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abstract

Compromising user accounts is one of the easiest and most common
ways for attackers to undermine otherwise secure online services, often
leading to severe harm. According to Verizon’s Data Breach Investigations,
89% of web application hacking attempts involve credential abuse. The
consequences can be catastrophic—such as the Colonial Pipeline attack,
which caused $3 million in damages due to a single leaked password. To
safeguard user authentication from such damaging attacks, in this thesis I
propose effective detection mechanisms that leverage safely and securely
collected characteristics of user-submitted credentials.

I first present Gossamer, a framework that collects a rich set of character-
istics from user-submitted passwords in a safe and secure manner. Then,
I propose Araña, a filter- and clustering-based attack discovery pipeline
framework that can uncover stealthy, hard-to-spot attack campaigns and
characterize attacker behavior. Together, these two frameworks enabled
us to collect 34 million login requests over seven months at two large
universities, leading to the discovery of 29 attack campaigns and 1,183
compromised accounts. I further highlight how Araña can be customized
for timely attack detection and detail a new data-driven approach to mea-
sure the extent to which the proposed detection mechanism can withstand
attackers with additional resources.

Moving on to passkey-based user authentication, I propose a new de-
tection framework called CASPER, which allows online services to detect
whether attackers are using leaked passkeys stolen from cloud backup
storage to compromise user accounts. We present a decoy-based cryp-
tographic detection protocol that enables online services to distinguish
real passkeys from decoy passkeys. I detail how CASPER can be seam-
lessly integrated into real-world systems with minimal impact on user
experience, negligible performance overhead, and minimal deployment
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and storage complexity for participating parties. Finally, I evaluate the
detection accuracy of CASPER against optimal attackers who attempt to
bypass detection by leveraging data breaches from other websites.
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1 introduction

Online services rely on user authentication systems to protect user ac-
counts and safeguard the services they provide from unauthorized access.
However, attackers are highly motivated to target these authentication
mechanisms, as they often serve as the most accessible entry point for
compromising otherwise secure services. Recent reports from Verizon’s
Data Breach Investigations highlight that 89% of web application hacking
attempts involve credential abuse [1]. These attacks, if successful, can
cause catastrophic damage and irreparable harm.

Password-based authentication remains the most widely used and
user-friendly method for online authentication. However, many online
services, including Apple, Google, and Microsoft, are transitioning toward
passkey-based authentication [2]. Passkeys are cryptographic authentica-
tion credentials generated by users’ devices, and allow users to log onto
their account without requiring them to type any passwords. In both au-
thentication systems, during registration, the user or their device generates
a secret credential, while the authentication server stores corresponding
verification data in a credential database. An attacker without knowledge
of the secret credential should not be able to bypass the authentication
server’s verification checks. Unfortunately, both authentication systems are
susceptible to attacks due to the large-scale leakage of credential database.

Password leaks often result from breaches of credential databases stor-
ing salted hash of user chosen passwords from authentication servers.
Since 2013, the service “Have I Been Pwned” (HIBP) [3] has collected over
5.5 billion leaked passwords. Over the last few decades, breaches from
authentication server have become increasingly common for passwords,
The vast number of exposed passwords, combined with users’ tendencies
to reuse or select weak passwords, has enabled attackers to launch highly
effective online guessing attacks. A marked example of this was the Colo-
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nial Pipeline attack [4], which resulted in $3 million in damages due to a
single leaked password. Existing mechanisms to detect malicious logins
due to such leakage of users passwords remains ineffective today, and fails
to protect users account from unauthorized access.

Unlike passwords, passkey-based authentication does not expose users’
passkeys even if the credential database from an authentication server is
breached. This is because the verification data stored by authentication
servers should not reveal any information about the actual passkeys of the
user. However, many credential backup services such as iCloud Keychain
from Apple [5], Google Password Manager [6], Password Monitor from
Microsoft [7], 1Password [8], LastPass [9], and DashLane [10] keep a
cloud backup storage of users passkeys to allow users to recover them
if they lose access to their devices. Passkey security is threatened when
such cloud backup storage of users passkeys gets compromised. As a
result attackers can steal users’ passkeys by breaching credential backup
services, potentially compromising accounts across multiple services. This
can occur if an attacker gains access to a user’s backup account (e.g., by
guessing its password) or if an insider attacker accesses the cloud storage.
Unfortunately, existing credential backup services lack the capability to
detect unauthorized access to users’ cloud backed-up passkeys.

In this thesis, I aim to develop detection mechanisms that enable au-
thentication servers to reliably identify malicious login attempts in online
authentication systems. The core hypothesis driving this research is that
rich characteristics of submitted credentials can be collected safely and securely to
improve malicious login detection.

To build such improved detection system, several critical questions
must be answered that are not well-addressed in existing literature:

(1) What characteristics of submitted credentials should authentication
servers log to provide strong and accurate signals for detecting mali-
cious logins?
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Figure 1.1: Password leaks from authentication servers and passkey leaks
from credential cloud backup services enables attackers to send malicious
login attempts to take over users’ accounts. We aim to develop effective
malicious login detection approaches that allows authentication servers
to detect majority of the malicious logins detect while minimizing false
alterts.

(2) How can these characteristics be collected in a safe and secure manner
without compromising user account security?

(3) How can we develop an effective malicious login detection system
that minimizes false positives while capturing the majority of at-
tacks?

(4) How robust will such detection mechanisms be against motivated
attackers with more knowledge and resources?

This thesis systematically answers these questions for both password
and passkey-based authentication.

In Chapter 3, we introduce Gossamer [11], a system that enables authen-
tication servers to log a carefully chosen set of characteristics from user-
submitted passwords. Through a simulation-based analysis, we demon-
strate that these logs do not endanger users’ account security, even if
compromised.

We continue our work on identifing malicious logins for password
based user authentication in Chapter 4 by presenting Araña — an attack
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campaign discovery framework. Araña is a filter-cluster-based pipeline
that allows authentication servers to detect and identify malicious login at-
tempts exhibiting similar behavioral patterns. We show how Araña helped
us in identifing large scale hard to detect attack campaigns by leveraging
Gossamer collected characteristics from user submitted passwords. We
conclude the chapter by discussing real world constraints that may arise
during deployment of Araña and discuss briefly about a data-driven ap-
proach for evaluating the robustness of our malicious login detection
methods.

In Chapter 5, we focus on passkey-based authentication and due to its
fundamental differences from password-based authentication we employ
a decoy based detection technique. Specifically to enable the websites
detect unauthorized login attempts using passkeys stolen from breached
credential cloud backup services, we propose a decoy-based detection
technique. Our method involves adding a new characterisitc to the passkey
before they are uploaded to a passkey cloud storage — hiding real passkeys
within a list of decoy passkeys that are indistinguishable from genuine
ones. As a result when attacker compromise users cloud passkey storage,
and use the stolen passkeys to compromise users’ account the websites
/ online services will be able to detect such maliicous logins. This tech-
nique provides a strong and accurate signal to authentication servers about
potentially malicious login attempts. Additionally, we evaluate the robust-
ness of CASPER against attackers who have breached other websites and
strategically attempt to avoid detection.

In summary, this thesis presents novel techniques for detecting mali-
cious login attempts in both password-based and passkey-based authen-
tication systems. By systematically designing and evaluating detection
mechanisms, we aim to enhance the security of online authentication
systems against credential abuse. We conclude this dissertation by dis-
cussing promising open research directions in the authentication space in
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chapter 6.

1.1 Contributions

We describe the contributions of each chapter of this dissertation as fol-
lowing.

Securely Measuring Password-based Logins

In Chapter 3, we propose a system called Gossamer [11] that enables online
services to securely log characteristics about submitted login attempts.
Via a simulation based approach we carefully chose statistics that will
not endanger users’ account security should the logged characteristics of
submitted passwords gets leaked and yet will be valuable in identifying
malicious logins. We work in collaboration with IT-offices of two US
universities and deployed Gossamer for seven months collecting 34 million
login requests.

Discovering and Characterizing Password Guessing
Attacks in Practice

In chapter 4, we perform the first in-depth analysis of a dataset including
over 34 Million login events generated by Gossamer in order to discover and
characterisitc remote password guessing attack. we present an analysis
framework called Araña [12] that illustrates how to filter and cluster Gos-
samer logs to enable easy manual analysis and identify attack campaigns.
We use Araña to identify 29 attack clusters against two US universities
where Gossamer was deployed. We identify key characteristics and pat-
terns of attacks received by authentication systems at these universities,
and we discuss how authentication systems should evolve to counter such
threat. We finish this chapter by discussing real world considerations that
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may arise durign the deplopying Araña such as how to customize Araña to
detect attack in a timely manner and how to evaluate the robustness of
the proposed approach.

Detecting Compromise of Passkey Storage on the Cloud

In Chapter 5, we propose CASPER, the first framework to detect the abuse
of FIDO2 synced passkeys leaked from passkey management service
(PMS) providers. Importantly, CASPER can also be easily extended to
detect breaches of other cryptographic credentials that are widely used
today, such as HMAC-based / time-based one-time passwords (HOTP
/ TOTP) seeds. We show how CASPER enables the websites to detect
malicious logins effectively using passkeys stolen from PMS providers.
Furthermore we analyze its detection effectiveness systemically against
sophisticated attackers who tries to evade detection by leveraging breaches
from other already breached websites

In this chapter, we describe CASPER’s carefully design protocol that
can be seamlessly integrated into the existing passkey backup, synchro-
nization, and authentication processes, with only minimal impact on user
experience, negligible performance overhead, and minimum deployment
and storage complexity for the participating parties. Finally via a pro-
totype implementation of CASPER, we confirm that CASPER introduces
negligible performance and storage overhead for all parties involved and
demonstrate that deploying CASPER requires minimal modifications to
PMS and RPs.
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2 background

In this chapter, we present background topics relevant to the work pre-
sented in this dissertation. Specifically we start by discussing the current
state of passwords and the motivation for passkeys. We then introduce
the concept of synced passkeys and the tension between security and
recoverability. Finally, we discuss the directed anomaly scoring (DAS)
approach used in this dissertation to identify malicious IP addresses.

2.1 Passwords

Current login systems still heavily rely on password-based authentication.
Users typically enter their usernames and passwords to a form on a web
client, which submits them along with other information relating to the
user or machine such as HTTP headers, cookies, IP, and user agent to the
login server over HTTPS. The server hashes the password (and a salt),
checks if the username and hash pair is present in the login database, and
if so, allows the user to log in or prompts for further authentication checks.
Otherwise the request fails.

Single sign-on (SSO) systems allow a user to log into multiple differ-
ent web services using the same username and password. When a user
accesses a service, the service provider (SP) redirects the user to obtain a
proof of authentication from the identity provider (IdP). The IdP provides
the proof immediately if the user has recently authenticated with it, or
requires the user to authenticate and provides the proof if the authentica-
tion is successful. The OAuth framework [13] is a common way to achieve
SSO.
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2.2 Passkeys

FIDO2 authentication method

FIDO2 consists of a set of sub-protocols (e.g., CTAP 2.0 [14] and We-
bAuthn [15]) with digital signature schemes serving as its cryptographic
heart. Briefly, during registration, the user’s authenticator device creates
a signature key pair (s, v), where s and v are the private signing key and
public verification key, respectively. Only v is sent to the website while
s stays private on the authenticator. During the login phase, RP sends a
challenge to the authenticator, and the authenticator then uses s to produce
a response to the challenge. Finally, the RP can use the corresponding
verification key v to verify the response and decide whether to grant the
user account access.

FIDO2 authentication is not only resistant to guessing and phishing
attacks, which traditional passwords have been long suffering from, but
also protects users’ accounts against RP data breaches — a breached v
reveals only a negligible amount of information about its corresponding s
if the underlying digital signature schemes are secure, and importantly,
nothing about users’ credentials for other RP accounts.

Account recovery concerns in FIDO2

The improved security guarantees of FIDO2 [16, 17, 18] have prompted
their adoption either as a single-factor replacement for passwords [2] or
itself as multi-factor authentication (MFA) [19]. However, the lack of se-
cure and user-friendly account recovery solutions for the key management
required by such cryptographic protocols has been a source of serious user
frustration and concerns [20, 21, 22, 23, 24, 25, 26, 27]. This happens when
users’ FIDO authenticators — the devices to which users’ FIDO2 private
signing keys are bound — become permanently unavailable due to device
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loss, reset, or theft. For example, recent studies [27, 23] identify the lack of
convenient and secure account recovery options for FIDO2 passwordless
authentication as a major obstacle to eliminating passwords on the web in
the foreseeable future. A study by Las et al. [22] found that over 60% of the
participants expressed serious concerns about secure account recovery in
enterprise settings. Some RPs attempt to resolve such user frustration and
concerns by offering easy-to-use yet insecure account recovery or backup
authentication options, e.g., user-chosen passwords, email/phone-based
one-time codes, or secret questions, for FIDO authentication. This, how-
ever, overshadows the security benefits provided by FIDO authentication
and degrades the overall security of users’ accounts [28]. To tackle the
account recovery problem, industry-led efforts have emerged to encourage
the adoption of synced passkeys, which we will introduce next.

Synced passkeys

Synced passkeys are rebranded FIDO2 private signing keys, with passkey
management services (PMS) synchronizing them between PMS’s cloud
storage and users’ authenticators. For conciseness, in this thesis, we use
“passkey” to refer specifically to a “synced passkey” as opposed to a
“device-bound passkey” — a FIDO private key that never leaves the authen-
ticator. . Examples of PMS Today include, Apple’s iCloud Keychain [5],
Google Password Manager [6], Microsoft’s Password Monitor [7], 1Pass-
word [8], LastPass [9], and DashLane [10]. These services are supported
by all major browsers, and used by millions of users [29].

The tension between security vs. recoverability

Due to their centralized nature in storing users’ private signing keys,
passkeys have inadvertently become a lucrative target for attackers. Many
PMS now use another cryptographic key to protect a user’s passkeys
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backup at rest, for example, by encrypting it with another key. This en-
cryption key needs to be consistently available for users; otherwise, users
will not be able to decrypt the encrypted passkeys after retrieving them
from passkey providers. In other words, if not properly addressed, man-
aging such a cryptographic key, which has long been a daunting task
for users [30], inevitably reintroduces the account recovery problem that
synced passkeys attempt to solve in the first place.

For this reason, some PMS only require users to maintain a user-chosen
secret (e.g., passwords or PINs in most cases), which is presumably more
memorable, recallable, and hence recoverable than a high-entropy crypto-
graphic key. In practice, this secret can be used in two flavors of strategies,
i.e., key derivation based and key escrow based, with each emphasizing
different priorities on the security and recoverability of the encryption
key. However, both strategies rely on user-chosen secrets that are subject
to guessing attacks (e.g., offline cracking), making them insufficient for
protecting passkeys. If PMS is compromised and the user-chosen secrets
used to derive or to retrieve the decryption key are guessed, attackers can
access users’ passkeys in plaintext.

2.3 Directed Anomaly Scoring (DAS)

In Chapter 4 of this dissertation, we use directed anomaly scoring (DAS)
introduced by Ho et al. [31]. Conceptually DAS is a technique that com-
pares two sets of events and flags the one which one is more suspicious
than the other. In a bit more detail, DAS approach involves first choosing
a set of features that describes the suspiciousness of an event and labeling
for each feature which direction — higher or lower — is “suspicious.” For
example, the higher the number of requests from an IP address, the more
likely it’s malicious.

We leverage this DAS scoring to identify malicious L sets as defined
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in Chapter 4. Specifically to score L sets against each other, we use DAS
scoring. For example number of failed login requests (NR) can be a DAS
feature with higher being the direction of maliciousness. Then DAS uses
these per-feature comparisons to define an L set comparison: L set A is
more suspicious than L set B if all of A’s feature values are more malicious
than the respective feature values of B. Finally, the DAS score of an L set
compared to a set of other events is equal to the number of other events
for which it is more suspicious.
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3 securely measuring password-based logins

Summary: Passwords remain the primary way to authenticate users online.
Yet little is known about the characteristics of login requests submitted to
login systems due to the sensitivity of monitoring submitted passwords.
This means we don’t have answers to basic questions, such as how often
users submit a password similar to their actual password, whether users
often resubmit the same incorrect password, how many users utilize pass-
words known to be in a public breach, and more. Whether we can build
and deploy measurement infrastructure to safely answer such questions
is, itself, an open question.

We offer a system, called Gossamer, that enables securely logging infor-
mation about login attempts, including carefully chosen statistics about
submitted passwords. We provide a simulation-based approach for tun-
ing the security-utility trade-offs for storing different password-derived
statistics. This enables us to gather useful measurements while reducing
risk even in the unlikely case of complete compromise of the measure-
ment system. We worked closely with two large universities and deployed
Gossamer to perform a measurement study that observed 34 million login
requests over a seven month period. The measurements we gather provide
insight into the use of breached credentials, password usability, and other
characteristics of the submitted login requests.
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3.1 Introduction

Despite the prevalence of password-based authentication across the in-
ternet, little is known about the passwords submitted to login systems.
Knowing the characteristics of such login information would help practi-
tioners make better security policies to improve both usability as well as
attack detection. A key challenge hindering progress is that passwords
are highly sensitive, and as a result prior work has only performed very
limited measurements.

Two prior works are particularly relevant. Bonneau et al. [32] instru-
mented Yahoo login servers for 48 hours to learn the distribution of actual
user passwords. But his technique could not record other information
about submitted (valid or invalid) passwords, Chatterjee et al. [33] were
the first to investigate incorrect password submissions from the viewpoint
of a login server. They instrumented Dropbox’s login service for 24 hours
to investigate how often users submit a fixed set of easy-to-correct typos.
However, their study was limited to only a specific set of typos, and does
not provide a general framework for analyzing submitted passwords. Thus
the question remains: Can we build login measurement infrastructure
that monitors password submissions, but doesn’t endanger security?

In this work, we design, build, and deploy a measurement system,
called Gossamer, that securely records login requests, including statistics
about submitted passwords. Doing this safely required extreme care,
and our main contribution is a holistic approach that combines systems
security features, a simulation-based framework to guide selection of
password-derived statistics, and procedural safeguards. Ultimately, our
initial deployment at two large universities is able to answer, for the first
time, basic questions about submitted passwords—such as how often
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legitimate users are making typos or repeatedly submitting the same
incorrect password, whether attacks are detectable as credential stuffing,
and more.

Performing such measurements requires jointly analyzing passwords
submitted at different points in time. Prior measurement studies computed
a (keyed) hash over a correctly submitted password [32] or compared the
hashes of a small handful of variants of a submitted password to the real
user’s password hash [33]. Neither approach allows inferring whether
users are submitting the same password multiple times or, if not, how
many unique passwords they submit.

To enable such measurements, Gossamer’s design uses a two-service
logging infrastructure to ensure least privilege. Gossamer has a special-
ized measurement service that receives a copy of login requests from login
servers, processes them by computing password statistics and encrypting
submitted usernames, and outputs sanitized logs to a persistent database
on a different machine. The measurement service, like login servers, has
access to plaintext passwords. Thus we designed it to match or exceed the
security properties of login servers: It is safe-on-reboot [34] (no sensitive
data such as passwords are ever stored on disk), deletes all in-memory
data periodically to limit the scope of what would be exposed in the case
of a breach, and is administered by the same security staff in charge of
login servers.

Researchers use a separate analysis service to access the sanitized logs
stored in the persistent database. The sanitized logs and analysis service
are still treated as sensitive, and cannot be made publically available. To
assess the risk to user passwords in the unlikely case of complete exposure
of both a login system’s password hash databases plus Gossamer logs, we
developed a new simulation-based approach to analyze the speed-up of
brute-force cracking attacks that attempt to additionally exploit Gossamer
logs. For example, simulations show that storing raw strength scores (as
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measured by zxcvbn [35]) can provide up to a 20% increase in cracking
efficacy (using up to 109 hash computations), leading us to reduce the
granularity of strength scores. Ultimately, our simulations suggest that the
best performing attack increases password recovery rates using Gossamer
logs by less than 2% using 109 queries.

To showcase the utility of Gossamer, we worked in close collabora-
tion with two large universities’ information technology (IT) security
departments to perform a measurement study of login behavior. Our
measurement study protocols, including Gossamer’s design and implemen-
tation, went through a thorough, multi-step review process that included
reviews by the security engineering teams from both universities, rep-
resentatives of each university’s administration, and the relevant IRBs.
This process culminated in a determination that Gossamer poses minimal
risk. We deployed Gossamer for seven months at University 1 (U1) and for
three months at University 2 (U2). We observed 34 million login requests
(combined) for approximately 500 K users who regularly log in to access
various university-provided critical online services such as email, course
enrollment, and employment information.

This enables first-of-their-kind measurements of password usability
and security. We saw that 1.9% of valid users at U1 and 4.6% at U2 changed
their password in the data collection period. We found that 6.5% of user-
names at U1 appearing in public breaches are still using a password that
is only a small variant of one of their leaked passwords. This motivates
deployment of password breach alerting services that take into account
similarity [36]. On the usability front, while the Dropbox study reported
that 5% of failed attempts were due to easily correctable typos, our mea-
surements indicate that 65% of failed attempts could be typos (within edit
distance two from the actual password), suggesting this is a much larger
cause of user frustration than previously imagined. We also report on the
rate of login retries, the success and failure rate of app-based two-factor
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authentication, and the possible adoption of password managers. Finally,
we are able to report a few high-volume attacks, with insights enabled by
Gossamer to characterize the attacker behavior involved.

Summary. In summary, this chapter proposes a measurement framework
for passwords that can safely help answer basic questions about password
use. Our contributions include:

• Design of Gossamer, which combines systems security, simulation-based
selection of password statistics, and procedural safeguards to enable
measurement studies of password-based login behavior.

• We worked with two large universities’ IT departments to deploy Gos-
samer for multi-month measurement periods.

• We report for the first time on a variety of aspects of password-related us-
ability and security, and discuss the implications of these measurements.
For example, our measurements motivate the need for password breach
alerting, suggest ways to improve lockout mechanisms, and more.

Finally, we hope that Gossamer can serve as a platform to help drive future
research on improving usability and security of passwords. As such we
are releasing Gossamer as a public, open source project that may be useful
for security researchers both in industry and academia.

3.2 Related Work

In this chapeter we perform measurements at two large universities. Both
U1 and U2 use SSO with Microsoft Active Directory Federation Service
(ADFS). While at U2 all login traffic goes through ADFS, at U1, only a
portion of traffic is via ADFS. This is part of the reason we see a lower rate
of logins per day at U1 compared to U2 (Section 3.4).

Studies about passwords. Prior works [37, 38, 39, 40, 41] have inves-
tigated guessability of user-chosen passwords. Most of these rely on
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breached password data to understand the distribution of user-chosen
passwords. Several studies have used Amazon Mechanical Turk (AMT) to
understand user choice of passwords [42, 43, 44], under different factors
such as password requirements [42], presence of a password strength
meter [43], and use of a password blocklist [45].

As passwords chosen in this environment may not represent pass-
words on real websites, several studies have inspected real user passwords
through client-side, server-side, or offline instrumentation [46, 47, 48]. On
the client side, Florencio and Herley [46] installed a Windows Live Toolbar
component for five hundred thousand volunteer participants and analyzed
their password behavior over 85 days. Similarly, Forget et al. [47] created
a client-side data collection tool to observe user’s password behavior in its
natural environment [47, 48].

Measurement studies with login systems. To our knowledge, three stud-
ies have looked at user passwords by instrumenting the login servers.
Bonneau et al. [32] instrumented Yahoo’s login servers to receive login re-
quests (including user passwords) and construct histograms of password
characteristics based on user demographics. Mazurek et al. [49] corre-
lated password strength with demographic information in an offline study
with reversibly encrypted passwords on an access-restricted computer.
Chatterjee et al. [33] instrumented the login code at Dropbox for failed
login attempts to test whether applying a typo correction to the submitted
password would have produced the correct password.

Open questions. Many open questions remain about the characteristics
of the passwords submitted to a login system. For example, how often
do users log in from multiple devices, how often do users submit the
same incorrect password multiple times, and how often do users sub-
mit passwords that are similar to one of their leaked passwords? More
importantly, can we collect information about the submitted password
that allows analyzing login characteristics without degrading the security
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of user passwords? Such a framework would help practitioners make
data-driven login security policies, such as account lockout thresholds,
that better balance between usability and security.

3.3 Designing a Secure Measurement
Architecture

To analyze the passwords submitted to a login system, we need to instru-
ment live login services and monitor login requests, including the submit-
ted username and passwords. User passwords are highly sensitive and
should never be logged. We therefore designed a secure instrumentation
architecture that preserves the privacy of login requests while allowing
meaningful analysis. We refer to it as Gossamer and deploy it at two login
systems used at two universities in the United States. Gossamer is designed
in close collaboration with the security engineers at these universities.
Below we describe the built-in security considerations in our design and
the integration with the existing login infrastructure at these universities.

The architecture. Gossamer enables instrumentation of typical web lo-
gin servers, such as those used for single sign-on (SSO). An overview of
Gossamer’s architecture appears in Figure 3.1. A lightweight hook is de-
ployed within the login server that, on every received login request, sends
a stripped-down copy of the request to our instrumentation infrastructure
on a separate, in-network machine. This is done using a separate thread
to avoid any noticeable latency impact by the instrumentation on login
behavior. A login request includes the username, password, IP address, a
subset1 from the HTTP header, as some content can be more sensitive than
user passwords. For example, an “authentication cookie” could bypass
MFA requirements. of the HTTP headers, timestamp, login result (success

1The login server removes sensitive cookies specified by the security engineers
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Figure 3.1: The main components of Gossamer.

or failure), and finally an application-specific result code for the login
attempt.

A measurement service receives this forwarded login information. It is
responsible for processing the raw login data in a secure manner, convert-
ing it into sanitized logs, and storing them in a persistent database. The
persistent database can be accessed by analysts (in our case, researchers)
via a dedicated analysis service for understanding user login behaviors. As
such, we partition Gossamer’s architecture into two security levels: The
lightweight login hook and measurement service run at a higher privi-
lege level and are administered by IT security staff; the analysis service is
instead at a lower privilege level, accessible by analysts (researchers).

We explain more about these two services further below, but first
describe our security and design goals.

Security properties and design goals. We design Gossamer to resist a
variety of attacks. We note that all our network traffic is encrypted using
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TLS, and as such we do not discuss network adversaries further. Instead,
we focus on the threat of complete compromise of each (or both) of the
services, as well as the weaker adversarial threat of exposure of logs
generated by Gossamer.

To protect against these threats, we design Gossamer to conform to four
security properties.

• Least privilege access to password data. The system must ensure that the
analyst receives only the information necessary for analyzing login
behaviors, while plaintext passwords remain restricted to particular
services.

• Bounded-leakage logging. The system persistently logs a small set of
statistics about user passwords. The set of statistics is carefully designed
to bound the improvement in guessing attacks against user passwords,
even in the case of complete compromise of the analysis service.

• Periodic deletion. The system should expunge all raw, sensitive data older
than 24 hours to reduce the exposure of any data should the system get
compromised.

• Safe-on-reboot. Finally, we must ensure that all sensitive data from raw
HTTP requests is destroyed on reboot. This property was first intro-
duced in [34] for the Bunker secure network tracing system.

We will return to these properties as we elaborate on the details of the
architecture.

Security considerations in Gossamer. As mentioned, Gossamer uses two
services running at different privilege levels on two different machines
— a measurement service for processing the raw login data and storing
the anonymized statistics of user logins into a secure, persistent relational
database, and an analysis service for analyzing the data from the persistent
database. Separating measurement from analysis enables us to maintain
the same privilege requirements for access to password data as there
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are without Gossamer. The high-level architecture diagram of Gossamer
including privilege levels is shown in Figure 3.1.

The measurement service runs on a heavily access-restricted machine
that receives a copy of the login request over an encrypted channel from
the login servers. The service then computes measurements over the
submitted password and stores them in the persistent database. Some inter-
esting statistics require the plaintext submitted password across multiple
requests — for example, the number of unique passwords submitted by a
single user or from a single IP address. Therefore, the measurement ser-
vice stores passwords encrypted using an in-memory key in the ephemeral
database. The key is stored only in memory and is automatically replaced
with a new key every day at midnight local time. The ephemeral database
is placed in a memory-based file system, such as the /tmp directory. The
key rotation cryptographically erases the data stored in the ephemeral
database every 24 hours.2 If the measurement service is killed or the de-
vice is rebooted, all ephemeral data is effectively deleted. This ensures our
periodic deletion and safe-on-reboot requirements.

The ephemeral database allows us to calculate a number of measure-
ments referencing the passwords submitted across multiple logins. These
measurements (given in Section 3.4) allow us to characterize user behav-
ior and could help in building attack detection mechanisms. The output
of the measurement is stored in a persistent database outside the privilege
boundary, where it can be accessed by the researchers. This database is
placed in a disk-encrypted volume, providing another layer of protection
in case the volume is backed up to an unprotected machine or is com-
promised. The key to the encrypted volume is only known to a subset of

2Key rotation at midnight deletes the data received, say, an hour before midnight,
limiting our ability to correlate between passwords received before and after midnight.
It is an open question how to design an efficient key-rotation technique that will allow
secure deletion without requiring storing linear number keys in memory.
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researchers, as the IT security engineers did not need it.

Protecting user privacy. To protect the privacy of users, Gossamer anonymizes
the usernames before storing in the persistent database by encrypting them
using a deterministic encryption scheme [50]. The encryption key is only
accessible from within the measurement service. The deterministic nature
of encryption allows us to cross-reference the logins against a username
without knowing the actual username, while also allowing us to report
compromised usernames to the security engineers, should we discover any.
We do not record any personally identifiable information about the user,
including their real name, affiliation, or account type (such as student,
faculty, or staff). We do record the source IP address for requests, which
is needed to analyze client and attack behaviors.

Of course re-identification attacks [51, 52] may be possible given access
to these logs, and for this reason alone logs are not suitable for public
release. We have strict policies against re-identification for the limited set
of researchers who access the analysis service. All analysis is performed
on the analysis server with encrypted usernames, and only summary
statistics leave the analysis service.

Both the persistent and ephemeral databases are instantiated as MySQL
databases. The measurement service is a Python Flask application running
on an Apache server. We use the Python Fernet [53] library to encrypt
user passwords in the ephemeral database using AES-256, and we use the
Python Miscreant [54] library to deterministically encrypt and decrypt
the usernames using AES-SIV.

Integration with other data sources. Looking ahead, in both of our de-
ployments there are other relevant data sources available that we would
like to analyze. Namely, it is common for organizations to have a database
that contains reports about potentially compromised accounts which can
provide insights into what attacks are (not) being caught by current se-
curity mechanisms. At the universities we worked with, these reports
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are generated when a user alerts IT security to a compromise, or because
existing alert generation mechanisms (including third-party breach alert-
ing services the universities subscribe to) flag an account. In both cases,
an IT analyst manually inspects existing logs to attempt to determine if a
compromise occurred.

To make use of these compromise reports, we add to the measurement
service the ability to accept such logs, anonymize them by encrypting
all usernames (using the same key as above), and transfer the resulting
data to the persistent database. A similar approach can be used in other
deployments of Gossamer to incorporate other relevant data sources, such
as logs from MFA services.

3.4 Password-Derived Measurements
and Security Analysis

Gossamer enables analyses based on the passwords submitted during lo-
gin, which will improve our ability to characterize user login behaviors.
Passwords, however, cannot be made available to analysts for security rea-
sons. We therefore design Gossamer to only collect limited, useful statistics
about the submitted passwords without storing passwords persistently.
However, even just statistics computed over user passwords could leak
information about the password, so care must be taken on which statistics
are persistently stored and made available to the analysts.

In this section, we discuss how we assessed the security implications
of the Gossamer logs storing different kinds of password-derived measure-
ments.

Password-derived measurements

To assess risks related to password-derived measurements, we adopt an
iterative, simulation-based methodology. We consider a potential logging
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schema, namely the set of measurements that we log about login attempts.
For a candidate schema, we perform a simulation-based risk analysis that
consists of (1) defining a threat model including log exposure; (2) deter-
mining a baseline attack that does not exploit exposed logs; (2) developing
a log-exploiting attack that incorporates information leaked via fields from
the candidate schema; and (3) running simulations using leaked pass-
words to assess the increased success rate of the log-exploiting attack over
the baseline. This allows quantifying risk, and if it is too high we adjust
the logging schema and repeat the process until we are satisfied that risk
is relatively low.

First we identify potential fields to include in a schema. Figure A.1
in Appendix A lists the fields we ultimately utilize in Gossamer. We also
considered several other fields that we eventually discarded as too risky,
as we now explore.

To understand password strength, we consider including a zxcvbn
strength score [35], and whether or not it belongs to one of the popular
password guessing lists (the most frequent 5,000 passwords in RockYou[55]
or the top 5,000 passwords generated3 by Hashcat [57]).

To understand how often breached passwords are submitted, we con-
sider marking passwords as being in well-known, public breaches, which
makes those users vulnerable to credential stuffing attacks. For this we use
a dataset of 1.3 billion breached username-password pairs [58] and the
Compilation of Many Breaches (COMB) containing 3.2 billion pairs [59]
released in February 2021. For each attempt, we logged whether the user-
name, the password, or the username-password pair appeared in this
breach dataset. We also consider vulnerability to credential tweaking at-
tacks [60, 61, 62] that target passwords similar to a user’s other breached
passwords. We therefore consider recording the submitted password’s edit

3We use the rule list best_64.rule [56] (a rule list compiled by the Hashcat com-
munity of what are considered to be the best 64 rules) with RockYou to generate the
guesses.
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distance, PPSM similarity [60], and Pass2Path similarity [60] from each
breached password for the given username, if it is present in the breach.
We also consider logging the edit distance of the submitted password from
previous passwords submitted for that username and IP in the same 24
hour window, which would shed light on whether users are making typos
or submitting distinct passwords, and what types of password-guessing
strategies attackers employ.

Security analysis of measurements

We now turn to making risk assessments about candidate measurements
schemas and, in particular, how exposure of Gossamer logs using a candi-
date schema can be exploited to improve password guessing attacks.

Threat models. As discussed in the last section, we designed Gossamer
and our deployment procedures to limit the risk of illicit access to Gossamer
logs, but the principle of defense-in-depth suggests that we consider when
these mechanisms and procedures fail. For example, an insider attacker
could leak the logs to the public internet, or a smash-and-grab attack could
somehow compromise the analysis service and exfiltrate the logs.

We therefore consider two threat models. Both threat models assume
the attacker obtains a copy of Gossamer logs, can re-identify4 usernames
within the dataset, and seeks to infer the password associated to some
particular username. In the first threat model, the attacker can mount
an online guessing attack by querying the login service. In the second
threat model, the attacker is assumed to additionally have access to some
salted hash of the password and so can perform an offline guessing attack.
The only difference between the two threat models for our purposes is

4Recall that the persistent database contains masked usernames, and it is not exactly
clear how attackers would re-identify in this setting. Nevertheless, we conservatively
assume that re-identification is perfect.
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the expected guessing budget q, which would be on the order of tens to
thousands in the online case and hundreds of millions in the offline case.

Looking ahead, it will also be material whether or not the targeted
username appears in an attacker-known password breach. If not, the best
strategy is for the attacker to modify a target-agnostic password guessing
attack (e.g., a dictionary attack) to incorporate relevant information leaked
via the log file. In the targeted guessing threat model, the username
appears in data breaches known to the attacker, and so the best strategy is
to modify a targeted password guessing attack (e.g., [60]) to incorporate
relevant information leaked via the log file. We detail particular attacks
more below.

In each threat model we consider also a baseline attack (specified
below) which performs either targeted or untargeted guessing without
exploiting the log files.

Dataset for simulations. The simulations discussed below are based on
the breach data used in prior work [60, 63] containing 1.3 billion username-
password pairs. There are 370 million unique passwords between length
6 and 30, associated with 1.12 billion usernames. We removed passwords
shorter than 6 characters and longer than 30 characters as done in [60, 63].
We split this data so that the attacker has access to 80% to inform a guess
list, and we randomly sampled 10,000 passwords with replacement from
the remaining 20% as target user passwords that the attacker is trying to
guess.

Password strength measurements. We first focus on four of the password-
derived measurements: (1) whether the password is in the top 5,000 Rock-
You passwords (RY), (2) whether it’s in the first 5,000 Hashcat-generated
passwords (HC), (3) the binary zxcvbn (ZB) score of the password that
we explain below, and (4) the raw zxcvbn [35] score of the password for
comparison. By default, zxcvbn returns a password strength between
0 and 4. We hypothesized that this level of granularity would leak too
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much information about the password and speed up a guessing attack.
Therefore, we also consider a modified zxcvbn score, where we record
0 if the zxcvbn score is 0, and 1 otherwise; we refer to this as the binary
zxcvbn score (ZB). We also consider a combined measurement of all three
measurements described above (except the original zxcvbn score) — that
is, whether the values of all three measurements match between two given
passwords.

Each of these password-derived measurements can be represented as
a function M(w) that outputs the result of the measurement as a boolean,
an integer, or a tuple. Given a measurement value m = M(w̃) about a
randomly chosen target password w̃, the attacker wins if they can guess
the target password within q guesses. This is also called the q-success
rate (λq). We measure λq for different values of q. An attacker, given
a measurement m = M(w̃), can filter its list of guesses W to only the
passwords w ∈ W that match the measurement, i.e., m = M(w). We let
λM
q be the success rate of this attack. The baseline success rate λ0

q is given
by the recovery rate of the attack that simply queries the attacker guess
list in descending frequency order (without filtering). Thus, we measure
the increase in attacker success as ∆q(M) = λM

q − λ0
q.

The results of our simulations are shown in Figure 3.2. We first discuss
the online context, where q ⩽ 1000. Among different measurements,
revealing the zxcvbn score provides the largest improvement in attack
efficacy, enabling an attacker to guess 1.6% more passwords in less than
1,000 guesses, compared to the baseline (of 1.8% passwords). The binary
zxcvbn score reduces the guessing advantage by a modest amount. Overall,
all three measurements combined — RockYou top 5,000, Hashcat top 5,000,
and the binary zxcvbn score — would enable an attacker to guess ∆103 =

3.1% more passwords compared to not having access to the password-
derived measurements. Note that this is without any password policy
(except the minimum length requirement of 6 characters).
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Figure 3.2: Relative improvement in password guessing success rate (∆q)
due to access to password-derived statistics from Gossamer over the base-
line in q ⩽ 108 guesses.

We also check the success rates for passwords containing at least three
character classes (uppercase, lowercase, digits, and symbols), a common
requirement. Both universities have three character classes as part of
the password policy for current students, staff, and faculty, although
old alumni accounts may not satisfy this requirement. When looking
at passwords that meet this policy, only 0.8% of passwords are guessed
within the first 1,000 guesses without any password-derived information,
and the combination of password-derived fields brings this percentage up
to just 1.3% (∆103 = 0.5%).

Next we discuss the success rate of an attacker for a large guessing
budget q ∈ [103, 109]. As before, the zxcvbn score can be damaging to
the privacy of user passwords, resulting in as high as a 20% increase in
attacker success. The binary zxcvbn score provides less information and
never leads to more than a 2% increase in attacker success even with a very
high number of guesses. Combined measurements also lead to a bounded
increase in the fraction of passwords cracked by the attacker, who can
guess at most 4% more passwords with the measurement information in
an untargeted attack compared to an attacker without the information.
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More importantly, most of the improvement occurs for passwords guessed
in less than 10,000 guesses because the statistics allow an attacker to rule
out many popular passwords when guessing already vulnerable, weak
passwords.

Thus we conclude that while including full zxcvbn would be too risky,
the increase in attacker success when given the other password strength
measures (with the binary zxcvbn score) is sufficiently small.

Edit distance measurements. Other measurements we consider are the
edit distance from breached passwords for the appropriate username and
the edit distance from other submitted passwords, including the correct
ones. Early versions of Gossamer recorded the precise edit distance; we
instead now suggest quantizing to just indicate whether a submitted pass-
word is within edit distance two of a breached password or other submitted
password. Our current implementation does so, and we quantized the
data in previously gathered logs.

To come to this conclusion, we observe that an attacker in our threat
model can check whether a username is in a breach. (Recall that we
conservatively assume the attacker can perfectly reidentify usernames
and that they have access to all the breach data used by the measurement
system). If the username is not in a breach, then the attacker can proceed
as above through a general guess list. If it is, then the attacker can mount
a targeted credential tweaking attack in the following way. They start by
generating guesses using the state-of-the-art credential tweaking attack
based on pass2path [60], seeding it with the passwords in the breach for
the targeted username. They can then use the edit distance fields in the log
data to filter this guess list by removing any guesses that are the incorrect
edit distance from the breached passwords, or not within the appropriate
quantized edit distance from the breached password, depending on which
schema option we are evaluating.

To assess the improvement in attacks, we compare the modified attack
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to a baseline one that just applies pass2path. For simulations, we randomly
selected 10,000 username-password pairs from the 20% test data described
above, but conditioned on the usernames also appearing in the 80% leaked
dataset. We exclude cases where the password is the same on both sides of
the split (such passwords would be easily guessed via credential stuffing).
For each target username-password pair, we give the attacker the edit
distance of the target password from all the breached passwords associated
with that username. Then λed

q is the success rate for pass2path with guesses
filtered to only those that have matching edit distance information. The
baseline attacker’s success λ0

q is vanilla pass2path’s success rate.
The baseline success rate in the online setting is λ0

103 = 21.6%. With pre-
cise edit distances knowledge, the attacker can instead achieve λed

103 = 85.2%.
This is an uncomfortably large jump in attacker’s success. Quantizing to
just edit distance ⩽ 2 yields a 22.5% success rate, just a 0.9% increase
over the baseline. For larger query budgets (relevant in offline cracking
attacks), the improvement for quantized edit distance is even less, at 0.25%
increase over baseline for q = 108.

Discussion. Our simulations suggest that including even moderately
granular data such as zxcvbn scores or edit distances in log files might
be a risk factor in the case that persistant logs are somehow leaked to
adversaries. Therefore we suggest a conservative approach and select
logging schemas that avoid improving guessing attacks significantly. con-
tribution of this work, as it allows reasoning in a structured way about
risk of password-derived fields.

One current limitation of the framework is that it focuses thus far on
attacks against a single user, and so we do not yet know how best to assess
the risk of measures capturing similarity of passwords across usernames.
Future work could look at extending the framework to look at multi-user
attacks. Another limitation is that we rely on best-known attacks (such
as pass2path), and as such future work could yield improved attacks. It



31

is therefore important to retain the ability to sanitize or delete older logs
should new results surface previously unforeseen risks.

A full list of measurements logged by Gossamer can be found in Appendix A
Table A.1.

3.5 Deploying Gossamer
We partnered with security engineers at two large universities to deploy
Gossamer and collect data, beginning in December 2020. We collected data
for seven months at U1 and three months at U2 (a shorter timeframe due to
the preferences of the IT department). This timeframe encompassed mid-
semester, exam, and break periods, so we were able to observe different
levels of activities. Throughout this timeframe, we occasionally made
updates to some of the measurement mechanisms; these updates were
done after careful review of the code by pulling from a git repository
accessible to the virtual machine running the measurement service, .
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Figure 3.3: Successful and failed login attempts per day at two universities
(for a total of 196 K unique users at U1 and 309 K at U2). Potential high-
volume attack campaigns we discovered are also shown.

Review process and ethical considerations. Although our research could
help understand characteristics of password submissions received by lo-
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gin systems, we must also consider the privacy and security risks of in-
advertent exposure of the sensitive information in the logs. Our design
of Gossamer, therefore, strives to balance these risks with the benefits of
protecting user accounts. We conducted a nearly year-long design and
implementation effort that entailed a number of external review processes
to help guide our research study and reduce potential privacy and security
risks to users.

As noted in Section 3.3, Gossamer logs do not include PII. Researchers
(with one exception mentioned below for compromise reporting) do not
have access to usernames or email addresses. They do have access to IP
addresses from where login requests originate.

To protect sensitive data, Gossamer uses a layered approach to security
with an encrypted disk, strict firewall rules, and MFA login to access the
analysis service. Moreover, Gossamer never stores plaintext passwords
on disk; it instead stores a set of password-derived measurements in the
persistent database for analysis. Even in the case that these are some-
how leaked the chosen measurements represent little additional risk of
password disclosure (see Section 3.4).

The research group had ground rules for handling the data, including
minimizing granularity of information shared outside the confines of
analysis systems, restricting persistent database access to only a subset of
researchers, and setting clear expectations about (in)appropriate use of
access (e.g., prohibiting re-identification attacks attempting to identify a
user from the obfuscated data).

We also went through a careful vetting and approval process with
university leadership and their information technology (IT) security de-
partments. This involved presenting to the university leaderships about
the goals, design, and procedures associated with the measurement stud-
ies, and working closely with our universities’ security engineers to design
and implement Gossamer. Satisfied with our process and the potential ben-
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efits to university account holders, we received approval from university
leadership for the deployment of Gossamer.

Before deploying the system, we submitted our study designs for IRB
review at each university. The study protocols at the two universities
were slightly different in how we report to IT security compromised user
accounts. At U1, researchers never had access to plaintext usernames, and
the security engineers handled the decryption of reported (encrypted)
usernames. Therefore, we received an IRB exemption at U1, which found
that the research study does not qualify as human subjects research. At
U2, security engineers requested that we report the plaintext usernames
for operational simplicity. One researcher decrypts the username before
reporting compromises. Therefore, we received IRB approval at U2, finding
the study as a minimal risk human subject research. We did not seek
consent from individual users, as we do not know their usernames or
email addresses. Instead we obtained explicit approval for conducting this
study from the universities’ leadership and IT departments who provide
the login services. Such waivers of explicit consent from participants were
used in prior work (e.g., [64]) and are discussed as an acceptable approach
in the Menlo report [65].

Deployment configuration. As mentioned in Section 3.3, Gossamer con-
sists of two services — a measurement service and an analysis service.
For U1, we used Amazon EC2 in a virtual private network to host the
measurement service as recommended by the U1 security engineers, and
we used an on-premise dedicated server for analysis. For U2, we used
two separate on-premise virtual machines for running the measurement
service and the analysis service. The persistent storage is hosted inside
the VM running the analysis.

Strict firewalls were set up for all machines (on-premise or EC2) that
block all incoming and outgoing requests except from inside the private
network of the respective universities. Only a subset of the researchers have
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Univ. 1 Univ. 2

Session Statistics (with a 360s threshold)
Avg. session size 2.25 2.21
99th percentile session size 10 6
% abandoned sessions 5.47% 1.96%

User Statistics
# of unique usernames seen 196,424 309,801
# of valid users 177,286 169,774
# of active users 130,695 110,476
% valid users w/ weak passwords 0.03% 0.06%
% valid users w/ username in breach† 5.79% 3.27%
% valid users w/ passwords in breach† 2.92% 9.34%
% valid users w/ user-pw pair in breach† 0.01% 0.15%
% valid users w/ tweaked password 1.22% 0.66%
% valid users who may be using password managers 24.76% 27.34%
Avg. devices per user per day 1.51 1.91
Avg. devicesper user (over whole time period) 14.51 14.97
Avg. num unique passwords per user 1.96 9.59

† Statistics related to breach data were calculated for data beginning Jan 27 ’21 after we added
more breach data to the instrumentation.

Figure 3.4: Summary statistics of login requests recorded by Gossamer at
U1 and U2. More statistics can be found in Appendix A Table A.3.

access to these machines via SSH, and the access requires two-factor au-
thentication. All incoming and outgoing network connections are logged
by the firewall and regularly checked by the security engineers for signs of
intrusion attempts. Relevant security patches are checked regularly and ap-
plied immediately. The persistent storage uses a MySQL database, which
uses TLS for all communication and the underlying disk is encrypted at
rest. The login server and the measurement service also use TLS with
pinned certificates [66] for all communications. All passwords used are
longer than 12 characters, randomly generated, and stored in a password
manager. The security engineers also ran scans on the code of Gossamer
and the VMs to check for known vulnerabilities.
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Univ. 1 Univ. 2

Login Statistics
Avg. Login requests per day 49,302 246,274
Avg. # of submitted usernames per day 24,822 61,798
% of requests succeeded 94.99% 92.35%
Avg. # requests per day per user 1.99 2.05
% of requests from mobile device 31.00% 35.57%
% IPs from VPNs, proxies, or Tor nodes 22.08% 4.91%

Submitted password statistics
% req. w/ password in breach† 2.71% 0.10%
% req. w/ user-pwd pair in breach† 0.07% 0.01%
% failed req. containing a typo 29.67% 12.04%
% failed req. (with edit dist msmt) containing a typo 62.39% 58.37%
% failed req. from mobile device containing a typo 38.63% 38.36%
% failed req. (with edit dist msmt) from mobile device containing a typo 72.69% 81.87%
% pwds tweaked 0.92% 0.34%

3.6 Login Statistics, Patterns, and Observations

We collected data at U1 for seven months and at U2 for three months
starting in December 2020. Overall, we observed 10 million requests at U1
and 24 million requests at U2. We show the daily successful and failed
requests in Figure 4.4. On average, 5–8% of requests failed; however, on a
few days we observed a spike in the failure rate (> 50%). These were high
volume attacks that we discuss below. After removing the noise caused
by these attacks, we found that users submitted login requests on average
1.99 times per day at U1 and 2.05 times per day at U2. We see fewer login
requests at U1 because some login requests are handled via a different
authentication server that is outside of our instrumentation.

We saw 196 K unique usernames submitted to U1, out of which 177 K
were valid usernames, of which 154 K users had a successful login at least
once during our instrumentation period. At U2, we saw 170 K users with
at least one successful login during our instrumentation period and 15 K
additional users who tried to log in with a valid username but could not
complete login due to errors. We consider a user active if they have at least
one successful login every month. We found about 130 K active users at
U1 and 110 K at U2.
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Requests originated from 526 K unique IP addresses (approximately
88 K per month) at U1 and 513 K (171 K per month) at U2, and they were
associated with 44 K unique user agents at U1 and 31 K at U2. We also
used the GeoIP2 database published by MaxMind [67] to find location in-
formation for IPs; the majority of login requests at both schools originated
from within the United States, followed by China and India. Summary
statistics that we report on these login requests can be found in Table 3.4,
with additional statistics in Table A.3 in Appendix A.

Characteristics of high volume attacks

We observed three high volume attacks during our instrumentation. Since
we are focusing on understanding the full picture of user behavior, we first
report on these attacks and then remove them from the dataset to avoid
skewing other statistics we report. In total, we removed 54 K requests at
U1 and 81 K requests at U2.

Attack 1: Naïve, multiple-IP, high-volume credential stuffing attack campaign at
U1. Over January 25–26, 2021, four IPs conducted a credential stuffing
campaign consisting of 36 K attempts to 19 K users. Two of these IPs were
identified by the MaxMind GeoIP database [68] as coming from NordVPN,
one from Microsoft, and one from Inwi Mobile [69]. All IPs were active
in non-overlapping time periods and submitted up to 100 requests per
second. More than 99% of requests from these IPs in this time frame
had null user agents. Almost a third of the attempts (29%) of submitted
username-password pairs from these IPs were directly from prior breaches,
and 60% of submitted passwords were present in prior breaches.

The attack campaign successfully compromised 23 accounts at U1, all
of which had been flagged by security engineers and had their passwords
scrambled to prevent access. We observed some duplicate username-
password pairs submitted across IPs; thus we hypothesize that the attacker
used an automated script that iterates through an unfiltered list of breach
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data using a variety of IPs.

Attack 2: Credential stuffing attack using Sentry MBA tool against U1. An IP
hosted in Google Cloud [70] executed another credential stuffing attack
at U1 on March 14th, 2021 from 18:42 - 22:22 UTC. This IP submitted over
17 K requests to 15 K unique usernames, submitting approximately 80
requests per second. Of these attempts, 22% of the submitted username-
password pairs and 56% of the submitted passwords were directly from
the breach data we used with Gossamer. The attacker successfully guessed
the passwords for 14 users. Among those, 13 were already recorded as
compromised by security engineers; we reported the remaining encrypted
username to the security engineers as a potentially compromised account.

Although both Attacks 1 and 2 were credential stuffing campaigns,
we suspect that the respective attackers were using two different sets of
breach data, as there was little overlap in the users targeted.

We noticed that the attack traffic in this campaign was evenly split
between five distinct user agents that were not present in the rest of our
data; these five user agents are the default user agents for a tool called
Sentry MBA [71]. Sentry MBA is a credential stuffing tool where the user
can specify a list of usernames and passwords, a config file for specifying
the HTML fields on the target login page, and a list of proxies from which
to send traffic.

Attack 3: High volume, password spraying attack at U2. On December 22nd,
2020, a total of 12 unique IPs belonging to Digital Ocean Cloud [72] carried
out a high volume password spraying attack by targeting 76 K unique users
with 169 K requests at an average of 262 requests per minute. The attacker
pretended to send requests from SMTP and IMAP clients. The number of
usernames targeted by each IP was evenly distributed among the IPs,
and these IPs were active only during the attack period. Less than 3% of
submitted passwords were from prior breaches, and none of the submitted
usernames were present in prior breaches. We also noticed that all of the
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login attempts were for non-U2 usernames, indicating that the breach
data was not filtered before the attack. Consequently during this attack
campaign, there were no successful logins.

Filtering out attacks. We remove requests from IP addresses correspond-
ing to these three attacks on the respective days for all subsequent statistics
to avoid skewing the statistics. Although we did have access to compro-
mised usernames, there was no clear way to determine which IP address
compromised a given user. In Section A.2, we show why excluding all IP
addresses that contacted a compromised user would not have significantly
affected the statistics. This filtering approach works for our setup but may
not generalize to other systems. Similarly, although there could be other
low-volume attacks that we did not detect, we believe they will not impact
the statistics we report.

User and client statistics

Gossamer observed login attempts for 196 K unique usernames at U1.
Among the users who could never login, 42 K (21%) of them used a user-
name that does not exist in the U1 login database; however, only 0.1% of
these usernames appeared in our breach data. At U2, we saw 310 K users
who tried to login, 170 K (55%) that were successful, and a staggering
139 K (45%) usernames that do not exist. We are not sure what caused
such a high volume of login submissions with invalid usernames.

More summary statistics on these login requests can be found in Table 3.4
and are elaborated in more detail below.

IP and client characteristics. Requests originated from 539 K unique IP
addresses at U1 and 2.47 M at U2. There were 44 K IPs that sent requests
to both universities; of these, 621 IPs had no successful logins.

We also recorded the user agent strings present in the HTTP header
of the login requests. We observed about 5 K unique user agent strings
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at U1, and about 31 K at U2. The top 10 user agents at each school are
listed in Appendix A Table A.4. In 22% of requests at U2, the user agent
string was set to an empty string; all of these requests were through basic
authentication [73]. U1 does not support basic authentication, and less
than 1% of the requests had an empty user agent field. We suspect that
attempts with an empty user agent field were submitted via an automated
script that neglected to set the user agent field. A breakdown of operat-
ing systems mentioned in the user agent string appears in Appendix A
Figure A.2.

Prior work [74] has suggested that attempts from multiple devices for
a user is suspicious and should require additional authentication steps.
Freeman et al. defined a device as a pair of a unique IP address and a user
agent [74]. We observed that on average, 3% of users at U1 and 19% of
users at U2 log in from two different devices per day. 11% of users at U1
and 6% of users at U2 have logged from more than fifty devices over the
course of the study period.

To find what fraction of IPs were public VPNs, proxies, or Tor exit
nodes, we used the Blackbox5 API. We found that 22% of IPs at U1 were
VPNs, proxies, or Tor exit nodes. However, at U1, 16% of all IPs are
10-space IPs, all of which are marked as VPNs/proxies, contributing to
this high percentage. These IP addresses are set up by the university IT
department and are not accessible outside of the university network. At
U2 about 5% IPs were flagged as VPN/proxies by Blackbox API, and 3.6%
of all IPs are 10-space IP addresses. Because users may be sharing a VPN
or proxy network, it is possible that some users may have the same IP;
thus we report most statistics based on device, since it is less likely two
different users would also have the same user agent.

The IP address of a user’s device might change over time due to DHCP
churn or switching between multiple networks. Therefore a login from the

5https://blackbox.ipinfo.app/
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same device and browser may appear as if it’s from multiple different de-
vices, according to the previous definition. So, we conservatively estimate
the number of different browsers per user based on the user agent string.
At U1, 21% of valid users, and at U2 29%, successfully logged in with ten
or more user agents. Thus, many users log in from different browsers, and
login security mechanisms must consider this while designing policies.

We were also interested in determining what percentage of users logged
in on their mobile versus on a laptop or desktop computer. To do this, we
used a regular expression that matched mobile devices on the user agent.
We found that at U1, 31% of requests originated from a mobile device;
out of those, 84% of requests originated from iOS devices and 16% from
Android devices.

These findings may be useful in developing attack detection mecha-
nisms. For example, if a user always logs in from an Android device, it
may be suspicious if they attempt to log in from an iOS device.

Password security

The strength and guessability of a password directly affect the security of a
user’s account. Using the visibility into passwords provided by Gossamer,
we investigate password security in terms of strength, the number of
unique passwords submitted for a username, and the use of breached
credentials.

Password strength. We used four different measurements in Gossamer
to measure password strength. We record the bucketized zxcvbn score,
as described in Section 3.4; whether the password appears in the top 5k
most common RockYou passwords; whether the password appears in the
top 5k passwords generated by Hashcat on the RockYou dataset with the
best64 ruleset [56]; and finally, whether the password appears in the top
1000 most common passwords in our breach compilation dataset.
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Figure 3.5: Cumulative distributions of unique passwords per username
and IP for February 2021. The X-axis is log scale.

Exact percentages of requests matching each of these password strength
metrics can be found in Appendix A Table A.3. In summary, we found
that the vast majority of valid users were using strong passwords by these
metrics. Both universities use strong password policies, requiring a mini-
mum length of 8 and at U1 three different character classes; so this finding
is not surprising.

Unique passwords. We also measure the number of unique passwords
submitted for a given username or from a given IP address on a certain
day.

We observe that a median of one and a 99th percentile of seven unique
passwords are submitted against a single username per day. Slightly
more unique passwords — a median of one and 99th percentile of nine —
are submitted from a single IP address . Both distributions are shown in
Figure 3.5. More unique passwords are submitted from a single IP address
than for a single username, which makes sense because an IP address may
submit to multiple different users, especially if it is a VPN/proxy.

We noted earlier that some organizations may lock accounts that receive
a certain number of failed attempts in a given time period. However, these
lockout mechanisms do not take into account whether a user submitted
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the same password multiple times. Creating a lockout threshold based
on the number of unique passwords tried instead of the total number of
attempts would improve usability without any improvement in attacker
success rates.

To demonstrate this, we consider a lockout threshold of 10 and cal-
culate the number of accounts that would have been locked by counting
the number of attempts on a given day instead of the number of unique
passwords. We find that 17,863 accounts would have been locked under
the simple policy, versus just 2,220 accounts under the policy that counts
by unique passwords — an 88% decrease. Similarly for a lockout threshold
of 5, implementing the more complex policy would decrease the number
of lockouts by 91% from 280,360 to 23,919.

Such a lockout policy could be implemented relatively simply by storing
the password hashes submitted for a given user for the last day. Then a
lockout policy would check the number of unique hashes submitted in the
designated time period. This new policy would improve usability with
only a slight increase in implementation complexity and no benefit to a
potential attacker.

Breached credential use. To measure the usage of breached credentials,
Gossamer records for each attempt whether the username, password, or
username-password pair appeared in our breach dataset. Usernames
were stripped of a domain name, if applicable, before performing the
match. We find that nearly 6% of valid users at U1 and 3% of valid users
at U2 appear in our breach dataset, indicating that they have appeared in
some data breach in the past. Additionally, we find that 3% of submitted
passwords at U1 and 0.1% at U2 appeared in a breach; finally, 0.07 % of
username-password pairs at U1 and 0.01% at U2 appeared in a breach.
Most of these were failed attempts, but we find that 23 users (0.01% of
valid users) at U1 and 254 users at U2 (0.15% of valid users) were still
using a breached password as their actual password.
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These users are vulnerable to credential stuffing attacks, and this moti-
vates the deployment of breach alerting tools in login systems that would
prevent users from continuing to use breached passwords.

For each attempt, we also check for tweaked passwords by recording
the similarity of the submitted password to a breached password using
three metrics — edit distance, PPSM similarity, and pass2path rank [60].
We define a password as being tweaked if the edit distance is less than or
equal to two, the PPSM similarity is zero (indicating that they are similar),
or the pass2path rank is less than or equal to 1,000. We found that at U1,
0.92% of all passwords submitted were tweaked, and 2,164 users (1.22% of
valid users) were using a tweaked password. At U2, 0.34% of passwords
submitted were tweaked, and 1,125 users (0.66% of valid users) were
using a tweaked password.

However, due to the design of the system, we can only determine
whether a user has a tweaked password if they had a previously breached
password in our dataset to which we can compare. When we take this into
account, we find that nearly 7% of users at both universities with at least
one breached password were using a tweaked password. A recent study
by Pal et al. [60] reported a slightly higher rate of 8.4%.

We hypothesize that users may append a single character to their old,
breached password, causing them to be vulnerable to credential tweaking
attacks, in which an attacker tries close variants of breached passwords
in an attempt to guess user passwords. Implementing a breach alerting
system such as Might I Get Pwned [36] or using a personalized pass-
word strength meter [60] in the password change flow could alert users
when they attempt to change their password to one that is vulnerable to
credential tweaking attacks.

Password changes. Neither of the universities have any periodic password
change policies. At U2, users are recommended to change their passwords
twice a year, but this is not enforced. New passwords are recommended
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to not be the same or similar to any previous passwords, but this is not
enforced either. we are able to estimate a subset of the password changes
made using the password’s edit distance from the previous submissions
for a user logged by Gossamer. Because previous submissions are cleared
every 24 hours, though, we can only use this measurement in instances
when the user logged in with their old and new password on the same day.
We find 9,011 total password change events made by 2,893 unique users
— — at U1. At U2, we saw 42,827 total password change events made by
7,812 unique users — 211 of which appeared in the compromise database.
Of the password change events at U1, 100 resulted in a new password that
was in our breach dataset, and 125 resulted in a new password that was
a tweaked version of one in our breach dataset. At U1, at least 1.9% of
valid users changed their password at one point during the seven month
measurement period (about 1.3 K per month) and at U2, at least 4.6%
(14 K per month). This is only a lower bound, since we can only measure
a fraction of password changes, and prior work is consistent with this
bound, reporting higher password change rates [46, 32].

Usability

A longstanding complaint about passwords is their usability. Users often
have trouble remembering strong passwords, and they may commit typos
especially if they do choose a stronger, more complex password [75, 76, 33].
A key benefit of Gossamer is that it provides a new observation point for
measuring password-based login usability.

Login sessions. A user can retry logging in if a login attempt fails (prob-
ably due to submitting an incorrect password). To better understand a
user’s pattern of login retries, we define a login session as a sequence of
login attempts to a username from the same device ending either in a suc-
cessful attempt or in a period of inactivity (indicating that the user has
given up after a series of failed attempts). We define a device as a tuple of
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Figure 3.6: Cumulative distribution of interarrival time between requests
for different inactivity thresholds for February 2021. The X-axis is log
scale.

an IP address and a user agent. It is possible that more than one user may
use the same internet connection and thus have the same IP address. In
this case, it’s possible that they may appear in the same login session if
they both submit login requests to the same username in a period of time
and share the same user agent as well; however, this seems an unlikely
scenario. The definition of login session is parameterized by the length of
the period of inactivity, which we call the inactivity threshold. We refer to a
session that did not end in a successful login as an abandoned session and
the number of login attempts in a login session as session size.

We examine the time between successive login requests, termed as
interarrival time, to determine the inactivity threshold that provides stable
session size. Because a successful login request indicates the end of a login
session, we specifically investigate pairs of successive login requests where
the first request was not successful. We show this distribution in Figure 3.6
at both universities for the month of February 2021, as a representative
month for which the data collection periods overlap. We limit the X-axis
to 15 minutes for easier viewing. At U1, 81% of successive attempts are
executed within 60 seconds of the previous attempt, 90% of requests are
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Inactivity threshold Average session size
(seconds) Univ. 1 Univ. 2

60 2.16 2.44
360 2.29 2.22
600 2.32 2.99

Table 3.1: Average session sizes (number of attempts per session) for
different inactivity thresholds

executed within 361 seconds (6 minutes), and 95% of requests are executed
within 13 minutes.

We can also see by looking at the average session size for multiple
thresholds (Table 3.1) that the choice of inactivity threshold does not
significantly affect the session size. Thus, we choose 6 minutes as our
inactivity threshold for future statistics involving sessions, since 90% of
successive attempts occurred within that window.

With this definition, we find that 51% of sessions at U1 required more
than one attempt, and nearly 5% of sessions were abandoned. For U2,
38% of sessions required more than one attempt, and 2% of sessions were
abandoned. With so many sessions requiring more than one attempt, there
is much room for improvement in usability of password-based logins,
which we elaborate on in our discussions on password typos and lockout
thresholds.

Retries. The session size indicates how many retries were required before
a successful login or the user giving up. Thus we show the average session
sizes for different inactivity thresholds in Table 3.1. Some login systems
have a lockout policy, in which they lock a user’s account after a certain
number of failed attempts have been made. In this case, the 99th percentile
of session size is 10 attempts per session, providing empirical support for
a standard choice for lockout threshold.

We measure the number of sessions per user in a single day, as this
will inform how often a user needs to go through the login process, how
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Figure 3.7: Cumulative distributions of number of sessions per user per
day for an inactivity threshold of 360s for February 2021. The X-axis is log
scale.

important it is to have a frictionless login process, and how effective single
sign-on is. We find that a user attempts to log in a median of one session per
day and a 99th percentile of six sessions per day; we show the distribution
of the number of sessions per user per day in Figure 3.7. However, the
tail end of the graph shows that some users attempted up to 112 sessions
in a single day. Given that the 99th percentile is six sessions per day,
this is probably indicative of suspicious behavior, and in future work this
metric may be used in conjunction with the other metrics we’ve reported
to further investigate possible attacks.

To investigate the password-based login usability of mobile devices,
we compare the session size and frequency of sessions per day for mobile
and non-mobile sessions. We break mobile devicesdown even further by
comparing iPhone and Android devices; these distributions are shown in
Figure 3.8. We can see from these graphs that users of iOS devices tend to
require more attempts than Android ones.

Password typos. One of the areas of friction in a login system may be
password typos, especially for stronger, more complex passwords. With
the ephemeral datastore in Gossamer, we computed whether a password
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Figure 3.8: Cumulative distributions of session sizes (number of attempts
per session) for mobile devices for February 2021. The X-axis for U2 is
limited to 10 for comparison with U1 (although the maximum session size
consisted of 54 attempts).

submission was within edit distance two of the actual password.
We can estimate the number of password typos using this measurement;

however, we only have this measurement for users that later logged in
successfully on the same day, which is only 45% of all failed attempts at
U1. Thus we find that at U1, 62% of failed requests where we have this
measurement contained typos of edit distance two or less, or 30% of all
failed requests. In a study at Dropbox, Chatterjee et al. [33] estimated the
number of typos to be at least 9% of all failed requests.

Requests originating from mobile devices tend to contain typos even
more frequently. Out of all failed mobile requests with the edit distance
measurement at U1, 72% were typos (or 39% of all failed mobile requests).

When investigating sessions with two or more attempts, we found
that 12% of eventually successful sessions of size two or greater initially
failed because of a typo. The remaining failures may be explained by
user memory errors (using the wrong password). These findings further
underscore the utility of password managers, since they help avoid both
typos and memory errors.

Password managers. Although we cannot identify users with password
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managers with certainty, we can find the number of users with a certain
number of successful login attempts and no failures, and we conjecture
that this may be an approximation. For example, we found 25% of valid
users at U1 and 27% at U2 have at least ten logins and never had a failed
login over the course of our measurements.

Duo logs. Both U1 and U2 have introduced the use of Duo two factor
authentication [77] to further strengthen account security. At U2, we were
able to analyze Duo logs for successful login attempts and combine them
with Gossamer logs to explore the tension between usability and security
with respect to MFA. Unfortunately, our logs and Duo log entries do not
share any unique identifiers. Instead, we try to match each successful login
attempt to a corresponding Duo push within two minutes of the login
request originating from the same user. If there were multiple matches to
a single successful login attempt, we chose the Duo push closest in time to
the login request.

At U2, out of 15.9 M successful login requests, 62% were using Basic
Auth [73], which does not require users to enroll in two-factor authen-
tication. Among the remaining 6.0 M successful logins, we could match
89% of requests, and the remaining 11% already had a previously ob-
tained Duo cookie which remained active for 12 hours after a successful
authentication. Among the Duo pushes we could successfully match with
a login attempt, we found that 96.7% were successful, 3.2% were denied,
and only 46 (< 0.01%) were marked as fraud by users. Users on average
took 14 seconds to mark their Duo push as valid, slowing down logins for
honest users.

3.7 Conclusion

In this chapter, we designed, built, and carefully deployed Gossamer, a
framework for securely recording statistics about login requests and sub-
mitted passwords during login. Our approach combines system security
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mechanisms, a simulation-based approach to assessing risk of different
measurements, and procedural mechanisms to enable new kinds of mea-
surement studies. In studies conducted at two large universities in col-
laboration with their IT security teams, we were able to gather first-of-
their-kind measurements about login behavior that shed light on usability,
security, and attacker behavior.
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4 discovering and characterizing password
guessing attacks in practice

Summary: Remote password guessing attacks remain one of the largest
sources of account compromise. Understanding and characterizing at-
tacker strategies is critical to improving security, but doing so has been
challenging thus far due to the sensitivity of login services and the lack of
ground truth labels for benign and malicious login requests. We perform
an in-depth measurement study of guessing attacks targeting two large
universities. Using a rich dataset of more than 34 million login requests
to the two universities as well as thousands of compromise reports, we
were able to develop a new analysis pipeline to identify 29 attack clusters—
many of which involved compromises not previously known to security
engineers. Our analysis provides the richest investigation to date of pass-
word guessing attacks as seen from login services. We believe our tooling
will be useful in future efforts to develop real-time detection of attack
campaigns, and our characterization of attack campaigns can help more
broadly guide mitigation design.

Acknowledgements

Araña was jointly developed by researchers from UW–Madison and Cornell
Tech and published at USENIX Securely conference 2023 [12]. In particular
I would like to thank and acknowledge the contributions of Dr. Marina
Sanusi Bohuk in helping me designing Araña’s attack campaign discovery
piepline. Dr. Bohuk also evaluated Araña on Gossamer logs at Cornell Tech,
and analyzed the resulted discovered attack clusters.



52

4.1 Introduction

Remote password guessing attacks are one of the most effective and preva-
lent causes of account compromise for password-based authentication
systems [78, 79]. Password guessing attacks are easy to mount for attack-
ers, who may attempt logging in under known usernames with widely
popular passwords or perform credential stuffing by submitting username,
password pairs that have appeared in previous breaches. Despite being
straightforward, such attacks can nevertheless be highly damaging. As
a result, the most advanced login services in practice use proprietary
mechanisms in an attempt to detect malicious logins using more than
just the correctness of the submitted password, e.g., via user risk pro-
files [79, 74, 80].

Improving such mechanisms requires understanding attacker behavior
as observed by login services—a delicate task given the sensitive nature
of login data, especially passwords. As such, no in-depth measurement
studies of attack behavior as seen from login services have been conducted.

Recently, in our prior work [11], we designed a new login service
instrumentation tool called Gossamer. It securely records information
about login requests, including certain carefully chosen statistics about the
passwords used in the requests. Gossamer was deployed for seven months
at one university (U1) and three months at another (U2). We analyzed
various aspects of user login behavior, but were only able to identify three
obvious, high-volume attacks. How to find and characterize more attacks
was left as a tantalizing open question.

In this work, we make progress on answering this open question. To
do so, we obtained approval—from our university IRBs and IT security
teams—to perform a fresh analysis of the datasets generated by the previ-
ous study. These datasets include a rich amount of information on over 34
million login requests, Duo two-factor authentication (2FA) logs (just for
U2), and more than 2,000 compromise reports.
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Even with the measurements provided by Gossamer, discovering attacks
represents a tricky bootstrapping problem. The compromise logs do not
implicate specific login requests and, more broadly, there is no ground
truth anywhere in the dataset for attacks. This makes the supervised
machine learning approaches used in prior work [74, 80] inapplicable to
our setting. At the same time, the scale of the problem renders manual
analysis prohibitive, and so prior work only used a simple, known method
for detecting attacks: Flag IP addresses that individually flooded the login
service with requests. This of course misses many attacks.

We develop a new analysis pipeline that we call Araña. Crucially, it
focuses not on individual requests but sets of login requests emanating
from the same IP within a day. This ensures sufficient signal about client
behavior for patterns to emerge. We then built an application-specific
filtering, clustering, and manual analysis approach. We filter out likely-
benign login request sets using custom heuristics, such as filtering out IP
addresses exhibiting high login success rates. We then use an unsuper-
vised learning approach, specifically agglomerative clustering [81], with
a custom distance function tailored to login sets. This helps us identify
clusters of login sets that can be manually analyzed with little effort to
discover attack campaigns—sets of login requests likely to be submitted by
the same attacker.

Araña is effective at finding these attack campaigns, including coordi-
nated attacks involving multiple IP addresses and those spread out over
long stretches of time. We use it to discover and characterize a diverse
set of 29 attack clusters. Many are high volume credential stuffing attacks
that submit on average one password per targeted username and exhibit a
notable fraction of username, password pairs appearing in breaches. In
addition to the more simplistic stuffing attacks that quickly flood requests
from a handful of IP addresses, Araña allowed for discovering widely
distributed attacks that may originate from hundreds of different IP ad-
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dresses. Some of these attacks try to be “low and slow”, submitting a low
number of requests per day at a slow rate. This confirms that credential
stuffing attackers attempt to evade countermeasures that focus on individ-
ual high volume IPs. These credential stuffing attacks are unfortunately
effective: We uncover hundreds of potential successful logins by attackers
for usernames not flagged already in compromise reports prepared by
security engineers.

We are also able to discover lower volume, targeted attacks by focusing
on Araña-identified clusters that exhibit a large number of requests to
individual usernames. For example, we identified an attack campaign
made up of two clusters that targeted 127 users with on average 25 guessed
passwords per user. These attacks included successful logins, suggesting
this targeted strategy can also work for attackers.

We discuss many other attack campaigns in the body. Overall, our
analyses highlight a number of important takeaways for authentication
system designers. First, they suggest that, perhaps unsurprisingly, cre-
dential stuffing attacks remain a primary vector for account compromise.
This, plus the fact that most compromised users in our study also had
passwords in known breaches, underscores the urgent need for broader
use of breach alerting APIs (e.g., [82, 63, 79, 83]).

Second, we saw a large number of attacks on Microsoft’s basic authenti-
cation endpoint at U2. It is the least protected of all of U2’s authentication
services, as it does not support rate limiting or Duo 2FA. It is also easy
for attackers to target any organization using basic authentication by just
changing the destination URL. We observed that attackers regularly target
such weak points, underlining a challenge for large organizations with
heterogenous authentication infrastructure.

Third, mechanisms that look for a large number of submissions per
unit time from an IP or to a username are ineffective against many attacks
already being deployed in practice. A better approach would be to work
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towards operationalizing mechanisms like Araña to detect in (near) real
time distributed and sneaky attacks. However, future work will be needed
to explore how to make such mechanisms robust against evasion by future
adversaries.
Summary. Our contributions include the following:

• We perform the first in-depth analysis of a dataset including over
34 million login events generated by a recent system called Gossamer,
in order to discover and characterize remote password guessing
attacks.

• We design an analysis framework, called Araña, that shows how to
filter and cluster Gossamer logs to enable easy manual analysis and
identify attack campaigns.

• We use Araña to discover and characterize 29 attack clusters against
two major universities that compromised hundreds of user accounts
in total.

• We identify key characteristics and patterns of attacks received by
authentication systems at these universities, and we discuss how
authentication systems should evolve to counter such threats.

Our work has already had some practical impact in terms of discovering
new attacks. We have worked with security engineers from the two uni-
versities to perform responsible disclosure of potentially compromised
usernames. We believe that Araña will be useful in developing more ro-
bust attack detection methods, and we release it as a public, open source
project [84].
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4.2 Related Work

Passwords remain the most widely used mechanism for user authentica-
tion, despite efforts to move past them [85]. We focus our discussion on
the literature most closely related to our topic: characterizing password
guessing attacks as seen by login services.

Measurement studies on user passwords. User behavior with respect to
password choice has been extensively researched. Many studies simulate
login services (e.g., via Mechanical Turk) to perform user studies [42,
44]. Others look at password breach data to characterize aspects of user
password selection [38, 62]. A handful of studies have measured user
passwords in real deployments [46, 49, 85, 86].

Most recently, the Gossamer system [11] was used to measure not only
legitimate user password strength, but also various user password submis-
sion behaviors as observed by the single-sign on (SSO) login services at
two large universities. This chateper uses the same measurement datasets
as reported in chapter 3, but focuses on characterizing malicious login
behavior.

Password guessing attacks. The literature discussed so far concerned
itself with legitimate user behavior, trying in part to assess whether users
are selecting passwords that resist various types of guessing attacks. A
traditional focus has been on offline password cracking attacks, which occur
when an attacker attempts to crack password hashes found in exposed
password hash databases using tools like Hashcat [57] and John the Rip-
per [87]. Researchers have also developed natural language processing
techniques to improve guess generation [39, 38, 41, 37, 88, 40].

Breached username, password pairs—either obtained via offline crack-
ing, gathered via phishing or malware, or stolen from another web ser-
vices storing plaintext password—can be used in credential stuffing attacks,
where an attacker tries to log into a system using breached username,
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password pairs. Users frequently reuse passwords across multiple ser-
vices [62, 61, 60], making credential stuffing one of the most prevalent
forms of account compromise attacks [79, 78]. In an effort to reduce
credential stuffing attacks, breach alerting services such as HaveIBeen-
Pwned [82], Google Password Checkup [89], and Cloudflare’s exposed
credential checks [36, 83] provide APIs that check whether a user’s pass-
words have been compromised.

Credential stuffing is one kind of online guessing attack—an attack that
remotely attempts to log into a service with guessed credentials. Other
examples of guessing attacks include password spraying attacks that submit
a few very popular passwords against a large number of user accounts
and credential tweaking attacks [60] that submit slight variants of breached
passwords.

Detecting malicious logins. Resisting online password guessing attacks
requires determining which login attempts are malicious. As Bonneau et
al. [90] discuss, login services increasingly should treat login as more of a
classification problem, taking into account more than just the correctness
of a submitted password. But only a handful of prior works have focused
on how to do so.

Freeman et al. [74] were the first to report on a statistical framework
using the client IP address and user agent to differentiate between valid
and invalid login attempts; this study used real-world LinkedIn login data,
but did not include password-based features. They also do not report on
observed attack campaigns. Schechter et al. [91] build a malicious login
detection system that also utilizes password-based features, including
differentiating password typos from other failures and using privacy-
preserving data structures such as a binomial ladder filter for detecting
frequently used passwords. Their study used simulated data to argue the
system’s efficacy at detecting malicious logins. Finally, Thomas et al. [79]
studied underground forums and tools used to steal credentials—their
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only measurements using logins are used to report on the lack of evidence
of targeted guessing attacks that try multiple queries against accounts.

The Gossamer chapter [11] reports on three attack campaigns that are
easily detected using known techniques (i.e., a huge number of requests
from an IP in a relatively short amount of time). Such techniques will
only catch obvious attacks and are blind to “low and slow” attacks that
purposefully use a small number of guesses per target account (low)
and per unit time (slow), or distributed attacks that perform guesses
from many different IP addresses. While missing these attacks does not
appear to affect the results on benign user behavior reported in [11],
understanding attacker behavior requires finding and investigating these
attacks.

In summary, no prior work has characterized the behavior of password
guessing attacks as seen from login services.

Two-factor authentication. Although effective at preventing account com-
promise, two-factor authentication (2FA) has yet to achieve widespread
adoption [92, 93], and user friction is still very high [94, 95]. As we show,
many older accounts at universities are not enrolled in 2FA; and more
importantly, even when 2FA is used, recent attacks have shown that at-
tackers can spoof push-based 2FA and hide spoofed pushes by sending
them soon after the victim has logged in [96]. Regardless of whether 2FA
is bypassed in an attack, we would like to know when an attacker suc-
cessfully guesses a user’s password so that IT security personnel and/or
the user can take preventative steps such as changing the password for
the indicated account and for any other account that uses the same (or a
similar) password.

Unsupervised techniques for attack detection. In this work, we therefore
develop a new approach for detecting and characterizing password guess-
ing attack campaigns using Gossamer logs. As we explain in Section 4.4,
we did not have success using supervised machine learning approaches
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and so instead focus on unsupervised techniques, which have a long his-
tory of use in attack detection. For example, they are frequently used in
intrusion detection systems (c.f., [97]) and for various kinds of anomaly
detection (c.f., [98]). To the best of our knowledge, no prior work has
developed mechanisms to detect whether password-based logins are ma-
licious.

4.3 Gossamer Logs

In this work, we use a dataset of login requests compiled from two univer-
sities (U1 and U2) via our prior work Gossamer [11] presented in Chapter 3.
For completeness of this chapter, we provide some details about Gossamer
and how the resulting datasets were collected. We refer readers to chap-
ter 3 for more details.

Gossamer logs. In the previous chapter 3, we introduced a new, privacy-
preserving instrumentation approach for use with login systems [11]. The
resulting system, Gossamer, provides a secure way to collect measurement
statistics about login requests, including a subset of HTTP headers, source
IP address, target username, success or failure of a login request, and care-
fully chosen measurements on the submitted password. Gossamer uses
two levels of storage to provide extra security for particularly sensitive
information. The submitted passwords are encrypted and stored in an
in-memory database. They are cryptographically erased every 24 hours,
providing a good trade-off between the ability to calculate password statis-
tics over one-day windows (e.g., the edit distance between two submitted
passwords) and the ability to protect the secrecy of passwords even in the
low-likelihood case of a full compromise of the instrumentation service.
The system also deterministically encrypts the usernames to preserve their
privacy and blind researchers from them.

Gossamer was designed in close collaboration with the information tech-
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nology (IT) security teams at two large universities. We received approval
from the IRB and IT security teams to deploy Gossamer for 7 months at
U1 and for 3 months at U2. In total, we collected more than 34 million
login requests from 347 K valid usernames. In Chapter 3, we detailed the
design of Gossamer and reported on an analysis of this dataset in terms
of characterizing legitimate user behavior. At the time we were only able
to detect a few obvious attacks that stood out due to their high rate of
requests, and left finding more attacks as an open question. This chapter
is a first step at addressing this open question.

Duo logs. Both universities use Duo 2FA for most login requests; users
are prompted to provide this second factor after they successfully submit
the password (and if they do not have a valid “Duo cookie” stored in their
browser). The datasets we received include sanitized Duo logs for U2
only.

Unfortunately, there is no identifier in the Duo logs that can be used to
uniquely associate a log entry with a particular login request. We therefore
had to use a timestamp-based heuristic similar to that used previously
in [11], to find the Duo prompt that likely corresponds to a successful
password submission. Using the timestamp and encrypted username
associated with the Duo request, we correlate the Duo requests with login
requests within a 2-minute time window. Out of these requests, 96.7%
were successfully completed, 3.2% were denied, and only 46 (< 0.001%)
were marked as fraud by the user.

Compromised user logs. At both universities, the security analysts have
processes for identifying and reporting compromised accounts. These
processes include user reporting mechanisms and third-party breach noti-
fication services (e.g., U1 uses a Microsoft product to detect accounts that
are sending spam). We were given access to compromised account logs for
the period of our previous measurement study, containing the encrypted
username, the timestamp reported, the estimated timestamp of the at-
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tack (only available at U1), and the reason for compromise. Importantly,
compromise reports at U1 were logged from multiple authentication ser-
vices, but the Gossamer deployment only instrumented the main one (U1
web login); so the number of compromised accounts will be an upper
bound for those that were actually compromised through U1 web login.
In most cases, analysts respond to compromise reports by scrambling the
passwords of compromised accounts to prevent further damage.

Our prior work using Gossamer logs contains some basic details about
the compromise logs; we elaborate more here since it will be relevant to
interpreting some results later in the chapter. We considered compromised
reports for the measurement time period at each university, plus one addi-
tional week (which allowed time for analysts to enter compromise reports
for attacks that may have occurred during the measurement period). We
give summary statistics on this compromise database in Figure 4.1. On
average, 190 usernames (0.59% of all valid usernames) are reported ev-
ery month at U1, and 163 usernames (0.28% of all valid usernames) at
U2. At U1, 323 usernames were reported multiple times, 32 of which
were reported for two different reasons. Users who are reported twice are
compromised on average 26 days apart.

We discuss a breakdown of the reasons for compromise in more detail
in Appendix B.1. In summary, we found that the majority of accounts
were reported as compromised through large-scale automated attacks. At
U1, the estimated time of attack is also reported for each compromised
user, and so we investigated the time it takes for an attack to be recorded in
the compromise database. We found that 17% of compromised accounts
are reported within the first hour after the attack, and 90% of compromised
accounts are reported within 61 hours. However, the “timestamp of attack”
field is an approximation of the time of attack based on the analyst’s best
guess. There is no such field recorded at U2.

We also approximate the time of attack by taking the last successful
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U1 U2
(7 mo.) (3 mo.)

Total reports 1,818 611
Unique usernames

- reported 1,468 489
- more than once for same reason 323 122
- more than once for diff. reasons 32 0

% of unique usernames compromised / month 0.59% 0.28%

# IPs tried to log in
- with a compromised username 4,633 6,409
- with multiple compromised usernames 716 156

Max. comp. usernames associated with an IP 382 24
Avg. usernames associated with a single IP 1.98 1.05

Table 4.1: Summary statistics on the compromised accounts reported at
each university during the measurement period.

login for a given username before that username is entered into the account
compromise database. In doing so, we find that only 4% of compromised
accounts at U1 are reported within the first hour after their last successful
login, and 90% are reported within 46 days. This large difference shows
that either the analyst’s estimated time of attack was not very accurate,
or the last successful login before a compromise report is not a good
approximation for the time of an attack—an important challenge in using
compromised logs for detecting attacks, as we discuss in the next section.

4.4 Towards Detecting Attack Campaigns

We now turn to the challenge of discovering remote password guessing
attacks using Gossamer logs. Prior work has used supervised machine
learning approaches to flag likely malicious login requests [74, 91]. How-
ever, they relied on simulated logins, for which they marked each request
as benign or malicious.

For login requests observed in practice, flagging each as either benign
or malicious represents a challenging bootstrapping problem. Not only
is the number of login requests received too massive for a reasonable set
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of security engineers to manually analyze, but also there is no clear set of
criteria to flag a login request as malicious. Moreover, even if an account
has been flagged as compromised by a security engineer or reported as
compromised by a user, there is no obvious way to correlate this with
individual login attempts because, as discussed in Section 4.3, compromise
databases do not include information on the specific login sessions.

Individual login requests often do not contain enough information
for even a human analyst to determine if they are malicious. Attackers
often use automated scripts to send guesses for usernames and passwords
from one or more IP addresses over a period of hours, days, or weeks. To
identify attack campaigns we will as we explain below.

Login Sets and Features

The main Gossamer logs consist of a sequence of login requests. Each re-
quest entry includes (1) a timestamp; (2) the (deterministically encrypted)
username; (3) the client IP address; (4) the client user agent string; (5)
whether the submitted password is weak (has a bucketized zxcvbn score
of zero, as explained in prior work [11]); (5) the edit distances between the
submitted password and previous passwords submitted by the same IP or
username; (6) whether the request succeeded or failed due to an invalid
username or the wrong password; (7) whether the submitted password
is a tweaked variant of a breached password known to Gossamer; or (8)
whether the submitted password, username, or username, password pair
appear in a breach dataset known to Gossamer.

We group login requests based on the client IP address and date it was
received. We call this grouping a login set, which we denote by L. The set
of all L sets within a Gossamer log we denote as L = {L1, . . . ,Ln}, where
n is the number of L sets in the log. Each Li contains all login requests
received in a day from an IP address. Note that L defines a partition over
all login attempts.
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Group Features Acronym

Client IP address ♦ IP
ISP ♦ ISP
User agent string ♦ UA

Volume Total # requests submitted NR
Total # unique usernames submitted NU
Avg. # unique password per user AUP

Login timing Date♦ DATE
Mean interarrival time MIT
Std. interarrival time SIT

Success rates Fraction of submitted requests
that failed FF
w/ invalid usernames FIU

Password
guessability

Fraction of submitted requests
w/ a weak pw, zxcvbn(w) = 0 FWP
w/ pw in breach FPIB
w/ username in breach FUIB
w/ username, password pair in breach FCIB
w/ a tweaked pw in breach FTP

Table 4.2: Features for L sets that we use for analysis. Nominal features
are marked with ♦; all others are numerical.

We define an attack campaign as a set of one or moreL sets. This assumes
that all logins in a L set are either malicious or all are benign. Although
it is possible that legitimate users might share the same VPN or proxy
IP address as an attacker, we expect such scenarios to be rare (and did
not encounter them in our analyses). We leave to future work how to
differentiate benign and attack login attempts from a single IP.

To determine if an L set is potentially malicious or benign, we utilize
a rich set of features describing a L set based on Gossamer logs. The full
set of features, consisting of four nominal and 12 numerical features, are
summarized in Table 4.2. At a high level, these 16 features can be roughly
divided into following groups:

• Client features include the source IP address and user agent (UA) within
the request. We also look up the ISP associated with each IP address
(as reported via the MaxMind Geolocation API [67]). These are useful
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Figure 4.1: Araña’s filter, cluster, analyze pipeline for discovering attack
campaigns.

for determining whether requests are from the same client device.

• Volumetric features include the total number of requests in a L set (NR),
the number of unique usernames targeted in the set (NU), and the aver-
age number of unique passwords submitted to a particular username
(AUP) for a L set.

• Login timing features include the date of the L set, as well as the mean
(MIT) and standard deviation (SIT) of the interarrival time between
requests within the set.

• Success rate features measure the fraction of invalid usernames submitted
(FIU) and the fraction of invalid username, password pairs submitted
(FF).

• Password guessability features include the fraction of submitted passwords
in anL set that have a zxcvbn score of zero (FWP), indicating a weak pass-
word, as well as the fraction of submitted passwords in a known breach
(FPIB), usernames in a known breach (FUIB), username, password pairs
in a known breach (FCIB), and the fraction of passwords submitted that
are a close variant of a breach password—called a “tweaked password”
(FTP).

Together, these features serve as the basis for our attack campaign detection
mechanisms.

Initial Attempts Using Compromise Reports

An obvious potential approach for detecting attack campaigns is to uti-
lize compromised account reports to label L sets as potentially malicious.
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However, as discussed in Section 4.3, those reports do not record informa-
tion sufficient to identify exactly which L set contains the compromising
login attempt. We note that this ambiguity is not just a limitation at the
universities we investigated; anytime a login system allows compromise
reports from users or third party services, they will not be directly asso-
ciated with logins. Nevertheless, we experimented with various ways of
using compromise reports as ground truth for supervised approaches. We
briefly report on two here.

Classifier based approaches. We identified 23,016 L sets where the corre-
sponding IP address contacted at least one eventually-compromised user
account (at any point during the data collection period). Let C denote the
set of all those L sets. Of course, not all of these are necessarily malicious;
but we mark them all as malicious since it is unclear how to label them
more precisely.

We first tried to develop a classifier that can identifyL sets likely to have
a compromised user based on the features we identified in Figure 4.2. We
added to C an equal number of L sets not associated with a compromised
user account, labeled them as benign, and performed an 80/20 training
and testing split on the combined set. We then trained linear regression,
decision tree, random forest, logistic regression, and SVM models to pre-
dict maliciousness. All the models exhibited very bad precision; the linear
regression classifier performed best, with a recall 0.79 but a precision of
just 0.13, making it essentially useless. The primary reason is the crude
labeling of training data as malicious or benign, presumably including
many false positives.

Directed anomaly scoring. We also explored using Ho et al.’s directed
anomaly scoring (DAS) [31], tuned via compromise reports, to rank L sets
in order of “suspiciousness.” These experiments were promising at de-
tecting new types of attacks, but failed to help us detect attacks spanning
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multiple source IP addresses, making it less useful for driving an analysis
and characterization of attack campaigns. See Appendix B.2 for details.

4.5 Campaign Discovery Pipeline

We developed an analysis pipeline, called Araña, that combines heuristic-
based filtering, unsupervised machine learning to cluster behavior, and a
manual analysis review step as illustrated in Figure 4.1. We refer to this as
an FCA (filter, cluster, analyze) approach. While the general notion of an
FCA-type analysis pipeline is not novel, our application-specific heuristics,
similarity measures, and manual review processes are new. Our goal
here is not completeness; identifying all malicious logins is impossible.
Rather, we build a high precision (low false positive) pipeline that helps
us discover a wide range of attack campaigns with minimal manual effort.

We first work to develop heuristics for filtering out likely benign L

sets. First, we remove L sets that do not exhibit a high failure rate (HFR),
and then we remove some anomalous known-benign behaviors (such as
misconfigured clients repeatedly making failed requests).

We then use the wide range of features described in the previous section
to help us define an application-specific similarity measure logsetsim(Li,Lj)

that outputs a similarity score for any L set pair Li,Lj. This helps us cap-
ture the likelihood that two L sets are part of the same attack campaign.
Given logsetsim, we can create a pairwise distance matrix and apply unsu-
pervised agglomerative clustering [81] to discover clusters of L sets that
could each be part of a single attack campaign. The candidates can then be
manually inspected by analysts; we report on our findings in Section 4.6.

Filtering Likely Benign Requests

Most logins are benign, and benign requests are a source of obfuscating
noise in unsupervised algorithms. We therefore first develop a set of heuris-
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tics for filtering out likely benign behavior or, equivalently, identifying
potentially malicious L sets. Our heuristics are based on three assump-
tions regarding attacker behavior reported in prior work [74, 80, 91]: (a)
malicious logins are only a small fraction of the total login traffic; (b) a
large fraction of the malicious login attempts fail; and (c) attackers use
automated scripts or tools to minimize the time and effort required to
send a large number of requests from IP pools (purchased or free proxies,
VPNs), hiding their own IP. Based on these assumptions, we first use
heuristics to filter out obviously benign behaviors (thereby identifying
potentially malicious behavior).

Filtering based on failure rate. We start by focusing attention on L

sets that exhibit a high failure rate (HFR). We choose thresholds for two
features: the total number of login requests NR within L and the fraction
FF of these login requests that are failures. We say a L set meets the HFR
condition if NR > l and FF > f for two thresholds l and f that we set below.
Intuitively, benign logins should succeed most of the time, and failure
rates are not meaningful for one or two logins.

To choose these thresholds l and f, we first plot the distributions of
NR and FF over the subset of L that includes all L sets that have at least
two login requests (NR > 1) and one failed login request (FF > 0). We
show their distributions in Figure 4.2. If we choose extreme thresholds,
the HFR heuristic may miss potentially malicious L sets; but on the other
hand, choosing a relaxed threshold may flag benign L sets as potentially
malicious, increasing the noise in our final attack campaign detection
procedure.

Thus, at U1, we used the 90th percentile as the threshold, making
lU1 = 9 and fU1 = 0.77. However, for U2, the 90th percentile yielded
fU2 = 1.0, the highest possible value; this is because U2 had more high
volume unsuccessful attacks which inflated the 90th percentile. Therefore,
we decreased the threshold to the 80th percentile for U2, setting lU2 = 6
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Figure 4.2: Percentile of NR (left) and FF (right) for both universities
(shown up to the 99th percentile for viewing). By choosing the 90th per-
centile at U1 and 80th at U2, we set lU1 = 10, lU2 = 7 and fU1 = 0.77,
fU2 = 0.8 at the universities respectively.
and fU2 = 0.8. .

Using the HFR heuristic, we filtered out a large number of outright
benign L sets for both universities, as shown in Table 4.3. This allowed us
to focus on L sets exhibiting more anomalous behavior and potentially
malicious behavior.

Filtering out benign behavior. After removing L sets that do not match
the HFR heuristic, we further filter out other likely benign behaviors.

First, we filter out L sets with IPs that have successfully completed
Duo requests for all target users at least once on the same day because we
assume that a remote attacker conducting large scale password guessing
attacks does not have physical access to a victim’s Duo authentication
device. As we only have the Duo logs at U2, we applied this filtering to
the U2 data. We found 563 L sets matching the HFR heuristic, but all
of them contacted only one user and had successfully completed at least
one Duo request for that user. Around 90% of these L sets had submitted
⩽ 5 unique passwords, and the failures were due to incorrect password
entry—probably just a typo.

Second, we filter out any L sets having an IP within the university
networks or belonging to school proxy/VPN servers. Access to these IPs
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Filter # L sets
U1 U2

L with NR > 1 & FF > 0 225,468 227,893

L with NR > l & FF > f (HFR) 2,074 11,929

L with HFR and
w/ successful Duo request on DATE n/a 563
IP belongs to school IP pool protected by Duo 60 825
>90% password reuse 419 4,133

Remaining L sets 1,717 6,408

Table 4.3: Number of L matching each of the filtering criteria at either
university. The last row shows the remaining number of sets after all
filtering steps. Threshold values l and f for U1 and U2 are indicated
in Figure 4.2.

is restricted, and members of the two universities can only use them after
successful authentication and completing the Duo request.

Lastly, we filter out L sets that seem to emanate from a malfunctioning
or misconfigured (benign) client. Specifically, we noticed many IPs sub-
mitting a large number of failed login requests with the same incorrect
password. Upon further inspection, we observe that these were automated
requests belonging to email clients, Outlook Exchange Web Services, and
calendar auto-sync agents that were configured with an invalid password.
Since any rational attacker would not try the same invalid username, pass-
word pair repeatedly, we removed all L sets reusing the same incorrect
username, password pair for more than 90% of their login requests.

After filtering benign L sets based on the HFR condition, failure rate,
successful Duo two-factor submission, school IP addresses, and number
of unique username, password pairs, 1,717 potentially malicious L sets
remained at U1, and 6,408 L sets remained at U2. We show a breakdown
of these filtering steps in Figure 4.3.
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Clustering Potentially Malicious L sets
After the filtering step, we cluster the remaining L sets using the features
described in Table 4.2. The key question for clustering is how to define
a distance function that gauges similarity between L sets, such that two
L sets have a small distance if they belong to the same attack campaign.

Similarity modeling. We design a distance function that can measure
the likeliness that two given L sets belong to the same campaign. For the
numerical features presented in Table 4.2, we use the normalized differ-
ence between two values x and y, defined as ND(x,y) = |x− y|/(x+ y).
We chose this particular distance function since ND(x,y) ≈ 0 when x ≈ y,
and it is a high value when x and y have a high difference. That said, we
believe other numerical distance measures would work well too.

For the nominal features IP, ISP, UA, and DATE, we cannot do a straight-
forward equality checking to measure their similarity, since these nominal
features are sparse. Therefore, similar to Freeman et. al. [74], we use a
hierarchical backoff distance (HBD) approach. This technique defines a
number of levels: If the two feature values do not match at a lower-level,
we “backoff” and use values of the feature from a higher level, while in-
curring a dissimilarity cost. We set this dissimilarity to e−ℓ − e−(ℓ+1) for
backing off from the lower hierarchical level ℓ to a higher hierarchical level
ℓ+ 1, and we accumulate the dissimilarity costs from each level with each
backoff.

For the IP feature, we use the hierarchical structure of Internet routing
to define four levels. At level ℓ = 0 we check for strict IP equality; at level
ℓ = 1 we check for /24 subnet equality; at level ℓ = 2 we check for ISP
equality (as reported in the ISP feature); and at level ℓ = 3 everything is
considered equal. Thus the max level for this feature is ℓIPmax = 3. For the
UA feature, we use five levels. At level ℓ = 0 we check if the UA strings are
identical. For subsequent levels we extract from the UA string to obtain the
application (desktop, mobile, unknown), browser (chrome, edge, other),
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logsetsim(L1,L2):
s← 0
for γ ∈ Γ :

x← γ (L1); y← γ (L2)
if type(γ) is numerical:

s← s+wγ · ND (x,y)
else

s← s+wγ · HBD(γ, x,y)
return s

HBD(γ, x,y) :
s← 0
ℓ← 0
while ℓ < ℓγmax or γℓ(x) ̸= γℓ(y) do

s← s+ e−ℓ − e−(ℓ+1)

ℓ← ℓ+ 1
return s

Figure 4.3: Our distance function (logsetsim) to measure the similarity
between two L sets (Left) and the hierarchical backoff distance (HBD)
calculation for nominal features (Right).

and OS (Windows, iOS, Mac OS, Linux, other). Equality checks for each
of these three define levels ℓ = 1 through ℓ = 3. The final level ℓ = 4
indicates that the user agents do not have anything in common.

For the final nominal feature, DATE, we find the number of days d

between two L sets and compute 1 − e−d. Thus two L sets with the same
DATE have a distance of 0; with 1 day apart, the distance is 0.63, and so
on. Note that this backoff can be calculated (less efficiently) via the same
approach as for the other nominal features, by setting ℓDATE

max equal to the
maximum number of days.

Pseudocode for the complete logsetsim and the hierarchical backoff
distance (HBD) is shown in Figure 4.3. The set Γ includes all feature we
used (shown on Figure 4.2), and we abuse notation slightly by letting
γ ∈ Γ define a function that maps a L set to the relevant feature value. For
the nominal features, we further let γℓ denote the function that extracts
the ℓth level from the feature value. We also define a predicate type over
features that indicates whether the feature is nominal or numerical. We
weight the distance values computed for each feature based on a hyper-
parameter called feature weight wγ ∈ [0, 1].

Clustering. We used an agglomerative clustering technique [81] that can
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work with a non-metric distance function. Agglomerative clustering starts
with each data point as a single cluster and only merges two clusters if
their distance is smaller than a given threshold. Adjusting the threshold
can help avoid clustering together L sets showing different login behav-
ior. To set the distance threshold appropriately, we rely on a knee locator
method [99] frequently used in clustering algorithms to find the correct
threshold for distances. We set the linkage type to “average” and set the
distance threshold for U1 and U2 to 0.44 and 0.51 respectively after apply-
ing the knee locator method at each university separately. The silhouette
score [100] for agglomerative clustering was 0.19 for U1 and 0.17 for U2,
which beat other approaches we tried (see Appendix B.3).

Implementation details. We implemented our similarity model logsetsim
in 240 lines of code written in Python 3.6. To extract the four hierarchical
levels for the IP feature, we used the MaxMind GeoIP database [67]; and
for the UA feature, we used the ua-parser package [101]. Given an L of
size n, we computed an n × n distance matrix to be used for various
clustering algorithms. Computing the distance matrix takes O(n2) time;
however, it can be easily parallelized. We used 40 threads and were able to
compute the distance matrix for n = 1, 717 within 9 minutes at U1 and for
n = 6, 408 within 28 minutes at U2 (using an Intel Xeon Linux machine
with 56 cores and 125 GB of memory). For the clustering step, we used
the sklearn [102] library, and clustering completed in less than a minute
for both universities.

Attack Campaigns Discovered

Based on our designed similarity modeling, the agglomerative clustering
approach described in Section 4.5 produced 366 clusters from 1,717 L

sets at U1 and 640 clusters from 6,408 L sets at U2. For each cluster we
recompute the feature values mentioned in Figure 4.2, after taking the
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union of L sets. Next, we sample a few of the top most interesting clusters
for manually analyzing them.
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Figure 4.4: Number of requests per day for the 1,752 and 6,408 poten-
tially malicious L sets at U1 and U2 respectively as shown in Table 4.3.
Attack clusters we found in Section 4.4 are shown in red boxes. Clusters
marked with a * were identified in prior work [11] as high volume attacks.
Note that the x- and y-axes are different for the two universities for better
visualization.

To identify the large volumetric attack campaigns, we sampled clusters
containing a high number of requests or high number of unique usernames.
At U1, we found eight such clusters with NR ⩾ 1, 000 ∨ NU ⩾ 1, 000. At
U2, we sampled 12 clusters with NR ⩾ 5, 000 ∨ NU ⩾ 5, 000. We chose
these thresholds by manually observing that the clusters found after these
thresholds do not clearly show malicious behavior. As our goal is to
characterize attacks, we focus on precise identification of attack campaigns,
foregoing high recall. Thus we sorted possible attacks by a few different
metrics. For example, we sorted by the number of unique usernames and
found one additional attack at U1; all the top clusters at U2 had already
been found using the volumetric thresholds.

All of the above sample clusters did not exhibit any targeted behavior—
sending roughly one unique password to each user on average. Therefore,
to capture attack campaigns exhibiting targeted behavior, we consider clus-
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ters sending a high number of unique passwords submitted per username
on average. Although at U1 we did not find any such clusters appearing to
be attacks, we discovered eight clusters from U2 that submitted an average
of at least 25 unique passwords per user. Altogether, we sampled nine
attack clusters at U1 and 20 attack clusters at U2. Attack clusters at U1 sent
on average 8,432 requests to 1,294 unique usernames, with a total number
of 41 successful logins among these 9 clusters. At U2, we saw an average
of 14,358 requests submitted per cluster to 7,614 unique usernames, with a
total number of 1,116 successful logins among all 20 clusters. We describe
these clusters further in Section 4.6.

4.6 Analysis of Attack Campaigns

As seen in the last section, Araña’s FCA pipeline helped us identify 29
clusters that are probable attack campaigns. We first describe a subset of
these campaigns in more detail, to better understand attack behavior as
seen in practice. In Section 4.6 we generalize from these case studies to
identify a variety of observed higher-level attacker behaviors.

Example Attack Campaigns

First we describe some attack clusters representative of different types of
attack behavior we observed and show how we group some of them into
campaigns involving more than one cluster. We show the timeline of the
attack campaigns discussed in Figure 4.4, and the full list of attack clusters
we found is shown in Figure 4.5.

Previously reported attacks. Three attacks were manually identified and
discussed in prior work [11]. All three were also detected via our FCA
pipeline: Attack #1 from [11] corresponds to Clusters 1 & 6, Attack #2
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corresponds to Cluster 2, and Attack #3 corresponds to Cluster 10 (also
shown in Figure 4.4).

Attack #1 from [11] was a credential stuffing attack distributed over
four IPs that were active on different days. Each of the IPs submitted lots
of requests very quickly, with a peak rate of over 100 requests per second.
As such, these were easily identified manually as related attacks by the
similar attack behaviors and time period when they were active. This
still required significant manual analysis of Gossamer logs; however, our
FCA approach automates this analysis. Two clusters identified by the FCA
method capture the bulk of the L sets associated with these attacks. One
L set containing 16,035 requests that were previously manually identified
was omitted; this L set had a lower failure rate (0.67) than our heuristic
filtering thresholds (which was 0.77 at U1).

Attack #2 from [11] was a high volume credential stuffing attack using
SentryMBA [103] to send requests from a single source IP address. Since
the attack consisted of only one IP address on a single date, the cluster
consisted of one L set, ranked second by volume of requests in our FCA
approach.

Attack #3 from [11] was observed at U2 and involved 12 distinct IP
addresses with an average rate of 188 requests per second. This attack
was easy to detect due to its sheer volume and rate of requests. Manual
inspection revealed that the attack requests mimicked SMTP and IMAP
clients, which helped in manually clustering them. Again, our FCA pipeline
automated this step, placing all activity from these IP addresses into a
single attack cluster.

Our new FCA approach helps automatically identify these attack cam-
paigns with little error relative to the manual analysis used in prior work [11].
However, it did split the first attack into two clusters, and it also missed
an IP address from that attack. Across these three attack campaigns, 17
L sets were identified by both the manual and FCA approach as being part
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of attack campaigns, and one L set was identified by the manual approach
but not the FCA approach. We show the corresponding confusion matrices
in Appendix B.4. Note that the FCA approach also found many attack
campaigns hard to manually detect that we describe next.

Future work can look into whether unsupervised clustering approaches
can be improved to be more accurate than manual inspection. For now
it is clear that FCA helps find and characterize attack campaigns in an
automated fashion that can later be investigated by an analyst. We now
discuss in further detail the new attacks discovered using our pipeline.

Clusters 5 & 7: Repeated attacks from the same IP. We saw two credential
stuffing attacks at U1 (Clusters 5 & 7) a month apart (May 22 and June 20)
from the same IP address and user agent (and thus, likely from the same
attacker) attempting to login to 4,480 and 1,347 users respectively. The five
user agents used in the June 20 attack were a subset of the seven used in the
May 22 attack, and the two attacks targeted 295 overlapping usernames.
Thus we believe that the IP was under the same attacker’s control for both
attacks. This IP was active on 24 other days, but only submitted between
one and four requests per day to nine distinct usernames over that time
period. We believe the attack exhibited credential stuffing behavior, as the
fractions of breached passwords submitted were 0.63 and 0.32 respectively,
and less than 8% of the passwords submitted were weak passwords. Other
features such as the AUP, FTP, and FSP were relatively similar between
the two clusters. All but two usernames were incorrect across the clusters,
so we believe the attack was curated for U1.

Cluster 12: Multi-day attack from a single IP. Although most of the
attacks we saw were finished within a 24 hour period, some attackers may
spread out the attack over multiple days in an attempt to stealthily avoid
detection. We saw this behavior in Cluster 12 at U2. In this attack, one IP
from Microsoft Corporation ISP sent one request per minute on 15 days in
a two month period. In total, the IP sent 13,289 requests to 8,192 unique
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usernames. There was evidence of credential stuffing, as 61% of passwords
submitted appeared in breach data known to Gossamer, and fewer than
0.04% of them were weak passwords. We did not see any evidence of
targeted behavior, as there was an average of only one unique password
submitted per username; however 63% of the attempted usernames were
valid, meaning the attacker curated their password guessing attack for
U2. The IP attacked the basic authentication protocol that does not have
two factor authentication set up at U2. This IP successfully guessed the
passwords of 501 user accounts over this time period, only 163 of which
were detected by the security engineers.

We saw similar multi-day attacks in Clusters 15, 18, 19, and 29, albeit
for shorter time periods. Such attacks may easily avoid simple volumetric
detection methods (as they were missed in the prior work) and thus show
the utility of a richer feature-based clustering approach.

Cluster 14: High volume, distributed, credential stuffing. We saw sev-
eral cases exhibiting high volume, distributed, curated credential stuffing.
For example, in Cluster 14 at U2, 843 IPs belonging to 13 ISPs submitted
10,535 requests to 7,771 usernames over the course of 23 hours. Since each
IP submitted only around 12 requests, it avoided detection by the manual
analysis performed in the prior work [11]. This attack exhibited credential
stuffing, with 66% of passwords present in breach data; and 48% of the
submitted request contained a valid usernames from U2. During this
attack, the involved IPs successfully guessed the passwords of 258 unique
user accounts, 74 of which were confirmed by security engineers indepen-
dently. Clusters 3, 4, 8, 9, 11-13, and 15-19 showed similar signs of high
volume, distributed, credential stuffing with varying levels of curation to
the target university.

Cluster 17: Possible credential stuffing with unknown breach data. A
few attacks showed a high fraction of tweaked passwords (passwords
that are a close variant of a breached password for the targeted user), but
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a lower fraction of breached passwords. For example, in Cluster 17, we
saw three IPs submit 6,290 requests to 2,513 unique usernames over the
course of two days. Although 91% of the submitted usernames in this
attack campaign are present in the breach data used by Gossamer, only
18% of the submitted passwords appear with those usernames. Of the
remaining 82% submitted passwords for those users, we that found 70%
are only small tweaks of the password(s) present in the breach data with
the corresponding username, and 40% of the submitted passwords exactly
match the breach data. This may indicate that the attacker is using a breach
dataset that is unknown to Gossamer; but because users choose similar
passwords across web services [62], we can still detect these breached
passwords not present in Gossamer’s breach data.

This attack produced successful logins to 35 users, two of which were
independently detected by the security engineers. Cluster 20 showed sim-
ilar signs of possible credential stuffing with unknown breach data, with
a high fraction of tweaked passwords. Neither of these attacks exhibited
targeted behavior (having AUPs of 1.55 and 1.56 respectively); therefore,
we do not believe these are credential tweaking attacks [60].

Clusters 22 & 23: Targeted attacks. In a few cases, we saw a higher
average number of unique passwords tried per username. For example, in
Cluster 22, we saw 73 IPs submit 1,878 requests to 75 unique usernames,
with an average of 25 unique passwords tried per username, each attacking
only one user. Cluster 23 was active on the same day and executed a very
similar attack: 52 IPs submitted 1,296 requests to 52 usernames, each
submitting an average of 25 unique passwords to one unique username,
just like Cluster 22. Thus we believe they are part of the same campaign.

In this attack campaign, the attacker clearly used a popular password
dictionary, as 82% of passwords submitted had weak passwords (zxcvbn
score of 0). The fraction of valid usernames for Clusters 22 and 23 were
0.96 and 0.88 respectively, indicating that the attack data was probably
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curated to the university. The campaign was successful in guessing the
passwords for two usernames, neither of which was detected by the secu-
rity engineers.

Clusters 24-28 exhibited similar targeted dictionary attack behavior,
although with fewer IPs and a lower number of total requests. Our cluster-
ing approach, however, failed to cluster all of these L sets together. This is
a common limitation in agglomerative clustering [104].

Higher-Level Attack Behaviors Observed

Attack campaigns employ various strategies to maximize their success
in compromising user accounts. Broadly, there are two components in
an attack campaign that the attacker has to choose: (a) the types of user-
name, password pairs to submit, and (b) how login requests with those
username, password pairs are delivered to the target service. We noticed
different approaches to each of the two components in the attack cam-
paigns we found at U1 and U2, as we discuss in more detail below. The list
of different behaviors we observed as well as some example clusters show-
ing that behavior are shown in Table 4.4. We also explore the geographical
distribution of attacks, but relegate details to Appendix B.5.

Types of submitted username, password pairs. A key component in an
attack is the set of guessed username, password pairs, as the success of the
attack depends on it. There are different strategies for picking username,
password pairs—e.g., an attacker can choose usernames belonging to the
university and try several popular passwords against those users, or an
attacker can choose breached username, password pairs with or without
filtering the usernames specific to the university.

Curates usernames to the target university. We found that all attacks at U1
curated their set of usernames, with more than 75% of requests containing
a username present in U1. However, at U2, only 7 (out of 20) attack
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Attack
component

Behavior Ex. clusters

Type of
username,
password
pairs

Curates to the target university 2, 21
Targets certain users 22, 23
Uses breach data 9, 19
Submits popular passwords 22, 23

Delivery of
requests

Distributed among multiple IPs 3, 11
Distributed among multiple days 12, 19
Ends quickly (within 24 hours) 1, 11
Exhibits low interarrival time 5, 11

Table 4.4: Different attack behaviors we observed.

clusters contained more than 50% valid usernames. Clusters 10 and 11
combined submitted nearly 200 K requests, but only 286 of them contained
a username present at U2. Even when an attacker attempted to log in
multiple times for a particular username, we found that in several cases the
username did not exist. Some attacks are therefore rather indiscriminate,
trying arbitrary usernames without checking first whether they are valid
for the target authentication service.

Targets certain users. An attacker may submit requests against one, a
few, or many unique usernames. Among attacks we detected, it was
more common for an attack to target a large number of usernames in a
“horizontal attack.” Most of the attacks we found were horizontal attacks—
trying one or two passwords per username but for a large number of
usernames. An attack submitting multiple unique passwords against
fewer usernames may be exhibiting targeted behavior. We found six attack
clusters targeting 137 users in total, each with more than 25 unique popular
passwords. We do not know if the set of passwords used were the same for
different users, as Gossamer logs at U2 do not allow comparing passwords
submitted to different usernames.

Uses breach data. In our analysis, we found that attackers often use prior
breaches to source their username, password pairs in what is popularly
known as a credential stuffing attack. In six out of nine clusters at U1 and
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in one cluster at U2, 50% of the submitted username, password pairs are
present in the breach data used by Gossamer. Among the remaining 22
clusters, eight clusters (all at U2) had more than 50% of the targeted user-
names in a known breach, and all but one attack cluster at U2 submitted
passwords that were found in prior breaches. This reiterates the threat of
credential stuffing.

Uses popular passwords. Although most attacks used breached passwords,
some attacks relied on especially popular passwords. Attackers may use
popular password dictionaries [105] curated from prior password breaches
for such attacks, and such passwords will, by definition, also be flagged as
having appeared in a known breach. We found a number of attack clusters
submitting popular weak passwords, such as Clusters 22 & 23. More than
81% of the passwords submitted in these attacks appear in the 1000 most
frequent passwords found in the breach data known to Gossamer. Notably,
all of these attacks were targeted, submitting more than 25 passwords
per user. Both universities have password selection policies that aim to
disallow popular, weak passwords. Nevertheless, we found that such
attacks were successful in compromising two users at U2.

Delivery methods for attack requests. After choosing the set of username,
password pairs to submit, the attacker must decide how to submit them to
the target service. Primarily, the attacker must identify how quickly they
can submit all the username, password pairs without being detected. To
do so, attackers can use multiple IP addresses to parallelize the attacks,
and/or spread the attack over a long period of time.

Distributed among multiple IPs. We found several attack campaigns that
distributed their login requests over multiple IP addresses. In particular,
we identified three large attack clusters using more than 500 IP addresses
and five other clusters each using more than 50 IP addresses. In the two
clusters with the most IP addresses at U2 (Clusters 11 & 14), the majority
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of IPs were flagged as proxies by Blackbox API [106]. By distributing over
multiple IPs, an attacker can achieve a higher throughput, as exhibited in
cluster 11 which used multiple IPs to achieve a very fast request rate. This
distribution of requests across IPs can help to avoid volumetric detection
mechanisms, as exhibited in clusters 22 and 23.

Duration of the attack. Attacks can be short-lived and bursty or spread
across multiple days. All attack clusters at U1 were short-lived, finishing
within 19 hours and four of them completing within five hours. At U2,
however, we found that most high volume attacks (submitting more than
5 K requests) span multiple days, and two clusters were active for over
10 and 15 days, respectively. Interestingly, these attacks would be very
difficult to detect by looking at their behavior on only one day; however,
our clustering approach helps to see the full attack by combining the attack
behaviors from multiple days.

Interarrival time. Finally, sending requests too quickly could also trigger
alarm or lockout. Therefore, some attackers try to submit requests at a
lower rate. However, we see at least four attack campaigns that submitted
as much as 60 requests per minute at U1 and U2. These attacks are not
curated, meaning that the majority of the submitted usernames do not
belong to the target university and thus could not result in a successful
login. Both U1 and U2 have a soft rate limiting policy, meaning that too
many unsuccessful attempts against a username could lead to account
lockout for 15–30 minutes. However, we did not find any attack that
submitted requests fast enough to a single user that could trigger that
lockout. We are unsure if attackers adapted their attacks to this lockout
constraint or if their typical behavior avoids such lockouts.

Endpoints targeted. An attacker may choose an attack endpoint with the
least safeguards in place. We found that most of the attacks at U2 targeted
the Microsoft basic email authentication endpoint. We suspect that there
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are four reasons for this high usage of the basic authentication endpoint:
(a) this endpoint does not support two factor authentication; (b) it has poor
(non-existent) rate limiting of requests, as basic authentication requires
frequent submission of passwords; (c) the requesting IP seems to be
from Microsoft (as seen by the authentication server); and (d) attackers
would have to make only a small change (the URL) to attack different
organizations using basic authentication.

4.7 Discussion

We design Araña, an attack analysis system based on our FCA—filter, clus-
ter, analyze—framework. Using Araña with the logs created by our prior
work [11], we identified several attack campaigns in two university login
systems. These attack campaigns are spread across 29 clusters as detailed
in Table 4.5 and compromised 1,157 users across two universities. Al-
though our study is limited to the attacks received by two universities,
we believe the patterns we observed across attacks can form a basis for
building future defenses against password guessing attacks.

At U1, the most common type of attack we saw was a combination of a
high volume, distributed, curated, short-lived, credential stuffing attack;
the interarrival times of the attacks varied from 55 milliseconds to 108
seconds. At U2, almost all the attacks were high volume credential stuffing
attacks, but they varied in whether they were distributed, curated to the
university, short-lived, or exhibiting a low interarrival time. Of the eight
lower volume attacks we found, all were curated, short-lived, targeted
credential stuffing; and they varied as to whether they were distributed
across IPs. The distributions of attacks observed in the two universities
are quite different, possibly because Gossamer gathered data from all login
endpoints at U2, but only the main login endpoint at U1. Thus, attackers
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utilizing different endpoints at U1 are not reflected in Gossamer logs.

Efficacy of breach alerting services. To determine how much a breach
alerting service could mitigate password guessing attacks, we investigated
the characteristics of the password from the last successful login before
a user was reported as compromised. We found that 2% of compromise
reports were associated with a breached username, password pair (that
is, the last successful login to that username before the compromise re-
port was a breached username, password pair), 12% were associated with
at least a breached password, and 19% were associated with a tweaked
password. At U2, we observed that 11% of compromised users’ last logins
were made with a breached username, password pair, 46% were made
with at least a breached password, and 1.51% were made with a tweaked
password. Thus automatically resetting passwords of users using vulnera-
ble, breached, or tweaked credentials could have prevented a significant
fraction of account compromises. At U1, 71% of eventually compromised
users used a breach password at some point during the instrumentation
period. This further underpins the need for proactive breach alerting [63]
services that could have saved 47% of account takeovers as stated earlier.

Key observations from attacks. Our findings reiterate the ongoing threat
of credential stuffing, which has been the most prevalent and successful
form of account compromise attack. We also observed a few low vol-
ume targeted attacks against specific users. Attackers often use multiple
IPs from cloud providers, VPNs, and network proxies to distribute and
hide their attacks, but our FCA approach can identify such campaigns
even when each individual IP makes only a handful of requests. Such
observations should be taken into account while building defense policies.
For example, locking user accounts due to a small number of incorrect
attempts rarely translates to higher security, whereas discouraging users
from reusing passwords from other websites and using breach alerting
services can be very effective. Proactive breach alerting [63] using services



86

such as HIBP [82] would be very helpful in combating credential stuffing
attacks.

Using an FCA approach for attack analysis. Our FCA approach helps
analyze attack campaigns by clustering L sets with similar attack behavior.
This enables a security engineer to look at the whole attack, instead of
considering login activities from a single IP or on a single day. As we
show, several attacks are spread across multiple days and use multiple
IPs; in some cases, they may use only one IP and spread the attack over
multiple days, making them very hard to detect. We believe clustering
seemingly unclear behaviors into groups can help security engineers see
the attack pattern, detect hard-to-detect attacks, and have confidence
in their judgment. We envision that our FCA approach can be used on
authentication logs such as the ones produced by Gossamer [11] to group
possible attack campaigns and sort by those that are more likely to be actual
attacks. Then analysts can manually investigate further, using the features
and groupings produced by the clustering to inform their decision. Thus
our FCA approach could reduce the effort needed to analyze the complete
logs of all IPs; such a tool could prepare daily (or weekly) reports about
potential attacks.

4.8 Real-World Deployment Constraints

Despite the many campaigns detected by Araña, there are certain challenges
that may occur during deployment in real-world settings. Here we talk
about a few that we have faced.

Recording password-derived features. Most organizations do not record
password-based features for good reason, and while Gossamer [11] showed
how to record them safely, it is still an open question whether widespread
deployment of recording password-derived features is wise or necessary.
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Araña provides evidence that certain password-derived features can be
useful for attack detection. For example, we identified that password
breach statistics are very effective at detecting credential stuffing attacks.
On the other hand, password similarity statistics—which require storing
passwords in memory for 24 hours—are not as effective for attack de-
tection in the FCA approach. So organizations could log a small set of
already proven-helpful password-derived features and apply clustering
using those features. We detail clustering results without password based
features in Appendix B.3 and leave the open question of which features
are the most helpful for detecting different types of attacks to future work.

Reporting compromised accounts. Based on the attack campaigns dis-
covered by our FCA approach, we believe 41 unique user accounts were
compromised at U1, and 1,116 were compromised at U2 (some accounts
were compromised multiple times by different campaigns).

At U1, 37 of the 41 compromised accounts detected by Araña were
already detected via other mechanisms, and manually recorded by the
security engineers as compromised. We reported the remaining accounts
and received feedback that they were indeed compromised, and the re-
maining account had already been deleted.

At U2, only six out of 1,116 compromised users detected by Araña
had been independently flagged by the security engineers. We reported
the rest to U2’s security engineers in two rounds. In the first round, we
reported 823 compromised accounts, 373 (44%) of which the security
engineers confirmed as definitely compromised. For the remaining 450
accounts, U2’s security engineers said they could not verify fully due to
unavailability of adequate logs but that their best guess was that they were
compromised based on what logs were available. In the second round, we
reported another 293 compromised usernames; however, we received a
similar response mentioning that the IT department did not have adequate
logs to determine whether these were compromised.
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In practice, confirming if accounts are compromised is nuanced and
often relies on indirect indicators like an account being used to send spam
or a report from an account owner. Elsewhere, compromise status can
be inherently ambiguous. Even so, our experience working with the se-
curity engineers suggests that more detailed and persistent logging may
help. Likewise, our experience with Araña suggests that password-derived
measurements can be helpful to analysts when attempting to characterize
and confirm compromises. We also note that this difficulty in confirming
account compromise makes it difficult to automatically finetune many of
the hyperparameters in Araña (e.g., distance thresholds and percentile
thresholds for filtering L sets). Therefore we had to rely on experimenta-
tion with different thresholds and manual analysis on password-derived
and volumetric-based measurements which took comparatively much
more effort. Nevertheless, Araña provides a way to use Gossamer logs to
identify high-volume and distributed attacks that were not detected by
existing mechanisms.

Robustness of malicious login detection. Although this shows that Araña
can detect existing attack strategies, it is unclear if it will remain effective
even when the attacker adapts to such defense mechanisms by actively
modifying their login requests to evade detection. Furthermore to mitigate
the fallout of compromise effectively, one may wish to customize Araña
to run it in a timely fashion instead of waiting for months of login data.
Even notifications delayed by hours or days can be useful, as they signif-
icantly narrow the window of exploitability for compromised accounts.
In Appendix B.6, we present a timely version of Araña that can be used
to detect attacks within a day of their launch. Additionally how robust
the timely version Araña is to evasion attacks using a new data driven
approach.
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4.9 Conclusion

Using data collected at two universities from a measurement framework
for logging password-derived information behavior, we designed a set
of features that describe an IP address on a given date, along with a
clustering algorithm to group IP addresses active on certain dates together
into probable attack campaigns. We describe several of these clusters in
full detail to show the differences and similarities between attacks, and
we discuss our observations about behavioral patterns of the attacks as a
whole. Our results indicate that clustering approaches can aid an analyst
in detecting and labeling suspicious groups of requests that may be part of
the same attack campaign. They also provide initial progress towads the
future design and deployment of real-time, automated attack campaign
detection tools.
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1§ / U1 5 h 3 3 10,424 18,093 1.21 0.12 0.56 0.41 0.69 0.06 0.94 1.00 1 1
2§ / U1 4 h 1 1 15,209 17,827 1.10 0.04 0.56 0.22 0.42 0.06 0.97 1.00 14 13

3‡ / U1 14 h 555 4 12,659 15,117 1.00 0.01 0.14 0.02 0.58 0.46 0.78 1.00 14 12

4‡ / U1 11 h 77 2 12,318 14,603 1.00 0.01 0.14 0.02 0.58 0.45 0.78 1.00 7 6

5 / U1 41 m 1 1 4,480 4,593 1.03 0.08 0.63 0.21 0.44 0.08 0.97 1.00 1 1

6§ / U1 4 h 3 1 2,101 2,683 1.21 0.07 0.66 0.48 0.69 0.04 0.98 1.00 0 0
7 / U1 9 h 1 1 1,347 1,481 1.00 0.00 0.32 0.10 0.22 0.05 0.99 1.00 2 2

8 / U1 19 h 85 13 894 1,246 1.00 0.01 0.33 0.08 0.92 0.84 0.92 1.00 2 2

9 / U1 37m 30 7 219 241 1.00 0.06 0.92 0.78 0.96 0.10 0.93 1.00 0 0

10§ / U2 11 h 12 1 76,321 169,573 1.01 0.00 0.03 0.00 0.00 0.00 0.00 1.00 0 0

11 / U2 10 m 663 10 27,488 33,304 1.00 0.10 0.79 0.00 0.00 0.00 0.01 1.00 0 0

12 / U2 15d 1 1 8,192 13,289 1.02 0.04 0.61 0.07 0.54 0.02 0.63 0.93 501 6

13 / U2 3 d 1 1 7,939 12,240 1.30 0.05 0.66 0.10 0.75 0.00 0.35 0.99 120 0

14 / U2 23h 843 13 7,771 10,535 1.01 0.08 0.66 0.00 0.71 0.00 0.48 0.97 258 0

15 / U2 5 d 1 1 4,662 9,714 1.07 0.09 0.84 0.00 0.91 0.00 0.40 0.99 32 0

16 / U2 2 d 2 1 4,934 7,323 1.00 0.06 0.58 0.00 0.23 0.00 0.81 0.84 786 0

17 / U2 2d 3 2 2,513 6,290 1.55 0.03 0.40 0.18 0.91 0.70 0.37 0.99 35 0

18 / U2 10 d 1 1 1,902 5,434 1.37 0.04 0.55 0.27 0.82 0.41 0.39 0.99 13 0

19 / U2 5 d 1 1 3,584 5,261 1.04 0.07 0.76 0.80 0.98 0.18 0.42 1.00 6 0
20 / U2 2 d 3 2 1,756 5,199 1.56 0.04 0.50 0.22 0.92 0.72 0.35 0.98 83 0

21 / U2 23 h 1 1 5,076 5,103 1.00 0.06 0.59 0.00 0.26 0.00 0.80 0.85 777 0

22 / U2 13 h 73 43 75 1,878 25.04 0.82 0.88 0.01 0.31 0.29 0.96 1.00 1 0

23 / U2 21 h 52 38 52 1,296 24.92 0.82 0.89 0.01 0.34 0.32 0.88 1.00 1 0

24 / U2 12 h 4 4 4 101 25.25 0.80 0.86 0.00 0.55 0.50 0.51 0.99 1 0

25 / U2 16 h 3 3 3 80 26.67 0.81 0.75 0.01 0.65 0.58 0.30 0.99 1 0

26 / U2 8 m 1 1 1 27 27.00 0.85 0.85 0.00 0.00 0.00 0.00 1.00 0 0

27 / U2 8 m 1 1 1 27 27.00 0.85 0.78 0.04 1.00 0.96 1.00 1.00 0 0

28 / U2 13 m 1 1 1 25 25.00 0.84 0.88 0.00 0.00 0.00 0.00 1.00 0 0

29 / U2 4 d 1 1 3 468 38.75 0.15 0.59 0.00 0.67 0.16 0.33 1.00 0 0

‡ Since the measurement collection ended during these clusters, some of these
measurements (such as NR and NU) may be lower bounds.
§ These clusters are part of campaigns that were discussed in previous work [11].
† Duration units are days (d), hours (h), and minutes (m).
∗ The last column represents the accounts that were flagged independently by security
engineers at the respective universities.

Figure 4.5: Attack clusters detected using a set of heuristics and manual
review. The first column notes the ID of each cluster as we refer to them in
the chapter. The attack IDs we describe in detail (Section 4.6) are shown
in bold font. We discovered a total of 41 and 1,116 unique compromised
users at U1 and U2 respectively.
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5 detecting attacks from compromised passkeys

Summary: FIDO synced passkeys address account recovery challenges
by enabling users to back up their FIDO2 private signing keys to the
cloud storage of passkey management services (PMS). However, it intro-
duces a serious security risk — attackers can steal users’ passkeys through
breaches of PMS’s cloud storage. Unfortunately, existing defenses cannot
eliminate this risk without reintroducing account recovery challenges or
disrupting users’ daily account login routines. In this chapter, we present
CASPER, the first passkey breach detection framework that enables web
service providers to detect the abuse of passkeys leaked from PMS for
unauthorized login attempts. Our analysis shows that CASPER provides
compelling detection effectiveness, even against knowledgeable attackers
who strategically optimize their attacks to evade CASPER’s detection. We
also show how CASPER can be seamlessly integrated into the existing
passkey backup, synchronization, and authentication processes, with only
minimal impact on user experience, negligible performance overhead,
and minimum deployment and storage complexity for the participating
parties.
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5.1 Introduction

FIDO2-based user authentication has compelling security guarantees .
While they are promising at (finally) replacing passwords, recovering
accounts in the event of device loss remains a significant challenge pre-
venting the adoption of FIDO2. To address this challenge and accelerate
the adoption of FIDO2-based passwordless user authentication, Microsoft,
Apple, and Google announced passkeys [2], which enables cloud backup
and multi-device synchronization of FIDO2 private keys. Today, there
are many passkey management services (PMS) , e.g., iCloud Keychain
from Apple [5], Google Password Manager [6], Password Monitor from
Microsoft [7], 1Password [8], LastPass [9], and DashLane [10].

While synced passkeys address the account recovery concern, backing
up passkeys to a centralized cloud server poses a serious security risk:
attackers can steal users’ passkeys through PMS breaches and use them
to take over users’ web service accounts. The breach can happen when
an attacker compromises a user’s PMS account (possibly by guessing the
account password) or when an insider attacker gains access to the cloud
backup storage [108, 109]. Unfortunately, existing passkey backup and
synchronization implementations lack the capability to detect unautho-
rized access to users’ passkeys stored at the PMS.

In this chapter, we address this problem by proposing CASPER1, which,
to the best of our knowledge, is the first framework to detect the abuse
of passkeys leaked from PMS. Underlying CASPER is a decoy-based de-
tection technique [110, 111, 112]: it hides the real passkey within a list
of decoy passkeys that are indistinguishable from the real one. As a re-
sult, an attacker who steals the passkeys from PMS and attempts to use
them to log into the user’s account at a relying party (RP), e.g., a website,
inadvertently will end up using a decoy passkey with high probability.
These login attempts will trigger breach detection at the RP, indicating

1CASPER is short for Capturing pASskey comPromise by attackER.
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the abuse of passkeys stolen from the PMS. However, unlike focusing
on allowing relying parties (RP) to detect breaches of their own password
databases, as explored in prior works [110, 111, 112], CASPER enables the
relying parties to detect breaches of PMS — a different service. To do so,
there are additional usability challenges that CASPER must overcome. For
example, false detections by a denial-of-service attacker must be avoided,
as they would undermine the trustworthiness of any breach detection
system. Arguably more importantly, even if an additional user secret is
needed in such a system, it should be easy for users to manage so it avoids
reintroducing the account recovery problem, and it should not disrupt
their daily account login routines.

To meet these requirements, we design a new passkey backup and
restoration (BnR) protocol and a compromise detection (CD) algorithm.
The BnR protocol protects the real passkeys by encrypting them under
a recovery key that is retrievable given a user secret (denoted by η, only
known to the user). A user with the correct η will be able to recover the
real passkey for account logins.

An attacker who could have already obtained users’ passkeys from
PMS breaches without CASPER deployed must now guess η in order to
decrypt and retrieve the user passkeys. Each guess will produce a well-
formed passkey, i.e., a well-formed private signing key but not necessarily
the correct key. As a result, without η, the attacker cannot determine if
their guess yields the real passkey or a well-formed decoy unless they
test it by attempting to log in with it to the user’s RP account. As the
decoys are indistinguishable from the real passkey from the attacker’s
perspective, they will easily end up using a decoy passkey during the
login attempt. RPs that implement our CD algorithm will detect such
attempts and deem them unauthorized use of passkeys leaked from PMS.
This detection will enable RPs to make informed decisions and promptly
mitigate such threats.
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To show the effectiveness of CASPER, we model sophisticated attack-
ers who strategically optimize their attack strategies to evade CASPER’s
detection by leveraging useful information leaked from already compro-
mised websites where users have accounts and CASPER is deployed. Our
detection effectiveness analysis shows that CASPER provides compelling
true-detection and negligibly small false-detection probabilities even when
the user secret η contains low entropy (e.g., as low as 5 bits) — confirming
that CASPER does not impose additional high-entropy secret manage-
ment burdens on users. Also, CASPER does not impose any extra tasks on
users during their daily account login routines. Importantly, as a general
framework with η serving as a configurable component, CASPER can be
fine-tuned for specific authentication scenarios balancing deployability,
usability, and security.

We provide a prototype implementation [113] and show that CASPER
can be seamlessly incorporated into FIDO2 authentication protocols (i.e.,
CTAP 2.0, WebAuthn) without introducing significant storage costs or
causing noticeable login delays. As CASPER aligns with FIDO Alliance’s
ongoing exploration of trusted signals to detect abuse of synced passkeys,
we believe our work will spark interest within the authentication commu-
nity to consider its adoption in practice.

To summarize, our contributions are as follows.

• We propose CASPER, the first framework to detect the abuse of FIDO2
synced passkeys leaked from passkey management service (PMS) providers.
Importantly, CASPER can also be easily extended to detect breaches of
other cryptographic credentials that are widely used today, such as
HMAC-based / time-based one-time passwords (HOTP / TOTP) seeds.

• We demonstrate the detection effectiveness of CASPER systemically
against sophisticated attackers who tries to evade detection by leverag-
ing breaches from other already breached websites.
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• Through a prototype implementation of CASPER, we confirm that CASPER
introduces negligible performance and storage overhead for all parties
involved and demonstrate that deploying CASPER requires minimal
modifications to PMS and RPs.

5.2 Related Work

The foregoing discussion in Section 2.2 echoes the challenge we are facing
today to secure users’ passkeys against breaches, revolving around many
moving parts. These include, but are not limited to, the security of users’
PMS accounts, the resistance of user secrets (for key derivation or escrow)
to offline cracking, the correctness of PMS implementations, and PMS’s
defenses against both remote and insider attackers. The failure of any
of these components could expose all of a user’s passkeys, leading to
users’ mistrust in the provider [21] and, more critically, large-scale account
takeovers across numerous RPs, which highlights the urgent need for an
effective framework to detect passkey breaches from PMS storage, which
we provide in this Chapter. Now we will discuss existing work related to
this Chapter.

Decoy-based credential breach detection. Existing decoy-based detection
systems for user-chosen passwords [110, 111, 112] allow websites to detect
the breaches of their own password storage. The idea is for the websites
to plant a fixed number of decoy passwords, known as honeywords, in
their password storage alongside the user-chosen password. If an attacker
breaches the website’s password storage and attempts to exploit the leaked
(hashed) passwords to access the user’s account at the website, entering a
honeyword will trigger a password breach detection.

Traditional honeyword systems [110, 112, 114] rely on the information
asymmetry between the defender (e.g., a website or RP) and the attacker
— they assume that the attacker cannot access the secrets stored by the web-
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site to distinguish between honeywords and the user-chosen passwords.
This information asymmetry inevitably requires additional assumptions
about what the website knows that the attacker does not in order to en-
able effective detection. For example, the information asymmetry may
arise from a honeychecker, which stores an identifier of the user-chosen
password that is known only to the website [110]. Alternatively, it may
originate from a pseudorandom number generator only accessible by the
website [112], or from the assumption that the attacker is unaware of the
deployment of a breach detection system facilitated by machine-dependent
password hashing [114].

Amnesia [111] is the first symmetric design that allows attackers to
learn the entire persistent state of a website and enables detection based
on probability distribution changes of some password “markings” that
can help distinguish between honeywords and the user-chosen one.

Existing honeyword systems mentioned above aim to detect unautho-
rized logins at a website or an RP — the same party where the password
breach occurs. In comparison, CASPER enables the detection of unautho-
rized login attempts that abuse breached passkeys at an RP when passkey
breaches occur at a different party — a PMS provider. For this reason, exist-
ing honeyword systems fall short of addressing the problem CASPER aims
to solve. To be practical, however, CASPER adopts a symmetric security
assumption similar to that of Amnesia and avoids relying on additional
security assumptions required by other traditional designs.

Credential keys / password backup storage leakage. Existing work
on preventing unauthorized access to users’ accounts due to breaches of
credential backup services can be roughly categorized into two camps.

The first line of work [115, 116] aims to prevent the leakage of users’
cryptographic keys by distributing them securely across multiple parties
on the cloud. In the context of synced passkeys, one might consider dis-
tributing users’ passkey storage across multiple PMS providers to mitigate
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the risk of breaches affecting one or a subset of them. However, this ap-
proach would pose a significant deployment burden, as it is against the
centralized nature of existing major PMS providers, e.g., Apple, Google,
and Microsoft, which manage users’ passkeys within their own ecosys-
tems and is incompatible with their current implementations for credential
synchronization and storage.

The second line of work[117, 118, 119] proposes honey password vaults
to make attackers difficult to perform efficient offline-cracking on leaked
password vaults / managers2. However, the insufficient rate-limiting defense
of most websites against online guessing [120, 121] and vulnerabilities in
current honey vault designs against sophisticated attacks [122, 119, 123,
124] have cast doubt on the overall efficacy of these proposals in recent
years.

In comparison, CASPER is a detection framework to enhance users’ ac-
count security by enabling RPs to detect the abuse of passkeys leaked from
PMS. Notably, CASPER is deployable and user-friendly, while remaining
effective even against highly sophisticated attackers.

5.3 Threat Model

In this section, we detail the participating parties and our threat model.

Participating parties. Following the convention of FIDO2, we refer to the
device that generates the private signing keys as the authenticator, and the
websites as relying parties (RP). We assume the authenticator supports
synced passkeys, meaning that it has the capability to synchronize the
private signing keys with a passkey management service (PMS) provider
who stores users’ passkeys on their cloud storage. The authenticator itself
could be dedicated hardware that is platform-independent (e.g., YubiKeys)

2Password vaults / managers are cloud backed up synced passwords of the user —
encrypted under a single master password.
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Figure 5.1: Overview of CASPER and threat model: CASPER allows a rely-
ing party to detect the abuse of a compromised passkey for unauthorized
account access when the attacker obtains the passkey from a breached
passkey storage of a passkey management service (PMS) provider and
also has access to a certain number of data breaches of other RPs.

or a virtual one that is platform-dependent (e.g., phones or laptops).
The users authenticate themselves locally to the authenticator (e.g., via
PINs, biometrics) and allow a client (e.g., browsers, mobile apps, etc.) to
complete account registration/authentication at a RP using passkeys.

Introducing caat. We consider a credential backup abuse attacker (caat)
who has access to the data (and associated metadata, if any) stored at the
PMS provider. The goal of caat is to undetectedly take over user accounts
at RPs where CASPER is deployed. We follow the threat model of FIDO2
authentication [125] and assume that the user and her devices (e.g., the
authenticator and client involved) are trusted. We also assume that RPs
are trusted for honestly detecting attacks by caat and have employed
other state-of-the-art defenses such as protection against denial-of-service
attempts during account registration and login. All communication chan-
nels are assumed to be secure and authenticated using a standard secure
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communication protocol (e.g., SSL/TLS [126]).

Making caat realistically stronger. Given the increasing number of data
breaches that websites are experiencing today, we also consider the case
where caat may have access to data breaches (e.g., obtained from black
market forums [127]) from breached websites where the target user has
accounts. We follow, to the best of our knowledge, the strongest threat
model [111] in the literature on credential breach detection (as discussed in
Section 5.2) where caat is given read access to the entire persistent storage
of a certain number of compromised websites, including all data used for
account login or registration and breach detection by CASPER. However,
like prior work on breach detection [110, 114, 112, 111], we do not allow
caat to actively compromise those breached websites, and we assume
the transient information that arrives in a login attempt is not stored by a
breached website and not available to caat. Note that the primary focus
of this chapter is to detect breaches of PMS storage, and we do not aim to
enable breached websites to detect PMS breaches, as we view those data
breaches as static information that can be leveraged by caat. However,
our framework can be extended to enable even passively breached RPs to
effectively detect PMS breaches by incorporating the probabilistic detection
method proposed in [111].

To summarize, as shown in Figure 5.1, we assume that caat has access
to users’ passkey backups at PMS, as well as to the persistent storage
of a certain number of passively breached websites. As we will show
in Section 5.6, CASPER can effectively detect a sophisticated attacker like
caat when it adopts its optimal strategy to take over user accounts at
unbreached RPs and to evade detection by CASPER.
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GenDetectSecrets (k):
W ← ∅
for i ∈ {1, 2, . . . , k+ 1}:

wi
$← {0, 1}κ \W

W ←W
⋃
{wi}

return W

SelectRealSecret (W,η):
L← HashSort(W)
i∗ ← (Hash(η) mod k+ 1) + 1
wi∗ ← L(i∗)

return wi∗

Figure 5.2: An instantiation example of GenDetectSecrets and
SelectRealSecret. Here HashSort sorts all elements in W by their
hash values seeded by η, i.e., Hash(wi ∥ η) for all wi ∈ W, and then
outputs these elements as an ordered list. Hash is a collision-resistant hash
function. Here i∗ indicates the index of the real detection secret.

5.4 Detection Secrets

CASPER relies on a set of detection secrets W = {w1,w2, . . . ,wk+1} where
one of these secrets is the real detection secret and its index is denoted by
i∗ ∈ {1, 2, . . . ,k+ 1} throughout the chapter. Following this notation, the
real detection secret is denoted by wi∗ ∈W, while the remaining k secrets
in W \ {wi∗} are referred to as decoy secrets.

Survivable user secret η. We use η to represent the information needed
to identify wi∗ from a given W. This η should not be shared with any PMS
providers or RPs, and we assume η to be survivable; that is, we assume
that η is always accessible by the user (even in the case of device loss or
failure). For example, η could be instantiated in practice by secrets that
can be easily recalled by the user (e.g., PINs) or retrievable from physical
objects or trusted parties (e.g., credit card verification codes, bank account
numbers), or biometrics. The options of instantiating η with a proper user
secret will be discussed further in Appendix C.5.

Decoy generation. How to generate good decoy credentials [128, 129, 130,
131, 132] has been more of an orthogonal line of research to our work. In
this chapter, we consider a pair of proceduresG = ⟨GenDetectSecrets, SelectRealSecret⟩
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Symbol Description

w / W detection secret / the set of detection secrets
v / V passkey verifier / the set of auth. verifiers
V ′ the set of active decoy passkey verifiers V ′ ⊆ V

s / s̃ passkey / encrypted passkey
u the recovery key used to encrypt s
wi∗/si∗/vi∗ the real detection secret / passkey / passkey verifier
z nonce used to encrypt s
k # of decoys, |W| = |V | = k+ 1
α fraction of active decoy passkey verifiers α =

|V′|
|V |−1

n # of breaches caat has observed
m # of relying parties (RPs) caat wants to login

sid unique identifier of the RP
aid / uid unique user account identifier at PMS / RP

Table 5.1: Notations used in this chapter.

where GenDetectSecrets is a randomized procedure for generating decoy
secret candidates and SelectRealSecret a deterministic detection secret se-
lection procedure. The procedure GenDetectSecrets produces a set W of
size k+ 1 when given an integer k. SelectRealSecret takes W and a user’s
survivable secret η as input, and outputs wi∗ ∈W so that wi∗ is the real
detection secret and other k are decoys. A simple instantiation example
of GenDetectSecrets and SelectRealSecret is shown in Figure 5.2. As such,
when the passkey backups are additionally encrypted under an encryption
key derived from wi∗ , the attacker who attempts to recover users’ passkeys
from stolen passkey backups, without knowing η, can only make guesses
on which in W is wi∗ . Such guesses may be undesired in other authen-
tication scenarios, but our framework, as we will show in later sections,
leverages such guesses to detect the compromise of users’ passkey storage
on the cloud.
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5.5 CASPER: A New Detection Framework

To enable a relying party (RP) to detect the abuse of users’ passkey leaked
from passkey management services (PMS) provider, CASPER introduces
a new passkey backup and restoration (BnR) protocol (Section 5.5) and a
compromise detection (CD) algorithm executed by the RP (Section 5.5).
For brevity, we refer to the attacker who has compromised users’ passkey
storage at breached PMS provider as caat. Section 5.5 provides a high-
level overview of CASPER and its design considerations. Table 5.1 presents
the key notations used throughout this chapter.

Design considerations and overview

Design considerations. Consider that a user (say Alice) uses a PMS
provider to backup and synchronize her passkeys for RP account logins. As
usual, Alice is responsible for certain operations already required by PMS
provider (e.g., account creation with PMS using a master password and
new authenticator setup using passcode) for passkey synchronization or
access across her existing devices / authenticators. CASPER is designed to
effectively detect malicious login attempts by caat using Alice’s passkeys
leaked from a PMS provider, while meeting the design requirements as
detailed below.

1 Easy to deploy. CASPER does not require PMS providers to modify
their protocol designs or implementations for passkey synchronization
and storage, and it requires only minimal changes on the RP side. Also,
CASPER is compatible with existing two-/multi-factor authentication or
risk-based authentication schemes and does not require any additional
(trusted) hardware for PMS providers or RPs. Please see Section 5.7 for
further discussion of the deployment considerations for CASPER.

2 User-friendly. To avoid introducing usability challenges, such as the
account recovery problem caused by requiring Alice to manage additional
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high-entropy keys, CASPER is designed to achieve high detection accuracy
while allowing Alice to manage only a low-entropy secret that is easy
to remember (e.g., a 2-digit numeric PIN) or retrieve (e.g., the last few
digits of Alice’s bank account number). Note that, after the initial PMS
and device setup, CASPER operates transparently in Alice’s view — she
can use online services provided by RPs and PMS providers without any
additional actions required by CASPER during account login or passkey
backup and synchronization. Furthermore, to avoid introducing new
usability challenges, CASPER does not rely on users to manage multiple
devices for new device setup. We will discuss CASPER’s usability in more
detail in Section 5.8, including ways to further enhance its user experience.

3 No security degradation. CASPER does not degrade users’ account
security in any way. In other words, Alice’s accounts must be at least as
secure as they would be without CASPER deployed. This also implies that,
when no PMS passkey breach has occurred, a denial-of-service attacker
must not be able to disrupt the availability of RPs’ services by abusing
CASPER to cause false breach detection.

CASPER overview. Behind the scenes, given Alice’s η, CASPER produces
a set of detection secretsW = {w1,w2, . . . ,wk+1}with one of them being the
real detection secret represented by wi∗ . Then CASPER encrypts Alice’s
passkey, denoted by s, with a key derived from wi∗ . If the encrypted
passkey is denoted by s̃, Alice backs up to provider the detection secret set
W together with s̃ instead of s. If a caat has access to (W, s̃) leaked from
PMS, they can attempt to decrypt s̃ and recover Alice’s passkey by guessing
which among W is wi∗ . In this case, the attacker may guess a wrong
detection secret, derive a wrong key to decrypt s̃, and subsequently obtain
a wrong passkey for unauthorized account login attempts. With detection
information registered at the RP beforehand, the RP would be able to verify
the authentication response with the corresponding decoy verification key,
which indicates a potential compromise of users’ encrypted passkeys s̃
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� Step 1. Provider account setup
1. W $← GenDetectSecrets(k) // Sec.5.4 discusses GenDetectSecrets
2. send (aid,W) to provider for backup

� Step 2. Authenticator setup
// If W not saved by the authenticator during step 1

3. download (aid,W) from provider
// Get η from user, Sec.5.4 discusses SelectRealSecret

4. wi∗ ← SelectRealSecret(W,η)
5. saves (aid,wi∗ ,W) to authenticator

� Step 3. Passkey registration
6. ⟨si∗ , vi∗⟩

$← KeyGen(1κ) // KeyGen as specified by FIDO2 standards
7. (s̃, z) $← ΠEncCred(wi∗ , si∗)
8. V ← ΠGenVerifierSet(W, s̃, z)
9. sample V ′ ⊆ V \ {vi∗ } uniformly randomly s. t. |V ′| = ⌈α · (|V |− 1)⌉

10. sends (uid,V ′,V) to RP and subsequently saved by RP on its credential database
11. sends (aid, uid, sid, s̃, z) to provider and backed up by provider for passkey restoration
� Step 4. Passkey restoration
12. si∗ ← ΠDecCred(wi∗ , s̃, z) // Get wi∗ from authenticator, s̃, z from provider
13. saves (uid, sid, si∗) for completing future login requests with sid

Figure 5.3: Passkey Backup and Restoration (BnR) protocol as described
in Section 5.5. Notations used are explained briefly in Figure 5.1 and the
building blocks in Figure 5.4.

leaked from PMS.
In this chapter, we introduce CASPER in the context of detecting FIDO2

passkeys leaked from PMS. However, the concept of CASPER can also be
applied to detect breaches of PMS that support other system-generated
authentication credentials, such as randomly generated passwords and
long-term seeds for HMAC / time-based one-time passwords (HOTP /
TOTP) widely used for 2FA today. For interested readers, we will ex-
plain in Appendix C.6 how CASPER can be extended for OTP as another
example of CASPER’s application.
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ΠEncCred(w, s):

z
$← {0, 1}κ

u← KDF (w, z)
s̃← u⊕ s
return (s̃, z)

ΠDecCred(w, s̃, z):
u← KDF (w, z)
s← u⊕ s̃
return s

ΠGenVerifierSet(W, s̃, z):
V ← ∅
for each wi ∈W :

ui ← KDF (wi, z)
si ← ui ⊕ s̃
vi ← VerifierGen (si)
V ← V

⋃
{vi}

return V

Figure 5.4: Building blocks introduced by CASPER and used by the BnR
protocol Figure 5.3. Notations used are explained briefly in Table 5.1.

Backup & restoration protocol

As shown in Figure 5.3, the passkey backup and restoration (BnR) protocol
includes the following four steps.

Step 1. Provider account setup. This initialization setup is invoked
only once when the user signs up for a new passkey management service
(PMS) account. In this step, alongside assigning a unique provider account
identifier denoted by aid, the authenticator generates a detection secret set
W of size k+ 1 by calling the GenDetectSecrets procedure described earlier
in Section 5.4. The authenticator then synchronizes (aid,W) to the PMS
provider for backup and saves a local copy optionally.

Step 2. Authenticator setup. Upon successful authentication, PMS typi-
cally requires an existing PMS user to set up a new passkey authenticator
to enable it for passkey synchronization via PMS. For CASPER, in addition
to the usual authenticator setup processes specified by PMS, the authenti-
cator also retrieves (aid,W) from PMS and prompts the user to provide η.
The authenticator executes SelectRealSecret(W,η), recovers the real detec-
tion secret wi∗ , and saves (aid,wi∗ ,W). Then the user can start using this
authenticator to register new RP accounts (see Step 3) or to log into RP
accounts with passkeys restored from PMS passkey backups (see Step 4).
Crucially for the security, wi∗ is kept private locally from any other parties
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including the PMS provider or RPs. The user secret η is never stored at
any participating parties.

Step 3. Passkey registration. When the user registers a new account
at a RP identified by sid, the authenticator first runs KeyGen to generate
a passkey pair (si∗ , vi∗) including the passkey si∗ and its corresponding
public verification key vi∗ . We can identify this newly registered account
by uid and implicitly follow the implementation of KeyGen as defined by
FIDO2 standard signature schemes (e.g., ECDSA [133]).

Next the authenticator calls two proceduresΠEncCred andΠGenVerifierSet (as
shown on the right side of Figure 5.3). ΠEncCred returns s̃ — an encrypted
version of the user’s passkey si∗ for later passkey synchronization and
backup via PMS. Given si∗ , ΠGenVerifierSet returns a set of verification keys
V , the RP for the compromise detection (CD) algorithm we will detail
in Section 5.5.

Under the hood to encrypt the si∗ as s̃, the ΠEncCred procedure first sam-
ples a nonce uniformly at random z and then invokes a key derivation func-
tion (KDF) with wi∗ and z as its input. KDF returns a recovery key ui∗ which
serves as the encryption key to encrypt si∗ in a “one-time pad” manner.
Considering what lies ahead for the CD protocol, however, CASPER needs
to ensure that the attacker gets an incorrect but well-formed valid passkey s
when running ΠDecCred with a decoy detection secret w ∈W \ {wi∗}. Thus
the authenticator should perform additional passkey validity tests. These
tests include for all w ∈ W \ {wi∗}, running ΠDecCred(w, s̃, z) to get s and
checking if s is a well-formed passkey. Otherwise, the authenticator should
repeat running KeyGen and ΠEncCred until all resulting s are well-formed
passkeys. This process is efficient because the probability of yielding a
well-formed (decoy) private key when s̃ is decrypted with an incorrect w
is overwhelmingly high (see Appendix C.4 for more details).

The ΠGenVerifierSet procedure takes (W, s̃, z) as input and generates k+ 1
verification keys with each corresponding to a detection secret wi ∈ W.
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To do this, for each wi ∈W, the authenticator invokes KDF(wi, z) to get
a recovery key ui and uses it to decrypt s̃ by running si ← ui ⊕ s̃. Then
the authenticator assembles the set of verification keys V ←

⋃k+1
i=1 {vi} by

deriving vi from si. Afterward, the authenticator marks a certain fraction
(denoted by α) of V \ {vi∗} uniformly at random as a new subset decoy
verification keys, denoted by V ′, and thus α = |V ′| /(|V |− 1). Both (V ′,V)
are sent to RP to complete passkey registration3, and these two sets are
used by RP to run the compromise detection algorithm in Section 5.5.

Looking ahead, we refer to V ′ as the set of active decoy verification keys
for the RP because, as we will show later in Figure 5.5, an authentication
response successfully verified by any of these active decoy verification keys
will trigger a detection alert. In contrast, other decoy verification keys in
V \ ({vi∗} ∪ V ′) are inactive and, together with the real verification key, vi∗ ,
will be viewed as valid verification keys since successful verification by
these verification keys will lead to successful logins.

Finally, after receiving the successful registration confirmation from
RP, the authenticator synchronizes (aid, uid, sid, s̃, z) to PMS. Now PMS
backs up the s̃ alongside the corresponding (uid, sid, z) for the user’s PMS
account identified by aid. Note that PMS now manages s̃ instead of si∗ .
As a result, after a PMS breach, a caat cannot accurately derive si∗ from s̃
without η.

Step 4. Passkey restoration. As usual, PMS allows the user to synchronize
their passkeys back to a registered authenticator. The registered authenti-
cator first retrieves from PMS a copy of the encrypted passkey s̃ alongside
(uid, sid, z). It then executes the procedure ΠDecCred(wi∗ , s̃, z) to retrieve s
from s̃. This procedure, as shown on the right side of Figure 5.3, decrypts
s̃ with the recovery key ui∗ to obtain si∗ . Finally, the user’s authenticator

3Here, the authenticator sendsV ′ together withV for better clarity. In practice, instead
of the entire V ′, it suffices for the authenticator to send the RP only a set of identifiers or
indices indicating which verification keys among V are in V ′, which can slightly lower
the communication and storage costs.
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saves (uid, sid, si∗) so the user can use the restored passkey si∗ to log into
their account with the identifier uid at RP identified by sid. For correctness,
given a (s̃, z) pair, observe that ∃i ∈ [k+1] s.t. wi = wi∗ , and thus ui = ui∗ .
Then we have si = si∗ since si = ui ⊕ s̃ = ui∗ ⊕ si∗ ⊕ ui∗ = si∗ .

An alternative design. Instead of backing up a single encrypted passkey s̃
in Step 3, CASPER could alternatively derive and back up all k+1 passkeys,
i.e., s1, . . . , sk+1, to PMS. This alternative design could provide the same
level of detection effectiveness but would introduce two deployment lim-
itations: (i) PMS storage and communication overhead would increase
from O(1) to O(k) for each user account; (ii) it would become incompatible
with existing PMS designs as existing PMS synchronization and storage
implementations are designed to handle one passkey for one credential
registration at RPs. We therefore take a different approach by drawing
inspiration from honey encryption [134]: instead of directly backing up
all possible decoy plaintexts (i.e., passkeys si), our design ensures that
decrypting the backed up ciphertext (e.g., the encrypted passkey s̃) with
incorrect decryption keys yields those decoys. This approach optimizes
PMS compatibility while minimizing PMS communication and storage
overhead.

Compromise detection algorithm

The passkey compromise detection (CD) algorithm (Figure 5.5) is run by
the relying party (RP) upon each login request it receives. It allows the
RP to leverage the set of active decoy verification keys to detect the caat’s
account login attempts with corresponding decoy passkeys (see Step 3 in
the BnR protocol for producing active decoy verification keys). Next, we
describe in detail how the detection is performed for FIDO2.

In FIDO2 (as shown in Figure 5.5), when the RP receives a login re-
quest with an account identifier uid, it produces a random challenge and
sends it together with other information specified by the WebAuthn pro-
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• For a login request for an account uid, the RP checks if uid exists
and then returns a challenge to the user.

• Let v, rsp, and γ denote the public verification key, the response
produced by the user’s authenticator, and the signature generated
with the user’s passkey, respectively. Upon receiving (v, rsp,γ)
from the user, the RP performs the following tests and actions:

◦ retrieves (V ,V ′) corresponding to uid
◦ if Verify (v, rsp,γ) = false OR v /∈ V , RP rejects this login

request.
◦ else if v ∈ V ′, RP raises a detection alarm.
◦ else RP accepts this login request.

Figure 5.5: The Compromise Detection (CD) algorithm of CASPER used
by the RP to detect passkey compromise.

tocol [15]. Upon receiving the challenge, the authenticator produces an
authentication response rsp and generates a signature γ using the private
signing key s by running γ ← Sign(s, rsp) on the authenticator4. Finally,
the user device sends (v, rsp,γ) as a response back to the RP for login.

Once the RP receives the response (v, rsp,γ), it will perform a set mem-
bership test for v

?
∈ V and also run Verify(v, rsp,γ) to check if the received

γ is a valid signature of rsp under the verification key v. If either of these
two tests outputs false, this login attempt fails. If both tests output true,
the RP can further check whether v is in the active verification key set V ′

to determine whether the current login attempt triggers a passkey breach
detection or results in a successful login.

4The definitions and implementations of Verify and Sign adhere to the FIDO2 stan-
dards, which we omit here for simplicity.
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Figure 5.6: Minimum expected true detection probabilities as a function
of α with varying m and n, where k̄ = 32. Here α is the fraction of
active decoy verifiers V ′ present in V (i.e. α← |V ′|

|V |−1), n is the number of
breached websites caat observes, m is the number of websites caat wants
to compromise.

5.6 Detection Effectiveness

In this section, we show the detection effectiveness of CASPER. First, we
show that CASPER does not make it any easier for a caat to distinguish the
real detection secret from the decoys (Section 5.6). We then estimate true
detection probabilities and the overall security benefits CASPER provides
through probabilistic model checking (Section 5.6), followed by a false
detection analysis (Section 5.6).
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Flatness preservation

Following the informal definition of flatness by related work on decoy
passwords [128, Sec. 2.1], [132, Sec. 3.1], here we informally define flatness
as the probability that the caat outputs the real detection secret wi∗ as
its guess on the first try given the set of detection secrets W and denote it
by flt(W,wi∗). We also say W to be perfectly flat if flt(W,wi∗) =

1
|W|

(or
equivalently, 1

k+1). Recall that in Section 5.4, we specified that CASPER
relies on G = ⟨GenDetectSecrets, SelectRealSecret⟩ that given (η,k) outputs
wi∗ and W of size k+ 1. We show that CASPER provides a critical security
property, flatness preservation. We formally define and prove this property
in Appendix C.3.

The flatness preservation property of CASPER ensures that given mul-
tiple (s̃, z) pairs from the PMS credential backup compromise for the same
user, the caat does no better in identifying the real detection secrets, wi∗ ,
fromW with the knowledge of multiple (s̃, z) pairs than without. Briefly, to
show this, as further explained in Appendix C.3, we consider a simulator
without multiple (s̃, z) pairs but can by itself generate multiple simulated
(s̃′, z′) pairs by choosing all s̃′ and z′ uniformly at random from {0, 1}κ.
Since simulated (s̃′, z′) pairs are indistinguishable from (s̃, z), there is no
useful information in (s̃, z) about which among W is wi∗ for the caat to
improve its guessing on wi∗ .

True detection and efficacy of CASPER

We provide a comprehensive perspective by estimating both true detection
probabilities (TDP) and the overall security efficacy of CASPER. The former
provides a simple yet clear picture of how likely CASPER can detect the
attack by the caat if the attack occurs. However, TDP alone falls short of
capturing the security efficacy provided by CASPER to users’ account
security completely in a more realistic setting where the caat’s attack
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Figure 5.7: Minimum true detection probabilities as a function of k̄with
varying m, n, and α.

strategy has already been influenced by the deployment of CASPER; it
may decide to attack later or stop attacking early. For example, to avoid
detection by CASPER, a cautious caat may postpone the attacks until a later
time to obtain more information about the user. However, PMS may have
already discovered its credential backup compromise and asked the user to
reset their credentials prior to the caat starting such a deliberately delayed
attack. In this case, the deployment of CASPER would already add efficacy
to the user’s account security. To capture this nuanced scenario besides
TDP, we measure the efficacy of CASPER by measuring how comparatively
well CASPER can reduce the caat’s ability to consistently take over user
accounts unnoticeably with compromised credentials leaked from PMS.

Modeling detection secrets. Recall that η is the survivable user secret
that determines which among W is wi∗ . The level of flatness provided
by (W,wi∗) and measured by flt(W,wi∗) is in fact difficult to estimate
since we do not know (1) the probability distribution of η or (2) how
well the caat’s strategy together with its knowledge about η can improve
its guessing results. Therefore, to have a better generality for our true



113

detection and efficacy analysis, we follow the similar formal treatments
of password guessing from prior work (e.g., [135]). Specifically, instead
of providing the caat with the original detection secret set output by G

with flatness flt(W,wi∗), we give an equivalent detection secret set W̄ of
size k̄that is perfectly flat and provides approximately the same flatness
as flt(W,wi∗). This implies the caat can do no better in guessing the real
detection secret in W̄ with probability 1

k̄+1 , where k̄ = ⌊ 1
flt(W,wi∗)

− 1⌋, i.e.,
the largest integer k̄such that 1

k̄+1 ⩽ flt(W,wi∗).
This abstraction helps us to model the caat’s ability to guess the real

detection secret in our analysis as a function of k̄, avoiding additional (and
possibly inaccurate) assumptions on the caat’s knowledge about η and its
strategies, as well as making our analysis applicable for different types of
probability distributions and flatness that η as instantiated in practice may
have. To see this consider the case when η that is generated uniformly at
random, e.g., a random (numerical) PIN with x digits where 10x > k+ 1,
then (W,wi∗), produced by G given k and η here, provides perfect flatness,
i.e., flt(W,wi∗) = 1

k+1 and so k̄ = k. However, when η is a user-chosen
password or PIN, the min-entropy [136] of these secrets must be at least
log2

(
k̄+ 1

)
bits for a given k̄. For example, for k̄ = 32, if instantiated

with a random (numerical) PIN, η should include at least 2 digits such
that 102 > 32 + 1; whereas if η is a user-chosen PIN, the min-entropy of η
should be at least log2 (32 + 1) ≈ 5 bits.

Following Section 5.3, we allow the caat to learn from PMS the detec-
tion secret setW sent to PMS during PMS account setup together with (s̃, z)
pairs sent during the RP account registration step by the authenticator.
Additionally, the caat observes breaches from n other already compromised
RPs. These breaches include both the verification key set V and the active
decoy verification key set V ′ from each n compromised RPs. Considering
that, given a (s̃, z) pair, for each v ∈ V , there exists a w ∈W such that v can
verify the authentication response produced by its corresponding s, which
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is recoverable by ΠDecCred(w, s̃, z), the caat can rule out exactly |V ′| decoy
detection secrets in W by observing V ′ from the first breach snapshot and
rule out ⩽ |V ′| for each of the rest of the n − 1 breach snapshots due to
that overlapping may exist. Here we use W̄(n) to denote the subset of
detection secrets corresponding to verification keys that always fall into
V \ V ′ across these n breaches.

The goal of the caat is to compromise the user’s accounts at a specified
number of unbreached RP (denoted by m). Note that the probability of the
caat triggering a true alarm when compromising a user’s account at an
unbreached RP is the probability of the event that the caat picks a detection
secret from W̄(n), uses it together with s̃ to derive a (decoy) passkey s,
and produces an authentication response verifiable by an active decoy
verification key v ∈ V ′ at the unbreached RP (see Figure 5.5).

True detection probability. To capture the caat’s best strategy for mini-
mizing the true detection probability (TDP) while achieving its goal, we
model the caat as a Markov decision process (MDP). Conceptually an
MDP consists of a set of states and potential transitions between them.
When the MDP is in a specific state, it can select one of several available
actions, which leads to a specific probability distribution over the possible
next states. The MDP attacker enters the final state when it triggers a
breach alarm raised by CASPER while attempting to compromise the users’
accounts at least one of the m unbreached RPs. In our experiments, without
loss of generality, we consider that the caat is targeting one user with a
web account at each of the m unbreached and n breached RP with CASPER
deployed. Specifically, using the PRISM model checker [137], we construct
an MDP to model a caat who does the following:

• The caat randomly selects a detection secret w from W̄(n), derives a
passkey through ΠDecCred(w, s̃, z) and attempts to authenticate at the first
RP.

• If the selected detection secret w corresponds to a verification key v ∈ V ′
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at the current RP, the caat enters the “detection” state and the experi-
ment is over. Otherwise, this RP is considered compromised without
detection. If m > 1, the caat can choose to either 1) reuse the same
detection secret used in the last attack or 2) randomly select a different
detection secret w′, i.e., w′ $← W̄(n) \ {w}, and then attack the next RP.

• The caat repeats the above attacks until it either 1) moves to the final
“detection” state and triggers an alarm or 2) completes attacking and
compromising all m RPs without detection.

The experiment outputs the minimum probability of the best-strategy
caat entering the final state over all possible action paths, as reported in
Figure 5.6 and Figure 5.7.

Results of tdp experiments. Figure 5.6a-5.6d correspond to four different
n ∈ {0, 1, 2, 3} respectively for a fixed k̄ = 32. When n = 0 (Figure 5.6a), a
larger α results in a higher probability of the caat triggering a detection
alarm because it is more likely that the verification key corresponding
to the selected detection secret falls into V ′. Also, attacking more RPs
exposes the caat to greater risks in triggering a detection alarm more than
one RPs. However, as n is increased to 1, 2, or 3 as shown in Figure 5.6b,
Figure 5.6c, and Figure 5.6d respectively, the detection probabilities for a
relatively high α, e.g., 0.9, drop significantly but remain almost unaffected
for a relatively low α, 0.1. This is because a higher α leads to a smaller∣∣W̄(n)

∣∣ given a fixed n, and, as a result, increases the possibility of the caat
selecting the real detection secret at the very first attack.

Figure 5.7 shows the minimum true detection probabilities as a func-
tion of k̄for a given fixed α and the number of RPs n where the caat has
observed breaches. One interesting observation here is that when k̄reaches
a certain level, e.g., 32, increasing k̄further can hardly give a significant
boost in the minimum probability. We believe this observation provides
an informative insight for determining a proper k̄that provides a good bal-
ance between CASPER’s detection accuracy and performance—additional
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detection power provided by an unnecessarily larger k̄would be limited,
but it would negatively affect the overall performance and storage costs of
CASPER (see Section 5.7).

Estimating security efficacy. We implement another model-checking
experiment to investigate the efficacy of CASPER when the caat decides
to wait for τ time intervals before starting the attack or stop attacking
early after successfully taking over m′ (⩽ m) accounts to minimize de-
tection probability. Specifically, once the caat have access to a user’s
compromised credential backups from PMS, the caat decides whether to
attack immediately (i.e., τ = 0) risking detection with a higher probability
(see Figure 5.6, particularly Figure 5.6a) or wait τ time intervals, hoping
to observe more RP breaches to lower the detection probability. In that
latter case, however, the caat has to accept the risk that, over time, the PMS
provider will discover the compromise of the user’s credential backup
itself and notify the user. We also consider that the caat may choose to
stop the attack early after successfully taking over m′ (⩽ m) accounts if
the caat “believes” compromising accounts at more RPs will lead to a
high detection probability.

To understand CASPER’s detection efficacy under this realistic scenario,
we allow the caat to have access to snapshots of a certain number of
compromised RPs’ persistent storage, which are breached at a Poisson
arrival rate with mean λ per time interval. We use a random variable
TPMS to represent the time interval soon after which the PMS (provider)
identifies by itself the compromise of the user’s credential backup without
CASPER. We define another random variable T ′

PMS, that is, the time interval
soon after which the PMS (provider), if it has failed to detect its breach
for the first τ interval, identifies the compromise of the user’s credential
backup by either itself or CASPER.

Given the public knowledge of λ and TPMS, we build an MDP attacker
similar to the one specified in Section 5.6 but with two additional options
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for the caat.

• The caat can either choose to immediately start attacking at τ = 0 by
attempting to log into each RP (one at a time for simplicity) or to wait
for τ > 0 time intervals before starting the attack. At the end of the τ-th
interval, if PMS has not identified the compromise by itself in the first τ
intervals, the caat can start its attack with persistent storage snapshots
of RPs that are breached at a Poisson arrival rate with mean λ.

• After successfully taking over a certain number of accounts, the caat
can choose to continue to attack the next or stop its attack early. In the
former case, if it triggers detection by CASPER when attacking the next,
the experiment ends immediately with T ′

PMS = TPMS. In the latter case,
the number of taken-over accounts is fixed, denoted by m′ (⩽ m) and
we assume that the caat can persistently access m′ taken-over accounts
until T ′

PMS when the PMS detects the compromise by itself.

We measure the security efficacy of CASPER by observing how CASPER
reduces the expected overall takeover duration of the user’s RP accounts
and define it as follows.

eff =
E (TPMS ×m) − E ((T ′

PMS − τ)×m′)

E (TPMS ×m)
(5.1)

Here E (TPMS ×m) is the expected overall takeover duration of the
user’s m RP accounts until when PMS discovers the credential compro-
mise without CASPER. E ((T ′

PMS − τ)×m′) represents the expected overall
takeover duration of m′ (⩽ m) accounts that are taken over by the caat
with the deployment of CASPER. The MDP attacker’s goal is to minimize
eff (and maximize E ((T ′

PMS − τ)×m′)) by adopting the best available
strategies.

In our experiment, for a reasonable realistic estimate, we see each time
interval as one month. Thus assuming a nine-month average compromise
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discovery delay as reported in [138], we set TPMS following a normal
distribution with mean µ = 9 with a varying standard deviation σ. To
interpret that the caat can observe one additional RP breach snapshot
after waiting for every 2 and 4 additional months, we set λ = 0.5 and
λ = 0.125, respectively.

Results of efficacy experiments. To understand the efficacy of CASPER,
we explore the effects on eff from (5.1) under different parameterization
settings of (λ, k̄,σ) as reported in Figure 5.8. Figure 5.8a represents the
baseline setting where λ = 0.5, k̄ = 32, and σ = 2. We modify λ, k̄, and σ

respectively in Figure 5.8b, Figure 5.8c, and Figure 5.8d from the baseline
setting to observe the improvement in efficacy.

We observe a boost in the minimum eff when λ is decreased from 0.5
(5.8a) to 0.125 (5.8b) and k̄increased from 32 (5.8a) to 128 (5.8c) as shown
in Figure 5.8b and Figure 5.8c respectively for α ∈ [0.6, 0.9]. The main
reason behind these boosts is that lower λ (and thus smaller n) or higher
k̄increase the probability of the caat triggering detection by CASPER,
particularly for a relatively large α (see Figure 5.6 and Figure 5.7). So
the caat chooses either to bear such an increased risk or to attack later,
hoping to observe more breached RPs. This results in shorter account
takeover duration and is reflected by the boost of the minimum eff. The
effect of modifying σ on the minimum eff is slightly less pronounced as
shown in Figure 5.8a (σ = 2) and Figure 5.8d (σ = 1) respectively. This is
because a smaller σ results in a more tightly centered normal distribution
— a stronger detection power of the PMS provider.

One interesting observation is that m does not affect the results for a
relatively large α, e.g., when α > 0.6 in Figure 5.8a and Figure 5.8d, and
α > 0.8 in Figure 5.8c. This is because larger α motivate the best-strategy
caat to adapt its strategy to increase τ, that is, to wait longer (i.e., with a
larger τ) for more breached RP snapshots for a more accurate guess on
the real detection secret. With it, the caat can derive real authentication
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credentials and log into all m(= m′) RP accounts without being detected
by CASPER. This, however, shortens the overall account takeover duration
from E (TPMS ×m) to E ((T ′

PMS − τ)×m). As such, eff from (5.1) can be
simplified to E(TPMS)−E(T ′

PMS−τ)
E(TPMS)

. The elimination of m in this simplified
expression explains why m has no effects on eff for these cases.

False detection by a false-alarm attacker

CASPER may raise false alarms if a false-alarm attacker (also known as a
denial-of-service attacker in literature, e.g., [110]), without compromising
the PMS provider (and thus without knowledge of s̃), successfully derives
a passkey s that corresponds to an active decoy verification key, that is,
v ∈ V ′. However, without knowledge of s̃, a guess by a false-alarm attacker
can hit one of the active decoy verification keys with a probability no
greater than αk/2κ which is negligible in terms of the credential length κ.
For example, for 256-bit private signing keys with k set to 32 and α set to
0.6, the probability of the false-alarm attacker guessing one decoy key that
can trigger a false alarm is no greater than 0.6× 32/2256 < 2−251 which is
negligibly small.

5.7 Experimental Evaluation

Implementation details. We developed a prototype implementation of
CASPER [113] in Go language using the open source library virtualwebauthn [139]
— which itself is built on top of another WebAuthn library [140]. We first
implemented the three building blocks ΠEncCred, ΠDecCred, ΠGenVerifierSet re-
quired during the four steps of the BnR protocol as shown in Figure 5.3.
The key derivation function (KDF) used by these three blocks is instanti-
ated using the Password-Based Key Derivation Function (PBKDF2) with
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Figure 5.8: eff as a function of α with varying m. Subfigures (5.8b), (5.8c),
and (5.8d) show the effects of strengthening security by on parameter, i.e.,
λ, k̄, and σ respectively, from the baseline (5.8a) where λ = 0.5, k̄=32, and
σ = 2.

SHA-256 and 600,000 iterations. For all cryptographic operations, we select
the elliptic curve group secp256k1 and set κ = 128.

To demonstrate the implementation feasibility of CASPER, we instanti-
ated the user secret η with 2-digit system-generated PINs for complete-
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ness and set k = 32 and α = 0.6. We perceive this as a reasonable set-
ting based on our detection analysis presented in Section 5.6, it will have
a minimum true detection rate of 0.92 (for m = n = 1) and 0.83 (for
m = n = 3) as observed from Figure 5.6. The virtual authenticator marks
⌊α · k⌋ = ⌊0.6 · 32⌋ = 19 of the 32 decoy verification keys as active and
sends to the RP all 32 + 1 verification keys including all decoys and the
real, as well as 19 indices indicating which are active decoys.

We implemented the RP and PMS on two separate server nodes also
written in Go language. The RP node allows a WebAuthn-supported user
account registration and a login end point for the virtual client. For sim-
plicity, instead of using existing APIs PMS from providers such as Apple,
Google, or Microsoft, we emulated the same for our PMS node that ex-
posed standard APIs for passkey sync and restoration support. These APIs
were then consumed by our virtual authenticator and client. The current
prototype implementation did not use TLS to secure the communication
channel of the virtual client and authenticator with PMS and RP but is
strongly recommended when CASPER is deployed in practice.

Measuring performance overhead. For latency and performance com-
parisons, we run the PMS (t2.medium) and the RP (t2.micro) on two
different AWS EC2 instances running on Ubuntu 20.04 LTS and located
in two different regions — US-East and US-West respectively. We run the
virtual authenticator and the client on commodity hardware (MacBook
Pro M2 with 16 GB of memory). Finally, we registered 10 user accounts at
the RP and attempted 25 login attempts on each of the accounts and mea-
sured the time delay during account registration and login as experienced
by users for CASPER.

When k = 32, and α = 0.6, our evaluation shows that CASPER intro-
duced an additional delay of 325 (± 29) ms to account registration. The
majority of the computation time during account registration is taken
by the KDF used by ΠEncCred, ΠDecCred, ΠGenVerifierSet procedures of around
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224 (± 3) ms. Increasing (k,α) would increase the number of invocations
of KDF, and thus result in higher delays in user registration and authenti-
cator setup time (step 1 and 2). However, we remark that user registration
is an infrequent operation, and will not affect user experience significantly.
Importantly, the compromise detection algorithm, specifically the addi-
tional membership tests required by CASPER in the algorithm, adds only
an average delay of 36 (± 8) ms to users’ daily login time, which we argue
would be hardly noticeable by users.

Benchmarking storage overhead. CASPER adds only minimal storage
costs to participating parties. The PMS additionally stores a random value
z for each credential entry and a detection secret set W for each user. Each
authenticator also needs to store the real detection secret wi∗ and a set of
detection secrets W. An RP needs to store V and V ′ for each user account,
assuming that there is only one valid credential per account. If z, w, and
v are of size 256 bits, and k = 32, as a rough estimate for 1 million users
with each having 200 RP accounts, the deployment of CASPER would cost
the PMS approximately 13.86 Gigabytes and each RP no more than 2.08
Gigabytes in storage only.

5.8 Discussion

We design CASPER to enable RPs to detect attackers’ attempts to log
into users’ accounts using passkeys stolen from a PMS. In Section 5.6,
we demonstrate the detection effectiveness of CASPER. In this section, we
discuss the usability and deployment considerations of CASPER.

Usability analysis

We propose CASPER as a general detection framework, with the user secret
η serving as a flexible component. The usability of CASPER depends on
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that of η. Specifically, from an end-user’s perspective, CASPER may involve
user participation in two operations:5 (1) registration of η during setup of
the first authenticator following PMS account creation, and (2) providing
the same η to a new authenticator during authenticator setup for retrieving
passkeys from the PMS.

The user secret η can be a memorized secret selected by the user or
assigned by the system, or derived from biometrics or other (long-term)
secrets (e.g., bank account numbers or device unlock PINs) of the user.
Here we present a brief usability analysis for the case where η is instanti-
ated with 2-digit system-generated PINs 6 to identify the usability caveats
and potential mitigation for this instantiation.

PIN-based CASPER: a usability case study. Since CASPER is mostly
invisible to users in their daily lives, we focus solely on the following user
tasks required by this “PIN-based CASPER”: (1) PIN registration: During
setting up the first device after creating an account with the PMS, CASPER
generates a 2-digit random PIN and displays it to the user, instructing
them to memorize or note it down. The user is then required to confirm
receipt by entering the PIN twice. The last step is repeated if either entry
fails to match the PIN displayed. (2) PIN management: The user needs
to memorize or note down the 2-digit PIN and recall or retrieve it when
needed. (3) PIN entry: Later, for each subsequent authenticator device
setup, the interface will prompt the user to enter the 2-digit PIN twice.

For PIN-based CASPER, the key usability issue is difficulty in memo-
rizing or noting down the PIN, and recalling or retrieving the PIN when
setting up subsequent devices / authenticators. This challenge is not par-
ticular to CASPER— similar usability challenges also arise in everyday

5As we will detail later, certain design options can eliminate the need for user involve-
ment in one or both of the operations. However, for the sake of examining CASPER’s
usability, we conservatively aim to list all possible user involvement here.

6A 2-digit system-generated PIN has approximately log2(100) ≈ 6.64 bits of entropy,
whereas η with around 5 bits already provides compelling detection accuracy according
to our analysis in Section 5.6.
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scenarios where such secrets are commonly used for device unlocking
or end-to-end encryption in most cloud-based credential management
systems [30]. In these cases, users must effectively manage their PINs
to avoid being locked out of devices or losing access to their credential
backups. We argue that with PIN-based CASPER, the likelihood of such
events is lower, as prior user studies have shown that 2-digit PINs are
relatively easier for users to manage [141]. Other usability issues such
as PIN input errors during device setup could be avoided by leveraging
existing typo-reducing techniques, e.g., [142] or by requesting repetitive
PIN entry and confirmation.

While system-generated PINs offer quantifiable security and involve
lower deployment complexity, other options to instantiate η, e.g., based
on biometrics, can relieve users of memory burdens and address most of
the usability issues identified above. For further discussion on alternative
options to instantiate η, see Appendix C.5.

Future user studies. To thoroughly evaluate CASPER’s usability — in-
cluding user adoption, perceptions, ease of use, and action accuracy —
comprehensive user studies tailored to specific η instantiations and UI de-
signs are necessary prior to deployment. This chapter does not include
such studies, leaving them as future work to better understand CASPER’s
real-world usability.

Enhancing CASPER’s usability

Here we provide suggestions and recommendations to enhance CASPER’s
overall usability, such as by setting up accurate user perceptions of CASPER,
and reducing or eliminating users’ efforts additionally required by CASPER.

User perceptions of CASPER. We believe CASPER is appealing to users
who: 1) wish to use PMS, 2) have concerns about the security of their PMS
passkey storage, as highlighted in a recent user study [21], and 3) prefer
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not to adopt less user-friendly mitigations for account security that affects
daily login routines (e.g., 2FA / MFA). However, establishing an accurate
perception and mental model is a necessary step towards a usable CASPER.
To do so, the user interface of CASPER should first clearly detail its goal —
to improve users’ account security by detecting abuse of passkeys leaked
from PMS providers. Second, the interface should clarify that CASPER
aims to provide “an additional detection layer” without disrupting users’
daily account login routines.

Reducing users’ efforts. After η registration, CASPER only requires ad-
ditional user efforts for η input during authenticator setup, and such
instances will be rare. Assuming users set up a new device as often as
they replace smartphones (approximately every 40 months [143]), a user
would enter η only 32 times over 106 years.

Users’ efforts could be even further minimized for the majority of
cases when users have at least one registered authenticator available when
setting up a new one — for example, when setting up a new smartphone
while a previously registered smartphone, tablet, or laptop is available. In
such cases, secure device-to-device communication (e.g., similar to Apple’s
AirDrop) can be used between a new authenticator and a registered one
to synchronize wi∗ derived from η, eliminating the need for users to input
η.

Making CASPER user-invisible. When usability requirements dictate
that no additional user tasks should be performed, one may consider
extracting η from existing secrets that users already have and use daily,
e.g., from PINs / passwords, pattern locks, or biometrics locally for device
unlock. In this scenario, it is possible to hide CASPER entirely from users
to improve CASPER’s usability. However, we caution readers that such a
design could introduce additional security implications, particularly if the
entropy source is a user-chosen secret without sufficient entropy, which
could render CASPER less effective.
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Deployment considerations

Deployment requirements. CASPER is by design well-suited for real-
world deployment because it is compatible with PMS providers’ existing
credential synchronization and storage implementations and requires
only minimal changes on RPs’ side. Implementation-wise, CASPER only
requires PMS to additionally store the constant size detection secret set
W. For RPs, CASPER requires them to store public verification keys (i.e.,
V ′ and V) as specified in the BnR protocol shown in Figure 5.3 and to
implement the simple detection algorithm prescribed in Figure 5.5.

However, a potential deployment challenge may arise from the need
to modify authenticators to support the BnR protocol and its underlying
algorithms. Therefore, to promote the deployment of CASPER, authenti-
cator compatibility would need to be provided by vendors and supported
by standardization bodies such as the FIDO Alliance.

Again, instead of a specific instantiation and implementation, we pro-
pose CASPER as a general framework to detect centralized PMS. Beyond
direct deployment, we hope that our work will inspire future efforts to
explore instantiations of CASPER— exploring options such as η instantia-
tions and input methods and alternative methods for generating decoy
credentials. These choices should be closely aligned with the real-world
requirements for security, usability, and deployment. Moreover, as crypto-
graphic credentials like passkeys and HOTP / TOTP seeds as well as their
backup and recovery become increasingly important, we hope our work
encourages further research on breach detection for credential backup
systems with the goal of improving users’ account security.

Risk-based authentication and CASPER. To improve account security,
one might seek to compare Risk-Based Authentication (RBA) [144, 145,
146] with CASPER to guide deployment decisions. To help with this pro-
cess, we provide a detailed comparison of RBA and CASPER to highlight
their differences and complementary characteristics.
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RBA aims to detect likely unauthorized login attempts by profiling
login behaviors and identifying malicious behaviors, without requiring
users to manage additional secrets. In contrast, given only a low-entropy
η, CASPER provides RPs with a reliable signal indicating whether a user’s
passkey may have been leaked from PMS. This signal offers deeper insight
into the cause of the unauthorized account access and allows RP to make
more informed decisions, such as requesting users to reset their passkeys
to protect their accounts from risks resulting from breaches of PMS. In con-
trast, RBA aims to flag unauthorized login attempts based on users’ login
patterns to help RPs to decide if further authentication is needed [145].

RBA relies on login information, e.g., IP addresses, user-agent strings,
and user login patterns, which is independent of the deployed authentica-
tion schemes. This makes RBA compatible with a wide range of authenti-
cation schemes, although it is mainly deployed to complement password-
based authentication today. CASPER, on the other hand, is a detection
framework specifically designed to identify PMS breaches that leak syn-
chronized cryptographic credentials like passkeys and HOTP / TOTP
seeds.

In terms of security assumptions, the effectiveness of RBA depends
on whether the login information used to identify unauthorized login
attempts could be stolen and spoofed. However, existing RBA mostly re-
lies on non-private login information like geolocations and user-agent
strings [144], which can be easily obtained and spoofed by a sophis-
ticated attacker to effectively reduce RBA’s accuracy [74]. In contrast,
CASPER remains effective against the same sophisticated attacker. As
shown in Section 5.6, CASPER achieves high detection accuracy even when
the attacker is allowed to breach multiple RPs to gather information for
attacking other RPs.

Social engineering attacks against CASPER. Attackers could use social
engineering techniques like phishing [147, 148] or pretexting [148] to steal



128

the user secret η. User secrets required by existing PMS such as iCloud and
Google backup are also susceptible to similar social engineering attacks.
We note that the leak of a user’s η only renders the detection ineffective
— as if CASPER had never been enabled for this user — but would not
degrade the security of their passkeys or RP accounts.

Detection notifications. RP may choose to notify the victim user of the
potential compromise of their passkeys from the provider. We discuss
two ways the RP could notify the victim user: actively or passively. For
active notification, RP can promptly send detection notifications to users
via established communication channels (e.g., email, app notifications,
SMS). When all communication channels between the user and the RP
are unavailable, the RP could also resort to a passive notification such as
notifying the user on its webpage or application when they log into their
account next time. With such notification, the user can decide to reset their
passkeys, better secure their provider account, or even consider switching
to a different provider.7

Handling spoofed detection alerts. In this chapter, we make no effort to
address the possibility that participating RPs might withhold detection
alerts from users when detection happens, given that these RPs could
equally well do so by simply not participating. However, we have to take
into consideration that participating RPs may attempt to send spoofed
detection notifications to users when detection does not happen (e.g., just
to wrong an unbreached PMS provider). CASPER can provide a strong
guarantee for identifying such spoofed notifications by additionally requir-
ing the RP to return to the user the authentication response (v ′, rsp ′,γ ′)

that triggers the breach alert as a “proof of detection”.

7We note that recovering from such an identified compromise, as required by other
account recovery needs as they exist today [149], requires users to register at the RP
for a secure secondary authentication method (or sometimes termed backup/fallback
authentication) in advance to ensure the user’s legitimacy for resetting credentials.
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Specifically, for the FIDO2 case, the user (device), after receiving
(v ′, rsp ′,γ ′) as the proof of detection, first performs Verify(v ′, rsp ′,γ ′) to
check that the detection proof is well-formed. Given that γ ′ is a valid
signature of rsp ′ under v ′, the user device then runs ΠGenVerifierSet to re-
generate V , and checks if v ′ = vi∗ OR v ′ /∈ V . If this check is true, the user
device can confirm this is a spoofed notification because only a (rsp ′,γ ′)

pair verifiable by one of the verifiers in V \ {vi∗} can trigger a detection
alarm. Informally, without the knowledge of the user’s private signing
key si∗ or a caat’s presence (i.e., compromise of users’ credential backup
at provider), it would be difficult for an RP to forge a valid detection proof
if the underlying digital signature scheme is secure.

5.9 Conclusion

In this chapter, we present CASPER, the first framework to detect the
abuse of users’ passkeys leaked from passkey management services (PMS).
CASPER can be seamlessly integrated into the existing FIDO2 authenti-
cation protocols without disrupting users’ daily account login routines.
Additionally, CASPER is compatible with existing PMS implementations
and introduces minimum storage and computation overhead to participat-
ing parties. We demonstrate that CASPER provides compelling detection
effectiveness, even against attackers who exploit information from web-
site breaches to optimize their strategies to avoid detection. We believe
that the widespread deployment of CASPER will enhance users’ account
security particularly in scenarios where a PMS provider fails to protect
users’ passkey storage from compromise.
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6 conclusion and future work

The dynamic nature of online user authentication ensures that the ongoing
battle between attackers and defenders will persist. As new authentication
mechanisms emerge, so will novel vulnerabilities and attack vectors, neces-
sitating continuous advancements in detection and defense strategies. In
this chapter, we highlight several promising directions for future research
and development.

Robustness of Detection Mechanisms

The deployment of detection mechanisms is not a one-time solution but
an evolving process. As demonstrated in this thesis, attackers continu-
ously adapt to bypass security measures, requiring detection strategies
to be resilient, adaptable, and capable of countering sophisticated attack
patterns. Future work should focus on enhancing the robustness of these
mechanisms against adversarial tactics and evasive techniques.

Shifts in Attacker Behavior

While the industry is increasingly adopting passkeys, passwords are un-
likely to be eliminated entirely, particularly in account recovery mech-
anisms. In the near future, passkeys may become the primary authen-
tication method, but passwords will likely remain integral to recovery
processes. This shift will incentivize attackers to target account recovery
endpoints rather than primary authentication mechanisms. Similarly, as
passkey cloud storage gains prominence, it will become an attractive target
for exploitation, necessitating stronger security measures to protect stored
credentials.
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Emerging Classes of Attacks and Defenses

The evolution of security threats is driven by advancements in technology,
including generative AI (GenAI). Attackers are likely to leverage AI-driven
techniques to develop more effective phishing, guessing, and evasion
strategies. Consequently, future defenses must incorporate AI-driven
detection and mitigation mechanisms to stay ahead of emerging threats.

Security of Implementations

Vulnerabilities in password storage implementation have historically led to
catastrophic security breaches. Compared to passwords, passkeys involve
more complex cryptographic and software components, increasing the like-
lihood of implementation flaws. As passkeys gain widespread adoption,
it is critical to assess and mitigate potential security risks stemming from
insecure implementations, ensuring that the transition to passwordless
authentication does not introduce new attack surfaces.

Addressing these challenges will be crucial in securing the next gener-
ation of authentication systems, requiring ongoing research, collaboration,
and innovation in the field of security and privacy.
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a supplementary material: chapter 3

A.1 Measurements Taken

We show all data stored in the ephemeral and persistent databases in
Table A.1. Note that the raw password is only stored in encrypted format
for 24 hours in the ephemeral database.

The symbol × indicates that a field was stored in plain text and
⊗

in-
dicates it was encrypted before storing in the indicated level of storage.

A.2 Filtering Out Attacks

We excluded high volume attacks before reporting summary statistics to
capture an accurate description of regular user behavior. The remaining
harder-to-detect adversarial behavior appears to be an insignificant frac-
tion of logins. We were given access to compromise account reports from
the instrumentation time period (as described in Section 3.3. We found
that an average of 190 compromised accounts were reported every month.
Overall, less than 1% of the total user population in the monitoring period
were compromised, less than 1% of all logins were to accounts that were
compromised at some point in the measurement period, and 2% of IPs
were associated with those requests.

The compromise report database logged compromise usernames, but
not specific requests or IP addresses corresponding to the user’s compro-
mise; thus it was difficult to exclude all attacks without filtering out an
even larger portion of benign behavior. Excluding all login requests to
usernames that were compromised at any point in our instrumentation
period did not significantly change the summary statistics we reported.
However, filtering out the high-volume attacks, as we did in the chapter,
did change some statistics.
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To concretize this, one statistic that we believe is more sensitive to
whether attack traffic is included in measurements is the fraction of re-
quests using a breached password. With the high-volume attacks included
in the calculation, this fraction was 4.73%. This percentage decreased to
2.36% when we filtered out high volume attacks, but only further decreased
to 2.34% when we filtered out all requests associated with a compromised
username.

Characterize benign behavior in the presence of attacks is a fundamen-
tal challenge, given the lack of ground truth. Future work improving the
identification of adversial behavior can confirm our characterization of
benign user behavior.

A.3 Login Statistics

We show some additional statistics about the login requests recorded by
Gossamer. Table A.3 shows some additional statistics we reported earlier
in Table 3.4. Figure A.2 shows the distribution of operation systems as
parsed from the user agents of the requests at both universities; Table A.4
shows the top 10 most common user agents we saw at both schools.
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Field Eph. Pers.

Basic statistics
username

⊗ ⊗
password

⊗
IP address × ×
receipt timestamp at the login server and at
Gossamer

× ×

receipt timestamp at Gossamer × ×
HTTP headers × ×
result (success or failure), result code × ×
zxcvbn score (bucketized to 0, 1) ×
password was malformed ×

Credential stuffing measurements
username appeared in the breach data ×
password appeared in the breach data ×
username-password pair appeared in the
breach data

×

breach source of the username, password, or
pair

×

Credential spraying & dictionary-based
guessing measurements
password appeared in
– top {10, 100, 1,000} most common breached

pws
×

– top {2,000, 5,000} hashcat-generated pws ×
– top {2,000, 5,000} RockYou pws ×

was password frequently submitted today? ×
was username frequently submitted today? ×

Credential tweaking measurements
PPSM [60] strength of password ×
guess rank due to credential tweaking at-
tack [60]

×

edit dist. ⩽ 2 of pw from
– other submissions for same username ×
– other submissions for same IP ×

Table A.1: Measurements we log in ephemeral (Eph.) and persistent
(Pers.) storage.
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OS U1 U2

Windows 36.13% 23.96%
Mac OS X 29.47% 19.58%
iOS 26.20% 43.47%
Android 5.04% 3.18%
Linux 2.43% 0.31%
Other 0.73% 8.96%

Table A.2: The distribution of operating systems (OS) as detected in the
user-agent of all the requests (after removing requests containing empty
user-agent string at U2).
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Univ. 1 Univ. 2

Submitted password statistics
% req. w/ password in breach† 2.71% 0.10%
% req. w/ username in breach† 5.31% 3.08%
% req. w/ user-pwd pair in breach† 0.07% 0.01%
% failed req.

– containing a typo 29.67% 12.04%
– containing a typo (with edit dist msmt) 62.39% 58.37%
– from mobile device containing a typo 38.63% 38.36%
– from mobile device containing a typo (with

edit dist msmt)
72.69% 81.87%

% pwds tweaked 0.92% 0.34%
% pwds w/ zxcvbn score of 0 0.06% 0.40%
% pwds in top 5k hashcat < 0.01% 0.06%
% pwds in top 5k rockyou 0.02% 0.17%
% pwds in top 1k breach comp 0.01% 0.10%

Session Statistics (with a 360s threshold)
Avg. session size 2.25 2.21
99th percentile session size 10 6
% abandoned sessions 5.47% 1.96%
% sessions with at least two attempts 22.24% 38.22%
% mobile sessions 41.32% 35.45%
% sessions with a typo 2.64% 0.85%
% mobile sessions with a typo 0.01% 0.20%
Avg. num sessions per user per day 1.74 9.23

User Statistics
# of unique usernames seen 196,424 309,801
# of valid users 177,286 169,774
# of active users 130,695 110,476
% valid users w/ weak passwords 0.03% 0.06%
% valid users w/ username in breach† 5.79% 3.27%
% valid users w/ passwords in breach† 2.92% 9.34%
% valid users w/ user-pw pair in breach† 0.01% 0.15%
% valid users w/ tweaked password 1.22% 0.66%
% valid users w/ no failed attempts 33.21% 58.02%
% valid users who may be using pw managers 24.76% 27.34%
Avg. fails before a success 1.18 1.19
Avg. devices per user per day 1.51 1.91
Avg. devices per user 14.51 14.97
Avg. IPs per user 8.70 10.56
Avg. successful IPs per user 10.65 17.63
Avg. user agents per user 6.15 3.99
Avg. unique passwords per user 1.96 9.59
Avg. attempts per unique IP per user 5.86 5.21

Login Statistics
Avg. Login requests per day 49,302 246,274
Avg. # of submitted usernames per day 24,822 61,798
% of requests succeeded 94.99% 92.35%
% of requests with null user agent 0.48% 34.31%
# of requests per day per user

– Average 1.99 2.05
– median 1 2
– 99th-percentile 7 12

% of requests from mobile device 31.00% 35.57%
% of failed requests from mobile device 24.90% 11.96%

† Statistics related to breach data were calculated for data beginning Jan 27 ’21 after we
added more breach data to the instrumentation.

Table A.3: Summary statistics of login requests recorded by Gossamer at
U1 (from Dec. ’20 to July ’21) and U2 (from Dec ’20 to Mar ’21).
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User agent % req.

Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/87.0.4280.88 Safari/537.36

1.54%

Mozilla/5.0 (iPhone; CPU iPhone OS 14_2 like Mac OS X) AppleWe-
bKit/605.1.15 (KHTML, like Gecko) Version/14.0.1 Mobile/15E148 Sa-
fari/604.1

0.99%

Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/87.0.4280.88 Safari/537.36

0.36%

Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:78.0) Gecko/20100101
Firefox/78.0

0.23%

Mozilla/5.0 (Unknown; Linux x86_64) AppleWebKit/534.34 (KHTML,
like Gecko) PingdomTMS/0.8.5 Safari/534.34

0.22%

Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_6) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/87.0.4280.88 Safari/537.36

0.21%

Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_6) AppleWebKit/605.1.15
(KHTML, like Gecko) Version/14.0.1 Safari/605.1.15

0.15%

Mozilla/5.0 (Macintosh; Intel Mac OS X 11_1_0) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/87.0.4280.88 Safari/537.36

0.14%

Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:84.0) Gecko/20100101
Firefox/84.0

0.13%

Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/87.0.4280.88 Safari/537.36
Edg/87.0.664.66

0.13%

User agent % req.

Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/87.0.4280.88 Safari/537.36

3.15%

Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/87.0.4280.141 Safari/537.36

1.56%

Mozilla/5.0 (iPhone; CPU iPhone OS 14_2 like Mac OS X) AppleWe-
bKit/605.1.15 (KHTML, like Gecko) Version/14.0.1 Mobile/15E148 Sa-
fari/604.1

1.54%

Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/88.0.4324.150 Safari/537.36

1.32%

Mozilla/5.0 (iPhone; CPU iPhone OS 14_3 like Mac OS X) AppleWe-
bKit/605.1.15 (KHTML, like Gecko) Version/14.0.2 Mobile/15E148 Sa-
fari/604.1

1.16%

Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/88.0.4324.104 Safari/537.36

1.12%

Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/86.0.4240.198 Safari/537.36

0.88%

Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/88.0.4324.182 Safari/537.36

0.76%

Mozilla/5.0 (iPhone; CPU iPhone OS 14_4 like Mac OS X) AppleWe-
bKit/605.1.15 (KHTML, like Gecko) Version/14.0.3 Mobile/15E148 Sa-
fari/604.1

0.70%

Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/87.0.4280.88 Safari/537.36

0.62%

Table A.4: Top 10 most common user agents at U1 (top) and at U2
(bottom)
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b supplementary material: chapter 4

B.1 Reasons for Compromise Reports

As described in Section 4.3, we received the logs of compromised account
reports from both universities. We show the breakdown of the reasons
for compromise as recorded at U1 in Table B.1. We that found 69% of
accounts were reported as compromised due to large-scale automated
attacks (referred to as “Bulk credential testing” at U1). For compromised
accounts reported within one hour of the time of attack, 46% were classified
as “Bulk credential testing”, 17% as self-reported password compromise,
and the remaining 37% were split between the other 10 reasons appearing
in the dataset. For the six compromised accounts that took longer than
300 hours (12.5 days) to report, all were reported as “Simultaneous use
from different locales.”

At U2, the recorded reasons for compromise are very coarse: 99%
are reported simply as “compromised accounts”. Three accounts were
disabled based on requests from the human resources department (former
employee), and two were disabled as the user is “deceased”. No username
is reported more than once for different reasons.

B.2 Using DAS to Detect Attacks

The DAS algorithm [31] has been used successfully in other contexts,
such as detecting spearphishing attacks. Applied to our context, the DAS
algorithm takes a set L1,L2, . . . and orders the sets as follows. For some
configured subset of numerical features, we first associate an ordering
operator over possible feature values (e.g., higher failure rate FF is more
suspicious). Then we associate to Li a score that is equal to the number of
other sets Lj (i ̸= j) such that Li’s features are all strictly more suspicious
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Reason Count Percent

Bulk credential testing 1255 69.3%
Simultaneous use from different locales 438 24.2%
Self-reported password compromise 45 2.5%
Blocked for spamming via Office 365 23 1.3%
Password misused 20 1.1%
Spamming via Office 365 / Gmail 11 0.6%
Other (incl. reports from Duo fraud, third-party,
etc.)

20 1.1%

Table B.1: The reasons for compromise as noted at U1 and the number of
instances of such compromise. Users reported multiple times are counted
as distinct instances.

than Lj’s features. We can then obtain a partial ordering over the set of L
sets based on these scores.

In finding a configuration of features for DAS, we optimized for the
fraction of the top 50 L sets as ordered by DAS that were associated with
a compromised username, as reported by the security engineers. In doing
so, we found that using two simple volumetric features—the number
of requests submitted (NR) and the number of unique users contacted
(NU)—yielded one of the highest fractions of L sets associated with a
compromised username. In fact, computing DAS with the features NU
and NR yielded 41 out of the top 50 L sets and 87 out of the top 100 L sets
associated with a compromised username. Adding as a feature the number
of consecutive days an IP has been active (CD) increased it to 50 out of
the top 50 and 98 out of the top 100. Thus we hypothesize that these three
features are most correlated with the current mechanisms used by the
university IT offices for detecting attacks that cause compromise reports.

DAS with NR, NU, and CD may only be useful for discovering attacks
already being caught by existing countermeasures, so we explore extend-
ing to further features that the IT offices may not be considering. For
example, features such as the fraction of passwords in a breach (FPIB), the
fraction of tweaked passwords (FTP), and average unique passwords per
user (AUP) may all help in detecting attacks. We tried running DAS on
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a configuration with a much richer feature set: NR, NU, FPIB, FCIB, FTP,
AUP, and FF. Despite manually flagging all 50 as probable attacks, only 19
were flagged as attacks in the compromise database. This indicates that
the IT offices may be missing many attacks that could be found with a
richer combination of features, and it also suggests that the compromise
reports may not be a good ground truth.

Our experiments with DAS show that it has promise for discovering
attacks. While naively using it with just volumetric features seems to miss
more subtle attack behaviors, when used with richer Gossamer-enabled fea-
tures DAS can even discover (successful) attacks that are not being caught
by existing countermeasures. This suggests that future deployments may
want to consider using DAS-style approaches for remote guessing attack
detection, similar to its original use with spearphishing. However, from
the perspective of our goal of better characterizing attack campaigns, DAS
has various limitations. In particular, it cannot group IP addresses into
attack campaigns, and distributed attacks that use multiple IPs will be
treated as separate attacks.

Thus we consider clustering as an unsupervised approach to grouping
suspicious IP addresses into attack campaigns.

B.3 Additional Clustering Results
Clustering Quality. Before settling on agglomerative clustering for group-
ing L sets into potential campaigns, we tried a number of other clustering
techniques. We considered the K-means++, DBSCAN, HDBSCAN, and ag-
glomerative clustering techniques in this study on the same set of features
from Table 4.2. Since K-means++ cannot work with a custom similarity
model, we applied principal component analysis (PCA) on all feature
values of L sets and projected them in a two dimensional space to run
K-means++ clustering. We also tried projecting to more than two dimen-
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Clustering algorithm Silhouette score ↑
U1 U2

PCA and K-Means++ −0.13 −0.09
DBSCAN −0.39 −0.30
HDBSCAN −0.12 −0.08

Agglomerative +0.19 +0.17

Table B.2: Silhouette scores of different clustering models.

sions but did not observe any noticeable effect on the clustering quality.
To judge the quality of the clustering techniques, we used the silhouette
score [100], which computes the normalized difference between the av-
erage inter-class and intra-class distances. We did a grid search over all
hyperparameters for each of the clustering techniques and reported the
best silhouette score in Figure B.2.

All clustering methods except agglomerative clustering received a neg-
ative silhouette score, signifying poor quality clusters. We hypothesize
that the poor performance is because our similarity model is not a metric
similar to Euclidean distance, which is essential for K-means++ to pro-
duce meaningful clusters. DBSCAN performed well when the clusters
were of the same density—that is, when L sets belonging to the same
cluster are uniformly distributed inside a cluster. However, in our use
case, it is common to have attack campaigns of different densities. While
HDBSCAN [150] is specifically designed to handle non-uniform clusters
and produced relatively better clusters for a number of attack campaigns,
it still received a lower silhouette score than agglomerative clustering.

Sensitivity of clustering threshold. To analyze how sensitive our clus-
tering results are for different thresholds, we run two experiments by
changing (a) the filtering threshold which is applied to L sets and (b) the
distance threshold that dictates whether two clusters would be merged or
not. Our findings show that the clustering results are sensitive to changes
in the distance threshold but remain relatively the same for changes to
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filtering thresholds.
For the first experiment, we change the filtering threshold to a less

aggressive 70th percentile instead of the 80th percentile as we did originally,
while keeping the distance threshold the same as before at 0.51. After
manual analysis, we find no noticeable change in the likely malicious
clusters in comparison to Araña’s clustering results. This indicates that
clustering results may not be sensitive to changes in the filtering thresholds.

In the second experiment, in addition to the filtering thresholds, we
also change the distance threshold by applying a knee locator method on
L sets filtered by the 70th percentile. This gives a distance threshold of
0.41, which is lower than the original distance threshold of 0.51. Although
the majority of the resulting clusters remain the same, we observe a few
noticeable changes in the clusters as we describe below.

We sampled the top 20 (16 untargeted and 4 targeted) likely malicious
clusters using the same sampling criteria used in Araña. The first 16 clus-
ters had NR ⩾ 5, 000 ∨ NU ⩾ 5, 000, exhibiting high volume, untargeted
behavior. Out of these 16, we discover that 9 clusters were exactly the
same as the ones found in Araña’s clustering results. However, we identify
five new untargeted clusters which we did not see in Araña’s clustering
result. Our manual analysis confirms one of them to be a malicious attack
campaign, one to be clearly benign behavior, and the other three to contain
a mix of benign and malicious behavior. Furthermore, we observe that two
attack campaigns which were previously split into five clusters by Araña,
are more accurately represented by two distinct clusters with this new
distance threshold. The remaining 4 clusters with AUP ⩾ 25 exhibited
targeted behavior and were identical to those found by Araña.

Lastly, we notice that, with the new relaxed distance threshold, two
targeted attack campaigns detected by Araña are completely missed. This
is because lowering the distance threshold introduced spurious L sets that
did not exhibit the same targeted behavior as the other malicious L sets
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showing clear targeted behavior. Thus, the AUP value of the mixed cluster
was reduced below our selection threshold 25.

In conclusion, we find that Araña’s clustering results are particularly
sensitve to changes to the distance thresholds. While lowering the distance
theshold can allow for the discovery of more potential attack campaigns,
it also increases the chance of mixing benign and malicious L sets in the
same cluster. To prioritize precision and a low false positive rate, we
choose the higher percentile filtering thresholds which result in a high
distance threshold, minimizing the chance of benign and malicious L sets
appearing in the same cluster.

Clustering without password-based features. To understand the im-
portance of recording users’ password-based information, we reran Araña
without the six password based features at U2. We found that without
these features, we were still able detect 92% (1,570) of 1,709 malicious
L sets and 80% (16) of 20 attack clusters discovered by Araña as shown
in Table 4.5. However, it missed one multi-day credential stuffing attack
from a single IP address (cluster #15) and three targeted attacks (clus-
ter #22, #23, #29). We hypothesize that since all L sets in attack cluster
#15 have similar values across five password guessability features and all
L sets in attack cluster #22, #23, #29 have similar feature values for AUP,
Araña placed them in the same respective attack clusters predicting they
are originating from the same attackers even if they were spread across
multiple days or targeting same users via multiple IP addresses.

Additionally, clustering without password-based features flagged 46
new L sets. We manually analyzed these 46 L sets. We suspect that at
least four L sets are malformed clients, since they submitted the same
password against a single user. Moreover, we found that L sets within
the same cluster have different values for password-based features. For
example, eight L sets formed a new cluster where one IP address had
FPIB = 0, and the other seven L sets have FPIB > 0.55 with an average
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# L sets # L sets flagged by FCA
Attack # [11] flagged [11] Clusters Flagged Not Flagged

#1 (at U1) 7 1,6 6 1
#2 (at U1) 1 2 1 0
#3 (at U2) 12 10 12 0

Table B.3: Confusion matrices of the number of L sets corresponding to
the three attack campaigns found in prior work [11] using their manual
approach versus our FCA approach.

of 0.66. For the remaining 34 L sets, it is difficult for us to judge them as
either fully malicious or benign, since the password-based features varied
within a cluster. Thus we believe password-based features are important
for grouping attack traffic into attack campaigns, as well as manually
investigating a clustering being malicious or not.

B.4 Comparing Araña to prior work [11]

In Section 4.6, we discuss the three attack campaigns manually identified
in prior work [11]. Here we compare in more detail how their attack
identification compares to the corresponding clusters found using Araña.
In Figure B.3, we present three confusion matrices—one for each attack.
These show how many L sets were labeled as part of the attack, or not, for
both methods. For two attacks, agreement was perfect (unsurprising for
attack #2 which only emanated from a single IP on a single day), and for
attack #1 Araña missed just one L set. We believe that this false negative
arose because that L set set fell on the next day (after midnight) compared
to the prior L sets, suggesting that there can be some noise introduced by
our 24-hour cut-offs for login sets. Even so, an analyst using Araña could,
in this case, easily detect the false negative manually since the IP address
is the same.
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Country # of requests

United States 65,474
Germany 6,170
Morocco 3,467
Canada 152
Brazil 112

Country # of requests

United States 234,515
Russia 19,003
Ireland 13,130
Netherlands 5,678
Canada 1,571

Table B.4: The five most common countries at U1 (left) and U2 (right)
by number of attack requests.

B.5 Geographical Source of Attacks

We use the ISP of a request to determine the country or countries of origin.
Since a campaign often contains multiple IPs, there may be more than
one country of origin. Table B.4 shows the most common countries from
which attacks originated. At U1 and U2, the vast majority of malicious IP
addresses originated from within the United States.

B.6 Per-day Araña and its robustness

In the clustering approach used for Araña discussed in Chapter 4, L sets
were clustered into attacks campaigns using a set of volumetric, client-level,
and password-based features. However, their clustering approach relied
on seeing the whole time period of data before applying the clustering,
which does not allow an analyst to detect attacks in a timely fashion. Simply
applying the Araña approach on a day’s worth of login data yields low
precision. Instead, we use DAS-based scoring (discussed in Section 2.3) in
conjunction with Araña clustering, allowing it to detect attacks in a timely
and effective manner.

Two observations motivated us to adopt DAS-based approaches. First,
as Ho et al. argue, supervised ML approaches do not handle well the
heavy imbalance between normal and anomaly events. While Ho et al.
investigated this in the context of spear phishing, we conjecture that similar
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dynamics arise in malicious login detection. For example, in Gossamer
logs, only 18% of logins at U1 and 11% at U2 are malicious. Secondly,
in most real-world login datasets, there is no way to describe benign
behavior as a set of patterns or distributions, which is essential for standard
anomaly detection approaches [151, 152]. Therefore, we use DAS which
can overcome these limitations.

To do this, we first run Araña on the login requests in a given time
period to obtain a set of clusters. We then calculate the combined feature
values of the resulting clusters (by taking an average or sum of the values),
and we compute the DAS score for each cluster w.r.t. each other cluster
using each set of sub-detector features separately. As before, any positive
DAS score indicates that a cluster is malicious, and if a cluster is flagged
malicious, we consider all L sets (and therefore all requests) within that
cluster as malicious.

Performance of Per-day Araña

Araña per-day approach was able to rediscover 28 out of the 29 attack clus-
ters presented in Table 4.5 in a timely fashion. For the missed attack cluster
#12, Araña per day could discover one (out of three L sets) discovered
as malicious by the earlier approach. More importantedly Araña per-day
was able to flag these malicious attack clusters without introducing too
many false positives. For example, the five clusters that were considered
malicious by Araña and not by its non-timely counterpert — four of these
were manually analyzed to be clearly malicious.

Robustness of Per-day Araña

A major concern when deploying an attack detection approach has been
how robust such an approach would be against adversaries that modify
their attack strategy based on the defense to evade detection. An attacker
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can add dummy requests, slow the frequency at which they submit their
login requests, or use multiple IP address to distribute the requests in an
attempt to hide the attack signature.

Admittedly given sufficient resources — time, IP addresses, and in-
ternet bandwidth — there are always straightforward evasion attacks for
any of the defense mechanisms we have considered. For example, given
sufficient time, an attacker could send one request per day. Given suf-
ficiently many IP addresses, the attacker could send one request per IP
address, which no detection mechanism can currently differentiate from
benign login traffic. Thus, a good detection mechanism should ensure
that evading detection requires a large amount of resources (in terms of
unique IP addresses and time). Conversely, an optimal evasion attacker is
one who minimizes the resources required for a maximal evasion success
rate. Since solving this minimax optimization problem is challenging, we
adopt a practical approach as follows.

Practically, we consider three types of resources that an attacker can use
specifically for evading detection: additional IP addresses (θip), additional
chaff requests (θr), and additional time (θt).

Evasion strategies. Based on the way resources are used by the evasive
attacker, we devise different evasive strategies to test the robustness of the
three DAS-based detection approaches. These evasive strategies can be,
launched easily with existing attack scripts or tools like OpenBullet2 [153]
and Sentry MBA [103] and they are indicative of what an attacker may
try in evading detection mechanisms.

Broadly, these evasive strategies can be categorized into two classes:
introducing chaff which distracts the detection algorithms from the actual
attack traffic and blending the attack traffic into the benign background
traffic. This list is not exhaustive; an attacker may find other ways to craft
evasive attacks.

(1) Introducing chaff L sets. Attackers can introduce chaff to distract the
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detector from the actual attack by sending malicious-appearing, non-attack
logins from their set of IP addresses. By introducing chaff, the attacker
could create new L sets that score higher than the existing L sets in the
comparison set so that the chaff L sets entirely populate the comparison
set; these chaff L sets would be designed so that the attack L never has a
relative DAS score higher than these chaff L sets.

(2) Blending in using sacrificial logins. Attackers can also attempt to
blend their malicious login requests into the background benign login re-
quests. To do this, the attacker can add additional spurious login requests
with their attack, which we call sacrificial requests, as they aim to reduce
(or hide) the suspiciousness of malicious L sets by making them appear
more like the surrounding benign traffic.

For example, consider an attack L originally containing 100 requests.
If 40 requests from this L contain a breached password, the fraction of
breached passwords (FPIB) feature would be 0.4. Now if the attacker
sends 100 additional sacrificial requests containing a password not present
in breach data, that attack L would now send 200 requests in total with a
less suspicious FPIB value of 0.2; this reduced suspiciousness could help
the malicious L blend into the benign L sets and avoid detection.

(3) Blending in by redistributing the guess set. The attacker could also
attempt to blend into background benign traffic by redistributing their
guess set across additional IP addresses (by changing the IP address fields
in their attack transcript). For example, consider the case of detecting
targeted behavior using the AUP feature. If an attack L exhibits targeted
attack behavior by sending 25 different password guesses to a single user,
then it would have a AUP of 25 and would likely be detected for such a
high AUP value. However, the attacker can evade detection by sending
these 25 different password guesses from 25 different L sets. Each of these
25 L sets would now have an AUP of one, effectively avoiding detection,
as an AUP value of one does not exhibit targeted behavior. For the sake
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of evaluation, we assume that the attacker evenly splits the total number
of requests and the number of requests exhibiting any suspicious feature
across all L sets.

(4) Blending in by slowing the attack. Finally, an attacker can insert
additional delay between successive login requests to minimize the suspi-
ciousness of the timestamp-based features (i.e., MIT, SIT). This strategy is
effective for evading malicious L sets that send a large number of requests
within a short period of time. For example, consider an attacker sending
NR login requests from an IP within t seconds. Assuming the attacker is
evenly distributing these NR logins over the time period t, the attack L

would have a mean interarrival time of MIT = t/NR. By remaining active
for an additional θt period, the attacker could increase (and thus reduce
suspiciousness of) its MIT feature value to (t+ θt)/NR. Attack tools (e.g.,
OpenBullet2 [153]) typically provide such an option to reschedule logins
to a given interval. Of course, this would increase the cost for the attacker,
requiring them to hold the IP addresses for a longer period of time.

Evasion results. To investigate the efficacy of the evasion strategies, we
explore a set of reasonable amounts of resources an evasion attacker could
use for evading the attack clusters: θip ∈ {10, 20, 35}, θr = 1, 000, and
θt = 2 hours. The per-day Araña is relatively robust to evasion as it uses
clusters of requests, which is harder to evade. We found that by using
specially crafted chaff L sets, an attacker can evade some types of attacks
at high cost. For example, with an extra θip = 35 IP addresses, θr = 1000
additional requests, and θt = 2 hours, it is possible to evade 3 out of 29
attack clusters.
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c supplementary material: chapter 5

C.1 Two Common Strategies of PMS for
Credential Backup Protection

As discussed in Section 5.2, PMS providers typically offer users two strate-
gies to secure their credential backups with user secrets. One is based on
key derivation and the other is based on key escrow.

Key derivation. In the first strategy, a user’s credential backup is en-
crypted using a key that only the user can access. The encryption key
can be directly derived from a user-chosen secret (e.g., a “master pass-
word”), e.g., via key derivation functions (KDF). This approach provides
end-to-end encryption to secure users’ passkeys — encryption and de-
cryption of a user’s PMS passkey backup are performed locally on the
user’s authenticator, avoiding giving PMS access to the user-chosen secret
and the derived encryption key. This strategy is adopted by popular cre-
dential managers such as LastPass [9], 1Password [8]. While this strategy
gives the user some security control over their passkeys backup at PMS
provider, it also enables attackers to perform offline cracking on the user’s
passkey backup when it gets leaked from the provider. In particular, prior
research has observed that user-chosen secrets are easily guessable, es-
pecially those that users can recall consistently [12]. Many applications
utilize the KDF defined in PKCS#12 which is not appropriate to withstand
offline attacks leveraging modern hardware [154]. Thus, ensuring the
protection of users’ passkeys with this strategy has long been a significant
challenge. For example, serious concerns have been raised regarding the
impact of offline cracking attacks following the breach of LastPass’s cloud
storage [155, 156].

Key escrow. The second strategy requires the user secret (e.g., a PIN or
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passcode, or a screen-lock pattern) to be independent of the encryption
key generation and serves solely as a “verification secret” that the PMS
provider or its components use to verify the user’s identity. Specifically,
provider independently generates an encryption key to encrypt a user’s
passkey backup at rest and stores the key on its own key management
service (KMS). When the user wishes to retrieve their credential backup,
the PMS provider retrieves their key from KMS securely only if the user
presents a valid “verification secret”. This strategy is adopted by iCloud
KeyChain from Apple, Google Password Manager, and Password Monitor
from Microsoft [157, 158, 159]. Compared to the former strategy, this strat-
egy requires a user to give up their control over their credential backups
and trust that the provider can implement their cloud storage and KMS
correctly and securely as expected, even though this may not always be
the case [160].

Furthermore, even if PMS implementation is secure, insider attackers
within the PMS provider could potentially obtain query access to the KMS
and retrieve the key after successfully guessing the low-entropy user veri-
fication secret [108, 109]. This remains possible even under the provider’s
rate-limiting policies [161, 159], which could not only fail to prevent such
attacks but also undesirably introduce denial-of-service concerns for users.
What is more concerning is that many PMS providers adopt one or more
non-cryptographic authentication methods such as passwords or secret
questions for account access, recovery, or verification secret reset [162].
In this case, the security of the user’s passkey backups against a remote
attacker may eventually fall back to that of those weaker authentication
methods.
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C.2 Definition of KDF

A key derivation function (KDF) is a fundamental cryptographic primi-
tive that produces cryptographic keys from a private input, such as a user
password. When used as encryption keys for data storage or transmission,
it is crucial that the keys generated by a KDF are computationally indis-
tinguishable from random strings [163] in order to prevent an attacker
from obtaining useful information of the private input string. In other
words, an attacker should not be able to determine whether a given binary
string is a cryptographic key produced by a KDF or just a random string
of equivalent length. In this chapter, we follow standard assumptions by
requiring a KDF to be a pseudorandom function (PRF) [163] and consider
the following definition of a KDF:

Definition C.1 (Key Derivation Function). A key derivation function (KDF),
denoted by KDF(w, z), is a pseudorandom function F: {0, 1}κ × {0, 1}κ → {0, 1}κ

that takes as input a user detection secret w and a randomness z uniformly chosen
from {0, 1}κ and outputs a user key u.

C.3 Flatness Preservation

Here we show that the flatness of detection secrets used in CASPER is
preserved despite the compromise of PMS storage. To capture how ac-
curately a distinguishing attacker can identify wi∗ from W output by
G = ⟨GenDetectSecrets, SelectRealSecret⟩, we consider a flatness experiment
Exptflt,G

η,k defined as follows:
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Experiment Exptflt,G
η,k (D)

W
$← GenDetectSecrets(k)

wi∗ ← SelectRealSecret(W,η)
ŵ← DG(W)

if ŵ = wi∗

then return 1
else return 0

We define the advantage of D, given η and k, as:

Advflt,G
η,k (D)

def
= P

(
Exptflt,G

η,k (D) = 1
)
−

1
k+ 1,

Advflt,G
η,k

def
= max

D
{P

(
Exptflt,G

η,k (D) = 1
)
},

where the maximum is taken over all distinguishing attackers D.
We then consider the attacker’s ability to get a user’s passkey backup

entries for multiple accounts leaked from PMS by defining the following
PMS oracle Ocbs that takes wi∗ as input and outputs a pair (s̃, z) for each
oracle query. Then we consider the following experiment to characterize
how much better a decoy distinguishing adversary A can distinguish wi∗

when it additionally has access to such a PMS oracle Ocbs, where aid, uid
and sid are ignored due to the independence of W and wi∗ on them:

Oracle Ocbs(wi∗)

si∗
$← {0, 1}κ

(s̃, z)← ΠEncCred(wi∗ , si∗)
return (s̃, z)
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Experiment Exptflt,cbs
η,k (A)

W
$← GenDetectSecrets(k)

wi∗ ← SelectRealSecret(W,η)
ŵ← AG,Ocbs(wi∗)(W)

if ŵ = wi∗

then return 1
else return 0

We define the advantage of A as

Advflt,cbs
η,k (A)

def
= P

(
Exptflt,G

η,k (A) = 1
)
−

1
k+ 1

Advflt,cbs
η,k

def
= max

A
{Advflt,cbs

η,k (A)},

where the maximum is taken over all flatness adversaries A.

Proposition C.3.1.
Advflt,cbs

η,k = Advflt,G
η,k .

Proof: Given A for the experiment Exptflt,cbs
η,k , we construct a decoy distin-

guisher D for the experiment Exptflt,G
η,k defined in Section 5.4. D provides

A with W it receives from the experiment. D responds to A’s G query by
its own G query response. For each Ocbs oracle query made by A, D does
the following:

• D chooses s̃′ and z′ from {0, 1}κ uniformly at random.

• For all wi ∈ W, D runs s′i ← ΠDecCred(wi, s̃′, z′) and check if s′i is a
valid passkey, i.e., s′i

?
∈ S, where S is the passkey space.

– If there exists wi ∈ W such that s′i /∈ S, D restarts the whole
process by re-choosing a fresh s̃′ uniformly at random.
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– If s′i ∈ S for all wi ∈W, D returns (s̃′, z′) to A

Note that this process is efficient because it is almost unlikely that an
invalid passkey will be produced (see Appendix C.4). Finally D outputs
1 if A outputs 1. Considering that, given a uniformly randomly chosen z′,
for each wi ∈W, there exists a corresponding si uniformly distributed in S

such that (s̃′, z′) = KDF(wi, z′)⊕ si, and so (s̃′, z′) and (s̃, z) are distributed
identically for each Ocbs oracle query simulated by D, we have:

P
(
Exptflt,G

η,k (D) = 1
)
⩾ P

(
Exptflt,cbs

η,k (A) = 1
)

,

Advflt,G
η,k (D) ⩾ Advflt,cbs

η,k (A).

Also, we can construct a A for the experiment who runs a decoy distin-
guisher D for the experiment Exptflt,G

η,k as a subroutine. Upon receiving W

from the experiment, A directly provides W as D’s input and responds to
D’s G query by its own G query response. Finally A outputs 1 if D outputs
1 so:

P
(
Exptflt,cbs

η,k (A) = 1
)
⩾ P

(
Exptflt,G

η,k (D) = 1
)

,

Advflt,cbs
η,k (A) ⩾ Advflt,G

η,k (D).

C.4 Well-Formed ECDSA Keys from
Decrypting s̃ with an Incorrect w

Here we show that decrypting s̃ with an incorrect detection secretw, where
w ̸= wi∗ , almost certainly results in a well-formed private key for ECDSA.
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For elliptic curves supported by FIDO2 for ECDSA, e.g., secp256r1 and
secp256k1, n is the order of the base point of the curve and is a large prime
number. Specifically,n is equal to 0xFFFFFFFF00000000FFFFFFFFFFFFFFFFBCE6FAADA7179
E84F3B9CAC2FC632551 and 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A
03BBFD25E8CD0364141 for secp256r1 and secp256k1 respectively [164]. De-
crypting s̃ with an incorrect w will yield s (̸= si∗) that is uniformly dis-
tributed in the range of [0, 2256−1] (except for si∗), givenw is uniformly sam-
pled by GenDetectSecrets (see Figure 5.2). For s (̸= si∗) to be a valid private
key of ECDSA on secp256r1 or secp256k1, s needs to be within the range of
[1,n−1]. Thus, the probability that decrypting s̃ with an incorrect detection
secret w results in a well-formed private key is n−2

2256−1 > 0.999999999767 for
ECDSA on secp256r1 and n−2

2256−1 > 0.999999999999 on secp256k1. On an-
other note, if decrypting s̃ with an incorrect key is non-negligibly unlikely
to produce a well-formed private key for a given signature scheme, an
alternative design could be adopted, as mentioned in Section 5.5. Specif-
ically, instead of producing and syncing a single s̃, one could randomly
generate k additional key pairs as decoys and synchronize k+ 1 private
keys (passkeys) to the PMS directly.

C.5 More about User Secret η

Here, we first explore alternative methods for instantiating the user secret
η without imposing a memory burden on users. We then discuss potential
privacy concerns related to η.

User memory-independent η. In practice, there are other desirable ways
to instantiate η, making it user memory-independent but retrievable by
users from physical objects (e.g., using credit cards CVVs as η retrievable
from credit cards) or from third parties trusted for maintaining the secrecy
and availability of the secrets (e.g., using several digits of bank account
numbers as η retrievable from banks). Additionally, η can be derived
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from users’ biometric data (e.g., fingerprints or faces) [165] . While such
instantiation of η adds little memory burden on users and raises negligible
privacy concerns as discussed next when wi∗ is stolen, the user interface
should clearly explain how CASPER uses these secrets and, more impor-
tantly, that η will never be stored at any participating party in CASPER.

Privacy of η A caat who has compromised W and luckily guessed the
correct wi∗ might be tempted to deduce η from W and wi∗ . However, this
is in fact not easy because the modulo operation in SelectRealSecret restricts
the information leakage about η to only log2 (k+ 1) bits of entropy. For
example, considering the case where a user’s η is the last four digits of
their bank account number and k is set to 32, η would be hidden from the
attacker among 10000× 1

32+1 ≈ 303 different 4-digit numbers that, if taken
with W by SelectRealSecret as input, would yield the same wi∗ .

An alternative design for generating W given η. Recall that in Figure 5.2,
we provided an example of generating W and determining the real secret
index based on a user input η. Here, we introduce an alternative design
for generating W that reduces the probability of a manual η input error
leading to a false detection. The concept is straightforward: CASPER can
assemble a set (denoted as N) of size k, which includes decoy user secrets
randomly sampled from the same secret space of η. For example, when
k = 32 and η is an x-digit system-generated PIN where 2 ⩽ x < log10 2κ,
CASPER can randomly select 32 distinct PINs as the decoy user secrets from
the remaining 10x − 1 (incorrect) PINs. CASPER then directly assembles
W by including Hash (η) as the real detection secret and the hashes of the
k decoy user secrets in N as decoys. This design provides better resistance
against false detection triggered by manual η user input errors. In the
x-digit PIN example here, a randomly entered incorrect η′ will be mapped
to a decoy passkey with a probability of at most 32

10x . This design is more
suitable when η input errors are a larger concern than the privacy of η,
as the caat can more easily determine η if it identifies the real detection
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• Upon receiving a login request for uid, RP retrieves v(= s) for uid
and requests an OTP, if the uid exists.

• User device runs w← GenOTP(s) and sends wto RP.

• Upon receiving wfrom the user, RP performs the following tests
and actions:

◦ if ∀v ∈ V : w ̸= GenOTP(v) : RP rejects this login request.
◦ else if v ∈ V ′, RP raises a detection alarm.
◦ else RP accepts this login request.

Figure C.1: The compromise detection algorithm of CASPER for OTP. The
BnR protocol remains the same for OTP.

secret (= Hash(η)) within W.

C.6 Extending CASPER for One Time
Passwords

Besides passkeys, the concept of CASPER can also be easily extended to
authentication methods based on other cryptographic credentials such as
HMAC or time-based one-time passwords (OTP [166, 167]).

Background on OTP. Unlike FIDO2, OTP authentication is based on a
shared secret between a user device (or authenticator) and an RP (the
authentication server). During registration, the user device and the RP
agree on a shared cryptographic seed s sampled uniformly at random.
During the login phase, the user device generates a new OTP from s as
w← GenOTP(s). Here GenOTP takes s as its input and outputs an OTP that
is a truncated output of HMAC(s, Count) (as defined in [166, Sec. 5.2] and
[167, Sec. 1.2] ) where Count is a counter used to maintain the freshness
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of a new OTP. Thus, Countis updated either incrementally for each login
(i.e., HMAC-based OTP [166]) or periodically based on the current time
(i.e., timing-based OTP [167]). When the user submits w to the RP for
authentication, the RP also generates an OTP w’ by invoking GenOTP with
the shared s and the same counter Count, and verifies the user’s identity
by checking w

?
= w ′.

Extending CASPER for OTP. The BnR protocol for OTP is similar to
the one for FIDO2 as shown in Figure 5.3. As shown in Figure C.1, the
compromise detection algorithm here is largely similar to the one used for
FIDO2-based authentication, with only slight variations due to differences
in their authentication flows. During a login, the user device generates an
OTP via w← GenOTP(si∗), and sends the OTP w to the RP. Note that for
OTP, there is no privacy and public key pair, and in a credential pair ⟨s, v⟩,
s = v because they are the same random seed shared and kept private by
both the user device and RP. However, we keep the notations of s and
v just to follow the specification of our generic BnR protocol. Therefore,
to authenticate the login request, the RP will also generate an OTP w ′ on
their own for each v in V from the list of verifiers , and check if w ′ = w.
Similar to the detection algorithm for FIDO2 as described above, if there
exists v ∈ V such that w ′ = w, then whether v is in the active verifier set
V ′ or not determines if this login attempt will trigger a PMS detection or
result in a successful login.

Handling spoofed false alert notifications from RP for OTP. Unlike
FIDO2, detecting spoofed false alerts with a verifiable proof is challenging
for OTP-based authentication methods, or, more broadly, authentication
methods based on shared secrets between the user and the RP. This is
because both parties can generate the same authentication response from
their shared secret, making it difficult to determine whether a triggering
authentication response is produced by a PMS breaching attacker or a
misbehaving RP itself.
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While future work can investigate further how to handle this chal-
lenge, for now, we propose an alternative approach that instead provides
a probabilistic guarantee against such alerts. This approach requires the
user device to select a subset of W at random, denoted by W′, while still
using W as the input of ΠGenVerifierSet to generate V for the RP. Meanwhile,
CASPER requires the RP to send back the triggering OTP was a probabilis-
tic detection proof. With this setup, the probability of a RP producing a
wwith an OTP seed, si, that corresponds to a detection secret w ∈W \W′

is 1− |W′|
|W|

. When this happens, the user can learn that the RP intentionally
raised a false detection.
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