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Dissertation Abstract 

Carrot (Daucus carota subsp. sativus) is a nutritionally significant vegetable crop.  An important 

target of selection in carrot breeding programs is suite of morphological root traits which 

together define market class—i.e., the market into which a specific variety is intended to be 

sold (e.g., juicing, dicing, storage, fresh market, baby carrot production).  The size and shape the 

taproot, which can range from long and tapered to short and blunt, have been used for at least 

several centuries to classify cultivars in this way according to human preference and production 

methods.  Mechanization in the cultivation, harvesting and post-harvest handling of the crop 

has made these traits increasingly relevant for both farmers and breeders.  However, these 

quantitative phenotypes have historically been challenging to objectively evaluate, and thus 

subjective visual assessment of market class remains the primary method by which selection for 

these traits is performed.  This has hindered not only the establishment of metric-based 

standards for market classes, but also the investigation the genetic basis of such quantitative 

phenotypes.  In order to dissect the genetic control of the shape features that define market 

class in carrot, a tool is required that quantifies the specific shape features used by humans in 

distinguishing between classes.   

 

Advancements in digital image analysis have recently made possible this high-throughput 

quantification of size and shape attributes, and Chapter 2 of this dissertation describes the 

functioning and performance of a phenotyping pipeline which implements such methods.  This 

is the first such platform to include a series of a preprocessing algorithms whereby RGB images 

are converted to binary masks, which are then standardized to remove curvature and residual 



 

 

v 

root hairs.  Phenotyping is then performed, which includes the quantification of traits that 

could be measured by hand, such as length and width, as well as measurement of higher-

dimensional traits, through the implementation of principal components analysis of the root 

contour and its curvature.  Of particular importance is the idnetification of a previously 

undescribed phenotype – root fill – as the most significant source of variation across carrot 

germplasm.  This platform’s high-throughput performance and accuracy was validated in two 

experimental panels: a diverse, global collection of germplasm was used to assess its capacity 

to identify market classes through clustering analysis, and diallel mating design between inbred 

breeding lines of differing market classes was used to estimate the heritability of the key 

phenotypes that define market class.   

 

Together with the recent development of a high-quality reference genome for carrot, it is now 

feasible to utilize modern methods of genetic analysis in the investigation of the genetic control 

of root morphology.  To this end, in Chapter 3 of this dissertation, the digital phenotypes of the 

diversity panel described in Chapter 2 are combined with a set of dense molecular markers 

developed using high-throughput sequencing.  The use of both genome wide association 

analysis and genomic predictions based on genomic-estimated breeding values is described.  

Novel QTL were identified for four of the traits underlying market class; of particular interest is 

an extremely well-defined peak of chromosome 2 for the novel, and previously uncharacterized 

“root fill” trait.  This comparative analysis provides the first convincing evidence that the traits 

underlying market class are highly polygenic in nature, under the influence of many small effect 

quantitative trait loci (QTL), but that relatively large proportions of additive genetic variance for 
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many of the component phenotypes support high predictive ability of genomic-estimated 

breeding values.  This study thereby represents a novel advance in our understanding of the 

genetic control of market class in carrot root.  In addition, concrete guidelines are presented 

outlining the practical potential of using genomic predictions for quantitative traits in 

horticultural crops. 
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Background 

Carrot (Daucus carota subsp. carota L.) is a biennial, diploid species (2n = 2x = 18), which is 

cultivated as an annual crop for its swollen taproot.  Carrot is an economically important crop, 

both in the U.S., and across the world.  Globally, 1,128,695 ha are planted annually (FAO, 2020), 

and although only 2% of this production area is in the U.S., carrot has a domestic farm gate 

value of 863.5 million USD (United States Department of Agriculture, 2020).  This is in no small 

part due to carrot’s nutritional importance as a significant source of pro-vitamin A (Simon, 

2000).  This latter fact, in turn, is a reflection of the success of carrot breeding efforts, which has 

resulted in a 50% increase in carotene content over the last 45 years (Iorizzo et al., 2016).   

 

Market class in carrot 

Since at least the 17th century, specific varieties of carrot have been selected for on the basis of 

the morphology of this taproot (Banga, 1957; Fig. 1).  A number of factors seemed to have 

influenced early selection for different combinations of root size and shape traits.  Cultivation 

practices certainly played a role, with soil depth influencing farmers’ preferences for growing 

carrots of a specific length.  In addition, whether the crop was grown in the field or in pots in a 

greenhouse environment, and at what latitude it was grown, influenced the amount of top 

growth one would need or desire, and thus the over size of the root.  Many of the most 

extreme phenotypes in root shape are indeed a result a selection for forcing varieties grown 

primarily in greenhouse environments for winter production, giving rise to very short, almost-

spherical varieties such as Davanture, Grelot, and Parisienne.  Whether the crop was intended 

to be sold fresh, versus being stored and potentially transported long distances could 
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determine the desired girth of the carrot, which would affect its durability (e.g., the Long Stump 

Winter class shown in Fig. 1C).  Whether the crop was intended to be used a fodder crop was 

also highly relevant in terms of shaping interest in varieties that potentially sacrificed eating-

quality for yield—e.g., the less-conical, broadly shouldered Berlikum and Flanders types.  More 

nuanced characters such as aspect ratio, the shape of the tip, or the broadness of the shoulder 

were also selected for, and appear to have been driven by both aesthetic and culinary 

preferences, as well as assumptions regarding the linkage of these traits to other phenotypes, 

such as root quality, and plant vigor (e.g., the perceived higher eating-quality of the Danvers 

and St. Valery classes shown in Fig. 1A and Fig. 1B).  Interestingly, some more recently 

developed market classes have been documented as descending explicitly from intra-market 

class crosses; e.g., Imperator is the product of a cross between Nantes and Chantenay. 

 

With the mechanization of carrot production, harvest, and post-harvest handling, these 

particular combinations of carrot root size and shape attributes have become increasingly 

standardized into a set of modern market classes.  These classes have historically been defined 

subjectively, and to date, no objective criteria exist which explicitly delineate either the 

complete set of traits which together constitute any given market class, nor standards for 

judging whether an individual genotype’s value for any one of these components traits falls 

within the range acceptable for a given class.  For example, USDA grading standards refer only 

to carrots being “well formed”, and provide size specifications that define minimum and 

maximums for length and shoulder width.  Instead, market classification has been subjective, 
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performed largely by breeders responding to both the needs of farmers and their production 

systems, and consumers and their specific tastes and preferences.   

 

The result of such a unique situation is that while market class itself has become an increasingly 

important breeding target for carrot, the genetic architecture underlying it has been the object 

of relatively limited study.  This is a consequence of fact that the use of many of the most 

common tools of modern genetic analysis require precise, objective, and ideally quantitative 

measures of phenotypes which vary along continuous scales.  Instead of thematizing the 

specific question of the genetic control of market class per se, investigations into carrot roots 

have to date therefore typically focused on the genetic regulation of the basic processes 

controlling storage root formation in general, and not the more subtle variation in these 

molecular pathways that give rise to the multitude of sizes and shapes seen in cultivated 

germplasm.  

 

This has been frequently approached by attempting to characterize loci that were likely under 

selection during the domestication of cultivated carrot from wild accessions, leading to the 

identification of several candidate genes involved in the development of the swollen taproot as 

a storage root organ (Iorizzo et al., 2013; Macko-Podgórni et al., 2017).  While wild carrot 

(Daucus carota subsp. carota) often has a taproot structure, it is spindle-shaped and heavily 

branched, which does not appear to undergo any secondary growth.  Domestication of wild 

carrot was associated with the elimination of this branching habit, in which lateral roots emerge 

from the xylem.  In addition, a primary selection target has been for a heavily swollen, 
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succulent main taproot, with high eating quality, which has typically resulted in a greater ratio 

of phloem to xylem in the core of the root. 

 

This research dovetails with independent lines of inquiry that have attempted to characterize 

the molecular pathways leading specifically to the development of supernumerary cambial 

tissues during secondary growth of carrot.  Benjamin et al. (1997) provided an early 

physiological description of the derivation of the storage root in carrot from secondary growth 

of supernumerary cambial layers, arising from cylindrical vascular cambium in the hypocotyl 

and root.  A general finding in many crops has been that transcription factors regulating shoot 

apical meristem development may also play a role in these secondary growth processes 

(Schrader et al., 2004); research into the underlying molecular physiology in carrot, however, 

is still at a very nascent stage, particularly relative to work in other crop species.  For 

example, as reviewed by Goldman, 2020, research on sweet potato has made significant 

strides in characterizing the hormonal regulation of secondary root growth (Ku et al., 2008; Ravi 

et al., 2014).  Cytokinin and auxin levels have been found to regulate gene families that control 

storage root division both through upregulation of cell division (Noh et al., 2013), as well as 

starch and sucrose metabolism pathways (Firon et al., 2013; Tao et al., 2012).  In carrot, 

comparatively little specific characterization has occurred.  An early study by Ebener et al. 

(1993) suggested that a gene associated with secondary root growth, DcPRP1, appeared to be 

upregulated by auxin, while Wang et al. (2015), identified a number of gibberellin-regulated 

genes that were associated with root elongation.  More recently, Wang et al. (2019) identified a 

set of genes encoding expansin-like proteins, whose regulation is likely involved in taproot 
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formation in cultivated carrot.  Expansins are a widely studied class of proteins that facilitate 

turgor pressure-mediated cell elongation through a weakening of the cell wall by loosening 

attachments between xyloglucan and microfibrils (Cosgrove, 2000).  It is thus logical that their 

expression patterns would be associated with growth and expansion of the carrot taproot. 

 

Both of the lines of research described above are undeniably valuable.  The identification of loci 

that underwent selection during domestication, as well as molecular analysis of the regulation 

of secondary growth in carrots, deepen our understanding of the genetic control of carrot 

taproot development.  However, neither is oriented towards addressing the particular question 

of the genetic bases of market class.  Market class as such is specifically a set of categories that 

only apply to cultivated carrot genotypes, though not all cultivars fall unambiguously into a 

specific market class.  Thus, the loci that distinguish cultivated carrots from wild accessions are 

likely in themselves not responsible for the genetic regulation of this intra-cultivated carrot 

diversity.  Similarly, the common processes regulating taproot expansion during secondary 

growth are to variable extents shared across all market classes, and it is rather the fine-tuned 

regulation of these processes that likely is involved in determining whether a given genotype 

gives rise to a specific market class type.   

 

A prerequisite to any genetic analysis of the set of traits which define market class, however, is 

a phenotyping methodology allowing for their precise quantification.  The development and 

validation of such a platform was therefore one of the main aims of this research. 
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Digital image phenotyping 
 
Precise measurement of morphological phenotypes is critical for any attempt at studying the 

genetic architecture of quantitative plant traits.  Indeed, as the costs of genotyping even non-

model plant species for thousands of polymorphic molecular markers continues to decrease 

rapidly, the time and labor required for accurate phenotyping is increasingly emerging as the 

limiting factor in genetic mapping and association studies.  In this context, digital image-based 

phenotyping holds substantial promise in overcoming many of the practical limitations of 

traditional quantification of continuously variable traits (Fahlgren et al., 2015). 

 

Though the term “digital image-based phenotyping” encompasses a broad array of specific 

technical workflows, in general terms, these techniques provide four advantages over 

traditional measurements, whether made by hand, or by eye.  First, and perhaps most 

obviously, due to the decreasing cost of high-resolution digital cameras, it is now feasible to 

acquire extremely precise images.  This facilitates the accurate detection and measurement of 

plant structures—easily to within fractions of millimeters (Kuijken et al., 2015).  Second, by 

automating image acquisition, multiplexing multiple samples in a single image, and integrating 

technologies such as QR matrix barcoding into the image-acquisition pipeline, digital-

phenotyping workflows often fall within the context of “high-throughput” technologies, which 

facilitate the measurement of greater numbers of samples than would be possible by hand 

(Furbank & Tester, 2011).  Third, through the implementation of robust machine vision 

algorithms, the phenotyping of digital images is by definition standardized, removing bias that 

is often introduced by having multiple individuals scoring and measuring traits.  Fourth, these 
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machine vision algorithms can easily quantify aspects of plant morphology that are not possible 

when measuring individual samples by hand, and may more accurately capture the genetic 

component of a given phenotype.  For instance, as suggested by Howarth et al. (1992), and 

previously implemented in maize (Miller et al., 2017), tree leaves (Biot et al., 2016), carrots 

(Horgan et al., 2001; Turner, Senalik, et al., 2018) and radish (Iwata et al., 1998), dimensionality 

reduction techniques such as principal components analysis (PCA) can provide a powerful 

method for assessing complex, high-dimensional sources of variation in an image.   

 

Diallel analysis 
 
The phenotypes extracted from the analysis of digital images were utilized in this thesis in the 

context of three distinct approaches for analyzing the genetic control of quantitative traits.  The 

first of these was the analysis of a diallel mating design.  Initially developed in the context of the 

inbred-hybrid breeding system in corn, the conceptual framework for the diallel was proposed 

as a method for identifying high-performing hybrid crosses.  This is the origin of the terms 

“general combining ability” (GCA) and “specific combining ability” (SCA) which refer 

respectively to the average performance of the hybrid progeny of a given inbred line, and the 

deviations from the GCA effects of two inbred parents in any particular hybrid progeny family 

(Sprague & Tatum, 1942).  A diallel was thus originally proposed as a method for systematically 

determining GCA and SCA effects for a set of inbred lines by performing all pair-wise crosses 

between them, and evaluating the F1 progeny families (Hayman, 1954a, 1954b).   
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The most common set of methods for analyzing the performance of these F1 families is that 

proposed by of Griffing (1956), who described a set of linear models that allow for analyzing 

diallel experiments in which parental lines can modeled as either fixed or random effects (i.e., 

depending on whether the parental lines constitute a particular population within which 

predictions are to be made, versus a random sample from a larger set of possible parental 

material).  These models allowed for the inclusion or exclusion of reciprocal crosses (the former 

allowing for the estimation of maternal and paternal effects), and are also robust to replicated 

experimental designs such as randomized complete block designs, as well as multi-

environmental trials (Lin et al., 1977).  These experimental designs are clearly highly resource 

intensive, however, since the number of F1 families to be evaluated is proportional to the 

square of the number of parental lines.  Even the evaluation of 10 parents can quickly become 

logistically untenable.  As a result, Bayesian methods have been developed for imputing missing 

data from more sparse datasets (Lenarcic et al., 2012), and such methods have been validated 

as effective in carrot (Turner et al., 2018). 

 

Utilization of genomic-scale data in carrot 

Since the initial release of the first high-quality reference assembly for carrot (Iorizzo et al., 

2016), researchers have begun to utilize data from next-generation sequencing platforms to 

explore the potential of both genome-wide association analysis (GWAS), and genomic 

prediction.  These methods aim to deepen our understanding of the genetic control of key traits 

in carrot, as well as improve the efficiency of selecting for them in a breeding context.  

However, while utilizing similar phenotypic and genotypic data, and based on related statistical 
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theory, these two methodologies have several critical features that distinguish them, and 

therefore their utility in the context of understanding, and breeding for, quantitative traits.  

GWAS attempts to detect significant associations between molecular markers and phenotypic 

variation using a linear mixed model where the fixed effects are the markers themselves, and 

the random effect is a polygenic term that is used to control for what would otherwise be 

confounding population structure.  These associations are then used either as the basis for 

marker-assisted selection, or future fine-mapping studies that attempt to characterize causal 

genes.  Genomic selection also makes used of linear mixed models, in this case, the 

experimental design is modeled using fixed effects, while the random polygenic term is used to 

estimate genotypic effects directly.  These estimates are then used to predict either the per se 

performance of an individual, or, more commonly, its breeding value (i.e., the  “genomic-

estimated breeding value”; GEBV). 

 

Genome-wide association studies 

With regards to GWAS, it is important to note that as an outcrossing species, carrot is both 

naturally highly heterozygous, and prone to inbreeding depression.  The production of fully 

homozygous inbred lines has therefore been a major target of modern hybrid breeding efforts, 

but significant variation for tolerance of inbreeding remains (Simon et al., 2008).  As a 

consequence, inbred lines are relatively rare in relation to open-pollinated varieties and 

outcrossing landraces, and recombinant inbred lines are currently still being developed.  

Because of the limited availability of the genetic resources that form the basis for more 

traditional linkage mapping approaches, GWAS offers a powerful method for leveraging 
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phenotypic diversity for root shape traits in an attempt to identify linked quantitative trait loci 

(QTL). 

 

The lack of controlled, known pedigrees in GWAS present several potential complications.  First, 

minor allele frequencies (MAF) can be much lower than in typical linkage mapping populations.  

This can limit power to detect QTL, due to the fact that the genetic variance attributable to a 

given QTL (assuming for simplification that it is bi-allelic) is equal to 4a2pq, where a is equal to 

the additive effect of the QTL, and p and q are the frequencies of the two alleles (Tabangin et 

al., 2009).  As MAF decreases, so does this genetic variance term.  This reduces power, because 

these parameters simultaneously determine the non-centrality of the t-distribution of the 

alternative hypothesis that there is a QTL at a given locus.  In this case, the non-centrality 

parameter = !"
# !𝑛𝑝𝑞, where n is the size of the population; thus, as genetic variance 

decreases, so too does the distance between the means of the alternative and null t-

distributions.  As a result of this statistical result, it is common practice to threshold MAF at a 

certain value, so as to only include SNPs for which power remains above some desired level, 

given a specified false-positive rate.  This has the additional benefit of limiting the amount of 

variance in the allele frequency distributions of the panel, and thus improving the chances of 

having markers in high linkage disequilibrium with one another (a prerequisite for high linkage 

disequilibrium being that markers have similar allele frequency distributions).  While this of 

course reduces marker density, next-generation sequencing has made it practically feasible to 

identify orders of magnitude more polymorphic markers than are necessary for association 

analysis.   
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Second, because of the variable degrees of relatedness between individuals in a diversity panel, 

identification of spurious associations between markers and a trait of interest can arise simply 

due to the fact that many markers may be in linkage with a causal marker within a closely 

related group of individuals (Sul et al., 2018).  Clearly, a filtering procedure equivalent to what is 

employed with regards to allele frequency would not be ideal, due to the constraints this would 

place on population size.  As a result, numerous methods have been proposed for adding terms 

to the linear models that are used in associated SNPs with the phenotype of interest.  One 

approach is to include fixed effect terms, such as the principal component scores of PCA on the 

marker matrix (Price et al., 2006), or the grouping assignments of clustering algorithms such as 

STRUCTURE (Pritchard et al., 2000).  An increasingly common approach, as mentioned above, is 

to use genetic markers themselves as covariates, by including the centered genotype matrix as 

a random effects term (Yu et al., 2006).  All of these methods have been validated as controlling 

for the confounding effects of population structure, with minimal costs to statistical power.  In 

addition, it is important to note that in carrot specifically, extremely limited degrees of 

population structure have been found in global collections that have been used in GWAS 

previously (Ellison et al., 2018).  In cultivated accessions specifically, carrot germplasm 

represents a nearly unstructured population that is therefore well-suited to GWAS (Corak et al., 

2019). 

 

While GWAS has been used extensively in studying agronomically important traits, with 

numerous published studies that have focused specifically on root shape and root system 
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architecture (Alahmad et al., 2019; Beyer et al., 2019; Wang et al., 2019), only three genome-

wide association studies have been reported in carrot to date.  Two have focused on the 

genetic control of secondary metabolites: one on terpene synthase genes (Keilwagen et al., 

2017), and a second on the genetic control of carotenoid accumulation (Ellison et al., 2018).  

The third study represent the only assessment to date of the genetic control of root shape in 

carrot utilizing a diversity panel: Macko-Podgórni et al. (2020) performed GWAS using 103 

open-pollinated carrot accessions, and identified a single locus on chromosome 1 associated 

with crown width.  As the authors describe, this study was limited by a relatively small number 

of accessions in the diversity panel, and a high degree of environmental variance due to a 

limited experimental design: genotypes were only grown in one in environment, in one year, 

without replication, and as a result, phenotyping was performed on only a single root per 

genotype.  Nevertheless, this study demonstrates the potential utility of GWAS in the context of 

studying complex, quantitative traits such as carrot root shape, and thus motivated the more 

extensive analysis presented here. 

Genomic prediction 

While there has been a relatively limited use of GWAS in carrot, there been even more 

restricted evaluation of the utility of genomic prediction methods in carrot.  Across a wide 

range of species, however, genomic selection has shown significant promise.  For instance, in 

maize (Beyene et al., 2015; Combs & Bernardo, 2013b) and tomato (Yamamoto et al., 2017), 

genomic selection has been shown to outperform phenotypic selection when evaluated in 

terms of the rate of genetic gain, while the two methods were found to be equally efficient in 

wheat (Rutkoski et al., 2015).  To date, only one study has considered the potential utility of 
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GEBVs in carrot breeding, and this analysis was restricted to two traits: flavor and canopy 

height (Corak et al., 2019).  While this study did not compare the efficacy of genomic prediction 

relative to phenotypic selection, it did suggest that even for moderately heritable traits, GEBVs 

could attain non-negligible predictive abilities. 

 

A key consideration in any evaluation of the potential of genomic prediction to aide in selecting 

for a specific set of traits in a particular crop is an evaluation of the predictive ability of 

genomic-estimated breeding values (GEBVs) under a range of parameters know to influence 

reliability.  In particular, four variables have frequently been cited as having an impact on 

predictive ability.  First, heritability of the trait in question is of course key (Ben Hassen et al., 

2018; Combs & Bernardo, 2013a; Gorjanc et al., 2016); in this regard, increasing replication, 

improving experimental design, and reducing error in the methodology used to phenotype a 

given trait will all clearly improve genomic predictions.   

 

Second, the influence of marker density has also been evaluated.  Because markers are used in 

genomic selection not as fixed effects that can be associated with putative QTL, but rather as a 

covariance matrix for estimating genotypic effects, it has long been assumed that simply 

increasing marker density would have diminishing returns in terms of increasing prediction 

accuracy.  Because genomic selection is typically utilized in applied contexts, it is critical from a 

cost-perspective to determine for any given trait and species, what marker density is sufficient 

for attaining desired predictive ability.  A relatively robust finding in this regard is that even 

several thousand markers are often sufficient for reaching high prediction accuracies. (Asoro et 
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al., 2011; Erbe et al., 2013; Guo et al., 2018; Q. Wang et al., 2017; Wu et al., 2016; Zhang et al., 

2015). 

 

Third, the role of population size in determining predictive ability has been analyzed from a 

variety of perspectives.  First, the effect of the total population size, independent of how it is 

apportioned between training and validation sets has been examined, generally finding that 

larger populations lead to higher accuracies (Ben Hassen et al., 2018; Heslot et al., 2015; Xu et 

al., 2018).  In addition, the relative size of either the training population (Tayeh et al., 2015), or 

the relative size of the validation population (Zhang et al., 2017) has also been considered, 

finding in both cases that the more individuals in the training population, the higher the 

prediction accuracies.  However, this effect can be diluted or in some cases even reversed if the 

additional training individuals are highly unrelated to the validation population (Clark et al., 

2012; Lorenz & Smith, 2015).  This has led to the consideration of a fourth and final parameter: 

the degree of genetic similarity between the training and validation populations.  Because 

genomic predictions are based on covariance between individuals in the training population 

and individuals in the validation population, higher degrees of relatedness between these 

groups has long been hypothesized to lead to higher predictive ability.  And indeed, in 

simulation studies which have considered this question, this appears to be born out whether 

predictive ability is compared across populations with known degrees of variable relatedness 

(such as full- vs. half-sib families), or between population groupings defined through clustering 

algorithms such STRUCTURE (Berro et al., 2019; Lozada et al., 2019; Riedelsheimer et al., 2013; 

Sverrisdóttir et al., 2018). 
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Conclusion 

The three methods of quantitative genetic analysis described above – the diallel mating design, 

GWAS, and genomic prediction – each represent a distinct experimental approach to 

attempting to explain genetic control over traits of interest.  Though they all represent 

potential approaches to utilizing phenotypic data extracted from digital image analysis, they 

rely upon different forms of statistical models as well as genotypic information.  As a result, the 

conclusions one is able to draw from each of these experiments are also distinct.  Diallel designs 

are clearly best suited to an inbred-hybrid breeding context, where hybrid prediction is most 

relevant, and understanding the relative contributions of additive and dominance variance is of 

utmost importance.  GWAS also has practical implications for breeding, but is more often a 

preliminary step in the identification of QTL which then must be validated as being durable 

within a specific breeding background, and ideally fine-mapped to locate the specific causative 

genes influencing phenotypic variation.  Genomic prediction is, like the diallel mating design, a 

method specifically oriented towards improving efficiency in a breeding program.  However, 

instead of constructing a statistical model using a limited set of parents, and developing models 

specifically useful for predicting the performance of hybrid combinations, GEBVs aim to provide 

a more generalizable method for optimizing parent selection itself.  By utilizing a diversity of 

methods in this thesis, not only will all of these sources of information be available to 

geneticists and breeders attempting to study and select for carrot market class, but 
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comparative analyses will also be made possible, allowing for a judgement as to which methods 

hold the most promise for subsequent research into these quantitative traits. 
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Figures 
 

 

Figure 1. Early documentation of market classes in carrot. (A) Danvers (B) St. Valery (C) Long 

Stump Winter (D) Grosse Normande (E) Flanders (F) Grelot French Forcing. (Banga, 1957). 
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Abstract 
 
Carrot (Daucus carota subsp. sativus) is an economically and nutritionally important vegetable 

crop.  Carrot root shape, which ranges from long and tapered to short and blunt, has been used 

for at least several centuries to classify carrot cultivars.  The subjectivity involved in determining 

market class hinders the establishment of metric-based standards and is ill-suited to dissecting 

the genetic basis of such quantitative phenotypes.  Advances in digital image acquisition and 

analysis has enabled new methods for quantifying sizes of plant structures and shapes.  In order 

to dissect the genetic control of the shape features that define market class in carrot, a tool is 

required that quantifies the specific shape features used by humans in distinguishing between 

classes.  Here we report the construction and demonstration of such a platform.  The pipeline 

includes a series of a preprocessing algorithms whereby color images are converted to binary 

masks, which are then standardized to remove curvature and residual root hairs.  Root 

phenotyping is then performed, including both traits that are measurable by hand, such as 

length and width, as well as principal components analysis of the root contour and its 

curvature.  This platform’s high-throughput performance and accuracy was validated in two 

experimental panels: a diverse, global collection of germplasm was used to assess its capacity 

to identify market classes through clustering analysis, and diallel mating design between inbred 

breeding lines of differing market classes was used to estimate the heritability of the key 

phenotypes that define market class.   

 

Introduction 
 



 

 

33 

Carrot (Daucus carota subsp. sativus) is an economically and nutritionally important vegetable 

crop.  Over 40 million metric tons of carrots are grown annually across the globe (FAO, 2020). 

The 33,000 hectares of carrot cultivated annually in the United States generates a net farm gate 

value of over $730 million USD (United States Department of Agriculture, 2020) and is a 

significant source of pro-vitamin A in the human diet (Simon, 2000). 

 

Carrot root shape, which ranges from long and tapered to short and blunt, has been used for at 

least several centuries to classify carrot cultivars (Banga, 1957, Simon et al., 2008). Culinary 

practices and horticultural traditions have led to the establishment of several modern market 

classes, which are based on use, size, and shape differences.  For example, cultivars that 

produce large and bulky roots grown for a full season are typically used in canning, freezing, 

dehydrating, juicing, and other processing operations. These carrots are represented by market 

classes such as Danvers, Chantenay, and Berlicum, and are often cultivated at 500,000-

1,000,000 plants per hectare. Fresh market types, represented by market classes such as 

Imperator, Kuroda, and Nantes, are grown at a significantly higher density (1,500,000 - 

3,000,000 plants per hectare) due to their slimmer root profile. 

 

The shape differences that are key to proper classification of roots range from obvious to very 

subtle.  Ordinal scales, or adjectival descriptors such as circular, obovate, obtriangular, and 

narrow oblong are frequently used by breeders.  The distinctions between market classes in 

some cases depends on subjective assessment of the curvature of the shoulder at the crown of 

the root, the variable filling of the tip, and specific combinations of these shape parameters and 
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root size.  Furthermore, while the names of market classes would imply an assignment of 

cultivars to well-defined, and discrete categories, all of the traits which define market class are 

quantitative, and intermediate cultivars may possess characteristics of more than one class.  

The subjectivity involved in determining market class thus hinders the establishment of metric-

based standards and are ill-suited to dissecting the genetic basis of such quantitative 

phenotypes.   

 

Recent advances in measuring plant phenotypes by analyzing digital images has led to the 

development of methods for quantifying sizes and shapes of plant structures, including those 

that are not captured by simple angles, lengths, widths, and their ratios.  Often, the aim of such 

algorithms is automated classification, e.g., distinguishing between crop and weed species (Le 

et al., 2020) or performing leaf segmentation (Kumar and Domnic, 2019; Victorino and Gómez, 

2019).  Similar pipelines have also been developed that seek to classify vegetables into cultivar 

types (Hameed et al., 2018; Visa et al., 2014), including in carrots (Horgan, 2001; Horgan et al., 

2001; Howarth et al., 1992).  However, the features of the contour utilized in such machine-

learning applications are distinct from the specific shape features used by humans in 

distinguishing between market classes.  In order to dissect the genetic control of the shape 

features that define a class, a tool that quantifies rather than classifies is required. 

 

In this respect, contour analysis has also been used in many species, e.g., to quantify maize ears 

and kernels (Miller et al., 2017), tree leaves (Biot et al., 2016), and radish roots (Iwata et al., 

1998).  A previous study demonstrated that contour analysis of carrot roots could produce 
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shape metrics that served as genetically-mappable phenotypes (Turner et al., 2018).  image 

analysis pipelines measure their target phenotypes but not other, even related, traits. For 

example, while the work of Turner et al. (2018) addressed a phenotyping challenge in carrots, 

their platform lacked the capacity to quantify variation in the root shoulder and tip, which are 

key determinants of market class in carrot.  In addition, their pipeline was designed to study 

linkage mapping populations, and as such, did not need to include pre-processing 

standardization steps that are necessary when evaluating highly diverse collections of 

germplasm.  In order to use digital phenotyping methods to investigate market-class related 

traits, therefore, an image analysis platform is needed that can quantify these particular shape 

features, and be able to operate with sufficient throughput to make a large-scale study of the 

genetic determinants of market class feasible. 

 

Here we report the construction and demonstration of such a platform, and validate its 

performance in two experimental populations.  First, a global collection of carrot accessions 

obtained from the USDA National Plant Germplasm System (NPGS) was used to test the 

performance of the phenotyping algorithms in phenotypically diverse context.  This analysis 

confirmed that the phenotypes generated by this pipeline allow for precise quantification of the 

key features of market class in carrot.  In addition, a diallel mating design was constructed to 

evaluate the genetic control of the carrot root phenotypes measured by this platform.  A set of 

diallel crosses evaluates the progeny derived from pairwise matings between a defined set of 

inbred parental lines in an effort to estimate genetic variance components that are of 

significant import in both breeding and population genetics (Griffing, 1956).  This experimental 
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design allowed for an estimation of the heritability of the various component traits which 

constitute market class – the first reported estimation of such parameters for these important 

morphological traits.  As such, these analyses provided proof of concept datasets which 

confirmed the value of this phenotyping pipeline as a genetic research tool.  

 

Materials and Methods 
 
The digital image-based phenotyping methodology developed in this study followed a three-

stage workflow: image acquisition, image pre-processing, and image analysis. 

 

Image acquisition 

Images were captured with a DSLR camera with a 24mm fixed-length lens, mounted above a 

template containing two 22.5 cm x 75 cm black-bordered rectangles.  This facilitated imaging 

two roots simultaneously; further partitioning would permit multiplexing more than two roots 

in a single image, depending on root size and desired resolution.  Six fluorescent Interfit 

(Atlanta, GA) F5 lights provided overhead illumination in order to maximize contrast between 

root and background, and eliminate shadow.  Each rectangle was divided into an upper and 

lower portion by blue, 1.25 cm in Gaffer’s tape.  The upper portion contained a 100 mm scale 

bar, and a QR matrix barcode which encoded identifying information pertaining to the specific 

carrot root being photographed.  The lower portion contained the corresponding root, placed 

on either a black felt or white vinyl background depending on the exterior pigmentation of the 

carrot.  The top of the root was aligned to be parallel with the blue tape in order to precisely 

divide root and shoot growth. 
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The DSRL camera was connected via a USB cable to a computer running SmartShooter (Tether 

Tools, Phoenix, AZ) a tethered shooting application which allows for high-resolution live 

previewing of DSLR cameras’ view-frames.  This facilitated accurate positioning of carrots 

relative to the blue line.  Upon image acquisition, SmartShooter wrote a raw and a lossless JPG 

image to disc at a user-specified “source” location. 

 

A Python application then handled initial image processing and file management.  This 

application ran inside of a custom Python v3.7.7 virtual environment in order to easily utilize a 

suite of open-source image-processing libraries.  First, the watchdog library was used to detect 

each new JPG as it was created, and the lensfunpy wrapper for the C++ library lensfun was 

used to remove distortion due to the curvature of the lens (Fig. 1A).  Next, each black-bordered 

box within the image was identified using the Python bindings for the OpenCV library, and the 

QR code within the upper portion of each box was scanned using the bindings for the zbar 

library (Fig. 1B).  As a preliminary form of quality control, the click package was used to 

display the attribute-value pairs encoded by the QR code; when the user accepted these as 

accurate, the corresponding image was subsequently displayed within a browser window using 

Node.js, with a transparent overlay of the region detected as corresponding to the carrot root.  

This overlay was also generated using the OpenCV library: in brief, RGB images were converted 

to grayscale, a bilateral filter was applied to smooth the image while preserving edges, and a 

binary threshold was applied to generate the so-called “binary mask”—i.e., a black and white 

image in which white pixels designate the presence of carrot, and black pixels designate 
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background (Fig. 1C).  If binary masks were visually judged to correctly identify the root, they 

were then saved as high-resolution PNG files to a pre-specified “destination” directory path 

defined according to information encoded in each QR code (e.g., “Location/Year/Genotype”).  

All identifying information specific to each root was included in the PNG file name, in addition 

to a scaling parameter corresponding to the detected pixel length of the 100 mm scale bar.   

 

Image pre-processing 

Following image acquisition, pre-processing steps were performed to standardize image, 

specifically by removing curvature and residual, unexpanded root tips.  The straightening 

procedure was performed in MATLAB R2019b (MATLAB, 2019), and consisted of two stages.  

First, the midline of the carrot root was estimated, and second, widths were determined by 

“slicing” the binary mask normal to the tangent vectors along this midline.  To estimate the 

midline, the minimum distance between all points within the carrot root and contour of the 

carrot root was determined using the Euclidean distance-transform described by Maurer et al. 

(2003).  Next, the tip of the carrot was found via an iterative algorithm that identifies points of 

maximum curvature within increasingly narrow segments of the root contour.  Finally, following 

the procedure described by Miller et al., (2007), the midline was traced: starting at the tip, an 

ordered series of midline coordinates was sequentially found by identifying the local maximum 

in the smoothed distance-transform, stepping in the direction of this local maximum, and then 

repeating the procedure.  This “walk” along the maximum of the smoothed distance transform 

surface stably traces the midline, under the condition that all midlines must end by passing 

through the center of the shoulder of the carrot (Fig. 1D).   
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In the second stage, the width of the carrot along its length was calculated.  Regardless of any 

degree of local skew or curvature in the root, the “true” width of the carrot at any point follows 

the vector normal to the tangent of the midline at that point.  Thus, the binary mask was 

sampled along this vector, starting at the midline and moving outward in both directions until 

an intersection with the contour is reached (Fig. 1E). This method of sampling prevented the 

inclusion of multiple segments of the carrot root in a single slice through its width, in cases 

where the tip of the carrot may curl back upon itself.  A straightened version of the carrot was 

then obtained by arranging these widths into a single array (or “width vector”), all centered on 

their midpoints. 

 

After straightening, a secondary pre-processing step was taken to remove any trailing, 

unexpanded portion of the taproot which extends past the tip of the carrot (Fig. 1F-G).  Any 

geometric definition of this cut point (e.g., on the basis of the derivative of width along the 

length of the root) is hindered due to extensive variation in tip shape and tip fill.   

A random forest classifier was therefore trained (using the sklearn Python library) with a 

subset of the images that were photographed both with their residual taproot attached, and 

with the taproot removed.  This model was subsequently used to detect the appropriate point 

at which to “de-tip” the straightened versions of the binary masks. 

 

Image analysis 
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Following these pre-processing steps, images were analyzed for several different types of 

phenotypes.  First, phenotypes that could be measured by hand, such as length, maximum 

width, and width at different points along the length of the carrot, were calculated for each 

image. These were determined by simply measuring the length of different slices through the 

straightened, de-tipped binary mask, and converting pixels to mm using the appropriate scaling 

parameter.  

 

Second, traits pertaining to individual roots that would be extremely difficult to measure by 

hand, such as tip angle, convex hull area of the shoulder, and curvature values of the shoulder 

and tip were also calculated.  Tip angle was defined here as the interior angle formed by the 

line segments connecting the tip of the carrot to contour points located 10% up the length of 

the carrot toward its top, while shoulder hull area was the area encompassed by background 

pixels in the rectangular region bounding the top 10% of the carrot.  Curvature values were 

computed at each point along the root profile in both the shoulder and tip regions (the first and 

last 50 contour points of the root, respectively) as described by Driscoll et al. (2012).  In 

principle, since curvature is inversely proportional to the radius of such a circle, curvature 

values at any particular boundary point can be estimated by inscribing a circle within the root 

using splines fitted to segments of the contour surrounding this boundary point, for which 

derivatives can be calculated.  Curvature was then computed as: 
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These vectors of curvature values in the shoulder and tip region can then be summed, to 

generate a metric of total curvature, or decomposed into principal components using PCA to 

identify sources of variation in curvature values across a wide sampling of carrots. 

 

Finally, in order to identify and quantify size-independent variation in the shape of the entire 

carrot root, PCA was also used on the raw contour data of the entire width profile.  In this case, 

the relevant covariance matrix was constructed using straightened, de-tipped masks that were 

first normalized such that all roots possessed equal lengths and maximum widths.  Each root 

was represented by 1000 standardized widths sampled evenly along the carrot’s length, and 

each width along a carrot’s length was divided by its maximum width, such that each carrot had 

a maximum width of 1.   

 

Validation of accuracy and reliability 

To validate the accuracy of the pre-processing pipeline and phenotyping algorithms, 100 roots 

(10 each drawn from 10 carrot genotypes representing divergent market class types) were 

measured by hand prior to being photographed.  Length measurements were made from the 

top of the shoulder to the point at which the unexpanded, residual tip of the carrot began using 

a tape measure, while maximum width was measured using calipers.  Secondly, to determine 

the extent of the variance in phenotypes extracted from different 2D projections of a given 

root, 100 roots were photographed three times, with each root being rotated 45° following the 

acquisition of the first and second photograph. 

 



 

 

42 

Visualization of the phenotypic correlates of principal components analysis 

In order to evaluate the performance of the principal components analyses, a diverse collection 

of carrot germplasm was grown at the Desert Research and Extension Center (Holtville, CA, 

U.S.) in 2019.  This collection was obtained from the USDA National Plant Germplasm System, 

and consisted of a total of 683 cultivated accessions, comprising breeding lines, open-pollinated 

cultivars, and land races.  These accessions represent a substantial amount of the global 

diversity in cultivated carrot, and thus provided an excellent basis for visualizing the variation 

captured by the first principal components of the normalized width profile, as well as the 

curvature in the tip and shoulder regions.  Two replications of this collection were grown in 1-m 

plots, with 5-15 roots sampled randomly from each plot at harvest; in total, 8687 roots were 

imaged in this analysis.  Phenotype values for each genotype were then estimated with a fixed 

effects model which modeled PC scores as a linear function of genotype and replicate. 

 

Experimental design of half-diallel 

To demonstrate the utility of the phenotyping methodologies described here in the genetic 

analysis of root morphology, a half-diallel mating design was used to determine the heritability 

of digitally-phenotyped traits.  Seven inbred carrot lines and one open-pollinated variety were 

used as parents in this diallel.  Two inbred lines (B2566 and L1408) were developed by the 

USDA-ARS Vegetable Crops Research Unit, which breeds primarily for the fresh market carrot 

industries (Simon et al., 1987); five inbreds (W279, W289, W287, W278 and W280) were 

produced by the University of Wisconsin-Madison carrot breeding program, which breeds 

primarily for processing (canning and juicing) industries (Goldman, 1996); the open-source 
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variety OSSI-Ball is a Parisienne-type for specialty markets (Luby and Goldman, 2016).  

Together, these eight accessions represent a diversity of the market classes, and consequently 

the root shapes, that appear in public sector carrot breeding in the U.S. (Supp. Fig. 3).  An 

additional benefit of using these inbred lines, is that both sterile and fertile versions, relying on 

a cytoplasmic-genic male sterility system (Eisa and Wallace, 1969; Peterson and Simon, 1986), 

were available, greatly aiding in the logistics of performing the requisite crosses.  In the case of 

OSSI-Ball, only fertile roots were available, and thus this genotype was used as a male parent in 

each cross.  A representative cross between an inbred line used for Imperator production 

(L1408) and a specialty market type (OSSI-Ball) illustrates the typical manner in which root size 

and shape phenotypes combined in crosses between divergent market class types (Supp. Fig. 

4). 

 

L1408 and B2566 were grown at Miller Farms in Hancock, WI (44°08’N, 89°32'W), and all other 

genotypes at Jack’s Pride Farm in Randolph, WI (43°37’N, 89°00’W) in the summers of 2017 and 

2018.  Harvested roots were vernalized at 4°C for 12 weeks with shoot growth removed before 

being planted in pots (15.2 cm tall x 13.8 cm in diameter, filled with a blend of one-third Pro-

Mix High Porosity (Premier Tech, Quakertown, PA) and two-thirds field soil).  These vernalized 

roots were grown under at 20°C and 16 h daylength at the Walnut Street Greenhouses in 

Madison, WI.  Following flowering, pairs of roots—one sterile, one fertile—were selected for 

crossing: immediately following the appearance of anthers, the umbels of each pair were 

enclosed in a cloth bags, to which blue bottle fly pupae were added at weekly intervals to 

ensure high rates of pollination.  This process was carried out during both the winter of 2017-
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2018 and 2018-2019 in order to obtain progeny from each of the 28 pairwise cross 

combinations.  

 

Following seed-set, umbels were separated, and seed harvested by hand from the sterile 

parent.  F1 seed from each cross was grown in two replicated 3m plots at Jack’s Pride Farm in 

the summer of 2019.  Roots were thinned to a density of 1 seedling per 5 cm 21 days after 

planting (DAP), and roots from each plot were harvested from the middle of each row 107 DAP.  

The logistical complexity of obtaining pairwise crosses between a large number of inbred 

parents with differing flowering times limited the number of parents to the eight used in this 

study.  Nevertheless, such an experimental design  (of eight parents with two replicates) falls 

within the range recommended by Pederson (1971) on the basis of simulation studies, and a 

large sample size within each replicate of F1 progeny (15-20 roots) was obtained to minimize 

bias as much as possible in the estimation of variances.  

 

Estimation of heritabilities 

For each of the two replicates of every F1 family, 15-20 roots were randomly selected for digital 

phenotyping.  Because neither reciprocal crosses nor parental lines were included along with 

the F1 progeny, the Method IV, Model I diallel analysis was utilized, as described by Griffing 

(1956): 𝑦&'( = 	𝜇 + 𝑔& + 𝑔' + 𝑠&' + 𝜀&'(.  𝜇 is the population mean, 𝑔&  is the so-called “general 

combining ability (GCA) effect of the ith parent, 𝑔'  is the GCA of the jth parent, 𝑠&'  is the “specific 

combining ability” (SCA) effect of the ijth cross (where 𝑠&' = 𝑠'&), and 𝜀&'( is the residual error of 
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the ijkth
 observation.  All of these terms, including the effect of replicate, are considered as fixed 

effects. 

 

Variance components for GCA, SCA, and error terms were calculated on the basis of expected 

mean squares: 𝐸𝑀𝑆)*+ = 𝑉, + 𝑉-*+ + (𝑝 − 2)𝑉)*+; 𝐸𝑀𝑆-*+ =	𝑉, + 𝑉-*+; 𝐸𝑀𝑆(𝜀) = 𝑉,.  𝑝 is 

equal to the number of parental lines, in this case 8, and 𝑉, is equal to the error calculated on 

an entry-mean basis (#!
"

.
), with 𝑟, the number of replicates, equal to 2.  Additive (𝑉+) and 

dominance  (𝑉/) components were subsequently estimated as described by Pederson, 1971: 

𝑉+ =
0

123
𝑉)*+	and 𝑉/ =

0
(123)"

𝑉-*+.   

 

Broad- (𝐻!) and narrow-sense (ℎ!) heritabilities were finally calculated as: 𝐻! = 6#
6#2

$!
%

 and 

ℎ! = 6&
6#2

$!
%

 with 𝑟 = 2 replications; following Falconer (1996), total genotypic variance, 𝑉) , was 

defined as 𝑉+ + 𝑉/.  Baker’s ratio was calculated as: !7-#'&
!7-#'&27-('&

; as such, it varies between 0 

(in the case of all variance being attributed to SCA) to 1 (in the case of all variance being 

attributed to GCA) (Baker, 1978). 

 

Data statement 

Python code for the image acquisition platform and scripts for producing binary masks are 

available at https://github.com/shbrainard/carrot-phenotyping.  MATLAB algorithms for 

straightening binary masks and performing PCA on contours or curvature values are available 

at: https://github.com/jbustamante35/carrotsweeper.  Phenotypic data and example R code (R 
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Core Team, 2020) pertaining to both the market class-based clustering analysis and the diallel 

analysis are available via the Harvard Dataverse (Brainard, 2020). 

 

Results 
 
Figure 1 depicts the digital image-based phenotyping workflow. An example raw image, in this 

case containing two carrots and their respective matrix-barcoded identifying information, is 

shown in Figure 1A.  The multiplexed main image is divided into single-sample sub-images. The 

regions of interest are the machine-readable QR code data, and the root below the line of blue 

tape (Fig. 1B).  The former is used to name, save, and track image files and phenotypes, while 

the latter is converted to a binary mask (Fig. 1C).  Figure 1D-G illustrate image pre-processing 

steps: first a midline that terminates at the tip is generated (Fig. 1D); next, 1000 axial width 

measurements are made along vectors normal to this midline (Fig. 1E); a straightened root 

profile is constructed using this midline and resulting widths (Fig. 1F); finally, the image is 

cropped at an apical position determined by a trained machine learning algorithm (Fig. 1G). 

Technical aspects of the algorithms used in each step are provided in the Experimental 

Procedures section. 

 

Accuracy of image-derived phenotypes 

Scatter plots of the root phenotypes obtained algorithmically from digital images versus hand 

measurements confirms that the two methods provide highly similar results (Fig. 2).  For both 

length and maximum width, strong correlations were apparent across the range of phenotypes 
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measured.  Root mean squared error (RMSE; the square root of the squared residuals) of the 

linear model y = x was 8.30 mm for length and 2.00 mm for width.   

 

In addition to parity between human- and computer-based phenotypes, the variance associated 

with the arbitrary positioning of a given carrot root beneath the camera was also evaluated.  

Some variance due to placement should be expected, particularly in estimated widths, because 

this method analyzes a two-dimensional projection of a three-dimensional root, and no carrot 

is a perfect cone.  Throughput of the pipeline would be reduced if more than one perspective of 

each root needed to be analyzed.  Pairwise comparisons were made between phenotypes 

extracted from three photos of individual, diverse roots that were variably rotated along their 

long axis.  These comparisons demonstrated that deviation from symmetry about the long axis 

of the carrot was responsible for minimal variance in maximum width measurements and 

affected length even less (Supp. Fig. 1). The variation between pairs of images was very similar 

to the variation between human and algorithmic measurements presented in Fig. 2. These 

results indicate that a single two-dimensional projection of a three-dimensional root is 

sufficient to obtain reliable estimates of key morphological phenotypes. 

 

We measured the diverse USDA-NPGS carrot collection to determine how variation due to 

digital phenotyping error compared with variation between genotypes, which is typically the 

most relevant criteria from both a genetic and plant breeding perspective. Least significant 

differences (LSDs) between accessions were calculated for both length and maximum width, 

with 𝑀𝑆8..9.being estimated by ANOVA utilizing a linear model in which accession was 
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included as a fixed effect.  The LSD values of 35.8 mm for length, and 7.5 mm for maximum 

width (with α = 0.05), indicate that the measurement error associated with this digital 

phenotyping platform is many times smaller than the detection threshold for distinguishing 

distinct carrot genotypes from each other. 

 

Principal components analysis of contours 

An automated tool for measuring root length and maximum width would advance research into 

the genetic control of root development, but understanding the genetic variation that underlies 

variation between market classes requires additional information regarding shape in particular.  

A method was therefore developed to produce for each root image a set of contour points 

derived from width measurements made at 1000 points along the main axis.  Normalizing each 

contour data set with respect to the maximum in both the x and y (width and length) 

dimensions makes the shape information they contain comparable across diverse cultivated 

accessions drawn from the USDA-NPGS carrot collection.  A total of 8687 images representing 

683 accessions were collected and analyzed in this manner to produce a contour data set for 

each root.  Principal components analysis (PCA) of these sets of contour points showed that the 

first principal component (PC1) explained 84.9% of the total variance in the contours, with PC2 

and PC3 explaining only 9.6% and 2.5% of the variance, respectively. The eigenvectors of a 

given PCA were used to generate simulated root profiles based on artificial PC scores.  Figure 3 

shows that decreasing PC1 while holding all other PC scores equal to their mean reduces or 

delays the rate of taper toward the tip, i.e. the root maintains width further along its length 
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compared to roots with a higher PC1. This trait will therefore be referred to as “root fill” in 

subsequent analyses. 

 

Principal components analysis of shoulder and tip curvatures 

The PCA of whole-root contours presented above did not require pre-determining what aspect 

of shape contributes most significantly to variation across this population.  This is in contrast to 

deliberately measuring shapes of interest, such as the distribution of curvature in the shoulder 

and tip regions that humans subjectively consider when distinguishing cultivars from differing 

market classes.  The curvature quantified in this case is the instantaneous rate of change of 

angle of a vector normal to the contour as the vector moves along the contour.  Put another 

way, curvature at each contour point is the reciprocal of the radius of the circle that is tangent 

to the contour at that point.  After fitting smoothed splines to the top 50 (root shoulder) and 

bottom 50 (root tip) contour points, curvature at each point was calculated to construct the 

respective covariance matrices.  PC1 of shoulder-region curvature explained 87.3% of the total 

variation.  PC1 of tip-region curvature explained 84.2% of the total variation.  Representative 

examples of roots with PC1 values in the 1st and 99th percentiles for shoulder curvature are 

shown in Figure 4B,C.  The Imperator type (Fig. 4B) has almost no curvature in the shoulder, 

while the broadly shouldered Parisienne type (Fig. 4C) has much more substantial curvature. 

Representative examples of roots with PC1 values in the 1st and 99th percentiles for tip 

curvature are shown in Figure 4E,F. The extremely blunt-tipped Nantes type in Fig. 4E can be 

contrasted with the highly acuminate Danvers type in Fig. 4F.   
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Fig. 4A and 4D show correlograms of these curvature-derived metrics, with alternative methods 

of measuring shoulder and tip shape: PC scores derived from curvature values (“Curvature 

PCA”), PC scores derive from normalized contours (“Contour PCA”), the sum of curvature 

values, and either shoulder hull area or tip angle.  As would be expected, PC scores derived 

from curvature values are strongly correlated with the sum of curvatures in the shoulders (r = 

0.931) and tips (r = 0.954).  Less expected was the poor correlation between curvature PC 

scores and contour PC scores derived from the same region (r = -0.351 for the shoulder region 

and r = 0.537 for the tip region). This suggests that the process of fitting smoothed splines to 

the contours gives rise to a meaningful difference between the phenotypes that are measured 

by quantifying “variation in the curvature” and “variation in the contour” of the shoulder and 

tip regions.   

 

In general, it is also clear that for any particular pair of phenotypes, the correlation is stronger 

in the tip region, compared to the shoulders.  In particular, while tip angle appears to be a 

moderately accurate surrogate measure for variation in tip curvature, hull area has a relatively 

weak correlation with shoulder curvature.  This is understandable, since broadly shouldered 

carrots and carrots completely lacking shoulder curvature should have large hull areas, whereas 

tip angle varies monotonically with the curvature of the tip. 

 

Cluster analysis of representative carrot market class types 

To test the discriminatory power of the phenotypes quantified by this new pipeline, a clustering 

analysis was performed using length, maximum width, root fill, curvatures of the tip and 



 

 

51 

shoulder, and aspect ratio (i.e., length divided by maximum width).  Thirty five roots were 

drawn from each of five economically important and phenotypically diverse market classes.  

The market classes were: Chantenay, a short, bulky processing type; Imperator, a long and 

slender type used in baby carrot production; Danvers, a medium length, pointed type typical for 

fresh-market sale; Nantes, a medium length blunt type often used as a storage root; and Ball, a 

very short, rounded type often sold to specialty markets (Supp. Fig. 2).  In addition to being 

representative of the most economically important market classes, this set of carrots was 

selected because they represent diverse combinations of component phenotypes.  For 

instance, while root fill is independent of size (being calculated from length- and width-

normalized contours), in a particular collection of carrots it may by predictive of length, due to 

non-random associations between shape and size.  While not every combination of phenotypes 

can be sampled in only five market classes, the classes selected here were therefore chosen in 

order to minimize such correlations.  The results of this clustering analysis are shown in Fig. 5B.  

In this bi-plot visualization, PCA was used to generate linear combinations of the six traits, and 

the first two PCs were used as the x- and y- axes to visually illustrate both the degree of 

clustering within classes, and the phenotypic “distance” between market classes.  Clear 

clustering is observed for all five market classes, indicating that this phenotyping pipeline 

effectively characterizes the key phenotypic components of market classes.  This can be 

compared to a clustering analysis which used only those two traits most readily measured by 

hand, length and maximum width (Fig. 5A).  While the most phenotypically divergent roots are 

still distinguishable (e.g., Imperator and Ball), the exclusion of shape descriptors markedly 

increases the overlap between market classes that are similar in their overall dimension (e.g., 
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Nantes and Danvers, which differ primarily in their degree of tip fill.  This confirms that the 

phenotyping platform measures shape parameters that parallel the morphological differences 

between market classes. 

 

Diallel mating design 

All pair-wise crosses were made between eight parental lines to construct a half-diallel 

population. 760 F1 roots representing this population were measured with the pipeline 

described above.  Mean length was 18.12 cm, with a standard deviation of 4.46 cm; mean 

maximum width was 4.72 cm with a standard deviation of 0.80 cm; and mean L/W ratio was 

4.01 with a standard deviation of 1.34.  For all traits, MSGCA was larger than MSSCA, although the 

degree to which this was the case varied substantially from phenotype to phenotype, from over 

15x greater in the case of length-width ratio, to only 1.43x times greater in the case of root 

biomass (Table 1).  This finding is captured well in Baker’s ratio: in general, values were found 

to be close to unity, suggesting meaningful degrees of additive gene action for all traits 

considered.   

 

Broad-sense heritability values were ³ 0.94 for all traits save biomass and tip curvature.  This 

somewhat surprising finding indicates a high degree of genetic influence over phenotypes that 

are exposed to a high degree of environmental influence, due to the roots’ direct contact with 

the inherently heterogeneous soil profile.  In this regard, two factors should be kept in mind: 

first, the soils in which this trial was grown is a Houghton muck, a deep saprist histosol with 

more than 50% organic matter.  Given the aggressive tillage prior to seed bed preparation, this 
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leads to a highly uniform soil profile with minimal compaction.  Together with conventional 

weed control and fertilizer application, this produces one of them most uniform environments 

for growing root crops in Wisconsin.  Thus, it is relatively unsurprising that environmental 

variation was minimized, and heritability maximized, in such a production system.  Secondly, 

the fact that seven of the eight parents in this diallel were inbred lines likely contributed to 

phenotypic uniformity within full-sib families due to the genetic uniformity within each 

particular hybrid combination.  

 

Narrow sense heritabilities displayed a wide range of values, from 0.14 for biomass, to 0.84 for 

L/W ratio.  Length, maximum width, and shoulder curvature all exhibited middling values (0.66, 

0.72, 0.76, respectively).  In general, these values conform to the experience of modern 

breeding for both the fresh market and processing industries, which have successfully produced 

highly typified long and slender carrots for the Imperator market, and much shorter, broader, 

heavily tapered carrots for the processing industries. 

 

It is interesting to consider why the biomass and aspect ratio – both traits that would intuitively 

be understood as primarily functions of the overall dimensions of the root (length and 

maximum width) – possess such markedly different narrow-sense heritabilities.  While aspect 

ratio is primarily the function of two highly heritable traits (length and width), biomass is a 

function not only of length and width, but also root fill.  In this particular population, the 

correlation between maximum width and how far down the carrot that width is maintained 
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(e.g., PC1) is very weak: only 0.12.  That is, whether a carrot has a very wide shoulder or narrow 

shoulder is not highly correlated with widths elsewhere along the carrot.  

 

Discussion 
 
Market class in carrot 

It is challenging to define market class in horticultural crops like carrot, which is a composite of 

several closely related morphological traits, with more precision than shown in the sketches in 

Supp. Fig. 2.  Although it is possible to list a suite of parameters that are clearly involved in 

defining a given root class, quantifying them in relation to each other, integrating them into a 

single metric to determine which classes are most similar to each other, or evaluating how 

much variation exists within a given class: all of these tasks are impossible without a robust set 

of digital phenotyping tools, such as those described here.  This is perhaps best exemplified in 

the first principal component of the straightened, length- and width-normalized contours – 

referred to here as “root fill”.  This trait gives breeders and researchers a method for visualizing 

and quantifying a source of shape variation that would otherwise be confounded with root size.  

Finally, this platform is not designed around a machine learning algorithm for classifying carrots 

into predefined – and therefore static – market classes.  As such, it can be adapted to any range 

of root shapes.  This is particularly useful for a character like market class, which is determined 

by current agricultural practices and culinary preferences.  While these classes are therefore 

malleable, and will certainly change over time, their component phenotypes will still be 

quantifiable by way of the pipeline described here. 
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In order to answer the question as to whether these phenotypes together accurately describe 

the market classes which predominate today, we performed a PCA-based clustering analysis 

that clearly identified clusters corresponding to five major market classes.  In addition, this 

analysis demonstrated the degree to which significant phenotypic diversity exists within market 

classes; even though individuals from the same market class cluster together, at the border 

regions of each cluster there is limited overlap between classes.  This is unsurprising, since all of 

the traits composing market class are quantitative in nature, and furthermore since most 

market classes are descended recently from a relatively narrow genetic base (Banga, 1957).   

 

Trait heritabilities in a diallel mating design 

To demonstrate its potential utility in terms of genetic analysis that is particularly relevant from 

a breeding perspective, this study presents the first diallel experiment in carrot composed of 

parental inbred lines drawn from the predominant U.S. market classes, that simultaneously 

evaluates both size and size-independent shape parameters.  On a trait-by-trait basis, this aims 

to provide an understanding of the predominant form of gene action influencing these traits 

(additive versus dominance variance).  Taken together, these results will guide breeding 

decisions in programs that are utilizing these inbreds to generate hybrid progeny.   

 

From a practical perspective, the relatively high narrow-sense heritabilities reported here 

reflect breeders’ success in efficiently selecting for these traits.  From a genetic perspective, 

however, this finding does not necessarily indicate simple control, in the sense these traits are 

necessarily primarily controlled by only a few, large-effect quantitative trait loci (QTL).  Large 
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additive genetic variance components could also be associated with highly polygenic traits that 

simply lack dominance and epistatic variance (Huang and Mackay, 2016).  Furthermore, the 

heritabilities reported here only reflect phenotypes measured in a particular – albeit common 

and important – environment in Wisconsin.  As such, they should be understood to represent a 

“ceiling” for heritabilities: they are quite high, and thus further research studying these traits 

across multiple years in multiple environments should therefore be encouraged.  When this is 

carried out, estimates of environmental variance will likely rise, and thus heritabilities should be 

expected to fall.  The degree to which multi-environment trials might lead to lower estimates of 

heritability is not clear, given the fact that the estimates reported here are roughly in accord 

with values previously estimated for root length (Brar and Sukhija, 1981; Prasad and Prasad, 

1980).  Additionally, it is important to stress that heritability is a parameter of the population 

under consideration, and not purely a function of the trait they describe.  Estimates of 

heritability will vary depending on the particular cultivars or population studied, as has been 

found in carrot with respect to heritabilities for nematode resistance in carrot (Huang et al., 

1986; Vieira et al., 2003) as well carotenoid components (Fernandes Santos and Simon, 2006).  

For this reason, we selected as parents a diverse set of inbred lines, with the aim that 

heritabilities would likely reflect the germplasm used in current breeding programs.  

Nevertheless, the precise heritabilities realized in any population not derived from these 

particular genotypes will necessarily deviate to some degree from those calculated here. 

 

High-throughput phenotyping 
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This report presents a high-throughput method for phenotyping carrot roots using 2D digital 

photos.  This approach was validated as accurate (compared against human measurements, Fig. 

2) and robust to the arbitrary rotation of the 3D root, through comparison with multiple images 

of the same root (Supp. Fig. 1).  Interestingly, while variation about the line y = x in Fig. 2 

appears randomly distributed for the case of maximum width, there is a slight upward bias in 

algorithm-measured lengths for particularly long carrots.  This is potentially a consequence of 

the determination of the point at which the carrot root ends and the unexpanded, residual tip 

begins.  This unexpanded portion of the taproots was removed from images where it existed (as 

shown in Fig. 1F,G), since it is not relevant to defining market class.  Anatomically, it can be 

distinguished from the carrot root proper as lacking the secondary cambial layers leading to 

root thickening (Goldman, 2020).  As a result, practically, it is often intentionally or 

unintentionally broken off during harvest, or post-harvest handling.  Because it does not break 

off all roots, however, it would represent a significant source of residual variation if not 

controlled for.  A difference between human judgment and machine learning methods in 

determining where this residual tap root begins could have led to a slight systematic bias.   

 

In addition, binary masks are straightened before length measurements are calculated.  Carrot 

roots may possess varying degrees of curvature depending on their orientation in the soil 

profile and their angle and direction of growth.  In addition, orientation of the root parallel to 

the blue tape within the rectangular template in some cases introduced varying degrees of 

skewness.  Therefore, straightening is essential to minimizing experimental error.  However, 

while the algorithms for straightening the carrot are robust to any arbitrary curvature of a 
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carrot root, they are of course different from the method by which a human measures carrot 

length, and therefore likely contribute to some of the variation observed in Fig. 2A.  

Nevertheless, these results confirm both the accuracy of the digital phenotyping approach, as 

well as its general accordance with human assessments of root size.  As such, this tool has 

substantial value in any attempt at assessing phenotypic diversity for, or dissecting the genetic 

control of, morphological traits, as these traits are often impossible or challenging to measure 

by hand.   

 

Beyond its utility in simply describing phenotypic variability, the automated potential of such a 

phenotyping approach means it has substantial promise within plant breeding programs.  In 

plant breeding, a significant bottleneck remains the resources required to screen large 

populations, whether these be time, money, or labor.  From this perspective, the pre-

processing and image analysis stages of this pipeline are already explicitly automated.  

Furthermore, the acquisition algorithms described here are robust to virtually any object; only 

the specific RGB thresholding value used to distinguish plant tissue from background requires 

adjustment to allow for the accurate production of a binary mask.  With regards to the pre-

processing and analysis algorithms, the only requirement to their broad application is that the 

object be non-branching, and within horticultural and agronomic crops this would allow for a 

wide array of fruit, roots and tubers.   

 

In the development of this phenotyping approach, three main classes of phenotypes were 

measured.  First, concrete phenotypes that could easily be measured by hand were calculated 
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(length, maximum width, aspect ratio).  Second, phenotypes that could not easily be reliably 

calculated by hand, but are often used as subjectively-judged determinants of market class, 

were measured (tip fill and shoulder curvatures).  Finally, PCA of the entire size-normalized 

contour (root fill), as well as PCA of curvature values in the shoulders and tip, was performed in 

order to more objectively quantity sources of variation in carrot shape.  This PCA-based analysis 

of root shape mirrors closely previous studies performed in Japanese radish (Raphanus sativa, 

L.), which used elliptical Fourier descriptors to quantify contour variation of normalized binary 

masks (Iwata et al., 2000; Iwata et al., 1998).  There were some important differences between 

the two analyses, however: the panel of radish roots possessed much less diversity than the 

collection presented here, and the images were not straightened prior to contour analysis.  

Nevertheless, as in this analysis, the first principal component captured the vast majority of the 

total variance in radish shape (73.9%, compared to 84.9% found in this study).  Interestingly, 

however, the variation did not describe root fill, but rather the thickening in the central portion 

of the root, which likely reflects the different source of variance produced through selection for 

carrot- vs radish-specific market class traits. 

 

In this regard, it is important to note that botanically, carrots – like many storage roots – are 

formed through a swelling of the taproot, driven by the production of supernumerary cambia, 

i.e., secondary growth characterized by the production and expansion of additional xylem and 

phloem tissues (Goldman, 2020).  As such, the phenotyping methods described here hold 

significant potential not only in the context of plant breeding, but in understanding plant tissues 

that have been modified through domestication.  Precisely studying variation across carrot 
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market class therefore represents a unique opportunity to deepen our understanding of the 

genetic bases of secondary root development in general.  Future studies based around linkage 

mapping populations or association panels could utilize this phenotyping pipeline to identify 

QTL associated with these underlying physiological processes. 
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Tables 
 

Table 1. Parameters estimated from ANOVA of the half-diallel using Griffing’s Method IV, 

Model 1.  Variance components and heritabilities are reported for the primary size and shape 

traits which define market class. 

 Length 

(mm) 

Width 

(mm) 

L/W 

Ratio 

Biomass 

(m2) 

Root fill 

(PC score) 

Tip curvature 

(PC score) 

Shoulder curvature 

(PC score) 

MSGCA
† 5200.03 175.14 5.84 2.79 1.77 1.18e-04 5.16e-05 

VA 1445.25 50.36 1.82 0.28 0.37 1.57e-05 1.54e-05 

MSSCA
†

 864.29 24.05 0.38 1.94 0.67 7.28e-05 5.41e-06 

VD 651.05 15.94 0.33 1.43 0.55 1.83e-05 4.30e-06 

Ve 213.24  8.11 0.06 0.51 0.12 5.45e-05 1.07e-06 

H2 0.95 0.94 0.98 0.87 0.94 0.55 0.97 

h2 0.66  0.72 0.84 0.14 0.38 0.26 0.76 

BR‡ 0.92 0.94 0.97 0.74 0.84 0.77 0.95 

†Mean sum of squares from the ANOVA 

‡Baker’s Ratio 
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Figures 
 

 
Figure 1. Workflow outlining the pre-processing of digital images of carrot roots. (A): Each 

black-bordered box within the overall image was identified; (B) QR codes within the upper 

portion of each box were scanned and the encoded text displayed as a form of quality control; 

(C) Carrot pixels were distinguished from background pixels to generate binary masks; (D) The 

midline of the carrot root was estimated by tracing a path from the carrot tip to the center of 

the shoulder, following the maximum of the smoothed Euclidean distance transform; (E) Width 

measurements were made by sampling the binary mask normal to vectors tangent to the 

midline; (F-G) A random forest classifier was trained to detect the point at which to “de-tip” any 

residual, unexpanded tap root. 
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Figure 2. Hand- (x-axis) versus digital-image based (y-axis) measurements of length (A) and 

maximum width (B) of 100 carrot roots.  Each point represents a unique carrot; colors indicate 

one of 10 carrot accessions representing a variety of market classes.  RMSE of the linear model 

y = x was 8.30 mm for length and 2.00 mm for maximum width. 
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Figure 3. Quantification of size-independent variation in carrot root shape using PCA of length- 

and width- normalized contours.  All carrots were standardized to a maximum width of 1 and a 

length of 1000, and contours were decomposed into five principal components. Rows 

correspond to four representative roots sampled from each quartile of the range of scores 

along the first principal component, and illustrate the form of phenotypic variance captured by 

this first component. From left to right: raw color photos of roots taken during image 

acquisition; straightened binary masks of the corresponding root; simulated root profiles 

generated by taking the product of the first PC score pertaining to this root (far right) and the 

mean of all other PC scores with the transpose of the eigenvectors generated during 

eigendecomposition.  These simulated profiles demonstrate that variation along the first 

principal component reflect the degree of “root fill”, or extent to which a carrot preserves its 

maximum width down its length. 
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Figure 4. Correlograms comparing several measures of shoulder shape (A) and tip shape (D): 

PC1 scores derived from curvature values (“Curvature PCA”), PC1 scores derive from normalized 

contours (“Contour PCA”), the sum of curvature values, and either shoulder hull area (A) or tip 

angle (D).  For Pearson correlation coefficients (r) shown above the diagonal, ***: p-value < 

0.001; *: p-value < 0.1.  Images on right illustrate representative roots drawn from the extremes 

of the first principal component scores corresponding to shoulder curvature values (B & C) and 

tip curvature values (E & F). 
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Figure 5. (A) PCA-based clustering of 175 roots sampled from five major market classes on the 

basis of only length and maximum width; (B) PCA-based clustering of these same roots using 

PCA of curvature values in the tip and shoulder, root length, maximum width, aspect ratio, and 

root fill. 
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Supplementary Figures 
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Supplementary Figure 1. Pairwise comparisons of phenotypes (A) length; (B) maximum width; 

(C) midpoint width, extracted from multiple photos of individual roots.  Each point represents a 

single carrot that was photographed three times from three different angles (as in Fig. 3, color 

corresponds to distinct genotypes).  Left-most panels compare photo 2 against photo 1, middle 

panels photo 3 versus photo 1, and right-most panels photo 3 versus photo 2. 
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Supplementary Figure 2. Illustration of stereotypical contours of roots from five major carrot 

market classes (adapted from Simon et al., (2008)) used in the clustering analysis: (A) 

Chantenay; (B) Imperator; (C) Danvers; (D) Nantes; (E) Parsienne/Ball. 
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Supplementary Figure 3. Carrot genotypes used in the half-diallel mating scheme. (A) W279; 

(B) B2566; (C) L1408; (D) OSSI-Ball; (E) W289; (F) W287; (G) W278; (H) W280.  A, G & H 

exemplify the Chantenay-type processing carrot; E & F typify the Danvers, and Nantes market 

classes, and typically sold as fresh-market or storage carrots; D is a specialty Parisienne (or Ball) 

type; and C is an Imperator type used in the production of baby carrots. 
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Supplementary Figure 4. Representative roots from one of the pair-wise crosses included in the 

diallel mating scheme: (A) L1408; (B) L1408xOSSI-Ball; (C) OSSI-Ball. 
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Abstract 
 
The size and shape of carrot roots are not only major components affecting yield, but are the 

primary determinants of market class.  These quantitative phenotypes have historically been 

challenging to objectively evaluate, and thus subjective visual assessment of market class 

remains the primary method by which selection for these traits is performed.  However, 

advancements in digital image analysis have recently made possible the high-throughput 

quantification of size and shape attributes.  Together with a high-quality reference genome, it is 

now feasible to utilize modern methods of genetic analysis in investigating the genetic control 

of root morphology.  To this end, this study uses both genome wide association analysis and 

genomic predictions based on genomic-estimated breeding values.  This analysis suggests that 

the components of market class are highly polygenic traits, likely under the influence of many 

small effect quantitative trait loci (QTL).  In addition, relatively large proportions of additive 

genetic variance for many of the component phenotypes support high predictive ability of 

genomic-estimated breeding values.  This study represents a novel advance in our 

understanding of the genetic control of market class in carrot root, as well as the possibilities of 

using genomic predictions for quantitative traits in horticultural crops. 

 

Introduction 
 
Carrot (Daucus carota subsp. sativus) is a widely cultivated vegetable crop of both significant 

economic importance—globally, annual carrot production exceeds 40 million metric tons (FAO, 

2020)—and nutritional value, representing a significant source of pro-vitamin A in the human 

diet (Simon, 2000).  Carrot roots are sold into many different markets as a fresh product, a 
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storage root, and a processing crop.  In this regard, the size and shape of the edible, swollen 

taproot are key traits: in addition to influencing yield, root size and shape are the principle 

determinants of market class in carrot (Banga, 1957; Simon et al., 2008), affecting both 

harvestability, post-harvest handling, and marketability. 

 

While extensive diversity for root size and shape exists within cultivated carrot germplasm, 

these quantitative traits have historically been challenging to objectively evaluate.  To this day, 

distinguishing among market classes relies on a subjective visual assessment of the curvature of 

the carrot root shoulder and tip, its aspect ratio, as well as its length and width.  No method for 

quantification of standard size and shape categories is currently recognized.  In this context, 

quantitative digital image analysis holds significant potential in not only automating 

phenotyping tasks, but enabling the precise measurement of the determinative components of 

root shape. 

 

An image analysis pipeline designed specifically for this task was recently developed and 

validated in order to provide a high-throughput method for accurately evaluating both size and 

shape parameters in a diverse collection of carrot germplasm (see Chapter 2).  This pipeline 

allows for the precise characterization of the morphological phenotypes which in turn could 

allow for the establishment of criteria for distinguishing market classes from one another.  In 

particular, it was shown that principal components analysis (PCA)-based methods of quantifying 

shoulder and tip curvature, as well as size-independent variation in the full root contour, 

improve discrimination between market classes, relative to what is possible using only 
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measurements of root length, width, and aspect ratio.  Together with the recent construction 

of a high-quality, chromosome-scale reference genome for carrot (Iorizzo et al., 2016), this 

platform, and the quantitative phenotypic data it provides, makes it possible for the first time 

to utilize both genome-wide association analysis (GWAS) and genomic-estimated breeding 

values (GEBVs) to analyze the genetic control of root shape in carrot.  These methods have both 

become widely utilized in the study of plant genetics, both in terms of their ability to improve 

the efficiency of plant breeding, as well as providing a starting point for molecular 

characterization of the genetic control of key agronomic traits. 

 

This study utilized both of these methods, thus allowing for a comparison of the efficacy of 

GWAS – which attempts to identify QTL through their linkage with genetic markers – and GEBVs 

– which are based on a direct estimation of additive genotypic effects.  GWAS has become a 

widely used tool in quantitative genetic analysis, however even in cases where marker density 

is high and a heterogenous diversity panel is utilized, it is often underpowered to detect a 

majority of small effect QTL in the case of highly polygenic traits (Brachi et al., 2011).  In 

contrast, GEBVs calculated using an infinitesimal model of gene action do not use a significance 

threshold for inclusion of a marker in a predictive model.  Since being initially developed in the 

context of animal breeding (Meuwissen et al., 2001), the development of efficient methods for 

calculating a marker-derived relationship matrix (VanRaden, 2008) has led to the extensive use 

of GEBVs in agricultural breeding programs.  There are many factors that can limit the accuracy 

of such GEBVs, ranging from population structure and population size, to trait heritability.  To 

date, these two methods have not been compared in carrot, or with respect to morphological 
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root traits in general.  This study represents a novel advance in terms of our understanding of 

the genetic control of market class in carrot root, with implications both for further research 

and breeding for these traits.  In addition, the methodological comparisons between GWAS and 

genomic prediction provide support to the growing body of literature illustrating the utility of 

GEBVs for highly polygenic, quantitative traits, particularly in unstructured, outcrossing plant 

species. 

 

Materials and methods 
 
Plant materials  

749 accessions (also referred to throughout this paper as “genotypes”) were utilized in this 

study, composed mainly of Plant Introductions in the USDA NPGS collection of D. carota 

germplasm held in Ames, IA, as well as breeding lines from both the University of Wisconsin 

and USDA-ARS carrot breeding programs in Madison, WI.  This panel included the majority of 

the collection described in the population genetic analysis by Ellison et al. (2018), and as such 

represented a diverse, global collection sampled from all major identified population sub-

groups, including the large subdivisions of Western domesticated, Western wild accessions, and 

Eastern samples, as well as carrots originating in Tunisia and Portugal.  A description of the 

geographic origin of each of the samples included in this analysis is included in Supplementary 

File S1. 

 

In 2016 and 2018, the collection was grown at the Hancock Agricultural Research Station in 

Hancock, WI (44°08’N, 89°32'W); plots were planted on May 16th and May 24th, and harvested 
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on August 29th and 30th, respectively.  In 2018-2019, the collection was grown at the University 

of California Desert Research and Extension Center in Holtville, CA (32°48'N, 115°26'W).  In this 

environment, planting occurred on October 10th, and roots were harvested on February 25th.  In 

both locations, genotypes were grown in 1 m long rows; in Wisconsin, one replicate per 

genotype was planted, while in California, two replicates of all genotypes were planted in a 

randomized complete block design (RCBD).  One to fifteen roots were harvested at random per 

replicate.  In Wisconsin, higher amounts of disease pressure led to fewer mature, undamaged 

roots being harvested per plot, on average.  Following harvest, the tops of the carrots were 

removed, and they were stored at 4°C until phenotyping.   

 

Phenotypic Evaluation 

Roots were digitally phenotyped as described in Chapter 2.  In brief, after being cleaned, roots 

were QR coded and placed against either a white vinyl or black felt backdrop depending on root 

pigmentation.  Images were acquired using a Nikon 5600 DSLR camera tethered to a Unix 

computer.  Python bindings for the OpenCV library were used to create binary masks of the 

roots by thresholding the hue-saturation-value color space.  Custom MATLAB scripts were 

subsequently used to correct for any residual curvature in each root, and a random forest 

classifier was used to remove any unexpanded portion of the tap root.   

 

Following acquisition and pre-processing, phenotypes were extracted from the straightened, 

de-tipped binary masks.  Root length, maximum width, total biomass, and aspect ratio were 

calculated for each root individually.  In addition, in order to quantify size-independent 
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parameters of contour shape, principal components analysis (PCA) was performed on the root 

contour following a normalization procedure whereby each carrot was standardized to have a 

maximum width of 1, and a length of 1000.  The scores along the first principal component 

capture the degree of root fill, or how far down the length of the carrot the maximum width of 

the carrot is maintained.  In addition, curvature values were computed at each point along the 

root contour in both the shoulder and tip regions as described by Driscoll et al. (2012), with PCA 

of these values providing a metric corresponding to shoulder broadness and tip fill, 

respectively.  Together, this suite of root traits has been found to accurately classify roots based 

on visual assignment of carrot market class (see Chapter 2, Figure 5).  

 

Finally, prior to association analyses and construction of genomic prediction models, the 

diversity panel was restricted to those accessions that exhibited little to no branching of the 

taproot.  Both the nature of the root-straightening algorithm – which depends upon finding tip 

of the carrot – and many of the phenotypes themselves (length, tip curvature), implicitly 

require that the root be a single unbranched taproot.  Small root hairs were removed through 

smoothing operations, but just as forked or split roots were discarded from the analysis, 

cultivars with highly branched fibrous root systems were also excluded on the basis of being 

inappropriate to an analysis of market class traits.  Compounded with the failure of some roots 

to produce new leaf tissue following vernalization, this reduced the total size of the diversity 

panel used in subsequent analyses to 661 unique cultivated accessions of D. carota. 

 

Estimation of genotype means 
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In all subsequent association analyses and genomic predictions, a so-called “two-stage” 

approach was adopted whereby each genotype was first represented by a single phenotypic 

value, estimated using a mixed effects linear model.  Genotype was modeled as a fixed effect, 

and each of the four unique combinations of location and replicate were combined into a single 

fixed “environment” effect with four levels.  Because of unequal subsampling within 

environments, an additional random effect term was included to model genotype x 

environment interactions.  The resulting model took the form of an RCBD model with 

subsampling: 

𝑌&': = 𝜇 + 𝐺& + 𝐸' + 𝐺𝐸&' + 𝜀&':  

Here, 𝐺&  represents the ith genotype effect, 𝐸'  the jth environment effect, 𝐺𝐸&'  the genotype x 

environment interaction (with 𝐺𝐸&' 	~	𝑁(0, 𝜎)8! )) and 𝜀&':  the residual variance (i.e., variance 

among subsamples, with 𝜀&': 	~	𝑁(0, 𝜎;!)).  Models were fit for each trait independently using 

the lme4 package in R v4.0.3 (R Core Team, 2020), and genotype means were extracted using 

the package emmeans.  

 

DNA extraction, genotyping, marker development 

Following 6 weeks of vernalization at 4°C, one root per accession was transferred to a 

greenhouse environment and planted in conical tubes containing Pro-Mix High Porosity potting 

mix (Premier Tech, Quakertown, PA).  Roots were maintained at 20°C with a 16 hr photoperiod.  

Following emergence of new leaf tissue, leaf samples were obtained, and stored at -80°C until 

lyophilization.  ~0.1 g of freeze-dried tissue was then macerated, and genomic DNA was 
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extracted using Macherey-Nagel NucleoSpin 96-well kits.  DNA quantification (using Quantus 

PicoGreen dsDNA kits), library preparation, and sequencing was performed at the University of 

Wisconsin-Madison Biotechnology Center.  In brief, restriction enzyme-digestion was 

performed with ApeKI, following which Illumina adapters and sample-specific barcodes were 

annealed.  Samples were pooled into groups of 96 per flowcell lane, and sequenced on an 

Illumina NovaSeq 6000, generating on average 4 million, 150-bp paired-end reads.   

 

Raw, multiplexed .fastq files corresponding to forward and reverse reads of each lane were 

checked for quality, and demultiplexed using a custom a Java application 

(http://github.com/shbrainard/gbstools/), which facilitates including both forward and reverse 

reads to TASSEL 5.  SNPs were then called using the GBSv2 pipeline of TASSEL 5, as described 

by Bradbury et al. (2007) with v3 of the D. carota genome (Iorizzo et al., 2016) used as a 

reference.  Missing data was imputed with Beagle v 5.1 (Browning et al., 2018), using default 

parameters, 20 iterations, and 300 phase states.  Filtering, performed using bcftools v 1.11, 

was used to remove markers with minor allele frequency less than 0.05, markers with mean 

depth less than 10 reads, or greater than 500 reads, and any non-biallelic markers.  This filtering 

resulted in a total of 146,821 SNPs that were used as the basis for subsequent analyses. 

Genome-wide linkage disequilibrium was also calculated using bcftools, as the square of the 

sample Pearson correlation between marker genotypes (r2).  Filtering on the basis of LD was 

performed using the prune plugin.  

 

Calculation of the realized-relationship matrix 
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In both performing association analysis and genomic prediction, SNPs were used to estimate a 

realized relationship matrix, 𝐀<, calculated on the basis of the imputed marker data:	

𝐀< =	
𝐙𝐙=

∑ 2𝑝(𝑞(<
(>1

 

with 𝐙 representing a matrix of centered genotypes (661 accessions x 146,821 markers).  The 

scaling factor insures diagonal elements are equal to 1 + f, where f is equal to the intra-

individual gametic correlation Kang et al. (2008).  𝑝( and 𝑞( indicate minor and major allele 

frequency for the 𝑘?@ marker.  Shrinkage estimation was also applied in the case of estimating 

breeding values, using default settings of the A.mat function of rrBLUP v 4.6.1, as described by 

Endelman & Jannink (2012).    

 

Linkage disequilibrium decay and population structure 

LD was assessed in two ways.  First, correlation coefficients between each SNP and its 100 

nearest neighboring markers were calculated, and recorded along with the physical genetic 

distance between each pair.  Distances were then binned, and the decay in LD regressed against 

genetic distance using the decay function 𝐿𝐷(𝑥)~𝑦A + O𝑦B − 𝑦AP𝑒$,
(*+,-)/, with initial 

estimates for 𝑦A, 𝑦Band 𝑙𝑜𝑔𝛼 estimated in R using self-starting regression function SSasymp.  

Second, genome-wide LD was visualized as a Manhattan plot by calculating the mean LD of 

each SNP again with its 100 nearest neighbors, having first thinned the marker dataset to only 1 

SNP per kilobase, to avoid distortions due exclusively to uneven marker distribution across the 

genome.    

 



 

 

87 

Population structure was assessed by performing PCA on the centered marker matrix, and 

plotting the first two PCs against each other in a biplot.  Scree plots of variance attributed to 

each component were also used to visually determine the correct number of PCs to include as 

fixed effects in the GWAS model.   

 

Genome-wide association analysis 

GWAS was performed using the GWASpoly package (Rosyara et al., 2016), which implements 

the mixed model described by Yu et al., (2006).  This tool utilizes the so-called Q + K method 

(Zhang et al., 2010), whereby population structure and relatedness between individuals is 

controlled for through both fixed effects, as well as a random polygenic term calculated using 

all markers.  This resulted in the model: 

𝒚 = 𝐗𝜷 + 𝐒𝝉 + 𝐙𝒖 + 𝜺 

where 𝒚 is a vector of phenotypes, calculated as the estimated genotype values from the linear 

model described above.  𝝉 is a vector of SNP effects.  𝒖 is a vector of random polygenic effects, 

with a variance equal to 𝜎)!𝐊, where 𝜎)! is the genetic variance, and K is the realized 

relationship matrix defined above, but without scaling by p and k.  Because variance 

components were estimated for each marker independently, this model is equivalent to that 

proposed by Kang et al. (2008).  𝜺 is a vector of residual effects following a 𝑁(0, 𝐈𝜎;!) 

distribution, and 𝜷 is a vector of fixed population structure effects.  X, S, and Z represent the 

respective incidence matrices.  In this study, the first principal component of the marker matrix 

was used as a fixed effect, as proposed by Price et al., (2006) as an alternative to the groupings 

provided by a clustering algorithm such as STRUCTURE (Pritchard et al., 2000). 
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LOD thresholds were determined on a trait-by-trait basis by running 1000 simulated analyses 

using random permutations of each phenotype vector; this permutation testing was performed 

using the compute resources and assistance of the UW-Madison Center For High Throughput 

Computing (CHTC) in the Department of Computer Sciences.  LOD thresholds were empirically 

calculated to control the family-wise error rate (FWER) at a level of a=0.05. 

 

Genomic-estimated breeding values 

In addition to GWAS, marker data were used to calculate GEBVs, using best linear unbiased 

predicators (BLUPs) (Henderson, 1963).  The marker matrix used for estimation of kinship was 

thinned significantly.  Using bcftools, as above, markers were thinned to a minimum density 

of 1 marker per 1 kilobase (kb), with no missing data, resulting in 12,370 SNPs.  The Am matrix 

was then calculated as above.  BLUPs of the additive genotypic effects were then calculated 

using the rrBLUP package (Endelman, 2011).  The prediction error variance (PEV) of the BLUPs 

calculated as the inverse of the C22
 component of the coefficient matrix, scaled by the diagonal 

elements of the covariance structure defined by the realized relationship matrix (i.e., the 

variance of the given BLUP) (Henderson, 1973).  Cross-validation of these predictions was also 

performed in order to assess predictive ability, by calculating the correlation of predicted 

values, and an estimate of the true genotypic value.  In this study, by default, 10% of the 

phenotypic data was randomly masked in the calculation of BLUPs (the validation population; 

VP), and correlation coefficients between the BLUPs for these genotypes, and their true 
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phenotypic values was calculated, using the remaining 90% of the panel as a training population 

(TP).  This was repeated 100 times, and average correlations reported as predictive ability.   

 

Analysis of parameters affecting predictive ability 

SNP density, degree of relatedness between TP and VP, and TP size were all evaluated in terms 

of their effects on predictive ability using the cross-validation approach described above.  In 

each case, the same self-starting regression function SSasymp used above to model LD decay 

was fit to the resulting data.  In addition, for any specific cross-validation analysis, all 

parameters not being varied were held constant at levels determined to not limit predictive 

ability. 

 

For SNP density, VCF files were filtered according to a sequence of thinning parameters to 

generate progressively more sparse marker distributions.  Markers were thinned to one SNP 

every 0.1 kb (resulting in 18,093 SNPs), 2 kb (resulting in 11,269 SNPs), 5 kb (resulting in 9,535 

SNPs), 10 kb (resulting in 7,882 SNPs), 100 kb (resulting in 2,392 SNPs), 250 kb (resulting in 

1,191 SNPs), 500 kb (resulting in 660 SNPs), 750 kb (resulting in 467 SNPs), 1 megabase (Mb) 

(resulting in 362 SNPs), 2 Mb (resulting in 195 SNPs), 3 Mb (resulting in 136 SNPs), 4 Mb 

(resulting in 103 SNPs), and 5 Mb (resulting in 86 SNPs).  A separate VCF file was also generated 

containing only markers on chromosome 3 (resulting in 5,621 SNPs); this highly biased marker 

set provided an extreme case with which to evaluate the effects of distorting the genome-wide 

distribution of a relatively large number of markers. 
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To evaluate the effect of similarity between the TP and VP, a k-means clustering algorithm was 

applied to the PCA of the marker matrix containing 9,535 SNPs.  The most distant sub-grouping 

of 60 accessions was adopted as the most unrelated VP, and was then progressively diluted by 

swapping individuals at random with random draws from the larger population, to thereby 

simulate a gradient of relatedness between the TP and VP.  Dilution amounts were set to 1, 3, 

5, 7, 10, 13, 15, 17, 24, 27, 31, 35, 45, and 50 individuals, with 50 replications performed at each 

dilution level.  “Distance” between TP and VP was then calculated on the basis of a similarity 

matrix, defined as the inverse of the distance matrix constructed from the first 100 PCs of the 

PCA.  Each individual in a given VP was then compared against the n most similar individuals in 

the TP, where n was allowed to vary between 1 and 660, depending on the distance metric 

being analyzed.  These distances were then averaged across all individuals in the TP.  The same 

100-fold cross-validation approach as outlined above was repeated here for every TP/VP 

combination, and the resultant average predictive ability was then regressed onto the average 

similarity index.  Finally, the same exponential function defined above for characterizing LD 

decay was then fit. 

 

To evaluate the effect of varying TP size, two distinct approaches were taken.  First, absolute TP 

size was varied, while holding the relative size of the VP constant at 10%.  This was performed 

by sampling subsets of the full panel of sizes ranging from 10 to 660, repeating this sampling 

process 50 times at each population size, and performing the same 100-fold cross validation 

approach as with previous analyses.  Separately, relative TP size was also varied, by holding the 

absolute size of the VP constant at 60 individuals, and varying the total TP size from 75 to 660.  
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As with the previous analysis, at each level of relative TP size, the sampling procedure was 

iterated 50 times, and for each iteration the 100-fold cross validation approach described above 

was performed.  Finally, relative VP size was varied, by holding the total population size 

constant at 661 individuals, and sampling VPs ranging from 10 to 650, and as above, iterating 

each VP size 50 times, and performing 100-fold cross-validation at each iteration. 

 

Data availability 

Filtered SNP markers, as well as binary masks of the images used for phenotyping are available 

via the Harvard Dataverse: https://dataverse.harvard.edu/dataverse/usda-npgs-carrot-

collection.  Phenotyping methods described in Chapter 2 rely on custom Python and MATLAB 

pipelines available at https://github.com/shbrainard/carrot-phenotyping (for image acquisition 

and production of binary masks) and https://github.com/jbustamante35/carrotsweeper (for 

straightening binary masks and performing PCA on contours or curvature values).   

 

Results 
 

Phenotypic variation present in the diversity panel 

Representative roots drawn from four common carrot market classes are shown in Fig. 1, 

illustrating the degree of phenotypic differentiation between classes, as well the particular way 

in which the components of root size and shape are assembled to define specific classes. For 

instance, Imperator-type roots (Fig. 1b) combine narrow maximum width with long root length, 

while the Chantenay type (Fig. 1d) combines large maximum width with low degrees of root fill; 
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as described above, this latter trait reflects the first PC score of a PCA analysis of the size-

normalized root contour.  While all of the carrots shown in Fig. 1 clearly exhibit distinct aspect 

ratios, Fig. 1a-c all have high degrees of root fill, while only Fig. 1d exhibits a rapid tapering 

along its length.  This highlights the particular value of image analysis procedures such as PCA, 

which allow for the de-coupling of size and shape parameters, and extraction and quantification 

of high-dimensional phenotypes.  

 

Linkage disequilibrium and population structure 

The extent and rate of decay of linkage disequilibrium (LD) across the genome is an important 

determinant of the potential resolution of association analysis, and a decisive factor in 

determining marker density when performing GWAS (Alqudah et al., 2020; Otyama et al., 

2019).  A slow decrease in LD toward equilibrium, as the distance between pairs of markers 

increases, implies both that a relatively fewer number of markers is necessary to effectively 

capture the extent of historical recombination in the diversity panel, but also that large 

stretches of extended haplotype blocks will likely lead to larger intervals for QTL, with 

numerous non-causal SNPs found to be significantly associated with given traits (Myles et al., 

2009).   

 

Results of short-range LD decay are shown in Fig. 2a.  Intercepts with r2 values of 0.2 (blue line) 

and 0.1 (green line) are indicated at 796 and 19.7 kb, respectively, illustrating that within only 

several kb, there is a rapid approach to linkage equilibrium across the panel.  As a result, the 

curated marker set (with filters as described above), was judged to be more than adequately 
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dense, with an average distance between markers of only 3711 bp.  Short-range genome-wide 

LD patterns were visualized as a Manhattan plot shown in Fig. 2b.  While some peaks in LD are 

seen, particularly on chromosome 2, average LD is relatively minimal, with a mean of only 

0.038, and only 3.6% of all windows exceeding the threshold of r2
 > 0.1.  This demonstrates 

both a consistent and relatively limited degree of LD across the genome.  While genome-wide 

estimates of LD are never perfect using unphased genotypes, the dense marker dataset 

available in this study appeared well-suited to association analysis. 

 

In addition to LD, which determines an upper bound on QTL resolution, and as such, informs 

appropriate marker density, population structure is another determinative characteristic of any 

association panel.  The presence of uncontrolled population structure and admixture can lead 

to spurious inflation of p-values, even in the absence of severe linkage disequilibrium (Ewens & 

Spielman, 1995; Pritchard & Rosenberg, 1999). Multiple methods have been proposed for 

controlling for such population structure by adding both fixed (Price et al., 2006; Pritchard et 

al., 2000) and random (Yu et al., 2006) covariates to the model.  As described above, a 

combination of both fixed and random covariates, the so-called K+Q model, was utilized in this 

study, whereby the markers themselves are used to estimate a random polygenic relationship 

matrix, and principal component analysis of the marker matrix is used to calculated fixed 

effects.  

 

A PCA bi-plot was used to assess the degree of population structure, and the results mirror the 

minimal degree of structure observed by Ellison et al. (2018) (Fig. 3a).  Aside from one main 
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cluster observed around high values along PC1 (which was previously identified as 

corresponding to Western domesticated carrot accessions), little clustering was detected.  And 

indeed, the variance captured by the first component was only ~10% of total variance in the 

marker matrix, with all subsequent components explaining roughly 1% of total variance (Fig. 

3b).  Consequently, one PC was judged to be sufficient to be included as a fixed effect in the 

association analysis. 

 

Genome-wide association analysis 

Manhattan plots illustrating the results of GWAS for 4 root shape traits that compose market 

class are shown in Fig. 4.  Three of these traits pertain specifically to the dimensions of the 

carrot root: length, maximum width (which occurs in the shoulder region of carrot roots), and 

their quotient, aspect ratio.  These traits define the size of the root, and are in principle 

measurable by hand.  In addition, however, significant associations were also found for root fill, 

which corresponds to the first PC score obtained by performing PCA on the length- and width-

normalized root profile.  This trait represents the most significant source of variation in contour 

of the full root—specifically, the extent to which a carrot maintains its maximum width down its 

length.   Root fill is therefore explicitly a “shape trait”, insofar as it is calculated from the 

contours that have been standardized for their size, and as such, is not measurable by hand, 

though it reflects a key aspect of market class.   

 

The most significant SNPs corresponding to each peak in a trait’s respective Manhattan plot are 

listed in Table 1, and box-and-whisker plots of the effect sizes of the most significant SNP per 
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trait (shown here as a function of allele dosage) are shown in Fig. 5.  Across all traits, relatively 

limited numbers of peaks were detected, with significant SNPs being located in a single peak for 

length, root fill and maximum width, 4 peaks for L/W.  Interestingly, while all of these peaks 

exceed a LOD threshold set to control the FWER at 0.05, their effect sizes are relatively small 

(Table 1, Fig. 5).  Linear models that regress a given trait’s phenotype onto these markers as 

fixed effects exhibited an average adjusted R2 of only 0.03, reflecting the limited explanatory 

power of these SNPs.  A notable exception was aspect ratio, for which 5 clear peaks were 

detected: 1 on chromosome 1, 2 on chromosome 3, one on chromosome 4, and one on 

chromosome 6.  In this case, the R2 of the complete model is 0.18 – significantly higher than all 

other traits, and approaching a level that could be practically useful in a marker-assisted 

selection context, if the regions were fine mapped for the development of markers near the 

causal loci.  As will be shown below, however, this value is significantly lower than the 

predictive ability of GEBVs.  In addition, the remaining two market class-related traits – 

shoulder and tip curvature – which reflect more subtle variation in the contour of these regions, 

were not significantly associated with any SNPs. 

 

Effects of marker density 

While the general result that increasing marker density increases predictive ability has been 

well-documented, the precise nature of the relationship will vary depending on the population 

and traits under consideration.  Given that this diversity panel was genotyped at high density 

for the purpose of GWAS, it was therefore feasible to produce marker sets generated through 

progressively more stringent filtering criteria, and thereby determine the effect of SNP density 
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on predictive ability through cross-validation for each of the digitally phenotyped root traits 

evaluated in this study.  The results of these analyses are shown in Fig. 6, and are well described 

by an exponential function: at low marker densities, any increase in density is met with 

relatively rapid increases in predictive ability.  As marker density is increased, however, these 

increases asymptomatically approach a maximum predictive ability, which in the case of these 

roots traits is attained at roughly 2,500 SNPs.  This can be contrasted with GWAS, which, as 

described above, necessitates a relatively dense array of markers across the genome in order to 

increase the likelihood that some subset of these will be in high LD with QTL.  If the marker 

dataset used in the GWAS analyses shown above, is thinned to only 1 marker every 100kb (i.e., 

2,392 markers), all significant associations between SNPs and QTL shown in the above 

Manhattan plots (Fig. 4) are no longer detected (Supp. Fig. 1).   

 

Similar results were obtained by specifically utilizing markers on a single chromosome, and 

comparing predictive ability against a random distribution of an equivalent number of SNPs.  As 

shown in Supp. Table. 1 utilizing exclusively markers on chromosome 3 only reduces predictive 

ability by an average of 12% across all traits.  Some reduction in accuracy is to be expected, due 

to some degree of linkage between markers when all are located on a single chromosome.  This 

finding is in line with those of Daetwyler et al. (2012), and highlights the fact that markers’ 

effect on predictive ability of GEBVs is primarily a function of their ability to accurately model 

covariance between individuals, and not their linkage with QTL.  

 

Effect of relatedness between the TP and VP 
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It has been well-documented that increasing relatedness between the TP and VP leads to 

increases in predictive ability (Edwards et al., 2019; Olatoye et al., 2020).  This is the logical 

consequence of increasing the similarity in the causal variants segregating in the two 

populations, and thus the degree to which genetic covariance between the two populations can 

accurately be used to make predictions.  The results of regressing predictive ability onto three 

different measures of relatedness (i.e., three different values of n) are shown in Fig. 7, and 

confirm this general result.  For all traits, an exponential regression similar to that observed in 

the case of varying SNP density is again observed.  Prediction accuracies are substantially 

reduced from their maximum when similarity between the TP and VP is minimized, and as 

similarity increases, prediction ability increased exponentially, approaching a maximum that 

itself is the average predictive ability reported above.  This convergence to the average can be 

understood as a consequence of the fact that on average, a random sampling procedure will 

select a VP that is extremely similar to the TP for this diversity panel, due to the overarching 

lack of population structure. 

 

In addition to this general trend, it is also clear that across all traits, both extremely high and 

extremely low values of n – i.e., the number of individuals in the TP that each member of the VP 

was compared against – give non-optimal results.  In the case of the former, due to 

oversampling, the possible range of similarities between the TP and VP is significantly 

compressed at low values.  Because average prediction accuracies are high, this has the 

additional result of inflating average prediction accuracies, given a specific level of similarity.  At 

the other extreme, there is clearly substantial noise about the exponential regression for the 
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case of n = 1, a consequence of this metric of similarity providing an inaccurate representation 

of the overall similarity between the TP and VP due to undersampling; i.e., more than one 

individual must be similar to each individual in the VP in order to make accurate predictions.  

While these results do not provide a basis for determining a specific value of n that should be 

used in for any arbitrary TP/VP combination, they do justify intermediate values of n (e.g., in 

this study, 40) that are both highly precise in that they fit the exponential regression function 

extremely well, while also being highly informative, in that they allow for a discrimination 

between degrees of relatedness for a wide range of TP/VP combinations. 

 

Effect of population size on predictive ability 

The last parameter evaluated in terms of its effect on predictive ability was the size of the TP.  

In this case as well, studies have consistently shown that increasing the size of the TP will, on 

average, increase predictive ability.  However, there are three distinct ways in which the effect 

of TP size can be modified, as described above: absolute population size can be varied, relative 

TP size can be varied, or relative VP size can be varied.   

 

In any specific context, one may also wish to consider the interaction between all of these 

effects, but for the purposes of providing more generalizable conclusions, they were performed 

discretely in this analysis.  Thus, first, the effect of varying absolute population size, with VP size 

held constant at 10%, was evaluated.  For all traits, predictive ability reaches its asymptote at 

roughly 330 individuals (Fig. 8a).  Similarly, when the VP size is held constant at 60 individuals 

and relative TP size is varied, all traits appear to follow a similar dynamic, with predictive ability 
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again attaining is maximum at roughly 330 (Fig. 8b).  Finally, the effect of varying relative VP 

size, with the TP held constant at the total population size of 661 individuals (less the size of the 

VP) was analyzed.  Again, all traits follow the relationship seen in the previous two cross-

validations, and across all traits, predictive ability reaches its asymptote when the TP is less 

than roughly 50% of the total population, or 330 individuals (Fig. 8c).   

 

Discussion 
 

This study identified a novel set of QTL for four of the most relevant morphological components 

of root market class in carrot.  For the most part these represented a relatively limited set of 

small-effect QTL.  This is surprising, given the relatively high heritabilities observed for these 

phenotypes, both as estimated here using genomic data, and as previously described using a 

diallel mating design (see Chapter 2). This would suggest that the effect size of the identified 

QTL is being underestimated, that there are additional unidentified QTL, or both.  In any of 

these cases, however, the observed results would therefore run counter to the Beavis effect 

(Beavis and Paterson, 1998): given that the traits appear highly heritable, the variance 

attributed to the small number of QTL found in these GWAS analyses should have been 

proportionally over-estimated.  This is itself unlikely, however, due to the low percent variance 

explained by the QTL in each case. 

 

There are multiple plausible explanations for these two apparently contradictory results.  First, 

as described above, carrot is a highly heterozygous outcrossing species, and indeed, most of the 
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accessions included in this diversity panel are not inbred lines, but sourced from landraces, 

open-pollinated varieties, and populations.  This produced a strikingly rapid decay in linkage 

disequilibrium within this diversity panel, with an average r2 of 0.2 between pairs of markers 

reached with a distance of only 796 bp.  Despite the dense marker distribution used in this 

study, therefore, it is likely that this rapid decay of LD led to an underestimation, instead of 

overestimation, both of the effect size of the QTL that were identified in this study, as well as of 

markers that did not exceed the LOD threshold.  Further complicating this analysis is the fact 

that selection for root shape morphology has likely occurred in numerous genetic backgrounds, 

with different allelic combinations producing similar root shapes within, e.g., Western 

European, Eastern European and North American accessions, and the USDA-NPGS collection 

used in this study included accessions from all of these geographic regions.  In this regard, 

linkage analysis could again provide a fruitful subsequent line of analysis, by addressing the 

under-estimation of effect sizes due to differences in frequencies between marker alleles and 

QTL alleles. 

 

Tip fill (e.g., the blunt-tipped Nantes type in Fig. 1c vs. the pointed Chantenay root in Fig. 1d) 

and shoulder broadness (e.g., the highly curved Parisienne-type in Fig. 1a vs. the straight-

shoulders of the Imperator in Fig. 1b) represented more subtle aspects of root shape variation, 

since they are restricted to specific regions of the root contour.  No SNPs were found to be 

significantly associated with phenotypic variation for these two traits, despite their evident 

importance in distinguishing between market classes.  For the components of market class in 

carrot for which QTL were identified, the significant SNPs explained a small percentage of the 
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total variation for these traits.  This is not an uncommon result when the traits under 

consideration are quantitative and highly polygenic, as would appear to be the case here.  

Indeed, it is consistent with the only other published report of a GWAS that included carrot root 

traits (Macko-Podgórni et al., 2020), which detected a QTL on chromosome 1 which accounted 

for roughly 10% of the phenotypic variation.  The panel utilized by Macko-Podgórni et al. (2020) 

differed significantly from the material used in this study, representing 103 accessions from the 

Warwick Crop Centre in Wellesbourne, UK.  It is therefore not surprising that the QTL in that 

context was not detected in our analysis, but nevertheless, the low effect size is consistent with 

that reported here.  Similarly, a previous study that attempted to use linkage mapping to detect 

QTL for root traits detected no QTL for width or aspect ratio, and the 3 QTL associated with 

length each explained less than 10% of the phenotypic variation (Turner et al., 2018).  These 

results are not directly comparable with those presented here, since phenotypic effect sizes in a 

linkage mapping context are estimated as a function of the LOD; furthermore, these 

populations represented F2 families descended from crosses of elite inbred lines with wild 

accessions, and as such likely reflect domestication loci.  Nevertheless, the low effect size of the 

QTL is again consistent. 

 

The predictive ability of GEBVs were evaluated using the same diversity panel and marker set 

used in the GWAS analysis, so as to make accurate comparisons between the two approaches.  

The key difference between GEBVs and GWAS can be summarized as the reliance of the latter 

on detecting significant associations between markers and QTL, while the former simply 

attempts to directly estimate additive genotypic effects using markers as the basis of a 
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covariance matrix for modeling relatedness.  Predictive ability for many of the traits 

phenotyped using image analysis were found to be quite high, and therefore cross-validation 

studies were performed to gain a more precise understanding of how robust these predictive 

ability would be given various marker densities, population sizes, and degrees of relationship 

between training and validation sets. 

 

Regarding marker density, the asymptote of the exponential relationship between SNP density 

and predictive ability was attained a relatively low marker density.  Compared to the 146,821 

markers used in the GWAS analysis, maximal predictive ability was attained at only several 

thousand markers.  This is consistent with the ranges presented in numerous previous studies 

(Erbe et al., 2013; Wang et al., 2017; Wu et al., 2016; Zhang et al., 2015), and highlights the 

different role that markers play in an analysis based around testing significant associations 

(particularly in a species with rapid LD decay) and estimating genomic relatedness.   

 

In the case of GWAS, a large diversity panel ideally encompasses a large amount of historical 

recombination.  This fast erosion of linkage disequilibrium implies that in order to detect QTL it 

is essential to have very dense molecular markers across the genome.  While increasing the 

number of markers used in GWAS increases the computational burden of the analysis, and 

potentially decreases power due to the increased number of comparisons being made, the 

attendant increase in LD between markers and putative QTL has been found to outweigh these 

costs, even when hundreds of thousands of markers are used.  This situation can clearly be 

contrasted with genomic prediction, where the goal is not to identify associations between 
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markers and QTL, but rather to estimate additive genotypic effects on the basis of a marker-

derived covariance matrix.  Due to this, far fewer markers are required to attain maximum 

predictive ability of GEBVs, relative to the markers required to detect QTL in a GWAS context.   

 

Furthermore, the results presented here demonstrate that from a practical perspective, the 

genotyping costs associated with implementing genomic selection are at least in principle less 

than that associated with GWAS, though in practice this would depend on a high-quality 

genotyping platform that generated only thousands, instead of hundreds of thousands of 

markers.  In addition, it is important to note that the vast majority of the accessions present in 

this diversity panel represent landraces, open-pollinated cultivars, or populations; only a small 

minority are inbred lines.  As a result, these accessions certainly contain variable degrees of 

genetic heterogeneity.  Loci that were called as heterozygous in the marker dataset utilized 

here are most likely segregating in these accession, and utilizing the genotype of a single root 

will necessarily mask this intra-accession variation.  Techniques such as PoolSeq, which utilize 

bulked DNA from multiple individuals for GBS sequencing, have been found to be potentially 

useful in such situations (Anand et al., 2016; Bélanger et al., 2016).  By sequencing at a high 

depth, it is possible to estimate continuous measures of allele frequency in the linear models 

used to test for associations between SNPs and a given phenotype (instead of the categorical 

allele dosages used here).  

 

With respect to population structure, it has long been understood that because predictions are 

based on a covariance matrix relating phenotyped individuals to non-phenotyped individuals, 
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that higher degrees of relatedness between the TP and VP will lead to higher predictive ability.  

However, this phenomenon has typically been investigated qualitatively, by either comparing 

prediction accuracies across populations with known degrees of variable relatedness (such as 

full- vs. half-sib families), or between population groupings defined through clustering 

algorithms such STRUCTURE (Lozada et al., 2019; Riedelsheimer et al., 2013; Sverrisdóttir et al., 

2018).  While it would be theoretically feasible to apply a clustering algorithm to the panel 

presented in this study, such an approach is of limited utility in the case of a loosely structured 

diversity panel such as that used in this study.  Because this population is not composed of well-

defined, discrete subpopulations, the relevant question is one which relates a quantitative 

measure of the degree of relatedness between the TP and VP to predictive ability, not a 

qualitative judgment as to whether the TP and VP are or are not members of the same sub-

grouping.  Furthermore, in cases where relatedness has been measured between the TP and 

VP, the appropriate metric is typically assumed to be a comparison of the means of the two 

groups; i.e., the value of n, as designated in this study, is set equal to the size of the TP, and 

each individual on the VP is compared against each individual in the TP (Berro et al., 2019).   

 

The cross-validations performed in this study therefore represent an advance in terms of the 

precision with which conclusions regarding the effect of relatedness on predictive ability can be 

made.  Not only is increasing similarity between the TP and VP associated with increases in 

predictive ability, but this relationship also follows the same exponential function found in the 

case of marker density.  In addition, intermediate values of n were found to give the most 

precise and informative measure of similarity in terms of defining this exponential relationship.  



 

 

105 

Finally, regarding conclusions one can draw about this particular diversity panel, it is clear that 

one of the factors contributing to high prediction accuracies on average is that the mean level 

of relatedness between a randomly selected TP and VP is extremely high (measured with n = 

40, average similarity is 23.1, with a standard deviation of 0.56).  This is already in the range of 

relatedness that defines the asymptotic portion of the exponential function, and thus it is 

reasonable to assume that these GEBVs would be robustly accurate to any arbitrary 

construction of TP and VP, given a breeding population similar in structure to the diversity 

panel analyzed here.  In this regard it is important to emphasize that while this diversity panel is 

relatively unstructured, and contains a large amount of genetic variation, breeding populations 

often have higher levels of overall relatedness among individuals, and may have clear family 

structures.  They will almost certainly contain less diversity than a global germplasm collection.  

These results will not necessarily transfer, therefore, to any particular breeding context.  

 

It is interesting to note that not all traits exhibited an exponential relationship between 

predictive ability and relatedness equally well.  Certain traits, such as root fill and tip curvature, 

clearly exhibited this exponential relationship (Fig. 7 and Supp Fig. 2).  Others, such as aspect 

ratio, length, and maximum width displayed a more linear relationship, while biomass appeared 

to follow an entirely linear trend.  This variation is well correlated with the maximum predictive 

ability attained for each of the traits, and therefore would suggest that the asymptotic portion 

of the relationship is only evident when high predictive ability is attainable given a wide range 

of analyzed similarity levels. 
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Finally, the effects of TP size were considered in this study by explicitly considering two distinct 

cases.  First, the consequence of varying absolute population size was evaluated.  Second, the 

effect of changing the relative size of either the TP or the VP was considered.  These effects 

typically are confounded with each other in studies that have considered how to optimize the 

size of TPs: Xu et al. (2018) considered only the effect of varying the absolute size of the TP, by 

maintaining the VP at 20% of the total population size; Tayeh et al. (2015) only considered the 

effect of varying the relative size of the TP, by holding the absolute VP size constant, and 

varying the size of the overall population; Zhang et al. (2017) varied both the absolute size of 

the TP, and varied the relative size of the VP at each of these levels, but then averaged across 

all of the relative size variations, reporting only the effect of changes in absolute TP size.   

 

Here again, in all three cases, an exponential relationship was found between predictive ability 

and either the total size of the population, or the relative size of the VP or TP.  While it is 

unsurprising that increasing the total number of individuals in the panel would increase 

predictive ability, it is interesting to note that in the case of varying relative TP size, (either by 

increasing the size of the TP while holding the VP constant, or conversely by decreasing the size 

of the VP while holding the TP constant), the key determinant is simply the number of 

individuals in the TP, scaled to the number of individuals one is attempting to predict.  

Regarding the point at which the asymptotic maximal predictive ability is attained, at roughly or 

50% of the total diversity panel, it is interesting to note that this is consistent with other reports 

of the minimum TP size needed to attain maximal predictive ability in squash (Hernandez et al., 

2020), and carrot (Corak et al., 2019). 
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While the results of these cross-validations are therefore very similar – i.e., increasing the 

number of individuals in the TP leads to an increase in predictive ability – they clearly differ in 

their precise interpretation, and most importantly, describe very different practical questions 

from a resource allocation perspective.  Analyses which vary the relative size of the TP are more 

relevant for situations in which cost limitations constrain either phenotyping or genotyping 

capacity.   For instance, if genotyping costs are most limiting, it may be more critical to know 

what the minimum total population size is at which one can attain either the maximum 

predictive ability for a given trait, or a predetermined minimum predictive ability; this would 

correspond to analyses which vary absolute population size.  This can be contrasted with a 

scenario in which for a given trait phenotyping costs are most restrictive, and it is therefore 

most pressing to consider what the minimum TP size would be, given the need to predict a 

maximum number of non-phenotyped individuals; this in turn would correspond to analyses 

which vary relative TP size.  Finally, if the total pool of germplasm available is itself limited, it 

may be most relevant to consider simply what the largest percentage of this population is that 

can be allocated to the VP without sacrificing predictive ability; this, logically, corresponds to 

scenarios which vary the relative size of the VP.   

 

It is important to note the general pattern observed for all of the cross-validations reported 

here – that of an exponential relationship between predictive ability and the variable under 

consideration.  Importantly, the asymptotic maximum predictive ability is reached at low values 

of SNP density, population similarity, or population size, relative to the marker density, diversity 
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panel size, and level of population structure in the carrot collection presented in this study.  

From a practical perspective, it is feasible to attain non-limiting levels of nearly all the 

determinative factors influencing predictive ability. 

 

Practical considerations in comparing GWAS and GEBVs 

Numerous studies have attempted to compare the effectiveness of GWAS and genomic 

selection strategies in the context of specific crops’ breeding programs.  In general terms, the 

conclusions are extremely consistent.   GWAS offers a method for screening populations for 

preliminary gene discovery, and for guiding the development of mapping populations that 

could validate markers, which in turn could be utilized within a marker-assisted selection 

breeding scheme.  Genomic selection offers the potential for more immediate use of marker 

information by estimating additive genotypic effects based on relatedness (Minamikawa et al., 

2018; Srivastava et al., 2020; Tsai et al., 2020).  Numerous reviews, however, conclude that 

GWAS is poorly suited to the detection of minor effect QTL that underlie quantitative traits 

(Caballero et al., 2015; Robinson et al., 2014).  Even when QTL have been previously detected 

through interval mapping approaches, marker-assisted selection based on multiple linear 

regression using QTL-linked markers has been observed to have lower prediction accuracy than 

genome-wide prediction models (Hadasch et al., 2016). 

 

It is relevant to note the practical implications for the mode of genomic selection that would be 

enabled on the basis of the predictions made in this study.  Following the nomenclature of 

Falconer, 1996, genotypic value (G) is typically decomposed as: 𝐺 = 𝐴 + 𝐷 + 𝐼, where A 
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designates additive or breeding value, D indicates the dominance deviation, and I the 

interaction or epistatic deviation.  What has been estimated in this study are explicitly the 

additive components of genotypic value, and as such, the portion of a given individual’s value 

that is transmissible to the next generation.  While this is potentially also a reasonable 

surrogate for estimating genotypic value as a whole, given the large additive variance attributed 

to the traits considered here, this would need to be validated in future studies.  The GEBVs 

calculated here should therefore not be assumed to be a sufficient metric by which to judge per 

se performance, but rather, a basis upon which to select individuals for their breeding value. In 

addition, while these GEBVs could also be utilized to make predictions as to which inbred lines 

to select in the production of hybrids, this particular case of estimating progeny value would 

more appropriately be performed utilizing a genomic prediction model that additionally 

estimates dominance deviations (Alvarez-Castro and Carlborg, 2007). 

 

As a result, the immediate practical utility of the predictions made in this study would likely be 

most evident in population improvement efforts.   In particular, the most frequent use of 

diversity panels such as the one utilized in this study is the identification of novel traits that 

currently do not exist in elite germplasm.  Through the introgression of such a trait into 

breeding lines, market class attributes would likely be impacted; the GEBVs reported here could 

therefore significantly accelerate the pace at which a particular desired market class is 

recovered, following such wide crosses.  Despite their promise, the actual gains from selection 

one can expect to attain clearly will vary from trait to trait.  While some phenotypes presented 

here, such as root fill, length, and maximum width, show surprisingly high prediction accuracies, 
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others, such as biomass and tip curvature, are markedly harder to predict.  This is unsurprising, 

since biomass is clearly a composite trait, much like yield.  Subtle variations in the tip will, for 

their part, likely always be subject to greater environmental variation, and thus be challenging 

to select for.  Nevertheless, despite the lower prediction accuracies for these traits, GEBVs still 

offer a method for utilizing genomic-scale data to aide in improving the efficiency of selection, 

whereas GWAS was unable to detect any significant associations for these traits.  Given the 

high-throughput nature of the phenotyping platform used to collect training data, and the 

relatively limited amount of genotyping required to calculate GEBV, this study provides 

compelling evidence supporting the inclusion of genomic selection in breeding programs for 

carrot market class. 
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Tables 
 
Table 1. Significant SNPs associated with root shape traits.  Associations were found for four 

traits (root fill, maximum width, length, and aspect ratio) using a diversity panel of 661 carrot 

accessions genotyped for 146,821 SNPs, and phenotyped using the methods of described in 

Chapter 2.  Chromosome, position, LOD score, and additive effect are listed for the most 

significant SNP in each peak exceeding the permutation test-derived LOD threshold. 

 
Trait Chromosome Position (bp) Score Effect 
Root fill 2 47341762 8.09 -0.912 
Max Width 3 58042921    6.309098 -1.71 
 7 6622754 6.82 -2.35 
Length 2 42684849 5.89 -17.2 
 5 34380903 6.51 -13 
L/W Ratio 1 52762815 6.11 0.655 
 3 7295883 7.06 0.661 
 3 56902806 6.39 0.703 
 4 33224217 7.9 0.543 
 6 37411769 6.37 1.02 
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Table 2. Prediction error variance (PEV), and predictive ability of random 100-fold cross 

validation (Pred. ability – avg), and when relatedness between TP and VP is minimized (Pred. 

ability – min) for seven carrot root traits, phenotyped using roots grown across two locations 

and three growing seasons. 

 
Trait PEV Pred. ability - avg Pred. ability - min 
Biomass 0.71 0.67 (± 0.11) 0.29 
Root fill 0.85 0.86 (± 0.03) 0.17 
Max width 0.78 0.72 (± 0.06) 0.30 
Length 0.80 0.77 (± 0.06) 0.29 
L/W ratio 0.92 0.82 (± 0.05) 0.37 
Tip curvature 0.41  0.25 (± 0.04) 0.01 
Shoulder curvature 0.35 0.63 (± 0.05) 0.10 
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Figures 
 

 

Fig. 1 Representative roots from four distinct market classes, exemplifying variation in the four 

traits for which GWAS detected significant association with markers.  (a) and (b) illustrate 

variation for length and maximum width. (a) A Parisienne-type carrot; (b) An Imperator-type.  

(c) and (d) illustrate variation for aspect ratio and root fill. (c) A Nantes-type; (d) A Chantenay-

type   
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Fig. 2 Genome-wide linkage disequilibrium in the diversity panel of 661 carrot accessions, using 

29,456 SNPs represented in terms of a decay function (a), and Manhattan plot (b).  (a) Average 

LD is plotted against the genetic distance between pairs of markers (black dots; log scale), and a 

self-starting asymptomatic decay function is fit to the data (red).  Intercepts with r2 values of 

0.2 (blue line) and 0.1 (green line) are indicated as 796 and 19.7k bp, respectively.  (b) LD 

calculated on a sliding-window basis (the mean of a given SNP and its 100 nearest neighbors) is 

represented as a Manhattan plot 
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Fig. 3 PCA-based visualization of population structure in the carrot diversity panel. (a) PCA bi-

plot representing all accessions in the diversity panel according to their scores along first (x-

axis) and second (y-axis) principal component.  Points are colored according to a quantitative 

measure of their market class following the methods of Brainard, et al. (2021).  (b) Scree plot of 

the variance explained by the first 15 principal components in marked-based PCA 
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Fig. 4 Manhattan plots for GWAS results using a diversity panel of 661 carrot accessions and 

146,821 SNPs.  Significant associations were found for 4 of the digital phenotypes extracted 

through the image analysis pipeline. (a) Root length; (b) Maximum width; (c) Root fill (the score 

of the first PC of the length- and width-normalized root contour; (d) Aspect ratio (length / 

maximum width) 
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Fig. 5 Effect sizes of the most significant SNPs for each of the traits shown in Figure 3. (a) Root 

length; (b) Maximum width; (c) Root fill; (d) Aspect ratio 
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Fig. 6 Effect of marker density on predictive ability for six root size and shape traits, as well as 

total biomass, using the full carrot diversity panel.  Curves follow an asymptotic exponential 

function, reaching their maximum at approximately 2500 markers 
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Fig. 7 Effect of relatedness between training population (TP) and validation population (VP) on 

prediction accuracy for the six key size and shape traits which constitute market class, using the 

full carrot diversity panel.  Similarity is defined as the inverse of the Euclidean distance matrix, 

and n indicates the number of individuals in the TP against which each member of the VP is 

compared against 
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Fig. 8 Effect of population size on prediction accuracy for the six traits underlying carrot market 

class, as well as total biomass. (a) Absolute population size is varied, holding the VP at 10% of 

the total population; (b) The relative size of the TP is varied by holding the VP constant at 60 

individuals; (c) Relative VP size is varied by keeping total population size constant at 661 

individuals 
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Supplementary Tables 
 

Supplementary Table 1. GEBVs for the seven carrot root traits listen in Table 2.  The entire 

diversity panel of 661 carrot accessions was utilized for phenotyping, but only SNPs located on 

chromosome 3 were used in estimating genetic variance. 

 
Trait h2  Pred. accur. (avg) Pred. accur. (min) 
Shoulder curvature 0.62 0.53 0.14 
Tip curvature 0.04 0.09 0.07 
Root fill 0.62 0.77 0.07 
Biomass 0.36 0.38 0.10 
Max width 0.61 0.65 0.08 
Length 0.65 0.68 0.17 
L/W ratio 0.80 0.72 0.15 
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Supplementary Figures 
 

 
Supplementary Figure 1. Manhattan plots for GWAS results using a diversity panel of 661 

carrot accessions and only SNPs located on chromosome 3.  No significant associations were 

found for 4 of root traits for which associations were previously detected (root length (a); 

maximum width (b); root fill (c); and aspect ratio (d)), nor for tip curvature (e), or shoulder 

curvature (f). 
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Supplementary Figure 2. Prediction accuracy versus population structure at a variety of values 

of k, illustrating the variable goodness of fit of the asymptotic exponential function for 6 traits: 

(a) biomass; (b) length; (c) root fill; (d) aspect ratio; (e) maximum width; (f) tip curvature.  The 

entire diversity panel of 661 carrot accessions was used for phenotyping. 
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Appendix 
 

For complete listing and description of genotypes utilized in the diversity panel, please refer to 

Supplementary_File_S3_1.csv 
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Chapter 4: 
Future directions 
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This thesis is oriented toward answering the question: what is the nature of the genetic control 

of market class in carrot?  While the various components of these experiments built upon 

recent advances in the fields of quantitative image analysis, bioinformatics, and statistical 

genomics, this particular research question had, to date, not been itself thematized in this way.  

The result has been an advance in the methods necessary to study the complex phenotypes 

underlying root shape, our understanding of the genetic architecture of market class traits, and 

novel strategies for improving the efficiency of breeding for particular market classes.  At the 

same time, this research also represents a starting point for numerous subsequent lines of 

inquiry that will hopefully build upon the experiments presented here. 

 

First, with regards to the digital phenotyping methods presented in Chapter 2, there are several 

clear directions in which the imaging platform could be improved to increase both phenotyping 

precision, as well as its high-throughput capacity.  In terms of the former, although the 2D 

imaging methods presented here were found to be suitable for quantifying traits that can be 

measured in two-dimensions (by validating that phenotypic measurements did not vary as the 

root was rotated about its long axis), there are of course aspects of root morphology that only 

exist in three dimensions, which are also important to market class and carrot quality.  The 

degree of concavity in the shoulder, at the point where the petioles attach to the root crown, 

for instance, is not an aspect of root shape that can be easily studied using the imaging pipeline 

developed here.  A 3D imaging platform would thus expand the range of phenotypes accessible 

to image analysis. 
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An additional outstanding challenge is a phenotyping methodology that is able to track root 

development throughout a growing season.  Understanding the temporal dynamics that 

underlie the formation of different market classes would be particularly useful in attempting to 

utilize gene expression data (e.g., in the form of RNAseq) to validate certain candidate genes as 

playing a causative role in driving the physiological processes leading to specific root sizes or 

shapes at maturity.  However, at the moment, it remains a technical hurdle yet to be cleared to 

either develop a production system amenable to existing methods of digital image acquisition, 

or a digital imaging platform amenable to the field production of carrots.  Regarding the former, 

it has been observed that carrots grown from seed under hydroponic conditions, artificial 

growth media, or even in field soils in pots exhibit abnormal growth, with atypical root swelling, 

excessive branching, and stunted lengths.  Thus, developing controlled conditions under which 

repeated destructive harvests could be performed, or automated imaging at regular intervals 

could be carried out, remains technically challenging.  Alternatively, regarding the latter, there 

have been advances in remote sensing technologies to model root system development below-

ground, throughout the growing season.  Implementation of such a system for carrot 

production would be extremely helpful, and remove the need to replicate field conditions in a 

greenhouse environment.   

 

Secondly, from a high-throughput perspective, while the imaging system developed in this 

study offers significant advances over traditional manual phenotyping and record-keeping, it 

still requires monitoring and involvement by human researchers.  Automation of the image-

acquisition process remains a key bottleneck that would dramatically increase throughput, and 
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fully realize the potential of this digital phenotyping methodology.  This would facilitate the 

dramatic expansion of the scale of experimental designs and replications that could be analyzed 

in a research context, as well as make the implementation of these methods feasible in the 

practical setting of a commercial breeding program.   

 

There are several additional avenues that could productively be pursued with regards to the 

genetic analyses presented in this thesis as well.  First, the diallel experiment described in 

Chapter 2 represents a convincing proof-of-concept that such mating designs can provide useful 

estimates of the heritabilities of the phenotypic components of market class, and that these 

heritabilities are, in many cases, relatively high for root size and shape traits.  In this study, a 

predominant production environment for Wisconsin growers was selected – the muck soils of 

southern Wisconsin – but while common, this environment clearly represents a unique 

combination of abiotic and biotic conditions.  To better refine these estimates, gain an 

understanding of potential genotype-by-environment effects for these traits, and make more 

broadly applicable conclusions regarding SCA effects for particular hybrid combinations, it 

would be worthwhile to extend this diallel mating scheme to multiple environments.    

 

While the results of the GWAS analyses were relatively limited in this study, they could be 

potentially improved through several methods.  First, with regards to phenotyping, while more 

than 10,000 roots were utilized in phenotyping the diversity panel, the degree of replication in  

the experimental design used was not extensive, with only two replications in the California 

environment, and one replication in both of the years that roots were grown in the Wisconsin 
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environment.  To some extent this was due to logistical constraints on growing such a large 

collection containing over 700 accessions, and thus it could be profitable to grow a smaller 

subset of this collection with additional replication, to try to minimize environmental error.  In 

this regard the methods of estimating variable degrees of relatedness between individuals 

using a dissimilarity matrix constructed from the PCA of GBS-derived markers, as implemented 

to evaluate GEBV predictive ability in Chapter 3, could be particularly useful.  By deliberately 

sampling a subset that contains individuals that are maximally unrelated to every other 

individual in the subset, high proportions of total genetic diversity could be obtained while 

significantly lowering both genotyping and phenotyping costs, and likely not losing potentially 

informative loci.  It is also possible that if a greenhouse environment were developed, as 

described above, allowing for normal root shape development under more controlled 

conditions, that this would also facilitate a minimization of environmental variance. 

 

Second, with respect to genotyping, only a minority of the accessions included in this diversity 

panel constituted inbred lines.  The vast majority are either landraces, open-pollinated 

cultivars, or populations.  As a result, representing these accessions with the genotype of a 

single root necessarily obscures the heterozygosity present in these genotypes.  Techniques 

such as PoolSeq, which utilize bulked DNA from multiple individuals for GBS sequencing, and 

thus continuous measures of allele frequency instead of categorical allele dosages in the 

ANOVAs used to detect associations between SNPs and a given phenotype, have been shown to 

increase power in such situations.   
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Neither of these steps are guaranteed to improve the results of the GWAS to the point where 

the majority of the phenotypic variances observed between market classes is captured in 

detected quantitative trait loci (QTL).  In the case of highly polygenic traits – which the 

morphological components of market class appear to be – power to detect small-effect QTL will 

likely remain low, despite the relatively high heritabilities associated with these root shape 

phenotypes.  It was a recognition of this limitation that led to the consideration of the 

comparative value of GEBVs in utilizing genomic-scale data in selection for these traits.  With 

regard to this approach, both of the above considerations for how to improve power in a GWAS 

context would likely apply to further improving the accuracy of GEBVs: both having a greater 

amount of phenotypic data with which to characterize the training population, as well as a 

PoolSeq derived marker matrix with which to construct the additive relationship matrix, and 

thus estimate genotypic variance components, would be advantageous in making genomic 

predictions.  In addition, as discussed in Chapter 3, beyond simply estimating GEBVs, variance 

components could also be estimated to construct covariance matrices describing dominance 

deviations, thus allowing prediction to be made for accessions’ complete genotypic value, and 

not just their breeding values.  This could expand the utility of such genomic selection methods 

to hybrid prediction, as well as selection among progeny families. 

 

Despite the limitations of the current study, and the small effects of the QTL detected, the 

significant associations between SNPs and trait variation should not be disregarded, particularly 

given that for some traits, such as aspect ratio, these QTL did explain non-negligible degrees of 

phenotypic variation.  As a result, it would be appropriate to begin evaluation of these QTL 
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using fine mapping techniques, in order to investigate candidate genes.  Using the annotations 

provided in the current version of the carrot reference genome, it should be possible to search 

in the regions around these significant SNPs for putative genes.  Fine mapping of these regions 

could then facilitate the identification of SNPs in coding regions or regulatory sequences, which 

could provide direct evidence of the role of such genes in the molecular pathways that produce 

the phenotypic variation seen in this study. 

 

Finally, as another alternative to GWAS not explored in this study, linkage mapping offers a 

method that aims, as with GWAS, to detect associations between molecular markers and 

phenotypic variation.  However, by designing populations using specific controlled crosses, it is 

possible to both estimate recombination frequencies between markers, and ensure high minor 

allele frequencies (MAF) across all loci.  A limitation of GWAS diversity panels is that, due to the 

lack of controlled crosses between inbred parents, the range of MAFs can extend to much 

lower values than in a classic BC or F2 mapping population.  This can limit power to detect QTL, 

due to the fact that the genetic variance attributable to a given bi-allelic QTL is proportional to 

the minor allele frequency.   

 

In addition, using recombination frequencies, genotypes across a grid of pseudomarkers laid 

out at a specified density can be used in linkage analysis, potentially improving resolution in 

identifying the genomic region associated with a marker, as opposed to simply finding a single 

marker that is highly associated with the trait of interest (as in GWAS).  For all of these reasons, 

crosses between inbred lines from Prof. Goldman and Prof. Simon’s breeding programs were 
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made in 2017, and the resulting F1 populations have been advanced through single-seed 

descent for the last 3 years.  The resulting segregating F3 families that this work produced are 

currently being actively utilized as a basis for such linkage mapping. 

 

In conclusion, this study represents an initial attempt at the rigorous phenotyping of market 

class traits in carrot, and the deployment of quantitative genetic analysis tools in an attempt to 

improve our understanding of their control.  As such, while the results presented in this thesis 

are compelling in their own right, there are numerous avenues by which these methods can be 

refined, and additional approaches that could improve upon each aspect of this work.  

Hopefully the promising results of these experiments act as an impetus to many additional 

projects, which will continue to deepen our understanding of carrot market class, and aide the 

deployment of next-generation sequencing technologies and high-throughput phenotyping in 

the breeding for these important traits. 

 

 


