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Abstract

This dissertation consists of two parts: quantum transitions (Part 1) and hydrodynamic limits

of kinetic equations (Part 2). In both parts, we investigate the inner mathematical connections

between equations for different physics at different scales, and use these connections to design

efficient computational methods for multi-scale problems.

Despite its numerous applications in chemistry and physics, the mathematics of quantum

transition is not well understood. Using the Wigner transformation, we derive semi-classical

models in phase space for two problems: the dynamics of electrons in crystals near band-

crossing points; surface hopping of quantum molecules when the Born-Oppenheimer approx-

imation breaks down. In both cases, particles may jump between states with comparable

energies. Our models can capture the transition rates for such processes. We provide analytic

analysis of and numerical methods for our models, demonstrated by explicit examples.

The second part is to construct numerical methods for kinetic equation that are efficient

in the hydrodynamic regime. Asymptotically, the kinetic equations reduce to fluid dynamics

described by the Euler or Navier-Stokes equations in the fluid regime. Numerically the Boltz-

mann equation is still hard to handle in the hydrodynamic regime due to the stiff collision

term. We review the theoretical work that links the two sets of equations, and present our

asymptotic-preserving numerical solvers for the Boltzmann equation that naturally capture

the asymptotic limits in the hydrodynamic regime. We also extend our methods to the case of

multi-species systems.
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Part I

Quantum Transition

1



2

In this part, we study quantum systems with discrete spectrum, and explore semi-classical

models and numerical methods to compute quantum transitions between energy states. We

start with first principles: given a Schrödinger equation with an external potential, one first

solves the eigenvalue problem of the Hamiltonian operator. The eigenfunctions are usually

referred to as molecular orbitals in quantum chemistry, and the eigenvalues are called energy

bands in physics. The solution to the Schrödinger equation is a superposition of all these

eigenstates, with the coefficients evolving in time. Most of the time, the energy states are

decoupled, which means their coefficients evolve independently. However, in some cases, eigen-

values get very close to each other, or even cross. In physics, when this happens, one could

not distinguish two energy states that share the same energy value. And mathematically, the

projection coefficients need to be modified in response to this quantum phenomena. Quantum

transition is a very important issue because it is on the pathway for most chemical reactions.

Qualitatively how transition functions and gets involved in chemical reactions has been studied

in depth, but not much is known quantitatively due to the lack of mathematical tools avail-

able. We address such issues from the perspective of semi-classical limits in phase space, and

correspondingly we design efficient numerical methods that give accurate results. Quantum

transition occurs in many quantum problems, but we only deal with the following two: the

first is band crossing problem that appears in the dynamics of electrons in crystals and the

second is the surface hopping problem in quantum molecular dynamics.

In the following, we firstly briefly go over the basic ideas of semi-classical limit in chapter 1,

with an outline of the currently dominating methods. We will focus on the Wigner transform,

the one we rely on in the derivation of our model. Chapter 2 and 3 are devoted to the two

problems mentioned above respectively.
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Chapter 1

Semi-classical models

In this chapter we briefly go over the standard methods developed in the past that give the

semi-classical limit for quantum systems. Techniques on dealing with quantum transitions are

not going to be addressed in this chapter.

1.1 Introduction

The Schrödinger equation is a canonical dispersive equation, whose waves of different wave-

length propagate at different speeds. Consider the Cauchy problem for the Schrödinger equa-

tion:

iεψε = −ε
2

2
∆ψε + V ψε, (t, x) ∈ R+ × Rd (1.1.1)

ψε(x, t = 0) = ψεin(x)

ψε(t, x) is the wave function, depending on time and space. It can be either a scalar or

vector. The space is d dimensional. ε denotes the semi-classical parameter, usually indicating

the microscopic/macroscopic ratio. It is assigned different physical meanings depending on

different problems in different regimes, as will be clear later on, and for now we only assume

it is a dimensionless small parameter. V is the potential term. Associated with the dimension

of the wave function, it could be either a scalar or a matrix. Most of the time it relies on both

time and space, but in this thesis, its time dependence is not going to be discussed. When
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V depends on ψ, nonlinear effects also appear, and the most classical model in this case is

V = ±|ψ|2. This situation will be omitted from this thesis as well.

For later use, we define the following:

• Hamiltonian operator:

H = −ε
2

2
∆ + V (x). (1.1.2)

This Hamiltonian is consistent with the classical one H = p2

2 +V (x), whose p is replaced

by the momentum operator p = −iε∇x.

• Physical observables:

particle density: nε(x, t) = |ψε|2, (1.1.3a)

current density: Jε(x, t) = − iε

2

(
ψ̄ε∇xψε − ψε∇xψ̄ε

)
(1.1.3b)

energy density: eε(x, t) =
1

2
|ε∇xψε|2 + V nε (1.1.3c)

In practice only these physical observables could be measured and are cared about.

Simple derivation shows

∂tn
ε(x, t) +∇x · Jε(x, t) = 0 (1.1.4)

In the absence of V , its analytical solution is plane wave:

ψε(t, x) =

∫
C(ξ) exp

(
i

ε

(
ξ · x− t

2
|ξ|2
))

dξ (1.1.5)

where C(ξ) is the projection onto the mode ξ ∈ Rd and they are determined by the initial

data. Apparently the solution features ε oscillations in both time and space. For fixed ε, the

development of numerical methods is very mature, both for time-dependent and independent

case, however, in the semi-classical regime, as ε diminishes, very fine mesh is required according
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to the typical numerical analysis, and thus leads to extremely heavy computational cost.

To overcome this difficulty, we study the asymptotic behavior of the solution and include the

asymptotic mathematical analysis while designing numerical schemes to save some numerical

cost. Several methods are in order: WKB expansion, Gaussian beam method, the Hagedorn

expansion, and the Wigner transformation. Basically all these methods assume a certain ansatz

for the equation that take the oscillations into account, and one retrieves the leading order

and sometimes the second order term as ε → 0. We briefly review these asymptotic methods

in the following, and one could find more details in [115] and the references therein. Wigner

transform method belongs to this asymptotic analysis category as well, but it will be discussed

in details in the following section.

1.1.1 WKB approximation

WKB method, also known as WKBJ method sometimes, is named after Wentzel-Kramers-

Brillouin (Jeffreys when J is included). It is a general asymptotic method for linear high order

differential equations. In case of time-dependent Schrödinger equation, the ansatz writes as:

ψε = aε(t, x) exp (Sε(t, x)) (1.1.6)

Assume the two real-valued functions: the amplitude aε(x, t) and Sε(x, t) have asymptotic

expansion:

aε = a+ εa1 + ε2a2 + · · · (1.1.7)

Sε = S + εS1 + ε2S2 + · · · (1.1.8)

Plugging this expansion into (1.1.1), by matching orders, one could sequentially solve for the

approximation up to the order desired. To the leading order, S satisfies a Hamiltonian-Jacobi
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equation with energy given by ẋ2

2 + V (x), while a is governed by a transport equation:

∂tS +
1

2
|∇xS|2 + V (x) = 0, ∂ta+∇xS∇xa+

a

2
∆S = 0. (1.1.9)

The second equation on a could also be interpreted in term of number density ρ = |a|2:

∂tρ+∇ · (ρ∇xS) = 0. (1.1.10)

Given smooth enough S, ρ is governed by a conservation law and could be computed in a

classical way. In this way, the WKB method gives an easy solution to the Schrödinger equation

up to the leading order.

To compute the equation for S is much tricker. In fact, the WKB approximation is only

valid for finite time, since the Hamiltonian-Jacobi equation for S develops singularity even

with smooth initial data: mathematically S could be regarded as integration of some solution

to the Burger’s equation, and it is well-known that even C∞ initial data leads to shocks. By

following characteristics, one solves the following ODE:

ẋ = ξ, ξ̇ = −∇xV. (1.1.11)

and often in time, these characteristics cross, meaning the two particles starting from different

location bump into each other, generating “caustics”.

This phenomenon only occurs for WKB, and not for the original Schrödinger equation,

and thus the “caustics” is artificial and embedded in the definition of WKB ansatz. To fix

the problem beyond the caustics, many techniques can be applied. We mention here the

multiphase WKB approximation, which writes the solution as summation of a series of WKB

form [113, 80], with a phase shift called Keller-Maslov index [124]. For theoretical study, refer
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to [56]. Level set method is a general way in computing multi-values appeared in Hamiltonian-

Jacobian equation [161], and is adopted here as well [116, 114].

1.1.2 Gaussian beam method

The Gaussian beam method, developed for high frequency linear waves, is an efficient

approximate method that allows accurate computation of the wave amplitude around caus-

tics [168]. It is widely used in geophysics community as well [102]. The validity of its construc-

tion has been mathematically studied by Ralston in [171]. Its usage in quantum system can

be found in [121, 120, 107, 200].

The idea is the following. Assume at the initial time step, the data is given in the form of:

ψε0(t, x, y) = A(t, y)eiT (t,x,y)/ε (1.1.12)

where both the amplitude and the phase function have a new variable y indicating the center

of the beam, as will be more clear soon. T is complex valued function and is Taylor expanded

around y as:

T (t, x, y) = S(t, y) + p(t, y) · (x− y) +
1

2
(x− y)TM(t, y)(x− y) +O(|x− y|3) (1.1.13)

To form a Gaussian profile, the imaginary part of the Hessian matrix M is positive definite.

In the leading order expansion in both ε and y − x, one gets the ODE system:

dy

dt
= p,

dp

dt
= −∇yV

dM

dt
= −M2 −∇2

yV (1.1.14)

dS

dt
=

1

2
|p|2 − V, dA

dt
= −1

2
(Tr(M))A (1.1.15)
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The equation for M is called Riccati equation, and by following the y-trajectory in this La-

grangian type of approach, one could check several important properties:

1. M is always symmetric and its imaginary part remains being positive definite;

2. The Hamiltonian H = |p|2
2 + V (x) is conserved;

3. A(t, y) does not blow up.

The first property guarantees that the profile is always a Gaussian function, while the second

and the third incorporate the physical background.

Given an arbitrary initial data, even if it does not have the form of (1.1.12), it can always

be approximated by the summation of several Gaussian packets, but the number could be as

big as ε−1/2. In case of the WKB initial data, the approximation could be made in a particular

way to reach ε1/2 accuracy [181, 182]. Given these functions, one needs to follow the trajectory

for each packets and evolve them according to (1.1.14). They are summed up at the ending

time. Also see high order extension in [122], and frozen Gaussian beam method in [149, 150].

1.2 Wigner transform

In this section we mainly focus on the Wigner transform developed by Wigner in [193].

Unlike most other asymptotic method, Wigner transform studies the behavior of the solution

in phase space, and helps to establish the link between the quantum wavefunction and the

probability distribution function in classical mechanics. The definition has the uncertainty

principle built in, and thus provides us a powerful tool to untangle the coherence between

the momentum and position in phase space [155]. In representation theory, it is also linked

to Weyl quantization. The latter was developed in 1927 in [192] and is a general framework

that transforms the real phase space functions to its associated Hermitian operators. More

discussion will be found in section 3.2.1.
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Wigner transform is defined as:

W ε(t, x, k) =

∫
Rd

dy

(2π)d
eikyψε

(
t, x− ε

2
y
)
ψ̄ε
(
t, x+

ε

2
y
)
. (1.2.1)

where ψ̄ε is the complex conjugate of ψε, with ψε solves the Schrödinger equation (1.1.1). The

multiplication of two wave functions ψε(x− εy
2 )ψ̄ε(x+ εy

2 ) is called the density matrix, and the

transform is simply the inverse Fourier transform of it. Note that ψ and its complex conjugate

are evaluated at different position with deviation O(ε), intrinsically reflecting the uncertainty

principle. In bra-ket language, it could be expressed as:

W ε(t, x, k) =

∫
Rd

dy

(2π)d
〈x+

ε

2
y|ρ̂|x− ε

2
y〉eiky. (1.2.2)

The definition is to characterize the probability of finding a particle at time t, location x with

momentum k, as a resemblance to the probability distribution function in statistical mechanics.

Remark 1.2.1. Note that both two formulas above are written in x-presentation, consistent

with the analysis and numerical computation that will be carried below. p-presentation could

be used as well. One only needs to replace the states |x± ε
2y〉 by |p± ε

2q〉 and integrate over q,

the deviation in the momentum space. The discussion for that is neglected from here.

As a resemblance to the distribution function on the phase space in statistical mechanics,

this Wigner function is introduced to characterize the probability of finding a particle at time

t, location x with momentum k. However, a classical particle has a definite position and

momentum, and hence it is represented by a point in phase space, in the quantum case, due

to the uncertainty principle, this restriction breaks down, and the Wigner function can only

be understood in a quasi-probability manner, and thus present some properties that are not

shared by conventional probability distribution.
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1.2.1 Properties

Several properties are in order.

1. W ε is a real-valued function.

Take the conjugate of the definition (1.2.1) it is easily seen that W ε = W̄ ε.

2. Time symmetry.

ψε → ψ̄ε ⇒W (t, x, k)→W (t, x,−k). (1.2.3)

It is called time symmetry simply because k indicates the momentum and W ε(t, x,−k)

is the wave W ε(t, x, k) travelling backward.

3. ψε cannot be fully recovered.

By definition, W ε has a quadratic form, and if one shift the phase of ψε by a constant θ,

i.e. ψε → ψεeiθ, W ε is unchanged.

4. The physical observables can be recovered from the moments:

particle density: nε(x, t) =

∫
Rd
W εdk (1.2.4a)

current density: Jε(x, t) =

∫
Rd
kW εdk (1.2.4b)

energy density: eε =

∫
Rd

( |k|2
2

+ V (x)

)
W εdk (1.2.4c)

5. Wigner function does not preserve positivity.

(a) This property distinguishes the Wigner function from the conventional density dis-

tribution function. The reason behind it is the uncertainty principle. A classical

particle has a definite position and momentum, and hence can be represented by a

certain point on the phase space, but in the quantum case, a particle could only be
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specified in space and momentum simultaneously with an error of O(~) (ε in this

thesis).

(b) If the Wigner function is smoothed through a filter with size bigger than ε, positivity

could still be obtained. The most classical way is Husimi transform [129] where a

Gaussian function with width of O(ε) is used to convolute with the density matrix.

1.2.2 Wigner equation

By plugging the Schrödinger equation into the definition of Wigner function, one has the

Wigner equation:

∂tW
ε + k · ∇xW ε =

1

iε

∫
dω

(2π)d
eiωxV̂ (ω)

[
W ε(x, k − εω

2
)−W ε(x, k +

εω

2
)
]
. (1.2.5)

Here V̂ is the Fourier transform of the potential V . Assume V (x) is a smooth enough function

with ∇xV = O(1), and by performing asymptotic expansion for W ε = W0+εW1+· · · , formally

one obtains the classical Liouville equation:

∂tW0 + k · ∇xW0 −∇xV · ∇kW0 = 0 (1.2.6)

This has been proved in [151, 147]:

Theorem 1.2.1. Suppose ψε is uniformly bounded in L2(Rd) with respect to ε:

sup0<ε≤1 |ψε|L2 <∞, ∀t, (1.2.7)

then the associated Wigner function W ε ∈ S′(Rd × Rd) is weak-* compact. There exists one
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sequence such that:

W ε ε→0−−−→W0 in L∞
(

[0, T ];S′
(
Rd × Rd

))
weak-* (1.2.8)

The limit W0 is called the Wigner measure. It is positive and follows the Liouville equa-

tion (1.2.6).

Remark: One way to prove the positivity of this limit is to link it with the limit of Husimi

measure, which keeps being positive for all ε [151].

Follow the characteristics of the equation (1.2.6), the resemblance to the classical mechanics

is easily seen:

ẋ = k, k̇ = −∇xV (x). (1.2.9)

This tells us that k is the velocity of a particle, and k̇, the acceleration is governed by the

derivative of the potential V (x), which is exactly the Newton’s 2nd Law. In this sense, this

two different types of physics are linked with an error of O(ε). Compared with the WKB

approximation, this approach unfold the singularities (caustics) and does not give the exact

wave function ψε, and the phase is globally well-defined.

Wigner transform is the tool we use to investigate the two problems described in the

following two chapter.
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Chapter 2

Semi-classical models for crystals

In this chapter we investigate the dynamics of electrons in crystals in the semi-classical

regime. We explore the mathematical description for the quantum transition between energy

bands, and develop efficient semi-classical numerical solver.

This problem is difficult because in the regime we consider, the lattice potential oscillates

at the same scale of the rescaled Planck constant, making the numerical computation very

expensive. Using the Bloch-Floquet theory, one could obtain the spectrum of the Hamiltonian

by solving the associated eigenvalue problem. When the eigenvalues are very well separated

from each other, it is proved that in the semi-classical limit, in phase space, the projection

onto different bands are decoupled, and each coefficient evolves independently according to a

simple transport equation. However, when the eigenvalues are degenerate, little theory on the

quantum transition is known.

We solve this problem by performing the Wigner transform on the Schrödinger equation

and study the resulting Wigner equation in phase space. To better interpret the structure of

the phase space, we also perform the Wigner transform onto the Bloch eigenfunctions. This

gives us the orthogonal basis in phase space. We project the Wigner function onto them, and

discovered that the off-diagonal entries of the obtained Wigner matrix naturally reflect the

quantum transition rates. The associated set of equations are obtained. This new model is

asymptotically consistent with the classical model under the assumption that the energy bands

are non-degenerate. Numerically, the story has two sides: on the one hand, the new model gives
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full information both around and far away from the band-crossing region, but its oscillatory

nature generates expensive numerical cost, and on the other hand, the classical model, though

could not provide transition rate around the crossing point, gives sufficient information away

from it. With this observation, we construct a domain-decomposition numerical method: we

decompose the phase space into separate domains, and compute proper equations in different

regions and hybridize them by appropriate boundary conditions. In this way we capture the

correct transition rate without sacrificing much numerical expense.

In section 2.1, we briefly go over the setup of the problem and introduce its basic properties.

The standard technique to tackle the problem is the Bloch-Floquet theory. In section 2.2 we go

over the classical Wigner transform approach, and around the energy band crossing point where

the classical model breaks down, we develop a new model that captures the quantum transition.

Its basic properties will be presented in subsection 2.2.3 and the associated numerical methods

are designed in subsection 2.2.4. For simplicity both the analysis and the computation are done

in one dimension but they could be easily extended to higher dimensions. We show several

numerical examples in section 2.3.

2.1 Dynamics of electrons in crystals

A crystal is a solid material whose atoms are arranged in an ordered pattern extending

in spatial domain. In our problem we only care about the dynamics of electrons, and all

bigger molecules are considered at rest, leaving electrons a static potential. Based on this set

up, the Schrödinger equation used contains two potential terms: the lattice periodic potential

generated by the ionic cores, and the experimentally imposed external potential that is usually

introduced by electromagnetic fields. The latter typically vary on much larger spatial scales.
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Denote l as the lattice constant, we rewrite (1.1.1) as:

i~∂tψ = −~2

2
∆ψ + V

(x
l

)
ψ + U(x)ψ. (2.1.1)

Here the V (x) part in the potential term reflects the lattice oscillation and U(x) is the smooth

external potential. ~ is the Planck constant.

Two small parameters are involved in the equation: the Planck constant ~ and the lattice

constant l. Depending on the regimes one is interested in, the parameters need to be rescaled

and balanced, resulting different behavior of the solution. We firstly perform the nondimen-

sionalization in section 2.1.1, and pick a regime where resonance of lattice potential could be

seen. Basic properties, especially the Bloch-Floquet theory will be introduced in 2.1.2.

2.1.1 Non-dimensionalization

Define τ = l2/~ as the quantum time scale, and denote T and L as macroscopic time and

length scale. Rescale the parameters [10, 169, 57]:

x̃ =
x

L
, t̃ =

t

T
, ε =

l

L
, h =

~T
L2
, (2.1.2)

and the two potential functions:

Ṽ (
x

l
) =

τ2

ml2
V (x), Ũ(

x

L
) =

T 2

L2
U(x). (2.1.3)

After dropping the tildes, one gets:

ih∂tψ = −h
2

2
∆ψ +

h2

ε2
V
(x
ε

)
ψ + U(x)ψ. (2.1.4)



16

This equation is nondimensionalized, and it shows the competition between two parameters h

and ε. As one can see, if ε is big compared to h, one is in a regime that no periodic structure of

the crystal cannot be seen, and the system is roughly classical; if ε is comparably much smaller,

the homogenization limit ε→ 0 of the periodic structure is performed faster than the classical

limit h → 0. In fact it is proved that this limit yields a semi-classical Vlasov equation with

parabolic bands defined by some effective mass tensor [169] when energy bands are assumed

to be separated. The most interesting case is when ε and h is at the same order. If so, the

periodic potential V (x) and the external potential U(x) are of the same order, and one could

see the O(1) impact of the periodic structure to the system and expect some resonance. In

this case, write h = ε and the equation becomes:

iε∂tψ
ε = −ε

2

2
∆ψε + V

(x
ε

)
ψ + U(x)ψε, (2.1.5)

ψε(t = 0, x) = ψεI(x). (2.1.6)

For simplicity, we assume V (x) is 2π periodic, and U(x) is smooth and of O(1).

Asymptotic analysis has been extensively studied in, e.g., [162, 89, 164, 10], relying on

different analytical tools, and numerical methods are also developed [79, 81, 82, 105, 106]. We

also mention some papers that study related models is: Free crystal electrons, i.e. U(x) = 0

is studied in [151, 73]. Homogenization limit is studied in [169] with its extension to nonlinear

Coulomb potential in [9]. Stratified potential with periodicity appearing in only one direction

is studies in [11].

2.1.2 Spectrum analysis

It is the periodic potential that oscillates at the scale of ε that generates a great amount of

difficulty in analyzing the equation. To fully make use of the periodicity, the classical way is

to use Bloch-Floquet theory. The theory dates back to Floquet who discovered the underlying
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mathematics in 1883 [69], and later on Bloch realized its application in the lattice potential

case [17]. The whole theory was summarized in [194]. The idea is to combine the V (xε ) with

the Laplacian, and write it as a new Hamiltonian:

H0 = −ε
2

2
∆x + V (

x

ε
) = −1

2
∆z + V (z). (2.1.7)

Here we define z = x
ε as the fast variable and study the eigenvalue problem:

−1

2
∆zΨ(z, p) + V (z)Ψ(z, p) = E(p)Ψ(z, p), (2.1.8a)

Ψ(z + ν, p) = eipνΨ(z, p), ∀ ν ∈ L = 2πZ, (2.1.8b)

∂Ψ

∂z
(z + ν, p) = eipν ∂Ψ

∂z
(z, p), ∀ ν ∈ L. (2.1.8c)

The boundary conditions for this eigenvalue problem (2.1.8b)-(2.1.8c) is called Bloch boundary

condition. Given a specific p, the solution is equipped with pseudo-periodic boundary condi-

tion, with the absolute value of Ψm unchanged but the phase is shifted by 2πp when z changes

by 2π. With each fixed p, one solves (2.1.8) for a list of discrete eigenvalues Em(p) and the

corresponding Bloch eigenfunctions, marked as Ψm(z, p). Here we assume the multiplicity is

1, i.e. each eigenvalue corresponds to one eigenfunction. Note that Ψm is a function of z with

p regarded either as a parameter or a variable.

We list a few properties as preparation for later analysis[160, 194, 10]:

(a) The eigenvalues Em(p) are 1-periodic in p. Denote L∗ = Z as the lattice for p. The

analysis will be carried on the first Brillouin zone p ∈
(
−1

2 ,
1
2

)
. Order the eigenvalues

as E1(p) ≤ E2(p) ≤ ... ≤ Em(p) ≤ .... It can be proved that Em(p) → ∞ as m → ∞,

uniformly in p, and that strict inequality can be achieved outside a zero measure set [194].

(b) Pick one period for p, called the first Brillouin zone B =
(
−1

2 ,
1
2

)
, {Ψm(·, p)} forms a
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complete orthonormal basis in L2(0, 2π), i.e.

(Ψm,Ψn) :=

∫ 2π

0

dz

2π
Ψm(z, p)Ψ̄n(z, p) = δmn. (2.1.9)

(c) For all φ ∈ L2(R), one has the following Bloch decomposition:

φ(x) =

∞∑
m

∫
B
cm(p)Ψm(x, p) dp (2.1.10)

where cm is the Bloch coefficient: cm(p) =
∫
R φ(x)Ψ̄m(x, p) dx.

Note: Another way to study this problem is to investigate the following function:

Φα
m(z, p) = e−ipz Ψα

m(z, p). (2.1.11)

This definition gives a function that is 2π-periodic in z and 1-periodic in p. Φm(·, p) also form

a complete basis in L2(R) space.

As one can see in the property (c), any L2 function can be expanded upon the eigenfunctions

Ψm(z, p). In the absence of the external potential U(x), one could proceed as the following:

• 1st step: Use the expansion (2.1.10) and define the projection onto the mth band:

cm(t, p) =
∫
ψ(t, z)Ψ̄m(z, p)dz;

• 2nd step: Multiply Ψ̄m(z, p) on both sides of the equation (2.1.5) and integrate over z,

one gets the evolution of cm(t, p):

iε∂tcm =

∫
H0ψΨ̄mdz = Em(p)cm. (2.1.12)

The solution could be explicitly written down: cm(t, p) = cm(0, p)e
iEmt
ε .

• 3rd step: Collect all the cm at the ending time.
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Generally speaking one projects the initial data onto different bands. Since the equation is

linear, the projection coefficients evolve independently in time. cm could be explicit computed,

and thus no heavy computation is needed. However, the method above is only true for zero

external potential U(x). With a smooth nonzero potential U(x), the analysis could be much

more tedious. In fact, in space, we have two scales: x and z, and thus the solution ψ also

contains the slow modes in x and the fast fluctuation in z. So we manually split the two scales:

• 1st step: Separate the scaling and write the solution as ψ = ψ(t, x, z). The Schrödinger

equation thus is revised:

iε∂tψ =

(
−∆z

2
+ V (z)

)
ψε + U(x)ψε −

(
ε2∆x

2
+ ε∇x · ∇z

)
ψε. (2.1.13)

Note that here we change ∇x into ∇x + 1
ε∇z.

• 2nd step: Use the expansion (2.1.10) and define the projection onto the mth band:

cm(t, p, x) =
∫
ψ(t, x, z)Ψ̄m(z, p)dz;

• 3rd step: Multiply Ψ̄m(z, p) on both sides of the equation (2.1.5) and integrate over z,

one gets the evolution of cm(t, p, x):

iε∂tcm = −ε
2∆x

2
cm + (Em(p) + U(x)) cm + ε

∑
n

∫
∇xcn

∫
Rd

Ψn∂zΨmdzdp. (2.1.14)

The evolution in time has two parts on the right: the first part is given by the first two

terms. They resemble the Schrödinger Hamiltonian, containing both the kinetic energy

− ε2∆x
2 and the potential Em(p) + U(x). One thing to be noted here is that different

energy bands provide different potential terms – i.e. different strength of acceleration.

The second part is the third term on the right: it is of O(ε), and has the Berry connection

term involved:
∫

Ψn∇zΨmdz [12]. It shows the connection between different bands.
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• 4th step: Solve (2.1.14) for cm and collect all the modes at the ending time.

Apparently (2.1.14) is no easier than the original Schrödinger equation: it is not only oscillatory

in both time and space, but also shows strong nonlinear coupling among bands.

All in all, when U(x) is present, the solution has two scalings and the standard Bloch-

Floquet theory does not simplify the computation. Nevertheless this theory provides us one

way to decompose the L2 function space, and will be used in our Wigner approach.

2.2 Semi-classical model in phase space

In this section we derive a model for the crystal problem in the framework of Wigner

transformation. In fact if one follows the standard Wigner transform steps, and define the

Wigner equation as in (1.2.1), it is easy to obtain the following Wigner equation:

∂tW
ε + k∂xW

ε =
1

iε

∑
µ∈L∗

eiµx/εV̂ (µ)
[
W ε(x, k − µ

2
)−W ε(x, k +

µ

2
)
]

(2.2.1)

+
1

iε

∫
R

dω

2π
eiωxÛ(ω)

[
W ε(x, k − εω

2
)−W ε(x, k +

εω

2
)
]
,

where Û(ω) and V̂ (µ) are defined as:

Û(ω) =

∫
R

dy e−iωyU(y), V̂ (µ) =
1

2π

∫ 2π

0
dy e−iµyV (y). (2.2.2)

with ω ∈ R, and µ ∈ L∗. Note V (x) is periodic and thus it only has Fourier series instead of

Fourier transform.

On the right hand side, the second term is approximated by ∂xU∂kW . The first term,

however, can be much trickier. This term is a series summation instead of an integral; the

deviation µ in k is of O(1); and the whole term is multiplied with 1
iε , making it impossible for

simplification with standard techniques.
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2.2.1 Model derivation

To overcome this difficulty, we use the following two new ideas: 1. we separate the fast

variable from the slow one in x, and write function W (t, x, p) as W (t, x, z, p); 2. we found a

basis for W to be expand upon in phase space. The model is carried out with asymmetric

Wigner transform, and the symmetric version will be briefly summarized in the next section.

Define the Wigner function W :

Wε(t, x, k) =

∫
R

dy

2π
eikyψε (t, x− εy) ψ̄ε(t, x). (2.2.3)

It is easy to obtain the Wigner equation (with the fast variable z = x
ε ):

∂

∂t
Wε + k

(
∂

∂x
+

1

ε

∂

∂z

)
Wε +

iε

2

(
∂

∂x
+

1

ε

∂

∂z

)2

Wε

=
1

iε

∑
µ∈L∗

eiµx/εV̂ (µ) [Wε(x, k − µ)−Wε(x, k)]

+
1

iε

∫
R

dω

2π
eiωxÛ(ω) [Wε(x, k − εω)−Wε(x, k)] .

(2.2.4)

Under the assumption that U(x) is smooth, high order terms are thrown away, leaving:

∂tWε + k∂xWε − ∂xU∂kWε + i∂2
xzWε = −1

ε
LWε, (2.2.5)

where the skew symmetric operator L is given by

Lf(z, k) = k
∂f

∂z
+

i

2

∂2f

∂z2
− 1

i

∑
µ∈L∗

eiµx/εV̂ (µ) [f(x, k − µ)− f(x, k)] .

We use the classical scaling separation argument, asymptotically expand W ε as:

W ε(t, x, k) = W0

(
t, x,

x

ε
, k
)

+ εW1

(
t, x,

x

ε
, k
)

+ · · · (2.2.6)
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Plug this ansatz into (2.2.4). By balancing both the O(1
ε ) and O(1) term, one gets:

LW0 = 0 , (2.2.7a)

∂W0

∂t
+ k

∂W0

∂x
− ∂U

∂x

∂W0

∂k
+ i

∂2W0

∂x∂z
= −LW1 . (2.2.7b)

The first equation indicates that W0 is in the kernel of L. To specify the kernel space, and in

particular to seek for a good basis of kerL, Bloch-Floquet theory is adopted [3].

Given two Bloch eigenfunctions Ψm and Ψn, we define the following:

Qmn(z, k) = Qmn(z, µk, pk) =

∫ 2π

0

dy

2π
eikyΨm(z − y, pk)Ψ̄n(z, pk), (2.2.8)

where k is an arbitrary real number and is decomposed as:

k = pk + µk, pk ∈ B, µk ∈ L∗. (2.2.9)

Note that this definition is very similar to Wigner transformation (1.2.1), but notice the two

difference: 1. y is integrated over one period 2π; 2. in the wave function z and y have the

same scaling. With this definition, one could prove:

1. Qmn form a basis for W to be expanded upon:

W (t, x, p) =
∑
mn

σmn(t, x, p)Qmn(z, p). (2.2.10)

It is a direct corollary of the following lemma:

Lemma 2.2.1. Define the inner product 〈·, ·〉:

〈f, g〉 :=
∑
µ∈L∗

∫ 2π

0

dz

2π
f(z, µ)ḡ(z, µ), f, g ∈ L2

(
(0, 2π), `2(L∗)

)
,
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then for any p ∈ (−1/2, 1/2), {Qmn(·, ·, p)} forms a complete orthonormal basis in

L2
(
(0, 2π)× `2(L∗)

)
.

Proof. The orthonormal condition

〈Qmn, Qjl〉 = δmj δnl, (2.2.11)

can be proved by simply using (2.1.9). To prove the completeness, it is sufficient to show

that: if there exists an f ∈ L2
(
(0, 2π)× `2(L∗)

)
, such that 〈f,Qmn〉 = 0 for all m,n ∈ N,

then f(z, µ) ≡ 0. Assume 〈f,Qmn〉 = 0 for all m,n ∈ N. By the definition of Qmn,

∑
µ

∫ 2π

0

∫ 2π

0

dydz

(2π)2
f(z, µ)eiµyΦm(z − y, p)Φ̄n(z, p) = 0, ∀m,n ∈ N.

Since {Φn(·, p)} forms a complete orthonormal basis in L2(0, 2π), the above equality

implies that ∑
µ

∫ 2π

0

dy

2π
f(z, µ)eiµyΦm(z − y, p) = 0, ∀m ∈ N,

thus ∑
µ

f(z, µ)eiµy ≡ 0,

which implies that f(z, µ) ≡ 0.

2. A straightforward computation gives:

LQmn(z, k) = LQmn(z, µ, p) = i(Em(p)− En(p))Qmn(z, µ, p) . (2.2.12)

Apparently the kernel of L highly relies on the structure of energy bands. Before carrying out

any further derivations, we make the following assumption.
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Assumption 2.2.1. Eigenvalues are strictly apart from each other everywhere in p, namely

E1(p) < E2(p) < ... < Ej(p) < ....

This assumption may be valid or not, and depending on its validity, we call the scenario

adiabatic case or non-adiabatic case, and derive two different models respectively, as shown

below. Associated with it, we also compute the initial data.

Adiabatic case

We derive the model for adiabatic case in this part. With the assumption, (2.2.12) clearly

indicates:

kerL = span{Qmm,m = 1, 2, · · · }. (2.2.13)

According to the leading order equation (2.2.7a), it is easy to see that W0 should be in the

kernel of L, and thus is simply an expansion of Qmm:

W0(t, x, z, k) =
∑
m

σmm(t, x, p)Qmm(z, µ, p). (2.2.14)

Here σmm representing the expansion coefficients. To close it, we plug the expansion (2.2.14)

back into the second order equation (2.2.7b)), and take the inner product with Qmm on both

sides. The right hand side vanishes due to the skew symmetry of L and (2.2.12):

〈−LW1, Qmm〉 = 〈−W1,LQmm〉 = 0. (2.2.15)
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The left hand side, on the other hand, gives:

〈∂tW0 + k∂xW0 − ∂xU∂kW0 + i∂xzW0, Qmm〉

=
∑
n

∂tσnn 〈Qnn, Qmm〉+
∑
nn

∂xσnn 〈kQnn, Qmm〉

−∂xU
(∑

n

∂pσnn 〈Qnn, Qmm〉+
∑
nn

σm 〈∂pQnn, Qmm〉
)

= ∂tσmm − i (∂zΨn, Ψm) ∂xσmm − ∂xU∂pσmm − ∂xU
∑
n

(
(∂pΦn, Φm) + (Φn, ∂pΦm)

)
= ∂tσmm + ∂pEm∂xσmm − ∂xU∂pσmm . (2.2.16)

By combining (2.2.15) and (2.2.16), one gets transport equation on each band:

∂tσmm + ∂pEm∂xσmm − ∂xU∂pσmm = 0. (2.2.17)

In the derivation of (2.2.16), the following equalities were used:

〈kQmn, Qjl〉 = − i

2

(
δnl (∂zΨm,Ψj) + δmj (∂zΨl,Ψn)

)
, (2.2.18a)

〈∂pQmn, Qjl〉 = δnl (∂pΦm,Φj) + δmj (Φl, ∂pΦn) , (2.2.18b)

〈∂zQmn, Qjl〉 = δnl (∂zΨm,Ψj) − δmj (∂zΨl,Ψn) , (2.2.18c)

∂pEmδmj + (∂pΦm , Φj) (Em − Ej) = −i (∂zΨm , Ψj) , (2.2.18d)

(∂pΦm,Φm) + (Φm, ∂pΦm) = 0. (2.2.18e)

These are simple derivations and the details are omitted.

(2.2.17) is a very important resemblance to the classical Liouville equation (1.2.6) as it also

shows clear connection towards the classical mechanics. The Hamiltonian is H = H0 + U(x),

and on each band, the effective potential is Em(p) + U(x). Following the trajectory, one gets

ẋ = ∂pH = ∂pEm(p) and k̇ = −∂xH = −∂xU(x). The configuration of the energy bands
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apparently controls the momentum.

Remark 2.2.1. Results for the case that has no external potential were rigorously proved

in [151, 74] in the framework of Wigner series, instead of Wigner transform.

One could also write W =
∑

mn σmnQmn, but Qmn with m 6= n only appears in W1,

meaning that σmn ∼ O(ε), negligible in the semi-classical regime.

Non-adiabatic case

In this part we derive the model for the system when Assumption 2.2.1 is turned off.

In fact, when two adjacent energy get very close Em − Em−1 < O(ε), or even ∼ O(ε), the

argument above is no longer valid. With LQm,m−1 = O(ε) in (2.2.6), the previous scaling

separation (2.2.7) is no longer correct, and σm,m−1 should not be eliminated in the leading

order expansion. When σmn with m 6= n acquires O(1) value, we say quantum tunnelling is

observed.

To get the evaluation of these quantities, ones use the full expansion (2.2.10). We plug (2.2.10)

into (2.2.5) and take the inner product with Qmn. The derivation is tedious, and here we only

list the results.

Without loss of generality, we tackle a two-band problem. Define pc = arg minp{|E1 − E2|}

and assume |E1(pc)− E2(pc)| = O(ε) at pc = 0.

∂σ11

∂t
+
∂E1

∂p

∂σ11

∂x
+

1

i

(
∂Ψ1

∂z
, Ψ2

)
∂σ12

∂x
− ∂U

∂x

∂σ11

∂p

=
∂U

∂x

[(
∂Φ2

∂p
, Φ1

)
σ21 +

(
Φ1 ,

∂Φ2

∂p

)
σ12

]
,

∂σ22

∂t
+
∂E2

∂p

∂σ22

∂x
+

1

i

(
∂Ψ2

∂z
, Ψ1

)
∂σ21

∂x
− ∂U

∂x

∂σ22

∂p

=
∂U

∂x

[(
∂Φ1

∂p
, Φ2

)
σ12 +

(
Φ2 ,

∂Φ1

∂p

)
σ21

]
,
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∂σ12

∂t
+
∂E2

∂p

∂σ12

∂x
+

1

i

(
∂Ψ2

∂z
, Ψ1

)
∂σ11

∂x
− ∂U

∂x

∂σ12

∂p
+ i

E1 − E2

ε
σ12

=
∂U

∂x

[(
Φ2 ,

∂Φ1

∂p

)
σ11 +

(
∂Φ2

∂p
, Φ1

)
σ22 +

(
Φ2 ,

∂Φ2

∂p

)
σ12 +

(
∂Φ1

∂p
, Φ1

)
σ12

]
,

∂σ21

∂t
+
∂E1

∂p

∂σ21

∂x
+

1

i

(
∂Ψ1

∂z
, Ψ2

)
∂σ22

∂x
− ∂U

∂x

∂σ21

∂p
+ i

E2 − E1

ε
σ21

=
∂U

∂x

[(
Φ1 ,

∂Φ2

∂p

)
σ22 +

(
∂Φ1

∂p
, Φ2

)
σ11 +

(
Φ1 ,

∂Φ1

∂p

)
σ21 +

(
∂Φ2

∂p
, Φ2

)
σ21

]
.

This system can be written in vector form as:

∂tσ +A∂xσ +B∂pσ = −BCσ +
iD

ε
σ (2.2.19a)

where

σ = ( σ11 σ12 σ21 σ22 )T (2.2.19b)

B = −∂xU I , D = diag ( 0, E2 − E1, E1 − E2, 0 ) (2.2.19c)

A =



∂pE1
1
2ψ12

1
2ψ21 0

1
2ψ21 ∂p

E1+E2
2 0 1

2ψ21

1
2ψ12 0 ∂p

E1+E2
2

1
2ψ12

0 1
2ψ12

1
2ψ21 ∂pE2


, (2.2.19d)

C =



0 −φ12 φ21 0

−φ21 φ11 − φ22 0 φ21

φ12 0 φ22 − φ11 −φ12

0 φ12 −φ21 0


, (2.2.19e)
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ψmn = −i (∂zΨm,Ψn) , and φmn = (∂pΦm,Φn) , (2.2.19f)

Superscript T stands for matrix transpose and I is the identity matrix. Generally, ψ12 = ψ̄21,

φ12 = −φ̄21 are complex-valued quantities, and φ11, φ22 are purely imaginary, so A = A† is

Hermitian, and C = −C† is anti-Hermitian. The superscript † denotes the matrix conjugate

transpose.

Initial data for the semi-classical model

One also needs to equip it with appropriate initial condition. Choose the initial data of

the Schrödinger equation as two wave packets along the two Bloch bands in the following form

[31, 105]:

φI = a1(x) Φ1

(x
ε
, ∂xS0(x)

)
eiS0(x)/ε + a2(x) Φ2

(x
ε
, ∂xS0(x)

)
eiS0(x)/ε. (2.2.20)

Then, the initial data of the Wigner function, for ε� 1, has the approximation:

WI(x, z, k) ∼ |a1(x)|2W11(z, k) + |a2(x)|2W22(z, k)

+a1(x)a2(x)
(
W12(z, k) +W21(z, k)

)
, (2.2.21)

with

Wmn(z, k) =

∫
R

dy

2π
eikyΦm(z − y, ∂xS0(x− εy))Φ̄n(z, ∂xS0(x))ei(S0(x−εy)−S0(x))/ε.

Using Taylor expansion on S0(x− εy)− S0(x) and Φm(z − y, ∂xS0(x− εy)), one gets

Wmn(z, k) =

∫
R

dy

2π
ei(k−∂xS0(x))yΦm(z − y, ∂xS0(x))Φ̄n(z, ∂xS0(x)) +O(ε),
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then by ignoring the O(ε) term, and using the periodicity of Φm(z, p) on z, one can change

the integral into a summation of integrals from 0 to 2π:

Wmn(z, k) =
∑
ν∈L

∫ 2π

0

dy

2π
ei(k−∂xS0(x))(y+ν)Φm(z − y, ∂xS0(x))Φ̄n(z, ∂xS0(x)).

Applying the equality ∑
ν∈L

eikν =
∑
µ∈L∗

δ(k + µ),

one gets

Wmn(z, k) =
∑
µ∈L∗

δ(k + µ− ∂xS0)

∫ 2π

0

dy

2π
ei(k−∂xS0)yΦm(z − y, ∂xS0)Φ̄n(z, ∂xS0)

=
∑
µ∈L∗

δ(pk + µ− ∂xS0)

∫ 2π

0

dy

2π
eikyΨm(z − y, ∂xS0)Ψ̄n(z, ∂xS0)

=
∑
µ∈L∗

δ(pk + µ− ∂xS0)

∫ 2π

0

dy

2π
eikyΨm(z − y, pk + µ)Ψ̄n(z, pk + µ)

=
∑
µ∈L∗

δ(pk + µ− ∂xS0)

∫ 2π

0

dy

2π
eikyΨm(z − y, pk)Ψ̄n(z, pk).

=
∑
µ∈L∗

δ
(
pk + µ− ∂xS0

)
Qmn(z, µk, pk). (2.2.22)

In the derivation above, from the second line to the third line, we use the fact that

∫
δ(p− p0)f(p0)g(p) dp = f(p0)g(p0) =

∫
δ(p− p0)f(p)g(p) dp

to replace the argument ∂xS0 by pk + µ.

Without loss of generality, we assume that ∂xS0 ∈ (−1/2, 1/2), then (2.2.22) becomes

Wmn(z, k) = δ
(
pk − ∂xS0

)
Qmn(z, µk, pk). (2.2.23)
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Compare (2.2.23) with (2.2.21), one has the initial data for σ:

σ(0, x, p) = δ (p− ∂xS0(x))

(
a2

1 a1a2 a1a2 a2
2

)T
. (2.2.24)

2.2.2 Model derivation – symmetric case

This section follows the routine in section 2.2, with the standard symmetric Wigner trans-

form:

W s
ε (t, x, k) =

∫
R

dy

2π
eikyφε

(
t, x− εy

2

)
φ̄ε
(
t, x+

εy

2

)
.

The derivation is similar, thus we skip the details, and give a list of the results:

1. The Wigner equation corresponding (2.2.4) is

∂W s
ε

∂t
+ k

∂W s
ε

∂x
=

1

iε

∑
µ∈L∗

eiµx/εV̂ (µ)
[
W s
ε

(
x, k − µ

2

)
−W s

ε

(
x, k +

µ

2

)]
+

1

iε

∫
R

dω

2π
eiωxÛ(ω)

[
W s
ε

(
x, k − εω

2

)
−W s

ε

(
x, k +

εω

2

)]
.

2. Corresponding to the asymptotic Wigner equation for asymmetrical transformation (2.2.5),

one has:

∂W s
ε

∂t
+ k

∂W s
ε

∂x
− ∂U

∂x

∂W s
ε

∂k
= −1

ε
LsW s

ε , (2.2.25)

where the skew symmetric operator Ls is given by

Lsf(z, k) = k
∂f

∂z
− 1

i

∑
µ∈L∗

eiµx/εV̂ (µ) [f(x, k − µ/2)− f(x, k + µ/2)] .
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3. Corresponding to (2.2.7), one has the O
(

1
ε

)
and O(1) expansions:

LsW s
0 = 0, (2.2.26a)

∂W s
0

∂t
+ k

∂W s
0

∂x
− ∂U

∂x

∂W s
0

∂k
= −LsW s

1 . (2.2.26b)

4. Same as in (2.2.8), one has the following symmetrical definition for Qmm

Qsmn(z, k) = Qsmn(z, µ, p)

=

∫ 2π

0

dy

2π
ei(p+µ)yΨm

(
z − y

2
, p
)

Ψ̄n

(
z +

y

2
, p
)
.

They are eigenfunctions of Ls

LsQsmn = i(Em − En)Qsmn .

5. If the eigenvalues {En} are well separated, i.e. Em 6= En, for m 6= n, the solution to

(2.2.26a) is:

W s
0 =

∑
m

σsmmQ
s
mm.

By taking the inner product with Qsmm on both sides of (2.2.26b), one obtains the same

classical Liouville equations for σsmm as in (2.2.17)

∂tσ
s
mm + ∂pEm∂xσ

s
mm − ∂xU∂pσsmm = 0.

6. If some bands touch at point pc, the solution to (2.2.25) is given by:

W s
ε =

∑
m

σmmQ
s
mm +

∑
m 6=n

σmnQ
s
mn.
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In the two-band case, m,n = 1, 2, then σsmn is governed by,

∂tσ
s +As∂xσ

s +Bs∂pσ
s = −BsCsσs +

iDs

ε
σs, (2.2.27)

where σs = (σs11 σ
s
12 σ

s
21 σ

s
22 )T , then Bs = B, Cs = C and Ds = D are the same as the

asymmetric case, while As is given by

As =



∂pE1
1
2ψ12

1
2ψ21 0

1
2ψ21 ∂p

E1+E2
2 0 1

2ψ21

1
2ψ12 0 ∂p

E1+E2
2

1
2ψ12

0 1
2ψ12

1
2ψ21 ∂pE2


and ψmn, φmn are given by (2.2.19f). Noted that As = (As)†.

We call this new system obtained by the symmetric Wigner transform (2.2.27) the Liouville-S

system. Apparently the only difference from the previous one, named Liouville-A lies in the

transport matrices A 6= As. Despite that, it could be easily shown that the two share the same

weak limit as ε → 0 (see Appendix A.1 for detail). This formally suggests that the behavior

of σ11, σ22 and σs11, σ
s
22 in the two models is about the same. This observation is confirmed

by numerical results in Section 2.3.1.

2.2.3 Main properties of the model

The system for the non-adiabatic case we derived (2.2.19) has two transport coefficients

A and B, and C and D are the two coupling terms. We show below how Berry phase get

involved in this system, its hyperbolicity, and its connection with the model for the adiabatic

case (2.2.17).
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Berry phase

In this part we aim at explaining the role played by Berry phase in our model. It has

been known for long that the second order correction to the semi-classical trajectory should

be related to Berry phase, see physics argument in [21, 180, 197, 198, 12] and mathematical

justification in [163, 162, 57]. Our model incorporate this phenomenon in a very subtle way

as well: the Berry connection term explicitly appears in the coupling term on the right hand

side. To compute the Berry phase, we fix one particle and follow its trajectory in momentum

space. Adiabatic theory claims that the particle moves along the energy band it starts on, as

well as it is away from the crossing zone, and thus the wave function associated to this particle

should simply be Ψm(p(t)) with a to be determined phase shift. Here p(t) is the trajectory

with p(0) = pi [180]:

ψm = Ψm(pi)→ ψm(t) = eiθm(t)Ψm(p(t)), (2.2.28)

with

θm(t) = −1

ε

∫ t

0
Em(p(t′))dt′ + i

∫ t

0
〈Ψm(p(t′))|∂t|Ψm(p(t′))〉dt′. (2.2.29)

The first term is called dynamical phase factor and the second term is the so-called Berry

phase term. We change the variable and obtain:

γm = i

∫ t

0
〈Ψm(p(t′))|∂t|Ψm(p(t′))〉dt = i

∫ p

pi

〈Ψm(p′)|∂p|Ψm(p′)〉dp′ = i

∫
φmmdp′. (2.2.30)

Remark 2.2.2. Note the phase shifting here is related to but not the same thing as cm

appeared before. cm is a function on time given Ψm is static function on x. In this picture,

however, we follow the trajectory of a particle and at each time point, we only evaluate Ψm at

one p, and thus Ψm is treated as a time-dependent function. In fact, in this case, it is named

as instantaneous eigenstates.
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It is easy to check, the phase change of the off-diagonal element of the density matrix is

determined by this Berry phase term, that is, we write out the density matrix:

ψ̄m(p(t))ψn(p(t)) = e−i(θm(t)−θn(t))Ψ̄m(p(t))Ψn(p(t)), (2.2.31)

and the time change of the phase shift is:

d

dt
(θm − θn) = −i∂xU(φmm − φnn)− 1

ε
(Em − En). (2.2.32)

This is exactly the natural frequency of the off-diagonal term appeared in the coupling term

in (2.2.19).

Remark 2.2.3. Note that if m = n, θm − θn = 0, and this piece of information is not seen.

Hyperbolicity

The semi-classical Liouville system (2.2.19) is hyperbolic. To prove that we use the following

compact form:

∂tσ +A∂xσ − Ux∂pσ = Sσ (2.2.33)

where

S = C +
iD

ε
,

and σ, A, C, D are defined in (2.2.19). Hyperbolicity is easily seen since:

• A = A† is a Hermitian matrix, and can be diagonalized;

• S = −S† is a skew-Hermitian matrix.
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Connection of the two models

The two models derived for adiabatic case (2.2.17) and non-adiabatic case (2.2.19) in 2.2.1

are intrinsically connected. In spite of the fact that these two models are for two different

scenarios, the underlying methodology is the same: expand Wigner function in terms of Qmn

and derive the associated equation. In fact, (2.2.19) is obtained upon projecting W onto the

entire basis, and thus could be regarded as the full system for a general setting. When one

applies Assumption 2.2.1 onto it, and studies the behavior of the solution away from pc where

E1 and E2 are well-separated, it should provide a picture that is consistent with (2.2.17). In

fact we could formally show that the i
ε terms for the transition coefficients σ12 and σ21 in the

system lead to high oscillations, and weakly, as ε→ 0, the system formally goes to the classical

one (2.2.17).

To argue that the transition coefficients are weakly zero, and that they have zero influence

on σmm in the weak sense, we assume that the initial data for the transition coefficients are

all zero, and that Ux does not change sign in time for all x, take −Ux > 0 for example, then:

Case 1. If p � −C0
√
ε for C0 = O(1), then σ12 and σ21 are of o(

√
ε);

Case 2. If −C0
√
ε < p < C0

√
ε, then σ12 and σ21 are of O(

√
ε), and σ12 and σ21 are slowly

varying, i.e. ∂tσ12 � O
(

1
ε

)
, and ∂tσ21 � O

(
1
ε

)
;

Case 3. If p � C0
√
ε, σ12 and σ21 are highly oscillatory with mean 0.

Apparently Case 1 and 3 naturally unveil the connection between the two models.

The justification is tedious, and we show the proof for a simpler model that maintains the

essential properties of the system in Appendix A.1.

Remark 2.2.4. The assumption σmn(t = 0) = 0 (m 6= n) is a reasonable assumption. In fact,

given arbitrary initial condition, one could check that away from pc, the weak limit of σmn is
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always zero, as ε→ 0, as can be seen in Appendix A.1. So numerically we treat the initial data

for both σ12 and σ21 zero, given the initial velocity ∂xS0(x) away from the crossing point, i.e.

σ(0, x, p) ≈ δ (p− ∂xS0(x))

(
a2

1 0 0 a2
2

)T
, if ∂xS0(x) 6= pc. (2.2.34)

This assumption is intuitive and empirical, but it does give us some convenience in solving the

Liouville model numerically. In fact, the numerical examples provided later indeed show that

the band-to-band transition is captured very well with initial data (2.2.34).

2.2.4 Numerical method

With the models and their properties shown above, we are capable designing numerical

methods. The full system (2.2.19) is comparably much more difficult to compute than (2.2.17)

but the latter one fails to be valid in the transition zone. Thus one needs a numerical method

that takes benefits from both, so that the right transition rates could be captured with low

computational cost. To do that, we make use of the fact shown above that the two models are

intrinsically connected:

• the classical Liouville is an approximation (in weak limit) to the full Liouville system

away from the crossing point;

• σ12 and σ21 are slowly varying in a neighborhood of pc = 0, with a small amplitude before

the characteristic hitting pc, and a rapid oscillation after that.

Heuristically we propose a domain decomposition method, which is: away from pc, when the

classical Liouville equation (2.2.17) is a good approximation, we solve this set of equations, but

around pc, in the O(ε) neighbourhood, we switch back to the full model. The gain is obvious:

numerically it is much easier and more efficient to solve the classical adiabatic system, and

thus this approach saves a great amount of computational cost than solving the full system
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everywhere. The details are the following:

Given a fixed spatial point x, the sign of −Ux determines the traveling direction of wave in

p. Assume −Ux > 0, i.e. the wave we study is right-going:

Classical regions: p < −C0
√
ε and p > C0

√
ε: In this region, coarse mesh independent on ε

is used to solve the classical Liouville system (2.2.17), and σ12 and σ21 are set to be zero.

Semi-classical region: p ∈ B \ {Classical region}: Solve the full Liouville system (2.2.19).

The incoming boundary conditions for σ12 and σ21 are set to be zero, and the incoming

boundary condition for σ11 and σ22 are the inflow boundary condition. A fine mesh is

used with ∆x and ∆t much less than
√
ε.

In case of −Ux < 0, and the wave if left-going, boundary condition can be set up in the same

way. The domain decomposition is carried out on p space, and thus Ux can be regarded as

constant for each x.

Remark 2.2.5. Our analysis is based on the regularity of the coefficient matrix C in the Liou-

ville system. But usually, the value of C’s element can be of O(1/δ) where δ = minp |E1(p)−

E2(p)| is the minimal band gap. So C will be large if the minimal band gap δ is small, and the

numerical discretization in the semi-classical region should resolve this small parameter δ. In

the interested regime ε ∼ δ2, o(
√
ε) mesh is enough.

2.3 Numerical example

In this section we show some numerical examples. Section 2.3.1 is for linear external

potential. In this special case, the solution to (2.2.19) could be explicitly expressed, and thus

numerically is treated differently. In section 2.3.2 we deal with a nonlinear external potential

U(x) using the method invented above in section 2.2.4.
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In both examples we use the Mathieu model, i.e. the periodic potential is V (z) = cos z.

The first eight Bloch eigenvalues are shown in Figure 2.3.1. Apparently, some eigenvalues get
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Figure 2.3.1: The eigenvalues of the Mathieu Model, V (x) = cosx.

very close to each other around p = 0, ±0.5.

We will focus on the 4th and 5th bands1. Denote Ψ1 and Ψ2 as the Bloch functions

corresponding to the 4th and 5th bands respectively.

For comparison, we will compare the numerical results to the ones given by the original

Schrödinger equation, computed through the methods given in [105] with mesh size and time

step much smaller than ε.

2.3.1 Linear U(x)

We deal with the linear external potential in this section:

U(x) = U0 − βx.
1The minimum gap between the 4th and 5th bands is 0.0247, located at p = 0. The gap is small enough so

that the quantum effect can be seen for the ε being used.
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Then the Schrödinger equation is:

iεψεt = −ε
2

2
ψεxx +

[
cos
(x
ε

)
+ (U0 − βx)

]
ψε, (2.3.1)

with the initial data given as a wave packet along the 4th band:

ψI = a0(x) Φ1

(x
ε
, ∂xS0(x)

)
eiS0(x)/ε, with S0(x) = p∗x. (2.3.2)

Correspondingly, the Liouville-A becomes:

∂tσ + β∂pσ = Rσ, (2.3.3a)

σ(0, x, p) = σI(x, p) = |a0(x)|2δ (p− ∂xS0(x))

(
1 0 0 0

)T
, (2.3.3b)

with R given by:

R = −βC +
iD

ε
−A∂x. (2.3.4)

To numerically compute it, the difficulty is two fold. Firstly, the solution is highly oscillatory,

and typical numerical method calls for very dense mesh that generates a great amount of

computational cost; and secondly, the initial data is a delta function and numerically it can

be tricky to solve. To resolve the first issue, we rely on the fact that β is a constant and

characteristic could be explicitly expressed, following which, the main part of the numerical

integration, the solution to the equation, could be repeated used, and is thus evaluated only

once at the beginning of computation, as will be more clear later on. To better interpret

the delta function in the initial data, instead of following the classical approach: i.e. using

a Gaussian function with small variance to approximate the delta function, with the error is

related to this variance, we will adopt a singularity decomposition idea invented in [114].

The computation is done for the Liouville-A system. Liouville-S can be computed in exactly
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the same way.

A Fourier transform based integration method

We define the Fourier transform of f(t, x, p) with respect to x as:

f̂(t, η, p) =

∫
R
e−iηxf(t, x, p)dx.

Perform this transform on Liouville-A (2.3.3a), one gets:

∂tσ̂ + β ∂pσ̂ =

(
−βC +

iD

ε
− iηA

)
σ̂ =: R̂σ̂

In this special case, β is a constant so the characteristic line can be obtained analytically. As a

consequence one can avoid using the dense mesh that is required by high oscillation introduced

from iD
ε term. We take the first time step t ∈ [0,∆t] for example. Along the characteristic line

p(t) = p0 + βt, one evaluates σ̂ and R̂ at (t, p(t), η) and has:

dσ̂

dt
= R̂ σ̂.

The solution to this ODE system could be explicitly written down:

σ̂11(t) =σ̂11(0)−
∫ t

0
iη ∂pE1 σ̂11(t)dt

+

∫ t

0

(
β(φ12σ̂12 − φ21σ̂21)− iη ψ12σ̂12

)
dt ,

(2.3.5a)

and

σ̂12(t) =e
∫ t
0 K

ε(τ)dτ σ̂12(0)

+

∫ t

0
e
∫ t
s K

ε(τ)dτ
(
G(s)σ̂11(s)−H(s)σ̂22(s)

)
ds ,

(2.3.5b)
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where:

Kε =
i

ε
(E2 − E1)− iη ∂pE2 − β(φ11 − φ22),

and

G = −βφ̄12 − iηψ21, H = βφ̄12.

For t small, one obtains an approximation to (2.3.5):

σ̂11(t) ≈ σ̂11(0)− iηt∂pE1

(
p(t)

)
σ̂11(t)

+
(
βφ12(0)− iηψ12(0)

) ∫ t

0
σ̂12dt− βφ21(0)

∫ t

0
σ̂21dt , (2.3.6a)

σ̂12(t) ≈ σ̂12(0)e
∫ t
0 K

ε(τ)dτ

+
(
G(0)σ̂11(0)−H(0)σ̂22(0)

) ∫ t

0
e
∫ t
s K

ε(τ)dτds . (2.3.6b)

Note that this approximation introduces (∆t)2 numerical error. Plug (2.3.6b) into (2.3.6a), to

evaluate σ̂11(∆t) and σ̂12(∆t), one needs to compute:

F0 := e
∫ t
0 K

ε(τ)dτ ,

F1 :=

∫ ∆t

0
e
∫ t
0 K

ε(τ)dτ dt,

F2 :=

∫ ∆t

0

∫ t

0
e
∫ t
s K

ε(τ)dτ ds dt.

It is not a easy job to compute these three since their integrands are highly oscillatory. However,

if one chooses ∆t such that |β|∆t = ∆p, then at each time step the grid points of p(t) lie on the

characteristics, and these three could be repeated used. In fact, we compute them only once

(with a highly resolved calculation) at the very beginning. The analysis for stability could be

tricky and we do that for a simpler model problem in Appendix A.2.
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A singularity decomposition idea

To handle the delta function in the initial condition (2.3.3b), one usually approximates

it with a Gaussian function with small variance, and numerical error was determined by the

width of the Gaussian. What is more, the Gaussian may lose its accuracy by expanding along

the evolution and the analysis can be nasty. As stated before, in some special cases, this error

could be avoided. In fact, as we can see, (2.3.3a) is linear, and the solution keeps being a

delta function if it starts as one, in p direction, and one only needs to figure out the position

of the delta function and its amplitude. This observation obviously suggests a singularity

decomposition idea, which is also used in [114]. Write the ansatz of σ̂mn(t, x, p) as:

σ(t, x, p) = ω(t, x, p) δ
(
θ(t, p)

)
(2.3.7)

in which:

• θ(t, p) = p− (p∗ + βt), which solves the Liouville equation

∂tθ + β ∂pθ = 0 ,

• ω satisfies the same equation as σ:

∂tω + β ∂pω = Rω . (2.3.8)
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These can be proved by simple derivations. Formally, one has

∂σ

∂t
=

∂

∂t

(
ω δ(θ)

)
=
∂ω

∂t
δ(θ) + ω δ′(θ)

∂θ

∂t

= Rω δ(θ)− β∂ω
∂p

δ(θ)− βω δ′(θ)

= Rω δ(θ)− β∂ω
∂p

δ(θ)− βω δ′(θ)∂θ
∂p

= Rω δ(θ)− β ∂

∂p

(
ω δ(θ)

)
= Rσ − β∂σ

∂p
.

The equalities above should be understood in the distributional sense. The decomposition

(2.3.7) enables one to solve for ω and θ separately with good (bounded) initial data |a0(x)|2

and ∂xS0(x) respectively. The equation ω satisfies is the same as the one for σ, thus the

numerical method introduced in Section 2.3.1 can be used. In the final output, one needs to

get back to σ using (2.3.7), so a discrete delta approximation is only needed at the output

time, not during time evolution.

Numerical experiments

We implement the numerical method with the following data

β = 1, p∗ = −0.25, a0(x) = exp

(
−25(x− π)2

2

)
. (2.3.9)

To verify the accuracy, we compare our numerical methods with the one given by directly

compute the original Schrödinger equation. The output is the density, the cumulative density

function (c.d.f.) and mass in the 1st band, defined respectively by:

ρε = |ψε|2, γε =

∫ x

−∞
ρε(y)dy, m1(t) =

∫
|P1ψ

ε(t, x)|2dx , (2.3.10)
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where Pn is the projection onto the nth band:

Pnψ(x) =

∫
B

dp

∫
R

dyψ(y)Ψ̄n(y, p)Ψn(x, p), φ ∈ L2(R), m ∈ N .

The two integrals in (2.3.10) are calculated by the midpoint quadrature rule numerically.

Figure 2.3.2 shows the density and c.d.f. computed for the Schrödinger equation, the

Liouville-A and the Liouville-S respectively at t = 0.5. The results match quite well.

Figure 2.3.3 shows the evolution of m1 as a function of time t. One can see the total

mass on the first band jumps down at around t = 0.25, when the momentum p reaches

pc = 0, reflecting the 4th-to-5th band transition. The experiment also shows that smaller

ε gives smaller transition rate. Note that some small oscillations occur around the crossing

region. They are related to the interference phenomena, and are usually called the Stueckelberg

oscillation [38, 175, 184].

Define L1 error in the cumulative distribution function (c.d.f.) [125, 82]:

Errε(t) =

∫
R

∣∣∣∣∫ x

−∞

(
ρεS(t, z)− ρεL(t, z)

)
dz

∣∣∣∣ dx, (2.3.11)

where ρεS and ρεL denote the density calculated by the Schrödinger equation and the Liouville

system respectively. Numerically we compute (2.3.11) using the midpoint quadrature rule.

Figure 2.3.4 shows this at time t = 0.5. As ε → 0, the Liouville system gets more accurate,

and the error decreases with the speed of O(ε).

2.3.2 A domain decomposition computation

This section shows examples with nonlinear U(x). For this general case, the p-characteristic

is no longer a straight line, and we do not have the fast solver in the previous section any more.

To numerically solve Liouville-A, we use the domain decomposition method. The convection
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Figure 2.3.2: Periodic potential problem. Linear U(x). t = 0.5. The left and right column are
for the position density ρε, and c.d.f. γε respectively. The solid line, the dash line and the
dotted line are the numerical solutions to the Schrödinger, the Liouville-A and the Liouville-S
respectively.
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Figure 2.3.3: Periodic potential problem. Linear U(x). Time evolution of m1(t) defined in
(2.3.10).
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Figure 2.3.4: Periodic potential problem. Linear U(x). Errε as function of ε at t = 0.5.

terms are handled by classical finite volume method.

We compute the Liouville-A system with both a pure and a mixed state initial data with:

U(x) = −x− sinx

2
.

Example 1: A pure state initial data

In this example, we use the same pure state initial data as in the previous example

(2.3.2),(2.3.9). Correspondingly, the initial data for the Liouville-A system is given by (2.3.3b).

Numerically a Gaussian function centered at p∗ with variance of ε/16 is used to approximate

the δ−function.

Figures 2.3.5 and 2.3.6 show the density, the c.d.f at t = 0.5 and evolution of m1 (2.3.10)

computed for both the Schrödinger equation and the Liouville-A system. The numerical results

for the two systems agree well. Figure 2.3.7 gives decay of Errε (2.3.11) with respect to ε.
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Figure 2.3.5: Periodic potential problem. Example 1. t = 0.5. The left and right columns
show the position density ρε, and the c.d.f. γε respectively.



49

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

1.2

t

m
1

 

 

Schrödinger
Liouville-A

(a) ε = 2−8

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

1.2

t

m
1

 

 

Schrödinger
Liouville-A

(b) ε = 2−9

0 0.1 0.2 0.3 0.4 0.5
0.2

0.4

0.6

0.8

1

1.2

t

m
1

 

 

Schrödinger
Liouville-A

(c) ε = 2−10

0 0.1 0.2 0.3 0.4 0.5
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

t

m
1

 

 

Schrödinger
Liouville-A

(d) ε = 2−11

Figure 2.3.6: Periodic potential problem. Example 1. Time evolution of m1(t) defined in
(2.3.10).
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The numerical results show that the hybrid model can capture the band-to-band transition
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Figure 2.3.7: Periodic potential problem. Example 1. The L1 error Errε between Liouville-A
and the Schrödinger solution at t = 0.5.

phenomena, and the error decays like O(ε).

Remark 2.3.1. As Ux varies with x, the wave packet becomes de-coherent. This weakens

the interference phenomenon[38, 175, 184]. As one can see in Figure 2.3.6, the Stueckelberg

oscillations around the crossing region is much weaker than those in the previous example.

Example 2: A mixed state initial data.

This example is for the case when the initial data is a mixed state:

ψI = a0(x)
[
Φ1

(x
ε
, p∗
)

eip∗x/ε + Φ2

(x
ε
, p∗
)

eip∗x/ε
]
, p∗ = −0.25.
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Correspondingly, the initial data for the semi-classical Liouville system should be:

σ = a2
0(x) δ(p− p∗) [1, 1, 1, 1]T .

Since p∗ is away from the crossing point and σ12 and σ21 weakly converge to zero as ε → 0,

numerically, we regard them as zero and use

σ ≈ a2
0(x) δG(p− p∗) [1, 0, 0, 1]T

as the initial condition, where δG(p) is a Gaussian function centered at zero.

The density and the c.d.f. are computed for the Liouville-A and the Schrödinger, compared

in Figure 2.3.8. Errε as a function of ε is shown in Figure 2.3.9.
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Figure 2.3.8: Periodic potential problem. Example 2. At time t = 0.5. The left and the right
columns show the position density ρε, and the c.d.f. γε respectively.
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t = 0.5.
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Chapter 3

Semi-classical description of

molecular dynamics

In this chapter we study a many body problem with N nuclei and n electrons. Semi-

classically, nuclei could jump across different energy surfaces. Around the intersection point

where two or more energy surfaces get close or even touch, such quantum transitions can be

influential. This quantum molecular dynamics problem plays an important role in analyzing

chemical reaction system, and has many interesting applications in chemistry, physics and

biology.

An interesting story is about bioluminescence of fireflies [179]. In this luciferin-luciferase

system, the luciferase-bound dioxetanone climbs up to an excited energy state through inter-

section point, producing excited-state luciferase-bound oxyluciferin, who falls back later on to

the electronic ground state, with the emission of a visible photon. Most other bioluminescence

systems undergo the same mechanism, and similar schematic models are used to interpret

them [195]. In general, most chemical reaction could be explained by such energy transition in

the quantum regime. Many other applications can also be found in [157, 158, 203]. Also see a

review in [28], and [196].

Despite its importance, the understanding to most such problems is very limited. Many

models in interpreting the real chemical reaction process are very much simplified to be prac-

tical, but even for the simplified model, very little quantitative analysis is achieved. The
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numerical developments for this surface hopping problem around intersection points are far

from being satisfactory either. Usually to deal with the many body problems in which two

types of particles have disparate masses, people use the Born-Oppenheimer approximation.

The idea is that the heavy particles are much more reluctant to move than the light ones and

thus one could separate the motion of the two types of particles. In our problem to be specific,

energy band structure for the electrons is solved first with fixed configuration of nuclei as they

are considered at rest. However, this approximation is only valid when energy surfaces are very

well-separated, and when they get close to each other, the transition between eigenfunctions

should be taken care of.

In chemistry community, direct computation on carefully designed orthogonal basis has

been used, namely discrete variable representation. The algorithm dates back to [51, 99] and

was popularized in a series of work in 80s, see a review paper in [145]. However, the orthogonal

basis for the wave function to is usually defined on the grid points in the physical domain,

leading to high computational cost, even after fast solvers are applied [16]. Another approach

is the probabilistic algorithms that rely on the Landau-Zener formula, derived in [131, 202],

and proved with better accuracy in [91, 13, 108, 127]. The transition rate given by the formula

presents the total probability of a particle jumping from one band to another, whose trajectory

passes through the entire domain. With some simplification, it is shown that in the leading

order, the rate only depends on the smallest gap between the energy bands. This approach is

adopted in computation, called surface hopping method, initiated in [185] and studied more

thoroughly in [184, 189, 136] on the physical space, as summarized in [55]. In [130, 136]

the authors implemented the same idea in the phase space using particle method, under the

framework of the Wigner transform, and the underlying analysis is carried out in [137, 62].

Eulerian framework was adopted later on in [118, 117] for uniform global accuracy. However,

in all of these methods, it is assumed that the transition takes place locally in the spatial space
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– around the intersection point, based on the argument that the transition away from it is

exponentially small and thus is treated as zero. Numerically it simplifies the computation a

great deal, however, due to the brutal physical simplification, part of the transition is for sure

missing.

Our approach is to look for semi-classical models in phase space that capture the correct

transition rate. We are going to derive a set of equations in phase space using Wigner trans-

formation and Weyl quantization. These two counterparts link pseudo-operators with phase

space functions in different directions. In our approach, we do not cumulate all the transi-

tions into one number, but instead the transition rates are functions in phase space, that are

naturally characterized by the off diagonal entries in the Wigner matrix. We find the equa-

tions that govern their evolution in time, and we also compare our model with the classical

model for adiabatic system where bands are assumed to be well-separated. In the adiabatic

regions, these two models are consistent. Numerically we use domain decomposition idea, and

take advantage of both models: based on the degeneracy of eigenvalues, we apply appropriate

models in different regions, so that the model could be computed cheaply with the transition

rate captured correctly.

In section 3.1 we give a brief review of the background of the problem. Our model will

be presented in section 3.2: in subsection 3.2.1 we introduce the Weyl quantization and its

associated operations including Moyal product, that will be used to derive the equations for

both adiabatic and non-adiabatic cases in subsection 3.2.2. The connection between the two

systems will be shown in subsection 3.2.3. Based on the conclusion obtained there, numerical

method are constructed. Numerical examples will be shown in section 3.3.
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3.1 Born-Oppenheimer approximation and problem background

The Schrödinger equation for the quantum molecular dynamics is given by:

i~∂tΦ(t,x,y) = HΦ(t,x,y), (3.1.1)

Φ(0,x,y) = Φ0(x,y). (3.1.2)

Here ~ is the Planck constant, Φ is the wave function that depends on time t, position of nuclei

x ∈ R3N and position of electrons y ∈ R3n with N and n standing for the number of particles

and 3 is the dimension. H is the Hamiltonian, and in this circumstance, it is given by:

H = −
N∑
j=1

~2

2Mj
∆xj −

n∑
j=1

~2

2mj
∆yj +

∑
j<k

1

|yj − yk|
+
∑
j<k

ZjZk
|xj − xk|

−
N∑
j=1

n∑
k=1

Zj
|xj − yk|

.

The first two terms represent kinetic energy for the two particles, and the last three are the

Coulomb potential. mi, Mi and Zi stand for mass of electron, nucleus and electric charge

respectively. We combine the last four terms all together and call it electronic Hamiltonian,

denoted by He.

This equation is a general setting for describing chemical systems, but is cursed by its high

dimensionality for practical use. For instance the benzene molecule consists of 12 nuclei and

42 electrons, and thus has 162 spacial variable – generating very high computation cost. A

standard way to reduce the degree of freedom is to use Born-Oppenheimer approximation [22].

The approximation was derived for the Schrödinger equation for molecular dynamics and was

used to describe chemical reactions [148]. We explain in detail about the set up of the problem

in 3.1.1 and discuss its basic properties in 3.1.2.
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3.1.1 Equation set up

The Born-Oppenheimer approximation is based on the observation that the mass ratio

between nucleus and electron is very high, and intuitively the motion of the nuclei should be

much slower than that of electrons. As argued in the original paper [22], the electrons quickly

adjust themselves in response to the slow motion of nuclei, and they stay on the n-th energy

band if they start on it, determined as though the nuclei were not moving. The impact from

the electrons to the nuclei is taken as an effective potential, and due to the disparity of the

masses, it is seen that the nuclei obey semi-classical motion. This property makes it possible

for us to separate the two motions and solve them one by one. Mathematically, one could break

the wavefunction of a molecule into the electronic and nuclear component, i.e. we write the

solution to the original Schrödinger equation as a separable function with one element dealing

with electrons and the other dealing with nuclei. We solve the part for electron first. Since

nuclei move at much slower speed, in a short time period, their configurations are regarded

fixed, and the spectrum for the electronic part with these fixed parameters are solved. In this

step, only the spatial variables of electrons are involved. The second step is to solve the nuclei

part with the spectrum, in which only nuclei are computed. In both of these two steps, only

a portion of variables are involved, which highly reduced the degree of freedom.

The whole idea starts with the marvelous intuition of Born and Oppenheimer. In their

original paper, it is assumed that the mass ratio is going to infinity, so asymptotic expansion

could be formally carried out. In the leading order, the nuclei are at their optimal configuration,

namely, the minimal point of the given energy surface. The original paper was done using

Taylor expansion assuming that the energy surfaces are smooth enough. The understanding

that the vibration and rotation could be properly separated is achieved in [58]. The rigorous

mathematical verification on its validity was not carried out till about half a century later [41,

90, 178]. For Gaussian wave packet, Hagedorn proved the validity of this approximation to high
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orders in [93, 94], for smooth potential and the more realistic Coulomb potential respectively,

and the exponentially small error is acquired in [97]. All the analysis is carried out under the

assumption that energy surfaces are very well separated.

We start with nondimensionalization, and analyze the validity of the approximation.

Non-dimensionalization

Denote L, T and Ω as the typical scale for length, time and mass, and we rescale the

parameters:

t̃ =
t

T
, x̃ =

x

L
, ỹ =

y

L
, m̃ =

m

Ω
, M̃ =

M

Ω
, (3.1.3)

The Hamiltonian is nondimensionalized too:

H̃e(ỹ, x̃) =
m̃T 2

ΩL2
He(y,x). (3.1.4)

Dropping the tildes the equation becomes:

iδm∂tΦ = −
N∑
j=1

δ2m

2M
∆xjΦ +HeΦ, (3.1.5)

with δ = ~T
ΩL2 . In the scale when δ = 1 and t̂ = t̃√

mM
, we define ε =

√
m
M and have the

following:

iε∂tΦ = −
N∑
j=1

ε2

2
∆xjΦ +HeΦ. (3.1.6)

In the equation (3.1.6), He is in the electronic Hamiltonian. As argued above, one has two

steps in the computation:

1st step: We solve for the spectrum of He in term of yj , with xj regarded as fixed parameters by
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computing the following eigenvalue problem:

He(y,x)φk(y; x) = Ek(x)φk(y; x), k = 1, 2, · · · . (3.1.7)

Ek are called energy surfaces, and they depend on x. Here we assume He has complete

set of orthonormal eigenfunctions φk:

〈φi, φj〉 =

∫
φ∗iφjdy = δij , (3.1.8)

with δij being the Kronecker delta and “∗” is the conjugate transpose. Since φi gives a

basis we expand Φ on it, and the projection coefficients, denoted by χi, depend on time

t and x:

Φ(t, x, y) =
∑
k

χk(t,x)φk(y; x). (3.1.9)

2nd step: Solve for χk by plugging the ansatz (3.1.9) into (3.1.6) and perform 〈·, φk〉. The equation

we get is:

iεχk =

−∑
j

ε2

2
∆xj + Ek(x)

χk +
∑
l

Cklχl, (3.1.10)

with

Ckl = 〈φk,−
∑
j

ε2

2
∆xjφl〉y −

∑
j

ε2〈φk,∇xjφl〉 · ∇xj .

In a compact form, it is equivalent to:

iεχ =

[
−ε

2

2
(∇x +Ageo)

2 + E

]
χ, (3.1.11)

where Ageo is a matrix with its ij-th component being a Berry connection 〈Φi|∇xΦj〉. E

is a diagonal matrix with Eij = Ei(x)δij .
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The Born-Oppenheimer approximation

In equation (3.1.10), it is the C term that complicates the system (also the Ageo term in

(3.1.11)). Depending on whether it is negligible, the Born-Oppenheimer approximation could

be valid or not, and whenever it breaks down, we perform the diabatic representation, to be

specific:

• It is shown that when energy surfaces Ek are very well separated, i.e. Ei − Ej =

O(1), ∀i 6= j, Ageo is considerably negligible compared to that of ∇x. We throw it

away, and (3.1.11) becomes the Born-Oppenheimer approximation:

iεχ =

(
−ε

2

2
∆x + E

)
χ, (3.1.12)

• When two adjacent energy bands get close to each other, for example Ej−Ej−1 � O(1),

Ageo can be as large as 1
|Ej−Ej−1| . In this case, (3.1.12) no longer holds. However,

mathematically (3.1.12) has a nicer form, and we seek for similar expression by performing

diabetic presentation [2] as below.

Define a new basis by a unitary transformation Φ̃k(t,x) = S(x)Φk(t,x). Upon this new

basis, the equation becomes:

iε∂tχ̃ =

[
−ε

2

2

(
∇x + Ãgeo

)2
+ Ẽ

]
χ̃, (3.1.13)

where Ãgeo = S†AgeoS + S†(∇xS) and Ẽ = S†ES is no longer diagonal, but is still

symmetric. Select S in a smart way to make Ãgeo = 0 (for possibilities of such operations,

see [152]):

iεχ̃ =

[
−ε

2

2
∆x + Ẽ(x)

]
χ̃. (3.1.14)

Note Ẽ is no loner diagonalized.
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In both of these two cases, we arrive at a similar expression with E as a function of x, either

diagonal (when BO approximation is valid) or not (when it breaks down).

For both simplicity and consistency, we adjust the notation as following:

iε
∂ψε

∂t
(t,x) =

(
−ε

2

2
∆x + Ṽ (x)

)
ψε(t,x), (t,x) ∈

(
R+,Rd

)
(3.1.15)

ψε(0,x) = ψε0(x) (3.1.16)

Here ψ is a vector and Ṽ (x) is a symmetric matrix. Assume we are studying a 2-bands system

(with easy extension to multi-bands) and the potential reads as:

Ṽ (x) =
1

2
trṼ (x) +

 u(x) v(x)

v(x) −u(x)

 . (3.1.17)

The trace part is denoted by U(x) and the remainder as V (x). ψε ∈ C2 in this case.

3.1.2 Basic properties

Apparently, the Hamiltonian operator of the system is:

Ĥ =

(
−ε

2

2
∆x + U(x)

)
I + V (x), (3.1.18)

with I as the 2× 2 identity matrix. Diagonalize the potential matrix V (x), one has:

ΘVΘ† = ΛV , (3.1.19)
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with:

Θ(x) =
1√

2

(
1 + u(x)√

u(x)2+v(x)2

)
 1 + u(x)√

u(x)2+v(x)2

v(x)√
u(x)2+v(x)2

− v(x)√
u(x)2+v(x)2

1 + u(x)√
u(x)2+v(x)2

 . (3.1.20)

Here:

ΛV = diag
(
λ+
V , λ

−
V

)
= diag

(√
u2(x) + v2(x),−

√
u2(x) + v2(x)

)
, (3.1.21)

is a diagonal matrix with the two eigenvalues denoted as λ±V . We also use χ± to denote the

two columns of Θ† standing for normalized eigenvectors associated with λ±V .

If the two eigenvalues are very well separated for all x, one could diagonalize the system

and compute two separate Schrödinger equations. However, sometimes the two eigenvalues

degenerate, as u(x) = v(x) = 0 here; and when this happens, the eigenvector space associated

with the single eigenvalue is 2 dimensional, and one could not distinguish two quantum states.

In fact, ambiguity emerges in defining the right eigenfunctions: limit for (3.1.20) does not even

exist as u(x) and v(x) go to zero. The standard mathematical decomposition method breaks

down at the surface hopping point, and it is our main goal to find the right mathematical

description of the system that keeps its validation even at the intersection.

3.2 Semi-classical models

In this section we use the Wigner transform approach to derive a semi-classical model,

for both adiabatic and non-adiabatic cases. As defined in (1.2.1), the Wigner function is the

inverse Fourier transform of the density matrix:

F ε(x,p) =
1

(2π)d

∫
ρε
(
x− εy

2
,x +

εy

2

)
eip·y dy, (3.2.1)
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where ρε is the density matrix:

ρε(x,x′) = ψε(x)⊗ ψε(x′). (3.2.2)

ψε is the complex conjugate of ψε. As in (1.2.2), one could express the formula in bra-ket

language [201]:

F ε(x,p) =

∫
Rd

dy

(2π)d
〈x− ε

2
y|ρ̂|x +

ε

2
y〉eip·y, (3.2.3)

with ρ̂ = |ψε〉〈ψε| standing for the density operator.

Unlike in the scalar case, here the Wigner function is a 2×2 matrix, and the collision term

is much more complicated than the one in (1.2.5). Simple derivation gives, if ψε solves the

Schrödinger equation (1.1.1), then F solves the Wigner equation:

∂tF
ε + p · ∇xF

ε + Ξ[UI + V ]F ε = 0, (3.2.4)

where Ξ[V ] is an operator that, when acted on the density matrix F ε, gives:

Ξ[V ]F ε =

∫
R2d

V
(
x− εy

2

)
F ε(x,p′)− F ε(x,p′)V

(
x + εy

2

)
−i(2π)dε

ei(p′−p)·ydp′ dy.

Note that unlike the usual case in (1.2.6) where V (x − εy
2 ) − V (x + εy

2 ) gives ∇xV (x) in the

limiting regime, here both F and V are matrices, and it is no longer guaranteed that F and

V commute. The techniques we use to overcome this difficulty is the Weyl quantization to be

introduced in the following subsection.

3.2.1 Weyl quantization and Wigner transform

The Weyl quantization was found in [192] in 1927, and was brought into the field in [74].

It was firstly adopted in [153] for non-adiabatic situation, and later on extended to graphene
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controlled by the Dirac equation [154]. The computation for the avoided crossing is done

in [36].

The Weyl quantization maps functions defined in phase space to pseudo-operators. As will

be shown later, the Wigner transform could be regarded as the inverse Weyl quantization.

The restrictions for the Wigner equation do not appear in the pseudo-operator space, and our

strategy is to perform diagonalization on this space and map it back. We mention here that

the way to bridge the two spaces is not unique [100] and all these mapping techniques are

equivalent as summarized in [40].

Weyl Quantization

Given one function A(x, p), called a symbol, in phase space, the Weyl quantization gives

its associated operator Â =W(A) such that, for an arbitrary function h(x,y) ∈ S(Rd × Rd),

W(A)[h](x) = Â[h](x) =
1

(2πε)d

∫ ∫
A

(
x + y

2
,p

)
h(x,y) e

i
ε
(x−y)·p dp dy. (3.2.5)

We list two examples here, both of which can be justified by simple derivation:

1. if A(x,p) is the Wigner function F ε, then

F̂ [h](x) =
1

(2πε)d

∫
ρ(x,x′)h(x′) dx′. (3.2.6)

In bra-ket language, F̂ is exactly ρ̂ = |ψ〉〈ψ|, and F̂ [h](x) is simply 〈x|ψ〉〈ψ|h〉. Therefore,

in this case, the Weyl quantization can be regarded as the inverse Wigner transform.

2. if A(x,p) is the Hamiltonian H(x,p) =
(
p2

2 + U(x)
)
I + V (x), then:

Ĥ[h](x) =

(
ε2

2
∆x + U(x)I

)
h(x) + V (x)h(x) (3.2.7)
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is the Hamiltonian operator.

We also list a few important properties [103]:

(a) the mapping is one to one, and the inverse mapping is denoted by A =W−1(Â);

(b) W(A#B) =W(A)W(B); where the operation # is called the Moyal product defined as:

A#B := Ae
iε
2

(←−
∇x·
−→
∇p−

←−
∇p·
−→
∇x

)
B, (3.2.8)

where the arrows indicate on which symbol the gradients act. Another less useful form

for Moyal product is:

A#B =
1

(2π)2d

∫
A
(
x− ε

2
η,p +

ε

2
µ
)
B(x′,p′)ei(x−x′)·µ+i(p−p′)·ηdµdx′dηdp′.

Both these two formulas could be verified through simple derivation.

(c) if A is a function only on x, then Â = A;

von Neumann equation

With the Schrödinger equation (3.1.15), one could derive the equation satisfied by F̂ : the

von Neumann equation [27, 174]:

iεF̂ = [Ĥ, F̂ ] (3.2.9)

where [Â, B̂] = ÂB̂ − B̂Â is the commutation operation and Ĥ is the Hamiltonian defined in

(3.1.18).

Remark 3.2.1. (3.2.9) is in fact very easy to be derived in bra-ket language. We start with

the Schrödinger equation iε∂t|ψε〉 = Ĥ|ψε〉 , and its conjugate transpose −iε∂t〈ψε| = 〈ψε|Ĥ.
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The von Neumann equation is their simple combination:

iε∂tF̂ = iε∂t (|ψε〉〈ψε|) = iε (∂t|ψε〉) 〈ψε|+ iε|ψε〉∂t〈ψε|

= Ĥ|ψε〉〈ψε| − |ψε〉〈ψε|Ĥ = [Ĥ, F̂ ].

Here the symbol associated to Ĥ is not diagonalized. By the structure given from (3.1.19)

to (3.1.21), we define Θ̂ and Θ̂† as the Weyl quantization of Θ and Θ† respectively and multiply

them on two sides of (3.2.9). Symbolically we get:

iε
∂F̂ ′

∂t
=
[
Ĥ ′, F̂ ′

]
=

[
−∆x

2
+ U(x)I, F̂ ′

]
+
[
Λ̂V , F̂

′
]
. (3.2.10)

Here we use new density operator F̂ ′ = Θ̂ F̂ Θ̂†, new Hamiltonian Ĥ ′ = Θ̂ Ĥ Θ̂†. According to

the definition of Θ, Θ̂V̂ Θ̂† = Λ̂V .

Remark 3.2.2. Note the new Hamiltonian is not diagonalized, but the potential part is. The

symbol for the new Hamiltonian is

(
p2

2
+ U(x)

)
I + ΛV .

We will show computation for the exact expression of H ′ later on in (3.2.17).

3.2.2 Adiabatic and non-adiabatic models

In this section we make use of the tools developed above to derive the model for both the

adiabatic and non-adiabatic situations. The computation is done only formally.
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Adiabatic case

Define the crossing set:

S = {x : λ+(x) = λ−(x)}. (3.2.11)

In this section we deal with adiabatic case and the energy bands are assumed to be very well

separated, i.e. the following assumption holds:

Assumption 3.2.1. The eigenvalues of the system do not degenerate, i.e. the two energy

bands are very well separated. In our case, where the potential term is of the form (3.1.17), it

is simply λ−V 6= λ+
V 6= 0, and u2(x) + v2(x) is never zero. In other words, S is empty.

Following [74, 147], we define the matrices:

Π±(x,k) = χ±(x,k)⊗ χ±(x,k).

They reflect the orthogonal projection onto the eigen-spaces correspond to λ±(x,k) respec-

tively. With these, we study the following limit of the Wigner function, defined as:

lim
ε→0

F (t,x,p) = F 0(t,x,p).

According to Theorem 6.1 in [74], outside the crossing set, the Wigner measure can be decom-

posed as:

F 0(t, ·) = Π+F
0(t, ·)Π+ + Π−F

0(t, ·)Π− (3.2.12a)

= f+(t, ·)Π+ + f−(t, ·)Π−, (3.2.12b)

where f± = Tr(Π±F
0(t, ·)) are scalar functions standing for the phase space probability den-

sities on the associated energy levels. The first equivalence comes from the fact that F 0
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commutes with the projection operator Π± as proved in the theorem, and (3.2.12b) is because

the eigen-spaces are one-dimensional. The equation that controls the propagation of f± are:

∂tf
± +∇pλ

± · ∇xf
± −∇xλ

± · ∇pf
± = 0, t > 0, x ∈ Rd \ S, p ∈ Rd,

f±(t = 0,x,p) = Tr(Π±F
0(t = 0,x,p)) (3.2.13)

Noted that the theory above is based on the adiabatic assumption, so that degeneracy is

avoided and one is able to distinguish the projections onto different functions.

Quantum transition in non-adiabatic case

In this subsection we investigate the situation when the assumption breaks down and energy

bands get close to each other. This situation cannot be avoided as long as the trajectories of

f± come across S. In fact, dates back to [188], people have realized that the crossing set, if ever

exists, is of measure zero, however, its influence is significant. In history, to fix this new problem

on the degeneracy, people have tried adopting Landau-Zener formula in both Lagrangian and

Eulerian approach with finite volume or Gaussian beam numerical methods [185, 136, 118, 117].

Our idea is based on the von Neumann equation in (3.2.9) [153, 154], upon which we apply

the inverse Weyl map. As one can see later, this approach naturally gives the functions that

represent the transition rate. It will also be shown that away from S, the transition rate is

weakly zero and makes no impact on the whole system. This is consistent with (3.2.13). In

this sense, we consider (3.2.13) as the weak limit of the new model.

As in (3.2.10), we have obtained a diagonalized equation on the symbolic side. To obtain

its counterpart in phase function space, we perform the inverse Weyl mapping, and the new

evolution equation reads as:

iε
∂F ′

∂t
=
[
H ′, F ′

]
#
, (3.2.14)
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where the commutator [A,B]# = A#B − B#A with # being the Moyal product defined in

(3.2.8). and H ′ and F ′ are symbols associated to Ĥ ′ and F̂ ′ respectively:


H ′(x,p) = Θ(x)#H(x,p)#Θ(x)†

F ′(x,p) = Θ(x)#F (x,p)#Θ(x)†
. (3.2.15)

To further derive the equation, we truncate the Moyal product to its second order:

A#B = AB − iε

2
{A,B}+O(ε2), (3.2.16)

where the Poisson bracket is {A,B} = ∇pA·∇xB−∇xA·∇pB . Thus the symbol H ′ becomes:

H ′(x,p) = Λ(x,p) + iεp · ∇xΘ(x)Θ†(x) +
ε2

2
∇xΘ(x) · ∇xΘ†(x). (3.2.17)

Plug it into (3.2.14), equation for F ′ is obtained, and to the first order of ε, the semi-classical

limit gives (derivations are omitted here and details could be found in Appendix A.3):



∂f+

∂t = −p · ∇xf
+ +∇x

(
U + Eg

)
· ∇pf

+ + 2ξ<{f i}

∂f−

∂t = −p · ∇xf
− +∇x

(
U − Eg

)
· ∇pf

− − 2ξ<{f i}

∂f i

∂t = −p · ∇xf
i +∇xU · ∇pf

i + ξ(f− − f+) +
2Eg
iε f

i

. (3.2.18)

Here < stands for the real part, and the energy gap is 2Eg = 2
√
u2 + v2. ξ is defined by:

ξ =
1

2Eg
p · (∇xv(x) cosφ−∇xu(x) sinφ) , (3.2.19)

with φ being the angle of the potential: cosφ = u(x)
Eg

and sinφ = v(x)
Eg

. The three scalar
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functions are the four components of F ′ as in:

F ′ =

 f+ f i

f̄ i f−

 . (3.2.20)

We split f i into the real part and imaginary part by defining fR =
√

2
2 (f i + f i) and f I =

√
2

2i (f i − f i). Then the system becomes:

d

dt
~f = −p · ∇x ~f +A · ∇p ~f +B · ~f, (3.2.21)

with:

A = diag(∇x(U + Eg),∇x(U − Eg),∇xU,∇xU),

B =



0 0
√

2ξ 0

0 0 −
√

2ξ 0

−
√

2ξ
√

2ξ 0
2Eg
ε

0 0 −2Eg
ε 0


.

B is anti-symmetric, and thus the evolution operator is unitary, so the L2 norm of this hy-

perbolic system remains unchanged. In this setting, f± reveal the projection coefficients onto

different bands, and f i naturally arise representing the transition rate between two bands. Our

numerical method is designed for this equation.
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Initial condition for the Wigner function in the semi-classical limit

In this subsection we derive the initial condition in the semi-classical regime. In particular,

we concern about the transform of the following initial data for the Schrödinger system (1.1.1):

ψε(t = 0,x) = ψε0(x) = gε0(x)
(
a+χ+(x) + a−χ−(x)

)
, (3.2.22)

where, gε0 is an ε-scaled Gaussian packet:

gε0(x) =
1

(πε)d/4
exp

{
− 1

2ε
|x− x0|2 +

i

ε
p0 · (x− x0)

}
. (3.2.23)

Plug it into the definition of the associated Wigner function (3.2.1), we get:

F ε(t = 0,x,p) ∼ 1

(πε)d
exp

{
−1

ε
|x− x0|2 −

1

ε
|p− p0|2

}
×
(
(a+)2 χ+ ⊗ χ+ + (a−)2 χ− ⊗ χ−

)
. (3.2.24)

and in the zero limit of ε, it goes to:

δ(x− x0,p− p0)
(
(a+)2 χ+ ⊗ χ+ + (a−)2 χ− ⊗ χ−

)
, as ε→ 0.

The corresponding diagonalized symbol is F ′ defined in (3.2.15):

F ′(t = 0,x,p) = Θ(x)#F (t = 0,x,p)#Θ(x)†,

ε→0−−−→ Θ(x)F (t = 0,x,p)Θ(x)†. (3.2.25)
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To be specific, simple calculation gives:



f+(t = 0,x,p) = (a+)2

(πε)d
exp

{
−1
ε |x− x0|2 − 1

ε |p− p0|2
}

f+(t = 0,x,p) = (a−)2

(πε)d
exp

{
−1
ε |x− x0|2 − 1

ε |p− p0|2
}

fR(t = 0,x,p) = f I(t = 0,x,p) = 0

. (3.2.26)

3.2.3 Properties and numerical methods

It is easily seen that the system is hyperbolic, with a source term that is anti-symmetric,

and thus the L2 norm of the whole system is conserved.

As in the precious chapter, we intend to design an efficient numerical method based on

the possible link between the set of equations (3.2.13) that is easier to compute and the

hard one (3.2.21). The argument is very similar to what we had in the periodic potential

case. In fact, as we will see later, (3.2.21) contains the full information, whether the Born-

Oppenheimer approximation holds or not, and away from the crossing zone S when Assump-

tion 3.2.1 holds, this full system automatically converges to (3.2.13). Numerically since the

adiabatic model (3.2.13) is much easier to be computed, and thus one should stick to it when-

ever possible. Therefore, we decompose the domain into different regions depending on the gap

between energy bands, and apply different models in different regions, in particular (3.2.21)

around S and (3.2.13) away from it. The idea was adopted from [35], and implemented in [36].

There are many types of intersection, and we focus our attention to the case of avoided cross-

ing [92].

Avoided crossing

Avoided crossing is one type of band structure that was introduced in [92]. For this type

of band structure, the energy gap is a function not solely dependent on the spacial variable
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x, but also relies on a parameter δ ≥ 0: the energy gap E is always small but gets to zero if

and only if δ = 0. In recent years avoided crossing is extensively studied: one could find the

technical analysis on the relationship between δ and ε in [172] where it is shown that the most

interesting case would be when these two parameters are at the same order. This is to say, the

gap between the levels shrinks at the same order the nucleus increase the mass. For different

type of avoided crossings, Hagedorn and Joye were able to evaluate the propagation of the

Gaussian wave packet through avoided crossing by constructing the inner and outer domain

and asymptotically match the results on two sides [95, 96]. More general initial data were

considered in [62, 61, 60] in the Wigner space. See also a review on both theory and numerics

in [24].

One typical example for avoided crossing is given in 2D. We write x = (x, y) and p = (p, q),

and use the following potential:

u(x, δ) = x, v(x, δ) =
√
y2 + δ2. (3.2.27)

The trace U(x) is set to be 0. So the equation (3.2.21) becomes:



∂f+

∂t = −p · ∇xf
+ +∇xEg · ∇pf

+ +
√

2 ξ fR

∂f−

∂t = −p · ∇xf
− −∇xEg · ∇pf

− −
√

2 ξ fR

∂fR

∂t = −p · ∇xf
R + 2

εEgf
I +
√

2 ξ (f− − f+)

∂fI

∂t = −p · ∇xf
I − 2

εEgf
R

(3.2.28)

where in this case:

Eg =
√
x2 + y2 + δ2, ξ =

1

2(x2 + y2 + δ2)
(qx

y√
y2 + δ2

− p
√
y2 + δ2).
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The potential matrix is marked as V (x, δ) with its two eigenvalues:

λ±(x,p, δ) =
p2

2
± Eg, (3.2.29)

With zero δ, it becomes conical crossing with the two eigenvalues touching at the origin, i.e.

λ+(xc,p, δ) = λ−(xc,p, δ) when and only when δ = 0. xc represents the crossing point, and is

the origin in this case.

Weak limit and domain decomposition

Numerically, the main difficulty comes from the high oscillations introduced by the small

ε. When ε is extremely small, with O(1)
√
x2 + y2, fR and f I present very rapid oscillations

with the wavelength at the scale of ε. However, one could check, that when E is nonzero, both

of these two oscillatory functions fR and f I have zero weak limit as ε→ 0, and formally, the

system goes to the adiabatic formulation:


∂f+

∂t = −p · ∇xf
+ +∇xEg · ∇pf

+,

∂f−

∂t = −p · ∇xf
− −∇xEg · ∇pf

−.

(3.2.30)

The situation here is very similar to the periodic case, where we adopt the domain decom-

position idea and solve appropriate set of equation in different region: in the regions where

the oscillation is strong, we compute the weak limit (3.2.13) as a good approximation, and

in the regions where the function varies slowly, we stick to the original equation (3.2.28).

Two main problems remain to be resolved: one is where to set up the interface and how to

give the boundary condition. They will be answered after the following argument about the

convergence.

Take p > 0 and x0 < 0 for example:
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Case 1. If Eg � C0
√
ε before hitting the crossing zone, then fR and f I are of o(

√
ε);

Case 2. If −C0
√
ε < Eg < C0

√
ε, then fR and f I are of O(

√
ε), and fR and f I are slowly

varying, i.e. ∂tf
i � O

(
1
ε

)
;

Case 3. If Eg � C0
√
ε after hitting the crossing zone, fR and f I are highly oscillatory with

mean 0.

As such, we propose the following decomposition:

Classical regions: Eg > C0
√
ε: In this region, a coarse mesh independent of ε is used to

solve the adiabatic Liouville system (3.2.30). fR and f I are set to be zero.

Semi-classical region: Eg ≤ C0
√
ε: Solve (3.2.28). The incoming boundary conditions for

fR and f I are set to be zero, and the incoming boundary condition for f+ and f− are

the inflow boundary condition. A fine mesh is used with ∆x and ∆t much less than
√
ε.

3.3 Numerical examples

In this section we show several numerical results and compare with the solution to the

original Schrödinger equation. Let ψε(t,x) be the solution of (3.1.15) with initial data given

by (3.2.22). For the lower(-) and upper(+) bands, we define the position density ρ±schr and the

population P±schr:

ρ±schr(t,x) = |Π±ψε(t,x)|2, and P±schr =

∫
Rd
ρ±schr(t,x) dx. (3.3.1)

Correspondingly, we recover these quantities from the semi-classical Liouville system (3.2.21)

by

ρ±liou(t,x) =

∫
Rd
f±(t,x,k)dk, and P±liou =

∫
Rd
ρ±liou(t,x) dx. (3.3.2)
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Define L1 error in the cumulative distribution function (c.d.f.) [82, 125]:

Errε =

∫
Rd

{∣∣∣∣∫
Ωx

(
ρ+
schr(y)− ρ+

liou(y)
)
dy

∣∣∣∣+

∣∣∣∣∫
Ωx

(
ρ−schr(y)− ρ−liou(y)

)
dy

∣∣∣∣}dx,

where, Ωx =
{
y ∈ Rd : yi ≤ xi, i = 1, · · · , d

}
for x = (x1, · · · , xd) ∈ Rd.

3.3.1 Example 1: 1D, pure state initial data

In this example, we deal with the problem in 1D with a pure initial data. Set u and v as

u(x) = x, and v(x) ≡ δ =

√
ε

16
. (3.3.3)

δ is of O(
√
ε), larger than 0 and is independent of the spatial variable x. The difference

between the two energy bands is ∆E = 2E that gets its minimum 2δ at x = 0. The initial

data for the Schrödinger equation is given in (3.2.22-3.2.23) with a+ = 1, a− = 0, x0 = 5
√
ε,

and p0 = −1. For comparison, we compute both the Schrödinger equation as a reference, and

the Liouville system. The Schrödinger equation is computed using the classical time-splitting

spectral method, with ∆x = ε/8 and ∆t = 5ε
3
2 and Liouville semi-classical system is done

through the domain decomposition method. In Figure 3.3.1 we compare the results ρ± given

by the two systems, and in Figure 3.3.2 we check the evolution of the population on the first

band P+ along the time. In Figure 3.3.3, it is showed that the domain decomposition modeling

error (3.3) decreases as O(ε).

3.3.2 Example 2: 1D, mixed state initial data

In this example, we have mixed states as the initial data in one dimension. u and v are

defined in the same way as in (3.3.4). Initial wave packet for the Schrödinger equation is given

in (3.2.22-3.2.23) with a+ = a− = 1/
√

2, x0 = 5
√
ε, and p0 = −1, thus is mixed states. In
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Figure 3.3.4 we compare the numerical results on ρ± and P+ of the Schrödinger equation and

the Liouville system, and in Figure 3.3.5, the cumulative error is given as a function of ε. The

numerical results show O(ε) decay in error.

3.3.3 Long time behavior

In this subsection we consider the evolution that is long enough so that the data goes

through two surface hopping processes. The numerical results are provided for both the original

Schrödinger equation and its semi-classical Liouville system. Initial data is a Gaussian packet

as in (3.2.22)-(3.2.23) with a+ = 1, a− = 0, x0 = 0.3125, and p0 = −1. ε is set as 2−10. In

Figure 3.3.6 we show the evolution of P+ with respect to time. Initially, the profile is located

to the right of the crossing point, the origin in this case, with negative average velocity, it

goes to the origin and around t = 0.25 when the center of the packet roughly hits the crossing

point, more than half of the portion jump over to the lower energy level, so that we have two

packets along the two separate bands after that, and both of them keep moving towards left.

The packet on the lower energy level keeps accelerating as the potential diminishes, so it never

comes back. But the one on the higher energy level gradually decelerates since its potential

gets higher and higher, and at some point, the velocity decreases to zero and the packet starts

bouncing back towards the origin. Around t = 0.275, it gets to the crossing point for the

second time, and undergoes another hopping process. The results for the two systems match

quite well.

3.3.4 Example 4: 2D pure initial data

In this example, we deal with the problem in 2D with a pure initial data. Set u and v as

u(x) = x, and v(x) =
√
y2 + δ2. (3.3.4)
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δ is chosen at
√
ε/2, larger than 0 and is independent of the spatial variable x. The difference

between the two energy bands is ∆E = 2E that gets its minimum 2δ at x = y = 0. The initial

data for the Schrödinger equation is given in (3.2.22-3.2.23) with a+ = 1, a− = 0, x0 = 5
√
ε,

y0 = 0, p0 = −1, and q0 = 0. For comparison, we compute both the Schrödinger equation

as a reference, and the Liouville system. The Schrödinger equation is computed using the

classical time-splitting spectral method, with ∆x = ∆y = ε/8 and ∆t = 5ε
3
2 and Liouville

semi-classical system is done through the domain decomposition method with ∆x = ∆p = h

in the classical regions and ∆x = ∆p = h/2 in then semi-classical region, where h = O(
√
ε).

In Figure 3.3.7 we compare the results ρ± given by the two systems, and in Figure 3.3.8 we

check the evolution of the population on the first band P+ along the time. In Figure 3.3.9, it

is shown that the domain decomposition modeling error (3.3) decreases as O(
√
ε).
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Figure 3.3.1: Surface hopping problem. Example 1. The left column is for ρ+
schr/liou, the

density on the upper band, and the right column gives the results of ρ−schr/liou. ∆ =
√
ε/2.
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(f) ε = 2−12

Figure 3.3.2: Surface hopping problem. Example 1. Time evolution of the population (defined
in (3.3.1) and (3.3.2)) on the upper band P+

schr/liou. ∆ =
√
ε/2.
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Figure 3.3.4: Surface hopping problem. Example 2. ∆ =
√
ε/2. The left column is the density

on the upper band ρ+
schr/liou and the right column is ρ−schr/liou.
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Figure 3.3.6: Surface hopping problem. Example 3. Long time behavior of P+.
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(a) Schrödinger Solutions

(b) Liouville Solutions

Figure 3.3.7: Surface hopping problem. Example 4. The left column is for ρ+
schr/liou, the

density on the upper band, and the right column gives the results of ρ−schr/liou. δ =
√
ε/2.
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(a) ε = 2−6
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(b) ε = 2−7

0 0.1 0.2 0.3 0.4 0.5 0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

t

P
o
p
u
la
ti
o
n

 

 

Schrödinger
Liouville-1
Liouville-2
Liouville-3
Liouville-4

(c) ε = 2−8
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(d) ε = 2−9

Figure 3.3.8: Surface hopping problem. Example 4. Time evolution of the population on
the upper band P+

schr/liou. δ =
√
ε/2. The legend “Schrödinger” represents the solution of

the Schrödinger equation, “Liouville-j” represents the solution of the Liouville system by the
domain decomposition method with ∆x = ∆p = h in the classical regions and ∆x = ∆p = h/2
in then semi-classical region, where h =

√
ε/2j−1, and j = 1, 2, 3, 4
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Figure 3.3.9: Surface hopping problem. Example 4. Errε at t = 10
√
ε. The Liouville system

by the domain decomposition method with ∆x = ∆p =
√
ε/8 in the classical regions and

∆x = ∆p =
√
ε/16 in then semi-classical region.
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In this part we study the hydrodynamic limit of kinetic theory. We are especially interested

in the compressible Euler limit of the Boltzmann equation, and focus on designing proper

numerical algorithms for it.

The Boltzmann equation describes the evolution of the probability density distribution

of rarefied gas. When the typical length and time scale is big enough, mathematically the

Knudsen number, a parameter that is the ratio of local mean free path and the typical domain

length, is small, and the rarefied gas system could be treated as continuum. We are interested

in finding the connection between these two levels of descriptions on the numerical level.

The efforts to connect statistical mechanics and fluid dynamics date back to Boltzmann,

who tried to develop “mathematically the limiting processes” that “lead from the atomistic

view to the laws of motion of continua”. Mathematical treatment started booming since

Hilbert marked it as his 6th problem in 1900. Since then, it has attracted a great amount

of attention: people study this problem out of mathematical curiosity, and out of practical

concern. Mathematically, the problem is two fold: how to study the entropy decay, and how

to link the kinetic equation to the fluid dynamics. See an early book [34] by Cercignani and

the most advanced analysis collected in [186, 173] by Villani and Saint-Raymond respectively.

On the theoretical level, the picture is rather clear. The formal connection between the

(in)compressible Euler or Navier-Stokes and the Boltzmann equation has been established, and

the rigorous proof is complete for the link to the incompressible Navier-Stokes equation. Our

target to present the same connection on the numerical level: as the Euler equations are the

hydrodynamic limit of the Boltzmann equation, we are seeking accurate numerical methods

for the Boltzmann equation that capture the solution to the Euler equations automatically in

this limit.

To this end, we introduce the concept, “asymptotic preserving”. As will be clearer later

on, the whole area explores possibilities of relaxing discretization from the strong requirement
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of the scaling parameter. Typically, an asymptotic preserving method is a cheap solver that

preserves the asymptotic limit, on the numerical level. The idea has been very widely used in

implementing multi-scale problems, but in this thesis, we only focus our attention on one of

its many facets: which is the link between the Boltzmann equation and the compressible Euler

equations.

In chapter 4, as a introduction, we briefly review the established analytical background of

the Boltzmann equation. In chapter 5 we go over two major asymptotic preserving methods

currently available, to be specific, the BGK penalization method and the Exponential Runge-

Kutta method. Both of the two methods were initially designed for single species systems, and

we explore their extension to multi-species systems in chapter 6.
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Chapter 4

Kinetic theory and the

hydrodynamic limit

In this chapter we briefly go over the basics of kinetic theory and show the hydrodynamic

limit of the Boltzmann equation.

4.1 Boltzmann equation

Kinetic theory aims at describing a system constituted of a large number of particles on a

mesoscopic level. We usually model the system by a distribution function f in phase space. In

case of monatomic gas, the distribution function is f = f(t, x, v), that depend on time t > 0,

position x ∈ Ω and velocity v ∈ R3, presenting the number of particles in an infinitesimal

volume dxdv around the point (x, v) at time t.

Remark 4.1.1. The Boltzmann equation is not ab initio, and its derivation, though not

within our focus in this thesis, is a remarkable thing by itself. The whole process was pioneered

by Grad in 1958 in [85], and the rigorous proof on the validity of the Boltzmann equation is

later on obtained in [132] for very short time, also see a review [133]. The general approach

is that, one starts with a collection of N particles, and traces trajectory of each particle. The

particle obeys Newton’s 2nd law, so the system is time-reversible. A distribution function

fN is a delta function that lives on 6N dimensional space R3N × R3N (3D for position and

3D for momentum for each particle in the system). f is seen as the marginal distribution
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function of one particle of fN . From fN to f , some assumptions are to be made: N is big

enough and particles are considered identical, so that fN is sufficiently close to tensor product

of N one particle distribution function fs (this is the molecular chaos assumption). With

these assumptions, in the so-called Grad-Boltzmann limit, one gets the Boltzmann equation.

However, for the Boltzmann equation, time has an arrow and the dynamics is irreversible,

unlike the Hamiltonian equation that governs fN . This inconsistency reflects the fact that

atomistic dynamics is not the only mechanism that should be taken into account, and in fact

all the other influences are subtly hidden in the assumptions made in the derivation, the details

of which is another topic that we will not discuss here.

The Boltzmann equation reads:

∂tf + v · ∇xf =
1

ε
Q(f, f), t ≥ 0, (x, v) ∈ Rd × Rd. (4.1.1)

d is the dimension. Here ∂tf + v · ∇xf part is to formulate the free transport: particles move

in a straight line with velocity v. The Q is called the collision term, and in general has the

following form:

Q(f, f) = Q+ − fQ− =

∫
Sd−1

∫
Rd

(f ′f ′∗ − ff∗)B(|v − v∗|, ω)dv∗dω. (4.1.2)

This term means that two particles with pre-collisional velocities, one with v and another with

v∗, bump into each other, and after colliding, they change their velocities to post-collisional

velocities: v′ and v′∗. If the collision is elastic, momentum and energy are conserved, i.e.

v + v∗ = v′ + v′∗, |v|2 + |v∗|2 = |v′|2 + |v′∗|2,
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Figure 4.1.1: Velocity change after the collision.

and this leads to:

v′ = v − 1

2
(g − |g|ω), v′∗ = v∗ +

1

2
(g − |g|ω). (4.1.3)

where ω is a unit vector on Sd−1, the unit sphere defined in Rd space. See figure 4.1.1. We

use the shorthands f ′ = f(t, x, v′) and f ′∗ = f(t, x, v′∗). Q
+ and fQ− parts are called gaining

and losing part respectively, reflecting how many more or fewer particles having the velocity

v. B is called collisional cross-section, or collision kernel. It is always positive, and is used to

measure the repartition of post-collisional velocities given the pre-collisional velocities. It varies

according to the nature of particles considered. For hard sphere particles, B(z, ω) ∼ z. For

particles governed by power law, B(z, ω) = b(ω)|z|γ , and specifically when γ = 0, the particles

are called the Maxwell molecule. The Maxwell molecule is not physical but is used very often

for the purpose of obtaining explicit calculation in agreement with physical observables. In

physics, numerous examples have grazing collision [50, 47], and possess non-integrable b(ω),

so mathematically we have to go through “cut-off” process by replacing it with some bounds

that are integrable [87].

There are several assumptions we made: firstly, we assume particles change direction only

through colliding with other particles. Since collision is short range, the interaction is very

sensitive to the exact value of both position and velocity. If long range potential is considered,

the equation would undergo dramatic change, for example one gets Vlasov equation in Coulomb
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case where collision term is replaced by effective field [26]. Secondly, we have only considered

binary collisions: in rarefied gas, the collisions that involve more than three particles are so

rare and are simply ignored. Finally, we assume the collision is elastic, and this does not have

to be the real case: energy decay sometimes takes place for granular gases when collisions are

inelastic [187, 18, 32, 71].

4.1.1 Properties of the collision term

In this subsection we state some important properties of the collision term [33]. All the

derivations are purely formal.

Conservation law

Cross-section may vary, but the first d+ 2 moments of the collision term are always zero.

In fact, given arbitrary smooth function φ, we have:

∫
Q(f, f)φ(v)dv =

∫
B(f ′f ′∗ − ff∗)φdvdv∗dω

=
1

2

∫
B(f ′f ′∗ − ff∗)(φ+ φ∗)dvdv∗dω

=
1

4

∫
B(f ′f ′∗ − ff∗)(φ+ φ∗ − φ′ − φ′∗)dvdv∗dω

In the derivation, we used that the cross-section B is invariant to |v− v′|. For elastic collision,

immediately, one has that the quadratic functions in v are collisional invariants: let φ =(
1, v, 1

2 |v|2
)T

, the first d+ 2 moments are zero:

< Q > =

∫
Q(f)dv = 0,

< vQ > =

∫
vQ(f)dv = 0,

<
1

2
v2Q > =

∫
1

2
|v|2Q(f)dv = 0. (4.1.4)
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Based on these formulas, we take moments of the Boltzmann equation and obtain conser-

vation laws. To do that, we firstly define the following macroscopic quantities:

ρ =

∫
fdv, ρu =

∫
vfdv,

E =
1

2
ρu2 + ρe =

1

2

∫
|v|2fdv, e =

3

2
T =

1

2ρ

∫
f |v − u|2dv, (4.1.5)

S =

∫
(v − u)⊗ (v − u)fdv, q =

1

2

∫
(v − u)|v − u|2fdv.

ρ is called local density, T is local temperature and u is local bulk velocity. All these quantities

are “local” in space. With these, we have:

∂tρ+∇x · (ρu) =< Q >= 0,

∂t(ρu) +∇x · (S + ρu2) =
1

ε
< vQ >= 0, (4.1.6)

∂tE +∇x · (Eu+ Su+ q) =
1

ε
<

1

2
|v|2Q >= 0.

H theorem

The conservation law does not reflect the built in time-irreversibility of the Boltzmann

equation. The irreversibility is seen through the so called “Boltzmann’s H-theorem”, which

basically says that entropy of a system keep decaying in time. We multiply Q with log f .

Simple algebra gives:

∫
Q(f, f) log fdv =

1

4

∫
B(f ′f ′∗ − ff∗) log

ff∗
f ′f ′∗

dvdv∗dω ≤ 0

Note again the discussion on integrability and such are all waived, and the computation is

purely formal.

From here we have two conclusions.
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• Entropy decay. Define entropy as
∫
f log fdv, then we have:

∂t

∫
f log fdv +∇x ·

∫
vf log fdv =

∫
Q(f, f) log fdv ≤ 0 (4.1.7)

• Entropy achieves its minimum when the system gets to the equilibrium state. Mathemat-

ically we set
∫
Q(f, f) log fdv = 0, and the solution to this is that log f is a quadratic

function, i.e. f is a Gaussian distribution. We call the Gaussian function that are

equipped with proper macroscopic quantities Maxwellian (macroscopic quantities are

computed from f and thus f appears as the subindex):

Mf (t, x, v) = ρ(t, x)

(
1

2πT (t, x)

)d/2
exp

(
−(v − u(t, x))2

2T (t, x)

)
. (4.1.8)

4.1.2 Non-dimensionalization and rescaling process

In different regimes, one observes the system with different time and length scales and

acquires different behavior of the solution. We firstly perform the non-dimensionalization.

Denote l0 and t0 as length and time scale, and a reference temperature is marked as T0. The

thermal speed is defined out of it:

c ∼
√
kbT0

m
(4.1.9)

with kb being the Boltzmann constant and m is the molecular mass. Rescale the length and

time as following:

t̃ =
t

t0
, x̃ =

x

l0
, and ṽ =

v

c
. (4.1.10)
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Another time scale associated with the intensity of the collision cross-section is called mean

free time τ , a parameter used to reflect the time a particle undergoes between two collisions.

∫
Mf (v)Mf (v∗)Bdσdv∗dv =

N

l30τ
, (4.1.11)

where Mf is the Maxwellian defined in (4.1.8). Evidently, bigger B means that the system has

more frequent collisions, and thus the mean free time is shorter. Mean free path is

λ = cτ, (4.1.12)

reflecting the distance a particle travels between two collisions. Finally we re-normalize the

number density and the collision kernel as well:

f̃(t̃, x̃, ṽ) =
l30c

3

N
f(t, x, v), B̃(ṽ − ṽ∗, σ) = ρτB(v − v∗, σ). (4.1.13)

The equation thus becomes (dropping all the tildes):

l0
ct0

∂tf + v · ∇xf =
l0
λ
Q(f, f). (4.1.14)

Define the Knudsen number as the mean free path over typical domain length λ
l0

, denoted by

Kn. It is divided from the collision term Q. The ratio in front of the ∂tf term is called the

Strouhal number, denoted by St. We tune these two parameters and could observe various

phenomena in different regime. In general, as Kn → 0, one gets the Euler equations in the

first asymptotic limit, and the Navier-Stokes equation in the second. If St is similarly small,

the macroscopic equation are incompressible; and if it is O(1), one gets compressible limit.
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4.2 Asymptotic limit

We only derive the compressible Euler limit in this thesis, i.e. Knudsen number is small,

replaced by ε, while the Strouhal number is of O(1):

∂tf + v · ∇xf =
1

ε
Q(f, f). (4.2.1)

While deriving for asymptotic limit of the Boltzmann equation, different ansatz would give

different hierarchies of PDEs. In history, there have been two dominating approaches: one is

called Hilbert expansion, that dates back to Hilbert’s original work in [101], in which he sought

for solutions of formal power series in ε:

f(t, x, v) =
∑
k

εkfk(t, x, v). (4.2.2)

Another approach is called Chapman-Enskog expansion developed independently by Chap-

mann and Enskog [37]. Their idea is to expand the solution close to the local Maxwellian:

f(t, x, v) = Mf

(
1 +

∑
k>0

εkgk(t, x, v)

)
. (4.2.3)

Here Mf is the local Maxwellian function given in (4.1.8), and g is regarded as perturbation

that should vanish at infinite time. These two approaches give different expansion processes,

but in the leading order of ε, both of them imply that the distribution function should be

a Gaussian function, and in particular, Chapmann-Enskog expansion assign this Gaussian

function the local Maxwellian:

f0 = Mf = ρ(t, x)

(
1

2πT (t, x)

)d/2
exp

(
−(v − u(t, x))2

2T (t, x)

)
,
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with ρ, T u defined as in (4.1.5). The idea of Chapmann-Enskog expansion is that since Mf

and f has the same moments, and thus one could plug it back into (4.1.6) and close the system.

In this leading order, the compressible Euler equation is obtained:

∂tρ+∇ · (ρu) = 0,

∂t(ρu) +∇ · (ρu⊗ u+ ρT I) = 0, (4.2.4)

∂tE +∇ · ((E + ρT )u) = 0.

This finishes the leading order asymptotic expansion. In the next order we obtains compressible

Navier-Stokes limit, by plugging f = Mf (1 + εg1) back into the original Boltzmann equation,

and solving for the kernel of linearized Boltzmann collision term. We omit the process here.

Remark 4.2.1. A side note on rigorous proofs on the Boltzmann equation. In general there

are three ways in connecting the two set of equations. One approach is based on truncated

asymptotic expansions. Rigorous justification is done by Caflisch [30] for compressible Euler

equation, up to the appearance of the singular time for the Euler equation. Similar result for

incompressible Navier-Stokes equations is obtained by De Masi, Esposito and Lebowitz [44],

where they also require smoothness of the solutions to the macroscopic equations. Another

approach is under the perturbation framework: one expands the distribution function around a

renormalized target Maxwellian (in infinite time), and analyze the spectrum of the linearized

Boltzmann equation. The spectrum was firstly explored by Ellis and Pinskii [59]. The idea

was later used by Nishida for compressible Euler equations [159], and by Bardos and Ukai for

incompressible Navier-Stokes equations [8]. As in the first approach, the results obtained rely

on the existence of classical solutions to the macroscopic equations, and thus either becomes

invalid in finite time or requires smallness on the initial data. However, physically, one should

expect that the existence and smoothness of the Boltzmann equation should not rely on that
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of the macroscopic equations. In fact, the global existence is done in a series of work by

Lions, initiated in [54] and summarized in [146]. To get rid of these non-physical assumptions,

Bardos, Golse and Levermore proposed the third approach [6, 5], which is to link the two sets

of equations in the weak sense, and they sought for possibility to obtain Leray [140] solutions

to incompressible Navier-Stokes equation. The program was complete by Golse and Saint-

Raymond in [78, 77]. None of these theoretical works will be discussed in this thesis, but they

are milestones in the development of the whole theory.
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Chapter 5

Asymptotic preserving numerical

methods

In this chapter we investigate the asymptotic preserving numerical methods. Before going

into details of two methods in the following two sections, we firstly briefly introduce this

concept.

Usually multi-scale problems contain some parameters that could vary across several scales.

As the parameters are manually sent either big or small, one carries asymptotic expansions

on these parameters, yielding asymptotic limits that are described by averaged or effective

equations. In our case, the Euler equations are the asymptotic limit of the Boltzmann equation

as the Knudsen number goes to zero.

Numerically, in these asymptotic regimes, the original equation could be difficult to com-

pute: the small scales need to be resolved in discretization, generating tremendous compu-

tational cost. So whenever possible, we tend to simply solve the asymptotic or macroscopic

equation as it is more efficient. However, in practise, usually the macroscopic model breaks

down in part of the domain, and two or more regimes co-exist. When this happens, a natu-

ral idea is to do decompose the domain into parts and compute different sets of equations in

different regions. Under this framework, one needs to know specifically where to set up the

boundary and how to couple the two systems, but neither is easy. Some kinetic equations can

be computed in this line of thinking including [23, 45, 46, 76, 128, 138], but the idea does not
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work well for the Boltzmann equation. In fact, understanding the structure of the boundary

layer is a challenging problem unsolved for decades by itself [14, 7, 4].

Another approach is to develop asymptotic-preserving (AP) schemes, an approach that we

are pursuing in this thesis. It firstly appeared for neutron transport equation in the diffusive

regime [134, 135], and was widely used later on in many other models. The idea of this concept

is to develop cheap numerical methods only for the microscopic equation, and the methods

should be robust in all regimes, so they automatically capture the asymptotic limit in the

stiff regime, with fixed discretization. More accurate error analysis could be found in [111].

Specifically, in our case, for the Boltzmann equation, as summarized by Jin [110], a scheme is

AP if:

• it preserves the discrete analogy of the Chapman-Enskog expansion, namely, it is a

suitable scheme for the kinetic equation, yet, when holding the mesh size and time step

fixed and letting the Knudsen number go to zero, the scheme becomes a suitable scheme

for the limiting fluid dynamic Euler equations;

• implicit collision terms can be implemented efficiently.

Typically, to relax the time step from the control of the Knudsen number, one needs to use an

L-stable numerical scheme, and thus the collision term should be computed implicitly. How-

ever, as seen above, the Boltzmann collision term is non-local and nonlinear, and numerically

inverting it is impossible. All of these conflicts are making the designing of AP schemes for

the Boltzmann equation difficult.

There are several variations of the AP property, with some of them easier to achieve than

others. They are weakly-AP, relaxed-AP, and strongly-AP, defined as follows (see [65]):

• weakly-AP. If the data are within O(ε) of the local equilibrium initially, they remain so

for all future time steps;
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• relaxed-AP. For non-equilibrium initial data, the solution will be projected to the local

equilibrium beyond an initial layer (after several time steps).

• strongly-AP. For non-equilibrium initial data, the solution will be projected to the local

equilibrium immediately in one time step.

In general, the strongly-AP property is preferred, and was the designing principle for most

classical AP schemes [109, 29]. The relaxed-AP is a concept introduced recently in [65], which

was shown numerically to be sufficient to capture the hydrodynamic limit when the Knudsen

number goes to zero. The weakly-AP is even weaker: it requires the solutions do not move

away from the equilibrium if they are close to it initially. It serves as a necessary condition for

the AP property.

We mention here several AP schemes recently developed. One approach was to use the

micro-macro decomposition method [139] (see its multi-species extension in [119]), but the

issue of designing an efficient implicit collision term, which is necessary for numerical stability

independent of the Knudsen number, is still unsolved. An earlier approach introduced by

Gabetta, Pareschi and Toscani uses the truncated Wild Sum for uniform numerical stability

of the collision term [70]. In the following sections, we introduce in detail two methods.

The first one is the BGK penalization introduced in [65] and its stronger version can be

found in [199]. The idea was later on extended to hyperbolic systems [68], Fokker-Planck-

Landau equation [123], quantum Boltzmann equation [64], quantum Fokker-Planck-Landau

equation [104] and multi-species system [112]. Higher order accuracy in time is achieved with

IMEX in [53]. The second one is the Exponential Runge-Kutta method, which was developed

in [52] for homogeneous equation, and later on generalized by Pareschi and the author for

space inhomogeneous case [143].
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5.1 BKG-penalization method

This approach was firstly developed in [65]. The idea is to use a BGK operator β(Mf −

f) [15] to approximate the collision term Q(f, f) and the difficulty in inverting Q is transfered

to implicitly computing the BGK operator. The detail is the following: we split the collision

operator into the BGK part and the rest. Since the BGK term is a good approximation to

the collision term, after the subtraction, the remainder is less stiff, and is treated explicitly,

and the BGK term is stiff, and should be computed implicitly. However, although it is also

a nonlinear term on f , and is not invertible either, it is discovered in [42, 167] that this term

could be computed in an explicit manner. We firstly rewrite the equation in the following:

∂tf + v · ∇xf =
Q(f)− Pb(f)

ε
+
Pb(f)

ε
. (5.1.1)

with Pb = β(Mf − f) is a BGK term standing for penalization, and β is constant to be

determined. Pb(f) is expected to cancel the leading stiff order in Q, the first term on the

right is less stiff, and one could use explicit methods to handle it without worrying about the

stability requirements on time discretization. The second term however, needs to be treated

implicitly, for example:

f l+1 − f l
∆t

+ v · ∇xf l =
Q(f l)− Pb(f l)

ε
+
Pb(f

l+1)

ε
. (5.1.2)

The superscript l stands for the time step. We also use shorthands Ql , Q(f l), P lb , Pb(f
l)

for convenience. With simple algebra, one gets:

f l+1 =
εf l + ∆t(Ql − βl(M l

f − f l))− εhv · ∇xf l + βl+1hM l+1
f

ε+ βl+1h
. (5.1.3)
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h is time discretization. The computation of v ·∇xf is very mature, and the reader could refer

to [141] for varies numerical shock-capturing highly accurate methods. The computation of

Q(f) is also a topic that have been studied through years [156, 165, 67]. We mainly focus on

computing Mf and selection of β in the following.

• The computation of M l+1
f : One only needs the evaluation of the macroscopic quan-

tities for the next time step in order to compute Mf . To do that, we take the first d+ 2

moments numerically of the numerical scheme (5.1.2). The moments on the right hand

side disappear and one gets:

ρl+1 = ρl − h
∫
v · ∇xf l dv,

(ρu)l+1 = (ρu)l − h
∫
v ⊗ v∇xf l dv,

El+1 = El − h
∫

1

2
|v|2v · ∇xf l dv,

and the temperature T l+1 is simply: T l+1 = 2El+1−(ρu2)l+1

dnl+1 . With these, Mf is defined

by (4.1.8).

• The selection of β: The selection of β could be tricky. Generically, it plays a role of

Frechet derivative:

Q(f) ∼ Q(Mf ) +∇Q(M)[M − f ]. (5.1.4)

Considering Q(Mf ) = 0, β should be chosen to simulate ∇Q(f). In fact, often in time,

one chooses βl = sup
∣∣∣ Q(f)
f−Mf

∣∣∣, or βl = sup
∣∣∣Ql−Ql−1

f l−f l−1

∣∣∣. Later on in [199], the authors

discovered that we could tune this parameter to ensure the positivity of the distribution
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function. To be more clear, if β satisfies the following:


βl = sup Q−(f l)

βl+1 = βl(1 + hκl), with κl = max

{
sup

M l
f−M

l+1
f

hM l+1
f

, 0

} .

then the distribution function in (5.1.3) is positive.

This method was proved to be relaxed-AP in [65], and the strong-AP version is obtained

in [199]. The proof will be omitted from here.

5.2 Exponential Runge-Kutta method

This is another AP method proposed in [52] that essentially could achieve arbitrary high

order of accuracy. It was designed for the spatial homogeneous Boltzmann equation, namely

the transport term v · ∇xf is not included. For space inhomogeneous case, one has to use

time-splitting, for example, the Strang splitting, which is 2nd order in time, therefore the high

accuracy obtained in the collision step is lost. This drawback was later on fixed in [143] where

the authors directly manipulate the entire space inhomogeneous Boltzmann equation without

splitting. The immediate consequence is the arbitrarily high order of accuracy.

The idea is to reformulate the equation in a way so that the explicit methods, when applied

upon them, automatically pushed the distribution function to the right Maxwellian. Some new

parameters appear in the reformulation, and numerically one needs to select values for them

in a smart way. In fact, up to now two choices are found, both of which are proved to lead

to AP. In the following subsections, we describe the reformulation of the equation and present

the two numerical methods in 5.2.1, followed with the numerical properties in subsection 5.2.2.

The numerical examples will be given in subsection 5.2.3.
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5.2.1 Numerical methods

In this subsection we firstly reformulate the Boltzmann equation so that the Exponential

RK method could be carried out, and then introduce the two numerical schemes.

Reformulation of the problem and notations

We need to formulate the equation in a way such that generic explicit methods, as long

as consistent, could also preserve the right asymptotic limit. Inspired by [52], we have the

following:

∂t

[
(f − M̃)eµt/ε

]
= ∂t(f − M̃)eµt/ε + (f − M̃)µε e

µt/ε (5.2.1)

=
[

1
ε (Q+ µf − µM̃)− ∂tM̃ − v · ∇xf

]
eµt/ε (5.2.2)

. =
[

1
ε (P − µM̃)− ∂tM̃ − v · ∇xf

]
eµt/ε.

In the derivation, µ is a constant, and M̃ is an arbitrary function, called equilibrium function,

the scheme for whom will be carefully designed later. Note that M̃ is not the local Maxwellian

Mf . P is usually regarded as the gain part of the collision, defined as:

P = Q+ µf. (5.2.3)

The equation obtained is always equivalent to the original Boltzmann equation, regardless of

the form of M̃ and µ, but numerically, as we will see later, to capture the correct asymptotic

limit, they are selected under restrictive criteria. In fact, if one applies the simple forward

Euler scheme onto it, clearly one gets f going to M̃ exponentially fast. So to realize asymptotic

preserving properties, M̃ has to be chosen close enough to the real limit, the local Maxwellian

Mf . To do that, we have two methods, and depending on whether or not M̃ change with

respect to time in each time step, we have ExpRK-F (standing for fixed M̃) and ExpRK-V
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(varying M̃) respectively.

Exponential RK schemes with fixed equilibrium function

In the equation (5.2.1), it is easy to see that the trickiest term is the time evolution of the

equilibrium function ∂tM̃ . So in our first try, we explore possibility to get rid of this term, i.e.

we look for an a-priori constant function so that ∂tM̃ is manually erased from the equation in

each time step. If succeed, (5.2.1) is modified accordingly:

∂t

[
(f − M̃)eµt/ε

]
=

[
1

ε
(P − µM̃)− v · ∇xf

]
eµt/ε. (5.2.4)

As argued above, M̃ need to be chosen close enough to the Maxwellian Mf . However, as one

could expect, this asymptotic limit itself is a function of time and ∂tMf 6= 0. So we are going

to numerically evolve Mf firstly, and set M̃ as the updated Mf for each time step. The general

explicit Runge-Kutta framework to numerically solve (5.2.4) is:


Step i: (f (i) − M̃)eciλ = (f l − M̃) +

i−1∑
j=1

aij
h

ε

[
P (j) − µM̃ − εv · ∇xf (j)

]
ecjλ

Final Step: (f l+1 − M̃)eλ = (f l − M̃) +

ν∑
i=1

bi
h

ε

[
P (i) − µM̃ − εv · ∇xf (i)

]
eciλ

,

(5.2.5)
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where M̃ is defined by the macroscopic quantities (ρl+1, ul+1, El+1) computed from:



Step i :


ρ

ρu

E



(i)

=


ρ

ρu

E



l

− h
i−1∑
j=1

aij∇x ·


ρu

ρu⊗ u+ ρT

(E + ρT )u



(j)

Final Step:


ρ

ρu

E



l+1

=


ρ

ρu

E



l

− h
ν∑
i=1

bi∇x ·


ρu

ρu⊗ u+ ρT

(E + ρT )u



(i) . (5.2.6)

We explain the notations above, ν is the number of stages of the Runge-Kutta method, with

aij and bi as its coefficients. ci =
∑

j aij . Superscript n denote the l-th time step, and (i)

denote the sub-stage i in l-th time step. h is the time discretization, and P (j) = P (f (j)) for

simplicity.

Remark 5.2.1.

• Note that this method gives us a simple way to couple macro-solver with micro-solver.

When ε is considerably big, the accuracy of the method is controlled by the micro-solver.

And as ε vanishes, the method pushes f going to M , which is defined by macroscopic

quantities computed through the Euler equation while the order of accuracy is given by

the macro-solver.

• In principle it is possible to adopt other strategies to compute a more accurate time

independent equilibrium function in intermediate regions. For example one can use the

ES-BGK Maxwellian [66] at time n + 1, or one can use the Navier-Stokes equation as

the macro-counterpart. Here however we do not explore further in these directions.

In each time step, we update macroscopic quantities (5.2.6) first, and use them to define
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M̃ . Plug it back into (5.2.5) and update the distribution function f .

Exponential Runge-Kutta schemes with time varying equilibrium function

In this approach we keep the ∂tM̃ term and try to find an efficient numerical method to

compute it. In fact, we consider the most natural choice of equilibrium function, namely the

local Maxwellian M̃ = Mf . Therefore, M̃ is a Gaussian profile that has the same first d + 2

moments with f , and the evolution of the moments are governed by:

∂t

∫
φfdv +

∫
φv · ∇xfdv = 0, (5.2.7)

with φ =
[
1, v, v

2

2

]T
. The RK methods are:

Step i:



(f (i) −M (i))eciλ = (f l −M l)

+
i−1∑
j=1

aij
h

ε

[
P (j) − µM (j) − εv · ∇xf (j) − ε∂tM (j)

]
ecjλ,

∫
φf (i)dv =

∫
φf ldv +

i−1∑
j=1

aij

(
−h
∫
φv · ∇xf (j)dv

)
;

(5.2.8a)

Final Step:



(f l+1 −M l+1)eλ = (f l −M l)

+

ν∑
i=1

bi
h

ε

[
P (i) − µM (i) − εv · ∇xf (i) − ε∂tM (i)

]
eciλ,

∫
φf l+1dv =

∫
φf ldv +

ν∑
i=1

bi

(
−h
∫
φv · ∇xf (i)dv

)
.

(5.2.8b)

Note that the coupling between the two equation is embedded: M (j) are computed through∫
φf (j)dv, and will be used to update f (i) for i > j. In each sub-stage i, one needs to evaluate
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the following: f (j), M (j), ∂tM
(j), P (j), v ·∇xf (j) for all j < i, and M (i) that is evaluated at the

current time sub-stage. f (j) and M (j) are obtained from previous time sub-stages, and P (j)

could be computed through spectral method developed in [165], for the N logN improvement,

see [156]. v ·∇xf (j) is computed using standard ENO or WENO method to match up the time

accuracy designed. We focus on computation of M (i) and the tricky term ∂tM :

Computation of M (i) :

solve the second equation of (5.2.8a), to get evaluation of macroscopic quantities at

tl + cih. Then the Maxwellian M (i) is given by (4.1.8).

Computation of ∂tM
(j) :

Write ∂tM as

∂tM = ∂ρM∂tρ+∇uM · ∂tu+ ∂TM∂tT, (5.2.9)

and ∂tρ, ∂tu and ∂tT can be computed from taking moments of the original equation

∂t


ρ

ρu

dρT
2 + 1

2ρu
2

 = ∂t

∫


1

v

v2

2

Mdv = ∂t

∫


1

v

v2

2

 fdv

(5.2.10)

= −
∫


1

v

v2

2

 v · ∇xfdv.

To be specific, with data at sub-stage (j) in d-dimensional space, one has

∂tM
(j) = ∂ρM

(j)∂tρ
(j) +∇uM (j) · ∂tu(j) + ∂TM

(j)∂tT
(j), (5.2.11)
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with

∂ρM
(j) =

M (j)

ρ(j)
, ∂uM

(j) = M (j) v − u(j)

T (j)
,

∂TM
(j) = M (j)

[
(v − u(j))2

2(T (j))2
− d

2T (j)

]
,

and all the macroscopic quantities associated with f (j), namely ρ(j), u(j) and T (j) are

given by:

∂tρ
(j) = −

∫
v · ∇xf (j)dv,

∂tu
(j) =

1

ρ(j)

(
u(j)

∫
v · ∇xf (j)dv −

∫
v ⊗ v · ∇xf (j)dv

)
,

∂tT
(j) =

1

dρ(j)

(
−2E(j)

ρ(j)
∂tρ

(j) − 2ρ(j)u(j)∂tu
(j) −

∫
v2v · ∇xf (j)dv

)
.

5.2.2 Properties of ExpRK schemes

The numerical schemes we designed possess some very nice features. We are especially

interested in positivity and asymptotic preserving.

Positivity and monotonicity properties

The distribution function describes the number of particles at certain phase point, and

should keep being positive along the evolution. However, it is hard to maintain positivity

numerically, especially when the schemes used are high order. Luckily, our ExpRK-F method,

under some very mild assumption, shows positivity. To that end, we use a very powerful tool

discovered in [191] and called Shu-Osher representation, and the analysis follows [83, 84]. We

review Shu-Osher representation first before presenting the proof.

For a large set of ODEs:

∂ty = F (t, y), (5.2.12)
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The general Runge-Kutta writes as:


Step i: yl,(i) = yl + h

i−1∑
j=1

aijF (tl + cjh, y
l,(j))

Final step: yl+1 = yl + h
ν∑
i

biF (tl + cih, y
l,(i))

. (5.2.13)

We intend to represent it as:


Step i: y(i) =

i−1∑
j=1

[
αijy

(j) + hβijF (tl + cjh, y
(j))
]
,

Final step: yl+1 =

ν∑
j=1

[
αν+1jy

(j) + hβν+1jF (tl + cjh, y
(j))
]
.

(5.2.14)

Note that there are more parameters one could adjust in (5.2.14) than in (5.2.13), and to

make these two formulas equivalent, the selection of coefficients in (5.2.14) is not unique. For

consistency, we require
∑i−1

j=1 αij = 1, and for β, we use the most natural choice:

βij = αij (ci − cj) . (5.2.15)

Through simple algebra, one could prove that this choice is equivalent to the original one

proposed in [191] where βij = aij−
∑
αikakj . In fact, assume one has y(j) = yl+h

∑j−1
k=1 ajkF

(k),

∀ j < i, where F (k) is a shorthand for F (tl + ckh, y
(k)), then, our choice gives:

y(i) =
i−1∑
j=1

[
αijy

(j) + αij(ci − cj)hF (j)
]

=
∑
j<i

αij
yl + h

∑
k<j

ajkF
(k)

+ αij(ci − cj)hF (j)


= yl + h

∑
j<i

 i−1∑
k=j+1

αikakj + αij(ci − cj)

F (j) (5.2.16)
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This clearly requires aij = αij(ci − cj) +
∑
αikakj , which is exactly the classical Shu-Osher

representation: aij = βij +
∑
αikakj .

With this, our numerical scheme could be transformed into:


f (i) − M̃)eciλ =

∑
j

ecjλ
{
αij(f

(j) − M̃) + βij
h

ε

[
P (j) − µM̃ − εv · ∇xf (j)

]}

(f l+1 −M)eλ =
∑
j

ecjλ
{
αν+1j(f

j − M̃) + βν+1j
h

ε

[
P (j) − µM̃ − εv · ∇xf (j)

]} .

We claim under very mild assumption, the ExpRK-F method gives positive distribution

function. The assumption we are going to make is:

Assumption 5.2.1. For a given f > 0 there exists h∗ > 0 such that

f − h v · ∇xf > 0, ∀ 0 < h ≤ h∗.

Note that this assumption is very mild, and is the minimal requirement on f in order to

obtain a non negative scheme. The assumption is naturally valid since f − v · ∇xf is simply

the forward Euler scheme for a transport equation with constant coefficient (v in this case).

Next we can state:

Theorem 5.2.1. Consider an ExpRK-F method defined by (5.2.5), and βij ≥ 0 in (5.2.15).

There exist h∗ > 0 and µ∗ > 0 such that f l+1 ≥ 0 provided that f l ≥ 0, µ ≥ µ∗ and 0 < h ≤ h∗.

Proof. We prove it for sub-stage i, and the analysis for the final step could be carried out in
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the same manner. Simple algebra gives, for i = 1, · · · , ν, j < i

f (i) =M̃

1−
∑
j

e(cj−ci)λ (αij + λβij)


+

i−1∑
j=1

λβije
(cj−ci)λP

(j)

ε

+
i−1∑
j=1

αije
(cj−ci)λ

(
f (j) − hβij

αij
v · ∇xf (j)

)
. (5.2.17)

To prove positivity, it is enough to show that this is a convex combination, and each element

is positive. To show each element is positive, i.e.

M̃ > 0, P (j) > 0, f (j) − hβij
αij

v · ∇xf (j) > 0. (5.2.18)

Positivity of M̃ is obvious, and P (j) is positive if one has big enough µ:

µ ≥ µ∗ = sup |Q−| ⇒ P = Q+ µf = Q+ − fQ− + µf > 0.

To handle the positivity of the transport term, we adopt Assumption 5.2.1. The term is

positive as long as h∗ is small enough:

0 < h ≤ h∗ = min
ij

(
αij
βij

h∗
)
.

We also check the convexity of (5.2.17), it should be proved that

∑
j

e(cj−ci)λ (αij + λβij) ≤ 1. (5.2.19)

In fact, it is easy to show that the quantity on the left hand side is a decreasing function for

λ ≥ 0, that gets its maximum value
∑

j αij = 1 at λ = 0. One could simply take the derivative
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with respect to λ and will find it is negative:

d

dλ

∑
j

e−∆ijλ(αij + λβij)


=
∑
j

e−∆ijλ (−∆ij(αij + λβij) + βij) (5.2.20)

=
∑
j

e−∆ijλ (−βij∆ijλ+ βij − αij∆ij) < 0 (5.2.21)

Here ∆ij = ci − cj . In the last step, βij = αij(ci − cj) is used. This finishes the proof on

convexity and we conclude that the scheme gives positive distribution function in each time

step.

Since the proof above is based on a convexity argument, we also have monotonicity of the

numerical solution or SSP property. Thus the building block of our exponential schemes is

naturally given by the optimal SSP schemes which minimize the stability restriction on the

time stepping. We refer to [84] for a review on SSP Runge-Kutta schemes.

Remark 5.2.2.

• Note that the proof above does not rely on the value λ take, i.e. the scheme is positive

uniformly in ε.

• Optimal second and third order SSP explicit Runge-Kutta methods such that βij ≥ 0 have

been developed in the literature. However the classical third order SSP method by Shu and

Osher [191] does not satisfy cj ≤ ci for j < i. Note that standard second order midpoint

and third order Heun methods satisfy the assumptions in the Theorem 1(see Table 1.1

page 135 in [98]).

In [83] it was proved that all four stage, fourth order RK methods with positive CFL

coefficient h∗ must have at least one negative βij. The most popular fourth order method
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using five stage with nonnegative βij has been developed in [176]. In [176] the authors

also proved that any method of order greater then four will have negative βij.

• Positivity of ExpRK-V schemes is much more difficult to achieve because of the involve-

ment of the ∂tM term. However, we can prove

– ρ is positive;

– the negative part of T is O(hε).

We leave both proofs to the appendix B.1.

Contraction and Asymptotic Preservation

In this section, we show ExpRK-F and ExpRK-V are asymptotic preserving numerical

method. The whole idea relies on the contraction property of the collision operator P [52].

Formally, if one check the formulas (5.2.5) and (5.2.8b), as ε → 0, λ → ∞, and the

exponential functions as a penalty that pushes f approaching to M̃ . The two methods above

assign M̃ with macroscopic quantities that numerically solve the Euler equation, and thus AP

follows directly. The proof in this section is carried out in a rigorous manner: we carefully track

in each time step the difference between the distribution function and the correct Maxwellian

function and provide accurate estimation on the convergence rate. Especially our proof shows

that the argument could also handle the tough case, namely, cν = 1. When this happens, the

formal argument does not carry through.

The proof relies on the following assumption:

Assumption 5.2.2. There is a constant C big enough, such that |P (f, f)− P (g, g)| < C |f − g|

where |·| denotes a proper metric.

This assumption is on the contraction of the operator P , and is generally true for most

physically meaningful metric. In appendix B.2, we show the validity of the proof with the
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metric d2 in space Ps(Rd) (also see [183]).

Under this assumption, considering P (M,M) = Q(M,M) + µM = µM , one has

|P (f, f)− µM | < C |f −M | . (5.2.22)

The proofs for both approaches: ExpRK-F and ExpRK-V are exactly the same, and we only

show it for ExpRK-F for simplicity, with any given explicit Runge-Kutta scheme.

For AP property, one needs to show that as ε→ 0, the scheme gives correct Euler limit. To

do this, basically one needs to prove that f goes to the Maxwellian function whose macroscopic

quantities solve the Euler equation (4.2.4).

Let us define

di =
∣∣∣f (i) − M̃

∣∣∣ , Di =
∣∣∣v · ∇xf (i)

∣∣∣ , d0 =
∣∣∣f l − M̃ ∣∣∣ , ~e = [1, 1, · · · , 1]T ,

~d = [d1, d2, · · · , dν ] , ~D = [D1, D2, · · · , Dν ]T . (5.2.23)

Moreover A is a lower-triangular matrix and E is a diagonal matrix given by

Aij =
λ

µ
aije

(cj−ci)λ, E = diag{e−c1λ, e−c2λ, · · · , e−cνλ}.

Lemma 5.2.1. Based on the definitions above, for ExpRK-F one has

~d ≤ d0 (I− CA)−1 · E · ~e+ ε (I− CA)−1 · A · ~D.

Proof. It is just direct derivation from (5.2.5):

(f (i) − M̃)eciλ = (fn − M̃) +

i−1∑
j=1

aij
λ

µ
ecjλ(P (j) − µM̃ − εv · ∇xf (j)). (5.2.24)
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We take the norm of the equation and use the triangle inequality. With the contraction

assumption, one gets:

∣∣∣f (i) − M̃
∣∣∣ ≤ ∣∣∣f l − M̃ ∣∣∣ e−ciλ +

∑
j

aij
λ

µ
e(cj−ci)λ

(
C
∣∣∣f (j) − M̃

∣∣∣+ ε
∣∣∣v · ∇xf (j)

∣∣∣) . (5.2.25)

A condense matrix form is:



d1

d2

...

dν


≤ E



d0

d0

...

d0


+ CA



d1

d2

...

dν


+ εA



D1

D2

...

Dν


.

So

~d ≤ d0E · ~e+ CA · ~d+ εA · ~D (5.2.26)

~d ≤ d0 (I− CA)−1 · E · ~e+ ε (I− CA)−1 · A · ~D (5.2.27)

which completes the proof.

Lemma 5.2.2. ∣∣∣f l+1 − M̃
∣∣∣ ≤ ∣∣∣f l − M̃ ∣∣∣R1(λ) + ~R2 · ~D, (5.2.28)

with R1 and R2 defined as:

R1(λ) = e−λ
(

1 +
Cλ

µ
~b · E−1 (I− CA)−1 E · ~e

)
(5.2.29)

~R2(λ) =
ελ

µ
e−λ~b · E−1 · (I− CA)−1 · (I + CA) (5.2.30)
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Proof. It is just a simple derivation. Define

ki =
h

ε
(P (i) − µM̃ − εv · ∇xf (i))eciλ. (5.2.31)

Apparently, the previous lemma leads to

~|k| ≤ λ

µ
E−1 ·

(
C~d+ ε ~D

)
. (5.2.32)

Back to (5.2.5), one has

(
f l+1 − M̃

)
=
(
f l − M̃

)
e−λ +

ν∑
s=1

bikie
−λ, (5.2.33)

which implies

∣∣∣f l+1 − M̃
∣∣∣ ≤d0e

−λ +
λ

µ
e−λ~bT · E−1 ·

(
C~d+ ε ~D

)
(5.2.34a)

≤e−λ
(
d0 +

λ

µ
~b · E−1 ·

(
C (I− CA)−1 ·

(
d0E · ~e+ εA · ~D

)
+ ε ~D

))
(5.2.34b)

≤d0e
−λ
(

1 +
Cλ

µ
~b · E−1 · (I− CA)−1 · E · ~e

)
(5.2.34c)

+
ελ

µ
e−λ~b · E−1 · (I− CA)−1 · (I + CA) · ~D. (5.2.34d)

Here ~b = [b1, b2, · · · , bν ] is a row vector. The result (5.2.27) is also used. We conclude with the

definition of R1/2. ∣∣∣f l+1 − M̃
∣∣∣ ≤ ∣∣∣f l − M̃ ∣∣∣R1(λ) + ~R2(λ) · ~D.

The two lemmas are pure algebra computation, but they provide the exact formula on

how distribution function convergence towards the Maxwellian. Apparently the smaller R1 is,
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the faster the function converges, and R2 represents the drift from the transportation, and is

expected to be small in the limit. Our next task is to prove that they are both small, and

the proof is built on the great property the matrix A possess: it is usually a lower triangular

matrix, and a strict lower triangular matrix for explicit Runge-Kutta, and thus it is a nilpotent.

Theorem 5.2.2. The method ExpRK-F defined by (5.2.5) is AP for general explicit Runge-

Kutta method with 0 ≤ c1 ≤ c2 ≤ · · · ≤ cν < 1.

Proof. Obviously if R1(λ) = O(ε) and R2(λ) = O(ε) for ε small enough, the theorem holds.

In fact, for explicit Runge-Kutta method, A is a strict lower triangular matrix, and thus a

nilpotent, then one has the following

E−1 (I− CA)−1 E = E−1
(
I + CA + C2A2 + · · ·+ Cν−1Aν−1

)
E (5.2.35a)

= I + B + B2 + · · ·+ Bν−1 (5.2.35b)

where Aν = 0, definition B = CE−1AE and E−1A2E = E−1AEE−1AE are used. According to

the definition of A and E, it can be computed that

Bij = CAijeciλ−cjλ =
Cλ

µ
aij .

Thus I+
∑

k Bk is a matrix such that: the element on the kth diagonal is of order O(λk). This

leads to obvious result

R1(λ) = e−λ
(

1 +
Cλ

µ
~b · E−1 (I− A)−1 E · ~e

)
= O(e−λλν−1) < O(ε)

Similar analysis can be carried to R2(λ) to show that it vanishes to zero as ε→ 0.

So as ε→ 0, |f l+1− M̃ | → 0. By definition, M̃ is defined by macroscopic quantities computed

directly from the limit Euler equation, thus the numerical scheme is AP, which finishes the
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proof.

The derivation of the scheme ExpRK-V is essentially the same, and in the end, one still

has, in a condense form

∣∣∣f l+1 −M l+1
∣∣∣ ≤ ∣∣∣f l −M l

∣∣∣R1(λ) + ~R2 · ~D (5.2.36)

with R1, ~R2, E, A defined in the same way as in (6.3.7), but Di = |v · ∇xf (i) + ∂tM
(i)|.

Following the same computations, one could prove that this method is AP too, but the proof

is omitted for brevity.

Theorem 5.2.3. The method ExpRK-V defined by (5.2.8) is AP for general explicit Runge-

Kutta method.

5.2.3 Numerical example

In this subsection we show three numerical examples. We are especially interested in

checking high order of accuracy and asymptotic preserving.

Convergence rate test

In this example, we use smooth data to check the convergence rate of both methods. The

problem is adopted from [65]: 1 dimensional in x and 2 dimensional in v. Initial distribution

is given by

f(t = 0, x, v) =
ρ0(x)

2

(
e
− |v−u1(x)|2

T0(x) + e
|v−u2(x)|2
T0(x)

)
(5.2.37)
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with

ρ0(x) =
1

2
(2 + sin (2πx)) ,

u1(x) = [0.75,−0.75]T , u2(x) = [−0.75, 0.75]T ,

T0(x) =
1

20
(5 + 2 cos (2πx)) .

Domain is chosen as x ∈ [0, 1] and periodic boundary condition on x is used. Note that the

definition of ρ0, u1/2 and T0 do not represent the real number density, average velocity and

temperature.

As one can see, the initial data is summation of two Gaussian functions centered at u1 and

u2 respectively, and is far away from the Maxwellian. To check the convergence rate, we use

Nx = 128, 256, 512, 1024 grid points on x space, and Nv = 32 points on v space. Time stepping

∆t is chosen to satisfy CFL condition with CFL number being 0.5. We measure the L1 error

of ρ and compute the decay rate through the following formula [199]

error∆x = max
t=tn

‖ρ∆x(t)− ρ2∆x(t)‖1
‖ρ2∆x(t)‖1

, (5.2.38)

with ∆x = 1
Nx

. The subindex of ρ indicate the discretization on x. Theoretically, a kth order

numerical scheme should give error∆x < C (∆x)k for ∆x small enough.

We compute this problem using spectral method [156] in v, WENO of order 3/5 [190] for x.

For time discretization, we use the second and third order Runge-Kutta from [98], Table 1 page

135. We denote the four schemes under consideration as ExpRK2-F, ExpRK2-V, ExpRK3-F

and ExpRK3-V.

The results for ε = 1, 0.1, 10−3, 10−6 with either Maxwellian initial data or non-Maxwellian

initial data are shown in Figure 5.2.3-5.2.3. We also give the convergence rate Table 5.2.3.

One can see that in kinetic regime, when ε = 1, the two methods are almost the same, but
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as ε becomes smaller, in the intermediate regime, for example ε = 0.1 for the second order

schemes and ε = 10−3 for second and third order schemes with Maxwellian data, ExpRK-V

performs better then ExpRK-F. In the hydrodynamic regime, however, the two methods give

similar results again shown by the two pictures for ε = 10−6. It is remarkable that the third

order methods achieve almost order 5 (the maximum achievable by the WENO solver) in many

regimes.
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Figure 5.2.1: ExpRK method. Convergence rate test. In each picture, 4 lines are plotted:
the lines with dots, circles, stars and triangles on them are given by results of ExpRK2-F,
ExpRK2-V, ExpRK3-F and ExpRK3-V respectively. The left column is for Maxwellian initial
data, and the right column is for initial data away from Maxwellian (5.2.37). Each row, from
the top to the bottom, shows results of ε = 1, 0.1, 10−3, 10−6 respectively.
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Initial Distribution Maxwellian Initial Non-Maxwellian Initial
Nx 128/256/512 256/512/1024 128/256/512 256/512/1024

ε = 1

ExpRK2-F 1.91327 1.99502 1.84968 1.98504
ExpRK2-V 2.41608 2.02347 2.67733 2.05436
ExpRK3-F 4.99725 4.35014 5.12959 4.76788
ExpRK3-V 5.02508 4.40379 5.13515 4.79080

ε = 0.1

ExpRK2-F 1.98218 1.99539 1.97725 1.99454
ExpRK2-V 2.41411 2.02293 2.56620 2.05830
ExpRK3-F 5.07621 2.94707 5.49587 3.00335
ExpRK3-V 5.02220 4.39651 5.13859 4.79264

ε = 10−3

ExpRK2-F 1.23711 1.64976 1.43331 1.73501
ExpRK2-V 2.02344 1.85924 1.47466 1.75496
ExpRK3-F 2.36140 2.69178 2.55225 2.78275
ExpRK3-V 3.86882 3.03223 2.59114 2.80353

ε = 10−6

ExpRK2-F 2.56137 2.04519 2.56137 2.04519
ExpRK2-V 2.56137 2.04519 2.56383 2.04859
ExpRK3-F 5.08829 4.56695 5.08830 4.56699
ExpRK3-V 5.08830 4.56704 4.91909 3.80638

Table 1: Convergence rate for ExpRK methods with different initial data, in different regimes.

A Sod problem

This simple example is adopted from [199] to check accuracy and AP of the numerical

methods. It is a Riemann problem, and the solution to the associated Euler limit is a Sod

problem. 
(ρ, ux, uy, T ) = (1, 0, 0, 1), if x < 0;

(ρ, ux, uy, T ) = (1/8, 0, 0, 1/4), if x > 0;

As a reference, we compute the problem using forward Euler with dense mesh and small time

step when ε = 0.01: ∆x = 1/500 and h = 0.0001. In Figure 5.2.3 (left), we show that when

ε = 0.01 is comparably big, both methods give the same numerical results with the reference.

In Figure 5.2.3 (right), AP property is shown: it is clear that for ε = 10−6, numerical results

capture the Euler limit – the Euler limit is computed by kinetic scheme [166]. All plots are

given at time t = 0.2.
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Figure 5.2.2: Exp-RK method. The Sod problem. Left column: ε = 0.01. The solid line is
given by explicit scheme with dense mesh, while dots and circles are given by ExpRK2-F and
ExpRK2-V respectively, both with Nx = 100. h = ∆x/20 satisfies the CFL condition with
CFL number being 0.5. Right column: For ε = 10−6, both methods capture the Euler limit.
The solid line is given by the kinetic scheme for the Euler equation, while the dots and circles
are given by ExpRK2-F and ExpRK2-V. They perform well in rarefaction, contact line and
shock.



128

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

1.2

x

ε(x)

Kinetic Regime

Euler Regime

Figure 5.2.3: Mixing Regime: ε(x)

Mixing regime

In this example [199], we show numerical results to a problem with mixing regime. This

problem is difficult because ε vary with respect to space. As what we do in the first example,

we take identical data along one space direction, so it is 1D in space but 2D in velocity. An

accurate AP scheme should be able to handle all ε with considerably coarse mesh. Domain is

chosen to be x ∈ [−0.5, 0.5], with ε defined by:

ε =


ε0 + 0.5 (tanh (6− 20x) + tanh (6 + 20x))) x < 0.2;

ε0 x > 0.2

(5.2.39)

where ε0 is 10−3. So ε raise up from 10−3 to O(1), and suddenly drop back to 10−3 as shown

in Figure (5.2.3). Initial data is the give as:

f(t = 0, x, v) =
ρ0(x)

4πT0(x)

(
e
− |v−u0(x)|2

2T0(x) + e
− |v+u0(x)|2

2T0(x)

)
. (5.2.40)
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with 

ρ0(x) = 2+sin (2πx+π)
3

u0(x) = 1
5

 cos (2πx+ π)

0


T0(x) = 3+cos (2πx+π)

4

. (5.2.41)

Periodic boundary condition on x is applied. We compute the problem using ExpRK2/3-F/V.

Reference solution is given by Runge-Kutta 2 with fine grids: ∆x = 0.0025.

Results are plotted in Figure 5.2.3. Both methods give excellent results simply taking

a CFL condition of 0.5 whereas explicit methods are forced to operate on a time scale 1000

times smaller. In particular, ExpRK3-V performs well uniformly on ε by giving a more accurate

description of the shock profiles.
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Figure 5.2.4: ExpRK method. The mixing regime problem. The left column shows comparison
of RK2 and RK3 using the ExpRK-V. The solid line is the reference solution with a very fine
mesh in time and ∆x = 0.0025, the dash line is given by RK3 and the dotted line is given
by RK2, both with Nx = 50 points. The right column compare two methods, both given by
RK3, with the reference. The dash line is given by ExpRK-V, and the dotted line is given
by ExpRK-F. Nx = 50 for both. h is chosen to satisfy CFL condition, in our case, the CFL
number is chosen to be 0.5.
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Chapter 6

Multi-species systems

In this chapter we tackle the multi-species problem. To analyze the multi-species system

can be very tricky theoretically. The theory carried out for mono-species could not be näıvely

applied over: different particles do not use the same collisional cross-section; they exchange

momentum and energy; particles with different masses converge to the Maxwellian in different

speed, and all these are generating new difficulties on the theoretical level. Despite this, on the

numerical level, we could still explore extensions of the developed computational treatments.

New difficulties are encountered as well, however, most of the currently available methods

mainly only rely on the limits of the systems, which are still known, and thus the difficulties

emerged from collision kernels are all avoided. The arrangement of this chapter is the following:

we review the general properties of the multi-species Boltzmann in section 6.1, and in the

following two sections 6.2 and 6.3, we generalize the two numerical solvers mentioned in the

previous chapter.

6.1 The multi-species system

In this section, we show the multi-species Boltzmann equation and its properties. We also

discuss a simplified BGK model.
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6.1.1 The multi-species Boltzmann equation

Given a N -species system, we use fi(t, x, v) to represent the distribution function of the

i-th species at time t on the phase space (x, v), and f = (f1, f2, · · · , fN )T is a vector. The

Boltzmann equation for the multi-species system is given by [63]:

∂tfi + v · ∇xfi = Qi(f, f), t ≥ 0, (x, v) ∈ Rd × Rd, (6.1.1)

and the collision operator now is a collection of collisions among all species:

Qi(f, f) =

N∑
k=1

Qik(f, f), (6.1.2a)

Qik(f, f)(v) =

∫
Sd−1

+

∫
Rd

(f ′if
′
k∗ − fifk∗)Bik(|v − v∗|,Ω)dv∗dΩ. (6.1.2b)

We use the same notation for all the variables, but there are some new changes: the new

collision kernel Bik now depends on both two species i and k. Bik = Bki for symmetry, (thus

Qik = Qki); the computation of the post-collisional velocities v′ and v′∗ also change: the mass

difference should also be taken into account:

v′ = v − 2µik
mi

(g · Ω)Ω, v′∗ = v∗ +
2µik
mk

(g · Ω)Ω, (6.1.3)

with µik = mimk
mi+mk

being the reduced mass and mi, mk being the mass for species i and k

respectively. This deduction is based on momentum and energy conservations:

miv +mkv∗ = miv
′ +mkv

′
∗, mi|v|2 +mk|v∗|2 = mi|v′|2 +mk|v′∗|2.
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6.1.2 Properties of the multi-species Boltzmann equation

In d-dimensional space, we define the macroscopic quantities for species i: ni is the number

density; ρi is the mass density (note due to mass differences, mass density and number density

have different values); ui is the average velocity; Ei is the total energy; ei is the specific internal

energy; Ti is the temperature; Si is the stress tensor; and qi is the heat flux vector, given by:

ρi = mini = mi

∫
fidv, Ei =

1

2
ρiu

2
i + niei =

1

2
mi

∫
|v|2fidv,

ρiui = mi

∫
vfidv, ei =

d

2
Ti =

mi

2ni

∫
fi|v − ui|2dv, (6.1.4)

qi =
1

2
mi

∫
(v − ui)|v − ui|2fidv, Si =

∫
(v − ui)⊗ (v − ui)fidv,

We also have global quantities for the mixture: the total mass density ρ, the number density

n, the mean velocity ū, the total energy E, the internal energy nē and the mean temperature

T̄ = 2ē
d are defined by:

ρ =
∑
i

ρi, n =
∑
i

ni, ρū =
∑
i

ρiui, (6.1.5a)

E = nē+
1

2
ρ|ū|2 =

d

2
nT̄ +

ρ

2
|ū|2 =

∑
i

Ei. (6.1.5b)

Conservations

In the gas mixture system, for each species, the mass is conserved, but the momentum

and energy are not. Species keep exchanging momentum and energy till equilibrium state is

achieved. Mathematically, while taking moments, one only gets zero from the first moment

of the collision term, and the second and the third moments are nontrivial. Except for very

special cases, usually these moments cannot even be explicitly obtained. We list here the



134

explicit expressions of the moments of the Maxwell molecule.



< miQi > =
∫
miQi(f)dv = 0

< mivQi > =
∫
mivQi(f)dv =

∑
k=1 2µikχiknink[uk − ui]

< 1
2miv

2Qi > =
∫
mi
2 |v|2Qi(f)dv

=
∑

k=1 2miχiknink

[(
µik
mi

)2 (
|uk − ui|2 + 2 ek

mk
+ 2 ei

mi

)
+ µik

mi

(
(uk − ui) · ui − 2 ei

mi

)]
,

(6.1.6)

where χik =
∫

(cos θ)2Bik(θ)dθ, with θ = arccos
(
g·Ω
|g|

)
. One can check [75] for power law

molecules.

Based on these formulas, when taking moments of the Boltzmann equation, one obtains

the corresponding evolution of the macroscopic quantities. Taking the 1D Maxwell molecule

for example:

∂tρi + ∂x(ρiui) =< miQi >= 0, or ∂tni + ∂x(niui) = 0,

∂t(ρiui) + ∂x(Si + ρiu
2
i ) =

1

ε
< mivQi >=

1

ε

∑
k

2Bikninkµik[uk − ui], (6.1.7)

∂tEi + ∂x(Eiui + Siui + qi) =
1

ε
<

1

2
mi|v|2Qi >=

1

ε

∑
k

2Biknink

(
µ2
ik

mimk

)
(a+ b),

where a = (mkuk +miui)·(uk−ui), b = 2(ek−ei). The macroscopic equations are complicated.

The 1
ε terms on the right hand side are also making this set of equation very stiff, not to say

that in most cases this explicit expressions are not even available. Directly designing macro

solver for this set of equation can be very tedious, and is not in our interest. We seek for neat

algorithms that aim at the essential physical meaningful limits: in fact, if we look at the system

as a whole, it will be seen that the total momentum and total energy are still conserved. We
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sum up the momentum and energy equations for all species and get:

∂t(ρū) + ∂x

(∑
i

Si +
∑
i

ρiu
2
i

)
=

1

ε

∑
i

< miviQi >= 0,

∂tE + ∂x

(∑
i

Eiui +
∑
i

Siui +
∑
i

qi

)
=

1

ε

∑
i

<
1

2
miv

2
iQi >= 0. (6.1.8)

The conservation hold for all kinds of cross-sections.

The local Maxwellian

As for single species system, we look for the local equilibrium here as well: it is reached

when the gaining part and losing part of all collision terms balance out, namely Qi(f) = 0 for

each i [1]:

fi = M i = ni

( mi

2πT̄

)d/2
e−

mi|v−ū|
2

2T̄ , (6.1.9)

where T̄ is the mean temperature and ū is mean velocity defined in (6.1.5a) and (6.1.5b). We

call this Maxwellian the “unified Maxwellian” because the velocity ū and temperature T̄ are

given by those for the entire system instead of those for each single species.

Evidently, we now have requirement on both microscopic level and macroscopic level: the

distribution functions should behave like Maxwellian functions, and the macroscopic physical

observables are required to be the same, namely, average velocity u and temperature T . Also

note that mi appears inside the exponential, indicating that different mass leads to difference

variance of the Gaussian function. In particular, the heavier the particles are, the more likely

they are going to concentrate around ū on the velocity space.
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The Euler limit

The standard Chapman-Enskog expansion is still valid. We expand fi around the unified

Maxwellian (6.1.9), the collision term vanishes, and the system yields its Euler limit [1]:

∂tρi +∇ · (ρiū) = 0,

∂t(ρū) +∇ · (ρū⊗ ū+ nT̄ I) = 0, (6.1.10)

∂tE +∇ · ((E + nT̄ )ū) = 0.

Here I is the identity matrix. Note that in the equation for ρi, we have ū instead of ui as in

(6.1.7). This is because when ε→ 0, ui → ū and Ti → T̄ for all i.

6.1.3 A BGK model

In history, many BGK models have been proposed to simulate the multi-species Boltzmann

equation. Unlike the situation in single-species system, here the definition of the BGK operator

is very vague. For a period, people were not sure on whether to design one BGK term for each

single collision operator, or for their summation. However, several criteria in designing BGK

models are clear:

• positivity: the distribution function should be positive;

• indifferentiability: when different species share the same mass, equations of the system

should be consistent with the single species Boltzmann equation.

Some models suffer from the loss of positivity [72], while others fail to satisfy the indifferentia-

bility principle [88]. Here we present one model proposed by Andries, Aoki and Perthame [1]

that meets both standards.
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The model is:

∂tfi + v · ∇xfi =
νi
ε

(M̃i − fi), (6.1.11)

where νi is the collision frequency and M̃i is a Maxwellian function:

νi =
∑
k

nkχik, M̃i = ni

(
mi

2πT̃i

)d/2
e
−mi|v−ũi|

2

2T̃i . (6.1.12)

The way M̃ is defined is to capture the moments of the collision Q, i.e. νi

(
M̃i − fi

)
shares

the same first d + 2 moments as Qi. As stated above, usually explicit expression is hard to

obtain for the moments of the collision term, and here we only write down that for the Maxwell

molecule (6.1.6):

νiρiũi − νiρiui =< mivQi >=
n∑
k=1

2µikχiknink[uk − ui], (6.1.13a)

νiẼi − νiEi

= <
1

2
miv

2Qi > (6.1.13b)

=
n∑
k=1

2miχiknink

[(
µik
mi

)2(
|uk − ui|2 + 2

ek
mk

+ 2
ei
mi

)
+
µik
mi

(
(uk − ui) · ui − 2

ei
mi

)]
,

and T̃i =
(

2Ẽi − ρiũ2
i

)
/(nid). Note that in this case the right hand side of equation (6.1.13a)

is just a linear operator of macroscopic velocities. Also, given known u, the right hand side of

(6.1.13b) is linear on e. To write it in a condense form, we define a matrix L:

(L)ij =


2µijχijninj , i 6= j,

−2
∑

k µikχiknink, i = j.

(6.1.14)
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It is easily seen that under this definition, (6.1.13a) is:

νiρiũi − νiρiui = Lu. (6.1.15)

Note that L is a symmetric matrix with each row summing up to 0, and all non-diagonal entries

are positive. Since L is a symmetric weakly diagonally dominant matrix, it is semi-negative

definite, i.e. all its eigenvalues are non-positive.

We also mention another type of Maxwellian, which is defined by macroscopic quantities

ui and Ti for each species. We call it the “species Maxwellian”:

Mi = ni

(
mi

2πTi

)d/2
e
−mi|v−ui|

2

2Ti . (6.1.16)

Remark 6.1.1. Mi− fi can not be used as a BGK operator. In the multi-species system, one

has to introduce some mechanism into the collision term that captures the interactions between

species. Mi − fi gives no communication between the species, so it cannot be used to express

the multi-species collision.

6.2 BGK-penalization method

We generalize the BGK-penalization method [65] to compute the multi-species system.

We show the numerical method in subsection 6.2.1, its properties in 6.2.2, and the numerical

examples can be found in 6.2.4. In subsection 6.2.3, we deal with a special case when the two

particles have disparate masses.
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6.2.1 Numerical method

Here we use the strategy discovered in [65] and write our scheme as:

f l+1
i − f li
h

+ v · ∇xf li =
Qi(f

l)− Pi(f l)
ε

+
Pi(f

l+1)

ε
. (6.2.1)

The superscript l stands for the time step and h is time discretization. We also use shorthands

Qli , Qi(f
l), P li , Pi(f

l) for convenience. Pi is chosen to be the BGK operator:

Pi = β(M i − fi), (6.2.2)

where β is a positive constant carefully chosen to take care of stability and positivity, to be

explained later. A simple algebraic manipulation on gives:

f l+1
i =

εf li + h(Qli − βl(M
l
i − f li ))− εhv · ∇xf li + βl+1∆tM

l+1
i

ε+ βl+1h
. (6.2.3)

We show the computation of M i, selection of β, computation of the collision term Qi and the

flux term v · ∇xf in order.

The computation of M
l+1

The selection of M i is very crucial. As will be proved later, the distribution function f is

forced to M i algebraically. So the best choice for M i would be simply take the asymptotic

limit of the distribution function f , which is the unified Maxwellian function defined in (6.1.9).

We leave the AP proof to the next subsection. In order to update f , we need to find M i in the

next time step, and thus a simple solver for all its associated macroscopic quantities including

ρi, ū and T̄ . To do that, we make use of the fact that these quantities are for the entire system

instead of single species, and are governed by the limiting Euler equation (6.1.10). Instead of
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directly solving this equation, we use the kinetic scheme by taking the moments of (6.2.1):

nl+1
i = nli − h

∫
v · ∇xf li dv,

(ρū)l+1 = (ρū)l − h
∑
i

mi

∫
v ⊗ v∇xf li dv,

El+1 = El − h
∑
i

∫
mi

2
|v|2v · ∇xf li dv,

and T̄ follows naturally from (6.1.5b):

T̄ l+1 =
2El+1 − (ρū2)l+1

dnl+1
.

The collision term Q

The computation of collision terms for multi-species systems is much more tricker that in

single-species case. We desire spectral accuracy, and adopt the spectral method introduced

in [165]. To the our best knowledge, this hard problem has never been addressed in any

literature, and the results presented here is only partial results obtained in [112], and though

the idea works for many types of particles, we have access to explicit expression only for the

simplest case: 1D Maxwell molecule. Here we present the computation of its Qik.

Use a ball B(0, S) to represent the domain of the compactly supported distribution f . We

periodize f on v ∈ [−L,L]d with L ≥ (3 +
√

2)S. L is chosen much larger than S to avoid

non-physical collision at different periods of the periodized f . Define the Fourier transform as:

f̂(x; p) =

∫
f(x; v)e−ip·v dv, f(x; v) =

1

(2L)d

∑
p

f̂(x; p)eik·v. (6.2.4)
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Plugging into the collision term (6.1.2b):

Qik =

∫ ∫
Bik

[
f ′if
′
k∗ − fifk∗

]
dv∗dΩ ≡ Q+

ik − fiQ−ik,

where we define the gaining part and losing part as:

Q+
ik =

∫ ∫
Bik

(
f ′if
′
k∗
)
dv∗dΩ, fiQ

−
ik =

∫ ∫
Bik (fifk∗) dv∗dΩ = fi

∫ ∫
Bikfk∗dv∗dΩ.

Using the Fourier transform (6.2.4), one gets:

Q+
ik =

∫ ∫
Bik

(2L)2d

[∑
p

∑
q

f̂i(x; p)eip·v
′
f̂k(x; q)eiq·v

′
∗

]
dv∗dΩ.

For easier computation, one can rewrite equations (6.1.3) to:

v′ = v − µik
mi

(g − |g|ω), v′∗ = v∗ +
µik
mk

(g − |g|ω) = v − g +
µik
mk

(g − |g|ω).

Note the domain for ω is the entire unit sphere Sd−1 instead of the semi-sphere for Ω. Then:

Q+
ik =

1

(2L)2d

∑
p,q

f̂pi f̂
q
k

∫ ∫
Bike

i(p·v′+q·v′∗)dv∗dω

=
1

(2L)2d

∑
p,q

f̂pi f̂
q
ke
i(p+q)·v

∫ ∫
Bike

iλ·g+i|g|γ·ωdv∗dω,

where λ = −mk
mi+mk

p + −mk
mi+mk

q and γ = mk
mi+mk

p − mi
mi+mk

q. Given a specific Bik one can

analytically compute the integration above. The expression, however, can be very tedious,

even in one dimensional space, especially when Bik depends on |g|. Note that the integration

domain for g is not symmetric. For the 1D Maxwell molecule, Bik is a constant, and can be
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pulled out of the integral, making the computation much easier. In this case,

v′ = v − 2mk

mi +mk
(v − v∗) =

mi −mk

mi +mk
v +

2mk

mi +mk
v∗,

v′∗ = v +
mi −mk

mi +mk
(v − v∗) =

2mi

mi +mk
v − mi −mk

mi +mk
v∗.

Plugging in Q+
ik, one gets:

Q+
ik =

Bik
(2L)2

∑
p,q

f̂pi f̂
q
ke
i
(
mi−mk
mi+mk

p+
2mi

mi+mk
q
)
v
∫
e
i
(

2mk
mi+mk

p−mi−mk
mi+mk

q
)
v∗dv∗.

One can also write Q+
ik as a summation of its Fourier modes Q+

ik(v) = 1
(2L)2

∑
l Q̂

l+
ik e

ilv where

Q̂l+ik =

∫
Q+
ike
−ilvdv

=
Bik

(2L)2

∑
p,q

f̂pi f̂
q
k

∫
e
i
(
mi−mk
mi+mk

p+
2mi

mi+mk
q−l
)
v
dv

∫
e
i
(

2mk
mi+mk

p−mi−mk
mi+mk

q
)
v∗dv∗

= Bik
∑
p,q

f̂pi f̂
q
k sinc(a) sinc(b),

where a = (mi−mkmi+mk
p+ 2mi

mi+mk
q− l)L, and b = ( 2mk

mi+mk
p− mi−mk

mi+mk
q)L. The FFT and the inverse

FFT are used to speed up the computation.

The computation for fiQ
−
ik is much simpler in this special case:

fiQ
−
ik = fi

∫
Bikfkdvk = finkBik.

The choice of the free parameter β

β should be chosen as the maximum value of the Frechet derivative ∇Qi(f) [65]. Numeri-

cally, for positivity, we could find its minimum value. We split the collision Q into the gaining

part and the losing part Qi = Q+
i − fiQ−i by Q+

i =
∑

kQ
+
ik and fiQ

−
i = fi

∑
kQ
−
ik. Plug back
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in the scheme (6.2.3), one can rearrange the scheme:

f l+1
i =

ε
(
f li − hv · ∇xf li

)
+ hQ+

i (f l) +
[(
βl −Q−i (f l)

)
f li + βl+1M

l+1
i − βlM l

i

]
h

ε+ βl+1h
.

To guarantee positivity, it is sufficient to require the followings for all i [199]:

βl > Q−i (f l), βlM
l
i > βl−1M

l−1
i .

The flux term v · ∇xfi

Here we give the numerical flux in 1D. Multi-D could be dealt with in the same fashion.

Use v∂xfi,j to denote the flux term for species i at the grid point xj . A shock-capturing finite

volume method we use is [141]:

v∂xfi,j = ν(fi,j1 − fi,j1−1)− ∆x

2
ν(sgn(ν)− ν)(σi,j1 − σi,j1−1), (6.2.5)

where ν = v
∆x , ∆x is the mesh size. j1 is chosen to be j for v > 0 and j + 1 for v < 0.

σi,j =
fi,j+1−fi,j

∆x φi,j where φi,j is the slope limiter. For the van Leer limiter, it takes value as

φ(θ) = θ+|θ|
θ+1 and θi,j =

fi,j−fi,j−1

fi,j+1−fi,j reflects the smoothness around grid point xj .

6.2.2 The AP property of the time discretization

We prove asymptotic preserving in this subsection. This method is not strong-AP, but we

show proof on weak-AP and relaxed-AP. We firstly revisit the time discrete scheme (6.2.1):

f l+1
i − f li
h

+ v · ∇xf li =
Qli − β(M

l
i − f li )

ε
+
β(M

l+1
i − f l+1

i )

ε
. (6.2.6)
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We will show in order that this method is weakly-AP for the Maxwell molecule, and relaxed-

AP for the BGK model given in subsection 6.1.3. AP is trivial for O(1) ε, and we only prove

it when h� ε.

In the proof, we are going to use the following notation: L defined in (6.1.14); λ(M) is used

to describe the spectral radius of matrix M; δuli and δT li are variation of ui and Ti from ū and

T̄ respectively; D is a diagonal matrix with its elements being ρis.

λ(M) = sup
k

(|λk(M)|), δuli = uli − ūl, δT li = T li − T̄ l,

D = diag{ρ1, ρ2, · · · , ρN},

where λk(M) are eigenvalues of M.

Weakly-AP

Lemma 6.2.1. For the Maxwell molecule, if δuli = O(ε) and δT li = O(ε) for ∀i, then δul+1
i =

O(ε) and δT l+1
i = O(ε).

Proof. Rewrite scheme (6.2.6) as:

f l+1
i −M l+1

i =
ε(−M l+1

i +M
l
i)− εhv · ∇xf li

ε+ βh
+

hQli
ε+ βh

−
(
M

l
i − f li

)
. (6.2.7)

Take the first moment on both sides. On the left hand side, one gets (ρiui)
l+1− (ρiū)l+1, while

on the right hand side, the first term is O(ε). The second term gives:

h

ε+ βh
< mivQ

l
i > =

h

ε+ βh

∑
k

2χikµiknink[u
l
k − uli] (6.2.8)

=
h

ε+ βh

∑
k

2χikµiknink(δu
l
k − δuli) = O(ε).
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The third term gives:

< miv(M
l
i − f li ) >= ρi

(
ūl − uli

)
= O(ε).

So the entire right hand side is ofO(ε), thus the term on the left hand side, (ρiui)
l+1−(ρiū)l+1 =

O(ε), i.e. δul+1
i = O(ε). Similar analysis can be carried out for δT .

Remark 6.2.1. In the proof, we used that the collision kernel is for the Maxwell molecule

in (6.2.8). The proof can be extended to other collision kernels as long as one can show the

moments of Q is of O(ε) whenever δu = O(ε), which is usually the case.

Theorem 6.2.1. The method is weakly-AP; namely, if M
l
i − f li = O(ε), then M

l+1
i − f l+1

i =

O(ε).

Proof. Since M
l
i − f li = O(ε), both Pi(f

l) and Qi(f
l) are of O(ε). Plugging back into the

scheme (6.2.7), one gets f l+1
i −M l+1

i = O(ε).

Relaxed-AP

Lemma 6.2.2. For the Maxwell molecules, when h� 1, in the limit of ε→ 0, there ∃L, such

that ∀l > L, δul = O(ε), given big enough β.

Proof. We prove the result for the 1D case. The proof for higher dimension can be carried out

similarly. The proof follows that of [65]. Take moments of numerical scheme (6.2.6), one gets:

(ρu)l+1 − (ρu)l

h
+ ∂x

∫
v2mf ldv =

1

ε
(Llul + βlDlδul − βl+1Dl+1δul+1).
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Simple algebra gives:

(
ε+ βl+1h

)
Dl+1δul+1 =

(
(ε+ βlh)Dl + hLl

)
δul

+ ε
(

(ρū)l − (ρū)l+1
)
− εh∂x

∫
v2mf ldv,

⇒ (ε+ βl+1h)
(
Dl +O(h)

)
δul+1 =

[
(ε+ βlh)Dl + hLl

]
δul +O(ε).

In the derivation, we used Llū = 0 and Dl+1 = Dl + O(h). Invert the coefficients on the left

hand side, one gets:

δul+1 =

[
βl

βl+1
I +

1

βl+1
(Dl)−1Ll +O(h)

]
δul +O(ε).

Since the eigenvalues for L are non-positive, if one chooses βl+1 +βl > λ((Dl)−1Ll), given small

enough h, the spectrum of the big bracket on the left hand side is controlled by 1, and thus in

the limit of ε→ 1, δu would decrease to O(ε), and we get our conclusion.

The same analysis can be carried out for T . We call this property proved above “macro-AP”.

It is a property only exists in multi-species problems.

Remark 6.2.2. The proof above is also valid for the BGK model in subsection 6.1.3. It can be

extended to other kinds of collision kernel as well, but the corresponding L may not be linear

on u, and we cannot find explicit expression about the requirement on β. In that case, λ(L)

stands for the spectrum of the nonlinear operator L.

Theorem 6.2.2. If the problem is macro-AP, then, ∃L such that ∀l > L, M l
i −M

l
i = O(ε),

and M̃ l
i −M

l
i = O(ε).

Proof. It is a straightforward conclusion from the lemma above, and from the definition for M̃

in (6.1.12).
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Remark 6.2.3. Up to now, we have shown that Mi approaches to M i for the Boltzmann

collision operator with the Maxwell molecule collision kernel. Rearranging scheme (6.2.6), one

gets:

f l+1 −M l+1
=

(ε+ βh)(f l −M l
) + hQl

ε+ βh
+
ε(M

l −M l+1
)− εh v · ∇xf l

ε+ βh
. (6.2.9)

The second term on the right is of O(ε). So, one can get relaxed-AP only if it can be shown

that Q and f −M have opposite signs. We can prove this for limited form of Q, say the BGK

operator introduced in subsection 6.1.3. However, as will be seen in section 6.2.4, numerically

the scheme is relaxed-AP for the general Boltzmann collision.

Theorem 6.2.3. The scheme is relaxed-AP for the BGK operator Q = ν(M̃ − f) defined in

section 2.3.

Proof. Plug in the definition for Q, (6.2.9) writes:

f l+1 −M l+1
=
ε+ βh− νh
ε+ βh

(f l −M l
) +

νh(M̃ l −M l
)

ε+ βh
+O(ε)

=
ε+ βh− νh
ε+ βh

(f l −M l
) +O(ε).

The convergence rate to the unified Maxwellian M is apparently:

α =
ε+ βh− νh
ε+ βh

, (6.2.10)

In the limit of ε → 0, if one has β > ν
2 , then |α| < 1, thus |f −M | keeps diminishing until

reaching to O(ε), and we get the relaxed-AP.
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6.2.3 Disparate masses

This section is for the system of gas mixture with disparate masses in the homogeneous case,

i.e. data given is uniform on physical domain. The mathematical problem was first pointed

out by Grad [86], and has attracted great interests since then. The fundamental example is

plasma, for which, the basic derivation can be found in [177, 25]. For these systems, it is the

different time scalings for different species to reach to the equilibria that makes the problem

difficult. Generally speaking, the light species should be able to get to the equilibrium faster,

that is to say there is a time period when the light species is in hydrodynamic regime while the

heavy species is, on the other hand, in kinetic regime. Analyses of the scalings of the collision

operators have been done based on both postulate physical consideration [39, 126] and formal

derivation [48, 49].

Theoretical rescaling analysis

In homogeneous space, the disparate masses system should be written as:


∂tfH = QH = QHH +QHL =

∫
BHH(f ′Hf

′
H∗ − fHfH∗) dv∗ +

∫
BHL(f ′Hf

′
L∗ − fHfL∗) dv∗,

∂tfL = QL = QLL +QLH =
∫
BLL(f ′Lf

′
L∗ − fLfL∗) dv∗ +

∫
BLH(f ′H∗f

′
L − fH∗fL) dv∗.

Now the small parameter that makes the collision term stiff is the ratio of mass ε =
√
mL/mH

where the sub-indices H and L stand for heavy and light respectively. While assuming that the

two species have densities and temperatures of the same order of magnitude, one could obtain

that fH is much narrower than fL as shown in Figure 6.2.1. To analyze the magnitude of the

collision terms, we define f̃H(v) = fH(εv) to stretch fH to a function that has comparable

variance as fL. As derived in [48, 49], the scaling ratio of the two collision terms is QH/QL =

O(ε), which means that the collision QL has stronger effect, and that the light species gets to
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the hydrodynamical regime much faster. For convenience, we write both QH and QL as O(1)

Figure 6.2.1: Distribution function for disparate masses system. The distribution function for
heavy species is much narrower than that of the light species.

term, and put ε in front of QH to represent its magnitude. The system turns out to be:

∂tfH = εQH , ∂tfL = QL. (6.2.11)

One can also rescale the time by τ and obtain:

∂tfH =
ε

τ
QH , ∂tfL =

1

τ
QL. (6.2.12)

When τ = O(ε), the light species is in hydrodynamic regime but the heavy one is still in kinetic

regime; and when τ = O(ε2), both species should be close to the equilibria.

Remark 6.2.4. The inhomogeneous problem gets even harder to analyze, especially when the

different species have different spatial rescaling coefficients. But numerically it makes very

little difference: one simply needs to add the flux term v · ∇xf to the homogeneous scheme.
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The numerical scheme

The scheme we adopt for (6.2.11) is:

f l+1
H − f lH

∆t
=
ε

τ

(
QlH − β

(
M l
H − f lH

))
+
βε

τ

(
M l+1
H − f l+1

H

)
, (6.2.13a)

f l+1
L − f lL

∆t
=

1

τ

(
QlL − β

(
M l
L − f lL

))
+
β

τ

(
M l+1
L − f l+1

L

)
, (6.2.13b)

where β = O(1).

Theorem 6.2.4. This scheme yields the following behavior at: O(1
ε ) and O( 1

ε2
).

• at τ = O(1
ε ), the scheme is first order consistent to ∂tfH = QH , and f lL is an O(ε)

approximation of ML;

• at τ = O( 1
ε2

), both f lH and f lL are within O(ε) of the unified Maxwellians MH and ML

respectively.

Proof. To show the second statement:

At this time scale, τ = O(ε2), the system turns out to be:

∂tfH =
1

ε
QH , ∂tfL =

1

ε2
QL.

By the same arguments as in the previous sections, one gets:

f lH −M
l
H = O(ε), f lL −M

l
L = O(ε2).

for l large enough.
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To show the first statement:

At this time scale, τ = O(ε), system (6.2.12) can be written as:

∂tfH = QH , ∂tfL =
1

ε
QL.

The scheme still gives f lL →M
l
L. One just needs to show that the scheme gives a correct

discretization of the equation for fH . Write the scheme as (set τ = ε):

f l+1
H − f lH

h
= QlH − β(M l

H − f lH) + β(M l+1
H − f l+1

H ).

By pulling the fH on the right hand side to the left, one gets:

f l+1
H − f lH

h
= QlH −

βh

1 + βh
QlH +

β

1 + βh

(
M l+1
H −M l

H

)
.

The second and the third terms on the right are both O(h), i.e. the scheme gives a first

order discretization to ∂tfH = QH .

6.2.4 Numerical examples

For comparison, the examples chosen are similar to those in [119]. We also perturb the

data on the level of macroscopic quantities. For all the examples below: when ε is not very

small so that solving the Boltzmann equation is still possible by using the basic explicit scheme

with a resolved mesh, we compute the reference solution using forward Euler with very fine

mesh, and compare our results with that; when ε is unbearably small for the forward Euler, we

compare our results to the Euler limit. The Euler equations are computed using CLAWPACK

Euler solver [142].
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A stationary shock

In this example, we show numerical solution to a Riemann problem of two species. The

analytical solution to the Euler equations is a stationary shock. Here the subscripts 1 and 2

stand for different species.


m1 = 1,m2 = 1.5, n1 = n2 = 1, u1 = 1.8, u2 = 1.3, T1 = 0.3, T2 = 0.35, if x < 0;

m1 = 1,m2 = 1.5, n1 = n2 = 1.401869, u1 = u2 = 1.07, T1 = T2 = 0.8605, if x > 0.

(6.2.14)

The initial distribution for f is given by summation of two Gaussian functions, so it is far away

from the unified Maxwellian M :

fi(t = 0, x, v) =
2∑
`=1

Ai,` exp
(
−Bi,`(v − Ci,`)2

)
, i = 1, 2, (6.2.15)

with

Bi,` =
ρi

4Ei − 2ρiu2
i (1 + κ2)

, Ai,` =
ni
2

√
Bi,`
π
, Ci,1 − ui = ui − Ci,2 = κui (6.2.16)

i.e. the two Gaussian functions have the same height and variation, but their centers are 2κu

away from each other. In the numerical experiment, we choose κ = 0.2, ∆x = 10−2 and h is

chosen to satisfy the CFL condition: 10−3 in our simulation. Numerically we check whether

the scheme gives the Euler limit when ε goes to zero; and whether it matches well with the

forward Euler method with relatively fine mesh when ε is big. We first show in Figure 6.2.2

that as ε goes to zero, the numerical solution converges to the Euler limit, the stationary shock

in this case. In Figure 6.2.3, we show that the AP scheme matches very well with the numerical

results given by the forward Euler method for ε = 10−1. Then we show in Figure 6.2.4, that

given an initial data far away from the unified Maxwellian M , f gets close to M quickly with
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ε = 10−5. This verifies that the scheme is relaxed-AP numerically. Figure 6.2.5 shows that

smaller ε gives faster convergence to the equilibria for macroscopic quantities.

A Sod problem

In this example, we solve a Sod problem. The initial data are given by:


m1 = m2 = 1, n1 = 1, n2 = 1.2, u1 = 0.6, u2 = −0.5, T1 = T2 = 0.709, if x < 0;

m1 = m2 = 1, n1 = 0.125, n2 = 0.2, u1 = −0.2, u2 = 0.125, T1 = T2 = 0.075, if x > 0.

(6.2.17)

The initial distribution is chosen far away from the Maxwellian as defined in (6.2.15) and

(6.2.16) with κ again chosen as 0.2. For all ε, we choose ∆x = 10−2 and h = 10−3. In this

problem, m1 = m2, so we first show the numerical indifferentiability in Figure 6.2.6, that

is: computing the problem as a multispecies system gives the same result as computing the

monospecies Boltzmann equation. In Figure 6.2.7, we show that as ε goes to zero, the numerical

solution converges to the Euler limit. For ε as big as 10−1 and 10−2, we compare the results

with those of the forward Euler with a fine mesh. They match well as shown in Figure 6.2.8.

In Figure 6.2.9, we show that for ε = 10−4, although the initial f is far away from the unified

Maxwellian M , as time evolves, it converges to M . This numerically verifies the relaxed-AP

property. In Figure 6.2.10, we show the evolution of u with different ε. Apparently different

species gradually share the same velocity, and the smaller ε is, the faster the convergence is.

A disparate masses problem

In this example, we solve the disparate masses system. Define ε =
√

mL
mH

, we want to verify

that the light species gets close to the unified Maxwellian ML faster than the heavy one. We
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solve an inhomogeneous problem with the following initial data:

mH = 8, mL = 0.08, uH = 0, uL = 0.5, TH = TL = 2.5, nH = 1, nL = 1.2.

The initial distribution functions are still given by the summation of two Gaussian functions

as in (6.2.15), with parameters A1 = A2 and B1 = B2 defined in (6.2.16), and C1 and C2

defined by: C1 − u = u− C2 = κ. We choose κ = 0.5 for the heavy species and κ = 4 for the

light one. In Figure 6.2.11, on the left we show the initial distribution functions for the two

species, both of which are given by summation of two Gaussian functions and are far away

from the Maxwellian. On the right we show several snapshots of the distribution functions as

they evolve. In Figure 6.2.12, we show that as time evolves, the velocities converge toward

each other. Note that the heavy species weighted more when computing for the mean velocity

ū as in (6.1.5a), thus its average velocity does not change much.

6.3 ExpRK method for the multi-species Boltzmann equation

In this section we explore how to extend the Exponential Runge-Kutta method to multi-

species system [144]. Parts of the computation is the same as in the previous section and will be

omitted. We present the method in subsection 6.3.1 and prove its properties in subsection 6.3.2.

Numerical examples will be give in subsection 6.3.3.

6.3.1 Exponential Runge-Kutta method

It is a simple extension of the original Exponential Runge-Kutta method [52, 143]. One

encounters the same difficulty as in the BGK-penalization case. The algorithm consists two

parts in each time step:
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Figure 6.2.2: Multi-species Boltzmann equation. BKG-penalization method. The stationary
shock problem. As ε→ 0, solution of the Boltzmann equation goes to the Euler limit. t = 0.1.
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Figure 6.2.3: Multi-species Boltzmann equation. BKG-penalization method. The stationary
shock problem. ε = 0.1, t = 0.1. The dashed line is given by the AP scheme, and the solid
line is given by the forward Euler with a fine mesh: ∆x = 0.01 and h = 0.0005.

Figure 6.2.4: The stationary shock problem. ε = 10−5, δf = f1 − M1 diminishes as time
evolves.
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Figure 6.2.5: Multi-species Boltzmann equation. BKG-penalization method. The stationary
shock problem. u1 and u2 at x = −0.5 on the left and T1, T2 on the right, as functions of time,
for ε = 10−2 and 10−5 respectively. Note the different time scales for the two figures.
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Figure 6.2.6: Multi-species Boltzmann equation. BKG-penalization method. The Sod problem.
Indifferentiability. t = 0.1. ρ, u and T are computed using two species model (“o”) and one
species model (“.”).
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Figure 6.2.7: Multi-species Boltzmann equation. BKG-penalization method. The Sod problem.
t = 0.1. As ε→ 0, the numerical results go to the Euler limit. Solid lines give the Euler limit
computed by using [142].
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Figure 6.2.8: Multi-species Boltzmann equation. BKG-penalization method. The Sod problem.
t = 0.1. For ε = 0.1, 0.01, we compare the results of the AP scheme, given by the circled lines,
and the results of the forward Euler with a fine mesh, given by the solid lines.

Figure 6.2.9: Multi-species Boltzmann equation. BKG-penalization method. The Sod problem.
ε = 10−4. δf = f1 −M1.
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Figure 6.2.10: Multi-species Boltzmann equation. BKG-penalization method. The Sod prob-
lem. The three figures show velocities u1 and u2 at x = −0.3 as functions of time for
ε = 0.1, 0.01, and 10−5 respectively. Note different time scales for three figures.

Figure 6.2.11: Multi-species Boltzmann equation. BKG-penalization method. The disparate
masses problem. The left figure shows the initial distributions and the right figure show the
time evolutions of fH and fL. fH is put at the top and fL is at the bottom. At t = 0.007, fL
is close to ML while fH is still far away from the equilibrium. Note the different scales for v.
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Figure 6.2.12: Multi-species Boltzmann equation. BKG-penalization method. The disparate
masses problem. The velocities for the two species converge to each other.

Step 1. Solve the convection part:

∂tfi + v · ∇xfi = 0. (6.3.1)

Step 2. Solve the collision part:

∂tfi =
Qi
ε
. (6.3.2)

This is based on the Strang splitting algorithm, and thus the accuracy is second order in

time. The convection part is easy. We use the same algorithm presented in section 6.2.1 to deal

with the transport term. The collision term, however, is the stiff part: if explicit methods are

used, the time step is limited by ε, and if implicit methods are used, one meets the difficulties

in numerically inverting Q. Following [52, 143], we reformulate (6.3.2) into an exponential

form, and solves the new equation using explicit Runge-Kutta scheme.

Reformulation

Define

µ = supx,i|Q−i |, Pi = Qi + µfi, (6.3.3)
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and rewrite (6.3.2) as:

∂t
(
(fi −M i)e

µt/ε
)

= ∂tfie
µt/ε + (fi −M i)

µ

ε
eµt/ε =

1

ε
(Qi + µfi − µM i)e

µt/ε

=
1

ε
(Pi − µM i)e

µt/ε, (6.3.4)

in which we have used the fact that ρi, ū and T̄ do not change in the collision step, and thus

∂tM i = 0.

Remark 6.3.1.

1. The equation (6.3.4) describes the evolution of the distance between the distribution func-

tion fi and its equilibrium M i multiplied by an integration factor, and thus removes the

stiffness in (6.3.2) ([52]).

2. Equation (6.3.4) holds for arbitrary constant µ. The way we choose µ is to guarantee the

positivity of P ; we refer to [143] for more details.

Runge-Kutta method

Applying the K-stage Runge-Kutta method to the equation (6.3.4), one gets


Stage α: (f l,(α) −M)e

µ
ε
cαh = (f l+

1
2 −M) +

h

ε

α−1∑
β=1

aαβ(P l,(β) − µM)e
µ
ε
cβh,

Final stage: (f l+1 −M)e
µ
ε
h = (f l+

1
2 −M) +

h

ε

K∑
α=1

bα(P l,(α) − µM)e
µ
ε
cαh.

(6.3.5)

where
∑α−1

β=1 aαβ = cα,
∑

α bα = 1, and superscripts l, (β) stand for the estimate of the quan-

tities at t = tl + cβh. µ is given in (6.3.3) and f l+
1
2 is obtained after the transport step. The

last equation implies:

f l+1 =

(
1− eλ −

∑
α

bαλe
λ(−1+cα)

)
M + e−λf l+

1
2 +
∑
α

bαλe
λ(cα−1)P

l,(α)

µ
, λ =

µh

ε
, (6.3.6)
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In this formulation, one needs to compute M and P . The computation is the same as that in

section 6.2.1, and will be omitted from here.

6.3.2 Positivity and asymptotic preserving properties

In this section, we discuss the positivity and asymptotic preserving properties of the Exp-

RK method introduced above.

Theorem 6.3.1 (Positivity). The Exp-RK method described by (6.3.1) and (6.3.5) preserves

the positivity property of fi, i.e. there exist h∗ > 0 and µ∗ > 0 such that f l+1 > 0 provided

f l > 0, if 0 < ∆x < h∗ and µ > µ∗.

The proof of Theorem 6.3.1 is essentially the same as in the section for single-species system

5.2.2, and we omit the details here.

In order to prove the AP property, we need the following assumption:

Assumption 6.3.1. The operator P satisfies

‖P (f, f)− P (g, g)‖ . ‖f − g‖.

Remark that this assumption is true for Maxwell molecule in the d2 norm defined in Ps(Rd)

space ([183]). This can be easily seen by a similar argument carried in section 5.2.2. For

completeness we provide it in appendix B.3.

Assume f l and gl are the initial conditions to (6.3.5). Define

d0 = ‖f l − gl‖, dα = ‖f l,(α) − gl,(α)‖, α = 1, · · · ,K,

~d = (d1, d2, · · · , dK)T , ~b = (b1, b2, · · · , bK)T , ~e = (1, 1, · · · , 1)T ,
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and A is a K ×K strictly lower triangular matrix and E is a diagonal matrix given by

Aαβ =
λ

µ
aαβe

(cβ−cα)λ, β < α, and E = diag{e−c1λ, e−c2λ, · · · , e−cKλ}, (6.3.7)

where aαβ, bα and cα are the coefficients of the Runge-Kutta method in (6.3.5), λ is given in

(6.3.6) and ~e is a K-dimensional vector. Then we have the following contraction lemma.

Lemma 6.3.1. After one time step iteration in (6.3.5), the scheme satisfies:

‖f l+1 − gl+1‖ ≤ R(λ)‖f l − gl‖ with R(λ) = e−λ
(

1 +
Cλ

µ
~bTE−1(I− CA)−1E~e

)
. (6.3.8)

where I is the identity matrix, and C > 0 is a constant.

Proof. The equation (6.3.5) implies, for α = 1, · · · ,K,

(f l,(α) − gl,(α))ecαλ = (f l − gl) +
α−1∑
β=1

aαβ
λ

µ
ecβλ(P

l,(β)
f − P l,(β)

g ). (6.3.9)

Using the triangle inequality and Assumption 6.3.1 produces

‖f l,(α) − gl,(α)‖ ≤ ‖f l − gl‖e−cαλ +
α−1∑
β=1

aαβ
λ

µ
e(cβ−cα)λ

(
C‖f l,(β) − gl,(β)‖

)
, (6.3.10)

which implies

~d ≤ d0E~e+ CA~d and ~d ≤ d0 (I− CA)−1 E~e, (6.3.11)

where we have used the fact that A is a strictly lower triangular matrix.

The final step in (6.3.5) yields

(
f l+1 − gl+1

)
=
(
f l − gl

)
e−λ +

K∑
α=1

hbα
ε

(
P
l,(α)
f − P l,(α)

g

)
e(cα−1)λ, (6.3.12)
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Then (6.3.11) and Assumption 6.3.1 imply

‖f l+1 − gl+1‖ ≤ d0e
−λ +

Cλ

µ
e−λ~bTE−1~d ≤ d0e

−λ
(

1 +
Cλ

µ
~bTE−1(I− CA)−1E~e

)
, (6.3.13)

which completes the proof.

Lemma 6.3.2. Under Assumption 6.3.1, ‖f l −M l‖ = O (R(λ)) for each l.

Proof. Take g = M in the previous lemma, one gets

‖f l+1 −M l+1‖ ≤ ‖f l+ 1
2 −M l+ 1

2 ‖R(λ).

The convection step yields

‖f l+ 1
2 −M l+ 1

2 ‖ < ‖f l −M l‖+ ∆t‖v · ∇x
(
f l −M l

)
‖+O(∆t) ≤ ‖f l −M l‖+O(∆t).

Combine these two inequalities, we conclude with the assertion of this lemma.

Theorem 6.3.2. The Exp-RK method defined in (6.3.1) and (6.3.5) is strong AP.

Proof. By Lemma 6.3.2, it suffices to prove that R(λ) = O(ε) for small ε. Considering that A

is a strictly lower triangular matrix and is thus a nilpotent, one has

E−1 (I− A)−1 E = E−1
(
I + A + A2 + · · ·+ AK−1

)
E = I + B + B2 + · · ·+ BK−1, (6.3.14)

where B = E−1AE, and we have used AK = 0. Further by (6.3.7), Bαβ = Aαβecαλ−cβλ = λ
µaαβ.

Thus I +
∑

α Bα is a matrix with the elements of at most O(λK). Therefore, when ε� 1,

R(λ) = e−λ
(

1 +
Cλ

µ
~b · E−1 (I− A)−1 E · ~e

)
= O(e−λλK) < O(ε).
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This completes the proof.

Remark 6.3.2. Note that in the derivation for (6.3.4), the only requirement on M is that it

does not change with respect to time in the collision part. Analytically, one can replace this M

by arbitrary function that does not has the time variable. However, the associated numerics

simply can not preserve the right asymptotic limit, as indicated in Lemma 6.3.2.

6.3.3 Numerical example

The examples chosen here is the same as in the previous section 6.2.4 for the convenience

of comparisons. We compute the reference solution by the forward Euler method using very

small time step and mesh size.

A stationary shock

We compute the same stationary shock problem as shown in 6.2.4. N = 2 in (4.1.1), and

the initial macroscopic quantities form a shock with zero speed, see (6.2.14). In phase space,

the distribution function is given far away from the Maxwellian as in (6.2.15) and (6.2.16) with

κ = 0.2. We choose h = 0.0005 and ∆x = 0.01 to compute the equation using forward Euler

scheme as a reference result. In Figure 6.3.1, we compare the numerical results given by the

Exp-RK method, the BGK penalization method, and the reference solution for ε = 1 and 0.1.

In Figure 6.3.2, we verified the AP property of the Exp-RK method, i.e. as ε goes to zero, the

numerical results capture the stationary shock. We compare the convergence of the velocities

for two species in Figure 6.3.3, where they gradually converge to the mean velocity u, and the

smaller ε gives the faster convergence rate.
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Figure 6.3.1: Multi-species Boltzmann equation. ExpRK method. The stationary shock prob-
lem. We compare the numerical results at t = 0.1 by the Exp-RK method (the dotted line),
the BGK penalization method (the circled line), and the reference solution (the solid line).
The left figures are for ε = 1, and the right ones are for ε = 0.1.

A Sod problem

This Sod problem is the same one computed in section 6.2.4. Macroscopic quantities are

chosen as in 6.2.17, and the initial distribution function is taken far away from the Maxwellian.

We check indifferentialbility in Figure 6.3.4, and compare the numerical results given by this

Exponential Runge-Kutta method and the BGK-penalization method, together with reference

solution for ε = 1 and 0.1. AP property is verified in Figure 6.3.6 as we take ε→ 0. Figure 6.3.7

shows that in the long time limit, the two species have the same velocities, indicating the Euler

limit is achieved. Smaller ε gives faster convergence rate. f −M at t = 0.1 for kinetic regime

ε = 0.1 and hydrodynamic regime ε = 10−6 are plotted in Figure 6.3.8 reflecting AP on the

microscopic level.
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Figure 6.3.2: Multi-species Boltzmann equation. ExpRK method. The stationary shock prob-
lem. As ε goes to zero, the results get to the Euler limit, i.e. a stationary shock.
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gives the faster convergence rate.
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Appendix A

Quantum system

A.1 Some basic analysis of the semi-classical Liouville systems

To understand the asymptotic behavior of the solution to the Liouville-A system (2.2.19),

as mentioned in section 2.2.3, we look at a simpler model system:



∂tg + ∂xf + b(x)∂pg = 0 ,

∂tf + a(p)∂xf + ∂xg + b(x)∂pf = i
εc(p)f ,

g(0, x, p) = gI(x, p), f(0, x, p) = fI(x, p).

(A.1.1)

The initial conditions gI and fI are bounded smooth functions independent on ε, b > 0 and

the set of zeros for c(p): Sc = {p : c(p) = 0} is measured zero. It is easy to check that (A.1.1)

is a linear hyperbolic system, and the solutions g and f are bounded uniformly in ε [43].

A.1.1 Weak convergence

We consider the weak limit of the solution of (A.1.1) in this subsection. To do this, we

introduce the inner product 〈 ·, · 〉 as

〈u, v 〉 =

∫ ∞
0

∫
R2

u(t, x, p)v̄(t, x, p) dx dp dt.
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Choose an arbitrary test function h ∈ C∞0 (R+ × R2), take the inner product on both side of

(A.1.1) w.r.t h, one gets


〈 ∂tg, h 〉 − 〈 f, ∂xh 〉+ 〈 b∂pg, h 〉 = 0 ,

〈 f, ∂th 〉+ 〈 af, ∂xh 〉+ 〈 g, ∂xh 〉+ 〈 bf, ∂ph 〉 = − i
ε〈 cf, h 〉 .

(A.1.2)

The derivatives in the equation of (A.1.2) are acted on the smooth function h, and the left

side is bounded. One gets

〈 cf, h 〉 → 0 as ε→ 0 for all h ∈ C∞0 (R+ × R2).

Given that c is almost surely nonzero, and f is bounded, one gets

f ⇀ 0 weakly.

Combined with the first equation in (A.1.2), one gets

∂tg + b(x)∂pg ⇀ 0 weakly.

A.1.2 Strong convergence: for constant b

In these two subsections, we formally prove that before getting close to the crossing region,

c(p) is assumed to be bigger than a constant c0 that is unrelated to ε. In this region, f is

constantly small and controlled by O(ε). This subsection is for the case when the speed on p

direction is a constant: b(x) = β. Along the p-characteristic line p(t) = p0 + βt, one applies

the Fourier transform to the x-variable, and gets:

d

dt
f = iR(t)f , (A.1.3)
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where f(t, η) = ( ĝ(t, η, p(t)), f̂(t, η, p(t)) )T and

R(t) =

 0 −η

−η c(p(t))/ε− ηa(p(t))

 .

The two eigenvalues of R(t) are both real, and thus the system above has a bounded solution

satisfying

|ĝ(t, η)|2 + |f̂(t, η)|2 = |ĝI(η)|2 + |f̂I(η)|2.

The equivalence between norms gives:

|ĝ(t, η)|+ |f̂(t, η)| < C(|ĝI(η)|+ |f̂I(η)|).

Adopt it into the solution to (A.1.3), one gets

|∂tg(t, x)| = 1

2π

∣∣∣∣∫
R
ηf̂(t, η)eiηxdη

∣∣∣∣ ≤ 1

2π

∫
R
|η| |f̂(t, η)|dη

≤ C
∫
R
|η|
(
|ĝI(η)|+ |f̂I(η)|

)
dη

∣∣∂2
txg(t, x)

∣∣ =
1

2π

∣∣∣∣∫
R
η2f̂(t, η)eiηxdη

∣∣∣∣ ≤ 1

2π

∫
R
|η|2 |f̂(t, η)|dη

≤ C
∫
R
|η|2

(
|ĝI(η)|+ |f̂I(η)|

)
dη

If the initial conditions ĝI and f̂I are smooth enough, and decay fast as η → ∞, one could

easily get that ∂tg(t, x) and ∂2
txg(t, x) are both bounded in time independent of ε, and thus g

and ∂xg are slowly varying in time.

Remark A.1.1. In the derivation above, we dropped the p(t)-dependence in the functions for

simplicity. The partial derivative in the t-variable ∂t should be understood as taking along the

p-characteristic line p(t), i.e. ∂tg(t, x) = ∂tg(t, x, p) + β∂pg(t, x, p).
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Assume that fI(x) ≡ 0, one follows the characteristics of x(t) by solving ẋ(t) = a(t, x) and

gets:

f
(
t, x(t), p(t)

)
= −

∫ t

0
exp

(
i

ε

∫ t

t−s
c (p(τ)) dτ

)
∂g

∂x

(
t− s, x(t− s), p(t− s)

)
ds .

By the assumption, before hitting the crossing region, c(p(τ)) > c0 > 0, then the stationary

phase argument suggests that, given slowly varying ∂xg(t, x, p(t)), f = O(ε).

The observations from the above two subsections suggest that f ⇀ 0, and before getting

close to the crossing region, f is as small as of O(ε). Based on these arguments, for the

Liouville-A system (2.2.19), and propose the following conjecture: if σ12 and σ21 are initially

zero, then:

Case 1. If p � −√ε, then σ12 and σ21 are of o(
√
ε);

Case 2. If p ∈ [−√ε,√ε], then σ12 and σ21 are of O(
√
ε), and slowly varying;

Case 3. If p � √ε, σ12 and σ21 are highly oscillatory, and converge to 0 weakly.

A.2 The integration method of a simple model system

In this section, we apply the method in (2.3.6) onto a simple model to show stability.

d

dt
f(t, p0 + t) = R(p0 + t) f(t, p0 + t),

where f(t, p) = (g(t, p), f(t, p))T , p = p0 + t, and

R(p) =

 r11(p) r12(p)

−r̄12(p) rε22(p)

 .
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with rε22(p) = r22(p)+ i
εc(p), while r11 and r22 are purely imaginary, and c(p) real and positive.

r11, r22 and r12 are independent on ε.

Set up mesh as tj = j∆t, and pi = −1
2 + (i− 1)∆p, with ∆p and ∆t being the mesh size.

Denote gji and f ji as the numerical result at (tj , pi), then (2.3.6) gives

f(t, p(t)) = f ji e
∫ t
0 r

ε
22(pi+τ)dτ − gji r̄12(pi)

∫ t

0
e
∫ t
s r

ε
22(pi+τ)dτds, (A.2.1a)

g(t, p(t)) = gji + g(t, p(t)) r11(p(t)) + r12(pi)

∫ t

0
f̃(tj + s, pi + s) ds (A.2.1b)

Plug (A.2.1a) into (A.2.1b), and evaluate them at (tj+1, pi+1), one obtains:

(
1− r11(pi+1)∆t

)
gj+1
i+1 = gji

(
1− |r12(pi)|2

∫ ∆t

0

∫ t

0
e
∫ t
s r

ε
22(pi+τ)dτdsdt

)
+f ji r12(pi)

∫ ∆t

0
e
∫ t
0 r

ε
22(pi+τ)dτdt . (A.2.2)

Written in vector form gives

f j+1
i+1 = Mi f

j
i , (A.2.3)

with

Mi =

 1−|r12(pi)|2
∫∆t
0

∫ t
0 e

∫ t
s r
ε
22(pi+τ)dτdsdt

1−r11(pi+1)∆t

r12(pi)
∫∆t
0 e

∫ t
0 r
ε
22(pi+τ)dτdt

1−r11(pi+1)∆t

−r̄12(pi)
∫ ∆t

0 e
∫∆t
s rε22(pi+τ)dτds e

∫∆t
0 rε22(pi+τ)dτ

 .

The following quantities in the matrix Mi should be evaluated very accurately:

F0 = e
∫∆t
0 rε22(pi+τ)dτ ,

F1 =

∫ ∆t

0
e
∫ t
0 r

ε
22(pi+τ)dτdt,

F2 =

∫ ∆t

0

∫ t

0
e
∫ t
s r

ε
22(pi+τ)dτds dt.

Remark A.2.1. These three quantities only depend on the mesh grid point index i but not the
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time steps index j, thus they only need to be computed once at the beginning of the computation.

Given ε � ∆t, the integrands of F1 and F2 are highly oscillatory, and one can see that

|F1| ∼ O(ε) and |F2| ∼ O(ε2). Simple calculation shows that Mi can be written as

Mi = Ω M̃i,

with

Ω = diag

(
1

1− r11(pj+1)∆t
, 1

)
, M̃i =

 1− |r12(pi)|2 F2 r12 F1

−r̄12 F̄1 F0

 .

With purely imaginary r11 and rε22, it is easy to prove that ‖Ω‖∞ ≤ 1, and ‖M̃i‖∞ ≤ (1 +

O(ε∆t)), and thus ‖Mi‖∞ ≤ (1 + O(ε∆t)). This implies asymptotic stability of the scheme

(A.2.3) independent of ε→ 0.

A.3 The derivations of (3.2.18)

In this section, we give the derivations of the semi-classical Liouville system (3.2.18). We

firstly study the Moyal product. From its definition in (3.2.8), one gets:

A#B = Ae
iε
2

(←−
∇x·
−→
∇p−

←−
∇p·
−→
∇x

)
B

=
∑
n

1

n!

(
iε

2

)n
A
(←−∇x ·

−→∇p −
←−∇p ·

−→∇x

)n
B

=
∑
n

n∑
k=0

(−1)k

n!

(
n

k

)(
iε

2

)n
A
(←−∇x ·

−→∇p

)n−k (←−∇p ·
−→∇x

)k
B.
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In particular, if both symbols depend only on one variable (spatial x or phase p), the Moyal

product becomes the ordinary product:

A(x)#B(x) = A(x)B(x), and A(p)#B(p) = A(p)B(p).

With this, one can evaluate the symbol H ′.

H ′ = Θ(x)#H(x,p)#Θ†(x)

= Θ(x)#
(
U(x)I + V (x)

)
#Θ†(x) + Θ(x)#

(
p2

2
I
)

#Θ†(x)

= diag
{
U +

√
u2 + v2, U −

√
u2 + v2

}
+ Θ(x)#

(
p2

2
I
)

#Θ†(x)

= Λ(x,p) + iεp · ∇xΘ(x)Θ†(x) +
ε2

2
∇xΘ(x) · ∇xΘ†(x), (A.3.1)

where Λ = U(x) + ΛV with ΛV defined in (3.1.21). Hence we obtain the equation (3.2.17) in

Section 3.2.2. Here the derivation is based on (3.2.15), (3.2.8), and the following identities:

Θ(x)#

(
p2

2
I
)

=
∑
n

1

n!

(
iε

2

)n
Θ(x)

(←−∇x ·
−→∇p

)n(p2

2
I
)

=
p2

2
Θ +

iε

2
p · ∇xΘ +

1

2

(
iε

2

)2

Θ
(←−∇x ·

−→∇p

)2
(

p2

2
I
)

=
p2

2
Θ +

iε

2
p · ∇xΘ +

1

2

(
iε

2

)2

∆xΘ,(
p2

2
Θ(x)

)
#Θ†(x) =

p2

2
− iε

2
Θ (p · ∇xΘ†) +

1

2

(
iε

2

)2

Θ ∆xΘ†,(
p · ∇xΘ(x)

)
#Θ†(x) = p · ∇xΘ Θ† − iε

2
∇xΘ · ∇xΘ†,

∆xΘ(x)#Θ†(x) = ∆xΘ Θ†,

Θ(x) (p · ∇xΘ†(x)) = −(p · ∇xΘ) Θ†,

−2∇xΘ(x) · ∇xΘ†(x) = Θ∆xΘ† + ∆xΘ Θ†.
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To finally derive (3.2.18), one needs to go back to the evolution of F ′ given in (3.2.14):

iε
∂F ′

∂t
= [Λ, F ′]− iε

2
{Λ, F}+

iε

2
{F,Λ}+ iε[p · ∇xΘ Θ†, F ′] + O(ε2)

= [Λ, F ′]− iε

2
[∇pΛ,∇xF ]+ +

iε

2
[∇xΛ,∇pF ]+

+ iε [p · ∇xΘ Θ†, F ′] + O(ε2), (A.3.2)

with [A,B]+ = AB +BA. By definition (3.2.20), it is easy to obtain:

[Λ, F ′] =

 0 λ+ − λ−

λ− − λ+ 0

 , [∇pΛ,∇xF ]+ = 2

 p · ∇xf
+ p · ∇xf

i

p · ∇xf i p · ∇xf
−

 ,

[∇xΛ,∇pF ]+ = 2

 ∇x(U + E) · ∇pf
+ ∇xU · ∇pf

i

∇xU · ∇pf i ∇x(U − E) · ∇pf
−

 ,

[p · ∇xΘ Θ†, F ′] = ξ

 2<{f i} f− − f+

f− − f+ −2<{f i}

 ,

Plug them back in (A.3.2), up to the first order in ε, one gets (3.2.18).
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Appendix B

Kinetic theory

B.1 Positivity of the mass density in ExpRK-V

Theorem B.1.1. The method ExpRK-V defined by (5.2.8) gives positive ρ, and the negative

part of T is at most of order O(hε).

To prove this theorem, we firstly check the following lemma.

Lemma B.1.1. In each sub-stage, the distribution function f (i) and M (i) have the same first

d+ 2 moments.

Proof. We prove this for sub-stage i. Assume for ∀j < i, one has

∫


1

v

v2

2

 (f (j) −M (j))dv = 0. (B.1.1)
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Then, one could take moments of the first equation in the scheme (5.2.8a), and gets

∫


1

v

v2

2

 (f (i) −M (i))eciλdv =

∫


1

v

v2

2

 (fn −Mn) dv (B.1.2a)

+
i−1∑
j=1

aij
λ

µ
ecjλ

∫


1

v

v2

2


(
P (j) − µM (j)

)
dv (B.1.2b)

−
i−1∑
j=1

aij
λ

µ
ecjλ

∫


1

v

v2

2


(
εv · ∇xf (j) − ε∂tM (j)

)
dv

(B.1.2c)

(B.1.2a) is zero for sure, (B.1.2b) is zero by definition of P and (B.1.1). (B.1.2c) is zero

because of the computation from (5.2.11). Thus it is obvious that f (i) and M (i) share the same

moments on each stage.

With the previous lemma in hand, one could prove Theorem 4.

Proof. As in the previous lemma, we only do the proof for sub-stage i. The final step can be

dealt with in the same way. Rewrite the second equation of (5.2.8a) in Shu-Osher representation

∫
φf (i)dv =

i−1∑
j=1

(
αij

∫
φf (j)dv + βijh

∫
φv · ∇xf (j)dv

)
(B.1.3)

This moment equation is the same as the equation on ρ in the Euler system, and the classical

proof for ρ being positive for the Euler equation can just be adopted [83]. To check the
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positivity of T , one just need to make use of the last line of the moment equation, i.e.

∫
v2

2
f (i)dv =

i−1∑
j=1

(
αij

∫
v2

2
f (j)dv + βijh

∫
v2

2
v · ∇xf (j)dv

)

=

i−1∑
j=1

(
αij

∫
v2

2
f (j)dv + βijh

∫
v2

2
v · ∇xM (j)dv

)
(B.1.4a)

+ h

i−1∑
j=1

βij

∫
v2

2
v · ∇x

(
f (j) −M (j)

)
dv (B.1.4b)

(B.1.4a) is exactly what one could get when computing for E in the Euler system: the form of

M closes it up. So the classical method to prove that E > ρu2

2 in Runge-Kutta scheme could

be used, and the only thing new is from (B.1.4b). However, as proved in the section about

AP, the difference between f and M is at most of ε, thus (B.1.4b) is of order O(hε).

B.2 ‖P (f)− P (g)‖ ≤ ‖f − g‖ for single species

B.2.1 In d2 norm

We adopt the results from [183]. They denote P2 the collection of distributions F such

that ∫
Rd
|v|2dF (v) <∞

A metric d2 on P2 is defined by

d2(F,G) = supξ
f̂(ξ)− ĝ(ξ)

|ξ|2 (B.2.1)

where f̂ is the Fourier transform of F

f̂(ξ) =

∫
e−iξ·vdF (v)
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One can transform the Boltzmann equation into its Fourier space and obtains[170, 20]

∂tf̂(t, ξ) =

∫
S2

B

(
ξ · n
|ξ|

)[
f̂(ξ+)f̂ (ξ−)− f̂ (ξ)f̂(0)

]
dn (B.2.2)

where ξ± = ξ±|ξ|n
2

Theorem B.2.1. d2(Pf , Pg) < d2(f, g) for Maxwell molecules with cut-off collision kernel.

Proof. For Maxwell molecule with cut-off collision kernel
∫
B = S. Thus

sup|Q−| = sup

∣∣∣∣∫ Bf∗dΩdv∗

∣∣∣∣ = sup|ρS| <∞.

Considering P = Q + µf = Q+ + (µ−Q−) f , it is enough to prove d2(Q+
f , Q

+
g ) < Cd2(f, g)

for C big enough. Given

Q̂+
f =

∫
S2

B

(
ξ · n
|ξ|

)[
f̂(ξ+)f̂ (ξ−)

]
dn,

one has

Q̂+
f − Q̂+

g

|ξ|2 =

∫
S2

B

(
ξ · n
|ξ|

)[
f̂(ξ+)f̂(ξ−)− ĝ(ξ+)ĝ(ξ−)

|ξ|2

]
dn

From [183], one gets ∣∣∣∣∣ f̂(ξ+)f̂(ξ−)− ĝ(ξ+)ĝ(ξ−)

|ξ|2

∣∣∣∣∣ ≤ sup

∣∣∣∣∣ f̂ − ĝ|ξ|2
∣∣∣∣∣

Thus, one has:

d2(Q+
f , Q

+
g ) = supξ

∣∣∣∣∣Q̂
+
f − Q̂+

g

|ξ|2

∣∣∣∣∣ ≤ S sup

∣∣∣∣∣ f̂ − ĝ|ξ|2
∣∣∣∣∣ = Sd2(f, g)
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B.2.2 In L2 norm

Theorem B.2.2. Given a system with cut-off collision kernel, if ‖f‖∞ < ∞, then ‖P‖2 is

controlled by ‖f‖2.

Proof. Since µ = sup‖
∫
Bf∗dv∗dΩ‖ < ∞, one just need to prove that Q+ is also a bounded

operator. We only consider Maxwell molecule with cut-off collision kernel.

‖Q+(f)‖2 =

∫ (∫ ∫
B(Ω)f ′f ′∗dv∗dΩ

)2

dv

≤
∫ ∫ ∫ (

B(Ω)f ′f ′∗
)2
dv∗dΩdv

≤
∫
B2(Ω)dΩ

∫
(f ′)2dv′

∫
(f ′∗)

2dv′∗

≤ C‖f‖22

≤ C
√
‖f‖∞‖f‖1‖f‖2

In this derivation, we used that:

1. the Hessian matrix generated by changing of variable from (v, v∗) to (v′, v∗) has deter-

minant one;

2. the collision kernel is a cut-off collision;

3. Hölder Inequality.

Given ‖f‖1 = ρ, under the assumption that ‖f‖∞ is bounded, one has that Q+ is a bounded

operator on ‖f‖.
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B.3 ‖P (f)‖ < C‖f‖ multi-species

B.3.1 In d2 norm

This is extension from section B.2.1. Here in multipspecies system, the Fourier transform

of the collision term is [19]:

∂tf̂i(t, ξ) =
∑
j

∫
S2

Bij

(
ξ · n
|n|

)[
f̂(ξ+

ij )f̂(ξ−ij )− f̂(ξ)f̂(0)
]
dn, (B.3.1)

where ξ+
ij =

miξ+mjξ|ω|
mi+mj

and ξ−ij =
mj

mi+mj
(ξ− |ξ|ω). Unlike in single species case, here, one only

has the momentum conservation, which is reflected as:

ξ = ξ+
ij + ξ−ij (B.3.2a)

|ξ|2 6= |ξ+|2 + |ξ−|2 = |ξ|2
(

1− 4mimjs

(mi +mj)2
+

4m2
js

(mi +mj)2

)
(B.3.2b)

with s = 1
2

(
1− ξ·ω

|ξ|

)
. By definition, s ∈ [0, 1], obviously, the following is bounded, when the

system is given and the mass ratio is fixed:

0 ≤
|ξ−ij |2 + |ξ+

ij |2
|ξ|2 ≤ Cij . (B.3.3)

Define C = maxi,jCij , then we have the theorem:

Theorem B.3.1. In multispecies case, there exists a constant C̃ big enough such that

d2(Pf , Pg) < C̃d2(f ,g)

for Maxwell molecule with cut-off collision.

Here d2 for vector functions is defined by: d2(f ,g) = maxid2(fi, gi).
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Proof. As in the previous theorem, one only need to prove:

d2(Q+(f), Q+(g)) ≤ C̃d2(f ,g). (B.3.4)

This is given by the following:

∣∣∣∣∣Q̂+
i (f)− Q̂+

i (g)

|ξ|2

∣∣∣∣∣ =

∣∣∣∣∣∣
∑
j

∫
σij

f̂i(ξ
+
ij )f̂j(ξ

−
ij )− ĝi(ξ+

ij )ĝj(ξ
−
ij )

|ξ|2 dn

∣∣∣∣∣∣
≤
∑
j

∫
σij

(
f̂+
i

∣∣∣∣∣ f̂
−
j − ĝ−j
|ξ−ij |2

∣∣∣∣∣ ·
∣∣∣∣∣ |ξ
−
ij |2
|ξ|2

∣∣∣∣∣+ ĝ−j

∣∣∣∣∣ f̂+
i − ĝ+

i

|ξ+
ij |2

∣∣∣∣∣ ·
∣∣∣∣∣ |ξ

+
ij |2
|ξ|2

∣∣∣∣∣
)

dn

≤
∑
j

∫
σij · supξ̃,j

∣∣∣∣∣ f̂j − ĝj|ξ̃|2

∣∣∣∣∣ · |ξ
+
ij |2 + |ξ−ij |2

|ξ̃|2
dn

≤ C · S · supξ̃,j

∣∣∣∣∣ f̂j − ĝj|ξ̃|2

∣∣∣∣∣ (B.3.5)

For convenience, denote f̂+
i = f̂i(ξ

+
ij ) and f̂−j = f̂i(ξ

−
ij ). In the derivation above, the following

are used:

• collision kernel is cut-off, thus
∑

j

∫
σijdn = S

• |ξ
+
ij |

2+|ξ−ij |
2

|ξ|2 is controlled as in (B.3.3)

(B.3.5) is true for all ξ and i, thus one has:

supξ,i

∣∣∣∣∣Q̂+
i (f)− Q̂+

i (g)

|ξ|2

∣∣∣∣∣ ≤ C · S · supξ,i

∣∣∣∣∣ f̂i − ĝi|ξ|2

∣∣∣∣∣ (B.3.6)

Choose C̃ = C · S to finish the proof.

Remark B.3.1. The theorem above is based on the assumption the new metrics is well defined.

This is true since the triangular inequality still holds. The proof is straightforward and we will

skip the details here.
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B.3.2 In L2 norm

It is an easy extension from section B.2.2. Here Qi =
∑

ikQik.

Theorem B.3.2. Given a system of N species, with cut-off collision kernel, if ‖f‖∞ < ∞,

then ‖P‖2 = supi‖Pi‖2 is controlled by ‖f‖2 = supi‖fi‖2.

Proof. To prove Q+
i is a bounded operator on f , we have the following:

‖Q+
i (f)‖22 =

∫ (∑
k

∫ ∫
Bik(Ω)f ′if

′
k∗dv∗dΩ

)2

dv

≤
∫ ∫ ∫ ∑

k

(
Bik(Ω)f ′if

′
k∗
)2
dv∗dΩdv

≤
∑
k

(∫
B2
ik(Ω)dΩ

∫
(f ′i)

2dv′
∫

(f ′k∗)
2dv′∗

)
≤ C

∑
k

‖fi‖22‖fk‖22

≤
(
C
∑
k

‖fk‖∞‖fk‖1
)
‖fi‖22

Thus there is a constant C̃ big enough such that ∀i, ‖Q−i (f)‖2 < C̃‖fi‖2. Given Q−i is a

bounded linear functional on fi and µ <∞, one can easily get

‖Pi(f)‖2 < C̃‖fi‖2,

thus

supi‖Pi(f)‖2 < C̃supi‖fi‖2.
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dérivées partielles, (1991), pp. 1–19.



196

[74] P. Gérard, P. Markowich, N. Mauser, and F. Poupaud, Homogenization limits

and Wigner transforms, Communications on Pure and Applied Mathematics, 50 (1997),

pp. 323–379.

[75] E. Goldman and L. Sirovich, Equations for gas mixtures, Physics of Fluids, 10 (1967),

pp. 1928–1940.

[76] F. Golse, S. Jin, and C. D. Levermore, A domain decomposition analysis for a

two-scale linear transport problem, Mathematical Modeling and Numerical Analysis, 37

(2002), pp. 869–892.

[77] F. Golse and L. Saint-Raymond, The Navier-Stokes limit of the Boltzmann equation

for bounded collision kernels, Inventiones mathematicae, 155 (2004), pp. 81–161.

[78] , The Navier-Stokes limit of the Boltzmann equationfor hard potentials, Journal de
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[175] M. Sillanpää, T. Lehtinen, A. Paila, Y. Makhlin, and P. Hakonen, Landau–

Zener interferometry in a Cooper-pair box, Journal of Low Temperature Physics, 146

(2007), pp. 253–262.

[176] R. J. Spiteri and S. J. Ruuth, A new class of optimal high-order strong-stability-

preserving time discretization methods, SIAM Journal on Numerical Analysis, 40 (2003),

pp. pp. 469–491.
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