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Abstract

Particle-level simulations were performed to investigate the rheological properties of
magnetorheological suspensions containing a mixture of magnetizable and nonmag-
netizable spheres. We demonstrate that nonmagnetizable spheres cause the yield
stress to increase in monolayers and three-dimensional simulations, as is observed in
three-dimensional experiments. We examine the role of nonmagnetizable spheres in
the suspension structure for monolayer and three-dimensional suspensions. Structure
measures examined included the fluctuations in volume fraction, the pair distribu-
tion functions, and the eigenvalue ratio of the mass moment tensor. Nonmagnetiz-
able spheres cause structural changes to monolayers that differ from those in three-
dimensional suspensions. However, all structural changes are small, especially when
compared to the structural changes observed in bidsiperse suspensions. Therefore,
the small structure changes caused by the addition of nonmagnetizable particles do
not appear to cause the increase in yield stress.

Large amplitude oscillatory shear reveals that nonmagnetizable spheres increase
the suspension stiffness; the transition to nonlinear rheological properties remains
unaffected suggesting that the nonmagnetizable spheres do not alter the stability of

the clusters of magnetizable spheres. Snapshots reveal that nonmagnetizable spheres



viii
participate in stress transfer via repulsive-force clusters in a mechanism similar to
jamming. The partial stresses, number of repulsive-force clusters, and transient rhe-
ological behavior further support that nonmagnetizable spheres directly enhance the
stress via repulsive-force clusters. The repulsive-force clusters contain both mag-
netizable and nonmagnetizable spheres, which likely explains the observation that
nonmagnetizable spheres enhance the field-induced stress, even though they are not

magnetizable.
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Chapter 1

Introduction

Magnetorheological (MR) fluids are suspensions of magnetizable particles in a non-
magnetizable, viscous, continuous phase. Applying a magnetic field with a flux den-
sity on the order of 1 Tesla causes the stress at low deformation rates to increase by
orders of magnitude. The field-induced stress increase is both fast and reversible. The
magnetic field induces magnetostatic particle interactions which cause the particles
to aggregate, changing the suspension from a fluid-like state to a solid-like state, with
a magnetic field-dependent yield stress [Ginder (1996); Jolly et al. (1998)]. This dra-
matic field-induced change in rheological properties is often called the MR effect. The
tunable rheological properties make MR suspensions useful in numerous applications,
including semiactive shock absorbers, clutches, actuators, servo valves, and precision
polishing fluids [Jolly et al. (1998); Carlson and J.L. Sproston (2000); Klingenberg
(2001)].

It is desirable to obtain the largest possible difference in rheological properties

when the magnetic field is on (the “on-state”) and when the magnetic field is off (the



“off-state”). A large difference between off-state and on-state rheological properties
allows for a large range of dynamic control, smaller devices and fluid volumes, and
therefore reduced costs. Ulicny et al. (2010) showed experimentally that the field-
induced yield stress of concentrated MR suspensions can be increased significantly
by adding nonmagnetizable particles to the suspension. The yield stress of an MR
suspension (at magnetic saturation) with an iron particle volume fraction of 0.30
was increased by 50% by adding glass beads at volume fraction of 0.15. Further-
more, it is possible to increase the field-induced yield stress by replacing a fraction of
the magnetizable particles with an equivalent volume of nonmagnetizable particles.
Similar magnitudes of yield stress enhancement were observed for a variety of differ-
ent types of nonmagnetizable particles [Klingenberg and J.C. Ulicny (2011)]. This
phenomenon has also been observed in simulations of MR suspensions composed of
mixtures of magnetizable and nonmagnetizable spheres [Ulicny et al. (2010); Klin-
genberg and J.C. Ulicny (2011)]. An understanding of the mechanisms that produce
this phenomenon is still lacking.

Previous authors have shown that altering the microstructure of an MR suspen-
sion can lead to an enhancement in the yield stress of an MR suspension [Ulicny
et al. (2005b); Kittipoomwong et al. (2008) |. In Chapter 3, we examine the role
that nonmagnetizable spheres play in altering the structure of MR suspensions. One
microstructural change that leads to a stress increase is the transient stress increase,
which is attributed to the formation of lamellae, or sheet-like structures, in the plane
of shear. Lamellae formation is a microstructural change that is exclusive to three-
dimensional suspensions. When a sufficiently large magnetic or electric field is applied

to a sheared MR or electrorheological (ER) suspension, respectively, the shear stress



first increases rapidly, and then continues to increase much more slowly [Vieira et al.
(2000); Ulicny et al. (2005b)]. The slow transient increase in stress is caused by
the formation of lamellar structures [Henley and F.E. Filisko (1999); Tang, X. et al.
(2000); Volkova et al. (1999); Vieira et al. (2000); Ulicny et al. (2005b)]. Lamellae
formation with transient stress increases has also been observed in particle-level sim-
ulations of flowing MR and ER suspensions [Martin (2000); Kittipoomwong (2007)].
We show in Figs. 3.2-3.4 that nonmagnetizable spheres cause the yield stress to in-
crease in monolayer suspensions, contrary to previous studies [Ulicny et al. (2010)].
Since the enhancement occurs in both monolayer and three-dimensional systems, the
mechanism for enhancement cannot be attributed to formation of lamellar structures.

Also in Chapter 3, we explore if nonmagnetizable spheres cause the MR suspen-
sions to become more chain-like. Foister (1997) observed that MR suspensions with
bimodal particle size distribution possessed a larger field-induced stress than that
of monomodal suspensions at the same volume fraction. Similar experimental re-
sults were reported by Weiss et al. (2000) and Ulicny et al. (2004). Particle-level
simulations of MR suspensions by Kittipoomwong et al. (2005) also produced larger
field-induced stresses for bidisperse suspensions than those obtained for monodisperse
suspensions at the same volume fraction. Kittipoomwong et al. (2005) probed the
structure of the suspensions to determine the mechanisms by which smaller parti-
cles cause the bidisperse suspensions to have a larger yield stress than monodisperse
suspensions. They measured the microstructure by examining fluctuations in the vol-
ume fraction, snapshots, the pair distribution function, and the eigenvalue ratio of
the mass moment tensor. Kittipoomwong et al. (2005) showed that bidisperse sus-

pensions formed more chain-like structures; monodisperse suspensions formed more



globular structures. The increase in number of chain-like structures of bidisperse
suspensions causes the larger field induced yield stress. We employed these same
measures to determine whether nonmagnetizable are altering the microstructure of
the suspension, shown in Figs. 3.5-3.17. Nonmagnetizable spheres affect the struc-
ture of monolayers and three-dimensional suspensions in different ways. However,
all structural changes caused by nonmagnetizable spheres are small, especially when
compared to the changes observed in bidisperse suspensions.

In Chapter 3, we show that nonmagnetizable spheres cause only minor changes to
the suspension structure. In Chapter 4, we examine the effect of short-range repulsive
forces in determining the stress in the suspension. We begin Chapter 4 by examin-
ing dynamical measurements of both monolayer and three-dimensional suspensions.
Dynamic measurements are common tools for probing the mechanisms of rheological
behavior for complex fluids. We use large amplitude oscillatory shear (LAOS) to
investigate the mechanisms which cause the yield stress increase for MR fluids that
contain nonmagnetizable particles. In Figs. 4.1 - 4.4, we show that nonmagnetiz-
able spheres increase the plateau modulus but do not alter the onset of nonlinearity.
This indicates that nonmagnetizable spheres increase the stiffness of the field induced
structures but do not alter the stability.

To explore the increased suspension stiffness, we create snapshots that visualize
the spheres and the different attractive and repulsive pair-forces in Figs. 4.5-4.7. We
show that the nonmagnetizable spheres produce stresses by participating in repulsive-
force chains. These force chains are roughly aligned with the compression axis of the
simple shear flow, and contain nonmagnetizable as well as magnetizable spheres. The

ability of the nonmagnetizable spheres to transmit stress through purely repulsive



forces is similar to that found in jammed, hard-sphere suspensions [Cates et al. (1998),
Farr et al. (1997)]. We illustrate the repulsive force chain formation with snapshots
of sheared suspensions, characterize the resulting contribution to the shear stress by
examining particle stresses and repulsive force statistics in Figs.4.8-4.19, and draw
an analogy to previously reported jamming phenomena by considering the stress vs
strain behavior in Figs. 4.20-4.21.

Chapter 5 explores the advantages of using parallel computing to simulate MR flu-
ids. In 2007, the graphics card manufacturer NVIDIA began enabling their graphics
cards the capability to perform scientific calculations. NVIDIA developed a program-
ming language, based off C, known as Compute Unified Device Architecture (CUDA).
Assuming a working knowledge of C, learning the CUDA syntax is straightforward.
However, the challenge behind developing CUDA programs is learning how to develop
algorithms that run in parallel instead of serial. The purpose of Chapter 5 is to help
future students develop a basic understanding of the thought process behind parallel
algorithm development.

In Section 5.2, two basic algorithms are described in both serial and parallel: a
vector addition and dot product. In Section 5.3, the thought process behind the
development of the particle-level simulations in CUDA is explored. The majority of
the data generated for this document was done so using parallel algorithms in CUDA.
A direct result of running simulations in CUDA is that the systems studied were both
bigger and faster than previous studies [Ulicny et al. (2010)]. In Fig. 5.12, the speedup
is presented as a function of number of spheres in the simulation. Figure 5.12 shows
that the speedup over the serial simulations increases as more spheres are added to

the suspension. In Fig. 5.13, the stress is plotted as a function of monolayer area.



Figure (5.13) shows that system size can have an effect on the physical properties of
the suspension; therefore, bigger systems should be considered. Section 5.4 considers
how hydrodynamic interactions might be introduced to the particle-level simulations
presented in Section 5.3.

In Chapter 6, a brief overview of hydrodynamic interactions is presented. Exper-
imental work has shown that coating magnetizable spheres with a nonmagnetizable
coating can lower the viscosity of MR fluids when no field is applied [Ulicny et al.
(2005a)] When MR fluids are not under the influence of a magnetic field, or the field
is low, the fluid is dominated by van der Waals and hydrodynamic interactions. The
purpose of Chapter 6 is to serve as a starting point for future students who simulate
MR fluids by including hydrodynamic interactions.

Chapter 7 discusses potential avenues of future work in this field. At present,
computational limitations have prevented a deeper understanding of MR fluids in the
low-field regime. However, with the increased power of parallel computing available
from graphics cards, a parallel algorithm which solves for the motion of MR fluids

when the magnetic field is low can be implemented.



Chapter 2

Background

2.1 What are Magnetorheological Fluids?

Magnetorheological (MR) fluids consist of magnetizable particles suspended in a vis-
cous continuous phase. Applying a magnetic field causes an MR fluid to undergo
rheological changes. The ability to alter fluid properties in real time allows for a
broad range of new and exciting devices that offer several advantages over their con-
ventional counterparts. For example, General Motors has developed a shock absorber
which uses an MR fluid to allow the driver and passengers to adjust the ride of the car
[Corbett and Visnic (2000); Carlson and J.L. Sproston (2000); Klingenberg (2001)].
Another application currently being explored is an artificial leg which uses an MR
fluid to better emulate the motion of the human knee. The MR knee offers amputees
the ability to regain a range of motion not possible with conventional prosthetics
[Flowers (1973); Grimes et al. (1977); James et al. (1990); Carlson and J.L. Sproston
(2000); Herr and Wilkenfeld (2003); Johansson et al. (2005)]. Other devices include
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MR fluid-based fan clutches which can help reduce fuel consumption [Rabinow (1948);
Sakai (1988); Ginder (1996); Klingenberg (2001)]. By better understanding these flu-
ids, it is possible to improve upon the devices currently in existence as well as creating
devices not yet in existence.

In most cases, the magnetizable particles are made of a ferromagnetic mate-
rial, although other magnetic materials do exist. The suspending fluid is usually
a hydrocarbon-based liquid. When a magnetic field is applied, the fluid experiences a
rapid increase in the apparent viscosity. Also, when the magnetic field is applied, the
fluid develops a yield stress [Ginder (1996); Jolly et al. (1998); Ulicny et al. (2005b);
Kittipoomwong et al. (2005)]. By controlling the magnetic field it is possible to
control the rheological properties of the suspension.

There has been much research devoted to the case when the magnetic field is
applied. One observation is that of a critical magnetic field. When the magnetic
field is set to a value below the critical magnetic field, the suspension undergoes a
rapid initial increase in apparent viscosity, but after the initial rapid increase, the
viscosity remains at a constant value. However, when the magnetic field is above
the critical magnetic field strength, after the initial jump in apparent viscosity, the
suspension continues to undergo a slow, transient increase in the apparent viscosity
[Ulicny et al. (2005b); Kittipoomwong et al. (2008)]. One possible source for this
increase in apparent viscosity is due to the presence of colloidal forces and formation
of lamellae [Ulicny et al. (2005b); Kittipoomwong et al. (2008)].

For commercial applications, it is desirable to obtain a large field-induced change
in stresses [Klingenberg (2001)]. Another way of quantifying the change between the

on-state and off-state stresses is by defining a turn-up ratio. The turn-up ratio is
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the ratio of the shear stress at any particular given magnetic flux density divided by
the shear stress when the magnetic flux density is zero (the off-state) [Ulicny et al.
(2005a)]. There are two ways to increase the turn-up ratio: increase the on-state
yield stress or decrease the off-state apparent viscosity. Using a higher concentration
of magnetizable particles is one method for maximizing the on-state shear stress,
but it also leads to an increase in price because of the high cost of the carbonyl
iron used in most formulations [Lemaire et al. (1995); Klingenberg (2001); Genc and
Phulé (2002); Kittipoomwong et al. (2005)]. Furthermore, adding more particles will
also lead to an increase in apparent viscosity, which can be problematic in some
applications [Klingenberg (2001); Kittipoomwong et al. (2005)]. Therefore, the turn-
up ratio decreases as the concentration of magnetic particles suspended in the fluid
is increased. The on-state yield stress and the off-state apparent viscosity are thus

coupled [Ulicny et al. (2005a)].

2.2 Increasing Yield Stress by Addition of Non-
magnetizable Particles

One way to increase the high field yield stress is by adding nonmagnetizable spheres
to the suspension [Ulicny et al. (2010)]. Experiments have shown that adding non-
magnetizable spheres to an MR fluid increases the high-field yield stress [Ulicny et al.
(2010), Ulicny et al. (2013)]. Figure 2.1 is a plot of yield stress as a function of
iron concentration for several experiments performed by Ulicny et al. (2010). Open
circles represent suspensions containing bimodally distributed iron spheres. Open

squares represent suspensions containing a mixture of glass spheres and bimodally
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Figure 2.1: Yield stress at magnetic saturation as a function of iron concentration. Open circles represent bimodally

distributed suspensions containing only iron spheres.

Open squares represent a mixture of glass and bimodally

distributed iron particles such that the total volume fraction is ¢ = ¢ps + ¢ = 0.45 [Ulicny et al. (2010)].

distributed iron spheres such that ¢y = ¢ + ¢ = 0.45. For an iron concentra-

tion of 30%, adding a 15% concentration of glass creates a suspension with a ~ 50%

increase in yield stress.

Figure 2.2 shows data from eight different experiments [Ulicny et al. (2013)]. In

each experiment, the volume fraction of magnetizable particles is fixed at ¢, = 0.30.

The volume fraction of nonmagnetizable particles is fixed at ¢ = 0.15. A different

nonmagnetizable sphere is considered in each of the eight experiments. Figure 2.2

reveals a & 50% increase in yield stress for all nonmagnetizable particles considered.

Therefore, the enhancement is independent of nonmagnetizable particle type.

The experimental results in Figs. 2.1 and 2.2 can be replicated via simulations,

shown in Fig. 2.3 [Ulicny et al. (2010)]. In Fig. 2.3, yield stress is plotted as a

function of magnetizable sphere volume fraction for three-dimensional suspensions.
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Figure 2.2: Yield stress at magnetic saturation for eight different experiments. In each experiment, a different
nonmagnetizable particle was mixed with iron particle. ¢pr = 0.30 and ¢ = 0.15 [Ulicny et al. (2013)].

Red squares represent a suspension containing only magnetizable spheres. Green
circles represent a suspension containing a mixture of monodisperse magnetizable
and nonmagnetizable spheres such that ¢r = ¢y + ¢y = 0.45. For the interval
0.25 < ¢ < 0.40, nonmagnetizable spheres cause the suspensions of mixtures to
have a larger yield stress than the suspensions containing only magnetizable spheres.
By using simulations, systems and situations which cannot be explored through ex-
periment can be pursued and understood. In Chapters 3 and 4, we will explore the
underlying mechanism behind the yield stress enhancement due to nonmagnetizable
particles. We will show that the nonmagnetizable particles induce a jamming-like

phenomenon which causes the yield stress to increase.
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Figure 2.3: Yield stress at magnetic saturation as a function of magnetizable sphere concentration. Open circles

represent monodisperse suspensions containing only magnetizable spheres. Open squares represent a mixture of glass

and bimodally distributed iron particles such that the total volume fraction is ¢ = ¢pr + ¢ = 0.45 [Ulicny et al.
(2010)].

2.3 Decrease of Off-State Viscosity with Coated
Particles

Another proposed method for increasing the turn-up ratio is adding stearate and thio-
phosphates to the suspension [Ulicny et al. (2005a)]. These treatments become active
on the surface of each particle [Klingenberg et al. (2010)]. By changing the surface
chemistry of each particle, it appears that there is a drag reduction on the particles in
the off-state while leaving the on-state properties unchanged. Figure 2.4 is a plot of
stress as a function of shear rate for two types of suspensions. Open circles represent
a suspension in which magnetizable particles have not been coated with stearate and
thiophosphate. Open squares represent a suspension in which magnetizable particles

have been coated with stearate and thiophosphate. The suspension that is untreated
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Figure 2.4: Shear stress vs. strain rate for particles treated with the stearate and thiophosphate coating and those
without the coating in the off-state [Klingenberg et al. (2010)].

has a much higher shear stress than the suspension that has been treated with the
stearate and thiophosphate compound. The coatings cause the interparticle distances
to be larger, thereby decreasing the van der Waals attractions. The surface treatment
described here has a similar effect on the rheological properties that has been observed
by other surface treatments [Fang and H.J. Choi (2008); Aktary et al. (2001); Cho,
M.S., S.T. Lim, I.B. Jang, H.J. Choi, M.S. Jhon (2004); Choi et al. (2005)]. This
drag reduction leads to improved durability for the fluid. The surface coatings might

also reduce the oxidation of the particles [Ulicny et al. (2005a); Ulicny et al. (2007)].

In order to help better understand these micro-scale phenomena, it is important
to be able simulate the fluids on the micro-scale. To simulate on the micro scale,
it is important to know which forces act on each particle as it moves through the

fluid. In the high-field limit, only magnetostatic forces, short-range repulsive forces,
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and Stokes’ drag are considered to act on the sphere as it moves through the fluid.
Stokes’ drag is given by Firae = 6mpa, where 1 is the viscosity of the surrounding fluid,
and a is the radius of the particle. In the high-field limit, the magnetostatic forces
are considered to be much larger than the hydrodynamic interactions. Therefore, the
free-draining limit can be used for these simulations. However, in the low-field limit,
the magnetostatic forces do not dominate, and the hydrodynamic interactions must
be included for an accurate simulation. To better understand what is happening on
the macroscopic level in the low-field limit, it is important to understand what is
happening in the regime where hydrodynamic interactions become important.

Ball and J.R. Melrose (1997) give a simulation technique for including hydrody-
namic interactions in concentrated suspensions. Based on the Stokesian Dynamics
(SD) techniques developed by Brady and G. Bossis (1988), Ball and J.R. Melrose
(1997) note that in concentrated suspensions, the near-field lubrications interactions
dominate the equations of motion. Therefore, far-field hydrodynamic interactions
can be neglected. While this provides an important simplification to the traditional
SD, the simulations are still very slow. Solving for the motion of the spheres re-
quires solving a system of equations 6N x 6N [Ball and J.R. Melrose (1997)]. Parallel
computing offers a potential solution to improving the computational cost of these
simulations. More work is needed in this area to better understand MR fluids in the

low-field regime.
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Chapter 3

Effect of Nonmagnetizable Spheres
on the Structure of

Magnetorheological Fluids

3.1 Introduction

Magnetorheological (MR) fluids are suspensions of magnetizable particles in a non-
magnetizable, viscous, continuous phase. Applying a magnetic field with a flux den-
sity on the order of 1 Tesla causes the stress at low deformation rates to increase by
orders of magnitude. The field-induced stress increase is both fast and reversible. The
magnetic field induces magnetostatic particle interactions which cause the particles
to aggregate, changing the suspension from a fluid-like state to a solid-like state, with
a magnetic field-dependent yield stress [Ginder (1996); Jolly et al. (1998)]. This dra-

matic field-induced change in rheological properties is often called the MR effect. The
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tunable rheological properties make MR suspensions useful in numerous applications,
including semiactive shock absorbers, clutches, actuators, servo valves, and precision
polishing fluids [Jolly et al. (1998); Carlson and J.L. Sproston (2000); Klingenberg
(2001)].

It is desirable to obtain the largest possible difference in rheological properties
when the magnetic field is on (the “on-state”) and when the magnetic field is off (the
“off-state”). A large difference between off-state and on-state rheological properties
allows for a large range of dynamic control, smaller devices and fluid volumes, and
therefore reduced costs. Ulicny et al. (2010) showed experimentally that the field-
induced yield stress of concentrated MR suspensions can be increased significantly
by adding nonmagnetizable particles to the suspension. The yield stress of an MR
suspension (at magnetic saturation) with an iron particle volume fraction of 0.30
was increased by 50% by adding glass beads at volume fraction of 0.15. Further-
more, it is possible to increase the field-induced yield stress by replacing a fraction of
the magnetizable particles with an equivalent volume of nonmagnetizable particles.
Similar magnitudes of yield stress enhancement were observed for a variety of differ-
ent types of nonmagnetizable particles [Klingenberg and J.C. Ulicny (2011)]. This
phenomenon has also been observed in simulations of MR suspensions composed of
mixtures of magnetizable and nonmagnetizable spheres [Ulicny et al. (2010); Klin-
genberg and J.C. Ulicny (2011)]. An understanding of the mechanisms that produce
this phenomenon is still lacking.

Unexpected increases in the field-induced stress of MR suspensions have been
reported in experiments and simulations for other situations, which have been at-

tributed to significant changes in the suspension microstructure. One such situation
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is the transient stress increase attributed to the formation of lamellae, or sheet-like
structures, in the plane of shear. When a sufficiently large magnetic or electric field
is applied to a sheared MR or electrorheological (ER) suspension, respectively, the
shear stress first increases rapidly, and then continues to increase much more slowly
[Vieira et al. (2000); Ulicny et al. (2005b)]. The slow transient increase in stress is
caused by the formation of lamellar structures [Henley and F.E. Filisko (1999); Tang,
X. et al. (2000); Volkova et al. (1999); Vieira et al. (2000); Ulicny et al. (2005b)].
Lamellae formation with transient stress increases has also been observed in particle-
level simulations of flowing MR and ER suspensions [Martin (2000); Kittipoomwong
et al. (2008)].

Another unexpected field-induced stress increase was observed by Foister (1997),
who reported experiments in which an MR suspension with bimodal particle size
distribution possessed a larger field-induced stress than that of a monomodal sus-
pension at the same volume fraction. Similar experimental results were reported by
Weiss et al. (2000) and Ulicny et al. (2004). Particle-level simulations of MR suspen-
sions by Kittipoomwong et al. (2005) also produced larger field-induced stresses for
bidisperse suspensions than those obtained for monodisperse suspensions at the same
volume fraction. Kittipoomwong et al. (2005) probed the structure of the suspensions
to determine the mechanisms by which smaller particles cause the bidisperse suspen-
sions to have a larger yield stress than monodisperse suspensions. They examined the
volume fraction fluctuations, defined as (¢?) — (#)?, where ¢ is the volume fraction,
to assess the degree of heterogeneity of the different suspensions. The monodisperse
suspensions exhibited the largest volume fraction fluctuations which means that the

bidisperse suspensions were more homogeneous. Snapshots revealed that monodis-
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perse suspensions tended to contain fewer, more globular clusters, whereas the bidis-
perse suspensions contained a greater number of more chain-like clusters. The larger
number of clusters have less space between them, and thus smaller concentration fluc-
tuations. The presence of more chain-like structures were quantified by calculating
the pair distribution function as well as the components of the average mass moment
tensor of clusters—both measures revealed a more anisotropic (i.e., more chain-like)
structure for the bidisperse suspensions. It is thus apparent that more numerous
chain-like structures produce larger stresses than fewer globular clusters [Klingenberg
et al. (1991a); Kraynik et al. (1991); Gulley and R.T. Tao (1993); Anderson, R.A.
(1994)].

In this article, we examine structure measures similar to those employed by Kit-
tipoomwong et al. (2005) to determine if the dramatic rheological changes caused by
the presence of nonmagnetizable spheres can be associated with significant changes in
the microstructure, such as those described above. The model and simulation method
are presented in the following section. Following the simulation method, new yield
stress data are presented for simulations of both three-dimensional and monolayer
suspensions. The measures of microstructure examined reveal that nonmagnetizable
spheres only cause minor changes to the microstructure. This contrasts with the
dramatic changes in microstructure presented by Kittipoomwong et al. (2005) for
bidisperse suspensions. This suggests that the mechanisms by which nonmagnetiz-
able spheres significantly influence the rheology of MR suspensions do not require a

correspondingly significant change in the microstructure.
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3.2 Model

Magnetorheological suspensions are treated as collections of magnetizable and non-
magnetizable spheres (monodisperse, diameter o, magnetizable spheres with satura-
tion magnetization M) immersed in a nonmagnetizable, Newtonian, incompressible,
continuous phase (relative permeability p = 1, viscosity 7.), and subjected to a uni-
form magnetic field Hy = Hpe, [Klingenberg et al. (1991a); Kittipoomwong et al.
(2005)].

The motion of the spheres can be described by Newton’s equation of motion.

Neglecting the inertia of sphere 7 gives

Fi({r;}) =0 (3.1)

where F; ({7;}) is the net force on sphere i. The net force has three contributions:
the magnetostatic force, the short-range repulsive force, and the hydrodynamic force.
The magnetostatic force on sphere ¢ caused by sphere j is given by the point-dipole
expression

o
g .

4
F* =F ( ) [(3 cos® O — 1) e, + sin 20;;eq)| , (3.2)

Tij
where 7;; is the distance between sphere 7 and sphere j, and 6;; is the angle between
the line-of-centers and the applied magnetic field. The magnitude of the force, Fy, is

given by

37-(- 2 2 2 . . .
LupB Hio linear magnetization
Fy = { 16 0 , (3.3)

oo’ MZ  saturated magnetization

where 8 = (up—pie) / (pp+24tc), pp is the relative permeability of the particle material,
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Lte is the relative permeability of the continuous phase, and pg is the permeability of
free space. To mimic a hard-sphere interaction between spheres ¢ and j, a short-range

repulsive force on sphere i caused by sphere j is given by

F;" = —Fyexp|k (0 —1y) /o] ey, (3.4)

where k characterizes the range of the repulsive force; k = 100 for the results pre-
sented here. The spheres also experience a force due to hydrodynamic drag. Following
the work of Klingenberg et al. (1991a) and Kittipoomwong et al. (2005), the hydro-

dynamic drag is treated as Stokes’ drag

(]

FM = _3m.0 [

where U (r;) is the ambient fluid velocity evaluated at the particle center.
Equation 3.1 can be nondimensionalized using the following length, force, and

time scales:
_ 144n.

T
L, = F, = —poo?M?, . 3.6
g, 48 HoO s ,UOM52 ( )
These scales allow Eq. 3.1 to be written
dr%k al *,rep. *,wall ol *,mag. *,00

J#i J#i
where the asterisks denote dimensionless quantities.

The shear stress in the suspension is calculated by

1 N
Tor =~ 24 (3.8)
V* P )
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where F}; is the x component of the total nonhydrodynamic force acting on sphere

1.

3.3 Simulation Method

Magnetorheological suspensions were generated by randomly placing N neutrally
buoyant spheres in a volume of size L} X Ly x L7. The spheres were bounded by solid
surfaces at z* = £L}/2 and by periodic boundaries at v* = £L;/2 and y* = +L; /2.

The total volume fraction of spheres ¢r is

¢r = oum + On (3.9)

where ¢, is the volume fraction of magnetizable spheres, and ¢y is the volume frac-
tion of nonmagnetizable spheres. Ten different initial configurations were created for
each composition studied. The spheres in each configuration were randomly assigned
as either magnetizable or nonmagnetizable (subject to the constraint of the specified
values of ¢y, and ¢n). Monolayer simulations were generated by placing N spheres
in a cell LY x L% (y* = 0 for all spheres). The total area fraction of spheres is given
by ¢4 = ¢4, + ¢, where ¢4, and ¢4 are the area fractions of the magnetizable and
nonmagnetizable spheres, respectively.

Spheres within 0.05¢ of a bounding surface were considered stuck and assumed the
lateral velocity of the surface; particles sticking to solid surfaces has been observed
experimentally [Klingenberg and C.F. Zukoski (1990)]. Since the motion of each
sphere in the z direction is still governed by Eq. 3.7, stuck spheres can be removed

from the surface, and thus eventually move independently of the solid surface.
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The suspensions were sheared by moving the surface located z* = +L%/2 in the
positive x direction. The ambient velocity is thus U**(r) = 4*(z* + L /2)e,, where
4 is the dimensionless shear rate. Sphere trajectories were determined by numerically
integrating Eq. 3.7. Suspensions were sheared to a strain of v* = 5.0 at a strain
rate of 4* = 1073. The positions of the spheres were saved every strain interval of
0.05. The dynamic yield stress was calculated using the “relaxation” method. Saved
configurations were allowed to relax (with 4* = 0) to equilibrium. The average stress
that is calculated with Eq. 3.8 using the relaxed configurations is equated with the
dynamic yield stress. The dynamic yield stress is averaged over both configurations
and strain interval 1 <~ < 5. The dynamic yield stress calculated using this method
is equivalent to that obtained from simulations at successively smaller shear rates
followed by extrapolation to zero shear rate [Klingenberg et al. (1991a)].

The simulation cell size for three-dimensional simulations was L; = 10,L; =
5,L; = 5. For the largest volume fraction studied, ¢ = 0.45, the cell contained
215 spheres. The simulation cell size of the monolayer suspensions (y; = 0) was
L* = 30,L7 = 10. For the largest area fraction studied, ¢4 = 0.75, the system

contained 287 spheres.

3.4 Results and Discussion

3.4.1 Three-Dimensional Simulations

The dimensionless yield stress for three-dimensional simulations is plotted as a func-
tion of ¢y for various ¢, in Fig. 3.1. For ¢, < 0.20, the nonmagnetizable spheres

have no effect on the yield stress for the range of ¢ investigated. However, for values
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Figure 3.1: Dimensionless yield stress as a function of nonmagnetizable sphere volume fraction for three-dimensional
simulations for various magnetizable sphere volume fractions.

of ¢pr > 0.20, the yield stress increases as ¢y is increased. Figure 3.1 illustrates that
the yield stress can also be increased by replacing some magnetizable spheres with

nonmagnetizable spheres.

3.4.2 Monolayer Simulations

Ulicny et al. (2010) reported simulation results for mixtures of magnetizable and
nonmagnetizable spheres confined to monolayers. For a total area fraction of ¢4 =
0.63, the yield stress was independent of composition for the range of compositions
investigated (0.50 < ¢4, < 0.63). Their simulations were performed with relatively
small systems: L’ =15, L7 =5, and a total of only 60 spheres.

In contrast, we find that for larger monolayer systems (L} = 30, L = 10), the
presence of nonmagnetizable spheres produces larger yield stresses, as illustrated in

Figs. 3.2 and 3.3, where the dimensionless yield stress is plotted as a function of ¢4;.

23
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Figure 3.2: Dimensionless yield stress as a function of magnetizable sphere area fraction for monolayers with and
without nonmagnetizable spheres. For monolayers with nonmagnetizable spheres, the total area fraction is fixed at
¢ = 0.48.

In Fig. 3.2, the open squares represent results for monolayers containing only mag-
netizable spheres, and the open circles represent results for mixtures of magnetizable
and nonmagnetizable spheres with a total area fraction fixed at ¢7t = 0.48. Figure 3.3
shows similar results, but for mixtures with a total area fraction fixed at ¢4 = 0.75.

The results in Figs. 3.2 and 3.3 illustrate that the yield stress in monolayer
systems is larger for mixtures of magnetizable and nonmagnetizable spheres than it is
for systems containing only magnetizable spheres at the same value of ¢4, (> 0.10).
In Fig. 3.4, the yield stress is plotted as a function of ¢4 for various values of ¢4;.
Figures 3.2-3.4 also illustrate that the yield stress can be increased by replacing some
magnetizable spheres with nonmagnetizable spheres.

The fact that Ulicny et al. (2010) reported no yield stress enhancement caused by
adding nonmagnetizable spheres to monolayers, while we do observe an enhancement,

can only be attributed to the sizes of the systems simulated (the same model is used
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Figure 3.3: Dimensionless yield stress versus magnetizable sphere area fraction for multiple monolayer suspensions
for monolayers with and without nonmagnetizable spheres. For monolayers with nonmagnetizable spheres, the total
area fraction is fixed at d)? = 0.75.

in both studies)—apparently, the enhancement disappears when the system size is
too small. A mechanistic explanation of this phenomenon is currently lacking.

It is now apparent that enhancement of the yield stress caused by nonmagnetizable
spheres can be achieved in both three-dimensional and monolayer systems. This
implies that the underlying mechanism cannot be a phenomenon only available in
three-dimensional systems. Therefore, the mechanism of enhancement cannot be

related to the formation of lamellar structures.

3.4.3 Microstructure Changes

Kittipoomwong et al. (2005) observed that the enhancement of the yield stress ob-
tained for mixtures of large and small magnetizable spheres was associated with sig-

nificant changes in the microstructure. Here we examine the same structural measures
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Figure 3.4: Dimensionless yield stress versus the volume fraction of nonmagnetizable spheres for multiple monolayer
suspensions.

and the changes produced by the addition of nonmagnetizable spheres.

The fluctuation in the volume fraction of magnetizable spheres,

() — (omr)®, (3.10)

O

characterizes the degree of heterogeneity in the spatial distribution of magnetizable
spheres. To evaluate (¢3,) and (¢,r), the simulation cell was divided into cubes, each
of side length Lp (for the results presented here, Ly = 2.5). The volume fraction of
magnetizable spheres in each cube was calculated by determining the total volume of
magnetizable spheres and dividing by the cube volume, L. The averages (¢32,) and
(¢ar) were equated with the averages of ¢%, and ¢, over all cubes. In monolayers,
fluctuations in area fraction were considered. The fluctuations 0%, were averaged over

initial configurations and the strain interval 1 <~ <5.
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Figure 3.5: Fluctuation in volume fraction of magnetizable spheres as a function of the nonmagnetizable sphere
volume fraction for three dimensional systems.

For a well-dispersed system, ¢,; should be the same in all cubes, which gives
(¢3,) = (¢ar)? and 02, = 0. For a heterogeneous suspension, ¢y, will vary from one
cube to another, which gives 0%, > 0.

The fluctuation in the volume fraction of magnetizable spheres is plotted as a
function of ¢y for various ¢, in Fig. 3.5. For most values of ¢y, 03, increases as ¢y
is increased. While the increase in 0%, suggests that the distribution of magnetizable
spheres becomes more heterogeneous when nonmagnetizable spheres are added to
the suspension, the magnitude of the fluctuation is only 1072. This indicates that
the nonmagnetizable spheres have insignificant impact on the homogeneity of three-
dimensional systems.

The fluctuation in area fraction of magnetizable spheres in monolayers is plotted
as a function of ¢4 in Fig. 3.6 for different values of ¢4,. For ¢4 = 0, 02, decreases

slightly as ¢4, is increased. As ¢4 is increased, o2, also decreases. The suspension is
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Figure 3.6: Fluctuation in area fraction of magnetizable spheres as a function of the nonmagnetizable sphere area
fraction for monolayer systems.

most heterogeneous when nonmagnetizable spheres are absent in the suspension.

For both three-dimensional and monolayer systems, the fluctuation in the concen-
tration of magnetizable spheres is small. Furthermore, although both types of sus-
pensions exhibit an increase in yield stress when nonmagnetizable spheres are added,
the impact on the concentration fluctuation is opposite—nonmagnetizable spheres
increase o3, for the three-dimensional systems, and decrease o3, for the monolayer
systems. We therefore conclude that the mechanism of yield stress enhancement is
not associated with altering the degree of heterogeneity of the distribution of magne-
tizable spheres.

Kittipoomwong et al. (2005) discovered that the smaller spheres in bidisperse
systems induce the larger spheres to form more chain-like, anisotropic structures
than those formed in monodisperse suspensions. Changes in the degree of anisotropy

caused by adding the small spheres were evident in snapshots of the simulations, in

28
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Figure 3.7: (a) Snapshot of a simulation with qﬁf/[ = 0.40 and qb]’?, = 0.00. Green circles represent magnetizable

particles. (b) Snapshot of a simulation with d)f/[ = 0.40 and ¢>ﬁ = 0.35 with the nonmagnetizable particles omitted
for clarity.

the pair distribution function, and in the mass moment tensor.

Snapshots of monolayers containing magnetizable and nonmagnetizable spheres
are shown in Fig. 3.7. Figure 3.7a depicts a monolayer containing only magnetizable
spheres with area fraction ¢4, = 0.40. Figure 3.7b shows a monolayer mixture with
area fractions ¢4, = 0.40, ¢4 = 0.35; the nonmagnetizable spheres have been omitted
for clarity. The snapshots show that both systems are anisotropic and very similar.
These and other snapshots suggest that the degree of anisotropy is not significantly
altered by the addition of the nonmagnetizable spheres.

Next we consider the pair distribution functions. For a mixture of magnetizable
and nonmagnetizable spheres, different distribution functions can be defined. For
example, g™ (7) is the pair distribution function of magnetizable spheres given a
magnetizable sphere at the origin.

Pair distribution functions g™ (r) in the velocity-velocity gradient (xz) plane are
presented in Fig. 3.8 for three-dimensional suspensions with and without nonmagne-
tizable spheres. Figure 3.8(a) shows g™ (r) for a suspension of only magnetizable

spheres with ¢y, = 0.30. Figure 3.8(b) shows g™ (r) for a mixture with ¢, = 0.30
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Figure 3.8: (a) The pair distribution function g™ (r) for volume fractions ¢»; = 0.30 and ¢n = 0.00. (b) The
pair distribution function g™ (r) for volume fractions ¢p; = 0.30 and ¢n = 0.15
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and ¢ = 0.15. The two plots are quite similar, indicating that the presence of non-
magnetizable spheres does not qualitatively alter the microstructure of the magneti-
zable component. This is in stark contrast to the results reported by Kittipoomwong
et al. (2005), where the pair distribution of large spheres was qualitatively altered by
the addition of small spheres. In that case, the structure became more anisotropic,
with new peaks and long-range structure appearing along the z axis.

The differences between Figs. 3.8(a) and (b) are illustrated in Fig. 3.9 where
Ag(r) = gMM(r; ¢pr = 0.30,6n = 0.15) —gMM (r; 95 = 0.30, ¢ = 0) in the z2
plane is presented. This difference illustrates a negligible change in the pair probabil-
ity density near (z*,2*) = (0,41), suggesting that the nonmagnetizable spheres do
not cause an increase in the chain-like character of the microstructure. The decrease
in probability density near the points (z*, z*) = (£0.52, £0.75) and (0, £1.73) indi-
cate a decrease in the population of triangular lattice structures (aligned with the
flow direction). The magnitude of the decrease in g at the peaks is roughly 20% of
the magnitude when only magnetizable spheres are present.

Pair distribution functions for monolayer systems are presented in Figs. 3.10—
3.13. Figure 3.10(a) shows g™ (r) for a monolayer suspension of only magnetizable
spheres with ¢4, = 0.30. Figure 3.10(b) shows g™ (r) for a mixture with ¢4, = 0.30
and ¢% = 0.18. The two plots are similar, and indicate that the microstructure of
magnetizable spheres is very chain-like, with high probability densities near (z*, z*)
= (0,+£1) and (0,%2). The addition of the nonmagnetizable spheres enhances these
probability densities, and decreases the probability density at all positions away from

the 2z axis.

The difference Ag (r) = g™ (r; ¢4y = 0.30, ¢ = 0.18) — g™M (7 67}y = 0.30, 64 = 0)
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Figure 3.9: The pair distribution function difference g™ (r; ¢ppr = 0.30, pn = 0.15) — MM (r; s = 0.30, 6 =
0.00).
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Figure 3.10: (a) The pair distribution function g™ (r) for area fractions ¢f/[ = 0.30 and ¢1‘:‘, = 0.00 . (b) The
pair distribution function g™ (r) for area fractions qﬁf/f = 0.30; qﬁﬁ =0.18
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Figure 3.11: The pair distribution function difference g™ (r; ¢psr = 0.30, ¢n = 0.15) — gMM (r; pps = 0.30, 5 =
0.00).

in the xz plane is presented in Fig. 3.11. This difference, like that demonstrated in
Fig. 3.9, illustrates a negligible change in the pair probability density near (z*,z*)
= (0, 41), suggesting that the nonmagnetizable spheres do not cause the an increase
in the chain-like character of the microstructure in monolayers. Unlike the three-
dimensional simulation, a decrease in probability density near the points (z*, z*) =
(£0.52, £0.75) and (0,41.73) is absent.

Pair distribution functions for more concentrated monolayer systems are presented

in Fig. 3.12. Figure 3.12(a) shows ¢™* () for a monolayer suspension of only mag-
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netizable spheres with ¢4, = 0.40. Figure 3.12(b) shows g™ (r) for a mixture with
4 = 0.40 and ¢4 = 0.35. The difference Ag (r) = MM ('r; i = 0.40, o5 = 0.35) —
gMM (r; 3 = 0.40, p8 = 0) in the xz plane is presented in Fig. 3.13. For ¢4, = 0.40
and ¢4 = 0 (Fig. 3.12(a)), the microstructure exhibits chain-like character, with
peaks near (z*,z*) = (0,4£1) and (0,£2), as well as triangular lattice character,
with peaks near (z*,2*) = (£0.52,£0.75), (£1,0), and (0,£1.73). Addition of the
nonmagnetizable spheres increases the peak intensities near (z*,z*) = (0,£1) and
decreases the peak in the triangular lattice positions (Fig. 3.12(b) and 3.13).

For both three-dimensional and monolayer suspensions, it is apparent that the
addition of nonmagnetizable spheres consistently reduces the triangular lattice char-
acter of the microstructure of the magnetizable sphere component. The chain-like
character is not enhanced in the three-dimensional systems, but it is in the monolayer
systems—and all systems do exhibit an increase in yield stress upon addition of the
nonmagnetizable spheres. Thus, in contrast to the results reported by Kittipoom-
wong et al. (2005) for bidisperse suspensions, the yield stress enhancement is not
associated with an increase in the anisotropic, chain-like character of the microstruc-
ture. The enhancement does appear to be associated with a decrease in crystallinity,
and thus an increase in the amorphous character. The mechanisms by which a more
amorphous microstructure may produce a larger yield stress is not clear.

The anisotropy of the suspensions can also be quantified via the mass moment
tensors of clusters within the suspension. To calculate the mass moment tensor,
clusters of spheres were first identified. Two spheres were considered to be in direct
contact, and thus in the same cluster, if their center-to-center separation was less than

1.05. The algorithm described by Sevick et al. (1988) was used to identify all spheres
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within the same cluster. Two types of clusters were identified: those containing
only magnetizable spheres, and those containing magnetizable and nonmagnetizable
spheres. After identifying the clusters, the mass moment tensor for the &' cluster,
which is composed of ny, spheres is defined by
ng
. * *,k * *,k
Z; m; (a:l T, ) (ml x, )

I, = o . (3.11)
>, my;
i=1

Here, } is the dimensionless location of the i** sphere in cluster k, ** = m; ' S0* mx;
is the dimensionless center-of-mass of cluster k, and m; = mpo3 /6 is the mass of the
i'" sphere with density p, treated here as a constant.

The anisotropy of a cluster can be quantified by the eigenvalues of the mass
moment tensor. In order of decreasing magnitude, these eigenvalues can be labeled
as IF,I5, and I} (for monolayers, only I} and I§ are needed). The ratio of the

eigenvalues is given by

o It
ratio 2 5
y (&) +(8)

for three dimensional systems, and X, = IF/I5 for monolayer systems. For a chain

(3.12)

of perfectly aligned spheres, [0 — 00.
In order to avoid a single chain of aligned spheres with I,.:;, > 1 skewing the

results, the average of the inverse of the eigenvalue ratios was calculated,

N
(Tt} = 5 22 (k) (3.13)

where N¢ is the total number of clusters in the suspension. These values were aver-



3.4. Results and Discussion 39

aged over both initial configurations and strain interval 1 < v < 5. The eigenvalue
ratios were calculated for clusters containing both sphere types and clusters contain-
ing only magnetizable spheres.

The mass moment tensor eigenvalue ratio of three-dimensional suspensions is plot-
ted as a function of ¢ for various ¢, in Fig. 3.14. Figure 3.14(a) shows <[r;tlio>_l for

-1
clusters of magnetizable and nonmagnetizable spheres. Figure 3.14(b) shows <] r_atlio>

for clusters of only magnetizable spheres.

In both Fig. 3.14(a) and (b), <[r;%io>_1 decreases as ¢y, is increased. This indi-
cates that more concentrated suspensions are less anisotropic. As ¢y is increased,
<Ir;%io>7l decreases, even when the nonmagnetizable spheres are excluded from clus-
ters. Kittipoomwong et al. (2005) found that for bidisperse systems, <Ir;%io>_1 was
orders of magnitude larger than <Ir;§io>71 for monodisperse systems, which indicated
that bidisperse suspensions are more anisotropic than monodisperse suspensions. In
contrast, here we find that increasing ¢y causes <]r;tlio>_1 to decrease, creating a less
anisotropic suspension.

Figure 3.15 shows <Ir_atlio>_1 as a function of ¢, for three-dimensional suspen-
sions. Open squares represent suspensions containing only magnetizable spheres.
Open circles and triangles represent suspensions containing both types of spheres with
¢r = 0.45. For the circles, nonmagnetizable spheres were included in the clusters;
for the triangles, nonmagnetizable spheres were excluded from the clusters. At low
b, <Ir;tlio>_l is smaller for suspensions that contain both types of spheres than for
suspensions containing only magnetizable spheres, regardless of whether nonmagneti-
zable spheres are included or excluded from the clusters. As ¢, is increased, <I s >71

ratio

decreases for all data sets, which indicates that adding magnetizable spheres causes



3.4. Results and Discussion 40

©0.05
=0.10
£0.15
4:0.20
<#0.25
£0.30
<0.35
90.40
#0.45

0.00 005 0.10 0.15 020 025 030 035 040 045 0.50

©0.05
0.10
©-0.15
A0.20
0.25
+£0.30
<4035
9-0.40
045

0.00 005 0.1 0.15 020 025 030 035 040 045 0.50

Figure 3.14: The mass moment tensor eigenvalue ratio as a function of ¢y for several different values of ¢pr. (a)
Nonmagnetizable particles are included in the clusters. (b) Nonmagnetizable are excluded from the clusters.
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Figure 3.15: <Ir;1;io> as a function of ¢ for suspensions containing only magnetizable spheres (squares), and for
mixtures with ¢ = 0.45. For the circles, the nonmagnetizable spheres were included in the clusters; for the triangles,
nonmagnetizable spheres were excluded.

the suspension to be less anisotropic.

Figure 3.16 shows <[r;%io>_1 as a function of ¢4 for various ¢4, for monolayer
suspensions. In Fig. 3.16(a), both magnetizable and nonmagnetizable spheres were
included in the clusters. In Fig. 3.16(b), the nonmagnetizable spheres were excluded
from the clusters.

In Fig.3.16(a), for ¢5 = 0, < . >_1 decreases as ¢4, is increased. As ¢4 is in-

ratio

creased, all values of the eigenvalue ratio remain in the range 5 < <[r;%io>71 < 10.
This indicates that adding nonmagnetizable spheres does not cause the suspension
to become more anisotropic. However, when the nonmagnetizable spheres are ex-
cluded from the clusters (in Fig. 3.16(b)) the eigenvalue ratio is independent of ¢4

As ¢9; is decreased, the eigenvalue ratio increases, indicating that more chain-like

structures appear at lower concentrations of magnetizable spheres. We also note that
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Figure 3.16: The mass moment tensor eigenvalue ratio as a function of ¢y for several different values ¢£I (a)
Nonmagnetizable particles are included in the clusters. (b) Nonmagnetizable are excluded from the clusters.
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Figure 3.17: <Ir;1;io> as a function of qﬁ?/[ for suspensions containing only magnetizable spheres (squares), and for

mixtures with ¢? = 0.75. For the circles, the nonmagnetizable spheres were included in the clusters; for the triangles,
nonmagnetizable spheres were excluded.

the dependence of <Ir;%io>71 on ¢4, is much weaker than that reported for bidisperse
suspensions [Kittipoomwong et al. (2005)].

The mass moment tensor eigenvalue ratio for monolayer simulations is plotted as
a function of ¢4, in Fig. 3.17. Open squares represent suspensions containing only
magnetizable spheres. Open circles represent suspensions containing both types of

spheres with ¢7 = 0.75; nonmagnetizable spheres are included in the clusters. Open

triangles represent the same suspensions as the open circles, but nonmagnetizable

-1

1
ratio> is smaller for mixtures

spheres are excluded from the clusters. At low ¢, <
than for suspensions of only magnetizable spheres, regardless of whether or not non-
magnetizable spheres are included in the clusters. For suspensions containing only
magnetizable spheres, <Ir;§io>_1 decreases as ¢}, is increased. When the nonmagne-

~1
tizable spheres are included in the clusters, <I s > remains constant. The data in

ratio
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Fig. 3.17 suggests that suspensions forms fewer chain-like clusters of spheres when

nonmagnetizable particles are added, as well as when ¢4, is increased.

3.5 Conclusions

We have employed a particle-level simulation technique to probe the effect of non-
magnetizable spheres on MR suspensions that contain a mixture of magnetizable and
nonmagnetizable spheres. Monolayer simulations exhibit an increase in yield stress
when nonmagnetizable spheres are added, which is consistent with experimental re-
sults for three-dimensional systems, and in contrast to previously reported results for
monolayers [Ulicny et al. (2010)]. We characterized the microstructure of the suspen-
sions by several measures, including volume fraction fluctuations, pair distribution
functions, and eigenvalues of the second-order mass moment tensor. We find that
nonmagnetizable spheres cause different microstructure changes in monolayer and
three-dimensional suspensions. In addition, the microstructure changes are much
smaller than those reported for bidisperse suspensions [Kittipoomwong et al. (2005)].
Therefore, microstructure changes caused by the addition of nonmagnetizable spheres

do not appear to directly cause the yield stress enhancement.
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Chapter 4

Effect of Nonmagnetizable Spheres
on the Forces of

Magnetorheological Fluids

4.1 Introduction

Magnetorheological (MR) fluids are suspensions of magnetizable particles in a non-
magnetizable, viscous, continuous phase. Application of a magnetic field with a flux
density on the order of 1 Tesla causes the stress at low deformation rates to increase
by orders of magnitude. The field-induced stress increase is both fast and reversible.
The magnetic field induces magnetostatic particle interactions which cause the parti-
cles to aggregate, changing the suspension from a fluid-like state to a solid-like state,
with a magnetic field-dependent yield stress [Ginder (1996); Jolly et al. (1998)]. This

dramatic field-induced change in rheological properties is often called the MR ef-
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fect. The tunable rheological properties make MR suspensions useful in numerous
applications, including semiactive shock absorbers, clutches, actuators, servo valves,
and precision polishing fluids [Jolly et al. (1998); Carlson and J.L. Sproston (2000);
Klingenberg (2001)].

It is desirable to obtain the largest possible difference in rheological properties
when the magnetic field is on (the “on-state”) and when the magnetic field is off (the
“off-state”). A large difference between off-state and on-state rheological properties
allows for a large range of dynamic control, smaller devices and fluid volumes, and
therefore reduced costs. Ulicny et al. (2010) showed experimentally that the field-
induced yield stress of concentrated MR suspensions can be increased significantly
by adding nonmagnetizable particles to the suspension. The yield stress of an MR
suspension (at magnetic saturation) with an iron particle volume fraction of 0.30
was increased by 50% by adding glass beads at a volume fraction of 0.15. Further-
more, it is possible to increase the field-induced yield stress by replacing a fraction of
the magnetizable particles with an equivalent volume of nonmagnetizable particles.
Similar magnitudes of yield stress enhancement were observed for a variety of differ-
ent types of nonmagnetizable particles [Klingenberg and J.C. Ulicny (2011)]. This
phenomenon has also been observed in simulations of MR suspensions composed of
mixtures of magnetizable and nonmagnetizable spheres [Ulicny et al. (2010); Klin-
genberg and J.C. Ulicny (2011)]. An understanding of the mechanisms that produce
this phenomenon is still lacking.

In Chapter 3 it was shown that, unlike other systems in which shear stresses in-
creased, the increase in shear stress resulting from the addition of nonmagnetizable

particles is not associated with a significant change in the microstructure. Further-
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more, subtle changes in measures of the microstructure differ qualitatively in mono-
layer and 3D systems. These observations suggest that the increase in stress observed
by adding nonmagnetizable particles is not caused by a change in microstructure.
Dynamic measurements are common tools for probing the mechanisms of rheolog-
ical behavior for complex fluids. We use large amplitude oscillatory shear (LAOS) to
investigate the mechanisms that cause the yield stress increase for MR fluids that con-
tain nonmagnetizable particles. Suspensions were sheared in the limit of zero shear
rate using a relaxation method Klingenberg et al. (1991b). Configurations saved dur-
ing shear were subjected to LAOS strain sweeps. The presence of nonmagnetizable
spheres causes the shear modulus in the linear regime to increase, without signifi-
cantly altering the critical strain that marks the transition to nonlinear deformation.
This suggests that the nonmagnetizable spheres enhance stress transfer by increasing
the stiffness of the field-induced structures, as opposed to stabilizing the structures.
We show that the nonmagnetizable spheres produce stresses by participating in
repulsive force chains. These force chains are roughly aligned with the compression
axis of the simple shear flow, and contain nonmagnetizable as well as magnetizable
spheres. The ability of the nonmagnetizable spheres to transmit stress through purely
repulsive forces is similar to that found in jammed, hard-sphere suspensions [Farr
et al. (1997); Cates et al. (1998)]. We illustrate the repulsive force chain formation
with snapshots of sheared suspensions, draw analogy to previously reported jamming
phenomena by considering the stress versus strain behavior, and characterize the
resulting contribution to the shear stress by examining particle stresses and repulsive

force statistics.
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4.2 Model

Magnetorheological suspensions are treated as collections of magnetizable and non-
magnetizable spheres (monodisperse, diameter o, magnetizable spheres with satura-
tion magnetization M) immersed in a nonmagnetizable, Newtonian, incompressible,
continuous phase (relative permeability p = 1, viscosity 7.), and subjected to a uni-
form magnetic field Hy = Hpe, [Klingenberg et al. (1991a); Kittipoomwong et al.
(2005)].

The motion of the spheres can be described by Newton’s equation of motion. By

neglecting the inertia of sphere 7, the equation of motion for sphere ¢ can be written

F;({r;}) =0 (4.1)

where F; ({7;}) is the net force on sphere i. The net force has three contributions:
the magnetostatic force, the short-range repulsive force, and the hydrodynamic force.
The magnetostatic force on sphere ¢ caused by sphere j is given by the point-dipole
expression

o
g .

4
F;" = I ( ) [(3 cos® O — 1) e, + sin 20;;eq| , (4.2)

Tij
where 7;; is the distance between sphere 7 and sphere j, and 6;; is the angle between
the line-of-centers and the applied magnetic field. The magnitude of the force, Fy, is

given by

37-(- 2 2 2 . . .
LupB Hio linear magnetization
Fy = { 16 0 , (4.3)

oo’ MZ  saturated magnetization

where 8 = (up—pie) / (pp+24tc), pp is the relative permeability of the particle material,
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Lte is the relative permeability of the continuous phase, and pg is the permeability of
free space. To mimic a hard-sphere interaction between spheres ¢ and j, a short-range

repulsive force on sphere i caused by sphere j is given by

F;.I;.EP = —FO exp [/i (U - rij) /U] €r, (44)

where k characterizes the range of the repulsive force (k = 100 in this study). The
spheres also experience a force due to hydrodynamic drag. Following the work of
Klingenberg et al. (1991a) and Kittipoomwong et al. (2005), the hydrodynamic drag

is treated as Stokes’ drag

dr i
dt

F = 31,0 [ -U®™ (ri,t)] : (4.5)

where U™ (r;,t) is the ambient fluid velocity evaluated at the particle center.
Equation 4.1 can be nondimensionalized using the following length, force, and

time scales:
_ 144n,

T
Ly = F, = —pugo®M?, t, . 4.6
g, 48 HoO ) /.LOMSZ ( )
These scales allow Eqn. 4.1 to be written
d,r;k o *,rep *,wall ol *,mnag *,00
=Y F;/""+F, + ) F"™E U™ (ri,0), (4.7)

at* JFi JF

where the asterisks denote dimensionless quantities.

The shear stress in the suspension is

1 N
Tor =~ 24 (4.8)
V* P )
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where F}; is the x component of the total nonhydrodynamic force acting on sphere

1.

4.3 Simulation Methods

Magnetorheological suspensions were generated by randomly placing N neutrally
buoyant spheres in a volume of size L} X Ly x L7. The spheres were bounded by solid
surfaces at z* = £L}/2 and by periodic boundaries at v* = £L;/2 and y* = +L; /2.
Interparticle forces are evaluated within a cutoff radius of r* = 2.5.

The total volume fraction of spheres ¢r is

o1 = oM + On (4.9)

where ¢, is the volume fraction of magnetizable spheres, and ¢ is the volume frac-
tion of nonmagnetizable spheres. Ten different initial configurations were created for
each composition studied. The spheres in each configuration were randomly assigned
as either magnetizable or nonmagnetizable (subject to the constraint of the specified
values of ¢, and ¢y). Monolayer simulations were generated by placing N spheres
in a cell LY x L% (y* = 0 for all spheres). The total area fraction of spheres is given
by ¢4 = ¢4, + ¢n, where ¢4, and ¢4 are the area fractions of the magnetizable and
nonmagnetizable spheres, respectively.

Spheres within 0.050 of a bounding surface were considered stuck and assumed the
lateral velocity of the surface; particles sticking to solid surfaces has been observed
experimentally [Klingenberg and C.F. Zukoski (1990)]. Since the motion of each

sphere in the z direction is still governed by Eq. 4.7, stuck spheres can be removed
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from the surface, and thus eventually move independently of the solid surface.

The suspensions were sheared by moving the surface located z* = +L%/2 in the
positive z direction. The ambient velocity is thus U**(r) = 4*(2* + L /2)e., where
% is the dimensionless shear rate. Sphere trajectories were determined by numerically
integrating Eq. 3.7. Suspensions were sheared to a strain of v* = 5.0 at a strain
rate of 4* = 1072, The positions of the spheres were saved every strain interval of
0.05. The dynamic yield stress was calculated using the “relaxation” method. Saved
configurations were allowed to relax (with 4* = 0) to equilibrium. The average stress
that is calculated with Eq. 3.8 using the relaxed configurations is equated with the
dynamic yield stress. The dynamic yield stress is averaged over both configurations
and strain interval 1 <~ < 5. The dynamic yield stress calculated using this method
is equivalent to that obtained from simulations at successively smaller shear rates
followed by extrapolation to zero shear rate [Klingenberg et al. (1991a)].

The relaxed configurations were sheared by oscillating the surface located z* =

+L%/2 in the x direction. The ambient velocity is thus

U™ (r,t) =w o (2] + L;/2) cos(w™t")ex (4.10)

where w* is the dimensionless oscillation frequency (w* = 0.01 in this study), 7o is the
oscillation amplitude, and ¢* is the dimensionless time. The equations of motion were
then solved by the simulation method outlined by Klingenberg et al. (1989). Suspen-
sions were oscillated for eight periods. The viscoelastic properties were calculated by
Fourier transforming the last five periods of 77, (t*). Storage moduli were averaged

over initial configurations and the strain interval 1 < v <5.
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The simulation cell size for three-dimensional simulations was L; = 10,L; =
5,L7 = 5. For the largest volume fraction studied, ¢ = 0.45, the cell contained
215 spheres. The simulation cell size of the monolayer suspensions (y; = 0) was
L: = 30,L* = 10. For the largest area fraction studied, ¢4 = 0.75, the system

contained 287 spheres.

4.4 Discussion

In Fig. 4.1, G} is plotted as a function of 7y for LAOS simulations of monolayer
suspensions. Open squares represent results for mixtures of magnetizable and non-
magnetizable spheres with area fractions ¢4, = 0.45 and ¢4 = 0.30. Open circles
represent results for suspensions of only magnetizable spheres with area fractions

4 = 0.45 (¢p5 = 0). At low strain amplitudes, the storage modulus for mixtures
is larger than that for suspensions in which ¢4 = 0. The larger plateau modulus
for mixtures indicates that nonmagnetizable spheres participate in stress transfer via
repulsive forces.

Figure 4.1 illustrates that both types of suspensions transition from linear to
nonlinear viscoelastic behavior at similar strain amplitudes. To further examine the
transition to nonlinear deformation, we calculated the ratio of the magnitude of the
third harmonic, |73|, to first harmonic, |7;|. Figure 4.2 shows |73| /|71 as a function of
7o for monolayers with and without nonmagnetizable spheres. Open squares represent
suspensions with ¢4, = 0.45 and ¢4 = 0.30. Open circles represent suspensions
with ¢4, = 0.45 and ¢4 = 0. The dependence of |7|/|7| on strain amplitude is

nearly identical for the two systems, with the ratio increasing with increasing strain
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Figure 4.1: Storage modulus as a function of strain amplitude for monolayer suspensions. Open squares represent
suspensions with qi)ﬁl = 0.45 and d)ﬁ = 0.30. Open circles represent suspensions with (;5‘]?{ = 0.45 and qﬁﬁ =0.

amplitude. Thus the onset of nonlinear deformation is unaffected by the presence of
nonmagnetizable spheres.

The storage modulus and onset of nonlinear deformation were also determined
for three-dimensional suspensions. Figure 4.3 presents G as a function of v, for
three-dimensional suspensions with different compositions. Open squares represent
suspensions with ¢y; = 0.30 and ¢ = 0.15. Open circles represent suspensions of
volume fraction ¢,; = 0.30 and ¢y = 0. Just as for the monolayers in Fig.4.1, the
plateau modulus of the mixture is larger than the plateau modulus for the suspension
containing only magnetizable spheres.

The ratio |75| / |77 is plotted as a function of v, for three-dimensional suspensions
in Fig. 4.4. Open squares represent suspensions with ¢;; = 0.30 and ¢n = 0.15.
Open circles represent suspensions with ¢,; = 0.30 and ¢ = 0. Just as observed for

monolayers, the dependence of |75]/|7| on strain amplitude is nearly identical for
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Figure 4.3: Storage modulus as a function of strain amplitude for three-dimensional suspensions. Open squares
represent suspensions with ¢p; = 0.30 and ¢ = 0.15. Open circles represent suspensions with ¢p; = 0.30 and
on = 0.
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Figure 4.4: |73| /|71| as a function of g for three-dimensional suspensions. Open squares represent suspensions with
d)f/[ = 0.30 and d)ﬁ = 0.15. Open circles represent suspensions with ¢y = 0.30 and ¢n = 0.

the two systems, with the ratio increasing with increasing strain amplitude. Thus the
onset of nonlinear deformation in three-dimensional suspensions is unaffected by the
presence of nonmagnetizable spheres.

Parthasarathy and D.J. Klingenberg (1995a,b) showed that the onset of nonlinear
deformation in electrorheological fluids at low frequencies (such as that employed in
the present study) is caused by the slight rearrangement of unstable structures. In
shear flow (continuous or oscillatory), structures are sheared into unstable configura-
tions, which then rearrange, producing nonlinear stress-strain behavior. Investigation
of model structures illustrated that the critical strain marking the transition to non-
linear behavior can vary significantly from one structure to another.

The model employed by Parthasarathy and D.J. Klingenberg (1995a,b) is the
electrostatic analog of the magnetostatic model employed here, and thus their results

apply. Their observations, along with the similarity of two data sets in Figs. 4.2 and
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4.4, suggest that the presence of nonmagnetizable spheres does not alter the stability
of the structures. As a result, the data presented in Figs. 4.1 and 4.3 suggest that the
nonmagnetizable spheres act to increase the suspension stress by directly increasing
the suspension stiffness, as opposed to increasing the stability of the structures (i.e., as
opposed to allowing the structures to be sheared to a larger strain before rearranging).

To understand how the nonmagnetizable spheres directly increase the suspension
stiffness and shear stress, consider the snapshots of simulated monolayers in Figs.
4.5-4.7. The magnetizable spheres are represented by the green circles, and the
nonmagnetizable spheres are represented by the red circles. Also shown in these
figures are lines connecting spheres (within the cut-off radius) that represent the
sign and magnitude of the net pair interaction force acting along the line-of-centers,
) S ry, where F;"" = F™ + F2" If F;" - r; > 0, the net force is
attractive and the line connecting the spheres is yellow; if Fi;’net -1 < 0, the net
force is repulsive and the line connecting the spheres is black. The line thickness
represents the magnitude of the interaction force, with thicker lines representing larger
magnitude forces. Because the repulsive force magnitudes can be much larger than
the attractive force magnitudes, the dimensionless line thickness is prescribed by the
monotonic, but nonlinear function (1/2) tanh(|F;""|/4).

Snapshots of sheared monolayers with ¢, fixed at 0.45 and various values of ¢4
(0 < ¢4 < 0.30) are presented in Fig.4.5. For ¢34 = 0 (Fig.4.5(a)), the magnetizable
spheres form column-like structures, as expected. Single-sphere-width clusters tend
to be strained and tilted in the flow direction, with shear forces transmitted between
the shearing surfaces via attractive magnetostatic forces; this behavior is illustrated

in Fig. 4.5(a) by the yellow lines connecting the spheres within the strained, single-
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sphere width clusters. Also apparent in Fig.4.5(a) are black lines that connect some
spheres within the larger clusters, which indicates that repulsive forces also play a
role in stress transfer.

As the concentration of nonmagnetizable spheres is increased (Figs. 4.5(b)—(f)),
the number of black lines—and thus the prominence of repulsive forces—increases.
Of most importance are the repulsive forces that act along the compression axis of
the shear flow, which contribute to the stress resisting the deformation. The gray
circles in Figs. 4.5(b)—(f) illustrate clusters of spheres in which the repulsive forces
act along the compression axis throughout the cluster. Some of these “repulsive-force
clusters” percolate (extend from one shearing surface to the other), particularly at
larger values of ¢4

The shear-induced formation of repulsive-force clusters is similar to the force
chains in jammed, hard-sphere systems that form along the compression axis of the
shear flow [Farr et al. (1997); Cates et al. (1998)]. In the present case, in most
if not all of the repulsive-force clusters, the force chains include both magnetizable
and nonmagnetizable spheres. In addition, the magnetizable spheres that partici-
pate in the black repulsive-force chains often simultaneously participate in the yellow
attractive-force chains. This likely explains the observation (experimental and simula-
tion) that the nonmagnetizable spheres enhance the field-induced stress, even though
these spheres are not magnetizable—the nonmagnetizable spheres act within a field-
induced structure of magnetizable spheres, and thus both structures disappear when
the field is removed.

Repulsive-force clusters can also appear in sheared monolayers of only magne-

tizable spheres at sufficiently large concentration, as illustrated in Fig. 4.6. At low
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Figure 4.5: Snapshots of sheared monolayer suspensions with ¢1\A4 = 0.45 and various values of d)ﬁ (a) d)ﬁ = 0.00;
(b) ¢% =0.08; (c) ¢ = 0.15; (d) ¢4 = 0.22; (e) ¢4 = 0.25; (f) ¢a = 0.30.
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concentrations (Figs. 4.6(a) and (b)), percolating single-sphere width chains transmit
stress via attractive forces. As the concentration is increased, repulsive forces become
more prominent. At the highest concentrations (Figs. 4.6(e) and (f)), the repulsive
forces can act within anisometric clusters oriented along the compression axis of the
shear flow.

Snapshots of a monolayer mixture of magnetizable and nonmagnetizable spheres
(¢4 = 0.45, ¢5 = 0.15) at different strains are presented in Fig. 4.7 along with
a plot of the shear stress as a function of shear strain. The shear stresses that
correspond to the snapshots are represented by labeled points along the curve; the
chosen snapshots correspond to local shear stress maxima. For all snapshots shown,
repulsive-force clusters are apparent (illustrated with gray circles), and each contains
at least one percolating cluster roughly oriented along the compression axis. Again,
these clusters contain both magnetizable and nonmagnetizable spheres.

To quantify the contribution of the nonmagnetizable spheres to the shear stress,
we employ partial stresses [Ahn and D.J. Klingenberg (1994)]. Equation 4.8 for the

dimensionless shear stress can be separated into two summations, one over each type

of sphere,
1 Num 1 Mn
= = Fr— — Fr 4.11
Trz V' 12::1 % T, V' 12::1 2 T, ( )
= TI*;M + T;éN (4.12)

where N, and Ny are the number of magnetizable and nonmagnetizable spheres, re-
spectively. The first summation above is the partial stress of the magnetizable spheres,

and the second summation is the partial stress of the nonmagnetizable spheres. Note
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Sequence of snapshots for a monolayer suspension at various shear strains (qﬁﬁ = 0.45 and (1)1"\‘] =0.15).
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that 7" can only consist of contributions from nonmagnetizable spheres interacting
via short-range repulsive forces with either magnetizable or nonmagnetizable spheres,

whereas 7™ consists of contributions from magnetizable spheres interacting through

P
short-range repulsive forces with either type of sphere, as well as via magnetostatic in-
teractions with other magnetizable spheres. For all results presented here, the stresses
from relaxed configurations will be presented (i.e., the partial stresses are the respec-
tive contributions to the yield stress), averaged over initial configurations and the
strain interval 1 <y < 5.

The partial stresses are plotted along with the total stresses in Figs. 4.8-4.10
for monolayer and three-dimensional simulations. In Fig. 4.8, the partial and total
yield stresses are plotted as a function of ¢34 for ¢, = 0.45; these are the same
conditions employed in Fig. 4.5. Open squares represent the total shear stress,

*, M

open circles represent 7" and open triangles represent 7%". For all ¢4 > 0, the

*, N

partial stress 7.;" is positive, indicating that the nonmagnetizable spheres directly

contribute to the stress. The partial stress 757 also increases as ¢4 is increased,

xrz
indicating that the nonmagnetizable spheres also indirectly contribute to the stress
in monolayer systems. The fact that both 75V and 7™ increase as ¢4 is increased
is not surprising because, as illustrated in Fig. 4.5, both types of spheres participate

in the repulsive-force clusters.

In Fig. 4.9, the partial and total stresses for three-dimensional systems are plotted

as a function of ¢y for ¢y = 0.30. In this case, 75 is not as strongly affected by the
addition of nonmagnetizable spheres as in the case of monolayer systems, but 75V is

still greater than 0, and increases monotonically with ¢y .

In Fig. 4.10, the partial and total stresses for three-dimensional systems are
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Figure 4.8: Total yield and partial stresses as a function of ¢ﬁ for ¢‘1?4 = 0.45. Open squares represent the total
yield stress. Open circles represent the partial stress associated with magnetizable spheres. Open triangles represent
the partial stress associated with nonmagnetizable spheres.

plotted as a function of ¢y for ¢r fixed at 0.45. As before, 7Y > 0. The total

pass through a maximum at ¢, ~ 0.40, whereas 7"

Tz

s, M
stress and 7,

passes through
a maximum at ¢,; ~ 0.30. These results also suggest that nonmagnetizable spheres

directly increase the stress (via 75"

), as well as indirectly affect the stress (by altering
).

Partial stresses may also be defined in terms of the types of forces as opposed to the
types of spheres. The nonhydrodynamic force on each sphere consists of magnetostatic

(Eq. 4.2) and short-range repulsive (Eq. 4.4) forces. The summation for the stress

(Eq. 4.8) can thus be separated into summations over each type of force,

1 X 1 X
A —— i i — * [reorep: 4.13
sz V* — Zz x, V* ; Zz x,n ( )

= T e AT (4.14)

)
z
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Figure 4.9: Total yield and partial stresses as a function of ¢ for ¢pr = 0.30. Open squares represent the total
yield stress. Open circles represent the partial stress associated with magnetizable spheres. Open triangles represent
the partial stress associated with nonmagnetizable spheres.
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Figure 4.10: Total yield and partial stresses as a function of ¢,s for a fixed ¢ = 0.45. Open squares represent
the total yield stress. Open circles represent the partial stress associated with magnetizable spheres. Open triangles
represent the partial stress associated with nonmagnetizable spheres.
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where F,;;"* is the sum of all the pair magnetostatic forces acting on sphere i, F, ;"
is the sum of all the pair short-range repulsive forces acting on sphere 7, 7.;™%" is the

partial stress caused by magnetostatic forces, and 77°P is the partial stress caused by

Tz
short-range repulsive forces. Note that only magnetizable spheres can contribute di-

*,mag.

rectly to 7,;"%, whereas both magnetizable and nonmagnetizable spheres can directly

contribute to 7%

Tz :

The partial stresses 7,7"% and 7" are plotted along with the total stress as

z z
a function of ¢4 in Fig. 4.11 for monolayer simulations with ¢4, = 0.40. The
magnetostatic force contribution 77,8 increases monotonically with ¢4y, but 7P <
0, and decreases monotonically with ¢4-. Because 777" is equal to 72V (> 0) plus
the repulsive force contribution from the magnetizable spheres, this implies that the
repulsive force contribution from the magnetizable spheres is negative for monolayers
for these compositions. Thus, although the magnetizable spheres participate in the
repulsive force clusters, it is their magnetostatic contribution to the stress that is
enhanced, while their repulsive force contribution detracts from the total stress.
The partial stresses 7,77 and 7P are plotted along with the total stress as a
function of ¢4, in Fig. 4.12 for monolayer simulations with ¢4 = 0.00. For ¢{, >
0.50, the total stress is nearly constant, while 7.;"% decreases and 7P increases
with increasing ¢4, (decreasing ¢4;). Comparison of these results with those in Fig.
4.11 reveals that nonmagnetizable spheres cause 7P to decrease, which in turn

increases 7, further supporting the notion that nonmagnetizable spheres enhance

xrz
the magnetostatic contribution.
The partial stresses 7,77 and 7,;°P are plotted along with the total stress as a

function of ¢y for three-dimensional simulations with ¢,; = 0.30 in Fig. 4.13. In
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Figure 4.11: Total yield and partial stresses as a function of ¢>§ for ¢f4 = 0.45. Open squares represent the total
yield stress. Open circles represent the partial stress associated with magnetostatic forces. Open triangles represent
the partial stress associated with repulsive forces.
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Figure 4.12: Total yield and partial stresses as a function of (bf{ for ¢§ = 0. Open squares represent the total

yield stress. Open circles represent the partial stress associated with magnetostatic forces. Open triangles represent
the partial stress associated with repulsive forces.
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Figure 4.13: Total yield and partial stresses as a function of ¢ for ¢ = 0.30. Open squares represent the total
yield stress. Open circles represent the partial stress associated with magnetostatic forces. Open triangles represent
the partial stress associated with repulsive forces.

contrast to the monolayer systems, 7.-°P- > 0, but still decreases as ¢y is increased.

w?
However, since 73V > 0 and increases with ¢ (Fig. 4.9), the contribution to the total
stress from the repulsive forces on magnetizable spheres is still negative and decreases
with increasing ¢n. So, as with the monolayer systems, addition of nonmagnetizable
spheres enhances the magnetostatic force contribution to 7.7M.

The repulsive-force clusters can be identified by modifying the cluster detection

algorithm devised by Sevick et al. (1988). Specifically, we define two spheres to be

> 1.5,

ij

directly connected within a repulsive-force cluster if F;7"" -r7; < 0 and ‘Fg’net
which corresponds to sphere pairs that overlap to a center-to-center separation of
r;; < 0.99; all the spheres within the same cluster can then be determined as described
by Sevick et al. (1988). The number of repulsive-force clusters for a given composition
were calculated for each relaxed configuration, and then averaged over the strain

interval 1 <~ <5, and over the 10 different initial configurations.
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Figure 4.14: Average number of repulsive-force clusters as a function of magnetizable sphere area fraction. Open
circles represent suspensions containing only magnetizable spheres. Open squares represent suspensions containing a
mixture of spheres with the total area fraction fixed at d)? =0.75.

The average number of repulsive-force clusters, (Ng), is plotted as a function
of ¢4, in Fig. 4.14 for monolayer simulations of only magnetizable spheres, and
for monolayer simulations of mixtures of magnetizable and nonmagnetizable spheres
with ¢4 = 0.75. For a given value of ¢{;, the system with nonmagnetizable spheres
contains more repulsive-force clusters than the system containing only magnetizable
spheres. The number of clusters passes through a maximum at large ¢4,, presumably
because the magnetostatic forces cause the magnetizable spheres to form larger, less
fibrous clusters at large ¢4, [Klingenberg et al. (1991b)].

The average number of repulsive-force clusters is plotted as a function of ¢4 for
various values of ¢4, in Fig. 4.15 for monolayer simulations. For fixed ¢4,, the number
of clusters increases monotonically with ¢4. This again is consistent with the snap-

shots in Fig. 4.5, where the number of repulsive-force clusters appears to increase
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Figure 4.15: Average number of repulsive-force clusters as a function of nonmagnetizable sphere area fraction for
various magnetizable sphere area fractions.

with ¢4. In contrast with the results in Fig. 4.14, the number of clusters does not
pass through a maximum when plotted as a function of ¢4 (for the range of ¢4 con-
sidered). The ¢4-dependence of the yield stress follows the same monotonic behavior,
consistent with the notion of the shear stress being increased through repulsive-force
clusters similar to that in jammed, hard-sphere suspensions as shown in Fig. 3.1 of
Chapter 3.

Results for three-dimensional simulations are qualitatively similar to those for
the monolayer systems. The average number of repulsive-force clusters is plotted
as a function of ¢, in Fig. 4.16 for three-dimensional simulations suspensions of
only magnetizable spheres, and for simulations of mixtures of magnetizable and non-
magnetizable spheres with ¢ = 0.45. The mixtures contain more repulsive-force

clusters than suspensions of only magnetizable spheres, which is consistent with the
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Figure 4.16: Average number of repulsive-force clusters as a function of magnetizable sphere area fraction. Open
circles represent suspensions containing only magnetizable spheres. Open squares represent suspensions containing a
mixture of spheres with the total volume fraction fixed at ¢? = 0.45.

notion that nonmagnetizable enhance the stress through repulsive-force clusters in
three-dimensional systems as well.

In Fig. 4.17, the average number of repulsive-force clusters is plotted as a function
of ¢n for various values for ¢,; for three-dimensional systems. For small ¢,;, the
number of repulsive-force clusters is insensitive to ¢. The number increases with
¢ for large ¢y (2 0.20), for sufficiently large ¢n. The shapes of the curves in Fig.
4.17 are strikingly similar to those for the stress as a function of ¢y [Fig. 3.1 in
Chapter 3| providing further evidence of the role of repulsive-force clusters in the
stress enhancement.

Cluster size distributions are illustrated in Figs. 4.18 and 4.19. Figure 4.18 is a plot
of number of clusters that contain /N spheres (magnetizable plus nonmagnetizable) as

a function of NV for monolayers with fixed magnetizable sphere area fraction ¢4, = 0.45
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Figure 4.17: Average number of repulsive-force clusters as a function of nonmagnetizable sphere volume fraction
for various magnetizable sphere volume fractions.

and various values of ¢4. For most suspensions, larger ¢4 translates to a larger
number of clusters for all cluster sizes, with greater changes for larger values of N.

Figure 4.19 is a plot of number of clusters that contain N spheres (magnetizable
plus nonmagnetizable) as a function of N for three-dimensional suspensions with
volume fraction ¢, = 0.30 and various values of ¢ . Similar to the results presented
in Fig. 4.18, larger ¢ leads to more repulsive clusters regardless of the cluster
size. Both Fig. 4.18 and 4.19 further indicate that adding nonmagnetizable spheres
increases the number of repulsive clusters, with greater changes for larger values of
N.

The transient rheological behavior of MR suspensions composed of mixtures of
magnetizable and nonmagnetizable spheres also shows behavior consistent with jammed

systems. Hard-sphere dispersions that jam exhibit a strain-dependent shear stress
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Figure 4.18: Number of repulsive-force clusters that contain N spheres as a function of N for QSJ‘LCI = 0.45 and
various values of qﬁﬁ.

Figure 4.19: Number of repulsive-force clusters that contain N spheres as a function of N for ¢5; = 0.3 and various
values of ¢n.
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that increases as the system approaches the jammed state, which occurs at a nonzero,
finite shear strain less than 1 [Farr et al. (1997)]. The jammed state occurs because
of the shear-induced formation of large particle clusters.

Figure 4.20 contains plots of the shear stress as a function of shear strain for
monolayer systems with various values of ¢4, and ¢4-. These stresses were determined
from the relaxed configurations, and thus Fig. 4.20 represents quasistatic results at
effectively zero shear rate. Each data point represents the stress at a specific strain,
averaged over 10 different initial conditions. For ¢4 = 0, the stress increases gradually
to a steady-state value by a shear strain of roughly 1 (some systems appear to first
exhibit a slight stress overshoot). The increase in shear stress with shear strain for
suspensions of only magnetizable spheres has been attributed to the deformation of
field-induced structures [Klingenberg et al. (1991a)]. As ¢4 is increased, the strain-
dependent shear stress behaves similarly, exhibiting a transient increase to a steady-
state value for shear strains of roughly 1. The steady-state stresses increase with ¢4,
exhibiting the well-established stress enhancement by the addition of nonmagnetizable
spheres. This behavior is similar to that exhibited by jammed, hard-sphere dispersions
in that the stress is shear-induced (it is not apparent at v = 0), and occurs over a
finite strain of order 1. In this sense, the systems with only magnetizable spheres
(¢4 = 0) also exhibit behavior consistent with jammed systems; however neither MR
system exhibits divergent stresses. That the stress in mixtures should increase at least
as slowly as the systems with only magnetizable spheres is perhaps expected, because
the field-induced structures must deform before any field-induced stresses appear, and
the enhancement caused by the nonmagnetizable spheres is a field-induced stress.

Similar behavior is observed for three-dimensional systems, as illustrated in Fig.
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Figure 4.20: Stress as a function of strain for various values of ¢>ﬁ and ¢ﬁj for monolayer suspensions.
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4.21 where the quasistatic shear stress is plotted as a function of shear strain for
various values of ¢,; and ¢n. The enhancements in stress caused by the nonmagne-
tizable spheres is smaller for these three-dimensional systems than those depicted in
Fig. 4.20. The stresses also appear to reach steady-state at somewhat smaller strains
than those observed for monolayer system, but nonetheless the behavior is similar to

that observed in jammed, hard-sphere dispersions.

4.5 Conclusion

This study was an attempt to understand the mechanism(s) by which nonmagnetiz-
able spheres enhance the field-induced shear stress in MR suspensions. Previous work
[Chapter 3] illustrated that the nonmagnetizable spheres do not produce a significant
change in the microstructure of the magnetizable spheres, and in fact, produce small
but different changes in the structure of monolayer and three-dimensional systems.

Large amplitude oscillatory shear simulations show that the nonmagnetizable
spheres increase the suspension stiffness, but do not significantly alter the transition
to nonlinear rheological behavior. These results suggest that the nonmagnetizable
spheres directly participate in the stress transfer, as opposed to altering the stability
of clusters of magnetizable spheres.

Snapshots of sheared monolayers reveal that the nonmagnetizable spheres par-
ticipate in repulsive-force clusters with force chains roughly oriented along the com-
pression axis of the shear flow. This behavior is similar to that observed in jammed,
hard-sphere dispersions, where the shear induced repulsive-force chains orient along

the compression axis. Examination of partial stresses, repulsive-force cluster num-
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Figure 4.21: Stress as a function of strain for various values of ¢ and ¢p; for three-dimensional suspensions.



4.5. Conclusion 77

bers, and transient rheological behavior all support the notion that nonmagnetizable
spheres directly enhance the stress via repulsive-force clusters. The repulsive-force
clusters contain both magnetizable and nonmagnetizable spheres, which likely ex-
plains the observation that the nonmagnetizable spheres enhance the field-induced
stress, even though they are not magnetizable. The participation of the magnetizable
in these clusters also tends to increase the magnetostatic contribution of magnetic

sphere contribution to the total stress.
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Chapter 5

Overview of Parallel Computing in

CUDA

5.1 Introduction

Prior to 2011, all magnetorheological (MR) suspensions simulated by the Klingenberg
group were performed using sequential algorithms written in FORTRAN. Beginning
in 2011, we developed algorithms in parallel which could simulate MR suspensions.
We developed parallel algorithms to simulate MR suspensions using the Compute Uni-
fied Device Architecture (CUDA) platform developed by graphics card manufacturer
NVIDIA. In 2007, NVIDIA began enabling their graphics cards to perform scientific
computing. To make parallel computing more accessible, NVIDIA developed the pro-
gramming language CUDA to be used exclusively on their graphics cards for general
purpose computing. CUDA is a language, based on C, that has extensions which

enable the user to perform scientific calculations on an NVIDIA graphics card. A
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graphics card, also referred to as a graphics processing unit (GPU) uses hundreds of
arithmetic logic units (ALUs) to power a display, making it essentially a processor
with hundreds of cores [Garland et al. (2008)]. Therefore, the graphics card is a
natural choice for performing massively parallel calculations [Taufer et al. (2010)].

Many problems existed in the early versions of CUDA. Codes were not very
portable. All CUDA capable GPUs released prior to compute capability 2.0 were
unable to print to screen. Few libraries existed which could take advantage of the
parallel architecture. Simulations lacked reproducibility [Taufer et al. (2010)]. How-
ever, with the release of GPU compute capability 2.0 in 2011, many of these issues
began to be corrected. For instance, NVIDIA enabled the GPUs to be able to print
to screen, which served to make debugging easier. With the release of CUDA 4.0,
NVIDIA began including the Thrust library, which contains common algorithms op-
timized to run in parallel on NVIDIA GPUs. With each new version of CUDA,
NVIDIA includes more libraries and functionality. As of December 2015, the most
advanced version of CUDA is CUDA 7.5, which includes libraries that perform Fast
Fourier Transforms (FFT) and LU decomposition solvers, among others.

CUDA is easiest to learn when the user has a good understanding of C. From there,
learning the CUDA syntax is relatively straightforward. For instance, to dynamically
allocate a block of memory on the CPU in C, the command malloc() is commonly
used. To dynamically allocate a block of memory on the GPU in CUDA, the command
cudaMalloc () can be used. Allocating memory is only one of many examples in which
NVIDIA mirrors a CUDA command off of a traditional C command.

The main difficulties incurred when developing in CUDA occur when developing

algorithms that can exploit the parallel architecture of the graphics card. Therefore,
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the purpose of this chapter is to assist future students to develop a basic understanding
of parallel computing in CUDA. For a more thorough introduction to CUDA, please
consult Sanders and E. Kandrot (2010) and NVIDIA Corporation (2015).

5.2 CUDA: Simple Algorithms

To be able to use CUDA, the user first needs access to a CUDA capable GPU. A
local GPU is the easiest way to create and debug CUDA codes. Installing the latest
version of CUDA is also very useful because it allows the user to take advantage of
the latest functionality; common algorithms such as a parallel FFTs do not need to
be developed by the user.

In C, a function can be used to enclose a specific computation such that it can be
implemented easily [Kernighan et al. (1988)]. A kernel is the CUDA equivalent to the
function in C. However, there are some key differences between a function in C and
a kernel in CUDA. To understand these differences, Figs. 5.1 and 5.2 show sample
code for two programs for vector addition: one in C and one in CUDA. Figure 5.1
shows two vectors added using a sequential algorithm written in C. Figure 5.2 shows
two vectors added using a parallel algorithm written in CUDA.

The code in Fig. 5.1 shows how a typical vector addition algorithm might look.
The function is declared before the main body of the code. Inside the main function,
arrays a, b, and c are first declared as pointers. A block of memory associated with
each pointer is then allocated using the command malloc(); these blocks of memory
are used to store the elements of the arrays a, b, and c. Each element of arrays a and

b is assigned a value before calling the function vector_add(). In vector_add(),
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each element of array c[i] is assigned the value of the sum of a[i] and b[i]. Each
array is then deallocated using the command free().

The vector addition algorithm in C is very straight forward and, for small values
of n, is very fast. However, this algorithm scales as O(n), so as n gets large, the
algorithm will slow down. For simple algorithms in which vector_add() is only
executed once, O(n) scaling is of only minor concern. However, if vector_add()
is repeated multiple of times, as is often the case in a simulation, smaller scaling
becomes imperative to reduce simulation time.

Taking advantage of the architecture of the graphics card allows vector addition to
be reduced from O(n) to O(1). Vector addition is a highly parallelizable operation.
Each element in an array is independent of all other elements in the same array
(i.e. al[1] does not depend on the value a[n]). As a result, vector addition can be
performed in CUDA in a single step, shown in Fig. 5.2. The CUDA code in Fig. 5.2
appears much more complicated than the C code in Fig. 5.1. However, both codes
perform the same vector addition.

Figure 5.3 is a flowchart included to assist in conceptualizing vector addition in
parallel. In Fig. 5.3, each array is represented by a rectangle with four elements.
Each arrow represents a thread accessing an element of the array. Since there are
only 4 elements in each array in the present example, only four threads are needed
to complete the vector addition.

CUDA assigns each thread its own unique identification number. The identifi-
cation number can be used by the developer to instruct the thread which element
of an array to access. The thread is then performing the necessary calculation. For

instance, in Fig. 5.3, the thread with identification number 3 will access the memory
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—1#tinclude <stdlib.h:>
#include <math.h>
#include <stdio.h>

vold vector_add(int */*a*/, int */*b*/, int */*c*/, int /*n*/);

—lint main(veid)

1
int *a = NULL, *b = NULL, *c = NULL;
int i s No= 4
a = (int *)malloc(n * sizeof(int));
b = (int *)malloc(n * sizeof(int));
c = (int *)malloc(n * sizeof(int));
for (i = 8; 1 < n; i+H)
1
a[i] = i3
b[i] = 1 * i;
¥
vector_add(a, b, c, n);
free(a);
free(b);
free(c);
¥
-lwold vector_add(int *a, int *b, int *c, int n)
1
int i
for (i = 8; i < n; i+H)
1
c[i] = a[i] + b[1];
¥
¥

Figure 5.1: Vector addition performed in C by a serial algorithm.
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—#include <stdio.h>
#include <cuda.h:
#include <math.h:
#include <time.h:

#define BLOCK_SIZE 1824

-] __global  wveid vecter_add_cuda(int *a, int *b, int *c, int n)

1
int tid = threadIdx.x + blockDim.x*blockIdx.x;
if (tid < n)
1
c[tid] = a[tid] + b[tid];
¥
b
—lint main({wvoid)
1
int *a_h = NULL, *b_h = NULL, *c_h = NULL;
int *a_d = NULL, *b_d = NULL, *c_d = NULL;
int n = 4;
a_h = (int *)malloc(n * sizeof(int));
b_h = (int *)malloc(n * sizeof(int));
c_h = (int *)malloc(n * sizeof(int)});
cudaMalloc((void**)&a_d, n * sizeof(int));
cudaMalloc( (woid**)& d, n * sizeof(int));
cudaMalloc ((void**)&c_d, n * sizeof(int));
for (1 = 8; 1 < n; i++)
1
a_h[i] = 1i;
b_h[i] = 1 * i;
¥
cudaMemcpy(a_d, a_h, n*sizecf(int), cudaMemcpyHostToDevice);
cudaMemcpy(b_d, b_h, n*sizecf(int), cudaMemcpyHostToDevice);
vector_add_cuda<<<l, n:>>{a_d, b d, c_d, n);
cudaMemcpy(c_h, c_d, n*sizeocf(int), cudaMemcpyDeviceToHost);
free(a_h);
free(b_h);
free(c_h);
cudaFree(a_d);
cudaFree(b_d);
cudaFree(c_d);
b

Figure 5.2: Vector addition performed in CUDA using a parallel algorithm.
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Figure 5.3: Depiction of vector addition performed in parallel. Each thread access and operates on array elements
according to the thread identification number.

locations associated with a[3] and b[3], add them together, then store the result in
the memory location associated with c[3].

An immediately noticeable difference between the C code in Fig. 5.1 and the
CUDA code in Fig. 5.2 is that the kernel, vector_add_cuda(), is both declared and
written before the main function. Furthermore, the CUDA main function has twice as
many allocated arrays the main function in C. In Fig. 5.2, for each vector of interest,
an array is created both on the host (the CPU), designated by _h, and on the device
(the GPU), designated by _d. Since the arrays a_h, b_h, and c_h reside on the host,
they are declared using malloc() just as the arrays a, b, and ¢ were declared for
the C code in Fig. 5.1. To perform calculations on the device, arrays must also be
allocated in the memory of the graphics card. The command cudaMalloc is used to
allocate vectors a_d, b_d, and c_d. To better understand the syntax of cudaMalloc,
please see Sanders and E. Kandrot (2010) and NVIDIA Corporation (2015).

The arrays allocated on the GPU contain no initial values. The values stored in
each element must either be modified on the graphics card or by copying values from

existing arrays on the host. In Fig. 5.2, the values of a_h and b_h are copied to a_d
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and b_d using the function cudaMemcpy (). In the syntax for cudaMemcpy (), the first
variable is the target location to send the data. The second variable is the current
location of the data to be sent. The third variable is the size of the amount of data
to be sent; in this case, all elements of the vector are to be sent. The final element
of cudaMemcpy () tells the compiler which direction the data is being transferred; in
this case, data is being transferred from the host to the device.

Calling a kernel in CUDA is similar to calling a function in C; however, a kernel
call has key differences. The most noticeable difference is the angle brackets which
surround «<1, n»>. These angle brackets are used to allocate the threads and blocks
necessary to complete the desired calculations. Equation 5.1 illustrates the syntax of

declaring threads and blocks.

«< number of blocks, number of threads per block »> (5.1)

First, the number of blocks needed to perform the desired calculations is specified.
Then the number of threads per block is specified. In Fig. 5.2, n indicates that there
are n threads per block, and the 1 indicates that only one block is allocated. As of
December 2015, the maximum number of blocks available is 65,535. The maximum
number of threads allowed per block is 1024 [NVIDIA Corporation (2015)]. Since
n =4 in Fig. 5.2, only one block is necessary.

In C, variables are passed by value to a function via parenthesis, shown in Fig.
5.1. In much the same way, variables are passed by value in CUDA to the kernel
via parenthesis. In kernels, the device can only perform calculations with variables

stored in its memory. As mentioned previously, arrays must either be calculated on
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the device or copied from the host. However, scalars can be passed without performing
a cudaMemcpy to the device. In Fig. 5.2, a_d, b_d, and c_d exist on the card; the
scalar n exists on the host but is passed to the kernel through the parenthesis in
vector_add_cuda().

Once the kernel is called in the main function, the vector addition begins. In Fig.
5.2, the variables threadIdx.x, blockDim.x, and blockIdx.x are all variables which
are native to CUDA; they are not specified by the user. The variable blockIdx.x
indicates which block on the graphics card a particular calculation is to be performed.
The variable threadIdx.x identifies which thread on blockIdx.x will perform the
desired calculation. The largest threadIdx.x available on a block depends on the
number of threads per block declared in the kernel call. In Fig. 5.2, the largest
threadIdx.x is 3, since indexing begins at 0. The variable blockDim. x is also specific
to CUDA and is the number of threads in a block, which is specified in the kernel
call. In Fig. 5.2, blockDim.x = 4. Since only one block is called in Fig. 5.2,
blockIdx.x = 0. Therefore, the variable tid can only be 0, 1, 2, or 3. While not
immediately obvious, tid is declared in case an array contains more elements than
there are threads on a block; this point will be clarified in the following paragraphs.
Also, typing tid is much shorter and faster than continually typing threadIdx.x and
thus less prone to a syntax error.

In the simple vector addition shown in Figs. 5.1 and 5.2, allocating the proper
number of threads is very simple since there are only four elements in each array.
However, the maximum number of threads allowed on a block is 1024 [NVIDIA Cor-
poration (2015)]. Therefore, if an array contains greater than 1024 elements, multiple

blocks will be required. Sanders and E. Kandrot (2010) demonstrate a simple way
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to allocate enough blocks to ensure that the proper number of threads are allocated
to perform the calculations required for the particular code. Sanders and E. Kandrot
(2010) first recognize that if the number of elements in an array is evenly divisible
by the number of threads per block, the correct number of blocks are launched. For
instance, if there are 1024 elements in an array, and 512 threads per block, by integer
math 1024/512 = 2 blocks will be launched. However, if the number of elements is not
evenly divisible by the number of threads per block, too few blocks will be allocated.
If instead the array of interest has 1022 elements, by integer math 1022/512 = 1 block
would be launched even though two blocks are needed. To correct for this problem,
Sanders and E. Kandrot (2010) also add the number of threads per block to the num-
ber of elements before dividing by the number of threads per block. Therefore, for the
example of an array with 1022 elements, adding the number of threads per block to
the number of elements in the array before dividing would give (1022 +512)/512 = 2
blocks launched.

On each block, thread indexing using the built in variable threadIdx.x begins at
zero. Therefore, three different blocks are launched, and there will be three threads
with threadIdx.x= 0. As a result, simply using threadIdx.x as the index would
cause array element b_d[threadIdx.x] to be accessed by three different threads.
To avoid this problem, Sanders and E. Kandrot (2010) define a unique identification
number for each thread according to which block on which it is located. Sanders and

E. Kandrot (2010) use the equation

tid = threadIdx.x + blockDim.x * blockIdx.x; (5.2)
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for(i = 0; i < n; i++)
{

d += a[i] * b[i]:
}

Figure 5.4: Multiplication of elements in serial.

to declare an individual thread identification number for all threads. By using the
method outlined by Sanders and E. Kandrot (2010) for allocating blocks, when the
number of elements in the array is not evenly divisible by the number of threads per
block, more threads will be launched than elements in the array. To prevent a thread
from indexing beyond the length of the array, Sanders and E. Kandrot (2010) include
the if statement if (tid < n){}, shown in Fig. 5.2.

When finishing both C and CUDA codes, releasing arrays from memory helps to
prevent values from the just completed code from corrupting future executables. In
C, memory can be freed using the command free (). Similarly, memory can be freed
in CUDA using cudaFree().

Parallel vector addition is an easy algorithm to conceptually understand. Another
common, but equally important, operation is the dot product. In serial, the dot
product is very simple. A sample of a sequential dot product algorithm is shown in
Fig. 5.4. Here, the product of each a[i] and b[i] is summed over n elements. The
sum, represented as d in Fig. 5.4, is the dot product. Just like vector addition in
serial, this is an O(n) procedure.

The dot product calculation in parallel is less straight forward. Parallel algorithms
are most effective when the maximum number of threads are operating on the data

set [Sanders and E. Kandrot (2010)]. Therefore, multiplying them in parallel then
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summing the dot product in serial is counter-productive. The summation to obtain
the dot product must be performed in parallel. One way to perform a parallel dot
product is to first multiply the individual elements in parallel; a procedure similar to
the vector addition example except multiplication replaces addition. Then, a parallel
sums reduction must be performed in parallel. Reduction is a general term given to
a process that takes an input array and performs computations which results in a
smaller array [Sanders and E. Kandrot (2010)]. The following reduction algorithm
assumes there are 2" elements in the array.

One way to perform an array reduction in parallel is to first launch n/2 threads.
Each thread will then add two array elements together: the value of the array element
associated with the thread identification number and an array value a specified stride
length away. The stride length is divided by two and each thread again adds the
value associated with its array element as well as the array element the new stride
length away. The process is repeated until the stride length equals zero. A flowchart
of this version of a parallel reduction is presented in Fig. 5.5

Figure 5.5 presents a concept of this parallel reduction. The shaded regions repre-
sent array elements that are being accessed on the particular step. As the reduction
progresses, the stride decreases, causing fewer array elements to be added. Finally,
the last two elements are added to provide the dot product stored in the thread zero.
The parallel reduction algorithm written in CUDA is presented in Fig. 5.6.

The computation time of the parallel reduction code presented in Fig. 5.6 scales as
logy(n). The parallel reduction requires fewer iterations than the sequential version.
However, as mentioned, the algorithm presented only works for arrays that contain

2" elements. A parallel reduction for an arbitrary number of elements is beyond
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1

Figure 5.5: Parallel reduction for dot product.

global  wedid reduction(fleat *g_data, int n)

int stride = 512;
int tid;
int sum = 8;

tid = threadIdwx.x + blockIdx.x*blockDim.x;

while(stride!=8)

{
g_data[tid] = g_data[tid]+g_data[tid+stride];
__syncthreads();
stride = stride/f2;

Figure 5.6: Sample dot product algorithm written in serial.
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the scope of this appendix; however, a description can be found in Sanders and E.

Kandrot (2010).

5.3 CUDA: Particle Level Simulations

Particle level computer simulations can be used to better understand the rheology of
MR suspensions. Magnetorheological suspensions can be modeled as a collection of
magnetizable and nonmagnetizable spheres (monodisperse, diameter o, magnetizable
spheres with saturation magnetization M) immersed in a nonmagnetizable, Newto-
nian, incompressible, continuous phase (relative permeability p = 1, viscosity 7.),
and subjected to a uniform magnetic field Hy = Hpe, [Klingenberg et al. (1991a);
Kittipoomwong et al. (2005)].

The motion of the spheres can be described by Newton’s equation of motion. By

neglecting the inertia of sphere i, the equation of motion for sphere ¢ can be written
F;({r;j}) =0 (5.3)

where F; ({r;}) is the net force on sphere i. The net force has three contributions:
the magnetostatic force, the short-range repulsive force, and the hydrodynamic force.
The magnetostatic force on sphere i caused by sphere j is given by the point-dipole
expression

7

4
F;™ =F, ( ) [(3 cos® O — 1) e, +sin20;;ey| , (5.4)

le
where r;; is the distance between sphere ¢ and sphere j, and 6;; is the angle between

the line-of-centers and the applied magnetic field. The magnitude of the force, Fy, is
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given by

3w, R2772 2 : ot
o Hyo linear magnetization
Fy = { 16 0 , (5.5)

Tpoo®MZ  saturated magnetization
where 8 = (1, — pie) / (pp+24tc), f1p is the relative permeability of the particle material,
e is the relative permeability of the continuous phase, and pg is the permeability of
free space. To mimic a hard-sphere interaction between spheres ¢ and j, a short-range
repulsive force on sphere i caused by sphere j is given by

F* = —Fyexp [k (o — 1) /o] e, (5.6)

)

where x characterizes the range of the repulsive force (k = 100 in this study). The
spheres also experience a force due to hydrodynamic drag. Following the work of
Klingenberg et al. (1991a) and Kittipoomwong et al. (2005), the hydrodynamic drag

is treated as Stokes’ drag

dr;
F™ = 31,0 [a:f -U®™ (ri,t)] : (5.7)

where U (r;,t) is the ambient fluid velocity evaluated at the particle center. The
ambient fluid velocity is given by U (r) = (2} + L% /2)e, where * is the strain rate.
Equation 5.3 can be nondimensionalized using the following length, force, and

time scales:

Ls = 0, Fs - 1#002M52) ts =

= ol (5.8)
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Particle 1 Particle 2 Particle N
Calculate distance Calculate distance Calculate distance
between landj=1 between 2 andj= 2 between N and j =
N
Calculate force Calculateforce Calculate force
P
Iterateforj#1 Iterate for j # 2 Iterateforj# N

Figure 5.7: Flowchart of a particle-level simulation performed sequentially

These scales allow Eqn.5.3 to be written

dr? _ iFﬁ,rep Lyl iF‘*‘,mag IR (5.9)
at* 5" 1 P 7 .
where the asterisks denote dimensionless quantities.

From Egs. 5.4, 5.6, and 5.9, the motion of a single particle, i, is dependent on the
position of all other particles j. As a result, Eq. 5.9 must be solved numerically. One
way to determine the interparticle interactions is to implement a sequential algorithm
to calculate the net force on each sphere. A sequential algorithm contains both an
outer loop and an inner loop. The outer loop is used to iterate over each particle
1. The inner loop is then used to calculate the interaction between sphere ¢ and all
other spheres j # i. A flowchart of a sequential algorithm is presented in Fig. 5.7.

The algorithm presented in Fig. 5.7 is computationally expensive, O(N?). The
algorithm can be improved by only considering the nearest neighbors of each sphere

by implementing a neighbor list. A neighbor list decreases the computational cost of
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a simulation by allowing the program to iterate only over spheres ;7 which interact,
or have the potential to interact, with sphere i [Allen and D.J. Tildesley (1989)]. A
neighbor list allows the computation time of the simulation to decrease from O(N?) to
O(N?/L?), where L is the dimension of the simulation cell [Allen and D.J. Tildesley
(1989)].

Even with a neighbor list, computation time for a particle level simulation remains
very expensive. However, particle level simulations are highly parallelizable [Taufer
et al. (2010)]. The position of each sphere i is independent of the position of each
sphere j. A parallel algorithm can drastically reduce the computation time of required
of MR simulations. A simple way to parallelize the simulation is to simply launch
N threads and then have each thread iterate over N — 1 spheres to calculate all Fj;.
The resulting force calculation would require O(N) steps, an improvement over the
sequential algorithm. Pseudocode for an O(N) CUDA force calculation is shown in
Fig. 5.8.

However, O(N) steps is still computationally expensive. One way to reduce the
number of iterations is to create a neighbor list in parallel. A neighbor list can be
created by following a similar procedure to the collision detection algorithm outlined
by Mazhar et al. (2011). Once the neighbor list is created, calculating the interparticle
forces is straight forward and requires O(1) calculations. A flowchart of the force
calculation from the neighbor list is shown in Fig. 5.9.

In the neighbor list presented in this thesis, the neighbor list consists of two arrays:
a particle array and a neighbor array. The particle array is treated as sphere ¢;
the neighbor array is treated as sphere j. The particle array repeats the sphere

identification number for the total number of possible interactions a sphere might
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int tid = threadIdx.x + blockDim.x*blockIdx.x;

if(tid < n)
{
for(i = 0; i < n; i++4)
{
if(i == tid)

continue;
xij = x[tid] - x[1i]:
yij = y[rtid] - y[i]:
zij = z[tid] - z[i]:
r2 = Xij*xij + yij*yij + zij*zij:

if(r2 < rc*rc)
{
fx[tid]
fy[tid)
fz[tid]

1|

Figure 5.8: Psuedocode for an O(N) CUDA force calculation.

have. For instance, if sphere 0 has four interactions, the first four entries in particle
will be the number 0, as illustrated in Fig. 5.9. The neighbor array contains all the
spheres that each sphere in the particle array interacts. An important feature of
the version of neighbor list used in these simulations is that it does not utilize the
fact that the interaction ¢ — j is the equal and opposite of the interaction j — i; the
interactions are treated separately. Since the length of the particle and neighbor
arrays is not known a priori, the arrays are sized A x N, where A is a factor based
on the maximum number of spheres inside the neighbor list cutoff radius. A future
improvement for these simulations should include reducing the memory requirement
by taking advantage of the fact that interactions ¢ — j are equal and opposite to
J — 1. Reducing the memory requirement for simulations will allow for suspensions
with more spheres to be studied.

To calculate the interparticle forces, A x N threads must first be launched. Each
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Figure 5.9: Flowchart of an interparticle force calculation in parallel.

thread then accesses particle[tid] and neighbor[tid] to obtain the interacting
particles for which the respective thread will calculate F;;. Each Fj; is stored in an
array that is also A x N in length. The calculation of F;; is depicted in Fig. 5.9.

Calculating each Fj; in parallel is straight forward. However, to update the particle
position, the total force acting on each sphere must be calculated. To calculate the
total force on each sphere, a parallel reduction can be performed on each sphere. The
particle array serves as a key to identify which elements of the array containing Fj;
are associated with each sphere.

The parallel reduction by key begins with A x N threads launched. However,
after the initial kernel launch, the number of threads accessing the Fj; data is then
limited to IV threads. Since the particle array contains multiple entries of each
sphere number, only the threads associated with the first entry of a particular sphere
are used when calculating the total force for the respective sphere. Identifying which
thread calculates the total force on each sphere is depicted in Fig. 5.10. In Fig. 5.10,
since sphere 0 ends after the third element of the particle array, thread tid= 0

calculates the total force on sphere 0 and tid= 4 calculates the total force on sphere
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Particle 0 ends after vector index 3

Figure 5.10: An example of a particle array. The partcle array is used as the key for the parallel reduction by
key which calculates the total force.

Tid=0 Tid= 4

Figure 5.11: Flowchart of a parallel reduction by key.

Once the first entry of a particular sphere is identified in the particle array, the
thread associated with that entry then sums all Fj; associated with that sphere. The
maximum number of spheres that an individual sphere can interact with is determined

by the neighbor list cutoff radius. Therefore, each of the N threads will perform no

3

‘phere iterations. Therefore, by creating and using a neighbor list,

more than ri /7
we were able to reduce the the scaling of the computations in iterations from O(N)
t0 O(rily /T2 here)- A flowchart of the parallel reduction by key to calculate the total

force on each particle is shown in Fig. 5.11. Once the force is totaled for each sphere,

a simple vector addition can be used to update the positions of the spheres.
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Figure 5.12: Speedup as a function of number of spheres. Suspension at fixed ¢, = 0.15.

The purpose of converting algorithms from sequential to parallel is to reduce
computation time. The speedup of simulations performed in CUDA over serial sim-
ulations performed in C is plotted as a function of number of spheres in Fig. 5.12.
The simulations in Fig. 5.12 were performed in three dimensions and contained an
MR fluid of total volume fraction ¢ = 0.15. In Fig. 5.12, the parallel simulations
are slower for low numbers of spheres. As the number of spheres in the suspension is
increased, the speedup also increases. The break-even point at which parallel simu-
lations perform at the same rate as sequential simulations is 150 spheres. When the
suspension contains more than 150 spheres, the parallel algorithm is faster, with the
speedup increasing as more particles are included in the simulation.

For simulations containing fewer than 150 spheres, the parallel simulations ac-
tually perform slower. Parallel simulations performed in CUDA require data to be
transferred to the card via the PCI express bus of the motherboard, which is a slow
process. Therefore, parallel simulations work best when large amounts of data are

sent to the card at once. In addition, computing in CUDA is most effective when
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Figure 5.13: Stress as a function of monolayer area for a fixed system aspect ratio L% /L% = 3. Open squares are
¢‘;‘4 = 0.45. Open circles are (15‘]?/1 = 0.45 and ¢ﬁ = 0.30. Open triangles are (bﬁj = 0.75.

as many threads as possible operate on the data at the same time [Sanders and E.
Kandrot (2010)]. Both of these factors contribute to parallel simulations being less
effective than sequential at low sphere numbers.

A byproduct of the observed speedup with CUDA is that systems containing more
spheres can be studied. Previous sequential monolayer systems containing both mag-
netizable and nonmagnetizable spheres contained a maximum of 70 spheres [Ulicny
et al. (2010)]. The monolayer systems presented in previous chapters contained a
maximum of 287 spheres. As a result of the larger system, the yield stress enhance-
ment caused by the addition of nonmagnetizable spheres was observed, unlike in the
work by Ulicny et al. (2010) which did not contain enough spheres. Another inter-
esting result is the effect of system size on the yield stress in the suspension, shown
in Fig. 5.13.

In Fig. 5.13, stress is plotted as a function of monolayer area. For each concen-

tration considered, when the dimensionless area is increased, which in turn increases
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the number of spheres for respective concentration, the stress increases. The largest
system in Fig. 5.13 contains 2500 spheres, more than 35X as many spheres as pre-
vious work [Ulicny et al. (2010)]. Furthermore, since the scaling is independent of
number of spheres, the time of the simulation remains relatively constant. The effect

of system size on the yield stress should be investigated more in the future.

5.4 CUDA: Creating the Resistance Matrix

A common problem in rheology involves understanding the effect of hydrodynamic
interactions on the motion of particles. One method for simulating a suspension that
includes hydrodynamic interactions is outlined by Ball and J.R. Melrose (1997). Their
method is useful for suspensions at high volume fraction, ¢, which are dominated by
lubrication terms. At large ¢, the lubrication and torque terms can be decoupled.

The equation of motion can then be simplified to,

FN = RM(U - U™) (5.10)

where FN! is the nonhydrodynamic force between the spheres, RYY is the two body

resistance matrix which only considers lubrication interactions, U is the sphere ve-
locity, and U is the ambient fluid velocity. Here, FN! is the magnetostatic force.

The two body resistance matrix, RYP, is given by,

RYY = Ro6 + Ry (hij)dd (5.11)
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where Ry = 3¢n.0, R (hij) = 3mn.0(0/8h;j), and d is the unit vector along the line
of centers [Kim and S.J. Karrila (2013)]. For more detail concerning these simplifica-
tions, see Chapter 6.

Equations 5.10 and 5.11 form a 3N x 3N system of equations for sphere motion,
where N is the number of spheres in the suspension. Creating and solving a large
system of equations by a sequential algorithm is computationally intensive. To avoid
large calculations, previous authors only studied suspensions at zero shear, thereby,
neglecting hydrodynamic interactions [Parthasarathy and Klingenberg (1996), Kit-
tipoomwong et al. (2005), Ulicny et al. (2010)]. However, solving large systems of
equations is a highly parallelizable operation. Therefore, the equations of motion
for a suspension can be solved by taking advantage of the computing power of the
graphics card.

With the release of CUDA 7 in 2015, NVIDIA began including the library cusolver.
This library includes algorithms that solve large systems of equations efficiently in
parallel. A direct result of the parallel solvers is that Eq. 5.10 can be solved for the
particle velocities significantly faster and with less effort from the user.

While cusolver makes it easy to solve a system of equations in parallel, the
equations must still be created in parallel to take full advantage of the graphics
card. A diagram of the resistance matrix as a two-dimensional array is given in
Fig. 5.14. The numbers to the left in black represent sphere i. The numbers along
the top in blue represent sphere j. The diagonal submatrices represent the self-
interaction hydrodynamic term. The submatrices that are off the diagonal represent
the hydrodynamic interaction between sphere i and sphere j. The colors of the

submatrices only serve to differentiate between the submatrices. The numbers inside
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Figure 5.14: An example of the indexing for ’RIQ“];’ for three spheres.

the submatrices indicate the cartesian directions: 0 represents the z direction, 1
represents the y direction, and 2 represents the z direction.

In a sequential algorithm, the resistance matrix can be created within the force
calculation loops. However, creating the resistance matrix in CUDA is much less
intuitive. Unlike C, early versions of CUDA did not allow two-dimensional arrays.
Array allocation and construction was simpler by treating the matrix as a long one-
dimensional array. In newer versions of CUDA, such as CUDA 7.5, two-dimensional
array allocation and access is similar to the capabilities of C [NVIDIA Corporation
(2015)]. Therefore, both types of arrays will be considered in Subsections (5.4.1) and
(5.4.2).

5.4.1 Resistance Matrix in a One-Dimensional Array

In Fig. 5.15, the resistance matrix is treated as a large one-dimensional array; only

the numbers within the submatrices have changed. Just as in Fig. 5.14, the numbers
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Figure 5.15: Representation of indexing for a one-dimensional resistance matrix.

along the left side represent sphere ¢, and the numbers along the top represent sphere
j. Instead of representing the directions 0, 1, or 2 like in Fig. 5.14, the numbers in the
submatrices represent which element in a one-dimensional array would correspond to
each element in Fig. 5.14. For instance, the yz component of the i = 1, j = 2 sphere
interaction would correspond to element 76 in a one-dimensional array.

The first step in determining how to access the elements of the one-dimensional
resistance matrix is to identify which variables should be used to access the array.
The index for sphere ¢, and the index for sphere j could be considered. The number
of spheres, n, will change the size of the array, and, therefore, it should also be
considered. Since d exists in three dimensions, the algorithm contains two loops which
iterate over the x, y, and z directions to obtain dd. Therefore, the indices associated
with the two directional loops could be useful. The hydrodynamic interactions occur
in three dimensions, so 3 is also useful to separate threads for z, y, and z. Once the
necessary variables are determined, they must be arranged such that all elements of

the resistance array are accessed. Equation 5.12 shows a way to arrange the variables
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such that all elements of the resistance matrix are accessed.

Resistance_matrix[3 * n*x(jloop + 3 * j) + iloop + 3 * i] = dd / (8 * h);
(5.12)
In Eq. 5.12, iloop and jloop iterate over the three dimensions occupied by the
center-to-center vector d. To understand this indexing, consider the xz component
of the ¢ = 0,7 = 1 interaction in a three sphere system. We want to know the value
of the zz element of the resistance matrix. For the x direction, iloop = 0 and for
the z direction, jloop = 2. Following the indexing formula in Eq. 5.12; the array
index for the zz element of the : = 0, 7 = 1 sphere interaction is 45. Comparing Figs.
5.14 and 5.15, index 45 does indeed correspond to the zz element of the i = 0,7 =1
interaction. Take note that tid ended up not being needed, a result of using trial

and error to determine the indexing.

5.4.2 Resistance Matrix in a Two-Dimensional Array

In newer versions of CUDA, two-dimensional arrays can be created. One way to access
the elements of a two-dimensional array is to take advantage of two-dimensional block
and thread indexing. From Fig. 5.2, the syntax for the block and thread identification
numbers is blockIdx.x and threadIdx.x. The ending of both the block and thread
identification syntax is .x. The .x signifies that the indexing is in the z direction of
the GPU. While the x direction is the most common direction to index blocks and
threads, the user can also access a y and z direction. In the kernel, the y and =z
directions can be accessed by replacing .x with .y or .z, respectively.

Blocks can be launched in two dimensions from the kernel call [Sanders and E.
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Kandrot (2010)]. To launch blocks in two dimensions, the kernel call requires a
variable of type dim3. The variable type dim3 is specific to CUDA; it creates a

three-dimensional variable of integers. The variable dim3 is declared via the syntax,

dim3(n_x, n_y, n_z) (5.13)

where n_x is the number of threads in the = direction on the device, n_y is the number
of threads in the y direction on the device, and n_z is the number of threads in the
z direction on the device. If columns are treated as the x thread direction, and the
rows are treated as the y thread direction, the indexing of the grand resistance matrix

can be expressed,

Resistance_matrix[3*blockIdx.y + ty] [3*blockIdx.x + tx]. (5.14)

In the kernel call, n blocks would be launched in both the x and y directions. From
there, three threads could be launched in the x and y directions. This method would
allow all elements of the resistance matrix to be calculated at the same time. There-
fore, the resistance matrix could be formed in one step. With the use of cusolver,
solving the equation of motion for each sphere including hydrodynamic interactions

becomes computationally feasible.

5.5 Conclusion

The purpose of this chapter was to give future students a starting point for developing

parallel algorithms in CUDA. As of December 2015, finding a CUDA capable GPU
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is very easy; any NVIDIA graphics card will work. CUDA can then be installed for
free from the NVIDIA website. Once CUDA is installed, parallel algorithms can be
implemented without too much effort from the user. With each new version of CUDA,
more built in functions and functionality are added by NVIDIA.

Particle-level simulations can be performed by algorithms developed using CUDA.
Simulations performed in parallel increase speedup as particles are added to the sus-
pension. These faster simulations allowed larger systems to be studied. Future stu-
dents should investigate incorporating hydrodynamic interactions into particle-level
simulations. Advances in CUDA by NVIDIA make solving for particle motion with

hydrodynamic interactions approachable.
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Chapter 6

Overview of Hydrodynamic

Interactions

6.1 Introduction

Magnetorheological (MR) fluids consist of magnetizable particles suspended in a vis-
cous, continuous phase. These suspensions exhibit fast and reversible changes to
the stress in the fluid caused by manipulating a magnetic field. The magnetic field
induces magnetostatic particle interactions which cause the particles to aggregate,
changing the suspension from a fluid-like state to a solid-like state, with a magnetic
field-dependent yield stress [Ginder (1996), Jolly et al. (1998)]. This is known as the
“MR effect". To take full advantage of the MR effect, increasing the dynamic range
of control can be done in two ways: increasing the stress in the fluid at high-fields
and by decreasing the stress in the off-state [Foister (1997), Ulicny et al. (2005b)]. In

the off-state, colloidal forces and hydrodynamic interactions become more significant;
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the field-induced forces are not present in the system. Experiments have shown that
fluids in the off-state regime exhibit a yield stress [Ulicny et al. (2005b)]. For MR
fluids in the off-state, experiments have shown that coating the magnetizable particles
with a nonmagnetizable material can reduce the yield stress [Ulicny et al. (2005a)].
Developing a better understanding of MR fluids in the off-state can lead to designing
fluids with desirable off-state properties as well as high-field properties.

In the low-field regime, colloidal forces and hydrodynamic interactions are on the
same order of magnitude as the magnetic forces. To quantify the relationship between
magnetic field forces and hydrodynamic forces, the dimensionless Mason number can

be defined. The Mason number is given by Klingenberg et al. (2007),

M hydrodynamic forces 9  n.y¢? (6.1)
Nhydro = . =35 : :
hyd magnetic forces 2 piopte (M)

Ulicny et al. (2005a) experimentally determined stress data for an MR fluid in the
high Mn regime, presented in Chapter 2, Fig. 2.4. Figure 2.4 shows the shear stress
plotted as a function of shear rate for two different systems: one in which the particles
are not coated with a nonmagnetizable material, and one in which the particles are
coated with a nonmagnetizable material. The open circles represent a suspension in
which the magnetizable particles are not coated with a nonmagnetizable material.
The open squares represent a suspension in which the magnetizable particles are
coated with a nonmagnetizable material. The suspension in which the magnetizable
particles are not coated with a nonmagnetizable material exhibits a yield stress of
~40 Pa. However, the suspension in which the magnetizable particles are coated

with a nonmagnetizable material exhibits a significantly reduced yield stress. The
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curve is much closer to a constant viscosity than the suspension that is not coated.
To better understand the decrease in low-field yield stress and viscosity, simula-
tions must include field forces, van der Waals forces, and hydrodynamic forces. The
following section contains a brief overview of the model used for the MR suspensions
with emphasis on hydrodynamic interactions. From there, a summary of current

simulation techniques is presented.

6.2 Model

Magnetorheological suspensions are treated as a collection of magnetizable and non-
magnetizable spheres (monodisperse, diameter o, permeability /1, magnetizable spheres
with a saturation magnetization M) immersed in a nonmagnetizable, Newtonian,
incompressible, continuous phase (relative permeability p = 1, viscosity 7.), and sub-
jected to a uniform magnetic field Hy = Hph (h is the unit vector in the direction of
the applied field).

The motion of the spheres is described by Newton’s equation of motion. Neglecting

the acceleration of sphere i gives

F;({r;}) = 0. (6.2)

where F; is the total force acting on sphere i. Four forces can be considered in
these systems: the magnetostatic force, the van der Waals force, the short range
repulsive force, and the hydrodynamic force. Applying a magnetic field enables the

magnetostatic force on sphere ¢ caused by sphere j to be given given by the point
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dipole expression
o\
E‘;‘ag = F <T> [(3 cos? 0i; — 1) e, +sin20;;ey| . (6.3)
ij
where the magnitude of the force, Fj is given
3% 02 H20®  linear magnetization
Fy = { 1610770 , (6.4)
T hoo®M?  saturated magnetization

where g = 47 x 107'N/A? and 8 = (u, — 1)/(pp + 2). For low magnetic fields, the
magnitude of the force is given for linear magnetization. For high magnetic fields,
magnitude of the force is given for saturation magnetization. Since most applica-
tions require fluids in the high field regime, the magnitude of the force for magnetic
saturation is usually chosen.

The spheres always experience a van der Waals attraction. When the field is close
to saturation, these van der Waals attractions are dwarfed by the field forces, allowing
them to be neglected. However, when the field is low or off, the van der Waals

attractions cannot be neglected. The van der Waals attractions can be expressed

[Israelachvili (2011)]

A o
dew _ { ﬂh?j e, for hij > hmin (6 5)
ihzg €r for hz‘j < hmln

where h;; is the gap distance between spheres ¢ and j, and A is the Hamaker coefficient,
which is a material property.

Much work has been performed at vanishing shear rates (low Mn) [Klingenberg
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et al. (1991a), Kittipoomwong et al. (2005)]. At vanishing shear rates, the hydrody-
namic forces are expected to have little impact on the final structure of the fluid. As
a result, the hydrodynamic force can be expressed using the free-draining approxi-
mation, given by Stokes’ drag F! = —3muoc (U — U*), where U is the translational
velocity of the sphere and U is the ambient velocity of the fluid. However, at nonzero
shear rates, the free-draining approximation is not enough to model the physics of the
suspension. The force exerted on the fluid due to sphere motion decays very slowly.
Therefore, at nonzero shear, the motion of one sphere interacts with the motion of
the other spheres via the hydrodynamic forces imparted on the viscous fluid by the
spheres [Russel et al. (1992)].

The interaction of the fluid with the spheres can be described using three quanti-
ties: the hydrodynamic force F'| the torque T', and the stresslet S [Kim and Karrila
(1991)]. These three quantities can be related to the particle motion in two different
ways: the resistance problem and the mobility problem. In the resistance problem,
the motion of the spheres is specified as the boundary condition. Following Kim
and Karrila (1991), the disturbance velocity, v (x), on the surface of the particle at

position x is given by

VP (2) =U -U+ (w— Q%) xx — E* =z, (6.6)

where w is the rotational velocity of the particle, £2°° is the ambient rotational velocity
of the fluid, and E is the rate of strain tensor of the fluid. Due to the linearity of

Stokes’ equations, the resistance problem can be expressed as a system of linear



6.3. Simulation Methods 112

equations, given by

FH U—U>®
TH [=-R-| 9 -—Q (6.7)
E> S

where R is the grand resistance matrix.

The generalized mobility formulation involves specifying the hydrodynamic force,
FH  hydrodynamic torque, T, and rate of strain tensor E* as boundary the bound-
ary conditions used to calculate the particles’ translational velocity, angular velocity,

and stresslet Kim and S.J. Karrila (2013). The generalized mobility relation is written

U—U> FH
Q—Qx [=-M-| TH (6.8)
S E>

where 2% is the ambient angular velocity and M is the grand mobility matrix. The
resistance matrix is related to the mobility matrix by R = M~!. The complete

expressions for the grand resistance and grand mobility matrices can be found in

Kim and Karrila (1991).

6.3 Simulation Methods

6.3.1 Calculating Hydrodynamic Interactions

To address the computational challenges associated with simulating suspensions,
Brady and Bossis developed the algorithm Stokesian dynamics [Brady and G. Bossis

(1988)]. Stokesian dynamics is a molecular dynamics-like simulation technique which



6.3. Simulation Methods 113

leverages both the mobility and resistance formulations to simulate the rheological
behavior of suspensions.

Both the mobility formulation and the resistance formulation have advantages and
disadvantages. The mobility formulation conveniently preserves the far-field hydro-
dynamic interactions. Also, the velocity can be solved without inverting a matrix.
Matrix inversion is computationally expensive, requiring O(N?) steps. However, the
mobility formulation does not preserve the near-field lubrication interactions. The
inability of the mobility formulation to preserve the lubrication forces leads to the
spheres overlapping [Bossis and J.F. Brady (1984)]. Unlike the mobility formulation,
the resistance formulation preserves the lubrications interactions and also accurately
represents the underlying physics of the problem. However, to obtain sphere velocities
in the resistance formulation, Eq. (6.7) must be solved for velocities. This calculation
is computationally expensive.

The far-field is most conveniently expressed in the mobility formulation. The
far-field mobility matrix, denoted M, is constructed and then inverted to give an
approximation for the far-field resistance matrix. Since M is sparse, the inversion
can be done efficiently. The resistance formulation is needed to preserve the near-field
lubrication forces. Lubrication forces occur between two closely-spaced bodies, which
allows them to be treated as pairwise additive. The lubrication forces can be repre-
sented by the two-body resistance matrix, Rop. In addition to the lubrication forces,
the two-body resistance matrix also includes far-field two-body interactions which are
already accounted for in (./\/loo)_l; therefore, the two body far-field interactions must

be subtracted off, and are expressed as R33. The grand resistance matrix can be
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expressed

R = (M™) 4+ Rop — R3p. (6.9)

Equation (6.9) can be used in Eq. (6.7) to give Newton’s equation of motion for
a collection of spheres interacting through hydrodynamic interactions. The sphere
velocities can be found by solving Eq. (6.7) and the sphere positions updated. The
bulk properties of the suspension can then be calculated using an ensemble average
of the sphere positions [Batchelor, G.K. (1970)].

Sierou and Brady implemented an improved version of Stokesian dynamics which
reduced the number of iterations from O(N?) for traditional Stokesian dynamics
to O(NIn(N)). To accomplish the reduction in iterations, the far-field interactions
were calculated using Ewald summations [Sierou and J.F. Brady (2001)]. Ewald
summations reduce the number of iterations by replacing calculations that converge
very slowly with calculations that converge rapidly [Sierou and J.F. Brady (2001),
Frenkel and Smit (1987)]. Despite this improvement, Stokesian dynamics is still very
computationally expensive. Ball and J.R. Melrose (1997) showed that for highly
concentrated suspensions (¢ > 0.40), the near-field lubrication forces dominate the
resistance matrix calculation. Therefore, to leading order, only the near-field lubrica-
tion interactions need be included in determining the resistance matrix. Furthermore,
translational and rotational motion become decoupled enabling the resistance matrix
to be expressed

RYY = Ry6 + Ry (hij)dd (6.10)

where Ry = 31,0, Run(hi;) = 3mn.0(c/8h;;), and d is the unit vector along the

line of centers [Kim and Karrila (1991)]. Equation (6.10) can be substituted into Eq.



6.3. Simulation Methods 115

(6.7) to give
' = —Ri2(U - U™). (6.11)

Since the total force on each particle is zero, the equation of motion can be expressed

N = RM(U —U™). (6.12)

FNH

where represents the total nonhydrodynamic force.

6.3.2 System Parameters

The MR suspensions consist of N neutrally buoyant spheres in a volume L, x L, X L.
The spheres are bounded at +L%/2 by a solid surface and periodic boundaries at
+L7;/2 and £L; /2. The spheres are given random initial positions.

Spheres within 0.050 of a bounding surface are considered stuck and assume the
lateral velocity of the surface. Spheres have been experimentally observed to stick to
the bounding surface [Klingenberg and C.F. Zukoski (1990)]. Furthermore, since the
motion of each sphere in the z direction is governed by Eq. (6.12), stuck spheres can
be removed from the surface.

Using the initial positions, the nonhydrodynamic force on each sphere and the
resistance matrix can be calculated. This creates a 3N x 3N system of equations that

must be solved numerically to obtain velocity.

6.3.3 Numerical Methods

Solving a large system of equations is computationally intensive. Exact procedures,

such as Gauss-Jordan elimination, require O (N?) iterations [Press et al. (1986)].
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Basic iterative procedures, such as Gauss-Seidel, require O (NInN) iterations [Press
et al. (1986)]. As a result, all numerical schemes limit the size of the system.

The resistance matrix is symmetric positive definite. Furthermore, since the sus-
pensions of interest are at high concentration and lubrications forces dominate the
hydrodynamics, Ry is sparse. These two features allow for more advanced iterative
schemes to be used such as GMRES or Conjugate Gradients. Convergence of these al-
gorithms is dependent on many factors discussed in more detail elsewhere [Trefethen,
L.N. and D. Bau III (1997)].

Previously, solving large systems of equations has also faced hardware limitations.
More specifically, calculations could only be made sequentially, regardless if they were
independent. Most calculations involving matrix operations are independent and thus
highly parallelizable. The increased availability of multiple core processors enables
some of these matrix manipulations to be performed at the same time. However, to
date, the largest number of cores available for a multiple core processor is eight [Intel
(2015)]. Therefore, a matrix of 3N x 3N is still limited to only eight calculations per
computer clock cycle.

Another innovation in algorithm parallelization is the ability to perform calcu-
lations by leveraging the computing capability of the computer’s graphics card. In
2007, graphics card company NVIDIA developed a new architecture for their graphics
cards which allowed the user to create highly parallelizable algorithms which could
be performed on the graphics card [Sanders and E. Kandrot (2010)]. To go with this
new architecture, NVIDIA developed a coding language known as Compute Unified
Device Architecture (CUDA). CUDA is a language based on C and has extensions en-

abling the graphics card to be used for scientific computing [Sanders and E. Kandrot
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(2010)]. Since CUDA is based on C, it makes it more accessible than other parallel
computing languages (OpenGL, OpenCL, etc...). Furthermore, the high demand for
enhanced video game graphics has driven graphics card companies, like NVIDIA, to
produce more advanced graphics cards that are also more affordable. The upshot is
that more powerful computation is available at a lower cost to scientists [Sanders and
E. Kandrot (2010)].

Since many linear algebra operations are highly parallelizable, NVIDIA has cre-
ated libraries in CUDA that perform many of the standard linear algebra operations.
The algorithms for these linear algebra operations are optimized to leverage the par-
allel capabilities of the graphics card. In addition, with the release of CUDA 7.0 in
the spring of 2015, the library cuSOLVER, became available. cuSOLVER contains
parallel algorithms designed to solve large systems of equations in parallel. CUDA
7.0 is the first release of CUDA with built in solvers, so future releases of CUDA will

most likely see inclusion of additional and more advanced solvers.



118

Chapter 7

Conclusions and Future Work

The purpose of this study was to understand and describe the mechanism(s) by which
nonmagnetizable spheres enhance the field-induced shear stress in MR suspensions.
We have employed a particle-level simulation technique to probe the effect of non-
magnetizable spheres on MR suspensions that contain a mixture of magnetizable
and nonmagnetizable spheres. Both monolayer and three-dimensional suspensions
exhibit a yield stress enhancement when nonmagnetizable spheres are added to the
suspension. Previously, monolayers were unable to show a yield stress enhancement
for suspensions containing both sphere types [Ulicny et al. (2010)]. We characterized
the microstructure of the suspensions by several measures, including volume fraction
fluctuations, pair distribution functions, and eigenvalues of the second-order mass mo-
ment tensor. Nonmagnetizable spheres cause monolayers to become more anisotropic.
However, in three dimensions, nonmagnetizable spheres make the suspensions less
anisotropic. Even though nonmagnetizable spheres cause different changes to the mi-

crostructure in monolayers and three-dimensional suspensions, the changes are very
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small (Chapter 3). The microstructure changes observed for suspensions containing
magnetizable and nonmagnetzable spheres are much smaller than the microstructure
changes reported for bidisperse suspensions [Kittipoomwong et al. (2005)]. There-
fore, microstructure changes caused by the addition of nonmagnetizable spheres do
not directly cause the yield stress enhancement.

Large amplitude oscillatory shear (LAOS) simulations show that the nonmagneti-
zable spheres increase the suspension stiffness. However, nonmagnetizable spheres do
not alter the transition to nonlinear rheological behavior. These results suggest that
the nonmagnetizable spheres directly participate in the stress transfer. Conversely,
nonmagnetizable spheres do not alter the stability of the magnetizable sphere clusters.

Snapshots of sheared monolayers reveal that the nonmagnetizable spheres par-
ticipate in stress transfer by forming repulsive-force clusters that are oriented along
the compression axis of the shear flow, similar to jamming. In hard-sphere disper-
sions, jamming occurs when shear-induced repulsive-force clusters form along the
compression axis [Cates et al. (1998)]. Examination of partial stresses, the num-
ber of repulsive-force clusters, and transient rheological behavior support that non-
magnetizable spheres directly enhance the stress via repulsive-force clusters. The
repulsive-force clusters contain both magnetizable and nonmagnetizable spheres; this
explains why nonmagnetizable spheres enhance the yield stress even though they are
unaffected by the magnetic field. The participation of the nonmagnetizable spheres
in these repulsive-force clusters also tends to enhance the magnetostatic contribu-
tion of magnetic sphere contribution to the total stress, shown in the partial stresses
calculated by force type.

The majority of the data presented has been for suspensions that are small in size
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(< 300 spheres). Previous studies were limited to even smaller numbers of spheres due
to the computational limitations of the sequential FORTRAN algorithms [Kittipoom-
wong et al. (2005), Kittipoomwong et al. (2008), Ulicny et al. (2010)]. In Chapter
6, we demonstrated that with the parallel simulations in CUDA can perform bigger
simulations in a fraction of the time of the FORTRAN algorithms. Furthermore, in
Fig. 5.13, the stress in the suspension depends on simulation size; larger suspensions
lead to a larger yield stress.

To study larger suspensions, a new algorithm for creating initial configurations
should be developed and implemented. The current method for creating random
initial configurations is similar to Monte Carlo (MC) methods. The MC-like algo-
rithms used to create initial configurations work by first randomly selecting a sphere.
Then, the randomly selected sphere is moved in an arbitrary direction. The arbitrary
move is then either accepted or rejected based on a criteria specified by the user.
When creating initial configurations, the only criteria is that spheres do not overlap.
This algorithm is currently performed sequentially and is difficult to parallelize. Fur-
thermore, for concentrated suspensions, very few moves are accepted because most
arbitrary moves will cause the random sphere to overlap with another sphere. There-
fore, the initial configurations do not become very randomized. Also, suspensions
containing a large number of spheres, this MC-like procedure is very slow. One possi-
ble method for creating initial configurations could involve Molecular Dynamics (MD)
type algorithm. The spheres would interact via a Lennard-Jones potential [Frenkel
and Smit (1987)]. Since the positions of each sphere are independent, just as simula-
tions of MR suspensions, an MD code is highly parallelizable [Taufer et al. (2010)].

Molecular dynamics algorithms do not rely on randomly selecting a single individual
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sphere at a time. Also, due to the repulsive interactions built into the Lennard-Jones
potential, the spheres would move without overlapping; in the MC type of configura-
tion creator, if a move causes the spheres to overlap, the sphere movement would be
rejected and the spheres would not move.

Furthermore, the CUDA algorithms need to be upgraded to improve their memory
usage. The forces in the suspension are symmetrical; the force of sphere ¢ on sphere j
is equal and opposite to the force of sphere j on sphere . The current algorithm does
not take this symmetry into account (Chapter 5). As a result, twice as much memory
is used than is required for the simulation. For simulations in double precision that
contain g 2500 spheres, the 2 GB memory on the current graphics cards contain
enough memory to perform the simulations. However, bigger simulations require
more memory than is available on all but the highest end NVIDIA cards [NVIDIA
Corporation (2015)]. Therefore, the algorithms should be upgraded to take advantage
of the symmetry.

Another area of interest would be the suspensions at low magnetic fields, men-
tioned in Chapter 2. In Fig. 2.4, suspensions coated with thiophosphate and stearate
have a lower off-state viscosity than suspensions which are not coated [Klingenberg
et al. (2010)]. To consider suspensions in the low-field limit, hydrodynamic interac-
tions must be included. Previous studies only examined the high-field limit [Klin-
genberg et al. (1991a), Parthasarathy (1998), Kittipoomwong et al. (2005)]. In the
high-field limit, the magnetostatic interactions are considered to be much greater
than the hydrodynamic interactions. Therefore, the hydrodynamic interactions can
be excluded when considering the high-field limit [Klingenberg et al. (1991a), Kit-

tipoomwong et al. (2005)]. For more information concerning the simulation methods
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in the high-field limit, see Chapters 3 and 4. One method for including hydrodynamic
interactions is outlined by Sierou and J.F. Brady (2001) and is known as Accelerated
Stokesian Dynamics (ASD). Accelerated Stokesian Dynamics is a method which uses
Fast Fourier Transforms (FFT) to speed up the traditional Stokesian Dynamics (SD)
algorithms originally outlined by Brady and G. Bossis (1988).

However, even though ASD provides a significant speedup over the traditional
SD, for concentrated suspensions, ASD is still slow. One reason for the large com-
putational costs is due to the inclusion of far-field hydrodynamic interactions. Ball
and J.R. Melrose (1997) demonstrated that, in concentrated suspensions, the far-field
hydrodynamic interactions were negligible compared to the near-field lubrication in-
teractions. In Chapter 5, we demonstrated that parallel computing in CUDA can
dramatically speedup simulations. To study suspensions in the low-field limit, the
method developed by Ball and J.R. Melrose (1997) should be employed in parallel.

Preliminary results from sequential code implemented in C are presented in Fig. 7.1.

In Fig. 7.1, apparent viscosity is plotted as a function of the Mason number
divided by the volume fraction, ¢. Diamonds represent three-dimensional results
generated using a sequential simulation implemented in C. Squares represent data
from simulations performed by Bonnecaze and J.F. Brady (1992) in two dimensions.
In both systems, the same trend is observed; as Mn/¢ is increased, /1., decreases
to a plateau. The numerical similarities are purely coincidence.

Figure 7.1 demonstrates that the Ball and J.R. Melrose (1997) method can produce
qualitatively similar results to SD. However, the systems studied in Fig. 7.1 are very

small (< 100 spheres). Therefore, a parallel algorithm should be used to include
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Figure 7.1: Apparent viscosity plotted as a function of the ratio of Mason number to volume fraction. Diamonds rep-
resents three-dimensional simulated using the algorithm outlined by Ball and J.R. Melrose (1997). Squares represent
data reported by Bonnecaze and J.F. Brady (1992)

hydrodynamic interactions.

The effect of nonmagnetizable spheres in the low-field limit is also unknown and
should be explored. Nonmagnetizable spheres will experience both short-range repul-
sive forces as well as lubrication interactions. Understanding nonmagnetizable sphere
involvement at low magnetic fields could lead to improved MR fluids. Experiments
could then be employed to determine if the simulations are indeed representative of

what happens in the real system.
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Appendix A

Viscoelastic Property Derivation

Viscoelasticity can be represented using a Fourier Series, expressed by,

o(t) = Y aycos (nwt) + Busin (nwt) (A.1)

n:odd

where «,, and [, are constants. The storage modulus, G', and the loss modulus,
G/, can both be calculated from «,, and (,, using a similar procedure found in Deen
(1998). The relationship between the moduli and the Fourier constants is given in
Ewoldt (2013). To calculate «,,, first multiply both sides of Eq. A.1 cos (mwt) to

give,

o (t) cos (mwt) = ;d a, cos (nwt) cos (mwt) + [, sin (nwt) cos (mwt) . (A.2)

Both sides of Eq. A.2 can be integrated over an integer number of periods, N,,.
Since sin and cos are orthogonal function, [y sin(nwt)cos(mwt)dt = 0 for all m

and n. Also, for m # n, [y cos(nwt)cos(mwt)dt = 0, which allows Eq. A.2 to be



125

simplified to,
/ o (t) cos (nwt) dt = / ap, cos? (nwt) dt. (A.3)
Np

NP
Since «, is a constant, it can be pulled outside the integral to give,

I, o (t) cos (nwt) di

B I, o cos? (nwt) dt -

(A.4)

n

The other viscoelastic constant, 3, can be calculated by following a similar procedure,
only sin (mwt) is applied instead.
From Ewoldt (2013), the storage and loss moduli can be defined by
G! =L (a,sin (nd*) + B, cos (nd*))

ST n :odd, (A.5)
G" = L (a, cos (nd*) — B, sin (nd*))

Y0

where 7 is the strain amplitude of the simulation and 0* is the phase shift. For the

simulations performed, the phase shift was absent, 6* = 0 to give

r 1
G, = L8,
" 1
G = —ap.

Y
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Appendix B

Mix Strain.cu

This appendix contains the code Miz_Strain.cu. This code is used to strain the
suspensions. Every n_print configuration is saved. Each configuration is then relaxed

using the code Miz_Relax.cu.



127

oy ‘arojaret ], ‘ilJ— = (14 9eY) JUN0dOR OJUl S} j0u seop//
wryIoSre sIyy Jer) 9joN " I10309A dprired oy spmq [ourdy siyy,//

{
{
{
{
{

}

(211 > 21) 1
‘[ 1]£ey Surppe yym Suriejiequr //
WOl Spealy) 9jeuIoje sjusald puewiod ppyorwole oy, "otoyds 1od//
SUOIORIOIUI JO IOQUINU [B}0) S} PPR 0} PIsh SI PULRWIWIOD Ppyorwoge ay [,/ /

(1 “([4ex) 7y )ppyoruoge

Slzxliz + (K414 + [xxlx = gx

{(Bewd /AT — T)xNh = (14
(ATxg" < Bewk) g1

{(Bewrx/x — T)xx = [1x
(xrp*g" < Sewrx) 1

{(f1iz)sqey = Sewz//
{(1£)sqey = Sewk
{([x)sqey = Seurx

‘[pn]z — [1]z = (12
[po]d — 4= (4
Ipnlx — [ix = fx
}
(r=i p1)yt
}
(++1u> 10 = 1)10}
}

(u> py) g

‘T ogur
‘Gewz ¢/ /iSewk ‘Gewx ‘g1 ‘(iz ‘14 ‘[(1x a|qnop
SXCXPPPRO[Q#X WI(NI0[q + X XP[peaIy) = PIj Jul
}
(zT orquop ‘A7 o[quop ‘xT o[qnop
‘u qur ‘grr oqnop ‘oprnaedx jul ‘ToquSroux jul

‘Aos[* JUT ‘Zk SIQNOP ‘A% SIQNOP ‘X S[QNOP)IDAYD proa — [eqo[s
‘oroyds yore 10J SUOIIDRISIUI JO IOUINU [RI0) O} SOR[NI[ed [UIdY SIT,//

{
{

‘1— = [p1a] oporyred
1— = [pn]ioquSieu
}
(wsre > pry) Jr
"SpRAIY) POpPooU URY) SjUSUWI[D//
Aelre a1ow aq [[Im 2197} ‘popped are sArire oy} ooulg ‘areyds 1—//
Ou SI 2191} 9sNBI9Q [— 0} poazieryiul ole Aoyj ‘popped ore sAeire oyl//
oourg  ‘uIorid ' UMOUY J0U SI SUOIJORIDUI JO IdquInu [e}0) o) yeyy//
10%] 9y} 10J yunoodoe 01 papped ore sferre 1oquslu, pue  opipred, ayy//

{
}

(uw> pn)j
*Aeire o) ul syuowald//
Jo Iaquunu oY} 0} [enbo SpeAI) JO IOqUINU © ATUO SMO[[R juatIele)s JT oY T,/ /

‘0= [pr]Ley

SXXPPROIHX WINP0[] + X' XPIPeaIy) = P} jul
‘serre oyy//
JNO 0I9Z 0} PP PRI} [OBS IO XOPUI pealr) onbrun e sejyesrd siyl,//

}

(re qur ‘u qur ‘oprareds qur ‘roquStoux Jul ‘Aos* JUT)0I0ZAOY PIOA — [eqO[S

" 9S1] I0qUSIoU 1) I0J POpadu sAeIIe 9} [[@ S90I9Z [0y SIYL,//

oIS |ZIS SIDOTH duyop#

<UOO[[eUI  90IAOD/ISTLIY1> SPN[OUTH
<Y'991] 901AOD/4SNIY)> opNoul#
<I['10)09A™ 901ASD /ISTLIT) > SpN[OUIH
<Y'I0909A 150U /SNIY) > opn[oul#
<T["}MI0S /9STLIY)> OpNIUlHA#

<Y Ueds/ISNIY) > opn[oul#
<yrowir}> opnpoul#

<Yyyeur> apnpulzf

<[ epno> opnul#

<Y OIp}s> opn[oulF




128

Seaaq
(1reys = qredy) Jr
{[aunooy 4+ pry]eprpred = jredy
*10] pajunodde//
u99( 9ARY SI0qUSIPU [[e 91 9snedaq//
dooy oty yeorq ‘jou Jr oprjred oures oyy//
pe Suroo] [[IIS SI PedI) oY) JI suruLIpP//
{++4unooy
‘royds( = [junoo) 4+ pryjioquSieu
(1oydsl =i q1edy) ww
}
(e11 > g1t

Chzxliz + (4«6 + (x*ix = gx

{(Bewk /AT — T)*14 = (1€
(£7*g" < Sewk) p

{(Bewx /xT — T)xlx = [1x
(%G < Sewrx) J1

{(lrz)sqey = Sewz//
{(1€)sqey = Sewk
{(x)sqey = Sewx

{{1redy|z — [1oydsl]z (1z
{{qredy]£ — [1oyds(]4 14
{{aredy)x — [1oyds(]x = [1x

}
(++aoyds( ‘u > 1oyds( {9 = 1oydsl) o]
doof oy} syxe 91 ‘1Y ST sey ofd1yred //
' SIOQUSIOU JO I9quINu o9y} 20UO0 ‘1oaomoy ‘ soporired [[e 1oao door//

fqae)s = gqaedy

{ pra]eprred = jreys

“puy 03//

Suik1y st 91 s1oquSrou asoym opprpred oY) pealyy ayj s} SIyl//
}

((0==pn | [t — prr]opnaed = [pn]spnred))

{0 = junooy
Aeire 1oquseu oyy//
Suryendod uayMm SONRW PRAIY) € SUOIPRIT JO I9UINU ) SJUNO0D junody//
}

(1— =i [p1]oprred ) g

}

(wsre > py) r

(Sewk ‘Gewrx ‘gr ‘1z ‘14 ‘[1x syqnop
fqunody ‘reydsl ‘qredy ‘gqreys gur
X XPIHRO[Q*X WINI0[] + X'XP[PedIy) = P} Jul

(Te jur ‘zrg oqnop

‘AT o[qnop ‘X o[qnop ‘g1 o[quop ‘u jur oporredx jur
‘roquBrous qul ‘zk 9[qnop ‘Ax a[qnop ‘xx a[qnop)arendod proa ~ [eqo[s
*, 9pnired | 109094 oy ur oprpred oyj yym Surjoersyur//
ore sopIpred YOIYM [IIM I0909A IsI] IoquSiou oY) sojendod [outey siyy,//

{
{
‘pry = [1] oporyred
(++1 ‘pue > 1 :3oq = 1)10]

‘[t — puldox = Soq
os[o

{0 = Soq
(0 == pm)Jt

‘[pra]4os = puo
sey oprred yoeo suoljoerour //
%.AH.QEH .?wOJ UQOA:—U OQ@ :Oa 0l OA:QA:OU MOQ U:ﬂu. 130\\
}
(uw> p)p

‘pue ‘Soq ‘1 quI
XXPIOOIG+X WINPO[] + X' XPIPedIy} = PI3} jul

(u qur ‘opryred s qur J

‘fox]x qul ‘Zx 9[qNOP ‘Ax 9[qnop ‘Xx* o[qnop)dnyes proa ~ [eqo[s

", 18u9] Arire, I0] spuels [e “Ux[e Aq paregnqg ore toqusweu,//

pue , oprred , s10100A Yjog sey oprred yoeo suorpoersyur//

Auewr moy uo Jurpuadep [[— ‘I— ‘I—"""'g ‘g ‘Z ‘T ‘T ‘T ‘T ‘0//

‘0 ‘0 ‘0 ‘0]= oporred :oyI[ Suryjowios S[qUIESAL [[IM 10909A o[dIpred //



129

D * (dex — ((31) / (0°¢ — €D) * waelt)) = [pra]z
(1 / 0&) * (dox — ((y1) / (0T — 2D) * wnly) = [pn]4
(a1 /) [x) * (dex — (1) / (0'T — gD) * wwln)) = TUETQ

((10°0/(1 — 0°'1))dx0 = dox

‘gixg1 = ya//
(DRI IRD = PI
0*D*0°¢ = gD
affiz =p
{(ga)yabs = 1

}

(ox01 > ga) Ju

clizxliz + (AL + [xx(ix = g1

{(Sewik / A — * (1A = (14
T— 1
(A7 * g'0) < Sewd) g
{(Sewrx / xT — 1) * [x = [1x
(T % ¢°0) < Seunx) g1

{(18)sqey = Sewk
{(f1x)sqey = Sewrx

iz — [(lz = [
& — (4= [k
Tix — [fx = fx

Bewz — (00°g/271) = ym
{([1]z)sqej = Sewz

‘el wirer = wraglt
{(]Koy Sewr(o[qnop) = urregl
{[1]£ox Sew(eiqnop) = w9

‘[pra]aoqu8rou = [
[ pry]oporyred = 1

‘Speall} JUSISJIP Ux[e U0 paje[no[ed are [ pue 1 asnedaq sdooy/

ou oIe 21971 ey} SI 9OUSISHIP A[UO Oy, 'SOpPod ue1}I0]//
o[} UI 9UOP SI JRUYM 0 Ie[IWIs AIdA ST 9pod ayj jo jred siyy,//

(1— =i [p1a] opryred ) g

(e > pr) gt

‘17 “14) ‘g e[quop

‘dex ‘gpx ‘gD ‘D erqnop

‘et ‘wreg[ ‘waedr ‘ym orqnop

fpur ‘u ‘gr ‘ddz siqnop

1 ‘g1 ‘Sewz ‘Sewk ‘Sewx ‘[1z ‘14 ‘[1x s[qnop
0T qun

X XPIHOO[Q+X WI([NO0[q + X'XP[PeaIy} = PpI} Jul

(re jur ‘909zx o[qnop

€9034J* 9[qNOP ‘)0IXJ* S[QNOP ‘OI d[qnop ‘Aoy Seurk Jul

‘¢ oporpred x qur ‘IoquSteux Ul ‘Z S[qnOp ‘AT o[qnop

XrT 9[qnOp ‘g 9IqNOp ‘U Jul ‘ZJk S[qNOp ‘AJk o[qnop

XJ# O[qNOP ‘zk S[NOP ‘A% 9[qNOP ‘Xx 9[qNOP)d[ed 9010 PIoA —  [eqO[S
‘[outey Iegey//
® Ul 9UOp ST SIY T, . Oﬁ.uﬁv,:wg [Joeo UO 9210 [Bl0} 9y} Op.ﬁjﬁujwu\\
LON seop 1] ‘[1q 9210] orureufpoIpAyuou yoes s9je[noed [9uIdy sy l,//

{
{
= [pn]7
= [pn]4
[pa]xg

SES
([

}

(wire > py) gt

{

‘0 = [o]nes

[p13] 10975
[Pra] 10345
‘0= [pu]rorg

SS
({l|

}
(u>pn) ;t

X XPPPO[#X WIHO[G + XXPIPeo) = PI} Jul

(roquSeux jur ‘opupreds jur ‘neyx d|qNOP
‘e jur ‘909zjx o[qnop ‘J01AJx 9[qNOpP ‘30IXJ* 9[qNOP
‘u qur ‘zyk 9[qnop ‘AJx 9[qNOP ‘XJk S[NOP)ddI0J JIUI PIoA ~ [eqo[S
019z 0} $9010] 9y} [[e 19S//

{
{



130

siy], - oIpred oy) UO [[em 9Y) WOIJ 90I0] 9Y) soje[no[ed siy,//

{
{

‘zuns = [Kexpai] 1097]
‘Awns = [Koxpoi] 1014
‘xwins = [Keypa1] 101xJ

[ pra]oporyred = AKoypaur

{
{ 1]opo1yaRd = PO
T
{14173 =+ zwms
{1+1]45 =+ Awns
{1+1)x3 =+ xwmns

}

([1+1]o1o1900d == 30070 )orTYM

9010] oty Surrejol//
dojs ‘oporired JUAISPIP ® soyoRal 91 20U - 9[dIpIed //
QU0 SULIOPISUOD ATUO ST pRAIY) OY) 1Ry} dIns soyewt sIyT,//

P =1
{{pra]zy = zwmns
{pn]4y = Lums
{{pry]xy = xwms
}
([t — pr]opnied =jpop | 0 == pn)H
“oprred yoea//
UO 90I0J 9Y} [B10} O} 9OUO je PozI[IIn Juleq ole mvmo.ﬂu\\
u A[Uo ‘o10JoIey ], I pulyeq peaiyy oy} se odijred auwres//
91 e SuOO[ jJ0u SI p11 YO O opnted e syoo[ pn ji//

[ pra]eporyred = oot
SurIepIsuod ST peary) oY) oIIred YIIYM SIYIIUSPT DAY, //

}

(1— =i [p1] opnred) jx

}

(e > pn) gt

‘zuns ‘Awns ‘xwns a[qnop
(Koypax ‘Maypd ‘1 qur
XXPINPO[Q*X WI(MI0[q + X XPIpPeaIy) = pI1 qur

(re yur ‘roquSteux Ul ‘W Ul ‘DI A[NOP ‘z] S[NOP
‘Ao Bewrx qur ‘opljredk qur ‘403ZJ* o[qnOpP
$10947% o[qNOp ‘109XJ* 9[qNOP ‘ZJ* S[qNOp

‘AJ* o[qNOP ‘XJk S[qNOP ‘Zx 9[qNOP)[RI0) 9010 PIOA ~—  [eqO[S

Koy Aq woryonpar//

® sl SIYJ, "9[o1ded Yoes U0 9010] dIRUAPOIPAYUOU 9y} S[e10] SIYT,//

{
{

‘1z =+ [pra]zg
Ty =+ [prr] 4y
gy =+ [pn]xy

Pu/(0e — D)0 = 17 //
/(0T — 20)*(1/ k) = 14 //
P1/(0T — gD)*(1/lx) = g //
F /(0 — gD) * wInlr x D=1

P /(0T — D) * wIeylt x (1 / (1K) = 14
P /(0T — gD) x w1 x (1 / (x) = 9

‘glkg = pu//
ST LIk LI = PLI
O*D*0'e = 2D
‘u/ddz =
{(gu)ybs = 1

}

(ox01 > gur) 1

(A % (14 + [1x % [1x 4+ ddz « ddz = gu
1]z — [(]z — 2T % (Sewz / [1]z) = ddz
}

(1> ym) g1

{



131

(++1fu> 10 = 1)I0]

9p * [pr3]soizz = zp

{0 = neyx
} {([pr7)sqey = Feurz
(0 == pm)J
}
1 qur (w> pu)xn
SXCWHOO[*XXPPPO[] + X XPIPedIy) = pI} jul
(2T o1qnop J ‘zp ‘Ap ‘xp ‘Sewz ‘Sewk ‘Sewrx o[qnop
‘U qul ‘nek SIQNOP ‘401XJx S[qNOP ‘Zk S[qNOP)O[BD NB} PIOA ~  [eqO[S X XPIOO[Q+X WI(NO0[q + X'XP[PeaIy) = pI} Jul
Tpmy oyl ur ssaIs oy sejemore))// }
(zsqepx a[qnop
{ ‘Asqepx* 9[qnop ‘Xsqepx 9[qnop ‘Jp 9[qnop ‘pS o[qnop ‘u jul
{ ‘zrT o[qnop ‘AT o[qnop ‘X7 9[qNOp ‘109ZIx S[qNOp ‘1034J* S[qNOP

{(Bewk/L7 — 1) =* [pn]4
(47 % g0) < Sewk) 1

{(Sewrx/x — 1) =* [pra]x
((x71 * g'0) < Sewx)Jt

{([pra]£)sqey = Sewd
{([pra]x)sqey = Sewx

‘zp =+ [pra]zsqep
Ap =+ [pm]4sqep
Xp =+ [pnxsqep

zp =+ [pn]z
“Ap =+ [pn]4
xp =+ [pn]x

{

“p x ([pra]1014y) = Ap
apx (21 % g0 + [pn]z) * P8 + [pr]101x)) = xp

}
9so
{
P * 2T * pS = xp
os[o
‘0 = xp
(0> [pn]z)n
‘0 = 4p
}

((g0" — g — (#71 * g°0)) =< Sewz) j1

‘909XJ* 9[qNOP ‘Zx 9[qNOP ‘A 9[qnOP ‘X o[qnop)sod orepdn proa ~  [eqo[s
" [e[rered ur A[uo spoo uweryrof o1/ /
se owres oy} Aferjuesse sI sty ], - opnIed yoes jo uorsod oy sorepdn siyy,//

{
{
{

{(Bewiz / [pn]z) * mz] =+ [p11]1097]

(UIR) — TULIS) = MZ]

(100 / (um — g0))dxe = gurioy
‘08 / (Pum / 0°'T) * WIey = UL
YMKYMAFYMKYM = FUM

}

((o1 % ¢0) > ym) j1

‘ewz — (00°g/2T) = ym
{([p1a]z)sqey = Sewz
{[p1y]£ox{ Sewr(s[qnop) = wIe)
}
(u> pra)jt

IMZz] ‘guIe) ‘TuIe) ‘Sewz ‘WiIe)l ‘FUym ‘ym o[qnop
XXPIPOIA+X WINPO[] + X' XPIPedIy} = PI3} jul

(neyx aqnop
9014Jx o]qNOp ‘)03XJx S[qNOp ‘Aoy SJewx Ul ‘DI o[qNOpP
‘u qul ‘409zZJ* S[NOP ‘zZ] S[qNOP ‘Zk J[qNOP)[[eM” 9dI0] Ploa ~  [eqo[3
‘U I9AO UOTJRIDII OU SI 9197} A[UO 9pOd URINIO] oY) 0} refruars A1j01d si//



132

{OI%0I = oI

foot]Imo 3 ‘[ooT]3no p

‘loot]ur—d ‘[oot]mo™y ‘[ooT]amod ‘[og] 13 reyp

‘{(andurred) esoro] ¢ 9xy's1ogourered, = [|s1ojowrered  Tetd

{(ymdur red‘pg‘9)s1a8yi (e zg‘, pYy,, ‘mndur red) Jueosy HINTORI=Toh () ENG g ) G

{(ammdur red‘g11)s1081! ([e2y‘ , pY, ‘Indur red) Jueosy YNOT sqep* ‘N0 ek ‘INO oW}

{(mdur red ‘pg¢19)s108)¢ (sdoys| 2y, Py, ‘andur red) jueosy ‘ndno sodx ‘ndur redx ‘ndur sodx  HIIq
{(andurred ‘0 1) $1087 ¢(1123¢ 1%, ‘mdur red) juessy STINAN = P zsqepx

{(amdur red‘Qg‘1)s108¢ (pertueszy* 1%, ‘mndur red) Jueosy ‘TINAN = P Asqepx “TTN = P XSqepsx* o[qnop
{(andur red‘g‘)9)s1a8y: (eSomozg¢ 11y, ‘mndurred) jueosy TIAN = Y zsqepsx

‘(mdurxed ‘0g‘ 11)s1085: (P82, J1%, ‘yndur red) juedsy “TTIAN = U Asqeps “TTAN = U Xsqeps d[qnop

{(andurred ‘0g‘ 19 ) s308] ¢ (0e110029¢ J1%, ‘andurred) juedsy towrr,pesdefo  jeop

((mdur red ‘0g‘ 13 )s308): (Yo J1%, ‘mdur red) jueos ¢ 100108 © e Jur

d d* Sy (29 J1%, ‘md d) yueosy s o1y ‘[

wMuzmﬁlgdmﬁowr ﬁwmaumm WAAQSM"_,.:,w\o,_J:&Eludmwmmdomw {0 = JUNod epno Jurt

{(mmdur red‘pg‘ 11)s1081: (1p29° J1%, ‘ndur  xed) yueosy ‘rowin) qur

{(mdur red‘pg‘19)s108)¢ (yutaduzy‘, pyy, ‘andur red) jueosy qremxp ‘8 ‘ewrtneSd ‘ouwrry ‘gewrwred ‘eSowio  S[qNOpP

{(andur red‘pg‘19)s108y: (sdoysuzg’, py,, ‘andur  red) yueosy {jojewrry ‘SarT ewIIlD ¢ () = J0) QWD S[qNOp

{(mmdur red‘pg‘11)s108! (1SN 2y, Py, ‘andur  red) jueosy STIAN = P ek TN = Y nelx o[qnop

{(andur red‘Qg‘11)s108y: (uzg, py,, ‘andur red) jueosy $g1 ‘goa ‘erayds ‘11 ‘pd s[qnop

{(amdur xed ‘0g* 11)s108]¢ (2123 J1%, ‘andur 1ed) jueos] {0RJIIOD ‘TPl ¢ oI ‘9p  ‘z ‘AT ‘X o[qnop

{(yndur red ‘0g*19)s198)¢ (A123¢ J1%, ‘mndur xred) jueosy TINAN = Y Tedzpx “TION = Y TedAgx ‘TTON = Yy Tedxj* o[qnop

{(amdur xed ‘0g*11)s198]¢ (X129 1%, ‘ndur x1ed) jueos] TIAN = 109125* “TTOAN = 10143+ TTOAN = 201XJ* 9[qnop

(1, ‘s1ogourered)uadoy = ndur red TINN = ZP+ “TTIOAN = &+ “TTOAN = XJ* o[qnop

"TIAN = 2+ “TIAN = & “TIAN = X* 9[qnop

"TTAN = Pzx “TTIAN = PA* “TTAN = pXx 9[qnop

‘Xopur ‘Y ‘1 Jut

¢ sdogs ‘“quradu ‘sdegsu ‘gaeysy ‘u ¢ = [ oponjredsx Jurt

dogs mdu ‘sd 3 U CTIAN = Y operred I

{(,m, ‘mo p)uadoy = 9no” ney TTAN = Y JoquSeusx ‘TN = PAeY Sewx ‘TN = Aoy Jeuux jur

{(900708™ B[y, 1X1 PYINO” nvY “no 1) Jrurads STTNAN = IoquSousk ‘TTAN = opniedsx ¢ TN = Aoy qur

{(,m, ‘Mo j)uodoy = MO~ 9210
‘(909108 O[¢,1x1 Py Ino ared  0o10], ‘o ) jyurads

{(,m, ‘Mo p)uadoj = N0~ sqep
‘(109708 o[y 1X1 Py N0 sqep, ‘no  p) Jpurids

{(,1, ‘urd)uadoy = yndur sod
{(109108 B[Y¢, 1%y otowr pgy,uonysod  ‘ur d) jyurids

{(,m, ‘mod)usadoy = yndyno™ sod
‘(909108 o[y, 1%1 Py o uoryisod ‘ano  d) jyutads

}

(proa)urewr jur

{(<gur>ayde01A0p 1 SNIYY ‘gul ‘D[qnop ‘e[qnop ‘aiqnop ‘qur

‘OIqNop “k UL k¢ JUI ‘k UL ‘x S[QNOP ‘k S[NOP ‘x 9[qNOP ) ISI[U PIOA

([ r]101xg)k[1]z =+ negx//
130133 =+ nejx

{

{

{0 = 199[0s o[y }
(oo —¢o0— (0z/2z1) < ([1]2);n
‘13 ‘01 ¥ o }



133

‘([0]1109x329)150 10quIOd  MRI:IISNIYY = J0IX]* S[NOP

‘0 = [1jq Tedzy £(1)1709Z] <O[NOP>I0O9A™ OIIAIP :: JSNLIYY

‘0 = [1y red4y {(1)17014] <o[qNOP>>I10109A~ 9DIASP :: ISTLIY[)

‘0 = [Ty Tedxy £()1709X] <O[QNOP>IO0JOIA™ OITAJP :: JSNIYY

‘0 = [1Ju zsqep

‘0 = 1]y 4sqep {([0]apz2zy)1seo 10gurod  MEI:|SNIY) = PZk S[NOP

‘0 = [1Jy xsqep {([0]apAzy)aseo 1oquiod  mer:iysnay) = pAx o[qnop
{(([1]Loxy Sew)2y ¢, pYyy, ‘andur sod) jueosy ‘{([0]apx2y)1seo 1ogurod  meI:ISNIY) = PXx d[qNOP

{([1]2)73 ‘. 31%, ‘andur sod) yueosy

(([YK) 29 ¢31%, ‘andur sod) jueosy {(u)1pz <O[qNOP>>I101D0A 9DIADD :: JSNIYY)
()2 “J1%, ‘mdur sod) jueosy {(u))pA <B[qNOP>I10909A~ 9DTASP :: JSNIYY
{(oroydszy ¢ 11%, ‘mdur sod)jueosy {(u)IpX <OIqNOP>>I0)00A~ 9I1AJP :: ISNIY )/
} {((a1qnop)joazis * U ‘p~ zsqepP2Y(**PIOA) )OO RINBPND

(++r1fu>1ép=1 )iI0J {((erqnop)joozis * u ‘p— Asqepzy(xxProA))do[[R]NBPNO
{(ymdur sod ‘pg* 13) 1085 {((orqnop)joozis * u ‘p xsqepzy(x*Proa))d0[[RINBRPND

{(,1, ‘uorpisod)uadoy = qndur sod//
{((orqnop)joozis * u ‘pzzy(**kPIOA) )0 R\ RPN
{(£oo)asnayy Aoy <qur>ayd eo1A0p ::snayl// {((e1qnop)jooazis * u ‘pAZg(s*kPIOA))OO[[RINBPNO
{((e1qnop)joozis * u ‘pxzp(s**kPIOA))0[[RIN RPN

{((qur)joozis  x u ‘pAey[  Seurzy(#*PIOA))DO[[RINBPND
{((qur)joazis * U x e ‘10qUS1ouzy (**PIOA))d0O[[RINRPND {((qur)joozis x u)oo[rewr(xjur) = Loy Jew
{((qur) Joazis * U * [e ‘a[o13red2y(**PIOA))OO[[RINBPND
{((qur) yoozis % U ¢ Kox2p(sk*PIOA))OO[[RINRPTIO ‘0 = Uy nejx
{((erqnop)joozis ‘p~ ney2y(**PIroa))d0[[RINBRPND
901A0p i asnayy// ‘((e1qnop)joezis)oo[rew(x o[qnop) =  nej
{((erqnop) jooazis x u x e ¢ 7323 (**PIOA) ) 20[[RINBRPTD {((qur)joozis # u x Te)dO[RUI(* yur) = Y eprjred
{((erqnop) joozis * u * e ¢ K329 (++PIOA) ) D0[[RIN RPN {((qur)joozis x u x [e)oo[ew(x jul) = Yy JIoquSou
{((erqnop) yoozis * u * T ¢ XJ29 (**PIOA) )OO RIN PO
{((e1qnop) joozis * U  [e)oO[eW(* o[qnop) = Y 1edz]
/#:([0]32529)3se0 Toqutod MRl ISNIY) = ZJx 9[qNOP {((erqnop) joozis * u x Te)20[ewW(* o[qnop) = Yy redLy
{([0]24329)1se0 T0qutOod MRI:ISNIY) = AJx 9[qNOP {((e1qnop) joozis * U # [e)oo[eW(* o[qnop) = y Iedx]
{([o]axg2g)aseo 1oqurod  mel:)SNIY) = XJx 9[qNOP
{((e1qnop) joozis * W)JO[[ewW(x 9[qnop) = T zsqep
{(wkur)1z] <O[qNOP>>I0409A°~ 9DTADP :: JSNIYY) ‘((e1qnop) yoozis * U)20[[eW(* o[qnop) = 1 Asqep
{(uxur))Ay <9[qNOP>I10409A~ 9OTASP :: JSNIYY AAEQSOvv Joozis * :voozﬁa? wzso@v = U Xsqep
{(uxur))xy <O[qNOP>>I0)00A~ 9I1ASP :: JSTLIY}k /
{((e1qnop) yoozis * W)OO[[ew(* 9[qnop) = z
{((o1qnop) joozis * u % @ ¢ 109229 (**PIOA))OO[[RINRPNO ‘{((e1qnop) joozis * U)OO[[eW(* 9[qnop) = £
{((e1qnop) Joozis * u * e ¢ 9034J29(**PIOA))dO[[RINRPND ‘((e1qnop) yoozis * U)20[[ewW(* 9[qnop) = X

{((e1qnop) joozis * u % @ ¢ 101xJ29(**PIOA))OO[[RINRPND

«:([0]17012129) 150 10quIod T MBI:ISTAYY = 101Z]* S[NOP
([0]17094329) 1500 10quUIOd  MRI::9SNIYY = J094)* S[NOP Cas[I = g



134

{()ozruoaypuigpealy ] epno

{(gsnayy Loy ‘e ‘z ‘A7 //
xrT ‘u ‘gra ‘Aey ‘eprned ‘roquSeu ‘pz ‘pA ‘px)asiu //
(0 == (sdeasi)) 31//

fouIn) * z x P8 = [[emXp

(0 == oumy)j1//

/#*!()ozIuoayoudgpeary,Jepno

{(p ey 90943 “o1xg ‘pAey Sewr ‘or ‘u ‘109z] ‘z] ‘pz)

<<< |ZIS DO ‘HAZIS 00T/ (W + "ZIS SO0Td) >>>[[em 9010]
{()ozruoayoukgpeary,Jepno

{(Te ‘roquSreu ‘u ‘o1
“quﬁhox\mwﬁroﬁﬁgmJOEJofﬁpaopuﬁwrxm,%w“x.%rwuxv

<<< HZIS MOOTd ‘ HIZIS MO0Td/ (ke + H7ZIS SIDOTL) >>>[e10) 0010§

{()ozruoaypuigpealy ] epno
{(10quSteu
‘opned ‘pney ‘[ ‘j03z5 30343 903X) ‘U ‘73 A} ‘X))
<<HZIS MDOTA'AZIS MOOTd/(Wx[e+HZIS MOOTd)>>>0010f j1ut

{(asnayy Loy ‘Te ‘z ‘A
xrT ‘u ‘gra ‘Aey ‘oprnred ‘roquSou ‘pz ‘pA ‘px) 9sIu
(0 == (sdoasi))

‘zrpxewrueSp = [emxp//

4p/ewruredp = ps//

‘proewrures — ewwes = ewwesp//
{(posuwrxeSowo) urskgewures = proeurwes//
{(owryxeSowo) urskewwes = vurures/ /
{(1—) (e1qnop)*1p = proswy//

S(erqnop) * 3p = owry

}

(445 (T + sdegsu) > 3 ‘fyreysy = ¥)10]
(3pop = 0

{//

{(8 “ewrred ‘owny ‘ U\JZT'9TY%  JIGT'91% 1%, 9no ney) jruuady //
‘gewrwed/ /iy neyx = 8 //

a0 nejx = 3//
(0 1—2T)*L&TxxT)/ /(U nepxk—) = 4 neyx //

{(1sooT P01 AdowaNepno ‘(9[qnop)joazis ‘p- ney ‘y  nej)Adoweyepnd //
{(z7 ‘u ‘pmey 401Xy ‘pz) //

<<<HZIS MDOTA ‘@ZIS D014/ (W + IZIS™ SID0Td)>>>01e0 ney //
‘fowrry x p8 = ewwres //

Towinyx)p = owiry //

H/

{()ozruoayoukgpeary,Jepno
{(re ‘909z7 90943 909x] ‘O1 ‘pAoy Sewr
‘oprared ‘roquSeu ‘zr ‘AT ‘xT ‘gor ‘u ‘zf ‘AT ‘xJ ‘pz ‘pA ‘px)

<<< HZIS MOO0Td C HZIS MO0/ (ke + HZIS SMOOTd) >>> d[ed 0010§

{()ozruoaypuAgpealy epno
{(p ey ‘Te ‘g01z1 ‘1014 ‘101x] ‘u ‘z1 ‘A1 ‘x7)

<<<HZIS MO0 ‘HZIS MOOTd/(uxe + JZIS MOOT)>>>00105 piutx/

{(uw)<qur>oo[[eut 901Adp::ISNIY) = ISnay) Aoy <jur>1yd  eoraep::gsnayy//

{(quensdogszy )erear)usAyepnO
{(JUOAF11R)S7R)91ROI) JUSA RPN
Huaa{do)s ‘QUeAT )IR)S § JULAHRPND

{(snayy Koy ‘e
‘zr] ‘AT ‘X7 ‘u ‘g1 ‘Aey ‘oporured ‘roquSeu ‘pz ‘pA ‘px) Isiu

WA:VAuEVoo:@E\@o_g?“um:Eu = gsnay) Aoy <jur>I1jd  ed1ASp :: JSIIYY

‘(901890 350 AdoUwo N RPN
‘(erqnop)joozisxu ‘y- Asqep ‘pzsqep)Adows\epnd

‘(901890 350 Adowo N R PNIO
‘(erqnop)joezisku ‘y- Asqep ‘p- Asqep)Adows\epno

‘(9018901 350 Adowa N R PTIO
‘(erqnop)joezisku ‘Y- xsqep ‘p xsqep)Adowe\epno

‘(901890 350 AdoUwo N R PNO
‘(qur)joazisku ‘Aoy Sewn ‘pAey|  Sewr)AdowLN RPN
{(eo189(0T 350 AdoWRRPND ‘(S[NOP)JoaziskU ‘Z ‘pz)Adowe\epno
{(eo1a09(q0 350 Adowaepnd ‘(a[qnop)joazisku ‘A ‘pA)Adoweyepnd
{(eo1a9(0T 350 Adowa N ePNO ‘(S[qNOp)Joazisku ‘X ‘px)Adowejyepno

‘{(andursod) aso[og

{



135

{(1soo] @o1r0 Adowa N RPN
‘(orqnop)joozis * u ‘pzsqep ‘Y zsqep)Adows\epnd
{()ozruoaypuigpeay, ] epno

{(9soHo @o1a0 AdouwaNepno
‘(ea1qnop)joazis x u ‘p—Asqep ‘1 Asqep)Ldourejyepnod
{()ozruoaypuigpeay ] epno

‘(9800 @o1a0AdoWwIaIARPTIO
‘(erqnop)joozis * u ‘p xsqep ‘Y xsqep)Adowejyepnd

{()ozruoaypuigpeay, ] epno

{(1soHoT @o1a0 Adouwa N epno
‘(e1qnop) joazis x U * [e ‘z] ‘q  redz])Adows\epPNO
{()ozruoaypuigpeay ] epno

{(9s0HO] @o1a0AdOIBIARPTID
‘(erqnop)joozis * u * Te ‘A1 ‘qredAy)Adowa\epno
{()ozruoaypuAgpeary epno

{(1so o] @o180 Adowa N RPN
‘(orqnop) jooazis * u x e ‘xJ ‘U4 redxy)Adowe\epnd

{()ozruoaypuigpeay ] epno

{(9soHOo o180 AdOIBIARPTID
‘(e1qnop)joazis x u ‘pz ‘z)Adowe\ RPN
{()azruoaypulgpesy 1epno

{(1soH o] @o1a0 AdowaN RPN
‘(orqnop)joozis * u ‘pA ‘K)Adowe\epnd
{()ozruoaypuigpeay, ] epno

{(1soHoT @o1a0 AdouwaNepno
‘(erqnop)joezisx u ‘px ‘x)AdowejNepnd
{()ozruoaypuigpeay,epno

{(9s0H0] @o1a0AdoIaIARPTID
‘(erqnop)joazis ‘p- neq ‘4 ney)Adowa\epno

{()ozruoaypuigpeay Jepnos//
{(z7 ‘u ‘p mey ‘q001x3 ‘pz)//

<<<HZIS MOOTI'HZIS MO0Td/(U+HZIS SMDOTd)>>>0es ney//

O S u\ AN o\ AN\ Py u\ \\\\, ¢ o ed10f) Jrutidy
G0 S\ AN o\ AN\ Py i\ \\\\, ¢ 9mo™sqep) jautady
01 u\ AN w\ A\ Py » ‘mdino ™ sod) jyurady

(1 u\pY,) Jruad

(0 == quudu 9 3) Jt

{4+4junodo™ epno
‘owir ] pesde[e =+ 903" awI}O

{(yuengdogs ‘quoaryrre)s ‘owur ] posderazy)ouur ], posde[q U epno

{(yuarygdogs)ezIuoIyouAgIuoA epno
{(0‘yuenrdols) pioosusa RPN

{(p ey ‘90943 ‘909xg ‘pAey Sewr ‘ox ‘u ‘j09z) ‘z ‘pz)//
<<<UZIS MDOTHZIS MOOTE/ (U+HEZIS™ MDOTe)>>>rem 90103//
‘(e ‘roquSlu ‘u ‘ox ‘zry//
‘pAoxy Sewr ‘opryred ‘901z] ‘9014] ‘109x] ‘z A} ‘x] ‘pz)//

<<<HZIS MDOTA'|ZIS MOOTd/(uxe+HZIS MO0Td)>>>[ej0) 2010§//
{(1e ‘109z] ‘10947 ‘909x]J ‘01 ‘pAey Sewr oporyred //
‘roqu8rou ‘zr] ‘A ‘xrT ‘gox ‘u ‘zg Ay ‘x3 ‘pz ‘pL ‘px)//

<<<HZIS MOOTAHZIS MDOTd/ (Wxe+HZIS MDOTd)>>>0[80 9010§//
{(p ey ‘Te ‘g01z1 1014] ‘101x] ‘u ‘z1 ‘A ‘xg)//

<<<UZIS DO ‘|ZIS MDOTd/ (Uxe + HZIS™ MDOTd)>>>00105 jtut/ /

{()ozruoayouigpeary ] epno

{(p~zsqep ‘P Asqep ‘p xsqep ‘1p

‘pS ‘u ‘zr ‘AT ‘xT ‘909z] ‘9034 ‘409x] ‘pz ‘pA ‘px)
<<<HZIST MPOTA'AZIS MDOTd/ (U+EZIS™ MD0Td)>>>sod egepdn
{()ozruoayoukgpealy 1 epno

{(p ney 90943 “4oixg ‘pLey Sewr ‘o1 ‘u ‘909z ‘z] ‘pz)
<<<HZIS MOOTI'HZIS MOOTd/(U+HZIS MOOTH)>>>[[em” 9010§

{()ozruoayouigpealy,J epno

{(re ‘roqulu ‘u ‘ox ‘zg

‘pAoy[ Sewr ‘oporyred ‘101z ‘1094] ‘101xJ ‘7] ‘A] ‘x] ‘pz)
<<<EZIS MOOTA'HZIS MOOTH/ (WHB+HZIS MOOTH)>>>[e303 010§
{()ozruoaypuigpeary Jepno

{(re ‘909z3 ‘90947 ‘901x] ‘01 ‘pAey Sewr ¢ oporyred

} ‘roqueu ‘zr] ‘A ‘xT ‘gox ‘u ‘z] ‘A1 ‘x] ‘pz ‘pA ‘px)
<<<EZIS MOOTA'@ZIS MOOTd/ (WHe+HZIS MOOTd)>>>0e0 9210

{(0 ‘yueA11e)S) PI009Y JUSAT RPID



136

{(zJ) o01gepno

{(£3) eaxyepnd

{(xg) eaxrqepno

{(Aoy) @01 1PND
{(opo13red) Qa1 EPNO
{(10quSrou) ea1yepno
{(pAoy Sewr) oa1,epNd
{(pz) 991gepno

{(p£) @a1yepPNO

{(px) 9a1epno

{(ymo™ nwey) 95019]
{(yzsqep) 201

{(q Asqep) 201y

‘(U xsqep) 901y
{(p~ zsqep) ea1Jepnd
{(p~ Asqep) oarepnd
{(p~ xsqep) earJepnd
{(ymoeo10]) 9S00

{(ammo~sqep)  9so[o]
{(amdynosod) 95019]
{(moewry)  @sO[dJ

{(9sIy) Ko))o0dy  9OIASD :: STIYY

{(8aw owryo ¢ u\sw
J1% ST suorje[mO[ed oY) ULIojIed 0] Papasu oy oY T, ‘N0 owry) jyuridy
{(r0%0mury ¢ U\ seqnNUIIT J[O = OWII} UOTJRINWIIS [R)OT,, ‘N0 oury) Jyuridy

{(7unoo epno(e[qnop)) /107 om0 = SA® owIId

{(,m, ¢ axgowny, Juadoy = Jno  owny

09/(DAS gdd SOOI (e1qnop)/(03—13)(e1qnop)) = jojewry
{)3pop = T3

{
quewree)s 1 qutid jo pugy//{
Sunyutad 10y dooy xepur jo pug//{

Seaaq
(1— == [xepur]y oprnred) Jt

{([xopurlyredzy *,u\ \\\\ J19T'LT
{([xopurly red4y ‘, 7 JI9T'LT
{([ropurly zedxg ¢, 7 FI9T"LT

{([xeput]y 1oquStou ¢, 2y p
{([xoput]y opriredt, 2y p

([xopur]y zsqep ¢, u\ \\\\ JIOT'LT %,
{([xoput]ly Asqep ¢, 79 JIOT'LT %.
{([xopury xsqep ¢, 23 JIOT'LT %,

9%, ‘1Mo 9010§) Jqutidy
9%, ‘o™ 9210) Jyuridy
9%, ‘1M0™ 9010J) Jqutidy
9%, ‘o™ 9010§) Jyuridy
%, ‘10" 9010J) Jqutidy

{
‘o sqep) Jautady
‘o sqep) jyurady
‘o™ sqep) Jautady

¢([xopur]&eyy Sew ¢ uw\ \\\\ p %,‘mdinosod) jyurady

H([xopuwi]z *,29 31 %, ‘mdynosod)
“([xopui]& 73 J1 %, ‘mdino~sod) pyurady
‘([xopu]x ‘.23 j1 %, ‘mdinosod)

)

Jyurady

Jyurady

{(xopur ‘23 P %, ‘mdno sod) yjuridy

}

(u > xopur) jt

}

(++xopur ‘u * [e > Xopul {) = Xopur).Ioj

‘(8rewrmregtounry w\ \\\\ J1 % 29 JI % % JI %, ‘Mo ney) jyuridy

{(z1

Y9p * Y * p8 = rwwres
(gewrues/ /iy negx =
a0 nepk = 3//

Sy ey ¢ u\J1%,)Jrutd //
(0 1=2z)* (&) //H (4 Medk—) = Y neyx

3

{(1sogoT 0180 AdowaNRPNO‘ (9]NOP)JoazIs‘p ey neq)Adowsjepno
‘u ‘pTney ‘101x] ‘pz)
<<<AZIS MOOTA'HZIS MO0/ (U+AZIS MO0Td)>>>01e0 ey

‘0 =1 nepx
p*pSxy = 1093/ /

{()ezruoayoulgpesIy 1epno
{(1soH O] Po1aeAdowa N PN
‘(gur)joazis x U x e ‘roquSrou ‘Y IoquSrou)Adoweyepnd

{()ozruoaypuigpealy ] epno
‘{(1soHOoT @o1a0 Adowa N e PO
‘(qur) joozis x u * [e ‘oprpred ‘4 oporyred)AdowayepNo

{()ozruoaypuigpealy ] epno



137

{

{(9snay Aox)e01y 901ASD :: JSNIY) \\

{()ozruoayoukgpeary 1 epno

¢

{(Te ‘zq ‘AT ‘xT ‘g ‘u ‘epnred ‘roquSeu ‘pz ‘pA ‘px)
<<<AZIST MOOTA'AZIS MOOTE/ (WE+AZIS MOOTH)>>>eremdod

{()ozruoayoukgpeary ] epno

{(u ‘oprpred ‘Aoy ‘pz ‘pL ‘px)
<<<HZIS MOOTdAZIS 00714/ (U+dZIS MD0Td)>>>dnges

{()ozruoayouigpeary ] epno

{(asnayy Aox)eoay eo1Aop:iisnayy//
{(asnayy Loy ‘U + Isnay)” Koy gSnar)” Ao¥)urdS  OAISN[OUL :: JSTLIYY

{(Koy)yseo 1ojurod  001AOP::ISNIY) = ISNIY) KO
il ! AP q q il

{()ozruoaypuigpeay ] epno

Yz ‘AT ‘x] ‘u ‘g ‘oprured ‘roquseu ‘Aey ‘pz ‘pA ‘px)
<<<HZIS MOOTI'AZIS MOOTd/ (U+HAZIS MOOTH)>> >t

{()ozruoaypuigpeay epno

‘(e ‘u ‘oprpred ‘roquSrou ‘Aoy)

<<<HZIS MOOTI'|ZIS D01/ (ux[e+dZIS SMDOTd)>>>010z40%

¥
(9snayy™ Loy <gur>13d 901A8D :: JSNIYY
‘Te qur ‘zr o[qnop ‘AT 9[qnop ‘X o[qnop ‘u jul ‘g1 o[qnop ‘Aoxx jJul

‘oprpred x qur ‘ToquStoux JuI ‘pzk S[qNOP ‘PAk S[qNOP ‘PXk S[NOP) ISI[U PIOA

{
(Ko Seur) 901)
{(2z) o01]
{(K) 991
{(x) o01]

{(109z]) oo1gepPNO
{(90143) so1epPNd
{(101x]) oo1gepno



138

A sample parameter input file for the code miz_strain.cu would look like:

30.0
10.0
10.0
20

1

100

1
0.0001
2.5
0.125
1E-4
0.001
.01
0.00001
2.7
100

70

0

Lx

Ly

Lz

Number of spheres

Start

Number of steps

Print Statements

dt

Cutoff radius
Hydrodynamic Cutoff Radius
h correction factor
Dimensionless shear
Frequency, omega

Strain amplitude, gammaO

Cutoff radius for neighbor list
Number of steps to calculate neighbor list

Neighbor list length
Initial time
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A sample position input file for the code miz_ strain.cu would look like:
Sphere ID X Y Z Mag ID

0 -1 0 -4.5 1
1 -1 0 -3.5 1
2 -1 0 -2.5 1
3 -1 0 -1.5 1
4 -1 0 -0.5 1
5 -1 0 0.5 1
6 -1 0 1.5 1
7 -1 0 2.5 1
8 -1 0 3.5 1
9 -1 0 4.5 1
10 1 0 -4.5 1
11 1 0 -3.5 1
12 1 0 -2.5 1
13 1 0 -1.5 1
14 1 0 -0.5 1
15 1 0 0.5 1
16 1 0 1.5 1
17 1 0 2.5 0
18 1 0 3.5 0
19 1 0 4.5 0
This is an example of the output position file position_out relaxed(.txt for the

preceding input files.

500000
0 -1.000000 0.000000 -4.497543 1
1 -0.992883 0.000000 -3.495495 1
2 -0.970887 0.000000 -2.493811 1
3 -0.935373 0.000000 -1.492574 1
4 -0.888962 0.000000 -0.492092 1
5 -0.829722 0.000000 0.507747 1
6 -0.757412 0.000000 1.506801 1
7 -0.672542 0.000000 2.504633 1
8 -0.587958 0.000000 3.502146 1
9 -0.500000 0.000000 4.499376 1
10 1.000000 0.000000 -4.509048 1
11 1.139411 0.000000 -3.527136 1
12 1.244195 0.000000 -2.541088 1
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O O - =

The neighbor list function at the end of the code is based off the collision detection

developed by Mazhar et al. (2011)
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Appendix C

Mix Relax.cu

This appendix contains the code Miz Relax.cu. This code is used to relax the posi-

tions saved from Miz Strain.cu. Every n_print configuration is saved.
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A sample parameter file for miz_ relax.cu is given in Table C.1. The position input
is simply the file position_out0.tzt from the code mix_strain.cu. Even though the
system given is a monolayer, L, = 10 so that the spheres do not interact with mirror

images in the y direction.

30.0 Lx

10.0 Ly

10.0 Lz

20 Number of spheres
1 Start

5000000 Number of steps
5000000 Print Statements

100 Number of Time Points
0.0001  dt

2.5 Cutoff radius

0.125 Hydrodynamic Cutoff Radius
1E-4 h correction factor

0.0000 Dimensionless shear

.01 Frequency, omega

0.00001  Strain amplitude, gamma0
2.7 Cutoff radius for neighbor list
100 Number of steps to calculate neighbor list
70 Neighbor list length

0 Initial time

Table C.1: File parameters.tzxt for the code miz_relaz.cu

The position output file, position_out relaxed0.txt, for miz_relax.cu is given in

Table C.2.

Table C.2: File position__out_relaxzed0.txt for the code mix_relax.cu

5000000

0 -1.000000 0.000000 -4.497730 1
1 -0.995068 0.000000 -3.495829 1
2 -0.974937 0.000000 -2.494263 1
3 -0.941111 0.000000 -1.493125 1
4 -0.894182 0.000000 -0.492522 1
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5000000
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19
5000000

-0.834284
-0.761061
-0.674946
-0.589151
-0.500000
.000000
.135324
.237025
.317985
.378678
.419593
.440610
.978175
.599448
.466186

P PO R, PP RFEP PP -

-1.000000
-0.942081
-0.870916
-0.785525
-0.686022
-0.571897
-0.442032
-0.294037
-0.149717
.000000
.000000
.153968
.271557
.366701
.439180
.488822
.514721
.320978
.045512
.941178

Ll i i i =)

-1.000000

O O O O O O O OO OO oo oo

O O O O O O O OO OO OOOOoOOoOoooo

0

.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000

.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000

.000000

0.507425
1.506569
2.504444
3.501990
4.499250
-4.508943
-3.526375
-2.539913
-1.551620
-0.561931
0.428747
1.420639
2.417377
3.322618
4.408345

-4.493486
-3.489505
-2.486493
-1.484551
-0.483784
0.515650
1.513520
2.508487
3.503023
4.496795
-4.509144
-3.529391
-2.544774
-1.557825
-0.569006
0.421207
1.412937
2.493480
3.318398
4.407846

-4.486698
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.000000
.000000
.000000
.000000
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.000000
.000000
.000000
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.000000
.000000
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-3.481054
-2.476793
-1.474079
-0.472960
0.526526
1.524695
2.515144
3.504501
4.494756
-4.509368
-3.530196
-2.545827
-1.558884
-0.569865
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2.480517
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-3.499601
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.000000
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.172215

.412643
.455488
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.164661
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.326942
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.366718

.000000
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. 787975
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.000000
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3.498728
4.498884
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1.534156
2.299502
3.369432
4.402375
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Appendix D
Mix LAOS.cu

This appendix contains the code Miz LAOS.cu. This code is used to strain the

suspensions. Every n_print configuration is saved.
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A sample parameter input file for the code miz_strain.cu would look like:

30.0
10.0
10.0
20

1

5500
80
0.001
2.5
0.125
1E-4
0.0001
0.01
0.0001
2.7
100
100
100

Lx

Ly

Lz

Number of spheres

Start

Number of steps

Print Statements

dt

Cutoff radius

Hydrodynamic Cutoff Radius
h correction factor
Dimensionless shear
Frequency, omega

Strain amplitude, gammaO
Cutoff radius for neighbor list

Number of steps to calculate neighbor list

Neighbor list length
Number of Configurations

Number of positions to be printed

Initial time
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Appendix E
Mix Hydro.cu

This appendix contains the code Mix_Hydro.cu. This code is used to strain the
suspensions. Hydrodynamic interactions are included. Every n_print configuration

is saved.
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A sample parameter input file for the code miz_hydro.cu would look like:
10.0 Lx

5.0 Ly

5.0 Lz

150 Number of spheres
1 Start

50000000 Number of steps
100000 Print Statements

0.00001 dt

2.5 Cutoff radius

0.125 Hydrodynamic Cutoff Radius
0.0001 h correction factor

0.00001 Resistance Matrix Tolerance
0.01 Dimensionless shear

.01 Frequency, omega

0.00001 Strain amplitude, gammaO

2.7 Cutoff radius for neighbor list
100 Number of steps to calculate neighbor list
70 Neighbor list length

0 Initial time
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