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Current practice in mass spectrometry-based proteomics is to identify peptides by
comparison of experimental spectra with theoretical spectra derived from a refer-
ence protein database. However, this strategy necessarily fails to detect peptides
and proteins whose amino acid sequence di�ers from the reference sequence, such
as when there is a genetic di�erence between the sample and reference genome.
Fortunately, next generation sequencing (NGS), specifically RNA-Seq, enables com-
prehensive determination of the coding transcript sequences present in a given
sample. These transcript sequences can then be translated in silico to the correspond-
ing proteins and used to build a customized proteomic database that captures all
sample-specific (i.e. specific to an individual) protein variations including those
resulting from alternative splicing, single amino acid polymorphisms (SAPs), inser-
tions, deletions, translational frameshifts, fusion genes, and RNA editing events. In
this dissertation, I show how customized proteomic databases derived from RNA-
Seq data can be employed during MS-searching to both enhance proteomic analysis
and discover novel peptides. Chapter 2 describes the discovery of novel splice-
junction peptides. Chapter 3 describes the large-scale detection of SAP-containing
peptides. Finally, Chapter 4 combines the bioinformatic pipelines from Chapter 2
and 3 and implements them within Galaxy-P, a web-based platform for the flexible
construction of NGS and proteomic workflows.
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� ������������
�.� P�������� ���������
The foremost challenge in the field of genomics is understanding the connection
between genotype and phenotype. Since the sequencing of the human genome
and advances in DNA sequencing technologies, an incredible number of genomic
and transcriptomic variations have been discovered in diverse species, tissues, and
cell-types. These variations include single nucleotide polymorphisms, insertions,
deletions, inversions, gene fusions, alternatively spliced mRNA, and changes in
nucleotide sequence from RNA editing (Figure 1.1). If the variation resides within
or overlaps a protein-coding region, it can change the sequence of the encoded
protein (Figure 1.2), which could have profounds e�ect on the phenotype or disease
state of an organism. Therefore, it has become increasingly important to not only
detect and characterize variations at the level of the genome and transcriptome
but to also directly detect these variations at the level of proteins, where the e�ect
of the variation typically plays out within the cellular system. In other words,
characterization of protein variations will be crucial to help understand the link
between genotype and phenotype.

�.� MS-����� ����������
In 1984, John Fenn discovered that large biomolecules could be introduced into
the gas phase through the process of electrospray ionization, allowing peptides
and proteins to be readily analyzed by a mass spectrometer [1]. Over the next
few decades, mass spectrometry (MS) instrumentation and sample preparation
methods steadily advanced in throughput and utility [2]. Owing to these advances,
MS-based proteomics has become the preeminent method for the identification
and quantification of proteins in a sample. One of the most popular MS-based
proteomics methods is the bottom-up or shotgun proteomics strategy, in which pep-
tides are detected in a high throughput manner. In bottom-up proteomics, proteins
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Figure 1.1. Examples of sequence and structural variations found in genomes and tran-
scriptomes. Nucleotide sequence variations within the genome include single nucleotide
polymorphisms, insertions, and deletions. Large chromosomal structural rearrangements
that contain breakpoints within protein-coding regions, such as with gene fusion events or
inversions, can dramatically change protein sequence. Other sources of variations occur at
the RNA-level. Alternative splicing of exons produces several distinct protein products from
one genetic locus. RNA editing changes nucleotide sequences post-transcriptionally. Given
the astounding amount of variation expressed in higher eukaryotes, it will become increas-
ingly important to understand their role and functional importance in various biological
contexts.



3

Figure 1.2. The central dogma of molecular biology. Variations that occur at the level of
DNA or RNA can influence the coding potential of proteins.

are extracted by lysing cells or tissues with a detergent or chaotrope-containing
lysis bu�er. Next, an enzyme such as trypsin, which hydrolyzes amide bonds
C-terminal to lysines and arginines, is used to digest the protein into peptides.
Note that peptides are more amenable to LC-MS analysis as compared to intact
proteins due to their favorable physicochemical properties (solubility, chromato-
graphic separability, gas-phase charge state, etc.). The resultant peptides typically
comprise a complex mixture of millions of distinct peptide sequences thus peptides
are chromatographically fractionated or separated to reduce sample complexity
before MS analysis. Peptides are introduced into the mass spectrometer through
electrospray ionization, where the peptides are driven from the liquid to gas phase
through application of a voltage gradient. Charged peptides in the gas-phase are
then directed into the mass spectrometer and their mass-to-charge (m/z) ratio is
measured with a mass analyzer, such as with ion-cyclotron resonance or an Orbi-
trap[3, 4]. For the purposes of high-throughput sequencing of peptide mixtures,
mass spectrometers are frequently operated in data-dependent mode, where pep-
tide precursor mass-to-charges are first detected in a full-scan (i.e. MS1 scan) and
then iteratively selected for fragmentation via collisionally induced dissociation.
During dissociation, peptide ions break along the amide backbone generating b
and y ions [5]. The mass-to-charges of these fragments are measured in a tandem
mass spectral scan (i.e. MS2 scan). After collection of the set of full and tandem
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mass spectra, peptides may be identified through database search methods. Figure
1.3 depicts the MS-based proteomics workflow just described.

Figure 1.3. Mass spectrometry-based proteomics workflow. A typical experiment involves
several steps: extraction of proteins from cells or tissues, enzymatic digestion of the proteins
into peptides, chromatographic separation of peptides, introduction of peptides into the MS
instrument through electrospray ionization, and sequencing of peptides through iterative
isolation and fragmentation of peptide ions. Post-analysis database searching identifies
peptides, which can be used to support protein identifications.

�.� MS �������� ���������
MS-based proteomics experiments can produce millions of peptide mass spectra.
This sheer volume of data precludes manual analysis; therefore, computational
methods have been crucial for matching peptides to their corresponding tandem
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mass spectra. The most widely employed computational method for the identifica-
tion of peptides is the MS database search strategy [6]. Here, a reference proteome
for the species under study is obtained and the proteins are digested in silico to
generate a list of all candidate peptides that could have been present in the sample.
For each candidate peptide, theoretical tandem mass spectra containing all possible
peptide fragment mass-to-charges is generated. Following this routine, two sets
of tandem mass spectra are produced: the set of experimental spectra that was
collected on the mass spectrometer and the set of theoretical spectra that was de-
rived from the candidate peptides. Each experimental spectrum is compared with
every other theoretical spectrum and the highest scoring experimental-theoretical
spectral pair is considered a peptide spectrum match (PSM). Thus, it is the scoring
of the degree of match between each spectrum pair that is central to all database
search methods. For instance, the first such algorithm reported, SEQUEST, scores
the degree of match using a cross-correlation function [7]. Once the experimental-
theoretical spectrum comparisons are completed for every experimental spectrum
in the whole set (e.g. group of LC-MS runs) and PSMs are generated, statistical val-
idation may be done to decide which PSMs are counted as a peptide identification
(Figure 1.4).

�.� T�����-����� ���������
The target-decoy strategy is a widely employed method for estimation of the false
discovery rate in a group of PSMs [8]. MS searching su�ers from the problem of
high-dimensionality —a single MS analysis generates large sets of tandem mass
spectra that need to be compared with even larger sets of theoretical tandem mass
spectra. Because there are multiple-hypotheses being tested, it is di�cult to estimate
the number of false positives that occur. The target-decoy method is an elegant
solution to this problem. In this strategy, experimental mass spectra are compared
with not only the target proteome (i.e. reference protein database) but also a decoy
proteome in which the protein sequences are reversed or shu�ed to represent
spurious sequences not present in the sample (Figure 1.4). The decoy PSMs provide
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Figure 1.4. MS database searching combined with target-decoy validation. In the target-
decoy search method, the set of theoretical tandem mass spectra derived from peptides
generated from in silico digestion of both the forward (target, shown in blue) and reverse
(decoy, shown in red) protein sequences are compared to the experimental spectra and
scored. Once the scoring is complete, a score distribution for the target (containing false
positives and true positives) and decoy (assumed to contain only false positives) can be
utilized to set appropriate peptide score cut-o�s.
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a key piece of information: the score distribution of false positives distributed
among the target PSMs. The score distribution for decoy PSMs (in red, Figure
1.4) are plotted along with the score distribution for target PSMs (in blue, Figure
1.4) and the false discovery rate for groups of target PSMs passing certain score
thresholds may be estimated (Figure 1.4) [8]. The success of this method can be
attributed to its versatility as it has been successfully applied to data collected from
various proteomics workflows using di�erent instruments.

The target-decoy method makes the assumption that the target proteome ap-
propriately represents the sample proteome both in size and composition. This
requirement shall become increasingly important in understanding the interplay
between database size and peptide identification quality.

�.� RNA-S��
Introduced in 2009, RNA sequencing (i.e. RNA-Seq) has dramatically increased
the ability to characterize the transcriptome [9]. RNA-Seq experiments start with
total RNA isolated from cells or tissues using either phenol-chloroform or column-
based extraction. Next, poly(dT) beads are used to isolate mRNAs that contain
poly(A) tails as these mRNAs are likely protein-coding. The mRNAs are then
fragmented by addition of a divalent cation and heat to catalyze strand breaks
randomly along each mRNA. Using random DNA hexamer primers, a reverse
transcriptase is added to the mRNA fragments to synthesize short cDNA sequences.
These cDNAs are amplified via PCR and then further processed using vendor-
specific sample preparation protocols. For example, Illumina sequencing protocols
require the ligation of Illumina-specific adapters which are used to immobilize
cDNAs onto a flowcell. Most next generation sequencing instruments operate
on the principle of template-based strand synthesis, in which a DNA polymerase
incorporates, one at a time, a fluorescently labeled nucleotide and the emitted signal
is recorded on a CCD camera. A short (30-200 bp) stretch of cDNA is sequenced
and each sequence fragment is called an RNA-Seq read. Figure 1.5 depicts the
Illumina-based workflow.
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Figure 1.5. Overview of the RNA-Seq workflow. Total RNA is extracted from the sample of
interest and poly(A)+ mRNA are enriched using poly(dT) beads. mRNA is fragmented and
reverse transcribed to create a cDNA library (shown in blue). In the case of Illumina-based
sequencing, specialized adapters are ligated to each cDNA and PCR amplified (brown).
The cDNAs are randomly attached to a flowcell through DNA hybridization. Each cDNA
undergoes bridged amplification, creating distinct clusters of cDNAs each with identical
sequence to the original cDNA. The four bases (A, T, C, G) are flowed over the cell one at a
time and DNA polymerases incorporate a single complementary nucleotide during each
A-T-C-G cycle. In this sequencing-by-synthesis method, the pattern and order of cluster
signal emission corresponds to cDNA sequence.
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�.� RNA-S�� ������������� ��������
A typical RNA-Seq experiment can generate several million to a billion short RNA-
Seq reads, representing the RNA fragments sampled from a cell’s transcriptome
[10]. Today’s sequencers typically produce RNA-Seq reads with lengths of up to a
few hundred nucleotides, and because of the short read lengths, transcripts must
be fragmented before sequencing in order to gain sequence coverage evenly across
the whole transcript. Because RNA-Seq datasets consist of random subsequences,
not full-length transcripts, computational tools play a crucial role in their analyses.

There are myriad computational and bioinformatic programs and they can
generally be categorized under a few core tasks: read alignment, transcript re-
construction, variant calling (e.g. single nucleotide polymorphisms, indels), and
transcript quantification [11].

In read alignment, each RNA-Seq read is aligned to a reference genome, where the
optimal alignment is the position for which there is highest correspondence between
the nucleotide sequences of the RNA-Seq read and reference genome. The reference
genome, in e�ect, serves as a sca�old through which related RNA-Seq reads may
be grouped together. Reads that overlap or are aligned close to each other on the
genome may be derived from the same genomic region or from the same transcript.
Not all reads will align perfectly to the genome because they may span multiple
exons. Spliced-aware aligners will account for the alternative splicing of transcripts
by allowing for “splits” between reads during alignment. Transcript reconstruction
is the process of inferring full-length transcript sequences from aligned RNA-Seq
reads. Similar to transcript reconstruction is de novo assembly, which still infer
transcript sequences but without the help of a reference genome. Once the transcript
sequences have been assembled, variant calling methods may be used to detect
small sequence di�erences like single nucleotide polymorphisms (SNPs). Finally,
transcriptional abundance may be measured using transcript quantification tools that
count the number of RNA-Seq reads mapping up to each transcript and, employing
various normalization routines, estimate the concentrations of each transcript.
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�.� T�� ����� ��������� ��������
MS database searching relies on the completeness and accuracy of the reference
proteome for the identification of peptides. Consequently, a peptide sequence being
absent from the reference proteome precludes detection of that peptide using MS
database search methods, even if that peptide (protein) is expressed in the sample.
The tandem mass spectrum of the missing peptide may even be incorrectly assigned
to the wrong peptide sequence, creating a false positive peptide identification.

Following the sequencing of the human genome, various organizations have
worked to annotate genes and their protein products [12]. For instance, the Ensembl
team developed sensitive ab initio gene prediction algorithms for the computational
prediction of protein coding regions across the genome and within expressed se-
quence tags (ESTs) listed in sequencing repositories [13]. The consensus coding
sequence (CCDS) project, on the other hand, employed comparative genomics
for protein annotation, specifically examining protein-coding sequences that were
conserved between human and mouse genomes [14]. The Swiss Institute for Bioin-
formatics (SIB) and the UniProt Swiss-Prot/Trembl group specifically focuses on
protein curation, designating a full-length protein sequence as their fundamental
annotation unit instead of a genomic locus [15]. Being protein-centric curators,
the Swiss-Prot team has amassed the most popular and reliable human reference
proteome with each protein entry linked to highly relevant functional annotations.

Regardless of the organization providing the human reference proteome, most
curators of protein entries strive to build a complete and accurate proteome. Inter-
estingly, they are also guided by two principles: assembling an “average” proteome
and minimizing sequence redundancy. First, the principle of assembling an “av-
erage” proteome arises from the fact that innumerable protein variations exist
in di�erent individuals, tissue-types, and cell-types. There is no one reference
proteome, but, in fact, millions of distinct proteomes. Therefore, protein curators
must choose which protein form to include in the database. Usually the best set of
proteins to include for a gene represents a composite of all the possible proteins.
For example, UniProt incorporates only the most relevant protein forms, defined as
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those most frequently detected in sequencing projects or supporting literature [16].
Second, the principle of minimizing sequence redundancy arises from the need to
create a reference proteome that is compact, with minimal redundancy or overlap
in protein sequences. Maintaining non-redundancy was important in the construc-
tion of early protein databases where the same or similar protein sequences were
listed multiple times. Today, this principle is reflected through UniProt’s curation
process where the decision to include a newly discovered protein sequence takes
into account the degree to which a novel protein form diverges from the “canonical”
protein sequence . For example, subtle splicing events that cause a protein to di�er
by a few amino acids are seldom listed in the protein reference database. Overall,
the choices of assembling an “average” human proteome with minimal sequence
redundancy helps maintain a consistent, stable reference proteome. However, this
means that reference proteomes do not necessarily reflect the actual proteomes
expressed in certain cells or individuals.

�.� A��������� ��� ��������� �������� ����
���������� ���������

The initial candidate protein sequences that protein curators and bioinformatic
programs must start with to build a reference proteome must be derived from trans-
lation of existing DNA and RNA sequence data, which is typically obtained from
large-scale sequencing projects (A few protein sequences have been determined
through Edman degradation experiments, but this is true for only a small number
of protein entries.) [12]. For that reason, protein sequence annotation depends on
the availability of nucleotide sequence data. This dependence is reflected in the
parallel evolution of protein databases and nucleotide sequencing technologies
(Figure 1.6).

In 1995, databases of expressed sequence tags (ESTs) —sequences corresponding
to partial or full-length mRNAs —were used by Yates and colleagues to automati-
cally match tandem mass spectra to peptide sequences [17]. By the time the draft
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Figure 1.6. Evolution of DNA sequencing technologies and protein databases. Protein ref-
erence sequences are typically derived from translation of nucleotide sequencing databases,
thus the protein reference databases largely rely on available nucleotide sequence reposito-
ries.

human reference genome was finished in 2001, protein curators had available to
them large human EST databases, genomic sequence, and a wealth of genomic
sequence data from small-scale biological studies reported in the literature [12].
Using these various sources of data along with improved bioinformatic algorithms,
several organizations were working to annotate the human proteome. During this
time a few researchers employed auxiliary nucleotide sequence datasets to increase
the number of novel peptides detected by MS. Edwards created a computational
approach that compresses the entire human EST database into a compact, MS-
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searchable database [18]. Schandor� et. al. utilized SNP databases derived from
EST data to allow for MS-detection of single amino acid polymorphisms (SAPs)
[19]. Tanner et. al. proposed utilizing the sequence of full genomes and introduced
the concept of searching MS data against 6-frame translated reference genomes,
which gave birth to the field of proteogenomics [20, 21].

�.� RNA-S��-������� ������� ���������
RNA-Seq has revolutionized transcriptomic analysis. It enables high-throughput
and deep sequencing of an entire transcriptome from a single sample, including each
transcripts’ sequence and structure (i.e. transcriptional start/end sites; exon-exon
connectivites) [10]. Not surprisingly, various research groups have utilized RNA-Seq
data to create customized proteomic databases [22–27]. Here, both RNA-Seq and MS-
based proteomics data are collected from the same or similar groups of samples. The
detected mRNA sequences provided through RNA-Seq are translated into protein
and compiled into customized protein databases. The RNA-Seq-derived sequences
may include putative splice variants, SAPs, and transcripts corresponding to novel
genes.

Ning et. al. reported the earliest example of incorporating RNA-Seq data for the
creation of a protein database. They used RNA-Seq data to detect novel exon-exon
junctions that were expressed at the transcript level. These junctions were translated
into protein and compiled into a database for searching against a mitochondrial MS
dataset; seven novel peptides were discovered [22]. This preliminary study hinted
that there were indeed sample-specific peptides not represented in the reference
proteome and that RNA-Seq could allow for direct, empirical measurement of
what peptide sequences may be expressed. Chapter 2 describes a bioinformatic
method which uses a spliced-aware aligner, Tophat, to detect novel alternative splice
junctions without prior knowledge of existing exon locations [28]. This method
enabled the detection of 57 novel splice junction peptides and showed that many
alternative splicing patterns have not been fully characterized in humans.

Wang et. al. showed that RNA-Seq datasets could be mined for single nucleotide
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polymorphisms and thus used to create a database of possible amino acid poly-
morphisms (SAPs) [24]. This resulted in the identification of peptides containing
SAPs, an average of 38 per cell line. Chapter 3, extends this work by conducting
an in-depth analysis of SAPs for a single human cell line. An unprecedented 695
SAP-containing peptides were identified, which allowed for investigation of various
aspects of SAP detection including allele-specific expression.

For species without a reference genome, RNA-Seq reads may also be converted
into full-length transcripts using de novo assemblers. In recent years, researchers
have showed that de novo assembled transcripts can provide putative protein se-
quences that may be expressed in non-model organisms [25, 26]. With the advent of
third generation sequencing technologies, such as the single-molecule sequencing
platforms provided by Pacific Biosystems, the next years may usher in a new era
where the concept of "reference proteome" may be supplanted by the concept of
proteomes built for each cell-type, tissue-type, or even individual.

Despite the many benefits of using RNA-Seq to create customized databases,
the main limitation has been in the complex computational workflows that are
needed for RNA-Seq analysis and MS database creation. Chapter 4 describes
the implementation of the bioinformatic workflows described in Chapter 2 and
Chapter 3 within Galaxy-P, so that the proteomics community may build upon
these methods as new sequencing and proteomics technologies arise. Galaxy-P, or
Galaxy for Proteomics, is an extension of Galaxy, a popular web-based bioinformatic
platform that allows for streamlined analysis of sequencing data [29].
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This chapter has been published in Molecular & Cellular Proteomics:

Sheynkman, G. M., Shortreed, M. R., Frey, B. L., and Smith, L. M. (2013) Discovery and
mass spectrometric analysis of novel splice-junction peptides using RNA-Seq. Mol Cell
Proteomics 12, 2341-2353

�.� A�������
Human proteomic databases required for MS peptide identification are frequently
updated and carefully curated, yet are still incomplete because it has been challeng-
ing to acquire every protein sequence from the diverse assemblage of proteoforms
expressed in every tissue and cell type. In particular, alternative splicing has been
shown to be a major source of this cell-specific proteomic variation. Many new
alternative splice forms have been detected at the transcript level using next gen-
eration sequencing (NGS) methods, especially RNA-Seq, but it is not known how
many of these transcripts are being translated.

Leveraging the unprecedented capabilities of NGS, we collected RNA-Seq and
proteomics data from the same cell population (Jurkat cells) and created a bioin-
formatics pipeline that builds customized databases for the discovery of novel
splice-junction peptides. Eighty million paired-end Illumina reads and ~500,000
tandem mass spectra were used to identify 12,873 transcripts (19,320 including
isoforms) and 6,810 proteins. We developed a bioinformatics workflow to retrieve
high-confidence, novel splice junction sequences from the RNA data, translate
these sequences into the analogous polypeptide sequence, and create a customized
splice junction database for MS searching. Based on the RefSeq gene models,
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we detected 136,123 annotated and 144,818 unannotated transcript junctions. Of
those, 24,834 unannotated junctions passed various quality filters (e.g. minimum
read depth) and these entries were translated into 33,589 polypeptide sequences
and used for database searching. We discovered 57 splice junction peptides not
present in the Uniprot-Trembl proteomic database comprising an array of di�erent
splicing events, including skipped exons, alternative donors and acceptors, and
non-canonical transcriptional start sites. To our knowledge this is the first example
of using sample-specific RNA-Seq data to create a splice-junction database and
discover new peptides resulting from alternative splicing.

�.� I�����������
Mass spectrometry-based proteomics relies on accurate databases to identify and
quantify proteins, including those derived from splice variants, indels, and single
nucleotide variants (SNVs) [1]. Most computational search algorithms detect pep-
tides by scoring the degree of similarity between in silico derived and experimental
peptide spectra, and thus can only identify peptides that are present in the pro-
teomic database. If the polypeptide sequence is not present in the database used
for searching, even if the peptide is present in the sample, it will fail to be detected.

Human proteomic databases used for mass spectrometric peptide identification
are frequently updated and carefully curated, yet are still incomplete. Despite e�orts
to comprehensively annotate every gene product, there are still many undiscovered
proteoforms [2] because the complete human proteome—the aggregate of all protein
products expressed in every tissue, cell, and cellular state—turns out to be vastly
more complex than was predicted [3–5]. Furthermore, each cell or tissue-type may
express a unique subset of all possible proteoforms, many of which may not be
represented in existing proteomic databases. These databases are assembled from
multiple datasets originating from an assortment of di�erent human tissue and cell
samples [6–11].

In recent years, alternative splicing has been shown to be a major source of
cell-specific proteomic variation in humans [3, 4, 12]. Human genes are composed
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of introns and protein-coding exons; a protein machine, the spliceosome, removes
introns from pre-mRNAs, joining exons to form a mature transcript ready for
translation. Since exons can be joined in various configurations, one gene typically
produces a “canonical” protein (defined as the most abundant form of the protein)
as well as one or more alternatively spliced protein products, which are often
thought to have modulated or altered biological function [13–16]. Many alternative
splice variants have been detected at the transcript level using next generation
sequencing methods, especially RNA-Seq. However, it is not known exactly how
many of these newly discovered alternatively spliced transcripts are being translated
and if these translated products are functional.

Several approaches have been employed in the last decade to expand detection of
alternatively spliced proteins using mass spectrometry. Initial approaches searched
proteomic data against databases containing splice variant sequences and then
confirmed the translation of a spliced sequence by detecting a peptide unique to
that form [17–26]. Other approaches expanded the number of alternatively spliced
sequences beyond entries present in databases by constructing exon-exon databases.
In this approach, exon coordinates are first determined by obtaining exon sequences
from databases such as Ensembl or by using ab initio computational algorithms to
predict the location of putative exon boundaries. Next, these exon sequences are
assembled into all theoretical exon-exon (and exon-intron) combinations, and then
the sequences are translated into polypeptide sequences and used for MS-based
searching to discover novel splice variant peptides [27–30]. To extend this approach,
several research groups have restricted their exon-exon database to include only
those sequences corroborated with transcript expression data [1, 31, 32], thereby
eliminating spurious sequences. Two other approaches developed include a method
that directly translates RNA sequence from expressed sequence tag (EST) contigs
[33–36] and a proteogenomics strategy that uses the genome as a template for
peptide sequence alignment [37, 38].

Several of the above methods expand proteomic databases to include entries
for putative or experimentally confirmed splice variants; however, unbounded
addition of more and more splice variants compiled from thousands of human cell-
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types is not the preferred solution. MS searching with inordinately large databases
containing many more proteins than actually present in the sample causes decreased
peptide identification sensitivity (as the probability of spurious spectral matches
to in silico peptide spectra is greater) [39, 40], complications in protein parsimony
(from including many redundant sequences) [41, 42], and longer analysis and search
times.

Given the unprecedented advances of next generation sequencing and the matu-
ration of RNA-Seq—longer read length, improved accuracy, increased a�ordability,
better software—the whole transcriptome of a single sample can now be sequenced
in a matter of days. As a result, all of the alternative splice junctions expressed
in a single cell-type can be determined empirically. Many of the aforementioned
splice detection methods rely on gene prediction programs, where reliable de-
tection of splice forms is a challenge, or the use of data from public repositories,
an amalgamation of data from multiple samples that may not reflect the splicing
patterns in a given cell-type. Because RNA-Seq methods are increasingly accessible
to proteomicists and these methods can empirically determine the full spectrum
of alternative splicing in a sample, there is a need for bioinformatic methods that
provide sample-specific, splice junction proteomic sequences from RNA-Seq data
for mass spectrometry database searching.

Though the focus of this paper is the study of alternative splice junctions, other
bioinformatics strategies to extract information from RNA-Seq data have been em-
ployed to create customized mass spectrometry databases. These include reducing
a database to only include sequences with transcript expression evidence [39],
including fusion or chimeric sequences (44), incorporating non-synonymous sin-
gle nucleotide polymorphism (SNP) or single nucleotide variant (SNV) sequences
[39], and, for non-model systems, building a proteomic database from de novo
assembled transcripts [43, 44]. The advent of next generation proteomics will most
certainly arrive when all these sources of transcriptomic variation can be seamlessly
incorporated into sample-specific proteomic databases.

We have developed a method to create a sample-specific splice junction database
from RNA-Seq data and used it to discover novel splice junction peptides. We col-
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lected both RNA-Seq and proteomic data from the same cell population (Jurkat cells)
and identified 12,873 transcripts and 6,810 proteins. We developed a bioinformatics
pipeline to retrieve high-confidence, novel splice junction sequences, translate these
sequences into the analogous polypeptide sequences, and then create customized
splice-sequence databases that allow for novel splice junction discovery. We dis-
covered 57 splice junction peptides not present in the Uniprot-Trembl proteomic
database using appropriately stringent MS search parameters and post-processing
steps, including the use of a conservative 1% local false discovery rate and manual
validation of junction peptide MS2 spectra. To our knowledge this is the first exam-
ple of using sample-specific RNA-Seq data to discover new peptides resulting from
alternative splicing.

�.� E����������� P���������

C��� C������

The Jurkat cell line (TIB-152) was obtained from the American Type Culture Col-
lection (ATCC, Manassas, VA). Jurkat cell culture was grown in 10% Fetal Bovine
Serum and 90% RPMI-1640 bu�er (ATCC, Manassas, VA) at 37�C. Cell concen-
tration was measured using the TC10 Automated Cell Counter system (BioRad,
Hercules, CA), which was validated via hemocytometer counting. Before harvest-
ing, cells were grown to approximately 1.3⇥ 106 cells/mL and had 95%+ viability
as measured with the trypan blue assay.

P�������� S����� P���������� ��� A�������

Approximately 25 mL of Jurkat cell suspension was centrifuged at 180g at 4�C
for 10 minutes. After removal of the supernatant, cells were resuspended in an
equivalent volume of ice-cold PBS bu�er (Invitrogen, Grand Island, NY) and cen-
trifuged again. This step was repeated twice and the final pellet was stored at
-80�C. For cell lysis, pellets were thawed on ice and a volume of SDT lysis bu�er
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equaling 2/3 the volume of the cell pellet was added. The pellet was pipetted up
and down to assist in its solubilization, followed by incubation of the solution at
95�C for 5 minutes. The SDT lysis bu�er consisted of 4% SDS, 500 mM Tris-HCl
(pH 7.4), and 180 mM dithreothreitol (DTT) (all reagents from Sigma-Aldrich, St.
Louis, MO). The resulting lysate was sonicated (power level between 2 and 3) on
ice—alternating between 30 seconds on and 30 seconds o�—for 3-5 minutes until
the viscous chromatin was solubilized and lysate had an aqueous consistency for
improved sample pipetting during later steps (Misonix Sonicator XL2015, Misonix
microtip PN/418, Farmingdale, NY). Protein content was measured using the 660
nm Protein Assay and the Ionic Detergent Compatibility Reagent (Pierce, Rockford,
IL) to allow for accurate protein quantification in the presence of SDS.

Detergents and salts in the sample were removed and the protein was subjected
to tryptic digestion by following the Filter-Aided Sample Preparation or FASP
protocol developed by Wisniewski et. al. [45]. Five aliquots of lysate containing
approximately 150 µg of protein were each added to a 100K MW Amicon Ultra
filter (Millipore, Billerica, MA). After multiple FASP wash steps, reduction, and
alkylation, trypsin was added directly to the filters (50:1 protein:trypsin w/w) and
digested overnight at 37�C. The next morning, filters were centrifuged at 14,000 g
for 15 minutes and the amount of peptide recovered was assessed via the Nanodrop
UV-Vis spectrometer (Thermo Fisher Scientific, Wilmington, DE).

Approximately 500 µg of tryptic peptide digest was fractionated using high pH
reverse-phase chromatography on a Shimadzu HPLC system (LC-10AD, SCL-10A
VP, SPD-10A VP, Shimadzu, Columbia, MD) and a Phenomenex C18 Gemini 3µ,
110Å, 3.0⇥150mm column (Phenomenex, Torrance, CA). The high pH method was
adopted from Gillar et. al. [46]. Mobile phase A (MPA) was 20 mM ammonium
formate, pH 10, and B (MPB) was 20 mM ammonium formate, pH 10, in 70%
acetonitrile. The HPLC flow was 0.5 mL/min and the gradient is as follows: 0% MPB
isocratic for 15 minutes (trapping step), linear ramp to 100% MPB over 60 minutes,
hold at 100% MPB for 5 minutes, to 0% MPB over 2 minutes, and equilibration at
0% MPB for 20 minutes. Fractions were collected every minute using a Gilson 203
fraction collector (Gilson, Middleton, WI) for a total of 27 fractions collected within
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the range of peptide elution as discernable from the UV-Vis trace. Fractions were
dried down using vacuum centrifugal concentration (Savant SpeedVac, Thermo,
Pittsburgh, PA) and stored at -80�C.

Each of the lyophilized fractions generated from the high pH LC separation was
reconstituted in sample solution consisting of 2% acetonitrile and 0.2% formic acid in
water and then chromatographically separated on a nanoAquity LC system (Waters,
Milford, MA) using a 20 cm reverse phase capillary column (100 µm i.d.) packed
with 3 µm MAGIC aqC18 beads (Bruker-Michrom, Auburn, CA). Mobile phase
A was 0.2% formic acid in water and B was 0.2% formic acid in acetonitrile. The
full HPLC method was 180 minutes long and included a 90 minute gradient. The
mass spectrometric analysis was conducted on a Velos-Orbitrap mass spectrometer
(Thermo Fisher Scientific, Bremen, Germany) operating in data-dependent mode.
A full scan (300-1500 m/z) was collected at a resolution of 30,000 followed by
fragmentation of the top ten precursor peptides, with +2 charge or higher, in HCD
mode (collision energy=40) and analysis of the tandem mass spectra in the Orbitrap
at a resolution of 7,500. Precursor fragmentation repeat count was set to two and
the dynamic exclusion was set to 60 seconds. XCalibur software version #2.1.0 was
used for data collection.

RNA-S�� A�������

RNA was extracted from Jurkat cells using Trizol Reagent (Life Technologies, Grand
Island, NY). 2 mL of Jurkat culture (~2.6⇥106 cells) was centrifuged at 110 g and 4�C
for 5 minutes. After removal of the supernatant, 1 mL of Trizol reagent was added
to the pellet and solution was incubated for 15 minutes at room temperature. The
subsequent steps are described in the Trizol Reagent RNA isolation procedure. The
final total RNA pellet was solubilized in 20µL water. The amount of RNA extracted
was quantified using the Nanodrop UV-Vis spectrometer (Thermo, Rockford, IL)
and mRNA integrity (RIN⇡10) was assessed using a 2100 Agilent Bioanalyzer
(Agilent, Santa Clara, CA).

RNA-Seq paired end libraries were prepared using the Illumina TruSeq RNA
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Sample Prep Rev. A (kit lot #6849988, Illumina, San Diego, CA). First, mRNA was
purified from total RNA using poly dT bead isolation and fragmented by heating
in the presence of a divalent cation. The fragmented RNA was then converted to
cDNA with reverse transcriptase using random hexamer priming and the resultant
double stranded cDNA was purified. cDNA ends were repaired, adenylated at
the 3‘ ends, and then ligated to Illumina adapter sequences. Primers matching the
adapter sequences were then used to PCR amplify the cDNA sequences. These
sequences were run on an Invitrogen 2% Size Select Gel (Lot# R19090-01) and
a band corresponding to ~350 base pairs was excised and used for paired end
(2⇥200bp) sequencing on an Illumina HiSeq 2000. Raw cluster station data was
post-processed and a total of 80 million RNA-Seq reads in fastq format were used
for splice junction discovery. All fastq files used in this study can be accessed at
NCBI‘s Gene Expression Omnibus (GEO) repository [47] by using the following
link: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE45428.

C����������� �� ��� S����� J������� D�������

S����� J������� D�������� ���� B�����-T����� S�������.

Annotated and unannotated junctions were detected using the Bowtie (v0.12.7)
and Tophat (v1.4.0) splice-junction discovery programs [48, 49]. All default Bowtie
parameters were used. In Tophat, the mate inner distance was set to 150. Two
rounds of Bowtie-Tophat processing were conducted with a supplied set of RefSeq
gene model annotations in GTF format [7]: the first round detected junctions only
matching the gene annotation file (option --no-novel-junctions) and the second
round detected all junctions, both aligning to the GTF file and novel (option -
G). All data processing was conducted on the Phoenix cluster at the University of
Wisconsin-Madison Chemistry department. The set of novel junctions not matching
the RefSeq gene annotation was extracted from sets of output .bed files by in-house
Perl scripts.
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T���������� �� ��� J������� N��������� S��������.

The set of unannotated splice junction coordinates containing six or more support-
ing RNA-Seq reads were translated into putative peptide splice junctions. The
exon coordinates were extended by 66 nucleotides on both of the flanking ends
of the junction. Junctions frequently overlapped with known genes, therefore
the transcriptional strand (i.e. forward or reverse) of the junction was inferred
from this association. The sequences resulting from a three frame translation, ei-
ther on the forward or reverse strand, were extracted from the reference genome
(hg19), translated to amino acid sequence, and trimmed to the first arginine or
lysine (MS data was from a tryptic digest). Sequences less than 5 amino acids
or containing a stop codon near the splice site were removed. All splice junction
sequences were appended to the canonical Uniprot proteomic (release-2012_10;
20,225 entries) and GPM CrAP database (version 2012.01.01, 115 sequences). Two
additional customized databases were built by appending junction sequences to
the Uniprot/Trembl (release-2012_10; 86,881 entries) and to the Ensembl (release
GRCh37.70.pep.all) protein databases and searches were conducted as described
below.

M��� S����������� J������� D������� S��������.

Raw mass spectrometry files were searched against the customized UniProt+CrAP+
Junction (53,476 entries total) database using the Percolator search node within Pro-
teome Discoverer (v1.3.0.339, Thermo Fisher Scientific, San Jose, CA). Percolator is a
machine-learning supplement to the SEQUEST search algorithm that increases the
sensitivity and specificity of peptide identifications [50]. Default peaklist-generating
parameters were used. Precursor m/z tolerance was set to 10 ppm and product
m/z tolerance was set to 0.05 Da. Peptides with up to two missed cleavages (trypsin)
were permitted. Variable methionine oxidation and static carbamidomethylation
were used. Using reversed sequences as a decoy database, peptides passing both 1%
and 5% global FDR and 1% and 5% local FDR (splice junction hit group) were used
for downstream analysis. Validation was based on q-values generated by Percolator.
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For identification of a protein using Proteome Discoverer, protein grouping and
strict parsimony principle was enabled, leucine and isoleucine were considered
equal, and only peptides passing 1% FDR and having a delta Cn higher than 0.15
were used. A minimum of two peptides per protein was required for identification.

All mass spectrometric raw files associated with this study may be downloaded
via FTP from the PeptideAtlas data repository [51] by accessing the following link:
http://www.peptideatlas.org/PASS/PASS00215.

�.� R������

O�������

RNA-Seq and MS-based proteomics data was collected; 19,873 transcripts, which
map to 12,873 genes, and 6,810 proteins were identified. RNA-Seq reads were
used to discover 144,818 unannotated splice junctions using Bowtie and Tophat
software. 24,834 Tophat junctions passing an expression cut-o� were translated
into polypeptide sequences. Either three frames or the one frame inferred from
comparison to gene models was translated, resulting in 33,136 polypeptide entries.
The splice junction sequences were appended to the Uniprot canonical database
(~20,000 entries) and searched against the mass spectrometric data. 210 splice junc-
tion peptides that were absent in the complete Uniprot/Trembl database (~87,000
entries) but present in RNA-Seq derived junctions passed 5% global FDR. A local
FDR was applied to the splice junction peptides and 72 (5% local FDR) and 57 (1%
local FDR) peptides were identified. An overview of these results are depicted in
Figure 2.1.

T���������� �������� �� ������ ��� ����� �� �������� ���������� ��
���� �����.

“Uniprot peptide” are all peptides identified by searching proteomics data against
the full Uniprot/Trembl database that includes isoforms (86,766 entries). “Splice
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Bioinformatic Workflow Numbers

Figure 2.1. Results overview for the bioinformatic pipeline.

junction peptides” are all the peptides identified from RNA-Seq data (translated
splice junctions) in this study that were not present in the full Uniprot/Trembl
database.

�RNA ��� P������ D��� C���������.

The transcriptomic and proteomic data collection workflow was designed to allow
for accurate splice peptide detection (Figure 2.2). The protein and mRNA samples
were extracted from the same Jurkat cell population to build a sample-specific
junction database, one with minimal intra and inter-laboratory variation. Protein
was extracted from cells using an SDS and DTT-based bu�er (SDT) and the FASP
protocol [45]. This protocol allows unbiased extraction and digestion of all protein
groups (including hard-to-solubilize transmembrane proteins), an important factor
when seeking to identify a proteoform [2]. Wisniewski et al. demonstrated that
the composition of proteins identified using FASP corresponded to the expected
abundances of Gene Ontology groups, with all protein groups evenly represented
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[45]. In addition, when we compared SDT-based and urea-based extractions, we
found that approximately 20% more protein (BCA assay) was extracted with SDT
and that membrane proteins were more represented (results not shown). Total RNA
was extracted from cells using a standard Trizol protocol. To provide a compre-
hensive RNA-Seq dataset for the sensitive discovery of alternative splice forms, 80
million reads of the longest RNA-Seq read type available on the Illumina platform
were analyzed: libraries were derived from 350 bp cDNA sequences and 100 bp
paired-ends were sequenced. In summary, the RNA and protein wet laboratory
experiments were designed so that transcript-level junctions are sensitively de-
tected and included in a comprehensive splice-junction database and the maximum
number of discoverable splice-junction peptides using bottom-up proteomics are
detected.

We measured the number of transcripts and proteins detected from both the
RNA-Seq and peptide MS data, respectively, in order to compare the transcriptomic
and proteomic datasets. RNA-Seq reads were processed by RSEM (RNA-Seq by
Expectation-Maximization) to estimate transcript abundances [52]. Reads were
aligned to a synthetic transcriptome and the number of reads associated with a given
transcript was used to estimate that transcript’s abundance in TPM (transcripts
per million). RSEM processing of 80 million RNA-Seq reads resulted in 19,320
transcripts that mapped to 12,873 genes (TPM>1). Tandem mass spectra were
processed by Proteome Discoverer (SEQUEST + Percolator algorithm) to infer
protein identities. Experimental peptide MS spectra were processed with SEQUEST,
followed by rounds of semi-supervised machine learning with Percolator, a target-
decoy search using a 1% FDR, and grouping of proteins using maximum parsimony.
Proteome Discoverer processing of 488,149 MS2 HCD spectra resulted in 77,733
Uniprot peptides and 6,810 proteins. Full results are in the supplemental table.

We also searched the mass spectrometric data against the UniProt/Trembl
database (~87,000 entries) in order to measure the number of isoforms. We were
able to detect two or more protein isoforms for 86 genes, where each isoform
required at least one unique peptide that passed a 1% FDR cut-o�. However, this
number is likely to be artificially low since the detection of isoforms using bottom-up
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Figure 2.2. Transcriptomic and proteomic data collection. Both RNA-Seq and MS-based
proteomics data were collected from the same Jurkat cell population. RNA-Seq data was
processed using Bowtie/Tophat to discover new junctions that were then converted into
polypeptide sequences. Protein was extracted and tryptically digested using the FASP
protocol. Peptides were fractionated and subsequently analyzed on a nanoLC-Velos Orbitrap
operating in data-dependent mode. A customized junction database derived from the
RNA-Seq data was used for MS database searching.



31

proteomics requires a tryptic peptide unique to each isoform and protein sequence
coverage is typically low (<25% coverage). The actual number of genes expressing
more than one protein isoform is believed to be much higher [9].

D���������� A���������� S�����-J�������� ���� RNA-S�� D���.

Bowtie and Tophat software were used to discover splice junctions from 80 million
RNA-Seq reads, and from these junctions, a peptide junction database was created
for use in mass spectrometric data searching. Part of the procedure described in
this section is illustrated in Figure 2.3.

Bowtie software e�ciently aligns short RNA-Seq reads to a reference sequence
(human reference genome, synthetic transcriptome, etc.) and Tophat discovers
junctions not represented in the gene models. Both methods work together to
discover novel junctions. Tophat discovers novel junctions primarily by finding
RNA-Seq reads that span an exon-exon boundary, the most direct evidence of
transcript splicing. It does this by segmenting the reads into subsequences and
aligning the subsequences to the genome. When a read is “split”—one half of the
read aligns upstream of an intron and the other half of the read aligns downstream
of the intron—this is evidence for a novel splice junction. Tophat utilizes Bowtie
for the alignment process and since both programs e�ciently process RNA-Seq
reads, the software can be run on desktop computers or local computer clusters
accessible to most labs.

Processing of 80 million paired-end reads by Tophat/Bowtie resulted in a total
of 280,942 junctions before filtering: 136,123 junctions present in RefSeq annotations
(NM accession entries, representing RefSeq mRNA sequences) and 144,818 unan-
notated junctions. The list of annotated splice junctions were derived from NCBI
RefSeq gene annotations because RefSeq has high quality, conservative annotations
with minimum redundancy. Of the 144,818 unannotated junctions, 19,942, 1,185,
and 22 junctions had over 10X, 100X, and 1000X read coverage (depth), respectively.
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Figure 2.3. Bioinformatics workflow to convert raw RNA-Seq reads into junction peptide
sequences. Bowtie and Tophat are used to align reads to the genome and annotated gene
structure sequences (RefSeq). During Tophat splice junction alignment, reads are segmented
and can align across exon-exon boundaries. When many reads support the presence of
a novel splicing event, the junction is reported in .bed format. The list of unannotated
junctions are converted to peptide sequence and searched against tandem mass spectra.
Here, we show an example of a canonical and an alternative splice site identification from
the detection of two tryptic peptides, where A* represents the amino acid residing, alanine
(A) in this case, at the junction.
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S�������� �� M������ RNA-S�� R��� D���� ��� J������� I��������
�� D�������.

The RNA-Seq read depth, the number of RNA-Seq reads supporting the existence
of a novel junction, was examined: a majority of the unannotated junctions were
lower in abundance (read depth), and a significant number of junctions had just one
supporting RNA-Seq read (Figure 2.4). We hypothesize that junctions containing a
small number of supporting reads are either expressed at low levels and represent
stochastic transcription [53, 54] or are the result of errors in the sequencing reads
or Bowtie alignment step [55, 56]. We reasoned that many of these low coverage
junction sequences are unlikely to result in a peptide identification, either because
they are false positives or expressed at an extremely low-level (below 1 copy/cell).
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Figure 2.4. Read depth frequency distribution for Tophat-detected annotated and unanno-
tated junctions. A majority of the reads aligned to RefSeq annotated junctions, as shown
in the red histogram, while a lower number of reads, on average, aligned to unannotated
junctions. Unannotated junctions with fewer than 6 supporting reads were removed prior
to downstream analysis (green dotted line).
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We elected to use junctions with six supporting reads or higher in the cus-
tomized database to strike a balance between inclusion of novel junction sequences
to promote peptide discovery and exclusion of junction sequences to minimize
false positives. Two observations support using this cut-o�. First, the transcript
expression levels (RSEM output) were plotted against the protein expression levels
(spectral counting), and the minimum transcriptional abundance required to de-
tect a protein corresponded to ~6 RNA-Seq reads per junction. Second, multiple
proteomic searches were performed, each di�ering by the minimum RNA-Seq read
depth required for a junction sequence to be included in the database. For example,
one search was against a database that included junctions having 1X RNA-Seq read
depth or higher while another search was against a database that included junctions
having 10X RNA-Seq read depth or higher. Uniprot peptide and splice junction
peptide score distributions (see nomenclature section above) were compared to
determine the incidence of false positives in the group of splice junction peptide
identifications. After taking into account the above observations, a lower read
depth cut-o� of six was selected for database construction.

C����������� �� � C��������� J������� D������� ���� RNA-S��
D���.

A pipeline was developed to convert unannotated junction sequences into putative
polypeptide entries for mass spectrometry searching. 24,834 junction sequences
with 6 or more reads were translated into 33,186 amino acid sequences. To ac-
complish this, junction ends were extended, translation frame was inferred (when
possible), and improbable sequences were trimmed or removed.

Transcript sequences were extended upstream and downstream of the Tophat
junction. Each Tophat junction is represented by four coordinates: the start and
end nucleotides of both the upstream and downstream Tophat “exon” (coordinates
1,2,3, and 4 in Figure 2.5). In humans, the average exon size is 148 nucleotides in
length (7), but the reported Tophat “exons” ranged from 8 to 100 nucleotides and
are an average of 64 nucleotides (Figure 2.6). This exon size distribution results
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Figure 2.5. Junction sequence processing before translation into peptide sequences. 4A)
Each Tophat junction consists of four coordinates: 1a, 2, 3, and 4a. Sequences were extended
by 66 nucleotides before translation to increase the probability of detecting peptides that
may partially protrude past 1a and 4a. 4B) The frame translation was inferred for the subset
of cases in which the left splice site, 2, of the unannotated junction corresponded exactly to
the left splice site of an annotated junction.

from the Tophat Software. Tophat reports only the stretch of sequence —upstream
and downstream of the splice site —that has evidence: aligned 100 bp RNA-Seq
reads that overlap the junction. In order to increase the probability of detecting
peptides that extend past Tophat junction ends (coordinates 1 and 4 in Figure 2.5a),
additional sequence was appended to both sides of the junction. Before translation,
the sequence coordinates of each Tophat junction were thus lengthened at flanking
exon ends (5’ end of upstream exon, 3’ end of downstream exon) by 66 nucleotides.

The frame translation was inferred for a subset of the Tophat junction sequences.
In the case that a novel junction’s left splice site (coordinate 2 in Figure 2.5b) cor-
responded to the left splice site of a known gene structure, the frame translation
was inferred. This is reasonable because the upstream exon is part of a known gene
model and will most likely be translated in the same frame as the canonical splice
form. For all other junctions where the frame could not be inferred, such as when
there were novel left and right (coordinate 2 and 3 in Figure 2.5b) splice sites or a
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Figure 2.6. Distribution of the Tophat exon lengths for unannotated junctions. The Tophat
exon lengths are a consequence of the de novo splice discovery program, where only
RNA-Seq reads spanning a splice site can be used as direct evidence for the existence of a
junction.

novel left splice site (coordinate 2), all three frames were translated.
Improbable sequences were either removed or trimmed. First, short peptides (<5

a.a.), peptides with an abundance of stop codons, and peptides that did not include
the splice site amino acid were removed. Second, polypeptide start and end sites
each were trimmed to the first occurrence of a lysine (K) or arginine (R), preventing
the inclusion of non-tryptic fragment sequences. Sequences were trimmed because
the proteomics data for this study was based on detection of tryptic peptides, all of
which begin after the C-terminus of a lysine (K) or arginine (R) and likewise end
with a K or R.

After subjecting the 33,186 unannotated transcript-level junctions to the afore-
mentioned processing steps, 24,834 remained and these sequences were translated
into 33,589 junction peptide entries (the higher number of peptide entries resulted
from requisite 3-frame translations) and were integrated into a customized junction
database (see supplemental table for full list). Most of the 8,352 junctions filtered out
were due to high frequency stop codons, or possibly to out-of-frame translation. To
create customized junction databases, the junction sequence entries were appended
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to the following protein databases: canonical UniProt reference (20,225 entries),
UniProt/Trembl (86,881 entries), or Ensembl (104,785 entries, version 70). The addi-
tion of junction peptide entries increased the size of the Uniprot, UniProt/Trembl,
and Ensembl databases by 13.1% (1,474,776 aa were added to 11,291,209 aa), 4.1%
(1,474,776 aa were added to 36,164,128 aa), and 3.7% (1,474,776 aa were added to
39,786,499 aa), respectively. The raw MS files were searched against each of these
three combination databases to identify the subset of splice junction peptides. The
lists of splice junction peptides among the three searches were very similar (see
supplemental table); we have chosen here to focus on MS results from the UniProt
reference + junction sequence database. Junction peptide sequences identified from
the Uniprot reference + junction sequence database were BLAST searched against
the full UniProt/Trembl database (~87,000 entries) and peptides not present in
UniProt/Trembl (hence new splice junction peptides) were retrieved.

B�������� S����� P������ D�������� ��� F���� P��������.

It has previously been demonstrated in multiple settings that when expanding a
proteomic database to include possible proteoform sequences or when searching
MS data against six-frame translated reference genomes, the false positive rate in-
creases and the sensitivity of peptide identification decreases [40, 57, 58]. Therefore,
proper statistical methods and scoring thresholds must be employed for accurate
identification of new variants.

A conservative local FDR based on Posterior Error Probability (PEP) values was
used for identified splice junction peptides to reduce the number of false positives
[59]. MS data was processed using Percolator, a machine-learning adaptation to SE-
QUEST [50], and a reverse target-decoy database. The search yields were 77,733 and
83,385 identified Uniprot peptides at a 1% and 5% false discovery rate, respectively.
To ascertain any peptide scoring biases for the Uniprot and splice junction peptides,
the delta precursor ppm and XCorr SEQUEST scores were plotted for di�erent
subsets of peptides (Figure 2.7). Figure 2.7b shows a comparison of splice junction
peptide score distributions to the score distributions from the same number of
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Figure 2.7. Comparison of peptide score distributions for canonical and junction peptides.
For the comparison of peptide scores, delta ppm (di�erence, in parts per million, between
measured and experimental precursor m/z) versus XCorr (cross-correlation value from
MS search) SEQUEST score was plotted. 7A) Score distributions for peptides matching
the UniProt/Trembl human proteomic database. 7B) Junction peptide score distribution
(n=210, 5% FDR) compared to the score distribution of 210 peptides randomly subsampled
from panel 7A. 7C) Local FDR junction peptide score distribution (n=72, 5% local FDR)
compared to score distributions for 72 peptides randomly subsampled from panel 7A. The
plotted points in Figure 7B illustrate that junction peptides tend to have lower scores than
the canonical ones when employing the global FDR thresholds. This mismatch indicates the
210 junction peptides will have greater than 5% false positives. Figure 7C shows the remedy
to this situation, namely calculation of a more strict local FDR (based on the Percolator
posterior expectation probability score), which then makes the canonical and junction
distributions quite similar.
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sub-sampled Uniprot peptides (n=210). The population of splice junction peptides
contained a disproportionately higher number of lower scoring peptides (passing
5% FDR, but not 1% FDR). This is probably due to the large number of specious
sequences resulting from the three-frame translated or even non-coding junctions.
To resolve this issue, we elected to apply a 1% local FDR threshold to the splice
junction peptides based on the posterior error probability, or PEP, values. The PEP
for a peptide identification is the probability that the experimental spectra actually
originated from the sequence reported. The local FDR for a subgroup of peptides
is calculated by dividing the expected number of false positives (the sum of PEP
values for all peptides within the group) by the total number of peptides [60]. Fig-
ure 2.7c shows that applying a local FDR threshold to the splice junction peptides
achieves a similar score distribution to the sub-sampled Uniprot peptides (n=57,
1% FDR; n= 72, 5% FDR). Thus, 57 novel junction peptides have been discovered at
the local false discovery rate of 1%.

P������� �� S����� J������� P������� �� V������ D��������.

The UniProt reference protein set is a popular database used in proteomics; however,
many other databases and sequence repositories are also available for researchers
to use. Therefore, we checked to see how many of the 72 splice junction peptide
sequences that were not in the Uniprot/Trembl database were present in other
publically available databases. We did this by BLAST searching each of the 72 splice
junction peptide sequences against the human datasets found within NCBI’s dbEST,
INSDC (the International Nucleotide Sequence Database Collection, which includes
Genbank and the DNA Data Bank of Japan), Ensembl, Genscan, and the NIST
peptide mass spectral library. We determined how many sequences were already
present in these databases and found 22, 22, 7, 12, and 5 peptides, respectively. A
table showing each peptide sequence and the database(s) it was found in is available
in the supplementary information. All in all, 39 of the sequences corresponding to
the 72 splice junction peptides were found in one or more of the nucleotide sequence
or proteomic repositories; however, most of these had limited or no evidence of



40

protein expression. It may be noted that although BLAST analysis easily determines
if a particular sequence is present in a database, that does not mean that the splice
junction peptide would be identified with statistical significance in a mass spectral
search against that same database.

D��������� A���������� S����� J������� P�������.

We designed a bioinformatic workflow that leverages RNA-Seq data to create a
customized splice-junction database. Despite the comprehensiveness of the UniPro-
t/Trembl human proteomic database—86,766 discrete protein entries ranging from
manually validated to computationally predicted sequences (entries without evi-
dence for the expression of the protein)—we still discovered 57 novel splice junction
peptide sequences that were absent in the UniProt/Trembl database. The RNA-Seq
customized splice junction database provided a promising mechanism for discovery
of these peptides.

The discovered peptides represented many di�erent types of splicing including
exon skipping events, alternative donors and acceptors, novel exons, alternative
transcriptional start sites and novel exon-exon junctions (Table 2.1). A full table
of each splice junction peptide that includes information such as the observed
canonical peptide, a description of the splicing event (e.g. exon skipping), and
transcript level alternative/canonical splicing frequencies, may be found in the
supplemental table. The most frequent splicing types exhibited by the splice-
junction peptides were alternative acceptor and donor sites and skipped exons.

The most common splicing events were small insertions and deletions (indels)
occurring at the 3’ acceptor exons, frequently characterized by the NAGNAG motifs
where two AG dinucleotide splice site acceptors sit in close proximity to each other:
this agrees with recent gene validation e�orts of the GENCODE gene annotation
project in which mass spectrometry data retrieved from the Global Proteome Ma-
chine (GPM) and PeptideAtlas were aligned to GENCODE gene models to assess
the number of translated products [17]. NAGNAG tandem splicing may cause
subtle changes in the protein sequences, just the insertion or deletion of one amino
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Frequency

+3nt 13
-3nt 2
35nt 1
77nt 1

1 Exon 9
2 Exon 2
3 Exon 1

Left 3
Right

(-21,-12, +12, +23, +24, +58)

4

2
5

2

7

1

Completely Unannotated
Alternative Donor

Cross Gene

Alternative Transcriptional Start Site (TSS)
Within Intron

Splicing Event

Alternative Acceptor

Skipped Exon

Novel Exon

Events represented by 57 discovered splice-junction peptides

Table 2.1. Frequency of splicing events represented by the 57 junction peptides passing
1% local FDR. A variety of di�erent splicing events were detected from RNA-Seq specific
splice junction entries.

acid, yet there is evidence that these alternative forms are not merely the result of
stochastic noise from splicing machinery. Recently, evidence has been mounting
that NAGNAG splicing plays a functional role. These splicing sequences have been
shown to be evolutionarily conserved across species and the ratio of canonical to al-
ternative splicing has been shown to be tissue-specific—facts that suggest NAGNAG
splicing is important to protein function [61]. The PSI ( ) or “Percentage Spliced In”
[63] was calculated for all fifteen peptides exhibiting alternative acceptor splicing.
“Percentage Spliced In” is the fraction of minor and major isoforms, expressed as a
percentage. The PSI ranged from a low of 0.2% to a high of 27.1% and the average
was 5.6%.
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�.� D���������
A peptide or protein sequence must be listed in the database to be identified by
mass spectrometry; hence, proteomics relies on databases to discover new prote-
oforms. Despite the large strides that groups curating databases such as Swiss-
Prot/Trembl and GENCODE have made in completing gene models, including
improving pipelines to better discriminate between putative and actual protein
sequences by incorporating the latest high-throughput MS data, not all proteins are
listed. The diversity of human proteoforms is immense and proteoforms expressed
in thousands of human cell types have yet to be catalogued. Furthermore, the list of
protein entries in the human reference proteome is consolidated from the human
cells studied to date and may not reflect variants present in any particular sample.
One of the major sources of cell-type specific proteomic variation is alternative
splicing, where the protein coding exons of a gene are stitched together in various
combinations to create multiple splice forms. While there have been e�orts to create
expanded databases that capture all alternative splicing variants, we suggest that
the solution should not be unbounded expansion of a central database, but rather
the customization of databases for specific cell-types. Due to recent unprecedented
advances in next generation sequencing and RNA-Seq, this proteomics strategy is
now within reach.

We describe here a novel strategy to use a sample-specific RNA-Seq dataset to
characterize new cell-type specific splicing events not yet captured in proteomic
databases. We collected RNA-Seq and proteomic data from a single cell population
(Jurkat cells), constructed an empirically derived splice-junction database from
RNA-Seq data, searched the accompanying mass spectrometry data against the
customized splice-junction database, and discovered new splice-junction peptides
that were absent from the UniProt/Trembl proteomic database, which includes all
putative gene annotations predicted from the Ensembl pipeline. To our knowledge,
this is the first report of using RNA-Seq data to discover mRNA splice junctions
de novo from direct alignment of RNA-Seq reads with the reference genome (exon
boundaries not supplied) and construction of a customized splice junction database
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from the splicing events that were detected.
We found that an important element in creating such customized databases is

achieving a balance between the inclusion of all putative proteoform sequences
(for which there is transcript-level evidence) to maximize discovery of new forms,
and the reduction of database size to control for sequence redundancy and false
positives. Unbounded expansion of databases by including additional protein
sequences, such as those derived from proteogenomics (6 frame translation), ab
initio gene predictors, and transcriptomics data (3 or 6 frame translation), is prob-
lematic because it increases false positives, redundancy, and MS search times. The
false positive rate is increased when many spurious protein sequences, correspond-
ing to proteins not expressed in the sample, are added to the database, because
the presence of these sequences increases the probability that an experimental
spectrum matches that sequence by random chance [57]. Note that some of the junc-
tion peptide sequences described in this paper were found in expanded databases
(e.g. GenBank), but mass spectrometric searching against these large, all-inclusive
databases is problematic for the reasons stated above. Redundancy is also increased
by adding many closely related proteoforms, and this confounds protein parsi-
mony, the inference of protein from peptides [41, 42]. Conversely, in the case of
our experimentally determined splice-junctions, strict reduction of the database to
include only those sequences with the highest expression levels (>30 transcripts per
million, TPM) was inappropriate: there are plenty of examples of low transcript
abundance but high protein abundance and vice versa [64, 65]. Therefore, to strike a
balance between discovering novel alternative splice junctions and minimizing the
number of spurious sequences, we included junction sequences with six or more
supporting RNA-Seq reads and used a local 1% FDR for splice junction peptides.

Another important issue in the discovery of alternative splice forms at the
protein level is the low number of splice-specific peptides actually identified, an
issue that has been revealed by work reported in the literature [17, 19, 22, 24, 25, 30,
66]. Part of the reason for the low number of alternative splice variants detected
are the technical di�erences between RNA-Seq and bottom-up proteomics, namely
sequence coverage and detection sensitivity. RNA-Seq reads are obtained by, first,
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randomly fragmenting mRNA molecules with a divalent cation and heat, and
second, reverse transcribing these RNA fragments into cDNA and using PCR to
amplify this initial cDNA library. These steps allow for the detection of reads
spanning the whole transcript (100% coverage) and corresponding to transcripts
expressed at a low-level [67]. Peptide spectra, on the other hand, are obtained by,
first, employing a proteolytic enzyme to cleave the protein at prescribed sites, and
second, directly electrospraying the peptide into a mass spectrometer and collecting
spectral scans. These steps allow the detection of only those peptides amenable
to LC-MS/MS (~5-25% coverage) and corresponding to proteins expressed at a
high enough level for detection (attomoles-femtomoles). The consequence of these
RNA and protein measurement di�erences is that it is much more di�cult to detect
alternative splice variants at the protein level than the RNA level. Transcripts
can be sensitively (<1 transcript/cell) and completely (100% sequence coverage)
characterized, but for proteins, only moderately or highly expressed (>1 protein
molecules/cell) proteins are usually detected and amino acid sequence coverage is
typically low (~5-25%). Alternatively spliced proteins are di�cult to detect because
1) they have lower cellular abundances than the canonical forms, 2) require at least
one splice form-specific peptide for unambiguous detection, likely one spanning a
junction or residing in a splice form-specific exon [24], and, 3) the alternative splice
variant sequence is sometimes not yet in the database.

The number of alternative splice forms expected to be detected in a bottom-
up proteomics experiment has been estimated using computational approaches
[19, 22, 24]. Some authors reported that they identified the expected number of
splice-specific peptides while other authors identified far fewer peptides than
predicted. These discrepancies were attributed to the underlying assumptions of
their statistical models. In any case, this paper shows that new splice junction
peptides can be detected directly from customized databases built from RNA-Seq
data. It is likely that these peptides represent the tip of the iceberg, and that there
are many more splice-specific peptides that are currently undetected. Extensions of
the strategy employed in this paper may be employed to increase the ability to detect
splice junction peptides. For example, utilizing multiple proteolytic enzymes (LysC,
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GluC, etc.) will increase the odds of creating a splice-specific peptide detectable by
LC-MS/MS, or targeted proteomics strategies such as selected reaction monitoring
(SRM) analysis could be employed to decrease detection limits for splice junction
peptides of interest that have low abundances.

Next generation sequencing and RNA-Seq has developed rapidly and its cost
has decreased greatly making it accessible to most research organizations. Because
of this technological revolution, there is a great opportunity for next generation
proteomics to utilize sample-specific, customized databases built from RNA-Seq
data. The present work on discovery of novel splice junctions is one important
aspect of proteomic variation, but there are many other variations (e.g. SNVs, RNA
fusion products) that may also be captured in custom databases. As RNA-seq
technologies continue to become increasingly a�ordable, accessible, and sensitive,
the power and utility of this new strategy for the discovery of proteomic variation
will continue to expand.
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�.� A�������
Each individual carries thousands of non-synonymous single nucleotide variants
(nsSNVs) in their genome, each corresponding to a single amino acid polymorphism
(SAP) in the encoded proteins. It is important to be able to directly detect and
quantify these variations at the protein level in order to study post-transcriptional
regulation, di�erential allelic expression, and other important biological processes.
However, such variant peptides are not generally detected in standard proteomic
analyses, due to their absence from the generic databases that are employed for mass
spectrometry searching. Here, we extend previous work that demonstrated the use
of customized SAP databases constructed from sample-matched RNA-Seq data. We
collected deep coverage RNA-Seq data from the Jurkat cell line, compiled the set of
nsSNVs that are expressed, used this information to construct a customized SAP
database, and searched it against deep coverage shotgun MS data obtained from
the same sample. This approach enabled detection of 421 SAP peptides mapping
to 395 nsSNVs. We compared these peptides to peptides identified from a large
generic search database containing all known nsSNVs (dbSNP) and found that more
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than 70% of the SAP peptides from this dbSNP-derived search were not supported
by the RNA-Seq data, and thus are likely false positives. Next, we increased the
SAP coverage from the RNA-Seq derived database by utilizing multiple protease
digestions, thereby increasing variant detection to 695 SAP peptides mapping
to 504 nsSNV sites. These detected SAP peptides corresponded to moderate to
high abundance transcripts (30+ transcripts per million, TPM). The SAP peptides
included 192 allelic pairs; the relative expression levels of the two alleles were
evaluated for 51 of those pairs, and found to be comparable in all cases.

�.� I�����������
DNA sequencing technologies have allowed researchers to uncover an astounding
amount of genetic variation in humans, including a multitude of single nucleotide
variations, insertions, deletions, tandem repeats, inversions, translocations, and
duplications [1]. Among these variations, single nucleotide variants (SNVs), the
single nucleotide di�erences between two genomes that occur on average about
once every 860 base pairs, have been the most intensely researched, mainly through
genome-wide association studies that seek to uncover the sets of causative SNVs
that are responsible for a disease or trait [1–3]. Advances in sample preparation,
sequencing instrumentation, and computational data analysis have made it easier
for researchers to rapidly sequence and discover the millions of SNVs found within
a genome, and thus the challenge today is not how to discover these variations but
how to sift through them to find those with functional significance [4].

One way to simplify the study of SNVs is to focus on those SNVs that lie within
coding regions, because these SNVs can cause a change in the protein amino acid
sequence and are thus most likely to modify the function of a protein. Coding
SNVs can be classified into three types: (1) synonymous, which does not change the
corresponding amino acid, (2) nonsense, which introduces a premature stop codon,
and (3) non-synonymous, also called missense, which changes the corresponding
amino acid. While it is well accepted that synonymous SNVs do not a�ect the
protein function, and nonsense SNVs usually cause a loss of function (because the
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protein is truncated)[5], it is harder to determine what e�ect a non-synonymous
SNV (nsSNV) has on a given protein’s function [6].

Current strategies employed to study the functional e�ects of nsSNVs include
determining statistical associations between well phenotyped populations (i.e.
genome-wide association studies), computationally predicting the functional e�ect
of an SNV using programs like SIFT and PolyPhen-2 [7, 8], and, most recently,
evaluating the nsSNV within the biological system, such as in a protein-protein
interaction or regulatory network [9]. These approaches guide the prioritization
of nsSNVs for subsequent validation and hypothesis testing using in vitro and in
vivo functional assays. Though these statistical and bioinformatic strategies have
aided the study of nsSNVs, another valuable piece of information is the direct
measurement of the variant-containing protein.

The direct detection of proteins containing single amino acid polymorphisms
(SAPs) encoded by an nsSNV can aid researchers in studying the functional signifi-
cance of these variants. Directly measuring these SAP-containing proteoforms [10]
is essential to understanding how an SNV influences a variety of processes at the
protein-level such as post-translational regulation of protein expression (e.g. protein
degradation and stability), localization of the protein, modulation of protein-protein
interactions, and influence of the SAP on patterns of post-translational modifica-
tions (PTMs). Furthermore, understanding the influence of SAPs across various
cell states would be very di�cult without technologies to measure these protein
variations. Fortunately, mass spectrometry-based proteomics has undergone re-
markable development in the past decade and can now be used to comprehensively
identify and quantify large portions of the proteome [11–13]. MS-based proteomics
has tremendous potential to detect SAPs on a large scale, providing researchers
with valuable information regarding the relationship between genomic variations
and the ultimate protein products they encode.

The main impediment to the wide-spread adoption of variant peptide detection
using mass spectrometry has been the lack of proteomic databases that include
sample-specific variant sequences. The current practice in proteomics to identify
peptides or proteins is to search the mass spectra against the sequences contained
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in a reference proteomic database, which is derived from either the human refer-
ence genome or cDNA sequence repositories [14–17]. Since the reference protein
sequences do not contain the amino acid variations specific to a sample, a mass
spectrum produced from a variant-containing peptide will not correctly match to a
sequence and, therefore, will fail to be detected.

Several researchers have addressed this problem by constructing proteomic
databases that include SAPs and then searching these databases against tandem
mass spectra to detect SAP peptides. One approach relies on the construction of
an exhaustive SAP database which includes amino acid changes resulting from
every hypothetical nucleotide change in the genome [18–20]. Another approach
relies on the construction of a database that includes every SAP found within SNV
or cancer mutation repositories, such as dbSNP or COSMIC [21–34]. Both of these
approaches successfully allowed the detection of SAP peptides that are absent from
the reference proteome and thus show the potential of proteomics to characterize
variant peptides. However, the databases are greatly increased in size by tens
of thousands of SAP-containing sequences, many of which are not expressed in
the sample. This results in a concomitant increase in the false positive rate and
a decrease in peptide identification sensitivity [18, 21, 35]. These problems were
overcome in two studies that used RNA-Seq data to build SAP databases customized
for a sample, enabling the detection of dozens of SAP peptides, including peptides
containing novel variants resulting from either rare SNVs or de novo mutations
[36, 37]. These studies showed how rapid advances in next generation sequencing
technologies and the ease with which scientists can empirically measure all the
coding SNVs in a sample can be harnessed to expand the detection of SAPs on a
proteome-wide scale.

Here, we build upon those studies by comprehensively investigating SAP pep-
tide detection in the Jurkat human cell line. This study follows from previous work
in which we used RNA-Seq data to detect novel splice-junction peptides [38]. We
collected deep coverage RNA-Seq data from the Jurkat cell line, compiled the set of
nsSNVs that are expressed, used this information to construct a customized SAP
database, and searched it against deep coverage shotgun MS data obtained from



56

the same sample. The SAP peptides identified from this customized database work-
flow were of much higher quality as compared to those identified using a larger
aggregate database that incorporates all known nsSNVs (dbSNP). We employed
multiple protease digestions to increase proteomic coverage and, thus, the number
of SAP peptide identifications. These detected SAP peptides represent the most
comprehensive study to date. Using this dataset, we describe various characteris-
tics of the detected SAP peptides, including their corresponding transcriptional
abundance, SNV functional e�ect scores, and degree of allele-specific expression.

�.� E����������� P���������

M�������� ���� �������

Jurkat cells (TIB-152) were grown in 10% Fetal Bovine Serum and 90% RPMI-1640
bu�er at 37�C to a concentration of ~1.3⇥106 cells/mL (cell line and media were
purchased from ATCC, Manassas, VA). In total, there were 12 flasks each containing
25 mL of Jurkat cell suspension. Upon harvesting, cell viability for each flask was
determined with the trypan blue assay and cells were counted on a TC10 Automated
Cell Counter system (BioRad, Hercules, CA). All cell cultures had 95%+ viability.

M��� ������������ ������ ����������� ��� ���� ����������

The proteomic sample preparation has been described previously in detail [38].
Briefly, Jurkat cell suspension was pelleted and rinsed twice in cold PBS bu�er
before storage at -80�C. Cell lysis was performed by following the FASP protocol
[39]. Pellets were solubilized in SDT lysis bu�er (4% w/v SDS, 100 mM DTT, 50
mM Tris-HCl), heated, sonicated, and 150 µg aliquots of protein were transferred
to a 100K MW Amicon Ultra filter (Millipore, Billerica, MA). For this study, the
FASP protocol was slightly modified to allow for multiple enzymatic digestions.
The FASP method was followed for initial wash steps, alkylation, and the last three
wash steps, which employed 50 mM ammonium bicarbonate. Then, each filter
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was washed with two additional rounds of bu�er compatible with a protease and
the enzyme was added directly to the filter as listed here: 3 µg of trypsin (50:1
protein to enzyme ratio) in 50 mM ammonium bicarbonate at 37�C for 16 hours
(Promega, Madison, WI); 1.5 µg of rLysC (100:1) in 25 mM Tris-HCl pH 8.5, 1 mM
EDTA, 4 M urea at 37�C for 16 hours (Promega, Madison, WI); 1.5 µg of ArgC
(100:1) in 270 µL of 50 mM Tris-HCl pH 7.6, 5 mM CaCl2, and 2 mM EDTA and
30 µL of 50 mM Tris-HCl pH 7.6, 50 mM DTT, and 2 mM EDTA at 37�C for 16
hours (Promega, Madison, WI); 1.5 µg of AspN (100:1) in 50 mM sodium phosphate
pH 8.0 at 25�C for 16 hours (Roche, Indianapolis, IN); 1.5 µg of GluC (100:1) in 25
mM ammonium bicarbonate at 25�C for 16 hours (Roche, Indianapolis, IN); and
1.5 µg of chymotrypsin (100:1) in 100 mM Tris-HCl pH 8.0 and 10 mM CaCl2 at
25�C for 4 hours (Promega, Madison, WI). The final volume for each digestion was
approximately 400 µl. At the end of the incubation time, each filter was centrifuged
at 14,000 g for 15 minutes and the amount of peptide recovered was quantified via
the Nanodrop UV-Vis spectrometer (Thermo Fisher Scientific, Wilmington, DE).

At least 100 µg of peptide digest was fractionated on a Shimadzu HPLC sys-
tem (LC-10AD, SCL-10A VP, SPD-10A VP, Shimadzu, Columbia, MD) using a
Phenomenex C18 Gemini 3µ, 110Å, 3.0⇥150mm column (Phenomenex, Torrance,
CA) and high pH mobile phases. Mobile phase A (MPA) was aqueous 20 mM
ammonium formate pH 10, and B (MPB) was 20 mM ammonium formate pH 10, in
70% acetonitrile. The HPLC flow was 0.5 mL/min and the gradient was as follows:
0% MPB isocratic for 15 minutes (trapping step), linear ramp to 100% MPB over 60
minutes, hold at 100% MPB for 5 minutes, to 0% MPB over 2 minutes, and equilibra-
tion at 0% MPB for 20 minutes. A Gilson 203 fraction collector (Gilson, Middleton,
WI) was used to collect 28 fractions for the tryptic digest and 11 fractions for each
of the LysC, ArgC, AspN, GluC, and chymotrypsin digests during detected (214
nm UV absorbance) peptide elution. Fractions were dried down using vacuum
centrifugal concentration (Savant SpeedVac, Thermo, Pittsburgh, PA) and stored at
-80�C.

Each of the dried down fractions were reconstituted in 2% acetonitrile and 0.2%
formic acid in water and then chromatographically separated on a nanoAquity
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LC system (Waters, Milford, MA) using a 20 cm reverse phase capillary column
(100 µm i.d.) packed with 3 µm MAGIC aqC18 beads (Bruker-Michrom, Auburn,
CA). Mobile phase A was 0.2% formic acid in water and B was 0.2% formic acid
in acetonitrile. The full HPLC method was 180 minutes long and included online
trapping, a 90 minute gradient, and re-equilibration time. A Velos-Orbitrap mass
spectrometer (Thermo Fisher Scientific, Bremen, Germany) was programmed to
collect a full scan (300-1500 m/z) at a resolution of 60,000 followed by the top ten
precursor HCD fragmentation spectra at a resolution of 7,500. Precursor fragmen-
tation repeat count was set to two and the dynamic exclusion was set to 60 seconds.
XCalibur software version #2.1.0 was used for data collection.

RNA S���������

The RNA-Seq data collection has previously been described in detail [38]. Briefly,
total RNA was extracted from a 2 mL aliquot of each Jurkat culture (~2.6⇥106

cells) using the TRIzol®Reagent (Life Technologies, Grand Island, NY) and the
RNA integrity was evaluated on a 2100 Agilent Bioanalyzer (Agilent, Santa Clara,
CA). Illumina paired-end libraries were prepared for each of 12 samples using
the TruSeq RNA Sample Prep Rev. A (kit lot #6849988, Illumina, San Diego, CA).
Briefly, mRNA was isolated with poly dT beads, fragmented, reverse transcribed to
cDNA, and then cDNA ends were repaired, adenylated, and ligated to Illumina
adapters. The cDNA library was run on an Invitrogen 2% Size Select Gel (Lot#
R19090-01) and a ~350 base pair band was excised and sequenced on an Illumina
HiSeq 2000 in paired-end mode (2⇥100bp). An average of 12 million reads were
generated per sample, and some samples were run multiple times, resulting in a
total of ~300 million reads.
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RNA-S�� ���� ��������

B�����/T����� RNA-S�� ���� ���������

RNA-Seq reads were aligned to the human reference genome (hg19) using Bowtie
(v0.12.7) and Tophat (v1.4.0) [40, 41]. Alignments were performed within Tophat,
which uses Bowtie. The Tophat mate inner distance was set to 150. All other
parameters were default. RefSeq gene models were supplied in GTF format and
reads were aligned to both RefSeq genes and novel genes (option -G). RefSeq is
NCBI’s curated, non-redundant reference sequence database and includes DNA,
RNA, and protein sequences and annotations [42]. The binary alignment or BAM
file was used for subsequent SNV calling.

SAM����� SNV �������

SAMtools (v0.1.18) was used to call SNVs, nucleotide di�erences between the
aligned RNA-Seq reads and the human reference genome. The mpileup command
was used with the -u and -D options. Bcftools was then used (-bvcg options) to
format the binary call format or BCF file. Finally, the SAMtools vcfutils.pl script was
used to create a variant call format or VCF file. Only SNVs with a read depth (DP)
higher than 10 and a quality score (QUAL) higher than 10 were used for subsequent
analysis. QUAL is a phred-scaled score that reflects the confidence of the SNV call.

All RNA-Seq data processing was performed on the Phoenix cluster at the
University of Wisconsin-Madison Chemistry department.

R�������� �� ����� ���� �������������

The variant_e�ect_predictor.pl Perl script (version 2.7) downloaded from Ensembl
along with the human annotation file (Ensembl v72) was used to convert the SNVs to
amino acid coordinates and retrieve the calculated SIFT and PolyPhen-2 scores [43].
Only SNVs passing the DP and QUAL filters were used. Each SNV coordinate con-
tained the chromosome, chromosome position, forward strand reference nucleotide,
and forward strand alternative nucleotide. After analysis, the program output a
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variant e�ect predictor (VEP) formatted file containing all the non-synonymous
SNVs, and each entry included the corresponding amino acid change, the amino
acid index within a RefSeq protein sequence, and the associated SIFT and PolyPhen-
2 score.

C����������� �� � ���������� SAP ��������

SAP coordinate information was converted into a customized SAP FASTA database.
Within the VEP file output from the previous step, SNVs that resided within Ref-
Seq protein coding regions were retrieved. The RefSeq protein FASTA file was
downloaded from NCBI’s FTP site (ftp.ncbi.nlm.nih.gov/refseq/H_sapiens/m-
RNA_Prot/human.protein.faa.gz, release 59) [42]. For each coding SNV, the ref-
erence and alternative nucleotide and its position within the genome was listed,
as well as the reference and alternative amino acid and position within a RefSeq
protein entry (NP accession). An in-house perl script was used to extract an 80
aa substring containing the SAP and change the reference aa to the variant aa. A
FASTA header including the amino acid change and position within the RefSeq NP
entry was linked to each SAP-containing sequence and all these sequences were
appended to the RefSeq protein and cRAP FASTA file. cRAP or the common Repos-
itory of Adventitious Proteins is a database of protein sequences that are found as
contaminants in proteomics experiments (http://www.thegpm.org/crap/).

C����������� �� � SAP �������� ���� ��� ��SNP ����������

For comparison purposes, a FASTA file containing SAPs derived from NCBI dbSNP
repository was constructed. The ASN-1 flat file containing all 53,233,155 dbSNP rs
entries for human was downloaded from NCBI’s ftp site (/snp/organisms/human_-
9606, build 137) and the 691,356 rs entries representing missense mutations (fxn-
class = missense) were retrieved. Each rs entry lists the reference and alternative
amino acid position within a RefSeq protein entry. An in-house perl script was
used to extract an 80 aa substring containing the SAP and change the reference aa
to the variant aa. A FASTA header including the amino acid change and its position
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within the RefSeq NP entry was added to each dbSNP-SAP-containing sequence
and all these sequences were appended to the RefSeq protein and cRAP FASTA file.

M��� ������������ ���������

Raw mass spectrometry files were searched against the customized SAP+RefSeq+cRAP
and the dbSNP-SAP+RefSeq+cRAP FASTA files using the SEQUEST/Percolator
search algorithm within ProteomeDiscoverer (v1.3.0.339, Thermo Fisher Scientific,
San Jose, CA). Default peaklist-generating parameters were used. Precursor m/z
tolerance was set to 10 ppm and product m/z tolerance was set to 0.05 Da. Peptides
with up to two missed cleavages (proteolytic) were permitted. Variable methionine
oxidation and static carbamidomethylation were used. Using reversed sequences
as a decoy database, peptides passing both a 1% and 5% global FDR were used for
downstream analysis. Validation was based on q-values generated by Percolator.
For identification of a protein using ProteomeDiscoverer, protein grouping and
strict parsimony principle was enabled, leucine and isoleucine were considered
equal, and only peptides passing a 1% FDR and having a delta Cn higher than 0.15
were used. Each peptide identification counted only if that peptide had a unique
primary sequence. A minimum of two peptides per protein was required for iden-
tification. MS data collected from alternative enzymatic digests were separately
searched against the customized SAP+RefSeq+cRAP FASTA file with identical
parameters to the trypsin search except with the relevant enzyme specificity.

E��������� �� ������-�������� ������� ����������

Using Skyline software (v1.4)[44], MS1 extracted ion chromatograms were inte-
grated for heterozygous peptide pairs that had a high degree of structural similarity
(same length, only one amino acid di�erence). Only peaks that overlapped a tar-
get peptide MS2 identification, contained minimal background interference, and
had an appropriate chromatographic peak shape were accepted. Default Skyline
parameters for peak integration were used.
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�.� R������

O�������

Each human cell line or tissue sample contains thousands of non-synonymous
SNVs (nsSNVs) that give rise to single amino acid polymorphisms (SAPs); however,
these variations are typically absent from generic proteomic databases. Therefore,
sample-specific peptides containing these SAPs fail to be identified during mass
spectrometry searching. Fortunately, RNA-Seq can be used to experimentally detect
the nsSNVs in a sample, which allows for the creation of a customized SAP database,
thereby enabling identification of SAP peptides [37].

Here, we describe the comprehensive detection and evaluation of SAP peptides
from a human cell line. We created a customized SAP database using RNA-Seq data
collected from Jurkat cells that enabled the detection of 421 SAP peptides mapping
to 395 nsSNV sites. For comparison purposes, we constructed an all-inclusive SAP
database derived from all known human nsSNVs (NCBI’s dbSNP) leading to the
identification of 891 SAP peptides. Though there were a higher number of SAP
peptides passing a 1% FDR using this all-inclusive database, we show that the
peptide spectral matches (PSMs) were of much lower quality, indicating a false
positive issue. After this finding, we proceeded to determine the extent of SAP
peptide detection using the customized database. We employed multiple protease
digestions to increase proteomic coverage and thus identified 695 SAP peptides
mapping to 504 nsSNV sites (9% of total nsSNVs, 504/5755). These SAP peptides
corresponded to transcripts with a median of 44 transcripts per million, indicating
that they are derived from moderate to high abundance transcripts. For all the SAP
peptides, we report the computationally predicted functional e�ect scores (SIFT,
PolyPhen-2). And last, the detected SAP peptides included 192 allelic pairs, in
which the reference and SAP peptide were both detected; we measured the relative
allele-specific expression for 51 of these pairs.
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C����������� ��� ��� �� ��� ���������� RNA-S�� ��������

RNA-Seq data was collected from Jurkat cell culture and used to create a customized
SAP database used for MS searching. The detection of variant peptides from SAP
databases is shown in Figure 1 and the bioinformatic workflow numbers are shown
in Figure 2.

Figure 3.1. Overview of sample-specific SAP peptide detection from custom databases.
Single nucleotide variants (SNVs) are detected directly from RNA-Seq reads by finding
di�erences between the transcript and human reference genome nucleotide sequences. The
set of non-synonymous SNVs are converted into amino acid sequences that are consolidated
into a customized protein database that is used for MS searching. Here, both the reference
and variant (SAP) peptides are detected, demonstrating that both allelic forms are expressed
at the protein level.
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Figure 3.2. Bioinformatic workflow numbers for customized SAP database construction
and subsequent MS search results.

First, RNA-Seq and MS data was collected from Jurkat human cell culture. Total
RNA was extracted from several Jurkat cultures (95%+ viability, trypan blue) using
the TRIzol ®method and each sample was used to create a barcoded Illumina
cDNA library using the TruSeq protocol. Each library was sequenced at least once
on an Illumina HiSeq 2000, resulting in a total of ~300 million paired end reads
(350bp, 2⇥100bp). Protein was extracted and digested from the Jurkat cultures
using the FASP method and the resulting peptides were fractionated via a high pH
HPLC and run on a nanoLC-Velos Orbitrap operating in data-dependent mode.
Approximately 500,000 mass spectra were collected.

The RNA-Seq data were analyzed to find Jurkat cell-specific SNVs. Bowtie and
Tophat were used to align the RNA-Seq reads to the human reference genome (hg19).
RefSeq gene models were used to guide alignment, but reads that aligned to novel
genes were also allowed. 82.8% of the singletons (one member of the read pair)
and 67.7% of the full read pair were successfully aligned. All read alignments were
stored within a binary alignment (BAM) file (61.41 GB). Next, SAMtools (mpileup
command) was used to call SNVs. Here, the genome is traversed one nucleotide
at a time and for each nucleotide position, the reads overlapping a nucleotide is
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examined. If there is evidence that the nucleotide sequence within the RNA-Seq
reads di�er from the nucleotide in the reference genome with statistical significance,
an SNV is “called” or reported. After SNV calling, several quality metrics are used
to filter SNVs, including the quality of the nucleotides at the SNV site, the score of
the read alignment, and the depth (i.e. coverage) of the reads. From the mapped
reads in this study, a total of 473,868 SNVs were called while 234,129 SNVs passed
quality filtersâ£”read depth (DP) of 10 or higher and quality score (QUAL) of 10 or
higher. Figure 3 shows the distribution of read depth versus quality score for all
the SNVs called, with filtered out SNVs shaded in gray.
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Figure 3.3. Plot of RNA-Seq read depth versus quality score for each called SNV. This graph
shows the distribution of depth and quality scores for the SNVs called using SAMtools,
with discarded SNVs highlighted in gray. The bimodal shape is due to the presence of
homozygous (top portion) and heterozygous (bottom portion) alleles. The nsSNVs that
resulted in a SAP peptide identification are dark blue. These nsSNVs tend to be of higher
read depth and quality.

Of the 234,129 SNVs that passed quality filters, 12,817 SNVs were found to
reside within RefSeq protein coding regions. 6,535 (52%) were synonymous SNVs
and 6,083 (47%) were non-synonymous SNVs (nsSNVs). These percentages are
similar to percentages reported by the 1000 Genomes Project (55% synonymous, 45%
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non-synonymous; average values from 1,092 individuals) [1]. The high proportion
(94.5%) of SNVs that did not reside in coding regions were predominantly located
within UTRs or introns, and this was especially true for nucleotides near the 3’ end
of the transcript. This suggests that many untranslated SNVs are detected from
incompletely spliced mRNAs that were isolated during the polydT bead enrichment
step of the Illumina library preparation protocol.

The set of nsSNVs found in the RNA-Seq data was used to derive all SAP-
containing polypeptide sequences in RefSeq. To accomplish this, each amino acid
position and index within the RefSeq protein sequence (NP accession number)
was retrieved. For each SAP, a custom Perl script was used to extract an 80 aa
subsequence containing the SAP position, and the amino acid at that position was
changed to the variant form. In a few cases (5%) the RefSeq protein sequence corre-
sponded to the SAP encoded by the nsSNV. This is because of minor discrepancies
between the RefSeq and hg19 sequence data, due to their di�erent origins —hg19 is
the product of genome sequencing e�orts, whereas RefSeq is derived from cDNA
sequencing data. 5,755 SAP-containing sequences mapping to 3,837 distinct NP
accessions were extracted and appended to the RefSeq protein (35,930 entries) and
cRAP (155 entries) databases to create a customized SAP database. The SAP en-
tries marginally increased the size of the database by 2.2% (442,740 aa added to
19,899,407 aa). 38% (2,162 entries out of 5,755) of the SAPs were not present in
dbSNP and are likely to represent undocumented variations, including somatic
mutations, rare variants, and variations exclusively in the RNA from RNA editing
or RNA polymerase nucleotide misincorporations.

The RefSeq+cRAP+SAP database was searched against the MS data using the
Percolator/SEQUEST algorithm. 73,552 peptides (each with unique sequences)
were identified at a 1% FDR. From these, there were a total of 421 SAP peptides
mapping to 395 unique SNVs, corresponding to 0.6% of all peptides. This percent-
age, representing the proportion of SAP peptides detected in a shotgun proteomics
experiment, is similar to previous findings [37]; however, the present study identi-
fied over ten times the number of SAP peptides. The significantly higher number
of SAP peptides identified is likely due to the deep proteomic sampling achieved
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in this study. This suggests that even more SAP peptides could be discovered
by the collection of deeper-coverage proteomics data. A list of the SAP peptide
identifications may be found in Supplementary Table S1 in the Supplementary
Information (SI).

The relative quality of peptide spectral matches (PSMs) was compared between
RefSeq and SAP peptides. When MS searches are performed against proteomic
databases that are augmented with putative sequences (e.g. splice junction se-
quences), there is an increased chance of false positives [38]. A typical indication
that there are false positive issues is when peptides matching the non-canonical
database (e.g. SAP peptide) have lower than expected MS search scores. Therefore,
the average MS search scores —in this case, the SEQUEST XCorr score that repre-
sents the degree of match (via the cross-correlation function) between the theoretical
and experimental MS2 spectra —were compared between RefSeq and SAP peptides.
Surprisingly, the SAP peptide XCorr scores, on average, were actually higher than
the RefSeq peptide scores, indicating that the SAP peptide identifications are of
high quality. Figure 4 shows these comparisons.

C����������� ��� ��� �� ��� ��SNP ��������

The nsSNVs listed in dbSNP were used to create an exhaustive SAP database, which
was then used for MS searching. Key bioinformatic workflow numbers describing
this process are shown in Figure 5.

NCBI’s dbSNP is one of the largest repositories of known SNVs consolidated
from various sources of data such as sequence tagged sites, Genbank, and the 1000
genomes project [33]. dbSNP was used to create an exhaustive SAP database for
proteomic searching. A human dbSNP ANS-1 flat file containing all 53,555,486
entries was downloaded from NCBI’s FTP site (May 3rd, 2013). Of those entries,
679,490 were classified as non-synonymous SNVs (fxn-class=missense) and 378,986
as synonymous (fxn-class=synonymous). The 679,490 non-synonymous SNVs
mapped to 33,557 distinct RefSeq NP sequences and, therefore, the dbSNP nsSNVs
covered nearly all RefSeq protein sequences.
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A SAP-containing polypeptide sequence was created from the SNV coordinate
information listed in each dbSNP entry. Using the dbSNP nsSNV coordinate
information, a custom Perl script was used to extract, from the RefSeq protein entry,
the 80 amino acid stretch of protein sequence containing the SAP and to change the
amino acid to reflect the variant form. Each entry was created in FASTA format and
the header included the chromosome and protein position of the nucleotide and
amino acid change, respectively. In total, 691,356 dbSNP-SAP entries were created.
Some dbSNP entries contained two or more alternative alleles, thereby generating
multiple SAP entries from a single dbSNP. The dbSNP-SAP entries were appended
to the RefSeq protein (35,930 entries) and cRAP (155 entries) databases to create the
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Figure 3.5. Bioinformatic workflow numbers for the dbSNP-derived SAP database construc-
tion and MS search. Though more SAP peptides were detected using the dbSNP database,
the peptide identifications had low peptide spectral match (PSM) scores, indicating a false
positive issue.

dbSNP-SAP database. The dbSNP-SAP entries drastically increased the size of the
database by 268% (53,233,115 aa added to 19,899,407 aa).

The RefSeq+cRAP+dbSNP-SAP database was searched against the MS data
using the Percolator/SEQUEST algorithm. 72,250 RefSeq peptides (each with
unique sequences) were identified at a 1% FDR. A total of 891 dbSNP-SAP peptides
were identified. An additional 652 dbSNP-SAP peptides were identified at a 5%
FDR threshold. A list of the dbSNP-SAP peptide identifications may be found in
Supplementary Table S2 in the SI. Though at first glance it may seem that more SAP
peptides were identified with the dbSNP-SAP database, there were false positive
issues that bring into question the quality of these peptide identifications. This
topic is discussed in the next section.
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C�������� RNA-S�� ��� ��SNP-������� SAP ��������

The dbSNP-SAP database represents all the nsSNVs found in any number of di�er-
ent human cell and tissue types, whereas the custom SAP database derived herein
is from a single sample-matched RNA-Seq dataset and represents the set of nsSNVs
that exist in this particular single cell-line. Although use of an aggregate database,
such as the set of dbSNP-derived SAPs, obviates the need to collect sample-specific
RNA-Seq data, these databases contain an extremely large number of polypeptide
sequences that do not exist in the sample. Inclusion of a large number of extrane-
ous sequences in proteomics databases increases the probability that a theoretical
mass spectrum derived from an extraneous peptide sequence falsely matches to an
experimental mass spectrum by mere chance, a well-known phenomenon [45].

A strong disadvantage of using an aggregate database, like the dbSNP-derived
SAP database, is that there are many false positives in the set of SAP peptides
identified. Evidence for this phenomenon can be seen in the comparison of MS
search score distributions of the RefSeq and SAP peptides. Figure 4A shows that for
peptides passing a 1% FDR, the median XCorr score for RefSeq (canonical) peptides
was 3.0: The custom SAP peptides had a median value of 3.6, which was even better
than the RefSeq median, but, notably, the dbSNP-SAP peptides had lower XCorr
scores, a median of 2.8. These trends for RefSeq, custom SAP, and dbSNP-SAP
were even more pronounced when comparing median XCorr scores for peptides
passing a 5% FDR, that is, 2.9, 3.6, and 1.8, respectively (Figure 4B), underscoring
both the high quality of RNA-Seq derived custom SAP peptide identifications,
and the low quality and higher number of false positives within the dbSNP-SAP
peptide identifications. Note that the peptide posterior error probabilities (PEP)
and q-values for the peptide groups also showed similar trends (Figures S1 and S2).

We examined the extent of overlap in peptide identifications between RNA-Seq
versus dbSNP-derived SAP peptides. Venn diagrams are shown in Figure 6. A
large fraction of the RNA-Seq SAP peptides (42% of peptides passing a 1% FDR)
were not present in the dbSNP database, showing that despite dbSNP’s large size,
it still does not include every SNV in this particular human cell line. Moreover,
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it is reasonable to assume that aggregate databases, as they stand today, would
fail to detect a number of variants in other cell or tissue types, as many SNVs are
yet to be documented. Conversely, a large fraction of dbSNP-SAP peptides (73%
of peptides passing a 1% FDR, and 84% passing a 5% FDR) lacked evidence of
expression in the deep coverage RNA-Seq data and, hence, are most likely false
positives. This would suggest that the nominal false discovery rates for 1% and 5%
FDR passing dbSNP-SAP peptides are actually 73% and 84%, respectively. While
the total number of dbSNP-SAP peptides identified is greater than the number of
RNA-Seq SAP peptides identified, the exceedingly high actual false positive rate
compromises their utility.

Next, we asked if the dbSNP-SAP peptide false positive issue could be remedied
by applying more stringent peptide identification thresholds. It is well known that
MS searches against extremely large databases tend to produce many false positive
peptide identifications, and various strategies have been developed to reduce the
incidence of false positives, including sequential (multi-tiered) MS searches and
calculation of local FDRs [45, 47]. We calculated a local FDR for the dbSNP-SAP
peptides by utilizing posterior error probability (PEP) values (see Supplemental
Table S2)[38, 48]. We found that even with the application of a local FDR threshold,
the dbSNP-SAP peptide score distributions were still slightly shifted to lower values
(Figure S3). And, more importantly, applying the local FDR cut-o� did not eliminate
many false positive dbSNP-SAP peptides, as shown in the Venn diagrams in Figure
6B, where more than 70% of dbSNP-SAP peptides were not present in the RNA-Seq
data and are therefore likely to be false positives.

The coverage and accuracy of the SAP peptide identifications must be high to
be of use in biological applications such as the confirmation of nsSNV translation.
These results show that utilizing sample-matched RNA-Seq data to identify SAP
peptides o�ers significant advantages in these respects.
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Figure 3.6. Comparison of dbSNP versus RNA-Seq derived SAP peptide identifications.
Venn diagrams show the overlap of SAP peptides identified from MS searching. For
example, 245 SAP peptides passing a 1% FDR were identified in both the dbSNP and
RNA-Seq SAP database searches. (A) dbSNP-SAP and RNA-Seq SAP peptides passing
global FDRs, (B) dbSNP-SAP peptides re-analyzed to pass a local FDR and then compared
to the same RNA-Seq SAP peptides. The terms “local” and “global” FDR are explained by
Käll, et al. [46]
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M������� �������� ������� �� ������ SAP ������� ���������

It was shown above that 395 SNV sites were detected at the protein level from
searching the custom (RNA-Seq derived) SAP database against MS data collected
on tryptically-digested lysate. As far as we know, this is the largest number of
SAP peptides detected for a single human cell line. However, these SAP peptides
represent only 6.9% (395/5755) of all possible translated nsSNVs. Of the 5755
total SAP sequences, 4325 contain SAP peptides that are between 6 and 39 amino
acids, the typical range of peptide lengths that are identified in shotgun proteomics
studies. Using this reduced number, a larger fraction of length-filtered SAP peptides
were identified, specifically 9.7% (395/4325). Assuming that the nsSNVs detected
at the RNA level are indeed translated into protein, these results provide a good
estimate of the proportion of nsSNVs corresponding to detectable SAPs.

We asked what fraction of nsSNVs could be detected at the protein-level with
shotgun proteomics. To explore this question, we collected high coverage pro-
teomics data by employing multiple protease digestions. Jurkat cell lysate was
separated into five aliquots and was digested with either LysC, ArgC, AspN, GluC,
or chymotrypsin. Each of the five peptide digests were fractionated on a high pH
HPLC and analyzed on a Velos-Orbitrap mass spectrometer in data dependent
mode, and each dataset was searched against the RefSeq+cRAP+SAP database.
Similarly to the trypsin-derived SAP peptides, the SAP peptides had higher XCorr
distributions than RefSeq peptides on average (Figure S4). Figure 7 shows the
peptide and SNV site identification results. Note that the trypsin dataset was based
on 28 high pH HPLC fractions whereas the datasets for the other enzymes were
based on 11. The number of SAP peptides with unique sequences was calculated
for cumulative combinations of proteolytic search results. For example, 508 unique
SAP sequences were found with combined trypsin and LysC data and 547 unique
SAP sequences were found with combined trypsin, LysC, and ArgC data. When
the multiple protease data was compared with the original tryptic dataset, the
number of unique SAP peptides increased by 65% while the number of unique
nsSNV sites for which there was direct peptide evidence increased by 28%. In
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other words, while data from all six enzymes detected 695 unique SAP peptide
sequences, these peptides corresponded to only 504 unique nsSNV sites. These
results suggest that higher coverage shotgun proteomics data increases the number
of identified SAP peptides with unique sequences, but that many of these SAP
peptides are repeatedly sampling the same set of SNVs. All multiple protease SAP
peptide search results may be found in Supplementary Table S3 in the SI.
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Figure 3.7. Cumulative number of identified SAP peptide and nsSNV sites with consoli-
dated protease digest data. The enhanced protein coverage a�orded by multiple protease
digestions increased the number of translated nsSNVs detected by 28%.

T��������� ���������� ��� �������� SAP ��������

With high coverage proteomic data, 8.8% (504/5755) of the total number of pos-
sible nsSNVs were identified at the protein level. This represents a much higher
fraction of detected SAP peptides as compared to previous studies [21, 24, 27, 35,
37], but it lags in comparison to the SNV detection sensitivity a�orded by next
generation sequencing technologies. MS-based proteomics can only detect a small
fraction of all possible protein-level variants within a sample. To understand why,
the abundance distribution, in transcripts per million (TPM), was plotted for all
transcripts and for transcripts in which the corresponding protein was identified
(Figure 8). The median TPM for transcripts with a protein identification was much
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higher than the median TPM for all transcripts. Two reasons for this are: first,
some lower abundance transcripts are not translated, especially for transcripts that
are stochastically expressed, and, second, mass spectrometry is not as sensitive
as RNA-Seq and the sampling depth of peptides is limited by many factors such
as peptide ionization e�ciency, sample complexity, and the MS duty cycle. The
abundance distribution for transcripts in which there was a detected SNV was
also plotted and compared to the abundances of transcripts for which there was a
detected SAP peptide (Figure 8B). This plot shows that SAP peptides are primarily
detected from highly expressed transcripts and suggests that as MS sensitivity and
sampling depth increases, the number of SAP peptides detected will also increase.

C�������������� ��������� ���������� ������ ������

The functional consequence of a given SNV can be computationally predicted using
a variety of tools such as SIFT and PolyPhen-2 [7, 8]. SIFT examines the degree of
evolutionary conservation of the nucleotide polymorphism and depends on the
assumption that an SNV found in a highly conserved genomic region is more likely
to a�ect the function of the protein. PolyPhen-2 examines the physicochemical
properties of the amino acid change and how much this change a�ects conserved
protein domains. Because the number of discovered SNVs far exceeds the number of
SNVs that can be biologically validated, both SIFT and PolyPhen-2 are ubiquitously
used to analyze and rank SNVs discovered in genome research.

We were interested in evaluating the functional predictive scores for both the
RNA and protein-level SNVs. We used Ensembl’s Variant E�ect Predictor (VEP)
program to retrieve the SIFT and PolyPhen-2 scores for each nsSNV (see Supple-
mentary Table S4 in SI). The distribution of SIFT and PolyPhen-2 scores for nsSNVs
detected at the RNA level and the subset of nsSNVs that was detected at the protein
level, as evidenced by a SAP peptide ID, were similar. Figure 9 shows histograms
of both SIFT and PolyPhen-2 score distributions. 27% of all nsSNVs and 29% of
nsSNVs with peptide evidence had a SIFT score less than 0.05, which is categorized
as “deleterious”. 16% nsSNVs and 14% of nsSNVs with peptide evidence had a
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Figure 3.8. Distribution of transcript abundances for transcripts encoding detected proteins
and transcripts encoding detected SAP peptides. (A) The abundance distribution for all
transcripts (light blue) versus just those transcripts with a protein identification (dark blue).
(B) The abundance distribution for transcripts with an nsSNV (light blue) versus just those
transcripts with a detected SAP peptide (dark blue).

PolyPhen-2 scores greater than 0.903, which is categorized as “probably damaging”.

RNA ��� ������� ������-�������� ����������

In diploid organisms such as human, there are two copies of each chromosome,
and thus each RNA or protein is derived from one of two alleles. When the gene
is homozygous, the sequence of the allelic pair is identical and there is no way to
distinguish which chromosomes the gene products come from. But when the gene
is heterozygous, the sequences of the allelic pair are di�erent and it is possible to
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Figure 3.9. Comparing SIFT and PolyPhen-2 functional e�ect prediction scores between all
nsSNVs and nsSNVS with a SAP peptide ID. The distributions were similar between the
two groups.

track which gene an RNA or protein arose from by detecting the RNA-Seq read or
SAP peptide containing the SNV or SAP, respectively. Additionally, it is possible to
quantify allele-specific expression (ASE). The ASE at the RNA-level can be estimated
by comparing the depth of reads mapping to the reference and alternative SNVs
[49]. Analogously, the ASE at the protein-level can be estimated by quantifying the
amount of reference and SAP peptide [50]. Previously, a SILAC-based approach
was developed that allowed global quantification of ASE in yeast [51].

We examined the RNA-Seq and mass spectrometry datasets to identify, at the
protein-level, the number of detected allelic pairs and to measure ASE. At least one
SAP peptide was detected for each of 504 nsSNV sites, as shown in an earlier section
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of this paper. Both the reference and SAP peptides were detected for 38% (192 out
of 504) of those nsSNV sites showing that a significant number of heterozygous
peptide pairs are readily detected by shotgun proteomics. The amino acid sequences
of the heterozygous peptide pairs were either significantly di�erent (e.g. the SAP
introduces a lysine causing the SAP peptide to be much shorter than the reference
peptide) or highly similar (e.g. the SAP is a single amino acid change in the middle
of the peptide sequence). 74 heterozygous peptide pairs were found in the latter
category. The peptides in these pairs have highly similar sequences (i.e. a di�erence
of only one amino acid). They could be considered structural analogues of each
other; the predicted HPLC retention time using SSRCalc [52] and the predicted
ionization e�ciency using ESPPredictor [53] between these pairs were found to be
near-identical. We estimated the relative SAP to reference peptide concentrations
by integrating the area of MS1 extracted ion chromatograms using the Skyline
program [44].

Figure 10 displays a plot of the estimated allelic expression for peptide and RNA-
level heterozygous pairs. The reference to alternative peptide ratio was distributed
around 1:1, for both the nsSNVs (RNA-Seq reads) or SAPs (peptide) measured. As
expected, allele-specific peptide expression shows greater variability than allele-
specific RNA expression due to MS variables such as electrospray current and
complexity of the sample matrix (i.e. co-eluting pepties). Future work could utilize
heavy-labeled internal standards and employ more precise methods of quantifica-
tion to further explore allele-specific expression. All ASE results can be found in
Supplementary Table S5 in the SI.

�.� D���������
The full repertoire of SNVs expressed in RNA can be detected using the latest
sequencing technologies but the power to detect the corresponding SAPs at the
protein level has been lagging. Direct detection of the SAP within a peptide (or
protein) is important for understanding how variants influence biological phenom-
ena such as post-transcriptional regulation and di�erential allelic expression. Little
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work has been done to date to measure SAP peptides on a large-scale using mass
spectrometry because the conventional strategy for identifying peptides is through
database searches against a generic proteomic database that does not include the
variant sequences.

We have described the large-scale detection of SAP peptides made possible
through the construction of a customized SAP database from sample-matched RNA-
Seq data. With the customized database, we confirmed the translation of hundreds
of non-synonymous SNVs that were specific to the Jurkat cell line, representing the
most comprehensive set of SAP peptide identifications to date. To determine how
many SAP peptides are detectable by shotgun proteomics, we employed multiple
protease digestions and collected even higher coverage proteomics data, allowing
us to detect 695 sequence-unique SAP peptides corresponding to 504 unique nsSNV
sites, or ~10% of all RNA-level nsSNVs (504/5755). These results illustrate that a
significant number of SAP peptides are detectable through shotgun proteomics,
but also indicate that further improvements in proteomics technologies are needed
for them to equal the coverage of variants that can be obtained at the RNA level
with next generation sequencing technologies.

The unusually high number of SAP peptides identified in this work along with
the sample-matched RNA-Seq data provided us with the opportunity to analyze
properties of nsSNVs and the SAP peptides identified via mass spectrometry. The
SAP peptides, similarly to all peptides identified, corresponded to moderate to
high abundance transcripts (30+ transcripts per million, TPM). The distribution
of these detected SAP peptides’ computationally predicted functional e�ects (e.g.
SIFT, PolyPhen-2) was similar to the distribution for the complete set of all possible
SAPs, indicating no selection of particular SAP types. Finally, for 192 out of the
504 SNVs, we detected both the reference and SAP peptides, confirming that a
significant fraction of heterozygous alleles are expressed at the protein level. Related
to this finding, we also investigated the feasibility of quantifying di�erential allelic
expression on a large scale. Previously, SRM methods employing stable isotope
labeled peptide standards were developed to quantify three allelic peptide pairs
[54] and a small number of related mutant peptides [50, 55]. Here, we presented
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preliminary label-free quantification of allele-specific expression based on the
integrated MS1 extracted ion chromatograms from 51 allelic peptide pairs.

We compared the number and quality of SAP peptide identifications resulting
from MS searches against (1) an aggregate SAP database derived from NCBI’s
dbSNP repository and (2) a customized SAP database derived from sample-specific
RNA-Seq data —which contained only those nsSNVs detected in the human cell
line of study (Jurkat cells). There were many clear advantages to using a customized
database, including its smaller size (reducing the incidence of false positive peptide
IDs), inclusion of nsSNVs not yet in public SNV repositories, and the ability to
compare RNA and protein nsSNV expression. The aggregate database may be
an option in the case that NGS data cannot be collected, but we found that the
large database size (over 100 times larger than the customized database) caused
the identification of many false positive SAP peptides, a problem not remedied
by application of stringent MS search cut-o�s (e.g. local FDR). In light of these
findings, it is recommended to use some strategy for condensing or customizing
proteomic databases when searching for novel protein variations.

An issue that will become important as methodology for the detection of sample-
specific SAP peptides is adopted is that the various genetic, transcriptomic, and
proteomic databases have discrepancies in sequence. These sequence discrepancies
make it di�cult to assess the incidence and extent of protein variations in samples.
The genomics community has solved this problem by calling an SNV when there is
a nucleotide that is di�erent from the human reference genome that is maintained
by the Genome Reference Consortium [56]. No such convention has yet been im-
plemented in the area of proteomics. For example, many proteomics researchers
use protein databases containing sequences that are not derived from the human
reference genome, such as UniProt, so the set of SAPs called from the reference
genome will be di�erent from those called from UniProt.

As outlined in the introduction, it would be beneficial if MS-based proteomics
could detect and quantify all the translated nsSNVs in a human sample. In this
study, we show that up to ~10% of nsSNVs identified in RNA were also detected at
the protein level, meaning that there are many SAP peptides that are not presently
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detected. Two factors could improve SAP detection: higher proteomic coverage
and increased MS sampling sensitivity. With high proteomic coverage, there is a
better chance of detecting a peptide corresponding to an nsSNV. In this study, we
used multiple proteases and increased the number of detected SNV sites by ~25%.
With increasing sensitivity, there are improved chances of detecting SAPs that are
expressed at lower levels. Whereas MS instrument sensitivity is an inherent feature
of each MS platform, another factor a�ecting sensitivity that we can control is the
sampling depth, that is, the ability for the instrument to choose precursor peptides
of low ion intensity (within a complex matrix) for subsequent MS2 fragmentation.
For example, one solution to increase the number of SAP peptides detected would
be to employ a targeted approach by using selected reaction monitoring (SRM)
assays [57], SAP peptide inclusion lists during data dependent acquisition, or
even intelligent data acquisition (IDA) strategies [58]. These SAP peptide targeting
approaches could be employed in future work to detect a larger fraction of translated
nsSNV sites.
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Gri�n, T. J., and Smith, L. M. (2014) Using Galaxy-P to leverage RNA-Seq for the discovery
of novel protein variations. In Review

�.� A�������
Current practice in mass spectrometry (MS)-based proteomics is to identify pep-
tides by comparison of experimental mass spectra with theoretical mass spectra
derived from a reference protein database; however, this strategy necessarily fails
to detect peptide and protein sequences that are absent from the database. We
have recently shown that customized proteomic databases derived from RNA-Seq
data can be employed for MS-searching to both improve MS analysis and identify
novel peptides. While this general strategy constitutes a significant advance for the
discovery of novel protein variations, it has not been readily transferable to other
laboratories due to the need for many specialized software tools. To address this
problem, we have implemented readily accessible, modifiable, and extensible work-
flows within Galaxy-P, short for Galaxy for Proteomics, a web-based bioinformatic
extension of the Galaxy framework for the analysis of multi-omics (e.g genomics,
transcriptomics, proteomics) data. These workflows allow the user to upload raw
RNA sequencing reads and convert the data into high-quality customized pro-
teomic databases suitable for MS searching. We show the utility of these workflows
on human and mouse samples, identifying 544 peptides containing single amino
acid polymorphisms (SAPs) and 187 peptides corresponding to unannotated splice



90

junction peptides, increasing the number of overall peptide identifications through
database reduction, and correlating protein and transcript expression levels.

�.� I�����������
Mass spectrometry-based proteomics is widely employed to characterize proteins
in myriad organisms, ranging from E. coli to human. Fundamental to almost
all proteomics analyses is the database search step, where experimental peptide
mass spectra are matched with theoretical peptide mass spectra derived from a
protein reference database [1]. This MS database searching strategy relies on the
completeness and quality of the protein reference database, meaning that peptides
and proteins are only identified if their correct sequence is present in the protein
reference file. But individual organisms often possess genetic variations that di�er
from the canonical sequences present in the database. These variations are often
not represented in the reference database causing the corresponding peptides to be
invisible to MS-based analyses.

In recent years, high-throughput RNA sequencing has been used to empirically
determine the transcript sequences expressed in a given sample, strain, cell line,
or tissue, and has become accessible to many researchers [2, 3]. Taking advantage
of this powerful new capability, we and others have developed novel strategies to
leverage RNA-Seq for the detection of sample-specific protein variations [4–11]. In
this strategy parallel RNA-Seq and proteomics data are collected from the same or
related samples. Novel sequences discovered from RNA-Seq data are translated
into proteins and added to the MS search database, which can then be employed to
detect the corresponding protein variations.

RNA-Seq derived databases tailored for a given sample can improve proteomics
in two main ways. First, and most importantly, RNA-Seq can be used to reveal
novel single nucleotide polymorphisms (SNPs), indels, alternative splice forms, and
gene fusions at the transcript level that, when translated, yield protein sequences
that are not in the reference protein database. These novel protein sequences are
then appended to the reference database and employed for MS-searching, enabling
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the detection of novel peptides. Second, RNA-Seq can be used to increase the
sensitivity and quality of peptide detection. To accomplish this, RNA-Seq is used
to quantify transcript levels, and all protein entries in the database that fall below a
threshold expression level for the corresponding transcript are removed. This is
useful because, in general, proteins that are not associated with reasonable transcript
abundances are unlikely to be expressed at detectable levels. This strategy results
in fewer “false” sequences in the database, which increases the number and quality
of overall peptide identifications [10, 12, 13].

The greatest bottleneck in harnessing RNA-Seq data for the discovery of protein
variations is not data generation —deep coverage RNA-Seq data is readily and in-
expensively produced —but rather in creating accessible and flexible bioinformatic
pipelines to process the data. Given that sequencing platforms and software tools
are rapidly evolving, researchers need an environment where it is easy to quickly
integrate new transcriptomic and proteomic tools and readily modify workflows
to suit their system of study. There is a dire need for transparency and sharing
of workflows so that other labs can build upon prior work. These problems are
magnified when considering the troves of next generation sequencing (NGS) data
that are currently underutilized in the field of proteomics.

Here we address the bioinformatic bottleneck in RNA-Seq-based protein database
construction by introducing flexible, extensible, and sharable workflows within
usegalaxyp.org, the public version of Galaxy-P. Galaxy-P is an extension of the
original web-based Galaxy framework [14–16], with a focus on proteomic and
multi- omic data analysis applications. We present three workflows that can be
used for RNA-Seq-derived proteomic database construction. These workflows are
transparent, easily shared, and flexible, so researchers, especially those without
expertise in computer science and bioinformatics, can quickly extend and evolve
the workflows for their needs. We describe the workflows and show their utility in
discovering novel peptides in both human (Jurkat cells) and mouse (pancreatic islet)
samples. The implementation of these workflows in Galaxy-P will help researchers
utilize NGS data for the detection and discovery of protein variations via mass
spectrometry.
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�.� E����������� P���������

J����� ���� RNA-S��

Jurkat cells were grown in 90% RPMI and 10% FBS (ATCC, Manassas, VA) to 1.3⇥106

cells/mL. Total RNA was extracted using the TriZol and its protocol (Invitrogen).
RNA libraries were prepared using the Illumina TruSeq protocol, which included a
dT bead enrichment of polyadenylated mRNAs and size selection of 350bp cDNA
fragments. ~80 million paired end reads (350bp, 2⇥100bp) were sequenced on
an Illumina HiSeq2000. More information about this dataset may be found in
[5]. Jurkat cell MS-based proteomics MS-based proteomics data collection has
been previously described [5]. Briefly, protein was extracted and digested using
the FASP protocol [17]. Peptides were fractionated on a high-pH HPLC and 28
fractions were analyzed on a nanoflow HPLC integrated with a Velos-Orbitrap
mass spectrometer. The MS raw files for the Jurkat cell lysate samples are available
via FTP from the PeptideAtlas data repository [18] by accessing the following link:
http://www.peptideatlas.org/PASS/PASS00215.

B� ��� C��� M���� I���� RNA-S��

Pancreatic islets were isolated from two B6 mice and two CAST mice. Total RNA
was extracted from ~250 islets of each mouse strain using the Qiagen RNeasy Mini
Kit (Qiagen, Hilden, Germany). RNA-Seq data was collected as described for the
human sample.

B� ��� C��� M���� I���� ����������

Protein was extracted from ~400 B6 islets (~470 CAST islets), and then proteomics
data was collected in the same manner as for the human sample, except that 9
fractions were collected during the high-pH HPLC fractionation. MS raw files for
the mouse samples are available via FTP from the PeptideAtlas data repository [18]
by accessing the following link http://www.peptideatlas.org/PASS/PASS00470.
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W��������

Three workflows were created within Galaxy-P that allow for the conversion of
RNA-Seq data into customized protein databases. Full details of these workflows
can be found in the following links:

SAP �������� ���������

Link to HTML: Human_SAP_DB_Workflow.html
Link to HTML: Mouse_SAP_DB_Workflow.html
URL to workflow within Galaxy Toolshed:
http://toolshed.g2.bx.psu.edu/view/galaxyp/proteomics_rnaseq_sap_db_work-
flow

S����� �������� ���������

Link to HTML: Human_Splice_DB_Workflow.html
Link to HTML: Mouse_Splice_DB_Workflow.html
URL to workflow within the Galaxy Toolshed:
http://toolshed.g2.bx.psu.edu/view/galaxyp/proteomics_rnaseq_splice_db_work-
flow

R������ �������� ���������

Link to HTML: Human_Reduced_DB_Workflow.html
Link to HTML: Mouse_Reduced_DB_Workflow.html
URL to workflow within the Galaxy Toolshed:
http://toolshed.g2.bx.psu.edu/view/galaxyp/proteomics_rnaseq_reduced_db_-
workflow

D������� ��������� �� ���� ������������ ����

For each of the three sample types described above (human, mouse B6, mouse
CAST), Galaxy-P workflows generated a SAP, splice, and reduced database which
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was concatenated with the cRAP database of common MS contaminants. The
resultant reduced+SAP+splice+cRAP databases, one created for each of the three
samples, were searched against the matched raw mass spectra data using the
Percolator search node within Proteome Discoverer (v1.4, Thermo Fisher Scientific,
San Jose, CA). Default peaklist-generating parameters were used. Precursor m/z
tolerance was set to 10 ppm and product m/z tolerance was set to 0.05 Da. Peptides
with up to two missed cleavages (trypsin) were permitted. Variable methionine
oxidation and static carbamidomethylation were used. Using reversed sequences
as a decoy database, peptides passing a 1% global FDR were accepted as identified
(except in cases where a more stringent 1% local FDR was mentioned in the text).

P���-������ ������� ��������� ��� ����������

Peptide identifications were filtered using the “Filter In Reference” tool we devel-
oped within Galaxy-P, which finds and annotates the novel peptides not listed
in the reference proteome. An example workflow may be found in the following
links: Example_Novel_Peptide_Filter.html URL to workflow within the Galaxy
Toolshed: http://toolshed.g2.bx.psu.edu/view/galaxyp/proteomics_novel_pep-
tide_filter_workflow

�.� R������

G����� ���������

We have developed workflows in Galaxy-P that convert RNA-Seq data into three
types of readily usable proteomic databases. These are databases containing novel
single amino acid polymorphisms; databases containing novel splice junction se-
quences; and a reduced database, which only contains protein sequences with
corresponding transcripts that are expressed over a threshold level of abundance.

We demonstrated the utility of these workflows on parallel RNA-Seq and pro-
teomics datasets collected from the same sample. Figure 1 shows an overview of
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the experimental design employed to collect RNA-Seq and proteomic data from
human Jurkat cells and mouse pancreatic islets from B6 and CAST mice. From each
sample, paired-end RNA-Seq reads (350bp, 2⇥100bp) from polyadenylated mRNAs
were sequenced on an Illumina HiSeq2000 and tandem mass spectra of tryptically
digested peptides were collected on a Velos-Orbitrap mass spectrometer. Figure 2
gives an overview of the three bioinformatic workflows, which are described below.
These workflows can serve as the starting point for more complex bioinformatic
pipelines and are designed to be readily edited, extended, and evolved.

Galaxy Database Creation Workflows 

Human Cells or
Example biological systems of study

Mouse Islets

MS-based ProteomicsRNA-Seq Analysis
RNA extraction
mRNA isolation
library preparation

Illumina HiSeq2000

fastq files

protein extraction
tryptic digestion
peptide fractionation

Velos-Orbitrap MS

RAW files

Figure 4.1. Experimental overview. The Galaxy-P workflows take as input sample-specific
RNA-Seq data and create sample-specific protein databases. These protein databases
are then employed for MS-based proteomics database searching. The workflows were
developed on datasets generated from human (Jurkat cells) and mouse (B6 and CAST islets)
samples.
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Post-search tools:  filtering and annotation

Database creation workflows within Galaxy-P
Reduced database

Genome sequence Gene models

synthetic transcriptome

RSEM 
Prepare Reference

RSEM 
Calculate Expression

RNA-Seq data

protein FASTA
transcript expression levels

Galaxy Text
Manipulation Tools

Reduced protein FASTA file

SAP database
RNA-Seq data Gene models

Tophat
genome alignment

SAMtools
mpileup command

Bcftools
convert BCF to VCF

SnpEff
SNP annotation

SNPEff to Peptide
FASTA tool

Database of SAP
peptide sequences

Splice database

genome
sequence

RNA-Seq data Gene models

Tophat alignment
-no novel junctions
-yes novel junctions

Filter BED on splice
junctions tool

Extract junction
genomic sequences

Translate BED
sequences tool

Database of splice
junction peptides

Figure 4.2. Overview of workflows implemented in Galaxy-P that utilize RNA-Seq data
for improved proteomics. The single amino acid polymorphism (SAP) database workflow
detects non-synonymous SNPs that yield SAPs. The splice database workflow detects
alternatively spliced transcripts and the corresponding novel splice junction polypeptide se-
quences. The reduced database workflow quantifies the sample’s transcriptome, optionally
removes likely unexpressed protein sequences, and allows determination of RNA-protein
correlations. Post-search tools are used to filter and annotate novel peptides.

G����� ��������� ��� RNA-S��-������� �������� ��������

SAP ��������

SNPs are single nucleotide di�erences between genomes of di�erent individuals
and are one of the most common types of genetic variation [19]. SNPs that reside
within a protein coding region and change the coding amino acid are termed non-
synonymous SNPs (nsSNPs) and the corresponding amino acid is then called a
single amino acid polymorphism (SAP). Since a change in protein coding sequence
can potentially alter a protein’s function, it is important to directly measure SAP-
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containing proteins by mass spectrometry. This would allow the evaluation of
the post-translational consequences of a given variant. In addition, detection of
proteins from heterozygous genes would allow for measurement of di�erential
allelic expression at the protein level to complement measurement of di�erential
allelic expression at the RNA level, which is already possible [20].

Most reference protein databases contain only those amino acid sequences that
are translated from the reference genome, which typically represent nucleotide
sequences derived from one or more representative individuals or strains [21].
Therefore, SAPs present in a particular experimental sample will be missed unless
they are explicitly added to the database. To solve this problem, we and others
have shown that customized SAP polypeptide databases can be constructed from
RNA-Seq data. The set of nsSNPs encoded in a sample’s transcriptome can be
detected by RNA-Seq and the stretches of RNA sequences containing nsSNPs can
be translated into SAP-containing protein sequences for database searching [4, 10].

The SAP database workflow in Galaxy-P inputs raw RNA-Seq data and outputs
a database of SAP polypeptide entries that can be used for MS searching. The work-
flow aligns RNA-Seq reads to the reference genome using Tophat [22], calls SNPs
using SAMtools [23], and annotates the SNPs that reside within protein-coding
regions using SNPe� [24]. To convert the annotated SNPs into a SAP-containing
polypeptide database, the workflow uses a tool we developed within Galaxy-P
called “SNPe� to Peptide Fasta”. Within this tool, the user specifies the number of
amino acids to the left and right of each detected SAP to include in the final SAP
database. Each entry in the database contains an informative header specifying
the location of both the SNP and SAP on the transcript and protein, respectively.
Additionally, if the user would like to employ an alternative SNP calling tool, like
GATK, they can modify the workflow to include it [25].

We used the Galaxy-P SAP database workflow to create and employ custom
SAP databases for the human and mouse samples. Using the human RNA-Seq
dataset, this workflow produced a SAP database comprising 6,168 SAP polypeptide
entries, which was combined with the Ensembl reference proteome. After MS
database searching, 522 SAP peptides that mapped up to 491 unique SNP sites on
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the genome were identified. These SAP peptides would not have been detected if
only the canonical Ensembl protein sequences were used for database searching.
When comparing the SAP peptides detected in the present study (522) with SAP
peptides detected using our previously published SAP workflow (491) [4], which
used di�erent gene models (RefSeq instead of Ensembl), there was an 89% overlap
in peptide identifications.

We also demonstrated the utility of this SAP database workflow on the two
mouse strains, B6 and CAST. For B6, the workflow produced, as expected, only
1 SAP entry, a likely false positive or recent mutation since the mouse reference
genome is based on B6 [26]. For CAST, however, the workflow output a database
with 476 SAPs, which was concatenated with the Ensembl reference proteome and
subsequently used for MS searching. 22 SAP peptides mapping to 19 unique SNP
sites were identified. The di�erence between B6 and CAST SAP databases illustrates
that the number of SAPs detected is dependent on the relationship between the
sample and the reference genome. B6, which is in fact the strain from which the
reference genome is based, did not have detected variants while CAST, a less well
characterized disease model system for Type II diabetes, had many. This illustrates
the importance of utilizing RNA-Seq data for proteomics analysis, especially for
organisms, strains, and disease models that have not been thoroughly characterized
or contain sparsely annotated reference proteomes.

Results for both human and mouse data are summarized in Table 1.

 SAPs  SNP sites  SAP Peptide IDs*  SNPs ID'd
Jurkat human cells 9,168 6,924 522 491
B6 mouse islets 1 1 N/A N/A
CAST mouse islets 476 249 22 19
*peptide passing a 1% FDR

Sample
SAP database Proteomic Identifications

Table 4.1. Results from creating SAP databases and using them for searching proteomic
datasets.
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A majority of genes in higher eukaryotes are alternatively spliced resulting in
the production of multiple mRNA forms from the same gene. The spliceosome
processes pre-mRNAs by excising introns and combining specific exons to produce
a mature RNA. The ubiquity of splicing, especially in humans, has been revealed by
next generation sequencing methods that allow unbiased, global characterization
of splicing in many cell and tissue types [27, 28].

Despite the high number of novel splice forms detected at the transcript level,
proteomic databases for MS searching are far from complete in terms of splicing.
There are still novel splice events in certain cell types or disease models that are not
yet annotated. Consequently, the polypeptide sequences corresponding to these
novel splice sites are not in the protein reference database and are thus missed
during standard MS-based proteomic analyses.

Within Galaxy-P, we have created a workflow for the detection and subsequent
incorporation of novel splice sequences into custom splice-junction databases. The
splice database workflow first aligns RNA-Seq data to the genome twice, first to only
those splice junctions found in the Ensembl gene models and second to both the
Ensembl gene models and reference genome. The output BED files, which contain
the coordinates of all detected junctions, are compared to each other and only those
coordinates corresponding to splice junctions not present in the gene models are
retrieved. Next, the genomic sequences for each splice junction is retrieved. We
developed a program within Galaxy-P, “Translate BED sequences”, which translates
the splice junctions and compiles all splice-junction polypeptide sequences into
a database. The user may choose to filter out splice junction entries that contain
stop codons, are less than a certain length, or are below a certain expression level
as measured by the RNA-Seq read depth at each splice junction.

We used the splice database workflow to create and employ custom splice-
junction databases for the human and mouse samples. Using the human RNA-Seq
dataset, this workflow produced a splice-junction database comprising approxi-
mately 33,000 splice-junction polypeptide entries. Previously, we have found it
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was important to use a stringent score cut-o� for peptide spectral matches cor-
responding to splice junction peptides [5]. Therefore, we required the same 1%
local FDR for splice-junction peptide identifications in the present study. After MS
searching against the splice-junction database, 67 novel splice junction peptides,
defined as those peptides not present in the Ensembl reference proteome, were
identified. There was a 57% overlap of splice-junction peptides identified in this
and a previous study, which used a similar though not identical workflow (e.g.
RefSeq gene models) [5].

Application of the workflow for analysis of the mouse islet RNA-Seq data re-
sulted in a splice junction database containing approximately 32,000 (B6) and 20,000
(CAST) splice junction polypeptides. After MS searching, 58 (B6) and 72 (CAST)
novel splice junction peptides were identified at a 1% local FDR.

Results for human and mouse data are summarized in Table 2. These results
show that many sample-specific peptides derived from novel alternative splice
events are missed when using only the reference protein database for MS searching.

size min. depth peptide IDs*
Jurkat human cells 33,372 6 67
B6 mouse islets 57,587 4 64
CAST mouse islets 43,244 4 66
*peptide passing a 1% local FDR

Sample
splice database

Table 4.2. Results from creating splice junction databases and using them for searching
proteomic datasets.

R������ ��������

Target decoy search strategies are widely used in mass spectrometry-based pro-
teomics to permit a determination of the false discovery rate (FDR) for peptide
identifications [29]. The underlying assumption in this approach is that the target
database, which comprises the sequences of the protein reference database, reflects
the protein sequences actually present in the sample. However, this is rarely the
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case; for example, human cells have been found to express fewer than 50% of the
proteins encoded in their genome at any given time [30–32]. RNA-Seq data can be
employed to quantify transcripts and then remove those protein sequences from
the reference database that have minimal or undetected mRNA expression levels
[33]. This produces a smaller, sample-specific “reduced” database that improves
the number and quality of peptide identifications [10, 12, 13].

In the reduced database Galaxy-P workflow, the sample-matched raw RNA-Seq
data serves as input and RSEM [34] is used to quantify transcripts based on Ensembl
gene models (e.g. GTF file), and the output is a list of each transcripts’ abundance
in Transcripts Per Million (TPM). Next, Galaxy Text Manipulation tools are used to
link each protein entry in the protein FASTA file to its corresponding transcript and
the transcript’s abundance in TPM. The user selects the minimum transcriptional
abundance a protein must have to be included in the reduced database (e.g. >1TPM).

We used the human and mouse datasets to test the reduced database workflow
by creating reduced databases comprised of only those proteins with transcript
abundances above 1 TPM. For human, the Ensembl protein database was reduced
from approximately 104,000 to 83,000 entries. The MS search against this reduced
database yielded 313 more peptide identifications as compared to the original
database search. For mouse, the Ensembl protein database was reduced from
approximately 52,000 to 18,000 (B6) or 17,000 (CAST) entries, increasing the number
of peptide identifications for each strain by 166 (B6) and 146 (CAST). Though these
increases in peptide identifications are modest, another benefit of reduced databases
is that the overall quality of peptide identifications improves, as shown in Figure 3.
Full results for the reduced databases are listed in Table 3.

The reduced database workflow is easily modified to accommodate di�erent
datasets and can also enable measurement of RNA-Protein expression correlations.
For example, one can easily change the TPM cut-o� employed for various proteomic
datasets that have di�erent depths of coverage. If available, alternative gene models
besides Ensembl can be used, as can di�erent transcript quantification programs.
Since the reduced databases contain TPM values for each protein, the user can easily
determine RNA-Protein expression correlations such as those shown in Figure 4
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Figure 4.3. Improved peptide confidence scores from reduced database searches. The
comparison of distributions of posterior error probability (PEP) values for peptides passing
a 1% FDR cut-o� for MS searches of the reduced database versus the (canonical) Ensembl
reference proteome. A lower PEP value reflects a higher degree of confidence for the
peptide identifications. In all cases, the reduced database searches improves PEP scores, as
shown by the shift of PEP distributions to the left.

# entries peptide IDs* # entries peptide IDs* % increase
Jurkat human cells 80M 500K 104,310 73,123 82,101 73,436 0.4
B6 mouse islets 94M 250K 52,165 30,212 18,052 30,220 0.3
CAST mouse islets 126M 250K 52,165 28,756 16,940 28,823 0.2
*peptide passing a 1% FDR

original database reduced database
Sample

Rna-Seq 
reads

Mass 
spectra

Table 4.3. Results from MS searching with the original Ensembl protein database and the
reduced database.

for the human and B6 mouse samples in the present study.

�.� C����������
Using RNA-Seq data to enhance MS analysis is a promising strategy to discover
novel peptides specific to a sample and, more generally, to improve proteomics
results. The main bottleneck for widespread adoption of this strategy has been the
lack of easily used and modifiable computational tools. We provide a solution to
this problem by introducing a set of workflows within Galaxy-P that easily convert
raw RNA-Seq data into proteomic databases. Development within Galaxy-P brings
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Figure 4.4. Transcript versus protein abundance expression. The reduced database work-
flow outputs for each protein the transcript abundance level in transcripts per million (TPM).
This allows researchers to easily determine RNA-Protein correlations. For this particular
plot, individual protein abundances were estimated by counting the number of peptide
spectral matches and normalizing by the protein’s length (e.g. 400 amino acids).

unique benefits due to the inherent characteristics of the Galaxy-framework [14–
16], such as easy publication and sharing of complete workflows with other users.
Flexibility is a key benefit, as users can easily customize workflows to account for
sample- or experiment-specific parameters, and also incorporate emerging new
tools as desired. Although the complete workflows are available for use on the
public Galaxy-P instance (i.e. implementation), the tools used and developed here
are either already a part of the main Galaxy build or have been deposited in the
Galaxy Tool Shed (http://toolshed.g2.bx.psu.edu/) under the “Proteomics” link.
Thus these workflows should be usable on local Galaxy instances as well.

These workflows were tested on RNA and protein datasets that were collected in
parallel from human and mouse samples. The results show that incorporating RNA-
Seq data into proteomic analyses enables discovery of novel peptides arising from
genetic variation and alternative splice forms, improves the number and quality
of peptide identifications, and enables measurement of RNA-Protein expression
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correlations. These workflows and the benefits of the Galaxy framework provide a
sound basis upon which to build newer and more sophisticated methods of RNA-
Seq analysis for the continued advancement of proteomics, as newer tools and
technologies arise.
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