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abstract

The work described in this dissertation involves the development and application of mass

spectrometry methods for the analysis of peptides, proteins, and metabolites. Chapter 1

gives a brief overview of the history and fundamentals of bioanalytical mass spectrometry,

the utility of electron transfer dissociation (ETD) for the analysis of peptides and proteins,

and the use of high resolution gas-chromatography mass spectrometry (GC-MS) to char-

acterize volatile small molecule metabolites from complex mixtures. Chapter 2 explores

the role of the reagent cation in negative electron transfer dissociation (NETD) for the

analysis of peptide anions. Then Chapter 3 demonstrates the use of activated-ion NETD

(AI-NETD) to analyze the negative-mode proteome of yeast. This work proved to generate

far greater depth of coverage than previous negative-mode experiments, owing largely to

the introduction of infrared radiation concurrent to the NETD reaction. For this study, a

high pH chromatography method was also developed to greatly improve the ionization of

peptide anions using negative electrospray ionization. Chapter 4 characterizes activated-

ion ETD (AI-ETD) as a fragmentation method to interrogate proteins with intact disulfide

bonds. This method greatly improved the sequence coverage and sequence ion generation

compared to other commonly used fragmentation techniques for a set standard proteins.

Chapter 5 outlines the creation of a high resolution metabolite mass spectral library using

a Q Exactive GC mass spectrometer. This library is then employed to identify metabolites

from yeast and human cell cultures, significantly improving the identification confidence



xix

over commercially available spectral libraries. Lastly, Chapter 6 describes the multi-omic

analysis of yeast strains with a single gene deletion, aiming to correlate genes of known

function with genes unknown function.
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Chapter 1

introduction

Portions of this chapter are adapted from published manuscripts and are reprinted with
permission from:

Rose CM, Rush MJP, Riley NM, Merrill AE, Kwiecien NW, Holden DD, Mullen C,
Westphall MS, Coon JJ. A calibration routine for efficient ETD in large-scale proteomics.
Journal of the American Society for Mass Spectrometry. 2015, 26 (11), 1848-1857. doi:
10.1007/s13361-015-1183-1.

Kwiecien, NW, Bailey, DJ, Rush, MJP, Colse, JS, Ulbrich, A, Hebert, AS, Westphall, MS,
Coon JJ. High-Resolution Filtering for Improved Small Molecule Identification via GC/MS.
Analytical Chemistry. 2015, 87 (16), 8328-8335. doi: 10.1021/acs.analchem.5b01503.
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Background

The blueprint for life is written using a sequence of small organic molecules called nu-

cleotides which string together to create deoxyribonucleic acid (DNA). Segments of DNA

encode for a particular biological process (gene), such as the sequence of a protein. The

nucleic acids of DNA are read in sets of three, with each set corresponding to an amino

acid. The DNA molecule is transcribed by the enzyme RNA polymerase to create a mes-

senger ribonucleic acid (mRNA). This mRNA molecule can then be used by the ribosome

to create a protein comprised of the appropriate sequence of amino acids. This process is

commonly referred to as the central dogma of molecular biology. Proteins are incredibly

dynamic, performing a wide variety of cellular functions. Metabolism comprises the set of

biochemical reactions within an organism which sustain life, where commonly the protein

actors perform a biochemical transformation on a small molecule metabolite for a plethora

of purposes, such as to produce energy in the case of the citric acid cycle. These classes of

biomolecules comprise the majority of matter within a cell. The ability to identify them

and measure their abundance is key to increasing our understanding of the complex in-

terplay underlying all biochemical processes within an organism. Within the past decade

enormous advances have been made to this end. The ability to globally measure the DNA

and RNA within an organism leapt forward with the Human Genome Project and has

become routine thanks to the invention of high-throughput sequencing technologies.1–3

However, the complete measurement of the more dynamic proteome and metabolome of
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organisms is not yet possible to the same degree. The work described in this dissertation

discusses mass spectrometry methods to advance the study of proteins and metabolites

within biological samples.

Bioanalytical mass spectrometry

For decades mass spectrometry (MS) has been a cornerstone analytical technique for mea-

suring chemical compounds. Mass spectrometers are instruments which are able to detect

the mass to charge ratio (m/z) of compounds which are introduced into the system. Mass

is not measured directly, as the mass spectrometer requires the use of charged particles

(ions) for detection, because the detectors used measure the charge induced or current

produced by the ions as it passes by or hits the surface of the detector. Charged particles

can also be manipulated by electric or magnetic fields, allowing mass spectrometers to

shuffle ions around, trap ions in particular segments of the instrument, mix populations

of ions, perform gas phase ion chemistry, or select ions with particular m/z values and

eliminate those ions that are not important. Because mass spectrometers rely upon ana-

lyzing charged gas phase particles, the production of gas phase ions has been an area of

active research for decades. There are numerous methods for creating ions which fall into

the categories of hard ionization or soft ionization. Hard ionization techniques are those

which ionize the chemical compound while concurrently fragmenting it. An example of

this is electron ionization which shoots a beam of electrons directly at the analyte, ionizing

the molecule and generating fragments which can be used to structurally elucidate the
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molecule.4,5 Soft ionization ionizes the molecule with little to no additional fragmentation.

The two premier methods for soft ionization are matrix-assisted laser desorption ionization

(MALDI), developed by Koichi Tanaka and coworkers, and electrospray ionization (ESI),

invented by John Fenn.6–8 These two methods, developed in the late 1980’s, opened the

way for the analysis of large biomolecules by mass spectrometry and the inventors shared

the Nobel Prize in chemistry in 2002 for their contribution.

The work described in this dissertation utilizes three distinct mass analyzers. The

quadrupole (Q) mass filter is a device comprising four parallel linear rods where a radio

frequency (RF) voltage is applied to one set of opposing rods and a direct current (DC)

offset voltage is applied to the other pair of rods. By manipulating the voltages applied

to the sets of rods, regions of the m/z space can be selectively transmitted through the

quadrupole device and allowed to reach the detector. Commonly a set of three quadrupoles

are used in series, called a triple quadrupole mass spectrometer. In this arrangement, the

first quadrupole is used as a mass filter to select a specific analyte, the second quadrupole

operates as a collision cell where the analyte is fragmented, and the third quadrupole can

be used to select a particular fragment ion or can scan the entire fragmentation spectrum.9

The next mass analyzer is the 2-dimensional quadrupole ion trap, which operates similarly

to a quadrupole mass filter, but can confine ions within the cell. This is accomplished by

separating the quadrupole into three segments, one center section and two end electrodes.

A RF is applied to trap the ions radially and an electric potential is applied to the end

electrodes to confine the ions axially. This analyzer can then operate as a mass-selective
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filter or an ion trap, providing flexibility to the device and facilitating ion/ion reactions.10

The last mass analyzer is the Orbitrap, which is an ion trap where an inner spindle-shaped

electrode is surrounded by an outer electrode.11,12 The ions are injected into the Orbitrap

with enough energy that their inertia counterbalances the electrostatic attraction to the inner

electrode. Ions then rotate around the center electrode radially forming helical packets.

They also oscillate axially at rates dependent on their m/z ratio. In this way, ions separate out

based on m/z, with each packet inducing an image current on the outer electrode. The image

current for each packet is measured and the m/z value can be calculated from the frequency

of the ion packet axial oscillation within the trap. The ability to continuously detect the

image current for each ion packet over extended periods of time allows the Orbitrap mass

analyzer to have substantially greater mass resolution capabilities than the quadrupole or

linear ion trap mass analyzers. Finally, some modern instruments integrate two or three

mass analyzers together within a single instrument, frequently referred to as hybrid mass

spectrometers. These systems allows for the most flexibility in experimental design and

leverages each mass analyzers primary advantages. The two types of hybrid instruments

used in this work comprise quadrupole-Orbitrap or linear ion trap-quadrupole-Orbitrap

geometries.13,14

Frequently, mass spectrometers are paired with a front-end chromatographic separation

method, such as gas or liquid chromatography (GC and LC, respectively), to simplify com-

plex mixtures of analytes.15,16 Discussion of GC-MS application to discovery metabolomics

will be covered in the section “Metabolomics”. The use of LC-MS has been the tool of
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choice for the analysis of complex protein mixtures, such as those from cell culture or

tissue samples. The workflow most commonly used in modern-day proteomics is shown

in Figure 1. The sample is enzymatically digested into peptides, which are separated by

liquid chromatography using a reverse-phase packing material and eluting peptides are

ionized by electrospray ionization.17 Once in the mass spectrometer a survey MS scan (MS1)

is performed and the most abundant ions are selected for secondary MS (MS2), where

the peptide is fragmented and the analytes sequence can be identified by matching to

an in silico peptide database.18,19 The most commonly used fragmentation methods are

collisional-based, where peptide ions are collided with gas molecules in the mass spec-

trometer, however alternative fragmentation methods have been developed and are often

preferred for certain experiments.

Electron transfer dissociation

As proteomics has advanced to the point of being able to detect representative peptides from

thousands of proteins in a single analysis, there remain significant challenges regarding com-

plete coverage of each protein in the proteome and access to a protein’s post-translational

modification complement. Most proteins in the cell can be modified post-translationally,

but these modifications can easily be lost when peptides are fragmented using collision-

based methods. This limitation spawned research into alternative fragmentation methods

that utilize electrons, photons, or metastable atoms.20–24 Electron transfer dissociation

(ETD) has become one of the most prominent alternative dissociation methods, owing to
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Figure 1.1: LC-MS proteomics workflow. An example LC-MS proteomics workflow is
shown. Cells are lysed, and proteins are then enzymatically digested into peptides. Samples
are then injected onto a reverse phase LC column where peptides are separated and eluting
peptides are ionized by electrospray ionization. Survey MS scans are then performed on
all eluting peptides and then individual peptides are selected for MS/MS analysis. The
resulting raw data can then be searched using proteomics software, such as COMPASS or
MaxQuant.
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its compatibility to various MS instrument platforms and utility in fragmenting a wide

variety of biomolecules.25,26 ETD is an ion-ion reaction which uses a singly charged rad-

ical reagent anion to donate an electron to a peptide or protein cation, causing radical

induced dissociation and generating c- and z•-type sequencing ions. This process has been

shown to greatly increase the retention of labile PTMs, allowing for their localization on

the protein.27,28 ETD reactions are governed by many operational parameters including

the precursor and reagent ion populations, precursor charge (z), ion-ion reaction vessel

characteristics, and reaction duration.29–35 Samples analyzed with traditional shotgun

methodology comprise a diverse pool of precursor peptide cations so that optimal reaction

conditions vary considerably from one scan to the next. For collisional activation methods

this variation is accommodated by normalizing collision energy as a function of precursor

mass and charge.36,37 Ion/ion reactions, however, involve more parameters and normaliza-

tion is not as straightforward. The ETD reaction follows pseudo-first order kinetics and can

be modelled using an exponential decay function, Equation 1:

Np(t) = Np(0) × e–k[R]t

where Np(0) represents the initial precursor population, Np(t) is the amount of precursor

remaining at time t, [R] is the average number density of ion cloud overlap, and k is the

ion-ion reaction rate constant.38–41 This rate constant is defined as (Equation 2):

k = c(|ν|) × Zp
2Zr

2 × ([mp + mr] / mpmr)
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where Zp is precursor charge, mp is precursor mass, Zr is reagent charge, mr is reagent mass,

and the quantity c(|ν|) is a function of the distribution of the magnitude of differential

velocities, |ν|, of precursor and reagent ions in the overlapping ion clouds. Holding Np(0)

and [R] constant, as a typical MS/MS experiment would, the ion-ion reaction is dependent

upon k and t (Equation 1). Thus, optimal reaction duration (t) (i.e., the shortest reaction

time to achieve the maximal quality spectra), can be achieved by selecting the appropriate

ETD rate constant, k. From Equation 2, k scales with the square of the precursor charge

and the number of precursor and reagent ions. Note the contribution of reduced mass

to k — for precursors spanning 1000 to 10,000 Da — is negligible relative to precursor

charge and ion populations and, thus, is presumed constant. The upshot is that higher

charge state precursors react more quickly, requiring reduced reaction times for ideal

performance. Besides improving scan speed, shortened reactions limit the occurrence of

secondary electron transfer events that erode signal and complicate spectra. Thus, for every

selected precursor there is an ETD reaction time that will result in an optimal creation of

product ions. Figure 1.2 illustrates this concept by plotting the c- and z•-type product ion

signal-to-noise (S/N) as a function of ion-ion reaction duration for triply protonated cations

of angiotensin I (DRVYIHPFHL). In this case, the maximum product ion S/N is achieved

using a 40 ms ion-ion reaction, which leaves ∼12% of total MS/MS signal attributed to

the intact precursor. Continuing the reaction beyond this duration consumes remaining

precursor; however, product ion S/N is likewise reduced because of secondary electron

transfer events.
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Figure 1.2: ETD reaction product ion generation. ETD reaction duration is a key variable
for production of quality MS/MS spectra. Panel A plots the product ion S/N (blue) and rate
of precursor (red, triply protonated angiotensin 1) consumption for reaction times ranging
from 5 to 160 ms. From these data we conclude the maximal product ion S/N is achieved
when between 10 and 15% of the precursor remains. Extension of the reaction beyond this
point both degrades spectral quality and slows the instrument scan cycle. Single scan ETD
MS/MS spectra from the 5, 40, and 100 ms reactions are shown in panel B. Note that while
the precursor is nearly absent in the 100 ms scan, the overall product ion S/N is lower than
the optimal 40 ms reaction.
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Optimization of reaction time is one way of enhancing the effectiveness of ETD. Another

is in improving the efficiency of product ion generation. This can be accomplished in

multiple ways. One challenge with ETD is that some amount of electron transfer does not

lead to dissociation (ETnoD). These products form due to non-covalent interactions that exist

between the dissociated segments of a peptide or protein. By providing the electron transfer

reaction with supplemental energy non-covalent interactions can be disrupted, allowing for

the sequence-informative peptides to be detected. Several strategies have been developed

to introduce this energy, two of which will be highlighted in this dissertation. The first is

by increasing the reaction enthalpy of the electron transfer reaction.42 Excess energy can

redistribute into the peptide precursor, mitigating the extent of ETnoD reaction products.

The second is the introduction of IR photons concurrent with the ETD reaction.43 These

photons impart energy into the peptide, heating the ions, and prevent the non-covalent

interactions from forming.

Electron transfer dissociation continues to be utilized in new and inventive ways within

the mass spectrometry community. ETD has emerged as an excellent fragmentation method

for the profiling of post-translational modifications such as glycosylation and phosphoryla-

tion, the study of proton transfer and ion-ion reactions, and in structural characterization

of native proteins and protein complexes.44 Two areas for the application of ETD are

explored within this dissertation: 1) the ion-ion reaction dynamics and fragmentation

process of peptide anions using negative ETD (NETD) is used as a method for bottom-up

proteomics (Chapter 2) and the development an LC-MS method leveraging activated ion
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NETD (AI-NETD) for the description of the negative mode proteome of Saccharomyces

cerevisiae (Chapter 3) and 2) the sequencing of proteins with intact disulfide bonds using

AI-ETD (Chapter 4).

Metabolomics

Metabolites serve as a direct signature of biochemical activity in the system, and the

metabolome is the collection of small molecules which are produced by the cells.45 To fully

understand the state of a cell, we would ideally be able to monitor the abundance of all

molecules in the system. The ability to map the metabolome currently lags far behind

genomics and proteomics for two primary reasons. The first is that the production of

metabolites is non-template driven, which means that we cannot infer the entire compliment

of expressed metabolites from an organism’s genetic information, which is estimated to

be in the tens of thousands for many complex organisms.46,47 The second major hurdle is

that metabolites contain enormous compositional heterogeneity. This makes the ability to

assess a large swath of metabolites using a single analytical technique extremely difficult.

This chemical diversity also means that metabolites cannot be identified en masse from

mass spectral data using a single set of fragmentation rules without comparison to spectral

libraries, which is possible for peptides or proteins.

At present, most metabolite measurements by mass spectrometry utilize a targeted

approach, which allows for the analysis of a small number of metabolites of similar chemical

makeup. However, recent advancements in separation, mass spectrometer instrumentation,
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and data analysis have facilitated a greater number of metabolites to be profiled using a

single method. Lipids, a subset of metabolites generally consisting of a head group and

nonpolar hydrocarbon tails, can be identified and quantified by the hundreds from biologi-

cal samples.48,49 This approach usually entails a reverse phase chromatographic separation

with electrospray ionization and data dependent MS/MS. Because lipids fragment accord-

ing to a set number of fragmentation rules, by analyzing standard lipids from each separate

lipid class, sets of fragmentation rules can be generated which allows the identification

of similar lipids without the need to analyze an authentic standards for each compound.

However, the challenge of discovery analyses of other metabolite classes remains.

Gas chromatography is a technique which separates molecules based primarily on

boiling point.50 Because analytes are separated by boiling point, and not directly by polarity,

both polar and non-polar molecules can be separated and analyzed. This makes it a premier

tool for simplifying complex mixtures of volatile small molecule metabolites from biological

samples, and as the analytes are already in the gas phase, makes it easily compatible with

mass spectrometry.51 To increase the breadth of molecules which can be analyzed by GC-MS,

analytes can be derivatized to lower their boiling point. This facilitates the GC-MS analysis

of molecules such as disaccharides and steroids, which would otherwise decompose before

boiling at standard pressures. A typical GC-MS metabolomics workflow is shown in Figure

1.3. Here samples are extracted, dried, and resuspended in the derivatization solvent. The

most common derivatization reaction is silylation which replaces acidic protons such as

those found on alcohols, amines, or carboxylic acids with silyl groups in order to disrupt
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Figure 1.3: GC-MS metabolomics workflow. A sample GC-MS metabolomics is shown.
First the sample is extracted to lyse the cells and extract metabolites. Then samples are dried
and resuspended in a derivatization solvent and heated for 30 to 60 minutes. Next samples
are injected onto a GC where metabolites are volatilized and separated. Eluting metabolites
are then ionized, typically by electron ionization, and MS scans are performed on the
resulting ions. The raw data files are then processed through a data analysis pipeline, which
performed spectral deconvolution, background subtraction, feature grouping, spectral
matching, and quantitation.
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hydrogen bonding, which can lower the boiling point of molecules by more than 100◦

C.52 The samples are then injected into a GC inlet where they are volatilized and then

separated prior to introduction into the mass spectrometer. The two primary ionization

modes for GC-MS are electron ionization and chemical ionization, described previously.

Electron ionization is the most widely used and most metabolite spectral databases, which

must be compared against for confident metabolite identification, are composed of spectra

collected in EI mode using an electron energy of 70 eV.53,54 However, because it is a hard

ionization method, compounds are both ionized and fragmented in a single step. This is

disadvantageous because the intact molecular ion is often absent from the spectrum, which

confounds metabolite identification. For discovery GC-MS methods, the mass spectrometer

can then be operated by collecting only MS scans, without the need to perform tandem

MS/MS. Because all eluting molecules are fragmented and analyzed, the mass spectrometry

data acts as a digital record of all volatile analytes in the samples, unlike targeted approaches

or data dependent methods which only fragment selected species.

The GC-MS metabolomics work described in this dissertation uses a Q Exactive GC

Orbitrap mass spectrometer. This instrument was initially conceived by the Coon lab and

the prototype system was built here in collaboration with, and subsequently commercialized

by, Thermo Fisher Scientific.55–57 The commercial model was used to collect the GC-MS

metabolomics analysis described here. The development of the high-resolution Orbitrap

GC-MS system was motivated by the ability to increase compound identification and

identification confidence in discovery metabolomics analyses. Because of the novelty of this
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Figure 1.4: GC-MS metabolomics data analysis pipeline. A detailed workflow of the high
resolution GC-MS metabolomics data analysis pipeline is shown. Batches of raw data files
are deconvolved using the Deconvolution Engine program, and then optionally realigned
using the Batch Aligner node. Next, feature groups are matched between separate feature
files and quantitative values are extracted from each, using the GC-Quant software. Then
results files for the experiment can be visualized with the GC Results Viewer application
and metabolites can be searched against library databases and manually annotated. Last,
resultant metabolite peak tables can be exported and uploaded to downstream data analysis
software.
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system, and the desire to design discovery metabolomics experiments of very large scope,

an in-house data analysis pipeline was developed, outlined in Figure 1.4. In this pipeline

raw data files are first deconvolved, which is the process of grouping ions based on the

shape and retention time apex of the associated elution profile, using the Deconvolution

Engine program. Next, if necessary, files from separate batches of data which are to be

compared against one another are realigned to correct for retention time deviations due to

instrument drift of the GC column, using the Batch Aligner node. Next, the aligned raw

files are then compared to one another and features which show high spectral similarity and

retention time are grouped together in the GC-Quant program. Then the files are imported

into the GC Results Viewer program where the spectra are searched against user-generated

spectral libraries. The Library Maker program can be used to tailor the spectral library to the

user’s specifications, such as eliminating non-derivatized molecules or restricting the search

to only high or low resolution spectra. The GC Results Viewer program allows the user to

manually assign compound identifications by visualizing the library and collected spectra,

and by calculating the spectral similarity score and high-resolution filtering (HRF) score,

which is described in detail below. Once the metabolite identifications have been assigned,

the data can be exported as a .csv file and into uploaded to excel, to the coonlabdatadev.com

website, or imported into any other downstream pipeline for further analysis.

One way in which high resolution GC-MS spectra can be leveraged to improve com-

pound identification is by using high-resolution filtering. In this method accurate mass

GC-MS data are deconvolved into component feature groups as shown in Figure 1.5 panels
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Figure 1.5: High-resolution filtering workflow. Overview of HRF workflow. (a) m/z peaks
observed across consecutive scans are condensed into data features, which are smoothed
and grouped based on elution apex (b). All features within a group are assumed to
arise from a singular precursor. (c) Individual spectra are derived from feature groups,
using average m/z and apex intensity, and are then subjected to spectral matching. (d)
A high-scoring spectral match of an GC-Orbitrap mass spectrum of loratadine against
the corresponding NIST reference spectrum. All sub-formulas from C22H23ClN2O2, the
molecular formula of loratadine, are generated and sorted by exact formula mass, less the
mass of an electron. (e) Sub-formulas are matched to m/z peaks in ascending order. For
each matched fragment a variant containing appropriate heavy isotopes is created and
placed into the list of sub-formulas in sorted-order. (f) For the experimental mass spectrum
of loratadine 99.2617% of the measured signal can be annotated with sub-formulae of
C22H23ClN2O2.
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a, b, and c. Figure 1.5 panels d-f illustrates the HRF strategy using an EI mass spectrum of

loratadine collected from an authentic standard using the Q Exactive GC system. A unit

resolution database search returns a reference spectrum of loratadine as a strong candidate

match. To evaluate the quality of this putative identification, the chemical formula of lo-

ratadine (C22H23ClN2O2) is used to calculate all non-repeating combinations of atoms (i.e.,

sub-formulas) which are then ordered by ascending exact mass, less an electron (Figure 1.5

panel d). Starting with the smallest measured m/z peak, sub-formulas are matched based

on exact mass. To accommodate isotopic clusters present in spectra, a variant containing

an appropriate number of heavy isotopes is created for each matched fragment and placed

back onto the list of sub-formulas. For example, once the highlighted m/z peak at 245.1200

is matched to C18H15N a formula containing a substituted 13C isotope (C17
13CH15N) is

added to the list of candidate sub-formulas (Figure 1.5 panel e). This strategy enables

annotation of non-monoisotopic fragments without unduly increasing sub-formula search

space. Once every m/z peak in the spectrum has been considered, the total percentage of

measured ion current that has been annotated is returned in the form of a HRF score. In

the example case of loratadine we find that 99.2617% of all measured ion current can be

annotated using a sub-formula of its true parent precursor (Figure 1.5 panel f). By enabling

discrimination between candidate molecular precursors on the basis of both measured

fragmentation profiles and accurate mass, this method effectively bridges the gap between

high resolution spectral acquisition and unit resolution mass spectral libraries. Chapters 5

and 6 of this dissertation outline advancements and applications of the described discovery
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metabolomics pipeline using the Q Exactive GC system. Chapter 5 covers the develop-

ment of a library of metabolite GC-EI-MS spectra which drastically improves compound

identification confidence. Chapter 6 describes the multi-omic analysis of a suite of single

gene deletion Saccharomyces cerevisiae knockout strains in order to elucidate the function of

unknown genes.
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sulfur pentafluoride is a preferred reagent cation for
negative electron transfer dissociation
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Abstract

Negative mode proteome analysis offers access to unique portions of the proteome and

several acidic post-translational modifications; however, traditional collision-based fragmen-

tation methods fail to reliably provide sequence information for peptide anions. Negative

electron transfer dissociation (NETD), on the other hand, can sequence precursor anions in

a high-throughput manner. Similar to other ion–ion methods, NETD is most efficient with

peptides of higher charge state because of the increased electrostatic interaction between

reacting molecules. Here we demonstrate that NETD performance for lower charge state

precursors can be improved by altering the reagent cation. Specifically, the recombination

energy of the NETD reaction—largely dictated by the ionization energy (IE) of the reagent

cation—can affect the extent of fragmentation. We compare the NETD reagent cations of

C16H10
•+ (IE = 7.9 eV) and SF5

•+ (IE = 9.6 eV) on a set of standard peptides, concluding that

SF5
•+ yields greater sequence ion generation. Subsequent proteome-scale nLC-MS/MS ex-

periments comparing C16H10
•+ and SF5

•+ further supported this outcome: analyses using

SF5
•+ yielded 4637 peptide spectral matches (PSMs) and 2900 unique peptides, whereas

C16H10
•+ produced 3563 PSMs and 2231 peptides. The substantive gain in identification

power with SF5
•+ was largely driven by improved identification of doubly deprotonated

precursors, indicating that increased NETD recombination energy can increase product

ion yield for low charge density precursors. This work demonstrates that SF5
•+ is a viable,

if not favorable, reagent cation for NETD, and provides improved fragmentation over the
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commonly used fluoranthene reagent.
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Introduction

Modern proteome characterization relies on liquid chromatography coupled with tandem

mass spectrometry (nLC-MS/MS) to detect and quantify proteins from complex biological

samples.1–5 Despite continual advances in proteomic depth achieved in such experiments,

these technologies do not detect all the proteins present in a sample and, in fact, typically

only monitor a portion of those proteins that are detected. More specifically, one or two

peptides resulting from the enzymatic digestion of a protein can map uniquely to the parent

protein and allow for its unambiguous detection and quantification. New approaches that

can offer increased diversity of peptides measured are therefore of considerable significance

as they can reveal new proteins and offer access to portions of proteins that were previously

not detectable. One factor that may limit the scope of the present technology is the unilateral

use of positive electrospray ionization. Many proteins, and portions of most proteins, are

acidic and thus are more easily ionized in the negative mode.6–8 Negative electrospray

ionization can generate multiply deprotonated peptide anions, but the commonly used

collision-based dissociation methods are ineffective at producing sequence-informative

fragmentation of negatively charged peptides.9,10 These limitations have driven the de-

velopment of alternative dissociation methods for peptide anions that utilize electrons,

photons, and metastable atoms.11–30

Scott McLuckey, the recipient of the Award for Distinguished Contributions in Mass

Spectrometry, whom we honor in this issue of JASMS, has been a pioneer in this field,
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especially in the development of gas-phase ion–ion chemistry31,32 Indeed, this investigation

stems from foundational work his group and others described. Most notably, in 1995

McLuckey and co-workers first introduced ion–ion reactions of positive reagent cations with

anionic oligonucleotides, and have continued this innovating in this space.33–35 Inspired by

McLuckey’s experiment, we developed ion–ion reaction chemistries to abstract electrons

from multiply deprotonated peptide anions using singly charged reagent cations, termed

negative electron transfer dissociation (NETD).11 NETD has emerged as one of the most

promising peptide anion dissociation methods and has been successfully utilized in nLC-

MS/MS experiments to access the acidic proteome.11,12,16,17,30

One challenge of using NETD in large scale proteomic experiments is its limited product

ion yield for low charge density precursors. In NETD experiments, peptide anions are

oxidized by positively charged reagent cations to initiate dissociation and production of

a• - and x-type product ions. Sometimes electron transfer from the anion to the cation

occurs without concomitant dissociation (i.e., non-dissociative negative electron transfer, or

NETnoD).36–39 NETnoD frequently occurs and is one of the primary causes for reduced

product ion yields in NETD, especially in the case of low charge density precursors.39

In these cases, once electron transfer has occurred, peptide backbone cleavage may be

achieved; however, the resultant product ions can be held together by noncovalent bonding

and detected as a charge-reduced product. To maximize the production of NETD product

ions, a reduction of NETnoD species can be accomplished by supplying the charge-reduced

product with more energy, either concurrent with, or post- electron transfer. The additional
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energy can disrupt the noncovalent interactions holding these ions together, yielding

sequence informative products.40,41 One such approach, termed activated-ion NETD (AI-

NETD), has been implemented by concurrently irradiating the ions with infrared photons

as they are interacting; however, this approach requires the addition of an IR laser to the

system.16,30 An alternate approach to increase the energy of the system during electron

transfer events is to alter the reaction exothermicity, which is determined by the difference

between the ionization energy of the reagent cation and the electron affinity of the peptide

anion. For example, the ionization energy of fluoranthene, C16H10
•, is 7.9 eV and the

electron affinity of the carboxylate ion of a peptide is 3.4 eV, yielding a reaction enthalpy

of 4.5 eV, known as the recombination energy. This energy surplus is redistributed into

the peptide anion and drives fragmentation. Use of NETD reagent cations with higher

ionization energies result in increased recombination energies and, potentially, an increase

in NETD fragmentation efficiency.42 The recombination energy of the reagent cation and

its effect on NETD has been previously explored by Polfer and co-workers for use in

determining phosphorylation sites on standard peptides43, as well as by McLuckey et al.

to investigate transition metal complexes and their interaction with peptide.44 Polfer and

colleagues compared two NETD reagents (fluoranthene and xenon) and determined that

the increase in ionization energy of xenon led to considerable phosphate and side-chain

neutral loss and, therefore, fluoranthene, having a lower ionization energy than xenon,

should be used for sequencing phosphopeptides. Alternatively, McLuckey and co-workers

showed that transition metal complexes yield electron transfer as well as metal insertion
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reactions, allowing further control of the cation–anion interaction. To date, only xenon,

fluoranthene, and phenanthroline complexes of Fe, Cu, and Co have been investigated

as NETD reagent cations for peptide analysis, and fluoranthene remains by far the most

commonly used NETD reagent.

The primary motivation of this work is to investigate the hypothesis that increasing

the ionization energy of the NETD reagent cation will increase the NETnoD conversion to

product ions, thereby yielding greater peptide identification rates and protein sequence

coverage in large-scale shotgun proteome analyses. To test this hypothesis, we used a set of

synthetic peptides to compare the NETD fragmentation efficiency of sulfur pentafluoride

cations (SF5
•+, IE = 9.6 eV) and fluoranthene cations (C16H10

•+, IE = 7.9 eV) over a range of

available precursor charge states (z = –2 to –6). Concluding that SF5
•+ cations provided

increased sequence ion production for low charge state precursors, we then performed

nanoflow liquid chromatography-tandem mass spectrometry (nLC-MS/MS) experiments

employing high pH separations and optimized NETD reaction kinetics to compare C16H10
•+

with SF5
•+ NETD reagent ions for analysis of a complex mixture of yeast peptides. From

these data, we revealed that up to 40% more peptide spectral matches (PSMs) could be

made when using reagent ions from sulfur pentafluoride compared with fluoranthene.

The overall peptide spectral match and unique peptide identification numbers improved

30% when using SF5
•+ as the NETD reagent instead of fluoranthene. From the data, we

conclude that the use of SF5
•+ offers a direct route to boosting the performance of NETD

dissociation.
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Materials and Methods

NETD on Standard Peptides. Synthetic peptides that have the sequences SVFAVNWISY-

LASK, EEAQALEDLTGFK, and ELVNDDEDIDWVQTEK were obtained from New England

Peptides (Gardner, MA, USA) and were individually suspended in 3:1 methanol/water

with 5 mM piperidine to a concentration of 10 ppm. The peptides were infused into a LTQ

Velos mass spectrometer (Thermo Fisher Scientific, San Jose, CA, USA) modified to perform

NETD. For each peptide precursor, a 0 nce CAD MS/MS scan was performed, followed

by a series of NETD MS/MS scans with increasing reaction time, encompassing the 2τ

time point (see Supplementary Figure S2.1 for further experimental design diagram). This

series was repeated at least 15 times. Once complete, the next precursor charge state was

reacted until all accessible charge states were reacted. The precursor AGC target was set to

10,000 and the reagent AGC target was set to 1,000,000 for all MS/MS acquisitions. The

q-value for the NETD reaction was kept at 0.4 for all experiments. This procedure was

repeated using both SF5
•+ and C16H10

•+ reagent cations. The solid phase NETD reagent

fluoranthene was introduced to the system using the standard glass vials contained in the

ETD module’s reagent vial heater. The gaseous sulfur hexafluoride reagent was introduced

to the system by connecting the high purity SF6 gas cylinder (Concorde Specialty Gases,

Eatontown, NJ, USA) to a precision regulator (Porter Instruments, Hatfield, PA, USA) with

6 feet of 1/8 inch outer diameter and 0.065 inch inner diameter copper tubing. Then a 100

µm inner diameter capillary tube was attached to the out port of the precision regulator
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and fed directly into the vacuum manifold of the ETD module and the pressure reading

of the precision regulator was adjusted to generate appropriate reagent cation signal (∼2

psi). Reagent cations were generated via the EI/CI source in the presence of nitrogen gas,

and reagent signal was optimized by varying lens voltages using an automated calibration

routine. The filament emission current was set to 70 µA for both reagents. The nitrogen gas

pressure was also optimized for maximum signal for each reagent cation. For fluoranthene,

the reagent vial temperature was set to 108◦ C. For both reagents, the ion source, transfer

line, and restrictor temperature were held at 160◦ C. The fluoranthene reagent produced

ion radicals C16H10
•+ , whereas the predominant cation for sulfur hexafluoride was the

fluorine-loss species SF5
•+, shown in Supplementary Figure S2.2.

Yeast Sample Preparation. Tryptic yeast (Saccharomyces cerevisiae) peptides were prepared

as previously described.16 Briefly, cultured yeast cells were lysed by glass bead milling

(Retsch GmnH, Germany), and proteins were reduced and alkylated using 5 mM dithio-

threitol and 15 mM iodoacetamide, respectively. Trypsin digestion was performed during

an overnight incubation at room temperature with a 1:50 (w/w) enzyme to protein ratio. A

second trypsin addition was done the following morning at 1:100 (w/w) enzyme to protein

ratio for 1 h, followed by desalting over a C18 SepPak (Waters Corporation, Milford, MA,

USA).
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Supplementary Figure S2.1: Illustration of mass spectrometry method for NETD
reagent cation evaluation. The mass spectrometry method for reaction of standard pep-
tides with both NETD reagents is shown. Each precursor of interest is reacted with 0 nce
CAD followed by a series of NETD reactions with increasing reaction times encompassing
the 2τ time point, (a). This sequence is repeated until at least 15 scans are completed for
each reaction time. The reaction time closest to the 2τ time point, identified by the dotted
orange line, is then analyzed to extract all ion currents, (b), which are normalized by taking
the average ion current (I.C.) of an individual fragment ion and dividing by the average ion
current of the 0 nce CAD scan, shown in (c). This allows for an accurate percent conversion
from initial starting ion population to fragment ion population to be determined, labelled
the % I.C.
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Supplementary Figure S2.2: EI/CI spectrum for reagent cations. The EI/CI ionization
spectrum for both SF6 and fluoranthene are shown. Sulfur hexafluoride produces the
fluorine loss product SF5

•+ as the primary ion, while fluoranthene produces the molecular
ion C16H10

•+.
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High pH nLC-MS/MS. An ETD-enabled hybrid dual cell-quadrupole ion trap-Orbitrap

mass spectrometer (Orbitrap Elite, Thermo Fisher Scientific) coupled to a nanoACQUITY

UltraPerformance liquid chromatograph (Waters) was used for the nLC-MS/MS analyses.

The mass spectrometer was modified to perform NETD as described previously.41,45–47

Briefly, the higher energy collisional dissociation cell (HCD) was replaced with a multi-

purpose dissociation cell (MDC) that can conduct ion–ion reactions, allowing for NETD to

be performed within. Fluoranthene and sulfur hexafluoride reagents were introduced as

is described above, with the exception of the SF6 pressure being adjusted to 10 psi. The

solvent compositions for liquid chromatography were mobile phase A (5 mM piperidine in

water) and mobile phase B (5 mM piperidine in 85% ACN and 15% water). The reverse

phase columns were prepared in-house using 75 µm i.d., 360 o.d. bare fused silica capillary

tubing packed to a 30 cm length with 3.5 µm, 130 Å pore size, Ethylene Bridged Hybrid

C18 particles (Waters). For each analysis, 1 µg of yeast digest was loaded onto the column

equilibrated with 95% A at 400 nL/min. The gradient elution was performed at 400 nL/min

increasing from 5% mobile phase B to 30% B over 70 min, followed by an increase to 70% B

at 76 min and a wash at 70% B for 4 more min. Peptides were ionized in the negative mode

using electrospray ionization with a spray voltage of –1.5 kV. The inlet capillary temperature

was set to 300◦ C. Survey MS scans were analyzed in the Orbitrap mass analyzer with a

resolving power of 60,000 at 400 m/z and an AGC precursor ion target value of 1,000,000

over a mass range of 300–1250 m/z. Data-dependent MS/MS events were triggered off of the

10 most intense peaks in the survey scan. Each MS/MS scan used a precursor AGC target
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of 100,000 ions and was analyzed in the Orbitrap with a resolving power of 15,000 at 400

m/z. Precursors were isolated at ±0.9 Th and an exclusion window of ±10 ppm was created

around the monoisotopic peak of the precursor for 45 s. All nLC-MS/MS experiments were

performed in duplicate.

Data Analysis. Peptide standard infusion data were searched using an in-house C# script,

which extracted ion current intensities directly from raw data files. These values were

normalized relative to the ion current of the precursor from a 0 nce CAD scan collected

previous to the NETD reacted spectra (see Supplementary Figure S2.1 for further experi-

mental design diagram). The nLC-MS/MS raw data files were searched using the open mass

spectrometry search algorithm (OMSSA), modified to allow for anionic peptide a• - and

x-type fragment ions to be searched. Search parameters included carbamidomethylation of

cysteine as a fixed modification and oxidation of methionine as a variable modification.17,48

A multi-isotope search was employed using three isotopes with a mass tolerance of ±125

ppm for the precursors and a monoisotopic mass tolerance of ±0.02 Da for product ions.

Three missed cleavages were allowed for the trypsin digestion. The data processing was

done through the COMPASS software suite designed for OMSSA searching. A UniProt

database for Saccharomyces cerevisiae (downloaded September 29, 2014) was concatenated

with reversed sequences and used to determine peptide spectral matches (PSMs). Scored

spectra were filtered using a false discovery rate of 1% at the unique peptide level. False dis-

covery rates for spectra from each set of duplicate nLC-MS/MS experiments were calculated
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for the combined set of spectra as opposed to separate calculations for each nLC-MS/MS

run. Additionally, prior to OMSSA searching, each spectrum was preprocessed to remove

the unreacted precursor ion (±3 Da) and neutral loss ions of the oxidized precursor by

removing ions within a window of 55 to 5 Da below the oxidized precursor ion. The

nLC-MS/MS experiments were also searched using an in-house C# script to extract ion

intensities for expected sequencing ions as well as ions resulting from neutral losses from

both oxidized precursor ions and a• - and x-type product ions. Ion intensities from spectra

in nLC-MS/MS experiments were normalized relative to the total ion current (TIC) of each

individual MS/MS scan.

Results and Discussion

NETD of Standard Peptides with Alternative Reagent Cations. The primary metric in

determining an effective reagent cation is the production of sequence informative fragment

ions relative to all other product ions produced. In these experiments, reagent ions C16H10
•+

and SF5
•+ were tested for their effectiveness as NETD reagent cations using an ETD-enabled

dual-pressure linear ion trap mass spectrometer. These species were reacted with three

standard peptides (sequences given in top left of Figure 2.1), each with a C-terminal lysine

to mimic those yielded from protein digestion with trypsin, and all were synthesized

without additional post-translational modifications. The peptides had lengths of 13, 14,

and 16 amino acid residues, isoelectric points of 3.62, 4.00, and 8.31, and generated peptide

anions having charge states ranging from z = –2 to –6.
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Figure 2.1: Product ion signal of standard peptides using C16H10
•+ or SF5

•+. Compar-
ison of product ion signal from NETD reactions using reagents C16H10

•+ and SF5
•+ for

all precursor charge states of three synthetic peptides (sequences shown top left). The
intensities of both a• - and x-type fragment ions were normalized to the total ion current
of the unreacted precursor from a preceding scan as explained in the text. Following this
normalization, the log2 fold change of the normalized fragment ion current intensity was
calculated between SF5

•+ and C16H10
•+. All precursor ion populations were reacted to the

2τ time point (i.e., 13.5 ± 3% unreacted precursor ion current remaining in the MS/MS
spectrum)



43

To provide a straightforward comparison of their product ion generation efficiencies,

the extent of reaction for the two reagent cations was carefully controlled. To do so, we

standardized several conditions that dictate the number of electron transfer events that

occur per reaction, isolating the chemistry of the reagent cations as the main variable of

the experiment. The rate of ion–ion reactions and, thus, the number of electron transfer

events, are governed by a number of parameters, including ion population, reaction q-value,

reaction cell architecture, and reaction time. Previous work has shown that to maximize

peptide identifications, the ideal electron transfer extent occurs when the precursor ion

population has been reduced by 86%.49 Such reaction conditions minimize the amount of

secondary electron transfer while still offering sufficient sequence informative fragment

ion production. Using this as a model, we created a method, illustrated in Supplementary

Figure S2.1, where a series of increasing reaction times were employed surrounding the

optimal reaction extent (13.5% unreacted precursor remaining), keeping all other reaction

parameters constant. Figure 2.1 summarizes the production of sequence informative a• -

and x-type fragment ions produced when all accessible charge states of the three standard

peptides were reacted with SF5
•+ or C16H10

•+. Use of SF5
•+as the reagent cation more

than quadrupled the a•-type ion signal relative to C16H10
•+ for all doubly deprotonated

precursors. An increase in x-type fragment ion production was observed for two out of

three doubly deprotonated precursors.

As charge density increased, the difference in fragment ion production was reduced.

In the case of triply deprotonated precursors, SF5
•+ generated spectra with more a•-type
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fragment ions, whereas use of C16H10
•+ cations produced more x-type fragment ions,

but the magnitude of the difference is considerably less than for the lower charge state

precursors. Generally, the C16H10
•+ reagent cation produced spectra with marginally more

x-type fragment ions for higher charge state species, but the product ion signal is largely

comparable between the two reagent cations for z > 3 precursors. This suggests that the

higher IE of SF5
•+ can benefit fragmentation of low charge density precursors (i.e., z =

–2) where the predominance of NETnoD can adversely affect dissociation product ion

generation. Note, however, SF5
•+ reagent cations retain the good performance of C16H10

•+

for more highly charged ions. Supplementary Figure S2.3 also considers the distribution

of even and odd electron fragment ions (odd electron species containing a radical electron

and an additional hydrogen atom), showing that a•-type and x-type fragment ions are the

predominant species formed upon NETD, and that there is no significant difference in the

even and odd electron ratios between the two reagent cations.

nLC-MS/MS of Yeast Tryptic Digest Using SF5
• and C16H10

•. To expand the scope of

our study, we compared the performance of C16H10
•+ and SF5

•+ as reagent cations in

nLC-MS/MS analyses of peptides derived following tryptic digestion of yeast proteins.

Importantly, the majority of precursors sampled in negative mode nLC-MS/MS experiments

are doubly deprotonated16, suggesting that the use of SF5
•+ reagent cations could improve

the depth of analysis in whole-proteome shotgun sequencing. Indeed, in 90-min nLC-

MS/MS experiments, NETD with SF5
•+ generated 30% more PSM and unique peptide
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Supplementary Figure S2.3: Isotope distribution of a• and x ions. A selection of a and x
fragment ions are shown from the NETD reaction of -3 charge state of the standard peptide
EEAQALEDLTGFK, reacted using the reagent cation shown to the left. The distribution of a
to a• fragment ions are very similar, with a• being the predominant species. The first isotope
of the x fragment ions and the x• ion are indistinguishable at this resolution, however the
isotope ratio is similar between reagents, indicating that recombination energy has little
effect on the production of even and odd electron x fragment ion species.
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identifications than did NETD using C16H10
•+ (Figure 2.2). Figure 2.2b displays the charge

state distribution of peptide spectral matches (PSMs) following use of the two NETD

reagents. We note a substantial increase in the identification of z = –2 peptides for analyses

with SF5
•+ (1039 more z = –2 PSMs than those with C16H10

•+), which comprised more than

70% of all PSMs identified in either dataset. This finding is consistent with the previous

results using standard peptides, further showing that peptides with lower charge density

benefit more from excess recombination energy, while higher charge density peptides are

not as impacted.

Figure 2.3 presents representative spectra from the nLC-MS/MS experiments illustrat-

ing the improved fragmentation afforded by use of SF5
•+ reagent cations as compared to

C16H10
•+. For each spectrum, the doubly deprotonated precursor of the peptide ETAE-

SYLGAK was reacted with either NETD reagent to a reaction extent of 37.9% and 38.4%

for C16H10
•+ and SF5

•+, respectively. Reaction extent is defined as the ion current of the

unreacted precursor divided by the total ion current of the scan. While in the standard

peptide infusion data, a 0 nce CAD scan was used to measure the total ion abundance for

each peptide and fragment ion currents could be normalized to it, allowing direct calcula-

tion of the precursor to product ion conversion ratio, in the discovery nLC-MS experiments

no 0 nce CAD scans were performed and, therefore, this normalization approach was

not possible, and reaction extent was calculated instead. Comparing spectra with similar

reaction extents ensures that the main contributor to the difference is the ion chemistries of

the reagents themselves. The spectra show many similarities but with considerably more
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Figure 2.2: PSM and peptide counts and associated charge state distribution using dif-
ferent reagent cations. Summary of peptide spectral matches (PSM) and unique peptide
identifications from nLC-MS/MS experiments using a yeast tryptic digest (a). Experiments
were conducted using either SF5

•+ or C16H10
•+ as reagent cations. The charge state distribu-

tions of successfully sequenced PSMs from these experiments are also shown (b), revealing
a significant increase in z = –2 peptides identified with SF5

•+



48

product ions generated when SF5
•+ was used. Specifically, SF5

•+ produced two more a•-type

and three more x-type fragment ions than the corresponding NETD spectrum produced

when C16H10
•+ was used as the reagent, and it also generated three CO2 neutral losses from

x-type fragment ions compared with only one when C16H10
•+ cations were used. In all, use

of SF5
•+ as the reagent cation produced a spectrum with 100% peptide sequence coverage

for ETAESYLGAK, whereas the corresponding spectrum when C16H10
•+ was used as the

reagent yields only 55.5% coverage. Note, we define peptide sequence coverage as the ratio

of the number of inter-residue positions broken to the total possible positions (residue

length – 1) for a given sequence, expressed here as a percentage.

Figure 2.4a expands on the change in peptide sequence coverage between reagent

cations SF5
•+and C16H10

•+ by showing the composite difference for all peptides identified

in the NETD experiments. Only peptides found in both data sets were considered, and of

the 1427 peptides in common, 812 peptides yielded an increase in sequence coverage when

SF5
•+ was used as the NETD reagent while only a fourth of that (n = 202) showed an increase

when C16H10
•+ was used. On average, SF5

•+ accounted for a nearly 10% improvement in

peptide sequence coverage for all overlapping peptides.

Differences in peptide sequence coverage are even more pronounced when delineating

across charge states. Figure 2.4b displays peptides categorized by charge state, where

charge states of z = –2, –3, –4, and –5 showed an average sequence coverage difference of

9.0%, 4.7%, 2.8%, and –4.7%, respectively. Note, as indicated in the ∆Sequence Coverage

equation at the top of Figure 2.4, a positive value indicates higher sequence coverage
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Figure 2.3: Example NETD spectra using C16H10
•+ or SF5

•+ reagent cation. Single-scan
spectra for the NETD fragmentation of the peptide ETAESYLGAK, z = –2. The unreacted
precursor signal accounts for 37.9% and 38.4% of the total ion current in each MS/MS scan
for C16H10

•+ and SF5
•+, respectively, indicating both precursors were reacted to similar

extents. Use of SF5
•+ as the NETD reagent provided greater sequence coverage than

C16H10
•+, yielding 11 sequence informative fragment ions compared with 5 for C16H10

•+.
The NETD reagent SF5

•+ produced three CO2 product ion neutral loss species while the
fluoranthene spectrum only contains a single CO2 product ion neutral loss fragment. Both
spectra were acquired in the nLC-MS/MS experiments and represent a single scan (i.e.,
un-averaged)
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Figure 2.4: Comparison of peptide sequence coverage using C16H10
•+ or SF5

•+ reagent
cation. (a) Percent peptide sequence coverage was calculated for each of the 1427 peptides
in common between the SF5

•+ and C16H10
•+ analyses. The difference between peptide

sequence coverage with SF5
•+ and C16H10

•+ (∆ Peptide Sequence Coverage) was calculated
for each peptide, and the distribution of the ∆ Peptide Sequence Coveragevalues are shown.
The orange distribution shows peptides with greater sequence coverage with SF5

•+ (n =
812), and the blue shows peptides with better sequence coverage with C16H10

•+ (n = 202).
Panel (b) shows the average ∆ Peptide Sequence Coverage for all peptides in common
between the two analyses as a function of peptide precursor charge state. The number of
precursors averaged is shown in black text above the bar for each charge state. Concordant
with previously shown data, lower charged precursors benefit most from the use of SF5

•+
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with SF5
•+. Interestingly, C16H10

•+ as the NETD reagent only performs better on z = –5

precursors, which account for 1.3% of the total precursors sampled in the experiments. In

all other cases, peptide sequence coverage was improved by use of SF5
•+, especially for

lower precursor charge states. Supplementary Figure S2.4 considers the impact of reagent

cation on total protein sequence coverage for all proteins in common between the two

data sets, as the increased number of peptide identifications with SF5
•+ translates to high

coverage of the proteins mapped in the experiments. Here, protein sequence coverage is

defined as the number of amino acid residues comprising each identified peptide divided

by all amino acid residues in the protein sequence. Use of SF5
•+ improved coverage of

298 proteins, C16H10
•+ improved coverage of 125 proteins, and 84 showed no difference

between the reagent cations, with an average improvement of 3.1% in favor of SF5
•+.

Comparison of Neutral Losses. Utilizing the higher ionization energy SF5
•+ reagent cation

yields greater fragmentation in regards to sequence informative fragment ions. As the

Polfer group noted with xenon, however, high ionization energies can drive the production

of neutral losses from fragment ions. Using the same pool of doubly deprotonated peptides

in common between the C16H10
•+ and SF5

•+data sets discussed above, Figure 2.5 examines

how the oxidized (i.e., charge-reduced) precursor ions and their associated neutral losses are

affected by the use of the two reagent cations. Figure 2.5a displays the average percent ion

current accounted for by the oxidized precursor as well as the signal from corresponding

neutral losses of CO2 and either NH3 or OH from this charge-reduced species. Doubly
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Supplementary Figure S2.4: Comparison of protein sequence coverage change using
C16H10

•+ or SF5
•+. Protein sequence coverage for all proteins common to both analyses are

shown. A ∆ Protein Sequence Coverage value was calculated for all 507 proteins seen in
both analyses, and each individual protein is shown as a semi-transparent bar. The average
sequence coverage for all common proteins was 3.1% higher for SF5

•+ (orange) compared
to C16H10

•+ (blue). Note the difference of peptide and protein sequence coverage discussed
in the text.
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charged peptide precursors reacted with C16H10
•+ show on average 8.5% more CO2 neutral

loss while the SF5
•+ data yielded greater NH3 and OH neutral loss. Figure 2.5b compares

the abundance of amino acid-specific side chain neutral losses from the oxidized precursor

[12]. The predominant differences are found in methionine, serine, and threonine residues.

Interestingly, methionine and serine show a substantial increase in neutral loss when

C16H10
•+ is used, despite the lower recombination energy relative to SF5

•+ . However, in

total, very little difference is found in amino acid-specific side chain neutral loss when

comparing the two NETD reagent cations.

Lastly, we investigated the a• - and x-type product ions generated in these experiments,

including how CO2 neutral losses from product ions differed between the two reagent

cations. Figure 2.6a provides a holistic look at the total number of a• - and x-type fragment

ions produced in the NETD datasets. As shown with our standard peptide data above,

SF5
•+ yields more fragment ions species than C16H10

•+, particularly more a•-type fragments,

with an increase of 32%. Figure 2.6b shows the percentage of those sequence ions that

also yield a CO2 neutral loss peak. SF5
•+ cations generated 5.4% more x-type ion species

with CO2 neutral losses. To investigate how the occurrence of these neutral losses from

sequencing ions impacts data analysis, we searched our yeast peptide database allowing

for a variety of different fragment ion combinations. No combination of product ions and

neutral losses yielded a greater number of PSMs when searching the SF5
•+ dataset than

just a• - and x-type fragment ions alone, which concurs with the same analysis performed

on the fluoranthene dataset (not shown). We conclude that the amount of CO2 neutral loss
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Figure 2.5: Distribution of neutral losses using C16H10
•+ and SF5

•+ reagent cations. (a)
The average percent of total ion current accounted for by the oxidized precursor ion and
neutral losses of CO2 and either NH3 or OH from the oxidized precursor ion are shown
for z = –2 PSMs from C16H10

•+ (blue) and SF5
•+ (orange) nLC-MS/MS analyses. (b) The

average percent of total ion current is shown for side chain neutral losses from the oxidized
precursor ion for z = –2 PSMs. In order for a spectrum to be searched for a given side chain
loss, the PSM sequence had to contain that residue. Note, amino acids are organized by
their side chain properties: nonpolar (yellow), polar (green), acidic (red), and basic (blue)
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is not significant enough to impact or adversely affect automated spectral annotation.

Conclusion

NETD provides direct access to analysis of proteomes in the negative mode, but improve-

ments are still needed to make NETD amenable to the large proportion of low charge

density precursors generated in whole-proteome analyses. In this experiment, we sought

to improve peptide anion fragmentation using SF5
•+, a reagent cation with a higher IE

of 9.6 eV, compared with C16H10
•+, the most common NETD reagent cation with an IE

of 7.9 eV. Using peptide fragmentation efficiency and unique peptide identifications as

our primary metrics, we determined that SF5
•+ significantly improves shotgun proteomic

analyses with NETD, especially considering the fragmentation of doubly deprotonated

precursors. We contribute this gain in identification power to the increase in ionization

energy for SF5
•+ compared with C16H10

•+, which impacts the exothermicity of the ion–ion

reaction and provides greater fragment ion yield and less non-dissociative negative electron

transfer. The predominant gain in identification for low charge density precursors may

also be useful when considering protein digestion using proteases other than trypsin, such

as Lys-C, which often yields longer, less charge-dense peptides. Another benefit of using a

gaseous reagent for NETD is the simplification of the ion source as no reagent vial heaters

or heated transfer lines are required to volatilize and transfer the solid fluoranthene reagent.

Although SF5
•+ appears to be a favorable choice for large-scale negative mode proteomics

analyses, its use in other types of NETD applications may benefit as well. While previous
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Figure 2.6: Abundance of a• - and x-type fragment ions and fragment ion search settings.
(a) The number of total a• - and x-type fragment ions generated from the peptides common
to both C16H10

•+ (blue) and SF5
•+ (orange) analyses are shown. For both fragment ion

types SF5
•+ produces the greater number of sequencing ions, and the percent gains over

the number of ions from C16H10
•+ analyses are shown in bold. Panel (b) compares the

percentage of a• - and x-type product ions from Panel (a) that have a corresponding neutral
loss of CO2. (c) Despite the small increase in CO2neutral losses observed, incorporating
CO2 neutral losses from a• - and x-type product ions as fragment ion types to query in
a database search does not improve peptide identifications over using standard a• - and
x-type product ions only for the SF5

•+ data. The combination of product ion types used in
the database searches are shown in black at the top, and the number of identified peptide
spectral matches are shown in orange at the bottom. Similar results were obtained with the
C16H10

•+analyses (data not shown)
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work has shown that lower recombination energy NETD reactions reduce the occurrence of

labile PTM neutral loss [43], many other molecules might benefit from the more energetic

reaction. In addition to peptides, NETD has been useful in the study of polynucleotides35

and carbohydrates50–53, and further improvements may be obtained through the utilization

of SF5
•+ as the reagent cation.
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Abstract

The field of proteomics almost uniformly relies on peptide cation analysis, leading to an

underrepresentation of acidic portions of proteomes, including relevant acidic posttransla-

tional modifications. Despite the many benefits negative mode proteomics can offer, peptide

anion analysis remains in its infancy due mainly to challenges with high-pH reversed-phase

separations and a lack of robust fragmentation methods suitable for peptide anion char-

acterization. Here, we report the first implementation of activated ion negative electron

transfer dissociation (AI-NETD) on the chromatographic timescale, generating 7,601 unique

peptide identifications from Saccharomyces cerevisiae in single-shot nLC-MS/MS analyses of

tryptic peptides — a greater than 5-fold increase over previous results with NETD alone.

These improvements translate to identification of 1,106 proteins, making this work the first

negative mode study to identify more than 1,000 proteins in any system. We then compare

the performance of AI-NETD for analysis of peptides generated by five proteases (trypsin,

LysC, GluC, chymotrypsin, and AspN) for negative mode analyses, identifying as many as

5,356 peptides (1,045 proteins) with LysC and 4,213 peptides (857 proteins) with GluC in

yeast — characterizing 1,359 proteins in total. Finally, we present the first deep-sequencing

approach for negative mode proteomics, leveraging offline low-pH reversed-phase fraction-

ation prior to online high-pH separations and peptide fragmentation with AI-NETD. With

this platform, we identified 3,467 proteins in yeast with trypsin alone and characterized

a total of 3,730 proteins using multiple proteases, or nearly 83% of the expressed yeast
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proteome. This work represents the most extensive negative mode proteomics study to date,

establishing AI-NETD as a robust tool for large-scale peptide anion characterization and

making the negative mode approach a more viable platform for future proteomic studies.
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Introduction

Global protein analysis continues to enjoy substantial technological leaps forward in its

ability to characterize protein expression in a variety of organisms with both speed and

sensitivity.1–4 Nevertheless, the impressive advances in protein sequence technology over

past decades have rigidly adhered to positive electrospray ionization for MS1 analysis,

limiting the scope of peptides and posttranslational modifications that can be analyzed.

Widely utilized acidic mobile phases both permit stable and reproducible reversed-phase

separations and also provide optimal conditions for ionization and detection of peptides

and proteins that readily accept positive charge via protonation (i.e. basic species). Acidic

peptides and proteins, however, favor deprotonation, making positive electrospray regimes

ill-suited for their characterization. Moreover, important classes of posttranslational modi-

fications (PTMs), such as phosphorylation, sulfation, and glycosylation, can impart acidic

properties to the peptides and proteins they modify, often producing entire classes of

biomolecules that preferentially ionize as anions.5–10

Electrospray ionization operated in the negative mode can generate multiply depro-

tonated species;11,12 however, canonical collisional activation methods produce MS/MS

spectra riddled with neutral losses and internal fragments that are difficult, if not impos-

sible, to interpret.13–16 Alternatively, a number of emerging fragmentation techniques,

including electron-based dissociation methods and photodissociation approaches, can

generate sequence informative MS/MS spectra from peptide anions.17–23 Both negative
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electron transfer dissociation (NETD) and ultraviolet photodissociation (UVPD) have been

employed in large-scale proteomic studies, enabling sequencing of thousands of unique

peptides in a single experiment.24,25 In NETD, the negative mode analog of electron transfer

dissociation (ETD),26 peptide anions are oxidized with reagent cations, causing the radical

peptide anions to undergo electron rearrangement steps that often lead to cleavage of the

C-Cα backbone bond, producing a•- and x-type product ions.18,24,27,28 Sometimes, however,

an electron is abstracted from the precursor anion and backbone cleavage is achieved, but

the product ions are held together by intramolecular noncovalent interactions as long-lived

charge-reduced species that do not separate. The probability of this phenomenon, called

nondissociative negative electron transfer, is directly related to precursor anion charge

density; as charge density decreases, i.e. the precursor mass-to-charge ratio (m/z) increases,

so does the magnitude of nondissociative negative electron transfer, limiting the amount of

sequence information derived from the NETD MS/MS event.29–31

Many approaches have been explored to mitigate the effects of nondissociative electron

transfer in ETD reactions of peptide cations, including collisional activation of all prod-

uct ions,32,33 activation of nondissociative electron transfer products,34,35 elevated bath

gas temperatures,36 and infrared photon bombardment concurrent to the ETD reaction.37

The last of these approaches, termed activated ion ETD (AI-ETD), has shown substantial

promise for proteomics applications.38,39 The concomitant IR photoirradiation disrupts

the secondary gas-phase structure responsible for nondissociative electron transfer, in-

creasing the efficiency of sequence-informative product ion generation; furthermore, the
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introduction of additional energy to the reaction during AI-ETD occurs only during the

ion–ion reaction time, keeping the instrument cycle time as short as possible and reducing

problematic hydrogen-atom rearrangements that can occur prior to fragment ion sepa-

ration with other supplemental activation techniques.34,37 Indeed, activated ion NETD

(AI-NETD), which uses simultaneous IR irradiation during the NETD reaction, has been

reported to improve peptide anion fragmentation for a handful of standard peptides,30 but

a large-scale implementation of AI-NETD for negative mode shotgun proteomics has yet to

be demonstrated.

We recently described the development of a multipurpose dissociation cell (MDC)

specifically for improved ion–ion reactions on an ETD-enabled dual cell quadrupole ion trap-

Orbitrap hybrid mass spectrometer, the same platform on which we reported the successful

implementation of NETD for high-throughput peptide analyses.40 The MDC, equipped with

a higher operating rf frequency and longer axial dimensions, allows faster ETD reaction

times and larger precursor ion populations for improved fragment ion signal-to-noise.

The placement of MDC is ideal for implementing AI-NETD on an NETD-capable mass

spectrometer because a continuous wave CO2 laser can be easily introduced concentrically

to the trapping volume of the MDC.39,41,42

Here, we present the first description of NETD in the MDC reaction vessel, in addition

to the first implementation of AI-NETD for large-scale peptide anion analysis. Analyzing

complex mixtures of peptides from Saccharomyces cerevisiae whole cell lysates, we show that

AI-NETD, in combination with judiciously chosen high-pH chromatographic conditions,
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enables the most robust analysis of peptide anions to date, identifying over 1,100 proteins in

single-shot experiments. Furthermore, we extend our studies to investigate the performance

of AI-NETD with five distinct proteases (trypsin, LysC, GluC, chymotrypsin, and AspN),

providing the first large-scale investigation into the performance of multiple enzymes

for peptide anion characterization. Using both single-shot analyses and deep sequencing

via offline low-pH fractionation for each protease, we assert that entire proteomes can be

investigated in the negative mode with AI-NETD, providing a new platform to thoroughly

explore biologically relevant hypotheses, e.g. acidic PTM networks, which were previously

inaccessible with canonical positive mode approaches.

Materials and Methods

Mass Spectrometry Instrumentation. The multipurpose dissociation cell (MDC) replaces

the preexisting HCD cell in the ETD-enabled dual cell quadrupole linear ion trap-Orbitrap

hybrid mass spectrometer system (Figure 3.1c)43,44 (Thermo Fisher Scientific, San Jose,

CA), retaining its basic geometry but requiring additional electronics to supply higher

trapping rf voltages for faster reaction times, axial rf voltages for charge-sign independent

trapping, and independently controlled DC (direct current) biases to its four sections.

Offsets used for previous cation analysis with the MDC were inverted to accommodate

injection and trapping of precursor anions rather than cations. Consistent with our earlier

NETD work,24,28 positive reagent ions were generated without hardware modification

through optimized electron ionization/chemical ionization (EI/CI) source conditions, and
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reagent transmission through ion-transfer optics was tuned via automated optimization

routines. Radical fluoranthene reagent cations were formed in a CI ion volume in the

presence of nitrogen gas and were then accumulated in the back two sections of the MDC

for NETD reactions. Following the NETD reaction via charge-sign independent trapping,

the reaction was quenched by setting the center sections of the MDC to a positive DC offset

(10 V), retaining anionic product ions and ejecting remaining cationic reagents. Product

ions were then transferred to the C-trap for subsequent Orbitrap mass analysis using an

extraction gradient analogous to that used for HCD scans. AI-NETD was performed by

irradiating the trapping volume of the MDC during the entirety of the NETD reaction with

a Firestar T-100 Synrad 100-W CO2 continuous wave laser (Mukilteo, WA). The laser was

introduced into the cell via an excavated ion passage in the reagent ion transfer multipole

and a ZnSe window that was installed concentric to the MDC. Using instrument firmware

and modification to instrument code in conjunction with a gated laser controller, laser

power output (in Watts) from the laser (10.6 µm) was modulated remotely through voltage

inputs to the controller and was triggered to fire only during the NETD reaction as it was

being conducted in the MDC. The nitrogen pressure in the MDC was lowered to a ∆N2

pressure of ∼0.1 × 10–10 Torr, as measured by the Penning gauge in the Orbitrap chamber,

to prevent collisional cooling that negates the additional energy supplied by the infrared

laser. Lowered nitrogen pressure also increased transmission of the fluoranthene reagent

cation, so pressure in the MDC was held at similar levels for NETD analyses (∆N2 of ∼0.3

× 10–10 Torr). For more detailed descriptions of the MDC and affixed laser, see previous
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work.39–41

Sample Preparation. All protein lysates were derived from S. cerevisiae strain BY4741, as

described previously.45 Briefly, cells were grown to an optimal density at 600 nm (OD600)

of ∼0.6 and pelleted by centrifugation. A pellet was resuspended in lysis buffer (50 mM Tris,

pH 8; 8 M urea; 75 mM sodium chloride; 10 mM sodium butyrate:protease and phosphatase

inhibitor tablet (Roche Diagnostics, Indianapolis, IN)), and yeast cells were lysed by glass

bead milling (Retsch GmbH, Haan, Germany). Two ml of acid-washed glass beads were

combined with 2 ml of resuspended yeast cells in a 5 ml stainless steel container and shaken

eight times at 30 Hz for 4 min with a 1 min rest in between. Lysate protein concentration was

measured via BCA (Thermo Pierce, Rockford, IL), and yeast proteins were reduced through

incubation in 5 mM dithiothreitol for 45 min at 58 ◦C. Free cysteines were alkylated in 15

mM iodoacetamide in the dark for 30 min. The alkylation was stopped with 5 mM DTT. For

trypsin digestion, a 1 mg protein aliquot was digested overnight at room temperature in

1.5 M urea with trypsin (Promega, Madison, WI) added at a 1:50 (w/w) enzyme to protein

ratio. A second trypsin addition was performed in the morning at a 1:100 (w/w) enzyme

to protein ratio for 1 h. The digestion was quenched by the addition of TFA. For LysC

digestion, a 1 mg protein aliquot was digested overnight at room temperature in 4 M urea

with endo LysC (Wako Chemicals, Richmond, VA) at a 1:50 enzyme:protein ratio. Following

overnight digestion, a second 1:50 aliquot of LysC was added and the digestion was allowed

to proceed for 1 h. For GluC digestion, a 1 mg protein aliquot was digested overnight with
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25 µg GluC (Roche) at room temperature in 0.5 M urea. Following overnight digestion, the

sample was incubated with an additional 25 µg GluC for 1 h. For chymotrypsin digestion,

a 1 mg protein aliquot was digested overnight with 12.5 µg of chymotrypsin (Promega) in 1

M urea. Following overnight digestion, an additional 12.5 µg of chymotrypsin was added

to the sample, and the digestion was allowed to proceed for 1 h. For digestion with AspN, a

1 mg protein aliquot was incubated with 6 µg AspN (Roche) at room temperature overnight.

Each digest was quenched by the addition of TFA and desalted over tC18 Sep-Pak cartridges

(Waters, Milford, MA).

High-pH nLC-MS/MS. Five total reversed-phase solvent systems were tested for online

high-pH separations. Ammonium hydroxide, ammonium formate, and piperidine were

purchased from Sigma Aldrich (St. Louis, MO) and HPLC-grade water and acetonitrile

were purchased from Fisher Scientific (Waltham, MA). The two ammonium formate solvent

systems consisted of mobile phase A (5 mM ammonium formate in water) and mobile

phase B (5 mM ammonium formate in 85% acetonitrile), basified to either pH 10 or pH

11.5 with ammonium hydroxide. Two different piperidine solvents systems used a mobile

phase A of water and mobile phase B of 85% acetonitrile, 15% water, with either 5 mM

or 10 mM piperidine in both A and B. Another 5 mM piperidine solvent system had the

same mobile phase B, but mobile phase A consisted of 95% water, 5% DMSO with 5 mM

piperidine. Reversed-phase columns were packed in-house using 75 µm inner diameter,

360 µm outer diameter bare fused silica capillary. A nanoelectrospray tip was laser pulled
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(Sutter Instrument Company, Novato, CA) and packed with 3.5 µm diameter, 130 Å pore

size ethylene bridged hybrid C18 particles (Waters) to a length of 30–35 cm. The column

was installed on a nanoACQUITY UltraPerformance LC (Waters) using a stainless steel

ultra-high pressure union formatted for 360 µm outer diameter columns (IDEX). One

microgram of sample was loaded onto the column in 95% A for 10 min at 400 nl min–1.

Gradient elution was performed at 400 nl min–1, and gradients increased linearly from 5 to

30% B over 70 min, followed by an increase to 70% B at 76 min and a wash at 70% B for 4

min. The column was then re-equilibrated at 5% B for 10 min.

Eluting peptide anions were converted to gas-phase ions by electrospray ionization

at -1.5 kV with respect to ground, and the inlet capillary temperature was held at 300 ◦C.

Survey scans of peptide precursors were collected over the 300–1,250 Th range with an

automatic gain control (AGC) target value of 1,000,000, followed by data-dependent NETD

MS/MS scans of the 10 most intense peaks (maximum injection times of 200 ms for both

full and tandem MS scans). Precursors with charge states equal to one or unassigned were

rejected. NETD reactions were performed in either the mass-analyzing quadrupole linear

ion trap (A-QLT) or the MDC (50,000 or 100,000 AGC target values, respectively), followed

by mass analysis in either the A-QLT or Orbitrap, as indicated in the text. The radical cation

of fluoranthene was the reagent used for all NETD analyses. For NETD reactions conducted

in the A-QLT, the reagent AGC target value was set to 1,000,000 and the default reaction time

was set to 100 ms for z = -2 precursors, with reaction time scaling enabled as discussed in

the text. For all MDC analyses, reagent accumulation times were set to 20 ms, and reaction
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times were as follows: 40 ms for z = -2, 30 ms for z = -3, 20 ms for z = -4, 15 ms for z = -5,

and 10 ms for z = -6 and higher charge states. During AI-NETD reactions, the external

CO2 continuous wave laser was triggered using instrument firmware and modification

to instrument code in conjunction with a gated laser controller. The laser irradiated the

trapping volume of the MDC during the entirety of the NETD reaction at 70% total output.

Precursors were isolated using a ±0.9 Th isolation window, and an exclusion window of

±10 ppm was constructed around the monoisotopic peak of each selected precursor for 45

s. Resolving powers of 60,000 and 15,000 at 400 m/z were used for survey scans and MS/MS

scans in the Orbitrap, respectively.

Low-pH nLC-MS/MS. For comparison to positive mode methods, single-shot HCD and

ETD analyses were collected for tryptic yeast peptides. Reversed-phase columns were

prepared as described above. Mobile phase A was 0.2% formic acid in water with 5%

DMSO, and mobile phase B was 0.2% formic acid in acetonitrile. One microgram of sample

was loaded onto the column in 95% A for 10 min at 400 nl min–1. Gradient elution was

performed at 400 nl min–1, with the gradient increased linearly from 5 to 25% B over 70 min,

followed by an increase to 70% B at 76 min and a wash at 70% B for the 4 min. Electrospray

voltage was set to 2 kV with respect to ground, and the inlet capillary was held at 275 ◦C.

Survey scans of peptide precursors were collected over the 300–1,250 Th range with an AGC

target value of 1,000,000 and 60,000 resolution, followed by data-dependent HCD MS/MS

scans of the 15 most-intense peaks or ETD MS/MS scans of the 10 most-intense peaks
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(maximum injection times of 75 ms and 200 ms for full and tandem MS scans, respectively).

Precursors with charge states equal to 1 or unassigned were rejected. HCD and ETD MS/MS

events were both performed in the MDC with an AGC target value of 100,000, followed

by mass analysis in the Orbitrap at 15,000 resolution. Normalized collision energies of 30

were used for HCD events. The radical anion of fluoranthene was the reagent used for ETD

reactions. Reagent accumulation times were set to 20 ms, and reaction times were analogous

to NETD reaction times described above. Precursor isolation and dynamic exclusion were

the same as above.

Low-pH Prefractionation. In addition to single-shot nLC-MS/MS runs, deep-sequencing

analyses were performed on digests from each enzyme, leveraging low-pH RPLC offline

fractionation for an orthogonal degree of separation prior to online high-pH chromatogra-

phy. Peptides were fractionated on a Phenomenex (Torrance, CA) Gemini 5 µm, 110 Å pore

size C18 column (250 × 4.6 mm) with 0.1% TFA in pure water and 80% acetonitrile (mobile

phases A and B, respectively). The separation gradient had a flow rate of 0.8 ml min–1

starting at 5% B for 4 min. From 4 to 8 min, B was increased to 12% and then to 45% at 49

min. At 51 min, a 5 min wash of 100% B started, followed by 20 min of re-equilibration in

5% B. Fractions were collected every minute from 4 min to 54 min for a total of 50 fractions,

which were then combined into 10 total fractions in concatenated fashion. Each set of

fractions was run in triplicate.
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Data Analysis. Tandem mass spectra were searched with the Open Mass Spectrometry

Search Algorithm, which was previously modified to accommodate anionic peptide frag-

ments and NETD spectra, which contain a•- and x-type product ions.24,46 Prior to the Open

Mass Spectrometry Search Algorithm search, spectra were “cleaned” such that charge-

reduced product ions and neutral losses within the window 55 Da below and 5 Da above the

charge-reduced peaks were removed in addition to a ±3 Da window around the unreacted

precursor.47,48 A multi-isotope search using three isotopes with a mass tolerance of ±125

ppm was used for precursors, and a monoisotopic mass tolerance of ±0.30 Da or ±0.02 Da

was used for product ions (a•- and x-type) in the ion trap or Orbitrap, respectively. Oxida-

tion of methionine was specified as a variable modification, while carbamidomethylation

of cysteine was a set as a fixed modification. For all enzymes, three missed cleavages were

allowed with the following specificity: trypsin, full with P-rule; LysC, full with P-rule; GluC,

full DE; chymotrypsin, full with P-rule; and AspN, full. Data processing was performed

using in-house software (COMPASS) designed for Open Mass Spectrometry Search Algo-

rithm search outputs.49 Peptide spectral matches (PSMs) were made against the UniProt

yeast database downloaded on September 29, 2014 (6,726 entries), which was concatenated

with a reversed sequence version of the forward database. Peptides were filtered to a 1%

false discovery rate using both e-value and precursor mass accuracy. When pooling spectra

from multiple nLC-MS/MS analyses, the false discovery rate was calculated for the aggre-

gate set of data rather than calculating a separate false discovery rate for each run prior

to combining results. Information pertinent to fragmentation evaluation for NETD and
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AI-NETD was extracted from MS/MS scans using a C# script developed in-house. Protein

isoelectric points (pI) were calculated using ExPASy (http://www.expasy.org/). The same

pipeline was used for positive mode comparisons, searching b- and y-type product ions for

HCD and c- and z•-type product ions for ETD, with product ion search tolerances of ±0.02

Da. ETD spectra were cleaned (above). Large-scale positive mode data50 were downloaded

from Chorus (ID# 183) and analyzed with COMPASS. Raw files were searched as previously

described.

Results

Negative Electron Transfer Dissociation in the Multipurpose Dissociation Cell. In our

previous work using NETD for large-scale analyses of peptide anions,24 we conducted all

NETD reactions in the high-pressure trap of the dual-cell mass-analyzing quadrupole linear

ion trap (A-QLT) and subsequent mass analysis was performed in the low-pressure trap of

the A-QLT (Figure 3.1c). At the time, the sensitivity and speed of the A-QLT for analysis

of tandem mass spectra offered more benefit than the higher resolution/accurate mass

provided by Orbitrap mass analysis, especially considering the low precursor anion flux

observed in those experiments; however, Orbitrap mass analysis did provide more confident

spectral identification and was used in ensuing studies.28 Following these investigations,

we described the multipurpose dissociation cell (MDC) that demonstrated improved ETD

performance (faster reaction times and higher product ion signal-to-noise) for precursor

cations.40 We hypothesized that the MDC could offer similar benefits for NETD analysis,
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granting access to the superior spectral quality of higher resolution/accurate mass product

ion mass analysis in the Orbitrap without sacrificing the scan speed achieved with the

A-QLT.

As described above, we modified the MDC to perform charge-sign-independent trap-

ping of precursor anions and reagent cations, permitting NETD of multiply deprotonated

peptides with radical fluoranthene cations (Figure 3.1a).51 Using a 5 mM piperidine solvent

system (vide infra), we compared performance of the A-QLT and MDC for NETD analyses

using 90-min shotgun nLC-MS/MS experiments on a complex mixture of S. cerevisiae pep-

tides, performed in triplicate. Reflecting our previous studies for NETD reactions in the

A-QLT, product ion mass analysis in the A-QLT outperformed product ion mass analysis in

the Orbitrap (3,530 vs 3,134 peptides). Thus, all experiments using the A-QLT for NETD

reactions also used the A-QLT for product ion mass analysis. All NETD reactions in the

MDC, however, used the Orbitrap for product ion mass analysis, as dictated by instrument

geometry. To compare directly to our previous work, we first used an NETD reaction time of

100 ms for all precursor charge states for A-QLT analyses but used dynamic reaction times

for MDC reactions, as optimal reaction times scale with precursor charge.52 Because the

MDC allows faster reaction times, only 40 ms were needed to achieve high-quality spectra

for doubly deprotonated peptides compared with the 100 ms required for the reaction

in the A-QLT. NETD experiments using the MDC as a reaction vessel afforded slightly

more MS/MS scans on average than those using the A-QLT (12,494 vs 12,374, respectively)

in addition to providing higher MS/MS success rates, i.e. percentage of tandem mass
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Figure 3.1: Modified linear ion trap-Orbitrap hybrid MS system for performing AI-
NETD. a) NETD, which involves oxidation of precursor peptide anions by a reagent cation,
can now be performed in the mass-analyzing quadrupole linear ion trap (A-QLT) and
multipurpose dissociation cell (MDC). b) Modifying the MDC to perform NETD opens
access to AI-NETD, in which anionic peptide precursors are concurrently irradiated with
IR photons during the ion–ion reaction. This additional photoactivation disrupts peptide
secondary gas-phase structure, increasing the efficiency of the NETD reaction. c) Instru-
ment schematic of the hybrid linear ion trap-Orbitrap mass spectrometer is modified with
the MDC in place of the traditional HCD collision cell, in addition to an excavated beam
path, ZnSe window, and affixed 10.6 µm CO2 laser for concentric irradiation of the MDC.
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spectra that map back to sequence (29% vs 27%). With these advantages, NETD single-shot

analyses in the MDC identified 3,805 unique peptides to the A-QLT’s 3,411 unique peptides,

both of which outmatched our previous results. Furthermore, we conducted a third set of

experiments, this time enabling dynamic reaction times for NETD conducted in the A-QLT

(scaled with precursor charge). With these conditions, NETD in the A-QLT averaged 12,582

MS/MS scans per run, illustrating the increase in scan speed afforded by scaled reaction

times; however, the MS/MS success rates in these experiments also averaged 27%, matching

that produced with a static reaction time in the A-QLT. Despite the increase in the number of

MS/MS scans with dynamic reaction times enabled, the MDC still outperformed the A-QLT

in the number of unique peptides identified (3,805 vs 3,530). These results illustrate the

advantages the MDC provides for shotgun nLC-MS/MS peptide anion analyses, making

high-quality, higher resolution/accurate mass NETD tandem mass spectra accessible for

routine experiments.

Activated Ion NETD for Large-Scale Sequencing of Peptide Anions. Beyond the advan-

tages the MDC provides for NETD alone, the ability to conduct NETD in this reaction

vessel provides straightforward access to AI-NETD. The instrument geometry enables

simple alignment of an external infrared laser that can be introduced concentric to the

trapping volume of the MDC,39–42 facilitating concurrent photoactivation during NETD for

improved fragmentation efficiency (Figure 3.1b). Following laser alignment, we conducted

another set of triplicate 90-min nLC-MS/MS experiments with yeast peptides, this time
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Figure 3.2: NETD- and AI-NETD-MS/MS spectra for the same peptide at z = -2 and -3.
AI-NETD improves precursor-to-product ion conversion for enhanced peptide dissociation
for precursors in lower charge states, increasing peptide sequence coverage in this case
from 45% to 100%. NETD and AI-NETD both perform well on the same peptide at a higher
charge (100% sequence coverage with both), although AI-NETD still provides a greater
total number of sequencing ions. NETD and AI-NETD spectra are on the same scale for
each precursor charge state.
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comparing NETD in the MDC to AI-NETD in the MDC. The improvement in peptide

fragmentation was immediately apparent. Figure 3.2 provides an example of a peptide,

NFNDPEVQGDMK, successfully identified at z = -2 and z = -3 in both NETD and AI-NETD

analyses. The doubly deprotonated species of this 12-residue peptide has a moderate charge

density (m/z 695.29), and fragmentation with NETD is somewhat limited (top left panel),

providing only 45% peptide sequence coverage (as defined by number of bonds broken

divided by total number of bonds); however, AI-NETD provides extensive fragmentation

of the peptide, permitting straightforward annotation of fragment ions that provide 100%

peptide sequence coverage (bottom left panel). NETD for the more charge-dense triply

deprotonated species (m/z 463.19) provides more comprehensive fragmentation than with

its doubly deprotonated counterpart, as expected (top right panel). AI-NETD maintains its

high level of performance for the z = -3, too — again enabling 100% sequence coverage and

providing more sequencing ions than NETD alone (bottom right panel).

The overall performance of AI-NETD for the large-scale analyses was just as compelling.

The MS/MS success rate for AI-NETD experiments averaged nearly 53%, a drastic im-

provement over the 29% success rate of NETD alone. To demonstrate how AI-NETD could

provide such a boost, we chose 409 unique peptides that were identified using both NETD

and AI-NETD with z = -2 and compared the extent of fragmentation achieved with the two

fragmentation techniques by extracting the product ions detected in each MS/MS spectrum.

Figure 3.3 displays fragment maps for these spectra, providing a separate column for a•-

type and x-type fragments. Each column is further divided into subcolumns, the number
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Figure 3.3: A fragment map of peptides identified with both NETD and AI-NETD. Here,
each row is a unique peptide so that the same row across all four columns represents the
same peptide sequence. Each subcolumn corresponds a peptide backbone bond so that a
peptide with eight residues has seven backbone bonds and thus seven subcolumns for both
a•- and x-type product ions. The numbers in parenthesis to the left show peptide length
in number of residues, and all peptides shown here are z = -2, meaning precursor charge
density decreases from top to bottom. With NETD, a•- and x-type fragments decrease
in number and intensity as precursor charge density decreases (i.e. as peptide length
increases). AI-NETD maintains superior fragment ion generation even with decreasing
precursor charge density, greatly increasing peptide dissociation and sequence coverage
compared with NETD.



84

of which corresponds to the number of backbone bonds in the peptide. For example, a

peptide that is eight residues long has seven columns representing the seven backbone

bonds. The furthest most left subcolumn for the a•-type fragments represents fragment

a•1, while the furthest most right subcolumn shows a•7. Conversely, the furthest most left

subcolumn for x-type fragments shows the x7 fragment, whereas the right most subcolumn

shows x1. The color scale for the two fragment ion types, shown at the bottom of the figure,

indicates the intensity of the fragment. To permit comparisons among multiple spectra,

the intensity of all fragments in a given spectrum was normalized to the intensity of the

unreacted precursor detected in that spectrum; thus, the intensities of the fragment ions

are reported as percentages of this intensity. Additionally, the peptides shown in this figure

are first grouped by length, which is depicted by the number in parentheses on the far

left side, and the peptides with the same length are organized by m/z values in ascending

fashion. With this organization, the charge density of the peptide precursors decreases

from top to bottom, making the charge density dependence trends of NETD apparent. As

peptide length increases, the extent of fragmentation achieved with NETD, alone, decreases

noticeably, corresponding to expected trends for decreasing charge density. By comparison,

AI-NETD provides extensive fragmentation for nearly all peptides shown, even as charge

densities of the precursors decrease, increasing the number and intensity of both a•-type

and x-type fragments. By mitigating the detrimental charge density dependence of NETD,

AI-NETD clearly offers advantages for peptide anion fragmentation, explaining the increase

in MS/MS success rate between NETD and AI-NETD experiments.
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Figure 3.4: AI-NETD outperforms NETD on a global scale. a) The distribution of precur-
sors selected for NETD or AI-NETD in a given run show roughly equivalent populations
of peptides to fragment. b) Using the PSMs generated from the runs shown in (a), peptide
sequence coverage is plotted as a function of precursor m/z. AI-NETD increases the num-
ber of peptides identified, extends the m/z range that can generate successful PSMs, and
provides overall higher peptide sequence coverage at given m/z values. c) The combination
of these improvements with AI-NETD at the peptide level translates to benefits at the
protein level as well. AI-NETD characterized 1,106 proteins to NETD’s 674. Beyond this,
for proteins detected with both methods, AI-NETD overwhelmingly enhanced protein
sequence coverage, by more than 50% in some cases.
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Importantly, these improvements afforded by AI-NETD translate not only to higher qual-

ity MS/MS spectra with more robust fragmentation but also to remarkable improvements

in peptide and protein identifications. Compared with the 3,805 peptides reported above

for NETD analysis using the MDC, AI-NETD identified 7,601 unique peptides, essentially

doubling the number of peptide identifications achievable in the same amount of analysis

time. Figure 3.4 summarizes the benefits of AI-NETD. The distribution of precursors across

m/z space was similar for both NETD and AI-NETD runs (Figure 3.4a), but the distribution

of peptides successfully sequenced is noticeably more extensive with AI-NETD (Figure

3.4b). Here, the peptide sequence coverage achieved for each doubly and triply deproto-

nated peptide identified with NETD or AI-NETD is plotted as a function of its m/z value.

Successful identification of doubly deprotonated peptides with NETD dropped abruptly

beyond 800 Th, and the sequence coverage achieved for these peptides decreased with

higher m/z values. AI-NETD, on the other hand, successfully identified peptides across the

entire m/z range and provided higher peptide sequence coverage, even maintaining 100%

sequence coverage for doubly deprotonated peptides up to 1,000 Th. NETD did perform

more favorably for triply deprotonated precursors than for doubly deprotonated ones, but

AI-NETD remained distinctly superior for this population of peptides as well.

Beyond the substantial improvements in fragmentation at the peptide level, AI-NETD

also performed advantageously at the protein level. In triplicate single-shot 90 min analyses,

AI-NETD identified 1,106 proteins in yeast, making it the first technique to achieve iden-

tification of more than 1,000 proteins using the negative mode approach. Comparatively,
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NETD identified 674 yeast proteins. Panel c of Figure 3.4 illustrates the gain in protein

sequence coverage afforded by AI-NETD for proteins identified using both methods. Here,

protein sequence coverage represents number of total amino acids explained from peptide

identifications divided by the total number of amino acids. The gain in sequence coverage

is defined as sequence coverage with NETD subtracted from sequence coverage with AI-

NETD for a given protein; thus, a negative value means that higher sequence coverage was

seen with NETD. AI-NETD provided a gain in sequence coverage for the overwhelming

majority of proteins, many of which were acidic in nature (as indicated by the x-axis). In all,

the enhancement in fragmentation that AI-NETD afforded for peptide anions unequivocally

translates to more robust protein characterization, making it a premier tool for negative

mode proteomics.

Selection of Robust High-pH Solvent System. Concurrent to our investigations into

NETD and AI-NETD, we also explored how to increase precursor anion flux with differ-

ent high-pH solvent systems. We previously employed ammonium formate solvents for

high-pH separations, but charge state distributions favoring lowly charged precursors,

degradation of silica-based packing materials, and low precursor flux were significant

challenges with this system.24,28 Although others have used similar systems with success,

we also took note of several studies utilizing piperidine buffers for high-pH chromatogra-

phy.20,25,53,54 With this knowledge, we evaluated five different solvent systems using either

piperidine or ammonium formate buffers over triplicate 90-min nLC-MS/MS analysis of
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Figure 3.5: A comparison of high-pH solvent systems used. a) Base peak chromatograms
show that choice of buffer additives, rather than pH alone, generate increased ionization
with negative ESI. Piperidine solvents generate nearly an order of magnitude higher pre-
cursor ion signal than ammonium formate solvents. b) Beyond increasing the number
of precursors selected for MS/MS, piperidine solvents shift the charge state distributions
of precursor anions to be more highly charged (more negative) than ammonium formate
solvents. Notably, DMSO in the 5 mM piperidine solvent system expanded the distribution
of charge states to more highly charged precursors, rather than collapsing it to lower charges
as reported in positive electrospray.
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yeast peptides with AI-NETD fragmentation. A 10 mM piperidine system and 5 mM am-

monium formate, pH 10, were first compared. We observed increased peptide anion signal

with piperidine solvents, so we prepared ammonium formate buffers that were basified

to pH 11.5 with ammonium hydroxide to match the pH of the 10 mM piperidine system.

In the same vein, we also prepared 5 mM piperidine solvents, reducing the pH of buffer

A slightly to ∼11.3. Additionally, leveraging the recent descriptions of boosts provided by

addition of DMSO to buffers for positive mode analyses, we assessed a 5 mM piperidine

solvent system that contained 5% DMSO in buffer A.

Panel a of Figure 3.5 displays base peak chromatograms from an experiment with each

of the five solvent systems, highlighting the increases in signal, i.e. anion flux, observed with

the piperidine buffers. The 5- to 10-fold improvements in base peak signal with piperidine

solvents are reflected in the boosts observed in the number of tandem mass spectra, peptide

spectral matches, and unique peptide identifications summarized in Table I (Figure 3.6).

Panel b of Figure 3.5 shows that, beyond increasing the number of MS/MS scans acquired,

piperidine solvents shift the charge state distributions precursors to more highly charged

(more negative) species, a phenomenon also reported for peptide standards and simple

peptide mixtures.20,53. Although increasing the pH of ammonium formate solvents to

11.5 did show a small expansion in precursor charge state distributions, this difference

was minimal compared with the pH 10 ammonium formate solvents and failed to match

that observed with piperidine. Interestingly, the 5 mM piperidine buffers with 5% DMSO

provided neither the highest base peak signal nor a gain in peptide identifications, which
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Figure 3.6: Table I. Identifications with various solvent systems. Summary of AI-NETD
experiments with five different high-pH solvent systems.
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are both advantages reported in positive mode analyses.45,55,56. As shown in Table I (Figure

3.6) and Figure 3.5b, DMSO in the 5 mM piperidine solvent did permit the acquisition of

the most MS/MS scans and displayed the widest distribution of precursor charge states;

however, peptide identifications were lower with the DMSO additive than both the other two

piperidine solvents. Regardless, high-pH solvent systems that utilize piperidine performed

consistently better than ammonium formate solvent systems, maximizing the number of

unique peptides identified with AI-NETD.

Multiple Proteases for Single-Shot Negative Mode Proteomics. Even with the robust

analyses afforded by the combination of AI-NETD with prudently chosen piperidine high-

pH solvents, use of just one protease limits the portion of the proteome that is accessible in

a given experiment. The value of multiple proteases for canonical positive mode shotgun

proteomics has been shown by us and others;50,57–59 however, negative mode studies to

date have largely failed to capitalize on the advantages offered by use of multiple enzymes

for protein digestion. Instead, most studies rely mainly on trypsin for enzymatic digestion,

although GluC has also been used. In this study, we extended our success with AI-NETD

for tryptic peptides to single-shot analyses of peptides derived from four other proteases

(LysC, GluC, chymotrypsin, and AspN) with the goals of exploring the amenability of

different proteases to negative mode experiments and increasing the proteomic depth that

can be achieved with negative mode analyses.

Table II (Figure 3.7) summarizes the results from triplicate 90-min AI-NETD nLC-
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Figure 3.7: Table II. Identifications with various proteases. AI-NETD performance for
peptides generated from five different proteases in single-shot experiments. Proteolytic
specificity for each enzyme is shown.
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MS/MS experiments that analyzed five different complex yeast peptide mixtures, each

from one of the five proteases investigated. Immediately evident is the superior perfor-

mance of trypsin and LysC, both of which enabled the identification of more than 1,000

proteins. Similar performance of these two enzymes is unsurprising considering their

related proteolytic specificity C-terminal to lysine (trypsin and LysC) and arginine (trypsin)

residues. GluC, which cleaves C-terminal to glutamic acid (and at slower rates, aspartic

acid60), enabled the identification of more than 4,200 unique peptides, a greater than 7-fold

increase over our previous NETD results with the enzyme.24. These peptides mapped back

to 857 proteins, which also outmatches the best results achieved to date for any protease in

negative mode approaches.25 Chymotrypsin and AspN performed considerably well, too,

illustrating the flexibility AI-NETD can offer for peptide anion characterization. Toward

our goal of increasing proteomic depth, we batched the results from these five proteases to-

gether, providing nearly 21,000 unique peptide identifications. This combination of results

provided valuable depth at the protein level, bolstering the number of proteins identified

by ∼23% and providing a jump in average protein sequence coverage from 23.6% to 34.4%

over analysis with trypsin alone.

Beyond the beneficial information derived from the multiple protease approach for

proteome characterization, we were also curious how AI-NETD performed for fragmenting

families of peptides that were chemically distinct due to their proteolytic origins. We

constructed fragment maps (vide supra) for AI-NETD fragmentation of peptides from all five

enzymes and used results from trypsin as a point of reference. The trends in fragmentation
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between peptides from trypsin, LysC, chymotrypsin, and AspN were similar (data not

shown); the fragmentation for GluC peptides, however, seemed to be more extensive than

that seen with trypsin (Figure 3.8a). Here, we looked at peptides of relatively moderate

and long length (12 and 24 residues, respectively), considering two precursor charge states

for each. All peptides of the given length and charge are represented for peptides from

both enzymes. This includes 443, 98, 94, and 65 tryptic peptides and 323, 146, 43, and 34

GluC peptides for length 12, z = -2; length 12, z = -3; length 24, z = -3; and length 24, z = -4,

respectively. AI-NETD appears to produce fragment ions in greater number and intensity

for peptides derived from GluC compared with trypsin, which is especially notable for z =

-3 peptides that are 12 amino acids (AA) long. Juxtaposed to tryptic peptides with basic

C termini, GluC peptides have a C-terminal acidic residue (D/E), meaning at least one

negative charge is fixed at the C terminus. This could explain the improved electron-driven

fragmentation seen for GluC peptides, especially for shorter peptides where proximity of

backbone bonds to this C-terminal negative charge is greater. Broadening this idea beyond

the subset of peptides investigated in panel a, we calculated peptide sequence coverage

values for all identified tryptic and GluC peptides, z = -2 through -4. Density plots in Figure

3.8b show the frequency of peptides characterized with a given sequence coverage, serving

as a surrogate for extent of fragmentation. AI-NETD fragmentation shows a similar trend

for z = -2 peptides from trypsin and GluC, favoring higher sequencing coverage; however,

AI-NETD with GluC peptides maintains high peptide sequence coverage for z = -3 and -4

peptides while the sequence coverage for tryptic peptides is much more evenly distributed,
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mirroring the more extensive fragmentation seen with the subset of GluC peptides in panel

a.

Although it appears AI-NETD fragments GluC peptides more extensively, results with

GluC do not rival those achieved with trypsin. Intrigued by this, we performed an in silico

digest of the yeast proteome for both proteases, allowing up to two missed cleavages with

a minimum peptide length of six amino acids and a maximum length of 75 amino acids.

The larger histogram in Figure 3.8c shows that the distribution of possible tryptic peptides

favors shorter peptides (average length of 20.6 residues) while GluC produces fewer total

peptides and does not favor short peptides as drastically (average length of 27.8 residues).

The inset in Figure 3.8c displays a histogram of peptide lengths for peptides actually

identified in AI-NETD analyses, providing the complementary experimental measurement

to the theoretical data derived from the in silico digest. Interestingly, despite the notable

difference in distributions of peptide length from the in silico digestion, the experimental

distributions of peptide length are very similar, with average peptide lengths of 16 and 15

residues for trypsin and GluC, respectively. We surmise that lower peptide identifications

with GluC compared with trypsin is a function of the population of peptides generated by

GluC rather than the fragmentation achieved for these peptides. Although GluC peptides

may fragment better, a smaller portion of peptides derived from GluC are in the ideal

range of peptide length for AI-NETD, which appears to be 10–25 residues. This translates

to a higher percentage of fragmentation events (i.e. MS/MS scans) occurring on larger,

more difficult-to-sequence peptides for GluC. In fact, Figure 3.8d supports this, showing
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Figure 3.8: Comparison of single-shot AI-NETD for peptides produced by either trypsin
or GluC. a) AI-NETD fragment map for peptides (12 and 24 amino acids in length) derived
from both trypsin and GluC digestions. The numbers in parenthesis to the left indicate
peptide charge. b) Density plots for peptide sequence coverage for PSMs from trypsin and
GluC.
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Figure 3.8: c) The larger histogram shows the distribution of peptide lengths from an
in silico digest for trypsin and GluC. The inset displays the distribution of lengths of
peptides identified in the trypsin and GluC experiments. The numbers in parenthesis in
the respective legends show the average peptide length for each protease. d) The MS/MS
success rate (blue) for GluC peptides is significantly lower than tryptic peptides (p < .01,
indicated by *), while the ratio of unique peptides to total PSMs detected (red) is not
statistically different (p < .05).

that the ratio of unique peptides to total PSMs is the same for the two enzymes, but

the MS/MS success rate is significantly lower (p <.01) for GluC. Additionally, our entire

workflow was originally optimized for tryptic peptides, including sample preparation

and chromatographic conditions, which could also contribute to this discrepancy. These

observations may explain why, even with superior fragmentation and higher peptide

sequence coverage for the peptides we do sequence, fewer peptides are ultimately identified

using GluC as a protease rather than trypsin. Even so, this does not make AI-NETD analyses

of GluC peptides any less valuable; rather, these results suggest that combinations of

proteases can be used not only to enhance proteomic depth but also to access the advantages

AI-NETD can provide for peptides with distinct chemical properties.

Deep Sequencing in the Negative Mode with Offline Low-pH Fractionation and Multi-

ple Proteases. Encouraged by these results, we sought to improve upon the proteomic

depth we could achieve with purely negative mode techniques. All previous large-scale

peptide anion analyses have used online one-dimensional high-pH chromatography for

single-shot experiments, similar to the approaches we have described thus far. Common
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practice in traditional proteomic experiments is to increase the achievable proteomic depth

by decreasing sample complexity via online and/or offline fractionation;61,62 we used

the same logic to fractionate peptide mixtures from trypsin, LysC, GluC, chymotrypsin,

and AspN digestions prior to nLC-MS/MS analysis with AI-NETD. In positive mode

approaches, offline high-pH reversed-phase fractionation provides an orthogonal mode

of separation to the online acidic reversed-phase chromatographic conditions used for

nLC-MS/MS analysis.63 It holds that the two should remain orthogonal even if the order in

which they are performed is inverted. Thus, we employed a simple low-pH reversed-phase

fractionation system to separate a complex mixture of peptides into 50 fractions, which

were then concatenated into 10 total fractions for subsequent negative mode nLC-MS/MS

analysis. This fractionation was done for a digestion from each protease.

The offline fractionation approach extraordinarily improved peptide and protein iden-

tification for all five proteases with AI-NETD (Figure 3.9). Where single-shot AI-NETD

experiments with tryptic peptides produced 7,601 unique peptide identifications and 1,106

proteins, analysis of the same mixture of tryptic peptides split equally into 10 fractions

enabled the identification of 36,713 unique peptides and 3,467 proteins. Figure 3.9a shows

the results achieved from analysis of 10 fractions for each of the five proteases. Here, the

area of the circle represents the total number of proteins identified. The circles along the

diagonal present the results for the proteases individually. This figure also displays the

average percentage of protein sequence coverage observed with each enzyme with a color

gradient. Further, panel a presents pairwise comparisons that show the combination of
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Figure 3.9: Proteome coverage in the negative mode with various proteases using AI-
NETD and low-pH fractionation. a) Pairwise comparisons of the number of proteins (area
of circle) and average protein sequence coverage (color) when using different proteases,
illustrating the degree of orthogonality of each protease with the others. The circles along
the top edge (light gray background) show each enzyme by itself. b) The total number of
PSMs for each protease. c) When combining all PSMs from the five enzymes, AI-NETD
characterizes over 80% of the yeast proteome (3,730 proteins). The pie chart here shows
what proportions of these proteins had sequence coverage in the given range.
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results from two proteases batched together. This analysis allows an evaluation of how

combinations of different proteases affect the number and coverage of proteins detected,

illustrating the degree of orthogonality of each protease with the others. Intriguingly, the

combination of trypsin and GluC proteases for this large-scale, deep-sequencing approach

provided the largest number of proteins identified in these pairwise comparisons with

an average protein sequence coverage of 35.14%. The combination of trypsin and chy-

motrypsin, however, provided the greatest average sequence coverage (36.5%) even though

it did not appreciably increase the number of proteins identified with trypsin alone. This

analysis provides insight into what combinations of proteases, whether they cleave at basic,

acidic, or hydrophobic residues, may be the most beneficial as negative mode approaches

continue to advance. Panel b shows the number of total PSMs collected for each enzyme,

providing some concept of the complexity of peptide mixtures produced from each. When

integrating the identifications from all five enzymes into a batched analysis of proteins iden-

tified, AI-NETD facilitated the characterization of 3,730 proteins with an average sequence

coverage of 43.9%. This represents nearly 83% of the expressed yeast proteome (estimated

to be ∼4,500 proteins64), demonstrating that comprehensive proteome analysis, which has

been previously confined to positive mode analyses, can be achieved in the negative mode

via peptide fragmentation with AI-NETD. Figure 3.9c shows the proportions of these 3,730

proteins with a given protein sequence coverage; while approximately half of the proteins

had sequence coverage under 40%, an appreciable fraction of these protein identifications

had excellent sequence coverage (80–100%).
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Comparing Positive and Negative Mode Data. Although the data presented above stand

alone as a demonstration of what can be considered realistic and achievable in negative

mode proteomics, a natural and valuable extension lies in the comparison of these large-

scale peptide anion analyses to large-scale positive mode experiments. First, we performed

triplicate single-shot analyses of yeast tryptic peptides using HCD and ETD fragmentation

for comparison of positive mode data to AI-NETD. Both HCD and ETD were performed in

the MDC to provide the most direct comparison possible, thus keeping both reaction cell and

mass analyzer (i.e. the Orbitrap) consistent with the negative mode experiments. Figure

3.10a displays the number of peptides identified with each method and shows the overlap

in peptides between the three fragmentation types. Surprisingly, AI-NETD performed

as well as, if not better, than ETD in the number of peptides identified (7,601 vs 7,414).

Only one-third of the total peptides sequenced by ETD and NETD were identified in both

methods, highlighting the complementarity of the positive and negative mode approaches

for electron-driven dissociation techniques. Furthermore, although HCD produced more

peptide identifications than both ETD and AI-NETD, the overlap in peptides was higher

for the two positive mode techniques — 83% of ETD peptides were also identified with

HCD while 68.5% of AI-NETD peptides were also seen in the HCD data. This provides

clear evidence that negative mode analysis with AI-NETD is fully capable of affording

greater orthogonality to positive mode collision-based peptide identification than offered

by positive mode ETD, maximizing the number of peptides than can be identified in a

sample (although we note that more vigorous and extensive comparisons are need to fully
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explore this issue).

To further our comparison to positive mode methods, we examined the overlap in

peptides and proteins characterized in our deep-sequencing experiments to those identified

in an extensive published proteomic analysis of yeast peptides that used offline fractionation

and multiple proteases, two key components of our deep proteome sequencing with AI-

NETD.50 Additionally this study utilized decision tree logic to tailor fragmentation (either

CID or ETD) to each peptide, maximizing the chances of an MS/MS scan being successfully

mapped to sequence.65 All of these components make this data set one of the most robust

available characterizations of the yeast proteome, with the added benefit of the ability

to compare multiple proteases in positive and negative modes. Figure 3.10b shows the

distribution of percentage protein sequence coverages achieved for n proteins in the positive

mode when using trypsin and various combinations of peptides from other proteases

[trypsin(+) and proteaseX(+), where proteaseX is LysC, GluC, AspN, or ArgC]. Also included

in that plot is the combination of tryptic peptides from the positive mode data and the

AI-NETD data set [trypsin(+) and trypsin(-)] (gray background). Compellingly, using one

protease with both the positive and negative modes outperforms all other positive mode

combinations of trypsin with a different protease. Not only does the trypsin(+) and trypsin(-)

combination identify more proteins than any trypsin(+) and proteaseX(+) combination, but

it also provides the greatest median (29.17%) and average (34.02%) percentage sequence

coverage — indicating that negative mode analyses for tryptic peptides can provide more

orthogonality to positive mode experiments than the use of different proteases. For the
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Figure 3.10: Comparison of AI-NETD to positive mode analyses. a) Overlap in yeast
tryptic peptides identified in HCD, ETD, and AI-NETD single-shot experiments. The
number of unique peptides identified with each fragmentation type are indicated in italics
below the appropriate label. b) Distribution of protein sequence coverages achieved with
combinations of trypsin with different proteases in positive mode analyses with CID and
ETD fragmentation compared with positive mode data combined with negative mode data
with AI-NETD (gray background) using only trypsin. The dotted line shows the highest
average sequence coverage. c) Overlap in yeast proteins identified using positive mode
(CID and ETD) and negative mode (AI-NETD) analyses. For both sets of proteins, peptides
from five different proteases were batched together.
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Figure 3.10: d) Proteins detected in the positive mode data from (c) are rank ordered by
percentage sequence coverage and plotted in blue, with an average sequence coverage
of 41.1%. The protein sequence coverage achieved for a given protein when combining
the positive and negative mode data is plotted in red, highlighting the gain in sequence
coverage afforded by the addition of negative mode analyses. To the far right, sequence
coverages are shown for the 272 proteins that were not detected in positive mode analyses
but were characterized with AI-NETD.

other three proteases in common between the two studies (LysC, GluC, and AspN), the

addition of negative mode analyses with AI-NETD increases “positive mode only” protein

sequence coverage with LysC from 23.72% to 30.97%, with GluC from 19.57% to 24.10%,

and with AspN from 20.98% to 23.34%.

Finally, we examined the overlap of all proteins from all five proteases characterized

in the positive mode data to all proteins from all five proteases in the AI-NETD data set,

which is depicted in Figure 3.10c. The degree of overlap in proteins identified is noticeably

large (∼85% of all proteins identified were seen in both data sets), which is not wholly

unsurprising as >90% of the expressed yeast proteome is represented. What this overlap

fails to display, however, is the difference in the populations of peptides sequenced. Of

the 106,861 unique peptides identified between the two experiments, only 19,697 of them

(∼18%) were detected in both data sets. To visualize how this impacts protein sequence

coverage, Figure 3.10d displays all proteins identified in the positive mode data, rank

ordered by percentage protein sequence coverage (blue circles). For each protein there is a

corresponding red circle that shows the sequence coverage achieved when including the

negative mode data with the positive mode data set; thus, the magnitude of the difference
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along the y-axis between a red and blue circle for any given protein shows the gain in

percentage protein sequence coverage provided by the inclusion of the AI-NETD data.

The average percentage sequence coverage for the positive mode data is 41.1%, which is

boosted by nearly 12 percentage points to 52.7% by the addition of the negative mode

analyses. This combination of positive and negative mode data puts the average sequence

coverage above 50%, a mark that neither data set reached on their own. The highest gain

in percentage sequence coverage was 61.7%, starting at 18.29% sequence coverage with

positive mode methods alone and going to 80% sequence coverage with combined positive

and negative mode analyses. This 174 residue protein, calcineurin subunit B - which is

a calcium-dependent, calmodulin stimulated protein phosphatase that confers calcium

sensitivity - is a notably acidic protein (pI ∼ 4.36) with 36 negatively charged residues

(Asp and Glu) and only 21 basic residues (Lys and Arg). Many proteins that showed

comparable gains in sequence coverage shared similar characteristics in isoelectric point

and residue frequencies, illustrating the ability of AI-NETD to add coverage to the acidic

portions of the proteome that may be missed by positive mode methods. The far right

of the graph in Figure 3.10d shows sequence coverage for 272 proteins that were only

characterized by the inclusion of the AI-NETD data. Interestingly, many of these proteins

are membrane proteins, including mitochondrial membrane, Golgi apparatus membrane,

and other transport proteins; this characterization of membrane proteins via negative mode

methods may point to an interesting avenue to explore in future investigations. In all, these

comparisons demonstrate that large-scale negative mode analyses with AI-NETD are a
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valuable complement to positive mode methods, perhaps even offering more orthogonality

than ETD or the use of multiple proteases.

Discussion

Negative mode approaches for the characterization of peptide anions offer a valuable di-

mension to proteomic analyses,21,24,25,66 especially as biologically relevant posttranslational

modifications and other analytes that pose challenges to canonical positive mode tech-

niques continue to emerge.7,53,67–72 Platforms for shotgun analysis of complex mixtures

of peptide anions have been introduced, most notably using UVPD and NETD; however,

these approaches have yet to provide considerable proteomic depth (fewer than ∼800 total

proteins identified in a given experiment), restricting the degree to which peptide anion

characterization can benefit the proteomic community.

With a new implementation of AI-NETD, we have introduced a robust negative mode

platform for the characterization of over 1,100 proteins in a eukaryotic system (yeast)

using 90-min single-shot analyses. Moreover, we demonstrate that AI-NETD is compatible

with a diverse array of commonly used proteases, increasing proteomic depth (>1,350

proteins) and degree of protein characterization, i.e. sequence coverage, achievable in single-

shot experiments. The ability to utilize several proteases makes AI-NETD an especially

viable technique for analysis of PTMs, where access to chemically distinct peptides or a

combinatorial pattern of sequences may greatly increase confidence in identification and

localization. This approach may also prove beneficial for more extensive characterization
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of proteins that are challenging to current techniques, e.g. proteins with dominantly acidic

sequences or those with both highly hydrophobic and hydrophilic regions.

Integral to the improvements observed with our AI-NETD work was the selection of

a high-pH solvent system that increased anion flux and provided optimal distribution of

precursor charge states. Previous studies have shown the benefits of piperidine buffers

for anion analysis, but this work is the first to demonstrate the consequential effects it

can have on large-scale shotgun proteomic experiments. Based on the benefits we and

others observed with DMSO45,55,56 we expected the addition of DMSO to our piperidine

solvents would provide an additional boon to our negative mode work. This was not

the case, however, as the piperidine solvents with DMSO included provided the fewest

numbers of unique peptide identifications among the three piperidine systems tested. It

has been suggested that the benefits of DMSO in positive mode comes from the charge

state coalescence for peptide cations, making signal more concentrated for a fewer number

of charge states and reducing redundant sampling of the same peptide with different m/z

values. In the negative mode, DMSO appears to have the opposite effect, expanding the

charge state distribution of peptide precursors sampled for MS/MS events (Figure 3.5b).

The base peak intensity of the chromatogram from 5 mM piperidine solvent with 5% DMSO

was slightly lower than 5 mM piperidine alone (Figure 3.5a), also juxtaposing the trends

observed in positive mode. Noticeable, though, is that the greatest number of MS/MS scans

was taken with the piperidine/DMSO buffers than with any other system. These results

suggest that DMSO is further spreading signal among many charge states for peptide
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precursor anions, rather than collapsing it as in positive mode. Thus, it is possible that

DMSO does not merely condense a signal into lower charge states, as was suggested based

on positive mode studies but that it makes the precursor charge “more negative” or “less

positive” than before. Surely validation of this hypothesis requires further exploration

beyond the scope of this work, but this observation highlights an unexpected outcome

that emphasizes the value negative mode proteomics can have as a complementary tool to

positive mode techniques.

Additionally, challenges with column longevity and hindered performance of LC

pumps have been reported for high-pH reversed-phase separations for negative mode

proteomics.7,24,73 We previously struggled with both precolumn and analytical column

degradation due to the instability of silica in basic conditions. In this work, we eliminated

the precolumns that used silica frits and employed a polymer-silica hybrid reversed-phase

packing material that is stable at both acidic and basic conditions.74 With these modifi-

cations, our columns often lasted a week or more of constant runs, showing impressive

longevity compared with our previous column setup that lasted roughly a day. LC mainte-

nance was required periodically, including changing of silica capillaries lines prior to the

analytical column, but this still permitted straightforward and consistent data collection

for our single-shot and deep-sequencing experiments.

In summary, we demonstrated that AI-NETD, in conjunction with robust high-pH

separations, multiple proteases, and offline low-pH prefractionation, can be leveraged to

characterize the large majority (>80%) of the yeast proteome, matching the average sequence
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coverage observed in similar positive mode experiments using multiple fragmentation types

(∼45%).50 Moreover, AI-NETD analyses provided a substantial improvement in protein

sequence coverage (an average of ∼12% but as much as ∼62%) over what could be achieved

with positive mode methods alone, even those utilizing a multiple protease approach. That

being said, we do not see negative mode proteomics replacing any of the wide array of

positive mode approaches, much less competing with the acquisition rate and proteomic

depth they can achieve;45,75,76 instead, we foresee negative mode proteomics continuing

to advance in sensitivity and speed — especially as robust fragmentation techniques like

AI-NETD are implemented on the newest generations of instruments — serving as a

powerful complement to traditional positive mode methods. Most importantly, this work

demonstrates that large-scale analysis of peptide anions can be used to characterize nearly

an entire proteome, enabling a much more thorough investigation of previously intractable

portions of the proteome and critical PTMs that will greatly benefit from analysis in the

negative mode.
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Abstract

Here we report the fragmentation of disulfide linked intact proteins using activated-ion

electron transfer dissociation (AI-ETD) for top-down protein characterization. This frag-

mentation method is then compared to the alternative methods of HCD, ETD, and EThcD.

We analyzed multiple precursor charge states of the protein standards bovine insulin,

α-lactalbumin, lysozyme, β-lactoglobulin, and trypsin inhibitor. In all cases we found that

AI-ETD provides a boost in protein sequence coverage information and the generation

of fragment ions from within regions enclosed by disulfide bonds. AI-ETD shows the

largest improvement over the other techniques when analyzing highly disulfide linked

and low charge density precursors ions. This substantial improvement is attributed to

the concurrent irradiation of the gas phase ions while the electron-transfer reaction is

taking place, mitigating non-dissociative electron transfer, helping unfold the gas phase

protein during the electron transfer event, and preventing disulfide bond reformation. We

also show that AI-ETD is able to yield comparable sequence coverage information when

disulfide bonds are left intact relative to proteins that have been reduced and alkylated.

This work demonstrates that AI-ETD is an effective fragmentation method for the analysis

of proteins with intact disulfide bonds, dramatically enhancing sequence ion generation

and total sequence coverage compared to HCD and ETD.
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Introduction

Top-down mass spectrometry allows researchers to interrogate proteins and protein modi-

fications without the need for protein digestion or derivatization.1,2 The potential benefits

to avoid these steps are myriad and include investigation of genetic variants, alternative

splicing, and site occupancy of post-translational modifications – information that is often

lost upon enzymatic digestion.3–5 One limitation to the top down approach is that intact

protein cations do not dissociate as completely or readily as peptides during tandem mass

spectrometry (MS/MS). MS/MS methods such as collision-activated dissociation (CAD)

and infrared multiple photon dissociation (IRMPD) often selectively cleave the most labile

bonds, limiting sequence coverage and PTM localization.6–8 Offering more extensive disso-

ciation and the ability to preserve most PTMs, the electron based dissociation methods, i.e.

electron-capture dissociation (ECD) and electron-transfer dissociation (ETD), have become

particularly important for top-down mass spectrometry.9–11

Accessing information about PTMs is indeed one of the most attractive strengths of

the top-down approach. Disulfide bonds are among the most common PTMs and have

fundamental roles in protein stabilization, structure, and function.12–14 That said, they are

challenging to study as they necessitate extensive fragmentation of interlinked peptide back-

bone sequences. To improve fragmentation, most top-down MS/MS methodologies reduce

and alkylate disulfide bonds prior to analysis. Some methods use online disulfide bond

reduction just prior to electrospray ionization in both shotgun and top-down proteomic
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regimes to improve precursor ion fragmentation, eliminating the reduction and alkylation

step in peptide or protein sample preparation.15–18 Other studies have left disulfide bonds

intact but performed enzymatic digestion so that disulfide bridged peptides can be detected.

That approach, however, suffers the same disadvantages of all shotgun approaches, namely

that combinatorial patterns of modification cannot be discerned.19–25 Producing sequence

informative fragment ions from disulfide-bridge peptides or proteins with intact disulfide

bonds remains challenging, as collision-based methods, the most prevalent fragmentation

type used in proteomics experiments, do not efficiently cleave disulfide bonds, limiting

sequence coverage within the region contained by disulfide bridges.

Twenty years ago McLafferty and co-workers demonstrated that disulfide bonds can

be cleaved in the gas phase by ECD.26–28 Since that time many dissociation methods have

been examined for their potential application to disulfide bond characterization – e.g., elec-

tron transfer dissociation (ETD)24, electron detachment dissociation (EDD)29, ultraviolet

photodissociation (UVPD)30,31, infrared multiple photon dissociation (IRMPD)29, metal-

cationization32–34, excitation energy transfer (EET)35, electron transfer and higher-energy

collision dissociation (EThcD)19, and radical induced dissociation.36 Recently, Loo and col-

leagues described that pre-activation of ribonuclease A with UV and IR photons followed by

ECD improved fragmentation over ECD alone, even allowing cleavage of multiple disulfide

bonds.37 In this same work, fragmentation of porcine insulin cleaved all disulfide bonds,

yielding 73% sequence coverage, an improvement over previous studies.26,32,37,38 Another

important finding was that lengthening the time between UV and IR laser pulses allowed
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close proximity disulfide bonds to reform, revealing that the disulfide bond reformation of

radical thiols was between 10 and 100 ms.37 Despite these advancements, no one method

can fragment disulfide intact proteins nearly as well as the same protein with disulfide

bonds reduced and alkylated prior to analysis.

Activated-ion ETD (AI-ETD) greatly improves the sequence coverage of intact protein

standards as compared to HCD, ETD, and EThcD39–41 and improves analysis of post-

translationally modified intact proteins, namely phosphoproteins.42 Here we explore the

utility of AI-ETD for interrogating proteins with intact disulfide bonds. Specifically, we com-

pared the fragmentation of five protein standards (bovine insulin, bovine β-lactoglobulin,

soybean trypsin inhibitor, α-lactalbumin, and chicken egg lysozyme) with molecular

weights ranging from 5.7 to 20 kDa that have two to four intact disulfide bonds which

enclose varying degrees of the protein backbone. Having dissociated these species us-

ing HCD, ETD, EThcD, and AI-ETD, we conclude that AI-ETD yields greater sequence

coverage, fragment ion generation, and disulfide bond cleavage for all precursor charge

states studied, with the greatest benefit arising from low charge density precursors. We

hypothesize that the condensed state of the proteins with intact disulfide bonds greatly

enhances the abundance of non-dissociative electron transfer and prevents electron transfer

from occurring in the interior region of the gas phase protein. The benefit of concurrent sup-

plemental infrared irradiation in AI-ETD is two-fold: 1) non-dissociative electron transfer

product ions are converted to sequence informative product ions and 2) protein cations are

unfolded to allow electron transfer to occur in the interior regions of the protein cation and
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prevent disulfide bond reformation. These two phenomenon work in tandem to allow for a

significant improvement in fragment ion yield and therefore protein structure elucidation.

Furthermore, AI-ETD removes the necessity for high charge density precursors that is a

hallmark of electron-driven dissociation methods, making it amenable to a wide range

of proteins – especially disulfide-bonded proteins that trend toward low charge density

precursor ions.

Materials and Methods

Materials and Sample Preparation. The proteins bovine insulin, bovine β-lactoglobulin,

and soybean trypsin inhibitor were purchased from Sigma-Aldrich (St. Louis, MO, USA)

and α-lactalbumin and chicken egg lysozyme were obtained from Protea Biosciences (Mor-

gantown, WV, USA). Formic acid ampules and acetonitrile were obtained from Thermo

Fisher Scientific (Rockford, IL, USA). Solutions were prepared with Milli-Q water (Milli-

pore Corporation, Billerica MA). Samples were prepared for infusion by suspending each

protein in 49.9:49.9:0.2 acetonitrile/water/formic acid to a final concentration of 10 pmol

per µL. For comparison to the disulfide intact protein, lysozyme was also reduced and

alkylated. Lysozyme was suspended in buffer (8 M urea, 50 mM Tris, pH 8) and incubated

with 5 mM diothiothreiol for 45 minutes at 58◦ C, then alkylated with 15 mM iodoac-

etamide for 45 minutes at room temperature in the dark. The sample was then desalted

with a C2 SepPak (Waters, Milford, MA), evaporated, and resuspended in 49.9:49.9:0.2

acetonitrile/water/formic acid to a final concentration of 10 pmol per µL.
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ESI-MS/MS Analysis. Each protein standard was infused via syringe pump at a flow rate

of 5 µL per minute and electrosprayed with a spray voltage of 4 to 5 eV and inlet capillary

temperature of 275◦ C. All mass spectrometry experiments were performed on a Fusion

Lumos mass spectrometer (Thermo Fisher Scientific, San Jose, CA, USA) modified with

a Firestar T-100 Synrad 60-W CO2 continuous wave laser (Mukilteo, WA) for performing

AI-ETD, as previously described.43 Survey scans using intact protein mode for each protein

were performed at 240,000 resolution and averaged over 100 scans. MS/MS experiments

were also performed using intact protein mode at 240,000 resolution with a precursor AGC

target of 800,000 and averaged over 400 scans. For each protein, three precursor charge

states spanning the protein envelope were selected for analysis. For HCD, normalized

collision energies of 15, 20, and 25 were used to find the optimal energy for fragmentation.

For ETD, EThcD, and AI-ETD, the reagent anion AGC target was set to 300,000 and the

ETD reaction time was varied to optimize fragment ion generation and sequence coverage,

from 20 to 38 milliseconds. Normalized collision energies of 8, 10, 12, and 15 were used

for EThcD and laser powers of 18, 24, 30, and 36 Watts were used for AI-ETD to determine

optimal fragmentation.

Data Analysis. Raw MS/MS spectra were deconvoluted using the Xtract algorithm (Thermo

Fisher Scientific). The spectra were then compared against all possible b, y, c, and z•-type

fragment ions which could be formed from that protein. Modifications were allowed for

fragment ions containing a cysteine involved in a disulfide bond to consider all possible
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cleavage positions of the disulfide bond (S-S and C-S cleavage) and for hydrogen rearrange-

ment products. Cleavage of all disulfide bonds were allowed but only one peptide backbone

bond cleavage was considered (no internal fragment ions were searched). Fragment ions

were matched within a mass tolerance of 10 part per million.

Results and Discussion

Dissociate proteins with intact disulfide bonds. AI-ETD improves the fragmentation of

intact proteins when compared to ETD.39,40 This boost is realized by the absorption of

infrared photons by the protein cations – a process that ultimately induces gas-phase protein

unfolding and concomitantly a boost in ETD efficiency. To investigate the potential of AI-

ETD for dissociation of disulfide linked protein cations, we selected lysozyme, a protein that

contains four disulfide bonds Table I (Figure 4.1), Figure 4.2 panel A) enclosing 94% of the

protein backbone. We analyzed the +12 charge state precursor of lysozyme using ETD and

AI-ETD both with the disulfide bonds intact and cleaved (i.e., reduced and alkylated prior

to analysis). The precursor ion charge distributions for the lysozyme cations are shown

in Figure 4.2 panel B. Panel C of Figure 4.2 presents a sequence coverage map afforded

by each fragmentation method. When the disulfide bonds are reduced and cysteines are

alkylated, ETD and AI-ETD cleave 58% and 82% of the backbone residues, respectively.

Analysis of the protein with intact disulfides, however, presents a much greater challenge.

While both methods have reduced sequence coverage, ETD provides only 23% coverage

while AI-ETD achieves a much higher 58% coverage. The coverage map shown in panel
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C of Figure 4.2 illuminates the underlying cause for this discrepancy. Here the coverage

map is divided into five regions (0, 1, 2, 3, and 4) where the region number corresponds

to the number of disulfide bonds that must be cleaved in addition to a protein backbone

bond in order to produce a sequence-informative product ion. For example, any observed

fragment resulting from dissociation of the backbone between residues 31 and 63 (region 2)

can only be formed if three bonds are broken – one protein backbone and two disulfides.

Note that ETD does not generate any fragments where more than two dissociations are

required – i.e., one backbone and one disulfide. This indicates a clear relationship between

the number of disulfide bonds enclosing a region and the amount of sequence informative

fragment ions formed. Infrared photoactivation of protein cations during ETD (AI-ETD)

disrupts non-covalent interactions and helps to reduce non-dissociative electron transfer

(ETnoD).44,45 These data demonstrate that the concurrent photoactivation used in AI-ETD

can open the precursor gas-phase structure and expose the interior of a disulfide linked

protein cation so that multiple dissociative electron transfer events can occur. In fact, for

lysozyme we detect many fragments that result from three bond cleavages (one backbone

and two disulfides) and several that result from four (one backbone and three disulfides).

Comparison of AI-ETD and other methods for dissociation of proteins entirely enclosed

by disulfide bonds. Having established the efficacy of AI-ETD to dissociate multiple

disulfide linkages, we next sought to characterize performance for various charge states of

the same protein (i.e., z = +9, z = +11, and z = +13 precursor ions of lysozyme) and benchmark
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Figure 4.1: Table I. Summary of standard proteins. List of protein standards chosen and
relevant physical characteristics.
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Figure 4.2: Disulfide intact or reduced and alkylated AI-ETD and ETD fragmentation se-
quence coverage map of lysozyme. Panel A shows the 3 dimensional structure of lysozyme
with all 4 disulfide bonds intact in its native state. The regions are color coded based on the
number of disulfide bond breakages required to generate a fragment ion for that region.
The four disulfide bonds are labeled a,b,c, and d to illustrate where they occur along the
protein backbone. The electrospray ionization MS1 spectra for lysozyme with disulfide
bonds intact and disulfide bonds reduced and alkylated is shown (B). Panel C compares
the sequence coverage of lysozyme precursor charge state +12 using ETD and AI-ETD with
disulfide bonds intact or reduced and alkylated. Sequence coverage of the highly disulfide
linked region is hindered greatly using ETD, while AI-ETD shows pronounced coverage of
this portion of the protein.
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this performance to other common dissociation methods including beam-type collisional

activation (HCD), ETD, and electron transfer dissociation with HCD as supplemental

collisional activation (EThcD). Figure 4.3 summarizes the results for lysozyme. Figure

4.3 panel A compares the MS/MS spectra using each dissociation method for the z =

+11 charge state. The percentage of the total product ion signal contained in sequence-

informative fragment ion channels is 10%, 14%, 25%, and 49% for HCD, ETD, EThcD, and

AI-ETD, respectively. From these data we conclude AI-ETD induces much more extensive

fragmentation than any of the other tested methods. To see how these fragment ions

facilitate sequence analysis, we generated sequence coverage maps for each dissociation

method for all three precursor ion charge states (Figure 4.3, panels B and C). As with

the example above, AI-ETD generates substantially more sequence informative fragment

ions, especially for those ions requiring disulfide bond cleavages. Again AI-ETD allows

for the observation of fragment ions that result from cleavage of up to five bonds (i.e.,

one backbone and four disulfide linkages). For the z = +9 charge state precursor, only

AI-ETD produced any fragmentation within the region enclosed by two or more disulfide

bonds (show in purple, blue, and black along the top of the plot). As the charge density of

the precursor increased, the sequence coverage for HCD, ETD, and EThcD is improved,

while AI-ETD stays constant. This is consistent with previous work showing that higher

charge states improve fragmentation for ETD while AI-ETD is more or less indifferent to

precursor charge density. We next conducted a similar study but with a different protein –

α-lactalbumin (14.2 kDa). This protein is very similar to lysozyme in terms of mass, length,
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and disulfide linkage, yet differing substantially in amino acid composition. The sequence

coverage for the z = +10 charge state precursor of this protein reveals AI-ETD yields 64%

sequence coverage while HCD, ETD, and EThcD show 6%, 12%, and 26%, respectively

(Supplementary Figure S4.1).

Comparison of AI-ETD and other methods for dissociation of proteins partially en-

closed by disulfide bonds. To contrast the highly disulfide linked proteins lysozyme

and α-lactalbumin, we next analyzed β-lactoglobulin which has two disulfide bonds enclos-

ing 59% of the protein. Figure 4.4 presents sequence coverage maps following dissociation

of the +10, +12, and +14 precursor charge states of β-lactoglobulin with either HCD, ETD,

EThcD, or AI-ETD. To isolate the effect of the disulfide bond, we also calculate sequence

coverage percentages between residues 1-65 (not enclosed by a disulfide bond) and residues

66-160 (enclosed by one or two disulfide bonds). Not surprisingly the region containing no

disulfide bonds has high sequence coverage regardless of precursor charge state or dissoci-

ation method. The region enclosed by disulfide bonds, however, is much less accessible.

AI-ETD cleaves at least 50% of the bonds in this region while ETD and HCD produce very

few fragment ions. In addition, the structurally similar protein trypsin inhibitor was exam-

ined. This protein has two disulfide bonds enclosing 31% of the protein backbone. AI-ETD

successfully sequenced 60% of the protein for all charge states examined (Supplementary

Figure S4.2). These data demonstrate that the benefit of AI-ETD is most pronounced in

regions that are enclosed by disulfide bonds.
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Figure 4.3: Lysozyme annotated spectra and sequence coverage map using HCD, ETD,
EThcD, or AI-ETD fragmentation. Panel A shows a comparison of HCD, ETD, EThcD,
and AI-ETD fragmentation of lysozyme with precursor charge state +11 with all 4 disulfide
bonds intact. All spectra are 400 scan averages and are shown on the same scale. The
scan range of 150 – 1550 m/z are shown at 5 times magnification. Peaks annotated with an
asterisk (*) show the unreacted precursor and charge reduced precursor ions. A summary
of the number of detected fragment ions, number of disulfide cleavages (either S-S or C-S)
amongst identified fragments, and percentage of inter-residue bond cleavages (referred to
as sequence coverage) is shown to the right for each dissociation method. Panel B illustrates
the sequence coverage achieved for each dissociation method tested for the precursor charge
states +9, +11, and +13. Notably, AI-ETD is able to generate fragment ions within the region
of the protein requiring 2 or more disulfide bond cleavages far more often than the other
dissociation methods. Panel C illustrates the number of identified fragment ions and the
amount of disulfide bond cleavages necessary to form that ion.
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Supplementary Figure S4.1: α-lactalbumin sequence coverage map using HCD, ETD,
EThcD, or AI-ETD fragmentation. The sequence coverage map for α-lactalbumin precur-
sor charge states z = +8, z = +10, and z = +12 is shown. The regions are codified by the
number of disulfide bonds surrounding that portion of the protein backbone. The percent
sequence coverage for each precursor charge state and dissociation method is shown in the
table to the left.
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Figure 4.4: β-lactoglobulin sequence coverage map using HCD, ETD, EThcD, or AI-ETD
fragmentation. The sequence coverage cleavage map for the +10, +12, and +14 charge state
precursors of β-lactoglobulin are shown. The left sequence coverage values represent the
region of the protein which does not contain any disulfide bonds and the left values show
the sequence coverage which contains 1 or 2 disulfide bonds. All fragmentation methods
perform well in the open region, while AI-ETD shows significant increase in coverage for
the region enclosed by disulfide bonds.
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Supplementary Figure S4.2: Trypsin inhibitor sequence coverage map using HCD, ETD,
EThcD, or AI-ETD fragmentation. The sequence coverage map for trypsin inhibitor pre-
cursor charge states z = +16, z = +18, and z = +20 is shown. The regions are codified by the
number of disulfide bonds surrounding that portion of the protein backbone. The percent
sequence coverage for each precursor charge state and dissociation method is shown in the
table to the left.
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Comparison of AI-ETD and other methods for dissociation of a protein with interpep-

tide disulfide bonds. Lastly we investigated the fragmentation of bovine insulin with

intact disulfides. Insulin comprises of two separate peptide chains linked by two disul-

fide bonds (Figure 4.5 panel A). There is an additional intrapeptide disulfide bond on the

A-chain. Figure 4.5 panel A highlights the different types of fragment ions which can be

formed, classifying each fragment ion by the number of disulfide bond cleavages necessary

for the formation of the fragment. The results of the MS/MS fragmentation of insulin with

HCD, ETD, EThcD, and AI-ETD for the z = +5 precursor charge state of insulin is shown in

Figure 4.5 panels B and C. Both EThcD and AI-ETD yield near complete sequence coverage

of the protein; however, the intensity of fragment ions in AI-ETD make up a significantly

larger percent of the total ion current. Fragment ion generation within the region of the

protein enclosed by disulfide bonds is noticeably low with ETD. While ETD preferentially

cleaves disulfide bonds, the highly compact and charge dense characteristics of bovine

insulin likely causes substantial ETnoD product ion formation.

Conclusions

We demonstrate that AI-ETD is an extremely effective fragmentation method for five protein

standards which contain intact disulfide linkages. The results for all proteins investigated

are summarized in Figure 4.6 where we show that the total sequence coverage for each

protein, the number of fragments ions generated, and the number of total disulfide bonds

broken across all fragment ions for all precursor ion charge states examined is optimal when
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Figure 4.5: Bovine insulin disulfide linkage, fragment ion count, and fragmentation
maps. A cartoon representation of bovine insulin with intact disulfide bonds is shown (A).
Representative fragment ions are illustrated and are color coded based on the number of
disulfide bond cleavages necessary to generate that fragment. Unlike the other proteins
analyzed in this study, insulin consists of 2 separate disulfide linked peptides, generating a
complex assortment of fragment ion possibilities. Panel B shows the number of fragment
ions observed using each dissociation method and the number of disulfide cleavages
necessary for each ion. The relative signal intensity and position of each ion is shown in
panel C.
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Figure 4.6: Summary of protein sequence coverage, fragment ion generation, and disul-
fide cleavage for HCD, ETD, EThcD, and AI-ETD fragmentation methods. A summary
of the sequence coverage, number of identified fragments, and number of disulfide bonds
cleaved for each protein and precursor charge state analyzed in this study. In all cases
tested AI-ETD yields the greatest sequence coverage, number of fragment ions formed, and
number of disulfide bond cleavages within the fragment ions.



138

AI-ETD as the fragmentation method. Note, when calculating the number of total disulfide

bonds broken, a fragment requiring two disulfide cleavages would be counted twice. These

results build upon previous observations that 1) ETD preferentially fragments disulfide

bonds but can suffer from ETnoD and 2) AI-ETD improves fragmentation of intact proteins

by reducing the amount of ETnoD product ion formation. Concurrent irradiation allows

for the unfolding of the gas phase protein while the electron transfer reaction is occurring,

exposing regions of the protein inaccessible to the ETD reagent otherwise and preventing

disulfide bond reformation. The method is particularly effective with proteins which are

highly compact in the gas phase, such as lysozyme and insulin, where a majority of the

protein backbone is enclosed by disulfide linkages. Furthermore, AI-ETD shows effective

fragmentation across the precursor ion charge state envelope, allowing the interrogation of

low charge density precursor ions which generally offer poor fragmentation by ETD alone.

The ability to effectively fragment highly disulfide linked intact proteins with AI-ETD

will likely advance efforts towards the structural characterization of many types of proteins

such as intact antibodies, toxins, native proteins, and protein complexes. Additionally, the

substantial sequence coverage afforded by AI-ETD may allow for decreased scan averaging,

a significant bottle-neck in top-down experiments46, which could enable chromatographic-

timescale analyses of more complex mixtures of intact proteins. In all, AI-ETD is a superior

fragmentation technique for proteins with intact disulfide bonds and will be a valuable

tool for disulfide bond analysis in a variety of applications.
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Chapter 5

a high-resolution orbitrap gc-ms mass spectral library for
discovery metabolomics

Portions of this chapter are part of a manuscript in preparation:

Rush MJP, Connors, KJ, Kwiecien NW, Trujilla EA, Russell JD, Westphall MS, Coon JJ. A
High-Resolution Orbitrap GC-MS Mass Spectral Library for Discovery Metabolomics. 2018.
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Abstract

Gas chromatography mass spectrometry has been a primary analytical tool for targeted

metabolomics measurements for decades. More recently, the development of GC-compatible

high-resolution accurate mass analyzers has popularized global metabolome profiling us-

ing discovery-based analytical approaches. Yet, confident compound identification in

discovery experiments still poses significant challenges. In part, this can be attributed to the

reliance on spectral libraries generated from low-resolution instruments which do not fully

leverage accurate mass measurements at high resolution for compound identification. We

endeavored to generate a curated metabolite specific spectral database using a Q Exactive

GC Orbitrap mass spectrometer. We show the utility of this new high-resolution metabo-

lite library by profiling a complex human cell lysate, resulting in increased confidence in

metabolite identifications relative to a unit-resolution library.
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Introduction

The use of gas-chromatography mass spectrometry has been an integral tool in the tar-

geted identification and quantitation of small molecule metabolites for decades. Recent

advancements in sample preparation, chromatographic separation, and mass analyzers

has allowed for the analysis of hundreds of metabolites from whole cell lysates, termed

metabolomics. As the downstream product of biochemical functions, the unbiased de-

tection of metabolites from these samples, termed metabolomics, provides researchers

with a snapshot of the metabolic state of the system.1 Therefore, the goal of metabolomics

technological development is to improve the breadth of coverage and identification con-

fidence of metabolites detected using the analytical method. The use of mass spectral

libraries is the most common way of interpreting the spectra collected by GC-MS exper-

iments.2 Software can be used to compare the collected spectra with the library entries

to return scores which are proportional to the similarity of the collected spectra and the

corresponding library match. In order for the compounds to match perfectly, they need

to be collected under standardized conditions. The use of electron ionization (EI) at 70 eV

is the most common ionization method for GC-MS library generation. Additionally, the

Kovat’s retention index (a standardized chromatographic retention time) is also compared

to confirm a metabolites identity.3 Therefore, spectral libraries will ideally comprise the

electron impact fragmentation spectra, a retention index value, and additional information

about the chemicals composition, structure, and other meta-data about the compound and
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instrument method used to acquire the spectral library entry. Despite the steps that have

been taken to standardize the generation of GC-MS library spectra, spectral matching is

imperfect as the conditions under which the library spectra are collected are not identical

to those that the analyst uses when conducting their experiment, such as the type of mass

spectrometer and the conditions of the EI source. Currently, many publically available

mass spectral libraries and spectral repositories exist for use in compound identification of

GC-MS experimental data.4–8 The National Institutes for Standards in Technology (NIST)

offers a library comprising over 250,000 EI spectra collected over many decades.9 While this

library is incredibly vast, all spectra are presented at unit-resolution. Therefore, modern

instrumentation with much greater mass accuracy are unable to leverage this additional

information when searching against these unit resolution databases. Furthermore, a signif-

icant portion of this library is composed of compounds which are non-biological, requiring

the analyst to disregard numerous false matches when seeking to identify the metabolite

of interest. For these reasons, we endeavored to build a metabolite spectral library using

the high resolution Q Exactive GC platform, hand-selecting compounds most relevant to

metabolism, health, and human disease1.10–12

Materials and Methods

Metabolite Standard Sample Preparation and GC-MS Analysis. Metabolite standards

(obtained from Sigma Aldrich, Thermo Fisher Scientific, IROA Technologies, Santa Cruz

Biotechnology, Toronto Research Chemicals, or ACROS Organics) were prepared by sily-
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lation with or without preceding methoxyamination, to a final concentration of 10 – 100

ppm. For methoxyamination, dried samples were suspended in 35 µL of 20 mg/mL

methoxyamine hydrochloride (Sigma Aldrich) solution in pyridine (Sigma Aldrich) and

heated at 37◦ C for 90 minutes, then 65 µL MSTFA with 1% TMCS (Restek) was added and

the solution was heated to 60◦ C for 30 minutes. For silylation with MSTFA or MTBSTFA

dried samples were suspended in 50 µL of a 1:1 mixture of pyridine and MSTFA with 1%

TMCS or MTBSTFA with 1% t-BDCMS (Restek) and then heated to 60◦ C for 30 minutes.

Derivatized samples were then analyzed using a GC-MS instrument comprising a Trace

1310 GC coupled to a Q Exactive Orbitrap mass spectrometer (Thermo Fisher Scientific). A

linear temperature gradient ranging from 50◦ C to 320◦ C was employed, spanning a total

runtime of 30 minutes. Analytes were injected onto a 30 meter TraceGOLD TG-5SILMS

column (Thermo Fisher Scientific) using a 1:10 split ratio at an injector temperature of 275◦

C and ionized using electron ionization at 70 eV. The mass spectrometer was operated in

full scan mode (50-650 m/z) using a resolution of 60,000 (m/∆m) relative to 200 m/z. For

calculation of retention indices, after every ten standard injections, a C7 to C40 alkanes

(Sigma Aldrich) sample, suspended to 10 ppm in hexane, was analyzed using the same

GC-MS method.

Spectral Entry Data Analysis. Raw data files from each derivatized metabolite standard

were deconvolved using the TraceFinder 3.3 Deconvolution Plugin (Thermo Fisher Sci-

entific). Spectra were then exported from TraceFinder as text files in the .MSP format.
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Information about the GC-MS method used, the Kovat’s retention index, and other perti-

nent metadata were then appended to each .MSP file.

Human Cell Sample Preparation and Analysis. Human HAP1 cells (Horizon) were

grown in IMDM media (Thermo Fisher Scientific) to 1.5 x 105 cells per cm2 on 10-cm

plates. Media was aspirated and cells were washed with phosphate-buffered saline (3 x

5 mL washes). Metabolism was quenched with addition of liquid N2 (2-5 mL) onto the

plates. Cells were then extracted using 1 mL of MeOH:H2O (80:20, v/v) and transferred

into a 1.5 mL microcentrifuge tube. Then a 300 µL aliquot of this extract was transferred

to an autosampler vial and dried by vacuum centrifuge (1 hour). The dried metabolites

were derivatized using the MSTFA silylation method described previously. Samples were

analyzed using a Q Exactive GC mass spectrometer. A temperature gradient ranging from

100◦ C to 320◦ C was employed spanning a total runtime of 25 minutes. Analytes were

injected onto a 30 m TraceGOLD TG-5SILMS column (Thermo Scientific) using a 1:10 split at

a temperature of 275◦ C and ionized using electron ionization (EI). The mass spectrometer

was operated in full scan mode using a resolution of 30,000 (m/∆m) relative to 200 m/z.

The resulting GC–MS data were processed using an in-house-developed software suite

(https://github.com/coongroup/Y3K-Software), described previously.13
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Results

Contents of the High Resolution Orbitrap GC-MS Library. The High Resolution Orbi-

trap GC-MS Spectral Library currently contains 625 spectral entries. Table I (Figure 5.1)

outlines the metabolite classification of all spectra in the library (classifications obtained

from the Human Metabolome Database, HMDB).8 These spectra comprise 512 unique

metabolites which were hand-selected as being those most commonly found in GC-MS

metabolomics experiments, particularly focused on mammalian derived metabolites and

those of biomedical importance. There are 517 TMS derivatized spectral entries, 51 TBDMS

entries, 30 methoxyaminated entries, and 58 underivatized entries. To aid integration of the

library into existing pipelines and in elucidating biological function from identified species,

each entry includes an extensive list of metadata. This includes a broad list of common

synonyms, metabolite structural information, chemical formula, compound classifiers, and

compound identifiers from many commonly used chemical databases.8,14–17 Additionally,

the spectral information is stored in the NIST .MSP text file format for seamless integration

into NIST MS Search, AMDIS, and TraceFinder software programs. Spectral entries also

include semi-nonpolar retention index values to aid in compound identification as well as

all relevant instrument method parameters. An example spectra, cholesterol 1TMS, from

the library is shown in Figure 5.2. Due to the high mass accuracy and resolution of the

spectra, the fragments can be automatically annotated with confidence. In this example,

the program Thermo Xcalibur Qual Browser was used to annotate selected fragments with



151

the constraints that at most 4 nitrogen, 10 oxygen, 30 carbon, 60 hydrogen, and 8 silicon

atoms may be used. The fragments were all correctly assigned, including the molecular ion,

and have a mass error within ±1 part per million. The ability to confidently and reliably

annotate the collected spectra can aid in compound identification, and affords the use of

high resolution filtering, a scoring metric which takes high resolution spectra and attempts

to annotate the fragments using only subsets of the chemical formula of the library match.18

Comparison of High Resolution Orbitrap GC-MS Library to NIST Library. Human cell

metabolite extracts were analyzed and metabolites were identified using the high resolution

Orbitrap library and the NIST EI-MS library, restricted to only silylated compounds. The

forward dot product score for each identified compound and each library entry were

calculated using Equation 1:

Forward score = {Σ[(m/z)n(Intensity)m]exp * [(m/z)n(Intensity)m]lib}2 \

{Σ[(m/z)n(Intensity)m]exp
2 * Σ[(m/z)n(Intensity)m])lib

2} * 100

where m/z and intensity represent the mass to charge ratio and intensity pair of a

fragment, m and n representing the weight factors for intensity and m/z, respectively.

Additionally, the subscripts “exp” and “lib” denote whether the spectra was experimentally

derived or from the library. The dot products were calculated using weight factors, m

and n, of 0.53 and 1.3 respectively. These values were confirmed to maximize the score

differential of correct identifications and incorrect identifications (Figure 5.3 panel A) and
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Figure 5.1: Table I. Summary of metabolite classes. List of all metabolite spectra in the
library grouped by chemical class
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Figure 5.2: High resolution spectra of cholestrol 1 TMS (annotated). The EI spectra for
cholesterol 1 TMS is shown. Above selected peaks are the m/z value, the automatically
assigned chemical composition, and the mass error of the composition assignment, in parts
per million.
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align with weight factors used in previous studies.19 Omitting monosaccharides, which

generate spectra that are nearly indistinguishable, 71 unique spectral features were manually

identified and contained in both the Orbitrap spectral library and in the NIST silylated

subset library. Of these identified features, all but one was returned as the best scoring match

when searched against the Orbitrap library, while 15 of these compounds were not correctly

matched to the top scoring library hit when using the NIST library (Figure 5.3 panel B).

The high resolution orbitrap library also provided a significant boost in library match

discrimination. The average forward dot product score between the 71 returned matches

and the second best scoring library entry was 42 points (out of a 100 point scale), allowing

the analyst to more easily rule out false hits. While this same set using the NIST library

gave an average score difference of 9 points (Figure 5.3 panel C). This benefit can likely be

ascribed to the specificity of the high resolution library, containing only those species that

are likely to be found in metabolomics experiments. While conversely, the breadth of the

NIST library is beneficial for identifying less common or unexpected metabolites found

in the sample. Figure 5.3, panels D and E, illustrate this difference in library matching.

The deconvolved spectrum manually identified as uracil 2TMS is correctly returned as

the top scoring library match using the Orbitrap library and the second match is that

of thymine 2TMS, yielding a forward dot product score differential of 46.1 points and

easily allowing the analyst to correctly assign the metabolite identity (Figure 5.3 panel D).

While that same deconvolved spectrum, when searched against the NIST library returns

4,6-dihydroxypyrimidine 2TMS, a structurally similar yet non-metabolic compound, as the
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top scoring entry, and the correct identification is returned as the second match (Figure 5.3

panel E). Additionally, these two compounds nearly coelute, with retention index values

within 10 units, further challenging the analyst when attempting to identify this feature. A

particular spectral difference when comparing the high resolution library spectra of uracil

2TMS to that of the NIST uracil 2TMS spectra is that the low m/z ions (less than 100 m/z),

represent a smaller percentage of the total ion current in the high resolution spectra (Figure

5.3 D and E), resulting in a decrease in forward dot product score. We have noticed that,

commonly, ions below 100 m/z tend to be less intense for the Orbitrap collected spectra

as compared to unit-resolution library spectra, likely collected using quadrupole mass

analyzers.

Conclusion

The high resolution Orbitrap GC-MS metabolite spectral library combined with the im-

proved scoring formula offers exceptional improvement in metabolite identification using

the same throughput techniques previously established in GC-MS metabolomics. Contribut-

ing to this advancement was the high resolution Orbitrap GC-MS metabolite spectral library,

which offers substantial coverage of GC-amenable metabolites involved in metabolism. The

standard spectra generated on this system, unsurprisingly, have higher spectral similarity to

features analyzed using this same system, as compared to spectral libraries that were com-

piled on different GC-MS systems. We note that one reason for this difference in dot product

scoring is that the Orbitrap-collected spectra have less intense low mass ions. Overall, the
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Figure 5.3: Comparison of Orbitrap and NIST libraries. Panel A shows a heat map of the
average forward dot product score difference between the first and second library match
returned from a set of 71 manually verified metabolites identified from human cells. The
chosen, optimal, weight factors for the dot product calculation was found to be 0.53 and 1.3
for the m and n weight factors respectively (denoted as a black dot on the plot). Panel B
shows the number of metabolites of the 71 confirmed species that were returned as the top
scoring match using either the Orbitrap library or the NIST silylated subset library. Panel
C shows the distribution of scores between the first and second returned library hit using
either library, and the average score difference between the top two matches. Panel D and
E compare the top two returned library entries for the metabolite uracil 2TMS using the
Orbitrap library (D) and NIST library (E).
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spectral matching of feature groups collected on the Q Exactive GC system is significantly

improved when matching to the high resolution library, and metabolite identifications can

be made with more confidence when compared to using a unit-resolution library, such as

NIST.
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Contributions

The following paper describes the mulit-omic analysis of a set of 174 yeast strains with a

single gene deletion which encodes for a protein related to mitochondrial biology. Each

strain was grown in triplicate under two growth conditions, a fermentation condition and a

respiration condition. This cohort was selected to contain 39 strains with genes of unknown

function, with one overarching goal being the association of the genes of unknown function

to a gene of known function to elucidate its role in mitochondrial biology. This was to be

accomplished by measuring as many biomolecules as possible which would, taken together,

map the phenotype of this strain. To achieve this goal, the team endeavored to perform

three discovery-based mass spectrometry methods to analyze separately the proteome,

lipidome, and metabolome of extracts from each strain.

My contribution to this study began by developing the sample preparation and instru-

ment method for the discovery metabolomics assay. Our lab had not ever performed this

type of experiment before, and the instrument that we planned to use, the Q Exactive GC,

had not yet been commercially released. The sample preparation portion of the develop-

ment required optimizing the concentration of metabolites to maximize the number of

detected metabolites while not overloading the GC column or saturating the detector. The

derivatization method I chose was silylation, which is near-universally used for discovery

metabolomics assays. This derivatization method broadly reacts with polar metabolites by

reacting with acidic protons on amines, alcohols, carboxylic acids, phosphates, and thiols,
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making these molecules more volatile, and therefore, GC-amenable. The next step in the

method development process was creating the instrument method. One facet of GC-MS

that is often not recognized is the importance and diversity of the sample injection and

introduction onto the column. The two most common modes of injection are split and

splitless injection modes. In splitless injections, all of the withdrawn sample volume is

introduced to the GC column. In split injections, a majority of the sample is syphoned to

waste, with only a fractional amount input onto the head of the GC column. There are

four primary reasons I chose to use a split injection for this method. First, the split method

yielded much narrower peak shape than the splitless method. This is because the sample is

loaded onto the column more quickly, and in a narrower band than the splitless mode. This

is extremely beneficial in samples which are very complex, as it provides greater resolution

of peaks that would otherwise not be resolvable with wider elution profiles. Secondly,

splitless mode produced a much more symmetric peak shape. In splitless mode, early

eluting peaks front because the sample injection process takes longer, and an analyte beings

to elute before being fully injected onto the column. This is related to the next benefit, which

is that the solvent front in split injections are dramatically reduced. In a typical splitless

injection, the solvent front extends much further into the gradient and can mask analytes

which elute near the beginning the gradient. Lastly, while splitless injections provided

greater sensitivity by increasing metabolite signal, we were not sample limited, and were

able to concentrate the sample in previous sample preparation steps to increase metabolite

signal to a sufficient level in the split mode. One last instrument method decision was to
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collect the data at resolution 30,000 (m/∆m) relative to 200 m/z. This resolution allowed for

sufficient scans to be collected, approximately 14 scans per second, which provided enough

data points to effectively deconvolve the 2 to 3 second wide GC peaks.

Once the method was developed, I began analyzing the approximately 1300 samples.

This includes wild-type yeast controls, solvent blanks, and instrument suitability controls

to ensure the data quality was comparable across the analysis. In order to mitigate system

error caused by instrument deviation and chromatographic drift, the samples were run

consecutively over the span of 40 days. Each day 33 yeast extracts were prepared and

analyzed, comprising three replicates of eleven separate yeast strains, with one set of three

being a wild-type control. The samples were randomized and three solvent blanks were

analyzed at the beginning of the set, in the middle, and at the end. Each analysis required

35 minutes of instrument time from one injection to the next, totaling 21 hours of analysis

time each day. In the 3 hour down time between days, the instrument required calibration,

any necessary maintenance, and each sample had to be examined to ensure no injections

were missed or contained anomalous features.

Concurrent with the sample preparation and instrumentation method development,

Nick Kwiecien began developing the data analysis pipeline. This pipeline in its current

state is outlined in Chapter 1. However, at the time, we were not sure what the correct data

analysis steps would be. Nick had already written a deconvolution algorithm to extract

and group GC-MS data. We then discussed what other components would be critical, such

as the need to group like features between files (what ended up becoming GC Quant) and
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the need to visually inspect feature groups, background feature groups, and then search

these groups against library spectra (what became GC Results Viewer). My role was to be

the primary beta-tester of this software package and to suggest modifications to allow for

greater usability.

The most laborious aspect to the metabolomics analysis was annotating the measured

metabolites. Each feature group was manually interpreted as being present in the back-

ground sample or not. This entailed examining 1000 feature groups per growth condition

and comparing them to background samples. Next, those features which were not in

the background (411 in total) were searched against the 250,000 spectra in the NIST mass

spectral library, with each feature group returning dozens of potential matches. However as

the GC-MS system used was brand new the fragmentation patterns of public mass spectral

libraries were not identical to those collected on this mass spectrometer. And therefore to

ensure the correct identifications were made dozens of authentic standards were acquired

and analyzed to compare to the data to confirm metabolite identifications, initiating the

development of our in-house spectral library, described in Chapter 5. A major finding

of this manuscript is the description of the Hfd1 (and the human homolog ALDH3A1)

protein’s role in coenzyme Q (CoQ) biosynthesis. The effected pathway is the conversion

of tyrosine to 4-hydroxybenzoic acid, which is an intermediate in the generation of CoQ.

Initially the only metabolite in this pathway which was able to be confidently identified in

the samples was tyrosine. This is due to it being present at abundances orders of magnitude

greater than the other metabolites in this pathway. Fortunately as the assay was performed
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in a discovery fashion and GC-EI-MS experiments are data-independent I was able to

acquire authentic standards and attempt to find the rest of these metabolites in the dataset.

Using this approach p-coumaric acid, para-aminobenzoic acid, 4-hydroxybenzoic acid, and

4-hydroxybenzaldehyde were all able to be detected, confidently identified, and quantified

within the data. This further validated the proposed mechanism of Hfd1 as the responsible

enzyme for the conversion of 4-hydroxybenzaldehyde to 4-hydroxybenzoic acid. In total

350,000 metabolite measurements were made in this experiment making it one of the largest

metabolic profiling of a yeast knockout library to date.

The resulting publication is reprinted here in its entirety to illustrate the scope and

impact of the research. Facilitated by Dr. Josh Coon and Dr. Dave Pagliarini and lead by

Jon Stefely and Nick Kwiecien, this manuscript describes not only important biochemical

findings related to mitochondrial biology but also outlines a method of multi-omic analysis

which can be used to potentially uncover the function of genes and proteins in any system.

I was very fortunate to work on this project and view this as a perfect example of how

academic research can effectively work to answer challenging questions. Where a group of

researchers can come together and accomplish something far greater than any one person’s

knowledge, time, and skillset would allow. Seeing how dedicated Jon and Nick were to this

work inspired me in my other research projects and I am a much better scientist because of

this experience.
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Abstract

Mitochondrial dysfunction is associated with many human diseases, including cancer

and neurodegeneration, that are often linked to proteins and pathways that are not well-

characterized. To begin defining the functions of such poorly characterized proteins, we

used mass spectrometry to map the proteomes, lipidomes and metabolomes of 174 yeast

strains, each lacking a single gene related to mitochondrial biology. 144 of these genes have

human homologs, 60 of which are associated with disease and 39 of which are uncharac-

terized. We present a multi-omic data analysis and visualization tool that we use to find

covariance networks that can predict molecular functions, correlations between profiles

of related gene deletions, gene-specific perturbations that reflect protein functions, and

a global respiration deficiency response. Using this multi-omic approach, we link seven

proteins including Hfd1p and its human homolog ALDH3A1 to mitochondrial coenzyme

Q (CoQ) biosynthesis, an essential pathway disrupted in many human diseases. This

Resource should provide broad molecular insights into mitochondrial protein functions.
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Introduction

High resolution mass spectrometry (MS) has become the primary analysis tool for many

classes of biomolecules, including proteins, metabolites, and lipids. Major advancements

in MS technology—particularly in the rate and depth of analysis—have enabled dozens

of proteomes, metabolomes, and lipidomes to be analyzed in a single day1–3. Studies of

bacteria demonstrated that parallel measurement of multiple molecule classes can synergis-

tically enhance the biological insight afforded4,5. Recently, proteomics has been integrated

with transcriptomics and genomics in mice6,7. However, large-scale, comprehensive (i.e.,

proteome-wide), multi-omic data acquisition, integration, and visualization tools remain

underdeveloped, often lagging behind genomics in terms of coverage, speed, and broad

accessibility for end users. Given the interdependence of proteins, lipids, and metabolites,

we reasoned that coordinated analysis across all three biomolecule classes could afford

new insight into eukaryotic biology. In particular, we hypothesized that this multi-omic

profiling strategy, when coupled with genetic and environmental perturbations, could

enable functional predictions for uncharacterized proteins.

We applied this strategy to study mitochondria, dynamic organelles whose dysfunction

is associated with over 150 human diseases including cancer, diabetes, Parkinson’s, and

numerous genetic disorders8–10. While the yeast and mammalian mitochondrial proteomes

were recently defined11–13, functional annotation of these proteins lags behind14, impeding

biomedical research on the many diseases impacted by mitochondrial metabolism. Of the
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~1,200 mammalian mitochondrial proteins, nearly 300 are “mitochondrial uncharacter-

ized (x) proteins” (MXPs)15,16 that have no well-established biochemical function within

mitochondria. Here, toward defining functions for MXPs, we performed over 3,000 MS

experiments in parallel to analyze the proteomes, metabolomes, and lipidomes of 174

single-gene deletion (“∆gene”) Saccharomyces cerevisiae yeast strains in biological triplicate

across two metabolic conditions, fermentation and respiration (Fig. 6.1a). To facilitate

development of biological hypotheses based on the resultant “yeast-three-thousand (Y3K)”

dataset (Fig. 6.1b), we also developed a multi-omic data visualization approach (high-

lighted in Fig. 6.1c and online at http://y3kproject.org/). Our data establish many new

connections between MXPs and proteins with well-established functions by virtue of gene-

specific phenotypes or shared global biomolecular changes that result from the loss of each

protein’s expression. We leveraged a subset of these connections to address the incomplete

mitochondrial pathway that generates ubiquinone (coenzyme Q, CoQ), an essential lipid

required for oxidative phosphorylation (OxPhos) and linked to diseases ranging from

severe infantile multisystemic disease to isolated myopathy and aging17,18.

Results

Multi-omic mass spectrometry profiling. The 174 ∆gene yeast strains we analyzed cov-

ered 124 characterized genes that were selected to span a broad range of pathways to

assist functional mapping, and 50 uncharacterized genes that encode MXPs (Fig. 6.1a and

Supplementary Fig. S6.1a). In selecting these targets, we prioritized genes with human

http://y3kproject.org/
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homologs (144/174 genes) and those associated with disease (60/144 genes) based on

primary literature analysis and online database gene annotation (e.g., omim.org). Inclusion

of characterized genes, some of which could be considered as only partially characterized,

also provided the ability to connect them to previously unrecognized functions. Each strain

was grown in biological triplicate under two contrasting growth conditions, a standard

fermentation culture condition and a carefully optimized respiration culture condition that

stimulates mitochondrial function (Fig. 6.1a, Supplementary Fig. S6.1b–e, and Supple-

mentary Note 1)—yielding six separate cultures per yeast strain.

Altogether we grew more than 1,050 yeast cultures (including WT cultures), each of

which was analyzed using three separate high-resolution MS-based proteomic, metabolomic,

and lipidomic techniques. These 3,000+ MS experiments yielded quantitation of 4,040 pro-

teins, 411 metabolites, and 53 lipids (averaging 3,180 proteins, 252 metabolites, and 53

lipids per culture)—over 3.5 million biomolecule measurements in total (Fig. 6.1a and

Supplementary Fig. S6.2a,b). Key to our approach was streamlining procedures for pro-

teome extraction and preparation to under two hours of hands-on time (Supplementary

Fig. S6.2c). Use of label-free quantitation negated the need for a chemical tagging step and

further increased throughput. We observed a wide dynamic range across all profiled omes,

with some molecule abundances spanning more than three orders of magnitude (Sup-

plementary Fig. S6.2d). Additionally, we observed remarkable reproducibility between

replicate cultures, with a median coefficient of variation of 12.7% considering all profiled

biomolecules, and high overlap of molecules quantified across cultures (Supplementary

omim.org
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Fig. S6.2e–g).

A high-level view of the Y3K dataset shows significant perturbations across all three

omes, with more pronounced perturbations in respiration (Fig. 6.1b and Supplemen-

tary Fig. S6.3a). Hierarchical clustering revealed groups of functionally related molecules

(along the y-axis) and groups of functionally related∆gene strains (along the x-axis). Protein

clusters show significant gene ontology (GO) term enrichments for diverse processes and

include both characterized and uncharacterized proteins (Supplementary Fig. S6.3b). For

example, the uncharacterized proteins Esbp6p and Ypr010c-a cluster with proteins involved

in mitochondrial ATP synthesis and electron transport chain function, respectively (Supple-

mentary Fig. S6.4). Here, we leverage analyses from three different vantage points, each

of which can be recapitulated with our online data visualization suite, exploiting unique

biological perspectives afforded by a multi-omic dataset of diverse genetic perturbations

(Fig. 6.1c).

Identification of gene-specific phenotypes. First, we systematically surveyed the Y3K

dataset for significant molecule perturbations unique to just one or two of the strains in

the study (Fig. S6.2a). This unbiased search revealed 714 ∆gene-specific phenotypes (Fig.

6.2a and Supplementary Note 2), which can reveal functional relationships. For example,

the electron transfer flavoprotein (ETF) subunit Aim45p was uniquely decreased in just

two ∆gene strains: the ∆aim45 strain, and the ∆cir1 strain, which lacks the second ETF

heterodimer subunit (Fig. 6.2b). Numerous additional ∆gene-specific phenotypes were
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Figure 6.1: Multi-omic mass spectrometry profiling and data visualization. Multi-omic
mass spectrometry profiling and data visualization. Overviews of (a) the experimental
design and high resolution quantitative MS analysis, (b) the Y3K dataset, shown as hierar-
chical clusters of ∆gene strains and significantly perturbed molecules (relative abundances
compared to WT as quantified by MS, mean, n = 3; P < 0.05, two-sided Student’s t-test),
and (c) the multi-omic data analysis and visualization tools developed here.



172

Supplementary Figure S6.1: ∆Gene target strain characteristics and respiration culture
optimization. (a) Proteins encoded by the individual genes knocked out of the 174 yeast
strains investigated in this study, shown in the context of biological pathways. APS,
adenosine-5’-phosphosulfate; CII–CV, oxidative phosphorylation complexes II–V; ER, en-
doplasmic reticulum; EMC, ER membrane complex; ERMES, ER-mitochondria encounter
structure; ETF, electron transfer flavoprotein complex; MAM, mitochondria-associated
membrane; MECA, mitochondria-ER-cortex anchor; MICOS, mitochondrial contact site
and cristae organizing system; MIM, mitochondrial inner membrane; MOM, mitochondrial
outer membrane; mtDNA, mitochondrial DNA; mtRibosome, mitochondrial ribosome;
NAD, nicotinamide adenine dinucleotide; PDH, pyruvate dehydrogenase; TCA, tricar-
boxylic acid cycle; vCLAMP, vacuole and mitochondria patch. The pie charts show the
total number of characterized and uncharacterized genes profiled (top); the total number
of profiled genes that have human homologs (upper middle); of these genes with human
homologs, the number of profiled genes that are also associated with disease (lower middle);
and of the uncharacterized genes profiled, the number of genes that have human homologs
(bottom).
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Supplementary Figure S6.1: (b) Density of yeast cultures in the respiratory growth condi-
tion (mean, n = 3) plotted in strain rank order (left) or against fermentation culture density
(mean, n = 3) (right). (c) Optical density at 600 nm (OD600) of yeast cultures (media with
3% [w/v] glycerol and 0.1% [w/v] glucose) indicating time points at which yeast were
harvested during fermentation (F1–F3) or respiration (R4–R8). Time point R6 (25 h) was
selected for the respiration culture condition of the larger study. (d) Whole-proteome
plot of protein abundances at time points R5 and R8. (e) Pairwise whole proteome plot
comparisons (as in d) across all eight time points (lower left) and linear regression analysis
of each comparison (r2, Pearson correlation coefficients) (upper right).

used to generate biological hypotheses (Supplementary Figs. S6.5 and S6.6). We decided

to investigate one of these observations at biochemical depth: a ∆hfd1-specific decrease in

4-hydroxybenzoate (4-HB), the CoQ headgroup precursor (Fig. 6.2c).

Though it has been known for decades that mammals can convert tyrosine (Tyr) into

4-HB for CoQ biosynthesis19,20, the biochemical pathway has remained undefined in mam-

mals and yeast (Fig. 6.2c). The Y3K dataset reveals ∆hfd1 yeast to be significantly deficient

in both the metabolite 4-HB (P < 0.001) and the lipid CoQ intermediate 3-polyprenyl-4-

hydroxybenzoate (PPHB) (P < 10–5) (Fig. 6.2c and Supplementary Fig. S6.7a). Despite

the PPHB deficiency, ∆hfd1 yeast have normal CoQ abundance (Fig. 6.2c), likely because

of increased flux through an alternative para-amino-benzoate (pABA)- dependent CoQ

pathway21,22, as suggested by elevation of the aminated analog of PPHB (PPAB) in ∆hfd1

yeast (Fig. 6.2c). This is in contrast to terminal CoQ biosynthesis genes (coq3–coq9), and

some genes not previously linked to CoQ function (e.g. oct1 and fzo1), whose deletion

causes significant (P < 0.05) CoQ deficiency and accumulation of PPHB (Fig. 6.2c). Because

Hfd1p is predicted to be an aldehyde dehydrogenase23, we hypothesized that it catalyzes
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Supplementary Figure S6.3: Features of protein-lipid-metabolite perturbation profiles.
(a) Heat maps depicting the number of molecules significantly perturbed within each
∆gene strain (P < 0.05; two-sided Student’s t-test). (b) Hierarchical clusters of ∆gene strains
and significantly perturbed molecules (relative abundances compared to WT quantified
by MS; P < 0.05; two-sided Student’s t-test). The center column annotates select clusters
with significant functional (GO term) enrichments (P < 0.05; Fisher’s exact test followed by
Benjamini-Hochberg FDR correction for multiple hypothesis testing). Pie charts indicate
proteins in clusters encoded by characterized (gray) or uncharacterized (red) genes.
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Figure 6.2: ∆Gene-specific phenotype detection links Hfd1p to production of 4-
hydroxybenzoate for coenzyme Q biosynthesis. (a) Overview of the ∆gene-specific phe-
notype detection approach and number of ∆gene-specific phenotypes identified in the
respiration and fermentation datasets (distance to nearest neighbor on a normalized scale,
see Supplementary Note 2). (b) Relative abundance of Aim45p (mean, n = 3) versus
statistical significance across strains. (c) Relative abundances of 4-HB, PPHB, CoQ, and
PPAB (mean, n = 3) versus statistical significance across ∆gene strains. (d) Serial dilu-
tions of yeast grown on variable solid medias. E.v., empty vector; +hfd1, hfd1 plasmid
transformed. (e) Relative respiratory growth rates of ∆hfd1 yeast in pABA– synthetic me-
dia with the additives shown (mean ± s.d, n = 3). 4-HPP, 4-hydroxyphenylpyruvate;
4-HPAA, 4-hydroxyphenylacetaldehyde; 4-HPA, 4-hydroxyphenylacetate; 4-HMA, 4-
hydroxymandelate; 4-HPL, 4-hydroxyphenyllactate; p-coum., para-coumarate. (f) Relative
CoQ abundance in ∆hfd1 yeast cultured in pABA– media with the additives shown (mean
± s.d., n = 3). (g) Enzyme activity of recombinant MBP-Hfd1C∆25 in vitro against 4-HBz
(200µM) or hexadecanal (200µM) (mean ± s.e.m., n = 3). (h) Phylogenetic relationship
between yeast Hfd1p and the human ALDH3 family, and relative respiratory growth rates
of ∆hfd1 yeast transformed with plasmids encoding the proteins shown and cultured in
pABA– synthetic media (mean ± s.d, n = 4). (i) Relative activity of the dehydrogenases
shown against 4-HBz compared to hexadecanal (mean ± s.e.m., n = 3). *P < 0.05; **P < 0.01;
***P < 0.001 (two-sided Student’s t-test for all panels).
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Supplementary Figure S6.5: Subsets of the ∆gene-specific phenotypes identified in this
study. Relative abundances of individual molecules (mean log2[∆gene/WT], n = 3) (x-
axes) versus statistical significance (–log10[p-value]; two-sided Student’s t-test) (y-axes) as
quantified by MS. The plots shown represent a subset of molecules identified as ‘∆gene-
specific phenotypes’ through an unbiased survey of the Y3K dataset (see Fig. 2a). The
array here is limited to the most robust outliers (based on both statistical significance and
fold-change, see Supplementary Note 2 and Methods)—the top 20 upregulated proteins, the
top 20 downregulated proteins, the top 10 metabolites, and the top 4 or 5 lipids—excluding
‘knocked out proteins’ (e.g. Fmp52p in the∆fmp52 strain) and excluding a given∆gene strain
after it appeared twice on the rank list. Biological hypotheses surrounding gene-phenotype
relationship were generated for the starred plots (see Supplementary Fig. 6).



179

Su
pp

le
m

en
ta

ry
Fi

gu
re

S6
.6

:
Ex

am
pl

es
of

hy
po

th
es

es
th

at
ca

n
be

ge
ne

ra
te

d
fr

om
a

su
bs

et
of

th
e
∆

ge
ne

-s
pe

ci
fic

ph
en

ot
yp

es
id

en
tifi

ed
in

th
is

st
ud

y.
Su

bs
et

of
∆

ge
ne

-s
pe

ci
fic

ph
en

ot
yp

es
id

en
tifi

ed
in

th
e

Y3
K

da
ta

se
t.

Vo
lc

an
o

pl
ot

s
in

di
ca

te
re

la
tiv

e
m

ol
ec

ul
e

ab
un

da
nc

es
(m

ea
n

lo
g 2

[∆
ge

ne
/W

T]
,n

=
3)

(x
-a

xe
s)

ve
rs

us
st

at
is

tic
al

si
gn

ifi
ca

nc
e

(–
lo

g 1
0[

p-
va

lu
e]

;t
w

o-
si

de
d

St
ud

en
t’s

t-t
es

t)
(y

-a
xe

s)
as

qu
an

tifi
ed

by
M

S.
H

yp
ot

he
se

sw
er

e
de

ve
lo

pe
d

to
de

sc
rib

e
ea

ch
∆

ge
ne

-p
he

no
ty

pe
re

la
tio

ns
hi

p
re

po
rt

ed
he

re
.



180

dehydrogenation of 4-hydroxybenzaldehyde (4-HBz) to form 4-HB. Consistently, 4-HBz is

elevated in ∆hfd1 yeast (Supplementary Fig. S6.7b).

We used chemical-genetics to test the proposed Hfd1p activity. Most culture media

contain either 4-HB (in yeast extract) or pABA (in standard yeast nitrogen base), enabling

yeast to bypass the Tyr-to-4-HB pathway, so we used a defined medium lacking pABA and

4-HB (“pABA–”). ∆hfd1 yeast exhibited striking respiration deficiency on pABA– media,

a phenotype rescued by pABA, 4-HB, or WT Hfd1p, but not by Hfd1p with mutations to

putative catalytic residues24 (Fig. 6.2d and Supplementary Fig. S6.7c–e). Testing a panel

of potential intermediates in the pathway revealed that 4-HB, but not 4-HBz, can rescue

the respiratory growth and CoQ production of∆hfd1 yeast (Fig. 6.2e,f and Supplementary

Fig. S6.7f,g), supporting a role for Hfd1p in dehydrogenation of 4-HBz. To directly test this

activity, we purified recombinant Hfd1p for enzyme assays (Supplementary Fig. S6.7h).

WT Hfd1p catalyzes NAD+-dependent dehydrogenation of 4-HBz, but a C273S (catalytic

residue) point mutant does not (Fig. 6.2g). Together, these results demonstrate that Hfd1p

dehydrogenates 4-HBz to produce 4-HB for CoQ biosynthesis.

Hfd1p is a member of the ancient aldehyde dehydrogenase (ALDH) superfamily, which

is found across all three superkingdoms of life and includes 19 human homologs with

diverse functions25. Based on phylogenetic analyses, Hfd1p is most similar to the human

ALDH3 family (Supplementary Fig. S6.7i). ALDH3A2 (FALDH) mutations cause Sjögren–

Larsson Syndrome26 due to defective fatty aldehyde metabolism. However, the endogenous

functions of ALDH3A1, B1, and B2 remain obscure, and which of these human ALDH3
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Supplementary Figure S6.7: Hfd1p supports production of 4-HB for CoQ biosynthesis.
(a) Relative lipid abundances (mean, n = 3) versus statistical significance (–log10[p-value];
two-sided Student’s t-test) as quantified by MS. (b) Relative abundances of 4-HBz (mean, n =
3) versus statistical significance (–log10[p-value]; two-sided Student’s t-test) across all ∆gene
strains in the study. (c) Protein domain structures of Hfd1p, highlighting residues involved
in catalysis. (d) Serial dilutions of∆hfd1 yeast transformed with plasmids encoding the
indicated Hfd1p variants grown on pABA– synthetic solid medias with glucose or glycerol.
(e) Relative respiratory growth rates of∆hfd1 yeast transformed with plasmids encoding
the indicated Hfd1p variants and grown in pABA– synthetic liquid media. (f) Growth
curves showing the respiratory growth of∆hfd1 yeast in pABA– synthetic media with the
additives shown. (g) Relative 4-HB abundance in∆hfd1 yeast cultured in pABA– media with
the additives shown (mean log2[additive/unsupplemented] ± s.d., n = 3). (h) SDS-PAGE
analysis (Coomassie stained gel) of protein fractions from an isolation of MBP-Hfd1p(C∆25),
MBP-ALDH3A1, and MBP-ALDH3A2(C∆25) (WT and catalytically dead mutant for each).
(i) Phylogenetic tree of human ALDH superfamily members and yeast Hfd1p.
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Supplementary Figure S6.7: (j) Density of yeast (upon harvest) cultured in pABA– media
± 4-HB (mean ± s.d., n = 3). (k) Relative abundances of 4-HB, PPHB, and CoQ compared
to WT yeast cultured in pABA– media (mean log2[∆gene/WT with no additive] ± s.d., n
= 3) as quantified by MS. (l) Whole proteome correlation map for yeast grown in pABA–

media ± 4-HB (mean, n = 3). (m) Relative abundances of select proteins as quantified by
MS (mean log2[∆gene/WT], n = 3) analysis of yeast cultured in pABA– media ± 4-HB. (n)
Serial dilutions of ∆hfd1 yeast transformed with plasmids encoding the proteins shown and
cultured on solid pABA– synthetic media plates. (o) Enzyme activity of MBP-ALDH3A1 or
MBP-ALDH3A2(C∆25) against 4-HBz (200µM) or hexadecanal (200µM) (mean ± s.e.m., n
= 3). (p) Table of enzyme kinetic parameters for MBP-Hfd1p(C∆25), MBP-ALDH3A1, and
MBP-ALDH3A2(C∆25) (mean ± s.e.m., n = 3). (q) Representative enzyme kinetic curves for
MBP-ALDH3A1 and MBP-ALDH3A2(C∆25). *P < 0.05; **P < 0.01; ***P < 0.001 (two-sided
Student’s t-test).

functions are conserved in Hfd1p has not been completely defined. Previous work showed

that sphingolipid metabolism is perturbed in∆hfd1 yeast due to a defect in dehydrogenation

of hexadecanal, and this defect can be rescued by ALDH3A2, but not by ALDH3A12327.

However, a separate sphingolipid pathway defect (∆dpl1) does not disrupt the 4-HB-CoQ

pathway (Supplementary Fig. S6.7j–m and Supplementary Note 3), suggesting that the

two pathways are otherwise independent. Consistent with the idea that Hfd1p is a dual-

function protein that supports both sphingolipid metabolism and CoQ biosynthesis, we

observed Hfd1p activity in vitro with hexadecanal, similar to that observed with 4-HBz

(Fig. 6.2g). However, in contrast to rescue of the sphingolipid metabolism defect, we found

that ALDH3A1, but not ALDH3A2, rescues the pABA– respiratory growth phenotype

of ∆hfd1 yeast (Fig. 6.2h and Supplementary Fig. S6.7n). Moreover, while ALDH3A2

shows a strong substrate preference for hexadecanal over 4-HBz, Hfd1p and ALDH3A1

show a preference for 4-HBz (Fig. 6.2i and Supplementary Fig. S6.7o–q). These results
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suggest that the dual functions of yeast Hfd1p have diverged in human ALDH3A1 and

ALDH3A2. Collectively, these results demonstrate a major cellular function for the aldehyde

dehydrogenase Hfd1p in the Tyr-to-4-HB pathway and strongly suggest that ALDH3A1

plays a similar role in human CoQ biosynthesis.

Regression analysis of global perturbation profiles. While molecular changes unique to

a given ∆gene strain can be functionally informative, similarities between ∆gene strains can

also assist characterization. In our second analysis approach, we examined ∆gene–∆gene

correlations through pairwise comparisons of global ∆gene perturbation profiles. Deletion

of functionally related genes, such as the cytochrome c oxidase genes cox12 and cox23,

caused highly similar whole proteome perturbations (Fig. 6.3a). Notably, highly correlated

phenotype changes were also observed in ∆cox12 and ∆cox23 metabolomes and lipidomes

(Fig. 6.3a). However, deletion of unrelated genes, such as cox12 and mic26, generated un-

correlated phenotype changes (Fig. 6.3a). Examination of ∆gene–∆gene correlations across

the entire study indicated numerous functional relationships, with stronger correlations

observed in respiration (Fig. 6.3b).

A group of respiration-deficient (RD) strains showed robust correlations across all

three omes (Fig. 6.3b), reflecting their similar broad biological functions in mitochondrial

OxPhos and suggesting that they share a universal “respiration deficiency response” (RDR).

Multi-omic principle component and GO term analyses revealed a coordinated RDR that

provides biological insight into respiration defects—a common feature of many diseases
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Figure 6.3: Functional correlations through perturbation profile regression analysis. (a)
Plots comparing relative molecule abundances between pairs of ∆gene strains. Strain-strain
similarity assessed by linear regression analysis of ∆gene perturbation profiles. Green
points indicate molecules significantly perturbed in both mutants (|log2[FC]| > 0.7, P <
0.05; two-sided Student’s t-test). (b) Maps of Pearson correlation coefficients (r2) for pairs
of ∆gene perturbation profiles across omes and metabolic conditions. Strains are clustered
based on respiration proteome correlations, and this strain order is held consistent across
all 6 maps. (c) Projection of respiration competent (RC) and deficient (RD) strains onto the
plane defined by principal component (PC) axes 1 and 2 (full multi-omic respiration dataset).
(d) Average fold change in molecule abundances (mean log2[RD strains/RC strains]) versus
statistical significance (–log10[p-value, Bonferroni corrected two-sided t-test]). (e) RD versus
RC proteome perturbation volcano plot (as in d) showing select functional groups (GO
terms) significantly enriched in either upregulated or downregulated proteins. (f) Scheme
of RDR pathways. (g) Re-clustered respiration proteome strain-strain correlation map
following RDR- adjustment. (h) CoQ abundance changes in select ∆gene strains (mean ±
s.d., n = 3); **P < 0.01; ***P < 0.001 (two-sided Student’s t-test).
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including cancer—and suggests that a multi-omic biomarker fingerprint could afford a

specific diagnostic for mitochondrial disease (Fig. 6.3c–f, Supplementary Fig. S6.8, and

Supplementary Note 4). However, stress responses such as the RDR also pose a barrier to

biochemical investigations because they can obscure functionally-informative phenotypes.

To assess more specific biochemical roles for individual proteins, we normalized for the RDR

across RD strains (Supplementary Fig. S6.9 and Supplementary Note 5). Across all of our

RD strains, 776 molecules were identified as being consistently perturbed. The individual

measurements of these RDR-associated molecules were mean normalized (“RDR-adjusted”)

to reveal characteristic deviations from the general RDR and to enable visualization of

∆gene-specific changes.

Recalculating∆gene–∆gene correlation coefficients with RDR-adjusted plots strikingly re-

duces correlations between more functionally disparate genes (Supplementary Fig. S6.9c–

e). Reclustering ∆gene–∆gene correlations reveals new clusters of genes with similar bio-

chemical functions (Fig. 6.3g). For example, known CoQ biosynthesis genes were brought

into a tighter cluster that also includes the uncharacterized gene yjr120w (Fig. 6.3g), sug-

gesting that yjr120w might support CoQ biosynthesis. Consistently, we observed CoQ

deficiency in ∆yjr120w yeast (Fig. 6.3h), the molecular basis of which we determined to

include loss of Atp2p, an ATP synthase subunit (Supplementary Fig. S6.10 and Supple-

mentary Note 6). These results show that specific ATP synthase subunits support CoQ

biosynthesis and, more broadly, demonstrate how global mass spectrometry profiling can

reveal functional links between genes.
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Supplementary Figure S6.8: Identification of respiration deficiency response pathways
and potential biomarkers. (a) Projection of RC and RD strains onto the planes defined by
principal component (PC) axes 1 and 2 for separate proteome, metabolome, and lipidome
PC analyses. (b) RD versus RC proteome perturbation volcano plots (as in Fig. 3e) showing
select functional groups (GO terms) significantly enriched (Bonferroni corrected p-values
shown in figure) in either upregulated or downregulated proteins. (c) Box plots depicting
median molecule fold changes for RC and RD strains (log2[RD or RC average/WT]) (n =
111 for RC, 41 for RD). Notch indicates 95% c.i. (d) Receiver operating characteristic (ROC)
curves for select molecules depicting the false positive rates and true positive rates for
prediction of respiration deficiency associated with particular molecule fold changes. AUC,
area under the curve.
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Supplementary Figure S6.9: Subtraction of shared responses to reveal deeper biochemi-
cal insight. (a) RDR-abundance adjustment of a representative molecule (Mls1p) by subtrac-
tion of the average fold change in abundance (mean log2[∆gene/WT], n = 3) across respira-
tion deficient (RD) strains. This adjustment was only performed within RD strains. (b) Plots
comparing relative protein abundances between pairs of ∆gene strains. Linear regression
analysis of pairs of perturbation profiles before (left) and after (right) RD-abundance adjust-
ment. Green points indicate molecules significantly perturbed in both mutants (|log2(FC)|
> 0.7; P < 0.05; two-sided Student’s t-test) prior to RDR-adjustment. (c) Expanded view of
highly correlated strains in the respiration proteomes correlation map (see Fig. 3b). (d)
Procedure for normalization of the RDR. (e) Re-clustered respiration proteome strain-strain
correlation map following RDR-adjustment (also shown in Fig. 3g).
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Molecule covariance network analysis. Similarly, in our third analysis approach, we

leveraged the multi-omic nature of our mass spectrometry profiles to determine pairwise

covariance between proteins, metabolites, and lipids. This approach is similar to mRNA

coexpression profiling, which can be used to predict gene function28–30, but it integrates

three complementary classes of molecules. Perturbations for functionally related molecules,

such as the protein Coq4p and the lipid CoQ intermediate PPHB, show strong positive or

negative correlations, while those of unrelated molecules, such as Coq4p and Rpb4p, lack

correlations (Fig. 6.4a). Correlated molecules include proteins in complexes, such as the

cytosolic TRiC/CCT chaperonin complex (Cct2p and Cct7p), and enzyme-product pairs

(e.g. Ura1p and orotic acid) (Fig. 6.4a).

Examining correlations across all 4,505 molecules in the Y3K dataset through this multi-

omic molecule covariance network analysis (MCNA) reveals numerous functional relation-

ships, which can be visualized as networks of molecules (nodes) and correlations (edges)

(Fig. 6.4b and Supplementary Fig. S6.11a). After applying strict correlation thresholds

(Bonferroni-adjusted p-value < 0.001, |ρ| > 0.58), 237,342 edges remain among 2,382 nodes

in the respiration dataset (Supplementary Fig. S6.11a–f). Many edges were observed

between RDR-associated molecules (Supplementary Fig. S6.11g), reflecting their common

relationship to mitochondrial metabolism. As described above for ∆gene correlations, we

deepened the molecular insight of the MCNA by RDR-adjustment, which reduced overall

connectivity and increased the selectivity of functionally related molecule sub-networks

(Supplementary Fig. S6.11g). For example, the selectivity of the mitochondrial ribosome
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Figure 6.4: Multi-omic molecule covariance network analysis assists functional charac-
terization. (a) Relative abundances of molecule pairs across ∆gene strains. Covariance
assessed by Spearman’s rank coefficient (ρ). (b) Nearest neighbor molecule covariance
networks for a representative subset of uncharacterized proteins. (c) Network for Coq4p in
the RDR-adjusted respiration dataset. (d) Networks showing the 14 molecules most strongly
correlated to Aro9p or Aro10p in the RDR-adjusted respiration dataset. (e) GO term analy-
ses of the Aim18p, Aro9p, and Aro10p networks (p-values). (f) Relative abundances of CoQ
and PPHB (mean log2[∆gene/WT], n = 2) in ∆aro9, ∆aro10, and ∆aim18 strains compared to
WT yeast cultured in pABA– media; *P < 0.05; **P < 0.01 (two-sided Student’s t-test). (g)
Y3K-enabled characterization of proteins that support the CoQ pathway.
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sub-network increased 16-fold (Supplementary Fig. S6.11h). These RDR-adjusted net-

works associated the MXP Yor020w-a with the mitochondrial ribosome (Supplementary

Fig. S6.11g). To test this association, we examined the proteome of∆yor020w-a yeast, which

showed a significant decrease in the mitochondrial ribosome protein Rsm19p (Supplemen-

tary Fig. S6.11i), suggesting that Yor020w-a is linked to mitochondrial translation.

Hundreds of additional uncharacterized proteins were linked to characterized molecules

by our MCNA, providing a foundation for generating hypotheses about their functions (Fig.

6.4b, Supplementary Figs. S6.12 and S6.13). For example, the MXP Aim18p was linked to

a network of CoQ biosynthesis proteins, and Aro9p and Aro10p were linked to numerous

mitochondrial proteins that support OxPhos (Fig. 6.4c–e). Based on domain homology and

predicted enzymatic functions, we hypothesized that Aim18p, Aro9p, and Aro10p could

function in the Tyr- to-4-HB pathway (Supplementary Fig. S6.14 and Supplementary Note

7). Consistently, when cultured in a pABA– media, ∆aim18, ∆aro9, and ∆aro10 yeast are

deficient in both CoQ and PPHB (Fig. 6.4f). This work shows how global mass spectrometry

profiling can be used to generate biological hypotheses and characterize protein functions

through distinct multi-omic data analysis approaches (Fig. 6.4g).

Discussion

A constant challenge in biology is to comprehensively monitor and understand the molec-

ular effects of a defined alteration (e.g., a disease mutation, a drug treatment, or a gene

deletion). Mass spectrometry (MS) has become central to answering this challenge.
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Supplementary Figure S6.11: Features of multi-omic molecule covariance networks.
Network of all covariant molecules observed in each dataset (|ρ| > 0.58, Bonferroni-
adjusted P < 0.001; two-sided Student’s t-test). (b) Regression analysis of pairs of RDR-
associated molecules before and after RDR adjustment using Spearman’s rank coefficient
(ρ). Points corresponding to RD and RC ∆gene strains are indicated. (c) Distribution of
calculated Spearman coefficients for all pairwise molecule covariance comparisons (ρ cutoff
at ±0.58 used throughout the study is indicated). (d) Distribution of Bonferroni-adjusted
p-values from all pairwise molecule comparisons (p-value cutoff at 0.001 used throughout
the study is indicated). (e) Bar chart indicating number of protein–protein (P–P), protein–
metabolite (P–M), protein–lipid (P–L), metabolite–metabolite (M–M), metabolite–lipid
(M–L), and lipid–lipid (L–L) edges in each dataset. (f) Box plots indicating the number of
edges per node in the respiration, fermentation, and RDR-adjusted networks.
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Supplementary Figure S6.11: (g) Network of all covariant RDR-associated molecules (|ρ|
> 0.58, Bonferroni-adjusted P < 0.001; two-sided Student’s t-test) generated using the
respiration (left) and RDR-adjusted (right) datasets. Nodes are highlighted according to
GO category. (h) Box plots indicating the molecule covariance network (MCN) specificity
coefficient for all nodes involved in mitochondrial translation in both the respiration and
RDR-adjusted respiration RDR-associated molecule networks (shown in panel G). (i) Rela-
tive protein abundances (mean log2[∆yor020w-a/WT], n = 2) versus statistical significance
(–log10[p-value]; two-sided Student’s t-test) as quantified by MS.

Here, we leveraged a subset of our multi-omic dataset to investigate gaps in knowl-

edge of CoQ biosynthesis. Despite CoQ’s essential function in the mitochondrial electron

transport chain, role as a key cellular antioxidant, and link to numerous human diseases

(e.g., ataxias, myopathies, and nephrotic syndromes), multiple steps in CoQ biosynthesis

remain uncharacterized17,31,32. In particular, enzymes involved in the initial stage of CoQ

biosynthesis— wherein the headgroup precursor 4-HB is produced—were previously

undefined in mammals and yeast.

Our ∆gene-specific phenotype detection approach suggested a role for the ancient

aldehyde dehydrogenase superfamily member Hfd1p in 4-HB biosynthesis. Biochemical

and genetic studies confirmed this role for Hfd1p in yeast and further demonstrated that

the human homolog ALDH3A1 can also catalyze production of 4-HB in vivo and in vitro

(Fig. 6.2), thereby highlighting ALDH3A1 as a candidate disease gene for primary CoQ

deficiency.

Distinct Y3K dataset analyses placed additional proteins into the CoQ biosynthesis

pathway. MCNA showed unexpected connections between Aro9p, Aro10p, and mitochon-
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Supplementary Figure S6.12: Molecule covariance networks for uncharacterized pro-
teins. ‘Nearest neighbor’ molecule covariance networks for all uncharacterized proteins
observed across the respiration, fermentation, and RDR-adjusted respiration datasets (|ρ|
> 0.58, Bonferroni-adjusted P < 0.001; two-sided Student’s t-test). If more than 14 correlated
molecules were present in a given covariance network, only the top 14 correlated molecules
(nearest neighbors) are displayed.
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Supplementary Figure S6.13: Examples of hypotheses that can be generated from a sub-
set of the molecule covariance network analyses in this study. Nearest neighbor molecule
covariance networks from uncharacterized proteins containing more than four connected
nodes were tested for GO term enrichment using a Fisher’s exact test with Benjamini–
Hochberg FDR adjustment to account for multiple hypothesis testing. Networks containing
four or fewer connected nodes were analyzed manually for functionally related molecules.
Based on these MCNA results, biological hypotheses about the functions of the uncharac-
terized proteins shown were developed.
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Supplementary Figure S6.14: Hypothesized pathways for Aro9p, Aro10p, and Aim18p.
(a) Putative biochemical functions of Aro9p and Aro10p in catabolism of tyrosine and
phenylalanine. (b) Predicted functions for Aro9p and Aro10p in the Tyr-to-4-HB-to-CoQ
pathway. (c) Protein sequence alignments of Aim18p (S. cerevisiae) and chalcone isomerases
(CHI) from Medicago and Arabidopsis highlighting conservation of putative catalytic residues
(starred residues). (d) Example of a CHI catalyzed reaction (upper scheme) and the hypoth-
esized pathway of Aim18p action (lower scheme).
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drial OxPhos proteins, which helped place Aro9p and Aro10p into the Tyr-to-4-HB pathway

(Fig. 6.4). Similarly, links between Aim18p and known CoQ biosynthesis enzymes also

connected Aim18p to CoQ biosynthesis. Furthermore, Y3K gene-gene correlation analyses

and manual pathway analyses linked CoQ biosynthesis to other proteins whose molecular

functions in this pathway are not yet fully defined (e.g. Atp2p, Fzo1p, and Oct1p). Disrup-

tion of the mammalian Fzo1p homolog, MFN2—a protein essential for mitochondrial fusion

that harbors causative mutations in Charcot-Marie-Tooth disease33—was recently shown

to cause CoQ deficiency through an unclear molecular mechanism34. Our results suggest

that this unexpected relationship between MFN2 and CoQ biosynthesis is evolutionarily

conserved, and establish yeast as a model system for further probing its mechanism.

Our Y3K dataset provides many additional leads for further biochemical studies of

numerous metabolic pathways that impact human health and disease, and we expect that

the open access web utility (http://y3kproject.org/) will enable others to generate their

own hypotheses. With demand for multi-omic dataset analysis approaches increasing, we

also hope that our multifaceted, data visualization website will serve as a useful model for

future studies.

We anticipate that the multi-omic Y3K dataset will provide a resource for broader

systems biology inquiries. For example, our definition of the yeast respiration deficiency

response (RDR) (Fig. 6.3) may assist studies of how cells broadly respond to defects in

OxPhos, which are observed in diverse diseases including many cancers. Our RDR work

also suggests that a multi-omic fingerprint of numerous molecules could provide a highly

http://y3kproject.org/
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specific biomarker panel.

Methods

Yeast strains and cultures. The parental (WT) Saccharomyces cerevisiae strain for this study

was the haploid MATalpha BY4742. Single gene deletion (∆gene) derivatives of BY4742

were either obtained through the gene deletion consortium30 or made in-house using a

KanMX deletion cassette to match those in the consortium collection. All gene deletions

were confirmed by either proteomics (significant decrease in the encoded protein) or a PCR

assay. ∆gene strains made in-house were also confirmed by gene sequencing.

Single lots of yeast extract (‘Y’) (Research Products International, RPI), peptone (‘P’)

(RPI), agar (Fisher), dextrose (‘D’) (RPI), glycerol (‘G’) (RPI), and G418 (RPI) were used

for all medias. YP and YPG solutions were sterilized by automated autoclave. G418 and

dextrose were sterilized by filtration (0.22 µm pore size, VWR) and added separately to

sterile YP or YPG. YPD+G418 plates contained yeast extract (10 g/L), peptone (20 g/L),

agar (15 g/L), dextrose (20 g/L), and G418 (200 mg/L). YPD media (fermentation cultures)

contained yeast extract (10 g/L), peptone (20 g/L), and dextrose (20 g/L). YPGD media

(respiration cultures) contained yeast extract (10 g/L), peptone (20 g/L), glycerol (30 g/L)

and dextrose (1 g/L).

Yeast from a –80 °C glycerol stock were streaked onto YPD+G418 plates and incubated

(30 °C, ~60 h). Starter cultures (3 mL YPD) were inoculated with an individual colony of

yeast and incubated (30 °C, 230 rpm, 10–15 h). A WT culture was included with each set
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of ∆gene strain cultures (usually 19 ∆gene cultures and 1 WT culture). Cell density was

determined by optical density at 600 nm (OD600) as described35. YPD or YPGD media (100

mL media at ambient temperature in a sterile 250 mL Erlenmeyer flask) was inoculated

with 2.5×106 yeast cells and incubated (30 °C, 230 rpm). Samples of the YPD cultures

were harvested 12 h after inoculation, a time point that corresponds to early fermentation

(logarithmic) growth. Samples of YPGD cultures were harvested 25 h after inoculation, a

time point that corresponds to early respiration growth.

Liquid chromatography tandem mass spectrometry (LC-MS/MS) proteomics. 1×108

yeast cells were harvested by centrifugation (3,000 g, 3 min, 4 °C), the supernatant was

removed, and the cell pellet was flash frozen in N2(l) and stored at –80 °C. Yeast pellets

were resuspended in 8 M urea, 100 mM tris (pH = 8.0). Yeast cells were lysed by the ad-

dition of methanol to 90%, followed by vortexing (~30 s). Proteins were precipitated by

centrifugation (12,000 g, 5 min). The supernatant was discarded, and the resultant protein

pellet was resuspended in 8 M urea, 10 mM tris(2-carboxyethyl)phosphine (TCEP), 40 mM

chloroacetamide (CAA) and 100 mM tris (pH = 8.0). Sample was diluted to 1.5 M urea with

50 mM tris and digested with trypsin (Promega) (overnight, ~22 °C) (1:50, enzyme:protein).

Samples were desalted using Strata X columns (Phenomenex Strata-X Polymeric Reversed

Phase, 10 mg/mL). Strata X columns were equilibrated with one column volume of 100%

acetonitrile (ACN), followed by 0.2% formic acid. Acidified samples were loaded on column,

followed by washing with three column volumes of 0.2% formic acid or 0.1% TFA. Peptides
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were eluted off the column by the addition of 500 µL 40% ACN with either 0.2% formic

acid or 0.1% TFA and 500 µL 80% ACN with either 0.2% formic acid or 0.1% TFA. Peptide

concentration was measured using a quantitative colorimetric peptide assay (Thermo).

LC-MS/MS analyses were performed using previously described methodologies1, 2.

LC/MS data analysis. Raw data files were acquired in batches of 60 (3 biological replicates

of 19 ∆gene strains and 1 WT strain) with time between LC-MS analyses minimized to

reduce run-to-run variation. Batches of raw data files were subsequently processed using

MaxQuant36 (Version 1.5.0.25). Searches were performed against a target-decoy37 database

of reviewed yeast proteins plus isoforms (UniProt, downloaded January 20, 2013) using

the Andromeda38 search algorithm. Searches were performed using a precursor search

tolerance of 4.5 ppm and a product mass tolerance of 0.35 Da. Specified search param-

eters included fixed modification for carbamidomethylation of cysteine residues and a

variable modification for the oxidation of methionine and protein N-terminal acetylation,

and a maximum of 2 missed tryptic cleavages. A 1% peptide spectrum match (PSM) false

discovery rate (FDR) and a 1% protein FDR was applied according to the target-decoy

method. Proteins were identified using at least one peptide (razor + unique). Proteins were

quantified using MaxLFQ with an LFQ minimum ratio count of 2. LFQ intensities were

calculated using the match between runs feature, and MS/MS spectra were not required for

LFQ comparisons. Missing values were imputed where appropriate for proteins quantified

in > 50% of MS data files in a batch. Proteins not meeting this requirement were omitted
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from subsequent analyses. Imputation was performed on a replicate-by-replicate basis.

For each replicate MS analysis a normal distribution with mean and standard deviation

equivalent to that of the lowest 1% of measured LFQ intensities was generated. Missing

values were filled in with values drawn from this distribution at random. Approximately

4.05% and 4.53% of quantitative measurements were imputed in the respiration and fermen-

tation proteomic datasets, respectively. Replicate protein LFQ values from corresponding

∆gene or WT strains were pooled, log2 transformed, and averaged (mean log2[strain], n =

3). Average ∆gene LFQ intensities were normalized against their appropriate WT control

(mean log2[∆gene/WT], n = 3) and a 2-tailed t-test (homostatic) was performed to obtain P

values.

To control for batch-specific effects, proteins having unexpected and characteristic

misregulation across a majority of ∆gene strains processed together were identified and

omitted from the dataset. For each protein quantified within a batch of ∆gene strains a

distribution of protein fold-changes (intra-batch) was generated. The analogous distribution

of protein fold-changes from all other ∆gene strains processed separately (inter-batch) was

created. These two distributions were compared against each other using a Kolmogorov-

Smirnov test (2-tailed) to obtain P values. If a significant difference existed at P < 0.05

(Bonferroni-adjusted) protein abundance measurements were omitted from the batch

in question. This process of comparing intra-batch and inter-batch protein fold change

distributions was carried iteratively and to exhaustion and resulted in the omission of an

average 165 proteins/∆gene strain (~4.8% of quantified proteins) for respiration, and 188
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proteins/∆gene strain (~5.9%) for fermentation.

Gas chromatography-mass spectrometry (GC-MS) metabolomics. 1×108 yeast cells yeast

cells were isolated by rapid vacuum filtration onto a nylon filter membrane (0.45 µm pore

size, Millipore) using a Glass Microanalysis Filter Holder (Millipore), briefly washed with

phosphate buffered saline (1 mL), and immediately submerged into ACN/MeOH/H2O

(2:2:1, v/v/v, 1.5 mL, pre-cooled to –20 °C) in a plastic tube. The time from sampling yeast

from the culture to submersion in cold extraction solvent was less than 30 s. Tubes with the

extraction solvent, nylon filter, and yeast were stored at –80 °C prior to analysis.

Tubes with yeast extract (also still containing insoluble yeast material and the nylon filter)

were thawed at room temperature for 45 min., vortexed (~15 s), and centrifuged at room

temperature (6400 rpm, 30 s) to pellet insoluble yeast material. Yeast extract (25 µL aliquot)

and internal standards (25 µL aqueous mixture of isotopically labelled alanine-2,3,3,3-d4,

adipic acid-d10, and xylose-13C5 acid, 5 ppm in each) were aliquoted into a 2 mL plastic

tube and dried by vacuum centrifuge (~1 hr). The dried metabolites were resuspended

in pyridine (25 µL) and vortexed. 25 µL of N-methyl-N-trimethylsilyl]trifluoroacetamide

(MSTFA) with 1% trimethylchlorosilane (TMCS) was added, and the sample was vortexed

and incubated (60 °C, 30 min). Samples were then transferred to a glass autosampler vials

and analyzed using a GC/MS instrument comprising a Trace 1310 GC coupled to a Q

Exactive Orbitrap mass spectrometer. For the yeast metabolite extracts a linear temperature

gradient ranging from 50 °C to 320 °C was employed spanning a total runtime of 30
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minutes. Analytes were injected onto a 30 m TraceGOLD TG-5SILMS column (Thermo)

using a 1:10 split at a temperature of 275 °C and ionized using electron ionization (EI). The

mass spectrometer was operated in full scan mode using a resolution of 30,000 (m/∆m)

relative to 200 m/z.

GC/MS data analysis. The resulting GC-MS data were processed using an in-house de-

veloped software suite (https://github.com/coongroup/Y3K-Software). Briefly, all m/z

peaks are aggregated into distinct chromatographic profiles (i.e., feature) using a 10 ppm

mass tolerance. These chromatographic profiles are then grouped according to common

elution apex (i.e., feature group). The collection of features (i.e., m/z peaks) sharing a com-

mon elution apex, therefore, represent an individual EI-MS spectrum of a single eluting

compound. The EI-MS spectra were then compared against a matrix run and a background

subtraction was performed. Remaining EI-MS spectra are then searched against the NIST

12 MS/EI library and subsequently subjected to a high resolution filtering (HRF) tech-

nique as described elsewhere. EI-MS spectra that were not identified were assigned a

numeric identifier. Feature intensity, which was normalized using total metabolite signal,

was used to estimate metabolite abundance. Following initial processing, raw data files

were re-analyzed to extract metabolite signals which were not successfully deconvolved

and registered as missing values in the dataset. This process provided measurements for

~1.87%, and 2.25% of metabolites quantified in the respiration and fermentation datasets,

respectively. Remaining missing values were imputed using the same imputation strategy

https://github.com/coongroup/Y3K-Software
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as described in the proteomic data processing section. Quantitative values imputed using

this process account for ~0.17% and 0.13% of metabolites in the respiration and fermentation

datasets, respectively.

Replicate metabolite intensities from corresponding ∆gene or WT strains were pooled,

log2 transformed, and averaged (mean log2[strain], n = 3). Average ∆gene metabolite

intensities were normalized against their appropriate WT control (mean log2[∆gene/WT],

n = 3) and a 2-tailed t-test was performed to obtain P values. To account for batch-specific

effects the same Kolmogorov–Smirnov testing approach as described in the proteomic

data processing section was used. Distributions of inter-batch and intra-batch metabolite

fold changes were compared iteratively and those that were significantly different at P <

0.05 (Bonferroni-adjusted) resulted in metabolite abundance measurements being omitted

from the batch in question (~15 metabolites/∆gene strain (~5.0%) from respiration and ~21

metabolites/∆gene strain (~5.9%) from fermentation).

∆Gene-specific phenotype detection. For each profiled molecule (in both respiration and

fermentation growth conditions) we separated potential ∆gene-specific measurements into

two groups: positive log2 fold change (log2[∆gene/WT]) and negative log2 fold change.

These two sets were then plotted individually with log2 fold change and –log10(p-value [two-

sided Student’s t-test]) along the x- and y- axes, respectively. Data were normalized such

that the largest log2 fold change and largest –log10(p-value) were set equal to 1. Considering

the three largest fold changes where P < 0.05, we calculated the Euclidean distance to all
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neighboring data points and stored the smallest result. A requirement was imposed that all

considered ‘neighbors’ have a smaller fold change than the data point being considered. It

is anticipated that data points corresponding to ∆gene-specific phenotypes will be outliers

in the described plots and have large associated nearest-neighbor Euclidean distances.

The described routine yielded three separate distances, the largest of which was stored

for further analysis. We set a cutoff for classification as a ‘∆gene-specific phenotype’ at a

Euclidean distance of 0.70.

Regression analysis of∆gene–∆gene perturbation profiles. For all pairwise combinations

of∆gene strains from the same growth condition linear regression analysis was conducted on

protein, lipid, and metabolite perturbation profiles, respectively. Fold change measurements

(mean log2[∆gene/WT], n = 3) from molecules where FC > 0.7 and P < 0.05 were used

and a minimum of 20 proteins, 10 metabolites, and 5 lipids, respectively, were required.

These measurements were fit to a line and the associated Pearson correlation coefficient

was reported. Coefficients carrying negative signs were set to 0. For pairs of ∆gene strains

lacking a sufficient number of molecules that met the aforementioned criteria, the Pearson

coefficient was reported as 0. Hierarchical clustering of ∆gene–∆gene correlations was

performed as described below.

Respiration deficiency response (RDR) abundance adjustment. All ∆gene strains grown

under respiration conditions were classified as respiration deficient (RD) (51) or respiration



206

competent (RC) (123) based on observation of a common perturbation profile signature. For

all molecules profiled within RD ∆gene strains an RDR score was calculated. This metric

represents the proportion of RD ∆gene strains over which the molecule was consistently

perturbed, relative to all RD ∆gene strains where the molecule was quantified. Considering

all RD ∆gene strains, 776 molecules produced an RDR score > 0.95 (consistently perturbed

across more than 95% of RD ∆gene strains where quantified) and were subsequently clas-

sified as RDR-associated. For each RDR-associated molecule, individual RD ∆gene strain

measurements were mean normalized and stored. These RDR-adjusted measurements

were then used in described respiration–RDR analyses.

Regression analysis of RDR-adjusted ∆gene–∆gene perturbation profiles. For all RD

∆gene strains linear regression analysis was performed pairwise on RDR-adjusted protein

perturbation profiles. Fold change measurements from molecules where FC > 0.7 and P

< 0.05 (p-value prior to RDR adjustment) were used and a minimum of 20 proteins was

required. Correlations and clustering were otherwise conducted as described above.

Hierarchical clustering. All hierarchical clustering performed in this study was done in

Perseus. For all clustering operations Spearman correlation was used with average linkage,

preprocessing with k-means, and the number of desired clusters set to 300 for both rows

and columns.

For clustering of ∆gene perturbation profiles, clustering was performed separately for
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fermentation and respiration datasets, and column-wise cluster order for fermentation and

respiration datasets was generated using only protein fold change profiles. Column ordering

was then applied to metabolite and lipid fold change datasets from the corresponding

growth condition and row-wise clustering was conducted. GO term enrichment was

performed in Perseus. P values were obtained from a Fisher’s exact test, adjusted for

multiple hypothesis testing39 and reported where P < 0.05.

For the analysis of ∆gene–∆gene correlations, clustering was performed on respiration

protein perturbation profile correlation data and the resultant ordering was applied to

∆gene–∆gene correlation datasets from all other omes and growth conditions for parallel

visual display. The same clustering process was carried out for the analysis of ∆gene–∆gene

correlations of RD ∆gene strains following RDR-adjustment.

Generation of ∆gene strains and cloning of genes and mutants for follow-up studies.

S. cerevisiae (BY4742) gene deletion strains for hfd1, atp2, ypr010c-a, and yjr120w were

generated using a PCR deletion strategy in which the open reading frames were replaced

by a KanMX cassette from the pFA6a-kanMX6 plasmid. Briefly, KanMX was amplified

with primers containing sequence homologous to sequence just upstream of the ATG and

just downstream from the terminal codon for each ORF. Amplicons were transformed into

BY4742, and yeast were plated onto YEPD plates containing 100 µg/mL G418. Knockouts

were confirmed by PCR and sequencing.

To generate plasmid yeast gene constructs, S. cerevisiae hfd1, atp2, and yjr120w were
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amplified by Accuprime Pfu polymerase (Invitrogen, USA) with primers generating a SpeI

site (forward) and SalI (reverse) (BamHI forward and EcoRI reverse for yjr120w). The hfd1,

atp2, and yjr120w amplicons and the yeast expression vectors p426GPD and p423GPD

were digested with SpeI and SalI or BamHI and EcoRI. Hfd1 and yjr120w were ligated to

p426GPD, atp2 was ligated to p423GPD, and each ligation was transformed into DH5α E.

coli. Plasmid minipreps were performed and recombinants were confirmed by sequencing.

Hfd1 mutants were generated via standard site-directed mutagenesis, and mutations were

confirmed by sequencing.

To generate plasmid human gene constructs, Homo sapiens ALDH3A1 and ALDH3A2

were amplified by Accuprime Pfu polymerase with primers generating a SpeI site (forward)

and SalI (reverse). The ALDH3A1 and ALDH3A2 amplicons and the yeast expression vector

p426GPD were digested with SpeI and SalI. ALDH3A1 and ALDH3A2 were ligated to

p426GPD and each ligation was transformed into DH5α E. coli. Plasmid minipreps were

performed and recombinants were confirmed by sequencing.

Yjr120w molecular biology studies—yeast growth assays. ∆atp2 and ∆yjr120w yeast

were transformed with p426GPD plasmids (either encoding for Yjr120w or empty vec-

tor) and p423GPD (either encoding for Atp2p or empty vector) and grown on Ura–, His–

plates containing 2% glucose. Starter cultures were inoculated with individual colonies of

yeast and incubated (30 °C, ~16 h, 230 rpm). To assay ∆atp2 and ∆yjr120w yeast growth

on agar plates, serial dilutions of yeast from a starter culture were prepared in Ura–, His–
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media lacking glucose. 10-fold serial dilutions of yeast cells were dropped onto Ura–, His–

agar media plates containing either glucose (2%, w/v) or glycerol (3%, w/v) and incubated

(30 °C, 4 d).

Yjr120w molecular biology studies—mRNA quantitation. BY4742 WT,∆coq8,∆atp2, and

∆yjr120w yeast were grown overnight in 3 mL YEPD. From the overnight culture, 2.5×106

cells were used to inoculate 100 mL YPGD media. 1 mL of culture was collected after 25

hours and total RNA was isolated using Masterpure Yeast RNA Purification Kit (Epicentre).

1 µg of RNA was reverse transcribed using Superscript III first strand synthesis kit (Thermo).

Using the resultant cDNA as template, set up QPCR reactions: 2 µL cDNA, 12.5 µL Power

Sybr Green Master Mix (Thermo), and 300 nmol/L forward and reverse primers. Primers

amplifying the following targets were used: atp2, yjr120w, and ubc6 (reference gene). QPCR

cycled as follows: After an initial 2 minute incubation at 50 °C, template was denatured at

95 °C for 10 minutes, cycled 40 times: 95 °C for 15 s, 60 °C for 1 minute. RNA abundance

was calculated using the ∆∆Ct method.

Hfd1p and ALDH3A1 biochemical studies—media lacking pABA. A specially formu-

lated synthetic media lacking pABA (‘pABA–’) was used for numerous follow-up studies

in this project. This media consisted of CSM Mixture; Complete, 790 mg/L (# DCS0019,

Formedium LTD, Hunstanton, U.K.) and yeast nitrogen base without amino acids and

para-amino benzoic acid, 6.9 g/L (# CYN4102, Formedium LTD, Hunstanton, U.K.).
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Hfd1p and ALDH3A1 biochemical studies—yeast growth assays. ∆hfd1 yeast trans-

formed with p426GPD plasmids encoding for Hfd1p variants were grown on uracil drop-out

(Ura–) synthetic media plates containing glucose (2%, w/v). Individual colonies of yeast

were used to inoculate starter cultures of synthetic media lacking pABA (pABA–) but con-

taining 20 g/L glucose. To assay WT and ∆hfd1 yeast growth on agar plates, serial dilutions

of yeast from a starter culture were prepared in pABA– media lacking glucose. 104, 103, or

102 yeast cells were dropped onto agar media plates containing either glucose (2%, w/v) or

glycerol (3%, w/v) and incubated (30 °C, 4 d). The base medias for the agar plates consisted

of either YEP (rich media), synthetic complete, pABA–, pABA– supplemented with 100 µM

4-hydroxybenzoic acid, or pABA– supplemented with 100 µM pABA.

To assay yeast growth in liquid media, yeast from a pABA– starter culture were swapped

into pABA– media with glucose (0.1%, w/v) and glycerol (3%, w/v) (base medium) at an

initial density of 5×106 cells/mL. To interrogate the rescue efficacy of various compounds,

100 nM (final concentrations) of pABA, tyrosine, 4-HPP, 4-HPAA, 4-HPA, 4-HMA, 4-HBz,

4-HB, 4HPL, or p-coumarate were added to the base medium. The cultures were incubated

in a sterile 96 well plate with an optical, breathable coverseal (shaking at 1140 rpm). Optical

density readings (OD600) were obtained every 10 min. Respiratory growth rates were

determined by fitting a linear equation to the respiratory growth phase and determining

the slope of the line. Relative respiratory growth rates were determined by comparing

cultures with additives to those without additive.
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Hfd1p and ALDH3A1 biochemical studies—Quantitation of CoQ and 4-HB in pABA–

∆hfd1 yeast cultures. 2.5×106 ∆hfd1 yeast cells from a pABA– (2% w/v glucose) starter

culture were used to inoculate 100 mL of pABA– media with glucose (0.1%, w/v), glycerol

(3%, w/v), and potential rescue compound (100 nM pABA, 4-HPP, 4-HPAA, 4-HPA, 4-

HBz, 4-HB, or none). These 100 mL cultures were incubated (30 °C, 230 rpm). After 25 h

(analogous to the primary respiration culture system used for this study), 1×108 yeast cells

were harvested for lipidomic or metabolomic analyses, and CoQ and 4-HB were quantified

by mass spectrometry as described above. These cultures and analyses were conducted in

biological triplicate.

Hfd1p and ALDH3A1 biochemical studies—Hfd1p phylogenetics. The amino acid se-

quences of the 19 known Homo sapiens ALDH proteins25 and S. cerevisiae Hfd1p (NP_013828.1)

were aligned by MUSCLE40, analyzed by ClustalW2 Phylogeny41, and visualized in iTOL42.

Hfd1p and ALDH3A1 biochemical studies—Mass spectrometry profiling of pABA– yeast

cultures (WT, ∆hfd1, ∆dpl1, and ∆coq8). 2.5×106 yeast cells from a pABA– (2% w/v glu-

cose) starter culture were used to inoculate 100 mL of pABA– media with glucose (0.1%,

w/v), glycerol (3%, w/v), and rescue compound (100 µM 4-HB or none). These 100 mL

cultures were incubated (30 °C, 230 rpm). After 25 h, 1×108 yeast cells were harvested for

lipidomic, metabolomics, and proteomic analyses by mass spectrometry as described in the

main Methods section. These cultures and analyses were conducted in biological triplicate.



212

Hfd1p and ALDH3A1 biochemical studies—Hfd1p, ALDH3A1, and ALDH3A2 expres-

sion and purification. PIPE cloning was used to generate pVP68K vectors encoding

ALDH3A1, Hfd1pC∆25, or ALDH3A2C∆25 (Hfd1p or ALDH3A2 lacking their C-terminal

25 amino acids, which comprise putative transmembrane domains) fused to an 8His-

cytoplasmically-targeted maltose-binding protein with a linker including a tobacco etch

virus protease recognition site (8His-MBP-[TEV]-ALDH3A1, 8His-MBP-[TEV]-Hfd1pC∆25,

or 8His-MBP-[TEV]-ALDH3A2C∆25). These constructs were expressed in E. coli (BL21[DE3]-

RIPL strain) by autoinduction. Cells were isolated and resuspended in lysis buffer (50 mM

HEPES, 300 mM NaCl, 10% glycerol, 5 mM BME, 0.25 mM PMSF, 1 mg/mL lysozyme

(Sigma), pH 7.5). Cells were lysed by sonication (4 °C, 2 × 20 s), and the lysate was clarified

by centrifugation (15,000 g, 30 min, 4 °C). The clarified lysate was mixed with cobalt IMAC

resin (Talon resin) and incubated (4 °C, 1 h). The resin was pelleted by centrifugation (700 g,

2 min, 4 °C) and washed three times ( 10 resin bed volumes each) with wash buffer (50 mM

HEPES, 300 mM NaCl, 10% glycerol, 5 mM BME, 0.25 mM PMSF, 10 mM imidazole, pH

7.5). His-tagged protein was eluted with elution buffer (50 mM HEPES, 300 mM NaCl, 10%

glycerol, 5 mM BME, 0.25 mM PMSF, 100 mM imidazole, pH 7.5). The eluted protein was

concentrated with a 50-kDa MW-cutoff spin filter (Merck Millipore Ltd.) and exchanged

into storage buffer (50 mM HEPES, 300 mM NaCl, 10% glycerol, 5 mM BME, 0.25 mM

PMSF, pH 7.5). Protein concentrations were determined by absorbance at 280 nm. The

MBP-fusion proteins were aliquoted, frozen in N2(l), and stored at –80 °C.
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Hfd1p and ALDH3A1 biochemical studies—Hfd1p, ALDH3A1, and ALDH3A2 enzy-

mology. Enzyme activity assays were conducted in groups of three replicate 100 µL reac-

tions, each containing MBP-fusion protein (0.2–25 µg), 1 mM NAD+, and 200 µM substrate

(4-HBz or hexadecanal (Avanti 857458M)) in an aqueous buffer (50 mM Tris pH 8.0, 150 mM

NaCl, 0.1% Triton X-100). NADH production was observed by monitoring fluorescence

(356 nm excitation, 460 nm emission) over a 30–60 minute period with a Cytation 3 Imaging

Reader (BioTek). KM and kcat values were determined by measuring reaction rates in the

linear range at varying substrate (4-HBz or hexadecanal) concentrations. Curve fitting to

generate Michaelis-Menten parameters was performed using SigmaPlot (Systat Software,

San Jose, CA). Reported activity represents the mean of three separate protein purifications.

Molecule Covariance Network Analysis For all pairwise combinations of molecules quan-

tified within a particular growth condition, regression analysis was conducted using fold

change measurements from all ∆gene strains having a measurement for both molecules in

the pair. Spearman’s regression analysis was performed to obtain correlation coefficients

(ρ). From these test statistics P values were calculated using a two-sided Student’s t-test.

All P values were corrected for multiple hypothesis testing (Bonferroni) and correlations

where |ρ| > 0.58 and P < 0.001 were reported. For RDR-adjusted regression analysis, the

RDR adjustment procedure was carried out as described in the ‘Respiration deficiency

response (RDR) abundance adjustment’ section (above). All pairs of covariant molecules

are visualized as networks generated using the Gephi open graph visualization platform
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(version 0.9.0). Complete respiration, fermentation and RDR-adjusted respiration network

layouts were generated using the Fruchterman–Reingold graph-drawing algorithm with

area set to 10,000 and gravity set to 30. Gene Ontology terms were obtained from the

Saccharomyces Genome Database (SGD). To calculate network selectivity the following

equation was used:

SMCN = [EObs,In/ETot,In]/[(EObs,Out + 1)/ETot,Out]

Where SMCN represents the selectivity coefficient for the molecule covariance network

(MCN) surrounding an individual node of interest, EObs,In is the number edges observed

within a pathway of interest, ETot,In is the number of total possible edges within the pathway

of interest, EObs,Out is the number of edges observed to molecules outside the pathway of

interest, and ETot,Out is the number total possible edges to molecules outside the pathway

of interest.

Gene ontology (GO) term enrichment analysis was performed using a Fisher’s exact test

with subsequent Benjamini-Hochberg FDR adjustment39 to account for multiple hypothesis

testing.

Proteomic analysis of ∆yor020w-a yeast 2.5×106 yeast cells from a pABA– (2% w/v

glucose) starter culture (∆yor020w-a or WT) were used to inoculate 100 mL of pABA– media

with glucose (0.1%, w/v) and glycerol (3%, w/v). These 100 mL cultures were incubated

(30 °C, 230 rpm). After 25 h, 1×108 yeast cells were harvested for proteomic analyses by
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mass spectrometry as described in the main Methods section. These cultures and analyses

were conducted in biological duplicate.

Quantitation of CoQ and PPHB in pABA–∆aro9,∆aro10,∆aim18, and WT yeast cultures

2.5×106 yeast cells from a pABA– (2% w/v glucose) starter culture were used to inoculate

100 mL of pABA– media with glucose (0.1%, w/v) and glycerol (3%, w/v). These 100 mL

cultures were incubated (30 °C, 230 rpm). After 25 h, 1×108 yeast cells were harvested for

lipid analysis, and CoQ and PPHB were quantified by mass spectrometry as described

in the Main methods section. These cultures and analyses were conducted in biological

duplicate.

Respiration deficiency response analysis The densities of ∆gene cultures were compared

to those of WT cultures (2-tailed T-test). Strains with slow growth in fermentation cultures

(∆gene/WT 6 0.2 and P < 0.05) were categorized as ‘slow fermentation growth’ strains (8

strains). Remaining strains were grouped into three categories based on their growth rates

in respiration cultures. Strains with significantly decreased respiration growth (∆gene/WT

< 0.6 and P < 0.05) were considered respiration deficient (RD) (41 RD strains). Strains

with borderline respiration growth (0.6 6 ∆gene/WT < 0.8) were categorized as ‘borderline

respiration’ (14 strains). Strains with respiration growth rates near WT or better than WT

(0.8 6 ∆gene/WT) were categorized as respiration competent (RC) (111 RC strains).

For PCA, average log2(∆gene/WT) values for each protein, metabolite, and lipid mea-
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sured in the respiration condition were analyzed using Perseus PCA software. PCA projec-

tions were exported from Perseus.

For volcano plot analyses, average log2(RD/RC) values were calculated as [mean

log2(RD ∆gene strains/WT)] – [mean log2(RC ∆gene strains/WT)]. A t-test (2-tailed, homo-

static) was performed to obtain P values. P values were corrected for multiple hypothesis

testing by multiplying each P value obtained by the number of biomolecules included in

this analysis (4,116) (Bonferroni correction).

For GO term analyses, proteins were separated as increasing in RD strains (positive

log2[RD/RC]) or decreasing in RD strains (negative log2[RD/RC]). Proteins with Bonferroni-

corrected P < 1×10–20 were collected from each group and subjected to GO term enrichment

analysis (http://geneontology.org/page/go-enrichment-analysis). Select GO terms were

highlighted because they were significantly enriched (Bonferroni corrected P < 0.05) in

proteins that were reduced (–) or increased (+) in RD strains. Boxplots of select molecules

were generated using matplotlib in python to compare particular molecules across all RD

and RC strains.

For ROC analysis, RD strains were considered positive examples whereas RC cells

were considered negative examples. Using the log2(∆gene/WT) values for individual

biomolecules as a discriminator, ROCs were generated by calculating false positive rate

(FPR) and true positive rate (TPR) for values that fall above a particular cutoff for molecules

that are increased in RD strains relative to WT and below that cutoff for molecules that are

decreased in RD strains relative to WT. A + sign indicates that an increase in that molecule

http://geneontology.org/page/go-enrichment-analysis
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is predictive of RD whereas a – sign indicates that a reduction in that molecule is predictive

of RD.

Supplementary Notes

Development of a stable and reproducible respiration culture condition. To profile di-

verse yeast strains during respiratory growth, when mitochondrial OxPhos is highly active,

we first needed to develop a distinct respiration condition suitable for large-scale investi-

gation. Early log phase fermentation cultures repress mitochondrial respiration, cultures

containing solely non-fermentable sugars preclude growth of respiration deficient yeast,

and high glucose cultures grown past the diauxic shift are too biologically dynamic to

allow reproducible sampling across a large scale study43,44. To overcome these problems,

we developed a culture system that includes low glucose (1 g/L) and high glycerol (30

g/L), enabling a short fermentation phase followed by a longer respiration phase. This

respiration condition affords steady growth and a stable biological state—as reflected by a

proteome that is constant over multiple hours (Supplementary Fig. S6.1c–e)—and, thus,

an essential window for reproducible sample harvesting.

∆Gene-specific phenotype detection. To identify ∆gene-specific phenotypes, we broadly

surveyed our data for characteristic outlier abundance measurements. For each profiled

molecule (in both respiration and fermentation growth conditions) we separated potential

∆gene-specific measurements into two groups: positive log2 fold change (log2[∆gene/WT])
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and negative log2fold change. These two sets were then plotted individually with log2 fold

change and –log10(p-value [two-sided Student’s t-test]) along the x- and y- axes, respectively.

Data were normalized such that the largest log2 fold change and largest –log10(p-value)

were set equal to 1. Considering the three largest fold changes where P < 0.05, we calcu-

lated the Euclidean distance to all neighboring data points and stored the smallest result.

A requirement was imposed that all considered ‘neighbors’ have a smaller fold change

than the data point being considered. It is anticipated that data points corresponding to

∆gene-specific phenotypes will be outliers in the described plots and have large associated

nearest-neighbor Euclidean distances. The described routine yielded three separate dis-

tances, the largest of which was stored for further analysis. The results of this analysis and

representative examples are highlighted (Fig. 6.2, Supplementary Figs. S6.5 and S6.6).

We observed maximal Euclidean distances across a range of 0.006 to 1.25. We set a cutoff

for classification as a ‘∆gene-specific phenotype’ at 0.70 and report 714 molecules (4.6% of

considered cases across both culture conditions) which exceed this threshold. This proce-

dure provided a useful ‘first pass’ analysis and afforded a truncated set of leads, which

were used to develop biological hypotheses.

Lack of effect of Dpl1p disruption on the Tyr-to-4-HB-to-CoQ pathway. To test the idea

that the CoQ biosynthesis and sphingolipid catabolism pathways are independent, we ex-

amined ∆dpl1 yeast, which lack a known dihydrosphingosine phosphate lyase. ∆dpl1 yeast

show neither a pABA– respiratory growth phenotype nor CoQ deficiency (Supplementary
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Fig. S6.7j,k). These results demonstrate that disruption of the Tyr-to-4-HB pathway in

∆hfd1 yeast is not downstream of a defect in sphingolipid metabolism. Furthermore, pro-

teome analyses showed that ∆hfd1 cultured without 4-HB and pABA are similar to ∆coq8

yeast—but not ∆dpl1 yeast—and adding 4-HB to ∆hfd1 cultures returns their proteomes to

WT-like profiles (Supplementary Fig. S6.7l,m).

Quantitative definition of the respiration deficiency response (RDR). To quantitatively

define the RDR, we categorized strains as respiration deficient (RD) or competent (RC)

and examined differences between these two groups. Principal component analysis of

the Y3K respiration dataset revealed marked separation of RD and RC strains (Fig. 6.3c

and Supplementary Fig. S6.8a). The underlying phenotype changes that distinguish RD

and RC strains include proteins, lipids, and metabolites (Fig. 6.3d). RDR perturbations

include significant decreases in ATP synthase, TCA cycle, and MICOS proteins (Fig. 6.3e,f

and Supplementary Fig. S6.8b), likely to decrease allocation of useless proteome mass

to dysfunctional mitochondria45. Importantly, the RDR also includes a positive response,

and numerous proteins—including protein folding, NADH metabolism, and proteasome

assembly proteins—are significantly upregulated in RD strains (Fig. 6.3e,f). Numerous

individual molecules—including lactate, alanine, 2-hydroxyglutarate, tyrosol, 4-HB, Gpx2p,

and Ahp1p, among many others—are significantly perturbed in RD strains and strongly

predictive of respiration deficiency (Supplementary Fig. S6.8c,d). Our quantitative as-

sessment of the RDR highlights biochemical features of the cellular response to defects in
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mitochondrial respiration, and suggests that a multi-omic assessment of proteins, lipids,

and metabolites could afford a highly specific biomarker panel for diseases affected by

OxPhos deficiency.

RDR normalization procedure. ∆gene strains were classified as RD (51) or respiration

competent (RC) (123) based on observation of a common perturbation profile signature in

the respiration culture condition. For each molecule we calculated an RDR score. This metric

represents the proportion of RD ∆gene strains over which the molecule was consistently

perturbed, relative to all RD ∆gene strains where the molecule was quantified. Across all

RD ∆gene strains, 776 molecules were identified as having an RDR score > 0.95 (consistently

perturbed across more than 95% of RD ∆gene strains where quantified) and classified as

RDR-associated. The individual measurements of these RDR-associated molecules were

then mean normalized (‘RDR-adjusted’) using abundance values from RD ∆gene strains.

This normalization procedure revealed characteristic deviations from the general RDR

(Supplementary Fig. S6.9). Importantly, this procedure enables visualization of ∆gene-

specific changes. For example, prior to RDR normalization, the expected decrease in Coq8p

in ∆coq8 yeast is obscured by RDR-associated proteins with large abundance changes

(Supplementary Fig. S6.9d). RDR normalization not only uncovers the decrease in Coq8p,

but a significant decrease in Coq5p, a functionally-related CoQ biosynthesis protein, also

becomes readily apparent (Supplementary Fig. S6.9d).
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Molecular defects of ∆yjr120w yeast. To examine the molecular basis for the CoQ de-

ficiency of ∆yjr120w yeast, we inspected our proteomics dataset, which revealed signifi-

cant decreases in ATP synthase proteins, especially Atp2p (Supplementary Fig. S6.10a).

Compared to other strains, the large decrease in Atp2p is unique to ∆yjr120w and ∆atp2

(Supplementary Fig. S6.10b). A relationship between yjr120w and atp2 is also suggested

by their genetic proximity (Supplementary Fig. S6.10c). Plasmid overexpression of atp2

rescues the ∆yjr120w respiratory growth defect (Supplementary Fig. S6.10d), indicating

a functional relationship between atp2 and yjr120w in vivo. A decrease in atp2 mRNA in

the ∆yjr120w strain is a component of the underlying mechanism (Supplementary Fig.

S6.10e). Interestingly, CoQ deficiency was also observed in ∆atp2 yeast (Fig. 6.3h).

Predicted enzymatic functions of Aim18p, Aro9p, and Aro10p. Since 1907, yeast have

been known to catabolize amino acids into fusel (German for ‘bad liquor’) alcohols through

the Ehrlich pathway46,47, but the physiological roles for the enzymes involved—such as

Aro9p and Aro10p—are not fully understood. Aro9p and Aro10p were previously thought

to provide a simple catabolic route for extracting nitrogen from aromatic amino acids48

(Supplementary Fig. S6.14a), but our MCNA unexpectedly indicated strong correlations

between Aro9p, Aro10p, and proteins involved in mitochondrial respiration (Fig. 6.4d,e),

suggesting a more complicated biological function that supports OxPhos. We hypoth-

esized that this function might be in the Tyr-to-4-HB-to-CoQ pathway (Supplementary

Fig. S6.14b), given the putative enzymatic activities of Aro9p and Aro10p in tyrosine and
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phenylalanine metabolism. Consistently, when cultured in pABA– media, ∆aro9 and ∆aro10

yeast are deficient in CoQ and PPHB (Fig. 6.4f).

Aim18p is a protein of undefined molecular function that has been detected in mito-

chondria49 and potentially linked to mitochondrial inheritance (Altered Inheritance of

Mitochondria, ‘AIM’) by large-scale studies in yeast50. Protein sequence alignments show

that Aim18p contains a chalcone-flavone isomerase (CHI)-like domain (Supplementary

Fig. S6.14c), whose homologs in plants typically function on aromatic small molecules

(chalcones) (Supplementary Fig. S6.14d)51–53. Given the potential for this protein domain

to catalyze modifications of aromatic small molecules, we hypothesized that Aim18p might

function in the Tyr-to-4-HB pathway to produce the CoQ headgroup (Supplementary Fig.

14d). Consistently, when cultured in pABA– media, we observed deficiency of PPHB in

∆aim18 yeast (Fig. 6.4f).
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