome (IBS)294, 299, diagnosis 

of diabetes297, and identification of cancer295, 296, 298. These recent applications, covering a broad 

spectrum of biomolecular species, serve to highlight the applicability and utility of modern FAIMS 

implementations and commercial offerings. 
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Considerations and Future Directions 

While the analytical advantages of incorporating FAIMS to an existing workflow have 

been extensively described, this technique is not without drawbacks or topical considerations. 

Namely, when it comes to structural investigations of biomolecules, FAIMS offers no ability to 

measure collisional cross section (CCS) directly4, 42. This is in stark contrast to other ion mobility 

regimes that place this ability within reach. As such, the correct assignment of ion conformations 

in FAIMS analyses hinges on the availability and purity of biomolecule standards, which may limit 

the breadth of discovery sought in high-throughput experiments. In addition, FAIMS devices 

display a physical limitation of only being able to operate at a single CV at a given time. As such, 

FAIMS is ultimately a scanning technique, allowing only compatible ions to travel safely between 

the electrodes and is therefore significantly lower in throughput than other IM modalities. These 

limitations being well-known, future FAIMS innovations are likely to center on achieving faster 

ion separations without sacrificing sensitivity or resolution, and incorporation of rapid electric 

field switching that would allow broader collection of ions to be scanned within a unit time. 

Further, given the power and utility of instrument APIs, one can imagine a scenario in which 

FAIMS’ voltages are controlled in a similar fashion, providing a means of targeted ion selection 

and intelligent precursor isolation. Nevertheless, modern FAIMS is a powerful analytical 

technique, providing significant improvements in sample coverage and high sensitivity across -

omics investigations. This IM paradigm, relatively nascent within the field, is sure to experience 

significant growth and higher utilization in coming years. 
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Conclusion 

Modern ion mobility mass spectrometry instrumentation grants unparalleled access in 

metabolomics, proteomics, and structural investigations. As biological mass spectrometry 

continues to grow in ubiquity and access to high-end instrumentation becomes more achievable, 

utilization and expansion of IM-based methodologies will grow in capability and efficacy. While 

it is likely the next decade of instrumentation will present new, improved capabilities that far 

outpace current capacity, today’s high end ion mobility instrumentation may be remembered as an 

inflection point in the history of IMS technology. Having described relevant innovations, 

meaningful applications, and potential limitations and drawbacks of four high-end IM instrument 

paradigms, this review may serve as a reference point for novice and established researchers 

seeking to begin or further their ion mobility-based biomolecular investigations. 
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Tables 

Instrument 

platform 

Agilent 6560 IM-

QTOF 

Waters Select 

Series Cyclic 

IMS 

Bruker 

TimsTof 

Thermo 

FAIMS Pro 

IMS type DTIMS CIMS TIMS FAIMS 

CCS 

measurement 

Direct; more 

accurate 

Need calibration 

against known 

CCS 

Need 

calibration 

against known 

CCS 

None 

IM Resolving 

power 
100-200 

60-80 for single 

pass; >750 at 

100+ passes 

>300 

< 30; 

substantial 

increases in 

planar FAIMS.  

Advantages 

Allows for first-

principles 

measurement of 

CCS 

Can achieve 

super high IM 

resolving power 

and is capable of 

tandem IMS  

Very high duty 

cycle, built-in 

tools augment 

MS2 coverage 

Easy to 

interface with 

MS platforms 

Drawbacks 

Low duty cycle 

requires 

multiplexing 

Reduced 

transmission and 

low duty cycle 

with multiple 

passes 

Analysis of the 

collected data 

can be complex 

Cannot obtain 

CCS value 

Recommended 

Applications 

Accurate CCS 

measurement 

Small molecule 

mixtures with 

small CCS 

difference; IM 

separation of 

fragmentation 

ions. 

Discovery-

based omics; 

complex 

biological 

mixtures. 

Biological 

screening, 

discovery-

based or 

targeted omics 

Table 9.1 General information on each IMS archetype and their advantages and 

drawbacks. 
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Model 
Lauch 

Year 
IMS Advantages Drawbacks 

Select Series 

Cyclic IMS 
2019 

Cyclic IMS 

technology. 

Resolving 

power: 

60-80 for 

single pass; 

>750 for 

100+ passes 

High ion mobility resolving 

power; suitable for 

structural investigations of 

small molecules and 

protein complexes 

Reduced transmission 

and “wrap-up” effect 

due to multiple passes 

in cIM devices hinder 

omics-related 

applications 

Synapt XS 2019 
T-Wave IMS 

technology. 

Resolving 

power ~25 

Enhanced sensitivity and 

resolution compared to 

previous Synapt Model; 

suitable for omics-related 

research Limited ion mobility 

resolving power 

MALDI 

Synapt G2-Si 

HDMS 

2013 

Versatile MS platform for 

ESI and MALDI; suitable 

for mass spectrometry 

imaging 

Table 9.2 Comparison of three different IM-MS system from the Waters company. 
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Figures 

 

Figure 9.1 Timeline of analytical innovations and fundamental reports that gave rise to the 

current iterations of high-end ion mobility spectrometry instrumentation. 

Though current high-end ion mobility instrumentation has seemed to arrive instantaneously and in 

proximity, these technical advances are the result of decades on incremental improvements. 

Renderings of current IM instrumentation are placed next to the milestones responsible for their 

eventual development. 
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Figure 9.2 Agilent 6560 IM-QTOF. 

(A) A representative schematic of the Agilent 6560 instrumentation. (B) The common RPLC-IMS-

MS workflow to characterize isomers. (C) Isobaric and isomeric separation can be achieved by the 

IMS distribution. (D) Drift time aligned MS/MS fragments of isobars can further validate the 

structural differences. Reprinted from Dodds et al.44 with permission. 

 



427 

 

 

Figure 9.3 Waters Cyclic Traveling Wave Ion Mobility. 

(A) A schematic of the Waters cyclic IMS instrumentation. (B) The cyclic IMS cell. (C) Pre- and 

post-store devices enable the multifunction of cyclic IMS. Reprinted from Eldrid, et al.300 with 

permission. Copyright 2019 American Chemical Society. 
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Figure 9.4 Bruker Trapped Ion Mobility. 

A schematic representation of the position and time-dependent potential inside the TIMS cell. By 

establishing a rising edge in the accumulation and trapping steps, ions that receive more energy 

from the carrier gas are physically pushed further along the cell, and this separation in space during 

the trapping step allows for sequential elution once the potential gradient is lowered.  Reprinted 

from Ridgeway et al.142 with permission. 
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Figure 9.5 High Field Asymmetric-Waveform Ion Mobility 

A) Schematic of planar FAIMS depicting typical ion movement in response to a given 

asymmetrical dispersion voltage (DV); a compensation voltage applied to the opposing electrode 

allows for detection of ions with compatible electrophoretic character. B) Schematic of cylindrical 

FAIMS, the implementation available in the Thermo FAIMS Pro. Multiple unique CVs may be 

applied in each run to improve sample coverage and profiling depth. 
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Mass spectrometry (MS)-based proteomic analyses are likely to be a critical component of 

biomolecular analyses for decades to come. The ample development and technological advanced 

validated in this field of study have provided diversity in approach, allowing users to tailor 

analytical workflows to a given application or underlying pursuit. Nevertheless, there are some 

components of analytical workflows that remain nearly ubiquitous across proteomic analyses, 

meaning that the observable proteome and the information derived within is beholden to and biased 

towards the efficiency of these singular components. 

Principally, the use of reversed-phase liquid chromatography (RPLC) is the predominant 

mode of biomolecular separation. While the retention capacity, achievable resolution, and various 

technological improvements are noted and the performance is not in question, we do present 

evidence that reveals RPLC separations only sample a portion of the proteome. As shown, RPLC 

separations are dependent on the relative hydrophobicity of peptide analytes, biasing towards 

retention of longer, less polar species that ionize well and are easily identified via MS. However, 

the work in chapters 2 and 5 demonstrate there is a significant amount of biomolecular information 

left untouched or undiscovered when utilizing RPLC. Without any additional treatment or 

preparation of samples, the addition of PGC separations increased peptide and protein 

identifications by as much as 43% and 24%, respectively. Not only this, we demonstrate that the 

additional proteins identified are not any more or less abundant than those identified in RPLC, 

indicating this biomolecular information is easily within reach, but is often missed. The value of 

more comprehensive protein profiles goes without stating, but we also demonstrate how the 

increased peptide identifications obtained through PGC analyses can substantially impact protein-

level abundance estimations. These realities known, we also illuminate how modern proteomics 
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data processing pipelines are less efficient at identifying peptides from PGC separations, due 

largely to the inability to correctly predict peptide retention times. 

Considering this, we present two logical next steps for this work. First, perform an 

investigation that validates the inability of processing software to identify peptides from PGC 

separations and present a potential remedy. As we evaluate the shortcomings of some software in 

Chapter 5, and we present a strategy for retention time calibration in Chapter 8, we propose 

combining these two sets of knowledge may be a facile strategy to improve PGC-based analyses. 

Software such as DIA-NN and Prosit allow for the creation of in silico spectral libraries that 

contain theoretical fragment ion intensities and retention times. Using the capsule network 

machine learning approach in Chapter 8, we may collect a set of empirical peptide identifications, 

train a model that correctly predicts PGC-specific retention time, and use this trained model to 

recalibrate the in silico libraries used for identification. We anticipate this will result in higher 

peptide identifications for all analyses, more accurate protein quantitation, and the ability to 

perform biological discovery to a modest scale. Secondly, we propose the development of 

informatic approaches to correctly account for PGC retention times and eliminate the shortcomings 

associated with poor data processing. Doing so will entail collecting numerous PGC-based 

datasets, analyzing the output spectra, and developing methods to correctly predict spectral 

information and retention time. Not only could this approach be used alone, it could be 

incorporated to one of the many academic-driven data processing pipelines (e.g., FragPipe) that 

will distribute the information to a broader audience. 

In addition to these proteomic revelations, we also detail the use of PGC separations for 

glycoproteomic analyses. We detail in Chapter 2 the utility of PGC in untargeted investigations, 

highlighting the analytical advantages but suggesting some potential drawbacks of elevated 
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column temperatures. We investigated these drawbacks in Chapter 3, detailing the differential 

impact of high column temperatures on various glycopeptide classes. Taking guidance from these 

chapters, we propose future work may seek to leverage the isomeric resolution of glycopeptides to 

quantify the abundance of various glycopeptide isomers in model organisms. As we have shown 

the ability to distinguish isomers and have discussed quantitative approaches in Chapter 4, we 

believe mass defect labeling may be a suitable approach to increase the throughput of 

glycoproteomic analyses, as well as provide the capacity to ascertain quantitative differences in 

isomeric composition. Our investigations have relied on the availability of complex prostate cancer 

(PCa) cell lines but have not yet sought to quantify glycoproteomic differences across phenotypes. 

Doing so would not only further validate the use of PGC-based glycoproteomics, but would also 

provide the first reports of how glycan composition changes in accordance with PCa progression. 

Finally, Chapters 7 and 8 have explored the utility of data-independent acquisition (DIA)-

MS for biological discovery. These two studies, quantifying the proteomic alterations seen in PCa 

and Alzheimer’s Disease, respectively, were successful in provide broad proteomic coverage and 

detailing numerous pertinent dysregulation events specific to a given disease. The individual 

discoveries may be read above, but the overarching conclusion of these works is that DIA analyses 

present unparalleled access to the proteome, substantially outpacing traditional DDA analyses. 

Based on the promise and room for growth in PCa investigation, we propose future work should 

seek to expand the analyses presented above (see Chapter 7) by expanding the breadth of 

phenotypes analyzed and through utilization of nascent DIA technology such as that offered in 

trapped ion mobility instrumentation (see Chapter 8). We are confident that utilization of this 

advanced technology, in tandem with the progress PCa cell model presented above, will present 

seminal reports into the biomolecular alterations specific to PCa progression. 
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Taken together, the alternative approaches to chromatographic separation and mass 

spectrometry acquisition presented here represent critical components in advancing proteomic 

analyses. Continual development in preparative, analytical, and informatic workflows are critical 

to propelling biomolecular investigations towards providing meaningful, actionable biological 

insight. These developments, regardless their reported success, will always be tempered against 

the known efficacy of the analytical techniques used for validation. The work presented here 

highlights the importance of including complementary and orthogonal separations to improve 

protein and peptide recognition in a variety of analyses. As well, we highlight the value of utilizing 

new, advanced data acquisition strategies that increase the breadth proteomic information achieved 

in a given experiment. Our work has demonstrated that consideration and utilization of these 

alternatives substantially enhance biomolecular investigations, alleviating in some part the 

obstacles hindering comprehensive proteomic profiling. 


